
SPECTRUM INSTRUME
PHONE: +49 (0)4102-6956-0
M2i.20xx
M2i.20xx-exp

fast 8 bit transient recorder,
A/D converter board

for PCI-X, PCI and PCI Express bus

Hardware Manual
Software Driver Manual

English version May 7, 2020
NTATION GMBH · AHRENSFELDER WEG 13-17 · 22927 GROSSHANSDORF · GERMANY
· FAX: +49 (0)4102-6956-66 · E-MAIL: info@spec.de · INTERNET: www.spectrum-instrumentation.com

(c) SPECTRUM INSTRUMENTATION GMBH
AHRENSFELDER WEG 13-17, 22927 GROSSHANSDORF, GERMANY

SBench, digitizerNETBOX and generatorNETBOX are registered trademarks of Spectrum Instrumentation GmbH.
Microsoft, Visual C++, Windows, Windows 98, Windows NT, Windows 2000, Windows XP, Windows Vista, Windows 7, Windows 8,
Windows 10 and Windows Server are trademarks/registered trademarks of Microsoft Corporation.
LabVIEW, DASYLab, Diadem and LabWindows/CVI are trademarks/registered trademarks of National Instruments Corporation.
MATLAB is a trademark/registered trademark of The Mathworks, Inc.
Delphi and C++Builder are trademarks or registered trademarks of Embarcadero Technologies, Inc.
Keysight VEE, VEE Pro and VEE OneLab are trademarks/registered trademarks of Keysight Technologies, Inc.
FlexPro is a registered trademark of Weisang GmbH & Co. KG.
PCIe, PCI Express, PCI-X and PCI-SIG are trademarks of PCI-SIG.
PICMG and CompactPCI are trademarks of the PCI Industrial Computation Manufacturers Group.
PXI is a trademark of the PXI Systems Alliance.
LXI is a registered trademark of the LXI Consortium.
IVI is a registered trademark of the IVI Foundation
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
Intel and Intel Core i3, Core i5, Core i7, Core i9 and Xeon are trademarks and/or registered trademarks of Intel Corporation.
AMD, Opteron, Sempron, Phenom, FX, Ryzen and EPYC are trademarks and/or registered trademarks of Advanced Micro Devices.
NVIDIA, CUDA, GeForce, Quadro and Tesla are trademarks and/or registered trademarks of NVIDIA Corporation.

Introduction... 8
Preface ... 8
Overview .. 8
General Information ... 8
Different models of the M2i.20xx series .. 9
Additional options .. 10

Star-Hub.. 10
System Star-Hub ... 10
BaseXIO (versatile digital I/O) ... 11

The Spectrum type plate .. 12
Hardware information... 13

Block diagram.. 13
Technical Data ... 14
Dynamic Parameters ... 15
Order Information... 16

Hardware Installation ... 17
System Requirements .. 17
Warnings.. 17

ESD Precautions ... 17
Cooling Precautions.. 17
Sources of noise ... 17

Connector Handling Precautions .. 17
Installing the board in the system.. 18

Installing a single board without any options.. 18
Installing a board with digital inputs/outputs mounted on an extra bracket .. 20
Installing a board with option BaseXIO ... 21
Installing multiple boards synchronized by star-hub option ... 22

Software Driver Installation... 23
Windows .. 23

Before installation ... 23
Running the driver Installer... 23
After installation ... 24

Linux... 25
Overview .. 25
Standard Driver Installation.. 25
Standard Driver Update .. 26
Compilation of kernel driver sources (optional and local cards only) ... 26
Update of a self compiled kernel driver ... 26
Installing the library only without a kernel (for remote devices) ... 26
Control Center ... 27
3

Software ... 28
Software Overview... 28
Card Control Center ... 28

Discovery of Remote Cards and digitizerNETBOX/generatorNETBOX products.. 29
Wake On LAN of digitizerNETBOX/generatorNETBOX .. 29
Netbox Monitor ... 30
Device identification ... 30
Hardware information... 31
Firmware information .. 31
Software License information.. 32
Driver information... 32
Installing and removing Demo cards ... 32
Feature upgrade... 33
Software License upgrade.. 33
Performing card calibration ... 33
Performing memory test ... 33
Transfer speed test .. 33
Debug logging for support cases .. 34
Device mapping ... 34
Firmware upgrade .. 35

Compatibility Layer (M2i cards only) .. 36
Usage modes... 36
Abilities and Limitations of the compatibility DLL ... 36

Accessing the hardware with SBench 6... 37
C/C++ Driver Interface... 38

Header files ... 38
General Information on Windows 64 bit drivers... 38
Microsoft Visual C++ 6.0, 2005 and newer 32 Bit... 38
Microsoft Visual C++ 2005 and newer 64 Bit.. 39
C++ Builder 32 Bit ... 39
Linux Gnu C/C++ 32/64 Bit ... 39
C++ for .NET... 39
Other Windows C/C++ compilers 32 Bit .. 39
Other Windows C/C++ compilers 64 Bit .. 39

Driver functions .. 40
Delphi (Pascal) Programming Interface .. 45

Driver interface .. 45
Examples... 46

.NET programming languages ... 47
Library .. 47
Declaration.. 47
Using C#... 47
Using Managed C++/CLI.. 48
Using VB.NET .. 48
Using J# .. 48

Python Programming Interface and Examples... 49
Driver interface .. 49
Examples... 50

Java Programming Interface and Examples.. 51
Driver interface .. 51
Examples... 51

LabVIEW driver and examples ... 52
MATLAB driver and examples .. 52
4

Programming the Board .. 53
Overview .. 53
Register tables ... 53
Programming examples... 53
Initialization... 54
Initialization of Remote Products ... 54
Error handling.. 54
Gathering information from the card... 55

Card type.. 55
Hardware version... 56
Firmware versions... 56
Production date .. 57
Last calibration date (analog cards only) ... 57
Serial number .. 57
Maximum possible sampling rate ... 57
Installed memory .. 57
Installed features and options ... 57
Miscellaneous Card Information ... 58
Function type of the card ... 59
Used type of driver ... 59

Reset... 60

Analog Inputs.. 61
Channel Selection .. 61

Important note on channel selection .. 62
Setting up the inputs ... 62

Input ranges... 62
Input termination... 64
Automatic adjustment of the offset settings ... 64
Read out of input features .. 65

Acquisition modes ... 66
Overview .. 66

Setup of the mode .. 66
Commands.. 67

Card Status.. 68
Acquisition cards status overview ... 68
Generation card status overview .. 68
Data Transfer ... 69

Standard Single acquisition mode .. 72
Card mode .. 72
Memory, Pre- and Posttrigger ... 72
Example .. 72

FIFO Single acquisition mode .. 73
Card mode .. 73
Length and Pretrigger.. 73
Difference to standard single acquisition mode... 73
Example .. 73

Limits of pre trigger, post trigger, memory size... 74
Buffer handling .. 75
Data organisation .. 78
Sample format ... 78

Converting ADC samples to voltage values .. 78

Clock generation ... 79
Overview .. 79

The different clock modes .. 79
Clock Mode Register... 80

Internally generated sampling rate.. 80
Standard internal sampling clock (PLL)... 80
Using plain Quartz1 without PLL ... 81
Using plain Quartz2 without PLL (optional)... 81

External reference clock .. 81
Oversampling .. 82
 External clocking... 83

Direct external clock ... 83
Minimum external sampling rate .. 83

External clock with divider ... 84
5

Trigger modes and appendant registers .. 86
General Description.. 86
Trigger Engine Overview... 86
Trigger masks .. 86

Trigger OR mask .. 86
Trigger AND mask.. 88

Software trigger ... 89
Force- and Enable trigger .. 89
Delay trigger ... 90
External TTL trigger ... 90

Edge and level triggers ... 91
Pulsewidth triggers.. 92

Channel Trigger ... 93
Overview of the channel trigger registers... 93
Channel trigger level... 95
Pulsewidth counter .. 96
Detailed description of the channel trigger modes... 96

Mode Multiple Recording ... 103
Recording modes ... 103

Standard Mode.. 103
FIFO Mode .. 103

Limits of pre trigger, post trigger, memory size... 104
Multiple Recording and Timestamps.. 105

Trigger Modes ... 105
Trigger Counter .. 105
Trigger Output ... 105

Programming examples... 106

Mode Gated Sampling... 107
Acquisition modes .. 107

Standard Mode.. 107
FIFO Mode .. 107

Limits of pre trigger, post trigger, memory size... 108
Gate-End Alignment .. 108
Gated Sampling and Timestamps ... 109

Trigger.. 109
Trigger Output ... 109
Edge and level triggers ... 109
Pulsewidth triggers.. 112
Channel triggers modes .. 113

Programming examples... 117

Timestamps ... 118
General information ... 118

Example for setting timestamp mode: .. 118
Limits .. 119

Timestamp modes... 119
Standard mode .. 119
StartReset mode.. 120
Refclock mode.. 120

Reading out the timestamps ... 121
General... 121
Data Transfer using DMA .. 122
Data Transfer using Polling .. 123
Comparison of DMA and polling commands.. 124
Data format ... 124

Combination of Memory Segmentation Options with Timestamps ... 125
Multiple Recording and Timestamps.. 125
Gate-End Alignment .. 126
Gated Sampling and Timestamps ... 126
ABA Mode and Timestamps... 127
6

ABA mode (dual timebase) .. 128
General information ... 128

Standard Mode.. 128
FIFO Mode .. 129
Limits of pre trigger, post trigger, memory size ... 129
Example for setting ABA mode: .. 130

Reading out ABA data .. 130
General... 130
Data Transfer using DMA .. 131
Data Transfer using Polling .. 132
Comparison of DMA and polling commands.. 133

Option BaseXIO... 134
Introduction ... 134
Different functions... 134

Asynchronous Digital I/O.. 134
Special Input Functions.. 135
Transfer Data ... 135
Programming Example .. 135
Special Sampling Feature .. 135
Electrical specifications.. 135

Option Star-Hub .. 136
Star-Hub introduction .. 136

Star-Hub trigger engine ... 136
Star-Hub clock engine ... 137

Software Interface .. 137
Star-Hub Initialization.. 137
Setup of Synchronization and Clock ... 139
Setup of Trigger ... 140
Trigger Delay on synchronized cards .. 140
Run the synchronized cards ... 140
Error Handling ... 141
Excluding cards from trigger synchronization ... 141
SH-Direct: using the Star-Hub clock directly without synchronization.. 141

Option System Star-Hub .. 143
Overview .. 143
Cabling the system components ... 143

Setting up the master system .. 143
Setting up slave systems .. 144
Connecting the systems ... 144

Programming... 145
Necessary setup steps ... 145
Select synchronization mode.. 145
Compensate injected trigger delays .. 146
Programming example .. 146

Option Remote Server ... 147
Introduction ... 147
Installing and starting the Remote Server ... 147

Windows .. 147
Linux ... 147

Detecting the digitizerNETBOX .. 147
Discovery Function.. 147
Finding the digitizerNETBOX/generatorNETBOX in the network... 148
Troubleshooting.. 149

Accessing remote cards .. 149

Appendix .. 150
Error Codes ... 150

Spectrum Knowledge Base .. 151
Continuous memory for increased data transfer rate ... 152

Background ... 152
Setup on Linux systems .. 153
Setup on Windows systems.. 153
Usage of the buffer ... 154

Details on M2i cards clock and trigger I/O section .. 155
7

Preface Introduction
Introduction

Preface
This manual provides detailed information on the hardware features of your Spectrum instrumentation board. This information includes tech-
nical data, specifications, block diagram and a connector description.

In addition, this guide takes you through the process of installing your board and also describes the installation of the delivered driver package
for each operating system.

Finally this manual provides you with the complete software information of the board and the related driver. The reader of this manual will
be able to integrate the board in any PC system with one of the supported bus and operating systems.

Please note that this manual provides no description for specific driver parts such as those for LabVIEW or MATLAB. These drivers have ded-
icated manuals, which are available on USB-Stick or on the Spectrum website.

For any new information on the board as well as new available options or memory upgrades please contact our website
www.spectrum-instrumentation.com. You will also find the current driver package with the latest bug fixes and new features on our site.

Please read this manual carefully before you install any hardware or software. Spectrum is not responsible
for any hardware failures resulting from incorrect usage.

Overview
The PCI bus was first introduced in 1995. Nowadays it is the most common platform for PC based instrumentation boards. The very
wide range of installations world-wide, especially in the consumer market, makes it a platform of good value. Its successor is the
2004 introduced PCI Express standard. In today’s standard PC there are usually two to three slots of both standards available for
instrumentation boards. Special industrial PCs offer up to a maximum of 20 slots. The common PCI/PCI-X bus with data rates of up

to 133 MHz x 64 bit = 1 GByte/s per bus, is more and more replaced by the PCI Express standard with up to 4 GByte/s data transfer rate
per slot. The Spectrum M2i boards are available in two versions, for PCI/PCI-X as well as for PCI Express. The 100% software compatible
standards allow to combine both standards in one system with the same driver and software commands.

Within this document the name M2i is used as a synonym for both versions, either PCI/PCI-X or PCI Express. Only passages that
differ concerning the bus version of the M2i.xxxx and M2i.xxxx-exp cards are mentioned separately. Also all card drawings will
show the PCI/PCI-X version as example if no differences exist compared to the PCI Express version.

General Information
The 4 models of the M2i.20xx series are designed for the fast and high quality data acquisition. Every of the up to four input channels has
its own A/D converter and its own programmable input amplifier.

This allows to record signals with 8 bit resolution without any phase delay between them. The inputs can be selected to one of seven input
ranges by software and could be programmed to compensate an input offset of ±400% of the input range. The extremely large on-board
memory allows long time recording even with highest sample rates. A FIFO mode is also integrated on the board. This allows to record data
continuously and to process it in the PC or to store it to hard disk.

Several boards of the M2i.xxxx series may be connected together by the internal standard synchronisation bus to work with the same time
base.

Application examples: Laboratory equipment, Supersonics, LDA/PDA, Radar, Spectroscopy, production test.
8 M2i.20xx / M2i.20xx-exp Manual

Introduction Different models of the M2i.20xx series
Different models of the M2i.20xx series
The following overview shows the different available models of the M2i.20xx series. They differ in the number of mounted acquistion modules
and the number of available channels. You can also see the model dependent location of the output connectors.

• M2i.2020
• M2i.2030
• M2i.2020-exp
• M2i.2030-exp

• M2i.2021
• M2i.2031
• M2i.2021-exp
• M2i.2031-exp
(c) Spectrum GmbH 9

Additional options Introduction

Additional options

Star-Hub
The star hub piggy-back module al-
lows the synchronisation of up to 16
M2i cards. It is possible to synchro-
nize cards of the same type with
each other as well as different types.

Two different versions of the star-hub
module are available. A minor one
for synchronizing up to five boards
of the M2i series, without the need
for an additional system slot. The
major version (option SH16) allows
the synchronization of up to 16
cards with the need for an addition-
al slot.

The module acts as a star hub for
clock and trigger signals. Each
board is connected with a small ca-
ble of the same length, even the master board. That minimizes the clock skew between the different cards. The figure shows the piggy-back
module mounted on the base board schematically without any cables to achieve a better visibility. It also shows the locations of the available
connectors for the two different versions of the star-hub option.

Any of the connected cards can be the clock master and the same or any other card can be the trigger master. All trigger modes that are
available on the master card are also available if the synchronization star-hub is used.

The cable connection of the boards is automatically recognized and checked by the driver when initializing the star-hub module. So no care
must be taken on how to cable the cards. The star-hub module itself is handled as an additional device just like any other card and the pro-
gramming consists of only a few additional commands.

System Star-Hub
The System Star-Hub (SSH) option al-
lows to synchronize clock and trig-
ger information between Star-Hubs
located in multiple PC systems.
Therefore one system is set up as the
System-Master, generating the trig-
ger and clock signals, which then
are distributed to all System-Slave
systems, and additionally also to the
System-Master itself, to minimize
phase delays.

All connected Star-Hubs therefore
have one additional PCI bracket in-
stalled, that allows to feed in clock
and trigger signals coming from the
System-Master distribution card (not
shown in the drawing). This bracket
comes pre-connected with your
M2i.xxxx or M2i-xxxx-exp card.

For the System-Master there is addi-
tionally a clock and trigger distribu-
tion card included providing MMCX connectors on its bracket, to connect to up to 17 different systems (including the System-Master itself).
The installation and cabling from and to this System-Master distribution card will be shown in the according synchronization chapter later in
this manual.

10 M2i.20xx / M2i.20xx-exp Manual

Introduction Additional options
BaseXIO (versatile digital I/O)
The option BaseXIO is simple-to-use
enhancement to the cards of the M2i
series. It is possible to control a wide
range of external instruments or
other equipment by using the eight
lines as asynchronous digital I/O.
The BaseXIO option is useful if an
external amplifier should be control-
led, any kind of signal source must
be programmed, if status informati-
on from an external machine has to
be obtained or different test signals
have to be routed to the board.
In addition to the I/O features, these
lines are also for special functions.
Two of the lines can be used as ad-
ditional TTL trigger inputs for com-
plex gated conditions, one line can
be used as an reference time signal
(RefClock) for the timestamp option.
The BaseXIO MMCX connectors are mounted on-board. To gain easier access, these lines are connected to an extra bracket, that holds eight
SMB male connectors. For special purposes this option can also be ordered without the extra bracket and instead with internal cables.
The shown option is mounted exemplarily on a board with two modules and with the extra bracket. Of course you can also combine this
option as well with a board that is equipped with only one module.

(c) Spectrum GmbH 11

The Spectrum type plate Introduction
The Spectrum type plate

The Spectrum type plate, which consists of the following components, can be found on all of our boards. Please check whether the printed
information is the same as the information on your delivery note. All this information can also be read out by software:

The board type, consisting of the two letters describing the bus (in this case M2i for the PCI-X bus) and the model number.

The size of the on-board installed memory in MSample or GSample. In this example there are 1 GS = 1024 MSample (2 GByte =
2048 MByte) installed.

The serial number of your Spectrum board. Every board has a unique serial number.

A list of the installed options. A complete list of all available options is shown in the order information. In this example the options
Multiple recording, Gated Sampling, Timestamp and Star-Hub 5 are installed.

The base card version, consisting of the hardware version (the part before the dot) and the firmware version (the part after the dot).

The version of the analog/digital front-end module. Consisting of the hardware version (the part before the dot) and the firmware
version (the part after the dot)

The date of production, consisting of the calendar week and the year.

The version of the extension module if one is installed. Consisting of the hardware version (the part before the dot) and the firmware
version (the part after the dot). In our example we have the Star-Hub 5 extension module installed. Therefore the version of the ex-
tension module is filled on the type plate. If no extension module is installed this part is left open.

Please always supply us with the above information, especially the serial number in case of support request. That
allows us to answer your questions as soon as possible. Thank you.
12 M2i.20xx / M2i.20xx-exp Manual

Introduction Hardware information
Hardware information

Block diagram
(c) Spectrum GmbH 13

Hardware information Introduction
Technical Data

Analog Inputs

Trigger

Clock

BaseXIO Option

Resolution 8 bit
Input Range software programmable ±50 mV, ±100 mV, ±200 mV, ±500 mV, ±1 V, ±2 V, ±5 V
Input Mode fixed bipolar, single-ended
Input Offset software programmable ±400% of input range in steps of 1%
ADC Differential non linearity (DNL) ADC only ±0.5 LSB
ADC Integral non linearity (INL) ADC only ±0.5 LSB
Offset error (full speed) after warm-up and calibration ≤ 0.1% of range
Gain error (full speed) after warm-up and calibration ≤ 2%
Crosstalk: 1 MHz Signal, 50 Ω termination all input ranges ≤ -62 dB on adjacent channels
Analog input impedance software programmable 50 Ω or 1 MΩ || 25 pF
Analog input coupling fixed DC
Over voltage protection (active card) ranges ≤ ±500 mV ±5 V
Over voltage protection (active card) ranges > ±500 mV ±50 V
Input signal with 50 Ω termination max 5 V rms
Channel selection software programmable 1, 2 or 4 (maximum is model dependent)

Available trigger modes software programmable Channel Trigger, External, Software, Window, Pulse, Re-Arm, Or/And, Delay
Trigger level resolution software programmable 8 bit

Trigger edge software programmable Rising edge, falling edge or both edges
Trigger pulse width software programmable 0 to [64k - 1] samples in steps of 1 sample
Trigger delay software programmable 0 to [64k - 1] samples in steps of 1 sample
Multi, Gate: re-arming time < 4 samples (+ programmed pretrigger)
Pretrigger at Multi, ABA, Gate, FIFO software programmable 8 up to [16352 Samples / number of active channels] in steps of 8
Posttrigger software programmable 4 up to [8G - 4] samples in steps of 4 (defining pretrigger in standard scope mode)
Memory depth software programmable 8 up to [installed memory / number of active channels] samples in steps of 4
Multiple Recording/ABA segment size software programmable 8 up to [installed memory / 2 / active channels] samples in steps of 4
Trigger output delay One positive edge after internal trigger event
Internal/External trigger accuracy ≤ 100 MS/s 1 sample
Internal/External trigger accuracy > 100 MS/s 2 samples
External trigger type (input and output) 3.3V LVTTL compatible (5V tolerant with base card hardware version > V20)
External trigger input Low ≤ 0.8 V, High ≥ 2.0 V, ≥ 8 ns in pulse stretch mode, ≥ 2 clock periods all other modes
External trigger maximum voltage -0.5 V up to +5.7 V (internally clamped to 5.0V, 100 mA max. clamping current)
Trigger impedance software programmable 50 Ohm / high impedance (> 4kOhm)
External trigger output type 3.3 V LVTTL
External trigger output levels Low ≤ 0.4 V, High ≥ 2.4 V, TTL compatible
External trigger output drive strength Capable of driving 50 ohm load, maximum drive strength ±128 mA

Clock Modes software programmable internal PLL, internal quartz, external clock, external divided, external reference clock, sync
Internal clock range (PLL mode) software programmable 1 kS/s to max using internal reference, 50kS/s to max using external reference clock
Internal clock accuracy ≤ 20 ppm
Internal clock setup granularity ≤1% of range (100M, 10M, 1M, 100k,...): Examples: range 1M to 10M: stepsize ≤ 100k
External reference clock range software programmable ≥ 1.0 MHz and ≤ 125.0 MHz
External clock impedance software programmable 50 Ohm / high impedance (> 4kOhm)
External clock range see „Dynamic Parameters“ table below
External clock delay to internal clock 5.4 ns
External clock type/edge 3.3V LVTTL compatible, rising edge used
External clock input Low level ≤ 0.8 V, High level ≥ 2.0 V, duty cycle: 45% - 55%
External clock maximum voltage -0.5 V up to +3.8 V (internally clamped to 3.3V, 100 mA max. clamping current)

(not 5V tolerant)
External clock output type 3.3 V LVTTL
External clock output levels Low ≤ 0.4 V, High ≥ 2.4 V, TTL compatible
External clock output drive strength Capable of driving 50 ohm load, maximum drive strength ±128 mA
Synchronization clock divider software programmable 2 up to [8k - 2] in steps of 2
ABA mode clock divider for slow clock software programmable 8 up to 524280 in steps of 8

BaseXIO modes software programmable Asynch digital I/O, 2 additional trigger, timestamp reference clock, timestamp digital inputs
BaseXIO direction software programmable Each 4 lines can be programmed in direction
BaseXIO input TTL compatible: Low ≤ 0.8 V, High ≥ 2.0 V
BaseXIO input impedance 4.7 kOhm towards 3.3 V
BaseXIO input maximum voltage -0.5 V up to +5.5 V
BaseXIO output type 3.3 V LVTLL
BaseXIO output levels TTL compatible: Low ≤ 0.4 V, High ≥ 2.4 V
BaseXIO output drive strength 32 mA maximum current, no 50 Ω loads
14 M2i.20xx / M2i.20xx-exp Manual

Introduction Hardware information
Connectors

Environmental and Physical Details

PCI/PCI-X specific details

PCI Express specific details

Certification, Compliance, Warranty

Power Consumption

MTBF

Dynamic Parameters

Dynamic parameters are measured at ±1 V input range (if no other range is stated) and 50Ω termination with the samplerate specified in the table. Measured parameters are averaged
20 times to get typical values. Test signal is a pure sine wave generated by a signal generator and a matching bandpass filter. Amplitude is >99% of FSR. SNR and RMS noise parameters
may differ depending on the quality of the used PC. SNR = Signal to Noise Ratio, THD = Total Harmonic Distortion, SFDR = Spurious Free Dynamic Range, SINAD = Signal Noise and Dis-
tortion, ENOB = Effective Number of Bits.

Analog Inputs 3 mm SMB male (one for each single-ended input) Cable-Type: Cab-3f-xx-xx
Trigger Input/Output programmable direction 3 mm SMB male (one connector) Cable-Type: Cab-3f-xx-xx
Clock Input/Output programmable direction 3 mm SMB male (one connector) Cable-Type: Cab-3f-xx-xx
Option Digital Inputs/Outputs 40 pole half pitch (Hirose FX2 series) Cable-Type: Cab-d40-xx-xx
Option BaseXIO 8 x 3 mm SMB male on extra bracket, internally 8 x MMCX female

Dimension (PCB only) 312 mm x 107 mm (full PCI length)
Width (Standard or with option star-hub 5) 1 full size slot
Width (star-hub 16) additionally back of adjacent neighbour slots
Width (with option BaseXIO) additionally extra bracket on neighbour slot
Width (with option -digin, -digout or -60xx-AmpMod) additionally half length of adjacent neighbour slot
Weight (depending on version) 290g (smallest version) up to 460g (biggest version with all options, including star-hub)
Warm up time 10 minutes
Operating temperature 0°C to 50°C
Storage temperature -10°C to 70°C
Humidity 10% to 90%

PCI / PCI-X bus slot type 32 bit 33 MHz or 32 bit 66 MHz
PCI / PCI-X bus slot compatibility 32/64 bit, 33-133 MHz, 3,3 V and 5 V I/O
Sustained streaming mode > 245 MB/s (in a PCI-X slot clocked at 66 MHz or higher)

PCIe slot type x1 Generation 1
PCIe slot compatibility (physical) x1, x4, x8, x16
PCIe slot compatibility (electrical) x1, x2, x4, x8, x16 with Generation 1, Generation 2, Generation 3, Generation 4
Sustained streaming mode > 160 MB/s

EMC Immunity Compliant with CE Mark
EMC Emission Compliant with CE Mark
Product warranty 5 years starting with the day of delivery
Software and firmware updates Life-time, free of charge

PCI / PCI-X PCI EXPRESS
3.3 V 5 V Total 3.3V 12V Total

M2i.20x0 (512 MSample memory) 2.2 A 0.5 A 9.8 W 0.4 A 1.0 A 13.3 W
M2i.20x1 (512 MSample memory) 2.8 A 0.8 A 13.2 W 0.4 A 1.2 A 15.7 W
M2i.2031 (4 GSample memory) max power 3.9 A 0.8 A 16.9 W 0.4 A 2.0 A 25.3 W

MTBF 500000 hours

M2i.2020 M2i.2021 M2i.2030
DN2.203-02

M2i.2031
DN2.203-04
DN2.203-08

min internal clock 1kS/s 1kS/s 1kS/s 1kS/s
max internal clock 50 MS/s 50 MS/s 200 MS/s 200 MS/s
min external clock 1 MS/s 1 MS/s 1 MS/s 1 MS/s
max external clock 50 MS/s 50 MS/s 100 MS/s 100 MS/s
-3 dB bandwidth ±50 mV DC to 25 MHz DC to 25 MHz DC to 60 MHz DC to 60 MHz
-3 dB bandwidth ±100 mV DC to 25 MHz DC to 25 MHz DC to 80 MHz DC to 80 MHz
-3 dB bandwidth ≥ ±200 mV DC to 25 MHz DC to 25 MHz DC to 90 MHz DC to 90 MHz
Zero noise level (≤ ±100 mV) ≤ 0,6 LSB ≤ 0,9 LSB ≤ 1,5 LSB ≤ 2.0 LSB
Zero noise level (> ±100 mV) ≤ 0,6 LSB ≤ 0,7 LSB ≤ 1.3 LSB ≤ 1.5 LSB
Test - sampling rate 50 MS/s 50 MS/s 100 MS/s 100 MS/s
Test signal frequency 1 MHz 4 MHz 1 MHz 4 MHz 1 MHz 9 MHz 1 MHz 9 MHz
SNR (typ) 47.5 dB 47.5 dB 46.8 dB 46.5 dB 45.3 dB 45.0 dB 45.0 dB 44.5 dB
THD (typ) -56.0 dB -55.5 dB -56.0 dB -55.5 dB -51.5 dB -49.5 dB -49.5 dB -49.5 dB
SFDR (typ), excl. harm. 61.3 dB 61.0 dB 60.3 dB 60.1 dB 59.0 dB 57.0 dB 59.0 dB 57.0 dB
ENOB (based on SNR) 7.6 bit 7.6 bit 7.5 bit 7.4 bit 7.2 bit 7.2 bit 7.2 bit 7.2 bit
ENOB (based on SINAD) 7.5 bit 7.5 bit 7.4 bit 7.3 bit 7.1 bit 7.0 bit 7.1 bit 7.0 bit
(c) Spectrum GmbH 15

Hardware information Introduction

Order Information
The card is delivered with 512 MSample on-board memory and supports standard acquisition (Scope), FIFO acquisition (streaming), Multiple
Recording, Gated Sampling, ABA mode and Timestamps. Operating system drivers for Windows/Linux 32 bit and 64 bit, examples for
C/C++, LabVIEW (Windows), MATLAB (Windows and Linux), IVI, .NET, Delphi, Java, Python and a Base license of the oscilloscope software
SBench 6 are included. Drivers for other 3rd party products like VEE or DASYLab may be available on request.

Adapter cables are not included. Please order separately!

(1) : Just one of the options can be installed on a card at a time.
(2) : Third party product with warranty differing from our export conditions. No volume rebate possible.

PCI Express (PCIe) PCI Express PCI/PCI-X Standard mem 1 channel 2 channels 4 channels

PCI/PCI-X M2i.2020-exp M2i.2020 512 MByte 50 MS/s 50 MS/s

M2i.2021-exp M2i.2021 512 MByte 50 MS/s 50 MS/s 50 MS/s
M2i.2030-exp M2i.2030 512 MByte 200 MS/s 100 MS/s
M2i.2031-exp M2i.2031 512 MByte 200 MS/s 200 MS/s 100 MS/s

Memory Order no. Option

M2i.xxxx-1GB Memory upgrade to 1 GB of total memory
M2i.xxxx-2GB Memory upgrade to 2 GB of total memory

Options Order no. Option

M2i.xxxx-SH5 (1) Synchronization Star-Hub for up to 5 cards, only 1 slot width
M2i.xxxx-SH16 (1) Synchronization Star-Hub for up to 16 cards
M2i.xxxx-SSHM (1) System-Star-Hub Master for up to 15 cards in the system and up to 17 systems, PCI 32 Bit card,

sync cables and extra bracket for clock and trigger distribution included
M2i.xxxx-SSHMe (1) System-Star-Hub Master for up to 15 cards in the system and up to 17 systems, PCI Express card,

sync cables and extra bracket for clock and trigger distribution included
M2i.xxxx-SSHS5 (1) System-Star-Hub Slave for 5 cards in one system, one slot width all sync cables + bracket included
M2i.xxxx-SSHS16 (1) System-Star-Hub Slave for 16 cards in system, two slots width, all sync cables + bracket included
M2i.xxxx-bxio Option BaseXIO: 8 digital I/O lines usable as asynchronous I/O, timestamp ref-clock and additional

external trigger lines, additional bracket with 8 SMB connectors
M2i-upgrade Upgrade for M2i.xxxx: later installation of option -M2i.xxxx-2GB, -SH5, -SH16 or -bxio

Services Order no.

Recal Recalibration at Spectrum incl. calibration protocol

Cables Order no.

for Connections Length to BNC male to BNC female to SMA male to SMA female to SMB female
Analog/Clock/Trigger 80 cm Cab-3f-9m-80 Cab-3f-9f-80 Cab-3f-3mA-80 Cab-3f-3fA-80 Cab-3f-3f-80
Analog/Clock/Trigger 200 cm Cab-3f-9m-200 Cab-3f-9f-200 Cab-3f-3mA-200 Cab-3f-3fA-200 Cab-3f-3f-200
Probes (short) 5 cm Cab-3f-9f-5
Information The standard adapter cables are based on RG174 cables and have a nominal attenuation of 0.3 dB/m at 100 MHz.

Amplifiers Order no. Bandwidth Connection Input Impedance Coupling Amplification

SPA.1412 (2) 200 MHz BNC 1 MOhm AC/DC x10/x100 (20/40 dB)

SPA.1411 (2) 200 MHz BNC 50 Ohm AC/DC x10/x100 (20/40 dB)

SPA.1232 (2) 10 MHz BNC 1 MOhm AC/DC x100/x1000 (40/60 dB)

SPA.1231 (2) 10 MHz BNC 50 Ohm AC/DC x100/x1000 (40/60 dB)
Information External Amplifiers with one channel, BNC/SMA female connections on input and output, manually adjustable offset, man-

ually switchable settings. An external power supply for 100 to 240 VAC is included. Please be sure to order an adapter
cable matching the amplifier connector type and matching the connector type for your A/D card input.

Software SBench6 Order no.

SBench6 Base version included in delivery. Supports standard mode for one card.
SBench6-Pro Professional version for one card: FIFO mode, export/import, calculation functions
SBench6-Multi Option multiple cards: Needs SBench6-Pro. Handles multiple synchronized cards in one system.
Volume Licenses Please ask Spectrum for details.

Software Options Order no.

SPc-RServer Remote Server Software Package - LAN remote access for M2i/M3i/M4i/M4x/M2p cards
16 M2i.20xx / M2i.20xx-exp Manual

Hardware Installation System Requirements
Hardware Installation

System Requirements
All Spectrum M2i/M3i.xxxx instrumentation cards are compliant to the PCI standard and require in general one free full length slot. This can
either be a standard 32 bit PCI legacy slot, a 32 bit or a 64 bit PCI-X slot. Depending on the installed options additional free slots can be
necessary.

All Spectrum M2i/M3i.xxxx-exp instrumentation cards are compliant to the PCI Express 1.0 standard and require in general one free full
length PCI Express slot. This can either be a x1, x4, x8 or x16 slot. Some x16 PCIe slots are for the use of graphic cards only and can not
be used for other cards. Depending on the installed options additional free slots can be necessary.

Warnings

ESD Precautions
The boards of the M2i/M3i.xxxx series contain electronic components that can be damaged by electrostatic discharge (ESD).

Before installing the board in your system or protective conductive packaging, discharge yourself by touching
a grounded bare metal surface or approved anti-static mat before picking up this ESD sensitive product.

Cooling Precautions
The boards of the M2i/M3i.xxxx series operate with components having very high power consumption at high speeds. For this reason it is
absolutely required to cool this board sufficiently.

For all M2i/M3i cards it is strongly recommended to install an additional cooling fan producing a stream of air across the boards
surface. In most cases professional PC-systems are already equipped with sufficient cooling power. In that case please make sure
that the air stream is not blocked.

Sources of noise
The analog acquisition and generator boards of the M2i/M3i.xxxx series should be placed far away from any noise producing source (like
e.g. the power supply). It should especially be avoided to place the board in the slot directly adjacent to another fast board (like the graphics
controller).

Connector Handling Precautions
The connectors used on this product are designed for high signal quality and good shielding. Due to the limited space on the front-panel they
have to be as small as possible to fit the needed signal connections on the front panel. Therefore these connectors are vulunable to mechanical
damages when used not properly. Especially SMB and MMCX connctors may be broken when not operated correctly.

Always dismount the connections by operating the connector itself and not the cable. Always move the cable
connector in a straight line from the board connector. Do not cant the connector when opening the connection.
A broken connector can only be replaced in factory and is not covered by warranty.

(c) Spectrum GmbH 17

Installing the board in the system Hardware Installation
Installing the board in the system

Installing a single board without any options
Before installing the board you first need to unscrew and remove the dedicated blind-bracket usually mounted to cover unused slots of your
PC. Please keep the screw in reach to fasten your Spectrum card afterwards. All Spectrum cards require a full length PCI, PCI-X slot (either
32Bit or 64Bit) or PCI Express slot (either x1, x4, x8 or x16) with a track at the backside to guide the board by its retainer. Now insert the
board slowly into your computer. This is done best with one hand each at both fronts of the board.

While inserting the board take care not to tilt the retainer in the track. Please take especial care to not bend
the card in any direction while inserting it in the system. A bending of the card may damage the PCB totally
and is not covered by the standard warranty.

Please be very carefully when inserting the board in the slot, as most of the mainboards are mounted with
spacers and therefore might be damaged if they are exposed to high pressure.

After the board’s insertion fasten the screw of the bracket carefully, without overdoing.

Installing the M2i/M3i.xxxx PCI/PCI-X card in a 32 bit PCI/PCI-X slot

Installing the M2i/M3i.xxxx PCI/PCI-X card in a 64 bit PCI/PCI-X slot

18 M2i.20xx / M2i.20xx-exp Manual

Hardware Installation Installing the board in the system
Installing the M2i/M3i.xxxx-exp PCI Express card in a PCIe x1 slot

Installing the M2i/M3i.xxxx-exp PCI Express card in a PCIe x4, x8 or x16 slot

(c) Spectrum GmbH 19

Installing the board in the system Hardware Installation

Installing a board with digital inputs/outputs mounted on an extra bracket
Before installing the board you first need to unscrew and remove the dedicated blind-brackets usually mounted to cover unused slots of your
PC. Please keep the screws in reach to fasten your Spectrum board and the extra bracket afterwards. All Spectrum boards require a full length
PCI slot with a track at the backside to guide the board by its retainer. Now insert the board and the extra bracket slowly into your computer.
This is done best with one hand each at both fronts of the board.

While inserting the board take care not to tilt the retainer in the track. Please take especial care to not bend
the card in any direction while inserting it in the system. A bending of the card may damage the PCB totally
and is not covered by the standard warranty.

Please be very carefully when inserting the board in the PCI slot, as most of the mainboards are mounted
with spacers and therefore might be damaged they are exposed to high pressure.

After the board’s insertion fasten the screws of both brackets carefully, without overdoing. The figure shows an ex-
ample of a board with two installed modules.

20 M2i.20xx / M2i.20xx-exp Manual

Hardware Installation Installing the board in the system
Installing a board with option BaseXIO
Before installing the board you first need to unscrew and remove the dedicated blind-brackets usually mounted to cover unused slots of your
PC. Please keep the screws in reach to fasten your Spectrum board and the extra bracket afterwards. All Spectrum boards require a full length
PCI slot with a track at the backside to guide the board by its retainer. Now insert the board and the extra bracket slowly into your computer.
This is done best with one hand each at both fronts of the board.

While inserting the board take care not to tilt the retainer in the track. Please take especial care to not bend
the card in any direction while inserting it in the system. A bending of the card may damage the PCB totally
and is not covered by the standard warranty.

Please be very carefully when inserting the board in the PCI slot, as most of the mainboards are mounted
with spacers and therefore might be damaged they are exposed to high pressure.

After the board’s insertion fasten the screws of both brackets carefully, without overdoing. The figure shows an ex-
ample of a board with two installed modules.

(c) Spectrum GmbH 21

Installing the board in the system Hardware Installation
Installing multiple boards synchronized by star-hub option

Hooking up the boards
Before mounting several synchronized boards for a multi channel system into the PC you can hook up the cards with their synchronization
cables first. If there is enough space in your computer’s case (e.g. a big tower case) you can also mount the boards first and hook them up
afterwards. Spectrum ships the card carrying the star-hub option together with the needed amount of synchronization cables. All of them are
matched to the same length, to achieve a zero clock delay between the cards.

Only use the included flat ribbon cables.

All of the cards, including the one that carries the star-hub piggy-back module, must be wired to the star-hub as the figure is showing as an
example for three synchronized boards.

It does not matter which of the available connectors on the star-hub module you use for which board. The software driver will detect the types
and order of the synchronized boards automatically. The figure shows the three cables mounted on the option M2i.xxxx-SH16 star-hub to
achieve a better visibility. The option M3i.xxxx-SH8 is handled similar to this picture. When using the M3i.xxxx-SH4 or M2i.xxxx-SH5 version,
only the connectors on the upper side of the star-hub piggy-back module are available (see figure for details on the star-hub connector loca-
tions).

As some of the synchronization cables are not secured against wrong plugging you should take
care to have the pin 1 markers on the multiple connectors and the cable on the same side, as the
figure on the right is showing.

Mounting the wired boards
Before installing the cards you first need to unscrew and remove the dedicated blind-brackets usually mounted to cover unused slots of your
PC. Please keep the screws in reach to fasten your Spectrum cards afterwards. All Spectrum boards require a full length PCI slot with a track
at the backside to guide the card by its retainer. Now insert the cards slowly into your computer. This is done best with one hand each at
both fronts of the board. Please keep in mind that the board carrying the star-hub piggy-back module requires the width of two slots, when
the option M3i.xxxx-SH8 or M2i.xxxx-SH16 version is used.

While inserting the board take care not to tilt the retainer in the track. Please take especial care to not bend
the card in any direction while inserting it in the system. A bending of the card may damage the PCB totally
and is not covered by the standard warranty.

Please be very careful when inserting the cards in the slots, as most of the mainboards are mounted with
spacers and therefore might be damaged if they are exposed to high pressure.

After inserting all cards fasten the screws of all brackets carefully, without overdoing. The figure shows an example of three cards with two
installed modules each.

22 M2i.20xx / M2i.20xx-exp Manual

Software Driver Installation Windows
Software Driver Installation
Before using the board, a driver must be installed that matches the operating system.

Since driver V3.33 (released on install-disk V3.48 in August 2017) the installation is done via an installer
exectutable rather than manually via the Windows Device Manager. The steps for manually installing a card
has since been moved to a separate application note „AN008 - Legacy Windows Driver Installation“.

This new installer is common on all currently supported Windows platforms (Windows 7, Windows 8 and Windows 10) both 32bit and
64bit. The driver from the USB-Stick supports all cards of the M2i/M3i, M4i/M4x and M2p series, meaning that you can use the same driver
for all cards of these families.

Windows

Before installation
When you install a card for the very first time, Windows will dis-
cover the new hardware and might try to search the Microsoft
Website for available matching driver modules.

Prior to running the Spectrum installer, the card will appear in the
Windows device manager as a generalized card, shown here is
the device manager of a Windows 10 as an example.

• M2i and M3i cards will be shown as „DPIO module“

• M4i, M4x and M2p cards will be shown as
„PCI Data Acquisition and Signal Processing Controller“

Running the driver Installer
Simply run the installer supplied on the USB-Stick (..Driver\win-
dows“ folder or downloadable from www.spectrum-instrumenta-
tion.com
(c) Spectrum GmbH 23

Windows Software Driver Installation
After installation
After running the Spectrum driver installer, the card will appear in
the Windows device manager with its name matching the card se-
ries.

The card is now ready to be used.
24 M2i.20xx / M2i.20xx-exp Manual

Software Driver Installation Linux
Linux

Overview
The Spectrum M2i/M3i/M4i/M4x/M2p cards and digitizerNETBOX/generatorNETBOX products are delivered with Linux drivers suitable
for Linux installations based on kernel 2.6, 3.x, 4.x or 5.x, single processor (non-SMP) and SMP systems, 32 bit and 64 bit systems. As each
Linux distribution contains different kernel versions and different system setup it is in nearly every case necessary, to have a directly matching
kernel driver for card level products to run it on a specific system. For digitizerNETBOX/generatorNETBOX products the library is suffcient
and no kernel driver has to be installed.

Spectrum delivers pre-compiled kernel driver modules for a number of common distributions with the cards. You may try to use one of these
kernel modules for different distributions which have a similar kernel version. Unfortunately this won’t work in most cases as most Linux system
refuse to load a driver which is not exactly matching. In this case it is possible to get the kernel driver sources from Spectrum. Please contact
your local sales representative to get more details on this procedure.

The Standard delivery contains the pre-compiled kernel driver modules for the most popular Linux distribu-
tions, like Suse, Debian, Fedora and Ubuntu. The list with all pre-compiled and readily supported distribu-
tions and their respective kernel version can be found under:
http://spectrum-instrumentation.com/en/supported-linux-distributions or via the shown QR code.

The Linux drivers have been tested with all above mentioned distributions by Spectrum. Each of these distri-
butions has been installed with the default setup using no kernel updates. A lot more different distributions
are used by customers with self compiled kernel driver modules.

Standard Driver Installation
The driver is delivered as installable kernel modules together with libraries to access the kernel driver. The installation script will help you with
the installation of the kernel module and the library.

This installation is only needed if you are operating real locally installed cards. For software emulated demo
cards, remotely installed cards or for digitizerNETBOX/generatorNETBOX products it is only necessary to in-
stall the libraries without a kernel as explained further below.

Login as root
It is necessary to have the root rights for installing a driver.

Call the install.sh <install_path> script
This script will install the kernel module and some helper scripts to a given directory. If you do not specify a directory it will use your home
directory as destination. It is possible to move the installed driver files later to any other directory.

The script will give you a list of matching kernel modules. Therefore it checks for the system width (32 bit or 64 bit) and the processor (single
or smp). The script will only show matching kernel modules. Select the kernel module matching your system. The script will then do the follow-
ing steps:

• copy the selected kernel module to the install directory (spcm.o or spcm.ko)
• copy the helper scripts to the install directory (spcm_start.sh and spc_end.sh)
• copy and rename the matching library to /usr/lib (/usr/lib/libspcm_linux.so)

Udev support
Once the driver is loaded it automatically generates the device nodes under /dev. The cards are automatically named to /dev/spcm0,
/dev/spcm1,...

You may use all the standard naming and rules that are available with udev.

Start the driver
Starting the driver can be done with the spcm_start.sh script that has been placed in the install directory. If udev is installed the script will only
load the driver. If no udev is installed the start script will load the driver and make the required device nodes /dev/spcm0... for accessing
the drivers. Please keep in mind that you need root rights to load the kernel module and to make the device nodes!

Using the dedicated start script makes sure that the device nodes are matching your system setup even if new hardware and drivers have
been added in between. Background: when loading the device driver it gets assigned a „major“ number that is used to access this driver.
All device nodes point to this major number instead of the driver name. The major numbers are assigned first come first served. This means
that installing new hardware may result in different major numbers on the next system start.
(c) Spectrum GmbH 25

Linux Software Driver Installation
Get first driver info
After the driver has been loaded successfully some information about the installed boards can be found in the /proc/spcm_cards file. Some
basic information from the on-board EEProm is listed for every card.

Stop the driver
You may want to unload the driver and clean up all device nodes. This can be done using the spcm_end.sh script that has also been placed
in the install directory

Standard Driver Update
A driver update is done with the same commands as shown above. Please make sure that the driver has been stopped before updating it.
To stop the driver you may use the spcm_end.sh script.

Compilation of kernel driver sources (optional and local cards only)
The driver sources are only available for existing customers on special request and against a signed NDA. The driver sources are not part of
the standard delivery. The driver source package contains only the sources of the kernel module, not the sources of the library.

Please do the following steps for compilation and installation of the kernel driver module:

Login as root
It is necessary to have the root rights for installing a driver.

Call the compile script make_spcm_linux_kerneldrv.sh
This script will examine the type of system you use and compile the kernel with the correct settings. If using a kernel 2.4 the makefile expects
two symbolic links in your system:

• /usr/src/linux pointing to the correct kernel source directory
• /usr/src/linux/.config pointing to the currently used kernel configuration

The compile script will then automatically call the install script and install the just compiled kernel module in your home directory. The rest of
the installation procedure is similar as explained above.

Update of a self compiled kernel driver
If the kernel driver has changed, one simply has to perform the same steps as shown above and recompile the kernel driver module. However
the kernel driver module isn’t changed very often.

Normally an update only needs new libraries. To update the libraries only you can either download the full Linux driver
(spcm_linux_drv_v123b4567) and only use the libraries out of this or one downloads the library package which is much smaller and doesn’t
contain the pre-compiled kernel driver module (spcm_linux_lib_v123b4567).

The update is done with a dedicated script which only updates the library file. This script is present in both driver archives:

Installing the library only without a kernel (for remote devices)
The kernel driver module only contains the basic hardware functions that are necessary to access locally installed card level products. The
main part of the driver is located inside a dynamically loadable library that is delivered with the driver. This library is available in 3 different
versions:

• spcm_linux_32bit_stdc++6.so - supporting libstdc++.so.6 on 32 bit systems
• spcm_linux_64bit_stdc++6.so - supporting libstdc++.so.6 on 64 bit systems

The matching version is installed automatically in the /usr/lib directory by the kernel driver install script for card level products. The library
is renamed for easy access to libspcm_linux.so.

For digitizerNETBOX/generatorNETBOX products and also for evaluating or using only the software simulated demo cards the library is in-
stalled with a separate install script:

cat /proc/spcm_cards

sh install_libonly.sh

sh install_libonly.sh
26 M2i.20xx / M2i.20xx-exp Manual

Software Driver Installation Linux
To access the driver library one must include the library in the compilation:

To start programming the cards under Linux please use the standard C/C++ examples which are all running under Linux and Windows.

Control Center
The Spectrum Control Center is also available for Linux and needs to be installed sepa-
rately. The features of the Control Center are described in a later chapter in deeper de-
tail. The Control Center has been tested under all Linux distributions for which Spectrum
delivers pre-compiled kernel modules. The following packages need to be installed to run
the Control Center:

• X-Server
• expat
• freetype
• fontconfig
• libpng
• libspcm_linux (the Spectrum linux driver library)

Installation
Use the supplied packages in either *.deb or *.rpm format found in the driver section of
the USB-Stick by double clicking the package file root rights from a X-Windows window.

The Control Center is installed under KDE, Gnome or Unity in the system/system tools
section. It may be located directly in this menu or under a „More Programs“ menu. The
final location depends on the used Linux distribution. The program itself is installed as
/usr/bin/spcmcontrol and may be started directly from here.

Manual Installation
To manually install the Control Center, first extract the files from the rpm matching your distribution:

You get the directory structure and the files contained in the rpm package. Copy the binary spcmcontrol to /usr/bin. Copy the .desktop file
to /usr/share/applications. Run ldconfig to update your systems library cache. Finally you can run spcmcontrol.

Troubleshooting
If you get a message like the following after starting spcmcontrol:

Run ldd spcm_control in the directory where spcm_control resides to see the dependencies of the program. The output may look like this:

As seen in the output, one of the libraries isn’t found inside the library cache of the system. Be sure that this library has been properly installed.
You may then run ldconfig. If this still doesn’t help please add the library path to /etc/ld.so.conf and run ldconfig again.

If the libspcm_linux.so is quoted as missing please make sure that you have installed the card driver properly before. If any other library is
stated as missing please install the matching package of your distribution.

gcc -o test_prg -lspcm_linux test.cpp

rpm2cpio spcmcontrol-{Version}.rpm > ~/spcmcontrol-{Version}.cpio
cd ~/
cpio -id < spcmcontrol-{Version}.cpio

spcm_control: error while loading shared libraries: libz.so.1: cannot open shared object file: No such file
or directory

libXext.so.6 => /usr/X11R6/lib/libXext.so.6 (0x4019e000)
libX11.so.6 => /usr/X11R6/lib/libX11.so.6 (0x401ad000)
libz.so.1 => not found
libdl.so.2 => /lib/libdl.so.2 (0x402ba000)
libpthread.so.0 => /lib/tls/libpthread.so.0 (0x402be000)
libstdc++.so.6 => /usr/lib/libstdc++.so.6 (0x402d0000)
(c) Spectrum GmbH 27

Software Overview Software
Software
This chapter gives you an overview about the structure of the drivers and the software, where to find and how to use the examples. It shows
in detail, how the drivers are included using different programming languages and deals with the differences when calling the driver functions
from them.

This manual only shows the use of the standard driver API. For further information on programming drivers
for third-party software like LabVIEW, MATLAB or IVI an additional manual is required that is available on
USB-Stick or by download on the internet.

Software Overview

The Spectrum drivers offer you a common and fast API for using all of the board hardware features. This API is the same on all supported
operating systems. Based on this API one can write own programs using any programming language that can access the driver API. This
manual describes in detail the driver API, providing you with the necessary information to write your own programs.
The drivers for third-party products like LabVIEW or MATLAB are also based on this API. The special functionality of these drivers is not subject
of this document and is described with separate manuals available on the USB-Stick or on the website.

Card Control Center
A special card control center is available on USB-Stick and from the internet for all
Spectrum M2i/M3i/M4i/M4x/M2p cards and for all digitizerNETBOX or
generatorNETBOX products. Windows users find the Control Center installer on the
USB-Stick under „Install\win\spcmcontrol_install.exe“.

Linux users find the versions for the different stdc++ libraries under /In-
stall/linux/spcm_control_center/ as RPM packages.

When using a digitizerNETBOX/generatorNETBOX the Card Control Center install-
ers for Windows and Linux are also directly available from the integrated webserver.

The Control Center under Windows and Linux is available as an executive program.
Under Windows it is also linked as a system control and can be accessed directly
from the Windows control panel. Under Linux it is also available from the KDE Sys-
tem Settings, the Gnome or Unity Control Center. The different functions of the Spectrum card control center are explained in detail in the
following passages.

