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CHAPTER I 

INTRODUCTION 

"When it smokes. it is too hot." This statement is often spoken 

in a facetious manner when reference is made to the temperature rating 

of a physical component, device• or system of components. However, the 

particular context from which the quotation was taken in this instance 

describes an unfortunate situation. In a paper presented by Rice (l) 

in 1962 • he said 1 "In a corporation which does some ten billion dollars 

worth of business annually and has built at least 100 1000 ,ooo intermittent 

duty motors I the following is the sum total of all information available 

on armature winding temperature: 'When it smokes, it is too hot'." 

There is evidence which indicates that similar statements. can be 

made about the knowledge, or perhaps more cox-rectly I the lack of knowl­

edge, of the tempex-atures occurring within many electrical components 

and devices. Two possible explanations for this lack of knowledge might 

be as follows : 

1. Temperatures occurring within electrical components are not 

important. 

2. Temperature considerations in many applications of electrical 

components have simply been negle~ed to a large extent, 

A quick glance at almost any semiconducto1: device specification 

sheet causes one to realize that temperature is a very important factor 

in the applicaticm of these devices. Almost without exception, the 

1 



specification sheet includes a temperature derating curve which gives 

an indication of the decrease in usefulness of the device as the 

temperature of that device increases. This indicates that the former 

explanation is not appropriate. 

2 

The temperature considerations have• in all. likelihood• been 

investigated more thoroughly for semiconductor device applications than 

for the applications of most other electrical components and devi.ce.s. 

This is not to say that the temperature considerations of the appli­

cations of o~her ele.ctrical elements is unimportant. The implication 

must be that there is much yet to be done in investigating the temperature 

problems associated with these elements. Furthermore, the conclusions 

drawn from these investigations must be reduced to a usable form so 

that proper account of the temperature characteristics of these devices 

can be given when considering a given device for a given application. 

An excellent example of a class of components for which much work 

remains to be done is the group of electrical devices which include 

electrical coils. The electrical coil made its debut long before the 

science of electrical engineering became known as such. Yet, as recently 

as 1955, Peek and Wagar (2) said 1 "No rigorous treatment of heat flow 

in a coil is available I even for the steady-state cqge. The flow is 

3:..dimensional I the structure is not homogeneous, and the heat supply per 

unit length of conductor varies with local temperature. An approximate 

analysis in which all. three of these limitations are ignored is given 

II 
••• 0 

This thesis reports the results of an experimental and an analytical 

study of the temperature rise which occurs within an electrical coil 

when electrical power is applied to it, The temperature rise occurs 
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because of the joulean heat which is generated within the coil and which 

must be dissipated. The coil of this study is in the form of a hollow, 

right-circular cylinderi and only steady-state temperature rises and 

heat flows are considered. 

More specifically• this thesis presents information that may be 

used in the design, analysis of design, or application study of heat­

generating bodies whose geometries are described as hollow, circular 

cylinders. This information is derived and presented in such a manner 

as to provide an upper bound on the temperature rise internal to the 

generating body. In other words, if the. given application of a 

cylindrical, heat-generating body comes within one of the categories 

of applications considered here, an equation and/or graph is p;i:,esented 

that will give an indication of the maximum possible temperature 

occurring within the body. 

A critique of a number of the writings which present results of 

studies closely related to this one is given in Chapter II. An effort 

is made to enumerate the more significant approximations, assumptions, 

and limitations of each of these works. 

In Chapter III and IV a variety of boundary-val,.ue problems which 

are formulated to describe certain cases is considered, and the solution 

to each problem is presented. Some of the solutions are analytically­

deri ved, closed-form expressions for the ''hot-spot" temperature 

occurring within the coil, while the other solutions ar~ obtained by 

solving a finite-difference model of the problem with the aid of a 

digit~l computer. The hot-spot temperat1,1.re is the maximum temperature 

occurring within the coil. 

Each boundary-value problem describes a possible application of an 
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electrical coil and does so by describing the temperature boundary 

conditions on the coil. The boundary conditions are formulated in such 

a way that the hot-spot temperature obtained from the solution of the 

boundary-value problem is an upper bound on the hot-spot temperature 

occurring within an actual coil whose surface temperature and heat-flow 

conditions closely approximate those of the problem. 

The hot-spot temperature rise is the difference between the 

maximum temperature within the coil and the temperature at a specified 

point on the coil surface. The. hot-spot temperature rise is of 

particular interest because it is at the point where this temperature 

occurs that the insulating material used in the coil construction will 

likely fail. 

All of the solutions of.the boundary-value problems are presented 

graphically in such a way as to relate the hot-spot temperature rise 

· occurring within the coil to the power supplied to the coil and to the 

geometrical, electrical, and thermal properties of the coil. 

The results of an experimental study are presented in Chapter V to 

illustrate the use of the graphs mentioned above. The coil of this 

study is the magnet coil of a rotary-type electromagnetic relay. The 

temperatures which· are measured at several points on the surface of the 

coil are used as guides in formulating a set of temperature boundary 

conditions for the coil in that particular application. The resultin.g 

boundary-value problem is solved for the hot-spot temperature with the 

aid of a digit.al computer. This solution is compared with the solution 

of the corresponding bom1dary-value problem which provides an upper 

bound on the hot-,spot temperature rise. 

Chapter VI includes a restatement of the objectives of the study, 



the general conclusions derived from the study• and the significant 

assumpt,ions upon which those conclusions are based, 

5 

A brief description and ·discussion of the digital computer program 

and a brief error analysis are_ given in the appendix. 



CHAPTER II 

LITERATURE SURVEY 

The purpose of this chapter is to present a, brief summary of the 

recorded accounts of works which are closely associated with the work 

reported in this thesis pertaining to the temperature rise occurring 

within cyli'ndrical heat sources. The summary consists primarily of a 

discussion of the class of problems for which solutions are obtained 

and a listing of the significant assumptions and approximations upon 

which these solutions are based. In every case, only the steady-state 

temperature distributions are considered, 

In his book, Moore (3) presents a significant result which 

apparently has not been duplicated 1 mathematically verified, or extended. 

Based on the technique pf field mapping, he derives a relationship 

between the thermal conductivity of the insulation on the coil wire and 

the combined thermal conductivity of the coil wire and insulation. 

This thermal conductivity is that of an "equivalent" homogeneous coil 

where "equivalent" implies that this coil has the same terminal char­

acteristics as the actual coil. The results are presented graphically 

for both non-embedded and for embedded coils. The assumption is made 

that the entire space between the coil windings is filled with the 

insulating material. This work is referenced in several later works 

and will be referenced later in this thes·is. 

In 1943, Jakob ( 4) published his work pertaining to the temperature 

6 



distribution in electrical coils of "simple form" where the heat 

generation is nonuniform. His simple forms consist of an infinite 

plane plate, a solid cylinder of infinite length, and a solid sphere . 

The heat generation is assumed to be homogeneously distributed and to 
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be a linear function of the temperature where the temperature coefficient 

is positive. The boundary conditions are simple; namely, a uniformly­

distributed surface temperature, The solutions are obtained as analytical 

expressions which give the temperature distribution and hot-spot 

temperature rise above the surface temperature. 

Following Jakob's work, Higgins (5) reported his work pertaining 

to the temperature distribution in electrical coils of general rectangular 

cross section, The boundary conditions are as before, a uniformly­

distributed surface temperature. The heat generation is assumed to be 

homogeneously distributed and linearly dependent upon temperature. It 

is further assumed that the effects of the curvature of the coil may be 

neglected, That is to say, the ratio of the thickness of the coil to 

the inner radius is very small. 

Two special cases are considered. The first is the case where the 

temperature coefficient of heat gene rat ion becomes zero, and the other 

is the case where the toroid ar,proaches a hollow cylinder of infinite 

length, 

In 1948 Jakob (6) reported the results of more work in the area 

of temperature distributions in simple bodies developing heat. In this 

work the heat generation is again assumed to be a linear function of the 

temperature, but in this case the temperature coefficient is negative. 

Again the body shapes are a plane infinite plate, a solid circular 

cylinder of infinite length, and a solid sphere. 
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Two cases are considered by Erranerich ( 7) in his work pertaining to 

the temperature rise in magnet coil windings. His first consideration 

is that of small temperature rises occurring within coils which are in 

the shape of right-circular, hollow cylinders. The assumptions are 

made that the heat generation is uniformly distributed throughout the 

interior, all the thermal properties of the coil are independent of 

temperature, and the dimensions of the coil are such that the end-effects 

may be neglected. The boundary conditions are (i) those of a uniforml y­

distributed temperature on · each of the coil surfaces in one instance, 

and (ii) the core is thermally insulated while the outside surface is at 

a fixed temperature. Expressions relating the maximum temperature rise 

above the surface temperature (hot-spot temperature rise) and the 

average temperature rise to the ratio of the outer radius to the inner 

radius of the coil are derived analytically and presented graphically. 

For the case of large temperature rises, an expression for an 

approximate correction to be applied to the former results is derived 

and presented graphically. This correction factor accounts for the 

error involved in assuming that the heat generation is uniformly 

distributed. The larger the temperature rise, the greater is the error 

involved; and, therefore, the greater is the correction required. 

The work reported by Peek (8) is presented again by Peek and 

Wagar (9). This work pertains specifically to the temperature distribu­

tions in electromagnetic relay coils which are in the shape of hollow 

cylinders. The assumptions upon which the solutions are based are 

(i) the heat flow is entirely radial, (ii) the heat generated per unit 

volume per unit time is a constant, and (iii) the material of the coil 

is homogeneous and its conductivity is independent of temperature. 



Expressions are derived for the hot-spot temperature rise and the 

average temperature rise occurring within the coil. 

9 

In summarizing this critique, the more common and pertinent 

assumptions and approximations that have been made in the works mentioned 

are presented here: 

(i) The material of the coil is homogeneous and its thermal 

conductivity is independent of temperature. 

( ii) In most cases, only radial heat flow is considered for the 

coil whose shape is that of a circular cylinder. 

(iii) In some cases, the heat generation is considered to be uniformly 

distributed throughout the interior of the coil. 

(iv) In nearly every case, the surface temperature condition is 

that of a uniformly-distributed temperature. 

(v) In some cases, the effects of the curvature of the coil 

surfaces are neglected. 

