86740

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 7

REPORT

5119: 10th Street Site 1011: NED981713837
209ak: 1.6
Oher
2-99

REMOVAL ASSESSMENT - PHASE 1

for the

TENTH STREET SITE COLUMBUS, NEBRASKA

CERCLIS number : NED981713837

FEBRUARY 1999

Ecology and Environment, Inc.

SUPERFUND TECHNICAL ASSESSMENT AND RESPONSE TEAM CONTRACT No: 68-W6-0012 Æ

TDD: S07-9805-003A PAN: 0899TSSFXX

S00086469 SUPERFUND RECORDS

ecology and environment, inc. International Specialists in the Environment

Cloverleaf Building 3, 6405 Metcalf Overland Park, Kansas 66202 Tel: (913) 432-9961, Fax: (913) 432-0670

REPORT

for the

REMOVAL ASSESSMENT – PHASE 1

at the

TENTH STREET SITE - COLUMBUS, NEBRASKA

CERCLIS: NED981713837 Contract No.: 68-W6-0012 TDD: S07-9805-003A

Prepared For:

Remedial Program U.S. Environmental Protection Agency Region 7 Superfund Division

Prepared By:

Ecology and Environment, Inc. Superfund Technical Assessment and Response Team

February 12, 1999

APPROVED BY:

E & E START Project Manager, Ron Ramold

E & E START Program Manager, Robert C. Overfelt, CPG

<u>2-12-99</u> Date

2-12-99 Date

TABLE OF CONTENTS

~

Section	P	Page
1.0	INTRODUCTION	1-1
2.0	SITE DESCRIPTION AND HISTORY	2-1
	2.1 SITE LOCATION	2-1
	2.2 SITE DESCRIPTION	2-1
	2.3 PREVIOUS INVESTIGATIONS	2-1
	2.4 PHYSICAL CHARACTERISTICS	2-9
	2.4.1 Soils	2-9
	2.4.2 Geology	2-9
	2.4.3 Hydrogeology 2	2-10
	2.4.4 Hydrology	2-11
3.0	FIELD ACTIVITIES	3-1
	3.1 POTENTIAL SOURCES INVESTIGATED	3-1
	3.2 GROUND WATER CHARACTERIZATION	3-2
	3.3 SOIL CHARACTERIZATION	3-4
4.0	RESULTS	4-1
	4.1 GROUND WATER LEVELS	4-1
	4.2 ANALYTICAL RESULTS	4-3
5.0	SUMMARY AND CONCLUSIONS	5-1
6.0	REFERENCES	6-1

APPENDICES:

Ар	Pag	e
Α.	Photo Documentation Record A-	1
В.	Mobile Laboratory Program Volatile Organic Compound Analytical Results B-	1
С.	Geoprobe™ Ground Water and Soil Sampling Data Summary C-	1
D.	EPA Region 7 Laboratory Analytical Data Package D-	1
RGR/Lk	i 0899TSSFXX/9805003/report/report//	F

LIST OF TABLES

/

Table		Page
2-1	Columbus Dry Cleaner Locations	. 2-3
2-2	Summary of Ground Water Sample Results—PCE & TCE	. 2-6
4-1	Geoprobe [™] Ground Water Levels	. 4-1
4-2	VOC Analytical Data Summary—Ground Water Samples	. 4-4
4-3	Arsenic Analytical Data Summary—Ground Water Samples	. 4-7
4-4	VOC Analytical Data Summary—Soil Samples	. 4-9

LIST OF FIGURES

Figure

-

-

2-1	Site Location Map
2-2	Current Monitoring Well Network 2-13
2-3	PCE Distribution in Groundwater (4th Quarterly Sampling—April 1998)
2-4	Local Geologic/Hydrogeologic Column 2-15
2-5	Representative Potentiometric Surface Contour Map (A series MWs—April 1998) 2-16
3-1	Study Area Map
3-2	Geoprobe [™] Ground Water Sampling Location Map
3-3	Geoprobe [™] Soil and Ground Water Sample Locations in Vicinity of One Hour Martinizing . 3-7
4-1	Geoprobe [™] Water Level Contour Map
4-2	Shallow Ground Water PCE Concentrations—START Mobile Laboratory 4-11
4-3	Shallow Ground Water TCE Concentrations—START Mobile Laboratory 4-12
4-4	Shallow Ground Water PCE Concentrations—Region 7 EPA Laboratory 4-13
4-5	Shallow Ground Water TCE Concentrations—Region 7 EPA Laboratory 4-14
4-6	Shallow Ground Water Dissolved Arsenic Concentrations

Page

1.0 INTRODUCTION

Under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the Superfund Amendments and Reauthorization Act of 1986 (SARA), the U.S. Environmental Protection Agency (EPA) Region 7 Remedial program has tasked the Ecology and Environment, Inc. (E & E), Superfund Technical Assessment and Response Team (START) to conduct a removal assessment at the 10th Street site in Columbus, Nebraska, under Technical Direction Document (TDD) S07-9805-003.

Water analyses by the Nebraska Department of Health (NDOH), EPA, and START have identified trichloroethylene (TCE) and tetrachloroethylene (PCE) in the Columbus municipal water system. Since testing of the water supply for volatile organic compounds (VOCs) began in 1983, PCE and TCE have been detected at concentrations exceeding their Maximum Contaminant Levels (MCLs) in several municipal wells and monitoring wells.

Previous investigations at the 10th Street site involved installation of 34 monitoring wells to identify areas of contaminated ground water. Recent quarterly samplings and analysis of these monitoring wells indicated that the northern boundary of contamination had not been completely delineated. The objectives of this assessment were to quantify the concentrations of these contaminants in shallow ground water within an expanded sampling area in order to delineate contaminated ground water and to verify potential source(s). The expanded sampling area extended beyond the current network of monitoring wells. START implemented a ground water and soil sampling regimen to fulfill these objectives. This removal assessment report presents site background information, describes field investigation activities, and presents and discusses the results of these activities.

1-1

2.0 SITE DESCRIPTION AND HISTORY

2.1 SITE LOCATION

The 10th Street site is located in Columbus, Platte County, Nebraska (Figure 2-1: Site Location Map). The current monitoring well network encompasses an area bounded approximately by 6th and 13th Streets and 22nd and 30th Avenues (Figure 2-2: Current Monitoring Well Network). However, recent quarterly sampling and analysis indicated that the northern boundary of the plume has not been delineated. Therefore, the proposed sampling area for this investigation generally extended to 33rd Avenue to the west, 18th Avenue to the east, 11th Street to the south, and north to approximately 1,000 feet north of 23rd Street (Figure 2-1: Site Location Map and Figure 3-1: Study Area Map).

2.2 SITE DESCRIPTION

The site consists of a contaminated ground water plume located beneath a mixture of commercial and residential property in the south-central portion of the city. PCE and TCE are the primary contaminant constituents of the ground water plume. Elevated levels of arsenic have also been detected in some ground water samples. The current extent of the ground water plume has been partially delineated by samples taken from a network of 34 monitoring wells. These wells were installed as part of a 1993 Remedial Investigation (Sverdrup, 1993). Several municipal wells have also indicated PCE and TCE contamination. Both the monitoring wells and municipal wells are screened in an unconsolidated sand and gravel aquifer. Regional ground water flow is to the south-southeast towards the Loup River. However, municipal well pumping appears to cause ground water in the southern portion of the site to flow to the southwest towards the municipal wells. More detailed descriptions of the geology and hydrogeology are presented in Section 2.5 of this report.

2.3 PREVIOUS INVESTIGATIONS

The 10th Street site came to the attention of the NDOH in November 1983, when trihalomethanes (THMs), a group of VOCs generally created as a by-product of chlorination, were detected during a routine sampling and analysis event. Follow-up analysis by NDOH conducted in June 1984 continued to detect THMs and also detected TCE in municipal wells W-1, W-2, W-4, and W-11 at concentrations of 5.9 parts per billion (ppb), 24.7 ppb, 9.4 ppb, and 7.2 ppb, respectively. These concentrations all exceeded the MCL for TCE of 5.0 ppb. The city of Columbus was served, at that time, by 9 municipal wells, designated as W-1, W-2,

W-4, W-8, W-11, W-12, W-13, W-14, and W-15 (Roe, 1988). The locations of these municipal wells, with the exceptions of W-14 and W-15, are shown in Figure 2-2 and Figure 3-1.

In April, 1987, the site was referred to EPA. The E & E Field Investigation Team (FIT) sampled the city wells and water distribution system. TCE was detected in W-1, W-4, W-11, and W-14, and both TCE and PCE were detected in W-2; W-15 was not sampled because of its distance from the city well field. The sample from W-14, which is located approximately 3 miles north of Columbus, was intended to be a background sample (E & E, 1987a).

During the same month, E & E/FIT completed a Preliminary Assessment (PA) of the 10th Street site, then known as the Columbus Public Water Supply site. Several businesses were identified as potential sources of ground water contamination and further investigation to identify additional sources was suggested (E & E, 1987b). These potential sources, along with others identified later, are shown in Figure 3-1. During the PA site reconnaissance, sampling of municipal wells was repeated. TCE was detected qualitatively from W-1, W-2, W-4, W-11, and W-14, and from a distribution sample. TCE was detected quantitatively in W-1 at 29 ppb, while TCE levels in the other wells were below the analytical laboratory's 5 ppb minimum detection limit. PCE was detected in W-2 at approximately 2 ppb (E & E, 1987c).

EPA's Region 7 Environmental Services Division sampled the municipal wells and the water distribution system in September 1987 and February 1988. TCE and PCE were detected in wells W-2, W-4, W-11, and W-15, while TCE only was detected in W-1 and W-10. Thirty-four water system samples were collected from public restrooms in Columbus, with all samples containing detectable concentrations of TCE, PCE, or both. In these samples, TCE and PCE were detected at concentrations up to 10 micrograms per liter (μ g/L) and 3.0 μ g/L, respectively (Sverdrup, 1993).

Sampling from water taps in Columbus schools was conducted in September 1987 by E & E/FIT. Bromoform was detected at 14.0 ppb and 20 ppb at Lost Creek School and North Park School, respectively. TCE was detected at Williams School, Field School, and Scotus Central Catholic Junior and Senior High School at 8 ppb. TCE was also found at St. Bonaventure School and St. Anthony's Grade School at 9 ppb and 13 ppb, respectively. West Park School, Highland Park School, and St. Isadores School had TCE concentrations of 13 ppb, 13 ppb, and 16 ppb, respectively. During the same sampling event, TCE levels in municipal wells ranged from 13 ppb to 18 ppb. PCE was detected in municipal well W-2 at 14 ppb (Morby, 1988).

2-2

In April 1988 a trip report from E & E/FIT first mentioned a railroad yard north of several municipal wells as a possible PCE source. In the same report, it was noted that five wells previously in use by the city had been abandoned. The screens of W-6 and W-7 had caved in, causing sand and gravel to be pumped into the system. Municipal wells W-3, W-5, and W-9 were abandoned for unknown reasons (Roe, 1988).

E & E/FIT performed a soil gas survey at the 10th street site during May 1988. The survey had two phases. Phase I consisted of collecting soil gas samples near potential sources, to either confirm or rule them out as contaminant sources. Phase II consisted of collecting soil gas samples between and around the potential sources to develop contamination contour lines, support source attribution, and determine the areal extent of the contaminant plume.

A sample from the city parking lot, taken directly behind Liberty Cleaners, contained a PCE concentration of 146,000 nanograms per liter (ng/L) of air. Liberty Cleaners (see Appendix A, photographs 7 and 8) is located on Figure 3-1. The sample was taken from 5 feet below ground surface; a duplicate sample taken from the same location and depth had a PCE concentration of 34,100 ng/L (E & E, 1987b).

One liquid and two soil samples were also taken from the Village Wash House (see Appendix A, photograph 9), 2621 10th Street, on May 16, 1988. A PCE holding tank, which had been discovered during a prior Resource Conservation and Recovery Act (RCRA) inspection, had been excavated before the FIT arrived at the facility. The record shows that FIT inspected the excavated tank, and did not observe any damaged or rusted areas. Soil samples taken from the bottom of the excavation pit, however, had concentrations of TCE up to 190 ppb, indicating that a release had occurred from the tank (E & E, 1987b).

In April 1989 FIT conducted an Expanded Site Investigation (ESI), during which a list of current and prior dry cleaning businesses was gathered (Table 2-1). Figure 3-1 shows the locations of these dry cleaning locations as potential sources of ground water contamination.

TABLE 2-1										
COLUMBUS DRY CLEANER LOCATIONS—EXPANDED SITE INVESTIGATION, 1989 Name of Facility Years of Operation Owner Address										
Jackson Services, Inc.	1924-present	Jay Jackson	960 24th Avenue							
The Village Wash House	early 1960's-1988	Jay Jackson	2621 10th Street							
Liberty Cleaners	1959-1964	Sidney Hasselquist	1261 26th Avenue							
Liberty Cleaners	1964-1984	Sidney Hasselquist	2417 11th Street							
Liberty Cleaners	1984-present	Sidney Hasselquist	1061 25th Avenue							
Columbus Laundry Company	1935-1967	Not listed	1264 27th Avenue							
Columbus Laundry Company	1967-present	Not listed	2374 32nd Avenue							
One Hour Martinizing	1979-present	Dean Soulliere	2262 25th Avenue							

TABLE 2-1—(Continued) COLUMBUS DRY CLEANER LOCATIONS—EXPANDED SITE INVESTIGATION, 1989									
Name of Facility	Years of Operation	Owner	Address						
U.S. 30 Laundry and Dry Cleaning	Not listed	Everett McAndrew	U.S. 30 Center Mall						
United Cleaners	1930-1936	Not listed	1265 26th Avenue						
United Cleaners and Hatters (renamed)	1936-1937	Not listed	1359 26th Avenue						
United Cleaners and Hatters	1937-1943	Not listed	2519 11th Street						
United Cleaners and Hatters	1943-1949	Not listed	1260 26th Avenue						
United Cleaners and Hatters	1949-1955	Not listed	1261 26th Avenue						
Modern Cleaners and Dyers	1930-1937	Not listed	1360 27th Avenue						
Modern Cleaners and Dyers	1937-1979	Not listed	1356 27th Avenue						
Toggery Cleaners	? (1930 is only date listed)	Not listed	1261 29th Avenue						

(E & E, 1989)

Two additional non-dry cleaning potential sources were identified south of the railroad tracks based on soil gas samples: the city parking lot (formerly Kavich Iron and Metal); and Miller Radiator and Machine Shop, which may have used solvents as degreasers (E & E, 1989). It should be noted that the city parking lot is located directly behind the current Liberty Cleaners location, and extends behind a historical Liberty Cleaners location. Miller Radiator and Machine Shop is located adjacent to the Liberty Cleaners location facing 25th Avenue (see Appendix A, photograph 7).

By December 1989, Columbus had discontinued use of city well W-4. The TCE concentration in that well had increased from 9.4 μ g/L in June 1984 to 20.2 μ g/L in December 1989.

Sverdrup Corporation began Phase I Remedial Investigation (RI) work in July 1990. Phase I activities, which were performed through September 1990, included drilling 20 shallow soil borings, installing 34 ground water monitoring wells equipped with QED Environmental Systems Well Wizard[®] Sampling Pumps (dedicated bladder pumps), collecting soil, surface water, and ground water samples, and conducting a sampling Cone Penetrometer survey. Phase II activities, conducted June 1991, included the collection of surface and ground water samples.

Four potential source areas were investigated during Phase I activities. The potential source areas included the city parking lot/Liberty Cleaners area bounded by 24th and 25th Avenues and 10th and 11th Street, Jackson Services, the Village Wash House, and a former grain elevator located along 23rd Avenue. The highest soil PCE concentrations were found near Liberty Cleaners, which had a peak concentration of 24,000 μ g/kg. PCE was also detected in soil at Jackson Services and at the Village Wash House at concentrations of 90 and 13 μ g/kg, respectively. Bromoform was the only VOC detected in soil from the former grain elevator location. A study during the RI indicated that local ground water flow was generally to the west-southwest, toward the city municipal well field. Metals concentration data from the Phase I sampling event indicated elevated levels of arsenic in the ground water. During Phase II sampling, PCE was detected in 9 monitoring wells in concentrations ranging from 1.4 to 130 μ g/L. TCE was detected in 14 monitoring wells, with concentrations ranging from 1.2 to 120 μ g/L. Products potentially resulting from the degradation of PCE and TCE were detected in several monitoring wells. Table 2-2 chronologically summarizes PCE and TCE analytical results from the monitoring and municipal wells. River water samples taken during the Remedial Investigation did not indicate any impact from the site on the surface water pathway (Sverdrup, 1993).

By June 1993, a trend became apparent with the highest TCE and PCE concentrations consistently found in shallow monitoring wells. City wells contained some VOCs, but at low enough concentrations that allowed the city to be in compliance with the Safe Drinking Water Act for the municipal supply (Crawford, 1993).

An EPA Record of Decision (ROD) was released for the site on February 23, 1995. Ground water monitoring and institutional controls were selected to limit exposure to contamination from the 10th Street site. Institutional controls include advisories from EPA to users of private wells in areas with contaminated ground water, recommending that such ground water not be used for human consumption, and requesting that the city of Columbus pass an ordinance prohibiting the drilling of any new private water supply wells in the area of ground water contamination. The remedy also include a contingency for extraction of contaminated ground water with discharge to the Loup River. EPA's implementation of the contingency was to depend on the results of EPA's reassessment of its baseline risk assessment. At minimum, EPA was to evaluate, first after one year of ground water monitoring and again after five years of monitoring, whether the risks calculated in the baseline risk assessment had changed, thus warranting the contingency.

During a 1995 site assessment, the E & E Technical Assistance Team (TAT) conducted monitoring well and drinking water sampling. Of 16 monitoring wells sampled, PCE or TCE or both were found in 11. TCE was also detected in the drinking water supply sample, collected from the faucet at the public water works shop. MCLs were exceeded in 7 of the 11 monitoring wells with contaminants. Values as high as 130 ppb PCE (MW-2B) and 120 ppb TCE (MW-9B) were identified in monitoring well samples (E & E, 1995).

E & E/START performed quarterly sampling of Columbus municipal and monitoring wells in 1997 through April 1998. Though TCE and PCE concentrations during this period were generally below MCLs in the municipal wells, monitoring well samples continued to indicate significant contamination. In addition, increasingly higher levels of TCE and PCE were detected along the northern boundary of the monitoring

well network, indicating that _____ontaminant plume had not been complete______ineated (E & E, 1997, 1998a, 1998b, 1998c). It is this development that prompted the planning of this current assessment. Figure 2-3 presents the contoured distribution of PCE contamination during the fourth quarterly sampling in April 1998.

In 1998, START was tasked to obtain information from Nebraska Department of Environmental Quality—Leaking Underground Storage Tank (NDEQ LUST) site files. The investigation was limited to a review of NDEQ files for LUST sites near the 10th Street site. The purpose of the review was to obtain information regarding ground water flow direction. In addition, START was tasked to review any available analytical data that could help determine potential sources of the VOC contamination beneath the 10th Street site. Most analytical data packages were limited to typical petroleum compounds. However, the NDEQ LUST file pertaining to the Ward 4 Emerson School site included analytical results for the full suite of VOC contaminants. Analytical results from ground water samples collected at this site indicated contamination with both TCE and PCE at concentrations up to 436.2, and 347.8 μ g/L, respectively (E & E, 1998d). The Ward 4 Emerson School site is located to the north of the current 10th Street Site monitoring well network (Figure 3-1). The presence of documented TCE and PCE contamination north of the current monitoring well network indicated that a potential source of ground water contamination could exist at, or upgradient from, the Emerson School site.

				<u>.</u>				Tal	ole 2-2	2								.	
		SUN	/MA			ROUN TREE									& T(CE			
Sample	Analyte		Sample Series (see Key at end of table), results in µg/L																
Location	/ mayte	ISI	CS	CSX	CS	CS2	CS	CS	<u>3CS</u>	CS5	CS	AS7	'CS	BS7	CS	C	57CS	DS	
MW-1A	PCE	27		72		7.8		6.0		5	J	21	1993	29		28		33	
	TCE	5.0	U	1.0	U	2.7		3.0		1	K	10		10		8.6	÷ 1.	25	
MW-1B	PCE	5.0	U	1.0	U	1.0	K	V////		////		360		480		490		590	÷.
141 W - 115	TCE	5.0	U	1.0	U	1.0	K					15		22	i la c	25	da de	44	
MW-2A	PCE	5.0	U	1.0	U	1.5		6.0		3		1	U	23		12		6	·
141 W - 2-A	TCE	5.0	U	1.0	U	1.0	K	1.0	К	25		1	U	6	1	6.7		3	
MW-2B	PCE	5.0	U	1.0	U	5.2	n de la	18		130		100		72		104		72	
M W -2D	TCE	5.0	U	1.0	U	1.2		2.0		25	:	37		27		34	-	23	
MW-3A	PCE	5.0	U	1.0	U	1.0	K	1.0	K	1	K	1	U	1	K	.31	U	1	K
WIW-JA	TCE	5.0	U	1.0	U	1.0	K	1.0	K	1	K	1	U	1	K	.54	U	1	K
MW-3B	PCE	5.0	U	1.0	U	1.0	K	1.0	K			1	U	1	К	.31	U	1	K
	TCE	5.0	U	1.0	U	1.0	K	1.0	K	////		1	U	1	K	.54	U	1	K
MW-3C	PCE	5.0	U	1.0	U	/////												X////	
1VI W-5C	TCE	6.0		5.9												V///		X////	7///
MW-4A	PCE	5.0	U	1.0	U	1.0	K	1.0	K			1	U	1	K	.31	U	1	K
IVI VV -474	TCE	5.0	U	1.0	U	1.0	K	1.0	K		///	1	U	1	К	.54	U	1	K
MW-4B	PCE	5.0	U	1.0	U	1.0	К	1.0	K			1	U	1	K	.31	U	1	K
141 41 -410	TCE	5.0	U	1.0	Ũ	1.0	K	1.0	К			1	U	1	K	.54	U	1	K
MW-5A	PCE	5.0	U	1.0	U	3.1		10		V///		. 5		2		3.2		1	ĸ
MC-W IVI	TCE	5.0	U	1.0	υ	1.0	K	1.0	K	////		1	U	2		.54	U	1	ĸ
MW-5B	PCE	5.0	U	1.0	U	1.0	K	3.0		(////	////	/////		.8		54		47	
DC- W IVI	TCE	5.0	U	1.0	U	1.0	К	1.0	K	(////	////	11/1	////	1		4.7		4	
MW-6A	PCE	12	l	15		1.0	К	5.0		2		2		27		2.0		2	
IVI W -OA	TCE	8	J	9.2		2.7		2.0		1	К	1		2		1.2		1	

			·					Tat	ole 2-2	2									
		SUN	A MA	RY	OF G	ROUN	V DV	VATE	R SA	MPL	E RE	SUL	тs—	PCE	& T(CE			
				_10	<u>rh s</u>	TREE			_									_	
Sample	Analyte					Sa	mple	Series	(see K	ley at	end of	table)), resi	ults in	μ g/L				
Location	Analyte	ISI	CS_	CSZ	CS	CS2	CS	CS:	3CS	CS	5CS	AS	7CS	BS	7CS	<u></u> C	S7CS	DS	7CS
MW-6B	PCE	5.0	U	45		3.2		1.0	K	27		1		2		.93		5	K
	TCE	5.0	U	22		1.7		1.0	K	60		62	:	1		66		81	
MW-6C	PCE	5.0	U	1.0	<u> </u>	1.0	K	1.0	K	¥///	////	1	U	6		.31	<u> </u>	1	K
	TCE	5.0	U	1.0	<u> </u>	1.0	<u> </u>	1.0	<u> </u>	<i>V///</i>	////	1	U	8		.54	<u> </u>	1	K
MW-7A	PCE	5.0	U	1.0	U	1.0	K	1.0	K	V///	444	1	U	1	<u></u>	.31	<u> </u>	1	K
	TCE	5.0	U	1.0	<u>U</u>	1.0	<u></u>	1.0	K			1	<u>U</u>	1	<u></u>	.54	<u> </u>	1	<u></u>
MW-7B	PCE	5.0	U	1.0	U	1.0	<u>K</u>	1.0	K		<u></u>	1	<u>U</u>	1	<u></u> K	.31	<u> </u>	1	K
	TCE	5.0	U	1.0	U	1.0	<u>_ K</u>	1.0	<u> </u>	1	<u></u>	1	U	1	<u>K</u>	.54	<u> </u>		K
MW-8A	PCE	10	· · · ·	3.3		1.2		1.0		1	<u>K</u>	4		1	<u>K</u>	.31	<u> </u>	6	
	TCE	5		1.6		1.3		1.0		1	K	4		1	K	.54	<u> </u>	3	
MW-8B	PCE	5.0	<u>U</u>	1.4		1.0	<u></u>	1.0	<u>K</u>	$\frac{2}{1}$	17		U	1		1.7		1	K
	TCE	5.0	υ	1.0	U	1.0	K	1.0	K	1	ĸ	1		2		1.6		1	
MW-9A	PCE	38		130		5.9		6.0		5		7		6		8.2		10	
	TCE PCE	24 88	1	120 64		12 1.0	ĸ	16 1.0	K	23	J	3 8		26		36 32		52 48	
MW-9B	TCE	44		55		1.0	<u></u>	2.0	<u> </u>	120		23		24		22	·	27	
	PCE	5.0	U	72		1.5	К	1.0	K	120	K	1	U	1	ĸ	.36		1	K
MW-10A	TCE	5.0	<u>U</u>	57		1.0	- <u>K</u>	1.0			K	1	<u>U</u>	$\frac{1}{1}$	K	.30			<u>к</u> К
	PCE	8.0	<u> </u>	1.0	U	1.0	K	2.0	<u></u>	1	K	1	U	1	<u></u> K	.75	<u> </u>	$\frac{1}{1}$	 K
MW-10B	TCE	5.0	U	1.0		8.5	<u></u>	5.0		7	<u> </u>	1	0	$\frac{1}{1}$	<u></u> K	.54	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		K
	PCE	12		9.3		1.5		4.0			К	7////	7777	1		1.3			
MW-11A	TCE	7		4.2		1.0	К	1.0		$\frac{1}{1}$	ĸ				K	.56		$\frac{1}{1}$	K
	PCE	5.0	U	1.0	U	1.0	- <u>K</u>	1.0	К	$\frac{1}{1}$	ĸ	1	<u>////</u> U	$\frac{1}{1}$	K	.30	U	$\frac{1}{1}$	K
MW-11B	TCE	5.0	U	2.7		1.6		2.0		2		2		2		2.1		2	
	PCE	5.0	U	1.0	U	1.0	ĸ	1.0	ĸ	11/1	/////	4		3		2.4		4	
MW-12A	TCE	5.0	U	1.0	U	1.0	- <u>K</u>	1.0	- <u>K</u>			13		8		5.6		15	
	PCE	5.0	U	1.0	U	1.0	ĸ	1.0	<u></u>			1	U		К	.31	U	1	ĸ
MW-12B	TCE	5.0	U	1.0	Ū	1.0	ĸ	1.0	K			3	_ <u>`</u> _	1		.70		$\frac{1}{1}$	ĸ
	PCE	5.0	U	1.0	U	1.0	<u></u>	1.0	ĸ	////		19		18		31		51	
MW-13A	TCE	5.0	U	1.0	U	1.0	ĸ	1.0	ĸ			17		.9		13		16	
	PCE	5.0	U	1.0	U	1.0	ĸ	/////				68		130		94		95	
MW-13B	TCE	5.0	U	1.0	U	1.0	К	/////				10		13		24		36	
	PCE	5.0	U	1.0	υ	1.0	K	1.0	K			1	U	1	K	.31	U	1	K
MW-13C	TCE	14		10		1.0	K	1.0	К	////		4		5.	1 <u>.</u>	2.3		2	
MW 144	PCE	5.0	U	1.0	U	1.0	K	1.0	К	()////	////	160		200	1.1	173		330	
MW-14A	TCE	5.0	U	1.0	υ	1.2		2.0				25	υ	31		46		70	
MW 14D	PCE	5.0	U	1.0	Ū	1.0	K	3.0		16		270		250	-	248		270	
MW-14B	TCE	5.0	U	1.9		4.0		8.0		11		30		58		57		120	
MW-14C	PCE	5.0	U	1.0	U	1.0	K					4		6		15		6	
M W-14C	TCE	5.0	U	1.0	U	1.0	K					1	U	1	K	1.7		1	K
MW-15A	PCE	5.0	U	1.0	U	1.0	K	1.0	К			2		3		2.5		2	
MIN-IJA	TCE	5.0	U	2.6		1.0	K	1.0	K			1	U	1	K	.96		1	
MW-15B	PCE	5.0	U	1.0	Ū	1.0	K					1	U	1	K	.31	U	1	K
	TCE	5.0	U	1.0	U	1.0	K					1	U	1	K	.54	U	1	K
W-1	PCE	5.0	U	1.0	U	1.0	K	1.0	K			1	U	1	ĸ	.55		1	K
	TCE	15		12		4.0		4.0				3		4		4.7		5	
W-2	PCE	5.0	U	1.6		1.0	K	1.0	K	[[[]]]		1	U	1	к	.45		1	K
	TCE	5.0	U	3.5		2.9		4.0				1		1		1.5		2	

-

		SUM	1MA					VATE		2 MPLE RE JMBUS, N	·		CE			
Sample Sample Series (see Key at end of table), results in $\mu g/L$															_	
Location	Analyte	ISICS		CSXCS		CS2	CS2CS		3CS	CS5CS	AS7CS	BS7CS	CS	7CS	DS7CS	
	PCE	5.0	U	1.0	U	1.0	K	1.0	K	V///////		1 K			2	
W-4	TCE	5.0		16		6.9		9.0		V///////	V///////	2	////		4	
W/ O	PCE	6.0	J	3.9		1.0	К	1.0	K	V///////	1 U	1 K	.31	U	1	K
W-8	TCE	5.0	J	7.2		1.0	K	2.0			1 U	1 K	.54	U	1	K
	PCE	5.0	U	1.0	U	1.0		1.0	K		1 U	1 K	.60		1	K
W-11	TCE	10		2.1		6.2		7.0			3	1	2.5		1	
777.10	PCE	5.0	U	1.0	U	1.0	K	1.0	K	///////////////////////////////////////	1 U	1 K	.31	U	1	К
W-12	TCE	5.0	U	1.0	U	1.0	K	1.0	K		1 U	1 K	.54	U	1	K
81 12	PCE	5.0	U	1.0	U	1.0	К	1.0	К		1 U	1 K	.31	U	1	K
W-13	TCE	5.0	U	1.0	U	1.0	K	1.0	К		1 U	1 K	.54	U	1	K
W-14	PCE	5.0	U	1.0	U	1.0	K	1.0	К	///////////////////////////////////////			X/////		V////	
w-14	TCE	5.0	U	1.0	U	1.0	К	1.0	К	V///////			X/////		V///	
	PCE	5.0	U	1.0	U	1.0	К	1.0	K	///////////////////////////////////////			X/////		V////	
W-15	TCE	5.0	U	1.0	U	1.0	K	1.0	к	///////////////////////////////////////			X/////		V////	

KEY:

-

= Results at, or greater than MCL. = Sample not collected.

U = Actual value of sample is less than the measurement detection limit (reported value). K = Actual value of sample is less than value reported. J = Data reported but not valid by approved QC procedures.

Activity Number	Sample Date	Source				
ISICS	September 1990	Sverdrup RI/FS				
CSXCS	June 1991	Sverdrup RI/FS				
CS2CS	July 1993	Sverdrup RI/FS				
C\$3C\$	December 1993	Sverdrup RI/FS				
CS5CS	June 1995	E & E, Site Assessment				
AS7CS	July 1997	E & E, 1997				
BS7CS	October 1997	E & E, 1998				
CS7CS	January 1998	E & E, 1998				
DS7CS	April 1998	E & E. 1998				

2.4 PHYSICAL CHARACTERISTICS

2.4.1 Soils

Soils beneath the site typically form on sandy alluvium or stream terraces. Inavale loamy fine sand has developed in the southern portion of the site. This light gray to grayish brown loamy fine sand has high permeability, low organic content, and low natural fertility. The northeast portion of the site is covered by the light gray to grayish brown Grigston silt loam, which is generally finer grained and less permeable than the Inavale soil (USDA, 1988).

2.4.2 Geology

Platte County geology consists of an unconsolidated mantle of Tertiary and Quaternary clays, silts, sand, and gravels deposited on Cretaceous and Tertiary consolidated bedrock. Bedrock units dip slightly to the northwest. Three separate units comprise the uppermost bedrock throughout Platte County; the Miocene Ogallala Group, and the Niobrara and Carlile Formations of the Colorado Group (Cretaceous Series) (Burchett, 1986). The westernmost portion of the county is underlain by the Ogallala Group, the youngest and least consolidated bedrock unit. It is composed of semiconsolidated sands, and clays. The central portion of the county is underlain by the Niobrara Formation, composed primarily of chalky shale (USDA, 1988). The remaining southeastern one-third of Platte County, including the Columbus area, is underlain by the Carlile Formation, a blue to bluish-grey shale (Ginsberg, 1983).

Regarding the unconsolidated overburden, the northeast portion of Platte County is covered by Pleistocene glacial till, which consists of unstratified and unsorted mixture of gravel, sand, silt, and clay. Elsewhere, Peoria loess, a well-sorted, wind-deposited silt unit, forms the uppermost unconsolidated sediment. Coarser sandy alluvium is found in current and past stream valleys throughout the county, including areas bordering the Loup and Platte Rivers (USDA, 1988).

Site-specific geology consists of unconsolidated Quaternary sediment above consolidated shale of the Carlile Formation. A site-specific geologic/hydrogeologic column is presented in Figure 2-4. Previous research borings near Columbus indicate a thickness of 120 to 170 feet for the unconsolidated sediment (CSD, 1953). Shale was encountered at approximately 140 feet below ground surface (BGS) during drilling of Columbus' municipal well #11 (W-11) (NDWR, 1981).

The unconsolidated material is composed of three layers (upper, middle, and lower) of coarser sand and gravel units interbedded with two layers (upper and lower) of finer clay or silty clay. The upper sand and gravel unit extends to a depth of between 64 and 73 feet BGS. Immediately below lies the upper silty clay unit ranging in thickness from 13 to 18 feet. The middle sand and gravel unit is approximately 25-45 feet thick and overlies the lower clay unit (5-15 feet thick) (Sverdrup, 1993). Beneath this lower clay unit and immediately above the shale bedrock lies the lower, approximately 13-feet thick, coarse sand and gravel unit (NDWR, 1981).

2.4.3 Hydrogeology

Regionally, ground water generally flows southeast across Platte County. Depth to water ranges from over 200 feet BGS in the northwest corner of the county to less than 50 feet BGS in stream valleys throughout the county, including the Loup and Platte River valleys near the southern border of the county. Unconsolidated sand and gravel units serve as the primary source of ground water in the county. The effective saturated thickness of these units ranges from approximately 20 feet in the northern and northwestern portions of the county to over 100 feet near the confluence of the Loup and Platte Rivers (Svoboda, 1958).

Beneath the 10th Street site, the unconsolidated sand and gravel units described in Section 2.4.2 serve as the source of ground water supply for the city of Columbus. The upper sand and gravel unit hosts the water table (approximately 15 feet BGS) and acts as an unconfined aquifer. Thirty monitoring wells, constructed as part of the 1993 RI (Sverdrup, 1993), are screened in this unconfined aquifer. Fifteen monitoring wells are screened across the water table (A series wells) while the remaining fifteen draw ground water from immediately above the upper silty clay unit (B series wells). An additional four monitoring wells are screened in the middle confined sand and gravel unit (C series wells). No monitoring wells penetrate the lower sand and gravel unit. Seven municipal

wells draw water from the saturated sand and gravel units beneath the site, primarily from the middle and lower sand and gravel units.

Though regional ground water flow is to the southeast, ground water flow near the site is affected by pumping of the municipal wells (11.1 million gallons per day [Sverdrup, 1993]). Sverdrup (1993) calculated an average hydraulic gradient of 0.002 (0.2 % slope) toward the municipal wells. Water levels recorded during the quarterly samplings reflect this influence of municipal well pumping on the regional ground water flow direction. The influence appears to result in a ground water divide located approximately between 21st and 24th Avenues and oriented roughly north-south. To the east of this divide, ground water appears to flow to the south-southeast. However, west of the divide, ground water flow is westerly towards the municipal wells. Figure 2-5 presents a representative water level contour map derived from measurements taken from the A series wells during the fourth quarterly sampling event.

Two previous pumping tests yielded hydraulic conductivity estimates of 1,740 and 2,350 gallons/min/square foot for the upper and middle sand and gravel units, respectively (Sverdrup, 1993). Based on the behavior of water levels in monitoring wells screened in both the upper and middle sand and gravel units, Sverdrup (1993) concluded that these two units are not directly hydraulically connected. However, recent analytical data indicates minor contamination of the middle unit.

2.4.4 Hydrology

Surface drainage at this site is generally from north to south toward the Loup River. Due to the developed nature of the site area, most surface drainage is intercepted by storm water sewers and discharged directly into the Loup River. The confluence of the Loup and Platte Rivers lies approximately 3 miles southeast of the site. No volatile organics have been detected in surface water during previous samplings (Sverdrup, 1993).

2-11

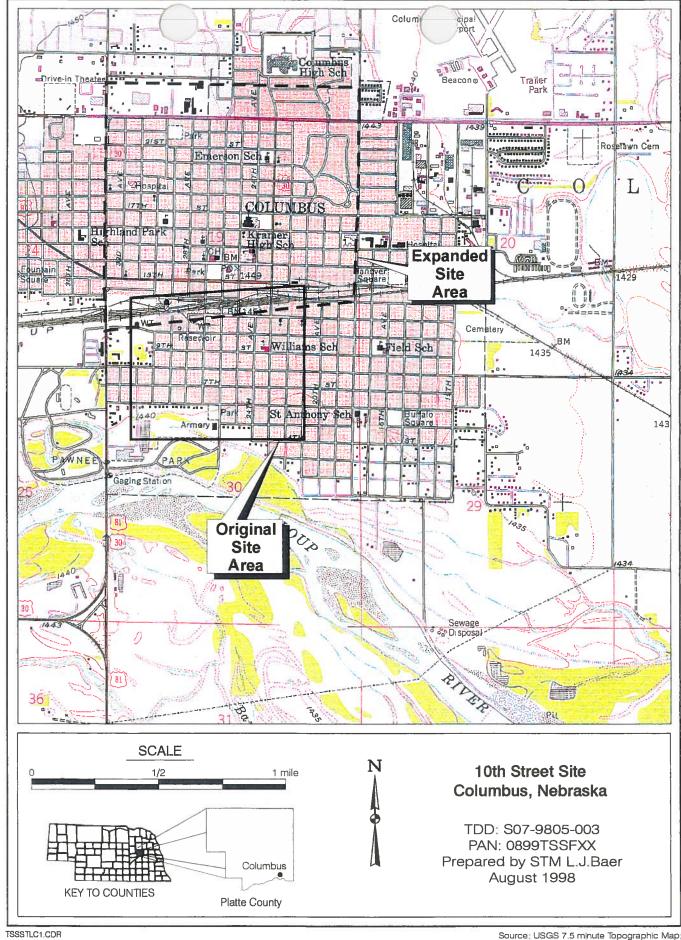
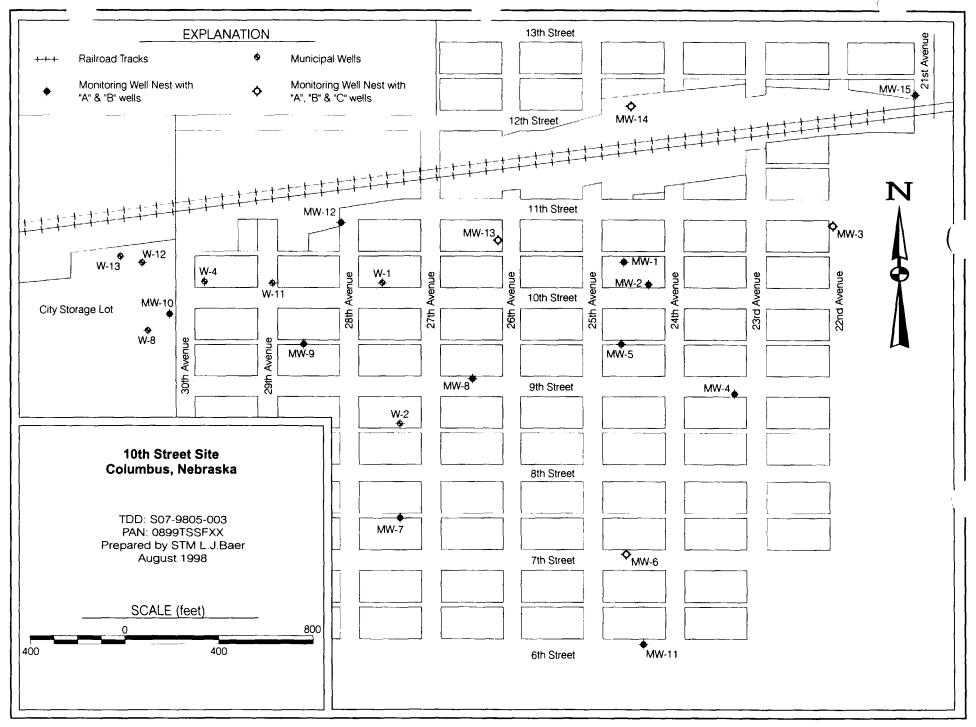



Figure 2-1: SITE LOCATION MAP

Source: USGS 7.5 minute Topographic Map; Columbus, Nebr., 1958, photorevised 1976.

TSSWELS2.CDR

Figure 2-2: CURRENT MONITORING WELL NETWORK

Source: Sverdrup RI/FS Report, 1992.

MONITORING WELLS - 4th QUARTER

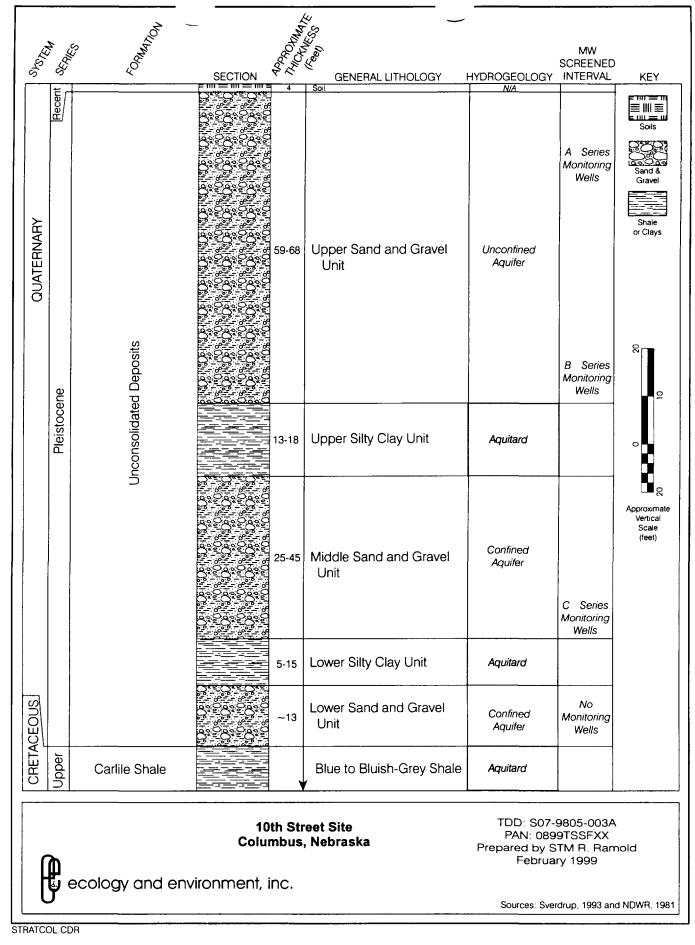
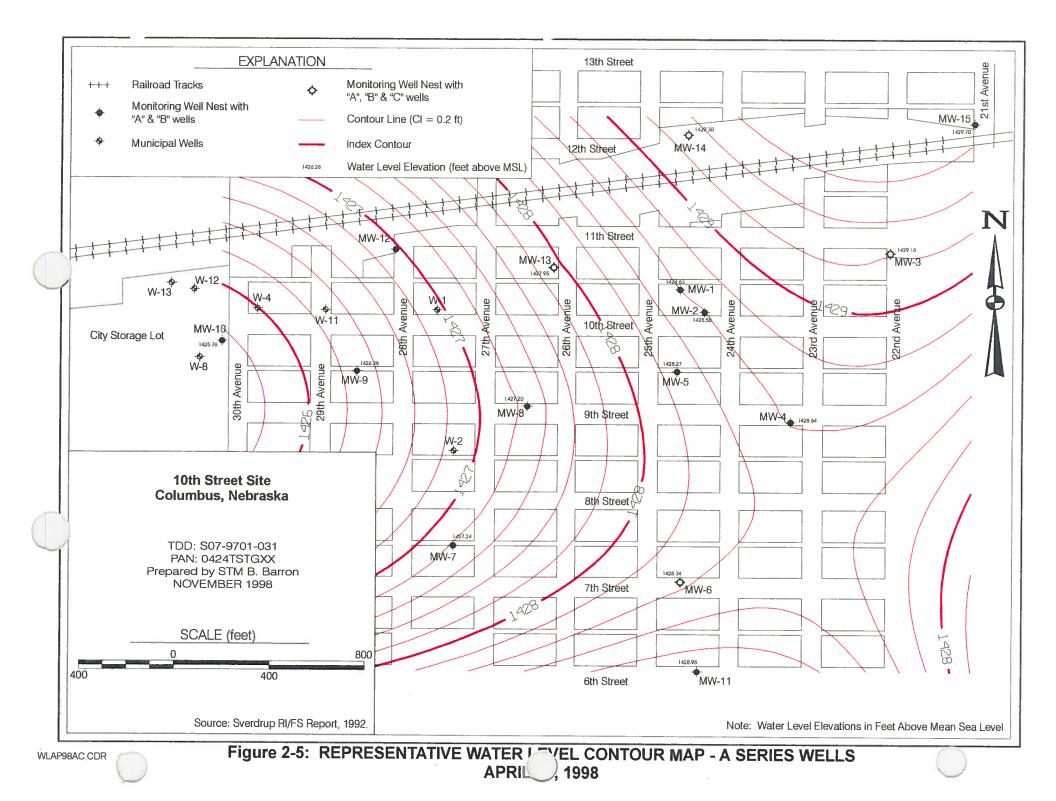



Figure 2-4: LOCAL GEOLOGIC/HYDROGEOLOGIC COLUMN

3.0 FIELD ACTIVITIES

The primary objectives of this assessment, as mutually determined by EPA and START project managers, included the following items:

- Comparison of analytical results from Geoprobe[™] temporary monitoring wells with those from nearby permanent monitoring wells.
- Identification of the source(s) of ground water contamination in the shallow aquifer in the area north of the original 10th Street site area and near several potential sources that have been identified; new sources may also be discovered.
- Delineation of the extent and direction of migration of the contaminated ground water plume in the shallow aquifer.

To achieve these objectives, a ground water screening approach was implemented at the 10th Street site. Following a grid of sampling points, START collected ground water samples from immediately below the water table using direct push (Geoprobe™) technology. Samples were analyzed on-site for target VOCs in the START Mobile Laboratory. A report of activities and analytical results from the START Mobile Laboratory is included as Appendix B. Further sampling point locations were continuously determined as analytical results from previous points became available. After identifying the property from which VOC contamination appears to be originating, START proceeded with soil sampling in order to document the property as a source. These samples were also analyzed for target VOCs in the START Mobile Laboratory. Selected ground water samples and all soil samples were also sent to the EPA Region 7 Laboratory. These ground water samples were analyzed for both VOC and dissolved arsenic analysis; the soil samples were analyzed for VOCs. Analytical results from both the START Mobile Laboratory and the EPA Region 7 Laboratory indicate that VOC-contaminated ground water appears to be originating from a dry cleaning business at 23rd Street and 25th Avenue. This contaminated ground water has entered the area of the current monitoring well network and appears to be flowing toward the municipal wells.

3.1 POTENTIAL SOURCES INVESTIGATED

As described in the previous section, several areas have been proposed as potential sources of ground water contamination. These include those within the area of the current monitoring well network (Liberty Cleaners, Village Wash House, Jackson Cleaners, and Miller Radiator and Machine Shop). However, recent quarterly sampling indicates that at least a portion of the contamination appears to be originating to the north of the current monitoring well network. Therefore, this investigation concentrated on potential sources located

in that area. These included those former or current dry cleaning businesses listed in Table 2-1 that are not located within the area of the current monitoring well network. In addition, Union Pacific property and Dale Electronics were considered potential sources. Union Pacific Railroad Company at one time had a roundhouse, and several maintenance buildings in Columbus. It is possible that the railroad used TCE or PCE as a degreasing agent in maintenance operations. Shipping records indicate that Dale Electronics received 199 gallons of PCE in 1981, with no record of waste pickup (E & E, 1998e). All potential sources investigated during this assessment are located on Figure 3-1.

