Enhanced ESD, 3.0 kV rms/6.0 kV rms 150Kbps Dual-Channel Digital Isolators # **Data Sheet** # $\pi 120U/\pi 121U/\pi 122U$ #### **FEATURES** Ultra low power consumption: 0.35mA/Channel High data rate: π12xAxx: 600Mbps π12xExx: 200Mbps π12xMxx: 10Mbps π12xUxx: 150kbps High common-mode transient immunity: 150 kV/ μs typical High robustness to radiated and conducted noise **Isolation voltages:** π 12xx3x: AC 3000Vrms π 12xx6x: AC 6000Vrms High ESD rating: ESDA/JEDEC JS-001-2017 Human body model (HBM) ±7kV, all pins Safety and regulatory approvals: UL certificate number: E494497 3000Vrms/6000Vrms for 1 minute per UL 1577 CSA Component Acceptance Notice 5A(Pending) VDE certificate number: 40047929 DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 V_{IORM} = 565V peak/849V peak CQC certification per GB4943.1-2011(Pending) 3 V to 5.5 V level translation Wide temperature range: -40°C to 125°C 8/16-lead, RoHS-compliant, (W)SOIC package ### **APPLICATIONS** General-purpose multichannel isolation Industrial field bus isolation ### **GENERAL DESCRIPTION** The $\pi 1 xxxxx$ are 2PaiSemi digital isolators product family. By using maturated standard semiconductor CMOS technology and innovative design, these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices and other integrated isolators. The $\pi 1 xxxxx$ isolator data channels are independent and are available in a variety of configurations with a withstand voltage rating of 3.0 kV rms to 6.0 kV rms and the data rate from DC up to 600Mbps (see the Ordering Guide). The devices operate with the supply voltage on either side ranging from 3.0 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. The fail-safe state is available in which the outputs transition to a preset state when the input power supply is not applied. ### **FUNCTIONAL BLOCK DIAGRAMS** Figure 1. π 120xxx/ π 121xxx/ π 122xxx functional Block Diagram Figure 2. π 120xxx Typical Application Circuit # PIN CONFIGURATIONS AND FUNCTIONS ### π 120U3x Pin Function Descriptions | MIZOCOA I | III I WIIIC | don Descriptions | |-----------|------------------|---| | Pin No. | Name | Description | | 1 | V _{DD1} | Supply Voltage for Isolator Side 1. | | 2 | VIA | Logic Input A. | | 3 | VIB | Logic Input B. | | 4 | GND_1 | Ground 1. This pin is the ground reference for Isolator Side 1. | | 5 | GND ₂ | Ground 2. This pin is the ground reference for Isolator Side 2. | | 6 | Vов | Logic Output B. | | 7 | VOA | Logic Output A. | | 8 | V_{DD2} | Supply Voltage for Isolator Side 2. | # VDD1 1 8 VDD2 7 VOA VOA VOB GND1 4 (Not to scale) 5 GND2 Figure 3. $\pi 120U3x$ Pin Configuration ### **π121U3x** Pin Function Descriptions | Pin No. | Name | Description | |---------|------------------|---| | 1 | V _{DD1} | Supply Voltage for Isolator Side 1. | | 2 | VIA | Logic Input A. | | 3 | Vов | Logic Output B. | | 4 | GND ₁ | Ground 1. This pin is the ground reference for Isolator Side 1. | | 5 | GND ₂ | Ground 2. This pin is the ground reference for Isolator Side 2. | | 6 | VIB | Logic Input B. | | 7 | Voa | Logic Output A. | | 8 | V _{DD2} | Supply Voltage for Isolator Side 2. | Figure 4. $\pi 121U3x$ Pin Configuration ### π 122U3x Pin Function Descriptions | Pin No. | Name | Description | |---------|------------------|---| | 1 | V _{DD1} | Supply Voltage for Isolator Side 1. | | 2 | Voa | Logic Output A. | | 3 | VIB | Logic Input B. | | 4 | GND ₁ | Ground 1. This pin is the ground reference for Isolator Side 1. | | 5 | GND ₂ | Ground 2. This pin is the ground reference for Isolator Side 2. | | 6 | Vов | Logic Output B. | | 7 | VIA | Logic Input A. | | 8 | V _{DD2} | Supply Voltage for Isolator Side 2. | Figure 5. $\pi 122U3x$ Pin Configuration ### $\pi 120 U6x$ Pin Function Descriptions | Pin No. | Name | Description | |---------|------------------|---| | 