

RASMUSSEN SITE STEERING COMMITTEE

EVALUATION OF PROPOSED PLAN AND RECOMMENDED MODIFICATIONS

Rasmussen Site Livingston County, Michigan

OCTOBER 1990 REF. NO. 2433 (12)

CONESTOGA-ROVERS & ASSOCIATES

EXECUTIVE SUMMARY

The Michigan Department of Natural Resources (MDNR) and the United States Environmental Protection Agency, Region V (USEPA) issued their Proposed Plan for the final remedy at the Rasmussen Site on August 31, 1990. This Proposed Plan presented the MDNR/USEPA (the "Agencies") preferred remedial alternatives to address the municipal landfill and the groundwater beneath the Rasmussen Site.

The Agencies' Proposed Plan consisted of two primary components. The proposed remedial components and the associated areas of concern to be addressed by each component are:

<u>Municipal Landfill</u>

The Agencies propose to construct a Michigan Act 64 cap over the area identified as the Top of Municipal Landfill (TML) Area. The area referred to as the Northeast Buried Drum (NEBD) Area is located within the areal limits of the TML Area and would be capped under the Proposed Plan. The cap is proposed to be a total of five feet thick and comprised of a one-foot thick vegetated soil layer, a one-foot thick drainage layer, and a three-foot thick clay layer with a permeability of 1×10^{-7} cm/s or less. In addition to the cap, the Agencies propose the use of access restrictions, such as fencing, around the capped area and the use of institutional controls, such as deed restrictions, to prevent future land use of the capped areas.

<u>Groundwater</u>

The Agencies propose to construct a groundwater extraction system to capture the impacted groundwater and to halt its migration until groundwater cleanup levels are ac ieved. Extracted groundwater is proposed to be treated by a combination of process options including removal of heavy metals (i.e. lead, cadmium) by chemical precipitation followed by pH adjustment; removal of the bulk of the organic constituents, including ketones, by a biological treatment systen.; removal of residual organics by air stripping; and further removal of residual organics by granular activated carbon adsorption. The Agencies propose discharge of treated groundwater to a seepage basin situated over the Industrial Wastes (IW) and Probable Drum Storage Leakage Disposal (PDSLD) Areas. In addition, the Agencies propose fencing and deed restrictions to ensure the integrity of the remedy.

Conestoga-Rovers & Associates (CRA) has been retained by the Rasmussen Site Steering Committee (RSSC) to review the Proposed Plan. This review addresses both components of the Agencies' preferred remedy.

CRA and the RSSC concur that the concept of capping is appropriate to the Rasmussen Site. However, the type of cap proposed by the Agencies represents a misapplication of Applicable or Relevant and Appropriate Requirements (ARARs). Also, technical details of the proposed cap design are either unwarranted and unnecessary or are inappropriate for the Site conditions. Based on this analysis, an alternate cap design is presented in this document which would provide improved hydraulic performance and improved long term integrity compared to the Agencies' proposed cap design.

CR A and the RSSC concur that groundwater remediation at the Rasmussen Site is appropriate. However, the RSSC has numerous concerns regarding the appropriateness of the groundwater remedy presented in the Proposed Plan. These concerns include:

- the method by which groundwater cleanup indicator chemicals were selected;
- the calculation of risks associated with groundwater at the Site and the difference between the cleanup approach presented in the Proposed Plan and that suggested in the MDNR/USEPA risk assessment; the data and assumptions used by the Agencies for calculating appropriate cleanup criteria and limitations of analytical chemistry in establishing groundwater cleanup levels; and

 the selection of groundwater treatment technologies and the underestimation of costs associated with the groundwater remedy. A detailed analysis of the Proposed Plan was conducted to address these concerns regarding both the municipal landfill component and the groundwater remedy component. Based on this evaluation, more appropriate remedial components were identified. The conclusions of this evaluation, by remedial component, include the following:

MUNICIPAL LANDFILL CAP COMPONENT

With respect to the municipal landfill cap component, we conclude:

- 1) The Agencies' proposed Michigan Act 64 cap design is neither applicable nor relevant and appropriate to the capping of the Rasmussen municipal landfill. Due to the response actions completed to date, the remaining landfill materials are characterized as primarily municipal garbage. Consequently, capping requirements established by RCRA and Michigan Act 64 are not relevant to the proposed capping of the Rasmussen Site. Relevant and appropriate capping requirements are those established by Michigan's Solid Waste Management Act.
- 2) The RSSC's proposed alternative cap design will satisfy capping ARARs, address technical flaws evident in the Agencies' proposed design, and provide a cover system which best addresses the public's concerns regarding cap longevity and long-term integrity.
- 3) Comparison of the Agencies' proposed cap to the RSSC's alternate design has shown that the RSSC's alternate design addresses the NCP's nine evaluation factors to the greatest possible extent. Evaluation factors which favor the RSSC's alternate cap include:
 - Overall Protection of Human Health and the Environment;
 - Compliance with ARARs;
 - Long-Term Effectiveness and Performance;
 - Short-Term Effectiveness;

- Implementability;
- Cost; and
- Community Acceptance.

Evaluation factors which either are not applicable or neutral include:

- Reduction of Toxicity, Mobility, or Volume Through Treatment; and
- Support Agency Acceptance.

In comparison, the Agencies' cap does not adequately address these evaluation factors in light of Site-specific conditions. Design measures incorporated into the RSSC's proposed alternate cap would provide improved longevity and long-term integrity compared to the Agencies' cap design. The RSSC's proposed design uses best design practice and positive measures to mitigate potential Site-specific problems.

- 4) The RSSC's proposed alternate cap design will provide an improved level of hydraulic performance compared to the Agencies' proposed Act 64 cap. The estimated percent reduction in infiltration through the cap for the RSSC's and Agencies' cap designs are 95.6% and 95.9%, respectively. However, the integrity of the Agencies' cap against frost and dessication cracking cannot be ensured. Consequently, in actual practice, the RSSC's alternate cap design will prove superior to the Agencies' Act 64 cap.
- 5) The FS cost estimates for the Agencies' proposed cap contain numerous calculational errors. The corrected capital cost of the Agencies' proposed cap ranges from \$8,248,860 to \$11,395,715 which is significantly greater than the \$2,993,290 presented in the Proposed Plan. In comparison, the RSSC's proposed alternative cap is more cost effective because the estimated capital cost is \$2,623,390. In addition, the FS has underestimated the O&M costs for the Agencies' cap. A lower-bound O&M cost estimate for the Agencies' cap is expected to be approximately \$0.5 million.

GROUNDWATER REMEDIAL COMPONENT

With respect to the groundwater extraction/treatment remedial component, we conclude:

- The Proposed Plan has inappropriately identified a number of proposed indicator chemicals which should be deleted. Of the 24 groundwater cleanup indicator chemicals presented in the Proposed Plan, 17 of the proposed indicator chemicals should be deleted based on a detailed evaluation of:
 - the method by which groundwater cleanup indicator chemicals were selected;
 - the calculation of risks associated with groundwater at the Site and the difference between the cleanup approach presented in the Proposed Plan and that suggested in the MDNR/USEPA risk assessment; and
 - 'he data and assumptions used by the Agencies for calculating appropriate cleanup criteria and limitations of analytical chemistry in establishing groundwater cleanup levels.
- 2) The RSSC proposed list of groundwater cleanup indicator chemicals differs significantly from the listing of chemicals identified to be of concern in the Proposed Plan. The selection of indicator chemicals fails to consider frequency of detection. Chemicals which should be deleted, based on low frequency of detection, include:
 - 1,1-dichloroethene;
 - tetrachloroethene;
 - benzyl alcohol;
 - 2-chlorophenol; and
 - isophorone.

- 3) The potential carcinogenic risks presented in the Proposed Plan are inaccurate and in disagreement with the Agencies' risk assessment. The difference in total risk estimates is potentially one-half to one complete order of magnitude for maximum concentrations and potentially two orders of magnitude for average concentrations. Based on the Agencies' risk assessment, chemicals which should be deleted include:
 - bis(2-ethylhexyl)phthalate;
 - 1,1-dichloroethene;
 - tetrachloroethene; and
 - isophorone.
- 4) The cleanup approach taken in the Proposed Plan differs from the approach taken in the Agencies' risk assessment. The risk assessment used a Site-specific analysis whereas the Proposed Plan used a misapplication of the Michigan 307 Rules. Because Superfund risk assessment methodology uses the 307 Rules Type C analysis, the erroneous application of the 307 Rules, as in the Proposed Plan, effectively invalidates the entire Superfund risk assessment process.
- 5) Based on the detailed evaluation of the Agencies' proposed cleanup criteria, only seven indicator chemicals are retained as appropriate for groundwater cleanup at the Rasmussen Site. Retained indicator chemicals and appropriate cleanup levels include:

Chemical	Appropriate Cleanup Level (µg/L)		
PDSLD/IW Area			
benzene chlorobenzene ethylbenzene toluene vinyl chloride xylenes	5 100 30 40 2 20		
South Slopes Area			
trichloroethene	5		

With the exception of benzene and vinyl chloride, these cleanup levels are determined from monitoring in the affected groundwater zones. Cleanup levels for benzene and vinyl chloride are based on maximum levels at the Rasmussen well.

- 6) Two of the Agencies' proposed groundwater treatment technologies have been inappropriately selected. Based on the groundwater characterization from the RSSC's supplemental sampling events, metals treatment is not necessary nor feasible and biological treatment is unnecessary and unwarranted.
- 7) The Proposed Plan has significantly underestimated O&M costs based on a low estimate of remedial duration which the MDNR has acknowledged is unrealistic. The total cost is expected to range from \$14,670,000 to \$21,531,000 based on the proposed treatment processes for a system operating in perpetuity. This cost is significantly greater than the \$7,320,000 presented in the Proposed Plan. A more realistic estimate of the groundwater remedial costs, based on the RSSC's proposed changes to the remedy, would be \$3,583,640 for a 10-year operating period. This cost is \$17,947,360 less than that estimated for the Agencies' proposed groundwater remedy.

TABLE OF CONTENTS

•

•

1.0	INTRODUCTION	1
2.0	MUNICIPAL LANDFILL CAP COMMENTS	4
2.0	2.1 APPLICABILITY OF MICHIGAN ACT 64 CAP	
	2.2 RSSC PROPOSED ALTERNATE CAP DESIGN	
	2.3 COMPARISON OF AGENCIES' PROPOSED CAP	
	AND RSSC PROPOSED ALTERNATE CAP	9
	2.4 COMPARISON OF HYDRAULIC PERFORMANCE	
	2.5 FS CAP COST ESTIMATES	
3.0	GROUNDWATER REMEDY COMMENTS	25
	3.1 SELECTION OF GROUNDWATER CLEANUP	
	INDICATOR CHEMICALS	25
	3.2 GROUNDWATER RISKS AND CLEANUP APPROACH	28
	3.2.1 Calculation of Groundwater Risks	28
	3.2.2 Cleanup Approach	
	3.3 DETAILED EVALUATION OF AGENCY	
	PROPOSED CLEANUP CRITERIA	33
	3.3.1 Calculation of Cleanup Criteria	33
	3.3.1.1 Acetone, 2-Butanone, 1,2-Dichloroethene, Ethylbenzene,	
	4-Methyl-2-pentanone, Toluene, 1,1,1-Trichloroethane and	
	Xylenes	33
	3.3.1.2 Benzyl Alcohol	
	3.3.1.3 Bis(2-ethylhexyl)phthalate	
	3.3.1.4 Chlorobenzene	
	3.3.1.5 2-Chlorophenol	
	3.3.1.6 1,1-Dichloroethene	
	3.3.1.7 2,4-Dimethylphenol	38
	3.3.1.8 Isophorone	
	3.3.1.9 2-Methylphenol and 4-Methylphenol	
	3.3.1.10 Methylene Chloride	40
	3.3.1.11 Benzene and Vinyl Chloride	
	3.3.1.12 Tetrachloroethene	
	3.3.1.13 Trichloroethene	
	3.3.1.14 Lead	
	3.3.1.15 Cadmium	
	3.3.2 Limitations of Analytical Chemistry	
	3.3.3 Summary of Detailed Evaluation of Agency	40
	Proposed Cleanup Criteria	49
	3.4 SELECTION OF GROUNDWATER TREATMENT	-
	TECHNOLOGIES AND ASSOCIATED COST ESTIMATES	
	3.4.1 Proposed Treatment Technologies	51

.

•

<u>Page</u>

TABLE OF CONTENTS

<u>Page</u>

		FS Groundwater Remedy Cost Estimates	
4.0	CON	CLUSIONS	.57

.

LIST OF FIGURES

		Following <u>Page</u>
FIGURE 2.1	SITE PLAN	24
FIGURE 2.2	RSSC PROPOSED ALTERNATE LANDFILL CAP LAYOUT	24
FIGURE 2.3	TYPICAL SECTION - RSSC PROPOSED ALTERNATE LANDFILL CAP	24
FIGURE 2.4	CROSS-SECTION A-A'	24
FIGURE 2.5	TYPICAL SECTION - AGENCY PROPOSED LANDFILL CAP	24
FIGURE 3.1	TOTAL LEAD VS TOTAL SUSPENDED SOLIDS RSSC SUPPLEMENTAL GROUNDWATER RESULTS	56
FIGURE 3.2	DISSOLVED LEAD VS TOTAL SUSPENDED SOLIDS RSSC SUPPLEMENTAL GROUNDWATER RESULTS	56
FIGURE 3.3	DISSOLVED LEAD VS TOTAL LEAD RSSC SUPPLEMENTAL GROUNDWATER RESULTS	56
FIGURE 3.4	TOTAL CADMIUM VS TOTAL SUSPENDED SOLIDS RSSC SUPPLEMENTAL GROUNDWATER RESULTS	56

LIST OF TABLES

Following Page

TABLE 2.1	SUMMARY OF HELP MODEL OUTPUT PROPOSED CAP DESIGN COMPARISON	22
TABLE 2.2	CORRECTED LOWER-BOUND AGENCY CAPITAL COST ESTIMATE	24
TABLE 2.3	CORRECTED UPPER-BOUND AGENCY CAPITAL COST ESTIMATE	24
TABLE 3.1	AGENCY PROPOSED GROUNDWATER CLEANUP CRITERIA	25
TABLE 3.2	INDICATOR CHEMICALS PROPOSED FOR DELETION	25
TABLE 3.3	CONCENTRATIONS AND FREQUENCY OF DETECTION OF PROPOSED GROUNDWATER CLEANUP INDICATOR CHEMICALS	26
TABLE 3.4	AGENCY ESTIMATES OF CARCINOGENIC RISK	30
TABLE 3.5	COMPARISON OF LABORATORY BLANK SAMPLES AGAINST GROUNDWATER SAMPLE CONCENTRATIONS	41
TABLE 3.6	ANALYTICAL RESULTS FOR LEAD	46
TABLE 3.7	ANALYTICAL RESULTS FOR CADMIUM	47

.

LIST OF APPENDICES

- APPENDIX A LANDFILL SOUTH SLOPE PHOTOGRAPHS
- APPENDIX B RSSC COST ESTIMATES
- APPENDIX C HELP MODEL OUTPUT
- APPENDIX D RSSC OCTOBER 1990 SAMPLING RESULTS

1.0 INTRODUCTION

The Michigan Department of Natural Resources (MDNR) and the United States Environmental Protection Agency, Region V (USEPA) issued their Proposed Plan for the final remedy at the Rasmussen Site on August 31, 1990. This Proposed Plan presented the MDNR/USEPA (the "Agencies") preferred remedial alternatives to address the municipal landfill and the groundwater beneath the Rasmussen Site.

The Agencies' Proposed Plan consisted of two primary components. The proposed remedial components and the associated areas of concern to be addressed by each component are:

• <u>Municipal Landfill</u>

The Agencies propose to construct a Michigan Act 64 cap over the area identified as the Top of Municipal Landfill (TML) Area. The area referred to as the Northeast Buried Drum (NEBD) Area is located within the areal limits of the TML Area and would be capped under the Proposed Plan. The cap is proposed to be a total of five feet thick and comprised of a one-foot thick vegetated soil layer, a one-foot thick drainage layer, and a three-foot thick clay layer with a permeability of 1×10^{-7} cm/s or less. In addition to the cap, the Agencies propose the use of access restrictions, such as fencing, around the capped area and the use of institutional controls, such as deed restrictions, to prevent future land use of the capped areas.

<u>Groundwater</u>

The Agencies propose to construct a groundwater extraction system to capture the impacted groundwater and to halt its migration until groundwater cleanup levels are achieved. Extracted groundwater is proposed to be treated by a combination of process options including removal of heavy metals (i.e. lead, cadmium) by chemical precipitation followed by pH adjustment; removal of the bulk of the organic constituents, including ketones, by a biological treatment system; removal of residual organics by air stripping; and further removal of residual organics by granular activated carbon adsorption. The Agencies propose discharge of treated groundwater to a seepage basin situated over the Industrial Wastes (IW) and Probable Drum Storage Leakage Disposal (PDSLD) Areas. In addition, the Agencies propose fencing and deed restrictions to ensure the integrity of the remedy.

Conestoga-Rovers & Associates (CRA) has been retained by the Rasmussen Site Steering Committee (RSSC) to review the Proposed Plan. This review addresses both components of the Agencies' preferred remedy.

CRA and the RSSC concur that the concept of capping is appropriate to the Rasmussen Site. However, the type of cap proposed by the Agencies represents a misapplication of Applicable or Relevant and Appropriate Requirements (ARARs). The Agencies' cap design is based on Michigan Act 64 requirements which were inappropriately selected as ARARs. Also, technical details of the proposed cap design are either unwarranted and unnecessary or are inappropriate for the Site conditions. An alternate cap design is presented in this document which would provide improved hydraulic performance and improved long term integrity compared to the Agencies' proposed cap design.

CRA and the RSSC have a significant number of concerns regarding the Agencies' proposed groundwater remedy. These include:

- the method by which groundwater cleanup indicator chemicals were selected;
- the calculation of risks associated with groundwater at the Site and the difference between the cleanup approach presented in the Proposed Plan and that suggested in the MDNR/USEPA risk assessment;
- the data and assumptions used by the Agencies for calculating appropriate cleanup criteria and limitations of analytical chemistry in establishing groundwater cleanup levels; and
- the selection of groundwater treatment technologies and the underestimation of costs associated with the groundwater remedy.

Appropriate groundwater cleanup levels previously were evaluated and presented to MDNR/USEPA in the document entitled "Proposed Groundwater Cleanup Levels"¹. The key points of discussion presented in this previous document remain relevant and are reiterated in this document where appropriate.

The results of the RSSC's recent groundwater sampling conducted in October 1990 are provided for MDNR/USEPA's use in preparing the Record of Decision. This new data provides technical support for the RSSC's previous position on the inaccuracy of the Remedial Investigation (RI) characterization of the groundwater at the Rasmussen Site; the selection of groundwater cleanup indicator chemicals; and the appropriate application of Michigan's Act 307 Rules.

Comments regarding the Agencies' proposed cap and proposed groundwater remedy are presented below in Sections 2.0 and 3.0, respectively.

Refer to "Proposed Groundwater Cleanup Levels - Rasmussen Site - Livingston County, MI" prepared by Conestoga-Rovers & Associates dated August 2, 1990

2.0 MUNICIPAL LANDFILL CAP COMMENTS

The Agencies' proposed municipal landfill cap design is based on the Michigan Act 64 cap design presented in the Feasibility Study² (FS) under Site Wide Alternative 2, "Clay cap with no further excavation and restricted access". Areas to be capped under Site Wide Alternative 2 included the TML Area (which includes the NEBD Area), the IW Area, and the PDSLD Area. These areas are identified on Figure 2.1.

The FS identified these three areas as areas of concern based on the findings from the MDNR/USEPA Remedial Investigation³ (RI) and Risk Assessment⁴ (RA). Based on the results of the supplemental soil sampling conducted by the MDNR in December 1989/January 1990, the Agencies determined that the IW/PDSLD Areas were not areas of concern as originally indicated. Consequently, the Agencies required capping of only the TML Area in the Proposed Plan.

The RSSC concurs with the amendment to the FS which removes the requirement for capping of the IW/PDSLD Areas. The RSSC also concurs that a cap remedy is appropriate for the municipal landfill component of the Rasmussen Site.⁵

Since the issuance of the FS and the Proposed Plan, however, Site Wide Alternative 2 has been amended by MDNR/USEPA to increase the acreage of the proposed cap significantly beyond the limits of the TML Area.⁶ This increased cap area is unwarranted and unnecessary given that the Agencies' risk assessment has determined that dermal/contact risks

Refer to "Final Draft, Feasibility Study, Detailed Evaluation, Spiegelberg and Rasmussen Dump Sites, Livingston County, MI" prepared by NUS Corporation and Warzyn Engineering
 Refer to "Final Remedial Investigation Report, Spiegelberg and Rasmussen Dump Sites, Green

Oak Township, Livingston County, MI, Volumes I through VII", prepared by NUS Corporation, dated September 1988.

⁴ Refer to "Final Risk Assessment, Spiegelberg and Rasmussen Dump Sites, Green Oak Township, Livingston County, MI ", prepared by NUS Corporation, dated September 1988

⁵ The RSSC had previously proposed capping of the municipal landfill to the Agencies. Refer to "Proposed Remedial Plan, Rasmussen Site", prepared by CRA, dated August 10, 1989

⁶ Amendment to FS cost estimate tables and addition of Figure 9-1B by MDNR dated September 10, 1990

associated with the south landfill slopes are acceptable. In addition, the type of cap and several technical design details presented in the Proposed Plan are also inappropriate.

During both the informal pre-meeting held July 31, 1990 and the formal meeting held on September 13, 1990, the public expressed concern regarding the longevity and long term integrity of a cap remedy for the on-Site landfill. The RSSC is proposing an alternate cap design which will provide improved longevity, improved long term integrity and improved hydraulic performance. This alternate design best addresses the public's concerns and includes design features which are technically more sound, administratively feasible and more cost-effective.

Comments regarding the applicability of the Agencies' proposed cap, appropriateness of technical design features which would affect cap longevity and integrity, details of the alternate cap design proposed by the RSSC, and FS cost estimates for the Agencies' proposed cap design are detailed below.

2.1 APPL'CABILITY OF MICHIGAN ACT 64 CAP

The Agencies' proposed cap for the Rasmussen Site apparently is based on the Agencies' determination that the requirements of Michigan Act 64 are Applicable or Relevant and Appropriate Requirements (ARARs). However, Act 64 is neither "applicable" nor is it "relevant and appropriate" based on current Site conditions.

Potential ARARs identified in the Agencies' FS for the proposed cap include the requirements of the Federal Resource Conservation and Recovery Act of 1976 (RCRA) and Michigan Act 64. For an ARAR to be "applicable", the circumstances at the Site must satisfy all of the jurisdictional prerequisites of that ARAR. The FS determined that neither the RCRA nor Act 64 capping requirements are legally applicable. The FS, however, assumed that these requirements were "relevant and appropriate". Relevant and appropriate requirements are those that address problems or situations sufficiently similar to those encountered at the Site such that the use of those requirements is well suited to the particular Site ⁷. In some circumstances, a requirement may be relevant but not appropriate for the specific situation. In order to determine whether the RCRA or Act 64 requirements are relevant and appropriate to the municipal landfill portion of the Rasmussen Site, it is necessary to examine the Site-specific conditions existing at the Site taking into consideration remedial actions which have been completed to date.

The landfill portion of the Rasmussen Site contains municipal wastes at the present time. The drum and soil removal conducted by USEPA in 1984 resulted in the removal of the drummed industrial wastes which were evident on the landfill surface and near-surface. In addition, areas identified in the Agencies' Remedial Investigation as containing buried drummed industrial wastes have been remediated. In late 1989 and early 1990, the RSSC undertook an Immediate Response Action to address these areas. This remedial action involved the excavation and off-Site removal of drummed wastes and associated affected soils/debris from the NEBD Area, the IW Area, and an area referred to as the Surface Drum (SD) Area located on the Top of the Municipal Landfill. Based on the findings from the investigations conducted to date and the two completed removal actions, the remaining landfill materials are primarily municipal garbage⁸. Consequently, capping requirements established by RCRA and Michigan Act 64 for hazardous waste landfills are not relevant to the proposed capping of the Rasmussen Site.

However, even if the RCRA Act 64 capping requirements for hazardous waste landfills were relevant to the on-Site municipal landfill, they would not be appropriate for use at the Site. As noted by USEPA in its draft guidance on CERCLA compliance with other laws, "RCRA covers are generally not appropriate for large municipal landfills . . . where the waste is generally of a low toxicity and the Site encompasses an area that bears little

^{7 46} FR 8742

The MDNR has stated during both the pre-meeting held July 31, 1990 and the public meeting held September 13, 1990, that the "remaining waste materials are primarily the municipal garbage". Refer to page 34 of transcript for September 13, 1990 public meeting.

resemblance to the discrete units regulated under RCRA Subtitle C."⁹ The municipal landfill at the Rasmussen Site is a large municipal landfill and it bears little resemblance to the discrete units regulated under RCRA Subtitle C. In addition, the waste in the landfill is of a low toxicity and does not resemble RCRA/Act 64 hazardous waste.

Consequently, the RCRA/Act 64 hazardous waste landfill final capping requirements are neither legally applicable nor are they relevant and appropriate for use at the Rasmussen Site.

The Agencies' FS did not identify any landfill capping ARARs other than those applicable to hazardous waste landfills. However, other ARARs applicable to the capping of municipal waste landfills have been promulgated by the State of Michigan.

Final covers for municipal landfills in Michigan are governed by the requirements of Michigan's Solid Waste Management Act, M.C.L. §§ 299.401 <u>et seq</u>. ("SWMA"). Because the Rasmussen Site was closed in 1972, the SWMA final cover requirements are not legally applicable. However, the final cover requirements promulgated pursuant to the SWMA were designed to address problems and situations sufficiently similar to those at the Rasmussen Site such that their use is well suited to this Site. Therefore, the final cover requirements of the SWMA are relevant and appropriate requirements.

The RSSC alternate cap design proposed below meets the SWMA requirements. In addition, Site specific design features of the alternate cap proposed by the RSSC provide improved longevity and long term integrity compared to the Agencies' proposed cap.

CERCLA Compliance With other Laws Manual, Interim Final, EPA/540/G-89/006, pg.2-21, dated August 8, 1988.

2.2 RSSC PROPOSED ALTERNATE CAP DESIGN

The above evaluation of the Agencies' proposed cap design for the Rasmussen Site has determined that the Act 64 cap design is neither applicable nor relevant and appropriate to the Site conditions.

Based on this evaluation, the RSSC proposes an alternate cap design which will satisfy capping ARARs, address technical flaws evident in the Agencies' proposed design, and provide a cover system which best addresses the public's concerns regarding cap longevity and long-term integrity.

Specific remedial activities associated with the proposed alternate capping of the municipal landfill include the following:

- The north slopes of the landfill would be backfilled and pregraded to the approximate contours shown on Figure 2.2 to stabilize the north escarpment face. To the extent possible, fill for pregrading would be obtained from the areas within the fenced portion of the Site located outside of the limits of the municipal landfill and the PDSLD/IW Areas. The fill would be placed in terraces to minimize erosion damage and long-term maintenance problems that would be associated with a single continuous slope.
- The soil excavated from the PDSLD Area in 1987 (Ramsey excavation) would be excavated and reconsolidated back in the PDSLD Area.
- The TML Area would be pregraded using fill as indicated on Figure 2.2 to flatten existing steeper slopes to minimize the potential for erosion damage to the landfill cap.
- A clay cap and cover system as depicted on Figure 2.3 would be constructed over the TML Area.
- A landfill perimeter collection drain would be constructed around the cap perimeter to collect surface water runoff and subsurface drainage from the cap. This collection system would convey the collected water to the base of

the landfill slopes; thereby minimizing the amount of surface water runoff available to erode the landfill slopes.

• The areas outside of the limits of the landfill cap would be revegetated for surface water control and to promote stable surfaces.

The proposed alternate cap consists of capping of the TML Area as shown on Figure 2.2. The cap would extend over the TML Area, thereby encompassing the remediated NEBD and Surface Drum Areas. The Agencies' risk assessment has determined that dermal/contact risks associated with the south slopes adjacent to the TML Area are acceptable. Therefore, the cap need not extend over these areas. As stated in the Agencies' Proposed Plan, the Site fence would further minimize potential exposure to trespassers by restricting access. Consequently, capping of these south slopes is neither warranted nor necessary.

In addition, the south slopes are presently stable and heavily vegetated as indicated by the photographs presented in Appendix A. The steep grades on the south slopes currently promote rapid runoff of surface water from the heavily vegetated slopes; thereby minimizing infiltration in these soil areas. Due to the severe topography on these slopes as illustrated on Figure 2.4, it is anticipated that any disturbance of this area would produce unstable conditions and result in severe erosion and subsequent potential undercutting of the municipal landfill. In essence, the Proposed Plan calls for undoing the substantial vegetative cover which has been effectively established naturally over a large number of years and then requires a new vegetative cover to be created under conditions certain to result in significant and continued erosion problems. Therefore, it is inappropriate to disturb the south slopes.

2.3 COMPARISON OF AGENCIES' PROPOSED CAP AND RSSC PROPOSED ALTERNATE CAP

In addition to the concern raised in Section 2.1 regarding the applicable or appropriate type of landfill cap, a number of technical design features of the Agencies' proposed cap presented in the FS and Proposed Plan are inappropriate for the Site conditions.

Several technical design features of the Agencies' proposed cap are unwarranted and unnecessary; would detract from the longevity and long-term integrity of the proposed cap; would be difficult to implement; would be administratively difficult; and would result in unnecessary increased cost. In addition, the Agencies' cap is significantly larger than necessary. The extent of cap in the Proposed Plan will encompass soil areas which are not areas of concern. Consequently, the large size of the proposed cap is unwarranted and unnecessary. The large cap area also is not technically and administratively feasible, and would impact the longevity and long term integrity of the proposed cap remedy.

The NCP ¹⁰ provides nine criteria to evaluate the Agencies' proposed cap and the RSSC's alternate cap. These criteria include:

- Overall Protection of Human Health and the Environment;
- Compliance with ARARs;
- Long-term Effectiveness and Permanence;
- Reduction of Toxicity, Mobility or Volume through Treatment;
- Short Term Effectiveness;
- Implementability;
- Cost;
- Support Agency Acceptance; and
- Community Acceptance.

For the reasons discussed in detail below, the Agencies' proposed design does not adequately address these evaluation factors. In comparison, the alternate cap design proposed by the RSSC addresses these evaluation factors to the greatest possible extent.

National Contingency Plan, 40 CFR Part 300.

i) Overall Protection of Human Health and the Environment

The Agencies' proposed cap design would provide overall protection of human health and the environment in the long term but not in the short term. In comparison, the RSSC proposed alternate cap would provide improved overall protection of human health and the environment in the long term and short term.

The Agencies' and the RSSC's cap designs both address dermal/contact risk and potential risks to groundwater. Consequently, both the Agencies' proposed cap and the RSSC's proposed alternate cap would be protective in the long term.