3.2 GROUND WATER CHARACTERIZATION

Previously, ground water analytical contaminant concentrations were based on samples taken from permanent monitoring wells using dedicated bladder pumps. In order to compare these results with those obtained from the temporary Geoprobe[™] wells, four collocated triplets of ground water samples were analyzed for target VOCs (PCE, TCE, cis-DCE, and trans-DCE) by the START Mobile Laboratory. START sampled monitoring wells MW1-A, MW-12A, MW-13A, and MW-14A, which have previously shown TCE or PCE over a range of concentrations. Using the existing dedicated bladder pumps, START implemented the same low-flow monitoring well sampling method used during the quarterly sampling events. In addition, Geoprobe[™] ground water samples were collected using both a peristaltic pump and a foot valve. The analytical results provided an estimate of the relative differences in detected concentrations resulting from the three sampling methods. Samples from the monitoring wells consistently provided a higher concentration of volatiles than either of the Geoprobe[™] samples. Of the two Geoprobe[™] sampling methods, peristaltic pump sampling consistently provided samples with higher concentrations than foot valve sampling. For this reason, START utilized peristaltic pump sampling for the remaining Geoprobe[™] ground water sampling locations.

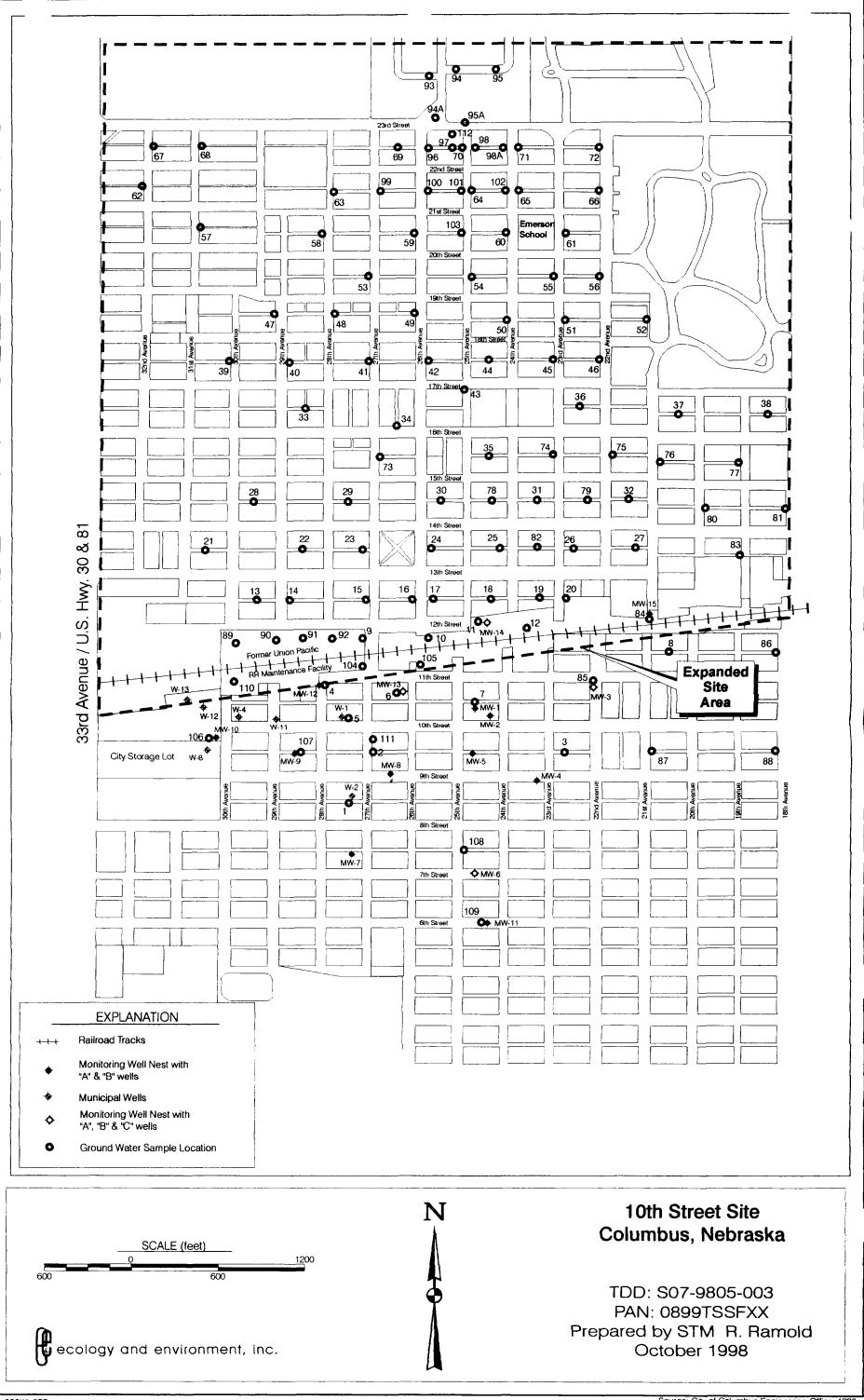
After this brief comparative study, START began collecting Geoprobe[™] ground water samples according to a grid of proposed sampling points. The initial grid spacing was approximately 800 feet. However, sampling point locations were occasionally adjusted both to better identify any contamination from the potential sources and to accommodate subsurface utility lines. Most ground water sampling locations were placed on city property (alleys, city parking lots, city street right-of-way property) in order to consolidate sampling access efforts. Sampling grid spacing was then reduced as contaminated ground water samples were found in order to more fully delineate contaminated ground water and to identify the source of contamination. Figure 3-2 presents the locations of all Geoprobe[™] ground water sampling locations. All Geoprobe[™] ground water samples were taken from immediately below the water table. At each location START collected samples for target VOC analysis in the START Mobile Laboratory (see Appendix A, photograph 1). In addition, samples were taken for possible submission to the EPA Region 7 Laboratory for LDL (low detection limit) VOC analysis. At a selected number of regularly spaced sampling locations, START also collected samples for possible submission to the EPA Region 7 Laboratory for dissolved arsenic analysis. Analytical results from both the START Mobile Laboratory and the EPA Region 7 Laboratory are presented and discussed in section 4.0.

Ground water sampling was performed by two Geoprobe[™] teams. After driving the ground water sampler to a depth immediately below the water table, START recorded the water level and began purging the temporary well using a peristaltic pump and disposable polyethylene tubing. START later combined the water level measurements with surveyed ground elevations at sampling points to obtain a water table elevation contour map. Purging was performed primarily to reduce the level of particulates in the samples. Following purging, START measured several indicator parameters (pH, temperature, conductivity, turbidity) of the discharge and collected all required samples. Sampling particulars were recorded on data sheets and are summarized in Appendix C: Table C-1. All Geoprobe[™] boreholes were filled with bentonite following sample collection.

All Geoprobe[™] equipment that came into contact with ground water during sampling was decontaminated before reuse. Decontamination consisted of a washing with a high pressure steam sprayer followed by drying and heating with a propane torch. Decontamination supply water was supplied by the city of Columbus. START collected a sample of the decontamination supply water upon delivery. No target VOCs were detected by the START Mobile Laboratory in this sample. Daily rinsate samples were taken by pouring distilled water through a decontaminated Geoprobe[™] ground water sampling device. No target VOCs were detected by the START Mobile Laboratory in any of the daily rinsate samples. START also submitted a water trip blank, a water field blank, and a ground water sampling apparatus rinsate blank to the EPA Region 7 Laboratory for LDL VOC analysis. Post-decontamination water and purge water from the Geoprobe[™] temporary wells was treated with a charcoal filter before release to the surface (see Appendix A, photograph 2).

In addition to the temporary and permanent monitoring well samples, samples were to be taken from two domestic wells located on the south side of 10th Street between 29th and 30th Avenues. These wells have previously been sampled for VOCs by the city of Columbus. Both TCE and PCE were detected below their respective MCLs; however, no arsenic analysis was performed. Because arsenic has been detected above its MCL of 50 μ g/L in several monitoring well samples, START was tasked to sample the two domestic wells and submit them to the Region 7 EPA Laboratory for total arsenic analysis. The primary purpose of this action is health concern for the residents who use these domestic wells. START was able to obtain

a sample from one of the wells belonging to Roger Hanak (2917 10th Street). However, Mrs. Delbert Greenlee (2909 10th Street) refused sampling access.


3.3 SOIL CHARACTERIZATION

These purpose of soil sampling was to verify the presence of volatile organic contamination in the subsurface soil at suspected sources and to identify the depth of primary contamination. GeoprobeTM soil sampling locations were based on the results of the ground water sampling, which indicated that shallow ground water contamination was originating from One Hour Martinizing, a dry cleaning business located on the southwest corner of the intersection of 23rd Street and 25th Avenue. The property was completely covered with either concrete or asphalt. Near-surface soil samples (1-3 feet) and subsurface soil samples (6-8 feet) were taken from 7 locations on or near the suspected source property (see Appendix A, photographs 5 and 6). A background soil sample was taken north of the suspected source property from the 1-3 foot depth interval. Soil samples were collected using a soil sampling tube (2-foot length and 1-inch inside diameter with a disposable inner acetate soil sampling sleeve). Specific sampling information was recorded and are reproduced in Appendix C: Table C-2. Both soil and ground water sampling locations in the vicinity of One Hour Martinizing are identified in Figure 3-3.

All soil samples were screened for the target VOCs at the START Mobile Laboratory. In addition, START collected and submitted soil samples for VOC analysis at the EPA Region 7 Laboratory. A soil trip blank was obtained from, and returned to, the EPA Region 7 Laboratory for VOC analysis. In addition, START submitted a rinsate sample (water) from a decontaminated Geoprobe[™] soil sampling apparatus to the EPA laboratory for LDL VOC analysis. Soil analytical results from both the START Mobile Laboratory and the EPA Region 7 Laboratory are presented and discussed in section 4.0.

Figure 3-1: STUDY AREA MAP

GPGWL.CDR

Source: City of Columbus Engineering Office, 1998.

Figure 3-2: GEOPROBE GROUND WATER SAMPLING LOCATION MAP

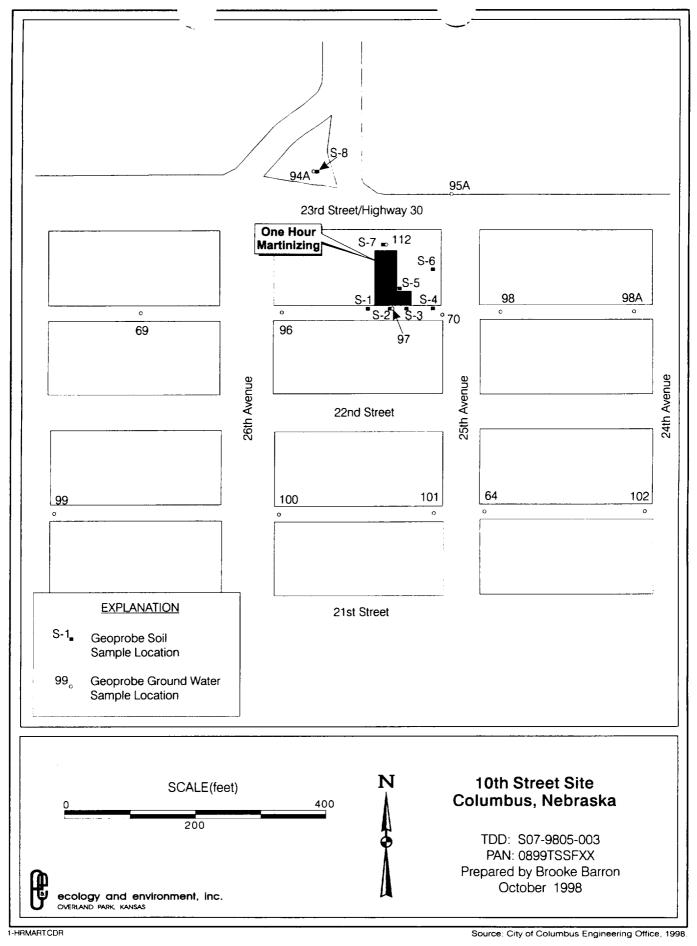


Figure 3-3: GEOPROBE SOIL AND GROUND WATER SAMPLE LOCATIONS IN VICINITY OF ONE HOUR MARTINIZING

4.0 RESULTS

4.1 WATER LEVELS

As previously discussed, START measured and recorded water levels in the Geoprobe[™] temporary monitoring wells. Coupled with surveyed sampling location elevations, this data provided an indicator of shallow ground water flow direction. Forty-eight of the original 115 sampling points were chosen for elevation surveying based on the following criteria:

- Turbidity of ground water sample.
- Location.
- Adequacy of ground water level data.

The level of turbidity was chosen based on an assumed relationship between low turbidity discharge water and a high rate of hydraulic equilibration between the aquifer and the temporary well. Table 4-1 provides a record of the utilized water level data.

	Tab	le 4-1								
GEOPROBE™ GROUND WATER LEVELS 10TH STREET SITE—COLUMBUS, NEBRASKA										
Geoprobe™ Ground Water Sampling Location	Depth to Water (feet BGS)	Surface Elevation (ft. above MSL)	Ground Water Elevation (ft. above MSL)							
1	18.6	1440.61	1422.0							
3	17.7	1445.38	1427.7							
4	15.5	1442.94	1427.4							
5	18.5	1440.21	1421.7							
6	16.9	1445.16	1428.3							
8	16.0	1444.38	1428.4							
9	18.5	1446.37	1427.9							
10	15.2	1446.24	1431.0							
15	20.1	1447.71	1427.6							
17	16.7	1446.45	1429.8							
18	17.3	1446.88	1429.6							
19	17.3	1445.87	1428.6							
21	17.9	1448.16	1430.3							
22	19.9	1447.65	1427.8							
23	19.7	1446.93	1427.2							
24	17.0	1446.26	1429.3							
28	18.7	1447.72	1429.0							
29	18.8	1447.63	1428.8							
39	16.9	1446.47	1429.6							
40	14.6	1445.79	1431.2							
42	14.4	1445.25	1430.9							
43	13.2	1444.48	1431.3							
46	13.1	1443.98	1430.9							
53	12.5	1445.19	1432.7							

	Tab	le 4-1	
		IND WATER LEV COLUMBUS, NEB	
Geoprobe™ Ground Water Sampling Location	Depth to Water (feet BGS)	Surface Elevation (ft. above MSL)	Ground Water Elevation (ft. above MSL)
54	15.5	1444.76	1429.3
57	13.6	1446.53	1432.9
61	11.8	1444.09	1432.3
62	13.3	1447.12	1433.8
63	12.7	1444.95	1432.3
64	11.8	1444.51	1432.7
65	11.6	1444.25	1432.7
66	11.3	1443.82	1432.5
67	13.7	1447.46	1433.8
68	12.8	1446.77	1434.0
69	12.5	1445.50	1433.0
73	15.9	1445.58	1429.7
74	14.2	1444.16	1430.0
75	13.4	1443.40	1430.0
76	12.4	1443.13	1430.7
78	16.2	1446.22	1430.0
85	14.5	1443.65	1429.2
86	14.5	1442.88	1428.4
93	10.3	1443.23	1432.9
95A	13.2	1444.90	1431.7
99	11.2	1444.70	1433.5
103	11.8	1444.49	1432.7
106	18.5	1442.05	1423.6
110	18.5	1442.52	1424.0
Minimum	10.3	1440.21	1421.8
Maximum	20.1	1448.16	1434.0
Range		7.95	12.2

It should be noted that temporary ground water monitoring wells may not provide water level data of the same accuracy and precision as that from permanent monitoring wells. However, ground water elevations resulting from this exercise should provide at least an approximate estimate of the shallow ground water flow direction.

A contour map of the shallow ground water elevations (Figure 4-1) indicates a general southeasterly flow direction. However, municipal well pumping appears to be diverting shallow ground water toward the well field to the southwest. Water level elevations at most locations were consistent and logical. There were some locations (e.g., locations 10, 21, 39, and 54), however, where temporary well water levels were probably not in equilibrium with the shallow aquifer.

4.2 ANALYTICAL RESULTS

Throughout the project the START Mobile Laboratory analyzed ground water samples from 115 locations. Of these, 35 samples were submitted to EPA Region 7 Laboratory for LDL VOC analysis; 28 were submitted for dissolved arsenic analysis. One additional sample from a private well was submitted for total arsenic analysis. The on-site screening analysis by the START Mobile Laboratory indicated that shallow ground water contamination originates from an area immediately south of 23rd Street between 24th and 25th Avenues and extends south to the northern portion of the current monitoring well network. The apparent origin of ground water contamination is currently the site of a dry cleaning operation, One Hour Martinizing (see Attachment A, photographs 10, 11, and 12). Fifteen soil samples were taken from 8 sampling locations either on or near the One Hour Martinizing property. The START Mobile Laboratory analyzed all of the soil samples for target VOCs. All soil samples were also submitted to the EPA Region 7 Laboratory for full-suite VOC analysis. Though no statistical comparison of results from the START Mobile Laboratory and the EPA Region 7 Laboratory has been performed, there appears to be close agreement between the two.

No target VOCs were detected in the water field blank, the water trip blank, the soil trip blank, or either of the two rinsate blanks submitted to the EPA Region 7 Laboratory. As discussed previously, no target VOCs were detected in any of the daily rinsate blanks submitted to the START Mobile Laboratory.

Analytical results for ground water VOC analysis from both the START Mobile Laboratory and the EPA Region 7 Laboratory are presented in Table 4-2. This same information is represented on the site maps in Figures 4-2 through 4-5. VOC data is plotted as symbols representing order of magnitude differences in concentration. A single contour line, representing the limits of PCE and TCE contamination greater than 5 μ g/L, is also plotted in Figures 4-2 and 4-3. Complete analytical data packages for both the START Mobile Laboratory and the EPA Region 7 Laboratory are included as Appendices B and D, respectively.

With some exceptions, Figures 4-2 through 4-5 indicate a shallow, VOC-contaminated ground water plume characterized by generally increasing concentrations towards the apparent source. Both PCE and TCE concentrations decrease to near non-detect concentrations upgradient of the apparent source. Close to the source, the shallow contamination appears to be following the regional flow direction of south-southeast. However, the contamination appears to change direction as it moves south, apparently in response to pumping from the municipal wells. This change in flow direction is consistent with potentiometric maps calculated

from water levels in both permanent monitoring wells (Sverdrup, 1993; E&E, 1998f) and the Geoprobe[™] temporary monitoring wells used in this investigation (Figure 4-1).

							Ta	ble -	4-2					
		voc										R SAMPLE	S	
				10TI	H STRI					5, NEBRA	SK A	k		
	l		TART I		eculte (<u>-v</u>	<u>ctober 19</u>			ion 7 Results	(ug/L)	
Geoprobe™ Sample Location	trans-1,2				TC		PCE	 C	EPA Sample #			cis-1,2- DCE	T	РСЕ
			<u> </u>	يعددانك	<u> </u>				PSICS-	A				
1	5.0	U		U			1.0		<u> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</u>					
2	5.0	<u> </u>	12.9		92.6	J	10.8	J	042	5.9		15	73	12
3	5.0	U	5.0	<u> </u>	1.0	U	1.0	-		¥//////	44			
4	5.0	<u> </u>	5.0	<u>U</u>	23.6		1.0	<u> </u>	<i>\////////////////////////////////////</i>	X////////	444		X///////	¥//////
5	5.0	<u> </u>	5.0	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	2.1		1.0	U	///////	X///////	444			
6	5.0	U	5.0	<u> </u>	7.6		9.1				444			
7 8	5.0		5.0 5.0	<u>U</u> U	5.8	1	5.8			X/////////////////////////////////////	444		X///////	
8 9	5.0	U	5.0	<u> </u>	1.1 85.2		1.0 8.4	U	003	0.84	//// U	4	83	7.1
10	5.0	U U	5.0	<u> </u>	38.4		10.8			V.04				
10	5.0	U	5.0	U	65.9		75.1				/////		X/////////////////////////////////////	
11	5.0	U	5.0	<u></u>	22.3		35.1		019	0.84	<u>////</u> U	1.1	25	41
12	5.0	U	5.0	U	1.0	U	1.0	U		×/////////////////////////////////////	\overline{m}			
13	5.0	<u>บ</u>	9.8		1.0		1.0		009	6.9		8.7	1	0.31
15	5.0	U	5.0	U	2.1		1.0	U		V///////				0//////
16	5.0	U	5.0	U	44.9		2.5	-						
17	7.9		14.2		42.8		3.9		020	7.7	1111	16	44	3
18	5.0	U	5.0	U	16.1		50.2		023	0.84	U	1.9	19	51
19	5.0	IJ	5.0	IJ	8.5	J	10.9	J			7777			
20	5.0	U	5.0	U	13.0		14.9		018	0.84	U	1	11	10
21	5.0	U	5.0	U	1.0	U	1.0	U		////////	7///			
22	5.0	U	9.6		4.3		1.0	U						
23	5.0	U	5.0	U	1.0	U	1.0	U						
24	5.0	U	5.0	U	165.6		116.1		022	1.2		8	160	130
25	5.0	U	5.0	U	113.7		8.3	1.15	1//////////////////////////////////////	///////			V//////	
26	5.0	U	5.0	U	11.6		79.2							
27	5.0	U	5.0	Ŭ	6.4		8.1			V///////				
28	5.0	U	5.0	U	1.9		1.0	U		V///////				
29	5.0	U	5.0	U	1.0	U	1.0	U		V///////				
30	6.1		5.0	U	250.4		260.1		004	0.93		7.5	270	260
31	5.0	U	5.0	U	87.1		2.5		001	0.84	U	3.5	84	3.5
32	5.0	U	5.0	U	29.4	F E	52.1		021	0.84	U	1.5	37	51
33	5.2		10.0		1.1		1.0	U						
34	5.0	U	5.0	U	1.0	U	1.0	U	002	0.81	U	0.84 U		0.31
35	5.0	U	5.0	U	265.9		41.9	1,131	017	0.84	U	6.8	260	48
36	9.3		38.1		194.3		1.0	U	024	19		37	170	0.31
37	5.0	<u> </u>	5.0	<u> </u>	1.0	U	1.0	U		<i>\////////////////////////////////////</i>				
38	5.0	U	5.0	U	1.0	U	1.0	U					<i>\///////</i>	
39	5.0	U	5.0	UJ	1.0	UJ	1.0							
40 41	<u> </u>	ບ	10.0 5.0	ເປ	1.0	ບ ເປ	1.0	U			///		V//////	

							Ta	ble	4-2					
		voo	CANAI									R SAMPLI	ES	
				10TI	H STRI				LUMBUS ctober 19	-	ASKA	X		
		S	TART	ML R	esults (#						A Reg	ion 7 Result	s (μg/L)	
Geoprobe™ Sample Location	trans-1,2	-DCE	cis-1,2-	DCE	тс	 E	PCE	 C		trans-1,2	DCE	cis-1,2- DC	E TCE	PCE
42	5.0	ប	5.0	UJ	1.0	IJ	1.0	IJ	PS1CS-		/////		X/////	X///////
43	12.5	J	5.0	UJ	219.1	J	1,346	J	043	1.3		18	280	940
44	5.0	IJ	5.0	IJ	605.2	J	179.7	J	///////////////////////////////////////	V//////	////		X//////	X///////
45	5.0	UJ	42.3	J	186.8	J	1.0	UJ					X//////	X//////
46	8.7	1	47.0	J	405.3	J	1.0	UJ	027	14	_	42	470	0.31
47	6.7	J	5.7	J	1.0	IJ	1.0	UJ	V//////				X//////	X//////
48	5.0	IJ	5.0	UJ	1.0	UJ	1.0	UJ	V//////	V///////		<i>\////////////////////////////////////</i>	X//////	X//////
49	5.0	U	5.0	UJ	1.0	ບ	1.0	UJ	V///////	V///////			8//////	X//////
50	5.0	UJ	5.0	UJ	80.4	J	15.5	J	V///////	V//////			X//////	X//////
51	14.6	J	53.8	J	411.2		1.0	UJ					X//////	X//////
52	5.0	1	5.0	IJ	1.0	UJ	1.0	ັບ					X//////	X//////
53	5.0	U	5.0	U	1.0	U	1.0	U					X//////	X///////
54	5.0	U	5.0	U	22.1		751.0		045	0.84	U	14	22	840
55	5.0	U	43.4		1,672	J	49.8						X//////	X//////
56	5.0	បរ	5.0	ບເ	1.0	UJ	1.0	UJ	044	0.84	U	0.84 1	J 0.54 U	0.31
57	5.0	U	5.0	U	1.0	U	1.0	U					X//////	<u>X//////</u>
58	5.0	U	5.0	U	1.0	_ <u>U</u>	1.0	U	<u> </u>				X//////	<u>X//////</u>
59	5.0	U	5.0	U	1.0	<u> </u>	1.0	U	mmm				<u>X////////////////////////////////////</u>	X////////
60	5.0	U	66.6		602.2	<u> </u>	244.1	J	026	2.8		58	380	220
61	5.0	U	5.0	<u>U</u>	1.0	<u> </u>	1.0	U			44			X//////
62	5.0	<u>U</u>	5.0	<u>U</u>	1.0	<u>U</u>	1.0	U			44		X//////	X//////
63	5.0	<u>UJ</u>	5.0	បរ	1.0	UJ	1.0	UJ					X//////	<u>X///////</u>
64	5.0	<u>U</u>	8.7		194.9	J	21.4		046	1.4		13	160	25
65	5.0	<u> </u>	5.0	U	9.1		16.3		047	0.84	U	1.5	13	23
66	5.0	U	5.0	U	1.0	<u> </u>	1.0	U					X//////	
67	5.0	U	5.0	<u>U</u>	1.1		1.0	UJ			/////			
<u>68</u> 69	5.0	យ យ	<u>5.0</u> 5.0	נט נט	2.9	1 1	1.0 1.0	UJ L	048	4.9		4.1	3.2	0.91
70	5.0		107.3		512.9		29,240	J	028	16		150	380	29,000
71	5.0	U	5.0	U	1.0	U	1.0	U	028				X///////	29,000
72	5.0	U U	5.0	<u> </u>	1.0	U U	1.0	U					XIIIII	
73	5.0	U	5.0	- <u></u>	1.0	U	1.0	U					XIIIII	
74	5.0	U	5.0	U	50.0	, iii	2.3	-					X/////////////////////////////////////	X/////////////////////////////////////
75	5.0	Ū	5.0		41.7		57.6						X///////	X/////////////////////////////////////
76	5.0		5.0	U	12.1		9.2				////		X/////////////////////////////////////	¥/////////////////////////////////////
77	5.0	Ū	5.0	U	1.0	U	1.0	U			////		X//////	
78	5.0	Ū	5.0	U	174.2	-	1.0	U					X///////	
79	5.0	Ū	5.0	Ū	12.6	_	22.6				////		X///////	¥////////
80	5.0	U	5.0	U	20.2		2.3				////		X/////////////////////////////////////	¥////////
81	5.0	U	5.0	U	1.0	U	1.0	U					X///////	X///////
82	5.0	Ū	5.0	U	11.2		23.6						X/////////////////////////////////////	¥/////////////////////////////////////
83	5.0	U	5.0	Ū	7.5		1.0	U					X/////////////////////////////////////	X////////
84	5.0	U	5.0	U	1.0	U	1.0	U					X///////	
85	5.0	U	5.0	Ū	1.0	U	1.0	Ū					X///////	X////////
86	5.0	U	5.0	Ū	1.0	U	1.0	Ū			////		X///////	¥/////////////////////////////////////
87	5.0	U	5.0	Ū	1.0	U	1.0	Ū	///////	11/////////////////////////////////////	////		X////////	X////////

-

							Ta	ble	4-2								
Table 4-2 VOC ANALYTICAL DATA SUMMARY—GROUND WATER SAMPLES 10TH STREET SITE—COLUMBUS, NEBRASKA																	
10TH STREET SITE—COLUMBUS, NEBRASKA September—October 1998 Geoprobe™ START ML Results (µg/L)																	
					-	Ser	otember-	-0	ctober 19	<u>98</u>					_		_
START ML Results (µg/L)						EPA Region 7 Results (µg/L)											
Sample Location	trans-1,2	-DCE	cis-1,2-	DCE	тсі	2	РСЕ	;	EPA Sample # PS1CS-	trans-1,2-	DCE	cis-1,2- I	DCE	тс	E	PCF	2
88	5.0	U	5.0	U	1.0	U	1.0	U	///////	X/////////////////////////////////////		V//////		V///		X//////	7
89	5.0	IJ	5.0	UJ	1.2	J	1.0	UJ	V//////	X///////		//////		V///		X/////	7
90	5.0	U	5.3		1.0	U	1.0	U		X///////				V///		X/////	\mathbb{Z}
91	5.0	UJ	5.0	UJ	1.0	UJ	1.0	UJ	V//////	X///////		V//////		V///		<i>\/////</i>	
92	5.0	U	5.0	U	1.0	U	1.0	U	V///////			V//////	111	V///		¥/////	\mathbb{Z}
93	5.0	U	5.0	U	1.0	U	1.0	U	V//////					V///		X/////	Į
94	5.0	U	5.0	U	1.0	U	1.0	U	V//////			//////		V////		X/////	Ż
94 A	5.0	U	5.0	U	1.0	U	1.0	U	056	0.84	U	0.84	U	0.54	U	1.2	
95	5.0	U	5.0	U	1.0	U	1.0	U	///////	///////////////////////////////////////	////	///////		V////	\square	<i>\//////</i>	$\overline{/}$
95 A	5.0	U	5.0	U	1.0	U	1.0	U	057	0.84	U	0.84	U	0.54	U	0.31	
96	5.0	U	5.0	U	7.3		4.5		049	0.84	U	0.84	U	6.4	· .	5.2	1
97	500.0	U	500.0	U	112.4		4,430		050	4.5		37		86		5,100)
98	5.0	U	14.1		99.3		1,495		051	0.84	U	26		98		1,100	
98 A	5.0	U	5.0	U	2.6		65.6	100	058	0.84	Û	0.84	U	2.1		48	
99	5.0	U	5.0	U	1.0	U	1.0	U	///////////////////////////////////////	V///////				////	///	<i>V//////</i>	7
100	5.0	U	5.0	U	1.0	U	1.0	U	052	0.84	U	0.84	U	0.54	U	0.31	
101	5.0	U	11.0		47.6		4.9		053	1.4		5.8		42		6.1	
102	5.0	U	5.0	U	17.3		9.8		054	0.84	U	4.1		17		12	
103	5.0	U	5.0	U	1.0	U	3.4		055	0.84	U	0.84	U	0.54	U	6.8	
104	5.0	U	9.7		55.1		1.0	U	///////////////////////////////////////	///////////////////////////////////////		///////		////	///	<i>V//////</i>	7
105	5.0	U	5.0	U	7.8		17.1	1									1
106	5.0	U	5.0	U	1.0	U	1.0	U							///	<i>\//////</i>	7
107	5.0	U	5.0	U	14.2		6.6			V///////	11/1		1///	////	111	<i>\//////</i>	1
108	5.0	U	5.0	U	1.0	U	1.2			V///////	////	1//////	////	/////	///	<i>\////////////////////////////////////</i>	1
109	5.0	U	5.0	U	1.0	U	1.0	U		V///////	////		////			<i>V//////</i>	1
110	5.0	U	5.0	U	1.0	U	1.0	U		///////////////////////////////////////	////					V/////	1
111	7.6		9.2		39.6	16 J.	5.9		062	7.1		8.9		23		5.7	
112	41.5		579.8	E	548.1	J	115,100	J	064	32		520		220		120,000	
		0	A/OC Sa	mple													-
Field Blank									059F	0.84	U	0.84	U	0.54	U	0.31	
			Trip Bla	nk					060F	0.84	U	0.84	U	0.54	U	0.31	
1	Rinsate of Ground Water Sampling Apparatus									0.84	U	0.84	U	0.54	U	0.31	i
	Rinsate of Soil Sampling Apparatus									0.84	U	0.84	U	0.54	U	0.31	1

KEY: = Results at, or greater than MCL.

= Sample not collected.

U = Actual value of sample is less than the measurement detection limit (reported value).

K = Actual value of sample is less than value reported.

J = Data reported but not valid by approved QC procedures.

E = Data estimated because sample concentrations exceeded calibration range (START Mobile Laboratory).

There are some exceptions to the general trends noted above. For example, plotted PCE concentrations do not appear to form a continuous zone of contamination down gradient from the apparent source. This is partially due to the arbitrary choice of the 5 μ g/L MCL concentration as the limit of contamination boundary. It may also be due to differences in solubility between TCE and PCE or possibly due to zones of preferential

recharge or preferential flow within the alluvial aquifer. It is also important to note that during this investigation, all Geoprobe^m temporary ground water monitoring wells drew water from immediately below the water table. Therefore, the resulting description of contaminant distribution is limited to this single shallow zone. In addition, though Geoprobe^m monitoring wells allow for the rapid collection of a large number of ground water samples, they are not ideal for collection of VOC analytical data. This theory is supported by the initial comparison study which showed that permanent monitoring wells, equipped with dedicated bladder pumps, provide samples of consistently higher concentration than the temporary monitoring wells.

Though the concentration of the target VOCs returns to nearly non-detect upgradient of the suspected source, typical petroleum hydrocarbon contaminants (benzene, toluene, ethylbenzene, and xylene) were detected at elevated concentrations at location 95A. Low-level concentrations (usually $< 1 \mu g/L$) of these same contaminants were detected in samples from locations both immediately south of 95A (locations 70, 97, 98, and 112) and throughout the investigated area (locations 2, 14, 18, 20, 24, 30, 35, 46, 60, and 111). Several leaking underground storage tank (LUST) sites have been identified in the investigated area by the Nebraska Department of Environmental Quality (NDEQ) (E&E, 1998d). It does not appear likely that the observed petroleum hydrocarbon contamination is related to the distribution of the VOCs targeted during this investigation.

Dissolved arsenic analytical results are presented in Table 4-3 and plotted on the site map in Figure 4-6. With the exception of ground water sampling locations 1 (60.6 μ g/L) and 86 (319 μ g/L), no ground water samples were found to contain dissolved arsenic above its MCL of 50 μ g/L. Based on this investigation, there does not appear to be a point source of arsenic contamination within the study area. The elevated levels could possibly be naturally occurring. Alternatively, a source to the east of location 86 may be responsible for the elevated arsenic concentrations.

Total arsenic was detected in the single sampled private well owned by Roger Hanak (2917 10th Street). The detected concentration of 41.0 μ g/L does not exceed the MCL for arsenic (50 μ g/L).

	TICAL DATA S H STREET SITE	Table 4-3 UMMARY—GROUND WA —COLUMBUS, NEBRASK er—October 1998						
Geoprobe [™] Sample Location	EPA Sample #	le # EPA Region 7 Results (μg/L)						
Geoprobe Sample Location	PS1CS-	As Dissolved by ICAP	As Dissolved by AA					
1	014		60.6					
2	013	7.14 U						
3	008	7.14 U						
14	009		1.66 U					

	T	able 4-3							
ARSENIC ANALYTICAL DATA SUMMARY—GROUND WATER SAMPLES 10TH STREET SITE—COLUMBUS, NEBRASKA September—October 1998									
Geoprohe TH Sample Location EPA Sample # EPA Region 7 Results (µg/L									
Geoprobe Sample Location	P\$1CS-	As Dissolved by ICAP	As Dissolved by AA						
16	015		8.63						
21	005	7.14 U							
24	016		1.84						
27	012	7.14 U							
29	010	7.14 U							
31	001		15.8						
33	011	7.14 U							
36	006	7.14 U							
39	031	7.14 U							
41	032	7.14 U							
44	030	7.14 U							
46	027	7.14 U							
53	033	7.14 U							
57	029		3.16						
60	026	7.14 U							
63	034		13.6						
70	028		15.9						
72	035	7.14 U							
77	036		6.19						
86	037		319						
89	038	7.14 U							
93	039	7.14 U							
107	040	7.14 U							
109	041	7.14 U							
NA	059F(field blank)	7.14 U							

KEY: = Results at, or greater than MCL. = Sample not submitted. U = Actual value of sample is less than the measurement detection limit (reported value).

Soil VOC concentrations are presented in Table 4-4; soil sampling locations are shown in Figure 3-2. PCE, TCE, and their degradation products were all identified in soil beneath the apparent source property. Of the target VOCs, PCE appears to be the primary soil contaminant. PCE was detected in 13 of the 14 samples taken from, or immediately adjacent to, One Hour Martinizing Property; detected PCE concentrations ranged from 1.5 to 38,950 μ g/kg. Benchmark concentrations (EPA Region 3 Risk-based Concentration for Residential Soil and Superfund Chemical Data Matrix (SCDM) Cancer Risk Screening Concentration) were exceeded in two samples. These samples were collected from the 1-3 foot interval at location S-3 and S-8. No VOCs were detected in either the soil trip blank or in the background soil sample taken from the 1-3' depth interval at location S-8. No target VOCs were detected in the soil sampler rinsate blank.

Table 4-4									
		VOC ANALY	TICAL DA	ATA SUM	MARY-SO	IL SAMPLES	5		
					JMBUS, NEI		-		
			Septem	ber-Octo	ober 1998				
	START MI	. Results (μ g/kg)			EPA Region	7 Results (µg/	kg)	
Geoprobe™ Sample Location	trans-1,2-DCE	cis-1,2- DCE	TCE	PCE	EPA Sample #	trans-1,2-DCE	cis-1,2- DCE	TCE	РСЕ
S-1 1-3'	7.1 U	7.1 U	1.5	7.2	101	9.3 U	9.3 U	9.3 U	9.3 U
S-1 6-8'	8.4 U	8.4 U	1.7 U	1.7 U	102	8.6 U	8.6 U	8.6 U	8.6 U
S-2 1-3'	6.7 U	6.7 U	2.5	17.6	103	14 U	14 U	14 U	21
S-2 6-8'	7 U	7 U	3	79.6	104	7.7 U	7.7 U	7.7 U	8.3
S-3 1-3'	5.9 U	102.3	2,574	38,950	105	12 U	69	440	25,000
S-3 6-8'	6.4 U	13.3	37.3	985.5	106	9.3 U	9.3 U	9.3 U	150
S-4 1-3'	7.6 U	7.6 U	3	1,728 J	107	19 U	19 U	19 U	600
S-4 6-8'	8 U	8 U	18.5	1,013 J	108	12 U	12 U	12 U	530
S-5 1-3'	6 U	6 U	12.1 UJ	177.2 J	109	12 U	12 U	12 U	10
S-5 6-8'	8.2 U	8.2 U	40.1	1,849 J	110	12 U	12 U	13	390
S-6 1-3'	6.9 U	116	32.8	40.2	111	8.9 U	79	15	37
S-6 6-8'	6.5 U	6.9	28.2	200.8 J	112	9.5 U	9.5 U	9.5 U	92
S-7 1-3'	34.4	211.8	275.8	13,280 J	113	18	140	130	6,400
S-7 6-8'	7.3 U	7.3 U	1.5 U	23.8	114	9.3 U	9.3 U	9.3 U	9.3 U
S-8 1-3'	6.5 U	6.5 U	1.3 U	1.3 U	115	15 U	15 U	15 U	15 U
Trip Blank					116F	6.1 U	6.1 U	6.1 U	6.1 U
	Benchm	arks (µg/kg)							
SCDM Cancer Risk Screening			58,000	12,000					
Concentration SCDM Reference Dose Screening Concentration	1,600,000	780,000		780,000					
EPA Region 3 Risk-Based Concentration Industrial Soil	41,000,000	20,000,000	520,000	110,000					
EPA Region 3 Risk-Based Concentration Residential Soil	1,600,000	780,000	58,000	12,000					

