
Learn by doing: less theory, more results

Facebook Graph API
Development with Flash
Build social Flash applications fully integrated with the
Facebook Graph API

Beginner's Guide
Michael James W Illiams P U B L I S H I N G

Facebook Graph API
Development with Flash
Beginner 's Guide

Build social Flash applications fully integrated with the
Facebook Graph API

Michael James Williams

[PACKT]
P U B L I S H I N G

BIRMINGHAM - MUMBAI

Facebook Graph API Development with Flash
Beginner's Guille

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2010

Production Reference: 1081210

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton

Birmingham, B27 6PA, UK

ISBN 978-1-849690-74-4

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

http://www.packtpub.com
mailto:a.wishkerman@mpic.de

Table of Contents
Preface 1

Chapter 1: Introduction Z
What's so great about Facebook? 7

It's popular 8
Numbers 9

It's everywhere 9
It's interesting to develop for 11

Web hosts 11
What's a web host? 11
Why do you need one? 12
How do you choose one? 12
Useful software 13
What about domain names? 13

How much AS3 knowledge is required? 14
The source code 15

Powered by... 17
Debugging 18

Watch out for caching 19
A final note... 21

Chapter 2: Welcome to the Graph 23
Accessing the Graph API through a Browser 24
Time for action - loading a Page 24
Accessing the Graph API through AS3 27
Time for action - retrieving a Page's information in AS3 27
Time for action - deserializing a JSON object 32
Time for action - visualizing the info 33
Understanding connections 36

Table of Contents

Time for action - finding connections in a browser 36
Rendering Lists 40

Time for action - rendering Lists of Posts 40
Rendering connections 45

Time for action - displaying a Graph Object's connections 46
Introducing the Requestor 48

Time for action - creating an HTTP Requestor 48
Understanding Connections of Connections 55
Time for action - loading photos from an album 56
Putting it all together 61
Time for action - traversing the Graph 61
Summary 64

Chapter 3: Let Me In! 65
What can you see? 65
Time for action - snooping through other people's accounts 65
What's that got to do with the Graph API? 69

Access tokens are proof of authorization 70
User/Application authorization 70

Time for action - registering an application with Facebook 72
Application ID + logged-in user = access token 74

Time for action - requesting an access token with the browser 75
Registering a redirect URI with our application 75
Using the Access Token 78
Me, me, me 80
Keeping secrets 81
What did Facebook give us? 81

Authenticating with AS3 83
Time for action - Using an access token in our Graph visualizer 83

That's cheating! 88

Time for action - authenticating through the application 88
A different approach 91

Time for action - authenticating via JavaScript 91
Creating a callback web page 93
Receiving the access token 95
What about users who haven't used the application before? 99

Extended permissions 101
Time for action - obtaining extended permissions 101
Time for action - requesting extended permissions 102

I want it all, and I want it now 106

Using the Adobe ActionScript 3 SDK for Facebook platform 106
Time for action -implementing the SDK 107
Summary 115

Table of Contents

Chapter 4: Digging Deeper into the Graph 117
Getting more results with paging 117
Time for action - displaying the number of objects in a list 118
Time for action - requesting more Objects 122
Time for action - requesting more Objects at once 124

Paging 125

Time for action - obtaining data in pages 126
Time for action - adding limit and offset to GraphRequest instances 128
Time for action - requesting data based on date 131
Time for action - adding since and until to GraphRequest instances 133
Time for action - filtering by date using the Ul 135

We gon' partition like it's yo' birthday 139

Time for action - using the ids parameter in a Graph URL 141
Summary 144

Chapter 5: Search Me 147
Using the website's Search box 147
Time for action - examining quick search results 148
Time for action - Using the Full Search results 150
Searching with a Graph URL 153
Time for action - searching without authorization 153
Time for action - searching while authorized 158

Differences 161
Restrictions 161

Time for action - implementing a Search window in the 163
Visualizer 163
Time for action - searching via the SDK 167
Time for action - searching your news feed 171
Time for action - searching a friend's Wall Posts 172
Time for action - searching feeds through the Visualizer 175
Summary 181

Chapter 6: Adding to the Graph 185
Hello, Facebook! 185
Time for action - posting to the user's feed 185

Request methods 189
What's a request method? 189

Time for action - using the POST method 190
Time for action - listening for errors 193
Time for action - granting the required permission 195
Time for action - posting via the SDK 197

Table of Contents

Going further with Wall Posts 199
Time for action - publishing rich posts 200
Posting to another Wall 206
Time for action - posting to another Wall using the Visualizer 207

Actions, privacy, and source 208
Actions 208

Time for action - literally 209
Privacy 211

Time for action - setting a Post's privacy settings 211
Source 214

Deleting Graph Objects 214
Time for action - deleting a Post 214
Time for action - deleting Posts using the Visualizer 215
Publishing other kinds of Graph Object 221

Comments 222
Likes 222

Deleting Likes 223
Notes 224

Events 225
Event RSVPs 226
Albums 227
Photos 228
Checkins 230

What about...? 230
Sending inbox messages 230
Creating Pages, Groups, Applications, and Videos 231
Changing biographical information 231
Making Friends 231
Inviting Friends to Events 231

Summary 232

Chapter 7: FQL Matters 235
What is FQL? 235
Understanding the FQL interface 236

Models of data 237
Representations of data 238

Getting information 238
Time for action - retrieving info from the Page table 239
What about connections? 243

Photos, Albums, and their Owners 245
Primary keys 247
Crow's feet 248
Link tables 249

Eiul

Table of Contents

Time for action - getting a user's friends' names with AS3 251
Time for action - an easier way 252
Time for action - getting it down to one API call 253
The Graph as a layer 254
Permissions 255

Checking existing permissions 255
Getting more information 256

Restrictions 256
Searches must use an indexable field 257

Does this matter in practice? 258

Advanced FQL 258
Operators 258

Comparison 258
Logical 258

Ordering 259
Paging 260
Extra functions 261
Calling multiple queries at once 262

Summary 263

Chapter 8: Finishing Off 265
Putting it online 265

On Facebook 266
IFrame 266

Time for action - setting up an IFrame application 267
Page tab 270

Time for action - adding an application to a Page tab 271
Off Facebook 274

Your own website 274
Flash game portals 274
As a desktop AIR application 275

Time for action - authorizing through AIR with HTTP 276
Time for action - authorizing through AIR with the SDK 278

As an AIR for Android Application 280

Time for action - authorizing on Android 280
Choosing your application's Facebook settings 283

Getting your application out there 284
Editing the application's profile page 284
The Facebook Application Directory 288

Watch out for these policies! 289
What next? 289

The Official AS3 Facebook SDK 289
Other Facebook APIs 290

Ivl

Table of Contents

JavaScript SDK 290
Insights API 290
Facebook Chat API 291
Internationalization API 291

Adobe Social service 291
Related Technologies 291

PHP 291
Open Graph Protocol 292
Real-Time Updates 292

Brand new and coming soon 292
Facebook Credits 292
Test users 293
The New Messages 293

Facebook developer resources 293
Official Facebook resources 293
Other great websites 294
Me, me, me 295

Keeping up with the Zuckerbergs 295
Dealing with change 296

Summary 296

Pop Quiz Answers 297
Chapter 2 297
Chapter 3 297
Chapter 4 297
Chapter 5 298
Chapter 6 298
Chapter 7 298

Index 299

Preface
Facebook is big, by all meanings of the word. It's used by half a billion people—and countless
businesses, bands, and public figures—for socializing and self-promotion. It's also a huge
development platform, with tens of thousands of applications.

It's now common to see a Facebook "Like" button on blog posts, news articles, and many
other websites. In the same way, Facebook integration is becoming more and more desirable
for browser-based RIAs and games, with some, like FarmVille, even being based entirely
around Facebook. That's where Flash comes in.

What this book covers
Chapter 1, Introduction, gets you up to speed with Facebook and ready to learn to develop
Flash applications that connect with the Facebook platform. You'll learn why it's worth
putting more time into developing for Facebook than other social networks (and why it's
likely to stay that way), and get yourself technically set up for coding.

Chapter 2, Welcome to the Graph, introduces you to Facebook's model for connecting all the
information in its huge data stores—the Graph API. You'll discover how intuitive this model
is, and will start to explore the publicly available data using AS3 through utility code, which
you'll build from scratch.

Chapter 3, Let Me In!, breaks down Facebook's systems for security, permissions, and
authentication. You'll learn how to access the private data of Facebook users (including their
photos, biographical information, and lists of friends). You will also start using the official
Adobe ActionScript 3 SDK for Facebook platform alongside your own utility code.

Chapter 4, Digging Deeper into the Graph, helps you understand the concepts of paging
and filtering, so that you aren't restricted to using only the default dataset that Facebook
presents you with. You'll find out how to obtain data from specified dates, and how to speed
up your applications by retrieving information from multiple sources at once.

Preface

Chapter 5, Search Me, builds on the previous chapter by teaching you how to search for data
based on criteria other than dates. You'll learn how to retrieve Wall Posts by specific users,
pages with specific names, and places by specific geographical coordinates.

Chapter 6, Adding to the Graph, takes you beyond merely retrieving data and into publishing
new data to Facebook. You'll find out how to create new Wall Posts (including rich posts
including images and embedded hyperlinks); how to comment on other users' Wall Posts; how
to create new events, notes, and albums; and how to upload photos from your hard drive.

Chapter 7, FQL Matters, takes a break from the Graph API to teach you how to learn a
powerful search tool—Facebook Query Language. You'll trade the Graph API's intuitiveness
and simplicity for FQL's depth and additional features, while also understanding the benefits
that each approach offers over the other.

Chapter 8, Finishing Off, wraps up what you've learned throughout the book and gets
you ready to release your application to the wild. You'll find out how to embed your
application into the Facebook website itself; how to get it into the official Facebook
Application Directory; and how to export it as a desktop or Android application, while
still keeping its Facebook connectivity. Finally, you'll learn how to keep up-to-date with
the ever-changing Facebook platform, and discover some useful resources for taking what
you've learned even further.

Appendix, Pop Quiz Answers, contains answers to all the Pop Quizzes in the book

What you need for this book
To develop and compile the example code in this book, you will need an AS3 compiler.
Sample projects are provided for use with Flash Professional (CS3 and above), Flash Builder,
and the free FlashDevelop IDE (with the Flex SDK); if you use a different workflow you will be
able to convert these to fit your tools.

You'll also need previous experience with AS3 class-based coding and a Facebook
account. The exact requirements here, along with what to do if you don't meet them,
are detailed in Chapter 1.

Who this book is for
If you are an AS3 developer who wants to create applications and games that integrate with
Facebook—either on the Facebook website itself or off it, then this book is for you. Even if
you have no previous experience with Facebook, databases, or server-side programming, you
can follow this book.

[2]

Preface

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text are shown as follows: "All we have to do is pass it an argument of type
graph. GraphOb j ect."

A block of code is set as follows:

for (var key:String in decodedJSON)

When I wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

if (decodedJSON.data)

//has a "data" property so we assume it is a Graph List
v a r g r a p h L i s t : G r a p h L i s t = new G r a p h L i s t O ;

}
New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Compile and run your SWF,
then expand the Connections box and click on posts".

graphObject[key] = decodedJSON[key];

Warnings or important notes appear in a box like this.]
1

Tips and tricks appear like this.

[3]

Preface

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub. com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www. packtpub. com or e-mail suggestopacktpub. com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www. packtpub. com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for this book

You can download the example code files for all Packt books you have
purchased from your account at http: //www. PacktPub. com. If you
purchased this book elsewhere, you can visit http: //www. PacktPub.
com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http: //www. packtpub. com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

[4]

http://www.packtpub.com/support

Preface

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works, in any form, on the Internet, please provide us with the
location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub. com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub. com if you are having a problem with any
aspect of the book, and we will do our best to address it.

[5]

1
Introduction

Ready to start learning how to develop Flash Facebook applications? You will be
in a few pages.

In this chapter, we will:

• Learn what the big deal is about Facebook, and why you should be interested in
developing an application for it

• Get you set up with a web host, which you'll need for developing any online
Facebook application

• Establish how much AS3 you need to know already, and what to do if you don't

• Take a quick look at the project that you'll be building throughout most of this book

• Find out how to deal with the debugging complications that arise when developing a
"browser-only" application like this

So let's get on with it...

What's so great about Facebook?
Seems like everyone's on Facebook these days—people are on it to socialize; businesses are
on it to try to attract those people's attention. But the same is true for other older social
networks such as Linkedln, Friendster, and MySpace. Facebook's reach goes far beyond
these; my small town's high street car park proudly displays a "Like Us On Facebook" sign.

Introduction

More and more Flash games and Rich Internet Applications (RIAs) are allowing users to
log in using their Facebook account—it's a safe assumption that most users will have one.
Companies are asking freelancers for deeper Facebook integration in their projects. It's
practically a buzzword.

But why the big fuss?

It's popular
• Facebook benefits from the snowball effect: it's big, so it gets bigger.

• People sign up because most of their friends are already on it, which is generally not
the case for, say, Twitter. Businesses sign up because they can reach so many people.
It's a virtuous circle.

• There's a low barrier to entry, too; it's not just for techies, or even people who
are "pretty good with computers;" even old people and luddites use Facebook.
In February 2010, the technology blog ReadWriteWeb published an article called
"Facebook Wants to Be Your One True Login," about Facebook's attempts to become
the de facto login system throughout the Web. Within minutes, the comments filled
up with posts from confused Facebook users:

19. This is such a mess I can't do a thing on my facebook .The changes you have made are
ridiculous,! can't even login!!!!!l am very upset!!!

n Posted by: O I February 10, 2010 10:24 AM

20. Can we log into face book? This is crazy I want to get all my info off and be done with this. I
recently moved from MN to SO Myrtle Beach and facebook was a great way to keep in touch
with family and friends but this is getting to be to difficult

I I Posted by: B | February 10, 2010 10:32 AM

21. log in please.

d J ! Posted by: B | February 10, 2010 10:38 AM

22. i need the old facebook this new one is very bad bbbbbbbbbbuuuuuuuuuuuuuuuuuuuui

r Posted by: EJ | February 10 2010 10:40 AM

(Source: http: //www. readwriteweb . com/archives/f acebook_wants_to_be_your_
one_true_login. php.)

[81

Chapter 1

• Evidently, the ReadWriteWeb article had temporarily become the top search
result for Facebook Login, leading hundreds of Facebook users, equating
Google or Bing with the Internet, to believe that this blog post was actually
a redesigned Facebook. com. The comment form, fittingly, had a Sign in
with Facebook button that could be used instead of manually typing in a
name and e-mail address to sign a comment—and of course, the Facebook
users misinterpreted this as the new Log in button.

• And yet... all of those people manage to use Facebook, keenly enough to
throw a fit when it apparently became impossible to use. It's not just a site
for geeks and students; it has serious mass market appeal.

• Even "The Social Network"—a movie based on the creation of Facebook—held this
level of appeal: it opened at #1 and remained there for its second weekend.

Numbers
• According to Facebook's statistics page (http: //www. facebook. com/press/

info. php?statistics), over 500 million people log in to Facebook in any given
month (as of November 2010). For perspective, the population of the entire world
is just under 7,000 million.

• Twitter is estimated to have 95 million monthly active users (according to the
eMarketer. com September 2010 report), as is MySpace. FarmVille, the biggest
game based on the Facebook platform, has over 50 million: more than half the
population of either competing social network.

• FarmVille has been reported to be hugely profitable, with some outsider reports
claiming that its parent company, Zynga, has generated twice as much profit as
Facebook itself (though take this with a grain of salt). Now, of course, not every
Facebook game or application can be that successful, and FarmVille does benefit
from the same snowball effect as Facebook itself, making it hard to compete
with—but that almost doesn't matter; these numbers validate Facebook as a
platform on which a money-making business can be built.

It's everywhere
As the aforementioned ReadWriteWeb article explained, Facebook has become a standard
login across many websites. Why add yet another username/password combination to your
browser's list (or your memory) if you can replace them all with one Facebook login?

[91

Introduction

This isn't restricted to posting blog comments. UK TV broadcaster, Channel 4, allows
viewers to access their entire TV lineup on demand, with no need to sign up for a specific
Channel 4 account:

CHANNEL 4 LOGIN

My login details
Email *

Password *

Remember me •

LOG IN
Don't have a login?

Forgotten your password? I l l l i n m

Or, make it easy
Facebook Can nect allows you to
log an to ChnnneU.cam with
your Facebook identity, which
saves you having to re-enter all
your details with us. "

f Connect with Facebook

" We will not post anything on your wall
or contact any of your friends.

Again, Facebook benefits from that snowball effect: as more sites enable a Facebook login, it
becomes more of a standard, and yet more sites decide to add a Facebook login in order to
keep up with everyone else.

Besides login capabilities, many sites also allow users to share their content via Facebook.
Another UK TV broadcaster, the BBC, lets users post links for their recommended TV
programs straight to Facebook:

Michael J a m e s Williams
recommended Nigel Slater's Simple Suppers - Series 2

Nigel Slater's Simple Suppers - Ser ies 2
3. Spice Up Your Life

Nigel Slater shows that spicy food Isn't all about hot chillis.

45 minutes ago via the BBC website 1 U • Like 1 Comment

Blogs—or, indeed, many websites with articles—allow readers to Like a post, publishing this
fact on Facebook and on the site itself:

So half a billion people use the Facebook website every month, and at the same time,
Facebook spreads further and further across the Internet—and even beyond. "Facebook
Messages" stores user's entire conversational histories, across e-mail, SMS, chat, and
Facebook itself; "Facebook Places" lets users check into a physical location, letting friends
know that they're there.

No other network has this reach.

[1 0 1

Chapter 2

It's interesting to develop for
With all this expansion, it's difficult for a developer to keep up with the Facebook platform.
And sometimes there are bugs, and undocumented areas, and periods of downtime, all of
which can make development harder still.

But the underlying system—the Graph API, introduced in April 2010—is fascinating. The
previous API had become bloated and cumbersome over its four years; the Graph API feels
well-designed with plenty of room for expansion.

This book mainly focuses on the Graph API, as it is the foundation of modern Facebook
development. You'll be introduced to it properly in Chapter 2, Welcome to the Graph.

Haue a go hero - get on Facebook
If you're not on Facebook already, sign up now (for free) at http: //facebook. com. You'll
need an account in order to develop applications that use it. Spend some time getting used
to it:

• Set up a personal profile.

• Post messages to your friends on their Walls.

• See what all the FarmVille fuss is about at http: //apps . facebook. com/
onthefarm.

• Check in to a location using Facebook Places.

• Log in to some blogs using your Facebook account.

• Share some YouTube videos on your own Wall from the YouTube website.

• "Like" something.

Go native!

Web hosts
If you've already got a publicly accessible web server or are signed up to a web host to which
you can upload SWFs and HTML pages via FTP, skip to the How much AS3 knowledge is
required? section.

What's a web hostP
I'll assume that you roughly know how the Internet works: when you type a URL into a web
browser on your computer and hit Go, it retrieves all the pages and images it needs from
another computer, the web server, and displays them. The exact methods it uses to find the
web server and the protocols for how the information gets back to your computer aren't
relevant here.

[111

Introduction

You could go out and buy a computer, install some server software, and hook it up to your
Internet connection, and you'd have a functional web server. But you'd have to maintain
it and keep it secure, and your ISP probably wouldn't be very happy about you sending
all those pages and images to other people's browsers. A better option is to pay another
company to take care of all of that for you—a web host.

Why do you need oneP
• In order to build an online SWF-based application or game that allows users to log in

with their Facebook account (with the SWF being able to access their profile, list of
friends, Wall, and so on), you will require control over a web page.

• Technically, you could probably come up with some hack that would allow you to
get around this—perhaps by hosting everything on Google sites and MegaSWF—but
in the long run it's not going to be worth it. Splash out on a web host for the sake
of learning; you will definitely need access to one if you do professional Facebook
application development in the future.

How do you choose oneP
• There are a huge number of web hosts to choose from, and an even bigger number

of configurable options between them. How much disk space do you need? How
much bandwidth per month? How much processing power? Some hosts will give
you a server all to yourself, while others will put your files on the same computer as
other customers. And of course, you have to wonder how good the customer service
is and how reliable the company is at keeping their servers online. Throw in a few
terms such as "cloud hosting" and it's enough to make your head spin.

• All you need is a host that allows you to upload HTML files and SWFs; this book also
assumes that you'll be able to use FTP to transfer files from your computer to the
host, though this isn't strictly necessary.

• Want to just get started without wasting time comparing hosts? Go with Media
Temple. The code in this book was all tested using a Media Temple Grid Service
account, available at http://mediatemple.net/webhosting/gs/. It provides
much more than what you'll need for completing the projects in this book, granted,
and at $20/month. It's not the cheapest option available, but the extra service and
features will definitely come in handy as you build your own Facebook applications
and games.

[201

http://mediatemple.net/webhosting/gs/

Chapter 2

Useful software
You'll need an HTML editor for editing web pages. FlashDevelop and Flash Builder both do
good jobs at this; otherwise, try:

• Notepad++ for Windows (free): http: / /notepad-plus-plus . org/
• TextMatefor Mac: http://macromates.com/
• Komodo Edit for Mac and Windows (free): http: //www. activestate. com/

komodo-edit

And in order to transfer your files from your computer to your web host, you'll probably
need an FTP client. Check out FileZilla (it's free and available for both Windows and Mac)
at http: //f ilezilla-pro j ect. org/. Documentation for this is available at http: / /
wiki . f ilezil la-project. org/Documentation, and your web host will almost
certainly provide instructions on connecting to it via FTP (Media Temple's instructions can be
found at http://kb.mediatemple.net/questions/131/Using+FTP+and+SFTP)

What about domain namesP
Web hosts will generally assign you a very generic address, such as http: //michael j w.
awesomewebhost2000.com/or http: //sites.awesomewebhost2000.com/
michaeljw. If you want to have a more condensed personal address such as http://
michael jw. com/, you'll need to pay for it. This is called a domain name—in this specific
example, michael jw. com is the domain name.

Media Temple allows you to buy a domain name for $5/year at the point where you sign up
to their web hosting package. If you go with another host, you may need to buy a domain
name elsewhere; for this, you can use http: //www. moniker. com/.

You don't need to own a domain name to use this book, though. The generic addresses
that your web host assigns you will be fine. Throughout the book, it'll be assumed that your
website address (either generic or domain name) is http: //host. com/.

Haue a go hero - get a web host, upload to it, test
Pick a web host, get your credit card out, and sign up for one of their packages.

1. Create a new directory called /test/ in the public path of your web host.

2. Create a new plain text file on your hard drive called index. html. (It's a good idea
to create a new folder on your computer to store all your work, too.) Open this file
in your HTML editor.

[28

http://macromates.com/
http://kb.mediatemple.net/questions/131/Using+FTP+and+SFTP

Introduction

3. Copy the HTML below into the file:

<html>
<head>
<title>Test</title>
</head>
<body>

<h2>Hello!</h2>
</body>

</html>

4. Hopefully, you know enough HTML to understand that this just writes Hello!
in big letters.

5. Transfer index, html to the /text/ directory on your host. Again, you'll probably
need to use an FTP client for this.

6. Open a web browser and type http: //host. com/test/index, html into the
URL bar. Of course, you should replace http: //host. com/ with the path to your
public directory, as given to you by your web host. You should see Hello! appear in a
glorious default font:

^ i H 1 5 1 I - * 3 -
[Ml T«t \ J i

f C [© http://host.com/test/ir | O Q l ^ ^ S / I B A

Hello!

7. If not, check the documentation and support for your host.

How much AS3 knowledge is required?
• You'll need to know some AS3 before you start using this book. Sure, it's

a "Beginner's Guide", but beginner refers to your knowledge of Facebook
development, not Flash development!

• All of the code in this book is written using classes inside AS files; there's no timeline
code at all. You don't have to be an OOP guru to follow it, but you must be familiar
with class-based coding. If you aren't, check out these two resources:

[201

http://host.com/test/ir

Chapter 1

• How To Use A Document Class In Flash—A short tutorial to get you up
to speed with using document classes in Flash CS3 and above: http: //
active.tutsplus.com/tutorials/actionscript/quick-tip-
how-to-use-a-document-class-in-flash/.

• AS3 101—A series of tutorials to walk you through the basics of AS3
development. In particular, read from Part 8 onwards, as these deal with
OOP in AS3:http://active.tutsplus.com/series/as3-101/.

• You should also know how to create and compile a SWF project, and be familiar
enough with HTML to be able to embed a SWF in it. We'll use SWFObject for this
purpose (this is the default embed method used by Flash CS5); if you're not sure
what this means, familiarize yourself here: http://code, google, com/p/
swfobj ect/.

• All important AS3 classes and keywords used in this book will be briefly explained
as they become relevant, so don't worry if you haven't memorized the LiveDocs yet.
Speaking of LiveDocs, remember that you can always use them to look up unfamiliar
code: http://help.adobe.com/en_US/FlashPlatform/reference/
actionscript/3/index.html.

The source code
At the start of Chapter 2, Welcome to the Graph, you'll be given a Flash project that's just
an empty user interface—it'll be up to you to build the backend using the lessons you learn
from Chapters 2 through 6.

This project is called Visualizer, and contains the class structure and all the Ul for an
application that can be used to represent all of the information stored on Facebook. You'll go
far beyond simply allowing people to log in to the application and grabbing their username;
there is so much more that can be achieved with AS3 and the Graph API, and you'll learn
about all of it.

Although the project is complex, the classes have been arranged in such a way that you need
to modify only a small number of them, and these have little or no code in them to begin
with. This means that you don't have to dive into mountains of code that you didn't write!
You can focus entirely on learning about the Facebook side of Flash development.

Each of the Chapters from 2 to 6 has two associated ZIP files: one for the start of the
project at the start of the chapter, and one for the end. This means you could skip through
those chapters in any order, but you'll find it must easier to learn if you go through them
in sequence. All project files are available in forms that are compatible with Flash CS3 and
above, Flash Builder, and FlashDevelop—and if you use a different Flash editor, you should
find it easy to convert the project.

http://active.tutsplus.com/series/as3-101/
http://code
http://help.adobe.com/en_US/FlashPlatform/reference/

Introduction

When you first compile the project, it'll look like this:

[•=• 11°) \m£2*mF Adobe Flash Player 10

File View Control Help

Zoom In I Zoom Out Reset View

Nothing much to see. But before long, you'll have added features so that it can be used to
explore Facebook, rendering different Pages and Photos:

I .=, gl i-—as^r Q Adobe Flash Päayer 10

Chapter 2

By the end of Chapter 6, you'll be happily adding code to search for users by name, exploring
their personal profiles, and posting images and links to their Wall:

[Hi

IMI Visualizer

f - C O michaelswebhost.com/visua © (D a ß j / ® % \
Zccm In Zoom Out Reset View I Search

Micho el James ULI i Iii ami

IFLFT^NAME: Uilliams

l o c a l e : en.GB

ID

UPDATED, TIME; 2010-06-16T20:38:gi+oqqq

a b o u t : Twlttw: ©MlohatlJUJ

link:

http : //ww w .facebook .com/»

name hfichaei Jam« UOams

Connections

feed

likes

family

http : //w w w .wired com/wiredscience/2010/ll/c
ats-lapping/

•nut 01 i f : object Object] .[object Object]

name ttgh-Spwd Video ReuMrfs Cots'
Secret Tongue Skill;

frnm - r j j - t
Filter

...plus plenty more besides!

Powered by...
In September 2010, Adobe released an official Adobe ActionScript 3 SDK for the Facebook
Platform Graph API, which will remain fully supported by Adobe and Facebook. Read more
about it at http: //www. adobe . com/devnet/facebook. html. This book will teach you
how to use this SDK, as it is a standard technology.

[32

Introduction

However, the main aim of this book is to teach you the underlying concepts of Facebook
Flash development; once you understand these, the actual code and the SDK used don't
matter. For this reason, this book will also teach you how to program every sort of Facebook
interaction you might need from scratch. The code will be all yours, and you'll understand
every line, with no abstraction in the way.

Besides the Adobe AS3 SDK for Facebook Platform, two other code libraries are used heavily:

• MinimalComps: Keith Peters' excellent, lightweight user interface components,
available at http: //www. minimalcomps . com/ under an MIT license.

• as3corelib: A collection of classes and utilities for working with AS3, including
classes for JSON serialization, available at https : //github. com/mikechambers/
as3corelib under a BSD license.

Debugging
From Chapter 3 onwards your SWF will need to be run from your server, through a web
browser, in order to work. (Find out why in that chapter.) This makes debugging tricky—
there's no Output panel in the browser, so trace statements aren't automatically visible.

The Visualizer contains a dialog feature which you can use to work around this. It can be
created from any class that is in the display list. To do so, first import the DialogEvent class:

import events.DialogEvent;

Then, dispatch a DialogEvent of type DIALOG with an argument containing the text you
wish to see output:

dispatchEvent(new DialogEvent(DialogEvent.DIALOG, "Example"));

It will look like this:

Dialog •

Example

T

OK

Of course, that's useful only for the Visualizer project. What can you do when you build
your own?

[201

Chapter 2

There are a few tools that will help:

• De MonsterDebugger: Excellent tool for general AS3 debugging:
http://demonsterdebugger.com/.

• Flash Tracer for Firebug: This Firefox tool lets you see trace statements from any
SWF, as long as you have the debug version of Flash Player installed in your browser:
http://blog.sephiroth.it/firefox-extensions/flash-tracer-for-
firebug/.

• Vizzy Flash Tracer: Similar to Flash Tracer for Firebug, but also works for Internet
Explorer and Chrome: http: / /code. google . com/p/flash-tracer/.

• SOS max: Creates a socket server on your computer to which an AS3 project can
send data; this data will then be logged and can then be viewed: http: //www.
sos.powerflasher.com/.

In Chapter 3, you'll learn how to run a JavaScript function in your web page from the AS3 in
your SWF. One JavaScript function, alert () , creates a little window containing any string
passed to it, like so:

JavaScript Alert |- S3 -

Example

OK

This is a quick and simple way to display one-off messages without using trace.

Watch out for caching
When you run a SWF using Flash Player on your desktop, it loads and runs the SWF. Well, of
course, why wouldn't it?

When you run a SWF in a browser, this isn't always the case, though. Sometimes, browsers
cache SWFs, meaning that they save a copy locally and then load that copy—rather than
the online version—the next time you request it. In normal browsing, this is a great idea—it
saves bandwidth and reduces loading times. You can lose huge amounts of time trying to
figure out why your new code isn't working, only to finally realize that the new code isn't
being run at all because you were seeing only a cached copy of your SWF.

Different browsers require different solutions. It's usually possible to disable caching for one
browsing session, and it's always possible to delete some or all of the cache.

[34

http://demonsterdebugger.com/
http://blog.sephiroth.it/firefox-extensions/flash-tracer-for-

Introduction

In Google Chrome, you can do this by clicking on [Spanner] | Tools | Clear Browsing Data...,
selecting Empty the cache, and choosing an appropriate time period:

& © • E l © 3 t g / # m a

New tab Ctrl+T

New window Ctil+N

New incognito window Ctrl-t-Shift-t-N

Edit Cut Copy Paste

Zoom 100% * 1 [¡ S i]

Save page as... Ctrl^S

Find... Ctrl-nF

Print.,, Ctrl+P

Always show bookmarks bar Ctrl+Shift+B Tools

Create application shortcuts... Bookmark manager

Extensions History Ctil+H

Task manager Shrft-t-Esc Downloads Ctil+J

Clear browsing data... k Ctil+Shift+Del Options

Encoding About Google Chrome

View source Ctil+U Help Fl

Developer tools Ctrl+Shift+] Exit

JavaScript console Orl-t-Shift-t-J

^ Clear Browsing Data

Chrome data | Other data |

Obi iterate the foil owi n g item s:

n Clear browsing history

B Clear download history

P̂ l Empty the cache

l~1 Delete cookies and other site data

B Clear saved passwords

• Clear saved form data

Clear data from this period: Last hour

Clear browsing data

Cancel

You should easily be able to find the equivalent option for your browser by searching Google
for «browser name» delete cache.

[201

Chapter 2

A final note...
Facebook's developers are always tweaking the platform. This can make it exciting to develop
on because new features are being added all the time, but it can also make it very frustrating
to develop on because old features can be removed, or their implementations changed;
anything could be altered at any time.

The new Platform API (the Graph API) is a strong foundation, and looks likely to be around
for a while—remember, the previous Platform API lasted four years. But it's modular, and
individual pieces might change, or even be removed.

It's possible then that parts of this book may be out-of-date by the time you read it, and
some of the instructions might not give the same results with the current version of
Facebook platform as they did when this book was written. If you're concerned about this,
you can find out how to keep up-to-date with any platform changes in the last section of
Chapter 8, Keeping Up With The Zuckerbergs.

But for now, dive into Chapter 2, Welcome to the Graph and start developing!

[211

2
Welcome to the Graph

Facebook has a huge store of information, on people, companies, events, photo
albums, and more. It also knows how all of these are linked: which person owns
each album; which people appear in each photo; which company is organizing
each event.

For four years, this was accessed using a huge, sprawling API, which got more complex as
new abilities were bolted on to it. In April 2010, Facebook launched the Graph API, greatly
simplifying how developers can retrieve all of this data.

In this chapter we shall:

• Explore the Facebook Graph

• Learn what the Graph API is, and how it structures all the data on Facebook

• Access public Graph data using AS3 and the Graph API

So let's get on with it.

Welcome to the Graph

Accessing the Graph API through a Browser
We'l l dive right in by taking a look at how the Graph API represents the information f rom
a public Page.

When I talk about a Page with a capital P, I don't just mean any web page within
the Facebook site; I'm referring to a specific type of page, also known as a public
profile. Every Facebook user has their own personal profile; you can see yours
by logging in to Facebook and clicking on the "Profile" link in the navigation bar
at the top of the site. Public profiles look similar, but are designed to be used by
businesses, bands, products, organizations, and public figures, as a way of having
a presence on Facebook.

This means that many people have both a personal profile and a public profile.
For example, Mark Zuckerberg, the CEO of Facebook, has a personal profile
at http: //www. facebook. com/zuck and a public profile (a Page) at
http : //www. facebook. com/mark zuckerberg. This way, he can use
his personal profile to keep in touch with his friends and family, while using his
public profile to connect with his fans and supporters.

There is a second type of Page: a Community Page. Again, these look very
similar to personal profiles; the difference is that these are based on topics,
experience, and causes, rather than entities. Also, they automatically retrieve
information about the topic from Wikipedia, where relevant, and contain a live
feed of wall posts talking about the topic.

All this can feel a little confusing - don't worry about it! Once you start using it, it
all makes sense.

Time for action - loading a Page
Browse to http: //www. facebook. com/PacktPub to load Packt Publishing's Facebook
Page. You'll see a list of recent wal l posts, an Info tab, some photo a lbums (mostly containing
book covers) , a profile picture, and a list of fans and links.

[241

Chapter 2

[PACKT]
P U B L I S H I N G

P a c k t P u b l i s h i n g

Wall I n f o P h o t o s D i s c u s s i o n s

Add to my page's favourites

Suggest to friends

Subscribe via SMS

Our books and publications share the
experiences of your fellow IT
professionals in adapting and
customizing today's systems,
applications, and frameworks.

Website:
Company Overview:

Facebook Page:

http : //www. PacktPub. com
Packt is a modern, IT focused book publisher, specializing in producing
cutting-edge books for communities of developers, administrators, and
newbies alike,

Packt published its first book. Mastering phpMyAdmin for MySQL
Management in April 2004.
http : //www. facebook. com/PacktPub

Founded:
2004

412 people like this

cmp
m

W a l l P h o t o s
Updated about 2
months ago.

Books
I Updated about 7

months ago.

Links

3 of 449 links See all

[p . Offer on Packt's Open Source
Bestsellers | Packt Publishing
Technical & IT Book Store
22 October 13:35

[f j l Latest Release From Packt: PHP 5
Social Networking | Packt
Publishing Technical & IT Book
Store
22 October 10:41

[p . All New October Open Source
Books from Packt | Packt
Publishing Technical & IT Book
Store
22 October 09:45

[40

Welcome to the Graph

That's how website users view the information. How will our code "see" it? Take a look at
how the Graph API represents Packt Publishing's Page by pointing your web browser at
https : //graph, facebook. com/PacktPub. This is called a Graph URL - note that it's the
same URL as the Page itself, but with a secure https connection, and using the graph sub
domain, rather than www.

What you'll see is as follows:

{
"id": "204603129458",
"name": "Packt Publishing",
"picture": "http://profile.ak.fbcdn.net/hprofile-ak-snc4/

hs3 02.ashl/2 32 74_2 04 6 0312 94 5 8_74 6 0_s.jpg",
"link": "http://www.facebook.com/PacktPub",
"category": "Products_other",
"username": "PacktPub",
"company_overview": "Packt is a modern, IT focused book publisher,

specializing in producing cutting-edge books for communities of
developers, administrators, and newbies alike.\n\nPackt
published its first book. Mastering phpMyAdmin for MySQL
Management in April 2004.",

"fan_count": 412
}

What just happened?
You just fetched the Graph API's representation of the Packt Publishing Page in your browser.

The Graph API is designed to be easy to pick up - practically self-documenting - and you can
see that it's a success in that respect. It's pretty clear that the previous data is a list of fields
and their values.

The one field that's perhaps not clear is id; this number is what Facebook uses internally to
refer to the Page. This means Pages can have two IDs: the numeric one assigned automatically
by Facebook, and an alphanumeric one chosen by the Page's owner. The two IDs are
equivalent: if you browse to https : //graph, facebook. com/204603129458, you'll see
exactly the same data as if you browse to https : //graph, facebook. com/PacktPub.

Haue a go hero - exploring other objects
Of course, the Packt Publishing Page is not the only Page you can explore with the Graph
API in your browser. Find some other Pages through the Facebook website in your browser,
then, using the https : //graph, facebook. com/id format, take a look at their Graph API
representations. Do they have more information, or less?

[241

http://profile.ak.fbcdn.net/hprofile-ak-snc4/
http://www.facebook.com/PacktPub

Chapter 2

Next, move on to other types of Facebook objects: personal profiles, events, groups. For
personal profiles, the id may be alphanumeric (if the person has signed up for a custom
Facebook Username at http: //www. facebook. com/username/), but in general the id
will be numeric, and auto-assigned by Facebook when the user signed up.

For certain types of objects (like photo albums), the value of id will not be obvious from the
URL within the Facebook website; we'll look at how to find these later in the chapter.

In some cases, you'll get an error message, like:
{

"error": {
"type": "OAuthAccessTokenException",
"message": "An access token is required to request

this resource."
}

}

Again, we'll look at what this means and how to get around it later in the book.

Accessing the Graph API through AS3
Now that you've got an idea of how easy it is to access and read Facebook data in a browser,
we'll see how to fetch it in AS3.

Time for action - retrieving a Page's information in AS3
Set up the project from the Chapter 2 start files, as explained in Chapter 1. Check that the
project compiles with no errors (there may be a few warnings, depending on your IDE). You
should see a 640 x 480 px SWF, all white, with just three buttons in the top-left corner: Zoom
In, Zoom Out, and Reset View:

I B I Adobe Flash Player 10

File View Control Help

Zoom Out Reset View

This project is the basis for a Rich Internet Application (RIA) that will be able to explore all
of the information on Facebook using the Graph API. All the code for the Ul is in place, just
waiting for some Graph data to render. Our job is to write code to retrieve the data and pass
it on to the Tenderers.

[271

Welcome to the Graph

I'm not going to break down the entire project and explain what every class does,
as the focus of this book is on using Facebook with Flash, not on building RIAs.
What you need to know at the moment is a single instance of the controllers .
CustomGraphContainerController class is created when the project is initialized, and
it is responsible for directing the flow of data to and from Facebook. It inherits some useful
methods for this purpose from the controllers . GCController class; we'll make use of
these later on.

Open the CustomGraphContainerController class in your IDE. It can be found
in \src\controllers\CustomGraphContainerController.as, and should look
like the listing below:

package controllers {
import ui.GraphControlContainer;

public class CustomGraphContainerController extends GCController {

public function CustomGraphContainerController
(a_graphControlContainer:GraphControlContainer)

{
super(a_graphControlContainer) ;

}

The first thing we'll do is grab the Graph API's representation of Packt Publishing's Page via a
Graph URL, like we did using the web browser. For this we can use a URLLoader.

The URLLoader and URLRequest classes are used together to download
data from a URL. The data can be text, binary data, or URL-encoded variables.
The download is triggered by passing a URLRequest object, whose
url property contains the requested URL, to the load () method of a
URLLoader.
Once the required data has finished downloading, the URLLoader
dispatches a COMPLETE event. The data can then be retrieved from its data
property.

[241

Chapter 2

Modify CustomGraphContainerController. as like so (the highlighted lines are new):

package controllers {
import flash.events.Event ;
import flash.net.URLLoader ;
import flash.net.URLRequest;
import ui.GraphControlContainer;

public class CustomGraphContainerController extends GCController {

public function CustomGraphContainerController
(a_graphControlContainer :GraphControlContainer)

{
super(a_graphControlContainer);

var loader :URLLoader = new URLLoader();
var request:URLRequest = new URLRequest();
//Specify which Graph URL to load
request.url = "https://graph.facebook.com/PacktPub";
loader.addEventListener(Event.COMPLETE,

onGraphDataLoadComplete);
//Start the actual loading process
loader.load(request);

}

private function onGraphDataLoadComplete(a_event: Event) :void
{

var loader :URLLoader = a_event.target as URLLoader;
//obtain whatever data was loaded, and trace it
var graphData: String = loader.data;
trace(graphData);

}

}

}
All we're doing here is downloading whatever information is at
https : //graph, facebook. com/PackPub and tracing it to the output window.

[44

https://graph.facebook.com/PacktPub

Welcome to the Graph

Test your project, and take a look at your output window. You should see the following data:

{"id":"2046 0312 94 58","name":"Packt Publishing","picture":"http:\/\/
profile.ak.fbcdn.net\/hprofile-ak>snc4\/hs3 02 .
ashl\/2 32 74_2 04 6 0312 94 5 8_74 6 0_s.jpg","link":"http:\/\/www.facebook.
com\/PacktPub","category":"Products_other","username":"PacktPub",
"company_overview":"Packt is a modern, IT focused book publisher,
specializing in producing cutting-edge books for communities of
developers, administrators, and newbies alike.\n\nPackt published
its first book. Mastering phpMyAdmin for MySQL Management in April
2004.","fan_count":412}

If you get an error, check that your code matches the previously mentioned code. If you see
nothing in your output window, make sure that you are connected to the Internet. If you still
don't see anything, it's possible that your security settings prevent you from accessing the
Internet via Flash, so check those.

What just happened?
The line breaks and tabulation between values have been lost, and some characters have
been escaped, making it hard to read... but you can see that this is the same data as we
obtained when browsing to https : //graph, facebook. com/PacktPub. No surprise
here; that's all the URLLoader does.

The data's not very useful to us in that form. In order to do something with it, we need to
convert it to an object that we can interact with natively in AS3.

The format which Graph API uses is called JSON (JavaScript Object Notation;
pronounced "Jason").

JSON is a human-readable, text-based data format standard. It allows you to represent
objects as key-value pairs, like so:

{
"keyl": "valuel",
"key2": "value2",
"key3": "value3"

}
The values can be strings (enclosed in quote marks), or numbers, Boolean values, or null
(not enclosed in quote marks).

[241

http://www.facebook

Chapter 2

JSON objects can also contain arrays, using square brackets:

{
"keyl": "valuel",
"array": [

"First item in array",
"Second item in array",
"Third item in array"

They can even contain other JSON objects, by nesting curly braces:

{
"keyl": "valuel",
"subObject": {

"subKeyl": "subValuel",
"subKey2": "subValue2",

These sub-objects can contain other objects and arrays, and arrays can contain other objects
or arrays, too.

Note that this is very similar to the AS3 syntax for declaring an object:

var as30bject:Object = {
keyl:"valuel" ,
key2:"value2",
subObj e

subKeyl:"subValuel"
}.
myArray: [1, 2, 3]

For more information, check I
out http://www. j son . org. I

Unlike with XML, AS3 has no native features for handling JSON objects - but there is an
officially supported library that does.

[311

http://www

Welcome to the Graph

Time for action - deserializing a ISON object
Adobe's as3corelib library contains a set of utility classes for serializing and deserializing
JSON. It's available at http://github. com/mikechambers/as3corelib, but you don't
need to download it, as it is already included in the \src\ directory of the project. (It
consists of every class in com. adobe . *)

1. In CustomGraphContainerController. as, import the JSON class:

import com.adobe.serialization.json.JSON;

2. Modify the onGraphDataLoadComplete () function so that it deserializes the
JSON string to an object, instead of simply tracing the string:

private function onGraphDataLoadComplete(a_event:Event):void {
var loader:URLLoader = a_event.target as URLLoader;
//obtain whatever data was loaded, and trace it
var graphData:String = loader.data;
var decodedJSON:Object = JSON.decode(graphData);

}

3. Trace the name property of this new object, to check that it worked:

private function onGraphDataLoadComplete(a_event:Event):void {
var loader:URLLoader = a_event.target as URLLoader;
//obtain whatever data was loaded, and trace it
var graphData:String = loader.data;
var deserialisedJSON:Object = JSON.decode(graphData);
trace("name:", decodedJSON.name);

}

4. Compile and run the SWF. Resulting output:

name: Packt Publishing

What just happened?
We passed this string to the JSON. decode () method:

{
"id": "204603129458",
"name": "Packt Publishing",
"picture": "http://profile.ak.fbcdn.net/hprofile-ak-snc4/
hs3 02.ashl/2 32 74_2 04 6 0312 94 5 8_74 6 0_s.j pg",

"link": "http://www.facebook.com/PacktPub",

[321

http://github
http://profile.ak.fbcdn.net/hprofile-ak-snc4/
http://www.facebook.com/PacktPub

Chapter 2

"category": "Products_other",
"username": "PacktPub",
"company_overview": "Packt is a modern, IT focused book
publisher, specializing in producing cutting-edge books for
communities of developers, administrators, and newbies
alike.\n\nPackt published its first book, Mastering
phpMyAdmin for MySQL Management in April 2004.",

"fan_count": 412
}

and it turned the string into a native AS3 object, as if we had typed this:

var graphObject:Object = {};
graphObject.id = "2 04 603129458";
graphObject.name = "Packt Publishing";
graphObj ect.picture = "http://profile.ak.fbcdn.net/hprofile-ak-
snc4/hs3 02.ashl/2 32 74_2 04 6 0312 94 5 8_74 6 0_s.j pg";
graphObject.link = "http://www.facebook.com/PacktPub";
graphObject.category = "Products_other";
graphObject.username = "PacktPub";
graphObject.company_overview = "Packt is a modern, IT focused
book publisher, specializing in producing cutting-edge books for
communities of developers, administrators, and newbies alike.\n\
nPackt published its first book, Mastering phpMyAdmin for MySQL
Management in April 2004."
graphObject.fan_count = 412;

(Note that unlike the raw string we had earlier, the slashes in the URLs have not
been escaped.)

This means we can easily access any of the information Facebook has about this Page, or
even iterate through every piece of data.

Time for action - visualizing the info
Enough traces! It's time we displayed something in our actual SWF.

CustomGraphContainerController inherits a method called renderGraphOb j ect ()
which will take care of this for us. All we have to do is pass it an argument of type graph.
GraphObj ect.

GraphOb j ect. as is a simple class; feel free to open it and take a look:

package graph {
import graph.controls.GraphObjectRenderer;
public dynamic class GraphObject extends BaseGraphltem

[271

http://profile.ak.fbcdn.net/hprofile-ak-
http://www.facebook.com/PacktPub

Welcome to the Graph

{
public var rendererObject:GraphObjectRenderer;
public var graphObjectListRenderers:Array = [];

public function GraphObject() {

}

}

}
Honestly, there's no need to worry about any of the code there. All you need to know is that
it's dynamic, which means that we can assign new properties to it during runtime, without
having to specify their names beforehand. So we can do this:

var graphObject:GraphObject = new GraphObject();
graphObject.favoriteColor = "red";

When a GraphObj ect is passed to the CustomGraphContainerController.
renderGraphObj ect () method, every single property of the GraphObj ect will be
rendered in a fancy list, automatically. Every single property apart from the two that are
defined in the class already, that is!

So what we have to do, inside CustomGraphContainerController.
onGraphDataLoadComplete () , is:

1. Create a new instance of GraphObj ect.

2. Copy all the properties of decodedJSON to this new GraphObj ect.

3. Pass the GraphObj ect to renderGraphOb j ect () .

4. The code for doing that is as follows:

private function onGraphDataLoadComplete(a_event:Event):void {
var loader:URLLoader = a_event.target as URLLoader;
//obtain whatever data was loaded, and trace it
var graphData:String = loader.data;
var decodedJSON:Object = JSON.decode(graphData);

var graphObject:GraphObject = new GraphObject();
//copy all the properties from decodedJSON to graphObject
for (var key:String in decodedJSON)

[241

Chapter 2

{
graphObject [key] = decodedJSON[key] ; } ~

thi s.renderGraphObj ect(graphObj ect) ;

5. Compile and test. The SWF is shown in the next screenshot:

eJ Adobe Hash Player 10 lUMU
File View Control Help

Zoom Out Reset View

P a c k t Publishing

[PACKT]
P U B L I S H I N G

username-PacktPub

link : http : / /wuj iu .facebook .corn/PacktPub

compciny-oueruieuu: Packt is a modern, IT
Facused book publisher1, specialiîing in producing
cutting-edge books for communities of deueioper;,
administrate«, and newb i« alike.

Packt published its first book, Mastering
phpMyfldmin for MySQL Management in April
2 0 0 4 .

category: Products.other id

You can click the Zoom In button a few times to make the Renderer larger and clearer, as
in the screenshot above. Your Renderer might display the fields in a different order than
depicted; Facebook returns the fields in an arbitrary order.

What just happened?
The window that appeared on stage is what I call a Renderer - specifically, a Graph Object
Renderer. It can be dragged around by the title bar, the contents can be scrolled, and you can
close it by clicking the button in the top-right corner.

So, you've successfully fetched data from Facebook's Graph API and displayed it in a SWF.
Your SWF is flexible; change request. url to point to the Graph URL of a different Facebook
object and you'll see it displayed in the Renderer.

[50

Welcome to the Graph

Most of the data from the GraphOb j ect is displayed in a text area inside the window, in a
simple "key: value" format. The Page's name field is displayed in the window's title bar,
and if the Page has a picture field (we can see from the JSON that PacktPub does), the
image is downloaded and displayed inside the renderer using a Loader.

Like URLLoader, the flash. display. Loader class downloads the
object that a given URLRequest points to, dispatching a COMPLETE
event when ready. Unlike URLLoader, Loader is used to download images
and SWFs, and the event is actually dispatched by one of its sub-objects,
contentLoaderlnf o. Also, Loader extends DisplayOb j ect, and
takes the appearance of the image when it has finished downloading.
Flash's security model prevents an image's data being accessed by SWFs
residing on a different domain than the image itself, unless there is a cross-
domain policy file on the domain of the image that allows it. Fortunately,
Facebook's cross-domain policy file is lenient, allowing such access by every
domain.

So, really, this is just a graphical way of representing a Page object from the Graph API.

Understanding connections
"That's all well and good," you may be thinking, "but it doesn't show all the data associated
with the Page, does it? Where are the wall posts and photos?"