However, construction of the Agencies' proposed cap would not be protective of human health and the environment in the short term. The proposed grading of landfill wastes onto unaffected soil areas outside the present limits of the landfill would result in exposing a large volume of landfill materials to rainfall and surface water infiltration during cap construction. This method of construction is not protective of the environment. Disturbance of the landfill waster also may cause nuisance conditions and unnecessary exposures in adjacent areas during grading operations. In comparison, the RSSC's proposed design does not require grading of landfill wastes; thereby eliminating the potential for these short term concerns.

Based on the discussion under other evaluation factors, the overall protectiveness of the Agencies' cap design cannot be ensured due to questions regarding longevity and long term integrity. In comparison, the positive measures proposed in the RSSC's alternate cap design to control stormwater and erosion will ensure that overall protection of human health and the environment is maintained in the long term.

ii) <u>Compliance with ARARs</u>

As evaluated in Section 2.1, the Agencies' proposed cap design was based on an inappropriate selection of cap ARARs. Although the

Agencies' proposed cap would meet the cap cover ARARs established by Michigan's Solid Waste Management Act, it would not utilize best design practices for landfill covers.

The Michigan Solid Waste Management Regulations pursuant to the SWMA require that soil erosion control measures be implemented to comply with the Michigan soil erosion and sedimentation control act (R299.4316(4)). The Agencies' cap design does not take appropriate measures against erosion in light of the severe Site topography. In comparison, the RSSC's proposed cap design takes positive measures to comply with this ARAR.

iii) Long-Term Effectiveness and Permanence

The Agencies' proposed design does not adequately consider Site specific conditions which impact permanence or utilize current best design practice for landfill cover systems to ensure long term integrity.

Pertinent factors which were not addressed in the Agencies' proposed design include:

- stormwater and erosion management,
- drainage,
- cover design for climatic conditions, and
- vegetative cover design.

Details of pertinent factors not considered by the Agencies' proposed cap are discussed below.

a) <u>Stormwater and Erosion Management</u>

The Agencies' large proposed cap area does not promote proper stormwater and erosion management. The proposed cap area is 15.8 acres. This is significantly larger (factor of three times) than the actual 5.2-acre area encompassed by the TML Area. Consequently, the surface and subsurface drainage systems must effectively control three times the volume of stormwater which would otherwise be required. The grading design shown on Figure 9-1B of the FS identifies long continuous cap slopes at a steep grade of 25 percent due to the severe Site topography. This type of design results in rapid surface water runoff and subsurface drainage conditions having significant erosive potential. Combined with the significant stormwater volume produced as a result of the large cap area, severe soil erosion of the landfill cover by surface water runoff is expected. The resulting development of erosion rills and gullies requiring frequent attention and repair would impair the permanence of the proposed remedy.

In addition to the erosion of surface soil, the rapid drainage and increased volume of water to be controlled by the subsurface drainage layer, based on the Agencies' proposed cap, would increase the potential for internal erosion ("piping") within the drainage layer. As well, surface seeps would develop along the lower slopes of the cap due to the large volume of water to be conveyed through the subsurface drain layer. In either instance, the landfill cover system would be subject to internal erosion as well as surface erosion. Consequently, the integrity and longevity of the Agencies' cap would be compromised.

In comparison, the RSSC's proposed alternate cap design uses best design practice for proper stormwater and erosion management. Positive design measures include:

- the use of a smaller cap area to minimize the volume of stormwater runoff; and
- the use of terraces and perimeter drains to interrupt and intercept surface water runoff.

b) <u>Drainage</u>

The Agencies' large proposed cap area would also cause drainage problems in adjacent areas. Soils outside of the limits of the municipal landfill presently consist of permeable soils which allow for infiltration of rainfall. In comparison, a cap would effectively preclude infiltration. To illustrate the magnitude of drainage concerns, approximately 3,218,000 gallons of water would be shed annually by the Agencies' cap through the subsurface drainage layer (assumed 30 inches rainfall and 25% drainage). This is the equivalent of a depth of 22 inches of standing water over the 5.2-acre TML Area. The Agencies' proposed design would cause a significant portion of this drainage volume to occur onto the adjacent Spiegelberg property. Temporary flooding of adjacent lands following periods of significant rainfall has not been addressed by the Agencies' proposed design.

In comparison, the RSSC's proposed alternate cap design takes positive measures to address these drainage concerns. The use of rermeable sideslope soils outside of the limits of the TML area will promote surface water infiltration and reduce lateral drainage. The proposed terraces will slow the rate at which surface drainage occurs and the perimeter drains allow for redirection of drainage waters. These measures will reduce drainage requirements and minimize drainage-related off-Site impacts.

c) Cover Design for Climatic Conditions

The Agencies' proposed cap consists of one foot of vegetated soil and one foot of drainage layer overlying the clay barrier layer. This cover system is inappropriate to the Site climatic conditions. The proposed cover design would promote cracking of the clay barrier layer by frost action and by desiccation, thereby decreasing cap longevity and long-term integrity.

Current practice for the design of landfill cover systems requires that sufficient cover be provided over the barrier layer to prevent frost damage. Frost damage to the clay barrier occurs when insufficient cover is available to insulate the clay layer. The ensuing cyclic freezing and thawing of the clay barrier layer results in vertical cracks which allow for water infiltration; thereby negating its purpose. Good practice requires placing sufficient cover over the clay barrier to prevent frost from penetrating to the depth of the clay barrier. Based on USEPA guidance, the frost penetration depth at the Rasmussen Site is approximately 30 inches ¹¹. Consequently, the Agencies' proposed cover thickness of 24 inches is inadequate for ensuring long term integrity against frost damage.

The Agencies' proposed drain layer design follows conventional design practice which is based on rapid removal of subsurface water. However, this design practice may be detrimental to long term cap integrity. Best design practice would use positive measures to prevent excessive moisture loss from clay soils under summer drought conditions. This would minimize the degree of soil volur.ie changes resulting from moisture loss which could induce vertical cracks in the clay layer. Best design practice would keep clay barriers moist to prevent desiccation damage from occurring; therefore, rapid drainage design practices as used for the Agencies' cap design would be inappropriate. Based on discussions with local clay suppliers, locally available clay meeting the Agencies' permeability requirements of 1×10^{-7} cm/s is a "heavy" clay which is more sensitive to moisture changes and thus more susceptible to desiccation cracking. The Agencies' proposed thick drain layer design does not address these factors which affect long term integrity.

¹¹ Refer to Figure 6 in "Technical Guidance Document: Final Covers on Hazardous Waste Landfills and Surface Impoundments", EPA/530-SW-89-047, dated July 1989.

In comparison, the RSSC proposed alternate cover design uses best design practice for climatic conditions. Positive design measures include:

- the use of a thicker soil cover to insulate the clay barrier layer and protect against frost-related damage; and
- the use of a thinner subsurface drain layer to ensure adequate moistening of the clay layer to prevent desiccation cracking from occurring.

d) <u>Vegetative Cover Design</u>

The Agencies' proposed thickness of one foot for the vegetated soil layer does not promote the growth of productive surface vegetation which would be resistant to erosion and drought. A one-foot thick vegetative soil layer does not allow for the planting of more durable grass species (with deeper root structures) because of the need to prevent roots from penetrating into the clay barrier layer. This lack of deep rooted species will detract from the benefit of a deeper root zone which provides improved mechanical anchorage of the cover system against erosion. A thicker vegetative soil layer would also increase the depth of soil capable of holding water from infiltrating rainfall. A thicker soil layer would increase the total available moisture-holding capacity of the cover layer. This increased available moisture is necessary to maintain a viable vegetated cover system under drought conditions. Otherwise, under drought conditions the soil cover would be barren of vegetation and susceptible to erosion. This would be of particular concern for the long steep slope design proposed by the Agencies. Consequently, the Agencies' proposed design does not promote productive cover vegetation to ensure long term integrity and permanence.

In comparison, the RSSC's proposed alternate cap design uses a thicker soil layer to increase available soil moisture capacity for improved vegetative growth.

These Site specific features incorporated into the RSSC's proposed design will ensure long term effectiveness and permanence.

iv) <u>Reduction of Toxicity, Mobility or Volume Through Treatment</u>

As indicated in the **Proposed** Plan, this is not a pertinent factor for a cap remedy. However, mobility would be effectively reduced due to the reduction of surface water infiltration by a low permeability cap. The positive measures to ensure integrity of the RSSC proposed design would provide a more effective reduction of mobility through reduction of surface water infiltration.

v) <u>Short-Term Effectiveness</u>

The Agencies' proposed cap design does not adequately address short-term effectiveness factors. The Proposed Plan identifies that short-term risks potentially posed to the community and workers can be effectively eliminated through engineering measures and protective equipment for workers. The Proposed Plan estimates the implementation period to be one to two years. However, based on the large cap area and proposed grading plan, this estimated time frame is unrealistic. Approximately 127,300 cubic yards (8,900 truckloads based on 1.4 tons/cubic yard) of cover materials is needed to construct the Agencies' proposed cap. The transport of this material quantity to Site would potentially cause significant disturbance to the community.

In addition, as discussed under "overall protection of human health and the environment", the grading of the landfill wastes is not protective of the environment during construction and may cause nuisance conditions. In comparison, the RSSC's proposed cap minimizes off-Site borrow requirements (71,100 cubic yards of soil compared to 127,300 cubic yards of import borrow for Agencies' cap) and does not require grading of wastes; therefore these potential concerns regarding the Agencies' cap design are either minimized or not relevant. The reduced cap area and smaller volume of borrow fill required for the RSSC design (approximately 4,980 truckloads compared to Agencies' 8,900 truckloads) will result in a shorter implementation period and therefore result in less disturbance to the community and less potential risk to workers during construction.

vi) <u>Implementability</u>

The large area of the Agencies' proposed cap would impact implementability. Due to the large size of the proposed cap and proposed grading, construction timing is important. It is unlikely that the Agencies' proposed cap would be constructed within the estimated implementation period due to severe winter working conditions at the Site.

In comparison, the smaller RSSC cap design would be more easily implemented because construction timing is less critical due to the shorter implementation period required.

The Agencies' proposed final grade design would also detract from its implementability. The long steep slope design presented in the Proposed Plan will result in difficult working conditions during placement of clay in wet weather. In addition, the proposed slope design promotes rapid surface water runoff which would promote erosion and increase the difficulty in reestablishing a vegetative cover.

In comparison, the **RSSC's** cap design is more implementable. The RSSC design limits the size of the area requiring clay cover and does not require placing clay over steep slopes. The terraces and stormwater control systems would minimize surface erosion during revegetation of the landfill slopes.

As previously mentioned under the "long-term effectiveness and permanence" factors for the Agencies' proposed design, easements and deed restrictions would be required along two sides of the Spiegelberg property based on the proposed lateral extent of the capped area and drainage considerations. Based on past experience and concerns raised by the public, it may be administratively difficult to prevent disturbance of a constructed cap over these areas. The temporary flooding caused by drainage from the Agencies' proposed cap would potentially lead to greater difficulties in enforcing deed restrictions and would affect property and resource use. In comparison, the limited extent of the RSSC proposed cap would minimize, if not eliminate, administrative concerns regarding easements and deed restrictions on adjacent property.

vii) <u>Costs</u>

The Agencies' proposed cap is not cost effective compared to the RSSC's proposed cap. The TML Area occupies 5.2 acres. However, the cap presented on Figure 9-1B of the Agencies' FS covers approximately 15.8 acres and extends significantly beyond the limits of the TML Area. This is most evident to the south of the municipal landfill where the cap extends 300 feet beyond the TML Area and onto the adjacent Spiegelberg property. The extent of cap shown on Figure 9-1B, which has been selected as part of the Proposed Plan, differs markedly from the extent of cap shown on Figure 9-1 of the FS which previously included capping of the IW/PDSLD Areas. This previous cap design covered only 11.0 acres (including the IW/PDSLD Areas) and limited the south extent of cap to approximate the limits of the TML Area. No rationale is provided in the Proposed Plan for this significant proposed increase in the extent of cap beyond the limits of the TML Area. It appears that this increase in cap size is due to the proposed grading of landfill materials onto unaffected soils. The Agencies' design would encompass 15.8 acres without providing any increase in overall protection of human health and the environment.

The Agencies have erroneously estimated the capital cost of their proposed cap to be \$2,940,247. As discussed in Section 2.5, corrected estimates of capital cost for the Agencies' design are in excess of \$8,248,860.¹²

In addition to costs resulting from the size of the proposed cap, the Agencies' design would incur unnecessary costs from extensive grading of the municipal landfill wastes. The proposed grading would result in the direct placement of municipal waste onto otherwise clean soils surrounding the landfill.

Grading of the landfill wastes is proposed apparently for the purpose of minimizing the quantity of borrow fill which would otherwise be needed for proper grading of the landfill slopes. However, grading of landfill wastes is not cost-effective due to Site topography. Due to the significant elevation drop along the undermined north side of the landfill, grading of the wastes cannot be performed as a single operation. Instead, grading would consist of excavation, on-Site transport to the bottom of the slope, and recompaction of the placed municipal wastes. The cost associated with such a material handling operation would be significant. Consequently, this proposed grading would result in significant unjustified costs because the pregrading of available on-Site soil supplemented by the use of import borrow fill is more economical.

In addition to concerns regarding capital costs, there are concerns regarding the accuracy of the Agencies' estimates of operation and maintenance (O&M) costs as detailed in Section 2.5. The Proposed Plan estimates the present worth of O&M costs to be \$53,043.¹³ Based on the concerns regarding inappropriate erosion control design measures, a significant level of effort and associated cost would likely be incurred in repairing and maintaining the Agencies' proposed cap for a number of

¹² Based on corrected quantity estimates provided by MDNR contractor with appropriate adjustments to FS costs for increased soil layer thicknesses and soil layers not included in FS, but included in Proposed Plan.

¹³ The Proposed Plan incorrectly cited the FS present worth cost of \$53,043 as being a one-year O&M cost.

years, if not indefinitely. The O&M cost estimate of approximately \$0.5 million for the RSSC proposed cap described in Section 2.2 is likely a more realistic lower bound estimate of O&M costs for the Agencies' cap design.

In comparison, the RSSC's proposed alternate cap design is cost-effective. The estimated capital cost of the RSSC's proposed design is approximately \$2,623,000 and the upper end O&M cost is estimated to be approximately \$0.5 million based on a 30-year maintenance period¹⁴. The substantive provisions of the RSSC's design to ensure long term effectiveness and permanence would likely reduce this estimated O&M cost.

viii) Support Agency Acceptance

This criterion cannot be addressed by the RSSC. However, the alternate design is consistent with the SWMA and utilizes current best design practice for landfill covers.

ix) <u>Community Acceptance</u>

The community has already expressed significant concern regarding the long-term integrity and longevity of the Agencies' proposed cap remedy. Based on the foregoing evaluation of factors, in particular "long-term effectiveness and permanence", the Agencies' proposed cap does not adequately address the public's concerns. In comparison, the RSSC design takes positive measures to address the community concerns regarding cap longevity and integrity.

* *

In summary, it is clear that the Agencies' proposed cap does not represent an appropriate cap design for the Rasmussen Site. In comparison,

Refer to Appendix B for RSSC cost estimates.

the RSSC's proposed cap addresses the evaluation factors to the greatest extent possible and represents an appropriate cap design for the Rasmussen Site.

2.4 <u>COMPARISON OF HYDRAULIC PERFORMANCE</u>

In addition to substantively addressing all nine of USEPA's evaluation criteria, the RSSC proposed alternate cap design will provide an improved level of hydraulic performance compared to that provided by the Agencies' proposed Act 64 cap design.

The effectiveness of the RSSC proposed alternate cap design in reducing infiltration was evaluated using the Hydrologic Evaluation of Landfill Performance (HELP) model¹⁵. For purposes of comparison, model runs were performed for both the proposed alternate cap design and the Agencies' proposed Act 64 cap. The typical cap sections used for modeling purposes are shown on Figures 2.3 and 2.5, respectively.

Table 2.1 summarizes the results of this modeling which are contained in Appendix C. These results show that both cap designs are equally effective in reducing infiltration (95.9% reduction for the Agencies' Act 64 cap compared to a 95.6% reduction for the proposed alternate cap) and thus, are functionally equivalent in this respect.

However, the HELP model overstates the effectiveness of the Agencies' cap by assuming ideal conditions. Assumptions implicit to the HELP model include the assumption that no cracks in the clay barrier layer have resulted from frost damage or desiccation damage. From the evaluation conducted in Section 2.3, such an assumption could not be ensured for the Agencies' proposed cap design. Consequently, in actual practice, the RSSC proposed alternate cap design will prove superior to the Agencies' Act 64 cap.

The HELP model was developed by USEPA for evaluation of landfill cover performance.

TABLE 2.1

SUMMARY OF HELP MODEL OUTPUT PROPOSED CAP DESIGN COMPARISON

Type of Landfill Cap	Precipitation (in/yr)	Surficial % Runoff	, % Evapotransp.	% Lateral Drainage	% Reduction in InfiltrationThrough Cap	Comments
MDNR Act 64 Cap	30.00	1.72	69.31	24.05	95.9	12" topsoil, 12" sand drain, 36" clay
RSSC Proposed Alternate Landfill Cap	30.00	1.70	69.88	23.12	95.6	6" topsoil, 18" uncompacted common fill, 6" sand drain, 24" clay

Notes:

All values are mean annual values over a 5-year period.
 The lateral drainage distance was 200 feet.
 A 12% lateral drainage slope was used in all cases.
 Refer to Appendix C for HELP model run outputs.

2.5 FS CAP COST ESTIMATES

The FS cost estimates for the Agencies' proposed cap contain numerous calculational errors which have resulted in a severe underestimation of the capping costs. The Agencies' cost estimates for the proposed cap have been revised several times without adjusting for appropriate changes to unit costs or quantity estimates, and without making cost allowance for cap components which were not included in the original FS cap design. Errors in the cost estimates include the following:

- The cost for supply and placement of clay is based on a 2-foot thick layer and not 3 feet as presented in the Proposed Plan.
- ii) There are two conflicting unit costs presented for supply and placement of clay. Under the unit costs for "clay cover", the unit cost is 10.00/CY whereas under "multimedia cover", the unit cost is 17.00/CY. It appears that the higher unit cost is intended to apply to a clay having a permeability of less than 1×10^{-7} cm/s. However, the Agencies' cost estimate assumed the lower unit cost.
- iii) The unit cost for topsoil supply and placement is based on a 6-inch thick layer and not one foot as presented in the Proposed Plan.
- iv) The Agencies' cost estimate does not include the cost of supply and placement of the sand drainage layer.
- v) The Agencies' cost estimate for grading of the landfill materials is based on a prorating of the Agencies' previous estimates and is not based on the quantity estimate for grading conducted by the Agencies' contractor.
- vi) The Agencies' unit cost for grading of the landfill materials is too low. The unit cost of \$10.00/CY assumes no stockpiling and minimal clearing and grubbing. These assumptions are not consistent with the double-handling requirements due to existing topography (i.e. physical restrictions imposed by the escarpment) and the clearing requirements

for existing trees within the areal limits of the Agencies' proposed cap. A more appropriate unit cost would be approximately \$18.00/CY.

Table 2.2 provides the corrected cost for the Agencies' proposed cap design consistent with the method of calculation used in the FS using the FS unit costs. Table 2.3 includes additional adjustment for the low unit cost for grading of the landfill materials. Based on corrections for calculational errors only, the Agencies' cap is estimated to cost \$8,248,860. With additional correction for the low unit price for grading landfill materials, the total capital cost would be \$11,395,715. Consequently, the correct capital cost for the Agencies' cap is \$5,255,570 to \$8,402,425 greater than that presented in the Proposed Plan. These costs are significantly greater than the \$2,993,290 presented by the Agencies and clearly show that the Agencies' cap is not cost-effective.

In comparison, the RSSC's proposed cap is estimated to cost \$2,623,390 (refer to Appendix B). This cost is substantially less than the \$8,248,860 to \$11,395,715 estimated for the Agencies' cap. Because the RSSC's proposed design provides improved hydraulic performance and positively addresses each of the NCP evaluation criteria, the RSSC proposed can is very cost-effective compared to the Agencies' proposed design.

In addition, the FS did not conduct an evaluation of O&M costs for the proposed cap. Reference is made in the FS to the use of a percentage of the capital cost as an estimate of O&M costs. However, this percentage is not stated in the FS and cannot be deduced from the O&M costs because of differing percentage values used in the FS. An estimate of O&M costs for the RSSC proposed cap is approximately \$0.5 million. Because the Agencies' cap is unnecessarily larger than the RSSC cap and the design does not include positive measures against erosion, this estimate is likely a lower-bound O&M cost estimate for the Agencies' cap.

Consequently, the Agencies' proposed cap is not cost-effective in terms of capital and O&M costs. In comparison, the RSSC proposed design is cost-effective while being fully protective of public health and the environment.

TABLE 2.2

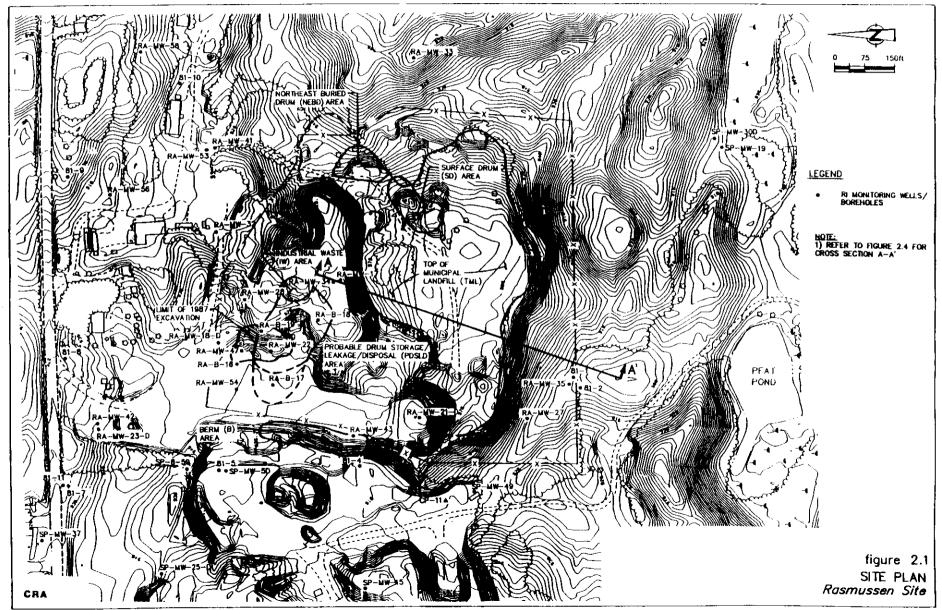
CORRECTED LOWER-BOUND AGENCY CAPITAL COST ESTIMATE

Item	Description	Estimated Quantity	Unit	Unit Cost	Total Cost
1	Grade Waste Material	1 88,390	CY	\$10.00	\$1,883,900
2	Low Permeability Clay (3-foot layer)	76,3 75	SY	17.00	1,298,375
3	Drainage Layer (1-foot layer)	76,3 75	SY	6.03	460,540
4	Topsoil (1-foot layer)	76,3 75	SY	3.82	291,750
5	Surface Drainage	76 ,375	SY	0.21	16,040
	Subtotal				\$3,950,605
6	Mobilization (5%)				197,530
7	Health and Safety (10%)	395,060			
8	Bid & Work Scope (?)%)			1,185,180
	Subtotal				\$5,728,375
9	Permit, Construction & Document (20%)				1,145,675
	Subtotal				\$6,874,050
10	Design (20%)				1, 374,8 10
TOTAL CAPITAL COST					

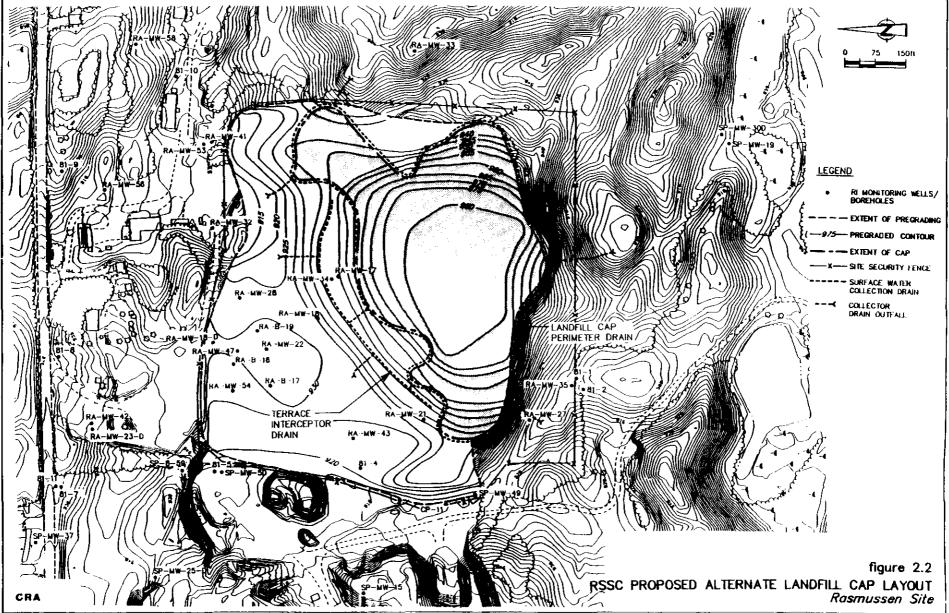
Notes:

1) All quantities and unit prices based on corrected quantity estimates provided by MDNR (done by Warzyn) and quantities/unit prices from FS.

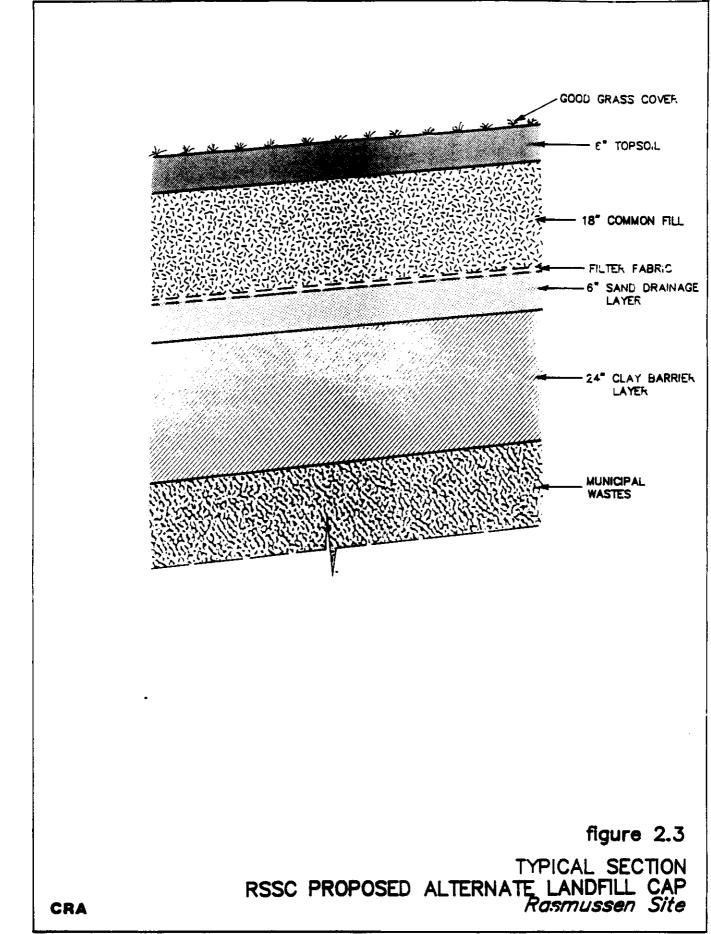
TABLE 2.3

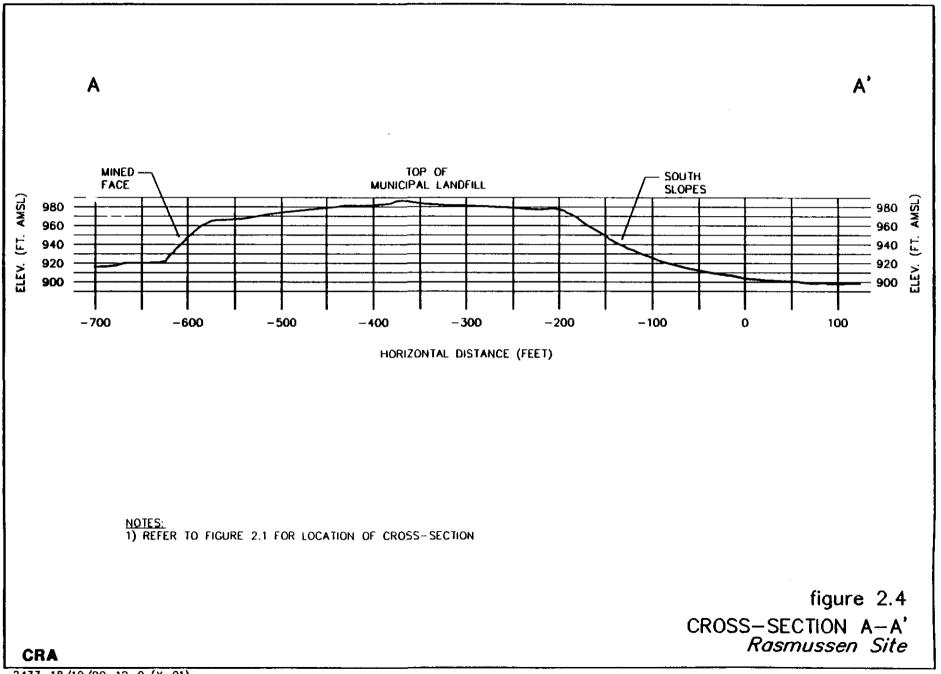

CORRECTED UPPER-BOUND AGENCY CAPITAL COST ESTIMATE

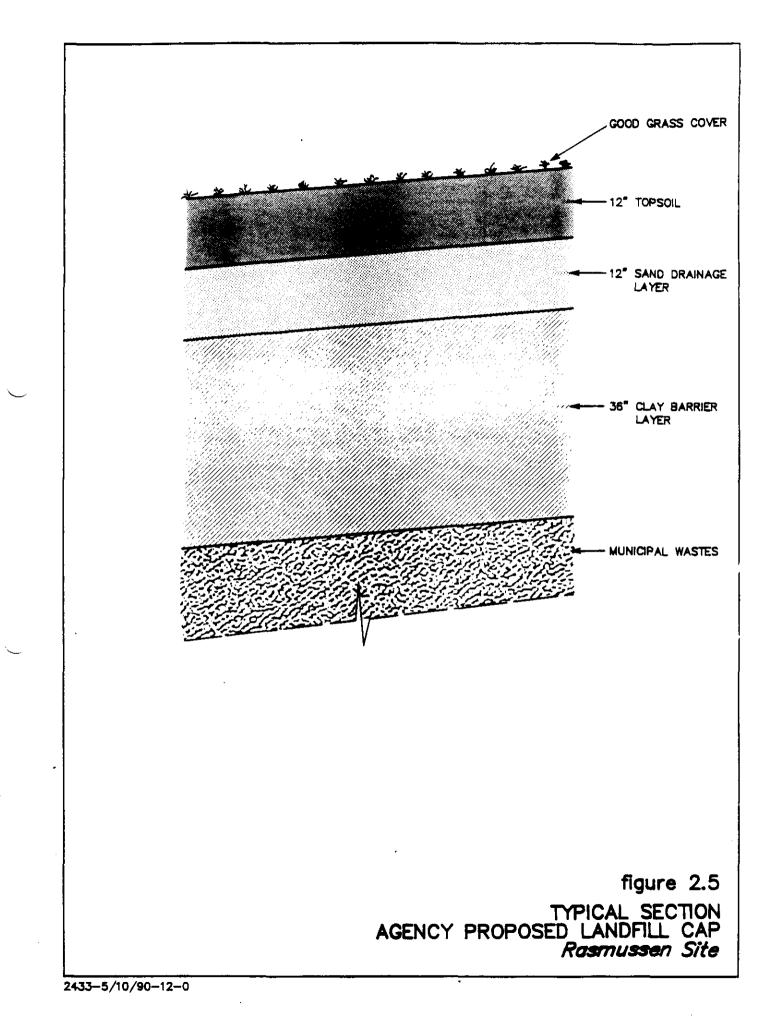
Item	Description	Estimated Quantity	Unit	Unit Cost	Total Cost
1	Grade Waste Material	18 8,390	CY	\$18.00	\$3,391,020
2	Low Permeability Clay (3-foot layer)	76,375	SY	17.00	1,298,375
3	Drainage Layer (1-foot layer)	76,375	SY	6.03	460,540
4	Topsoil (1-foot layer)	76 ,375	SY	3.82	291,750
5	Surface Drainage	76,375	SY	0.21	16,040
	Subtotal				\$5,457,725
6	Mobilization (5%)				272,885
7	Health and Safety (10%)				545,770
8	Bid & Work Scope (30%))			1,637,310
	Subtotal				\$7,913,690
9	Permit, Construction & Document (20%)				1,582,740
	Subtotal				\$9,496,430
10	Design (20%)				1,899,285
TOTA	L CAPITAL COST				\$11,395,715


Notes:

 All quantities and unit prices based on corrected quantity estimates provided by MDNR (done by Warzyn) and quantities/unit prices from FS except that unit prices for Item 1 (grade waste materials) has been increased to account for double-handling costs.