To install the Spectrum Control Center you will need to be logged in with administrator rights for your oper-
ating system. On all Windows versions, starting with Windows Vista, installations with enabled UAC will ask
you to start the installer with administrative rights (run as administrator).
28 M2i.20xx / M2i.20xx-exp Manual

Software Card Control Center
Discovery of Remote Cards and digitizerNETBOX/generatorNETBOX products
The Discovery function helps you to find and identify the Spectrum LXI
instruments like digitizerNETBOX/generatorNETBOX available to
your computer on the network. The Discovery function will also locate
Spectrum card products handled by an installed Spectrum Remote
Server somewhere on the network. The function is not needed if you
only have locally installed cards.

Please note that only remote products are found that are currently not
used by another program. Therefore in a bigger network the number
of Spectrum products found may vary depending on the current usage
of the products.

Execute the Discovery function by pressing the „Discovery“ button.
There is no progress window shown. After the discovery function has
been executed the remotely found Spectrum products are listed under
the node Remote as separate card level products. Inhere you find all
hardware information as shown in the next topic and also the needed
VISA resource string to access the remote card.

Please note that these information is also stored on your system and
allows Spectrum software like SBench 6 to access the cards directly
once found with the Discovery function.

After closing the control center and re-opening it the previously found
remote products are shown with the prefix cached, only showing the
card type and the serial number. This is the stored information that allows other Spectrum products to access previously found cards. Using
the „Update cached cards“ button will try to re-open these cards and gather information of it. Afterwards the remote cards may disappear if
they’re in use from somewhere else or the complete information of the remote products is shown again.

Enter IP Address of digitizerNETBOX/generatorNETBOX manually

If for some reason an automatic discovery is not suitable, such as the case where the remote
device is located in a different subnet, it can also be manually acessed by its type and IP ad-
dress.

Wake On LAN of digitizerNETBOX/generatorNETBOX
Cached digitizerNETBOX/generatorNETBOX products that are currently in standby mode can
be woken up by using the „Wake remote device“ entry from the context menu.

The Control Center will broadcast a standard Wake On LAN „Magic Packet“, that is sent to the
device’s MAC address.

It is also possible to use any other Wake On LAN software to wake a digitizerNETBOX by send-
ing such a „Magic Packet“ to the MAC address, which must be then entered manually.

It is also possible to wake a digitizerNETBOX/generatorNETBOX from your own application
software by using the SPC_NETBOX_WAKEONLAN register. To wake a
digitizerNETBOX/generatorNETBOX with the MAC address „00:03:2d:20:48“, the following
command can be issued:

spcm_dwSetParam_i64 (NULL, SPC_NETBOX_WAKEONLAN, 0x00032d2048ec);
(c) Spectrum GmbH 29

Card Control Center Software
Netbox Monitor
The Netbox Monitor permanently monitors whether the digitizerNETBOX/generatorNETBOX is still available through LAN. This tool is helpful
if the digitizerNETBOX is located somewhere in the company LAN or located remotely or directly mounted inside another device. Starting
the Netbox Monitor can be done in two different ways:

• Starting manually from the Spectrum Control Center using the context menu as shown above
• Starting from command line. The Netbox Monitor program is automatically installed together with the Spectrum Control Center and is

located in the selected install folder. Using the command line tool one can place a simple script into the autostart folder to have the Net-
box Monitor running automatically after system boot. The command line tool needs the IP address of the
digitizerNETBOX/generatorNETBOX to monitor:

The Netbox Monitor is shown as a small window with the type of digitizerNETBOX/generatorNETBOX in the title and the IP ad-
dress under which it is accessed in the window itself. The Netbox Monitor runs completely independent of any other software and
can be used in parallel to any application software. The background of the IP address is used to display the current status of the
device. Pressing the Escape key or alt + F4 (Windows) terminates the Netbox Monitor permanently.

After starting the Netbox Monitor it is also displayed as a tray icon under Windows. The tray icon itself shows the status
of the digitizerNETBOX/generatorNETBOX as a color. Please note that the tray icon may be hidden as a Windows
default and need to be set to visible using the Windows tray setup.

Left clicking on the tray icon will hide/show the small Netbox Monitor status window. Right clicking on the tray icon as
shown in the picture on the right will open up a context menu. In here one can again select to hide/show the Netbox
Monitor status window, one can directly open the web interface from here or quit the program (including the tray icon)
completely.

The checkbox „Show Status Message“ controls whether the tray icon should emerge a status message on status change. If enabled (which is
default) one is notified with a status message if for example the LAN connection to the digitizerNETBOX/generatorNETBOX is lost.

The status colors:

• Green: digitizerNETBOX/generatorNETBOX available and accessible over LAN
• Cyan: digitizerNETBOX/generatorNETBOX is used from my computer
• Yellow: digitizerNETBOX/generatorNETBOX is used from a different computer
• Red: LAN connection failed, digitizerNETBOX/generatorNETBOX is no longer accessible

Device identification
Pressing the Identification button helps to identify a certain device in either a remote location, such as inside
a 19“ rack where the back of the device with the type plate is not easily accessible, or a local device installed
in a certain slot. Pressing the button starts flashing a visible LED on the device, until the dialog is closed, for:

• On a digitizerNETBOX or generatorNETBOX: the LAN LED light on the front plate of the device
• On local or remote M4i, M4x or M2p card: the indicator LED on the card’s bracket

This feature is not available for M2i/M3i cards, either local or remote, other than inside a digitizerNETBOX or generatorNETBOX.

NetboxMonitor 192.168.169.22
30 M2i.20xx / M2i.20xx-exp Manual

Software Card Control Center
Hardware information
Through the control center you can easily get the main information
about all the installed Spectrum hardware. For each installed card
there is a separate tree of information available. The picture shows the
information for one installed card by example. This given information
contains:

• Basic information as the type of card, the production date and its
serial number, as well as the installed memory, the hardware revi-
sion of the base card, the number of available channels and
installed acquisition modules.

• Information about the maximum sampling clock and the available
quartz clock sources.

• The installed features/options in a sub-tree. The shown card is
equipped for example with the option Multiple Recording, Gated
Sampling, Timestamp and ABA-mode.

• Detailed Information concerning the installed acquisition modules.
In case of the shown analog acquisition card the information con-
sists of the module’s hardware revision, of the converter resolution
and the last calibration date as well as detailed information on the
available analog input ranges, offset compensation capabilities
and additional features of the inputs.

Firmware information
Another sub-tree is informing about the cards firmware ver-
sion. As all Spectrum cards consist of several programmable
components, there is one firmware version per component.

Nearly all of the components firmware can be updated by
software. The only exception is the configuration device,
which only can receive a factory update.

The procedure on how to update the firmware of your Spec-
trum card with the help of the card control center is described
in a dedicated section later on.

The procedure on how to update the firmware of your
digitizerNETBOX/generatorNETBOX with the help of the in-
tegrated Webserver is described in a dedicated chapter later
on.
(c) Spectrum GmbH 31

Card Control Center Software
Software License information
This sub-tree is informing about installed possible software li-
censes.

As a default all cards come with the demo professional li-
cense of SBench6, that is limited to 30 starts of the software
with all professional features unlocked.

The number of demo starts left can be seen here.

Driver information
The Spectrum card control center also offers a way to
gather information on the installed and used Spectrum
driver.

The information on the driver is available through a
dedicated tab, as the picture is showing in the example.

The provided information informs about the used type,
distinguishing between Windows or Linux driver and the
32 bit or 64 bit type.

It also gives direct information about the version of the
installed Spectrum kernel driver, separately for M2i/ M3i
cards and M4i/M4x/M2p cards and the version of the
library (which is the *.dll file under Windows).

The information given here can also be found under
Windows using the device manager form the
control panel. For details in driver details within the con-
trol panel please stick to the section on driver installation
in your hardware manual.

Installing and removing Demo cards
With the help of the card control center one can install demo cards
in the system. A demo card is simulated by the Spectrum driver in-
cluding data production for acquisition cards. As the demo card is
simulated on the lowest driver level all software can be tested in-
cluding SBench, own applications and drivers for third-party prod-
ucts like LabVIEW. The driver supports up to 64 demo cards at the
same time. The simulated memory as well as the simulated software
options can be defined when adding a demo card to the system.

Please keep in mind that these demo cards are only meant to test
software and to show certain abilities of the software. They do not
simulate the complete behavior of a card, especially not any timing
concerning trigger, recording length or FIFO mode notification. The
demo card will calculate data every time directly after been called
and give it to the user application without any more delay. As the
calculation routine isn’t speed optimized, generating demo data
may take more time than acquiring real data and transferring them
to the host PC.

Installed demo cards are listed together with the real hardware in
the main information tree as described above. Existing demo cards
can be deleted by clicking the related button. The demo card de-
tails can be edited by using the edit button. It is for example possi-
ble to virtually install additional feature to one card or to change
the type to test with a different number of channels.
32 M2i.20xx / M2i.20xx-exp Manual

Software Card Control Center
For installing demo cards on a system without real hardware simply run the Control Center installer. If the
installer is not detecting the necessary driver files normally residing on a system with real hardware, it will
simply install the Spcm_driver.

Feature upgrade
All optional features of the M2i/M3i/M4i/M4x/M2p cards that do not require
any hardware modifications can be installed on fielded cards. After Spectrum has
received the order, the customer will get a personalized upgrade code. Just start
the card control center, click on „install feature“ and enter that given code. After a
short moment the feature will be installed and ready to use. No restart of the host
system is required.

For details on the available options and prices please contact your local Spectrum
distributor.

Software License upgrade
The software license for SBench 6 Professional is installed on the hardware. If order-
ing a software license for a card that has already been delivered you will get an up-
grade code to install that software license. The upgrade code will only match for that
particular card with the serial number given in the license. To install the software li-
cense please click the „Install SW License“ button and type in the code exactly as
given in the license.

Performing card calibration
The card control center also provides an easy way to access the
automatic card calibration routines of the Spectrum A/D convert-
er cards. Depending on the used card family this can affect offset
calibration only or also might include gain calibration. Please re-
fer to the dedicated chapter in your hardware manual for details.

Performing memory test
The complete on-board memory of the Spectrum M2i/M3i/M4i/M4x/M2p
cards can be tested by the memory test included with the card control center.

When starting the test, randomized data is generated and written to the on-
board memory. After a complete write cycle all the data is read back and com-
pared with the generated pattern.

Depending on the amount of installed on-board memory, and your computer’s
performance this operation might take a while.

Transfer speed test
The control center allows to measure the bus transfer
speed of an installed Spectrum card. Therefore different
setup is run multiple times and the overall bus transfer
speed is measured. To get reliable results it is necessary
that you disable debug logging as shown below. It is also
highly recommended that no other software or time-con-
suming background threads are running on that system.
The speed test program runs the following two tests:

• Repetitive Memory Transfers: single DMA data trans-
fers are repeated and measured. This test simulates
the measuring of pulse repetition frequency when
doing multiple single-shots. The test is done using dif-
ferent block sizes. One can estimate the transfer in
relation to the transferred data size on multiple single-shots.

• FIFO mode streaming: this test measures the streaming speed in FIFO mode. The test can only use the same direction of transfer the card
has been designed for (card to PC=read for all DAQ cards, PC to card=write for all generator cards and both directions for I/O cards).
The streaming speed is tested without using the front-end to measure the maximum bus speed that can be reached.
The Speed in FIFO mode depends on the selected notify size which is explained later in this manual in greater detail.
(c) Spectrum GmbH 33

Card Control Center Software
The results are given in MB/s meaning MByte per second. To estimate whether a desired acquisition speed is possible to reach one has to
calculate the transfer speed in bytes. There are a few things that have to be put into the calculation:

• 12, 14 and 16 bit analog cards need two bytes for each sample.
• 16 channel digital cards need 2 bytes per sample while 32 channel digital cards need 4 bytes and 64 channel digital cards need 8

bytes.
• The sum of analog channels must be used to calculate the total transfer rate.
• The figures in the Speed Test Utility are given as MBytes, meaning 1024 * 1024 Bytes, 1 MByte = 1048576 Bytes

As an example running a card with 2 14 bit analog channels with 28 MHz produces a transfer rate of [2 channels * 2 Bytes/Sample *
28000000] = 112000000 Bytes/second. Taking the above figures measured on a standard 33 MHz PCI slot the system is just capable of
reaching this transfer speed: 108.0 MB/s = 108 * 1024 * 1024 = 113246208 Bytes/second.

Unfortunately it is not possible to measure transfer speed on a system without having a Spectrum card installed.

Debug logging for support cases
For answering your support questions as fast as possible, the
setup of the card, driver and firmware version and other in-
formation is very helpful.

Therefore the card control center provides an easy way to
gather all that information automatically.

Different debug log levels are available through the graphi-
cal interface. By default the log level is set to „no logging“ for
maximum performance.

The customer can select different log levels and the path of
the generated ASCII text file. One can also decide to delete the previous log file first before creating a new one automatically or to append
different logs to one single log file.

For maximum performance of your hardware, please make sure that the debug logging is set to „no log-
ging“ for normal operation. Please keep in mind that a detailed logging in append mode can quickly gener-
ate huge log files.

Device mapping
Within the „Device mapping“ tab of the Spectrum Control Center, one can en-
able the re-mapping of Spectrum devices, be it either local cards, remote instru-
ments such as a digitizerNETBOX or generatorNETBOX or even cards in a
remote PC and accessed via the Spectrum remote server option.

In the left column the re-mapped device name is visible that is given to the device
in the right column with its original un-mapped device string.

In this example the two local cards „spcm0“ and „spcm1“ are re-mapped to
„spcm1“ and „spcm0“ respectively, so that their names are simply swapped.

The remote digitizerNETBOX device is mapped to spcm2.

The application software can then use the re-mapped name for simplicity instead
of the quite long VISA string.

Changing the order of devices within one group (either local cards or remote
devices) can simply be accomplished by draging&dropping the cards to their
desired position in the same table.

34 M2i.20xx / M2i.20xx-exp Manual

Software Card Control Center
Firmware upgrade
One of the major features of the card control center is the ability to update
the card’s firmware by an easy-to-use software. The latest firmware revi-
sions can be found in the download section of our homepage under
www.spectrum-instrumentation.com.

A new firmware version is provided there as an installer, that copies the
latest firmware to your system. All files are located in a dedicated subfold-
er „FirmwareUpdate“ that will be created inside the Spectrum installation
folder. Under Windows this folder by default has been created in the stan-
dard program installation directory.

Please do the following steps when wanting to update the firmware of
your M2i/M3i/M4i/M4x/M2p card:

• Download the latest software driver for your operating system pro-
vided on the Spectrum homepage.

• Install the new driver as described in the driver install section of your
hardware manual or install manual. All manuals can also be found on
the Spectrum homepage in the literature download section.

• Download and run the latest Spectrum Control Center installer.
• Download the installer for the new firmware version.
• Start the installer and follow the instructions given there.
• Start the card control center, select the „card“ tab, select the card from

the listbox and press the „firmware update“ button on the right side.

The dialog then will inform you about the currently installed firmware ver-
sion for the different devices on the card and the new versions that are
available. All devices that will be affected with the update are marked as „update needed“. Simply start the update or cancel the operation
now, as a running update cannot be aborted.

 Please keep in mind that you have to start the update for each card installed in your system separately.
Select one card after the other from the listbox and press the „firmware update“ button. The firmware in-
staller on the other hand only needs to be started once prior to the update.

Do not abort or shut down the computer while the firmware update is in progress. After a successful update
please shut down your PC completely. The re-powering is required to finally activate the new firmware ver-
sion of your Spectrum card.

(c) Spectrum GmbH 35

Compatibility Layer (M2i cards only) Software
Compatibility Layer (M2i cards only)
The installation of the M2i driver also installs a special compatibility DLL (under Windows). This dll allows the use of the M2i cards with
software that has been build for the corresponding MI cards. The compatibility dll is installed in the Windows system directory under the
name spectrum_comp.dll. There are two ways to use the compatibility dll:

Usage modes
• Re-compile the old application soft-

ware and including the new library
spectrum_comp.lib that is delivered
with the compatibility DLL. This is the
recommended usage. The new com-
patibility DLL now has control of the
older driver for MI, MC and MX driv-
ers as well as of the newer driver for
the M2i cards. The newly compiled
program is now capable of running
with old cards as well as with new
cards without any further changes. The
compatibility DLL will examine the sys-
tem and support both card types as
they are found. Any driver updates of
either the older MI cards or the newer
M2i will just update the correct part of
the system. SBench 5 uses this mode
and is therefore capable of supporting
all card types although it was never programmed to support the M2i natively.

• If for any reason a re-compile of the existing program is not possible one can simply rename the compatibility DLL spectrum_comp.dll to
spectrum.dll and copy it over the existing spectrum.dll in the Windows system directory. The program won’t notice that a different DLL is
used and uses the newly installed M2i card. Unfortunately a shared access to either MI or M2i is not possible using this method.

Abilities and Limitations of the compatibility DLL
The compatibility layer has been done to help you migrating software for the M2i cards and tries to hide the new hardware to older program
as best as possible. However as there are some basic differences between both hardware families not everything can be simulated. The
following list should give you an overview of some aspects of the compatibility layer:

• The data transfer is reorganized internally but still uses the same application data buffers. No data is copied for the data transfers. There-
fore the transfer speed that one will gain is the full transfer speed of the M2i card series which is between 20% and 130% faster than the
one of the MI series.

• As the compatibility layer tries to hide the new driver as much as possible none of the new or improved features are available to older
programs. If you need to use a new feature please use the new driver.

• The M2i driver checks the given parameters very carefully while the older driver was sometimes a little lazy and some false commands
and driver parameters weren’t noticed or were noticed but didn’t lock the driver. The M2i will check every register settings at every time
and lock the driver if an error occurs. It may be necessary to fix the application code for handling this more strict error checking.

• The compatibility DLL doesn’t support all special features that have been added to the MI series over the years as some of them are dis-
continued in the new hardware. As long as the application program sticks to the main features this won’t be a problem.

• The compatibility DLL does not add any delays from the MI series as the M2i series has been optimized for small delays. As an example,
the MI cards had a fixed delay from trigger to first sample when using Multiple Recording. The M2i cards now have a programmable pre-
trigger size. When using the compatibility layer this pretrigger is set to the minimum and data will be visible before the trigger event.

• Although the application software doesn’t see a difference between old an new cards there is no chance to synchronize both card types
together as the synchronization option uses different connectors, different signals and different timing.

36 M2i.20xx / M2i.20xx-exp Manual

Software Accessing the hardware with SBench 6
Accessing the hardware with SBench 6
After the installation of the cards and the drivers it can be useful to first test the
card function with a ready to run software before starting with programming. If
accessing a digitizerNETBOX/generatorNETBOX a full SBench 6 Professional
license is installed on the system and can be used without any limitations. For
plug-in card level products a base version of SBench 6 is delivered with the card
on USB-Stick also including a 30 starts Professional demo version for plain card
products. If you already have bought a card prior to the first SBench 6 release
please contact your local dealer to get a SBench 6 Professional demo version.
All digitizerNETBOX/generatorNETBOX products come with a pre-installed full
SBench 6 Professional.

SBench 6 supports all current acquisition and generation cards and
digitizerNETBOX/generatorNETBOX products from Spectrum. Depending on
the used product and the software setup, one can use SBench as a digital stor-
age oscilloscope, a spectrum analyzer, a signal generator, a pattern generator,
a logic analyzer or simply as a data recording front end. Different export and
import formats allow the use of SBench 6 together with a variety of other pro-
grams.

On the USB-Stick you’ll find an install version of SBench 6 in the directory „/Install/SBench6“.

The current version of SBench 6 is available free of charge directly from the Spectrum website: www.spectrum-instrumentation.com. Please
go to the download section and get the latest version there.

SBench 6 has been designed to run under Windows 7, Windows 8 and Windows 10 as well as Linux using KDE, Gnome or Unity Desktop.

(c) Spectrum GmbH 37

C/C++ Driver Interface Software
C/C++ Driver Interface
C/C++ is the main programming language for which the drivers have been designed for. Therefore the interface to C/C++ is the best match.
All the small examples of the manual showing different parts of the hardware programming are done with C. As the libraries offer a standard
interface it is easy to access the libraries also with other programming languages like Delphi, Basic, Python or Java . Please read the following
chapters for additional information on this.

Header files
The basic task before using the driver is to include the header files that are delivered on USB-Stick together with the board. The header files
are found in the directory /Driver/c_header. Please don’t change them in any way because they are updated with each new driver version
to include the new registers and new functionality.

Example for including the header files:

Please always keep the order of including the four Spectrum header files. Otherwise some or all of the func-
tions do not work properly or compiling your program will be impossible!

General Information on Windows 64 bit drivers
After installation of the Spectrum 64 bit driver there are two general ways to access the hardware and to de-
velop applications. If you’re going to develop a real 64 bit application it is necessary to access the 64 bit
driver dll (spcm_win64.dll) as only this driver dll is supporting the full 64 bit address range.

But it is still possible to run 32 bit applications or to develop 32 bit applications even under Windows 64 bit.
Therefore the 32 bit driver dll (spcm_win32.dll) is also installed in the system. The Spectrum SBench5 software
is for example running under Windows 64 bit using this driver. The 32 bit dll of course only offers the 32 bit
address range and is therefore limited to access only 4 GByte of memory. Beneath both drivers the 64 bit ker-
nel driver is running.

Mixing of 64 bit application with 32 bit dll or vice versa is not possible.

Microsoft Visual C++ 6.0, 2005 and newer 32 Bit

Include Driver
The driver files can be directly included in Microsoft C++ by simply using the library file spcm_win32_msvcpp.lib that is delivered together
with the drivers. The library file can be found on the USB-Stick in the path /examples/c_cpp/c_header. Please include the library file in your
Visual C++ project as shown in the examples. All functions described below are now available in your program.

Examples
Examples can be found on USB-Stick in the path /examples/c_cpp. This directory includes a number of different examples that can be used
with any card of the same type (e.g. A/D acquisition cards, D/A acquisition cards). You may use these examples as a base for own pro-
gramming and modify them as you like. The example directories contain a running workspace file for Microsoft Visual C++ 6.0 (*.dsw) as
well as project files for Microsoft Visual Studio 2005 and newer (*.vcproj) that can be directly loaded or imported and compiled.
There are also some more board type independent examples in separate subdirectory. These examples show different aspects of the cards
like programming options or synchronization and can be combined with one of the board type specific examples.

As the examples are build for a card class there are some checking routines and differentiation between cards families. Differentiation aspects
can be number of channels, data width, maximum speed or other details. It is recommended to change the examples matching your card
type to obtain maximum performance. Please be informed that the examples are made for easy understanding and simple showing of one
aspect of programming. Most of the examples are not optimized for maximum throughput or repetition rates.

dlltyp.h Includes the platform specific definitions for data types and function declarations. All data types are based on these definitions. The use of this type definition
file allows the use of examples and programs on different platforms without changes to the program source. The header file supports Microsoft Visual C++, Bor-
land C++ Builder and GNU C/C++ directly. When using other compilers it might be necessary to make a copy of this file and change the data types accord-
ing to this compiler.

regs.h Defines all registers and commands which are used in the Spectrum driver for the different boards. The registers a board uses are described in the board spe-
cific part of the documentation. This header file is common for all cards. Therefore this file also contains a huge number of registers used on other card types
than the one described in this manual. Please stick to the manual to see which registers are valid for your type of card.

spcm_drv.h Defines the functions of the used SpcM driver. All definitions are taken from the file dlltyp.h. The functions themselves are described below.
spcerr.h Contains all error codes used with the Spectrum driver. All error codes that can be given back by any of the driver functions are also described here briefly. The

error codes and their meaning are described in detail in the appendix of this manual.

// ----- driver includes -----
#include "dlltyp.h" // 1st include
#include "regs.h" // 2nd include
#include "spcerr.h" // 3rd include
#include "spcm_drv.h" // 4th include
38 M2i.20xx / M2i.20xx-exp Manual

Software C/C++ Driver Interface
Microsoft Visual C++ 2005 and newer 64 Bit
Depending on your version of the Visual Studio suite it may be necessary to install some additional 64 bit components (SDK) on your system.
Please follow the instructions found on the MSDN for further information.

Include Driver
The driver files can be directly included in Microsoft C++ by simply using the library file spcm_win64_msvcpp.lib that is delivered together
with the drivers. The library file can be found on the USB-Stick in the path /examples/c_cpp/c_header. All functions described below are
now available in your program.

C++ Builder 32 Bit

Include Driver
The driver files can be easily included in C++ Builder by simply using the library file spcm_win32_bcppb.lib that is delivered together with
the drivers. The library file can be found on the USB-Stick in the path /examples/c_cpp/c_header. Please include the library file in your C++
Builder project as shown in the examples. All functions described below are now available in your program.

Examples
The C++ Builder examples share the sources with the Visual C++ examples. Please see above chapter for a more detailed documentation of
the examples. In each example directory are project files for Visual C++ as well as C++ Builder.

Linux Gnu C/C++ 32/64 Bit

Include Driver
The interface of the linux drivers does not differ from the windows interface. Please include the spcm_linux.lib library in your makefile to have
access to all driver functions. A makefile may look like this:

Examples
The Gnu C/C++ examples share the source with the Visual C++ examples. Please see above chapter for a more detailed documentation of
the examples. Each example directory contains a makefile for the Gnu C/C++ examples.

C++ for .NET
Please see the next chapter for more details on the .NET inclusion.

Other Windows C/C++ compilers 32 Bit

Include Driver
To access the driver, the driver functions must be loaded from the 32 bit driver DLL. Most compilers offer special tools to generate a matching
library (e.g. Borland offers the implib tool that generates a matching library out of the windows driver DLL). If such a tool is available it is
recommended to use it. Otherwise the driver functions need to be loaded from the dll using standard Windows functions. There is one exam-
ple in the example directory /examples/c_cpp/dll_loading that shows the process.

Example of function loading:

Other Windows C/C++ compilers 64 Bit

Include Driver
To access the driver, the driver functions must be loaded from the 64 bit the driver DLL. Most compilers offer special tools to generate a match-
ing library (e.g. Borland offers the implib tool that generates a matching library out of the windows driver DLL). If such a tool is available it

COMPILER = gcc
EXECUTABLE = test_prg
LIBS = -lspcm_linux

OBJECTS = test.o\
 test2.o

all: $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)
 $(COMPILER) $(CFLAGS) -o $(EXECUTABLE) $(LIBS) $(OBJECTS)

%.o: %.cpp
 $(COMPILER) $(CFLAGS) -o $*.o -c $*.cpp

hDLL = LoadLibrary ("spcm_win32.dll"); // Load the 32 bit version of the Spcm driver
pfn_spcm_hOpen = (SPCM_HOPEN*) GetProcAddress (hDLL, "_spcm_hOpen@4");
pfn_spcm_vClose = (SPCM_VCLOSE*) GetProcAddress (hDLL, "_spcm_vClose@4");
(c) Spectrum GmbH 39

Driver functions Software
is recommended to use it. Otherwise the driver functions need to be loaded from the dll using standard Windows functions. There is one
example in the example directory /examples/c_cpp/dll_loading that shows the process for 32 bit environments. The only line that needs to
be modified is the one loading the DLL:

Example of function loading:

Driver functions
The driver contains seven main functions to access the hardware.

Own types used by our drivers
To simplify the use of the header files and our examples with different platforms and compilers and to avoid any implicit type conversions we
decided to use our own type declarations. This allows us to use platform independent and universal examples and driver interfaces. If you
do not stick to these declarations please be sure to use the same data type width. However it is strongly recommended that you use our defined
type declarations to avoid any hard to find errors in your programs. If you’re using the driver in an environment that is not natively supported
by our examples and drivers please be sure to use a type declaration that represents a similar data width

Notation of variables and functions
In our header files and examples we use a common and reliable form of notation for variables and functions. Each name also contains the
type as a prefix. This notation form makes it easy to see implicit type conversions and minimizes programming errors that result from using
incorrect types. Feel free to use this notation form for your programs also-

Function spcm_hOpen
This function initializes and opens an installed card supporting the new SpcM driver interface, which at the time of printing, are all cards of
the M2i/M3i/M4i/M4x/M2p series and the related digitizerNETBOX/generatorNETBOX devices. The function returns a handle that has to
be used for driver access. If the card can’t be found or the loading of the driver generated an error the function returns a NULL. When calling
this function all card specific installation parameters are read out from the hardware and stored within the driver. It is only possible to open
one device by one software as concurrent hardware access may be very critical to system stability. As a result when trying to open the same
device twice an error will be raised and the function returns NULL.

Function spcm_hOpen (const char* szDeviceName):

Under Linux the device name in the function call needs to be a valid device name. Please change the string according to the location of the
device if you don’t use the standard Linux device names. The driver is installed as default under /dev/spcm0, /dev/spcm1 and so on. The
kernel driver numbers the devices starting with 0.

Under Windows the only part of the device name that is used is the tailing number. The rest of the device name is ignored. Therefore to keep
the examples simple we use the Linux notation in all our examples. The tailing number gives the index of the device to open. The Windows
kernel driver numbers all devices that it finds on boot time starting with 0.

Example for local installed cards

hDLL = LoadLibrary ("spcm_win64.dll"); // Modified: Load the 64 bit version of the Spcm driver here
pfn_spcm_hOpen = (SPCM_HOPEN*) GetProcAddress (hDLL, "spcm_hOpen");
pfn_spcm_vClose = (SPCM_VCLOSE*) GetProcAddress (hDLL, "spcm_vClose");

Declaration Type Declaration Type
int8 8 bit signed integer (range from -128 to +127) uint8 8 bit unsigned integer (range from 0 to 255)
int16 16 bit signed integer (range from -32768 to 32767) uint16 16 bit unsigned integer (range from 0 to 65535)
int32 32 bit signed integer (range from -2147483648 to 2147483647) uint32 32 bit unsigned integer (range from 0 to 4294967295)
int64 64 bit signed integer (full range) uint64 64 bit unsigned integer (full range)
drv_handle handle to driver, implementation depends on operating system platform

Declaration Notation Declaration Notation
int8 byName (byte) uint8 cName (character)
int16 nName uint16 wName (word)
int32 lName (long) uint32 dwName (double word)
int64 llName (long long) uint64 qwName (quad word)
int32* plName (pointer to long) char szName (string with zero termination)

drv_handle _stdcall spcm_hOpen (// tries to open the device and returns handle or error code
 const char* szDeviceName); // name of the device to be opened

drv_handle hDrv; // returns the handle to the opended driver or NULL in case of error
hDrv = spcm_hOpen ("/dev/spcm0"); // string to the driver to open
if (!hDrv)
 printf (“open of driver failed\n”);
40 M2i.20xx / M2i.20xx-exp Manual

Software Driver functions
Example for digitizerNETBOX/generatorNETBOX and remote installed cards

If the function returns a NULL it is possible to read out the error description of the failed open function by simply passing this NULL to the error
function. The error function is described in one of the next topics.

Function spcm_vClose
This function closes the driver and releases all allocated resources. After closing the driver handle it is not possible to access this driver any
more. Be sure to close the driver if you don’t need it any more to allow other programs to get access to this device.

Function spcm_vClose:

Example:

Function spcm_dwSetParam
All hardware settings are based on software registers that can be set by one of the functions spcm_dwSetParam. These functions set a register
to a defined value or execute a command. The board must first be initialized by the spcm_hOpen function. The parameter lRegister must have
a valid software register constant as defined in regs.h. The available software registers for the driver are listed in the board specific part of
the documentation below. The function returns a 32 bit error code if an error occurs. If no error occurs the function returns ERR_OK, what is
zero.

Function spcm_dwSetParam

Example:

This example sets the memory size to 16 kSamples (16384). If an error occurred the example will show a short error message

Function spcm_dwGetParam
All hardware settings are based on software registers that can be read by one of the functions spcm_dwGetParam. These functions read an
internal register or status information. The board must first be initialized by the spcm_hOpen function. The parameter lRegister must have a
valid software register constant as defined in the regs.h file. The available software registers for the driver are listed in the board specific part
of the documentation below. The function returns a 32 bit error code if an error occurs. If no error occurs the function returns ERR_OK, what
is zero.

drv_handle hDrv; // returns the handle to the opended driver or NULL in case of error
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INST0::INSTR");
if (!hDrv)
 printf (“open of driver failed\n”);

void _stdcall spcm_vClose (// closes the device
 drv_handle hDevice); // handle to an already opened device

spcm_vClose (hDrv);

uint32 _stdcall spcm_dwSetParam_i32 (// Return value is an error code
 drv_handle hDevice, // handle to an already opened device
 int32 lRegister, // software register to be modified
 int32 lValue); // the value to be set

uint32 _stdcall spcm_dwSetParam_i64m (// Return value is an error code
 drv_handle hDevice, // handle to an already opened device
 int32 lRegister, // software register to be modified
 int32 lValueHigh, // upper 32 bit of the value. Containing the sign bit !
 uint32 dwValueLow); // lower 32 bit of the value.

uint32 _stdcall spcm_dwSetParam_i64 (// Return value is an error code
 drv_handle hDevice, // handle to an already opened device
 int32 lRegister, // software register to be modified
 int64 llValue); // the value to be set

if (spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, 16384) != ERR_OK)
 printf (“Error when setting memory size\n”);
(c) Spectrum GmbH 41

Driver functions Software
Function spcm_dwGetParam

Example:

The example reads out the serial number of the installed card and prints it. As the serial number is available under all circumstances there is
no error checking when calling this function.

Different call types of spcm_dwSetParam and spcm_dwGetParam: _i32, _i64, _i64m
The three functions only differ in the type of the parameters that are used to call them. As some of the registers can exceed the 32 bit integer
range (like memory size or post trigger) it is recommended to use the _i64 function to access these registers. However as there are some
programs or compilers that don’t support 64 bit integer variables there are two functions that are limited to 32 bit integer variables. In case
that you do not access registers that exceed 32 bit integer please use the _i32 function. In case that you access a register which exceeds 64
bit value please use the _i64m calling convention. Inhere the 64 bit value is split into a low double word part and a high double word part.
Please be sure to fill both parts with valid information.

If accessing 64 bit registers with 32 bit functions the behavior differs depending on the real value that is currently located in the register.
Please have a look at this table to see the different reactions depending on the size of the register:

Function spcm_dwGetContBuf
This function reads out the internal continuous memory buffer in bytes, in case one has been allocated. If no buffer has been allocated the
function returns a size of zero and a NULL pointer. You may use this buffer for data transfers. As the buffer is continuously allocated in memory

uint32 _stdcall spcm_dwGetParam_i32 (// Return value is an error code
 drv_handle hDevice, // handle to an already opened device
 int32 lRegister, // software register to be read out
 int32* plValue); // pointer for the return value

uint32 _stdcall spcm_dwGetParam_i64m (// Return value is an error code
 drv_handle hDevice, // handle to an already opened device
 int32 lRegister, // software register to be read out
 int32* plValueHigh, // pointer for the upper part of the return value
 uint32* pdwValueLow); // pointer for the lower part of the return value

uint32 _stdcall spcm_dwGetParam_i64 (// Return value is an error code
 drv_handle hDevice, // handle to an already opened device
 int32 lRegister, // software register to be read out
 int64* pllValue); // pointer for the return value

int32 lSerialNumber;
spcm_dwGetParam_i32 (hDrv, SPC_PCISERIALNO, &lSerialNumber);
printf (“Your card has serial number: %05d\n”, lSerialNumber);

Internal register read/write Function type Behavior
32 bit register read spcm_dwGetParam_i32 value is returned as 32 bit integer in plValue
32 bit register read spcm_dwGetParam_i64 value is returned as 64 bit integer in pllValue
32 bit register read spcm_dwGetParam_i64m value is returned as 64 bit integer, the lower part in plValueLow, the upper part in plValueHigh. The upper part can

be ignored as it’s only a sign extension
32 bit register write spcm_dwSetParam_i32 32 bit value can be directly written
32 bit register write spcm_dwSetParam_i64 64 bit value can be directly written, please be sure not to exceed the valid register value range
32 bit register write spcm_dwSetParam_i64m 32 bit value is written as llValueLow, the value llValueHigh needs to contain the sign extension of this value. In case

of llValueLow being a value >= 0 llValueHigh can be 0, in case of llValueLow being a value < 0, llValueHigh has to
be -1.

64 bit register read spcm_dwGetParam_i32 If the internal register has a value that is inside the 32 bit integer range (-2G up to (2G - 1)) the value is returned
normally. If the internal register exceeds this size an error code ERR_EXCEEDSINT32 is returned. As an example:
reading back the installed memory will work as long as this memory is < 2 GByte. If the installed memory is >= 2
GByte the function will return an error.

64 bit register read spcm_dwGetParam_i64 value is returned as 64 bit integer value in pllValue independent of the value of the internal register.
64 bit register read spcm_dwGetParam_i64m the internal value is split into a low and a high part. As long as the internal value is within the 32 bit range, the low

part plValueLow contains the 32 bit value and the upper part plValueHigh can be ignored. If the internal value
exceeds the 32 bit range it is absolutely necessary to take both value parts into account.

64 bit register write spcm_dwSetParam_i32 the value to be written is limited to 32 bit range. If a value higher than the 32 bit range should be written, one of
the other function types need to used.

64 bit register write spcm_dwSetParam_i64 the value has to be split into two parts. Be sure to fill the upper part lValueHigh with the correct sign extension even
if you only write a 32 bit value as the driver every time interprets both parts of the function call.

64 bit register write spcm_dwSetParam_i64m the value can be written directly independent of the size.
42 M2i.20xx / M2i.20xx-exp Manual

Software Driver functions
the data transfer will speed up by up to 15% - 25%, depending on your specific kind of card. Please see further details in the appendix of
this manual.

These functions have been added in driver version 1.36. The functions are not available in older driver ver-
sions.

These functions also only have effect on locally installed cards and are neither useful nor usable with any
digitizerNETBOX or generatorNETBOX products, because no local kernel driver is involved in such a setup.
For remote devices these functions will return a NULL pointer for the buffer and 0 Bytes in length.

Function spcm_dwDefTransfer
The spcm_dwDefTransfer function defines a buffer for a following data transfer. This function only defines the buffer, there is no data transfer
performed when calling this function. Instead the data transfer is started with separate register commands that are documented in a later
chapter. At this position there is also a detailed description of the function parameters.
Please make sure that all parameters of this function match. It is especially necessary that the buffer address is a valid address pointing to
memory buffer that has at least the size that is defined in the function call. Please be informed that calling this function with non valid param-
eters may crash your system as these values are base for following DMA transfers.

The use of this function is described in greater detail in a later chapter.

Function spcm_dwDefTransfer

This function is available in two different formats as the spcm_dwGetParam and spcm_dwSetParam functions are. The background is the
same. As long as you’re using a compiler that supports 64 bit integer values please use the _i64 function. Any other platform needs to use
the _i64m function and split offset and length in two 32 bit words.

Example:

The example defines a data buffer of 8 kSamples of 16 bit integer values = 16 kByte (16384 byte) for a transfer from card to PC memory.
As notify size is set to 0 we only want to get an event when the transfer has finished.

Function spcm_dwInvalidateBuf
The invalidate buffer function is used to tell the driver that the buffer that has been set with spcm_dwDefTransfer call is no longer valid. It is
necessary to use the same buffer type as the driver handles different buffers at the same time. Call this function if you want to delete the buffer
memory after calling the spcm_dwDefTransfer function. If the buffer already has been transferred after calling spcm_dwDefTransfer it is not
necessary to call this function. When calling spcm_dwDefTransfer any further defined buffer is automatically invalidated.

uint32 _stdcall spcm_dwGetContBuf_i64 (// Return value is an error code
 drv_handle hDevice, // handle to an already opened device
 uint32 dwBufType, // type of the buffer to read as listed above under SPCM_BUF_XXXX
 void** ppvDataBuffer, // address of available data buffer
 uint64* pqwContBufLen); // length of available continuous buffer

uint32 _stdcall spcm_dwGetContBuf_i64m (// Return value is an error code
 drv_handle hDevice, // handle to an already opened device
 uint32 dwBufType, // type of the buffer to read as listed above under SPCM_BUF_XXXX
 void** ppvDataBuffer, // address of available data buffer
 uint32* pdwContBufLenH, // high part of length of available continuous buffer
 uint32* pdwContBufLenL); // low part of length of available continuous buffer

uint32 _stdcall spcm_dwDefTransfer_i64m(// Defines the transfer buffer by 2 x 32 bit unsigned integer
 drv_handle hDevice, // handle to an already opened device
 uint32 dwBufType, // type of the buffer to define as listed above under SPCM_BUF_XXXX
 uint32 dwDirection, // the transfer direction as defined above
 uint32 dwNotifySize, // no. of bytes after which an event is sent (0=end of transfer)
 void* pvDataBuffer, // pointer to the data buffer
 uint32 dwBrdOffsH, // high part of offset in board memory
 uint32 dwBrdOffsL, // low part of offset in board memory
 uint32 dwTransferLenH, // high part of transfer buffer length
 uint32 dwTransferLenL); // low part of transfer buffer length

uint32 _stdcall spcm_dwDefTransfer_i64 (// Defines the transfer buffer by using 64 bit unsigned integer values
 drv_handle hDevice, // handle to an already opened device
 uint32 dwBufType, // type of the buffer to define as listed above under SPCM_BUF_XXXX
 uint32 dwDirection, // the transfer direction as defined above
 uint32 dwNotifySize, // no. of bytes after which an event is sent (0=end of transfer)
 void* pvDataBuffer, // pointer to the data buffer
 uint64 qwBrdOffs, // offset for transfer in board memory
 uint64 qwTransferLen); // buffer length

int16* pnBuffer = (int16*) pvAllocMemPageAligned (16384);
if (spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_CARDTOPC, 0, (void*) pnBuffer, 0, 16384) != ERR_OK)
 printf (“DefTransfer failed\n”);
(c) Spectrum GmbH 43

Driver functions Software
Function spcm_dwInvalidateBuf

Function spcm_dwGetErrorInfo
The function returns complete error information on the last error that has occurred. The error handling itself is explained in a later chapter in
greater detail. When calling this function please be sure to have a text buffer allocated that has at least ERRORTEXTLEN length. The error text
function returns a complete description of the error including the register/value combination that has raised the error and a short description
of the error details. In addition it is possible to get back the error generating register/value for own error handling. If not needed the buffers
for register/value can be left to NULL.

Note that the timeout event (ERR_TIMEOUT) is not counted as an error internally as it is not locking the driver
but as a valid event. Therefore the GetErrorInfo function won’t return the timeout event even if it had occurred
in between. You can only recognize the ERR_TIMEOUT as a direct return value of the wait function that was
called.

Function spcm_dwGetErrorInfo

Example:

uint32 _stdcall spcm_dwInvalidateBuf (// invalidate the transfer buffer
 drv_handle hDevice, // handle to an already opened device
 uint32 dwBufType); // type of the buffer to invalidate as
 // listed above under SPCM_BUF_XXXX

uint32 _stdcall spcm_dwGetErrorInfo_i32 (
 drv_handle hDevice, // handle to an already opened device
 uint32* pdwErrorReg, // address of the error register (can be zero if not of interest)
 int32* plErrorValue, // address of the error value (can be zero if not of interest)
 char pszErrorTextBuffer[ERRORTEXTLEN]); // text buffer for text error

char szErrorBuf[ERRORTEXTLEN];
if (spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, -1))
 {
 spcm_dwGetErrorInfo_i32 (hDrv, NULL, NULL, szErrorBuf);
 printf (“Set of memsize failed with error message: %s\n”, szErrorBuf);
 }
44 M2i.20xx / M2i.20xx-exp Manual

Software Delphi (Pascal) Programming Interface
Delphi (Pascal) Programming Interface

Driver interface
The driver interface is located in the sub-directory d_header and contains the following files. The files need to be included in the delphi project
and have to be put into the „uses“ section of the source files that will access the driver. Please do not edit any of these files as they’re regularly
updated if new functions or registers have been included.

file spcm_win32.pas
The file contains the interface to the driver library and defines some needed constants and variable types. All functions of the delphi library
are similar to the above explained standard driver functions:

The file also defines types used inside the driver and the examples. The types have similar names as used under C/C++ to keep the examples
more simple to understand and allow a better comparison.

file SpcRegs.pas
The SpcRegs.pas file defines all constants that are used for the driver. The constant names are the same names as used under the C/C++
examples. All constants names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is
recommended to only use these constant names for better visibility of the programs:

file SpcErr.pas
The SpeErr.pas file contains all error codes that may be returned by the driver.

Including the driver files
To use the driver function and all the defined constants it is necessary to include the files into the project as
shown in the picture on the right. The project overview is taken from one of the examples delivered on USB-
Stick. Besides including the driver files in the project it is also necessary to include them in the uses section
of the source files where functions or constants should be used:

// ----- device handling functions -----
function spcm_hOpen (strName: pchar): int32; stdcall; external 'spcm_win32.dll' name '_spcm_hOpen@4';
procedure spcm_vClose (hDevice: int32); stdcall; external 'spcm_win32.dll' name '_spcm_vClose@4';

function spcm_dwGetErrorInfo_i32 (hDevice: int32; var lErrorReg, lErrorValue: int32; strError: pchar): uint32;
stdcall; external 'spcm_win32.dll' name '_spcm_dwGetErrorInfo_i32@16'

// ----- register access functions -----
function spcm_dwSetParam_i32 (hDevice, lRegister, lValue: int32): uint32;
stdcall; external 'spcm_win32.dll' name '_spcm_dwSetParam_i32@12';

function spcm_dwSetParam_i64 (hDevice, lRegister: int32; llValue: int64): uint32;
stdcall; external 'spcm_win32.dll' name '_spcm_dwSetParam_i64@16';

function spcm_dwGetParam_i32 (hDevice, lRegister: int32; var plValue: int32): uint32;
stdcall; external 'spcm_win32.dll' name '_spcm_dwGetParam_i32@12';

function spcm_dwGetParam_i64 (hDevice, lRegister: int32; var pllValue: int64): uint32;
stdcall; external 'spcm_win32.dll' name '_spcm_dwGetParam_i64@12';

// ----- data handling -----
function spcm_dwDefTransfer_i64 (hDevice, dwBufType, dwDirection, dwNotifySize: int32; pvDataBuffer: Pointer;
llBrdOffs, llTransferLen: int64): uint32;
stdcall; external 'spcm_win32.dll' name '_spcm_dwDefTransfer_i64@36';

function spcm_dwInvalidateBuf (hDevice, lBuffer: int32): uint32;
stdcall; external 'spcm_win32.dll' name '_spcm_dwInvalidateBuf@8';

const SPC_M2CMD = 100; { write a command }
const M2CMD_CARD_RESET = $00000001; { hardware reset }
const M2CMD_CARD_WRITESETUP = $00000002; { write setup only }
const M2CMD_CARD_START = $00000004; { start of card (including writesetup) }
const M2CMD_CARD_ENABLETRIGGER = $00000008; { enable trigger engine }
...

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls, ExtCtrls,

 SpcRegs, SpcErr, spcm_win32;
(c) Spectrum GmbH 45

Delphi (Pascal) Programming Interface Software
Examples
Examples for Delphi can be found on USB-Stick in the directory /examples/delphi. The directory contains the above mentioned delphi header
files and a couple of universal examples, each of them working with a certain type of card. Please feel free to use these examples as a base
for your programs and to modify them in any kind.

spcm_scope
The example implements a very simple scope program that makes single acquisitions on button pressing. A fixed setup is done inside the
example. The spcm_scope example can be used with any analog data acquisition card from Spectrum. It covers cards with 1 byte per sample
(8 bit resolution) as well as cards with 2 bytes per sample (12, 14 and 16 bit resolution)

The program shows the following steps:

• Initialization of a card and reading of card information like type, function and serial number
• Doing a simple card setup
• Performing the acquisition and waiting for the end interrupt
• Reading of data, re-scaling it and displaying waveform on screen

46 M2i.20xx / M2i.20xx-exp Manual

Software .NET programming languages
.NET programming languages

Library
For using the driver with a .NET based language Spectrum delivers a special library that encapsulates the driver in a .NET object. By adding
this object to the project it is possible to access all driver functions and constants from within your .NET environment.

There is one small console based example for each supported .NET language that shows how to include the driver and how to access the
cards. Please combine this example with the different standard examples to get the different card functionality.

Declaration
The driver access methods and also all the type, register and error declarations are combined in the object Spcm and are located in one of
the two DLLs either SpcmDrv32.NET.dll or SpcmDrv64.NET.dll delivered with the .NET examples.

For simplicity, either file is simply called „SpcmDrv.NET.dll“ in the following passages and the actual file
name must be replaced with either the 32bit or 64bit version according to your application.

Spectrum also delivers the source code of the DLLs as a C# project. These sources are located in the directory SpcmDrv.NET.

Using C#
The SpcmDrv.NET.dll needs to be included within the Solution Explorer in the References section. Please use right mouse and select
„AddReference“. After this all functions and constants of the driver object are available.

Please see the example in the directory CSharp as a start:

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

namespace Spcm
 {
 public class Drv
 {
 [DllImport("spcm_win32.dll")]public static extern IntPtr spcm_hOpen (string szDeviceName);
 [DllImport("spcm_win32.dll")]public static extern void spcm_vClose (IntPtr hDevice);
...
 public class CardType
 {
 public const int TYP_M2I2020 = unchecked ((int)0x00032020);
 public const int TYP_M2I2021 = unchecked ((int)0x00032021);
 public const int TYP_M2I2025 = unchecked ((int)0x00032025);
...
 public class Regs
 {
 public const int SPC_M2CMD = unchecked ((int)100);
 public const int M2CMD_CARD_RESET = unchecked ((int)0x00000001);
 public const int M2CMD_CARD_WRITESETUP = unchecked ((int)0x00000002);
...

// ----- open card -----
hDevice = Drv.spcm_hOpen("/dev/spcm0");
if ((int)hDevice == 0)
 {
 Console.WriteLine("Error: Could not open card\n");
 return 1;
 }

// ----- get card type -----
dwErrorCode = Drv.spcm_dwGetParam_i32(hDevice, Regs.SPC_PCITYP, out lCardType);
dwErrorCode = Drv.spcm_dwGetParam_i32(hDevice, Regs.SPC_PCISERIALNR, out lSerialNumber);

// ----- open remote card -----
hDevice = Drv.spcm_hOpen("TCPIP::192.168.169.14::INST0::INSTR");
(c) Spectrum GmbH 47

.NET programming languages Software

Using Managed C++/CLI
The SpcmDrv.NET.dll needs to be included within the project options. Please select „Project“ - „Properties“ - „References“ and finally
„Add new Reference“. After this all functions and constants of the driver object are available.

Please see the example in the directory CppCLR as a start:

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

Using VB.NET
The SpcmDrv.NET.dll needs to be included within the project options. Please select „Project“ - „Properties“ - „References“ and finally
„Add new Reference“. After this all functions and constants of the driver object are available.

Please see the example in the directory VB.NET as a start:

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

Using J#
The SpcmDrv.NET.dll needs to be included within the Solution Explorer in the References section. Please use right mouse and select „AddRef-
erence“. After this all functions and constants of the driver object are available.