The boundary-value problems and their solutions as presented in 

Chapter III and IV are also based on assumptions (i) and (iii) above. 

However, an important difference in the results of the study presented 

in this thesis and those results discussed above is that no restrictions 

concerning axial flow of heat, effects of curvature, or end effects are 

made. 

When these restrictions are placed upon the solutions, the effect 

is that of saying that the solutions are valid only for the limiting 

cases of (i) the length of the coil is very long compared to its 

thickness, and (ii) the thickness of the coil is small compared to the 

inner radius of the coil. These limiting cases are presented in 

Chapter III for a variety of temperature and heat-flow boundary conditions, 



Perhaps more important• however, the solutions to the problems which 

fall between these limiting cases are also presented in Chapter IV. 

10 

These solutions are important because they describe the usual situations. 



CHAPTER III 

HOT-SPOT TEMPERATURES IN HOLLOW CYLINDRICAL 

BODIES WITH HEAT GENERATION 

Temperature Field Equation 

In order to appreciate the significance and the implications of 

many of the assumptions that are made in the process of determining the 

temperature distribution in any given body, one form of the general 

heat-conduction equation is given here to serve as the starting point 

for the analysis. This is the equation 

.l. (k !.!.) + .1... (k !.!.) + 2- (k !!.) + q II I ax ax ay ay az az 
= pC at n- (3.1) 

where k, q''', c, p • e, and t are thermal conductivity, heat generation 

per unit volume per unit time, specific heat, density, time, and 

temperature, respectively. The first four of these quantities may be 

functions of the spatial variables ( x, y I z), of temperature t I and of 

the time e. Also I in general the temperature t is a function of the 

spatial variables and of time. However, if the thermal conductivity is 

not a function of the spatial variables I k may be factored out of the 

partial derivative terll'S on the left-hand side of Equation 3 .1 and 

divided out to give the equation 

11 
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which the temperature field t(x,y,z,e) must satisfy. The term a is 

called the thermal diffusivity, a property of the conducting material 

and is given by 

a = k/pC • ( 3 . 3) 

Continuing another step further in the simplification, if one is 

interested only in the steady-state temperature distribution, then the 

temperature field t(x,y,z) must satisfy the equation 

(3.4) 

To this point the heat generation term may still be a function of 

any or all of the variables ( x,y ,z ,t). If, however, it is an explicit 

function of the temperature alone, then Equation 3.4 may be written as 

a2t(x.y.z) + a2t(x,y.z) + a2t(x.y,z) + q'''(t) = 
ax2 ay2 az2 k 

0 • (3.5) 

In general, the solutions of Equation 3.5 are more easily obtained than 

are the solutions of Equation 3.1. After one more simplification, 

Equation 3.5 takes on the form that is of particular interest in this 

study. 

If it is assumed that the heat generation is independent of the 

temperature, then Equation 3. 5 is reduced to the Poisson equation 
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( 3,6) 

which must be satisfied by the temperature field t( x,y ,z). This 

assumption is discussed later in this chapter. 

In considering the temperature field within cylindrically-shaped 

bodies, a more appropriate form of the Poisson equation is 

(3.7) 

where r, ~. and z are the cylindrical coordinates as normally defined. 

For the boundary-value problems under consideration in this study, it 

is safe to assume that the temperature field t is not a function of ~; 

therefore, t(r,z) must satisfy the equation 

1 - . r 
at a2t 
-+-+a=O, 
ar az2 

where, for the sake of simplicity, a= q'''/k. 

Dimensional Analysis 

According to Hellums and Churchill (10), the objective of 

( 3. 8) 

dimensional analysis is to reduce to a minimum the number of parameters 

and variables needed to describe a problem. To this end a dimensional 

analysis is applied to the mathematical model of interest, namely, 

Equation 3.8. This analysis is accomplished in the following manner. 

Define the dimensionless variables 

( 3. 9) 
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where t 0 , ts, r 0 , and z 0 are constant parameters yet undefined, and 

substitute them into Equation 3. a. The result of this substitution is 

given as 

to -· r 2 
0 

aT to -+-· aR z 2 
0 

a2 T 
-+a=O. 
az 2 

Dividing each term of Equation 3.10 by t 0 /r0
2 yields 

( 3 .10) 

(3,11) 

Examination of the two groups r/!z/ and ar//t 0 shows them to be 

dimensionless. If each is set equal to unity and r 0 is arbitrarily 

essigned the value r 2 , the outer radius of the hollow cylinder, then 

the following conclusions may be drawn~ 

ar 2 
2 

( 3 .12) 

These parameters may now be substituted back-· into Equation 3.11 to give 

a2 c -ts) c -t ) c -t) 
a. ar}'.s 

a2 s 
ar 2 

1 
ar/1 .. 2 

0 , (3.13) + .- • + + l = 
( .J:... ) 

2 r ( ..::... ) ~) 
2 

a - a a ( 
r2 r2 r2 r2 

or more simply, 

(3.14) 

where T, R, and Z are given l?y Equation 3.9 and Equation 3,12. 
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The important conclusions concerning the necessary number of 

variables and parameters required to completely characterize the solution 

of the particular form of the heat-conduction equation of interest here 

can be drawn from Equation 3 .14 1 The variables are the dimensionless 

ratios r/r2 , z/r2 , and (t - ts)/ar2 2 • The range of variation of Rand 

of Z is given by 

where r 1 is the inner radius and Lis the length of the coil. At this 

point, the reason for assigning the value r 2 to r O is clear. This 

places a fixed maximum value of unity for R. If r 0 were assigned the 

value r 1 • then the range for R would be (1, r 2 /r1 ) which is open ended 

above. 

As mentioned previously, the temperature rise of greatest interest 

is that of the hot-spot. Since the normalized temperature rise Tis a 

function of Rand z, it follows that the maximum value of T (Tm, the 

normalized hot-spot temperature rise) is a function only of the two 

ratios r 1/r2 and L/r2 • This allows a graphical presentation of the 

relationship between Tm• r 1 /r2 , and L/r2 by plotting Tm as the dependent 

variable, either r 1 /r2 or L/r2 as the independent variable and the 

other as a parameter. 

Corresponding changes in variables must be made in the boundary 

conditions as were made above. 

The term ts previously undefined is the temperature at a point on 

the surface of the cylinder which serves as a reference point for the 

temperature rise determinations. More is said about ts in the 

following chapter, 



Uniform Heat Generation 

Before proceeding further. a brief discussion to justify the 

assumption of uniform heat generation is given. 

16 

As mentioned in Chapter I• the purpose of this study has been to 

derive formulas and/or develop graphs that provide information concerning 

the maximum possible hot-spot temperature rise that may occur within 

the generating body. This is to say that the purpose is to formulate 

and solve boundary-value problems in such a way that the solutions will 

provide upper bounds on the hot-spot temperature rises occurring within 

actual heat-generating cylinders. 

With these statements in mind, consider the following discussion: 

If the electrical power supplied to the coil is obtained from a 

constant voltage power supply• then that power is given by 

( 3 .16) 

where v, R0 , e. and 6t are, respectively, the voltage applied across 

the coil, the resistance of coil initially, the temperature coefficient 

of resistance of the coil wire• and the difference in average coil 

temperature and the initial average coil temperature. As the temperature 

begins to increase after the application of the electrical power to the 

coil, the winding resistance increases (assuming 8 > O). Since the 

voltage Vis constant, the power P supplied to the coil must decrease 

as the temperature increases. The net effect of the decrease in input 

power is to lessen the amount of temperature increase. Therefore, the 

actual temperature rise is somewhat less than that calculated if the 

generation is ass urned to be uniform ( 8 = 0). 
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The result of this is that the temperature rise calculated for the 

case of uniform heat generation provides an upper bound on the. temperature 

rise in the real case where the heat generation is not uniformly dis-

tributed if the electrical power is obtained from a constant voltage 

power supply. This case of a constant voltage supply rather than a 

constant current supply or a constant power supply is considered because 

it is felt that more often than not the electrical supply for coils in 

which the temperature rise is of concern more closely approximates the 

constant voltage supply than either of the other two. 

This brief discussion brings to light a very useful observation. 

Even though• in its entirety, the study presented here is based on the 

assumption of uniform heat generation within the coil 1 the results 

derived may be extended significantly. Consider the following comments 

to see that this is true: 

Suppose the coil of concern is energized with electrical power from 

a voltage regulated power supply. Also I suppose further that the 

temperature coefficient of resistivity of the coil wire is greater than 

zero (as in the case for many types of coil wire). In this situation, 

the heat generation is nonuniform. From Equation 3.16, the steady-

state power input P to the coil is less than the initial power input P0 • 

The result is that the steady-state temperature rises due to an input 

power of Pare less than the rises would be for a steady-state power 

input of P • 
0 

Therefore, the results (formulas and graphs) derived for the 

uniform heat generation case may be applied to the case on nonuniform 

generation also if the initial power input is used instead of the steady-

state value. 
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The relative magnitudes of the temperature rise resulting from 

constant voltap.e 0 constant Dewer, a.YJ.d cs:,st2:1t cu!'rent inputs, each with 

the same ini:t i:al power, are shown by Peek and War:ar (11). 

Formulation of Boundary-Value Problems 

In a study such as the one reported here• it is desirable to 

consider a wide variety of cases _so that the results may find a greater 

number of possible applications. This is to say that the results of 

the study should be applicable to as wide a cross section of actual 

electrical coil applications as is possible and within reason. 

With these thoughts in mind, the collection of boundary-value 

problems considered is illustrated in Figure 2. Figure 1 shows a cross­

sect ional view of a general hollow, cylindrical coil. The regular 

variables and parameters are shown in Figure l(A). and the dirrensionless 

variables are shown in Figure l(B). 

z z 

(A) (B) 

fivuri:: 1. Cress-Sectional View of Hollow, Cylindrical Coil 
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Figure 2. Illustrated List of Boundary-Value Problems 



Although there most certainly are applications for cylindrical, 

electrical coils which result in temperature boundary conditions 
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substantially different from any of those shown in Figure 2, it is felt 

that many coil applications are of such a nature that the resulting 

surface temperature conditions are closely approximated by one or more 

of the cases shown. Whenever this is true, the solution of the 

corresponding l;>oundary-value problem of Figure 2 may be used to determine. 

an upper bound on the hot-spot temperature rise occurring within the 

actual coil. The more closely the two sets of surface temperatures 

and heat flow conditions agree, the more closely the hot-spot. temperature 

rise agrees with the 9alculated upper limit. 

