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Je parle pour les gens habitués à trouver de la sagesse dans la feuille qui

tombe, des problèmes gigantesques dans la fumée qui s’élève, des théories

dans les vibrations de la lumière, de la pensée dans les marbres, et le plus

horrible des mouvements dans l’immobilité. Je me place au point précis où

la science touche à la folie, et je ne puis mettre de garde-fous.

– Honoré de Balzac, Théorie de la démarche, 1833





Abstract

Brain computer interface is a challenging domain of research, it pushes science in many directions including the

identification (i) and characterization of brain patterns that could be used as commands (ii), the development

of new algorithmic tools capable of filtering, classifying and issuing explainable robust decisions (iii), the

design of new framework of experimentation (iv) interacting with the real world to involve and give impactful

feedback to subjects regarding their brain activities. In this vast ocean, fishing parameters to study is in one

hand easy in the sense that there are plenty and a great number are relevant by nature. On the other hand,

it is quite uneasy in the sense that a great number of parameters are intertwined and dependant and that

occulting severals to spotlight one might be incomplete and even deceptive. We focus on the end feedback for

the user through a robotic arm. The evocative power of the robot associated with the notion of embodiment

help the subject to create differentiable patterns. To help in achieving a complete control over the robot, we

use an eyetracker to hybrid the approach, in doing so, we arrive to a stable level of agency needed to have

trust in the system. Although this approach has been demonstrated to be efficient in terms of performance,

the keys of the interaction between the robot and the user remain poorly studied. Among those keys, the

time to perform the motor cognitive task with respect to the robot’s movement remains poorly studied even

though this parameter is essential in the sense of agency via the concept of intentional binding. This thesis

tackles this question through the creation of a multimodal platform and its associated experimental protocol

involving healthy subjects that controlled the robotic arm with different strategies. We demonstrated that a

specific strategy of control is more effective than the rest with a consistent behaviour using various metrics on

brain data. This thesis presents those results along with a presentation of the state of the art and a thorough

discussion on the topic.



Résumé en français

Les interfaces cerveau-ordinateur constituent un défi de recherche qui pousse la science dans de nombreuses

directions, allant de l’identification et de la caractérisation des patterns cérébraux pouvant servir de

commandes, au développement de nouveaux outils algorithmiques capables de filtrer, de classifier et de

prendre des décisions robustes explicables, en passant par la conception de nouveaux cadres expérimentaux

interagissant avec le monde réel pour impliquer les sujets et leur fournir des informations impactantes sur

leurs activités cérébrales.

Dans ce vaste champs, l’étude des paramètres à explorer est à la fois facile au sens qu’il en existe de nombreux,

et un grand nombre d’entre eux sont pertinents par nature. À l’inverse, l’étude peut s’avérer difficile en raison

de l’entrelacement et de la dépendance de nombreux paramètres. Négliger certains d’entre eux pour mettre

en avant un seul peut s’avérer incomplet, voire trompeur. Nous nous concentrons sur la rétroaction finale pour

l’utilisateur par le biais d’un bras robotique. Le pouvoir évocateur du robot associé à la notion d’embodiment

aide le sujet à créer des signaux différentiables. Pour contribuer à une maîtrise complète du robot, nous

utilisons un eyetracker pour hybrider l’approche, ce qui nous permet d’atteindre un niveau stable d’agentivité

nécessaire pour avoir confiance dans le système. Bien que cette approche ait été démontrée comme efficace

en termes de performances, les clés de l’interaction entre le robot et l’utilisateur restent peu étudiées. Parmi

ces clés, le temps nécessaire pour effectuer la tâche cognitive motrice par rapport au mouvement du robot

demeure peu étudié, même si ce paramètre est essentiel pour l’agentivité par l’intermédiaire du concept

d’intentional binding.

Cette thèse aborde cette question par la création d’une plateforme multimodale et son protocole expérimental

associé impliquant des sujets sains qui contrôlent le bras robotique avec différentes dynamiques de contrôle.

Nous avons démontré qu’une stratégie de contrôle spécifique était plus efficace que les autres, dans la mesure

où elle présente un comportement cohérent en utilisant diverses mesures sur les données cérébrales. Cette

thèse présente ces résultats ainsi qu’une présentation de l’état de l’art et une discussion approfondie sur le

sujet.
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Figure 1: Sunset in Tuscany, among friends, 2023

Do not go gentle into that good night - Dylan Thomas

Do not go gentle into that good night,

Old age should burn and rave at close of day;

Rage, rage against the dying of the light.

Though wise men at their end know dark is right,

Because their words had forked no lightning they

Do not go gentle into that good night.

Good men, the last wave by, crying how bright

Their frail deeds might have danced in a green bay,

Rage, rage against the dying of the light.

Wild men who caught and sang the sun in flight,

And learn, too late, they grieved it on its way,

Do not go gentle into that good night.

Grave men, near death, who see with blinding sight

Blind eyes could blaze like meteors and be gay,

Rage, rage against the dying of the light.

And you, my father, there on the sad height,

Curse, bless, me now with your fierce tears, I pray.

Do not go gentle into that good night.

Rage, rage against the dying of the light.
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Introduction 1
Among subjects of science that unleash passions, Brain Computer In-

terface (BCI) is appearing often. Its ability to nourish the wildest and

sometimes scariest imaginations makes it complex to apprehend and

even more to work on. It is rather difficult to juggle between our own

expectations and the reality of the field which is struggling with a lot

of insoluble problems, largely due to our poor understanding of brain

mechanisms. BCI exited science fiction in the 1970s with Jacques Vidal’s

[1] reflection on the feasibility to use electro-encephalography signals

to establish communication with an external device. Later on, in the

beginning of the 1990s, with the improvement of computers, the reflec-

tion became experiments forming the premises of a field that would be

growing until today.

During this growth, many different tracks were followed to make it

possible to actually control devices based on human’s brain activity. The

acquisition techniques took many forms ranging from invasive, which

gave tremendous information on brain signals to non invasive, which

kept improving usability and facility to deploy, both having their pros

and cons. With the improvement of computer capability and the dawn

of machine learning, methods to classify brain data have become more

refined, subtle and elegant, capable of capturing complex information of

brain data. The BCI field has the particularity to advance in parallel with

the understanding we have of the brain in fundamental neuroscience.

Experimentation is done based on this acquired knowledge. Sometimes,

by creating new interactions, the field also contributes to understand

better brain behaviours we would not have suspected. However, it must

be said, that this particular field is largely invested by a trial-error mindset,

fumbling around the darkness with the failure and successes of a few for

unique light.

To this day, it would seem rather unwise to advocate for a daily use

of such a system for the simple reason that the technology itself is not

ready yet to enter in our life. Nevertheless, it could easily find its use for

the ones that need it the most. Before enhancing humans, let us try to

repair them. In the case of loss of movement capability - symptomatic

of many diseases or accidents among which we can evoke amyotrophic

lateral sclerosis (ALS) or spinal cord injury (SCI) - providing to patients

a way to communicate or to interact with the external world is absolutely

necessary. BCIs can be a response to this challenge as their capacity to

interact with the users’ brain and their intentions is what the interface is

all about. Will we be able to make patients walk again ? It is not certain

yet with non invasive techniques, but it seems more and more imaginable

with invasive methods. Another promising lead to help patients regards

the stroke rehabilitation process. Indeed, by performing movements

or at least by translating to patients their brain activity, we can try to

retrain their brain and to overcome their injury by synaptic rewiring

process. BCIs here play the role of a crutch and a rewarding element in

the meantime patients cannot fully move, that being said, they should

not be thought as the only solution as subjects’ improvement could be

limited by the sole use of the technique.
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In all of this, how should we contribute to BCI systems, what are the

elements that should be tackled and what should we choose to tackle

based on our own expertise ? A particular challenge for subjects is to

create brain patterns that are differentiable at the EEG level. To create

those patterns, we rely on cognitive tasks that change the brain activity

profile. Among those cognitive tasks, one that changes the activity is the

motor imagery of limb movements, a task which consists in imagining

movements without performing them. This peculiar task is unfamiliar to

many and therefore rather complex to execute. A way to help subjects is to

use evocative feedback in the BCI context such as robotic arms. Nourishing

the sentiment of control over the arm as well as the movements produced

by the arm help to elicit stronger differentiable brain patterns. But, due

to the current limitations regarding degrees of control permitted by BCI

systems, a full control over a robotic arm is not possible. To go around

those limitations, a possible solution is to couple the BCI with another

technology to increase the degrees of control and to reinforce subjects’

sense of control over the arm. Among the possible technologies that offer

a window on the intention of subjects without making them move, the

eye tracker appear to be an elegant solution. It accesses this intention

through pupil position that infers the gaze direction. The integration of

the two components creates an hybrid BCI system capable of controlling

the arm in an intuitive manner.

This hybridisation has been demonstrated as a proof of concept in the BCI

field, but the impact of the integration of those modalities on the brain

as well as how we should merge those modalities remain to be studied.

Indeed, understanding better how to shape the interaction between

the eye tracker, the BCI and the robotic arm, would result in a better

comprehension of why we obtain good performances and how to elicit

those discriminant brain patterns.

Figure 1.1: Braccio platform: a multi

modal BCI approach for the control of a

robot

This work consisted in the creation of an experimental platform that

entangles the different modalities to establish a strong control over

the arm. Because we create such a platform, in the process, we raise up

interrogations concerning its use, its strength and its flaws. By conducting

an experimental protocol, we assess how we should define the interaction

by a thorough analysis which covers pure performance of the system,

physiological and neuro-physiological responses of subjects. During

two different campaign of experimentation which lead to two scientific

contributions, we investigated the time to perform the cognitive task in

a multimodal control over a robotic arm, the moment being related to

the arm’s movement (before, during or after it reaches an object). We

find out that consistency is key in the interaction, we also demonstrate

the importance of movement to elicit brain responses in this particular
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context. Furthermore, we highlight the notion of intentional binding,

at the heart of the sense of agency, that stresses the importance of time

between intention of action and its realization. Our work paves the road

for a better comprehension of the dynamic of the brain in its control over

external devices in a multimodal setup.

This thesis is structured in five different chapters covering the overall BCI

context, the development of the experimental platform, the results from

the experimental protocol associated with their discussion and finally a

general conclusion on the work realised and its openings.

▶ Chapter 2: This chapter presents the overall state of the art with an

emphasis on the notion of intuitiveness. It enters into the details of

what is a brain computer interface, first by presenting briefly the

brain mechanisms responsible for the observation of brain signals

at the surface of the scalp. It then presents the different brain

signals that can be used as commands for external devices. The

chapter then thoroughly discusses the motor imagery paradigm

for BCI and the leads to improve the system. It also presents the

key elements to have in mind in robotic control and its association

to BCI and the eye tracking technology is also evoked. The chapter

concludes by introducing the multimodal approach to BCI and its

current state-of-the-art.

▶ Chapter 3: This chapter presents the development of the prototype

platform, the focus is on the initial interrogations and the tech-

nological development both from the hardware and the software

perspectives. The chapter ends by introducing the experimental

protocol, the methods finally used and the different hypotheses on

the results. The interrogation risen by the protocol concerns the

dynamic of control of the robot. In this multimodal paradigm, we

interrogate the moment to perform the cognitive task either prior

to any movements of the robot or after it moves or meanwhile it

moves to maximize the performance of the system and the brain

responses.

▶ Chapter 4: This chapter presents the results from the first batch

of 11 subjects as well as some general observations from the two

batches related to their general ability to perform the experience. It

establishes a synthesis of all the statistical analysis and it shows

the differences online and offline performances leading to changes

in the experimental setup. It brings conclusions and insights on

the development of the platform and the solutions to improve the

protocol.

▶ Chapter 5: This chapter explores results of the second batch of 15

subjects, it discusses regarding those results and points out the

strength and weaknesses of the protocol. It is this chapter that

brings most of the answers to our hypotheses and opens to the

different phenomena at stake when designing multimodal setups

of control.

▶ Chapter 6: The thesis ends by a chapter that summarizes the

work done and puts it back in the general scope of BCI. It also

establishes the main leads of future development that could be

directly extrapolate from the reflection and from the platform itself.

It then concludes on the general need for the use of movement in

the BCI field.





Concerning BCIs
This chapter is largely concerned with the brain and the connected machine, and from its pages a reader may

discover much of their character and a little of their story.





Ts: But nothing is sweeter than to dwell on
the serene heights that science defends, the
refuge of the wise; and to be able to cast one’s
eyes over other men from this asylum, and to
see them here and there wandering, seeking
the road of life, making a show of genius,
arguing over the nobility of blood, night and
day striving with all-consuming labor to rise
to fortune and possess power. O wretched
hearts of men! O blinded minds!

[2]: Sure (2007), ‘Henri M. Duvernoy

(ed)’

[3]: Dharani (2015), ‘Chapter 1 - Func-

tional Anatomy of the Brain’

State-of-the-Art in brain machine
interfaces 2

Sed nihil dulcius est, bene quam munita tenere
edita doctrina sapientum templa serena,
despicere unde queas alios passimque videre
errare atque viam palantis quaerere vitae, certare
ingenio, contendere nobilitate,
noctes atque dies niti praestante labore
ad summas emergere opes rerumque potiri.
o miseras hominum mentes, o pectora caeca!

Lucrece, De Rerum Natura, (II,7-19)

Key aspects of the state of the art

▶ Overview of brain mechanisms and EEG patterns.

▶ Introducing neurofeedback and motor imagery brain computer

interface.

▶ Covering the two research focus of BCI : computational im-

provement and human centered design.

▶ Introducing robot involvement in BCI.

▶ Introducing EyeTracker technology and its use for robotic con-

trol.

▶ Introducing multimodal BCI, presenting the advantages and

limitations of the technique.

In this chapter, we will try to cover the overall context in which the thesis

took place. Certain themes will be simply mentioned as they are part of

the general BCI ecosystem as others will be more thoroughly introduced

as they had direct implication in the development of this work. This

overview however cannot be considered as a pure review as it is oriented

towards a specific direction regarding our own developments. Without

further introduction, this chapter will cover five different topics, EEG

patterns that can be exploited as machine commands, possible ways to

improve BCI, robotic control through BCI, eye tracking technology and

multimodal approach to BCI.

2.1 From brain patterns to command

To understand the patterns that we are going to introduce, it is necessary

to present the human brain both structurally and functionally. The brain

is structured around four different porous lobes represented on Fig 2.1

that serve different cognitive functions[2] in addition to the cerebellum,

the zones interact between themselves even though specific behaviour

can be found in specific regions. Those zones cover two hemispheres,

that serve different functions while being constantly in interaction[3].

The brain is irrigated via a complex vasculature. At a microscopic scale,

the brain tissue is composed of many different cells. The neural cells
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Figure 2.1: Brain structure: The different

lobes of the brain, lateral representation.

Figure 2.2: Brain cells schematic: Glia

representation alongside the different

cells interacting, image from [4].

[4]: Allen et al. (2009), ‘Glia — more than

just brain glue’

are responsible for the brain functioning and the electrical information

transfer. Whereas the glial cells (astrocytes,oligodendrocytes,Schwan

cells,microglia and ependymocytes) in a broad sense principally serve

a role of support[4], bringing nutriments to the neurons and creating

the myelin as represented in Fig 2.2. They serve other functions not all

fully understood yet. They, for instance, play a role in modulating the

electrical transmission and in forming the blood brain barrier. Neurons’

functions in the other hand, are better understood (because studied

for a longer period), they transmit electrons through the exchange of

sodium and potassium ions. Which in fine generates electric differences of

potential that propagate from one neuron to the next thanks to synaptic

connections as represented below in Fig 2.3.

This difference of potential creates an electric signal in microvolts that

is going to gain amplitude the more neurons burst synchronously at
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Figure 2.3: Neuron schematics: Detailed

representation of the neuron composed

of its nucleus, axon and synapse, image

from [3].

[5]: Subasi (2019), ‘Chapter 2 - Biomedical

Signals’

[6]: Singh (2014), ‘Magnetoencephalog-

raphy’

[7]: Kim et al. (2021), ‘Magnetoen-

cephalography’

[9]: Li et al. (2022), ‘Concurrent fNIRS

and EEG for Brain Function Investiga-

tion’

different frequency rate[5]. To sense this electrical activity, different

solutions can be considered, the two main non-invasive techniques are

magneto-encephalography (MEG)[6][7] which is based on the electro-

magnetic field generated by the local potential difference and the electro-

encephalogram (EEG) technology which senses the electrical activity

directly at the scalp level. When the electric signal arrives at the scalp, it

is highly noisy due to the propagation from deep zones that diminish

its ratio signal over noise. Moreover, because of the spatial constraints

given by the shape of the brain and skull, the signal that arrives is not

exclusively coming from the area beneath the electrode as shown in Fig

2.4.

Figure 2.4: From initial source to non
invasive sensor: Diagram representation

of the transfer of information from the

cortex to the scalp, image taken from [8].

A possible metaphor for that phenomenon is the circus tent you see

from above, if someone lights projectors inside illuminating the scene

and the roof, you do not know from where the light is coming from.

Taking that into account, there are still a relevant number of information

coming from this electric signal, and it is still the quickest non invasive

access to the neuronal communication in terms of response time in

comparison to other technologies that would sense for instance the blood

flow which produces a delay from the moment the information has been

generated in the brain to the moment it is sensed[9]. The brain signals

give temporal information, if we extract directly the time series, and

spectral information, if we estimate the power spectrum from the time

series.

Brain activity consists in changes between oscillatory behaviours and

electric waves passing through the different zones. In this misty environ-
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1: The term action potential comes from

the electric field with the term electric
potential which is itself coming from

physics with the term potential which

is itself derived from latin potentia mean-

ing "power". Broadly speaking, potential

means to virtually possess a power to

change state.

[10]: Simpson et al. (1988), ‘Chapter 16 -

The electroencephalogram’

[8]: Cooper et al. (2014), EEG Technology

ment, certain shapes repeat themselves in time, those patterns are called

potentials
1
.

Four different types of signatures will be mentioned, the evoked poten-

tials, the event related potentials, the movement related potentials and

the event related synchronization/desynchronization which is going to

be more thoroughly explored as it is this specific signature we rely on in

the thesis to build the BCI system. All these signatures, once presented

will be introduced in the specific context of BCI later on.

2.1.1 The Electro-encephalogram technology

Before talking about the patterns, it is necessary to introduce more

precisely the EEG technology[10]. This method of acquisition, invented

in the 19
𝑡ℎ

century and perfected in the 20s by H.Berger with the

amplification of the signal, relies on electrodes sensing microvolt (�𝑉)

activity. The electrodes are usually made of metal such as silver, tin, or

gold, and are connected to wires that transmit signals to amplifiers[8].

The conductive gel or paste used to make the junction with the scalp helps

to reduce the electrical resistance, allowing for a more accurate recording

of the brain activity. Each electrode is placed at a specific location on the

scalp, based on a standardized system of placement. Among the different

systems, we can mention the International 10-20 system, and the 10-10

system that comes from it (represented in Fig 2.5). This system is based

on the distance between key landmarks on the head, such as the nasion

(the point where the forehead meets the nose) and the inion (the lowest

point of the skull at the back of the head).

Figure 2.5: System of place of EEG sen-
sors on the scalp: 10-10 International

system, adapted from Laurens R. Krol.

The amplification is separated into two phases. In the first phase, the

pre-amplifier amplifies the analog signal and filters out unwanted noise

and artifacts that may be present in the signal at the electrode level. The

signal is then transmitted to the main amplifier. In the second phase, the

main amplifier has a high gain, high input impedance and low noise,

and is designed to amplify the signal without introducing any additional

noise or distortion. After amplification, the signal is digitized by an

analog-to-digital converter and sent to the computer.

The next sections present the different patterns we can extract from the

EEG system, there are meant to be presented as a list to indicate that
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2: A stimuli is an input to the brain, an

event occurring at a giving time and for a

certain period of time in order to produce

a change in the brain activity.

[11]: Sörnmo et al. (2005), ‘Chapter 4 -

Evoked Potentials’

[12]: Norcia et al. (2015), ‘The steady-

state visual evoked potential in vision

research’

[14]: Brandeis et al. (1986), ‘Event-related

potentials of the brain and cognitive pro-

cesses’

there are plenty of patterns exploitable and that we deliberately choose

one of them based on what we want to achieve.

2.1.2 Exploitable brain patterns

Evoked Potentials (EPs)

Evoked potentials are brain patterns elicited by an external stimuli
2
[11].

In other words they are not the result of an internal process. The signal

in itself has low amplitude. This event relies on the different senses the

brain has at its disposal. The event can be auditory (producing a sound),

visual (a change of light, an object appearing in the vision field), touch

(touching the skin), or nervous (inducing an electrical signal in a nerve).

Visual stimuli can be used to elicit a specific pattern such as steady state

visual potentials (SSVEPs).

Steady State Visual Potentials (SSVEPs)

SSVEPs rely on the fact that the brain can "resonate" at the frequency of

the visual stimuli presented[12]. The choice of the frequency is large as

Figure 2.6: SSVEP pattern: Typical

SSVEP response of an EEG signal ac-

quired during visual stimulation at 9 Hz,

Figure from [13].

some studies suggest, it can range from 2 to 100 Hz. The brain reproduces

a signal at the frequency given which makes it convenient to detect as

represented in Fig 2.6. The detection is robust due to the high signal over

noise ratio and observable from one subject to the next.

Event Related Potentials (ERPs)

There is a debate whether event related potentials or evoked potentials

are the same or not. We are not going to enter into those considerations.

We choose to separate the two based on the fact that ERPs seem to

involve higher cognitive process and even though the end result is that

an external stimulus elicits a brain pattern, the way the pattern is created

has a higher dependence on the choice of the user. This is developed

by Brandeis and Lehman who characterize the different event related

potentials[14].
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Figure 2.7: ERP pattern: Representation

of the event related potential after pre-

sentation of a stimulus of an EEG signal,

Figure from [15].

Amongst the visual event related potentials, one of the most famous

is the P300, a positive amplitude response 300 milliseconds after the

presentation of an unfamiliar stimuli as shown in Fig 2.7.

Error Related Potentials (ErrPs)

One stimulus in particular can give place to a slightly different response,

it is the error of the system. In a preconceived logical sequence of events,

if one of them changes from its logical track, it becomes an error for

the brain. A specific brain signal appears, up to one second after, and

characterizes the "surprise" of the brain to the incorrect behaviour. This

was first discovered by Falkenstein et al[16] in a study on reaction to error

in bimanual choice reaction task.

Figure 2.8: ErrP patter: Typical Error

Related Potential response after presen-

tation of an error in a feedback, Figure

from [17].

The ErrPs include two patterns that follow each other as shown in Fig

2.8: first, a negative deflection in the EEG waveform occurring up to 100

ms after the event, second, a positive deflection in the EEG waveform

approximately 300 to 500 ms after the error.
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[18]: Shakeel et al. (2015), ‘A Review of

Techniques for Detection of Movement

Intention Using Movement-Related Cor-

tical Potentials’

[21]: Pfurtscheller et al. (1999), ‘Event-

related EEG/MEG synchronization and

desynchronization’

Movement Related Potentials (MRPs)

As presented by Shakeel et al[18] in their review, MRPs are a sequence of

patterns starting prior to the movement. It begins with the Bereitschaftspo-
tential[19] (BP), then the motor potential (MP) and finishes with the

movement monitoring potential (MMP). It occurs in the motor cortex,

it is generated up to one second before the actual action and it is a

representative signature of motor task planning.

Figure 2.9: MRCPs pattern: Move-

ment related cortical potentials from an

healthy subject for real imaginary move-

ment of right ankle dorsi flexion, Figure

from [18].

MRPs typically have a characteristic waveform as shown in Fig 2.9 consist-

ing of a negative peak around 200-300 milliseconds after movement onset,

followed by a positive peak around 400-500 milliseconds after movement

onset. These components are often referred to as the negative motor

potential (NMP) and the positive motor potential (PMP), respectively.

Event Related Synchronization/Desynchronization (ERD/ERS)

ERD refers to a decrease in the power of neural oscillations in specific

frequency bands (e.g., 𝛼 or 𝛽) happening during the execution of a motor

task, while ERS refers to an increase in power in the same frequency

bands during the preparatory phase before the motor task. Characterized

by Pfurtscheller for the first time in 1977 for the ERD[20], and later on for

the ERS, those two phenomenon[21] are shown in Fig 2.10.

Figure 2.10: ERD/ERS pattern: Typycal

Event Related Desynchronization/Event

Related Synchronization response after

the generation of a motor movement,

Figure from [22].

Pfurtscheller advanced the idea that the event related synchronization or

desynchronization[21] corresponds to a change in the number of neurons

bursting at the same frequency when an internal process occurs as shown

in Fig 2.11.
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Figure 2.11: Power amplitude linked to
neurons activity Simulation of the rela-

tion between power spectrum amplitude

and connectivity between neurons, Fig-

ure from [21].

[23]: Guger et al. (2012), ‘How Many Peo-

ple Could Use an SSVEP BCI?’

[24]: Pan et al. (2022), ‘Advances in P300

brain–computer interface spellers’

[25]: Kumar et al. (2019), ‘A Re-

view of Error-Related Potential-Based

Brain–Computer Interfaces for Motor Im-

paired People’

2.1.3 Attributing commands

The different patterns mentioned before have the advantages of being

reproducible and observable for a large amount of subjects. Therefore, it

is possible to trick the brain in order to create those specific activities and

associate the detection of those particular activities to a command. By

"tricking", we mean that we can make subjects generate those patterns

voluntarily and sense this induced activity with EEG for instance. The

most elementary step being: 0 not detected - no action; 1 detected - action.

In the case of SSVEPs. Guger’s review[23] on SSVEP BCI describes the

different applications and limitations of the approach. The main method

is to make several zones blink at different frequencies, based on where the

subject is looking, we can retrieve the different frequencies and from that

issue several commands corresponding to the different zones of interest.

For ERPs, we can present different stimuli with only one being of interest

for the subject, we can then know what was the stimulus of interest based

on the brain pattern detection and create a specific command for this

specific stimuli. This was extensively used with the P300 wave in the

context of spelling words[24]. Furthermore, we can design a controller

that takes into account the ErrPs to correct itself if the sequence seems

odd to the subject[25]. And it can serve to correct other BCIs if they

wrongly issue a command as Ferrez and Millan described in [26] and

put to use by Lopes-Dias[27] to correct a robot trajectory. Finally, we can

use MRPs or ERD/ERS to create commands based on the detection of

the motor-cortex activity which is presented in the next section.

Once you have come up with possible commands based on the acquisition

of signals, it is necessary to interact what could be the use of such

technology.

2.1.4 Why do we do BCI ?

To start this introduction on brain computer interface, it is necessary

to talk about its use. The question could be asked of the relevancy to

decode brain signals to control external devices when we could issue
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[29]: Menter et al. (1991), ‘Impairment,

disability, handicap and medical ex-

penses of persons aging with spinal cord

injury’

3: World Health Organization in the

1980’ International Classification of Im-

pairments Disabilities and Handicaps.

defines :

▶ Impairment as "any loss or abnor-

mality of psychological, physio-

logical, or anatomical structure

or function."

▶ Disability as "any restriction or

lack (resulting from an impair-

ment) of ability to perform an

activity in the manner or within

the range considered normal for

a human being."

▶ Handicap as "a disadvantage for

a given individual resulting from

an impairment or a disability that

limits or prevents the fulfilment

of a role that is normal (depend-

ing on age, sex, and social and

cultural factors) for that individ-

ual."

[30]: Birbaumer (2006), ‘Breaking the si-

lence’

[33]: Vaughan (2020), ‘Chapter 4 - Brain-

computer interfaces for people with amy-

otrophic lateral sclerosis’

[34]: Silvoni et al. (2011), ‘Brain-Computer

Interface in Stroke’

[36]: Benzy et al. (2020), ‘Motor Imagery

Hand Movement Direction Decoding Us-

ing Brain Computer Interface to Aid

Stroke Recovery and Rehabilitation’

[43]: Miranda et al. (2015), ‘DARPA-

funded efforts in the development of

novel brain–computer interface technolo-

gies’

commands from all the other outputs provided by the body which

are far more accessible (gaze, speech, touch, etc). Accessing the brain

information presents, despite all the challenges, an incredible advantage

in the case of severe impairments. So, the principal use of BCI, at least

for now, is to serve in priority the disabled rather than providing the

general population new tools of control, the BCIs can serve either to

restore the function or to compensate for the loss by providing another

channel of communication towards the outer environment. Far from

modern concepts of augmenting humans[28], it is more reasonable to

think of repairing them first. Many diseases and accidents create a

situation of disability due to an impairment (the loss of a limb or its

functioning)[29].
3

Indeed, BCIs find their immediate use in the context of spinal cord

injuries[30][31, 32], they provide a source of command left intact that can

be used for restoration of the walk or even in reaching and grasping objects.

In the context of amyotrophic lateral sclerosis[33] or multiple sclerosis,

they provide the last access to patients desires when the disease is at its

latest stage. And finally, BCIs can be used in the rehabilitation process of

some cases of stroke[34]. It appears crucial to initiate a recovering process

over motor action quickly after the stroke to regain motor capabilities.

But, after the stroke, some phenomenons including muscle spasticity[35]

prohibit from moving. In that case, motor imagery (and therefore motor

imagery BCIs) can serve in stimulating the brain to help restore motor

functions. Here, BCIs serve multiple roles, among them, we can mention

that they give knowledge to subjects about their activity and their

recovering progress. For caregivers, it is an access through the non

invasive techniques to the remaining active motor areas[36]. It is to

mention that BCI performances are tremendously impacted by brain

lesions’ severity and locations. It means that systems must be even

more tailored than for healthy subjects to patients to compensate for the

handicap (in the control). This is a sine qua non condition if we want BCI

to become true assistive technologies. On other aspects of handicap that

do not concern motor impairment, we can mention psychiatric disorders

with, for example, children with attention deficit who seem to respond

positively to intervention using BCI[37–40].

Other uses are now considered such as in video games as an additional

source of command in more immersive environment. The principal axis of

development in this sector concerns responses to evoked potential. Their

use remains however marginal and some might even say not ready[41,

42] to be used. On a completely different topic, it is possible to find some

military application for BCI[43], especially related to passive BCIs[44, 45]

that monitor the brain activity to overwatch subjects. This is especially

applied in the context of aviation to monitor fatigue and attention[46].

2.1.5 Brain Interfaces - types and axis of improvement

Using brain patterns as commands is the initial brick to build a brain

machine interface. Certain brain patterns are easier to detect than other,

and since there are plenty of patterns, there are plenty of brain machine

interfaces existing. But all brain patterns do not carry the same meaning

and are more or less feasible to apply in a general context. Moreover, the

intuitiveness in the link between the brain signature and the command
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Figure 2.12: Motor imagery,Motor Ac-
tion,Motor observation: Brain activity

for the same motor action but either imag-

ined, performed or observed. Image from

[51].

[50]: Mulder (2007), ‘Motor imagery and

action observation’

4: A baseline state represents a side ac-

tivity of the brain significantly different

from the active one.

is going to be of key importance in our approach to design the brain

machine interface system.

In this manuscript, we focus on the brain pattern of ERD/ERS elicited

by motor imagery task. This task has to be introduced thoroughly for

several reasons, first, because it is a complex task, second because the

BCI paradigm relies in its proper execution, and third, its use can benefit

subjects in the context of stroke for instance.

Use your imagination !

Motor imagery is a cognitive process which consists in creating a kines-

thesic and visual representation of a motor action without performing

it as defined by Guillot et al[47]. This task has been extensively studied

from the 80s with Parsons[48] reporting his subjects imagining their own

hand and feet to move accordingly to the stimuli. It continued to be

characterized over the years as a specific cognitive task that could be

observed in the brain as described by Decety[49]. This mental task has

the particularity to activate sensorimotor regions of the brain similarly to

real motor actions[50] as we can observe in Fig 2.12.

As mentioned before, this creates from a EEG perspective first an ERD

followed by an ERS with regards to a baseline state
4
. One does not simply

do motor imagery, it is a difficult, tiring and not an intuitive process

which requires strong body ownership and intense focus. It is important

to mention that this process can also be elicited by the observation

of someone else performing a movement[51]. Moreover using motor

imagery contributes in integrating a movement in one’s self internal

workflow. This particular property has been studied thoroughly in sport

as it allows to continue practicing without hurting oneself for better
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5: Spasticity defines an excessive muscle

contraction caused by the loss of motor

neuron inhibition[35].

6: To use an analogy lacking of original-

ity, it is similar to computer’s standby

mode.

[53]: Baker (2007), ‘Oscillatory interac-

tions between sensorimotor cortex and

the periphery’

[56]: Marcuse et al. (2016), ‘2 - The normal

adult EEG’

[55]: Marzbani et al. (2016), ‘Neurofeed-

back’

recovery. An overview of the application of motor imagery is given by

Macintyre[52]. In a similar way, motor imagery has been used for stroke

recovery as it allows severe hemiplegic or paraplegic patients suffering

from spasticity
5

to initiate a neuronal activity in the sensorimotor areas

which is essential to recreate or at least stimulate synaptic connections to

regain some level of mobility.

Nonetheless, motor imagery remains a challenge as we are basically

asking for moving without moving which is rather complex to apprehend.

To second that, subjects have absolutely no clue if they are doing the

task the right way or even if they are doing it at all. To answer this

tedious question, we rely on the observation of the ERD/ERS with EEG

for instance and provide feedback to give them an idea of what they are

performing mentally. This is the elementary brick of a brain interface

with motor imagery. But, to observe the apparition of this ERD/ERS,

we need to oppose it to another state. This state is called the resting

state. This mental task focuses on the brain with zero activity, not dead,

fortunately, but without any cognitive process. It is a state of relaxation

closed to sleep without being in fact asleep. In this state, 𝛼 and 𝛽 (to

some extent) oscillations have high power amplitude, corresponding to

a synchronous activity of the neurons bursting at the same rhythm
6
. In

opposition to motor imagery which sees a reduction of the synchronicity

in those bands resulting in a decrease of power amplitude in those same

bands.

Brain interfaces - Description

In the next two sections, we are going to explore more deeply the

different possibilities to associate the ERD/ERS signature to a command.

But, we are going to leave the terms of ERD/ERS to focus solely on

power spectrum. Indeed, the ERD/ERS as presented above, shows how

the desynchronization and synchronization of neurons ends up to be

a decrease or an increase of power spectrum in time (from an EEG

perspective). Therefore we will rely on the change of power spectrum

in the frequency bands associated to motor activity (𝛼 8-12 Hz and

𝛽 13-30 Hz) to determinate if we are in a motor imagery or a resting

state. The literature on frequency bands is varying a lot, sometimes 𝛼
and 𝛽 are completed by � rhythm, and the separation between them is

arbitrary. The complexity lies in the boundaries between those bands

rather than the bands themselves. Indeed, 𝛽 as defined between 15 to 30

Hz by Baker[53] and 𝛼 at ∼ 10 Hz leaves quite the choice for selecting

the bounds. We can mention Davis[54] establishing 𝛼 between 8 and 12

Hz and 𝛽 between 15 to 30 Hz and Marzbani[55] introducing the sensori

motor rhythm (SMR) as an intermediate band (12-15 Hz). We deliberately

choose to base ourselves on Marcuse et al.[56] for the sake of simplicity.

Introducing Motor Imagery Neurofeedback

Neurofeedback consists in the simplest connection between the power

spectrum and the command by having a direct link between the power

spectrum value and the feedback. Marzbani[55], again, reviews a great

quantity of papers on the topic covering the different frequency bands

and their related applications. There are two possible ways to exploit the
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7: Such as motor imagery of the right or

left hand, or resting state.

link, either through a continuous feedback (visual, auditory or touch)

establishing a variation of the feedback based on the variation of the

power spectrum amplitude or through a discrete feedback which relies on

passing a threshold with the power spectrum amplitude which is going

to switch the state of a feedback (on/off for instance). In a neurofeedback,

the emphasis is on subjects’ ability to modulate their brain rhythm to

generate robust commands. However, the power spectrum variations

are quite high, therefore a direct command will suffer from instability

which makes the overall behaviour erratic in certain cases. On this note

Geppert[57] points out the ways to create protocols that limit those

effects. Nonetheless, because it is based on the powerspectrum directly,

neurofeedback remains with the time series displayed the mirror of brain

activity through the EEG scope.

Introducing Motor Imagery BCI

The point until here was to show how broad the field can be and how

easy we can lose ourselves in it. It shows that to actually create a Brain

Computer Interface, we need to choose what we are going to exploit and

it forces to ask why we should exploit one specific pattern more than

another one. But also, by getting familiar with the different approaches

to BCI, we might end up retrieving some crucial information that could

serve our specific case. In the next section, we are going to enter more

in details the specific branch of BCI we used in the thesis which is the

Motor imagery based BCI.