Please see the example in the directory JSharp as a start:

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

// ----- open card -----
hDevice = Drv::spcm_hOpen("/dev/spcm0");
if ((int)hDevice == 0)
 {
 Console::WriteLine("Error: Could not open card\n");
 return 1;
 }

// ----- get card type -----
dwErrorCode = Drv::spcm_dwGetParam_i32(hDevice, Regs::SPC_PCITYP, lCardType);
dwErrorCode = Drv::spcm_dwGetParam_i32(hDevice, Regs::SPC_PCISERIALNR, lSerialNumber);

// ----- open remote card -----
hDevice = Drv::spcm_hOpen("TCPIP::192.168.169.14::INST0::INSTR");

' ----- open card -----
hDevice = Drv.spcm_hOpen("/dev/spcm0")

If (hDevice = 0) Then
 Console.WriteLine("Error: Could not open card\n")
Else

 ' ----- get card type -----
 dwError = Drv.spcm_dwGetParam_i32(hDevice, Regs.SPC_PCITYP, lCardType)
 dwError = Drv.spcm_dwGetParam_i32(hDevice, Regs.SPC_PCISERIALNR, lSerialNumber)

' ----- open remote card -----
hDevice = Drv.spcm_hOpen("TCPIP::192.168.169.14::INST0::INSTR")

// ----- open card -----
hDevice = Drv.spcm_hOpen("/dev/spcm0");

if (hDevice.ToInt32() == 0)
 System.out.println("Error: Could not open card\n");
else
 {
 // ----- get card type -----
 dwErrorCode = Drv.spcm_dwGetParam_i32(hDevice, Regs.SPC_PCITYP, lCardType);
 dwErrorCode = Drv.spcm_dwGetParam_i32(hDevice, Regs.SPC_PCISERIALNR, lSerialNumber);

' ----- open remote card -----
hDevice = Drv.spcm_hOpen("TCPIP::192.168.169.14::INST0::INSTR")
48 M2i.20xx / M2i.20xx-exp Manual

Software Python Programming Interface and Examples
Python Programming Interface and Examples

Driver interface
The driver interface contains the following files. The files need to be included in the python project. Please do not edit any of these files as
they are regularily updated if new functions or registers have been included. To use pyspcm you need either python 2 (2.4, 2.6 or 2.7) or
python 3 (3.x) and ctype, which is included in python 2.6 and newer and needs to be installed separately for Python 2.4.

file pyspcm.py
The file contains the interface to the driver library and defines some needed constants. All functions of the python library are similar to the
above explained standard driver functions and use ctypes as input and return parameters:

----- Windows -----
spcmDll = windll.LoadLibrary ("c:\\windows\\system32\\spcm_win32.dll")

load spcm_hOpen
spcm_hOpen = getattr (spcmDll, "_spcm_hOpen@4")
spcm_hOpen.argtype = [c_char_p]
spcm_hOpen.restype = drv_handle

load spcm_vClose
spcm_vClose = getattr (spcmDll, "_spcm_vClose@4")
spcm_vClose.argtype = [drv_handle]
spcm_vClose.restype = None

load spcm_dwGetErrorInfo
spcm_dwGetErrorInfo_i32 = getattr (spcmDll, "_spcm_dwGetErrorInfo_i32@16")
spcm_dwGetErrorInfo_i32.argtype = [drv_handle, ptr32, ptr32, c_char_p]
spcm_dwGetErrorInfo_i32.restype = uint32

load spcm_dwGetParam_i32
spcm_dwGetParam_i32 = getattr (spcmDll, "_spcm_dwGetParam_i32@12")
spcm_dwGetParam_i32.argtype = [drv_handle, int32, ptr32]
spcm_dwGetParam_i32.restype = uint32

load spcm_dwGetParam_i64
spcm_dwGetParam_i64 = getattr (spcmDll, "_spcm_dwGetParam_i64@12")
spcm_dwGetParam_i64.argtype = [drv_handle, int32, ptr64]
spcm_dwGetParam_i64.restype = uint32

load spcm_dwSetParam_i32
spcm_dwSetParam_i32 = getattr (spcmDll, "_spcm_dwSetParam_i32@12")
spcm_dwSetParam_i32.argtype = [drv_handle, int32, int32]
spcm_dwSetParam_i32.restype = uint32

load spcm_dwSetParam_i64
spcm_dwSetParam_i64 = getattr (spcmDll, "_spcm_dwSetParam_i64@16")
spcm_dwSetParam_i64.argtype = [drv_handle, int32, int64]
spcm_dwSetParam_i64.restype = uint32

load spcm_dwSetParam_i64m
spcm_dwSetParam_i64m = getattr (spcmDll, "_spcm_dwSetParam_i64m@16")
spcm_dwSetParam_i64m.argtype = [drv_handle, int32, int32, int32]
spcm_dwSetParam_i64m.restype = uint32

load spcm_dwDefTransfer_i64
spcm_dwDefTransfer_i64 = getattr (spcmDll, "_spcm_dwDefTransfer_i64@36")
spcm_dwDefTransfer_i64.argtype = [drv_handle, uint32, uint32, uint32, c_void_p, uint64, uint64]
spcm_dwDefTransfer_i64.restype = uint32

spcm_dwInvalidateBuf = getattr (spcmDll, "_spcm_dwInvalidateBuf@8")
spcm_dwInvalidateBuf.argtype = [drv_handle, uint32]
spcm_dwInvalidateBuf.restype = uint32

----- Linux -----
use cdll because all driver access functions use cdecl calling convention under linux
spcmDll = cdll.LoadLibrary ("libspcm_linux.so")

the loading of the driver access functions is similar to windows:

load spcm_hOpen
spcm_hOpen = getattr (spcmDll, "spcm_hOpen")
spcm_hOpen.argtype = [c_char_p]
spcm_hOpen.restype = drv_handle

...
(c) Spectrum GmbH 49

Python Programming Interface and Examples Software
file regs.py
The regs.py file defines all constants that are used for the driver. The constant names are the same names compared to the C/C++ examples.
All constant names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is recommended
to only use these constant names for better readability of the programs:

file spcerr.py
The spcerr.py file contains all error codes that may be returned by the driver.

Examples
Examples for Python can be found on USB-Stick in the directory /examples/python. The directory contains the above mentioned header files
and some examples, each of them working with a certain type of card. Please feel free to use these examples as a base for your programs
and to modify them in any kind.

When allocating the buffer for DMA transfers, use the following function to get a mutable character buffer:
ctypes.create_string_buffer(init_or_size[, size])

SPC_M2CMD = 100l # write a command
M2CMD_CARD_RESET = 0x00000001l # hardware reset
M2CMD_CARD_WRITESETUP = 0x00000002l # write setup only
M2CMD_CARD_START = 0x00000004l # start of card (including writesetup)
M2CMD_CARD_ENABLETRIGGER = 0x00000008l # enable trigger engine
...
50 M2i.20xx / M2i.20xx-exp Manual

Software Java Programming Interface and Examples
Java Programming Interface and Examples

Driver interface
The driver interface contains the following Java files (classes). The files need to be included in your Java project. Please do not edit any of
these files as they are regularily updated if new functions or registers have been included. The driver interface uses the Java Native Access
(JNA) library.

This library is licensed under the LGPL (https://www.gnu.org/licenses/lgpl-3.0.en.html) and has also to be included to your Java project.

To download the latest jna.jar package and to get more information about the JNA project please check the projects GitHub page under:
https://github.com/java-native-access/jna

The following files can be found in the „SpcmDrv“ folder of your Java examples install path.

SpcmDrv32.java / SpcmDrv64.java
The files contain the interface to the driver library and defines some needed constants. All functions of the driver interface are similar to the
above explained standard driver functions. Use the SpcmDrv32.java for 32 bit and the SpcmDrv64.java for 64 bit projects:

SpcmRegs.java
The SpcmRegs class defines all constants that are used for the driver. The constants names are the same names compared to the C/C++
examples. All constant names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is
recommended to only use these constant names for better readability of the programs:

SpcmErrors.java
The SpcmErrors class contains all error codes that may be returned by the driver.

Examples
Examples for Java can be found on USB-Stick in the directory /examples/java. The directory contains the above mentioned header files and
some examples, each of them working with a certain type of card. Please feel free to use these examples as a base for your programs and
to modify them in any kind.

...

public interface SpcmWin64 extends StdCallLibrary {

 SpcmWin64 INSTANCE = (SpcmWin64)Native.loadLibrary (("spcm_win64"), SpcmWin64.class);

 int spcm_hOpen (String sDeviceName);
 void spcm_vClose (int hDevice);
 int spcm_dwSetParam_i64 (int hDevice, int lRegister, long llValue);
 int spcm_dwGetParam_i64 (int hDevice, int lRegister, LongByReference pllValue);
 int spcm_dwDefTransfer_i64 (int hDevice, int lBufType, int lDirection, int lNotifySize,
 Pointer pDataBuffer, long llBrdOffs, long llTransferLen);
 int spcm_dwInvalidateBuf (int hDevice, int lBufType);
 int spcm_dwGetErrorInfo_i32 (int hDevice, IntByReference plErrorReg,
 IntByReference plErrorValue, Pointer sErrorTextBuffer);
 }

...

...

public static final int SPC_M2CMD = 100;
public static final int M2CMD_CARD_RESET = 0x00000001;
public static final int M2CMD_CARD_WRITESETUP = 0x00000002;
public static final int M2CMD_CARD_START = 0x00000004;
public static final int M2CMD_CARD_ENABLETRIGGER = 0x00000008;
...
(c) Spectrum GmbH 51

LabVIEW driver and examples Software
LabVIEW driver and examples
A full set of drivers and examples is available for LabVIEW for Windows. Lab-
VIEW for Linux is currently not supported. The LabVIEW drivers have their own
manual. The LabVIEW drivers, examples and the manual are found on the USB-
Stick that has been included in the delivery. The latest version is also available
on our webpage www.spectrum-instrumentation.com

Please follow the description in the LabVIEW manual for installation and useage
of the LabVIEW drivers for this card.

MATLAB driver and examples
A full set of drivers and examples is available for Mathworks MATLAB for Windows (32 bit
and 64 bit versions) and also for MATLAB for Linux (64 bit version). There is no additional
toolbox needed to run the MATLAB examples and drivers.

The MATLAB drivers have their own manual. The MATLAB drivers, examples and the manual
are found on the USB-Stick that has been included in the delivery. The latest version is also
available on our webpage www.spectrum-instrumentation.com

Please follow the description in the MATLAB manual for installation and useage of the
MATLAB drivers for this card.

52 M2i.20xx / M2i.20xx-exp Manual

Programming the Board Overview
Programming the Board

Overview
The following chapters show you in detail how to program the different aspects of the board. For every topic there’s a small example. For
the examples we focused on Visual C++. However as shown in the last chapter the differences in programming the board under different
programming languages are marginal. This manual describes the programming of the whole hardware family. Some of the topics are similar
for all board versions. But some differ a little bit from type to type. Please check the given tables for these topics and examine carefully which
settings are valid for your special kind of board.

Register tables
The programming of the boards is totally software register based. All software registers are described in the following form:

If no constants are given below the register table, the dedicated register is used as a switch. All such registers
are activated if written with a “1“ and deactivated if written with a “0“.

Programming examples
In this manual a lot of programming examples are used to give you an impression on how the actual mentioned registers can be set within
your own program. All of the examples are located in a separated colored box to indicate the example and to make it easier to differ it from
the describing text.

All of the examples mentioned throughout the manual are written in C/C++ and can be used with any C/C++ compiler for Windows or Linux.

Complete C/C++ Example

Register Value Direction Description

SPC_M2CMD 100 w Command register of the board.

M2CMD_CARD_START 4h Starts the board with the current register settings.

M2CMD_CARD_STOP 40h Stops the board manually.

#include “../c_header/dlltyp.h”
#include “../c_header/regs.h”
#include “../c_header/spcm_drv.h”

#include <stdio.h>

int main()
 {
 drv_handle hDrv; // the handle of the device
 int32 lCardType; // a place to store card information

 hDrv = spcm_hOpen ("/dev/spcm0"); // Opens the board and gets a handle
 if (!hDrv) // check whether we can access the card
 return -1;

 spcm_dwGetParam_i32 (hDrv, SPC_PCITYP, &lCardType); // simple command, read out of card type
 printf (“Found card M2i/M3i/M4i/M4x/M2p.%04x in the system\n”, lCardType & TYP_VERSIONMASK);
 spcm_vClose (hDrv);

 return 0;
 }

The name of the software regis-
ter as found in the regs.h file.
Could directly be used by
C/C++, Delphi and Basic com-

The decimal value of the software register.
Also found in the regs.h file. This value must
be used with all programs or compilers that
cannot use the header file directly.

Describes whether
the register can be
read (r) and/or writ-
ten (w).

Short description of the function-
ality of the register. A more de-
tailed description is found
above or below the register ta-
bles.

Any constants that can be used to
program the register directly are
shown inserted beneath the register
table.

The decimal or hexadecimal value of the
constant, also found in the regs.h file. Hexa-
decimal values are indicated with an „h“ at
the end. This value must be used with all
programs or compilers that cannot use the
header file directly.

Short description of
the use of this con-
stant.
(c) Spectrum GmbH 53

Initialization Programming the Board
Initialization
Before using the card it is necessary to open the kernel device to access the hardware. It is only possible to use every device exclusively using
the handle that is obtained when opening the device. Opening the same device twice will only generate an error code. After ending the
driver use the device has to be closed again to allow later re-opening. Open and close of driver is done using the spcm_hOpen and
spcm_vClose function as described in the “Driver Functions” chapter before.

Open/Close Example

Initialization of Remote Products
The only step that is different when accessing remotely controlled cards or digitizerNETBOXes is the initialization of the driver. Instead of the
local handle one has to open the VISA string that is returned by the discovery function. Alternatively it is also possible to access the card
directly without discovery function if the IP address of the device is known.

Multiple cards are opened by indexing the remote card number:

Error handling
If one action caused an error in the driver this error and the register and value where it occurs will be saved.

The driver is then locked until the error is read out using the error function spcm_dwGetErrorInfo_i32. Any
calls to other functions will just return the error code ERR_LASTERR showing that there is an error to be read
out.

This error locking functionality will prevent the generation of unseen false commands and settings that may lead to totally unexpected behav-
ior. For sure there are only errors locked that result on false commands or settings. Any error code that is generated to report a condition to
the user won’t lock the driver. As example the error code ERR_TIMEOUT showing that the a timeout in a wait function has occurred won’t
lock the driver and the user can simply react to this error code without reading the complete error function.

As a benefit from this error locking it is not necessary to check the error return of each function call but just checking the error function once
at the end of all calls to see where an error occurred. The enhanced error function returns a complete error description that will lead to the
call that produces the error.

drv_handle hDrv; // the handle of the device

hDrv = spcm_hOpen ("/dev/spcm0"); // Opens the board and gets a handle
if (!hDrv) // check whether we can access the card
 {
 printf “Open failed\n”);
 return -1;
 }

... do any work with the driver

spcm_vClose (hDrv);
return 0;

drv_handle hDrv; // the handle of the device

hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INSTR"); // Opens the remote board and gets a handle
if (!hDrv) // check whether we can access the card
 {
 printf “Open of remote card failed\n”);
 return -1;
 }

...

hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INSTR"); // Opens the remote board #0
 // or alternatively
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INST0::INSTR"); // Opens the remote board #0
 // all other boards require an index:
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INST1::INSTR"); // Opens the remote board #1
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INST2::INSTR"); // Opens the remote board #2
54 M2i.20xx / M2i.20xx-exp Manual

Programming the Board Gathering information from the card
Example for error checking at end using the error text from the driver:

This short program then would generate a printout as:

All error codes are described in detail in the appendix. Please refer to this error description and the descrip-
tion of the software register to examine the cause for the error message.

Any of the parameters of the spcm_dwGetErrorInfo_i32 function can be used to obtain detailed information on the error. If one is not interested
in parts of this information it is possible to just pass a NULL (zero) to this variable like shown in the example. If one is not interested in the
error text but wants to install its own error handler it may be interesting to just read out the error generating register and value.

Example for error checking with own (simple) error handler:

Gathering information from the card
When opening the card the driver library internally reads out a lot of information from the on-board eeprom. The driver also offers additional
information on hardware details. All of this information can be read out and used for programming and documentation. This chapter will
show all general information that is offered by the driver. There is also some more information on certain parts of the card, like clock machine
or trigger machine, that is described in detail in the documentation of that part of the card.

All information can be read out using one of the spcm_dwGetParam functions. Please stick to the “Driver Functions” chapter for more details
on this function.

Card type
The card type information returns the specific card type that is found under this device. When using multiple cards in one system it is highly
recommended to read out this register first to examine the ordering of cards. Please don’t rely on the card ordering as this is based on the
BIOS, the bus connections and the operating system.

One of the following values is returned, when reading this register. Each card has its own card type constant defined in regs.h. Please note
that when reading the card information as a hex value, the lower word shows the digits of the card name while the upper word is a indication
for the used bus type.

char szErrorText[ERRORTEXTLEN];

spcm_dwSetParam_i64 (hDrv, SPC_SAMPLERATE, 1000000); // correct command
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, -345); // faulty command
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, 1024); // correct command
if (spcm_dwGetErrorInfo_i32 (hDrv, NULL, NULL, szErrorText) != ERR_OK) // check for an error
 {
 printf (szErrorText); // print the error text
 spcm_vClose (hDrv); // close the driver
 exit (0); // and leave the program
 }

Error ocurred at register SPC_MEMSIZE with value -345: value not allowed

uint32 dwErrorReg;
int32 lErrorValue;
uint32 dwErrorCode;

spcm_dwSetParam_i64 (hDrv, SPC_SAMPLERATE, 1000000); // correct command
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, -345); // faulty command
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, 1024); // correct command
dwErrorCode = spcm_dwGetErrorInfo_i32 (hDrv, &dwErrorReg, &lErrorValue, NULL);
if (dwErrorCode) // check for an error
 {
 printf (“Errorcode: %d in register %d at value %d\n”, lErrorCode, dwErrorReg, lErrorValue);
 spcm_vClose (hDrv); // close the driver
 exit (0); // and leave the program
 }

Register Value Direction Description

SPC_PCITYP 2000 read Type of board as listed in the table below.

Card type Card type as
defined in
regs.h

Value hexadec-
imal

Value decimal Card type Card type as
defined in
regs.h

Value hexadec-
imal

Value decimal

M2i.2020 TYP_M2I2020 32020h 204832 M2i.2030 TYP_M2I2030 32030h 204848

M2i.2021 TYP_M2I2021 32021h 204833 M2i.2031 TYP_M2I2031 32031h 204849
(c) Spectrum GmbH 55

Gathering information from the card Programming the Board

Hardware version
Since all of the boards from Spectrum are modular boards, they consist of one base board and one or two piggy-back front-end modules and
eventually of an extension module like the star-hub. Each of these three kinds of hardware has its own version register. Normally you do not
need this information but if you have a support question, please provide the revision together with it.

If your board has a additional piggy-back extension module mounted you can get the hardware version with the following register.

Firmware versions
All the cards from Spectrum typically contain multiple programmable devices such as FPGAs, CPLDs and the like. Each of these have their
own dedicated firmware version. This version information is readable for each device through the various version registers. Normally you do
not need this information but if you have a support question, please provide us with this information. Please note that number of devices and
hence the readable firmware information is card series dependent:

Cards that do provide a golden recovery image for the main control FPGA, the currently booted firmware can additionally read out:

M2i.2020-exp TYP_M2I2020EXP 42020h 270368 M2i.2030-exp TYP_M2I2030EXP 42030h 270384

M2i.2021-exp TYP_M2I2021EXP 42021h 270369 M2i.2031-exp TYP_M2I2031EXP 42031h 270385

Register Value Direction Description

SPC_PCIVERSION 2010 read Base card version: the upper 16 bit show the hardware (PCB) version, the lower 16 bit show the firm-
ware version.

SPC_PCIMODULEVERSION 2012 read Module version: the upper 16 bit show the hardware (PCB) version, the lower 16 bit show the firm-
ware version.

Register Value Direction Description

SPC_PCIEXTVERSION 2011 read Extension module version: the upper 16 bit show the hardware (PCB) version, the lower 16 bit show
the firmware version.

Register Value Direction Description Available for

M2i M3i M4i M4x M2p

SPCM_FW_CTRL 210000 read Main control FPGA version: the upper 16 bit show the firmware type, the
lower 16 bit show the firmware version. For the standard release firm-
ware, the type has always a value of 1.

X X X X X

SPCM_FW_CTRL_GOLDEN 210001 read Main control FPGA golden version: the upper 16 bit show the firmware
type, the lower 16 bit show the firmware version. For the golden (recov-
ery) firmware, the type has always a value of 2.

— — X X X

SPCM_FW_CLOCK 210010 read Clock distribution version: the upper 16 bit show the firmware type, the
lower 16 bit show the firmware version. For the standard release firm-
ware, the type has always a value of 1.

X — — — —

SPCM_FW_CONFIG 210020 read Configuration controller version: the upper 16 bit show the firmware type,
the lower 16 bit show the firmware version. For the standard release firm-
ware, the type has always a value of 1.

X X — — —

SPCM_FW_MODULEA 210030 read Front-end module A version: the upper 16 bit show the firmware type, the
lower 16 bit show the firmware version. For the standard release firm-
ware, the type has always a value of 1.

X X X X X

SPCM_FW_MODULEB 210031 read Front-end module B version: the upper 16 bit show the firmware type, the
lower 16 bit show the firmware version. For the standard release firm-
ware, the type has always a value of 1.
The version is zero if no second front-end module is installed on the card.

X — — — X

SPCM_FW_MODEXTRA 210050 read Extension module (Star-Hub) version: the upper 16 bit show the firmware
type, the lower 16 bit show the firmware version. For the standard
release firmware, the type has always a value of 1.
The version is zero if no sextension module is installed on the card.

X X X — X

SPCM_FW_POWER 210060 read Power controller version: the upper 16 bit show the firmware type, the
lower 16 bit show the firmware version. For the standard release firm-
ware, the type has always a value of 1.

— — X X X

Register Value Direction Description

M2i M3i M4i M4x M2p

SPCM_FW_CTRL_ACTIVE 210002 read Cards that do provide a golden (recovery) fiwmware additionally have a
register to read out the version information of the currently loaded firm-
ware version string, do determine if it is standard or golden.

The hexadecimal 32bit format is: TVVVUUUUh

T: the currently booted type (1: standard, 2: golden)
V: the version
U: unused, in production versions always zero

— — X X X

Card type Card type as
defined in
regs.h

Value hexadec-
imal

Value decimal Card type Card type as
defined in
regs.h

Value hexadec-
imal

Value decimal
56 M2i.20xx / M2i.20xx-exp Manual

Programming the Board Gathering information from the card
Production date
This register informs you about the production date, which is returned as one 32 bit long word. The lower word is holding the information
about the year, while the upper word informs about the week of the year.

The following example shows how to read out a date and how to interpret the value:

Last calibration date (analog cards only)
This register informs you about the date of the last factory calibration. When receiving a new card this date is similar to the delivery date
when the production calibration is done. When returning the card to calibration this information is updated. This date is not updated when
just doing an on-board calibration by the user. The date is returned as one 32 bit long word. The lower word is holding the information about
the year, while the upper word informs about the week of the year.

Serial number
This register holds the information about the serial number of the board. This number is unique and should always be sent together with a
support question. Normally you use this information together with the register SPC_PCITYP to verify that multiple measurements are done with
the exact same board.

Maximum possible sampling rate
This register gives you the maximum possible sampling rate the board can run. The information provided here does not consider any restric-
tions in the maximum speed caused by special channel settings. For detailed information about the correlation between the maximum sam-
pling rate and the number of activated channels please refer to the according chapter.

Installed memory
This register returns the size of the installed on-board memory in bytes as a 64 bit integer value. If you want to know the amount of samples
you can store, you must regard the size of one sample of your card. All 8 bit A/D and D/A cards use only one byte per sample, while all
other A/D and D/A cards with 12, 14 and 16 bit resolution use two bytes to store one sample. All digital cards need one byte to store 8
data bits.

The following example is written for a „two bytes“ per sample card (12, 14 or 16 bit board), on any 8 bit card memory in MSamples is
similar to memory in MBytes.

Installed features and options
The SPC_PCIFEATURES register informs you about the features, that are installed on the board. If you want to know about one option being
installed or not, you need to read out the 32 bit value and mask the interesting bit. In the table below you will find every feature that may be
installed on a M2i/M3i/M4i/M4x/M2p card. Please refer to the ordering information to see which of these features are available for your
card series.

Register Value Direction Description

SPC_PCIDATE 2020 read Production date: week in bits 31 to 16, year in bits 15 to 0

spcm_dwGetParam_i32 (hDrv, SPC_PCIDATE, &lProdDate);
printf ("Production: week &d of year &d\n“, (lProdDate >> 16) & 0xffff, lProdDate & 0xffff);

Register Value Direction Description

SPC_CALIBDATE 2025 read Last calibration date: week in bit 31 to 16, year in bit 15 to 0

Register Value Direction Description

SPC_PCISERIALNO 2030 read Serial number of the board

Register Value Direction Description

SPC_PCISAMPLERATE 2100 read Maximum sampling rate in Hz as a 64 bit integer value

Register Value Direction Description

SPC_PCIMEMSIZE 2110 read _i32 Installed memory in bytes as a 32 bit integer value. Maximum return value will 1 GByte. If more mem-
ory is installed this function will return the error code ERR_EXCEEDINT32.

SPC_PCIMEMSIZE 2110 read _i64 Installed memory in bytes as a 64 bit integer value

spcm_dwGetParam_i64 (hDrv, SPC_PCIMEMSIZE, &llInstMemsize);
printf ("Memory on card: %d MBytes\n", (int32) (llInstMemsize /1024/1024));
printf (" : %d MSamples\n", (int32) (llInstMemsize /1024/1024/2));

Register Value Direction Description

SPC_PCIFEATURES 2120 read PCI feature register. Holds the installed features and options as a bitfield. The read value must be
masked out with one of the masks below to get information about one certain feature.
(c) Spectrum GmbH 57

Gathering information from the card Programming the Board
The following example demonstrates how to read out the information about one feature.

The following example demonstrates how to read out the custom modification code.

Installed extended Options and Features
Some cards (such as M4i/M4x/M2p cards) can have advanced features and options installed. This can be read out with with the following
register:

Miscellaneous Card Information
Some more detailed card information, that might be useful for the application to know, can be read out with the following registers:

SPCM_FEAT_MULTI 1h Is set if the feature Multiple Recording / Multiple Replay is available.

SPCM_FEAT_GATE 2h Is set if the feature Gated Sampling / Gated Replay is available.

SPCM_FEAT_DIGITAL 4h Is set if the feature Digital Inputs / Digital Outputs is available.

SPCM_FEAT_TIMESTAMP 8h Is set if the feature Timestamp is available.

SPCM_FEAT_STARHUB6_EXTM 20h Is set on the card, that carries the star-hub extension or piggy-back module for synchronizing up to 6 cards (M2p).

SPCM_FEAT_STARHUB8_EXTM 20h Is set on the card, that carries the star-hub extension or piggy-back module for synchronizing up to 8 cards (M4i).

SPCM_FEAT_STARHUB4 20h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 4 cards (M3i).

SPCM_FEAT_STARHUB5 20h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 5 cards (M2i).

SPCM_FEAT_STARHUB16_EXTM 40h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 16 cards (M2p).

SPCM_FEAT_STARHUB8 40h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 8 cards (M3i).

SPCM_FEAT_STARHUB16 40h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 16 cards (M2i).

SPCM_FEAT_ABA 80h Is set if the feature ABA mode is available.

SPCM_FEAT_BASEXIO 100h Is set if the extra BaseXIO option is installed. The lines can be used for asynchronous digital I/O, extra trigger or
timestamp reference signal input.

SPCM_FEAT_AMPLIFIER_10V 200h Arbitrary Waveform Generators only: card has additional set of calibration values for amplifier card.

SPCM_FEAT_STARHUBSYSMASTER 400h Is set in the card that carries a System Star-Hub Master card to connect multiple systems (M2i).

SPCM_FEAT_DIFFMODE 800h M2i.30xx series only: card has option -diff installed for combining two SE channels to one differential channel.

SPCM_FEAT_SEQUENCE 1000h Only available for output cards or I/O cards: Replay sequence mode available.

SPCM_FEAT_AMPMODULE_10V 2000h Is set on the card that has a special amplifier module for mounted (M2i.60xx/61xx only).

SPCM_FEAT_STARHUBSYSSLAVE 4000h Is set in the card that carries a System Star-Hub Slave module to connect with System Star-Hub master systems (M2i).

SPCM_FEAT_NETBOX 8000h The card is physically mounted within a digitizerNETBOX or generatorNETBOX.

SPCM_FEAT_REMOTESERVER 10000h Support for the Spectrum Remote Server option is installed on this card.

SPCM_FEAT_SCAPP 20000h Support for the SCAPP option allowing CUDA RDMA access to supported graphics cards for GPU calculations
(M4i and M2p)

SPCM_FEAT_DIG16_SMB 40000h M2p: Set if option M2p.xxxx-DigSMB is installed, adding16 additional digital I/Os via SMB connectors.

SPCM_FEAT_DIG16_FX2 80000h M2p: Set if option M2p.xxxx-DigFX2 is installed, adding16 additional digital I/Os via FX2 multipin connectors.

SPCM_FEAT_DIGITALBWFILTER 100000h A digital (boxcar) bandwidth filter is available that can be globally enabled/disabled for all channels.

SPCM_FEAT_CUSTOMMOD_MASK F0000000h The upper 4 bit of the feature register is used to mark special custom modifications. This is only used if the card has
been specially customized. Please refer to the extra documentation for the meaning of the custom modifications.
(M2i/M3i). For M4i, M4x and M2p cards see „Custom modifications“ chapter instead.

spcm_dwGetParam_i32 (hDrv, SPC_PCIFEATURES, &lFeatures);
if (lFeatures & SPCM_FEAT_DIGITAL)
 printf("Option digital inputs/outputs is installed on your card");

spcm_dwGetParam_i32 (hDrv, SPC_PCIFEATURES, &lFeatures);
lCustomMod = (lFeatures >> 28) & 0xF;
if (lCustomMod != 0)
 printf("Custom modification no. %d is installed.", lCustomMod);

Register Value Direction Description

SPC_PCIEXTFEATURES 2121 read PCI extended feature register. Holds the installed extended features and options as a bitfield. The
read value must be masked out with one of the masks below to get information about one certain fea-
ture.

SPCM_FEAT_EXTFW_SEGSTAT 1h Is set if the firmware option „Block Statistics“ is installed on the board, which allows certain statistics to be on-board
calculated for data being recorded in segmented memory modes, such as Multiple Recording or ABA.

SPCM_FEAT_EXTFW_SEGAVERAGE 2h Is set if the firmware option „Block Average“ is installed on the board, which allows on-board hardware averaging of
data being recorded in segmented memory modes, such as Multiple Recording or ABA.

SPCM_FEAT_EXTFW_BOXCAR 4h Is set if the firmware mode „Boxcar Average“ is supported in the installed firmware version.

Register Value Direction Description

SPC_MIINST_MODULES 1100 read Number of the installed front-end modules on the card.

SPC_MIINST_CHPERMODULE 1110 read Number of channels installed on one front-end module.

SPC_MIINST_BYTESPERSAMPLE 1120 read Number of bytes used in memory by one sample.

SPC_MIINST_BITSPERSAMPLE 1125 read Resolution of the samples in bits.

SPC_MIINST_MAXADCVALUE 1126 read Decimal code of the full scale value.

SPC_MIINST_MINEXTCLOCK 1145 read Minimum external clock that can be fed in for direct external clock (if available for card model).
58 M2i.20xx / M2i.20xx-exp Manual

Programming the Board Gathering information from the card
Function type of the card
This register register returns the basic type of the card:

Used type of driver
This register holds the information about the driver that is actually used to access the board. Although the driver interface doesn’t differ be-
tween Windows and Linux systems it may be of interest for a universal program to know on which platform it is working.

Driver version
This register holds information about the currently installed driver library. As the drivers are permanently improved and maintained and new
features are added user programs that rely on a new feature are requested to check the driver version whether this feature is installed.

The resulting 32 bit value for the driver version consists of the three version number parts shown in the table below:

Kernel Driver version
This register informs about the actually used kernel driver. Windows users can also get this information from the device manager. Please refer
to the „Driver Installation“ chapter. On Linux systems this information is also shown in the kernel message log at driver start time.

The resulting 32 bit value for the driver version consists of the three version number parts shown in the table below:

The following example demonstrates how to read out the kernel and library version and how to print them.

This small program will generate an output like this:

SPC_MIINST_MAXEXTCLOCK 1146 read Maximum external clock that can be fed in for direct external clock (if available for card model).

SPC_MIINST_MINEXTREFCLOCK 1148 read Minimum external clock that can be fed in as a reference clock.

SPC_MIINST_MAXEXTREFCLOCK 1149 read Maximum external clock that can be fed in as a reference clock.

SPC_MIINST_ISDEMOCARD 1175 read Returns a value other than zero, if the card is a demo card.

Register Value Direction Description

SPC_FNCTYPE 2001 read Gives information about what type of card it is.

SPCM_TYPE_AI 1h Analog input card (analog acquisition; the M2i.4028 and M2i.4038 also return this value)

SPCM_TYPE_AO 2h Analog output card (arbitrary waveform generators)

SPCM_TYPE_DI 4h Digital input card (logic analyzer card)

SPCM_TYPE_DO 8h Digital output card (pattern generators)

SPCM_TYPE_DIO 10h Digital I/O (input/output) card, where the direction is software selectable.

Register Value Direction Description

SPC_GETDRVTYPE 1220 read Gives information about what type of driver is actually used

DRVTYP_LINUX32 1 Linux 32bit driver is used

DRVTYP_WDM32 4 Windows WDM 32bit driver is used (XP/Vista/Windows 7/Windows 8/Windows 10).

DRVTYP_WDM64 5 Windows WDM 64bit driver is used by 64bit application (XP64/Vista/Windows 7/Windows 8/Windows 10).

DRVTYP_WOW64 6 Windows WDM 64bit driver is used by 32bit application (XP64/Vista/Windows 7/Windows 8/ Windows 10).

DRVTYP_LINUX64 7 Linux 64bit driver is used

Register Value Direction Description

SPC_GETDRVVERSION 1200 read Gives information about the driver library version

Driver Major Version Driver Minor Version Driver Build

8 Bit wide: bit 24 to bit 31 8 Bit wide, bit 16 to bit 23 16 Bit wide, bit 0 to bit 15

Register Value Direction Description

SPC_GETKERNELVERSION 1210 read Gives information about the kernel driver version.

Driver Major Version Driver Minor Version Driver Build

8 Bit wide: bit 24 to bit 31 8 Bit wide, bit 16 to bit 23 16 Bit wide, bit 0 to bit 15

spcm_dwGetParam_i32 (hDrv, SPC_GETDRVVERSION, &lLibVersion);
spcm_dwGetParam_i32 (hDrv, SPC_GETKERNELVERSION, &lKernelVersion);
printf("Kernel V %d.%d build %d\n”,lKernelVersion >> 24, (lKernelVersion >> 16) & 0xff, lKernelVersion & 0xffff);
printf("Library V %d.%d build %d\n”,lLibVersion >> 24, (lLibVersion >> 16) & 0xff, lLibVersion & 0xffff);

Kernel V 1.11 build 817
Library V 1.1 build 854

Register Value Direction Description
(c) Spectrum GmbH 59

Reset Programming the Board

Reset
Every Spectrum card can be reset by software. Concerning the hardware, this reset is the same as the power-on reset when starting the host
computer. In addition to the power-on reset, the reset command also brings all internal driver settings to a defined default state. A software
reset is automatically performed, when the driver is first loaded after starting the host system.

It is recommended, that every custom written program performs a software reset first, to be sure that the
driver is in a defined state independent from possible previous setting.

Performing a board reset can be easily done by the related board command mentioned in the following table.

Register Value Direction Description

SPC_M2CMD 100 w Command register of the board.

M2CMD_CARD_RESET 1h A software and hardware reset is done for the board. All settings are set to the default values. The data in the board’s
on-board memory will be no longer valid. Any output signals like trigger or clock output will be disabled.
60 M2i.20xx / M2i.20xx-exp Manual

Analog Inputs Channel Selection
Analog Inputs

Channel Selection
One key setting that influences all other possible settings is the channel enable register. A unique feature of the Spectrum cards is the possibility
to program the number of channels you want to use. All on-board memory can then be used by these activated channels.

This description shows you the channel enable register for the complete card family. However, your specific board may have less channels
depending on the card type that you have purchased and therefore does not allow you to set the maximum number of channels shown here.

The channel enable register is set as a bitmap. That means that one bit of the value corresponds to one channel to be activated. To activate
more than one channel the values have to be combined by a bitwise OR.

Example showing how to activate 4 channels:

The following table shows all allowed settings for the channel enable register when your card has a maximum of 1 channel.

The following table shows all allowed settings for the channel enable register when your card has a maximum of 2 channels.

The following table shows all allowed settings for the channel enable register in case that you have a four channel card.

Any channel activation mask that is not shown here is not valid. If programming an other channel activation,
the driver will return with an error code ERR_VALUE.

To help user programs it is also possible to read out the number of activated channels that correspond to the currently programmed bitmap.

Reading out the channel enable information can be done directly after setting it or later like this:

Register Value Direction Description

SPC_CHENABLE 11000 read/write Sets the channel enable information for the next card run.

CHANNEL0 1 Activates channel 0

CHANNEL1 2 Activates channel 1

CHANNEL2 4 Activates channel 2

CHANNEL3 8 Activates channel 3

spcm_dwSetParam_i64 (hDrv, SPC_CHENABLE, CHANNEL0 | CHANNEL1 | CHANNEL2 | CHANNEL3);

Channels to activate
Ch0 Values to program Value as hex Value as decimal
X CHANNEL0 1h 1

Channels to activate
Ch0 Ch1 Values to program Value as hex Value as decimal
X CHANNEL0 1h 1

X CHANNEL1 2h 2
X X CHANNEL0 | CHANNEL1 3h 3

Channels to activate
Ch0 Ch1 Ch2 Ch3 Values to program Value as hex Value as decimal
X CHANNEL0 1h 1

X CHANNEL1 2h 2
X CHANNEL2 4h 4

X CHANNEL3 8h 8
X X CHANNEL0 | CHANNEL1 3h 3
X X CHANNEL0 | CHANNEL2 5h 5
X X CHANNEL0 | CHANNEL3 9h 9

X X CHANNEL1 | CHANNEL2 6h 6
X X CHANNEL1 | CHANNEL3 Ah 10

X X CHANNEL2 | CHANNEL3 Ch 12
X X X X CHANNEL0 | CHANNEL1 | CHANNEL2 | CHANNEL3 Fh 15

Register Value Direction Description

SPC_CHCOUNT 11001 read Reads back the number of currently activated channels.

spcm_dwSetParam_i32 (hDrv, SPC_CHENABLE, CHANNEL0 | CHANNEL1);
spcm_dwGetParam_i32 (hDrv, SPC_CHENABLE, &lActivatedChannels);
spcm_dwGetParam_i32 (hDrv, SPC_CHCOUNT, &lChCount);

printf ("Activated channels bitmask is: 0x%08x\n", lActivatedChannels);
printf ("Number of activated channels with this bitmask: %d\n", lChCount);
(c) Spectrum GmbH 61

Setting up the inputs Analog Inputs
Assuming that the two channels are available on your card the program will have the following output:

Important note on channel selection

As some of the manuals passages are used in more than one hardware manual most of the registers and
channel settings throughout this handbook are described for the maximum number of possible channels that
are available on one card of the current series. There can be less channels on your actual type of board or

bus-system. Please refer to the technical data section to get the actual number of available channels.

Setting up the inputs

Input ranges
This analog acquisition board uses separate input amplifiers and converters on each channel. This gives you the possibility to set up the de-
sired and concerning your application best suiting input range also separately for each channel. The input ranges can easily be set by the
corresponding input registers. The table below shows the available input registers and possible standard ranges for your type of board. As
there are also modified version availble with different input ranges it is recommended to read out the currently available input ranges as
shown later in this chapter.

Universal software that handles different card types can read out how many different input ranges are available on the actual board for each
channel. This information can be obtained by using the read-only register shown in the table below.

Additionally one can read out the minimum and the maximum value of each input range as shown in the table below. The number of input
ranges is read out with the above shown register.

Activated channels bitmask is: 0x00000003
Number of activated channels with this bitmask: 2

Register Value Direction Description

SPC_AMP0 30010 r/w Defines the input range of channel0.

SPC_AMP1 30110 r/w Defines the input range of channel1.

SPC_AMP2 30210 r/w Defines the input range of channel2.

SPC_AMP3 30310 r/w Defines the input range of channel3.

50 ± 50 mV calibrated input range for the appropriate channel.

100 ± 100 mV calibrated input range for the appropriate channel.

200 ± 200 mV calibrated input range for the appropriate channel.

500 ± 500 mV calibrated input range for the appropriate channel.

1000 ± 1 V calibrated input range for the appropriate channel.

2000 ± 2 V calibrated input range for the appropriate channel.

5000 ± 5 V calibrated input range for the appropriate channel.

Register Value Direction Description

SPC_READIRCOUNT 3000 read Informs about the number of the board’s calibrated input ranges.

Register Value Direction Description

SPC_READRANGEMIN0 4000 read Gives back the minimum value of input range 0 in mV.

SPC_READRANGEMIN1 4001 read Gives back the minimum value of input range 1 in mV.

SPC_READRANGEMIN2 4002 read Gives back the minimum value of input range 2 in mV.

... ... read ...

SPC_READRANGEMAX0 4100 read Gives back the maximum value of input range 0 in mV.

SPC_READRANGEMAX1 4101 read Gives back the maximum value of input range 1 in mV.

SPC_READRANGEMAX2 4102 read Gives back the maximum value of input range 2 in mV.

...
62 M2i.20xx / M2i.20xx-exp Manual

Analog Inputs Setting up the inputs
The following example reads out the number of available input ranges and reads and prints the minimum and maximum value of all input
ranges.

Input offset

In most cases the external signals will not be symmetrically re-
lated to ground. If you want to acquire such asymmetrical sig-
nals, it is possible to use the smallest input range that matches
the biggest absolute signal amplitude without exceeding the
range.

The figure at the right shows this possibility. But in this exam-
ple you would leave half of the possible resolution unused.

It is much more efficient if you shift the signal on-board to be
as symmetrical as possible and to acquire it within the best
possible range.

This results in a much better use of the converters resolution.

On this acquisition boards from Spectrum you have the pos-
sibility to adjust the input offset separately for each channel.

The example in the right figure shows signals with a
range of ±1.0 V that have offsets up to ±1.0 V. So relat-
ed to the desired input range these signals have offsets
of ±100 %.

For compensating such offsets you can use the offset reg-
ister for each channel separately. If you want to compen-
sate the +100 % offset of the outer left signal, you would
have to set the offset to -100 % to compensate it.

As the offset levels are relatively to the related input
range, you have to calculate and set your offset again
when changing the input’s range.

The table below shows the offset registers and the possi-
ble offset ranges for your specific type of board.

When writing a program that should run with different board families it is useful to just read-out the possible offset than can be programmed.
You can use the following read only register to get the possible programmable offset range in percent

spcm_dwGetParam_i32 (hDrv, SPC_READIRCOUNT, &lNumberOfRanges);
for (i = 0; i < lNumberOfRanges; i++)
 {
 spcm_dwGetParam_i32 (hDrv, SPC_READRANGEMIN0 + i, &lMinimumInputRage);
 spcm_dwGetParam_i32 (hDrv, SPC_READRANGEMAX0 + i, &lMaximumInputRange);
 printf („Range %d: %d mV to %d mV\n“, i, lMinimumInputRange, lMaximumInputRange);
 }

Register Value Direction Description Offset range

SPC_OFFS0 30000 r/w Defines the input’s offset and therfore shifts the input of channel0. ± 400 % in steps of 1 %

SPC_OFFS1 30100 r/w Defines the input’s offset and therfore shifts the input of channel1. ± 400 % in steps of 1 %

SPC_OFFS2 30200 r/w Defines the input’s offset and therfore shifts the input of channel2. ± 400 % in steps of 1 %

SPC_OFFS3 30300 r/w Defines the input’s offset and therfore shifts the input of channel3. ± 400 % in steps of 1 %

Register Value Direction Description

SPC_READOFFSMIN0 4200 read Minimum programmable offset for input range 0 in percent

SPC_READOFFSMAX0 4100 read Maximum programmable offset for input range 0 in percent

SPC_READOFFSMIN1 4201 read Minimum programmable offset for input range 1 in percent

SPC_READOFFSMAX1 4101 read Maximum programmable offset for input range 1 in percent

..
(c) Spectrum GmbH 63

Setting up the inputs Analog Inputs
To give you an example how the registers of the input range and the input offset are to be used, the following example shows a setup to
match all of the four signals in the second input offset figure to match the desired input range. Therefore every one of the four channels is set
to the input range of ± 1.0 V. After that the four offset settings are set exactly as the offsets to be compensated, but with the opposite sign.
The result is, that all four channels perfectly match the chosen input range.

Please note that this is a general example and the number of input channels may not match the number of channels of your card.

Input termination
All inputs of Spectrum’s analog boards can be terminated separately with 50 Ohm by software programming. If you do so, please make sure
that your signal source is able to deliver the higher output currents. If no termination is used, the inputs have an impedance of 1 Megaohm.
The following table shows the corresponding register to set the input termination.

Automatic adjustment of the offset settings
All of the channels are calibrated in factory before the board is shipped. These values are stored in the on-board EEProm under the default
settings. If you have asymmetrical signals, you can adjust the offset easily with the corresponding registers of the inputs as shown before.

To start the automatic offset adjustment, simply write the register, mentioned in the following table.

Before you start an automatic offset adjustment make sure, that no signal is connected to any input. Leave
all the input connectors open and then start the adjustment. All the internal settings of the driver are changed,
while the automatic offset compensation is in progress.

As all settings are temporarily stored in the driver, the automatic adjustment will only affect these values. After exiting your program, all cal-
ibration information will be lost. To give you a possibility to save your own settings, most Spectrum card have at least one set of user settings
that can be saved within the on-board EEPROM. The default settings of the offset and gain values are then read-only and cannot be written
to the EEPROM by the user. If the card has no user settings the default settings may be overwritten.

You can easily either save adjustment settings to the EEPROM with SPC_ADJ_SAVE or recall them with SPC_ADJ_LOAD. These two registers
are shown in the table below. The values for these EEPROM access registers are the sets that can be stored within the EEPROM. The amount
of sets available for storing user offset settings depends on the type of board you use. The table below shows all the EEPROM sets, that are
available for your board.

spcm_dwSetParam_i32 (hDrv, SPC_AMP0 , 1000); // Set up channel0 to the range of ± 1.0 V
spcm_dwSetParam_i32 (hDrv, SPC_AMP1 , 1000); // Set up channel1 to the range of ± 1.0 V
spcm_dwSetParam_i32 (hDrv, SPC_AMP2 , 1000); // Set up channel2 to the range of ± 1.0 V
spcm_dwSetParam_i32 (hDrv, SPC_AMP3 , 1000); // Set up channel3 to the range of ± 1.0 V

spcm_dwSetParam_i32 (hDrv, SPC_OFFS0, -100); // Set the input offset to get the signal symmetrically to 0.0 V
spcm_dwSetParam_i32 (hDrv, SPC_OFFS1, -50);
spcm_dwSetParam_i32 (hDrv, SPC_OFFS2, 50);
spcm_dwSetParam_i32 (hDrv, SPC_OFFS3, 100);

Register Value Direction Description

SPC_50OHM0 30030 read/write A „1“ sets the 50 ohm termination for channel0. A „0“ sets the termination to1 MOhm.

SPC_50OHM1 30130 read/write A „1“ sets the 50 ohm termination for channel1. A „0“ sets the termination to1 MOhm.

SPC_50OHM2 30230 read/write A „1“ sets the 50 ohm termination for channel2. A „0“ sets the termination to1 MOhm.

SPC_50OHM3 30330 read/write A „1“ sets the 50 ohm termination for channel3. A „0“ sets the termination to1 MOhm.

Register Value Direction Description

SPC_ADJ_AUTOADJ 50020 write Performs the automatic offset compensation in the driver either for all input ranges or only the actual.

ADJ_ALL 0 Automatic offset adjustment for all input ranges.

Register Value Direction Description

SPC_ADJ_LOAD 50000 write Loads the specified set of settings from the EEPROM. The default settings are automatically loaded,
when the driver is started.

read Reads out, what kind of settings have been loaded last.

SPC_ADJ_SAVE 50010 write Stores the actual settings to the specified set in the EEPROM. T

read Reads out, what kind of settings have been saved last.

ADJ_DEFAULT 0 Default settings can be loaded only. These settings cannot be saved by the user.

ADJ_USER0 1 User settings 0. This is a valid set for storing user offset settings to.
64 M2i.20xx / M2i.20xx-exp Manual

Analog Inputs Setting up the inputs
If you want to make an offset adjustment on all the channels and store the data to the ADJ_USER0 set of the EEPROM you can do this the
way, the following example shows.

If the card has no user settings one can store the values as the default setting like shown here:

When working with a user setting instead of the default ones, you need to restore your user settings with the help of the SPC_ADJ_LOAD
register as the following example shows.

Read out of input features
The analog inputs of the different cards do have different features implemented, that can be read out to make the software more general. If
you only operate one single card type in your software it is not necessary to read out these features.

Please note that the following table shows all input features settings that are available throughout all Spectrum acquisition cards. Some of
these features are not installed on your specific hardware.

spcm_dwSetParam_i32 (hDrv, SPC_ADJ_AUTOADJ, ADJ_ALL); // Activate offset adjustment on all channels
spcm_dwSetParam_i32 (hDrv, SPC_ADJ_SAVE, ADJ_USER0); // and store values to USER0 set in the EEPROM

spcm_dwSetParam_i32 (hDrv, SPC_ADJ_AUTOADJ, ADJ_ALL); // Activate offset adjustment on all channels
spcm_dwSetParam_i32 (hDrv, SPC_ADJ_SAVE, ADJ_DEFAULT); // and store values to default set in the EEPROM

spcm_dwSetParam_i32 (hDrv, SPC_ADJ_LOAD, ADJ_USER0); // and load values to USER0 set in the EEPROM

Register Value Direction Description

SPC_READAIFEATURES 3101 read Returns a bit map with the available features of the analog input path. The possible return values are
listed below.

SPCM_AI_TERM 00000001h Programmable input termination available, otherwise the termination is fixed in value.

SPCM_AI_SE 00000002h Input is single-ended. If available together with SPC_AI_DIFF or SPCM_AI_DIFFMUX: input type is software selectable.

SPCM_AI_DIFF 00000004h Input is differential. If available together with SPC_AI_SE: input type is software selectable and switching from single-
ended to differential does not reduce the number of active channels by combining two single-ended channels.

SPCM_AI_OFFSPERCENT 00000008h Input offset programmable in per cent of input range

SPCM_AI_OFFSMV 00000010h Input offset programmable in mV

SPCM_AI_OVERRANGEDETECT 00000020h Programmable overrange detection available

SPCM_AI_DCCOUPLING 00000040h Input is DC coupled. If available together with AC coupling: coupling is software selectable

SPCM_AI_ACCOUPLING 00000080h Input is AC coupled. If available together with DC coupling: coupling is software selectable

SPCM_AI_LOWPASS 00000100h Input has a selectable low pass filter (bandwidth limit)

SPCM_AI_DIFFMUX 00000400h Input is differential. If available together with SPC_AI_SE: input type is software selectable and switching from single-
ended to differential does reduce the number of active channels due to combining two single-ended channels.

SPCM_AI_AUTOCALOFFS 00001000h Input offset can be auto calibrated on the card

SPCM_AI_AUTOCALGAIN 00002000h Input gain can be auto calibrated on the card

SPCM_AI_AUTOCALOFFSNOIN 00004000h Input offset can auto calibrated on the card if inputs are left open

SPCM_AI_HIGHIMP 00008000h Input can be high-impedance. When also SPCM_AI_LOWIMP is set, the impedance is software programmable.

SPCM_AI_LOWIMP 00010000h Input can be low-impedance. When also SPCM_AI_HIGHIMP is set, the impedance is software programmable.

SPCM_AI_INDIVPULSEWIDTH 00100000h Trigger pulsewidth is individually per channel programmable
(c) Spectrum GmbH 65

Overview Acquisition modes
Acquisition modes
Your card is able to run in different modes. Depending on the selected mode there are different registers that each define an aspect of this
mode. The single modes are explained in this chapter. Any further modes that are only available if an option is installed on the card is doc-
umented in a later chapter.

Overview
This chapter gives you a general overview on the related registers for the different modes. The use of these registers throughout the different
modes is described in the following chapters.

Setup of the mode
The mode register is organized as a bitmap. Each mode corresponds to one bit of this bitmap. When defining the mode to use, please be
sure just to set one of the bits. All other settings will return an error code.

The main difference between all standard and all FIFO modes is that the standard modes are limited to on-board memory and therefore can
run with full sampling rate. The FIFO modes are designed to transfer data continuously over the bus to PC memory or to hard disk and can
therefore run much longer. The FIFO modes are limited by the maximum bus transfer speed the PC can use. The FIFO mode uses the complete
installed on-board memory as a FIFO buffer.

However as you’ll see throughout the detailed documentation of the modes the standard and the FIFO mode are similar in programming and
behavior and there are only a very few differences between them.

Acquisition modes

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode, a read command will return the currently used mode.

SPC_AVAILCARDMODES 9501 read Returns a bitmap with all available modes on your card. The modes are listed below.

Mode Value Description

SPC_REC_STD_SINGLE 1h Data acquisition to on-board memory for one single trigger event.

SPC_REC_STD_MULTI 2h Data acquisition to on-board memory for multiple trigger events. Each recorded segment has the same size. This mode is described in greater
detail in a special chapter about the Multiple Recording option.

SPC_REC_STD_GATE 4h Data acquisition to on-board memory using an external Gate signal. Acquisition is only done as long as the gate signal has a programmed
level. The mode is described in greater detail in a special chapter about the Gated Sampling option.

SPC_REC_STD_ABA 8h Data acquisition to on-board memory for multiple trigger events. While the multiple trigger events are stored with programmed sampling rate
the inputs are sampled continuously with a slower sampling speed. The mode is described in a special chapter about ABA mode option.

SPC_REC_FIFO_SINGLE 10h Continuous data acquisition for one single trigger event. The on-board memory is used completely as FIFO buffer.

SPC_REC_FIFO_MULTI 20h Continuous data acquisition for multiple trigger events.

SPC_REC_FIFO_GATE 40h Continuous data acquisition using an external gate signal.

SPC_REC_FIFO_ABA 80h Continuous data acquisition for multiple trigger events together with continuous data acquisition with a slower sampling clock.
66 M2i.20xx / M2i.20xx-exp Manual

Acquisition modes Commands
Commands
The data acquisition/data replay is controlled by the command register. The command register controls the state of the card in general and
also the state of the different data transfers. Data transfers are explained in an extra chapter later on.

The commands are split up into two types of commands: execution commands that fulfill a job and wait commands that will wait for the
occurrence of an interrupt. Again the commands register is organized as a bitmap allowing you to set several commands together with one
call. As not all of the command combinations make sense (like the combination of reset and start at the same time) the driver will check the
given command and return an error code ERR_SEQUENCE if one of the given commands is not allowed in the current state.