Time for action - finding connections in a browser
Facebook treats wall posts, photos, videos, and even statuses as separate objects within the
Graph API, rather than jamming them all into a single Page object. For instance, here's an
object representing a single Post by Packt Publishing:

{
"id" : "20460312945 8_12 70 5613 73 23 572",
"from": {

"name": "Packt Publishing",
"category": "Products_other",
"id": "204603129458"

h
"message": "The Amazon SimpleDB Developer Guide has been published!
Get your copy now! http://bit.ly/blFQUG",

"picture": "http://external.ak.fbcdn.net/
safe_image.php?d=c4a78 8 7cb52dd8f93e4 3 9aaecl3c034b&w=13 0&h=13 0&url
=https%3A%2F%2Fwww.packtpub.com%2Fsites%2Fdefault%2Ffiles%2Fimage
cache%2Fproductview%2F73 44EN_MockupCover%2 52 OTemplate-jpg",

"link": "http://bit.ly/blFQUG",
[241

http://bit.ly/blFQUG
http://external.ak.fbcdn.net/
http://bit.ly/blFQUG

Chapter 2

"name": "Amazon SimpleDB Developer Guide | Packt Publishing
Technical & IT Book Store",

"caption": "bit.ly",
"description": "Gain in-depth understanding of Amazon SimpleDB
with PHP, Java, and Python examples, and run optimized
database-backed applications on Amazon\\'s Web Services cloud",

"icon": "http://static.ak.fbcdn.net/rsrc.php/zB010/hash/
9yvl71tw.gif",

"type": "link",
"ere at ed_t i me": "2010-06-04T12:39:44 + 0000",
"updat ed_t ime": " 2010-06-04T12:39:44 + 0000",
"likes": 1

}
That object has expired now, and is no longer available through the Graph API, but as you
could have guessed, it was available at https : //graph, facebook. com/204603129458
_127056137323572. It's in the same format as the Page object - albeit with a few different
fields - so our Graph Object Renderer could render it just fine.

Of course, this is useless unless we know the ID of each of the Posts associated with Packt
Publishing, and there's no indication of where we might find them. Or is there?

I said earlier that the Graph API was designed to be self-documenting. We can request extra,
"meta" information about any Graph Object by adding a metadata=l flag to the end of any
Graph URL. Take a look at: https : / /graph, facebook. com/Packt Pub ?metadata=l in
your browser. A new property, type, appears in the JSON:

"type": "page"

That's useful; as I said, Posts and Pages (and in fact all Graph Objects) take the same format,
so this gives us a way of telling them apart.

More immediately interesting, though, is the new metadata object. This contains one
object, connections, and one array, fields. Let's look at fields first:

"fields": [{
"name": "id",
"description": "The

{
"name": "name",
"description": "The

{
"name": "picture",
"description": "The

[271

page's ID"

page's name"

pages profile picture"

http://static.ak.fbcdn.net/rsrc.php/zB010/hash/

Welcome to the Graph

{
"name": "category",
"description": "The page's category"

{
"name": "fan_count",
"description": "* The number of fans the page has"

}

This is a list explaining what each of the fields in the main body of the Graph Object
represents. At time of writing, this is still a fairly new feature, so it's possible that the list will
be more complete by the time you load it.

The connections object is as follows:

"connecti
"feed":
"posts":
"tagged"
"statuse
"links":
"notes":
"photos"
"albums"
"event s"
"videos"

ons": {
"https://graph.facebook.com/packtpub/feed",
"https://graph.facebook.com/packtpub/posts",
: "https://graph.facebook.com/packtpub/tagged",
s": "https://graph.facebook.com/packtpub/statuses",
"https://graph.facebook.com/packtpub/links",
"https://graph.facebook.com/packtpub/notes",
"https
"https
"https
"https

//graph.facebook.com/packtpub/photos",
//graph.facebook.com/packtpub/albums",
//graph.facebook.com/packtpub/event s" ,
//graph.facebook.com/packtpub/videos"

Browse to one of the URLs from the previous list: http: //graph, facebook. com/
packtpub/posts. It returns a JSON containing an array called data and an object called
paging. The data array contains several Post objects; we'll look at paging later in the book.

What just happened?
The metadata=l parameter tells the Graph API to display all of the metadata about the
current object, which, in this case, includes the type of object it is, an array of descriptions
of the object's properties, and all of the URLs that contain lists of objects connected to
this Page.

This layout is where the Graph API gets its name. In everyday usage, "graph" means the type
of chart shown in the next diagram:

[241

https://graph.facebook.com/packtpub/feed
https://graph.facebook.com/packtpub/posts
https://graph.facebook.com/packtpub/tagged
https://graph.facebook.com/packtpub/statuses
https://graph.facebook.com/packtpub/links
https://graph.facebook.com/packtpub/notes

Chapter 2

But in mathematics, "graph" refers to any set of nodes connected by edges, like the example
in the next diagram:

The Graph API represents Facebook's data as shown in the next diagram :

[PACKT]
P U B L I S H I N G

Post object

(jbst Q] Post object

Post object

Link object

Link object

Link object

[54

Welcome to the Graph

In the previous diagram, each object is a node, and the lines represent different types
of connection.

Fetching http: //graph, facebook. com/packtpub/posts gets you all the nodes
joined to PacktPub by a "post" connection - that is, all Post objects that have been
posted on Packt's wall:

http://graph.facebook.corn/packtpub/posts

[PACKT]
P U B L I S H I N G

Post object

Post object

Post object X

Link object

Link object

Link object

Haue a go hero - exploring connections
Now that you know about the metadata parameter, explore the different types of
connections in your browser, and see what new kinds of objects you can find.

Rendering lists
What happens if you try to load https : / /graph, facebook. com/packtpub/posts using
the same code we used to load the Packt Publishing Page object?

We get this in the output panel:

Graph Object was null!

Not a success. The way the Graph API structures the JSON here is totally different to how it
structures the JSON for a Page, Post, or any other Graph Object. The same is true of the JSON
for the other connection URLs. We call this structure a Graph List.

Time for action - rendering lists of Posts
Since a Graph List's data property is an array of Graph Objects, we could just loop through
the array and create a new Graph Object Renderer for each element. Feel free to have a go
at this, if you like, but I've got another solution.

[241

http://graph.facebook.corn/packtpub/posts

Chapter 2

I've created a second renderer: this time, a Graph List Renderer. I've also created a class
graph.GraphList. And CustomGraphContainerController inherits a method
called renderGraphList () . Perhaps unsurprisingly, this takes an object of type graph.
GraphList as a parameter, and creates a new Graph List Renderer to display its contents.
So, we need to take a Graph List that we receive from the Graph API, and turn it into an
instance of the GraphList class. The GraphList class is a little more sophisticated than
the GraphOb j ect class; it has a method called addToList () , to which we can pass any
GraphObj ect instance to be added to the list.

We'll still loop through the data array, then, but instead of rendering each GraphOb j ect on
its own, we'll add each one to a GraphList and render that.

Modify the URL that CustomGraphContainerController requests, so that it loads the
list of posts:

public function CustomGraphContainerController
(a_graphControlContainer:GraphControlContainer)

{
super(a_graphControlContainer);

var loader:URLLoader = new URLLoader();
var request:URLRequest = new URLRequest();
//Specify which Graph URL to load
request.url = "https://graph.facebook.com/PacktPub/posts";
loader.addEventListener(Event.COMPLETE, onGraphDataLoadComplete);
//Start the actual loading process
loader.load(request);

}
Now, once this is loaded, we need to check whether the item returned is a Graph Object or
a Graph List. We can do this by looking for a property called data; if one exists, we'll assume
it's a List.

private function onGraphDataLoadComplete(a_event:Event):void {
var loader:URLLoader = a_event.target as URLLoader;
//obtain whatever data was loaded, and trace it
var graphData:String = loader.data;
var decodedJSON:Object = JSON.decode(graphData);

if (decodedJSON.data)
{

//has a "data" property so we assume it is a Graph List

}

[411

https://graph.facebook.com/PacktPub/posts

Welcome to the Graph

else
{

//no "data" so we assume it is a Graph Object
var graphObject:GraphObject = new GraphObject();
//copy all the properties from decodedJSON to graphObject
for (var key:String in decodedJSON) {
graphObject[key] = decodedJSON[key];

}
this.renderGraphObject(graphObject);

}
}

Inside this if block, we first create a new GraphList instance:

if (decodedJSON.data) {
//has a "data" property so we assume it is a Graph List
var graphList:GraphList = new GraphList();

}
(You will need to import graph. GraphList.)

Next, remember than decodedJSON. data is an array of objects; we loop through this array,
and create a GraphOb j ect from each element.

if (decodedJSON.data) {
//has a "data" property so we assume it is a Graph List
var graphList:GraphList = new GraphList();
var childGraphObj ect:GraphObj ect;
for each (var childObject:Object in decodedJSON.data) {
childGraphObject = new GraphObject();
for (var childKey:String in childObject) {
childGraphObject[childKey] = childObject[childKey] ;

}
}

}
This is basically the same thing we did with the decodedJSON when loading a single
Graph Object.

[241

Chapter 2

What about the other property inside the Graph List, the paging object? We should add
that too:

if (decodedJSON.data) {
//has a "data" property so we assume it is a Graph List
var graphLi st: GraphLi st = new GraphListO;
var childGraphObj ect:GraphObj ect;
for each (var childObject:Object in decodedJSON.data) {
childGraphObject = new GraphObject();
for (var childKey:String in childObject) {
childGraphObject[childKey] = childObject[childKey];

}
graphList.addToList(childGraphObject);

}
graphList.paging = decodedJSON.paging;

}
Finally, we pass the GraphList instance to renderGraphList () :

if (decodedJSON.data) {
//has a "data" property so we assume it is a Graph List
var graphLi st: GraphLi st = new GraphListO;
var childGraphObj ect:GraphObj ect;
for each (var childObject:Object in decodedJSON.data) {
childGraphObject = new GraphObject();
for (var childKey:String in childObject) {
childGraphObject[childKey] = childObject[childKey];

}
graphList.addToList(childGraphObject);

}
graphList.paging = decodedJSON.paging;
this.renderGraphList(graphList) ;

[58

Welcome to the Graph

Compile the SWF and test it. The fol lowing screenshot shows the result :

a Adobe Flash Player 10 1 1-1 I 151 h * ™

File View Control Help
Zoom In I Zoom Out I Reset View

[List] •

e r e a t e d - t i m e 2OK>-ICI-22TCIS .45:33+0000

name : m New October Open Source Books
from Packt 1 Packt Publishing Technical a IT Bool;
Store

*

Pop Out

*

J type: lint: - J
It's a scrollable w indow containing all the Graph Objects from the list.

What happens when you click the Pop Out button underneath a Graph Object?

• Adobe Flash Player 10 i I ED
File View Control Help

Zoom Out Reset View

type: link
link: http://bit.ly/b28aflV
c r e a t e d , t i m e : 2010-10-18T1148 00+0000

name Jronton S Top ErtenswmCortbwk
Book 8: »Book I Pookt Publishing Ttohnloal 81 IT
Book Stor*

Joomla! 1.5 Top Extensions Cookbook Book & eBooMZjF

type: link
link: http://bit.ly/b28QHV
created_time : 2010-id-18th:48:00+-0000
name J<Hxn*a' 15 Top Extenswns Cw*bo<* Boo*
S »Book I Packt Publishing T»ohnlool 4 IT Book
Stort
message Moomki1 1S Top Existons Coofcboo*:"

[4 4]

http://bit.ly/b28aflV
http://bit.ly/b28QHV

Chapter 2

What just happened?
The Graph Object pops out into its own Graph Object Renderer, with a gray line connecting it
to the list to which it belongs. This lets you look at several children of a list at the same time:

1 •=» I B l i s a J A d o b e F lash P l aye r 1 0

F i le V i e w C o n t r o l H e l p

Zoom Out I Reset View

J l ibHlU-iDl ttxnl CCI

tU|r0 111
•Ink-inin/A>i
M M i W l . i m W H C C T6TÔÎ I i i 0 1 + 3 H H

ii Mĵ t-Ct̂ iiSM̂ r Hafto'iii plfffylli

ink- Mlp ?'Ank pmrai* nmAiHi
jrealed-limc jJi-u-Hlir- oja+j-ua ïamr 'Vu t-œirl jin airs HiMi irfwPf̂khni S3i (n Ef»sft»« H£CL
^HPrirt I Rs»>.(
Tiding? IMüPâ 'l

from [Etmi usml irwîftl̂. fmm\ Lrivj diip, luinq ••
PMlVrtOt »IK+J tM QNWM Sfith

/AilVtiWKftf
I k v ; I

{
[

fyp»
Ink: tdtp.yAir k^a^K Cf«llpdJin» 30t C- STIM ? 37+0000 ïamp ¡1 • A ï»Mi»UkiMi

- -T I brt: ffl »flikl i Pull FiU -It.j
i lsJ I T F7m

•™?5ÎJ.lfle IL«-: 3vu*viwr'» bnbli Ji«*ut

hi-trii'la ~UJ Eihninn Lntkai bi>* - «BwjP
« ¡ 3

i (
jypp h

//M ttfiatrmv crnrtvd1, lin» Trn ei-ra-n nn«rncn
rVTiW LvjrJj I K Tu F ;|HH U.i prtrfiiai Ri*

I Ha:-i l'.iMihnj "istnsri I I Irirt:

rWHW tow-to11'3 Tpp E't«r;on CtmtotA'

(You can drag the individual renderers to reposition them, or drag the background to move
everything at once.)

This makes it clear that a Graph List is just a collection of Graph Objects.

Rendering connections
We've shown the link from a Graph List to its Graph Objects; the next step is to show the
connections from a Graph Object to its Graph Lists.

[451

Welcome to the Graph

Time for action - displaying a Graph Object's connections
The Graph Object Renderer has the ability to show a list of all the object's connections, if
that list is included as part of the Graph Object.

All we have to do is tell the Graph API to give us that list when we request a Graph
Object; since our code for creating an instance of GraphOb j ect from a JSON copies all
the properties of that JSON to the GraphOb j ect, this metadata will be included too. So,
actually, all we need to do is add the metadata=l flag to the end of the Graph URL that we
request, and it'll do the rest for us.

We could do this by changing our request code as shown in the following excerpt:

public function CustomGraphContainerController
(a_graphControlContainer:GraphControlContainer)

{
super(a_graphControlContainer);
var loader:URLLoader = new URLLoader();
var request:URLRequest = new URLRequest();
//Specify which Graph URL to load
request.url = "https://graph.facebook.com/PacktPub?metadata=l";
loader.addEventListener(Event.COMPLETE, onGraphDataLoadComplete);
//Start the actual loading process
loader.load(request);

}
There's a slightly more elegant way to do this, however, using a class called URLVariables.
In CustomGraphContainerController. as, add a line to import this class:

import flash.net.URLVariables ;

Now, modify the constructor as shown in the following lines of code:

public function CustomGraphContainerController
(a_graphControlContainer:GraphControlContainer)

{
super(a_graphControlContainer);
var loader:URLLoader = new URLLoader();
var request:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables();
//Specify which Graph URL to load
request.url = "https://graph.facebook.com/PacktPub";
variables.metadata = 1;
request.data = variables;
loader.addEventListener(Event.COMPLETE, onGraphDataLoadComplete);
//Start the actual loading process
loader.load(request);

}
[241

https://graph.facebook.com/PacktPub?metadata=l
https://graph.facebook.com/PacktPub

Chapter 2

As you can probably guess, setting variables . metadata = 1 is exactly the same as
sticking ?metadata=l on the end of the URL. Doing it this way takes a few more lines, but
it makes it much easier to set different parameters, and keeps the parameters separate from
the URL.

Anyway, compile the SWF and you should see the following screenshot:

Q Adobe Flash Player 10 1 = 10 1 - 0 - 1 '

File View Control Help

Zoom In 1 Zoom Out | Reset View

Packt Publshing O

[PACKT]
F J ä L I I h t i h S

U>ebs ite : httpi/Auww .PaiktPub .oom
1

link: http://www .fac?book.com/FacktPub

id: 204609129460

name: Packt Publishing

metadata : [object object]

type: poge

category : products.other

founded: 2004
•

Ccrnections Shew

Notice the new Connections bar at the bottom of the Renderer? Click on the Show button:

Q Adobe Flash Player 10 1 1 - 1 I 151

File View Control Help

Packt PubisNng

[PACKT]
p u a L1 s h 1 ra G

Websi te : http://uiujujPacktPub.com
1

l ink; httpi/Auwuu .facebook „com/PacktPub

id: 204603129458

nenne; Packt Publishing

m e t a d a t a : [objset obj«t]

t ype : page

c a t e g o r y : Products.other

founded:2004 —
Connections] Hide

posts
i

stetuses

notes

albums ?

[471

http://www
http://uiujujPacktPub.com

Welcome to the Graph

What just happened?
We can now see all of the connections of a Graph Object right there in its renderer. Of course,
that's not very interesting unless we can see what's at the other end of each connection I

Introducing the Requestor
Ideally, whenever the user clicks a connection from the scrolling list, a new Graph List
Renderer of that connection will be created and displayed.

To do this, we'd need to add a MouseEvent. CLICK listener to the list, and use it to trigger a
new URLLoader request for the clicked connection.

Fortunately, all the Ul code has already been provided elsewhere in the project; we just need
to tap into that. To do this, we'll need to make use of what I call a Requestor.

Time for action - creating an HTTP Requestor
The idea is, we move all of the code regarding the URLLoader from
CustomGraphContainerController to a separate class, called HTTPRequestor. We
will then replace the CustomGraphContainerController constructor with this:

public function CustomGraphContainerController(a_graphControlContainer
:GraphControlContainer) {
super(a_graphControlContainer) ;
_requestor = new HTTPRequestor();
_requestor.request(new GraphRequest("PacktPub"));

}
Why bother? Well, apart from being neater, there are two main advantages:

1. It's much simpler to request several Graph Objects or Graph Lists; no need to
deal with multiple instances of URLLoader.

2. In the next chapter, we'll see how to use the official Adobe AS3 Facebook SDK to
retrieve information from the Graph API. If all the code for a request is encapsulated
in one class, then we only need to change one line to switch from using HTTP to
using Adobe's SDK:

public function CustomGraphContainerController(a_graphControlConta
iner:GraphControlContainer) {

super(a_graphControlContainer);
_requestor = new SDKRequestor();
_requestor.request(new GraphRequest("PacktPub"));

}

[241

Chapter 2

GraphRequest is a simple class; its constructor allows you to use two
parameters to specify what you'd like to retrieve from the Graph API:

• objectlD, the name of any Graph Object.

• connectionlD, the name of any connection of that Graph Object.

So, to request the Packt Publishing Page, you would use this GraphRequest:
newGraphRequest("PacktPub");
and to request the list of Posts from the Packt Publishing Page, you'd use this:

newGraphRequest("PacktPub", "posts");

The class is already written; it's in \src\com\graph\apis\http\HTTPRequestor.
as. Take a look! There are a few changes from the code we wrote in
CustomGraphContainerController. as, but these all have comments to explain them:

package graph.apis.http {
import events.DialogEvent;
import events.RequestEvent;
import flash.events.Event;
import flash.events.EventDispatcher;
import flash.events.HTTPStatusEvent;
import flash.events.IEventDispatcher;
import flash.events.IOErrorEvent;
import flash.net.URLLoader;
import flash.net.URLRequest;
import flash.net.URLVariables;
import flash.utils.Dictionary;
import graph.apis.base.IRequestor;
import graph.BaseGraphltem;
import graph.GraphList;
import graph.GraphObject;
import graph.GraphRequest;
import com.adobe.serialization.j son.JSON;

//the class needs to dispatch events (see later in code for why)
public class HTTPRequestor extends EventDispatcher implements

IRequestor
{

//this is used to figure out which GraphRequest created each
//loader
private var _requests:Dictionary = new Dictionary();

public function HTTPRequestor(target:IEventDispatcher = null) {

[491

Welcome to the Graph

//this is needed because the class extends EventDispatcher
super(target);

}

public function request(a_request:GraphRequest):void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables();

//We construct a URL from the parameters of the GraphRequest
urlRequest.url = "https://graph.facebook.com/" + a_request.

objectID;
if (a_request.connectionID) {
urlRequest.url += "/" + a_request.connectionID;

}

variables.metadata = 1;
urlRequest.data = variables;

//this is used to figure out which GraphRequest created the
loader later

_requests[loader] = a_request;

loader.addEventListener(Event.COMPLETE,
onGraphDataLoadComplete);

loader.load(urlRequest);
}

private function onGraphDataLoadComplete(a_event:Event):void {
var loader:URLLoader = a_event.target as URLLoader;
var graphData:String = loader.data;
var decodedJSON:Object = JSON.decode(graphData);

//we find the original GraphRequest used to start the loader
var originalRequest:GraphRequest = _requests[loader] as

GraphRequest;

if (decodedJSON.data) {
var graphList:GraphList = new GraphListO;

[501

https://graph.facebook.com/

Chapter 2

var childGraphObject:GraphObject;
for each (var childObject:Object in decodedJSON.data) {
childGraphObject = new GraphObject();
for (var childKey:String in childObject) {
childGraphObject[childKey] = childObject[childKey];

}
graphList.addToList(childGraphObj ect) ;

}
graphList.paging = decodedJSON.paging;

//we use the properties of the original GraphRequest to add
//some extra data to the GraphList itself
graphList.ownerlD = originalRequest.objectID;
graphList.connectionType = originalRequest.connectionID;

//since this class does not have a renderGraphList() method,
//we dispatch an event, which CustomGraphContainerController
//will listen for, and call its own renderGraphList() method
dispatchEvent(new RequestEvent(RequestEvent.REQUEST_COMPLETED,
graphLi st)) ;

}
else {
var graphObject:GraphObject = new GraphObject();
for (var key:String in decodedJSON) {
graphObject[key] = decodedJSON[key];

}

//since this class does not have a renderGraphList() method,
//we dispatch an event, which CustomGraphContainerController
//will listen for, and call its own renderGraphList() method
dispatchEvent(new RequestEvent(RequestEvent.REQUEST_COMPLETED,
graphObject));

}
}

}

}

[511

Welcome to the Graph

There's no need to change any of this, or even to understand any of it apart from the HTTP
request code that we wrote earlier. Just remember, its purpose is to encapsulate your
requests to the Graph API.

Now, go back to CustomGraphContainerController. as and remove all the request-
related code:

package controllers {
import ui.GraphControlContainer;

public class CustomGraphContainerController extends GCController {

public function CustomGraphContainerController
(a_graphControlContainer:GraphControlContainer)

{
super(a_graphControlContainer);

CustomGraphContainerController inherits a protected variable called _requestor of
type iRequestor, as well as a method for adding the required event listeners to it, so all we
need to do is this:

package controllers {
import graph.apis.http.HTTPRequestor;
import graph.GraphRequest;
import ui.GraphControlContainer;

public class CustomGraphContainerController extends GCController {

public function CustomGraphContainerController
(a_graphControlContainer:GraphControlContainer)

{
super(a_graphControlContainer) ;
_requestor = new HTTPRequestor();
addEventListenersToRequestor() ;
_requestor.request(new GraphRequest("PacktPub"));

[521

http://http.HTTPRequestor

Chapter 2

Compile and run your SWF, then expand the Connections box and click on "posts":

i n b a d '

Posts [List]

t y p e : link

link: http://bit.ly/ddJBflQ
c r e a t e d , t ime : 2010-10-22T12:35 :4G+QQQQ
name Offer on Fwfcft Ope« Sowce Best severs
I Paokt Publishing Teohnloal S IT Book Store

message poch »̂vg e+sis*»̂ op*«
source eBooks at an unbeiieuabie discount of
$9.99. So hurry , grab your open source copy
NOW. http://lDit.ly/ddJBflQ
descr ipt ion: Packt is a modern publishing
company, producing cutting-edge bocks, eBooks,
and articles for communities of deuelopers,

Pop Out

D Adobe Flash Player 10

File View Control Help

Zoom In I Zoom Out I Reset View

Packt Publishing •

PACKT
P U B L I S H I N G

t ype : page

link: http://uuuuui.facebook.oom/PacktPub

fon . count : 412

founded 2004

w e b s i t e Mtp:/Aniuw.FMktFub.«tNi

m e t a d a t a : [object Object]

user name : PacktPub

c a t e g o r y : Products-other

Connections

links

photos

posts

euerits

Great! The Graph List Renderer appears, with a black line to the Page to indicate that there is
a connection between them. What about the other connections? Try clicking on statuses.

Error #2044: Unhandled ioError:.text=Error #2032: Stream Error. URL:
https://graph.facebook.com/204603129458/statuses?metadata=l

Oops.

What just happened?
If you load the troublesome URL in your browser (https : //graph, facebook. com/
packtpub/statuses), you'll see the following message:

{
"error": {

"type": "OAuthAccessTokenException" ,
"message": "An access token is required to request this
resource."

[531

http://bit.ly/ddJBflQ
http://lDit.ly/ddJBflQ
http://uuuuui.facebook.oom/PacktPub
https://graph.facebook.com/204603129458/statuses?metadata=l

Welcome to the Graph

This error is due to not being logged in to Facebook through your SWF. We'll look at how to
solve this in the next chapter.

For now, you can get around the error by adding an IO_ERROR event listener to
the URLLoader. In HTTPRequestor . as, modify request () :

public function request(a_request:GraphRequest):void {
varloader:URLLoader = new URLLoader();
varurlRequest:URLRequest = new URLRequest();
varvariables:URLVariables = new URLVariables();

//We construct a URL from the parameters of the
//GraphRequest
urlRequest.url = "https://graph.facebook.com/" +

a_request.obj ectID;
if (a_request.connectionID) {
urlRequest.url += "/" + a_request.connectionID;

variables.metadata = 1;
urlRequest.data = variables;

//this is used to figure out which GraphRequest
//created the loader later
_requests [loader] = a_request;

loader.addEventListener(Event.COMPLETE,
onGraphDataLoadComplete);

loader.addEventListener(IOErrorEvent.IO_ERROR,
onlOError);

loader.load(urlRequest);

You will need to import flash, events . IOErrorEvent. Now, in the same class, create a
simple event handler function to trace the error:

private function onlOError(a_event:IOErrorEvent):void {
trace (a event.text);

[r ^ T f . This way, you can see the error in your output window, but it won't crash I
the SWF. Note: a try-catch block will not work for this kind of error. I

[541

https://graph.facebook.com/

Chapter 2

Understanding Connections of Connections
Take a look at the Graph List Renderer created by clicking on the "album" connection:

Q Adobe Flash Player 10 I I 151

File View Control Help

Zoom In I Zoom Out I Reset View

Packt Publishing • HI hum:- [List]

PACKT]
P U B L I S H I N G

t y p e : profile

link:
http ://UIWUJ .facebook .com/album .php?aid=2809
61Sid=204603129458 user name: PacktPub

t y p e : profile

link:
http ://UIWUJ .facebook .com/album .php?aid=2809
61Sid=204603129458

c a t e g o r y : Products-other count: 1
liilk: http://ujujuj.facebook.ccpm/PacktPub name Prone pictw«
n a m e Pockt Pubfistwg From [<*»«i 0fc»«i]
fan.count 412 created, time : 2010-09-30TID :13 :S3+ODOO

type: page up da t ed.time : 2010-03-10™:46 io+oooo
founded: 2004 id: 471535759458
w e b s i t e : http:/Auujuj.PacktPub.com 1 ;
Connections Hide Pop Out -

posts

statuses

notes

albums
•

Notice anything missing?

There are no pictures! We can see lots of photos when loading the Packt Publishing Page
inside the actual Facebook website, but here there are no photo URLs at all. Check it out
by loading the Graph List in the browser; even with ?metadata=l, there's no indication of
where the photos might be:

{
"data": [{

"id": "471535759458",
"from": {

"name": "Packt Publishing",
"category": "Products_other",
"id": "204603129458"

h
"name": "Profile pictures",
"link": "http://www.facebook.com/
album.php ?aid=280961&id=204603129458",

"count": 1,
"type": "profile",
"create d_t i me": "2010-09-30T10:13:53 + 0000",

[551

http://ujujuj.facebook.ccpm/PacktPub
http://www.facebook.com/

Welcome to the Graph

"updated_time": "2010-03-18T14:46 : 50 + 0000"

{
"id": "307932939458",
"from": {

"name": "Packt Publishing",
"category": "Products_other",
"id": "204603129458"

h
"name": "Books",
"description": "Packt Books",
"link": "http ://www.facebook.com/
album.php ?aid=180619&id=204603129458",

"count": 32,
"type": "normal",
"ere at ed_t i me": "2010-02-04T12:32: 17 + 0000",
"updated_time": "2010-03-18T16: 08 : 42 + 0000"

}
] ,
"paging": {

"previous": "https://graph.facebook.com/2 04 603129458/
albums ?metadata=l&limit = 2 5&since = 2 010-09-3 0T10%3A13%3A53 %2B0 00 0",
"next": "https://graph.facebook.com/2 04 603129458/

albums?metadata=l&limit = 2 5&until = 2 010- 02 -04T12%3A32 %3A16%2B00 00"

Time for action - loading photos from an album
However, as we've established, each object inside data is a Graph Object in its own
right. Let's take a look at the Packt Books album, with id 307932939458, by browsing to
https://graph.facebook.com/3 07 932 93 94 58?metadata=l:

{

"id": "307932939458",
"from": {

"name": "Packt Publishing",
"category": "Products_other",
"id": "204603129458"

h
"name": "Books",
"description": "Packt Books",
"link": "http://www.facebook.com/
album.php ?aid=180619&id=204603129458",

"count": 32,
"type": "album",
"ere at ed_t i me": "2010-02-04T12:32: 17 + 0000",
"updated_time": "2010-03-18T16: 08 : 42 + 0000" ,
"metadata": {

[561

http://www.facebook.com/
https://graph.facebook.com/2
https://graph.facebook.com/2
https://graph.facebook.com/3
http://www.facebook.com/

Chapter 2

"connections": {
"photos": "https://graph.facebook.com/307932939458/photos",
"likes": "https://graph.facebook.com/307932939458/likes" ,
"comments": "https://graph.facebook.com/3 0 7932 939458/
comments"

This time, the metadata gives us the information we need. The photos are linked to the
Album Graph Object through a connection called "photos".

Run your SWF and load the albums connection again. In the Renderer, scroll to the Graph
Object whose name is Books, and click on Pop Out. Then, expand the Connections box of
the Books Renderer, and click on photos.

I Adobe Flash Player 10 ^ i l - r e - J

File View Control Help

I Zoom Out I Zoom Out I Reset View

Pactt Publishing

PACKT]
P J E U S HI N G

u s e m a m e Pac t tPub

category. FYoJucti-oihw
link hirp./'/'ujiUJUu.rKirtitKik.ciorn/lRaoktRub'
narrte;P<wkt PuHihing
fan.count 412
t y p e : page

f o u n d e d 2 0 0 4

website http//W*-PocklPi*rar

Albuins [Lisi]

t y p e n o r m d

l ink;

http://ujww Jaceboot:.com/albiMn.php?()i(fieoei

9$ki=204603!294S8
c o u n t 3 2

name bq<*î
from: [abject Object]
c r e a t e d . t i m e . 2010-02-C4T12 : 3 2 . i 7 + o o o o

u p d a t e d . t i m e . 2 0 1 0 - 0 3 - i s t i é o e .42*0000

id 3 0 7 9 3 2 9 3 9 4 5 8

d e s c r i p t i o n : Packt Books

Pop Out

t y p e cftiimi

l ink:

http;//wwiu Iflwbool: .wnn/<!ibyn!.pht3?ai4=160619
iid=2Q46C3129458
c o u n t 3 2

name Books

metadata-[ç*jwt object]
from [ofcject Object]
c r e a t e d . t i m e . 2B1O-02-04TT2:32.17+OOOO

u p d a t e d . t i m e : 201O.D3-18T16.OB:42*OOOO

Id 307332939458
Confine lians 1 hfate

O O ^ W n f t -

H i n

3h CtC-i

.

l i n k :

h+tp;//ijyuAU iqçibfloiç.çpm/phito php?pit*=4527
B 32fcid-204B0312945B

height, eee

[5 7]

https://graph.facebook.com/307932939458/photos
https://graph.facebook.com/307932939458/likes
https://graph.facebook.com/3
http://ujww

Welcome to the Graph

What just happened?
When we were only considering the "posts" connection, our graph was very simple; there
was a single connection between the Page and everything related to it:

Post object

Post object

[•: ^ ^
Link object

P U B L I S H I N G

Link object

Link object

Now that we've introduced albums, it's more complicated:

[581

Chapter 2

We now have to traverse two levels of connection to get from the Page to the objects we're
looking for.

The connections don't stop there, though. Both Albums and Photos can be connected to
Comments, too:

Comment object

[PACKT]
P U B L I S H I N G

Photo object
I S] Photo object

1 / H
QTJ Photo object ^ ¡ £ ¿ 1

Comment object object" H I p h o t o o b) e c t E^)

Comment object

| H | Photo object album

Photo object

Photo object E^J

Photo object Comment object

Comment object A l b u ~ b j £ M j e c L _ ^

¡ ¡ J Photo object Comment object

Photo object

Comment object
Comment object

Plus, every comment has a property called from that connects it to the user that posted it.
A user can also be "tagged" as appearing in a photo, which connects the photo and the user,
as well:

User object ^
Comment object

[PACKT]
P U B L I S H I N G

User object
/

Photo object
[j r | Photo object

P h o t o o b j e J ^ H
Comment object — A l b u m object" |BI| p h o t o object p-1 User ject

Comment object

^ HI PhoiD object
album

User object

User object

gj Photo object / user object

Comment object

Album object
^ XH Photo objecT -̂E)̂

Photo object

Comment object A l b u ^

g | ^ f ! Photo object Comment object

Photo object
L̂ J user object

Comment object

User object

""Comment object

User object User object

[591

Welcome to the Graph

The diagram is looking more and more complex (and the similarities to the mathematical
graph drawn earlier are now clear). Of course, now that people are involved, the number
of connections gets ridiculous. Users can be connected to any other object, either by
being friends with another User, by being tagged in a Photo, Video, or Note, by posting a
Comment, Link or other item, or by clicking Like on any other element in Facebook.

If you start with one Page and keep going through all the objects connected to it, and then
all the objects connected to those, and so on, you can cover huge numbers of nodes without
having to start again with a new Page.

The power of the graph lies in its flexibility. Every type of Graph Object has the same basic
structure as every other type of Graph Object - with the exception of Graph Lists (which
contain arrays of Graph Objects). That's why our Graph Object Renderer can easily display
any kind of Graph Object.

[601

Chapter 2

Also, have you noticed that it's not just comments that have a from property? Albums do,
too, and so do individual photos, and pretty much every type of object that isn't a Page or a
User. This means you can start with any object, find its creator, and traverse outwards across
the graph from there.

The Graph model has implications for privacy. Suppose that, if we were granted access to
information about a Page, we were also allowed to access information about any object
connected to that Page. Well, then we could go from the Page to:

• An Album posted by the Page, to

• A Photo in that Album, to

• A User tagged in that Photo, to

• That User's list of wall posts, to

• A Comment made on a post by a friend of the first User, to

• The User that posted the Comment, to

• A TV Show that this User Likes, to

• A Link posted on the Page for that TV Show, to

• The User who posted that link

and so on. It's no surprise, then, that Facebook uses a more detailed set of rules to
determine both what a user can access, and what an app can access on behalf of a user.
We'll look at these rules in the next chapter.

Putting it all together
Finally, let's see how far we can traverse through the graph, starting from the Packt
Publishing Page.

Time for action - traversing the Graph
Set the Visualizer to start by requesting the PacktPub Page. Now, compile and run your SWF,
and use the Connections box and the Pop Out buttons to explore the Graph, and see how
far you can get. Don't forget you can drag Renderers around, and zoom out to fit even more
in the Flash Player window! And remember, black lines signify connections, while gray lines
signify that the object belongs to a List.

[611

Welcome to the Graph

The following Screenshot shows what it could look like after only a few clicks:

• Adobe Flash Player 10

File View Control Help

Zoom In Zoom Out Reset View

g

M

You can already see the resemblance to the sprawling diagrams of the Graph seen previously
in the chapter.

What just happened?
You've written the code to power an RIA that allows you to explore the entire public Graph,
starting from any point. In other words, you've made a Facebook crawler, in Flash.

[621

Chapter 2

Haue a go hero - exploring other areas
You don't have to start exploring from the PacktPub Page. Try changing that initial
GraphRequest instance to request the Facebook Page, Facebook, or MarkZuckerberg's
public profile, markzuckerberg, or the Page of any other brand, company, or famous person.

Also, realize that you're not limited to a single GraphRequest; you can create as many as
you like. Try starting with a few at once, and see if you come across any overlaps!

Keep an eye on your output window for traces telling you that a Graph Object or List could
not be retrieved. Is it always for the same reason?

Pop Quiz
1. What does the ?metadata=l parameter do when used in a Graph API URL?

a. It makes the metadata visible

b. It makes the metadata invisible

2. How many levels through the Graph can you traverse, starting with any Page?

a. One

b. Two

c. Ten

d. Unlimited

3. True or false: If the JSON returned from a Graph URL contains an object called data,
we can always assume it's a Graph List.

a. True

b. False

4. True or false: If the JSON returned from a Graph URL doesn't contain an object called
data, we can always assume it's a Graph Object.

a. True

b. False

[631

Welcome to the Graph

Summary
We learned a lot in this chapter about the Graph API: not just what it is, but also how to
access it in AS3.

Key things to learn:

• The Graph API is so-called because it represents all of Facebook's data connected in
an enormous graph of objects and connections.

• The Graph API has two types of elements: Graph Objects and Graph Lists.

• Graph Objects may have two IDs: a numeric one specified by Facebook, and possibly
an alphanumeric one, specified by the Graph Object's owner.

• Graph Objects have connections; connections lead to Graph Lists; Graph Lists
contain Graph Objects.

• The format of a Graph URL for retrieving a Graph Object is https : //graph.
facebook.com/graph_object_id.

• The format of a Graph URL for retrieving a Graph List is https: //graph,
facebook.com/graph_object_id/connection_id.

• Graph URLs return data in JSON format. This is a text-based format which uses
key-value pairs to represent objects containing properties, arrays, and other objects.

• Sometimes, Graph URLs return error messages; these are also given in JSON format.

• We can use the ?metadata=l parameter in a Graph URL to make it return
extra information about the element, like the list of connections leading
from a Graph Object.

• Metadata is not returned for Graph Objects that are part of a Graph List.

• The JSON representation of a Graph Object can be deserialized to an AS3 object we
can use in code using the as3corelib library.

We also discussed how the Graph API is so flexible, because it uses the same basic structure
for every type of object in Facebook's database.

But what about those objects that give us an authorization error when we try to get
information on them? That's what we'll cover in the next chapter.

[641

3
let Me In!

When exploring the Graph in the previous chapter, we came across a few points
where our access was blocked. Our Facebook apps need to be able to deal with
this gracefully, by either avoiding such points or asking for access.

In this chapter we'll learn about:

• Security: How Facebook blocks people and apps from seeing things they shouldn't

• Permissions: How users decide what information other people and apps are allowed
to see, and how your application can request to see more

• Authentication: How your application can prove that it's trusted to see all
that information

So let's get on with it...

What can you seeP
Let's find out what we can see on other people's Facebook accounts under
different circumstances.

Time for action - snooping through other people's accounts
Log in to Facebook in your browser and go to your personal profile page. Note down
the URL; it'll be something like http: //www. facebook. com/yournamehere
(or http: / /www. facebook. com/prof ile .php?id=12 34 56 7 8 if you haven't signed up
for a Facebook User Name at http: //www. facebook. com/username/). Since it's your
profile, you'll be able to see everything: Wall Posts, photos, links, interests, bio, and so on.

Let Mein!

Now check out a friend's profile (and again note down the URL). You'll be able to see most of
the same information as you can on your own profile—perhaps even all of it.

Are you in a network? If so, take a look at the profile of someone who is in the same
network, but who isn't marked as a friend of yours. You'll be able to see some information
about them, but not everything they've published; perhaps you won't be able to see their
wall or their photos.

Networks are based on where you work or study; being in a network is like tagging yourself
to say "I work here", and lets you find other people in your network more easily. (Facebook
used to have regional networks, too, but these were phased out in 2009.)

Joining a network often requires having an e-mail address that's
only available to employees at your workplace or students at your

/ school or university, to stop random people pretending to belong
when they don't.

For information on networks and how to join them, browse to
http://www.facebook.com/networks/networks.php.

Finally, take a look at the profile of someone you have no connection to at all. Obviously this
is tricky I Try looking at friends of friends of friends, or searching for random names. Again,
you'll be restricted in what information you can see.

Okay, now, log out of Facebook (or switch to private browsing mode), and visit all the same
profile pages again.

Private browsing mode allows you to open a new browser window or tab that
doesn't log you in to sites automatically (and doesn't cache any information or
save pages to your history). It's useful for situations like this where you want to
check how the behavior of a website changes based on whether you're logged in.
Different browsers use different names for this mode:

• Google Chrome: Incognito

• Mozilla Firefox: Private browsing

• Internet Explorer: InPrivate

• Safari: Private browsing

• Opera: Private window / private tab

Check your browser's help to find out how to enable it. m

What's different?

[661

http://www.facebook.com/networks/networks.php

Chapter 2

What just happened?
As you can see, Facebook's security restricts access to what information you can see about
a person. It's not a simple binary setting - "you can either see this information or that
information" - rather, it's based on:

• How you are connected to the other person

• Whether or not you are logged in to Facebook

What's particularly interesting is that you can often see more information about a person
just by logging in to Facebook - even if you've never met them, and have no friends or
networks in common. For some people, you may not even be able to view their profile page
if you're not logged in; Facebook might deny that it even exists.

Every Facebook user has a list of permissions, which specifies the information about them
that other users can see, based on their connections to the other user. If you don't have
permission to view certain data, Facebook's security simply doesn't show it to you.

Permissions can be complicated to figure out. Here's a diagram of what one user's
permissions might look like:

Everyone

Can view basic info (name, gender)

^«P .e, Can view profile picture, bio

[671

Let Me In!

In this diagram, the label outside each set explains which group of people it belongs to, and
the writing inside the sets details which permissions those people have. The permissions
overlap, so a person that's a friend of a friend and in this user's network would be able
to see their basic information, their profile picture, their bio, their wall posts, and their
employment information, but not their photographs.

The diagram could be even more complicated; you can add sets for arbitrary groups (which
users set up manually) or even for specific people.

Let's take a look at your settings to see what permissions you're giving other people.

Haue a go hero -uiewing your priuacy settings
While logged in to Facebook, click on Account | Privacy Settings in the top-right-hand corner.

Choose your privacy settings

i n Basic d i rectory information
To help real-world friends find YOU, some basic information is open to everyone, We also suggest setting basics like hometown
and Interests to everyone so friends can use those to connect with you, View settings

[Q Sharing on Facebook

Everyone Everyone
Friends of

friends Friends only

— v -
^
o

Other CD
(L)

Friends of friend s My status, photos, and posts • 3

Friends only
Bio and favorite quotations • 1 Friends only
Family and relationships • E

o
Photos and videos I'm tagged in J=

"a
Recommended Religious and political views •

fU _o

Birthday •
c
3 o

Can comment on posts Q Can comment on posts

Email addresses and IM •

Phone numbers and address

S Customise settings This is your current setting.

Appl icat ions a n d w e b s i t e s
Edit your settings for using applications,
games and websites,

Q Block l ists
Edit your lists of blocked people and
applications.

f p Controlling how y o u s h a r e
Learn more about your privacy on Facebook.

[681

Chapter 3

This page is split into two main sections: Basic directory information and Sharing on
Facebook. Take some time to dig in to these and see what information can be viewed by
whom. You might be surprised at how much information about you is available to anyone
who cares to look.

While customizing your settings in either of those pages, you can click on Preview my Profile
to see how your profile will look when viewed by any person you specify.

A few pieces of information are always viewable by anyone who's logged in: your name,
your gender, your profile picture, and your list of networks. Access to everything else
can be modified.

What's that got to do with the Graph APIP
That's all good to know, but does it affect our application?

Try accessing the profiles of all the people you just looked at through their Graph URLs.
Remember, if their Facebook URL is http: //www. facebook. com/username, their
Graph URL will be https : //graph. facebook. com/username; if their Facebook URL
is http: //www. facebook. com/prof ile.php?id=12345678, their Graph URL will be
https://graph.facebook.com/12 3456 78.

You'll notice that the only information you can see is:

• Name (and separate fields for first name, last name, and so on)

• Profile picture (through https : / /graph, facebook. com/id/picture)
• Gender

All this information is publicly available. This is true even if you can see extra information on
their profile page when logged out.

The Graph API can't detect whether we're logged in to Facebook in another browser window,
so everything we see here is through the eyes of a logged-out user.

For instance, here's what my page looks like as shown in the following lines of code:

{
"id": "«redacted»",
"name": "Michael James Williams",
"first_name": "Michael",
"mi ddle_name": "Jame s",
"last_name": "Williams",
"gender": "male",
"locale": "en_GB"

}
[691

https://graph.facebook.com/12

Let Me In!

And although you can see a list of connections URLs by adding metadata=l to the URL,
trying to access any of them leads to this error:

{
"error": {

"type": "OAuthAccessTokenException",
"message": "An access token is required to request this
resource."

But what is an access token?

Access tokens are proof of authorization
Imagine a secure building. To get in through the front door, you need to provide the
doorman with your passport, your driver's license, and your social security number - just to
prove who you are. Once he's satisfied, he gives you a temporary pass, with your name on it,
to clip to your jacket.

Inside the building, everybody trusts the pass. You don't need to risk showing them your
important personal documents; those only get seen by the doorman.

An access token is like that pass. Facebook gives a logged-in user a string of characters,
which says, "I am this person, and I have logged in," and this string can be passed as a
parameter to a Graph URL to gain access to information that the user is permitted to see.

Except, that's not the whole story.

User/Application authorization
There are actually two authorizations required: the user's and the application's. It works
like this:

Joe User tries to do something in Bill's Cool Application that requires the application to
access some of Joe's restricted information. The application can't access it, so the two of
them approach Facebook via the Graph API.

The application says, "Hey Facebook, I'm Bill's Cool Application, and I want to access Joe
User's data."

[701

Chapter 3

Facebook replies, "First I need to see your ID, to prove that you really are Bill's
Cool Application."

The application says, "Sure thing; here are my credentials."

Facebook checks them out, and says, "These look okay to me. Wait a minute, how do I know
that this is the real Joe User, and not some guy in a wig?"

Joe logs in to Facebook with his e-mail address and password, obscuring them so that Bill's
Cool Application never sees them. The application politely looks away.

Facebook says, "Hey Joe, good to see you. Are you happy for Bill's Cool Application to access
this data it's asking for?"

Joe checks what the application is trying to get, and says, "Yeah, sure, that's fine with me."

Facebook says, "Great. Okay, Bill's Cool Application, here's an access token. If you want
to access any of Joe's data, just show me that token when you ask for the info and I'll
give it to you."

The application says, "Cool! So, I can just use this token whenever I want?"

Facebook says, "Well, no. It will expire within a few hours. After that, you'll have to ask for
another one, and you'll need Joe to be logged in to do that. Same deal if Joe logs out; you'll
need to get another token, which means getting him to log in again."

The application says, "That seems a little inconvenient. You mean I have to get Joe to say it's
okay for me to access his data every couple of hours?"

Facebook replies, "Oh, no, no, no. Now that Joe's said it's okay for you to see his information,
I'll remember that, and won't bother asking again. And I don't need to see his e-mail and
password if he's already logged in."

Joe and the application thank Facebook and go off to do whatever it was they wanted to do
in the first place.

Of course, the information isn't passed through the form of a conversation; that would be
silly. The application credentials are passed to Facebook through a Graph URL, while the
user give their credentials through a standard Facebook login web page. Facebook does not
return the access token in a JSON, but through a parameter to the application's URL - this is
why your application needs a web host.

First, you're probably wondering where we get application credentials from. We can't just
make them up; we need to register our application with Facebook first. Let's do that now.

Let Mein!

Time for action - registering an application with Facebook
Sign up to become a Facebook Developer at http: //www. facebook. com/developers/.
Don't worry; it's free, and instant.

You may be asked to verify your Facebook account by entering a valid mobile phone number
or adding a credit card. You won't be charged (apart from the cost of a standard text
message, if you pick that method); this is to ensure that every application is connected to a
real person.

On the Developer page, click Set Up New Application in the top-right:

+ Set Up New Application

You'll be asked to enter the name of your application. It's a good idea to use your name or
your company's name as part of the application's name, as this makes it more likely to be
unique. (You can change the name of the application later if you like; this isn't set in stone.]
You'll also be asked to agree to the Facebook Terms and Conditions - make sure you read
them first.

S C r e a t e Appl icat ion Back to My Applications

Essent ia l I n f o r m a t i o n

Appl icat ion N a m e Ci nnot contain Facebook
trademarks or have = name that
ca n be confused witJ i in
application built by Facebook.

Terras Do you agree to the Facebook Terms and Conditions?

Agree o Disagree

Create Application

[721

Chapter 2

Click on Create Application. A huge number of new options appear! Some, like the
description and logo fields, only affect the way the application looks, but many of them
affect how the application behaves. For now, we don't need to worry about any of that.

You just created your first Facebook Application. Until we configure some more options,
this is little more than a set of authentication credentials that can be used to identify your
application:

• Application ID: Like a username for your application

• Application secret: Like a password, used to prove that requests come from the
actual application - don't share it!

• API key: Used to access the Graph API

You can find these in your application's summary page; browse to http: //www. facebook.
com/developers, find your application in the list on the right-hand side (underneath the
Set Up New Application button), and click its name.

What just happened?

+ S e t Up New Application

My Applies tion s

See my applications

MichaelJWs Awesome
Test App

more *

Monthly Active Users
Application Fans

1
0

[731

Let Mein!

The three fields mentioned previously are easy to spot:

MichaelJW's Awesome Test App
Directory Status: Not submitted
Onoe you haje completed your app cation, you may submit it to thi Applioat'on D'ractory.

Monthly Active Users

1
Application Fans Total Users

1
API Key
I • • • • I

Application Secret

Application ID
l i d •Ld

Contact Ernai'
r n i x u m

Support Email Address
l l ! • I I -

FBML/i frame
¡frame

Developer Mode
Off

Application Type
Website

Private Install
No

Sample Code
Get started quickly with some example code!

Advertise
DataStoreAdmin
Edit Application Profile
Edit settings
Reset secret key
Statistics
Translations
View Application Profile

These don't change (though you can reset your secret key at any time, if you accidentally let
someone else see it), so take a note of them. We'll be using them a lot throughout the book.

Application ID + logged-in user = access token
We've now got everything we need to request an access token from Facebook. So let's do it.

[741

Chapter 2

Time for action - requesting an access token with the browser
Open your browser and head to https : //graph, facebook. com/oauth/
authorize?client_id=«insert_application_id» (replace «insert_
application_id» with your application's Application ID).

You'll get the following error:

{
"error": {

"type": "OAut hExcept i on",
"message": "Missing redirect_uri parameter."

}
}

Facebook won't just output the access token; it wants to redirect the browser to another
web page, and pass the access token to that page. At the moment, this isn't very useful. Our
Flash application is running as a standalone SWF and is not embedded in a page — so we'll
use a quick workaround.

Registering a redirect URI with our application
Go to your application's Settings (go to http: //www. facebook. com/developers, then
click the name of your application, then click on Edit Settings). Click on the Web Site tab in
the navigation bar on the left.

About

Web Site

Facebook Integration

Mobile and Devices

Advanced

[751

Let Me In!

