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Overview: HPMIXED Procedure
The HPMIXED procedure uses a number of specialized high-performance techniques to fit linear mixed
models with variance component structure. The HPMIXED procedure is specifically designed to cope with
estimation problems involving a large number of fixed effects, a large number of random effects, or a large
number of observations.

The HPMIXED procedure complements the MIXED procedure and other SAS/STAT procedures for mixed
modeling. On the one hand, the models supported by the HPMIXED procedure are a subset of the models
that you can fit with the MIXED procedure, and the confirmatory inferences available in the HPMIXED
procedure are also a subset of the general analyses available with the MIXED procedure. On the other hand,
the HPMIXED procedure can have considerably better performance than other SAS/STAT mixed modeling
tools, in terms of memory requirements and computational speed.

A mixed model can be large in a number of ways, not all of which are suited for the specialized algorithms
and storage techniques implemented in the HPMIXED procedure. The following are examples of linear
mixed modeling problems for which the HPMIXED procedure has been specifically designed:

� linear mixed models with thousands of levels for the fixed and/or random effects

� linear mixed models with hierarchically nested fixed and/or random effects, possibly with hundreds
or thousands of levels at each level of the hierarchy

Basic Features
The HPMIXED procedure enables you to specify a linear mixed model with variance component struc-
ture, to estimate the covariance parameters by restricted maximum likelihood, and to perform confirmatory
inference in such models. The HPMIXED procedure fits the specified linear mixed model and produces
appropriate statistics.

The following are some of the basic features of the HPMIXED procedure:

� capacity to handle large linear mixed model problems for balanced or unbalanced data

� MIXED-type MODEL and RANDOM statements for model specification and CONTRAST, ESTI-
MATE, LSMEANS, and TEST statements for inferences

� estimate covariance parameters by restricted maximum likelihood (REML)

� output statistics by using the OUTPUT statement
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� computation of appropriate standard errors for all specified estimable linear combinations of fixed and
random effects, and corresponding t and F tests

� subject and group effects that enable blocking and heterogeneity, respectively

� NLOPTIONS statement, which enables you to exercise control over the numerical optimization

The HPMIXED procedure uses the Output Delivery System (ODS), a SAS subsystem that provides capa-
bilities for displaying and controlling the output from SAS procedures. ODS enables you to convert any
of the output from the HPMIXED procedure into a SAS data set. See the section “ODS Table Names” on
page 3699 and Chapter 20, “Using the Output Delivery System,” for further information about using ODS
with the HPMIXED procedure.

Assumptions and Notation
The linear mixed models fit by the HPMIXED procedure can be represented as linear statistical models in
the following form:

y D Xˇ C Z C �

 � N.0;G/

� � N.0; �2I/

CovŒ; �� D 0

The symbols in these expressions denote the following:

y the .n � 1/ vector of responses

X the .n � k/ design matrix for the fixed effects

ˇ the .k � 1/ vector of fixed-effects parameters

Z the .n � q/ design matrix for the random effects

 the .q � 1/ vector of random effects

� the .n � 1/ vector of unobservable residual errors

As is customary for statistical models in the linear mixed model family, the random effects are assumed
normally distributed. The same holds for the residual errors and these are furthermore distributed indepen-
dently of the random effects. As a consequence, these assumptions imply that the response vector y has a
multivariate normal distribution.

Further assumptions, implicit in the preceding expression, are as follows:

� The conditional mean of the data—given the random effects—is linear in the fixed effects and the
random effects.

� The marginal mean of the data is linear in the fixed-effects parameters.
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Computational Approach
The computational methods to efficiently solve large mixed model problems with the HPMIXED procedure
rely on a combination of several techniques, including sparse matrix storage, specialized solving of sparse
linear systems, and dedicated nonlinear optimization.

Sparse Storage and Computation

One of the fundamental computational tasks in analyzing a linear mixed model is solving the mixed model
equations�

X0X X0Z
Z0X Z0ZC �2G�1

� �
ˇ



�
D

�
X0y
Z0y

�
where G denotes the variance matrix of the random effects. The mixed model crossproduct matrix�

X0X X0Z
Z0X Z0ZC �2G�1

�
is a key component of these equations, and it often has many zero values (George and Liu 1981). Sparse
storage techniques can result in significant savings in both memory and CPU resources. The HPMIXED
procedure draws on sparse matrix representation and storage where appropriate or necessary.

Conjugate Gradient Algorithm and Iteration-on-Data Technology

Solving the mixed model equations is a critical component of linear mixed model analysis. The two main
components of the preconditioned conjugate gradient (PCCG) algorithm are preconditioning and matrix-
vector product computing (Shewchuk 1994). The algorithm is guaranteed to converge to the solution within
ne iterations, where ne is equal to the number of distinct eigenvalues of the mixed model equations.
This simple yet powerful algorithm can be easily implemented with an iteration-on-data (IOD) technique
(Tsuruta, Misztal, and Stranden 2001) that can yield significant savings of memory resources.

The combination of the PCCG algorithm and iteration on data makes it possible to efficiently compute
best linear unbiased predictors (BLUPs) for the random effects in mixed models with large mixed model
equations.

Average Information Algorithm

The HPMIXED procedure estimates covariance parameters by restricted maximum likelihood. The default
optimization method is a quasi-Newton algorithm. When the Hessian or information matrix is required, the
HPMIXED procedure takes advantage of the computational simplifications that are available by averaging
information (AI). The AI algorithm (Johnson and Thompson 1995; Gilmour, Thompson, and Cullis 1995)
replaces the second derivative matrix with the average of the observed and expected information matrices.
The computationally intensive trace terms in these information matrices cancel upon averaging. Coarsely,
the AI algorithm can be viewed as a hybrid of a Newton-Raphson approach and Fisher scoring.
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The HPMIXED Procedure Contrasted with the MIXED Procedure
The HPMIXED procedure is designed to solve large mixed model problems by using sparse matrix tech-
niques. A mixed model can be large in many ways: a large number of observations, a large number of
columns in the X matrix, a large number of columns in the Z matrix, and a large number of covariance pa-
rameters. The aim of the HPMIXED procedure is parameter estimation, inference, and prediction in linear
mixed models with large X and/or Z matrices and many observations, but with relatively few covariance
parameters.

The models that you can fit with the HPMIXED procedure and the available postprocessing analyses are a
subset of the models and analyses available with the MIXED procedure. With the HPMIXED procedure
you can model only G-side random effects with variance component structure or an unstructured covariance
matrix in a Cholesky parameterization. R-side random effects and direct modeling of their covariance
structures are not supported.

The MIXED and HPMIXED procedures offer different balances for computing performance and statistical
generality. To some extent the generality of the MIXED procedure means that it cannot serve as a high-
performance computing tool for all of the model-data scenarios that it can potentially handle. For example,
although efficient sparse algorithms are available to estimate variance components in large linear mixed
models, the computational configuration changes profoundly when, for example, Kenward-Roger degree-
of-freedom adjustments are requested.

On the other hand, the HPMIXED procedure can handle only a small subset of the models that PROC
MIXED can fit. Invariably, some features of high-performance sparse computing methods might be surpris-
ing at first. For example, the best computational path depends on the model and the data, so that in models
with a singular X0X matrix, the order in which singularities are detected and accounted for can change from
one data set to the next.

The following is a list of features available in the MIXED procedure, but not available in the HPMIXED
procedure:

� a variety of covariance structures by using the TYPE= option in the RANDOM statement

� automatic Type III tests of fixed effects. You request tests of fixed effects in the HPMIXED procedure
with the TEST statement.

� ODS statistical graphics

� advanced degree-of-freedom adjustments available by using the DDFM= option

� maximum likelihood or method-of-moments estimation for the covariance parameters

� a PRIOR statement for a sampling-based Bayesian analysis
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Getting Started: HPMIXED Procedure

Mixed Model with Large Number of Fixed and Random Effects
In animal breeding, it is common to model genetic and environmental effects with a random effect for the
animal. When there are many animals being studied, this can lead to very large mixed model equations to
be solved. In this example we present an analysis of simulated data with this structure.

Suppose you have 3000 animals from five different genetic species raised on 100 different farms. The
following DATA step simulates 40000 observations of milk yield (Yield) from a linear mixed model with
variables Species and Farm in the fixed-effect model and Animal as a random effect. The random effect
due to Animal is simulated with a variance of 4.0, while the residual error variance is 8.0. These variance
component values reflect the fact that variation in milk yield is typically genetically controlled to be no more
than 33% (4/(4+8)).

data Sim;
keep Species Farm Animal Yield;
array AnimalEffect{3000};
array AnimalFarm{3000};
array AnimalSpecies{3000};
do i = 1 to dim(AnimalEffect);

AnimalEffect{i} = sqrt(4.0)*rannor(12345);
AnimalFarm{i} = 1 + int(100*ranuni(12345));
AnimalSpecies{i} = 1 + int(5*ranuni(12345));

end;
do i = 1 to 40000;

Animal = 1 + int(3000*ranuni(12345));
Species = AnimalSpecies{Animal};
Farm = AnimalFarm{Animal};
Yield = 1 + Species + Farm/10 + AnimalEffect{Animal}

+ sqrt(8.0)*rannor(12345);
output;

end;
run;

A simple linear mixed model analysis is performed by using the following SAS statements:

proc hpmixed data=Sim;
class Species Farm Animal;
model Yield = Species Species*Farm;
random Animal;
test Species*Farm;
contrast 'Species1 = Species2 = Species3'

Species 1 0 -1,
Species 0 1 -1;

run;

Selected results from the preceding SAS statements are shown in Figure 46.1 through Figure 46.4.

The “Class Level Information” table in Figure 46.1 shows that the three model effects have 5, 100, and 3000
levels, respectively. Only a portion of the levels are displayed by default. The “Dimensions” table shows
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that the model contains a single G-side covariance parameter and a single R-side covariance parameter. R-
side covariance parameters are those associated with the covariance matrix R in the conditional distribution,
given the random effects. In the case of the HPMIXED procedure this matrix is simply R D �2I and
the single R-side covariance parameter corresponds to the residual variance. The G-side parameter is the
variance of the random Animal effect; the G matrix is a diagonal .3000 � 3000/ matrix with the common
variance on the diagonal.

Figure 46.1 Class Levels and Dimensions

The HPMIXED Procedure

Class Level Information

Class Levels Values

Species 5 1 2 3 4 5
Farm 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 ...
Animal 3000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 ...

Dimensions

G-side Cov. Parameters 1
R-side Cov. Parameters 1
Columns in X 506
Columns in Z 3000
Subjects (Blocks in V) 1

Taking into account the intercept as well as the number of levels of the Species and Species*Farm effects,
the X matrix for this problem has 506 columns, so that the mixed model equations�

X0X X0Z
Z0X Z0ZC �2G�1

� �
ˇ



�
D

�
X0y
Z0y

�
have 3506 rows and columns. This is a substantial computational problem: simply storing a single copy
of this matrix in dense format requires nearly 50 megabytes of memory. The sparse matrix techniques of
PROC HPMIXED use a small fraction of this amount of memory and a similarly small fraction of the CPU
time required to solve the equations with dense techniques. For more information about sparse versus dense
techniques, see the section “Sparse Matrix Techniques” on page 3696.

Figure 46.2 displays the covariance parameter estimates at convergence of the REML algorithm. The vari-
ance component estimate for animal effect isb�2

a D 3:9889 and for residualb�2 D 7:9623. These estimates
are close to the simulated values (4.0 and 8.0).
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Figure 46.2 Estimates of Variance Components

Covariance Parameter
Estimates

Cov Parm Estimate

Animal 3.9889
Residual 7.9623

The TEST statement requests a Type III test of the fixed effect in the model. By default, the HPMIXED
procedure does not compute Type III tests, because they can be computationally demanding. The tests of the
Species*Farm effect is highly significant. That indicates animals of a genetic species perform differently in
different environments.

Figure 46.3 Type III Tests of Fixed Effect

Type III Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Species*Farm 495 39500 11.72 <.0001

You can use the CONTRAST or ESTIMATE statement to test custom linear hypotheses involving the fixed
and/or random effects. The CONTRAST statement in the preceding program tests the null hypothesis that
there are no differences among the first three genetic species. Results from this analysis are shown in
Figure 46.4. The small p-value indicates that there are significant differences among the first three genetics
species.

Figure 46.4 Result of CONTRAST Statement

Contrasts

Num Den
Label DF DF F Value Pr > F

Species1 = Species2 = Species3 2 39500 92.93 <.0001
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Syntax: HPMIXED Procedure
The following statements are available in the HPMIXED procedure:

PROC HPMIXED < options > ;
BY variables ;
CLASS variable < (REF= option) > . . . < variable < (REF= option) > > < / global-options > ;
EFFECT name=effect-type (variables < / options >) ;
ID variables ;
MODEL dependent = < fixed-effects > < / options > ;
RANDOM random-effects < / options > ;
REPEATED repeated-effect < / options > ;
PARMS < (value-list). . . > < / options > ;
TEST fixed-effects < / options > ;
CONTRAST ’label’ contrast-specification < , contrast-specification > < , . . . > < / options > ;
ESTIMATE ’label’ contrast-specification < (divisor=n) >

< , ’label’ contrast-specification < (divisor=n) > > < , . . . > < / options > ;
LSMEANS fixed-effects < / options > ;
NLOPTIONS < options > ;
OUTPUT < OUT=SAS-data-set >

< keyword< (keyword-options) > < =name > > . . .
< keyword< (keyword-options) > < =name > > < / options > ;

WEIGHT variable ;

Items within angle brackets ( < > ) are optional. The CONTRAST, ESTIMATE, LSMEANS, RANDOM,
and TEST statements can appear multiple times; all other statements can appear only once.

The PROC HPMIXED and MODEL statements are required, and the MODEL statement must appear after
the CLASS statement if these statements are included. The BY, CLASS, MODEL, ID, OUTPUT, TEST,
RANDOM, REPEATED and WEIGHT statements are described in full after the PROC HPMIXED state-
ment in alphabetical order. The EFFECT, is shared with many other procedures. Summary descriptions of
functionality and syntax for this statement is also given after the PROC HPMIXED statement in alphabetical
order, but you can find full documentation on it in Chapter 19, “Shared Concepts and Topics.”

Table 46.1 summarizes the basic functions and important options of each PROC HPMIXED statement.

Table 46.1 Summary of PROC HPMIXED Statements

Statement Description Options

PROC HPMIXED Invokes the procedure DATA= specifies input data set, METHOD=
specifies estimation method

BY Performs multiple
PROC HPMIXED anal-
yses in one invocation

None

CLASS Declares qualitative
variables that create
indicator variables in
design matrices

None
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Table 46.1 continued

Statement Description Options

ID Lists additional vari-
ables to be included in
predicted values tables

None

MODEL Specifies dependent
variable and fixed
effects, setting up X

S requests solution for fixed-effects parame-
ters, DDFM= specifies denominator degrees of
freedom method

RANDOM Specifies random ef-
fects, setting up Z and
G

SUBJECT= creates block-diagonality, TYPE=
specifies covariance structure, S requests solu-
tion for random-effects parameters

REPEATED Sets up R SUBJECT= creates block-diagonality, TYPE=
specifies covariance structure, R= displays
estimated blocks of R, GROUP= enables
between-subject heterogeneity

PARMS Specifies a grid of initial
values for the covariance
parameters

HOLD= and NOITER hold the covariance
parameters or their ratios constant, PARMS-
DATA= reads the initial values from a SAS
data set

CONTRAST Constructs custom hy-
pothesis tests

E displays the L matrix coefficients

ESTIMATE Constructs custom scalar
estimates

CL produces confidence limits

LSMEANS Computes least squares
means for classification
fixed effects

DIFF computes differences of the least
squares means, CL produces confidence lim-
its, SLICE= tests simple effects

WEIGHT Specifies a variable by
which to weight R

None

PROC HPMIXED Statement
PROC HPMIXED < options > ;

The PROC HPMIXED statement invokes the HPMIXED procedure. Table 46.2 summarizes the options
available in the PROC HPMIXED statement. These and other options in the PROC HPMIXED statement
are then described fully in alphabetical order.