Card execution commands

Card wait commands
These commands do not return until either the defined state has been reached which is signaled by an interrupt from the card or the timeout
counter has expired. If the state has been reached the command returns with an ERR_OK. If a timeout occurs the command returns with
ERR_TIMEOUT. If the card has been stopped from a second thread with a stop or reset command, the wait function returns with ERR_ABORT.

Wait command timeout
If the state for which one of the wait commands is waiting isn’t reached any of the wait commands will either wait forever if no timeout is
defined or it will return automatically with an ERR_TIMEOUT if the specified timeout has expired.

As a default the timeout is disabled. After defining a timeout this is valid for all following wait commands until the timeout is disabled again
by writing a zero to this register.

A timeout occurring should not be considered as an error. It did not change anything on the board status. The board is still running and will
complete normally. You may use the timeout to abort the run after a certain time if no trigger has occurred. In that case a stop command is
necessary after receiving the timeout. It is also possible to use the timeout to update the user interface frequently and simply call the wait
function afterwards again.

Register Value Direction Description

SPC_M2CMD 100 write only Executes a command for the card or data transfer.

M2CMD_CARD_RESET 1h Performs a hard and software reset of the card as explained further above.

M2CMD_CARD_WRITESETUP 2h Writes the current setup to the card without starting the hardware. This command may be useful if changing some
internal settings like clock frequency and enabling outputs.

M2CMD_CARD_START 4h Starts the card with all selected settings. This command automatically writes all settings to the card if any of the set-
tings has been changed since the last one was written. After card has been started, only some of the settings might
be changed while the card is running, such as e.g. output level and offset for D/A replay cards.

M2CMD_CARD_ENABLETRIGGER 8h The trigger detection is enabled. This command can be either sent together with the start command to enable trigger
immediately or in a second call after some external hardware has been started.

M2CMD_CARD_FORCETRIGGER 10h This command forces a trigger even if none has been detected so far. Sending this command together with the start
command is similar to using the software trigger.

M2CMD_CARD_DISABLETRIGGER 20h The trigger detection is disabled. All further trigger events are ignored until the trigger detection is again enabled.
When starting the card the trigger detection is started disabled.

M2CMD_CARD_STOP 40h Stops the current run of the card. If the card is not running this command has no effect.

M2CMD_CARD_WAITPREFULL 1000h Acquisition modes only: the command waits until the pretrigger area has once been filled with data. After pretrigger
area has been filled the internal trigger engine starts to look for trigger events if the trigger detection has been
enabled.

M2CMD_CARD_WAITTRIGGER 2000h Waits until the first trigger event has been detected by the card. If using a mode with multiple trigger events like Multi-
ple Recording or Gated Sampling there only the first trigger detection will generate an interrupt for this wait com-
mand.

M2CMD_CARD_WAITREADY 4000h Waits until the card has completed the current run. In an acquisition mode receiving this command means that all data
has been acquired. In a generation mode receiving this command means that the output has stopped.

Register Value Direction Description

SPC_TIMEOUT 295130 read/write Defines the timeout for any following wait command in a millisecond resolution. Writing a zero to this
register disables the timeout.
(c) Spectrum GmbH 67

Commands Acquisition modes
Example for card control:

Card Status
In addition to the wait for an interrupt mechanism or completely instead of it one may also read out the current card status by reading the
SPC_M2STATUS register. The status register is organized as a bitmap, so that multiple bits can be set, showing the status of the card and
also of the different data transfers.

Acquisition cards status overview
The following drawing gives you an overview of the card commands and card status information. After start of card with
M2CMD_CARD_START the card is acquiring pretrigger data until one time complete pretrigger data has been acquired. Then the status bit
M2STAT_CARD_PRETRIGGER is set. Either the trigger has been enabled together with the start command or the card now waits for trigger
enable command M2CMD_CARD_ENABLETRIGGER. After receiving this command the trigger engine is enabled and card checks for a trig-
ger event. As soon as the trigger event is received the status bit M2STAT_CARD_TRIGGER is set and the card acquires the programmed
posttrigger data. After all post trigger data has been acquired the status bit M2STAT_CARD_READY is set and data can be read out:

Generation card status overview
This drawing gives an overview of the card commands and status information for a simple generation mode. After start of card with the
M2CMD_CARD_START the card is armed and waiting. Either the trigger has been enabled together with the start command or the card now
waits for trigger enable command M2CMD_CARD_ENABLETRIGGER. After receiving this command the trigger engine is enabled and card
checks for a trigger event. As soon as the trigger event is received the status bit M2STAT_CARD_TRIGGER is set and the card starts with the
data replay. After replay has been finished - depending on the programmed mode - the status bit M2STAT_CARD_READY is set and the card
stops.

// card is started and trigger detection is enabled immediately
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER);

// we wait a maximum of 1 second for a trigger detection. In case of timeout we force the trigger
spcm_dwSetParam_i32 (hDrv, SPC_TIMEOUT, 1000);
if (spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_WAITTRIGGER) == ERR_TIMEOUT)
 {
 printf (“No trigger detected so far, we force a trigger now!\n”);
 spcm_dwSetParam (hdrv, SPC_M2CMD, M2CMD_CARD_FORCETRIGGER);
 }

// we disable the timeout and wait for the end of the run
spcm_dwSetParam_i32 (hDrv, SPC_TIMEOUT, 0);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_WAITREADY);
printf (“Card has stopped now!\n”);

Register Value Direction Description

SPC_M2STATUS 110 read only Reads out the current status information

M2STAT_CARD_PRETRIGGER 1h Acquisition modes only: the pretrigger area has been filled.

M2STAT_CARD_TRIGGER 2h The first trigger has been detected.

M2STAT_CARD_READY 4h The card has finished its run and is ready.

M2STAT_CARD_SEGMENT_PRETRG 8h Multi/ABA/Gated acquisition of M4i/M4x/M2p only: the pretrigger area of one segment has been filled.
68 M2i.20xx / M2i.20xx-exp Manual

Acquisition modes Commands
Data Transfer
Data transfer consists of two parts: the buffer definition and the commands/status information that controls the transfer itself. Data transfer
shares the command and status register with the card control commands and status information. In general the following details on the data
transfer are valid for any data transfer in any direction:

• The memory size register (SPC_MEMSIZE) must be programmed before starting the data transfer.
• When the hardware buffer is adjusted from its default (see „Output latency“ section later in this manual), this must be done before defin-

ing the transfer buffers in the next step via the spcm_dwDefTransfer function.
• Before starting a data transfer the buffer must be defined using the spcm_dwDefTransfer function.
• Each defined buffer is only used once. After transfer has ended the buffer is automatically invalidated.
• If a buffer has to be deleted although the data transfer is in progress or the buffer has at least been defined it is necessary to call the

spcm_dwInvalidateBuf function.

Definition of the transfer buffer
Before any data transfer can start it is necessary to define the transfer buffer with all its details. The definition of the buffer is done with the
spcm_dwDefTransfer function as explained in an earlier chapter.

This function is used to define buffers for standard sample data transfer as well as for extra data transfer for additional ABA or timestamp
information. Therefore the dwBufType parameter can be one of the following:

The dwDirection parameter defines the direction of the following data transfer:

The direction information used here must match the currently used mode. While an acquisition mode is used
there’s no transfer from PC to card allowed and vice versa. It is possible to use a special memory test mode
to come beyond this limit. Set the SPC_MEMTEST register as defined further below.

The dwNotifySize parameter defines the amount of bytes after which an interrupt should be generated. If leaving this parameter zero, the
transfer will run until all data is transferred and then generate an interrupt. Filling in notify size > zero will allow you to use the amount of
data that has been transferred so far. The notify size is used on FIFO mode to implement a buffer handshake with the driver or when trans-
ferring large amount of data where it may be of interest to start data processing while data transfer is still running. Please see the chapter on
handling positions further below for details.

The Notify size sticks to the page size which is defined by the PC hardware and the operating system. There-
fore the notify size must be a multiple of 4 kByte. For data transfer it may also be a fraction of 4k in the
range of 16, 32, 64, 128, 256, 512, 1k or 2k. No other values are allowed. For ABA and timestamp the notify
size can be 2k as a minimum. If you need to work with ABA or timestamp data in smaller chunks please use the
polling mode as described later.

The pvDataBuffer must point to an allocated data buffer for the transfer. Please be sure to have at least the amount of memory allocated that
you program to be transferred. If the transfer is going from card to PC this data is overwritten with the current content of the card on-board
memory.

The pvDataBuffer needs to be aligned to a page size (4096 bytes). Please use appropriate software com-
mands when allocating the data buffer. Using a non-aligned buffer may result in data corruption.

When not doing FIFO mode one can also use the qwBrdOffs parameter. This parameter defines the starting position for the data transfer as
byte value in relation to the beginning of the card memory. Using this parameter allows it to split up data transfer in smaller chunks if one
has acquired a very large on-board memory.

uint32 _stdcall spcm_dwDefTransfer_i64 (// Defines the transfer buffer by using 64 bit unsigned integer values
 drv_handle hDevice, // handle to an already opened device
 uint32 dwBufType, // type of the buffer to define as listed below under SPCM_BUF_XXXX
 uint32 dwDirection, // the transfer direction as defined below
 uint32 dwNotifySize, // number of bytes after which an event is sent (0=end of transfer)
 void* pvDataBuffer, // pointer to the data buffer
 uint64 qwBrdOffs, // offset for transfer in board memory
 uint64 qwTransferLen); // buffer length

SPCM_BUF_DATA 1000 Buffer is used for transfer of standard sample data

SPCM_BUF_ABA 2000 Buffer is used to read out slow ABA data. Details on this mode are described in the chapter about the ABA mode
option

SPCM_BUF_TIMESTAMP 3000 Buffer is used to read out timestamp information. Details on this mode are described in the chapter about the
timestamp option.

SPCM_DIR_PCTOCARD 0 Transfer is done from PC memory to on-board memory of card

SPCM_DIR_CARDTOPC 1 Transfer is done from card on-board memory to PC memory.

SPCM_DIR_CARDTOGPU 2 RDMA transfer from card memory to GPU memory, SCAPP option needed, Linux only

SPCM_DIR_GPUTOCARD 3 RDMA transfer from GPU memory to card memory, SCAPP option needed, Linux only
(c) Spectrum GmbH 69

Commands Acquisition modes
The qwTransferLen parameter defines the number of bytes that has to be transferred with this buffer. Please be sure that the allocated memory
has at least the size that is defined in this parameter. In standard mode this parameter cannot be larger than the amount of data defined with
memory size.

Memory test mode
In some cases it might be of interest to transfer data in the opposite direction. Therefore a special memory test mode is available which allows
random read and write access of the complete on-board memory. While memory test mode is activated no normal card commands are pro-
cessed:

Invalidation of the transfer buffer
The command can be used to invalidate an already defined buffer if the buffer is about to be deleted by user. This function is automatically
called if a new buffer is defined or if the transfer of a buffer has completed

The dwBufType parameter need to be the same parameter for which the buffer has been defined:

Commands and Status information for data transfer buffers.
As explained above the data transfer is performed with the same command and status registers like the card control. It is possible to send
commands for card control and data transfer at the same time as shown in the examples further below.

The data transfer can generate one of the following status information:

Example of data transfer

To keep the example simple it does no error checking. Please be sure to check for errors if using these command in real world programs!

Register Value Direction Description

SPC_MEMTEST 200700 read/write Writing a 1 activates the memory test mode, no commands are then processed.
Writing a 0 deactivates the memory test mode again.

uint32 _stdcall spcm_dwInvalidateBuf (// invalidate the transfer buffer
 drv_handle hDevice, // handle to an already opened device
 uint32 dwBufType); // type of the buffer to invalidate as listed above under SPCM_BUF_XXXX

SPCM_BUF_DATA 1000 Buffer is used for transfer of standard sample data

SPCM_BUF_ABA 2000 Buffer is used to read out slow ABA data. Details on this mode are described in the chapter about the ABA mode
option. The ABA mode is only available on analog acquisition cards.

SPCM_BUF_TIMESTAMP 3000 Buffer is used to read out timestamp information. Details on this mode are described in the chapter about the times-
tamp option. The timestamp mode is only available on analog or digital acquisition cards.

Register Value Direction Description

SPC_M2CMD 100 write only Executes a command for the card or data transfer

M2CMD_DATA_STARTDMA 10000h Starts the DMA transfer for an already defined buffer. In acquisition mode it may be that the card hasn’t received a
trigger yet, in that case the transfer start is delayed until the card receives the trigger event

M2CMD_DATA_WAITDMA 20000h Waits until the data transfer has ended or until at least the amount of bytes defined by notify size are available. This
wait function also takes the timeout parameter described above into account.

M2CMD_DATA_STOPDMA 40000h Stops a running DMA transfer. Data is invalid afterwards.

Register Value Direction Description

SPC_M2STATUS 110 read only Reads out the current status information

M2STAT_DATA_BLOCKREADY 100h The next data block as defined in the notify size is available. It is at least the amount of data available but it also can
be more data.

M2STAT_DATA_END 200h The data transfer has completed. This status information will only occur if the notify size is set to zero.

M2STAT_DATA_OVERRUN 400h The data transfer had on overrun (acquisition) or underrun (replay) while doing FIFO transfer.

M2STAT_DATA_ERROR 800h An internal error occurred while doing data transfer.

void* pvData = pvAllocMemPageAligned (1024);

// transfer data from PC memory to card memory (on replay cards) ...
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_PCTOCARD , 0, pvData, 0, 1024);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);

// ... or transfer data from card memory to PC memory (acquisition cards)
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_CARDTOPC , 0, pvData, 0, 1024);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);

// explicitely stop DMA tranfer prior to invalidating buffer
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STOPDMA);
spcm_dwInvalidateBuf (hDrv, SPCM_BUF_DATA);
vFreeMemPageAligned (pvData, 1024);
70 M2i.20xx / M2i.20xx-exp Manual

Acquisition modes Commands
Users should take care to explicitly send the M2CMD_DATA_STOPDMA command prior to invalidating the
buffer, to avoid crashes due to race conditions when using higher-latency data transportation layers, such
as to remote Ethernet devices.

(c) Spectrum GmbH 71

Standard Single acquisition mode Acquisition modes

Standard Single acquisition mode
The standard single mode is the easiest and mostly used mode to acquire analog data with a Spectrum acquisition card. In standard single
recording mode the card is working totally independent from the PC, after the card setup is done. The advantage of the Spectrum boards is
that regardless to the system usage the card will sample with equidistant time intervals.
The sampled and converted data is stored in the on-board memory and is held there for being read out after the acquisition. This mode allows
sampling at very high conversion rates without the need to transfer the data into the memory of the host system at high speed.
After the recording is done, the data can be read out by the user and is transferred via the bus into PC memory.

This standard recording mode is the most common mode for all an-
alog and digital acquisition and oscilloscope boards. The data is
written to a programmed amount of the on-board memory (mem-
size). That part of memory is used as a ring buffer, and recording
is done continuously until a trigger event is detected. After the trig-
ger event, a certain programmable amount of data is recorded
(post trigger) and then the recording finishes. Due to the continuous
ring buffer recording, there are also samples prior to the trigger
event in the memory (pretrigger).

When the card is started the pre trigger area is filled up with data first. While doing this the board’s trigger
detection is not armed. If you use a huge pre trigger size and a slow sample rate it can take some time after
starting the board before a trigger event will be detected.

Card mode
The card mode has to be set to the correct mode SPC_REC_STD_SINGLE.

Memory, Pre- and Posttrigger
At first you have to define, how many samples are to be recorded at all and how many of them should be acquired after the trigger event
has been detected.

You can access these settings by the register SPC_MEMSIZE, which sets the total amount of data that is recorded, and the register
SPC_POSTTRIGGER, that defines the number of samples to be recorded after the trigger event has been detected. The size of the pretrigger
results on the simple formula:

pretrigger = memsize - posttrigger

The maximum memsize that can be use for recording is of course limited by the installed amount of memory and by the number of channels
to be recorded. Please have a look at the topic "Limits of pre, post memsize, loops" later in this chapter.

Example
The following example shows a simple standard single mode data acquisition setup with the read out of data afterwards. To keep this example
simple there is no error checking implemented.

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode, a read command will return the currently used mode.

SPC_REC_STD_SINGLE 1h Data acquisition to on-board memory for one single trigger event.

Register Value Direction Description

SPC_MEMSIZE 10000 read/write Sets the memory size in samples per channel.

SPC_POSTTRIGGER 10100 read/write Sets the number of samples to be recorded per channel after the trigger event has been detected.

int64 llMemsize = 16384; // recording length is set to 16 kSamples

spcm_dwSetParam_i32 (hDrv, SPC_CHENABLE, CHANNEL0); // only one channel activated
spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_SINGLE); // set the standard single recording mode
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, llMemsize); // recording length
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, 8192); // samples to acquire after trigger = 8k

// now we start the acquisition and wait for the interrupt that signalizes the end
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER | M2CMD_CARD_WAITREADY);

void* pvData = pvAllocMemPageAligned (lMemsize); // assuming 1 byte per sample

// read out the data
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_CARDTOPC , 0, pvData, 0, llMemsize);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);
72 M2i.20xx / M2i.20xx-exp Manual

Acquisition modes FIFO Single acquisition mode
FIFO Single acquisition mode
The FIFO single mode does a continuous data acquisition using the on-board memory as a FIFO buffer and transferring data continuously to
PC memory. One can make on-line calculations with the acquired data, store the data continuously to disk for later use or even have a data
logger functionality with on-line data display.

Card mode
The card mode has to be set to the correct mode SPC_REC_FIFO_SINGLE.

Length and Pretrigger
Even in FIFO mode it is possible to program a pretrigger area. In general FIFO mode can run forever until it is stopped by an explicit user
command or one can program the total length of the transfer by two counters Loop and Segment size

The total amount of samples per channel that is acquired can be calculated by [SPC_LOOPS * SPC_SEGMENTSIZE]. Please stick to the below
mentioned limitations of the registers.

Difference to standard single acquisition mode
The standard modes and the FIFO modes differ not very much from the programming side. In fact one can even use the FIFO mode to get the
same behavior like the standard mode. The buffer handling that is shown in the next chapter is the same for both modes.

Pretrigger
When doing standard single acquisition memory is used as a circular buffer and the pre trigger can be up to the [installed memory] - [minimum
post trigger]. Compared to this the pre trigger in FIFO mode is limited by a special pre trigger FIFO and hence considerably shorter.

Length of acquisition.
In standard mode the acquisition length is defined before the start and is limited to the installed on-board memory whilst in FIFO mode the
acquisition length can either be defined or it can run continuously until user stops it.

Example
The following example shows a simple standard single mode data acquisition setup with the read out of data afterwards. To keep this example
simple there is no error checking implemented.

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode, a read command will return the currently used mode.

SPC_REC_FIFO_SINGLE 10h Continuous data acquisition to PC memory. Complete on-board memory is used as FIFO buffer.

Register Value Direction Description

SPC_PRETRIGGER 10030 read/write Programs the number of samples to be acquired before the trigger event detection

SPC_SEGMENTSIZE 10010 read/write Length of segments to acquire.

SPC_LOOPS 10020 read/write Number of segments to acquire in total. If set to zero the FIFO mode will run continuously until it is
stopped by the user.

spcm_dwSetParam_i32 (hDrv, SPC_CHENABLE, CHANNEL0); // only one channel activated
spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_FIFO_SINGLE); // set the FIFO single recording mode
spcm_dwSetParam_i64 (hDrv, SPC_PRETRIGGER, 1024); // 1 kSample of data before trigger

// in FIFO mode we need to define the buffer before starting the transfer
void* pvData = pvAllocMemPageAligned (lBufsizeInSamples); // 1 byte per sample

spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_CARDTOPC, 4096, pvData, 0, lBufsizeInSamples);

// now we start the acquisition and wait for the first block
dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START|M2CMD_CARD_ENABLETRIGGER|M2CMD_DATA_WAITDMA);

// we acquire data in a loop. As we defined a notify size of 4k we’ll get the data in >=4k chuncks
qwTotalBytes = 0;
while (!dwError)
 {
 // read out the available bytes
 spcm_dwGetParam_i64 (hDrv, SPC_DATA_AVAIL_USER_LEN, &llAvailBytes);
 qwTotalBytes += llAvailBytes;

 // here is the right position to do something with the data
 printf ("Currently Available: %lld, total: %llu\n", llAvailBytes, qwTotalBytes);

 // now we free the number of bytes and wait for the next buffer
 spcm_dwSetParam_i64 (hDrv, SPC_DATA_AVAIL_CARD_LEN, llAvailBytes);
 dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_WAITDMA);
 }
(c) Spectrum GmbH 73

Limits of pre trigger, post trigger, memory size Acquisition modes
Limits of pre trigger, post trigger, memory size
The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind that each sample needs 1 byte of memory to be stored. Minimum memory size as well as minimum and maximum post trigger
limits are independent of the activated channels or the installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account.
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase
according to the complete installed memory

Running the card with a sampling rate that is above 100 MS/s switches the cards internally to an interlace mode. In this mode two ADCs
are running in parallel using a 180° shifted signal. Due to the fact that two ADCs are running this mode has a little different limitations and
is listed separately in the following table.

All figures listed here are given in samples. An entry of [8k - 16] means [8 kSamples - 16] = [8192 - 16] = 8176 samples.

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS

Min Max Step Min Max Step Min Max Step Min Max Step Min Max Step
1 channel Standard Single 8 Mem 4 defined by post trigger 4 8G - 4 4 not used not used

Standard Multi/ABA 8 Mem 4 4 16k - 32 4 4 Mem/2-4 4 8 Mem/2 4 not used
Standard Gate 8 Mem 4 4 16k - 32 4 4 Mem-4 4 not used not used
FIFO Single not used 4 16k - 32 4 not used 8 8G - 4 4 0 (∞) 4G - 1 1
FIFO Multi/ABA not used 4 16k - 32 4 4 8G - 4 4 8 Mem/2 4 0 (∞) 4G - 1 1
FIFO Gate not used 4 16k - 32 4 4 8G - 4 4 not used 0 (∞) 4G - 1 1

1 channel Standard Single 16 Mem 8 defined by post trigger 8 8G - 8 8 not used not used
interlace Standard Multi/ABA 16 Mem 8 8 16k - 32 8 8 Mem/2-4 8 16 Mem/2 8 not used

Standard Gate 16 Mem 8 8 16k - 32 8 8 Mem-8 8 not used not used
FIFO Single not used 8 16k - 32 8 not used 16 8G - 4 8 0 (∞) 4G - 1 1
FIFO Multi/ABA not used 8 16k - 32 8 8 8G - 8 8 16 Mem/2 8 0 (∞) 4G - 1 1
FIFO Gate not used 8 16k - 32 8 8 8G - 8 8 not used 0 (∞) 4G - 1 1

2 channels Standard Single 8 Mem/2 4 defined by post trigger 4 8G - 4 4 not used not used
Standard Multi/ABA 8 Mem/2 4 4 8k - 16 4 4 Mem/4-4 4 8 Mem/4 4 not used
Standard Gate 8 Mem/2 4 4 8k - 16 4 4 Mem/2-4 4 not used not used
FIFO Single not used 4 8k - 16 4 not used 8 8G - 4 4 0 (∞) 4G - 1 1
FIFO Multi/ABA not used 4 8k - 16 4 4 8G - 4 4 8 Mem/4 4 0 (∞) 4G - 1 1
FIFO Gate not used 4 8k - 16 4 4 8G - 4 4 not used 0 (∞) 4G - 1 1

2 channels Standard Single 16 Mem/2 8 defined by post trigger 8 8G - 8 8 not used not used
interlace Standard Multi/ABA 16 Mem/2 8 8 8k - 16 8 8 Mem/4-8 8 16 Mem/4 8 not used

Standard Gate 16 Mem/2 8 8 8k - 16 8 8 Mem/2-8 8 not used not used
FIFO Single not used 8 8k - 16 8 not used 16 8G - 4 8 0 (∞) 4G - 1 1
FIFO Multi/ABA not used 8 8k - 16 8 8 8G - 8 8 16 Mem/4 8 0 (∞) 4G - 1 1
FIFO Gate not used 8 8k - 16 8 8 8G - 8 8 not used 0 (∞) 4G - 1 1

4 channels Standard Single 8 Mem/4 4 defined by post trigger 4 8G - 4 4 not used not used
Standard Multi/ABA 8 Mem/4 4 4 4k - 8 4 4 Mem/8-4 4 8 Mem/8 4 not used
Standard Gate 8 Mem/4 4 4 4k - 8 4 4 Mem/4-4 4 not used not used
FIFO Single not used 4 4k - 8 4 not used 8 8G - 4 4 0 (∞) 4G - 1 1
FIFO Multi/ABA not used 4 4k - 8 4 4 8G - 4 4 8 Mem/8 4 0 (∞) 4G - 1 1
FIFO Gate not used 4 4k - 8 4 4 8G - 4 4 not used 0 (∞) 4G - 1 1

Installed Memory
64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample 4 GSample

Mem 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample 4 GSample
Mem / 2 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample
Mem / 4 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample
Mem / 8 8 MSample 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample
74 M2i.20xx / M2i.20xx-exp Manual

Acquisition modes Buffer handling
Buffer handling
To handle the huge amount of data that can possibly be acquired with the M2i/M3i series cards, there is a very reliable two step buffer
strategy set up. The on-board memory of the card can be completely used as a real FIFO buffer. In addition a part of the PC memory can be
used as an additional software buffer. Transfer between hardware FIFO and software buffer is performed interrupt driven and automatically
by the driver to get best performance. The following drawing will give you an overview of the structure of the data transfer handling:

A data buffer handshake is implemented in the driver which allows to run the card in different data transfer modes. The software transfer
buffer is handled as one large buffer which is on the one side controlled by the driver and filled automatically by busmaster DMA from/to
the hardware FIFO buffer and on the other hand it is handled by the user who set’s parts of this software buffer available for the driver for
further transfer. The handshake is fulfilled with the following 3 software registers:

Internally the card handles two counters, a user counter and a card counter. Depending on the transfer direction the software registers have
slightly different meanings:

Directly after start of transfer the SPC_DATA_AVAIL_USER_LEN is every time zero as no data is available for the user and the
SPC_DATA_AVAIL_CARD_LEN is every time identical to the length of the defined buffer as the complete buffer is available for the card for
transfer.

The counter that is holding the user buffer available bytes (SPC_DATA_AVAIL_USER_LEN) is sticking to the de-
fined notify size at the DefTransfer call. Even when less bytes already have been transferred you won’t get
notice of it if the notify size is programmed to a higher value.

Remarks
• The transfer between hardware FIFO buffer and application buffer is done with scatter-gather DMA using a busmaster DMA controller

located on the card. Even if the PC is busy with other jobs data is still transferred until the application data buffer is completely used.
• Even if application data buffer is completely used there’s still the hardware FIFO buffer that can hold data until the complete on-board

memory is used. Therefore a larger on-board memory will make the transfer more reliable against any PC dead times.
• As you see in the above picture data is directly transferred between application data buffer and on-board memory. Therefore it is abso-

lutely critical to delete the application data buffer without stopping any DMA transfers that are running actually. It is also absolutely criti-
cal to define the application data buffer with an unmatching length as DMA can than try to access memory outside the application data

Register Value Direction Description

SPC_DATA_AVAIL_USER_LEN 200 read Returns the number of currently to the user available bytes inside a sample data transfer.

SPC_DATA_AVAIL_USER_POS 201 read Returns the position as byte index where the currently available data samples start.

SPC_DATA_AVAIL_CARD_LEN 202 write Writes the number of bytes that the card can now use for sample data transfer again

Transfer direction Register Direction Description

Write to card SPC_DATA_AVAIL_USER_LEN read This register contains the currently available number of bytes that are free to write new data to the
card. The user can now fill this amount of bytes with new data to be transferred.

SPC_DATA_AVAIL_CARD_LEN write After filling an amount of the buffer with new data to transfer to card, the user tells the driver with this
register that the amount of data is now ready to transfer.

Read from card SPC_DATA_AVAIL_USER_LEN read This register contains the currently available number of bytes that are filled with newly transferred
data. The user can now use this data for own purposes, copy it, write it to disk or start calculations
with this data.

SPC_DATA_AVAIL_CARD_LEN write After finishing the job with the new available data the user needs to tell the driver that this amount of
bytes is again free for new data to be transferred.

Any direction SPC_DATA_AVAIL_USER_POS read The register holds the current byte index position where the available bytes start. The register is just
intended to help you and to avoid own position calculation

Any direction SPC_FILLSIZEPROMILLE read The register holds the current fill size of the on-board memory (FIFO buffer) in promille (1/1000) of
the full on-board memory. Please note that the hardware reports the fill size only in 1/16 parts of the
full memory. The reported fill size is therefore only shown in 1000/16 = 63 promille steps.
(c) Spectrum GmbH 75

Buffer handling Acquisition modes
area.
• As shown in the drawing above the DMA control will announce new data to the application by sending an event. Waiting for an event is

done internally inside the driver if the application calls one of the wait functions. Waiting for an event does not consume any CPU time
and is therefore highly desirable if other threads do a lot of calculation work. However it is not necessary to use the wait functions and
one can simply request the current status whenever the program has time to do so. When using this polling mode the announced avail-
able bytes still stick to the defined notify size!

• If the on-board FIFO buffer has an overrun (card to PC) or an underrun (PC to card) data transfer is stopped. However in case of transfer
from card to PC there is still a lot of data in the on-board memory. Therefore the data transfer will continue until all data has been trans-
ferred although the status information already shows an overrun.

• Getting best bus transfer performance is done using a „continuous buffer“. This mode is explained in the appendix in greater detail.

The Notify size sticks to the page size which is defined by the PC hardware and the operating system. There-
fore the notify size must be a multiple of 4 kByte. For data transfer it may also be a fraction of 4k in the
range of 16, 32, 64, 128, 256, 512, 1k or 2k. No other values are allowed. For ABA and timestamp the notify

size can be 2k as a minimum. If you need to work with ABA or timestamp data in smaller chunks please use the
polling mode as described later.

 The following graphs will show the current buffer positions in different states of the transfer. The drawings have been made for the transfer
from card to PC. However all the block handling is similar for the opposite direction, just the empty and the filled parts of the buffer are
inverted.

Step 1: Buffer definition
Directly after buffer definition the complete buffer is empty (card to PC) or
completely filled (PC to card). In our example we have a notify size which
is 1/4 of complete buffer memory to keep the example simple. In real
world use it is recommended to set the notify size to a smaller stepsize.

Step 2: Start and first data available
In between we have started the transfer and have waited for the first data
to be available for the user. When there is at least one block of notify size
in the memory we get an interrupt and can proceed with the data. Any
data that already was transferred is announced. The USER_POS is still
zero as we are right at the beginning of the complete transfer.

Step 3: set the first data available for card
Now the data can be processed. If transfer is going from card to PC that
may be storing to hard disk or calculation of any figures. If transfer is go-
ing from PC to card that means we have to fill the available buffer again
with data. After the amount of data that has been processed by the user
application we set it available for the card and for the next step.

Step 4: next data available
After reaching the next border of the notify size we get the next part of the
data buffer to be available. In our example at the time when reading the
USER_LEN even some more data is already available. The user position
will now be at the position of the previous set CARD_LEN.

Step 5: set data available again
Again after processing the data we set it free for the card use.
In our example we now make something else and don’t react to the inter-
rupt for a longer time. In the background the buffer is filled with more da-
ta.

Step 6: roll over the end of buffer
Now nearly the complete buffer is filled. Please keep in mind that our cur-
rent user position is still at the end of the data part that we processed and
marked in step 4 and step 5. Therefore the data to process now is split in
two parts. Part 1 is at the end of the buffer while part 2 is starting with
address 0.

Step 7: set the rest of the buffer available
Feel free to process the complete data or just the part 1 until the end of
the buffer as we do in this example. If you decide to process complete
buffer please keep in mind the roll over at the end of the buffer.

This buffer handling can now continue endless as long as we manage to
set the data available for the card fast enough. The USER_POS and USER_LEN for step 8 would now look exactly as the buffer shown in step 2.
76 M2i.20xx / M2i.20xx-exp Manual

Acquisition modes Buffer handling
Buffer handling example for transfer from card to PC (Data acquisition)

Buffer handling example for transfer from PC to card (Data generation)

Please keep in mind that you are using a continuous buffer writing/reading that will start again at the zero
position if the buffer length is reached. However the DATA_AVAIL_USER_LEN register will give you the com-
plete amount of available bytes even if one part of the free area is at the end of the buffer and the second
half at the beginning of the buffer.

int8* pcData = (int8*) pvAllocMemPageAligned (llBufferSizeInBytes);

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_CARDTOPC , 4096, (void*) pcData, 0, llBufferSizeInBytes);

// we start the DMA transfer
dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA);

do
 {
 if (!dwError)
 {
 // we wait for the next data to be available. Afte this call we get at least 4k of data to proceed
 dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_WAITDMA);

 // if there was no error we can proceed and read out the available bytes that are free again
 spcm_dwGetParam_i64 (hDrv, SPC_DATA_AVAIL_USER_LEN, &llAvailBytes);
 spcm_dwGetParam_i64 (hDrv, SPC_DATA_AVAIL_USER_POS, &llBytePos);

 printf (“We now have %lld new bytes available\n”, llAvailBytes);
 printf (“The available data starts at position %lld\n”, llBytesPos);

 // we take care not to go across the end of the buffer, handling the wrap-around
 if ((llBytePos + llAvailBytes) >= llBufferSizeInBytes)
 llAvailBytes = llBufferSizeInBytes - llBytePos;

 // our do function gets a pointer to the start of the available data section and the length
 vDoSomething (&pcData[llBytesPos], llAvailBytes);

 // the buffer section is now immediately set available for the card
 spcm_dwSetParam_i64 (hDrv, SPC_DATA_AVAIL_CARD_LEN, llAvailBytes);
 }
 }
while (!dwError); // we loop forever if no error occurs

int8* pcData = (int8*) pvAllocMemPageAligned (llBufferSizeInBytes);

// before starting transfer we first need to fill complete buffer memory with meaningful data
vDoGenerateData (&pcData[0], llBufferSizeInBytes);

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_PCTOCARD , 4096, (void*) pcData, 0, llBufferSizeInBytes);

// and transfer some data to the hardware buffer before the start of the card
spcm_dwSetParam_i32 (hDrv, SPC_DATA_AVAIL_CARD_LEN, llBufferSizeInBytes);
dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);

do
 {
 if (!dwError)
 {
 // if there was no error we can proceed and read out the current amount of available data
 spcm_dwGetParam_i64 (hDrv, SPC_DATA_AVAIL_USER_LEN, &llAvailBytes);
 spcm_dwGetParam_i64 (hDrv, SPC_DATA_AVAIL_USER_POS, &llBytePos);

 printf (“We now have %lld free bytes available\n”, llAvailBytes);
 printf (“The available data starts at position %lld\n”, llBytesPos);

 // we take care not to go across the end of the buffer, handling the wrap-around
 if ((llBytePos + llAvailBytes) >= llBufferSizeInBytes)
 llAvailBytes = llBufferSizeInBytes - llBytePos;

 // our do function gets a pointer to the start of the available data section and the length
 vDoGenerateData (&pcData[llBytesPos], llAvailBytes);

 // now we mark the number of bytes that we just generated for replay
 // and wait for the next free buffer
 spcm_dwSetParam_i64 (hDrv, SPC_DATA_AVAIL_CARD_LEN, llAvailBytes);
 dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_WAITDMA);
 }
 }
while (!dwError); // we loop forever if no error occurs
(c) Spectrum GmbH 77

Data organisation Acquisition modes

Data organisation
Data is organized in a multiplexed way in the transfer buffer. If using 4 channels, data of the first activated channel of first module comes
first, then data of first activated channel of second module, then second activated channel of first module and so on.

The samples are re-named for better readability. A0 is sample 0 of channel 0, C4 is sample 4 of channel 2, and so on.

Sample format
The 8 bit A/D samples are stored in two’s complement in one byte. 8 bit resolution means that data is ranging from -128…to…+127.

Converting ADC samples to voltage values
The Spectrum driver also contains a register that holds the value of the decimal value of the full scale representation of the installed ADC. This
value should be used when converting ADC values (in LSB) into real-world voltage values, because this register also automatically takes any
specialities into account, such as slightly reduced ADC resolution with reserved codes for gain/offset compensation.

In case of a board that uses an 8 bit ADC that provides the full ADC code (with-
out reserving any bits) the returned value would be 128. The the peak value for
a ±1.0 V input range would be 1.0 V (or 1000 mv).

A returned sample value of for example +49 (decimal, two’s complement,
signed representation) would then convert to:

A returned sample value of for example -55 (decimal) would then convert to:

When converting samples that contain any additional data such as for example additional digital channels
or overrange bits, this extra information must be first masked out and a proper sign-extension must be per-
formed, before these values can be used as a signed two’s complement value for above formulas.

Activated Channels Ch0 Ch1 Ch2 Ch3 Samples ordering in buffer memory starting with data offset zero
1 channel X A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16
1 channel X B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16
1 channel X C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16
1 channel X D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16
2 channels X X A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 B7 A8
2 channels X X A0 C0 A1 C1 A2 C2 A3 C3 A4 C4 A5 C5 A6 C6 A7 C7 A8
2 channels X X A0 D0 A1 D1 A2 D2 A3 D3 A4 D4 A5 D5 A6 D6 A7 D7 A8
2 channels X X B0 C0 B1 C1 B2 C2 B3 C3 B4 C4 B5 C5 B6 C6 B7 C7 B8
2 channels X X B0 D0 B1 D1 B2 D2 B3 D3 B4 D4 B5 D5 B6 D6 B7 D7 B8
2 channels X X C0 D0 C1 D1 C2 D2 C3 D3 C4 D4 C5 D5 C6 D6 C7 D7 C8
4 channels X X X X A0 C0 B0 D0 A1 C1 B1 D1 A2 C2 B2 D2 A3 C3 B3 D3 A4

Bit Standard Mode

D7 ADx Bit 7 (MSB)

D6 ADx Bit 6

D5 ADx Bit 5

D4 ADx Bit 4

D3 ADx Bit 3

D2 ADx Bit 2

D1 ADx Bit 1

D0 ADx Bit 0 (LSB)

Register Value Direction Description

SPC_MIINST_MAXADCVALUE 1126 read Contains the decimal code (in LSB) of the ADC full scale value.

Vin 49 1000 mV
128

--× 382.81 mV= =

Vin 55– 1000 mV
128

--× 429.69 mV–= =
78 M2i.20xx / M2i.20xx-exp Manual

Clock generation Overview
Clock generation

Overview

The different clock modes
The Spectrum M2i cards offer a wide variety of different
clock modes to match all the customers needs. All of the
clock modes are described in detail with programming ex-
amples in this chapter.

The figure is showing an overview of the complete engine
used on all M2i cards for clock generation.

The purpose of this chapter is to give you a guide to the
best matching clock settings for your specific application
and needs.

Standard internal sample rate (PLL)
PLL with internal 10 MHz reference. This is the easiest and most common way to generate a sample rate with no need for additional external
clock signals. The sample rate has a fine resolution. You can find details on the granularity of the clock in PLL mode in the technical data
section of this manual.

Quartz1 with or without divider
This mode provides an internal sampling quartz clock with a dedicated divider. It’s best suited for applications that need an even lower clock
jitter than the PLL produces. The possible sample rates are restricted to the values of the divider. For details on the available divider values
please see the according section in this chapter or take a look at the technical data section of this manual.

Quartz2 with or without PLL and/or with or without divider (optional)
This optional second Quartz2 is for special customer needs, either for a special direct sampling clock or as a very precise reference for the
PLL. Please feel free to contact Spectrum for your special needs.

External reference clock
PLL with external 1 MHz to 125 MHz reference clock. This provides a very good clock accuracy if a stable external reference clock is used.
It also allows the easy synchronization with an external source.

Direct external clock
Any clock can be fed in that matches the specification of the board. The external clock signal can be used to synchronize the board on a
system clock or to feed in an exact matching sample rate.

Direct external clock is not available for M2i.49xx cards. Please use external reference clock mode instead.

External clock with divider
In addition to the direct external clocking it is also possible to use the externally fed in clock and divide it for generating a low-jitter sample
rate of a slower speed than the external clock available.

Direct external clock with divider is not available for M2i.49xx cards. Please use external reference clock
mode instead.

Synchronization clock (optional)
The star-hub option allows the synchronization of up to 16 cards of the M2i series from Spectrum with a minimal phase delay between the
different cards. As this clock is also available at the dividers input, cards of the same or slower sampling speeds can be synchronized. For
details on the synchronization option please take a look at the dedicated chapter in this manual.
(c) Spectrum GmbH 79

Internally generated sampling rate Clock generation
Clock Mode Register
The selection of the different clock modes has to be done by the SPC_CLOCKMODE register. All available modes, can be read out by the
help of the SPC_AVAILCLOCKMODES register.

The different clock modes and all other related or required register settings are described on the following pages.

Internally generated sampling rate

Standard internal sampling clock (PLL)
The internal sampling clock is generated in default mode by a PLL and dividers out of an internal precise 10 MHz frequency reference. You
can select the clock mode by the dedicated register shown in the table below:

 In most cases the user does not have to care about how the desired sampling rate is generated by multiplying and dividing internally. You
simply write the desired sample rate to the according register shown in the table below and the driver makes all the necessary calculations.
If you want to make sure the sample rate has been set correctly you can also read out the register and the driver will give you back the
sampling rate that is matching your desired one best.

If a sampling rate is generated internally, you can additionally enable the clock output. The clock will be available on the external clock
connector and can be used to synchronize external equipment with the board.

Example on writing and reading internal sampling rate

Minimum internal sampling rate
The minimum internal sampling rate on all M2i cards is limited to 1 kS/s and the maximum sampling rate depends on the specific type of
board. The maximum sampling rates for your type of card are shown in the tables below.

Register Value Direction Description

SPC_AVAILCLOCKMODES 20201 read Bitmask, in which all bits of the below mentioned clock modes are set, if available.

SPC_CLOCKMODE 20200 read/write Defines the used clock mode or reads out the actual selected one.

SPC_CM_INTPLL 1 Enables internal PLL with 10 MHz internal reference for sample clock generation

SPC_CM_QUARTZ1 2 Enables Quartz1 for sample clock generation

SPC_CM_QUARTZ2 4 Enables optional Quartz2 for sample clock generation

SPC_CM_EXTERNAL 8 Enables external clock input for direct sample clock generation

SPC_CM_EXTDIVIDER 16 Enables external clock input for divided sample clock generation

SPC_CM_EXTREFCLOCK 32 Enables internal PLL with external reference for sample clock generation

Register Value Direction Description

SPC_CLOCKMODE 20200 read/write Defines the used clock mode

SPC_CM_INTPLL 1 Enables internal PLL with 10 MHz internal reference for sample clock generation

Register Value Direction Description

SPC_SAMPLERATE 20000 write Defines the sample rate in Hz for internal sample rate generation.

read Read out the internal sample rate that is nearest matching to the desired one.

Register Value Direction Description

SPC_CLOCKOUT 20110 read/write Enables clock output on external clock connector.On A/D and D/A cards only possible with internal
clocking.

SPC_CLOCKOUTFREQUENCY 20111 read Allows to read out the frequency of an internally synthesized clock present at the clock output.

spcm_dwSetParam_i32 (hDrv, SPC_CLOCKMODE, SPC_CM_INTPLL); // Enables internal PLL mode
spcm_dwSetParam_i32 (hDrv, SPC_SAMPLERATE, 1000000); // Set internal sampling rate to 1 MHz
spcm_dwSetParam_i32 (hDrv, SPC_CLOCKOUT, 1); // enable the clock output of that 1 MHz clock
spcm_dwGetParam_i32 (hDrv, SPC_SAMPLERATE, &lSamplerate); // Read back the programmed sample rate and
printf („Sample rate = %d\n“, lSamplerate); // print it. Output should be „Sample rate = 1000000“
80 M2i.20xx / M2i.20xx-exp Manual

Clock generation External reference clock
Maximum internal sampling rate in MS/s

Using plain Quartz1 without PLL
In some cases it is useful for the application not to have the on-board PLL activated. Although the PLL used on the Spectrum boards is a low-
jitter version it still produces more clock jitter than a plain quartz oscillator. For these cases the Spectrum boards have the opportunity to switch
off the PLL by software and use a simple clock divider.

The Quartz1 used on the board is similar to the maximum sampling rate the board can achieve. As with internal PLL mode it’s also possible
to program the clock mode first, set a desired sampling rate with the SPC_SAMPLERATE register and to read it back. The driver will internally
set the divider and find the closest matching sampling rate. The result will then again be the best matching sampling rate.

If a sampling rate is generated internally, you can additionally enable the clock output. The clock will be available on the external clock
connector and can be used to synchronize external equipment with the board.

Using plain Quartz2 without PLL (optional)
In some cases it is necessary to use a special frequency for sampling rate generation. For these applications all cards of the M2i series can
be equipped with a special customer quartz. Please contact Spectrum for details on available oscillators. If your card is equipped with a
second oscillator you can enable it for sampling rate generation with the following register:

In addition to the direct usage of the second clock oscillator one can program the internal clock divider to use slower sampling rates. As with
internal PLL mode it’s also possible to program the clock mode first, set a desired sampling rate with the SPC_SAMPLERATE register and to
read it back. The result will then again be the best matching sampling rate.

If a sampling rate is generated internally, you can additionally enable the clock output. The clock will be available on the external clock
connector and can be used to synchronize external equipment with the board.

External reference clock
If you have an external clock generator with a extremely stable frequency, you can use it as a reference clock. You can connect it to the
external clock connector and the PLL will be fed with this clock instead of the internal reference. The following table shows how to enable the
reference clock mode:

activated Channels

M
2i

.2
02

0

M
2i

.2
02

1

M
2i

.2
03

0

M
2i

.2
03

1

Ch0 Ch1 Ch2 Ch3

X 50 MS/s 50 MS/s 200 MS/s 200 MS/s
X 50 MS/s 50 MS/s 100 MS/s 100 MS/s

X n.a. 50 MS/s n.a. 200 MS/s
X n.a. 50 MS/s n.a. 100 MS/s

X X 50 MS/s 50 MS/s 100 MS/s 100 MS/s
X X n.a. 50 MS/s n.a. 200 MS/s
X X n.a. 50 MS/s n.a. 100 MS/s

X X n.a. 50 MS/s n.a. 100 MS/s
X X n.a. 50 MS/s n.a. 100 MS/s

X X n.a. 50 MS/s n.a. 100 MS/s
X X X X n.a. 50 MS/s n.a. 100 MS/s

Register Value Direction Description

SPC_CLOCKMODE 20200 read/write Defines the used clock mode

SPC_CM_QUARTZ1 2 Enables Quartz1 for sample clock generation

Register Value Direction Description

SPC_CLOCKOUT 20110 read/write Enables clock output on external clock connector.On A/D and D/A cards only possible with internal
clocking.

SPC_CLOCKOUTFREQUENCY 20111 read Allows to read out the frequency of an internally synthesized clock present at the clock output.

Register Value Direction Description

SPC_CLOCKMODE 20200 read/write Defines the used clock mode

SPC_CM_QUARTZ2 4 Enables optional quartz2 for sample clock generation

Register Value Direction Description

SPC_CLOCKOUT 20110 read/write Enables clock output on external clock connector.On A/D and D/A cards only possible with internal
clocking.

SPC_CLOCKOUTFREQUENCY 20111 read Allows to read out the frequency of an internally synthesized clock present at the clock output.
(c) Spectrum GmbH 81

Oversampling Clock generation
Due to the fact that the driver needs to know the external fed in frequency for an exact calculation of the sampling rate you must set the
SPC_REFERENCECLOCK register accordingly as shown in the table below. The driver automatically then sets the PLL to achieve the desired
sampling rate. Please be aware that the PLL has some internal limits and not all desired sampling rates may be reached with every reference
clock.

Example of reference clock:

The reference clock must be defined via the SPC_REFERENCECLOCK register prior to defining the sample rate
via the SPC_SAMPLERATE register to allow the driver to calculate the proper clock settings correctly.

Termination of the clock input
If the external connector is used as an input, either for feeding in an external reference clock or for external clocking you can enable a
50 Ohm termination on the board. If the termination is disabled, the impedance is high. Please make sure that your source is capable of
driving that current and that it still fulfills the clock input specification as given in the technical data section.

Oversampling
All fast A/D converters have a minimum clock frequency that is defined by the manufacturer of this A/D converter. You find this minimum
sampling rate specified in the technical data section as minimum external sampling clock.

When using one of the above mentioned internal clock modes the driver allows you to program sampling clocks that lie far beneath this
minimum A/D converter clock. To run the A/D converter properly we use a special oversampling mode where the A/D converter is within
its specification and only the digital part of the card is running with the slower clock. This is completely defined inside the driver and cannot
be modified by the user. The following register allows to read out the oversampling factor for further calculation

The oversampling factor is of interest for three different cases:

• When using clock output the sampling clock at the output connector is the real A/D converter clock and not the programmed slower sam-
pling rate. To calculate the output clock, please just multiply the programmed sampling clock with the oversampling factor read with the
above mentioned register.

• As all modern A/D converters have a data pipeline integrated to obtain high speed sampling together with high resolution there is a
delay between the trigger and the valid data. Our hardware compensates this delay internally as long as sampling is done synchro-
nously. When oversampling is active this compensation no longer works and data is shifted compared to the trigger position by a couple
of samples.

• When using the timestamp option the counter is also running with the real A/D converter clock and not with the programmed slower sam-
pling clock. When interpreting timestamp values it is therefore necessary to check the oversampling factor and take it into account.

Register Value Direction Description

SPC_CLOCKMODE 20200 read/write Defines the used clock mode

SPC_CM_EXTREFCLOCK 32 Enables internal PLL with external reference for sample clock generation

Register Value Direction Description

SPC_REFERENCECLOCK 20140 read/write Programs the external reference clock in the range from 1 MHz to 125 MHz.

External sampling rate in Hz as an integer value You need to set up this register exactly to the frequency of the external fed in clock.

spcm_dwSetParam_i32 (hDrv, SPC_CLOCKMODE, SPC_CM_EXTREFCLOCK); // Set to reference clock mode
spcm_dwSetParam_i32 (hDrv, SPC_REFERENCECLOCK, 10000000); // Reference clock that is fed in is 10 MHz
spcm_dwSetParam_i32 (hDrv, SPC_SAMPLERATE, 25000000); // We want to have 25 MHz as sampling rate

Register Value Direction Description

SPC_CLOCK50OHM 20120 read/write A „1“ enables the 50 Ohm termination at the external clock connector. Only possible, when using
the external connector as an input.

Register Value Direction Description

SPC_OVERSAMPLINGFACTOR 200123 read only Returns the oversampling factor for further calculations. If oversampling isn’t active a 1 is returned.
82 M2i.20xx / M2i.20xx-exp Manual

Clock generation External clocking
 External clocking

Direct external clock
An external clock can be fed in on the external clock connector of the board. This can be any clock, that matches the specification of the
card. The external clock signal can be used to synchronize the card on a system clock or to feed in an exact matching sampling rate.

The maximum values for the external clock is board dependant and shown in the table below.

Termination of the clock input
If the external connector is used as an input, either for feeding in an external reference clock or for external clocking you can enable a
50 Ohm termination on the board. If the termination is disabled, the impedance is high. Please make sure that your source is capable of
driving that current and that it still fulfills the clock input specification as given in the technical data section.

Minimum external sampling rate
The minimum external sampling rate is limited on all boards to 1 MS/s and the maximum sampling rate depends on the specific type of
board. The maximum sampling rates for your type of board are shown in the tables below.

Maximum external sampling rate in MS/s

An external sampling rate above the mentioned maximum can cause damage to the board.

Ranges for external sampling rate
Due to the internal structure of the board it is essential to know for the driver in which clock range the external clock is operating. The external
range register must be set according to the clock that is fed in externally.

The following table shows the available ranges when using external clocking:

The range must not be left by more than 5% when the board is running. Remember that the ranges depend
on the activated channels as well, so a different board setup for external clocking must always include the
related clock ranges.

This table below shows the ranges that are defined by the two range registers mentioned above. The range depends on the activated channels
per module. For details about what channels of your specific type of board is located on which module, please take a look at the according
introduction chapter. Please be sure to select the correct external range, as otherwise it is possible that the card will not run properly.

How to read this table? If you have a card with a total number of four channels (available on two modules with two channels each), you have
an external clock source with 30 MHz and you activate channel 0 and channel 2 (one channel per module), you will have to set the external

Register Value Direction Description

SPC_CLOCKMODE 20200 read/write Defines the used clock mode

SPC_CM_EXTERNAL 8 Enables external clock input for direct sample clock generation

Register Value Direction Description

SPC_CLOCK50OHM 20120 read/write A „1“ enables the 50 Ohm termination at the external clock connector. Only possible, when using
the external connector as an input.