Just as intuition is valuable in most analyses of engineering 

problems, intuition is useful here in selecting the ''best" case with 

which the actual case is to be compared. However, the amount of 

quantitative· information required to use the results has been kept to a 

minimum by the very nature of the approach taken to predict the hot-

spot temperature rise, 

The mathematical description of each of the boundary-value problems 

shown in Figure 2 is given here arid will be used subsequently in 

obtaining the solutions of these problems. In every case, the temperature 

field is independent of the angle~. 

Problem A: 

(3.17) 

aT( R1Z) 0 az = Z - 0 , L/r2 
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Problem B: 

(3.18) 

aTCR,z) 0 
cl·Z = 

Problem C: 

o .;:_ z .;:_ L/r2 

T(R,Z) = 0 ( 3 .19) 
z = o , L/r2 

Notice the surface of symmetry (dotted line) in Figure 2(C). This is an 

adiabatic surface like the top surface of Figure 2(B); and I therefore, 

the temperature dist~ibution in the top half of Figure 2(C) is the 

mirror image of that of the bottom half. Both are identical to the 

distribution in the cylinder shown in Fi'gure 2(B) if L of Equation 3.19 

is the half-length of the cylinder in Figure 2( C). 

Problem D: 

T(R 1Z) = 0 

aT(R 1z) 
= 0 · .. aR R = l O < Z < L/r2 .-. .... ( 3 .20) 

C3T(R,Z) 
az = 0 

Problem E: 

T(R,Z) = 0 



3T(R,Z) = O 
3R 

Problem F: 

T(R,Z) = 0 

3T~;,z) = O 

22 

R .,. 1 0 < Z < L/r 
- - 2 

(3.21) 

(3.22) 

R = 1 0 ,!. Z ~ L/r2 

The same comments relative to the surface of symmetry in Figure 2(F) can 

be made as were made about Figure 2{C). 

Problem G: 

T(R,Z) = 0 

3T(R,Z) O 
3R = 

aT(R,Z) = O 
az 

Problem H: 

T(R,Z) = 0 

R = l O ,!. Z !,. L/~ 

{ 

R = l ; 0 < Z < L/r2 

r 1 tr2 < R ~ 1 ~ Z = L/r2 

(3.23) 

(3.24) 



aT(R,Z) O 
5z · = 

Problem I: 

T(R,Z) = 0 

aTC R1z> 0 
3R = 

Again• the same comments relative to the surface of symmetry of 

Figure 2(I) can be made as before. 

Problem J: 

T(R,Z) = 0 

aT~;,z> = 0 

Problem K: 

T(R,Z) = 0 

aT(R,Z) = O 
~R 

23 

(3.25) 

(3.26) 

(3.27) 

Still again, the same comments relative. :to i::_he' surface of symmetry of 

Figure 2(K) can be made a1;1 before. 

Examination of problems A, D, G, J, and K shows that they are 
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different from the rest in that the boundary conditions allow heat to 

flow in either the radial direction or the axial direction but not both. 

The implication here is that Equation 3.14 may be further simplified to 

an ordinary differential equation for these problems. 

The general solution of each of the resulting ordinary differential 

equations may be obtained by applying the standard methods used to 

solve linear ordinary differential equations, These two equations and 

the corresponding general solutions are: 

l - . R 
dT 
dR + 1 = 0 • (3.28) 

T( R) = - R2 /4 + cl ln R + c2 ( 3, 29) 

and 

(3.30) 

T(Z) (3.31) 

The problems are grouped together in Figure 2 in a certain way for 

a special reason. Consider the case where L/r2 approaches infinity (or 

L/r2 » 1). Then problems A, B, and Call reduce to the same problem, 

one in which the heat flow is entirely radial (ends of coil are not 

considered). Under the same assumption, problems D, E, and F become 

identical as do problems G, H, and I, each involving only radial 

variations in T, For all of these cases, the diffenmtial equation of 

interest is Equation 3,28 9 and the corresponding general solution is 

given by Equation 3.29, 
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The problems J and K involve only axial heat flow, and the 

differential equation is Equation 3. 30. The corresponding general 

solution is Equation 3.31. 

The remainder of this chapter is devoted to the solutions of 

problems B, C, E, F, Ii, and I under the assumption that L/r2 is very 

large, and of problems A, D, G, J, and K for which no assumptions 

concerning length are required. 

Chapter IV is devoted to the solutions of problems B, C, E, F, H, 

and I when the length of the coil is of the same order of magnitude as 

the other coil dimensions. 

Classical Solutions of Boundary-Value Problems 

for Hot-Spot Temperature Rise 

As discussed previously, for the case where L/r2 approaches infinity, 

the thermal models of problems A, B, and Call reduce to the same model. 

This model is characterized mathematically as follows. The dimensionless 

temperature field T( R) must satisfy the equation 

(3.28) 

subject to the boundary conditions 

(3.32) 

The general solution of Equation 3. 28 is stated as Equation 3 .29 but is 

derived here. Also, the derivation of this solution may be found in 

most differential equation texts. 

Making use of the fact that 



d dT 
dR (R dR) 

Equation 3,28 may b~ written as 

d ( R !!!. ) = -R dR dR 

which may be integrated to yield 

dT R2 
R ~ = - ...... + C1 • 

OK .2 
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(3.33) 

(3.34) 

(3.35) 

Upon separating variables in Equation 3.35 1 the result may again be 

integrated to give 

T = f dT 
R C1 

= I (- - + - ) dR = 
2 R 

which is Equation 3.29. 

From Equation 3.29 and Equation 3.32 

(3.36a) 

T(l) (3.36b) 

From Equation 3,36b, c2 = 1/4, and substituting this back into Equation 

3.36a yields the result. 

For the sake of simplicity, the ratio r 1 /r2 is assigned the symbol R12 , 
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Now, making the substitutions for c1 and C2 back into Equation 3,29 gives 

the temperature field as 

T(R) 
2 

2 Rl2 - 1 1 
=-L+----lnR+_ 

4 4 ln R12 4 

or 

T(R) 

2 
R12 - 1 

= .!_ [l - R2 + ln R] o 
4 ln R12 

(3.37) 

In order to find the hot ... spot temperature rise, the maximum value 

of T(R) is found from Equation 3.37 by setting the first derivative 

equal to zero and solving for Rm, the value of R for which T is maximum. 

(3.38) 

and 

:: [ 
2. ( R ~ 2 - l) J 1 /2 

= 0 9R = [R~2 -l J 1 /2 

m 4 1n R12 2 ln R12 
( 3 I 39) 

The desired equation for the hot-spot temperature rise is obtained now 

by substituting the value of Rm into Equation 3,37 to give 

Tm = T(Rm) = l 
4 

or 

where 

[1 -( R~2 -1 ) 2 
R12 - l 

+ . 
2 ln R12 ln R12 

T = l (1 + R ( ln R - 1) J , m 4 

2 

ln 

Rl2 .. 1 
R = and L/r2 >> 1. 

2 ln R12 

2 
( R12 -

2 ln 

Tm as 

l ) 1/2] 
R12 

(3.40) 

(3.41) 
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This result• namely Equation 3.40 • is the exact solution of problem 

A and the solution of problems B and C if L/r2 is very large. Equation 

3.40 is presented graphically in Figure 3 where Tm is plotted as a 

function of R12 • If the point at which T occurs is of interest, it may m 

be found from Equation 3.39 which is presented graphically in Figure 4, 

For the case where L/r2 approaches infinity, the mathematical 

models of problems D, E, and F all reduce to the same model, Again, the 

temperature field T(R) must satisfy Equation 3,28 but subject to the 

boundary conditions of 

T(R) = 0 for R = R12 , (3,42a) 

and 

dJ~R) = o for R = l ( 3 .42b) 

These boundary conditions are used to determine the integration constants 

in Equation 3.29, 

From Equations 3 • 29 and 3. 42 

and 

dT(l) 
dR 

1 c1 
=0=--+-2 l ( 3.43b) 

-Upon solving Equation 3,43 for c1 and c2 and substituting these back 

into Equation 3. 29 • the temperature field is determined to be 

T(R) 
2 

R2 1 R12 l 
= - 4 + 2 ln R + T - 2 ln R12 (3.44) 
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Figure 3. Tm versus R:i2 for Exact Solutions 
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The maximum value of T( R) from Equation 3. 44 is found to be 

1 2 1 2 
Tm = T(l) = 4 ( R12 - 1) - 2 ln R12 

and Rm is seen to be 

R = 1 • m 
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(3.45) 

( 3 0 46) 

Equation 3.45 is also presented graphically in Figure 3 and Equation 

3.46 in Figure 4. Just as before, Equation 3.45 is the exact solution 

to problem D and is an approximate solution to problems E and F, where 

the error of the approximation decreases as L/r2 increases. 

A mathematical model similar to the ones used in the previous two 

solutions may be used for problems G, H, and I. Again, the temperature 

field must satisfy Equation 3.29 where the boundary conditions in this 

case are 

and 

dT(R) 
dR = 0 for R = 

T(R) = 0 for R = 1. 

From Equations 3.29 and 3.47 

T(l) 1 = o = - 4 + c1 ln 1 + c2 , 

and 

= 0 = -

(3.47a) 

(3.47b) 

(3.48a) 

(3.48b) 

The results of the simultaneous solution of Equations 3.48 for c1 and 
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c2 , upon being substituted into Equation 3.29 1 determine the temperature 

field to be 

T(R) = l ( l - R2) + 1:, R2 ln R • 
4 2 12 

The maximum value of T(R) is 

where 

= l (1 
4 

( 3. 49) 

( 3. 50) 

(3.51) 

Equation 3.50 is presented graphically in Figure 3, also, in order 

that the hot-spot temperature rises of the first three groups of 

problems in Figure 2 may be easily compared. Also, Equation 3. 51 is 

shown in Figure 4. Just as is true in the previous two solutions, 

Equation 3. 50 is a valid solution of problems H and I only if L/r2 is 

very large. 