\$


2433-18/10/90-12-0


2433-5/10/90-12-0

2433-5/10/90-12-0

2433-18/10/90-12-0 (X-01)

3.0 GROUNDWATER REMEDY COMMENTS

The RSSC agrees that groundwater remediation at the Rasmussen Site is appropriate. However, the RSSC has numerous concerns regarding the appropriateness of the groundwater remedy presented in the Proposed Plan. These concerns include:

- the method by which groundwater cleanup indicator chemicals were selected;
- the calculation of risks associated with groundwater at the Site and the difference between the cleanup approach presented in the Proposed Plan and that suggested in the MDNR/USEPA risk assessment;
- data and assumptions used by the Agencies for calculating appropriate cleanup criteria and limitations of analytical chemistry in establishing groundwater cleanup levels; and
- the selection of groundwater treatment technologies and the underestimation of costs associated with the groundwater remedy.

The RSSC's evaluation of the Agencies' proposed groundwater cleanup criteria has identified that a number of proposed indicator chemicals are inappropriately listed and should be deleted. The Agencies' proposed indicator chemical list and associated groundwater cleanup levels are shown on Table 3.1. Indicator chemicals which the RSSC believes should be deleted and the basis for the proposed deletion are summarized on Table 3.2. The rationale for deleting these chemicals from the Agencies' proposed groundwater cleanup indicator list are detailed in the following sections.

3.1 SELECTION OF GROUNDWATER CLEANUP INDICATOR CHEMICALS

The Proposed Plan identifies 24 groundwater cleanup indicator chemicals for the Rasmussen Site which include volatile organic compounds (VOCs), base neutral/acid extractable (BNA) compounds, and inorganic compounds. These proposed indicator chemicals and their associated cleanup levels are shown in Table 3.1.

AGENCY PROPOSED GROUNDWATER CLEANUP CRITERIA

Chemical	Agencies' Proposed Cleanup Level (ppb)	Agencies' Basis for Proposed Level	
Volatile Organic Compounds			
acetone	700.0	HLSC	
benzene	1.2	1E-06	
2-butanone	350.0	HLSC	
chlorobenzene	50.0	T&O	
1,1-dichloroethene	1.0	MDL	
1,2-dichloroethene	100.0	MCL (P)	
ethylbenzene	30.0	T & O	
4-methyl-2-pentanone	350.0	HLSC	
methylene chloride	5.0	1E-06	
tetrachloroethene	0.7	1E-06	
toluene	40.0	T & O	
1,1,1-trichloroethane	200.0	MCL	
trichloroethene	3.0	1 E-06	
vinyl chloride	0.5	MDL	
xylenes	20.0	T&O	

Base Neutral/Acid Extractable Compounds

benzyl alcohol	9.0	HLSC
bis(2-ethylhexyl)phthalate	2.0	1 E-06
2-chlorophenol	0.1	T & O
2,4-dimethylphenol	1.0	MDL
isophorone	8.0	1E-06
2-methylphenol	3.0	T&O
4-methylphenol	2.0	Τ&Ο

Inorganic Compounds

cadmium	4.0	HLSC
lead	5.0	HLSC*

Notes:

MDL = Method Detection Limit MCL = Maximum Contaminant Level (P = proposed) 1E-06 = One in One Million Carcinogenic Risk Level T & O = Taste and Odor Threshold HLSC = Human Lifecycle Safe Concentration HLSC* = HLSC or Filtered Background (whichever is higher)

Source:

Proposed Plan, Rasmussen Dump Site, Livingston County, MI dated August 31, 1990

.

INDICATOR CHEMICALS PROPOSED FOR DELETION

Chemical	Basis for Prop osed Deletion	Section Reference
<u>Volatile Organic Compounds</u>		
Acetone	 Common laboratory artifact Not present above Agency proposed cleanup level based on RSSC data 	Section 3.3.1.1 Section 3.3.1.1
2-Butanone	- Not present in groundwater based on RSSC data	Section 3.3.1.1
1,1-Dichloroethene	 Low frequency of detection in RI data 	Section 3.1
	 Risk shown in Risk Assessment based on RI maximum detected values within USEPA acceptable range 	Section 3.2.1
	- Not present in groundwater based on RSSC data	Section 3.3.1.6
1,2-Dichloroethene	 Not present above Agency proposed cleanup level based on RSSC data 	Section 3.3.1.1
4-Methyl-2-pentanone	 Not present above Agency proposed cleanup level based on RSSC data 	Section 3.3.1.1
Methylene chloride	 Common laboratory artifact Not present in groundwater based on RSSC data 	Section 3.3.1.10 Section 3.3.1.10
Tetrachloroethene	- Low frequency of detection in RI data	Section 3.1
	- Risk shown in Risk Assessment based on RI maximum detected values within USEPA acceptable range	Section 3.2.1
	- Not present in groundwater based on RSSC data	Section 3.3.1.12
1,1,1-Trichloroethane	 Not present above Agency proposed cleanup level based on RSSC data 	Section 3.3.1 1

INDICATOR CHEMICALS PROPOSED FOR DELETION

Chemical	Basis for Proposed Deletion	Section Reference
Base Neutral/Acid Extractable Cor	<u>npounds</u>	
Benzyi alcohol	- Low frequency of detection in RI data	Section 3.1
	- Not present in groundwater based on RSSC data	Section 3.3.1.2
Bis(2-ethylhexyl)phthalate	 Common laboratory artifact Risk shown in Risk Assessment based on RI maximum detected values within USEPA acceptable range 	Section 3.3.1.3 Section 3.2.1
2-Chlorophenol	- Low frequency of detection in RI data	Section 3.1
	 Not present in groundwater based on RSSC data 	Section 3.3.1.5
	- Not reported above HLSC level in RI	Section 3.3.1.5
2,4-Dimethylphenol	 Not present above corrected Agency proposed cleanup level (HSLC) based on RSSC data 	Section 3.3.1.7
Isophorone	- Low frequency of detection in RI data	Section 3.1
	 Risk shown in Risk Assessment based on RI maximum detected values within USEPA acceptable range 	Section 3.2.1
	 Not present in groundwater based on RSSC data 	Section 3.3.1.8
2-Methylphenol	- Not present above corrected Agency proposed cleanup level (HLSC) based on RSSC data	Section 3.3.1.9
4-Methyl phenol	- Not present above corrected Agency proposed cleanup level (HSLC) based on RSSC data	Section 3.3.1.9

INDICATOR CHEMICALS PROPOSED FOR DELETION

Chemical	Basis for Proposed Deletion	Section Reference
<u>Inorganics</u>		
Cadmium	- Dissolved form not present above Agency proposed cleanup level based on RSSC data	Section 3.3.1.15
	 Dissolved form not present above corrected Agency proposed cleanup level based on RSSC data Total form not present above 	Section 3.3.1.14 Section 3.3.1.14
	background levels from RI based on RSSC data	

The proposed list of groundwater cleanup indicator chemicals differs significantly from the listing of chemicals identified to be of concern in the Agencies' risk assessment. Of the 24 indicator chemicals listed in the Proposed Plan, only 14 were noted previously in the MDNR/USEPA risk assessment as being "major contributors" to the risks from potential ingestion of the groundwater. Compounds common to both the MDNR/USEPA RA and Proposed Plan listings include acetone; benzene; 2-butanone; chlorobenzene; 1,1-dichloroethene; ethylbenzene; methylene chloride; tetrachloroethene; toluene; trichloroethene; vinyl chloride; xylenes; bis(2-ethylhexyl)phthalate; and cadmium. The selection process for indicator chemicals indicated in the Proposed Plan fails to acknowledge the findings from the Agencies' own risk assessment. To be consistent with the indicator chemical selection process for other sites in Michigan and USEPA Region V, cleanup indicator chemicals should correspond to only those identified by the Agencies' risk assessment as being of concern.

Moreover, the proposed list of indicator chemicals is inappropriate when frequency of detection is taken into consideration. Table 3.3 lists the calculated frequency of detection for the Agencies' proposed indicator chemicals based on data collected during the Agencies' RI and supplemental data from the RSSC's sampling programs from May/June and October of 1990. The calculated frequency of detection for the RI data shown in Table 3.3 was based on the frequency of detection presented in Table 2-5 of the Agencies' risk assessment with appropriate adjustments for errors in the Agencies' calculations. Inspection of the Agencies' RI identified that data from monitoring wells 81-5 and SP-MW-5D were not included in the Agencies' analysis of frequency of detection. These wells apparently were erroneously not included in the analysis because they were located on the adjacent Spiegelberg property even though they were physically placed in the affected Rasmussen groundwater. Appropriate adjustments to include these wells resulted in the addition of eight samples to the total number of RI analyses for calculating the frequency of detection.

Review of Table 3.3 indicates that several of the Agencies' proposed indicator chemicals are inappropriate indicators for the purpose of

(

CONCENTRATIONS AND FREQUENCY OF DETECTION OF PROPOSED GROUNDWATER CLEANUP INDICATOR CHEMICALS

	Remedial Investigation Results(1)		RSSC Supplemental Results(2)		Combined Results	
Chemical	No. of Positive Detections/ No. of Samples	Range of Positive Detections (µg/L)	No. of Positive Detections/ No. of Samples (3)	Range of Positive Detections (µg/L)	No. of Positive Detections/ No. of Samples	Range of Positive Detections (µg/L)
<u>Volatile Organic Compo</u>	mds					
acetone	6/22	110B-26,000B	2/11	5.5* - 6.5*	8/33	5.5* 0 26,000B
benzene	8/22	260J-700	7/11	2.8 - 170	15/33	2.8 - 700
2-butanone	5/22	22J-74,000B	0/11		5/33	22J - 74,000B
chlorobenzene	5/22	1,000-3,700	4/11	320T - 890	9/33	320T - 3,700
1,1-dichloroethene	1/22	2]	0/11		1/33	2J
1,2-dichloroethene	12/22	2J-590J	5/11	4.1T - 51	17/33	2J - 590J
ethylbenzene	5/22	500-2,400	4/11	120T - 680	9/33	120T - 2,400
4-methyl-2-pentanone	9/22	300J-30,000	3/11	53-67E	12/33	53 - 30,000
methylene chloride	6/22	1J-1,100BJ	0/11		6/33	1] - 1,100BJ
tetrachloroethene	1/22	2J	0/11		1/33	2]
toluene	5/22	18,000 B-71,000	2/11	30 - 900T	7/33	30 - 71,000
1,1,1-trichloroethane	8/22	2J-500	5/11	5.7 - 75	13/33	2J - 500
trichloroethene	5/22	8-500J	1/11	2.9	6/33	2.9 - 500J
vinyl chloride	2/22	1 J-96 J	4/11	6.6*-300ET	6/33	1J - 300ET
xylenes	5/22	3,700-11,000	4/11	460T - 4,100J	9/33	460T - 11,000

CONCENTRATIONS AND FREQUENCY OF DETECTION OF PROPOSED GROUNDWATTR CLEANUP INDICATOR CHEMICALS

	Remedial Investig	ation Results(1)	RSSC Supplemen	tal Results(2)	Combined	Results
Chemical	No. of Positive Detections/ No. of Samples	Range of Positive Detections (µg/L)	No. of Positive Detections/ No. of Samples (3)	Range of Positive Detections (µg/L)	No. of Positive Detections/ No. of Samples	Range of Positive Detections (µg/L)
Base Neutral/Acid Extracta	ble Compounds	-				
benzyl alcohol	2/22	2.2J-12	0/11	-	2/33	2.2J - 12
bis(2-ethylhexyl)phthalate	2/22	12B-14	5/11	9.5* - 64	7/33	9.5* - 64
2-chlorophenol	2/22	12-17	.0/11		2/33	12 - 17
2,4-dimethylphenol	2/22	14-27	1/11	50	3/33	14 - 27
isophorone	3/22	91 J-44 0	0/11		3/33	91J - 440
2-methylphenol	5/22	260-1,600	1/11	85	6/33	85 - 1,600
4-methylphenol	4/22	70-280	1/11	66T	5/33	66T - 280
Inorganic Compounds						
cadmium (total)	4/8	5-29	8/9	2.2 - 60	12/17	2.2 - 60
lead (total)	6/8	7-77 9	9/9	5.0 - 1,200	15/17	5.0 - 1,200
cadmium (dissolved)			3/9	0.60 - 1.50	3/9	0.60 - 1.50
lead (dissolved)	•-		6/9	3.8*-9.7	6/9	3.8* - 9.7

Notes:

(1) Refer to Table 2-5, Final Risk Assessment. Values shown in Table 2-5 have been amended to include samples collected from wells 81-5 and SP-MW-5D.

(2) Based on data from RSSC supplemental sampling program conducted in July/August and October of 1990 for the following wells:

RA-MW-18D, SP-MW-5D, 81-5, RA-MW-54, RA-MW-22, RA-MW-28 and RA-MW-34.

(3) Sample data qualified by laboratory artifacts are not included in number of positive detections.

groundwater cleanup. USEPA guidance indicates that 5 percent is an appropriate level for screening out chemicals on the basis of frequency of detection.¹⁶ Following this guidance, proposed indicator chemicals which should be eliminated include the following:

- The compound 1,1-dichloroethene was detected only once during the combined RI and RSSC sampling programs. The calculated low frequency of detection (1/22 based on RI data; 1/33 based on combined data) combined with the fact that this singular detection is an estimated value (flagged with a "J") does not qualify this compound to be an appropriate indicator chemical for the Rasmussen Site. In addition, the RSSC's supplemental sampling data from May/June 1990 and October 1990 confirmed the absence of this chemical.
- Tetrachloroethene was detected only once during the combined sampling programs. The calculated low frequency of detection (1/22 based on RI data; 1/33 based on combined data) is insufficient for this compound to be listed as an indicator chemical. In addition, the RSSC's supplemental sampling programs from May/June 1990 and October 1990 did not detect the presence of this chemical.
- Benzyl alcohol was detected twice during the RI but its presence could not be confirmed by the RSSC's supplemental sampling programs. Based on this low frequency of detection (2/22 based on RI data; 2/33 based on combined data) and low reported concentrations, benzyl alcohol is inappropriate as a groundwater cleanup indicator chemical.
- The compound 2-chlorophenol was detected only twice during the RI and was not confirmed by the RSSC's supplemental sampling programs.
 Based on this low frequency of positive detections (2/22 based on RI data; 2/33 based on combined data) and the low concentrations of this compound which were reported, 2-chlorophenol is inappropriate as a groundwater cleanup indicator chemical.

16

Refer to "Risk Assessment Guidance for Superfund - Human Health Evaluation Manual -Part A - Interim Final" OSWER Directive 9285.7-01a, dated September 29, 1989.

• Isophorone was detected three times during the RI but its presence could not be confirmed by the RSSC's Supplemental Sampling programs. Based on this low frequency of detection (3/22 based on RI data; 3/33 based on combined data), isophorone is inappropriate as a groundwater cleanup indicator chemical.

In summary, based on the above evaluation of frequency of detection alone, several chemicals identified in the RI have been inappropriately selected as proposed groundwater cleanup indicator chemicals in the Proposed Plan. Based on a thorough review of the available data, chemicals which should be deleted on a frequency of detection basis include:

- 1,1-dichloroethene;
- tetrachloroethene;
- benzyl alcohol;
- 2-chlorophenol; and
- isophorone.

In addition, there are other reasons presented in the parameter-byparameter analysis contained in Section 3.3 which further support the deletion of these chemicals from the proposed indicator chemical list.

3.2 GROUNDWATER RISKS AND CLEANUP APPROACH

3.2.1 Calculation of Groundwater Risks

Review of the Agencies' Proposed Plan has identified that the potential carcinogenic risks presented in Table 1 of the Proposed Plan are inaccurate and are in complete disagreement with the Agencies' own calculations presented in the MDNR/USEPA risk assessment.

During the formal public meeting held on September 13, 1990 by the Agencies to present the Proposed Plan, several members of the public expressed significant concern regarding the perceived level of risk associated with ingestion of groundwater from the Rasmussen Site. These concerns were based on the combined carcinogenic risk of 1.72E-02 presented in Table 1 of the Proposed Plan. This risk estimate should be clarified in light of the unrealistic worst case exposure scenario that this risk estimate represents.

The potential carcinogenic risk estimates shown for each chemical in Table 1 of the Proposed Plan effectively assume that a domestic or community supply well would be installed directly into the affected groundwater at the location of maximum chemical concentrations beneath the Rasmussen Site. The exposure scenario assumes that an individual would drink 2 liters of this groundwater daily for 70 years. This is clearly an unrealistic situation because this would require that the hypothetical supply well be deliberately relocated over time to coincide with the location of peak concentrations as the affected zone migrates with the regional groundwater flow. The exposure scenario further assumes that chemical concentrations are not attenuated over time and distance as the groundwater migrates. Of even greater significance, this exposure scenario effectively assumes that individuals would have access to the Rasmussen Site, notwithstanding the fact that the Site is secured by fencing and that groundwater development for community public water supplies is prohibited by Michigan's Safe Drinking Water Act.¹⁷

Although the Agencies' risk assessment used overly conservative exposure assumptions in calculating the potential risks to the public from ingestion of the groundwater, if left unremediated, the exposure assumptions in the risk assessment are more representative of the potential risk to the public than the estimates presented in the Proposed Plan.

The Proposed Plan presents a combined groundwater risk of 1.72E-02. By comparison, the Agencies' own calculations from their risk assessment estimate the potential risk to range from 1.75E-03 to 5.36E-03 based on maximum chemical concentrations and from 1.62E-04 to 4.93E-04 based on average chemical concentrations. For the maximum concentration case, the MDNR/USEPA total risk estimates are lower than that presented in the Proposed Plan by approximately one-half to one complete order of

¹⁷ Michigan's Safe Drinking Water Act (Act 299) Administrative Rules prohibit the installation of wells for public water supplies within 2,000 feet of large scale waste disposal sites or sanitary landfills. Refer to R325.10812.

magnitude. The difference is potentially as large as two orders of magnitude lower for the estimated total risk based on average chemical concentrations.

The RSSC recommends that the Agencies present the risk results from the Agencies' risk assessment shown on Table 3.4 to the public and clarify the unrealistic nature of the risk numbers presented in the Proposed Plan.

Inspection of Table 3.4 also indicates that several proposed indicator chemicals are inappropriately listed as such based on the level of risk associated with potential exposure to groundwater. USEPA typically uses maximum risk exposure scenarios to determine if remediation is warranted. Following this approach, several proposed indicator chemicals would have associated maximum risks within the acceptable risk range of 10⁻⁴ to 10⁻⁶ set forth in the NCP. Based on MDNR/USEPA's own risk calculations for maximum exposure scenarios shown on Table 3.4 (risk calculated with maximum chemical concentrations), indicator chemicals which should be eliminated on this basis include:

- bis(2-ethylhexyl)phthalate;
- 1,1-dichloroethene;
- tetrachloroethene; and
- isophorone.¹⁸

18

3.2.2 <u>Cleanup Approach</u>

The approach adopted in the Agencies' risk assessment to quantify Site-related risks and the approach to establishing groundwater cleanup criteria implicit in the Agencies' risk assessment (RA) differ significantly from the methodology and approach taken in the Proposed Plan for determining appropriate cleanup criteria.

The risk assessment procedures used in the Agencies' RA were based on the application of a Site-specific analysis which attempted to take into

Although not calculated in the MDNR/USEPA's risk assessment, isophorone should also be eliminated based on the acceptable risk presented in the Proposed Plan.

AGENCY ESTIMATES OF CARCINOGENIC RISK

Chemical	Risk Presented In Proposed Plan - Table 1	' Risk Range Calculated with Maximum Chemical Concentrations	Risk Range Calculated with Average Chemical Concentrations
benzene	5.8E-04	1.96E-04 to 5.98E-04	4.51E-05 to 1.37E-04
bis(2-ethylhexyl)phthalate	4.8E-06	9.6E-07 to 2.93E-06	7.2E-08 to 2.2E-07
1,1-dichloroethene	1.0E-02	1.59E-05 to 4.84E-05	7.94E-07 to 2.42E-06
isophorone	4.1E-05	not calculated in RA	not calculated in RA
methylene chloride	2.2E-04	1.03E-04 to 3.14E-04	8.99E-06 to 2.74E-05
tetrachloroethene	2.9E-06	6.03E-07 to 1.84E-06	3.01E-08 to 9.19E-08
trichloroethene	1.5E-04	5.28E-05 to 1.61E-04	5.7E-06 to 1.74E-05
vinyl chloride	6.2E-03	1.38E-03 to 4.23E-03	1.01E-04 to 3.08E-04
Total Risk	1.72E-02	1.75E-03 to 5.36E-03	1.62E-04 to 4.93E-04

MDNR/USEPA Risk Assessment(1)

Notes:

(1) From Table B-14 "Addendum and Errata Pages to Final Risk Assessment, Spiegelberg and Rasmussen Dump Sites, Green Oak Township, Livingston, MI" MDNR/USEPA November 1989 consideration various relevant factors at the Rasmussen Site. Section 4.0 of the Agencies' RA attempted to establish appropriate groundwater cleanup levels by calculating acceptable risk-based groundwater concentrations at a hypothetical receptor, located at Spicer Road, and extrapolating back to the present location of the affected zone by using groundwater modeling.

By comparison, the proposed groundwater cleanup levels presented in the Proposed Plan are based on a misapplication of the newly promulgated Michigan Act 307 Rules (hereinafter referred to as 307 Rules).

Three groundwater cleanup classifications, designated as Type A, Type B, and Type C, are established within the 307 Rules. Type A groundwater cleanup standards would require groundwater to be cleaned up to background levels or to analytical method detection limits as defined in the rules. Type B groundwater cleanup standards are based on an excess 1 X 10⁻⁶ incremental lifetime carcinogenic risk level for carcinogens and the Human Life Cycle Safe Concentration (HLSC) for noncarcinogens. The 307 Rules allow for the groundwater cleanup criteria established by the HLSC to be further adjusted to a Federal Secondary Maximum Contaminant Level (SMCL) or to concentrations represented by "the concentration which is documented as the taste or odor threshold or the concentration below which appearance or other aesthetic characteristics are not adversely aifected". Type C groundwater cleanup standards require site-specific conditions to be addressed, thereby establishing groundwater cleanup standards through a site-specific risk assessment.

By failing to consider a Type C cleanup classification, the Agencies' Proposed Plan makes no allowance for Site-specific conditions and disregards issues of technical achievability, limitations of analytical chemistry, reasonable and foreseeable use of the Site, and cost-effectiveness. Current practice at Federal Superfund Sites, including sites located within USEPA Region V, typically follows the Type C approach. It should be recognized that the Agencies' own risk assessment for the Rasmussen Site followed the Type C approach. Even though the Agencies' risk assessment was issued prior to the issue of the final 307 Rules, the Type C approach implicit in the Agencies' risk assessment remains valid because groundwater cleanup levels determined from a Type C analysis are protective of human health and the environment. The Agencies' insistence on using only Type A and Type B groundwater cleanup levels, as presented in the Proposed Plan, fails to recognize the application of Type C groundwater cleanup levels where appropriate. Because Superfund risk assessment methodology uses the 307 Rules Type C analysis, the erroneous application of the 307 Rules effectively invalidates the entire Superfund risk assessment process.¹⁹

The RSSC previously submitted a document entitled "Proposed Groundwater Cleanup Levels, Rasmussen Site, Livingston County, MI" to MDNR/USEPA for their consideration in establishing appropriate groundwater cleanup criteria at the Rasmussen Site. This analysis was based on the framework established by the 307 Rules for determining groundwater cleanup levels. This analysis presented a combination of cleanup criteria based on the Type A, Type B, and Type C cleanup classifications. Where it was deemed to be technically achievable and appropriate, proposed groundwater cleanup levels were based on achieving a Type B cleanup criteria. Based on a detailed analysis of Site-specific factors, however, it was determined that Type B cleanup levels were neither achievable nor appropriate for benzene and vinyl chloride. The RSSC concluded that appropriate Type C cleanup levels for these two compounds were $5 \mu g/L$ and $2 \mu g/L$, respectively, based on the Type C analysis which produced risk estimates for these two compounds which fell within the acceptable risk range stated in the NCP.

The RSSC reiterates that a combination of cleanup classifications is appropriate for the Rasmussen Site and is warranted for specific chemicals on issues of technical achievability, limitations of analytical chemistry, reasonable and foreseeable land and resource use, and cost-effectiveness. In addition, such an approach would be consistent with both Federal guidance and the requirements of the 307 Rules.

¹⁹ Refer to "Misapplication of the Act 307 Rules and Superfund Reauthorization Act to the Decision Process at the Rasmussen Site" prepared by Dickinson, Wright, Moon, Van Dusen and Freeman dated October 31, 1990.

3.3 DETAILED EVALUATION OF AGENCY PROPOSED CLEANUP CRITERIA

The RSSC has previously conducted a detailed parameter-by-parameter evaluation of groundwater cleanup criteria within the framework of the 307 Rules. This evaluation presented in the document entitled "Proposed Groundwater Cleanup Levels, Rasmussen Site" was submitted to MDNR/USEPA for their consideration in developing appropriate groundwater cleanup criteria for the Rasmussen Site. The conclusions of that analysis and analysis of additional parameters following the 307 Rules to correct for inaccurate calculations and assumptions in the Proposed Plan is presented below. Analytical results from the RSSC's October 1990 sampling event which support this analysis are presented in Appendix D. In addition, the previous evaluation contained a detailed discussion of achievable analytical detection limits. The RSSC reiterates that several cleanup criteria proposed by the Agencies are not analytically achievable.

3.3.1 Calculation of Cleanup Criteria

3.3.1.1 Acetone, 2-Butanone, 1,2-Dichloroethene, Ethylbenzene, 4-Methyl-2-pentanone, Toluene, 1.1,1-Trichloroethane and Xylenes

The proposed Type B cleanup levels for these parameters have been calculated correctly according to the 307 Rules. However, only three of these parameters are present above cleanup levels in the groundwater.

The RSSC supplemental sampling program conducted in May/June 1990 identified that several of these chemicals are either present in the groundwater at concentrations below their appropriate Type B cleanup levels or are present as a result of laboratory introduced sample contamination. In particular, compounds including acetone, 2-butanone, 1,2dichloroethene and 1,1,1-trichloroethane were identified as being below their respective Type B cleanup levels. The RSSC sampling program in October 1990 has verified that acetone, 1,2-dichloroethene, 4-methyl-2-pentanone and 1,1,1-trichloroethane are below their respective Type B cleanup levels. In addition, 2-butanone was not detected during either of the RSSC's two sampling events and acetone detected in the second sampling round was associated with laboratory introduced artifacts in each instance. Maximum concentrations detected by the RSSC's sampling events include:

Compound	Maximum Detected Concentration (μg/L)	Proposed Cleanup Level (μg/L)
acetone	6.5	700
2-butanone	not detected	350
1,2-dichloroethene	51	1000
4-methyl-2-pentanone	67	350
1,1,1-trichloroethane	75	200

These analytical results confirm that the RI characterization of the groundwater is incorrect and that setting cleanup levels for these parameters is inappropriate. These results are significant because all wells identified to be in the affected groundwater zone were sampled by the RSSC. In addition, well RA-MW-18D was sampled during both RSSC sampling rounds to verify that data would be reproducible between sampling rounds. The results from both sampling rounds for this well show good reproducibility in terms of detected analytes and concentrations.

Consequently, the RSSC data provides an accurate representation of the Rasmussen groundwater.

Based on these findings, chemicals which should be deleted from the cleanup indicator list include:

- acetone;
- 2-butanone;
- 1,2-dichloroethene;
- 4-methyl-2-pentanone; and
- 1,1,1-trichloroethane.

Only ethylbenzene, toluene, and xylenes should be retained as indicator chemicals.

3.3.1.2 Benzyl Alcohol

As noted previously, benzyl alcohol should be deleted from the indicator chemical list because its presence could not be confirmed by the RSSC's sampling events and based on low frequency of detection.

Even if benzyl alcohol were present, the Agencies have inappropriately selected it as an indicator chemical. The Type B cleanup level proposed by the Agencies for benzyl alcohol has been incorrectly calculated. Review of the Agencies' calculations has identified that the proposed HLSC is derived from a MgT value based on a LD_{50} value reported by a reference document from 1984. For comparison, USEPA has published a chronic RfD of 3E-1 mg/kg/day (Health Effects Assessment Summary Tables, Fourth Quarter, 1989 (HEAST)). Based on the USEPA published RfD, the Type B HLSC concentration for benzyl alcohol is 2,100 µg/L. Based on this calculated value for the HLSC and the low concentrations of benzyl alcohol identified at the Rasmussen Site from the RI, benzyl alcohol should be deleted from the cleanup indicator list, even if present in the groundwater.

3.3.1.3 Bis(2-ethylhexyl)phthalate

As noted previously, bis(2-ethylhexyl)phthalate should be deleted from the indicator chemical list because its risk in the Agencies' RA based on RI maximum detected values is within the USEPA's acceptable range.

