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CHAPTER I
INTRODUCTION

"When it smokes, it is too hot," This statement is often spoken
in a facetious manner when reference is made to the temperature rating
of a physical component, device, or system of components. However, the
particular context from which the quotation was taken in this-instance
describes an unfortunate situation, In a paper presented by Rice (1)
in 1962, he said, "In a corporation which does some ten billion dollars
worth of business annually and has built at léast 100,000,000 intermittent
duty motors, the following is the sum total of all information available
on armature winding temperature: ‘'When it smokes, it is too hot',"

There is evidence which indicates that similar statements. can be
made about the knowledge, or perhaps more correctly, the lack of knowl-
edge, of the temperatures occurring within many electrical components
and devices, Two possible explanations for this lack of knowledge might
be as follows:

1, Temperatures occurring within electrical components are not

important.
2, Temperature considerations ip-many applications of electrical
components have simply beén neglécted to a large extent.

A quick glance at almost any semicéﬁductop device specification

sheet causes one to realize that temperature is a very important factor

in the application of these devices. Almost without exception, the

1



specification sheet includes a temperature derating curve which gives
an in&ication of the decrease in usefulness of the device as the |
temperature.of that device increaées. This indicates that the former
explanation is not appropriate,

The temperature considerations have, in all 1likelihood, been
investigated more thoroughly for semicénductor device applications than
for the applications of most other electrical cohponents and devices.
This is not to say that the temperature considerations of the appli-
cafions of other electrical elements is unimportant. The implication
must be that there is much yet to be done in investigating the temperature
problems associated with these elements. Furthermore, the conclusions
drawn from these investigations must be reduced to é usable form so
that proper account of the temperature characteristics of these devices
can be given when considering‘é given device for a given application,

An excellent example of a class of components for which much work
remains to'be doﬁe is the group of electrical devices which include
electrical.coi;s. The electrical coil made its debut long before the
science of electrical engineering became known as such, Yet, as recently
as 1955, Peek and Wagar (2) said, "No rigorous treatment of heat flow
in a coil is available, even for the steady-state case, The flow is
3~dimensional, the strﬁcture ié not homogeneous, and the heat'supply per
unit length of conductor varieé with local temperature. An approximate
analysis in which all three of these limitations are ignored is given

This thesis reports the results of an experimental and an analytical
study of the temperature rise which occurs within an electrical coil

when electrical power is applied to it., The temperature rise occurs



because of the joulean heat which is generated within the coil and which
must be dissipated, The coil of this study is in the form_of a hollmw,
right-circular cylinder; and only steady-state temperature rises and
heat flows are considered,

More specifically, this thesis presents information that may be
used in the design, analysis of design, or application study of heat-
generating bodies whose geometries are described as hollow, circular
cylinders, This information is derived and presented in such a manner
as to provide an upper bound on the temperature rise internal to the
generating body. In other words, if the given application of a
cylindrical, heat-generating body comes within one of the categories
of applications considered here, an equation and/or graph is presented
that will give an indication of the maximum possible temperature
occurring within the body.

A cfitique of a number of the writings which present results of
studies closely related to this one is given in Chapter II, An effort
is made to enumerate the more significant approximations, assumptions,
and limitations of each of these works,

In Chapter III and IV a variety of boundary-value problems which
are formulated to describe certain cases is considered, and the solution
to each problem is presented, Some of the solutions are analytically-
derived, closed~form expressions for the "hot-~spot" temperature
occurring within the coil, while the other.solutions are obtained by
solving a finite-difference model of the problem with the aid of a
digital computer, The hot-spot temperature is the maximum temperature
”occurming within the coilal

Each boundary-value problem describes a possible application of an



electrical coil and does so by describing the temperature boundary
conditions on the coil. The boundary conditions are formulated in such
a way that the hot-spot temperature obtained from the solution of the
boundary-value problem is an upper bound on the hot-spot temperature
occurring within an actual coil whose surface temperature and heat-flow
conditions closely approximate those of the problem.

The hot~spot temperature rise is the difference between the
maximum temperature within the coil and the temperature at a specified
point on the coil surface, The hot-spot temperature rise is of
particular interest because it is at the point where this temperature
occurs that the insulating material used in the coil construction will
likely fail.

All of the solutions of the boundary-value problems are presented
graphically in such a way as to relate the hot-spot temperature rise
occurring within the coil to the power supplied to the coil and to the
geometrical, electrical, and thermal properties of the coil.

The results of an experimental study are presented in Chapter V to
‘illustrate the use of the graphs mentioned above, The coil of this
study is the magnet coil of a rotary-type electromagnetic relay., The
tempefatures whiéhﬂabe measured at several points on the surface of the
coil are used as guides in formulating a set of temperatgre boundary
conditions for the coil in that particular application. The resulting
boundary—valﬁe problem ié solved for the hot-spot temperature with the
aid of a digital computer, This solution is compared with theiso;ution
of the corresponding boundary-value problem which provides an upper
bound on the hot~spot tempefature rise,

Chapter VI includes a restatement of the objectives of the study,



the general conclusions derived from the study, and the significant
assumptions upon which those conclusions are based,
A brief description and discussion of the digital computer program

and a brief error analysis are given in the appendix,



CHAPTER II
LITERATURE SURVEY

The‘purpose of this chapter is to present a brief summary of the
recorded accounts 6f works which are closely associated with thé work
reported in this thesis pertaining to the temperature rise occurring
within cylindrical heat sources, The summary consists primarily of a
discussion of the class of problems for which solutions are obtained
and a listing of the significant assumptions and approximations upon
which these solutions are based, In every case, only the steady-state
temperature distributions are considered,

In his book, Moore (3) presents a significant result which
apparently has not been duplicated, mathematically verified, or extended.
Based on the technique of field mapping, he derives a relationship
between the thermal conductivity of the insulation on the coil wire and
the combined thermal conductivity of the coil wire and insulation.

This thermal conductivity is that of an "equivalent" homogeneous coil
where "equivalént" implies that this coil has the same terminal char-
acteristics as the actual coil, The results are presented graphically
for both non-embedded and for embedded coils, The assumption is made
that the entire space between the coil windings is filled with the
insulating material. This work is referenced in several later works.
and will be referenced later in this thesis,

In 1943, Jakob (u4) published his work pertaining to the temperature



distribution in electrical coils of "simple form" where the heat
generation is nonuniform, His simple forms consist of an infinite

plane plate, a solid cylinder of infinite length, and a solid sphere,

The heat generation is assumed to be homogeneously distributed and to

be a linear function of the temperature where the temperature coefficient
is positive, The boundary conditions are simple; namely, a uniformly-
distributed surface temperature, The solutions are obtained as analytical
expressions which give the temperature distribution and hot-spot
temperature rise above the surface temperature,

Following Jakob's work, Higgins (5) reported his work pertaining
to the temperature distribution in electrical coils of general rectangular
cross section, The boundary conditions are as before, a uniformly-
distributed surface temperature. The heat generation is assumed to be
homogeneously distributed and linearly dependent upon temperature., It
is further assumed that the effects of the curvature of the coil may be
neglected, That is to say, the ratio of the thickness of the coil to
the inner radius is very small,

Two special cases are considered, The first is the case where the
temperature coefficient of heat generation becomes zero, and the other
is the case where the torvid arproaches a hollow cylinder of infinite
length,

In 1948 Jakob (6) reported the results of more work in the area
of temperature distributions in simple bodies developing heat. In this
work the heat generation is again assumed to be a linear function of the
temperature, but in this case the temperature coefficient is negative,
Again the body shapes are a plane infinite plate, a solid circular

cylinder of infinite length, and a solid sphere.



Two cases are considered by Emmerich (7) in his work pertaining to
the temperature rise in magnet coil windings, His first consideration
is that of small temperature rises occurring within céils which are in
the shape of right-circular, hollow cylinders, The assumptions are
made that the heat generation is uniformly distributed throughout the
interior, all the thermal properties of the coil are independent of
temperature, and the dimensions of the coil are such that the end-effects
may be neglected. The boundary conditions are (i) those of a uniformly-
distributed temperature on each of the coil surfaces in one instance,
and (ii) the core is thermally insulated while the outside surface is at
a fixed temperature. Expressions relating-the maximum temperature rise
above the surface temperature (hot-spot temperature rise) and the
average temperature rise to the ratio of the outer radius to the inner
radius of the coil are derived analytically and presented graphically,

For the case of large temperature rises, an expression for an
approximate correction to be applied to the former results is derived
and presented graphically. This correction faétor accounts for the
error involved in assuming that the heat generation is uniformly
distributed, The larger the temperature rise, the greater is the error
involved; and, therefore, the greater is the correction required.

The work reported by Peek (8) is presented again by Peek and
Wagar (9). This work pertains specifically to the temperature distribu-
tions in electromagnetic relay coils which are in the shape of hollow
cylinders, The assumptions upon which the solutions are based are
(i) the heat flow is entirely radial, (ii) the heat generated per unit
volume per unit time is a constant, and (iii) the material of the coil

is homogeneous and its conductivity is independent of temperature,



Expressions are derived for the hot-spot temperature rise and the
average temperature rise occurring within the coil,

In summarizing this critique, the more common and pertinent
assumptions and approximations that have been made in the works mentioned
are presented here:

(i) The material of the coil is homogeneous and its thermal

conductivity is independent of temperature,.
(ii) In most cases, only radial heat flow is considered for the
coil whose shape is that of a circular cylinder,
(iii) In some cases, the heat generation is considered to be uniformly
distributed throughout the interior of the coil.
(iv) In nearly every case, the surface temperature condition is
that of a uniformly-distributed temperature,

(v) In some cases, the effects of the curvature of the coil

surfaces are neglected,

The boundary-value problems and their solutions as presented in
Chapter III and IV are also based on assumptions (i) and (iii) above.
However, an important difference in the results of the study presented
in this thesis and those results discussed above is that no restrictions
concerning axial flow of heat, effects of curvature, or end effects are
made,

When these restrictions are placed upon the solutions, the effect
is that of saying that the solutions are valid only for the limiting
cases of (i) the length of the coil is very long compared to its
thickness, and (ii) the thickness of the coil is small compared to the
inner radius of the coil., These limiting cases are presented in