Activated
Channels

M
2i

.2
02

0

M
2i

.2
02

1

M
2i

.2
03

0

M
2i

.2
03

1

1 50 MS/s 50 MS/s 100 MS/s 100 MS/s
2 50 MS/s 50 MS/s 100 MS/s 100 MS/s
4 n.a. 50 MS/s n.a. 100 MS/s

Register Value Direction Description

SPC_EXTERNRANGE 20130 read/write Defines the range of the actual fed in external clock. Use one of the below mentioned ranges

EXRANGE_LOW 64 External range for slower clocks

EXRANGE_HIGH 128 External range for faster clocks

For cards with 8 bit converter resolution For cards with 12, 14, 16 bit converter resolution
Activated Channels
on one module

EXRANGE_LOW EXRANGE_HIGH EXRANGE_LOW EXRANGE_HIGH

1 < 50.0 MHz >= 50.0 MHz < 50.0 MHz >= 50.0 MHz
2 < 50.0 MHz >= 50.0 MHz < 25.0 MHz >= 25.0 MHz
4 < 25.0 MHz >= 25.0 MHz < 12.5 MHz >= 12.5 MHz
8 < 12.5 MHz >= 12.5 MHz < 6.0 MHz >= 6.0 MHz
(c) Spectrum GmbH 83

Minimum external sampling rate Clock generation
range to EXRANGE_LOW. If you activate channel 0 and channel 1 on the same card and use the same 30 MHz external clock, you will
have to set the external range EXRANGE_HIGH instead. Example:

Further external clock details
• When using the high clock range the external clock has to be stable, needs to be continuously and is not allowed to have gaps or fast

changes in frequency.
• When using the high clock range there must be a valid external clock be present before the start command is given.
• The external clock is directly used to feed the converters (on analog boards) or to feed the input registers (on digital boards). Therefore the

quality and jitter of this clock may improve or degrade the dynamic performance of the card depending on the quality of the provided
clock.

• When using the low clock range the clock needn’t to be continuously and may have gaps. When using a A/D card please keep in mind
that most A/D converters need a stable clock and there might be false samples inbetween directly after a gap or after a fast clock fre-
quency change. The quality of the analog samples may also be worse than with a continuous clock.

External clock with divider
In some cases it is necessary to generate a slower frequency for sampling rate generation, than the available external source delivers. For
these applications one can use an external clock and divide it.

The value for the clock divider must be written to the register shown in the table below:

Please set the external clock range register matching your fed in clock.

Ranges for external sampling rate
Due to the internal structure of the board it is essential for the driver to know in which clock range the external clock is operating at the divider
output. The external range register must be set according to the result of the clock that is fed in externally divided by the programmed clock
divider.

 The following table shows the available ranges when using external clocking:

The range must not be left by more than 5% when the board is running. Remember that the ranges depend
on the activated channels as well, so a different board setup for external clocking must always include the
related clock ranges.

This table below shows the ranges that are defined by the two range registers mentioned above. The range depends on the activated channels
per module. For details about what channels of your specific type of board is located on which module, please take a look at the according
introduction chapter. Please be sure to select the correct external range, as otherwise it is possible that the card will not run properly.

How to read this table? If you have a card with a total number of four channels (available on two modules with two channels each), you have
an external clock source with 30 MHz and you activate channel 0 and channel 2 (one channel per module), you will have to set the external

spcm_dwSetParam_i32 (hDrv, SPC_CLOCKMODE, SPC_CM_EXTERNAL); // activate ext. clock (which is e.g. 30 MHz)
spcm_dwSetParam_i32 (hDrv, SPC_CHENABLE, CHANNEL0 | CHANNEL1); // activate two channels (asuming that they
 // are located on one module) you
spcm_dwSetParam_i32 (hDrv, SPC_EXTERNRANGE, EXRANGE_HIGH); // set external range to EXRANGE_HIGH

Register Value Direction Description

SPC_CLOCKMODE 20200 read/write Defines the used clock mode

SPC_CM_EXTDIVIDER 16 Enables external clock input for divided sample clock generation

Register Value Direction Description

SPC_CLOCKDIV 20040 read/write Register for setting the clock divider. Values up to 8190 in steps of two are allowed.

Register Value Direction Description

SPC_EXTERNRANGE 20130 read/write Defines the range of the actual fed in external clock. Use one of the below mentioned ranges

EXRANGE_LOW 64 External range for slower clocks

EXRANGE_HIGH 128 External range for faster clocks

For cards with 8 bit converter resolution For cards with 12, 14, 16 bit converter resolution
Activated Channels
on one module

EXRANGE_LOW EXRANGE_HIGH EXRANGE_LOW EXRANGE_HIGH

1 < 50.0 MHz >= 50.0 MHz < 50.0 MHz >= 50.0 MHz
2 < 50.0 MHz >= 50.0 MHz < 25.0 MHz >= 25.0 MHz
4 < 25.0 MHz >= 25.0 MHz < 12.5 MHz >= 12.5 MHz
8 < 12.5 MHz >= 12.5 MHz < 6.0 MHz >= 6.0 MHz
84 M2i.20xx / M2i.20xx-exp Manual

Clock generation Minimum external sampling rate
range to EXRANGE_LOW. If you activate channel 0 and channel 1 on the same card and use the same 30 MHz external clock, you will
have to set the external range EXRANGE_HIGH instead. Example:

Further external clock details
• When using the high clock range the external clock has to be stable, needs to be continuously and is not allowed to have gaps or fast

changes in frequency.
• When using the high clock range there must be a valid external clock be present before the start command is given.
• The external clock is directly used to feed the converters (on analog boards) or to feed the input registers (on digital boards). Therefore the

quality and jitter of this clock may improve or degrade the dynamic performance of the card depending on the quality of the provided
clock.

• When using the low clock range the clock needn’t to be continuously and may have gaps. When using a A/D card please keep in mind
that most A/D converters need a stable clock and there might be false samples inbetween directly after a gap or after a fast clock fre-
quency change. The quality of the analog samples may also be worse than with a continuous clock.

Termination of the clock input
If the external connector is used as an input, either for feeding in an external reference clock or for external clocking you can enable a
50 Ohm termination on the board. If the termination is disabled, the impedance is high. Please make sure that your source is capable of
driving that current and that it still fulfills the clock input specification as given in the technical data section.

spcm_dwSetParam_i32 (hDrv, SPC_CLOCKMODE, SPC_CM_EXTERNAL); // activate ext. clock (which is e.g. 30 MHz)
spcm_dwSetParam_i32 (hDrv, SPC_CHENABLE, CHANNEL0 | CHANNEL1); // activate two channels (asuming that they
 // are located on one module) you
spcm_dwSetParam_i32 (hDrv, SPC_EXTERNRANGE, EXRANGE_HIGH); // set external range to EXRANGE_HIGH

Register Value Direction Description

SPC_CLOCK50OHM 20120 read/write A „1“ enables the 50 Ohm termination at the external clock connector. Only possible, when using
the external connector as an input.
(c) Spectrum GmbH 85

General Description Trigger modes and appendant registers
Trigger modes and appendant registers

General Description
The trigger modes of the Spectrum M2i series A/D cards are very extensive and give you the possibility to detect nearly any trigger event,
you can think of.

You can choose between seven external TTL trigger modes and up to 20 internal trigger modes (on analog acquisition cards) including soft-
ware and channel trigger, depending on your type of board. Many of the channel trigger modes can be independently set for each input
channel (on A/D boards only) resulting in a even bigger variety of modes. This chapter is about to explain all of the different trigger modes
and setting up the card’s registers for the desired mode.

Every analog Spectrum board has one dedicated SMB connector mounted in its bracket for feeding in an external trigger signal or generating
a trigger output of an internal trigger event. Due to the fact that only one connector is available for external trigger I/O, it is not possible to
forward the fed in external trigger signal to another board. If this is however necessary, you need to split up the external trigger signal before.

Trigger Engine Overview
To extend trigger facilities of the various trigger
sources/modes further on, the trigger engine of
the Spectrum M2i series allows the logical combi-
nation of different trigger events by an AND-mask
and an OR-mask.

The Enable trigger allows the user to enable or dis-
able all trigger sources (including channel trigger
and external TTL trigger) with a single software
command.

Channel trigger is only available on data acquisi-
tion cards.

When the card is waiting for a trigger event, ei-
ther for a channel trigger or an external trigger,
the force-trigger command allows to force a trig-
ger event with a single software command.

Before the trigger event is finally generated, it is
wired through a programmable trigger delay.

All analog D/A and A/D cards have one external trigger input (External0) and digital i/o cards and pattern generators have one to two
external trigger inouts (External0 and External1). In addition using the option BaseXIO it is possible to have two additional trigger inputs
named XIO0 and XIO1 in the drawing.

Trigger masks

Trigger OR mask
The purpose of this passage is to explain the trigger OR mask (see left figure) and all the appendant software
registers in detail.

The OR mask shown in the overview before as one object, is separated into two parts: a general OR mask for
external TTL trigger and software trigger and a channel OR mask.
86 M2i.20xx / M2i.20xx-exp Manual

Trigger modes and appendant registers Trigger masks
Every trigger source of the M2i series cards is wired to one of the above men-
tioned OR masks. The user then can program which trigger source will be
recognized, and which one won’t.

This selection for the general mask is realized with the SPC_TRIG_ORMASK
register in combination with constants for every possible trigger source.

This selection for the channel mask is realized with the
SPC_TRIG_CH_ORMASK0 and the SPC_TRIG_CH_ORMASK1 register in
combination with constants for every possible channel trigger source.

In either case the sources are coded as a bitfield, so that they can be com-
bined by one access to the driver with the help of a bitwise OR.

The table below shows the relating register for the general OR mask and the
possible constants that can be written to it.

Please note that as default the SPC_TRIG_ORMASK is set to SPC_TMASK_SOFTWARE. When not using any trig-
ger mode requiring values in the SPC_TRIG_ORMASK register, this mask should explicitely cleared, as other-
wise the software trigger will override other modes.

The following example shows, how to setup the OR mask, for an external TTL trigger. As an example a simple edge detection has been
chosen. The explanation and a detailed description of the different trigger modes for the external TTL trigger inputs will be shown in the ded-
icated passage within this chapter.

The table below is showing the registers for the channel OR mask and the possible constants that can be written to it.

Please note that channel trigger sources are only available on data acquisition cards and not on pure generator
cards. If you have purchased an arbitary waveform generator or a pattern generator please just ignore this part.

The following example shows, how to setup the OR mask, for an external TTL trigger. As an example a simple edge detection has been
chosen. The explanation and a detailed description of the different trigger modes for the external TTL trigger inputs will be shown in the ded-
icated passage within this chapter.

Register Value Direction Description

SPC_TRIG_AVAILORMASK 40400 read Bitmask, in which all bits of the below mentioned sources for the OR mask are set, if available.

SPC_TRIG_ORMASK 40410 read/write Defines the events included within the trigger OR mask of the card.

SPC_TMASK_NONE 0 No trigger source selected

SPC_TMASK_SOFTWARE 1h Enables the software trigger for the OR mask. The card will trigger immediately after start.

SPC_TMASK_EXT0 2h Enables the external trigger0 for the OR mask. The card will trigger when the programmed condition for this input is
valid.

SPC_TMASK_EXT1 4h Enables the external trigger1 for the OR mask. This input is only available on digital cards. The card will trigger when
the programmed condition for this input is valid.

SPC_TMASK_XIO0 100h Enables the extra TTL trigger 0 for the OR mask. On plain cards this input is only available if the option BaseXIO is
installed. As part of the digitizerNETBOX this input is available as connector Trigger B.

SPC_TMASK_XIO1 200h Enables the extra TTL trigger 1 for the OR mask. This input is only available if the option BaseXIO is installed.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0); // Enable external trigger within the OR mask
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE, SPC_TM_POS); // Setting up external TTL trigger for rising edges

Register Value Direction Description

SPC_TRIG_CH_AVAILORMASK0 40450 read Bitmask, in which all bits of the below mentioned sources/channels (0…31) for the channel OR mask
are set, if available.

SPC_TRIG_CH_AVAILORMASK1 40451 read Bitmask, in which all bits of the below mentioned sources/ channels (32…63) for the channel OR
mask are set, if available.

SPC_TRIG_CH_ORMASK0 40460 read/write Includes the analog or digital channels (0…31) within the channel trigger OR mask of the card.

SPC_TRIG_CH_ORMASK1 40461 read/write Includes the analog or digital channels (32…63) within the channel trigger OR mask of the card.

SPC_TMASK0_CH0 1h Enables channel0 (channel32) for recognition within the channel OR mask.

SPC_TMASK0_CH1 2h Enables channel1 (channel33) for recognition within the channel OR mask.

SPC_TMASK0_CH2 4h Enables channel2 (channel34) for recognition within the channel OR mask.

SPC_TMASK0_CH3 8h Enables channel3 (channel35) for recognition within the channel OR mask.

… … …

SPC_TMASK0_CH28 10000000h Enables channel28 (channel60) for recognition within the channel OR mask.

SPC_TMASK0_CH29 20000000h Enables channel29 (channel61 for recognition within the channel OR mask.

SPC_TMASK0_CH30 40000000h Enables channel30 (channel62) for recognition within the channel OR mask.

SPC_TMASK0_CH31 80000000h Enables channel31 (channel63) for recognition within the channel OR mask.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_NONE); // disable default software trigger
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH_ORMASK0, SPC_TMASK_CH0); // Enable channel0 trigger within the OR mask
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE, SPC_TM_POS); // Setting up external trigger for rising edges
(c) Spectrum GmbH 87

Trigger masks Trigger modes and appendant registers
Trigger AND mask
The purpose of this passage is to explain the trigger AND mask (see left figure) and all the appendant software
registers in detail.

The AND mask shown in the overview before as one object, is separated into two parts: a general AND mask
for external TTL trigger and software trigger and a channel AND mask.

Every trigger source of the M2i series cards
except the software trigger is wired to one of the above mentioned AND
masks. The user then can program which trigger source will be recognized,
and which one won’t.

This selection for the general mask is realized with the SPC_TRIG_ANDMASK
register in combination with constants for every possible trigger source.

This selection for the channel mask is realized with the
SPC_TRIG_CH_ANDMASK0 and the SPC_TRIG_CH_ANDMASK1 register
in combination with constants for every possible channel trigger source. In
either case the sources are coded as a bitfield, so that they can be combined
by one access to the driver with the help of a bitwise OR.

The table below shows the relating register for the general AND mask and
the possible constants that can be written to it.

The following example shows, how to setup the AND mask, for an external TTL trigger. As an example a simple level detection has been
chosen. The explanation and a detailed description of the different trigger modes for the external TTL trigger inputs will be shown in the ded-
icated passage within this chapter.

The table below is showing the constants for the channel AND mask and all the constants for the different channels.

The following example shows how to setup the AND mask, for a channel trigger. As an example a simple level detection has been chosen.

Register Value Direction Description

SPC_TRIG_AVAILANDMASK 40420 read Bitmask, in which all bits of the below mentioned sources for the AND mask are set, if available.

SPC_TRIG_ANDMASK 40430 read/write Defines the events included within the trigger AND mask of the card.

SPC_TMASK_EXT0 2h Enables the external trigger0 for the AND mask. The card will trigger when the programmed condition for this input is
valid.

SPC_TMASK_EXT1 4h Enables the external trigger1 for the AND mask. This input is only available on digital cards. The card will trigger
when the programmed condition for this input is valid.

SPC_TMASK_XIO0 100h Enables the extra TTL trigger 0 for the AND mask. On plain cards this input is only available if the option BaseXIO is
installed. As part of the digitizerNETBOX this input is available as connector Trigger B.

SPC_TMASK_XIO1 200h Enables the extra TTL trigger 1 for the AND mask. This input is only available ift the option BaseXIO is installed.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_NONE); // disable default software trigger
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ANDMASK, SPC_TMASK_EXT0); // Enable external trigger within the AND mask
spcm_dwSetParam_i32 (hDrv,SPC_TRIG_EXT0_MODE, SPC_TM_HIGH); // Setting up external TTL trigger for HIGH level

Register Value Direction Description

SPC_TRIG_CH_AVAILANDASK0 40470 read Bitmask, in which all bits of the below mentioned sources/channels (0…31) for the channel AND
mask are set, if available.

SPC_TRIG_CH_AVAILANDMASK1 40471 read Bitmask, in which all bits of the below mentioned sources/ channels (32…63) for the channel AND
mask are set, if available.

SPC_TRIG_CH_ANDMASK0 40480 read/write Includes the analog or digital channels (0…31) within the channel trigger AND mask of the card.

SPC_TRIG_CH_ANDRMASK1 40481 read/write Includes the analog or digital channels (32…63) within the channel trigger AND mask of the card.

SPC_TMASK0_CH0 1h Enables channel0 (channel32) for recognition within the channel AND mask.

SPC_TMASK0_CH1 2h Enables channel1 (channel33) for recognition within the channel AND mask.

SPC_TMASK0_CH2 4h Enables channel2 (channel34) for recognition within the channel AND mask.

SPC_TMASK0_CH3 8h Enables channel3 (channel35) for recognition within the channel AND mask.

… … …

SPC_TMASK0_CH28 10000000h Enables channel28 (channel60) for recognition within the channel AND mask.

SPC_TMASK0_CH29 20000000h Enables channel29 (channel61 for recognition within the channel AND mask.

SPC_TMASK0_CH30 40000000h Enables channel30 (channel62) for recognition within the channel AND mask.

SPC_TMASK0_CH31 80000000h Enables channel31 (channel63) for recognition within the channel AND mask.
88 M2i.20xx / M2i.20xx-exp Manual

Trigger modes and appendant registers Software trigger
The explanation and a detailed description of the different trigger modes for the channel trigger will be shown in the dedicated passage
within this chapter.

Software trigger
The software trigger is the easiest way of triggering any Spectrum
board. The acquisition or replay of data will start immediately af-
ter the card is started and the trigger engine is armed. The result-
ing delay upon start includes the time the board needs for its
setup and the time for recording the pre-trigger area (for acquisi-
tion cards).
For enabling the software trigger one simply has to include the
software event within the trigger OR mask, as the following table is showing:

Due to the fact that the software trigger is an internal trigger mode, you can optionally enable the external trigger output to generate a high
active trigger signal, which indicates when the data acquisition or replay begins. This can be useful to synchronize external equipment with
your Spectrum board.

Example for setting up the software trigger:

Force- and Enable trigger
In addition to the software trigger (free run) it is also possible to force a trigger event by software while the board is waiting for a real physical
trigger event. The forcetrigger command will only have any effect, when the board is waiting for a trigger event. The command for forcing
a trigger event is shown in the table below.

Issuing the forcetrigger command will every time only generate one trigger event. If for example using Multiple Recording that will result in
only one segment being acquired by forcetrigger. After execution of the forcetrigger command the trigger engine will fall back to the trigger
mode that was originally programmed and will again wait for a trigger event.

The example shows, how to use the forcetrigger command:

It is also possible to enable (arm) or disable (disarm) the card’s whole triggerengine by software. By default the trigger engine is disabled.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_NONE); // disable default software trigger
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH_ANDMASK0, SPC_TMASK_CH0); // Enable channel0 trigger within the AND mask
spcm_dwSetParam_i32 (hDrv,SPC_TRIG_CH0_MODE, SPC_TM_HIGH); // Setting up ch0 trigger for HIGH levels

Register Value Direction Description

SPC_TRIG_ORMASK 40410 read/write Defines the events included within the trigger OR mask of the card.

SPC_TMASK_SOFTWARE 1h Sets the trigger mode to software, so that the recording/replay starts immediately.

Register Value Direction Description

SPC_TRIG_OUTPUT 40100 read/write Defines the data direction of the external trigger connector.

0 The trigger connector is not used and the line driver is disabled.

1 The trigger connector is used as an output that indicates a detected internal trigger event.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_SOFTWARE); // Internal software trigger mode is used
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_OUTPUT, 1); // And the trigger output is enabled

Register Value Direction Description

SPC_M2CMD 100 write Command register of the M2i/M3i/M4i/M4x/M2p series cards.

M2CMD_CARD_FORCETRIGGER 10h Forces a trigger event if the hardware is still waiting for a trigger event.

spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_FORCETRIGGER); // Force trigger is used.

Register Value Direction Description

SPC_M2CMD 100 write Command register of the M2i/M3i/M4i/M4x/M2p series cards.

M2CMD_CARD_ENABLETRIGGER 8h Enables the trigger engine. Any trigger event will now be recognized.

M2CMD_CARD_DISABLETRIGGER 20h Disables the trigger engine. No trigger events will be recognized, except force trigger.
(c) Spectrum GmbH 89

Delay trigger Trigger modes and appendant registers
The example shows, how to arm and disarm the card’s trigger engine properly:

Delay trigger
All of the Spectrum M2i series cards allow the user to program an additional trigger delay. As shown in the trigger overview section, this
delay is the last element in the trigger chain. Therefore the user does not have to care for the sources when programming the trigger delay.
The following table shows the related register and the possible values. A value of 0 disables the extra delay. The resulting delays (due to the
internal structure of the card) can be found in the technical data section of this manual.

The example shows, how to use the delay trigger command:

Using the delay trigger does not affect the ratio between pre trigger and post trigger recorded number of samples, but only shifts
the trigger event itself. For changing these values, please take a look in the relating chapter about „Acquisition Modes“.

Please note that the trigger delay setting is not used when synchronizing cards. If you need a trigger delay
on synchronized systems it is necessary to program posttrigger, segmentsize and memsize to fulfill this task.

External TTL trigger

Enabling the external trigger input(s) is done, if you choose one of the following external trigger modes. The dedicated register for that op-
eration is shown below.

Using the SPC_TM_PULSESTRETCH mode requires driver version V2.11 (or newer) and firmware version V18
(or newer). Please update your system to the newest versions to use this mode.

spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_ENABLETRIGGER); // Trigger engine is armed.
...
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_DISABLETRIGGER); // Trigger engine is disarmed.

Register Value Direction Description

SPC_TRIG_AVAILDELAY 40800 read Contains the maximum available delay as a decimal integer value.

SPC_TRIG_DELAY 40810 read/write Defines the delay for the detected trigger events.

0 No additional delay will be added. The resulting internal delay is mentioned in the technical data section.

0…65535 Defines the additional trigger delay in number of sample clocks.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_DELAY, 2000); // A detected trigger event will be
 // delayed for 2000 sample clocks.

Register Value Direction Description

SPC_TRIG_EXT_AVAILMODES 40500 read Bitmask, in which all bits of the below mentioned modes for the external trigger are set, if available.

SPC_TRIG_EXT0_MODE 40510 read/write Defines the external TTL trigger mode for the external SMB connector (A/D and D/A boards only).
On digital boards this defines the TTL trigger mode for the trigger input of the first module (Mod A).

SPC_TRIG_EXT1_MODE 40511 read/write Defines the external TTL trigger mode for the trigger input of the second module (digital boards only).

SPC_TRIG_XIO0_MODE 40560 read/write Defines the trigger mode for the extra TTL input 0. On plain cards this input is only available if the
option BaseXIO is installed. As part of the digitizerNETBOX this input is available as connector Trig-
ger B.

SPC_TRIG_XIO1_MODE 40561 read/write Defines the trigger mode for the extra TTL input 1. These trigger inputs are only available, when
option BaseXIO is installed.

SPC_TM_NONE 0h Input is not used for trigger detection. This is as with the trigger masks another possibility for disabling TTL sources.

SPC_TM_POS 1h Sets the trigger mode for external TTL trigger to detect positive edges.

SPC_TM_POS |
SPC_TM_PULSESTRETCH

10000001h Sets the trigger mode for external TTL trigger to stretch and detect HIGH pulses.

SPC_TM_NEG 2h Sets the trigger mode for external TTL trigger to detect negative edges

SPC_TM_NEG |
SPC_TM_PULSESTRETCH

10000002h Sets the trigger mode for external TTL trigger to stretch and detect LOW pulses.

SPC_TM_BOTH 4h Sets the trigger mode for external TTL trigger to detect positive and negative edges

SPC_TM_HIGH 8h Sets the trigger mode for external TTL trigger to detect HIGH levels.

SPC_TM_LOW 10h Sets the trigger mode for external TTL trigger to detect LOW levels.

SPC_TM_POS |
SPC_TM_PW_GREATER

4000001h Sets the trigger mode for external TTL trigger to detect HIGH pulses that are longer than a programmed pulsewidth.

SPC_TM_POS |
SPC_TM_PW_SMALLER

2000001h Sets the trigger mode for external TTL trigger to detect HIGH pulses that are shorter than a programmed pulsewidth.

SPC_TM_NEG |
SPC_TM_PW_GREATER

4000002h Sets the trigger mode for external TTL trigger to detect LOW pulses that are longer than a programmed pulsewidth.

SPC_TM_NEG |
SPC_TM_PW_SMALLER

2000002h Sets the trigger mode for external TTL trigger to detect LOW pulses that are shorter than a programmed pulsewidth.
90 M2i.20xx / M2i.20xx-exp Manual

Trigger modes and appendant registers External TTL trigger
For all external edge and level trigger modes, the OR mask must contain the corresponding input, as the following table shows:

If you choose an external trigger mode the SPC_TRIGGEROUT register will be overwritten and the trigger connector will be used as an input
any ways.

As the trigger connector is used as an input, you can decide whether the input is 50 Ohm terminated or not. If you enable the termination,
please make sure, that your trigger source is capable to deliver the needed current. Please check carefully whether the source is able to fulfil
the trigger input specification given in the technical data section. If termination is disabled, the input is at high impedance.

The following short example shows how to set up the board for external positive edge TTL trigger. The trigger input is 50 Ohm terminated.
The different modes for external TTL trigger are to be detailed described in the next few passages.

Edge and level triggers

Positive (rising) edge TTL trigger

This mode is for detecting the rising edges of an external TTL sig-
nal. The board will trigger on the first rising edge that is detected
after starting the board. The next triggerevent will then be detect-
ed, if the actual recording/replay has finished and the board is
armed and waiting for a trigger again.
This mode can be combined with the pulse strech feature to detect
pulses that are shorter than the sample period.

Example on how to set up the board for positive TTL trigger:

HIGH level TTL trigger

This mode is for detecting the HIGH levels of an external TTL sig-
nal. The board will trigger on the first HIGH level that is detected
after starting the board. If this condition is fulfilled when the board
is started, a trigger event will be detected.
The next triggerevent will then be detected, if the actual record-
ing/replay has finished and the board is armed and waiting for
a trigger again.

Register Value Direction Description

SPC_TRIG_ORMASK 40410 read/write Defines the OR mask for the different trigger sources.

SPC_TMASK_EXT0 2h Enable external trigger input for the OR mask

SPC_TMASK_XIO0 100h Enable extra TTL input 0 for the OR mask. On plain cards this input is only available if the option BaseXIO is installed.
As part of the digitizerNETBOX this input is available as connector Trigger B.

SPC_TMASK_XIO1 200h Enable extra TTL input 1 for the OR mask. These trigger inputs are only available, when option BaseXIO is installed.

Register Value Direction Description

SPC_TRIG_OUTPUT 40100 read/write Enables the trigger output if internal trigger is detected

X If external trigger modes are used, this register will have no effect.

Register Value Direction Description

SPC_TRIG_TERM 40110 read/write A „1“ sets the 50 Ohm termination, if the trigger connector is used as an input for external trigger sig-
nals. A „0“ sets the high impedance termination

spcm_dwSetParam_i32 (hDrv,SPC_TRIG_EXT0_MODE, SPC_TM_POS); // Setting up external TTL
 // trigger to detect rising edges
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_TERM, 1); // Enables the 50 Ohm input termination
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0); // and enable it within the OR mask

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board.

SPC_TM_POS 1h Sets the trigger mode for external TTL trigger to detect positive edges.

SPC_TM_POS |
SPC_TM_PULSESTRETCH

10000001h Sets the trigger mode for external TTL trigger to stretch and detect HIGH pulses. Not available on all cards, please
check SPC_TRIG_EXT_AVAILMODES register for availability.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE, SPC_TM_POS);// Set up ext. TTL trigger to detect positive edges

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board.
(c) Spectrum GmbH 91

External TTL trigger Trigger modes and appendant registers
Negative (falling) edge TTL trigger

This mode is for detecting the falling edges of an external TTL sig-
nal. The board will trigger on the first falling edge that is detected
after starting the board. The next triggerevent will then be detect-
ed, if the actual recording/replay has finished and the board is
armed and waiting for a trigger again.
This mode can be combined with the pulse strech feature to detect
pulses that are shorter than the sample period.

LOW level TTL trigger

This mode is for detecting the LOW levels of an external TTL sig-
nal. The board will trigger on the first LOW level that is detected
after starting the board. If this condition is fulfilled when the board
is started, a trigger event will be detected.
The next triggerevent will then be detected, if the actual record-
ing/replay has finished and the board is armed and waiting for
a trigger again.

Positive (rising) and negative (falling) edges TTL trigger

This mode is for detecting the rising and falling edges of an ex-
ternal TTL signal. The board will trigger on the first rising or falling
edge that is detected after starting the board. The next trigger-
event will then be detected, if the actual recording/replay has fin-
ished and the board is armed and waiting for a trigger again.

Pulsewidth triggers

TTL pulsewidth trigger for long HIGH pulses

This mode is for detecting HIGH pulses of an external TTL signal
that are longer than a programmed pulsewidth. If the pulse is
shorter than the programmed pulsewidth, no trigger will be de-
tected. The board will trigger on the first pulse matching the trig-
ger condition after starting the board. The next triggerevent will
then be detected, if the actual recording/replay has finished and
the board is armed and waiting for a trigger again.

SPC_TM_HIGH 8h Sets the trigger mode for external TTL trigger to detect HIGH levels.

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board.

SPC_TM_NEG 2h Sets the trigger mode for external TTL trigger to detect negative edges.

SPC_TM_NEG |
SPC_TM_PULSESTRETCH

10000002h Sets the trigger mode for external TTL trigger to stretch and detect LOW pulses. Not available on all cards, please
check SPC_TRIG_EXT_AVAILMODES register for availability.

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board.

SPC_TM_LOW 10h Sets the trigger mode for external TTL trigger to detect LOW levels.

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board.

SPC_TM_BOTH 4h Sets the trigger mode for external TTL trigger to detect positive and negative edges.

Register Value Direction set to Value

SPC_TRIG_EXT0_PULSEWIDTH 44210 read/write Sets the pulsewidth in samples. 2 up to 65535

SPC_TRIG_EXT0_MODE 40510 read/write (SPC_TM_POS | SPC_TM_PW_GREATER) 4000001h
92 M2i.20xx / M2i.20xx-exp Manual

Trigger modes and appendant registers Channel Trigger
TTL pulsewidth trigger for short HIGH pulses

This mode is for detecting HIGH pulses of an external TTL signal
that are shorter than a programmed pulsewidth. If the pulse is
longer than the programmed pulsewidth, no trigger will be detect-
ed. The board will trigger on the first pulse matching the trigger
condition after starting the board. The next triggerevent will then
be detected, if the actual recording/replay has finished and the
board is armed and waiting for a trigger again.

TTL pulsewidth trigger for long LOW pulses

This mode is for detecting LOW pulses of an external TTL signal
that are longer than a programmed pulsewidth. If the pulse is
shorter than the programmed pulsewidth, no trigger will be de-
tected. The board will trigger on the first pulse matching the trig-
ger condition after starting the board. The next triggerevent will
then be detected, if the actual recording/replay has finished and
the board is armed and waiting for a trigger again.

TTL pulsewidth trigger for short LOW pulses

This mode is for detecting LOW pulses of an external TTL signal
that are shorter than a programmed pulsewidth. If the pulse is
longer than the programmed pulsewidth, no trigger will be detect-
ed. The board will trigger on the first pulse matching the trigger
condition after starting the board. The next triggerevent will then
be detected, if the actual recording/replay has finished and the
board is armed and waiting for a trigger again.

The following example shows, how to setup the card for using external TTL pulse width trigger:

To find out what maximum pulsewidth (in samples) is available, please read out the register shown in the table below:

Channel Trigger

Overview of the channel trigger registers
The channel trigger modes are the most commonly used ones, similar to external equipment like oscilloscopes. The huge variety of different
channel trigger modes enable you to observe nearly any part of the analog signal. This chapter is about to explain the different modes in
detail. To enable the channel trigger, you have to set the channel triggermode register accordingly. Therefore you have to choose, if you

Register Value Direction set to Value

SPC_TRIG_EXT0_PULSEWIDTH 44210 read/write Sets the pulsewidth in samples. 2 up to 65535

SPC_TRIG_EXT0_MODE 40510 read/write (SPC_TM_POS | SPC_TM_PW_SMALLER) 2000001h

Register Value Direction set to Value

SPC_TRIG_EXT0_PULSEWIDTH 44210 read/write Sets the pulsewidth in samples. 2 up to 65535

SPC_TRIG_EXT0_MODE 40510 read/write (SPC_TM_NEG | SPC_TM_PW_GREATER) 4000002h

Register Value Direction set to Value

SPC_TRIG_EXT0_PULSEWIDTH 44210 read/write Sets the pulsewidth in samples. 2 up to 65535

SPC_TRIG_EXT0_MODE 40510 read/write (SPC_TM_NEG | SPC_TM_PW_SMALLER) 2000002h

spcm_dwSetParam_i32 (hDrv,SPC_TRIG_EXT0_MODE, SPC_TM_NEG | SPC_TM_PW_GREATER); // Setting up external TTL
 // trigger to detect low pulses
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_PULSEWIDTH , 50); // that are longer than 50 samples.
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0); // and enable it within the OR mask

Register Value Direction Description

SPC_TRIG_EXT_AVAILPULSEWIDTH 44200 read Contains the maximum possible value for the external trigger pulsewidth counter.
(c) Spectrum GmbH 93

Channel Trigger Trigger modes and appendant registers
either want only one channel to be the trigger source, or if you want to combine two or more channels to a logical OR or a logical AND
trigger.

For all channel trigger modes, the OR mask must contain the corresponding input channels (channel 0 taken as example here):.

The following table shows the according registers for the two general channel trigger modes. It lists the maximum of the available channel
mode registers for your card’s series. So it can be that you have less channels installed on your specific card and therefore have less valid
channel mode registers. If you try to set a channel, that is not installed on your specific card, a error message will be returned.

If you want to set up a two channel board to detect only a positive edge on channel 0, you would have to setup the board like the following
example. Both of the examples either for the single trigger source and the OR trigger mode do not include the necessary settings for the trigger
levels. These settings are detailed described in the following paragraphs.

If you want to set up a two channel board to detect a trigger event on either a positive edge on channel 0 or a negative edge on channel 1
you would have to set up your board as the following example shows.

Register Value Direction Description

SPC_TRIG_CH_ORMASK0 40460 read/write Defines the OR mask for the channel trigger sources.

SPC_TMASK0_CH0 1h Enables channel0 input for the channel OR mask

Register Value Direction Description

SPC_TRIG_CH_AVAILMODES 40600 read Bitmask, in which all bits of the below mentioned modes for the channel trigger are set, if available.

SPC_TRIG_CH0_MODE 40610 read/write Sets the trigger mode for channel 0. Channel 0 must be enabled in the channel OR/AND mask.

SPC_TRIG_CH1_MODE 40611 read/write Sets the trigger mode for channel 1. Channel 1 must be enabled in the channel OR/AND mask.

SPC_TRIG_CH2_MODE 40612 read/write Sets the trigger mode for channel 2. Channel 2 must be enabled in the channel OR/AND mask.

SPC_TRIG_CH3_MODE 40613 read/write Sets the trigger mode for channel 3. Channel 3 must be enabled in the channel OR/AND mask.

SPC_TM_NONE 00000000h Channel is not used for trigger detection. This is as with the trigger masks another possibility for disabling channels.

SPC_TM_POS 00000001h Enables the trigger detection for positive edges

SPC_TM_NEG 00000002h Enables the trigger detection for negative edges

SPC_TM_BOTH 00000004h Enables the trigger detection for positive and negative edges

SPC_TM_HIGH 00000008h Enables the trigger detection for HIGH levels

SPC_TM_LOW 00000010h Enables the trigger detection for LOW levels

SPC_TM_POS | SPC_TM_REARM 01000001h Trigger detection for positive edges on lebel 0. Trigger is armed when crossing level 1 to avoid false trigger on noise

SPC_TM_NEG | SPC_TM_REARM 01000002h Trigger detection for negative edges on lebel 1. Trigger is armed when crossing level 0 to avoid false trigger on noise

SPC_TM_POS | SPC_TM_PW_GREATER 04000001h Enables the pulsewidth trigger detection for long positive pulses

SPC_TM_NEG | SPC_TM_PW_GREATER 04000002h Enables the pulsewidth trigger detection for long negative pulses

SPC_TM_POS | SPC_TM_PW_SMALLER 02000001h Enables the pulsewidth trigger detection for short positive pulses

SPC_TM_NEG | SPC_TM_PW_SMALLER 02000002h Enables the pulsewidth trigger detection for short negative pulses

SPC_TM_STEEPPOS |
SPC_TM_PW_GREATER

04000800h Enables the steepness trigger detection for flat positive pulses

SPC_TM_STEEPNEG |
SPC_TM_PW_GREATER

04001000h Enables the steepness trigger detection for flat negative pulses

SPC_TM_STEEPPOS |
SPC_TM_PW_SMALLER

02000800h Enables the steepness trigger detection for steep positive pulses

SPC_TM_STEEPNEG |
SPC_TM_PW_SMALLER

02000800h Enables the steepness trigger detection for steep negative pulses

SPC_TM_WINENTER 00000020h Enables the window trigger for entering signals

SPC_TM_WINLEAVE 00000040h Enables the window trigger for leaving signals

SPC_TM_INWIN 00000080h Enables the window trigger for inner signals

SPC_TM_OUTSIDEWIN 00000100h Enables the window trigger for outer signals

SPC_TM_SPIKE 00000200h Enables the spike trigger mode. This mode is not availavle on all M2i boards.

SPC_TM_WINENTER |
SPC_TM_PW_GREATER

04000020h Enables the window trigger for long inner signals

SPC_TM_WINLEAVE |
SPC_TM_PW_GREATER

04000040h Enables the window trigger for long outer signals

SPC_TM_WINENTER |
SPC_TM_PW_SMALLER

02000020h Enables the window trigger for short inner signals

SPC_TM_WINLEAVE |
SPC_TM_PW_SMALLER

02000040h Enables the window trigger for short outer signals

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_NONE); // disable software trigger
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH_ORMASK0, SPC_TMASK0_CH0); // Enable channel 0 in the OR mask
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH0_MODE, SPC_TM_POS); // Set triggermode of channel 0 to positive edge

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_NONE); // disable software trigger
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH_ORMASK0, SPC_TMASK0_CH0 | SPC_TMASK0_CH1); // Enable channel 0 + 1
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH0_MODE, SPC_TM_POS); // Set triggermode of channel 0 to positive edge
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH1_MODE, SPC_TM_NEG); // Set triggermode of channel 1 to negative edge
94 M2i.20xx / M2i.20xx-exp Manual

Trigger modes and appendant registers Channel Trigger
Channel trigger level
All of the channel trigger modes listed above require at least one trigger level to be set (except SPC_TM_NONE of course). Some modes like
the window triggers require even two levels (upper and lower level) to be set.

After the data has been sampled, the upper N data bits are compared with the N bits of the trigger levels. The following table shows the level
registers and the possible values they can be set to for your specific card.

As the trigger levels are compared to the digitized data, the trigger levels depend on the channels input range. For every input range available
to your board there is a corresponding range of trigger levels. On the different input ranges the possible stepsize for the trigger levels differs
as well as the maximum and minimum values. The table further below gives you the absolute trigger levels for your specific card series.

 8 bit resolution for the trigger levels:

 Trigger level representation depending on selected input range

The following example shows, how to set up a one channel board to trigger on channel 0 with rising edge. It is assumed, that the input range
of channel 0 is set to the the ±200 mV range. The decimal value for SPC_TRIG_CH0_LEVEL0 corresponds then with 12.5 mV, which is the
resulting trigger level.

Reading out the number of possible trigger levels
The Spectrum driver also contains a register that holds the value of the maximum possible different trigger levels considering the above men-
tioned exclusion of the most negative possible value. This is useful, as new drivers can also be used with older hardware versions, because
you can check the trigger resolution during run time. The register is shown in the following table:

In case of a board that uses 8 bits for trigger detection the returned value would
be 127, as either the zero and 127 positive and negative values are possi-
ble.The resulting trigger step width in mV can easily be calculated from the re-
turned value. It is assumed that you know the actually selected input range.

Register Value Direction Description Range

SPC_TRIG_CH0_LEVEL0 42200 read/write Trigger level 0 channel 0: main trigger level / upper level if 2 levels used -127 to +127

SPC_TRIG_CH1_LEVEL0 42201 read/write Trigger level 0 channel 1: main trigger level / upper level if 2 levels used -127 to +127

SPC_TRIG_CH2_LEVEL0 42202 read/write Trigger level 0 channel 2: main trigger level / upper level if 2 levels used -127 to +127

SPC_TRIG_CH3_LEVEL0 42203 read/write Trigger level 0 channel 3: main trigger level / upper level if 2 levels used -127 to +127

SPC_TRIG_CH0_LEVEL1 42300 read/write Trigger level 1 channel 0: auxiliary trigger level / lower level if 2 levels used -127 to +127

SPC_TRIG_CH1_LEVEL1 42301 read/write Trigger level 1 channel 1: auxiliary trigger level / lower level if 2 levels used -127 to +127

SPC_TRIG_CH2_LEVEL1 42302 read/write Trigger level 1 channel 2: auxiliary trigger level / lower level if 2 levels used -127 to +127

SPC_TRIG_CH3_LEVEL1 42303 read/write Trigger level 1 channel 3: auxiliary trigger level / lower level if 2 levels used -127 to +127

Input ranges

Triggerlevel ±50 mV ±100 mV ±200 mV ±500 mV ±1 V ±2 V ±5 V

127 49.6 mV 99.2 mV 198.4 mV 496.1 mV 992.2 mV 1984.4 mV 4960.9 mV

126 49.2 mV 98.4 mV 196.9 mV 492.2 mV 984.4 mV 1968.8 mV 4921.9 mV

…

64 25.0 mV 50.0 mV 100.0 mV 250.0 mV 500.0 mV 1000.0 mV 2500.0 mV

…

2 0.8 mV 1.6 mV 3.1 mV 7.8 mV 15.6 mV 31.3 mV 78.1 mV

1 0.4 mV 0.8 mV 1.6 mV 3.9 mV 7.8 mV 15.6 mV 39.1 mV

0 0.0 mV 0.0 mV 0.0 mV 0.0 mV 0.0 mV 0.0 mV 0.0 mV

-1 -0.4 mV -0.8 mV -1.6 mV -3.9 mV -7.8 mV -15.6 mV -39.1 mV

-2 -0.8 mV -1.6 mV -3.1 mV -7.8 mV -15.6 mV -31.3 mV -78.1 mV

…

-64 -25.0 mV -50.0 mV -100.0 mV -250.0 mV -500.0 mV -1000.0 mV -2500.0 mV

…

-126 -49.2 mV -98.4 mV -196.9 mV -492.2 mV -984.4 mV -1968.8 mV -4921.9 mV

-127 -49.6 mV -99.2 mV -198.4 mV -496.1 mV -992.2 mV -1984.4 mV -4960.0 mV

Stepsize 0.4 mV 0.8 mV 1.6 mV 3.9 mV 7.8 mV 15.6 mV 39.1 mV

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_NONE); // disable default software trigger
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH0_MODE, SPC_TM_POS); // Setting up channel trig (rising edge)
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH0_LEVEL0, 40); // Sets triggerlevel to 62.5 mV
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH_ORMASK0, SPC_TMASK0_CH0); // and enable it within the OR mask

Register Value Direction Description

SPC_READTRGLVLCOUNT 2500 r Contains the number of different possible trigger levels meaning ± of the value.

Trigger step width
Input Rangemax

Number of trigger levels 1+
---=
(c) Spectrum GmbH 95

Channel Trigger Trigger modes and appendant registers
To give you an example on how to use this formula we assume, that the
±1.0 V input range is selected and the board uses 8 bits for trigger detection.
The result would be 7.81 mV, which is the step width for your type of board
within the actually chosen input range.

Pulsewidth counter
Some of the trigger modes need an additional pulsewidth counter that is measuring the size of a pulse. All the trigger modes running with
pulse width counters are able to detect a trigger event that is shorter than the programmed pulsewidth or that is longer than the programmed
pulsewidth. Please see the detailed trigger mode description for further details.

To find out what maximum pulsewidth (in samples) is available for all the channel trigger modes it is possible to read out the maximum pro-
grammable pulsewidth counter using the register shown in the table below:

Each channel trigger has it’s own pulsewidth register:

Please keep in mind that your card only has one channel pulsewidth counter available in hardware. It is not
possible to use more than one channel trigger source when activating a pulsewidth trigger mode. The driver
will then report an error.

Detailed description of the channel trigger modes
For all channel trigger modes, the OR mask must contain the corresponding input channels (channel 0 taken as example here):.

Channel trigger on positive edge

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from lower values to higher values (ris-
ing edge) then the triggerevent will be detected.

These edge triggered channel trigger modes correspond to
the trigger possibilities of usual oscilloscopes.

Register Value Direction Description

SPC_TRIG_CH_AVAILPULSEWIDTH 44100 r Contains the maximum possible value, for the channel trigger pulsewidth counter.

Register Value Direction Description Range

SPC_TRIG_CH0_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples for ch 0 trigger modes using pulsewidth counters 2 to 65535

SPC_TRIG_CH1_PULSEWIDTH 44102 read/write Sets the pulsewidth in samples for ch 1 trigger modes using pulsewidth counters 2 to 65535

SPC_TRIG_CH2_PULSEWIDTH 44103 read/write Sets the pulsewidth in samples for ch 2 trigger modes using pulsewidth counters 2 to 65535

SPC_TRIG_CH3_PULSEWIDTH 44104 read/write Sets the pulsewidth in samples for ch 3 trigger modes using pulsewidth counters 2 to 65535

Register Value Direction Description

SPC_TRIG_CH_ORMASK0 40460 read/write Defines the OR mask for the channel trigger sources.

SPC_TMASK0_CH0 1h Enables channel0 input for the channel OR mask

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_POS 1h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

Trigger step width +1000 mV
127 1+

---=
96 M2i.20xx / M2i.20xx-exp Manual

Trigger modes and appendant registers Channel Trigger
Channel trigger on negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from higher values to lower values (fall-
ing edge) then the triggerevent will be detected.

These edge triggered channel trigger modes correspond to
the trigger possibilities of usual oscilloscopes.

Channel trigger on positive and negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal (either rising or falling edge) the trig-
gerevent will be detected.

These edge triggered channel trigger modes correspond to
the trigger possibilities of usual oscilloscopes.

Channel re-arm trigger on positive edge

The analog input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from
lower to higher values, the trigger engine is armed and
waiting for trigger. If the programmed trigger level is
crossed by the channel’s signal from lower values to higher
values (rising edge) then the triggerevent will be detected
and the trigger engine will be disarmed. A new trigger
event is only detected if the trigger engine is armed again.

The re-arm trigger modes can be used to prevent the board
from triggering on wrong edges in noisy signals.

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_NEG 2h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_BOTH 4h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_POS | SPC_TM_REARM 01000001h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Defines the re-arm level relatively to the channels’s input range board dependant
(c) Spectrum GmbH 97

Channel Trigger Trigger modes and appendant registers
Channel re-arm trigger on negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from
higher to lower values, the trigger engine is armed and
waiting for trigger. If the programmed trigger level is
crossed by the channel’s signal from higher values to lower
values (falling edge) then the triggerevent will be detected
and the trigger engine will be disarmed. A new trigger
event is only detected, if the trigger engine is armed again.

The re-arm trigger modes can be used to prevent the board
from triggering on wrong edges in noisy signals.

Channel pulsewidth trigger for long positive pulses

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from lower to higher values (rising
edge) the pulsewidth counter is started. If the signal crosses
the trigger level again in the opposite direction within the
the programmed pulsewidth time, no trigger will be detect-
ed. If the pulsewidth counter reaches the programmed
amount of samples, without the signal crossing the trigger
level in the opposite direction, the triggerevent will be de-
tected.

The pulsewidth trigger modes for long pulses can be used
to prevent the board from triggering on wrong (short) edges
in noisy signals.

Channel pulsewidth trigger for long negative pulses

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from higher to lower values (falling
edge) the pulsewidth counter is started. If the signal crosses
the trigger level again in the opposite direction within the
the programmed pulsewidth time, no trigger will be detect-
ed. If the pulsewidth counter reaches the programmed
amount of samples, without the signal crossing the trigger
level in the opposite direction, the triggerevent will be de-
tected.

The pulsewidth trigger modes for long pulses can be used
to prevent the board from triggering on wrong (short) edges
in noisy signals.

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_NEG | SPC_TM_REARM 01000002h

SPC_TRIG_CH0_LEVEL0 42200 read/write Defines the re-arm level relatively to the channels’s input range board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_POS | SPC_TM_PW_GREATER 04000001h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_NEG | SPC_TM_PW_GREATER 04000002h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535
98 M2i.20xx / M2i.20xx-exp Manual

Trigger modes and appendant registers Channel Trigger
Channel pulsewidth trigger for short positive pulses

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from lower to higher values (rising
edge) the pulsewidth counter is started. If the pulsewidth
counter reaches the programmed amount of samples, no
trigger will be detected.

If the signal does cross the trigger level again within the the
programmed pulsewidth time, a triggerevent will be detect-
ed.

Channel pulsewidth trigger for short negative pulses

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from higher to lower values (falling
edge) the pulsewidth counter is started. If the pulsewidth
counter reaches the programmed amount of samples, no
trigger will be detected.
If the signal does cross the trigger level again within the the
programmed pulsewidth time, a triggerevent will be detect-
ed.

Channel window trigger for entering signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow. Every time the signal enters the window from the out-
side, a triggerevent will be detected.

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_POS | SPC_TM_PW_SMALLER 02000001h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_NEG | SPC_TM_PW_SMALLER 02000002h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_WINENTER 00000020h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant
(c) Spectrum GmbH 99

Channel Trigger Trigger modes and appendant registers
Channel window trigger for leaving signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow. Every time the signal leaves the window from the in-
side, a triggerevent will be detected.

Channel window trigger for long inner signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower levels define a win-
dow. Every time the signal enters the window from the out-
side, the pulsewidth counter is started. If the signal leaves
the window before the pulsewidth counter has stopped, no
trigger will be detected.

If the pulsewidth counter stops and the signal is still inside
the window, the triggerevent will be detected.

Channel window trigger for long outer signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower levels define a win-
dow. Every time the signal leaves the window from the in-
side, the pulsewidth counter is started. If the signal enters
the window before the pulsewidth counter has stopped, no
trigger will be detected.

If the pulsewidth counter stops and the signal is still outside
the window, the triggerevent will be detected.

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_WINLEAVE 00000040h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_WINENTER | SPC_TM_PW_GREATER 04000020h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_WINLEAVE | SPC_TM_PW_GREATER 04000040h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535
100 M2i.20xx / M2i.20xx-exp Manual

Trigger modes and appendant registers Channel Trigger
Channel window trigger for short inner signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower levels define a win-
dow. Every time the signal enters the window from the out-
side, the pulsewidth counter is started. If the pulsewidth
counter stops and the signal is still inside the window, no
trigger will be detected.

If the signal leaves the window before the pulsewidth
counter has stopped, the triggerevent will be detected.

Channel window trigger for short outer signals

The analog input is continuously sampled with the selected
sampling rate. The upper and the lower levels define a win-
dow. Every time the signal leaves the window from the in-
side, the pulsewidth counter is started. If the pulsewidth
counter stops and the signal is still outside the window, no
trigger will be detected.

If the signal enters the window before the pulsewidth
counter has stopped, the trigger event will be detected.

Channel steepness trigger for flat positive pulses

The analog input is continuously sampled with the selected
sample rate. If the programmed lower level is crossed by
the channel’s signal from lower to higher values (rising
edge) the pulsewidth counter is started. If the signal does
cross the upper level within the the programmed pulsewidth
time, no trigger will be detected.

If the pulsewidth counter reaches the programmed amount
of samples a triggerevent will be detected.

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_WINENTER | SPC_TM_PW_SMALLER 02000020h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_WINLEAVE | SPC_TM_PW_SMALLER 02000040h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_STEEPPOS | SPC_TM_PW_GREATER 04000800h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535
(c) Spectrum GmbH 101

Channel Trigger Trigger modes and appendant registers
Channel steepness trigger for flat negative pulses

The analog input is continuously sampled with the selected
sample rate. If the programmed upper level is crossed by
the channel’s signal from higher to lower values (falling
edge) the pulsewidth counter is started. If the signal does
cross the lower level within the the programmed pulsewidth
time, no trigger will be detected.

If the pulsewidth counter reaches the programmed amount
of samples a triggerevent will be detected.

Channel steepness trigger for steep positive pulses

The analog input is continuously sampled with the selected
sample rate. If the programmed lower level is crossed by
the channel’s signal from lower to higher values (rising
edge) the pulsewidth counter is started. If the pulsewidth
counter reaches the programmed amount of samples with-
out the signal crossing the higher level, no trigger will be
detected.

If the signal does cross the upper level within the the pro-
grammed pulsewidth time, a triggerevent will be detected.

Channel steepness trigger for steep negative pulses

The analog input is continuously sampled with the selected
sample rate. If the programmed upper level is crossed by
the channel’s signal from higher to lower values (falling
edge) the pulsewidth counter is started. If the pulsewidth
counter reaches the programmed amount of samples with-
out the signal crossing the lower level, no trigger will be de-
tected.