Bis(2-ethylhexyl)phthalate also should be deleted as an indicator chemical because the proposed Type B cleanup level for bis(2-ethylhexyl)phthalate is at a concentration below that which can be distinguished from other potential sources of phthalates in typical analyses. Bis(2-ethylhexyl)phthalate is a common sample contaminant attributable to field and/or sample handling procedures (i.e. contact with sample gloves, sample containers) and for the purpose of environmental analyses is considered ubiquitous at low levels. The Agency for Toxic Substances and Disease Registry (ATSDR) has noted that "contamination of laboratory apparatus and solvents with DEHP is very common, since it is a component of many plastic and rubber products and is ubiquitous in the environment".²⁰ Therefore, for the purpose of cleanup at the Rasmussen Site, bis(2-ethylhexyl)phthalate should not be an indicator chemical. This chemical should be deleted from the cleanup indicator list.

3.3.1.4 Chlorobenzene

The RSSC has previously proposed a Type B cleanup level for chlorobenzene of 100 μ g/L. This level was selected using the 307 Rules and was based on USEPA's final lifetime Health Advisory. The Agencies' proposed Type B cleanup level is based on a taste and odor threshold reported in a paper by Amoore and Hautala²¹. However, there is a published value of 100 μ g/L for the taste and odor threshold reported in Verschueren²² which the Agencies have also used as a reference source for other parameters in developing cleanup levels for the Rasmusson Site. The 307 Rules do not specify the use of the lowest published taste and odor value where multiple and conflicting values are available because this would represent an arbitrary application of the 307 Rules. Therefore, the Agencies' proposed Type B criteria should be revised to 100 μ g/L consistent with USEPA's final lifetime Health Advisory.

²⁰ Draft Toxicological Profile for Di(2-Ethylhexyl)Phthalate, ATSDR, December 1989.

²¹ Odor as an Aid to Chemical Safety: Odor Thresholds Compared With Threshold Limit Values and Volatilities for 214 Industrial Chemicals in Air and Water Dilution; John A. Amoore and Earl Hautala; Journal of Applied Toxicology, Vol. 3, No. 6, 1983.

Handbook of Environmental Data on Organic Chemicals, 2nd Edition, K. Verschueren, Van Nostrand Reinhold Company, 1983.

3.3.1.5 <u>2-Chlorophenol</u>

As noted previously, 2-chlorophenol should be deleted from the list of indicator chemicals because it has not been detected in either of the RSSC's two supplemental sampling events and has a low frequency of detection.

Even if 2-chlorophenol were present, the Agencies have selected an inappropriate cleanup level. The Agencies have evaluated Type B criteria for this compound and identified two alternate types of Type B levels. Consistent with a published RfD, the Agencies have calculated an HLSC of 40 μ g/L. The Agencies have also identified a range of taste and odor thresholds published in Verschueren. The odor threshold is cited as being 0.18 μ g/L whereas the taste threshold is cited as ranging from 0.1 μ g/L to 6 μ g/L. The Agencies have elected to select the lowest cited value as proposed cleanup criteria. This method of selecting cleanup criteria does not have a sound scientific basis and is arbitrary in nature. In particular, for 2-chlorophenol, the proposed cleanup level of 0.1 μ g/L appears to be related to a reported case of tainting of fish which is not appropriate for the Rasmussen Site. In addition, the proposed cleanup level of 0.1 μ g/L is below measurable analytical method detection limits.

As stated above, no cleanup level is required for 2-chlorophenol because it is not present in groundwater. Even if present, based on the conflicting range of reported taste and odor values, cleanup levels should be set at 40 μ g/L consistent with the HLSC which is at a level that is analytically achievable. Because 2-chlorophenol, if present, is below this cleanup level based on the RI data, it should be deleted from the list of indicator chemicals.

3.3.1.6 <u>1,1-Dichloroethene</u>

As noted previously, 1,1-dichloroethene should be deleted from the cleanup indicator list because it has not been detected during the RSSC's sampling events and based on low frequency of detection and the acceptable risk determined by the Agencies' risk assessment.

Even if 1,1-dichloroethene were present, the Agencies proposed cleanup level has been established inappropriately. The Type B cleanup level proposed by the Agencies for 1,1-dichloroethene is based on carcinogenicity without taking other pertinent factors into consideration. USEPA has listed 1,1-dichloroethene as a Class C carcinogen indicating that carcinogenic effect in humans is suspected based on animal studies only and not based on evidence of carcinogenicity in humans. Typically, USEPA establishes the Maximum Contaminant Level Goal (MCLG) under the Federal Safe Drinking Water Act (SDWA) as zero for known or suspected human carcinogens. However, for 1,1-dichloroethene, USEPA has set both the MCL and MCLG at a level of $7 \mu g/L$. USEPA's reason for establishing this level is that evidence of carcinogenicity is based on inhalation exposure and not oral exposure (refer to IRIS data file for 1,1-dichloroethene). As a result, USEPA's MCLG was set at 20% of the RfD similar to the 307 Rules HLSC. Consequently, to be consistent with the SDWA MCL and MCLG, the appropriate level of cleanup for 1,1-dichloroethene should be $7 \mu g/L$ if this chemical is present in groundwater. This cleanup level is both technically feasible and analytically detectable.

3.3.1.7 2,4-Dimethylpnenol

The Agencies have incorrectly selected 2,4-dimethylphenol as a groundwater cleanup indicator based on the Agencies' evaluation of the 307 Rules. The Agencies cite 400 μ g/L and 500 μ g/L as the respective odor and taste thresholds in their evaluation based on USEPA's Ambient Water Quality Criteria Document for 2,4-dimethylphenol. However, the Agencies have arbitrarily elected to use a lower cleanup level by making the assumption that "insufficient toxicity data precludes the use of aesthetic data. There is no way to relate aesthetic data to verify that they (i.e. the numbers) are protective of groundwater and human health. Therefore, the method detection limit (1.0 ppb) will be the established cleanup level."²³

²³ Refer to MDNR supporting calculations for selection of groundwater cleanup levels.

Such an approach is arbitrary and does not follow sound toxicologic practice in extrapolating dose-response relationships between similar chemicals. Furthermore, this method of selecting cleanup levels is contrary to the 307 Rules.

Discussions with USEPA's RfD Workgroup for 2,4-dimethylphenol have identified that the RfD Workgroup is presently evaluating a draft RfD for 2,4-dimethylphenol. Based on this draft RfD of 2E-2 mg/kg/day, the HLSC calculated in accordance with the 307 Rules would be 140 μ g/L. In comparison, the Federal Standard which would be set at the Rfd level would be 700 μ g/L. The draft HLSC of 140 μ g/L should be used as a cleanup criteria instead of the proposed 1 μ g/L which is arbitrary and has no basis in sound toxicologic practice. However, maximum concentrations of 2,4-dimethylphenol identified during the RI and the RSSC's sampling events all have been well below 140 μ g/L. Consequently, 2,4-dimethylphenol is present below appropriate cleanup levels and should be deleted from the cleanup indicator list.

3.3.1.8 Isophorone

As noted previously, isophorone should be deleted from the list of indicator chemicals because it was not detected during the RSSC's sampling events and based on the low frequency of detection and the acceptable level of risk associated with this chemical shown in the Proposed Plan (which is based on unrealistic assumptions). While the 307 Rules cleanup level for isophorone has been calculated correctly by the Agencies, even if present, isophorone would be removed as a result of cleanup for other chemicals.

3.3.1.9 <u>2-Methylphenol and 4-Methylphenol</u>

The Agencies' proposed cleanup criteria for 2-methylphenol and 4-methylphenol are based on the Agencies' interpretation of appropriate taste and odor criteria under Rule 709(2)(d) of the 307 Rules. This rule requires that "a taste or odor threshold concentration or a concentration adversely affecting appearance shall be determined according to methods approved by the Unites States EPA". For these two chemicals, the Agencies have elected to set cleanup criteria based on the lowest taste and odor value reported in the literature. The Agencies cite $3 \mu g/L$ and $2 \mu g/L$ as the taste thresholds reported in Verschueren, respectively. However, this reference also cites other threshold values. For 2-methylphenol, cited values include odor threshold values of 90, 260, 650 and 1400 $\mu g/L$. For 4-methylphenol, cited values include odor thresholds of 55 and 200 $\mu g/L$. Selection of taste and odor threshold values by selecting the lowest reported value is inappropriate and arbitrary. By analogy, selection of health-based criteria in this same manner would result in the selection of the lowest value reported for the most sensitive individual regardless of statistical distribution of values. This approach is inappropriate for health-based criteria and thus should also be inappropriate for aesthetic criteria.

The Agencies have identified the appropriate health-based HLSC for 2-methylphenol and 4-methylphenol to be $350 \mu g/L$ for both compounds. The HLSC should be used as a cleanup criteria for these two chemicals instead of taste and odor values for which there are multiple and conflicting values and which have no statistical justification. The reported groundwater cor.centrations for 4-methylphenol and 2-methylphenol based on the RSSC's supplemental data are all less than the HLSC. Based on these findings it is appropriate to delete these chemicals from the cleanup indicator list. Cleanup of these two chemicals, would occur as a result of cleanup for other chemicals.

3.3.1.10 Methylene Chloride

The Agencies have listed methylene chloride as a groundwater cleanup indicator chemical based on their assumption that the positive detections reported in the RI are not laboratory artifacts. However, the RSSC's two supplemental sampling events have not detected the presence of methylene chloride in groundwater aside from instances which can be attributed to laboratory-introduced contamination. These reported concentrations are significantly lower than those reported in the RI and at levels indicative of laboratory artifacts. The analytical data collected during the RI were previously reviewed to determine the validity of the data and subsequent usefulness for characterizing the groundwater quality at the Spiegelberg and Rasmussen Sites. Due to the method of data reporting in the RI, where only positive detections were reported, it was necessary to conduct an independent Quality Assurance/Quality Control (QA/QC) review of the documentation presented in the original Organic Traffic Reports for each sample. In addition to the RI data review, analytical results reported by the MDNR and S.S. Papadopulos, for split samples collected in March 1987 were reviewed and compared.

One of the distinct problems observed with the analytical data for groundwater samples collected during the RI was the prevalence of methylene chloride in almost all types of quality control blank analyses, including laboratory and field rinsate blanks. The methylene chloride concentrations reported for QA/QC samples from the RI are shown on Table 3.5. Although not uncommon, the concentrations of methylene chloride in both laboratory and field blanks were on many occasions equivalent or greater than those observed in the actual groundwater samples.

Moreover, the Agencies' proposed groundwater cleanup level for methylene chloride does not consider the fact that USEPA data validation protocols outlined in the Contract Laboratory Program (CLP Statement of Work dated 2/88, Section E) consider $25 \mu g/L$ of methylene chloride to be an acceptable level of laboratory-introduced contamination in laboratory blanks. Comparison of this "allowable" level to the proposed cleanup level for methylene chloride clearly indicates that determining compliance at the Agencies' proposed level would be difficult if not impossible due to laboratory artifacts. Table 3.5 also shows the levels below which groundwater concentrations are qualified as non-detect based on USEPA data validation protocols. These results further support the finding that methylene chloride would be difficult to quantify if present.

Based on these concerns regarding the ability to demonstrate compliance at the Agencies' proposed levels due to laboratory artifacts, and the absence of methylene chloride in the RSSC's supplemental sampling

41

COMPARISON OF LABORATORY BLANK SAMPLES AGAINST GROUNDWATER SAMPLE CONCENTRATIONS RASMUSSEN SITE

		RI Results		
RI Groundwater Sample ID	Compound Detected in Laboratory Blank	Groundwater Sample Concentratione	Associated Laboratory Blank Concentrations	Level Below Which Groundwater Concentrations are Qualified as Non Detect (1)
		(µg/L)	(µg/L)	(µg/L)
OBG-2	Methylene chloride	7	3	30
OBG-3	Methylene chloride	15	3	30
RA-GW-086	Methylene chloride	9	9	90
	Acetone	16	24	240
	2-Butanone	4	5	50
RA-GW-089	Methylene chloride	33	9	90
	Acetone	43	24	240
SP-GW-000	Methylene chloride	7	9	90
	Acetone	13	24	240
	2-Butanone	8	5	50
SP-GW-091	Methylene chloride	7	9	90
	Acetone	9	24	240
	2-Butanone	4	5	50

Note:

.

(1) Concentration equal to ten times laboratory blank concentration.

events, other than for artifactual levels, this chemical should be deleted from the list of indicator chemicals.

3.3.1.11 Benzene and Vinyl Chloride

The RSSC reiterates that the Agencies' proposed Type B cleanup levels for benzene and vinyl chloride are inappropriate. The RSSC's previous analysis of supporting factors demonstrated that Type C cleanup levels for benzene and vinyl chloride were more appropriate than Type B levels for groundwater remediation at the Rasmussen Site. Factors which were found to weigh significantly in favor of Type C criteria for these two parameters included:

- technical limitations imposed by analytical chemistry constraints which will result in an inability to monitor performance and determine compliance at low Type B cleanup levels,
- technical limitations imposed by remedial technologies which will preclude the attainment of low Type B cleanup levels, and
- lack of cost-effectiveness associated with attaining Type B levels which
 results in a disproportionate incremental cost compared to Type C levels
 while achieving only minimal benefit from reduction of risks below
 Type C levels which are protective of human health and the
 environment.

The RSSC's previous analysis of factors enumerated in Rule 717 supported the conclusion that Type C levels were more appropriate than Type B levels for these two parameters. Based on the previous evaluation of groundwater cleanup levels, Type C groundwater cleanup levels appropriate for the groundwater cleanup at the Rasmussen Site are:

<u>Chemical</u>	<u>Cleanup Level (µg/L)</u>		
benzene	5		
vinyl chloride	2		

These groundwater cleanup levels represent peak concentrations applied at the Rasmussen well following shut-down of the proposed groundwater extraction system. Average concentrations at the Rasmussen well would be lower than the above cleanup concentrations.

3.3.1.12 Tetrachloroethene

As noted previously, tetrachloroethene should be deleted from the indicator chemical list because it was not encountered during either of the RSSC's two supplemental sampling events and based on low frequency of detection. In addition, the Agencies' calculations presented in the risk assessment have shown that the risk associated with the singular detection of tetrachloroethene do not warrant cleanup for this chemical, even under the conservative risk assumptions used in the RA.

Even if tetrachloroethene were present, the Type B cleanup level approach selected by the Agencies for cleanup of tetrachloroethene is inappropriate. The Type B level for tetrachloroethene is at a concentration where analysis of Type C factors, such as that previously conducted for benzene and vinyl chloride, is relevant and would support a Type C cleanup level analysis for this compound. USEPA has proposed a MCL for tetrachloroethene of $5 \mu g/L$ which is considered protective of the public health and welfare for community water supply systems. In lieu of a Type C analysis, the cleanup level for tetrachloroethene, if present, should be revised to the MCL level which is analytically achievable and technically feasible.

3.3.1.13 Trichloroethene

The Agencies have proposed a Type B cleanup criteria of $3 \mu g/L$ for trichloroethene. The RSSC agrees that it is appropriate to set cleanup criteria for trichloroethene. However, a more appropriate cleanup level is $5 \mu g/L$ which would be consistent with the Federal MCL for trichloroethene.

The Agencies have selected trichloroethene as a cleanup indicator chemical based on the assumption that this chemical is present in the groundwater beneath the PDSLD/IW Areas. The RSSC's two supplemental sampling programs have confirmed that trichloroethene is present in this groundwater zone, but at concentrations below the Agencies' proposed cleanup criteria. Consequently, trichloroethene is not an appropriate cleanup indicator for cleanup of the groundwater zone beneath the PDSLD/IW Areas.

However, review of the RI data and the RSSC's supplemental sampling data has confirmed that trichloroethene is present in groundwater below the south slopes in the vicinity of monitoring well RA-MW-27. The RSSC proposes to install a supplemental groundwater extraction well near this location for the purpose of groundwater cleanup for trichloroethene. Groundwater extraction combined with natural infiltration along the south slopes of the landfill would effectively remediate the groundwater in this area. The redirection of surface water runoff from the landfill cap perimeter drain, as shown for the RSSC's proposed landfill remedy, onto this uncapped area would effectively remediate any residual trichloroethene in soils.

This proposed remediation of groundwate: below the south slopes represents an appropriate measure to ensure overall protection of human health and the environment in the long term. Groundwater remediation in this area could also be effectively implemented by allowing the groundwater to migrate to the PDSLD/IW Area groundwater extraction system for subsequent capture. However, the RSSC's proposed remedial approach is more cost-effective.

Trichloroethene is the only appropriate cleanup indicator chemical for remediation of the groundwater below the south slopes. Based on the statistically minor difference between the Type B level of $3 \mu g/L$ and the MCL level of $5 \mu g/L$, the MCL is proposed as the appropriate cleanup level.

3.3.1.14 Lead

The RSSC reiterates that lead is not an appropriate cleanup indicator chemical for the Rasmussen Site.

Even if lead were an indicator chemical, the Agencies have used an inappropriate MDNR-generated interim RfD to calculate a proposed cleanup level for lead. Based on an acceptable blood level of lead of $5 \mu g/dL$, the MDNR has derived a RfD of $0.4 \mu g/kg/day$. This RfD was used to calculate an HLSC level of $3 \mu g/L$. The MDNR's supporting calculations subsequently state that because "3 ppb is almost identical to 5 ppb (proposed MCL), 5 ppb is used as Type B cleanup level for lead in groundwater". The MDNR's calculation does not provide supporting documentation for the manner in which the acceptable blood level was determined or provide the exposure-close relationships used to calculate the RfD from the blood lead level. These factors need to be clearly established to demonstrate that the MDNR-generated HLSC is consistent with the 307 Rules. This documentation is necessary in light of the fact that USEPA has withdrawn the file for lead from the Integrated Risk Information System (IRIS) for further review.

The RSSC previously identified Acceptable Daily Intake (ADI) concentrations for lead for the Agencies consideration in establishing appropriate cleanup criteria for the Rasmussen Site. Oral and inhalation ADIs ²⁴ of 1.4 μ g/kg/day and 0.43 μ g/kg/day, respectively, were identified for these two routes of exposure. It appears that the MDNR-generated RfD (0.4 μ g/kg/day) has been selected on the basis of inhalation exposure. The inhalation exposure route is not appropriate for assessing risk from ingestion of groundwater. Based on the oral ADI, the appropriate HLSC for lead is 10 μ g/L and not 5 μ g/L as presented in the Proposed Plan.

Regardless, lead should not be a cleanup indicator chemical at the Rasmussen Site for two reasons.

²⁴

Refer to Superfund Public Health Evaluation Manual, USEPA, October 1986.

First, during the RI, the levels of lead detected in groundwater samples collected from the PDSLD Area have been below the maximum lead level reported in the RI in upgradient, background samples for the Spiegelberg/Rasmussen Sites (maximum total lead concentration of 1280 μ g/L). The results of the RSSC supplemental groundwater sampling programs conducted in May/June and October 1990 support this finding. The RSSC's results for total lead are shown on Table 3.6. These concentrations of total lead are less than the reported maximum background level of 1280 μ g/L for the combined Spiegelberg/Rasmussen Sites.

Second, and more importantly, the results of the RSSC supplemental groundwater sampling programs show that dissolved lead levels in groundwater are less than the calculated HLSC level of $10 \mu g/L$. Groundwater samples collected during the MDNR/USEPA RI were not filtered and were analyzed for total lead concentrations even though the samples contained significant levels of suspended solids. This approach in the RI resulted in significantly elevated lead concentrations. The results of the RSSC's rounds of supplemental sampling (see Table 3.6) clearly demonstrates the difference between filtered and unfiltered lead analysis. Figures 3.1, 3.2 and 3.3 graphically show the relation hips between total lead, dissolved lead, and total suspended solids (particulates). The filtered lead analyses (dissolved lead) show that the HLSC level for dissolved lead is met in the affected groundwater zone without groundwater extraction and treatment and that essentially all the lead is associated with particulates. The HLSC criterion for lead is appropriately based on dissolved lead because particulate lead is not readily available for absorption in the gastrointestinal tract. In addition, particulates are not transported with groundwater flow, whereas dissolved constituents are.

Based on the above, lead is not an indicator chemical for the purpose of groundwater cleanup at the Rasmussen Site.

TABLE 3.6

ANALYTICAL RESULTS FOR LEAD RSSC SUPPLEMENTAL GROUNDWATER SAMPLING PROGRAM **RASMUSSEN SITE**

Round (1)	Sample I.D.	Well	Total Lead (μg/L)	Dissolved Lead (µg/L)
1	RAS-1	RA- MW-42	57	3
1	RAS-2	81-8	200	4
1	RAS-3	RA-M W-18D	510	4.8
1	RAS-4	RA-MW-18D (Duplicate)	390	9.7
1	RAS-5	RA-MW-4 1	23	5
1	RAS-6	SP-MW-5D	43	6.2
1	RAS-7	81-5	160	4
1	RAS-8	RA- MW-27	220	1.5
1	RAS-9	RA- MW-47	15	3.8
1	RAS-10	RA-M W-17	240	3.8
1	RAS-12	RA-M W-54	420	3.8
2	W-101190-WP-004	RA- MW-22	1,000	ND
2	W-101090-WP-005	RA-MW-22 (Uuplicate)	1 ,20 0	ND
2	W-101090-WP-001	RA- MW-28	440	ND
2	W-101190-WP-006	RA-M W-32	360	ND
2	W-101090-WP-002	RA-MW-3 4	55	ND
2	W-101190-WP-009	SP-M W-25D	430	ND

Notes:

- Sampling Round 1 occurred May/June 1990; Sampling Round 2 occurred October 1990. ND None at stated Practical Quantitation Limit (PQL) of 5.0 µg/L for (1)
- (2) Round 2

.

3.3.1.15 <u>Cadmium</u>

The Agencies have incorrectly selected cadmium as a groundwater cleanup indicator chemical on the basis of total cadmium results reported in the RI.

Positive detections from the RI for cadmium ranged from $5 \mu g/L$ to 29 $\mu g/L$ for the affected groundwater zone. In comparison, background levels in the RI were reported up to $18 \mu g/L$. These RI detections were all based on total cadmium concentrations because groundwater samples collected during the RI were not filtered prior to analysis.

In comparison, the RSSC's supplemental sampling programs conducted analyses for both total and dissolved cadmium. These results are tabulated on Table 3.7 and shown graphically against total suspended solids levels on Figure 3.4. These results clearly demonstrate that dissolved cadmium levels presently meet the Agencies' proposed cleanup level and that cadmium is associated with particulates. Similar to lead, the HLSC criterion for cadmium is appropriately based on dissolved cadmium levels because particulate cadmium is not readily available for absorption in the gastroincestinal tract. In addition, particulates are not transported with groundwater flow whereas dissolved constituents are.

Consequently, cadmium should be deleted from the cleanup indicator list.

3.3.2 Limitations of Analytical Chemistry

The RSSC previously provided detailed comments regarding the limitations of analytical chemistry in the document entitled "Proposed Groundwater Cleanup Levels, Rasmussen Site". The RSSC reiterates that one of the technical limitations which will impact the ability to achieve low cleanup levels is the ability to measure low levels and to demonstrate compliance at these low levels. Limitations in analytical chemistry will result in an inability to determine when and if cleanup levels have been achieved

TABLE 3.7

ANALYTICAL RESULTS FOR CADMIUM RSSC SUPPLEMENTAL GROUNDWATER SAMPLING PROGRAM RASMUSSEN SITE

Round (1)	Sample I.D.	Well	Total Cadmium (µg/L)	Dissolved Cadmium (µg/L)
1	RAS-1	RA-MW-42	ND	ND
1	RAS-2	81-8	5.5	ND
1	RAS-3	RA-MW-18D	14	ND
1	RAS-4	RA-MW-18D (Duplicate)	11	ND -
1	RAS-5	RA-MW-4 1	ND	ND
1	RAS-6	SP-MW-5D	ND	ND
1	RAS-7	81-5	ND	ND
1	RAS-8	RA-MW-27	12	ND
1	RAS-9	RA-MW-4 7	ND	ND
1	RAS-10	RA-MW-17	9.5	ND
1	RAS-12	RA-MW-54	18	ND
2	W-101190-WP-004	RA-MW-22	24	1.4
2	W-101090-WP-005	RA-MW-22 (Duplicate)	26	1.5
2	W-101090-WP-001	RA-MW-28	60	1.0
2	W-101190-WP-006	RA-MW-32	23	ND
2	W-101090-WP-002	RA-MW-34	2.2	0.6
2	W-101190-WP-009	SP-MW-25D	10	ND

Notes:

- Sampling Round 1 occurred May/June 1990; Sampling Round 2 occurred October 1990.
 ND None detected at stated Practical Quantitation Limit (PQL) of 5.0 μg/L for Round 1 and 0.5 μg/L for Round 2

-

for proposed cleanup levels which are below practical quantitation limits. The cleanup levels in the Proposed Plan are set at "method detection limits" for several chemicals including 1,1-dichloroethene, 2,4-dimethylphenol, and vinyl chloride. In addition, the proposed cleanup levels for several chemicals have been set without even considering whether the proposed level was analytically achievable or not. These chemicals include benzene, 2-chlorophenol, 2-methylphenol, 4-methylphenol and tetrachloroethene.

Previous comments have identified that analytical detection limits can be influenced by analytical interferences introduced by the media being analyzed as well as by the competence and quality of the analytical laboratory. Physical and chemical properties inherent in some media, such as untreated groundwater or groundwater containing a variety of organic chemicals will tend to cause an increase in the analytical detection limits. The ability of the chemist and the quality of the equipment can also cause variability in the analytical detection limits.

USEPA has taken these factors into consideration by establishing "practical quantitation limits" specifically for groundwater monitoring purposes which USEPA has determined are typically achievable nationwide. These practical quantitation limits (PQLs) are distinct from method detection limits (MDLs) which are based on ideal analytical conditions. MDLs are determined by analyzing distilled water into which progressively smaller amounts of the pure analyte are added until the threshold of detection is reached. By using distilled water, matrix effects are minimized and the efficacy of the method and sensitivity of the instrument can be determined. However, groundwater requiring cleanup will likely not be well represented by distilled water in the majority of cleanup situations. Consequently, MDLs may not be achievable in a majority of cases. In comparison, PQLs represent USEPA's best estimate of the minimum measurable level of chemical constituents in actual environmental samples and thus represent "real world" measurable quantities. PQLs are not defined using ideal distilled water matrices but instead use actual environmental samples and the results of several laboratories in "round robin" studies to determine typically measurable levels.

USEPA's drinking water program established under the Safe Drinking Water Act is based on setting MCLs as close as practicable to the PQLs. USEPA's rationale for using the PQL as a target level considered protective of public health for community water supply systems is because enforcement of MCLs is only possible at concentrations which are analytically achievable and statistically defensible. PQLs are analytically achievable and statistically defensible whereas MDLs are not. These factors are equally relevant to the determination of groundwater cleanup levels.

To compound the difficulties in determining compliance at low levels, studies have shown that the accuracy of reported results at low levels is at best $\pm 40\%$ of the true value.²⁵ The Agencies also need to recognize that almost all analytical laboratories do not report results below the PQL because of the indefensible nature of such data. Results below the PQL, when reported, are noted as estimates only because the result is not statistically reliable. The Michigan Department of Public Health (MDPH) laboratory does not report detections below 1 µg/L for volatile organic analyses.²⁶ Given the mandate of the MDPH laboratory to monitor the quality of supplied water and protect human health for community water supply systems, it is also appropriate for groundwater cleanup levels to be set above 1 µg/L.

3.3.3 Summary of Detailed Evaluation of Agency <u>Proposed Cleanup Criteria</u>

The detailed evaluation of the Agencies' proposed cleanup criteria has identified that a number of groundwater indicator chemicals have been inappropriately selected and that several cleanup criteria have been incorrectly calculated. Table 3.2 has already identified indicator chemicals which should be deleted. Cleanup indicator chemicals retained by this detailed analysis and appropriate cleanup levels include:

²⁵ Refer to "MCL Noncompliance: Is the Laboratory at Fault?", Steven J. Koorse, American Water Works Journal, Vol. 82, No. 2, February 1990.

²⁶ Refer to "Method for Purgeable Halocarbons and Aromatic Hydrocarbons in Water and Wastewater Samples by Simultaneous Analysis with the Photoionization Detector and Hall Electrolytic Conductivity Detector", MDNR Environmental Laboratory, January 4, 1988.

Chemical	Appr opriate Cleanup Level (µg/L)
PDSLD/IW Area	
benzene	5
chlorobenzene	100
ethylbenzene	30
toluene	40
vinyl chloride	2
xylenes	20
South Slopes Area	
trichloroethene	5

With the exception of benzene and vinyl chloride, these cleanup levels are determined from monitoring in the affected groundwater zones. Cleanup levels for benzene and vinyl chloride are based on maximum levels at the Rasmussen well.

3.4 SELECTION OF GROUNDWATER TREATMENT TECHNOLOGIES AND ASSOCIATED COST ESTIMATES

The Agencies propose to treat the extracted groundwater using the following process options:

- removal of heavy metals (ie. lead, cadmium) by chemical precipitation followed by pH adjustment;
- removal of the bulk of the organic compounds, including ketones, by a biological treatment system;
- removal of residual organic compounds by air stripping; and
- further removal of residual organic compounds by granular activated carbon (GAC) adsorption.

The removal of heavy metals as a process option has already been eliminated based on the determination in Sections 3.3.1.14 and 3.3.1.15 that lead and cadmium are not appropriate indicator chemicals.

In addition, the Agencies' proposed groundwater treatment technologies have been evaluated for appropriateness and technical feasibility. Based on this evaluation, there are several concerns regarding the ability to remove lead and cadmium to the proposed levels, and the appropriateness of a biological system for treatment of organic compounds. There are also inaccuracies in the calculation of groundwater cleanup costs which need to be clarified.

3.4.1 Proposed Treatment Technologies

Ø

Proposed Treatment for Lead and Cadmium

As a preliminary matter, requiring the investment of capital in designing and building treatment processes to remediate chemicals which are not present above the Proposed Plan's action levels would be extremely wasteful. The removal of lead and cadmium by chemical precipitation with pH adjustment is neither warranted nor necessary. In addition, removal to the low cleanup levels proposed by the Agencies is not feasible.

Removal by chemical precipitation consists of the addition of chemicals such as alum, ferric chloride, or synthetic polymers coupled with pH adjustment to drive heavy metals into an insoluble form, to ionically bind metals to a settleable solid or to promote the creation of flocs which sweep inorganics out of the water. Current practice has shown chemical precipitation to be effective at elevated influent concentrations. However, typically achievable discharge levels are higher than the cleanup levels proposed by the Agencies and would likely require additional treatment.

To achieve the cleanup levels proposed by the Agencies, it would be necessary to resort to either more sophisticated or experimental treatment processes. These process technologies, however, are prone to interferences from other groundwater constituents. Technologies in these categories include reverse osmosis and experimental electrochemical processes.

Significant pretreatment for reverse osmosis (RO) would be required due to the characteristics of the Rasmussen groundwater. The RSSC supplemental groundwater results indicate elevated concentrations of iron and manganese are present in the Rasmussen groundwater. These inorganics would form iron and manganese oxides which would effectively foul the RO membranes. Consequently, extensive pretreatment would be required to remove the iron and manganese to ensure the effectiveness of an RO treatment system. Such a treatment system would be cost prohibitive.