In Chapter IV, it is shown that each of the Equations 3.40, 

3.45, and 3.50 is a limit~ng curve in a family of curves whe'X"e the 

family parameter is L/r2 • 

The two problems of Figure 2 yet to be treated are different from 

the problems presented thus far. The boundary conditions on these two 

problems, namely problems J and K, are such that the heat flow is 

entirely axial. The mathematical model of these problems is given as 

Equation 3. 30 and the appropriate boundary conditions, where the general 

solution for the temperature field is given by Equation 3.31. Equation 

3.31 is derived from Equation _3.30 here -as follows: 
' . . . . 

iT d ( dT) az2=az rz =- 1 • ( 3. 30) 
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This equation may be integrated by separating the variables to yield 

dT 
aZ" = - Z + C1 • 

Again, by separating the variables, the equation may be integrated to 

give 

z2 
T = ... 2 + c1 z + c2 , 

which is precisely Equation 3, 31. 

Due to the line of symmetry in problem K, each half of which is 

identical to problem J, only problem J needs to be solved. The complete 

mathematical model of the thermal model shown in Figure 2(J) is 

( 3. 30) 

dT 
Tz = 0 for Z = 0 • (3.52a) 

and 

T = O for Z = L/r2 • ( 3 .S2b) 

In order to determine the constants of integration in Equation 3.31, 

the following two equations are solved simultaneously: 

and 

dT(O) 
dZ 

(3.53a) 

(3.53b) 



Substituting the values for c1 and c2 into Equation 3.31 yields the 

temperature field: 
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T(Z) 
2 

= _ ~ + (L/r2) (3.54) 
2 2 

The hot-spot temperature rise is easily seen to be 

(3.55) 

Equation 3. 55 is presented graphically in Figure 5. 

If the problem of interest is the one shown in Figure 2(K), then 

Equation 3.55 may still be used, but the L of Equation 3.55 is the half-

length of the cylinder I and Tm will occur at the mid-length of the 

hollow cylinder. 

In summary, Equations 3.40 1 3.45, and 3.50 are exact solutions for 

the hot-spot temperatures of the thermal models of Figures 2(A), 2(D), 

and 2( G) 1 and are approximate solutions of the thermal models of Figures 

2(B) and 2(C), 2(E) and 2(F), and 2(H) and 2(I), respectively, if L/r2 

is much greater than unity. 

The next chapter is devoted to the development of a general-

mathematical model for the boundary-value problems illustrated in 

Figure 2 and described by Equations 3.17 through 3.27. The solution of 

the model is accomplished by employing the techniques of finite-

differences. The information given in Figure 3 is included later in 

Figures 9, 10, and 11 to provide a more complete solution to the group 

of problems of Figure 2. The entire objective of this effort is to 

remove the restriction of L/r2 being very large from the solutions. 
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CHAPTER IV 

NUMERICAL SOLUTIONS OF THE 

BOUNDARY-VALUE PROBLEMS 

In keeping with the desire to derive and present the solutions of 

the group of boundary-value problems shown in Figure 2 in such a way 

that those solutions are readily usable by the engineer, an alternate 

approach to the mathematics involved is taken at this point. 

In Chapter III the only solutions derived are for those problems 

where the heat-conduction equation reduces to an ordinary differential 

equation. In every instance this reduction of the partial differential 

equation to an ordinary differential equation is a result of the 

boundary conditions involved or the assumptions that are made regarding 

the dimensions, one relative to another. For those cases where the 

dimensions of the coil are such that the assumption that L/r2 is very 

large cannot be made, this simplification of the heat ... conduction equation 9 

namely Equation 3.14, to either Equations 3.28 or 3.30 cannot be made. 

There are several approaches that may be taken to derive the 

solution of Equation 3.14 when subjected to boundary conditions which 

involve two variables. Thinking ahead just a bit, one realizes that 

the solution to Equation 3.14, subject to each set of boundary conditions 

of interest, must be determined for a range of values of R12 and for a 

range of values of L/r2 for each value of R12 • If each problem is to 

be solved many times, it seems reasonable to consider the possibility 

36 
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of using a computer in deriving the many solutions. 

Either the analog or the digital computer may be used to solve 

partial differential equations. Through the use of certain of the 

numerical methods, the digital computer lends itself more directly to 

the solutions of those types of problems than does the analog computer. 

For this reason, the remainder of the solutions presented here are 

derived with the aid of a digital computer. A brief discussion 

relating to the numerical methods used and the resulting mathematical 

models is given here. 

The numerical method of interest is that of the finite-difference 

approximation to the partial derivative terms of the Poisson equation 

( 3.14). There is a number of texts which treat this subject very 

adequately, Three such books are those by Schneider (12) and Dusinberre 

(13, 14), The various aspects of these techniques are not developed 

here, but instead, the application of the techniques to the problems 

at hand. 

Consider the entire volume of the heat-generating body to be divided 

into subvolumes, each of some specific geometrical description. Consider 

further that all the mass and the thermal and electrical properties of 

ea.ch subvolume are associated with a specific point ( referred to as a 

node) within the subvolume. This is illustrated in Figure 6. Each 

node is thought to be connected to every adjacent node by a thermally­

conducting rod. The conductance of each rod is determined by the 

separation distance between the two nodes, the thermal conductivity of 

the medium, the cross-sectional area between the subvolumes with which 

the nodes are associated, and the geometry of the subvolumes. 

Making application of the finite-difference approximations, the 
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total heat flow into node 1 of F_ir,ure 6 is given as 

where Qg 1 is the heat generated in the subvolume associated with node 1 0 

K. is the conductance from node j to node 1 1 and T1· is the temperature 
)l 

of node j. 

,--- I i 
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Figure 6~ Finite-Difference Model 

The heat generation term Qg 1 of Equation 4.1 may be written as the 

product of a thermal conductance and a temperature difference as 

( 4.2) 
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The quantity Qg1 is determined by dividing the total power input to the 

coil by the volume associated with node l. In keeping with the assumption 

that the heat generation within the coil is independent of the local 

temperature, the temperature T is arbitrarily specified such that 
g1 

T >>> T 
g1 1 

For practical purposes, Equation 4.2 then reduces to 

or 

K 
gl 

(4.3) 

Therefore, the heat generation corresponding to node l may be thought 

of as a conductance of heat from a node of very high temperature T gi 

to node l by way of a thermal conductance Kg1 , where Kg 1 is defined by 

Eq uat .i, on 4. 3 • 

As a result of these, Equation 4,l may be written in the form 

5 
K T + }: K. T. 

g1 g1 
j = 2 J 1 J 

Tl = 5 
(4.4) 

l Kj 1 
j = 2 

In exactly the same manner, equations may be written for the temperature 

of every node in the volume. This results in a system of linear, 

algebraic equations to be solved simultaneously. 

The system of equations of which Equation 4.4 is one may be solved 

in a rather straightforward manner using a digital computer. 

The node array which is used in solving for the temperature field 
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in the cylindrical body is presented along with formulas for the 

conductances from one node to another. 

Consider an enlarged view of the cross section of the hollow, 

cylindrical body shqwn in Figure l(B) as now shown in Figure 7. By 

the very nature of each of the boundary-value problems, there is no 

need for the node array to extend in the azimuthal direction because 

the boundary conditions are such that there is no azimuthal variation 

in the temperature field. Therefore, the subvolume associated with 

each node is a toroid of rectangular cross section as illustrated in 

Figure B. 

The conductance from node i to node i + l of Figure 7 is given by 

K. • +l J. ,1 

and from node j to node j + l by 

K. ·+1 = ,r[(p3 + ~ )2 - (p - ~ )2] k/AL 
J ,J 2 3 2 

or 

( 4. 5) 

where k is the thermal conductivity of the medium. For the node array 

shown 

Pi+ l = Pi + AR , i = 1, 2 , 3 , 4, 5 , 6 

and 
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A digital computer program has been developed that will calculate 

all of the internal thermal conductances from one node to another 1 

calculate the heat generated within each subvolumet then formulate and 

solve the system of linear• algebraic equations described above for any 

given value of R12 and L/r2 • This program allows the use of any type of 

terrperature boundary condition or adiabatic surface over any portion of 

the coil surface. With a small addition I the program will also allow 

the use of either convective or radiative surface conditions. The 

solution of the set of equations is accomplished by an iterative process. 

A description of the program is provided in Appendix A. 

Because the numerical solution is only an approximate solution I 

there is an error involved in each of the solutions obtained by using 

the numerical techniques. 

is provided in Appendix B. 

An error analysis of the numerical solutions 

The approach taken in the analysis is to 

select one of the boundary-value problems that has been solved exactly 

by direct integration. The same problem is solved with the computer 

prog:r>am, and results are then compared. This gives an indication of 

the error due to the finite-difference approximation and to the :r>ound-, 

off occurring within the computation at the same time. 

Once the computer prog:r>am has been written and checked out• the 

solutions to the several boundary-value problems shown in Figure 2 are 

obtained only after numerous executions of the program. For each 

boundary-value problem 1 a set of data describing those particular 

boundary conditions of inte:r>est and values for R12 and L/r2 must be 

provided, 
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As will be pointed out later, for all practical purposes, the value 

L/r2 greater than four satisfies the restriction of L/r2 being much 

greater than one for the problems of interest here. In other words, if 

L/r2 is greater than four, the value of the hot-spot temperature rise is, 

for practical purposes• the same as the value obtained by considering 

the case where L/r2 approaches infinity. This is not surprising if one 

compares the area of the curved surfaces to that of the ends. In the 

extreme case where r 1 becomes zero, the ratio of the curved surface area 

to the end area is 

Therefore, there is four times as much area to dissipate the heat from 

the curved surface as there is from .the ends. As r 1 approaches r 2 • 

this ratio becomes even greater as is easily seen from 

21rr2L ------= 2ir(r 2 - r 2) 
2 I 

In fact, as r 1 approaches r 2 , the ratio becomes infinite. As more of 

the heat is dissipated from the curved st,irfaces, the heat flow internal 

to the generating body becomes more radial, more dependent upon the 

radial parameters, and less dependent upon the axial parameters• 

Selection of a Reference Temperature 

In order to be assured that the hot-spot temperature rise determined 

from the solution of one of the boundary-value problems is an upper 

bound on the hot-spot temperature rise occurring within an actual coil, 
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some attention must be given to the selection of the proper temperature 

to be used as a reference. 