Knowing that subjects who perform motor imagery with regards to a

resting state change their brain patterns, brain computer interfaces consist

in introducing a classification algorithm that will learn to discriminate

the different patterns with a training dataset. Then new samples will be

classified as belonging to one class
7

or the next. From this classification,

we can create a continuous feedback. Indeed, the probability to belong to a

class varies between samples therefore the feedback will vary accordingly

to its probability "continuously". Or, we can create a discrete feedback

with a single feedback response based on the accumulation of responses of

the classification over time or a single classification response throughout

a certain period of time. Although we are going to go deeper in explaining

those concepts of feedback, we can already point out that BCI is now built

upon a strong established literature with books covering various aspects

of the field. We care to mention several references that help to give an idea

of the present field such as Wolpaw’s Brain-Computer Interfaces: Principles
and Practice[58], Clerc’s two volumes Les interfaces cerveau-ordinateur [59,

60] (for our french readers) and finally Mueller-Putz’s Neuroprosthetics
and Brain-Computer Interfaces in Spinal Cord Injury: A Guide for Clinicians
and End Users[61].

In BCI, the emphasis is made on the subject’s ability to be consistent in

the cognitive task performed.The difference with the neurofeedback is

quite subtle. Indeed, the modulation of amplitude is directly linked to

the cognitive task to perform. What needs to be kept is that BCI uses

machine learning algorithm to issue a feedback whereas neurofeedback

directly issues an information from the brain signals. On this, some even

argue that BCI is a sub-field of neurofeedback.
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Figure 2.13: Cockpit evolution: On the

left a Supermarine Spitfire from 1941, on

the right a EuroFighter Typhoon from

2015.

8: The point here is not to antagonize the

approaches nor the people behind them,

but more to express that BCI requires to

juggle with an incredible set of skills. To

create the perfect interface, there is a need

for cross-disciplinary research.

A brain computer interface belongs to the category of the numerous

human machine interface. From an engineering perspective, the brain/hu-

man part is mostly seen as a black box with inputs and outputs sending

orders to the machine another black box itself receiving inputs and

issuing outputs. From a unidirectional paradigm (open-loop system),

the general effort has been for years to develop a bidirectional paradigm

(close-loop system). In doing so, the outputs of the machine become also

inputs of the brain.

Before going into the two main branches of development of BCI, it might

be necessary to do an analogy. In known systems of human interface,

we rely on different approaches towards control, such as improving

the devices or the interaction or understanding the user. Let’s take two

examples, a mechanical one and an electronic one. First, let’s talk about the

plane, this system has been optimized again and again to serve its purpose

but it also changed the user in doing so to create a good (and surely not

the best) human machine interface. From a pure engineering point of

view, engines have been optimized to be more reliable, more trustworthy

and efficient, structures are lighter and stronger, flight envelopes are

more mastered. However, the interaction has been overall the same since

the 40’s, the commands are exactly the same in a modern aircraft (Fig

2.13), a stick and pedals, even if there are some additional components,

the user was the one that adapted to the device, learning to master it

even though it is not intuitive[62]. A more recent machine to control

at the antipodes of the plane is the smartphone. From an engineering

point of view, processors are more energy efficient, have more computing

capabilities, internal OS are more optimized in resources as well as what

they can provide. But it is not the tools of computation which are solely

responsible for the smartphone prosperity. Indeed, the incredible power

of smartphone relies on its interaction with the user. Over the years, the

emphasis has been made on the intuitiveness of the device, the user

adapted to the phone of course but the phone are now designed to

maximize the interaction creating an extension of oneself through the

device [63, 64].From a pure human machine interface point of view, the

phone is far better than the plane.

Those two examples are not made in the sole purpose of discussing human

machine interfaces. The plane demonstrates that human capability of

outstanding adaptation when presenting a new device to master. We

can fly using tools that are 100 years old and bend to rules of those tools

established a long time ago due to numerous technical constraints. The

phone demonstrates our complete integration of external device to our

body when they are thought to be as ultra intuitive as possible.

Coming to the design of a brain computer interface, we have the choice to

focus on the machine part by improving the computation and acquisition

methods and let users adapt to the device or we can try to improve

the interaction by giving more intuitive feedback and consider that the

algorithms are in fact efficient enough. And, of course, we can do both,

but the fields of research on those areas are far from each other and do

not involve the same researchers. Improving the computation methods

rely on complex engineering tools whereas improving the interaction

rely on strong knowledge in ergonomics and psychology
8
.
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[65]: Carvalhaes et al. (2015), ‘The surface

Laplacian technique in EEG’

[67]: Kayser et al. (2015), ‘Issues and con-

siderations for using the scalp surface

Laplacian in EEG/ERP research’

[68]: Yao et al. (2019), ‘Which Reference

Should We Use for EEG and ERP prac-

tice?’

9: This is the case with spectral coher-

ence estimation to assess functional con-

nectivity and CAR[70, 71]

2.1.6 Computer approach

In EEG BCI, the computer focus is straightforward, EEG is a temporal

signal with high ratio of noise over signal, therefore, techniques are going

to focus on extracting and finding relevant information differentiable

from the time series while reducing the noise.

Filtering the data

Since motor imagery signature is present in the 𝛼 and 𝛽 bands, the initial

filters are often bandpass filters either Finite Impulse Response (FIR)

or Infinite Impulse Response (IIR). Those filters use specific windows

that will distort the original signal at the extremities of the band which

result in a loss of information. Other techniques are used to refine the

data in a more clever way. The laplacian filter for instance, by doing the

second spatial derivative of the EEG signals allows to stress on the local

field potentials. Carvalhaes[65] presents a review on the mathematical

background of the method and its numerical implementation. Mcfar-

land[66] demonstrated the relevance of the method to reduce noise and

to constrain source localization (limiting the influence of a source over

an ensemble of sensors). The Laplacian filter consists in subtracting the

average activity of neighboring electrodes from the activity of a specific

electrode[67]. Another technique, quite similar is the common average

reference (CAR) which consists in subtracting the average signal across

electrodes to all the electrodes[68] as shown in Fig 2.14. CAR is a common

method used as a standard to assess the relevance of other methods

as presented by Togha[69] that evaluates another spatial filter : local

activities estimation.

Figure 2.14: CAR modification on signal:
Before and after applying the Common

Average Reference filter to the EEG data.

Other filters exist and focus on different properties (spatial or spectral)

of the signal; however, filters have the drawback of removing informa-

tion that might be interesting to keep. So, a trade-off must be made.

Furthermore, some filters alter the signal in a way certain techniques of

computation become wrong
9
.
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10: If we want to deliver continuous feed-

back to users

11: Estimating power spectrum at almost

each time point.

12: Estimating power spectrum with

enough information therefore requiring

many time points for each spectral esti-

mation.

[73]: Diez et al. (2008), ‘A Comparative

Study of the Performance of Different

Spectral Estimation Methods for Classi-

fication of Mental Tasks’

13:

𝑥(𝑛) =
𝑝∑
𝑖=1

𝑎𝑖𝑥(𝑛 − 𝑖) + 𝑤(𝑛) (2.4)

𝑘 𝑗 =

∑𝑗

𝑖=1
𝑎 𝑗−𝑖+1

𝑟𝑖∑𝑗

𝑖=1
𝑟2

𝑖

(2.5)

𝑎 𝑗 = 𝑎 𝑗−1
+ 𝑘 𝑗 𝑎 𝑗−1

∗ (2.6)

𝑎𝑖 = 𝑎𝑖 − 𝑘 𝑗 𝑎 𝑗−𝑖+1
∗ (2.7)

𝜎2

𝑗 (1 − |𝑘 𝑗 |2)𝜎2

𝑗−1
(2.8)

Figure 2.15: PSD between MI and Rest:
Typical difference of power spectrum be-

tween motor imagery and resting state

for a given electrode, computed with

Burg auto regressive method.

Spectral estimation

As mentioned before, the known neurophysiological information of the

motor imagery is in the power spectrum as observed in Fig 2.15. It is

therefore necessary to estimate the power spectrum from the EEG signal

and in real time additionally
10

. The academic way to compute the power

spectrum over time series is to use the Fourier transform. The Fourier

transform formula requires that the time signal is the same between −∞
and +∞ to give the spectral form.

𝑓 (𝜔) =
∫ ∞

−∞
𝑓 (𝑡)𝑒−𝑖𝜔𝑡 𝑑𝑡 (2.1)

But, by definition, the EEG signal is not stationary, therefore it is necessary

to use other techniques more suited to this problem[72]. In addition

to that and as evoked before, the signal is noisy and full of artifacts

(muscular, heart rate,eye movements). On top of those considerations,

the EEG signal depends on the resolution of acquisition. Based on all

those difficulties, spectral estimation has to establish a trade off between

temporal resolution
11

and spectral resolution
12

. Among the different

techniques reviewed using the same dataset by Diez et al.[73], you can

find the discrete time fourier transform,

𝑋𝑘 =

𝑁−1∑
𝑛=0

𝑥𝑛 · 𝑒−𝑗 2𝜋
𝑁 𝑘𝑛

(2.2)

a standard periodogram that is not costly in computation, which gives

an exact representation of the data by decomposing it to a sum of

sinusoidal however it assumes periodicity in the signal which is not true

in EEG signal which creates a boundary effect distorting the signal at

its edges. Another solution, used largely in the BCI field is the welch

periodogram,

𝑃𝑤( 𝑓 ) =
1

𝑀

𝑀−1∑
𝑚=0

|𝑋𝑚( 𝑓 )|2 (2.3)

which estimates the power spectrum over segments, the main effects

are to increase the resolution and limit the boundary effect however by

its nature the calculation is more costly and the spectral and temporal

resolutions depends on the choice of the parameters of window length

and overlap. Finally, other methods consist on modeling the signal as an

auto-regressive model where we find the optimal parameters of the filter

corresponding to the signal. This approach allows a higher resolution

and is more robust to noise. It is however, more sensitive to outliers

and the choice for the filter order is tedious. This is the case of Burg

auto-regressive method
13

and its spectral estimation:

𝑃(𝑤) = 𝜎2

𝑤

|1 +∑𝑝

𝑖=1
𝑎𝑖𝑒−𝑗𝜔𝑖 |2

(2.9)

Finding new discriminant markers

This part is partially at the crossroads of the user center approach in the

sense that we want to investigate subject dependent new bio-markers.
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[75]: Gonzalez-Astudillo et al. (2021),

‘Network-based brain–computer inter-

faces’

[76]: Corsi et al. (2022), ‘Functional Con-

nectivity Ensemble Method to Enhance

BCI Performance (FUCONE)’

[78]: Corsi et al. (2023), Measuring Neu-
ronal Avalanches to inform Brain-Computer
Interfaces

The power spectrum desynchronization approach lacks of subtlety as it is

highly localized. Indeed, we investigate changes primarily in the sensori-

motor cortex. Even though this measure is robust and should appear at

some point for all subjects, sometimes subjects do not manage to produce

it. We will come back to this idea when we introduce more in detail the

concept of illiteracy in BCI[74]. Furthermore, it does not take into account

the interconnected nodes the brain is structured upon. The activity in

the brain spreads out from one place to another. Therefore, the spatial

information or more exactly its distributed information plays a crucial role

not used in most of the BCI paradigms. Gonzalez-Astudillo’s work[75],

for example, focuses on finding those distributed activities and tries to

characterize them to extract what information could be differentiable

from one state -motor imagery- to the next -resting state-. Among the

metrics that are studied, we can mention functional connectivity that has

been investigated and characterized thoroughly by Corsi[76] and in an

extended review by Leewis[77] recently published. Another metric also

highlighted by Corsi is neuronal avalanches[78], Corsi tries to focus on

the displacement of the information in time from a region to the next

using the raw EEG information. Those features could then be used in

classification algorithms to increase the performances of the BCI.

Concerning functional connectivity, different estimators can be used to

determine the connectivity matrix. Because the information related to the

motor imagery state was in the spectral domain, the emphasis is made

on the spectral connectivity. There are several methods of estimation

for this spectral connectivity, we can mention two of them, the spectral

coherence read as :

𝐶 =
𝐸[𝑆𝑥𝑦]√

𝐸[𝑆𝑥𝑥] · 𝐸[𝑆𝑦𝑦]
(2.10)

and the imaginary coherence read as :

𝐶 =
Im(𝐸[𝑆𝑥𝑦])√
𝐸[𝑆𝑥𝑥] · 𝐸[𝑆𝑦𝑦]

(2.11)

The computation also relies on a spectral estimator. This means that we

need to ask ourselves the same question regarding which estimator to

use. In the context of spectral connectivity, the main ones used are fourier,

multitaper and welch[79]. Based on the computation of the functional

connectivity, different metrics can be computed and present relevant

information that can be exploited to discriminate between cognitive

states. One of the initial computation that can be done on the matrix

is the node strength, a measure used in network analysis to quantify

the importance or influence of individual nodes within a network. The

node strength[80], a tool of high dimensional data modeling to measure

centrality, can be used to characterize the brain network as defined by De

Vico Fallani[81] (in a weighted network). A specific node is calculated by

summing the weights of the connections (edges) that are linked to that

node. In the context of motor imagery with regards to resting state, the

node strength of certain nodes localized in the sensorimotor cortex tends

to increase. It means that regions of the brain get more synchronized

during a motor imagery task than during a resting state task.

Those new metrics put the emphasis on the connection between regions

of the brain rather than focusing on a local source of information. In
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[82]: Subasi (2019), ‘Chapter 4 - Feature

Extraction and Dimension Reduction’

14: This is in the case of supervised learn-

ing, a type of machine learning where a

computer algorithm is trained on input

data that has been labeled for a particular

output. The goal of supervised learning

algorithms is to learn a function that

maps feature vectors (inputs) to labels

(output).

15: The ratio between the number of time

it assigned to the good class and the total

number of assignment

[83]: Lotte et al. (2018), ‘A review of

classification algorithms for EEG-based

brain–computer interfaces’

16: We prioritize sensors located in the

sensori-motor cortex area in the case of

motor imagery.

[84]: Subasi (2019), ‘Chapter 5 - Biomedi-

cal Signal Classification Methods’

17: A symmetric matrix where all of its

eigenvalues are non-negative.

Σ =
1

𝑁

𝑁∑
𝑖=1

(x𝑖 − �)(x𝑖 − �)𝑇 (2.12)

[85]: Fu et al. (2020), ‘Improvement mo-

tor imagery EEG classification based on

sparse common spatial pattern and reg-

ularized discriminant analysis’

18:

𝑊 = arg max

𝑤

𝑤𝑇Σ𝐵𝑤

𝑤𝑇Σ𝑊𝑤
(2.13)

doing so, they provide new discriminant features that can be mixed with

standard ones to make machine learning algorithm more robust and

to exploit different information present in the brain. This could benefit

subjects that might encounter difficulties to produce the brain patterns

of spectral desynchronization.

Techniques of classification

In BCI, the key is to have different cognitive states creating data that

are differentiable statistically. This statistical difference between signals

allows the use of machine learning algorithm, most of the time supervised,

capable of establishing a separation between brain patterns and inferring

the associated class for new samples. What comes as an input of the

classifier (which is based on a ML algorithm) is called a feature and can

be either explainable (related directly to neurophysiological signatures)

or inexplicable (a modification of the signal to enlarge its differentiable

nature)[82]. A classifier is the association of the feature and the ML

algorithm. In the most regular configuration, to build a classifier, we first

need a training set of data, where the algorithm learns to differentiate

between classes
14

and then, a testing set where the algorithm assigns a

class to new signals. If the algorithm predicts correctly, the accuracy
15

will be high. On this area, Lotte’s review[83] needs to be mentioned as

it covers a great deal of machine learning methods highlighting their

strength and weaknesses in their application to BCI.

Power spectrum based Classifier

Since the entry point for motor imagery was originally with differences of

power spectrum in the 𝛼 and 𝛽 bands, the most standard approach is to

rely on those features as an entry point of the classification. The input of

the classifier is going to be the power spectrum of specific electrodes
16

at

specific frequency bins or averaged across frequency bins. The resulting

feature vector can be used by different linear and non linear algorithms

such as LDA or SVM (to cite the most used one). Subasi’s chapter[84]

covers in depth the use of LDA and its implementation as a basis for EEG

classification.

Covariance based Classifier

The other major approach to the EEG signal is to use the covariance matrix

(positive semi-definite
17

), that puts the focus on the joint variability of the

electrodes between themselves. Instead of having a vector for each class,

corresponding to the different cognitive states - MI or rest for instance,

it is now a matrix for each class and the information it contains should

differ from a class to the next. Then, several solutions are possible. The

first known one is the common spatial pattern (CSP)[85] filter considered

as a gold standard in BCI pipeline as covered by Lotte’s work[86]. It

needs to be mentioned that this work warns on the possible over-fitting

of the method with few data and its sensitivity to noise. Technically,

it maximizes the variance between conditions by computing the eigen

vectors of the classes’ covariance matrices
18

. Then the filter is applied
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Figure 2.16: Riemannian manifold rep-
resentation for covariance: Representa-

tion of the covariance matrix as a Rieman-

nian manifold and the local projection

on the Euclidean tangent space.

[87]: Wu et al. (2013), ‘Common spatial

pattern and linear discriminant analysis

for motor imagery classification’

[88]: Yger et al. (2017), ‘Riemannian Ap-

proaches in Brain-Computer Interfaces’

19: A measure of dissimilarity capturing

the geometric structure on a riemannian

manifold between two covariance matri-

ces,

𝑑(C1 ,C2) =
√

𝑛∑
𝑖=1

ln
2(�𝑖) (2.14)

[89]: Barachant et al. (2010), ‘Riemannian

Geometry Applied to BCI Classification’

20: Interpretability here means that we

can identify the natural meaning of fea-

tures and their transformation.

to the EEG data to form the CSP features (the weights that give more

importance to certain electrodes and discard the others) which are then

considered as input of a regular machine learning algorithm such as

LDA[87] or SVM.

The new state of the art approach consists in considering the covariance

matrix as a riemannian manifold. A type of smooth manifold in differen-

tial geometry, equipped with a Riemannian metric, a smoothly varying

inner product on the tangent space at each point. The Riemannian metric

is a positive-definite inner product that allows for various geometric

notions such as angles, lengths of curves, areas and curvature. The Fig

2.16 is shown to help explain how the covariance can be represented as a

Riemannian manifold and how to project the tangent space on a local

point.

By doing so, the covariance matrix becomes an enriched object which

can be manipulated with new method. The covariance matrices can

be directly exploited using riemannian distance as presented by Yger’s

review of the different Riemannian method usable in BCI[88]
19

. In the

calibration phase, the covariance matrices are averaged for each class. In

the testing part, the distance between the averaged matrix and the new

samples is computed, the shorter the distance, the higher the probability

to belong to a class. The other solution is to project the covariance matrices

into a tangent space (a vector space that approximates the manifold at a

specific point). The vectors for each class can then be considered as input

for more standard algorithm such as LDA, SVM or Logistic Regression.

This was introduced by Barachant in his work and validated as one of

the most efficient method[89]. The approaches based on Riemannian

geometry are the one presenting the highest performances to this day.

However, they suffer from a lack of neurophysiological interpretability
20

.

Indeed, the covariance matrix object in itself is complex to interpret and

to link to the knowledge we have on the ERD/ERS during the cognitive

task. On this note, the projection on a tangent space gives at least the

spatial information of what is discriminant - we would want the sensori

motor cortex to appear. It remains that the information must be present

in some form in those covariance matrices which means that either there

is a way to come back to the spectral information through the covariance

or that some Riemannian markers should be defined to characterize the

difference between motor imagery and resting state.



2.1 From brain patterns to command 19

21: Explanability in machine learning

is the possibility to explain the steps of

manipulation on the data from input to

output. This is crucial to know exactly

what will be used to discriminate be-

tween classes. This is to limit the black

box effect that would lead to an absence

of knowledge on why performances are

good (or bad).

22: It is important to note that the pa-

rameters of the artificial neural network

(number of layers, number of neurons

per layer, etc) are important to avoid over-

fitting.

[90]: Zhang et al. (2021), ‘A survey on

deep learning-based non-invasive brain

signals’

[91]: Hossain et al. (2023), ‘Status of deep

learning for EEG-based brain–computer

interface applications’

Deep learning approach

Deep learning differs in the approach of other methods to classify the

data. Deep learning relies on artificial neural network, layers of nodes that

transform successively the data from a representation to the next. Based on

the transformation, they issue a class based on the output representation.

The particularity is that the output representation cannot be interpreted

directly, making those neural network algorithms black boxes that could

be criticized for their lack of explanability
21

. However this approach

allows to extract more information from the data, making it most of the

time the best suited solution to separate classes. A representation of this

is shown in Fig 2.17 below.

Figure 2.17: Layers of a NN algorithm:

Representation of the steps of manipula-

tion of the EEG data in a deep learning

architecture, on the left the different lay-

ers of the artificial neural network, on

the right, the representation of the suc-

cessive transformations.

Nevertheless, deep learning approach relies on a massive amount of

data in order to find the discriminative information between classes
22

.

This is a tedious matter in BCI as the EEG data classes do not have a

high number of samples. Despite those difficulties, some algorithms

seem promising to be used in the matter especially Convolutional Neural

Networks (CNN). Zhang’s specific review on the topic goes in more

details than Lotte’s review especially concerning BCI using ERD/ERS

patterns (motor imagery paradigm)[90]. This technique was originally

used in image recognition for its ability to extract relevant information

from images and its application in EEG showed encouraging results. Even

though CNN is frequently used as mentioned by Hossain’s up to date

review[91], other methods have risen such as Long Short-Term Memory

(LSTM), Reccurent Neural Network (RNN) and Autoencoders (AE) and

Variational AE (VAE). Their flexibility presents the advantage that they

can be combined together, certain properties of the CNNs on the creation

of new representations leading to new features can be implemented into

other deep learning methods that are even allowing a thinner separation

of the classes. In addition to that, deep learning presents the advantage

of opening the track of transfer learning from one subject to the next but

also from one session of a subject to the next one.

Current challenges in computer approach

The challenges risen by the BCI technology are tremendous, especially in

EEG. The relevant information is present in a noisy signal, unstable and

varying from one subject to the next. Methods to filter the data need to
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23: Transfer learning is a technique in

machine learning where a model trained

on one task is used as the starting point

for a model on a second related task.

[94]: Jeunet et al. (2018), ‘Mind the Traps!

Design Guidelines for Rigorous BCI Ex-

periments’

be subtle to not lose too much information. Machine learning algorithms

have to be robust, but adaptive to changes in accordance to the mental

strategies of subjects. Those algorithms need to train on few data with

few periods of calibration or even none. On this note, using transfer

learning
23

techniques is more than relevant. For instance, training on

one subject to predict on the results of a second subject. Wang et al[92] in

their review established a clear definition of transfer learning and the

different focus types (transferring feature representation, instance/data

or classifier). Wu[93] detailed a more applicative paper focusing on

transfer learning specifically for MI BCI. In the case of performance,

some machine learning are able to give good accuracy but those good

performances need to be explained by neuro physiological signature and

that is not always the case.

What’s at stake here is the trust we put in the system. In one hand, if

cognitive tasks are rightly done by subjects but they are not well classified

by algorithms, subjects loose the trust they put in the device because it

does not respond well to what they think they do. In the other hand, too

powerful algorithm that are capable of differentiating states but not on

the right information (if subjects do not perform the task for instance)

will provide maybe a good control but will not be trustworthy as we do

not know why the algorithms gave a certain choice.

In a talk presented at the BCI Society in 2023, Pr.J Wolpaw simply de-

scribed it as the "cliff challenge", would you put yourself in an exoskeleton

controlled by a BCI to step back from the cliff? Even today, with all the

methods that are used, not a soul would dare.

2.1.7 Subject approach

Since we just covered the C in BCI, let’s now focus on the H. When dealing

with a human in the loop, everything that you show and do not show

have a significant impact on the interaction and more critically to brain

patterns. Unfortunately, if we consider humans as black boxes with input

and output, we will rapidly miss how a good interaction works. The issue

with centering on humans rather than machines in BCI is that it creates

an insane number of parameters to take into account. Jeunet describes in

the experimental part of [94] the number of biases coming from working

with subjects and the necessity to clearly define the hypotheses to avoid

being overwhelmed by the different variables. Among the questions

needed to be addressed, we can find the question of maintaining the

attention and the involvement of subjects without disturbing them, the

question of creating simple cognitive task (easier to detect via EEG) that

are challenging for subjects, the question of the instruction given. This

approach could be seen as empiric in comparison to the computer science

techniques introduced previously but they actually carry maybe more

meaning to subjects and therefore they are essential to study.

An experience tailored to the subject

In this effort, some studies aim to focus on the subjects’ profile, knowing

more their personality and their cognitive traits may allow to create

stimuli that are more significant to their eyes. This is the subject of Jeunet’s
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[95]: Jeunet et al. (2015), ‘Predicting Men-

tal Imagery-Based BCI Performance from

Personality, Cognitive Profile and Neu-

rophysiological Patterns’

24: An it is the exact opposite of what

we want to obtain.

[96]: Roc et al. (2021), ‘A review of user

training methods in brain computer in-

terfaces based on mental tasks’

25: The initial "order" given to subjects

to start a sequence of actions or tasks. It

is a trigger which can be visual, auditory

or via touch.

work[95] on measuring traits of subjects that could impact performance

(forms of IQ, memory ability, personality traits, anxiety). Jeunet identified,

for instance, that tension and self-reliance showed high correlation with

performance. Tailoring subjects’ experience relies on a strong psychology

background which allows to target precisely behaviours to maximize

at the end performances by eliciting neurophysiological responses. The

strength of this approach is that it maximizes the probability for subjects

to perform complex task such as motor imagery because it makes the

system adapted to their internal representations. The other side of the

coin is that tailoring the experience to subjects takes time, needs to be

done thoroughly and prohibits from doing large and rapid application

to a high number of participants.

Instruction and task to perform

To perform motor imagery or resting state, it is necessary to talk about it

and describe it to subjects naive to BCI. Let’s take the example of the motor

imagery of the right hand, in simple words, that would give "imagine

that you are closing your right hand in your head, the feedback you see

corresponds to the intensity of your mental task towards this action". This

sentence that could appear simple is flawed. What do imagine or intensity
of a mental task mean ? To add to this complexity, the language of modern

science is english, the words we use are conditioned by this language.

But, this work took place in France, subjects are to be spoken in their

native language, French. French and English are different regarding the

way we carry meaning in sentences. And translation of instruction are not

easy at all, every word has the power to bias the experimentation. Even

the words to talk about cognitive tasks are different, in english "motor

imagery" becomes "imagination motrice", it is subtle but imagery could

be translated by "imagerie" which means "a group of images sharing the

same characteristics" so the key information here is that it is an image

where as the actual translation "imagination" means "the faculty to make

a representation or form images", and the key information becomes the

representation. This subtle difference highlights how complex it is to

characterize this cognitive task. In opposition to that, the alternative task

asked to subjects is the resting state, simply formulated as "do not think

about anything". Trying to say more is already too much, if we say that it

is meditation, it allows subjects to let their mind wonder and by doing so

it might activate their memory or more complex process
24

. So the resting

state condition might be even harder to explain than motor imagery.

In that effort, Roc[96] characterized the different types of instruction

present in the literature and paved the way for better instructions to

give to subjects. Roc also established general guidelines to design BCI

protocols that take into account the biases created by the instructions.

Lights out ! - Stimuli

Instructions take another form during the experimentation itself. Indeed,

the main MI BCI paradigm relies on doing alternatively tasks of motor

imagery and resting state therefore a key step in designing a BCI experi-

mentation is the stimuli
25

given to subjects. Different stimuli correspond

to different tasks to perform, they must carry inherent meaning because
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26: Here, we stress the importance of

being intuitive.

[98]: Wilson et al. (2009), ‘Using an EEG-

Based Brain-Computer Interface for Vir-

tual Cursor Movement with BCI2000’

27: Those types of stimuli are slightly

outdated. From the literature putting the

subject at the center, these are not the

most suitable stimuli to present. This is

a good case of conceptual stimuli that

are far fetched, the association between a

rectangle placed up on a screen and the

motor imagery of the right hand is not

straight forward.

Figure 2.18: BCI2000 visualization: BCI

2000 early visual stimuli and feedback,

the yellow signifies the target to go to.

[99]: Pfurtscheller et al. (1999), ‘Visually

guided motor imagery activates sensori-

motor areas in humans’

they are what starts the cognitive process. If stimuli are too far fetched,

the inner process that associates the trigger to the task will take more

time
26

. However, if the triggers are too framing, the lack of evocative

freedom given by stimuli could bother subjects in their inner process.

Maybe it is necessary here to formulate differently by taking an example.

Let’s say that we want subjects to do motor imagery and we present a

stimulus to indicate that they have to imagine closing their hands. We

might want to show a hand that is closed, and, in opposition, the resting

state will be an opened hand. The content is explicit but during the

resting state we still show an hand. So it might remain confusing for

subjects because they need to focus on nothing but the hand is shown.

On this matter, there is an extensive literature presenting the different

types of stimuli[97]. Historically, two different experimentation were

used, first in the BCI 2000 framework[98], a pong like display where a

ball has to reach either the upper part of the screen or the lower part of

the field depending on if it is motor imagery of closing the right hand

(up) or resting state (down)
27

, this is represented in Fig 2.18.

The second is the Graz Visualization as first designed by Pfurtscheller

et al. in the late 90s[99] framework where red arrows (pointing right or

left most of the time) indicate to do the motor imagery of the right or

the left hand (or to indicate to do motor imagery of the right hand or

resting state) depending on the orientation. Here, we gain an element of

information, the orientation. By providing the direction, the association

with right or left becomes more straight forward. However it lacks a

component associated to the notion of motor action, this is even more

the case in the feedback phase (evoked later). This is as well shown in

Fig 2.19 .

Mattia’s work[100] on the promotoer where a hand is presented to initiate

the MI task is a good example in the context of stroke rehabilitation that

takes into account those notions to keep the subject interested and ensure

a level of concentration without parasites sources.

Maintaining subject’s attention - Feedback interrogation

One of the complexity related to BCI experimentation is the time it takes.

First, from a practical point of view, the installation of the EEG cap

takes time. Second, phases of training to calibrate the classifier are long

because you need enough samples to train on. And third, you need to

control the system for a certain time to really assess its efficiency. This

ends up being boring and tiring for subjects. Therefore, the feedback,

the essential information linked to the brain activity has to entertain

the subjects, it gives meaning to the experience but also ensure stronger

interactions between subject and machine. In that effort, a huge amount

of feedback exists, of different nature, shown at different intervals but

they need to follow a certain framework. On this subject, Kosmyna and

Lecuyer[101] did a brief review of the different feedback available in BCI

and established the different criterion regarding their conception (timing,

triggering types of response).

As mentioned before in the classification part, there are two main types

of feedback[102]. First, there is the continuous feedback, where an infor-

mation is shown during all the period of the cognitive task. Taking back
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Figure 2.19: Graz Visualization Graz vi-

sual stimuli and feedback, the blue bar

evolves with time in function of the clas-

sification.

[101]: Kosmyna et al. (2017), ‘Designing

Guiding Systems for Brain-Computer In-

terfaces’

[102]: Kjeldsen et al. (2021), ‘Effect of

Continuous and Discrete Feedback on

Agency and Frustration in a Brain-

Computer Interface Virtual Reality In-

teraction’

28: A representation of the probability

to belong to a class or the other.

[103]: Alimardani et al. (2016), ‘The Im-

portance of Visual Feedback Design in

BCIs; from Embodiment to Motor Im-

agery Learning’

the example of the Graz visualization, the feedback is a blue bar oriented

towards the left or right depending on the cognitive task (MI of the left

or right hand) changing its length with the distance to the hyperplane
28

.

Meanwhile, this feedback provides the intensity meaning of the cognitive

task, its representation is extremely far from the motor imagery task (or

the resting state) which makes it difficult to associate and might end up

disengaging subjects. Those feedback present the advantage of being by

definition continuous meaning that subjects have an interaction that lasts

for a period of time, they ensure the system is working properly. More

over, they allow to keep the subject hooked to the task (in trying to get

the best feedback possible related to their performance). However, they

need to be recomputed often which means that the classification must

be light in calculation. Furthermore, the feedback can become erratic if

wrongly calibrated. This can result in disturbing subjects and in the end

even in disengaging them from the interaction.

The second possibility is to use discrete feedback presented at the end

of a trial. These types of feedback have the strength of being more

robust to variation of mental strategy during the trial. As they have a

longer window to classify, they introduce a reward mechanism where

subjects perform to obtain a certain outcome. In addition to that, stronger

algorithm can be used because there is less need for real-time result.

But, the main drawback is, as one can expect, its discrete nature. Indeed,

during a certain amount of time, subjects do not receive any information

regarding their inner activity resulting in not knowing if the system is

working and if they are doing the task correctly which is deplorable.

The overall conclusion of studies on the choice of feedback do not point

towards an advantage of one of the method or the other. However the

nature of the feedback is extremely important. Visual feedback are the

most used as presented by Alimardani’s review advocating for their

use[103]. But other leads are investigated such as auditory feedback

with different approaches to it, such as modulating frequency [104],

modulating volume[105, 106] or in combination with other modalities

as an additional reward[107]. Another promising perspective is to use

the vibro-tactile feedback. On this, Fleury[108] presented a review of

the different uses of haptic feedback and Kauhanen[109] compared it to

visual feedback in terms of performance to validate the method. This

feedback allows a certain integration in the body of the user which

reinforces the strength of the interaction. In this effort of integration,

others tend to focus on electrical stimulation, the feedback being a direct

control over muscles and therefore the body of the subject. This lead is

difficult to put in place because of the intrusion to the subject’s body,

however it demonstrated encouraging results especially in the domain

of rehabilitation. An exploratory study conducted by Sinha[110] showed

encouraging results on rehabilitation of chronic stroke patients with

the use of FES, but the few number of subjects limits the results to be

generalized.

A feedback that presents the advantage of stimulating the subject and

that puts the emphasis on the gesture associated to the cognitive task is

the robotic arm where movements or actions are controlled by the BCI.

Many approaches integrate a robotic arm, either by making the robot

accompany the user in doing the movement (this can be considered as an

exoskeleton) or as an external agent, a third arm to control. Those types
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[111]: Aljalal et al. (2020), ‘Comprehen-

sive review on brain-controlled mobile

robots and robotic arms based on elec-

troencephalography signals’

[112]: Kilteni et al. (2012), ‘The Sense of

Embodiment in Virtual Reality’

29: Avatar is an extremely strong word

to use. It comes from Hindu and it means

an incarnation of the Vishnu divinity.

It acquired in the 19
𝑡ℎ

the meaning of

metamorphosis and transformation of

someone into something else.

[115]: Alimardani et al. (2015), ‘BCI-

teleoperated androids; a study of embod-

iment and its effect on motor imagery

learning’

of feedback create a high level of engagement and an immediate share

of space which is necessary to create ecological environments. Although

we will enter more deeply on the use of robot controlled by BCI, we

can mention [111] review on the field presenting the advantages of the

approach.

Embodiment and intentional binding

Before going further, it is important to take a moment to talk about

certain concepts that are essential to understand why the use of a robotic

arm can be beneficial to the BCI field. To do so, we need to introduce

the concept of embodiment. Embodiment is a general concept difficult

to define. Here, we base ourselves on studies mostly related to virtual

reality as defined by Kilteni’s work on the topic[112], they approach the

term from an "avatar"[113]
29

perspective, other would be more focused

on the interaction of the body with the environment to define the concept.

Embodiment means stricto sensu the act to put into (em-) the body.

This simple definition allows to understand that we are going to place

ourselves "in the shoes" of something. In other words, embodiment

gathers the different notions that make our interaction with our own

body. Our own body being the ultimate embodiment for ourselves.The

sense of embodiment relies on three different senses (we keep here the

definition established by Kilteni).

▶ Sense of body ownership. Body ownership is the deep feeling

that our body is our own, and we are in control of it. It connects

our physical form to our identity and is influenced by sensory

inputs like awareness of body position and movement, tactile

sensations, and visual feedback. This sense of ownership shapes

our self-perception and strengthens our overall embodiment.

▶ Sense of agency. It refers to the perception of being in control and

actively causing our actions. It involves the understanding that we

are the agents behind our body’s movements and the initiators of

events in the world. This perception is closely tied to our awareness

of the outcomes of our actions and the feedback we receive from

the environment.

▶ Sense of self-location. Sense of self-location, or spatial presence,

relates to the sensation of occupying a distinct position in space. It

is crucial for our embodiment and fundamental to our interaction

with the surroundings. This perception is closely connected to body

ownership since the perceived location of our body plays a vital

role in our sense of presence within the environment.