1 | GND ₁ | Ground 1. This pin is the ground reference for Isolator Side 1. | | 2 | NC | No connect. | | 3 | V_{DD1} | Supply Voltage for Isolator Side 1. | | 4 | VIA | Logic Input A. | | 5 | VIB | Logic Input B. | | 6 | NC | No Connect. | | 7 | GND_1 | Ground 1. This pin is the ground reference for Isolator Side 1. | | 8 | GND₁ | Ground 1. This pin is the ground reference for Isolator Side 1. | | 9 | GND ₂ | Ground 2. This pin is the ground reference for Isolator Side 2. | Figure 6. $\pi 120U6x$ Pin Configuration # **Data Sheet** | 10 | NC | No Connect. | |----|------------------|---| | 11 | NC | No Connect. | | 12 | Vов | Logic Output B. | | 13 | Voa | Logic Output A. | | 14 | V_{DD2} | Supply Voltage for Isolator Side 2. | | 15 | NC | No Connect. | | 16 | GND ₂ | Ground 2. This pin is the ground reference for Isolator Side 2. | ### π 121U6x Pin Function Descriptions | Pin No. | Name | Description | |---------|------------------|---| | 1 | GND ₁ | Ground 1. This pin is the ground reference for Isolator Side 1. | | 2 | NC | No Connect. | | 3 | V _{DD1} | Supply Voltage for Isolator Side 1. | | 4 | VIA | Logic Input A. | | 5 | Vов | Logic Output B. | | 6 | NC | No Connect. | | 7 | GND₁ | Ground 1. This pin is the ground reference for Isolator Side 1. | | 8 | GND_1 | Ground 1. This pin is the ground reference for Isolator Side 1. | | 9 | GND ₂ | Ground 2. This pin is the ground reference for Isolator Side 2. | | 10 | NC | No Connect. | | 11 | NC | No Connect. | | 12 | VIB | Logic Input B. | | 13 | VOA | Logic Output A. | | 14 | V _{DD2} | Supply Voltage for Isolator Side 2. | | 15 | NC | No Connect. | | 16 | GND ₂ | Ground 2. This pin is the ground reference for Isolator Side 2. | Figure 7. $\pi 121U6x$ Pin Configuration ### π 122U6x Pin Function Descriptions | Pin No. | Name | Description | |---------|------------------|---| | 1 | GND_1 | Ground 1. This pin is the ground reference for Isolator Side 1. | | 2 | NC | No Connect. | | 3 | V _{DD1} | Supply Voltage for Isolator Side 1. | | 4 | Voa | Logic Output A. | | 5 | VIB | Logic Input B. | | 6 | NC | No Connect. | | 7 | GND ₁ | Ground 1. This pin is the ground reference for Isolator Side 1. | | 8 | GND ₁ | Ground 1. This pin is the ground reference for Isolator Side 1. | | 9 | GND ₂ | Ground 2. This pin is the ground reference for Isolator Side 2. | | 10 | NC | No Connect. | | 11 | NC | No Connect. | | 12 | Vов | Logic Output B. | | 13 | VIA | Logic Input A. | | 14 | V_{DD2} | Supply Voltage for Isolator Side 2. | | 15 | NC | No Connect. | | 16 | GND ₂ | Ground 2. This pin is the ground reference for Isolator Side 2. | Figure 8. $\pi 122U6x$ Pin Configuration ### **ABSOLUTE MAXIMUM RATINGS** $T_A = 25$ °C, unless otherwise noted. Table 1. Absolute Maximum Ratings⁴ | Parameter | Rating | |--|------------------------------------| | Supply Voltages (V _{DD1} -GND ₁ , V _{DD2} -GND ₂) | -0.5 V to +7.0 V | | Input Voltages (V _{IA} , V _{IB}) ¹ | -0.5 V to V _{DDx} + 0.5 V | | Output Voltages (V _{OA} , V _{OB}) ¹ | -0.5 V to V _{DDx} + 0.5 V | | Average Output Current per Pin ² Side 1 Output Current (I _{O1}) | −10 mA to +10 mA | | Average Output Current per Pin ² Side 2 Output Current (I _{O2}) | −10 mA to +10 mA | | Common-Mode Transients Immunity ³ | -200 kV/μs to +200 kV/μs | | Storage Temperature (T _{ST}) Range | -65°C to +150°C | | Ambient Operating Temperature (T _A) Range | -40°C to +125°C | #### Notes: ### RECOMMENDED OPERATING CONDITIONS **Table 2. Recommended Operating Conditions** | o zv zrocommonata o pozwing commons | | | | | | | |-------------------------------------|-------------------------------|-----------------------------------|-----------|-----------------|------|--| | Parameter | Symbol | Min | Тур | Max | Unit | | | Supply Voltage | V _{DDx} ¹ | 3 | JE | 5.5 | V | | | High Level Input Signal Voltage | V_{IH} | 0.7*V _{DDx} ¹ | | V_{DDx}^{1} | V | | | Low Level Input Signal Voltage | V_{IL} | 0 | | $0.3*V_{DDx}^1$ | V | | | High Level Output Current | Іон | -6 | | | mA | | | Low Level Output Current | lol | | | 6 | mA | | | Maximum Data Rate | | 0 | | 150 | Kbps | | | Junction Temperature | TJ | -40 | | 150 | °C | | | Ambient Operating Temperature | T _A | -40 | | 125 | °C | | Notes: ### **Truth Tables** Table 3. $\pi 120xxx/\pi 121xxx/\pi 122xxx$ Truth Table | M. Immust1 | V C+++-1 | V Chahal | Default Low | Default High | Test Conditions /Comments | | |------------------------------------|-------------------------------------|-------------------------------------|-------------------------|-------------------------|---------------------------|--| | V _{Ix} Input ¹ | V _{DDI} State ¹ | V _{DDO} State ¹ | Vox Output ¹ | Vox Output ¹ | | | | Low | Powered ² | Powered ² | Low | Low | Normal operation | | | High | Powered ² | Powered ² | High | High | Normal operation | | | Open | Powered ² | Powered ² | Low | High | Default output | | | Don't Care ⁴ | Unpowered ³ | Powered ² | Low | High | Default output⁵ | | | Don't Care ⁴ | Powered ² | Unpowered ³ | High Impedance | High Impedance | | | Notes: $^{^{1}}$ V_{DDx} is the side voltage power supply V_{DD}, where x = 1 or 2. ² See Figure 9 for the maximum rated current values for various temperatures. ³ See Figure19 for Common-mode transient immunity (CMTI) measurement. ⁴ Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. $^{^{1}}$ V_{DDx} is the side voltage power supply V_{DD}, where x = 1 or 2. $^{^1}V_{lx}/V_{Dx}$ are the input/output signals of a given channel (A or B). V_{DDI}/V_{DDO} are the supply voltages on the input/output signal sides of this given channel. ### **SPECIFICATIONS** ### **ELECTRICAL CHARACTERISTICS** ### **Table 4. Switching Specifications** $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 \\ V_{DC} \pm 10\% \text{ or } 5 \\ V_{DC} \pm 10\%, \\ T_A = 25 \\ ^{\circ}C, \text{ unless otherwise noted.}$ | Parameter | Symbol | Min | Тур | Max | Unit | Test Conditions/Comments | |---|-------------------------------------|-----|------|-----|-------|--| | Minimum Pulse Width | PW | | | 6.5 | us | Within pulse width distortion (PWD) limit | | Maximum Data Rate | | 150 | | | Kbps | Within PWD limit | | Propagation Delay Time ^{1,4} | t _{pHL} , t _{pLH} | | 3.0 | | us | The different time between 50% input signal to 50% output signal 50% @ 5V _{DC} supply | | | | | 3.05 | | us | @ 3.3V _{DC} supply | | Pulse Width Distortion ⁴ | PWD | 0 | 0.02 | 0.1 | us | The max different time between tphL and tpLH@
5V _{DC} supply. And The value is tpHL - tpLH | | | | 0 | 0.02 | 0.1 | us | @ 3.3V _{DC} supply | | Part to Part Propagation Delay
Skew ⁴ | tрsк | | | 0.2 | us | The max different propagation delay time between any two devices at the same temperature, load and voltage @ 5V _{DC} supply | | | Λ | | | 0.2 | us | @ 3.3V _{DC} supply | | Channel to Channel Propagation
Delay Skew ⁴ | tcsк | K) | 02 | 0.1 | us S | The max amount propagation delay time differs between any two output channels in the single device @ 5V _{DC} supply. | | | | | 0 | 0.1 | us | @ 3.3V _{DC} supply | | Output Signal Rise/Fall Time ⁴ | t _r /t _f | | 0.7 | | ns | 10% to 90% signal terminated 50 Ω , See figure15. | | Common-Mode Transient