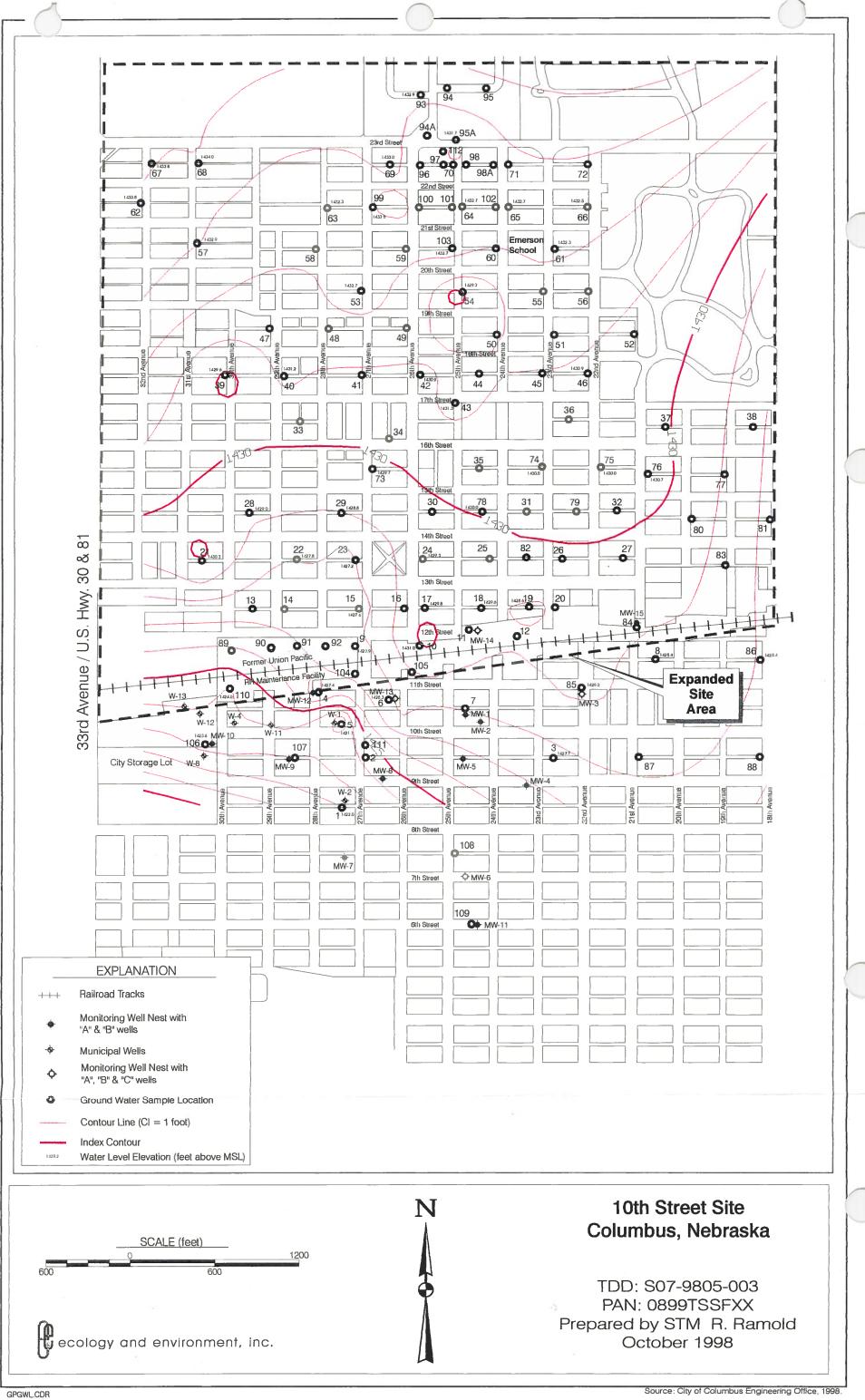
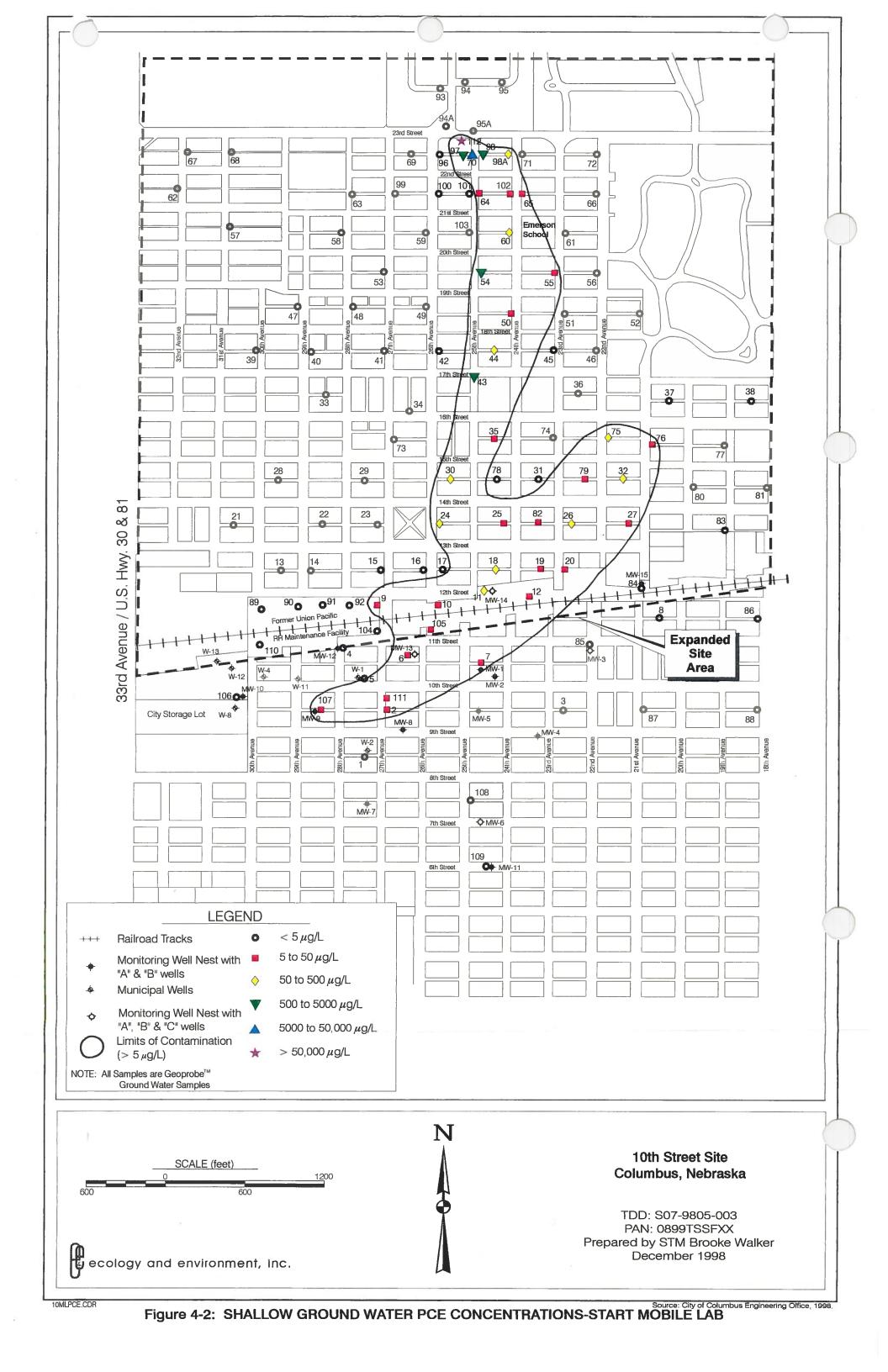
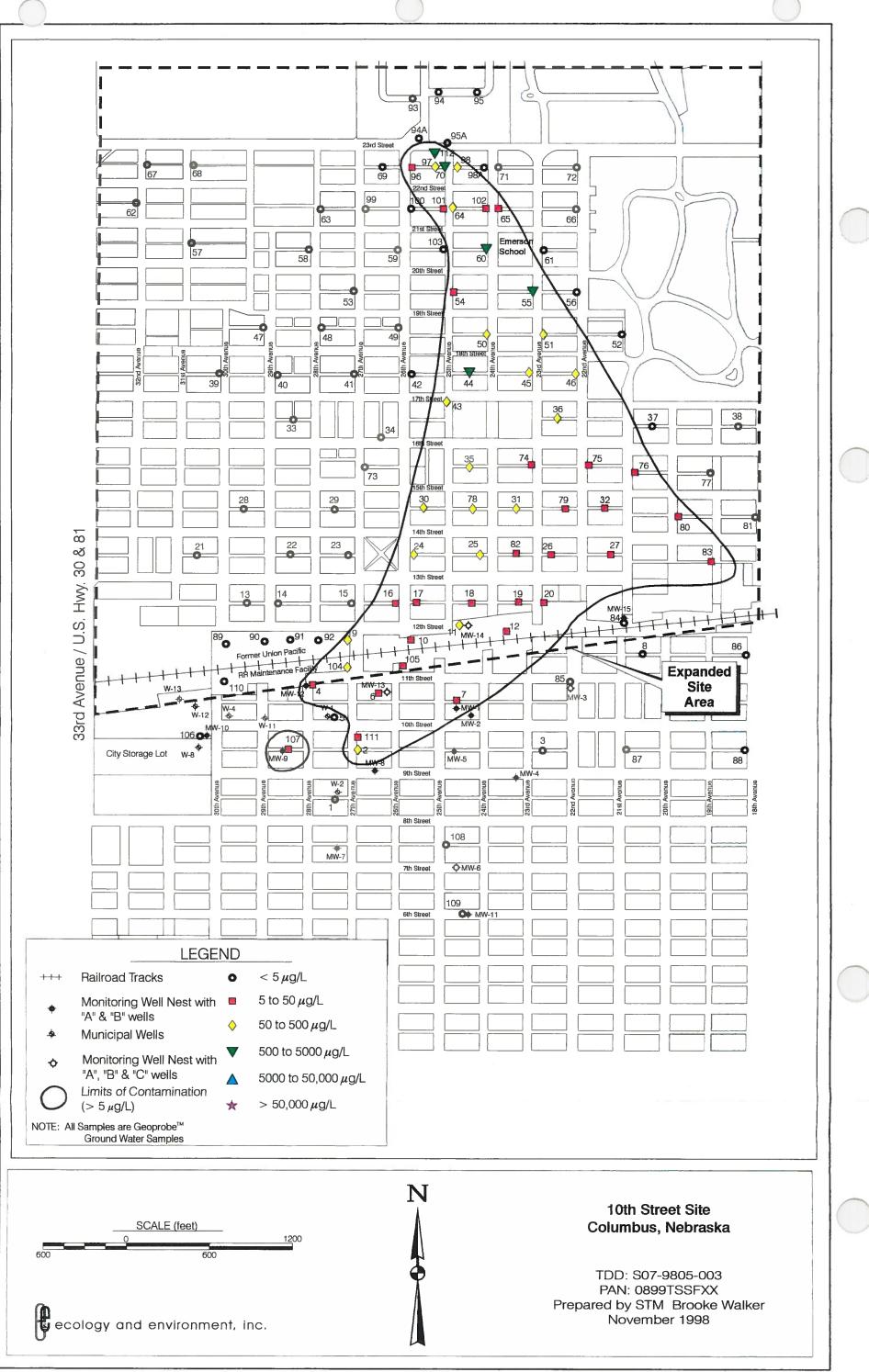
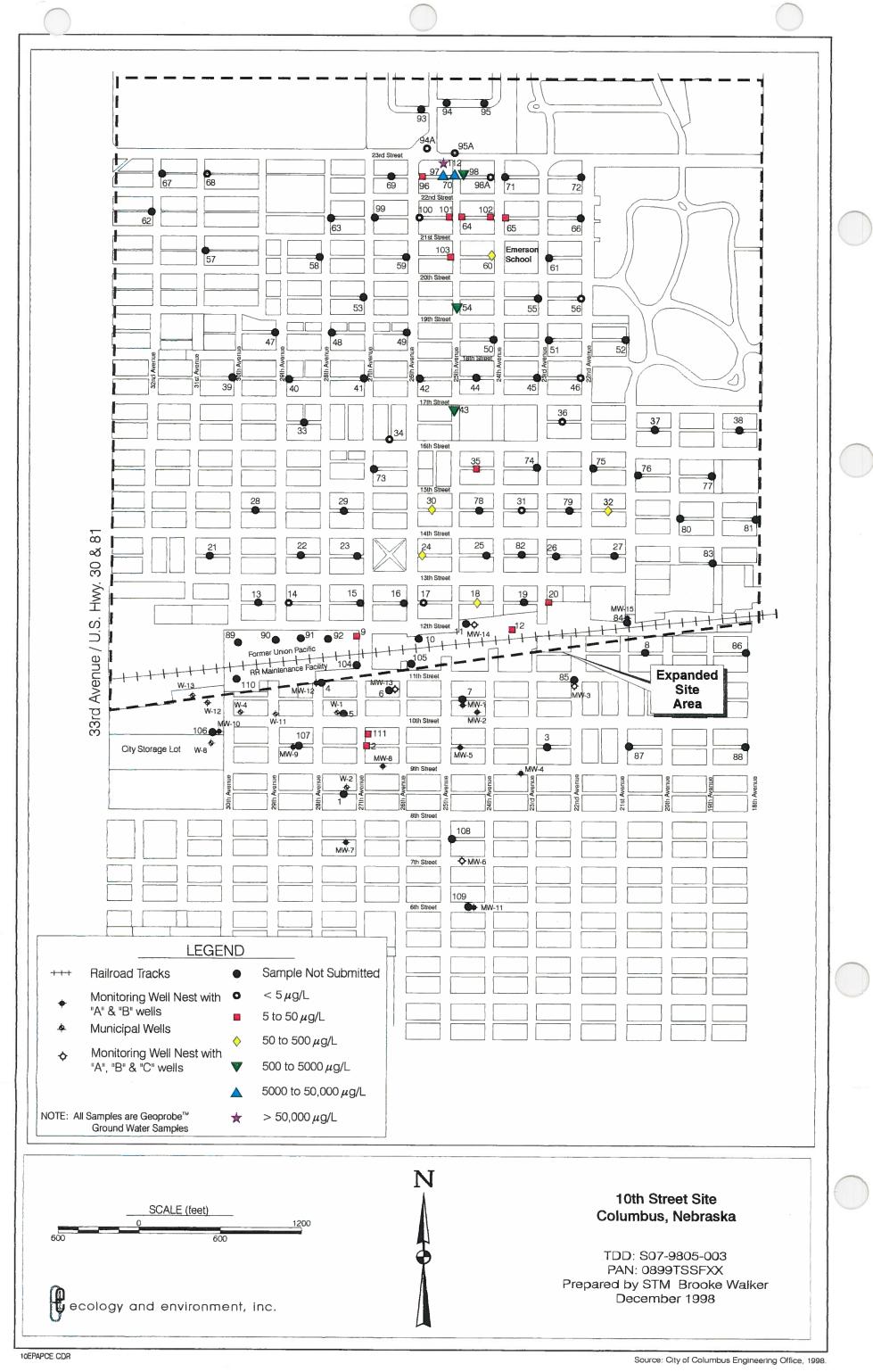
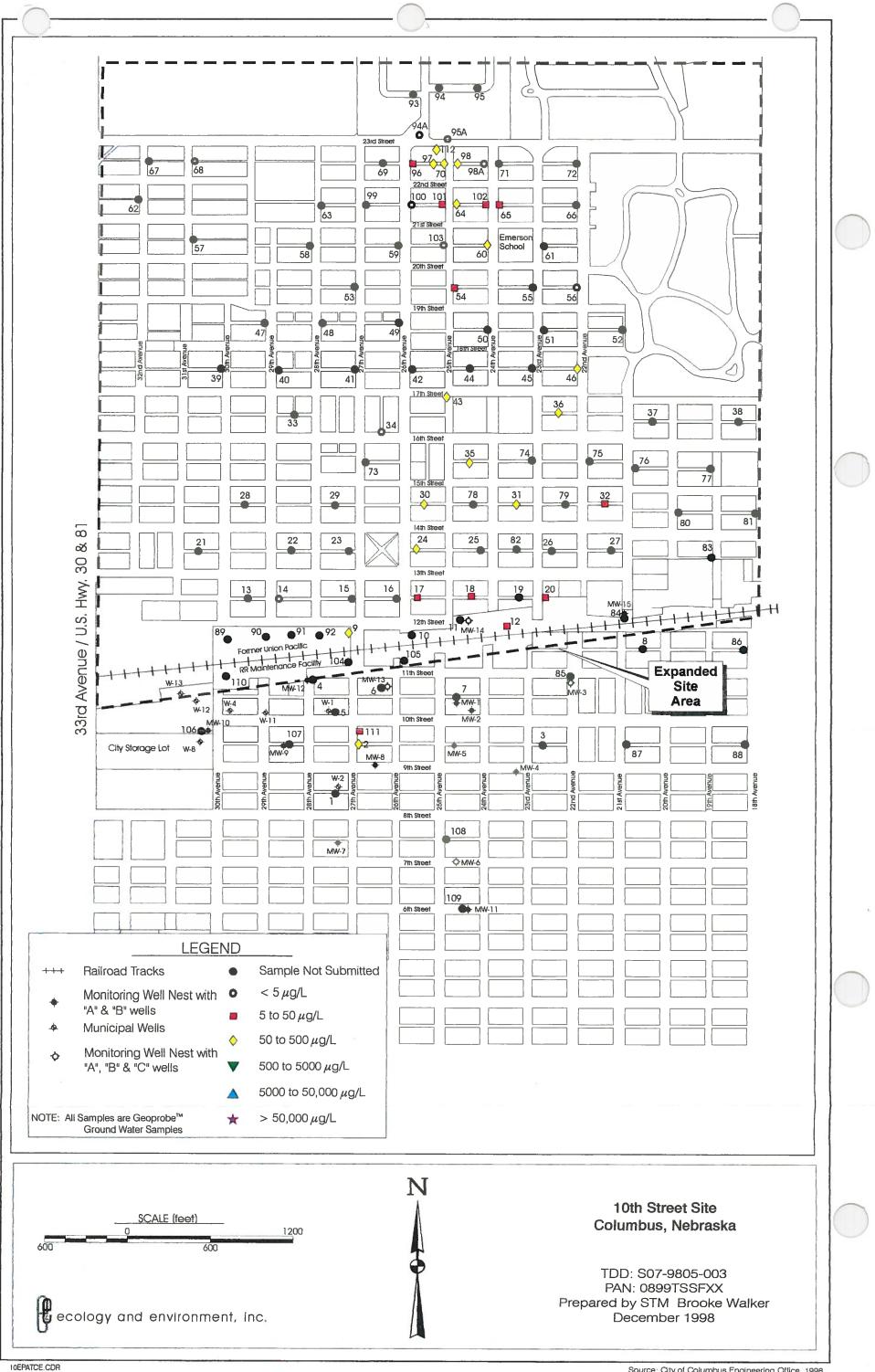




Figure 4-1: GEOPROBE WATER LEVEL CONTOUR MAP




10MLTCE_CDR

Source: City of Columbus Engineering Office, 1998.

Figure 4-3: SHALLOW GROUND WATER TCE CONCENTRATIONS-START MOBILE LAB

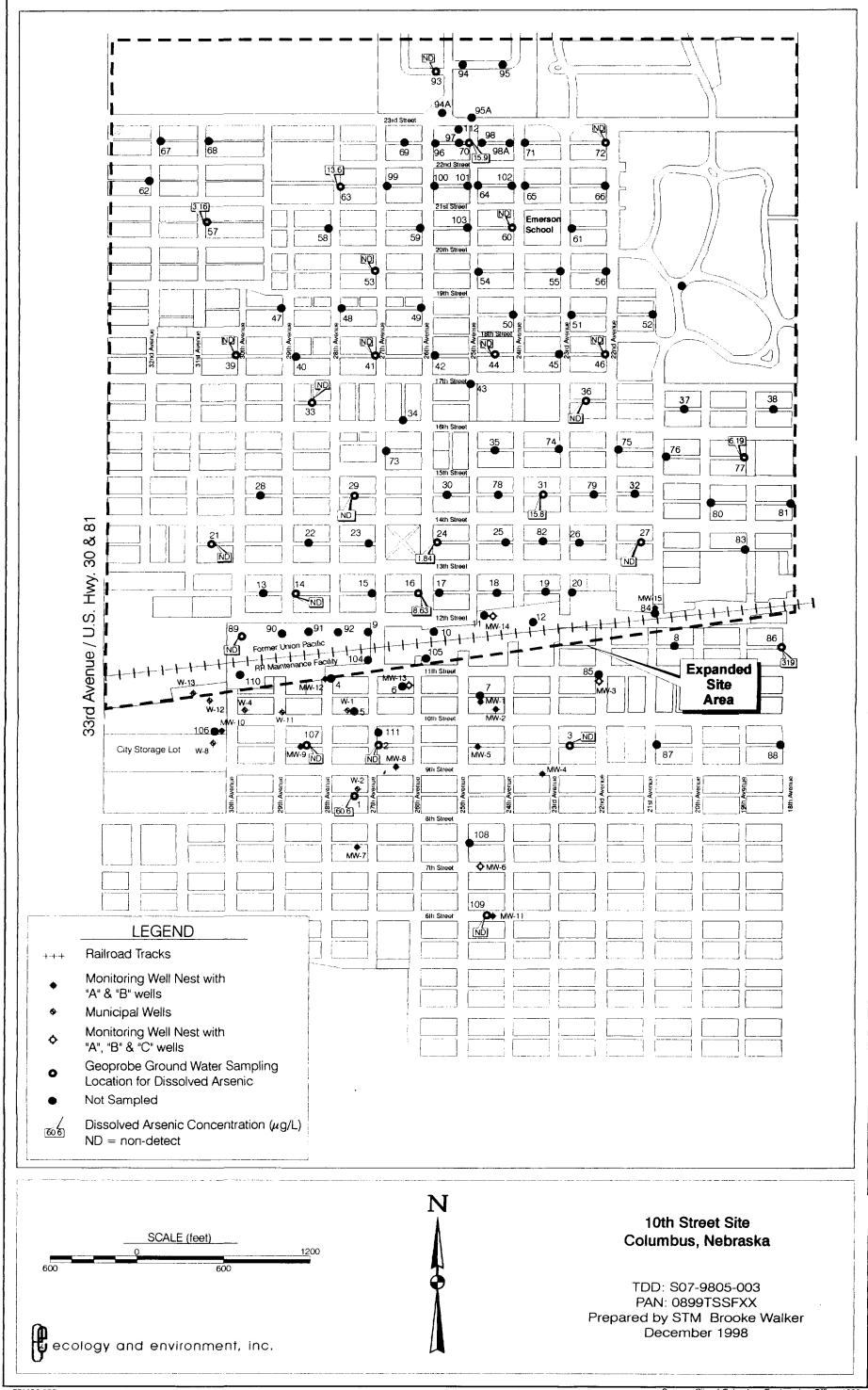


Figure 4-4: SHALLOW GROUND WATER PCE CONCENTRATIONS-EPA REGION 7 LAB

Source: City of Columbus Engineering Office, 1998.

Figure 4-5: SHALLOW GROUND WATER TCE CONCENTRATIONS-EPA REGION 7 LAB

10EPAARS.CDR

Source: City of Columbus Engineering Office, 1998

Figure 4-6: SHALLOW GROUND WATER DISSOLVED ARSENIC CONCENTRATIONS

5.0 SUMMARY AND CONCLUSIONS

In response to the results of a 1997-1998 quarterly sampling of monitoring and municipal wells, EPA Region 7 tasked START to conduct a removal assessment at the 10th Street Site. The primary purpose of the investigation was to identify the limits of VOC-contaminated ground water and its source(s). START collected over 100 shallow ground water samples from Geoprobe^m temporary monitoring wells. These samples were screened on-site in the START Mobile Laboratory for TCE, PCE, cis-1,2-DCE, and trans-1,2-DCE. Screening results indicated that VOC contamination appears to be originating from a current dry cleaning business, One Hour Martinizing, located on the southwest corner of 23rd Street and 25th Avenue. Analysis of soil samples from, or immediately adjacent to, the apparent source property confirmed the presence of VOC-contaminated soil. Delineation of shallow VOC-contaminated ground water indicates that the contaminant plume initially flows south. However, municipal well pumping appears to redirect the plume towards the southwest.

It should be noted that though the One Hour Martinizing property appears to be a source of VOC contamination to the north of the current monitoring well network, it is not necessarily the sole source. Additional sources are particularly possible within the area of the initial 10th Street site investigations, where VOC soil contamination was documented on three separate properties (Liberty Cleaners, Village Wash House, and Jackson Services).

START submitted selected ground water samples to the EPA Region 7 Laboratory for LDL VOC and/or dissolved arsenic analysis. VOC results generally agreed with those from the START Mobile Laboratory. Dissolved arsenic results did not identify a distinct source of contamination.

Though the extent of this investigation is limited to the shallow zone immediately below the water table, some general conclusions can be made regarding this investigation. At least some portion of the PCE and TCE contaminated ground water beneath the 10th Street Site appears to be attributable to the One Hour Martinizing property. Shallow contaminated ground water originating from this apparent source appears to be directed toward the municipal well field. However, further investigation may be required to determine the immediate risk this provides to the municipal water supply. The potential threat to the well field and the feasibility of potential response actions could be more effectively addressed after consideration of the following data gaps:

• The vertical delineation of VOC contamination in the unconfined aquifer north of the current monitoring well network.

- A more complete delineation of the horizontal and vertical extent of soil contamination on and near the One Hour Martinizing property.
- A reevaluation of the extent of ground water contamination using the existing monitoring wells.
- Determination of whether, and if so to what extent, arsenic is of concern as a threat to drinking water.
- Determination of municipal well construction details. Some information is currently available through existing NDWR well registration forms. Additional information may be available from the city of Columbus.

6.0 REFERENCES

- Burchett, R.R., 1986, Geologic Bedrock Map of Nebraska, Nebraska Geological Survey, Conservation and Survey Division, University of Nebraska, Lincoln, Nebraska.
- Crawford, Dave, 1993, ISOPIA, personal communication, letter and attachments to Merlin Lindahl, Columbus City Engineer, Columbus, Nebraska, November 1, 1993.
- Conservation and Survey Division (CSD), 1953, Logs of Test Holes—Platte County, Nebraska, University of Nebraska, Lincoln, Nebraska.
- Ecology and Environment, Inc. (E & E), 1987a, Trip Report for sampling conducted on the Columbus Public Water System, Columbus, Nebraska, FIT TDD: F-07-8703-31, Overland Park, Kansas, April 22, 1987.

_____, 1987b, Preliminary Assessment of Columbus Public Water Supply, Columbus, Nebraska, ISOPIA FIT, TDD: #F-07-8702-05, Overland Park, Kansas, April 30, 1987.

_____, 1987c, Data Summary for the Columbus Public Water Supply, Columbus, Nebraska, ISOPIA Region 7 FIT, TDD: #F-07-8703-31, Overland Park, Kansas, August 11, 1987.

_____, 1989, Final Report, Expanded Site Investigation, 10th Street Site, Columbus, Nebraska, ISOPIA FIT, TDD: #F-07-8805-007, Overland Park, Kansas, April 25, 1989.

, 1990a, Final Report, Preliminary Assessment, Columbus Industrial Park, Columbus, Nebraska, ISOPIA Region 7 Field Investigation Team (FIT), TDD: #F-07-8903-018, Overland Park, Kansas, January 10, 1990.

_____, 1990b, Data Summary for the Phase I Screening Site Inspection of the Columbus Industrial Park, Columbus, Nebraska, ISOPIA Region 7 FIT, TDD: #F-07-8911-005, Overland Park, Kansas, June 25, 1990.

_____, 1995, Site Assessment: 10th Street Site, Columbus, Nebraska, ISOPIA Region 7 Technical Assistance Team (TAT), TDD: T07-9504-002, Overland Park, Kansas, July 27, 1995.

_____, 1997, Trip Report and Data Summary for Quarterly Sampling (July 1997) of the 10th Street Site, Columbus, Nebraska, TDD: S07-9701-031, Overland Park, Kansas, December 17, 1997.

_____, 1998a, Trip Report and Data Summary for Quarterly Sampling (October 1997) of the 10th Street Site, Columbus, Nebraska, TDD: S07-9701-031, Overland Park, Kansas, March 24, 1998.

_____, 1998b, Trip Report and Data Summary for Quarterly Sampling (January 1998) of the 10th Street Site, Columbus, Nebraska, TDD: S07-9701-031, Overland Park, Kansas, April 30, 1998.

_____, 1998c, Trip Report and Data Summary for Quarterly Sampling (April 1998) of the 10th Street Site, Columbus, Nebraska, TDD: S07-9701-031, Overland Park, Kansas, April 30, 1998.

_____, 1998d, Trip Report for Review of Nebraska LUST Files for Sites Near the 10th Street Site, Columbus, Nebraska, TDD: S07-9805-003, Overland Park, Kansas, June 2, 1998.

_____, 1998e, Revised Site Chronology for the 10th Street Site, Columbus, Nebraska, TDD: S07-9805-003, Overland Park, Kansas, July 13, 1998.

_____, 1998f, Summary Report for Quarterly Sampling at 10th Street Site, Columbus, Nebraska, TDD: S07-9805-003, Overland Park, Kansas, December, 1998.

- Ginsberg, M.H., 1983, Hydrogeology of Butler County, Nebraska, Nebraska Water Survey Paper 55, Conservation and Survey Division, University of Nebraska, Lincoln, Nebraska.
- Morby, Robert L, 1988, ISOPIA, Superfund Branch Chief, letter and attachments to Carl Wlaschin, Water Superintendent for Columbus, January 25, 1988.
- Nebraska Department of Water Resources (NDWR), 1981, Well Registration #A-10596F, City of Columbus Municipal Well No. 11.
- Roe, Reta, 1988, ISOPIA, Trip Report and Data Summary—Columbus, Nebraska, Memorandum to Charles P. Hensley, Chief, EP&R/ENSV, April 4, 1988.
- Sverdrup Corporation, 1993, Remedial Investigation/Feasibility Study, Tenth Street Site, Columbus, Nebraska, Work Assignment No. 06-7LCS, under EPA Contract No. 68-W9-0039, St. Louis, Missouri, January, 1993.
- Svoboda, G.R., 1958, Preliminary Groundwater Report—Platte County, Nebraska, GM-30, Conservation and Survey Division, University of Nebraska, Lincoln, Nebraska.

United States Department of Agriculture (USDA), 1988, Soil Survey of Platte County, September, 1988.

Appendix A

Photographic Documentation Record

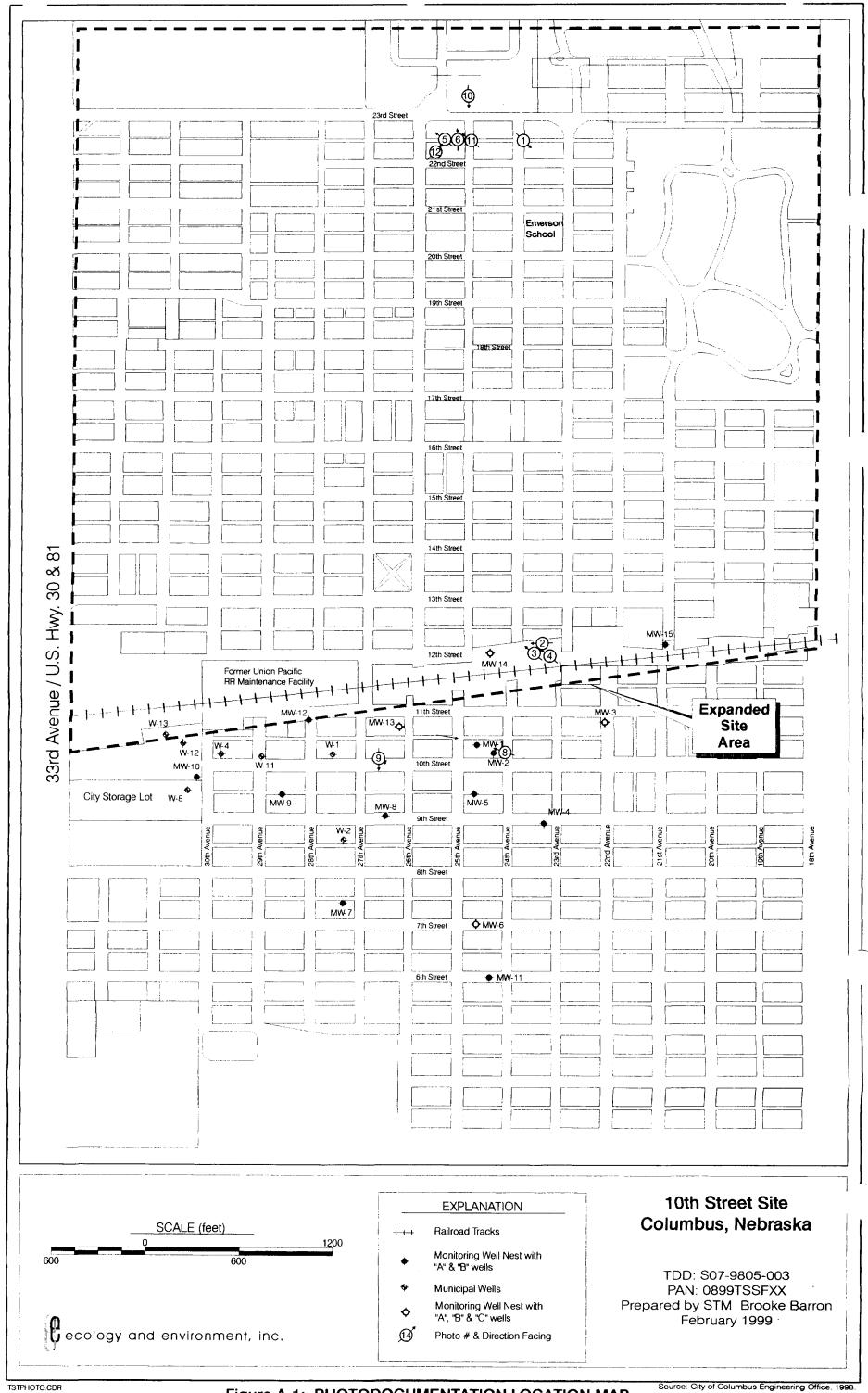


Figure A-1: PHOTODOCUMENTATION LOCATION MAP

SITE NAME: 10th Street Site SITE LOCATION: Columbus, Nebraska JOB#: KJ7104 TDD: S07-9805-003A

PAN: 0899TSSFXX

Photograph: 1 Photographer: STM Ramold Date/Time: 9-26-98 / 1024 Roll/Frame No.: 1 / 4 Direction: southeast Comments: Geoprobe[™] team using peristaltic pump to collect ground water sample for VOC analysis.

Photograph: 2 Photographer: STM Ramold Date/Time: 9-26-98 / 1320 Roll/Frame No.: 1 / 14 Direction: west Comments: Carbon filtration unit used for treating purge water from temporary monitoring wells.

PHOTOGRAPHIC RECORD Ecology and Environment, I Superfund Technical Assessment and Response Team

SITE NAME: 10th Street Site SITE LOCATION: Columbus, Nebraska JOB#: KJ7104 TDD: S07-9805-003A

PAN: 0899TSSFXX

Photograph: 3 Photographer: STM Ramold Date/Time: 9-26-98 / 1300 Roll/Frame No.: 1 / 11 Direction: northwest Comments: Decontamination procedure, high pressure wash with steam sprayer.

Photograph: 4 Photographer: STM Ramold Date/Time: 9-26-98 / 1320 Roll/Frame No.: 1 / 12 Direction: northwest Comments: Decontamination procedure, drying and heating with propane torch.



\bigcirc	PHOTOGRAPHIC RECORD	
	Ecology and Environment, In	
Superfund	Technical Assessment and Respe 7	l'eam

SITE NAME: 10th Street Site SITE LOCATION: Columbus, Nebraska JOB#: KJ7104 TDD: S07-9805-003A

PAN: 0899TSSFXX

Photograph: 5 Photographer: STM Ramold Date/Time: 9-30-98 / 0920 Roll/Frame No.: 1 / 17 Direction: northwest Comments: Geoprobe[™] team collecting soil sample behind One Hour Martinizing.

Photograph: 6 Photographer: EPA RPM Darrell Sommerhauser Date/Time: 9-30-98 / 0935 Roll/Frame No.: 1 / 20 Direction: north Comments: Preparing soil sample for VOC analysis.

PHOTOGRAPHIC RECORD Ecology and Environment, Inc. Superfund Technical Assessment and Response Team

SITE NAME: 10th Street Site SITE LOCATION: Columbus, Nebraska JOB#: KJ7104 TDD: S07-9805-003A

PAN: 0899TSSFXX

Photograph: 7 Photographer: EPA RPM D. Sommerrhauser Date: 9-30-98 Roll/Frame No.: 51272 / 1 cction: east-southeast ments: current Liberty Cleaners and Miller Radiator and Machine Shop (25th Street in foreground)

PHOTOGRAPHIC RECORD Ecology and Environment, Inc. Superfund Technical Assessment and Response Team

SITE NAME: 10th Street Site SITE LOCATION: Columbus, Nebraska JOB#: KJ7104 TDD: S07-9805-003A

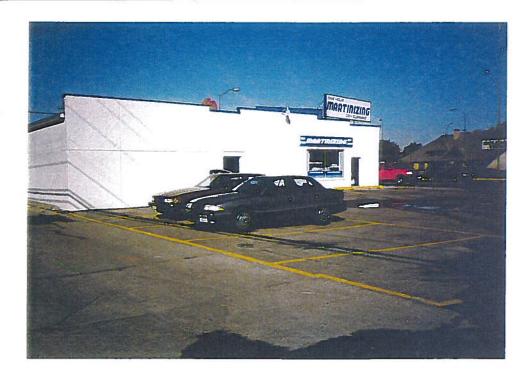
PAN: 0899TSSFXX

Photograph: 9 Photographer: EPA RPM D. Sommerrhauser Date: 9-30-98 Roll/Frame No.: 51272 / 3 Direction: south ments: former Village Wash House (10th Street in foreground).

Ecology and Environment, Inc. Superfund Technical Assessment and Response Team

SITE NAME: 10th Street Site SITE LOCATION: Columbus, Nebraska JOB#: KJ7104 TDD: S07-9805-003A

PAN: 0899TSSFXX


Photograph: 10 Photographer: EPA RPM D. Sommerrhauser Date: 9-29-98 Roll/Frame No.: 51271 / 7 Direction: southwest mments: One Hour Martinizing (background) with Geoprobe[™] sampling team collecting ground water at location 95A (foreground).

SITE NAME: 10th Street Site SITE LOCATION: Columbus, Nebraska JOB#: KJ7104 TDD: S07-9805-003A

PAN: 0899TSSFXX

Photograph: 11 Photographer: STM Ramold Date/Time: 10-13-99 / 1030 Roll/Frame No.: 1 / 22 Direction: northwest Comments: One Hour Martinizing.

Photograph: 12 Photographer: STM Ramold Date/Time: 10-13-98 / 1020 Roll/Frame No.: 2 / 2 Direction: northeast Comments: One Hour Martinizing.

Appendix B

Mobile Laboratory Program (MLP) Volatile Organic Compound Analytical Results

MLP VOLATILE ORGANIC COMPOUND ANALYTICAL RESULTS for 10TH STREET SITE COLUMBUS, NEBRASKA

٠.

TDD: S07-9805-003A PAN: 0899TSSFXX

Investigation Date: September - October 1998 START Analytical Team: Charles Smith and David Keeton

Report Date: November 1998

Submitted To: Ron Ramold

TABLE OF CONTENTS

۰.

Section			Page
1.0	INTI	RODUCTION	. 1-1
2.0	MLF	METHODOLOGY FOR VOCs	. 2-1
3.0	MLF	DATA	. 3-1
	3.1	VOC SAMPLE ANALYSIS RESULTS	. 3-1
	3.2	INITIAL CALIBRATION	. 3-6
	3.3	CONTINUING CALIBRATION	. 3-6
·	3.4	MATRIX SPIKE AND MATRIX SPIKE DUPLICATE	. 3-6
	3.5	FINAL CALIBRATION	. 3-6

LIST OF TABLES

Table		Page
3-1	Water Sample Results	. 3-1
3-2	Soil Sample Results	. 3-5

1.0 INTRODUCTION

Analysis of 15 soil samples, and 144 water samples collected around 10th Street was performed by Ecology and Environment, Inc. (E & E), Superfund Technical Assessment and Response Team (START) chemists under Technical Direction Document (TDD) S07-9711-018 utilizing the E & E Mobile Laboratory Program (MLP). The samples were analyzed for volatile organic compounds (VOCs) using the Standard Operating Guidelines for the MLP Method START7.001.

Samples were analyzed for the following VOCs: trans-1,2-Dichloroethene (trans-1,2-DCE), cis-1,2-Dichloroethene (cis-1,2-DCE), Trichloroethene (TCE), and Tetrachloroethene (PCE).

The samples were collected September 21 through October 1, 1998, and received by the laboratory during the same time period. All analyses were completed on or by October 1, 1998.

2.0 MLP METHODOLOGY FOR VOCs

۰.,

All samples were analyzed as described in MLP Method START7.001. There were some minor deviations with the initial calibrations and a few problems with the final calibrations. The instrument gained sensitivity over the course of the project, requiring frequent recalibration. These problems will be discussed later.

3.0 MLP DATA

MLP data are not confirmed by mass spectroscopy and, therefore, do not provide the same level of qualitative specificity as contract laboratory program (CLP) data. While MLP data is not equivalent to or a replacement for CLP data, the results presented in this report are consistent (all samples were analyzed utilizing the same procedure). Data generated by the E & E MLP were used to quantitate site contamination. The MLP analytical quantitation limits for trans-1,2-DCE and cis-1,2-DCE were 5 μ g/L in the water samples and approximately 7 μ g/kg for soils. The MLP analytical quantitation limits for TCE and PCE were 1 μ g/L in the water samples and approximately 3 μ g/kg for soils.

3.1 VOC SAMPLE ANALYSIS RESULTS

۰.

Sample	trans-1,2-DCE	ain 1.2 DCE	TCE	PCE	Dilution
Sample	· · · · ·				
ID	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Factor
1	5U	5U	3.9	1U	
2	5U	12.9	92.6J	10.8J	5
3	5U	5U	1U	1U	
4-Foot Pump	5U	5U	7.7	1U	
4-Peristaltic Pump	5U	5U	23.6	1U	
5	5U	5U	2.1	1U	
6-Foot Pump	5U	5U	2.2	1U	
6-Peristaltic Pump	5U	5U	7.6	9.1	
7-Foot Pump	5U	5U	2.0	1U	
7-Peristaltic Pump	5U	5U	5.8	5.8	
8	5U	5U	1.1	10	
9	5U	5U	85.2	8.4	5
10	5U	5U	38.4	10.8	
11-Foot Pump	5U	5U	20.2	11.8	
11-Peristaltic Pump	5U	5U	65.9	75.1	5
12	5U	5U	22.3	35.1	5
13	5U	5U	1U	1U	
14	5U	9.8	1.8	1U	
15	5U	5U	2.1	1U	

Table 3	3-1	
---------	-----	--

Sample	trans-1,2-DCE	cis-1,2-DCE	TCE	PCE	Dilution
ID	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Factor
16	5U	5U	44.9	2.5	
17	7.9	14.2	42.8	3.9	
18	5U	5U	16.1	50.2	5
19	5UJ	5UJ	8.5J	10.9J	
20	5U	5U	13.0	14.9	
21	5U	5U	1U	1U	
22	5U	9.6	4.3	1U	
23	5U	5U	1U	1U	
24	5U	5U	165.6	116.1	10
25	5U	5U	113.7	8.3	
26	5U	5U	11.6	79.2	5
27	5U	5U	6.4	8.1	
28	5U	5U	1.9	1U	
29	5U	5U	1U	10	
30	6.1	5U	250.4	260.1	10
31	5U	5U	87.1	2.5	5
32	5U	5U	29.4	52.1	5
33	5.2	10.0	1.1	1U	
34	5U	5U	1U	1U	
35	5U	5U	265.9	41.9	10
36	9.3	38.1	194.3	1U	10
37	5U	5U	1U	1U	
38	5U	5U	1U	1U	
39	5UJ	5UJ	1UJ	1UJ	
40	10.0	10.0	1UJ	1UJ	
41	5UJ	5UJ	1UJ	_1UJ	
42	5UJ	5UJ	1UJ	1UJ	
43	12.5J	5UJ	219.1J	1346J	25
44	5UJ	5UJ	605.2J	179.7J	25
45	5UJ	42.3J	186.8J	1UJ	10
46	8.7J	47J	405.3J	1UJ	50
47	6.7J	5.7J	1UJ	1UJ	
48	5UJ	5UJ	1UJ	1UJ	
49	5UJ	5UJ	1UJ	1UJ	
50	5UJ	5UJ	80.4J	15.5J	5

۰.

Sample	trans-1,2-DCE	cis-1,2-DCE	TCE	PCE	Dilution
ID	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Factor
51	14.6J	53.8J	411.2	1UJ	10
52	5UJ	5UJ	1UJ	1UJ	
53	5U	5U	10	1U	
54	5U	5U	22.1	751.0	100
55	5U	43.4	1672J	49.8	100
56	5UJ	5UJ	1UJ	1UJ	
57	5U	5U	10	1U	
58	5U	5U	1U	1U	
59	5U	5U	1U	1U	
60	5U	66.6	602.2J	244.1J	100
61	5U	5U	10	1U	
62	5U	5U	10	1U	
63	5UJ	5UJ	1UJ	1UJ	
64	5U	8.7	194.9J	21.4	
65	5U	5U	9.1	16.3	
66	5U	5U	10	10	
67	5UJ	5UJ	1.1J	1UJ	
68	5UJ	5UJ	2.9J	1UJ	
69	5UJ	5UJ	1UJ	1.0J	
70	5UJ	107.3EJ	512.9	29240J	100&10000
71	5U	5U	1U	1U	
72	5UJ	5UJ	1UJ	1UJ	
73	5U	 5U	1U	1U	
74	5U	5U	50.0	2.3	
75	5U	5U	41.7	57.6	10
76	5U	5U	12.1	9.2	
77	5U	5U	1U	1U	
78	5U	5U	174.2	1U	10
79	5U	5U	12.6	22.6	
80	5U	5U	20.2	2.3	
81	5U	5U	1U	1U	
82	5U	5U	11.2	23.6	
83	5U	5U	7.5	1U	
84	5U	5U	10	10	
85	5U	5U	1U	1U	

۰.

Sample	trans-1,2-DCE	cis-1,2-DCE	TCE	PCE	Dilution
ID	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Factor
86	5U	5U	1U	1U	
87	5U	5U	1U	1U	
88	5U	5U	1U	1U	
89	5UJ	5UJ	1.2J	1UJ (
90	5U	5.3	1U	1U	
91	5UJ	5UJ	1UJ	1UJ	
92	5U	5U	1U	1U	
93	5U	5U	1U	1U	
94	5U	5U	1U	1U	
94 A	5U	5U	1U	1U	
95	5U	5U	1U	1U	
95 A	5U	5U	1U	1U	
96	5U	5U	7.3	4.5	
97	500U	500U	112.4	4430.0	100
98	5U	14.1	99.3	1495.0	100
98 A	5U	5U	2.6	65.6	5
99	5U	5U	1U	10	
100	5U	5U	1U	10	
101	5U	11.0	47.6	4.9	
102	⁻ 5U	5U	17.3	9.8	
103	5U	5U	10	3.4	
104	5U	9.7	55.1	1U	
105	5U	5U	7.8	17.1	
106	5U	5U	10	10	
107	5U	5U	14.2	6.6	
108	5U	5U	1U	1.2	_
109	5U	5U	1U	10	
110	5U	5U	1U	1U	
111	7.6	9.2	39.6	5.9	
112	41.5	579.8E	548.1J	115100J	100&10000
MW 1-A	5U	5U	18.9	48.1	5
MW 1A-Out	5U	5U	1U	1U	
MW 12-A	5U	5U	29.5	1.6	
MW 13-A	5U	5U	13.0	18.7	
MW 14-A	5U	5U	49.3	270.8	10

· • • • • •

3-4

Sample	trans-1,2-DCE	cis-1,2-DCE	TCE	PCE	Dilution
ID	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Factor
Decon Supply	5U	5U	1U	10	
Post Decon	5U	5U	10	10	
Post Decon 9/25 AM	5UJ	5UJ	1UJ	1UJ	
Post Decon 9/25 PM	5UJ	5UJ	1UJ	1UJ	
Post Decon 9/26	5UJ	5UJ	1UJ	1UJ	
Post Decon 9/27	5U	5U	1U	1U	
Post Decon 9/28	5U	5U	1U	10	
Post Decon 9/29	5U	5U	1U	1U	
Purge 9/23	5U	5U	38.1	28.3	
Purge Water 9/29	5U	<u>5U</u>	1.6	10	
Purge Water 9/30	20.4	5U	20.3	2.1	
Purge Water 9/30 B	5U	5U	10.6	1.1	
Purge Water 9/30 C	5UJ	21.3J	10.9J	2.0J	
Rinsate 9/22	5U	5U	10	1U	
Rinsate 9/23	5U	5U	1U	10	
Rinsate 9/24	5UJ	5UJ	1UJ	1UJ	
Rinsate 9/25	5UJ	5UJ	1UJ	1UJ	
Rinsate 9/28	5U	5U	10	10	
Rinsate 9/29	5U	5U	10	1U	
Rinsate-9/26	5UJ	5UJ	1UJ	1UJ	
Rinsate-9/27	5U	50	10	10	

~

U=sample result was below the detection limit J=sample result was estimated

· .

Table	3-2
-------	-----

Sample	trans-1,2-DCE	cis-1,2-DCE	TCE	PCE	Dilution
ID	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	Factor
S-1 1-3'	7.1U	7.1U	1.5	7.2	
S-1 6-8'	8.4U	8.4U	1.7U	1.7U	
S-2 1-3'	6.7U	6.7U	2.5	17.6	
S-2 6-8'	7.0U	7.0U	3.0	79.6E	
S-3 1-3'	5.9U	102.3	2574.0	38950.0	100&1000
S-3 6-8'	6.4U	13.3	37.3	985.5	50
S-4 1-3'	7.6U	7.6U	3.0	1728J	100
S-4 6-8'	8.0U	8.0U	18.5	1013J	1000

Sample	trans-1,2-DCE	cis-1,2-DCE	TCE	PCE	Dilution
ID	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	Factor
S-5 1-3'	6.0U	6.0U	12.1UJ	177.2J	10
S-5 6-8'	8.2U	8.2U	40.1	1849J	100
S-6 1-3'	6.9U	116.0	32.8	40.2	
S-6 6-8'	6.5U	6.9	28.2	200.8J	10
S-7 1-3'	34.4	211.8E	275.8E	13280J	1000
S-7 6-8'	7.3U	7.3U	1.5U	23.8	
S-8 1-3'	6.5U	6.5U	1.3U	1.3U	

U=sample result was below the detection limit

J=sample result was estimated

, ia

3.3 INITIAL CALIBRATIONS

Due to the increasing sensitivity of the instrument, it was necessary to calibrate four times during the course of this project. TCE on the first initial calibration (ICAL) had a %RSD of 30.21% which is outside the QC limits, however the correlation coefficient for TCE was 0.9973. The calibration was accepted using linear regression, not the average Calibration Factor (CF), for quantitation. The second ICAL was calibrated in this manner for trans-1,2-DCE and PCE. All other ICALs were calibrated for all analytes using the CF.

3.3 CONTINUING CALIBRATIONS

A continuing calibration (CCAL) must be run every 12 hours to ensure that the instrument is functioning properly. Over the course of the project eight CCALs were run. All CCALs met the QC limits set in the method or another ICAL was analyzed.

3.2 MATRIX SPIKE AND MATRIX SPIKE DUPLICATE

Six matrix spike (MS) and matrix spike duplicate (MSD) analyses were run. All MS/MSDs were within QC limits.

3.4 FINAL CALIBRATION

On four occasions the final calibration (FCAL) was not within QC limits set in the method. The samples analyzed prior to the failed FCALs were flagged as estimated values only.

Appendix C

 Table C-1: Geoprobe[™] Ground Water Sampling Data Summary

 Table C-2: Geoprobe[™] Soil Sampling Data Summary

GEOPROBE™ GROUND WATER JAMPLING DATA SUMMARY 10TH STREET SITE—COLUMBUS, NEBRASKA September—October 1998

Tab

Bore Hole #	Location	Date	Time	HNu (ppm)	Screened Interval (feet BGS)	Water Level (feet BGS)	pН	Cond. (mS/cm)	Temp. °C	Turb. (NTU)	VOC ML	VOC EPA	D. As EPA	Geoprobe	Comments
1	135' west of 27th Ave.	09-24-98	0830	12	18-22	18.56	7.36	0.486	16.4	53	2	4	у	7	Purged 1/3 gallon.
2	28' east of 27th Ave.	09-24-98	0925	0	18-22	15.24	7.2	0.506	16.4	>1,000	1	4	y	7	Purged 1 gallon.
3	106' east of 23rd Ave.	09-24-98	1055	0	18-22	17.68	7.19	0.496	18	132	1	4	y	7	Purged 1 gallon.
4	8' cast of MW-12A	09-22-98	0830	5	17-21	15.45	6.97	0.533	15.2	108	y(2)	n	n	7	Purged ¹ / ₅ gallon. 1 sample with peristaltic pump; 1 sample with foot valve.
5	17.7' north of 10th St.	09-24-98	1135	0	18-22	18.45	7.29	0.492	19.7	96	1	4	n	7	Purged 1/3 gallon.
6	9' west of MW-13A	09-22-98	0950	0	19-23	16.9	7.21	0.505	15.9	118	y(2)	n	n	7	Purged 1/3 gallon. 1 sample with peristaltic pump; 1 sample with foot valve.
7	8' north of MW-1A	09-22-98	1040	1.5	19-23	16.78	7.08	0.492	16	>1,000	y(2)	n	n	7	Purged 1/2 gallon. 1 sample with peristaltic pump; 1 sample with foot valve.
8	160' east of 21st Ave.	09-24-98	1305	0	18-22	16.03	7.12	0.466	20	121	1	4		7	Purged 1 gallon.
9	34.2' west of 27th Ave. 94.0' south of 12 St.	09-22-98	1754	NA	17-21	18.5	6.7	1.2	19	160	у	у	у	709	HNu not available.
10	12' east of 26th Ave.	09-24-98	1525	0	18-22	15.17	7.12	0.499	22.5	195	2	4	n	7	Purged 1 gallon.
11	8' cast of MW-14	09-21-98	1700	0	20-24	16.75	7.37	0.621	16.1	>1,000	y(2)	n	n	7	Purged 1/2 gallon. 1 sample with peristaltic pump; 1 sample with foot valve.
12	~60' south of 12th St.	09-22-98	0946	0	17-21	16.58	6.7	1.4	15	>1,000	у	У	n	709	Purged 1/2 gallon.
13	126.4' west of 29th Ave.	09-22-98	1405	0	17-21	20	7.03	1.05	18.5	3	1	4	n	7	Purged 1 gallon.
14	36.7' east of 29th Ave.	09-22-98	1503	2.5	17-21	20	6.99	0.642	18.9	115	1	4	у	7	Purged 1 gallon.
15	60.5' west of 27th Ave.	09-22-98	1555	NA	17-21	20.08	6.9	1.9	18	70	у	У	п	709	HNu not available. Became clear with 1 liter purged.
16	57' west of 26th Ave.	09-22-98	1505	NA	17-21	NA	7	1.7	18	80	у	у	у	709	HNu not available. Forgot depth.
17	84.7' east of 26th Ave.	09-22-98	1408	NA	17-21	16.67	7	1.2	17	80	у	у	n	709	HNu not available.
18	~175' east of 25th Ave.	09-22-98	1145	NA	17-21	17.25	6.8	1.3	16	40	у	У	n	709	HNu not available.
19	135' west of 23rd Ave.	09-25-98	0945	0	18-22	17.3	6.76	1.44	18.7	130	2	4	n	7	Purged ½ gallon.
20	~ 30' east of 23rd Ave.	09-22-98	1055	NA	17-21	16.25	6.8	1.9	15	>1,000	у	у	n	709	HNu not available.
21	149' cast of 31st Ave.	09-22-98	1635	0	20-24	17.85	7.25	0.573	20.7	31	1	4	у	7	Purged 1 gallon.
22	153.5' east of 29th Ave.	09-23-98	0820	3	20-24	19.85	7.13	0.64	15.8	52	1	4	n	7	Purged 1 gallon.
23	74.7' west of 27th Ave.	09-23-98	0190	0	18-22	19.73	7.21	0.99	16.7	123	1	4	у	7	Purged ½ gallon.
24	73.7' east of 26th Ave.	09-23-98	1051	NA	17-21	17	6.97	1.12	16.7	574	у	у	у	709	
25	95' west of 24th Ave.	09-23-98	1008	NA	17-21	NA	7.03	1.51	16.2	999	у	у	у	709	HNu not available. Remained turbid after 1.5 gallons.
26	109.5' east of 23rd Ave.	09-23-98	0850	NA	17-21	16	6.8	1.24	15.7	990	у	у	n	709	HNu not available.
27	117.3' west of 21st Ave.	09-22-98	1655	NA	17-21	15.5	6.9	1.2	19	99 0	у	у	у	709	HNu not available. Very turbid, even after ½ gallon purge.
28	152' east of 30th Ave.	09-23-98	1105	0	18-22	18.65	7.15	1.33	16.7	334	1	4	У	7	Purged 1/2 gallon.
29	138.5' east of 28th Ave.	09-23-98	1205	0	18-22	18.78	7	0.513	18.8	451	1	4	у	7	Purged ½ galion.
30	12' east of 26th Ave.	09-23-98	1405	0	18-22	15.02	7.32	0.538	18.4	>1,000	1	4	n	7	Purged ½ gallon.
31	173' west of 23rd Ave.	09-23-98	1400	NA	17-21	15	6.99	1.55	17.7	999	у	у	у	709	Grey colored sample.
32	166' east of 21st Ave.	09-23-98	1300	NA	17-21	16	7.03	1.24	15.7	55	у	у	n	709	Tubing had many bubbles. Recharge problem.
33	159' south of 17th St.	09-23-98	1716	0	18-22	15.42	7.28	0.589	184	>1,000	1	4	у	7	Purged ½ gallon.
34	24.3' north of 16th St.	09-23-98	1545	1.5	18-22	12.75	7.33	0.622	17.4	>1,000	1	4	n	7	Purged 1/2 gallon.
35	151' east of 25th Ave.	09-23-98	1445	0	18-22	12.57	7.39	0.567	18.3	>1,000	1	4	n	7	Purged ½ gallon.
36	179' west of 22nd Ave.	09-23-98	1615	NA	17-21	NA	7.28	1.28	18.3	10	у	у	У	709	Difficulty maintaining flow.