Chapter III for a variety of temperature and heat-flow boundary conditions,
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Perhaps more important, however, the solutions to the problems which
fall between these limiting cases are also presented in Chapter IV,

These solutions are important because they describe the usual situations,



CHAPTER III

HOT-SPOT TEMPERATURES IN HOLLOW CYLINDRICAL

BODIES WITH HEAT GENERATION
Temperature Field Equation

In order to appreciate the significance and the implications of
many of the assumptions that are made in the process of determining the
temperature distribution in any given body, one form of the general
heat-conduction equation is given here to sérve as the starting point

for the analysis. This is the equation

Dk By b gk 2By 4 2k B 5 griv e g R
-5-;(1( Bx)+3y(k By)+3z(k az)+q pcae' (3,1)

where k, q''', C, p, 6, and t are thermal conductivity, heat generation
per unit volume per unit time, specific heat, density, time, and
temperature, respectively., The first four of these quantities may be
functions of the spatial variables (x, y, z), of temperature t, and of
the time 6., Also, in general the temperature t is a function of the
spatial variables and of time., However, if the thermal conductivity is
not a function of the spatial variables, k may be factored out of the
partial derivative terms on the left-hand side of Equation 3,1 and

divided out to give the equation

11
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* + ¥y =%;~55-, (3.2)

which the temperature field t(x,y,z,6) must satisfy, The term a is
called the thermal diffusivity, a property of the conducting material

and is given by
a = k/pC . (3.3)

Continuing another step further in the simplification, if one is
interested only in the steady-state temperature distribution, then the

temperature field t(x,y,z) must satisfy the equation

32 32 32 1t
x + = + : + 3 pm Qs (3.4)
ax? Byz 322

To this point the heat generation term may still be a function of
any or all of the variables (x,y,z,t). If, however, it is an explicit

function of the temperature alone, then Equation 3.4 may be written as

2t (x,v,2) 5 32t (x,y,2) 5 2t (x,v,42) 3 q";(t) _ (3.5)
ax? 3y2 3z

In general, the solutions of Equation 3.5 are more easily cbtained than
are the solutions of Equation 3,1, After one more simplification,
Equation 3,5 takes on the form that is of particular interest in this
study.

If it is assumed that the heat generation is independent of the

temperature, then Equation 3.5 is reduced to the Poisson equation
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#0t- 9tk Rt . gemt
eyt mET F 0o i

which must be satisfied by the temperature field t(x,y,z). This
assumption is discussed later in this chapter,
In considering the temperature field within cylindrically-shaped

bodies, a more appropriate form of the Poisson equation is

2 2 2
i PR EPEL SRS (PR 2 SR S LU : (3.7)
3 r o 2 3% a2 k

where r, ¢, and z are the cylindrical coordinates as normally defined,
For the boundary-value problems under consideration in this study, it
is safe to assume that the temperature field t is not a function of ¢;

therefore, t(r,z) must satisfy the equation

%t 1 9 32
— e - 3‘5--]-—-‘5'-}320’ (3.8)
3 r g azz

where, for the sake of simplicity, a = q'''/k.
Dimensional Analysis

According to Hellums and Churchill (10), the objective of
dimensional analysis is to reduce to a minimum the number of parameters
and variables needed to describe a problem, To this end a dimensional
analysis is applied to the mathematical model of interest, namely,
Equation 3.8, This analysis is accomplished in the following manner.

Define the dimensionless variables

T'= (v < 2. )/t R=r/ryg 4 2= 2/2, , (3.9)

o !
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where to, tg, oy and 2, are constant parameters yet undefined, and
substitute them into Equation 3,8. The result of this substitution is

given as

. + °3'R'+-°T+a=°‘ (3,10)

2 2
2 r 2 ar
2_?.+-}li-e-§1+ °~3T+t°=o. (3.11)
aR2 252 . 322 o

Examination of the two groups r'c’z/zo2 and aroz/to shows them to be

dimensionless, If each is set equal to unity and r_ is arbitrarily

(o]

assigned the value L the outer radius of the hollow cylinder, then

the following conclusions may be drawn:
= p ,t. =ar’=zar?, (3.12)

These parameters may now be substituted back' into Equation 3.11 to give

t -t t -t t -t
) | =)
\ ar,? 1 \ ar, ar,
+ — + > + l = - (3013)
2 .
pCE) = (=) 3 (=)
2 r, r, r,

or more simply,

32T 1 T 32T
—— e v o -a-- 4 ¢ ] = ’ (391'4)
sz R OR T gp2 -

where T, R, and Z are given by Equatien 3.9 and Equation 3,12,
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The important conclusions concerning the necessary number of
variables and parameters required to completely characterize the solution
of the particular form of the héat—conduction equation of interest here
can be drawn from Equation 3,14, The variables are the dimensionless
ratios r/r,, z/r,, and (t - ts)/arzz. The range of variation of R and

of Z is given by

ri/rp <R<1,0<2Z<L/r (3.15)

2 9

where r, is the inner radius and L is the length of the coil., At this
point, the reason for assigning the value r, tor, is clear. This
places a fixed maximum value of unity for R, If r, were assigned the
value L then the range for R wouid be (1, rz/rl) which is open ended
above,

As mentioned previously, the temperature rise of greatest interest
is that of the hot-spot. Since the normalized temperature rise T is a
function of R and Z, it follows that the maximum value of T (T, the
normalized hot-spot temperature rise) is a function only of the two
ratios rl/r2 and L/rz. This allows a graphical presentation of the

relationship between T, rl/r and L/r2 by plotting T,, as the dependent

2’
variable, either rl/r2 or L/r2 as the independent variable and the
other as a parameter, -

Corresponding changes in variables must be made in the boundary
conditions as were made above,

The term tg previously undefined is the temperature at a point on
the surface of the cylinder which serves as a reference point for the

temperature rise determinations. More is said about tg in the

following chapter,
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Uniform Heat Generation

Before proceeding further, a brief discussion to justify the
assumption of uniform heat generation is given.

As mentioned in Chapter I, the purpose of this study has been to
derive formulas and/or develop graphs that provide information concerning
the maximum possible hot-spot temperature rise that may occur within
the generating body, This is to say that the purpose is to formulate
and solve boundafy-value problems in such a way that the solutions will
provide upper bounds on the hot-spot temperature rises occurring within
actual heat-generating cylinders.

With these statements in mind, consider the following discussion:

If the electrical power supplied to the coil is obtained from a

constant voltage power supply, then that power is given by
P = V/R (1 + BAt) = P_/(1 + BAt) (3.16)

where V, Ro, B, and At are, respectively, the yoltage applied across

the coil, the resistance of coil initially, the temperature coefficient
of resistance of the coil wire, and the difference iﬁ average coil
temperature and the initial average coil temperature. As the temperature
begins to increase after the application of the electrical power to the
coil, the winding resistance increases (assuming B > 0)., Since the
voltage V is constant, the power P supplied to the coil must decrease

as the temperature increases, The net effect of the decrease in input
poWer is to lessen the amount of temperature increase. Therefore, the
actual temperature rise is somewhat less than that calculated if the

generation is assumed to be uniform (B = 0).
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The result of this is that the temperature rise calculated for the
case of uniform heat generation provides an upper bound on the temperature
rise in the real case where the heat generation is not uniformly dis-
tributed if the electrical power is obtained from a éonstant voltage
power supply. This case of a constant voltage supply rather than a
constant current supply or a constant power supply is considered because
it is felt that more often than not the electrical supply for coils in
which the temperature‘rise is of concern more closely approximates the
constant voltage supply than either of the other two.

This brief discussion brings to light a very useful observation,
Even though, in its entirety, the study presented here is based on the
assumption ofbuniform heat generation within the coil, the results
derived may be extended significantly, Consider the following comments
to see that this is true:

Suppose the coil of concern is energized with electrical power from
a voltage regulated power supply. Also, suppose further that the
temperature coefficient of resistivity of the coil wire is greater than
zero (as in the case for many types of coil wire). In this situation,
the heat generation is nonuniform, From Equation 3,16, the steady-
state power input P to the coil is less than the initial power input Pye
The result is that the steady-state temperature rises due to an input
power of P are less than the rises would be for a steady-state power
input of Po°

Therefore, the results (formulas and graphs) derived for the
uniform heat generation case may be applied to the case on nonuniform
generation also if the initial power input is used instead of the steady-

state value.
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The relative magnitudes of the temperature rise resulting from
constant voltage, constant pcwer, and ccocnstant current inputs, each with

the same initial power, are shown by Peek and Wagar (1ll).
Formulation of Boundary-Value Problems

In a study such as the one reported here, it is desirable to
consider a wide variety of cases so that the results may find a greater
number of possible applications, This is to say that the results of
the study should be applicable to as wide a cross section of actual
electrical coil applications as is possible and within reason,

" With these thoughts in mind; the collection of boundary-value
problems considered is illustrated in Figure 2. Figure 1 shows a cross-
sectional view of a general hollow, cylindrical coil, The regular
variables and parameters are shown in Figure 1(A), and the dimensionless

variables are shown in Figure l(B).b

0 r ) 0 ry/ro 1l

NN
NN

N
s)

D

(A) (B)

Fijure 1, Cross=-Sectional View of Hollow, Cylindrical Coil
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Although there most certainly are applications for cylindrical,
electrical coils which result in temperature boundary conditions
substantially different from any of fhose shown in_Figure 2, it is felt
that many coil applications aré of such a nature that the resulting
surfacé temperature conditions are_closely appfoximafed by one or more
of the cases shown, Whenever this is true, the solution of the
corresponding_boundary—value préblem of Figure 2 may be used to determine.
an upper bound on the hpt-spot temperéture rise occurring within the
actual coil, The more closely the.two sets of surface temperatures
and heat flow conditionms agree, the more closely the hot-spot.femperature
rise agrees with the calculated upper limit,

Just as intuition is valuable in most analyses of engineering
problems, intuition is useful here in selecting the "best" case with
which the actual case»is to be compared. However, the amount of
quantitative information required to use the results has been kept to a
minimum by the very nature of the approach taken to predict the hot-
spot temperature rise,

The mathematical description of each of the boundary-valﬁe problems
shown in Figure 2 is given here and will be used subsequently in
obtaining the solutions of these problems. In every case, the temperature

field is independent of the angle ¢,

Problem A:
T(R,Z) = O R=r/r,,1;0<2 i,L/rz
(3,17)
aT(R,Z
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Problem B:
R=ry/r, ,130<2<L/r
T(R,Z) = 0
r/r, SRS 1 Z = L/r,
(3.18)
AT(R,Z) ,
-y =0 ry/ry, <R<132=0
Problem C:
R = rl/r2 y 1 30<7Z<L/r,
T(RyZ) = 0 (3.19)

Notice the surface of symmetry (dotted line) in Figure 2(C). This is an
adiabatic surface like the top surface of Figure 2(B); and, therefore,
the temperature distribution in the top half of Figure 2(C) is the
mirror image of that of the bottom half, Both are identical to the
distribution in the cylinder shown in Figure 2(B) if L of Equation 3,19

is the half-length of the cylinder in Figure 2(C).