Immunity ³ | СМТІ | | 150 | | kV/μs | $V_{IN} = V_{DDx}^2$ or 0V, $V_{CM} = 1000$ V. | | ESD(HBM - Human body model) | ESD | | ±7 | | kV | all pins | Notes: **Table 5. DC Specifications** $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 \\ V_{DC} \pm 10\% \text{ or } 5 \\ V_{DC} \pm 10\%, \\ T_A = 25 \\ ^{\circ}C, \text{ unless otherwise noted.}$ | Parameter | Symbol | Min | Тур | Max | Unit | Test Conditions/Comments | |-------------------------------------|------------------|------------------------------------|------------------|-----------------------------------|------|---| | High Level Input Signal Voltage | V _{IH} | | | 0.7*V _{DDx} ¹ | V | | | Low Level Input Signal Voltage | V _{IL} | 0.3* V _{DDX} ¹ | | | V | | | High Level Output Voltage | Voн ¹ | $V_{DDx} - 0.1$ | V_{DDx} | | V | –20 μA output signal | | | | V _{DDx} - 0.2 | $V_{DDx} - 0.1$ | | V | –2 mA output signal | | Low Level Output Voltage | Vol | | 0 | 0.1 | V | 20 μA output signal | | | | | 0.1 | 0.2 | V | 2 mA output signal | | Input Current per Signal
Channel | I _{IN} | -10 | 0.5 | 10 | μΑ | $0 \text{ V} \leqslant \text{Signal voltage} \leqslant \text{V}_{\text{DDX}}^1$ | ² Powered means V_{DDx}≥ 2.9 V $^{^{3}}$ Unpowered means V_{DDx} < 2.3V $^{^4}$ Input signal (V_{1x}) must be in a low state to avoid powering the given V_{DD1} through its ESD protection circuitry. ⁵ If the V_{DDI} goes into unpowered status, the channel outputs the default logic signal after around 1us. If the V_{DDI} goes into powered status, the channel outputs the input status logic signal after around 1us. $^{^{1}}$ t_{pLH} = low-to-high propagation delay time, t_{pHL} = high-to-low propagation delay time. See figure 16. $^{^{2}}$ V_{DDx} is the side voltage power supply V_{DD}, where x = 1 or 2. ³ See Figure 19 for Common-mode transient immunity (CMTI) measurement. $^{^4}$ Output Signal Terminated 50 $\!\Omega.$ # **Data Sheet** | V _{DDx} ¹ Undervoltage Rising
Threshold | V _{DDxUV+} | 2.45 | 2.65 | 2.9 | V | | |---|----------------------|------|------|------|---|--| | V _{DDx} ¹ Undervoltage Falling
Threshold | V _{DDxUV} - | 2.3 | 2.5 | 2.75 | V | | | V _{DDx} ¹ Hysteresis | V_{DDxUVH} | | 0.15 | | V | | Notes: **Table 6. Quiescent Supply Current** $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 \\ V_{DC} \pm 10\% \text{ or } 5 \\ V_{DC} \pm 10\%, T_A = 25 \\ ^{\circ}C, C_L = 0 \text{ pF, unless otherwise noted.}$ | Parameter | Symbol | Min | Тур | Max | Unit | Test Conditions | |---|----------------------|-----|-----|-----|------|-------------------| | | I _{DD1} (Q) | 120 | 150 | 195 | μΑ | 0V Input signal | | 71201 Lyv Ouissaant Sunnly Current @ 5Vz s Sunnly | IDD2 (Q) | 531 | 664 | 863 | μΑ | 0V Input signal | | π120Uxx Quiescent Supply Current @ 5V _{DC} Supply | Iddi (Q) | 120 | 151 | 196 | μΑ | 5V Input signal | | | I _{DD2} (Q) | 467 | 584 | 759 | μΑ | 5V Input signal | | | I _{DD1} (Q) | 91 | 114 | 148 | μΑ | 0V Input signal | | @ 2.2W Comple | I _{DD2} (Q) | 523 | 654 | 850 | μΑ | 0V Input signal | | @ 3.3V _{DC} Supply | I _{DD1} (Q) | 91 | 114 | 148 | μΑ | 3.3V Input signal | | | I _{DD2} (Q) | 472 | 590 | 766 | μΑ | 3.3V Input signal | | | I _{DD1} (Q) | 325 | 407 | 529 | μΑ | 0V Input signal | | -1211 June Out Committee Committee (Committee Committee | I _{DD2} (Q) | 325 | 407 | 529 | μΑ | 0V Input signal | | π121Uxx Quiescent Supply Current @ 5V _{DC} Supply | I _{DD1} (Q) | 294 | 367 | 477 | μΑ | 5V Input signal | | | IDD2 (Q) | 294 | 367 | 477 | μΑ | 5V Input signal | | | IDD1 (Q) | 307 | 384 | 499 | μΑ | 0V Input signal | | 0.234 0.1 | I _{DD2} (Q) | 307 | 384 | 499 | μΑ | 0V Input signal | | @ 3.3V _{DC} Supply | I _{DD1} (Q) | 281 | 352 | 457 | μΑ | 3.3V Input signal | | | I _{DD2} (Q) | 281 | 352 | 457 | μΑ | 3.3V Input signal | | | IDD1 (Q) | 325 | 407 | 529 | μΑ | 0V Input signal | | 12011 0 : 40 1 0 40 577 0 1 | I _{DD2} (Q) | 325 | 407 | 529 | μΑ | 0V Input signal | | π122Uxx Quiescent Supply Current @ 5V _{DC} Supply | IDD1 (Q) | 294 | 367 | 477 | μΑ | 5V Input signal | | | I _{DD2} (Q) | 294 | 367 | 477 | μΑ | 5V Input signal | | | I _{DD1} (Q) | 307 | 384 | 499 | μΑ | 0V Input signal | | @ 2.2V Sl. | I _{DD2} (Q) | 307 | 384 | 499 | μΑ | 0V Input signal | | @ 3.3V _{DC} Supply | I _{DD1} (Q) | 281 | 352 | 457 | μΑ | 3.3V Input signal | | | I _{DD2} (Q) | 281 | 352 | 457 | μΑ | 3.3V Input signal | ### Table 7. Total Supply Current vs. Data Throughput ($C_L = 0 pF$) $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 \\ V_{DC} \pm 10\% \text{ or } 5 \\ V_{DC} \pm 10\%, \\ T_A = 25 \\ ^{\circ}C, \\ C_L = 0 \text{ pF, unless otherwise noted.