The success of determining an upper bound on the hot-spot temperature 

rise within an actual coil subjected to a particular environment depends 

largely upon the selection of the most appropriate thermal model from 

the group given in Figure 2. The first step is to determine which of the 

coil surfaces are adiabatic or approximately so. Often this may.be done 

by simply inspecting the coil in its operating environment and observing 

the possible paths for heat conduction out of and away from the coil. In 

many instances there may be no favorable conditions for the transfer of 

heat from one surface while a very good conduction path is present for 

heat transfer away from some other surface. Once the adiabatic surfaces 

have been sought out• the thermal model which has corresponding adiabatic 

surfaces is selected from Figure 2. The solution of this model provides 

the upper bound on the hot-spot temperature rise in the actual coil. 

After the proper thermal model has been selected, the location of 

the reference temperature must be determined. The reference temperature 

is taken to be the maximum temperature occurring on any of the non­

adiabatic surfaces. Again, by observation of the heat flow paths in a 

particular coil application, the location of this point is often easily 

approximated. It seems reasonable to assume that this temperature 

might often occur at the points of intersection of one of the adiabatic 

surfaces with one of the non-adiabatic surfaces. However, regardless 

of the manner in which this point is found, the temperature at that 

point is taken to be the reference temperature• namely, ts as first 

introduced in Equation 3.9. In the thermal model which is used to 

provide an· upper bound on the hot-spot temperature rise I the temperature 



of the non-adiabatic surfaces is ts as specified above. With this 

temperature uniformly distributed on all the non-adiabatic surfaces, 

the dimensionless temperature as defined by Equation 3,9 and Equation 

3, 12 is zero everywhere ~ those surfaces of the model. 

To show that the solution of this model does provide an upper 

botmd 1 consider the following comments. 
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Suppose that the temperature distributicm on all of the non-adiabatic 

surfaces is a uniformly-distributed temperature t 1• Co~sponding to 

these boundary conditions I the temperature distribution within the coil 

is t(r, z) 1 , and the hot-spot temperature is tml. If the temperature 

t 1 is decreased to some lesser value t 2 1 the internal temperature 

distribution is t ( r • z) 2 with a hot-spot temperature of tm2 • Since it 

has been assumed that the thermal characteristics of the coil are all 

temperature independent• t(r, z) 1 , t(r, z) 2 , tmi• and tm2 are related 

in the following manner: 

and 

Therefore, a decrease in the temperature of the non-adiabatic surfaces 

of the model produces a corresponding decrease in the entire temperature 

distribution and hence the hot-spot temperature within the model. 

Let the uniform surface temperature t 1 be replaced with a non­

tini form surface distribution t( r 1 z) . f which is continuous on each 
sur 

of the non-adiabatic surfaces and has a maximum value t 1 , The corre-

sponding internal distribution is t(r 1 z) 3 with a hot-spot temperature 
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tm3 • Since t 1 is an upper bound on t(r 9 z)surf for all values of Cr 9 z) 

on the non-adiabatic surfaces, it follows that t(r 1 z) 1 is an upper 

bound on t(r, z) 3 at every point Cr, z) in the interior. This implies 

that tm1 is an -upper bound on tm3 which is the desired conclusion. 

Therefore, if the maximum value of the temperature occurring on the non-

adiabatic surface is taken as a reference (that is, ts = t 1), the hot­

spot temperature rise for the case of· a unifo~ surf·ace temperature is 

related to the hot-spot temperature rise for the case of a non-uniform 

temperature in the manner· 

or 

Hence, the solution of the proper model as described in Figure 2 

provides an upper bound on the hot-spot temperature rise within an 

energized coil when the reference temperature ts is selected as described 

above. 

Using completely analogous statements, it is easily seen that if 

the reference temperature is selected to be the minimum temperature 

occurring on the non-adiabatic surfaces, then the result is a lower 

bound on the actual hot-spot temperature rise. Just as easily seen is 

that the difference between the upper and the lower bound is equal to 

the difference between the maximum and the minimum temperatures occurring 

on the non-adiabatic surfaces of the coil. 

In summarizing the comments pertaining to the selection of the 

reference temperatu~e, it may be said that the process is carried out 
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by determining which surfaces of the coil are adiabatic or approximately 

so and where the maximum temperature occurs on the non-adiabatic 

portions o.f the coil surface~ Both of these steps may possibly be 

accomplished in a heuristic manner or by a detailed study of the actual 

boundary conditions. 

With these thoughts in mind, the solutions to the group of boundary­

value problems as obtained with the aid of the digital computing 

facilities are presented and discussed. 

Solution of the Boundary-Value Problems 

with Realistic Dimensions 

As was pointed out in Chapter III• the problems shown in Figure 

2(A), (D), (G), (J), and (K) may be solved by the direct integration of 

the appropriate ordinary differential equation and by matching two 

boundary conditions. Also, it was pointed out that the problems shown 

in Figure 2(C), (F), and (I) are simply two of the problems shown in 

Figure 2(B), (E), and (H), respectively 1 placed end to end. This comes 

about because lines or surfaces of synunetry are adiabatic surfaces if 

the boundary conditions are a1so symmetrical about those same lines or 

surfaces. Therefore, the problems of Figure 2(B), (E), and (F) must be 

solved for the cases where it is not permissible to assume that L/r2 is 

much greater than one. Once the solution for the hot-spot temperature 

rise in each of these problems is obtained, the entire group of problems 

will have been covered. 

The boundary conditions shown in Figure 2(B) and described mathema­

tically in Equation 3.18 are used as data for the computer program. 

This boundary-value problem is solved for a range of values of R12 and 
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L/r2 • Figure 9 shows this solution for the dimensionless hot-spot 

temperature rise Tm plotted as a function of R12 with a parameter L/r 2 • 

This same family of curves may be used to determine the hot-spot 

temperature rise in problem C as discussed previously. 

It is interesting to note that if L/r2 is greater than one, the hot­

spot temperature rise is very close to that of an infinitely long coil. 

Just as one would expect, as R12 increases toward unity, the effects of 

length become less and less significant until• finally, the effect is 

less than the error involved in the numerical solution •. The top curve 

shown in Figure 9 is the same as the bottom curve in Figure 3. This is 

Equation 3. 40. This is also the solution to problem A. 

Figure 10 shows the results from the computer solution of the problem 

shown in Figure 2(E). As discussed previously, this family of curves 

may be used to determine the hot-spot temperature of problem F • also. 

One notices here that the effects of length are more significant than 

is the case in Figure 9. This is not surprising, because the larger of 

the two curved surfaces has no heat flowing across it. Therefore, an 

increased fraction of the total heat flow must be out the end. The top 

curve in this figure is Equation 3.45 which is also given in Figure 3. 

Also, this is the solution of problem D. 

Finally, Figure 11 shows the relationship between the dimensionless 

hot-spot temperature rise and R12 and L/r2 for the boundary conditions 

shown in Figure 2 (H). In this instance the hot-spot temperature rise 

is less dependent upon length than in the last problem, because heat 

flows across the larger of the two curved surfaces. Therefore, more 

heat flows radially and less axially than before. Here again, this 

family of curves may be used for problem I. The top curve is the same 
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as the middle curve of Figure 3 and is the solution of problem G. 

The significant features of these solutions are that the effects of 

the curvature of the coil have not been neglected, nor have been the end 

effects. The results show that both effects are quite significant for 

coils of practical dimensions. 

Use of Graphical Results 

In order to determine the temperature rise within a coil, two items 

of information are required besides the dimensions. The first of these, 

and by far the easier to determine, is the heat generation per unit 

volume per unit time. This is easily determined by di vi ding the electri­

cal power input to the coil by the volume of the coil. This gives the 

value of q''', first introduced in Equation 3.1. 

The other bit of information required is the thermal conductivity 

of the composite coil. This is not so easily determined. In fact, this 

appears to be a research area in itself. However, some work has been 

done in this area. 

In his book, Moore (3) presents graphically the results of a field­

mapping study. Using the technique of field mapping, he generated a 

graph in which he relates the ratio of the thermal conductivity of the 

coil and that of the insulation on the coil wire to the space factor to 

which the coil is wound. This graph is reproduced here as Figure 12. 

Using the graph, a value of the conductance ratio, which is defined as 

the ratio of the thermal conductivity of the coil to the thermal con­

ductivity of the insulation, is obtained for a given value of the space 

factor of the coil. The space factor is defined as the ratio of the 

volume of the copper in the coil to the entire coil volume. The thermal 
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conductivity of the coil is given by the product of the conductance 

ratio and the thermal conductivity of the coil wire insulation. 

Moore's work in this area has been the subject of many references 9 

but there is very little evidence to indicate that his results have 

been confirmed, disputed, or extended, 

After q''' and k have been determined, the use of Figures S, 9, 10, 

and 11 to determine hot-spot temperature rises is a simple matter. The 

actual value of the temperature rise which serves as an upper bound is 

given by taking the product of Tm and ar2 
2 , where Tm is taken from the 

appropriate curve of Figure 9, 10, or 11 for the proper value of R12 

and L/r • As defined previously I a = q' '' /k. 
2 

In the next chapter an example is considered in order to demonstrate 

the use of the graphical results of Figures 9 1 10, and 12, 



CHAPTER V 

APPLICATION or THE GRAPHICAL RESULTS 

The coil selected to serve as an example to demonstrate the use of 

Figures 9, 10, and 12 is the magnet coil of a rotary-type electromap;netic 

relay, The iron core is stationarv and serves as the major path for the 

heat flow out of the coil,_ The coil-core as·sembly cross section is 

depicted in Figure 13. 

Boob in 

FiP,Ure 13. Coil-Core Assembly of Rotary-Type Relay 

Because of the confip:uration of the mapnetic circuit, there is no 

conduction path for any appreciable amo~t ~f heat flow away from the 
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top of the core or the top of the coil to the heat sink. Also, the 

proper conditions do not prevail for any significant amount of convective 

heat loss from the outer surface of the coil. Therefore, both the top 

and the outside surfaces of the coil are assumed to be adiabatic, or 

nearly so. With this information available, the appropriate family of 

curves is seen to be that of Figure 10. 

The next step is to select the reference temperature, the maximum 

temperature occurring on the non-adiabatic portions of the coil surface. 