Table 46.2 PROC HPMIXED Statement Options

Option Description

Basic Options
DATA= Specifies input data set
METHOD= Specifies the estimation method
NOPROFILE Includes scale parameter in optimization
ORDER= Determines the sort order of CLASS variables
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Table 46.2 continued

Option Description

BLUP Computes BLUP/BLUE only

Displayed Output
IC= Displays a table of information criteria
ITDETAILS Displays estimates and gradients added to “Iteration History”
MAXCLPRINT= Specifies the maximum levels of CLASS variables to print
LOGNOTE Writes periodic status notes to the log
MMEQ Displays mixed model equations
NOCLPRINT Suppresses “Class Level Information” completely or in parts
NOITPRINT Suppresses “Iteration History” table
SIMPLE Displays “Descriptive Statistics” table

Singularity Tolerances
SINGCHOL= Tunes singularity for Cholesky decompositions
SINGRES= Tunes singularity for the residual variance
SINGULAR= Tunes general singularity criterion

You can specify the following options.

BLUP< (suboptions) >=SAS-data-set
creates a data set that contains the BLUE and BLUP solutions.The covariance parameters are assumed
to be known and given by PARMS statement. All hypothesis testing is ignored. The statements TEST,
ESTIMATE, CONTRAST, LSMEANS, and OUTPUT are all ignored. This option is designed for
users who need BLUP solutions for random effects with many levels, up to tens of millions.

You can specify the following suboptions:

ITPRINT=number specifies that the iteration history be displayed after every number of iterations.
This suboption applies only for iterative solving methods (IOC or IOD). The de-
fault value is 10, which means the procedure displays the iteration history for every
10 iterations.

MAXITER=number specifies the maximum number of iterations allowed. This applies only for
iterative solving methods (IOC or IOD). The default value is the number of pa-
rameters in the BLUE/BLUP plus two.

METHOD=DIRECT | IOC | IOD specifies the method used to solve for BLUP solutions.
METHOD=DIRECT requires storing mixed model equations (MMEQ) in mem-
ory and computing the Cholesky decomposition of MMEQ. This method is
the most accurate, but it is the most inefficient in terms of speed and memory.
METHOD=IOD does not build mixed model equations; instead it iterates on data
to solve for the solutions. This method is most efficient in terms of memory.
METHOD=IOC requires storing mixed model equations in memory and iterates
on MMEQ to solve for the solutions. This method is the most efficient in terms of
speed. The default method is IOC.

TOL=number specifies the tolerance value. This suboption applies only for iterative solving
methods (IOC or IOD). The default value is the square root of machine precision.
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DATA=SAS-data-set
names the SAS data set to be used by PROC HPMIXED. The default is the most recently created data
set.

INFOCRIT=NONE | PQ | Q

IC=NONE | PQ | Q
determines the computation of information criteria in the “Fit Statistics” table. The criteria are all in
smaller-is-better form, and are described in Table 46.3.

Table 46.3 Information Criteria

Criteria Formula Reference

AIC �2`C 2d Akaike (1974)
AICC �2`C 2dn�=.n� � d � 1/ for n� � d C 2 Hurvich and Tsai (1989) and

�2`C 2d.d C 2/ for n� < d C 2 Burnham and Anderson (1998)
HQIC �2`C 2d log.log.n// for n > 1 Hannan and Quinn (1979)

BIC �2`C d log.n/ for n > 0 Schwarz (1978)
CAIC �2`C d.log.n/C 1/ for n > 0 Bozdogan (1987)

Here ` denotes the maximum value of the restricted log likelihood, d is the dimension of the model,
and n, n� reflect the size of the data. When n � 1, the value of the HQIC criterion is �2`. When n=0,
the values of the BIC and CAIC criteria are undefined.

The quantities d, n, and n� depend on the model and IC= option.

� models without random effects:
The IC=Q and IC=PQ options have no effect on the computation.

– d equals the number of parameters in the optimization whose solutions do not fall on the
boundary or are otherwise constrained.

– n equals the number of used observations minus rank(X).
– n� equals n, unless n < d + 2, in which case n� D d C 2.

� models with random effects:

– d equals the number of parameters in the optimization whose solutions do not fall on the
boundary or are otherwise constrained. If IC=PQ, this value is incremented by rank.X/.

– n equals the effective number of subjects as displayed in the “Dimensions” table, unless
this value equals 1, in which case n equals the number of levels of the first random effect
specified. The IC=Q and IC=PQ options have no effect.

– n� equals n, unless n < d + 2, in which case n� D d C 2. The IC=Q and IC=PQ options
have no effect.

The IC=NONE option suppresses the “Fit Statistics” table. IC=Q is the default.

ITDETAILS
displays the parameter values at each iteration and enables the writing of notes to the SAS log per-
taining to “infinite likelihood” and “singularities” during optimization iterations.
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LOGNOTE
writes to the log periodic notes that describe the current status of computations. This option is de-
signed for use with analyses that require extensive CPU resources.

MAXCLPRINT=number
specifies the maximum levels of CLASS variables to print in the ODS table “ClassLevels.” The default
value is 20. MAXCLPRINT=0 enables you to print all levels of each CLASS variable. However, the
option NOCLPRINT takes precedence over MAXCLPRINT.

METHOD=
specifies the estimation method for the covariance parameters. The REML specification performs
residual (restricted) maximum likelihood, and it is currently the only available method. This option
is therefore currently redundant for PROC HPMIXED, but it is included for consistency with other
mixed model procedures in SAS/STAT software.

MMEQ
displays coefficients of the mixed model equations. These are"

X0bR�1X X0bR�1Z
Z0bR�1X Z0bR�1ZC bG�1

#"
X0bR�1y
Z0bR�1y

#

assuming bG is nonsingular. If bG is singular, PROC HPMIXED produces the following coefficients"
X0bR�1X X0bR�1ZbGbGZ0bR�1X bGZ0bR�1ZbGC bG

#"
X0bR�1ybGZ0bR�1y

#

See the section “Model and Assumptions” on page 3693 for further information about these equations.

NAMELEN=number
specifies the length to which long effect names are shortened. The default and minimum value is 20.

NLPRINT
requests that optimization-related output options specified in the NLOPTIONS statement override
corresponding options in the PROC HPMIXED statement. When you specify NLPRINT, the ITDE-
TAILS and NOITPRINT options in the PROC HPMIXED statement are ignored and the following
six options in the NLOPTIONS statement are enabled: NOPRINT, PHISTORY, PSUMMARY, PALL,
PLONG, and PHISTPARMS.

The syntax and options of the NLOPTIONS statement are described in the section “NLOPTIONS
Statement” on page 482 in Chapter 19, “Shared Concepts and Topics.”

NOCLPRINT< =number >
suppresses the display of the “Class Level Information” table if you do not specify number. If you do
specify number, only levels with totals that are less than number are listed in the table.

NOFIT
suppresses fitting of the model. When the NOFIT option is in effect, PROC HPMIXED produces
the “Model Information,” “Class Level Information,” “Number of Observations,” “Dimensions,” and
“Descriptive Statistics” tables. These can be helpful in gauging the computational effort required to
fit the model.



3666 F Chapter 46: The HPMIXED Procedure

NOINFO
suppresses the display of the “Model Information,” “Number of Observations,” and “Dimensions”
tables.

NOITPRINT
suppresses the display of the “Iteration History” table.

NOPRINT
suppresses the normal display of results. The NOPRINT option is useful when you want only to create
one or more output data sets with the procedure by using the OUTPUT statement. Note that this option
temporarily disables the Output Delivery System (ODS); see Chapter 20, “Using the Output Delivery
System,” for more information.

NOPROFILE
includes the residual variance as one of the covariance parameters in the optimization iterations. This
option applies only to models that have a residual variance parameter. By default, this parameter is
profiled out of the optimization iterations, except when you have specified the HOLD= option in the
PARMS statement.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement). This option applies to the levels for all classification variables, except when you use the
(default) ORDER=FORMATTED option with numeric classification variables that have no explicit
format. With this option, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables
with no explicit format, which are sorted by their unfor-
matted (internal) value

FREQ Descending frequency count; levels with the most obser-
vations come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the
sort order is machine-dependent. For more information about sort order, see the chapter on the SORT
procedure in the Base SAS Procedures Guide and the discussion of BY-group processing in SAS
Language Reference: Concepts.

SIMPLE
displays the mean, standard deviation, coefficient of variation, minimum, and maximum for each
variable used in PROC HPMIXED that is not a classification variable.
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SINGCHOL=number
tunes the singularity criterion in Cholesky decompositions. The default is 1E6 times the machine
epsilon; this product is approximately 1E–10 on most computers.

SINGRES=number
sets the tolerance for which the residual variance is considered to be zero. The default is 1E4 times
the machine epsilon; this product is approximately 1E–12 on most computers.

SINGULAR=number
tunes the general singularity criterion applied by the HPMIXED procedure in divisions and inversions.
The default is 1E4 times the machine epsilon; this product is approximately 1E–12 on most computers.

UPDATE
is an alias for the LOGNOTE option.

BY Statement
BY variables ;

You can specify a BY statement with PROC HPMIXED to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the NOTSORTED or DESCENDING option in the BY statement for the HPMIXED proce-
dure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are
arranged in groups (according to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Since sorting the data changes the order in which PROC HPMIXED reads observations, the sort order for
the levels of the CLASS variable might be affected if you have specified ORDER=DATA in the PROC
HPMIXED statement. This, in turn, affects specifications in the CONTRAST and ESTIMATE statements.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures
Guide.

CLASS Statement
CLASS variable < (REF= option) > . . . < variable < (REF= option) > > < / global-options > ;
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The CLASS statement names the classification variables to be used in the model. Typical classification
variables are Treatment, Sex, Race, Group, and Replication. If you use the CLASS statement, it must
appear before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.

NOTE: Prior to SAS 9, class levels were determined by using no more than the first 16 characters of the
formatted values. To revert to this previous behavior, you can use the TRUNCATE option in the CLASS
statement.

In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS
Formats and Informats: Reference. You can adjust the order of CLASS variable levels with the ORDER=
option in the PROC HPMIXED statement.

You can specify the following REF= option to indicate how the levels of an individual classification variable
are to be ordered by enclosing it in parentheses after the variable name:

REF=’level’ | FIRST | LAST
specifies a level of the classification variable to be put at the end of the list of levels. (In procedures
that solve mixed model equations by sequentially sweeping rows and columns, this level thus corre-
sponds to the reference level in the usual interpretation of the estimates of a singular parameterization.
However, since PROC HPMIXED does not necessarily solve mixed model equations in the original
order, this interpretation of the specified REF= level does not apply for this procedure.) You can
specify the level of the variable to use as the reference level; specify a value that corresponds to the
formatted value of the variable if a format is assigned. Alternatively, you can specify REF=FIRST
to designate that the first ordered level serve as the reference, or REF=LAST to designate that the
last ordered level serve as the reference. To specify that REF=FIRST or REF=LAST be used for all
classification variables, use the REF= global-option after the slash (/) in the CLASS statement.

You can specify the following global-options in the CLASS statement after a slash (/):

REF=FIRST | LAST
specifies a level of all classification variables to be put at the end of the list of levels. (In proce-
dures that solve mixed model equations by sequentially sweeping rows and columns, this level thus
corresponds to the reference level in the usual interpretation of the estimates of a singular parame-
terization. However, since PROC HPMIXED does not necessarily solve mixed model equations in
the original order, this interpretation of the specified REF= level does not apply for this procedure.)
Specify REF=FIRST to designate that the first ordered level for each classification variable serve as
the reference. Specify REF=LAST to designate that the last ordered level serve as the reference. This
option applies to all the variables specified in the CLASS statement. To specify different reference
levels for different classification variables, use REF= options for individual variables.

TRUNCATE
specifies that class levels be determined by using only up to the first 16 characters of the formatted
values of CLASS variables. When formatted values are longer than 16 characters, you can use this
option to revert to the levels as determined in releases prior to SAS 9.
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CONTRAST Statement
CONTRAST ’label’ contrast-specification < , contrast-specification > < , . . . > < / options > ;

The CONTRAST statement provides a mechanism for obtaining custom hypothesis tests. It is patterned
after the CONTRAST statement in PROC MIXED and enables you to select an appropriate inference space
(McLean, Sanders, and Stroup 1991).

You can test the hypothesis L0� D 0, where L0 D ŒK0 M0� and �0 D Œˇ0  0�, in several inference spaces.
The inference space corresponds to the choice of M. When M D 0, your inferences apply to the entire
population from which the random effects are sampled; this is known as the broad inference space. When
all elements of M are nonzero, your inferences apply only to the observed levels of the random effects.
This is known as the narrow inference space, and you can also choose it by specifying all of the random
effects as fixed. The GLM procedure uses the narrow inference space. Finally, by zeroing portions of M
corresponding to selected main effects and interactions, you can choose intermediate inference spaces. The
broad inference space is usually the most appropriate, and it is used when you do not specify any random
effects in the CONTRAST statement.

In the CONTRAST statement,

label identifies the contrast in the table. A label is required for every contrast specified. Labels
can be up to 20 characters and must be enclosed in single quotes.

contrast-specification identifies the fixed effects and random effects and their coefficients from which the
L matrix is formed. The syntax representation of a contrast-specification is
< fixed-effect values . . . > < | random-effect values . . . >

fixed-effect identifies an effect that appears in the MODEL statement. The keyword INTERCEPT
can be used as an effect when an intercept is fitted in the model. You do not need to
include all effects that are in the MODEL statement.

random-effect identifies an effect that appears in the RANDOM statement. The first random effect must
follow a vertical bar (|); however, random effects do not have to be specified.

values are constants that are elements of the L matrix associated with the fixed and random
effects.

The rows of L0 are specified in order and are separated by commas. The rows of the K0 component of L0 are
specified on the left side of the vertical bars (|). These rows test the fixed effects and are, therefore, checked
for estimability. The rows of the M0 component of L0 are specified on the right side of the vertical bars.
They test the random effects, and no estimability checking is necessary.

If PROC HPMIXED finds the fixed-effects portion of the specified contrast to be nonestimable (see the
SINGULAR= option on page 3671), then it displays missing values for the test statistics and a note in the
log.

If the elements of L are not specified for an effect that contains a specified effect, then the elements of
the specified effect are automatically “filled in” over the levels of the higher-order effect. This feature is
designed to preserve estimability for cases where there are complex higher-order effects. The coefficients
for the higher-order effect are determined by equitably distributing the coefficients of the lower-level effect
as in the construction of least squares means. In addition, if the intercept is specified, it is distributed over
all classification effects that are not contained by any other specified effect. If an effect is not specified and
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does not contain any specified effects, then all of its coefficients in L are set to 0. You can override this
behavior by specifying coefficients for the higher-order effect.

If too many values are specified for an effect, the extra ones are ignored; if too few are specified, the
remaining ones are set to 0. If no random effects are specified, the vertical bar can be omitted; otherwise, it
must be present. If a SUBJECT effect is used in the RANDOM statement, then the coefficients specified for
the effects in the RANDOM statement are equitably distributed across the levels of the SUBJECT effect.
You can use the E option to see exactly what L matrix is used.

The SUBJECT and GROUP options in the CONTRAST statement are useful for the case where a SUB-
JECT= or GROUP= variable appears in the RANDOM statement, and you want to contrast different sub-
jects or groups. By default, CONTRAST statement coefficients about random effects are distributed equally
across subjects and groups.