}$ | Parameter | Symbol | | 2 K | bps | | 50 Kbps | | | 150 Kbps | | | |---|------------------|-----|------|------|-----|---------|--------|-----|----------|------|------| | rarameter | Syllibol | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | =120Lbu Cupply Current @ EV | I _{DD1} | | 0.15 | 0.23 | | 0.15 | 0.23 | | 0.15 | 0.23 | mA | | π120Uxx Supply Current @ 5V _{DC} | I _{DD2} | | 0.51 | 0.77 | | 0.52 | 0.78 | | 0.52 | 0.79 | mA | | @ 2 2V | I _{DD1} | | 0.11 | 0.17 | | 0.11 | 0.17 | | 0.11 | 0.17 | mA | | @ 3.3V _{DC} | I _{DD2} | | 0.51 | 0.76 | | 0.51 | 0.7605 | | 0.51 | 0.77 | mA | | =121 lbu Cupply Current @ FV | I _{DD1} | | 0.33 | 0.50 | | 0.33 | 0.50 | | 0.34 | 0.51 | mA | | π121Uxx Supply Current @ 5V _{DC} | I _{DD2} | | 0.33 | 0.50 | | 0.33 | 0.50 | | 0.34 | 0.51 | mA | $^{^{1}}$ V_{DDx} is the side voltage power supply V_{DD}, where x = 1 or 2. # **Data Sheet** | @ 2.2V | I _{DD1} | 0.31 | 0.46 | 0.31 | 0.47 | 0.31 | 0.47 | mA | |---|------------------|------|------|------|------|------|------|----| | @ 3.3V _{DC} | I _{DD2} | 0.31 | 0.46 | 0.31 | 0.47 | 0.31 | 0.47 | mA | | =1231 by Cupply Current @ EV | I _{DD1} | 0.33 | 0.50 | 0.33 | 0.50 | 0.34 | 0.51 | mA | | π122Uxx Supply Current @ 5V _{DC} | I _{DD2} | 0.33 | 0.50 | 0.33 | 0.50 | 0.34 | 0.51 | mA | | @ 2 2V | I _{DD1} | 0.31 | 0.46 | 0.31 | 0.47 | 0.31 | 0.47 | mA | | @ 3.3V _{DC} | I _{DD2} | 0.31 | 0.46 | 0.31 | 0.47 | 0.31 | 0.47 | mA | ### **INSULATION AND SAFETY RELATED SPECIFICATIONS** **Table 8. Insulation Specifications** | Davamatav | Comple ed | V | /alue | 11 | Test Conditions/Comments | | | | |---|-----------|---------|---------|--------|--|--|--|--| | Parameter | Symbol | π12xU3x | π12xU6x | Unit | rest conditions/ comments | | | | | Rated Dielectric Insulation Voltage | | 3000 | 6000 | V rms | 1-minute duration | | | | | Minimum External Air Gap
(Clearance) | L (CLR) | 4 | ** | mm min | Measured from input terminals to output terminals, shortest distance through air | | | | | Minimum External Tracking (Creepage) | L (CRP) | 4 | ** | mm min | Measured from input terminals to output terminals, shortest distance path along body | | | | | Minimum Clearance in the Plane of the Printed Circuit Board (PCB Clearance) | L (PCB) | 4.5 | ** | mm min | Measured from input terminals to output terminals, shortest distance through air, line of sight, in the PCB mounting plane | | | | | Minimum Internal Gap (Internal
Clearance) | | 8 | ** | μm min | Insulation distance through insulation | | | | | Tracking Resistance (Comparative Tracking Index) | СТІ | >400 | ** | V | DIN IEC 112/VDE 0303 Part 1 | | | | | Material Group | | II | ** | ai (| Material Group (DIN VDE 0110, 1/89, Table 1) | | | | ### **PACKAGE CHARACTERISTICS** **Table 9. Package Characteristics** | Parameter | Symbol | Typica | l Value | Unit | Test Conditions/Comments | | |--|------------------|------------------|---------|-------|---|--| | Parameter | Syllibol | π12xU3x | π12xU6x | Ollit | | | | Resistance (Input to Output) ¹ | R _{I-O} | 10 ¹¹ | 10 11 | Ω | | | | Capacitance (Input to Output) ¹ | C _{I-O} | 0.6 | 0.6 | pF | @1MHz | | | Input Capacitance ² | Cı | 3 | 3 | pF | @1MHz | | | IC Junction to Ambient Thermal