Embodiment can be observed in many situations and does not only

concern avatars that look like humans as demonstrated in Aymerich-

Franch’s work[114], a known example is the avatar in a video game (in

VR or not). The gamers share a common space, have control and to some

extent feel a certain owning of the avatar’s body. These mechanisms are

extremely important in a game to keep players hooked in. And of course,

they (the mechanisms of embodiment) present a perfect utility in the BCI

field. On this, the work of Alimardani was groundbreaking on using a

complete android controlled by BCI in a first personal view (FPV)[115].
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[116]: Moore et al. (2012), ‘Intentional
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[120]: Saha et al. (2021), ‘Progress in Brain
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an immersive environment that provides
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[74]: Allison et al. (2010), ‘Could Anyone
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[122]: Benabid et al. (2019), ‘An exoskele-

ton controlled by an epidural wireless

brain–machine interface in a tetraplegic
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Maintaining a high level of engagement through the experimentation

and feeling in control of an external body are keys to elicit strong motor

imagery patterns. On this note, the sense of agency (SoA) is linked to

the reduction of the error. Being agent tends to reduce the frustration,

a frustration which is partially responsible for the decrease of the BCI

performances. The end result of the association of agency and frustration

reduction is at the heart of building a strong BCI protocol.

Linked to the sense of agency (with some debates in which we do not

enter), there is a strong effect called intentional binding which will be one

of the initial thinking brick of the thesis study[116]. Intentional binding

refers to a perceived shrinking of time between a voluntary action and

its consequence. This mechanism is a signature of being in control over

a system. What is to keep from the literature on the field is that some

inner phenomenons are at stakes in creating a strong human machine

interaction and those phenomenons can be useful to the BCI field if

exploited wisely. In that context, embodiment showed to be useful in

eliciting and reinforcing motor imagery patterns which is beneficial

to BCI. Therefore, some studies integrated robot or virtual avatars on

which subjects can identify to trigger the brain in doing better ERD/ERS

responses[117–119]. Moreover the use of robots that present similarities

with human arm can become integrated to the framework of the user

thanks to an embodiment process.

Current challenges and limitations

BCIs have gain popularity over the years. However, to echo what has

been said on the challenges in computer science, the reflection on the

human interface was largely ignored for a long period as efforts were pri-

oritized on signal acquisition and treatment. But, since machine learning

techniques are more and more reliable, placing the human at the heart

of the study has gain popularity and it opens large fields of researches

as described by Sahan et al. on a review of BCI’s progresses[120]. On

those new fields, the task itself is problematic as it remains complex

to perform by subjects. Therefore, new descriptions are needed as well

as more suited tasks and more generally more ecological as defined by

Vincente in the early 90s experimentation
30

.[121]

Another problem which has to be considered is the BCI illiteracy. A high

number of subjects (between 15 to 30%) are not able to use BCIs because

of unknown reasons. The concept of illiteracy was largely investigated

by Allison and Neuper in their work considered a milestone in its

characterization[74]. This is absolutely impossible to conceive if we want

the system to be controllable by anyone. Understanding the human

subtlety leading to this inability of operating BCI devices is a central

question.

In this reasoning of creating BCIs for all, the highest challenge will be

to make a transition from pure research framework with a controlled

environment with few electric noises and research equipment to the "real

world" with all its additional constraints. This is today still not on the

table at least with non invasive techniques even though certain promising

works are today conducted with implanted electrodes[122].
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[123]: Taylor (1990), Robotic Control

Figure 2.20: Kinematic chain : Represen-

tation from the base to the end effector

of a robot arm.

31: 3 for the shoulder, 1 for the elbow

and 3 for the wrist
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x being the position of the end effector.

The robotic arm integration to BCI offers an answer to a variety of the

challenges presented, by presenting a congruent gesture feedback associ-

ated to the cognitive task and integrating itself into a real environment.

It also contributes to elicit stronger brain patterns due to embodiment.

However, its integration bring other challenges especially regarding its

control.

2.2 How to control a robotic arm

Following what was exposed in the embodiment section, it is necessary

to introduce some basic robotic concepts to understand why using a BCI

for a robotic arm is not completely straightforward.

2.2.1 Concerning robotics

Robotics is on its own a whole field of research, here the emphasis is

made on robotic control and gesture. The control of an arm depends

mainly on its nature, the more degrees of freedom the more complex it

is to control. The concept is simple : to reach a desired position, an arm

needs to go from its original configuration to a new one in order to have

its end effector positioned to the desired 3D point. The configuration

of a robot is characterized by its joints forming the kinematic chain as

shown in Fig 2.20 from its basis to the end effector. Here, Robotic Control
from Taylor[123] is a solid reference to understand the initial concepts

even though more recent ones are not present but the proceedings of the

International Symposium on Advances in Robot Kinematics gives a good

overview of the modern trends regarding the field[124].

Each joint has a certain number of degrees of freedom (DoF). In a

determined system, since we need a 3d position to go to, we would need

theoretically only 3 degrees of freedom in all the kinematic chain. The

robotic arm are in these case simple and systems of control are easy to

develop. However, those systems lack flexibility and are far from what

an actual human arm is. A real human arm presents some redundancy

as it is composed of at least seven degrees of freedom from shoulder to

hand
31

and at least one for the hand itself as represented in Fig 2.21.

We use the term redundancy because there is an infinite number of

solution to reach a desired position with that many degrees of freedom

hence some redundancy between degrees. But the infinite number of

solution has the advantage of being adaptable to an infinite number of

situations. That is why, robotic arms tend to possess those number of

degrees of freedom.

Mimicking human movement

Even though, some robotic arms possess the same number of joints as

a human arm, they do not have the same behaviour. Indeed, inverse

kinematics
32

methods which compute the angles based on the inversion

of the Jacobian matrix
33

provide a solution for the end effector to reach
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Figure 2.21: Robot arm opposed to hu-
man arm: Difference of joints and de-

grees of liberty between a human arm

and a robotic arm, Figure from [125].

[126]: Sha et al. (2006), ‘Minimum Jerk

Reaching Movements of Human Arm

with Mechanical Constraints at End-

point.’
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[129]: Musić et al. (2017), ‘Control sharing

in human-robot team interaction’

the desired position. But the movement, hence the different joints dis-

placements, needs to be in accordance with human constraints. Free-hand

movement in reaching task relies on the concept of minimum effort. To

achieve minimum effort, the main model in place is the minimum jerk

trajectory. On this, the main two hypotheses are that movements should

relatively fast and discrete. Human movement are described in Sha’s

paper[126] and it gives a good idea of what’s necessary for a robotic arm

to mimic human arm movement. Jerk is the derivative of acceleration. To

mimic human reaching trajectories, robotic trajectory is interpolated by

the minimum jerk method
34

. In doing so, it allows to be more precise and

to reduce the vibrations. This produces an effect of abrupt increase of

acceleration at the start of the trajectory until a maximum at mid-distance

followed by a decrease of acceleration until the position is reached.

Here, even if we are not talking about an exoskeleton but fully externalized

robots, it is necessary to stress the necessity to obtain those type of

movements. Indeed, one of the core idea is to use embodiment on one

hand and motor imagery in the over hand. We push the idea that it is

needed to have a robot movement as similar as the one of a human to

ensure its acceptability[127] and to limit the dissonance between the motor

imagery task and the real movement as it has been demonstrated that

robot gesture changes the perception we have of them[128]. However, this

idea is not pushed to trying to mimic the specific user’s arm movement.

2.2.2 Sharing control

Before evoking robotic integration to BCI which is a sub branch of robot

human interaction work flow, it is necessary to introduce elements of

human robot shared control. In a shared control framework, the robot is

meant to relieve the user from a certain load to maximize the performance

in doing a task. In that context, the robot flexibility, strength and precision

team up with human adaptability and creativity[129]. The core idea in a

shared control is to have a context and a task to realize both known to the

robot and the user, here the robot takes into account information provided

by a user through posture[130] or haptics[131] and the user adapts the

command based on the robot response. This teaming framework finds

its immediate use in industry but this can also benefit patients especially
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in stroke rehabilitation[132]. The approach is slightly different in the BCI

context as the robot is principally used as an actuator (doing the action)

but not in a spirit of shared control. However it is the robot itself that is

going to "close the loop" by its behaviour.

2.2.3 The usage of a robot for BCI

As mentioned before, embodiment can be useful to improve BCI perfor-

mance. But, it is necessary to show more in details how robotic arms

are integrated to the BCI framework. BCI relies on commands issued

from classification algorithm, the tasks can be at best "motor imagery of

the left or right hand closing", "left or right foot stretching" and "tongue

pulling". In the hypothesis that we are able to detect those different tasks

with EEG, there is still not enough classes to control all the joints. In

addition to that, controlling an arm with a combination of those tasks is

absolutely counter-intuitive, when our arm reaches an object, we don’t

think about pulling our tongue. Human movement planning relies on

synergy principles defined by Bernstein (1896-1966) in his work both

from a neuro-physiological and behavioral perspective[133]
35

. Most of

the time, BCIs solely focus on controlling the gripper closing as presented

by Zheng’s review[134] on BCI with robotic control, or act as a trigger to

reach or not a target. On this note, it has already been demonstrated that

ERD/ERs could be induced by robotic movement[135]. Recent studies

undertook the challenge to decode the complete arm movement directly

from the EEG signal[136] and to reproduce this movement with a robotic

arm. This work has been done with invasive EEG
36

and Ecog[122]
37

first

but also using movement related potential in non invasive BCIs[137].

However motor imagery remains complex to decode for complex move-

ment at the EEG level[138]. As evoked earlier on the feedback, an intrinsic

complexity of the BCI lies on the delay between the mental action and

its response. This is still the case for a robotic arm control, even in a

continuous feedback configuration[139], we will observe a certain delay

between the user’s brain response and the issued control. Those delays

are still poorly studied in the BCI field even though it was demonstrated

that the delay (if limited) could be integrated to subjects’ framework[140]

who adapt to a certain extent after what, they loose their agency[141].

A poor player upon the stage ?

It is, here, necessary to interrogate the dual role of the robot
38

especially

in the context of brain machine interfaces. On one hand, because we want

to obtain a certain level of embodiment through sense of agency and

ownership, the arm is considered as being integrated in the workspace of

the user. Subjects control the arm therefore the arm belong to them. The

more we have this result, the better the performances. In this paradigm,

robot could be assimilated as a third arm or a prosthetic.

On the other hand, the robotic arm is a complete entity in itself which

is giving the lines to the subject in the form of dialogue between two

performers on stage. And this changes the framework of the interaction

because by no longer considering the robotic arm as an extension of one

self (just like a tool) but as an external agent (another actor) capable of
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"some level of intelligence", the interaction is built on a collaboration as

defined by Terveen[142]. Those collaborations have been deeply studied

in other field. Fong’s chapter[143] on collaboration established the key

principles of robotic collaboration and emphasised the possible effects

of empathy towards a robot. On this, the concept of empathy towards

a robot is largely described by Malinowska[144] which can be used to

strength the link between the two agents.
39

In BCI, was introduced by

Pillette[145] a robot as a comforting agent (a robot displaying simple

emotions to indicate success or failure). A key idea is to interrogate how

the robot is perceived by the end users in order to maximize the reward

and the engagement of the user. But robotic arms because they are just
arms are principally used in a "prosthetic paradigm" in the BCI field,

which is maybe lacking of subtlety regarding what is their role in the

collaboration with users.

In that sense, a robot is not a poor player upon stage*
because its interaction

with the subject is based on an explicit code of dialogue. Subjects expect

a certain behaviour from the robot based on their brain commands and

the robot by its response orient subjects towards a certain direction, in

doing so changing their behaviour. Considering the robot as an external

agent allows some liberty regarding its failure that we would not have

if it is considered as a prosthetic which should answer au doigt et à
l’oeil. Honig[146] presented an extensive state of the art regarding the

acceptation of the failure in the system. It evoked notably a higher level of

engagement when the robot is failing as well as a certain level of empathy

regarding the robot when it fails. In our quest to use robots at the end of

the feedback chain, it might come handy to rely on these notions. Robotic

failures (and this is the case for all machines) can result in a decrease of

trust [147]. However, knowing that robot’s mistake can be accepted to

some extent by the end users if it does not disturb them, BCI could take

advantage on it. BCI could keep the robot as an external agent that could

elicit some embodiment effect meanwhile staying external.

We have evoked so far aspects directly or indirectly linked to BCI. It is

necessary here to take a step back. We are in a pickle since we cannot

control a robot completely in an intuitive manner with non invasive BCI
40

.

In that context, it might be useful to introduce a new way to control the

arm.

2.3 EyeTracking Technology

On the matter, the eye tracking technology suits the requirements to

access the intention of subjects. The gaze allows to indicate the subjects’

interest position. This "interest position" can be converted into a "reaching

position" allowing to create a control of the robot based on the 3d position

to reach.

*
Macbeth, Shakespeare
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Figure 2.22: Eye musculature: Muscle

and eye anatomy, figure obtained from

Elsevier’s complete anatomy software.

[151]: Taboada et al. (1994), ‘Eye tracking

system and method’

2.3.1 Technicalities

Eye properties

The elements constitutive of the eye that interest us are the pupil, the

iris and the sclera[150]. The pupil is responsible of the aperture for the

light to enter. The iris which surrounds the pupil is the diaphragm that

controls the amount of light. And sclera, the white part, offers a certain

protection to the inside of the eye. Eye direction is dealt by 6 different

muscles surrounding the eye and allowing to rotate on two axis. They

also serve in the stabilization of vision when the head is in movement.

This is represented in detail in Fig 2.22.

To track relevant information in the visual field, eye movements play

obviously a crucial role. There exist different types of movement either

involuntary or voluntary to track those information. First, there is the

direct control over the eyes which is responsible for smoothly following

movements. Second, it represents most of the movements, eyes oscillate

between saccadic movement to track possible new information and

focus points of interest. Those periods of focus opposed to the period of

saccades are key in the process of attention.

Acquisition methods

To capture gaze data, the main solutions rely on exploiting the difference

of brightness between the pupil and the rest of the eye. The pupil appears

as a black dot at the center of the eye. Using cameras especially infrared to

maximize the difference of brightness, the center can be found by image

processing. In the case of infrared cameras, two different phenomenon

are used. Toboada and Robinson’s patent explain how Tobii’s technology

uses those principles[151]. The dark pupil and the bright pupil effects

shown in Fig 2.23.

Figure 2.23: Effects of light on pupil:
Representation of the different pupil ef-

fect based on the placement of the light

with regards to the eye.

The dark pupil effect consists in placing a light source far from the camera

axis with a certain angle, the reflection of the light tends to darken the

pupil. On the opposite, the bright pupil effect consists in placing the

light source close to the camera axis, the direct reflection of the light on

the pupil tends then to lighten the pupil. The combination of those two

effects makes it easier for image processing to search in the image the

pupil and therefore the center of the eye.
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[160]: Lins et al. (1993), ‘Ocular artifacts

in EEG and event-related potentials. I’

2.3.2 Performance and robustness

Eye tracking technology has demonstrated high robustness in the last

decades. The level of precision is linked to the resolution of the camera, its

sampling rate and the image processing algorithm in order to recover the

pupil position. Despite faces having different physiognomy, eye tracker

technology remains quite effective. Niehorster[152] characterized on

this the limit of those modern devices. Furthermore, image processing

algorithms have become more and more accurate, especially with the

arrival of deep learning algorithms and their use in this technology

to reduce the estimation error. However, some drawbacks are to be

mentioned especially with subjects wearing glasses as the infrared light

is distorted reflected in an non predictive way. More over, eye tracking

technology still suffers from a lack of flexibility. Indeed most of the

devices rely on fixed cameras and light source forcing subjects to be

placed in the same way. On that note, new systems offer to be mounted

directly on the head of the subject via glasses as presented in Tobii’s

patent[153]. This comes as a solution to multiple problems evoked before,

even though Hooge[154] showed that some that there were still limitation

to those devices in their use.

2.3.3 Physiological signature

Far from saying that eyes are the mirror of the soul
†
, some interesting

signatures can be observed through eye and gaze analysis. One of the

initial measure is the blinking rate obtained by the period during which

the signal is lost, it is a key signature of fatigue. This is covered in detail

by Schleicher’s article[155] but other physiological phenomenons can

be found such as helping to increase focus or as a buffer to process

relevant information[156]. From the gaze perspective, attention level of

subjects can be measured by the amount of saccadic eye movements and

numbers of fixation points in a time sequence. This was demonstrated

by Zhao[157] even though the number of subjects was quite low. The

measure is however not entirely binary (fixation = attention would

be an oversimplification, saccadic movements also play an important

role in maintaining the attention). In addition to that, the number of

saccadic movements can be used as a first measure of tiredness. Since, the

eyetracking technology relies on finding the pupil in the eye, its size is

also determined. Pupil diameter does not change exclusively with light,

other complex mechanisms are at stakes, the variation are also linked

to attention and concentration level[158]. Those variations are studied

in depth and even used to reinforce commands in BCI for instance. This

is the case of Rozado’s study[159] that focused on improving MI BCI

classifier offline thanks to this new modality.

2.3.4 EEG artifacts

Here it is necessary to evoke the gaze responsibility in EEG artifacts[160].

The 6 muscles produce a strong electrical signal (Electro-myographic

signals) that contaminates the EEG signal especially in the frontal regions.

† De Oratore, Cicero
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Figure 2.24: Blinks: Typical signature of

blinks in EEG signal.

[162]: Ban et al. (2023), ‘Persistent Hu-

man–Machine Interfaces for Robotic

Arm Control Via Gaze and Eye Direc-

tion Tracking’

[164]: Millan et al. (2010), ‘Combining

Brain–Computer Interfaces and Assistive

Technologies’

41: This word describes something abso-

lutely horrible, it comes from latin mean-

ing "bastard, mixed-blood" which is it-

self coming from the idea of chimera (a

counter nature monster).

In addition, the blinking elicits an electrical wave coming from the

electrical potential difference from eye rolling as shown in Fig 2.24.

Furthermore, the eye muscle activity is dealt by the brain sensori-motor

cortex which induces, naturally, an activity contaminating other possible

cognitive tasks.

2.3.5 Controlling a robot with gaze

As evoked before, gaze is defined by alternating between phases of

fixation and phases of saccadic movements. The variation makes it more

complex to establish smooth commands, however if fixation points tend to

be on the same location for a certain time, the position can be considered

as a command. Shazad[161] and Ban[162] presented two good examples

of this type of control. In the case of robotic control, two strategies are

used. The first consists in using the gaze as a direct command (right, left,

up, down) which will in fine control the orientation of the robot effector.

A derived version of this technique will be to use gaze to point towards

objects with already known positions and the robot will reach the desired

object. The second strategy consists in calibrating the gaze position with

the robot end effector position to create a direct control where the robot

follows the gaze, this is largely done in 2D but can also be achieved in 3D.

To strengthen the approach, the robot can be equipped with a camera, to

have a certain intelligence in the sense that objects pointed out by gaze

will be recognized by the robot in order to seize them more efficiently.

This was tempted by Ciao[163] on a proof of concept paper.

2.4 Multimodal approach, state of the art and
development

To answer the possible limitation of control by the sole BCI over the robot,

and to reinforce the sense of agency in an intuitive way, the coupling of

the eyetracking to the BCI is an appropriate response.

2.4.1 Context and advances in hybrid BCIs

To merge the two components of control, the name essentially given

is "Hybrid" which was defined by Millan in 2010[164].
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Far from the

chimeras, hybrid technologies consists in a fusion of modalities to create
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42: We use this duality to enrich the

interaction

a richer control. Eye tracker associated to BCI have been broadly used

in the field, firstly in the purpose of removing artifact more efficiently.

But it did not wait long to serve a role of dual command. Its feasibility

was first studied by Meena[165] and Doherty[166]. Hence, eye tracker

would be principally used to control the position of the robotic arm, by

indicating a position to reach before letting the motor imagery BCI would

be responsible of the seizing or the initiation of the movement. Studies

remained however at the stage of the proof of concept as explored by

Wang[167] and focused and demonstrating a gain in performance with a

few number of subjects.

Because of the technology constraints, most of the eye tracking available

used to be mounted on a screen. The control allowed by this configuration

had to go through a monitor to point most of the time in 2D object to reach.

The introduction of the monitor enables complete ecological environment

especially in the control of a robotic arm. Moreover, studies rely on the

integration of the Graz protocol (and its visualization) into the screen for

the BCI approach (as presented by Zeng et al. [168]). It appears difficult

to say that it is an hybrid system (creating a fusion of information) but

it is more two separate systems put together via a monitor in order to

achieve control.

But, recent development and industrial advances led to more ergonomic

devices especially in the eye tracker field. In addition to that, the rising use

of augmented reality in BCI[169] allows to get rid of monitors blocking

the interaction. The overall result is a control in an intuitive environment

environment as shown by Chen et al[170].

2.4.2 Scientific interrogations, limitation of the approach

In this context, we need to evoke what is still to address in this new

field of research. Indeed, the coupling of those technologies creates

possible complication, especially from the BCI perspective. First because

involving the eye can create artifact or additional motor activity that

will be sensed in the sensori-motor cortex. This is not necessary a bad

thing
42

but the methodology of the experimentation must integrate

this point with caution. More over, our lack of knowledge regarding

the underlying mechanisms of the brain when involved in a complex

task blocks from providing strong conclusions on performances. On this

note, many parameters are yet to analyse regarding the dual modality to

understand better the keys of the interaction. In a first contribution, we

analysed brain activity in a direct control over a virtual arm via eyetracker

to assess the involvement of gaze control on the sensori-motor cortex.

Contribution 1

Following those interrogations, at the very beginning of my researches

on BCI, we wanted to assess brain activity when controlling a virtual

robotic arm, this work allowed to reflect upon the gaze modality and

to better shape the hybrid system. This preliminary work was of crucial

importance to characterize the gaze impact on the sensori-motor cortex.

It allowed when developing the multimodal plaform to know that the

gaze would not be neutral hence that a timing of control could overlap



34 2 State-of-the-Art in brain machine interfaces

[58]: Wolpaw (2012), Brain-Computer In-
terfaces

[134]: Zhang et al. (2021), ‘A survey

on robots controlled by motor imagery

brain-computer interfaces’

[83]: Lotte et al. (2018), ‘A review of

classification algorithms for EEG-based

brain–computer interfaces’

[47]: Guillot et al. (2005), ‘Contribution

from neurophysiological and psycholog-

ical methods to the study of motor im-

agery’

[171]: Wang et al. (2018), ‘A Human-

Robot Interaction System Based on Hy-

brid Gaze Brain-Machine Interface and

Shared Control’

[172]: Schiatti et al. (2017), ‘Soft brain-

machine interfaces for assistive robotics’

[112]: Kilteni et al. (2012), ‘The Sense of

Embodiment in Virtual Reality’

[173]: Van Acken (2012), ‘Tracking the

Sense of Agency in BCI Applications’

motor imagery and gaze activity. Furthermore, it highlighted the need to

disentangle the different modalities of control - motor imagery and BCI-

for the arm and to find ways to focus the gaze during the motor imagery

task in order to limit the overlapping - in addition to limit the artifacts

produced by eye.

Towards multimodal BCIs: the impact of peripheral control on
motor cortex activity and sense of agency,T. Venot; M.C. Corsi;

L. Saint-Bauzel; F. de Vico Fallani, 2021 43rd Annual International

Conference of the IEEE Engineering in Medicine Biology Society

(EMBC)

INTRODUCTION

Brain Computer Interface is a wide field of study[58] that focuses on

extracting brain signals and the ways to interconnect them with a com-

puter, however despite the breakthrough in machine learning[134] and

optimisation techniques[83] , it remains extremely difficult to find robust

control over a robot for instance in the case of BCI based on scalp EEG

using motor imagery (the mental process of imagining a movement

without actually performing it[47]). To strengthen the BCI, a few studies

tried to combine it with other more reliable technologies such as eye

tracker which shows less variability across subjects[171, 172]. Despite

expected performance improvement, the issue of how this can generate

overlapping brain activity processes, is still poorly understood.

Indeed the literature is unclear if the control by gaze of the robot activates

the zone used for motor imagery task. Furthermore this goes to the extent

of any sentiment of control which could produce an activity in the motor

cortex activity. Hence we need to ask about the possible link between the

sense of agency, " a subjective experience of action control, intention, [...]

"[112], and motor imagery.

To answer this question we created a protocol with 3 tasks, two types

of control of a virtual robotic arm by movement or gaze and a robot

observation taks.

Method, material and protocol

Strategy employed

The principal criterion of the study is the level of agency. There are three

level of control:

1. No control at all on the robot

2. Control by gaze

3. Control by gesture (Mirror effect)

The level of agency is supported by a questionnaire, a translation of the

Wegner et al. (2004)[173], which gives a score for the different conditions.

Our variable of interest is the significant differences of activation pattern

in the 𝛼 and 𝛽 band between resting state, mirror control and control by

gaze state. The subject is first given the task to control a virtual robotic
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arm mimicking his right arm’s movement, we are in the 3rd level of

agency where his control is complete, the phenomenon of mirror is

expected to give the best scoring of SoA. This will results in a separation

between feeling and visualisation, it will be the feeling of the arm but the

visualisation of the robotic arm. Second the subject controls the robot by

his gaze. We still have a SoA which is no more linked to motor control,

we expect that the scoring of SoA will decrease. We want to observe if it

still present an activity in the zone of the motor cortex with the control

by gaze.

In opposition to what could be observed if the robot is acting on its

own where there is supposed to be no SoA. It is to ensure that what we

observe during the control by gaze with the EEG cap is indeed the motor

cortex activity and not only the parietal lobe activity which is responsible

with visual treatment and trajectory planning and could be the only one

involved during this controlled task.

The EEG data are processed to extract their spectral density dynamic,

we use Matlab with the EEGlab[174] plugin for ICA treatment and

Brainstorm[175] for some of the statistical analysis.

Material

We created a structure to support a projector, an eye tracking device in

order to display a virtual robot. Through the frame, a virtual scene is

projected composed of virtual moving red targets and a robotic arm. We

use a Tobii Pro X3 in our experimentation. The second part of the user’s

environment is a Kinect v1 mounted on a tripod coupled with a screen

where the same virtual environment is displayed. The EEG cap used is a

Enobio 8 electrodes.

Control by motion capture

To perform control by motion capture, we use joints estimation (shoulder,

elbow, wrist) by computing a distance transformation as presented by

Quoc and al.[176]. From this joints estimation we obtain the vectors

chest to shoulder, shoulder to elbow and elbow to wrist. This vectors are

reproduced by the robotic arm. We achieve direct control of the virtual

by mimicking the movement of the user. Later on we will refer to this

type of control as "Mirror Control". In addition to that, we perform a

Principal Component Analysis on the vectors obtained before in order to

find a common pattern in the movement of a grasping task. From that,

we extract the implication of each joint in the movement. That will be

used later on to control the behaviour of the arm when it is controlled by

the gaze.

Control by gaze

From the eye tracker, we obtain a 2d estimation of the gaze position on

the surface. Since our robotic arm is a 3R planar robot, we use a pseudo

inverse of a damped Jacobian[177] to obtain stable smooth movements

that can integrate the characteristics of the human movement. As a result
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the user focuses is gaze for a period of at least 200 ms on a targeted area

which can be a moving target and the effector (the last part of the arm)

reaches the position.

Experimental protocol

8 healthy subjects (aged 26 ± 3 years, 4 men) volunteered for the expe-

rience. They all came from scientific background and were not familiar

with eye tracking technologies. One of the subjects was not a french

speaker therefore he received the original questionnaire. They all signed

informed consent according to institutional guidelines. The protocol was

reviewed by the Sorbonne’s ethical committee. The EEG cap is installed

on the placement Cz, FC1,C1, CP1, P3, CP5, C3 and FC5.

A robotic arm is displayed on a monitor that moves accordingly to the

movement of the subject’s right arm, virtual objects are moving randomly

on the screen as targets to catch. During 4 sessions of 5 minutes, he is

required to perform two different tasks :

1. Move its arm and observe the robotic arm

2. Rest, trying to relax and not to think

After the sessions in front of the screen, the subject is placed in front

of a frame where he controls the robotic arm with his gaze. The arm is

projected on a tilted plane. The subject is asked either to control the robot

or to rest for 2 sessions of 5 minutes. After that, the subject is presented

the same robotic arm but has no control over its movement. The subject

is asked either to control the robot or to rest for 2 sessions of 5 minutes.

Between each set of tasks, the subject answers a SoA questionnaire which

assess its sensation of control over the robotic arm. In total, the subject

performs the motor activity 36 times, the control by gaze 24 times, the

absence of control 15 times and the resting state 45 times.

Data Analysis

We compute the spectral density for each trial and in average for every

conditions. We perform a comparison on the average of all the trials

by conditions using the two tailed Wilcoxon test in 𝛼 (8-12 Hz) and 𝛽
(15-29 Hz) bands, this allows to check if there is a trend across subjects

regarding the different conditions. Secondly, we perform a permutation

paired student t-test on the different conditions using a subset of samples

to have the same number of trials in each condition for each subjects.

Results

Based on the results of the questionnaires Fig.2.25, we observe individual

differences between the condition no control and the two other conditions.

There is not a significant difference between the conditions Mirror Control
and Gaze control. Our comparison on spectral density between conditions

on average across subjects allowed us to be aware of a trend. First we

established the certainty of the motor activity (Mirror control) compared

to resting state resulting in a decrease of power (negative z-value) at

p<0.05 in the 𝛼 and 𝛽 bands. Second we could already observe similar
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Figure 2.25: Questionnaire Score: Aver-

age score of the sense of agency for the

different tasks.∗ ∗ ∗ : 𝑝 < 0.001, Wilcoxon

test.

results for control by gaze compared to resting state with also a decrease

of power at p<0.05 in both frequency bands. However between the

situation no control and resting state, we only observed decrease of

power at p<0.05 in the 𝛼 band.

Mirror / Rest Gaze / Rest No Control / Rest

Num
ber of subjects 

Figure 2.26: Decrease power among subjects: Occurrence from one subject to another of negative t-values at p<0.05 per electrodes for

each comparison.

We do a comparison of the spectral density subject by subject between the

different conditions, we observe a difference of activity in the alpha and

beta bands in the motor region at p<0,05 and negative t-values indicating

a decrease of power. This is shown both by Fig.2.26 establishing the

number of times we observe negative t-values for each electrode from

a subject to another and by the table showing the most interesting t-

values for each comparison Tab. 2.1. As expected, the decrease of power

corresponding to negative t-values at p<0.05 occurred in most of the

case (6 subjects) between Mirror control and resting state. Between the

condition control by gaze and resting state for each subjects we observe

a difference of spectral activity for 5 of the subjects at 𝑝 < 0.05 and

negative t-values indicating a decrease of power. This indicates that being

in control of the robot with the gaze can have an impact on the motor

cortex activity. Mirror control and control by gaze present similar results

both on sense of agency rating and in number of occurrences.

Between no control and resting state, we observe that in the 𝛼 band, for

4 of the subjects, at p<0,05 t-values are negative indicating a possible
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activity in the motor cortex. We then compare the conditions control by
gaze and no control Fig.2.27. We observe as well a difference of activity

for all the subjects, at p <0.05, t-values are negative for 6 of the subjects.

Two of the subjects (6,8) present positive t-values for p <0,05 in the 𝛼
band. The activation of the zone associated with movement planning

(and motor imagery) could mean that in the performance of a mental

task of control (without moving), similar areas that are typically used for

motor imagery would be solicited, too.

⍺

Subject  1 : ⍺ Subject  2 :  β Subject  3 : ⍺ Subject  4 :  β

Subject  5 : ⍺ Subject  6 : ⍺ Subject  7 :  β Subject  8 : ⍺

Figure 2.27: Comparison between conditions in the sensor space: T values between the conditions Control by gaze and No Control in

the most interesting frequency bands (𝛼 or 𝛽) with FDR correction, 𝑝 < 0.05.

Discussion

In the context of hybrid motor imagery BCI, the link between the obser-

vation of a robot moving or its control by gaze and the activation of the

motor cortex region in bands associated with attention and motor activity

must be addressed. Here, we show that there are significant differences of

spectral density between resting state and the three other conditions (eg

Mirror Control, Control by gaze and No control) with negative t-values.

This indicates a decrease of power in the frequency bands of interest

(alpha and beta), a marker of motor activity. More than that it seems that

the notion of control established by the SoA scoring does not have to be

necessary linked to the notion of motor action to generate an activity in

the motor cortex. The difference between no-control and resting state

can be explained by two different reasons. First motor imagery can be

triggered by the observation of someone else’s movement[178], a similar

mechanism might occur when observing a robotic arm moving that has

been controlled before. Second, the phase of no control comes right after

the phase of control by gaze. The subjects are maybe still trying to control

the robotic arm at the beginning of the session resulting in an activity in

the same region.
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Table 2.1: Most significant t-values associated with their p-values for each subject in each comparison, the frequency band is indicated.

PairSubjects 1 2 3 4 5 6 7 8

Mirror Vs Rest

t=−5, 34

p=0,001

(𝛽)

t=−1.80

p=0.001

(𝛼)

t=−2.51

p=0.015

(𝛼)

t=1.15

p=0.015

(𝛽)

t=−8.91

p=0.001

(𝛽)

t=1.98

p=0.019

(𝛽)

t=−8.29

p=0.001

(𝛼)

t=−2.69

p=0.015

(𝛼)

Gaze Vs Rest NS

t=−1.81

p=0.017

(𝛼)

NS NS

t=−1.00

p=0.012

(𝛽)

t=−2.17

p=0.045

(𝛼)

t=−1.13

p=0.019

(𝛽)

t=−4.66

p=0.001

(𝛼)

No Control Vs

Rest

t=3.73

p=0.010

(𝛽)

t=−1.72

p=0.010

(𝛼)

NS NS

t=−3.1943

p=0.002

(𝛼)

t=−1.78

p=0.006

(𝛽)

NS

t=−3.98

p=0.001

(𝛼)
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From Fig.2.27, we can advance the hypothesis that the no control state is

closer to the resting state, which would explain why there is a decrease

of power density in the 𝛼 and 𝛽 bands(negative t-values) for 6 of the

subjects. The two subjects presenting an increase in the 𝛼 band (positive

t-values) might have been paying more attention to the robot moving

freely, this being an interpretation of the alpha band in accordance with

the literature[179]. However we must keep in mind that we only have

8 electrodes over the sensorimotor area, and we cannot exclude other

more distributed significant activation. We conclude that in the context

of MI BCI mixed with eye tracker, one does not simply treat the moment

of control by gaze as a resting state, and there can be a possible overlap

of brain activity if motor imagery and control by gaze are not complete

distinct tasks.

Our work has some limitations that might be addressed in future studies.

First, it was not possible to switch between control by gaze, mirror control

and no control at all in an instant. It means that we could only randomise

the trials between resting and the other conditions but not between the

active conditions. This could introduce a bias. Secondly, some subjects

were left-handed (2 over 8) but the virtual arm was placed on the right

side of the projected scene and its behaviour was based on right arm

movements. This laterality could affect the performance of the subjects

in their motor imagery task[180].

This closes up the introduction on the knowledge of BCI we relied on for

the development of the platform. The next chapter is going to go more

deeper into the development of the platform. We will go more on specific

aspects of the literature that are useful for the choices made. We will

also present the protocol and the main scientific question we ask with

regarding to such a platform.
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Development of the prototype, an
hybrid solution - the Braccio

platform 3
Key aspects of prototype design

▶ Interrogations on the way to build a strong interaction with the

robotic arm through BCI.

▶ Justifying the choices of stimuli, feedback and robot control in

the prototype : visual stimuli and neuro feedback embedded in

an augmented table, robot controlled in position by gaze and

the closing by MI BCI.

▶ Covering the methods of computation to create the EEG pipeline.

▶ Covering the different engineering developments in robotic

control, eye tracking acquisition and BCI.

▶ Presenting the system’s architecture.

▶ Presenting the experimental protocol and its associated hy-

potheses : investigating different dynamics of control over the

robotic arm, either the robot goes to the object after or prior or

meanwhile the motor imagery task is performed.

▶ Presenting the material and the statistical methods of analysis.

In the previous chapter, we interrogate the reasons why we end up

creating a device that fuses technologies for the control of a robotic

arm, here we are going to show more specifically what the different

technologies bring to the prototype as well as asking how we should

merge those technologies. We will present the different choices that

are based on the literature but also ones solely based on the results of

reasoning and ideas taken from other fields of research but also linked to

experimental and time constraints. All of this makes the platform original

but with some remaining parameters that should be addressed.

We aim for a control of the robot based on the eyetracker for the position

to reach to grasp an object and the closing of the gripper based on the

motor imagery BCI as shown in Fig 3.1, a link for the final platform

overview is provided here to see where we are going ( Braccio Video).

Figure 3.1: Left: Position towards an ob-

ject to reach by the robot based on gaze.

Right: Grasping of the object based on

the MI BCI.

https://owncloud.icm-institute.org/index.php/s/jWRl9kWtxCMdPl7
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Figure 3.2: Pillars of development: Prin-

ciples for the subject upon which we

must build the BCI platform : Trust,

Agency, Involvement and Disturbance

1: Introversion meaning moments where

subjects are left undisturbed

3.1 Interrogations

Creating an experimental platform is truly about bouncing between

questions that are of many different nature. They can be either engineering

or ergonomic or also neuro-scientific and even philosophical questions.