PROC HPMIXED handles missing level combinations of CLASS variables similarly to the way PROC GLM
does. Both procedures delete fixed-effects parameters corresponding to missing levels in order to preserve
estimability. However, PROC HPMIXED does not delete missing level combinations for random-effects
parameters because linear combinations of the random-effects parameters are always estimable. These
conventions can affect the way you specify your CONTRAST coefficients.

The CONTRAST statement computes the statistic

F D

� b̌b
�0

L.L0bCL/�1L0
� b̌b

�
r

where r D rank.L0bCL/ and approximates its distribution with an F distribution. In this expression, bC is an
estimate of the generalized inverse of the coefficient matrix in the mixed model equations.

The numerator degree of freedom in the F approximation is r D rank.L0bCL/, and the denominator degree
of freedom is taken from the “Type III Tests of Fixed Effects” table and corresponds to the final effect you
list in the CONTRAST statement. You can change the denominator degrees of freedom by using the DF=
option.

You can specify the following options in the CONTRAST statement after a slash (/).

CHISQ
requests that �2 tests be performed in addition to any F tests. A �2 statistic equals its corresponding
F statistic times the associate numerator degree of freedom, and this same degree of freedom is used
to compute the p-value for the �2 test. This p-value will always be less than that for the F test, as it
effectively corresponds to an F test with infinite denominator degrees of freedom.

DF=number
specifies the denominator degrees of freedom for the F test. The default is the denominator degrees
of freedom taken from the “Type III Tests of Fixed Effects” table and corresponds to the final effect
you list in the CONTRAST statement.

E
requests that the L matrix coefficients for the contrast be displayed. The name of this “L Matrix
Coefficients” table is “Coef.”
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GROUP coeffs
sets up random-effect contrasts between different groups when a GROUP= variable appears in the
RANDOM statement. By default, CONTRAST statement coefficients about random effects are dis-
tributed equally across groups. If you enter a multi-row contrast, you can also enter multiple rows for
the GROUP coefficients. If the number of GROUP coefficients is less than the number of contrasts in
the CONTRAST statement, the HPMIXED procedure cycles through the GROUP coefficients. For
example, the following two statements are equivalent:

contrast 'Trt @ x=0.4 and 0.5' trt 1 -1 0 | x 0.4,
trt 1 0 -1 | x 0.4,
trt 1 -1 0 | x 0.5,
trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1, 1 -1, 1 0 -1;

contrast 'Trt @ x=0.4 and 0.5' trt 1 -1 0 | x 0.4,
trt 1 0 -1 | x 0.4,
trt 1 -1 0 | x 0.5,
trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1;

SINGULAR=number
tunes the estimability checking. If v is a vector, define ABS(v) to be the largest absolute value of
the element of v with the largest absolute value. If ABS(K0 � K0T) is greater than c*number for
any row of K0 in the contrast, then K is declared nonestimable. Here T is the Hermite form matrix
.X0X/�X0X, and c is ABS(K0) except when it equals 0, and then c is 1. The value for number must
be between 0 and 1; the default is 1E–4.

SUBJECT coeffs
sets up random-effect contrasts between different subjects when a SUBJECT= variable appears in the
RANDOM statement. By default, CONTRAST statement coefficients about random effects are dis-
tributed equally across subjects. Listing subject coefficients for multiple row CONTRASTS follows
the same rules as for GROUP coefficients.

EFFECT Statement
EFFECT name=effect-type (variables < / options >) ;

The EFFECT statement enables you to construct special collections of columns for design matrices. These
collections are referred to as constructed effects to distinguish them from the usual model effects that are
formed from continuous or classification variables, as discussed in the section “GLM Parameterization of
Classification Variables and Effects” on page 383 in Chapter 19, “Shared Concepts and Topics.”

You can specify the following effect-types:

COLLECTION is a collection effect that defines one or more variables as a single effect with
multiple degrees of freedom. The variables in a collection are considered as
a unit for estimation and inference.

LAG is a classification effect in which the level that is used for a given period
corresponds to the level in the preceding period.
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MULTIMEMBER | MM is a multimember classification effect whose levels are determined by one or
more variables that appear in a CLASS statement.

POLYNOMIAL | POLY is a multivariate polynomial effect in the specified numeric variables.

SPLINE is a regression spline effect whose columns are univariate spline expansions
of one or more variables. A spline expansion replaces the original variable
with an expanded or larger set of new variables.

Table 46.4 summarizes the options available in the EFFECT statement.

Table 46.4 EFFECT Statement Options

Option Description

Collection Effects Options
DETAILS Displays the constituents of the collection effect

Lag Effects Options
DESIGNROLE= Names a variable that controls to which lag design an observation

is assigned

DETAILS Displays the lag design of the lag effect

NLAG= Specifies the number of periods in the lag

PERIOD= Names the variable that defines the period

WITHIN= Names the variable or variables that define the group within which
each period is defined

Multimember Effects Options
NOEFFECT Specifies that observations with all missing levels for the multi-

member variables should have zero values in the corresponding
design matrix columns

WEIGHT= Specifies the weight variable for the contributions of each of the
classification effects

Polynomial Effects Options
DEGREE= Specifies the degree of the polynomial
MDEGREE= Specifies the maximum degree of any variable in a term of the

polynomial
STANDARDIZE= Specifies centering and scaling suboptions for the variables that

define the polynomial

Spline Effects Options
BASIS= Specifies the type of basis (B-spline basis or truncated power func-

tion basis) for the spline expansion
DEGREE= Specifies the degree of the spline transformation
KNOTMETHOD= Specifies how to construct the knots for spline effects

For more information about the syntax of these effect-types and how columns of constructed effects are
computed, see the section “EFFECT Statement” on page 393 in Chapter 19, “Shared Concepts and Topics.”
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The HPMIXED procedure does not support the SPLIT or SEPARATED option in spline effects and poly
effects.

ESTIMATE Statement
ESTIMATE ’label’ contrast-specification < (divisor=n) >

< , ’label’ contrast-specification < (divisor=n) > > < , . . . > < / options > ;

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. As in the CON-
TRAST statement, the basic element of the ESTIMATE statement is the contrast-specification, which con-
sists of MODEL and RANDOM effects and their coefficients. Specifically, a contrast-specification takes
the form

< fixed-effect values . . . > < | random-effect values . . . >

Based on the contrast-specifications in your ESTIMATE statement, PROC HPMIXED constructs the matrix
L0 D ŒK0 M0�, as in the CONTRAST statement, where K is associated with the fixed effects and M is
associated with the G-side random effects.

PROC HPMIXED then produces for each row l of L0 an approximate t test of the hypothesis H W l� D 0,
where � D Œˇ0  0�0. Results from all ESTIMATE statement are combined in the “Estimates” ODS table.

Note that multi-row estimates are permitted. Unlike the CONTRAST statement, you need to specify a ’label’
for every row of the multi-row estimate, since PROC HPMIXED produces one test per row.

PROC HPMIXED selects the degrees of freedom to match those displayed in the “Type III Tests of Fixed Ef-
fects” table for the final effect you list in the ESTIMATE statement. You can modify the degrees of freedom
by using the DF= option. If you select DDFM=NONE and do not modify the degrees of freedom by using
the DF= option, PROC HPMIXED uses infinite degrees of freedom, essentially computing approximate z
tests.

If PROC HPMIXED finds the fixed-effects portion of the specified estimate to be nonestimable, then it
displays “Non-est” for the estimate entry.

The construction of the L matrix for an ESTIMATE statement follows the same rules as listed under the
CONTRAST statement.

Table 46.5 summarizes the options available in the ESTIMATE statement.

Table 46.5 ESTIMATE Statement Options

Option Description

ALPHA= Specifies the confidence level
CL Constructs t-type confidence limits
DF= Specifies the degrees of freedom
DIVISOR= Specifies values to divide the coefficients
E Displays the matrix coefficients
GROUP Sets up random-effect contrasts between groups
SINGULAR= Tunes the estimability checking
SUBJECT Sets up random-effect estimates between subjects
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You can specify the following options in the ESTIMATE statement after a slash (/).

ALPHA=number
requests that a t-type confidence interval be constructed with confidence level 1� number . The value
of number must be between 0 and 1 exclusively; the default is 0.05. If DDFM=NONE and you do not
specify degrees of freedom with the DF= option, PROC HPMIXED uses infinite degrees of freedom,
essentially computing a z interval.

CL
requests that t-type confidence limits be constructed. If DDFM=NONE and you do not specify de-
grees of freedom with the DF= option, PROC HPMIXED uses infinite degrees of freedom, essentially
computing a z interval. The confidence level is 0.95 by default.

DF=number
specifies the degrees of freedom for the t-test. The default is the denominator degrees of freedom
taken from the “Type III Tests of Fixed Effects” table and corresponds to the final effect you list in
the ESTIMATE statement.

DIVISOR=value-list
specifies a list of values by which to divide the coefficients so that fractional coefficients can be
entered as integer numerators. If you do not specify value-list, a default value of 1.0 is assumed.
Missing values in the value-list are converted to 1.0.

If the number of elements in value-list exceeds the number of rows of the estimate, the extra values
are ignored. If the number of elements in value-list is less than the number of rows of the estimate,
the last value in value-list is copied forward.

If you specify a row-specific divisor as part of the specification of the estimate row, this value multi-
plies the corresponding divisor implied by the value-list. For example, the following statement divides
the coefficients in the first row by 8, and the coefficients in the third and fourth row by 3:

estimate 'One vs. two' A 2 -2 (divisor=2),
'One vs. three' A 1 0 -1 ,
'One vs. four' A 3 0 0 -3 ,
'One vs. five' A 1 0 0 0 -1 / divisor=4,.,3;

E
requests that the matrix coefficients be displayed. For ODS purposes, the name of this “L Matrix
Coefficients” table is “Coef.”

GROUP coeffs
sets up random-effect contrasts between different groups when a GROUP= variable appears in the
RANDOM statement. By default, ESTIMATE statement coefficients about random effects are dis-
tributed equally across groups. If you enter a multi-row estimate, you can also enter multiple rows for
the GROUP coefficients. If the number of GROUP coefficients is less than the number of contrasts
in the ESTIMATE statement, the HPMIXED procedure cycles through the GROUP coefficients. For
example, the following two statements are equivalent:
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estimate 'Trt 1 vs 2 @ x=0.4' trt 1 -1 0 | x 0.4,
'Trt 1 vs 3 @ x=0.4' trt 1 0 -1 | x 0.4,
'Trt 1 vs 2 @ x=0.5' trt 1 -1 0 | x 0.5,
'Trt 1 vs 3 @ x=0.5' trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1, 1 -1, 1 0 -1;

estimate 'Trt 1 vs 2 @ x=0.4' trt 1 -1 0 | x 0.4,
'Trt 1 vs 3 @ x=0.4' trt 1 0 -1 | x 0.4,
'Trt 1 vs 2 @ x=0.5' trt 1 -1 0 | x 0.5,
'Trt 1 vs 3 @ x=0.5' trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1;

SINGULAR=number
tunes the estimability checking as documented for the SINGULAR= in the CONTRAST statement.

SUBJECT coeffs
sets up random-effect estimates between different subjects when a SUBJECT= variable appears in
the RANDOM statement. By default, ESTIMATE statement coefficients about random effects are
distributed equally across subjects. Listing subject coefficients for an ESTIMATE statement with
multiple rows follows the same rules as for GROUP coefficients.

ID Statement
ID variables ;

The ID statement specifies which variables from the input data set are to be included in the OUT= data sets
from the OUTPUT statement. If you do not specify an ID statement, then all variables are included in these
data sets. Otherwise, only the variables you list in the ID statement are included. Specifying an ID statement
with no variables prevents any variables from being included in these data sets.

LSMEANS Statement
LSMEANS fixed-effects < / options > ;

The LSMEANS statement computes least squares means (LS-means) of fixed effects. As in the GLM
procedure, LS-means are predicted population margins—that is, they estimate the marginal means over a
balanced population. In a sense, LS-means are to unbalanced designs as classification and subclassification
arithmetic means are to balanced designs. The L matrix constructed to compute them is the same as the L
matrix formed in PROC GLM; however, the standard errors are adjusted for the covariance parameters in
the model.

Each LS-mean is computed as L0b̌, where L is the coefficient matrix associated with the least squares mean
and b̌ is the estimate of the fixed-effects parameter vector. The approximate standard errors for the LS-mean
is computed as the square root of L0.X0bV�1X/

�
L.

LS-means can be computed for any effect in the MODEL statement that involves CLASS variables. You
can specify multiple effects in one LSMEANS statement or in multiple LSMEANS statements, and all
LSMEANS statements must appear after the MODEL statement. As in the ESTIMATE statement, the L
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matrix is tested for estimability, and if this test fails, PROC HPMIXED displays “Non-est” for the LS-means
entries.

Assuming the LS-mean is estimable, PROC HPMIXED constructs an approximate t test to test the null
hypothesis that the associated population quantity equals zero. By default, the denominator degrees of
freedom for this test are the same as those displayed for the effect in the “Type III Tests of Fixed Effects”
table (see the section “TEST Statement” on page 3692).

Table 46.6 summarizes the options available in the LSMEANS statement.

Table 46.6 LSMEANS Statement Options

Option Description

ALPHA= Specifies the confidence level
CL Constructs t-type confidence limits
CORR Displays the estimated correlation matrix
COV Displays the estimated covariance matrix
DF= Specifies the degrees of freedom
DIFF or PDIFF Displays the differences of the LS-means
E Displays the matrix coefficients for LSMEANS effects
SINGULAR= Tunes the estimability checking
SLICE= Partitions interaction LSMEANS effects

You can specify the following options in the LSMEANS statement after a slash (/).

ALPHA=number
requests that a t-type confidence interval be constructed for each of the LS-means with confidence
level 1 � number . The value of number must be between 0 and 1; the default is 0.05.

CL
requests that t-type confidence limits be constructed for each of the LS-means. If DDFM=NONE, then
PROC HPMIXED uses infinite degrees of freedom for this test, essentially computing a z interval. The
confidence level is 0.95 by default; this can be changed with the ALPHA= option.

CORR
displays the estimated correlation matrix of the least squares means as part of the “Least Squares
Means” table.

COV
displays the estimated covariance matrix of the least squares means as part of the “Least Squares
Means” table.

DF=number
specifies the degrees of freedom for the t test and confidence limits. The default is the denominator
degrees of freedom taken from the “Type III Tests of Fixed Effects” table corresponding to the LS-
means effect. For these DDFM= methods, degrees of freedom are determined separately for each test;
see the DDFM= option on page 3679 for more information.
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DIFF< =difftype >

PDIFF< =difftype >
requests that differences of the LS-means be displayed. You can specify the following values for the
optional difftype.

DIFF=ALL requests all pairwise differences; it is the default.

DIFF=ANOM requests differences between each LS-mean and the average LS-mean, as in the
analysis of means (Ott 1967). The average is computed as a weighted mean of the
LS-means, with the weights being inversely proportional to the diagonal entries of
the L

�
X0X

�� L0 matrix. When a WEIGHT statement is specified, then the pre-
ceding matrix is replaced with L

�
X0WX

�� L0 where W is the diagonal matrix that
contains the weights. If LS-means are nonestimable, this design-based weighted
mean is replaced with an equally weighted mean. Note that the ANOM proce-
dure in SAS/QC software implements both tables and graphics for the analysis
of means with a variety of response types. For one-way designs and normally
distributed data, the DIFF=ANOM computations are equivalent to the results of
PROC ANOM.

DIFF=CONTROL requests differences with a control; by default, the control is the first level of
each of the specified LSMEANS effects. To specify which levels of the effects are
the controls, list the quoted formatted values in parentheses after the CONTROL
keyword. For example, if the effects A, B, and C are classification variables, each
having two levels, 1 and 2, the following LSMEANS statement specifies the (1,2)
level of A*B and the (2,1) level of B*C as controls:

lsmeans A*B B*C / diff=control('1' '2' '2' '1');

For multiple effects, the results depend upon the order of the list, and so you should
check the output to make sure that the controls are correct.