Resistance | θја | 100 | 45 | °C/W | Thermocouple located at center of package underside | | #### Notes: ### **REGULATORY INFORMATION** See Table 10 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross isolation waveforms and insulation levels. Table 10. Regulatory | Regulatory | π12xU3x | π12xU6x | | | | | |------------|---|--|--|--|--|--| | UL | Recognized under UL 1577 | Recognized under UL 1577 | | | | | | | Component Recognition Program ¹ | Component Recognition Program ¹ | | | | | | | Single Protection, 3000 V rms Isolation Voltage | Single Protection, *** V rms Isolation Voltage | | | | | ¹The device is considered a 2-terminal device; SOIC-8 Pin 1 - Pin 4(WSOIC-16 Pin 1-Pin8) are shorted together as the one terminal, and SOIC-8 Pin 5 - Pin 8(WSOIC-16 Pin 9-Pin16) are shorted together as the other terminal. ²Testing from the input signal pin to ground. | | File (E494497) | File (pending) | | | | | |-----|---|--|--|--|--|--| | CSA | Approved under CSA Component Acceptance Notice 5A | Approved under CSA Component Acceptance Notice 5A | | | | | | | CSA 60950-1-07+A1+A2 and | CSA 60950-1-07+A1+A2 and | | | | | | | IEC 60950-1, second edition, +A1+A2: | IEC 60950-1, second edition, +A1+A2: | | | | | | | Basic insulation at 400 V rms (565 V peak) | Basic insulation at *** V rms (**** V peak) | | | | | | | Reinforced insulation at 200 V rms | Reinforced insulation at *** V rms | | | | | | | (283 V peak) | (*** V peak) | | | | | | | File (pending) | File (pending) | | | | | | VDE | DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 ² | DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 ² | | | | | | | Basic insulation, V _{IORM} = 565 V peak, V _{IOSM} = 4615 V peak | Basic insulation, V _{IORM} = *** V peak, V _{IOSM} = **** V peak | | | | | | | | Reinforced insulation, V _{IORM} =*** V peak, V _{IOSM} = 10 kV peak | | | | | | | File (40047929) | File (pending) | | | | | | cqc | Certified under | Certified under | | | | | | | CQC11-471543-2012 | CQC11-471543-2012 | | | | | | | GB4943.1-2011 | GB4943.1-2011 | | | | | | | Basic insulation at 400 V rms (565 V peak) working voltage | Basic insulation at *** V rms (*** V peak) working voltage | | | | | | | Reinforced insulation at | Reinforced insulation at | | | | | | | 200 V rms (283 V peak) | *** V rms (*** V peak) | | | | | | | File (pending) | File (pending) | | | | | #### Notes: ### DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance of the safety data. The * marking on packages denotes DIN V VDE V 0884-10 approval. **Table 11. VDE Insulation Characteristics** | Description | Took Conditions/Commonts | Comple al | Charac | Unit | | |--|---|---------------------|-----------|---------|--------| | Description | Test Conditions/Comments | Symbol | π12xx3x | π12xx6x | Unit | | Installation Classification per DIN VDE 0110 | | | | | | | For Rated Mains Voltage \leq 150 V rms | | | I to IV | *** | | | For Rated Mains Voltage ≤ 300 V rms | | | I to III | *** | | | For Rated Mains Voltage ≤ 400 V rms | | | I to III | *** | | | Climatic Classification | | | 40/105/21 | *** | | | Pollution Degree per DIN VDE 0110, Table 1 | | | 2 | * | | | Maximum Working Insulation Voltage | | VIORM | 565 | *** | V peak | | Input to Output Test Voltage, Method B1 | $V_{IORM} \times 1.875 = V_{pd (m)}$, 100% production test, tini = t_m = 1 sec, partial discharge < 5 pC | V _{pd (m)} | 1059 | *** | V peak | | Input to Output Test Voltage, Method A | | | | | | | After Environmental Tests Subgroup 1 | $V_{IORM} \times 1.5 = V_{pd (m)}, t_{ini} = 60 \text{ sec}, t_m = 10$