GEOPROBE^{TA} GROUND WATEK JAMPLING DATA SUMMARY 10TH STREET SITE—COLUMBUS, NEBRASKA September—October 1998

Tab

Barra	The Screened human is a start was was been a											1			
Bore Hole #	Location	Date	Time	HNu (ppm)	Interval (feet BGS)	Water Level (feet BGS)	рH	Cond. (mS/cm)	Temp. °C	Turb. (NTU)	VOC ML	VOC EPA	D. As EPA	Geoprobe	Comments
37	145.2' west of 20th Ave.	09-23-98	1438	NA	17-21	16	7.04	1.81	16.3	999	у	у	n	709	Grey colored sample.
38	161' west of 18th Ave.	09-23-98	1658	NA	17-21	NA	7.04	1.35	16.1	999	у	У	У	709	
39	43' west of 30th Ave.	09-25-98	1241	NA	17-21	16.9	6.98	1.26	17.6	764	у	у	у	7	
40	42.5' east of 29th Ave.	09-25-98	1322	NA	17-21	14.6	6.98	1.32	17.7	>1,000	y	y	n	7	
41	33' west of 27th Ave.	09-25-98	1040	0	18-22	21	7.83	0.98	20.8	276	2	4	у	7	Purged 1/3 gallon.
42	33' east of 26th Ave.	09-25-98	1240	0	18-22	14.38	7.05	1.18	18.8	127	2	4	n	7	Purged 1/3 gallon.
43	37' south of 17th St.	09-25-98	1645	0	18-22	13.15	7.05	1.13	23.1	121	2	4	n	7	Purged 1/2 gallon.
44	152' west of 24th Ave.	09-25-98	1315	0.5	18-22	17.8	6.96	1.01	20.6	>1,000	2	4	у	7	Purged 1/3 gallon.
45	29' west of 23rd Ave.	09-25-98	1425	0	18-22	13.18	7.02	0.846	21.6	>1,000	2	4	n	7	Purged '/s gallon. /
46	28.8' west of 22nd Ave.	09-25-98	1525	1.5	18-22	13.1	7.04	1.31	24.2	>1,000	2	4	У	7	Purged ¥ gallon.
47	44.5' west of 29th Ave.	09-25-98	1407	NA	17-21	14.5	7.09	1.23	18.3	>1,000	У	у	n	7	
48	44.5' east of 28th Ave.	09-25-98	1500	NA	17-21	NA	7.45	1.1	22.7	679	У	у	n	7	Took 5 minutes to fill Horiba cup. Could have increased temperature.
49	43.5' west of 26th Ave.	09-25-98	1615	NA	17-21	NA	7.14	1.27	20.1	>1,000	у	у	n	7	
50	44' west of 24th on south side of alley	09-25-98	1654	NA	17-21	15	7.21	1.12	20.3	>1,000	у	у	n	7	
51	42.5' east of 23rd Ave.	09-26-98	0930	NA	17-21	12	6.45	1.35	17.8	612	у	у	n	7	
52	41.0' west of n/s alley	09-26-98	1012	NA	17-21	12	6.94	1.46	17.6	>1,000	у	у	n	7	
53	46' west of 27th Ave.	09-26-98	1235	NA	17-21	12.5	6.84	1.36	19.3	>1,000	у	у	у	7	Went to 21' because of difficulty at 54.
54	42.5' east of 25th Ave.	09-26-98	1200	NA	14-18	15.5	7.07	1.27	23.2	225	У	У	n	7	Difficulty with water volume. Had to let it recharge to get sample.
55	44.3' west of 23rd Ave.	09-27-98	1037	NA	17-21	NA	6.45	1.44	18	5	у	у	n	7	
56	42' west of 22nd Ave.	09-26-98	1050	NA	17-21	12	6.89	1.67	18.2	277	У	у	n	7	
57	44.5' east of 31st Ave.	09-27-98	1400	0	12-16	13.56	7.05	1.4	23.3	> 999	2	4	у	7	Purged 1/2 gallon.
58	41.5' west of 26th Ave.	09-27-98	1330	NA	14-18	13	6.95	1.68	19	2	у	у	n	7	
59	41.8' west of 26th Ave.	09-27-98	1235	NA	14–18	12.5	6.9	1.32	19.2	>1,000	У	у	n	7	
60	41.5' west of 24th Ave.	09-27-98	1155	NA	14-18	12	6.86	1.35	18.9	>1,000	У	у	у	7	
61	32' west of 23rd Ave.	09-27-98	1220	0	9-13	11.75	7.08	2.61	21	100	2	4	n	7	Purged 1/2 gallon.
62	21' west of 32nd Ave.	09-27-98	1310	0	11-15	13.3	7.04	1.25	22.7	112	2	4	n	7	Purged 1/2 gallon.
63	26' east of 28th Ave.	09-26-98	1255	0	11-15	12.7	6.99	1.25	23.2	_ 114	2	4	у	7	Purged 1/2 gallon.
64	26' east of 25th Ave.	09-27-98	1005	0	12-16	11.8	7	1.42	18.3	737	2	4	n	7	Purged 1/2 gallon.
65	28' east of 24th Ave.	09-27-98	1040	0	9-13	11.6	6.93	1.61	18.6	733	2	4	n	7	Purged 1/3 gallon.
66	27.4' west of 22nd Ave.	09-27-98	1100	1	9-13	11.3	6.97	0.477	19.8	112	2	4	у	7	Purged 1/2 gallon.
67	34.6' west of 32nd Ave.	09-28-98	0945	0	12-16	13.71	7	1.46	18.8	108	2	4	n	7	Purged 1/2 gallon.
68	35.9' east of 31st Ave.	09-28-98	0900	0	12-16	12.77	6.95	1.26	18.9	107	2	4	n	7	Purged 1/3 gallon.
69	157' west of 26th Ave.	09-26-98	1204	0	11-15	12.5	6.92	1.12	23.2	114	2	4	n	7	Purged 1/2 gallon.
70	26' west of 25th Ave.	09-26-98	1105	0	11-15	12	6.97	1.7	22.2	188	2	4	у	7	Purged 3/3 gallon.
71	33.5' east of 24th Ave.	09-26-98	1015	0	9-13	12	6.98	1.66	22.6	265	2	4	n	7	Purged 1/2 gallon.
72	28' west of 22nd Ave.	09-26-98	0900	0	18-22	10.2	7.02	1.3	20.7	>1,000	2	4	у	7	Purged 3/3 gallon.
73	31' cast of 27th Ave.	09-20-98	1044	0	18-22	15.91	7.03	1.2	19.2	94	2	4	n	7	Purged 1/3 gallon.
74	43' west of 23rd Ave.	09-28-98	1130	0	12-16	14.15	7.14	2.27	19.5	231	2	4	n	7	Purged 1/2 gallon.
75	42' east of 23rd Ave.	09-28-98	1315	0	12-16	13.36	7	1.69	19.8	118	2	4	n	7	Purged 1/2 gallon.

GEOPROBE™ GROUND WATER SAMPLING DATA SUMMARY 10TH STREET SITE—COLUMBUS, NEBRASKA

Tabl

September-October 1998

Bore Hole #	Location	Date	Time	HNu (ppm)	Interval (feet BGS)	Water Level (feet BGS)	pH	Cond. (mS/cm)	Temp. °C	Turb. (NTU)	VOC ML	VOC EPA	D. As EPA	Geoprobe	Comments
76	53' west of 22nd Ave.	09-28-98	1350	0	12-16	12.4	7.07	2	19.9	204	2	4	n	7	Purged 1/2 gallon.
77	44' west of 14th Ave.	09-28-98	1440	NA	17-21	NA	6.84	1.49	17.1	804	у	у	у	709	
78	147.3' east of 25th Ave.	09-28-98	1435	0	15-19	16.21	6.97	1.27	24.1	107	2	4	n	7	Purged 1/2 gallon.
79	121' west of 22nd Ave.	09-28-98	1520	0	15-19	15	7.04	1.66	21.4	107	2	4	n	7	Purged 1/3 gallon.
80	41.5' cast of 20th Ave.	09-28-98	1445	NA	17-21	12	6.94	1.43	20.6	>1,000	у	у	n	709	
81	40.5' west of 18th Ave.	09-28-98	1530	NA	14-18	11.5	6.83	1.31	20.4	>1,000	у	У	n	709	
82	179.5' west of 23rd Ave.	09-28-98	1606	NA	17-21	20	6.85	1.28	21.2	>1,000	У	У	n	709	
83	38' west of 17th Ave.	09-28-98	1355	NA	17-21	13.5	7	1.43	19.5	>1,000	у	У	n	709	
84	10' south of MW-15	09-28-98	1320	NA	17-21	14.25	6.88	0.91	19.4	>1,000	у	У	n	709	/
85	6' north of MW-3C	09-28-98	1701	NA	17-21	14.5	6.68	1.11	19.8	>1,000	у	у	n	709	
8 6	49.5' west of 18th Ave.	09-28-98	1645	2	15-19	14.5	6.99	1.33	21.1	765	2	4	у	7	Purged 1/2 gallon.
87	53' east of 21st Ave.	09-28-98	1730	NA	17-21	15.5	6.89	1.24	19.8	10	у	У	n	709	10 for turbidity off as sample was turbid.
88	47' west of 18th Ave.	09-28-98	1555	0	15-19	15	6.87	1.49	21.4	81	2	4	n	7	Purged 1/3 gallon.
89	12ul/ 30ul 40 cast	09-26-98	0835	NA	17-21	19.5	6.38	1.75	18.6	49	у	у	y .	7	
90	118.5' south 45' west of 12th and 29th intersection.	09-27-98	0955	NA	20-24	21.5	6.22	1.39	16. <u>8</u>	104	у	у	n	7	Attempted to collect at 17'-21'-no water -had to start another hole.
91	78.4' south of 17th St.	09-26-98	0820	0	18-22	21.52	6.62	1.09	20.7	115	2	4	п	7	Purged 1/2 gallon.
92	78' south of 17th St.	09-27-98	0925	0	18-22	21.15	6.82	1.29	18.5	85	2	4	n	7	Purged 1/2 gallon.
93	95.4' west of 26th Ave.	09-29-98	0825	0	12-16	10.28	6.95	1.43	18.7	106	2	4	У	7	Purged 1/3 gallon.
94	124.5' east of 26th Ave.	09-29-98	0850	0	14-18	10	6.96	1.66	17.6	23	2	4	n	7	Purged 1/2 gallon.
95	446.5' east of 26th Ave.	09-29-98	1000	0	12-16	11.44	7.06	1.37	18.9	>1,000	2	4	n	7	Purged 1/2 gallon
96	465' east of 26th Ave.	09-29-98	1450	0	9-13	12	6.99	1.46	23.1	492	2	4	n	7	Purged 1/2 gallon
97	103' west of 25th Ave.	09-29-98	1135	2	9-13	12.1	7.21	1.56	23.4	>1,000	2	4	n	7	Purged 1/2 gallon
98	85' east of 25th Ave.	09-29-98	1045	0	9-13	11.8	6.8	1.33	21	>1,000	2	4	n	7	Purged 1/2 gallon
99	44' east of 27th Ave.	09-29-98	1540	0	12-16	11.15	6.83	1.46	22.2	770	2	4	n	7	Purged 1/2 gallon
100	47.5' west of 25th Ave.	09-29-98	1605	0	12-16	NA	7	1.44	21.6	>1,000	2	4	n	7	Purged 1/2 gallon
101	42' west of 25th Ave.	09-29-98	1535	NA	14-18	12	6.98	1.11	22.3	>1,000	у	У	n	709	
102	46.5' east of 24th Ave.	09-29-98	1611	NA	14-18	10.75	6.97	1.33	20.4	>1,000	у	у	n	709	
103	45' west of 25th Ave.	09-29-98	1454	NA	14-18	11.75	7.08	1.07	22	>1,000	У	у	п	709	
104	45.5' west of 27th Ave.	09-29-98	1140	NA	17-21	19.5	6.74	1.27	19.6	298	у	у	n	709	
105	65' east of 26th Ave.	09-29-98	1326	NA	17-21	18	6.87	0.94	21.5	546	у	у	n	709	
106	MW-10	09-29-98	1049	NA	17-21	18.5	6.72	0.804	19	587	у	У	n	709	
107	179' cast of 29th Ave.	09-29-98	1000	NA	17-21	16.75	6.77	1.16	17	>1,000	у	у	у	709	
108	45.5' east of 25th Ave.	09-29-98	0615	NA	14-18	11.8	6.82	1.03	17.1	>1,000	у	у	n	709	
109	at MW-11	09-29-98	0845	NA	17-21	13	6.53	0.728	16.6	>1,000	у	У	у	709	
110	110' east of 31st Ave., 340' north of 10th Ave.	09-29-98	1405	NA	17-21	18.5	6.53	1.25	20.5	43	у	у	n	709	
111	23' east of 27th Ave., 89' south of 10th St.	09-30-98	1425	1	15-19	16.02	6.68	1.89	21.4	>1,000	2	4	n	7	Purged '/s gallon
112	S-7	09-30-98	1636	NA	11-15	11.98	6.73	1.87	20.8	>1,000	2	4	n	7	Purged 1/2 gallon

	Tab														
GEOPROBE™ GROUND WATEk JAMPLING DATA SUMMARY 10TH STREET SITE—COLUMBUS, NEBRASKA September—October 1998															
Bore Hole #	Location	Date	Time	HNu (ppm)	Screened Interval (feet BGS)	Water Level (feet BGS)	pН	Cond. (mS/cm)	Temp. °C	Turb. (NTU)	VOC ML	VOC EPA	D. As EPA	Geoprobe	Comments
94A	25' north of edge of 23rd St.	09-29-98	1205		12-16	12.61	6.83	1.44	23.5	>1,000	2	4	n	7	Purged 1/2 gallon
95A	3' north of edge of 23rd St.	09-29-98	1305	4	14-18	13.18	6.77	0.764	23.2	195	2	4	n	7	Purged 1/5 gallon
98A	76.5' west of 24th Ave.	09-29-98	1430	0	9-13	11.91	6.99	1.74	23.4	>1.000	2	4	п	7	Purged 1/2 gallon

				<u> </u>		Table C-2					
	GEOPROBE™ SOIL SAMPLING DATA SUMMARY 10TH STREET SITE—COLUMBUS, NEBRASKA September—October 1998										
Borehole #	Location	Date	Time	HNu (ppm)	Sampled Interval (feet BGS)	Soil Description	VOC ML	VOC EPA	Geoprobe		
S-1	See Map	09-30-98	0854	5	1-3	Black silty clay. Track sand and gravel.	2	3	7		
S-1	See Map	09-30-98	0905	Background	6-8	Fine to medium sand.	2	3	7		
S-2	See Map	09-30-98	0910	7	1-3	Black silty clay. Fill in upper '4.	2	3	7		
S-2	See Map	09-30-98	0940	Background	6-8	Tan fine to medium sand. Traces of sandy, silty clay.	2	3	7		
S-3	See Map	09-30-98	0953	11	1-3	Upper 1/5 fill. Rest dark grey silty clay with traces of sand and gravel.	2	3	7		
S-3	See Map	09-30-98	1005	3	6–8	Tan silty clay (upper 8"). Tank silty fine to medium sand (rest).	2	3	7		
S-4	See Map	09-30-98	1340	3	1-3	Black silty clay (upper 8" concrete and sand fill).	2	3	7		
S-4	See Map	09-30-98	1347	5	6-8	Upper 18" tan silty fine sand; lower 6" medium to coarse sand.	2	3	7		
S-5	See Map	09-30-98	1500	1	1-3	Upper 6" gravel and sand fill. Bottom dark brown to dark silty clay.	2	3	7		
S-5	See Map	09-30-98	1510	4	6–8	Upper 5" olive silty clay. Middle 12" tank fine sand. Below 7" fine to medium sand.	2	3	7		
S-6	See Map	09-30-98	1530	20 Towards Bottom	1-3	Dark grey silty clay.	2	3	7		
S-6	See Map	09-30-98	1540	3	6-8	Top 18" olive silty clay. Bottom 6" medium to coarse sand.	2	3	7		
S-7	See Map	09-30-98	1555	70	1-3 Top 6" sand and gravel fill. Middle 6" dark grey silty clay. Bottom 12" olive clay and silt. 2 3		3	7			
S-7	See Map	09-30-98	1610	7	6-8	Tan fine to medium sand.	2	3	7		
S-8	B See Map 09-30-98 1755 NA 1-3 Top 18" fill. Bottom 6" black silty clay. 2 3 7										
??	Trip Blank	10-01-98	1130	NA	NA	NA					

Appendix D

EPA Region 7 Analytical Data Package

including:

Chain of Custody Field Sheets Laboratory Approved Analytical Results

Wa/25/98

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

	'rint)	hauser	NAME		YEY OR ACTIVITY	Y				DATE OF COLLECTION SHEET
CONTENTS OF SHIP										······································
SAMPLE NUMBER			ECONTAIN	BOTTL		water		nent		RECEIVING LABORATORY ter REMARKS/OTHER INFORMATION (condition of samples upon receipt, other sample numbers, etc.)
PSKS001	1'				11	K				
1 002					1.					
500					11					
004										
COX.	11									
006	m2:									+ 2 cubis sent
-007(DI ·					╞╋╢				m for QC
००८	1 '									perposes.
009	1.					Ш				not relabeled
00	1.						_			Mot relabeled
d oil	1.					M				aua.
\rightarrow		<u>_</u>								M 9/08/98
			\frown)						
				/		$\left \right $				
	ļ		$ \rightarrow $	4-6	AA		_			
<u> </u>		 		64		h				
					<u> </u>	74	4			· · · · · · · · · · · · · · · · · · ·
						М		4	14	-
						$\left \cdot \right $	/		4	
						\square				
		 				$\left \right $				
		<u> </u>		÷		$\left \right $				` ``
					MODE OF SHI					
DESCRIPTION OF SI							-			Enla L Samell
		- <u> </u>	OX(ES)				NL C	ARR	RIER:_	Federal Express
ICE CHEST	(S); OTHER	<u> </u>			SAMPLI		ONV	EYE	D	(SHIPPING DOCUMENT NUMBER)
PERSONNEL CUSTO									,	
RELINQUISHED B		7/24/	79 16	a) 1/	ECEIVED BY	ko	u	1, [(8)	25/	Transport to Lab
RELINQUISHED BY	UNSEALE		TIME	K	ECEIVED BA	4	UN	\$¢A	LED	REASON FOR CHANGE OF CUSTODY
	UNSEALE		TIME		SEALED	- 1	UN	SEA	ALED	REASON FOR CHANGE OF CUSTODY
RELINQUISHED BY		JUAIE	LINE	. *	CUCIVED DT					
		ļ		1						

D		mech	wer				R ACTIVITY		RE	GIO			DATE OF COLLECTION 8 SHEE	2
	ITENTS OF SHIP		TYP	E OF CONTA	INFRS					I ED I	MEDIA			
_	SAMPLE NUMBER		BOTTLE ERS OF CONT	BOTTLE	BO	ITLE NUMBER	NOA SET (EVIALS EA)	water		sediment		ther	RECEIVING LABORATORY REMARKS/OTHER INFORMATION (condition of samples upon receipt, other sample numbers, etc.)	
5_	105412) [_			x						
	<u>/ Φ/}</u>	1'			<u> </u>									
	0 [4	1						H	\square		_	_		
_	@15~							Щ.						
	\$14							Ц			_	_		
	017				_		1 '	$\left \right $		$\left - \right $		_		
_	3 (8)							┼╂┥	┝╌┤	$\left - \right $	+	-		
	019 Ø20										-			
				<u></u>			<u> </u>	H	$\left \right $		-+			••
	022						<u> </u>	Ħ						
	025						1,	╂					· · · · · · · · · · · · · · · · · · ·	-
1	024							$\overline{\mathbf{V}}$						
	- 025	t 35												
	\sim								Π				· · · · · · · · · · · · · · · · · · ·	
				7	6									
					T_{a}	ĊĂ		h						
					04	\mathcal{A}		Ø						•
	· ·								\mathcal{D}			2		
										Z	4	\square		
													×	
					_			 	\square					
					_ _				\square		_			
JES	CRIPTION OF SH	IIPMENT					DE OF SH							
_	PIECE(S) CC	DNSISTING OF	<u> </u>	BOX(ES)		-	COMME		AL C	ARR	IER:.		Felfymes	
_	ICE CHEST(s); other			<u></u>		SAMPL		ONV	EYE	D		(SHIPPING DOCUMENT NUMBER)	
PER	SONNEL CUSTO	DY RECORD												·····
			9/24	. 1	1E	RECEI	VED BY		hle	25	ĥ	5	Trasport to Lab	
	EALED	UNSEALE	DATI	E TIN	AE	RECEI		01		35.4		¥	REASON FOR CHANGE OF CUSTO	
		UNSEALE		1	1	SEA					۱LEC		4	

		~		CHAI	N 01	F CUSTODY RE	CO	RD	<u> </u>	~	ļ	Resating MIO/1
ACTIVITY LEADER(P	Print\		_	RONMENT	NL P	ROTECTION AGE	NCI	(RE	GIO	N V	/ 	DATE OF COLLECTION SHEET
Paul Doherty	Darre	II Scm	nerhou	NAME UP 3 NSCr)(/EY OR ACTIVITY . St. Site	ſ	ps	.1	دC.		DATE OF COLLECTION SHEET
CONTENTS OF SHIP												
SAMPLE				ONTAINERS	_	AVOA SET	-	SAMP			other	RECEIVING LABORATORY REMARKS/OTHER INFORMATION
NUMBER		BOTTLE SERS OF CO	BOT	PER SAMPL	BOTTLI E NUI		water	soit	sediment	dust		(condition of samples upon receipt, other sample numbers, etc.)
PS1CS- @25	2.						R					
- 026	1:					1 4	Π	Π				
- 027	1.					11	Π	Π				
-028	1.					1,	Π					
- 429	11						Π	Γ				
-Ø30	1.						Π	Π				
-Ø31	1.						Π	Π				
-432	1.						Π					
- 433	1.		1				Π					
-@34) 1						Π					
-435	1.						Π					
- 436	1.		1				Ħ					
-937	1,						Π					· · · · · · · · · · · · · · · · · · ·
-438	1.		1				Ħ	\square				
- Q39	, •						Ħ				-	
-040	11						Π	Π				
-@41	1.				·						_	
-042						1.	Ħ					
- \$43			-			1.	Ħ	Π				
-944			1			1.	11	Π				
-045			1			1 (Ħ					
-046						11						
047			1			1.	Ħ					
1-aur			1			i	N	7				
DESCRIPTION OF SH	HIPMENT			6		MODE OF SHI	PM	ENT				
PIECE(S) C	ONSISTING O	F	BOX	(ES)		COMME	RCI	AL C	ARF	RIER		
				(20)	_	COURIE	R					
			·		_	SAMPLI			EYE	.0	0	(SHIPPING DOCUMENT NUMBER)
PERSONNEL CUSTO			тε	TIME	R	ECEIVED BY			_			REASON FOR CHANGE OF CUSTODY
haven to		9	130	1525	:1			Ω	Ua	Ω	0	Qua Qua Q
SEALED	UNSEAL		- 18	• -		SEALED	~~	UN	SEA	ALE	5y	and age
RELINQUISHED BY		DA	ΤE	TIME	R	ECEIVED BY					/	REASON FOR CHANGE OF CUSTODY
SEALED	UNSEAL		ŤΕ	TIME	A	SEALED		UN	ISE/	ALE		REASON FOR CHANGE OF CUSTODY
SEALED	UNSEAL	ED				SEALED		UN	ISE.	ALI	= 0 [

• •

ACTIVIT	TY LEADER(P			ENVIR							GIO	N V		
Bull	Doherty	/barre	11 Same	ver	IAME 105C	0F 30NV V	10 2	$\frac{1}{2}$ SY.	S	ċ	f_{e}	0	1	DATE OF COLLECTION 98 SHEET
	NTS OF SHIP							· · · · · ·	•					
S	AMPLE		TYI	PE OF CO	ONTAIN	ERS		A INDA SET	5			MED	other	RECEIVING LABORATORY REMARKS/OTHER INFORMATION
Ň	UMBER		BOTTLE SERS OF CON	BOT		BOTTLE		LIVOA SET SE VIALS EA)	water	soil	sediment	dust		(condition of samples upon receipt. other sample numbers, etc.)
PS10	cs-049							11	ĽХ					
	- <i>q</i> 51							ι.	[]					
	- 452							<u> </u>	┝╂					
	-053		· · · · · ·					1 -	┼╂					
	-454				··			<u> </u>	┝╋					
	-055 -056								$\left\{ + \right\}$					
	-457					·		1 (\square					
	-058		·					1,	Ħ					
	- Ø59F	11						11						MILNZ
	- 46 CF							1'	Π				V	0614003
	- 96 (1							1					X	NOF" on Rinsa
	-03							1	ĻĮ					Sample- Leriove
$+ \mathbf{Y}$	-650								N					after sande rece
								-						IDI II.
		\checkmark	10		0				-	$\left \right $				1119
			$\langle \langle \langle \rangle \rangle$	\square	\leftarrow				-	\vdash				
) /							
						\triangleleft	╏	2		Π				
							\mathbb{Z}	h			•			
									Z	4	Δ		Ŋ	b
									\square		X	E		
					.								K	
DESCR	IPTION OF SH		••• =:				M	ODE OF SHI		_				\sim
	-	onsisting oi		BOX((ES)		-	COMME		AL C	ARF	RIER	:	
	LICE CHEST(s); other							ER C	ONV	EYE	D		(SHIPPING DOCUMENT NUMBER)
	NNEL CUSTO				TIME		2051	VED BY						REASON FOR CHANGE OF CUSTOD
RELING		(SAMPLER)		30-8						. 1	Ŋ.	1	60	A a a a a a a
		UNSEALE				25				VN:	SEA		ðý.	Josnung ge
RELING	UISHED BY			E	TIME		ECEI	VED BY						REASON FOR CHANGE OF CUSTOD
		UNSEAL								UN	ISE/	ALE		
RELING	UISHED BY		DAT	E	TIME	. R	ECEI	VED BY						REASON FOR CHANGE OF CUSTOD
	-60	UNSEAL	EO			\vdash	SEA	LED		UN	ISE.	ALI	εοΓ	4

AUATABY B

ACTIVITY LEADER(P	rint)		NAME	OF SURVEY	OR ACTIVIT	Y	_	_			DATE OF COLLECTION
Paul Pcherty /	Darrell	Some	haver	10th St	Site		25	1	<u> </u>	>	DAY MONTH YEAR / OF
CONTENTS OF SHIPN	AENT		_			_			_		
SAMPLE		TYI			VOA SET	s				IA other	RECEIVING LABORATORY REMARKS/OTHER INFORMATION
NUMBER	CUBITAINER	BOTTLE	TAINERS PER S	4, 104,00	VIALS EA)	water	201	sediment	ust	•	(condition of samples upon receipt, other sample numbers, etc.)
061 (6 . 01 7	NUME	EHS OF CON	TAINERS PER S		R	÷	5	š	ē	· · · ·	
PS1C5-062	1			<u> </u>		X X		_	$\left \right $		
-0674	tp-			1.		ĮΛ					
- 101					1.	 	X				
-102					11		X				
- 103					1.		X				
- 104					1.	Γ	V				
-105]	1.		X				
-106					11		X				
-107					1.	<u>†</u>	Ŷ				
-108					· · · ·	+	X				
-109	·····			<u>†</u>		+	X		$\left \right $		
h t		· · · · · ·		+		┢─	Ŕ		\square		· · · · · · · · · · · · · · · · · · ·
-110				<u> </u>		┼─	+ +		\square		
->11			ļ		11	╞	X				
-112			<u> </u>		11	_	X	_			
-113						_	X				
-114					5 *		X				
-115				ļ	٢٠	_	X				
V -116F			11				M				
				<u> </u>							•
			NA								
		$\sum_{i=1}^{n}$		t t	E FAI						
		T T	52.	h/		F	M	Γ	[Re. 11 G
			101	PUT		╞					10 hall
				· · · · ·	<u> </u>	╞──	╞─┤				1- 41
DESCRIPTION OF SH	IPMENT		<u> </u>	Land I	MODE OF SH		ENT				1
											<u></u>
	NSISTING OF		BOX(ES)		COMME		al C	AHF	NER	:	
	s); other			.			ONV	EYE	D		(SHIPPING DOCUMENT NUMBER)
PERSONNEL CUSTO	DY RECORD					-				_	
RELINQUISHED BY	SAMPLER)	DAT				Л	. /	٨			REASON FOR CHANGE OF CUSTO
Konald to	meld		2-91 093	N T [/	rech	K	Øh	ŁØ	h_{γ}	1	V (Inalisis
SEALED	UNSEALE		E TIMI		ALED		UN	SEA	ALE	<u>⊳</u> ∮	REASON FOR CHANGE OF CUSTO
										-	REASON FOR CHANGE OF COST
SEALED	UNSEAL				ALED		UN	<u>SE</u>	ALE	DΓ	
RELINQUISHED BY		DAT	E TIME		EIVED BY						REASON FOR CHANGE OF CUST

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101

Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS
	201		
EPA Project Leade	er: Darrell Som	merhauser / EPA RP	M E&E/START Project Manager: Ron Ramold
Sample Date: 9-	23-98	Sample Time:	1400 Sampler: Baer/Schedemenn
		ANALYSIS	REQUESTED
Container	Preservative	MGP Code	Analysis
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC
1 L cubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)
		SAMPLE DI	ESCRIPTION
Media: water		Sample Area:	Aliquots:
ple Location:	31		
Sample Description pH: 6.99 cond.: 1.55 temp.: 17.7 turbitity: 999 Other Comments/P Owner Information C:ty of Column	* JúS / cm *C NTU roperty	330 Avenue / U.S. Hwy. 30 & 81	
·lo Merlin L City Cn Box 1677 Columbus, NE	:ndahl ~ 19:ncer (402) -564- 8584		

S 🖁

1

	<u></u>		
A		ENTAL PROT	SHEET ECTION AGENCY-REGION VII nesota Avenue, K.C., KS 66101
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS
		Sample #:	002
EPA Project Leade	er: Darrell Som	merhauser / EPA RI	PM E&E/START Project Manager: Ron Ramold
Sample Date: 9	. 23.98	Sample Time:	1545 Sampler: Fletcher/Keller
		ANALYSIS	REQUESTED
Container	Preservative	MGP Code	Analycis
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC
-1 L cubitainer	HNO3, 4° C	WM37	Arsenic (Dissoived by ICAP) RJS
		SAMPLE DI	ESCRIPTION
Media: water		Sample Area:	Aliquots:
Sample Location:			SAMPLE LOCATION MAP
Location	34		
Sample Description pH: 7.33	1:		
cond.: 0.622 "	μ ΩμCS/cm		
temp.: /7.4	°C		
turbitity: > 0●○)	NTU	City Storage Lot was	
Other Comments/P	· · ·		
Sect Sec 5 QP1	semple		

•

		ENTAL PROT	SHEET ECTION AGENCY-REGION VII nesota Avenue, K.C., KS 66101
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS
		Sample #:	¢¢3
EPA Project Lead	er: Darrell Som	merhauser / EPA RI	PM E&E/START Project Manager: Ron Ramold
Sample Date: 9	· 2 Z · 9 8	Sample Time:	1754 Sampler: Beer/ Schedenenn
		ANALYSIS	REQUESTED
Container	Preservative	MGP Code	Analysis
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC
1 L cubitainer	HNO, 4° C	WM37	Arsenie (Dissolved by ICAP) RJS
		SAMPLE DI	ESCRIPTION
Media: water		Sample Area:	Aliquots:
mple Location:			SAMPLE LOCATION MAP
ل عد معا : مع	ິງ		
Sample Descriptio	n:		
pH: 6.7			
cond.: 1.2	n µrS∕cm		
temp.: /9	°C	33rd Avenue / U.S.	
turbitity: 160	NTU		
Other Comments/ Owner Informatio (14 of Columbus n Lindahl Dok 1677 Cdumbus, NE 68602 (402) S64 · 8584	B: Union tou: 1.x RR J.M. Mort: 1800 Formen si Omaha, NE C		* *

. •

-

	FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101									
Activity: 10th Street Site, Columbus, NE Activity #: PS1CS										
		Sample #:	0+4							
EPA Project Leade	er: Darrell Som	merhauser / EPA RP	M E&E/START Project Manager: Ron Ramold							
Sample Date: 9	.23.98	Sample Time:	1405 Sampler: Fletcher/keller							
		ANALYSIS I	REQUESTED							
Container	Preservative	MGP Code	Analysis							
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC							
1 L cubitainer	-HNO,, 1º C	WM37	Arsonie (Dissolved by ICAP)							
. <u></u>	 									
		SAMPLE D	ESCRIPTION							
Media: water		Sample Area:	Aliquots:							
Sample Location:			SAMPLE LOCATION MAP							
Location 3ϕ Sample Description pH: 7.32 cond.: 0.538 temp.: (8.4) turbitity: 71000 Other Comments/P Owner Information See Same	مر پیS / cm °C NTU Property	33rd Avenue / U.S. Hwy 30 & 81								

		ENTAL PROT	SHEET ECTION AGENCY-REGION VII							
Superfund Division, 726 Minnesota Avenue, K.C., KS 66101Activity: 10th Street Site, Columbus, NEActivity #: PS1CS										
Sample #: 2005										
EPA Project Leader: Darrell Sommerhauser / EPA RPM E&E/START Project Manager: Ron Ramo										
Sample Date: 9.	22.98	Sample Time:	1635 Sampler: Fletcher/ Keller							
		ANALYSIS	REQUESTED							
Container	Preservative	MGP Code	Analysis							
4 x 40 mL vial	HCL, + C	W13	LDL VOC PJS							
1 L cubitainer	HNO3, 4° C	WM37	Arsenic (Dissolved by ICAP)							
		SAMPLE DI	ESCRIPTION							
Media: water		Sample Area:	Aliquots:							
Sample Location:			SAMPLE LOCATION MAP							
Location i	21									
Sample Description pH: 구.こう	::									
cond.: 0.573 .	∧ µcS / cm									
temp.: 20.7	°C	33rd A								
turbitity: 31	NTU	Cey Stonge Lox wes								
Other Comments/P Owner Information See Samp	:									

		• <u> </u>	
		ENTAL PROT	SHEET – ECTION AGENCY-REGION VII nesota Avenue, K.C., KS 66101
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS
		Sample #:	ØØL
EPA Project Leade	er: Darrell Som	merhauser / EPA RI	PM E&E/START Project Manager: Ron Ramold
Sample Date: 9. 2	3.68	Sample Time:	1615 Sampler: Schidomen/ Beog
		ANALYSIS	REQUESTED
Container	Preservative	MGP Code	Analysis
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC-RJS
1 L cubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP) * Double
			volume sent for
, <u></u>		SAMPLE DI	ESCRIPTION ac jurpones
Media: water		Sample Area:	Aliquots: per
mple Location:			SAMPLE LOCATION MAP 7/28/98
Locution Sample Description pH: 7.28 cond.: 1.29 temp.: 18.3 turbitity: 10 Other Comments/P Owner Information See Samp	ا: مریدS / cm م C NTU roperty	33rd Avenue / U.S. Hwy. 30 & 81	

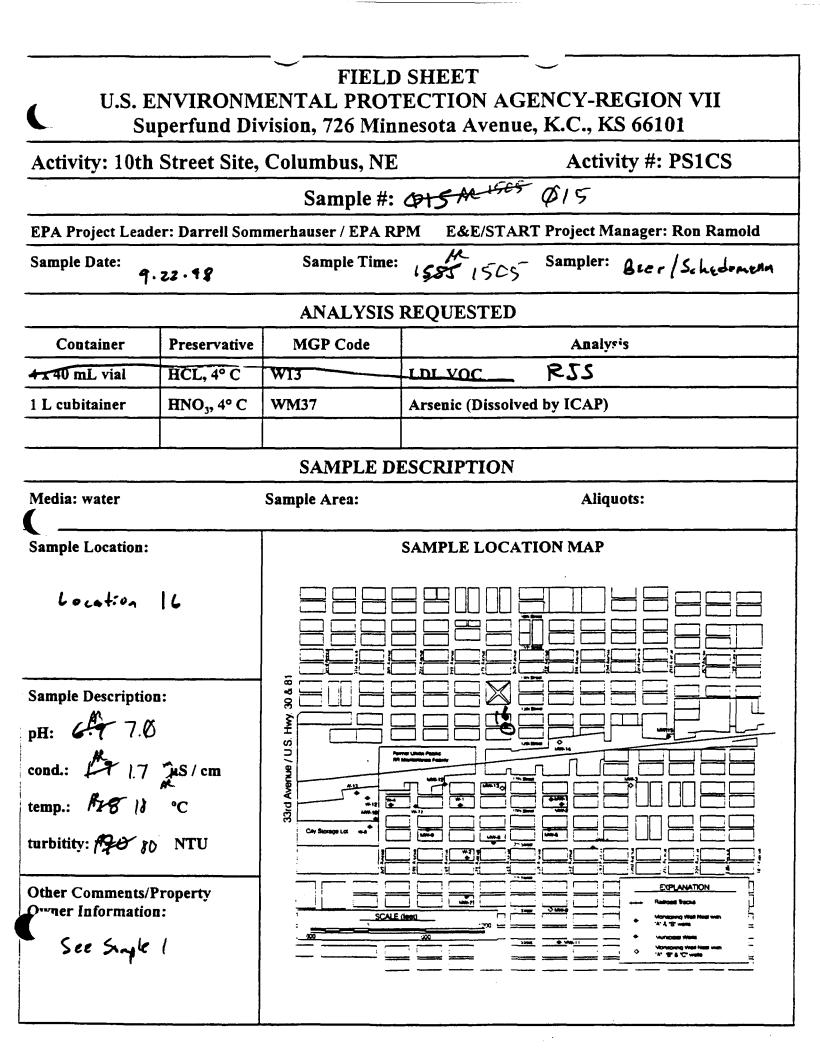
		· · · · · · · · · · · · · · · · · · ·			
FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
· • · · · · · · · · · · · · · · · · · ·	·	Columbus, NE	Activity #: PS1CS		
- <u></u>		Sample #:	००८		
EPA Project Leade	er: Darrell Som	merhauser / EPA RI	M E&E/START Project Manager: Ron Ramold		
Sample Date: 9.	24.48	Sample Time:	1055 Sampler: Keller/Fletcher		
		ANALYSIS	REQUESTED		
Container	Preservative	MGP Code	Analysis		
4 x 40 mL viai	HCL, 4° C	W13	LDL-VOC		
1 L cubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)		
		SAMPLE DI	ESCRIPTION		
Media: water		Sample Area:	Aliquots:		
mple Location:			SAMPLE LOCATION MAP		
Locution	3				
Sample Description pH: 7.17	:				
cond.: 0.496 "	∧µS/cm	enu			
temp.: / B .O	°C	33rd Ave			
Other Comments/P Owner Information	• •				
Sce Staple	1				

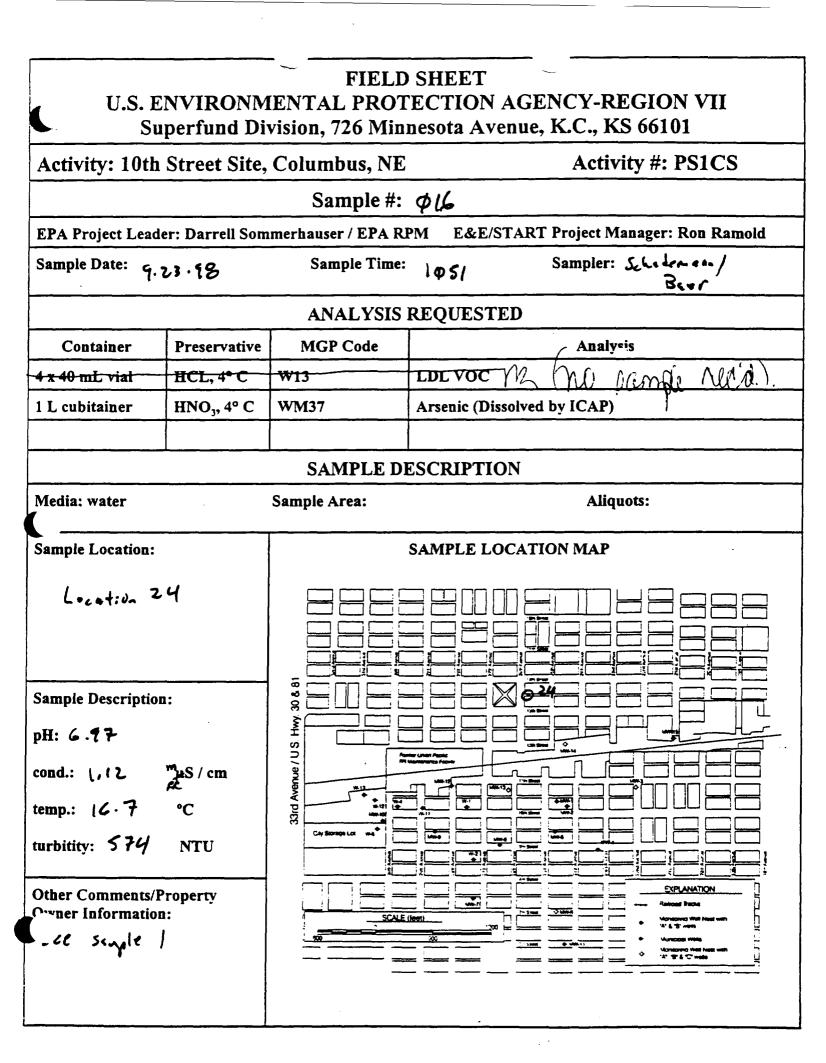
.