If the signal does cross the lower level within the the pro-
grammed pulsewidth time, a triggerevent will be detected.

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_STEEPNEG | SPC_TM_PW_GREATER 04001000h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_STEEPPOS | SPC_TM_PW_SMALLER 02000800h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_STEEPNEG | SPC_TM_PW_SMALLER 02001000h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535
102 M2i.20xx / M2i.20xx-exp Manual

Mode Multiple Recording Recording modes
Mode Multiple Recording
The Multiple Recording mode allows the acquisition of data
blocks with multiple trigger events without restarting the hard-
ware.

The on-board memory will be divided into several segments of
the same size. Each segment will be filled with data when a trig-
ger event occurs (acquisition mode).

As this mode is totally controlled in hardware there is a very
small re-arm time from end of one segment until the trigger de-
tection is enabled again. You’ll find that re-arm time in the tech-
nical data section of this manual.

The following table shows the register for defining the structure of the segments to be recorded with each trigger event.

Each segment in acquisition mode can consist of pretrigger and/or posttrigger samples. The user always has to set the total segment size
and the posttrigger, while the pretrigger is calculated within the driver with the formula: [pretrigger] = [segment size] - [posttrigger].

When using Multiple Recording the maximum pretrigger is limited depending on the number of active chan-
nels. When the calculated value exceeds that limit, the driver will return the error ERR_PRETRIGGERLEN.
Please have a look at the table further below to see the maximum pretrigger length that is possible.

Recording modes

Standard Mode
With every detected trigger event one data block is filled with data. The length of one multiple recording segment is set by the value of the
segment size register SPC_SEGMENTSIZE. The total amount of samples to be recorded is defined by the memsize register.
Memsize must be set to a a multiple of the segment size. The table below shows the register for enabling Multiple Recording. For detailed
information on how to setup and start the standard acquisition mode please refer to the according chapter earlier in this manual.

The total number of samples to be recorded to the on-board memory in Standard Mode is defined by the SPC_MEMSIZE register.

FIFO Mode
The Multiple Recording in FIFO Mode is similar to the Multiple Recording in Standard Mode. In contrast to the standard mode it is not nec-
essary to program the number of samples to be recorded. The acquisition is running until the user stops it. The data is read block by block
by the driver as described under FIFO single mode example earlier in this manual. These blocks are online available for further data process-
ing by the user program. This mode significantly reduces the amount of data to be transferred on the PCI bus as gaps of no interest do not
have to be transferred. This enables you to use faster sample rates than you would be able to in FIFO mode without Multiple Recording.
The advantage of Multiple Recording in FIFO mode is that you can stream data online to the host system. You can make real-time data pro-
cessing or store a huge amount of data to the hard disk. The table below shows the dedicated register for enabling Multiple Recording. For
detailed information how to setup and start the board in FIFO mode please refer to the according chapter earlier in this manual.

The number of segments to be recorded must be set separately with the register shown in the following table:

Register Value Direction Description

SPC_POSTTRIGGER 10100 read/write Acquisition only: defines the number of samples to be recorded per channel after the trigger event.

SPC_SEGMENTSIZE 10010 read/write Size of one Multiple Recording segment: the total number of samples to be recorded per channel
after detection of one trigger event including the time recorded before the trigger (pre trigger).

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode

SPC_REC_STD_MULTI 2 Enables Multiple Recording for standard acquisition.

Register Value Direction Description

SPC_MEMSIZE 10000 read/write Defines the total number of samples to be recorded per channel.

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode

SPC_REC_FIFO_MULTI 32 Enables Multiple Recording for FIFO acquisition.

Register Value Direction Description

SPC_LOOPS 10020 read/write Defines the number of segments to be recorded

0 Recording will be infinite until the user stops it.

1 … [4G - 1] Defines the total segments to be recorded.
(c) Spectrum GmbH 103

Limits of pre trigger, post trigger, memory size Mode Multiple Recording

Limits of pre trigger, post trigger, memory size
The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind that each sample needs 1 byte of memory to be stored. Minimum memory size as well as minimum and maximum post trigger
limits are independent of the activated channels or the installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account.
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase
according to the complete installed memory

Running the card with a sampling rate that is above 100 MS/s switches the cards internally to an interlace mode. In this mode two ADCs
are running in parallel using a 180° shifted signal. Due to the fact that two ADCs are running this mode has a little different limitations and
is listed separately in the following table.

All figures listed here are given in samples. An entry of [8k - 16] means [8 kSamples - 16] = [8192 - 16] = 8176 samples.

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS

Min Max Step Min Max Step Min Max Step Min Max Step Min Max Step
1 channel Standard Single 8 Mem 4 defined by post trigger 4 8G - 4 4 not used not used

Standard Multi/ABA 8 Mem 4 4 16k - 32 4 4 Mem/2-4 4 8 Mem/2 4 not used
Standard Gate 8 Mem 4 4 16k - 32 4 4 Mem-4 4 not used not used
FIFO Single not used 4 16k - 32 4 not used 8 8G - 4 4 0 (∞) 4G - 1 1
FIFO Multi/ABA not used 4 16k - 32 4 4 8G - 4 4 8 Mem/2 4 0 (∞) 4G - 1 1
FIFO Gate not used 4 16k - 32 4 4 8G - 4 4 not used 0 (∞) 4G - 1 1

1 channel Standard Single 16 Mem 8 defined by post trigger 8 8G - 8 8 not used not used
interlace Standard Multi/ABA 16 Mem 8 8 16k - 32 8 8 Mem/2-4 8 16 Mem/2 8 not used

Standard Gate 16 Mem 8 8 16k - 32 8 8 Mem-8 8 not used not used
FIFO Single not used 8 16k - 32 8 not used 16 8G - 4 8 0 (∞) 4G - 1 1
FIFO Multi/ABA not used 8 16k - 32 8 8 8G - 8 8 16 Mem/2 8 0 (∞) 4G - 1 1
FIFO Gate not used 8 16k - 32 8 8 8G - 8 8 not used 0 (∞) 4G - 1 1

2 channels Standard Single 8 Mem/2 4 defined by post trigger 4 8G - 4 4 not used not used
Standard Multi/ABA 8 Mem/2 4 4 8k - 16 4 4 Mem/4-4 4 8 Mem/4 4 not used
Standard Gate 8 Mem/2 4 4 8k - 16 4 4 Mem/2-4 4 not used not used
FIFO Single not used 4 8k - 16 4 not used 8 8G - 4 4 0 (∞) 4G - 1 1
FIFO Multi/ABA not used 4 8k - 16 4 4 8G - 4 4 8 Mem/4 4 0 (∞) 4G - 1 1
FIFO Gate not used 4 8k - 16 4 4 8G - 4 4 not used 0 (∞) 4G - 1 1

2 channels Standard Single 16 Mem/2 8 defined by post trigger 8 8G - 8 8 not used not used
interlace Standard Multi/ABA 16 Mem/2 8 8 8k - 16 8 8 Mem/4-8 8 16 Mem/4 8 not used

Standard Gate 16 Mem/2 8 8 8k - 16 8 8 Mem/2-8 8 not used not used
FIFO Single not used 8 8k - 16 8 not used 16 8G - 4 8 0 (∞) 4G - 1 1
FIFO Multi/ABA not used 8 8k - 16 8 8 8G - 8 8 16 Mem/4 8 0 (∞) 4G - 1 1
FIFO Gate not used 8 8k - 16 8 8 8G - 8 8 not used 0 (∞) 4G - 1 1

4 channels Standard Single 8 Mem/4 4 defined by post trigger 4 8G - 4 4 not used not used
Standard Multi/ABA 8 Mem/4 4 4 4k - 8 4 4 Mem/8-4 4 8 Mem/8 4 not used
Standard Gate 8 Mem/4 4 4 4k - 8 4 4 Mem/4-4 4 not used not used
FIFO Single not used 4 4k - 8 4 not used 8 8G - 4 4 0 (∞) 4G - 1 1
FIFO Multi/ABA not used 4 4k - 8 4 4 8G - 4 4 8 Mem/8 4 0 (∞) 4G - 1 1
FIFO Gate not used 4 4k - 8 4 4 8G - 4 4 not used 0 (∞) 4G - 1 1

Installed Memory
64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample 4 GSample

Mem 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample 4 GSample
Mem / 2 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample
Mem / 4 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample
Mem / 8 8 MSample 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample
104 M2i.20xx / M2i.20xx-exp Manual

Mode Multiple Recording Trigger Modes
Multiple Recording and Timestamps
Multiple Recording is well matching with the timestamp option. If timestamp
recording is activated each trigger event and therefore each Multiple Re-
cording segment will get timestamped as shown in the drawing on the right.

Please keep in mind that the trigger events are timestamped, not the begin-
ning of the acquisition. The first sample that is available is at the time position
of [Timestamp - Pretrigger].

The programming details of the timestamp option is explained in an extra
chapter.

Trigger Modes
When using Multiple Recording all of the card’s trigger modes can be used except the software trigger. For detailed information on the avail-
able trigger modes, please take a look at the relating chapter earlier in this manual.

Trigger Counter
The number of acquired trigger events in Multiple Recording mode is counted in hardware and can be read out while the acquisition is running
or after the acquisition has finished. The trigger events are counted both in standard mode as well as in FIFO mode.

The trigger counter feature needs at least driver version V2.17 and firmware version V20 (M2i series), V10
(M3i series), V6 (M4i/M4x series) or V1 (M2p series). Please update the driver and the card firmware to these
versions to use this feature. Trying to use this feature without the proper firmware version will issue a driver
error.

Using the trigger counter information one can determine how many Multiple Recording segments have been acquired and can perform a
memory flush by issuing Force trigger commands to read out all data. This is helpful if the number of trigger events is not known at the start
of the acquisition. In that case one will do the following steps:

• Program the maximum number of segments that one expects or use the FIFO mode with unlimited segments
• Set a timeout to be sure that there are no more trigger events acquired. Alternatively one can manually proceed as soon as it is clear from

the application that all trigger events have been acquired
• Read out the number of acquired trigger segments
• Issue a number of Force Trigger commands to fill the complete memory (standard mode) or to transfer the last FIFO block that contains

valid data segments
• Use the trigger counter value to split the acquired data into valid data with a real trigger event and invalid data with a force trigger event.

Trigger Output
When using internal trigger recognition and enabling the trigger output there is a trigger pulse generated for each acquired segment. The
trigger output goes to high level after recoginition of the internal trigger event and goes back again to low level if the acquisition of this
segment has been finished. To give compatibility to older hardware and to give maxmimum flexibility there is a special register to change
that behaviour.

Register Value Direction Description

SPC_TRIGGERCOUNTER 200905 read Returns the number of trigger events that has been acquired since the acquisition start. The internal
trigger counter has 48 bits. It is therefore necessary to read out the trigger counter value with 64 bit
access or 2 x 32 bit access if the number of trigger events exceed the 32 bit range.

Register Value Direction Description

SPC_LONGTRIG_OUTPUT 200830 read/write Defines the trigger pulse output as explained below

0 (default) The trigger pulse is generated on every trigger event and stays high until acquisition of segment has finished

1 The trigger pulse is generated on the first trigger event and stays high until the end of the complete acquisition
(c) Spectrum GmbH 105

Programming examples Mode Multiple Recording
Programming examples
The following example shows how to set up the card for Multiple Recording in standard mode.

The following example shows how to set up the card for Multiple Recording in FIFO mode.

spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_MULTI); // Enables Standard Multiple Recording

spcm_dwSetParam_i64 (hDrv, SPC_SEGMENTSIZE, 1024); // Set the segment size to 1024 samples
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, 768); // Set the posttrigger to 768 samples and therefore
 // the pretrigger will be 256 samples
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, 4096); // Set the total memsize for recording to 4096 samples
 // so that actually four segments will be recorded

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE, SPC_TM_POS); // Set triggermode to ext. TTL mode (rising edge)
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0); // and enable it within the trigger OR-mask

spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_FIFO_MULTI); // Enables FIFO Multiple Recording

spcm_dwSetParam_i64 (hDrv, SPC_SEGMENTSIZE, 2048); // Set the segment size to 2048 samples
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, 1920); // Set the posttrigger to 1920 samples and therefore
 // the pretrigger will be 128 samples
spcm_dwSetParam_i64 (hDrv, SPC_LOOPS 256); // 256 segments will be recorded

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE, SPC_TM_NEG); // Set triggermode to ext. TTL mode (falling edge)
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0); // and enable it within the trigger OR-mask
106 M2i.20xx / M2i.20xx-exp Manual

Mode Gated Sampling Acquisition modes
Mode Gated Sampling
The Gated Sampling mode allows the data acquisition controlled by an
external or an internal gate signal. Data will only be recorded if the pro-
grammed gate condition is true. When using the Gated Sampling acqui-
sition mode it is in addition also possible to program a pre- and/or
posttrigger for recording samples prior to and/or after the valid gate.

This chapter will explain all the necessary software register to set up the
card for Gated Sampling properly.

The section on the allowed trigger modes deals with detailed description
on the different trigger events and the resulting gates.

When using Gated Sampling the maximum pretrigger is limited as shown in the technical data section. When the programmed value
exceeds that limit, the driver will return the error ERR_PRETRIGGERLEN.

Acquisition modes

Standard Mode
Data will be recorded as long as the gate signal fulfills the programmed gate condition. At the end of the gate interval the recording will be
stopped and the card will pause until another gates signal appears. If the total amount of data to acquire has been reached, the card stops
immediately. For that reason the last gate segment is ended by the expiring memory size counter and not by the gate end signal. The total
amount of samples to be recorded can be defined by the memsize register. The table below shows the register for enabling Gated Sampling.
For detailed information on how to setup and start the standard acquisition mode please refer to the according chapter earlier in this manual.

The total number of samples to be recorded to the on-board memory in Standard Mode is defined by the SPC_MEMSIZE register.

FIFO Mode
The Gated Sampling in FIFO Mode is similar to the Gated Sampling in Standard Mode. In contrast to the Standard Mode you cannot program
a certain total amount of samples to be recorded, but two other end conditions can be set instead. The acquisition can either run until the
user stops it by software (infinite recording), or until a programmed number of gates has been recorded. The data is read continuously by
the driver. This data is online available for further data processing by the user program. The advantage of Gated Sampling in FIFO mode is
that you can stream data online to the host system with a lower average data rate than in conventional FIFO mode without Gated Sampling.
You can make real-time data processing or store a huge amount of data to the hard disk. The table below shows the dedicated register for
enabling Gated Sampling in FIFO mode. For detailed information how to setup and start the card in FIFO mode please refer to the according
chapter earlier in this manual.

The number of gates to be recorded must be set separately with the register shown in the following table:

Register Value Direction Description

SPC_PRETRIGGER 10030 read/write Defines the number of samples to be recorded per channel prior to the gate start.

SPC_POSTTRIGGER 10100 read/write Defines the number of samples to be recorded per channel after the gate end.

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode

SPC_REC_STD_GATE 4 Enables Gated Sampling for standard acquisition.

Register Value Direction Description

SPC_MEMSIZE 10000 read/write Defines the total number of samples to be recorded per channel.

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode

SPC_REC_FIFO_GATE 64 Enables Gated Sampling for FIFO acquisition.

Register Value Direction Description

SPC_LOOPS 10020 read/write Defines the number of gates to be recorded

0 Recording will be infinite until the user stops it.

1 … [4G - 1] Defines the total number of gates to be recorded.
(c) Spectrum GmbH 107

Limits of pre trigger, post trigger, memory size Mode Gated Sampling
Limits of pre trigger, post trigger, memory size
The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind that each sample needs 1 byte of memory to be stored. Minimum memory size as well as minimum and maximum post trigger
limits are independent of the activated channels or the installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account.
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase
according to the complete installed memory

Running the card with a sampling rate that is above 100 MS/s switches the cards internally to an interlace mode. In this mode two ADCs
are running in parallel using a 180° shifted signal. Due to the fact that two ADCs are running this mode has a little different limitations and
is listed separately in the following table.

All figures listed here are given in samples. An entry of [8k - 16] means [8 kSamples - 16] = [8192 - 16] = 8176 samples.

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

Gate-End Alignment
Due to the structure of the on-board memory, the length of a gate will be rounded up until the next card specific alignment:

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS

Min Max Step Min Max Step Min Max Step Min Max Step Min Max Step
1 channel Standard Single 8 Mem 4 defined by post trigger 4 8G - 4 4 not used not used

Standard Multi/ABA 8 Mem 4 4 16k - 32 4 4 Mem/2-4 4 8 Mem/2 4 not used
Standard Gate 8 Mem 4 4 16k - 32 4 4 Mem-4 4 not used not used
FIFO Single not used 4 16k - 32 4 not used 8 8G - 4 4 0 (∞) 4G - 1 1
FIFO Multi/ABA not used 4 16k - 32 4 4 8G - 4 4 8 Mem/2 4 0 (∞) 4G - 1 1
FIFO Gate not used 4 16k - 32 4 4 8G - 4 4 not used 0 (∞) 4G - 1 1

1 channel Standard Single 16 Mem 8 defined by post trigger 8 8G - 8 8 not used not used
interlace Standard Multi/ABA 16 Mem 8 8 16k - 32 8 8 Mem/2-4 8 16 Mem/2 8 not used

Standard Gate 16 Mem 8 8 16k - 32 8 8 Mem-8 8 not used not used
FIFO Single not used 8 16k - 32 8 not used 16 8G - 4 8 0 (∞) 4G - 1 1
FIFO Multi/ABA not used 8 16k - 32 8 8 8G - 8 8 16 Mem/2 8 0 (∞) 4G - 1 1
FIFO Gate not used 8 16k - 32 8 8 8G - 8 8 not used 0 (∞) 4G - 1 1

2 channels Standard Single 8 Mem/2 4 defined by post trigger 4 8G - 4 4 not used not used
Standard Multi/ABA 8 Mem/2 4 4 8k - 16 4 4 Mem/4-4 4 8 Mem/4 4 not used
Standard Gate 8 Mem/2 4 4 8k - 16 4 4 Mem/2-4 4 not used not used
FIFO Single not used 4 8k - 16 4 not used 8 8G - 4 4 0 (∞) 4G - 1 1
FIFO Multi/ABA not used 4 8k - 16 4 4 8G - 4 4 8 Mem/4 4 0 (∞) 4G - 1 1
FIFO Gate not used 4 8k - 16 4 4 8G - 4 4 not used 0 (∞) 4G - 1 1

2 channels Standard Single 16 Mem/2 8 defined by post trigger 8 8G - 8 8 not used not used
interlace Standard Multi/ABA 16 Mem/2 8 8 8k - 16 8 8 Mem/4-8 8 16 Mem/4 8 not used

Standard Gate 16 Mem/2 8 8 8k - 16 8 8 Mem/2-8 8 not used not used
FIFO Single not used 8 8k - 16 8 not used 16 8G - 4 8 0 (∞) 4G - 1 1
FIFO Multi/ABA not used 8 8k - 16 8 8 8G - 8 8 16 Mem/4 8 0 (∞) 4G - 1 1
FIFO Gate not used 8 8k - 16 8 8 8G - 8 8 not used 0 (∞) 4G - 1 1

4 channels Standard Single 8 Mem/4 4 defined by post trigger 4 8G - 4 4 not used not used
Standard Multi/ABA 8 Mem/4 4 4 4k - 8 4 4 Mem/8-4 4 8 Mem/8 4 not used
Standard Gate 8 Mem/4 4 4 4k - 8 4 4 Mem/4-4 4 not used not used
FIFO Single not used 4 4k - 8 4 not used 8 8G - 4 4 0 (∞) 4G - 1 1
FIFO Multi/ABA not used 4 4k - 8 4 4 8G - 4 4 8 Mem/8 4 0 (∞) 4G - 1 1
FIFO Gate not used 4 4k - 8 4 4 8G - 4 4 not used 0 (∞) 4G - 1 1

Installed Memory
64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample 4 GSample

Mem 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample 4 GSample
Mem / 2 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample
Mem / 4 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample
Mem / 8 8 MSample 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample

M2i + M2i-exp M4i + M4x M2p
Active Channels 8bit 12/14/16 bit 8bit 14/16 bit 16bit
1 channel 4 Samples 2 Samples 32 Samples 16 Samples 8 Samples
2 channels 2 Samples 1 Samples 16 Samples 8 Samples 4 Samples
4 channels 1 Sample 1 Samples 8 Samples 4 Samples 2 Samples
8 channels --- 1 Samples --- --- 1 Samples
16 channels --- 1 Samples --- --- ---
108 M2i.20xx / M2i.20xx-exp Manual

Mode Gated Sampling Trigger
So in case of a M4i.22xx card with 8bit samples and one active channel, the gate-end can only stop at 32Sample boundaries, so that up to
31 more samples can be recorded until the post-trigger starts. The timestamps themselves are not affected by this alignment.

Gated Sampling and Timestamps
Gated Sampling and the timestamp mode fit very good together. If timestamp
recording is activated each gate will get timestamped as shown in the draw-
ing on the right. Both, beginning and end of the gate interval, are times-
tamped. Each gate segment will therefore produce two timestamps
(Timestamp1 and Timestamp2) showing start of the gate interval and end of
the gate interval. By taking both timestamps into account one can read out the
time position of each gate as well as the length in samples. There is no other
way to examine the length of each gate segment than reading out the times-
tamps.

Please keep in mind that the gate signals are timestamped, not the beginning
and end of the acquisition. The first sample that is available is at the time position of [Timestamp1 - Pretrigger]. The length of the gate segment
is [Timestamp2 - Timestamp1 + Alignment + Pretrigger + Posttrigger]. The last sample of the gate segment is at the position [Timestamp2 +
Alignment + Posttrigger]. When using the standard gate mode the end of recording is defined by the expiring memsize counter. In standard
gate mode there will be an additional timestamp for the last gate segment, when the maximum memsize is reached!

The programming details of the timestamp mode are explained in an extra chapter.

Trigger

Trigger Output
When using internal trigger recognition and enabling the trigger output there is a trigger pulse generated for each acquired segment. The
trigger output goes to high level after recoginition of the internal trigger event and goes back again to low level if the acquisition of this
segment has been finished. To give compatibility to older hardware and to give maxmimum flexibility there is a special register to change
that behaviour.

Edge and level triggers
For all external edge and level trigger modes, the OR mask must contain the corresponding input, as the following table shows:

Positive TTL single edge trigger

This mode is for detecting the rising edges of an external TTL sig-
nal. The gate will start on rising edges that are detected after start-
ing the board.

As this mode is purely edge-triggered, the high level at the cards
start time, does not trigger the board.

With the next falling edge the gate will be stopped.

Register Value Direction Description

SPC_LONGTRIG_OUTPUT 200830 read/write Defines the trigger pulse output as explained below

0 (default) The trigger pulse is generated on every trigger event and stays high until acquisition of segment has finished

1 The trigger pulse is generated on the first trigger event and stays high until the end of the complete acquisition

Register Value Direction Description

SPC_TRIG_ORMASK 40410 read/write Defines the OR mask for the different trigger sources.

SPC_TMASK_EXT0 2h Enable external trigger input for the OR mask

SPC_TMASK_XIO0 100h Enable extra TTL input 0 for the OR mask. On plain cards this input is only available if the option BaseXIO is installed.
As part of the digitizerNETBOX this input is available as connector Trigger B.

SPC_TMASK_XIO1 200h Enable extra TTL input 1 for the OR mask. These trigger inputs are only available, when option BaseXIO is installed.

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board

SPC_TM_POS 1h Sets the trigger mode for external TTL trigger to detect positive edges
(c) Spectrum GmbH 109

Trigger Mode Gated Sampling
HIGH TTL level trigger

This mode is for detecting the high levels of an external TTL signal.
The gate will start on high levels that are detected after starting
the board acquisition/generation.

As this mode is purely level-triggered, the high level at the cards
start time, does trigger the board.

With the next low level the gate will be stopped.

Positive TTL double edge trigger

This mode is for detecting the rising edges of an external TTL sig-
nal. The gate will start on the first rising edge that is detected after
starting the board.

As this mode is purely edge-triggered, the high level at the cards
start time, does not trigger the board.

The gate will stop on the second rising edge that is detected.

Negative TTL single edge trigger

This mode is for detecting the falling edges of an external TTL sig-
nal. The gate will start on falling edges that are detected after
starting the board.

As this mode is purely edge-triggered, the low level at the cards
start time, does not trigger the board.

With the next rising edge the gate will be stopped.

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board

SPC_TM_HIGH 8h Sets the trigger mode for external TTL trigger to detect high levels.

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board

SPC_TM_POS |
SPC_TM_DOUBLEEDGE

08000001h Sets the gate mode for external TTL trigger to start and stop on positive edges.

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board

SPC_TM_NEG 2h Sets the trigger mode for external TTL trigger to detect negative edges.
110 M2i.20xx / M2i.20xx-exp Manual

Mode Gated Sampling Trigger
LOW TTL level trigger

This mode is for detecting the low levels of an external TTL signal.
The gate will start on low levels that are detected after starting the
board.

As this mode is purely level-triggered, the low level at the cards
start time, does trigger the board.

With the next high level the gate will be stopped.

Negative TTL double edge trigger

This mode is for detecting the falling edges of an external TTL sig-
nal. The gate will start on the first falling edge that is detected af-
ter starting the board.

As this mode is purely edge-triggered, the low level at the cards
start time, does not trigger the board.

The gate will stop on the second falling edge that is detected.

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board

SPC_TM_LOW 10h Sets the trigger mode for external TTL trigger to detect low levels.

Register Value Direction Description

SPC_TRIG_EXT0_MODE 40510 read/write Sets the external trigger mode for the board

SPC_TM_NEG |
SPC_TM_DOUBLEEDGE

08000002h Sets the gate mode for external TTL trigger to start and stop on negative edges
(c) Spectrum GmbH 111

Trigger Mode Gated Sampling
Pulsewidth triggers
For all external edge and level trigger modes, the OR mask must contain the corresponding input, as the following table shows:

TTL pulsewidth trigger for long HIGH pulses

This mode is for detecting a rising edge of an external TTL signal
followed by a HIGH pulse that are longer than a programmed
pulsewidth. If the pulse is shorter than the programmed pulse-
width, no trigger will be detected.

The gate will start on the first pulse matching the trigger condition
after starting the board.

The gate will stop with the next falling edge.

TTL pulsewidth trigger for long LOW pulses

This mode is for detecting a falling edge of an external TTL signal
followed by a LOW pulse that are longer than a programmed
pulsewidth. If the pulse is shorter than the programmed pulse-
width, no trigger will be detected.

The gate will start on the first pulse matching the trigger condition
after starting the board.

The gate will stop with the next rising edge.

Register Value Direction Description

SPC_TRIG_ORMASK 40410 read/write Defines the OR mask for the different trigger sources.

SPC_TMASK_EXT0 2h Enable external trigger input for the OR mask

SPC_TMASK_XIO0 100h Enable extra TTL input 0 for the OR mask. On plain cards this input is only available if the option BaseXIO is installed.
As part of the digitizerNETBOX this input is available as connector Trigger B.

SPC_TMASK_XIO1 200h Enable extra TTL input 1 for the OR mask. These trigger inputs are only available, when option BaseXIO is installed.

Register Value Direction Description

SPC_TRIG_EXT0_PULSEWIDTH 44210 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed.

SPC_TRIG_EXT0_MODE 40510 read/write Sets the trigger mode for the board.

(SPC_TM_POS |
SPC_TM_PW_GREATER)

4000001h Sets the trigger mode for external TTL trigger to detect HIGH pulses that are longer than a programmed pulsewidth.

Register Value Direction Description

SPC_TRIG_EXT0_PULSEWIDTH 44210 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed.

SPC_TRIG_EXT0_MODE 40510 read/write Sets the trigger mode for the board.

(SPC_TM_NEG |
SPC_TM_PW_GREATER)

4000002h Sets the trigger mode for external TTL trigger to detect LOW pulses that are longer than a programmed pulsewidth.

spcm_dwSetParam_i32 (hDrv,SPC_TRIG_EXT0_MODE, SPC_TM_NEG | SPC_TM_PW_GREATER); // Setting up external TTL
 // trigger to detect low pulses
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_PULSEWIDTH , 50); // that are longer than 50 samples.
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0); // and enable it within the OR mask
112 M2i.20xx / M2i.20xx-exp Manual

Mode Gated Sampling Trigger
Channel triggers modes
For all channel trigger modes, the OR mask must contain the corresponding input channels (channel 0 taken as example here):.

Channel trigger on positive edge

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from lower values to higher values (ris-
ing edge) the gate starts.

When the signal crosses the programmed trigger level from
higher values to lower values (falling edge) then the gate
will stop.

As this mode is purely edge-triggered, the high level at the
cards start time does not trigger the board.

Channel trigger HIGH level

The analog input is continuously sampled with the selected
sample rate. If the signal is equal or higher than the pro-
grammed trigger level the gate starts.

When the signal is lower than the programmed trigger level
the gate will stop.

As this mode is level-triggered, the high level at the cards
start time does trigger the board.

Channel trigger on negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal higher values to lower values (falling
edge) the gate starts.

When the signal crosses the programmed trigger from low-
er values to higher values (rising edge) then the gate will
stop.

As this mode is purely edge-triggered, the low level at the
cards start time does not trigger the board.

Register Value Direction Description

SPC_TRIG_CH_ORMASK0 40460 read/write Defines the OR mask for the channel trigger sources.

SPC_TMASK0_CH0 1h Enables channel0 input for the channel OR mask

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_POS 1h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_HIGH 8h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_NEG 2h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant
(c) Spectrum GmbH 113

Trigger Mode Gated Sampling
Channel trigger LOW level

The analog input is continuously sampled with the selected
sample rate. If the signal is equal or lower than the pro-
grammed trigger level the gate starts.

When the signal is higher than the programmed trigger lev-
el the gate will stop.

As this mode is level-triggered, the high level at the cards
start time does trigger the board.

Channel re-arm trigger on positive edge

The analog input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from
lower to higher values, the trigger engine is armed and
waiting for trigger.

If the programmed trigger level is crossed by the channel’s
signal from lower values to higher values (rising edge) then
the gate starts and the trigger engine will be disarmed.

If the programmed trigger level is crossed by the channel’s
signal from higher values to lower values (falling edge) the
gate stops.

A new trigger event is only detected, if the trigger engine is armed again. The re-arm trigger modes can be used to prevent the board from
triggering on wrong edges in noisy signals.

Channel re-arm trigger on negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from
higher to lower values, the trigger engine is armed and
waiting for trigger.

If the programmed trigger level is crossed by the channel’s
signal from higher values to lower values (falling edge) then
the gate starts and the trigger engine will be disarmed.

If the programmed trigger level is crossed by the channel’s
signal from lower values to higher values (rising edge) the
gate stops.

A new trigger event is only detected, if the trigger engine is armed again. The re-arm trigger modes can be used to prevent the board from
triggering on wrong edges in noisy signals.

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_LOW 10h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_POS | SPC_TM_REARM 01000001h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Defines the re-arm level relatively to the channels’s input range board dependant

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_NEG | SPC_TM_REARM 01000002h

SPC_TRIG_CH0_LEVEL0 42200 read/write Defines the re-arm level relatively to the channels’s input range board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Defines the re-arm level relatively to the channels’s input range board dependant
114 M2i.20xx / M2i.20xx-exp Manual

Mode Gated Sampling Trigger
Channel pulsewidth trigger for long positive pulses

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from lower to higher values (rising
edge) the pulsewidth counter is started. If the signal crosses
the trigger level again in the opposite direction within the
the programmed pulsewidth time, no trigger will be detect-
ed. If the pulsewidth counter reaches the programmed
amount of samples, without the signal crossing the trigger
level in the opposite direction, the gate will start.

If the programmed trigger level is crossed by the channel’s
signal from higher to lower values (falling edge) the gate
will stop.

The pulsewidth trigger modes for long pulses can be used to prevent the board from triggering on wrong (short) edges in noisy signals.

Channel pulsewidth trigger for long negative pulses

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from higher to lower values (falling
edge) the pulsewidth counter is started. If the signal crosses
the trigger level again in the opposite direction within the
the programmed pulsewidth time, no trigger will be detect-
ed. If the pulsewidth counter reaches the programmed
amount of samples, without the signal crossing the trigger
level in the opposite direction, the gate will start.

If the programmed trigger level is crossed by the channel’s
signal from lower to higher values (rising edge) the gate will
stop.

The pulsewidth trigger modes for long pulses can be used to prevent the board from triggering on wrong (short) edges in noisy signals.

Channel window trigger for entering signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow.

When the signal enters the window from the outside to the
inside, the gate will start.

When the signal leaves the window from the inside to the
outside, the gate will stop.

As this mode is purely edge-triggered, the signal outside the
window at the cards start time does not trigger the board.

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_POS | SPC_TM_PW_GREATER 04000001h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_NEG | SPC_TM_PW_GREATER 04000002h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_WINENTER 00000020h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant
(c) Spectrum GmbH 115

Trigger Mode Gated Sampling
Channel window trigger for leaving signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow.

When the signal leaves the window from the inside to the
outside, the gate will start.

When the signal enters the window from the outside to the
inside, the gate will stop.

As this mode is purely edge-triggered, the signal within the
window at the cards start time does not trigger the board.

Channel window trigger for inner signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow.

When the signal enters the window from the outside to the
inside, the gate will start.

When the signal leaves the window from the inside to the
outside, the gate will stop.

As this mode is level-triggered, the signal inside the window
at the cards start time does trigger the board.

Channel window trigger for outer signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow.

When the signal leaves the window from the inside to the
outside, the gate will start.

When the signal enters the window from the outside to the
inside, the gate will stop.

As this mode is level-triggered, the signal outside the win-
dow at the cards start time does trigger the board.

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_WINLEAVE 00000040h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_INWIN 00000080h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_OUTSIDEWIN 00000100h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant
116 M2i.20xx / M2i.20xx-exp Manual

Mode Gated Sampling Programming examples
Channel window trigger for long inner signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower levels define a win-
dow. Every time the signal enters the window from the out-
side, the pulsewidth counter is started. If the signal leaves
the window before the pulsewidth counter has stopped, no
trigger will be detected.

When the pulsewidth counter stops and the signal is still in-
side the window, the gate will start.

When the signal leaves the window from the inside to the
outside, the gate will stop.

Channel window trigger for long outer signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower levels define a win-
dow. Every time the signal leaves the window from the in-
side, the pulsewidth counter is started. If the signal enters
the window before the pulsewidth counter has stopped, no
trigger will be detected.

When the pulsewidth counter stops and the signal is still out-
side the window, the gate will start.

When the signal enters the window from the outside to the
inside, the gate will stop.

Programming examples
The following examples shows how to set up the card for Gated Sampling in standard mode for Gated Sampling in FIFO mode.

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_WINENTER | SPC_TM_PW_GREATER 04000020h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_WINLEAVE | SPC_TM_PW_GREATER 04000040h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_GATE); // Enables Standard Gated Sampling

spcm_dwSetParam_i64 (hDrv, PRETRIGGER, 256); // Set the pretrigger to 256 samples
spcm_dwSetParam_i64 (hDrv, POSTTRIGGER, 2048); // Set the posttrigger to 2048 samples
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, 8192); // Set the total memsize for recording to 8192 samples

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE, SPC_TM_POS); // Use external trigger (rising edge)
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0); // and enable it within the trigger OR-mask

spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_FIFO_GATE); // Enables FIFO Gated Sampling

spcm_dwSetParam_i64 (hDrv, PRETRIGGER, 128); // Set the pretrigger to 128 samples
spcm_dwSetParam_i64 (hDrv, POSTTRIGGER, 512); // Set the posttrigger to 512 samples
spcm_dwSetParam_i64 (hDrv, SPC_LOOP, 1024); // 1024 gates will be recorded

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE, SPC_TM_NEG);// Use external trigger (falling edge)
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0);// and enable it within the trigger OR-mask
(c) Spectrum GmbH 117

General information Timestamps
Timestamps

General information
The timestamp function is used to record trigger events relative to the beginning of the measurement, relative to a fixed time-zero point or
synchronized to an external reset clock. The reset clock can come from a radio clock a GPS signal or from any other external machine.

The timestamp is internally realized as a very wide counter that is running with the currently used sampling rate. The counter is reset either
by explicit software command or depending on the mode by the start of the card. On receiving the trigger event (or at the start and at the
end of a gate interval when using Gated Sampling mode) the current counter value is stored in an extra FIFO memory.

This function is designed as an enhancement to the Multiple Recording and the Gated Sampling mode and is also used together with the ABA
mode but can also be used without these modes with plain single acquisitions. If Gated Sampling mode is used, then both the start and end
of a recorded segment are timestamped.

Each recorded timestamp consists of the number of samples that has been counted since the last
counter reset has been done. The actual time in relation to the reset command can be easily calcu-
lated by the formula on the right. Please note that the timestamp recalculation depends on the cur-
rently used sampling rate and the oversampling factor. Please have a look at the clock chapter to
see how to read out the sampling rate and the oversampling factor

If you want to know the time between two timestamps, you can simply calculate this by the for-
mula on the right.

The following registers can be used for the timestamp mode:

Writes to the SPC_TS_RESET register can only have an effect on the counters, if the cards clock generation is
already active. This is the case when the card either has already done an acquisition after the last reset or if
the clock setup has already been actively transferred to the card by issuing the M2CMD_CARD_WRITESETUP

command.

Example for setting timestamp mode:
The timestamp mode consists of one of the mode constants, one of the counter constants and feature constants.:

Register Value Direction Description

SPC_TIMESTAMP_STARTTIME 47030 read/write Return the reset time when using reference clock mode. Hours are placed in bit 16 to 23, minutes are
placed in bit 8 to 15, seconds are placed in bit 0 to 7

SPC_TIMESTAMP_STARTDATE 47031 read/write Return the reset date when using reference clock mode. The year is placed in bit 16 to 31, the month
is placed in bit 8 to 15 and the day of month is placed in bit 0 to 7

SPC_TIMESTAMP_TIMEOUT 47045 read/write Sets a timeout in milliseconds for waiting of an reference clock edge

SPC_TIMESTAMP_AVAILMODES 47001 read Returns all available modes as a bitmap. Modes are listed below

SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below

SPC_TSMODE_DISABLE 0 Timestamp is disabled.

SPC_TS_RESET 1h The counters are reset and the local PC time is stored for read out by SPC_TIMESTAMP_STARTTIME and
SPC_TIMESTAMP_STARTDATE registers.

SPC_TSMODE_STANDARD 2h Standard mode, counter is reset by explicit reset command.

SPC_TSMODE_STARTRESET 4h Counter is reset on every card start, all timestamps are in relation to card start.

SPC_TSCNT_INTERNAL 100h Counter is running with complete width on sampling clock

SPC_TSCNT_REFCLOCKPOS 200h Counter is split, upper part is running with external reference clock positive edge, lower part is running with sampling
clock

SPC_TSCNT_REFCLOCKNEG 400h Counter is split, upper part is running with external reference clock negative edge, lower part is running with sam-
pling clock

SPC_TSXIOACQ_ENABLE 1000h Enables the trigger synchronous acquisition of the BaseXIO inputs with every stored timestamp in the upper byte.

SPC_TSXIOACQ_DISABLE 0 The timestamp is filled up with leading zeros as a sign extension for positive values.

SPC_TSFEAT_NONE 0h No additional timestamp is created. The total number of stamps is only trigger related.

SPC_TSFEAT_STORE1STABA 10000h Enables the creation of one additional timestamp for the first A area sample when using the ABA (dual-timebase)
mode.

// setting timestamp mode to standard using internal clocking
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_STANDARD | SPC_TSCNT_INTERNAL | SPC_TSFEAT_NONE);

// setting timestamp mode to start reset mode using internal clocking
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_STARTRESET | SPC_TSCNT_INTERNAL | SPC_TSFEAT_NONE);

// setting timestamp mode to standard using external reference clock with positive edge
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_STANDARD | SPC_TSCNT_REFCLOCKPOS | SPC_TSFEAT_NONE);

t Timestamp
Sampling rate * Oversampling
--=

t∆
Timestampn 1+ Timestampn–

Sampling rate * Oversampling
--=
118 M2i.20xx / M2i.20xx-exp Manual

Timestamps Timestamp modes
Limits
The timestamp counter is running with the sampling clock on the base card. Some card types (like 2030 and 3025) use an interlace mode
to double the sampling speed. In this case the timestamp counter is only running with the non-interlaced sampling rate. Therefore the maximum
counting frequency of the timestamp mode is limited to 125 MS/s.

Timestamp modes
The timestamp command register selects which of the following modes should be used for generating timestamps. Independent of the used
mode each timestamp is every time 64 bit wide and is generated with the currently used sampling rate. As some A/D acquisition cards need
to use an oversampling factor to go beneath the minimum ADC sampling clock there might be a difference between the programmed sampling
rate and the sampling rate that is used to count the timestamp counter. The currently used sampling rate and oversampling counter can be
read out with the following register:

There is no oversampling factor if using full digital acquisition cards.

Standard mode
In standard mode the timestamp counter is set to zero once by writing the TS_RESET commando to the command register. After that command
the counter counts continuously independent of start and stop of acquisition. The timestamps of all recorded trigger events are referenced to
this common zero time. With this mode you can calculate the exact time difference between different recordings and also within one acqui-
sition (if using Multiple Recording or Gated Sampling).

The following table shows the valid values that can be written to the timestamp command register for this mode:

Please keep in mind that this mode only work sufficiently as long as you don’t change the sampling rate
between two acquisitions that you want to compare.

Register Value Direction Description

SPC_SAMPLERATE 20000 read Read out the internal sample rate that is currently used.

SPC_OVERSAMPLINGFACTOR 200123 read only Returns the oversampling factor for further calculations. If oversampling isn’t active a 1 is returned.

Register Value Direction Description

SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below

SPC_TSMODE_DISABLE 0 Timestamp is disabled.

SPC_TS_RESET 1h The timestamp counter is set to zero

SPC_TSMODE_STANDARD 2h Standard mode, counter is reset by explicit reset command.

SPC_TSCNT_INTERNAL 100h Counter is running with complete width on sampling clock
(c) Spectrum GmbH 119

Timestamp modes Timestamps
StartReset mode
In StartReset mode the timestamp counter is set to zero on every start of the card. After starting the card the counter counts continuously. The
timestamps of one recording are referenced to the start of the recording. This mode is very useful for Multiple Recording and Gated Sampling
(see according chapters for detailed information on these two optional modes)

The following table shows the valid values that can be written to the timestamp command register.

Refclock mode
The counter is split in a HIGH and a LOW part and an additional external signal, that affects both parts of the counter, needs to be fed in
externally. The external reference clock signal will reset the LOW part of the counter and increase the HIGH part of the counter. The upper
counter will hold the number of the clock edges that have occurred on the external reference clock signal and the lower counter will hold the
position within the current reference clock period with the resolution of the sampling rate.

This mode can be used to obtain an absolute time reference when using an external radio clock or a GPS receiver. In that case the higher
part is counting the seconds since the last reset and the lower part is counting the position inside the second using the current sampling rate.

Please keep in mind that as this mode uses an additional external signal. If using plain M2i cards the option
BaseXIO needs to be installed on the card. Otherwise there is no additional reference clock input available
and this mode has no functionality. If using a digitizerNETBOX this additional timestamp reference clock input

is available as a standard and no option is needed to use this mode.

The counting is initialized with the timestamp reset command. Both counter parts will then be set to zero.

The following table shows the valid values that can be written to the timestamp command register for this mode:

Register Value Direction Description

SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below

SPC_TSMODE_DISABLE 0 Timestamp is disabled.

SPC_TSMODE_STARTRESET 4h Counter is reset on every card start, all timestamps are in relation to card start.

SPC_TSCNT_INTERNAL 100h Counter is running with complete width on sampling clock

Register Value Direction Description

SPC_TIMESTAMP_STARTTIME 47030 read/write Return the reset time when using reference clock mode. Hours are placed in bit 16 to 23, minutes are
placed in bit 8 to 15, seconds are placed in bit 0 to 7

SPC_TIMESTAMP_STARTDATE 47031 read/write Return the reset date when using reference clock mode. The year is placed in bit 16 to 31, the month
is placed in bit 8 to 15 and the day of month is placed in bit 0 to 7

SPC_TIMESTAMP_TIMEOUT 47045 read/write Sets a timeout in milli seconds for waiting for a reference clock edge

SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below

SPC_TSMODE_DISABLE 0 Timestamp is disabled.

SPC_TS_RESET 1h The counters are reset. If reference clock mode is used this command waits for the edge the timeout time.
120 M2i.20xx / M2i.20xx-exp Manual

Timestamps Reading out the timestamps
To synchronize the external reference clock signal with the PC clock it is possible to perform a timestamp reset command which waits a spec-
ified time for the occurrence of the external clock edge. As soon as the clock edge is found the function stores the current PC time and date
which can be used to get the absolute time. As the timestamp reference clock can also be used with other clocks that don’t need to be syn-
chronized with the PC clock the waiting time can be programmed using the SPC_TIMESTAMP_TIMEOUT register.

Example for initialization of timestamp reference clock and synchronization of a seconds signal with the PC clock:

Reading out the timestamps

General
The timestamps are stored in an extra FIFO that is located in hardware on the card. This extra FIFO can read out timestamps using DMA
transfer similar to the DMA transfer of the main sample data DMA transfer. The card has two completely independent busmaster DMA engines
in hardware allowing the simultaneous transfer of both timestamp and sample data.

As seen in the picture the extra FIFO is holding ABA and timestamp data as the same time. Nevertheless it is not necessary to care for the
shared FIFO as the extra FIFO data is splitted inside the driver in the both data parts.

The only part that is similar for both kinds of data transfer is the handling of the DMA engine. This is similar to the main sample data transfer
engine. Therefore additional information can be found in the chapter explaining the main data transfer.

Commands and Status information for extra transfer buffers.
As explained above the data transfer is performed with the same command and status registers like the card control and sample data transfer.
It is possible to send commands for card control, data transfer and extra FIFO data transfer at the same time

SPC_TSMODE_STANDARD 2h Standard mode, counter is reset by explicit reset command.

SPC_TSMODE_STARTRESET 4h Counter is reset on every card start, all timestamps are in relation to card start.

SPC_TSCNT_REFCLOCKPOS 200h Counter is split, upper part is running with external reference clock positive edge, lower part is running with sampling
clock

SPC_TSCNT_REFCLOCKNEG 400h Counter is split, upper part is running with external reference clock negative edge, lower part is running with sam-
pling clock

spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_STANDARD | SPC_TSCNT_REFCLOCKPOS);
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_TIMEOUT, 1500);
if (ERR_TIMEOUT == spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TS_RESET))
 printf ("Synchronization with external clock signal failed\n");

// now we read out the stored synchronization clock and date
int32 lSyncDate, lSyncTime;
spcm_dwGetParam_i32 (hDrv, SPC_TIMESTAMP_STARTDATE, &lSyncDate);
spcm_dwGetParam_i32 (hDrv, SPC_TIMESTAMP_STARTTIME, &lSyncTime);

// and print the start date and time information (European format: day.month.year hour:minutes:seconds)
printf ("Start date: %02d.%02d.%04d\n", lSyncDate & 0xff, (lSyncDate >> 8) & 0xff, (lSyncDate >> 16) & 0xffff);
printf ("Start time: %02d:%02d:%02d\n", (lSyncTime >> 16) & 0xff, (lSyncTime >> 8) & 0xff, lSyncTime & 0xff);

Register Value Direction Description

SPC_M2CMD 100 write only Executes a command for the card or data transfer

M2CMD_EXTRA_STARTDMA 100000h Starts the DMA transfer for an already defined buffer.

M2CMD_EXTRA_WAITDMA 200000h Waits until the data transfer has ended or until at least the amount of bytes defined by notify size are available. This
wait function also takes the timeout parameter into account.
(c) Spectrum GmbH 121

Reading out the timestamps Timestamps
The extra FIFO data transfer can generate one of the following status information:.

Data Transfer using DMA
Data transfer consists of two parts: the buffer definition and the commands/status information that controls the transfer itself. Extra data transfer
shares the command and status register with the card control, data transfer commands and status information.

The DMA based data transfer mode is activated as soon as the M2CMD_EXTRA_STARTDMA is given. Please see next chapter to see how
the polling mode works.

Definition of the transfer buffer
Before any data transfer can start it is necessary to define the transfer buffer with all its details. The definition of the buffer is done with the
spcm_dwDefTransfer function as explained in an earlier chapter. The following example will show the definition of a transfer buffer for
timestamp data, definition for ABA data is similar:

In this example the notify size is set to zero, meaning that we don’t want to be notified until all extra data has been transferred. Please have
a look at the sample data transfer in an earlier chapter to see more details on the notify size.

Please note that extra data transfer is only possible from card to PC and there’s no programmable offset available for this transfer.

Buffer handling
A data buffer handshake is implemented in the driver which allows to run the card in different data transfer modes. The software transfer
buffer is handled as one large buffer for each kind of data (timestamp and ABA) which is on the one side controlled by the driver and filled
automatically by busmaster DMA from the hardware extra FIFO buffer and on the other hand it is handled by the user who set’s parts of this
software buffer available for the driver for further transfer. The handshake is fulfilled with the following 3 software registers:

Directly after start of transfer the SPC_XXX_AVAIL_USER_LEN is every time zero as no data is available for the user and the
SPC_XXX_AVAIL_CARD_LEN is every time identical to the length of the defined buffer as the complete buffer is available for the card for
transfer.

The counter that is holding the user buffer available bytes (SPC_XXX_AVAIL_USER_LEN) is sticking to the de-
fined notify size at the DefTransfer call. Even when less bytes already have been transferred you won’t get
notice of it if the notify size is programmed to a higher value.

Remarks
• The transfer between hardware FIFO buffer and application buffer is done with scatter-gather DMA using a busmaster DMA controller

located on the card. Even if the PC is busy with other jobs data is still transferred until the application buffer is completely used.
• As shown in the drawing above the DMA control will announce new data to the application by sending an event. Waiting for an event is

done internally inside the driver if the application calls one of the wait functions. Waiting for an event does not consume any CPU time
and is therefore highly requested if other threads do lot of calculation work. However it is not necessary to use the wait functions and one
can simply request the current status whenever the program has time to do so. When using this polling mode the announced available

M2CMD_EXTRA_STOPDMA 400000h Stops a running DMA transfer. Data is invalid afterwards.

M2CMD_EXTRA_POLL 800000h Polls data without using DMA. As DMA has some overhead and has been implemented for fast data transfer of large
amounts of data it is in some cases more simple to poll for available data. Please see the detailed examples for this
mode. It is not possible to mix DMA and polling mode.

Register Value Direction Description

SPC_M2STATUS 110 read only Reads out the current status information

M2STAT_EXTRA_BLOCKREADY 1000h The next data block as defined in the notify size is available. It is at least the amount of data available but it also can
be more data.

M2STAT_EXTRA_END 2000h The data transfer has completed. This status information will only occur if the notify size is set to zero.

M2STAT_EXTRA_OVERRUN 4000h The data transfer had on overrun (acquisition) or underrun (replay) while doing FIFO transfer.

M2STAT_EXTRA_ERROR 8000h An internal error occurred while doing data transfer.

spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_CARDTOPC, 0, pvBuffer, 0, lLenOfBufferInBytes);

Register Value Direction Description

SPC_ABA_AVAIL_USER_LEN 210 read This register contains the currently available number of bytes that are filled with newly transferred
slow ABA data. The user can now use this ABA data for own purposes, copy it, write it to disk or start
calculations with this data.

SPC_ABA_AVAIL_USER_POS 211 read The register holds the current byte index position where the available ABA bytes start. The register is
just intended to help you and to avoid own position calculation

SPC_ABA_AVAIL_CARD_LEN 212 write After finishing the job with the new available ABA data the user needs to tell the driver that this
amount of bytes is again free for new data to be transferred.

SPC_TS_AVAIL_USER_LEN 220 read This register contains the currently available number of bytes that are filled with newly transferred
timestamp data. The user can now use these timestamps for own purposes, copy it, write it to disk or
start calculations with the timestamps.

SPC_TS_AVAIL_USER_POS 221 read The register holds the current byte index position where the available timestamp bytes start. The reg-
ister is just intended to help you and to avoid own position calculation

SPC_TS_AVAIL_CARD_LEN 222 write After finishing the job with the new available timestamp data the user needs to tell the driver that this
amount of bytes is again free for new data to be transferred.
122 M2i.20xx / M2i.20xx-exp Manual

Timestamps Reading out the timestamps
bytes still stick to the defined notify size!
• If the on-board FIFO buffer has an overrun data transfer is stopped immediately.

Buffer handling example for DMA timestamp transfer (ABA transfer is similar, just using other registers)

The extra FIFO has a quite small size compared to the main data buffer. As the transfer is done initiated by
the hardware using busmaster DMA this is not critical as long as the application data buffers are large
enough and as long as the extra transfer is started BEFORE starting the card.

Data Transfer using Polling

When using M2i cards the Polling mode needs driver version V1.25 and firmware version V11 to run. Please
update your system to the newest versions to run this mode. Polling mode for M3i cards is included starting
with the first delivered card version.

If the extra data is quite slow and the delay caused by the notify size on DMA transfers is inacceptable for your application it is possible to
use the polling mode. Please be aware that the polling mode uses CPU processing power to get the data and that there might be an overrun
if your CPU is otherwise busy. You should only use polling mode in special cases and if the amount of data to transfer is not too high.