The RSSC's supplemental groundwater data indicates that the removal of lead and cadmium, although not necessary, may be significantly simpler than that indicated in the Proposed Plan. The Agencies' proposed treatment process assumes that lead and cadmium are present in dissolved form in the groundwater. However, based on the RSSC's cadmium data presented in Table 3.7, it appears that cadmium is associated with particulates. The graphical representation of the RSSC's cadmium results on Figure 3.4 indicates this relationship more clearly. Similarly, Table 3.6 and Figure 3.1 indicate that elevated lead levels are also associated with particulates. These findings would indicate that the Agencies' proposed chemical precipitation system is inappropriate because a filtration system could achieve an equivalent, if not improved, level of treatment at significantly lower cost. Even this treatment for lead and cadmium is unnecessary and unwarranted given the concentrations of lead and cadmium in the groundwater.

Proposed Biological Treatment

The Agencies propose biological treatment to remove the bulk of the organic compounds prior to air stripping and granular activated carbon (GAC) adsorption. The Agencies selection of a biological system is based on the assumption that the groundwater is amenable to such treatment and that removal of ketones is necessary.

Based on the RSSC's supplemental data, the ratio of Biochemical Oxygen Demand (BOD) to Chemical Oxygen Demand (COD) of the groundwater is relatively constant. However, the reported values for BOD are very low in comparison to typical biological treatment systems (i.e. BOD range of 6 mg/L to 57 mg/L for the Rasmussen Site compared to typical values greater than 200 mg/L for municipal/industrial treatment systems). The groundwater at the Site is typical of most groundwaters which are nutrient deficient and which cannot support a viable biological treatment system. Consequently, biological treatment is not technically feasible at the Rasmussen Site.

Secondly, the Agencies have selected biological treatment for treatment of ketones including acetone, 2-butanone and 4-methyl-2-pentanone. However, based on the RSSC supplemental groundwater data, these compounds are presently below their respective cleanup levels or not even present in the case of 2-butanone. Therefore, the requirement for a biological system based on the removal of ketones is not justified.

3.4.2 FS Groundwater Remedy Cost Estimates

The RSSC reiterates that cost-effectiveness should be considered in remedy selection and setting of groundwater cleanups levels which are protective of public health and the environment.

The use of Type B groundwater cleanup levels instead of Type C levels for several carcinogens in the Proposed Plan will result in significant cost increases in the final groundwater remedy with minimal benefits. The additional costs are attributable to:

- a substantial increase in operating and maintenance costs due to the longer time estimated to achieve the Type B levels, assuming that it could even be demonstrated that they are achievable;
- the increased capital costs to install a more sophisticated groundwater treatment system to meet discharge criteria which would likely be established at the Type B cleanup levels; and
- iii) the significant increase in environmental monitoring costs resulting from the longer operational period.

As previously stated by the RSSC, the significant component of the increased costs can be attributed to the substantial increase in cost of

operation, maintenance and monitoring. The Agencies' Proposed Plan estimates annual operation, maintenance and monitoring costs to be approximately \$4,580,000, assuming five years of operation of the groundwater extraction and treatment system.²⁷

The RSSC reiterates that the five-year cleanup period presented in the FS is overly optimistic. This has been acknowledged by the MDNR.²⁸ The FS estimate is based on the relative velocity of chemical migration compared to groundwater velocities. As such, the estimate significantly understates the complexity of sorption/desorption processes in the aquifer, in particular, the limiting rates imposed by partitioning kinetics. Based on current understanding of groundwater extraction technologies, the groundwater cleanup levels in the Proposed Plan will likely not be met in 15 years (Agencies' upperbound estimate of operating period), if ever. This minimum additional operating time can be estimated to result in an increased operation and maintenance present worth cost of approximately \$4.6 million and a total cost of \$11,760,000 for a 15-year operating period compared to the \$7,170,000 presented in the FS. For a system operating in perpetuity, the increased operation and maintenance present worth cost is estimated to be approximately \$7.5 million at a total cost of \$14,670,000.

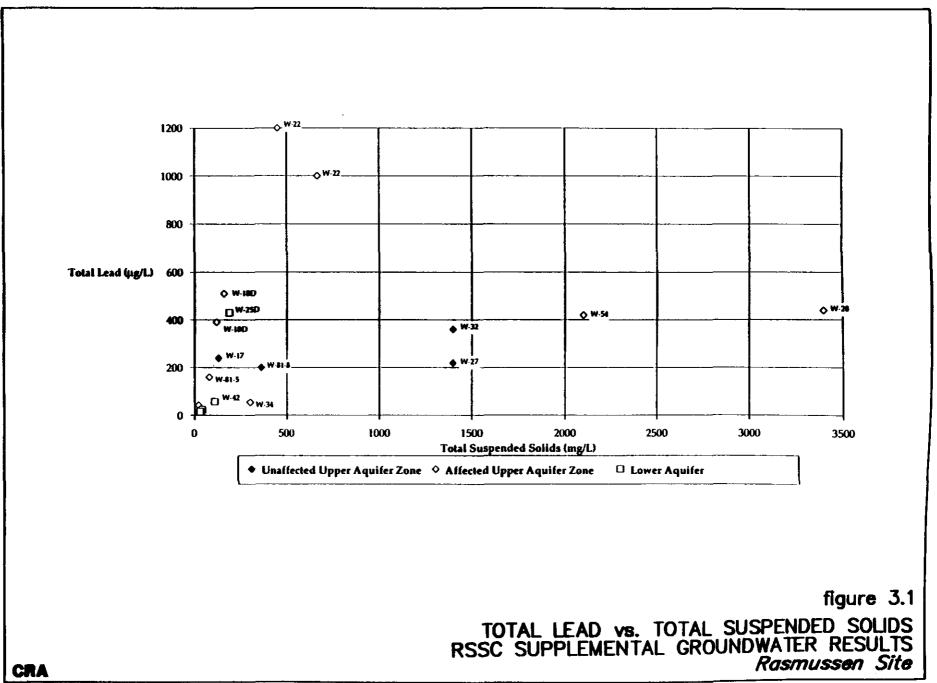
The FS estimates also assume a discount rate of ten percent for the present worth calculations. Using a more realistic discount rate of five percent, the present worth of the Agencies' O&M costs would be \$18,791,000 for a system operating in perpetuity. The total cost of constructing and operating such a groundwater remedial system would be \$21,531,000. This upperbound estimate is significantly greater than the \$7,320,000 presented in the Proposed Plan.

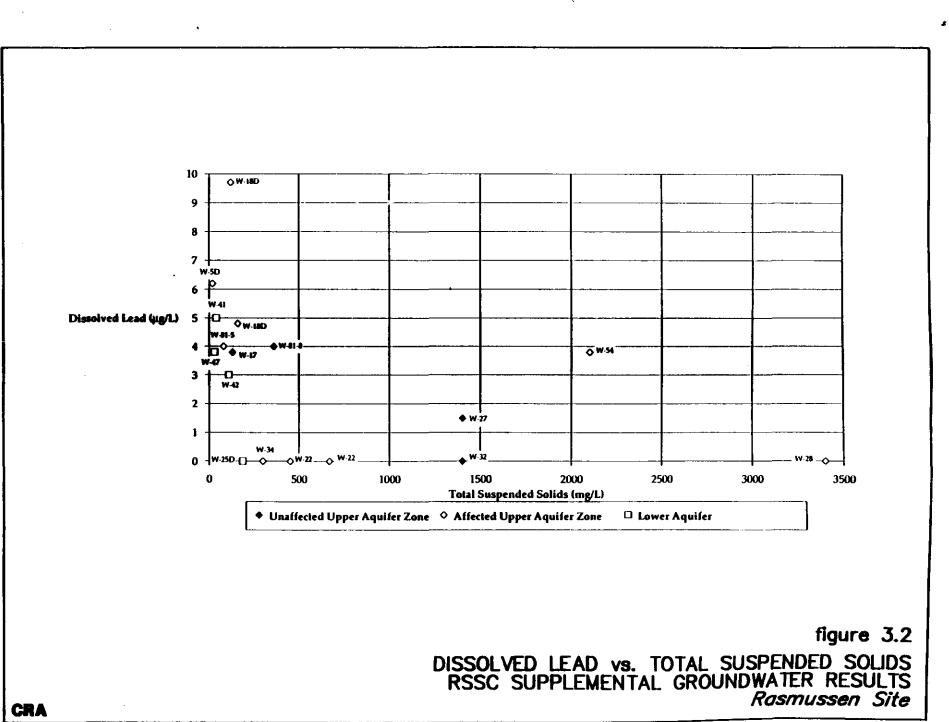
These upperbound estimates clearly illustrate the huge incremental time and cost differences between a Type B and Type C cleanup level. This significant incremental expenditure, necessary to meet Type B cleanup levels,

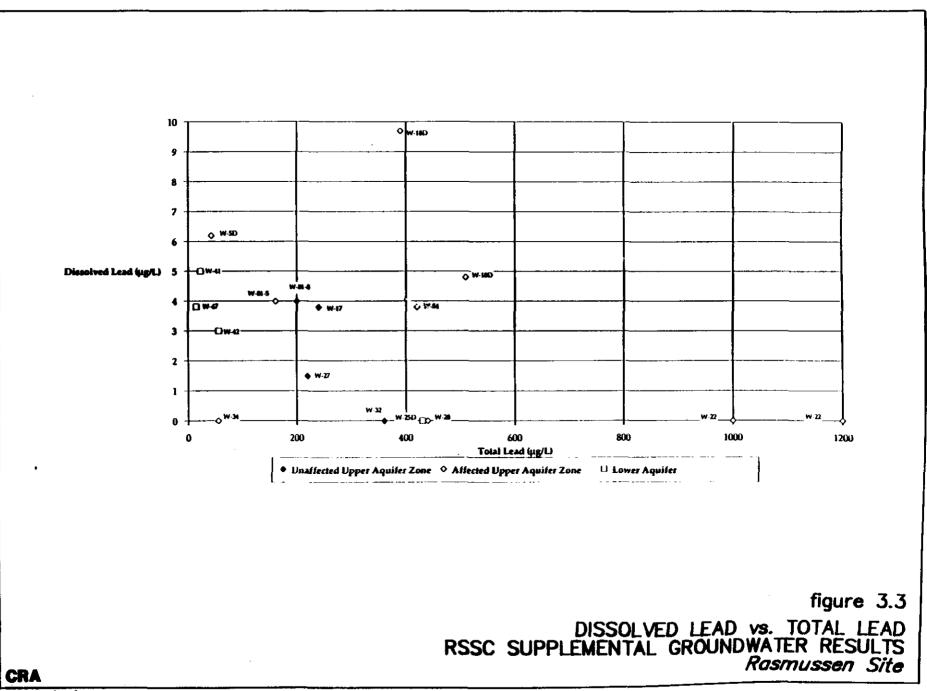
²⁷ The Proposed Plan incorrectly cited the FS present worth cost of \$4,580,000 as being a one-year O&M cost.

²⁸ The MDNR stated that the groundwater remedy will likely be "effective somewhere in the neighborhood of five to fifteen years" in the September 13, 1990 public meeting. Refer to page 42 of the meeting transcript.

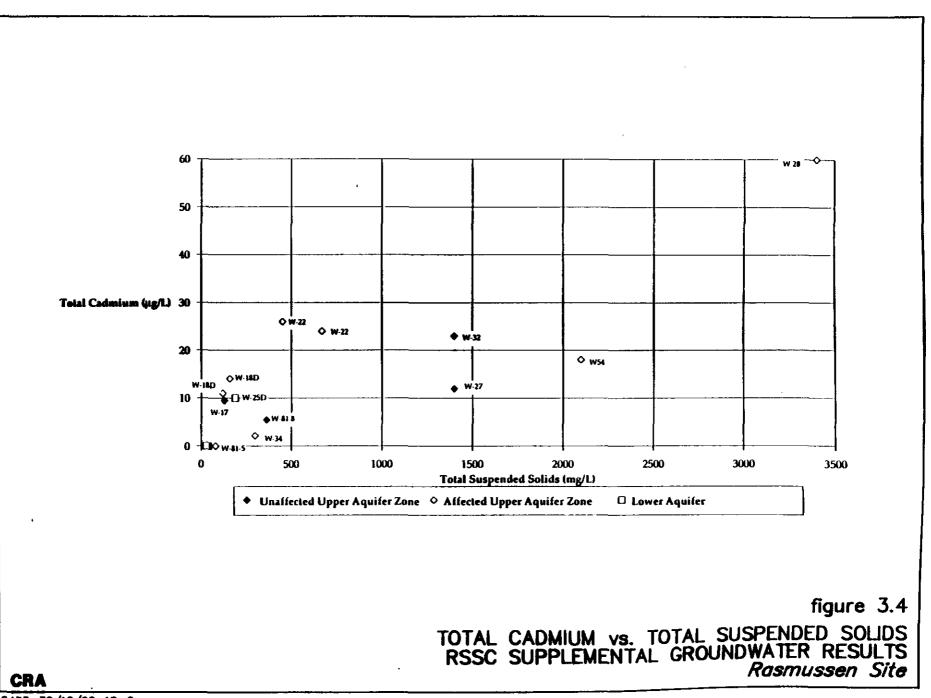
is not justified based on the acceptable difference in incremental lifetime cancer risk between the two types of cleanup previously calculated by the RSSC.


More realistic estimates of the groundwater remedial costs are presented in Appendix B. Based on the appropriate deletion of metals treatment and biological treatment, the capital cost is estimated to be \$1,126,630 and the O&M costs are estimated to be \$2,457,010 for a 10-year cleanup period; \$3,582,610 for a 30-year cleanup period; and \$4,591,880 for a 100-year cleanup period, respectively. For the RSSC's proposed Type C cleanup approach for several parameters, a 10-year cleanup duration may be realized. The incremental total cost of the Agencies' proposed groundwater remedy, operating in perpetuity, could thus be \$17,947,360 greater than the total costs associated with implementing the RSSC's proposed groundwater remedy over a 10-year cleanup period.


These cost estimates show that the incremental costs associated with the Agencies' proposed remedy are not appropriately balanced by an incremental benefit resulting from a reduction of risk. Clearly, the changes to the Proposed Plan identified by the RSSC would result in a more cost-effective remedy while being protective of public health and the environment.


3.5 GROUNDWATER MONITORING

The Agencies have indicated in the public meetings that groundwater monitoring in all directions from the landfill (360-degree monitoring) for all parameters at both on and off Site locations may be a requirement of the final remedy. In addition to the significant costs that would be incurred by such a monitoring approach, monitoring in this manner is unwarranted and unneccessary and would fail to use knowledge of Site hydrogeology in a cost-efficient manner. Conducting groundwater monitoring downgradient of the affected groundwater zone based on the appropriate indicator chemical list is all that would be neccessary for protection of public health and the environment. Likewise, monitoring for all "priority pollutants" would be extremely wasteful in light of the RSSC's proposed indicator chemical list. Finally, monitoring of off-Site residential wells would be duplicative and is unnecessary. The best and safest place to monitor for efficacy of the remedy is downgradient and on the Site. This provides an early warning if a problem develops.


4

2433-30/10/90-12-0

٠

4.0 <u>CONCLUSIONS</u>

The Agencies' Proposed Plan for the Rasmussen Site consists of two components. These components include a cap for the municipal landfill and a groundwater extraction/treatment remedy for the affected groundwater zone. Each of these remedial components has been evaluated in detail.

Municipal Landfill Cap

With respect to the municipal landfill cap component, we conclude:

- 1) The Agencies' proposed Michigan Act 64 cap design is neither applicable nor relevant and appropriate to the capping of the Rasmussen municipal landfill. Due to the response actions completed to date, the remaining landfill materials are characterized as primarily municipal garbage. Consequently, capping requirements established by RCRA and Michigan Act 64 are not relevant to the proposed capping of the Rasmussen Site. Relevant and appropriate capping requirements are those established by Michigan's Solid Waste Management Act.
- 2) The RSSC's proposed alternative cap design will satisfy capping ARARs, address technical flaws evident in the Agencies' proposed design, and provide a cover system which best addresses the public's concerns regarding cap longevity and long-term integrity.
- 3) Comparison of the Agencies' proposed cap to the RSSC's alternate design has shown that the RSSC's alternate design addresses the NCP's nine evaluation factors to the greatest possible extent. Evaluation factors which favor the RSSC's alternate cap include:
 - Overall Protection of Human Health and the Environment;
 - Compliance with ARARs;
 - Long-Term Effectiveness and Performance;
 - Short-Term Effectiveness;
 - Implementability;
 - Cost; and

• Community Acceptance.

Evaluation factors which either are not applicable or neutral include:

- Reduction of Toxicity, Mobility, or Volume Through Treatment; and
- Support Agency Acceptance.

In comparison, the Agencies' cap does not adequately address these evaluation factors in light of Site-specific conditions. Design measures incorporated into the RSSC's proposed alternate cap would provide improved longevity and long-term integrity compared to the Agencies' cap design. The RSSC's proposed design uses best design practice and positive measures to mitigate potential Site-specific problems.

- 4) The RSSC's proposed alternate cap design will provide an improved level of hydraulic performance compared to the Agencies' proposed Act 64 cap. The estimated percent reduction in infiltration through the cap for the RSSC's and Agencies' cap designs are 95.6% and 95.9%, respectively. However, the integrity of the Agencies' cap against frost and dessication cracking cannot be ensured. Consequently, in actual practice, the RSSC's alternate cap design will prove superior to the Agencies' Act 64 cap.
- 5) The FS cost estimates for the Agencies' proposed cap contain numerous calculational errors. The corrected capital cost of the Agencies' proposed cap ranges from \$8,248,860 to \$11,395,715 which is significantly greater than the \$2,993,290 presented in the Proposed Plan. In comparison, the RSSC's proposed alternative cap is more cost effective because the estimated capital cost is \$2,623,390. In addition, the FS has underestimated the O&M costs for the Agencies' cap. A lower-bound O&M cost estimate for the Agencies' cap is expected to be approximately \$0.5 million.

Groundwater Extraction/Treatment Remedy

With respect to the groundwater extraction/treatment remedial component, we conclude:

- The Proposed Plan has inappropriately identified a number of proposed indicator chemicals which should be deleted. Of the 24 groundwater cleanup indicator chemicals presented in the Proposed Plan, 17 of the proposed indicator chemicals should be deleted based on a detailed evaluation of:
 - the method by which groundwater cleanup indicator chemicals were selected;
 - the calculation of risks associated with groundwater at the Site and the difference between the cleanup approach presented in the Proposed Plan and that suggested in the MDNR/USEPA risk assessment; and
 - the data and assumptions used by the Agencies for calculating appropriate cleanup criteria and limitations of analytical chemistry in establishing groundwater cleanup levels.
- 2) The RSSC proposed list of groundwater cleanup indicator chemicals differs significantly from the listing of chemicals identified to be of concern in the Proposed Plan. The selection of indicator chemicals fails to consider frequency of detection. Chemicals which should be deleted based on low frequency of detection include:
 - 1,1-dichloroethene;
 - tetrachloroethene;
 - benzyl alcohol;
 - 2-chlorophenol; and
 - isophorone.
- 3) The potential carcinogenic risks presented in the Proposed Plan are inaccurate and in disagreement with the Agencies' risk assessment. The difference in total risk estimates is potentially one-half to one

complete order of magnitude for maximum concentrations and potentially two orders of magnitude for average concentrations. Based on the Agencies' risk assessment, chemicals which should be deleted include:

- bis(2-ethylhexyl)phthalate;
- 1,1-dichloroethene;
- tetrachloroethene; and
- isophorone.
- 4) The cleanup approach taken in the Proposed Plan differs from the approach taken in the Agencies' risk assessment. The risk assessment used a Site-specific analysis whereas the Proposed Plan used a misapplication of the Michigan 307 Rules. Because Superfund risk assessment methodology uses the 307 Rules Type C analysis, the erroneous application of the 307 Rules, as in the Proposed Plan, effectively invalidates the entire Superfund risk assessment process.
- 5) Based on the detailed evaluation of the Agencies' proposed cleanup criteria, only seven indicator chemicals are retained as appropriate for groundwater cleanup at the Rasmussen Site. Retained indicator chemicals and appropriate cleanup levels include:

Chemical	Appropriate Cleanup Level (µg/L)
PDSLD/IW Area	-
benzene	5
chlorobenzene	100
ethylbenzene	30
toluene	40
vinyl chloride	2
xylenes	20
<u>South Slopes Area</u> trichloroethene	5

With the exception of benzene and vinyl chloride, these cleanup levels are determined from monitoring in the affected groundwater zones.

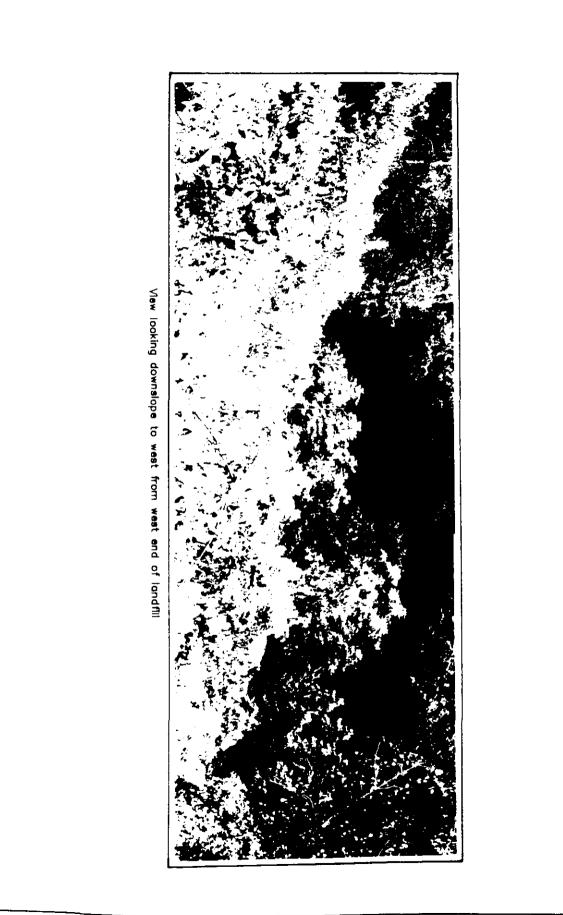
Cleanup levels for benzene and vinyl chloride are based on maximum levels at the Rasmussen well.

- 6) Two of the Agencies' proposed groundwater treatment technologies have been inappropriately selected. Based on the groundwater characterization from the RSSC's supplemental sampling events, metals treatment is not necessary nor feasible and biological treatment is unnecessary and unwarranted.
- 7) The Proposed Plan has significantly underestimated O&M costs based on a low estimate of remedial duration which the MDNR has acknowledged is unrealistic. The total cost is expected to range from \$14,670,000 to \$21,531,000 based on the proposed treatment processes for a system operating in perpetuity. This cost is significantly greater than the \$7,320,000 presented in the Proposed Plan. A more realistic estimate of the groundwater remedial costs, based on the RSSC's proposed changes to the remedy, would be \$3,583,640 for a 10-year operating period. This cost is \$17,947,360 less than that estimated for the Agencies' proposed groundwater remedy.

APPENDIX A

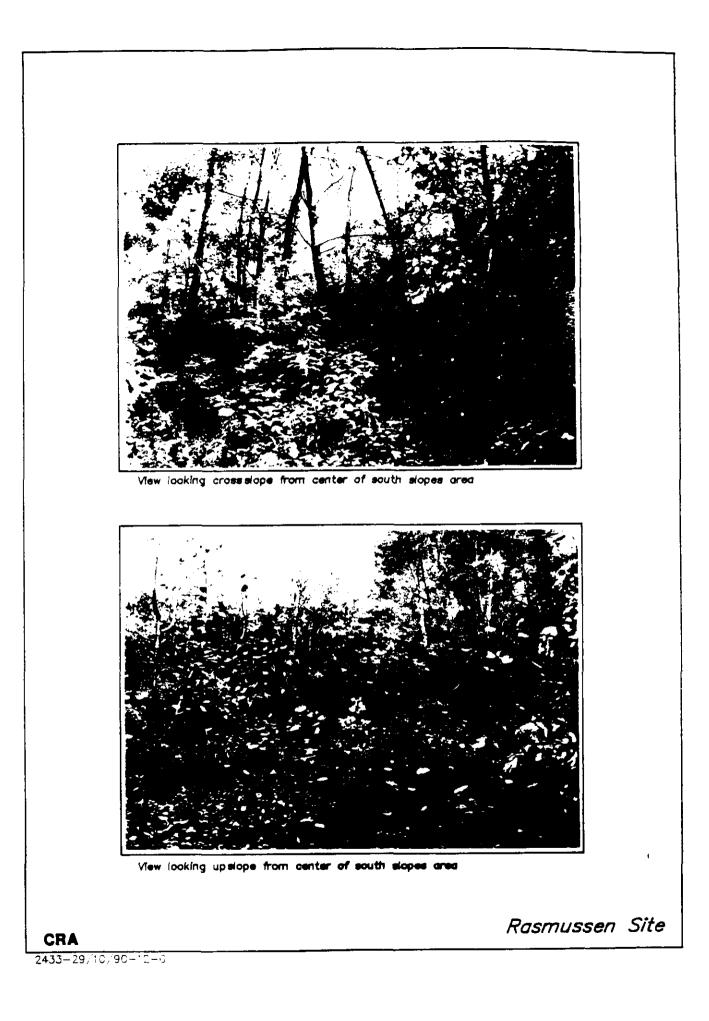
·••

•


.


LANDFILL SOUTH SLOPE PHOTOGRAPHS

View looking upslope to north from east of well RA-MW-27


Rasmussen Site

View looking southeast crossslope from well RA-MW-27

Rasmussen Site

8

.

-

APPENDIX B

Ŧ

RSSC COST ESTIMATES

TABLE B-1

CAPITAL CONSTRUCTION COSTS RSSC PROPOSED ALTERNATE LANDFILL CAP

RASMUSSEN SITE

Item	Description	Estimated Quantity	Unit	Unit Cost	Total Cost		
DIRECT CAPITAL COSTS							
1)	Project Start-Up and Mobilization	1	L.S.	\$155,000.00	\$155,000		
2)	Construction Facilities	1	L.S.	46,300.00	46,300		
3)	Temporary Access Roads	1	L.S.	35,000.00	35,000		
4)	Clearing and Grubbing	1	Ac.	4,80 0.00	4,800		
5)	Site Security Fencing						
	a) Install New Chain-Link Fencing	450	L.F.	15.00	6 <i>,</i> 750		
	b) Relocate Existing Chain-Link Fencing	2100	L.F.	15.00	31,500		
6)	Pregrading						
	a) Excavate, On-Site Transport, Place, Compact Available On-Site Soil	65,450	C.Y	7.00	458,150		
	b) Proof roll Landfill Surface, Supply, Place, Compact Import Fill on Landfill Surface	4,220	C.Y	18.00	75 <i>,</i> 960		
	c) Excavate, On-Site Transport, Place, Compact Soil Previously Excavated From PDSLD Area	7,000	C.Y	9.00	63,000		
7)	Proposed Landfill Cover						
	a) Supply, Place, Compact 24 inches of 10-7 Clay	16,820	C.Y	11.50	193,430		
	b) Supply, Place, Compact 6 inches of Sand	4,200	C.Y	10.50	44,100		
	c) Supply and Install Filter Fabric	25,200	S.Y.	0.75	18,900		
	e) Supply, Place, Compact 18 inches Imported Fill	12,600	C.Y	6.00	75,600		
	f) Supply and Place 6 inches of Blended Topsoil	4,200	C.Y	11.00	46,200		
	g) Hydroseed and Fertilize Cover	25,200	S.Y.	0.40	10,080		
8)	Collection Drain System						
	a) Supply and Place 4 inch Diameter Perforated Drain Tile Around Municipal Landfill Perimeter	2,600	L.F.	3.50	9,100		

.

•

TABLE B-1

CAPITAL CONSTRUCTION COSTS RSSC PROPOSED ALTERNATE LANDFILL CAP

RASMUSSEN SITE

Item	Description	Estimated Quantity	Unit	Unit Cost	Total Cost	
	 b) Supply and Place 4 inch Diameter Perforated Drain Tile Along North Slope 	700	L.F.	3.50	2,450	
	 Supply and Place 6 inch Diameter PVC Drainage Pipe 	1,800	L.F.	4.50	8,100	
	d) Revetment Pads Installed at Drain Outfalls	7	Ea.	200.00	1,400	
9)	Supply and Place 6 inches of Blended Topsoil Over the Remaining Uncapped Area	8,060	C.Y	11.00	88,660	
10)	Seed and Fertilize the Remaining Uncapped Area	48,400	S.Y.	0.40	19,360	
11)	Cap Erosion Control Measures	1	L.S.	20,000.00	20,000	
12)	Health and Safety					
	a) Implement Health and Safety Plan	1	L.S.	85,01,0.00	85,000	
	b) Level C-PPE	1	L.S.	27,000.00	27,000	
	c) Level B-PPE	1	L.S.	7,500.00	7,500	
13)	Environmental Monitoring	1	L.S.	56,050.00	56,050	
14)	Project Closeout and Demobilization	1	L.S.	25,000.00	25,000	
	Subtotal - Direct Capital Costs				\$1,614,390	
INDIRECT CAPITAL COSTS						
	Administration and Legal (5% of Direct Capital Costs) Engineering (10% of Direct Capital Costs) Construction Supervision (15% of Direct Capital Costs)				\$80,720 \$161,440 \$242,160	
	Subtotal - Indirect Capital Costs				\$484,320	
	SUBTOTAL - CAPITAL COSTS				\$2,098,710	
	CONTINGENCY (25%)				\$524,680	
	TOTAL ESTIMATED CAPITAL COSTS				\$2,623,390	

J

TABLE B-2

OPERATION AND MAINTENANCE COSTS RSSC PROPOSED ALTERNATE LANDFILL CAP

RASMUSSEN SITE

				Annual Costs		
Item	Description	Estimated	Unit	Unit	Total	Present
		Quantity		Cost	Cost	Worth
DIR	ECT OPERATION AND MAINTENANCE COSTS					
Long	g Term Maintenance Costs					
1)	Quarterly Inspection of Landfill Surface, Slopes, Fences, and on Site Well Network	4	Insp.	500.00	2,000	30,740
2)	Annual Fertilizer Application (Apply fertilizer at a rate of 500 lbs./acre)	1	Арр.	7,000.00	7,000	107,600
3)	Annual Grass Cutting (if required)	1	Cut	2,400.00	2,400	36,890
4)	Repair Cover for Surface Water Runoff Erosion					
	a) Replace Eroded Soil Cover					
	Provision for Year 1	400	C.Y.	15.00	6,000	5,710
	 Provision for Years 1 to 2 	200	C.Y.	15.00	3,000	2,720
	Provision after 2 Years	100	C.Y.	15.00	1,500	20,270
	b) Reseed Eroded Areas	3	Ac.	950.00	2,850	43,810
5)	Contingency for Site Fence and Sign Maintenance and Control of Burrowing Animals	1	L.S.	5,000.00	5,000	76,860
	Subtotal - Direct Operation and Maintenance Costs				-	\$324,600

.