You'll see the panel as shown in the next screenshot:

Core S e t t i n g s

Application ID

Application Secret

Site URL

Site Domain

-,—wrtWut -ivm

Your OAuth d i « i t _ i d

Your OAuth c l i « i f c _ s « re t

Your site's URL

If set. Facebook will enable
authentication on all subdomaire
(e.g., nexample.comr will enable

.example.com)

Save Changes

The Site URL box defines the URL that Facebook redirects to after authorizing the user and
the application. It's also the URL to which the access token will be passed.

Until we create our own page, let's set this to the Google home page. I'm sure they won't
mind. Enter http: //google. com/ in the box, and click on Save Changes.

Core S e t t i n g s

Application ID

Application Secret

Site URL

Site Domain

http://google.com/

Your OAuth c l i « i t _ i d

Your OAuth cli«ifc_secrefc

Your site's URL

If set. Facebook will enable
authentication on all subdorciains
(e.g., "example.com" will enable

.example.com)

Save Charges

If you try browsing to https : //graph, facebook. com/oauth/authorize?client_
id=«your_application_id» again, you'll get the same error message. Even though we've
specified the redirect destination page inside our application's settings, we still have to pass
it to the authorize URL.

There is a security risk involved in passing credentials as parameters typed into a URL; they're
not secure, and could be read by anyone. This poses a problem: Facebook would like to see
our Application Secret, to prove that we really are logging in via the application whose ID
we've provided, but we can't risk passing the Secret via the URL.

[761

http://google.com/

Chapter 2

To get around this, we can tell Facebook that we're using a web browser on the user's side to
authenticate, and Facebook will let us through without requiring our Application Secret. This
involves passing another parameter: type=user_agent (user agent is the general term for
applications like web browsers that run on the user's computer).

So, browse to the URL:https://graph.facebook.com/oauth/authorize?client_
id=«your_application_id»&redirect_uri=http://google.com&type=user_
agent.

r - Note that there is an ampersand (&) separating the value of each parameter and
the name of the next, and that the second parameter is called redirect_ur i,
not redirect_url. (That's not a typo; a URL is a specific type of URI.)

You should be faced with a Facebook login web page:

Facebook Login

Log in to use your Facebook account with Michael3Ws Awesome Test App.

Email address:

Password:

^ t I t B or Sign up for Facebook

Forgotten your password?

Enter your details and click on Log in. You'll be asked to give the application permission to
access your basic information:

Request for permission

MichaeDW's A w e s o m e T e s t A p p is requesting permission to do tine following:

Access my basic information
Includes name, profile picture, gender, networks, user ID, list
of friends, and any other information I've shared with
everyone,

k
MíchaeÜW's

Awesome Test App

Report application

Logged in as Michael James Williams {Not you?) Don't allow

[771

https://graph.facebook.com/oauth/authorize?client_

Let Mein!

Click on Allow. You'll be redirected to Google—but take a closer look at the URL:

http://google.com/#access_token=12 36 7523 0 9 953 8 9%7C2.hX2Png6g2LUuczfd4
tLPbQ .3600.1276960311-169573433 0 58 8 84%7C8BAAidDtlt8 fulZHA3bC3YxcCwM

At last! We have our access token. You can see it as the value of the access token
parameter in the URL we were redirected to. In this case, it's: 123675230995389%7C2 . hX2
Png6g2LUuczfd4tLPbQ .36 00.1276960311-169573433058884%7C8BAAidDtlt8fu
lZHA3bC3YxcCwM.

(Yours will be different, because the token is based on the User ID, the Application ID, and
the time of authorization, but it will look similar.)

Using the Access Token
Let's try it out. Try loading your own profile through the Graph API, as we did earlier:

https://graph.facebook.com/«your_username»

If you recall, I got this:

{
"id": "«redacted»",
"name": "Michael James Williams",
"first_name": "Michael",
"mi ddle_name": "Jame s",
"last_name": "Williams",
"gender": "male",
"locale": "en_GB"

}
Now try again, but this time add an access token parameter to the URL:

https://graph.facebook.com/«your_username»?access_
token=12 3 675230995389%7C2.hX2Png6g2LUuczfd4tLPbQ .36 00.1276960311-
169573433 0 58 8 84%7C8BAAidDtlt8 fulZHA3bC3YxcCwM.

This time, you'll get more data as shown in the following snippet:

{
"id": "«redacted»",
"name": "Michael James Williams",
"first_name": "Michael",
"mi ddle_name": "Jame s",
"last_name": "Williams",
"link": "«redacted»",

[781

http://google.com/%23access_token=12
https://graph.facebook.com/%c2%abyour_username%c2%bb
https://graph.facebook.com/%c2%abyour_username%c2%bb?access_

Chapter 2

"about": "Twitter: @MichaelJW",
"gender": "male",
"timezone": 1,
"locale": "en_GB",
"verified": true,
"update d_t i me": "2010 - 06-16T20:38:01 + 0000"

}
Okay, it's not a lot, but it proves that we've been successfully authorized, and can see more
information than before we had an access token.

Try accessing your list of friends without an access token:

https://graph.facebook.com/«your_username»/friends
{

"error": {
"type": "OAuthAccessTokenException",
"message": "An access token is required to request this
resource."

Absolutely nothing. Now, with an access token (replace «your_access_token» with the
actual access token):

https://graph.facebook.com/«your_username»/friends?access_
token=«your_access_token»

{
"data": [{

"name": "JohnFaikname" ,
"id": "«redacted»"

"name": "Sarah Toetalee-Maidup",
"id": "«redacted»"

"name": "Bob Frendomyne",
"id": "«redacted»"

[791

https://graph.facebook.com/%c2%abyour_username%c2%bb/friends
https://graph.facebook.com/%c2%abyour_username%c2%bb/friends?access_

Let Mein!

You can then take any of these IDs, use it to construct a Graph URL (like https : //graph,
facebook.com/«your_friends_id»?access_token=«your_access_token») and
see their basic information. However, you can't see much more information about them than
you could without an access token - you can't even access their lists of friends:

https://graph.facebook.com/«your_friends_id»/friends?access_
token=«your_access_token»

{

"error": {
"type": "Exception",
"message": "(#604) Can't lookup all friends of

your_friends_id; can only lookup for the logged in user
(your_id) or for pairs of users"

}
}

You'll find that the same is true for all other users besides yourself. We will see later how to
ask the user to allow the application to access more information.

Still, this is enough information to use in the Graph Visualizer; later in this chapter, we'll
make our application map out list information about the current user and that user's friends.

Me, me, me
Since the access token is specific to the user that created, we can use a shortcut to get
information about the currently logged-in user - "me".

Browse to:

https://graph.facebook.com/me?access_token=«your_access_token»

You'll see the same information as if you'd typed your user ID or username instead of me.

In the same way, you can grab a list of the current user's friends by visiting the following URL:

https://graph.facebook.com/me/friends?access_token=«your_access_
token»

What just happened?
Compare what you just did with the process explained in the User/Application
Authorization section.

1. You gave Facebook your application's credentials, by passing your Application ID in a
Graph URL.

[801

https://graph.facebook.com/%c2%abyour_friends_id%c2%bb/friends?access_
https://graph.facebook.com/me?access_token=%c2%abyour_access_token%c2%bb
https://graph.facebook.com/me/friends?access_token=%c2%abyour_access_

Chapter 2

2. You proved to Facebook who you were, as a Facebook user, by logging in to your
account directly through a Facebook. com login web page.

3. Facebook asked you if you were happy to let the application access your
information, and you granted it permission.

4. Facebook passed an access token back to the page that the application specified
earlier (in this case, it was the Google home page).

This workflow isn't unique to Facebook. It's actually part of the OAuth 2.0 protocol, known
as the User Agent Flow. This means that once you get the hang of the workflow needed to
allow an application to authenticate with Facebook, you'll be able to apply that knowledge to
write an application that can authenticate with any other system that uses OAuth 2.0.

• The official documentation for the OAuth 2.0 protocol is T
here: http ://tools . ietf . org/html/draft- I
ietf-oauth-v2-05#section-3.5. I

Keeping secrets
It seems odd that we don't need to pass the Application Secret in the Graph URL to
authenticate. The reasoning is that, if we did pass the secret in that way, then the user or
another program running on the user's computer could grab it, and use it to masquerade as
our application - and remember, the secret is analogous to a password. So, the user agent
flow lets us authenticate the application without using its secret, for unsecure situations
such as this.

It's still possible for the user or a desktop application to get hold of the access token and
use it to pretend to be the user, logged into our application. But there's no point in the user
doing this (as any information he could access using this, he could already access via the
Facebook web site anyway), and as for desktop applications, well, that's just part of the
everyday risk of running a computer, along with viruses and spyware.

What did Facebook giue usP
Check out the URL that Facebook redirected us to after authentication:

http://google.com/#access_token=12 36 7523 0 9 953 8 9%7C2.hX2Png6g2LUuczfd4
tLPbQ .3600.1276960311-169573433 0 58 8 84%7C8BAAidDtlt8 fulZHA3bC3YxcCwM
.&expires_in=6561

There are two parameters: access_token and expires_in.

[811

http://google.com/%23access_token=12

Let Mein!

The second parameter tells us the number of seconds until the access token expires. It seems
like a random number, but there is a pattern: if we request a token at 14:32:07, it will expire
at 16:00:00; one requested at 9:15:34 will expire at 11:00:00. Add two hours to the token's
generation time, knock off the minutes and seconds, and you'll find the expiration time.

At first glance, the access token appears to be a mess of characters. Actually, it contains
some useful information.

First, you should know that %7C is code for a "pipe" character, |, which allows it to be passed
in a URL. So replace both the %7Cs with pipes:

12367 52 3099 53 89 I 2.hX2Png6g2LUuczfd4tLPbQ .36 00.1276960311-
169573433058884|8BAAidDtlt8fulZHA3bC3YxcCwM.

There are three useful pieces of information in here:

1. The Application ID: the number before the first pipe -123675230995389
in this case.

2. The ID of the current user: before the last pipe, after the dash - 169573433058884
in this case.

3. The expiry time: before the user ID-1276960311 in this case. This is given in
Unix time.

The Unix time system describes points in time as the number of seconds since January 1st,
1970, at midnight UTC, ignoring leap seconds. It provides a simple way to encode any point
in time (since 1970) as a single integer.

The website UnixTime. info contains a simple converter for switching between Unix
timestamps and conventional date formats.

In AS3, the Date class can be used to convert between the two time formats.
Pass the Date () constructor a value epochTime*1000 as its first
parameter to initiate the Date with that time. The time property of a Date
object will return a date in Unix format, albeit multiplied by 1000 as Flash uses
milliseconds as its base time unit.

This means that, given any access token, you can find out which user requested it, when
it's going to expire, and which application it's for - try browsing to https : //graph.
facebook.com/your_application_id.

[821

Chapter 2

Authenticating with AS3
You understand what we're doing and you've seen it in action. Now it's time to add
authentication to our application.

We'll start by creating an access token outside the application and using it inside.

Time for action - Using an access token in our Graph visualizer
Open the AS3 Visualizer project we started working on in the previous chapter. At the
moment, it's set to load the URL https : //graph. f acebook. com/PacktPub. Let's make
it load a user profile instead.

Modify CustomGraphContainerController. as to change which object is requested:

package controllers {
import graph.apis.http.HTTPRequestor;
import graph.GraphRequest;
import ui.GraphControlContainer;

public class CustomGraphContainerController extends GCController {

public function CustomGraphContainerController
(a_graphControlContainer:GraphControlContainer)

{
super(a_graphControlContainer) ;
_requestor = new HTTPRequestor();
addEventListenersToRequestor() ;
_requestor.request(new GraphRequest("your_user_id"));

}

}

}
Replace your_user_id with your own User ID, naturally.

[831

http://http.HTTPRequestor

Let Mein!

This will give you the same basic info as shown in the next screenshot:

Q Adobe Flash Player 10 Ë]
File View Control Help

Zoom Out Reset View

Michael James UJ lllnms

type: user
first .name: Michael
name' Michael Jom«s LLSIIiarris
locale: en.06
metadata: [object object]
gender mrfe
last-name: William«

3

Can ie;tions Hi Je

statuses

m I thon

Teed
tagged

Wondering where the Visualizer loads the profile picture from? It's not a
property of the Graph Object, after all.

Earlier in the chapter, I mentioned that we could access anyone's profile
picture as part of their basic information, even without an access token. A
50 x 50 pixel version is always available at https : //graph. f acebook.
com/«your_user_id»/picture.

Try clicking on the friends link in the list. You'll get an empty Renderer.

We need to add the access token. The simplest way to do this is to pass it as part of
the URLVariables object when the HTTPRequestor loads a Graph URL. So, open
HTTPRequestor. as and add the access token as a property of the URLVariables object:

public function request(a_request:GraphRequest):void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();

[841

Chapter 2

var variables:URLVariables = new URLVariables();

//We construct a URL from the parameters of the GraphRequest
urlRequest.url = "https://graph.facebook.com/" + a_request.objectID;
if (a_request.connectionID) {
urlRequest.url += "/" + a_request.connectionID;

}

variables.metadata = 1;
variables.access_token = "123675230995389%7C2.hX2Png6g2LUuczfd4tLP

bQ .36 00.1276960311-169573433058884%7C8BAAidDtlt8fulZHA3bC3YxcCwM."
urlRequest.data = variables;

//this is used to figure out which GraphRequest created the loader
later
_requests[loader] = a_request;

loader.addEventListener(Event.COMPLETE, onGraphDataLoadComplete);
loader.addEventListener(IOErrorEvent.I0_ERR0R, onlOError);
loader.load(urlRequest);

}
Test the application; if it doesn't load any Renderers, your access token might have expired.
In this case, the Graph API will return this (when loaded in a browser):

{
"error": {

"type": "OAut hExcept i on",
"message": "Error processing access token."

}
}

and an I/O Error will be passed to your application. We can react to these errors by means of
an IOErrorEvent listener, added to the URLRequest object; instructions for this are in the
What Just happened? section of Chapter 2, Time for Action: Creating an HTTP Requestor.

So, if you do get an I/O Error, then generate a new access token in your browser, like we've
been doing. Load https://graph.facebook.com/oauth/authorize?client_
id=«your_application_id»&redirect_uri=http://google.com&type=user_
agent in your browser, extract the access token from the parameters of the URL that gets
loaded, and paste it into your code.

[851

https://graph.facebook.com/
https://graph.facebook.com/oauth/authorize?client_

Let Mein!

This time, when you test the application, you should see the next screenshot:

• Adobe Flash Player 10 1 1-1 I 151 h * "

File View Control Help

Zoom In I Zoom Out I Reset View

Michael James Williams •

R
-name hfchoel James UJBans
-

id
metadata : [object abject]

uerified:true

f i rst-name r*ct»ei
about: Twitter: GDMIohaelJW

GPdated.t ime 2010-06-16T20 :38 IOI+OOOO

Connections | Hide

teleuision -

groups

books

mouies •1

Great! We can see new fields in the list, like verified and about.

Try clicking the friends connection in the list again:

I Adobe Flash Player 10 • I @ \m&m\
File View Control Help

frstjname M«*
last JM me.
metadata i»ct Otytcr]
about rm b it O m

laif.name .Qr*i
locale HI.GC
updqtfld.lirhi; 2ÖIÖ-(H-20r7 41tt«MM
firit.iwine: L+JR»WT.

LJ>;s<IJ EHicrpl;

Irsl-name: L̂ IĤ
Oil-nflmt Eiknmft
n»tadata fejrn]
jptfOtexJ-time: 2Cr0-"0-2Sr7:31:23+flCCC

[861

Chapter 2

It works just as we'd expect. (Remember, HTTPRequestor is passing the access token as a
parameter to all Graph URLs requested.)

Take a look at what's loaded when we request the user profile:

https://graph.facebook.com/your_user_id?access_token=«your_access_
token»&metadata=l

{

"id": "169573433058884",
"name": "Michael James Williams",
"first_name": "Michael",
"mi ddle_name": "Jame s",
"last_name": "Williams",
"link": "http://www.facebook.com/«redacted»",
"about": "Twitter: @MichaelJW",
"gender": "male",
"timezone": 1,
"locale": "en_GB",
"verified": true,
"updat ed_t ime": "2010-06-16T20:38:01 + 0000",
"metadata": {

"connections": {
"home": "https://graph.facebook.com/«redacted»/
home?access_token=«your_access_token»",

"feed": "https://graph.facebook.com/«redacted»/
feed?access_token=«your_access_token»",

"friends": "https://graph.facebook.com/«redacted»/
friends?access_token=«your_access_token»",
«...some datacut out here, for length...»

"type": "user"
}

Notice that the Graph URLs in the connections list already have the access_token
parameter filled in. The Visualizer's code doesn't use these Graph URLs - it constructs
them using the form https://graph.facebook.com/«id_of_object»/«name_of_
connection» - but this knowledge may come in useful for your own projects.

As you can see from the Visualizer, the friends connection Graph List only includes very
basic information: the users' IDs and names. However, much more information is loaded in
the full Graph Objects of your friends - though the exact amount depends on your friends'
privacy settings.

[871

https://graph.facebook.com/your_user_id?access_token=%c2%abyour_access_
http://www.facebook.com/%c2%abredacted%c2%bb
https://graph.facebook.com/%c2%abredacted%c2%bb/
https://graph.facebook.com/%c2%abredacted%c2%bb/
https://graph.facebook.com/%c2%abredacted%c2%bb/
https://graph.facebook.com/%c2%abid_of_object%c2%bb/%c2%abname_of_

Let Mein!

To see how much information your friends can access about you through applications, log
in to the Facebook website, click on Account | Privacy Settings, select Edit your settings for
using applications, games and websites, and view the settings for Information accessible
through your friends:

In fo accessible through your friends

Use the settings below to control which of your information is available to applications, games and websites
when your friends use them. The more info you share, the more social the experience.

• Bio

[r] B i r t h d a y

]] F a m i l y a n d re lat ionsh ips

I n t e r e s t e d in a n d looking for

Rel ig ious and pol it ical v i e w s

\J\ My w e b s i t e

J j I f I ' m on l ine

M y s t a t u s u p d a t e s

g My p h o t o s

My v i d e o s

• My l inks

]] M y n o t e s

P h o t o s a n d v i d e o s I ' m t a g g e d i n

H o m e t o w n

g C u r r e n t locat ion

Q Educat ion a n d w o r k

A c t i v i t i e s , i n t e r e s t s , t h i n g s I l ike

[7] P l a c e s I c h e c k in to

Your name, profile picture, gender, networks and user ID (along with any other information you've set to
everyone) is available to friends' applications unless you turn off platform applications and websites.

S a v e C h a n g e s Cancel

That's cheating!
Okay, fine, generating an access token in the browser and then pasting it directly into the
source code is not a great way of handling authentication. We need to obtain an access
token in our application itself.

Time for action - authenticating through the application
When authenticating in the browser, we visit https : //graph, facebook. com/oauth/
authorize?client_id=«your_application_id»&redirect_uri=http://google.
com&type=user_agent, so let's start by loading that URL in our code.

Start by creating a new function, attemptToAuthenticate () , in HTTPRequestor. as:

public function attemptToAuthenticate():void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();

[881

http://google

Chapter 3

var variables:URLVariables = new URLVariables();

urlRequest.url = "https://graph.facebook.com/oauth/authorize";
variables.client_id = "«your_application_id»";
variables.type = "user_agent";
variables.redirect_uri = "http://google.com";
urlRequest.data = variables;

loader.addEventLi stener(Event.COMPLETE, onAuthenticationComplete) ;
loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);
loader.load(urlRequest) ;

}
Make sure that you replace «your_application_id» with your actual application ID.

We're using the same IO ERROR handler function as when we load a Graph object, but we
need a new function, onAuthenticationComplete () , for when the loading has finished;
add it to HTTPRequestor. as:

private function onAuthenticationComplete(a_event:Event):void {
trace("Authentication complete");
var loader:URLLoader = URLLoader(a_event.target) ;
trace(loader.data) ;

}
Nothing complicated there; it will trace whatever gets sent back.

In CustomGraphContainerController. as, let's change the constructor function so that
it kicks this authentication off instead of loading a user profile:

public function CustomGraphContainerController(a_graphControlContainer
:GraphControlContainer) {
super(a_graphControlContainer) ;
_requestor = new HTTPRequestor();
addEventListenersToRequestor() ;
_requestor.attemptToAuthenticate();
//_requestor.request(new GraphRequest("«your_user_id»"));

}
Before this can work, we need to add the function to the iRequestor interface.
Modify \src\graph\apis\base\IRequestor . as to:

package graph.apis.base {
import flash.events.IEventDispatcher;

[891

https://graph.facebook.com/oauth/authorize
http://google.com

Let Me In!

import graph.GraphRequest;

public interface IRequestor extends IEventDispatcher {
function request(a_request:GraphRequest):void;
function attemptToAuthenticate():void;

}

}
Test it. What gets traced? A lot of HTML, which (when pasted into a blank .html file and
opened in a browser) looks like this:

f Facebook login

Log in to use your Facebook account with MichaelJWs Awesome Test App.

Email address:

Password:

Forgotten your password?

Sign up for Facebook Cancel

y If you get an error, or no data returned at all, load the URL in your browser
to see what error message is returned. Make sure that all the properties
of your URLVariables object are set correctly.

What just happened?
Oh, right, we need to log in first. But here's a problem: since we're loading the URL inside
Flash Player, rather than in a browser, we don't have access to the browser cookies, so
Facebook can't remember who we are and directs us to the login page. Of course, since
we're not in a browser, we can't actually see the page!

We could write code to create a Flash login form, and post the user's e-mail address and
password to the real Facebook login form, but why would the user trust our application not
to hijack their data?

[901

Chapter 3

A different approach
There are a few ways around this, depending on whether we're using AIR or Flash Player. In
this chapter, we'll use the simplest method: embedding the SWF in a web page and using
JavaScript to open the login page and pass the access token back to Flash Player.

Time for action - authenticating via JavaScript
Here's what is going to happen:

1. We'll embed our application's SWF in a web page, and load the page in a browser.

2. The application will call a JavaScript function inside the web page, telling it to load
the "authorize" URL in a new browser window.

3. The new window may ask us to log in; once we're authenticated, it'll redirect to the
Redirect URI page, just as when we used it earlier.

4. This time, however, we'll have changed the Redirect URI page to one that we control
(rather than using the Google home page). It will obtain the access token and pass it
back to a JavaScript function in the page containing our application's SWF.

5. That JavaScript function will pass the access token to an AS3 function in our
application, which will then be able to use it everywhere.

For this to work, the web page that Facebook redirects us to (in Step 4, containing the SWF)
needs to be online. That means we need to have a web host. See Chapter 1 for details on
setting one up.

Publish your project for the web, so that you end up with a web page containing the
Visualizer SWF - again, the method for doing this is outlined in Chapter 1 - and upload it to
your host. Let's suppose that the web page is called index. html, and that you uploaded all
the files to http: //host. com/visualizer/.

Load http: //host. com/visualizer/index. html in your browser. You'll see, well,
nothing much, because the application is still set to try to authenticate rather than loading
any data, and it's failing at that. But if you look in the top-left-hand side corner, you should
see the familiar Ul controls: Zoom In, Zoom Out, and Reset View. (If you see "Movie Not
Loaded", check that your HTML page is set to load the correct SWF, and that you uploaded
all of the files to the web host, rather than just index. html.)

Let Mein!

To open a new window containing the Facebook login page, we need to run this JavaScript
code from inside index, html:

window.open('https://graph.facebook.com/oauth/authorize?client_
id=«your_application_id»&redirect_uri=http://google.com&type=user_
agent', '«window_name»', 'height=370,width=670');

You can probably guess what the code does, as JavaScript syntax is very similar to
ActionScript; it loads a pop-up window, with the height, width, and URL specified. The
«window_name» parameter is a value we can use to refer to the window later.

We could put this code inside the HTML of the page. However, rather than risk messing
up the SWF embedding code (and to make our SWF a little more flexible), we'll use
Externallnterface to inject it into the page from our SWF instead.

Open HTTPRequestor. as and import the Externallnterface class:

import flash.external.Externallnterface;

Now, remove all the code we put in attemptToAuthenticate () earlier, and replace it
with an Externallnterface call:

public function attemptToAuthenticate():void

Externallnterface.call("window.open",

"https://graph.facebook.com/oauth/authorize?client_id=«your_

application_id»&type=user_agent&redirect_uri=http://google.com"

"facebookLoginWindow",

"height=370, width=600");

This will call the JavaScript function from above, passing it the three arguments needed.
Note that I've given the pop-up window a name of f acebookLoginWindow in case
we need to refer to it in code later.

Compile your SWF (avoid testing it in the standalone Flash Player, as it won't be able
to access Externallnterface outside of a browser) and upload it to your web host,
overwriting the previous one. Then, refresh index, html in your browser.

The flash, external. Externallnterface class allows
ActionScript code within an SWF to communicate with JavaScript
code within an HTML page containing that SWF. This means that the
SWF can call JavaScript methods, and vice-versa.

[921

https://graph.facebook.com/oauth/authorize?client_
https://graph.facebook.com/oauth/authorize?client_id=%c2%abyour_
http://google.com

Chapter 2

The pop-up window will probably be blocked. To prevent you from being able
to load a million pop-up windows automatically, pop ups opened by a call to
window. open () are blocked by the browser, unless the call comes from
within the handler of a MOUSE_CLICK event.

Feel free to add a "log in" button to the application and move the contents of
the attemptToAuthenticate () function to the buttons click handler
function; I'm just going to click on Allow pop ups in my browser.

Once the pop up is working, you'll either see the Facebook login page or the Google home
page, depending on whether you're currently logged in to Facebook. To make sure you can
see the login page, log out of Facebook, or load index. html in Private browsing mode.
Eventually, you'll see the next screenshot:

^ Log in I Facebook - Google Chrome I 1=, I [g]

http ://www.f a cebook. com/I o g i n. p h p?a pi_key=

f Facebook login

Log in to use your Facebook account with MichaelJW's Awesome Test App.

Email address:

Password:

Forgotten your password?

Sign up for Facebook

&skip_ap¡Jog¡n=lE¿d¡jpl I

Cancel

Creating a callbackweb page
Once you log in, you'll be redirected to Google. However, we need the page that the user is
redirected to - the callback webpage - to be one that we control, so that we can put some
JavaScript inside it to grab the access token and pass it back to our application.

Create a new HTML page, callback. html, and enter the following code:

<html>
<head>

<script type="text/javascript">
< ! --

window.opener.setAccessToken(window.location.hash);
/ / - - >

[931

http://www.f

Let Mein!

</script >
</head>
<body>
<h2>Close this window</h2>
<p>The access token has been passed back to index.html.</p>
</body>
</html>

You may later want this window to close automatically once it's done its job. This is simple to
do: just add another line to the JavaScript as shown in the following code:

<script type="text/javascript">
< ! --
window.opener.setAccessToken(window.location.hash);
self.close();

//-->
</script>

I've highlighted the most important line; this finds the window that opened the pop up, and
calls a JavaScript function named setAccessToken () inside that window's page, passing it
the "hash" of the pop up's URL (everything after the # character). Remember, the pop up's
URL will be :

http://www.google.com/#access_token=12 36 7523 0 9 953 8 9%7C2._X2CYJw2h7tOH
9T9i7tkCg .3 6 00.1277610200-169573433058884%7Cy3fkK9oobNvC6DSSFChUVFe
JrMO., so the hash will contain the access token.

We need to write that setAccessToken () function - but first, let's make this the official
callback webpage. Upload callback. html to the same directory as index, html on your
web host, then go to the Facebook Developers page and edit your application's settings.

In the Web Site tab, enter the base domain name of your host into the Site URL box. For
instance, if your callback.html page is at http: //host, com/visualizer/callback.
html, enter http: //host. com/.

Now, in HTTPRequestor. as, in your attemptToAuthenticate () function, change the
redirect_uri parameter of the URL to point to callback. html:

public function attemptToAuthenticate():void {
Externallnterface.call("window.open",

"https://graph.facebook.com/oauth/authorize?
client_id=16 537 3 9 50152 944&type=user_agent&redirect_uri=
http://host.com/visualizer/callback.html"

"facebookLoginWindow",
"height = 3 70, width=600");

}

[941

http://www.google.com/%23access_token=12
https://graph.facebook.com/oauth/authorize
http://host.com/visualizer/callback.html

Chapter 2

Recompile your application, and upload it to your web host, overwriting the old version.
Refresh index. html in your browser. You should see the pop up appear, and (once you've
logged in) it will load callback. html:

© httpi//m ittiaelswebhost.com/visualizer/ca 11 back, html$access_to ken=165 573950152944%... L ^ J j L f e ^ l

o rnichaelswebhost.com/visualizer/callback.htrnl#access_token=165373950152944 %7C2.¡5rEb7_k50cfcdKrnVA

Close this window
The access token has been passed back to index.html.

It's telling a lie at the moment, though. The access token hasn't been passed back, because
there's no setAccessToken () function to pass it back to!

Receiuing the access token
Using Externallnterface, we can allow JavaScript inside index, html to call an
ActionScript function inside our SWF.

1. Let's create an ActionScript function that will take the hash value and extract the
access token from it.

2. Add this new function to HTTPRequestor. as:
private function setAccessToken(a_hashValue:String):void {

var hashParams:Array = a_hashValue.substr(1).split("&");
var hashKeyAndValue:Array;

for (var i:int = 0; i < hashParams.length; i++) {
hashKeyAndValue = (hashParams[i] as String).split("=");
if (hashKeyAndValue[0] == "access_token") {

this.accessToken = hashKeyAndValue[1];
break;

}
}
this.request(new GraphRequest("me"));

}

[951

Let Mein!

3. First, this function takes the hash value (whose format we already know) from the
callback URL and removes the first character (the # symbol).

4. Next, it splits the hash by the ampersands (in case there are any; in the past,
Facebook has supplied an expires in parameter as part of the hash) to separate
the parameters as "key=value" strings.

5. Then, it splits each of those by the equals signs to separate the keys from the values.

6. Once it finds a key called access token, it takes the corresponding value as
the token.

Finally, it attempts to load the logged-in user's Profile page. That code refers to this .
accessToken, but we haven't declared such a variable yet. Let's make it public, so that
we can retrieve it from outside the class if we need it elsewhere. Add the following line to
HTTPRequestor.as:

public var accessToken:String = "";

If an access token has been set, we'll naturally want to use it for all Graph requests, so
modify HTTPRequestor. request () as follows:

public function request(a_request:GraphRequest):void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables();

//We construct a URL from the parameters of the GraphRequest
urlRequest.url = "https://graph.facebook.com/" + a_request.objectID;
if (a_request.connectionID) {
urlRequest.url += "/" + a_request.connectionID;

}
variables.metadata = 1;
if (accessToken != "") {

variables.access_token = accessToken;
}
urlRequest.data = variables;

//this is used to figure out which GraphRequest created the loader
//later
_requests[loader] = a_request;

loader.addEventListener(Event.COMPLETE, onGraphDataLoadComplete);
loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);
loader.load(urlRequest);

}

[961

https://graph.facebook.com/

Chapter 2

Before we can test this, we need to expose the setAccessToken () function to the
JavaScript in index, html. We can do this with Externallnterface; add a new line to the
HTTPRequestor () constructor function:

public function HTTPRequestor(target:IEventDispatcher = null) {
//this is needed because the class extends EventDispatcher
super(target);
Externallnterface.addCallback("setAccessToken", setAccessToken);

}
This will allow any JavaScript in index, html to call «visualizer» . setAccessToken (),
where «visualizer» is JavaScript's object name for our SWF (as defined by SWFObject).

However, callback. html is going to attempt to call a function named
setAccessToken () inside index, html - not inside the SWF!

That's not a problem, though; we'll just create such a JavaScript function in index. html
and make it call setAccessToken () in our SWF. As before, we'll generate our JavaScript
inside our ActionScript, and use Externallnterface to put it in the web page.

This is the JavaScript we need the page to call:

window.setAccessToken = function(hashValue){
var visualizer = document.getElementByld('«id_of_embedded_swf»');
visuali zer.setAccessToken(hashValue);

}
Pretty simple. It creates a new JavaScript function called setAccessToken () inside that
window, which finds the SWF inside the page and calls the SWF's setAccessToken ()
function, passing it whatever value the JavaScript function was passed.

You might be wondering what the ID of our embedded SWF is; don't worry, it's quite obvious
from the source code of index. html. Open that HTML file in a text editor and look for the
following lines in the code:

var attributes = {
id:"Visualizer"

};

In this case, the SWF's ID is "visualizer". So, replace «id_of_embedded_swf» with
this value.

[971

Let Mein!

Now, add the following code to your HTTPRequestor () constructor function:

public function HTTPRequestor(target:IEventDispatcher = null)

//this is needed because the class extends EventDispatcher
super(target);
Externallnterface.addCallback("setAccessToken", setAccessToken);

Ext ernannter face. call (" function () { "
+ "window.setAccessToken = function(hashValue){"
+ "var visualizer = document.getElementByld(1Visualizer1);"
+ "visualizer.setAccessToken(hashValue);"
+ " } "

+ " } ") ;

}
The highlighted code creates and calls an anonymous function which contains the actual
function we want to call. It's a bit messy, but it works.

Recompile your SWF and upload it to your host. Refresh index. html. The pop up will
appear, may prompt you to log in, and will redirect to the Close this window page. Shortly
after that we will see the following screenshot:

~ [M] Visualizer * \ G
^ C O michaelswebhQst.com/visualizer/index,htrnl

Zoom In I Zoom Out I Reset View Reset View I III:MNI-I .lurrnLUIIIIami •

T7 lest.name UJIIIIamf
firit.ncwne r-vh«i
l o c a l » : en .SB

gander: mnie
id
updated, time: 20io-06-i6720 3eo»»oooo
link:

I lull 1
toloulslon
groups

id

Success!

[981

Chapter 2

What just happened?
You just added true Facebook authentication to your Flash application.

The user logs in on Facebook itself, rather than through your application, minimizing the
security risk. Facebook passes the access token back to a callback page that you wrote, which
in turn passes it back through another web page to your SWF, which is now able to use it
when requesting Graph API data.

What about users who hauen't used the application before?
We haven't fully tested the authentication yet, since we had already granted the application
permission to access our data earlier on, when we were experimenting with the browser.

Fortunately it's very easy to undo all that and pretend we've never seen the application
before. Log in to Facebook and click on Account | Application Settings. Find your application
in the list, and click on the X button as shown in the next screenshot:

jf*-,, M a r k e t p l a c e Edit settings Application Profile X

M i c h a e U W ' s A w e s o m e T e s t A p p Edit settings Application Profile %
• H o t e s Edit settings Application Profile

V J

Facebook will ask you to confirm this decision. (The application will remain on your
Developers Page, even though it will be removed from your Applications Page.)

R e m o v e M i c h a e l J W ' s A w e s o m e T e s t A p p ?

If you remove MichaelJW's Awesome Test App, it will no longer have access to your
data and will be removed from your profile, bookmarks and Applications Page.

i f f l H i C a n c e l

' ^

[991

Let Mein!

Refresh index. html. This time, the pop up will ask for permission to access your information:

P Facebook: | Request for permission - Google Chrome i = i @ M a i

http5://wM)w,facebook,com/connect/uiserver,php?client_id= 1 J f f i Dtßitype=user_ agent&redirec Q

f Request for permission

MichaeD W's Awesome Tes t App is requesting permission to do the following:

^ j i A c c e s s m y b a s i c I n f o r m a t i o n
4 Includes name, profile picture, gender, networksP user

IDP list of friends and any other information I've shared
with everyone.

MichaeUW's
Awesome Tes t App

Report application

Logged in as Michael James Williams (Wot you?) Logged in as Michael James Williams (Wot you?) 1 Allow D o n ' t a l low Logged in as Michael James Williams (Wot you?)

—

Click on Allow, and the pop up is redirected to callback. html, which passes the access
token to the visualizer, just as before.

Haue a go hero - dealing with the undecided
What if your user clicks on the Don't allow dialog box?

At the moment, the application doesn't do anything without an access token; it just
sits patiently and waits. If, when the pop up window appears, the user doesn't click
on Allow - or if the user doesn't see the pop up , perhaps because it's blocked - the
application won't fail gracefully. It will just sit there and wait.

Add some features to your application to make it deal with this kind of situation. Maybe it
could pop up a message after a few seconds, saying "You need to log in to Facebook and
approve this application in order to use it." Or perhaps you could load a different Graph
object to start with, and only request a login when the user tries to access something they
need an access token for.

Now that your application's online, you can let other people see it by directing them to
index. html. Get some friends to test it out.

[1001

Chapter 2

Extended permissions
We don't have access to everything yet, though. In your browser, try loading
https : / /graph, facebook. com/me/inbox (with an access token passed as a
parameter). You'll get the following message:

{
"error": {

"type": "Exception",
"message": "(#612) mailbox requires the read_mailbox extended
permission."

}
}

Much like how you, as a user, can restrict other users from seeing certain parts of your
Facebook profile, you can also restrict certain apps from accessing certain information via
the Graph API.

In this case, we're trying to access my inbox, as an application, and are being told we don't
have permission. But how do we get permission?

Time for action - obtaining extended permissions
It's actually really easy to request permission to do something beyond the basic: when calling
the authorize URL, pass it an extra parameter named scope.

Set the value of the scope parameter to the name of the extended permission you want to
request. For example, to request access to the user's inbox, use this URL:

https://graph.facebook.com/oauth/authorize?client_id=«your_
application_id»&type=user_agent&redirect_uri=«your_callback_
url»&scope=read_mailbox

Try this in the browser, and you'll get this dialog:

f R e q u e s t f o r permiss ion

Michael) W's Awesome Test App is requesting permission to do the following:

A c c e s s m e s s a g e s in my inbox

* j

Michael] W's
Awesorn e Test App

Report applcstbn

Logged in as Michael James Williams (Not you?) J j Don' t a l low

[1011

https://graph.facebook.com/oauth/authorize?client_id=%c2%abyour_

Let Mein!

What just happened?
Once the user clicks on Allow, Facebook will remember that decision, and your application
won't have to ask for this permission again - just like when the user authorized the
application to see their basic information for the first time.

You can request more than one extended permission at a time; just separate them
with commas:

https://graph.facebook.com/oauth/authorize?client_id=«your_
application_id»&type=user_agent&redirect_uri=«your_callback_
url»&scope=read_mailbox,user_photos,user_interests

Extended permissions aren't just about you, though. Allowing the user_interests
extended permission will allow the application to access the user's list of interests (which
are, of course, represented as a list of Graph objects) - but there's also a f riends_
interests extended permission, which allows the application to access the lists of interests
of all the user's friends.

Actually, most of the extended permissions have a user-only version and a friends version;
check out the official documentation for a list of all of them: http: //developers .
facebook.com/docs/authentication/permissions.

Time for action - requesting extended permissions
To make your application always request the user_interests extended permission, we
merely have to modify HTTPRequestor. attemptToAuthenticate () to:

public function attemptToAuthenticate (): void as shown in the following code:
{

Externallnterface.call("window.open",
"https://graph.facebook.com/oauth/authorize?
client_id=«your_application_id»&type=user_agent&
redirect_uri=«your_callback_url»"

+ "&scope=user_interests",
"facebookLoginWindow",
"height = 3 70, width=600");

}
That'll work fine; it'll give you the pop-up window asking you if it's okay for the application to
access your profile information.

If that's all you need - and all you'll ever need - then you could leave it at that. But what if
you want to make this a little more flexible?

[1021

https://graph.facebook.com/oauth/authorize?client_id=%c2%abyour_
https://graph.facebook.com/oauth/authorize

Chapter 2

First, let's allow the attemptToAuthenticate () function to take an arbitrary number
of extended permissions as arguments, and append them to the scope parameter as a
comma-separated list:

public function attemptToAuthenticate(...permissions):void

Externallnterface.call("window.open",
"https://graph.facebook.com/oauth/authorize?client_

id=16 53 73 95 0152 94 4&type=user_agent&redirect_uri=http://gamedev.
michaelj ameswilliams.com/scrap/vi sualizer/callback.html"

+ scope,
"facebookLoginWindow" ,
"height = 3 70, width=600");

We have to change the signature of the method in iRequestor. as to match the changes
we've made to the function:

package graph.apis.base

var scope:String =
if (permissions.length > 0)
{

Using permissions as the sole argument for the function means that we
can pass it as many arguments as we like, and they'll form an array called
permissions. (This is called the . . . (rest) parameter, in case you want
to look it up.)

We can then use the Array. j oin () method to combine all the strings in
this array into a single string, in the form of a comma-separated list.

import flash.events.IEventDispatcher;
import graph.GraphRequest;

public interface IRequestor extends IEventDispatcher

function request(a_request:GraphRequest):void;
function attemptToAuthenticate(...permissions):void;

[1031

https://graph.facebook.com/oauth/authorize?client_
http://gamedev

Let Me In!

Now we just need to pass the extended permissions that we desire to this method. In
CustomGraphContainerController. as, modify the constructor function:

public function CustomGraphContainerController(a_graphControlContainer
:GraphControlContainer) {
super(a_graphControlContainer) ;
_requestor = new HTTPRequestor();
addEventListenersToRequestor() ;
_requestor.attemptToAuthenticate("friends_interests",

"read_mailbox");
}

Compile the SWF and upload it to your host. When you test it in your browser, it will ask you
to grant both permissions:

0 Facebook | Request for permission - Google Chrome I ̂ I lai p a - J

O www.facebüük.com/ccnnect''uiserver.php?display=popup&neít=https://graphfacebook.com/oauth/autho

f Request for permission

MichaeLJW's Visualizer is requesting permission to do the following:

A c c e s s m e s s a g e s I n m y I n b o x

¿ a A c c e s s m y f r i e n d s ' i n f o r m a t i o n
Interests

u
Report Eppii iEtbn

Logged in as Michael James Williams (Not you?)

MichaeLJW's
Visualizer

D o n ' t a l l o w

The Visualizer project includes a class, ExtendedPermissions . as, designed to make
this a little easier. It contains a public static const for every one of the extended
permissions, each with a short description of what it does in a comment.

[1041

https://graphfacebook.com/oauth/autho

Chapter 2

This means that, if you're using a code editor that supports auto completion, you
can speed up your code to request extended permissions. First, import the class in
CustomGraphContainerController.as:

import graph.apis.base.ExtendedPermissions;

Then, type ExtendedPermissions, followed by a dot, and the list will appear:

super'¡a grapinjcmtronjantamerJ i
requeatcr = new HIIF̂ eqoieatci: {) ;
addEventLiatenezraToBequeatoE :) ,
requester.attemptlcAuthenticate (I^tendedFermiaaicna_} ;

public static const READ_STREAM : String = *read_strearnT ...
Provides read aocess to all the posts in tine user's News Feed,
Also allows application to perform searches against the user's News Feed.

^ READ_FRIENDLISTS
.J} READJNSIGHTS
.J} READ_MAILBQX
.J} READ_REQUESTS

^ READ_FRIENDLISTS
.J} READJNSIGHTS
.J} READ_MAILBQX
.J} READ_REQUESTS
B READ_5TREAM |

You could then rewrite the previous code as:

public function CustomGraphContainerController(a_graphControlContainer
:GraphControlContainer) {
super(a_graphControlContainer) ;
_requestor = new HTTPRequestor();
addEventListenersToRequestor() ;
_requestor.attemptToAuthenticate

(ExtendedPermissions.FRIENDS_INTERESTS,
ExtendedPermissions.READ_MAILBOX);

}

Haue a go hero - using a permanent access token
One particularly useful extended permission to ask for is of f line access. If the user
grants this to your application, then their access token will never expire - meaning they
don't have to go through the whole routine of logging in to Facebook every time they use
your application.

Make your application request this permission, and then save the access token so that it
can be retrieved later on, even after the user has closed and re-opened your application.
A SharedObj ect is ideal for this - see the Adobe documentation on flash, net.
SharedObj ect.

[1051

Let Mein!

I want it all, and I want it now
It's tempting to copy and paste a comma-separated list of all the possible extended
permissions into the scope parameter, and ask for all of them the very first time the user
tries your application. After all, then you know there's no limit to what your application can
do, right?

Trouble is, the user knows this as well. Asking them to allow your application to access their
inbox, friend lists, wall posts, photos, and everything else they've ever put on Facebook, as
soon as they "meet" your application, will scare off all but the most security-lax users.

Make sure the user can do plenty with the application without signing over their entire
digital life. Your application can ask for extra permissions at any time, even if the user has
already authenticated and granted some other permissions; you don't have to decide which
ones it's going to need in advance and ask for them all at once. Let them use it first, and
build up a sense of trust (or at least a sense of wanting to use the features that require
extended permissions).

Haue a go hero - dealing with extended permissions
Following on from the last Have A Go Hero, make sure your application can deal with not
having the required permissions gracefully. If the user tries to access a connection that they
won't allow the associated extended permission for, let them know what the problem is.

If you're up for a challenge, try reading the error message to see which extended permission
is required, and then request it automatically!

[j y Unfortunately it's not possible to use the Graph API to request a list of the T

x extended permissions currently granted to the user, but in Chapter 7 we I
will look at how to do this via another means. I

Using the Adobe ActionScript 3 SDK for Facebook
platform
So far, we've been creating our own methods for accessing the graph. Now let's take a look
at how to use Adobe's official AS3 Facebook SDK.

[1061

Chapter 3

Time for action -implementing the SDK
The SDK source files have already been downloaded and copied into the Visualizer project
directory; find them in \src\com\facebook\. (For information on downloading the latest
version of the SDK and including it in your own project, refer to Chapter 1.)

We're going to build another Requestor, but this time it'll be powered by the SDK, rather
than by our own URLRequest. Start by creating a new folder in \src\apis\ called \
sdk\. Then, create a new file inside this folder called SDKRequestor. as. Make it extend
EventDispatcher and implement IRequestor, just like HTTPRequestor.

Here's the basic code for that class:

package graph.apis.sdk {
import flash.events.EventDispatcher;
import flash.events.IEventDispatcher;
import graph.apis.base.IRequestor;
import graph.GraphRequest;

public class SDKRequestor extends EventDispatcher
implements IRequestor

{

public function SDKRequestor(target:IEventDispatcher = null)

super(target);

public function request(a_request:GraphRequest):void

public function attemptToAuthenticate(...permissions):void

}

}

[1071

Let Mein!

Next, import the Facebook class. This is the API for web-based applications:

import com.facebook.graph.Facebook;

We need to initialize this class before we can do anything with it. To do so, we must pass it
our application's ID and a callback function. Do this in the SDKRequestor () constructor:

public function SDKRequestor(target:IEventDispatcher = null) {
super(target);

Facebook.init("«your_application_id»", initComplete);
}

Next we must create this initComplete () function, which will be called once the
initialization process finishes. Add this to SDKRequestor. as as shown in the
following code:

private function initComplete(success:Object, fail:Object):void {

}
The function needs those two parameters - success and fail - or the code won't compile.
If there were no problems with the initialization, then success will be an object of type
com. Facebook. graph. data. FacebookSession; otherwise, success will be null, and
fail will contain details. Let's deal with this using the following code:

private function initComplete(success:Object, fail:Object):void {
if (success is FacebookSession)
{

//was a success.
}
else
{

//was a failure. See contents of "fail1 object.
}

}
You must import the FacebookSession too as shown in the following code:

import com.facebook.graph.data.FacebookSession;

[1081

Chapter 2

Let's make it dispatch a COMPLETE event when it's ready, so that we know it's safe to call
other methods:

private function initComplete(success:Object, fail:Object):void {
if (success is FacebookSession) {

dispatchEvent(new Event(Event.COMPLETE))
}
else {

//was a failure. See contents of 'fail' object.
}

}
You must import flash, events . Event for this to work.

Once the API is initialized, we can authenticate the user using the Facebook. login ()
method. The call to this should go in attemptToAuthenticate () :

public function attemptToAuthenticate(...permissions) :void {
Facebook.login(loginComplete) ;

}
This will cause a pop-up window to appear, asking the user to log in and allow our application
to access the user's profile. If no pop-up appears, check that cookies are enabled; it won't
work otherwise.

The loginComplete parameter passed to Facebook. login () is another callback
function, of the same form as initComplete () , which is called once the user has
authenticated. Add this to SDKRequestor. as:

private function loginComplete(success:Object, fail:Object):void {
if (success is FacebookSession) {

//was a success.
}
else {

//was a failure. See contents of 'fail' object.
}

}

[1091

Let Mein!

Assuming all went well, the success object will contain several properties, including the
access token (accessToken) and the user's ID (uid).

When our HTTPRequestor successfully authenticates, it requests the user's profile as a
Graph Object by means of a GraphRequest. Let's do the same here:

private function loginComplete(success:Object, fail:Object):void {
if (success is FacebookSession) {

this.request(new GraphRequest("me"));
}
else {

//was a failure. See contents of 'fail' object.
}

}
Ah, but the request () function is empty at the moment. How can we use the SDK to
request something from the Graph?

We use the Facebook. api () method. This has two mandatory arguments:

• A string containing the name of the Graph Object or connection to request.

• A callback function (you guessed it!).

The format of the string is "/obj ect" or " /obj ect/connect ion" - it's the part that is
tacked on to the end of https : / /graph, facebook. com/ in any Graph URL, minus any
URL parameters. This makes it easy to fill in the request () function:

public function request(a_request:GraphRequest):void {
var graphltem:String = "/" + a_request.objectID;
if (a_request.connectionID)
{

graphItem+= "/" + a_request.connectionID;
}
Facebook.api(graphltem, requestComplete);

}
We've almost finished building our basic SDKRequestor; we just need to create a
requestComplete () function that converts whatever it receives into a GraphOb j ect.

[1101

Chapter 5

The required form of the requestComplete () callback is almost the same as the others, as
shown in the next lines of code:

private function requestComplete(result:Object, fail:Object):void {
if (result != null) {

//was a success.
}
else {

//was a failure. See contents of 'fail' object.
}

}
Add that to SDKRequestor. as. Notice that this time, instead of a success parameter we
have a result parameter (not that this really matters, but it's a more accurate name), and it
is just an Obj ect, rather than an instance of FacebookSession.

In fact, result is in exactly the same form as the decodedJSON object that we created
ourselves in HTTPRequestor. onGraphDataLoadComplete () . This means we can copy
and paste the code we wrote earlier to deal with it - so do so:

private function requestComplete(result:Object, fail:Object):void {
if (result != null) {

var decodedJSON:Object = result;
if (decodedJSON.data)
{

var graphList: GraphList = new GraphList();
var childGraphObj ect:GraphObj ect;
for each (var childObject:Object in decodedJSON.data)
{

childGraphObject = new GraphObject();
for (var childKey:String in childObject)
{

childGraphObject[childKey] = childObject[childKey];
}
graphList.addToList(childGraphObj ect) ;

}

graphList.paging = decodedJSON.paging;

graphList.ownerID = originalRequest.objectID;
[1111

Let Mein!

graphList.connectionType = originalRequest.connectionID;

dispatchEvent(new RequestEvent(RequestEvent.REQUEST_COMPLETED,
graphList));

}
else
{

var graphObject:GraphObject = new GraphObject();
for (var key:String in decodedJSON)
{

graphObject[key] = decodedJSON[key];
}

dispatchEvent(new RequestEvent(RequestEvent.REQUEST_COMPLETED,
graphObject));

}
}
el se {

//was a failure. See contents of 'fail' object.
}

}
You'll also need the following imports:

import graph.GraphList;
import graph.GraphObject;
import events.RequestEvent;

There's a big problem here, though. We refer to originalRequest in the code, but we
have no way of obtaining the original GraphRequest instance!

The solution is to use a coding trick called currying. This allows us to pass extra values to the
callback function at the time that we make the request.