Most of the functionality is similar to the DMA based transfer mode as explained above.

The polling data transfer mode is activated as soon as the M2CMD_EXTRA_POLL is executed.

Definition of the transfer buffer
is similar to the above explained DMA buffer transfer. The value „notify size“ is ignored and should be set to 4k (4096).

Buffer handling
The buffer handling is also similar to the DMA transfer. As soon as one of the registers SPC_TS_AVAIL_USER_LEN or
SPC_ABA_AVAIL_USER_LEN is read the driver will read out all available data from the hardware and will return the number of bytes that
has been read. In minimum this will be one DWORD = 4 bytes.

int8* pcData = (int8*) pvAllocMemPageAligned (lBufSizeInBytes);

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIR_CARDTOPC, 4096, (void*) pcData, 0, lBufSizeInBytes);

do
 {
 // we wait for the next data to be available. After this call we get at least 4k of data to proceed
 dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_STARTDMA | M2CMD_EXTRA_WAITDMA);

 if (!dwError)
 {

 // if there was no error we can proceed and read out the current amount of available data
 spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lAvailBytes);
 spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_POS, &lBytePos);

 printf (“We now have %d new bytes available\n”, lAvailBytes);
 printf (“The available data starts at position %d\n”, lBytesPos);

 // we take care not to go across the end of the buffer
 if ((lBytePos + lAvailBytes) >= lBufSizeInBytes)
 lAvailBytes = lBufSizeInBytes - lBytePos;

 // our do function get’s a pointer to the start of the available data section and the length
 vProcessTimestamps (&pcData[lBytesPos], lAvailBytes);

 // the buffer section is now immediately set available for the card
 spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, lAvailBytes);
 }
 }
while (!dwError); // we loop forever if no error occurs
(c) Spectrum GmbH 123

Reading out the timestamps Timestamps
Buffer handling example for polling timestamp transfer (ABA transfer is similar, just using other registers)

Comparison of DMA and polling commands
This chapter shows you how small the difference in programming is between the DMA and the polling mode:

Data format
Each timestamp is 56 bit long and internally mapped to 64 bit (8 bytes). The counter value contains the number of clocks that have been
recorded with the currently used sampling rate since the last counter-reset has been done. The matching time can easily be calculated as
described in the general information section at the beginning of this chapter.

The values the counter is counting and that are stored in the timestamp FIFO represent the moments the trigger event occures internally. Com-
pared to the real external trigger event, these values are delayed. This delay is fix and therefore can be ignored, as it will be identically for
all recordings with the same setup.

Standard data format
When internally mapping the timestamp from 56 bit to a 64 bit value the leading 8 bits are filled up with zeros (as a sign extension for
positive values), to have the stamps ready for calculations as a unsigned 64 bit wide integer value.

Extended BaseXIO data format
Sometimes it is usefull to store the level of additional external static signals together with a recording, such as e.g. control inputs of an external
input multiplexer or settings of an external. When programming a special flag the upper byte of every 64 bit timestamp value is not (as in
standard data mode) filled up with leading zeros, but with the values of the BaseXIO digital inputs. The following table shows the resulting
64 bit timestamps.

int8* pcData = (int8*) pvAllocMemPageAligned (lBufSizeInBytes);

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIR_CARDTOPC, 4096, (void*) pcData, 0, lBufSizeInBytes);

// we start the polling mode
dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_POLL);

// this is pur polling loop
 do
 {
 spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lAvailBytes);
 spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_POS, &lBytePos);

 if (lAvailBytes > 0)
 {
 printf (“We now have %d new bytes available\n”, lAvailBytes);
 printf (“The available data starts at position %d\n”, lBytesPos);

 // we take care not to go across the end of the buffer
 if ((lBytePos + lAvailBytes) >= lBufSizeInBytes)
 lAvailBytes = lBufSizeInBytes - lBytePos;

 // our do function get’s a pointer to the start of the available data section and the length
 vProcessTimestamps (&pcData[lBytesPos], lAvailBytes);

 // the buffer section is now immediately set available for the card
 spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, lAvailBytes);
 }
 }
while (!dwError); // we loop forever if no error occurs

DMA mode Polling mode
Define the buffer spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIR...); spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIR...);
Start the transfer spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_STARTDMA) spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_POLL)
Wait for data spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_WAITDMA) not in polling mode
Available bytes? spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lBytes); spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lBytes);
Min available bytes programmed notify size 4 bytes
Current position? spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lBytes); spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lBytes);
Free buffer for card spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, lBytes); spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, lBytes);

Timestamp Mode 8th byte 7th byte 6th byte 5th byte 4th byte 3rd byte 2nd byte 1st byte

Standard/StartReset 0h 56 bit wide Timestamp

Refclock mode 0h 24 bit wide Refclock edge counter (seconds counter) 32bit wide sample counter

Timestamp Mode 8th byte 7th byte 6th byte 5th byte 4th byte 3rd byte 2nd byte 1st byte

Standard / StartReset XIO7…XIO0 56 bit wide Timestamp

Refclock mode XIO7…XIO0 24 bit wide Refclock edge counter (seconds counter) 32bit wide sample counter
124 M2i.20xx / M2i.20xx-exp Manual

Timestamps Combination of Memory Segmentation Options with Timestamps
This special sampling option requires the option BaseXIO to be installed. All enhanced timestamps are not
longer integer 64 values. Before using these stamps for calculations (such as difference between two stamps)
one has to mask out the leading byte of the stamps first.

Selecting the timestamp data format
The selection between the different data format for the timestamps is done with a flag that is written to the timestamp command register. As
this register is organized as a bitfield, the data format selection is available for all possible timestamp modes.

Combination of Memory Segmentation Options with Timestamps
This topic should give you a brief overview how the timestamp option interacts with the options Multiple Recording, Gated Sampling and
ABA mode for which the timestamps option has been made.

Multiple Recording and Timestamps
Multiple Recording is well matching with the timestamp option. If timestamp
recording is activated each trigger event and therefore each Multiple Re-
cording segment will get timestamped as shown in the drawing on the right.

Please keep in mind that the trigger events are timestamped, not the begin-
ning of the acquisition. The first sample that is available is at the time position
of [Timestamp - Pretrigger].

The programming details of the timestamp option is explained in an extra
chapter.

 The following example shows the setup of the Multiple Recording mode together with activated timestamps recording and a short display of
the acquired timestamps. The example doesn’t care for the acquired data itself and doesn’t check for error:

Register Value Direction Description

SPC_TIMESTAMP_CMD 47100 r/w

SPC_TSXIOACQ_ENABLE 4096 Enables the trigger synchronous acquisition of the BaseXIO inputs with every stored timestamp in the upper byte.

SPC_TSXIOACQ_DISABLE 0 The timestamp is filled up with leading zeros as a sign extension for positive values.

// setup of the Multiple Recording mode
spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_MULTI); // Enables Standard Multiple Recording
spcm_dwSetParam_i64 (hDrv, SPC_SEGMENTSIZE, 1024); // Segment size is 1 kSample, Posttrigger is 768
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, 768); // samples and pretrigger therefore 256 samples.
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, 4096); // 4 kSamples in total acquired -> 4 segments

// setup the Timestamp mode and make a reset of the timestamp counter
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_STANDARD | SPC_TSCNT_INTERNAL);
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_RESET);

// now we define a buffer for timestamp data and start acquistion, each timestamp is 64 bit = 8 bytes
int64* pllStamps = (int64*) pvAllocMemPageAligned (8 * 4);
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIR_CARDTOPC, 0, (void*) pllStamps, 0, 4 * 8);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER | M2CMD_EXTRA_STARTDMA);

// we wait for the end timestamps transfer which will be received if all segments have been recorded
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_WAITDMA);

// as we now have the timestamps we just print them and calculate the time in milli seconds
int64 llSamplerate;
double dTime_ms;
int32 lOver;
spcm_dwGetParam_i64 (hDrv, SPC_SAMPLERATE, &llSamplerate);
spcm_dwGetParam_i32 (hDrv, SPC_OVERSAMPLINGFACTOR, &lOver);

for (int i = 0; i < 4; i++)
 {
 dTime_ms = 1000.0 * pllStamps[i] / llSamplerate / lOver);

 printf ("#%d: %I64d samples = %.3f ms\n", i, pllStamps[i], dTime_ms);
 }
(c) Spectrum GmbH 125

Combination of Memory Segmentation Options with Timestamps Timestamps
Gate-End Alignment
Due to the structure of the on-board memory, the length of a gate will be rounded up until the next card specific alignment:

So in case of a M4i.22xx card with 8bit samples and one active channel, the gate-end can only stop at 32Sample boundaries, so that up to
31 more samples can be recorded until the post-trigger starts. The timestamps themselves are not affected by this alignment.

Gated Sampling and Timestamps
Gated Sampling and the timestamp mode fit very good together. If timestamp
recording is activated each gate will get timestamped as shown in the draw-
ing on the right. Both, beginning and end of the gate interval, are times-
tamped. Each gate segment will therefore produce two timestamps
(Timestamp1 and Timestamp2) showing start of the gate interval and end of
the gate interval. By taking both timestamps into account one can read out the
time position of each gate as well as the length in samples. There is no other
way to examine the length of each gate segment than reading out the times-
tamps.

Please keep in mind that the gate signals are timestamped, not the beginning
and end of the acquisition. The first sample that is available is at the time position of [Timestamp1 - Pretrigger]. The length of the gate segment
is [Timestamp2 - Timestamp1 + Alignment + Pretrigger + Posttrigger]. The last sample of the gate segment is at the position [Timestamp2 +
Alignment + Posttrigger]. When using the standard gate mode the end of recording is defined by the expiring memsize counter. In standard
gate mode there will be an additional timestamp for the last gate segment, when the maximum memsize is reached!

The programming details of the timestamp mode are explained in an extra chapter.

 The following example shows the setup of the Gated Sampling mode together with activated timestamps recording and a short display of the
the acquired timestamps. The example doesn’t care for the acquired data itself and doesn’t check for error:

M2i + M2i-exp M4i + M4x M2p
Active Channels 8bit 12/14/16 bit 8bit 14/16 bit 16bit
1 channel 4 Samples 2 Samples 32 Samples 16 Samples 8 Samples
2 channels 2 Samples 1 Samples 16 Samples 8 Samples 4 Samples
4 channels 1 Sample 1 Samples 8 Samples 4 Samples 2 Samples
8 channels --- 1 Samples --- --- 1 Samples
16 channels --- 1 Samples --- --- ---

// setup of the Gated Sampling mode
spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_GATE); // Enables Standard Gated Sampling
spcm_dwSetParam_i64 (hDrv, SPC_PRETRIGGER, 32); // 32 samples to acquire before gate start
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, 32); // 32 samples to acquire before gate end
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, 4096); // 4 kSamples in total acquired

// setup the Timestamp mode and make a reset of the timestamp counter
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_STANDARD | SPC_TSCNT_INTERNAL);
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TS_RESET);

// now we define a buffer for timestamp data and start acquistion, each timestamp is 64 bit = 8 bytes
// as we don’t know the number of gate intervals we define the buffer quite large
int64* pllStamps = (int64*) pvAllocMemPageAligned (8 * 1000);
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIR_CARDTOPC, 0, (void*) pllStamps, 0, 1000 * 8);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER | M2CMD_EXTRA_STARTDMA);

// we wait for the end of timestamps transfer and read out the number of timestamps that have been acquired
int32 lAvailTimestampBytes;
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_WAITDMA);
spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lAvailTimestampBytes);

// as we now have the timestamps we just print them and calculate the time in milli seconds
int32 lSamplerate, lOver, i;
spcm_dwGetParam_i32 (hDrv, SPC_SAMPLERATE, &lSamplerate);
spcm_dwGetParam_i32 (hDrv, SPC_OVERSAMPLINGFACTOR, &lOver);

// each 1st timestamp is the starting position of the gate segment, each 2nd the end position
for (i = 0; (i < (lAvailTimestampBytes / 8)) && (i < 1000); i++)
 if ((i % 2) == 0)
 printf ("#%d: %I64d samples = %.3f ms", i, pllStamps[i], 1000.0 * pllStamps[i] / lSamplerate / lOver);
 else
 printf ("(Len = %I64d samples)\n", (pllStamps[i] - pllStamps[i - 1] + 64));
126 M2i.20xx / M2i.20xx-exp Manual

Timestamps Combination of Memory Segmentation Options with Timestamps
ABA Mode and Timestamps
The ABA mode is well matching with the timestamp option. If timestamp
recording is activated, each trigger event and therefore each B time base
segment will get time tamped as shown in the drawing on the right.

Please keep in mind that the trigger events - located in the B area - are time
tamped, not the beginning of the acquisition. The first B sample that is
available is at the time position of [Timestamp - Pretrigger].

The first A area sample is related to the card start and therefore in a fixed
but various settings dependent relation to the timestamped B sample. To
bring exact relation between the first A area sample (and therefore all
area A samples) and the B area samples it is possible to let the card stamp
the first A area sample automatically after the card start. The following table shows the register to enable this mode:

This mode is compatible with all existing timestamp modes. Please keep in mind that the timestamp counter is running with the B area time-
base.

The programming details of the ABA mode and timestamp modes are each explained in an dedicated chapter in this manual.

Using the cards in ABA mode with the timestamp feature to stamp the first A are sample requires the follow-
ing driver and firmware version depending on your card:

M2i: driver version V2.06 (or newer) and firmware version V16 (or newer)
M3i: driver version V2.06 (or newer) and firmware version V6 (or newer)

Please update your system to the newest versions to run this mode.

Register Value Direction Description

SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp setup including mode and additional features

SPC_TSFEAT_MASK F0000h Mask for the feature relating bits of the SPC_TIMESTAMP_CMD bitmask.

SPC_TSFEAT_STORE1STABA 10000h Enables storage of one additional timestamp for the first A area sample (B time base related) in addition to the trigger
related timestamps.

SPC_TSFEAT_NONE 0h No additional timestamp is created. The total number of stamps is only trigger related.

// normal timestamp setup (e.g. setting timestamp mode to standard using internal clocking)
uint32 dwTimestampMode = (SPC_TSMODE_STANDARD | SPC_TSMODE_DISABLE);

// additionally enable index of the first A area sample
dwTimestampMode |= SPC_TSFEAT_STORE1STABA;

spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, dwTimestampMode);
(c) Spectrum GmbH 127

General information ABA mode (dual timebase)
ABA mode (dual timebase)

General information
The ABA mode allows the acquisition of data with a dual timebase. In case of trigger event the inputs are sampled very fast with the pro-
grammed sampling rate. This part is similar to the Multiple Recording mode. But instead of having no data in between the segments one has
the opportunity to continuously sample the inputs with a slower sampling rate the whole time. Combining this with the recording of the
timestamps gives you a complete acquisition with a dual timebase as shown in the drawing.

As seen in the drawing the area around the trigger event is sampled between pretrigger and posttrigger with full sampling speed (area B of
the acquisition). Outside of this area B the input is sampled with the slower ABA clock (area A of the acquisition). As changing sampling
clock on the fly is not possible there is no real change in the sampling speed but area A runs continuously with a slow sampling speed without
stopping when the fast sampling takes place. As a result one gets a continuous slow sampled acquisition (area A) with some fast sampled
parts (area B)

The ABA mode is available for standard recording as well as for FIFO recording. In case of FIFO recording ABA and the acquisition of the
fast sampled segments will run continuously until it is stopped by the user.

A second possible application for the ABA mode is the use of the ABA data for slow monitoring of the inputs while waiting for an acquisition.
In that case one wouldn’t record the timestamps but simply monitor the current values by acquiring ABA data.

The ABA mode needs a second clock base. As explained above the acquisition is not changing the sampling clock but runs the slower ac-
quisition with a divided clock. The ABA memory setup including the divider value can be programmed with the following registers:

The resulting ABA clock is then calculated by sampling rate / ABA divider.

Each segment can consist of pretrigger and/or posttrigger samples. The user always has to set the total segment size and the posttrigger,
while the pretrigger is calculated within the driver with the formula: [pretrigger] = [segment size] - [posttrigger].

When using ABA mode or Multiple Recording the maximum pretrigger is limited depending on the number
of active channels. When the calculated value exceeds that limit, the driver will return the error
ERR_PRETRIGGERLEN.

Standard Mode
With every detected trigger event one data block is filled with data. The length of one ABA segment is set by the value of the segmentsize
register. The total amount of samples to be recorded is defined by the memsize register.
Memsize must be set to a a multiple of the segment size. The table below shows the register for enabling standard ABA mode. For detailed
information on how to setup and start the standard acquisition mode please refer to the according chapter earlier in this manual.

Register Value Direction Description

SPC_SEGMENTSIZE 10010 read/write Size of one B segment: the total number of samples to be recorded/replayed per channel after detec-
tion of one trigger event including the time recorded before the trigger (pre trigger).

SPC_POSTTRIGGER 10030 read/write Defines the number of samples to be recorded per channel after each trigger event.

SPC_ABADIVIDER 10040 read/write Programs the divider which is used to sample slow ABA data between 8 and 524280 in steps of 8

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode
128 M2i.20xx / M2i.20xx-exp Manual

ABA mode (dual timebase) General information
The total number of samples to be recorded to the on-board memory in standard mode is defined by the SPC_MEMSIZE register.

FIFO Mode
The ABA FIFO Mode is similar to the Multiple Recording FIFO mode. In contrast to the standard mode it is not necessary to program the
number of samples to be recorded. The acquisition will run until being stopped by the user. The data is read block by block by the driver as
described under Single FIFO mode example earlier in this manual. These blocks are online available for further data processing by the user
program. This mode significantly reduces the average data transfer rate on the PCI bus. This enables you to use faster sample rates then you
would be able to in FIFO mode without ABA.

The number of segments to be recorded must be set separately with the register shown in the following table:

Limits of pre trigger, post trigger, memory size
The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind that each sample needs 1 byte of memory to be stored. Minimum memory size as well as minimum and maximum post trigger
limits are independent of the activated channels or the installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account.
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase
according to the complete installed memory

All figures listed here are given in samples. An entry of [8k - 16] means [8 kSamples - 16] = [8192 - 16] = 8176 samples.

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

SPC_REC_STD_ABA 8h Data acquisition to on-board memory for multiple trigger events. While the multiple trigger events are stored with pro-
grammed sampling rate the inputs are sampled continuously with a slower sampling speed. The mode is described in
a special chapter about ABA mode.

Register Value Direction Description

SPC_MEMSIZE 10000 read/write Defines the total number of samples to be recorded per channel.

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode

SPC_REC_FIFO_ABA 80h Continuous data acquisition for multiple trigger events together with continuous data acquisition with a slower sam-
pling clock.

Register Value Direction Description

SPC_LOOPS 10020 read/write Defines the number of segments to be recorded

0 Recording will run infinitely until being stopped by the user.

1 … [4G - 1] Defines the total segments to be recorded.

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS

Min Max Step Min Max Step Min Max Step Min Max Step Min Max Step
1 channel Standard Single 8 Mem 4 defined by post trigger 4 8G - 4 4 not used not used

Standard Multi/ABA 8 Mem 4 4 16k - 32 4 4 Mem/2-4 4 8 Mem/2 4 not used
Standard Gate 8 Mem 4 4 16k - 32 4 4 Mem-4 4 not used not used
FIFO Single not used 4 16k - 32 4 not used 8 8G - 4 4 0 (∞) 4G - 1 1
FIFO Multi/ABA not used 4 16k - 32 4 4 8G - 4 4 8 pre+post 4 0 (∞) 4G - 1 1
FIFO Gate not used 4 16k - 32 4 4 8G - 4 4 not used 0 (∞) 4G - 1 1

2 channels Standard Single 8 Mem/2 4 defined by post trigger 4 8G - 4 4 not used not used
Standard Multi/ABA 8 Mem/2 4 4 8k - 16 4 4 Mem/4-4 4 8 Mem/4 4 not used
Standard Gate 8 Mem/2 4 4 8k - 16 4 4 Mem/2-4 4 not used not used
FIFO Single not used 4 8k - 16 4 not used 8 8G - 4 4 0 (∞) 4G - 1 1
FIFO Multi/ABA not used 4 8k - 16 4 4 8G - 4 4 8 pre+post 4 0 (∞) 4G - 1 1
FIFO Gate not used 4 8k - 16 4 4 8G - 4 4 not used 0 (∞) 4G - 1 1

4 channels Standard Single 8 Mem/4 4 defined by post trigger 4 8G - 4 4 not used not used
Standard Multi/ABA 8 Mem/4 4 4 4k - 8 4 4 Mem/8-4 4 8 Mem/8 4 not used
Standard Gate 8 Mem/4 4 4 4k - 8 4 4 Mem/4-4 4 not used not used
FIFO Single not used 4 4k - 8 4 not used 8 8G - 4 4 0 (∞) 4G - 1 1
FIFO Multi/ABA not used 4 4k - 8 4 4 8G - 4 4 8 pre+post 4 0 (∞) 4G - 1 1
FIFO Gate not used 4 4k - 8 4 4 8G - 4 4 not used 0 (∞) 4G - 1 1

Installed Memory
64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample 4 GSample

Mem 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample 4 GSample
Mem / 2 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample
Mem / 4 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample
Mem / 8 8 MSample 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample
(c) Spectrum GmbH 129

Reading out ABA data ABA mode (dual timebase)
Example for setting ABA mode:
The following example will program the standard ABA mode, will set the fast sampling rate to 100 MHz and acquire 2k segments with 1k
pretrigger and 1k posttrigger on every rising edge of the trigger input. Meanwhile the inputs are sampled continuously with the ABA mode
with a ABA divider set to 5000 resulting in a slow sampling clock for the A area of 100 MHz / 5000 = 20 kHz:

Reading out ABA data

General
The slow „A“ data is stored in an extra FIFO that is located in hardware on the card. This extra FIFO can read out slow „A“ data using DMA
transfer similar to the DMA transfer of the main sample data DMA transfer. The card has two completely independent busmaster DMA engines
in hardware allowing the simultaneous transfer of both „A“ and sample data. The sample data itself is read out as explained before using
the standard DMA routine.

As seen in the picture the extra FIFO is holding ABA and timestamp data as the same time. Nevertheless it is not necessary to care for the
shared FIFO as the extra FIFO data is splitted inside the driver in the both data parts.

The only part that is similar for both kinds of data transfer is the handling of the DMA engine. This is similar to the main sample data transfer
engine. Therefore additional information can be found in the chapter explaining the main data transfer.

Commands and Status information for extra transfer buffers.
As explained above the data transfer is performed with the same command and status registers like the card control and sample data transfer.
It is possible to send commands for card control, data transfer and extra FIFO data transfer at the same time

// setting the fast sampling clock as internal 100 MHz
spcm_dwSetParam_i32 (hDrv, SPC_CLOCKMODE, SPC_CM_INTPLL);
spcm_dwSetParam_i64 (hDrv, SPC_SAMPLERATE, 100000000);

// enable the ABA mode and set the ABA divider to 5000 -> 100 MHz / 5000 = 20 kHz
spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_ABA);
spcm_dwSetParam_i32 (hDrv, SPC_ABADIVIDER, 5000);

// define the segmentsize, pre and posttrigger and the total amount of data to acquire
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, 16384);
spcm_dwSetParam_i64 (hDrv, SPC_SEGMENTSIZE, 2048);
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, 1024);

// set the trigger mode to external with positive edge
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0);
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE, SPC_TM_POS);

Register Value Direction Description

SPC_M2CMD 100 write only Executes a command for the card or data transfer

M2CMD_EXTRA_STARTDMA 100000h Starts the DMA transfer for an already defined buffer.

M2CMD_EXTRA_WAITDMA 200000h Waits until the data transfer has ended or until at least the amount of bytes defined by notify size are available. This
wait function also takes the timeout parameter into account.

M2CMD_EXTRA_STOPDMA 400000h Stops a running DMA transfer. Data is invalid afterwards.

M2CMD_EXTRA_POLL 800000h Polls data without using DMA. As DMA has some overhead and has been implemented for fast data transfer of large
amounts of data it is in some cases more simple to poll for available data. Please see the detailed examples for this
mode. It is not possible to mix DMA and polling mode.
130 M2i.20xx / M2i.20xx-exp Manual

ABA mode (dual timebase) Reading out ABA data
The extra FIFO data transfer can generate one of the following status information:.

Data Transfer using DMA
Data transfer consists of two parts: the buffer definition and the commands/status information that controls the transfer itself. Extra data transfer
shares the command and status register with the card control, data transfer commands and status information.

The DMA based data transfer mode is activated as soon as the M2CMD_EXTRA_STARTDMA is given. Please see next chapter to see how
the polling mode works.

Definition of the transfer buffer
Before any data transfer can start it is necessary to define the transfer buffer with all its details. The definition of the buffer is done with the
spcm_dwDefTransfer function as explained in an earlier chapter. The following example will show the definition of a transfer buffer for
timestamp data, definition for ABA data is similar:

In this example the notify size is set to zero, meaning that we don’t want to be notified until all extra data has been transferred. Please have
a look at the sample data transfer in an earlier chapter to see more details on the notify size.

Please note that extra data transfer is only possible from card to PC and there’s no programmable offset available for this transfer.

Buffer handling
A data buffer handshake is implemented in the driver which allows to run the card in different data transfer modes. The software transfer
buffer is handled as one large buffer for each kind of data (timestamp and ABA) which is on the one side controlled by the driver and filled
automatically by busmaster DMA from the hardware extra FIFO buffer and on the other hand it is handled by the user who set’s parts of this
software buffer available for the driver for further transfer. The handshake is fulfilled with the following 3 software registers:

Directly after start of transfer the SPC_XXX_AVAIL_USER_LEN is every time zero as no data is available for the user and the
SPC_XXX_AVAIL_CARD_LEN is every time identical to the length of the defined buffer as the complete buffer is available for the card for
transfer.

The counter that is holding the user buffer available bytes (SPC_XXX_AVAIL_USER_LEN) is sticking to the de-
fined notify size at the DefTransfer call. Even when less bytes already have been transferred you won’t get
notice of it if the notify size is programmed to a higher value.

Remarks
• The transfer between hardware FIFO buffer and application buffer is done with scatter-gather DMA using a busmaster DMA controller

located on the card. Even if the PC is busy with other jobs data is still transferred until the application buffer is completely used.
• As shown in the drawing above the DMA control will announce new data to the application by sending an event. Waiting for an event is

done internally inside the driver if the application calls one of the wait functions. Waiting for an event does not consume any CPU time
and is therefore highly requested if other threads do lot of calculation work. However it is not necessary to use the wait functions and one
can simply request the current status whenever the program has time to do so. When using this polling mode the announced available

Register Value Direction Description

SPC_M2STATUS 110 read only Reads out the current status information

M2STAT_EXTRA_BLOCKREADY 1000h The next data block as defined in the notify size is available. It is at least the amount of data available but it also can
be more data.

M2STAT_EXTRA_END 2000h The data transfer has completed. This status information will only occur if the notify size is set to zero.

M2STAT_EXTRA_OVERRUN 4000h The data transfer had on overrun (acquisition) or underrun (replay) while doing FIFO transfer.

M2STAT_EXTRA_ERROR 8000h An internal error occurred while doing data transfer.

spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_CARDTOPC, 0, pvBuffer, 0, lLenOfBufferInBytes);

Register Value Direction Description

SPC_ABA_AVAIL_USER_LEN 210 read This register contains the currently available number of bytes that are filled with newly transferred
slow ABA data. The user can now use this ABA data for own purposes, copy it, write it to disk or start
calculations with this data.

SPC_ABA_AVAIL_USER_POS 211 read The register holds the current byte index position where the available ABA bytes start. The register is
just intended to help you and to avoid own position calculation

SPC_ABA_AVAIL_CARD_LEN 212 write After finishing the job with the new available ABA data the user needs to tell the driver that this
amount of bytes is again free for new data to be transferred.

SPC_TS_AVAIL_USER_LEN 220 read This register contains the currently available number of bytes that are filled with newly transferred
timestamp data. The user can now use these timestamps for own purposes, copy it, write it to disk or
start calculations with the timestamps.

SPC_TS_AVAIL_USER_POS 221 read The register holds the current byte index position where the available timestamp bytes start. The reg-
ister is just intended to help you and to avoid own position calculation

SPC_TS_AVAIL_CARD_LEN 222 write After finishing the job with the new available timestamp data the user needs to tell the driver that this
amount of bytes is again free for new data to be transferred.
(c) Spectrum GmbH 131

Reading out ABA data ABA mode (dual timebase)
bytes still stick to the defined notify size!
• If the on-board FIFO buffer has an overrun data transfer is stopped immediately.

Buffer handling example for DMA timestamp transfer (ABA transfer is similar, just using other registers)

The extra FIFO has a quite small size compared to the main data buffer. As the transfer is done initiated by
the hardware using busmaster DMA this is not critical as long as the application data buffers are large
enough and as long as the extra transfer is started BEFORE starting the card.

Data Transfer using Polling

When using M2i cards the Polling mode needs driver version V1.25 and firmware version V11 to run. Please
update your system to the newest versions to run this mode. Polling mode for M3i cards is included starting
with the first delivered card version.

If the extra data is quite slow and the delay caused by the notify size on DMA transfers is inacceptable for your application it is possible to
use the polling mode. Please be aware that the polling mode uses CPU processing power to get the data and that there might be an overrun
if your CPU is otherwise busy. You should only use polling mode in special cases and if the amount of data to transfer is not too high.

Most of the functionality is similar to the DMA based transfer mode as explained above.

The polling data transfer mode is activated as soon as the M2CMD_EXTRA_POLL is executed.

Definition of the transfer buffer
is similar to the above explained DMA buffer transfer. The value „notify size“ is ignored and should be set to 4k (4096).

Buffer handling
The buffer handling is also similar to the DMA transfer. As soon as one of the registers SPC_TS_AVAIL_USER_LEN or
SPC_ABA_AVAIL_USER_LEN is read the driver will read out all available data from the hardware and will return the number of bytes that
has been read. In minimum this will be one DWORD = 4 bytes.

int8* pcData = (int8*) pvAllocMemPageAligned (lBufSizeInBytes);

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIR_CARDTOPC, 4096, (void*) pcData, 0, lBufSizeInBytes);

do
 {
 // we wait for the next data to be available. After this call we get at least 4k of data to proceed
 dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_STARTDMA | M2CMD_EXTRA_WAITDMA);

 if (!dwError)
 {

 // if there was no error we can proceed and read out the current amount of available data
 spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lAvailBytes);
 spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_POS, &lBytePos);

 printf (“We now have %d new bytes available\n”, lAvailBytes);
 printf (“The available data starts at position %d\n”, lBytesPos);

 // we take care not to go across the end of the buffer
 if ((lBytePos + lAvailBytes) >= lBufSizeInBytes)
 lAvailBytes = lBufSizeInBytes - lBytePos;

 // our do function get’s a pointer to the start of the available data section and the length
 vProcessTimestamps (&pcData[lBytesPos], lAvailBytes);

 // the buffer section is now immediately set available for the card
 spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, lAvailBytes);
 }
 }
while (!dwError); // we loop forever if no error occurs
132 M2i.20xx / M2i.20xx-exp Manual

ABA mode (dual timebase) Reading out ABA data
Buffer handling example for polling timestamp transfer (ABA transfer is similar, just using other registers)

Comparison of DMA and polling commands
This chapter shows you how small the difference in programming is between the DMA and the polling mode:

int8* pcData = (int8*) pvAllocMemPageAligned (lBufSizeInBytes);

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIR_CARDTOPC, 4096, (void*) pcData, 0, lBufSizeInBytes);

// we start the polling mode
dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_POLL);

// this is pur polling loop
 do
 {
 spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lAvailBytes);
 spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_POS, &lBytePos);

 if (lAvailBytes > 0)
 {
 printf (“We now have %d new bytes available\n”, lAvailBytes);
 printf (“The available data starts at position %d\n”, lBytesPos);

 // we take care not to go across the end of the buffer
 if ((lBytePos + lAvailBytes) >= lBufSizeInBytes)
 lAvailBytes = lBufSizeInBytes - lBytePos;

 // our do function get’s a pointer to the start of the available data section and the length
 vProcessTimestamps (&pcData[lBytesPos], lAvailBytes);

 // the buffer section is now immediately set available for the card
 spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, lAvailBytes);
 }
 }
while (!dwError); // we loop forever if no error occurs

DMA mode Polling mode
Define the buffer spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIR...); spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIR...);
Start the transfer spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_STARTDMA) spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_POLL)
Wait for data spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_WAITDMA) not in polling mode
Available bytes? spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lBytes); spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lBytes);
Min available bytes programmed notify size 4 bytes
Current position? spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lBytes); spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lBytes);
Free buffer for card spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, lBytes); spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, lBytes);
(c) Spectrum GmbH 133

Introduction Option BaseXIO
Option BaseXIO

Introduction
With this simple-to-use versatile enhancement it is possible to control a wide range of external instruments or other equipment. Therefore you
have up to eight asynchronous digital I/Os available. When using the BaseXIO lines as digital I/O, they are completely independent from
the board’s function, data direction or sampling rate and directly controlled by software (asynchronous I/Os).

Using the option BaseXIO this way is useful if external equipment should be digitally controlled or any kind of signal source must be pro-
grammed. It also can be used if status information from an external machine has to be obtained or different test signals have to be routed to
the board. In addition to the asynchronous I/O function, some of these lines can have special purposes such as secondary TTL trigger lines
(M2i cards only), RefClock seconds signal for the timestamp option and special lines for incremental encoders (M3i cards only).

The eight MMCX coaxial connectors are directly mounted on the base card. When plugged internally with right-angle MMCX connectors,
this options does not require any additional system slot. By default this option is delivered with a readily plugged additional bracket equipped
with SMB connectors, to have access to the lines from outside the system to easily connect with external equipment.

The internal connectors are mounted on two locations on the base card. The picture below shows the location of the MMCX connectors on
the card, the details of the connectors on the extra bracket are shown in the introductional part of this manual.

Different functions

Asynchronous Digital I/O
This way of operating the option BaseXIO allows to asynchronously sample the data on the inputs or to generate asynchronous pattern on
the outputs. The eight available lines consist of two groups of buffers each driving or receiving 4 bits of digital data as the drawing is showing.

The data direction of each group can be individually
programmed to be either input or output.

As a result three different combinations are possible
when using BaseXIO as pure digital I/O:

• 8 asynchronous digital inputs
• 8 asynchronous digital outputs
• mixed mode with 4 inputs and 4 outputs

The table below shows the direction register and the possible values. To combine the values you can easily OR them bitwise.

Register Value Direction Description

SPC_XIO_DIRECTION 47100 r/w Defines groupwise the direction of the digital I/O lines. Values can be combined by a bitwise OR.

XD_CH0_INPUT 0 Sets the direction of the lower group (bit D3…D0) to input.

XD_CH1_INPUT 0 Sets the direction of the upper group (bit D7…D4) to input.

XD_CH0_OUTPUT 1 Sets the direction of the lower group (bit D3…D0) to output.

XD_CH1_OUTPUT 2 Sets the direction of the upper group (bit D7…D4) to output.
134 M2i.20xx / M2i.20xx-exp Manual

Option BaseXIO Different functions
Special Input Functions
This way of operating the option BaseXIO requires the lower of the above mentioned group of four lines (XIO3…XIO0) to be set as input.
The upper group can be programmed to be either input or output.

The four lower input bits then can have additional func-
tions besides working as asynchronous digital inputs:

• XIO0: additional TTL trigger ExtraTrig0 (M2i only)
• XIO1: additional TTL trigger ExtraTrig1 (M2i only)
• XIO2: RefClock for timestamp option
• XIO3: no special feature yet

All of the above mentioned special features are ex-
plained in detail in the relating section of this manual.

When using one or more of the inputs with their special features, it is still possible to sample them asynchronously as described in the section
before. So as an example when using bit 0 as an additional TTL trigger input the remaining three lines of the input group can still be used as
asynchronous digital inputs. When reading the data of the inputs all bits are sampled, even those that are used for special purposes. In these
cased the user might mask the read out digital data manually, to not receive unwanted lines.

The table below shows the direction register for the remaining upper group and the possible values. To combine the values for both groups
you can easily OR them bitwise.

Transfer Data
The outputs can be written or read by a single 32 bit register. If the register is read, the actual pin data will be sampled. Therefore reading
the lines declared as outputs gives back the generated pattern. The single bits of the digital I/O lines correspond with the number of the bit
of the 32 bit register. Values written to the three upper bytes will be ignored.

Programming Example
The following example shows, how to program the lower group to be input and the upper group to be output, and how to write and read
and interpret/mask the digital data:

Special Sampling Feature
When using the option BaseXIO in combination with the timestamp mode one can enable a special auto sampling option, that samples the
eight BaseXIO lines synchronously with each trigger event. This feature is independent of the BaseXIO line settings. For details, please refer
to the timestamp chapter in this manual.

This special sampling feature requires the Timestamp mode to be enabled.

Electrical specifications
The electrical specifications of the BaseXIO inputs and outputs can be found either in the technical data section of this manual or in the
datasheet.

Register Value Direction Description

SPC_XIO_DIRECTION 47100 read/write Defines the direction of the remaining digital I/O lines.

XD_CH0_INPUT 0 The direction of the lower group (bit D3…D0) must be set to input, when using the special features.

XD_CH1_INPUT 0 Sets the direction of the upper group (bit D7…D4) to input.

XD_CH1_OUTPUT 2 Sets the direction of the upper group (bit D7…D4) to output.

Register Value Direction Description

SPC_XIO_DIGITALIO 47110 r Reads the data directly from the pins of all digital I/O lines either if they are declared as inputs or
outputs.

SPC_XIO_DIGITALIO 47110 w Writes the data to all digital I/O lines that are declared as outputs. Bytes that are declared as inputs
will ignore the written data.

// Define direction: set Ch0 as Input and Ch1 as output
spcm_dwSetParam_i32 (hDrv, SPC_XIO_DIRECTION, XD_CH0_INPUT | XD_CH1_OUTPUT);

spcm_dwSetParam_i32 (hDrv, SPC_XIO_DIGITALIO, 0xA0); // Set all even output bits HIGH, all odd to LOW
 // The write to the inputs will be ignored
spcm_dwGetParam_i32 (hDrv, SPC_XIO_DIGITALIO, &lData); // Read back the digital data (incl. outputs)
 // Bits 7…4 will be the output value 0xA
lData = lData & (uint32) 0x0F // Mask out the output bits to have inputs only
(c) Spectrum GmbH 135

Star-Hub introduction Option Star-Hub
Option Star-Hub

Star-Hub introduction
The purpose of the Star-Hub is to extend the number of channels available for acquisition or generation by interconnecting multiple cards and
running them simultaneously. It is even possible to interconnect multiple systems using the system Star-Hubs described further below.

The Star-Hub option allows to synchronize
several cards of the M2i series that are
mounted within one host system (PC). Two
different versions are available: a small ver-
sion with 5 connectors (option SH5) for syn-
chronizing up to five cards and a big
version with 16 connectors (option SH16)
for synchronizing up to 16 cards.

Both versions are implemented as a piggy -
back module that is mounted to one of the
cards. For details on how to install several
cards including the one carrying the Star-
Hub module, please refer to the section on
hardware installation.

Either which of the two available Star-Hub
options is used, there will be no phase delay
between the sampling clocks of the synchro-
nized cards and either no delay between
the trigger events, if all synchronized cards run with the same sampling rate. Any one of the synchronized cards can be used as a clock
master and besides any card can be part of the trigger generation.

When accesinng a digitizerNETBOX multiple digitizer modules are internally synchronized using a Star-Hub also. Synchronization of the
cards and accessing the Star-Hub is done in the very exact way like a Star-Hub that is installed on a plug-in card.

Star-Hub trigger engine
The trigger bus between an M2i
card and the Star-Hub option con-
sists of three lines. Two of them
send the trigger information from
the card’s trigger engine to the
Star-Hub and one line receives the
resulting trigger from the Star-
Hub.

While the returned trigger is iden-
tical for all synchronized cards,
the sent out trigger of every single
card depends on their trigger set-
tings.

Two lines are used to send the trig-
ger from the card to the Star-Hub
to provide the possibility to use
the same OR/AND conjunctions
for the resulting synchronization
trigger like on a card that runs on its own.

By this separation all OR masks of all synchronized cards are therefore extended to one big OR mask, while all AND masks of the synchro-
nized cards are extended to one overall AND mask. This allows to combine the various trigger sources of all synchronized cards with AND
and OR conditions and so to create highly complex trigger conditions that will certainly suit your application’s needs.

For details on the card’s trigger engine and the usage of the OR/AND trigger masks please refer to the relating section of this manual.

As an option it is also possible to synchronize multiple host systems each containing one Star-Hub module. These system slaves then will simply
listen on the trigger line from the system master and distribute it to the connected cards. As this multi-system synchronization comes with some
limits on certain settings and also needs some special attention on synchronizing the application software as well, it is therefore described in
a separate section later in this manual.
136 M2i.20xx / M2i.20xx-exp Manual

Option Star-Hub Software Interface
Star-Hub clock engine
One of the cards can be the clock master for the complete
system. This can be any card of the system even one card
that does not contain the Star-Hub. As shown in the drawing
on the right the clock master can use any of its clock sources
to be broadcasted to all other cards.

All cards including the clock master itself receive the distrib-
uted clock with equal phase information. This makes sure
that there is no phase delay between the cards running with
the same speed.

Each slave card can use an additional divider on the re-
ceived Star-Hub clock. This allows to synchronize fast and
slow cards in one system.

Software Interface
The software interface is similar to the card software interface that is explained earlier in this manual. The same functions and some of the
registers are used with the Star-Hub. The Star-Hub is accessed using its own handle which has some extra commands for synchronization
setup. All card functions are programmed directly on card as before. There are only a few commands that need to be programmed directly
to the Star-Hub for synchronization.

The software interface as well as the hardware supports multiple Star-Hubs in one system. Each set of cards connected by a Star-Hub then
runs totally independent. It is also possible to mix cards that are connected with the Star-Hub with other cards that run independent in one
system.

Star-Hub Initialization
The interconnection between the Star-Hubs is probed at driver load time and does not need to be programmed separately. Instead the cards
can be accessed using a logical index. This card index is only based on the ordering of the cards in the system and is not influenced by the
current cabling. It is even possible to change the cable connections between two system starts without changing the logical card order that
is used for Star-Hub programming.

The Star-Hub initialization must be done AFTER initialization of all cards in the system. Otherwise the inter-
connection won’t be received properly.

The Star-Hubs are accessed using a special device name „sync“ followed by the index of the star-hub to access. The Star-Hub is handled
completely like a physical card allowing all functions based on the handle like the card itself.

Example with 4 cards and one Star-Hub (no error checking to keep example simple)

Example for a digitizerNETBOX with two internal digitizer/generator modules, This example is also suitable for accessing a remote server

drv_handle hSync;
drv_handle hCard[4];

for (i = 0; i < 4; i++)
 {
 sprintf (s, "/dev/spcm%d", i);
 hCard[i] = spcm_hOpen (s);
 }
hSync = spcm_hOpen ("sync0");

...

spcm_vClose (hSync);
for (i = 0; i < 4; i++)
 spcm_vClose (hCard[i]);
(c) Spectrum GmbH 137

Software Interface Option Star-Hub
with two cards installed:

When opening the Star-Hub the cable interconnection is checked. The Star-Hub may return an error if it sees internal cabling problems or if
the connection between Star-Hub and the card that holds the Star-Hub is broken. It can’t identify broken connections between Star-Hub and
other cards as it doesn’t know that there has to be a connection.

The synchronization setup is done using bit masks where one bit stands for one recognized card. All cards that are connected with a Star-
Hub are internally numbered beginning with 0. The number of connected cards as well as the connections of the star-hub can be read out
after initialization. For each card that is connected to the star-hub one can read the index of that card:

In standard systems where all cards are connected to one star-hub reading the star-hub logical index will simply return the index of the card
again. This results in bit 0 of star-hub mask being 1 when doing the setup for card 0, bit 1 in star-hub mask being 1 when setting up card 1
and so on. On such systems it is sufficient to read out the SPC_SYNC_READ_SYNCCOUNT register to check whether the star-hub has found
the expected number of cards to be connected.

In case of 4 cards in one system and all are connected with the star-hub this program excerpt will return:

Let’s see a more complex example with two Star-Hubs and one independent card in one system. Star-Hub A connects card 2, card 4 and
card 5. Star-Hub B connects card 0 and card 3. Card 1 is running completely independent and is not synchronized at all:

drv_handle hSync;
drv_handle hCard[2];

for (i = 0; i < 2; i++)
 {
 sprintf (s, "TCPIP::192.168.169.14::INST%d::INSTR", i);
 hCard[i] = spcm_hOpen (s);
 }
hSync = spcm_hOpen ("sync0");

...

spcm_vClose (hSync);
for (i = 0; i < 2; i++)
 spcm_vClose (hCard[i]);

Register Value Direction Description

SPC_SYNC_READ_NUMCONNECTORS 48991 read Number of connectors that the Star-Hub offers at max. (available with driver V5.6 or newer)

SPC_SYNC_READ_SYNCCOUNT 48990 read Number of cards that are connected to this Star-Hub

SPC_SYNC_READ_CARDIDX0 49000 read Index of card that is connected to star-hub logical index 0 (mask 0x0001)

SPC_SYNC_READ_CARDIDX1 49001 read Index of card that is connected to star-hub logical index 1 (mask 0x0002)

... read ...

SPC_SYNC_READ_CARDIDX7 49007 read Index of card that is connected to star-hub logical index 7 (mask 0x0080)

SPC_SYNC_READ_CARDIDX8 49008 read M2i only: Index of card that is connected to star-hub logical index 8 (mask 0x0100)

... read ...

SPC_SYNC_READ_CARDIDX15 49015 read M2i only: Index of card that is connected to star-hub logical index 15 (mask 0x8000)

SPC_SYNC_READ_CABLECON0 read Returns the index of the cable connection that is used for the logical connection 0. The cable connec-
tions can be seen printed on the PCB of the star-hub. Use these cable connection information in case
that there are hardware failures with the star-hub cabeling.

... 49100 read ...

SPC_SYNC_READ_CABLECON15 49115 read Returns the index of the cable connection that is used for the logical connection 15.

spcm_dwGetParam_i32 (hSync, SPC_SYNC_READ_SYNCCOUNT, &lSyncCount);
for (i = 0; i < lSyncCount; i++)
 {
 spcm_dwGetParam_i32 (hSync, SPC_SYNC_READ_CARDIDX0 + i, &lCardIdx);
 printf ("star-hub logical index %d is connected with card %d\n“, i, lCardIdx);
 }

star-hub logical index 0 is connected with card 0
star-hub logical index 1 is connected with card 1
star-hub logical index 2 is connected with card 2
star-hub logical index 3 is connected with card 3

card Star-Hub connection card handle star-hub handle card index in star-hub mask for this card in
star-hub

card 0 - /dev/spcm0 0 (of star-hub B) 0x0001
card 1 - /dev/spcm1 -
card 2 star-hub A /dev/spcm2 sync0 0 (of star-hub A) 0x0001
card 3 star-hub B /dev/spcm3 sync1 1 (of star-hub B) 0x0002
card 4 - /dev/spcm4 1 (of star-hub A) 0x0002
card 5 - /dev/spcm5 2 (of star-hub A) 0x0004
138 M2i.20xx / M2i.20xx-exp Manual

Option Star-Hub Software Interface
Now the program has to check both star-hubs:

In case of the above mentioned cabling this program excerpt will return:

For the following examples we will assume that 4 cards in one system are all connected to one star-hub to keep things easier.

Setup of Synchronization and Clock
The synchronization setup only requires two additional registers to enable the cards that are synchronized in the next run and to select a clock
master for the next run.

The enable mask is based on the logical index explained above. It is possible to just select a couple of cards for the synchronization. All other
cards then will run independently. Please be sure to always enable the card on which the star-hub is located as this one is a must for the
synchronization.

One of the enabled cards must be selected to be the clock master for the complete system. If you intend to run cards with different clock
speeds the clock master must have the highest clock as all other cards will derive their clock by dividing the master clock. The locally selected
clock source from the clock master is routed throughout the complete synchronized system.

When using external clock please be sure that the external clock stays within all limits of all synchronized
cards. Please take special care regarding the minimum and maximum frequencies as offending these may
damage components on the cards!

In our example we synchronize all four cards and select card number 2 to be the clock master:

When running the slave cards with a divided clock it is simply necessary to write the desired sampling rate to this card. The synchronization
will automatically calculate the matching divider and set up all details internally:

for (j = 0; j < lStarhubCount; j++)
 {
 spcm_dwGetParam_i32 (hSync[j], SPC_SYNC_READ_SYNCCOUNT, &lSyncCount);
 for (i = 0; i < lSyncCount; i++)
 {
 spcm_dwGetParam_i32 (hSync[j], SPC_SYNC_READ_CARDIDX0 + i, &lCardIdx);
 printf ("star-hub %c logical index %d is connected with card %d\n“, (!j ? ’A’ : ’B’), i, lCardIdx);
 }
 printf ("\n");
 }

star-hub A logical index 0 is connected with card 2
star-hub A logical index 1 is connected with card 4
star-hub A logical index 2 is connected with card 5

star-hub B logical index 0 is connected with card 0
star-hub B logical index 1 is connected with card 3

Register Value Direction Description

SPC_SYNC_ENABLEMASK 49200 read/write Mask of all cards that are enabled for the synchronization

Register Value Direction Description

SPC_SYNC_CLKMASK 49220 read/write Mask of the card that is the clock master, only one bit is allowed to be set

spcm_dwSetParam_i32 (hSync, SPC_SYNC_ENABLEMASK, 0x000F); // all 4 cards are masked
spcm_dwSetParam_i32 (hSync, SPC_SYNC_CLKMASK, 0x0004); // card 2 is selected as clock master

// set the clock master to 1 MS/s internal clock
spcm_dwSetParam_i32 (hCard[2], SPC_CLOCKMODE, SPC_CM_INTPLL);
spcm_dwSetParam_i32 (hCard[2], SPC_SAMPLERATE, MEGA(1));

// set all the slaves to run synchronously with 1 MS/s
spcm_dwSetParam_i32 (hCard[0], SPC_SAMPLERATE, MEGA(1));
spcm_dwSetParam_i32 (hCard[1], SPC_SAMPLERATE, MEGA(1));
spcm_dwSetParam_i32 (hCard[3], SPC_SAMPLERATE, MEGA(1));

// set the clock master to 1 MS/s internal clock
spcm_dwSetParam_i32 (hCard[2], SPC_CLOCKMODE, SPC_CM_INTPLL);
spcm_dwSetParam_i32 (hCard[2], SPC_SAMPLERATE, MEGA(1));

// set all the slaves to run with 100 kS/s only
spcm_dwSetParam_i32 (hCard[0], SPC_SAMPLERATE, KILO(100));
spcm_dwSetParam_i32 (hCard[1], SPC_SAMPLERATE, KILO(100));
spcm_dwSetParam_i32 (hCard[3], SPC_SAMPLERATE, KILO(100));
(c) Spectrum GmbH 139

Software Interface Option Star-Hub
The slaves can only run with a sampling rate divided from the master clock using a divider up to 8190 in
steps of two. Values that are not matching will be calculated to the nearest matching value on start of the
synchronization.

Setup of Trigger
Setting up the trigger does not need any further steps of synchronization setup. Simply all trigger settings of all cards that have been enabled
for synchronization are connected together. All trigger sources and all trigger modes can be used on synchronization as well.

Having positive edge of external trigger on card 0 to be the trigger source for the complete system needs the following setup:

Assuming that the 4 cards are analog data acquisition cards with 4 channels each we can simply setup a synchronous system with all channels
of all cards being trigger source. The following setup will show how to set up all trigger events of all channels to be OR connected. If any of
the channels will now have a signal above the programmed trigger level the complete system will do an acquisition:

Trigger Delay on synchronized cards

Please note that the trigger delay setting is not used when synchronizing cards. If you need a trigger delay
on synchronized systems it is necessary to program posttrigger, segmentsize and memsize to fulfill this task.

Run the synchronized cards
Running of the cards is very simple. The star-hub acts as one big card containing all synchronized cards. All card commands have to be
omitted directly to the star-hub which will check the setup, do the synchronization and distribute the commands in the correct order to all
synchronized cards. The same card commands can be used that are also possible for single cards:

All other commands and settings need to be send directly to the card that it refers to.

spcm_dwSetParam_i32 (hCard[0], SPC_TRIG_ORMASK, SPC_TMASK_EXT0);
spcm_dwSetParam_i32 (hCard[0], SPC_TRIG_EXT0_MODE, SPC_TM_POS);

spcm_dwSetParam_i32 (hCard[1], SPC_TRIG_ORMASK, SPC_TM_NONE);
spcm_dwSetParam_i32 (hCard[2], SPC_TRIG_ORMASK, SPC_TM_NONE);
spcm_dwSetParam_i32 (hCard[3], SPC_TRIG_ORMASK, SPC_TM_NONE);

for (i = 0; i < lSyncCount; i++)
 {
 int32 lAllChannels = (SPC_TMASK0_CH0 | SPC_TMASK0_CH1 | SPC_TMASK_CH2 | SPC_TMASK_CH3);
 spcm_dwSetParam_i32 (hCard[i], SPC_TRIG_CH_ORMASK0, lAllChannels);
 for (j = 0; j < 2; j++)
 {

 // set all channels to trigger on positive edge crossing trigger level 100
 spcm_dwSetParam_i32 (hCard[i], SPC_TRIG_CH0_MODE + j, SPC_TM_POS);
 spcm_dwSetParam_i32 (hCard[i], SPC_TRIG_CH0_LEVEL0 + j, 100);
 }
 }

Register Value Direction Description

SPC_M2CMD 100 write only Executes a command for the card or data transfer

M2CMD_CARD_RESET 1h Performs a hard and software reset of the card as explained further above

M2CMD_CARD_WRITESETUP 2h Writes the current setup to the card without starting the hardware. This command may be useful if changing some
internal settings like clock frequency and enabling outputs.