Problem D:
T(R,Z) = 0 R=z=mr/r, ;022 :_L/r2
T(R,Z
ié-ﬁ—’——)-wo R=130<2 <L/ (3.20)
dT(R,Z
—u—%nz-h’-hd-)d:‘.o rl/rziRil,Z=O,L/r‘2
Problem E:
R = rl/r-2 ;3 0 <2 <L/,
T(R,Z) = 0
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AT(R,Z) _ _
gt = R=1302%2<L/r, (3.21)
3T(R.Z) - ¢ r/r, <R<132Z=0
Problem F:

R rl/r2 3 0 <7< L/r2
T(R,2) = 0

rl/r2_<_R_§_l 3 2 =0 ,L/rz

(3.22)

3T(R,2)
—t— = 0 R=13;0<2Z<L/r

The same comments relative to the surface of symmetry in Figure 2(F) can

be made as were made about Figure 2(C),

Problem G:
T(R,Z) = 0 R=13;0<2Z<L/r
— — 2
dT(R,Z)
—5R—=0 R=r/r, ;0<2%L/m, (3.23)
3T(R,Z) _ -

Problem H:

T(R,Z) = 0

dT(R,Z) )
g =0 R=r/r, }0<2<L/m (3,24)
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3T(R,Z)
=gz 0 ri/rp SR<132=0

Problem I:

T(R,Z2) = 0
< =
rl/r2_<_R...l 3 2 =0, L/r2
(3.25)
3T(R,Z)
_Tﬁj__.zo R=I‘1/I‘2;OiZiL/I‘2
Again, the same comments relative to the surface of symmetry of
Figure 2(I) can be made as before.
Problem J:
T(R,Z) = 0 ri/rp <R<1;2=1L/,
3T(R,Z '
-—-g-i-?-—)-=0 R=ry/r, ,13;0<2Z<L/ry (3.26)
9T(R,Z
--—é—z-*-n)-:o ri/rp <R<132=0
Precblem K:
T(R,Z) = 0 ri/rp <SR<13Z2=0, L/
(3,27)
3T(R,Z) _
-—3-}33——--0 R=r/r, ,13;0<2Z<L/r

Still again, the same comments relative to the'surface of symmetry of
Figure 2(K) can be made as before,

Examination of problems A, D, G, J, and K shows that they are
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different from the rest in that the boundary conditions allow heat to
flow in either the radial direction or the axial direction but not both,
The implication here is that Equation 3,14 may be further simplified to
an ordinary differential equation for these problems.»

The general solution of each of the resulting ordinary differential
equations may be obtained by applying the standard methods used to
solve linear ordinary differential equations, These two equations and

the corresponding general solutions are:

d?T 1 4T
S FTRC@®RTLI=0, (3,28)
dr
T(R) = - R°/4 + C, In R+ C, 3 (3.29)
and

42T
= +1=0, (3.30)

dz

: 22

T(Z) = - 5=+ C 2 +Cp . (3,31)

The problems are grouped together in Figure 2 in a certain way for
a special reason, Consider the case where L/r, approaches infinity (or
L/r, >> 1). Then problems A, B, and C all reduce to the same problem,
one in which the heat flow is entirely radial (ends of.coil are not
considered). Under the same assumption, prcblems D, E, and F become
identiéal as do problems G, H, and I, each involving only radial
variations in T, For all of these cases, the differential equation of
interest is Equation 3,28, and the corresponding general solution is

given by Equation 3,29,
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The problems J and K involve only axial heat flow, and the
differential equation is Equation 3.30. The corresponding general
solution is Equation 3.31,

The remainder of this chapter is devoted to the solutions of
problems B, C, E, F, H, and I under the assumption that L/rp is very
large, and of problems A, D, G, J, and K for which no assumptions
concerning length are required,

Chapter IV is devoted to the solutions of problems B, C, E, F, H,
and I when the length of the coil is of the same order of magnitude as

the other coil dimensions,

Classical Solutions of Boundary-Value Prcblems

for Hot-~Spot Temperature Rise

As discussed previously, for the case where L/r, approaches infinity,
the thermal models of problems A, B, and C all reduce to the same model,
This model is characterized méthematically as follows., The dimensionless

temperature field T(R) must satisfy the equation

A (3.28)
4R R~ dR ’ o
subject to the boundary conditions
T(R) = 0 for R= ry/r, and 1, (3.32)

The general solution of Equation 3,28 is stated as Equation 3.29 but is
derived here, Also, the derivation of this solution may be found in
most differential equation texts,

Making use of the fact that
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d°T 1 dT 1 d dT
—5+t R T®°F Eﬁ(R'&‘E), (3,33)
dR
Equation 3,28 may be written as
dT
d (Rﬁ'ﬁ) = =R dR (3.34)
which may be integrated to yield
O S (3.35)
a'ﬁ"' 2 10 L]

Upon separating variables

integrated to give

T=/[aT = [

which is Equation 3,29,

in Equation 3,35, the result may again be

c 2

R, 1 R
- ot e dR = = cew ¢+ Cy In R+ C
(2 R) TS 2

From Equation 3.29 and Equation 3,32

T(ri/ry) = 0

T(1)

From Equation 3,36b, C, =

- 3.36a yields the result

(rl/rz)2 .
=0=-24+C Inl+cC . (3.36b)
RS T 2

1/4, and substituting this back into Equation

(rl/fz)z -1
C, = “ .
1
4 In (rl/rz)

For the sake of simplicity, the ratio rl/r2 is assigned the symbol R,

Ryg 2 ry/r, .
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Now, making the substitutions for C; and C, back into Equation 3,29 gives

the temperature field as

2
2 R -
T(R) = - R_ + _12 InR+1
L 4 In R12 4
or
T(R) = L [1 - R2 + _ In R] . (3,37)
[T n R12

In order to find the hot-spot temperature rise, the maximum value
of T(R) is found from Equation 3.37 by setting the first derivative
equal to zero and solving for R , the value of R for which T is maximum,

2

RO -1

w- ﬁ .._1-2-.—._-..._13- (3 38)

@R -7 'TInRz R .

and
2 2
aT(R,) 2 (R}, - 1)7]}/2 R}, - 1| 1/

_—_OéR = ot — = St nemb——. (3 39)

dR m 4 In Ry, 2 1In Ry, *

The desired equation for the hot-spot tempefature rise is obtained now

by substituting the value of R into Equation 3,37 to give T  as

2 2 2
T = T(R ) = .}. l - i o + ° ln Sm—————
m m 4 2 1In R12 In R].Z 2 1n lRlZ
qr
1 - - '
Tm=-a-[l+R(lnR-l)] , (3.40)
where
2
- R12 -1
R = o and L/r2 >> 1, (3.41)
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This result, namely Equation 3,40, is the exact solution of problem
A and the solution of problems B and C if L/r, is very large, Equation
3,40 is presented graphically in Figure 3 where T is plotted as a

function of R If the point at which T  occurs is of interest, it may

12*
be found from Equation 3,39 which is presented graphically in Figure U,
For the case where L/r2 approaches infinity, the mathematical
models of problems D, E, and F all reduce to the same model, Again, the

temperature field T(R) must satisfy Equation 3,28 but subject to the

boundary conditions of

T(R) = 0 for R = Ry, , (3,42a)
and

dT(R) _ -

- = 0 forR=1 . (3.,42b)

These boundary conditions are used to determine the integration constants
in Equation 3,29,

From Equations 3,29 and 3.42

2
R
= = 12 o
and
dT(1) 1. &
dR - 0 - - 2 + '-l'- . (3;'43b)

‘Upon solving Equation 3,43 for C, and C, and substituting these back

into Equation 3,29, the temperature field is determined to be

2
2 ; R
T(};):-%.i»%-lnRi»—F--%—lanz. (3.u4)
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The maximum value of T(R) from Equation 3,44 is found to be

2
1

_ 1
Tm-T(l)--II(R

1 2
2 -1 -5InRy , (3,45)
and Rm i1s seen to be

R =1, (3,46)

Equation 3.u45 is also presented graphically in Figure 3 and Equation
3,46 in Figure 4, Just as before, Equation 3,45 is the exact solution
to problem D and is an approximate solution to problems E and F, where
the error of the approximation decreases as L/r, increases,

A mathematical model similar to the ones used in the previous two
solutions may be used for problems G, H, and I, Again, the temperature

field must satisfy Equation 3.29 where the boundary conditions in this

case are
dT(R)
5= 0 for R = R\, , (3,47a)
and
T(R) =0 for R = 1, (3,47b)
From Equations 3.29 and 3.u47
T(1) =0 =-&+C, Inl+C (3.48a)
Iy 1 2 ® °
and
dT(R;,) Ry G
—-—a-ﬁ--_-z():-—f—-f—ﬁ-; A (3:;‘481))

The results of the simultaneous solution of Equations 3,48 for C; and
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C,, upon being substituted into Equation 3.29, determine the temperature

field to be

=1 - R2 1 g2
T(R) - -I.T(l R ) + -2-R12 In R . (3e|49)

The maximum value of T(R) is

1

2 2
T =T(R) == (1 - R12) + 5.Rlz In R (3,.50)

m m 12 °

=i~

where

R = Ryy o ‘ (3.,51)

Equation 3.50 is presented graphically in Figure 3, also, in order
that the hot-spot temperature rises of the first three groups of
pfoblems in Figure 2 may be easily compared; Also, Equation 3,51 is
shown in Figure 4, Just as is true in the previous two solutions,
Equation 3,50 is a valid solution of problems H and I only if L/r, is
very large.