TABLE B-2

OPERATION AND MAINTENANCE COSTS RSSC PROPOSED ALTERNATE LANDFILL CAP

RASMUSSEN SITE

			Annual Costs			
Iten	Description	Estimated	Unit	Unit	Total	 Present
		Quantity		Cost	Cost	Worth
INI	DIRECT OPERATION AND MAINTENANCE COSTS	5				
	Administration and Legal (20% of Subtotal)					\$64,920
	Subtotal - Indirect Operation and Maintenance Cost	s				\$64,920
	SUBTOTAL - OPERATION AND MAINTENANCE	COSTS				\$389,520
	CONTINGENCY (25%)					\$97,380
	ESTIMATED PRESENT WORTH BASED ON A 5%	NET				
	DISCOUNT RATE, OVER A 30 YEAR PERIOD					\$486,900

(

.

.

CAPITAL CONSTRUCTION COSTS GROUNDWATER EXTRACTION/TREATMENT SYSTEM

ltem	Description	Estimated Quantity	Unit	Unit Cost	Total Cost
DIR	ECT CAPITAL COSTS				
1)	Project Start-Up and Mobilization	1	L.S.	\$54,000.00	\$54,000
2)	Construction Facilities	1	L.S.	10,000.00	10,000
3)	Groundwater Extraction System				
	a) Install Extraction Wells (8" casing, 100' depth)	4	Ea.	18,000.00	72,000
	b) Install 4" HDPE, Extraction Forcemain to Treatment Plant	1,300	Feet	16.00	20,800
	c) Supply and Install Prefabricated Pump Stations	4	Ea.	15,000.00	60,000
	 d) Extraction Well Pumps and Associated Mechanical /Electrical Equipment (pump, flowmeter, valves, level controls, misc. piping) 	4	Ea.	10,000.00	40,000
	e) Electrical Service to GW Treatment Plant	1	L.S.	5,000.00	5,000
	f) Extraction Pump Control System	1	Ea.	10,000.00	10,000
	g) Electrical Conduit and Wiring to Pump Stations	2,500	Feet	15.00	37,500
	h) Pump Starters, Transformers, and Misc. Controls	2,500	L.S.	15,000.00	15,000
4)			L.J.	10,000.00	15,000
-1)	a) Treatability Study	1	L.S.	100,000.00	100,000
	b) Treatment System				
	 Equalization Tank Packed Tower Air Stripper Liquid Phase Carbon Contactors Vapor Phase Carbon Contactors Pumps and Piping 	1 1 1 1	L.S. L.S. L.S. L.S. L.S.	10,000.00 35,000.00 25,000.00 25,000.00 10,000.00	10,000 35,000 25,000 25,000 10,000
	. anipo and . iping	•		10,000.00	10,000

CAPITAL CONSTRUCTION COSTS GROUNDWATER EXTRACTION/TREATMENT SYSTEM

ltem	Description	Estimated Quantity	Unit	Unit Cost	Total Cost
	 Electrical and Controls Treatment Plant Structure (approx. 20'x20') Site Services and Fencing 	1 1 1	L.S. L.S. L.S.	40,000.00 30,000.00 18,000.00	40,000 30,000 18,000
5)	Discharge Systems				
	a) Forcemains				
	 4" HDPE, Discharge Forcemain to Infiltration Bed System 	250	Feet	16.00	4,000
	b) Treated Groundwater Infiltration Bed System	1	L.S.	35,000.00	35,000
6)	Health and Safety				
	a) Implement Health and Safety Plan	1	L.S.	20,000.00	20,000
	b) Level C PPE	1	L.S.	7,000.00	7,000
7)	Project Closeout and Demobilization	1	L.S.	10,000.00	10,000
	Subtotal - Direct Capital Costs			-	\$693,300
IND	IRECT CAPITAL COSTS				
	Administration and Legal (5% of Direct Capital Costs) Engineering (10% of Direct Capital Costs) Construction Supervision (15% of Direct Capital Costs)				\$34,670 \$69,330 \$104,000
	Subtotal - Indirect Capital Costs			_	\$208,000
	SUBTOTAL - CAPITAL COSTS				\$901,300
	CONTINGENCY (25%)				\$225,330
	TOTAL ESTIMATED CAPITAL COSTS			_	\$1,126,630

TABLE B-4

OPERATION AND MAINTENANCE COSTS GROUNDWATER EXTRACTION/TREATMENT SYSTEM

RASMUSSEN SITE

Item	Description	Estimated	Unit	Unit	Total	Present
DIRECTO	PPERATION AND MAINTENANCE	Quantity COSTS		Cost	Cost	Worth
Treatment I	Plant Operation					
1) Po	wer costs					
a)	Annual costs for equipment for Years 0 to 30	1	LS	\$13,600	\$13,600	\$209,060
2) Op	perating staff for Years 0 to 30	1	LS	\$30,000	\$30,000	\$461,160
	pital replacement (20% of uipment costs)	1	LS	\$20,000	\$20,000	\$307,44 0
4) Slu	ıdge disposal (if required)	1	LS	\$24,600	\$24,600	\$378,150
5) Ca	rbon replacement	1	LS	\$50,000	\$50,000	\$768,600
	mpling of extraction system and alysis for TCL VOCs					
	Perform quarterly for Years 0 to 30 (4 samples)	4	Round	\$1,200	\$4,800	\$73,790
	mpling of discharge system for L VOCs					
a)	Perform monthly for Months 0 to 6	6	Round	\$300	\$1,800	\$1,800
b)	Perform quarterly for Months 6 to 12 (1 sample)	2	Round	\$300	\$600	\$570
c)	Perform quarterly for Years 1 to 30 (1 sample)	4	Round	\$300	\$1,200	\$17,300

•

OPERATION AND MAINTENANCE COSTS GROUNDWATER EXTRACTION/TREATMENT SYSTEM

Ite	m Description	Estimated	<u>Annual</u> Unit	Unit	Total	- Present
Sam	pling of Wells	Quantity		Cost	Cost	Worth
А.	During Cleanup Operation					
n .	During Cleanup Operation					
	 Sampling of downgradient well water and analysis for TCL VOCs 					
	a) Perform annually for Years 0 to 30 (3 samples)	1	Round	\$2,025	\$2,025	\$31,120
	b) Perform semi-annually for Years 0 to 30 (3 samples)	1	2 Rounds	\$4,095	\$4,095	\$62, 940
	2) Sampling of affected groundwater zone and analysis for TCL VOCs					
	a) Perform semiannually for Years 0 to 30 (2 samples)	2	Round	\$1,365	\$2,730	\$11,820
	3) Sampling of affected groundwater zone perimeter and analysis for TCL VOCs					
	a) Perform annually for Years 0 to 30 (2 samples)	1	Round	\$1,350	\$1,350	\$5,840
В.	Post Cleanup					
	1) Sampling of downgradient well water and analysis for TCL VOCs					
	a) Perform annually for Years 30 to 35 (4 samples)	1	Round	\$2,700	\$2,700	\$9,160
	2) Sampling of affected groundwater zone and analysis for TCL VOCs					
	a) Perform annually for Years 30 to 35 (2 samples)	1	Round	\$1,350	\$1,350	\$4,5 80

1

OPERATION AND MAINTENANCE COSTS GROUNDWATER EXTRACTION/TREATMENT SYSTEM

			Annual			
Iten	n Description	Estimated	Unit	Unit	Total	Present
Hydr	aulic Monitoring	Quantity		Cost	Cost	Worth
A.	During Cleanup Operation					
	1) Collection of water levels					
	a) Biweekly for Month 0 to 3 (11 samples)	6	Round	\$1,500	\$9,000	\$8,570
	b) Monthly for Month 3 to 12 (11 samples)	9	Round	\$1,500	\$13,500	\$12,860
	c) Quarterly for Year 1 to 30 (11 samples)	4	Round	\$1,500	\$6,000	\$20,260
В.	Post Cleanup					
	1) Collection of water levels					
	a) Annually for Years 30 to 35 (5 samples)	1	Round	\$1,000	\$1,000	\$3,390
	Subtotal - Direct Operation and Main	itenance Costs				\$2,388,410
INDI	RECT OPERATION AND MAINTENAN	CE COSTS				
	Administration and Legal (20% of Su	btotal)				\$477,680
	Subtotal - Indirect Operation and Ma	intenance Cos	ts			\$477,680
	SUBTOTAL - OPERATION AND MA	AINTENANCE	E COSTS			\$2,866,090
	CONTINGENCY (25%)					\$716,52 0
	ESTIMATED PRESENT WORTH BA NET DISCOUNT RATE, OVER A 30 PERIOD AND 5 YEAR POST-CLEAN	YEAR CLEAN	IUP			\$3,582,610

OPERATION AND MAINTENANCE COSTS GROUNDWATER EXTRACTION/TREATMENT SYSTEM

ltem	Description	Estimated	Unit	Unit	Total	Present	
DIRECT	OPERATION AND MAINTENANCE	Quantity COSTS		Cost	Cost	Worth	
Treatm ent	Plant Operation						
1) Pc	ower costs						
a)	Annual costs for equipment for Years 0 to 100	1	LS	\$13,600	\$13,600	\$269,930	
2) Oj	perating staff for Years 0 to 100	1	LS	\$30,000	\$30,000	\$595,440	\mathbf{i}
	apital replacement (20% of uipment costs)	1	LS	\$20,000	\$20,000	\$396,960	
4) Slı	udge disposal (if required)	1	LS	\$24,600	\$24,600	\$488,260	
5) Ca	arbon replacement	1	LS	\$50,000	\$50,000	\$992,400	
	mpling of extraction system and alysis for TCL VOCs						
a)	Perform quarterly for Years 0 to 100 (4 samples)	4	Round	\$1,200	\$4,800	\$95,27 0	
	mpling of discharge system for CL VOCs						<u> </u>
a)	Perform monthly for Months 0 to 6	6	Round	\$300	\$1,800	\$1,800	
b)	Perform quarterly for Months 6 to 12 (1 sample)	2	Round	\$300	\$600	\$570	
c)	Perform quarterly for Years 1 to 100 (1 sample)	4	Round	\$300	\$1,200	\$22,680	

Ą

OPERATION AND MAINTENANCE COSTS GROUNDWATER EXTRACTION/TREATMENT SYSTEM

Ite	m Description	Estimated	Unit	Unit	Total	Present
Sam	pling of Wells	Quantity		Cost	Cost	Worth
A.	During Cleanup Operation					
	 Sampling of downgradient well water and analysis for TCL VOCs 					
	a) Perform annually for Years 0 to 100 (3 samples)	1	Round	\$2,025	\$2,025	\$40,190
	b) Perform semi-annually for Years 0 to 100 (3 samples)	1	2 Rounds	\$4,095	\$4,095	\$81,270
	2) Sampling of affected groundwater zone and analysis for TCL VOCs					
	a) Perform semiannually for Years 0 to 100 (2 samples)	2	Round	\$1,365	\$2,730	\$11,820
	3) Sampling of affected groundwater zone perimeter and analysis for TCL VOCs					
	a) Perform annually for Years 0 to 100 (2 samples)	1	Round	\$1,350	\$1,350	\$5,840
В.	Post Cleanup					
	1) Sampling of downgradient well water and analysis for TCL VOCs	•				
	a) Perform annually for Years 100 to 105 (4 samples)	1	Round	\$2,700	\$2,700	\$9 ,160
	2) Sampling of affected groundwater zone and analysis for TCL VOCs					
	a) Perform annually for Years 100 to 105 (2 samples)	1	Round	\$1,350	\$1,350	\$4,580

TABLE B-5

OPERATION AND MAINTENANCE COSTS GROUNDWATER EXTRACTION/TREATMENT SYSTEM

Item	Description	Estimated	Unit	Unit	Total	Present	٢
Hydra	ulic Monitoring	Quantity		Cost	Cost	Worth	
Α.	During Cleanup Operation						
	1) Collection of water levels						-
	a) Biweekly for Month 0 to 3 (11 samples)	6	Round	\$1,500	\$9,000	\$8,570	
	 b) Monthly for Month 3 to 12 (11 samples) 	9	Round	\$1 <i>,</i> 500	\$13,500	\$12,860	
	c) Quarterly for Year 1 to 100 (11 samples)	4	Round	\$1,500	\$6,000	\$20,26 0	Ţ
В.	Post Cleanup						1
	1) Collection of water levels						1
	a) Annually for Years 100 to 105 (5 samples)	1	Round	\$1,000	\$1,000	\$3,390	1
	Subtotal - Direct Operation and Main	ntenance Costs				\$3,061,250	- 1
INDI	RECT OPERATION AND MAINTENAN	ICE COSTS					i.
	Administration and Legal (20% of Su	ubtotal)				\$612,250	ر ۱
	Subtotal - Indirect Operation and Ma	intenance Cos	ts			\$612,250	>
	SUBTOTAL - OPERATION AND M.	AINTENANCI	E COSTS			\$3,673,500	*
	CONTINGENCY (25%)					\$918,3 80	ļ
	ESTIMATED PRESENT WORTH BA NET DISCOUNT RATE, OVER A 10 PERIOD AND 5 YEAR POST-CLEAI	0 YEAR CLEA	NUP			\$4,591,880	

TABLE B-6

۲

~

OPERATION AND MAINTENANCE COSTS GROUNDWATER EXTRACTION/TREATMENT SYSTEM

	Annual Costs					
Ite m	Description	Estimated Quantity	Unit	Unit Cost	Total Cost	Present
DIRECT	PERATION AND MAINTENANCE			COSt	Cosr	Worth
Treatment I	Plant Operation					
1) Po	wer costs					
a)	Annual costs for equipment for Years 0 to 10	1	LS	\$13,600	\$13,600	\$141,170
2) Op	erating staff for Years 0 to 10	1	LS	\$30,000	\$30,000	\$311,400
	pital replacement (20% of pipment costs)	1	LS	\$20,000	\$20,000	\$207,600
4) Slu	dge disposal (if required)	1	LS	\$24,600	\$24,600	\$255, 350
5) Ca	rbon replacement	1	LS	\$50,000	\$50,000	\$519,000
	npling of extraction system and alysis for TCL VOCs					
a)	Perform quarterly for Years 0 to 10 (4 samples)	4	Round	\$1,200	\$4.300	\$49,820
7) Sar TC	npling of discharge system for L VOCs					
a)	Perform monthly for Months 0 to 6	6	Round	\$300	\$1,800	\$1,800
b)	Perform quarterly for Months 6 to 12 (1 sample)	2	Round	\$300	\$600	\$570
c)	Perform quarterly for Years . 1 to 10 (1 sample)	4	Round	\$300	\$1,200	\$11,310

OPERATION AND MAINTENANCE COSTS GROUNDWATER EXTRACTION/TREATMENT SYSTEM

RASMUSSEN SITE

		Annual Costs					
Iter	n Description	Estimated	Unit	Unit	Total	Present	
Samı	oling of Wells	Quantity		Cost	Cost	Worth	
A.	During Cleanup Operation						
	 Sampling of downgradient well water and analysis for TCL VOCs 						
	a) Perform annually for Years 0 to 10 (3 samples)	1	Round	\$2,025	\$2,025	\$21,010	
	 b) Perform semi-annually for Years 0 to 10 (3 samples) 	1	2 Rounds	\$4,095	\$4,095	\$42,500	\smile
	2) Sampling of affected groundwater zone and analysis for TCL VOCs						
	a) Perform semiannually for Years 0 to 10 (2 samples)	2	Round	\$1,365	\$2,730	\$11,820	
	 Sampling of affected groundwater zone perimeter and analysis for TCL VOCs 						
	a) Perform annually for Years 0 to 10 (2 samples)	1	Round	\$1,350	\$1,350	\$5,84 0	
В.	Post Cleanup						
	 Sampling of downgradient well water and analysis for TCL VOCs 						ہے۔
	a) Perform annually for Years 10 to 15 (4 samples)	1	Round	\$2,700	\$2 <i>,7</i> 00	\$9,160	
	2) Sampling of affected groundwater zone and analysis for TCL VOCs						
	a) Perform annually for Years 10 to 15 (2 samples)	1	Round	\$1,350	\$1 <i>,</i> 350	\$4,580	
Hydr	aulic Monitoring						
Α.	During Cleanup Operation						1
	1) Collection of water levels						

1) Collection of water levels

٩

OPERATION AND MAINTENANCE COSTS GROUNDWATER EXTRACTION/TREATMENT SYSTEM

			_			
Item	Description	Estimated Quantity	Unit	Unit Cost	Total Cost	Present Worth
	a) Biweekly for Month 0 to 3 (11 samples)	6	Round	\$1,500	\$9,000	\$8,570
	 b) Monthly for Month 3 to 12 (11 samples) 	9	Round	\$1,500	\$13,500	\$12,860
	c) Quarterly for Year 1 to 10 (11 samples)	4	Round	\$1,500	\$6,000	\$20,260
В.	Post Cleanup					
1) Collection of water levels					
	a) Annually for Years 10 to 15 (5 samples)	1	Round	\$1,000	\$1,000	\$3, 390
	Subtotal - Direct Operation and Main	itenance Costs				\$1,638,010
INDIR	ECT OPERATION AND MAINTENAN	CE COS TS				
	Administration and Legal (20% of Su	btotal)				\$327,600
	Subtotal - Indirect Operation and Ma	i ntenance Cos	ts			\$327,600
	SUBTOTAL - OPERATION AND MA	AINTENANCI	E COSTS			\$1,965,610
	CONTINGENCY (25%)					\$491,400
	ESTIMATED PRESENT WORTH BA NET DISCOUNT RATE, OVER A 10 PERIOD AND 5 YEAR POST-CLEAN	YEAR CLEAN	IUP			\$2,457,010

APPENDIX C

-2

.

-

HELP MODEL OUTPUT

REFERENCE 2433 MDNR PROPOSED DESIGN SEPTEMBER 26, 1990

. 🔺

 \sim

GOOD GRASS

LAYER 1

,

VERTICAL PERCOLATION LAYER		
THICKNESS	-	12.00 INCHES
EVAPORATION COEFFICIENT	=	4.500 MM/DAY**0.5
POROSITY		0.5210 VOL/VOL
FIELD CAPACITY	=	0.3770 VOL/VOL
WILTING POINT	=	0.2210 VOL/VOL
EFFECTIVE HYDRAULIC CONDUCTIVITY	-	0.88199991 INCHES/HR

LAYER 2

SLOPE = 12.00 PERCENT	
DRAINAGE LENGTH = 250.0 FEET	
THICKNESS = 12.00 INCHES	
EVAPORATION COEFFICIENT = 3.400 MM/DAY**0.	5
POROSITY = 0.4300 VOL/VOL	
FIELD CAPACITY = 0.1610 VOL/VOL	
WILTING POINT = 0.0600 VOL/VOL	
EFFECTIVE HYDRAULIC CONDUCTIVITY = 2.77999997 INCHE	S/HR

LAYER 3

BARRIER SOIL LAYER		
THICKNESS	-	36.00 INCHES
EVAPORATION COEFFICIENT	-	3.100 MM/DAY**0.5
POROSITY	-	0.5200 VOL/VOL
FIELD CAPACITY	=	0.4500 VOL/VOL
WILTING POINT	=	0.3600 VOL/VOL
EFFECTIVE HYDRAULIC CONDUCTIVITY	-	0.00014200 INCHES/HR

GENERAL SIMULATION DATA

SCS RUNOFF CURVE NUMBER	-	80.59
TOTAL AREA OF COVER	*8	220000. SQ. FT
EVAPORATIVE ZONE DEPTH	=	10.00 INCHES
EFFECTIVE EVAPORATION COEFFICIENT	-	4.500 MM/DAY**0.5
UPPER LIMIT VEG. STORAGE	-	5.2100 INCHES
INITIAL VEG. STORAGE	-	2.9900 INCHES

CLIMATOLOGIC DATA FOR E. LANCING MICHIGAN

MONTHLY MEAN TEMPERATURES, DEGREES FAHRENHEIT

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
			*		
23.10	24.95	32.83	44.62	57.15	67.09
71.75	69.90	62.02	50.23	37.70	27.76

MONTHLY MEANS SOLAR RADIATION, LANGLEYS PER DAY

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
121.19	185.29	286.98	399.01	491.38	539.31
529.98	465.88	364.19	252.15	159.79	111.85

LEAF AREA INDEX TABLE

DATE	LAI
1	0.00
126	0.00
142	1.23
158	2.01
173	2.01
189	2.01
205	2.01
221	2.01
237	1.81
252	1.31
268	0.64
284	0.34
366	0.00

GOOD GRASS

WINTER COVER FACTOR = 1.20

.

AVERAGE MONTHLY TOTA	LS FOR	74 THRO	JGH 78			
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION (INCHES)	2.19 2.03	1.67 3.66	2.99 2.81	2.95 1. 61	2.34 2.30	3.26 2.20
RUNOFF (INCHES)	0.000	0.000	0.050	0.145	0.023	0.074

	0.027	0.195	0.000	0.002	0.000	0.000
EVAPOTRANSPIRATION	0.812	1.109	2.273	2.619	2.314	2.338
(INCHES)	1.901	2.101	1.956	1.559	1.012	0.799
PERCOLATION FROM BASE	0.0830	0. 0376	0.0490	0.1266	0.1238	0.1150
OF COVER (INCHES)	0.1157	0.1165	0.1119	0.1140	0.1130	0.1139
DRAINAGE FROM BASE OF	0.101	0.013	0.201	1.639	1.224	0.738
COVER (INCHES)	0.600	0.510	0.692	0.579	0.491	0.428

AVERAGE ANNUAL TOTALS FOR 74 THROUGH 78

.

	(INCHES)	(CU. FT.)	PERCENT
PRECIPITATION	30.00	550037.	100.00
RUNOFF	0.516	9453.	1.72
EVAPOTRANSPIRATION	20.793	381209.	69.31
PERCOLATION FROM BASE OF COVER	1.2201	22368.	4.07
DRAINAGE FROM BASE OF COVER	7.216	132292.	24.05

PEAK DAILY VALUES FOR	74 THROUGH	78
	(INCHES)	(CU. FT.)
PRECIPITATION	3.08	56466.3
RUNOFF .	0.694	12728.6
PERCOLATION FROM BASE OF COVER	0.0101	184.5
DRAINAGE FROM BASE OF COVER	0.123	2246.6
HEAD ON BASE OF COVER	19.3	
SNOW WATER	6.53	119739.2

MAXIMUM VEG.	SOIL WATER	(VOL/VOL)	0.4578
MINIMUM VEG.	SOIL WATER	(VOL/VOL)	0.2210

٩

•

.

•

REFERENCE 2433 RSSC PROPOSED DESIGN UNCOMPACTED SEPTEMBER 26, 1990

.

. >

GOOD GRASS

LAYER 1

VERTICAL PERCOLATION LAYER		
THICKNESS	-	6.00 INCHES
EVAPORATION COEFFICIENT	-	4.500 MM/DAY**0.5
POROSITY	-	0.5210 VOL/VOL
FIELD CAPACITY	-	0.3770 VOL/VOL
WILTING POINT	=	0.2210 VOL/VOL
EFFECTIVE HYDRAULIC CONDUCTIVITY	-	0.88199991 INCHES/HR

LAYER 2

LATERAL DRAINAGE LAYER		
THICKNESS	=	18.00 INCHES
EVAPORATION COEFFICIENT	=	3.800 MM/DAY**0.5
POROSITY	-	0.4420 VOL/VOL
FIELD CAPACITY	-	0.2560 VOL/VOL
WILTING POINT	-	0.1330 VOL/VOL
EFFECTIVE HYDRAULIC CONDUCTIVITY	-	0.67000002 INCHES/H

LAYER 3

LATERAL DRAINAGE LAYER		
SLOPE	-	12.00 PERCENT
DRAINAGE LENGTH	**	250.0 FEET
THICKNESS	=	6.00 INCHES
EVAPORATION COEFFICIENT	-	3.400 MM/DAY**0.5
POROSITY	-	0.4300 VOL/VOL
FIELD CAPACITY	-	0.1610 VOL/VOL
WILTING POINT	-	0.0600 VOL/VOL
EFFECTIVE HYDRAULIC CONDUCTIVITY	-	2.77999997 INCHES/HR

BARRIER SOIL LAYER		
THICKNESS	-	24.00 INCHES
EVAPORATION COEFFICIENT	=	3.100 MM/DAY**0,5
POROSITY		0.5200 VOL/VOL
FIELD CAPACITY	-	0.4500 VOL/VOL
WILTING POINT	-	0.3600 VOL/VOL
EFFECTIVE HYDRAULIC CONDUCTIVITY	-	0.00014200 INCHES/HR

GENERAL SIMULATION DATA

SCS RUNOFF CURVE NUMBER	-	80.59
TOTAL AREA OF COVER	-	220000. SQ. FT
EVAPORATIVE ZONE DEPTH	-	10.00 INCHES
EFFECTIVE EVAPORATION COEFFICIENT	=	4.449 MM/DAY**0.5
UPPER LIMIT VEG. STORAGE	=	4.8940 INCHES
INITIAL VEG. STORAGE	=	2.5720 INCHES

CLIMATOLOGIC DATA FOR E. LANCING MICHIGAN

.

MONTHLY MEAN TEMPERATURES, DEGREES FAHRENHEIT

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
23.10	24.95	32.83	44.62	57.15	67.09
71.75	69.90	62.02	50.23	37.70	27.76

MONTHLY MEANS SOLAR RADIATION, LANGLEYS PER DAY

JAN/JUL	FEP/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
121.19 529.98	185.29 465.88	286.98 364.19	399.01 252.15	491.38 159.79	539.31 111.85

LEAF AREA INDEX TABLE

DATE	LAI
1 126	0.00
142 158	1.23
173	2.01
189 205	2.01 2.01
221 237	2.01 1.81
252 268	1.31
284 366	0.34

GOOD GRASS

WINTER COVER FACTOR = 1.20

4

1

	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION (INCHES)	2.19 2.03	1.67 3.66		2.95 1.61	2.34 2.30	3.26 2.20
RUNOFF (INCHES)	0.000 0.027	0.000 0.194	0.048 0.000	0.144 0.002	0.022 0.000	0.074 0.000
EVAPOTRANSPIRATION (INCHES)	0.812 1.958	1.109 2.151	2.274 1.952	2.632 1.566	2.258 1.068	2.386 0.800
PERCOLATION FROM BASE OF COVER (INCHES)	0.0809 0.1231				0.1464 0.1163	
DRAINAGE FROM BASE OF COVER (INCHES)	0.102 0.690	0.016 0.517	0.197 0.611	1.274 0.601	1.147 0.475	
****	*******	*******	*******	*******	******	******

AVERAGE MONTHLY TOTALS FOR 74 THROUGH 78

AVERAGE ANNUAL TOTALS FOR 74 THROUGH 78

	(INCHES)	(CU. FT.)	PERCENT
PRECIPITATION	30.00	550037.	100.00
RUNOFF	0.511	9376.	1.70
EVAPOTRANSPIRATION	20.967	384388.	69.88
PERCOLATION FROM BASE OF COVER	1.3069	23960.	4.36
DRAINAGE FROM BASE OF COVER	6.937	127186.	23.12

.

_	(INCHES)	(CU. FT.)
PRECIPITATION	3.08	56466.7
RUNOFF	0.696	12753.4
PERCOLATION FROM BASE OF COVER	0.0106	194.4
DRAINAGE FROM BASE OF COVER	0.094	1721.8
HEAD ON BASE OF COVER	22.4	
SNOW WATER	6.53	119739.2
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.366	52
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.185	58

.

.

,

APPENDIX D

4

•

٠

RSSC OCTOBER 1990 SAMPLING RESULTS

SAMPLING PROGRAM MEMORANDUM

.

<u>CONESTOGA-ROVERS & ASSOCIATES</u> <u>MEMORANDUM</u>

TO:	Cliff Eng
FROM:	Walter Pochron
DATE:	October 17, 1990
REF. NO:	2433
RE:	Groundwater Sampling and Hydraulic Monitoring Rasmussen Site Livingston County, Michigan

Groundwater samples were collected from six monitoring wells within the Rasmussen property and from one monitoring well on the Speilgelberg property immediately west of the Speilgelberg/Rasmussen property boundary. The sampled wells consisted of RA-MW-18D; RA-MW-22, RA-MW-28, RA-MW-32, RA-MW-34, RA-MW-54 and SP-MW-25D. Sampling activities commenced on October 10, 1990 and were completed on October 11, 1990. Oversight of the groundwater sampling activities was performed by the Michigan Department of Natural Resources (MDNR). The groundwater sampling activities consisted of the following activities.

Groundwater Sampling

All sampling and/or purging equipment (i.e.; bailer, submersible pumps, etc.) were precleaned prior to use. Decontamination consisted of a wash with Alconox and distilled water followed by a rinse with methanol and a final rinse with distilled water. The equipment was then wrapped in aluminum foil until needed.

Prior to sample collection, the static water level and well depth were measured and recorded. These measurements were then used to calculate well volumes. Wells RA-MW-18D and SP-MW-25D were purged using a pre-cleaned four-inch Franklin electric pump; all of the remaining wells were purged using pre-cleaned stainless-steel bailers. New nylon rope and latex gloves were used at each well location. A minimum of three well volumes were purged from each well prior to sample collection. Field measurements of pH and conductivity were recorded following removal of each standing well volume. Well purging continued until three consistent and consecutive readings \pm 10% for pH and conductivity were achieved or a maximum of five well volumes had been removed. The temperature of the excavated water was recorded at the completion of purging activities. Calibration of the pH and conductivity meter was performed on a daily basis. Water generated during the purging activities were allowed to discharge onto the ground surface.

A summary of the groundwater samples and field parameters is presented in Attachment 1.

Immediately following purging of each well, groundwater samples were collected. Groundwater samples were poured directly from the bailer into precleaned bottles supplied by the analytical laboratory. Dissolved metals samples were field filtered by CRA, utilizing a Cole-Parmer filtration kit and 0.45 micron filter paper. All samples requiring preservation were then preserved. The bottle, handling and preservation requirements for each analytical parameter is presented in Attachment 2. The samples collected were placed in a shipping cooler on ice and shipped under chain-of-custody protocol to the contract laboratories, Radian of Sacramento, California, Radian of Milwaukee, Wisconsin and Ensecon in Cambridge, Massachusetts.

Quality Assurance/Quality Control samples collected during this event consisted of two trip blanks, one rinsate blank, one field water blank, one field duplicate and a matrix spike/matrix spike duplicate.

Hydraulic Monitoring

An attempt was made to collect water levels on all of the monitoring wells within the Rasmussen property and a few selected bordering wells on the Spiegelberg property. Water levels were recorded using a Solinst water level meter precleaned with distilled water between wells. Water level data is presented in Attachment 3. Water levels were not recorded at RA-MW-43, 81-1, and SP-MW-29 because these borings were never completed as monitoring wells. Wells RA-MW-23D, RA-MW-31D, RA-MW-35 and 81-11 were not able to be located in the field. Well SP-MW-15 had recently been washed over by sediments and was unable to be located. Access to well SP-MW-37 was prohibited because CRA was provided with the wrong accessing tool by the MDNR.