Consideration of the heat source-sink relationship indicates that the 

temperature increases with increasing distance from the sink. The point 

on the non-adiabatic portion of the surface which is furthermost from 

the iron core is the point (r2 , L) [See Figure l(A)J. Therefore, the 

refenmce temperature is selected to be 

For the coil under consideration• the specifications are: 

power input 

length 

inner radius 

outer radius 

insulation on wire 

embedded winding 

reference temperature 

a.a watts 

0.6a in. = 
0. 35 in. ·-
0.625 in. 

teflon 

= 30 Btu/hr. 

• 0566 ft • 

• 0292 ft • 

= .052 ;ft. 

For a space factor of 0.6, the conductance ratio for the embedded 

coil winding is found to be 4.1 from Figure 12. S;i.nce the thermal 

conductivity of teflon is approximately 0,14 Btu/hr.-ft.-°F, the 



equivalent thermal conductivity of the coil is 0.57 Btu/hr,-ft,-°F, 

The rate of heat generation per unit volume is determined to be 

30 Btu/hr, 30 
q"' = ---------<r22 _ rl2)L ft,3 = ,000295 

= 10.2 x 10 4 Btu/hr. 
ft. 3 

Btu/hr •. 

ft, 3 

Therefore• 

and 

'+ . 3 
a=~= 10.2 x 10 Btu/hr.-ft. = 1• 78 x 10 s or/ft,2 
~ 0,57 Btu7br.-ft.-"r 

ar 2 = 480°F 2 

From Figure 10. for R12 = ,56 and L/r2 = 1.08 1 Tm= 0.116. The 

value of the upper bound on the temperature rise is given as 

t - t 6 = ar/Tm - (0,116) (480) °F = 55,6°F • 

57 

In other words, the actual hot-spot temperature in the coil is determined 

to be 

or 

t < 100 + 55. 6°F = 155 •:6ciF · m-

If the boundary conditions of the actual coil were exactly those 



58 

shown in Figure 10 9 the hot-spot temperature would occur at the point 

(r2 , O). However, quite probably, neither the top nor the outside 

surface of the coil is completely adiabatic. The result of this is that 

the hot-spot is inside the coil but near the point (r2 , 0) rather than 

at the point (r2 , O). As a matter of interest, the temperature at the. 

point ( r 2 , O) was measured and found to be 122°F. This is a rise of 22°r 

above ts. 

Another upper bound on the hot-spot temperature rise within this 

same coil may be determined by selecting a different model from Figure 2. 

Previously, it was assumed that both the top and the outer radial 

surface of the coil are adiabatic. In this instance, assume that only 

the top surface is adiabatic. This corresponds to model B of Figure 2 1 

the solution of which is given in Figure 9. For this case, the reference 

is that at the point (r2 , O) and is equal to 122°F. 

From Figure 9 1 for R12 = o.56 and L/r2 = 1.08, Tm= .025 and 

( ) 2T --t - ts = ar2 m c ll- 80 > c o • 2 s > 0 r = 12 ° r • 

Therefore, 

t < (ts + 12) °F = (122 + 12) ··or = 13ll-°F 
m-

or 

The upper bound as determined by using either Figure 9 or Figure 10 

is greater than the temperature measured at the point where the surface 

temperature most likely assumes a value very nearly its maximum. Again, 

by observing the nature of the coil in its application, one would expect 
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the hot-spot to be very near the top and near the outer curved surface 

of the coil. 

· For this particular electrical coil, the temperature was also 

measured at the points ( r 11 0) and ( r 1 • L). Using the four temperatures 

t(rl ,o) = ee0 r t(r2 ,o) = 122°F 

(5.1) 

a set of temperature boundary conditions is formulated keeping in mind 

the assumption that there is no heat flow out the top of the coil. If 

the reference temperature t 8 is taken to be t(r2 , L) as before, then 

the proposed set of boundary conditions has the form 

t(r2 ,z) - ts = a0 + a 1z + a z2 , ( 5 .2) 
2 

t(r11z) - t = bo + b 1z + b z2 , (5.3) s 2 

t(r,L) - ts = c0 + c 1 r + 2 c2 r • (5.4) 

where 

= 
at(r1 ,L) 

= ar = O • (5.5) 

The first two terms of Equation 5. 5 are compatible w.i, th the assumption 

of no heat flow out the top of the coil. The third term of that equation 

provides for no heat flow into the core from the very bottom of the coil. 

The measured difference in the temperature of these two points indicate 

this to be the case for this particular coi.l. 

By applying Equations s.1 and S.5 to Equations 5.2, 5.3 1 and 5.4, 
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the temperature boundary conditions are determined to be 

(5.6) 

cs.7) 

cs.a> 

These equations are used to supply boundary temperature data for the 

computer program. From the computer solution of the resulting boundary-

value problem, Tm is found to be approximately • 0482; and the location 

of the hot-spot is approximately Cr, z) = (0.93, O). The hot-spot 

temperature rise is found to be 

or 

tm - ts = (.0482) (ar/) = (.0482) (480) = 23.1°F 

t = 2 3 + 10 0 = 12 3° F rn 

The actual value of the hot-spot temperature rise is seen to be 

less than either of the proposed upper bounds as must be the case if 

the results are to be valid. 

In the course of obtaining Tm for this set of boundary conditions• 

a discrete temperature distribution similar to the one shown at the end 

of Appendix A is obtained. This is shown in Figure 14. (See Appendix 

A for a discussion of the information presented in Figure 14.) In 

Figure 14, ~>ne observes that the temperatures are greater inside the 

outer surface than on the outer surface.for the upper two-thirds of the 

coil. That is, 
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and 

Therefore 1 there is some heat flow across the outer surface. This 

accounts for the difference between the upper bound and the actual 
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value of tl)e hot-spot temperature rise. Had there been no heat flow 

across the outer surface. one would expect the upper bound and the actual 

value to be very nearly equal. This is expected because the boundary 

conditions used to determine the upper bound are precisely those of no 

heat flow across the top or the outside surfaces. 

The two cases considered here for the same coil have illustrated 

the use of Figures 9 9 10 1 and 12. With a minimum amount of quantitative 

data along with some qualitative information and a very few arithmetical 

operations• some knowledge of the hot-spot temperature rise within the 

heat-generating• hollow cylinder is· easily obtained. The fact that this 

information is easily derived from the graphs and specifications of the 

coil is important to the practicing engineer when he seeks this 

particular type of information. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Summary 

In keeping with the objectives set forth in Chapter I, a method 

has been developed whereby certain information regarding the temperature 

rise in hollow 9 cylindrical bodies with internal heat generation may be 

rather easily obtained. Since the hot-spot temperature is the tempera­

ture of interest to those concerned with the possibility of component 

failure due to excessive internal temperatures, information that may be 

used to determine an upper bound on the hot-spot temperature rise is 

derived and presented. This infQrmation is presented graphically in a 

manner so as to relate the geometrical. electrical• and thermal properties 

of the coil to the temperature rise within the coil for a given electrical 

power input. 

The use of the graphical relationships of Figures 9, 10, and 11 

require a few rather simply determined bits of data: 

1., A qualitative observation must be made of the coil in its 

operating environment to determine which of the coil surfaces, 

if any, are approximately adiabatic. 

2. After the adiabatic surfaces have been noted, the location of 

the maximum temperature occurring on the non-adiabatic portions 

of the surface needs to be noted and the temperature at that 
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point measured or estimated; as this is the reference 

temperature above which the hot-spot temperature rise is 

determined • 
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. 3. Using the results of step 1 above and the dimensions of the 

coil 1 the appropriate curve is selected from Figure 9 9 10, or 

11. The value of Tm is determined. 

4. From Figure 12 • the ''equivalent" thermal conductivity of the 

coil is determined to allow the calculation of the dimensional 

scale factor ar22 • Now the upper bound on the temperature rise 

is determined to bet - ts= ar22Tm. 

Conclusions 

The significilllt conclusions are that quantitative knowledge of the 

hot-spot temperature rise within the cylindrical body may be derived 

from certain qualitative observations and a few properties of the heat­

generating body; and, perhaps equally important, this knowledge may be 

obtained relatively easily and only a small amount of time is required. 

Often, in mind of the practicing engineer, the determining factor 

concerning the utility of a given method is the amount of time and 

effort required to work the method rather than the quality of the results 

if he has some idea of the errors involved. 

The method presented is easily carried out, and the solutions 

presented are shown to be accurate to within five percent or better, 

which often is quite sufficient for engineering purposes. 

The results are based on the following assumptions: 

1. The thermal and electrical properties of the heat-generating 

body are tempel"ature independent (including the heat generation). 
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2. If the results are applied to electrical coils• the assumption 

is made that the nonhomogeneous coil may be replaced by some 

homogeneous material which has the same gross thermal and 

electrical properties as the actual coil. 

In view of some of the assumptions that have been made in prior 

efforts I a significant characteristic of the results is that they take 

full account of the effects of the curvature of the hollow cylinder as 

well as the end effects. Therefore, the results are valid for a right­

circular, hollow cylinder of any dimension. 

Areas for Future Work 

One very important factor in the successful application of the 

results derived and presented is the determination of k • the "equivalent" 

thermal conductivity of the coil. The calculated value of the tempera­

ture rise varies inversely with k, Therefore, an error in the value of 

k affects the calculated result quite significantly. As mentioned 

earlier, the work of Moore (3) in th.is area has been referenced many 

times; however, there is little evidence that anyone else has looked 

into this problem. In view of its importance in the application of the 

results presented here, it seems that the problem warrants some more 

attention. 

For certain applications of electrical coils, the maximum temperature 

of the non-adiabatic portion of the coil surface may not be easily 

determined or the point where it occurs may not be readily accessible, 

In these instances I it might prove desirable, for example, to be able 

to select some point in the magnetic circuit as the reference point or 

perhaps some point in the coil-mounting structure. In such cases, the 
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thermal conductances from the coil surfaces to the iron core or the 

mounting structure must be determined, Once these have been determined* 

perhaps the reference point may be moved to that more accessible point. 