Their answers are as well of those same different natures. The complexity

lies on the fact that the nature of the question might not be aligned with

the nature of its answer, meaning that a neuro scientific question about

the experimental platform might be answered by an engineering answer

on the constraints of the same platform. We must build our platform

above different pillars of concepts (Fig 3.2) to ensure a good BCI platform

and a great interaction with subjects.

3.1.1 Creating a sense of agency - the trust issue

One of the notions that has been central to this work is the sense of agency.

As mention before, this sense is part of the embodiment process that

shows to benefit the performances of BCI. As introduced in the previous

chapter, the feedback BCI is linked to the brain activity. But, if at any

point in the process, the link is not good meaning that the acquisition,

the spectral estimation or the classification are erroneous, subjects lose

their feeling of control leading in fine to a loss of involvement and the

failure of the interaction. And this is not unusual as mentioned before

when evoking the illiteracy issue but it can concern more generally every

subject. Here, the additional source of control that is gaze can come to

compensate this possible loss. By ensuring that the system keeps working

with the control by gaze no matter what the BCI does, we create an initial

level of trust in the system. In a way, the eye tracker is meant to be a

crutch to the BCI system. Subjects will be more involved in the task, and

in fine trust the overall system, which is key to focus on the motor imagery

task and therefore having better performance resulting in a stronger

interaction.

3.1.2 How to control a robotic arm ?

In this context, it is essential to know how the robotic arm will be

controlled. Defining the control commands is what is going to shape the

interaction. We need to remember that BCIs with motor imagery rely on

intense focus. This means that a balance is needed between phases of

interaction and phases of introversion
1
. Based on the assumption that

it is intuitive to perform motor imagery (or resting state) in order to

achieve the closing of the gripper which becomes the closing of subjects

own hand by association. We could imagine that the motor imagery

would be associated to the initiation of any movement, but cognitive

tasks must remain simple such as imagining closing the hand. It is to

note that it is not possible to differentiate motor imagery power spectrum

patterns of the closing hand from the complete movement of the arm.

By having in one hand, the imagination of a whole arm movement and

in the other hand, the imagination of the sole hand closing, we already

create a dissonance. This goes in opposition to the need for congruent

feedback. So, to limit the dissonance, it is important to keep a consistent
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feedback associated to the MI task. Therefore, if the motor imagery task is

simple, i.e the closing of the hand, then the reward should be the closing

of the robotic arm gripper. Since we are focusing on the gripper, we need

to study its movement. The movement is a simple closing. We already

established in the previous chapter the two different feedback at our

disposal : continuous or discrete. In the case of the closing, you can then

control it two different ways. The first way is to associate direct results of

the classifier continuously. The gripper will close in an iterative manner

based on the correctness of the classification, this is shown in Fig 3.3 .

The other way is to wait until the end of the trial to have a closing if the

Figure 3.3: Continuous feedback with
a robot:Iterative closing of the gripper

based on the successive samples clas-

sified as either motor imagery in red

or resting state in blue. The illustration

shows two different features considered

as the feature vector.

classifier’s choice over the averaged signal is right. A possible solution is

to do an average of the choices issued from the classifier over a trial as

shown in Fig 3.4.

Figure 3.4: Discrete feedback with a
robot: Closing of the gripper at the end

of the trial based on the average succes-

sive samples classified as either motor

imagery in red or resting state in blue.

The illustration shows two different fea-

tures considered as the feature vector. If

more samples are classified as belonging

to motor imagery than as belonging to

resting state, the robot’s gripper closes.

Choosing Discrete feedback

In our framework, we choose to focus on the discrete feedback,

meaning that subjects will perform the cognitive task for a period of

time and then they will receive a reward based on the result of the

classification. We will compensate the delay in the response by an

intermediate continuous neurofeedback presented later. In doing so,

we also limit the intrinsic delays of the classification that could come

from a continuous mode. Furthermore, it allows the users to be fully

focus on their mental task during the time sloth dedicated.

Concerning the eye tracker control over the position, as presented before,

a lot of solutions are on the table. To control the arm based on gaze, a

simple and standardized solution is to point at desired objects already

known by the system. As mentioned before, the eye can be responsible

for a lot of the artifacts in the EEG, if the system of control relies too

much on the eyes meaning that the robot is always controlled by gaze for

instance , we run the risk of polluting the data from the start. Pointing at

few objects represents a good compromise between full control and no

control at all.

The solution adopted is as followed and can be seen in Fig3.5: first gaze
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Figure 3.5: The can to reach is selected

based on the average of the gaze position

along the x-axis for 2 seconds

[181]: Lienkämper et al. (2021), ‘Quan-

tifying the alignment error and the ef-

fect of incomplete somatosensory feed-

back on motor performance in a virtual

brain–computer-interface setup’

[182]: Inoue et al. (2021), ‘Virtual Mirror

and Beyond’

2: They also offer an easy shape to grasp

by the gripper.

information is retrieved in a 3d space for a short period of 2 seconds -

this allows to be sure of users’ intent and limits the impact of saccadic

eye movement. If the gaze is focused for this time on right or left (defined

by the sign along the x axis centered on the glasses middle), the order

is sent to the robot to go to the designated object (placed either on the

left or on the right). This method provides from having objects on the

sideline and objects position must be known to the robot. The trajectories

of the robot will be described more in details later on.

3.1.3 Creating the stage

We have our actors, it is time to place them on stage. Concerning subjects,

it is pretty obvious, they actually need to be placed in a chair looking

towards the device, the EEG cap and the eyetracking glasses will be worn.

This is a standard situation in EEG experimentation and allows for clean

signals. If the robotic arm is reaching objects, we need a table to put the

objects upon. Finally, where should the robot be placed to grasp objects ?

The orientation of the robot plays an important role in the embodiment

process as described by Lienkamper that assessed that we could observe

loss of embodiment by rotating and shifting robot’s position[181]. One

option is to place the robotic arm at subjects’ level on their right, this is

Lienkamper best position to obtain embodiment. But in our framework

this is not possible for the simple reason it blocks the sight over the

table. We can place it on the right of subjects tilted of 90 degrees but it

means that it is highly lateralized and it is considered to be the worst

configuration for embodiment. Furthermore, we can only reach objects

on the right field of vision of the subjects which is not intuitive as well. So

we need to abandon the fact that the robot will be close to subjects. The

next solution is to place it facing the subject, as two chess players on a

table. This configuration has been largely explored in robot collaboration

(co-bot) which is one of the source of inspiration of the protocol design.

As evoked before, this changes slightly the paradigm as subjects might

lose some sense of embodiment due to the position of the robot but

they get an "interactive" framework where the robot becomes another

agent. On this note, facing the robot has not been explored extensively in

terms of embodiment, but Inoue and Kitazaki[182] have revealed certain

effects on virtual avatar presented in a mirror. We might imagine that an

effect remains but this is speculative. Fig 3.6 shows the different positions

considered for the robotic placement.

Lighting of the beacons - Stimuli

So far, we did not mention the way subjects are able to know when to

perform the task. It is necessary to interrogate what should be indicated

to subjects to perform the task. Moreover, where and how can we put

stimuli in order to continue the creation of the ecological environment ?

One of the initial incentive of the thesis was to think that in order to

do motor imagery, we need to anchor our mind on a meaningful object

following the idea of a reach to grasp movement to imagine rather than a

free movement. So the object to grasp has to be meaningful to be seized

in real life - hence the use of soda cans in our case
2
. Everything needs to
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Figure 3.6: Placing the robot arm in the
environment: Considered positions of

the robot with regards to the table with

cans reachable, on the right of the subject,

tilted at 45 or 90 degrees, or in front of

the subject. The position kept for the

protocol will be the one where the robot

is facing the subject at the over end of

the table.

3: This is also important to ensure a low

level of EEG artifact coming from the

eyes.

4: Supposedly to find red fruits in a

green landscape as explained by Lee on

colour vision[183]

go towards this object : 1) the gaze - hence the attention of the subject

2) the robot - which takes it. So we need to find a way to show both

the cans and the stimuli at the same location. To highlight the object,

a possible solution is to use a display screen as a table and doing so

creating an augmented table. Stimuli will be presented below the cans to

indicate what to do, this way, the main focus will remain the cans
3
. Now,

what should we show, since the object is already carrying meaning (we,

through the robot, have to take it). It must be simple and straightforward

in order to limit any disturbing effect. We choose disks with different

colours associated to the different cognitive tasks (MI of the closing of

the hand or resting state). Since we have the same shape for both stimuli,

the colour can be a way to differentiate between tasks. But what should

be the colours associated to the cognitive task ? The choices made were

the following, red for the motor imagery and blue for the resting state.

To understand the motivation behind, we need to leave the field of BCI

to enter the field of colour meaning. In human eye evolution, the red

colour has been perceived a bit later than the two other colours
4
. The

overall consequence is that red is perceived more intensely than the

other colours, its "natural" excitation properties explain partially why

we associate it to ardour, passion, power and by extension speed as

presented by Pastoureau in his essays on colour signification[184]. The

blue colour on the opposite is associated to relaxed and peaceful states

also developed by Pastoureau[185]. Therefore, it makes sense to associate

it to resting state. This argumentation can maybe not be generalized based

on color meaning being different around the globe. The Fig 3.7 presents

a view of the experimental platform from above which integrates the

stimuli. The disks will appear under the table during a sequence that is

generated by the BCI software, it will associate every apparition of the

disks with a timestamp to the EEG data.

3.1.4 When should subjects perform the cognitive tasks ?

Now that the pieces come together and that the main design of the

platform is set, it is necessary to interrogate the way we are shaping the

interaction. The question came from an initial interrogation concerning

gesture in reaching task. When do we trigger the closing of our own

hand ? Do we already know prior to the movement that we will grasp the

object or is it when arriving to the target ? Although this interrogation
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Figure 3.7: Robot placement and visual
feedback: Robot from above and the mo-

tor imagery stimulus (in red) below the

cans. The outside circle will be later on

describe in the Neurofeedback section,

it is a continuous feedback linked the

neural activity of subjects during their

motor imagery trial.

[186]: Betti et al. (2018), ‘Reach-To-Grasp

Movements’

has been investigated from a pure human movement perspective[186],

we wanted to draw the possible parallels in the integration of the robot

movement to the motor imagery task.

In the standard literature, discrete feedback and movement are provided

at the end of the cognitive task as a reward to ensure a complete focus

of the subjects on the task. In our environment, it means that the robot

would go to seize the object after the motor imagery task has been

performed. But this framework presents some limitations regarding

the interaction. The interaction is directed, first an order from the user,

then a sequence of actions from the robot. The directed interaction

makes it less about collaborating with the robot. Second, if we follow

the leitmotiv established so far of intuitiveness, we encounter an issue.

The motor imagery of the closing of the hand is not consistent with the

action performed by the robot which is also a displacement towards

the target before closing the gripper. A possible other way to consider

the interaction is to make the robot move towards the target and then

perform the motor imagery. This solution has the advantage to create

a balancing sequence in the interaction, first a robot movement, then

a cognitive task and then a robotic closing. The idea is to benefit from

the robotic movement to elicit a preparatory MI state. Furthermore, the

motor imagery becomes congruent with the action it creates. Finally,

we can consider another approach, where movement and cognitive task

become one. By performing the motor imagery meanwhile the robot

is moving, this removes the sequential character of the interaction. It

merges it which creates synergy. Coming back to the intentional binding

effect, our idea when we developed the framework was to artificialize this

effect: by creating an initial movement linked with gaze, we create a first

brick of agency that is completed by the motor imagery task.

Even though, the relevance of a timing being better than the rest seems

logical from the product of a reflection, it remains purely speculative.

We do not know what is the best way to control the robotic arm in this

specific context. That is why this three timings have been implemented

but also they are going to become our scientific question. Indeed, how

should we control the robotic arm ?
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5: The implementations of some of the

methods were done either by or in col-

laboration with A. Desbois, therefore,

the next parts will highlight my contri-

butions but will also mention ones not

developed by me that were essentials for

the realization of the project.

Figure 3.8: From EEG to ML algorithm:

Chain of treatment from EEG signal to

classification. First we acquire the raw

EEG signal corresponding to trials of

motor imagery (in red) or resting state

(in blue). We estimate for each trial the

power spectrum to obtain an average

over trial power spectrum. The average

power spectrum for a specific bin of fre-

quency for a specific electrode for each

class (MI or rest) is then considered as a

feature. If the features are discriminant

enough, a machine learning algorithm

can draw a separation between those

classes (an hyperplane).

3.2 Creating the conditions for a robust platform

The reader will now leave the realm of scientific interrogations to enter in

the realm of the engineering implementation. Indeed, the next sections

will be dedicated to technical implementations that have been explored

during this work. In this specific part, I will speak at the first person to

make things more clear on the contributions especially in Optimizing
standard BCI paradigm Fig.3.2.1.

Certain part were not exploited for the experimental protocol but their

engineering development might interest some.
5

3.2.1 Optimizing standard BCI paradigm

To optimize the BCI system, it needs to be studied in details to identify its

strength and its weakness. The main paradigm we are in is the Graz BCI,

a sequence of visual stimuli indicating different phases of a trial. The

data follow a chain of treatment largely described in the state of the art.

The sequence is as follow, a pre-stimulus (a cue to prepare the subject), a

stimulus (to ask the subject what to to), a feedback (to show what the

subject is doing) and a post-stimulus (to indicate the end of the trial).

The time duration varies from a protocol to the next but the sequence is

always as presented. The data treatment chain as represented in Fig 3.8

starts with the time series of the electrodes, after presenting the stimuli,

the power spectrum is estimated, then for electrodes at frequency bins of

interest, the estimated power enter as features in the classifier algorithm

which issues a probability to belong to a class which is represented

during the feedback.

This pipeline can be created in a dedicated software, in our case Open-

ViBE[187] (OV). OpenViBE is an Inria software in C++ developed for BCI

application. The software integrates the treatment chain from acquisition

of the EEG to the restitution of visual or auditory feedback. A detailed

presentation is in annex to explain the overall software architecture and

how bricks can and have been integrated. The first step for us is to choose

what power spectrum estimator will be used in the chain of treatment.

Spectral estimation II

As mentioned in the initial section on the spectral estimation, there are

several techniques that can be used. In the initial methods proposed

in OpenViBE (OV), there is only Fourier transform and energy of the

signal to estimate spectral density. These two methods are not suitable

for a rapid estimator of the spectrum therefore our need to develop new

estimator in OpenViBE. A "box" dedicated to the Burg autoregressive

method was developed by A. Desbois to have a real time estimator inside

OpenViBE. Real time is not not stricto sensu usable here. Because the

estimator is based on aggregated timing windows, you do not have one

time sample converted to one spectral sample (for frequency resolution).

In parallel, I developed a python software
6

built largely with MNE which

reproduces offline the pipeline of OpenViBE in which I integrated a burg

estimator to make sure OV was having the right behaviour. However,

the Burg spectral estimator has some parameters which are important
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6: I mention this here as it was this tool

which was used to determine the differ-

ent parameters that would be used later

on online with OpenViBE.

[190]: Kennedy et al. (1995), ‘Particle

swarm optimization’

7: An optimal position to find usually

consists in finding the point where the

derivative becomes equal to zero.

Figure 3.9: Photography of a bird flock,

Author: S.Solker

8: The number of particles, the cognitive

and social coefficients and the number

of iterations[191]

to study in order to prove their efficiency. Both Krusienski’s[188] and

Bufalari’s[189] found an optimal filter order around 20 to obtain the

best statistical differences between cognitive states while not increasing

too much the need for computing resources. However, both their work

solely studied the filter order and did not study the window and overlap

parameters. From what you read in section 9, these parameters represent

a trade-off between frequency resolution and number of samples for

online feedback. We first based our parameters on BCI 2000 historic

software but in an effort to make sure the parameters were rightly chosen

I used a Particle Swarm Algorithm to assess those parameters.

Particle Swarm Algorithm

Particle Swarm Optimization (PSO) algorithm[190] belongs to the list of

non-gradient algorithms which allow to converge towards a solution by

searching in the multi dimensional space an optimal position
7

of a given

function with multiple parameters without making assumptions on the

function. The algorithm is based on an analogy with bird flocks or bee

swarms, each particle is a multi dimensional point with a velocity and 2

parameters associated: a cognitive one and a social parameter one.

Figure 3.10: PSO: Representation of the

Particle swarm algorithm searching for

the optimal negative position in a 3d

gaussian via its 3d particles

The particles are guided by their local optima and the overall known

optima. Through a certain number of iterations, the particles exchange

the information of their position to orient the search towards a better

optima in a multi dimensional area as represented in Fig 3.10. At the end

of the iterations or if the particles do not vary much in positions anymore,

the optimal position is supposed to be found. The parameters of the

swarm
8

depend on the nature of the problem, it is crucial to identify with

precision those parameters before tackling the problem and to be sure

that a convergence can occur. We base our approach on studies that use
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[192]: Akilandeswari et al. (2014), ‘Swarm

Optimized Feature Selection of EEG Sig-

nals for Brain-Computer Interface’

the algorithm directly for features extraction[192][193]. We will use as an

ending result the 𝑅2
map presenting the statistical differences between

MI and resting state for the relevant electrodes of the sensori motor

cortex. We then create the negative of this matrix and compute the power

spectrum estimation on pilot subjects data inside the particle swarm

algorithm. Meaning that for a subject, each particle which has a position

in 3 dimensions (filter order, windowing, overlap) corresponds to the

spectral estimation both for motor imagery and resting state compared

via a 𝑅2
test for a specific electrode at frequency bands of interests (in 𝛼

and 𝛽), this is represented in Fig 3.11.

Figure 3.11: PSO in the selections of
AR parameters: Representation of the

Particle swarm algorithm searching for

the optimal R2 value of certain electrodes

of the sensori motor cortex in the multi

dimensional space

Although this approach allows to explore optimal parameters, it is

extremely time consuming for certain window and overlap. This is the

main limitation that forces to limit the number of iteration before finding

an optimal solution. However the empirical analysis arrived to similar

results as the one presented in the works of Krusienski and Bufalari as

well as allowed to clearly show the importance of those three parameters

in the issued 𝑅2
map. The limitation of this approach is mainly the

computation time of each particle which enables any use during the time

of an experimentation, it shows however strength as it would be a good

strategy to tailor the experience to the subjects.

Adaptive classification

In a standard BCI protocol, the experience integrates two phases, first a

calibration phase or training phase where subjects perform the different

cognitive tasks without receiving feedback and second, a testing phase

where subjects do receive a feedback based on results of the classification

and are indeed in control. But features which were used for the training

of a classifier have a tendency to change over time due to a number

of reasons. Among them, we can mention the shift of the EEG signal

due to the sensors and the gel conductivity, the tiredness of subjects,

the possible differences in brain activation with the appearance of a

feedback and the exploratory mental strategies of subjects during sessions.

Hence, the need for adaptive classifier that changes over time and that

can start after few trials to give some responses to the user. Several

options are available in adaptive classification but to stay close to the

neurophysiological signatures present in the EEG signal, one lead that
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[194]: Vidaurre et al. (2011), ‘Toward

Unsupervised Adaptation of LDA for

Brain–Computer Interfaces’

9: Scenari in OV are data treatment

pipeline offline or online.

has been explored extensively by Vidaurre[194]. It concerns adaptive

LDA that either updates the covariance matrix issued from the feature

vectors or the average feature vector of the class to give more importance

to the new incoming samples. I implemented this method in OpenViBE

but it stayed at the sole stage of the implementation as it would have

required more time to evaluate its relevance in an online context with

subjects.

Developing a new software of analysis - HappyFeat

One of the idea that emerged during the PhD was the need for an analysis

tool that could show statistical results and comprehensive representation

of the data such as topography map. Fig 3.12 gives an overview of the

representations needed to analyse data in a synthetic way.

Figure 3.12: Needed representation to
evaluate subjects’ performance: Top

Left : visualization of the average spectral

estimation (Burg estimator in this case)

for motor imagery (in red) and resting

state (in blue) for a specific electrode. Bot-

tom Left: Topography map for a certain

frequency bin, colormap corresponds to

the level of significant differences be-

tween the two cognitive states. Right : Sta-

tistical difference map (here coefficient

of determination) for each electrode for

each frequency bin computed over trials

of the different cognitive states.

The idea was that we could use such a tool to adapt the experimentation

by training more efficiently the classifier based on relevant features in

a short time period. The first initial bricks I developed were based on

Qt in python where computation were dealt by python libraries. The

visualization and statistical analysis were separated from OpenViBE. In

parallel, A. Desbois was starting the building of a complete software

that would integrate analysis based on OV computation in an effort

to be consistent between analysis and what was actually done in OV

in experimentation. The initial visual toolkits and statistical analysis

I developed were integrated and rebuilt within the team creating the

software that would become HappyFeat.

HappyFeat is a python graphical user interface (GUI) wrapping OpenViBE

scripts (coded in C++) that has 3 main functions :

▶ it allows to generate scenari
9

in OV with pre-sets parameters which

allow for an important gain of time.

▶ it processes data in order to perform visualization, and statistical

analysis.

▶ it trains the OV classifier based on features entered in the software

and with the dataset of our choice.

Those three functions make it possible to adapt the features rapidly

accordingly to the change of mental states of users within sessions.

Because we analyse the data almost in real time, we can decide when
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10: Power spectrum of different elec-

trodes located around sensory motor cor-

tex area at different frequency bins in the

𝛼 and 𝛽 range.

11: LDA Algorithm for binary classifi-
cation:

𝐷(𝑥) =
[
𝑏

𝑤

] [
1

𝑥

]
(3.1)

where 𝑤 = Σ−1(�2 − �1) is the discrim-

inant vector, 𝑏 = −𝑤𝑇� is the bias, and

� = 1

2
(�1 + �2) is the global mean.

If 𝐷(𝑥) > 0, the observation 𝑥 is classi-

fied as class 2; otherwise, it is classified

as class 1.

it is relevant to train again the classifier and to see if basically subjects

are able to perform the task of motor imagery or at least if they can

produce subsequent differentiable activity between resting and MI in the

sensori-motor cortex.

On another note, this software development contributed in letting go the

implementation of the adaptive classification in the future experimental

protocol. Indeed, since the software allows to quickly train again the

classifier based on features we can identify as relevant even if they

evolve in time, it appears less relevant to use an adaptive classification

algorithm.

Classification process

In our pipeline, we use standard Linear Discriminant Analysis (LDA)

algorithm for a binary problem (Right hand Motor imagery vs Resting

state) trained on significant features
10

selected by hand for each subject

for each session and in each phase of the protocol. LDA is built on

the hypothesis that the covariance matrix of the two classes is equal.

Each new sample is associated to a distance to an hyperplane making

a separation between the two classes feature vector. The projection of

the feature vectors minimizes the inter-class variance and maximizes the

distance between classes
11

. In our case, we perform an estimation of the

power spectrum for the duration of the motor imagery trial and classify it

at the end of the trial as either a resting state or a motor imagery task. We

rely on a discrete feedback which will be the closing of the hand but the

way to do so will change from the beginning to the end of the PhD. The

first version was an average of classified samples as shown before in Fig

3.4. But the second version consisted in estimating the power spectrum

average over all trial, and issuing a single feature vector by trial and a

single choice for the classifier at each trial. We will evoke more in details

why this change in chapter 3 concerning results.

3.2.2 Providing a neuro-feedback

Following the discussion on spectral estimation, a central question in

the work was to keep the attention of subjects in the task without

disturbing them. Since our classification algorithm would be used to

create discrete feedback (the closing of the robot’s hand), we lack a

continuous information. As presented in the state of the art on feedback,

the continuous feedback presents the advantage of maintaining the

attention of subjects, moreover, it contributes to close the loop of the

system. Indeed, by indicating in real time what is subjects’ brain activity,

we establish a direct channel of communication, and, in doing so we

allow subjects to change accordingly their mental strategy to obtain the

most rewarding output.

The idea to integrate the neuro-feedback was introduced to answer the

limitation of the robot closing as a discrete reward. The neuro-feedback

provides a direct information on the subject’s spectral power over one

frequency bin or the average of many. In our introduction of the neuro-

feedback, we advanced the idea that neuro-feedback was used to learn

how to modulate brain’s power amplitude in certain frequency bands.
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[196]: Meyer et al. (2009), ‘Displaying a

boundary in graphic and symbolic “wait”

displays’

Here, we want to propose another use for the neuro-feedback that does

not focus on modulating subjects’ brain frequency amplitudes.

Indeed, our approach is task driven meaning that the end purpose is to

grasp an object with the robotic arm. Therefore if the neuro-feedback does

not match with the end goal and the MI task (imagining closing the right

hand), we might introduce some dissonance, and as mentioned before,

this is what needs to be avoided. So, we introduced the neuro-feedback

as an halo circling the object to grasp. This halo changes its radius based

on the power spectrum of the most discriminating feature (hence an

electrode at a given frequency bin). This is represented in Fig 3.13.

Figure 3.13: NeuroFeedback visual-
ization: Representation of the neuro-

feedback during a trial of motor imagery.

The halo changes its radius with the am-

plitude of the power for in a specific

frequency band for a specific electrode.

The more the radius diminishes the better. The reducing radius is sup-

posed to create an implicit association with the hand closing. The concep-

tion of the feedback was the product of a reflection on how in ergonomics

design we indicate to users that a computer process is occurring as

described by Vladic in their review of loading animation[195]. There are

several indicators known to the general public such as the blue circle for

MicroSoft or the rainbow disk for MacOS when loading a file to evoke

known representations. Those loading animation are among the basis of

Graphic User Interface to maintain users attention while waiting for a

final outcome as described by Meyer[196]. The other inspiration for this

design was linked to concepts of video game design where the camera

locks itself to an object by a cursor surrounding the object. This design in

video games was used (as it is a bit outdated) to focus on the actions to

do regarding the object of interest and freed the player from the control

over the in game camera. In our case, this is in the scope of trying to force

subjects focus on the targeted object, all the attention should be driven to

it.

This neuro-feedback will serve two purposes in this protocol. Because of

how it works, it indicates subjects that the BCI has sensed a brain activity

and that it is actually working. This serves the purpose of trust in the

system and introduces a waiting mechanism, it also contributes to the

general sense of agency as the brain activity has an impact on what is

presented. The second purpose it serves is the focus: by narrowing the

attention towards the target and making it appealing by an additional

visual cue, we push subjects to focus even more on the object to grasp.
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[199]: Mladenovic (2019), ‘Computa-

tional Modeling of User States and Skills

for Optimizing BCI Training Tasks’

[200]: Barbero et al. (2010), ‘Biased feed-

back in brain-computer interfaces’

3.2.3 On the necessity to randomize between trials of
motor imagery and resting state

One could argue that the training of motor imagery and resting state

could be done separately as we would do in normal sessions of training.

We could design the system to ask subjects to perform the same task

over and over for a certain time and then proceed to do the exact same

thing with another task. This approach has to be put aside for several

reasons.

From an attention perspective, introducing randomness in the presen-

tation of stimulus allows to maintain a certain level of attention. Here,

what is sought is to always challenge subjects and to keep them from

falling into a sense of routine.

From a pure data acquisition perspective, having the same task over and

over can be tiring which leads to changes in the signal, this might end

up worsening results over time and the data collection would be less

homogeneous. More over, this also means that we need to start first with

one task, train on it for a certain time, and then change completely. The

slight variations in the EEG signal occurring because of time will increase

differences between tasks without the certainty that their are linked to

the task, therefore it creates a bias due to time. Last but not least, the fact

that the task is performed again and again introduces mechanisms of

preparation. Indeed, because subjects know what is appearing next, they

can anticipate the task resulting in a variability in the ERD/ERS through

trials based on their anticipation towards the next trial. By removing the

anticipation, each trial becomes a reset where the signal should appear

at the same moment in all configuration. This anticipation would appear

similarly if we would alternate between cognitive tasks with a known

sequence.

3.2.4 On the choice of providing or not feedback in the
cognitive states

The question of the resting state arrived quite early on in the development

of the platform. The main question was : what should we show during the

resting state ? Providing a feedback has been an endless discussion where

effects on performance can be either positive or negative as described ex-

tensively by Carabalona[197, 198]. Moreover, positive feedback are shown

to provide better performances in specific cases as shown by Mladenovic

work funded on the paper of Barbero and Grosse-Wentrup[199, 200]. The

argument was to say that no matter what, the resting state should be

a moment of self relaxation none driven by any information to focus on
not focusing. In order to achieve that, we should not provide a negative

feedback and even no feedback at all after a resting state, this is advanced

by Vaslyev on displaying real time feedback in MI practive[201]. So, the

immediate solution would be to not move the arm at all during the resting

state. But, in doing so, it creates a major bias in the sense that it is the

robot movement that could elicit some desynchronization as mentioned

already in Lana’s work[135]. To avoid this possible bias, the considered

solution was to have the robot moving based on the eye tracker (the same

way as for the motor imagery state), the only difference would be that
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12: Mahalanobis distance:

𝐷(𝑥, 𝑦) =
√
(𝑥 − �)𝑇Σ−1(𝑥 − �) (3.2)

with x a multivariate vector, � an average

multivariate vector and Σ the covariance

matrix

[202]: Leys et al. (2018), ‘Detecting multi-

variate outliers’

the robot would not close its hand no matter what when it is a resting

state both in calibration and control phases.

The end result is that we will provide only a positive feedback in motor

imagery. On this note, during the calibration phase, the robot always

closes its hand when the task to perform is motor imagery. Two arguments

support this approach: first, to be as close as possible of the feedback

phase in an effort to limit the differences between the two phases. Second,

to already make subjects associate the reward to what they are imagining,

this is supported again by Vasilyev in the same article[201].

We have covered until here the BCI part of our multimodal system, we

are going next to develop the gaze modality.

3.2.5 Optimizing gaze acquisition

We use for gaze acquisition the Tobii Pro glasses 3 that work at 50 Hz

sampling rate. Those eyetracking glasses rely on the combination of the

light pupil and the dark pupil effect, the light emitters and infrared

cameras are blend in the glasses making it highly robust to the change

of subjects. The patent associated to Tobii’s method of acquisition also

indicated the use of deep learning to reduce the error of the gaze position

estimation. Due to its sampling rate, some information regarding saccades

cannot be totally observed. This technology can nevertheless generate

some outliers (aberrant values) that need to be filtered. A possible solution

regarding this topic is to evaluate the euclidean distance to a cluster of

points, by doing so we create circles in which the data are considered

as true and outside they are considered as outliers. This first technique

is straightforward to implement, we however need to choose the radius

parameter as well as the refreshing rate of the cluster center (the average

position of the previous points). But here, it does not cope with the way

data spreads out, indeed you could have a cluster larger in the x-axis

than on the y-axis (forming an ellipsoid) due to the vision field presented

to the user where there are more elements of interests along the x-axis,

as represented in Fig 3.14.

Therefore, another solution which takes more into account the data

dispersion is the Mahalanobis distance
12

. This distance measures the

dissimilarity between two vectors. The idea in our case is that new

incoming samples will be similar to an average vector resulting in a short

distance, at the opposite, outlier will appear as extremely dissimilar

resulting in a long distance. If the distance exceeds a certain threshold

defined based on previous knowledge concerning the data distribution,

it is considered as an outlier. This filtering method is well known and

has demonstrated its relevancy[202] therefore it has been applied as a

filter for the acquisition of the eyetracking data to ensure a good quality

of control over the robotic arm.

Exploration not kept

The next section explores a way to estimate the 3d gaze position based

on the 2d gaze and a central camera. This development was set as a

proposition of technology but was not kept in the final version of the

protocol for its complexity.
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Figure 3.14: Filter using Mahalanobis
distance: Representation of the disper-

sion of the eye data and their integration

with the average euclidean distance and

the Mahalanobis distance

[203]: Xia et al. (2022), ‘High-Accuracy

3D Gaze Estimation with Efficient Recal-

ibration for Head-Mounted Gaze Track-

ing Systems’

Exploring 3D position estimation

The first idea of control for the robot was to have a 3D estimation of the po-

sition to reach by the robot. Although Tobii’s API provides a 3D estimate,

the system has not prove itself entirely reliable as the 3D estimation for

gaze is an open problem as explained for example by Xia et al exploring

a method to estimate the 3d gaze[203]. Indeed, the estimated vector for

each eye which is reliable on a (x,y) plan becomes erratic in 3d because a

small angle error substantially changes the estimated depth. To answer

this technical challenge, we propose an original engineering solution

that couples several techniques from computer vision. First, by using the

frontal camera of the glasses, we can use simultaneous localization and

mapping (SLAM) to estimate 3d points of the environment. We then use

Delaunay’s triangulation method to estimate triangles between 3d points

(which are in 2d in each camera frame) for each frame. We then estimate

the 2d Gaze and associate its found position to one of the triangles. We

then project the triangle in the 3d space to get a 3d gaze point. The

projection can be seen in Fig 3.15. But unfortunately le mieux est l’ennemi
du bien, and this technique requires high computation resources for the

SLAM and the Delaunay triangulation and could not possibly be used

in real time. Moreover, to create a standardized protocol where subjects

behave similarly, this is not applicable because it increases the variability

in the experimentation. By having the robot exploring in its workspace

to multiple positions not predetermined, we cannot standardize the

movement shown to subjects. Thus, it increases the number of possible

sources of errors which could result in disturbing subjects and even in

disengaging them which is what we want to avoid.
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Figure 3.15: Proposition of 3d gaze esti-
mator:Delaunay triangulation in 2d over

the points established with the SLAM,

projection in 3d to infer the 3d gaze po-

sition.

Figure 3.16: Stages of robot displace-
ment: The different steps in time of the

robot trajectory from its origin position

to reaching the object and going back.

3.2.6 Robot trajectory

The robot used in the thesis is a Reachy right arm from Pollen Robotics

as described in their associated paper[204]. The arm is a seven degrees

of freedom (DoF) arm capable of lifting light objects with its gripper.

The robot is going to follow pre-known trajectories based on the object’s

position.

It is first positioned in a standing by position. Then, based on the choice

of the object to grasp, it positions its gripper above the object using

minimum jerk interpolation for its displacement to mimic natural human

reach to grasp movement. Then the robot adjusts itself to the level of

the object, grasps and raises it up and puts it back down. Then it is

going back to its standing by position. All those steps are shown in

Fig 3.16. The position of the cans are pre-set in the robot space, inverse

kinematic is computed to know the ending configuration of the joints,

then using the position of the arm in the standing by position and the

target configuration joint, the trajectory is computed using minim jerk

trajectory. There are no possibilities to change the trajectory of the robot

during its movement. The robot’s behaviour has all its sequence based

on the BCI sequence set by the server that relays the information coming

from the EyeTracker and OpenViBE that sets the time of acquisition and

the orders as presented in Fig 3.17.

3.2.7 System architecture

This section presents in a concise structure the different elements that

work together. Through different schematics, we dig into the complexity

of the system. It also gives an idea of the engineering bricks needed

behind. First, we will show the overall system, then, we will take the

different actors and dissect them to sublevels of engineering. The first

diagram represented in Fig 3.18 shows how users are placed between

all the elements, they interact and receive feedback from the different

systems. The second diagram (Fig 3.19) goes in more details with the

architecture of the BCI system, it shows for instance the elements that

belong to OpenViBE and the ones that belong to HappyFeat software. It

also allows to see how HappyFeat modifies the parameters of OV. The

last diagram (Fig 3.20) presents the two other crucial elements of the
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Figure 3.17: Robot’s behaviour based on

the different orders sent from OpenViBE

and the eye tracker via the server that

does the synchronization.

Figure 3.18: Multimodal architecture:

General architecture presenting the dif-

ferent protagonists and the exchange of

information between them.

Figure 3.19: BCI system: Architecture

of the BCI system with the inner inter-

actions between the two main software

used (HappyFeat and OpenViBE)

Braccio platform, hence the robotic arm and the Eye tracker, each one

being composed of its own engineering bricks. The overall point of this

section is to show what does it mean at the engineering level to build

such an architecture and what should be kept in mind if we need to

modify elements of the protocol.
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Figure 3.20: Robotic and Eye tracker: Technical architectures.

13: This will later be described as the

dataset Batch 1
14: Later described as the dataset Batch 2

3.3 Experimental protocol

We want to investigate how the association of Eye tracker and motor

imagery BCI should play their distinct role in controlling the robot

to obtain good performance from a session to another. In our state of

the art, we presented different proof of concepts that have used the

combination of 2d gaze estimation by eye tracker and Motor Imagery

BCI for the control of a robotic arm. Most of them use a monitor as a

way to get the 2d gaze estimation as well as the display of the stimuli.

We want to stand out of those approaches. By providing interesting

new visual feedback integrated in the environment in order to create an

augmented reality feedback. The objective is to create a rich environment

to involve the subjects as much as possible. In our case we want to elicit

better differentiable brain patterns by providing a realistic or ecological
environment which supposedly modifies the implication of the subjects

in the experimentation.

In the next two sections, we introduce the experimental sequence as well

as the different dynamics that will be called strategies of control. It is to

note that certain small elements differ between the first version
13

of the

protocol and the final version
14

of it.