CONTROL produces two-tailed tests and confidence limits.

DIFF=CONTROLL requests one-tailed results and tests whether the noncontrol levels are signifi-
cantly smaller than the control. The upper confidence limits for the control minus
the noncontrol levels are considered to be infinity and are displayed as missing.

DIFF=CONTROLU requests one-tailed results and tests whether the noncontrol levels are signifi-
cantly larger than the control. The upper confidence limits for the noncontrol levels
minus the control are considered to be infinity and are displayed as missing.

The differences of the LS-means are displayed in a table titled “Differences of Least Squares Means.”
The table name is “Diffs.”

E
requests that the matrix coefficients for all LSMEANS effects be displayed. The name of this “Matrix
Coefficients” table is “Coef.”

PDIFF
is the same as the DIFF option. See the description of the DIFF option on page 3677.
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SINGULAR=number
tunes the estimability checking as documented for the SINGULAR= in the CONTRAST statement.

SLICE=fixed-effect

SLICE=(fixed-effects)
specifies effects by which to partition interaction LSMEANS effects. This can produce what are
known as tests of simple effects (Winer 1971). For example, suppose that A*B is significant, and you
want to test the effect of A for each level of B. The appropriate LSMEANS statement is

lsmeans A*B / slice=B;

This statement tests for the simple main effects of A for B, which are calculated by extracting the
appropriate rows from the coefficient matrix for the A*B LS-means and by using them to form an F
test.

The SLICE= option produces F tests that test the simultaneous equality of cell means at a fixed level
of the slice effect (Schabenberger, Gregoire, and Kong 2000).

The SLICE= option produces a table titled “Tests of Effect Slices.” The table name is “Slices.”

MODEL Statement
MODEL dependent = < fixed-effects > < / options > ;

The MODEL statement names a single dependent variable and the fixed effects, which determine the X
matrix of the mixed model. The specification of effects is the same as in the GLM procedure; however,
unlike PROC GLM, you do not specify random effects in the MODEL statement. The MODEL statement
is required.

An intercept is included in the fixed-effects model by default. If no fixed effects are specified, only this
intercept term is fit. The intercept can be removed by using the NOINT option.

You can specify the following options in the MODEL statement after a slash (/).

ALPHA=number
requests that a t-type confidence interval be constructed for each of the fixed-effects parameters with
confidence level 1 � number . The value of number must be between 0 and 1; the default is 0.05.

CL
requests that t-type confidence limits be constructed for each of the fixed-effects parameter estimates.
The confidence level is 0.95 by default; this can be changed with the ALPHA= option.

DDF=value-list
enables you to specify your own denominator degrees of freedom for the fixed effects. The value-list
specification is a list of numbers or missing values (.) separated by commas. The degrees of freedom
should be listed in the order in which the effects appear in the “Type III Tests of Fixed Effects” table.
If you want to retain the default degrees of freedom for a particular effect, use a missing value for its
location in the list. For example, the following statement assigns 3 denominator degrees of freedom
to A and 4.7 to A*B, while those for B remain the same:
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model Y = A B A*B / ddf=3,.,4.7;

DDFM=RESIDUAL | NONE
specifies the method for computing the denominator degrees of freedom for the tests of fixed effects
resulting from the MODEL, CONTRAST, ESTIMATE, LSMEANS, and TEST statements.

The DDFM=RESIDUAL option performs all tests by using the residual degrees of freedom, n �
rank.X/, where n is the number of observations used. It is the default degrees of freedom method.

DDFM=NONE specifies that no denominator degrees of freedom be applied. PROC HPMIXED then
essentially assumes that infinite degrees of freedom are available in the calculation of p-values. The
p-values for t tests are then identical to p-values derived from the standard normal distribution. In
the case of F tests, the p-values equal those of chi-square tests determined as follows: if Fobs is the
observed value of the F test with l numerator degrees of freedom, then

p D PrfFl;1 > Fobsg D Prf�2
l > lFobsg

NOINT
requests that no intercept be included in the model. An intercept is included by default.

SOLUTION | S
requests that a solution for the fixed-effects parameters be produced. Using notation from the section
“Model Assumptions” on page 3693, the fixed-effects parameter estimates are b̌ and their approxi-
mate standard errors are the square roots of the diagonal elements of .X0bV�1X/�.

Along with the estimates and their approximate standard errors, a t statistic is computed as the estimate
divided by its standard error. The degree of freedom for this t statistic matches the one appearing in the
“Type III Tests of Fixed Effects” table under the effect containing the parameter. The “Pr > |t|” column
contains the two-tailed p-value corresponding to the t statistic and associated degrees of freedom.

ZETA=number
tunes the sensitivity in forming Type III functions. Any element in the estimable function basis with
an absolute value less than number is set to 0. The default is 1E–8.

NLOPTIONS Statement
NLOPTIONS < options > ;

For more information about the NLOPTIONS, see the section “NLOPTIONS Statement” on page 482 in
Chapter 19, “Shared Concepts and Topics.”

If you choose TECH=NEWRAP, then the default value of LSPRECISION is 0.4 in the HPMIXED proce-
dure.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set >

< keyword< (keyword-options) > < =name > > . . .
< keyword< (keyword-options) > < =name > > < / options > ;
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The OUTPUT statement creates a data set that contains predicted values and residual diagnostics, computed
after fitting the model. By default, all variables in the original data set are included in the output data set.

You can use the ID statement to select a subset of the variables from the input data set to be added to the
output data set.

For example, suppose that the data set Scores contains the variables score, machine, and person. The
following statements fit a model with fixed machine and random person effects and save the predicted and
residual values to the data set igausout:

proc hpmixed data = Scores;
class machine person score;
model score = machine;
random person;
output out=igausout pred=p resid=r;

run;

You can specify the following options in the OUTPUT statement before the slash (/).

OUT=SAS data set
specifies the name of the output data set. If the OUT= option is omitted, the procedure uses the DATAn
convention to name the output data set.

keyword < (keyword-options) >< =name >
specifies a statistic to include in the output data set and optionally assigns the variable the name
name. You can use the keyword-options to control which type of a particular statistic to compute.
The keyword-options can take on the following values:

BLUP uses the predictors of the random effects in computing the statistic.

NOBLUP does not use the predictors of the random effects in computing the statistic.

The default is to compute statistics by using BLUPs. For example, the following two OUTPUT
statements are equivalent:

output out=out1 pred=predicted lcl=lower;
output out=out1 pred(blup)=predicted lcl(blup)=lower;

If a particular combination of keyword and keyword options is not supported, the statistic is not
computed and a message is produced in the SAS log.

A keyword can appear multiple times in the OUTPUT statement. Table 46.7 lists the keywords and
the default names assigned by the HPMIXED procedure if you do not specify a name. In this table, y
denotes the response variable.

Table 46.7 Keywords for Output Statistics

Keyword Options Description Expression Name

PREDICTED BLUP Linear predictor b� D x0b̌C z0b Pred
NOBLUP Marginal linear predictor b�m D x0b̌ PredPA

STDERR BLUP Standard deviation of linear
predictor

p
VarŒb� � z0� StdErr
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Table 46.7 (continued)

Keyword Options Description Expression Name

NOBLUP Standard deviation of marginal
linear predictor

p
VarŒb�m� StdErrPA

RESIDUAL BLUP Residual r D y �b� Resid
NOBLUP Marginal residual rm D y �b�m ResidPA

PEARSON BLUP Pearson-type residual r=

q
bVarŒyj� Pearson

NOBLUP Marginal Pearson-type resid-
ual

rm=

q
bVarŒy� PearsonPA

STUDENT BLUP Studentized residual r=

q
bVarŒr� Student

NOBLUP Studentized marginal residual rm=

q
bVarŒrm� StudentPA

LCL BLUP Lower prediction limit for lin-
ear predictor

LCL

NOBLUP Lower confidence limit for
marginal linear predictor

LCLPA

UCL BLUP Upper prediction limit for lin-
ear predictor

UCL

NOBLUP Upper confidence limit for
marginal linear predictor

UCLPA

VARIANCE BLUP Conditional variance of re-
sponse variable

bVarŒyj� Variance

NOBLUP Marginal variance of response
variable

bVarŒy� VariancePA

You can use the following shortcuts to request statistics: PRED for PREDICTED, STD for STDERR,
RESID for RESIDUAL, VAR for VARIANCE.

You can specify the following options of the OUTPUT statement after the slash (/).

ALLSTATS
requests that all statistics are computed. If you do not use a keyword to assign a name, the HPMIXED
procedure uses the default name.

ALPHA=number
determines the coverage probability for two-sided confidence and prediction intervals. The coverage
probability is computed as 1 � number. The value of number must be between 0 and 1 inclusively;
the default is 0.05.

NOMISS
requests that records from the input data set be written to the output data only for those observations
that were used in the analysis. By default, the HPMIXED procedure produces output statistics for all
observations in the input data set.
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NOUNIQUE
requests that names not be made unique in the case of naming conflicts. By default, the HPMIXED
procedure avoids naming conflicts by assigning a unique name to each output variable. If you specify
the NOUNIQUE option, variables with conflicting names are not renamed. In that case, the first
variable added to the output data set takes precedence.

NOVAR
requests that variables from the input data set not be added to the output data set. This option ignores
ID statement but does not apply to variables listed in a BY statement.

PARMS Statement
PARMS < (value-list). . . > < / options > ;

The PARMS statement specifies initial values for the covariance parameters, or it requests a grid search
over several values of these parameters. You must specify the values in the order in which they appear in
the “Covariance Parameter Estimates” table.

The value-list specification can take any of several forms:

m a single value

m1; m2; : : : ; mn several values

m to n a sequence where m equals the starting value, n equals the ending value, and the incre-
ment equals 1

m to n by i a sequence where m equals the starting value, n equals the ending value, and the incre-
ment equals i

m1; m2 to m3 mixed values and sequences

You can use the PARMS statement to input known parameters. Suppose the three variance components are
known to be 2, 1, and 3. The SAS statements to fix the variance components at these values are as follows:

proc hpmixed noprofile;
class Family Gender;
model Height = Gender;
random Family Family*Gender;
parms (2) (1) (3) / noiter;

run;

The NOPROFILE option in the PROC HPMIXED statement suppresses profiling the residual variance pa-
rameter during its calculations, thereby enabling its value to be held at 3 as specified in the PARMS state-
ment.

If you specify more than one set of initial values, PROC HPMIXED performs a grid search of the likelihood
surface and uses the best point on the grid for subsequent analysis. Specifying a large number of grid
points can result in long computing times. The grid search feature is also useful for exploring the likelihood
surface.

The results from the PARMS statement are the values of the parameters on the specified grid (denoted by
CovP1–CovPn), the residual variance (possibly estimated) for models with a residual variance parameter,
and various functions of the likelihood.
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The name of the “Parameter Search” table is “ParmSearch.”

You can specify the following options in the PARMS statement after a slash (/).

HOLD=value-list

HOLD
specifies which parameter values PROC HPMIXED should hold to equal the specified values. To hold
all parameters, you can use the second form without giving the value-list. For example, the following
statement constrains the first and third covariance parameters to equal 5 and 2, respectively.

Specifying the HOLD= option implies the NOPROFILE option in the PROC HPMIXED statement:

parms (5) (3) (2) (3) / hold=1,3;

LOWERB=value-list
enables you to specify lower boundary constraints on the covariance parameters. The value-list spec-
ification is a list of numbers or missing values (.) separated by commas. You must list the numbers
in the order that PROC HPMIXED uses for the covariance parameters, and each number corresponds
to the lower boundary constraint. A missing value instructs PROC HPMIXED to use its default
constraint, and if you do not specify numbers for all of the covariance parameters, PROC MIXED
assumes the remaining ones are missing.

NOITER
requests that no optimization iterations be performed and that PROC HPMIXED use the best value
from the grid search to perform inferences. By default, iterations begin at the best value from the
PARMS grid search. This option is ignored when you specify the HOLD= option.

If a residual variance is profiled, the parameter estimates can change from the initial values you
provide as the residual variance is recomputed. To prevent an update of the residual variance, combine
the NOITER option with the NOPROFILE option in the PROC HPMIXED statements, as in the
following program:

proc hpmixed noprofile;
class A B C rep mp sp;
model y = A | B | C;
random rep mp sp;
parms (180) (200) (170) (1000) / noiter;

run;

Specifying the NOITER option in the PARMS statement has the same effect as specifying TECH-
NIQUE=NONE in the NLOPTIONS statement.

Notice that the NOITER option can be useful if you want to obtain the starting values HPMIXED
computes. The following statements produce the starting values:

proc hpmixed noprofile;
class A B;
model y = A;
random int / subject=B;
parms / noiter;

run;
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PARMSDATA=SAS-data-set
PDATA=SAS data set

reads in covariance parameter values from a SAS data set. The data set should contain the numer-
ical variable ESTIMATE or the numerical variables Covp1–Covpq, where q denotes the number of
covariance parameters.

If the PARMSDATA= data set contains multiple sets of covariance parameters, the HPMIXED pro-
cedure evaluates the initial objective function for each set and commences the optimization step by
using the set with the lowest function value as the starting values. For example, the following SAS
statements request that the objective function be evaluated for three sets of initial values:

data data_covp;
input covp1-covp4;
datalines;

180 200 170 1000
170 190 160 900
160 180 150 800
;
proc hpmixed;

class A B C rep;
model yield = A;
random rep B C;
parms / pdata=data_covp;

run;

Each set comprises four covariance parameters.

The order of the observations in a data set with the numerical variable Estimate corresponds to the
order of the covariance parameters in the “Covariance Parameter Estimates” table.

The PARMSDATA= data set must contain at least one set of covariance parameters with no missing
values.

If the HPMIXED procedure is processing the input data set in BY groups, you can add the BY
variables to the PARMSDATA= data set. If this data set is sorted by the BY variables, the HPMIXED
procedure matches the covariance parameter values to the current BY group. If the PARMSDATA=
data set does not contain all BY variables, the data set is processed in its entirety for every BY group
and a message is written to the log. This enables you to provide a single set of starting values across
BY groups, as in the following statements:

data data_covp;
input covp1-covp4;
datalines;

180 200 170 1000
;
proc hpmixed;

class A B C rep;
model yield = A;
random rep B C;
parms / pdata=data_covp;
by year;

run;
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The same set of starting values is used for each value of the year variable.

UPPERB=value-list
enables you to specify upper boundary constraints on the covariance parameters. The value-list spec-
ification is a list of numbers or missing values (.) separated by commas. You must list the numbers
in the order that PROC HPMIXED uses for the covariance parameters, and each number corresponds
to the upper boundary constraint. A missing value instructs PROC HPMIXED to use its default con-
straint, and if you do not specify numbers for all of the covariance parameters, PROC HPMIXED
assumes that the remaining ones are missing.

RANDOM Statement
RANDOM random-effects < / options > ;

The RANDOM statement defines the random effects in the mixed model. It can be used to specify traditional
variance component models (as in the VARCOMP procedure) and to specify random coefficients. The
random effects can be classification or continuous. Multiple RANDOM statements are possible. Random
effects specified in a RANDOM statement could be correlated with each other for certain types of covariance
structures (see the TYPE= option on page 3686). It is, however, assumed that random effects specified using
different RANDOM statements are not correlated.

Using notation from the section “Model Assumptions” on page 3693, the purpose of the RANDOM state-
ment is to define the Z matrix of the mixed model, the random effects in the  vector, and the structure of G.
The Z matrix is constructed exactly like the X matrix for the fixed effects, and the G matrix is constructed to
correspond to the effects constituting Z. The structure of G is defined by using the TYPE= option described
on page 3686.

You can specify INTERCEPT (or INT) as a random effect. PROC HPMIXED does not include the intercept
in the RANDOM statement by default, as it does in the MODEL statement.