Don't worry if you don't understand how currying works. I'm not
going to explain it here, as it's fairly advanced and not really relevant
to Facebook - the code that uses it is specific to the Visualizer. For an
excellent explanation of currying, see the article by Jackson Dunstan at:
http://jacksondunstan.com/articles/3 3 8.

[1121

http://jacksondunstan.com/articles/3

Chapter 3

Change the request() function to:

public function request(a_request:GraphRequest):void {
var graphltem:String = "/" + a_request.objectID;
if (a_request.connectionID) {
graphltem += "/" + a_request.connectionID;

}
Facebook.api(graphltem, function(result:Object, fail:Object):void {

requestComplete.call(this, result, fail, a_request); });
}

Now, modify the signature of requestComplete () to accept an extra parameter:

private function requestComplete(result:Object, fail:Object, originalR
equest:GraphRequest):void

SDKRequestor is now ready for testing. Switch to CustomGraphContainerController.
as, and change it to:

package controllers {
import flash.events.Event;
import graph.apis.base.ExtendedPermissions;
import graph.apis.http.HTTPRequestor;
import graph.apis.sdk.SDKRequestor;
import graph.GraphRequest;
import ui.GraphControlContainer;

public class CustomGraphContainerController extends GCController {

public function CustomGraphContainerController
(a_graphControlContainer:GraphControlContainer)

{
super(a_graphControlContainer);
_requestor = new SDKRequestor();
addEventListenersToRequestor() ;
//we must wait for the SDK to initialize before we can do
//anything else with it
_requestor.addEventListener(Event.COMPLETE, onSDKInitialize);

}
private function onSDKInitialize(a_event:Event):void {

_requestor.attemptToAuthenticate() ;
}

}
}

[1131

http://http.HTTPRequestor

Let Mein!

All we have to do now is create an HTML page to contain the SWF. We cannot use the
standard index. html page we have been using so far, as the SDK requires certain JavaScript
functions in order to work.

Adobe has provided some wrapper HTML pages to use as containers for our SWFs. One of
the pages, sdkindex. html, is in the \bin\adobesdk\ folder, alongside a JavaScript file
called FBJSBridge. j s. Copy both sdkindex. html and FBJSBridge . j s into your \bin\
directory.

Open sdkindex. html in a text editor, and find the following line:

embedSWF("Visuali zer.swf", "flashContent", "600", "300", "10.0");

Replace Visualizer. swf with the name of your SWF.

Finally, upload sdkindex. html, FBJSBridge . j s and your SWF to your web host
to the same directory as usual, and load http: //host. com/sdkindex. html in
your web browser.

What just happened?
You just added the official Adobe ActionScript 3 SDK for Facebook Platform to your
application as an alternative to the classes that we built earlier in the chapter.

The SDK works in a very similar way to our classes, albeit with a lot more polish; it also uses
URLRequest objects to retrieve data, and decodes the resulting JSON to a native AS3 object.

In order for the SDK to work, it imports two JS files containing JavaScript functions,
which actually power the Facebook login and integration. Those two files are called:
FBJSBridge. j s, which is included in the project; and all. j s, which is loaded from the
Facebook server. As long as your webpage uses SWFObject and imports those JavaScript
files, you should be able to use the SDK.

Haue a go hero - requesting extended permissions with the SDK
The Facebook. login () method takes a second parameter: options, a native AS3
Object. This is used to request extended permissions; simply provide an object with a string
property called perms, which is a comma-separated list of the permissions.

Use this to modify your SDKRequestor. attemptToAuthenticate () method so that
it can take an arbitrary number of extended permissions as parameters and request them
using the Facebook. login () method.

[1141

Chapter 3

Pop Quiz
1. What does "me" do?

a. Returns the authenticated user's ID

b. Stands in as the authenticated user's ID when used in a Graph URL.

c. It represents the ID of a Facebook user called Mike Eddington

2. Why didn't we obtain an access token using AS3 alone?

a. URLRequest objects can't load the Facebook login page

b. It's only possible to obtain a token using JavaScript

c. We wanted to present the user with a genuine Facebook login page, for
trust reasons

3. Why shouldn't you ask for all the extended permissions your application might
possibly need at once?

a. It's likely to scare users away

b. Only five permissions can be granted at any one time

c. This is a violation of the Facebook terms of service

Summary
In this chapter, the key words were security, permissions, and authentication.
We learned about:

• How Facebook restricts us from accessing information we're not supposed to

• How users determine which information other users (and apps) can see

• How apps can request permission to see more information from users

• How users and apps work together to authenticate with Facebook

Key takeaways

• The Graph API will only give certain details about a person if you try to
access a Graph Object without proof of authentication.

• An access token is proof of authorization, and is associated with both a user
and an application.

• Users have two credentials: e-mail address and password.

• Applications have three credentials: application ID (which is like a
username), application secret (which is like a password, and can be
changed), and API key (which is used to access the Graph API).

[1151

The application credentials are passed to Facebook through a Graph URL,
while the user submits their credentials through a standard Facebook
login web page. Facebook does not return the access token in a JSON, but
through a parameter to the application's callback URL.

The Graph URL used to authorize is https : //graph, facebook.
com/oauth/authorize?client_id=«your_application_
id»&redirect_uri = «site_url»&type=user_agent. This redirects
to «callback_url»/#access_token=«access_token», so the
callback page can use JavaScript to extract the access token, and
External Interface to pass it to the SWF.

Access tokens are passed as parameters in Graph URLs like so: https : //
graph.facebook.com/«graph_obj ect» ?access_token=«access_
token».
A 50 x 50 px version of a user's profile picture is always available at
https://graph.facebook.com/«user_id»/picture.
To access certain Graph Objects and Graph Lists, extended permissions
are required. A list of all extended permissions is available here: http: //
developers.facebook.com/docs/authentication/permissions.
To ask the user to grant the application a set of extended permissions, add
them as a comma-separated list in a parameter called scope, passed to the
Graph URL used to authorize, as shown in the following code: https : //
graph.facebook.com/oauth/authorize?client_id=«your_
application_id»&redirect_uri=«site_url»&type=user_
agent&scope=user_interest, friends_interest,offline_
access.

[1161

https://graph.facebook.com/%c2%abuser_id%c2%bb/picture

4
Digging Deeper into the Graph

We've seen how to access both public and private Facebook data from the
surface of the Graph. As long as we only need the most recent items in a list,
we're fine. But what if that's not the case?

In this chapter we shall learn how to:

• Read more than just the most recent 25 posts on a page

• Filter posts by date

• Grab several different Objects at once

And we'll do all of this using the same form of URL-based queries we've been using so far.

Right, let's get on with it.

Getting more results with paging
As we discovered in Chapter 2, there are two types of results we can get back from a Graph
URL: Graph Objects and Graph Lists. (Well, and errors, too.)

How many Graph Objects are in a Graph List, though? Let's find out.

Digging Deeper into the Graph

Time for action - displaying the number of objects in a list
Open your visualizer project. We're going to turn on a hidden option that makes the title
of List Renderer windows contain the number of items in the Graph List.

1. First, though, let's switch back from our SDKRequestor to our HTTPRequestor.
Open CustomGraphControllerContainer. as and change the line that creates
the new Requestor:

public function CustomGraphContainerController(a_graphControlConta
iner:GraphControlContainer) {

super(a_graphControlContainer);
_requestor = new HTTPRequestor();
addEventListenersToRequestor();
//we must wait for the Requestor to initialise before we can do

anything else with it
_requestor.addEventLi stener(Event.COMPLETE,

onRequestorlnitialize); }

We will come back to the SDK Requestor later in the chapter.

2. There's a slight problem: this class is waiting for the Requestor to dispatch a
COMPLETE event, stating that it has finished initializing, but our HTTPRequestor
does not do this. We could remove the event listener, but it'll be easier to modify
the Requestor; open HTTPRequestor. as, and add a new function:

public function initialize():void {
dispatchEvent(new Event(Event.COMPLETE));

}

3. Modify SDKRequestor. as, too, moving the call to Facebook. init () from the
constructor function to a new function, initialize ():
public function SDKRequestor(target:IEventDispatcher = null) {

super(target);

//Facebook.init("165373950152944", initComplete);
}
public function initialize():void
{

Facebook.init("165373950152944", initComplete);
}

[1181

Chapter 5

4. Add the initialize () function to the IRequestor. as interface:

package graph.apis.base {
import flash.events.IEventDispatcher;
import graph.GraphRequest;

public interface IRequestor extends IEventDispatcher {
function request(a_request:GraphRequest):void;
function attemptToAuthenticate(...permissions):void;
function initialize():void;

}

5. Finally, add a call to this new initialize () function to
CustomGraphContainerController. as, in the constructor:

public function CustomGraphContainerController(a_graphControlConta
iner:GraphControlContainer) {

super(a_graphControlContainer);
_requestor = new HTTPRequestor();
addEventListenersToRequestor();
//we must wait for the Requestor to initialise before we can do

anything else with it
_requestor.addEventLi stener(Event.COMPLETE,

onRequestorlnitialize);
_requestor.initialize ();

}

[1191

Digging Deeper into the Graph

6. Compile and test your SWF. Remember that you can load index. html rather than
sdkindex. html, since we've changed which Requestor we're using.

|M| Visuafeer
^ CO michaelswebhQst.com/visua © & a « / • m *
Zoom In | Zopm Put Reset Vieuj |

Mlohatl Jam« William* •

R
about :1wltt«i:®MKh0ilJLJJ J
ria»W rtchow Janxf IHm
ftrsf.nawi Itch«!
gender mad
metadala [object object]
ue rifled live
up dated, lime :aio-a6-iETiO:3B ui+aoOo

Conn*otlons 1 Hldg
Inbox j
Tugged
group*
rttd H

ftnl [List]

rtiKsoge &>t "J »ia KUIS uviMti tii •LUBsnme; http://LULULU.LJQLItube.Q0m/UJiltC:h?U=puSkP3uym
Bk&fent'ii e=you111 .be
cqption -MMJ ycueutw com
link

Pdp Out

Open any connection and notice that the Graph List Renderer's caption displays the
type of the connection and the word [List]. We'll now make it display the number of
Graph Objects in that list.

7. Still in CustomGraphContainerController. as, at the start of the
constructor, set the inherited _showListCounts Boolean property to true:
public function CustomGraphContainerController

(a_graphControlContainer:GraphControlContainer)
{
super(a_graphControlContainer);
this._showListCounts = true;

_requestor = new HTTPRequestor();
addEventListenersToRequestor();
//we must wait for the Requestor to initialise before we can do
//anything else with it
_requestor.addEventLi stener(Event.COMPLETE,

onRequestorInitialize);

_requestor .initializeO ; } "

[1201

http://LULULU.LJQLItube.Q0m/UJiltC:h?U=puSkP3uym

Chapter 5

This changes a setting elsewhere in the project which in turn tells new Graph
List Renderers to display their total count of Graph Objects in the caption of the
Renderer's window. You've no need to understand how this works; it suffices to
say that it uses the length property of the listarray inside the appropriate
GraphLi st instance.

8. Recompile the SWF and load the same connection:

[M] Visualizer

^ C Ornichaelswebhost.com/kfisuai: 0
Zoom In I Zoom Ouï Reset View

® a « / m n *

Mlohiwl Jam« Williams •

F i

gender mal»
about Tujlttii" QMIetunW)
fink
iterified tmr
metadata: [abject abject]
type: user

Cohhtotlohf | Hid*
updati-i
link!
InbbH
f .td

source
bttp;//ujwijj,yoUtube,com/il/eiu6kP3yymEk8nitt oplnij"l
description (Ills guy I: ri gsd on n ultulila

ncticnî. [abject Objectyabject abject]
From [on»«! ot«Ki]

Qui 11

What just happened?
We can now see how many Objects are in the Graph List returned by my profile's feed
connection: 25. But naturally, I've written more than 25 status updates since joining
Facebook. What's going on? A little more exploration shows that 25 seems to be the default
maximum number of items you'll get back when requesting a List. Sometimes you'll get less
than this (even if there are more than 25 objects in the album or feed).

That might be okay for a news feed, where only the most recent entries are relevant, but it's
useless for an album; naturally, you'd like to see all the photos.

How can we get Facebook to give us more Objects?

[1211

Digging Deeper into the Graph

Time for action - requesting more Objects
1. We can ask for a larger number of Objects to be returned in the List by using - you

guessed it - a URL parameter. To ask for 50 items to be returned instead of 25, we
just add this to the URL:

limit=50

2. Let's add this as a default. Modify the request () function in HTTPRequestor. as
to add this extra parameter, like so:

public function request(a_request:GraphRequest):void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables();

//We construct a URL from the parameters of the GraphRequest
urlRequest.url = "https://graph.facebook.com/" +

a_request.obj ectID;
if (a_request.connectionID) {

//remember, this means a connection (and thus a list)
//was requested
urlRequest.url += "/" + a_request.connectionID;
variables.limit = 50;

}

variables.metadata = 1;
if (accessToken != "") {
variables.access_token = accessToken;

}
urlRequest.data = variables;

//this is used to figure out which GraphRequest created the
//loader later
_requests[loader] = a_request;

loader.addEventListener(Event.COMPLETE,
onGraphDataLoadComplete);

loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);
loader.load(urlRequest);

}

[1221

https://graph.facebook.com/

Chapter 5

3. Try loading the connection again:

Zoom In J Zoom Dut | Reset Vieuj

Mleha»l Jam« Williams

middle-name : jam«
ue rified in»
gender male
about; Twitter : ©MichoelJW

first-name: r * i » s i

metadata [abject abject]

type user

reed
(posts

television

statuses

from (obf««! Ofcfoci)
attribution: Faeebook for flhdroid

td .656689761904

message FWwih« 9 to s o> M» office

actions: [object Object].[object Object]

pnuacy [w?ec1019« 1]

Great! It's got the most recent 50 posts. What happens if the connection has
less than 50 items? To find out, try loading Packt Publishing's photo album called
"Books", which (at time of writing) contains 32 photos:

© ¿2

C O michaelswebhost.com/visuali © Q | W | ® 3 EJ # Hl ^
Zoom Out I Reset View

Packt Publishing
" p̂ . . Albums [Usttfai

PACKT f - 7 ^
P U B L I S H I N G

name p<»ticiput*s rounded 2004
user name: Packti

company_oueru
rocused book publish«
;utting-edge books f<
administrators, and

*ackt published its fii

s tatus«

albums

euenls

notes

name e
descrip
update«
from [o
id: 3 0 7 S

count:;
type
create<
link
http://uuu
9Bid=204l

name e«ks
description: Packl Books

up dated-time 2Qia-oa-iaTiB :aa :42+i
from [object Obfeci]

id: 307932939458
count: 32
metadata: [abject Object]

type album

created-time 2010-02-04T12 ;32 ;i7+o
link
http ://UJUJUJ .facebook .com/album .php?aid="

Connections

I l k«

comments

photos

source Mtp //¡phOlO! <* IbC<fc rHI/hpbOIOS-
" n;hi./Vis265.ashl/19239.307964299458.20460

312945B.4527B32.1344419.n .jpg

LJ

[1231

http://uuu

Digging Deeper into the Graph

What just happened?
Here we can see that requesting more Graph Objects than there are in the connection still
results in a valid Graph List; Facebook doesn't reject our request on the basis that we've
asked for too many.

Still, some connections contain far more than 50 Objects - like the number of posts in my
feed, for example. How can we deal with this?

Time for action - requesting more Objects at once
1. Let's increase the limit to 5000, just to be safe. Edit HTTPRequestor. as:

public function request(a_request:GraphRequest):void {
var loader :URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables : URLVariables = new URLVariables() ;
//We construct a URL from the parameters of the GraphRequest
urlRequest.url = "https://graph.facebook.com/" +

a_request.obj ectID;
if (a_request.connectionID) {

//remember, this means a connection (and thus a list)
//was requested
urlRequest.url += "/" + a_request.connectionID;
variables.limit = 5000;

}
variables.metadata = 1;
if (accessToken != "") {
variables.access_token = accessToken;

}
urlRequest.data = variables;
//this is used to figure out which GraphRequest created the
//loader later
_requests[loader] = a_request;

loader.addEventListener(Event.COMPLETE,
onGraphDataLoadComplete);

loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);
loader.load(urlRequest);

}

2. Recompile the project, re-upload the SWF to your host, and try loading your feed.
(If you don't have a huge feed, try loading the official Facebook Page's feed instead;
the ID of that Page is facebook.)

[1241

https://graph.facebook.com/

Chapter 5

What just happened?
One of four things just happened:

1. Your SWF became very slow and eventually crashed

2. No data came through to the SWF

3. The SWF rendered a new List, but it didn't contain 5,000 Objects

4. The SWF rendered a new List of 5,000 Objects

It's hard to predict which result you'll see. Previously, the Graph API couldn't handle a
request for even 500 Objects at once - it would time out and return a completely blank page
(not even an empty JSON or error message).

More recently the situation has improved massively; it seems that Facebook returns as
many Objects as it can in one shot, up to and including the number that you specified as the
limit. If there are any problems, they're more likely to be caused by your code taking too
long to process the data than by Facebook timing out.

This means that, in a lot of practical cases, you can request a large number of Objects in a
List and get everything you need. But this is sloppy. Let's look at an alternative.

Paging
Instead of requesting, say, 250 Objects all at once, we can have the List split into several
pages, with each page containing a smaller number of Objects.

i

25
1 1 26

— 50
51 — — 51

— 75 —

— 76

100

76

100
=

101

125
126

151 151
—

175
176

— — 200 —

201
— — —

201
= —

250
—

250
— 225 250 250

226

250

[1251

Digging Deeper into the Graph

The previous diagram shows an example. The actual Graph List contains 250 pieces of
information - they could be wall posts, photos, whatever. We tell the Graph to split the List
into pages with 25 pieces of information each, leaving us with 10 pages.

That's essentially what the limit=x parameter does; it tells the Graph to split the List into
pages with (at most) X pieces of info, and return the first page to us.

[Note: be careful not to confuse a Facebook Page Object with
a single "page" of data, or a web page. It's unfortunate that
the three separate concepts share a name!]

To get additional information, then, we just have to specify that we want a particular page.
We use the offset parameter to do this:

51
75
76

100
101

125

offset = 75
limit = 25

There are two things to note here:

1. We don't say, "give me the Nth page," we say, "give me the page starting with item
number N."

2. Just like in an AS3 array, this is zero-based - that is, the first piece of information is
numbered 0, the second is numbered 1, the 76th is numbered 75, and so on.

Time for action - obtaining data in pages
Using limit and offset together, we should be able to obtain specific pages of posts from
the Facebook Page's feed. So, if we load this URL in a browser:

https://graph.facebook.com/facebook/feed?offset=3 00&limit=25

[1261

https://graph.facebook.com/facebook/feed?offset=3

Chapter 5

We should be able to see the 301st - 325th posts in the feed. Try it out. The result at the
time of writing is as follows:

{
"data": [
]

}
Wait, what?

What just happened?
The Graph API puts limitations on what can be retrieved from a User's or Page's stream and
status updates (which includes their feed connection). The official documentation says that
these connections are limited to the last 30 days or 50 posts, whichever is greater.

That's not the only problem with the limit-offset parameters. Try loading this URL:

https://graph.facebook.com/facebook/feed?offset=2&limit=l

...and you'll get the same empty JSON as before - but load this URL:

https://graph.facebook.com/facebook/feed?offset=2&limit=4

...and you'll receive exactly one result. However, you can set the limit as high as 6 without
receiving any additional Objects!

It doesn't make any sense. And the more you look into this, the less logical it appears to be.

This is an ongoing issue; if you would like to keep up-to-date with any changes made in this
area, subscribe to the official Facebook Bug Tracker thread for it at this link:

http://bugs.developers.facebook.net/show_bug.cgi?id=10576

Of course, it's possible that by the time you read this book,
y t S ? ^ these issues will have been sorted out. In that case, lucky you!

Still, we can see how limit and offset work for other connections.

]

[1271

https://graph.facebook.com/facebook/feed?offset=2&limit=l
https://graph.facebook.com/facebook/feed?offset=2&limit=4
http://bugs.developers.facebook.net/show_bug.cgi?id=10576

Digging Deeper into the Graph

Haue a go hero - using limit and offset for other connections
Try loading some of your User profile's connections using limit and offset. You'll have to
use an access token, naturally.

For example:

https://graph.facebook.com/me/likes?limit=25&offset=5 0&access_
token=«accèss_token»

Does it work? Can you access other people's connections in the same way? What about
those of other Graph Objects, like Pages and Albums?

Time for action - adding limit and offset to GraphRequest
instances

1. To make it a little easier to use limit-offset with our Requestors, let's add
parameters for setting them to GraphRequest. as:
package graph {

public class GraphRequest {
public var objectID:String = "";
public var connectionID:String = "";
public var limit:int = 25;
public var offset:int = 0;

public function GraphRequest(a_objectID:String = "",
a_connectionID:String = "")

{
this.objectID = a_objectID;
this.connectionID = a_connectionID;

}

}

}

2. We can make the HTTPRequestor use these by editing the request () function in
HTTPRequestor.as:
public function request(a_request:GraphRequest):void {

var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables();

[1281

https://graph.facebook.com/me/likes?limit=25&offset=5

Chapter 5

//We construct a URL from the parameters of the GraphRequest
urlRequest.url = "https://graph.facebook.com/" +

a_request.obj ectID;
if (a_request.connectionID) {

//remember, this means a connection (and thus a list)
//was requested
urlRequest.url += "/" + a_request.connectionID;
//variables.limit = 5000;

}
variables.metadata = 1;
variables.limit = a_request.limit;
variables.offset = a_request.offset;
if (accessToken != "") {
variables.access_token = accessToken;

}
urlRequest.data = variables;

//this is used to figure out which GraphRequest created the
//loader later
_requests [loader] = a_request;

loader.addEventListener(Event.COMPLETE,
onGraphDataLoadComplete);

loader.addEventListener(IOErrorEvent.I0_ERR0R, onlOError);
loader.load(urlRequest);

}

3. It's just as easy to add this feature to the SDK Requestor. Modify the call to
Facebook. api () in the request () function of SDKRequestor. as:

public function request(a_request:GraphRequest):void {
var graphltem:String = "/" + a_request.objectID;
if (a_request.connectionID) {
graphltem += "/" + a_request.connectionID;

}
Facebook.api(
graphltem,
function(result:Object, fail:Object):void {
requestComplete.call(this, result, fail, a_request); },

{metadata: 1, limit:a_request.limit, offset:a_request.offset}
) ;

}

[1291

https://graph.facebook.com/

Digging Deeper into the Graph

What just happened?
We've now added limit-offset paging capabilities to both of our Requestors:
the HTTP Requestor that we built from scratch, and the SDK Requestor that's based
on the official SDK.

To test this, create a new GraphRequest instance in CustomGraphContainerController.
as, used after the current Requestor has been initialized:

private function onRequestorlnitialize(a_event:Event):void {
_requestor.attemptToAuthenticate(ExtendedPermissions.READ_STREAM);
var testRequest:GraphRequest = new GraphRequest("me", "likes");
testRequest.limit = 20;
testRequest.offset = 50;
_requestor.request(testRequest);

}
Don't forget to test it with both Requestors!

Date-Based filtering
Do you notice any potential problems with the paging system outlined above (Other than
that it doesn't work as expected at the moment)?

What about for getting the list of comments on a particularly popular post?

Suppose you wish to get the 100 most recent comments on a post, and need to use paging
to do so. You request comments 1-25, 26-50, and then 51-75. However, at this point,
someone else posts a comment, which is added as the new #1. The old #1 becomes the new
#2, the old #2 becomes the new #3, and so on, so that when you request 76-100, you've
actually received comment #76 twice - it was #75 a few seconds ago!

Worse than that, you now don't have the new comment #1. So instead, you could try
obtaining the pages in reverse order: 76-100, 51-75, and then 26-50. This time, if a new
comment is added as #1, the old #25 becomes #26. But you now request comments 1-25;
the old #25 doesn't make it into your list, so there's a gap. And that's not even mentioning
what would happen if a comment were deleted.

Realistically, these aren't huge problems; they just serve to show that the limit-offset
paging method is not perfect. As an alternative, we can page data based on time and date.

[1301

Chapter 5

Time for action - requesting data based on date
What was happening around March, 2009, on the Facebook Page? If you look at the actual
page (http: //facebook. com/f acebook), you'll have to click on Older posts a lot of times
to get back that far.

With the Graph API it's easy. We just use the until parameter:

https://graph.facebook.com/facebook/feed?until=31march2009

A sample of the JSON returned is shown in the following code:

{
"data": [{

"id": "[redacted]",
"from": {

"name": " [redacted] ",
"id": "[redacted]"

}.
"to": {

"data": [{
"name": "Facebook",
"category": "Technology",
"id": "20531316728"

"message": " [redacted] ",
"type": "status",
"ereated_time": "2008- 01-21T15:42:11 + 0000",
"updat ed_t ime": " 200 9-05-31T21:26:3 0 + 0 00 0",
"likes": 2,

What just happened?
This should have returned the 25 most recent wall posts from the end of March, 2009
(or even earlier), starting with the newest ones. Yet, clearly this is not the case - the
top post was created in January, 2008 and updated at the end of May, 2009.

[1311

https://graph.facebook.com/facebook/feed?until=31march2009

Digging Deeper into the Graph

Also, notice that the "30 days or 50 posts" limit does not seem to apply here, as this post is
much older than a year, and there have been far more than 50 posts made since.

Unfortunately, this is just what using paging with Graph URLs is like, at least for the time
being. Sometimes it works as expected, but sometimes it behaves in strange and mysterious
ways, as we've seen. Again, it's possible that all the issues will have been sorted out by the
time you read this - but just in case they haven't, take care if designing a project around
Graph URL paging.

In the situations where it works, the until parameter can take dates in lots of
different forms:

• 31march2009

• May-4th-2010

• 2010-12-25

• Yesterday

• First Monday of September 2009

• 12 days ago

• -7 weekdays

You can specify time, too:

• 31march2009 15:10

• May-4th-2010 noon

• 2010-12-25T08:00:00

• 12 days ago 8pm

• Today 7:30AM

A full list of formats is available at: http: / /www. php. net/manual/en/date time .
formats.php.

Remember: URLs don't like characters like + (or even spaces, really), so be
sure to encode your URL before passing it to a URLRequest. You can use
AS3's built-in escape () method for this:

var urlEncodedString:String = escape(unencodedURL);
For more information, check out the LiveDocs Page on escape ():
http://www.adobe.com/livedocs/flash/9.0/
ActionScriptLangRefV3/package.html#escape() .

[1321

http://www.adobe.com/livedocs/flash/9.0/

Chapter 5

So, the until parameter lets us specify the latest day and time to filter our data by; it also
has a sister parameter that lets us specify the earliest date: since. It works in exactly the
same way and allows exactly the same formats of dates and times.

To requests posts from the Facebook page from April 21st, 2010 (the day the
Graph API was released), we would use this URL:

https://graph.facebook.com/facebook/photos?since=21
april2010T00:0 0:01&until=2lapril2010T23:59:59
If there were more than 25 posts on that day, then we could even use
offset and limit alongside since and until to split that list into
further pages.

That exact URL won't return any data (since it's more than 30 days ago), but
this example shows the format that you have to use.

Okay, let's get this into our application.

Time for action - adding since and until to GraphRequest
instances

The procedure for allowing us to use since-until with our GraphRequest instances is
almost identical to that for allowing us to use limit-offset.

1. Add since and until string properties to GraphRequest. as as shown in the
following code:

package graph
{
public class GraphRequest {

public var objectID:String = "";
public var connectionID:String = "";
public var limit:int = 25;
public var offset:int = 0;
public var since:String = "";
public var until:String = "";

public function GraphRequest(a_
a_connectionID:String = "")

objectID:String =

this.objectID = a_objectID;
this.connectionID = a connectionID;

[1331

https://graph.facebook.com/facebook/photos?since=21

Digging Deeper into the Graph

2. In HTTPRequestor. as, set the properties of the URLVariables object depending
on these new strings:

public function request(a_request:GraphRequest):void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables();

//We construct a URL from the parameters of the GraphRequest
urlRequest.url = "https://graph.facebook.com/" +

a_request.obj ectID;
if (a_request.connectionID) {

//remember, this means a connection (and thus a list)
//was requested
urlRequest.url += "/" + a_request.connectionID;

}

variables.metadata = 1;
variables.limit = a_request.limit;
variables.offset = a_request.offset;
variables.since = a_request.since;
variables.until = a_request.until;
if (accessToken != "") {
variables.access_token = accessToken;

}
urlRequest.data = variables;

//this is used to figure out which GraphRequest created the
//loader later
_requests[loader] = a_request;

loader.addEventListener(Event.COMPLETE,
onGraphDataLoadComplete);

loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);
loader.load(urlRequest);

}

3. Modify the third parameter passed to the Facebook. api () method in the
request () function inside SDKRequestor. as:

public function request(a_request:GraphRequest):void {

[1341

https://graph.facebook.com/

Chapter 5

var graphltem:String = "/" + a_request.objectID;
if (a_request.connectionID) {
graphltem += "/" + a_request.connectionID;

}
Facebook.api(
graphltem,
function(result:Object, fail:Object):void {
requestComplete.call(this, result, fail, a_request); },

{metadata: 1, limit:a_request.limit, offset:a_request.offset,
since:a_request.since, until:a_request.until}

) ;
}

What just happened?
You've added the since-until date-based paging capabilities to Visualizer, and to both
types of Requestor.

Now you can test this by altering the properties of the GraphRequest instance in
CustomGraphContainerController.as:

private function onRequestorlnitialize(a_event:Event):void {
_requestor.attemptToAuthenticate(ExtendedPermissions.READ_STREAM);
var testRequest:GraphRequest = new GraphRequest("me", "likes");
testRequest.since = "September 30 2010";
testRequest.until = "14-Oct-2010";
_requestor.request(testRequest);

}
Again, don't forget to try it with both types of Requestor.

Time for action - filtering by date using the III
1. Rather than hardcoding the since and until values, we could use a Ul element to

filter Graph Lists while the project is running.

2. The Visualizer includes another hidden option to allow this. To enable it, edit the
constructor of CustomGraphContainer. as again:
public function CustomGraphContainerController(a_graphControlConta
iner:GraphControlContainer) {

super(a_graphControlContainer);
this._showListCounts = true;

[1351

Digging Deeper into the Graph

this._showListFilters = true;

_requestor = new HTTPRequestor () ;
addEventListenersToRequestor();
//we must wait for the Requestor to initialise before we can do
//anything else with it
_requestor.addEventListener(Event.COMPLETE,

onRequestorlnitialize);

_requestor.initialize(); } "

3. Save, compile, and upload your project, then open any connection to
create a List Renderer. (If you don't get many results, remove the lines in
onRequestorlnitialize () that set specific since-until or
limit-offset values.)

U Vïaializei
C O michaelswebhost.com/visual

Zoom In I Zoom Out I Reset View

Mloha*l Jam« Wllllami •

n
updated.time 2010-08-16120 ss oi+oooo
first.ndine
middle-name: James

metadata: [ofcject Object]

typ£: user

gender: male

about : Twitter: ©MlcliaelJW

I -Iin fions Hid*

apprtqutiti -

poiti

oooountf

© o m <s> a Ej / m n *
Pom [Lin] (IE)
actions Cobjiot Obl*ot],[obi*ot Obnot]
updated.time Mio-io-HTie S3 29-0000
pi'klQCy [ofcfect Object]

Created, time 2010-10-14TlE:S3:2e-t0000
id _E^EEE^ :::EEEE

MESSAGE „ w i i i ™ * . ^ , i c f c ,
i i IVI ? Damrij I'm latt fir 1

ijinni T

LIKES: 1

type notui
ft'Dm ;::=..•::• Ot#<l] 7

I Sh

[1361

Chapter 5

4. Click on the Show button on the new Filter bar as shown in the previous screenshot.

II Visuaiizer . G
^ C O michaelswebhost.com/visua ©

Zoom In | Zoom Out | Reset Vlêuj |

I llQhatl • lurni '•. 11 hlliurri1.

Up dated-time Î010-08-18TÎ0 33 OlwJOOO
firït.nalne
middle, name: James
metadata: [gbject abject]

user
g e n d e r : mm*

« b o u t : Twitter : (SiMlclmelJW

tlom
apprtqutftf
pçïtï

acoountï

© 3 Q / f S H

Po i t l [L i f t] (Î B)

a c t i o n s [objtot Oii|i'<:i l.tobucr Obiter]

updated.time 2010-10-wre ss 20+0000
p r i U f l C L j : [Direct 0 * > c t]

t r e a t e d , t i m e : 2DIO-ID-14TIB 53:2E->DDDD

id

m e s s a g e UkittinBiiite, Doc, we yini te fcg

' I l IV Y 1IVE 7 Damn, I'm lot« for iJlNNIT
l i kes : 1

t y p e itotui

from («bt«i otwci]

y

5. This new panel allows you to enter dates to use for since-until filtering.

6. Type any date and time into the boxes, or use the C buttons to bring up calendar
controls which can be used instead.

7. When the user clicks the Filter button in this panel, it calls a protected function,
listFilterCallback () , in the class that CustomGraphContainerController
extends, and passes it the dates entered and the IDs of the Graph Object and
connection that the List Renderer represents.

This means that CustomGraphContainerController inherits that function, so
we can make it create a new GraphRequest for this Graph Object and connection,
using those dates.

8. So, open CustomGraphContainerController. as and override the function:

override protected function listFilterCallback(a_objectID:String,
a_connectionType:String, a_since:String, a_until:String):void {

super.listFilterCallback(a_objectID, a_connectionType, a_since,
a_unt i1) ; }

[1371

Digging Deeper into the Graph

The inherited function is just a stub - it doesn't do anything.

9. Now, create and use a new GraphRequest using the information passed in
the parameters:

override protected function listFilterCallback(a_objectID: String,
a_connectionType: String, a_since: String, a_until: String) : void {

super.listFilterCallback(a_objectID, a_connectionType, a_since,
a_unt il);

var filterRequest:GraphRequest = new GraphRequest(a_objectID,
a_connectionType);

filterRequest.since = a_since;
filterRequest.until = a_until;
_requestor.request(filterRequest);

10. Compile and upload the SWF, then test the changes by entering two dates in the
Filter panel and clicking the Filter button.

What just happened?

[M] Visualizer

C O michaeiswebhost,com/visual © & a « / i i i

Zoom In I Zoom Out Reset View 1 PMSU LLIilJ

a

hrrp./^s.jrqtic ofc fbcdn.nat/riro.php/iD/r/aSSt

omYRyiOgif
type. H
CI f>ijt e cLtjme. 2010-11-01123:04¡31+0000
frOtVl [objnl Objtot]

id' <i'iî_145471B4BB32BD4
caption LULULU.bbc-CO.uk

a

ÉE

Since.

2010-10-1

Until:

2010-10-1(1

0
B

Feed ILEIJ (S)

icon:
http ://b .lifftlc .ok .Fbcdn npt/rçrt .php/iD/r/a£Be
crnïftyFÛ.flir
tO. [object Object]

created.time 2£>«i-i(MrenS:35.59wooo
from [object Dhjiot]
M • • -.157438137610133

[1381

Chapter 5

In the previous screenshot, the List Renderer on the left-hand side shows the latest 25 posts
in my profile's feed; the Since and Until fields in the Filter panel have been filled in with the
dates 2010-10-1 and 2010-10-10, respectively, and the resulting List Renderer appears on
the right-hand side. The right-hand side Renderer only contains nine Graph Objects, and the
latest is from 2010-10-09 - just as we'd expect!

We gon' partition like it's yo' birthday
Now, let's use the Filter panel for a much more interesting task: seeing who posted on
your wall on your last birthday. (This will come in handy when deciding who goes on your
Christmas card list this year.)

Haue a go hero - loading birthday wall posts
• So who posted what on your wall on your last birthday? Unless your birthday was

very recent, this would be difficult to find out through the Facebook web site.
Fortunately, it's easy to find out with the Visualizer.

• Remember, posts on your wall come under the feed connection. Also, bear in mind
that you can enter times in the values of Since and Until, as well as dates. Plus, since
Facebook stores dates according to its own time zone, which is not necessarily your
local one, it may disagree with you on which posts were written on the day itself.

Once you've investigated that, take a look at your friends' walls on their birthdays, or on
other important dates. Remember, you'll need a certain extended permission for this - can
you remember which one?

Date-based paging
Take a look at the end of a JSON returned from any List object - for example, here's Packt
Publishing's "Books" photo album, with all but one item removed:

https://graph.facebook.com/3 07 932 93 94 58/photos
{

"data": [{
"id": "307944374458",
"from": {

"name": "Packt Publishing",
"category": "Products_other",
"id": "204603129458"

h
"name": "Drupal 6 Themes\r\n\r\nWritten by Ric Shreves\r\n\r\
nBuy this book now via Packt: http://www.packtpub.com/

drupal- 6 -1 heme s/book",

[1391

https://graph.facebook.com/3
http://www.packtpub.com/

Digging Deeper into the Graph

"picture": "http://photos-c.ak.fbcdn.net/hphotos-ak-snc3/
hsl85.snc3/192 3 9_3 07 94 43 74 4 5 8_2 04 6 0312 94 58_4 52 77 91_8102 04l_s.jpg",

"source": "http://sphotos.ak.fbcdn.net/hphotos-ak-snc3/hsl85.
snc3/192 3 9_3 07 94 43 74 4 5 8_2 04 6 0312 94 58_4 52 77 91_8102 04l_n.j pg",

"height": 6 66,
"width": 540,
"link": "http://www.facebook.com/photo.php?pid=4527 7 91&

id=204603129458" ,
"icon": "http://static.ak.fbcdn.net/rsrc.php/z2E5Y/

hash/8as8iqdm.gif" ,
"created_time": "2010-02-04T12:40:07+0000",
"update d_t i me": "2010 - 03-18T16:08:42 + 0000"

}
] ,

"paging": {
"previous": "https://graph.facebook.com/3 07 932 939458/

photos?limit = 2 5&since=2010-03 -18T16%3A00%3A38%2B0000",
"next": "https://graph.facebook.com/3 07 932 939458/

photos?limit = 2 5&unti1 = 2010-02 -04T12%3A4 0%3A0 6%2B0000"
}

}
See that node called paging? It obviously contains two URLs, though they seem to have
some junk attached to the end of them. Actually, it's not junk; it's just URL-encoded. Here's
how the previous URL looks when decoded:

https://graph.facebook.com/3 0 793 29 3 945 8/photos?limit = 25&since = 2010-
0 3 -18T16:00:38 + 0000

It's clearly a date with a timestamp, passed to a since parameter, just like we've been using.

Facebook provides these as an easier alternative to the offset/limit-based paging we
explored earlier in the chapter. Paging based on time makes a lot more sense than paging
based on the items position in a list (as we explored before), because the date and time
that an item was created will never change, while the item's position in a list will change
whenever a new item is added to that list.

It's true that items being deleted could cause problems: if we've already downloaded the
item then we may not detect that it's gone, leaving us with incorrect data. Even if we do a
double-check and remove it, it's going to leave a gap, meaning that the page of items that
used to contain it will be shorter than the other pages. Whether these are serious problems
depends on the application.

[1401

http://photos-c.ak.fbcdn.net/hphotos-ak-snc3/
http://sphotos.ak.fbcdn.net/hphotos-ak-snc3/hsl85
http://www.facebook.com/photo.php?pid=4527
http://static.ak.fbcdn.net/rsrc.php/z2E5Y/
https://graph.facebook.com/3
https://graph.facebook.com/3
https://graph.facebook.com/3

Chapter 5

Since these paging links are bundled with the JSON, they're often easier to implement than
working out our own system based on limit and offset parameters. That's not really
true in our case, because we would have to extract the since and until parameters
from the next and previous URLs and then feed them to a GraphRequest object - it
would be easier to extract the dates of the earliest and latest Graph Objects in the collection,
and use those.

Still, this may come in useful for other projects you work on in the future, so it's
worth mentioning.

Requesting multiple IDs at once
Earlier in the chapter we learned how to retrieve a list of wall posts from a specific date
range. How would you get the basic information about all the people that wrote these posts?

Based on what we've seen so far, the obvious answer is to loop through all of the IDs of all of
the people, and request the User object for each of them.

That's fine, but it's a bit clunky, and we have no way of associating those people with each
other. Wouldn't it be nicer if we could obtain them all in a single List?

Time for action - using the ids parameter in a Graph URL
Load the following URL in your browser:

https://graph.facebook.com/?ids=facebook,packtpub
{

"facebook": {
"id": "20531316728",
"name": "Facebook",
"picture": "http://profile.ak.fbcdn.net/hprofile-ak-snc4/
hs624.ashl/2 7 53 5_2 0 531316 72 8_55 53_s.j pg",

"link": "http://www.facebook.com/facebook",
"category": "Technology",
"username": "facebook",
"founded": "February 4, 2004",
"company_overview": "«overview»",
"mission": "Facebook's mission is to give people the power to
share and make the world more open and connected.",

"fan_count": 12672143
}.
"packtpub": {

"id": "204603129458",
"name": "Packt Publishing",

[1411

https://graph.facebook.com/?ids=facebook,packtpub
http://profile.ak.fbcdn.net/hprofile-ak-snc4/
http://www.facebook.com/facebook

Digging Deeper into the Graph

"picture": "http://profile.ak.fbcdn.net/hprofile-ak-snc4/
hs3 02.ashl/23 2 74_2 04 6 0312 94 58_74 6 0_s.jpg",

"link": "http://www.facebook.com/PacktPub",
"category": "Products_other",
"username": "PacktPub",
"company_overview": "«overview»",
"fan count": 43 7

What just happened?
We passed the IDs of two Pages at once to the Graph, using the ids parameter, and it
returned a JSON containing the basic information of both of them.

So this is a List, right?

Wrong!

Well, it's not a List according to the definition we've been using so far, as there's no data
node. I'll call it a Compound Object. Compare the above to the result you get if requesting
the Facebook Page directly:

https://graph.facebook.com/facebook
{

"id": "20531316728",
"name": "Facebook",
"picture": "http://profile.ak.fbcdn.net/hprofile-ak-snc4/

hs624.ashl/2 7 53 5_2 0 531316 72 8_55 53_s.j pg",
"link": "http://www.facebook.com/facebook",
"category": "Technology",
"username": "facebook",
"founded": "February 4, 2004",
"company_overview": "«overview»",
"mission": "Facebook's mission is to give people the power to share

and make the world more open and connected.",
"fan_count": 12672338

}
You can see that when requesting more than one Graph object at once, the objects are
jammed together as sub-nodes of a single object, each labeled with their ID.

Naturally, you don't have to use Page IDs; you can use the ID of any object in the Graph,
including Albums, Photos, and Users. What's more, you can mix the types of ID you request,
so you could request an Event, three Users, and a dozen Photos all at once, and they'll be
returned in the same JSON.

[1421

http://profile.ak.fbcdn.net/hprofile-ak-snc4/
http://www.facebook.com/PacktPub
https://graph.facebook.com/facebook
http://profile.ak.fbcdn.net/hprofile-ak-snc4/
http://www.facebook.com/facebook

Chapter 5

The difference between a native Graph List and a Compound Object is very small.

The Graph List is as follows:

{
"data": [{

"keyl"
"key2"
"key3"

}.
{
"keyl"
"key2"
"key3"

}
]

}
The Compound Object is as follows:

{
"idl": {

"keyl"
"key2"
"key3"

"idl": {
"keyl"
"key2"
"key3"

}
}

Compound objects don't have a data node, and the individual objects have names, but
that's it - the actual data inside the nodes is the same.

Is it surprising that these two types of Graph item should be so similar? Not really. They both
have a similar purpose, after all: to store more than one individual Graph Object. And there's
absolutely no reason why those individual objects should have a different structure based
solely on their context.

This is another great example of the "keep it simple" philosophy that underlies the Graph
API. Every single item is presented in the same basic format, regardless of context or type.

"valuel",
"value2",
"value3"

"valuel",
"value2",
"value3"

"valuel",
"value2",
"value3"

"valuel",
"value2",
"value3"

[1431

Digging Deeper into the Graph

Haue a go hero - creating a Compound Object based on results from a list
Revisit what we looked at earlier—finding people that posted on your wall on your last
birthday - but this time, request and render a Compound Object containing all of those
User objects.

This is a big challenge: the best place to do this is not inside the Visualizer itself, but inside
a brand new project. Can you create a project from scratch that can do this? Naturally,
you can re-use any of the useful classes from Visualizer, like the Requestors and the
ExtendedPermissions class.

Summary
Paging means splitting a long collection of data into multiple smaller components, called
Pages. Do not confuse this type of page with a Facebook Page Object or a web page.

• The number of records in a page can be set using a parameter called limit. The
default value for limit is 25.

• The offset parameter can be used to specify the first object in the collection that
should be returned. The default value for offset is 0.

• Pages can be defined by combining offset and limit parameters - although the
Graph API is a little unstable on that point at time of writing.

• The since and until parameters filter a Graph List to a specified range of dates
and times.

• Dates and times can be written in a wide range of formats; see http: //www.php.
net/manual/en/datetime . formats .php for a full list.

• All four parameters - limit, offset, since, and until- can be used together at
the same time.

• To specify these parameters via a Graph URL, simply pass them as URL parameters,
or using an instance of the AS3 URLVariables class.

• To specify these parameters via the SDK, include them as properties of an object,
passed as the third parameter to the Facebook. api () function.

• Graph Lists, returned as JSON objects, have a property called paging, which
contains URLs for the next and previous pages of data. These URLs use since-
until paging, rather than limit-offset.

• A Compound Object can be obtained using a Graph URL of this format: https : //
graph, facebook. com/?ids=idl, id2, id3, This contains multiple objects
in a similar JSON format to a Graph List, but with no data node.

http://www.php

Chapter 5

• We've learned how to dig deeper into the Graph, revealing more about Graph
Objects and connections whose IDs we already know, but what about finding Graph
Objects based on their contents, rather than their IDs? In the next chapter, we'll
learn about searching the Graph to do just that.

Pop Quiz
1. Why does Facebook split Graph Lists into pages by default, rather than just providing

all of the data at once whenever it's requested?

a. Facebook only retains the last week's worth of information in its data banks

b. It's a compromise between speed of access and amount of
information provided

c. Privacy concerns

2. What do the parameters limit, off set, since, and until do?

a. Allow you to narrow down the results returned from a collection

b. Restrict user access to a Graph Object for a certain time period

3. When paging, why is it better to use the "next" and "previous" URLs from a Graph
List's JSON object, rather than constructing your own URLs using limit and
offset?

a. Date-based paging gives finer control of which posts to request

b. Date-based paging means Graph Objects won't be missed out
between pages

c. Date-based paging means Graph Objects won't be missed out if created or
removed while paging

[1451

5
Search Me

We've learned how to obtain all sorts of information about Graph Objects
whose Graph URLs we already know. But what about finding those URLs
in the first place?

This chapter's all about searching. We'll learn how to filter all of these by certain
search terms:

• Pages, Events, and Groups

• User names

• Posts (both in the public feed and those from our friends)

So let's get on with it...

Using the website's Search box
The quote on Facebook's front page states, Facebook helps you connect and share with the
people in your life.

To do that, Facebook needs to help you find the people in your life - without having to
memorize their profile page URLs or wait for them to pop up in your news feed. That's what
the Search box at the top of every page is for.

Of course, as Facebook (and its social graph) has grown to contain so many more types of
objects, the Search box has needed to grow in functionality, too.

Search Me

Time for action - examining quick search results
Log in to Facebook in your browser, type "test" into the Search bar at the top of the page,
and see what appears in the drop-down list:

[1481

Chapter 5

Now try a name:

bob

Eskimo Dob
Group

Bob Dylan Appreciation Society
Group

Robert W |
Warwick

Robert D I
Warwick • Coventry, United Kingdom
5 mutual ftioiifc: - =
others

Rob
London, United Kingdom
4 mutual ftienifc: —* - —- I
ethers

Robert J ' <•*•
Warwick
5 mutual friemfc: 1 . -» —
and others

See more results for bob •
Displaying top 6 results

What just happened?
Facebook uses a smart search for names; notice that when I typed in "bob" it found results
containing "Bob," "Rob," and "Robert." Similarly, if you search for "Jim" it'll find "James."

(This can be confusing; I was scratching my head for a long time trying to find out why
searching for "Liz" listed my friend Beth - whose name is not short for Elizabeth!)

This isn't a wildcard search, though. Searching for "obert" won't find you people
called "Robert."

You can see from my results that the search results include Groups, Applications, and Games,
mixed in with fellow users. If I'd picked a different search term, the search could have found
Events and Pages.

[1491

Search Me

As well as the smart name recognition search, Facebook also uses a smart sort to order the
list, ranking the results to try to give you the ones you're likely to be looking for first: Pages
and Groups that you 'like' are ranked higher, as are Events that you're on the guest list for,
and Applications and Games that you've added. And there are a few things Facebook checks
to figure out which people you might be seeking:

• Are you friends with the person already?

• Do you have a lot of friends in common?

• Do you both live in the same area?

• Are you in the same networks (college, school, workplace)?

This way, most of the time, you'll find the person or object you're looking for in the short
drop-down list of results. But, if not, you'll need to go to the Full Search.

Time for action - Using the Full Search results
Type a query into the Search box, and click on the Magnifying Glass icon or the See More
Results item at the bottom of the drop-down list to get to the Full Search page:

71 test

* M«» Tester
1 m-t-i I f'ierpJ :

IQ test
Game
ÉS3.979 monthly ise-s

Attitude test
Game
426.025 monthly Lse"s

Love Test
Application
22É.+B9 monthly ise-s

test ur ka m in a pan !![!!!!!!![!!!!!!!
Application
93.34Î monthly Lse-s

See more results for test •
Displaying top 6 results

[1501

Chapter 5

The full page is shown in the next Screenshot:

Q j All r e s u l t s

People

^ Pages

a Groups

Applications

[?] Events

j Web results

O Posts by friends

QO Posts by everyone

1 Pages About 58,000 results

Say yes to the test

yes

w r i f f i a

Name:
Type:

Say y e s to the t e s t
Non-profit
65,602 people like this.

Type:

"Now add 2 drops of acid into a tes t Like
tube." ... "2 d r o p s ? ^ ^ | t h a t " *adds 10
drops*
Page
102,207 people like this.

Whoever thought of the Bleep T e s t
d e s e r v e s to be SHOT.
Local business
115,126 people like this.

DI0 Posts by friends

View all page results •

Adobe Flex The t e s t objectives for the Flex 4 cert may be seen in the exam prep guide
which is linked from the article above.

Fx
Flex 4 ACE Exam | Adobe Developer Connection
bit.ly
Adobe Certified Experts (ACEs) set themselves apart from other IT professionals. They
consistently demonstrate expertise with Adobe products and platforms, and add value to
colleagues, managers, and their own careers,

<£j| about a week ago

View all posts by friends •

H Web results D i n g

Test .com Web Based Testing and Certification Software v2.0
Easily Author and Administer your own Training Content, Tests, and Certification Programs Online, Test.com is Web Based
Software.
test.com

T e s t - Wikipedia, the free encyclopedia
Test, TEST or Tester may refer to: Test {student assessment), an assessment intended to measure the respondents'
knowledge or other abilities; Physical fitness test
en. wikipedia.org/wiki/Test

Critical Cap T e s t Halted - Video - FoxNews.com
July 14, 2010, Critical Cap Test Halted. BP delays tests of that new tighter-fitting cap on busted Gulf oil well
video.foxnews.com/v/4281917...

View all web results •

[1511

Search Me

The first thing to notice is that the items in this list are different f rom the items in the drop-
down list; the quick results aren't simply the first six i tems in the full list.