Automatic sequences of the robot

The next paragraph presents the different phases involving the robot

displacement. It is to note that the robot lifting the can, putting it back

and going back to the "standby" position are part of the automatic

sequence during the motor imagery trial.

Phases

Here, we are going to describe the different phases of a session. In terms

of vocabulary, a session is considered to be all recording once the EEG

cap is worn (it basically corresponds to a visit of a subject). A session

is composed of different phases themselves composed of different runs.

Runs are EEG acquisition composed of different trials where subjects

perform different cognitive task.
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Figure 3.21: Session: Phases of the pro-

tocol

15: This phase was not present in the

first version of the protocol (Batch 1)

16: To be more precise it is a positive

stimulus (the arm closes after a motor

imagery taks).

Figure 3.22: Strategy 1

Figure 3.23: Strategy 2

▶ The motor execution phase
15

is a phase centered on subjects. They

need to perform either closing of their right hand or remain in a

resting state. In this phase, there is 1 run of 10 hand closing trials

and 10 Rest trials each lasting 11 seconds (3 seconds of cue , 4

seconds of hand losing/rest task, 3 seconds of end of trials).

▶ The calibration phase is a no feedback
16

phase. The robot closes

its gripper every time there is a motor imagery task. In this phase,

there are 3 runs of 10 MI trials and 10 Rest trials each lasting 21.5

seconds (6.5 seconds of cue to choose the can, 4 seconds of MI/Rest

task, 11 seconds of end of trials where the robot goes to its original

position).The subjects have the control over the direction of the

robot’s movement thanks to gaze.

▶ The first control phase is a feedback phase based on the training of

the LDA on the calibration phase. The robot closes its gripper if

the classifier attributes the incoming sample as belonging to the

motor imagery class. In this control phase there are 3 runs of 10 MI

trials and 10 rest trials each lasting for 21.5 seconds(6.5 seconds of

cue to choose the can, 4 seconds of MI/Rest task, 11 seconds of end

of trials where the robot goes to its original position).

▶ The second control phase is a feedback phase based on the training

performed on the first control phase. The robot closes its gripper

based on the LDA classifier. In this control phase, there are 2 runs

of 10 MI trials and 10 rest trials each lasting for 21.5 seconds(6.5

seconds of cue to choose the can, 4 seconds of MI/Rest task, 11

seconds of end of trials where the robot goes to its original position).

Strategies

This is the heart of the protocol and the heart of all the reflection

established during the PhD. The different mental dynamics described

as strategies presented are the main investigation regarding the control

over the robotic arm. Their study is the attempt to answer when should

subjects perform the cognitive tasks in this multimodal framework.

▶ In strategy 1 (Fig 3.22), subjects select the can. They perform either

MI or resting state task based on the stimuli either a red dot for

motor imagery task and a blue dot for resting state. Then the robot

goes to the target. The robot closes (for MI) or not (for rest) its
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Figure 3.24: Strategy 3

hand, lifts the can and puts it down and comes back to an original

position.

▶ In strategy 3 (Fig 3.23), subjects select the can. They perform either

MI or resting state task based on the stimuli either a red dot for

motor imagery task and a blue dot for resting state meanwhile the

robot goes to the target. The robot closes (for MI) or not (for rest) its

hand, lifts the can and puts it down and comes back to an original

position.

▶ In strategy 3 (Fig 3.24), subjects select the can, the robot goes to

the target. They perform either MI or resting state task based on

the stimuli either a red dot for motor imagery task and a blue dot

for resting state. Then the robot closes (for MI) or not (for rest) its

hand, lifts the can and puts it down and comes back to an original

position.

3.3.1 Hypothesis

Based on the protocol, we formulate several hypothesis:

-[H 1] We should observe differences in terms of performance between

strategies.

-[H 2] We should observe differences from a neuro physiological per-

spective between strategies.

The first two are the principle hypotheses we need to investigate, they

are based on the fact that the robotic arm induces some embodiment

effect which results in improving the elicitation of motor imagery.

-[H 3] We should observe differences between phases of calibration and

control for each strategy.

The third hypothesis is linked to the sense of agency effect, subjects will

go through a non-feedback phase where they are not fully in control and

phases of full control. By changing the rules of the experimentation, we

change the brain activity.

-[H 4] We should observe a delay in the apparition of the ERD/ERS after

the stimulus presentation.

The fourth hypothesis is supported by the reaction time of subjects when

presented stimuli both in a general sense and in the apparition of the

ERD/ERS in the standard literature.

-[H 5] We should observe a strong ERD/ERS for all subjects in all

strategies.

The fifth hypothesis is based on our general approach to anchor subjects

into an ecological environment, providing them with an intuitive feedback

directly linked to their motor imagery task with an eye tracker to ensure

an initial level of agency useful to keep the subject engaged in the task.

-[H 6] We should find that strategies involving the robotic arm (hence

strategy 2 and 3) have a different behaviour than the one where the

robotic arm is used at the end.

The sixth hypothesis is linked to the first two but here the focus is put

on the fact that the robotic arm should help the subject in producing
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discriminant features. This means that the robot interaction with the user

should help in observing a decrease of power spectrum during motor

imagery states in 𝛼 and 𝛽 bands with regards to the resting state.

-[H 7] We should not observe an important training effect.

The seventh hypothesis relies on the fact that we randomize sessions

between subjects so they always receive a new strategy, more over, training

effects occur in longer periods.

-[H 8] We should see an improvement of the performance from Control 1

to Control 2 both online and offline.

The eighth hypothesis is linked to the fact that we train the algorithm

again to match features between Control 1 and 2 and these features should

more stable between control phases which means that the classifier should

perform better.

3.4 Material and methods

We present in the next section the different methods used for the analysis

of the EEG data as well as the different technicalities regarding the

hardware acquisition. To complete this section, a dictionary can be found

in Appendix that covers some methods and terms in more details.

3.4.1 EEG acquisition

EEG signals is acquired using a 64 electrode BrainAmp system, with TP9

and TP10 as Reference and Ground respectively. The sampling rate is set

to 500 Hz. Impedance level is set to 15 𝑘Ω with a tolerance of 10 𝑘Ω with

ActiCap Control software. The acquisition is done under OpenViBe 3.3.0

with BrainAmp drivers. Common average reference (CAR) is applied

to the data both in online and offline analysis except for connectivity

analysis.

3.4.2 Eye tracking acquisition

Gaze is recorded and used as a command with a Tobii Pro Glasses 3 set

to 50 Hz. Only the x-axis direction is used to choose between right and

left. Negative values are the indication to seize the left can and positive

values are the indication to seize the right can.

3.4.3 Signal Processing

Online signal processing

Online processing was performed with OpenViBE 3.3.0 (Inria software,

France) through a dedicated pipeline. Sixty-four electrodes which covered

the scalp and especially the sensori-motor cortex were used for online

process. The EEG were sampled at 500 Hz. On one hand, the power

spectrum estimated with the auto regressive method is computed using a
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[205]: Ramoser et al. (1997), ‘EEG-based

communication’

17: This concerns Batch 2. Batch 1 as ex-

plained later on receive a discrete feed-

back based on the average of choices over

3s of MI/Rest trials.

18: A non-parametric test used due to

the absence of hypotheses regarding the

data’s nature.

[206]: Pfurtscheller (2001), ‘Functional

brain imaging based on ERD/ERS’

[207]: Bullmore et al. (1999), ‘Global,

voxel, and cluster tests, by theory and

permutation, for a difference between

two groups of structural MR images of

the brain’

window of 250 ms and an overlap of 161 ms for a specific bin for a certain

electrode determined by the pre-analysis of the data and used for the

neurofeedback halo radius. The radius was changing smoothly its value

with a logarithmic iteration of the power estimation following Ramoser

work on the computation of the amplitude of the visual feedback[205] . On

another hand, the signal is buffered for 3 seconds to compute the average

power spectrum over the windows of power spectrum estimation
17

, the

result is sent to the online 2-class LDA classifier which then issues a

probability. The probability value is sent to the robotic arm to determine

if it closes or not its hand.

Offline signal processing

Muscular activity data contained the labeled 64 EEG signals with the

timestamps corresponding to muscle activity, resting state and cue.

Common average reference was applied to the data before computing

the power spectrum estimation with Burg auto-regressive method. The

window of analysis corresponded to the MI/rest task with an offset of 1

second determined as a reaction time before the true activation of either

Rest or MI. During this moment eye activity is very low as the subjects

are focused on the target during this period.

Pupil diameter analysis is performed by suppressing moments of blink

and interpolating data to limit loss of information and jump effect.

3.4.4 Statistical analysis

The next section presents the methods used in the journal paper to

characterize the different dynamics of the system.

Classifier Performance

We compare online sensitivity and accuracy using a Wilcoxon ranksum
18

test. We compare the average score for each subject between strategies.

We also compare scores between phases (Control 1 and 2) for each

strategies.

Power spectrum analysis

We perform an average across trials of the power spectrum of the motor

imagery and the resting state and compute the 𝐸𝑅𝐷 = (𝐴 − 𝑅)/𝑅 ∗ 100

based on Pfurtscheller et al[206](A: the motor imagery average power

spectrum, R: the resting state average power spectrum). We want to

assess two effects, first if the phases are different, second if the strategies

are different as well in terms of ERD for each electrode. To assess the

distribution of the ERD across the scalp at the group level, we perform

cluster based permutation test[207][208]. This method is used to assess

significance of clusters in neuro-imaging data. It identifies brain regions

exhibiting significant differences between conditions. The test calculates a

statistical test (student t-test for instance) for each electrode in the case of

EEG. These electrodes are then thresholded by their level of significance
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[209]: Westner et al. (2022), ‘A unified

view on beamformers for M/EEG source

reconstruction’

creating binary maps.Adjacent electrodes that exceed the threshold are

regrouped in clusters that sum the statistics of every element. Then

the group labels are shuffled randomly to recompute all the previous

steps. The distribution of tests is used as a threshold to assess the cluster

significance. The clusters that remain under significant threshold can be

considered as meaningful and interpretable.

We define a threshold computed using percent point function at 𝛼 = 0.01

for 𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 15, we follow the documentation for MNE function

permutation cluster 1samp test. The adjacency matrix is set to 40 mm for

the electrodes considered as adjacent. We establish profiles for the 3

strategies in the three phases of the session.

Time frequency analysis

The ERD is computed based on the power spectrum computed for

parameters 𝑛𝑤𝑖𝑛𝑑𝑜𝑤𝑠 = 0.25𝑚𝑠, 𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 0.1𝑚𝑠 and 𝑛 𝑓 𝑓 𝑡 = 5000 to

ensure enough samples for analysis. We search how the spectro temporal

distribution is different between strategies for each electrode. To do

so, we average over trials for each of the subjects the difference of MI

and resting state time frequency maps. We then perform cluster based

permutation test on the 𝛼 band (8-12 Hz) and on the 𝛽 (13-35 Hz) for the

4 s of cognitive task. The cluster permutation test considers adjacency

in time and frequency as nearest neighbours in the 2 dimensions. We

use a threshold computed using percent point function at 𝛼 = 0.01 for

𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 15, we follow documentation for MNE function permutation
cluster 1samp test. We only keep clusters below 𝑝 < 0.01.

Functional Connectivity analysis

We perform the spectral coherence using welch power spectrum estima-

tion for each subjects for each trial in all 250 frequency bins. We then

average over trials and between frequency bins of interests (13-25Hz) for

the 4 s of cognitive task. We then compute the cluster based permutation

test at the group level at 𝛼 = 0.05 for 𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 15 and we keep

clusters below 𝑝 < 0.05.

Source Space analysis

To perform the source space analysis, we follow those steps : first, we

perform the cross spectral density (CSD) using morlet spectral estimator

in the 𝛽 band (13-25 Hz) to get an average CSD over trials of calibration,

Control 1 and Control 2 for each strategy and for motor imagery and

resting state trials. We then compute for each subject the
𝑀𝐼−𝑅𝑒𝑠𝑡

𝑅𝑒𝑠𝑡 CSD.

We compute the forward model based on the free surfer average MRI scan

(average scan computed over 40 healthy subjects). We compute Dynamic

Imaging of Coherent Sources (DICS) beamformer weights over the CSD

to obtain vertices in the source space. We then compute the cluster based

permutation test on 15 observations/subjects’ vertices in each phase

for each strategy at 𝛼 = 0.01 and we keep clusters below 𝑝 < 0.05. A

thorough review on the use of beamformer has been presented by Westner

et al.[209]. In this review, Westner comes back to the origin of the spatial
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19: This is the case of beamformer spatial

filter.

filter, its different variant and its application to neuroscience first through

MEG and later on through EEG. This was performed for both batch of

analysis, in an effort to stay close to the steps in the sensor space. We

also perform source space reconstruction using weight minimum norm

estimate and compute in the source space directly the power spectrum

estimation using multitaper with an overlap of 500ms. This method was

prioritized for the main contribution of the thesis as it does not apply a

spatial filter that tends to search for focused activity
19

.

Pupil diameter analysis

The pupil diameter for each eye is extracted and the derivative is com-

puted though discrete difference for each subject. We evaluate the sta-

tistical differences between strategies using a wilcoxon test on subject’s

observations.

3.5 Conclusion

This chapter introduced the many aspects present in the PhD thesis

from the scientific interrogations to the pure engineering development.

The chapter is meant to answer the possible questions of the reader

regarding the different choices that have been made and also to explain

why certain technological solutions were not used for the final version

of the experimental protocol. The last part of the chapter serves an

introductory role as it presents the different aspects of the experimental

protocol centered on healthy subjects, it also presents the different

hypotheses regarding what we expect to observe. Certain of them are

already validated in the literature but we should observe them once

again and others are specific to the protocol and are original to the field

to our knowledge. Finally, the chapter presented the different methods of

analysis that would be used which includes the different statistical tests

and ways to process the EEG data.



From theory to experience, first
successes, first failures

Errare humanum est, sed perseverare diabolicum





This pleasant sentence might be a fraud

as the original source was not found.

Another good example of how internet

can be deceiptive. So, to complete this, it

seems that Alexander Fleming said it as

well when finding the penicillin as told

in Introduction to the History of Mycology
by G. C. Ainsworth. Words, words, words...

Forging the protocol through
experience - General observations
on subjects and Batch 1 first study 4

The most exciting to hear in science, the one that
heralds new discoveries is not "Eureka" but
"That’s funny".

Attributed to I. Asimov

Key Results

▶ Characterization of subjects of the different batches, assessing

the difficulty of producing the different cognitive task tanks to

the dispersion of data in trials.

▶ Offline performance evaluation of the first batch of subjects.

▶ Neuro-physiological analysis of first batch through ERD/ERS

and node strength based on spectral coherence functional con-

nectivity evaluated with cluster based permutation test. Es-

tablishing difference of patterns at the group level between

strategies and highlighting the consistency of one timing/strat-

egy over the rest.

▶ Discussion on batch 1. Evaluating the limitation of the dataset

which receives a non rewarding feedback, argumentation on

the use of the method as a sham protocol.

In this chapter, we are going to present the different results from the

collected datasets on healthy right handed subjects. The protocol was

approved by Inria’s national ethical committee as part of the BCIPRO pro-

tocol ( authorization number 2021-35 - ref SICOERLE n°179). Experiments

took place in the extremely controlled environment of the EEG/MEG

center within the neuroimaging core facility of the Paris Brain Institute.

To give an idea of the time spent and the amount of work of the data

collection. From March to July 2022 we had a first group of 11 subjects

which came for 3 sessions. Based on the knowledge we built, a second

group of 15 subjects came for 3 sessions from October 2022 to April

2023. In total and counting the different pilot subjects that shaped the

experimentation, I recorded 96 experiences. The dataset is aimed to be

stored on Mother of all BCI Benchmark (MOABB)[210] to share with the

community.

We will first evoke the general observations on subjects’ performances,

then present results from the first batch of subjects and lessons we learned

from them. In a second time (in chapter 5), we will present results of the

second batch which received the final version of the protocol and ended

up being used for the main publication of the thesis.
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[180]: Gentili et al. (2015), ‘Laterality ef-

fects in motor learning by mental practice

in right-handers’

1: We later observed that the activation

for right handed of their right hand is not

solely localized in the left hemisphere.

2: The main recruitment came from in-

side of the Paris Brain Institute.

3: This is not part of the study of course

but it is always relevant to mention as

the inability to control a BCI is a complex

recurrent theme in the field. More over

the physical activity ranged from sport,

dance and acting. The main idea behind

is probably the sense of proprioception

which was developed for their use.

4.1 General observations regarding the dataset

4.1.1 Subject characterization

We had few criteria of selection for subjects, they needed to be right

handed, over 18 and healthy, moreover the batches had to be gender

balanced. We only kept right handed subjects to standardize the protocol.

Indeed, it is necessary to ask the same task for all subjects which in our

case would be the motor imagery of the right hand closing. More over

the robot was a right arm. We wanted to avoid a possible bias in the

activation patterns of the sensorimotor cortex[180] (the handedness tends

to activate both hemisphere with the "weak" hand
1
). Our batches were

quite homogeneous in age, the first ranged from 25 to 37, and the second

from 22 to 35. A possible critic we can formulate is that the method of

recruitment made it difficult to cover different social background
2
, but

this also allows to have homogeneous batches. As expected from the

literature, the subjects who perform the best (where the motor imagery

state was highly different from the resting state) were the ones who did a

physical activity
3

or did it to a high level before.

4.1.2 Global Analysis

Here we are going to introduce results across batches to describe subjects

responses to the experimentation. We are going to assess their ability to

perform the two cognitive task and in the process to see if they have a

differentiable brain patterns. To do so, it is necessary to evaluate for each

subject in each phase if at some point we observe differences between the

power spectrum of the MI and resting state in the sensorimotor cortex.

Also this will be an assessment of a possible training effect. Indeed in

combination with performance metrics (accuracy or sensitivity), we will

be able to observe possible changes which are closer to the real evolution

of subjects in the task. It is to say that, based on the knowledge acquired

during the experimental campaign, the task which appeared to be the

most difficult is the resting state. The subjects judged the task hard to

perform, complex to maintain and difficult to replicate from a session to

the next. We will introduce on this note an idea regarding subjects ability

to perform the cognitive tasks we call the Eureka effect we observed with

subjects that did not perform well at first. This can be seen as the result

of training but since the effect sometimes does not last in time, it might

go beyond training and it lights another intake on the illiteracy.

Qualitative analysis

In the next section, we will try to qualitatively characterize the subjects

based on their ability to change their power spectral amplitude from

resting state to motor imagery state. We will establish a dichotomy

between ones that are skilled in the task compared to the ones that

are less skilled. Having a high difference between power spectrum of

resting state and MI for a specific electrode at a given frequency bin

is considered to be a discriminant feature useful for the classification

algorithm (LDA).
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4: To compute the 𝑅2
, we base ourselves

on the BCI2000 software implementa-

tion.

The prodigies - Subjects gifted

Those subjects distinguish themselves by their ability to create discrim-

inant features even during the calibration phase, we will use the term

prodigies to name them. This ability is observable from the 𝑅2
test

4
but

also from the classification accuracy. We can observe for a specific subject

what the ability looks like in Fig 4.1.

Figure 4.1: Results of a "prodigy" : left, 𝑅2
map corresponding to the difference between motor imagery and resting state over trial

of a specific phase (here the calibration). Right: The average powerspectrum over the phase for both condition (Top), The associate

topography to the 𝑅2
map to indicate the localization of the desynchronization - the sensori motor cortex (Bottom)

We observed that these subjects change voluntarily (or maybe involun-

tarily) their brain patterns passing from the calibration to the control

phase. The overall consequence is a more intense desynchronization and

this is shown by the 𝑅2
coefficients increasing in more sensori motor

areas and in more spectral frequencies as shown in Fig 4.2. Due to their

impressive ability to produce differentiable brain patterns in which ever

configuration right away, those subjects make it more complex to identify

a more relevant strategy which means that if differences there are, subtle

they will be. In terms of number, we found three subjects per dataset that

could be referred as prodigious. They represent 37% of the subjects that

were already presenting relevant features in batch 1 and 20% of them in

batch 2.
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Figure 4.2: Evolution during session: Evolution of the 𝑅2
map, computed on the power spectrum difference between motor imagery

and resting state over the trials of each phase, from the calibration to the driving phase for a "prodigy" subject. Here, what is noticeable is

the spread of high statistical differences between resting state en motor imagery PSD in the sensory motor area in the low 𝛽 band from

the calibration to the control phase. This spread out of the intensity can be the mark of the engagement of the subject but also his or

ability to greatly perform the task.
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5: This is also supported by the litera-

ture[103]

6: A state where they have focus, trust

themselves and follow the flow.

[211]: Becker et al. (2022), ‘BCI Illiteracy’

The Sysyphus - Subjects who search

Beside the prodigies, most of subjects perform relatively well from the

start but still have room for improvement as we can observe for a specific

subject in Fig 4.3, and they either improve during the same session or

later on in the next ones.

Those subjects are still searching for an optimal mental strategy, in that

sense, they are learning to create the differentiable patterns. We will

consider that their efforts is their trait and name them Sysyphus. In both

cases (not able at first or relatively able) we saw some improvements but

how the improvement occurs is not straight forward. It is clear that the

feedback apparition presents a clear advantage (Fig 4.4).
5

Figure 4.3: Results of a "sysyphus" : left, 𝑅2
map corresponding to the difference between motor imagery and resting state over trial

of a specific phase (here the calibration). Right: The average powerspectrum over the phase for both condition (Top), The associate

topography to the 𝑅2
map to indicate the localization of the desynchronization - the sensori motor cortex (Bottom)

But it is unclear if it is the sessions that present an effect on the apparition

of the differentiable patterns as it was not shown statistically that the

performance increased from one session to the next. It is however clear

that getting familiar with the device and its mechanisms is crucial.

The Eureka effect introduced concerns all those Sysyphus. During one

of the phases of one of the sessions, they finally "get it" and patterns

of desynchronization from resting to motor imagery (resulting in the

decrease of power spectrum) appear. The principle hypothesis that would

remain to be proven is that it is the let go6
that allows them to get to an

exploitable resting state which is then differentiable from their active

state. In both batches, we found that approximately 30% of subjects were

not able to perform the task right away and control the BCI[211]. This

follows the general trend present in the literature. Even though they are

unable at first to generate the power spectrum difference between the MI
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Figure 4.4: Evolution during session: Evolution of the 𝑅2
map, computed on the power spectrum difference between motor imagery

and resting state over the trials of each phase, from the calibration to the driving phase for a "sysyphus" subject. Here what is noticeable

compared to the "prodigy" behaviour is that the highest statistical difference is not in the sensory motor area and the spread out in the 𝛼
band across all the electrodes is a mark of the inability to perform the task (yet).

and resting state, they manage after some time to do it as well, therefore

they are kept in the study.

Variability between subjects

It is important to note that the differences between "prodigies" and

"Sysyphus" are a mark of subjects’ inter-variability. Indeed, subjects

are different in their ability to perform the task but also in their the

way they do it (in the sensori motor cortex and in the frequency bands

in which the desynchronization occurs). It is to not that for the two

batches, all subjects were able to have a significant desynchronization

in the control 2 phase even though certain had a stronger desynchro-

nization. this means that group level analysis can be performed if we

normalize the difference between MI and rest PSD for all subjects to

compensate for the possible effect of specific subjects’ influence.

Motor imagery or resting state ?

As mentioned before, it appears rather clear that the motor imagery is

performed better than the resting state, this is shown by the variability

in the features that are exploited for the classification. This is described

in Fig 4.5 which shows how the features of the two classes for a specific

electrode at a specific frequency bin are distributed in the calibration
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Figure 4.5: Variability of resting state and MI: Distribution of the calibration trials’ power spectrum for the specific CP3 electrode at

13Hz, Red for motor imagery , Blue for resting state, points on the line corresponds to the new features of trials of control 1. Each point

represent a trial of the control phase whereas the histogram represents the trials of the calibration phase.

7: By presenting higher variability in its

features, resting state seems to remain

quite exploratory, the mark of the mind

wandering during the trial.

and how the new points corresponding to the new phase belong to those

distributions.

The motor imagery features are often less variable from a trial to the

next than the resting state ones Fig 4.6 shows the distribution of the

power spectrum amplitude in the two cognitive states for the different

features used for the classification algorithm synthesized by the Principal

Component Analysis (PCA) to limit to the 3 most relevant components.
7
.

This is observable for all subjects (especially for the prodigies). It is also

how we can observe that subjects start performing the task well as the

MI features become less variable.
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Figure 4.6: Comparing variability of prodigy and sysyphus: Features by Principal Component Analysis, Red for motor imagery , Blue

for resting state, left "sysyphus" - distribution of the control 2, right "prodigy" - distribution of the calibration. First, we select using the

𝑅2
map the features (specific electrodes at a specific frequencies) that present the highest statistical differences. Second, we use over the

trials of a block (calibration or control 1) a PCA on the feature matrix consisting of the observations for the different features selected to

retrieve only the principal 3 eigenvectors (based on the 3 highest eigenvalues), third we plot the 3 components in the different trials for

the two conditions. The purpose of the plot is to have a synthetic representation of the features to see their distribution.

4.2 Analysis of the first batch

"Try Again. Fail Again. Fail Better."

Samuel Beckett, Wostward Ho, 1983

Before presenting results of the first batch, it is necessary to establish

something clear. The feedback given to subjects was based on a compu-

tation sensitive to more randomness of the classification. The feedback

was computed based on the results of the classification as always but,

in details, the classifier issued a distance to the hyperplane for each

power spectrum estimate during the 3 seconds of feedback. The average

distance over the hyperplane was the indicator of the closing or not of

the gripper. This solution is highly sensitive to the variation of power

during the trial and resembled more to a continuous feedback adapted

as a discrete feedback. Therefore, the performance results online were

extremely low comparatively to the subjects’ potential. This forced us

to be cautious in conclusions made from the performances standpoint.

More over, the offline analysis leads us to think that something was odd

with the feedback given. On this note, the offline analysis was published

in a conference paper and focused on the comparison between two

of the three strategies based on the subjects we had at the time. This

analysis was completed by an additional one based on a new method of

classification - Riemannian geometry. It is safe to say that the calibration

part of the dataset can be analysed thoroughly as it presents patterns

prior to any feedback. However, the results obtained on the two phases

of control where a feedback was displayed (supposedly a full control

over the robotic arm) should be carefully put into perspective and we

should not formulate strong conclusions based on them.
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Figure 4.7: Online performance: Online

sensitivity corresponding to the number

of time the can is seized by the robot for

each strategy in the two phases of control

(control 1 - Left, control 2 - Right).

8: 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝐹𝑁+𝑇𝑃

9: It is important to say that the accuracy

will be later introduced to be sure that

our approach is not giving high sensitiv-

ity but low accuracy which is simply a

biased classifier.

Using the blocks

There are 3 blocks in a session used in the experimental protocol. The

first block Calibration where subjects train to do MI and Rest but are

not in full control of the arm (just controlling the position with their

gaze). The second block Control 1 where subjects perform MI and

resting state and the results of their MI trials close or not the gripper

on the can selected. To do so, a LDA classifier has been trained on the

calibration block. The third block Control 2 where subjects perform

MI and resting state and the results of their MI trials close or not the

gripper on the can selected. To do so, a LDA classifier has been trained

on the Control 1 block. All training of the LDA were done by checking

on the statistical differences of PSD for the different electrodes in the

different frequency bins.

4.2.1 Performance Evaluation

Online Performance

We evaluated the number of time the robot seizes an object in the motor

imagery state, this means that we evaluated the True Positive Rate (TPR)

but through sensitivity
8
, the accuracy was not at first studied because we

did not have any feedback on the Resting state, more over we inspired

ourselves from Pereira’s work[212] focusing on TPR on the results
9
. As

we observed in the Fig 4.7, the number of time the robot closes its gripper

out of ten trials of MI was quite low. But actually, since the result of the

classification was not what was closing the gripper but the average of

choices over a trial, it is not per say a true TPR from a machine learning

standpoint. And in addition, we could not observe any differences

between strategies. This was quite strange when we compared those

scores to the neurophysiological responses of the subjects (highlighted by

the 𝑅2
maps). More over, training the data a second time did not have a

significant effect. And finally within phases, the score was varying often

with no clear direction. Those low results were in opposition with what

we could find offline.
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Figure 4.8: Offline performance evaluation: Offline accuracy computed with SVM with RBF kernel using the most relevant subjects’

features for each strategy in the two phases of control. Left : Algorithm trained on Calibration and tested on control 1, Right : Algorithm

trained on control 1 and tested on control 2.

Offline Performance

Parts of the results were published in IEEE MetroXRAINE confer-

ence.

Exploring strategies for multimodal BCIs in an enriched environ-
ment

T. Venot;A. Desbois;M.C Corsi;L. Hugueville;L. Saint-Bauzel,F. De

Vico Fallani, 2022 IEEE International Conference on Metrology for Ex-

tended Reality, Artificial Intelligence and Neural Engineering (MetroX-

RAINE)

Results

The first paper only dealt with 7 subjects, did not take into account what

will be later the strategy 2 (with the robot moving meanwhile subjects

perform cognitive tasks) and focused on the training within datasets

of calibration and control 1. The idea of the paper was to introduce the

framework and to justify the relevance of studying the timing in the robot

control. To observe if the trend disappeared with a higher number of

subjects, we computed the offline accuracy using a SVM with radial basis

function on feature selected by hand based on the different 𝑅2
maps

throughout the sessions to evaluate if we observed the same behaviour

when training on calibration and then on control 1 (Fig 4.8).

We found again that strategy 3 (motor imagery after the robot reached

the can to seize) is higher than the two others and that in all training

configuration but not at significant level anymore. To complete the

analysis, we also compared between phases how the accuracy evolves

(Fig 4.9). Even if we could observe relative improvement between phases

of control and strategy 3 remaining the highest one in both phases, it was

not statistically different between control 1 and 2.
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Figure 4.9: Evolution of performance for the different strategies: Evolution from control 1 to control 2 offline accuracy computed with

SVM with RBF kernel using the most relevant subjects’ features for each strategy

[213]: Barachant et al. (2012), ‘Multiclass

Brain–Computer Interface Classification

by Riemannian Geometry’

Following the work we did before, we also assessed the evolution of

accuracy from one session to the next (Fig 4.10). We did not find significant

differences between sessions Tab4.1 and no trends are observable that

would indicate an improvement between sessions.

Table 4.1: Analysis of Variance (ANOVA) Table - Batch receiving random feedback

Source Sum of Squares Degrees of Freedom F-Statistic p-value

C(Group) 0.013622 2.0 0.414009 0.662869

C(Session) 0.122551 1.0 7.449113 0.008316

C(Group):C(Session) 0.007057 2.0 0.214490 0.807569

Residual 0.987102 60.0 - -

We later on completed this analysis with an evaluation of the accuracy for

each strategy using a state of the art method, a linear regression on tangent

space features from covariance matrices described as a Riemannian

manifold[213] (Fig 4.11). This presents the advantage of not selecting

features by hand which standardizes the evaluation. This second analysis

also helped demonstrate that something was definitely odd with online

results in comparison to the high accuracy we could obtain from our

subjects indicating that they were indeed performing the task well at

some point.

Before going further, it is necessary to indicate that it was at this point

that some changes were made to the protocol. These changes will be

elaborated in section 4.3.5. The next part we are going to cover is the

neurophysiological analysis that was conducted on batch 1. This analysis

takes a new look at the dataset with fresh eyes and it will greatly serve the
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Figure 4.10: Offline accuracy computed with SVM with RBF kernel using the most relevant subjects’ features for each sessions in the two

phases of control. Left : Algorithm trained on Calibration and tested on Drive 1, Right : Algorithm trained on Drive 1 and tested on Drive

2.

10: 𝐸𝑅𝐷/𝐸𝑅𝑆 = 𝑀𝐼−𝑅𝑒𝑠𝑡
𝑅𝑒𝑠𝑡

[214]: Corsi et al. (2020), ‘Functional dis-

connection of associative cortical areas

predicts performance during BCI train-

ing’

11: The difference between motor im-

agery and resting state should be nega-

tive due to the neurophysiological desyn-

chronization.

global analysis with the objective of answering the different hypotheses

formulated.

4.2.2 NeuroPhysiological Analysis - Investigating brain
patterns to characterize the strategies

ERD/ERS spatial distribution reveals consistency of activation

To assess the brain responses of our subjects, we use the relative difference

of powerspectrum between the motor imagery state and the resting state

10
for each electrode on specific frequency bands. We mainly focus on the

𝛽 band where we could obtain the most relevant information. Actually, we

could observe differences at statistical level only in this specific band. By

performing the average ERD across subjects we observed some different

spatial behaviour between strategies and between phases. This lead to

the idea that we needed a tool to assess how the spatial distribution is

statistically different. Based on Corsi’s work[214] and an extent research

on the literature[207, 208, 215], we decided to use the cluster based

permutation test.

Strategies presented different distributions of power spectrum desyn-

chronization. At the group level, during the calibration (Fig 4.12), we

only observe significant cluster for strategy 3. During the control 1 phase

(Fig 4.13), we observe that the difference of power spectrum is statistically

different for all strategies but strategy 3 remains the strongest both in

terms of intensity (the highest negative T values
11

) and in cluster size, we

should note that the cluster size is not a criterion to describe if a strategy

is better than another. And finally, during control 2 (Fig 4.14), it appears

that strategy 2 presents a broader spatial distribution but strategy 3



4.2 Analysis of the first batch 81

Figure 4.11: Performance score with Riemannian geometry: Offline accuracy computed with Linear Regression classifier on Tangent

space of the covariances matrices for each strategy in the two phases of control. Left : Algorithm trained on Calibration and tested on

control 1, Right : Algorithm trained on control 1 and tested on control 2.

Figure 4.12: ERD/ERS spatial distribution in calibration:Top : Cluster permutation based permutation test perform on power spectrum

𝑀𝐼−𝑅𝑒𝑠𝑡
𝑅𝑒𝑠𝑡

between subjects for the band (13-25Hz) in first phase with no control over the robot (Calibration), threshold of display set to

𝑝 < 0.05. Down : Evolution of the cluster size (in decimeter) in function of the negative ERD threshold. To do so, we average across

subjects the ERD for each electrodes, we then evaluate the diameter of the cluster formed by the sensori motor cortex area. We increase

the negative ERD threshold to see how the cluster diminishes, this way we have an insight on the relevant electrodes at the group level.

12: The end result of having a variability

in the feedback response with the closing

of the gripper.

remains the most intense (the highest negative t-values). Even though in

phases of control 1 and control 2, subjects did not receive a true reward

for their task (based on what we have established before) we still can

draw some interesting points. First, strategy 3 is consistent throughout

all phases even with a flaw in the feedback. Second, there is a reinforcing

effect through phases for strategy 1. Third, having the robot involved

in the interaction tends to activate a broader range of electrodes in the

driving phases even when subjects do not have full sense of agency
12

.
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Figure 4.13: ERD/ERS spatial distribution in control 1:Top : Cluster permutation based permutation test perform on power spectrum

𝑀𝐼−𝑅𝑒𝑠𝑡
𝑅𝑒𝑠𝑡

between subjects for the band (13-25Hz) in first phase of pseudo control over the robot (Control 1), threshold of display set to

𝑝 < 0.05. Down,left Evolution of the cluster size (in decimeter) in function of the negative ERD threshold. To do so, we average across

subjects the ERD for each electrodes, we then evaluate the diameter of the cluster formed by the sensori motor cortex area. We increase

the negative ERD threshold to see how the cluster diminishes, this way we have an insight on the relevant electrodes at the group level.

Down, right, Number of electrodes in each cluster for each strategy.

Figure 4.14: ERD/ERS spatial distribution in control 2:Top : Cluster permutation based permutation test perform on power spectrum

𝑀𝐼−𝑅𝑒𝑠𝑡
𝑅𝑒𝑠𝑡

between subjects for the band (13-25Hz) in second phase of pseudo control over the robot (Control 2), threshold of display set to

𝑝 < 0.05. Down,left Evolution of the cluster size (in decimeter) in function of the negative ERD threshold. To do so, we average across

subjects the ERD for each electrodes, we then evaluate the diameter of the cluster formed by the sensori motor cortex area. We increase

the negative ERD threshold to see how the cluster diminishes, this way we have an insight on the relevant electrodes at the group level.

Down, right, Number of electrodes in each cluster for each strategy.
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4.2.3 Studying subjects separately suggests the need for
congruent feedback

Since we observe differences of patterns at the group level between

strategies, it might be interesting to see at the subject level how those

differences characterize themselves. To do so, we estimate the power spec-

trum for each bin for each electrode and compute the difference
𝑀𝐼−𝑅𝑒𝑠𝑡

𝑅𝑒𝑠𝑡 ,

we only keep the relevant bins (7-35 Hz) to form the 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒𝑠𝑥𝑏𝑖𝑛𝑠

matrix. We do this for the three phases (calibration, control 1, control 2).

Then, we compute different matrix distances (Frobenius distance, spectral

form and mahalanobis distance) between the phases for each subject.