(

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101							
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS				
		Sample #:	@\$?				
EPA Project Leade	er: Darrell Som	merhauser / EPA R					
Sample Date: 4.7	86. 2 S	Sample Time:	1503 Sampler: feeller/Firtcher				
		ANALYSIS	REQUESTED				
Container	Preservative	MGP Code	Analysis				
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC				
1 L cubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)				
	- - 		L				
	· · · · · · · · · · · · · · · · · · ·	SAMPLE DI	ESCRIPTION				
Media: water		Sample Area:	Alíquots:				
hple Location:			SAMPLE LOCATION MAP				
Location	14						
Sample Description: pH: 6.99							
cond.: 0.642 . temp.: 18.9	vµS/cm %⊂	33rd Avenue / U					
turbitity: 115	NTU	Criv Storage Lot we					
Other Comments/P Owner Information							
See sample							

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS		
		Sample #:	φιφ		
EPA Project Leade	er: Darrell Som	merhauser / EPA RI	PM E&E/START Project Manager: Ron Ramold		
Sample Date: 9	.23.98	Sample Time:	1245 Sampler: Keller/Fletcher		
		ANALYSIS	REQUESTED		
Container	Preservative	MGP Code	Analysis		
-4 x 40 mL vial	HCL, + C	W13	LDL VOC- P3.5		
1 L cubitainer	HNO3, 4° C	WM37	Arsenic (Dissolved by ICAP)		
		· · · · · · · · · · · · · · · · · · ·	l		
		SAMPLE DI	ESCRIPTION		
Media: water		Sample Area:	Aliquots:		
Location:	٦				
Sample Description pH: 7.0 cond.: 0.513 temp.: 16.8 turbitity: 451 Other Comments/P Owner Information	roperty 1:				


FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS		
<u></u>		Sample #:	Q11		
EPA Project Leade	er: Darrell Som	merhauser / EPA RF	PM E&E/START Project Manager: Ron Ramold		
Sample Date: 9.2	3-90	Sample Time:	1716 Sampler: beeker/Fleukhur		
		ANALYSIS	REQUESTED		
Container	Preservative	MGP Code	Analyris		
4 x 40 mL Vial	HCL, 4° C	W13	LDLVOC RJS		
1 L cubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)		
			ESCRIPTION		
Media: water	•	Sample Area:	Aliquots:		
Sample Location:			SAMPLE LOCATION MAP		
Location 3					
Sample Description pH: 7.28	:	/U.S. Hwy. 30 & B1			
	xS/cm	33rd Avenue /			
temp.: 18.9 °C					
Other Comments/Property Ormer Information: See Sample)					


FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS		
		Sample #:	Ø12		
EPA Project Leade	r: Darrell Som	merhauser / EPA RF	M E&E/START Project Manager: Ron Ramold		
Sample Date: 9	· 22 · 98	Sample Time:	1655 Sampler: Scholemond / Dovr		
		ANALYSIS	REQUESTED		
Container	Preservative	MGP Code	Analysis		
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC Ris		
1 L cubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)		
		SAMPLE DI	ESCRIPTION		
Media: water		Sample Area:	Aliquots:		
Siple Location:			SAMPLE LOCATION MAP		
Locytion Sample Description pH: 6.7 cond.: 1.7 m temp.: (9		33rd Avenue / U.S. Hwy 30 & B1			
turbitity: 991 Other Comments/P Owner Information See Sem	NTU roperty ::				

		ENTAL PROT	SHEET ECTION AGENCY-REGION VII
		vision, 726 Mini Columbus, NE	nesota Avenue, K.C., KS 66101 Activity #: PS1CS
		Sample #:	
EPA Project Lead	er: Darrell Som	merhauser / EPA RI	
Sample Date: 7.	24.98	Sample Time:	9825 Sampler: Fletche Bser
		ANALYSIS	REQUESTED
Container	Preservative	MGP Code	Analysis
4 x 40 mL viai	HCL, 4° C	W13	LDE VOC RJS
1 L cubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)
		SAMPLE DI	ESCRIPTION
Media: water		Sample Area:	Aliquots:
Sample Location:			SAMPLE LOCATION MAP
Location	2		
Sample Description pH: 7.2	a:		
cond.: 0.506	1	33rd Avenue / US	
temp.: 16.4	°C		
turbitity: >1000 NTU			
Other Comments/Property Owner Information:		SCALE	State ECPLANATION (1981)

. •

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
Activity: 10th	Street Site,	Columbus, NE	Activ	ity #: PS1CS	
,		Sample #:	Ø14		
		merhauser / EPA RP	PM E&E/START Project Ma	anager: Ron Ramold	
Sample Date: 9. 2	4.98	Sample Time:	Q830 Sampler:	teller / Firther	
		ANALYSIS I	REQUESTED		
Container	Preservative	MGP Code	Analys	sis	
+ x 40 mL vial	HEL, 4º C	W13	LDL VOC RJS		
1 L cubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)		
		SAMPLE DE	ESCRIPTION		
Media: water		Sample Area:	Aliqu	iots:	
Sample Location:			SAMPLE LOCATION MAP		
Location)					
Sample Description pH: 7.36	:				
cond.: (9.486 m	<i>r</i> .	Avenue			
temp.: 16.4	°C	C 4y Storage Lot yea*			
turbitity: 0.496 NTU					
Other Comments/P Owner Information See Samle	:			EXPLANATION Parload facts Monageng West Hass with *********************************	
<u> </u>				······································	

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101						
	•	Columbus, NE	Activity #: PS1CS			
Activity. 10th	Street Site,					
		Sample #:				
		merhauser / EPA RI				
Sample Date: 9.	23.98	Sample Time:	1445 Sampler: Fletcher / teller			
		ANALYSIS	REQUESTED			
Container	Preservative	MGP Code	Analysis			
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC			
1-L eubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)			
			······			
		SAMPLE DI	ESCRIPTION			
Media: water		Sample Area:	Aliquots:			
Sample Location:		}	SAMPLE LOCATION MAP			
Locution 3	55					
Sample Descriptio	n :					
рН: 7.39		× H S				
cond.: 0.567	S / cm	we/U				
temp.: [2.3	¢£ °C	33rd Avenue / U.S.				
turbitity: >1000	NTU					
Other Comments/Property Owner Information:						

. •

U.S. E	FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII					
Su	perfund Div	vision, 726 Mini	nesota Avenue, K.C., KS 66101			
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS			
		Sample #:	Φ18			
EPA Project Leade	er: Darrell Som	merhauser / EPA RI	PM E&E/START Project Manager: Ron Ramold			
Sample Date: 7.2	2.2.98	Sample Time:	1055 Sampler: Beer/ Schedraman			
		ANALYSIS	REQUESTED			
Container	Preservative	MGP Code	Analysis			
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC			
TL cubitainer	HNO ₃ , 4° C	WM37	Arsenie (Dissolved by ICAP) RJ3			
<u> </u>		SAMPLE DE	ESCRIPTION			
Media: water		Sample Area:	Aliquots:			
mple Location:			SAMPLE LOCATION MAP			
Let $4: 0-2$ Sample Description pH: 6.8 cond.: [.9 temp.: 15 turbitity: $>1,000$ Other Comments/P Owner Information	: /uS/cm /C NTU roperty	33rd Avenue / U.S. Hwy 30 & 81				
-ce sample 1						

		ENTAL PROT	SHEET ECTION AGENCY-REGION VII		
	Superfund Division, 726 Minnesota Avenue, K.C., KS 66101Activity: 10th Street Site, Columbus, NEActivity #: PS1CS				
	,	Sample #:	Ø19		
EPA Project Lead	er: Darrell Som	merhauser / EPA RI			
Sample Date: 9.	22.99	Sample Time:	9946 Sampler: Schedonnel Beer		
		ANALYSIS	REQUESTED		
Container	Preservative	MGP Code	Analysis		
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC	1	
1 L cubitainer	HNO ₃ , 4º C	WM37	Arsenic (Dissolved by ICAPY no pamp (e		
			Submitted.	Ϊ	
		SAMPLE DI	ESCRIPTION M		
Media: water		Sample Area:	Aliquots:		
inple Location:			SAMPLE LOCATION MAP		
Location 12	-				
Sample Description pH: G.7	1:	S H			
cond.: 1.4	™µsS/cm	Avenue /			
temp.: /5	°C	33.rd			
turbitity: 7/400	NTU				
Other Comments/H Owner Information	1:				
		<u> </u>			

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS		
. <u></u>		Sample #:	Ø2 \$		
EPA Project Leade	r: Darrell Som	merhauser / EPA RF	M E&E/START Project Manager: Ron Ramold		
Sample Date: 9.	22.78	Sample Time:	1405 Sampler: Beer/ Scholemon		
		ANALYSIS	REQUESTED		
Container	Preservative	MGP Code	Analysis		
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC		
1-L cubitainer	HNO3, 4° C-		Arsenic (Dissolved by ICAP)		
		SAMPLE DE	SCRIPTION		
Media: water		Sample Area:	Aliquots:		
Sample Location:			SAMPLE LOCATION MAP		
sample Description pH: 7.0		No. 100 100 100 100 100 100 100 100 100 10			
cond.: #19 1.2 temp.: #55 17	rs/cm ¢⊄ °C				
turbitity:	NTU	Cey Storage Lot wed			
]				

		-				
FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101						
Activity: 10th	Street Site,	Columbus, NE	Activity	/ #: PS1CS		
· ·		Sample #:	D2/			
EPA Project Leade	r: Darrell Som	merhauser / EPA RP				
Sample Date: 9.	23.98	Sample Time:	1300 Sampler: S	che lo menn Bæer		
		ANALYSIS	REQUESTED			
Container	Preservative	MGP Code	Analysis			
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC			
1-L cubitainer	HNO3, 4° C	WM37	Arsenic (Dissolved by ICAP)	PJS		
			······			
		SAMPLE DE	ESCRIPTION			
Media: water		Sample Area:	Aliquot	s:		
mple Location:			SAMPLE LOCATION MAP			
Sample Description pH: 7.03	:	S. Hwy 30 & B1				
cond.: (, 24	″µS/cm ¢⊄					
temp.: 15.7	°C					
turbitity: 55						
	Chance of the second					

. ·

		-		
FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101				
Activity: 10th	Activity: 10th Street Site, Columbus, NE Activity #: PS1CS			
	Sample #: 022			
		merhauser / EPA RF	M E&E/START Project Manager: Ron Ramold	
Sample Date: 9.23.98		Sample Time:	(057) Sampler: Schelomen/ Ber	
		ANALYSIS	REQUESTED	
Container	Preservative	MGP Code	Analysis	
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC	
+ L cubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP) RJS	
······································		SAMPLE DE	ESCRIPTION	
Media: water		Sample Area:	Aliquots:	
Sample Location:			SAMPLE LOCATION MAP	
Location 2	·4			
Sample Description pH: 6.17	:			
cond.: 1,12 temp.: 16.7	°µtS/cm fi≟ °C			
turbitity: 574	NTU			
Other Comments/P Owner Information See Suple	:			

	<u> </u>			
U.S. EI	NVIRONM		SHEET ECTION AGENCY-REGION VII	
	Superfund Division, 726 Minnesota Avenue, K.C., KS 66101			
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS	
	Sample #: 023			
EPA Project Leade	r: Darrell Som	merhauser / EPA RI		
Sample Date: 9	. 22.98	Sample Time:	1145 Sampler: Schulemm Brer	
		ANALYSIS	REQUESTED	
Container	Preservative	MGP Code	Analysis	
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC	
1 L cubitainer	HNO,, 4º C_	WM37	Arsenic (Dissolved by ICAP)	
	·		· ·	
		SAMPLE DI	ESCRIPTION	
Media: water		Sample Area:	Aliquots:	
Sample Location:			SAMPLE LOCATION MAP	
Loc + 1:4 Sample Description pH: 6.8 cond.: [.3] temp.: [6 turbitity: 40 Other Comments/P Owner Information	* * *C NTU roperty	33rd Avenue / U.S. Hwy. 30 & 81		
		··········		

. ·

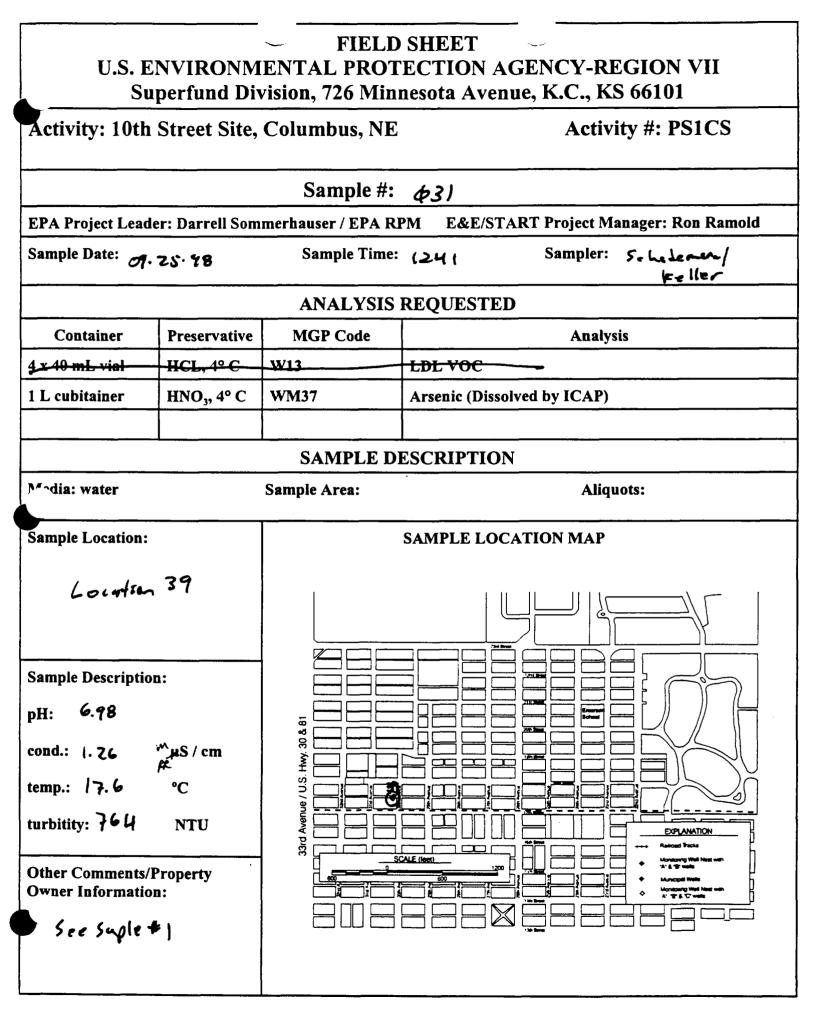
FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101			
Activity: 10th Street Site, Columbus, NE Activity #: PS1CS			
	-	Sample #:	924
		merhauser / EPA RI	
Sample Date: 9.23.98 Sample Time:			1615 Sampler: Shademan J Beer
		ANALYSIS	REQUESTED
Container	Preservative	MGP Code	Analysis
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC
1 L cubitainer	HNO ₃ , 4° C-	WM37	Arsenic (Dissolved by ICAP) - RJS
		SAMPLE DI	ESCRIPTION
Media: water		Sample Area:	Aliquots:
nple Location:			SAMPLE LOCATION MAP
Locotion	36		
Sample Description: pH: 7.2			
	[™] ,µrS/cm	oi	
temp.: 13.3	¢ ℃		
turbitity: (()	NTU		
Other Comments/P Owner Information			
See saple	1		

·

(

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101				
Activity: 10th Street Site, Columbus, NE Activity #: PS1CS				S
		Sample #:	Q25	
EPA Project Leade	r: Darrell Som	merhauser / EPA RF	PM E&E/START Project Manager: Ron R	amold
Sample Date: 9-	25.98	Sample Time:	1017 Sampler: Daer/ Schadenan	1
		ANALYSIS	REQUESTED	
Container	Preservative	MGP Code	Analysis	
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC PJ3	
Leubitainer	HNO ₃ , 4° C	WM37-WMØ3	Arsenic (Dissolved by ICAP) RJ3	
2 - 1Lcubitaners				
		SAMPLE DI	ESCRIPTION	
Media: water		Sample Area:	Aliquots:	
maple Location:			SAMPLE LOCATION MAP	
2917 10th Columbus See arp	5t. , NE			
Sample Description pH: 6.81 cond.: 0.709 temp.: 15.3 turbitity: 8	r*yuS/cm AC NTU			
Other Comments/P Owner Information ger Hana 2917 10th 5 Columbus,)	:		1 1 <td>þ </td>	þ

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101 Activity #: PS1CS Activity: 10th Street Site, Columbus, NE Sample #: &26EPA Project Leader: Darrell Sommerhauser / EPA RPM **E&E/START Project Manager: Ron Ramold** Sample Date: 9.27.4/8 Sampler: Schedemenn, Sample Time: 1155 Bier ANALYSIS REQUESTED Preservative Container **MGP** Code Analysis 4 x 40 mL vial HCL, 4° C W13 LDL VOC HNO₃, 4° C 1 L cubitainer **WM37** Arsenic (Dissolved by ICAP) SAMPLE DESCRIPTION dia: water Sample Area: **Aliquots:** Sample Location: SAMPLE LOCATION MAP Location 60 **Sample Description:** pH: 6.86 30 & 81 cond.: 1.35 [™]µS/cm ¥ 33rd Avenue / U.S. temp.: 18.7 °C turbitity: **51,000** NTU EXPLANATION D **Other Comments/Property** "ner Information: See sample # 1


FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101 Activity #: PS1CS Activity: 10th Street Site, Columbus, NE Sample #: $\phi 2$ 7 EPA Project Leader: Darrell Sommerhauser / EPA RPM **E&E/START Project Manager: Ron Ramold** Sampler: sceller | Fletcher Sample Time: 1525 Sample Date: 9.25.98 **ANALYSIS REQUESTED** Container Preservative **MGP** Code Analysis 4 x 40 mL vial HCL, 4° C W13 LDL VOC HNO₃, 4° C **WM37** 1 L cubitainer Arsenic (Dissolved by ICAP) SAMPLE DESCRIPTION Sample Area: dia: water **Aliquots:** Sample Location: SAMPLE LOCATION MAP Location #46 Sample Description: pH: 7.01 30 & 81 cond.: [.3] ₩µS/cm Ť 33rd Avenue / U.S. temp.: 24.2 °C turbitity: >1,000 NTU EXPLANATION SCALE (feet) **Other Comments/Property C**-vner Information: Sce sample # 1

		ENTAL PROT	SHEET ECTION AGENCY-REGION VII nesota Avenue, K.C., KS 66101	
Activity: 10th	Activity: 10th Street Site, Columbus, NE Activity #: PS1CS			
		Sample #:	क र 8	
EPA Project Leader: Darrell Sommerhauser / EPA RPM E&E/START Project Manager: Ron Ramold				
Sample Date: 9.26.98		Sample Time:	1195 Sampler: Fletcher/Keller	
		ANALYSIS	REQUESTED	
Container	Preservative	MGP Code	Analysis	
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC	
1 L cubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)	
		SAMDIE D	ESCRIPTION	
Madia: water		Sample Area:	Aliquots:	
Sample Location:	7¢			
Sample Description: pH: 6.97 cond.: 1.70 M uS/cm temp.: 22.2 °C turbitity: 198 NTU Other Comments/Property Owner Information: See Semple # 1				

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101 Activity: 10th Street Site, Columbus, NE Activity #: PS1CS Sample #: 029 EPA Project Leader: Darrell Sommerhauser / EPA RPM **E&E/START Project Manager: Ron Ramold** Sampler: Fletcher / Keller Sample Date: 9.27.99 Sample Time: [400 **ANALYSIS REQUESTED** Container **Preservative MGP** Code Analysis 4 x 40 mL vlaľ HCL, 4°C ₩13-LDL VOC HNO₃, 4° C 1 L cubitainer **WM37** Arsenic (Dissolved by ICAP) SAMPLE DESCRIPTION "" 'dia: water Sample Area: Aliquots: Sample Location: SAMPLE LOCATION MAP Sample Locution 57 **Sample Description:** pH: 7.05 30 & 81 cond.: 1.41 MuS/cm Hwy 33rd Avenue / U.S. temp.: 23.3 °C turbitity: >1000 NTU EXPLANATION **Other Comments/Property Owner Information:** See Saple #1

. .

FIELD SHEET **U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII** Superfund Division, 726 Minnesota Avenue, K.C., KS 66101 Activity: 10th Street Site, Columbus, NE Activity #: PS1CS Sample #: ϕ 3 \$ EPA Project Leader: Darrell Sommerhauser / EPA RPM **E&E/START Project Manager: Ron Ramold** Sampler: Keller / Frether Sample Date: **Sample Time:** 1315 9.25.98 **ANALYSIS REQUESTED** Container **Preservative MGP** Code Analysis 4 x 40 mL vial HCL, 4°C W13 LDL VOC JOF 1 L cubitainer HNO₃, 4° C **WM37** Arsenic (Dissolved by ICAP) SAMPLE DESCRIPTION Media: water Sample Area: **Aliquots:** Sample Location: SAMPLE LOCATION MAP Location 44 **Sample Description:** 6.96 pH: 30 & 81 cond.: |.0| mus/cm Ηw 33rd Avenue / U.S. temp.: 2.0.6 °C turbitity:)(000 NTU EXPLANATION SCALE (leet) **Other Comments/Property Owner Information:** see syle #1

FIELD SHEET **U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII** Superfund Division, 726 Minnesota Avenue, K.C., KS 66101 Activity: 10th Street Site, Columbus, NE Activity #: PS1CS Sample #: \$32 **E&E/START Project Manager: Ron Ramold** EPA Project Leader: Darrell Sommerhauser / EPA RPM Sampler: Flether / seller Sample Date: 9.25 . 98 Sample Time: 1040 **ANALYSIS REQUESTED Preservative** Container **MGP** Code Analysis 4 x 40 mI. vial HCL 4º C W13 LDL VOC 1 L cubitainer HNO₃, 4° C **WM37** Arsenic (Dissolved by ICAP) SAMPLE DESCRIPTION M dia: water Sample Area: Aliquots: Sample Location: SAMPLE LOCATION MAP Location 41 **Sample Description:** pH: 7.33 30 & B1 cond.: O. ES MuS/cm 33rd Avenue / U.S. Hwy. temp.: 20.3 °C turbitity: 276 NTU EXPLANATION **Other Comments/Property Owner Information:** See sayle

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101 Activity: 10th Street Site, Columbus, NE Activity #: PS1CS Sample #: Ø33 EPA Project Leader: Darrell Sommerhauser / EPA RPM **E&E/START Project Manager: Ron Ramold** Beer Schidemeen Sample Time: 1235 Sample Date: 9. 2.6.98 Sampler: ANALYSIS REQUESTED **Preservative MGP** Code Container Analysis LDL VOC 4 x 40 mL vial HCL, 4º C W13 HNO₃, 4° C 1 L cubitainer **WM37** Arsenic (Dissolved by ICAP) SAMPLE DESCRIPTION Madia: water Sample Area: **Aliquots:** Sample Location: SAMPLE LOCATION MAP Location 53 **Sample Description:** 6.84 pH: 30 & 81 cond.: 1.36 *#S/cm 33rd Avenue / U.S. Hwy. temp.: 11.3 °C turbitity: 71000 NTU EXPLANATION SCALE (leet) **Other Comments/Property Owner Information:** See syle#1

	FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS			
		Sample #:	\$34			
EPA Project Leade	er: Darrell Som	merhauser / EPA RI	PM E&E/START Project Manager: Ron Ramold			
Sample Date: 9.3	26.78	Sample Time:	1255 Sampler: teeller Fletcher			
		ANALYSIS	REQUESTED			
Container	Preservative	MGP Code	Analysis			
<u>4 x 40 mL vial</u>	HCL, 4° C	- W13	LDL VOC			
1 L cubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)			
		SAMPLE DI	ESCRIPTION			
Madia: water		Sample Area:	Aliquots:			
Sample Location:			SAMPLE LOCATION MAP			
Locutein	63					
Sample Description pH: 6.99 cond.: 1.25 temp.: 23.2 turbitity: 114	i: [*] ∕f ^S / cm °C NTU					
Other Comments/P Owner Information Sec Sample						

, •

FIELD SHEET **U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII** Superfund Division, 726 Minnesota Avenue, K.C., KS 66101 Activity: 10th Street Site, Columbus, NE Activity #: PS1CS Sample #: *Ф***35 E&E/START Project Manager: Ron Ramold** EPA Project Leader: Darrell Sommerhauser / EPA RPM Sample Time: 0 9 00 Sample Date: Sampler: Eletcher/ 9.26.18 tealler **ANALYSIS REQUESTED** MGP Code Container Preservative Analysis LDL VOC 4 x 40 mL vial ₩13-HCL.4°C 1 L cubitainer HNO₃, 4° C **WM37** Arsenic (Dissolved by ICAP) SAMPLE DESCRIPTION Madia: water Sample Area: Aliquots: Sample Location: SAMPLE LOCATION MAP Location 72 Sample Description: 7.02 pH: 30 & 81 1.30 cond.: [∧] µS / cm Η 33rd Avenue / U.S. temp.: 20.2 °C turbitity: >/000 NTU EXPLANATION SCALE (feet) **Other Comments/Property Owner Information:** See Sample #1

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS		
-		Sample #:	Ø36		
EPA Project Leade	er: Darrell Som	merhauser / EPA RI	DM F&F/START Project Manager: Ron Ramold		
Sample Date: 9.2	8-98	Sample Time:	1440 Sampler: Schademan / Bar		
		ANALYSIS	REQUESTED		
Container	Preservative	MGP Code	Analysis		
4 x 40 mL vial	HCL, 4º-C	W13	LDL VOC		
1 L cubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)		
		SAMPLE DI	ESCRIPTION		
Media: water		Sample Area:	Aliquots:		
ample Location:			SAMPLE LOCATION MAP		
Location 77					
Sample Description	:				
рн: (84					
cond.: 1.49 w	urS / cm	33rd Avenue / U			
temp.: [7,]	₩- °C	W11 W12 W12			
turbitity: 804	NTU				
Other Comments/P Owner Information	• • •				
See Somple.	# [
	Į				

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS		
		Sample #:	Ø37		
	· "	merhauser / EPA RI	M E&E/START Project Manager: Ron Ramold		
Sample Date: 9.3	28.78	Sample Time:	1645 Sampler: Keller/ Fletcher		
		ANALYSIS	REQUESTED		
Container	Preservative	MGP Code	Analysis		
4 x 40 mL vial	HCL, 4° C	W13	-LDL VOC		
1 L cubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)		
		SAMPLE DI	SCRIPTION		
Media: water		Sample Area:	Aliquots:		
			SAMPLE LOCATION MAP		
Lourteun Sample Description		× 30 & BI			
pH: C.99 cond.: 1.33 temp.: 21.1 turbitity: 765 Other Comments/P Owner Information See Star					

······					
FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
		Columbus, NE		ity #: PS1CS	
	<u></u>	Sample #:	¢38		
EPA Project Leade	er: Darrell Som	merhauser / EPA RI	PM E&E/START Project Ma	anager: Ron Ramold	
Sample Date: 09	. 26-18	Sample Time:	0935 Sampler:	Schebenen/ Beer	
		ANALYSIS	REQUESTED		
Container	Preservative	MGP Code	Analys	is	
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC		
1 L cubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)		
			······································		
		SAMPLE DI	ESCRIPTION		
Media: water		Sample Area:	Aliqu	iots:	
mple Location:			SAMPLE LOCATION MAP		
Location	89				
Sample Description pH: 6.38	:				
cond.: 1.75	∽rS/cm	Avenue / U S.			
temp.: 18.6	°C				
turbitity: 44	NTU	Cay Storage Lot we 4			
Other Comments/Property Owner Information:				COPLANATION Autoon Tracks Monacourt Made Made with X1 & 12 wate	
see surgle #	3				

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101 Activity #: PS1CS Activity: 10th Street Site, Columbus, NE Sample #: $\varphi 39$ EPA Project Leader: Darrell Sommerhauser / EPA RPM **E&E/START Project Manager: Ron Ramold** Fletcher/ Sample Time: 0 825 Sampler: Sample Date: 9.29.98 trollor **ANALYSIS REQUESTED** Container Preservative **MGP** Code Analysis 4 x 40 mL vial W13 LDL VOC HCL, 4° C 1 L cubitainer HNO₃, 4° C **WM37** Arsenic (Dissolved by ICAP) SAMPLE DESCRIPTION * edia: water Sample Area: **Aliquots: Sample Location:** SAMPLE LOCATION MAP Location 93 **Sample Description:** 6.45 pH: 30 & 81 cond.: .43 ₩µS/cm Н М 33rd Avenue / U.S. °C temp.: 18.7 turbitity: NTU 1.06 EXPLANATION **Other Comments/Property Owner Information:** see Sinds #)

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS		
		Sample #:	<u> </u>		
EPA Project Leade	er: Darrell Som	merhauser / EPA RF	M E&E/START Project Manager: Ron Ramold		
Sample Date:	1.29.18	Sample Time:	loo. Sampler: Schelenen/ Baer		
		ANALYSIS	REQUESTED		
Container	Preservative	MGP Code	Analysis		
4 x 40 mE vial	-H€L, 4° C	W13	-LDL VOC		
1 L cubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)		
		SAMPLE DE	ESCRIPTION		
Media: water		Sample Area:	Aliquots:		
mple Location:			SAMPLE LOCATION MAP		
Location					
Sample Description pH: 6.77	:				
cond.: .16 w	ynS/cm ∦⊂	33rd Avenue / U			
temp.: 17.0	°C	33rd A			
turbitity: >1,000	NTU				
Other Comments/P Owner Information	:		DPLANATION DPLANATION win/1		

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
Activity: 10th	Street Site,	Columbus, NE	Activ	ity #: PS1CS	
		Sample #:	<i>Ф</i> Ч1		
EPA Project Leade	er: Darrell Som	merhauser / EPA RI			
Sample Date: 9.	29.93	Sample Time:	0845 Sampler:	Baver/Schademan	
		ANALYSIS	REQUESTED		
Container	Preservative	MGP Code	Analy	sis	
4 x 40 mL viai	- IICL, 4° C	W13	LDL VOC		
1 L cubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)		
		SAMPLE DI	ESCRIPTION		
Media: water		Sample Area:	Aliqu	uots:	
Sample Location:				· · · · · · · · · · · · · · · · · · ·	
Locution	149				
Sample Description pH: 6.53	:				
cond.: 0.728 temp.: 16.6	°µCS/cm ₩ °C				
turbitity: 71, 84 0	-	Cay Storage Lot weather			
Other Comments/P Owner Information	• • I				
See Sayle	*1				

		-			
FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
		Columbus, NE	Activity #: PS1CS		
		Sample #:	942		
EPA Project Lead	er: Darrell Som	merhauser / EPA RI	PM E&E/START Project Manager: Ron Ramold		
Sample Date:	1.24.18	Sample Time:	0725 Sampler: Fletcher) kellm		
	· • · · · · · · · · · · · · · · · · · ·	ANALYSIS	REQUESTED		
Container	Preservative	MGP Code	Analysis		
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC		
1 L cubitainer	HNO,, 4° C	WM37	Arsenic (Dissolved by ICAP)		
		SAMPLE DI	ESCRIPTION		
Media: water		Sample Area:	Aliquots:		
Juple Location:			SAMPLE LOCATION MAP		
Locufin Sample Description pH: 7. 2 cond.: 0.506 temp.: 16.4 turbitity: 7/000 Other Comments/H Owner Information	n: ^M uS / cm ^A C NTU Property n:				
See syle	~1	<u></u>			

U.S. FI	FIELD SHEET					
	Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS			
		Sample #:	<i>4</i> 43			
EPA Project Leade	er: Darrell Som	merhauser / EPA RI	PM E&E/START Project Manager: Ron Ramold			
Sample Date: 9.	25.18	Sample Time:	1645 Sampler: Keller/ Flatcher			
		ANALYSIS	REQUESTED			
Container	Preservative	MGP Code	Analysis			
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC			
-1 L eubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)-			
	<u></u>	SAMPLE DI	ESCRIPTION			
dia: water		Sample Area:	Aliquots:			
Sample Location:			SAMPLE LOCATION MAP			
Sample Location: Lowf: 43 Sample Description: pH: 7.05 cond.: 1.13 MuS/cm # temp.: 2.3./ °C turbitity: 12/ NTU Other Comments/Property ~~ner Information: See Sample #1		33rd Avenue / U.S. Hwy. 30 &				

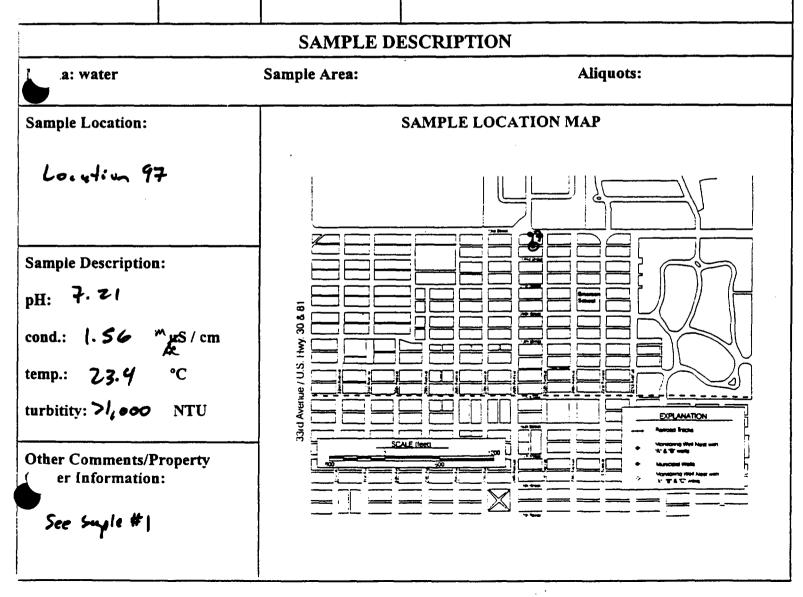
FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS		
		Sample #:	ch+4		
		merhauser / EPA RI	PM E&E/START Project Manager: Ron Ramold		
Sample Date: 9	. 28.98	Sample Time:	1050 Sampler: Fletcher/ Keller		
		ANALYSIS	REQUESTED		
Container	Preservative	MGP Code	Analysis		
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC		
1 L cubitainer	HNO3, 4° C	WM37	Arsenic (Dissolved by ICAP)		
		SAMPLE DI	ESCRIPTION		
dia: water	<u> </u>	Sample Area:	Aliquots:		
Sample Location:		· · · · · · · · · · · · · · · · · · ·	SAMPLE LOCATION MAP		
Sample Location: Location 56 Sample Description: pH: $\mu = 46 - 6 + 9$ cond.: $f = 0 + 1.67 \text{ is} / \text{ cm}$ temp.: $\mu = 0 + 1.2 \text{ °C}$ turbitity: $f = 500 - 277 \text{ NTU}$ Other Comments/Property 		33rd Avenue / U.S. Hwy. 30 & B1			

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS		
		Sample #:	£45		
	er: Darrell Som	merhauser / EPA RI			
Sample Date: 6	29.26.98	Sample Time:	1200 Sampler: Schademon J Baer		
		ANALYSIS	REQUESTED		
Container	Preservative	MGP Code	Analysis		
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC		
1 E cubitainer	HNO ₃ , 4° C	WM37	Arsenie (Dissolved by ICAP)		
		SAMPI F DI	ESCRIPTION		
* ~dia: water		Sample Area:	Aliquots:		
Sample Location:					
Sample Description pH: 7.07 cond.: 1.27 temp.: 23.2 turbitity: 225 Other Comments/I Owner Information See Sample	^m uS∕cm °C NTU Property n:	33rd Avenue / U.S. Hwy. 30 & 81			

. •

. 1

1	FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101						
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS				
		Sample #:	æ46				
EPA Project Leade	er: Darrell Som	merhauser / EPA R	PM E&E/START Project Manager: Ron Ramold				
Sample Date: 7	.23.18	Sample Time:	1005 Sampler: Fletche/ keller				
	<u></u>	ANALYSIS	REQUESTED				
Container	Preservative	MGP Code	Analysis				
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC				
1 L eubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)				
		SAMPLE D	ESCRIPTION				
dia: water		Sample Area:	Aliquots:				
Sample Location:			SAMPLE LOCATION MAP				
Location	64						
Sample Description pH: 7.0 cond.: 1.42 temp.: 18.7 turbitity: 737	n: ^^ uS / cm ^C NTU	31d Avenue / U.S. Hwy. 30 & 81					
Other Comments/H Commer Information See Suple	Property a:						


•

L	FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
Activity: 10tl	h Street Site,	Columbus, NE	Activity #: PS1CS			
		Sample #:	447			
EPA Project Lead	der: Darrell Som	merhauser / EPA RI	PM E&E/START Project Manager: Ron Ramold			
Sample Date: c	1.27.18	Sample Time:	Louis Sampler: Keller / Fletcher			
		ANALYSIS	REQUESTED			
Container	Preservative	MGP Code	Analysis			
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC			
1 L cubitainer		WM37	Arsenic (Dissolved by ICAP)			
		SAMPLE D	ESCRIPTION			
dia: water		Sample Area:	Aliquots:			
Sample Location:			SAMPLE LOCATION MAP			
Sample Description: pH: 6.13 cond.: 1.61 * #S/cm # temp.: 68.6 °C turbitity: 733 NTU Other Comments/Property Owner Information: See Sayle #1		33rd Avenue / U.S. Hwy. 30 &				
•						

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101 Activity: 10th Street Site, Columbus, NE Activity #: PS1CS Sample #: 048 **E&E/START Project Manager: Ron Ramold** EPA Project Leader: Darrell Sommerhauser / EPA RPM Sampler: Keker (Sample Date: 9.28.98 Sample Time: 09900 Fletche **ANALYSIS REQUESTED** Container **Preservative MGP** Code Analysis 4 x 40 mL vial HCL, 4° C W13 LDL VOC HNO₃, 4° C 1 L cubitainer **WM37** Arsenic (Dissolved by ICAP) SAMPLE DESCRIPTION '''dia: water Sample Area: **Aliquots:** Sample Location: SAMPLE LOCATION MAP Location 4868 **Sample Description:** 6.45 pH: 30 & 81 cond.: 1,26 m nS/cm Η 33rd Avenue / U.S. temp.: 18.9 °C turbitity: (07 NTU EXPLANATIO **Other Comments/Property Owner** Information: See Songle #/

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101 Activity: 10th Street Site, Columbus, NE Activity #: PS1CS Sample #: \$49 EPA Project Leader: Darrell Sommerhauser / EPA RPM **E&E/START Project Manager: Ron Ramold** Sample Date: Sample Time: Sampler: Fletcha/ 1450 9.27.28 kollor **ANALYSIS REQUESTED** Preservative Container **MGP** Code Analysis HCL, 4° C LDL VOC $4 \times 40 \text{ mL}$ vial W13 1 - cubitainer HNO₃, 4º C WM37 Arsenie (Dissolved by ICAP)-SAMPLE DESCRIPTION """dia: water Sample Area: **Aliquots: Sample Location:** SAMPLE LOCATION MAP Location 96 Sample Description: 6.99 DH: 30 & 81 cond.: (.46 wys/cm 33rd Avenue / U.S. Hwy. temp.: 23.1 °C turbitity: 992 NTU EXPLANATIO **Other Comments/Property Owner Information:** *** See Suple #1

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101 Activity #: PS1CS Activity: 10th Street Site, Columbus, NE Sample #: $\varphi \varsigma \phi$ **E&E/START Project Manager: Ron Ramold** EPA Project Leader: Darrell Sommerhauser / EPA RPM Sampler: Sample Date: Sample Time: Fletcher 9.29.98 1135 Reller **ANALYSIS REQUESTED** Container Preservative **MGP** Code Analysis HCL, 4° C LDL VOC 4 x 40 mL vial W13 WM37-Arsenic (Dissolved by ICAP)-1 L. cubitainer НNО,, 4° С

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101

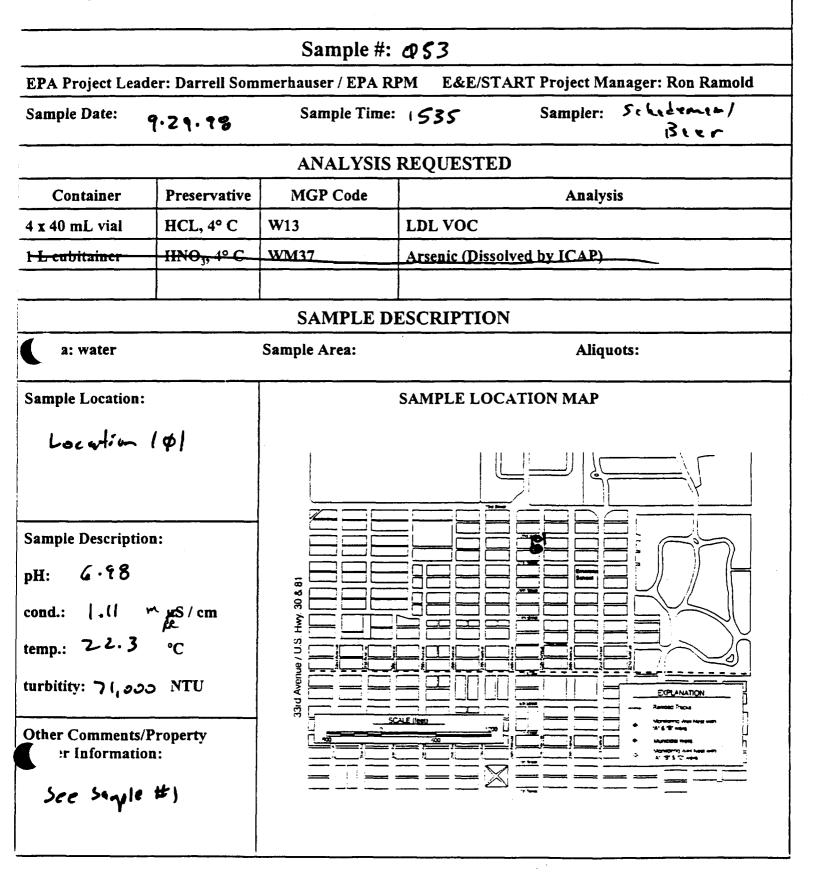
Activity: 10th Street Site, Columbus, NE

Activity #: PS1CS

Sample #: 65 /					
EPA Project Lead	EPA Project Leader: Darrell Sommerhauser / EPA RPM E&E/START Project Manager: Ron Ramold				
Sample Date: 09.29.98		Sample Time:	1045 Sampler: Fletcher/ traller		
ANALYSIS REQUESTED					
Container	Preservative	MGP Code	Analysis		
4 x 40 mL vial	HCL, 4° C	W13 LDL VOC			
1-L-cubitainer	HNO3, 4°-C	WM37	Arsenic (Dissolved by ICAP)		
	SAMPLE DESCRIPTION				
ia: water Sample Area: Aliquots:			Aliquots:		
Sample Location: SAMPLE LOCATION MAP			SAMPLE LOCATION MAP		
Locotiun Sample Descriptio pH: 6.8 cond.: 1.33 temp.: 21.0 turbitity: > 1.00 0ther Comments/1 er Informatio See Sayle	n: ^w yS / cm [°] C NTU Property n:				

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101

Activity: 10th Street Site, Columbus, NE


Activity #: PS1CS

Sample #: \$52_				
EPA Project Leade	er: Darrell Som	merhauser / EPA RI	PM E&E/START Project Manager: Ron Ramold	
Sample Date: 9.29.18 Sample Time: 645 Sampler: Felle, Fletcher				
ANALYSIS REQUESTED				
Container	Preservative	MGP Code Analysis		
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC	
1-L eubitainer	-HNO3, 4° C	WM37	Arsenic (Dissolved by ICAP)	
		SAMPLE DI	ESCRIPTION	
ia: water	water Sample Area: Aliquots:			
Sample Location:		SAMPLE LOCATION MAP		
Loc of: Sample Description pH: 7.01 cond.: 1.44 temp.: 2.1.6 turbitity: 7600 Other Comments/P .er Information See Staple 1	n: ^M JeS / cm JeC NTU Property 1:	33rd Avenue / U.S. Hwy. 30 & 81		

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101

Activity: 10th Street Site, Columbus, NE

Activity #: PS1CS

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101 Activity: 10th Street Site, Columbus, NE Activity #: PS1CS

	Sample #: $\Phi S \mathcal{U}$				
EPA Project Lea	EPA Project Leader: Darrell Sommerhauser / EPA RPM E&E/START Project Manager: Ron Ramold				
Sample Date: 9.29.18		Sample Time	: [61] Sampler: Schebanna/ Beer		
		ANALYSIS	REQUESTED		
Container	Preservative	MGP Code	Analysis		
4 x 40 mL vial	HCL, 4° C	W13 LDL VOC			
1 L cubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)		
Ĺ					
	SAMPLE DESCRIPTION				
ia: water		Sample Area: Aliquots:			
Sample Location: Locut: Sample Description pH: 6.97 cond.: (.33	ption: ^w μS/cm		SAMPLE LOCATION MAP		
temp.: 20.4 turbitity: > ,000 Other Comments/ .er Information See Seafle	/Property on:				

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101 Activity: 10th Street Site, Columbus, NE Activity #: PS1CS Sample #: 055EPA Project Leader: Darrell Sommerhauser / EPA RPM **E&E/START Project Manager: Ron Ramold** Sampler: Baer / 9.29.98 Sample Time: 1454 Sample Date: Schideman ANALYSIS REQUESTED **Preservative** Container **MGP** Code Analysis 4 x 40 mL vial HCL, 4° C W13 LDL VOC HNO, 1º C WM37 1-L. cubitainer. Arsenie (Dissolved by ICAP) SAMPLE DESCRIPTION **Aliquots:** a: water Sample Area: Sample Location: SAMPLE LOCATION MAP Sociation 103 **Sample Description:** 7.08 DH: ٦ 8 30 & cond.: 1.07 m/s/cm <u>T</u> **Brd Avenue / U.S.** temp.: 22.0 °C turbitity: 71000 NTU EXPLANATIO **Other Comments/Property** r Information: 1 880-See Simple #1

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101 Activity: 10th Street Site, Columbus, NE Activity #: PS1CS Sample #: 056 **E&E/START Project Manager: Ron Ramold** EPA Project Leader: Darrell Sommerhauser / EPA RPM Sampler: (te lle / Flether Sample Time: 1245 Sample Date: 9.29.98 ANALYSIS REQUESTED Preservative Container MGP Code Analysis W13 4 x 40 mL vial HCL, 4° C LDL VOC L cubitainer WM37 HNO3, 4° C Arsenic (Dissolved by ICAP) SAMPLE DESCRIPTION .a: water Sample Area: Aliquots: Sample Location: SAMPLE LOCATION MAP Locution 94A Sample Description: pH: 6.83 81 30 & ks/cm cond.: [.44] ¥ /U.S. temp.: 23.5 °C Avenue turbitity: 71,000 NTU Other Comments/Property er Information: See Sangle #1

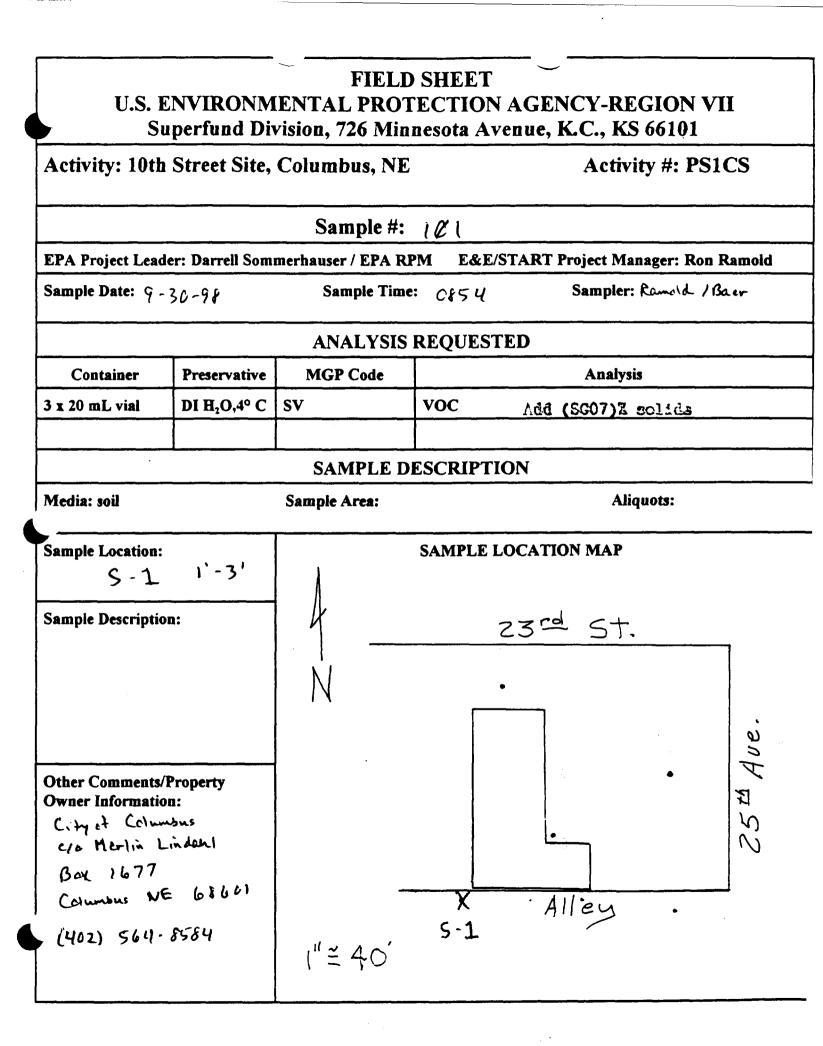
FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101 Activity: 10th Street Site, Columbus, NE Activity #: PS1CS Sample #: $\phi 57$ E&E/START Project Manager: Ron Ramold EPA Project Leader: Darrell Sommerhauser / EPA RPM Sampler: Keller/ Sample Time: 1395 Sample Date: 9.29.48 Fizther ANALYSIS REQUESTED **Preservative** MGP Code Analysis Container HCL, 4° C LDL VOC 4 x 40 mL vial W13 <u>HNO, 4° C</u> **WM37** Arsenic (Dissolved by ICAP) 1-L-subitainer SAMPLE DESCRIPTION **Aliquots:** Sample Area: : water SAMPLE LOCATION MAP Sample Location: Location 95A Sample Description: pH: 6.77 30 & 81 cond.: / cm Т Ж 33rd Avenue / U.S. temp.: turbitity: 🤊 NTU **Other Comments/Property** · Information: See Staple #1

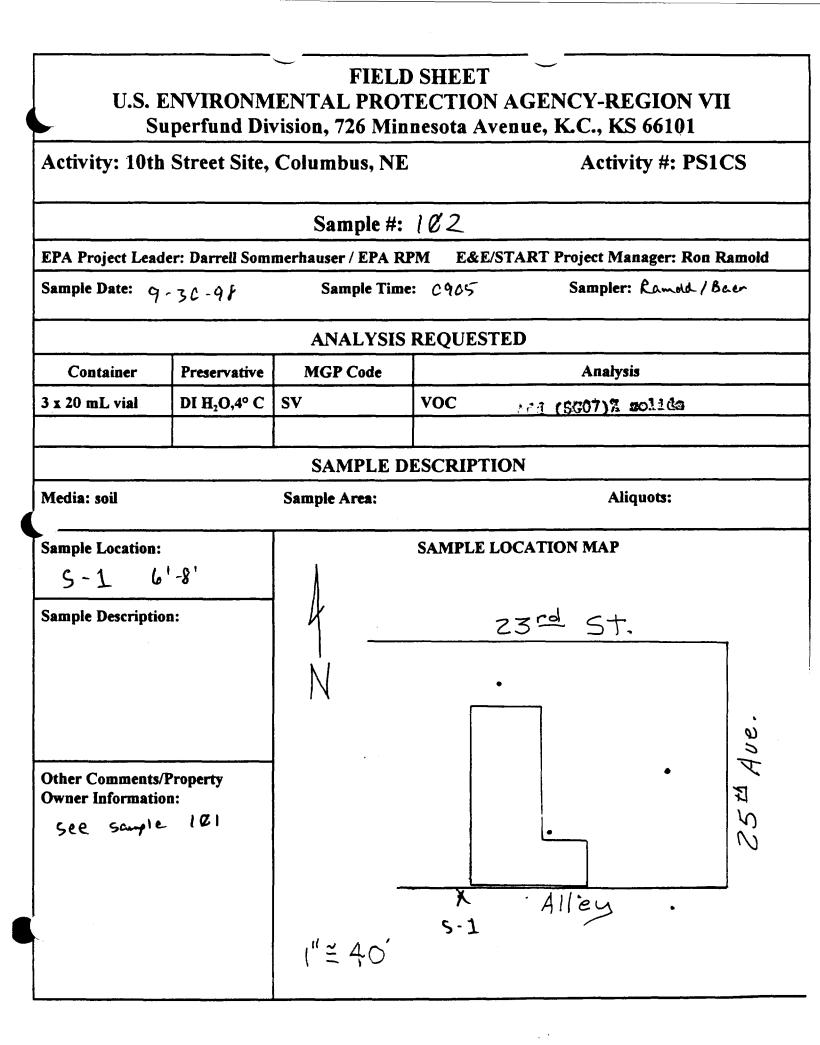
	<u></u>	<u></u>		
FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101				
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS	
Sample #: 958				
EPA Project Leader: Darrell Sommerhauser / EPA RPM E&E/START Project Manager: Ron Ramold				
Sample Date: 9. 29. 78		Sample Time:	1430 Sampler: Fle tcher / keller	
		ANALYSIS	REQUESTED	
Container	Preservative	MGP Code	Analysis	
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC	
LL. cubitainer	HNO ₃ , 4° C	WM3 7	Arsenic (Dissolved by ICAP)	
			<u></u>	
		SAMPLE DI	ESCRIPTION	
a: water Sample Area: Aliquots:				
Sample Location:			SAMPLE LOCATION MAP	
Location 98A Sample Description:				
cond.: [.74 * #S/cm temp.: 23.4 °C		/ U.S. Hwy. 30 & B1		
turbitity: 71,000 Other Comments/P	roperty	33 d Avenue /		
er Information See Locytive				

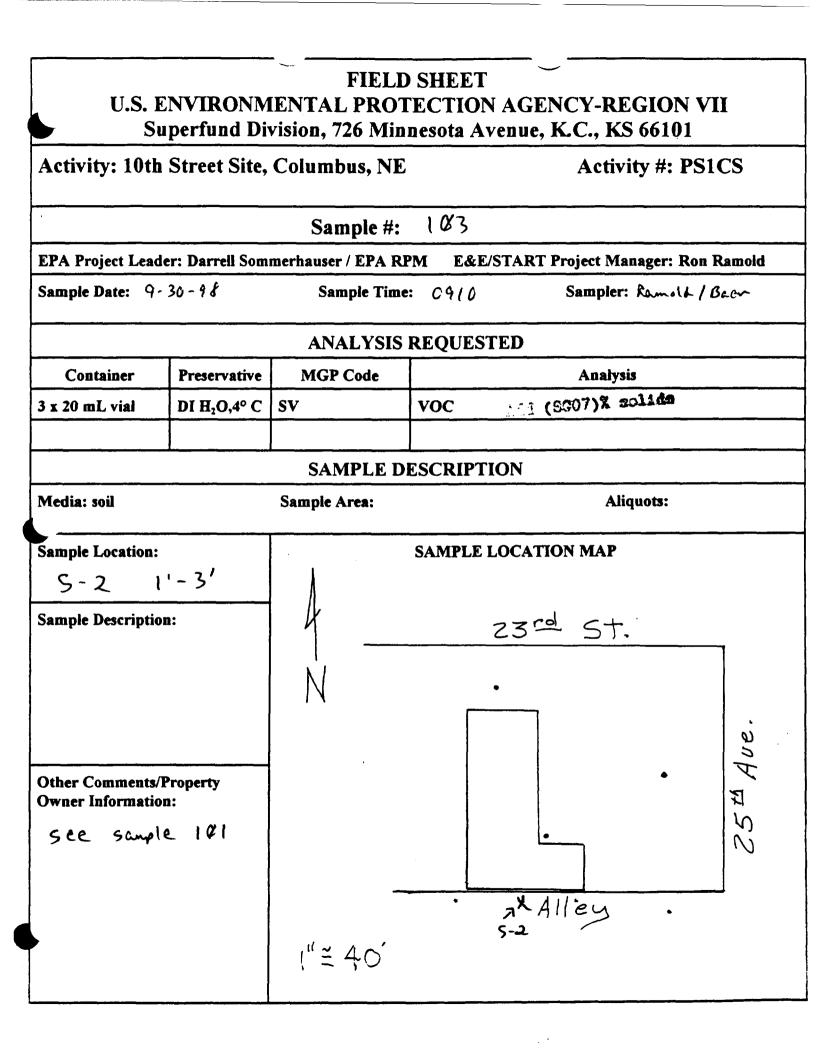
FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
	Activity: 10th Street Site, Columbus, NE Activity #: PS1CS				
	<u> </u>	Sample #:	R59-F		
EPA Project Leade	EPA Project Leader: Darrell Sommerhauser / EPA RPM E&E/START Project Manager: Ron Ramold				
Sample Date: 9/30/98 Sample Time: 0900 Sampler: Schodensan					
		ANALYSIS	REQUESTED		
Container Preservative MGP Code		MGP Code	Analysis		
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC		
1 L cubitainer	HNO3, 4° C	WM37	Arsenic (Dissolved by ICAP)		
SAMPLE DESCRIPTION					
Media: water		Sample Area: Aliquots:			
mple Location:		SAMPLE LOCATION MAP			
F. e 1 & 3 / a a k 		33rd Avenue / US. Hwy. 30 & B1			

N VII 01 PS1CS Ron Ramold
Ron Ramold

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
		Columbus, NE	Activity #: PS1CS		
	Sample #: 061-KM				
EPA Project Leader: Darrell Sommerhauser / EPA RPM E&E/START Project Manager: Ron Ramold					
Sample Date: 9.30.98		Sample Time:			
		ANALYSIS	REQUESTED		
Container	Preservative	MGP Code	Analysis		
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC		
1 L cubitainer	HNO ₃ , 4° C	WM37	Arsenic (Dissolved by ICAP)		
	SAMPLE DESCRIPTION				
Media: water		Sample Area:	Aliquots:		
nple Location: Rinsche three denomed que collented que Supplied De Sample Description pH: cond.: temp.: turbitity: Other Comments/P Owner Information	som pler ppd · · ter for · ter for for · ter for for · ter for for · ter for for for for for for for for for fo				

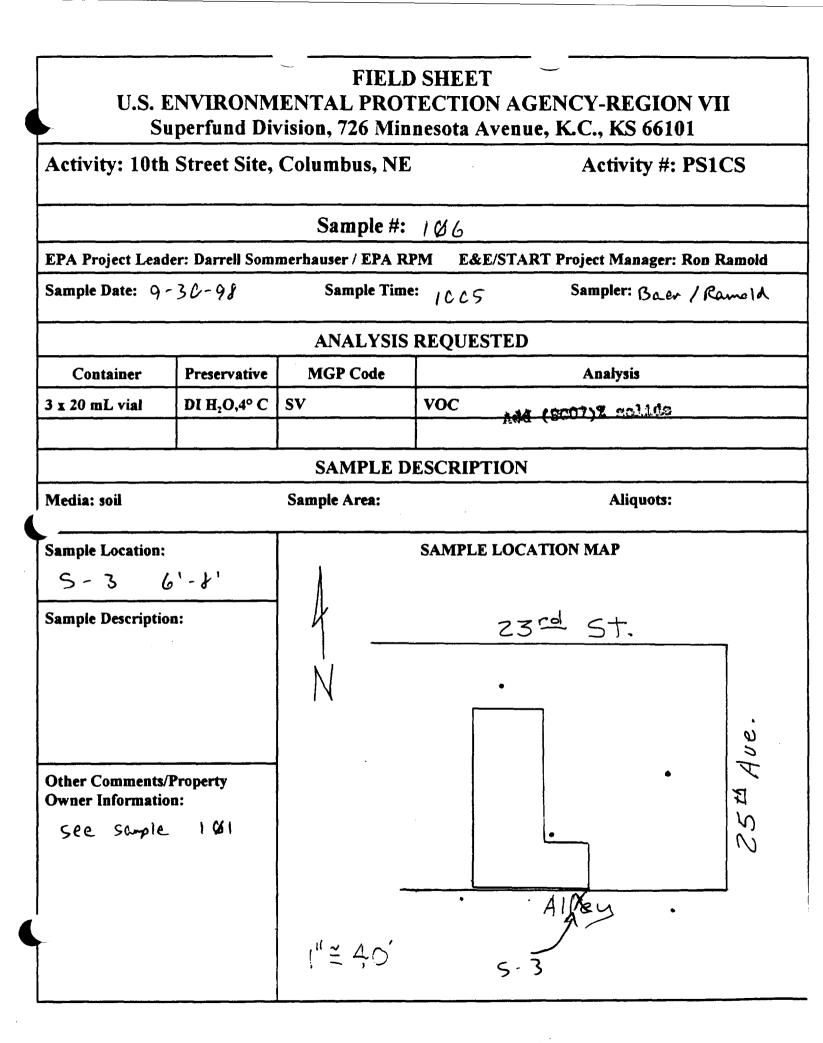

.