You can specify the following options in the RANDOM statement after a slash (/).

ALPHA=number
requests that a t-type confidence interval with confidence level 1�number be constructed for the pre-
dictors of random effects in this statement. The value of number must be between 0 and 1 exclusively;
the default is 0.05. Specifying the ALPHA= option implies the CL option.

CL
requests that t-type confidence limits be constructed for each of the predictors of random effects in
this statement. The confidence level is 0.95 by default; this can be changed with the ALPHA= option.
The CL option implies the SOLUTION option.

GROUP=effect
defines an effect specifying heterogeneity in the covariance structure of G. All observations having
the same level of the group effect have the same covariance parameters. Each new level of the group
effect produces a new set of covariance parameters with the same structure as the original group.
You should exercise caution in defining the group effect, because strange covariance patterns can
result from its misuse. Also, the group effect can greatly increase the number of estimated covariance
parameters, which can adversely affect the optimization process.
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Continuous variables are permitted as arguments to the GROUP= option. PROC HPMIXED does
not sort by the values of the continuous variable; rather, it considers the data to be from a new group
whenever the value of the continuous variable changes from the previous observation. Using a con-
tinuous variable decreases execution time for models with a large number of groups and also prevents
the production of a large “Class Levels Information” table.

NOFULLZ
eliminates the columns in Z corresponding to missing levels of random effects involving CLASS
variables. By default, these columns are included in Z. It is sufficient to specify the NOFULLZ
option in any RANDOM statement.

SOLUTION
requests that the solution for the random-effects parameters be produced. Using notation from the
section “Model Assumptions” on page 3693, these estimates are the empirical best linear unbiased
predictors (BLUPs) b D bGZ0bV�1.y � Xb̌/. They can be useful for comparing the random effects
from different experimental units and can also be treated as residuals in performing diagnostics for
your mixed model.

The numbers displayed in the SE Pred column of the “Solution for Random Effects” table are not
the standard errors of the b displayed in the Estimate column; rather, they are the standard errors of
predictionsb i � i , whereb i is the ith BLUP and i is the ith random-effect parameter.

SUBJECT=effect
identifies the subjects in your mixed model. Complete independence is assumed across subjects; thus,
for the RANDOM statement, the SUBJECT= option produces a block-diagonal structure in G with
identical blocks. The Z matrix is modified to accommodate this block-diagonality. In fact, specifying
a subject effect is equivalent to nesting all other effects in the RANDOM statement within the subject
effect.

Continuous variables are permitted as arguments to the SUBJECT= option. PROC HPMIXED does
not sort by the values of the continuous variable; rather, it considers the data to be from a new subject
whenever the value of the continuous variable changes from the previous observation. Using a contin-
uous variable decreases execution time for models with a large number of subjects and also prevents
the production of a large “Class Levels Information” table.

TYPE=covariance-structure
specifies the structure of the covariance matrix G for random effects. The default structure is VC.

If you want different covariance structures in different parts of G, you must use multiple RANDOM
statements with different TYPE= options.

Valid values for covariance-structure are listed in Table 46.8. Examples are shown in Table 46.9.

Table 46.8 Covariance Structures

Structure Description Parameters .i; j / element

AR(1) Autoregressive(1) 2 �2�ji�j j

CHOL Cholesky root t .t C 1/=2 lij

CS Compound symmetry (CS) 2 �1 C �
21.i D j /

CSH Heterogeneous CS t C 1 �i�j Œ�1.i ¤ j /C 1.i D j /�
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Table 46.8 continued

Structure Description Parms .i; j / element

UC Uniform correlation (UC) 2 �2Œ�1.i ¤ j /C 1.i D j /�

UCH Heterogeneous UC t C 1 �i�j Œ�1.i ¤ j /C 1.i D j /�

UN Unstructured t .t C 1/=2 �ij

VC Variance components q �2
k
1.i D j /

and i,j correspond to kth effect

In Table 46.8, t is the overall dimension of the covariance matrix, and 1.A/ equals 1 when A is true
and 0 otherwise. For example, 1(i = j) equals 1 when i = j and equals 0 otherwise. TYPE=UCH is the
same as TYPE=CSH.

Table 46.9 lists some examples of the structures in Table 46.8.

Table 46.9 Covariance Structure Examples

Description Structure Example

First-order
autoregressive

AR(1) �2

2664
1 � �2 �3

� 1 � �2

�2 � 1 �

�3 �2 � 1

3775

Cholesky
root

CHOL

2664
l11 0 0 0

l21 l22 0 0

l31 l32 l33 0

l41 l42 l43 l44

3775
2664
l11 l21 l31 l41

0 l22 l32 l42

0 0 l33 l43

0 0 0 l44

3775

Compound
symmetry

CS

2664
�2 C �1 �1 �1 �1

�1 �2 C �1 �1 �1

�1 �1 �2 C �1 �1

�1 �1 �1 �2 C �1

3775

Uniform
correlation

UC �2

2664
1 � � �

� 1 � �

� � 1 �

� � � 1

3775

Heterogeneous
UC

UCH

2664
�2

1 �1�2� �1�3� �1�4�

�2�1� �2
2 �2�3� �2�4�

�3�1� �3�2� �2
3 �3�4�

�4�1� �4�2�
2 �4�3� �2

4

3775

Unstructured UN

2664
�2

1 �21 �31 �41

�21 �2
2 �32 �42

�31 �32 �2
3 �34

�41 �42 �43 �2
4

3775
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Table 46.9 continued

Description Structure Example

Variance
components

VC (default)

2664
�2

A 0 0 0

0 �2
A 0 0

0 0 �2
B 0

0 0 0 �2
B

3775

The variances and covariances in the formulas that follow in the TYPE= descriptions are expressed in
terms of generic random variables �i and �j . They represent random effects for which the G matrices
are constructed.

The following list provides some further information about these covariance structures:

TYPE=AR(1) specifies a first-order autoregressive structure,

Cov
�
�i ; �j

�
D �2�ji�j j

The values i and j are derived for the ith and jth observations, respectively. For
example, in the following statements the values correspond to the class levels for
the time effect of the ith and jth observation within a particular subject:

proc hpmixed;
class time patient;
model y = x x*x;
random time / sub=patient type=ar(1);

run;

PROC HPMIXED imposes the constraint j�j < 1 for stationarity.

TYPE=CHOL specifies an unstructured variance-covariance matrix parameterized through its
Cholesky root. All diagonal values are constrained to be positive. This param-
eterization guarantees a positive definite covariance matrix. For example, a 2 � 2
unstructured covariance matrix can be written as

VarŒ�� D
�
�2

1 �21

�21 �2
2

�
Without imposing constraints on the three parameters, there is no guarantee that
the estimated variance matrix is positive definite. Even if �2

1 and �2
2 are nonzero, a

large value for �21 can lead to a negative eigenvalue of VarŒ��. The Cholesky root
of a positive definite matrix A is a lower triangular matrix L such that LL0 D A.
The Cholesky root of the above 2 � 2 matrix can be written as

L D
�
l11 0

l21 l22

�
The elements of the unstructured variance matrix are then simply �2

1 D l211,
�21 D l21l11, and �2

2 D l221 C l
2
22. Similar operations yield the generalization

to covariance matrices of higher orders.

For example, the following statements model the covariance matrix of each subject
as an unstructured matrix:
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proc hpmixed;
class sub;
model y = x;
random time / sub=patient type=chol;

run;

The HPMIXED procedure constrains the diagonal elements of the Cholesky root
to be positive. This guarantees that the structure is positive definite.

TYPE=CS specifies the compound-symmetry structure, which has constant variance and con-
stant covariance

Cov
�
�i ; �j

�
D

�
�2 C �1 i D j

�1 i 6D j

Under compound-symmetry, the G matrix is of form �2I C �1J. The variance
parameter �2 is constrained to be positive, and the covariance parameter �1 is
constrained to be greater than ��2=t where t is the dimension of the structure.
This guarantees the structure is positive definite. The compound-symmetry struc-
ture arises naturally with nested random effects, such as when a subsampling error
is nested within an experimental error.

TYPE=CSH specifies the heterogeneous compound-symmetry structure. This structure has a
different variance parameter for each diagonal element, and it uses the square roots
of these parameters in the off-diagonal entries. In Table 46.8, �2

i is the ith variance
parameter that satisfies �2

i > 0, and � is the correlation parameter that satisfies
� > �1=.t � 1/, where t is the dimension of the structure. This guarantees that the
structure is positive definite.

TYPE=UC specifies the uniform correlation structure, which has constant variance and con-
stant correlation

Cov
�
�i ; �j

�
D

�
�2 i D j

�2� i 6D j

Under uniform correlation, the G matrix is of form �2Œ.1 � �/IC �J�. The vari-
ance �2 is constrained to be positive, and the correlation � is constrained to be
greater than �1=.t � 1/, where t is the dimension of the structure. This guarantees
the structure is positive definite. This structure is equivalent to the compound-
symmetry structure with a better numerical property in terms of optimization.

The uniform correlation structure arises frequently in agriculture and animal sci-
ences.

TYPE=UCH specifies the heterogeneous uniform correlation structure. This structure has a
different variance parameter for each diagonal element, and it uses the square roots
of these parameters in the off-diagonal entries. In Table 46.8, �2

i is the ith variance
parameter that satisfies �2

i > 0, and � is the correlation parameter that satisfies
� > �1=.t � 1/, where t is the dimension of the structure. This guarantees that the
structure is positive definite.

TYPE=UN specifies a completely general (unstructured) covariance matrix parameterized di-
rectly in terms of variances and covariances. The variances are constrained to be
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positive, and the covariances are unconstrained. In addition, this structure is inter-
nally constrained to be positive definite.

TYPE=VC specifies standard variance components and is the default structure for the RAN-
DOM and REPEATED statements. In the RANDOM statement, a distinct variance
component is assigned to each effect. In the REPEATED statement, this structure
is usually used only with the GROUP= option to specify a heterogeneous variance
model.

REPEATED Statement
REPEATED repeated-effect < / options > ;

The REPEATED statement defines the repeated effect and the residual covariance structure in the mixed
model. The residual variance-covariance matrix is denoted as R. The repeated-effect is required and
consists entirely of classification variables. The levels of the repeated-effect must be different for each
observation within a subject in order to avoid the singular R matrix. The SUBJECT= option is required.
The data set must be grouped by subject effect.

Table 46.10 summarizes the options available in the REPEATED statement.

Table 46.10 Summary of REPEATED Statement Options

Option Description

Construction of Covariance Structure
GROUP= Defines an effect that specifies heterogeneity in the residual co-

variance structure
SUBJECT= Identifies the subjects in the residual covariance structure
TYPE= Specifies the residual covariance structure (the default is VC)

Statistical Output
R= Displays blocks of the estimated R matrix
RC= Display the Cholesky root (lower) of blocks of the estimated R

matrix
RCI= Displays the inverse Cholesky root (lower) of blocks of the esti-

mated R matrix
RCORR= Displays the correlation matrix that corresponds to blocks of the

estimated R matrix
RI= Displays the inverse of blocks of the estimated R matrix

You can specify the following options in the REPEATED statement after a slash (/).

GROUP=effect

GRP=effect
defines an effect that specifies heterogeneity in the residual covariance structure. All observations that
have the same level of the GROUP effect have the same covariance parameters. Each new level of the
GROUP effect produces a new set of covariance parameters with the same structure as the original
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group. You should exercise caution in defining the GROUP effect, because strange covariance patterns
can result with its misuse. Also, the GROUP effect can greatly increase the number of estimated
covariance parameters, which can adversely affect the optimization process.

Continuous variables are permitted as arguments to the GROUP= option. PROC HPMIXED does not
sort by the values of the continuous variable; rather, it considers the data to be from a new subject or
group whenever the value of the continuous variable changes from the previous observation. Using
a continuous variable decreases execution time for models with a large number of subjects or groups
and also prevents the production of a large “Class Level Information” table.

R< =value-list >
requests that blocks of the estimated R matrix be displayed. The first block determined by the SUB-
JECT= effect is the default displayed block.

The value-list indicates the subjects for which blocks of R are to be displayed. For example, the
following statement displays block matrices for the first, third, and fifth persons:

repeated time / type=un subject=person r=1,3,5;

See the PARMS statement for the possible forms of value-list.

RC< =value-list >
displays the Cholesky root of blocks of the estimated R matrix. The value-list specification is the
same as for the R= option.

RCI< =value-list >
displays the inverse Cholesky root of blocks of the estimated R matrix. The value-list specification is
the same as for the R= option.

RCORR< =value-list >
displays the correlation matrix that corresponds to blocks of the estimated R matrix. The value-list
specification is the same as for the R= option.

RI< =value-list >
produces the inverse of blocks of the estimated R matrix. The value-list specification is the same as
for the R= option.

SUBJECT=effect

SUB=effect
identifies the subjects in your mixed model. Complete independence is assumed across subjects;
therefore, the SUBJECT= option produces a block-diagonal structure in R with identical blocks. The
SUBJECT= option is required. The data set must be grouped by SUBJECT= effect. When the SUB-
JECT= effect consists entirely of classification variables, the blocks of R correspond to observations
that share the same level of that effect. These blocks are sorted according to this effect as well.

Continuous variables are permitted as arguments to the SUBJECT= option. PROC HPMIXED does
not sort by the values of the continuous variable; rather, it considers the data to be from a new subject
or group whenever the value of the continuous variable changes from the previous observation. Using
a continuous variable decreases execution time for models with a large number of subjects or groups
and also prevents the production of a large “Class Level Information” table.
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If you want to model nonzero covariance among all of the observations in your data, specify SUB-
JECT=INTERCEPT to treat the data as if they are all from one subject. However, be aware that in
this case PROC HPMIXED manipulates an R matrix with dimensions equal to the number of obser-
vations.

TYPE=covariance-structure
specifies the structure of the residual variance-covariance matrix R. The SUBJECT= option defines
the blocks of R, and the TYPE= option specifies the structure of these blocks. PROC HPMIXED
supports the following structures: TYPE=AR(1), TYPE=CHOL, TYPE=UN, and TYPE=VC. The
default structure is VC. See the description in the section “RANDOM Statement” on page 3685 for
more information about these covariance structure types.

TEST Statement
TEST fixed-effects < / options > ;

The TEST statement performs a hypothesis test on the fixed effects. You can specify multiple effects in one
TEST statement or in multiple TEST statements, and all TEST statements must appear after the MODEL
statement.

You can specify the following options in the TEST statement after a slash (/).

HTYPE=value-list
indicates the type of hypothesis test to perform on the specified effects. Valid entries for values in
the value-list are 3, corresponding to a Type III test. The default value is 3. The ODS table name is
“Tests3” for the Type III test.

E
requests that matrix coefficients associated with test types be displayed for specified effects.

E3 | EIII
requests that Type III matrix coefficients be displayed if a Type III test is performed.

CHISQ
requests that �2 tests be performed in addition to any F tests. A �2 statistic equals its corresponding F
statistic times the associate numerator degree of freedom, and this same degree of freedom is used to
compute the p-value for the �2 test. This p-value will always be less than that for the F test, because
it effectively corresponds to an F test with infinite denominator degrees of freedom.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement replaces R with W�1=2RW�1=2, where W is a diagonal matrix containing the
weights. Observations with nonpositive or missing weights are not included in the resulting PROC HP-
MIXED analysis. If a WEIGHT statement is not included, all observations used in the analysis are assigned
a weight of 1.
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If a computation in PROC MIXED involves R, then the WEIGHT statement replaces R with
W�1=2RW�1=2. For example, the covariance matrix V for the observations usually have the form
V D ZGZ0 C R; therefore, with the WEIGHT statement, this becomes V D ZGZ0 CW�1=2RW�1=2:

Details: HPMIXED Procedure

Model Assumptions
The following sections provide an overview of the approach used by the HPMIXED procedure for
likelihood-based analysis of linear mixed models with sparse matrix technique. Additional theory and ex-
amples are provided in Littell et al. (1996); Verbeke and Molenberghs (1997, 2000); Brown and Prescott
(1999).