Even though the distances appear to be shorter in some configurations

(Fig 4.15), it is difficult to establish a trend. This absence of trend might

be an indicator of subjects exploring "mental strategies" in all phases

because of the absence of congruent feedback.

Figure 4.15: Subject’s level analysis comparing phases: Comparison for each strategy of the distances in the different configurations.

Each strategy respectively : Left - distances between calibration and control 1 of the matrix of
𝑀𝐼−𝑅𝑒𝑠𝑡

𝑅𝑒𝑠𝑡
power spectrum for 64 electrodes

on the frequency bins ranging from 7 to 35 Hz, Center - distances between calibration and control 2 of the matrix of
𝑀𝐼−𝑅𝑒𝑠𝑡

𝑅𝑒𝑠𝑡
power

spectrum for 64 electrodes on the frequency bins ranging from 7 to 35 Hz, Right - distances between calibration and control 1 of the

matrix of
𝑀𝐼−𝑅𝑒𝑠𝑡

𝑅𝑒𝑠𝑡
power spectrum for 64 electrodes on the frequency bins ranging from 7 to 35 Hz. Green - Strategy 1, Red - Strategy

2,Blue - Strategy 3, from dark to light colour : Frobenius, Spectral form, Mahalanobis distance.

Time Frequency Analysis allows to reinforce the idea of consistency of
one specific strategy

In order to refine the analysis, we need to evaluate how the desynchro-

nization occurs within trials. For all subjects, there is the same amount of
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time to perform the motor imagery (and resting state) but, since some

robotic movements occur prior or during the cognitive task, we can

interrogate how it affects subjects. To do so, we compute the power

spectrum for a high number of windows and with a frequency resolution

increased to get a smoother variation of the power spectrum over time.

Based on Brinkman’s work[216], we compute cluster permutation test

on time frequency maps across subjects to assess statistically the time

period in which the desynchronization occurs. From that, we compute for

each electrode the sum of the elements inside those significant clusters.

We then plot on a topography map what electrodes present the highest

cluster size and importance. By doing so, we obtain an information both

spatial, spectral (since we observe a cluster on time frequency maps) and

temporal as presented in Fig 4.16. As mentioned before, we mainly focus

on the calibration part in the batch 1 as it is unbiased in opposition to the

rest of the session, but for the sake of clarity and because we could end

up finding relevant information, we also evaluate control 1 and 2.

Figure 4.16: Spectro temporal distribution: Cluster size found in the time frequency map for each electrode for each strategy in

Calibration, control 1 and control 2 phase; cluster based permutation evaluated at a threshold determined by quantile function evaluated

for 𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 11 and 𝑝 < 0.05 , clusters kept at 𝑝 < 0.05.

In the calibration phase, it appears rather clear that strategy 3 presents a
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13:

𝐶𝑜ℎ(𝑤𝑘 )𝑖 𝑗 =
|𝑃𝑖 𝑗(𝑤𝑘 )|2

𝑃𝑖𝑖(𝑤𝑘 ) · 𝑃𝑗 𝑗(𝑤𝑘 )
(4.1)

14:

𝑠𝑖 =
∑
𝑗

𝐴𝑖 𝑗 (4.2)

where A is the functional connectivity

matrix.

[217]: Cattai et al. (2021), ‘Phase/Ampli-

tude Synchronization of Brain Signals

During Motor Imagery BCI Tasks’

higher activity which is more spatially distributed and more spread out

in the time frequency domain. We note that strategy 3’s profile remains

from one phase to the next whereas the two other strategies do not show

a clear improvement especially for strategy 2 in batch 1. This results

come to support the claim already established in the ERD/ERS part

that strategy 3 is consistent through out the session despite the lack

of agency. This tends also to support why we observe a trend in our

offline analysis over performance between strategy 1 and 3. Indeed, the

desynchronization being our classification basis, it does not come in

opposition of the previous result.

4.2.4 Functional connectivity analysis - Brain networks
reveal other differences between strategies

In the previous sections we have assessed the information contained by

each electrode separately. Here, we are going to explore the interaction

between electrodes thanks to functional connectivity estimated with

spectral coherence. Spectral coherence measure is a good transition from

the ERD/ERS traditional analysis to the brain networks analysis because

it estimates the correlation of power spectral across electrodes
13

. We

want to assess which are the most connected electrodes. To do so, we

rely the node strength of the complex network field.
14

Following Cattai’s

work[217], we establish for each subject for each phase the electrode list

and their associated node strength in the motor imagery and the resting

state. The associated signature to motor imagery is an increase of the

node strength from a resting state to a motor imagery state in the sensori

motor cortex. We use the cluster permutation test on the 15 subjects to

assess if some statistical information remains at the group level using

the same parameters of clusters as for the ERD/ERS analysis. In the

calibration phase (which is the main source of our analysis), we find

that all three strategies present an increase in the node strength from

resting to motor imagery. In all phases, strategy 3 presents the highest t

values in the sensori motor area even though the other strategies present

significant activities.

4.2.5 Pushing the results to the source space to know if
strategies involve different brain regions

Another approach to the data is to evaluate how brain regions are

activated in the different phases and in the different strategies. Since

we do not have the MRI scan of subjects, the level of precision we can

obtain by projecting on an average MRI scan is limited, this has been

highlighted by NeugeBauer et al. on a specific study on the estimation of

Epileptogenic zones of the brain using the method[218]. But, it remains

relevant to see if some specific regions present different degrees of activity

depending on the strategy. To do so, we compute a forward model on

free surfer average scan (over 40 subjects), we estimate cross spectral

density over the 𝛽 band for each condition over trials of each phase and

perform
𝑀𝐼−𝑅𝐸𝑆𝑇

𝑅𝐸𝑆𝑇 . We finally compute the inverse model using dynamic

imaging of coherent sources (DICS) beamformer for each subject. We

then perform the cluster based permutation test at the group level. In Fig
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Figure 4.17: Brain networks in the different phases for the different strategies:Cluster permutation based permutation test performed

on node strength of Functional connectivity
𝑀𝐼−𝑅𝑒𝑠𝑡

𝑅𝑒𝑠𝑡
between subjects for the band (13-25Hz) in the three phases of Experimentation,

Cluster evaluated at 𝑝 < 0.05.

4.18 are presented the significant clusters at 𝑝 < 0.05 for each phase and

strategy.

Figure 4.18: Source space estimation: Cluster found in the vertices estimated using DICS beamformer over cross spectral density in the 𝛽
band between the states of motor imagery and resting state for each strategy in Calibration, control 1 and control 2 phase; cluster based

permutation evaluated at a threshold determined by quantile function evaluated for 𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 15 and 𝑝 < 0.01 , clusters kept at

𝑝 < 0.05

The main observation we can formulate is that strategies and phases

produce various profile. During calibration, it seems that only strategy 1
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Figure 4.19: In all phases of the experimentation for all strategies: Cluster based permutation test performed in the source space power

spectrum
𝑀𝐼−𝑅𝑒𝑠𝑡

𝑅𝑒𝑠𝑡
across subjects for the band (13-25Hz) in second phase of robot control with feedback (Control 2). Source space

dipoles estimated using weight minimum norm (wMNE). Significant clusters at 𝑝 < 0.05.

presents an activity in the sensori motor area but this becomes the case

for all strategies in control 1. Strategy 2 and 3 seems to activate premotor

cortex area in control 1 and control 2. We might consider here the fact that

the number of subjects limits the statistical power allowing to highlight

specific regions. We can however note that the profile of strategy 1 and 3

appears to be similar to their profiles in the time frequency analysis.

Beamformer technique is however used to estimate a focal zone of

activation, which might show limitations in its interpretation, especially

when we compare it to what we obtain in terms of distribution in the

sensor space. So, it is necessary to use an additional method in the source

space. Using wMNE, we observe more relevant information, strategy 3 is

active in both phases of control. Nevertheless, strategy 1 is the only one

active for the calibration 1. If we come back to the time frequency analysis,

strategy 1 in the calibration was extremely localized, at the opposite

strategy 3 was quite spread out and less intense. However in the phases

of control, the intensity of the activity is almost exclusively present in

strategy 3 which matches with what we observe in the source space. It

brings a new brick of analysis pledging for this specific strategy.

4.2.6 Questionnaire Evaluation - Is agency too biased by
gaze control ?

We wanted to assess the level of agency felt by users in the experimenta-

tion, we had previously a translation of a Van Acken questionnaire[173]

that tracked agency in BCI protocol. We ask participants how they felt

regarding the experience and their level of control over the arm. The

results (Fig 4.20) we obtained did not establish a clear difference between
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Figure 4.20: Agency perceived:Score of

the sense of agency questionnaire estab-

lished for each strategy at the end of each

session.

15: On this note, subjects reported that

they had difficulty answering certain

questions and that they did not perceive

the questionnaire as relevant.

strategies. On this note, we can formulate three hypothesis. The first one

is that the way we design the experience in batch 1 with the downgraded

feedback did not allow to assess clearly if a strategy was better perceived

than the others even though, since the three strategies were based on

the same calculation for the feedback, this should be limited. Moreover,

the questionnaire results were high indicating that subjects kept feeling

being in control despite the flawed feedback. The second hypothesis

is that the questionnaire is not suited for our experience and does not

provide enough information to know if a strategy is better.
15

The third

hypothesis is that there can be a bias in the link between the experimenter

(myself) and the subjects where they want to answer what they think we

want them to answer and that for all strategies making it impossible to

know what they truly feel.

4.3 Discussion on Batch 1

Results from batch 1 are halftone for all the reasons evoked before.

Nevertheless, if we reflect upon the work done, they were absolutely

necessary to improve the protocol, and a lot was learnt thanks to this

first dataset. Here, we are going to discuss those results, how they can

fall within the general BCI framework and what they tell of some brain

mechanisms.

4.3.1 Performance result

It is not relevant to base our analysis on the online sensitivity which is

more a sum of True Positives and False Negatives. In this case, it seems

more appropriate to look at the data from the offline perspective. It was

observed that the 𝑅2
coefficient increased for most of the subjects from

the training in the calibration phase to the driving phases. This results in a
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[219]: Alimardani et al. (2018), ‘Brain-

Computer Interface and Motor Imagery

Training’

16: In the batch 1, the sense of agency is

quite relative, because even if the subjects

have indeed an influence on the feedback,

the way it is computed limits the effect.

[117]: Škola et al. (2019), ‘Progres-

sive Training for Motor Imagery Brain-

Computer Interfaces Using Gamification

and Virtual Reality Embodiment’

17: This subset was at the time all the

subjects we had.

significant improvement of the accuracy between phases for all strategies.

This improvement can take its root from two different origins. First, it can

be the result of the training effect during session as presented for instance

by Alimardani et al.[219] concerning motor imagery learning skill, linked

to what was introduced as the eureka effect which is that subjects need

some time to understand the nature of the task and to know how to

create perceivable differences between their motor imagery and resting

state. Second, the driving phases creates an additional sense of agency
16

with the knowledge that their brain activity has a direct influence on

the feedback, this was mentioned by Skola et al.[117]. This change in

the interaction modifies the brain activity which ends up modifying the

features that become more discriminant. On this note, it is plausible that

it is a combination of those two origins that produces this noticeable

effect.

When comparing the performances between strategies, we find significant

differences in sensitivity for a subset of subjects
17

between strategy 1 and

3. When computing on the complete batch 1 dataset with a selection of

feature by hand, the differences are not significant anymore. Nevertheless,

the trend points in the same direction indicating an advantage for strategy

3 in both phases. This is also confirmed when we compute the accuracy

with the Riemannian geometry approach that prevents from possible

biases of features selection by hand as mentioned on another topic

(evaluating biases when selecting features to discriminate genes dataset)

by Krawczuk et al.[220]. Even though we cannot conclude on a strategy

being better than the rest from a performance perspective, it is reassuring

to see the same trend between classification methods and also that

our approach to the protocol is relevant. Indeed, having 2 phases of

control where we train 2 times in the experiences allows to obtain better

features.

4.3.2 Neurophysiological result

In this section we will focus on the calibration as the main result. In the

calibration phase, subjects control the arm with gaze and receive positive

feedback after the motor imagery task (the robot’s gripper closes). We

observe differences of distribution in the sensor space from a strategy to

the next. Clusters were only found in strategy 3. It contributes to the idea

that this strategy is relevant to integrate in the multimodal framework.

This is reinforced by the fact that it is the same strategy that presents

higher offline performances. If we take a look at the time frequency

analysis we find again that this strategy is responsible for activating more

regions of the brain and for a longer time period.

For the phases of control 1 and control 2, it is more difficult to conclude

for the reasons we mentioned before. However, we can still indicate

that strategy 3 remains consistent from a phase to the next and that

overall, strategies involving the robot in the loop (strategy 2 & 3) present

a higher distributed activity than the strategy which follows the main

BCI standards (strategy 1).

From a functional connectivity perspective, we show that for the three

strategies, we observe an increase (from resting state to motor imagery)

of node strength in the sensori motor regions in the calibration phase at



90 4 Forging the protocol through experience - General observations on subjects and Batch 1 first study

[223]: Mansour et al. (2022), ‘Efficacy of

Brain–Computer Interface and the Im-

pact of Its Design Characteristics on Post-

stroke Upper-limb Rehabilitation’

significant levels which corresponds to what was described by Van Wĳk

et al on neural synchrony during motor action[221]. Strategy 3 presents

a stable patterns across phases at the highest t-values. S1 and S2 are

however triggering activity profiles in the second phase of control. It

is interesting to note that using another approach on the EEG data, we

keep finding the same profile indicating a consistency in strategy 3 and

a variability in the phases especially for strategy 2. This could be the

mark of the apparition of the feedback which affect more strategy 2 than

strategy 3. Strategy 1 is the standard of literature (movement of the robot

after the MI task) and the profile in node strength indicates fewer nodes

connected. It is to note that the control which is going to be present in

the batch 2 is going to reveal more discriminant differences between

strategies.

Because we can observe broader activity across electrodes both in

ERD/ERS and functional connectivity for the two strategies involv-

ing the robotic arm during the cognitive tasks, it might be the mark of

this interaction. The broad activity observed at the sensor level does not

appear clear at the source level. In the driving phases, we can observe

activity around the sensori motor cortex, more localized in the premotor

cortex area involved in simulation of movements. We can evoke two

plausible explanations to the spread out of the activity. First, from a

pure statistical point of view, the number of subjects is maybe not high

enough to highlight effects of strategies, this was mentioned by Pernet et

al on their evaluation of the cluster permutation test on similated EEG

data[222]. Second, it might be that the absence of congruent feedback

provokes mental strategies exploratory behaviour from subjects who try

to obtain one way or another a response from the system.

It is important to note that by doing the group level analysis, subjects

who produce the strongest desynchronization can mask possible patterns

on the weakest ones. However, we normalize the difference of power

spectrum between motor imagery and resting state which means that

the effect will be limited. The reasons why some subjects perform better

than others is still unclear in the literature, it is known that subjects with

good proprioception, having athletic background or dancing abilities or

manual activities perform better but it is not certain if it is because they

are better at doing the motor imagery task, or the resting state or both.

Those results cannot suffice to conclude on the relevance of one strategy

being better than the other but it highlights the idea to study those

differences which seems important. With a refined version of our protocol,

we can present some key information regarding the control of a robotic

arm using a multimodal BCI and how to design those types of control.

4.3.3 A possible way to create sham experimentation

To assess the relevance of a method, it is necessary to see how it places

itself in the literature. But, this can become biased because of poor control

design[223]. Indeed, if the control group of a study is too different, we

end up comparing results with two different experimentations and we

cannot really assess what is causing the differences of those same results.

A possible solution to assess the relevance of a protocol is to use a sham

design where the feedback is the result of chance, the principles of sham
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[225]: He et al. (2020), ‘Neurofeedback-

linked suppression of cortical beta bursts

speeds up movement initiation in healthy

motor control’

design were described by Miller and Kaptchuk[224] to explain how it

relates to the placebo effect. All the framework is the same except this

part. It allows to see if better results are linked to the control or to the

experimentation itself. The only thing is that if the subjects know that

they receive a sham feedback, they are biased and disengaged in the task

(they need to believe that they are in control). Designing within-subject

sham condition is tricky as they should be blind to this control condition

so should be the experimenters. On this He et al.[225] investigated a trial

to trial sham approach to investigate the impact of the neurofeedback.

Our approach, a discrete feedback based on the average of a continuous

feedback (ACF) ( the average result of classification over trial) brings a

certain balance to this effect. It introduces chance because of what we

said before but it also convinces subjects that they are still in control

(because to a certain extent, they do).

To validate this method as a new sham, it would be nevertheless necessary

to create an experimentation where 3 methods are used :

▶ A random closing of the gripper or closer to reality a closing linked

to a previous session or from a different subject.

▶ Average of continuous feedback (ACF)

▶ A discrete feedback computed over the trial - Over trial discrete

feedback (OTDF)

and test how the subjects’ responses evolve.

4.3.4 General discussion on the results

Subjects of batch 1 received a very poor reward comparatively to the

effort they put. We could easily say that those poor performances which

were not the product of their doing induced frustration an disbelief in the

system. Nevertheless, subjects ERD/ERS kept being present through the

experimentation indicating that despite not being presented a rewarding,

they continue to do the task. In that sense, their frustration was contained

by their motivation and when the robot was closing, the reward appeared

as even greater. Skola et al. already described how motivation played

an important role in BCI experience[117]. To temper this, throughout

the sessions, subjects were shown their motor imagery vs resting state

patterns during the breaks between runs. This helped them in being

confident in what they were performing as well as being less affected by

the negative reward when the robot is not closing the gripper. Overall,

it seems that their motivation did not suffer too much from this lack of

reward. This can be explained by the engaging environment, the higher

mechanism of reward it puts in place or even the natural motivation of

those subjects.

The design of the experimentation was meant to ensure a certain level of

agency thanks to the use of gaze to control the position of the arm. This

was in the fear that the robotic arm would not close as often as expected

resulting in the decrease of this same sense. What the questionnaire

revealed was that we could obtain stable sense of agency even though

the robot was not closing as often as it should. Therefore, we can with

caution say that the experimentation tricks enough the sense of agency

on the robot behaviour to limit the negative effect the robot can have

when it is not closing.
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18: In the sense that this always occurs.

[226]: Perdikis et al. (2011), ‘Evidence

Accumulation in asynchronous BCI’

On another note, the offline performances revealed themselves to be

quite high (SVM and Riemannian geometry) pushing on the idea that the

task was properly executed. Moreover it says something of the feedback,

indeed, it is not so much the feedback that is important as the fact of

being in charge.

Finally, the neurophysiological analysis helped to show that strategies did

not show the same pattern at the group level both spatially, temporally and

in connectivity. It points towards strategy 3 as being the one presenting

the most interesting desynchronization in the sense that it seems to be

stable from a phase to the next (calibration to control 2).

4.3.5 Drawing the first conclusions - Improving the
protocol

After analysing the first subjects and establishing that there was some-

thing different between strategies (from an offline perspective), it was

necessary to take a step back and reflect on the dataset. The differences

between the offline performance and online performance were too strik-

ing to be the only fruit of natural18 differences which are inherent to

the passage from offline to online. Furthermore, the high variability of

performances even for subjects that had 𝑅2
maps that showed statistical

differences between MI and resting state made it impossible to validate

the protocol with certainty.

After carefully analysing the steps of the classification process, it ap-

peared clear that the way we computed the feedback was not the most

appropriate. This was mentioned by Perdikis et al in [226] on the variabil-

ity of the classifier directly linked to the oscillatory nature of the spectral

information. This led to a major change in the OpenViBE scenario to

compute the power spectrum over all the trial to create a single vector

of features instead of a feedback computed based on the average of the

choices of the classifier over trial. Fig 4.21 shows the differences between

the two methods. In addition to that, the HappyFeat software had been

improved which resulted in a easier and more straightforward to use

design of the pipeline.

From the questionnaire perspective, some key elements should have been

addressed in order to keep it and to use the results. Moreover, a more

thorough conception of the questions should have been conducted as

well as a more intensive search of the literature to support the claim we

would do. For all those reasons as well as the results obtained that did

not show any trend, the questionnaire was not used for the batch 2.

All of this taken into consideration, despite the feedback part that casts a

shadow on the dataset, some relevant observations should be made from

the first batch. First, with a refined process, some differences between

strategies are found from a performance perspective. Those differences

are even more present and highlighted from neuro physiological point of

view with spatial, spectral and temporal differences. So these encouraging

results push to go forward but with a revised protocol. Furthermore,

we can already mention that strategy presents a behaviour consistent

throughout the experimentation and that the robotic arm tends to elicit a

broader desynchronization across electrodes when comparing cognitive
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tasks. Also, the node strength analysis reveals a dense brain network

especially in strategy 3.
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Figure 4.21: Evolution of the computation of the feedback: On top, the computation of the feedback for batch 1, at each power estimation,

each feature (C3 at 13 Hz for example) is classified by the LDA using the distance to the hyperplane (negative values associated to class

one, positive values associated to class 2), then at the end of a trial, the sum of the distances to the hyperplane gives a positive or a

negative value resulting in the closing of the gripper. This method is sensitive to power spectrum variations. Bottom, the computation of

the feedback for batch 2, the average PSD over time windows for each feature is classified by the LDA, only one hyperplane distance is

output, either negative or positive. This method is less sensitive to power spectrum variations over trial.
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Key Results

▶ Results and discussion from the main contribution of the thesis.

▶ Offline performance and online evaluation of the second batch

of subjects. All timings/strategies presented high performance

both offline and online using various techniques advocating for

the use of such device to elicit brain patterns usable by machine

learning algorithms.

▶ Eye tracker analysis of the second batch. Establishing that

timings/strategies have an effect on pupil dilation.

▶ Evaluation of correlation between performance and motivation

in the second batch.

▶ Neuro-physiological analysis of both batches through ERD/ERS

and node strength based on spectral coherence functional con-

nectivity evaluated with cluster based permutation test. Es-

tablishing difference of patterns at the group level between

strategies and highlighting the consistency of one timing/strat-

egy (3) over the rest.

Protocol summary

▶ Position reached by the robot thanks to gaze position (eye-

tracker)

▶ Closing of the gripper based on results of the classifier (Discrete

feedback of the MI BCI).

▶ Stimuli in an augmented table with a blue disk indicating resting

state and red disk indicating MI via OpenViBE software.

▶ Neurofeedback during the 3 seconds of MI

▶ 3 sessions for 3 strategies of control over the arm

1. Robot reaches target after subject’s cognitive task.

2. Robot reaches target meanwhile subject’s cognitive task.

3. Robot reaches target before cognitive task.

The results we obtained so far were shadowed by the feedback given

to subjects of the first batch. The principal correction made is the com-

putation of the feedback. Instead of issuing a choice for every power

estimation sample over a MI/Rest trial and summing the choices to get

the feedback (closing or not the gripper at the end of the trial), we do

the average power estimation over the MI/Rest trial and issue a single

choice from the classifier to get the feedback. In addition to that, we use

an updated and optimized version of HappyFeat.
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Here, based on the corrections we implemented, we propose the final

results and discussion of a study on 15 subjects that performed the three

strategies of control with the best methods of control we could come

up with. The results spotlight how one specific strategy appears to be

relevant from many perspective, by being consistent from one phase to

the next and also consistent throughout our metrics of analysis. In a

seconde time, we discuss those results and enrich the discussions we had

on the first batch to answer the different hypotheses we had when the

protocol was designed.

5.1 Results

5.1.1 Behavioral performance

Figure 5.1: Braccio protocol - a multimodal BCI platform experimentation. a) BCI platform composed of the 64 EEG BrainAmp device,

the Tobii Pro Glasses 3 Eyetracker, the augmented table with the display monitor underneath the glass and Pollen Robotics’s Reachy arm

facing the subject. The robot goes to the desired can position accoordingly to the gaze position and closes its gripper based on motor

imagery activity. b) The three different timings of control investigated in the protocol, strategy one (in green) - performing cognitive

tasks before the robot reaches the can, strategy two (in red) - performing cognitive tasks meawhile the robot reaches the can, strategy

three (in blue) - performing cognitive tasks after the robot reaches the can.

Fifteen healthy right-handed subjects (8 females) participated in a ran-

domized longitudinal EEG study consisting in controlling the reach-

and-grasp action of a robotic arm via a hybrid-BCI (Fig. 5.1a). The goal

was to use the eye-gaze to select a target object and grasp it by means

of a right-hand motor imagery (MI). Across sessions, subjects were in-

structed to perform the MI task in different moments, i.e., 1) before, 2)
during and 3) after the reaching phase (Fig.5.1b). Each session started

with a calibration, where subjects were instructed through a visual cue

prompted on the table monitor to perform several trials of MI (grasp)

and resting state (no-grasp) tasks (Fig. 5.1a). At this stage the robotic arm

reached the target and the grasping depended on the given cue and not

on the recorded brain activity (neurofeedback off). After selecting the

most relevant controlling EEG channels in terms of discriminant power

spectra, subjects performed the same task but the robotic hand action

was now controlled by the brain activity (neurofeedback on). Based on

the input controlling features, a linear discriminant classifier determined
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the type of action, i.e. grasp/no grasp. Two consecutive control blocks

were then realized to allow subjects practicing and learning the task.

To assess the role of the intrinsic subjects’ motivation on their ability

to control the BCI, we first measured their reward/effort ratio via an

online questionnaire before the experiment[227]. Results showed that

the highest classification accuracies (correct/total trials) tended to be

reached by the most motivated subjects (𝑅 = 0.683,𝑝 = 0.007, Fig 5.22a).

Then, we investigated how subjects became proficient and whether one

timing strategy gave better performance. In average subjects exhibited

a significant learning effect across the control blocks regardless of the

timing strategy. However, only strategy 3 gave a significantly higher

accuracy at the end of the session (Fig.5.2b, Tab5.2). In terms of sensitivity

(correct/total MI trials), the scores were in general very high (> 83%)

and no significant effects were reported across blocks or strategies.

Figure 5.2: Behavioral scores and Performance. a) Correlation between the highest performance of subjects across strategies in accuracy

and sensitivity in function of their motivation, rho established with spearman correlation,𝑝𝑣𝑎𝑙𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 0.024, 𝑝𝑣𝑎𝑙𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 0.007. b)

Average Accuracy in the two phases of control for each strategy for the subject batch that received feedback. The two-way Anova test was

performed between phases and strategies, test revealed that the phase was the only significant factor at 𝑝 < 0.0002, in the post-hoc

analysis with bonferonni correction, significant difference was only found between control phases of strategy 3 at 𝑝 < 0.003.

Factor sum_sq df F PR(>F)

C(Group) 0.008389 2.0 0.310601 0.733845

C(Session) 0.200694 1.0 14.861523 0.000226

C(Group):C(Session) 0.007389 2.0 0.273575 0.761330

Table 5.1: ANOVA Results - Batch receiv-

ing feedback

5.1.2 Motor-related spatiotemporal brain dynamics

To understand how the brain responded to the different timing strategies,

we focused on the last control block of the experiment correspond-

ing to the best achieved accuracy in average. First, we computed the

autoregressive-based power spectrum of the EEG signals corresponding

to the MI and rest trials in the four characteristic frequency bands theta
(4 − 7𝐻𝑧), alpha (8 − 12𝐻𝑧), beta (13 − 25𝐻𝑧) and gamma (26 − 35𝐻𝑧)[56].

Then, we considered the trial-averaged power spectra so to have a more
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Table 5.2: Test Multiple Comparison

Ttest with Bonferroni correction - Batch

receiving feedback

group1 group2 stat pval pval_corr reject

Strat 1 control 1 Strat 1 control 2 -2.64 0.0194 0.2911 False

Strat 1 control 1 Strat 2 control 1 1.0373 0.3172 1.0 False

Strat 1 control 1 Strat 2 control 2 -1.628 0.1258 1.0 False

Strat 1 control 1 Strat 3 control 1 0.8587 0.405 1.0 False

Strat 1 control 1 Strat 3 control 2 -2.519 0.0245 0.3682 False

Strat 1 control 2 Strat 2 control 1 3.8115 0.0019 0.0286 True

Strat 1 control 2 Strat 2 control 2 0.6168 0.5473 1.0 False

Strat 1 control 2 Strat 3 control 1 3.0636 0.0084 0.1263 False

Strat 1 control 2 Strat 3 control 2 -0.2192 0.8297 1.0 False

Strat 2 control 1 Strat 2 control 2 -2.8707 0.0123 0.185 False

Strat 2 control 1 Strat 3 control 1 0.1989 0.8452 1.0 False

Strat 2 control 1 Strat 3 control 2 -4.0225 0.0013 0.0189 True

Strat 2 control 2 Strat 3 control 1 2.7535 0.0155 0.233 False

Strat 2 control 2 Strat 3 control 2 -0.6117 0.5506 1.0 False

Strat 3 control 1 Strat 3 control 2 -4.9837 0.0002 0.003 True

robust estimation of the MI and rest condition for each subject and

strategy.

At the group-level, all strategies exhibited a significant beta power decrease

in the MI condition as compared to the rest one, while no differences

were found in the other bands (Fig. 5.3a). In terms of spatial distribution,

all strategies involved the contralateral sensorimotor area of the brain,

while strategy 2 further exhibited a wider extension notably including

the frontal premotor regions in both hemispheres. In the source space,

we could only observe a significant power decrease in the 𝛽 band for

strategy 3 (Fig. 5.3b).

A more detailed time-frequency analysis of the EEG signals, revealed that

strategy 2 also elicited a more temporally sustained motor-related activity

as compared to strategies 1 and 3. This was particularly evident for the

EEG channels in the bilateral sensorimotor area (Fig. 5.4). However in

the contra lateral hemisphere in C1 (one of the most relevant electrode),

the highest desynchronization was found with S3, meaning again that

the intensity of the MI could be consistent to what we had previously

observed spatially and in terms of performance.

This findings indicated that performing MI during the reaching phase

elicits larger brain activity responses both in space and time. While

strategy 2 elicited higher attentional levels as measured by the pupil

diameter derivative data (Fig. 5.5), the wider motor-related activation was

not associated with the best performance, which was instead achieved

when MI was performed just after the reaching (strategy 3).

5.1.3 Brain network changes during motor imagery

To better understand the brain organizational properties in the differ-

ent timing strategies, we performed a functional connectivity network

analysis of the recorded EEG signals. To this end, we computed the

Welch-based spectral coherence in the same frequency bands considered

for the power spectra. The resulting brain networks consisted of nodes

(the EEG channels) and weights links (the amount of signal synchro-

nization between two channels). At the group-level, strategy 3 elicited a
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Figure 5.3: ERD Spatial distribution for the different strategies. a) Cluster based permutation test performed on power spectrum

𝑀𝐼−𝑅𝑒𝑠𝑡
𝑅𝑒𝑠𝑡

across subjects for the band (13-25Hz) in second phase of robot control with feedback (Control 2), threshold of display set to

𝑝 < 0.05. The distance matrix needed for the cluster computation was set considering a threshold of 40 mm between EEG channels. We

use a threshold computed using percent point function at 𝛼 = 0.05 for 𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 15 b) Cluster based permutation test performed in

the source space power spectrum
𝑀𝐼−𝑅𝑒𝑠𝑡

𝑅𝑒𝑠𝑡
across subjects for the band (13-25Hz) in second phase of robot control with feedback (Control

2). Source space dipoles estimated using weight minimum norm (wMNE). Only strategy 3 present significant clusters (presented here at

𝑝 < 0.05, the clusters of the two other strategies are displayed but are not significant.

higher number of motor-related functional interactions as compared to

the other timing strategies. While this tendency was reported in every

frequency band, a stronger effect was observed for the beta band (Fig. 5.6).

To quantify how those links were spatially distributed and whether they

concentrated in specific brain regions, we then computed the so-called

node strength which measured the total connection intensity for each

node.

Here, only the beta-node strength showed significant increments in the

MI condition as compared to the rest one, while no differences were

found in the other bands (Fig. 5.7). Notably, the most significant EEG

channels were all located over the sensorimotor area contralateral to the

imagined movement and exhibited a preferential information integration

with pre-frontal and frontal brain regions in the contralateral hemisphere

and, to a less extent, in the ipsilateral one.
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Figure 5.4: ERD Spectro temporal distribution for the different strategies. a) Cluster size found in the time frequency map for each

electrode for each strategy in Control 2 phase; cluster based permutation evaluated at a threshold determined by quantile function

evaluated for 𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 15 and 𝑝 < 0.05 , clusters kept at 𝑝 < 0.05. b) Time frequency map for C4 electrode in terms of t-values and

true ERD/ERS of motor imagery task vs resting state for the three different strategies, pointed line indicates the cluster found using

cluster based permutation test.

Figure 5.5: Attention level through gaze:Average derivative of the pupil diameter across subjects between strategies, wilcoxon test,

(∗∗)𝑝 < 0.01.
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Figure 5.6: Connectivity analysis across frequency bands.Cluster permutation test performed on the difference between MI and resting

state in spectral coherence functional connectivity in the different frequency bands �,𝛼,𝛽,𝛾. Are plotted all the t-values to indicate the

level of activation in each strategies in the different bands. Only strategy 3 in the 𝛽 band reveals to be significant in terms of node strength.

Cluster based permutation evaluated at a threshold determined by quantile function evaluated for 𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 15 and 𝑝 < 0.05

Figure 5.7: Brain networks behaviour in the different strategies. Cluster based permutation test performed on node strength functional

connectivity using welch spectral coherence
𝑀𝐼−𝑅𝑒𝑠𝑡

𝑅𝑒𝑠𝑡
across subjects for the band (13-25Hz) in second phase of robot control with feedback

(Control 2). Cluster based permutation evaluated at a threshold determined by quantile function evaluated for 𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 15 and

𝑝 < 0.05 , clusters kept at 𝑝 < 0.05. The distance matrix needed for the cluster computation was set considering a threshold of 40 mm

between EEG channels. Only strategy 3 presented statistical differences. Links are computed using cluster permutation test on the

difference of functional connectivity matrix between MI and resting state across subjects to show the different levels of connectivity

between strategies. Number of links shown corresponded to 𝑝 < 0.001 for strategy 1 and 2, 𝑝 < 10𝑒 − 06 for strategy 3.
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5.2 Complementary Results

5.2.1 Source space using weight minimum norm estimate
contributes to point strategy 3 as the only relevant
one in phases of control

Figure 5.8: In all phases of the experimentation for all strategies: Cluster based permutation test performed in the source space power

spectrum
𝑀𝐼−𝑅𝑒𝑠𝑡

𝑅𝑒𝑠𝑡
across subjects for the band (13-25Hz) in second phase of robot control with feedback (Control 2). Source space

dipoles estimated using weight minimum norm (wMNE). Significant clusters at 𝑝 < 0.05.

We perform the wMNE source reconstruction for all strategies in the

different phases of the experimentation Fig 5.8 to evaluate the potential

activity in the different strategies. We confirm the consistency of the

patterns of strategy 3. We however also find for calibration and control

1, an activity for strategy 1, however this activity seems to reduce in

intensity to disappear eventually in control 2, a possible explanation is

that the level of commitment needed.

5.2.2 Subject level analysis, finding in the inter subjects
variation an additional explanation on strategy 3

Based on the observation that the strategies are not giving the same profile,

we want to assess per subject at the ERD/ERS level how those changes

occur the same way as in batch 1. To do so, we compute for each subject

different matrix distances between the phases of the experimentation

to establish per subject their variations. The matrices for each phase

are the powerspectrum
𝑀𝐼−𝑅𝑒𝑠𝑡

𝑅𝑒𝑠𝑡 for each electrode for bins of frequency

ranging from 7 to 35 Hz. The distances computed are the Frobenius

distance, the spectral norm and malahanobis distance between couples

calibration - control 1, control 1 - control 2 and calibration - control 2.

The different comparisons per strategy are presented in Fig.5.9, what
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Figure 5.9: Subject level analysis of their patterns variations during the experimentation: Top: Comparison for each strategy of the

distances in the different configurations. Each strategy respectively : Left - distances between calibration and control 1 of the matrix of

𝑀𝐼−𝑅𝑒𝑠𝑡
𝑅𝑒𝑠𝑡

power spectrum for 64 electrodes on the frequency bins ranging from 7 to 35 Hz, Center - distances between calibration and

control 2 of the matrix of
𝑀𝐼−𝑅𝑒𝑠𝑡

𝑅𝑒𝑠𝑡
power spectrum for 64 electrodes on the frequency bins ranging from 7 to 35 Hz, Right - distances

between calibration and control 1 of the matrix of
𝑀𝐼−𝑅𝑒𝑠𝑡

𝑅𝑒𝑠𝑡
power spectrum for 64 electrodes on the frequency bins ranging from 7

to 35 Hz. Green - Strategy 1, Red - Strategy 2,Blue - Strategy 3, from dark to light colour : Frobenius, Spectral form, Mahalanobis

distance.Bottom: Boxplot associated representation of the distances in the different strategies, Wilcoxon test to assess the level of

differences between the distances.∗ : 𝑝 < 0.05

we observe corresponds to patterns observable at the group level with

the cluster permutation test, indeed the distances between control 1 and

control 2 are lower for strategy 1 and 2 than the ones between calibration

and control 1 indicating that features are close between control 1 and 2.