In Chaéter IV, it is shown that each of the Equations 3,40,
3.45,vénd 3.50 is a limiting curve in a family of curves where the
family parameter is L/rze

The two problems of Eigure 2 yet to be_treated are different from
the probleqs presented thus far, The boundary conditions on these two
problems, namely problems J and K, are such that the heat flow is
entirely axial., The mathematical model of these problems is given as
Equation 3,30 and the appropriate boundary conditions, where the general
solution for the temperature field is given by Equation 3,31, Equation

3,31 is derived from Equation 3,30 here as follows:

2 o
dT d dT
— = \T)=-1. (3,30)
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This equation may be integrated by separating the variables to yield

ar
a‘z"—‘f-Z‘fCl',

Again, by separating the variables, the equation may be integrated to

give

which is precisely Equation 3.31.
Due to the line of symmetry in problem K, each half of which is
identical to problem J, only problem J needs to be solved. The complete

mathematical model of the thermal model shown in Figure 2(J) is

2
2li1-0, (3.30)
dz?
dT ‘
=0 forZ2=0, (3.52a)
and
T=0 for 2= L/r . (3,52b)

2

In order to determine the constants of integration in Equation 3,31,

the following two equations are solved simultaneously:

dT(0) ' .
=== 0 = C (3.53a)
and
(L/r,)?
T(L/rz) =0 = - __1_3_. + C2. (3.53b)
2
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Substituting the wvalues for ¢, and C, into Equation 3.31 yields the

temperature field:

2
T(Z) = -_Z.2.2.+.(.f./_;.:%.).._ ' ‘ (3.54)

The hot-spot temperature rise is easily seen to be

(L/ry)?

Tm = T(Zm) = T(O) = --——2—-—&— ° (3955)

Equation 3,55 is presented graphically in Figure 5,

If the proﬁlém of interest is the oné.shown in Figure 2(K), then
Equation 3,55 may still be used, but the L of Equation 3,55 is the half-
length of the cylinder, and T, will occur at the mid-length of the
hollow cylinder;

In summary, Equations 3.40,.3.45, and 3,50 are exact solutions for
the hot-spot temperatures of the thermal models of Figures 2(A), 2(D),
and 2(G), and are approximate solutions of the thermal models of Figures
2(B) and 2(C), 2(E) and 2(F), and 2(H) and 2(I), respectively, if L/r,
is much greater than unity,

The next chapter is devoted to the development of a general
mathematical model for the boundary-value problems illustrated in
Figure 2‘and deécribed by Equations 3.17 through 3.,27. The solution of
the model is accomplished by employing the techniques of finite-~
differences, The information given in Figure 3 is included later in
Figures 9, 10, and 11 to provide a more complete solution to the éroup
of problems of Figure 2, The entire objective of this effort is to

remove the restriction of L/r, being very large from the solutions.,
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CHAPTER IV

NUMERICAL SOLUTIONS OF THE

BOUNDARY-VALUE PROBLEMS

In keeping with the desire to derive and present the solutions of
the group of boundary-value problems shown in Figure 2 in such a way
that those solutions are readily usable by the engineer, an alternate
approach to the mathematics involved is taken at this point.

In Chapter III the only solutions derived are for those problems
where the heat-conduction equation reduces to an ordinary differential
equation, In every instance this reduction of the partial differential
equation to an ordinary differential equation is a result of the
boundary conditions involved or the assumptions that are made regarding
the dimensions, one relative to another, For those cases where the
dimensions of the coil are such that the assumption that L/r2 is very
large cannot be made, this simplification of the heat-conduction equation,
namely Equation 3,14, to either Equations 3.28 or 3.30 cannot be made.

There are several approaches that may be taken to derive the
solution of Equation 3,14 when subjected to boundary conditions which
involve two variables. Thinking ahead just a bit, one realizes that
the solution to Equation 3,14, subject to each set of boundary conditions
of interest, must be determined for a range of values of R12 and for a
range of values of L/r2 for each value of Rlz’ If each problem is to

be solved many times, it seems reasonable to consider the possibility

36
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of using a computer in deriving the many solutions,

Either the analog or the digital computer may be used to solve
partial differential equations, Through the use of certain of the
numerical methods, the digital computer lends itself more directly to
the solutions of those types of prcblems than does the analog computer.
For this reason, the remainder of the solutions presented here are
derived with the aid of a digital computer. A brief discussion
relating to the numerical methods used and the resulting mathematical
models is given here,

The numerical method of interest is that of the finite-difference
approximation to the partial derivative terms of the Poisson equation
(3,14), There is a number of texts which treat this subject very
adequately, Three such books are those by Schneider (12) and Dusinberre
(13, 14), The various aspects of these techniques are not developed
here, but instead, the application of the techniques to the problems
at hand,

Consider the entire volume of the heat-generating body to be divided
into subvolumes, each of some specific geometrical description., Consider
further that all the mass and the thermal and electrical properties of
each subvolume are associated with a specific point (referred to as a
node) within the subvolume., This is illustrated in Figure 6., Each
node is thought to be connected to every adjacent node by a thermally-
conducting rod., The conductance of each rod is determined by the
separation distance between the two nodes, the thermal conductivity of
the medium, the cross-sectional area between the subvolumes with which
the nodes are associated, and the geometry of the subvolumes,

Making application of the finite-difference approximations, the
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total heat flow into node 1 of Fipgure 6 is given as

Q - _— o
81 +.K21§T2 T K, (T =T v K, ‘Tu T+

K (T, -T) =0, : (4.1)

where ng is the heat pgenerated in the subvolume associated with node 1,

»Kél is the conductance from node j to node 1, and T4 is the temperature

of node i,
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Figure 6. Finite-Difference Model

The heat generation term le of Equation 4.1 may be written as the

product of a thermal conductance and a temperature difference as

Q, = Kgl (Tgl -T) . (4,2)
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The quantity le is determined by dividing the total power input to the
coil by the volume associated with node 1. In keeping with the assumption
that the heat generation within the coil is independent of the local

temperature, the temperature TErl is arbitrarily specified such that

2

T >>> T .
g1 1

For practical purposes, Equation 4,2 then reduces to

= K T
le g1 Bl

or

K =Q _/ . (4.3)

T
£1 Bl £l

Therefore, the heat generation corresponding to node 1 may be thought
of as a conductance of heat from a node of very high temperature Tgl
to node 1 by way of a thermal conductance Kgl’ where Kg1 is defined by
Equation 4,3,
As a result of these, Equation 4,1 may be written in the form
5
Knggl + j Z )

Tl = y - (u‘ou)

In exactly the same manner, equations may be written for the temperature
of every node in the volume, This results in a system of linear,
algebraic equations to be solved simultaneously.

The system of equations of which Equation 4.4 is one may be solved
in a rather straightforward manner using a digital computer.,

The node array which is used in solving for the temperature field
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in the cylindrical body is presented along with formulas for the
conductances from one node to another,

Consider an enlarged view of the cross section of the hollow,
cylindrical body shown in Figure 1(B) as now shown in Figure 7. By
the very nature of each of the boundary-value problems, there is no
need for the node array to extend in the azimuthal direction because
the boundary conditions are such that there is no azimuthal variation
in the temperature field, Therefore, the subvolume associated with
each node is a toroid of rectangular cross section as illustrated in
Figure 8,

The conductance from node i to node i + 1 of Figure 7 is given by

2nkAL
K. . =
l,l+l ln zp3/9-2.5 ('4.5)
and from node j to node j + 1 by
AR .5 | AR
K. . = + L )2 o < 82 y2
541 = "oy + 5502 = (py - )21 k/AL
or
Kj,j+l = wk[ZQsAR]/AL . (4,6)

where k is the thermal conductivity of the medium. For the node array

shown
AR = (1 - R;,)/6 ,
AL = (L/r,)/6 , (4,7)

Piyp Py * AR ,i=1,2,3,4,5,6

and
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Node Array for Cylindrical Body

Figure 7,
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A digital computer program has been developed that will calculate
all of the internal thermal conductances from one node to another,
calculate théﬂﬁéét>generated within each subvolume, then formulate and
solve the system of linear, algebraic equations described above for any
given value of R;, and L/r,. This program allows the use of any type of
temperature boundary condition or adisbatic surface over any portion of
the coil surface, With a small addition, the program will also allow
the use of either convective or radiative surface conditions. The
solution of the set of equations is accomplished by an iterative process.
A description of the program is provided in Appendix A.