WJP/lo/1

Attachments

cc: K. Myers B. Monteith

201

L

SUMMARY OF QA/QC GROUNDWATER SAMPLES RASMUSSEN SITE

Well # RA-MW-28

4

Well Depth = 47.30 ft.	Well Volume =	= 1.45 Gal.
Water Level = 38.18 ft.	Sample Date =	= 10/10/90
	Sample Time =	: 13:31

Sample # W-101090-WP-001

Gallons		Cond.		
Removed	pH	μmos	Temp.	Clarity
1.5	6.50	610	13	cloudy
3.0	6.85	710	13	cloudy
4.5	6.90	730	13	cloudy
6.0	6.90	710	13	cloudy

Analyses: VOC, BNA, Total Metals, Dissolved Metals, General Chemistry¹

Well # RA-MW-34

Well Depth =	100.57 ft.	Well Volume	=	10.06 Gal.
Water Level =	37.65 ft.	Sample Date	=	10/10/90
		Sample Time	=	14:30

Sample # W-101090-WP-002

Gallons Removed	pH	Cond. µmos	Temp. ℃	. Clarity
10	6.68	890	12.0	clear, no odor
20	6.70	910	12.0	clear, no odor
30	6.80	920	12.0	clear, no odor

Analyses: VOC, BNA, Total Metals, Dissolved Metals, General Chemistry¹

¹Note: General Chemistry includes: TOC, COD, TDS, TSS, Alkalinity, Bicarbonate, Carbonate, BOC

٦

٦

٦

٩

¥

SUMMARY OF GROUNDWATER SAMPLES AND FIELD PARAMETERS RASMUSSEN SITE

Well # RA-MW-54

Well Depth	-#	56.93 ft.	Well Volume	=	1.03 Gal.
Water Level	=	50.52 ft.	Sample Date	=	10/10/90
			Sample Time	=	16:30

Sample # W-101090-WP-003

Gallons		Cond.	Temp.		
Removed	pН	μmos	ଂ	Clarity	
1	6.56	920	12	cloudy	
2	6.67	1020	12	cloudy	
3	6.67	1120	12	cloudy	
4	6.62	1140	12	cloudy	

Analyses: VOC, BNA

Well # RA-MW-22

Well Depth	#	54.18 ft.	Well Volume	=	1.33 Gal.
Water Level	=	45.85 ft.	Sample Date	=	10/10/90
			Sample Time	=	17:10

Sample # W-101090-WP-004

Gallons		Cond.	Temp.		
Removed	pH	μmos	°C	Clarity	
1.4	6.60	840	13	cloudy	
2.8	6.73	960	13	cloudy	
4.2	6.76	1000	13	cloudy	
5.6	6.79	1040	13	cloudy	

Analyses: VOC, BNA, Total Metals, Dissolved Metals, General Chemistry¹

¹Note: General Chemistry includes: TOC, COD, TDS, TSS, Alkalinity, Bicarbonate, Carbonate, BOC

SUMMARY OF GROUNDWATER SAMPLES AND FIELD PARAMETERS RASMUSSEN SITE

Well # RA-MW-18D and MS/MSD

Well Depth = 103.90 ft.	Well Volume	= 32.0 Gal.
Water Level = 54.85 ft.	Sample Date	= 10/11/90
	Sample Time	= 12:50

Sample # W-101190-WP-008

Gallons		Cond.	Temp.	
Removed	pH	µmos	°C	Clarity
32	6.51	680	13	clear
64	6.62	730	13	clear
96	6.64	760	13	clear

Note: MS/MSD sample collected from RA-MW-18D

Analyses: VOC, BNA

Well # SP-MW-25D

Well Depth	=	161.03 ft.	Well	Volume	=	68 Gal.
Water Level	=	57.35 ft.	Samp	le Date	=	10/11/90
			Samp	le Time	=	14:30

Sample # W-101190-WP-009

Gallons		Cond.	Temp.		
Removed	pН	μmos	ଂ	Clarity	
68	6.76	570	13	cloudy	
136	6.79	660	13	clear	
204	6.78	670	13	clear	
272	6.80	680	13	clear	

Analyses: VOC, BNA, Total Metals, Dissolved Metals, General Chemistry¹ ¹Note: General Chemistry includes: TOC, COD, TDS, TSS, Alkalinity, Bicarbonate, Carbonate, BOC

1

ATTACHMENT 1

SUMMARY OF QA/QC GROUNDWATER SAMPLES RASMUSSEN SITE

Duplicate from RA-MW-22

Sample Date = 10/10/90Sample Time = 17:15

Sample # W-101090-WP-005

Analyses: VOC, BNA, Total Metals, Dissolved Metals, General Chemistry¹

Rinsate Blank RA-MW-32 Bailer

Sample Date = 10/11/90Sample Time = 10:35

Sample # W-101190-WP-007

Analyses: VOC, BNA

Field Water Blank

Sample Date = 10/11/90Sample Time = 15:10

Sample # W-101190-WP-010

Analyses: VOC

Solvent Blank

Sample Date = 10/11/90Sample Time = 15:15

Sample # W-101190-WP-011

Analyses: VOC

¹Note: General Chemistry includes: TOC, COD, TDS, TSS, Alkalinity, Bicarbonate, Carbonate, BOC

à,

SAMPLE BOTTLE, HANDLING AND PRESERVATION REQUIREMENTS RASMUSSEN SITE

Analysis	Sample Container	Preservation	Maximum Holding Time	Shipping
TCL-VOC	2 - 40 ml vials	HCL	14 days	Transported Daily
Base/Neutral Acid	2 - 1 liter amber glass bottles	Cool 4°C	7 day extraction 40 days after extraction	Transported Daily
Metals	2 - 1 liter plastic bottles	HNO3	6 months	Transported Daily
BOD	1 - 500 m <i>l</i> amber glass bottle	Cool 4°C	2 days	Transported Daily
TOC/COD	1 - 500 m <i>l</i> glass bottle	H ₂ SO ₄	28 days	Transported Daily
Alkalinity, Bicarbonate, Carbonate, TDS TSS	1 - 500 m <i>l</i> plastic bottle	Cool 4°C	14 days	Transported Daily

HYDRAULIC MONITORING DATA RASMUSSEN SITE

Well Number	Casing Elevation Ft AMSL	Water Level Ft.	Groundwater Elevation Ft. AMSL		
RA-MW-16	906.06	20.96	885.10		
RA-MW-17	922.20	37.49	884.71		
RA-MW-18D	937.51	54.85	882.66		
RA-MW-22	930.06	45.85	884.21		
RA-MW23D	933.54	Not Located	NA		
RA-MW-27	915.04	30.03	885.01		
RA-MW-28	920.92	38.18	882.24		
RA-MW-31D	902.84	Not Located	NA		
RA-MW-32	916.18	33.52	882.66		
RA-MW-33	892.70	9.08	883.63		
RA-MW-34	922.26	37.65	884.61		
RA-MW-35	907.90	Not Located	NA		
RA-MW-36	906.53	25.12	881.41		
RA-MW-38	888.96	8.42	880.54		
RA-MW-39	888.66	3.01	885.65		
RA-MW-41	919.14	44.97	874.14		
RA-MW-42	934.93	61.71	873.22		
RA-MW-43	NA	Soil Boring	NA		
RA-MW-47	920.21	46.90	873.31		
RA-MW-53	920.32	35.49	884.83		
RA-MW-54	934.23	50.52	883.71		
RA-MW-56	915.16	33.25	881.91		
RA-MW-58	902.10	20.30	881.80		
81-1	NA	Soil Boring	NA		
81-2	905.63	20.40	885.23		
81-4	912.38	27.75	884.63		
81-5	915.79	32.52	883.27		
81-6	933. 79	60.78	873.01		
81-7	926.94	45.09	881.85		
81-8	923.95	42.22	881.73		
81-9	896.63	14.93	881.70		
81-10	915.92	31.18	884.74		
81-11	NA	Not Located	NA		

^

ŝ

ATTACHMENT 3

-

HYDRAULIC MONITORING DATA RASMUSSEN SITE

Well	Casing Elevation	Water Level	Groundwater Elevation
Number	Ft. AMSL	Ft.	Ft. AMSL
SP-MW-5D	915. 22	31.87	883.35
SP-MW-15	890.90	Washed Out	NA
SP-MW-19	897.85	8.45	889.40
SP-MW-25D	930.39	57.35	873.04
SP-MW-29	936.40	Soil Boring	NA
SP-MW-30D	901.55	19.50	882.05
SP-MW-37	927.25	Couldn't Assess	NA
SP-MW-44	918.27	45.36	873.61
SP-MW-49	913.30	37.48	875.82

COMPILED ANALYTICAL DATA

TABLE 1

ORGANIC CHEMICAL CONCENTRATIONS - UPPER AQUIFER RASMUSSEN SITE

Well Name Sample No. Sample Date	81-8 RA-GW-63-1 3/17/87	81-8 RAS-2 5/30/90		RA-MW-18D RA-GW-78-1 3/28/87	RA-MW-18D RAS-3 5/31/90		RA-MW-18D (DUP) RAS-4 5/31/90		RA-MW-18D W-101190-WP-008 10/11/90	
Volatile Organics (VOCs)										<u>888</u>
Acetone	No compounds found	ND	(5.0)		5.5 * A	(5.0)	6.5 *	(5.0)	ND	(1 2)
Benzene		ND	(2.5)		ND A	(1.0)	ND	(2.5)	2.6	(0.24)
2-Butanone (MEK)		ND	(5.0)		ND A	(2.0)	ND	(5.0)	ND	(12)
Chlorobenzene		ND	(2.5)		ND A	(1.0)	ND	(25)	ND	(0.25)
Chloraethane		ND	(5.0)		ND A	(2.0)	ND	(5.0)	ND	(0.40)
Chlorafarm		ND	(1.0)		ND A	(1.0)	ND	(1.0)	NÐ	(0.24)
1-Dicklorgethane		ND	(2.5)		ND A	(1.0)	ND	(2.5)	ND	(0.24)
1-Dickloroethene		ND	(1.0)		ND A	(1.0)	ND	(1.0)	ND	(0.20)
2-Dichloroethene (iotaD		ND	(2.5)		ND A	(0. D)	ND	(2.5)	ND	(0.20)
Frane-1,2-Dichloroethene										
the bears		ND	Q.S)		ND A	0.0	ND	Q.5)	ND	(0.24)
Mathyl-2-pentanone (MEBK)		ND	(5.0	300 [55 E	6.0	67 E	ത്ത	53	2.0
Mathylene Chloride		ND	0.5	,	ND A	0.0	ND	0.5)	171	0.20
Tetrachica anti-		ND	0.0		ND A	a.m	ND	(1.0)	ND	(0.24)
Tokuna		ND	2.5		NDA	a.a	ND	Q5)	ND	(0.20)
1.1-Trichlemathene		ND	a.s		NDA	a.m	ND	0.5)	ND	(0.24)
r, , - Luzzaniano,		ND	2.5		NDA	0.0	ND	25)	ND	40.205
		ND	(5.0)		NDA	2.0	ND	6.0	ND	0.20
Vingt Chlaside		ND	(2.5)		ND	(2.0)	ND	Q.5)	ND R	0.20
Kylone (Talaŭ			(6-3)			42.109	ND	4.41		40.207
Base Neutral/Acid Extractables (BNAs)	•									
Benzo(a)Anthroune		ND	(5.0)		ND	(5.0)	ND	(5.0)	ND	(5.0)
fenzoic acid		ND	(25)		1 7 J	(25)	ND	Q 5)	ND	(25)
Benzyi Alcohol		ND	(5.0)		ND	ር ወ)	ND	(5.0)	ND	(S.D)
Butylbenzylphthalate		ND	(5.0)		ND	G.Ø)	ND	(S-0)	ND	(S.O)
Die Butylphthalete		ND	(5.0)		ND	G.0)	ND	ርወ	ND	(5.Q)
Di-a-Octylphthalate		ND	(5.0)		ND	(S.Ø)	ND	(S.O)	10	(S.O)
Chlorophenol		ND	(5.0)		ND	ር ወ	ND	(5.0)	ND	(5.0)
Chrysene		ND	(S. G		ND	ር ወ	ND	(S.O)	ND	(S.0)
4-Dimethylphenol		ND	(5.0)		ND	60	ND	(5.0)	NÐ	(S.0)
2-EthylhexyUphthalate		ND	(5.0		16 *	S.O	19 *	(5.0)	64	(5.O)
isophorae		ND	(5.0		ND	6.0	ND	(5.0)	ND	(5.0)
2-Methylphenol		ND	(5.0)		ND	ຣິທ	ND	(5.0)	ND	6.0
-Methylphenol (p-cresol)		ND	(5.0)		ND	6.0	ND	5.0	ND	(5.0)
N-Nitrosodiphenylamiae		ND	6.0		ND	5.0	ND	5.0	ND	6.0
					-	6.0		ອີມ	ND	6.0
N-Nitrogo-di-a-propylamiae		ND	(S.Q)		ND		ND	6.111	NU	

Notes:

For MDNR results (1987)

For 1990 Results (Lab qualifiers)

B Compound detected in laboratory and/or field blank

J Analytical value is approximate

- ND None detected at stated detection limits. Stated detection limits are values in parenthesis. These values
- are PQLs except as otherwise noted by AAA for VOCs.
- * The analyte result is less than five times the specified detection limit and therefore estimated.
- A The associated value is estimated due to outlying surrogate recoveries
- E The associated value exceeded the linear calibration range and is therefore estimated
- Detected at less than detection limit
- U The parameter was analyzed but not detected above the associated value. The associated value
- has been adjusted to reflect possible laboratory contamination.

R. Data rejected; analyte may or may not be present.

AAA Reported detection limit is method specified Method Detection Limit (MDL) and does not represent actual sample detection limit achieved for analysis of the VOC sample.. The PQL will at a minimum be 5 times this reported limit.

.

Page 1 of 7

,A

TABLE 1

ORGANIC CHEMICAL CONCENTRATIONS - UPPER AQUIFER RASMUSSEN SITE

Well Name Sample No. Sample Date	SP-MW-5D SP-GW-57-1 3/23/87	SP-MW-SD &AS-6 \$/31/90		81-5 SP-GW-56-1 3/18/87	81-5 RAS-7 5/31/90		RA-MW-27 RA-GW-81-1 3/20/87	RA-MW-27 RAS-8 S/31/90		
olatile Organics (VOCs)										
Acetone		ND	(5.0)		ND	(5.0)		ND R	(5.0)	
Benzene	5	11	(2.5)		11	Q5)		ND R	(2.5)	
2-Justanone (MEK)		ND	(5.0)		ND	(5.0)		ND	(10)	
Chlorobeszene		ND	(2.5)		ND	(2.5)		ND R	Q.5)	
Chloroethane		6.5 °	(5.0)		16	фD)		ND R	¢.0	
Chloroform		ND	(1.0)		ND	(1.0)		ND R	Q.S)	
1,1-Dichloroethane	66	120	(16)	26	38	(2.5)		ND R	(2.5)	
1,1-Dichloroethene		ND	(1.0)		ND	(0.0)		ND R	(2.5)	
1,2-Dichloroethese (total)		12	(2.5)		11	(2.5)		ND R	(2.5)	
Trans 1,2-Dichloroethene	7			2]						
Ethylbeszene		ND	(2.5)		ND	Q.5)		ND R	(2.5)	
4-Methyl-2-pentanone (MIBK)		ND	(5.0)		ND	S.M		ND R	6.0	
Mathylene Chioride	1]	ND	(2.5)		ND	Q.S)		ND R	(2.5)	
Tetrachloroethene		ND	(1.0)		ND	(1.0)		ND R	Q.5)	
Tolurar		ND	(2.5)		ND	(2.5)		ND R	(2.5)	
1,1,1-Trichloroethane	12	31	(2.5)		5.7	(2.5)		ND	60	
Trichloroethene		ND	(2.5)		ND	(2.5)	120	39 H		
Viavi Chloride	11	6.6 *	(5.0)		32	(S.Ø)		ND R	(S.0)	
Xylene (Total)	-	ND	(2.5)		ND	Q.S)		ND R	(2.5)	
Base Neutral/Acid Extractables (BNAs)	,									
Benzo(a)Anthracene		ND	(5.0)		ND	6.0)				
Benzoic acid		ND	(25)		ND	(25)				
Benzyi Alcohol		ND	(5.0)		ND	(C.O)				
Butylbenzylphthalate		ND	(5.0)		ND	(5.0)				
Di a Butylphthalate		ND	(5.0)		ND	(لا ی				
Di-a-Octylphthalate		ND	(5.0)		ND	(C.O)				
2-Chlorophenol		ND	(5.0)		ND	(C.O)				
Chrysene		ND	(5.0)		ND	ይ ወ				
2,4-Dimethylphenol		ND	(5.0)		ND	(5.0)				
bioQ-EthylhenyOpithalate		ND	(5.0)		9.5 °	(S.0)				
Lophorene		ND	(5. Q)		ND	(S.0)				
2-Methylphenol		ND	(5.0)		ND	С Щ				
4 Methylphenol (p-czesol)		ND	(5.0)		ND	6.0)				
N-Nitrosodiphenylamins		ND	(5.0)		ND	ርወ				
N-Nitroso-dl-a-propylamiae		ND	(5.0)		NÐ	60)				
Phenol		ND	(5.0)		ND	(5.0)				

Notes:

For MDNR results (1987)	Eor
B Compound detected in laboratory	ND
and/or field blank	
[Analytical value is approximate	۰τ

- İnsund Ülerini Ülerini

r 1990 results (Lab qualifiers)

D None detected at statud detection limits. Stated detection limits are values in parenthesis. These values are PQLs except as otherwise noted by AAA for VOCs.

The analyte result is less than five times the specified detection limit and therefore estimated.

H The associated value is estimated due to holding time exceedances and may indicate a low bias in results.

R The associated value is unusable due to ambient sample temperature.

1

T The associated value is estimated due to ambient sample temperatures and may indicate a low bias in results. U The parameter was analyzed but not detected above the associated value. The associated value

has been adjusted to reflect possible laboratory contamination.

Page 2 of 7

ألأشي

100.00

م مراجع المراجع
ORGANIC CHEMICAL CONCENTRATIONS - UPPER AQUIFER **BASMUSSEN SITE**

Well Name Sample No. Sample Date	RA-MW-17 RA-CW-72-1 3/20187	RA-MW-17 RAS-30 6/01/90		RA-MW-54 RA-GW-84-1 3/20/87	RA-MW-54 RA-GW-84A-1 3/28/87	RA-MW-54 RA5-12 6/01/90		RA-MW-54 W-101090-WP-003 10/10/90	
Volatile Organics (VOCs)									AAA
Acitone	No compounds found	ND R	(20)			ND R	(20)	230 U	(12)
Benzene		ND R	(1.0)	270 }	260 j	100 T	Q5)	170 ND	(2.4) (120)
2-Butanone (MEK)		NĐ R	(10)	1.000	1000	ND R 320 T	(10) (120)	ND 650	(120) (2.8)
Chlorobenzene		ND R	(1.0)	1000	1000	320 J 170 T	(5.0)	650 110	(4.0)
Chloroethane		ND R	(2.0)			ND R	(3.0)	ND	(2.1)
Chloraform		ND R	(1.0)	300 1	310	52 T	(1.0)	67	2.0
1,1-Dickloroethane		ND R	(1.0)	300 j	310)	NDR	(1.0)	ND	(2.0)
1,1-Dichloroethene		ND R ND R	(1.0) (1.0)			41 T	(1.5)	ND	(2.0)
1,2-Dichlororthene (total)		NDR	(1.0)	Z70]	240 [NDR	(1.0)	ND	(2.0)
Trans-1,2-Dickloroethese		NDR	(1.0)	5101	500	120 T	(120)	280	Q 4)
Ethylbenzene		ND R	(10)	6900 1	7900 T	NDR	(10)	ND	20
4-Methyl-2-pentanone (MIBK)		NDR	(1.0)	0700 }	7900]	NDR	0.0	24 U	20
Methylene Chloride		NDR	(1.0)			NDR	0.00	ND	2.4
Tetrachloroethene Tokuene		NDR	0.0	18000 B	18000 B	900 T	0.20)	30	2.0
1.1.1-Trichlavethane		NDR	6.0	10000 8		ND R	G.D	ND	2.0
1,1,1-1 Inclusion of the set		NDR	(1.0)			ND R	0.0	ND	20
Viewi Chierte		NDE	2.9		% I	300 ET	2.0	130	20
Xylene (Tatal)		ND R	0.0	3800	3700	440 T	(120)	1300 E	20
A Sinte (Ionale			11.000						
Base Neutral/Acid Extractables (BNAs)	•								
Benzo(a)Anthracene		ND T	(5.0)			ND T	(5.0)	ND	(26)
Benzoic acid		ND T	(5.0)			ND T	(5.0)	ND	(130)
Benzyl Alcohol		ND T	(10)			ND T	00	ND	(26)
ButyBenzylphthslate		ND T	(5.0)			ND T	(C.Q)	ND	(26)
Di-a-Butylphthalate				21]				ND	(26)
Di-a-Octylphthalate		ND	(5.0)			ND	(C.O)	ND ND	(26) (26)
2-Chlorophenot		ND T	(5.0)			ND T	(5.0)	• • • •	
Chrysene		ND T	(5.0)			ND T	(S.O)	ND ND	(26) (26)
2,4-Dimethylphenol		ND T	(5.0)			ND T	(C.O)	ND	(26)
bisQ-EthylhexyOphthalate		14 U	(5.0)			62 U	(5.0) (5.0)	ND	(26)
leophonne		ND T	(5.0)			ND T	(5.0)	ND	(26)
2-Methylphenoi				260	270		<i>e</i> 01	ND	(26)
4-Methylphenol (p-cresol)		ND T	(5.0)	110		66 T	۵D)	ND	(26)
N-Nitrosodiphenylamine		ND Ť	(5.0)			ND T	¢.0)	ND	(26)
N-Nitroso di n-propylamine				A. 7			<i>a</i>	ND	(26)
Pheno		ND T	(5.03	21]	24	ND T	(5.0)	ND	(4.0)

Notes:

For MDNR results (1987) B Compound detected in laboratory and/or field blank **J** Analytical value is approximate

For 1990 moules (Lab qualifiers) ND None detected at stated detection limits. Stated detection limits are values in paranthesis. These values

are PQLs except as otherwise noted by AAA for VOCs.

E The associated value exceeded the linear calibration range and is therefore estimated.

R The amociated value is unusable due to ambient sample temperature.

T The associated value is estimated due to ambient sample temperatures and may indicate a low bias in results.

U The parameter was analyzed but not detected above the associated value. The associated value

has been adjusted to reflect possible laboratory contamination.

| Value is an estimate

AAA Reported detection limit is method specified Method Detection Limit (MDL) and does not represent actual sample detection limit achieved for analysis of the VOC sample.. The PQL will at a minimum be 5

times this reported limit.

ÌB.

	TA	BL	Æ	L
--	----	----	---	---

DEGANIC CHEMICAL CONCENTRATIONS - UPPER AQUIFER RASMUSSEN SITE

Well Name Sample No. Sample Date	RA-MW-22 RA-GW- 6N- 1 4/1 0/85	RA-MW-22 RA-GW-40-1 34/31/85	RA-MW-22 RA-GW-83-1 3/20/87	RA-MM W-301090-1 10/10/	WP-001	RA-MW-1 W-101090- 10/10	WP-006	RA-MW-28 RA-GW-11-1 4/18/85
Volatile Organics (VOCs)					AAA		444	
Acton	26000 B	9500 B		700 U	(60)	700 U	(60)	
Benzene	700	550 J	470 j	51 J	(12)	47]	(12)	
2-Butanone (MEK)	74000 B	18000 B		ND	(600)	ND	(600)	
Chlorobenzene	3700	3500	3600	890	(14)	850	(14)	
Chloroethane				ND	(20)	ND	(20)	
Chloraform				ND	(12)	ND	(12)	5 J
1.1-Dichlorosthane	550		4S0 J	130	(12)	120	(12)	5.8
1.1-Dichlorosthese				ND	(10)	ND	(10)	
1,2-Dichloroethene (total)	500 }		590 J	51	(10)	43]	(10)	
Trans-1,2-Dichloroethene	•							
Ethylbenzene	2400	2300]	2400	680	(12)	650	(12)	
4-Methyl-2-pestanone (MIBK)	30000	9900	4500]	ND	(100)	ND	(100)	
Mathyiane Chloride		1100 Bj		130 U	60)	110 U	(1 0)	
Tetrackloroethene		•		ND	(12)	ND	(12)	
Tohurne	71000	51000	45000 18	ND	(14)	ND	(14)	
1.1.1-Trichloroethane	500		290 j	75	(12)	59 J	(12)	120
Trichloroethene	500 Í		230]	ND	(10)	ND	(10)	8.6
Viayi Chloride	•			ND	(10)	ND	(10)	
Xylene (Total)	9100	10000	11000	4100 j	(10)	3800 j	(10)	
Base Neutral/Acid Extractables (BNAs)								
Benzo(a)Anthracene				ND	(50)	ND	(60)	
Benzoic acid		17 J		ND	(250)	ND	(300)	
Beazyl Alcohol	12			ND	(50)	ND	(60)	
Butymenzylphthalate				ND	(50)	ND	(60)	
Di-a-Butylphthelate				ND	69	ND	(60)	
Di-a-Octylphthalate				ND	(50)	ND	(60)	
2-Chiorophenol	12	17		ND	(50)	ND	(60)	
Chrysene				ND	(50)	ND	(60)	
2,4-Dimethylphenol	14	22		50	60)	ND	(60)	
bisQ-EthythenyiDphthalate				ND	60)	ND	(60)	12 B
leophorene	440	310	91 J	ND	(50)	ND	(60)	
2-Methylphenol	800	1600	950)	67	(50)	85	(60)	
4 Mathylphenol (p-cresol)	70	280	160 }	ND	(50)	ND	(6C))	
N-Nitrosodiphenylamine				11	(D.O)	ND	(60)	
N-Nitroso-di-a-propylamine				ND	60)	ND	(60)	
Phenol	62	17	24 J	ND	(50)	ND	(60)	

Notes:

For MDNR results (1987)

B Compound detected in laboratory and/or field blank

For 1990 results (Lab qualifiers) ND None detected at stated detection lumits. Stated detection limits are values in parenthesis. These values are PQLs except as otherwise noted by AAA for VOCs.

J Analytical value is approximate

E The associated value exceeded the linear calibration range and is therefore estimated.

E. The associated value is transible due to ambient sample temperature.
R. The associated value is estimated due to ambient sample temperatures and may indicate a low bias in results.
U. The parameter was analyzed but not detected above the associated value. The associated value

has been adjusted to reflect possible laboratory contamination.

J Value is an estimate

AAA Reported detection limit is method specified Method Detection Limit (MDL) and does not represent actual sample detection limit achieved for analysis of the VOC sample.. The IQL will at a minimum be 5 times this reported limit.

ORGANIC CHEMICAL CONCENTRATIONS - UPPER AQUIFER RASMUSSEN SITE

Well Name	RA-MW-28	RA-MW-28	RA-M		RA-MW-32	RA-MW-32	RA-MW-32
Sample No.	RA-GW-44-1	RA-GW-88-1	W-101090		RA-GW-22-1	RA-GW-33-1	RA-GW-56-1
Sample Date	10/30/85	3/20/07	10/14	/98	7/30/45	10/15/85	5/13/86
Volatile Organics (VOCs)				<u>888</u>	•		
Acrone			42 U	(1.2)			No compounds found
Benzene			ND	(0.24)			
2-Butanone (MEK)			ND	(12)			
Chlorobenzene			ND	(26)			
Chloroethane			ND	(0.40)			
Chloroform	1]		ND	(0.24)			
1,1-Dickloroethane	6	4	2.1	(0.24)			
1,1-Dichloroetheae	2]		ND	(0.20)			
1,2-Dichloroethene (total)			ND	(0.20)			
Trans-1,2-Dichloroethene							
Ethylbenzene			ND	(0.24)			
4-Methyl-2-pentanone (MIBK)			ND	(2.0)			
Methylene Chloride			4.0 U	(0.20)			
Tetrachloroethene		2 J	ND	(0.24)			
Tohane			ND	(0.20)		3 J	
1,1,1-Trichloroethaae	140	99	40	(0.24)			
Trichlorouthone	4	9	2.9	(0.20)	23		
Vlayl Chloride			ND	(0.20)			
Xylene (Total)			ND R	(0.20)			
Base Neutral/Acid Extractables (BNA	ه)						
Benzo(a)Anthracene			ND	(5.0)			
Benzoic acid			ND	(25)			
Benzyl Alcohol			ND	(5.0)			
Butylbenzylphthalate			ND	(5.0)			
Di-n-Butylphthalate			ND ND	(5.0) (5.0)			
Di-n-Octyiphthalate				(5.0)			
2-Chiorophenol			ND	(5.0)			
Chrysene			ND ND	(5.0)			
2.4-Dimethylphenoi			ND	(5.0)			
bisQ-Ethylhenyüpäthalate			ND	(5.0)			
Isophotone 2. Markable and			ND	(5.0)			
2-Methylphenol 4 Methylphenol			ND	(5.0)			
4-Methylphenol (p-cresol)			ND	(5.0)			
N-Nitronodiphenylamine			ND \$2	(5.0)			
N-Nitroso-di-a-propylamine Phenol			ND	(5.0)			
Notes:							
For MDNR results (1987)	For 1990 moults (Lab.gu	alifiers)					
B Compound detected in laboratory and/or field blank	ND None detected at at			milo art vak	ues in parenthesis. These	values	
Analytical value is approximate	E The associated value			is therefore	estimated.		
,	R The associated value						

٠

R The associated value is unusable. T The associated value is estimated due to ambient sample temperatures and may indicate a low bias in results.

U The parameter was analyzed but not detected above the associated value. The associated value

b) The parameter was analyzed out not detected above the above total work of the book times this reported limit.

Page 5 of 7

and a second
.

ORGANIC CHEMICAL CONCENTRATIONS - UPPER AQUIFER RASMUSSEN SITE

Well Name Sample No. Sample Date	RA-MW-32 RA-GW-70-1 3/17/87	RA-MW-32 RA-GW-78A-1 3/17/87	RA-MI W-101190- 10/11	WP-866	RA-MW-34 RA-GW-24-1 7/ 38/45	RA-MW-34 RA-GW-31-1 10/14/85	RA-MW-34 RA-GW-58-1 5/ <u>1</u> 3/ 86
Volutile Organics (VOCs)				444			
Acitose	No compounds found	No compounds found	ND ND	(1.2)			
Benzene 2-Batanone (MEK)			ND	(0.24) (12)			
Chipephenzene			ND	(0.26)			
Chloroethane			ND	(0.40)			
Chloroform			ND	(0.24)			
1,1-Dichloroethane			ND	(0.24)			
1,1-Dickloroethene			ND	(0.20)			
1,2-Dichloroethene (total)			ND	(0.20)			
Trans-1,2-Dichloroethese							
Ethylbenzene			ND	(0.24)			
4-Methyl-2-pentanone (MIBK) Methylene Chloride			ND 14 U	(2.0) (0.20)			
Tetrachiorosthese			ND	(0.24)			
Toluene			ND	(0.28)		1]	
1.1.1-Trichloroethane			ND	(0.24)		••	
Trichloroethene			ND	(0.20)	27]		
Vinyi Chloride			ND	(0.20)			
Xylene (Lotal)			ND R	Ø.20)			
Base Neutral/Acid Extractables (BNAs)							
Benzo(a)Anthracene			ND	0.0			3 [
Benzoic acid			ND	62			-,
Benzyi Alcohol			ND	00			
Butylbenzylphthalate			ND.	00			3]
Di-a-Butylphthalate			ND	(10)		5 J	
Di-a-Octylphthalme			ND	4+0)			
2-Chlorophenol			ND ND	(10)			
Chrysene 24-Directhylphenol			ND	(10) (10)			3]
bio2-Ethylhexylphthalate			ND	0.0			
Loophorene			ND	00			
2-Methylphenol			ND	00			
4-Methylphenol (p-cresol)			ND	0.0			
N-Nitrosodiphenylamine			ND	00			
N-Nitroso-di-n-propylamine			ND	00			
Phenol			ND	(10)			3 J

Notes:

For MDNs rs. "14(1987) B Composed detected in laboratory and/or field blask

and/or field blank j Analytical value is approximate

For 1990 results (Lab qualifiers)

٠

ND None detected at stated detection limits. Stated detection limits are values in parenthesis. These values are PQLs except as otherwise noted by ΔΔΔ for VOCs.