The author is presently attempting to determine these ther~l 

conductances for the case of magnet coils where the iron core is 

stationary. The reference temperature is taken to be the temperature 

at some point in the core, In a further step, the reference point may 

be moved to some point in the external part of the magnetic circuit• but 

this requires the determination of still more conductances, More needs 

to be done along this line. 
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APPENDIX A 

DIGITAL COMPUTER PROGRAM 

The digital computer program developed and used during this study 

is written in Fortran IV, for use on the IBM 1410 and IBM 7090 Data 

Processing Systems. The discussion of this program is prefaced with 

the remark that no particular effort has been put forth to minimize 

either the execution time or the required number of memory locations of 

the program. On the other hand, some time was spent in developing and 

testing the portion of the prog,;,am which examines the temperature at 

each node to determine whether or not it is sufficiently accurate. More 

is said about this later in this section. 

As pointed out in Chapter IV, by using the finite-difference 

approximation to the differential equation, a system of linear, algebraic 

equations is generated. There is one equation for each node in the 

array. Each of the equations may be written in the form of Equation 4.1 

or 4.4. Actually, both forms are used during the execution of the 

program, This system of equations must be solved simultaneously, since 

the equation for the temperature at one node involves the temperatures 

of several other nodes. 

The simultaneous solution of the set of equations is accomplished 

by an iterative process. The solution ts started by calculating a new 

value for T 1 using assumed values for a'ii other ternpe:ratures. This new 

value for T 1 replaces the originally assumed value in memory and i.s 
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used in subsequent calculations. The procedure is repeated for T2 , then 

T 3 , and so on, until a new and improved value for each temperature is 

obtained. In order to improve the values still more, the entire 

iteration process is· repeated. 

After some number of iterations has been completed, it is necessary 

to check the temperature values against some judging criterion. This 

is accomplished by examining the residual at each node. The residual at 

node 1 is defined to be the left-hand side of Equation 4.1. Just as 

there is~ temperature equation for each node, there is a residual 

equation for each node. If the temperatures are all correct, the residual 

at each node is zero. In reality, a great many iterations may be required 

to reduce all residuals to zero. However, a smaller number of iterations 

might reduce the.residuals to a value small enough that the error in the 

temperature values may be tolerated. This is the scheme used in the 

program. 

A~er a preselected number of iterations have been completed, the 

residual at each node is calculated, Each of the residuals is divided 

by the largest value of temperature occurring a~er the last iteration. 

This provides a set of normalized resiquals~ If any of the normalized 

residuals are larger than another preselected number, another series of 

iterations is performed, after which the new set of normalized residuals 

is determined and tested. This entire process is repeated until each 

of the resulting normalized residuals is sufficiently small, 

The iterative solution is started by using assumed values for the 

temperature. These assumed values are read in as data. Obviously, t_he 

closer the assumed values are to the correct values, the fewer will be 

the required number of iterations to yield answers correct to within a 
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given percent age • 

The process just described is simply a variation of the method of 

relaxation that is explained by Schneider ( 12) and in detail by 

Dusinberre (13). 

In obtaining the solutions presented in this thesis, ten iterations 

were performed between each examination of the normalized residuals; 

and the iterations were continued until every normalized residual was 

less than 0.01. Comments concerning the errors in these solutions are 

given in Appendix B. 

A flow diagram of the program is given, followed by the Fortran 

listing and a sample of the output obtained a~er the residual criterion 

has been satisfied. 

Figure 15 depicts the node array and shows the location of each of 

the conductances. The group of nodes which are all connected together 

with the dashed lines is labeled as node 50. This is the node of very 

high temperature mentioned in the derivation of Equation 4.3. The heat 

generation associated with a given node in the array is given by the 

product of T50 and the thermal conductance between node 50 and that 

node. For example• the heat generation associated with node 1 is 
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r.igure 15. Node Array Showing Location of Each Conductance 
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iooo 
tooo 
3000 
3500 
4000 
5000 
6000 
7000 
7500 
8000 
8500 
9000 
9500 
9600 
9700 

l 

100 
105 
5 

10 
15 

20 

25 

30 

35 

DIMENSION TllOOl,IFLAGClOO),TK<l50l,ND11150l,ND21150l,Vl251 
DIMENSION RHOC25l,QNC1001 
FORMATCI10,Il0,Fl-Oa51 
FORMATCFl0.5,1101 
FORMATl1Hl,9X,12HRUNNING TIME,5X,F7.3,5X,5HHOURS,//l 
FORMATl10X,20HNUMBER OF ITERATIONS,5XiI10,//I 
FORMAT(l0X,14HRATIO OF INNER,5X,15HRATIO OF LENGTH) 
FORMAT!lOX,15HTO OUTER RADIUS,4X,15HTO OUTER RADIUS,/! 
FORMATIFi0.51 
FORMAT(l3X,F7.3,l2X,F7a3,//I 
FORMAT(lOX,31HTHE TEMPERATURE DISTRIBUTION IS,//l 
FORMAT!l2X,I2,6(11X,I211 
FORMATl3X,713X,Fl0e511 
FORMAT(3X,7(3X,Fl0e51 ,//1 

75 

FORMATl10X,22HMAXIMUM TEMPERATURE IS,5X,Fl0e5,5X,7HAT NODE,5X,I21 
FORMATl10X,48HWHERE THE NUMBERS ARE NODE, NORMALIZED RESIDUAL,> 

. FORMAT(lOX,43HAND DIMENSIONLESS TEMPERATURE, RESPECTIVELY) 
CALL CLOCK (STTIMEI 
N=l 
NN=l 
ITERAT=O 
ICOUNT=O 
ICMAX=lO 
IIN=l 
IOUT=3 
READIIIN,lOOOIIMAX,JMAX,TOL 
READIIIN,60001RB 
READIIIN,6000128 
PI=3.141592 
INDl=O 
IND2=0 
DO 105 I=l,IMAX 
READIIIN,20001TIIl,IFLAGIII 
DELTR=ll.O-RBl/6.0 
RHOlll=RB 
DO 10 I=2,7 
RHOlil=RHOII~ll+DELTR 
CONTINUE 
DELTL=ZB/6.0 
DO 20 I=l,6 
TKIIl=2•0*PI*DELTL/ALOGlieO+DELTR/RHOllll 
ND11I>=I+7 
ND21Il=I+8 
CONTINUE 
DO 25 I=l,24 
T K I I +6 I = T K. ( I I 
NDl I I+6l=N.Dl I I 1+7 
ND21I+61=ND21Il+7 
CONTINUE 
DO 30 1=2,6 
TKll+291=2.~*PI*RHOIIl*DELTR/DELTL 
ND111+29l=I 
ND2 I !+291=1+7 
VII+71=2•0*PI*DELTR*DELTL*RHOIII 
CONTINUE 
DO 35 1=31,55 
TK( 1+51=TKI I I 
ND111+51=ND1(11+7 
ND2 I I +51 =ND2 I I I +7 
CONTINUE 
DO 40 1=9, 13 
TK(l+52l=VCll/lOOOOO.O 



ND111+52l=I 
ND21I+52l=50 

40 CONTINUE 
DO 45 1=61,80 
TK(l+5l=TK<ll 
ND1!1+5>-ND111)+7 
ND2(1+5)=50 

45 CONTINUE 
DO 50 I= 1 ,6 
TK< I+B5l=TK( I l/2.0 
ND111+851=I 
ND2( 1+85l=I+l 
TK(l+l03l=TKII+B51 
ND 1 I I + 1 0 3 I = I +4 2 
ND211+103)=1+43 

50 CONTINUE 
TK(92l=PI*IRH0(7l*DELTR-IDELTR**2)/4o0l/DELTL 
ND1192)=7 
ND2192l=l4 
DO 55 I=l,5 
TKI 1+92l=TK192l 
ND111+92l=7*1I+ll 
ND211+92l=7*11+2l 

55 CONTINUE 
TK(98l=Pl*IRHO!ll*DELTR+IDELTR**2l/4o0l/DELTL 
ND1198)=1 

. ND2 ( 98 l =8 
DO 60 I=l,5 
TK( l+981=TKl98) 
ND111+981=7*l+l 
ND2(1+98)=7*1+8 

60 CONTINUE 
VOL=Pl*DELTL*IRHOlll*DELTR+IDELTR**2l/4oOl 
TK(l23l=VOL/l00000o0 
NDl 1123) =8 
ND21123)=50 
DO 65 I= 1, 4 
TKU+l23l=TKI 1231 
NDl·II+l23)=7*I+8 
ND2(1+123)=50 

65 CONTINUE 
TKJllO)=TKl123l/2oO 
NDllllOl=l 
ND2(1101=50 
T K I 12 8 ) =T K I 110 l 
ND11128)=43 
ND211281=50 
DO 70 I= 1, 5 
T K I I +11 0 ) = T K ( I + 6 0 l I 2 • 0 
NDl(l+llOl=I+l 
ND2 ( I +110 l =50 
TK(I+l28l=TKII+ll0l 
ND111+128l=I+43 
ND2 I 1+128) =50 

70 CONTINUE 
VOL=Pl*DELTL*IRH0(71*DELTR-IDELTR**2l/4o0l 
TKl117)=VOL/100000o0 
ND11117)=14 
ND211171=50 

. DO 75 I= l, 4 
·TKCI+ll7)=TK(ll7) 
ND11I+ll7)=7*1+14 
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ND211+1171=50 
75 CONTINUE 

TKl116l=TKl117)/2e0 
NDllll6)=7 
ND2 I 116 l =50 
H-1122l=TKI 1161 
ND11122l=49 
ND211221=50 

119 TMAX=O.O 
120 DO 225 1=1,JMAX 

SUMK=o.o 
SUMKT=O.O 
IFIIFLAGl.lleEQ.ltGO TO 225 
DO 156 J=l,JMAX 
IF(NDllJleNEellGO TO 156 
SUMK=SUMK+TKIJI · 
M=ND2<JI 
SUMKT=SUMKT+TK<Jl*TCMI 

156 CONTINUE 
. DO 182 J=l,JMAX 

I·FCND21JI.NEellGO TO 182 
SUMK=SUMK+TK<JI 
M=NDllJI 
SUMKT=SUMKT+TKIJl*TIMl 

182 CONTINUE 
TEMP=SL!MKT/SUMK 
TII)=TEMP 
IFITMAXeGT.TllllGO TO 225 
TMAX=T<II 
NODE=I 

2.25 CONTINUE 
ITERAT=ITERAT+l 
ICOUNT=ICOUNT+l 
IFIICOUNT.NE.ICMAXJGO TO 119 
iCOUNT=O 
DO 245 I=l.IMAX 
SUMK:o.o 
SUMKT=OoO 
IFIIFLAGIJl.ECollGO TO 243 
INDl=INDl+l 