Because the numerical solution is only an approximate solution,
there is an error inQolved in each of the solutions obtained by using
the numerical techniques, 4&n error analysis of the numerical solutions
is provided in Appendix B, The approach taken in the analysis is to
select one of the boundary-value problemé that has been solved exactly
by direct integration, The same problem is solved with the computer
program, and results are then compared, This gives an indication of
the error due to the finite-difference approximation and to the round-
off occurring within the computation at the same time,

Once the computer program has been written and checked out, the
solutions to the several boundary-value problems shown in Figure 2 are
obtained only after numerous executions of the program, For each
boundary—valué problem, a set of data describing those particular
boundary conditions of interest and values for Ry and L/r, must be

provided.,
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As will be pointed out later; for all practical purposes, the value
L/r, greater than four satisfies the restriction of L/r, being much
greater than one for the problems of interest here, In other words, if
L/r2 is greater than four, the value of the hot-spot temperature rise is,
for practical purposes, the same as the value cbtained by considering
the case where L/r2 approaches infinity. This is not surprising if one
compares the area of the curved surfaces to that of the ends, In the
extreme case where r, becomes zero, the ratio of the curved surface area

to the end area is

2mr, L
-—-—2-—3-2-)4.
2 rp =

2ﬂr2

Therefore, there is four times as much area to dissipate the heat from
the curved surface as there is from the ends, As r; approaches r,,
this ratio becomes even greater as is easily seen from

2nroL L L/I‘z

2. p2) 1 2/p2) 1-p2/p2 °
2n(r, r, ) r,(1 r */r, ) 1 r, /r2
In fact, as r, approaches r,, the ratio becomes infinite, As more of
the heat is dissipated from the curved surfaces, the heat flow internal
to the generating body becomes more radial, more dependent upon the

radial parameters, and less dependent upon the axial parameters,
Selection of a Reference Temperature

In order to be assured that the hot-spot temperature rise determined
from the solution of one of the boundary-value problems is an upper

bound on the hot-spot temperature rise occurring within an actual coil,
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some attention must be given to the selection of the proper temperature
to be used as a reference,

The success of determining an upper bound on the hot-spot temperature
rise within an actual coil subjected to a particular environment depends
largely upon the selection of the most appropriate thermal model from
the group given in Figure 2. The first step is to determine which of the
coil surfaces are adiabatic or approximately so, Often this may-be done
by simply inspecting the coil in its operating environment and observing
the possible paths for heat conduction out of and away from the coil. 1In
many instances there may be no favorable conditions for the transfer of
heat from one surface while a very good conduction path is present for
heat transfer away from some other surface, Once the adiabatic surfaces
have been sought out, the thermal model which has corresponding adiabatic
surfaces is selected from Figure 2. The solution of this model provides
the upper bound on the hot-spot temperature rise in the actual coil,

After the proper thermal model has been selected, the location of
the reference temperature must be determined, The reference temperature
is taken to be the maximum temperature occurring on any of the non=-
adiabatic surfaces. Again, by observation of the heat flow paths in a
particular coil application, the location ofvthis point is often easily
approximated. It seems reasonable to assume that this temperature
might often occur at the points of intersection of one of the adiabatic
surfaces with one of the non-adiabatic surfaces, However, regardless
of the manner in which this point is found, the temperature at that
point is taken to be the reference temperature, namely, t, as first
introduced in Equation 3,9, In the thermal model which is used to

provide an upper bound on the hot-spot temperature rise, the temperature
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of the non-adiabatic surfaces is t_ as specified above, With this
temperature uniformly distributed on all the non-adiabatic surfaces,
the dimensionless temperature as defined by Equation 3,9 and Equation
3.12 is zero everywhere on those surfaces of the model,

To show that the solution of this model does provide an upper
bound, consider the following comments.

Suppose that the temperature distribution on all of the non-adiabatic
surfaces is a uniformly-distributed temperature Ty Corresponding to
these boundary conditions, the temperature distribution within the coil

is t(r, Z)l’ and the hot-spot temperature is th If the temperature

10

t) is decreased to some lesser value tz’ the internal temperature

distribution is t(f, z)2 with a hot-spot temperature of thy Since it
has been assumed that the thermal characteristics of the coil are all

temperature independent, t(r, z)l, t(r, Z)z’ tpy s @nd t , are related

ml

in the following manner:

Ll

tlryz), = tlryz), + (£, - t,) > tlr,z),

and

- >
t t +(t1 tz) ty

m] mz

Therefore, a decrease in the temperature of the non-adiabatic surfaces
of the model produces a corresponding decrease in the entire temperature
distribution and hence the hot~spot temperature within the model,

Let the uniform surface temperature tl be replaced with a non-
uniform surface distribution t(r, z)surf which is continuous on each

of the non-adiabatic surfaces and has a maximum value tl’ The corre-

sponding internal distribution is t(r, z)3 with a hot-spot temperature
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tog Since t, is an upper bound on t(r, z)surf for all values of (r, z)
on the non-adiabatic surfaces, it follows that t(r, z)1 is an upper
bound on t(r, z), at every point (r, z) in the interior. This implies
that tml is an upper bound on ths which is the desired conclusion.
Therefore, if the maximum value of the temperature occurring on the non=-
adiabatic surface is taken as a reference (that is, tg = tl), the hot-
spot temperature rise for the case of a uniform surface temperature is

related to the hot-spot temperature rise for the case of a non-uniform

temperature in the manner-

or

Tm1 ->. Tm3 ¢

Hence, the solution of the proper model as described in Figure 2
provides an upper bound on the hot-spot temperature rise within an
energized coil when the reference temperature tg is selected as described
above,

Using completely analogous statements, it is easily seen that if
the reference temperature is selected to be the minimum temperature
occurring on the non-adiabatic surfaces, then the result is a lower
bound»on the actual hot-spot temperature rise, Just as easily seen is
that the difference between the upper and the lower bound is equal to
the difference between the maximum and the minimum temperatures occurring
on the non~-adiabatic surfaces of the coil,

In summarizing the comments pertaining to t;e selection of the

reference temperature, it may be said that the process is carried out



47

by determining which surfaces of the coil are adisbatic or approximately
so and where the maximum temperature occurs on the non-adiabatic
portions of the coil surface., Both of these steps may possibly be
accomplished in a heuristic manner or by a detailed study of the actual
boundary conditions,

With these thoughts in mind, the solutions to the group of boundary-
value problems as obtained with the aid of the digital computing

facilities are presented and discussed,

- Solution of the Boundary-Value Prcblems

with Realistic Dimensions

As was pointed out in Chapter III, the problems shown in Figure
2(4), (D), (B), (J), and (K) may be solved by the direct integration of
the appropriate ordinary differential equation and by matching two
boundary conditions, Also, it was pointed out that the problems shown
in Figure 2(C), (F), and (I) are simply two of the problems shown in
Figure 2(B), (E), and (H), respectively, placed end to end., This comes
about because lines or surfaces of symmetry are adiabatic surfaces if
the boundary conditions are also symmetrical about those same lines or
surfaces, Therefore, the procblems of Figure 2(B), (E), and (F) must be
solved for the cases where it is not permissible to assume that L/r2 is
much greater than one, Once the solution for the hot-spot temperature
rise in each of these problems is obtained, the entire group of problems
will have been covered,

The boundary conditions shown in Figure 2(B) and described mathema-
tically in Equation 3,18 are used as data for the computer program,

This boundary-value prcblem is solved for a range of values of R12 and
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L/rz, Figure 9 shows this solution for the dimensionless hot-spot
temperature rise Tp Plotted aé a function of R12 with a parameter L/r'2°
This same family of curves may be used to determine the hot-spot
temperatufe rise iﬁ problem C as discussed previously.

It is interesting to note that if L/r, is greater than one, the hot~
spot temperature rise is very close to that of an infinitely long coil.
Just as one would expect, as R,, increases toward unity, the efféctéﬂof
length become less and less significant until, finally, the effect is
less than the error involved in the numerical solution.,. The top curve
showﬁ in Figure 9 is the same as the bottom curve in Figure 3, This is
Equation 3.40, This is also the solution to problem A,

Figure 10 shows the results from the computer solution of the problem
shown in Figure 2(E)., As discussed previously, this family of curves
may be used to determine the hot-spot temperature of problem F, also.
One notices here that the effects of length are more significant than
is the case in Figure 9, This is not surprising, because the larger of
the two curved surfaces has no heat flowing across it. Therefore, an
increased fraction of the total heat flow must be out the end. The top
curve in this figure is Equation 3.45 which is also given in Figure 3,
Also, this is the solution of problem D,

Finally, Figure 11 shows the relationship between the dimensionless
hot-spot temperature rise and R,, and L/r2 for the boundary conditions
shown in Figure 2(H), In this instance the hot-spot temperature rise
is less dependent upon length than in the last problem, because heat
flows across the larger of the two curved surfaces, Therefore, more
heat flows radially and lesé axiallyvthén before, Here again, this

family of curves may be used for problem I. The top curve is the same
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as the middle curve of Figure 3 and is the solution of problem G.

The significant features of these solutions are that the effects of
the curvature of the coil have not been neglected, nor have been the end
effects., The results show that both effects are quite significant for

coils of practical dimensions,
Use of Graphical Results

In order to determine the temperature rise within a coil, two items
of information are required besides the dimensions. The first of these,
and by far the easier to determine, is the heat generation per unit
volume per unit time, This is easily determined by dividing the electri-
cal power input to the coil by the volume of the coil, This gives the
value of q''', first introduced in Equation 3.1,

The other bit of information required is the thermal conductivity
of the composite coil, This is not so easily determined. In fact, this
appears to be a research area in itself, However, some work has been
done in this area.

In his book, Moore (3) presents graphically the results of a field~
mapping study. Using the technique of field mapping, he generated a
graph in which he relates the ratio of the thermal conductivity of the
coil and that of the insulation on the coil wire to the space factor to
which the coil is wound. This graph is reproduced here as Figure 12,
Using the graph, a value of the conductaﬁce ratio, which is defined as
the ratio of the thermal conductivity of the coil to the thermal con-
ductivity of the insulation, is obtained for a given value of the space
factor of the coil, The space factor ié defined as the ratio of the

volume of the copper in the coil to the entire coil volume, The thermal
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conductivity of the coil is given by the product of the conductance
ratio and the thermal conductivity of the coil wire insulation,

Moore's work in this area has been the subject of many references,
but there is very little evidence to indicate that his results have
been confirmed, disputed, or extended.

After q''' and k have been determined, the use of Figures 5, 9, 10,
and 11 to determine hot-spot temperature rises is a simple matter., The
actual value of the temperature rise which serves as an upper bound is
given by taking the product of T and arzz, where T is taken from the
appropriate curve of Figure 9, 10, or 11 for the proper value of R12
and L/rz. As defined previously, a = q'''/k.

In the next chapter an example is considered in order to demonstrate

the use of the graphical results of Figures 9, 10, and 12,



CHAPTER V
APPLICATION OF THE GRAPHICAL RESULTS

The coil selected to serve as an example to demonstrate the use of
Fipures 9, 10, and 12 is the magnet coil of a rotary-type electroméEﬁetic
relay, The iron cofe is Stationarv and sefves as the major path for the
heat flow out of the coil, The coil-core assembly cross section is

depicted in Figure 13,
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Fipure 13. Coil-Core Assembly of Rotary-Type Relay

Because of the confipuration of the magnetic circuit, there is no

conduction path for any appreciable amount of heat flow away from the
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top of the core or the top of the coil to the heat sink. Also, the
proper conditions do not prevail for any significant amount of convective
heat loss from the outer surface of the coil. Therefore, both the top
and the outside surfaces of the coil are éssumed to be adiabatic, or
nearly so, With this information available, the appropriate family of
curves is seen to be that of Figure 10.