sec, partial discharge < 5 pC | V _{pd (m)} | 848 | *** | V peak | ¹ In accordance with UL 1577, each π 120U3x/ π 121U3x/ π 122U3x is proof tested by applying an insulation test voltage ≥ 3600 V rms for 1 sec; each π 120U6x/ π 121U6x/ π 122U6x is proof tested by applying an isulation test voltage ≥ 7200 V rms for 1 sec ² In accordance with DIN V VDE V 0884-10, each π 120U3x/ π 121U3x/ π 122U3x is proof tested by applying an insulation test voltage ≥ 1059 V peak for 1 sec (partial discharge detection limit = 5 pC); each π 120U6x/ π 121U6x/ π 122U6x is proof tested by ≥ *** V peak for 1 sec. The * marking branded on the component designates DIN V VDE V 0884-10 approval. | After Input and/or Safety Test Subgroup 2 and Subgroup 3 | $V_{IORM} \times 1.2 = V_{pd (m)}$, $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC | | 678 | *** | V peak | |--|---|-------|------|-----|--------| | Highest Allowable Overvoltage | | Vютм | 4200 | *** | V peak | | Surge Isolation Voltage Basic | Basic insulation, 1.2 μs rise time, 50 μs , 50% fall time | Viosm | 4615 | *** | V peak | | Surge Isolation Voltage Reinforced | Reinforced insulation, 1.2 μs rise time,
50 μs, 50% fall time | Viosm | | *** | V peak | | Safety Limiting Values | Maximum value allowed in the event of a failure (see Figure 3) | | | | | | Maximum Junction Temperature | | Ts | 150 | *** | °C | | Total Power Dissipation at 25°C | | P_S | 1.56 | *** | W | | Insulation Resistance at T _S | V _{IO} = 800 V | R_S | >109 | *** | Ω | Figure 9. Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature per VDE Figure 12. π 121Uxx/ π 122Uxx Quiescent Supply Current vs. Free-Air Temperature Figure 13. π120Uxx Quiescent Supply Current with 3.3V Supply vs. Free-Air Temperature Figure 14. π 120Uxx Quiescent Supply Current with 5V Supply vs. Free-Air Temperature Figure 15. Transition time waveform measurement Figure 16. Propagation delay time waveform measurement ### **APPLICATIONS INFORMATION** ### **OVERVIEW** The $\pi 1 xxxxx$ are 2PaiSemi digital isolators product family. By using maturated standard semiconductor CMOS technology and innovative design, these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices and other integrated isolators. The $\pi 1 xxxxx$ isolator data channels are independent and are available in a variety of configurations with a withstand voltage rating of 3.0 kV rms to 6.0 kV rms and the data rate from DC up to 600Mbps (see the Ordering Guide). The $\pi 120$ Uxx/ $\pi 12$ 1Uxx/ $\pi 12$ 2Uxx are the outstanding 150 Kbps dual-channel digital isolators with the enhanced ESD capability. the devices transmit data across an isolation barrier by layers of silicon dioxide isolation. The devices operate with the supply voltage on either side ranging from 3.0~V to 5.5~V, offering voltage translation of 3.3~V and 5~V logic. The $\pi 120 \text{Uxx}/\pi 121 \text{Uxx}/\pi 122 \text{Uxx}$ have low propagation delay and high speed. The input/output design techniques allow logic and supply voltages over a wide range from 3.0 V to 5.5 V, offering voltage translation of 3.3 V and 5 V logic. The architecture is designed for high common-mode transient immunity and high immunity to electrical noise and magnetic interference. See the Ordering Guide for the model numbers that have the failsafe output state of low or high. ### **PCB LAYOUT** The low-ESR ceramic bypass capacitors must be connected between V_{DD1} and GND_1 and between V_{DD2} and GND_2 . The bypass capacitors are placed on the PCB as close to the isolator device as possible. The recommended bypass capacitor value is between $0.1~\mu F$ and $10~\mu F$. Figure 17. Recommended Printed Circuit Board Layout Avoid reducing the isolation capability, Keep the space underneath the isolator device free from metal such as planes, pads, traces and vias. To minimize the impedance of the signal return loop, keep the solid ground plane directly underneath the high-speed signal path, the closer the better. The return path will couple between the nearest ground plane to the signal path. Keep suitable trace width for controlled impedance transmission lines interconnect. To reduce the rise time degradation, keep the length of input/output signal traces as