The HPMIXED procedure fits models generally of the form

y D Xˇ C Z C �

Models of this form contain both fixed-effects parameters, ˇ, and random-effects parameters, ; hence, they
are called mixed models. See Henderson (1990) and Searle, Casella, and McCulloch (1992) for historical
developments of the mixed model. Note that the matrix Z can contain either continuous or dummy variables,
just like X.

So far this is the same general form of model fit by the MIXED procedure. The difference between the
models handled by the two procedures lies in the assumptions about the distributions of  and �. For both
procedures a key assumption is that  and � are normally distributed with

E
�



�

�
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�
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0

�
Var

�


�

�
D

�
G 0
0 R

�
The two procedures differ in their assumptions about the variance matrices G and R for  and �, respectively.
The MIXED procedure allows a variety of different structures for both G and R; while in HPMIXED
procedure, R is always assumed to be of the form R D I�2, and the structures available for modeling G are
only a small subset of the structures offered by the MIXED procedure.

Estimates of fixed effects and predictions for random effects are obtained by solving the so-called mixed
model equations:�

X0X=�2 X0Z=�2

Z0X=�2 Z0Z=�2 CG�1

� � b̌b
�
D

�
X0y=�2

Z0y=�2

�
Let C denote the coefficient matrix of the mixed model equations:

C D
�

X0X=�2 X0Z=�2

Z0X=�2 Z0Z=�2 CG�1

�
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Under the assumptions given previously for the moments of  and �, the variance of y is V D ZGZ0C I�2.
You can model V by setting up the random-effects design matrix Z and by specifying covariance structures
for G. Let � be a vector of all unknown parameters in G. Then the general form of the restricted likelihood
function for the mixed models that the HPMIXED procedure can fit is

L.�; �2/ D �2 log l D .n � p/ log.2�/C log jCj C log jGj C n log.�2/C y0Py

where

P D V�1
� V�1X.X0V�1X/�X0V�1

and p is the rank of X. The HPMIXED procedure minimizes L.�; �2/ over all unknown parameters in �

and �2 by using nonlinear optimization algorithms.

Computing and Maximizing the Likelihood
In computing the restricted likelihood function given previously, the determinants of the matrices C and G
can be obtained effectively by using Cholesky decomposition. The quadratic term y0Py can be expressed in
terms of solutions of mixed model equations as follows:

y0Py D
1

�2

�
y0y �

hb̌0;b 0i � X0y
Z0y

��
By default, the HPMIXED procedure profiles out the residual variance �2 from the parameter vector � . Let
�� be the new parameter vector such that ��i D �i=�

2. The profiled objective function becomes

L.��; �2/ D .n � p/ log.2�/C log jC�j C log jG�j � .rC � rG � n/ log.�2/C .n � p/

where C� D C�2 and G� D G�2 are the profiled versions of C and G, rC and rG are the ranks of C and
G. Minimizing analytically for �2 yields

b�2
D

1

n � p

�
y0y �

hb̌0;b 0i � X0y
Z0y

��
Optimizing the likelihood calls for derivatives with respect to the parameters. The first and second deriva-
tives of the log-likelihood function L with respect to scalar variance components �i and �j are

@L

@�i
D tr

�
@V
@�i

P
�
� y0P

@V
@�i

Py

and

@2L

@�i�j
D �tr

�
@V
@�i

P
@V
@�j

P
�
C 2y0P

@V
@�i

P
@V
@�j
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The default quasi-Newton method of optimization for the HPMIXED procedure requires only first deriva-
tives of the log likelihood, and these are readily derived by solving the mixed model equations. For example,
when G D I�a, the first derivative of the log likelihood with respect to the parameter �2

a can be computed
as follows:

@L

@�2
a

D
q

�2
a

�
tr.Caa/

�4
a

�
b 0b
�4

a
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where q is the size of  vector and Caa is the part of the g-inverse of the mixed model equation coefficient
matrix C corresponding to the random effect  .

The second derivative of the log likelihood needs to be computed only if you specify certain nondefault
optimization techniques in the NLOPTIONS statement, namely TECH=NEWRAP, TECH=NRRIDG, or
TECH=TRUREG; see “NLOPTIONS Statement” on page 482 in Chapter 19, “Shared Concepts and Top-
ics,” for more information about optimization techniques. For these second-derivative-based optimization
techniques, the HPMIXED procedure does not actually use the true second derivative matrix, or observed
information matrix, as defined earlier. Instead, it uses an alternative matrix that is more efficient to compute
for large problems and that can be more stable. This alternative is called the average information matrix,
and it is defined as follows. The expected value of the second derivative is

E.
@2L

@�i�j
/ D tr

�
@V
@�i

P
@V
@�j

P
�

It is this trace that is computationally inefficient to evaluate. But if you average the expected information
matrix defined by this formula with the observed information matrix defined by the preceding formula
for the true second derivative, then the trace term cancels, leaving just a quadratic expression in y. This
quadratic expression defines the average information (Johnson and Thompson 1995) with respect to �i and
�j :

AI.�i ; �j / D y0P
@V
@�i

P
@V
@�j

Py

Computing Starting Values by EM-REML
The EM-REML algorithm (Dempster, Laird, and Rubin 1977) iteratively alternates between an expectation
step and a maximization step to maximize the restricted log likelihood. The algorithm is based on augment-
ing the observed data y with the unobservable random effects  , leading to a simplified form for the log
likelihood. For example, if G D I�2

a then given the realized values Q of the unobservable random effects  ,
the REML estimate of �2

a satisfies

b�2
a D

Q 0 Q

q � �2=�2
a tr.Caa/

This corresponds to the maximization step of EM-REML. However, the true realized values Q are unknown
in practice. The expectation step of EM-REML replaces them with the conditional expected valuesb of the
random effects, given the observed data y and initial values for the parameters. The new estimate of �2

a is
used in turn to recalculate the conditional expected values, and the iteration is repeated until convergence.

It is well known that EM-REML is generally more robust against a poor choice of starting values than
general nonlinear optimization methods such as Newton-Raphson, though it tends to converge slowly as it
approaches the optimum. The Newton-Raphson method, on the other hand, converges much faster when it
has a good set of starting values. The HPMIXED procedure, thus, employs a scheme that uses EM-REML
initially in order to get good starting values, and after a few iterations, when the decrease in log likelihood
has significantly slowed down, switching to a more general nonlinear optimization technique (by default,
quasi-Newton).
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Sparse Matrix Techniques
A key component of the HPMIXED procedure is the use of sparse matrix techniques for computing and
optimizing the likelihood expression given in the section “Model Assumptions” on page 3693. There are
two aspects to sparse matrix techniques, namely, sparse matrix storage and sparse matrix computations.
Typically, computer programs represent an N �M matrix in a dense form as an array of size NM , making
row-wise and column-wise arithmetic operations particularly efficient to compute. However, if many of
these NM numbers are zeros, then correspondingly many of these operations are unnecessary or trivial.
Sparse matrix techniques exploit this fact by representing a matrix not as a complete array, but as a set of
nonzero elements and their location (row and column) within the matrix. Sparse matrix techniques are more
efficient if there are enough zero-element operations in the dense form to make the extra time required to
find and operate on matrix elements in the sparse form worthwhile.

The following discussion illustrates sparse techniques. Let the symmetric matrix C be the matrix of mixed
model equations of size 5 � 5.

C D

266664
8:0 0 0 2:0 0

0 4:0 3:0 0 0

0 3:0 5:0 0 0

2:0 0 0 7:0 0

0 0 0 0 9:0

377775
There are 15 elements in the upper triangle of C, though eight of them are zeros. The row and column
indices and the values of seven nonzero elements are listed as follows:

i 1 1 2 2 3 4 5
j 1 4 2 3 3 4 5

Cij 8.0 2.0 4.0 3.0 5.0 7.0 9.0

The most elegant scheme to store these seven elements is to store them in a hash table with row and column
indices as a hash key. However, this scheme is not efficient as the number of non-zero elements gets very
large. The classical and widely used scheme, and the one the HPMIXED procedure employs, is the .ic ; jc ; c/
format, in which the nonzero elements are stored contiguously row by row in the vector c. To identify the
individual nonzero elements in each row, you need to know the column index of an element. These column
indices are stored in the vector jc ; that is, if c.k/ D Cij , then jc.k/ D j . To identify the individual rows, you
need to know where each row starts and ends. These row starting positions are stored in the vector ic . For
instance, if Cij is the first nonzero element in the row i and c.k/ D Cij , then ic.i/ D k. The row i ending
position is one less than ic.i C 1/. Thus, the number of nonzero elements in the row i is ic.i C 1/ � ic.i/,
these elements in the row i are stored consecutively starting from the position ki D ic.i/

c.ki /; c.ki C 1/; c.ki C 2/; :::; c.kiC1 � 1/

and the corresponding columns indices are stored consecutively in

jc.ki /; jc.ki C 1/; jc.ki C 2/; :::; jc.kiC1 � 1/

For example, the seven nonzero elements in matrix C are stored in .ic ; jc ; c/ format as
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ic 1 3 5 6 7 8
jc 1 4 2 3 3 4 5
c 8.0 2.0 4.0 3.0 5.0 7.0 9.0

Note that since matrices are stored row by row in the .ic ; jc ; c/ format, row-wise operations can be per-
formed efficiently but it is inefficient to retrieve elements column-wise. Thus, this representation will be
inefficient for matrix computations requiring column-wise operations. Fortunately, the likelihood calcula-
tions for mixed models can usually avoid column-wise operations.

In mixed models, sparse matrices typically arise from a large number of levels for fixed effects and/or ran-
dom effects. If a linear model contains one or more large CLASS effects, then the mixed model equations
are usually very sparse. Storing zeros in mixed model equations not only requires significantly more mem-
ory but also results in longer execution time and larger rounding error. As an illustration, the example in
the “Getting Started: HPMIXED Procedure” on page 3658 has 3506 mixed model equations. Storing just
the upper triangle of these equations in a dense form requires .1C 3506/� 3506=2 D 6; 147; 771 elements.
However, there are only 60,944 nonzero elements—less than 1% of what dense storage requires.

Note that as the density of the mixed model equations increases, the advantage of sparse matrix techniques
decreases. For instance, a classical regression model typically has a dense coefficient matrix, though the
dimension of the matrix is relatively small.

The HPMIXED procedure employs sparse matrix techniques to store the nonzero elements in the mixed
model equations and to compute a sparse Cholesky decomposition of these equations. A reordering of
the mixed model equations is required in order to keep the minimum memory consumption during the
factorization. This reordering process results in a different g-inverse from what is produced by most other
SAS/STAT procedures, for which the g-inverse is defined by sequential sweeping in the order defined by
the model. If mixed model equations are singular, this different g-inverse produces a different solution of
mixed model equations. However, estimable functions and tests based on them are invariant to the choice
of g-inverse, and are thus the same for the HPMIXED procedure as for other procedures.

Hypothesis Tests for Fixed Effects
Unlike most other SAS/STAT procedures for analyzing general linear models, the HPMIXED procedure
does not by default provide F tests for the fixed effects. This is because, for the large mixed model prob-
lems that the HPMIXED procedure is designed to address, such tests are often computationally prohibitive
to compute. The computation of Type III tests first constructs the Hermite matrix of the mixed model
coefficient matrix C and then forms the L coefficient matrix to obtain the F value as follows:

F D

� b̌b
�0

L0.LbC�1L0/�1L
� b̌b

�
r

where r D rank.LbC�1L0/: The coefficient matrix L corresponding to fixed effects with many levels can be
very large and dense, making them very difficult to work with. At the same time, Type III tests for effects
with many levels are relatively unlikely to be statistically useful.

For this reason, you must use the TEST statement in PROC HPMIXED to specifically ask for Type III tests
for any effects for which you want to compute them. An example of this is given in the section “Getting
Started: HPMIXED Procedure” on page 3658.
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Default Output
The following sections describe the output PROC HPMIXED produces by default. This output is organized
into various tables, and they are discussed in order of appearance.

Model Information

The “Model Information” table describes the model, some of the variables it involves, and the method used
in fitting it. It also lists the method for computing the degrees of freedom.

The name of the “Model Information” table is “ModelInfo.”

Class Level Information

The “Class Level Information” table lists the first 20 levels of every variable specified in the CLASS state-
ment. You should check this information to make sure the data are correct. You can adjust the order of
the CLASS variable levels with the ORDER= option in the PROC HPMIXED statement. The name of the
“Class Level Information” table is “ClassLevels.”

Dimensions

The “Dimensions” table lists the sizes of relevant matrices. This table can be useful in determining CPU
time and memory requirements. The name of the “Dimensions” table is “Dimensions.”

Number of Observations

The “Number of Observations” table shows the number of observations read from the data set and the
number of observations used in fitting the model.

Descriptive Statistics

The “Descriptive Statistics” table lists simple statistics such as means and standard deviations for the de-
pendent variable, for each covariate in the MODEL statement, and for the weight variable in the WEIGHT
statement.

Iteration History

The “Iteration History” table describes the optimization of the residual log likelihood. The function to be
minimized (the objective function) is �2l .

The name of the “Iteration History” table is “IterHistory.”

Covariance Parameter Estimates

The “Covariance Parameter Estimates” table contains the estimates of the parameters in G and R. Their
values are labeled in the “Cov Parm” table along with Subject and Group information if applicable. The
estimates are displayed in the Estimate column.

The name of the “Covariance Parameter Estimates” table is “CovParms.”
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Convergence Status

The “Convergence Status” table contains a status message that describes the reason the optimization ter-
minated. The message is also written to the log. The name of the “Convergence Status” table is “Conver-
genceStatus.” You can query the nonprinting numeric variable Status to check for a successful optimization.
This is useful in batch processing, or when processing BY groups, such as in simulations. Successful opti-
mizations are indicated by the value 0 for the Status variable.

Fit Statistics

The “Fit Statistics” table provides some statistics about the estimated mixed model.

In addition, the “Fit Statistics” table lists three information criteria: AIC, AICC, and BIC, all in smaller-is-
better form. Expressions for these criteria are described under the IC= option on page 3664.

The name of the “Model Fitting Information” table is “FitStatistics.”

ODS Table Names
Each table created by PROC HPMIXED has a name associated with it, and you must use this name to
reference the table when using ODS statements. These names are listed in Table 46.11.

Table 46.11 ODS Tables Produced by PROC HPMIXED

Table Name Description Required Statement / Option

CholR Cholesky root of blocks of the esti-
mated R matrix

REPEATED / RC

ClassLevels Level information from the CLASS
statement

Default output

Coef L matrix coefficients E option in TEST,
CONTRAST, ESTIMATE,
or LSMEANS

Contrasts Results from the CONTRAST
statements

CONTRAST

ConvergenceStatus Convergence status Default
CovParms Estimated covariance parameters Default output
Diffs Differences of LS-means LSMEANS / DIFF (or PDIFF)
Dimensions Dimensions of the model Default output
Estimates Results from ESTIMATE statements ESTIMATE
FitStatistics Fit statistics Default
InvCholR Inverse Cholesky root of blocks of

the estimated R matrix
REPEATED / RCI=

InvR Inverse of blocks of the estimated R
matrix

REPEATED / RI=

IterHistory Iteration history Default output
LSMeans LS-means LSMEANS
MMEq Mixed model equations PROC HPMIXED MMEQ
ModelInfo Model information Default output
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Table 46.11 (continued)

Table Name Description Required Statement / Option

NObs Number of observations read and
used

Default output

OptInfo Optimization information Default output
OverallANOVA ANOVA table for model without

random effect
Default output for fixed models

ParameterEstimates Fixed-effects solution MODEL / SOLUTION
ParmSearch Parameter search values PARMS
R Blocks of the estimated R matrix REPEATED / R=
RCorr Correlation matrix from blocks of

the estimated R matrix
REPEATED / RCORR=

SimpleStatistics Descriptive statistics for dependent
variable and covariate variables

PROC HPMIXED SIMPLE

Slices Tests of LS-means slices LSMEANS / SLICE=
SolutionR Random-effect solution vector RANDOM / SOLUTION
Tests3 Type III tests of fixed effects TEST

Examples: HPMIXED Procedure

Example 46.1: Ranking Many Random-Effect Coefficients
In analyzing models with random effects that have many levels, a frequent goal is to estimate and rank
the predicted values of the coefficients corresponding to these levels. For example, in mixed models for
animal breeding, the predicted coefficient of the random effect for each animal is referred to as the esti-
mated breeding value (EBV) and animals with relatively high EBVs are chosen for breeding. This example
demonstrates the use of the HPMIXED procedure for computing EBVs and their precision. Although other
mixed modeling tools in SAS/STAT can potentially compute EBVs, PROC HPMIXED is particularly suited
for the large, sparse matrix calculations involved. The typical performance of the HPMIXED procedure and
other tools for this problem is also discussed.