Second, note that these results are segmented into the different types of object : Pages,
People, and so on. In the drop-down list, the different types were mixed together, and then
sorted by perceived relevance.

Third, you can narrow the results down to a single type of object by using the list on the
left-hand side:

q, All results

People

Pages

[HI Groups

Applications

HI Events

j web results

ITH Posts by friends

|F1 Posts by everyone

t^i Find more Applications in the Application Directory

Name: Movies
Active users 3,499,549 monthly active users

* o *»
Name: Test
Active users 53,673 monthly active users

Name: IQ test
Active users 658,812 monthly active users

Name: TEST PATENTE (by Corra']
Active users 25,2*14 monthly active users

Name: Eye Test
Active users 1,040 monthly active users

Name: Test
Active users 377 monthly active users

Name: IQ Test
Active users 288,762 monthly active users

Name: Friend IQ Test
Active users 16,617 monthly active users

Active users 447 monthly active users

Name: Perfection Test
Active users 172 monthly active users

View Application

View Application

View Application

View Application

View Application

View Application

View Application

View Application

View Application

View Application

i-10 of over 500 results

[1521

Chapter 5

(Also, note that these lists allow you to page through the results.)

Fourth, the options on the left include some types of objects that won't appear in the drop-
down list:

• Web results (powered by Bing) - essentially a frontend for the search engine, inside
the Facebook site

• Posts by friends - wall posts, notes, links, videos, photos, and statuses

• Posts by everyone - just wall posts, notes, links, and statuses

Finally, there are a number of sub-options you can alter for these searches: narrow posts
down by locale or location; filter people by their school or workplace; look for events
happening today, tomorrow, this week, or this month, and so on.

What just happened?
This is all pretty straightforward. The one point of confusion here is: why don't the top results
from the Full Search match those from a Quick Search?

(I searched "Liz", and the Quick Search listed my friend Beth at the top spot and my friend
Elizabeth at the second; when I do a Full Search, neither of them turn up in the All results
tab and only Beth appears in the People results - Elizabeth is nowhere to be seen I)

Sure, it's not too surprising that the two pages would use different algorithms for searching,
but it doesn't make a lot of sense for them to be this different. Since we're only looking at
the website itself at the moment, it doesn't really matter - however, we will come across a
similar issue when searching via the Graph API, which is what we're going to do next.

Searching with a Graph URL
You knew it was coming.

We'll start by searching for Graph Objects that can be seen by the public.

Time for action - searching without authorization
The basic search query Graph URL is:

https://graph.facebook.com/search?type=«type»&q=«query»

The type parameter lets you choose an option (as in from the left-hand side of the Full
Search), and q (for query) specifies the search terms.

[1531

https://graph.facebook.com/search?type=%c2%abtype%c2%bb&q=%c2%abquery%c2%bb

Search Me

Let's try searching for the Packt Publishing page:

https://graph.facebook.com/search?type=page&q=PacktPub
{

"data": [{
"name": "Packt Publishing",
"category": "Products_other",
"id": "204603129458"

}
]

}
We're cheating here; I've searched for the exact name of the page, which sort of defeats the
point of a search. Note that PacktPub does not appear anywhere in the results, though -
this implies that, sometimes, you (and your application) may not be able to tell why a certain
result appears in the listings.

Let's try a similar search without cheating - we'll just look for "Packt" instead of "PacktPub":

https://graph.facebook.com/search?type=page&q=Packt
{

"data": [{
"name": "\u00bb Packt like sardines in a crushd tin box.",
"category": "Public_figures_other",
"id": "106807812689840"

}.
{

"name": "Packt",
"category": "Author",
"id": "105143859532023"

}.
{

"name": "Grossmama Packt Aus",
"category": "Unknown",
"id": "107744965912183"

}
] ,
"paging": {

"next": "https://graph.facebook.com/
search?type=page&q=Packt&limit = 2 5&offset = 2 5"

}
}

[1541

https://graph.facebook.com/search?type=page&q=PacktPub
https://graph.facebook.com/search?type=page&q=Packt
https://graph.facebook.com/

Chapter 5

Packt is a German word, so we get hundreds of results of German pages (many have been
cut out in the listing above). Unfortunately, Packt Publishing is nowhere to be seen.

We can use spaces in the search query by replacing them with %20:

https://graph.facebook.com/search?type=page&q=Packt%2 0Publishing
{

"data": [{
"name": "Packt Publishing",
"category": "Products_other",
"id": "204603129458"

{
"name": "Packt Publishing",
"category": "Company",
"id": "109477139072966"

{
"name": "Job - System Admin(l-2 Y),Andheri E for Publishing
House {Walk in-llam-3pm} -
Mumbai - Packt Publishing Pvt. Ltd. -
l-to-2 years of experience - Jobs India",

"category": "Website",
"id": "115106601845387"

}
]

}
The first result is the PacktPub page we've been using (follow it through to the Graph URL
that uses that ID, if you want to check).

What other types of search can we do? We can retrieve all public wall posts, links, status
updates, videos, and photos using the post option:

https://graph.facebook.com/search?type=post&q=Packt
{

"data": [{
"id": "«redacted»",
"from": {

"name": "«redacted»",
"id": "«redacted»"

h
"message": "packt seine 7 sachen und sieht danach
evtl mal in Lenkersheim nach dem REchten",

"type": "status",
"ereat ed_t i me": " 2010-07-31T18:16:32 + 0000",

[1551

https://graph.facebook.com/search?type=page&q=Packt%252
https://graph.facebook.com/search?type=post&q=Packt

Search Me

"updated_time": "2010-08-01T02: 04 : 34 + 0000",
"likes": 1

"id" : "204603129458_144653245560929" ,
"from": {

"name": "Packt Publishing",
"category": "Products_other",
"id": "204603129458"

published. Get your copy now : http://bit.ly/bEqb9n",
"link": "http://bit.ly/bEqb9n",
"name": "ColdFusion 9 Developer Tutorial Book & eBook |

Packt Publishing Technical & IT Book Store",
"description": "Get up to speed in ColdFusion and learn how

to integrate it with other Web 2.0 technologies",
"type": "link",
"ere at ed_t i me": " 2010-07-31T10:04:39 + 0000",
"updated_time": "2010-07-31T10: 04 : 39 + 0000"

"id": "139708256052538_136219896414668",
"frora": {

"name": "The Entertainer",
"category": "Film",
"id": "139708256052538"

h
"message": "Noch 7 Tage, dann wird die gro\u00dfe

Konzertszene in Scheifling gedreht. Wir brauchen dringend
noch Statisten, die einfach nur als Konzertg\u00e4ste im
Publikum sitzen! Packt also bitte eure Familie ein und
macht einen Ausflug zum Filmdreh. Ihr werdet es auf keinen
Fall bereuen!\n\nSamstag, 7. August\nTreffpunkt 12:30\
nehemaliges Kino Scheifling",

"link": "http://www.facebook.com/",
"type": "link",
"creat ed_t i me": "2010-07-31T08:21:24 + 0000",
"updat ed_t ime": "2010-07-31T08:21:24 + 0000"

"paging": {
"previous": "https://graph.facebook.com/search?type=post&q=

Packt&limit = 2 5&since = 2 010-07-31T18 %3A16%3A32 %2B0 00 0",
"next": "https://graph.facebook.com/search?type=post&q=

Packt&limit = 2 5&until = 2 010-07-2 4T14 %3A13%3A51%2B0 00 0"

[1561

http://bit.ly/bEqb9n
http://bit.ly/bEqb9n
http://www.facebook.com/
https://graph.facebook.com/search?type=post&q=
https://graph.facebook.com/search?type=post&q=

Chapter 5

This is roughly the same as the Posts by everyone option in the Full Search.

All the possible values for the type parameter are:

• page
• post
• event
• group
• checkin
• place

• user

It's obvious what event and group do. The checkin option lets you search for recent
checkins on Facebook Places. The place option lets you search by name for a place in
Facebook Places, and requires two other parameters:

• center - a longitude and latitude, separated by a comma

• distance - the distance from center, in meters, within which to search

For example, the latitude and longitude of the White House are 38.898648 and 77.037692,
respectively, so to search for libraries within 2,000 meters of the White House, you would
use the following Graph URL:

• https://graph.facebook.com/search?type=place¢er=3 8.8 98648,7
7 0376 92&distance = 2 00 0&q=library

The user option just searches for any person that's signed up to Facebook. Let's try
searching for someone:

https://graph.facebook.com/search?type=user&q=Bob
{

"error": {
"type": "OAuthAccessTokenException",
"message": "An access token is required to request this
resource."

}
}

Hmm. We get the same message when trying to search for groups, events, and checkins.

[1571

https://graph.facebook.com/search?type=place¢er=3
https://graph.facebook.com/search?type=user&q=Bob

Search Me

What just happened?
Even though you can use a cut down version of Facebook's web page-based person search
when not logged in (via http: //www. facebook. com/srch. php), you can't get any
search results for people, groups, or events through the Graph API unless you provide an
access token.

As we've seen, search results support paging; results for Pages allow for offset/limit
pagination, and results for public posts can be narrowed down to a specific date range using
until/since parameters. (See Chapter 4 for more information on these types of paging.)

The search query is very simple; it doesn't allow operators like and and or, or phrase-based
searching. This is not Google. Fancy queries don't work in the web page-based Search, and
they won't work through a Graph URL.

In fact, the Graph URL search has fewer features than the web page-based search:

• There is no application value for the type parameter

• There are no additional parameters to filter results for Pages by their sub-type
(place, product, service, and so on)

Let's authorize ourselves so that we can use an access token to check out the other types
of search.

Time for action - searching while authorized
Grab an access token (see Chapter 3 for a reminder on how to do this) and use it to try that
person search again:

https://graph.facebook.com/search?type=user&q=Bob&access_
token=«access_token»

{

"data": [{
"name": "Robert H.",
"id": "«redacted»"

}.
{

"name": "Robert W.",
"id": "«redacted»"

}.
{

"name": "Bob Bob Bob",
"id": "«redacted»"

[1581

https://graph.facebook.com/search?type=user&q=Bob&access_

Chapter 3

}. {
"Name": "bob t.",
"Id": "«redacted»"

}. {
"Name": "bob p.",
"Id": "«redacted»"

}
] ,
"Paging": {

"Next": "https://graph.Facebook.Com/
search?Type=user&q=bob&access_token=«access_token»&limit = 2 5&offset = 2 5"

}

}
This has used both the "smart" features of the web page-based search: it found "Robert"
when searching for "Bob", and ordered the results so that people I'm more likely to be
looking for (fr iends, fr iends of fr iends, and locals) are nearer the top.

Remember, the access token is not just tied to the application but also to I
the current user, which is how the search knows which results are more I
relevant to you. This means that your search results will be considerably I
different from the previous results. I

Wi th an access token we can also search for Events and Groups, and you'll find that the
smart searching works with these, too.

What about Pages? Do we get different search results when authent icated?

Let's try it out by searching for "Packt" again. Recall that last t ime there were lots of
German results and the Packt Publishing page was not in the top results. This t ime
use the fol lowing URL:

https://graph.facebook.com/search?type=page&q=packt&access_
token=«access_token»

{

"data": [
{

"name": "\u00bb Packt like sardines in a crushd tin box.",
"category": "Public_figures_other",
"id": "106807812689840"

{

[1591

https://graph.Facebook.Com/
https://graph.facebook.com/search?type=page&q=packt&access_

Search Me

"name": "Packt Publishing",
"category": "Products_other",
"id": "204603129458"

}. {
"name": "Packt",
"category": "Author",
"id": "105143859532023"

}. {
"name": "Grossmama Packt Aus",
"category": "Unknown",
"id": "107744965912183"

}
] ,
"paging": {

"next": "https://graph.facebook.com/
search?type=page&q=packt&access_token=«access_
token»&limit=2 5&offset=2 5"

}

}
Great! Because I'm a fan of the Packt Publishing Page, it appears higher in my search results.
This makes it easier to provide relevant search results through our apps.

[1 • Although I've never even heard of Packt like sardines T

in a crushd tin box, Facebook puts it at the top of my I
search results because it has a huge number of fans. I

Since the Full Search has two options for searching for posts - Posts by friends and Posts by
everyone - one would imagine that , when authorized, the Post search would return only
posts by fr iends. Unfortunately, this isn't the case.

What just happened?
With an access token we can search through much more of the Graph than we could without
one. Also, because access tokens are specific to one person, the search results are tai lored to
be more relevant to that user; this is all done at Facebook's end, without us having to change
anything in our application. Some search types require a particular extended permission to
be granted before returning any results. See http: //developers . facebook. com/docs/
authentication/permissions for more info, and refer to Chapter 3 for information on
granting these permissions.

[1601

https://graph.facebook.com/

Chapter 5

Differences
However, even when authenticated, the results we get through a Graph URL search don't
a lways match the results we see in a Full Search. This is particularly t rue when looking for
people; by default , all apps are able to access an authenticated user's fr iends' names and IDs,
but other information may be hidden.

For example, by entering an e-mail address as the query in a User search, we can find anyone
with that exact emai l address - unless they've noted in their privacy settings that they don't
want that information to be available to other apps. (See also the options in Account |
Privacy Settings | Applications and websites | Information accessible through your friends,
as described in Chapter 3.)

Somet imes this wil l cut particular results out entirely; somet imes it will make the same
results appear, but in a different order. Remember this when testing: If the results you get
when searching through your application are different f rom those you get when searching
through the web site, that doesn't necessari ly mean there's a bug in your application.

Restrictions
The sub-options available when searching via a Graph URL are very l imited when compared
to the Full Search. We can't filter Users by their location or school, Groups by their type, or
Events by their date (even using since/until paging).

Nor can we restrict Posts to a specific language, which makes them far less useful than they
might be (as we saw when searching for "Packt" , a common German word) . But we can do
something similar.

There is a parameter called locale which accepts languages like "en_us" (for US English)
and "f r_FR" (for French). This can be used in two ways.

First, we can use it to transform information that we receive. For example, here's Facebook
CTO Bret Taylor's User object :

https://graph.facebook.com/btaylor
{

"id": "220439",
"name": "Bret Taylor",
"first_name": "Bret",
"las t_name": "Tay1or",
"link": "http://www.facebook.com/btaylor",
"gender": "male",
"locale": "en_US"

}

[1611

https://graph.facebook.com/btaylor
http://www.facebook.com/btaylor

Search Me

In the next code snippet, we have the User object with the locale set to French:

https://graph.facebook.com/btaylor?locale=fr_FR
{

"id": "220439",
"name": "Bret Taylor",
"first_name": "Bret",
"las t_name": "Tay1or",
"link": "http://www.facebook.com/btaylor",
"gender": "homme",
"locale": "en_US"

}
Not much has changed - except the value of gender, which has gone from male to homme.
This is useful if you need to make basic information available in different languages, without
hiring a translator.

Second, notice that Bret's locale is set to en _ u s . All users have a locale; it can be set in
Account | Language, and defines which language you v iew the Facebook website in. We can
filter Post search results to only show results f rom users that have a certain locale, using the
fol lowing Graph U R L :

https://graph.facebook.com/search?type=post&q=test&locale=fr_FR

It's not quite the same as searching for posts in a specified language - so we can't el iminate
all the results that use "Packt" as part of a German sentence - but it's close. And this is the
same sub-option that we can set in the Posts searches in the Full Search.

A full list of locales is available at http: / /www. facebook. com/translations/
FacebookLocales.xml.

A sample is as fol lows:

<?xml version='1.0'?>
<locales>
<locale>

<englishName>Catalan</englishName>
<codes>

<code>
< standard>
<name>FB</name>
<representation>ca_ES</representation

</standard>
</code>

</codes >
</locale>

</locales>

There are some peculiar choices in there , like English (Upside-Down), so take a look.

[1621

https://graph.facebook.com/btaylor?locale=fr_FR
http://www.facebook.com/btaylor
https://graph.facebook.com/search?type=post&q=test&locale=fr_FR

Chapter 5

Time for action - implementing a Search window in the
Visualizer

Okay, now that we know what we can do with the Graph URL search, let's use it in
our application.

The Visualizer project includes a window with Ul elements for searching the Graph. It's hidden,
but we can enable it in the same way that we enabled the Filter panel on the List Renderers.

Load the Visualizer project and open CustomGraphContainerController. as. In the
constructor function, set the _canShowSearchUl property (which is inherited f rom the
class that CustomGraphContainerControl ler extends) to true:

public function CustomGraphContainerController
(a_graphControlContainer:GraphControlContainer)

{
super(a_graphControlContainer) ;
this._showListCounts = true;
this._showListFilters = true;
this._canShowSearchUI = true;
_requestor = new HTTPRequestor();
addEventListenersToRequestor() ;
//we must wait for the Requestor to initialise before we can do
//anything else with it
_requestor.addEventListener(Event.COMPLETE, onRequestorInitialize) ;
_requestor .initializeO ; } ~

Compile the project , upload the SWF to your web host, and load it in your browser using the
usual URL. The result is shown in the next screenshot :

m
J J Visualizer

C © michaelswebhost.com jisuall © Q [71] © 2 19

Zoom Out I Reset View I Search

Type:

O User

C Page

C1 Group

C Public Post

C Checkin

My Nems Feed

£ Friend's Posts:

Mlohatl Jam« UJIIIIam«

link
http ://ujujuj Tncebook com/

name rvi><*H toms i u k m i

las t-name aiiiiiams

metadata : [abject abject]

lype:user

frst_name. i-fchoei
middle.name: Jomes

Connections

[1631

Search Me

As you can see, there's a new Search button in the top-left corner, which makes the new
Search w indow appear in the main stage area. You'll recognise the first six radio buttons as
corresponding to al lowed values for the type parameter ; don't worry about My News Feed
or Friend's Posts for now.

W h e n the Search button inside the w indow is clicked, it calls a function called search ()
inside the class that CustomGraphContainerController. as extends, passing it
three values:

• Query

• Type

• User ID (which contains the value in the lower textbox - again, we'l l come to
this later)

This function is completely empty, so clicking that button doesn't do anything at the
moment ; we'l l have to overr ide search () and make it work!

1. In CustomGraphContainerController. as, add the following function:

override public function search(a_query:String = "", a_type:String
= "", a_userID:String = ""):void {

}

2. Now to add the actual search code. Le t ' s start with the HTTP Requestor. The process
is very similar to requesting a Graph Object or Graph List directly - in fact, it's even
simpler. Open HTTPRequestor. as and create a new function as so:

public function search(a_query:String = "", a_type:String =
""):void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables();

urlRequest.url = "https://graph.facebook.com/search";

variables.metadata = 1;
if (accessToken != "") {
variables.access_token = accessToken;

}
variables.q = a_query; //not variables.query!
variables.type = a_type;

[1641

https://graph.facebook.com/search

Chapter 5

urlRequest.data = variables;

loader.addEventListener(Event.COMPLETE, onGraphSearchComplete);
loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);
loader.load(urlRequest);

}
See? It's like a cut-down version of request () . The Visualizer project doesn't
require us to store information about the original GraphRequest object , which
makes it simpler.

3. The JSON that the URLLoader returns is in the form of a Graph List, not a
Compound Object , so we can use a List Renderer to render it. This means, in
turn, that we can use a cut-down version of the onGraphDataLoadComplete ()
function to handle the search data load. Create a new function,
onGraphSearchComplete () , as shown in the fol lowing lines of code:

private function onGraphSearchComplete(a_event:Event):void {
var loader:URLLoader = a_event.target as URLLoader;
var graphData:String = loader.data;
var decodedJSON:Object = JSON.decode(graphData);

if (decodedJSON.data) {
var graphLi st: GraphLi st = new GraphListO;
var childGraphObj ect:GraphObj ect;
for each (var childObject:Object in decodedJSON.data) {
childGraphObject = new GraphObject();
for (var childKey:String in childObject) {
childGraphObject[childKey] = childObject[childKey];

}
graphList.addToList(childGraphObject);

}
graphList.paging = decodedJSON.paging;

dispatchEvent(new RequestEvent(RequestEvent.REQUEST_COMPLETED,
graphLi st)) ;

}
}
The two funct ions we've just created are very similar to the ones we made in
Chapter 2 and Chapter 3, so have a look at those if you need a reminder of how
they work .

[1651

Search Me

We need to make the CustomGraphContainerController.search ()
funct ion pass its pa ramete r s to HTTPRequestor. search () , so load
CustomGraphContainerController. as and modi fy the searchQ funct ion as
s h o w n in the fo l lowing code :

override public function search(a_query:String = "", a_type:String
= "", a_userID:String = ""):void
{

(_requestor as HTTPRequestor).search(a_query, a_type);

The as keyword tells Flash to treat an object as though it were an instance
of a specific class; this is known as cast ing. In this code, we' re forcing
Flash to treat _requestor as an HTTPRequestor, since neither the
SDKRequestor nor the IRequestor have a search () method.]

Make sure that the _requestor ob ject i s being created as an instance of HTTPRequestor,
rather than SDKRequestor, in the constructor , then compi le , upload, and test your SWF.
W h e n you type in a query , se lect any of the first six radio buttons and click Sea rch , and you
should see a List Renderer appear w i th the results as s h o w n in the next sc reenshot :

[=1
I Visualizer K \ «

(J O michaelswebhost.com/viiua © © ü s / # H i

Zoom In I Zoom Out Reset View I Search

Query:

Packt

Type:

© User

O Page
C1 Euent

© Group

© Public Post

© Checkin

© My News Feed

© Friend's Posts:

:Js±l

[Lift] (25)

name: » Packt like sardine; in a cruslid tin box,
c a t e g o r y : Put Ii C-flguresjoHier
id: 106807812689840

Pop Out

m

a

Fantast ic!

[1661

Chapter 5

What just happened?
Our Visualizer can now search for Graph objects based on a query that you enter. Since the
results are returned in the form of a Graph List, our application will then grab all the info
about those objects - and this means we can see their connections, too.

Time for action - searching via the SDK
It's easy to make our search work via the SDK, too. Start by opening SDKRequestor. as
and adding a new function called search () , just as we did with the HTTPRequestor:
public function search(a_query:String = "", a_type:String = ""):void

{

As with a request, we pass three parameters to the Facebook. api () method:

1. /search (a string containing the key part of the Graph URL)

2. A reference to a callback function

3. An object containing the parameters (q and type - remember not to use query as
the name of the parameter !)

So, add this call to your search () function as shown in the fol lowing code:

public function search(a_query:String = "", a_type:String = ""):void {
Facebook.api(

"/search",
searchComplete,
{ metadata: 1, q:a_query, type:a_type }

) ;

[There was no need to use currying this time, as we don't need to
maintain a reference to the original GraphRequest object. 1

That 's it for the search () function. We still need to wr i te the callback for when the data is
loaded though, so create a new function, searchComplete () , as shown in the fol lowing
lines of code:

private function searchComplete(success:Object, fail:Object):void
{

[1671

Search Me

Like the other SDK callbacks, this function must accept two parameters : result and fail.

Since the search results are returned in the form of a Graph List, we can re-use most of the
code from the requestComplete () function. Modify searchComplete () as shown in the
fol lowing lines of code:

private function searchComplete(result:Object, fail:Object):void {
if (result != null) {
var decodedJSON:Object = result;
var graphList:GraphList = new GraphList();
var childGraphObj ect:GraphObj ect;
for each (var childObject:Object in decodedJSON) {
childGraphObject = new GraphObject();
for (var childKey:String in childObject) {
childGraphObject[childKey] = childObject[childKey];

}
graphList.addToList(childGraphObject);

}
graphList.paging = decodedJSON.paging;

dispatchEvent(new RequestEvent(RequestEvent.REQUEST_COMPLETED,
graphLi st)) ;

}
else {

//was a failure. See contents of 'fail' object.
}

}
Just as with the HTTP Requestor, check Chapter 2 and Chapter 3 if you want a reminder of
how this all works.

Now that both Requestors have a search () method; we can add that method to the
IRequestor interface. Modify IRequestor. as like so:

package graph.apis.base {
import flash.events.IEventDispatcher;
import graph.GraphRequest;

public interface IRequestor extends IEventDispatcher {

[1681

Chapter 5

function request(a_request:GraphRequest):void;
function attemptToAuthenticate(...permissions):void;
function initialize():void;
function search(a_query:String = "", a_type:String = ""):void;

}

}
This means we don't have to cast _requestor as an HTTPRequestor in
CustomGraphContainerController.search() any more, so open
CustomGraphContainerController. as and alter that method:

override public function search(a_query:String = "", a_type:String =
"", a_userID:String = ""):void {
_requestor.search(a_query, a_type);

}
All that's left before we can test it is to change the constructor so that requestor is
created as an SDKRequestor rather than an HTTPRequestor. This is done as follows:

public function CustomGraphContainerController(a_graphControlContainer
:GraphControlContainer) {
super(a_graphControlContainer) ;
this._showListCounts = true;
this._showListFilters = true;
this._canShowSearchUI = true;

_requestor = new SDKRequestor();
addEventListenersToRequestor() ;
//we must wait for the Requestor to initialise before we can do

anything else with it
_requestor.addEventLi stener(Event.COMPLETE, onRequestorlnitiali ze);

_requestor.initialize () ;
}

[1691

Search Me

Save, compile, and upload the SWF. Load it in your browser - remember to use
sdkindex.html.

[H Vcmlizer >0>

CO michaelswebhost.com/visualii © Q [7r] © 3 Q / # M ^

| Zoom In | Zoom Out | Reset View | Search

Search •

Query:

Packt

Type:

C User

C Page

f" Euent

C Group

• Public Post

C Checkin

C My News Feed

C Friend's Posts:

Search n

M i
O michaelswebhost.com/visual

[List] (25) c]

name: » Packt like sardines in a crusfwl tin box.
A

category: Public-figures-other

id: 106807812689840

Pop Cut Lj

Great, it works!

What just happened?
We just added the same search functionality as before, but this time we made it work
via the SDK. Bear in mind that this means that the access token is automatically used,
if the user is authenticated.

Haue a go hero - setting the locale
Now that we can search for posts, how about restricting the search to posts written by
people with a specified locale?

You could hardcode the locale to use within the search () method, or (if you're comfortable
with manipulating XML) you could make your project pick one of the locales at random, from
http://www.facebook.com/translations/FacebookLocales.xml.

[1701

http://www.facebook.com/translations/FacebookLocales.xml

Chapter 5

Searching feeds and wall posts
The Graph URL search may be limited compared to Facebook's Full Search, but there are two
types of search that can only be done via the Graph API :

• Searching for specific i tems in your news feed

• Searching for things that a specific fr iend has posted

Time for action - searching your news feed
Your news feed is the list you see when you log in to the Facebook website ; all the status
updates, links, videos, and photos that your fr iends (and other Graph website to which you
are subscribed, such as pages you "like") have posted.

We've seen that we can access this feed through your profile's home connection:

https://graph.facebook.com/me/home?access_token=«access_token»

which returns a Graph List, as you'd expect.

We can search within this feed by specifying a value for the q parameter :

https://graph.facebook.com/me/home?q=test&access_token=«access_token»

"data": [{
"id" : "151673724649_415202504649" ,
"from": {

"name": "Activetuts",
"category": "Products_other",
"id": "151673724649"

h
"message": "Test Your Observation Skills With an AS3
Difference Game \u2013 Active Premium",

"link": "http://feedproxy.google.com/~r/Flashtuts/~3/
i8-bZF-Mvhc/",

"description": "Today, we have another Active Premium
tutorial exclusively available to Premium members. If you
want to take your ActionScript skills to the next level,
then we have an awesome tutorial for you, courtesy of
Stephan Meesters",

"type": "link",
"ere at ed_t i me": "2010-07-28T11:07:12 + 0000",
"updat ed_t ime": "2010-07-28T11:07:12 + 0000"

}
] ,
"paging": {

[1711

https://graph.facebook.com/me/home?access_token=%c2%abaccess_token%c2%bb
https://graph.facebook.com/me/home?q=test&access_token=%c2%abaccess_token%c2%bb
http://feedproxy.google.com/~r/Flashtuts/~3/

Search Me

"previous": "https://graph.facebook.com/61300894/
home?q=test&access_token=«access_token»&limit=2 5&since=
2010-07-2 8T11%3A0 7%3A12 %2B0 00 0",

"next": "https://graph.facebook.com/613 00 8 94/home?q=test&access
token=«access token»&limit=2 5&until=2010-07-20T15%3A01%3A01%2B0 00 0"

What just happened?
Perhaps this should be thought of more as a filter than a search. Regardless, the end result is
a Graph List of posts from your news feed containing the specified query.

The search terms don't have to appear in the actual text of the post; suppose it's my friend
Bill's birthday. If I load:

https://graph.facebook.com/me/home?q=Bill&access_token=«access_token»

then I will see:

• My own post on Bill's wall, saying "Happy Birthday, Bill!" (because the post contains
the word "Bill")

• My friend Bob's post on Bill's wall, saying "Happy Birthday!" (because the person
receiving the post is called "Bill" - which means that there are two reasons for my
own post to be in these results)

• Bill's post saying "Thanks for the birthday wishes, everyone!" (because his
name is Bill)

Unfortunately there's no way to narrow this down and specify where you want to look for
matches - at least, not using a Graph Search URL.

You're probably wondering whether we can substitute another person's User ID instead of
"me", and thus see what posts will be appearing in their news feed. We can't do this, for
privacy reasons, but we can do something similar.

Time for action - searching a friend's Wall Posts
It's confusing that the Graph URL for your news feed (which you'll see when you log in) is:

https://graph.facebook.com/me/home?access_token=«access_token»

The link to your wall is:

https://graph.facebook.com/me/feed?access_token=«access_token»

It's just something to memorize, I'm afraid.

[1721

https://graph.facebook.com/61300894/
https://graph.facebook.com/613
https://graph.facebook.com/me/home?q=Bill&access_token=%c2%abaccess_token%c2%bb
https://graph.facebook.com/me/home?access_token=%c2%abaccess_token%c2%bb
https://graph.facebook.com/me/feed?access_token=%c2%abaccess_token%c2%bb

Chapter 6

Now, while we can't access someone else's home connection, we can access their f eed
connection as long as they're a friend; in other words, we can get data from:

h t t p s : / / g r a p h . f a c e b o o k . c o m / « u s e r n a m e » / f e e d ? a c c e s s _ t o k e n = « a c c e s s _
token»

And we can actually run a search query on this list:

h t t p s : / / g r a p h . f a c e b o o k . c o m / « u s e r n a m e » / f e e d ? q = « q u e r y » & a c c e s s _
token=«access _ token»

Try loading that URL

What just happened?
The result is probably not what you expected.

Unlike the f eed URL, adding a query parameter does not act like a filter here. Instead of
retrieving all the posts on the user's wall that contain the search terms, this URL will retrieve
everything the user has posted which contains the search terms. (And even then, you'll only
be able to see things that are posted publicly or on the walls of friends.)

For example, on Bill's f eed connection list, I can see all sorts of birthday wishes to Bill:

h t t p s : / / g r a p h . f a c e b o o k . c o m / B i l l S m i t h / f e e d ? a c c e s s _ t o k e n = « a c c e s s _ t o k e n »
{

"da ta " : [
{

" i d " : "« redacted»" ,
" f rom": {

"name": "Joe Q Bananas ",
" i d " : "«redacted»"

}.
" t o " : {

"da ta " : [
{

"name": " B i l l Smith" ,
" i d " : "«redacted»"

}
]

h
"message": "Happy B i r thday B i l l ! ! Have a Good o n e ! ! " ,
" t ype" : " s t a t u s " ,

}.
{

" i d " : "« redacted»" ,

[1731

https://graph.facebook.com/%c2%abusername%c2%bb/feed?access_token=%c2%abaccess_
https://graph.facebook.com/%c2%abusername%c2%bb/feed?q=%c2%abquery%c2%bb&access_
https://graph.facebook.com/BillSmith/feed?access_token=%c2%abaccess_token%c2%bb

Search Me

" f rom": {
"name": "JohnSmi t h " ,
" i d " : "«redacted»"

}.
" t o " : {

"da ta " : [
{

"name": " B i l l Smith" ,
" i d " : "«redacted»"

}
]

h
"message": "happy b i r thday b i l l " ,
" t ype" : " s t a t u s " ,

}
] ,
"paging" : {

" p r e v i o u s " : " h t tps : / /graph . facebook .com/502 63 0189/feed? &access_
token=«access_token»&l imit = 2 5&since = 2 010-08 -01T12 %3A0 9%3A34 %2B0 00 0" ,

" n e x t " : "h t tps : / /g raph . facebook . com/5 02 63 018 9/feed?&access_
token=«access_token»&l imit = 2 5&unt i l = 2 010-07-31T08 %3A5 9%3A06 %2B0 00 0"

}

}
When we search for the term " b i r t h d a y " within the same connection, however, we see the
following output:

h t t p s : / / g r a p h . f a c e b o o k . c o m / B i l l S m i t h / f e e d a c c e s s _ t o k e n = « a c c e s s _
token»&?q=bi r thday

{

"da ta " : [
{

" i d " : "« redacted»" ,
" f rom": {

"name": " B i l l Smith" ,
" i d " : " « redac ted»" , "

}.
" t o " : {

"da ta " : [
{

"name": " Je r r y Johnson" ,
" i d " : " « redac ted»" , "

}
]

[1741

https://graph.facebook.com/502
https://graph.facebook.com/5
https://graph.facebook.com/BillSmith/feed

Chapter 6

}.
"message": "Happy birthday mate!",
"type": "status",

}
] ,
"paging": {

"previous": "https://graph.facebook.com/ 502630189/
feed?q=birthday&access_token=«access_token»&limit=2 5&since=2010-07-
2 7T22 %3A0 8 %3A16 %2B0 00 0",

"next": "https://graph.facebook.com/502 63 0189/
feed?q=birthday&access_token=«access_token»&limit=2 5&until=2010-07-
2 3T12 %3A2 2 %3A4 7%2B0000" }

}
All I can see is the birthday wish that Bill posted on our mutual friend Jerry's wall. I can't
even see my own birthday greeting on Bill's wall.

It's also possible to see posts that the user has made on a Page, an Event, or a Group.
Overall, it's a very different set of data to the base feed connection.

Time for action - searching feeds through the Visualizer
Let's get these two new types of search into our application.

Presumably the purpose of the bottom three fields is a lot clearer now:

Search •

Query:

Type:
O User
C' Page
(Euent
(Group
f Public Pest
(Checkin

[1751

https://graph.facebook.com/
https://graph.facebook.com/502

Search Me

My News Feed searches /me/home, and Friend's Posts searches /«username»/feed,
where «username» is the value typed into the textbox.

Let's first add the My News Feed search to both Requestors. The only change we have to
make is to the URL that gets requested; instead of /search we use /me/home. The Search
window returns "home" as the value of type if My News Feed is checked, so modify the
search () method in HTTPRequestor. as as shown in the following code:

public function search(a_query:String = "", a_type:String = ""):void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables();

if (a_type == "home") {
urlRequest.url = "https://graph.facebook.com/me/home";

}
else {
urlRequest.url = "https://graph.facebook.com/search";

}
variables.metadata = 1;
if (accessToken != "") {
variables.access_token = accessToken;

}
variables.q = a_query; //not variables.query!
variables.type = a_type;
urlRequest.data = variables;

loader.addEventListener(Event.COMPLETE, onGraphSearchComplete);
loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);
loader.load(urlRequest) ;

}
Similarly, make the following changes to the search () method inside SDKRequestor. as:

public function search(a_query:String = "", a_type:String = ""):void {
var urlStub:String;
if (a_type == "home") {

urlStub = "/me/home";
}
else {

urlStub = "/search";

[1761

https://graph.facebook.com/me/home
https://graph.facebook.com/search

Chapter 6

Facebook.api(
urlStub,
searchComplete,
{ metadata: 1, q:a_query, type:a_type }

) ; }
We don't need to change anything else, as these searches will still return a Graph List.
Test it out:

m\
|M] Visualize!

C O michaelswebhost.com/visual © El © flQ/lli

Zoom In | Zoom Out | Reset Vieuj | Search

Query:

I birthday

Type:

C1 User

© Page

C Euent

9 Group

© Public Post

C Checkin

O My News Feed

C Friend's Posts:

"tîII-

[L i s t] (2 5) •

actions: [object Object] , [object Object]

from: [object Object]

t o ; [object Object] _
id:
message: Happy Birthday, Hope you had a

good dû y : - j

type: status

updated.time: 2 Q l ü - l l - 0 9 T 0 9 : S 7 : 4 9 + 0 0 0 0

c r e a t e d - t i m e ; 2 0 i o - i i - o 3 T 2 i : 0 9 : 3 6 + o o o o

comments: [object Object]

_
Pop Out

Success. Adding the Friend's Posts search will be a little trickier, but not much. First we have
to allow the Requestors' search () functions to accept another parameter: User ID.

Open iRequestor. as and add this parameter to the function signature:

package graph.apis.base {
import flash.events.IEventDispatcher;
import graph.GraphRequest;

public interface IRequestor extends IEventDispatcher {
function request(a_request:GraphRequest):void;
function attemptToAuthenticate(...permissions):void;

[1771

Search Me

function initialize():void;
function search(a_query:String = "", a_type:String

userlD:String = ""):void;

Now, open HTTPRequestor. as and SDKRequestor. as and edit their implementations of
search () to accept this parameter:

public function search(a_query:String = "", a_type: String = "", a_
userlD: String = "") :void

If the Friend's Posts radio button is selected, then the Search window will return "feed"
as the value of a_type. Remember, in this situation we need to query the /«username»/
feed URL, so in HTTPRequestor. as, modify the search () function as follows:

public function search(a_query:String = "", a_type: String = "", a_
userlD: String) :void {

var loader :URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables : URLVariables = new URLVariables() ;

if (a_type == "home") {
urlRequest.url = "https://graph.facebook.com/me/home";

}
else if ((a_type == "feed") && (a_userID 1= ""))
{

urlRequest.url = "https://graph.facebook.com/";
urlRequest.url += a_userID + "/";
urlRequest.url += "feed";

}
else {
urlRequest.url = "https://graph.facebook.com/search";

variables.metadata = 1;
if (accessToken != "") {
variables.access_token = accessToken;

}
variables.q = a_query; //not variables.query !

[1781

https://graph.facebook.com/me/home
https://graph.facebook.com/
https://graph.facebook.com/search

Chapter 6

variables.type = a_type;
urlRequest.data = variables;

loader.addEventListener(Event.COMPLETE, onGraphSearchComplete);
loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);
loader.load(urlRequest) ;

}
Make a similar change in SDKRequestor. as:

public function search(a_query:String = "", a_type:String = "", a_
userlD:String = ""):void {

var urlStub:String;
if (a_type == "home") {
urlStub = "/me/home";

}
else if ((a_type == "feed") && (a_userID != ""))
{

urlStub = "/" + a_userID + "/feed";
}
else {
urlStub = "/search";

}
Facebook.api(
urlStub,
searchComplete,
{ metadata: 1, q:a_query, type:a_type }

) ;
}

Finally, modify CustomGraphContainerController. as so that its search () method
passes the User ID to the Requestor's search () method:

override public function search(a_query:String = "", a_type:String =
"", a_userID:String = ""):void {
_requestor.search(a_query, a_type, a_userID);

}

[1791

Search Me

That's all that is needed. Test it out as shown in the next screenshot:

m
I Vis-ualizer x

O O michaelswebhost.com/visua © O S ® fl-H # SI <

| Zoom In | Zoom Out | Reset Vieuj | Search

Search •

Query:
birthday

Type:

C User

f Page

V Euent

C* Group

Public Post

Checkin

f* My News Feed

O Friend's Posts:

532!. j i i

[ust] ¡:D
aCtiOhS: [object Object],[object Object]

f r o m : [object Object]

tO: [o b j e c t O b j e c t]

created, time: 20t0-n-aaT2ii:i3:3s+aaaa
id: | |

m

: :• i ciw tn
m e s s a g e : Happy Birthday, Hope kqu had a
good day :-)

t y p e status

updated_time: 2uiu-n-03T03S7:49+0000
comments: [object Object]

Pop Out 3

< C

Cool.

What just happened?
You've built two types of extra search functionality into your application:

• Search posts in your news feed

• Search posts by a specific friend

Since your news feed is made up of posts by friends (and other Graph Objects that you've
subscribed to), the first post is essentially the same as the Posts by friends options that is in
the Full Search but was missing from the Search URL.

Searching posts made by a specific friend is something that cannot be done through
the Facebook website. Congratulations! Your application now has more functionality
than Facebook.

[1801

Chapter 6

Did you notice that we still passed the type parameter to the Graph API, even when we
weren't using a search that needed it? Technically we don't need to do that, but it doesn't
hurt to leave it there. Feel free to improve the code so that the type is not passed if it's
"feed" or "home", though.

Summary
We've learned a lot about how to find data in the Graph. Are you surprised by how limited
our search options are? After all, even the website search can be narrowed down with more
options than we have available.

Don't worry - in Chapter 7 we'll see how to use a more powerful resource than Graph URLs
to search and sort data from the Graph. But before that, I think it's time we stopped merely
looking at Graph data, and started creating some of our own. That's what we'll cover in the
next chapter.

Key takeaways:

• The basic search query Graph URL is: https : //graph. f acebook. com/
search?type=«type»&q=«query»

• The type parameter can be any of the following:

• page
• post (which is the default, if type is unspecified)

• event
• group
• user
• checkin
• place

• If type is set to place, then two other parameters are required:

• center, a location specified by a latitude and longitude, separated by
a comma

• distance, the maximum distance in meters from the center location that
the place being searched for can be

• Search data is returned in Graph List JSON format, not as a Compound Object

• Paging works; all Graph Lists of results support offset/limit paging, and since/
until paging is supported when sensible (example for posts)

• You can also provide an access token in the URL, using access_token=«access_
token» as usual

[1811

Search Me

• Without an access token, certain types of search (like user) cannot be performed

• When using an access token, search results are tailored to the authorized user:
people are ranked higher in the search if they live nearby, for example

• Some search types require a certain extended permission to be granted before
returning any results-see http: //developers . facebook. com/docs/
authentication/permissions for more details

• You can set the locale of certain properties of JSON objects returned by using the
locale URL parameter: https : / /graph, facebook. com/«id»?locale=f r_FR

• You can also filter Post search results to only shows those made by people that use a
certain locale: https : //graph. facebook. com/search?type=post&q= «query
»&locale=fr_FR

• A full list of locales is available at http: / /facebook. com/translations/
FacebookLocales.xml

• You can filter the entries from your news feed using this Graph URL:
https://graph.facebook.com/me/home?access_token=«access_
token»&q=«query»

• You can filter the Graph for everything that a given friend has posted using this
Graph URL: https://graph.facebook.com/«username»/feed?access_
token=«access_token»&q=«query»

Pop Quiz
1. What's gone wrong if the results you obtain from a Graph URL search don't match

those from a website search?

a. Incorrect parameters were passed to the Graph URL

b. An incorrect Graph URL was used

c. A user's privacy settings don't allow applications to access their data

d. Potentially any of the above

2. What's odd about the results you get from https : //graph. facebook.
com/«username»/feed?q=«query» and those you get from https://graph.
facebook.com/«username»/feed?

a. They can be obtained even if the user's privacy settings are turned all the
way up

b. The first doesn't act as a filter for the second, unlike all the other Graph
Search URLs

c. The two URLs always return exactly the same JSON as each other

[1821

https://graph.facebook.com/me/home?access_token=%c2%abaccess_
https://graph.facebook.com/%c2%abusername%c2%bb/feed?access_
https://graph

Chapter 6

3. What difference does it make to use an access token when searching through a
Graph URL?

a. Results are personalised so that more relevant results rank higher

b. Results are returned faster

c. More search parameters are available

d. More types of search (like user) can be used

[1831

6
Adding to the Graph

We've spent a lot of time observing the Graph, both as anonymous outsiders
and as authenticated users. We understand the different types of node and the
connections between them. Now it's time to create some of our own.

In this chapter, you will learn:

• How to create new Graph Objects using the Graph API

• How to delete existing objects from the Graph

• The limitations of the Graph API for adding to the Graph versus the
Facebook website

Let's get started...

Hello, Facebook!
I'm not usually a fan of "Hello World" applications, but it's so relevant here that I will make
an exception. We'll start by posting a message to the logged-in user's Wall.

Time for action - posting to the user's feed
We'll keep it simple to start with. Just let the user enter a line of text, and post it to
their Wall.

Adding to the Graph

The Visualizer project contains a Ul window for doing this—it looks like the
following screenshot:

Post to Wall •

Message:

Post

To make this window appear, we must enable another hidden option in
CustomGraphContainerController. as. Open that file and tell it that we want to use
"basic" publishing capabilities by adding the line highlighted in the following code:

public function CustomGraphContainerController(a_graphControlContainer:
GraphControlContainer)

{
super(a_graphControlContainer);
this._showListCounts = true;
this._showListFilters = true;
this._canShowSearchUI = true;
this._publishingCapability = PublishingCapabilities.BASIC;

_requestor = new SDKRequestor();
addEventListenersToRequestor() ;
//we must wait for the Requestor to initialise before we can do
// anything else with it
_requestor.addEventLi stener(Event.COMPLETE, onRequestorInitiali ze);

_requestor .initializeO ; } "

You must import the PublishingCapabilities class for this to compile, so do so:

import graph.controls.publishing.PublishingCapabilities;

[1861

Chapter 6

Compile and upload the application, then load it in your browser. Load your profile's feed
connection, and notice the new Publish button that appears:

<- O © michaelsviefchost.com/visuali O O [ZD 3 0 / f S ^
I Zoom Out I Reset View

Michael Jame; Williams

R
laît-name: Williams

locale: en.SB

updated, time: 20io-og-ist20:3S:oi+oooo
ObOUt r
link:

name
Connections | Hide

boots

feed

likes

family b

Clicking on this button will make the Post to Wall window appear.

m . ! [M| VisuaLizei

CO rnichaelswebhost.com/visuali 0 ® © a q

Michael James Williams

Zoom In I Zoom Out | Reset View | Search

Michael Jarr

Pi
laft.hame: Williams

locale en.GB

Id: 61300894
updated.time 20ia-0G-i6T20:3a:ai+a000
about: Tujltttr: ©MlchwIJW

link
http : / / w w w .facebook .com/mlchaeljameiwilliams name
Connections | Hide

books J

feed

likes _
family

-

Feed [L i f t] (2 5)

http://wijuw.wired.eom/wiredscience/2010/il/c
atf-lapping/

actions: I abject ObjectXCabject Object] name: » Hgh-Speed Video Reueafc Cat;'

Secret Tongue Skills frntn

HI *

[1871

http://wijuw.wired.eom/wiredscience/2010/il/c

Adding to the Graph

When the user types in their message and clicks on Post, we want the message
to get posted to their Wall. At the moment, the code is set up to pass an AS3
object containing the message to a method called publish () in the class which
CustomGraphContainerController extends. Just as in previous chapters, we'll override
this method and write new code to handle the Facebook integration.

In CustomGraphContainerController. as, add this function:

override public function publish(a_publishObject:PublishObject):void {
super.publish(a_publishObject) ;

}
The PublishObj ect class contains a property called message that holds the message
which the user typed into the Post to Wall window. We need to import this class:

import graph.apis.base.PublishObj ect;

That takes care of the Ul. Next, we'll pass this object to a method inside our Requestor
to deal with publishing the post on Facebook. Add a new function, publish () , to
IRequestor.as:

package graph.apis.base {
import flash.events.IEventDispatcher;
import graph.GraphRequest;

public interface IRequestor extends IEventDispatcher {
function request(a_request:GraphRequest):void;
function attemptToAuthenticate(...permissions):void;
function initialize():void;
function search(a_query:String = "", a_type:String = "",
a_userID:String = ""):void;

function publish(a_publishObject:PublishObject):void;
}

}
The PublishObj ect instance contains all of the information that we need, so it's the only
parameter we'll pass to this method.

Now add stub publish () functions to both SDKRequestor. as and HTTPRequestor. as:

public function publish(a_publishObject:PublishObject):void {

}
[1881

Chapter 6

You will also need to import PublishObject in both of those classes:

import graph.apis.base.PublishObject;

We'll start, as usual, by writing the code for HTTPRequestor, so change the line in the
constructor function of CustomGraphContainerController. as that instantiates the
_requestor object so that it creates an HTTPRequestor:

_requestor = new HTTPRequestor();

Finally, change CustomGraphContainerController. as so that its publish () method
calls the publish () method of the Requestor:

override public function publish(a_publishObject:PublishObject):void {
super.publish(a_publishObj ect) ;
_requestor.publish(a_publishObj ect);

}
Everything's in place, but how do we post the message from the Visualizer to our actual
Facebook Wall?

Request methods
Publishing a message to a user's Wall isn't any more complex than filtering information
from it—we use the Graph URL, https : //graph, facebook. com/me/feed, and pass it
two parameters:

• The access token, and

• The message to post

The difference comes in how we pass those parameters. We cannot simply load the URL
anymore. Try it yourself: browse to https : / /graph, facebook. com/me/feed?access_
token=«access_token»&message=Hello. It will return your feed in JSON format, but
won't post to it.

We still use a URLLoader and a URLRequest, but we use a different request method.

What's a request method?
An HTTP request method is a way of telling the web server what kind of action we want it
to take when we ask it for a page or some other resource.

By default, an AS 3 URLRequest uses an HTTP request method called GET; this is a "safe"
method, so-called because it doesn't ask the server to change any information, merely to
pass some back—which is all what we've needed up to this point in the book.

[1891

Adding to the Graph

Publishing a wall post obviously causes a change, so we should use an "unsafe" method—
in this case, POST. This is the same method used when submitting a web page form that
changes or adds some data, like when ordering a book from Amazon.

For security reasons, Flash Player 10 and above will allow only the POST
method to be used if the user initiates the load. This means that your
application cannot post to the Graph automatically (for instance, based
on how long the user has been logged in); instead, you must always
publish from, say, a button's MOUSE_CLICK event handler function.

Time for action - using the POST method
1. To specify that we want to use the POST method, we change the method property

of URLRequest (after all, POST is a request method). Another class, flash, net.
URLRequestMethod, contains consts with all the permitted values, so import it in
HTTPRequestor.as:
import flash.net.URLRequestMethod;

2. We set up the URLLoader, URLRequest, and URLVariables instances in the
same way as we do in the request () and search () methods:

public function publish(a_publishObject:PublishObject):void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables();

}
3. Because we want to post to our own Wall, we use our profile's feed connection as

the URL—there's no separate Post to Wall URL:

public function publish(a_publishObject:PublishObject):void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables();

urlRequest.url = "https://graph.facebook.com/me/feed";
}

4. Now we use the POST const from the URLRequestMethod class to set the
request method:

public function publish(a_publishObject:PublishObject):void {

[1901

https://graph.facebook.com/me/feed

Chapter 6

var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables () ;

urlRequest.url = "https://graph.facebook.com/me/feed";
urlRequest.method = URLRequestMethod.POST;

}
5. The URL parameters required are the message (which can be found in the

PublishObj ect parameter) and the accessToken. Add them like so:

public function publish(a_publishObject:PublishObject):void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables();

urlRequest.url = "https://graph.facebook.com/me/feed";
urlRequest.method = URLRequestMethod.POST;

if (this.accessToken != "") {
variables.access_token = this.accessToken;

}
variables.message = a_publishObject.message;
urlRequest.data = variables;

}
6. Next, add the usual event listeners to the URLLoader, and tell it to start loading

(which in this case means posting):

public function publish(a_publishObject:PublishObject):void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables();

urlRequest.url = "https://graph.facebook.com/me/feed";
urlRequest.method = URLRequestMethod.POST;

if (this.accessToken != "") {
variables.access_token = this.accessToken;

}
variables.message = a_publishObject.message;

[1911

https://graph.facebook.com/me/feed
https://graph.facebook.com/me/feed
https://graph.facebook.com/me/feed

Adding to the Graph

urlRequest.data = variables;

loader.addEventListener(Event.COMPLETE, onPublishComplete) ,
loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);
loader.load(urlRequest);

7. Create an event handler function for the COMPLETE event:

private function onPublishComplete(a_event:Event):void {
dispatchEvent(new DialogEvent(DialogEvent.DIALOG,

"Publish complete!"));

Remember, the DialogEvent can be used to display a dialog box T
() within the Visualizer project, containing any message you please. You'll I

v3 need to import events . DialogEvent to use it, though. I

Compile, upload, and execute the SWF and you will find that... it doesn't work.