This is however not the case for strategy 3, the same way patterns were

different between phases of calibration and control 1, distances remain

high from the couple calibration - control 1 to the couple control 1 - control

2, and the distances get shorter when comparing calibration to control 2
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indicating that the features are close between those two phases.

5.2.3 Source space analysis using beamformer to identify
possible zones of interest

Combining batches - A careful endeavour

Before presenting those results, it is necessary to be cautious because

combining those datasets is not rigourous at all the levels. The batch

1 did not receive the same feedback (a downgraded one let’s say) as

the batch 2. Comparing the phases of drive 1 and 2 across subjects

of the two batches rely on the idea that the effect of the strategy is

stronger than the effect of the sense of agency. This hypothesis is not

ascertainable, to do this we would need an additional protocol that

establishes a control group receiving true random feedback and a one

with the real feedback. In our case, batch 1 is not exactly random

stricto sensu. Nevertheless, the results we observed separately in the

different batches tend to be similar. Therefore, we can with caution

perform the analysis. In any case, the calibration phase is the same in

batch 1 and 2 so we can at least perform this analysis and conclude

safely for this part. Since we have more subjects we can try to search for

high significance, therefore we can lower the threshold of significant,

to do so we iterated until no more significance was found.

We combined the two batches to increase our statistical power and

to see if regions were activated differently between strategies Fig 5.10.

Even though the forward model is based on the free surfer average

MRI scan and we cannot have strong conclusions regarding the precise

brain areas that are activated, it seems that some specific zones are

active for the different strategies. We observe broader activation for

strategy 1 and 2 across the left hemisphere whereas strategy 3 is more

frontal. Results get more specific during the driving phase. We find that

strategy 1 and 3 present a specific region of activation stable between

phases with a higher negative t-value for strategy 3 but the regions are

different. Strategy 1 involves the medial premotor cortex. This region is

specialized in initiating movements based on internal process related to

memory as described Purves et al[228]. This could make sense because in

strategy 1, subjects are not presented any movement before or during the

motor imagery task so it is more centered on users’ inner state. Strategy

3 involves the left primary sensory cortex.This region is processing

the somatosensory input from the thalamus and is involved in the

proprioception as mentioned by Delhaye[229]. In our framework, this

could imply that the robot displacement prior to the motor imagery task

creates an integration effect resulting in an embodiment effect linked

to the robotic arm. Finally strategy 2 involves the posterior partial area

which is responsible for linking visual information and decision making

as described by Zhou[230]. The fact that strategy 2 is bi-lateralized could

mean that it is more demanding as it requires to both process decision to

go to target, observing robot’s movement and initiating motor imagery

which is this time dealt by the right hemisphere with the premotor cortex.
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Figure 5.10: Beamformer revealing focused activity in all strategies: Cluster found in the vertices estimated using DICS beamformer

over cross spectral density in the 𝛽 band between the states of motor imagery and resting state for each strategy in Calibration, control 1

and control 2 phase; cluster based permutation evaluated at a threshold determined by quantile function evaluated for Batch 1 and 2

combined meaning 𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 26 and 𝑝 < 0.001 , clusters kept at 𝑝 < 0.001.

5.2.4 Brain networks in the calibration an control phase
also reveals consistency of strategy 3

Figure 5.11: Brain networks behaviour in the different strategies in calibration and control 1. Cluster based permutation test performed

on node strength functional connectivity using welch spectral coherence
𝑀𝐼−𝑅𝑒𝑠𝑡

𝑅𝑒𝑠𝑡
across subjects for the band (13-25Hz) in calibration

and first phase of robot control with feedback (Control 2). Cluster based permutation evaluated at a threshold determined by quantile

function evaluated for 𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 15 and 𝑝 < 0.05 , clusters kept at 𝑝 < 0.05. The distance matrix needed for the cluster computation

was set considering a threshold of 40 mm between EEG channels.
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By computing additionally the node strength for the different strategies

in the first phases of the experimentation Fig.5.11, we continue to reveal

that strategy 3 present the most consistent behaviour, it also shows that

the other robotic interaction (strategy 2) could reveal to be active in the

first control phase.

5.2.5 Time frequency analysis in the source space reveals
other information regarding the activity in the
different phases of control

Figure 5.12: Spectro temporal activation in different regions of the brain for the different phases of the different strategies:a)

Estimation of the time frequency ERD/ERS (
𝑀𝐼−𝑅𝑒𝑠𝑡

𝑅𝑒𝑠𝑡
) between 4 and 32 Hz using multitaper on the 4 second of trials. The ERD is

evaluated using cluster permutation test across subjects in the different brain regions of the left and right hemisphere. Only clusters at

𝑝 < 0.05 are kept. We measure the size of the cluster in each strategy and normalize the value by the maximum across regions and

strategies. Is displayed the normalized size of the significant regions for the different strategies.b) Brain cortical parcellation of freesurfer,

are studied only a subset of regions that could be involved in motor imagery based on our previous observations of the source space.

Studying by regions the profile of the ERD/ERS allows several thing,

first to further describe the characteristics of the different strategies

and to verify if the consistency effect of strategy 3 that we observed

is also present, second to pinpoint zones of activation that could be

more involved and in doing so to give us insight on the brain behaviour

temporally Fig 5.12. The analysis focused on zones known to be involved

to some extent to motor action.

We observe that in control 2, the information reveals a different profile

from what we could observe in the sensor space. Indeed, it is not anymore

strategy 2 that presents the broader profile but strategy 3. This could be

linked to the source estimation that tends to look for more localized (and

more intense) source of information to propagate at the brain level. In any

case, the end results is that strategy 3 again appears to be presenting a high

desynchronization in the sensorimotor area, 3 different regions present

higher ERD/ERS profiles (postcentral - involved in proprioception[231],
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inferior parietal - involved in sensory integration[232], caudal middle

frontal - involved in the control of saccadic movement[233]). It is however

surprising to see strategy 2 being activated in the calibration phase. It

might be that the robotic arm displacement elicit an ERD/ERS in the

early stage or that it is easier to generate MI, however this is not confirmed

by the other analyses in the sensor space or in the source space.

5.3 Discussion

5.3.1 Mental imagery timing and intentional binding

In an effort to improve sense of agency in BCI systems leading to overall

better performances[234], recent development oriented themselves on

the use of hybrid systems combining gaze with MI BCI. Those hybrid

systems were principally investigated for the control of robots which

could already reinforce sense of embodiment leading as well to better

performances of the BCI[235, 236]. Those studies focus on the feasibility

and their resulting performance. More over most of the systems still

rely on an intermediate monitor for MI/rest stimuli which limits the

direct interaction with the robotic arm. Studies on multimodal BCI for the

control of a robot limit themselves to the motor imagery phase prior to any

movement of the robot. But this choice could be questioned. It is necessary

to interrogate how one should integrate the mental task inside those

sophisticated setup. To support the relevancy of this interrogation, we

evaluated performance of three different timing of control, one where the

robot moved after the whole MI process, one meanwhile and one before.

Those three timings introduced different delays in the accomplishment

of the gripper ’s closing. We found out that the best improvement of

performance occurred with the strategy with the reaching phase before

the motor imagery task. This finding could find its root in the concept of

intentional binding, intrinsically linked to sense of agency[116]. Indeed,

by reducing the time between the mental task and its result on the robot,

we comfort the user in its intention which creates a stronger bond leading

to a higher sense of agency which in the end benefit the BCI system.

5.3.2 Motor-related brain activity and embodiment

Embodiment has shown to play a crucial role in reaching better perfor-

mance of MI BCI systems. However the associate neural correlates of

embodiment are still to identify especially in EEG. Indeed, from an fMRI

perspective, it seems that several zones of sensorimotor areas are involved

in the process ranging from parietal to frontal[237]. Meanwhile BCI sys-

tems tended to rely on this sense to achieve better results by assessing its

level through questionnaires, studies were not oriented in defining the

mental correlates of the process and how it impacted the performance es-

pecially in EEG. Our approach extensively analyzes spatial and temporal

neural correlates of distinct control dynamics. Spatially, electrode count

and variations between Motor Imagery (MI) and resting state power

spectra signify pronounced group-level activity influenced by strategies,

with profiles shifting across control phases. Source space analysis reveals

that only Strategy 3 presents a significant level of activation between
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[238]: Cavazzana (2016), ‘SENSE OF

AGENCY AND INTENTIONAL BIND-

ING: How does the brain link voluntary

actions with their consequences?’

cognitive states in the sensorimotor cortex as well as in the premotor area

known for memory-based initiation of movements[228] and the primary

sensory area linked to somatosensory input and proprioception[229],

it is to note that this is also reported from the time frequency analysis

standpoint which contributes to argue for the integration of the robot

into the brain framework. The fact that it is the only one presenting a

significant desynchronization in the source space could be the mark

of a more consistent behaviour across subjects whereas the two other

strategies do not possess the focal activation needed for source space

consistent profile.

5.3.3 Brain connectivity networks and BCIs

We investigated so far changes primarily in the sensorimotor cortex.

Even though this measure is robust it does not take into account the

interconnected nodes the brain is structured upon which makes it a

network. The interconnected nature of brain behaviour is inherent, so

studying local activity through ERD/ERS gives a partial information.

For this reason, studying networks associated metrics could help better

characterize the brain behaviour properties in its different dynamics of

control over the arm. Among the different tool, functional connectivity

allows to analyse the interaction between different brain regions through

its sensors during motor imagery tasks[77], its measure has been demon-

strated to be efficient as a correlate of performance[214]. With functional

connectivity associate metrics we can mention node strength which has

become a common as a first characterization of a network especially to

discriminate between motor imagery and resting state[217]. Studying

robotic control in a multimodal settings has not been to our knowledge

from a connectivity perspective, more over, our originality comes from

evaluating different dynamics of control using this metric. Strategy 3 is

the only one to showcase notable increase of node strength from Rest to

MI during the second control phase, aligning itself with already observed

difference of performance with regards to the two other strategies. Those

results tend to demonstrate the limitations of the ERD/ERs analysis to

explain why strategy 2 is giving better performance while stressing for

the use of functional connectivity as a relevant performance measure.

More over, functional connectivity have shown to be a signature of sense

of agency as a result of connected brain regions[238]. In our case, we

could be witnessing this effect of agency from a brain network perspective

in the specific strategy of reaching before performing the mental task

which match with intentional binding.

5.3.4 Gaze analysis spotlights expected attentional marker

Gaze analysis allows to determine other physiological signatures which

are more stable from one subject to the next. The gaze analysis allows

to extract information related to the attention and the engagement of

subjects. In our case, they allow to check if some differences can be spot

between strategies and if they are congruent with our neuro-physiological

analysis. The trend is found from a pure physiological perspective with a

gaze analysis that indicates that attention level is higher for the strategy
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2 where the robot goes to the target selected by gaze during the cognitive

task.

The physiological responses (the pupil dilation) indicated that the two

strategies involving the robot were different from the one where the

robots movement is not integrated to dynamic of the cognitive task. The

eye is more involved in the robot movement, this is absolutely logic as

the movement creates attention[239]. But also, it could be destructive,

too much eye implication would mean possible motor activity linked to

the eye activity resulting in an overlapping of information in the sensori

motor cortex, and this comes in addition to possible artifacts. Here, the

strategy 3 arrives as the right balance between maintaining the attention

and the involvement of the subject, it keeps some level of restraint which

allows to focus on the motor imagery and the resting state with less

contamination of the gaze.

5.3.5 Introducing a feedback might disturb at first
subjects, and the markers of the second control
could be the return to a more stable state

Mental dynamics in the context of hybrid systems, to our knowledge

have not been studied especially from a neuro physiological perspective

as most of the systems present proof of concept or focus on performances.

We conducted a thorough neurophysiological analysis. First, from a

spatial perspective, the number of electrodes and the intensity in the

difference between MI and resting state tasks indicates that the strategies

induce different activity at the group level and also those profiles change

between phases of control. Those differences are also there from a time

frequency perspective. To summarize, strategy 2 and 3 are more active

and more spread out spatially and temporally in the calibration phase as

well as in the second phase of control whereas the strategy 1 and 3 are

more active in the first phase of control. From a functional connectivity

perspective, statistical differences are found for strategy 2 and 3 in control

1 and only for strategy 3 in control 2.

The difference we observe between the different phases can be interpreted

as followed, in the calibration part, we observe the situation of "pure"

motor imagery with a positive feedback corresponding to the best scenario

possible, this is supported by the work of Mladenovic[199] investigating

the advantages of positive feedback in BCI experience but also by the study

conducted by Barbero and Grosse-Wentrup on bias feedback in BCI[200].

But during the control 1, we start presenting a feedback linked to the brain

activity, and the machine learning algorithm is trained on the calibration

phase. This introduces a perturbation meanwhile giving a higher sense

of agency to the subjects, this is supported by Carabalona’s paper on

the attitude of subject towards feedback[197]. Hence the observation

of different patterns in control 1. Finally, control 2 represents a return

to a stable behaviour, first because subjects become accustomed to the

perturbation and second, by retraining on control 1 phase the machine

learning algorithm, we slightly improve the performance which makes

the interaction closer to the calibration phase. All taken together, the

results point towards strategy 3 as the best suited strategy of control as

the different angles of analysis - performance (i), spatial ERD/ERS (ii),
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1: The combination of the batches allow-

ing more subjects pointed towards a cer-

tain generalization even though it is not

completely exploitable.

[242]: Li et al. (2021), ‘Exploring Fatigue

Effects on Performance Variation of Inten-

sive Brain–Computer Interface Practice’

spectro temporal ERD/ERS (iii), source space ERD/ERS (iv) and network

analysis (iv) - all contributed to highlight the relevancy of this specific

timing to execute the motor imagery task.

5.4 Limitations

In addition to what was said on the Batch 1, it is necessary to assess

the limitations of the overall scientific study. First, and this goes for

numerous studies, the number of subjects prevent from generalizing the

conclusions. We can only say that for the subjects of our batches, we

observe a certain behaviour and brain patterns at the group level
1

So, it

would be necessary to have a higher number of subjects to strengthen

the approach.

Another limitation we have, comes from an initial choice concerning

the feedback on the resting state. We voluntarily decided to not provide

a feedback to not disturb the subject. But, since we are evaluating the

difference between motor imagery and resting state, subjects might at

the end of the day, need to be provided a feedback in order to know if

they are doing the task the right way. On this, we could argue that we

provided a "delayed personal feedback". Indeed, we showed to them at

the end of each phase their MI vs Rest brain patterns to indicate them

from a pure neurophysiological perspective if they managed to do the

task. In addition to that, we also mentioned between runs of control if

the classifier managed to classify correctly their resting state to orient

them in doing the task if they were not doing it correctly. This approach

allows to give an idea to subjects of what they are doing but is not a

direct feedback from the machine.

Concerning tiredness, the experimentation is long and requires high

concentration throughout the session. Even though breaks were done

between runs in order to release subjects’ tension and to relax them. Even

though we observed in all configurations an increase of performance

from control 1 to control 2, we cannot discard the hypothesis that subjects

get tired at the end of the experimentation and that might affect their

brain activity as mentioned in the literature[240, 241][242].

From a performance perspective, it is rather difficult to compare results

between strategies. This is because the classification methods used (LDA

online, SVM offline, and even Riemannian geometry offline) do not

encapsulate the shape of the distribution of the activation in the sensor

space. We could use certain spatial filters to further characterize the

distribution of the data. For that reason, it might be more relevant to

compare for instance weights issued from a CSP and its associated

performance score. In a way, the analysis of the source space using

beamformer is an approach to this problem - in the sense that it is a

powerful spatial filter that could help in discriminating between strategies-

even though the resulting data are not meant to be used by a machine

learning algorithm.

The conclusion we can formulate concerning the brain regions activated

during the motor imagery trials with respect to the resting state have to be

tempered by the absence of subjects’ MRI recordings. Indeed, head and

brain morphology differ from one subject to the next, therefore, when



5.5 General scientific discussion 113

Hypothesis 7

We should not observe an important

training effect.

Hypothesis 5

We should observe a strong

ERD/ERS for all subjects in all strate-

gies

computing the forward model to access the source space, we are limited

in the precision of the zones to analyse. Furthermore, the number of

electrodes could be in itself an issue to perform source reconstruction.

Concerning time frequency cluster analysis, it could hide the possible

temporal variability of ERD/ERS at the subject level (when they start and

end there ERD/ERS) in the different strategies which in the end could

explain why the time frequency results differ in the source space and in

the sensor space as well as from one batch to the next.

The main limitation might be on the design of the experimentation itself.

Each subject receives the three strategies in a random order to limit the

bias of the training effect. But here, what it might quantify instead of

the strategies relevance is the effect of the adaptation to a new paradigm

of control, on this interrogation, we did not investigate how the order

of the strategies could have an impact - and that could help to answer

the interrogation. In this sense, we might in reality assess if a strategy is

easier to adapt to which is slightly different. It might have been better to

have 3 groups of subjects each training on a separate strategy and assess

how they manage to control the robotic arm rapidly, on this we could

also assess if the 3 groups present different brain patterns of activation.

5.5 General scientific discussion

In this work, we investigated if there is a key influence over subjects of the

involvement of the robot in the time of the cognitive task in the context

of a multimodal BCI. Once we established the existence of this influence

we characterized it using statistical and machine learning tools which

allowed to get a clearer picture of the interaction created with the robotic

arm.

The information we obtained from the two batches are quite meaningful.

First, regarding the possible training effect from a session to the next, we

did not observe any effect on the performance nor any trend concerning

the neurophysiological analysis, this contributes to answer our seventh

hypothesis. We can nevertheless consider that subjects get accustomed

to the task and the overall setup, allowing them to display rapidly

differentiable brain pattern. On this, we can note that all subjects at some

point in a relatively short amount of time (only 3 sessions) could produce

the desynchronization which is the main indicator of the cognitive task

being performed, it answers our fifth hypothesis but it also advocates for

the use of robotic device in the loop as well as multimodal approach to

BCIs. Since we observed in all batches an improvement in the performance

(only offline in the case of batch 1 and both online and offline in the

case of batch 2), it means that the effect of fatigue is less strong than

the fact to have a phase of training and a phase of testing sharing the

same characteristics (control 1 and control 2). Something else can be

mentioned that joins the supposition of the eureka effect and the let go
feeling. It might be possible that a certain level of tiredness is not so bad

to the experimentation. Indeed, by having a certain level of fatigue, the

excitation level of subjects -ergo not being fully focused on themselves

or trying too much to intellectualize the task- diminishes and allows

to be present in the task focusing on what is important. This let go
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2: It indicates the beginning of the MI or

resting trial.

Hypothesis 4

We should observe a delay in the

apparition of the ERD/ERS after the

stimulus presentation.

Hypothesis 3

We should observe differences be-

tween phases of calibration and con-

trol for each strategy.

Hypothesis 8

We should see an improvement of

the performance from Control 1 to

Control 2 both online and offline.

3: Performance of machine learning clas-

sifier are not only seen as performance in

the BCI field. Indeed, because the feed-

back is directly linked to the classifier, im-

proving results offline is not completely

relevant. The results influence subjects

in their task during the experimentation.

could be beneficial to be more aware of oneself and to perform more

accurately both resting and motor imagery tasks. Performance has been

demonstrated to not decrease even though fatigue increases in [242]

even though this must be linked to subject ability to perform naturally.

On this note, subjects were in a separate room, where the only noises

were the ones produced by the robot, they were few sources of light

in the room, one small projector directed towards the robot, the screen

displaying the stimuli and a circling blue light surrounding the setup to

voluntarily place the subjects in a relaxing mode. This argumentation is

a little speculative as quantifying the let go effect is tricky but it could be

an interesting lead of development in BCI.

In the design of a motor imagery BCI experimentation, the cue is often

integrated to the training of the classification algorithm
2
. The reaction

time to the stimulus is not taken into account and often not mentioned.

We designed our system in the hypothesis that the start of the desyn-

chronization occurs after a certain time corresponding to the reaction

after the cue, therefore we trained the classifier with 1 second of delay.

We could observe this from the performance stand point where accuracy

increases from the first second to the next, in doing so, we answer our

fourth hypothesis . It seems that studying this reaction time in the start

of motor imagery presents some relevance that could be studied in the

BCI field more thoroughly. But, this raises a new interrogation. Why

strategies do not have an impact on this timing ? Indeed, the robotic

movement (especially for strategy 2 and 3) should induce a preparatory

mechanism and an early desynchronization but this is not so much the

case. We could observe from our spectro-temporal analysis that they

were some differences in the start of the desynchronization at the group

level but it is quite unnoticeable, and what we can basically say is that

this ERD starts roughly around one second after the apparition of the

stimulus. If an ERD is supposed to be observable linked to a movement,

it means that subjects inhibit it as long as the stimulus does not appear

and that after the stimulus’ presentation they still have a certain reaction

time. To add more weight to this hypothesis, subjects do not know if they

will get a resting task or a motor imagery task, so they might force this

inhibition in order to be sure to perform the correct task.

The first batch of analysis gave us several information regarding the

protocol and the interaction between robot and subjects. First, we could

establish that brain patterns evolve between phases alongside a session.

This supports the relevance of re-training the classification algorithm

during the session and to have 2 phases of control. This observation is

also a first step to answer our third hypothesis . Related to this change,

the offline analysis allowed us to say that there is an improvement of the

separateness of brain patterns through phases leading to an improvement

of the classification performance which contributes to answer the eighth

hypothesis . However those remain offline performances. They are less

usable than online performances in the BCI field
3
. More over, the first

batch’s performance do not allow to fully conclude on a dynamic of

control being better than another. But the combination of neurophysio-

logical analysis and offline performances permits to push the claim that

strategies present different signatures which need be characterized more

thoroughly.

The second batch and its analysis are the answer to this need for characteri-
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Hypothesis 1

We should observe differences in

terms of performance between strate-

gies.

[243]: Perdikis et al. (2020), ‘Brain-

Machine Interfaces’

Hypothesis 2

We should observe differences from

a neuro physiological perspective be-

tween strategies.

Hypothesis 6

We should find that strategies involv-

ing the robotic arm (hence strategy

2 and 3) have a different behaviour

than the one where the robotic arm

is used at the end.

zation. After improving the protocol to obtain better online performances,

we could study more in detail the influence of the different dynamics. We

were limited in the conclusion regarding the performance as they became

high especially in terms of online sensitivity. However, we could observe

that for one of the strategies, the difference between brain patterns of

the phases created a greater improvement of the accuracy, which com-

pletes our answer to the third hypothesis. Furthermore, this strategy was

already the one spotted in batch 1 as the one with the most interesting

trend. This partially answers our first hypothesis which remains halftone.

But, it also signifies that differences in the dynamics are thin and cannot

be only judged by the performance criterion which is the first indicator

but lacks of subtlety, we can refer ourselves to A Tale of two learners[243]

on the matter. The neurophysiological analysis came to endorse our ob-

servation that those mental dynamics create different response involving

broader regions. To push the argumentation, we could say that the sole

neurophysiological information is the basis to indicate what strategy

to choose. We indeed observe major differences of activity distribution

between strategies with broader profiles for strategies involving the robot

(i.e strategy 2 and 3). Those observations contribute to answer our second

and sixth hypotheses.

Where does consistency come from ?

Defining what is the best strategy to use is tricky. The general demon-

stration of the protocol is that integrating the robot in a multimodal

framework is useful to obtain strong desynchronization resulting in good

performances in whatever configuration. The subtlety in the protocol lies

in the changes between the phases of control. Meanwhile, it stresses the

need for retraining machine learning algorithm based on the changes of

features, as demonstrated in batch 2 by the reduction of the differences

between control 1 and 2 for the strategy 1 and 3 at the subject level. It also

shows that features that are consistent throughout the experimentation

are also key. Indeed, one of the many challenges in BCI is to obtain

stable features or at least stable signatures[244]. Those stable signatures

are important in creating robust framework, invariant (to an extent)

to changes which in fine is important for new algorithms to be used

especially if we think of transfer learning. In that regard, the strategy

where the robot comes to the object, then the subject performs the motor

imagery task and then the robot seizes it (strategy 3) demonstrated a

consistent behaviour at the group level throughout the experimentation

in both batches even with all the flaws of the batch 1. The constancy in

the patterns of activation might be related to the framing created by the

experience. Indeed, strategy 1 is maybe allowing to much liberty in the

movement imagery with the lack of external stimuli (robot’s placement

and movement) which results in being inconsistent. Strategy 2 on the

opposite side might be too framing and could be destabilizing subjects

that could feel lacking of time to perform the task (this could explain

why it is the only strategy bi-lateralized in the source space) as they need

to watch the robot going to the target in the meantime. Strategy 3 in that

sense appears to be a compromise that frames subjects by introducing a

movement prior to the task with destabilizing them during its realization.

On this note, we could argue something else. After checking whether the
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arm would seize the right or left can, subjects must integrate a waiting/-

expecting mechanism where they indeed expect the arm to go on the

right or the left direction, during this small "checking state" they might

be less willing to start right away motor imagery in strategy 2. This is not

the case in strategy 3 where the time of "checking" occurs prior to the

cognitive task to execute. All taken together, the two batches revealed the

same effect from an ERD/ERS perspective and a connectivity perspective

that pointed out towards strategy 3.

"It did not get it."

This simple sentence was often pronounced by subjects throughout the

experimentation in the different batches. Those simple words indicate

something very important, subjects did not consider the robot as part of

their own body but as an external agent. This was to be expected from

the placement of the arm in front of them but also from the dialogue

we created between the two protagonists (the user and the robot). The

dialogue is composed of the moment where we select the can, the robot

goes to it, the subject performs the cognitive task and the robot closes

its gripper accordingly. The movement, the robot’s task of grasping the

object and the sense of control over the arm are surely helping the users

in producing the ERD but without having a complete integration.

But is this to consider as a bad thing ? Considering the robot as another

actor on stage allows a certain dissociation. Indeed, the robot and the

user share the same goal, grasping the can but if the robot fails to do so,

the frustration is contained by the fact that the failure can be imputed to

the robot and not oneself. Of course, if the robot never seizes the object,

and that the patterns shown to subjects do not present any differences

between the two cognitive tasks, then it is to impute to the users and they

know it. But if the robot makes a mistake (i.e the classification algorithm

did not rightly classify the incoming sample), the system’s failure gets

impersonated by this external agent. In this paradigm, subjects could

be more inclined to make more effort in order to help the robot achieve

its task at the next trial without suffering from the frustration of being

presented a bad feedback.

Following this statement, it might interest the reader to come back to the

notions of embodiment. Embodiment has been studied thoroughly in

the last decades as it is puzzling to understand how the brain mixes the 3

different senses to know that it is embodied in its own body. Furthermore,

it is complex to disentangle this sense from motor action. One of the

approach is to use the famous protocol of the rubber hand illusion to

fool the brain in thinking that a rubber arm is its own arm. Ehrsson[245]

demonstrated in a fMRI study of the illusion that the ventral premotor

cortex played a preponderant role in the illusion. Furthermore, it was

indicated by Tsakiris[246] that the ownership was strongly correlated with

posterior insular cortex. The main limitation is that ownership does not

cover fully the embodiment also composed of agency and self-location. On

this Ohata[247] showed that supplementary motor area, cerebellum, and

posterior parietal cortex were involved in the sense of agency. Nahab[248]

goes a bit further in its review finding that the correlated nodes associated

to sense of agency (SoA) are pre-supplementary motor area (pre-SMA),

dorsolateral prefrontal area (DLPFC), anterior insula, tempero-parietal



5.5 General scientific discussion 117

4: Even in the source space.

junction (TPJ), and precuneus/posterior cingulate. Even though the

study is not conducted in fMRI but in EEG, it is worth mentioning Arzy’s

work[237] who presents a interesting access to embodiment by visual

representations and identifies as well the tempo parietal junction (TPj)

and the Extra Striate body area as nodes for the embodiment process. It

is to mention that the embodiment process has been thoroughly covered

in the domain of prosthetic as a way to assess their level of acceptability

as presented by Segil[249] which details the use of fMRI for ownership,

body representation and agency. This acceptability of prosthesis could

be measured by an assessment of the activity in the different zones of the

brain mentioned before. If we come back to our own results, it appeared

that one strategy activated in the source space brain regions usually

associated to. embodiment which could mean that despite a low felt
acceptability as their own limb, the robot can still produce an activity

echoing what a prosthesis would do.

Could we target specific zones of activation using strategies ?

The overall analysis in the source space indicated different regions being

activated depending on the phases and the strategies. It seems that the

strategy 1 activates in the driving phases the medial premotor cortex in

the central area whereas strategy 3 activates the primary somato sensory

cortex and strategy 2 has a bi-lateral activation, one in the parietal region

(left hemisphere) and the other in the premotor cortex (right hemisphere).

We already mentioned the possible interpretations regarding why those

zones might get activated for each of the strategies. Here, we advance the

idea that since those strategies present different patterns at the source

level, we could target those specific regions for their activation. If we

come back to the reflection on motor rehabilitation following a stroke, the

zone affected by the stroke could be more precisely targeted by providing

a specific strategy. In that effort, the BCI program would be even more

tailored to patients to maximize their rehabilitation. This proposition

contains some speculations, indeed, it might not be the right solution to

target a specific zone to initiate a rewiring of the synaptic connections.

An interesting aspect regarding those results is that it proposes two axes

of reflection. The first concerns consistency, indeed, strategy 3 seems
4

to

be the stable strategy with a region being activated in a similar manner

in the three phases. Thus, to create a robust BCI, it might be interesting

to keep this specific strategy. The second concerns versatility, indeed,

what we have kept showing is differences between strategies profile,

defining what is the one to keep might not be the right interrogation. In

a way, controlling this versatility by targeting specific zones all the time

might be what we should aim for and give us a better idea of the brain

mechanisms in the integration of the robotic arm to its new workspace.





The Final problem, closing and opening
it is a far, far better thing that i do, than i have ever done; it is a far, far better rest that i go to than i have ever

known.





General Conclusions and future
developments 6

In this work, we designed a platform and a framework for multimodal

brain computer interface. The platform merges different acquisition

techniques for the control of a robotic arm in an augmented setup which

is realised on a blended monitor in a table that creates an enriched

ecological environment. Gaze is exploited for the position to reach

by the robotic arm and for physiological analysis. Non invasive EEG

through MI BCI is used to control the gripper closing and for neuro

physiological analysis. The augmented table gives the stimuli associated

to the cognitive task to perform and an additional neuro-feedback. The

framework we built consists in different ways to sequence the control

over the robotic arm based on the combination of the different modalities.

The platform called Braccio can serve over purposes, it has been tailored

to offer adjustments based on scientific questions.

6.1 Towards a new framework ?

We have different solutions based on the platform we designed to improve

the experience, we choose here to evoke two different axes of research,

one more oriented towards the technology, one towards the user.

6.1.1 Bringing intelligence to the robot

One of the numerous point to tackle for those types of devices to go

out of the safe laboratory environment is to provide the robot some

"intelligence". We cannot restrain the system to preregistered objects that

would be always of the same shape and at the same position. Predictors

of the object shape in movement related potential via the grasping exist

and could be translated to motor imagery. However, they would add

another layer of complexity to the BCI system which lead to more mistake.

A possible solution to avoid this problem is to give the robot a level of

intelligence through computer vision to choose on its own how to grasp

the object through the concept of hand-to-eye[250, 251]. Those system

already exist and could be applied with eye tracker technology in order

to issue a choice in the environment with a probability associated to

the choice. The robot becomes "aware" of its own environment and can

help the user in realizing the task. By doing so, we would also create

a safer environment with the robot being conscious of obstacles on the

way and on it could be integrated into a more dense environment. On

this note, a possible interrogation we could have is on the evocative

effect of certain objects to grasp. Are there objects that can elicit more

the motor imagery or the resting state if they are seized by the robot in

the complex environment ? And related to this, could the robot gesture

towards those objects affect the user? In that framework, some augmented

reality features could be used to make sure the object selected by the

robot is the one desired by the user (through eye tracking). Furthermore,

augmented reality could be also used to indicate the stimuli (motor

imagery or resting state) if we keep within a standard MI BCI protocol.
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6.1.2 Towards self initiated BCI, focused gaze as trigger

Based on the framework we developed, the strategy where the robot

goes to the target and then the cognitive task is performed seems to be

relevant to keep. We could easily make the transition from the supervised

BCI paradigm to the self initiated one[212, 252, 253]. Indeed, once the

object has been selected, we could propose that the robot reaching the

position is the trigger to start the detection of the motor imagery, since

we know it should occur. We would oppose those patterns to the one

before the selection of the object by gaze for instance. Doing so, we would

create a higher level of sense of agency and we would reduce the time of

detection of self initiated patterns. The scientific question could then be

to investigate how to reduce this time of MI apparition with the robot

gesture.

6.2 Is intuitiveness the key ?

We could interrogate the relevancy of intuitiveness in those types of

interaction. Even if it is a cornerstone of the work presented here and

something we have advocated in the creation of the protocol, it is

necessary to discuss it. There are some striking works on the matter

especially from the Plasticity lab that points in the opposite direction[254].

Indeed, thanks to our adaptability, we can integrate new commands in

our framework to perform actions. One result on this which is counter

intuitive is that there is not a high increase of the cognitive load after

being trained between intuitive control and not intuitive control. Coming

back to my initial example of the plane, after a time you are able to fly

the machine, which means you integrate the non intuitive commands in

the motor framework. So, should we be intuitive if other solutions are

possible ? In other words, should we design experience accordingly to

this parameter, should the cognitive task be of the right hand closing

to control a robotic arm, or should we even use a robotic arm in that

context?

Intuitiveness serves several purposes. First, it is easy to understand the

instruction right away especially in the motor imagery task. Having a

comprehensive instruction which makes sense to the subject helps in

having good performances right away. In a EEG experience, time itself is

extremely precious and should not be wasted. The installation of the cap

and the moments of recordings are long and time cannot be allocated

to getting accustomed to the task for a long period. Second, having

congruent tasks associated to what is given as feedback is essential to

not disturb the subjects. And third, from a clinical perspective, in the

case of stroke rehabilitation, the cognitive task has to be congruent with

the motor restoration, if there is motor deficit in the hand, we want to

restore the motor action of the hand, so the BCI needs to be based on

tasks related to the hand.

All those arguments strongly pledge for the use of intuitive systems in

BCI but they also admit the use of non intuitive configurations. In fact,

the time for the integration of new commands is fast, vary from one

subject to another and is in any case necessary to learn the motor imagery

task. Second, once the task has been associated to the feedback, subjects
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1: We can evoke how commands are de-

fined in modern prosthetic arms. The

combination of muscle contractions per-

mit to move the different joints and the

system is largely accepted by a wide

range of users.

2: Imagining known gesture might come

to be easier to execute than standardized

gesture

3: What Pr.J. Wolpaw describes as Hek-

sors in his latest works[255]

4: La nature m’enseigne aussi par ces senti-
ments de douleur, de faim, de soif, etc., que je
ne suis pas seulement logé dans mon corps,
ainsi qu’un pilote en son navire, mais outre
cela que je lui suis conjoint très étroitement,
et tellement confondu et mêlé, que je com-
pose comme un seul tout avec lui. Car si
cela n’était, lorsque mon corps est blessé, je
ne sentirais pas pour cela de la douleur, moi
qui ne suis qu’une chose qui pense, mais
j’apercevrais cette blessure par le seul enten-
dement, comme un pilote aperçoit par la vue
si quelque chose se rompt dans son vaisseau.
- Nature also teaches me by these feelings of
pain, hunger, thirst, etc., that I am not only
housed in my body, like a pilot in his ship,
but besides that I am joined to it very closely,
and so confused and mingled, that I compose
as one whole with it. For if this were not so,
when my body is wounded, I, who am only
a thinking thing, would not feel pain, but I
would perceive this wound by understanding
alone, as a pilot perceives by sight whether
something is breaking in his ship.

integrate it and adapt to it
1
. On this note, it has been advocated in studies

to use subject tailored MI tasks
2
. And finally, the mechanisms of motor

restoration using BCI are a hard topic of research . The rehabilitation

process can occur in any case - with more heterogeneity- without the BCI

even though it is certainly helping to have it. An honest answer would

be that we do not fully know how the brain works in integrating new

commands to its framework. The underlying networks of motor actions
3

might need to be helped by giving a intuitive feedback and task associated

to be integrated rapidly. Contrarly it might be that those networks have

intrinsic power of adaptation and simply need to be provided a feedback

to perform actions. The answer probably lies in between, non intuitive

feedback might demonstrate good performances because the brain is

able to adapt but intuitive feedback, easy to handle, are more comfortable

at first. In the case of BCI, a tremendous challenge concerns the illiterate
subjects who are not able to do right away the cognitive task. It might

be possible -and it is even certain- that the threshold for intuitiveness is

not the same for everyone and some might need a refined experience

demanding less time of adaptation. Our protocol aimed for that, indeed

all our subjects managed at some point to do the task and control the

arm and they only had 3 sessions.