The data for this problem are generated by simulation. Suppose you are considering analyzing EBVs for
animals on 15 farms, with about 100 animals of 5 different species on each farm. The following DATA step
simulates data with this structure, where about 40 observations of the response variable Yield are made per
animal:

%let NFarm = 15;
%let NAnimal = %eval(&NFarm*100);
data Sim;

keep Species Farm Animal Yield;
array BV{&NAnimal};
array AnimalSpecies{&NAnimal};
array AnimalFarm{&NAnimal};
do i = 1 to &NAnimal;
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BV {i} = sqrt(4.0)*rannor(12345);
AnimalSpecies{i} = 1 + int( 5 *ranuni(12345));
AnimalFarm {i} = 1 + int(&NFarm*ranuni(12345));

end;
do i = 1 to 40*&NAnimal;

Animal = 1 + int(&NAnimal*ranuni(12345));
Species = AnimalSpecies{Animal};
Farm = AnimalFarm {Animal};
Yield = 1 + Species

+ Farm
+ BV{Animal}
+ sqrt(8.0)*rannor(12345);

output;
end;

run;

In this simulation, the true breeding value for each animal (BV1–BV1500) has a variance component of 4.0,
while the level of background variance is 8.0.

In this type of experiment, the effect of Species and the interaction between Species and Farm are typically
modeled as fixed effects, while the effect of Animal is modeled as a random effect. The following statements
use the HPMIXED procedure to compute predictions for the Animal random effect and save them to the data
set EBV. This data set is then sorted and the 10 animals with the highest EBVs are displayed.

ods listing close;
proc hpmixed data=Sim;

class Species Farm Animal;
model Yield = Species Farm*Species;
random Animal/cl;
ods output SolutionR=EBV;

run;
ods listing;

proc sort data=EBV;
by descending estimate;

run;
proc print data=EBV(obs=10) noobs;

var Animal Estimate StdErrPred Lower Upper;
run;

The preceding statements close the ODS listing destination for the duration of the PROC HPMIXED run.
This avoids displaying the long random-effects solution table, since only the top few EBVs are of interest.
Output 46.1.1 displays the EBVs of the top 10 animals, along with their precision and confidence bounds.
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Output 46.1.1 Estimated Breeding Values: Top 10 Animals

StdErr
Animal Estimate Pred Lower Upper

1294 5.9703 0.6317 4.7321 7.2085
1219 5.0081 0.6396 3.7544 6.2618
1054 4.9452 0.5874 3.7939 6.0966
758 4.9340 0.6196 3.7195 6.1485
986 4.9329 0.5767 3.8025 6.0633

1150 4.7444 0.5806 3.6064 5.8824
962 4.6651 0.5794 3.5294 5.8008
225 4.5294 0.6137 3.3266 5.7322

1252 4.5012 0.5686 3.3868 5.6157
1033 4.4971 0.6080 3.3054 5.6889

Notice that animal 1294 is ranked as the top animal based on its EBV, but the precision of this estimate, as
measured by the standard error of prediction, is lower than that of other animals.

You can also use PROC MIXED and PROC GLIMMIX to compute EBVs, but the performance of these
general mixed modeling procedures for this specialized kind of data and model is quite different from that
of PROC HPMIXED. The MIXED and GLIMMIX procedures are engineered to have good performance
properties across a broad class of models and analyses, a class much broader than what PROC HPMIXED
can handle. The HPMIXED procedure, on the other hand, can have better performance, in terms of both
memory and run time, for certain specialized models and analyses, of which the current example is one.

For this example, an equivalent PROC GLIMMIX approach can take twice as long to complete, and PROC
MIXED three times as long. Precise relative timings are not feasible, since those of the MIXED and GLIM-
MIX procedures are sensitive to the speed of disk access for writing to and reading from the utility file
that holds the underlying matrices. But the results on any system would be similar: for the limited class of
models to which it applies, the sparse matrix representation that the HPMIXED procedure employs should
provide better computational performance than a dense representation, in terms of both run time and mem-
ory use.

Moreover, for a given analysis, if the size of the problem is increased in such a way that the underlying
matrices become sparser, the relative performance of PROC HPMIXED gets even better. As an illustration
of this, Output 46.1.2 shows relative performance of the three procedures for simulated data as the number
of farms increases. For this plot, each additional farm adds 500 levels of the Animal random effect to the
model—a substantial number.
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Output 46.1.2 Comparing Mixed Model Tools for Increasingly Sparse Problems

The vertical axis in Output 46.1.2 measures run time, but the units are omitted: relative performance is what
counts, and that is expected to be fairly invariant to machine architecture. The output shows that while the
performance of the MIXED and GLIMMIX procedures is relatively competitive with PROC HPMIXED
for up to 3000 or 4000 animals, both procedures’ relative performance decreases as the number of animals
increases into the tens of thousands.

As a caveat, note that PROC HPMIXED can be inefficient relative to PROC MIXED and PROC GLIMMIX
for models and data that are not sparse, because it can take many times longer to invert a large, dense matrix
by sparse techniques. For example, Output 46.1.3 shows relative performance of the three procedures for
simulated data like the preceding, but where the fixed part of the model consists of an increasing number of
continuous covariates and is thus dense.
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Output 46.1.3 Comparing Mixed Model Tools for Increasingly Dense Problems

As before, the HPMIXED procedure is more efficient than the MIXED and GLIMMIX procedures for
few covariates, but when the fixed-effect calculations dominate the run time, PROC HPMIXED rapidly
becomes relatively inefficient as the size of the dense fixed-effect matrix increases. Also note that while
PROC MIXED is more efficient than PROC GLIMMIX for small to moderate numbers of covariates, PROC
GLIMMIX has the best performance as the number of covariates get very large.

Example 46.2: Comparing Results from PROC HPMIXED and PROC MIXED
This example revisits the mixed model problem from the section “Getting Started: MIXED Procedure” on
page 4884, in Chapter 59, “The MIXED Procedure,” with the data set shown in the following statements:

data heights;
input Family Gender$ Height @@;
datalines;

1 F 67 1 F 66 1 F 64 1 M 71 1 M 72 2 F 63
2 F 63 2 F 67 2 M 69 2 M 68 2 M 70 3 F 63
3 M 64 4 F 67 4 F 66 4 M 67 4 M 67 4 M 69
;
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The response variable Height measures the heights (in inches) of 18 individuals. The individuals are classi-
fied according to Family and Gender. The following statements fit a mixed model with random effects for
Family and the Family*Gender interaction with the MIXED procedure:

proc mixed;
class Family Gender;
model Height = Gender / s;
random Family Family*Gender / s;

run;

The “Iteration History” and “Fit Statistics” tables for the optimization in PROC MIXED are shown in Out-
put 46.2.1. The MIXED procedure converges after six iterations and achieves a –2 restricted log likelihood
of 71.02246.

Output 46.2.1 Iteration History and Fit Statistics: MIXED Procedure

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 74.11074833
1 2 71.51614003 0.01441208
2 1 71.13845990 0.00412226
3 1 71.03613556 0.00058188
4 1 71.02281757 0.00001689
5 1 71.02245904 0.00000002
6 1 71.02245869 0.00000000

Fit Statistics

-2 Res Log Likelihood 71.0
AIC (smaller is better) 77.0
AICC (smaller is better) 79.0
BIC (smaller is better) 75.2

Output 46.2.2 displays the covariance parameter estimates and the solutions for the fixed and random effects.
Because the fixed-effect model contains a classification effect (Gender) and an intercept, the X0X matrix is
singular. Only two fixed-effect parameters can be estimated in this model. The MIXED procedure, relying
on a sweep operation in the order in which effects enter the model, determines that the last column of the
X0X matrix is a linear function of previous columns. Consequently, the coefficient for the second level of
the Gender variable is zero.
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Output 46.2.2 Parameter Estimates and Solutions: MIXED Procedure

Covariance Parameter
Estimates

Cov Parm Estimate

Family 2.4010
Family*Gender 1.7657
Residual 2.1668

Solution for Fixed Effects

Standard
Effect Gender Estimate Error DF t Value Pr > |t|

Intercept 68.2114 1.1477 3 59.43 <.0001
Gender F -3.3621 1.1923 3 -2.82 0.0667
Gender M 0 . . . .

Solution for Random Effects

Std Err
Effect Gender Family Estimate Pred DF t Value Pr > |t|

Family 1 1.2680 1.1201 10 1.13 0.2840
Family 2 0.08980 1.1121 10 0.08 0.9372
Family 3 -1.6660 1.1712 10 -1.42 0.1853
Family 4 0.3082 1.1201 10 0.28 0.7888
Family*Gender F 1 -0.3198 1.0810 10 -0.30 0.7734
Family*Gender M 1 1.2523 1.0933 10 1.15 0.2787
Family*Gender F 2 -0.4299 1.0774 10 -0.40 0.6983
Family*Gender M 2 0.4959 1.0774 10 0.46 0.6551
Family*Gender F 3 -0.08229 1.1409 10 -0.07 0.9439
Family*Gender M 3 -1.1429 1.1409 10 -1.00 0.3401
Family*Gender F 4 0.8320 1.0933 10 0.76 0.4642
Family*Gender M 4 -0.6053 1.0810 10 -0.56 0.5878

The “Type 3 Tests of Fixed Effects” table in Output 46.2.3 is produced by the MIXED procedure by default.

Output 46.2.3 Test of Gender Effect

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Gender 1 3 7.95 0.0667

The same linear mixed model is fit with the HPMIXED procedure with the following statements:
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proc hpmixed;
class Family Gender;
model Height = Gender / s;
random Family Family*Gender / s;
test gender;

run;

Output 46.2.4 displays the “Iteration History” and “Fit Statistics” tables. The HPMIXED procedure, with
its default quasi-Newton algorithm, achieves the same –2 restricted log likelihood as the MIXED procedure
(71.02246; see Output 46.2.1).

Output 46.2.4 Iteration History and Fit Statistics: HPMIXED Procedure

The HPMIXED Procedure

Iteration History

Objective Max
Iteration Evaluations Function Change Gradient

0 4 71.023177956 . 0.034074
1 3 71.022519936 0.00065802 0.007839
2 3 71.022477283 0.00004265 0.004674
3 2 71.0224587 0.00001858 0.000168
4 2 71.022458689 0.00000001 3.28E-6

Fit Statistics

-2 Res Log Likelihood 71.02246
AIC (smaller is better) 77.02246
AICC (smaller is better) 79.02246
BIC (smaller is better) 75.18134
CAIC (smaller is better) 78.18134
HQIC (smaller is better) 72.98226

Output 46.2.5 displays the results that correspond to those in Output 46.2.2 in the MIXED procedure.

Output 46.2.5 Parameter Estimates and Solutions: HPMIXED Procedure

Covariance Parameter
Estimates

Cov Parm Estimate

Family 2.4010
Family*Gender 1.7657
Residual 2.1668
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Output 46.2.5 continued

Solution for Fixed Effects

Standard
Effect Gender Estimate Error DF t Value Pr > |t|

Intercept 0 . . . .
Gender F 64.8493 1.1477 16 56.50 <.0001
Gender M 68.2114 1.1477 16 59.43 <.0001

Solution for Random Effects

Std Err
Effect Gender Family Estimate Pred DF t Value Pr > |t|

Family 1 1.2680 1.1201 16 1.13 0.2743
Family 2 0.08980 1.1121 16 0.08 0.9366
Family 3 -1.6660 1.1712 16 -1.42 0.1741
Family 4 0.3082 1.1201 16 0.28 0.7867
Family*Gender F 1 -0.3198 1.0810 16 -0.30 0.7712
Family*Gender M 1 1.2523 1.0933 16 1.15 0.2689
Family*Gender F 2 -0.4299 1.0774 16 -0.40 0.6951
Family*Gender M 2 0.4959 1.0774 16 0.46 0.6515
Family*Gender F 3 -0.08229 1.1409 16 -0.07 0.9434
Family*Gender M 3 -1.1429 1.1409 16 -1.00 0.3314
Family*Gender F 4 0.8320 1.0933 16 0.76 0.4577
Family*Gender M 4 -0.6053 1.0810 16 -0.56 0.5832

A number of points are noteworthy in comparing the results from the procedures. The covariance parameter
estimates are the same, yet the solutions for the fixed effects differ. In fact, both solutions are correct.
Solving a sparse system of linear equations requires reordering of the mixed model equations to minimize
memory consumption in the factorization process. As a consequence, the order in which singularities are
detected can differ from the order in which effects enter the model. Mathematically, the two sets of solutions
simply correspond to different choices for the generalized inverse in solving a singular linear system. See the
sections “Generalized Inverse Matrices” on page 46 and “Linear Model Theory” on page 55, in Chapter 3,
“Introduction to Statistical Modeling with SAS/STAT Software,” for more information about the role and
importance of generalized inverses in linear model analysis.

Although the two sets of solutions for the fixed effects correspond to different choices of generalized in-
verses, many important results are invariant to the choice of the g-inverse. For example, the solutions for
the random effects in Output 46.2.5 and Output 46.2.2 are identical. Also, the test for the Gender effect
yields the same F value in both analyses (compare Output 46.2.6 and Output 46.2.3). However, note that
the p-values associated with both F tests and t tests differ between the two procedures. This is due to their
different default methods for computing the degrees of freedom. For this model, the HPMIXED procedure
use the residual method to determine the denominator degrees of freedom for tests of fixed effects, whereas
the MIXED procedure uses the containment method. The containment method is order-dependent, and thus
not available in the HPMIXED procedure.
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Output 46.2.6 Parameter Estimates and Solutions: HPMIXED Procedure

Type III Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Gender 1 16 7.95 0.0123

Example 46.3: Using PROC GLIMMIX for Further Analysis of PROC HPMIXED
Fit

The HPMIXED procedure handles only a subset of the analyses of the GLIMMIX procedure. However, you
can use the HPMIXED procedure to accelerate your GLIMMIX procedure analyses for large problems. The
idea is to use PROC HPMIXED to maximize the likelihood and produce parameter estimates more quickly
than PROC GLIMMIX, and then to pass these parameter estimates to PROC GLIMMIX for some further
analysis that is not available within PROC HPMIXED.