The next step is to select the reference temperature, the maximum
temperature occurring on the non-adiabatic portions of the coil surface.
Consideration of the heat source-sink relationship indicates that the
temperature increases with increasing distance from the sink. The point
on the non-adiabatic portion of the surface which is furthermost from
the iron core is the point (rz, L) [See Figure 1(A)], Therefore, the

reference temperature is selected to be
tg = tlr,,L) .

For the coil under consideration, the specifications are:

power input 8.8 watts = 30 Btu/hr,
length | 0,68 in, = ,0566 ft,
inner radius 0.35 in, = ,0292 ft,
outer radius 0.625 in, = ,052 ft.,
insulation on wire - teflon

erbedded winding

reference temperature 100°F

For a space factor of 0.6, the conductance ratio for the embedded
coil winding is found to be 4.1 from Figure 12. Since the thermal

conductivity of teflon is approximately 0,14 Btu/hr.-ft,-°F, the
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equivalent thermal conductivity of the coil is 0,57 Btu/hr,-ft,-°F,

The rate of heat generation per unit volume is determined to be

30 Btu/hr, _ 30 ) Btu/hr,
(r,2 - r,2)L ££,3 000295 g 3

q''! =

10,2 x 104 Btu/hre
ft,3

Therefore,

_q''' _ 10,2 x 10" Btu/hr,-ft,>
8 = "% 7 TT0.57 Btu/hr.-ft.-oF

= 1,78 x 10° °F/ft.2

and
ar,? = 480°F

From Figure 10, for R;, = .56 and L/r, = 1,08, T = 0,116. The

value of the upper bound on the temperature rise is given as

t - t, = ar, Ty = (0,116) (u480) °F = 55,6°F ,

2

In other words, the actual hot-spot temperature in the coil is determined

to be
t,Stg t 55,6°F
or
t, < 100 + 55,6°F = 155,6°F . ,

If the boundary conditions of the acfual éoil were exactly those
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shown in Figure 10, the hot-spot temperature would occur at the point
(rz, 0). However, quite prcbably, neither the top nor the outside
surface of the coil is completely adiabatic. The result of this is that
the hot-spot is inside the coil but near the point (rz, 0) rather than
at the point (rz, 0). As a matter of interest, the temperature at the
point (r,, 0) was measured and found to be 122°F. This is a rise of 22°TF
above t_.

Another upper bound on the hot-spot temperature rise within this
same coil may be determined by selecting a different model from Figure 2,
Previously, it was assumed that both the top and the outer radial
surface of the coil are adiabatic. In this instance, assume that only
the top surface is adiabatic, This corresponds to model B of Figure 2,
the solution of which is given in Figure 9, For this case, the refereﬁce
is that at the point (r,, 0) and is equal to 122°F,

From Figure 9, for R,, = 0,56 and L/r, = 1,08, T/ = .025 and

(t -t]) = ar 27 (u80) (0,25) °F = 12°F ,

2 m

Therefore,

tm h (ts + 12) °F

it

(122 + 12) °F = 134°F
or
[+
t < 13u°F ,

" The upper bound as determined by using either Figure 9 or Figure 10
is greater than the temperéture measured at the point where the surface
temperature most likely assumes a value very nearly its maximum., Again,

by observing the nature of the coil in its application, one would expect
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the hot-spot to be very near the top and near the .outer curved surface
of the coil,
“For this particular electrical coil, the temperature was also

measured at the points (r;, 0) and (r;, L), Using the four temperatures

122°F

t(r,,0) = 88°F t(r,,0)

(5.1)
100°F

t(r,,L) = 63°F t(r, ,L)

a set of temperature boundary conditions is formulated keeping in mind
the assumption that there is no heat flow out the top of the coil, If
the reference temperature tg is taken to be t(rz, L) as before, then

the broposed set of boundary conditions has the form

tlry,2z) - tg = a  + ajz + a2z2 R (5.2)
t(r;,2) - tg = b, + bz +bz? , (5.3)
t(r,L) - tg = ¢t oy + c2r2, (5.4)

where

3t(r;,0) 3t(r,,0) 3tlr,L) 0

9z 3z ar

. (5,5)

The first two terms of Equation 5,5 are compatible with the assumption
of no heat flow out the top of the coil. The third term of that equation
provides for no heat flow into the core from the very bottom of the coil,
The measured difference in the temperature of these two points indicate
this to be the case for this particular coil.

By applying Equations 5,1 and 5.5 to Equations 5,2, 5,3, and 5.4,
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the temperature boundary conditions are determined to be

tlry,2) - tg = 22 = 22(z/L)2 (5.6)
t(r‘l ’Z) - 'ts = ""12 - 25(Z/L)2 » (507)
t(r,L) = t_ = =60.4 + 2,23 x 10%r? , (5.8)

These equations are used to supply boundary temperature data for the
computer program, From the computer solution of the resulting boundary-
value problem, Tm is found to be approximately .0482; and the location
of the hot-spot is approximately (r, z) = (0,93, 0). The hot-spot

temperature rise is found to be

t = tg = (,0482) (arzz) = (.,0u82) (u80) = 23,1°F

or
tm = 23 + 100 = 123°F

The actual value of the hot-spot temperature rise is seen to be
less than either of the proposed upper bounds as must be the case if
the results are to be valid,

In the course of obtaining T, for this set of boundary'conditions,
a discrete temperature distribution similar to the one shown at the end
of Appendix A is obtained, This is shown in Figure 14, (See Appendix
A for a discussion of the information presented in Figure 1l4,) In
Figure 14, one observes that the temperatures are greater inside the
outer surface than on the outer surface for the upper two-thirds of the

coil. That is,
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Figure 14,

Discrete Temperature Distribution for the Electrical Coil of the Example (See Appendix A)
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and

T3y > T35

Therefore, there is some heat flow across the outer surface, This
accounts for the difference between the upper bound and the actual

value of the hot-spot temperature rise., Had there been no heat flow
across the outer surface, one would expect the upper bound and the actual
value to be very nearly equal, This is expected because the boundary
conditions used to determine the upper bound are precisely those of no
heat flow across the top or the outside surfaces,

The two cases considered here for the same coil have illustrated
the use of Figures 9, 10, and 12, With a minimum amount of quantitative
data along with some qualitative information and a very few arithmetical
operations, some knowledge of the hot-spot temperature rise within the
heat-generating, hollow cylinder is easily obtained, The fact that this
information is easily derived from the graphs and specifications of the
coil is imﬁortant to the practicing engineer when he seeks this

particular type of informationm,



CHAPTER VI
SUMMARY AND CONCLUSIONS
Summary

In keeping with the objectives set forth in Chapter I, a method
has been developed whereby certain information regarding the temperature
rise in hollow, cylindrical bodies with internal heat generation may be
rather easily obtained, Since the hot-spot temperature is the tempera~-
ture of interest to those concerned with the possibility of component
failure due to excessive internal temperatures, information that may be
used to determine an upper bound on the hot-spot temperature rise is
derived and presented. This information is presented graphically in a
manner so as to relate the geometrical, electrical, and thermal properties
of the coil to the temperature rise within the coil for a given electrical
power input,
The use of the graphical relationships of Figures 9, 10, and 11
require a few rather simply determined bits of data:
1, A qualitative cbservation must be made of the coil in its
operating environment to determine which of the coil surfaces,
if any, are approximately adiabatic,
2, After the adiabatic surfaces have been noted, the location of
the maximum temperature occurriné:on the non-adiabatic portions

of the surface needs to be noted and the temperature at that
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point measured or estimated, as this is the reference
temperature above which the hot-spot temperature rise is
determined,

3. Using the results of step 1 above and the dimensions of the
coil, the appropriate curve is selected from Figure 9, 10, or
11, The value of T is determined.

4, From Figure 12, the "equivalent" thermal conductivity of the
coil is determined to allow the calculation of the dimensional

2

scale factor ar,“. Now the upper bound on the temperature rise

is determined to be t =~ ts = ar.%T .
Conclusions

The significant conclusions are that quantitative knowledge of the
hot-spot temperature rise within the cylindrical body may be derived
from certain qualitative observations and a few properties of the heat-
generating body; and, perhaps equally important, this knowledge may be
obtained relatively easily and only a small amount of time is required,
Often, in mind of the practicing engineer, the determining factor
concerning the utility of a given method is the amount of time and
effort required to work the method rather than the quality of the results
if he has some idea of the errors involved.,

The method presented is easily carried out, and fhe solutions
presented are shown to be accurate to within five percent or better,
which often is quite sufficient for engineering purposes,

The results are based on the following assumptions:

1., The thermal and electrical properties of the heat-generating

body are temperature independent (including the heat generation).
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2, If the results are applied to electrical coils, the assumption
ié made that the nonhomogeneous coil may be replaced by some
homogeneous material which has the same gross thermal and
electrical properties as the actual coil.

In view of some of the assumptions that haQe been made in prior
efforts, a significant characteristic of the results is that they take
full account of the effects of the curvature of the hollow cylinder as
well as the end effects, Therefore, the results are valid for a right-

circular, hollow cylinder of any dimension,
Areas for Future Work

Cne very important factor in the successful application of the
results derived and presented is the determination of k, the "equivalent"
thermal conductivity of the coil, The calculated value of the tempera-
ture rise varies inversely with k, Therefore, an error in the value of
k affects the calculated result quite significantly. As mentioned
earlier, the work of Moore (3) in this area has been referenced many
times; however, there is little evidence that anyone else has looked
into this problem. In view of its importance in the application of the
results presented here, it seems that the pfoblem warrants some more
attentien.

For certain applications of electrical coils, the maximum temperature
of the non-adiabatic portion of the coil surface may not be easily
determined 6r the point where it occurs may not be readily accessible.