short as possible, and route low inductance loop for the signal path and It's return path. #### **CMTI MEASUREMENT** To measure the Common-Mode Transient Immunity (CMTI) of $\pi 1xxxxx$ isolator under specified common-mode pulse magnitude (V_{CM}) and specified slew rate of the common-mode pulse (dV_{CM}/dt) and other specified test or ambient conditions, The Figure 18. Common-mode transient immunity (CMTI) measurement common-mode pulse generator (G_1) will be capable of providing fast rising and falling pulses of specified magnitude and duration of the common-mode pulse (V_{CM}) and the maximum common-mode slew rates (dV_{CM}/dt) can be applied to $\pi 1xxxxx$ isolator coupler under measurement. The common-mode pulse is applied between one side ground GND1 and the other side ground GND2 of $\pi 1xxxxx$ isolator and shall be capable of providing positive transients as well as negative transients. # **OUTLINE DIMENSIONS** NOTES: ALL DIMENSIONS REFER TO JEDEC STANDARD MS-012 AA DO NOT INCLUDE MOLD FLASH OR PROTRUSION. Figure 19. 8-Lead Standard Small Outline Package [8-Lead SOIC_N] NOTES: ALL DIMENSIONS MEET JEDEC STANDARD MS-013 AA DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. Figure 20. 16-Lead Wide Body Outline Package [16-Lead SOIC_W] # **REEL INFORMATION** 8-Lead SOIC_N ### 16-Lead SOIC_W | Αp | 10.90 +/-0.1 | |----|---------------| | Во | 10.80 +/-0.1 | | Ko | 2.70 +/-0.1 | | K1 | 2.45 +/-0.1 | | F | 7.50 +/-0.1 | | P1 | 12.00 +/-0.1 | | W | 16.00 + /-0.3 | - Measured from centreline of sprocket hole to centreline of pocket. Cumulative talerance of 10 sprocket holes is $\pm~0.20$. Measured from centreline of sprocket (1) - hole to centreline of pocket. - (IV) Other material available. ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED. # **ORDERING GUIDE** | Model Name | | Temperature
Range | No. of
Inputs,
V _{DD1}
Side | No. of
Inputs,
V _{DD2}
Side | Withstand
Voltage
Rating (kV
rms) | Fail-
Safe
Output
State | Package
Description | Package
Option | Quantity | |------------|-----------|----------------------|---|---|--|----------------------------------|------------------------|-------------------|---------------| | π120U31 | Pai120U31 | -40°C to +125°C | 2 | 0 | 3 | High | 8-Lead SOIC_N | S-8-N | 4000 per reel | | π120U30 | Pai120U30 | -40°C to +125°C | 2 | 0 | 3 | Low | 8-Lead SOIC_N | S-8-N | 4000 per reel | | π121U31 | Pai121U31 | -40°C to +125°C | 1 | 1 | 3 | High | 8-Lead SOIC_N | S-8-N | 4000 per reel | | π121U30 | Pai121U30 | -40°C to +125°C | 1 | 1 | 3 | Low | 8-Lead SOIC_N | S-8-N | 4000 per reel | | π122U31 | Pai122U31 | -40°C to +125°C | 1 | 1 | 3 | High | 8-Lead SOIC_N | S-8-N | 4000 per reel | | π122U30 | Pai122U30 | -40°C to +125°C | 1 | 1 | 3 | Low | 8-Lead SOIC_N | S-8-N | 4000 per reel | | π120U61 | Pai120U61 | -40°C to +125°C | 2 | 0 | 6 | High | 16-Lead SOIC_W | S-16-W | 1000 per reel | | π120U60 | Pai120U60 | -40°C to +125°C | 2 | 0 | 6 | Low | 16-Lead SOIC_W | S-16-W | 1000 per reel | | π121U61 | Pai121U61 | -40°C to +125°C | 1 | 1 | 6 | High | 16-Lead SOIC_W | S-16-W | 1000 per reel | | π121U60 | Pai121U60 | -40°C to +125°C | 1 | 1 | 6 | Low | 16-Lead SOIC_W | S-16-W | 1000 per reel | | π122U61 | Pai122U61 | -40°C to +125°C | 1 | 1 | 6 | High | 16-Lead SOIC_W | S-16-W | 1000 per reel | | π122U60 | Pai122U60 | -40°C to +125°C | 1 | 1 | 6 | Low | 16-Lead SOIC_W | S-16-W | 1000 per reel | # **PART NUMBER NAMED RULE** Notes: Pai12xxxx is equals to π 12xxxx in the customer BOM # **REVISION HISTORY** | Revision | Updated | Date | Page | Change Record | |----------|---------|------------|------|--| | 1 | Jason | 2018/09/19 | All | Initial version | | 2 | Jason | 2018/11/28 | P11 | Changed the recommended bypass capacitor value from between 0.1 μF and 1 μF to | | | | | | between 0.1 µF and 10 µF. |