6.3 Robot movement, agency, binding and
networks, is it telling a new story ?

This work was set with a clear course to begin with, building a multimodal

BCI and interrogate the timing regarding its control. Of course, its

multimodal aspect and the overall context of robotic control altered

deeply our ways of thinking and our navigation across the many different

fields ended up deviating our course. But, we must, at the end, return to

Ithaca and to do so, we need to reflect on what we truly ended up finding.

The interrogation we raised regarding the timing of the movement came

from the initial notion of intentional binding that links our sense of agency

to time. Agency is already an obsession in BCI and hybrid systems are

built upon the idea to reinforce this sentiment. Taming agency comes

from understanding what makes us agent and perceived time regarding

our action appears to be essential. But, sense of agency is not just about

being in control, it is strongly bound to our body. And this is paramount to

understand why the sense of agency and its associate intentional binding

can be observed through brain patterns of activation. We uncovered

the fact that this binding between movement, intention and expected

result could be observed from a network perspective compared to a

traditional approach towards brain activity. But, understanding how

agency, binding, brain networks and robot movement are intertwined is

a mystery. Descartes in is Méditations Métaphysiques*
described he was

not just inside his body as the pilot of a ship, this was to signify that

soul and body could not be seen as two separate entities - even though

he was the one to advocate for a clear separation between the two, one

more paradox ...
4

If we remove the notion of soul and replace it by the

idea of the brain, the metaphor of embodiment becomes clear and it is

*
René Descartes, Méditations métaphysiques (1641), Sixième méditation, in Oeuvres et

lettres, Gallimard, coll. "Bibliothèque de la Pléiade", p. 326.
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probably essential to have in mind to think about how agency occurs

and what is needed to fool the brain in activating itself the same way it

would "naturally". We might not fully understand the brain mechanisms

regarding embodiment and sense of agency. Yet, if we come back to

Ithaca, we can surely say what is needed to build our multimodal BCI: a

robot (i), an hybrid control (ii) and a precise timing to execute the mental

task (iii).

6.4 Final words

It is rather strange to bring closure to a work that required so much

energy, time and dedication, blood, toil tears and sweat would have said

Mr.Churchill. It seems to me at my very young age a long time ago

when I first encountered the notions of brain computer interface. I began

my journey with the great assurance (of course too much) that I could

solve many things, that as an engineer, I was just setting of for a simple

quest, how hard could it be, we all have brains, we are all able to move,

it should not be to hard to connect a robot to this pink porridge and

we would be done by Christmas. Maybe, I am making myself more a

fool than what I was but still, I was convinced that bringing robotics,

movement and agency would be useful and with great optimism we

would make it work. Interestingly, I have met in those years many different

scientists from the field and outside, and BCI always was welcomed

by either optimism, scepticism or both. I could hear researchers from

the BCI community saying "it does not work", biologists saying that

our engineering approach was absolutely blunt and without finesse,

physicists saying that the number of parameters was too high and I admit

as a simple engineer that they are absolutely all correct, and yet, we

could talk about it for hours because this field is fascinating. The richest

conversations I had were with a PhD student (hopefully graduated by

the time I am writing) with who we questioned the reasons why we were

doing research on the brain and the approaches on the field especially

from the engineer perspective that shows limitations by its inability to

apprehend that we do not understand everything. A thing quite strange

is that the community built on not so solid foundations an entire field

of research and I personally contributed to put another brick (more a

roof tile) on this unstable house. Nevertheless, we all have brains and

some of us tend to use it and to observe ourselves using it. And that

simple sentence is probably why we continue on doing BCI. We are

brain body interfaces, intertwined, interconnected, not differentiable

but still in interaction. And that is why I would say, BCI is done with

guts (ironically), guts that are of course relying on the knowledge of

the giants but still the field is pushed this way. I find personally quite

surprising that movement is not often regarded as a topic of research in

BCI at least to my approach of the literature. We, of course, ask subjects

to perform imagery, movement activity, but we build interactions in a

strangely frozen approach. The way we interact and succeed in working

with moving machines - car, planes, bikes, boats- is I think relying far

more than we tend to imagine on the fact that we move and integrate

their movement as ours. I allow myself two more paintings, one by Da

Vinci 6.1 who defined capturing the movement as the mark of fine art in
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Figure 6.1: Movimento del braccio L.Da

Vinci, 1510-1511, Da Vinci built his pic-

tures on the notion of movement which

he considered key, who am I to say oth-

erwise.

[256]: Lebedev et al. (2017), ‘Brain-

Machine Interfaces’

its treaty of painting, one by Kupka(Fig. 6.2) who considered movement

as the elementary common form to all sensations.

We often think about the brain as a complex system but it is always

centered on the brain with a clear delimitation separating sensory input,

body and external environment. I would argue on this that we are maybe

more on a continuum with no clear separations between the entities,

in a way our interactions with the environment forms a complex being

with many new properties to characterize, and machines become an

extension of one self[256]. On a final note that follows the challenge

of movement integration, I am very sensitive to words we use, their

roots and their meaning and often, I found that the scientific language

suffocates nuances. My mentions of multimodal, imagery, resting state

or hybrid have been examples throughout the manuscript of this. The

interface in BCI might be misleading, its root is simple inter - between,

face - form/appearance/figure/visage. The word carries the meaning

of a frozen interaction where the two players are not modified which

is not relevant as closing the loop is all about having the two actors - the

brain and the computer/machine/robot evolving together in synergy.

Defining association of those two elements might push our imagination

where we do not have anymore a pilot and its ship.
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Figure 6.2: Autour d’un point F.Kupka, 1920-1930
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A
Enlightening

A.1 Abbreviations

▶ ALS: Amyotrophic Lateral Sclerosis

▶ BCI: Brain Computer Interface

▶ CAR: Common Average Reference

▶ CNN: Convolutional Neural Network

▶ Coh: Coherence

▶ CSP: Common Spatial Pattern

▶ DoF: Degrees of Freedom

▶ EEG: Electro-EncephaloGram

▶ EP: Evoked Potential

▶ ERP: Evoked Related Potential

▶ ErrP: Error Related Potential

▶ ERD/ERS: Event Related Desynchronization/Synchronization

▶ FC: Functional Connectivity

▶ FFT: Fast Fourier Transform

▶ FIR: Finite Impulse Response

▶ fMRI: Functional Magnetic Resonance Imaging

▶ FPV: First Person View

▶ HMI: Human Machine Interface

▶ IIR: Infinite Impulse Response

▶ ImCoh: Imaginary Coherence

▶ LDA: Linear Discriminant Analysis

▶ MI: Motor Imagery

▶ ML: Machine Learning

▶ MRP: Movement Related Potential

▶ MS: Multiple Sclerosis

▶ NF: NeuroFeedback

▶ NN: Neural Network

▶ PSD: Power Spectrum Density

▶ SoA: Sense of Agency

▶ SVM: Support Vector Machine

▶ SSVEP: Steady State Visual Potential

A.2 Sources of chapters’ subtitles

▶ Concerning BCIs. This chapter is largely concerned with the brain and
the connected machine, and from its pages a reader may discover much of
their character and a little of their story. Adapted from the prologue of

The Lord of the Rings, J.R.R Tolkien.
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▶ What I cannot create, I cannot understand, quote from the blackboard

of Richard Feynman.

▶ Errare humanum est, sed perseverare diabolicum, latin phrase attributed

to Seneca.

▶ It is a far, far better thing that I do, than I have ever done; it is a far, far
better rest I go to than I have ever known. A Tale of two cities, C.Dickens,

Book 3, chapter 15.



B
Dictionary regrouping key notions and methods

10-20 EEG system: The 10-20 system is a standardized method used

to describe and apply electrode placements for electroencephalography

(EEG) recordings. The system is based on the relationship between

the location of an electrode on the scalp and the underlying area of

the brain. The name "10-20" refers to the distances between adjacent

electrode placements, which are either 10% or 20% of the total front-

back or right-left distance of the skull.The system is based on a grid

of electrodes placed at specific locations on the scalp. Each electrode

is labeled with a letter and a number, indicating its position on the

grid. The letters F, T, C, P, and O refer to the frontal, temporal, central,

parietal, and occipital lobes of the brain, respectively. The numbers

indicate the distance between electrode placement along the front-back

and right-left dimensions of the skull.The 10-20 system is widely used

in clinical and research settings for EEG recordings and has become a

standardized method for electrode placement in EEG experiments. It

allows for consistent and reproducible recordings across different studies

and laboratories, facilitating comparison and pooling of data.

Beamformer: A beamformer is a signal processing technique used in

various fields, including neuroscience and audio engineering. It is a spa-

tial filtering method designed to enhance or suppress signals at specific

spatial locations. In the context of neuroscience, beamformers are often

used for analyzing brain signals measured by EEG (electroencephalogra-

phy) or MEG (magnetoencephalography) to estimate the neural activity

in the brain with high spatial resolution. The basic idea behind beamform-

ing is to create a spatial filter that emphasizes the signals arriving from

a specific direction (source location) while attenuating signals coming

from other directions (interference or noise). It is analogous to aiming a

directional microphone or antenna at a particular sound source or radio

transmitter to pick up its signal more clearly.The general steps involved

in the beamforming process are as follows:

1. Sensor Data Acquisition: EEG or MEG sensors are placed around

the head to measure the electromagnetic activity generated by the

brain.

2. Forward Model: A forward model is constructed, which describes

the relationship between the brain activity at different source lo-

cations and the measurements at the sensor locations. It involves

modeling the brain’s anatomy, sensor positions, and the conductiv-

ity properties of the head.

3. Covariance Estimation: The covariance matrix of the sensor data

is computed. It represents the cross-correlations and power of the

signals at different sensors, capturing the spatial properties of the

brain activity.
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4. Spatial Filter (Beamformer): The core of the beamforming technique

lies in the design of the spatial filter. The spatial filter aims to

enhance signals arising from a specific brain region (source location)

while suppressing signals from other areas. The filter is computed

based on the forward model, the covariance matrix, and the desired

source location.

5. Source Reconstruction: The spatially filtered sensor data is used to

reconstruct the neural activity at the desired source location. This

provides an estimate of the neural activation in the brain region of

interest.

There are different types of beamformers, each with its specific character-

istics and applications. Some common types include:

▶ Minimum Variance Beamformer (MV Beamformer): Aims to min-

imize the variance of the reconstructed signal subject to certain

constraints.

▶ Linearly Constrained Minimum Variance (LCMV) Beamformer: An

extension of MV beamformer that includes linear constraints to

enhance signals coming from specific directions.

▶ Dynamic Imaging of Coherent Sources (DICS): A type of beam-

former optimized for frequency-specific source localization.

▶ Sparse Beamformers: Incorporate sparsity constraints to improve

localization accuracy and reduce interference from distributed

sources.

Beamforming is particularly valuable in functional brain mapping, as

it allows researchers to estimate the sources of brain activity with high

spatial resolution and improved signal-to-noise ratio compared to tradi-

tional sensor-level analyses. However, it also has its limitations, such as

sensitivity to model inaccuracies and assumptions, and the requirement

for accurate sensor and head model information. Careful consideration

of these factors is necessary for successful beamforming analysis in

neuroscience.

Burg Autoregressive method: The Burg autoregressive (AR) method

is a technique used for modeling time-series data. It is a type of linear

prediction method that estimates the coefficients of an autoregressive

model using a method called maximum entropy spectral analysis. The

Burg AR method is particularly useful when the data is characterized

by a wide-sense stationary stochastic process, meaning that its statistical

properties do not change over time.The Burg AR method works by mini-

mizing the forward and backward prediction errors of an autoregressive

model of the data. The algorithm starts by assuming that the time series

data can be modeled using an AR model of order p. The algorithm then

estimates the coefficients of the model by minimizing the prediction error

of the model. This is done by iteratively updating the coefficients of the

AR model to minimize the mean-squared error between the predicted

values and the actual values. The power spectrum of the time series

can be estimated by computing the Fourier transform of the estimated

autoregressive coefficients. The power spectrum represents the distribu-

tion of power across different frequencies in the signal, and can provide

insights into the underlying dynamics of the system generating the time

series.One advantage of the Burg method is that it is relatively robust
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to noise and outliers in the time series. Additionally, it can estimate the

power spectrum of non-stationary signals, which can be useful in many

applications. However, it can be computationally expensive, particularly

for large time series.

CAR : In EEG data analysis, the common average reference (CAR) is

a method to reduce the effects of common noise sources shared across

multiple electrodes. This technique is based on the idea that noise

sources such as muscle activity or electrical interference are common

to all electrodes to some extent, and their contribution can be removed

by computing the average signal across all electrodes and subtracting

it from each individual electrode signal. The CAR technique involves

taking the average of all the electrode signals and subtracting that value

from each electrode signal. This effectively removes any common noise

that is present in all electrodes, as well as any electrical activity that is

not specific to a particular area of the brain. After applying the CAR,

the resulting signal is often referred to as the "re-referenced" signal. The

re-referencing process can help to improve the signal-to-noise ratio and

reduce the impact of common noise sources, making it easier to identify

specific patterns of activity related to the brain function of interest.

Cluster based permutation test: The cluster-based permutation test

is a statistical method used to determine whether there is a significant

difference between two or more groups of data. It is commonly used

in neuroimaging research, where it is used to analyze the differences

between brain activity patterns in different conditions or groups.The

method is based on the concept of clustering, which involves grouping

together adjacent data points that have similar values. In the cluster-

based permutation test, the data are first grouped into clusters based

on their similarity. The size and significance of these clusters are then

determined through permutation testing.Permutation testing involves

randomly reassigning the group labels of the data and recalculating the

test statistic (e.g., t-value, F-value) for each permutation. This process

generates a null distribution of the test statistic, which represents the

distribution of the test statistic under the null hypothesis of no differ-

ence between groups.The cluster-based permutation test then identifies

clusters of adjacent data points with test statistics that exceed a prede-

fined threshold (e.g., p < 0.05). The size and significance of each cluster

are then determined by comparing its test statistic to the null distribu-

tion generated by the permutation test. If the cluster’s test statistic is

higher than a predetermined threshold value of the null distribution,

the cluster is considered significant.The advantage of the cluster-based

permutation test is that it accounts for multiple comparisons by taking

into account the spatial structure of the data, which is often important

in neuroimaging research. Additionally, the method is less sensitive to

noise and outliers than other statistical methods, such as the standard

t-test or ANOVA.However, the cluster-based permutation test can be

computationally intensive and may require large sample sizes to achieve

sufficient power. Additionally, the method requires careful consideration

of the choice of threshold for determining significant clusters and may

be sensitive to the specific clustering algorithm used.
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CSP: CSP is commonly used in EEG-based brain-computer interfaces

(BCIs) to enhance the discriminability of brain activity patterns associated

with different mental tasks or motor actions. The main idea of CSP is to

project multichannel EEG signals onto a spatial subspace that maximizes

the separation between two classes of signals. In the case of BCI, these

two classes correspond to different mental states or motor actions. The

projection is achieved by applying a spatial filter that is designed based on

the covariance matrices of the two classes of signals. The CSP algorithm

consists of the following steps:

1. Collect EEG signals from two different conditions, for example, left

hand and right hand motor imagery.

2. Segment the EEG signals into epochs of fixed length.

3. Compute the covariance matrices of the two conditions.

4. Compute the spatial filter that maximizes the variance ratio be-

tween the two conditions. This filter is obtained by computing the

generalized eigenvectors of the two covariance matrices.

5. Apply the spatial filter to the EEG signals to obtain the CSP features.

6. Classify the CSP features using a suitable machine learning algo-

rithm, such as linear discriminant analysis (LDA) or support vector

machines (SVM).

By using CSP, it is possible to enhance the discriminability of EEG features

and improve the performance of BCI systems.

Covariance matrix and tangent space logistic regression : Classi-

fication using tangent space logistic regression on covariance matrix

with Riemannian geometry is a method for analyzing multichannel

EEG/MEG data. It involves constructing a covariance matrix for each

trial, which contains information about the statistical relationships be-

tween the signals from each channel. The covariance matrix can be

considered a point in a high-dimensional space, and so Riemannian

geometry can be used to analyze the properties of these matrices. In

Riemannian geometry, the tangent space at a point on a manifold is

a vector space that approximates the manifold near that point. In the

case of covariance matrices, the tangent space at a point is the space of

symmetric matrices that are close to the covariance matrix at that point.

By projecting the covariance matrices onto the tangent space, we can

reduce the dimensionality of the data and create a more manageable

feature space for classification. Tangent space logistic regression is a

method for performing classification on data that lie on a Riemannian

manifold. In this case, the data are the covariance matrices projected

onto the tangent space. Logistic regression is used to fit a linear decision

boundary to the data, which separates the classes. The classification is

performed by computing the probability that each trial belongs to each

class based on its tangent space covariance matrix, and assigning the trial

to the class with the highest probability. In summary, classification using

tangent space logistic regression on covariance matrix with Riemannian

geometry is a method for analyzing multichannel EEG/MEG data. It

involves constructing a covariance matrix for each trial, projecting it

onto the tangent space, and performing logistic regression to classify the

data based on the tangent space covariance matrices. This method can

improve the accuracy of classification by accounting for the Riemannian

structure of the data.
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Embodiment: Sense of Body Ownership: Body ownership refers to the

feeling that one’s body is one’s own, and that one is located within it. It

is the sense that our body is an extension of ourselves, and that we have

control over it. This sense is closely linked to the sensory and perceptual

information that we receive from our body, including proprioceptive,

tactile, and visual information. Sense of agency: refers to the feeling that

one is the agent of one’s own actions. It is the sense that we are the ones

controlling our body and making things happen in the world. This sense

is closely linked to our perception of the consequences of our actions, and

the feedback that we receive from the environment. Sense of Self-location:

also known as spatial presence, refers to the feeling of being located in

a specific position in space. It is a key aspect of embodiment, as it is a

fundamental component of our experience of being in and interacting

with the world. Sense of self-location is closely linked to the sense of body

ownership, as the perceived location of one’s body is a critical factor in

determining one’s sense of presence in the environment.

EyeTracker : The dark pupil technique is based on the fact that the

infrared light emitted by the eye-tracking system is absorbed by the

retina and the iris, but not by the pupil. Therefore, the pupil appears as

a dark region in the image captured by the camera. The center of this

dark region is considered as the pupil center. This technique is widely

used because it is simple and reliable. The bright pupil technique, on the

other hand, is based on the reflection of the infrared light by the cornea.

The camera captures the reflected light, which appears as a bright region

in the image. The center of this bright region is considered as the pupil

center. This technique is less common than the dark pupil technique

because it is more sensitive to changes in lighting conditions and requires

more complex algorithms to locate the pupil center accurately.

Functional Connectivity: Functional connectivity refers to the statis-

tical associations between different brain regions or networks. In EEG

analysis, functional connectivity can be assessed using coherence, which

measures the consistency of the phase relationship between two signals

at different frequency bands. Coherence is a measure of linear correlation

between two signals, and it varies between 0 (no coherence) and 1 (perfect

coherence).Spectral coherence is the coherence between two signals at

a given frequency, and it is often used to study frequency-specific func-

tional connectivity in EEG. Spectral coherence can be calculated using

the Fourier transform of the signals, which reveals the power spectrum

of the signals at each frequency.On the other hand, imaginary coherence

is a measure of non-linear correlation between two signals. It is calcu-

lated by first computing the complex coherence, which is the coherence

between two signals at a given frequency that includes both magnitude

and phase information. Then, the imaginary part of the complex coher-

ence is extracted, which reflects the phase difference between the two

signals. Imaginary coherence has been shown to be more sensitive than

spectral coherence in detecting non-linear interactions between brain

regions.In summary, spectral coherence and imaginary coherence are

two complementary measures of functional connectivity in EEG. Spectral

coherence is useful for studying frequency-specific interactions between
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brain regions, while imaginary coherence is more sensitive to non-linear

interactions.

Inverse Kinematics: In robotics and kinematics, inverse kinematics

is the problem of determining the joint parameters that will achieve a

desired end-effector position and orientation. The problem is typically

formulated as finding a function that maps the Cartesian position and

orientation of the end-effector to the joint parameters of the robot. One

common approach to solve the inverse kinematics problem is to use

the Jacobian matrix, which relates the velocity of the end-effector to

the velocity of the robot’s joints. Specifically, the Jacobian matrix maps

changes in the joint angles to changes in the position and orientation

of the end-effector. To solve for the joint angles that correspond to a

desired end-effector position and orientation, one approach is to invert

the Jacobian matrix. This involves solving a linear system of equations that

relates the desired end-effector velocities to the joint velocities required to

achieve them. However, the Jacobian matrix may not always be invertible,

and even when it is invertible, the inverse may not be well-conditioned

or numerically stable. In these cases, other techniques such as gradient

descent or optimization-based methods may be used instead.

LDA: Linear Discriminant Analysis (LDA) is a classical supervised

machine learning technique used for dimensionality reduction, classifi-

cation, and feature extraction. It is widely used in pattern recognition,

image processing, and signal processing. The goal of LDA is to find a

linear combination of features that maximally separates different classes

of data while minimizing the variation within each class. Specifically,

LDA finds a projection of the data onto a lower-dimensional space that

preserves the most discriminatory information between classes. This

projection is achieved by maximizing the ratio of the between-class

variance to the within-class variance. In LDA, the input data is a set

of n samples, each with p features, belonging to one of k classes. The

algorithm first computes the mean vectors and covariance matrix for

each class, and then computes the pooled within-class covariance matrix.

The projection matrix, which maps the original p-dimensional space

into a lower-dimensional subspace, is then obtained by solving a gen-

eralized eigenvalue problem. Once the projection matrix is computed,

LDA can be used for classification by transforming the data into the

lower-dimensional space and applying a simple decision rule, such as the

nearest centroid rule or a linear discriminant function. LDA has several

advantages, including its simplicity, effectiveness in high-dimensional

settings, and interpretability of the results. However, it assumes that the

data is normally distributed and that the covariance matrix is the same

for all classes, which may not be the case in practice.

Laplacian filter: Laplacian filtering involves computing the second

spatial derivative of the signal at each electrode location, which is

equivalent to computing the difference in activity between neighboring

electrodes. This has the effect of emphasizing local changes in the EEG

signal while suppressing global changes that affect all electrodes in the

same way. The main advantage of Laplacian filtering is that it can help

to improve spatial resolution by reducing the blurring effects of volume
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conduction, which can make it difficult to localize the sources of EEG

activity accurately.

Mimimum Jerk and Robot Trajectories: The minimum jerk model is

a widely used mathematical model to describe human movement. The

model proposes that the human nervous system is optimized to minimize

the rate of change of acceleration (jerk) during motion.According to this

model, when a human performs a movement, the trajectory of the

movement is not a straight line, but instead follows a smooth and curved

path. The velocity and acceleration of the movement are controlled in

such a way that the rate of change of acceleration (jerk) is minimized.The

minimum jerk model has been found to accurately describe a wide

variety of human movements, from reaching and grasping to walking

and running. It has also been used to design robotic and prosthetic

devices that mimic human movements.Overall, the minimum jerk model

provides a useful framework for understanding the underlying principles

of human movement control and for designing devices that can assist or

augment human movement.The minimum jerk trajectory is a popular way

to generate smooth and natural-looking trajectories. Inverse kinematics

using the minimum jerk can be done by finding the joint positions that

result in a minimum jerk trajectory that passes through a set of desired

end-effector positions. Here are the basic steps to do this:

1. Define the desired end-effector positions: The first step is to define

a set of desired end-effector positions that the robot needs to reach.

These positions are usually specified in the task space.

2. Generate the minimum jerk trajectory: Next, a minimum jerk tra-

jectory needs to be generated that passes through these desired

end-effector positions. The minimum jerk trajectory can be param-

eterized by time and can be expressed as a function of time. The

trajectory is characterized by its initial and final positions, velocities,

and accelerations, and its duration.

3. Compute the inverse kinematics: Once the minimum jerk trajectory

is generated, the inverse kinematics problem needs to be solved

to determine the corresponding joint positions that result in this

trajectory. This involves finding the set of joint angles that place

the robot’s end-effector at the desired positions at each point along

the minimum jerk trajectory.

4. Solve the optimization problem: Inverse kinematics using the

minimum jerk can be formulated as an optimization problem,

where the objective is to minimize the difference between the actual

joint positions and the joint positions that result in the minimum

jerk trajectory. This can be achieved by using an optimization

algorithm, such as gradient descent or a genetic algorithm.

5. Update the joint positions: Finally, the joint positions are updated

based on the results of the optimization problem. These joint

positions are then used to control the robot’s movements to follow

the minimum jerk trajectory and reach the desired end-effector

positions.

PSO: Particle Swarm Optimization (PSO) is a metaheuristic optimiza-

tion algorithm inspired by the social behavior of bird flocking and fish

schooling. The algorithm maintains a population of particles that move in
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the search space, trying to find the optimal solution.Each particle in the

swarm represents a candidate solution to the problem being optimized,

and its position and velocity in the search space are updated at each

iteration based on the best solutions found by the particles itself and the

entire swarm. The position of a particle in the search space is represented

as a vector of real-valued numbers, and its velocity is a vector of the

same dimensionality. At each iteration, the velocity of each particle is

updated by a weighted combination of its current velocity, its personal

best position, and the global best position found by the swarm. This

update rule allows the particles to move towards promising regions

of the search space. The new position of a particle is then obtained by

adding its updated velocity to its current position. The personal best

position of each particle is updated if its current position improves its

fitness, while the global best position is updated if any particle in the

swarm finds a better solution than the current global best. The algorithm

continues until a stopping criterion is met, such as a maximum number

of iterations or a satisfactory solution is found. The final solution is then

given by the best position found by any particle in the swarm. PSO has

been successfully applied to a wide range of optimization problems,

including feature selection, neural network training, and parameter opti-

mization for machine learning algorithms. One of the advantages of PSO

is its simplicity and ease of implementation, but its performance can be

sensitive to the choice of algorithm parameters, such as the number of

particles and the weight parameters used in the velocity update rule.

𝑅2 test: When comparing conditions in a neuroimaging study, re-

searchers often use R-squared maps to examine the differences in brain

activity between the conditions. R-squared (𝑅2
) represents the propor-

tion of variance in the data that can be explained by the independent

variable(s). In this case, the independent variable is the condition being

compared. To generate an𝑅2
map, the data are first analyzed using a

statistical method, such as a general linear model (GLM), to estimate

the parameters of interest, such as the mean activation levels for each

condition. The 𝑅2
map is then generated by calculating the proportion of

the total variance in the data that is accounted for by the model, which

reflects the degree of difference between the conditions. A high 𝑅2
value

indicates that there is a large difference between the conditions in terms

of brain activity, and that the model is able to explain a large proportion

of the variance in the data. This suggests that the independent variable

(i.e., condition) is a strong predictor of the dependent variable (i.e., brain

activity). 𝑅2
is defined as follows :

𝑟2 =
𝑐𝑜𝑣(𝑥, 𝑦)2

𝑣𝑎𝑟(𝑥)𝑣𝑎𝑟(𝑦) (B.1)

with

𝑐𝑜𝑣(𝑥, 𝑦) = 2

𝑠1𝑛2 − 𝑠2𝑛1

(𝑛1 + 𝑛2)2
(B.2)

,

𝑣𝑎𝑟(𝑥) = 𝑞1 + 𝑞2

𝑛1 + 𝑛2

− (𝑠1 + 𝑠2)2
(𝑛1 + 𝑛2)2

(B.3)

𝑣𝑎𝑟(𝑦) = 4𝑛1𝑛2

(𝑛1 + 𝑛2)2
(B.4)
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where 𝑠𝑘 =
∑

𝑖 𝑥
𝑘
𝑖

and 𝑞𝑘 =
∑

𝑖 𝑥
𝑘2

𝑖
.

Wilcoxon test: The Wilcoxon test, also known as the Wilcoxon signed-

rank test, is a nonparametric statistical test used to compare the median

of two related samples. It is used when the assumptions of the paired

t-test, such as normality and homogeneity of variances, are violated.

The Wilcoxon test is often used in situations where the data is ordinal,

skewed, or has outliers. It is a useful alternative to the paired t-test when

the data does not meet the assumptions of parametric tests. The Wilcoxon

test works by comparing the differences between pairs of observations

within each group. The differences are then ranked in order of magnitude,

regardless of the direction of the difference. The sum of the ranks for the

positive differences and the sum of the ranks for the negative differences

are calculated separately. The test statistic is the smaller of the two sums,

and its significance is determined by comparing it to a table of critical

values based on the sample size. The Wilcoxon test is a one-tailed test,

meaning that it tests for the hypothesis that one group is larger than the

other. If the null hypothesis is rejected, it means that the median of one

group is significantly greater than the median of the other group.The

Wilcoxon test can also be used for matched-pairs data, where each subject

is measured twice, such as before and after a treatment. In this case,

the differences between the two measurements are calculated, and the

Wilcoxon test is applied to these differences. In summary, the Wilcoxon

test is a nonparametric test used to compare the median of two related

samples when the assumptions of parametric tests are not met. It is useful

in situations where the data is ordinal, skewed, or has outliers.
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BRACCIO Checklist

Material

EEG

▶ 2 EEG boxes

▶ 2 EEG cables (“nappe”)

▶ 2 optical fibers

▶ ActiCap box

▶ 2 charged batteries

▶ 2 short cables for batteries

▶ 56 or 58 electrodes

▶ 32 x 2 active electrodes

▶ GND and REF electrodes

Generalities

▶ Gel

▶ 2 syringes

▶ Papers

▶ Towels

▶ Compresses (check the date)

▶ Shampoo

▶ Hair washing tray

▶ Alcohol

▶ Product for scrubbing

PC Windows in the room

- Eye Tracker:

▶ Cable plugged into the computer

▶ Transmission box turned on

▶ Charged batteries

Robot Reachy

▶ Wired

▶ Powered
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Augmented Table
▶ Wired

▶ Powered

▶ Turned on HDMI 4

Lights
▶ Spotlights

▶ LEDs

Lever Break for Motor Learning

Setup Protocol

1. Preparations

▶ Start the computer, remain on Windows without powering the

room.

▶ Launch the virtual machine, ensuring a private host network

connection.

2. Virtual Machine

▶ Launch Terminator terminal, create two subwindows.

▶ Verify selection of FTDI FT230X in USB device.

▶ Navigate to desktop in terminal, launch RobotLauncher.sh.

▶ In second terminal, initiate desired strategy in Train or Test mode.

▶ To shut down, utilize TurnOffSafe.sh script.

3. Principal Computer (Windows)

▶ Start OpenVibe server acquisition.

▶ Launch Feature Extraction (green arrow on desktop).

▶ Launch GoodVibes GUI (bcipipeline.py) with specified parameters:

• 10 trials per condition

• 60-second baseline

• 5.5-second choking

• 11-second trial end

• 3-second feedback

▶ Generate scenarios (once only, do not modify).

▶ Launch OpenVibe acquisition.

▶ Process in HappyFeat.

▶ Output training scenarios and train on selected features.

▶ Launch online scenario Eye Tracker and Sending:

• Launch Eye Tracker Receiver and Sender.

• Start ConsoleApplication1 after initiating scenario.

4. Hardware Setup

▶ Install 64-electrode bonnet, reference on TP9 and ground on TP10.

5. Instructions

▶ Explain motor imagination and rest states. Subjects should imagine

a slow but firm hand closure for three seconds.
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▶ Imagined hand closure resembles a familiar manual or sport-related

gesture (e.g., bicycle brake), emphasizing hand closure.

▶ Explain protocol details.

▶ Complete Motor Imagination Questionnaire.

▶ Conduct gesture training before proceeding.

▶ Complete Agency Questionnaire at each session’s end.

Data Recovery:

▶ Training and test data: 2 sets of 3 runs and 1 set of 2 runs.

▶ Eye Tracker data from experiment.

▶ Save data on hard drive and chandelier.

EEG Protocol

I. Interaction with the Patient

▶ Place the patient comfortably.

▶ Explain the protocol’s objective and steps briefly.

▶ Describe the preparation process, including gel application and

alcohol scrubbing on forehead and mastoids.

▶ Identify the cap’s reference point.

▶ Measure nasion to inion distance (approximately 36 cm) before cap

installation.

▶ Install the cap and measure the following distances (to be recorded

in xlsx file):

• Distance from top stitching to nasion (about 3.6 cm or 10

• Distance from T8 to right preauricular

• Distance from T7 to left preauricular

• Distance from FPz to Cz

• Distance from Nasion to Oz

▶ Apply gel to electrodes.

▶ During preparation, have the patient perform hand movements.

II. Materials

▶ Connect all devices: computer, battery, amplifier, BrainAmp, and

electrodes.

▶ Turn on computer, launch Acticap software.

▶ Connect optical fibers (EEG1-32 to 1, EEG33-63 to 2).

▶ Open relevant xlsx file (PreAnalysis_Sub_XX_Sess_XX.xlsx) and

complete required details.

▶ Connect cap and electrodes as specified in EEG input box.

III. Quality Check

▶ Launch Acticap software.

▶ Check impedance using Acticap software or visually via OV.

▶ Load Braccio.rwksp workspace to ensure proper setup.

▶ Save impedance and Acticap software information.
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IV. Information
▶ Complete "Infos" section in xlsx file.

▶ Fill out first part of sheet for current visit.



1: Strictly speaking, from a software en-

gineering perspective, real time is not

achieved since the data is buffered and

computation establishes a delay between

the original signal and its back end. One

must deal with this problematics when

building the BCI system.

D
OpenViBE

D.1 Software functioning

OpenViBE is built upon a C++ architecture open source originally licenced

by Mensia Technologies. It has evolved through the last decade into a

reliable software offering versatility and high liberty of modification. The

software has 2 main different attributes.

▶ A server dealing with the acquisition of the EEG device through

the different protocols of communication between the hardware

and the computer, it can be LabStreamingLayer(LSL) in the most

common situations. The server broadcasts the EEG signal to the

designer.
▶ A designer which serves two functions, it is the pipeline of data

treatment and collection and also the executing system that creates

the BCI through visualization/audio feedback or broadcasting

(through LSL/TCP,UDP protocols) to external devices.

The designer is a graphical programming language relying on boxes that

executes specific functions of treatment on the original EEG signal. Those

boxes communicate together via the transfer of specific buffered data in a

pseudo real time manner.
1

The coding of those boxes structured around

different functions.

▶ Initialization - creation of the attribution of the variables values.

▶ Uninitialization- destruction of the variables.

▶ Process Input - The incoming data arriving to the box.

▶ Process - the computation performed on the incoming data.

Of course those functions may vary based on the different treatment

done on the data and different call to over processes and libraries are

necessary (such as Eigen).





E
Additional Results

E.1 Batch 2 additional results on performances

In an effort to assess the quality of the dataset, we perform an offline

analysis on the data using Riemannian geometry approach with the

tangent space logistic regression between the calibration phase and the

drive 1 phase as well as between drive 2E.1. The results were outstanding

in terms of accuracy (between 85 to 90 % of accuracy between control 1

and 2).

Between sessions analysis

We already show the fact in batch 1 that the session did not seem to be

the main effect ergo the training of subjects is limited. Here we come

back to this statement because the batch 2 presented the subjects a higher

sense of agency since the classification method was more appropriate

and we could expect changes. From a pure performance point of view

(Fig E.2, we do not observe any significant differences between sessions

nor observe any trend that would indicate an improvement linked to a

training effect. In addition to that, we performed the same analysis on

power spectrum using the cluster permutation test to be sure that we

would not miss any substantial information. In the calibration phase, we

did not find any differences between sessions, and for drive 1, session

1 presents higher activity than the two others. In drive 2, we observe a

wider distribution for session 3 but the differences between sessions are

not tremendous. But, it is possible there might be an effect in drive 2 of

the training even though it does not appear to be striking.

Evaluating the motivation per strategy

We wanted to evaluate between strategies how the motivation score can

be correlated to the performance to see if some effects were observable.

To encapsulate the evolution of performance, we defined for each subject

and each strategy the slope between accuracy of drive 1 and drive 2 (we

also do it for the sensitivity). We only could observe high correlation

between strategy 3 and the slope both in accuracy and sensitivity.
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Figure E.1: Top: Accuracy in the different phases using the tangent space logistic regression on the covariance matrix computed on

the time series of motor imagery and resting state. Bottom: Average accuracy for the different strategies with training on the different

intervals of time to assess the evolution of the accuracy with regards to the interval.

Figure E.2: Online accuracy in the dif-

ferent phases of control for each session,

Left : Drive 1, Right : Drive 2.
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Figure E.3: Slope of performance be-

tween drive 1 and 2 in function of the

reward/effort score computed for each

subject for strategy 3. Correlation using

Spearman test. 14 subjects used (One of

the subjects did not answer the online

motivation questionnaire).





F
Volo Pindarico

Figure F.1: The Creation of Adam,

Michelangelo, Sistine Chapel



152 F Volo Pindarico

Figure F.2: Sysyphus, Titian, Museo del

Prado
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