In these instances, it might prove desirabie, for example, to be able
to select some point in the magnetic circpit as the reference point or

perhaps some point in the coil-mounting structure., In such cases, the
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thermal conductances from the coil surfaces to the iren core or the
mounting structure must be determined, Once these have been determined,
perhaps the reference point may be moved to that more accessible point.
The author is presently attempting to determine these ther@al
conductances for the case of magnet coils where the iron core is
stationary. The reference temperature is taken to be the temperature
at some point in the core, In a further step, the reference point may
be moved to some point in the external part of the magnetic circuit, but
this requires the determination of still more conductances. More needs

to be done along this line,
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APPENDIX A
DIGITAL COMPUTER PROGRAM

The digital computer program developed and used during this study
is written in Fortran IV, for use on the IBM 1410 and IBM 7090 Data
Processing Systems. The discussion of this program is prefaced with
the remark that no particular effort has been put forth to minimize
either the execution time or the required number of memory locations of
the program, On the other hand, some time was spent in developing and
testing the portion of the program which examines the temperature at
each node to determine whether or not it is sufficiently accurate. More
is said about this later in this section.

As pointed out in Chapter IV, by using the finite-difference
approximation to the differential equation, a system of linear, algebraic
equations is generated, There is one equation for each node in the
array.- Each of the equations may be written in the form of Equation 4,1
or 4,4. Actually, both forms are used during the execution of the
program.. This system of equationé must be solved simultaneously, since
the equation for the temperature at one node involves the temperafures
of several other nodes,

The simultaneous solution of the set of equations is accomplished
by an iterative process, The solution is started by calculating a new
value for T, using assumed values fqr all other temperatures. This new

value for T, replaces the originally assumed value in memory and is
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used in subsequent calculations, The procedure is repeated for T,, then
T3, and so on, until a new and improved value for each temperature is
obtained, In order to improve the values still more, the entire
iteration process is repeated,

After some number of iterations has been completed, it is necessary
to check the temperature values against some judging criterion, This
is accomplished by examining the residual at each node, The residual at
node 1 is defined to be the left-hand side of Equation 4,1, Just as
there is a temperature equation for each node, there is a residual
equation for each node, If the temperatures are all correct, the residual
at each node is zero, In reality, a great many iterations may be required
to reduce all residuals to zero., However, a smaller number of iterations
might reduce the residuals to a value small enough that the error in the
temperature values may be tolerated., This is the scheme used in the
efogram.

After a preselected number of iterations have been completed, the
residual at each node is calculated, Each of the residuals is divided
by the largest value of temperature occurring after the last iteration.
This provides a set of normalized residuals, If any of the normalized
residuals are larger than another preselected number, another series of
iterations is performed, after which the new set of normalized residuals
is determined and tested, This entire process is repeated until each
of the resulting normalized residuals is sufficiently small,

The iterative solution is started by using assumed values for the
temperature, These assumed values are read in as data. Obviously, the
closer the assumed values are to the correct values, the fewer will be

the required number of iterations to yield answers correct to within a
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given percentage.,

The process just described is simply a variation of the method of
relaxation that is explained by Schneider (12) and in detail by
Dusinberre (13),

In obtaining the solutions presented in this thesis, ten iterations
were performed between each examination of the normalized residuals;
and the iterations were continued until every normalized residual was
less than 0,01, Comments concerning the errors in these solutions are
given in Appendix B,

A flow diagram of the program is given, followed by the Fortran
listing and a sample of the oﬁtput obtained after the residual criterion
has been satisfied,

Figure 15 depicts the node array and shows the location of each of
bthe conductances, The group of nodes which are all connected together
with the dashed lines is labeled as node 50, This is the node of very
high temperature mentioned in the derivation of Equation 4,3, The heat
generation associated with a given node in the array is given by the
product of T50 and the thermal conductance between node 50 and that

node, For example, the heat generation associated with node 1 is

Qe = Ki10Ts0 -
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1000

2000

3000
3500
4000
5000
6000
7000
7500
8000
8500
3000
9500
9600
9700

100
105

10
15

20

25

30

35

75

DIMENSION T(100)»IFLAG(100)sTK(150)sND1(150)sND2(150)sV(25)
DIMENSION RHO(25) sQN(100)

FORMAT(110+1105F1045)

FORMAT(F10455110)

FORMAT (1H1+9Xs12HRUNNING TIME+5XsF7e395Xs5HHOURS 9/ /)
FORMAT (10X 20HNUMBER OF ITERATIONSs5X»110s//)
FORMAT{10X+14HRATIO OF INNERs5Xs15HRATIO OF LENGTH)
FORMAT(10Xs15HTO OUTER RADIUSs4Xs15HTO OUTER RADIUS»/)
FORMAT(F1045

FORMAT(13XsF7e3+12XsFTe34//)

FORMAT (10X s31HTHE TEMPERATURE DISTRIBUTION 1S,//)
FORMAT{12XsI12+6(11Xs12))

FORMAT{3Xs7(3XsF1045))

FORMAT (3Xs7(3XsF1045)//)

FORMAT (10X s22HMAXIMUM TEMPERATURE I1S35XsF10¢555Xs7THAT NODE»5Xs12)
FORMAT (10X s48HWHERE THE NUMBERS ARE NODEs NORMALIZED RESIDUALs)
FORMAT(10Xs43HAND DIMENSIONLESS TEMPERATUREs RESPECTIVELY)
CALL CLOCK (STTIME)

N=1

NN=1

ITERAT=0

ICOUNT=0

1CMAX=10

1IN=1

10UT=3

READ(TIIN»1000) IMAX s JMAX s TOL

READ(IIN»6000)RB

READ(I1IN»6000)28

P1=3.141592

IND1=0

IND2=0

DO 105 I=1,IMAX

READ(IIN»2000)T(1)sIFLAG(I)

DELTR=(140~RB) /640

RHO(1)=RB v

DO 10 1=2,7

RHO(I)=RHO(I~1)+DELTR

CONTINUE

DELTL=2B/640

DO 20 I=14% _ ‘

TK(1)=2+0%PI*DELTL/ALOG (140+DELTR/RHO( 1))

ND1(1)=1+7
ND2(I)=1+8
CONTINUE

DO 25 1=1,24"
TK(I+6)=TK(1)

ND1(I+6)=ND1(1)+7

ND2 (I1+6)=ND2(1)+7

CONT INUE

DO 30 =246
TK(1+29)=240%P[#RHO(1)*DELTR/DELTL
NDL(1+29)=1

NDZ (1+29)=[+7
V(1+7)=2.,0#P1%¥DELTR#*DELTL*RHO( 1)
CONTINUE

DO 35 1=31,55

TK(I+5)=TK(1)

NDL1(I+5)=ND1(I)+7

ND2 (1+5)=ND2(1)+7

CONTINUE

DO 40 1=9513
TK(I+52)=v(11/100000.0



40

45

50

55

60

65

70

ND1(1+52) =1

ND2 (1+52)=50

CONT INUE

DO 45 1=61,80
TK(I+5)=TK(1)
ND1(I+5)=NDL(1)+7
ND2(1+5)=50
CONTINUE

DO 50 I=1,6
TK{1+85)=TK(1)/240
ND1(1+85)=1

ND2 (1+85)=1+1
TK(1+103)=TK(1+85)
ND1(1+103)=1+42
ND2 (1+103)=1+43
CONTINUE.

TK(92)=PI#*(RHO(T7)*DELTR~(DELTR*%2)/440)/DELTL

ND1(92)=7
ND2(92)=14

DO 55 1=14+5
TK(I+92)=TK(92)
ND1(I+92)=T7*([+1)}
ND2(1+92)=7#(1+2)
CONTINUE '

‘TK(981=PI*(RHO(l)*DELTR+(DELTR**2)/4-0)/DELTL
ND1(98)=1
" ND2(98)=8

DO 60 I=1s5 :
TK({I+98)=TK(98)
NDL(I+98)=T7*]+1
ND2(1498)=T7%#1+8

CONTINUE : ’
VOL=PI*DELTL*(RHO(1)*DELTR+(DELTR#%2)/440)
TK(123)=VOL/100000.0
ND1(123)=8 '
ND2(123)=50

DO 65 I=1s4
TK(I1+4123)=TK(123)
ND1(14123)=7%]+8
ND2(1+123)=50

CONTINUE -
TK(110)=TK(123)/240
ND1(110)=1

"ND2{110)=50

TK(128)=TK(11l0)
ND1(128)=43
ND2(128)=50

DO 70 I=145
TKII+110)=TK{(I+60)/240
ND1{(1+110)=1+1
ND2(1+110)=50
TK{I+128)=TK{(I+110}
ND1(I+128)=1+43
ND2(1+128)=50

CONTINUE '
VOL=PI*DELTL¥{(RHO(7)*¥DELTR-(DELTR*#%#2)/4,0)
TK(117)=v0OL/100000.0
ND1(117)=14
ND2(117)=50

DO 75 I=1y4
STKAI+117)=TK(117)

ND1{I+117)=T7%#I+14

76



ND2(1+117)=50
715 CONTINUE
TK(116)=TK(117)/2.0
ND1(116)=7
ND2({116)=50
TK(122)=TK(116)
ND1(122)=49
ND2(122)=50
119 TMAX=040
120 DO 225 I=1,IMAX
SUMK=0.0
SUMKT=0.0
IF(IFLAG(1)+EQe1)GO TO 225
DO 156 J=1,JIMAX
IF(ND1{J)«eNES]I)GO TO 156
SUMK=SUMK+TK(J) -
M=ND2(J)
SUMKT=SUMKT+TK(J}*#T (M)
156  CONTINUE
DO 182 J=1,JMAX
IF(ND2(J)eNESI1)GO TO 182
SUMK=SUMK+TK(J)
M=ND1(J)
SUMKT=SUMKT+TK(J)*#T (M)
182 CONTINUE
TEMP=SUMKT /SUMK
T(I)=TEMP
IF(TMAX«GT«T(]))GO TO 225
TMAX=T(I)
NODE=1
225  CONTINUE
ITERAT=ITERAT+1
ICOUNT=ICOUNT+1
IF{ICOUNT4NES«ICMAX)GO TO 119
ICOUNT=0
DO 245 I=1,IMAX
SUMK=OOO
SUMKT=0.0
IF(IFLAG(I)+EQel1)GO TO 243
INDL=IND1+1
DO 227 J=14sJMAX
IFIND1(J)eNESIIGO TO 227
SUMK=SUMK+TK (J)
M=ND2 (J)
© SUMKT=SUMKT+TK(J)#T (M)
227 CONTINUE
DO 228 J=1,yJMAX
IFI(ND2(J)«NESI)GO TO 228
SUMK=SUMK+TK(J}
M=ND1 (J)}
SUMKT =SUMKT+TK (J)*T (M}
228 CONTINUE
Q=SUMKT-T(1}*SUMK
GN(1)=Q/TMAX
IF{ABS(QGN(]I))«GE«TOLYGO TO 245
IND2=IND2+1
GO TO 245
243 GN(I11=0.0
245 CONTINUE
230 IF(INDLsNELIND2)GO TO 250
GO TO 275
250 INDL=0