. DO 227 J=l ,JMAX 
IFINDllJI.NEellGO TO 227 
SUMK=SUMK+TKIJ) . 
M=ND21Jl 
SUMKT=SUMKT+TKIJl*T<MI 

227 CONTINUE 
DO 228 J=l,JMAX 
IFIND2(JloNEellGO TO 228 
SUMK=SUMK+TK<JI 
M=NDl(J) 
SUMKT=SUMKT+TK(Jl*TIMI 

228 CONTINUE 
Q•SUMKT-T!Il*SUMK. 
ON I I l •Q/TMAX 
IF{ABS(QN(IlleGEoTOLIGO TO 245 
IND2=IND2+1 
GO TO 245 

243 QN(Il=OoO 
245 CONTINUE 
230 IF(I~DloNEoIND2JGO TO 250 

GO TO 275 
250 .I NDl=O 
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IN02=0 
260 r;o TO 119 
275 CONTINUE 

CALL CLOCK IPRTIMEI 
RNTIME=PRTIME-STTIME 
WRITE(IOUTt30001RNTIME 
WRITE(IOUT,35001ITERAT 
WRITE!IOUT,40001 
WRITEIIOUT,50001 
WRITEIIOUT,7000lRB,ZB 
WRITEIIOUT,75001 
DO 244 L=l,43,7 
Ll=L 
L2=L+l 
L3=L+2 
L4=L+3 
L5=L+4 
L6=L+5 
L7=L+6 
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WRITEIIOUT,80001Ll,L2,L3,L4,L5,L6,L7 
WRITEIIOUT,8500)QN(L11,QNIL21,QNIL31,QN(L41,QN(L51,QNIL6),QN(L7l 
WRITEIIOUT,90QOIT(Lll,TIL21,TIL31,TIL4l,TIL5),TIL61,TIL7) 

244 CONTINUE 
WRITEIIOUT,9500ITMAX,NODE 
WRITEIIOUT,96001 
WRITEIIOUT,97001 

246 CONTINUE 
ITERAT=O 
IFIRNTIME.GTeOeBIGO TO 291 
RB=RB+Q.125 
IFIRBeGT.0.901GO TO 280 
GO TO 5 

280 RB=0.125 
ZB=2.0*ZB 
IF(ZB.GT.5.0lGO TO 290 
GO TO 5 

290 ZB=0.25 
291 CONTINUE 
295 . STOP 

END 



. RUNNING rlHE .• 190 HOURS 

NUMBER OF ITERATIONS 30 

. RATIO OF INNER 
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.250 
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4.000 
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l 2 3 
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29 30 31 
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.00000 .04845 .06946 

36 37 JB. 
.00000 -.00076 -.000!17 
.00000 .04313 .06245 

. ··- ..... -------
43 44 45 

.00000 .00000 .00000 

.00000 .oooou .00000 

4 
-.00092 

.07290 

11 
-.00161 

.07290 

18 
-.00156 

0 07Z89 

25 
-.0011,9 

.07280 

32 
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.01201 

39 
-.00012 

,06417 

46 
,00000 
•. 00000 

. MAlUMUM ... JE.MPERATURE IS .07290 AT NODE 
WHERE THE NUMBERS ARE NOOE, ~ORMALIZED RESIDUAL, 
AND. DIMENSIONLESS TF.MPERATURE, RFSPECTIVELY 
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5 6 1 
-,00052 -.OOU03 ,00000. 

,06075 .03602 .00000 

12 l3 l ,, 
-,00091 -.00003 ,00000 
0 ,06075 ,03602 ,00000 

19 20 ?l 
-.oooaa -.00002 .oouoo . 

.On074 ,01602 ,00000 

26 27 28 
~.00083 -,00002 ,00000 
.• 0606 7 ,03598 .00000. 

33 H 35 
-.00070 -.00001 .00000 

.06004 ,03')64 ,00000 

40 41 4? 
-.00039 • ooo·oo .00000 

,O'i425 ,03249 .00000 

47 411 '• ') 

.00000 .00000 ,OOIJOO 
,00000 .00000 , 00000 
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APPENDIX B 

ERROR ANALYSIS OF APPROXIMATE SOLUTIONS 

The error analysis given here is to provide a feel for the 

magnitude of the errors involved in the solutions described in Chapter 

IV. Recalling that those solutions were obtained by solving a finite­

difference model which is oniy an approximation to the original mathema­

tical model. There is• therefore, an error involved due to the finite 

difference approximation. Secondly, the_approximate model is solved 

by an iteration technique which provides another source of error. The 

iteration process may be continued as long as practicable• but the 

resulting solution only converges toward the correct solution to the 

model and, in general, never becomes equal to it. Thirdly, there is 

error introdµced into the solution due to round-off and tr\lllcation which 

take place during the actual computing process. Therefore, there are 

at least three sources of error: 

1. Error due to the finite difference approximation, 

2, Error due to convergence characteristics of the programmed 

solution, 

3. Error due to round-off and truncation occurring during the 

computing process. 

Some idea of the magnitude of the error due to the finite difference 

approximation may be obtained by considering the mathematics of that 

numerical method, Consider the case where the dimensionless temperature 
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T is a function only of the dimensionless. radial variable R. That is, 

T(R) must satisfy Equation 3.28, 

d2T l -+-. dR2 R 
(3.28) 

If T(R) is expressed in a Taylor> series expansion in the following 

manner, an indication of the magnitude of error is obtained. 

T(R + 6R): T(R) + AR dT(R) + (AR) 2 d2T(R) 
dR 2 dR2 

(6R)3 
+ ""'3!!"!!!"i--

(6R) 3 

3! • 

d3T(R) (AR) 4 
+ 41, 

dR3 

d3T(R) (6R) 4 ---+--dR3 4! 

+ IO I 

+ ••• 

(B, l) 

(B,2) 

Upon adding Equations B,l and B,2 together and solving for d2T~R) , 
dR 

one obtains 

= l [T(R +AR)+ T(R - 6R) - 2T(R) + o(AR) 4 J , 
(AR) 2 

(B.3) 

or 

-. l ~T(R + 6R) + T(R - 6R) - 2T(R)] + o(6R) 2 
(AR) 2 

(B.4) 

Therefore, if only the first three terms of the series expansion are 



considered, the error is of order (6R)2• Similarly. 

dT(R) 
dR 

82 

(B.S) 

If the right-hand side of Equations B.4 and B.S are substituted 

into Equation 3.28, the result is 

l 
+ - • R· 

dT(R) 
dR = l [T(R +AR)+ T(R - AR) - 2T(R)] 

(AR) 2 

·1 
+ 2it [T(R + AR) - T(R .. AR)] + o(AR) 2 ;: ... 1 , 

which gives the correct solution if the term o(AR) 2 can be evaluated, 

The central difference numerical approximation neglects this term; and, 

therefore, it is the errQr due to the approximation, 

Equations 4,1 and 4,4 may be generated from Equation B,6 which 

serves as the basis for the calcul,ation of temperature distribution by 

finite-differences, 

From Equation 4, 7 

AR= 

Therefore, 

l - R12 

6 
(!+. 7) 

(B,7) 

Equation B, 7 is evaluated for values of R12 between zero and one as follows: 
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R12 ( t.R) 2 

0 .0278 2.78% 

.1 .0225 2.25 

• 3 .0113 1.13 

.5 .0069 o.69 

.7 .0025 0.25 

.9 .00028 0.028 

1.0 0 0 

This shows that the magnitude of the error resulting from t}le finite 

difference approximation is of the order of three percent or less. 

The other two errors listed are not so easily determined. However, 

in certain cases, it is not difficult to determine the entir,e error 

involved. In order to do this, a boundariy-value problem which is 

described by Equation 3.28 is selected from Figure 2. PI'Oblem D of 

Figure 2 is such a problem, and the solution is given by Equation 3. 45. 

A feel for· the total erro;r, involved in the approximate solution may be 

obtained by comparing the exact solution, Equation 3.45, with the 

computed solution of the finite-difference model,. This comparison is 

shown in the table below: 

!12 Solution for TJII Percent (t.R)2 
Exact cowizuted Error 

0.125 • 79362 • 75467 -4,91 2.12% 

0.250 • 45877 .47359 3,23 1,56 

0.37~ ,27557 .28061 1. 82 1,08 

o.500 .15907 , 16090 1.15 0.69 

0,625 .08265 .08314 o.59 o. 39 

0,750 ,03446 .03460 0.40 0,17 

o. 875 .00817 .00819 0.24 o.o5 



In this case. the magnitude of the actual error is roughly two 

times (AR) 2 which is well within the confines of the definition of 

o( AR) 2 • As mentioned before, it is difficult to separate out each of 
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the three errors to determine the contribution of each. However 9 the 

fact of importance here is that the total error involved by the approxi­

mate solution appears to be less than five percent, which is sufficiently 

small for many engineering purposes. 

Equations similar to B,l through B.6 may be derived for the 

problems where the heat flow has both radial and axial components. How­

ever9 the mathematics required to determine the order of the error are 

a bit more complex, It is felt that this one example is sufficient to 

give one a feeling of the magnitudes of error involved and to assure 

that the solutions presented in Figures 9 • 10 • and 11 are sufficiently 

accurate for many applications. 



APPENDIX C 

GLOSSARY OF SYMBOLS 

The following is a list of the symbols and terms used through the 

thesis: 

a q"'/k (defined after Equation 3,8) 

C specific heat 

k thermal conductivity 

L length of the hollow cylinder 

q''' heat generated per unit volume per unit time 

r 1 inner radius of the hollow cylinder 

r2 outer radius of the hollow cylinder 

R12 the ratio r 1 /r2 

Rm dimensionless radius at which the hot-spot temperature 

occurs 

R defined in Equation 3. 41 

t dependent variable 1 temperature 

tm upper bound on t 

ts reference temperature 

T dimensionless temperature differences ( defined by 

Equations 3,9 and 3,12) 

Tm upper bound on T 

a - thermal diffusivity 

B temperature coefficient of resistivity 
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a 

p 

P• 1 
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independent variable• time 

mass density 

values of the dimensionless radius R (i = 1, 2, •••t 7) 
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