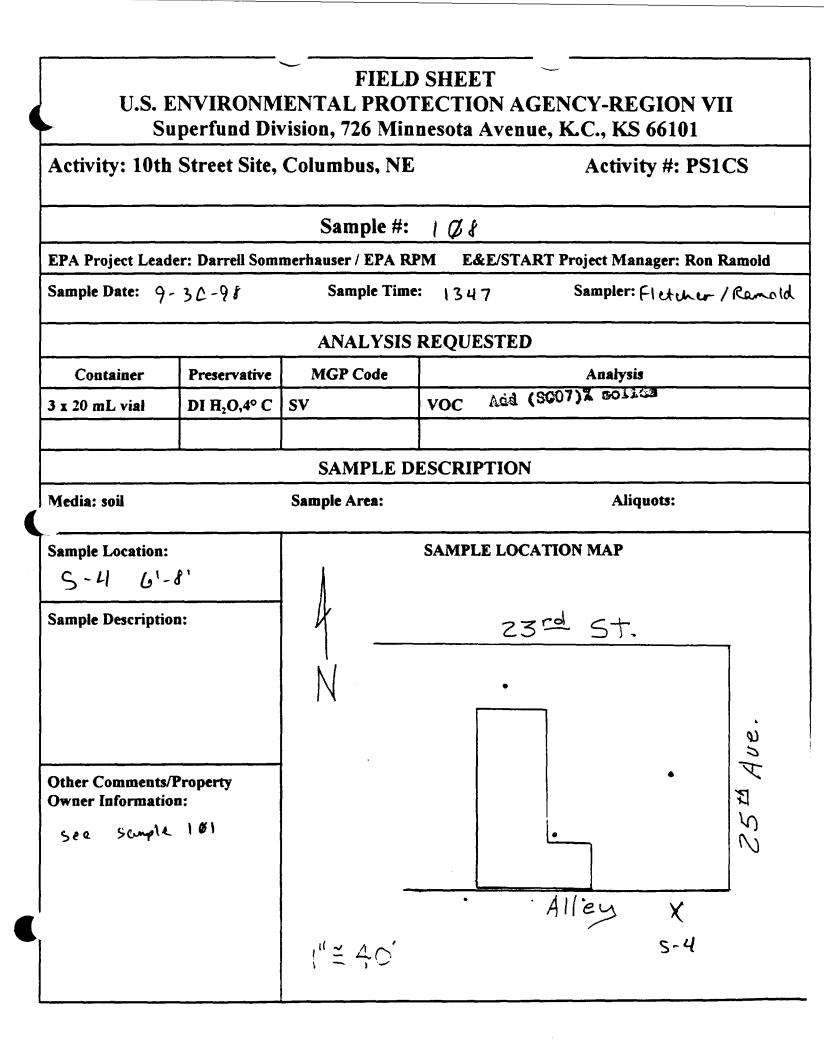

FIELD SHEET					
Activity: 10th	Street Site,	Columbus, NE		Activity #: PS1CS	
		Sample #:	062		
EPA Project Leader: Darrell Sommerhauser / EPA RPM E&E/START Project Manager: Ron Ramold					
Sample Date: 9	-30-98	Sample Time:	1425	Sampler: Fletcher/Randd	
		ANALYSIS I	REQUESTED		
Container	Preservative	MGP Code		Analysis	
4×4Cm2	1761, 4°C	W13	LOL VCC	2 mab not	
<u></u>				2 mab not preserved.	
			<u></u>	· /-	
SAMPLE DESCRIPTION					
Media: water Sample Area: Aliquots:					
Sample Location: SAMPLE LOCATION MAP			ION MAP		
111					
Sample Description: pH: $($					
cond.: 1,890 temp.: 21,4	µS / ст °С				
turbitity: >1000) NTU	City Storage Lot w.4			
Other Comments/ Owner Informatio	n: weus			Image: Second	
Clo Merlin L Box 1677 Columbus, NE (402) 564	E USUOI				
				. <u></u>	

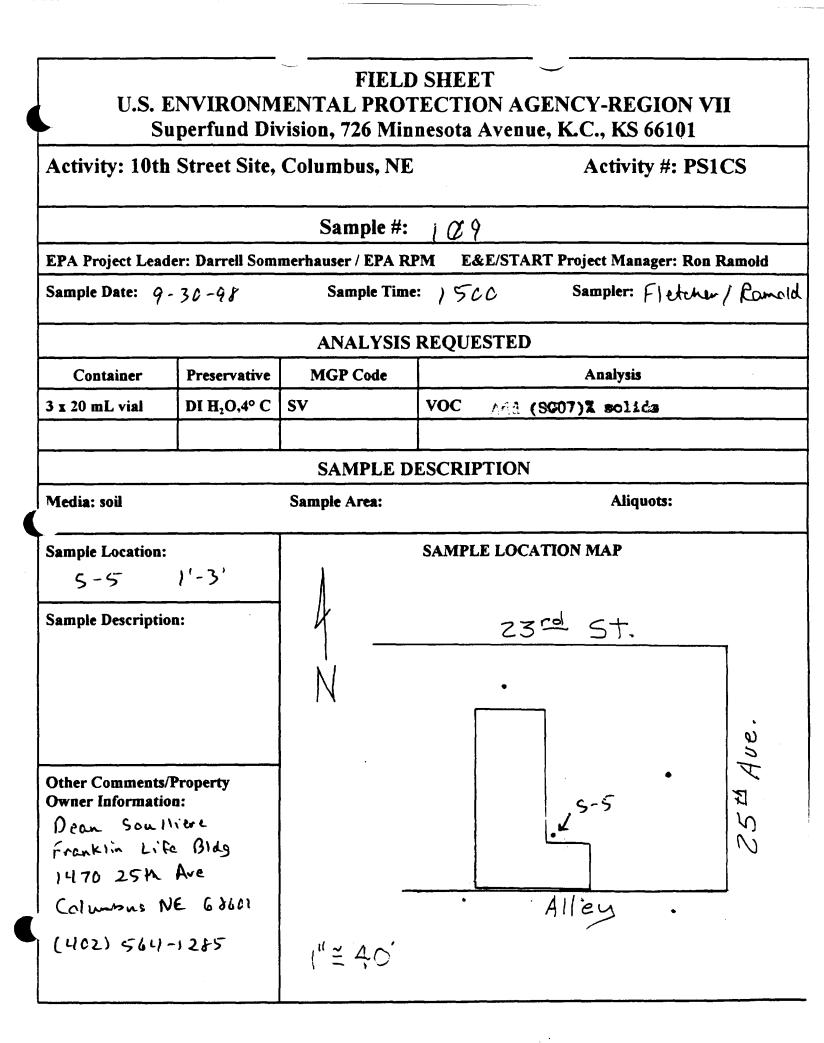

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101					
Activity: 10th	Activity #: PS1CS				
	Sample #: 263 - ¥				
EPA Project Leader: Darrell Sommerhauser / EPA RPM E&E/START Project Manager: Ron Ramold					
Sample Date: 1/30/98 Sample Time: 1030 Sampler: 5. helomon					
		ANALYSIS	REQUESTED		
Container	Preservative	MGP Code	Analysis		
4 x 40 mL vial	HCL, 4° C	W13	LDL VOC		
1-L cubitainer	HNO3, 4° C	WM37	Arsenie (Dissolved by ICAP)		
	SAMPLE DESCRIPTION				
Media: water Sample Area:			Aliquots:		
Sample Location:			SAMPLE LOCATION MAP		
Rinsete of soil sempler (ul richte strue) collected ul HPLC water					
Sample Description: pH:		30 HM H M H M H M H M H M H M H M H M H M			
cond.:	μS / cm	Avenue / U			
temp.:	°C	33.rd			
turbitity:	NTU	Cry Storage Lot we			
Other Comments/Property Owner Information:			Image: Second Inscreption Image: Second Inscreption Image: Second Inscreption Image: Second Inscreption		

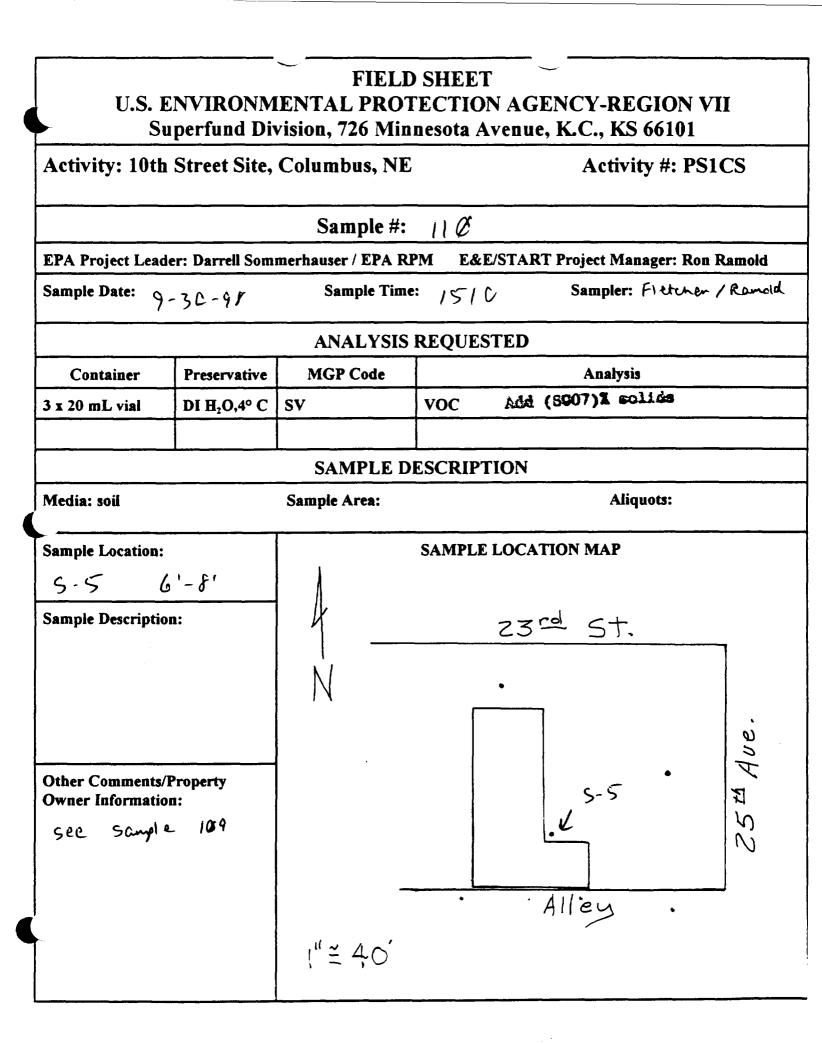
FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101 Activity #: PS1CS Activity: 10th Street Site, Columbus, NE Q64 Sample #: EPA Project Leader: Darrell Sommerhauser / EPA RPM **E&E/START Project Manager: Ron Ramold** Sampler: Fletcher/Ramold Sample Time: Sample Date: 9-30-98 1636 ANALYSIS REQUESTED Container Preservative **MGP** Code Analysis 2 vias not preserved. LDL VOC 4 x 40 mL vial HCL, 4° C W13 R Arsenic (Dissolved by ICAP) 1. cubitainer HNO, 4º C **WM37** SAMPLE DESCRIPTION Sample Area: a: water Aliquots: Sample Location: SAMPLE LOCATION MAP 112(same location as 5.7) Sample Description: 6.73 pH: 8 30 & cond.: 1,870 μS / cm Ηw temp.: 20.8 33rd Avenue / U.S. °C turbitity: 71000 NTU EXPLANATIO Other Comments/Property er Information: Dean Soulliere Franklin Life Bldg. 1470 25 m AVE NE GPGCI Columbus (402) 564-1285

. ·

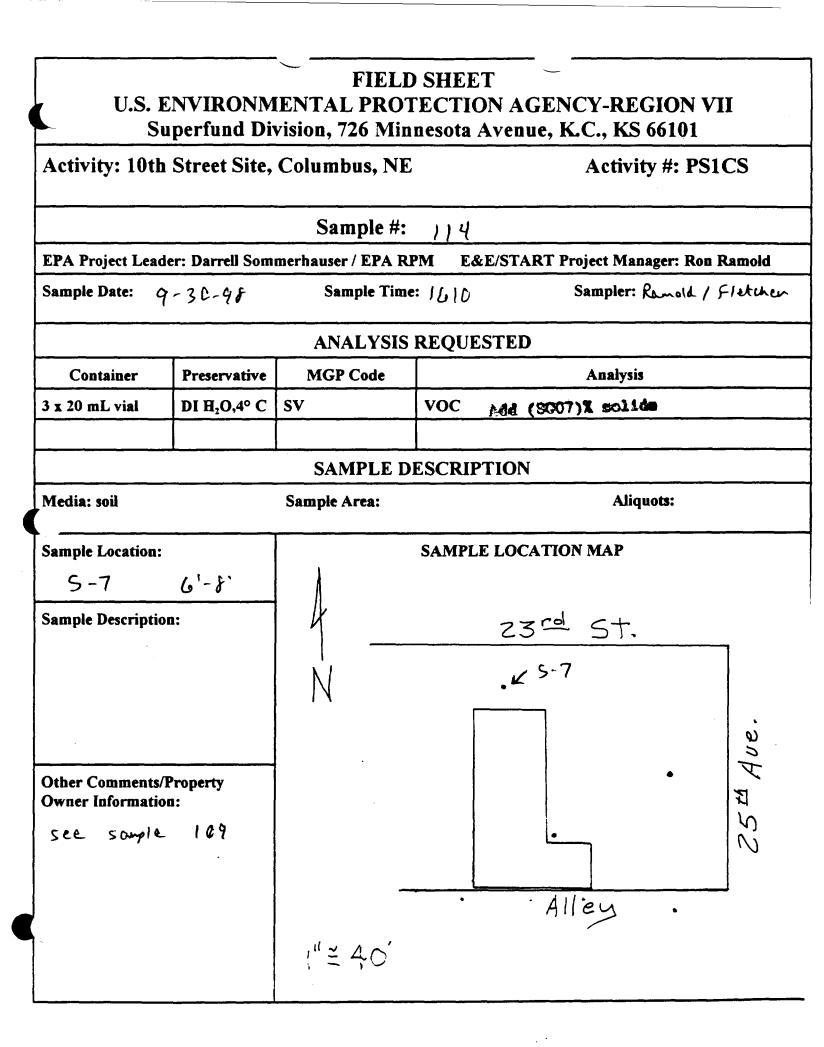


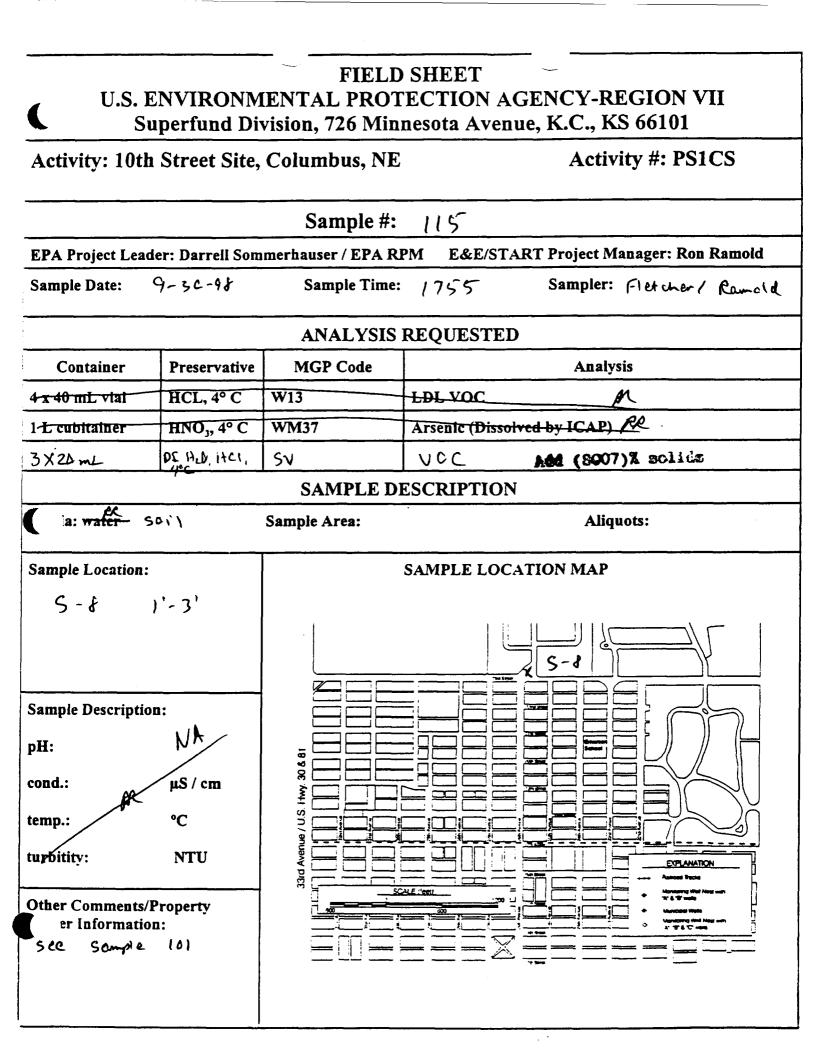

		ENTAL PRO	D SHEET FECTION AGENCY-REGION VII mesota Avenue, K.C., KS 66101
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS
		Sample #:	1\$4
		merhauser / EPA R	
Sample Date: 9-	36-98	Sample Tim	e: 0940 Sampler: Bar / Ramsid
	_	ANALYSIS	REQUESTED
Container	Preservative	MGP Code	Analysis
3 x 20 mL vial	DI H ₂ O,4° C	SV	VOC /11 (8607)% solida
		SAMPLE D	DESCRIPTION
Media: soil		Sample Area:	Aliquots:
Sample Location: S - 2 (Sample Description	5'-8'	4 N	SAMPLE LOCATION MAP 23rd St.
Other Comments Owner Information Gee Sample	a:	(" <u>≃</u> 4,0'	· XAlley S-2

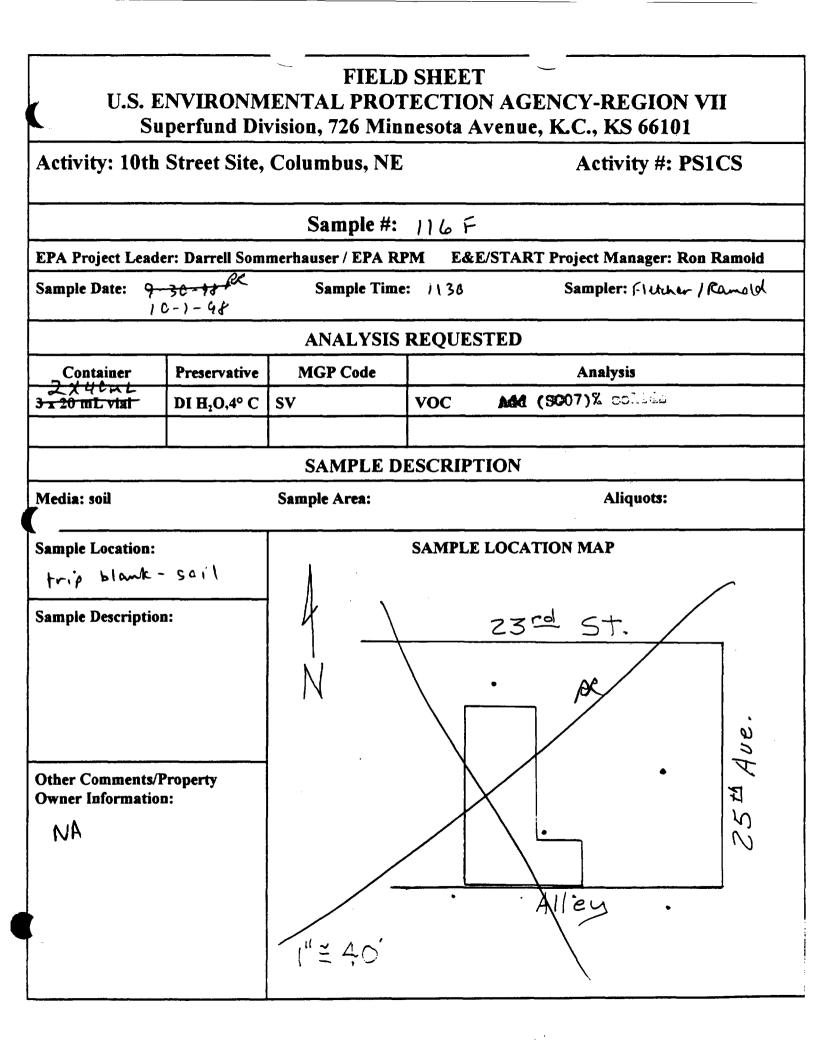

· . ·


FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY-REGION VII Superfund Division, 726 Minnesota Avenue, K.C., KS 66101 Activity: 10th Street Site, Columbus, NE Activity #: PS1CS Sample #: 105EPA Project Leader: Darrell Sommerhauser / EPA RPM **E&E/START Project Manager: Ron Ramold** Sample Date: 9-30-98 Sample Time: Sampler: Ramaid /Baen 0953 **ANALYSIS REQUESTED** Preservative **MGP** Code Container Analysis Add (9007)% sollda DI H₂O,4° C VOC 3 x 20 mL vial SV SAMPLE DESCRIPTION Media: soil Sample Area: Aliquots: Sample Location: SAMPLE LOCATION MAP 5-3 1'-3' **Sample Description:** Z3rd St. Aue **Other Comments/Property** N N **Owner Information:** see sample 101 \mathcal{N} Alfey 1" = 40

		·							
		ENTAL PRO		N AGENCY-		ΊI			
		Columbus, NE	<u> </u>		e, K.C., KS 66101 Activity #: PS1CS				
<u> </u>		Sample #:	111						
EPA Project Lead	er: Darrell Som	merhauser / EPA R	PM E&	E/START Project	Manager: Ron	Ramold			
Sample Date: 9.	-36-91	Sample Time	e: 1530	Samp	oler: Fletunen	/Ramoid			
		ANALYSIS	REQUE	STED					
Container	Preservative	MGP Code		Ana	alysis				
3 x 20 mL vial	DI H ₂ O,4° C	sv	VOC	Ada (9007)%	eolids				
		SAMPLE D	ESCRIP	TION					
Media: soil		Sample Area:			Aliquots:				
Sample Location:			SAMPLI	E LOCATION MA	P				
5-6 1	- 3'	l A							
Sample Descriptio	n:	4							
		N		•					
					5-6 V	ve.			
Other Comments/ Owner Informatio					•	FT Y			
see shaple	1 69			!]		25			
		-	•	Alleu	3.				
		(" ≝ 40́							


. •


. •


uperfund Di	vision, 726 Min	nesota Avenue, K.C., KS 66101
Street Site,	Columbus, NI	Activity #: PS1CS
	Sample #:	112
	merhauser / EPA F	
-30-98	Sample Tim	e: 1540 Sampler: Fletcher/Romai
	ANALYSIS	REQUESTED
Preservative	MGP Code	Analysis
DI H ₂ O,4° C	sv	VOC Add (SQ07)X ECLARS
		Aliquots:
	Зашріс Агса.	······································
		SAMPLE LOCATION MAP
6'-8'		
n:	4	zzrel st.
	N	•
		5.6
<u> </u>		J of L
		I I I
109		·
	-	
		Alley.
	1"≅ 40́	· Alley .
	uperfund Dir Street Site, Ier: Darrell Som -30-98 Preservative DI H20,4° C 6'-8' on:	Street Site, Columbus, NE Sample #: der: Darrell Sommerhauser / EPA R - 30 - 48 Sample Time ANALYSIS Preservative MGP Code DI H ₂ O,4° C SV Sample Area: 6'-8' Di n: N

		ENTAL PROT	SHEET TECTION AGENCY-REGION VII nesota Avenue, K.C., KS 66101
Activity: 10th	Street Site,	Columbus, NE	Activity #: PS1CS
		Sample #:)13
EPA Project Lead Sample Date: 9.		merhauser / EPA RI Sample Time	
		ANALYSIS	REQUESTED
Container	Preservative	MGP Code	Analysis
3 x 20 mL vial	DI H ₂ O,4° C	SV	VOC 104 (3907)% 001143
) 			
		SAMPLE D	ESCRIPTION
Media: soil		Sample Area:	Aliquots:
Sample Location:			
S-7 Sample Description		4 N	Z3rd St. .23rd St.

. •

UNITED STA DENVIRONMENTAL PROTE

JN AGENCY

REGION 7 25 FUNSTON ROAD KANSAS CITY, KANSAS 66115

DATE: NOV 5 1993

SUBJECT: Data Transmittal for Activity #: SICS Site Description: Jenth Street Site

FROM: Andrea Jirka, Program Manager 71. Communication Regional Laboratory, Environmental Services Division

TO: om non

Attached is the data transmittal for the above-referenced site. The data contained in this transmittal have been approved by the Regional Laboratory. This should be considered a _____ Partial or $\underline{\chi}$ complete data transmittal (completes transmittal of $\frac{10}{28} \sqrt{99}$). The Project Leader should notify the Regional Laboratory with 14 days of any changes in the LAST analytical database. If you have any questions, comments, or data changes, please contact Dee Simmons at 551-5129. Attachment

cc: Analytical Data File

ANALYSIS REQUEST REPORT

FOR ACTIVITY: PS1CS

SOMMERHAUSER, D.

11/05/98 12:51:25

LABORATORY APPROVED DATA Project leader approval pending

+

١

* LABO APPROVED

FY: 98 ACTIVITY: PS1CS	DESCRIPTION: 10TH	STREET SITE	LOCATION:	COLUMBUS	NEBRASKA
	STATUS: ACTIVE	TYPE: SAMPLING - IN HOUSE	ANALYSIS	PROJECT:	L30
LABO DUE DATE IS 11/ 1/98.	REPORT DUE DATE IS 1	11/30/98.			
INSPECTION DATE: 10/ 1/98	ALL SAMPLES RECEIVED	D DATE: 10/02/98			
ALL DATA APPROVED BY LABO DA	NTE: 11/05/98	FINAL REPORT TRANSMITTED	DATE: 00/00/	00	
EXPECTED LABO TURNAROUND TIM	IE IS 30 DAYS	EXPECTED REPORT TURNAROUN	ND TIME IS 60	DAYS	
ACTUAL LABO TURNAROUND TIME	IS 34 DAYS	ACTUAL REPORT TURNAROUND	TIME IS OD	AYS	
SITE CODE: SITE:					

SAMP NO.	ecc H		DESCRIPTION	SAMPLE Status		CITY	STATE	AIRS/ STORET LOC NO	LAY- Er	BEG DATI		BEG. Time	END. Date	
001	U	LOCATION 31		1	COLUMBU	S	NEBRASKA		09	7/23	/98	14:00	11	:
002	ÿ	LOCATION 34		1	COLUMBU		NEBRASKA		09	7/23	/98	15:45	17	:
003	Ũ	LOCATION 9		1	COLUMBU		NEBRASKA		09	7/22	/98	17:54	17	:
004	Ū	LOCATION 30		1	COLUMBU		NEBRASKA			2/23		14:05	- 7 7	:
005	ÿ	LOCATION 21		1	COLUMBU	S	NEBRASKA			9/22)		16:35	77	:
006	Ũ	LOCATION 36		1	COLUMBU		NEBRASKA			7/23)		16:15	17	:
006 008	Ű	LOCATION 3		1	COLUMBU	S	NEBRASKA			9/24)		10:55	11	:
009	ÿ	LOCATION 14		1	COLUMBU	S	NEBRASKA			7/22		15:03	11	:
010	Ű	LOCATION 29		1	COLUMBU	S	NEBRASKA			7/23		12:05	11	:
011	ÿ	LOCATION 33		1	COLUMBU	S	NEBRASKA		09	7/23	/98	17:16	11	:
012	ÿ	LOCATION 27		1	COLUMBU	S	NEBRASKA		09	7/22	/98	16:55	1.1	:
012 013	Ü	LOCATION 2		1	COLUMBU	S	NEBRASKA		09	9/24	/98	09:25	11	:
014	ÿ	LOCATION 1		1	COLUMBU	S	NEBRASKA			7/24		08:30	1. 1.	:
015	Ŵ	LOCATION 16		1	COLUMBU	S	NEBRASKA			7/22		15:55	1. 1.	:
016 017	ÿ	LOCATION 24		1	COLUMBU	S	NEBRASKA			7/23		10:51	1.1.	:
017	W	LOCATION 35		1	COLUMBU	S	NEBRASKA			7/23		14:45	1. 1.	:
018		LOCATION 20		1	COLUMBU	S	NEBRASKA		09	22)	/98	10:55	1.1.	:
019	W	LOCATION 12		1	COLUMBU	S	NEBRASKA			722		09:46	11	:
020	V	LOCATION 17		1	COLUMBU	S	NEBRASKA			7/22		10:55	1.1.	:
021 022	ÿ	LOCATION 32		1	COLUMBU	S	NEBRASKA			7/23		13:00	1.1.	:
022	ÿ	LOCATION 24		1	COLUMBU	S	NEBRASKA			7/23		10:51	1.1.	:
023	ÿ	LOCATION 18		1	COLUMBU	S	NEBRASKA		09	7/22	/98	11:45	1.1.	:
024	W	LOCATION 36		1	COLUMBU	S	NEBRASKA		09	9/23	/98	16:15	- 1 1	:

LABORATORY APPROVED DATA Project leader approval pending

1

-

						ATPS/		PROJECT	LEADER	AFFROME	FERDING
SAMP.		SAMPLE	#			AIRS/ STORET	LAY-	BEG.	BEG.	END.	END.
NO. QCC M	DESCRIPTION 2917 10TH STREET LOCATION 60 LOCATION 70 LOCATION 70 LOCATION 44 LOCATION 41 LOCATION 53 LOCATION 72 LOCATION 72 LOCATION 72 LOCATION 77 LOCATION 86 LOCATION 89 LOCATION 93 LOCATION 107 LOCATION 107 LOCATION 109 LOCATION 43 LOCATION 56 LOCATION 56 LOCATION 64 LOCATION 65 LOCATION 96 LOCATION 97 LOCATION 98 LOCATION 98 LOCATION 101 LOCATION 98A FIELD BLANK TRIP BLANK TRIP BLANK SAMPLE LOCATION 112 (SAME AS S-7)	STATUS	-	CITY	STATE	LOC NO	SECT ER	DATE	TIME	DATE	TIME
025 W	2917 10TH STREET	1	COLUMBU	S	NEBRASKA			09/25/98	10:17	1. 1.	:
026 W	LOCATION 60	1	COLUMBU	S	NEBRASKA			09/27/98 09/25/98 09/26/98 09/26/98 09/27/98 09/25/98 09/25/98	11:55	1.1.	:
027 Ŵ	LOCATION 46	1	COLUMBU	S	NEBRASKA			09/25/98	15:25	1.1.	:
028 ¥	LOCATION 70	1	COLUMBU	S	NEBRASKA			09/26/98	11:05	1.1.	:
029 W	LOCATION 57	1	COLUMBU	S	NEBRASKA			09/27/98	14:00		:
030 Ŵ	LOCATION 44	1	COLUMBU	S	NEBRASKA			09/25/98	13:15	<i>l. l.</i>	:
031 W 032 W	LOCATION 39	1	COLUMBU	S	NEBRASKA			09/25/98	12:41	<i>I. I.</i>	:
032 W	LOCATION 41	1	COLUMBU	S	NEBRASKA			09/25/98	10:40	<i>I. I.</i>	:
033 W	LOCATION 53	1	COLUMBU	S	NEBRASKA			09/26/98	12:35	1, 1,	:
034 W	LOCATION 63	1	COLUMBU	S	NEBRASKA			09/26/98	12:55	1, 1,	•
035 V	LOCATION 72	1	COLUMBU	S	NEBRASKA			09/26/98	09:00	I, I,	
036 W	LOCATION 77	1	COLUMBU	S	NEBRASKA			09/28/98	14:40	1, 1,	
037 W	LOCATION 86	1	COLUMBU	S	NEBRASKA			09/28/98	16:45	1, 1,	
038 W	LOCATION 89	1	COLUMBU	S	NEBRASKA			09/20/98	08:35 08:25	1, 1,	
039 W	LOCATION 93	1	COLUMBU	5	NEBRASKA			09/29/90	10:00	1, 1,	
	LOCATION 107	1	COLUMBU	5	NEDKASKA			07/27/70	08:45	4, 4,	:
041 W 042 W	LOCATION 109	1	COLUMBU	3	NEDRAJKA			07/27/70	09:25	44	•
042 W	LOCATION 2	1		5	NEDRASKA			07/24/70	16:45	44	:
043 W	LOCATION 45	-		5	NEDRASKA			09/26/08	10:50	4 4	:
045 ₩	LOCATION 56	1		5	NEBRASKA			09/26/98	12:00	4 4	
046 W	LOCATION 54	4	COLUMBU	- J C	NERPASKA			09/27/98	10:05	4 4	
047 W	LOCATION 65	1	COLUMBI	6	NEBRASKA			09/27/98	10:40	4 4	-
048 W	LOCATION 68	1	COLUMBU	S	NEBRASKA			09/28/98	09:00	1 1	÷
049 W	LOCATION 96	1	COLUMBU	S	NEBRASKA NEBRASKA			09/26/98 09/26/98 09/28/98 09/28/98 09/28/98 09/28/98 09/29/98 09/29/98 09/29/98 09/25/98 09/26/98 09/26/98 09/26/98 09/27/98 09/29/98 09/29/98 09/29/98 09/29/98 09/29/98 09/29/98 09/29/98	14:50	1 1	:
050 W	LOCATION 97	1	COLUMBU	S	NEBRASKA			09/29/98	11:35	1 1	:
051 Ŵ	LOCATION 98	i	COLUMBU	S	NEBRASKA			09/29/98	10:45	1 1	:
052 W	LOCATION 100	1	COLUMBU	Ś	NEBRASKA			09/29/98	16:05	77	:
053 W	LOCATION 101	1	COLUMBU	S	NEBRASKA			09/29/98	15:35	77	:
054 W	LOCATION 102	1	COLUMBU	S	NEBRASKA			09/29/98	16:11	11	:
055 🖌 🖬	LOCATION 103	1	COLUMBU	S	NEBRASKA			09/29/98	14:54	11	:
056 W	LOCATION 94A	1	COLUMBU	S	NEBRASKA			09/29/98	12:05	1.1.	:
057 W	LOCATION 95A	1	COLUMBU	S	NEBRASKA			09/29/98	13:05	1, 1,	:
058 W	LOCATION 98A	1	COLUMBU	S	NEBRASKA			09/29/98	14:30	<i>l. l.</i>	:
059 F W	FIELD BLANK	1	COLUMBU	S	NEBRASKA			09/30/98	09:00	<i>I. I.</i>	:
060 F W	TRIP BLANK	1	COLUMBU	S	NEBRASKA			09/30/98	09:00	1, 1,	:
061 W	DECON GW RINSATE SAMPLE	1	COLUMBU	S	NEBRASKA			09/30/98	09:15	1, 1,	:
062 W	SAMPLE LOCATION 111	1	COLUMBU	S	NEBRASKA			09/30/98	14:25	1, 1,	
063 W	RINSATE OF SOIL SAMPLER	1	COLUMBU	S	NEBRASKA			09/30/98	10:30	1, 1,	
064 W	SAMPLE LOCATION 112 (SAME AS 5-7)	1	COLUMBU	S	NEBRASKA			09/30/98	16:36 08:54	4,4	
101 S	s-1 (1-3 ¹)	1	COLUMBU	S	NEBRASKA			09/30/30	09:05	44	
102 S	s-1 (6-8')	1	COLUMBU	5	NEBRASKA			07/30/70	09:00	44	:
103 \$	s-2 (1-3')	1	COLUMBU	5	NEBRASKA			07/30/70	09:40	44	:
104 S	S-2 (6-8')	1	COLUMBU	S	NEBRASKA			07/30/70	09:53	44	:
105 S	s-3 (1-3')	1	COLUMBU	5	NEBRASKA			09/30/98	10:05	4 4	•
106 S 107 S	S-3 (6-8') S-4 (1-3')	1	COLUMBU		NEBRASKA Nebraska			09/30/98 09/30/98 09/30/98 09/30/98 09/30/98 09/30/98 09/30/98 09/30/98 09/30/98 09/30/98 09/30/98 09/30/98 09/30/98 09/30/98 09/30/98 09/30/98 09/30/98	13:40	4 4	:
107 S	S-4 (1-5') S-4 (6-8')	4	COLUMBU		NEBRASKA			09/30/98	13:47	4 4	
108 S	S-4 (0-0) S-5 (1-3)	1	COLUMBU		NEBRASKA			09/30/98	15:00	4 4	
110 S	s-5 (6-8')	1	COLUMBU		NEBRASKA			09/30/98	15:10	1 1	
111 s	s-6 (1-3')	i	COLUMBU		NEBRASKA			09/30/98	15:30	4 4	-
112 s	S-6 (6-8')	1	COLUMBU		NEBRASKA			09/30/98	15:40	1 1	
113 S	s-7 (1-3')	1	COLUMBU		NEBRASKA			09/30/98	15:55	1 1	:
114 S	S-7 (6-8')	1	COLUMBU		NEBRASKA			09/30/98	16:10	1 1	:
	· · · · · · · · · · · · · · · · · · ·	•		-						, ,	-

										Y ·
							۰.		•	
							LABORAT	ORY APPR	ROVED DATA	4
							PROJECT	LEADER	APPROVAL	PENDING
SAMP NO.	: M	DESCRIPTION	SAMPLE / Status	¢ CITY	STATE	AIRS/ STORET LAY- LOC NO SECT ER	BEG. Date	BEG. Time	END. Date	END. Time
115 116	S S	S-8 (1-3') Soil Trip Blank		COLUMBUS Columbus	NEBRASKA Nebraska		09/30/98 10/01/98	17:55 11:30	44	:

.