What just happened?
To find out why this didn't work, we can add a new type of event listener to the
URLLoader—an HTTPStatusEvent listener.

This type of event is returned by the server and dispatches before the IO ERROR or
COMPLETE events. Its status property contains the "HTTP code" of the response, which is
a simple shorthand to explain the response status. For example, 4 04 is an HTTP status code
meaning "Not Found". There's a full list at http: / /en. wikipedia. org/wiki/List_of_
HTTP_status_codes, but in general you will see:

• 2 0 0: If there were no problems

• 4 0 0: If the request you sent was badly formed (most likely due to a typo in the
URL variables)

• 4 03: If you are not allowed to access whichever resource you requested

• 4 04: If the resource that you requested was not found on the server

• 500: If there was another problem (like insufficient permissions)

(You may also see 0 if Flash Player is unable to detect the HTTP response code due to some
condition in its environment.)

This can be useful additional information to have to help narrow down an IO ERROR
problem, or to detect a problem that doesn't dispatch an IO ERROR event.

[1921

Chapter 6

So, to find out what's causing the problem, let's add an event listener to our URLLoader.

Time for action - listening for errors
1. To listen for the HTTPStatusEvent, we must first import the class to

HTTPRequestor.as:
import flash.events.HTTPStatusEvent;

2. Next, add the listener to the URLLoader within the publish () method:

public function publish(a_publishObject:PublishObject):void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables();

urlRequest.url = "https://graph.facebook.com/me/feed";
urlRequest.method = URLRequestMethod.POST;

if (this.accessToken != "") {
variables.access_token = this.accessToken;

}
variables.message = a_publishObject.message;
urlRequest.data = variables;

loader.addEventListener(Event.COMPLETE, onPublishComplete);
loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);
loader.addEventListener(HTTPStatusEvent.HTTP_STATUS,
onHTTPStatusReturned);

loader.load(urlRequest);
}
...and add a handler function:

private function onHTTPStatusReturned(a_event:HTTPStatusEvent):void {
di spatchEvent(new DialogEvent(DialogEvent.DIALOG,

"HTTP status: " + a_event.status));
}

[1931

https://graph.facebook.com/me/feed

Adding to the Graph

3. For the full gamut of response collection, we might as well add a "security error"
event listener; this type of event is dispatched to report some of the types of
security errors that occur while trying to do some sort of asynchronous operation
(like load data).

import SecurityErrorEvent:
import flash.events.SecurityErrorEvent;

...add an event listener to the URLLoader:
public function publish(a_publishObject:PublishObject):void {

var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables();

urlRequest.url = "https://graph.facebook.com/me/feed";
urlRequest.method = URLRequestMethod.POST;

if (this.accessToken != "") {
variables.access_token = this.accessToken;

}
variables.message = a_publishObject.message;
urlRequest.data = variables;

loader.addEventListener(Event.COMPLETE, onPublishComplete);
loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);
loader.addEventListener(HTTPStatusEvent.HTTP_STATUS,

onHTTPStatusReturned);
loader.addEventListener(SecurityErrorEvent.SECURITY_ERROR,
onSecurityError);

loader.load(urlRequest); }
...and create a handler function:

private function onSecurityError(a_event:SecurityErrorEvent):void {
dispatchEvent(new DialogEvent(DialogEvent.DIALOG,

"Security error: " + a_event.text));
}

[1941

https://graph.facebook.com/me/feed

Chapter 6

4. Compile, upload, and execute the Visualizer, and try to post on your own Wall again.

It still won't work, but you'll see a dialog like this:

Dialog •

HTTP status: 403

OK

What just happened?
The dialog says HTTP status: 403. As mentioned earlier, this means that we are not allowed
to access the resource that we were trying to access—that is, we're not allowed to post to
the Wall. In other words, we don't have permission... or rather, we haven't been granted the
extended permission required.

It's possible that you'll see an HTTP status code response of 5 0 0,
instead. That's okay—it's a fairly generic error message which means
"there was a problem," in this case. The cause is likely still the lack of
the extended permission.
Of course, if you had granted your application the permission
needed earlier in the book, you won't have seen any problems at all!

Time for action - granting the required permission
1. Before this can work, we must grant the application the publish_stream

extended permission, so alter the onRequestorlnitialize () function within
CustomGraphContainerController . as, like so:

private function onRequestorlnitialize(a_event:Event):void
{

jrequestor.attemptToAuthenticate(
ExtendedPermissions.READ_STREAM,
ExtendedPermissions.PUBLISH STREAM);

[1951

Adding to the Graph

2. Compile, upload, and try it again. You'll see the Request for permission pop up
when you load the page:

a ss I Facebook | Request for permission - GoogCe Chrome

(_) vwAwiacebook.com/connect/uiserver̂
n Request for permission

MichaeUW's Visualizer is requesting permission to do the following

SPost to my Wall

MichaeUW's Vlsuallzer may post status messages, notes, photos
and videos to my Wall

Report application

MichaeUW's Visualizes

Logged In as Michael James Williams {Not you?) Don't allow

3. Click on Allow, then open your feed List Renderer, and click on Publish. Enter some
text in the box:

Post to Wall •

Message:

Hello World!

Post

.and click on Post. Check your Wall on the Facebook website:

Michael James Williams Hello World!
5 seconds ago via MichaeUW's Visualiier fl 1 Like • Comment

Did it work?

[1961

Chapter 6

If so, congratulations! If not, check that:

• Your access token is still valid,

• Your URLVariables parameters have the correct names, and

• You have definitely granted the application the correct permissions (check your
Application Settings on the Facebook website)

What just happened?
You've successfully published data on Facebook without using the Facebook website itself.

On your Wall post, check out the "via" text—it's a link to your application's profile page.
This helps prevent developers from impersonating users or applications; everyone can
see which application made the post. It also helps your application to spread, as other
Facebook users can see the posts that your application makes and click the link to find
out how to install.

You may find it annoying to have a dialog pop up with the HTTP status code every
single time, so I recommend changing the onHTTPStatusReturned () method inside
HTTPRequestor. as so that it displays the dialog only if there's a problem—that is, if the
HTTP code returned is anything other than 200 or 0:

private function onHTTPStatusReturned(a_event:HTTPStatusEvent):void {
if ((a_event.status != 0) && (a_event.status != 200))
{

dispatchEvent(new DialogEvent(DialogEvent.DIALOG, "HTTP status:
" + a_event.status)); }

}
We've managed to create a post from scratch; now let's do it using the SDK.

Time for action - posting via the SDK
There are two ways to post data to Facebook using the SDK. The first involves the
Facebook. api () method that we've been using all along, so let's start with that.

Normally, we pass three parameters to this method:

• A URL stub

• A callback function

• An AS3 object containing the arguments to pass to Facebook (in this case,
just message)

[1971

Adding to the Graph

When publishing, we need to pass a fourth variable:

• The HTTP request method to use

From our work with the HTTP Requestor, you already know that this needs to be POST. So,
modify the publish () method of SDKRequestor. as, like so:

public function publish(a_publishObject:PublishObject):void {
var urlStub:String = "/me/feed";
Facebook.api(urlStub, publishComplete,

{ message:a_publishObject.message },
URLRequestMethod.POST

) ;
}

Make sure that you import flash, net. URLRequestMethod.

Next, you'll need to create the publishComplete () function to be used as a callback:

private function publishComplete(result:Object, fail:Object):void {

}
We don't need to add event listeners for HTTP statuses or security errors when using
the SDK; just check whether the result is null; if so, more details should be in the
fail object:

private function publishComplete(result:Object, fail:Object):void {
if (result != null)
{

dispatchEvent(new DialogEvent(DialogEvent.DIALOG,
"Publish complete!"));

}
else
{

dispatchEvent(new DialogEvent(DialogEvent.DIALOG,
"Publish failed. Details: " + String(fail)));

}
}

Make sure that you import events . DialogEvent if you want to use it.

[1981

Chapter 6

That's all that we need to do. Open CustomGraphContainerController. as and
instantiate the Requestor as an SDK Requestor in the constructor function:

_requestor = new SDKRequestor();

We've already granted our application the publish_stream extended permission, so
there's no need to do that again, but feel free to remove it and request it again. (See Chapter
3 for more information.)

Compile the Visualizer, upload it, and load it in your browser, making sure that you go to the
right web page. The results should be the same as with the HTTP Requestor:

R Michael James Williams Hello World!
5 seconds ago via MichaelJWs Visualizer A 1 Like 1 Comment

If not, check the dialog box to see what information the fail object contains.

What just happened?
You're now able to post to your own Wall either through the custom code we built, or
through the official SDK. In both cases, a URLRequest is used, though the SDK encapsulates
it so that you don't have to deal with it.

As mentioned earlier, the SDK contains two methods for posting to the Graph—the second is
to use the Facebook. postData () method. This takes three arguments:

• A URL stub

• A callback function

• An AS3 object containing the arguments to pass to Facebook

...and posts them to Facebook. Under the surface (at least at the time of writing), all it does
is call the Facebook. api () method that we're using, passing it the three arguments listed,
plus POST. This means that there's no important difference between the two, so it doesn't
matter which one you use.

Going further with Wall Posts
The simple message we just posted is properly called a Status Message, which is defined
as a single piece of text, posted on the user's own Wall (see http: //developers .
facebook. com/docs/reference/api/status). If you look at the metadata of the
Graph Object representing the Wall post that you just created in your feed, you'll see its
type property is status.

[1991

Adding to the Graph

But Wall posts can feature more than just plain text:

Michael James Williams

Michael found a lost Groovy Cow on their farm. Oh no!
Michael was tending their cows when a confused but charming Groovy Cow
caught their eyes! This Groov...
See more

^ 3 seconds ago via FarrnVille i Comment Like Adopt the Groovy Cow

Williams
Michael's chickens are mighty hungry!
Michael could use some help feeding their chickens! Happy, fed chickens give
more Mystery Eggs!

^ 18 seconds ago via FarrnVille fl Comment Like Feed their chickens

This type of Wall post is called a Post object by the Facebook documentation (http: //
developers . facebook. com/docs/ref erence/api/post). The distinction between a
Post and a Status Message is arbitrary, though, as Post objects still have a type property of
status and still use the same code interface. The practical difference is a Status Message
will appear beside your name on the Facebook website, while a Post will not.

Let's see how to create a Post.

Time for action - publishing rich posts
To avoid confusion, I'll use the term rich post to refer to a Wall post that uses more than
just plain text. Besides message, there are eight additional parameters we can pass to the
URLVariables object:

• picture
• link
• name
• caption
• description
• source
• actions
• privacy

[2001

Chapter 6

We'll concentrate on message, picture, link, name, caption, and description first,
and find out what they do by publishing a rich post that uses them.

The Visualizer can be configured to display a window with input fields for all
six of these parameters, instead of just message. To do so, find this line in
CustomGraphContainerController.as:

this._publishingCapability = PublishingCapabilities.BASIC;

...and replace it with this:

this._publishingCapability = PublishingCapabilities.COMPLETE;

When you click on the Publish button on your feed List Renderer, you'll see the
new window:

Post to Wall •

Message:

Picture URL:

I
Link URL:

I
Name:

Caption:

I
Description:

I
Post

The Post button still passes an instance of PublishObj ect to the same function,
publish (), in the class that CustomGraphContainerController extends. The
difference from before is that the PublishObject has more properties set.

Specifically, it can have any of these properties:

• message
• pictureURL: Corresponds to picture
• linkURL: Corresponds to link

[2011

Adding to the Graph

• linkName: Corresponds to name
• caption
• description

Our existing code already passes the instance of PublishOb j ect to the publish ()
method of whichever Requestor is currently being used, so those are the only methods we
need to alter.

Open HTTPRequestor. as and edit its publish () function like so:

public function publish(a_publishObject:PublishObject):void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables();

urlRequest.url = "https://graph.facebook.com/me/feed";
urlRequest.method = URLRequestMethod.POST;

if (this.accessToken != "") {
variables.access_token = this.accessToken;

}
variables.message = a_publishObject.message;
variables.picture = a_publishObject.pictureURL;
variables.link = a_publishObject.linkURL;
variables.name = a_publishObject.linkName;
variables.caption = a_publishObject.caption;
variables.description = a_publishObject.description;
urlRequest.data = variables;

loader.addEventListener(Event.COMPLETE, onPublishComplete);
loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);
loader.addEventListener(HTTPStatusEvent.HTTP_STATUS,

onHTTPStatusReturned);
loader.addEventListener(SecurityErrorEvent.SECURITY_ERROR,

onSecurityError);
loader.load(urlRequest) ; }

[2021

https://graph.facebook.com/me/feed

Chapter 6

Similarly, edit the publish () function in SDKRequestor. as:

public function publish(a_publishObject:PublishObject) : void {
var urlStub : String = "/me/feed";
Facebook.api(urlStub, publishComplete, {

message :a_publishObj ect.message,
picture :a_publishObj ect.pictureURL,
link:a_publishObject.linkURL,
name :a_publishObject.li nkName,
caption :a_publishObj ect.caption,
description :a_publishObj ect.description

URLRequestMethod.POST

Test the Visualizer on your host. Here's some test data from Wikipedia and
Wikimedia Commons:

• message: Hello Britain!

• picture: http://upload.wikimedia.org/wikipedia/commons/thumb/a/
ae/Flag_of_the_United_Kingdom.svg/2 0 Opx-Flag_of_the_United_
Kingdom.svg.png

• link:http://en.wikipedia.org/wiki/Union_Flag
• name: Union Flag

• caption: en.wikipedia.org

• description: The Union Flag, also known as the Union Jack, is the flag of the
United Kingdom

This is the result:

MichaelJames Williams Hello Britain!

Union Flag
en.wikipedia.org
The Union Flag, also known as the Union Jack, is the flag of the United
Kingdom.

f f i -4 seconds ago via MichaelJW's Visualizer fl • Like • Comment

[2031

http://upload.wikimedia.org/wikipedia/commons/thumb/a/
http://en.wikipedia.org/wiki/Union_Flag

Adding to the Graph

What just happened?
It's easier to see what the different properties represent with a labeled screenshot:

picture

¿ i (l i c h a e l J a i ï i e s Williams

message /
Hello Britain!

Union Flag
en.wikipedia.org

link & name
caption

The Union Flag, also known as the Union Jack, is the flag of the United
Kingdom.

f f l -4 seconds ago via MichaelJW's Visualiier Û 1 Like 1 Comment \
description

You don't have to use all of the properties possible in a rich post; look at these Farmville rich
posts again:

Michael James Williams
Michael found a lost Groovy Cow or their farm. Oh no!
Michael was tending their oows when a confused but charming Groovy Cow
caught their eyes! This Groov.,.
See more

3 seconds ago via FarmVille fi Comment Like Adopt the Groovy Cow

Michael James Williams
Michael's chickens are mighty hungry!
Michael could use some help feeding their chickens! Happy, fed chickens give
more Mystery Eggs!

18 seconds ago via FarmVille fi Comment Like Feed their chickens

These don't use a message or a caption.

It is common to allow only the user to set the message: if the user has just set a high score in
your game and you want to allow them to post about it on their Wall, you might allow them
to write a message while you set the image, link, description, and caption. This will help you
maintain your game's branding while your users spread the word about it on their Walls.

[2041

Chapter 6

A note on images: That small image in the post is still hosted on Wikimedia
Commons, but is accessed via a proxy PHP hosted on Facebook's
server—http: //platform, ak. fbcdn. net/ in this case. The
crossdomain. xml on that server is as follows:

<cross-domain-policy>
<site-control permitted-cross-domain-

policies="master-only"/>
<allow-access-from domain="*"/>

</cross-domain-policy>
This means that your application can access the BitmapData of the
image directly without any sandbox security issues, no matter where the
original image was hosted.

The actual Graph Object created looks like this:

{
"id": "«redacted»",
"from": {

"name": "Michael James Williams",
"id": "«redacted»"

}.
"message": "Hello Britain!",
"picture": "http://platform.ak.fbcdn.net/www/app_full_proxy.php?a

pp=«redacted»&v=l&size=z&cksum=«redacted»&src=http%3A%2F%2Fupload.
wikimedia.org%2Fwikipedia%2Fcommons%2Fthumb%2Fa%2Fae%2FFlag_of_the_
United_Kingdom.svg%2F200px-Flag_of_the_United_Kingdom.svg.png",
"link": "http://en.wikipedia.org/wiki/Union_Flag",
"name": "Union Flag",
"caption": "en.wikipedia.org",
"description": "The Union Flag, also known as the Union Jack,

is the flag of the United Kingdom.",
"icon": "http://graph.facebook.com/images/icons/hidden.gif",
"actions": [
{

{

"name": "Comment",
"link": "http://www.facebook.com/«redacted»/posts/«redacted»"

"name": "Like",
"link": "http://www.facebook.com/«redacted»/posts/«redacted»"

{
"description": "Friends only",

[2051

http://platform.ak.fbcdn.net/www/app_full_proxy.php?a
http://en.wikipedia.org/wiki/Union_Flag
http://graph.facebook.com/images/icons/hidden.gif
http://www.facebook.com/%c2%abredacted%c2%bb/posts/%c2%abredacted%c2%bb
http://www.facebook.com/%c2%abredacted%c2%bb/posts/%c2%abredacted%c2%bb

Adding to the Graph

"value": "ALL_FRIENDS"

"type": "link",
"ere at ed_t i me": " 2010-11-19T00:28:10 + 0000",
"updat ed_t ime": "2010-11-19T00:28:10 + 0000",
"attribution": "MichaelJW's Visualizer" }

Note the fields: message, picture, link, name, caption, description. For a non-rich
post (a Status Message), these fields simply aren't included, rather than being empty strings.

The icon and attribution fields refer to the application's settings: the icon is hidden .gif
because it hasn't been changed from the default. Note that there's no indication of the ID
of the application (other than in the URL of the image via proxy), so unfortunately we can't
figure out the link to the profile page of the application that posted this message using the
Graph API.

Something else to note: the type field is set to link rather than post. This means that
there are three separate types of Graph Object—Status Message, Post, and now Link
(http://developers.facebook.com/docs/reference/api/link)—which are
essentially the same, but with different amounts of data attached.

Haue a go hero
You know those quizzes of the formula, "Which (Member of Currently Popular Band)/
(Character in Classic Animated Movie)/(Type of Ice Cream) Are You?"

Make one of those in Flash. The actual Ul should be pretty easy to create, and the questions
should be fun to think up (I don't think those quizzes use particularly advanced expert
systems to make their match). The key part here is posting the data to the quiz taker's wall. A
rich post is perfect for this; you can include an image of the person/character/food that the
user was matched up with and a link to the quiz for others to take.

Posting to another Wall
The authenticated user is not the only one with a Wall. Everyone on Facebook has a Wall,
and so do all the Pages and Groups and Events. How can we post to those?

It's even simpler than adding new variables. We just change the URL that we want to post
to—to post to the Wall of Bob Smith (bob. smith), instead of https : //graph. facebook.
com/me/ feed we'd open a URLRequest to https : //graph. facebook . com/bob .
smith/feed (or, if using the SDK, use a Graph URL stub of /bob. smith/feed).

http://developers.facebook.com/docs/reference/api/link)%e2%80%94which

Chapter 6

The same is true for any other Object with a Wall: POST the message to https : //graph,
facebook. com/«ID»/f eed. You can publish rich posts to these too, and the JSON looks
the same.

You don't even need a different extended permission for this; publish_stream will let you
post to the user's Wall, the user's friends' Walls, and the Walls of Pages, Groups, Events, and
anything else with a feed.

Time for action - posting to another Wall using the Visualizer
The PublishObject that gets passed to the publish () method of the Requestor
contains a property, owner ID with the value of the ID of the Graph Object owning the
connection list whose Publish button was pressed.

This makes it very simple to construct the Graph URL (or Graph URL stub) required. Open
HTTPRequestor. as and modify the publish () method as follows:

public function publish(a_publishObject:PublishObject) : void {
var loader :URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables : URLVariables = new URLVariables() ;

urlRequest.url = "https://graph.facebook.com/";
urlRequest.url += a_publishObject.ownerID;
urlRequest.url += "/feed";
urlRequest.method = URLRequestMethod.POST;

if (this.accessToken != "") {
variables.access_token = this.accessToken;

}
variables.message = a_publishObject.message ;
variables.picture = a_publishObject.pictureURL;
variables.link = a_publishObject.linkURL;
variables.name = a_publishObject.linkName;
variables.caption = a_publishObject.caption;
variables.description = a_publishObject.description;
urlRequest.data = variables;

loader.addEventListener(Event.COMPLETE, onPublishComplete);
loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);
loader.addEventListener(HTTPStatusEvent.HTTP_STATUS,

onHTTPStatusReturned);
loader.addEventListener(SecurityErrorEvent.SECURITY_ERROR,
onSecurityError);

loader.load(urlRequest) ;
}

[2071

https://graph.facebook.com/

Adding to the Graph

Make this similar change to the publish () method in SDKRequestor. as:

public function publish(a_publishObject:PublishObject):void {
var urlStub:String = "/" + a_publishObject.ownerlD + "/feed"
Facebook.api(urlStub, publishComplete, {

message:a_publi shObj ect.message,
picture:a_publi shObj ect.pictureURL,
link:a_publishObj ect.linkURL,
name:a_publishObj ect.linkName,
caption:a_publi shObj ect.caption,
description:a_publi shObj ect.description

}.
URLRequestMethod.POST

That's all you need to do; now you can post on any Wall you have access to.

Actions, privacy, and source
The actions, privacy, and source parameters are a little more complicated than the
others, as they require a JSON to be passed, rather than just a string. Fortunately, it's just
as easy to create a JSON from a native AS3 object as it is to do the opposite.

Actions
Let's start by looking at the actions parameter. Take another look at the JSON
representation of the Graph Object that we created earlier in the chapter. It contains a node
called actions:

"actions": [{
"name": "Comment",
"link": "http://www.facebook.com/«redacted»/posts/«redacted»"

}.
{
"name": "Like",
"link": "http://www.facebook.com/«redacted»/posts/«redacted»"

[2081

http://www.facebook.com/%c2%abredacted%c2%bb/posts/%c2%abredacted%c2%bb
http://www.facebook.com/%c2%abredacted%c2%bb/posts/%c2%abredacted%c2%bb

Chapter 6

Now look again at the Wall post:

MichaelJames Williams Hello Britain!

Union Flag
en.wikipedia.org
The Union Flag, also known as tine Union Jack, is the flag of the United
Kingdom.

actions f f i 4 seconds ago via MichaelJW's Visualize!" fi 1 Like 1 Comment

The actions are the links underneath the post that other Facebook users can click.

We can add our own user-defined action, such as "Visit my website" or "Plant some crops",
by passing it in a JSON to the actions parameter.

Time for action-literally
1. Open HTTPRequestor. as and find the publish () function. Create a native AS 3

object within the function like so:

var actionObj:Object = [{
name:"Visit my Twitter Page",
link:"http://twitter.com/MichaelJW"

}];

Square brackets define an array, so we could type this as an Array rather than an
Object, but it doesn't really matter.

2. Next, in the same function, use the JSON library that we've used before to decode
this object into a JSON string:
var actionString:String = JSON.encode(actionObj);

3. Now, add this String as a property of the URLVariables object, called actions:
variables.message = a_publishObject.message;
variables.picture = a_publishObject.pictureURL;
variables.link = a_publishObject.linkURL;
variables.name = a_publishObject.linkName;
variables.caption = a_publishObject.caption;
variables.description = a_publishObject.description;
variables.actions = actionString;
urlRequest.data = variables;

[2091

http://twitter.com/MichaelJW

Adding to the Graph

4. Make similar changes in SDKRequestor. as:
public function publish(a_publishObject:PublishObject):void {

var urlStub:String = "/" + a_publishObject.ownerID + "/feed";
var actionObj:Object = [{

name:"Visit my Twitter Page",
link:"http://twitter.com/MichaelJW"

}];
var actionString:String = JS0N.encode(actionObj);
Facebook.api(urlStub, publishComplete, {

message:a_publi shObj ect.message,
picture:a_publi shObj ect.pictureURL,
link:a_publishObj ect.linkURL,
name:a_publishObj ect.linkName,
caption:a_publi shObj ect.caption,
description:a_publi shObj ect.description,
actions:actionString

}.
URLRequestMethod.POST

) ;
}

5. You will need to import com. adobe . serialization. j son. JSON. Test this out:

Michael James Williams Hello Britain!

fe^l^ril Union Flag
en.wikipedia.org

j ^ S B H f c ^ N i The Union Flag, also known
Kingdom.

en.wikipedia.org
j ^ S B H f c ^ N i The Union Flag, also known

Kingdom.
as the Union Jack, is the flag of the United

f f i -4 seconds ago via MichaelJW's Visualiier fl Like 1 Comment1 Visit my Twitter Page

What just happened?
You've added an app-specific action to posts coming from your project. You can add only one
such action to each post, but of course, it doesn't have to be the same for every single post.

The action is a functional hyperlink; clicking on it would take you to my Twitter page.
Facebook adds a URL parameter, ref=nf, to the end of all such links, though, so test them out
first—for example, trying to load http: //google . com?ref=nf gives you a 4 04 message.

[2101

http://twitter.com/MichaelJW

Chapter 6

Many applications and games use some user-specific data in the URL. For example, a game's
link might point to http: //gamehomepage . com/user. php? ID=«user_id», where the
User ID is filled in with code at the time of posting.

Priuacy
Look again at the JSON Post from earlier—this time, at the privacy node:

"privacy": {
"description": "Friends only",
"value": "ALL_FRIENDS"

My default privacy setting is to have my Wall posts be visible to my friends only
(as denoted by the little lock icon to the left of the action links). However, we can
change this for specific posts.

Time for action - setting a Post's privacy settings
We set this option in much the same way as we set the app-specific action—using an AS3
object encoded into a JSON string.

1. In the publish () function of HTTPRequestor. as, create a new object:

var privacyObj: 0bject = {
value:"EVERYONE"

}
2. As before, encode it into a JSON string:

var privacyString: String = JSON.encode(privacyObj);

...and pass it to the URLVariables:
variables.message = a_publishObject.message ;
variables.picture = a_publishObject.pictureURL;
variables.link = a_publishObject.linkURL;
variables.name = a_publishObject.linkName;
variables.caption = a_publishObject.caption;
variables.description = a_publishObject.description;
variables.actions = actionString;
variables.privacy = privacyString;
urlRequest.data = variables;

[2111

Adding to the Graph

3. Add similar code to SDKRequestor. as:
public function publish(a_publishObject:PublishObject):void {

var urlStub:String = "/" + a_publishObject.ownerlD + "/feed";
var actionObj:Object = [{

name:"Visit my Twitter Page",
link:"http://twitter.com/MichaelJW"

}];
var actionString:String = JSON.encode(actionObj);

var privacyObj:Object = {
value:"EVERYONE"

}
var privacyString:String = JSON.encode(privacyObj);

Facebook.api(urlStub, publishComplete,
{
message:a_publishObj ect.message,
picture:a_publishObj ect.pictureURL,
link:a_publi shObj ect.linkURL,
name:a_publi shObj ect.linkName,
caption:a_publishObj ect.caption,
description:a_publishObj ect.description,
actions:actionString,
privacy:privacyString

}.
URLRequestMethod.POST

) ;
}

4. By setting value to EVERYONE, we will make the post visible to anyone who can see
your Wall, not just your friends.

What other options are there?

Well, value can be set to:

• EVERYONE
• ALL_FRIENDS
• NETWORKS_FRIENDS
• FRIENDS OF FRIENDS

[2121

http://twitter.com/MichaelJW

Chapter 6

The meanings of those are pretty obvious, apart from NETWORKS_FRlENDS (which allows
your friends plus anyone in your networks to see the post).

There's one other possible setting for value: CUSTOM. Using this allows you to specify two
other properties of privacyObj—networks and friends.

For the networks property, enter a comma-separated list of the IDs of the networks that
should be allowed to see your post, like so:

var privacyObj:Object = {
value:"EVERYONE",
networks:"networkl,network2,network3"

}
To allow all networks to see the post, just enter l as the value.

For the friends property, enter one of the following:

• EVERYONE
• NETWORKS_FRIENDS
• FRIENDS_OF_FRIENDS
• ALL_FRIENDS
• SELF
• NO_FRIENDS

Again, it's pretty clear what each of these do. NO_FRlENDS lets you allow only people in
specified networks to see the post.

There is another possible setting for friends: SOME_FRlENDS. This gives you another pair
of properties that you can set for privacyObj —allow and deny. Each of these properties
takes a comma-separated list of user IDs (mixed with friend list IDs); allow defines who can
see the post, while deny defines who cannot.

So, your privacyObj could look like this:

var privacyObj:Object = {
value:"CUSTOM",
networks:"networkl,network2,network3",
friends:"SOME_FRIENDS",
allow:"bob.smith,j oe.q.faikname",
deny:"bill.the.j erk"

}

[2131

Adding to the Graph

What just happened?
As you can see, you have fine-grained control over the level of privacy of posts on a user's
Wall. The "correct" settings to use depend entirely on your application and its audience; just
be aware of what's possible.

[1 y You cannot control the privacy setting of posts that your users publish

on the Walls of other users, Pages, Events, or Groups; these are always
' able to be seen by anybody who can see the other Wall.

Source
The source parameter supposedly allows you to embed small photo galleries, Flash objects
(like video clips), and MP3 music into a Post, as well as custom key-value pairs that (although
invisible on the Facebook website) can be read later on by your application or any other.

Unfortunately, at the time of this writing this feature is not working correctly with
the Graph API. Take a look at what can be done with the source parameter here:
http : //developers . facebook . com/docs/guides/attachments. With luck, the
feature will be fully implemented and documented by the time you read this paragraph.

Deleting Graph Objects
We've mastered adding posts, but what about removing them later?

Time for action - deleting a Post
Facebook's interface for deleting a post is a Remove button that appears on hover:

Michael J a m e s Williams Hello Britain!

Union Flag
en.mikipedia.org
The Union Flag, also known as the Union Jack, is the flag of tine United
Kingdom.

A few seconds ago via MichaelJWs Awesome Test App Comment Like

Michael J a m e s Williams Hello Britain! Remove

Union Flag
en.wikipedia.org
The Union Flag, also known as the Union Jack, is the flag of the United
Kingdom,

1 A few seconds ago via MichaelJWs Awesome Test App Comment Like

The Visualizer project also has a Delete button; let's see how to add it.

[2141

Chapter 6

Time for action - deleting Posts using the Visualizer
1. We can enable the Delete button of the Visualizer by using yet another hidden

option. In the constructor function of CustomGraphContainerController.
as, set this . _showDeleteButtons to true:
public function CustomGraphContainerController(a_
graphControlContainer: GraphControlContainer) {

super(a_graphControlContainer);
this._showListCounts = true;
this._showListFilters = true;
this._canShowSearchUI = true;
this._publishingCapability = PublishingCapabilities.COMPLETE;
this._showDeleteButtons = true;

_requestor = new SDKRequestor();
addEventListenersToRequestor();
//we must wait for the Requestor to initialise before we can do
// anything else with it
_requestor.addEventLi stener(Event.COMPLETE,

onRequestorlnitialize);
_requestor .initializeO ; } ~

2. The next time you load the SWF, you'll see this new button in the List Renderer:

0
T V

O O michaelswebhost.com/visuali © GS ©
Zoom In | Zoom Out | Reset Vieuj | Search

Michael James Williams

uerified : true

locale: en.GB

middle, name: James

link

h ftp ://luujuu .facebook .com/michaeljameswilliams

n a m e Michael James UHams

g e n d e r : male

Connections

notes

activities

books

feed

Publish

n a m e : » ttgh-Speed Video Reveols Cats'
Secret Tongue Skills
f r o m : [object Object]

link
http ://wuhju ,ailr»d ,com/ailr»diol»nc»/2010/ll/c
ati-lapplng/

Delete Pop Out

f r o m : [object Object]

up dated- t ime: 2010-11-10T15 m :2S+OQOO

Filter [j

[2151

Adding to the Graph

Like the Publish button, when Delete is clicked it calls a method, deleteGraphObject (),
in the class that CustomGraphContainerController extends. Let's override this function
so that we can use it. In CustomGraphContainerController. as, add this:

override protected function deleteGraphObject(a_objectID:String):void {
super.deleteGraphObject(a_objectID);

}
Note that the ID of the Graph Object whose Delete button was pressed is passed to the
function. That's all we need!

1. We'll add similar deleteOb j ect () methods to the Requestors. In IRequestor.
as, add this line:

package graph.apis.base {
import flash.events.IEventDispatcher;
import graph.GraphRequest;

public interface IRequestor extends IEventDispatcher {
function request(a_request:GraphRequest):void;
function attemptToAuthenticate(...permissions):void;
function initialize():void;
function search(a_query:String = "", a_type:String = "",
a_userID:String = ""):void;

function publish(a_publishObject:PublishObject):void;
function deleteObject(a_objectID:String):void;

}
}

2. Now, add this stub function to both SDKRequestor. as and HTTPRequestor. as:
public function deleteObject(a_objectID:String):void {

}
3. Make sure that you call this function in CustomGraphContainerController. as:

override protected function deleteGraphObject (a_objectID
:String):void {
super.deleteGraphObject(a_objectID);
_requestor.deleteObj ect(a_obj ectID);

}
[2161

Chapter 6

We'll start (as always) with the code for HTTPRequestor, so make sure that your
project is set up to instantiate _requestor as an HTTPRequestor rather than an
SDKRequestor. We can re-use much of the code from publish () ; modify the
deleteOb j ect () function of HTTPRequestor. as like so:

public function deleteObject(a_objectID:String):void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables () ;

if (this.accessToken != "") {
variables.access_token = this.accessToken;

}
urlRequest.data = variables;

loader.addEventListener(Event.COMPLETE, onDeleteComplete);
loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);
loader.addEventListener(HTTPStatusEvent.HTTP_STATUS,
onHTTPStatusReturned);

loader.addEventListener(SecurityErrorEvent.SECURITY_ERROR,
onSecurityError);

loader.load(urlRequest); }
4. Note that instead of using onPublishComplete () as the COMPLETE event handler

function, we're using onDeleteComplete () , so create that function:

private function onDeleteComplete(a_event:Event):void {
dispatchEvent(new DialogEvent(DialogEvent.DIALOG, "Deleted!"));

}
Which URL do we need to use? It's simple: we use the Graph URL of the Graph
Object that we want to delete. So:

public function deleteObject(a_objectID:String):void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables () ;

urlRequest.url = "https://graph.facebook.com/";
urlRequest.url += a_objectID;

if (this.accessToken != "")

[2171

https://graph.facebook.com/

Adding to the Graph

{
variables.access_token = this.accessToken;

}
urlRequest.data = variables;

loader.addEventListener(Event.COMPLETE, onDeleteComplete);
loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);
loader.addEventListener(HTTPStatusEvent.HTTP_STATUS,
onHTTPStatusReturned);

loader.addEventListener(SecurityErrorEvent.SECURITY_ERROR,
onSecurityError);

loader.load(urlRequest); }
5. What about HTTP request methods? There's one called DELETE, which is

definitely not a "safe" method, and does exactly what we want. Unfortunately, due
to security concerns, we can only use it in AIR. Here's the code, in case you write an
AIR application later:

public function deleteObject(a_objectID:String):void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables();

urlRequest.url = "https://graph.facebook.com/";
urlRequest.url += a_objectID;
urlRequest.method = URLRequestMethod.DELETE;

if (this.accessToken != "") {
variables.access_token = this.accessToken;

}
urlRequest.data = variables;

loader.addEventListener(Event.COMPLETE, onDeleteComplete);
loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);
loader.addEventListener(HTTPStatusEvent.HTTP_STATUS,

onHTTPStatusReturned);
loader.addEventListener(SecurityErrorEvent.SECURITY_ERROR,
onSecurityError);

loader.load(urlRequest); }

[2181

https://graph.facebook.com/

Chapter 6

If you're making a regular Flash Player SWF, though, the URLRequestMethod class won't
even have a DELETE const.

For regular SWF-based applications, it's not that much more complicated. We have only two
choices of request method—GET and POST. Because GET is a safe method, we can't use it
to delete an object from the server, so we must use POST:

public function deleteObject(a_objectID:String):void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables();

urlRequest.url = "https://graph.facebook.com/";
urlRequest.url += a_objectID;
urlRequest.method = URLRequestMethod.POST;

if (this.accessToken != "") {
variables.access_token = this.accessToken;

}
urlRequest.data = variables;

loader.addEventListener(Event.COMPLETE, onDeleteComplete);
loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);
loader.addEventListener(HTTPStatusEvent.HTTP_STATUS,
onHTTPStatusReturned);

loader.addEventListener(SecurityErrorEvent.SECURITY_ERROR,
onSecurityError);

loader.load(urlRequest) ; }
...but we can easily tell Facebook to treat it as a DELETE request by passing a new
parameter—me thod=delete:

public function deleteObject(a_objectID:String):void {
var loader:URLLoader = new URLLoader();
var urlRequest:URLRequest = new URLRequest();
var variables:URLVariables = new URLVariables();

urlRequest.url = "https://graph.facebook.com/";
urlRequest.url += a_objectID;
urlRequest.method = URLRequestMethod.POST;

[2191

https://graph.facebook.com/
https://graph.facebook.com/

Adding to the Graph

if (this.accessToken != "") {
variables.access_token = this.accessToken;

}
variables.method = "delete";
urlRequest.data = variables;

loader.addEventListener(Event.COMPLETE, onDeleteComplete);
loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);
loader.addEventListener(HTTPStatusEvent.HTTP_STATUS,

onHTTPStatusReturned);
loader.addEventListener(SecurityErrorEvent.SECURITY_ERROR,

onSecurityError);
loader.load(urlRequest) ; }

This works just as well as the AIR version, and only costs us one extra line of code.

To delete an object using the SDK, we could use Facebook. api () , but there's a shortcut
method: Facebook. deleteOb j ect () . This takes two parameters—the ID of the Graph
Object to delete, and a callback function. This makes the required code very simple; add this
to SDKRequestor.as:

public function deleteObject(a_objectID:String):void {
Facebook.deleteObject(a_objectID, deleteComplete);

}
private function deleteComplete(result:0bject, fail:0bject):void
{

if (result != null)
{

dispatchEvent(new DialogEvent(DialogEvent.DIALOG, "Deleted!"));
}
else
{

dispatchEvent(new DialogEvent(DialogEvent.DIALOG,
"Deletion failed. Details: " + String(fail)));

}
}

Compile, upload, and test the new changes by deleting one of your posts from your Wall.

[2201

Chapter 6

What just happened?
You should have seen a Wall post get deleted from Facebook.

Stop Press: Shortly before this book was published, Facebook appeared
to change the Graph API so that Wall posts could only be deleted by an
application if that application was used to publish them in the first place.
Previously, it was possible to delete any posts on the logged-in user's
Wall, as well as any posts made by the user on other Walls. At time of
this writing, the official Graph API documentation does not mention this
restriction. So, if you're having problems deleting posts, try creating one
through the Visualizer first, and then deleting that.

Once again this requires only the publish_stream extended permission; by now you
should have a good idea of how powerful this permission is. You can use the same code
to delete other kinds of Graph Object, not just posts. If your application has permission to
modify or create an object, it has permission to delete it, too.

If you try to delete a post through the Facebook website, it will ask for confirmation:

Delete post

Are you sure you want to delete this post?

• also remove HichaeLJW's Visualizer Remove Post Cancel

This is a good idea, and worth using for the interface of your own projects. The Visualizer
doesn't ask for confirmation, and doesn't even remove the Post from the List Renderer
once deleted—though this does let you see what happens if you try to remove a Post that's
already been deleted...

Publishing other kinds of Graph Object
All the types of Graph Object that can be created can be created with the same basic steps
as a Wall Post:

• Use POST HTTP request method

• Set parameters with a URLVariables object

• Make sure that you have an access token and the required permissions

The Graph List Renderer's Publish button always creates a window with inputs that are
appropriate to the Graph List being rendered, and this in turn always passes its values to the
publish () function of CustomGraphContainerController, inside a PublishOb j ect
instance, so you can experiment with the different types.

[2211

Adding to the Graph

The PublishObject also includes the type of connection to which the user is attempting to
publish, in a property called connectionType. You can use this to decide which parameters
to pass to the Graph, and also to construct the Graph URL to POST these parameters to.

An up-to-date list of the properties of each Graph Object that can be set when publishing
them can be found through the documentation, available here: http: //developers .
facebook.com/docs/reference/api/.

Let's go through them in turn.

Comments
Comments are text messages that can be left on Wall Posts, and look like this:

Lyndsey Edmonds Happy Birthday, Hope you had a good day : -)
08 November at 21:09 1 Like 1 Comment 1 See friendship

1 n Michael James Williams Cheers Lyndsey!
09 November at 09:57 • Like

Write a comment...

The URL to request is: https : //graph, facebook. com/«post_id»/comments.

There's only one possible parameter: message, the text to be displayed.

They require the publish_stream permission.

Comments do not display the name of the application that created them.

likes
When a user "likes" a Wall Post that fact shows under the post, visible to all:

R Michael James Williams Hello World!
2 hours ago via MichaelJW's Awesome Test App A 1 Comment Unlike

li Vou like this.

[2221

Chapter 6

The user will also receive e-mails and notifications whenever someone comments on that
post. It's like a mini-subscription, as well as a sign of approval.

The URL to request is:

https://graph.facebook.com/«post_id»/likes.

There are no possible parameters.

Likes require the publish_stream permissions.

What about "liking" other Graph ObjectsP
In Chapter 2, we looked at how "like" connections joined people to TV shows, movies, music,
interests, and activities; the "like" connection is responsible for many of the strands in the
Graph's Web. Yet, the Graph API will not allow us to "like" anything other than posts (even
trying to like a comment will result in an HTTP Status Code 500).

Facebook has said that they have no plans to allow developers to create "likes" for anything
else. It seems their aim is to make sure no user ever clicks an unofficial "like" button (or at
least, a "like" button in a context that Facebook hasn't approved; Yelp. com has its own
design of "like" button, as they are a partner site to Facebook).

So, unfortunately, it's not possible to alter the user's television, movies, interests, or
activities through the Graph API.

Deleting likes
Likes don't have their own ID, so we can't delete a like by attempting to delete https: //
graph, facebook. com/«like_id». Instead, we must use this URL: https : //graph,
facebook.com/«graph_obj ect_id»/likes.

As you know, this is the Graph URL for a connection, which would return a Graph List if we tried
to load it in a browser. However, when we try to delete the URL using the process described in
the Deleting Graph Objects section, it will make the authorized user "unlike" the Graph Object.

[2231

https://graph.facebook.com/%c2%abpost_id%c2%bb/likes

Adding to the Graph

Notes
Notes are like little blog posts:

Example Note
by Michael James Williams

This note is to demonstrate what exactly a Note is, within Facebook.

I'll take a Screenshot, use it In my book, then most likely delete it shortly
afterwards.

No example text would be complete without Lorem Ipsum, of course, so
without further ado:

Lorem ipsum dolor sit amet, consectetur adlpisicing elit, sed do eiusmod ternpor
incididuntut labore et dolore magna aliqua. Utenim ad minim venlam, quis nostrud
exercltation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute
irure dolor In reprehenderit In voluptate velit esse cillurn dolore eu fugiat nulla
pariatur, Excepteur sint occaecatcupldatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborunn.

Like • Comment 1 Share Delete

Write a comment,.. I 3
The URL to request is: https : //graph. facebook. com/«id»/notes .

The ID can only be that of the current user, or of a Page which the user administers.

Despite generally being longer than Wall Posts—and being able to support images, links, and
formatted text—they take only two parameters:

• message: This is an HTML string (so that explains the ability to add images
and formatting)

• subject: The title of the note

To post a note, your application will need the publish_stream permission.

[2241

Chapter 6

Events
Events look like this:

The Firebirds
You might at tend • S h a r e • Public event

02 October -19 :30-23 :30

COVENTRY ROCKn'ROLL CLUB, JAGUAR SOCIAL CLUB & LEISURE CENTRE
BROWNS LANE, COVENTRY, WEST MIDLANDS, CV5 9DR
Coventry, United Kingdom

C r e a t e d b y :

& A t t e n d i n g See all

W r i t e someth ing . . .

• 1 :
8 Maybe a t tend ing View

U a 1 »
2 5 A w a i t i n g r e p l y

r p ^ p

6 Mot a t t e n d i n g

A t t a c h : Q S * ®

T h e F i reb i rds h a s no recent posts .

Remove from my events • Export • Report Event

Like a Page, an Event has a Wall, which can be posted to using the /«event_id»/f eed URL
stub. Events also have lists of members, but they are divided into four categories:

• Attending: /«event_id»/attending
• Maybe attending: /«event_id»/maybe
• Not attending: /«event_id»/declined
• Awaiting reply: /«event_id»/noreply

[2251

Adding to the Graph

Guests can be invited and can RSVP with any of the first three categories; this makes
scheduling somewhat easier.

Another connection, /«event_id»/invited, contains a list of everyone that has been
invited to the event, regardless of their RSVP.

To create an Event, POST to this URL: https : //graph. f acebook. com/«id»/events.

(As with Notes, the ID can only be the current user's or that of a Page which the
user administers.)

Three parameters are required:

• name: The title of the event

• start_time: The time and date the event will start

• end_time: The time and date the event will finish

Both dates must be entered in ISO 8601 format. Wikipedia has more information than you'll
ever need to know on ISO 8601 (http://en. wikipedia.org/wiki/ISO_86Ol); a quick
summary is that 1:25pm UTC, November 8, 2010 is represented as 2010-11-08T13 :25Z.
If you let the user enter the time manually, make sure that you alter it to match the UTC
time zone!

To create an event, your application will need the create event permission.

Euent RSVPs
Rather than having a single URL to POST an RVSP to, and setting the type of RSVP in the
parameters, Facebook uses three separate URLs:

• https : //graph. facebook . com/«event_id»/attending: attending

• https : //graph. facebook. com/«event_id»/maybe: maybe attending

• https : //graph. facebook. com/«event_id»/declined: not attending

When RSVPing through the website interface, Facebook will ask the user for an (optional)
note to go along with it (such as, "Sorry I can't make it that day," or "Really looking forward
to it!"). However, the preceding three URLs take no parameters; if you want to let the user
post an RSVP note, simply publish it to the /feed connection as a Post.

RVSPs aren't written in stone; the user can change their mind later. Bear this in mind when
designing an application for this! Don't stop them from setting their RSVP status just because
they already have one.

To RSVP, your application will need the rsvp_event permission.

[2261

http://en

Chapter 6

Albums
An Album is a collection of Photo objects.

¿ j Like Books
By Packt Publishing • View photos

To create an album, request this URL: https : / /graph, facebook. com/«id»/albums .

As with Events and Notes, the ID can be either the authenticated user's, or that of a page
which the user administers.

Only two parameters are supported:

• name: The title of the album

• description: The album's description (optional)

Creating a new album requires the publish_stream permission. You may want to grant the
user photos permission as well to allow the user to view the actual album and photos!

[2271

Adding to the Graph

Photos
To upload a photo to an album, we must post two parameters to https : //graph.
facebook.com/«album_id»/photos:

• message: The caption of the photo

• source: The actual photo file (JPG, PNG, and so on)

To get the photo file from the user's computer to the source parameter, we can use a
FileReference. Full documentation for the FileRef erence class is available here:
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/
flash/net/FileReference.html.

To allow the user to select a local file, import the flash, net. FileReference class.

Create a new instance of this class:

var fileRef:FileReference = new FileReference();

Add an event listener to the class to call a function once the user has selected a file:

fileRef.addEventListener(Event.COMPLETE, onSelectFile);

Use the browse () method to create a OS-specific dialog that will allow the user to select a
file from their hard drive:

fileRef.browse();

The Publish window of the Visualizer for a photos connection takes care of all this, passing
the FileReference instance to the publish () method as a property of PublishObj ect
called source.

To actually upload the file through our HTTPRequestor, we cannot use a URLLoader.
Instead, we must load the file using the FileReference itself. So, instead of this:

variables.message = a_publishObject.message;
variables.picture = a_publishObject.pictureURL;
variables.link = a_publishObject.linkURL;
variables.name = a_publishObject.linkName;
variables.caption = a_publishObject.caption;
variables.description = a_publishObject.description;
variables.actions = actionString;
variables.privacy = privacyString;
urlRequest.data = variables;

loader.addEventListener(Event.COMPLETE, onPublishComplete);
loader.addEventListener(IOErrorEvent.IO_ERROR, onlOError);

[2281

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/

Chapter 6

loader.addEventListener(HTTPStatusEvent.HTTP_STATUS,
onHTTPStatusReturned);

loader.addEventListener(SecurityErrorEvent.SECURITY_ERROR,
onSecurityError);

loader.load(urlRequest) ;
...we must do this:

variables.message = a_publishObject.message;
variables.source = a_publishObject.source;
urlRequest.data = variables;
a_publi shObj ect.source.addEventLi stener(
DataEvent.UPLOAD_COMPLETE_DATA, onPublishComplete);

a_publishObject.source.addEventListener(IOErrorEvent.IO_ERROR,
onlOError);

a_publi shObj ect.source.addEventListener(HTTPStatusEvent.HTTP_STATUS,
onHTTPStatusReturned);

a_publi shObj ect.source.addEventLi stener(
SecurityErrorEvent.SECURITY_ERROR, onSecurityError);

a_publi shObj ect.source.upload(urlRequest) ;
No real changes are needed for the SDK Requestor; it uses a FileRef erence and
encapsulates the upload process. This means that we can just call Facebook. api ()
as usual:

Facebook.api(urlStub, publishComplete, {
message:a_publi shObj ect.message,
source:a_publishObj ect.source

}.
URLRequestMethod.POST

) ;
In each case, remember to change the URL stub to /«album_id»/photos.

Uploading a photo to an Album requires the publish_stream permission. As with Albums,
you may want to grant the user_photos permission as well.

Not surprisingly, in order to add a photo to an Album, the user must either own the Album,
or administer the Page which owns the Album.

[2291

Adding to the Graph

Checkins
Checkins are used by Facebook Places and allow the user to post their current location and a
message about that place.

To create a checkin, POST to this URL: https : //graph, facebook. com/«user_id»/
checkins.

The only ID allowed is that of the authenticated user (so you could use me instead).

Three parameters are supported:

• coordinates
• place
• message

The coordinates parameter must be a JSON string containing two properties—latitude
and longitude. Use the JSON. encode () method from earlier in this chapter to turn a
native AS3 object into a JSON string.

The place parameter should be the ID of a Place corresponding to the place the user is
currently visiting. In Chapter 5, we saw how to search for Places near a given location, and
retrieve their IDs.

The message parameter is optional—it's a simple comment by the user about what they're
doing. For example, "Just went on the Log Flume at Alton Towers."