M2CMD_CARD_START 4h Starts the card with all selected settings. This command automatically writes all settings to the card if any of the set-
tings has been changed since the last one was written. After card has been started none of the settings can be
changed while the card is running.

M2CMD_CARD_ENABLETRIGGER 8h The trigger detection is enabled. This command can be either send together with the start command to enable trigger
immediately or in a second call after some external hardware has been started.

M2CMD_CARD_FORCETRIGGER 10h This command forces a trigger even if none has been detected so far. Sending this command together with the start
command is similar to using the software trigger.

M2CMD_CARD_DISABLETRIGGER 20h The trigger detection is disabled. All further trigger events are ignored until the trigger detection is again enabled.
When starting the card the trigger detection is started disabled.

M2CMD_CARD_STOP 40h Stops the current run of the card. If the card is not running this command has no effect.
140 M2i.20xx / M2i.20xx-exp Manual

Option Star-Hub Software Interface
This example shows the complete setup and synchronization start for our four cards:

Using one of the wait commands for the Star-Hub will return as soon as the card holding the Star-Hub has
reached this state. However when synchronizing cards with different sampling rates or different memory siz-
es there may be other cards that still haven’t reached this level.

Error Handling
The Star-Hub error handling is similar to the card error handling and uses the function spcm_dwGetErrorInfo_i32. Please see the example in
the card error handling chapter to see how the error handling is done.

Excluding cards from trigger synchronization
When synchronizing cards with the Star-Hub option it is possible and most likely to synchronize clock and trigger. For some applications it
can be useful to synchronize the sampling clock only for one or multiple cards. This can be useful, when acquisition cards are synchronized
together with one or multiple generation cards. When these cards are used to feed a DUT (device under test) with signals and the result/re-
action is to be recorded, it is often necessary that the generation is in progress before the acquisition can begin.

For such applications it is possible to exclude one or multiple of the synchronized cards from receiving the Star-Hub trigger:

The following example shows, how to exclude certain cards from receiving the synchronization trigger:

By default all cards that are enabled for synchronization are set to take part in clock and trigger synchronization.

SH-Direct: using the Star-Hub clock directly without synchronization
Starting with driver version 1.26 build 1754 it is possible to use the clock from the Star-Hub just like an external clock and running one or
more cards totally independent of the synchronized card. The mode is by example useful if one has one or more output cards that run con-
tinuously in a loop and are synchronized with Star-Hub and in addition to this one or more acquisition cards should make multiple acquisitions
but using the same clock.

For all M2i cards is is also possible to run the „slave“ cards with a divided clock. Therefore please program a desired divided sampling rate
in the SPC_SAMPLERATE register (example: running the Star-Hub card with 10 MS/s and the independent cards with 1 MS/s). The sampling
rate is automatically adjusted by the driver to the next matching value.

spcm_dwSetParam_i32 (hSync, SPC_SYNC_ENABLEMASK, 0x000F); // all 4 cards are masked
spcm_dwSetParam_i32 (hSync, SPC_SYNC_CLKMASK, 0x0004); // card 2 is selected as clock master

// to keep it easy we set all card to the same clock and disable trigger
for (i = 0; i < 4; i++)
 {
 spcm_dwSetParam_i32 (hCard[i], SPC_CLOCKMODE, SPC_CM_INTPLL);
 spcm_dwSetParam_i32 (hCard[i], SPC_SAMPLERATE, MEGA(1));
 spcm_dwSetParam_i32 (hCard[i], SPC_TRIG_ORMASK, SPC_TM_NONE);
 }

// card 0 is trigger master and waits for external positive edge
spcm_dwSetParam_i32 (hCard[0], SPC_TRIG_ORMASK, SPC_TMASK_EXT0);
spcm_dwSetParam_i32 (hCard[0], SPC_TRIG_EXT0_MODE, SPC_TM_POS);

// start the cards and wait for them a maximum of 1 second to be ready
spcm_dwSetParam_i32 (hSync, SPC_TIMEOUT, 1000);
spcm_dwSetParam_i32 (hSync, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER);
if (spcm_dwSetParam_i32 (hSync, SPC_M2CMD, M2CMD_CARD_WAITREADY) == ERR_TIMEOUT)
 printf ("Timeout occured - no trigger received within time\n")

Register Value Direction Description

SPC_SYNC_NOTRIGSYNCMASK 49210 read/write Bitmask that defines which of the connected cards is using its own trigger engine as trigger source
instead of using the synchronization trigger. If set to 1, a card only uses the synchronization clock,
when set to 0 the card uses also the synchronization trigger. By default this mask is set to 0 for all
cards.

spcm_dwSetParam_i32 (hSync, SPC_SYNC_NOTRIGSYNCMASK, 0x00000005); // Exclude cards 0 and 2 from sync trigger
(c) Spectrum GmbH 141

Software Interface Option Star-Hub
What is necessary?
• All cards need to be connected to the Star-Hub
• The card(s) that should run independently can not hold the Star-Hub
• The card(s) with the Star-Hub must be setup to synchronization even if it’s only one card
• The synchronized card(s) have to be started prior to the card(s) that run with the direct Star-Hub clock

Setup
At first all cards that should run synchronized with the Star-Hub are set-up exactly as explained before. The card(s) that should run indepen-
dently and use the Star-Hub clock need to use the following clock mode:

When using SH_Direct mode, the register call to SPC_CLOCKMODE enabling this mode must be written before
initiating a card start command to any of the connected cards. Also it is not allowed to be modified later in
the programming sequence to prevent the driver from calculating wrong sample rates.

Example
In this example we have one generator card with the Star-Hub mounted running in a continuous loop and one acquisition card running inde-
pendently using the SH-Direct clock.

Register Value Direction Description

SPC_CLOCKMODE 20200 read/write Defines the used clock mode

SPC_CM_SHDIRECT 128 Uses the clock from the Star-Hub as if this was an external clock

// setup of the generator card
spcm_dwSetParam_i32 (hCard[0], SPC_CARDMODE, SPC_REP_STD_SINGLE);
spcm_dwSetParam_i32 (hCard[0], SPC_LOOPS, 0); // infinite data replay
spcm_dwSetParam_i32 (hCard[0], SPC_CLOCKMODE, SPC_CM_INTPLL);
spcm_dwSetParam_i32 (hCard[0], SPC_SAMPLERATE, MEGA(1));
spcm_dwSetParam_i32 (hCard[0], SPC_TRIG_ORMASK, SPC_TM_SOFTWARE);

spcm_dwSetParam_i32 (hSync, SPC_SYNC_ENABLEMASK, 0x0001); // card 0 is the generator card
spcm_dwSetParam_i32 (hSync, SPC_SYNC_CLKMASK, 0x0001); // only for M2i/M3i cards: set ClkMask

// Setup of the acquisition card (waiting for external trigger)
spcm_dwSetParam_i32 (hCard[1], SPC_CARDMODE, SPC_REC_STD_SINGLE);
spcm_dwSetParam_i32 (hCard[1], SPC_CLOCKMODE, SPC_CM_SHDIRECT);
spcm_dwSetParam_i32 (hCard[1], SPC_SAMPLERATE, MEGA(1));
spcm_dwSetParam_i32 (hCard[1], SPC_TRIG_ORMASK, SPC_TMASK_EXT0);
spcm_dwSetParam_i32 (hCard[1], SPC_TRIG_EXT0_MODE, SPC_TM_POS);

// now start the generator card (sync!) first and then the acquisition card
spcm_dwSetParam_i32 (hSync, SPC_TIMEOUT, 1000);
spcm_dwSetParam_i32 (hSync, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER);

// start first acquisition
spcm_dwSetParam_i32 (hCard[1], SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER | M2CMD_CARD_WAITREADY);

// process data

// start next acquistion
spcm_dwSetParam_i32 (hCard[1], SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER | M2CMD_CARD_WAITREADY);

// process data
142 M2i.20xx / M2i.20xx-exp Manual

Option System Star-Hub Overview
Option System Star-Hub

Overview
For the synchronization of several systems which each other, special system Star-Hubs are available. Besides their capability to synchronize
systems which each other, they can also work as complete standard Star-Hubs as explained above.

Two different versions are
available: a master system
Star-Hub and a slave system-
Star-Hub. When using the sys-
tem synchronization feature
the slave systems simply act
as slaves only receiving clock
and trigger information. The
master system must generate
these clock and trigger infor-
mation and routes them to all
slave systems. All cables are
made of equal length mini-
mizing any phase delay be-
tween the different channels.

An installed master system can be extended by further systems at any time until the maximum number of systems is reached. Each of the slave
systems as well as the master system can be extended by further cards until the maximum number of cards per system is reached.

Cabling the system components

Setting up the master system
A master system Star-Hub setup consists of at
least one M2i card equipped with a Star-Hub
piggy-back module for connecting all the cards
within same master PC system (including the
carrier card itself).
The master system piggy-back module is
equipped with four MMCX connectors to input
and output clock and trigger information.

Additionally a clock and trigger distribution
card (either PCI or PCI Express) must be in-
stalled, that takes the clock and trigger infor-
mation from the Star-Hub piggy-back module
and creates seventeen copies of both clock
and trigger. All copies are available on its PCI
bracket through MMCX miniature coaxial con-
nectors.

The SMB inputs of the distribution card are on
its backside and must be connected to the
proper connectors on the Star-Hubbb piggy-
back module, as shown on the drawing on the
right. For these two connections, two 50 cm
long cables with MMCX 90° right-angle con-
nectors on one side and SMB connectors on
the other side are provided.

For feeding in the returned clock and trigger
signals from the distribution card an additional
PCI bracket that holds two SMB connectors
must be installed. The drawing illustrates a M2i
PCI card connected to a PCI system distribution
card, but either card can of course be PCI or
PCI Express.

Any additional cards within the master system are then connected internally to the Star-Hub by using the provided flat-ribbon cables. This
connection does not differ from setting up a Star-Hub system, without the system synchronization feature.
(c) Spectrum GmbH 143

Cabling the system components Option System Star-Hub
The distribution card itself only uses the bus connector to draw the required power, no bus access to the de-
vice is needed. Therefore this card will not be detected by the operating system and does not need any drivers
to be installed.

Setting up slave systems
A slave system Star-Hub setup consists of at
least one M2i card equipped with a Star-Hub
piggy-back module for connecting all the cards
within same slave PC system (including the car-
rier card itself).
The slave system piggy-back module is
equipped with two MMCX connectors to input
clock and trigger information.

For feeding in the returned clock and trigger
signals from the distribution card in the master
system an additional PCI bracket, that holds
two SMB connectors, must be installed.

Any additional cards within the slave system
are then connected internally to the Star-Hub
by using the provided flat-ribbon cables.

This connection does not differ from setting up
a Star-Hub system, without the system synchro-
nization feature.

Connecting the systems
All systems to be synchronized must be connected to the clock
and trigger distribution card, that is mounted within the master
system. The distribution card provides up to 17 copies of the trig-
ger and clock signal coming from the master. For each slave sys-
tem (and also for loopback to the master system itself) two MMCX
to SMB connection cables of identical length are required. The
standard cable length provided is 2 m. Please contact Spectrum
if your application requires different cable lengths.

The 34 MMCX connectors on the bracket are divided up into two
groups with 17 connectors each, labeld „To“ or „Trigger“ for the
trigger outputs and „Co“ or „Clock“ for the clock outputs.

Use the provided cables to connect the SMB connectors on the
Trigger/Clock input bracket of each system to connect to the one
matching connector of the distribution card. Which of the 17 out-
put connectors you use is not of importance, but make sure the
clock outputs are only connected to the clock inputs, and trigger
outputs are only connected to trigger inputs.
144 M2i.20xx / M2i.20xx-exp Manual

Option System Star-Hub Programming
Programming

Necessary setup steps
For setting up multiple systems (with likely multiple cards per system) to be synchronized via system Star-Hub, the following steps must be
followed:

• 1. Configure all cards in all systems
• Clock setup
• Trigger setup
• Channel setup
• ...

• 2. Configure all Star-Hubs (in all systems)
• One card connected to system Star-Hub master must be set as clock master
• One or multiple cards connected to system Star-Hub master must be setup to generate trigger events
• Star-Hubs must be set to desired synchronization mode to take only clock or clock and trigger from system Star-Hub distribution

• 3. Transfer setup to system master Star-Hub card to have sampling clocks active before starting the slaves (M2CMD_CARD_WRITESETUP)
• 4. Start all system slave Star-Hubs (preferably in a non-blocking manner, so without M2CMD_CARD_WAITREADY)
• 5. Finally start master Star-Hub (preferably in a blocking manner with M2CMD_CARD_WAITREADY)
• 6. Make sure that also all slaves are ready by proper status polling (waiting for M2STAT_CARD_READY)
• 7. Read out and process/store data from all cards in all systems
• 8. Do another acquisition

• No change in setup: go to step 4
• Change of setup: go to step 1

The programming examples and steps shown in this chapter only deal with the programming of each of the
systems on each own. No techniques are shown for any inter-system software communication. Synchronizing
the software threads on the different systems is solely the users responsibility.

Select synchronization mode
Using the system Star-Hub requires to set the synchronization mode for each participating Star-Hub to either use clock information only or to
use clock and trigger information:

Because the synchronization mode affects all cards connected to a Star-Hub, this register is written to the Star-Hub handle itself, instead to
the single cards:

The system Star-Hub distribution consists of two 1to17 low jitter, low skew buffers to generate the copies routed to all slave systems and the
master itself. These buffers generate a certain delay caused by the propagation delay of the buffers. Additionally also all cables involved add
a certain delay. When not only using clock synchronization but also wanting the triggers on all slaves also to be synchronized the user must
define the clock edge used to sample the received trigger event.

The best matching clock edge depends on the selected sample rate and the total delay. The below mentioned sample rate values assume
external cables of 2 m length to be used to connect the systems to the distribution card. If your setup differs please contact Spectrum for further
information:

Register Value Direction Description

SPC_AVAILSYNC_MODES 49231 read only Read out the available synchronization modes for the Star-Hub

SPC_SYNC_MODE 49230 read/write Defines the synchronization mode for the Star-Hub

SPC_SYNC_STANDARD 1h Addressed Star-Hub uses its own clock and trigger sources and does not participate in system wide synchroniza-
tion (default).

SPC_SYNC_SYSTEMCLOCK 2h Addressed Star-Hub uses its own trigger sources but takes the clock from the system distribution card.

SPC_SYNC_SYSTEMCLOCKTRIG 4h Addressed Star-Hub takes clock and trigger from the system Star-Hub distribution. The returned trigger signal will
be sampled on the rising clock edge.

SPC_SYNC_SYSTEMCLOCKTRIGN 8h Addressed Star-Hub takes clock and trigger from the system Star-Hub distribution. The returned trigger signal will
be sampled on the falling clock edge, to avoid timing issues with certain sampling rates.

drv_handle hSync;
hSync = spcm_hOpen ("sync0");
...
spcm_dwSetParam_i32 (hSync, SPC_SYNC_MODE, SPC_SYNC_SYSTEMCLOCKTRIG); // system clock and trigger used
...
spcm_vClose (hSync);

Lower/higher range of chosen sample rate SPC_SYNC_MODE
DC 40.0 MHz SPC_SYNC_SYSTEMCLOCKTRIG
40.0 MHz 60.0 MHz SPC_SYNC_SYSTEMCLOCKTRIGN
60.0 MHz 80.0 MHz SPC_SYNC_SYSTEMCLOCKTRIG
80.0 MHz 100.0 MHz SPC_SYNC_SYSTEMCLOCKTRIGN
100.0 MHz 125.0 MHz SPC_SYNC_SYSTEMCLOCKTRIG
(c) Spectrum GmbH 145

Programming Option System Star-Hub
Compensate injected trigger delays
Due to the combinatorial nature of the distribution card, it injects a certain fixed delay to the distributed trigger events. Depending on the
selected sample rate and the selected trigger sampling edge (either rising edge with using SPC_SYNC_SYSTEMCLOCKTRIG or falling edge
using SPC_SYNC_SYSTEMCLOCKTRIGN) the distributed event might take longer than the sampling period and therefore race the next clock
edge resulting in a shifted trigger position.

To compensate for the possible delays the user cad adjust the trigger position:

By default the trigger position (compared to not using the system trigger synchronization) is delayed by 4 samples. This delay can easily be
compensated by properly incrementing the pre-trigger area by 4 samples and also decrementing the post-trigger area by the same 4 samples.

To compensate for a shorter delay caused by a returned trigger event racing one or two clock edges, additional compensation is required.
The below mentioned sample rate values assume external cables of 2 m length to be used to connect the systems to the distribution card. If
your setup differs please contact Spectrum for further information:

Because the delay compensation affects all cards connected to a Star-Hub, this register is written to the Star-Hub handle itself, instead to the
single cards.

Programming example
To show the required steps when programming the system Star-Hub you’ll find a stripped down simplified example on the included USB-Stick.
This C++ example is also available from the Spectrum homepage.

For simplicity this „rec_std_system_sync“ example assumes that at least one "system Star-Hub master" and one "system Star-Hub slave" are
both installed in the same PC system, to gain easy software access to both devices without the need for inter-system software communication.
Such a setup is rather unlikely for real-world use, because such setup would render the usage of a system Star-Hub over a standard Star-Hub
rather useless.

Register Value Direction Description

SPC_SYNC_SYSTEM_TRIGADJUST 49240 read/write Register to adjusting trigger position and therefore compensating for certain combinatorial delays
when using system Star-Hub. Default value is 4. Only values of 4, 3 and 2 are allowed.

Lower/higher range of chosen sample rate Trigger delay caused by Sys-
tem Star-Hub distribution

Adjustment value written to
SPC_SYNC_SYSTEM_TRIGADJUST

Total trigger delay (no adjusted
pre/post trigger values

Total trigger delay (pre/post
trigger values adjusted(

DC 60.0 MHz 4 4 4 0
60.0 MHz 100.0 MHz 3 3 4 0
100 MHz 125.0 MHz 2 2 4 0

spcm_dwSetParam_i32 (hSync, SPC_SYNC_SYSTEM_TRIGADJUST, 3); // reduce the default delay of 4 by one sample
146 M2i.20xx / M2i.20xx-exp Manual

Option Remote Server Introduction
Option Remote Server

Introduction
Using the Spectrum Remote Server (order code
 -SPc-RServer) it is possible to access the
M2i/M3i/M4i/M4x/M2p card(s) installed in one
PC (server) from another PC (client) via local area
network (LAN), similar to using a digitizerNETBOX
or generatorNETBOX.

It is possible to use different operating systems on
both server and client. For example the Remote Serv-
er is running on a Linux system and the client is ac-
cessing them from a Windows system.

The Remote Server software requires, that the option
„-SPc-RServer“ is installed on at least one card in-
stalled within the server side PC. You can either
check this with the Control Center in the "Installed
Card features" node or by reading out the feature register, as described in the „Installed features and options“ passage, earlier in this manual.

To run the Remote Server software, it is required to have least version 3.18 of the Spectrum SPCM driver in-
stalled. Additionally at least on one card in the server PC the feature flag SPCM_FEAT_REMOTESERVER must
be set.

Installing and starting the Remote Server

Windows
Windows users find the Control Center installer on the USB-Stick under „In-
stall\win\spcm_remote_install.exe“.
After the installation has finished there will be a new start menu entry in the
Folder "Spectrum GmbH" to start the Remote Server. To start the Remote Server
automatically after login, just copy this shortcut to the Autostart directory.

Linux
Linux users find the versions of the installer for the different StdC libraries under
under /Install/linux/spcm_control_center/ as RPM packages.

To start the Remote Server type "spcm_remote_server" (without quotation
marks). To start the Remote Server automatically after login, add the following
line to the .bashrc or .profile file (depending on the used Linux distribution) in
the user's home directory:

Detecting the digitizerNETBOX
Before accessing the digitizerNETBOX/generatorNETBOX one has to determine the IP address of the digitizerNETBOX/generatorNETBOX.
Normally that can be done using one of the two methods described below:

Discovery Function
The digitizerNETBOX/generatorNETBOX responds to the VISA described Discovery function. The next chapter will show how to install and
use the Spectrum control center to execute the discovery function and to find the Spectrum hardware. As the discovery function is a standard
feature of all LXI devices there are other software packages that can find the digitizerNETBOX/generatorNETBOX using the discovery func-
tion:

• Spectrum control center (limited to Spectrum remote products)
• free LXI System Discovery Tool from the LXI consortium (www.lxistandard.org)
• Measurement and Automation Explorer from National Instruments (NI MAX)
• Keysight Connection Expert from Keysight Technologies

spcm_remote_server&
(c) Spectrum GmbH 147

Detecting the digitizerNETBOX Option Remote Server
Additionally the discovery procedure can also be started from ones own specific application:

Finding the digitizerNETBOX/generatorNETBOX in the network
As the digitizerNETBOX/generatorNETBOX is a standard network device it has its own IP address and host name and can be found in the
computer network. The standard host name consist of the model type and the serial number of the digitizerNETBOX/generatorNETBOX. The
serial number is also found on the type plate on the back of the digitizerNETBOX/generatorNETBOX chassis.

As default DHCP (IPv4) will be used and an IP address will be automatically set. In case no DHCP server is found, an IP will be obtained
using the AutoIP feature. This will lead to an IPv4 address of 169.254.x.y (with x and y being assigned to a free IP in the network) using a
subnet mask of 255.255.0.0.

The default IP setup can also be restored, by using the „LAN Reset“ button on the device.

If a fixed IP address should be used instead, the parameters need to be set according to the current LAN requirements.

Windows 7, Windows 8, Windows 10
Under Windows 7, Windows 8 and
Windows 10 the digitizerNETBOX and
generatorNETBOX devices are listed under the
„other devices“ tree with their given host name.

A right click on the digitizerNETBOX or
generatorNETBOX device opens the properties
window where you find further information on the
device including the IP address.

From here it is possible to go the website of the
device where all necessary information are found
to access the device from software.

#define TIMEOUT_DISCOVERY 5000 // timeout value in ms

const uint32 dwMaxNumRemoteCards = 50;

char* pszVisa[dwMaxNumRemoteCards] = { NULL };
char* pszIdn[dwMaxNumRemoteCards] = { NULL };

const uint32 dwMaxIdnStringLen = 256;
const uint32 dwMaxVisaStringLen = 50;

// allocate memory for string list
for (uint32 i = 0; i < dwMaxNumRemoteCards; i++)
 {
 pszVisa[i] = new char [dwMaxVisaStringLen];
 pszIdn[i] = new char [dwMaxIdnStringLen];
 memset (pszVisa[i], 0, dwMaxVisaStringLen);
 memset (pszIdn[i], 0, dwMaxIdnStringLen);
 }

// first make discovery - check if there are any LXI compatible remote devices
dwError = spcm_dwDiscovery ((char**)pszVisa, dwMaxNumRemoteCards, dwMaxVisaStringLen, TIMEOUT_DISCOVERY);

// second: check from which manufacturer the devices are
spcm_dwSendIDNRequest ((char**)pszIdn, dwMaxNumRemoteCards, dwMaxIdnStringLen);

// Use the VISA strings of these devices with Spectrum as manufacturer
// for accessing remote devices without previous knowledge of their IP address
148 M2i.20xx / M2i.20xx-exp Manual

Option Remote Server Accessing remote cards
Troubleshooting
If the above methods do not work please try one of the following steps:

• Ask your network administrator for the IP address of the digitizerNETBOX/generatorNETBOX and access it directly over the IP address.
• Check your local firewall whether it allows access to the device and whether it allows to access the ports listed in the technical data sec-

tion.
• Check with your network administrator whether the subnet, the device and the ports that are listed in the technical data section are acces-

sible from your system due to company security settings.

Accessing remote cards
To detect remote card(s) from the client PC, start the Spectrum Control Center on the client and click "Netbox Discovery". All discovered cards
will be listed under the "Remote" node.

Using remote cards instead of using local ones is as easy as using a digitizerNETBOX and only requires a few lines of code to be changed
compared to using local cards.

Instead of opening two locally installed cards like this:

one would call spcm_hOpen() with a VISA string as a parameter instead:

to open cards on the Remote Server PC with the IP address 192.168.1.2. The driver will take care of all the network communication.

hDrv0 = spcm_hOpen ("/dev/spcm0"); // open local card spcm0
hDrv1 = spcm_hOpen ("/dev/spcm1"); // open local card spcm1

hDrv0 = spcm_hOpen ("TCPIP::192.168.1.2::inst0::INSTR"); // open card spcm0 on a Remote Server PC
hDrv1 = spcm_hOpen ("TCPIP::192.168.1.2::inst1::INSTR"); // open card spcm1 on a Remote Server PC
(c) Spectrum GmbH 149

Error Codes Appendix
Appendix

Error Codes
The following error codes could occur when a driver function has been called. Please check carefully the allowed setup for the register and
change the settings to run the program.

error name value (hex) value (dec.) error description
ERR_OK 0h 0 Execution OK, no error.
ERR_INIT 1h 1 An error occurred when initializing the given card. Either the card has already been opened by another process or an

hardware error occurred.
ERR_TYP 3h 3 Initialization only: The type of board is unknown. This is a critical error. Please check whether the board is correctly

plugged in the slot and whether you have the latest driver version.
ERR_FNCNOTSUPPORTED 4h 4 This function is not supported by the hardware version.
ERR_BRDREMAP 5h 5 The board index re map table in the registry is wrong. Either delete this table or check it carefully for double values.
ERR_KERNELVERSION 6h 6 The version of the kernel driver is not matching the version of the DLL. Please do a complete re-installation of the hard-

ware driver. This error normally only occurs if someone copies the driver library and the kernel driver manually.
ERR_HWDRVVERSION 7h 7 The hardware needs a newer driver version to run properly. Please install the driver that was delivered together with

the card.
ERR_ADRRANGE 8h 8 One of the address ranges is disabled (fatal error), can only occur under Linux.
ERR_INVALIDHANDLE 9h 9 The used handle is not valid.
ERR_BOARDNOTFOUND Ah 10 A card with the given name has not been found.
ERR_BOARDINUSE Bh 11 A card with given name is already in use by another application.
ERR_EXPHW64BITADR Ch 12 Express hardware version not able to handle 64 bit addressing -> update needed.
ERR_FWVERSION Dh 13 Firmware versions of synchronized cards or for this driver do not match -> update needed.
ERR_SYNCPROTOCOL Eh 14 Synchronization protocol versions of synchronized cards do not match -> update needed
ERR_LASTERR 10h 16 Old error waiting to be read. Please read the full error information before proceeding. The driver is locked until the

error information has been read.
ERR_BOARDINUSE 11h 17 Board is already used by another application. It is not possible to use one hardware from two different programs at the

same time.
ERR_ABORT 20h 32 Abort of wait function. This return value just tells that the function has been aborted from another thread. The driver

library is not locked if this error occurs.
ERR_BOARDLOCKED 30h 48 The card is already in access and therefore locked by another process. It is not possible to access one card through

multiple processes. Only one process can access a specific card at the time.
ERR_DEVICE_MAPPING 32h 50 The device is mapped to an invalid device. The device mapping can be accessed via the Control Center.
ERR_NETWORKSETUP 40h 64 The network setup of a digitizerNETBOX has failed.
ERR_NETWORKTRANSFER 41h 65 The network data transfer from/to a digitizerNETBOX has failed.
ERR_FWPOWERCYCLE 42h 66 Power cycle (PC off/on) is needed to update the card's firmware (a simple OS reboot is not sufficient !)
ERR_NETWORKTIMEOUT 43h 67 A network timeout has occurred.
ERR_BUFFERSIZE 44h 68 The buffer size is not sufficient (too small).
ERR_RESTRICTEDACCESS 45h 69 The access to the card has been intentionally restricted.
ERR_INVALIDPARAM 46h 70 An invalid parameter has been used for a certain function.
ERR_TEMPERATURE 47h 71 The temperature of at least one of the card’s sensors measures a temperature, that is too high for the hardware.

ERR_REG 100h 256 The register is not valid for this type of board.
ERR_VALUE 101h 257 The value for this register is not in a valid range. The allowed values and ranges are listed in the board specific docu-

mentation.
ERR_FEATURE 102h 258 Feature (option) is not installed on this board. It’s not possible to access this feature if it’s not installed.
ERR_SEQUENCE 103h 259 Command sequence is not allowed. Please check the manual carefully to see which command sequences are possible.
ERR_READABORT 104h 260 Data read is not allowed after aborting the data acquisition.
ERR_NOACCESS 105h 261 Access to this register is denied. This register is not accessible for users.
ERR_TIMEOUT 107h 263 A timeout occurred while waiting for an interrupt. This error does not lock the driver.
ERR_CALLTYPE 108h 264 The access to the register is only allowed with one 64 bit access but not with the multiplexed 32 bit (high and low dou-

ble word) version.
ERR_EXCEEDSINT32 109h 265 The return value is int32 but the software register exceeds the 32 bit integer range. Use double int32 or int64 accesses

instead, to get correct return values.
ERR_NOWRITEALLOWED 10Ah 266 The register that should be written is a read-only register. No write accesses are allowed.
ERR_SETUP 10Bh 267 The programmed setup for the card is not valid. The error register will show you which setting generates the error mes-

sage. This error is returned if the card is started or the setup is written.
ERR_CLOCKNOTLOCKED 10Ch 268 Synchronization to external clock failed: no signal connected or signal not stable. Please check external clock or try to

use a different sampling clock to make the PLL locking easier.
ERR_MEMINIT 10Dh 269 On-board memory initialization error. Power cycle the PC and try another PCIe slot (if possible). In case that the error

persists, please contact Spectrum support for further assistance.
ERR_POWERSUPPLY 10Eh 270 On-board power supply error. Power cycle the PC and try another PCIe slot (if possible). In case that the error persists,

please contact Spectrum support for further assistance.
ERR_ADCCOMMUNICATION 10Fh 271 Communication with ADC failed.P ower cycle the PC and try another PCIe slot (if possible). In case that the error per-

sists, please contact Spectrum support for further assistance.
ERR_CHANNEL 110h 272 The channel number may not be accessed on the board: Either it is not a valid channel number or the channel is not

accessible due to the current setup (e.g. Only channel 0 is accessible in interlace mode)
ERR_NOTIFYSIZE 111h 273 The notify size of the last spcm_dwDefTransfer call is not valid. The notify size must be a multiple of the page size of

4096. For data transfer it may also be a fraction of 4k in the range of 16, 32, 64, 128, 256, 512, 1k or 2k. For ABA
and timestamp the notify size can be 2k as a minimum.

ERR_RUNNING 120h 288 The board is still running, this function is not available now or this register is not accessible now.
ERR_ADJUST 130h 304 Automatic card calibration has reported an error. Please check the card inputs.
ERR_PRETRIGGERLEN 140h 320 The calculated pretrigger size (resulting from the user defined posttrigger values) exceeds the allowed limit.
ERR_DIRMISMATCH 141h 321 The direction of card and memory transfer mismatch. In normal operation mode it is not possible to transfer data from

PC memory to card if the card is an acquisition card nor it is possible to transfer data from card to PC memory if the
card is a generation card.

ERR_POSTEXCDSEGMENT 142h 322 The posttrigger value exceeds the programmed segment size in multiple recording/ABA mode. A delay of the multiple
recording segments is only possible by using the delay trigger!

ERR_SEGMENTINMEM 143h 323 Memsize is not a multiple of segment size when using Multiple Recording/Replay or ABA mode. The programmed seg-
ment size must match the programmed memory size.

ERR_MULTIPLEPW 144h 324 Multiple pulsewidth counters used but card only supports one at the time.
150 M2i.20xx / M2i.20xx-exp Manual

Appendix Error Codes

Spectrum Knowledge Base
You will also find additional help and information in our knowledge base available on our website:

https://spectrum-instrumentation.com/en/knowledge-base-overview

ERR_NOCHANNELPWOR 145h 325 The channel pulsewidth on this card can’t be used together with the OR conjunction. Please use the AND conjunction
of the channel trigger sources.

ERR_ANDORMASKOVRLAP 146h 326 Trigger AND mask and OR mask overlap in at least one channel. Each trigger source can only be used either in the
AND mask or in the OR mask, no source can be used for both.

ERR_ANDMASKEDGE 147h 327 One channel is activated for trigger detection in the AND mask but has been programmed to a trigger mode using an
edge trigger. The AND mask can only work with level trigger modes.

ERR_ORMASKLEVEL 148h 328 One channel is activated for trigger detection in the OR mask but has been programmed to a trigger mode using a
level trigger. The OR mask can only work together with edge trigger modes.

ERR_EDGEPERMOD 149h 329 This card is only capable to have one programmed trigger edge for each module that is installed. It is not possible to
mix different trigger edges on one module.

ERR_DOLEVELMINDIFF 14Ah 330 The minimum difference between low output level and high output level is not reached.
ERR_STARHUBENABLE 14Bh 331 The card holding the star-hub must be enabled when doing synchronization.
ERR_PATPWSMALLEDGE 14Ch 332 Combination of pattern with pulsewidth smaller and edge is not allowed.
ERR_PCICHECKSUM 203h 515 The check sum of the card information has failed. This could be a critical hardware failure. Restart the system and

check the connection of the card in the slot.
ERR_MEMALLOC 205h 517 Internal memory allocation failed. Please restart the system and be sure that there is enough free memory.
ERR_EEPROMLOAD 206h 518 Timeout occurred while loading information from the on-board EEProm. This could be a critical hardware failure.

Please restart the system and check the PCI connector.
ERR_CARDNOSUPPORT 207h 519 The card that has been found in the system seems to be a valid Spectrum card of a type that is supported by the driver

but the driver did not find this special type internally. Please get the latest driver from
www.spectrum-instrumentation.com and install this one.

ERR_CONFIGACCESS 208h 520 Internal error occured during config writes or reads. Please contact Spectrum support for further assistance.
ERR_FIFOHWOVERRUN 301h 769 Hardware buffer overrun in FIFO mode. The complete on-board memory has been filled with data and data wasn’t

transferred fast enough to PC memory. If acquisition speed is smaller than the theoretical bus transfer speed please
check the application buffer and try to improve the handling of this one.

ERR_FIFOFINISHED 302h 770 FIFO transfer has been finished, programmed data length has been transferred completely.
ERR_TIMESTAMP_SYNC 310h 784 Synchronization to timestamp reference clock failed. Please check the connection and the signal levels of the reference

clock input.
ERR_STARHUB 320h 800 The auto routing function of the Star-Hub initialization has failed. Please check whether all cables are mounted cor-

rectly.
ERR_INTERNAL_ERROR FFFFh 65535 Internal hardware error detected. Please check for driver and firmware update of the card.

error name value (hex) value (dec.) error description
(c) Spectrum GmbH 151

Continuous memory for increased data transfer rate
Continuous memory for increased data transfer rate

The continuous memory buffer has been added to the driver version 1.36. The continuous buffer is not avail-
able in older driver versions. Please update to the latest driver if you wish to use this function.

Background
All modern operating systems use a very complex memory management strategy that strictly separates between physical memory, kernel mem-
ory and user memory. The memory management is based on memory pages (normally 4 kByte = 4096 Bytes). All software only sees virtual
memory that is translated into physical memory addresses by a memory management unit based on the mentioned pages.

This will lead to the circumstance that although a user program allocated a larger memory block (as an example 1 MByte) and it sees the
whole 1 MByte as a virtually continuous memory area this memory is physically located as spread 4 kByte pages all over the physical memory.
No problem for the user program as the memory management unit will simply translate the virtual continuous addresses to the physically
spread pages totally transparent for the user program.

When using this virtual memory for a DMA transfer things become more complicated. The DMA engine of any hardware can only access
physical addresses. As a result the DMA engine has to access each 4 kByte page separately. This is done through the Scatter-Gather list. This
list is simply a linked list of the physical page addresses which represent the user buffer. All translation and set-up of the Scatter-Gather list is
done inside the driver without being seen by the user. Although the Scatter-Gather DMA transfer is an advanced and powerful technology it
has one disadvantage: For each transferred memory page of data it is necessary to also load one Scatter-Gather entry (which is 16 bytes on
32 bit systems and 32 bytes on 64 bit systems). The little overhead to transfer (16/32 bytes in relation to 4096 bytes, being less than one
percent) isn’t critical but the fact that the continuous data transfer on the bus is broken up every 4096 bytes and some different addresses
have to be accessed slow things down.

The solution is very simple: everything works faster if the user buffer is not only virtually continuous but also physically continuous. Unfortu-
nately it is not possible to get a physically continuous buffer for a user program. Therefore the kernel driver has to do the job and the user
program simply has to read out the address and the length of this continuous buffer. This is done with the function spcm_dwGetContBuf as
already mentioned in the general driver description. The desired length of the continuous buffer has to be programmed to the kernel driver
for load time and is done different on the different operating systems. Please see the following chapters for more details.

Next we’ll see some measuring results of the data transfer rate with/without continuous buffer. You will find more results on different mother-
boards and systems in the application note number 6 „Bus Transfer Speed Details“. Also with newer M4i/M4x/M2p cards the gain in speed
is not as impressive, as it is for older cards, but can be useful in certain applications and settings. As this is also system dependent, your
improvements may vary.
152 M2i.20xx / M2i.20xx-exp Manual

Continuous memory for increased data transfer rate
Bus Transfer Speed Details (M2i/M3i cards in an example system)

Bus Transfer Standard Read/Write Transfer Speed Details (M4i.44xx card in an example system)

Bus Transfer FIFO Read Transfer Speed Details (M4i.44xx card in an example system)

Bus Transfer FIFO Read Transfer Speed Details (M2p.5942 card in an example system)

Setup on Linux systems
On Linux systems the continuous buffer setting is done via the command line argument contmem_mb when loading the kernel driver module:

As memory allocation is organized completely different compared to Windows the amount of data that is available for a continuous DMA
buffer is unfortunately limited to a maximum of 8 MByte. On most systems it will even be only 4 MBytes.

Setup on Windows systems
The continuous buffer settings is done with the Spectrum Control Center us-
ing a setup located on the „Support“ page. Please fill in the desired con-
tinuous buffer settings as MByte. After setting up the value the system needs
to be restarted as the allocation of the buffer is done during system boot
time.

If the system cannot allocate the amount of memory it will divide the de-
sired memory by two and try again. This will continue until the system can
allocate a continuous buffer. Please note that this try and error routine will
need several seconds for each failed allocation try during boot up proce-
dure. During these tries the system will look like being crashed. It is then
recommended to change the buffer settings to a smaller value to avoid the
long waiting time during boot up.

Continuous buffer settings should not exceed 1/4 of system memory. Dur-
ing tests the maximum amount that could be allocated was 384 MByte of
continuous buffer on a system with 4 GByte memory installed.

PCI 33 MHz slot PCI-X 66 MHz slot PCI Express x1 slot
Mode read write read write read write
User buffer 109 MB/s 107 MB/s 195 MB/s 190 MB/s 130 MB/s 138 MB/s
Continuous kernel buffer 125 MB/s 122 MB/s 248 MB/s 238 MB/s 160 MB/s 170 MB/s
Speed advantage 15% 14% 27% 25% 24% 23%

Notifysize
16 kByte

Notifysize
64 kByte

Notifysize
512 kByte

Notifysize
2048 kByte

Notifysize
4096 kByte

Mode read write read write read write read write read write
User buffer 243 MB/s 132 MB/s 793 MB/s 464 MB/s 2271 MB/s 1352 MB/s 2007 MB/s 1900 MB/s 2687 MB/s 2284 MB/s
Continuous kernel buffer 239 MB/s 133 MB/s 788 MB/s 457 MB/s 2270 MB/s 1470 MB/s 2555 MB/s 2121 MB/s 2989 MB/s 2549 MB/s
Speed advantage --1.6% +0.7% -0.6% -1.5% 0% +8.7% +27.3% +11.6% +11.2% +11.6%

Notifysize
4 kByte

Notifysize
8 kByte

Notifysize
16 kByte

Notifysize
32 kByte

Notifysize
64 kByte

Notifysize
256 kByte

Notifysize
1024 kByte

Notifysize
2048 kByte

Notifysize
4096 kByte

Mode FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read
User buffer 455 MB/s 858 MB/s 1794 MB/s 2005 MB/s 3335 MB/s 3386 MB/s 3369 MB/s 3331 MB/s 3335 MB/s
Continuous kernel buffer 540 MB/s 833 MB/s 1767 MB/s 1965 MB/s 3216 MB/s 3386 MB/s 3389 MB/s 3388 MB/s 3389 MB/s
Speed advantage +18.6% --2.9% --1.5% --2.0% --3.5% 0% +0.6% +1.7% +1.6%

Notifysize
4 kByte

Notifysize
8 kByte

Notifysize
16 kByte

Notifysize
32 kByte

Notifysize
64 kByte

Notifysize
256 kByte

Notifysize
1024 kByte

Notifysize
2048 kByte

Notifysize
4096 kByte

Mode FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read
User buffer 282 MB/s 462 MB/s 597 MB/s 800 MB/s 800 MB/s 799 MB/s 799 MB/s 799 MB/s 797 MB/s
Continuous kernel buffer 279 MB/s 590 MB/s 577 MB/s 800 MB/s 800 MB/s 800 MB/s 800 MB/s 800 MB/s 799 MB/s
Speed advantage -1.1% +27.7% --3.4% +0.0% +0.0% 0% +0.1% +0.1% +0.3%

insmod spcm.ko contmem_mb=4
(c) Spectrum GmbH 153

Continuous memory for increased data transfer rate
Usage of the buffer
The usage of the continuous memory is very simple. It is just necessary to read the start address of the continuous memory from the driver and
use this address instead of a self allocated user buffer for data transfer.

Function spcm_dwGetContBuf
This function reads out the internal continuous memory buffer (in bytes) if one has been allocated. If no buffer has been allocated the function
returns a size of zero and a NULL pointer.

Please note that it is not possible to free the continuous memory for the user application.

Example
The following example shows a simple standard single mode data acquisition setup (for a card with 12/14/16 bit per resolution one sample
equals 2 bytes) with the read out of data afterwards. To keep this example simple there is no error checking implemented.

uint32 _stdcall spcm_dwGetContBuf_i64 (// Return value is an error code
 drv_handle hDevice, // handle to an already opened device
 uint32 dwBufType, // type of the buffer to read as listed above under SPCM_BUF_XXXX
 void** ppvDataBuffer, // address of available data buffer
 uint64* pqwContBufLen); // length of available continuous buffer

uint32 _stdcall spcm_dwGetContBuf_i64m (// Return value is an error code
 drv_handle hDevice, // handle to an already opened device
 uint32 dwBufType, // type of the buffer to read as listed above under SPCM_BUF_XXXX
 void** ppvDataBuffer, // address of available data buffer
 uint32* pdwContBufLenH, // high part of length of available continuous buffer
 uint32* pdwContBufLenL); // low part of length of available continuous buffer

int32 lMemsize = 16384; // recording length is set to 16 kSamples

spcm_dwSetParam_i64 (hDrv, SPC_CHENABLE, CHANNEL0); // only one channel activated
spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_SINGLE); // set the standard single recording mode
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, lMemsize); // recording length in samples
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, 8192); // samples to acquire after trigger = 8k

// now we start the acquisition and wait for the interrupt that signalizes the end
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER | M2CMD_CARD_WAITREADY);

// we now try to use a continuous buffer for data transfer or allocate our own buffer in case there’s none
spcm_dwGetContBuf_i64 (hDrv, SPCM_BUF_DATA, &pvData, &qwContBufLen);
if (qwContBufLen < (2 * lMemsize))
 pvData = pvAllocMemPageAligned (lMemsize * 2); // assuming 2 bytes per sample

// read out the data
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_CARDTOPC , 0, pvData, 0, 2 * lMemsize);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);

// ... Use the data here for analysis/calculation/storage

// delete our own buffer in case we have created one
if (qwContBufLen < (2 * lMemsize))
 vFreeMemPageAligned (pvData, lMemsize * 2);
154 M2i.20xx / M2i.20xx-exp Manual

Details on M2i cards clock and trigger I/O section

(c) Spectrum GmbH 155

Details on M2i cards clock and trigger I/O section
The SMB clock and trigger I/O connectors of the M2i
cards from Spectrum are protected against over voltage
conditions.

For this purpose clamping diodes of the types 1N4148
are used. Both I/O lines are internally clamped to sig-
nal ground and to a specific clamping voltage named
Vt* for the trigger and Vc* for the clock line. So when
connecting sources with a higher level than the clamp-
ing voltage plus the forward voltage of typically
0.6..0.7 V will be the resulting maximum high-level lev-
el.

The maximum forward current limit for the used
1N4148 diodes is 100 mA.

When connecting a high performance clock or trigger
source with the card’s clock or trigger inputs, with logic
high levels above the clamping voltage please make
sure to not exceed the current limit of the clamping di-
odes.

This can most easily be ensured, when using the card’s
50 Ohm termination and a series resistor of 33 Ohm up
to 47 Ohm on the clock or trigger source.

To avoid floating levels with unconnected inputs, a pull
up resistor of 4.7 kOhm to 3,3V is used on each line.

The following table shows the values for the both clamp-
ing voltages Vt* and Vc*:

For details on how to read out the base hardware version from the driver or where to find that information on the cards type plate
please look up the relating sections in this manual.

Card series Base Hardware Version Vt* Vc* Trigger input 5.0 V tolerant Clock input 5.0 V tolerant

M2i.xxxx < V20 3.3 V 3.3 V no no
M2i.xxxx > V20 5.0 V 3.3 V yes no
M2i.xxxx-exp > V20 5.0 V 3.3 V yes no

	Introduction
	Preface
	Overview
	General Information
	Different models of the M2i.20xx series
	Additional options
	Star-Hub
	System Star-Hub
	BaseXIO (versatile digital I/O)

	The Spectrum type plate
	Hardware information
	Block diagram
	Technical Data
	Dynamic Parameters
	Order Information

	Hardware Installation
	System Requirements
	Warnings
	ESD Precautions
	Cooling Precautions
	Sources of noise

	Connector Handling Precautions
	Installing the board in the system
	Installing a single board without any options
	Installing a board with digital inputs/outputs mounted on an extra bracket
	Installing a board with option BaseXIO
	Installing multiple boards synchronized by star-hub option

	Software Driver Installation
	Windows
	Before installation
	Running the driver Installer
	After installation

	Linux
	Overview
	Standard Driver Installation
	Standard Driver Update
	Compilation of kernel driver sources (optional and local cards only)
	Update of a self compiled kernel driver
	Installing the library only without a kernel (for remote devices)
	Control Center

	Software
	Software Overview
	Card Control Center
	Discovery of Remote Cards and digitizerNETBOX/generatorNETBOX products
	Wake On LAN of digitizerNETBOX/generatorNETBOX
	Netbox Monitor
	Device identification
	Hardware information
	Firmware information
	Software License information
	Driver information
	Installing and removing Demo cards
	Feature upgrade
	Software License upgrade
	Performing card calibration
	Performing memory test
	Transfer speed test
	Debug logging for support cases
	Device mapping
	Firmware upgrade

	Compatibility Layer (M2i cards only)
	Usage modes
	Abilities and Limitations of the compatibility DLL

	Accessing the hardware with SBench 6
	C/C++ Driver Interface
	Header files
	General Information on Windows 64 bit drivers
	Microsoft Visual C++ 6.0, 2005 and newer 32 Bit
	Microsoft Visual C++ 2005 and newer 64 Bit
	C++ Builder 32 Bit
	Linux Gnu C/C++ 32/64 Bit
	C++ for .NET
	Other Windows C/C++ compilers 32 Bit
	Other Windows C/C++ compilers 64 Bit

	Driver functions
	Delphi (Pascal) Programming Interface
	Driver interface
	Examples

	.NET programming languages
	Library
	Declaration
	Using C#
	Using Managed C++/CLI
	Using VB.NET
	Using J#

	Python Programming Interface and Examples
	Driver interface
	Examples

	Java Programming Interface and Examples
	Driver interface
	Examples

	LabVIEW driver and examples
	MATLAB driver and examples

	Programming the Board
	Overview
	Register tables
	Programming examples
	Initialization
	Initialization of Remote Products
	Error handling
	Gathering information from the card
	Card type
	Hardware version
	Firmware versions
	Production date
	Last calibration date (analog cards only)
	Serial number
	Maximum possible sampling rate
	Installed memory
	Installed features and options
	Miscellaneous Card Information
	Function type of the card
	Used type of driver

	Reset

	Analog Inputs
	Channel Selection
	Important note on channel selection

	Setting up the inputs
	Input ranges
	Input termination
	Automatic adjustment of the offset settings
	Read out of input features

	Acquisition modes
	Overview
	Setup of the mode

	Commands
	Card Status
	Acquisition cards status overview
	Generation card status overview
	Data Transfer

	Standard Single acquisition mode
	Card mode
	Memory, Pre- and Posttrigger
	Example

	FIFO Single acquisition mode
	Card mode
	Length and Pretrigger
	Difference to standard single acquisition mode
	Example

	Limits of pre trigger, post trigger, memory size
	Buffer handling
	Data organisation
	Sample format
	Converting ADC samples to voltage values

	Clock generation
	Overview
	The different clock modes
	Clock Mode Register

	Internally generated sampling rate
	Standard internal sampling clock (PLL)
	Using plain Quartz1 without PLL
	Using plain Quartz2 without PLL (optional)

	External reference clock
	Oversampling
	External clocking
	Direct external clock

	Minimum external sampling rate
	External clock with divider

	Trigger modes and appendant registers
	General Description
	Trigger Engine Overview
	Trigger masks
	Trigger OR mask
	Trigger AND mask

	Software trigger
	Force- and Enable trigger
	Delay trigger
	External TTL trigger
	Edge and level triggers
	Pulsewidth triggers

	Channel Trigger
	Overview of the channel trigger registers
	Channel trigger level
	Pulsewidth counter
	Detailed description of the channel trigger modes

	Mode Multiple Recording
	Recording modes
	Standard Mode
	FIFO Mode

	Limits of pre trigger, post trigger, memory size
	Multiple Recording and Timestamps

	Trigger Modes
	Trigger Counter
	Trigger Output

	Programming examples

	Mode Gated Sampling
	Acquisition modes
	Standard Mode
	FIFO Mode

	Limits of pre trigger, post trigger, memory size
	Gate-End Alignment
	Gated Sampling and Timestamps

	Trigger
	Trigger Output
	Edge and level triggers
	Pulsewidth triggers
	Channel triggers modes

	Programming examples

	Timestamps
	General information
	Example for setting timestamp mode:
	Limits

	Timestamp modes
	Standard mode
	StartReset mode
	Refclock mode

	Reading out the timestamps
	General
	Data Transfer using DMA
	Data Transfer using Polling
	Comparison of DMA and polling commands
	Data format

	Combination of Memory Segmentation Options with Timestamps
	Multiple Recording and Timestamps
	Gate-End Alignment
	Gated Sampling and Timestamps
	ABA Mode and Timestamps

	ABA mode (dual timebase)
	General information
	Standard Mode
	FIFO Mode
	Limits of pre trigger, post trigger, memory size
	Example for setting ABA mode:

	Reading out ABA data
	General
	Data Transfer using DMA
	Data Transfer using Polling
	Comparison of DMA and polling commands

	Option BaseXIO
	Introduction
	Different functions
	Asynchronous Digital I/O
	Special Input Functions
	Transfer Data
	Programming Example
	Special Sampling Feature
	Electrical specifications

	Option Star-Hub
	Star-Hub introduction
	Star-Hub trigger engine
	Star-Hub clock engine

	Software Interface
	Star-Hub Initialization
	Setup of Synchronization and Clock
	Setup of Trigger
	Trigger Delay on synchronized cards
	Run the synchronized cards
	Error Handling
	Excluding cards from trigger synchronization
	SH-Direct: using the Star-Hub clock directly without synchronization

	Option System Star-Hub
	Overview
	Cabling the system components
	Setting up the master system
	Setting up slave systems
	Connecting the systems

	Programming
	Necessary setup steps
	Select synchronization mode
	Compensate injected trigger delays
	Programming example

	Option Remote Server
	Introduction
	Installing and starting the Remote Server
	Windows
	Linux

	Detecting the digitizerNETBOX
	Discovery Function
	Finding the digitizerNETBOX/generatorNETBOX in the network
	Troubleshooting

	Accessing remote cards

	Appendix
	Error Codes
	Spectrum Knowledge Base

	Continuous memory for increased data transfer rate
	Background
	Setup on Linux systems
	Setup on Windows systems
	Usage of the buffer

	Details on M2i cards clock and trigger I/O section