This example revisits the mixed model problem from the section “Getting Started: HPMIXED Procedure”
on page 3658 to illustrate how to obtain the covariance estimates from the HPMIXED procedure and, in
turn, how to use these estimates in PROC GLIMMIX’s PARMS statement. The following statements again
simulate data from animals of different species on different farms:

data Sim;
keep Species Farm Animal Yield;
array AnimalEffect{3000};
array AnimalSpecies{3000};
array AnimalFarm{3000};
do i = 1 to 3000;

AnimalEffect{i} = sqrt(4.0)*rannor(12345);
AnimalSpecies{i} = 1 + int(5*ranuni(12345));
AnimalFarm{i} = 1 + int(10*ranuni(12345));

end;
do i = 1 to 40000;

Animal = 1 + int(3000*ranuni(12345));
Species = AnimalSpecies{Animal};
Farm = AnimalFarm{Animal};
Yield = 1 + Species + int(Farm/2) + AnimalEffect{Animal}

+ sqrt(8.0)*rannor(12345);
output;

end;
run;

Note that in the preceding DATA step program, certain pairs of farms are simulated to have the same effect
on yield. Suppose that your goal is to determine which farms are significantly different. While the HP-
MIXED procedure has an LSMEANS statement, it has no options for multiple comparisons. The following
statements first use the HPMIXED procedure to obtain the covariance estimates, saving them in the SAS
data set HPMEstimate. Then the GLIMMIX procedure is executed with the PARMS statement to initialize
the parameter values from the data set HPMEstimate and with the HOLD= and NOITER options to prevent
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further optimization iterations. The LSMEANS statement is used in PROC GLIMMIX to perform multiple
comparisons of the LS-means for farms, and the results are displayed as a so-called diffogram.

proc hpmixed data=Sim;
class Species Farm Animal;
model Yield = Farm|Species;
random Animal;
test Species Species*Farm;
ods output CovParms=HPMEstimate;

run;

ods graphics on;
proc glimmix data=Sim;

class Species Farm Animal;
model Yield = Farm|Species;
random int/sub=Animal;
parms /pdata=HPMEstimate hold=1,2 noiter;
lsmeans Farm / pdiff=all plot=diffplot;

run;

The iteration histories for the two procedures are shown in Output 46.3.1 and Output 46.3.2. Whereas PROC
HPMIXED requires several iterations in order to converge, PROC GLIMMIX “converges” to the same value
in one step, with no iteration since the options HOLD= and NOITER are used.

Output 46.3.1 Iteration History for the HPMIXED Procedure

The HPMIXED Procedure

Iteration History

Objective Max
Iteration Evaluations Function Change Gradient

0 4 202516.66891 . 0.841954
1 6 202516.66887 0.00004385 0.000641
2 1 202516.66887 -0.00000000 0.000641

Output 46.3.2 Iteration History for the GLIMMIX Procedure

The GLIMMIX Procedure

Iteration History

Objective Max
Iteration Restarts Evaluations Function Change Gradient

0 0 4 202516.66887 . 0

The graphical multiple-comparisons analysis for the LS-means of farms is shown in Output 46.3.3. It
confirms the pairwise equalities between farm effects with which the data were simulated.
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Output 46.3.3 LS-Means Plot of Pairwise Farm Differences

For more information about the interpretation of the LS-means difference plot, see the section “ODS Graph-
ics” on page 3115, in Chapter 41, “The GLIMMIX Procedure.”

Example 46.4: Mixed Model Analysis of Microarray Data
Microarray experiments are an advanced genomic technique used in the discovery of new treatments for
diseases. Microarray analysis allows for the detection of tens of thousands of genes in a single DNA sample.
A microarray is a glass slide or membrane that has been spotted or “arrayed” with DNA fragments or
oligonucleotides representing specific genes. The response of the gene detected by a spot is proportional to
the intensity of fluorescence associated with that spot. These gene responses can indicate associations with
disease conditions, but they can also be affected by systematic biases and different treatments such as sex
and genotypes. Statistical models for microarray data attempt to assess the significance and magnitude of
gene effects across treatments while adjusting for these systematic biases and to evaluate the significance of
differences between treatments.

There are two statistical approaches frequently used in mixed model analysis for microarray data.
The first approach is to fit multiple gene-specific models to data normalized for systematic bi-
ases (Wolfinger et al. 2001; Gibson and Wolfinger 2004). This approach is based on assuming that
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the biases are independent from the gene effects. If this assumption is untenable, then a sec-
ond approach fits a single model that combines both the systematic biases and the gene effects
(Kerr, Martin, and Churchill 2000; Churchill 2002; Littell et al. 2006). When the number of genes is very
large, several hundreds to tens of thousands, this is an analysis for which the sparse matrix approach
implemented in the HPMIXED procedure is well suited.

The following SAS statements simulate a microarray experiment with a so-called loop design structure,
which is commonly used in such studies. There are 500 genes, each gene occurs in 6 arrays, and each array
has 2 dyes.

%let narray = 6;
%let ndye = 2;
%let nrow = 4;
%let ngene = 500;
%let ntrt = 6;
%let npin = 4;
%let ndip = 4;
%let no = %eval(&ndye*&nrow*&ngene);
%let tno = %eval(&narray*&no);

data microarray;
keep Gene MArray Dye Trt Pin Dip log2i;
array PinDist{&tno};
array DipDist{&tno};
array GeneDist{&tno};

array ArrayEffect{&narray};
array ArrayGeneEffect{%eval(&narray*&ngene)};
array ArrayDipEffect{%eval(&narray*&ndip)};
array ArrayPinEffect{%eval(&narray*&npin)};

do i = 1 to &tno;
PinDist{i} = 1 + int(&npin*ranuni(12345));
DipDist{i} = 1 + int(&ndip*ranuni(12345));
GeneDist{i} = 1 + int(&ngene*ranuni(12345));

end;

igene = 0;
idip = 0;
ipin = 0;
do i = 1 to &narray;

ArrayEffect{i} = sqrt(0.014)*rannor(12345);
do j = 1 to &ngene;

igene = igene+1;
ArrayGeneEffect{igene} = sqrt(0.0017)*rannor(12345);

end;
do j = 1 to &ndip;

idip = idip + 1;
ArrayDipEffect{idip} = sqrt(0.0033)*rannor(12345);

end;
do j = 1 to &npin;

ipin = ipin + 1;
ArrayPinEffect{ipin} = sqrt(0.037)*rannor(12345);
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end;
end;

i = 0;
do MArray = 1 to &narray;

do Dye = 1 to &ndye;
do Row = 1 to &nrow;

do k = 1 to &ngene;
if MArray=1 and Dye = 1 then do;

Trt = 0;
trtc = 0;

end;
else do;

if trtc >= &no then trtc = 0;
if trtc = 0 then do;

Trt = Trt + 1;
if Trt >= &ntrt then do;

Trt = 0;
trtc = 0;

end;
end;
trtc = trtc + 1;

end;
i = i + 1;
Pin = PinDist{i};
Dip = DipDist{i};
Gene = GeneDist{i};
a = ArrayEffect{MArray};
ag = ArrayGeneEffect{(MArray-1)*&ngene+Gene};
ad = ArrayDipEffect{(MArray-1)*&ndip+Dip};
ap = ArrayPinEffect{(MArray-1)*&npin+Pin};
log2i = 1 +

+ Dye
+ Trt
+ Gene/1000.0
+ Dye*Gene/1000.0
+ Trt*Gene/1000.0
+ Pin
+ a
+ ag
+ ad
+ ap
+ sqrt(0.02)*rannor(12345);

output;
end;

end;
end;

end;
run;
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A linear mixed model for fitting the log intensity data Yijkmnr from such a design is described by
Littell et al. (2006) as follows:

Yijkmnr D Fixed Effects
� Overall mean

C �i Gene
C �j Treatment
C ık Dye
C .��/ij Treatment-by-gene
C .ı�/ik Dye-by-gene
C pr Pin

Random Effects
C am Microarray
C .a�/im Microarray-by-gene
C d.a/mn Dip-within-microarray
C .ap/mr Microarray-by-pin
C eijkmnr Residual noise

You can use the HPMIXED procedure with the following statements to fit this model:

proc hpmixed data=microarray;
class marray dye trt gene pin dip;
model log2i = dye trt gene dye*gene trt*gene pin;
random marray marray*gene dip(marray) pin*marray;
test trt;

run;

The “Dimensions” table shown in Output 46.4.1 indicates that this is a very large model, with 4512 columns
in X matrix and 3054 columns in Z matrix. It will be computationally very inefficient to fit this model by
using dense matrix methods; the sparse matrix approach of the HPMIXED procedure is of critical impor-
tance.

Output 46.4.1 Mixed Model Dimensions

The HPMIXED Procedure

Dimensions

G-side Cov. Parameters 4
R-side Cov. Parameters 1
Columns in X 4513
Columns in Z 3054
Subjects (Blocks in V) 1

The p-value in Output 46.4.2 indicates that there are significant differences between treatments.
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Output 46.4.2 Type III Tests of Fixed Effects

Type III Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Trt 5 20497 370005 <.0001

Example 46.5: Repeated Measures
The following data are from Pothoff and Roy (1964) and consist of growth measurements for 11 girls and
16 boys at ages 8, 10, 12, and 14. Some of the observations are suspect (for example, the third observation
for person 20); however, all of the data are used here for comparison purposes.

The analysis strategy employs a linear growth curve model for the boys and girls in addition to a variance-
covariance model that incorporates correlations for all of the observations that arise from the same person.
The PROC HPMIXED statements to fit an unstructured variance matrix are as follows:

data pr;
input Person Gender $ y1 y2 y3 y4;
y=y1; Time=1; Age=8; output;
y=y2; Time=2; Age=10; output;
y=y3; Time=3; Age=12; output;
y=y4; Time=4; Age=14; output;
drop y1-y4;
datalines;

1 F 21.0 20.0 21.5 23.0
2 F 21.0 21.5 24.0 25.5
3 F 20.5 24.0 24.5 26.0
4 F 23.5 24.5 25.0 26.5
5 F 21.5 23.0 22.5 23.5
6 F 20.0 21.0 21.0 22.5
7 F 21.5 22.5 23.0 25.0
8 F 23.0 23.0 23.5 24.0
9 F 20.0 21.0 22.0 21.5

10 F 16.5 19.0 19.0 19.5
11 F 24.5 25.0 28.0 28.0
12 M 26.0 25.0 29.0 31.0
13 M 21.5 22.5 23.0 26.5
14 M 23.0 22.5 24.0 27.5
15 M 25.5 27.5 26.5 27.0
16 M 20.0 23.5 22.5 26.0
17 M 24.5 25.5 27.0 28.5
18 M 22.0 22.0 24.5 26.5
19 M 24.0 21.5 24.5 25.5
20 M 23.0 20.5 31.0 26.0
21 M 27.5 28.0 31.0 31.5
22 M 23.0 23.0 23.5 25.0
23 M 21.5 23.5 24.0 28.0
24 M 17.0 24.5 26.0 29.5
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25 M 22.5 25.5 25.5 26.0
26 M 23.0 24.5 26.0 30.0
27 M 22.0 21.5 23.5 25.0
;

proc hpmixed data=pr;
class Person Gender Time;
model y = Gender Age Gender*Age;
test Gender Age Gender*Age;
repeated Time / type=un subject=Person r;

run;

The MODEL statement first lists the dependent variable Y. The fixed effects are then listed after the equal
sign. The variable Gender requests a different intercept for the girls and boys, Age models an overall linear
growth trend, and Gender*Age makes the slopes different over time. It is actually not necessary to specify
Age separately, but doing so enables PROC HPMIXED to carry out a test for heterogeneous slopes.

The REPEATED statement contains a repeated-effect Time. The TYPE=UN option models the covariance
as an unstructured block for each SUBJECT=Person. Each of the 27 subjects has a maximum of four ob-
servations. Therefore, the R matrix is block diagonal with 27 blocks, each block consisting of identical 4�4
unstructured matrices. The 10 parameters of these unstructured blocks make up the covariance parameters
estimated by restricted maximum likelihood. The R= option requests that the first block of R be displayed.

The results from this analysis are shown in Output 46.5.1 through Output 46.5.5.

Output 46.5.1 Repeated Measures Analysis

The HPMIXED Procedure

Dimensions

G-side Cov. Parameters 0
R-side Cov. Parameters 10
Columns in X 6
Columns in Z per Subject 0
Subjects (Blocks in V) 27

In Output 46.5.1, the 10 covariance parameters result from the 4 � 4 unstructured blocks of R. There is no
Z matrix for this model.

Output 46.5.2 Repeated Measures Analysis (continued)

Number of Observations Read 108
Number of Observations Used 108
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Output 46.5.2 continued

Iteration History

Objective Max
Iteration Evaluations Function Change Gradient

0 4 483.55903028 . 18.65974
1 4 446.6618154 36.89721488 14.63195
2 5 430.2967104 16.36510500 10.93182
3 5 427.86149052 2.43521988 12.34361
4 2 426.16528163 1.69620890 8.094057
5 3 425.56874743 0.59653420 3.517822
6 2 424.91919206 0.64955537 2.492626
7 3 424.731766 0.18742606 2.110784
8 3 424.66856966 0.06319634 1.417574
9 2 424.63858357 0.02998609 1.468348

10 2 424.60787324 0.03071033 1.174872
11 2 424.5593949 0.04847834 0.601039
12 3 424.55305379 0.00634111 0.316659
13 2 424.54886941 0.00418438 0.170275
14 3 424.54696194 0.00190747 0.072622
15 3 424.5468178 0.00014413 0.019582
16 3 424.54680027 0.00001753 0.001888
17 3 424.5468002 0.00000007 0.000235

Convergence criterion (GCONV=1E-8) satisfied.

The 17 quasi-Newton iterations are used to find the maximum likelihood estimates (Output 46.5.2).

Output 46.5.3 Repeated Measures Analysis (continued)

Estimated R Matrix for Person 1

Row Col1 Col2 Col3 Col4

1 5.4252 2.7092 3.8411 2.7151
2 2.7092 4.1906 2.9745 3.3137
3 3.8411 2.9745 6.2632 4.1332
4 2.7151 3.3137 4.1332 4.9862

The 4�4 matrix in Output 46.5.3 is the estimated unstructured covariance matrix. It is the estimate of the
first block of R, and the other 26 blocks all have the same estimate.
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Output 46.5.4 Repeated Measures Analysis (continued)

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) Person 5.4252
UN(2,1) Person 2.7092
UN(2,2) Person 4.1906
UN(3,1) Person 3.8411
UN(3,2) Person 2.9745
UN(3,3) Person 6.2632
UN(4,1) Person 2.7151
UN(4,2) Person 3.3137
UN(4,3) Person 4.1332
UN(4,4) Person 4.9862

The “Covariance Parameter Estimates” table in Output 46.5.4 lists the 10 estimated covariance parameters in
order; note their correspondence to the first block of R displayed in Output 46.5.3. The parameter estimates
are labeled according to their location in the block in the Cov Parm column, and all of these estimates are
associated with Person as the subject effect.

Output 46.5.5 Repeated Measures Analysis (continued)

Type III Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Gender 1 104 1.08 0.3011
Age 1 104 102.35 <.0001
Age*Gender 1 104 7.40 0.0076

The “Type III Tests of Fixed Effects” table in Output 46.5.5 displays Type III tests for all of the fixed effects.
These tests are partial in the sense that they account for all of the other fixed effects in the model.

Since the different levels of the repeated effect represent different years, it is natural to try fitting a time series
model to the data within each subject. To obtain time series structures in R, you can replace TYPE=UN
with TYPE=AR(1) to obtain the first-order autoregressive covariance matrices. For example, the statements
to fit an AR(1) structure are as follows:

proc hpmixed data=pr;
class Person Gender Time;
model y = Gender Age Gender*Age;
repeated Time / type=ar(1) sub=Person r;

run;

The estimated AR(1) structure covariance matrix of the first block of R is shown in Output 46.5.6



References F 3719

Output 46.5.6 Repeated Measures Analysis

The HPMIXED Procedure

Estimated R Matrix for Person 1

Row Col1 Col2 Col3 Col4

1 5.2144 3.2563 2.0335 1.2699
2 3.2563 5.2144 3.2563 2.0335
3 2.0335 3.2563 5.2144 3.2563
4 1.2699 2.0335 3.2563 5.2144
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