EXPLANATION OF CODES AND INFORMATION ON ANALYSIS REQUEST DETAIL REPORT

SAMPLE INFORMATION:

ANALYTICAL RESULTS/MEASUREMENTS INFORMATION:

١

	COMPOUND = MGP (MEDIA-GROUP-PARAMETER) CODE AND NAME OF THE MEASURED CONSTITUENT OR CHARACTERISTIC OF EACH SAMPLE UNITS = SPECIFIC UNITS IN WHICH RESULTS ARE REPORTED: C = CENTIGRADE (CELSIUS) DEGREES CFS = CUBIC FEET PER SECOND GPM = GALLONS PER MINUTE I.D. = SPECIES IDENTIFICATION KG = KILOGRAM L = LITER LB = POUNDS (1 X 10-3 GRAMS) MGD = MILLIGRAMS (1 X 10-3 GRAMS) MGD = MILLION GALLONS PER DAY MPH = MILES PER HOUR MV = MILLIVOLT W/F = MALE/FEMALE KE M2 = SQUARE METER NA = CUBIC METER NA = NOT APPLICABLE NG = NANOGRAMS (1 X 10-9 GRAMS) NTU = NEPHELOMETRIC TURBIDITY UNITS PIKE PC/L = PICO (1 X 10-12) CURRIES PER LITER PG = PICOGRAMS (1 X 10-12 GRAMS) P/CH2 = PICOGRAMS (1 X 10-12 GRAMS) P/CH2 = PICOGRAMS (1 X 10-6 GRAMS) UMHOS = MICROGRAMS (1 X 10-6 GRAMS) UMHOS = MICROGRAMS (1 X 10-6 GRAMS) V/CC2 = MICROGRAMS (1 X 10-6 GRAMS) UMHOS = MICROGRAMS PER 100 SQUARE CENTIMETER SCM = STANDARD CUBIC METER (1 ATM, 25 C) SQ FT = SQUARE FEET SU = STANDARD CUBIC METER (1 ATM, 25 C) SQ FT = SQUARE FEET SU = STANDARD CUBIC METER (1 ATM, 25 C) SQ FT = SQUARE FEET SU = STANDARD CUBIC METER (1 ATM, 25 C) SQ FT = SQUARE FEET SU = STANDARD CUBIC METER (1 ATM, 25 C) SQ FT = SQUARE FEET SU = STANDARD CUBIC METER (1 ATM, 25 C) SQ FT = SQUARE FEET SU = STANDARD CUBIC METER (1 ATM, 25 C) SQ FT = SQUARE FEET SU = STANDARD CUBIC METER (1 ATM, 25 C) SQ FT = SQUARE FEET SU = STANDARD CUBIC METER (1 ATM, 25 C) SQ FT = SQUARE FEET SU = STANDARD CUBIC METER (1 ATM, 25 C) SQ FT = SQUARE FEET SU = STANDARD CUBIC METER (1 ATM, 25 C) SQ FT = SQUARE FEET SU = STANDARD CUBIC METER (1 ATM, 25 C) SQ FT = SQUARE FEET SU = STANDARD CUBIC METER (1 ATM, 25 C) SQ FT = SQUARE FEET SU = STANDARD CUBIC METER (1 ATM, 25 C) SQ FT = SQUARE FEET SU = STANDARD TO SCUARE CENTIMETER ATA WALUES TO PROVIDE ADDITIONAL IMFORMATION ON THE REPORTED RESULTS, OR USED TO EXPLAIN THE ABSENCE OF A SPECIFIC VALUE:
SAMP. NO. = SAMPLE IDENTIFICATION NUMBER (A 3-DIGIT NUMBER	CONPOUND = MGP (MEDIA-GROUP-PARAMETER) CODE AND NAME OF
WHICH IN COMBINATION WITH THE ACTIVITY NUMBER	THE MEASURED CONSTITUENT OR CHARACTERISTIC
AND OFF BOATDES AN UNTOUE NUMBER FOR FACE SAMPLE	OF FACH CANDIE
AND WELL, FRONTES AN UNIQUE NUMBER FOR EACH SANFLE	UNITO - OFFICIENTS IN DUITO BEOUTS ARE REPORTED.
FOR IDENTIFICATION FURPOSES)	UNITS = SPECIFIC UNITS IN WHICH RESULTS ARE REPORTED:
QCC = QUALITY CONTROL CODE (A ONE-LETTER CODE USED TO	C ≇ CENTIGRADE (CELSIUS) DEGREES
DESIGNATE SPECIFIC QC SAMPLES. THIS FIELD WILL BE	CFS = CUBIC FEET PER SECOND
BLANK FOR ALL NON-QC OR ACTUAL SAMPLES):	GPN = GALLONS PER MINUTE
B = CAL INCREASED CONCENTRATION FOR A LAB SPIKED DUP S	ANDIE IN SINCHES
A REASIDER VALUE FOR ETELD DUDITCATE SAMPLE	T D = SPECIES IDENTIFICATION
E - MEASURED VALUE FOR FIELD DUFLICATE SAMPLE	VC - VILCEDA
F - HEASURED VALUE FOR FIELD BLANK	
G - HEASURED VALUE FOR HETHOD STANDARD	
H = TRUE VALUE FOR METHOD STANDARD	LB = POUNDS
K = CAL INCREASED CONCENTRATION FOR FIELD SPIKED DUP S	ANPLE ' MG = MILLIGRAMS (1 X 10-3 GRAMS)
L = NEASURED VALUE FOR A LAB DUPLICATE SAMPLE	MGD = MILLION GALLONS PER DAY
N = MFASURED VALUE FOR LAB BLANK	NPH # NTLES PER HOUR
N = MEASUBED CONCENTRATION OF ETELD SPIKED DUDITCATE	
B = MCASUNED CONCENTRATION OF FIELD STARED DUCLICATE	$\mathbf{n}_{i} = -\mathbf{n}_{i} \mathbf{c}_{i} \mathbf{c}_{i}$
F - REASURED VALUE FOR FERFORMANCE STANDARD	
R = CAL INCREASED CONCENTRATION RESULTING FROM LAB SPI	KE HZ = SQUARE HEIER
S = MEASURED CONCENTRATION OF LAB SPIKED SAMPLE	M3 = CUBIC METER
T = TRUE VALUE OF PERFORMANCE STANDARD	NA = NOT APPLICABLE
W = MEASURED CONCENTRATION OF LAB SPIKED DUPLICATE	NG = NANOGRAMS (1 X 10-9 GRAMS)
Y = MEASURED CONCENTRATION OF FIELD SPIKED SAMPLE	NTU = NEPHELOMETRIC TURBIDITY UNITS
7 = CAL INCREASED CONCENTRATION DESULTING FROM FIFLD S	PIKE $P(I) = PI(O(1 \times 10-12)) CUPPTES PEP ITTEP$
1 - MEASUREN VALUE CONCLUTENTION RESOLUTING FROM FILLU S	$\mathbf{F}_{\mathbf{r}} = \mathbf{F}_{\mathbf{r}} = $
I - MEASURED VALUE OF FIRST SPIRED REFLICATE	$\mathbf{FG} = \mathbf{F1} \mathbf{COGRAPS} (\mathbf{T} \times \mathbf{TO}^{-12} \mathbf{GRAPS})$
2 = REASURED VALUE OF SECOND SPIRED REPLICATE	P/LH2 = PICOGRAMS PER SQUARE CERTIMETER
5 = MEASURED VALUE OF THIRD SPIKED REPLICATE	SCH = STANDARD CUBIC METER (1 ATH, 25 C)
4 = MEASURED VALUE OF FOURTH SPIKED REPLICATE	SQ FT = SQUARE FEET
5 = MEASURED VALUE OF FIFTH SPIKED REPLICATE	SU = STANDARD UNITS (PH)
6 = MEASURED VALUE OF SIXTH SPIKED REPLICATE	UG = MICROGRAMS (1 X 10-6 GRAMS)
7 = MEASURED VALUE OF SEVENTH SPIKED REPLICATE	UNHOS = NICROMHOS/CM (CONDUCTIVITY UNITS)
N = MEDIA CODE (A ONE-LETTER CODE DESIGNATING THE MEDIA	U/CC2 = WICDOGDAMS DED 100 SQUADE CENTIMETERS
AT THE AMOLES.	V/CO2 - MICROCRAME DER FOUSARE CENTIMETER
	d_{1}
A = AIR = HAZARDOUS WASIE/OTHER	
S = SOLID (SOIL, SEDIMENT, SLUDGE)	+/- = POSITIVE/NEGATIVE
T = TISSUE (PLANT & ANIMAL)	# = NUMBER
W = WATER (GROUND WATER, SURFACE WATER, WASTE WATER,	DATA QUALIFIERS = SPECIFIC CODES USED IN CONJUNCTION WITH
DRINKING WATER)	DATA VALUES TO PROVIDE ADDITIONAL INFORMATION
DESCRIPTION = A SHORT DESCRIPTION OF THE LOCATION WHERE SAMPLE WAS	ON THE REPORTED RESULTS, OR USED TO EXPLAIN
COLLECTED	THE ABSENCE OF A SPECIFIC VALUE.
ATRS/STORET LOC NO - THE SPECIFIC LOCATION IN NUMBER OF FITHER OF	BLANK = TE ETELD TS BLANK NO DEMARKS OF
ALASYSTORET LOC. NO THE SPECIFIC LOCATION ID NUMBER OF ETHER OF	TE DEARK - 11 FILLD 15 DEARK, NO REMARKS ON
INESE NATIONAL PATABASE STOLEND, AS APPROPRIA	JE QUALIFIERS ARE FERINGAL. FOR FINAL
DATE/THE INFORMATION = SPECIFIC INFORMATION REGARDING WHEN THE SAMP	LE REPORTED DATA, THIS HEANS THAT THE
WAS COLLECTED	VALUES HAVE BEEN REVIEWED AND FOUND
BEG. DATE = DATE SAMPLING WAS STARTED	TO BE ACCEPTABLE FOR USE.
BEG. TIME = TIME SAMPLING WAS STARTED	I = INVALID SAMPLE/DATA - VALUE NOT REPORTED
END DATE = DATE SAMPLING WAS COMPLETED	J = THE ASSOCIATED NUMERICAL VALUE IS AN
END TIME & TIME SANDIING WAS COMPLETED	ESTIMATED QUANTITY
NOTE: A COMPLETED WAS CONFLETED	K = ACTUAL VALUE AE CAMDIE TO / VALUE DEDADTER
NOIE. A GRAD SANFLE WILL CONTAIN UNLT BEG.	A - ACTUAL VALUE OF SAMPLE IS A VALUE REPORTER
	L - ACTUAL VALUE OF SAMPLE 13 / VALUE REPORTED
A TIMED COMPOSITE SAMPLE WILL CONTAIN	M = DETECTED BUT BELOW THE LEVEL OF REPORTED
BOTH BEG AND END DATE/TIME TO DESIGNAT	E VALUE FOR ACCURATE QUANTIFICATION
DURATION OF SAMPLE COLLECTION	O = PARAMETER NOT ANALYZED
W = WATER (GROUND WATER, SURFACE WATER, WASTE WATER, DRINKING WATER) DESCRIPTION = A SHORT DESCRIPTION OF THE LOCATION WHERE SAMPLE WAS COLLECTED AIRS/STORET LOC. NO. = THE SPECIFIC LOCATION ID NUMBER OF EITHER OF THESE NATIONAL DATABASE SYSTEMS, AS APPROPRIA DATE/TIME INFORMATION = SPECIFIC INFORMATION REGARDING WHEN THE SAMP WAS COLLECTED BEG. DATE = DATE SAMPLING WAS STARTED BEG. TIME = TIME SAMPLING WAS STARTED END DATE = DATE SAMPLING WAS COMPLETED END TIME = TIME SAMPLING WAS COMPLETED NOTE: A GRAB SAMPLE WILL CONTAIN ONLY BEG. DATE/TIME A TIMED COMPOSITE SAMPLE WILL CONTAIN BOTH BEG AND END DATE/TIME TO DESIGNAT DURATION OF SAMPLE COLLECTION OTHER CODES V = VALIDATED	U = THE MATERIAL WAS ANALYZED FOR. BUT WAS NOT
V = VALIDATED	DETECTED. THE ASSOCIATED NUMERICAL VALUE
	IS THE SAMPLE DETECTION LIMIT

- IS THE SAMPLE DETECTION LIMIT.

ANALYSIS REQUEST DETAIL REPORT

ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

1

x

COMPOUND	UNITS	001	002		003		004		005	
JFO1 TEMPERATURE, WATER	-: :'c	:	.17.4		19		18.4		20.7	:
JFO5 PH, FIELD	- :	6.99	7.33		6.7		7.32		:7.25	:
JF10 CONDUCTIVITY (FIELD)	UNHOS	1550	622		1200		538		573	;
JG30 TURBIDITY	NTU	999	1000		160		1000		:31	
M37 ARSENIC, DISSOLVED, BY ICAP	UG/L		:						7.14	U
IM60 ARSENIC, DISSOLVED, BY AA	UG/L	15.8							:	
JW40 CHLOROMETHANE, BY GC/MS LDL	UG/L	1.3 U	1.3	U	1.3	U	1.3	U	:	
JW41 BROMOMETHANE, BY GC/MS LDL	UG/L	1.7 U	1.7	U	1.7	U	1.7	U	:	
W42 VINYL CHLORIDE, BY GC/MS LDL	UG/L	1.3 U	1.3	U	1.3	U	1.3	U		
W43 CHLOROETHANE, BY GC/MS LDL	UG/L	2.2 U	2.2	U	2.2	U	2.2	U	:	
W44 METHYLENE CHLORIDE (DICHLOROMETHANE) L	D:UG/L	1.2 U	1.2	บ	1.2	U	1.2	 U	:	
W45 DICHLOROETHYLENE, 1,1- BY GC/MS LDL	UG/L	1.6 U	1.6	U	1.6	U	1.6	U	:	
W46 DICHLOROETHANE, 1,1- BY GC/MS LDL	UG/L	0.43 U	0.43	U	0.43	U	0.43		:	
W48 CHLOROFORM, BY GC/MS LDL	UG/L	0.36 U	.0.36	U	0.36	U	0.36	U		
1W49 DICHLOROETHANE, 1,2- BY GC/MS LDL	UG/L	0.37 U	0.37	U	0.37	U	0.38			
WSO TRICHLOROETHANE, 1,1,1- BY GC/MS LDL	UG/L	:0.58 U	0.58	U	0.58	U	0.58	U	:	
W51 CARBON TETRACHLORIDE, BY GC/MS LDL	UG/L	0.19 U	0.19	U	0.19	U	0.19	<u>U</u>	:	
W52 BROMODICHLOROMETHANE, BY GC/MS LDL	UG/L	0.28 U	0.28	U	0.28	U	0.28	U	:	
WS3 DICHLOROPROPANE, 1,2- BY GC/MS LDL	UG/L	0.43 U	0.43	U	0.43	U	0.43	U	:	
IW54 BENZENE, BY GC/NS LDL	UG/L	0.14 U	0.14	U	0.14	U	0.17			
W55 TRICHLOROETHYLENE, BY GC/MS LDL	UG/L	:84	0.54	บ	83		270		:	
W56 DICHLOROPROPYLENE, CIS 1,3- BY GC/MS L	D:UG/L	0.63 U	0.63	U	0.63	U	0.63	U	:	:
W57 DIBRONOCHLOROMETHANE, BY GC/MS LDL	:UG/L	0.29 U	.0.29	U	0.29	U	0.29	U		
1458 TRICHLOROETHANE, 1,1,2- BY GC/MS LDL	UG/L	0.38 U	.0.38	U	0.38	 U	0.38	ū		
W59 BRONOFORM, BY GC/NS LDL	UG/L	0.17 U	.0.17	U	0.17	U	0.17	U		
W60 TETRACHLOROETHYLENE, BY GC/MS LDL	UG/L	3.5	.0.31	U	7.1		260			

ANALYSIS REQUEST DETAIL REPORT ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

.

. -

•

•

COMPOUND	UNITS	001		002		003		004		005
WW61 TOLUENE, BY GC/MS LDL	UG/L	0.54		0.54	 U	0.54	U	0.54	 U	:
WW62 TETRACHLOROETHANE, 1,1,2,2- BY GC/NS, L	.:UG/L	:0.64	U	:0.64	U	:0.64	U	:0.64	U	:
WW63 CHLOROBENZENE, BY GC/MS LDL	UG/L	:0.23	U	:0.23	 U	0.23	U	:0.23	 U	:
WW64 ETHYLBENZENE, BY GC/MS LDL	:UG/L	:0.31	U	:0.31	 U	0.31	U	:0.31	 U	:
WW65 ACETONE, BY GC/NS LDL	:UG/L	:9.0	 U	:9.0	U	9.0	 U	9.0	 U	:
WW66 CARBON DISULFIDE, BY GC/MS LDL	UG/L	:1.1	 U	:1.1	U	1.1	U	:1.1	U	
WW67 METHYL ETHYL KETONE (2-BUTANONE) LDL	UG/L	3.0	U	3.0	U	3.0	U	3.0	 U	
WW68 HEXANONE, 2- BY GC/MS LDL	:UG/L	:3.2	U	:3.2	U	3.2	U	3.2	 U	:
WW69 4-METHYL-2-PENTANONE (MIBK) BY GC/MS LD	UG/L	0.79	U	:0.79	U	0.79	U	0.79	 U	:
WW70 STYRENE, BY GC/NS LDL	UG/L	0.34	U	0.34	U	0.34	U	0.34	 U	
WW72 DICHLOROPROPYLENE, TRANS 1,3- BY GC/MS	UG/L	0.82	U	0.82	U	0.82		0.82	 U	
WW73 XYLENE, M AND/OR P BY GC/MS LDL	:UG/L	0.22	U	0.22	U	0.22	U	0.22	U	
WW74 XYLENE, ORTHO BY GC/NS LDL	:UG/L	:0.40	U	:0.40	U	0.40	U	0.40	 U	:
WW75 DICHLOROBENZENE, 1,4- (PARA) BY GC/NS L	UG/L	0,46	ี ป	:0.46	U	0.46	U	0.46	 U	
WW76 DICHLOROBENZENE, 1,3- (META) BY GC/NS L	:UG/L	0.36	U	:0.36	U	0.36	U	0.36	U	
W77 DICHLOROBENZENE, 1,2- (ORTHO) BY GC/NS	:UG/L	0,35	 U	:0.35	U	0.35	U	0.35	 U	
W78 DICHLOROETHYLENE, 1,2- (TRANS) BY GC/MS	:UG/L	0,84	U	:0.84	u	0.84	U	0.93		
W79 DICHLOROETHYLENE, 1,2- (CIS) BY GC/NS L	: :UG/L	3.5		:0.84	U	4.0		:7.5		:
ZZO1 SANPLE NUMBER	:	001		:002		003		004		005
ZZOZ ACTIVITY CODE	:	PSICS		: :PS1CS		PS1CS		: :PS1CS		:PS1CS

ANALYSIS REQUEST	DETAIL REPORT	ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

ł.

•

COMPOUND	UNITS	006	008	009	010	011
WF01 TEMPERATURE, WATER	' c	:18.3	:	:18.9	::	18.4
WF05 PH, FIELD	su	7.28	7.19	6.99	7.0	7.28
WF10 CONDUCTIVITY (FIELD)	UNHOS	1280	496	642	513	589
WG30 TURBIDITY	NTU	10	132	115	451	1000
WN37 ARSENIC, DISSOLVED, BY ICAP	UG/L	7.14 U	7.14 U		7.14 U	7.14 U
WM60 ARSENIC, DISSOLVED, BY AA	UG/L			1.66 U		
WW40 CHLOROMETHANE, BY GC/MS LDL	UG/L	:		1.3 U		
WW41 BROMOMETHANE, BY GC/MS LDL	UG/L			1.7 U		
W42 VINYL CHLORIDE, BY GC/MS LDL	UG/L		:	-1.3 U	:	
JW43 CHLOROETHANE, BY GC/MS LDL	UG/L			2.2 U		
W44 METHYLENE CHLORIDE (DICHLOROMETHANE)	UG/L			1.2 U		
JW45 DICHLOROETHYLENE, 1,1- BY GC/MS LDL	UG/L			1.6 U		
W46 DICHLOROETHANE, 1,1- BY GC/MS LDL	UG/L			0.43 U		
JW48 CHLOROFORM, BY GC/NS LDL	UG/L			0.36 U		
W49 DICHLOROETHANE, 1,2- BY GC/MS LDL	UG/L			0.37 U		
W50 TRICHLOROETHANE, 1,1,1- BY GC/MS LDL	UG/L			0.58 U		
W51 CARBON TETRACHLORIDE, BY GC/MS LDL	UG/L			0.19 U		
1W52 BROMODICHLOROMETHANE, BY GC/MS LDL	UG/L			0.28 U		
IW53 DICHLOROPROPANE, 1,2- BY GC/MS LDL	UG/L			0.43 U		
W54 BENZENE, BY GC/MS LDL	UG/L			0.27		
W55 TRICHLOROETHYLENE, BY GC/MS LDL	UG/L			1.0		
IW56 DICHLOROPROPYLENE, CIS 1,3- BY GC/MS LI	UG/L			0.63 U		
W57 DIBROMOCHLOROMETHANE, BY GC/MS LDL	UG/L			0.29 U		
W58 TRICHLOROETHANE, 1,1,2- BY GC/MS LDL	UG/L			0.38 U		
W59 BRONOFORM, BY GC/NS LDL	UG/L			0.17 U		
W60 TETRACHLOROETHYLENE, BY GC/MS LDL	UG/L			0.31 U		
					• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·

ANALYSIS REQUEST DETAIL REPORT ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

1

Ν

CONPOUND	UNITS	006	008	009		010	011
WW61 TOLUENE, BY GC/HS LDL	UG/L						:
WW62 TETRACHLOROETHANE, 1,1,2,2- BY GC/MS,	L:UG/L			0.64	U		
WW63 CHLOROBENZENE, BY GC/MS LDL	UG/L			0.23	U		
WW64 ETHYLBENZENE, BY GC/NS LDL	UG/L			0.31	U		
WW65 ACETONE, BY GC/MS LDL	UG/L	:		.9.0	U		
WW66 CARBON DISULFIDE, BY GC/MS LDL	UG/L			1.1	U		
WW67 METHYL ETHYL KETONE (2-BUTANONE) LDL	UG/L			3.0	U		
WW68 HEXANONE, 2- BY GC/MS LDL	UG/L	:		3.2	U		
WW69 4-METHYL-2-PENTANONE (MIBK) BY GC/MS L	D:UG/L			.0.79	ບ		
WW70 STYRENE, BY GC/MS LDL	UG/L			0.34	U		
WW72 DICHLOROPROPYLENE, TRANS 1,3- BY GC/NS	UG/L			0.82	U		
WW73 XYLENE, M AND/OR P BY GC/MS LDL	UG/L			0.63			
WW74 XYLENE, ORTHO BY GC/NS LDL	UG/L			0.40	U		
WW75 DICHLOROBENZENE, 1,4- (PARA) BY GC/MS	L UG/L			0.46	U		
WW76 DICHLOROBENZENE, 1,3- (META) BY GC/MS	LUG/L			0.36	U		
WW77 DICHLOROBENZENE, 1,2- (ORTHO) BY GC/NS	:UG/L	:		0.35	U		
WW78 DICHLOROETHYLENE, 1,2- (TRANS) BY GC/M	S:UG/L	:		6.9			
WW79 DICHLOROETHYLENE, 1,2- (CIS) BY GC/MS	L:UG/L			8.7			
ZZO1 SAMPLE NUMBER	-: :NA	:006	008	009		010	:011
ZZO2 ACTIVITY CODE	- :	PS1CS	PS1CS	PS1CS		PS1CS	:PS1CS
		•	•••••	•		•	•

(

ANALYSIS REQUEST DETAIL REPORT ACTIVITY:

ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

÷

COMPOUND	UNITS	012	013	014	015	016	
WF01 TEMPERATURE, WATER	' c	19.0	16.4	:16.4	:18.0	:16.7	
WFOS PH, FIELD	:SU	6.9	:7.2	7.36	7.0	6.97	
WF10 CONDUCTIVITY (FIELD)	UNHOS	1200	506	:486	1700	:1120	
WG30 TURBIDITY	NTU	999	1000	:0.486	80	574	
WM37 ARSENIC, DISSOLVED, BY ICAP	UG/L	7.14	U :7.14	U			
WM60 ARSENIC, DISSOLVED, BY AA	UG/L			60.6	:8.63	:1.84	
ZZO1 SAMPLE NUMBER	NA	012	:013	:014	:015	:016	
ZZOZ ACTIVITY CODE	NA	PSICS	PS1CS	PSICS	:PS1CS	:PS1CS	
				,,		- ·	

ANALYSIS	REQUEST	DETAIL	REPORT	ACTIVITY: 8

IVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

.

. .

Ν

COMPOUND	UNITS	017	018		019	020	021
JFO1 TENPERATURE, WATER	:'c	:	:15.0	: :	15.0	17.0	15.7
JFOS PH, FIELD	: SU	7.39	:6.8	:	6.7	7.0	7.03
JF10 CONDUCTIVITY (FIELD)	UMHOS	567	1900	:	1400	1200	1240
IG30 TURBIDITY	NTU	1000	1000	:	1000	80	55
JW40 CHLOROMETHANE, BY GC/MS LDL	UG/L	1.3 U	:1.3 I	0	1.3 U	1.3 U	1.3 U
W41 BROMOMETHANE, BY GC/MS LDL	UG/L	1.7 U	1.7 (U :	1.7 U	1.7 U	1.7 U
W42 VINYL CHLORIDE, BY GC/NS LDL	UG/L	1.3 U	1.3 0	U :	1.3 U	1.3 U	1.3 U
JW43 CHLOROETHANE, BY GC/MS LDL	UG/L	2.2 U	2.2 (U :	2.2 U	2.2 U	2.2 U
JW44 METHYLENE CHLORIDE (DICHLOROMETHANE) LD	UG/L	1.2 U	1.2 U	U :	1.2 U	1.2 U	1.2 U
1W45 DICHLOROETHYLENE, 1,1- BY GC/MS LDL	UG/L	1.6 U	1.6 L	U :	1.6 U	1.6 U	1.6 U
W46 DICHLOROETHANE, 1,1- BY GC/NS LDL	UG/L	0.43 U	0.43 1	U :	0.43 U	0.43 U	0.43 U
IW48 CHLOROFORM, BY GC/MS LDL	UG/L	0.36 U	0.36 เ	U :	0.36 U	0.36 U	0.36 U
1W49 DICHLOROETHANE, 1,2- BY GC/NS LDL	UG/L	0.37 U	0.37 เ	U :	0.37 U	0.37 U	0.42
W50 TRICHLOROETHANE, 1,1,1- BY GC/MS LDL	UG/L	0.58 U	.0.58 L	U :	0.58 U	0.58 U	0.58 U
W51 CARBON TETRACHLORIDE, BY GC/MS LDL	UG/L	0.19 U	0.19 L	U :	0.19 U	0.19 U	0.19 U
W52 BROMODICHLOROMETHANE, BY GC/MS LDL	UG/L	0.28 U	.0.28 U	U :	0.28 U	0.28 U	0.28 U
W53 DICHLOROPROPANE, 1,2- BY GC/MS LDL	UG/L	0.43 U	0.43 L	U :	0.43 U	0.43 U	0.43 U
W54 BENZENE, BY GC/NS LDL	UG/L	0.16	3.8		0.14 U	0.14 U	0.14 U
W55 TRICHLOROETHYLENE, BY GC/MS LDL	UG/L	260	:11		25	44	37
W56 DICHLOROPROPYLENE, CIS 1,3- BY GC/MS LD	UG/L	0.63 U	0.63 U	J :	0.63 U	0.63 U	0.63 U
W57 DIBROMOCHLOROMETHANE, BY GC/MS LDL	:UG/L	0.29 U	0.29 U	, ,	0.29 U	0.29 U	0.29 U
W58 TRICHLOROETHANE, 1,1,2- BY GC/MS LDL	:UG/L	0.38 U	0.38 0]	0.38 U	0.38 U	0.38 U
W59 BRONOFORM, BY GC/NS LDL	UG/L	0.17 U	0.17 U	J :	0.17 U	0.17 U	0.17 U
W60 TETRACHLOROETHYLENE, BY GC/MS LDL	:UG/L	48	:10	:	41	3.0	51
W61 TOLUENE, BY GC/MS LDL	UG/L	0.54 U	0.54 U]	0.54 U	0.54 U	0.54 U
W62 TETRACHLOROETHANE, 1,1,2,2- BY GC/MS, L	UG/L	0.64 U	0.64 U		0.64 U	0.64 U	0.64 U
				:			:

ANALYSIS	REQUEST	DETAIL	REPORT	ACTIVITY:	8-PS1CS
ANALIGIO	NE QUEUI	PEINTE	MET WAT		0 10100

LABORATORY APPROVED DATA Project leader approval pending

.

0.23 0.31 9.0	U	0.23	U	0.23		:0.23		0.23	U
9.0	U			0.31	<u>-</u>	-0 31		*********	
:	;	9.0					U	0.31	U
:1.1		-	U	9.0	U	9.0	U	9.0	U
		1.1	U	1.1	U	1.1	U	1.1	U
3.0	U	3.0	บ	3.0	U	3.0	U	3.0	U
3.2	U	3.2	U	3.2	 U	3.2	U	:3.2	U
0.79	U	0.79	U	0.79	U	0.79	U	0.79	U
0.34	U	0.34	U	0.34	U	0.34	<u>-</u>	:0.34	U
:0.82	U	0.82	U	0.82	- U	0.82		0.82	U
0.28		0.22	U	0.22	U	0.22	U	0.22	U
0.40	U	0.40	U	0.40	U	0.40	U	0.40	U
0.46	U	0.46	U	0.46	U	0.46	<u>-</u> U	0.46	U
0.36	U	0.36	บ	0.36	<u></u> u	0.36	U	0.36	U
0.35	U	0.35	U	0.35	U	0.35	ບ	0.35	U
0.84	U	0.84	U	0.84	Ű	7.7		0.84	U
6.8		1.0		1.1	*	16		1.5	
017		018		019		020		021	
PSICS		PSICS		PS1CS		PSICS		PS1CS	
	3.0 3.2 0.79 0.34 0.82 0.28 0.40 0.46 0.36 0.35 0.84 6.8 017	3.0 U 3.2 U 0.79 U 0.34 U 0.82 U 0.28 0.40 0.46 U 0.35 U 0.84 U 0.84 U 0.75 U 0.79 0.79	3.0 U 3.0 3.2 U 3.2 0.79 U 0.79 0.34 U 0.34 0.82 U 0.82 0.28 0.22 0.40 U 0.40 0.35 U 0.36 0.35 U 0.35 0.84 U 0.84 0.77 018	3.0 U 3.0 U 3.2 U 3.2 U 0.79 U 0.79 U 0.34 U 0.34 U 0.82 U 0.82 U 0.28 0.22 U 0.40 U 0.40 U 0.35 U 0.36 U 0.35 U 0.35 U 0.84 U 0.84 U 0.17 018 018	3.0 U 3.0 U 3.0 3.2 U 3.2 U 3.2 0.79 U 0.79 U 0.79 0.34 U 0.34 U 0.34 0.82 U 0.82 U 0.82 0.28 0.22 U 0.22 0.22 0.40 U 0.40 U 0.40 0.46 U 0.46 U 0.46 0.35 U 0.35 U 0.35 0.84 U 0.84 U 0.84 0.17 018 019 019	3.0 U 3.0 U 3.0 U 3.2 U 3.2 U 3.2 U 0.79 U 0.79 U 0.79 U 0.34 U 0.34 U 0.34 U 0.82 U 0.82 U 0.82 U 0.40 U 0.40 U 0.40 U 0.46 U 0.46 U 0.46 U 0.35 U 0.35 U 0.36 U 0.35 U 0.35 U 0.35 U 0.34 U 0.44 U 0.46 U	3.0 U 3.0 U 3.0 U 3.0 3.2 U 3.2 U 3.2 U 3.2 0.79 U 0.79 U 0.79 U 0.79 0.34 U 0.34 U 0.34 U 0.34 0.82 U 0.82 U 0.82 U 0.82 0.28 0.22 U 0.22 U 0.22 U 0.22 0.40 U 0.40 U 0.40 U 0.40 0.40 0.46 U 0.46 U 0.46 U 0.46 0.35 U 0.35 U 0.35 U 0.35 0.84 U 0.84 U 0.84 U 7.7 6.8 1.0 1.1 16 019 020	3.0 U 3.0 U 3.0 U 3.0 U 3.2 U 3.2 U 3.2 U 3.2 U 0.79 U 0.79 U 0.79 U 0.79 U 0.34 U 0.34 U 0.34 U 0.34 U 0.82 U 0.82 U 0.82 U 0.82 U 0.28 0.22 U 0.22 U 0.22 U 0.22 U 0.40 U 0.40 U 0.40 U 0.40 U 0.46 U 0.46 U 0.46 U 0.46 U 0.35 U 0.35 U 0.36 U 0.36 U 0.35 U 0.35 U 0.35 U 0.35 U 0.44 U 0.84 U 0.84 U 7.7 6.8 1.0 1.1 16 019 020	3.0 U 3.2 U 0.79 U 0.79 U 0.79 U 0.79 U 0.79 U 0.34 U 0.32 U 0.32 U 0.32 U 0.22 U 0.22 U 0.22 U 0.22 U 0.40 U 0.40 U 0.40 U 0.40

ANALYSIS REQUEST DETAIL REPORT ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

٠

COMPOUND	UNITS	022	023	024	025	026	
WFO1 TENPERATURE, WATER	' c	:::16.7	:16.0	-: :18.3	:	: :18.9	:
WFOS PH, FIELD	su	6.97	6.8	.7.28	6.81	6.86	
WF10 CONDUCTIVITY (FIELD)	UMHOS	1120	1300	1280	709	1350	
WG30 TURBIDITY	NTU	574	40	10		1000	
WM27 ARSENIC, TOTAL, BY AA	UG/L				41.0		
WM37 ARSENIC, DISSOLVED, BY ICAP	UG/L					7.14	J :
WW40 CHLOROMETHANE, BY GC/MS LDL	UG/L	1.3 U	1.3 U	1.3 U		:1.3 I	U :
WW41 BROMOMETHANE, BY GC/NS LDL	UG/L	1.7 U	1.7 U	1.7 U		:1.7 (J :
WW42 VINYL CHLORIDE, BY GC/MS LDL	UG/L	1.3 U	:1.3 U	1.3 U	****************	1.3 ι	J
WW43 CHLOROETHANE, BY GC/NS LDL	UG/L	2.2 U	2.2 U	2.2 U		2.2 (J :
WW44 METHYLENE CHLORIDE (DICHLOROMETHANE) LE	UG/L	1.2 U	1.2 U	1.2 U		1.2 ι	J
WW45 DICHLOROETHYLENE, 1,1- BY GC/MS LDL	:UG/L	1.6 U	1.6 U	1.6 U		:1.6 เ	J :
WW46 DICHLOROETHANE, 1,1- BY GC/MS LDL	:UG/L	0.43 U	0.43 U	0.43 U		0.43 l	J
WW48 CHLOROFORM, BY GC/MS LDL	UG/L	0.36 U	0.36 U	0.36 U	·	.0.36 L	J
WW49 DICHLOROETHANE, 1,2- BY GC/MS LDL	UG/L	.0.41	0.37 U	0.37 U		:0.46	
WW50 TRICHLOROETHANE, 1,1,1- BY GC/MS LDL	UG/L	0.58 U	0.58 U	0.58 U		:0.58 L	J
WW51 CARBON TETRACHLORIDE, BY GC/MS LDL	UG/L	0.19 U	0.19 U	0.19 U		.0.19 L	
WW52 BROMODICHLOROMETHANE, BY GC/MS LDL	UG/L	0.28 U	0.28 U	:0.28 U		:0.28 L	
WW53 DICHLOROPROPANE, 1,2- BY GC/MS LDL	UG/L	0.43 U	0.43 U	0.43 U		:0.43 L	1
WW54 BENZENE, BY GC/MS LDL	:UG/L	10	0.44	0.14 U		:0.42	
WW55 TRICHLOROETHYLENE, BY GC/MS LDL	UG/L	160	19	170		:380	
WW56 DICHLOROPROPYLENE, CIS 1,3- BY GC/MS LD	UG/L	0.63 U	0.63 U	0.63 U		:0.63 U	
WW57 DIBRONOCHLOROMETHANE, BY GC/NS LDL	UG/L	0.29 U	0.29 U	0.29 U		.0.29 U	
WW58 TRICHLOROETHANE, 1,1,2- BY GC/MS LDL	UG/L	0.38 U	0.38 U	0.38 U		:0.38 U	
WW59 BRONOFORM, BY GC/NS LDL	UG/L	0.17 U	0.17 U	0.17 U		0.17 U	
WW60 TETRACHLOROETHYLENE, BY GC/MS LDL	UG/L	130	51	0.31 U		220	
		;	;				

ANALYSIS REQUEST DETAIL REPORT ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

1

۰.

COMPOUND	UNITS	022		023		024		025	026	
WW61 TOLUENE, BY GC/MS LDL	UG/L	:0.54	 U	0.54	 U	0.54	 U	:	.0.54	 U
WW62 TETRACHLOROETHANE, 1,1,2,2- BY GC/NS,	L UG/L	0.64	U	0.64	บ	0.64	U		0.64	U
WW63 CHLOROBENZENE, BY GC/MS LDL	UG/L	0.23	U	0.23	U	0.23	U		0.23	U
WW64 ETHYLBENZENE, BY GC/MS LDL	UG/L	0.31	U	0.31	U	0.31	U		0.31	U
WW65 ACETONE, BY GC/NS LDL	:UG/L	:9.0	U	9.0	U	9.0	U		9.0	U
WW66 CARBON DISULFIDE, BY GC/MS LDL	UG/L	1.1	U	:1.1	U	1.1	U		1.1	U
WW67 METHYL ETHYL KETONE (2-BUTANONE) LDL	UG/L	:3.0	U	3.0	U	3.0	U		3.0	U
WW68 HEXANONE, 2- BY GC/MS LDL	UG/L	3.2	 U	3.2	U	3.2	U		:3.2	U
WW69 4-METHYL-2-PENTANONE (MIBK) BY GC/MS L	DUG/L	0.79		0.79	u	0.79	υ		0.79	υ
WW70 STYRENE, BY GC/MS LDL	UG/L	0.34	U	0.34	U	0.34	U		:0.34	U
WW72 DICHLOROPROPYLENE, TRANS 1,3- BY GC/NS	UG/L	.0.82	U	0.82	U	0.82	U		.0.82	U
WW73 XYLENE, M AND/OR P BY GC/MS LDL	UG/L	0.22	U	0.22	U	0.22	U		.22	U
WW74 XYLENE, ORTHO BY GC/NS LDL	UG/L	0.40	 U	0.40	U	0.40	U		0.40	U
WW75 DICHLOROBENZENE, 1,4- (PARA) BY GC/MS	L:UG/L	:0.46	U	0.46	U	0.46	U		:0.46	U
WW76 DICHLOROBENZENE, 1,3- (NETA) BY GC/NS	L:UG/L	:0.36	U	:0.36	U	0.36	U		0.36	U
WW77 DICHLOROBENZENE, 1,2- (ORTHO) BY GC/MS	5 :UG/L	:0.35	-	:0.35	U	0.35	U		0.35	U
WW78 DICHLOROETHYLENE, 1,2- (TRANS) BY GC/M	IS:UG/L	:1.2		:0.84	U	.19			2.8	
WW79 DICHLOROETHYLENE, 1,2- (CIS) BY GC/MS	L UG/L	:8.0		:1.9		37			:58	
ZZO1 SAMPLE NUMBER	: NA	:022		:023		024		025	026	
ZZO2 ACTIVITY CODE		:		:PS1CS	******	PS1CS		PS1CS	PS1CS	

ANALYSIS REQUEST DETAIL REPORT ACTIVIT

ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

.

-

COMPOUND	UNITS	027	028		029	030	031	
WF01 TEMPERATURE, WATER	:	:	:22.2		:	20.6	 :17.6	:
WFOS PH, FIELD	:su	7.01	6.97		7.05	6.96	 6.98	:
WF10 CONDUCTIVITY (FIELD)	UNHOS	1310	1700		1410	1010	 1260	:
WG30 TURBIDITY	NTU	1000	:188		1000	:1000	 764	
WM37 ARSENIC, DISSOLVED, BY ICAP	UG/L	7.14 L				7.14	 7.14	U
WH60 ARSENIC, DISSOLVED, BY AA	UG/L		15.9		3.16			
WW40 CHLOROMETHANE, BY GC/MS LDL	UG/L	1.3 U	1.3	U				
WW41 BROMOMETHANE, BY GC/MS LDL	UG/L	1.7	1.7	U				
WW42 VINYL CHLORIDE, BY GC/MS LDL	UG/L	1.3 U	1.3	ບ				
WW43 CHLOROETHANE, BY GC/MS LDL	UG/L	2.2 0	:2.2	U			 	
WW44 METHYLENE CHLORIDE (DICHLOROMETHANE) LD	UG/L	1.2 U	:1.2	U				
WW45 DICHLOROETHYLENE, 1,1- BY GC/MS LDL	UG/L	1.6 U	1.7				 	
WW46 DICHLOROETHANE, 1,1- BY GC/MS LDL	UG/L	0.43 U	0.67				 	
WW48 CHLOROFORM, BY GC/MS LDL	UG/L	0.36 U	0.36	U				
WW49 DICHLOROETHANE, 1,2- BY GC/MS LDL	UG/L	0.37 U	:0.37	U				
WW50 TRICHLOROETHANE, 1,1,1- BY GC/MS LDL	UG/L	0.58 U	:19				 	
WW51 CARBON TETRACHLORIDE, BY GC/MS LDL	UG/L	0.19 U	0.19	U			 	
WW52 BROMODICHLOROMETHANE, BY GC/MS LDL	UG/L	0.28 U	0.28	U				
WW53 DICHLOROPROPANE, 1,2- BY GC/MS LDL	UG/L	0.43 U	0.43	U			 	
WW54 BENZENE, BY GC/MS LDL	UG/L	0.14	:0.21			:		
WW55 TRICHLOROETHYLENE, BY GC/MS LDL	UG/L	470	:380				 	
WW56 DICHLOROPROPYLENE, CIS 1,3- BY GC/MS LD	UG/L	0.63 U	0.63	U			 	
WW57 DIBROMOCHLOROMETHANE, BY GC/NS LDL	UG/L	0.29 U	0.29	U			 	
WW58 TRICHLOROETHANE, 1,1,2- BY GC/MS LDL	UG/L	0.38 U	0.38	U			 	
WW59 BROMOFORM, BY GC/MS LDL	UG/L	0.17 U	0.17	U			 	
WW60 TETRACHLOROETHYLENE, BY GC/MS LDL	UG/L	0.31 U	29000					

ANALYSIS REQUEST	DETAIL REPORT	ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

.

-

COMPOUND	UNITS	027		028		029	030	031
WW61 TOLUENE, BY GC/NS LDL	UG/L	0.54	 U	0.54	U			
WW62 TETRACHLOROETHANE, 1,1,2,2- BY GC/MS,	L UG/L	0.64	U	0.64	U			
WW63 CHLOROBENZENE, BY GC/MS LDL	UG/L	0.23	U	0.23	U			
WW64 ETHYLBENZENE, BY GC/MS LDL	UG/L	0.31	U	0.31	U			
WW65 ACETONE, BY GC/NS LDL	UG/L	9.0	U	9.0	U			
WW66 CARBON DISULFIDE, BY GC/MS LDL	UG/L	1.1	U	1.1	U			
WW67 METHYL ETHYL KETONE (2-BUTANONE) LDL	UG/L	3.0	U	3.0	U			
WW68 HEXANONE, 2- BY GC/MS LDL	UG/L	3.2	U	3.2	U			
WW69 4-METHYL-2-PENTANONE (MIBK) BY GC/MS L	D.UG/L	0.79	U	0.79	U			
WW70 STYRENE, BY GC/MS LDL	UG/L	0.34	U	0.34	U			
WW72 DICHLOROPROPYLENE, TRANS 1,3- BY GC/MS	S UG/L	0.82	U	0.82	U			
WW73 XYLENE, M AND/OR P BY GC/HS LDL	UG/L	0.22	U	0.22	U			
WW74 XYLENE, ORTHO BY GC/MS LDL	UG/L	0.40	U	0.40	U			
WW75 DICHLOROBENZENE, 1,4- (PARA) BY GC/MS	L UG/L	0.46	U	0.46	U			
WW76 DICHLOROBENZENE, 1,3- (META) BY GC/MS	L:UG/L	:0.36	U	0.36	U			
WW77 DICHLOROBENZENE, 1,2- (ORTHO) BY GC/MS	S UG/L	:0.35	U	0.54				
WW78 DICHLOROETHYLENE, 1,2- (TRANS) BY GC/P	IS:UG/L	14		16				
WW79 DICHLOROETHYLENE, 1,2- (CIS) BY GC/MS	L:UG/L	:42		150				
ZZO1 SANPLE NUMBER	: NA	:027		028	:	029	:030	031
ZZO2 ACTIVITY CODE	: NA	: :PS1CS		PS1CS	:	PS1CS	PSICS	:PS1CS

1	

ANALYSIS REQUEST DETAIL REPORT ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

÷.

COMPOUND	UNITS	032	033	034	035	036
WF01 TENPERATURE, WATER	' C	20.8	19.3	23.2	20.2	17.1
WFO5 PH, FIELD	SU	7.53	:6.84	6.99	7.02	6.84
WF10 CONDUCTIVITY (FIELD)	UNHOS	980	1360	1250	1300	1490
WG30 TURBIDITY	NTU	276	1000	114	1000	804
WM37 ARSENIC, DISSOLVED, BY ICAP	UG/L		7.14 U		7.14 U	
WM60 ARSENIC, DISSOLVED, BY AA	UG/L			13.6		6.19
ZZO1 SAMPLE NUMBER		032	033		035	036
ZZOZ ACTIVITY CODE	: NA	PS1CS	PSICS	PS1CS	:PS1CS	PS1CS

UNITS	037	038		039	040	041
' C	21.1	18.6		8.7	17.0	:16.6
SU.	6.99	6.38	:6	.95	6.77	6.53
UMHOS	1330	1750	 1	4330	1160	728
NTU	765	:49	:10	06	1000	1000
UG/L		7.14	U 7	.14 U	7.14 U	.7.14 U
UG/L	319					
:NA	037	038	0	39	040	041
NA	PSICS	PS1CS	P	\$1C\$	PSICS	PSICS
	'C SU UMHOS NTU UG/L UG/L NA	'C 21.1 SU 6.99 UMHOS 1330 NTU 765 UG/L 319 NA 037	'C 21.1 18.6 SU 6.99 6.38 UMHOS 1330 1750 NTU 765 49 UG/L 7.14 UG/L 319 NA 037 038	'C 21.1 18.6 1 SU 6.99 6.38 6 UMHOS 1330 1750 1 NTU 765 49 1 UG/L 7.14 U 7 UG/L 319 038 0	'C 21.1 18.6 18.7 SU 6.99 6.38 6.95 UMHOS 1330 1750 14330 NTU 765 49 106 UG/L 7.14 U 7.14 U UG/L 319 038 039	'C 21.1 18.6 18.7 17.0 SU 6.99 6.38 6.95 6.77 UMHOS 1330 1750 14330 1160 NTU 765 49 106 1000 UG/L 7.14 U 7.14 U UG/L 319 038 039 040

ANALYSIS REQUEST DETAIL REPORT

Λ.

ACTIVITY: 8-PS1CS

.

LABORATORY APPROVED DATA Project leader approval pending -

ANALYSIS REQUEST DETAIL REPORT

ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

1

COMPOUND	UNITS	042	043		044	045	046
VF01 TEMPERATURE, WATER	' C	:	:23.1		18.2	23.2	18.3
WFOS PH, FIELD	su	7.2	:7.05		6.89	7.07	7.0
WF10 CONDUCTIVITY (FIELD)	UMHOS	506	1130	:1	1670	1270	1420
WG30 TURBIDITY	NTU	1000	:121	:2	277	225	737
WW40 CHLOROMETHANE, BY GC/MS LDL	UG/L	1.3 U	1.3 U	1	1.3 U	1.3 U	1.3 U
WW41 BROMOMETHANE, BY GC/MS LDL	UG/L	1.7 U	1.7 U	1	1.7 U	1.7 U	1.7 U
WW42 VINYL CHLORIDE, BY GC/MS LDL	UG/L	1.3 U	:1.3 U	J 1	1.3 U	1.3 U	1.3 U
WW43 CHLOROETHANE, BY GC/MS LDL	UG/L	2.2 U	2.2 U	1 2	2.2 U	2.2 U	2.2 U
W44 METHYLENE CHLORIDE (DICHLOROMETHANE) LD	UG/L	1.2 U	1.2 U	1	1.2 U	1.2 U	1.2 U
WW45 DICHLOROETHYLENE, 1,1- BY GC/MS LDL	UG/L	1.6 U	1.6 U	1	1.6 U	1.6 U	1.6 U
JW46 DICHLOROETHANE, 1,1- BY GC/MS LDL	UG/L	0.43 U	0.43 U	J .C	0.43 U	0.43 U	0.43 U
JW48 CHLOROFORM, BY GC/MS LDL	UG/L	0.36 U	0.36 U	J :C	0.36 U	0.36 U	0.36 U
JW49 DICHLOROETHANE, 1,2- BY GC/MS LDL	UG/L	0.37 U	0.38	:0	0.84	0.37 U	0.37 U
JW50 TRICHLOROETHANE, 1,1,1- BY GC/MS LDL	UG/L	0.58 U	.0.58 U	J : 0	0.58 U	0.58 U	0.58 U
W51 CARBON TETRACHLORIDE, BY GC/MS LDL	UG/L	0.19 U	0.19 U	. :0	0.19 U	0.19 U	0.19 U
W52 BROMODICHLOROMETHANE, BY GC/MS LDL	Ne/r	0.28 U	0.28 U		D.28 U	0.28 U	0.28 U
1W53 DICHLOROPROPANE, 1,2- BY GC/MS LDL	UG/L	0.43 U	0.43 U	0).43 U	0.43 U	0.43 U
IW54 BENZENE, BY GC/MS LDL	UG/L	0.14 U	0.14 U		0.14 U	0.14 U	0.14 U
1W55 TRICHLOROETHYLENE, BY GC/MS LDL	UG/L	73	280	:0).54 U	22	160
IW56 DICHLOROPROPYLENE, CIS 1,3- BY GC/MS LD	UG/L	0.63 U	0.63 U	0	0.63 U	0.63 U	0.63 U
IW57 DIBROMOCHLOROMETHANE, BY GC/MS LDL	UG/L	0.29 U	0.29 U	1 :0	0.29 U	0.29 U	0.29 U
IW58 TRICHLOROETHANE, 1,1,2- BY GC/MS LDL	UG/L	0.38 U	0.38 U	0).38 U	0.38 U	0.38 U
1W59 BRONOFORN, BY GC/NS LDL	UG/L	0.17 U	0.17 U	:0).17 ປ	0.17 U	0.17 U
IW60 TETRACHLOROETHYLENE, BY GC/MS LDL	UG/L	12	940	:0).31 U	840	25
W61 TOLUENE, BY GC/NS LDL	UG/L	0.54 U	0.54 U	0).54 U	0.54 U	0.54 U
W62 TETRACHLOROETHANE, 1,1,2,2- BY GC/MS, L	UG/L	0.64 U	0.64 U	0).64 U	0.64 U	0.64 U

ANALYSIS REQUEST DETAIL REPORT ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

1

COMPOUND	UNITS	042		043		044		045		046	
WW63 CHLOROBENZENE, BY GC/MS LDL	UG/L	0.23	ü	0.23	 U	0.23	<u>-</u> U	0.23	 U	0.23	U
WW64 ETHYLBENZENE, BY GC/MS LDL	UG/L	0.31	U	0.31	- -	0.31	 U	:0.31	U	:0.31	U
WW65 ACETONE, BY GC/MS LDL	UG/L	9.0	U	9.0	 U	9.0	U	9.0	U	9.0	U :
WW66 CARBON DISULFIDE, BY GC/MS LDL	UG/L	:1.1	U	1.1	U	1.1	u	1.1	U	1.1	U
WW67 METHYL ETHYL KETONE (2-BUTANONE) LDL	UG/L	3.0	U	3.0	U	3.0	U	3.0	U	3.0	U
WW68 HEXANONE, 2- BY GC/MS LDL	UG/L	3.2	U	3.2	U	3.2	U	3.2	U	3.2	U
WW69 4-METHYL-2-PENTANONE (MIBK) BY GC/MS LD	UG/L	0.79	U	0.79	U	0.79	U	0.79	U	0.79	U
WW70 STYRENE, BY GC/MS LDL	UG/L	0.34	Ű	0.34	U	0.34	Ų	0.34	U	0.34	U
WW72 DICHLOROPROPYLENE, TRANS 1,3- BY GC/MS	UG/L	0.82	U	0.82	U	0.82	U	0.82	U	0.82	U
WW73 XYLENE, M AND/OR P BY GC/MS LDL	UG/L	0.26		0.22	U	0.22	U	0.22	U	0.22	U
WW74 XYLENE, ORTHO BY GC/MS LDL	UG/L	0.40	 U	0.40	U	0.40	U	0.40	U	:0.40	U
WW75 DICHLOROBENZENE, 1,4- (PARA) BY GC/MS L	UG/L	0.46	U	0.46	U	0.46	U	0.46	U	0.46	U
WW76 DICHLOROBENZENE, 1,3- (META) BY GC/NS L	UG/L	0.36	U	0.36	U	0.36	U	0.36	U	:0.36	U
WW77 DICHLOROBENZENE, 1,2- (ORTHO) BY GC/MS	UG/L	0.35	U	0.35	U	0.35	U	0.35	U	:0.35	U
WW78 DICHLOROETHYLENE, 1,2- (TRANS) BY GC/MS	UG/L	5.9		1.3		0.84	U	0.84	U	:1.4	
WW79 DICHLOROETHYLENE, 1,2- (CIS) BY GC/MS L	UG/L	15		18		0.84	U	14		:13	:
ZZO1 SAMPLE NUMBER	NA	:042		043		044		045		046	
ZZO2 ACTIVITY CODE	: NA	PS1CS		PSICS		PS1CS		PS1CS		PS1CS	

ANALYSIS REQUEST DETAIL REPORT AC

.

ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

T.

COMPOUND	UNITS	047	048		049		050		051	
WF01 TEMPERATURE, WATER	: :'c	: :18.6	18.9		23.1		23.4		21.0	:
WF05 PH, FIELD	: SU	6.93	:6.95		6.99		7.21		:6.8	::
WF10 CONDUCTIVITY (FIELD)	UNHOS	1160	1260		1460		1560		1330	
WG30 TURBIDITY	NTU	733	107		492		1000		1000	
WW40 CHLOROMETHANE, BY GC/MS LDL	UG/L	1.3 U	1.3	U	1.3	U	1.3	U	1.3	U
WW41 BROMOMETHANE, BY GC/MS LDL	UG/L	1.7 U	1.7	U	1.7	U	1.7	U	1.7	U
WW42 VINYL CHLORIDE, BY GC/MS LDL	UG/L	1.3 U	1.3	U	1.3	U	1.3	U	1.3	U
WW43 CHLOROETHANE, BY GC/MS LDL	UG/L	2.2 U	2.2	U	2.2	U	2.2	U	2.2	U
WW44 METHYLENE CHLORIDE (DICHLOROMETHANE) LD	UG/L	1.2 U	1.2	U	1.2	U	1.2	U	1.2	U
WW45 DICHLOROETHYLENE, 1,1- BY GC/MS LDL	UG/L	1.6 U	1.6	U	1.6	U	1.6	U	1.6	U
WW46 DICHLOROETHANE, 1,1- BY GC/MS LDL	UG/L	0.43 U	0.43	U	0.43	U	0.43	U	0.43	U
WW48 CHLOROFORM, BY GC/MS LDL	UG/L	0.36 U	0.36	U	0.36	U	0.36	U	0.36	U
WW49 DICHLOROETHANE, 1,2- BY GC/MS LDL	UG/L	0.37 U	0.37	U	0.37	U	0.37	U	0.37	U
WW50 TRICHLOROETHANE, 1,1,1- BY GC/MS LDL	UG/L	0.58 U	0.58	U	0.58	U	2.2		0.58	U
WW51 CARBON TETRACHLORIDE, BY GC/MS LDL	UG/L	0.19 U	:0.19	U	0.19	U	0.19	U	0.19	U
WW52 BROMODICHLOROMETHANE, BY GC/MS LDL	UG/L	0.28 U	0.28	U	0.28	U	0.28	U	0.28	U
WW53 DICHLOROPROPANE, 1,2- BY GC/MS LDL	UG/L	0.43 U	0.43	U	0.43	U	0.43	U	0.43	U
WW54 BENZENE, BY GC/NS LDL	UG/L	0.14 U	0.14	U	0.14	U	0.17		0.58	
WW55 TRICHLOROETHYLENE, BY GC/MS LDL	UG/L	13	3.2		6.4		86		98	
WW56 DICHLOROPROPYLENE, CIS 1,3- BY GC/MS LD	UG/L	0.63 U	0.63	U	0.63	U	0.63	U	0.63	U
WW57 DIBROMOCHLOROMETHANE, BY GC/MS LDL	UG/L	0.29 U	:0.29	U	0.29	U	0.29	U	0.29	U
WW58 TRICHLOROETHANE, 1,1,2- BY GC/MS LDL	UG/L	0.38 U	:0.38	U	0.38	U	0.38	U	0.38	U
WW59 BROMOFORM, BY GC/MS LDL	UG/L	0.17 U	0.17	U	0.17	U	0.17	U	0.17	U
WW60 TETRACHLOROETHYLENE, BY GC/MS LDL	UG/L	23	0.91		5.2		5100		1100	
WW61 TOLUENE, BY GC/MS LDL	UG/L	0.54 U	0.54	U	0.54	U	0.54	U	0.54	U
WW62 TETRACHLOROETHANE, 1,1,2,2- BY GC/MS, L	UG/L	0.64 U	0.64	U	0.64	U	0.64	U	0.64	U :

ANALYSIS	REQUEST	DETAIL	REPORT	ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

ŧ.

• •

١.

COMPOUND	UNITS	047	048	049	050	051
W63 CHLOROBENZENE, BY GC/MS LDL	UG/L	0.23	U :0.23	U :0.23	U :0.23	U :0.23
W64 ETHYLBENZENE, BY GC/NS LDL	UG/L	0.31	U :0.31	U 0.31	U 0.31	U :0.31
W65 ACETONE, BY GC/MS LDL	UG/L	9.0	U 9.0	U 9.0	U 9.0	U 9.0
W66 CARBON DISULFIDE, BY GC/MS LDL	UG/L	1.1	U 1.1	U :1.1	υ 1.1	U :1.1
W67 NETHYL ETHYL KETONE (2-BUTANONE)	LDL UG/L	3.0	U 3.0	U :3.0	U 3.0	U 3.0
W68 HEXANONE, 2- BY GC/MS LDL	UG/L	3.2	U :3.2	U 3.2	U :3.2	U :3.2
W69 4-HETHYL-2-PENTANONE (HIBK) BY G	C/MS LD UG/L	0.79	U 0.79	U 0.79	U 0.79	U :0.79
W70 STYRENE, BY GC/HS LDL	UG/L	0.34	U :0.34	U :0,34	U 0.34	u :0.34
172 DICHLOROPROPYLENE, TRANS 1,3- BY	GC/MS UG/L	0.82	U :0.82	U :0.82	U :0.82	U :0.82
W73 XYLENE, N AND/OR P BY GC/MS LDL	UG/L	0.22	U :0.22	U 0.22	U :0.22	U :0.22
74 XYLENE, ORTHO BY GC/MS LDL	UG/L	0.40	U 0.40	U :0.40	U :0.40	U :0.40
175 DICHLOROBENZENE, 1,4- (PARA) BY (SC/MS L:UG/L	0.46	U :0.46	U :0.46	U 0.46	U :0.46
176 DICHLOROBENZENE, 1,3- (META) BY	SC/MS LUG/L	0.36	U 0.36	U :0.36	U 0.36	U :0.36
177 DICHLOROBENZENE, 1,2- (ORTHO) BY	GC/MS UG/L	0.35	U 0.35	U :0.35	U 0.35	U 0.35
78 DICHLOROETHYLENE, 1,2- (TRANS) B	Y GC/MS:UG/L	0.84	U :4.9	0.84	U 4.5	0.84
179 DICHLOROETHYLENE, 1,2- (CIS) BY	C/MS L:UG/L	1.5	.4.1	0.84	U 37	26
CO1 SAMPLE NUMBER	NA	047	:048	049	050	051
LO2 ACTIVITY CODE	:NA	PSICS	:PS1CS	:PS1CS	PS1CS	:P\$1C\$

ANALYSIS REQUEST DETAIL REPORT

ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

÷

N.

COMPOUND	UNITS	052	053		054	055		056	
VF01 TEMPERATURE, WATER	'c	21.6	22.3		20.4	22.0		23.5	:
WFOS PH, FIELD	: SU	7.01	6.98		6.97	7.08		:6.83	
WF10 CONDUCTIVITY (FIELD)	UNHOS	1440	1110		1330	1070	*****	:1440	
WG30 TURBIDITY	NTU	1000	1000		1000	:1000		1000	
WW40 CHLOROMETHANE, BY GC/MS LDL	UG/L	1.3 U	1.3	U	1.3 U	1.3	U	1.3	U
WW41 BROMOMETHANE, BY GC/MS LDL	UG/L	1.7 U	1.7	U	1.7 U	1.7	U	:1.7	U
WW42 VINYL CHLORIDE, BY GC/MS LDL	UG/L	1.3 U	1.3	U	1.3 U	1.3	U	:1.3	U
WW43 CHLOROETHANE, BY GC/MS LDL	UG/L	2.2 U	2.2	U	2.2 U	2.2	U	2.2	U
WW44 METHYLENE CHLORIDE (DICHLOROMETHANE) LD	UG/L	1.2 U	1.2	U	1.2 U	:1.2	U	1.2	U
WW45 DICHLOROETHYLENE, 1,1- BY GC/MS LDL	UG/L	1.6 U	1.6	U	1.6 U	:1.6	U	:1.6	U
WW46 DICHLOROETHANE, 1,1- BY GC/MS LDL	UG/L	0.43 U	:0.43	U	0.43 U	0.43	U	:0.43	U
WW48 CHLOROFORM, BY GC/MS LDL	UG/L	0.36 U	0.36	U	0.36 U	:0.36	U	:0.36	U
WW49 DICHLOROETHANE, 1,2- BY GC/MS LDL	UG/L	0.37 U	0.37	U	0.37 U	:0.37	U	0.37	U
WW50 TRICHLOROETHANE, 1,1,1- BY GC/MS LDL	UG/L	0.58 U	0.58	U	0.58 U	:0.58	U	:0.58	U
WW51 CARBON TETRACHLORIDE, BY GC/MS LDL	UG/L	0.19 U	.0.19	U	0.19 U	0.19	U	0.19	U
WW52 BROMODICHLOROMETHANE, BY GC/MS LDL	UG/L	0.28 U	0.28	U	0.28 U	:0.28	U	0.28	U
WW53 DICHLOROPROPANE, 1,2- BY GC/NS LDL	UG/L	0.43 U	:0.43	U	0.43 U	:0.43	U	:0.43	U
WW54 BENZENE, BY GC/MS LDL	UG/L	0.14 U	0.14	U	0.14 U	0.14	U	0.14	U
WWS5 TRICHLOROETHYLENE, BY GC/MS LDL	UG/L	0.54 U	42		17	:0.54	U	:0.54	U :
WW56 DICHLOROPROPYLENE, CIS 1,3- BY GC/MS LD	UG/L	0.63 U	0.63	U	0.63 U	:0.63	U	:0.63	U
WW57 DIBROMOCHLOROMETHANE, BY GC/MS LDL	UG/L	0.29 U	0.29	U	0.29 U	:0.29	U	:0.29	U
WW58 TRICHLOROETHANE, 1,1,2- BY GC/MS LDL	UG/L	0.38 U	0.38	U	0.38 U	:0.38	U	:0.38	U :
WW59 BRONOFORM, BY GC/NS LDL	UG/L	0.17 U	.0.17	U	0.17 U	0.17	U	0.17	U :
WW60 TETRACHLOROETHYLENE, BY GC/MS LDL	UG/L	0.31 U	6.1		12	:6.8		1.2	
WW61 TOLUENE, BY GC/MS LDL	UG/L	0.54 U	:0.54	U	0.54 U	0.54	U	0.54	U
WW62 TETRACHLOROETHANE, 1,1,2,2- BY GC/MS, L	UG/L	0.64 U	0.64	U	0.64 U	0.64		0.64	U

ANALYSIS REQUEST DETAIL REPORT

ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

.

CONPOUND	UNITS	052		053		054		055		056	
WW63 CHLOROBENZENE, BY GC/MS LDL	UG/L	0.23	 U	0.23	U	0.23	 U	0.23	U	0.23	U
WW64 ETHYLBENZENE, BY GC/MS LDL	UG/L	0.31	U	0.31	U	0.31	U	0.31	U	0.31	U
WW65 ACETONE, BY GC/MS LDL	UG/L	9.0	U	9.0	U	9.0	U	9.0	U	9.0	U
WW66 CARBON DISULFIDE, BY GC/MS LDL	UG/L	1.1	U	1.1	U	1.1	Ų	1.1	U	1.1	U
WW67 NETHYL ETHYL KETONE (2-BUTANONE) LDL	UG/L	:3.0	U	3.0	U	:3.0	U	3.0	U	:3.0	U
WW68 HEXANONE, 2- BY GC/MS LDL	UG/L	3.2	U	3.2	U	3.2	บ	3.2	U	3.2	U
WW69 4-METHYL-2-PENTANONE (MIBK) BY GC/MS L	D:UG/L	:0.79	U	0.79	U	0.79	U	0.79	U	.0.79	U
WW70 STYRENE, BY GC/MS LDL	UG/L	:0.34	 U	0.34	U	0.34	U	0.34	ບ	0.34	U
WW72 DICHLOROPROPYLENE, TRANS 1,3- BY GC/MS	:UG/L	:0.82	 U	:0.82	U	:0.82	U	:0.82	U	:0.82	U
WW73 XYLENE, N AND/OR P BY GC/MS LDL	:UG/L	:0.22	 U	:0.22	U	:0.22	U	:0.22	U	:0.22	U
WW74 XYLENE, ORTHO BY GC/NS LDL	:UG/L	:0.40	 U	:0.40	U	0.40	U	0.40	 U	:0.40	U
WW75 DICHLOROBENZENE, 1,4- (PARA) BY GC/NS	L:UG/L	:0.46	 U	:0.46	U	:0.46	U	:0.46	U	:0.46	U
WW76 DICHLOROBENZENE, 1,3- (META) BY GC/MS	-: L:UG/L	:0.36	 U	:0.36	U	:0.36	 U	:0.36	 U	:0.36	U
WW77 DICHLOROBENZENE, 1,2- (ORTHO) BY GC/MS	:UG/L	:0.35	 U	:0.35	U	:0.35	U	:0.35	U	0.35	U
WW78 DICHLOROETHYLENE, 1,2- (TRANS) BY GC/MS	-: s:UG/L	:0.84	 U	:1.4		:0.84	U	:0.84	 U	:0.84	U
WW79 DICHLOROETHYLENE, 1,2- (CIS) BY GC/MS I	L:UG/L	:0.84	 U	:5.8		:4.1		0.84	U	0.84	U
ZZO1 SAMPLE NUMBER	 NA	:052		:053		054		:055		:056	
ZZO2 ACTIVITY CODE	-: :NA	:PS1CS		: :PS1CS		: PS1CS		:PS1CS	*	:PS1CS	

ANALYSIS REQUEST DETAIL REPORT ACTIVITY: 8-PS1CS

.

LABORATORY APPROVED DATA Project leader approval pending

.

۰.

CONPOUND	UNITS	057		058		059 F		060	F	061	
WF01 TEMPERATURE, WATER	: :'c	:		:23.4		: :		:		:	
WFO5 PH, FIELD	: SU	6.77		6.99							
WF10 CONDUCTIVITY (FIELD)	UNHOS	760		1740							
WG30 TURBIDITY	:NTU	: 195		1000	**						
WM37 ARSENIC, DISSOLVED, BY ICAP	:UG/L					7.14	U			:7.14	U :
WW40 CHLOROMETHANE, BY GC/MS LDL	UG/L	:1.3	 U	:1.3	U	1.3	U	:1.3	U	:1.3	U :
WW41 BROMOMETHANE, BY GC/MS LDL	UG/L	1.7	U	1.7	U	1.7	U	1.7	U	1.7	U
WW42 VINYL CHLORIDE, BY GC/MS LDL	: :UG/L	:1.3	U	:1.3	 U	1.3	U	:1.3	U	:1.3	 U :
WW43 CHLOROETHANE, BY GC/MS LDL	:UG/L	:2.2	u	:2.2	 U	2.2	 U	:2.2	 U	:2.2	 U :
WW44 METHYLENE CHLORIDE (DICHLOROMETHANE) LD	:UG/L	: : 19	 U	:1.2	U	1.2	U	:1.2	 U	:1.2	 U :
WW45 DICHLOROETHYLENE, 1,1- BY GC/MS LDL	: :UG/L	:1.6	U	:1.6	U	1.6	 U	:1.6	U	:1.6	: U :
WW46 DICHLOROETHANE, 1,1- BY GC/MS LDL	: :UG/L	:0.43	U	:0.43	U :	0.43	U	:0.43	U	:0.43	U :
WW48 CHLOROFORM, BY GC/MS LDL	: :UG/L	:0.36	U	:0.36	: U	11	*****	:0.36	U	:5.4	::
WW49 DICHLOROETHANE, 1,2- BY GC/MS LDL	:UG/L	:0.37	U	:0.37	<i>F</i> - : U :	0.37	U	:0.37	 U	:0.37	: U :
WW50 TRICHLOROETHANE, 1,1,1- BY GC/MS LDL	:UG/L	:0.58	U	:0.58	U	0.58	U	:0.58	U	:0.58	U :
WW51 CARBON TETRACHLORIDE, BY GC/NS LDL	UG/L	:0.19	U	:0.19	U :	0.19	U	:0.19	U	:0.19	u :
WW52 BROMODICHLOROMETHANE, BY GC/MS LDL	: :UG/L	:0.28	U	:0.28	 U	0.28	 U	:0.28	 U	:0.28	
WW53 DICHLOROPROPANE, 1,2- BY GC/NS LDL	:UG/L	:0.43	U	:0.43	 U	0.43	U	0.43	U	:0.43	U :
WW54 BENZENE, BY GC/NS LDL	UG/L	920		0.14	 U	0.14	U	0.14	U	:0.14	U :
WW55 TRICHLOROETHYLENE, BY GC/MS LDL	:UG/L	0.54	U	:2.1		0.54	บ	:0.54	บ	:0.54	U :
WW56 DICHLOROPROPYLENE, CIS 1,3- BY GC/MS LD	: :UG/L	0.63	U.	:0.63	 U	0.63	U	0.63	 U	:0.63	U :
WW57 DIBROMOCHLOROMETHANE, BY GC/MS LDL	:UG/L	0.29	U	.0.29	U :	0.29	U	0.29	 U	:0.29	U :
WW58 TRICHLOROETHANE, 1,1,2- BY GC/MS LDL	:	0.38	U	0.38	: U	0.38	 U	0.38	<u>-</u> U	:0.38	U :
		0.17	U	0.17	: U	0.17	 U	0.17	U	0.17	 U
		0.31	U :	:		0.31	 U	0.31	 U	:0.31	U :
	UG/L			0.54	 U	0.54	 U	0.54	 U	0.54	U :

COMPOUND	UNITS	057	058		059 F	060 F	061
WW62 TETRACHLOROETHANE, 1,1,2,2- BY GC/NS, L	UG/L	0.64	U 0.64	 U	0.64 U	0.64 U	:0.64 U
WW63 CHLOROBENZENE, BY GC/MS LDL	UG/L	0.23	U :0.23	U	0.23 U	0.23 U	0.23 U
WW64 ETHYLBENZENE, BY GC/MS LDL	UG/L	490	0.31	U	0.31 U	0.31 U	0.31 U
WW65 ACETONE, BY GC/MS LDL	UG/L	.76	9.0	U	150	9.0 U	120
WW66 CARBON DISULFIDE, BY GC/MS LDL	UG/L	1.1	U 1.1	U	1.1 U	1.1 U	:1.1 U
WW67 METHYL ETHYL KETONE (2-BUTANONE) LDL	UG/L	:46	3.0	U	3.0 U	3.1	:6.9
WW68 HEXANONE, 2- BY GC/MS LDL	UG/L	:3.2	U 3.2	U	3.2 U	3.2 U	:3.2 U
WW69 4-METHYL-2-PENTANONE (MIBK) BY GC/MS LD	UG/L	0.79	U :0.79	U	0.79 U	0.79 U	:0.79 U
WW70 STYRENE, BY GC/MS LDL	UG/L	0.34	U :0.34	U	0.34 U	:0.34 U	:0.34 U
WW72 DICHLOROPROPYLENE, TRANS 1,3- BY GC/MS	UG/L	.0.82	U :0.82	U	0.82 U	0.82 U	:0.82 U
WW73 XYLENE, M AND/OR P BY GC/MS LDL	UG/L	760	0.22	U	0.31	:0.22 U	:0.22 U
WW74 XYLENE, ORTHO BY GC/MS LDL	UG/L	26	0.40	U	0.40 U	0.40 U	:0.40 U
WW75 DICHLOROBENZENE, 1,4- (PARA) BY GC/MS L	UG/L	0.46	U 0.46	U	0.46 U	0.46 U	:0.46 U
WW76 DICHLOROBENZENE, 1,3- (META) BY GC/MS L	UG/L	0.36	U :0.36	U	0.36 U	0.36 U	:0.36 U
WW77 DICHLOROBENZENE, 1,2- (ORTHO) BY GC/MS	UG/L	0.35	U 0.35	U	0.35 U	0.35 U	:0.35 U
WW78 DICHLOROETHYLENE, 1,2- (TRANS) BY GC/MS	:UG/L	0.84	U :0.84	U	0.84 U	0.84 U	0.84 U
WW79 DICHLOROETHYLENE, 1,2- (CIS) BY GC/MS L	:UG/L	0.84	U :0.84	U	0.84 U	0.84 U	.0.84 U
ZZO1 SAMPLE NUMBER	: NA	057	:058		059	060	:061
ZZO2 ACTIVITY CODE	: NA	: P S1 C S	PS1CS		PS1CS	PS1CS	PS1CS

.

ANALYSIS REQUEST DETAIL REPORT ACTIVITY: 8-PS1CS

.

LABORATORY APPROVED DATA Project leader approval pending

1

. _ _ _ _ _ _

.

۰.

......

ANALYSIS REQUEST DETAIL REPORT ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

.

COMPOUND	UNITS	062	063	064	101		102	
SGO7 SOLIDS, PERCENT	:%		**				:81.2	
SVO3 CHLOROMETHANE, BY GC/NS	UG/KG				19	U	17	U
SVO4 BROMOMETHANE, BY GC/MS	UG/KG				37	บ	:34	U
SVO5 VINYL CHLORIDE, BY GC/MS	UG/KG				28	U U	26	U
SVO6 CHLOROETHANE, BY GC/MS	UG/KG				28	U	26	U
SV07 METHYLENE CHLORIDE (DICHLOROMETHANE)	UG/KG				19	U	17	U
SVO8 DICHLOROETHYLENE, 1, 1, BY GC/MS	UG/KG				.9.3	บ	8.6	U
SV09 DICHLOROETHANE, 1, 1, BY GC/MS	UG/KG				9.3	U	:8.6	U
SV10 DICHLOROETHYLENE, TRANS-1,2	UG/KG				9.3	U	:8.6	U
SV11 CHLOROFORM, BY GC/MS	UG/KG				9.3	U	:8.6	U
SV12 DICHLOROETHANE, 1, 2, BY GC/MS	UG/KG				9.3	U	8.6	U
SV13 TRICHLOROETHANE,1,1,1-, BY GC/MS	UG/KG				9.3	U	:8.6	U
SV14 CARBON TETRACHLORIDE, BY GC/MS	UG/KG				9.3	U	:8.6	U :
SV15 BROMODICHLOROMETHANE, BY GC/MS	UG/KG				9.3	U	:8.6	U
SV16 DICHLOROPROPANE,1,2, BY GC/MS	UG/KG:				9.3	U	:8.6	U
3V17 BENZENE, BY GC/MS	UG/KG:				9.3	U	:8.6	U
3V18 DICHLOROPROPYLENE, TRANS-1,3	UG/KG				9.3	ັບ	:8.6	U
3V19 TRICHLOROETHYLENE, BY GC/MS	UG/KG				9.3	U	:8.6	U
V20 DICHLOROPROPYLENE, CIS-1,3, BY GC/MS	UG/KG:				9.3	บ	:8.6	U
V21 DIBROMOCHLOROMETHANE, BY GC/MS	UG/KG:				9.3	U	:8.6	U
V22 TRICHLOROETHANE, 1, 1, 2-, BY GC/MS	UG/KG:				9.3	ັບ	:8.6	U
V24 BROMOFORM, BY GC/MS	UG/KG				:9.3	U	:8.6	U
V25 TETRACHLOROETHYLENE, BY GC/MS	UG/KG:				.9.3	บ	:8.6	U
V26 TOLUENE, BY GC/MS	UG/KG:			:	:9.3	U	:8.6	U :
V27 TETRACHLOROETHANE, 1, 1, 2, 2, BY GC/MS	:UG/KG:				9.3	υ	:8.6	U
V28 CHLOROBENZENE, BY GC/MS	:UG/KG:				.9.3	U	:8.6	U
							•	:

ANALYSIS REQUEST DETAIL REPORT ACTI

ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

COMPOUND	UNITS	062	063		064	101	102	
SV29 ETHYL BENZENE, BY GC/MS	UG/KG					9.3	8.6	U :
SV30 ACETONE, BY GC/MS	UG/KG	***************			; ; ; ;	19 L	17	U
SV31 CARBON DISULFIDE, BY GC/MS	UG/KG		* * * * * * * * * * * * * * * * * * * *		;	9.3 l	8.6	U :
SV32 METHYL ETHYL KETONE	UG/KG				;	19 l	17	U
SV34 HEXANONE, 2-	UG/KG				;	.19 L	17	U
SV35 4-METHYL-2-PENTANONE(MIBK)	UG/KG					.19 l	17	U
SV36 STYRENE, BY GC/NS	UG/KG					9.3 L	8.6	U
SV44 DICHLOROBENZENE,1,4-	UG/KG					9.3 L	8.6	U
SV49 XYLENE, ORTHO	UG/KG					9.3 L	:8.6	U
SV57 XYLENE, M AND/OR P	UG/KG	:				9.3 L	8.6	U
SV60 DICHLOROBENZENE, 1, 3-	UG/KG					9.3 U	8.6	U
SV61 DICHLOROBENZENE, 1, 2-	UG/KG					9.3 U	:8.6	U
SV63 DICHLOROETHYLENE, CIS -1,2	UG/KG					9.3 L	:8.6	U
WF01 TEMPERATURE, WATER	' C	21.4	:		20.8		:	
WFO5 PH, FIELD	SU	6.68			6.73			
WF10 CONDUCTIVITY (FIELD)	UMHOS	1890			1870			
WG30 TURBIDITY	NTU	1000	:		1000			
WW40 CHLOROMETHANE, BY GC/NS LDL	UG/L	1.3 U	:1.3	U	1.3 U		:	
WW41 BROMOMETHANE, BY GC/MS LDL	UG/L	1.7 U	:1.7	U	1.7 U		:	
WW42 VINYL CHLORIDE, BY GC/MS LDL	UG/L	1.3 U	:1.3	U	1.8		:	
WW43 CHLOROETHANE, BY GC/MS LDL	UG/L	2.2 U	:2.2	U	2.2 U		;	
WW44 METHYLENE CHLORIDE (DICHLOROMETHANE) LD	UG/L	1.2 U	:1.2	U	1.2 U		:	
WW45 DICHLOROETHYLENE, 1,1- BY GC/MS LDL	UG/L	1.6 U	:1.6	U	5.4		:	
WW46 DICHLOROETHANE, 1,1- BY GC/MS LDL	UG/L	0.43 U	:0.43	U	0.67			
WW48 CHLOROFORM, BY GC/MS LDL	UG/L	0.36 U	:9.9		1.5			
WW49 DICHLOROETHANE, 1,2- BY GC/MS LDL	UG/L	0.37 U	:0.37		0.37 U			

ANALYSIS	REQUEST	DETAIL	REPORT	ACTIVITY:	8-PS1CS

S-PSICS LABORAT

١

LABORATORY APPROVED DATA Project leader approval pending

1

. .

.

COMPOUND	UNITS	062	063		064	101	102
WW50 TRICHLOROETHANE, 1,1,1- BY GC/MS LDL	UG/L	:0.58 L		 U	260	- : - <i>-</i>	- :
WW51 CARBON TETRACHLORIDE, BY GC/MS LDL	UG/L	:0.19 L	0.19	 U	0.19 U		
WW52 BROMODICHLOROMETHANE, BY GC/MS LDL	UG/L	0.28 L	0.28	U	0.28 U		
WW53 DICHLOROPROPANE, 1,2- BY GC/MS LDL	UG/L	0.43	0.43	บ	0.43 U		
WW54 BENZENE, BY GC/MS LDL	UG/L	0.18	0.14	U	0.41		
WW55 TRICHLOROETHYLENE, BY GC/MS LDL	UG/L	:23	:0.54	U	220	:	
WW56 DICHLOROPROPYLENE, CIS 1,3- BY GC/MS LD	UG/L	0.63 L	0.63	U	0.63 U		
WW57 DIBROMOCHLOROMETHANE, BY GC/MS LDL	UG/L	:0.29 L	0.29	U	0.29 U		
WW58 TRICHLOROETHANE, 1,1,2- BY GC/MS LDL	UG/L	.0.38 U	0.38	U	0.38 U		
WW59 BROMOFORM, BY GC/MS LDL	UG/L	:0.17 U	0.17	U	0.17 U		
WW60 TETRACHLOROETHYLENE, BY GC/MS LDL	UG/L	5.7	0.31	U	120000		
WW61 TOLUENE, BY GC/MS LDL	UG/L	.0.54 U	0.54	U	12		
WW62 TETRACHLOROETHANE, 1,1,2,2- BY GC/MS, L	UG/L	0.64 U	0.64	U	0.64 U		
WW63 CHLOROBENZENE, BY GC/MS LDL	UG/L	:0.23 U	0.23	U	0.51		
WW64 ETHYLBENZENE, BY GC/MS LDL	UG/L	.0.31 u	:0.31	U	0.99		:
WW65 ACETONE, BY GC/MS LDL	UG/L	9.0 U	110		9.0 U		
WW66 CARBON DISULFIDE, BY GC/MS LDL	UG/L	1.1 U	1.1	U	1.1 U		
WW67 METHYL ETHYL KETONE (2-BUTANONE) LDL	UG/L	3.0 U	5.2		3.0 U		
WW68 HEXANONE, 2- BY GC/MS LDL	UG/L	3.2 U	:3.2	U	3.2 U		:
WW69 4-METHYL-2-PENTANONE (MIBK) BY GC/MS LD	UG/L	0.79 U	0.79	U	0.79 U		
WW70 STYRENE, BY GC/MS LDL	UG/L	0.34 U	:0.34	U	0.34 U		
WW72 DICHLOROPROPYLENE, TRANS 1,3- BY GC/MS	UG/L	0.82 U	.0.82	U	0.82 U		
WW73 XYLENE, M AND/OR P BY GC/MS LDL	UG/L	:0.22 U	.0.25		2.5		
WW74 XYLENE, ORTHO BY GC/MS LDL	UG/L	0.40 U	0.40	U	0.87	·	
WW75 DICHLOROBENZENE, 1,4- (PARA) BY GC/MS L	UG/L	0.46 U	0.46	U	0.46 U		
WW76 DICHLOROBENZENE, 1,3- (META) BY GC/NS L	UG/L	0.36 U	0.36	UU	0.36 U		

ANALYSIS REQUEST DETAIL REPORT ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

N.

COMPOUND	UNITS	062	063	064	101	102
WW77 DICHLOROBENZENE, 1,2- (ORTHO) BY GC/MS	UG/L	0.35 U	0.35 U	0.35 U		
WW78 DICHLOROETHYLENE, 1,2- (TRANS) BY GC/M	S:UG/L	7.1	0.84 U	32		
WW79 DICHLOROETHYLENE, 1,2- (CIS) BY GC/MS	L:UG/L	:8.9	0.84 U	520		
ZZO1 SAMPLE NUMBER	:NA	062	063	064	101	102
ZZO2 ACTIVITY CODE	NA	PS1CS	PSICS	PSICS	PSICS	PS1CS

	ANALYSIS	REQUEST	DETAIL	REPORT	ACTIVITY:	8-PS1CS
--	----------	---------	--------	--------	-----------	---------

LABORATORY APPROVED DATA Project leader approval pending

.

COMPOUND	UNITS	103	104	105	106	107	
SG07 SOLIDS, PERCENT	x :60	 . 9	:78.2	:62.7	:	.72.2	: :
SV03 CHLOROMETHANE, BY GC/MS	UG/KG 28	B U	15 U	23 U	.19 U	:37	U
SVO4 BROMOMETHANE, BY GC/MS	UG/KG:55	5 U	31 U	47 U	:37 U	.75	U :
SV05 VINYL CHLORIDE, BY GC/MS	UG/KG:41	1 U	23 U	:35 U	:28 U	:56	U :
SVO6 CHLOROETHANE, BY GC/MS	UG/KG:41	l U	23 U	:35 U	28 U	:56	U :
SV07 METHYLENE CHLORIDE (DICHLOROMETHANE)	UG/KG:28	B U	15 ປ	23 ບ	.19 U	37	U :
SVO8 DICHLOROETHYLENE,1,1, BY GC/MS	UG/KG:14	4 U	7.7 U	12 U	9.3 U	19	U :
SV09 DICHLOROETHANE, 1, 1, BY GC/MS	UG/KG:14	i u	7.7 U	12 U	9.3 U	19	
SV10 DICHLOROETHYLENE, TRANS-1,2	.UG/KG:14	4 U	7.7 U	12 U	9.3 U	19	U :
SV11 CHLOROFORM, BY GC/MS	:UG/KG:14	U U	7.7 U	12 U	9.3 U	19	
SV12 DICHLOROETHANE, 1, 2, BY GC/MS	UG/KG:14	i U	7.7 U	12 U	9.3 U	19	
SV13 TRICHLOROETHANE,1,1,1-, BY GC/MS	UG/KG:14	U U	7.7 U	12 U	9.3 U	19	
SV14 CARBON TETRACHLORIDE, BY GC/MS	UG/KG:14	U U	7.7 U	12 U	9.3 U	:19	
SV15 BROMODICHLOROMETHANE, BY GC/MS	UG/KG:14	L U	7.7 U	.12 U	9.3 U	19	
SV16 DICHLOROPROPANE,1,2, BY GC/MS	:UG/KG:14	L U	7.7 U	12 U	9.3 U	19	
SV17 BENZENE, BY GC/MS	UG/KG:14	L U	7.7 U	12 U	9.3 U	:19 (J
SV18 DICHLOROPROPYLENE, TRANS-1,3	.UG/KG:14	U	7.7 U	12 U	9.3 U	19	J
SV19 TRICHLOROETHYLENE, BY GC/MS	UG/KG:14	U	7.7 U	440	9.3 U	19 (J
SV20 DICHLOROPROPYLENE, CIS-1,3, BY GC/MS	UG/KG:14	U U	7.7 U	12 U	9.3 U	19 1	J :
SV21 DIBROMOCHLOROMETHANE, BY GC/MS	UG/KG:14	U U	7.7 U	12 U	9.3 U	:19 (J :
SV22 TRICHLOROETHANE,1,1,2-, BY GC/MS	UG/KG:14	U	7.7 U	12 U	9.3 U	19 I	
SV24 BROMOFORM, BY GC/MS	UG/KG:14	U	7.7 U	12 U	9.3 U	:19 (
SV25 TETRACHLOROETHYLENE, BY GC/MS	:UG/KG:21		8.3	25000	150	600	
SV26 TOLUENE, BY GC/MS	UG/KG:14	U	7.7 U	12 U	9.3 U	:19 (
SV27 TETRACHLOROETHANE,1,1,2,2, BY GC/MS	:UG/KG:14	U	7.7 U	12 U	9.3 U	:19 U	
SV28 CHLOROBENZENE, BY GC/MS	:UG/KG:14	U	7.7 U	.12 U	9.3 U	:19	
							•

COMPOUND	UNITS	103	104		105	106	107
SV29 ETHYL BENZENE, BY GC/MS	UG/KG:14	4 U	7.7	: U	12 U	9.3	u :19
SV30 ACETONE, BY GC/MS	UG/KG 28	B U	15	: U :	23 U	.19	U :37
SV31 CARBON DISULFIDE, BY GC/MS	UG/KG 14	4 U	7.7	U	12 U	9.3	U 19
SV32 METHYL ETHYL KETONE	UG/KG:28	B U	15	U	23 U	19	U :37
SV34 HEXANONE, 2-	:UG/KG:28	8 U	15	U	23 U	19	U :37
SV35 4-METHYL-2-PENTANONE(MIBK)	:UG/KG:28	B U	:15	U	23 U	19	U :37
SV36 STYRENE, BY GC/MS	:UG/KG:14	4 U	7.7	U	12 U	9.3	U 19
SV44 DICHLOROBENZENE,1,4-	UG/KG:14	4 U	7.7	U	12 U	9.3	J 19
SV49 XYLENE, ORTHO	UG/KG 14	4 U	7.7	U	12 U	9.3	J :19
SV57 XYLENE, M AND/OR P	UG/KG:14	4 U	7.7	U	12 U	9.3	J 19
SV60 DICHLOROBENZENE, 1, 3-	UG/KG:14	4 U	7.7	U	12 U	9.3	19
SV61 DICHLOROBENZENE, 1, 2-	:UG/KG:14	4 υ	7.7	U	12 U	9.3	J 19 I
SV63 DICHLOROETHYLENE, CIS -1,2	UG/KG:14	4 U	7.7	U	69	9.3	J 19 (
ZZO1 SAMPLE NUMBER	NA 10	03	104		105	106	107
ZZO2 ACTIVITY CODE	NA PS	51CS	:PS1CS	:	PS1CS	:PS1CS	:PS1CS

ANALYSIS REQUEST DETAIL REPORT ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA PROJECT LEADER APPROVAL PENDING

۰.

: - :

ANALYSIS REQUEST DETAIL REPORT

ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

.

COMPOUND	UNITS	108	109		110	111	112	
SGO7 SOLIDS, PERCENT	x	80.4	67.1		79.8		.82.6	:
SVO3 CHLOROMETHANE, BY GC/MS	UG/KG	24 U	25	U	23 U	18 I	19	U
SVO4 BRONOMETHANE, BY GC/MS	UG/KG	48 U	:49	U	46 U	35 L	:38	U
SVO5 VINYL CHLORIDE, BY GC/MS	UG/KG	36 U	37	U	35 U	27 (29	U
SVO6 CHLOROETHANE, BY GC/MS	UG/KG	36 U	:37	U	.35 U	27 L	29	U
SVO7 METHYLENE CHLORIDE (DICHLOROMETHANE)	UG/KG	24 U	25	U	23 U	18 เ	19	U
SVO8 DICHLOROETHYLENE, 1, 1, BY GC/MS	UG/KG	12 U	:12	U	12 U		9,5	U
SVO9 DICHLOROETHANE, 1, 1, BY GC/NS	UG/KG	12 U	:12	U	12 U	8.9 L	9.5	U
SV10 DICHLOROETHYLENE, TRANS-1,2	UG/KG	12 U	12	บ	.12 U	8.9 L	9.5	U
SV11 CHLOROFORM, BY GC/MS	UG/KG	12 U	12	U	12 U	8.9 U	9.5	U
SV12 DICHLOROETHANE, 1, 2, BY GC/MS	UG/KG	12 U	:12	U	12 U		9.5	U
SV13 TRICHLOROETHANE, 1, 1, 1-, BY GC/MS	UG/KG:	12 U	:12	U	12 u	8.9 U	9.5	U
SV14 CARBON TETRACHLORIDE, BY GC/MS	UG/KG	12 U	:12	U	12 U	8.9 U	9.5	U
SV15 BROMODICHLOROMETHANE, BY GC/MS	UG/KG:	12 U	:12	U	12 U	8.9 U	9.5	U
SV16 DICHLOROPROPANE,1,2, BY GC/MS	UG/KG	12 U	:12	U	12 U	.8.9 U	9.5	U
SV17 BENZENE, BY GC/NS	:UG/KG:	12 U	:12	U	12 U	8.9 U	9.5	U
SV18 DICHLOROPROPYLENE, TRANS-1,3	UG/KG:	12 U	:12	U	12 U	.8.9 U	9.5	U
SV19 TRICHLOROETHYLENE, BY GC/MS	:UG/KG	12 U	:12	U	13	:15	9.5	U
SV20 DICHLOROPROPYLENE, CIS-1, 3, BY GC/MS	UG/KG:	12 U	:12	U	12 U	8.9 U	.9.5	U
SV21 DIBROMOCHLOROMETHANE, BY GC/MS	UG/KG:	12 U	:12	Ų	12 U		9.5	U
SV22 TRICHLOROETHANE,1,1,2-, BY GC/MS	UG/KG:	12 U	:12	U	12 U	8.9 U	9.5	U
SV24 BRONOFORM, BY GC/NS	UG/KG:	12 U	:12	U	12 U	.8.9 U	:9.5	U
SV25 TETRACHLOROETHYLENE, BY GC/MS	UG/KG:	530	170		390	:37	:92	
SV26 TOLUENE, BY GC/MS	:UG/KG:	12 U	:12	U	12 U	.8.9 U	:9.5	U
SV27 TETRACHLOROETHANE,1,1,2,2, BY GC/MS	UG/KG:	12 U	:12	U	12 U		9.5	U
SV28 CHLOROBENZENE, BY GC/MS	:UG/KG:	12 U	:12	U	12 U		.9.5	U

ANALYSIS REQUEST DETAIL REPORT ACTIV

ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

١

COMPOUND	UNITS	108		109		110		111		112	
SV29 ETHYL BENZENE, BY GC/MS	UG/KG	12	U	12	U	:12	U	8.9	U	9.5	U
SV30 ACETONE, BY GC/MS	UG/KG	24	U	25	U	23	U	18	U	19	U
SV31 CARBON DISULFIDE, BY GC/MS	UG/KG	12	U	12	U	12	U	8.9	U	9.5	U
SV32 METHYL ETHYL KETONE	UG/KG	24	U	25	U	23	U	18	υ	19	U
SV34 HEXANONE, 2-	UG/KG	24	U	25	U	23	U	18	U	19	U
SV35 4-HETHYL-2-PENTANONE(MIBK)	UG/KG	24	U	25	U	23	U	18	u	19	u
SV36 STYRENE, BY GC/MS	UG/KG	12	U	12	U	12	U	8.9	U	9.5	U
SV44 DICHLOROBENZENE,1,4-	UG/KG	12	Ū	12	U	12	U	8.9	U	9.5	U
SV49 XYLENE, ORTHO	UG/KG	12	U	12	U	:12	U	8.9	U	9.5	U
SV57 XYLENE, M AND/OR P	UG/KG	12	U	12	U	:12	υ	8.9	υ	9.5	U
SV60 DICHLOROBENZENE, 1, 3-	UG/KG	12	U	12	U	12	U	8.9	U	9.5	U
SV61 DICHLOROBENZENE, 1, 2-	UG/KG	12	U	12	U	:12	U	8.9	U	9.5	U
SV63 DICHLOROETHYLENE, CIS -1,2	UG/KG	12	U	12	U	12	U	79		9.5	U
ZZO1 SAMPLE NUMBER	NA	108		109		110		111		112	
ZZO2 ACTIVITY CODE	NA	PS1CS		P S 1 C S		PS1CS		PS1CS		PS1CS	

ANALYSIS REQUEST DETAIL REPORT ACTI

113

ACTIVITY: 8-PS1CS

115

LABORATORY APPROVED DATA Project leader approval pending

1

٠

UNITS

114

116 F

N

SGO7 SOLIDS, PERCENT	X	69.1	.82.	0	75.3		98.8	
SVO3 CHLOROMETHANE, BY GC/MS	UG/KG	35 U	19	Ų	30 L	J	12	U :
SVO4 BROMOMETHANE, BY GC/MS	UG/KG	71 U	37	U	60 L		24	U
SV05 VINYL CHLORIDE, BY GC/MS	UG/KG	53 U	28	U	45 L		18	U :
SVO6 CHLOROETHANE, BY GC/MS	UG/KG	53 U	28	U	45 L		18	U :
SV07 METHYLENE CHLORIDE (DICHLOROMETHANE)	UG/KG	35 U	19	U	30 L		12	U
SVO8 DICHLOROETHYLENE,1,1, BY GC/MS	UG/KG	18 U	.9.3	U	:15 u		6.1	U
SV09 DICHLOROETHANE, 1, 1, BY GC/MS	UG/KG	18 U	9.3	U	:15 L		6.1	U
SV10 DICHLOROETHYLENE, TRANS-1,2	UG/KG	18	9.3	U	:15 U		6.1	U :
SV11 CHLOROFORM, BY GC/MS	UG/KG	18 U	.9.3	U	:15 u		6.1	U
SV12 DICHLOROETHANE, 1, 2, BY GC/MS	UG/KG	18 U	.9.3	U	:15 u		6.1	U
SV13 TRICHLOROETHANE, 1, 1, 1-, BY GC/NS	UG/KG	18 U	.9.3	U U	:15 U		6.1	U
SV14 CARBON TETRACHLORIDE, BY GC/MS	UG/KG	18 U	9.3	U	:15 U		6.1	U
SV15 BROMODICHLOROMETHANE, BY GC/NS	UG/KG	18 U	9.3	U	:15 u		6.1	U
SV16 DICHLOROPROPANE,1,2, BY GC/MS	UG/KG	18 U	9.3	U	:15 u		6.1	U
SV17 BENZENE, BY GC/MS	UG/KG	18 U	9.3	U	:15 U		6.1	U
SV18 DICHLOROPROPYLENE, TRANS-1,3	UG/KG	18 U	9.3	U	:15 u		6.1	U
SV19 TRICHLOROETHYLENE, BY GC/MS	UG/KG	130	.9.3	U	:15 U		6.1	U
SV20 DICHLOROPROPYLENE, CIS-1,3, BY GC/MS	UG/KG:	18 U	9.3	U	:15 U		6.1	U
SV21 DIBROMOCHLOROMETHANE, BY GC/MS	UG/KG	18 U	9.3	 U	:15 U		6.1	U
SV22 TRICHLOROETHANE, 1, 1, 2-, BY GC/MS	UG/KG	18 U	9.3	U	.15 U		6.1	U
SV24 BROMOFORM, BY GC/NS	UG/KG	18 U	9.3	U	15 U		6.1	U
SV25 TETRACHLOROETHYLENE, BY GC/MS	UG/KG	6400	.9.3	U	:15 U		6.1	U
SV26 TOLUENE, BY GC/MS	UG/KG	18 U	.9.3	U	15 U		6.1	U
SV27 TETRACHLOROETHANE,1,1,2,2, BY GC/NS	UG/KG	18 U	.9.3	U	15 U		6.1	U
SV28 CHLOROBENZENE, BY GC/MS	UG/KG:	18 U	:9.3	U	:15 U		6.1	U :

ANALYSIS REQUEST DETAIL REPORT ACTIVITY: 8-PS1CS

LABORATORY APPROVED DATA Project leader approval pending

.

٢

CONPOUND	UNITS 113	114	115	116 F
SV29 ETHYL BENZENE, BY GC/MS	UG/KG:18	U 9.3	U :15	U 6.1 U
SV30 ACETONE, BY GC/NS	UG/KG:35	U 19	U 30	U 12 U
SV31 CARBON DISULFIDE, BY GC/MS	UG/KG:18	U 9.3	U :15	U 6.1 U
SV32 METHYL ETHYL KETONE	UG/KG:35	U 19	U :30	U 12 U
SV34 HEXANONE, 2-	UG/KG:35	U 19	บ :30	U :12 U :
SV35 4-METHYL-2-PENTANONE(NIBK)	UG/KG:35	U :19	U :30	U :12 U :
SV36 STYRENE, BY GC/MS	:UG/KG:18	U :9.3	U :15	u:6.1 u
SV44 DICHLOROBENZENE,1,4-	UG/KG:18	U :9.3	U :15	U:6.1 U:
SV49 XYLENE, ORTHO	UG/KG:18	U 9.3	U 15	U:6.1 U:
SV57 XYLENE, M AND/OR P	UG/KG:18	U :9.3	ย :15	U 6.1 U
SV60 DICHLOROBENZENE, 1, 3-	:UG/KG:18	U :9.3	U 15	U 6.1 U
SV61 DICHLOROBENZENE, 1, 2-	:UG/KG:18	U :9.3	ย :15	U :6.1 U
SV63 DICHLOROETHYLENE, CIS -1,2	UG/KG 140	:9.3	U 15	U 6.1 U
ZZO1 SAMPLE NUMBER	NA 113	114	:115	.116
ZZOZ ACTIVITY CODE	NA PSICS	PSICS	PSICS	P\$1C\$
		:	;	

ACTIVITY PS1CS 10TH STREET SITE

THE PROJECT LEADER SHOULD CIRCLE ONE - STORET, AIRS, OR ARCHIVE.

CIRCLE ONE: STORET AIRS ARCHIVE

M. Chones

DATA APPROVED BY LABO FOR TRANSMISSION TO PROJECT LEADER ON 11/05/98 12:51:25 BY