Creating a checkin requires the publish_checkins permission. You may wish to grant the
user_checkins permission as well to allow the user to view their other checkins.

What about...?
There are a lot of things you can do via Facebook's website interface, but not through
the Graph API. We've already looked at the restrictions to the "like" feature; what
else is missing?

Sending inbox messages
It's possible to read inbox messages (as we saw in Chapter 5) but not to create and send
them. Facebook had planned to allow apps to create inbox messages but this plan appears
to have been scrapped. It's possible that this functionality will be included as part of the new
messages; see Chapter 8 for a little more information on this.

[2301

Chapter 6

Creating Pages, Groups, Applications, and Videos
It's not possible to create any of these types of Graph Object via the Graph API.

This is a little surprising—a Group is not that different from an Event, and a Page, in turn, is
not that different from a Group. The lack of video creation ability is even stranger, as it means
it's not possible to create a mobile application that uploads video directly to Facebook.

Not being able to create applications through other applications makes some sense though!

Changing biographical information
Your application can't alter the user's relationship status, current location, favorite
quotations, record of education, or anything of the sort. Because the Graph API doesn't
allow "liking/unliking" anything other than Wall posts, it means the user's entire Info box is
"look but don't touch."

Making Friends
It's not possible for an application to send a friend request to another user, or to remove
someone from the current user's friend list. (Although you can send other users enough rude
messages to encourage them to remove the current user from their friend list.)

Inviting Friends to Events
You can create Events, but you can't invite anyone to them. Go figure.

Pop Quiz
1. Why do we need to use a different HTTP request method all of a sudden?

a. We should have been using POST all along

b. The Graph API changed since you read the previous chapter

c. HTTP requires that we use an "unsafe" method when changing data

2. Why bother listening for different types of HTTP Status Codes?

a. We need to do this now that we are using a different HTTP request method

b. These codes can give us extra information about why a publishing
attempt failed

[2311

Adding to the Graph

3. What can we publish without an access token?

a. Nothing

b. Just Status Messages

c. Just Likes

d. Anything

Summary
So, you've learned how to create lots of different types of Graph Object: Posts, Comments,
Events, and so on. You've also learnt how to destroy them if need be.

Were you surprised at what you couldn't do with the Graph API?

In the next chapter, we'll go back to examining the Graph, but we'll use a powerful new
tool—Facebook Query Language.

Key takeaways:

• To publish via HTTP, use a URLRequest/URLLoader/URLVariables setup as
usual, and include parameters for the new Graph Object in the URLVariables
instance, alongside the access token.

• The URL to use is https : //graph, facebook.
com/«id»/«connection». Make sure to use flash.net.
URLRequestMethod.POST.

• To publish via the SDK, call Facebook. api ("«id»/«connection»",
«callback», {parameterl:"valuel", parameter2:"value2"},
URLRequestMethod.POST) .

• Uploading photos requires a FileRef erence. Use FileRef erence . browse () to
let the user pick an image from their hard drive.

• To upload via HTTP: Use FileRef erence . upload () rather than
URLLoader.load() .

• To upload via the SDK: just pass the FileRef erence as the value of the
source parameter in the URLVariables instance, and call Facebook.
api () as usual.

• You cannot "like" anything other than a Post through the Graph API. This means we
can't alter the user's interests or favorite TV programs.

[2321

Chapter 6

• At the time of writing, we can only delete Posts that were created using the same
application.

• To do so via HTTP, just pass method=delete to https : //graph,
facebook . com/«id», using URLRequestMethod. POST.

• If using AIR, you can simply load https : //graph, facebook. com/«id»
using URLRequestMethod. DELETE.

• To delete via the SDK, call Facebook. deleteObj ect ("«id»",
«callback»).

• The exception is when deleting a "like"; in this case, the URL stub to delete
is «id»/likes.

• A full list of parameters and permissions required for publishing is available at
http://developers.facebook.com/docs/reference/api.

• For security reasons, Flash Player 10 and above will not let your application publish
anything via the HTTP POST method unless the user initiated the action (for
instance, by clicking a button).

[2331

http://developers.facebook.com/docs/reference/api

7
FQI Matters

The Graph is a terrific model for accessing the data in Facebook; it manages to
take the huge amount of information on the site and make it easy and simple to
access it.

Sometimes, however, we want a little extra control and a little extra power.
That's where FQL comes in. It's a programming language designed for
searching the Facebook databases - and it doesn't use the Graph.

In this chapter we shall:

• Recap the different models of data representation and visualization

• Get comfortable with FQL by using it to grab some Facebook data

• Learn how to use FQL to do (almost) anything we could do with the Graph

• Discover what the Graph is better at than FQL

• Find out how to detect which extended permissions have been granted

• Look at some advanced FQL features

So let's get on with it...

What is FQI?
FQL (pronounced as the acronym, "eff-cue-ell") is Facebook's version of the database
language SQL. Don't know what SQL is? Don't worry, you don't need to. In this chapter, I'll
assume you don't know anything about FQL, SQL, or databases yet. So before getting into
what FQL is, let's take a step back and look at databases.

FQL Matters

But what if I do already know SQL?

Even i f you k n o w SQL, it's wor th reading this chapter to brush up on

some concepts and learn the d i f ferences be tween FQL and regular SQL. In

part icular , check out the R e s t r i c t i o n s sect ion.

I f you ' re exper ienced wi th SQL, you may be surpr ised by how many features

FQL is missing. Most notably, the re are no INSERT, DELETE, or U P D A T E
c lauses . Also, JOIN, G R O U P BY, and L I K E are missing; you must speci fy a

set of f ie lds to be returned , rather than typing S E L E C T *, and you can only

speci fy one table in the FROM c lause .

Understanding the FQL interface
We've been looking at the Facebook data as though it were structured in the Graph format
laid out in Chapter 2, but really, this is just a model for the data; the Graph API acts like a
wrapper, making it appear as though the data is structured in that way. It's not.

Does it matter how the data is structured? Not for our purposes. What matters is the
interface we are given to access it with. So far, that interface has been the Graph API; we've
obtained all our data through Graph URLs and processed them with AS3.

But there is another way of looking at the data, which is like a traditional database structure.
In this case, all the data is kept in tables, organized into columns, rows, and fields. It's easier
to explain with an example:

user

uid first name middle name last name name sex username

123456 Michael James Williams Michael James Williams male michaeljames_williams

789012 Joe Quincy Faikname Joe Q Faikname male joe_q_faikname

Some columns have been left out for brevity.

This is one table of data. Specifically, it's the user table, as you can see from the
following heading:

Name of table

user
middle name | last name |

Williams Michael James Williams

Joe Q Faikname

[2361

Chapter 7

Each column represents an attribute of the data:

user

uid first name middle name last name name sex username

Michael James Williams Michael James Williams male michaeljames_williams

789012 Joe Quincy Faikname JoeQ Faikname male joe_q_faikname

I
Column

Each row corresponds to a single object, with all its attributes:

Row Row

uid first_name middle name last name sex username

123456 Michael James Williams Michael James Williams male michaeljames_williams

Joe Quincy Faikname Joe Q Faikname joe_q_faikname

The intersection of a row and a column - that is, a single attribute of a single object - is
cal led a field:

, ,c ,u I

uid first name middle name last name sex username

James Williams Michael James Williams male michaeljames_williams

Quincy Faikname Joe Q Faikname male joe_q_faikname

You could alternatively think of this like a spreadsheet; this is the simple, natural way of
storing data in a grid. (Of course, if you're familiar with relational databases, you could just
think of it as a relational database's table!)

Models of data
So now we've got three different models we can use when thinking about Facebook data:

1. The AS3 object-oriented model: We have classes containing certain properties, and
instances of those classes containing information about a specific item. For example,
we could have a class called User which contains certain properties, and define an
instance of that class:

class User
{

public var uid:int;

[2371

FQL Matters

public var first_name:String;
public var middle_name:String;
public var last_name:String;

}

var michael_james_williams:User = new User();
michael_james_williams.uid = 123456;
michael_james_williams.first_name = "Michael";
michael_james_williams.middle_name = "James";
michael_james_williams.last_name = "Williams";

2. The Graph model: items are all nodes in a graph, connected by edges. Each node
contains information about its item, like name or ID.

3. The relational database model: all data is stored in tables, each having a column for
each attribute and a row for each object, so as to form grids.

Representations of data
We also have multiple ways of representing data: we've used JSON throughout the book, but
we could use XML, or a spreadsheet, or even just lists of properties in plain text.

The difference is, the three models are for visualizing the data, while JSON and so on are
methods for storing, transmitting, and receiving data. The former is abstract and theoretical;
the latter is concrete and practical.

Getting information
We know how to get information out of the database by means of the Graph model: we
request an object (or list of objects), subject to certain criteria, and we retrieve a JSON
representation of that object (those objects). The obvious next question is: how do we get
this data if we're thinking in terms of a relational database model?

For this we use Facebook Query Language (FQL for short) . It's a l a n g u a g e qu i te different to
object-oriented languages; it's designed specifically for getting information out of a relational
database, unlike AS3 which is not designed to solve any specific problem. It differs heavily in
syntax, too, as we'll see.

[2381

Chapter 7

Let's take a look at an example, getting some information out of the page table:

page

p a g e j d

name

website

type

location

Each of these - page_id, name, website, type, and location - are co lumns , just as uid,
f irst_name, middle_name, last_name, name, sex, and username are for the user table.

Time for action - retrieving info from the Page table
So how do we use it? Well, we can't request objects, of course, because we're not using
an Object model - but we don't even request rows, which are their close equivalents. We
request specific fields. If all we're interested in is the URLs of Pages' associated websites, we
can just request results from the "website" column:

SELECT website

Next, we have to specify the table we're interested in. In this case, that's "page":

SELECT website
FROM page

Now we specify a condition to narrow down the search:

SELECT website
FROM page
WHERE name = "Facebook"

(Note that when checking this condition, we use = rather than ==, unlike in AS3.)

These three elements make up a single "query". When we run this query - analogous
to compiling an AS3 - we will receive http: //www. facebook. com/, as this is
the value of the field in the website column in the page table, in the row whose
name is set to Facebook.

[.a!—. It's common to see the FQL keywords typed in all capitals, T
(| like SELECT, FROM, and WHERE, but this isn't strictly I

A3 necessary. It does help readability though. I

[2391

FQL Matters

So how do we run the query? Do we have to use a compiler? No, actually. All we have to do
is pass it to Facebook using an API URL, which is very similar to a Graph URL except that it
doesn't use the word "graph". No surprise there, as we're no longer viewing the data using
the Graph model.

The API URL for an FQL query looks like this:

https://api.facebook.com/method/fql.query?query=FQL_QUERY

The API URL for an FQL query after entering all the details is as follows:

https://api.facebook.com/method/fql.query?query=SELECT website FROM
page WHERE name = "Facebook"

(Don't worry that we've removed the from the query; they don't matter.) Type this into your
web browser and it'll encode it to:

https://api.facebook.com/method/fql.query?query=SELECT%2 0website%2 0
FROM%20page%20WHERE%2 0name%2 0 = %2 0%22Facebook%2 2

When you load the page, what you'll see depends on the browser you're using. In Chrome,
you'll just see this:

http://www.facebook.com/

Note: this is not JSON I No curly braces to be seen... still, that's what we expected, right?

View the source of the page (this is what you may see already if using a different browser):

< fql_query_responsexmlns="http://api.facebook.com/1.0/"
xmlns:xsi="http://www.w3.org/2 001/XMLSchema-instance" list="true">
<page>
<website>http://www.facebook.com/</website>
</page>
<page>
<websi te/>
</page>
</fql_query_response>

This is XML-formatted data. I won't go into this now. It's good to know XML output is
available, but we've used JSON so far, so why stop here? Let's ask Facebook to give us the
results in JSON form; use the same URL but add a new parameter: "f ormat=j son".

[2401

https://api.facebook.com/method/fql.query?query=FQL_QUERY
https://api.facebook.com/method/fql.query?query=SELECT
https://api.facebook.com/method/fql.query?query=SELECT%252
http://www.facebook.com/
http://api.facebook.com/1.0/
http://www.w3.org/2
http://www.facebook.com/%3c/website

Chapter 7

Load th is URL: https : //api . f acebook. com/method/f ql.
query?format = j son&query=SELECT%20website%2 OFROM%2 0page%2 0WHERE%2 0
name%2 0=%2 0%2 2Facebook%2 2

...to get this result :

[{"website":"http:\/\/www.facebook.com\/\n"},{"website":""}]

That ' s m o r e like it. W e ' v e got t w o J S O N objects , e a c h wi th a s ingle property cal led "webs i te" .

If you prefer XML, you can use that instead. Just use the I
parameter "f ormat=xml" instead of "f ormat=j son". I

What just happened?
But wait - w h y do we have t w o f ields, a n d w h y d o e s t h e s e c o n d have noth ing in its

website p roperty?

We can f ind out by gett ing the IDs of e a c h page, instead of the n a m e s , a n d us ing t h e s e IDs to
v i e w their re lated G r a p h Objects . First, construct a n e w FQL query :

SELECT page_id
FROM page

WHERE name = "Facebook"

T h e n , pass th is to the re levant A P I URL:

https://api.facebook.com/method/fql.query?format=json&query=SELECT%2 0
page_id%2 OFROM%2 0page%2 0WHERE%2 0name%2 0 = %2 0%2 2Facebook%2 2

You'l l get th is output :

[{"page_id":20531316728}, {"page_id":107885072567744}]

Load t h e G r a p h O b j e c t s for e a c h ID, us ing the G r a p h URLs. First, the Page with ID
o f 2 0 5 3 1 3 1 6 7 2 8 :

https://graph.facebook.com/2 053131672 8
{

"id": "20531316728",
"name": "Facebook",
"picture": "http://profile.ak.fbcdn.net/hprofile-ak-snc4/
hs624.snc3/2 753 5_2 0531316 72 8_5 553_s.jpg",

"link": "http://www.facebook.com/facebook",
"category": "Technology",

h

[2411

http://www.facebook.com///n%22%7d,%7b%22website%22:%22%22%7d
https://api.facebook.com/method/fql.query?format=json&query=SELECT%252
https://graph.facebook.com/2
http://profile.ak.fbcdn.net/hprofile-ak-snc4/
http://www.facebook.com/facebook

FQL Matters

"username": "facebook",
"founded": "February 4, 2004",
"company_overview": "Millions of people use Facebook everyday to

keep up with friends, upload an unlimited number of photos,
share links and videos, and learn more about the people they
meet.\n\n\"Like\" this page for ongoing updates on new products,
announcements and stories. \n\nOther ways to connect with us:\
nVisit the Facebook Blog at http://blog.facebook.com\nFollow us
on Twitter: @facebook\nSubscribe to more video at
http://www.youtube.com/facebook\n\n",

"mission": "Facebook's mission is to give people the power to share
and make the world more open and connected.",

"fan_count": 17565186
}

T h e n , the Page wi th ID of 1 0 7 8 8 5 0 7 2 5 6 7 7 4 4 :

https://graph.facebook.com/10788 5 072 56 7744
{

"id": "107885072567744",
"name": "Facebook",
"link": "http://www.facebook.com/pages/Facebook/1078 85072567744",
"category": "Interest",
"is_community_page": true,
"description": " <pxb>Facebook is a <a href =\" /pages/
w/107511275938278\">social networking«/a> website launched in
February 2 004 that is operated and privately owned by Facebook,
Inc., with more than 500 million active users in July 2010.
< / p > " ,

"fan_count": 299474
}

A h a I T h e s e c o n d o n e is a community page - a page a b o u t F a c e b o o k created a n d o w n e d by
F a c e b o o k users, rather t h a n by F a c e b o o k itself. A n d i f y o u load th is Page on the F a c e b o o k
w e b s i t e (us ing t h e URL in the link property) in your browser, you' l l see there ' s noth ing set
for the W e b s i t e f ield, w h i c h i s w h y t h e s e c o n d result we got f r o m our first q u e r y w a s blank.
Mystery so lved.

Haue a go hero - creating an FQL query builder
Create a Flash appl icat ion that a l lows y o u to enter an FQL query, runs it, a n d d isp lays the
result. You'l l n e e d to m a k e use of a, like we did back in C h a p t e r 2. T h i s will m a k e i t m u c h
eas ier to test t h e q u e r i e s in t h e rest of t h e chapter!

[2421

http://blog.facebook.com/nFollow
http://www.youtube.com/facebook/n/n
https://graph.facebook.com/10788
http://www.facebook.com/pages/Facebook/1078

Chapter 7

What about connectionsP
So that's essentially the FQL equivalent of retrieving a single Graph Object. But what's the
equivalent to getting a Graph Object's connections?

Understanding the way connections are formed in a database model is a much harder
concept to grasp than with the Graph API model. (I wouldn't be surprised if this were one of
the main motivations beyond the Graph API.) You have to work backwards, in a sense.

Let's use the idea of an album full of photos as an example. First, imagine we create an
empty album called "Michael's Awesome Vacation Photos." It'll look like this, in the
database model:

album

aid owner name

«automatic» «my user ID» Michael's Awesome Vacation Photos

The album table has a cover_pid field, which is set to the ID of a picture that I want to set
as the cover photo. So let's suppose I take a picture of the airport and upload it as my cover
photo; it'll be auto-assigned an ID.

Now we can enter the airport photo's ID as the value for the album's cover_pid field:

album

aid owner name cover_pid

«automatic» «my user ID» Michael's Awesome Vacation Photos «ID of airport photo»

We can illustrate this like so:

album

aid

owner

photo
is cover of

name

pid
is cover of

cover_pid pid cover_pid

owner

src

[2431

FQL Matters

Read the line from left to right using the names of the tables (not the fields), and the verb
written above the line: "The photo is the cover of the specified album."

Notice also that the photo table has a field called aid, which is set to the ID of the album
that the photo belongs to. So the airport photo's table looks like this:

photo

pid aid owner

«automatic» «ID of album» «my user ID»

Now we can draw another of these lines:

photo

pid

owner

album

contains
src

aid
contains

aid aid aid

owner

name

cover_pid

"The album contains the specified photo."

Of course, now we have the problem that we want to display both on the same diagram to
make things neat, and that generally requires either tangling the lines, duplicating a table, or
using awkward wording. We get off lightly in this example:

photo
belongs to

album

pid
belongs to

aid pid

Is cover of

aid

owner

Is cover of

owner

src
Is cover of

name

aid
Is cover of

cover_pid aid cover_pid

[2441

Chapter 7

Okay, so that explains how one photo is connected to one album. We can find out which
album has a certain photo as its cover with this FQL query:

SELECT aid
FROM album

WHERE cover_pid = «specific photo's ID»

Conversely, we can find which photo is the cover for an album with this query:
SELECT pid
FROM photo

WHERE pid = «album's cover_pid»

...actually, we can find out which photos are in an album with a very similar query:
SELECT pid
FROM photo
WHERE aid = «album's ID»

This can be considered "backwards" compared to the Graph model, because with the Graph
you take the album object and ask for all its related photos: "album/photos"; with the
database model you take the photo table and ask for all rows belonging to an album: "FROM
photo WHERE aid = «album id»".

Photos, Albums, and their Owners
Did you notice that both the photo and album tables have a field called "owner", containing
the owner's user ID? Now, surely we can connect these. A first attempt at doing so might
look like this:

photo
belongs to

album

pid
belongs to

aid pid aid

owner owner owner

Is cover of

owner

src
Is cover of

name

aid
Is cover of

cover_pid aid cover_pid

What word would go above that line? A smart guess would be "is", since the owners are the
same - watch out, because this is a trap.

[2451

FQL Matters

These "entity relationship" lines don't connect fields in the database tables; they connect
entire tables, using the fields as a "key". Remember the rule of reading the verbs from left
to right. If we used "is" as the verb, it would say, "The photo is the specified album" which is
clearly wrong.

We can't connect the two tables directly because their relationship is through another entity.
Let me show you what I mean:

We've now got three tables (photo, album, user) and four relationships:

• The photo belongs to the specified album

• The photo is a cover of the specified album

• The photo belongs to the specified user

• The user owns the specified album

So we can get the URLs of all of a specific user's photos using this query:

SELECT src
FROM photo
WHERE owner = «user's ID»

Haue a go hero - getting a user's albums
See if you can write an equivalent query for getting the URLs of all of a specific user's albums.
The names of the tables and columns that you'll need to use are in the diagram above,
but you can f ind m o r e in format ion at http: //developers . facebook. com/docs/
reference/fql/.

Remember, you can always check your query using an API URL call.

[2461

Chapter 7

Primary keys
Have you noticed how one side of a relationship line always points to the main ID of a table?

• photo.pid
• user.uid
• album.aid

Each of these fields is called the primary key of its table. This means any given row can be
identified using that field (and only that field); every row has a value in its primary key's field,
and no two rows have the same primary key value.

We can make it easier to understand the relationships between tables by writing the names
of the primary keys in bold type.

We also have a name for fields that link to primary keys of other tables, like:

• photo . owner (l inks to user . uid)
• photo. aid (l inks to album, aid)
• album. cover_pid (l inks to photo. pid)

We call these foreign keys and tend to write these in italics in any diagram.

Our earlier diagram of the photo, user, and album tables can thus be redrawn as shown in
the next screenshot:

[2471

FQL Matters

Crow's feet
So we have two lines connecting the album table and the photo table.

For a given album, what's so different about the results of these two queries?

SELECT pid
FROM photo
WHERE aid = «album ID»

SELECT pid
FROM photo
WHERE pid = «album's cover_pid»

The answer is, the first may return several photos' IDs, while the second will only ever return
one. We can clarify this in the wording of our relationship sentences like so:

"The a l b u m conta ins zero or more p h o t o s "

"The album's cover is one and exactly one photo"

Note I've had to reverse the sentences to start with "the album" rather than "the photo" for
these to make sense.

We can also represent this in the diagram; we use what's called crow's foot notation:

album

contains „ o<

has cover 11

photo

aid contains „ o<

has cover 11

aid
owner

contains „ o<

has cover 11

owner
name

contains „ o<

has cover 11
src

cover_pid

contains „ o<

has cover 11
pid cover_pid pid

The three prongs ("crow's foot") on the right of the top line means "many" and the circle
means "zero," so this reads as "zero to many" or "zero or more". The pair of dashes across
the right of the bottom line means "one and exactly one".

[2481

Chapter 7

This doesn't tell the whole story, though. Not all photos are the cover photo for an album.
We need to reverse the sentences to explain that in words:

"The photo belongs to one and exactly one album"

"The photo is the cover of zero or one albums"

photo
belongs to

album

aid belongs to aid aid

is cover of

aid

owner

is cover of

owner
src

is cover of
name

pid
is cover of

cover_pid pid II Ul cover_pid

Here, the pair of dashes on the top line again means "one and exactly one," while the circle
and dash means "zero or one." I've left the other markings on the lines, but since the tables
are the other way around now, they're on the left rather than the right.

It's tricky to read these diagrams at first; the best thing to do is break them down into pairs
of sentences like we've done here. You'll get the hang of it eventually.

Haue a go hero - drawing your own crows' feet
Another way to learn how to use crow's foot notation is to draw your own diagrams. Redraw
the diagrams connecting the photo, user, and album tables and add the appropriate markers
to each side of the lines. Remember to start with the pairs of relationship sentences to figure
out what you need to say!

You can do this with pencil and paper, but if you want to go further and draw diagrams for
all the tables, consider using a piece of software like DbSchema: http: //www. dbschema.
com/. Remember, the list of tables and their columns is available at http: //developers .
facebook.com/docs/reference/fql/.

link tables
How can we create the same links between friends? Well, this has to be a relationship
between the user table and itself, so a good first guess would be:

"A user is friends with zero or more users"

[2491

FQL Matters

...with the reverse sentence being exactly the same. So far, so good. It gets trickier when we
try to draw it, though. Do either of these work?

user

is friends with

user

uid

is friends with

uid

name
is friends with

name

friend is friends with friend friend friend
<...> <...>

user

is friends with
o<

is friends with
o<

user

uid is friends with
o<

is friends with
o<

friend
name

is friends with
o<

is friends with
o<

name

friend

is friends with
o<

is friends with
o< uid

<...>

is friends with
o<

is friends with
o<

<.. .>

No. And this is a basic rule of the database model: you can't have "many-to-many"
relationships between tables. Here we tried it where both tables were the same, but this
rule applies even if that's not the case.

I guess we'd better give up then. Not really, of course. Instead, we use what's called a
"link table":

Labels for these relationships are tricky; since the link table is not a tangible thing, the proper
label has to be something like, "is assigned to," which is not helpful. Really, the link table
itself expresses the relationship, so you can often omit the labels altogether. Alternatively,
label them as if they were connecting through the link table, like "is friends with".

[2501

Chapter 7

This makes searching for a user's friends a little harder than searching for their photos.
However, we can get a list of friends' IDs like so:

SELECT uid2
FROM friend
WHERE uidl = «user's ID»

What just happened?
That query will get a list of IDs of all users that are friends with the specified other user.
Don't worry, every row is duplicated with the order of IDs switched; if there's a row with
"uidl = I23"and"uid2 = 456" then there's another row with "uidl = 456" and
"uid2 = 123". This means you won't miss anyone if you only ask for values of uid2.

Getting a list of a user's friends' names is harder. Let's think about how we'd do it with the
help of AS3.

Time for action - getting a user's friends' names with AS3
We can start by getting a list of the IDs of a user's friends using the query above:

SELECT uid2
FROM friend
WHERE uidl = «user's ID»

From earlier in the chapter, you know that we can call this API URL to get that list:

https://api.facebook.com/method/fql.query?access_token=«access_
token»&format = j son&query=SELECT%20page_id%2 OFROM%2 0page%2 0WHERE%2 0
name%2 0 = %2 0%2 2Facebook%2 2

Except, actually, that won't work. Just like when using the Graph API to access private
information, you'll need to use an access token. (See Chapter 3 for a reminder of how to
generate one of these.)

The correct API URL, then, is:

https://api.facebook.com/method/fql.query?access_token=ACCESS_
TOKEN&format = j son&query=SELECT%20page_id%2 OFROM%2 0page%2 0WHERE%2 0
name%2 0 = %2 0%2 2Facebook%2 2

Given a user's ID, we can get their name using this query:

SELECT name
FROM user
WHERE uid = «user's ID»

[2511

https://api.facebook.com/method/fql.query?access_token=%c2%abaccess_
https://api.facebook.com/method/fql.query?access_token=ACCESS_

FQL Matters

So, we can loop through the JSON object returned to make a query like that for each user:

for each (var uid:String in jsonListOfFriendlDs)
{

var query:String = "SELECT name FROM user WHERE uid = " + uid;
cal1FQL(query); //function that calls the API url with this query

}

What just happened?
We got a list of names of all the specified user's friends. Easy! But unfortunately this requires
making an API call for each friend of the user. Facebook says the average number of friends
per user is 160, so that's 161 API calls, just for a list of names... isn't there an easier way?

Time for action - an easier way
FQL's WHERE clause doesn't have to use an equals sign. We can use less than, more than,
greater than or equal to, and so on — but more interestingly we can use an operator
called IN.

1. Its working is shown in the following code:

SELECT name
FROM user
WHERE uid IN ('123', '456', '789')

2. That query will get the names of the three users with IDs of 123, 456, and 789. Since
a query is just a string, we can construct one from a list of User IDs as shown in the
following lines of code:

var query:String = "SELECT name FROM user WHERE uid IN ("
for each (varuid:String in jsonListOfFriendlDs);
{

query += "'" + uid + "',";
}
query = query.substring(0, query.length - 1) + ")"; //replace
last comma with a closing parenthesis
cal1FQL(query); //function that calls the API url with this
query

What just happened?
This code gets us the same information as before, but only requires two API calls, which is a
pretty big improvement. If only we could get it down to one...

[2521

Chapter 7

Time for action - getting it down to one API call
1. There's another way to use the IN operator:

SELECT name
FROM user
WHERE uid IN (

SELECT uid2
FROM friend
WHERE uidl = «user's ID»

)

2. Again, the whitespace doesn't matter, and is only to help readability; you can call it
in a single line like so:

SELECT name FROM user WHERE uid IN (SELECT uid2 FROM friend WHERE
uidl='123')

3. Try it out using an API URL.

What just happened?
The query inside the parentheses is called a "sub-query." Essentially we are making
FQL do the same thing we just did with AS3: retrieve a list with one query and use it in
another query.

Haue a go hero - Mutual friends
I want to issue you the challenge of writing a query that gets all the mutual friends of two
users: the logged-in user, and one other person. Unfortunately, just as you can't access a
user's friend list through the Graph unless they've given your app permission to do so, you
can't retrieve the same list through FQL (even as a sub-query) unless they've added the app.

Still, it's a good exercise. Get a friend to add your app, and try to write code that gets a list of
the mutual friends of you and that person. Can you do it in a single FQL query?

Also, if you did write an FQL query builder in as part of the Have A Go Hero section earlier in
the chapter, try adding the ability to authenticate with Facebook.

[2531

FQL Matters

The Graph as a layer
For a given user — let's say the user with ID 123456789 — we can get info about all their
friends using this Graph call:

123456789/friends

This will give us their friends' names and IDs. We can get exactly the same information from
an FQL query as shown in the following code:

SELECT name, uid
FROM user
WHERE uid IN (

SELECT uid2
FROM friend
WHERE uidl = '123456789'

)

In fact, for any Graph API call, we can construct an equivalent FQL query. This means
we can look at the Graph model as a layer on top of the database model; it gives us
a simple way of accessing a limited number of FQL queries, almost like a collection of
pre-programmed macros.

The converse is not true, however. Any Graph API call can be constructed in FQL, but there
are a lot of FQL queries that have no equivalent Graph call. Master FQL, and you have a lot of
control over the data returned. Here's a really simple example that demonstrates my point:

SELECT name, uid, pic
FROM user
WHERE uid IN (

SELECT uid2
FROM friend
WHERE uidl = '123456789'

)

This query gives us the same information as that 12 34 5678 9/friends Graph query, but it
also gives us the URL to each user's profile picture (via the pic field), with just that one call.

Haue a go hero - recreating existing Graph API calls in FQL
Look back at your most commonly used Graph API calls. How could you recreate them
in FQL? More importantly, how could you enhance them with FQL? What extra data could
you obtain?

[2541

Chapter 7

Permissions
Just because you're not accessing data through the Graph doesn't mean you can grab
whatever information you want. You're still subject to the same authentication requirements
as before. For instance, you need an access token to run this query:

SELECT uid
FROM user
WHERE name="Michael James Williams"

Extended permissions are still relevant when using FQL. If you try to query the mailbox_
folder table without any permissions, you'll receive an error 612, telling you that
mailbox requires the read_mailbox extended permission.

At time of writing, there is no guide in the documentation that explains which extended
permissions are required to access given tables (or fields). The closest is this page, which
gives descriptions in terms of the Graph: http: //developers . facebook. com/docs/
authentication/permissions.

Checking existing permissions
One great feature that the database model offers but the Graph does not is a means to get a
list of extended permissions granted to the current user.

This is by way of the permissions table, which has many columns:

• uid (integer) - A User ID (must be of the current user) or Page ID

• publish_stream (Boolean) - returns 1 if the user or page has the publish_
stream permission, 0 otherwise

• create_event (Boolean) - returns 1 if the user or page has the create_event
permission, 0 otherwise

• rsvp_event (Boolean) - returns 1 if the user or page has the rsvp_event
permission, 0 otherwise

and so on. The table has one column for each of the possible permissions; in each case, the
value will be 1 or 0.

So if the current user's ID is 123456, we can find out whether they have granted our app the
publish_stream permission using the following FQL query:

SELECT publish_stream
FROM permissions
WHERE uid=123456

[2551

FQL Matters

The JSON result looks like the following code:

[{"publish_stream":1}]

You can check multiple permissions at once:

SELECT publish_stream, create_event, rsvp_event
FROM permissions
WHERE uid=123456

giving you something like the following code:

[{"publish_stream":1,"create_event":0,"rsvp_event":0}]

Remember, a list of all extended permissions is available in the following URL:
http://developers.facebook.com/docs/authentication/permissions.

Be careful when using this; it's not entirely reliable. Thanks to caching, the data in the table
may be up to 15 minutes old, so you can't guarantee that it's true. You should still prepare
your code for situations where it expects the user to have a certain extended permission but
they don't.

Getting more information
Another table, permissions_info, holds information about the permissions themselves. It
contains three columns:

• permission_name (string) - the name of the permission, like "publish_stream"

• header (string) - the name of the permission in plain English, like "Publish to
my Wall"

• summary (string) - a short description of what the permission allows, like "publish
content to my Wall"

Restrictions
The biggest restriction of FQL is that it cannot be used to do anything other than search. We
can't use FQL to add, edit, or delete any data - it's strictly look, but don't touch.

This means you can't use an FQL query to delete all the wall posts you made in the middle of
the night, to edit the captions of all the photos in an album, or to send a message to all your
friends who live in the same neighborhood. Instead, you'll need to use a query to find the
wall posts, photos, or friends in question, and then use AS3 and the Graph API to perform
the actual actions.

[2561

http://developers.facebook.com/docs/authentication/permissions

Chapter 7

Searches must use an indexable field
To speed up the performance of FQL searches, Facebook creates indexes of each table:
copies of the tables that only contain a few of the columns of the originals. Much like the
index in the back of a technical book, this makes it much faster to find something - as long as
it's in the index.

For example, the user table is indexed by the name field (which contains the full name of
the user), the username field, and also by its primary key, uid. Imagine that there are three
separate lists created, each containing just the IDs, usernames, and full names of all the
users; one list is ordered by ID, in numerical order, one by username, and the other is by full
name in alphabetical order. If you now call this query:

SELECT uid
FROM user
WHERE name = "Michael James Williams"

then the database can take the list that is ordered by name, skip to the "M" section, and look
for "Michael James Williams" within that section, finding matches much faster than if the
results were in, say, the order in which the users signed up. That's roughly how indexing works.

Many databases will allow you to search for anything, but provide significantly faster results
if your WHERE clause queries fields are indexable. With FQL, however, you can only call a
query if your WHERE clause contains at least one indexable field.

So, what happens if we query the user table with a WHERE clause that only refers to the
f irst_name field (which is not indexable, even though name is)?

SELECT uid
FROM user

WHERE first_name="Michael"

Try it out with an API URL:
https://api.facebook.com/method/fql.query?format=json&query=SELECT
uid FROM user WHERE first_name=MMichaelM

{"error_code":604,"error_msg":"Your statement is not indexable. The WHERE
clause must contain an indexable column. Such columns are marked with *
in the tables linked from http:\/\/wiki.developers.facebook.com\/index.
php\/FQL_Tables ","request_args":[{"key":"method","value":"fql.query"},
{"key":"format","value":"json"},{"key":"query","value":"SELECT uid FROM
user WHERE first_name=\"Michael\""}] }

At least we get a useful error message, rather than a blank JSON. (Well, quite useful; the URL
needs to be changed to http://developers.facebook.com/docs/reference/fql/.)

https://api.facebook.com/method/fql.query?format=json&query=SELECT
http://developers.facebook.com/docs/reference/fql/

FQL Matters

Note that this restriction only requires at least one of the fields queried
to be indexable. The fields specified in the SELECT clause can be any
fields in the table specified in the FROM clause. And later in the chapter,
you'll see how to query multiple fields at once inside a single WHERE
clause, only one of which needs to be indexable.

Does this matter in practice?
In general, the fields that you actually need to use in a search query are indexable; it's rare
that you'll want to search for a user based on the URL of their profile picture. There are
exceptions to watch out for, though. For instance, in the event table, only the eid field (the
primary key) is indexable, meaning that you cannot search across all events in the database
to find one taking place in a specified location, or containing a specified term in its name.

Advanced FQL
What we've covered so far is enough to cover most of what you can do with Graph calls, and
some more besides. Let's take a look at the more advanced features of FQL.

Operators
Just like if statements in AS3, FQL's WHERE clause can take both logical and
comparison operators.

Comparison
We can use the mathematical comparison operators =, <, >, <=, >=, and ! =. (An alternative
to ! = is <>, which you may see in examples online.)

These all work the same as in AS3, with the exception of =, which is like AS3's ==; it's used
for checking equality rather than assigning a value.

The most useful scenario for using these is when you want to filter out objects past a
certain age.

logical
AND, OR, and NOT will be familiar to you, although in AS3 we would write them as &&, | |,
and !, respectively.

We already covered IN earlier in the chapter; this allows us to check whether a given item
exists in a given list.

[2581

Chapter 7

Have a go hero - getting a list of your euents based on location
Earlier in the chapter we learned that we couldn't run this query:

SELECT eid
FROM event

WHERE location = 'london'

This is because the only indexable field in event is eid.

Here's one sneaky way around it:
SELECT eid
FROM event
WHERE eid != -1 AND location = 'london'

Unfortunately, it doesn't work. Facebook will tell you that "your statement is not indexable."
Ah well.

So come up with a query that searches for events taking place in London that the current
user is already aware of - you'll need to create a sub-query using the event_member table
and the IN operator for this.

(The event_member table is a link table with two indexable fields: uid, which corresponds
to a user, and eid, which corresponds to an event.)

Haue a go hero - finding gatecrashers
Want a bigger challenge?

Pick an event where lots of photos were taken. Using FQL and AS3, write code that will take
the ID of an event and a list of IDs of photo albums of that event, and output a list of names
of people who were tagged in the albums but not invited to the event.

Ordering
The ORDER BY clause allows us to sort results on a specific field. For example, you can get a
list of your own friends as shown in the following lines of code:

SELECT name
FROM user
WHERE uid IN (

* SELECT uid2
* FROM friend
* WHERE uidl = « your User ID »

[2591

FQL Matters

You can display them in alphabetical order by adding the following new clause:

SELECT name
FROM user
WHERE uid IN (

SELECT uid2
FROM friend
WHERE uidl = «your User ID»

)
ORDER BY name

Write ORDER BY name DESC to sort in descending order, or ORDER BY name ASC to sort
in ascending order. The default is ASC.

This is great when retrieving data that needs to be displayed in a certain order inside Flash;
all the work can be done at the server end, rather than having to take all the data and sort it
with AS3. It cannot be done with a Graph call.

Paging
As with the Graph, there are two main methods of paging: by date, or by number.

Paging by date uses comparison operators:

SELECT aid
FROM album
WHERE owner = «your User ID» AND created < «latest date» AND created >
«earliest date»

You can also use arithmetic operators (+, -, /, *) to make date comparisons easier to read:

SELECT aid
FROM album
WHERE owner = «your User ID» AND created < «certain date» AND created
> «certain date» - 10

Paging by number uses LIMIT and OFFSET, just like with a Graph call:

SELECT aid
FROM album
WHERE owner = «your User ID»
LIMIT 15
OFFSET 30

See Chapter 4 for more information on paging.

[2601

Chapter 7

Extra functions
FQL supports a few extra functions; some make constructing queries easier, others
add more power:

• now () - r e t u r n s the current time

• me () - returns the ID of the current user

• rand () - returns a random number

• strip_tags (field) - removes HTML markup and encoding from the
specified field

• strlen (string) - returns the length of the specified string

• substr (string, startpos, length) - returns a substr ing of the
specified string

• strpos (string, term) - returns the position of the specified term within the
specific string

• lower (string) - returns the specified string, converted to lower case

• upper (string) - returns the specified string, converted to upper case

You can use now () and me () to simplify the examples from Paging:

SELECT aid
FROM album
WHERE owner = me() AND created < now() AND created > now() - 10

Haue a go hero - combining whatyou'ue learned
Can we use the substr () function to create an FQL call that gets a list of all the people
whose name starts with M? If so, write the query; if not, explain why.

What about a list of people who are friends with the authenticated user and whose name
starts with M?

[2611

FQL Matters

Calling multiple queries at once
If you know you need to call more than one query, and the order in which these queries are
called is not important, you can increase performance by calling them all with one API URL.
All the results will be returned at once.

The syntax is:

https://api.facebook.com/method/fql.multiquery?queries=["SELECT x
FROM a WHERE c", "SELECT y FROM b WHERE d"]&access_token=«access_
token»

Although in this example I've only used very simple queries, you are not restricted to these.

Pop Quiz
1. When does it make sense to use FQL instead of the Graph API?

a. When publishing information to Facebook

b. When trying to retrieve a specific list of fields

c. When attempting to find out the user's extended permissions

2. When does it make sense to use the Graph API instead of FQL?

a. When publishing information to Facebook

b. When trying to retrieve a specific list of fields

c. When attempting to find out the user's extended permissions

3. How do columns and rows within database tables correspond to objects and
properties within the AS3 model?

a. Columns are like properties, rows are like objects

b. Columns are like objects, rows are like properties

[2621

https://api.facebook.com/method/fql.multiquery?queries=%5b%22SELECT

Chapter 7

Summary
In this chapter, you went from knowing absolutely nothing about FQL to being able to do
more advanced search queries with it than you could with the Graph API. You also learned
about some techniques that the Graph API does not support, like how to get a list of
extended permissions that the current user has been granted.

The key points are as follows:

• Databases arrange data into tables, columns, rows, and fields

• FQL stands for Facebook Query Language

• T h e API URL for submitt ing an FQL query is https : //api . facebook. com/method/
fql.query?access_token=ACCESS_TOKEN&format=FORMAT&query=FQL_
QUERY - FORMAT can be either j son or xml

• FQL queries must query an indexable field

• Read entity-relationship lines by combining the names of the two tables (not
columns!) with the verb before the line

• The permissions table can be queried to find out which extended permissions an
authenticated user has been granted

• A list of tables and their columns (with a guide to which fields are indexable) can be
found at http://developers.facebook.com/docs/reference/fql/

In the next chapter, we'll wrap up everything we've learned throughout the book and wrap
up your application as a whole.

[2631

http://developers.facebook.com/docs/reference/fql/

8
Finishing Off

You know what the Graph is. You understand how it represents all of Facebook's
data. You know how to read it, how to search it, how to add to it. You even
understand how to treat the data as a traditional database, for cases when the
Graph representation just won't do.

In short, you're a Graph guru. Congratulations!

So what's left? Well, you may have the technical knowledge required to use the Graph in
your AS3 applications and games, but we've barely touched on the more practical issues, like
deploying and publicizing your creations.

Therefore, in this chapter we'll look at:

• The different ways of putting your applications on Facebook

• How to host your application outside of Facebook

• Helping people get to know about your application

• Useful resources to build on what you've learned

So let's get on with it...

Putting it online
Let's assume you've used everything you've learned so far to build an awesome, social
application or game. What are your choices for making it available to other people?

Finishing Off

On Facebook
At time of writing, there are three ways to allow users to access your application from within
the Facebook website: in an IFrame, through FBML, and in a Page Tab. We'll go through what
each of these is, and how to use all of them, in turn.

IFrame
Remember frames? They're back...

Back in the nineties, every other website used the HTML <f rame> tag to lay out their pages.
This fashion was eventually dropped in favor of cleaner, bookmark-friendly methods, and has
not been missed.

But now frames are back in common usage - or rather, their sister tag the <iframe> is.

An IFrame, or "inline frame," allows you to embed one complete web page entirely inside
another, even if the two pages are on different servers and domains. If you view the source
for, say, the FarmVi l le appl icat ion p a g e (http: //apps . facebook. com/onthefarm/)
you'll see that this is the case as shown in the next screenshot:

facebook

I cm ÛSH I cm I CXQ I I £XH
I rmffiffl? I GUyÊSE I TKffiy-H I - I

Email Preferences | Support | FarmVille Game Bar | FarmVIIIe.com | Forums | FarmVille Fans! |
Privacy Policy | Terms of Service) Help

If you « tovrç soubte see rç Farmvie. ptea« update your «as* player by tfdang HERE.

Iframe
containing

page hosted
on Zynga

(with A SWF
embedded)

Page hosted on
Facebook

Howdy Farmer!
Email is an important way to receive

updates from FarmVille.
Soon, you can receive email alerts when:
- Your crop» ara ready Co harvest
- Your Frlundi Itavo • comment on your farm
- You r*ctlv* a neighbor request
...and much nor*?

[2661

Chapter 8

The page on the Facebook site is called the Canvas (not to be confused with HTML5's canvas).

Now, we've already got a page hosted on an external host (with an SWF embedded):
http: //host. com/visualizer/index. html. We don't need to make any changes
to this page to load it inside an IFrame on Facebook; the settings are all in the Facebook
Developer application.

Time for action - setting up an IFrame application
B r o w s e to http: //www. facebook. com/developers/apps . php a n d f ind your
application in the list. Select it, then click Edit settings. Choose Facebook Integration from
the menu on the left.

Canvas

Canvas Page

Canvas URL

Canvas Type

IFrame Size

Bookmark URL

http : //apps. facebook, com/ mjw-visuallzer

http ¡//host, com/visualizer/index, html

o IFrame FBML

® Show scrollbars O Auto-resize

The settings can be seen in the previous screenshot. Here's what they mean, and what to set
them to:

• Canvas Page: This is the URL, within Facebook, that users will browse to in order to
load your application. As we saw above, FarmVille uses http: //apps . facebook.
com/onthef arm. Type something short and descriptive; it doesn't have to be too
clever as users are more likely to reach the page through a Facebook Bookmark,
rather than by typing in the URL. You can change this URL later.

• Canvas URL: This is the URL of the page that gets loaded into the IFrame that sits inside
the Canvas page. Your application can contain multiple HTML pages that the user can
navigate between; the Canvas URL is the first page that will be loaded. Set this to your
appl ication's URL, that is http: / /host. com/visualizer/index. html.

• Canvas Type: IFrame or FBML. We're using IFrame at the moment; we'll look at
FBML later in the chapter.

[2671

Finishing Off

• IFrame Size: If you use Facebook's official JavaScript SDK, and your IFrame's contents
are likely to change size, you can call a JavaScript function to automatically resize the
IFrame to fit. We don't need this for what we've covered in the book, so stick with
t h e default Show scrollbars opt ion.

• Bookmark URL: As mentioned above, your application can contain multiple HTML
pages. This URL is the one that the IFrame will point to if the user accesses the
application via a Facebook Bookmark. This is useful if you want new users to see a
beginner's guide, while allowing returning users to skip straight to the application. In
this example it's been left blank, since the Visualizer only has one page; this means
that the Canvas URL will be used.

Make your edits and click on Save changes.

What just happened?
If you included the full path to the web page where the SWF is embedded (including the
. html extension), you will have received this error:

Canvas Callback URL must point to a directory (i.e., end with a "/") or a dynamic page (i.e.,
have a "?" somewhere).

F a c e b o o k w a n t s a URL of t h e f o r m http: //host. com/«f older»/, w i th no "«page» .
html" at the end. If you don't specify a page, your server has a list of default filenames
which it tries to serve, one by one, until it finds one that exists. For example, this might be
"index, html, index, htm, default. html". De lete or r e n a m e any other p a g e s in the
application's directory that look like they might appear on that list (besides index. html).
Try loading http: //host. com/visualizer/ in your browser to make sure it loads the
right page - if it doesn't, check your webhost's support to find out what you need to do.

If your web page is not called index. html, then the simplest thing to do is
rename it so that it is. Otherwise, you'll need to find out how to change your
server's list of default filenames so that it includes your web page's name.

As a hacky alternative, you could trick Facebook into thinking that the
static HTML page is actually dynamic, by adding a fake parameter to
the end of the URL: http : //host. com/visualizer/page .
html?pretendtobedynamic=true.

Go back to the Facebook Integrations settings and re-enter a Canvas Page URL. Enter the new
Canvas URL. Click on Save Changes again - this time, there should be no error.

[2681

Chapter 8

Now go to your application page: http: //apps . facebook. com/mj w-visualizer
(replace "mj w-visualizer" with the string you entered as the Canvas Page).

s
H MichaelJW'sVisualizer on... x\ O

^r C? © apps.facebook.com/mjw-visualizer/

facebook Search

| Zoom In | Zoom Out | Reset View | Search

Search •

Query:

Type:

O User

C Page

C Euent

C" Group

C Public Post

9 Checkin

C My News Feed

9 Friend's Posts:

Mlohatl Jam« UJIIIIams

uerified in*
gpctatecLt ime ; 2010-0G-18T20:38:01+0000

about : Twitter: ©MichaelJLU

i d n c n
locale: en.GB

link:
http ://www .faotbook .com/i
n a m e i

Conntotloni

K à © • [ZD ® Q Q i l l i

Home Profile Account

S3 10 credits • Get Info

Games

j|| weRead { Books ¡Read)

More-*-

Create an advert

Rome will Burn
again

Mafia Wars is going to the
birthplace of the mob. Get
ready to conquer Italy and
build your own empire. Play
now!

TomTom App for
¡Phone
apple.com

T o m T o m * »
Smart, easy to use
navigation tor ¡Phone,
available now at a discount
via Appstore

0 ± » C h a t (0 }

You may discover that, when you load the application's page within Facebook, the
authentication pop-up window does not appear.

Why is this? Check the source - nope, the JavaScript is intact. You can check to see whether
it's being run (it will be). Perhaps it's because you're using an IFrame, and Facebook is
blocking the Externallnterface code?

Actually, it's much simpler than that; it's probably the browser's pop-up blocker. The code
we've used so far works fine from an IFrame, so allow pop ups for your site and you'll be
fine. Now you have a fully integrated Flash Facebook application, running from within the
Facebook website. Nice work.

[2691

Finishing Off

FBML
Take another look at the next Screenshot:

Canvas

Canvas Page

Canvas URL

CanvasTvpe

IFrame Size

Bookmark URL

http: //apps, facebook. com/ mjw-visualizer !

http: //host, com/visualizer/index .html

(ä>) IFrame FBML

a Show scrollbars Auto-resize

You can see that we have a choice between creating an IFrame application and an
FBML application. FBML is a markup language, like HTML; essentially, it gives you
Facebook-specific tags you can use in your application web page (not the SWF) to
insert a Friends list or a "like" button.

However, by the time this book is published (or very soon after), Facebook will drop the
option to create FBML applications - the Canvas Type option might already have been
removed from your Facebook Integration settings.

So don't bother creating an FBML canvas application. Stick with IFrames.

Page tab
At the top of each Page's profile is a set of tabs:

Activetuts

Wall Info Welcome to... Hews Twitter Photos » +

You can allow Pages to add your application to their profile as a tab. The options for this are
again in the Facebook Integration settings.

[2701

Chapter 8

Time for action - adding an application to a Page tab
To add your application as a tab on a Page that you administer, you must first mark it as
being able to be embedded in a tab. Open the application's settings, and navigate to the
Facebook Integration section. In the Page Tabs sub-section, enter the following:

• Tab Name: The name to be displayed on the tab (keep it short)

• Tab URL: The filename of the application's web page, relative to the Canvas URL

• Edit URL: Leave this blank

Page Tabs

Tab Mame

Tab URL

Edit URL

Visualizer

littp : //apps. facebook. com/nnjm-visualizer/ index. html

Next, browse to the application's Application Profile Page from the Developers dashboard,
and click on Add To My Page from the menu on the left:

[Add to my page's favorites adds a link to the
application's profile to your Page, rather than
the application itself.]

You'll be given a list of Pages that you control; if you don't have any Pages, you can follow the
instruct ions at http : //www. facebook. com/FacebookPages to learn h o w to create one.

[2711

Finishing Off

Select the desired Page:

Add MichaeDWs Visualize!' to your Page

Select which Page you wish to add MichaeDWs Visualizer to,

Michael J a m e s Williams
Public figure

Active tuts
Products

M i c h a e Ü W s Visual izer
Application

Add to Page

Add to Page

Add to Page

Note that you can even add the application as a tab in its own profile page!