78

, "~ IND2=0
260 ~0 TO 119
275 CONTINUE
CALL CLOCK (PRTIME)
RNTIME=PRTIME~STTIME
WRITE(IOUT+3000)RNTIME
WRITE(IOUT»3500) ITERAT
WRITE{IQUT+4000)
WRITE(IOUT45000)
WRITE(IOUT»7000)RB»2B
WRITE(IOUT,+7500)
DO 244 L=1+43,7
Ll=L
L2=L+1
L3=L+2
L4=L+3
LS5=L+4
L6=L+5
L7=L+6
WRITE(IOUT+8000)L1sL2sL3sL&4sL5sL6SLT
WRITE(IOUT+8500)QN(L1)+sQN(L2)sQNIL3)sQN{L4L)sQNILS5)»QNILE) sQN(LT)
WRITE(IOUT +9000)T(LL) oT(L2)oT(L3) o TILL)sTIL5)sT(LE)STILT)
244 CONTINUE
WRITE(IOUT+9500) TMAXsNODE
WRITE(IOUT+9600)
WRITE(IOUT,9700)
246 CONTINUE
ITERAT=0
IF(RNTIME«GT+0.8)G0 TO 291
RB=RB+0+125
IF(RBsGT40490)GO TO 280
GO TO 5 .
280 RB=04125
2B=2,0%28B '
IF(ZB«GTe5.0)1G0 TO 290
GO TO 5 ‘
290 ZB=0+25
291 CONTINUE
295 STOP
: END



. RUNNING TIME . +190 HOUR'S

"NUMBER OF ITERATIONS ) 30

_RATIO OF INNER RATIO OF LENGTH
TO OUTER RADIUS TO OUTER RADIUS

e

. THE TEMPERATURE DISTRIBUTION IS

SRS ,

400000 -.00090 -.00106
400000 .04903 .07033

C Bl 8 10
.00000 ~.00162 -.00190

. 400000 .04903 .07033

T 16 17

.+00000 . =.00157 ~.00183
.00000 .04903 .07032

.22 23 24
.00000 -.00150 -.00175

200000 . . . 04897 .07024

29 30 3l

. +00000 -.00129 -.00149

«00000 « 04845 06946
36 37 38

. 00000 ~.00076 -.00047

. +00000 - 04373 +06245
43 4 45
+00000 . 00000 00000

. .00000 .00000 00000

. MAXIMUM__TEMPERATURE IS
WHERE THE NUMBERS "ARE
AND DIMENSIONLESS TEMP

.e07290

n
-.00092
«07290

11
~.00162
07290

18
-.00156
.07289

25
~.00149
«07280

32
-.00126
07201

39
-.00072
064177

46
.00000
.00000

AT NODE

NODE, NORMALIZED RESIDUAL,
ERATURE, RFSPECTIVELY

5
~.00052
« 06075

12
-.00091
°,.06075

19
~.00088
06074

26
-.00083

33
-.00070
«06004

40
-. 00039
«05425

47
«00000
.QU000

6
-400003
«03602

13
-.000013
«03602

20
-.00002
.03602

21
-.00002
.03598

34
~+00001
« 03564

41
~+00000
«03249

4y
«00000
- 00000
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7
«00000 .
«00000

14
. 00000
. 00000

21

+00000 ., -

«00000

28
.00000
«00000

35
«00000
00000

42
00000
L0000

49
. 00000
. 00000



APPENDIX B
ERROR ANALYSIS OF APPROXIMATE SOLUTIONS

The error analysis given here is to‘provide a feel for the
magnitude of the errors involved in the solutions described in Chapter
IV, Recalling that those solutions were obtained by zolving a finite~
difference model which is only an approximation to the original mathema-
tical model. There is, therefore, an error involved due to the finite
difference approximation. Secondly, the approximate model is solved
by an iteration technique which provides another source of error, The
iteration process may be continued as long as practicable, but the
resulting solution only converges toward the correct solution to.the
model and, in general, never becomes equal to it., Thirdly, there is
error introduced into the solution due to round-off and truncation which
take place during the actual computing process., Therefore, there are
at least three sources of error:

1, Error due to the finite difference approximation,

2, Error due to convergence characteristics of the programmed

solution,

3. Error due to round-off and truncation occurring during the

computing prdcess.

Some idea of the magnitude of'the error due to the finite difference
approximation may be obtained by considering the mathematics of that

numerical method. Consider the case where the dimensionleés temperature

80
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T is a function only of the dimensionless radial variable R, That is,

T(R) must satisfy Equation 3,28,

a’T 1 4T

..‘._dRz + R -d.T-+ l : 0 . . (3e28)

If T(R) is expressed in a Taylor series expansion in the following

manner, an indication of the magnitude of error is obtained,

T(R + AR)

7(R) + aR 9T(R) 4 (AR)2 | &°T(R)
& 2 dr?

(AR)3 ) d3T(R) R (AR)* d“T(R) .

3! dr3 I ar e

T(R - AR) = T(R) - aR SE(R) 4 (AR)Z | d’T(R)
&

2 dr2

3 43 4 4
BRI, TR R ATR) (B.2)

3! dr3 L1 drY

d2T(R)

Upon adding Equations B,1l and B,2 together and solving for Y .

one obtains

2
STR) . 2 [T(R+ AR) + T(R = AR) = 2T(R) + o(AR)*] ,  (B.3)
dr? (AR)?
or
FIR) = L _[T(R+AR) + T(R -~ AR) - 2T(R)] + o(AR)2 ,  (B.4)
dr? (AR)?2

Therefore, if only the first three terms of the series expansion are
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considered, the error is of order (AR)2, Similarly,

dT(R) _ T(R + AR) = T(R - AR)
R - 2 bR

+ o(AR)2 (B.5)

If the right-hand side of Equations B,4 and B.5 are substituted

into Equation 3,28, the result is

2
SR L L, &R . L [T(R + 4R) + T(R - 4R) - 2T(R)]

e R R T (py?
1
+ 5= [T(R + AR) = T(R - AR)] + o(AR)? = -1 , (B.6)

which gives the correct solution if the term o(AR)2 can be evaluated,
The central difference numerical approximation neglects this term; and,
therefore, it is the error due to the approximation.

Equations 4,1 and 4,4 may be generated from Equatioen B,6 which
serves as the basis for the calculation of temperature distribution by
finite~differences,

From Equation 4,7

1 - Ri2
AR = ——p-gm (L{..7)
- Therefore,
2 _ _ on 2
(AR) = (1 - 2Ry, + R{,)/36 , (B.7)

Equation B,7 is evaluated for values of R), between zero and one as follows:
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.1
.3
.5
W7
.9

1.0

.0278
0225
0113
,0069
.0025
.00028

0

(AR)2
2,78%
2.25
1.13
0.69
0.25
0,028

0
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This shows that the magnitude of the error resulting from the finite

difference approximation is of the order of three percent or less.

The other two errors listed are not so easily determined.

However,

in certain cases, it is not difficult to determine the entire error

involved, In order to do this, a boundary-value problem which is

described by Equation 3,28 is selected from Figure 2, Problem D of

Figure 2 is such a problem, and the solutien is given by Equation 3,45,

A feel for the total error involved in the approximate solution may be

ocbtained by comparing the exact solution, Equation 3,45, with the

computed solution of the finite-difference model., This comparison is

shown in the table below:

5&2

0,125
0.250
0,375
0.500
0,625

0,750
0,875

Solution for T, Percent ‘(AR)Z
Exact Computed Error '

. 79362 . 75467 -14,91 2,12%
JU45877 47359 3.23 1,56
«27557 28061 1.82 1,08
. 15907 . 16090 1,15 0.69
.08265  ,0831 0,59 0,39
03446 03460 0,40 0,17
.00817 .00819 0.24 0,05
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In this case, the magnitude of the actual error is roughly two
times (AR)? which is well within the confines of the definition of
o(AR)2, As mentioned before, it is difficult to separate out each of
the three errors to determine the contribution of each, However, the
fact of importance here is that the total error involved by the approxi-
mate solution appears to be less than five percent, which is sufficiently
small for many‘engineering purposes,

Equations similar to B,l through B.6 may be derived for the
problems where the heat flow has both radial and axial components, How-
ever, the mathematics required to determine the order of the error are
a bit more complex. It is felt that this one example is sufficient to
give one a feeling of the magnitudes of error involved and to assure
that the solutions presented in Figures 9, 10, and 11 are sufficiently

accurate for many applications,



APPENDIX C

GLOSSARY OF SYMBOLS

The following is a list of the symbols and terms used through the

thesis:
a - q'''/k (defined after Equation 3,8)
C - specific heat
k - thermal conductivity
L - length of the hollow cylinder

q'"! - heat generated per unit volume per unit time

r -~ inner radius of the hollow cylinder

r, - outer radius of the hollow cylinder

Ris ~ the ratio rl/rb

R ~ dimensionless radius at whiéh the hot-spot temperature
occurs

R - defined in Equation 3,41

t ~ dependent variable, temperature

th - upper bound on t

ts - vreference temperature

T - dimensionless temperature differences (defined by

Equations 3.9 and 3.12)

To - upper bound on T
(] ~ thermal diffusivity
B - temperature coefficient of resistivity

85
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independent variable, time
mass density

values of the dimensionless radius R (i = 1, 2, .cc, 7)
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