Check out your Page:

Michael James Williams I© L ike V
Get started Wall Info Photos Discussions VisuaTizer

Success! Well... not quite. Click on the tab, and you may see this error message appear:

Application temporarily unavailable

Parse errors:

FBML Error (line 31): illegal tag "body" under "fb:tab-position"

Runtime errors:

Cannot allow external script

What just happened?
The problem here is, the HTML in the Tab URL's web page is trying to run some JavaScript to
deal with authentication, and Facebook does not allow this within tabs.

Or at least... it doesn't at time of writing. Currently, tabs require FBML, rather than IFrames.
But by the time you read this - and as already mentioned above - tabs will not accept FBML
and will require IFrames. The documentation explaining how to incorporate IFrames into
tabs does not exist yet, and it can't be tested, so unfortunately this book cannot explain how
to do it. Sorry!

[2721

Chapter 8

But let's look at what you'll need to know about tabs for when you can create them.

From a technical point of view, the most important point is that tabs have a width of only
520 pixels, so bear this in mind when laying out your application and its tab page. You may
even wish to create a separate web page to house the SWF - or even a separate SWF - for
use inside a tab.

If you've made an advergame for a company, with Facebook integration to use the player's
own name inside the game and let them post their score on their Wall, you could put
the game in a tab on that company's Facebook page, rather than just using a standalone
application page for it.

Adobe took such an approach with their Flex quiz game, Cube Builder:

I ^ I [51

Q Facebook | Adobe Flash

C O www.facebook.com/f ashs atforn?v=app_4949752i & © ® a a / f H) a
facebook

Suggest to friends

Subscribe via SMS

Remove from my page's favourites

Guidelines & resources for this Fan
page -http://on.fb.me/d8HgXs

Post jobs at http://bit.ly/3Twlb7

Stay current on the Flash Platform -
http: //blogs. adobe. com/fla
shplatfbrm

Questions Si answers about Flash
http: //forums. adobe. com/co
mmunity/flash

Information

Founded:
FutureSplash Animator: April 1996,
Flash: November 1996

Adobe Flash Flash Cookbook | Creating a cool smoke effect in Flash Professional

Wall Info Cube Builder Notes Discussions Photos »

BISE
From Adobe

PLAYTHEGAME
Check out the current highest scoring players on

Cube Builder. Test your skil ls and take the tap spot.

TOP 10 ON THE LEADERBOARD Af

r-'Ep ifPT'
THIERRY CAR1NE FIONA PETER JASON
223000 * LL0 219000 * L10 218000 -110 218000 -110 215000 -110

| <object type=app[jcation./x-shockwave-flash allowScriptAccess=a Embed -

1 friend likes this. (¿J 1* Chat (0)

[2731

http://www.facebook.com/f
http://on.fb.me/d8HgXs
http://bit.ly/3Twlb7

Finishing Off

The previous screenshot shows the game's leaderboard, rendered inside an SWF, in a tab
on t h e A d o b e Flash F a c e b o o k Page (http: //www. facebook. com/f lashplatform/).
Clicking on Play The Game takes you to the Cube Builder game itself, as an Application on
F a c e b o o k (http: //apps . facebook. com/cubebuilder/).

This is also a good example of how to deal with the 520 pixel limit on the IFrame's width; the
Cube Builder game SWF is considerably wider than this, so the tab shows a much narrower
SWF with completely different content, rather than attempting to cram the game into the
smaller space.

Off Facebook
As we discussed, Facebook is not restricted to the Facebook. com website. Blogs let you log
in with your Facebook account to post a comment, IMDB lets you "like" movies through their
website (and automatically updates your Facebook profile info accordingly), and Xbox 360
games can post your awesome gaming achievements to your Wall. In the same spirit, your
Facebook-integrated applications and games don't have to be stuck inside the Facebook site.

Your own website
You've been hosting the Visualizer application on your own website all through this book -
no need to explain this.

Although we've embedded the SWF in such a way that it stretches to the edge of the
browser window, there's no requirement to do this. Treat it like a regular SWF in a regular
page. You do need to include that JavaScript (either to create the pop-up window, if using
the HTTP Requestor, or to embed the Facebook JS scripts, if using the SDK) to handle the
authentication, but nothing else needs special treatment. Even then, you only need to
include the authentication code if your application needs to use an access token.

You could use the same page for your application's canvas IFrame, its profile tab, and its own
web page, but it seems unlikely that the same design would look great in all three situations.
A more flexible solution is to have three different web pages, but embed the same SWF in
each one.

Flash game portals
If you're a Flash game developer, you know that many games get the majority of their traffic
through Flash game portals like Kongregate. com and Newgrounds . com, rather than
through the game's home page. It would be great to add Facebook integration to games
played through these sites, but there are a few obstacles that make it difficult.

Chapter 7

Portals might prevent SWFs from loading data from external sites, which would mean that
accessing even public Graph data would be tricky or impossible. This is not particularly likely
- if external resources are completely blocked, how could in-game advertising work? - but
it's worth looking out for.

The true problem lies in authentication. This is for two reasons:

• In order to obtain an access token, we call a JavaScript function within the page
where the SWF is embedded. But Flash game portals don't give us access to the
source of the web page, so we can't insert this JavaScript function to be run. On top
of that, portals are likely to prevent SWFs from using External Interface to call
JavaScript functions, because they pose a potential security risk.

• In Chapter 3, we learned that we had to set the Site URL to match the base domain
name of our application's host. If these didn't match - say, if your application was
at http: //portal. com/games/awesomegame. html but t h e Site URL w a s set to
http: //host. com/- Facebook would not let the user authenticate. This means
we can't allow games hosted on different portals to authenticate through the same
Facebook application.

So, sadly, Facebook did not design their applications model for SWFs that can be run from
different sites. A possible workaround is to import a separate SWF, hosted on your own
server, into the main game SWF, and let that separate SWF handle authentication... but
implementing that is beyond the scope of this book.

However, you don't have to do all that work yourself I If you don't need access to the entire
Graph API, and only want to be able to post messages on the user's Wall, retrieve their
profile information, and obtain a list of their Facebook friends, then you can use the Mochi
Social Platform.

This is a free ActionScript API, provided by Mochi Media, which ties in to the Facebook,
Twitter, and MySpace APIs, allowing you to post to and access data from all three social
networks. It also allows you to store arbitrary data about the player and link it to their social
networking profile. This means you can store their top scores, other stats, or even entire
custom levels that they've built.

For m o r e informat ion, visit http: //www. mochimedia. com/developers/social. html.

As a desktop AIR application
Although much of the HTTPRequestor code we've written will work in a desktop AIR
application without any changes, there's one sticking point: authentication. Since, when
using AIR, we don't have an SWF embedded in an HTML page, how can we display the
Facebook authorization page, obtain the access token, and pass it to an AS3 function?

Finishing Off

Time for action - authorizing through AIR with HTTP
Rather than placing our application inside an HTML page, we must place an HTML page
inside our application. To do this, we can use an HTMLLoader.

The flash, html. HTMLLoader class, only accessible in AIR, is a type of DisplayObj ect
that acts as a container for HTML content. We use it to load the Facebook login page for our
application, much like we did with a pop-up window in Chapter 3. Back in that chapter, once
the user had logged in, the pop-up window redirected to another page, passing the access
token as part of the hash, and JavaScript in this page's source extracted the hash and passed
it to the SWF. In AIR, our application will use an event listener to detect this redirection, and
extract the hash directly.

Here's how that breaks down. These are general instructions, rather than being tied to the
Visualizer, so implement them however best fits your project:

1. First, import HTMLLoader.
import flash.html.HTMLLoader;

2. Next, create an instance of this class, and add an event listener for when its contents
are redirected.

var htmlLoader:HTMLLoader = new HTMLLoader();

htmlLoader.addEventLi stener(Event.LOCATION_CHANGE, onRedirect);

(Don't forget to import flash, events . Event.)
3. The HTMLLoader will have a width and height of zero, by default, which is not

useful since we need the user to click a button inside it! So, resize it.
var htmlLoader:HTMLLoader = new HTMLLoader();
htmlLoader.addEventListener(Event.LOCATION_CHANGE, onRedirect);
htmlLoader.width = 64 0;
htmlLoader.height = 4 80;

4. Add it to the display list so that it can be seen.

var htmlLoader:HTMLLoader = new HTMLLoader();
htmlLoader.addEventListener(Event.LOCATION_CHANGE, onRedirect);
htmlLoader.width = 64 0;
htmlLoader.height = 4 80;
addChild(htmlLoader);

[2761

Chapter 8

5. T h e H T M L L o a d e r needs to load the Facebook Author ize URL, https : //
graph.facebook.com/oauth/authorize?client_id=«application_
id»&type=user_agent&redirect_uri=«redirect_url».The contents of the
w e b page hosted at the redirect URL don't actual ly matter; you could use an e m p t y
w e b page, the Goog le h o m e page again, or even a URL that points to a site that
doesn't exist. Load the URL.

var htmlLoader:HTMLLoader = new HTMLLoader();
htmlLoader.addEventLi stener(Event.LOCATION_CHANGE, onRedirect);
htmlLoader.width = 64 0;
htmlLoader.height = 4 80;
addChild(htmlLoader);
var authURL:String = "https://graph.facebook.com/oauth/
authori ze?client_id=«application_id»&type=user_agent&redirect_
uri=«redirect_url»";

htmlLoader.load(new URLRequest(authURL));

(Make sure y o u import flash, net. URLRequest.)
6. T h e onRedirect () funct ion will be tr iggered w h e n the user successful ly

authenticates, but may be tr iggered at other t imes (like w h e n the initial page
is loaded), so check that there is a hash in the URL (which will, remember, be
someth ing like http: //«redirect_url»#access_token=«access_token».

7. Unfortunately, and unlike in JavaScript, there's no location. hash property in AS3,
so we have to do this manual ly.

private function onRedirect(a_event:Event):void
{
var htmlLoader:HTMLLoader = a_event.target as HTMLLoader;
if (htmlLoader.location.indexOf("#") != -1)
{

//hash is in URL
}

}

8. Extract the hash:

private function onRedirect(a_event:Event):void
{
var htmlLoader:HTMLLoader = a_event.target as HTMLLoader;
if (htmlLoader.location.indexOf("#") != -1)
{
var hash:String = htmlLoader.location.substr

(htmlLoader.location.indexOf("#") + 1);
}

}
[2771

https://graph.facebook.com/oauth/

Finishing Off

Great! The code from HTTPRequestor. setAccessToken () can be re-used here
to extract the actual access token.

What just happened?
You just obtained the access token for your application and the current user, entirely in AS3,
using AIR.

It would be a good idea to hide the HTMLLoader now that it's no longer needed:

private function onRedirect(a_event:Event):void
{

var htmlLoader:HTMLLoader = a_event.target as HTMLLoader;
if (htmlLoader.location.indexOf("#") != -1)
{

var hash:String = htmlLoader.location.substr
(htmlLoader.location.indexOf("#") + 1);

setAccessToken(hash);
removeChiId(htmlLoader);

}
}

This access token can now be used in exactly the same way that we used it throughout
the book; there's no need to open any more web pages, so there's no need to change any
other code.

Of course, you'll want to add more error checks and handlers - like, what happens if the user
does not click on Accept, or is not connected to the Internet - but that's par for the course.

You might consider using the static HTMLLoader. createRootWindow () method, instead
of HTMLLoader. load () , as this creates a new window to contain the loaded web page,
rather than loading it into a DisplayObj ect. It has the same functionality, but it may make
for a cleaner interface in your application. Check out the AIR LiveDocs on HTMLLoader for
more information.

Time for action - authorizing through AIR with the S0K
The Adobe ActionScript 3 SDK for Facebook Platform can also be used with AIR, if a few
changes are made to your code. The biggest change required is the class used: we've used
the com. facebook. graph. Facebook class throughout this book, but for AIR we must use
com.facebook.graph.FacebookDesktop.

[2781

Chapter 8

This has a few differences. Let's go through them. Again, these are general instructions, so
implement them as best fits your project.

1. It's easiest to start with the code we've already been using for SWF-based
authentication, and modify it to work with AIR; there aren't too many differences.
First, import the FacebookDesktop class.
import com.facebook.graph.FacebookDesktop;

2. Now, replace every reference to the Facebook class with a reference to
FacebookDesktop.

3. The FacebookDesktop. login () method takes a slightly different pair of
arguments to Facebook. login () . Instead of the second parameter being an
object with this format:

{perms: "permissionl,permission2,permission3"}

...it's an array with the following format:

["permissionl", "permission2", "permission3"]

4. In other words, your FacebookDesktop. login () call needs to look like this:

FacebookDesktop.login(loginComplete, ["permissionl",
"permission2", "permission3"]);

5. Another notable change is that, upon successfully authenticating, the
FacebookDesktop class will automatically request the me object, and return it as
a property, user, of the first parameter passed to the callback function. This means
that you can get details like the user's name without having to request anything:

private function loginComplete(success:Object, fail:Object):void
{

if (success is FacebookSession)
{

trace(success.user.name); //logged-in user's name
}

}

What just happened?
You're now able to authenticate your users with Facebook regardless of whether your project
is an SWF or an AIR application, using either HTTP or the official SDK.

There are a few other small differences between Facebook and FacebookDesktop, but
none involving the methods we've used throughout the book. To be safe, check the SDK's
documentation for the class you want to use.

[2791

Finishing Off

Consider using AIR even when developing Facebook-related projects that you intend to
deploy as SWFs; it gives you the huge benefit of being able to test locally - that means no
copying files across to an FTP server, or deleting objects from your cache - and with very few
changes to the code. It may save you a lot of time in testing.

As an AIR for Android Application
The methods for obtaining Graph API data through instances of the URLLoader class work
fine in AIR for Android applications; once again, the issue is with authenticating the user.

The SDK does not officially support AIR for Android for authentication, unfortunately.
However, we can get an access code manually, as we did when authorizing through
AIR via HTTP.

AIR for Android does not have the HTMLLoader class, but it does have something similar:
the StageWebView class. Let's look at using this.

Time for action - authorizing on Android
1. First, import the StageWebView class,

import flash.media.StageWebView;

2. Then, create an instance of it, set the size, and add an event listener.

var StageWebView:StageWebView = new StageWebView();
StageWebView.stage = this.stage;
StageWebView.viewport = new Rectangle(0, 0, stage.stageWidth,
stage.stageHeight);
StageWebView.addEventListener(LocationChangeEvent.LOCATION_CHANGE,
onRedirect);

3. This is very similar to what we did with desktop AIR, except that:

• Instead of using addChild () to add the StageWebView to the display list,
we set its stage property to the stage, because StageWebView is not a
DisplayObj ect

• Instead of setting the width and height separately, we use a Rectangle
object to define an area onscreen to display the web page contents

• Instead of listening for an Event, we listen for a LocationChangeEvent

4. To deal with these changes, import the required classes:

import flash.media.StageWebView;
import flash.geom.Rectangle;
import flash.events.LocationChangeEvent;

[2801

Chapter 8

5. Load t h e F a c e b o o k A u t h o r i z e URL:

var stageWebView:StageWebView = new StageWebView();
stageWebView.stage = this.stage;
stageWebView.viewport = new Rectangle(0, 0, stage.stageWidth,
stage.stageHeight);
stageWebView.addEventListener(LocationChangeEvent.LOCATION_CHANGE,
onRedirect);
var authURL:String = "https://graph.facebook.com/oauth/
authori ze?client_id=«application_id»&type=user_agent&redirect_
uri=«redirect_url»";
stageWebView.loadURL(authURL);

6. Note that t h e StageWebView. loadURL () m e t h o d d o e s not require a
URLRequest, but a String.

7. Extract t h e a c c e s s token f r o m the hash in the s a m e w a y as before:

private function onRedirect(a_event:LocationChangeEvent):void
{

var stageWebView:StageWebView = a_event.target as StageWebView;
if (stageWebView.location.indexOf("#") != -1)
{

var hash:String = stageWebView.location.substr
(stageWebView.location.indexOf("#") + 1);

setAccessToken(hash);
}

}

8. You can't use removeChild () to r e m o v e t h e StageWebView, so use th is m e t h o d :

private function onRedirect(a_event:LocationChangeEvent):void
{

var stageWebView:StageWebView = a_event.target as StageWebView;
if (stageWebView.location.indexOf("#") != -1)
{

var hash:String = stageWebView.location.substr
(stageWebView.location.indexOf("#") + 1);

setAccessToken(hash);
stageWebView.stage.nativeWindow.close();

}
}
T h a t wil l work! T h e r e ' s just o n e smal l t w e a k w e have t o m a k e . O n A n d r o i d , t h e
S t a g e W e b V i e w uses the A n d r o i d OS system w e b control (in d e s k t o p AIR, t h e internal
A I R W e b K i t e n g i n e i s used) . S ince we don' t have full control over this, we n e e d to
m a k e sure i t doesn ' t do a n y t h i n g u n e x p e c t e d , like o p e n t h e browser appl icat ion.

[2811

https://graph.facebook.com/oauth/

Finishing Off

9. To do this, prevent the stageWebView instance's default action as soon as it
dispatches the LOCAT I ON_CHANGING event (this is dispatched just before the
location changes):

var stageWebView:StageWebView = new StageWebView();
stageWebView.stage = this.stage;
stageWebView.viewport = new Rectangle(0, 0, stage.stageWidth,
stage.stageHeight);
stageWebView.addEventListener(LocationChangeEvent.LOCATION_CHANGE,
onRedirect);
stageWebView.addEventListener(LocationChangeEvent.LOCATION_
CHANGING, onRedirecting);
var authURL:String = "https://graph.facebook.com/oauth/
authori ze?client_id=«application_id»&type=user_agent&redirect_
uri=«redirect_url»";
stageWebView.loadURL(authURL);

private function onRedirecting(a_event:LocationChangeEvent):void
{
var stageWebView:StageWebView = a_event.target;
a_event.preventDefault(); //stop any unexpected default

//behavior
stageWebView.loadURL(a_event.location);

//...but continue loading the URL
}

What just happened?
Using a StageWebView, you authenticated a user with Facebook through an AIR for Android
application. Since URLLoader instances can be used in the same way in AIR for Android as
they can in a regular SWF, this means that you can now make Android applications that are
totally integrated with Facebook, using Flash.

Haue a go hero - modifying the SDK for Android
At time of writing, the SDK uses an HTMLLoader for AIR authentication, and JavaScript for SWF
authentication, so cannot be used to authenticate an Android application. If you really want to
use the SDK for your Android projects, you'll have to make some changes of your own.

Add stageWebView-based login functionality to the SDK. Rather than modifying existing
SDK class files, create new class files that extend existing ones - that way, they won't be lost
if you update the SDK in future.

It's a tricky challenge because you'll be modifying someone else's code, but worth it if you
want to use the SDK.

[2821

https://graph.facebook.com/oauth/

Chapter 8

Choosing your application's Facebook settings
There's more to an application's settings than Canvas URLs. Here are some of the more
interesting options:

• Advanced | Deauthorize Callback: Here y o u can spec i fy a URL that wil l get ca l led
whenever a user removes your application; the ID of the user will be passed to
this URL. In order to do something with this ID, you'll need to use a server-side
scripting language - see " What Next?" later in this chapter. More information on
decoding the info is available here: http: / /developers . facebook. com/docs/
authentication/.

• About | Developers: Allows you to set other users as a developer of your
application, giving them access to the application settings.

• Advanced | Sandbox Mode: Very useful for testing, this will only allow a user to sign
in to your application if they are listed as a developer of that application.

• Facebook Integration | Bookmark URL: On the left s ide of t h e F a c e b o o k h o m e page,
you can see a list of applications and games that you've used:

e Developer

0 weRead (Books ¡Read)

j Graffiti

* FarrnVille

Photos

m Groups

Links

• Notes

m Adverts and Pages

• SCRABBLE® Worldwide •
(excluding U.S. and Canada)

a Marketplace 1

Less

• These are called Bookmarks; setting the Bookmark URL lets you choose where these
links point to.

The number to the right of a Bookmark is called a Counter, and lets the user
know about notifications and changes within the application. Read more about
Counters here: http://developers.facebook.com/docs/guides/
canvas/#bookmarks.

• About | Icon a n d About | Logo: T h e icon a p p e a r s next to B o o k m a r k s a n d b e l o w wal l
posts created via your app, while the logo appears in the authorization page and in
search results.

[2831

http://developers.facebook.com/docs/guides/

Finishing Off

Getting your application out there
All the development work you've done is pointless if nobody ever uses your application.

If you've created a Flash project that only uses Facebook as an extra feature - a Post To
Facebook button, for example - then this section will not be too relevant. But if your project
is built around Facebook, with the Graph API at its core, or perhaps even embedded in
Facebook, then you will benefit from making it visible on the Facebook website.

Editing the application's profile page
First impressions count. If you want people to use and install your application, you need to
impress them with your application's profile page.

Here's an example of a lame profile page:

No thumbnai l image

c
Go to application

Users:
1 monthly active user

Category
All

This application was not developed
by Facebook.

MichaelJW's Visualizer 0 Like

Wall I n f o R e v i e w s D iscuss ions +

About MichaeLJW's Visualizer

Edit Application

Promote with an advert

Add to my Page

Add to my page's favourites

Suggest to friends

Block Application

I think Visualizer is a pretty cool f
app, ti represents the Grpah API
and doesnt afraid of anything.

Friends using this Application

No friends are using this application.

About the Developer

No "About"

Michael
James
Williams

Barely legible
descr ipt ion

The page gives you absolutely no indication of what the application is about, or why you
should bother using it. It doesn't exactly look like the developer has put much effort into the
page, so why should the user believe that the application is any better?

Compare it to the profile page for Graffiti (http: //facebook. com/graf f itiwall), a
Flash application that allows you to draw images on Facebook for your friends:

[2841

Chapter 7

Information

{4.3 out of 5)
Based on 7,177 reviews

Users:
5,468,611 monthly active users,
45 friends

Category
Just "for fun

This application was not developed
by Facebook.

1,493,332 people like this

£

Graffiti irSlLike

b i i U L a u J

Add to my Page

Add to my page's favourites

Suggest to friends

Block Application

Graffiti has the highest user rating of
all the Top 50 biggest Facebook
apps!

Wall Info R e v i e w s Graffiti D i scuss ions Tutor ia l

About Graffiti

Draw graffiti for your friends.

Highest user rating in the Top 50 Facebook applications!

Friends using this Application See All (45)

i r a ^ H
About the developers

The thumbnail image was drawn using Graffiti, giving a quick example of what it can do. The
About paragraph sums up the purpose of the application concisely, and the description adds
a little social proof: "lots of other people like this, so you probably will too!"

Actually, a lot of the page is about social proof (perhaps not surprising for a social application
on a social network):

• Display of your friends who use the application

• Average user rating (4.3 out of 5)

• Large number of reviews

[2851

Finishing Off

• Millions of monthly active users

• Huge number of people who have clicked that Like button

Obviously you don't have any direct control over these! But they do play a large part in how
people perceive your application or game, so bear that in mind.

Haue a go hero - creating your application's profile page
Browse to your list of applications inside the Developers application, select your application
f r o m the list, a n d cl ick on Application Profile Page.

E Welcome to your new Page. Let's get started!

• Add an image

U p l o a d a n i m a g e
From your computer

6
C

• Tell your fans

Let your current customers and subscribers know about your new Page.

| [Up Import Contacts

• P o s t s t a t u s updates

Share your latest news.

Post Update

• Promote this Page on y o u r w e b s i t e

Add a Facebook Like box to your site and give people an easy way to discover and
follow this Page.

Add like box

The Get started tab will guide you through setting everything up with a profile picture, status
updates, and basic information. Remember your main aim is to get people to click the Go to
application button I

[2861

Chapter 8

Custom tabs
The Graffiti application does not just have the four default tabs, Wall, Info, Reviews, and
Discussions. It has two custom tabs:

• Tutorial, which contains embedded videos explaining how to use the
drawing interface.

• Graffiti, which contains the latest images drawn by other users.

Like the About paragraph and the description, these help potential users understand what
the application is for, and how to use it, in a way that's targeted specifically to the Graffiti
application. The Graffiti tab, rather than the Info tab, is set to be opened by default when
clicking through to the application's profile, because it gives a much stronger first impression.

Likewise, when clicking through to FarmVille's profile (http: //www. facebook. com/
FarmVille), this Play Now! tab is displayed, which contains nothing more than a button
that takes the user to the game:

Clearly, the FarmVille developers' first priority is to get users playing the game rather than
reading about it.

You can create a custom tab for your application by following the instructions in Page Tab,
earlier in this chapter. To set it as the default landing tab, click the Wall tab, and then the
Settings button. Se lect your c u s t o m tab f r o m the Default landing tab for everyone else
drop-down list.

[2871

Finishing Off

The Facebook Application Directory
Once you've built your application, tested it, and set up a profile page, you're ready to go
live. C h e c k o u t t h e Facebook Application Directory here: http: //www. facebook. com/
apps/directory.php.

Applications in this directory are visible throughout Facebook: as well as being able to search
for them via the directory itself, they'll also turn up in the general Search box.

There is a catch - your application needs to have:

• Ten people who have used it within the last month, or

• Five people who have added it to their Bookmarks

So you'll need to get some people to join in by sending them the canvas page URL. Also, you
can't submit applications that are still under construction.

Once that's sorted, browse to your list of applications, and select the one you want to
submit. Click the link reading submit it to the Application Directory.

MichaelJW's Visualizer
Directory Status: Not submitted
O n e s y o u h a v e c o r r p s t s d y o u r spp l i c i t 'on , y o u may submit I t to tha Application Directory

You'll then be prompted to set up a logo, a name, a contact e-mail, and a description:

Required Fields

Fee Facebook correspondence only. We will contact you at thiE 1 ess if thee a re a ray problems
ct Important updates,

Application Description
[Limit: 2 50 characters)

A short description of y o * application- displayed on ye« eec application" page and application
drectery listing.

Mobile In tegra t ion [Q My application uses the mobile platform

L o g o Upload an application logo
"his image cr scsenshot Onanmum 75«75
pixels) will be displayed with certain requests
ard in the application drecttxy listing,

or Cancel

[2881

Chapter 8

After that, it'll be in the Directory! Look for it using the main Search box.

Watch out for these policies!
You must have read the scare stories about how Facebook is taking over the world because
they have so much information on us, and how terrible it is that so many people trust it with
so much of their personal data. We should be cautious of what we put on there, to be sure.

The same fears apply to you now, since you now know how to access all of that information.

Facebook has a list of policies that you, as a developer, must follow when creating your
applications. Since this is continually updated, I won't go into much detail; the full list can be
f o u n d here: http: //developers . facebook. com/policy/. In genera l :

1. You mustn't spam.

2. You must respect users' privacy.

3. You mustn't mislead users.

There are some specific policies that you might easily overlook, though (like, "your web
site must include a Log Out option"), so make sure you read it through carefully before
publicizing your application.

Make sure you're aware of any privacy policies that apply in your country, or in the
country where your web host is based. For example, UK developers are subject to the Data
Protection Act of 1998, which defines the laws regarding data collected on living people.

What next?
We've covered the important technical concepts of Facebook and the Graph API, but there's
plenty more to learn if you're eager.

The Official AS3 Facebook SDK
There are parts of the SDK that we never needed to use for the Visualizer, but that you may
want to look in to. We only ever used it as a basic interface for the Graph API.

For example, it includes a DisplayObj ect called Distractor, which is a Flash version of
the throbber animation used on Facebook when objects are loading:

[2891

Finishing Off

Find out more online:

1. T h e official h o m e p a g e for t h e S D K is: http: //www. adobe . com/devnet/
facebook.html.

2. The URL for the associated Google Code project (where support issues can be
brought up and the latest version can be downloaded) is http: //code.google.
com/p/facebook-actionscript-api/.

3. You can discuss the project in its Google Group: http: //groups . google. com/
group/facebook-actionscript-api.

4. The official documentation can be found at http://facebook-actionscript-
api.googlecode.com/svn/release/current/docs/index.html.

Other Facebook APIs
We've focused on the Graph API in this book, and spent some time diving in to FQL - all
accessed through AS3 with HTTP or the SDK. These aren't the only Facebook APIs, though.

iavaScriptSDK
Facebook officially supports one, a JavaScript SDK, which is available here:
http://developers.facebook.com/docs/reference/javascript/

It's a good idea to learn this if you want to add Facebook integration to the web pages
around your SWFs, rather than just the SWFs themselves. Since you already understand the
core concepts behind the Graph (like the concept of Graph Objects and connections, and
OAuth 2.0), you shouldn't find this difficult to pick up. Plus, the AS3 SDK is based on this,
so a lot of it will be familiar to you already.

The JS SDK also allows you to use FBML and the "like" button in your web pages.

Insights API
Facebook has a tool called Insights that can collect and analyze metrics about the usage
of your applications or pages. Check it out at http: //www. facebook. com/insights/.
These metrics can be viewed on the website, but can also be accessed via the Graph API, so
if you really wanted to, you could make a Flash application that analyzed its own usage.

To get started learning how to access this data, check out the Insights section of the Graph
A P I d o c u m e n t a t i o n : http: //developers . facebook. com/docs/api.

[2901

http://developers.facebook.com/docs/reference/javascript/

Chapter 8

Facebook Chat API
The Facebook website's built-in chat client uses Jabber/XMPP, and really has nothing to do
with the Graph API. Still, if you want to implement a Facebook chat client of your own, the
in format ion is here: http: //developers . facebook. com/docs/chat.

Internationalization API
Facebook is available in over 70 languages (including, er, Pirate English), so why should your
application be restricted to one? With the Internationalization API, you can encode all the
text in your application so that it can be rendered in any supported language. You can even
allow your users to submit translations, in case you're not septuaginalingual.

Adobe Social service
Adobe and Gigya provide a service called Social that allows developers to connect with
Facebook, Twitter, MySpace, Linkedln, Windows Live, OpenID, and many more social
networks, all through a single shared API.

With Social, you can allow your users to log in to any of these social networks, and then
obtain their name, avatar, list of friends, and other information given by that network. You
can also use it to share information. It's totally encapsulated - for example, you can use the
service to post to a user's wall, if logged in to Facebook, or publish a Tweet to the user's
stream, if logged in to Twitter, with the same command.

Find out more about Social at http: / /www. adobe . com/f lashplatform/services/
social/.

Related Technologies

PHP
PHP is a server-side scripting language. That means it can generate HTML pages on the fly;
to a web browser (or a URLRequest), a PHP page looks like a regular web page, but when
it's loaded it can do all sorts of things behind the scenes.

For example, it can save and load information to and from a database on your own web
server, allowing you to store information on users beyond what Facebook can carry: high
scores, personal preferences, and so on.

As with JavaScript, there is an officially supported Facebook PHP SDK, available here:
http://github.com/facebook/php-sdk/.

[2911

http://github.com/facebook/php-sdk/

Finishing Off

Another popular server-side scripting language you could learn is Microsoft's ASP.NET.
This would be an ideal choice if you're already a .NET developer, as it's based on the same
platform and languages.

Open Graph Protocol
The Open Graph protocol lets you represent any web page as a Graph Object. By
implementing it on your site, every page can have the same functionality as a Facebook
Page. Among other things, this means that if a Facebook user "likes" your web page, it will
show up in their Interests. IMDB uses this to let users "like" movies.

There's a general overview of the Open Graph protocol here: http: / /
opengraphprotocol.org/.

Information on using it specifically for Facebook can be found here: http: //developers .
facebook.com/docs/opengraph.

Real-Time Updates
With the Open Graph protocol, users can "like" a movie on the IMDB website, and it will
appear in their Facebook profile's Interests. Real-time updates allow the reverse: when a
user types a movie's name into their Interests box, IMDB will be notified, and can update the
user's IMDB profile with that preference.

You'll need to understand a server-side scripting language (like PHP) in order to use real-time
updates. More information can be found here: http: //developers . facebook. com/
docs/api/realtime.

Brand new and coming soon
Some Facebook features were announced too late to be included in this book. Let's
take a look...

Facebook Credits
Facebook Credits are a form of micro transaction that has been available to certain
developers (like Zynga, the company behind FarmVille) for a long time. Users spend real-
world cash to buy these Credits, and can then spend these inside applications and games
- for instance, to buy a special type of crop in FarmVille, or more storage space on a photo
sharing application. The developers then receive a cut of the cash payment.

At time of writing, Facebook have not given a date for when all developers (not just those
that have been invited) will be able to use Credits to sell virtual goods.

[2921

Chapter 8

Test users
The Facebook policies prevent anyone from creating multiple user accounts. However, it's
now possible to create up to 50 user accounts specifically for the purpose of testing an
application, using the Graph API.

For m o r e informat ion, see http : //developers . facebook. com/docs/test_users.

The New Messages
In November 2010, Facebook announced their highly-anticipated "Gmail killer," the new
Messages. This allows users to combine messages, texts, chats, and emails into a single
conversation thread, for cross-platform communication.

The Graph API and FQL will be able to be used to access these messages, through a new
connection called /thread/.

For more information, see the documentation at http : //developers . facebook. com/
docs/reference/api/thread.

Facebook developer resources
Here are some excellent websites for your browser bookmarks and RSS readers.

Official Facebook resources
• The central source of information for all Facebook developers is

http : //developers . facebook. com/. From here you can access
the massive set of documentation, which covers every part of the APIs,
as well as the (very active) developer forums, where you can discuss
application development with others.

• You can also check the current status of the Facebook Platform through the Platform
l ive status page: http : / /developers . facebook. com/live_status. If
something is going wrong with your application and you can't see any cause on your
side, check this page to see whether the problem lies with Facebook.

• You should also be aware of the Facebook Platform Bug Tracker: http : //bugs.
developers . facebook. net/. Since changes are made to the platform very
frequently, a few bugs pop up here and there. This bug tracker helps you to bring
bugs to the attention of the Facebook administrators; it can also be used to figure
out if an issue you're having is a common bug.

[2931

Finishing Off

Other great websites
The entire InsideNetwork (http: //www. insidenetwork. com/) is invaluable reading for
Facebook developers. It consists of:

• Inside Facebook: http://www. insidefacebook. com/ - news about Facebook
and the Facebook Platform

• AppData: http: //www. appdata. com/ - analysis of metrics and traffic trends for
Facebook applications

• PageData: http: //pagedata. insidefacebook. com/ - like AppData, but for
Facebook Pages rather than applications

• Inside Virtual Goods: http: //www. insidevirtualgoods . com/ - research, data,
and analysis regarding virtual goods (will be particularly relevant once Facebook
Credits go public)

• Inside Social Games: http: //www. insidesocialgames . com/ - news and
analysis of the growing social games market (including Facebook games)

Another great blog about Facebook game development is Facebook Indie Games:
http://fbindie.posterous.com/.

As you read more and more of these sites, you'll come across all sorts of terms and
acronyms that you may not recognize, like DAU, MAU, and K Factor. Wavedash. net has
provided a useful reference for what many of these terms mean: http: //www. wavedash.
net/2 010/04/the-secret-glossary-of- social-games-analytics/.

The blog "Cognition.ca" does not contain many posts on Facebook development, but it does
have two that I found very useful:

• http://www.cognition.ca/2 0 07/11/using-ssh-tunnels-to-develop-
facebook-applications.html

• http://www.cognition.ca/2008/02/facebook-application-
development-how-to-ll-tips-you-dont-want-to-miss . html

Check out the comments on the latter post as well. Although some of the information is
out-of-date, there's some really great advice about setting up a test version of your
application so that you don't push untested changes to your live version.

In Chapter 6 I mentioned that Facebook won't allow you to "like" Graph objects (apart from
posts) through anything other than the official Facebook Like Button. Well, that's not entirely
true - the team at Hook seem to have cracked it. See this blog post for more details (but
remember that Facebook don't want you to do this, so there's no guarantee this will work
forever): http://labs.byhook.com/2010/08/03/facebook-like-button-in-
f lash/.

[2941

http://www
http://fbindie.posterous.com/
http://www.cognition.ca/2
http://www.cognition.ca/2008/02/facebook-application-
http://labs.byhook.com/2010/08/03/facebook-like-button-in-

Chapter 8

Me, me, me
My website is http: //michael jameswilliams . com/. Through there, you can find my
blog of Flash game development tutorials, and get in contact if you want to ask any questions
or hire me. I post on Twitter as @MichaelJW.

I'm also editor of http: //active. tutsplus . com/, which publishes Flash tutorials on
subjects including Facebook application development.

Yes, I'm on Facebook, but no, I probably won't add you - sorry! I like to keep my friends
list pared down to people I know in real life. (Is that ironic?) However, you can connect to
me t h r o u g h my publ ic Page: http: //www. facebook. com/pages/Michael-James-
Williams/169573433058884- drop me a note and let me know what you thought
of the book!

Keeping up with the Zuckerbergs
Facebook are always making changes and improvements to the service. Things change; as a
developer you must deal with this.

More importantly, you must accept this. Every time Facebook announces a new feature,
the removal of an old feature, or a change to an existing feature, developers rise up and
complain that this is going to cripple their application, push them way back on schedule, and
make them lose huge amounts of revenue and users.

It's fine to be vocal, but at some point it becomes denial. If you've been using the Facebook
website for any length of time, you'll know that they will happily make big, sweeping changes
- like the introduction of the News Feed, and the removal of Tabs and Boxes on user profiles
- and stick with them despite complaints from users. And usually, their instincts in what will
make the site better are right.

No surprise, then, that the same is true with the APIs. Maybe this isn't fair to developers, but
it's not likely to change. So remember, as you build your project, that if it relies too much on
one single feature of the Graph API (or the Facebook interface, or the data available), then
you're in danger of having the rug swept out from under your feet. Remember to work out a
pricing structure with your clients so that when changes need to be made to their project's
Facebook integration code a few months later, you aren't contracted to do it for free.

Fortunately for you, your knowledge of the Graph API is based on core concepts, not on
specific implementations. You understand the Graph itself, rather than just how to copy
and paste snippets of Facebook-related AS3 code. This means you'll be able to cope with
anything new.

[2951

Finishing Off

Dealing with change
Keep an eye on these two pages:

• F a c e b o o k D e v e l o p e r Blog: http: //developers . facebook. com/blog/
• F a c e b o o k D e v e l o p e r R o a d m a p : http: //developers . facebook. com/roadmap

The blog announces changes relevant to developers, and the roadmap gives a brief summary
of these upcoming changes.

In general, new changes are announced weeks or even months before they are
implemented. Often, you'll be able to enable the changes in your application some time
before the migration is forced upon you, which is useful for testing alterations you need to
make to your code.

Now go and read the blog's archives dating from November 2010 onwards (the date when
this book was completed), and then subscribe to it to receive regular updates. This way,
you'll stay up-to-date.

Summary
In this chapter, we looked at how to move beyond the technical issues onto the practical
ones, and where to go from here. All that's left is for you to go and make some fantastic
Facebook applications!

I wish you the best of luck with your development. From me, and everyone else involved in
this book, thanks for reading! I hope you've found it useful. And please let me know about
any Facebook applications or games you develop - I'd love to see them.

[2961

Pop Quiz Answers

Chapter 2
1 a It makes the metadata visible

2 d Unl imited

3 a True

4 b False

Chapter 3

1 b Stands in as the authenticated user's ID w h e n used in a Graph URL.

2 c We wanted to present the user with a genuine Facebook login page, for
trust reasons

3 a It's likely to scare users away

Chapter 4

1 b It' s a compromise between speed of access and amount of information provided

2 b Restrict user access to a Graph Object for a certain time period

3 c Date-based paging means Graph Objects won't be missed out if created or
removed while paging

Pop Quiz Answers

Chapter 5
1 d Potentially any of the above

2 b The first doesn't act as a filter for the second, unlike all the other Graph Search
URLs

3 a, d Results are personalised so that more relevant results rank higher

More types of search (like user) can be used

Chapter 6

1 c HTTP requires that we use an "unsafe" method when changing data

2 b These codes can give us extra information about why a publishing attempt failed

3 a Nothing

Chapter 7

1 b, c When trying to retrieve a specific list of fields

When attempting to find out the user's extended permissions

2 a When publishing information to Facebook

3 a Columns are like properties, rows are like objects

[2981

Index
Symbols
_canShowSearchUI property 163
_requestor object 166,189
_showListCounts Boolean property 120

A
access token

about 70, 74
access_token parameter 78
Application Secret 81
receiving 95-99
requesting, with browser 75
using 78, 80

access_token parameter 81
action function 210
actions parameter 208, 209
Adobe ActionScript 3 SDK

using, for Facebook platform 106,108,110,
113, 114

Adobe Social service 291
AIR

authorizing through, with HTTP 276-278
authorizing through, with SDK 278, 279
for Android application 280

albums
about 227
creating 227

ampersand (&) 77
Android

AIR for 280
authorizing on 280-282
SDK, modifying 282

API URL
for FQL query, URL 240

AppData
URL 294

application
adding, to page tab 271-274
creating 231
custom tabs 287
facebook settings, selectring 283
profile page, creating 286
profile page, editing 284, 285
redirect URI, registering 75-78
registering, with Facebook 72-74

Array.join() method 103
AS3

about 14, 15
access token, using in Graph Visualizer 83-87
authenticating, through application 88-90
authenticating, via JavaScript 91-93
authenticating with 83
callback page, creating 93, 95
page information, retrieving 27, 31
used, for accessing Graph API 27-30

as3corelib
URL 18

as3corelib library 32
AS3 Facebook SDK 289
AS3 object-oriented model 237, 238
as keyword 166
attemptToAuthenticateQ function 88, 93,103

B
birthday wall posts

loading 139
browse() method 228
browser

Graph API, accessing through 24

c
checkins 230
comments 222
community page 24
COMPLETE event 109
compound object

creating from list, results based 144
connections

about 243
exploring 40
finding, in browser 36-40
graph objects connections, rendering 46-48
HTTP requestor, creating 48-54
rendering 45
requestor 48

connections object 38
constructor function 189,199
controllers. CustomGraphContainerController

class 28
controllers.GCController class 28
coordinates parameter 230
create_event (Boolean) 255
crows' feet

about 248, 249
drawing 249

CustomGraphContainerController 52,137
CustomGraphContainerController.as 89,137
CustomGraphContainerController class 28
CustomGraphContainerController.

renderGraphObjectQ method 34
CustomGraphContainerController requests 41
CustomGraphContainerController.searchO

function 166
custom tabs 287

D
data

based on data, requesting 131-133
obtaining, in pages 126,127

data-based filtering 130
data-based paging 139,140
data models, FQL

AS3 object-oriented model 237, 238
graph model 238
relational database model 238

data property 28

data representations 238
Date object 82
debugging 18
decodedJSON object 111
deleteGraphObject() method 216
deleteObjectQ function 217
deleteObjectQ method 216
De MonsterDebugger tool 19
DialogEvent 18
DialogEvent class 18
domain names 13
Don't allow dialog box 100

E
escapeQmethod 132
event_member table 259
event RSVPs 226
events 225,226
expires_in parameter 81, 96
extended permissions

about 101
dealing with 106
obtaining 101,102
permanent access token, using 105
requesting 102-105

ExtendedPermissions class 144
Externallnterface 92
Externallnterface call 92
Externallnterface class 92

F
Facebook

about 7, 23
application, registering with 72,73
benefits 8-10
biographical information, changing 231
data posting, via SDK 197-199
friends, making 231
friends profile, checking out 65-68
numbers 9
policies 289
privacy settings, viewing 68, 69
settings, for application 283
signing up 11
statistics page 9

Facebook.api() method 110,134,167,197,199

[300]

Facebook APIs
about 290
Facebook Chat API, JavaScript SDK 291
Insights API, JavaScript SDK 290
Internationalization API, JavaScript SDK 291
JavaScript SDK 290

Facebook application directory 288, 289
Facebook Chat API 291
Facebook Developer

URL 72
Facebook Developer Blog

URL 296
Facebook developer resources

official Facebook resources 293
other websites 294

Facebook Developer Roadmap
URL 296

Facebook, features
Facebook credits 292
new messages 293
test users 293

Facebook.loginQ method 114
Facebook page

loading 24
Facebook.postData() method 199
Facebook Query Language. See FQL
FBML 270
feeds

searching for 171
searching, through visualizer 175-181

field 237
FileZilla

URL 13
Filter button 138
flash.display.Loader class 36
Flash game portals 274, 275
Flash Tracer for Firebug 19
FQL

about 235
data models 237
data representations 238
existing Graph API calls, recreating 254
field 237
interface 236, 237

FQL, advanced
about 258
comparision operator 258

logical operator 258
multiple queries, calling 262
operators 258

FQL query builder
creating 242

friends_interests extended permission 102
friends property 213
friend's wall posts

searching for 172
FROM clause 258
from property 61
FTP (Media Temple's instructions)

URL 13
functions, FQL

lower(string) 261
me() 261
now() 261
rand() 261
strip_tags(field) 261
strlen(string) 261
strpos(string, term) 261
substr(string, startpos, length) 261
upper(string) 261

G
Graph

as layer 254
traversing 61, 62

Graph API
about 21, 69
accessing, through AS3 27-30
accessing, through browser 24

graph.GraphList class 41
graph.GraphObject 33
GraphList class 41
GraphList instance 43
GraphListinstance 121
Graph List Renderer 41
graph model 238
GraphObject.as class 33
GraphObject class 41
GraphObject instance 41
Graph Object Renderer 35
graph objects

albums 227
checkins 230

[301]

comments 222
deleting 214
event RSVPs 226
events 225, 226
likes 223
likes, deleting 223
notes 224
photos 228, 229
post, deleting 214
post deleting, visualizer used 215-220
publishing 221

GraphRequest 138
GraphRequest class 49
GraphRequest instance 63,130,135
GraphRequest instances

since, adding 133-135
until, adding 133-135

GraphRequest object 167
Graph URL

about 26
ids parameters, using 142,143
ids parameter, using 141
searching, with authorization 158-160
searching, without authorization 153-157

groups
creating 231

H
header (string) 256
HTTP

used for authorizing, through AIR 276-278
HTTP POST method 233
HTTPRequestor class 48
HTTPRequestor() constructor function 97, 9
HTTPRequestor.request() 96
HTTPStatusEvent listener 192

I

ids parameters
using, for Graph URL 142, 143

if block 42
I Frame

about 266, 267
application, setting up 267-270

inbox messages
sending 230

info
visualizing 33-36

information
retrieving, from page table 239-242

initComplete() function 108
initializeQ function 119
Inside Facebook

URL 294
InsideNetwork

URL 294
Inside Social Games

URL 294
Inside Virtual Goods

URL 294
Insights API 290
Internationalization API 291
lOErrorEvent listener 85
IO_ERROR event listener 54
IRequestor.as interface 119
IRequestor interface 89,168

J
JavaScript SDK

Facebook Chat API 291
Insights API 290
Internationalization API 291

JSON.decode() method 32
JSON.encode() method 230
J SON (JavaScript Object Notation) 30
J SON object

deserializing 32, 33

K
Komodo Edit

URL 13

L
length property 121
likes 222
limit

adding, to GraphRequest 128,129
using, for other connections 128

limit parameters 127
listFilterCallbackO function 137

[302]

lists
number of objects, displaying 118,120
of posts, rendering 40-45
rendering 40

load() method 28
loginComplete parameter 109
lower(string) function 261

M
me() function 261
message parameter 230
metadata=l flag 46
metadata=l parameter 38
metadata parameter 40
method=delete parameter 219
MinimalComps

URL 18
MouseEvent.CLICK listener 48
multiple IDs

requesting, at once 141

N
name property 32
networks

about 66
URL 66

networks property 213
news feeds

searching for 171,172
Notepad++

URL 13
notes 224
now() function 261

o
OAuth 2.0 protocol 81
objects

exploring 26, 27
requesting 122-124

offset
adding, to GraphRequest 128, 129

offset parameters 127
onAuthenticationComplete() function 89
onGraphDataLoadCompleteO function 165
onGraphSearchComplete() function 165

onHTTPStatusReturned() method 197
onRequestorlnitialize() function 195
Open Graph Protocol 292
operators

comparision operator 258
logical operator 258

ORDER BY clause 259
ordering 259

P
Page

about 24
creating 231
loading 24

Page Data
URL 294

page tab
about 270
application, adding to 271-274

page table
information, retrieving from 239-242

paging 125,126, 260
paging node 140
paging object 43
permission_name (string) 256
permissions 67
permissions, FQL

about 255
existing permissions, checking 255
permissionsjnfo 256

personal profile 24
photo album 243-245
photos

loading, from album 56-61
uploading 228, 229

PHP 291
picture field 36
place parameter 230
Pop Out button 61
post

deleting 214
deleting, via visualizer 215-221

POST HTTP request method 221
POST method

using 190-192
Powered by... 17,18

[303]

primary keys
about 247
album.cover_pid 247
photo.aid 247
photo.owner 247

privacy
post privacy settings, setting 211-213

privacy parameter 208
profile page, application

creating 286
editing 284, 285

public profile 24
Publish button 216
publishCompleteQ function 198
publish() function 188, 202, 221
publishj) method 188,189, 207, 228
PublishObject 222
PublishObject class 188
PublishObject instance 188, 221
PublishObject parameter 191
publish_stream (Boolean) 255
publish_stream permission 223, 224

Q
q parameter 171

R
randQ function 261
Real-Time Updates 292
redirect_uri parameter 94
relational database model 238
renderGraphList() method 41
renderGraphObject() method 33
requestCompleteQ callback 111
requestCompleteQ function 110,168
request() function 110,113,134
request method

about 189, 190
errors, listening for 193,195
POST method, using 190-192
required permission, granting 195-197
SDK, posting via 197-199

request() method 190
requestor

about 48
HTTP requestor, creating 48, 52, 53

restrictions, FQL
about 256
indexable field, using for searches 257

result parameter 111
Rich Internet Applications (RIAs) 8
rich posts

publishing 200-203
rsvp_event (Boolean) 255

s
scope parameter 101,103
SDK

AIR, authorizing through 278,279
modifying, for Android 282
searching via 167-170

SDKRequestor.attemptToAuthenticate() method
114

SDKRequestor() constructor 108
search

feeds, searching for 171
feeds, searching through visualizer 175-181
friend's wall posts, searching for 172
full search results, using 150-153
locale, setting 170
news feed, searching for 171,172
quick search results, examining 148-150
restrictions 161,162
search, via SDK 170
search window, implementing in

visualizer 163-166
via SDK 167-170
wall posts, searching for 171
websites search box, using 147
with authorization 158-160
without authorization 153-156

searchCompleteQ 168
search() function 166,167
search() method 166,168,190
search results

examining 148-150
full search results, using 150-153

search window
implementing, in visualizer 163-166

setAccessToken() 94, 97
setAccessToken() function 94, 95, 97
Show button 47

[304]

since parameter 158
SOS max 19
source code 15
source parameter 208, 214
status message 199
status property 192
strip_tags(field) function 261
strlen(string) function 261
strpos(string, term) function 261
substr() function 261
substr(string, startpos, length) function 261
success parameter 111
summary (string) 256

T
tables

linking 249, 250
TextMate

URL 13
this.accessToken 96
time property 82
type parameter 153,181

u
uid (integer) 255
until parameter 133,158
upper(string) function 261
URLLoader request 48
URL parameter 191
URLRequestMethod class 190
URLRequest object 28,114
URLVariables object 90, 200
URLVariables parameter 197

User Agent Flow 81
user/application authorization 70, 71
user_checkins permission 230
user feed

posting to 185-189
userjnterests extended permission 102

V
videos

creating 231
visualizer

about 15
feeds, searching through 175-181
search window, implementing in 163-166

Vizzy Flash Tracer 19

w
wall

posting to, visualizer used 207, 208
wall posts

searching for 171
web hosts

about 11
need for 12
selecting, ways 12
software, requisites 13

website property 241
window.open() 93

z
Zoom In button 35

[305]

	Team rebOOk