E The associated value exceeded the linear calibration range and is therefore estimated.

R The associated value is unusable.

T The associated value is estimated due to ambient sample temperatures and may indicate a low bias in results.

U The parameter was analyzed but not detected above the associated value. The associated value has been adjusted to reflect possible laboratory contamination.

ΔΔΔ Reported detection limit is method specified Method Detection Limit (MDL) and does not represent actual sample detection limit achieved for analysis of the VOC sample... The FQL will at a minimum be 5times this reported limit.

.

i

ORGANIC CHEMICAL CONCENTRATIONS - UPPER AQUIFER RASMUSSEN SITE

Well Name	RA-MW-34	KA-MW-34		
Sample No.	RA-GW-71-1	W-101090-	-	
Sample Date pr	3/17/87	10/10		
and the the	30 2 7/47	1-1-1-	~	
Volatile Organics (VOCs)			ΔΔ Δ	
Acrioac	No compounds found	ND	(0.60)	
Benzene		ND	(0.12)	
2-Butasone (MEK)		ND	(6.0)	
Chlorobenzeae		ND	(0.14)	
Chloroethane		ND	(0.20)	
Chloroform		ND	(0.12)	
1,1-Dichloroethane		ND	(0.12)	
1,1-Dickloroethene		ND	(0.10)	
1,2-Dichloroethene (total)		ND	(0.10)	
Trans-1,2-Dichloroethene				
Ethylbenzene	1	ND	(0.12)	
4 Methyl-2 pentanone (MIBIC)		ND	(1.0)	
Methylene Chloride		0.5 U	(0.10)	
Tetrachlorouthene		ND	(0.12)	
Tohurat		ND	(0.14)	
1,1,1-Trichleresthene		ND	(0.12)	
Trichinvothene		ND	(0.10)	
Vlayi Chierie		ND	(0.10)	
Xylene (Total)		ND K	(9.10)	
Base Neutral/Acid Extractables (INAs)				
Benzo(a)Anthracene	1	NÐ	(5.0)	
Benzoic acid		ND	(25)	
Beazyi Alcohol		ND	(5.0)	
Butybenzyiphthalate		ND	(5.0)	
Di-a-Butylphthalate		ND	(5.0)	
Di-n-Octylphthainte		ND	(5.0)	
2-Chlorophenol		ND	(5.0)	
Chrysene		ND	(5.0)	
2.4-Dimethylphenol		ND	(5.0)	
bis@-Ethylhexyl)phthalate		13	(5.0)	
leophoroat		ND	(5.0)	
2-Methylphenol		ND	(5.0)	
4-Methylphenol (p-cresol)		ND	(5.0)	
N-Nitrosodiphenylamine		ND	(5.0)	
N-Nitroso-di-a-propylamine		ND	(5.0)	
Phenal		ND	(5.0)	
Notes:				
For MDNR results (1967)	For 1990 results (Lab qua			
8 Compound detected in laboratory	ND None detocted at sta	ted detection	limits. States	

B Compound detected in laborate and/or field blank J Analytical value is approximate ND None detected at stated detection limits. Stated detection limits are values in parenthesis. These values are PQLs except as otherwise noted by AAA for VOCs.

E The associated value exceeded the linear calibration range and in therefore estimated.

R The associated value is unusable.

T The associated value is estimated due to ambient sample temperatures and may indicate a low bias in results.

U The parameter was analyzed but not detected above the amoriated value. The associated value

has been adjusted to reflect possible laboratory contamination.

Add Reported detection limit is method specified Method Detection Limit (MDL) and does not represent actual sample detection limit achieved for analysis of the VOC sample... The PQL will at a minimum be 5

times this reported limit.

Page 7 of 7

ORGANIC CHEMICAL CONCENTRATIONS - LOWER AQUIFER RASMUSSEN SITE

Well Name Sample No. Sample Date	RA-MW-42 RA-GW-77-1 3/20/87	RA-MW-42 RAS-1 5/30/90		RA-MW-41 RA-GW-68-1 3/19/87	RA-MW-11 RAS-5 5/31/90		RA-MW-47 RA-GW-79-1 3/20/87	RA-MW-47 RAS-9 5/31/90	
Volatile Organics (VOCs)									
Acetone		ND	(5.0)	No compounds found	ND	(5.0)		n	(5.0)
Benzene		ND	(2.5)		ND	(2.5)		ND	(2.5)
2-Butanone (MEK)		ND	(5.0)		ND	(5.0)	11 JB	ND	(5.0)
Chlorobenzene		ND	(2.5)		ND	(2.5)		ND	(2.5)
Chloroethane		ND	(5.0)		ND	(5.0)		ND	(5.0)
1,1-Dichloroethane		ND	(2.5)		ND	(2.5)		ND	(2.5)
1,2-Dichloroethene (total)		ND	(2.5)		ND	(2.5)		ND	(2.5)
Trans-1,2-Dichloroethene									
Ethylbenzene		ND	(2.5)		ND	(2.5)		ND	(2.5)
4-Methyl-2-pentanone (MIBK)		ND	(5.0)		25 D	(5.0)		ND	(5.0)
Methylene Chloride		ND	(2.5)		ND	(2.5)		ND	(2.5)
Toiuene		ND	(2.5)		ND	(2.5)		ND	(2.5)
1,1,1-Trichloroethane		ND	(2.5)		ND	(2.5)		ND	(2.5)
Trichloroethene		ND	(2.5)		ND	(2.5)		ND	(2.5)
Vinyl Chloride		ND	(5.0)		ND	(5.0)		ND	(5.0)
Xylene (Total)		ND	(2.5)		ND	(2.5)		ND	(2.5)
Base Neutral/Acid Extractables									
Benzoic acid	51	ND	(25)		ND	(25)		ND	(25)
Di-n-Butylphthalate	· · · •	ND	(5.9)		ND	(5.0)		ND	(5.0)
Di-n-Octylphthalate		ND	(5.0)		ND	(5.0)		ND	(5.0)
bis(2-Ethylhexyl)phthalate		ND	(5.0)		ND D	(5.0)		61	(5.0)
2-Methylphenol		ND	(5.0)		ND	(5.0)		ND	(5.0)
4-Methylphenol (p-cresol)		ND	(5.0)		ND	(5.0)		ND	(5.0)
Phenol		ND	(5.0)		ND	(5.0)		ND	(5.0)

Notes:

For MDNR results (1987)

J Analyssal value is approximate.

For 1990 Results (Lab qualifiers)

ĺ

B Compound detected in laboratory and/or field blank ND None detected at stated detection limits. Stated detection limits are values in parenthesis. These values are PQLs except as otherwise noted by ∆∆∆ for VOCs.

•

.

are PQLs except as otherwise noted by $\Delta\Delta\Delta$ for VOCs. D The associated data value is estimated due to a variability among the field duplicate data.

ORGANIC CHEMICAL CONCENTRATIONS - LOWER AQUIFER RASMUSSEN SITE

Well Name Sample No. Sample Date	SP-GW-21-1 SP-GW-21A-1 SP-GW-25-1 SP-G		SP-MW-25D SP-GW-55-1 3/18/87	SP-MW-25D SP-GW-55A-1 3/18/87	SP-MW W-101190- 10/11	WP-009	
Volatile Organics (VOCs)							<u> </u>
Acetone Benzene 2-Butanone (MEK) Chloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Ethylbeezene 4-Meshyl-2-pentanone (MINC) Methylese Chlorithe Toluene 1,1,1-Trichloroethane Trichloroethane Vinyl Chloride Xylene (Total)	No compounds found	No compounds found	No compounds found	No compounds found	No compounds found	ND 0.3 J ND ND ND ND ND 0.8 ND ND ND ND ND ND ND R	(0.60) (0.12) (6.0) (0.14) (0.20) (0.12) (0.10) (0.12) (1.0) (0.10) (0.14) (0.12) (0.10) (0.10) (0.10)
Base Neutral/Acid Extractables							
Benzoic acid Di-n-Butylphthalate Di-n-Octylphthalate bis(2-Ethylhexyl)phthalate 2-Methylphenol 4-Methylphenol (p-cresol) Phenol						ND ND 25 87 ND ND ND	(50) (10) (10) (10) (10) (10) (10)
Notes:							
For MDNR results (1987) B Compound detected in laboratory and/or field blank J Analytical value is approximate.	are PQLs except as o D The associated data va R The associated value is U The parameter was and	ted detection limits. State therwise noted by $\Delta\Delta\Delta$ for lue is estimated due to a v unusable.	r VOCs. ariability among the field (ove the associated value. 7	-	alues		

has been adjusted to reflect possible laboratory contamination.

J Value is an estimate..

ΔΔΔ Reported detection limit is method specified Method Detection Limit (MDL) and does not represent actual sample detection limit achieved for analysis of the VOC sample.. The PQL will at a minimum be 5 times this reported limit.

INORGANICS ANALYTICAL DATA - UPPER AQUIFER RASMUSSEN SITE

Well Name Sample No. Sample Dat			81-8 RAS-2 5/30/90				RA-MW-18D RAS-3 5/31/9 0				RA-MW-18D (Dир) RAS-4 5/31/90			
Parameter	Detection Limit	Units	Total	Dissol	ved		Total		Dissolved		Total		Dissolved	
Aluminum	0.0078	mg/L	2.9	c c	.015 U		0.14 U		0.018 U		0.14 U		ND	
Antimony	0.0020	mg/L	ND		ND		ND		ND		ND		ND	
Arsenic	0.0020	mg/L	0.014	0 ,0	0038		ND		ND		ND		ND	
Barium	0.010	mg/L	0.058	C	.044 *		0.092		0.061		0.066		0.060	
Beryllium	0.0020	mg/L	ND		ND		ND		ND		ND		ND	
Cadmium	0.0057	mg/L	0.0055 *		ND		0.014 *		, ND		0.011 *		ND	
Calcium	1.0	mg/L	120		91	•	100		99		97		97	
Chromium	.0.010	mg/L	0.010 *		ND		0.013 •		ND		0.011 *		ND	
Cobalt	0.010	mg/L	ND		ND		ND		ND		ND		ND	
Copper	0.020	mg/L	0.047 *		ND		0.043 *		ND		0.035 *		ND	
Iron	0.040	mg/L	8.7		0.12 *		31		0.086 *		9.4		ND	
Lead		mg/L	0.20	(0.015) 0.0	0040 *	(0.0015)	0.51	(0.060)	0.0048 *	(0.0015)	0.39	(0.030)	0.0097	(0.0015)
Magnesium	1.0 I.O	mg/L	38		31		32		33		32		32	
Manganese	0.010	mg/L	0.69		0.49		0.17		0.083		0.15		0.062	
Mercury	0.0002	mg/L	ND		ND		ND		ND		ND		ND	
Nickel	0.020	mg/L	ND		ND		ND		ND		ND		ND	
Potaesium	3.0	mg/L	ND		ND		ND		ND		ND		NÐ	
Selenium	0.0025	mg/L	ND		ND		ND		ND		ND		ND	
Silver	0.010	mg/L	ND		ND		ND		ND		ND		ND	
Sodium	1.0	mg/L	5.1		5.9		8.2		7.3		7.9		7.7	
Thallium	0.0025	mg/L	ND		ND		ND		ND		ND		ND	
Vanadium	0.020	mg/L	ND		ND		ND		ND		ND		NÐ	
Zinc	0.020	mg/L	16		5.4		45		13		32		14	

Notes

+ Detection limits, when different, are shown in brackets to right of each column ND None detected at stated Practical Quantitation Limits (PQLs). Values in parenthesis are PQLs.

* The analyte result is less than five times the specified detection limit and therefore estimated.

U The parameter was analyzed but not detected above the associated value. The associated value is the PQL and has been adjusted to reflect possible laboratory contamination.

l

m Compound exceeded standard calibration range in the original analysis and was rerun with a dilution

G Reporting limit raised due to matrix interference

í

INORGANICS ANALYTICAL DATA - UPPER AQUIFER RASMUSSEN SITE

Well Name Sample No. Sample Dat		RA-MW-22 DUP W-101090-WP-005 10/10/90				RA-MW-28 W-101090-WP-001 10/10/90				RA-MW-32 W-101190-WP-006 10/11/90			
Parameter	Detection Limit	Units	Total		Dissolved	Total		Dissolved		Total		Dissolved	
Aluminum	0.0078	mg/L	3.5	(0.10)	ND	36.0	(0.10)	ND	(0.10)	14.7	(0.10)	ND	(0.10)
Antimony	0.0020	mg/L	ND	(0.050)	ND	ND	(0.050)	ND	(0.050)	ND	(0.050)	0.051	(0.050)
Arsenic	0.0020	mg/L	0.25	(0.050)	0.10	0.0090	(0.0050)	ND	(0.0050)	0.018	(0.0050)	ND	(0.0050)
Barium	0.010	mg/L	0.35		0.33	0.28	(,	0.053	(0.000)	0.15	(0.0050)	0.066	(0.0000)
Beryllium	0.0020	mg/L	ND		ND	0.0023		ND		ND		ND	
Cadmium	0.0050	mg/L	0.026 m	(0.00050)	0.0015	0.060 m	(0.00050)	0.001	(0.00050)	0.023	(0.00050)	ND	(0.00050)
Calcium	1.0	mg/L	210	(0.20)	179	352	(0.20)	136	(0.20)	333	(0.20)	220	(0.20)
Chromium	0.010	mg/L	0.10		ND	0.21		ND		0.14		ND	
Cobalt	0.010	mg/L	0.045		0.012	0.045		ND		0.024		NÐ	
Copper	0.020	mg/L	0.032	(0.010)	ND	0.22	(0.010)	ND	(0.010)	0.12	(0.010)	ND	(0.010)
Iron	0.040	mg/L	31.3	(0.10)	14.7	118	(0.10)	ND	(0.10)	44.1	(0.10)	ND	(0.10)
Lead		mg/L	1.2 m	(0.12)	ND	0.44	(0.050)	ND	(0.050)	0.36 m	(0.050)	ND	(0.050)
Magnesium		mg/L	34.8	(0.20)	33.6	102	(0.20)	34.3	(0.20)	82.7	(0.20)	52.7	(0.20)
Manganese	0.010	mg/L	0.22		0.12	2.6		0.031		1.1		0.21	
Mercury	0.0002	mg/L	ND		ND	ND		ND		ND		ND	
Nickel	0.020	mg/L	0.10	(0.040)	ND	0.18	(0.040)	ND	(0.040)	0.13	(0.040)	ND	(0.040)
Potassium	3.0	mg/L	ND	(5.0)	ND	10.7	(5.0)	ND	(5.0)	5.8	(5.0)	ND	(5.0)
Selenium	0.0025	mg/L	ND G	(0.010)	ND G	ND G	(0.010)	ND	(0.010)	ND G	(0.010)	ND	(0.0050)
Silver	0.010	mg/L	ND		ND	ND		ND		ND		ND	
Sodium	1.0	mg/L	ND	(5.0)	ND	63	(5.0)	7.8	(5.0)	ND	(5.0)	ND	(5.0)
Thallium	0.0025	mg/L	ND	(0.0050)	ND G	ND G	(0.010)	ND G	(0.010)	ND G	(0.010)	ND G	(0.010)
Vanadium	0.020	mg/L	ND	(0.010)	ND	0.12	(0.010)	ND	(0.010)	0.061	(0.010)	ND	(0.010)
Zinc	0.020	mg/1.	72.2		13.9	30.8		4,1		64.9		9.7	

Notes

+ Detection limits, when different, are shown in brackets to right of each column

ND None detected at stated Practical Quantitation Limits (PQLs). Values in parenthesis are PQLs.

* The analyte result is less than five times the specified detection limit and therefore estimated.

U The parameter was analyzed but not detected above the associated value. The associated value is the PQL and has been adjusted to reflect possible laboratory contamination.

m Compound exceeded standard calibration range in the original analysis and was rerun with a dilution

G Reporting limit raised due to matrix interference

Page 4 of 5

INORGANICS ANALYTICAL DATA - UPPER AQUIFER RASMUSSEN SITE

Detection Total Dissolved Parameter Limit Units + - - Aluminum 0.0078 mg/L 1.8 (0.10) ND (0.10) Antimony 0.0020 mg/L ND (0.050) ND (0.050) Arsenic 0.0020 mg/L ND (0.050) ND (0.0050) Barium 0.010 mg/L 0.28 0.27 0.0020 0.0020 ND (0.00050) 0.00060 (0.00050) Cadmium 0.0050 mg/L ND ND (0.00050) Cadmium 0.0050 mg/L 0.0022 (0.00050) 0.00060 (0.00050) Cadmium 0.010 mg/L 163 (0.20) 155 (0.20) Cadmiu ND ND Cadmium 0.010 mg/L ND ND	Well Name Sample No. Sample Date	2		RA-MW-34 W-101090-WP-002 10/10/90								
+ Aluminum 0.0078 mg/L 1.8 (0.10) ND (0.10) Antimony 0.0020 mg/L ND (0.050) ND (0.050) Ansenic 0.0020 mg/L ND (0.050) ND (0.050) Arsenic 0.0020 mg/L ND (0.050) ND (0.050) Barjum 0.010 mg/L 0.28 0.27 Beryllium ND Cadmium ND Cadmium 0.0050 mg/L 0.0022 (0.00050) 0.00060 (0.00050) Cadmium 0.0050 mg/L 1.63 (0.20) 155 (0.20) Chronium 0.010 mg/L 0.028 ND		Detection		Total		Dissolved						
Aluminum 0.0078 mg/L 1.8 (0.10) ND (0.10) Antimony 0.0020 mg/L ND (0.050) ND (0.050) Arsenic 0.0020 mg/L ND (0.050) ND (0.050) Arsenic 0.0020 mg/L ND (0.0050) ND (0.0050) Barium 0.010 mg/L 0.28 0.27 0.27 Beryllium 0.0020 mg/L ND ND 0.0060 (0.00050) Cadmium 0.0050 mg/L 0.0022 (0.00050) 0.0060 (0.00050) Calcium 1.0 mg/L 163 (0.20) 155 (0.20) Chromium 0.010 mg/L 0.028 ND 155 (0.20)	Parameter		Units									
Antimony 0.0020 mg/L ND (0.050) ND (0.050) Arsenic 0.0020 mg/L ND (0.0050) ND (0.0050) Barjum 0.010 mg/L 0.28 0.27 Beryllium 0.0020 mg/L ND ND Cadmium 0.0050 mg/L 0.002 (0.00050) Cadmium 0.0050 mg/L 163 (0.20) 155 (0.20) Chronium 0.010 mg/L 0.028 ND ND ND	Aluminum	-	mg/L	1.8	(0.10)	ND	(0.10)					
Barium 0.010 mg/L 0.28 0.27 Beryllium 0.0020 mg/L ND ND Cadmium 0.0050 mg/L 0.0022 (0.00050) 0.00060 (0.00050) Calcium 1.0 mg/L 163 (0.20) 155 (0.20) Chromium 0.010 mg/L 0.028 ND ND	Antimony	0.0020		ND	(0.050)	ND	(0.050)					
Barium 0.010 mg/L 0.28 0.27 Beryllium 0.0020 mg/L ND ND Cadmium 0.0050 mg/L 0.0022 (0.00050) 0.00060 (0.00050) Calcium 1.0 mg/L 163 (0.20) 155 (0.20) Chromium 0.010 mg/L 0.028 ND ND	Arsenic	0.0020	mg/L	ND	(0.0050)	ND	(0.0050)					
Beryllium 0.0020 mg/L ND ND Cadmium 0.0050 mg/L 0.0022 (0.00050) 0.00060 (0.00050) Calcium 1.0 mg/L 163 (0.20) 155 (0.20) Chromium 0.010 mg/L 0.028 ND ND	Barjum	0.010		0.28		0.27						
Cadmium 0.0050 mg/L 0.0022 (0.00050) 0.00060 (0.00050) Calcium 1.0 mg/L 163 (0.20) 155 (0.20) Chromium 0.010 mg/L 0.028 ND 100	Beryllium	0.0020		ND		ND						
Calcium 1.0 mg/L 163 (0.20) 155 (0.20) Chromium 0.010 mg/L 0.028 ND ND		0.0050	mg/L	0.0022	(0.00050)	0.00060	(0.00050)					
Chromium 0.010 mg/L 0.028 ND	Calcium	1.0		163	(0.20)	155	(0.20)					
	Chromium	0.010		0.028		ND						
	Cobalt	0.010		ND		ND						
Copper 0.020 mg/L 0.012 (0.010) ND (0.010)	Copper	0.020		0.012	(0.010)	ND	(0.010)					
Iron 0.040 mg/L 8.2 (0.10) 2.7 (0.10)		0.040	mg/L	8.2	(0.10)	2.7	(0.10)					
Lead mg/L 0.055 (0.0050) ND (0.0050)	Lead			0.055	(0.0050)	ND	(0.0050)					
Magnesium 1.0 mg/L 41.7 (0.20) 40.9 (0.20)	Magnesium	1.0	mg/L	41.7	(0.20)	40.9	(0.20)					
Manganese 0.010 mg/L 0.11 0.037	Manganese	0.010		0.11		0.037						
Mercury 0.0002 mg/L ND ND		0.0002	mg/L	ND		ND						
Nickel 0.020 mg/L ND (0.040) ND (0.040)	Nickel	0.020		ND	(0.040)	ND	(0.040)					
Potassium 3.0 mg/L ND (5.0) ND (5.0)	Potassium	3.0		ND	(5.0)	ND	(5.0)					
Selenium 0.0025 mg/L ND G (0.010) ND G (0.010)	Selenium	0.0025		ND G	(0.010)	ND G	(0.010)					
Silver 0.010 mg/L ND ND	Silver	0.010		NÐ		ND						
Sodium 1.0 mg/L 13.7 (5.0) 15.8 (5.0)	Sodium	1.0		13.7	(5.0)	15.8	(5.0)					
Thallium 0.0025 mg/L NDG (0.010) NDG (0.010)	Thallium	0.0025	ang/L	ND G	(0.010)	ND G	(0.010)					
Vanadium 0.020 mg/L ND (0.010) ND (0.010)	Vanadium	0.020	mg/L	ND	(0.010)	ND	(0.010)					
Zinc 0.020 mg/L 7.9 (0.020) 2.9 (0.020)	Zinc	0.020		7. 9	(0.020)	2.9	(0.020)					

Notes

+ Detection limits, when different, are shown in brackets to right of each column

ND None detected at stated Practical Quantitation Limits (PQLs). Values in parenthesis are PQLs.

* The analyte result is less than five times the specified detection limit and therefore estimated.

U The parameter was analyzed but not detected above the associated value. The associated value is the PQL and has been adjusted to reflect possible laboratory contamination.

G Reporting limit raised due to matrix interference

Page 2 of 5

Â.

TABLE 3

INORGANICS ANALYTICAL DATA - UPPER AQUIFER RASMUSSEN SITE

Well Name Sample No. Sample Dai	e	SP-MW-5D RAS-6 5/31/90				81-5 RAS-7 5/31/90				RA-MW-27 RAS-8 5/31/90			
Parameter	Detection Limit +	Units.	Total	Dissolved		Total		Dissolved		Total		Dissolved	
Aluminum	0.0078	mg/L	0.12 U	0.16 U		0.79		0.015 U		17		ND	
Antimony	0.0020	mg/L	ND	ND		ND		ND		ND		ND	
Arsenic	0.0020	mg/L	ND	ND		0.002 *		ND		0.042	(0.0060)	ND	
Barium	0.010	mg/L	0.16	0.15		0.075		0.067		0.20	• • • • • •	0.048 *	
Beryllium	0.0020	mg/L	ND	ND		ND		ND		ND		ND	
Cadmium	0.0050	ong/L	NÐ	ND		ND		ND		0.012 *		ND	
Calcium	1.0	.mg/L	170	17		170		160		300		220	
Chromium	0.010	mg/L	ND	ND		0.039 *		ND		0.073		ND	
Cobalt	0.010	mg/L	ND	ND		ND		ND		0.018 •		ND	
Copper	0.020	≡g/L	ND	ND		0.021 *		ND		0.098 *		ND	
Iron	0.040	mg/L	4.0	31		3.1		ND		43		ND	
Lead		mg/L	0.043	(0.0030) 0.0062 •	(0.0015)	0.16	(0.015)	0.0040	(0.0015)	0.22	(0.015)	0.0015 *	(0.0015)
Magnesium		mg/L	47 0.28	46		51		50		86		57	
Manganese	0.010 0.0002	mg/L	ND	0.28 ND		6.74 ND		0.68		0.66		0.21	
Mercury Nickel	0.020	mg/L mg/L	ND	ND		0.035 •		ND ND		ND 0.076 •		ND ND	
Potassium	3.0	mg/L	ND	ND		ND		ND		6.0 *			
Selenium	0.0025	mg/L	ND	ND		ND		ND		ND		ND	
Silver	0.010	mg/L	ND	ND		ND		ND		0.013 •		ND	
Sodium	1.0	mg/L	5.0	6.1		6.2		6.4		72		72	
Thallium	0.0025	mg/L	ND	ND		ND		ND		ND		ND	
Vanadium	0.020	mg/L	ND	ND		ND		ND		0.060 *		ND	
Zinc	0.020	mg/l.	5.2	3.0		23		5.1		36		6.1	

Notes

2

+ Detection limits, when different, are shown in brackets to right of each column

(

ND None detected at stated Practical Quantitation Limits (PQLs). Values in parenthesis are PQLs.

* The analyte result is less than five times the specified detection limit and therefore estimated. U The parameter was analyzed but not detected above the associated value. The associated value is the PQL and has been adjusted to reflect possible laboratory contamination.

· •

m Compound exceeded standard calibration range in the original analysis and was rerun with a dilution

G Reporting limit raised due to matrix interference

INORGANICS ANALYTICAL DATA - UPPER AQUIFER RASMUSSEN SITE

Well Name Sample No. Sample Dat	e			RA-MW-1 RAS-10 6/01/90	7			RA-MW- RAS-17 6/01/90	2		w	RA-MW-22 -101090-WP- 10/10/90		
Parameter	Detection Limit	Units	Total		Dissolved		Total		Dissolved		Total		Dissolved	
Aluminum	0.0078	mg/L	0.76		0.78		16		0.039 U		3.1	(0.10)	ND	(0.10)
Antimony	0.0020	mg/L	ND		ND		ND		ND		NÐ	(0.050)	ND	(0.050)
Arsenic	0.0020	mg/L	ND		ND		0.068	(0.010)	0.045	(0.0080)	0.24	(0.050)	0.11	(0.050)
Barium	0.010	mg/L	0.075		0.059		1.4		1.1		0.34		0.33	
Beryllium	0.0020	mg/L	ND		ND		ND		ND		ND		ND	
Cadmium	0.0050	mg/L	0.0095 *		ND		0.018 *		ND		0.024 m	(0.00050)	0.0014	(0.00050)
Calcium	1.0	ang/L	100		100		300		110		197	(0.20)	181	(0.20)
Chromiwn	0.010	mg/L	0.030 *		ND		0.094		ND		0.061		ND	
Cobalt	0.010	mg/L	ND		ND		0.020 *		ND		0.039		0.013	
Copper	0.026	mg/L	ND		ND		0.13		ND		0.028	(0.010)	ND	(0.010)
Iron	0.040	mg/L	2.3		0.078 *		60		6.9		29.0	(0.10)	15.2	(0.10)
Lead		mg/L	0.24	(0.030)	0.0036 *	(0.0015)	0.42	(0.060)	0.0038 *	(0.0015)	1.0 m	(0.12)	ND	(0.12)
Magnesium		mg/L	30		29		84		- 44		33.3	(0.20)	34.0	(0.20)
Manganese		mg/L	0.050		0.034		1.4		0.049 *		0.2		0.12	
Mercury	0.0002	ang/L	ND		ND		ND		ND		ND		ND	
Nickel	0.020	mg/L	ND		ND		0.099 *		ND		0.092	(0.040)	ND	(0.040)
Potansium	3.0	mg/L	ND		ND		6.4 *		ND		ND	(5.0)	ND	(5.0)
Selenium	0.0025	mg/L	ND		ND		ND	(0.025)	ND		ND G	(0.010)	ND	(0.010)
Silver	0.010	mg/L	ND		ND		0.015 *		ND		ND		ND	(-
Sodium	1.0	mg/L	5.5		5.2		12		14		ND	(5.0)	ND	(5.0)
Thallium	0.0025	ang∕L	ND		ND		ND		ND		ND	(0.0050)	ND G	(0.0050)
Vanadium	0.020	mg/L	ND		ND		0.057 *		ND		ND	(0.010)	ND	(0.010)
Zinc	0.020	mg/L	28		7.1		30		2.2		59.8		14.0	

Notes

2

 Detection limits, when different, are shown in brackets to right of each column
 ND None detected at stated Practical Quantitation Limits (PQLs). Values in parenthesis are PQLs.
 The analyte result is less than five times the specified detection limit and therefore estimated.
 U The parameter was analyzed but not detected above the associated value. The associated value is the PQL and has been adjusted to reflect possible laboratory contamination.

ſ

٠

m Compound exceeded standard calibration range in the original analysis and was rerun with a dilution

G Reporting limit raised due to matrix interference

(

INORGANICS ANALYTICAL DATA - LOWER AQUIFER RASMUSSEN SITE

Well Name Sample No. Sample Dai				RA-MW-42 RAS-1 5/30/90				RA-MW-41 RAS-5 5/31/90	I		RA-MW-47 RAS-9 5/31/90		
Parameter	Detection Limit +	Units	Total		Dissolved		Totai		Dissolved	Total	ı	Dissolved	
Aluminum	0.0078	mg/L	1.2		0.016 U		0.91		0.074 U	0.067 U		0.18 U	r
Antimony	0.0020	mg/L	ND		ND		ND		ND	ND		ND	
Arsenic	0.0020	mg/L	0.026		0.018		0.015		0.011	ND		ND	
Barium	0.010	mg/L	0.27		0.24		0.31		0.29	0.019 •		0.016 •	
Beryllium	0.0020	mg/L	ND		ND		ND		ND	ND		NÐ	
Cadmium	0.0050	mg/L	ND		ND		ND		ND	ND		ND	
Calcium	1.00	mg/L	84	•	76		69		69	9.1		7.6	
Chromium	0.010	mg/L	ND	•	ND		ND		ND	ND		ND	
Cobalt	0.010	mg/L	ND		ND		ND		ND	0.012 *		ND	
Copper	0.020	mg/L	0.031 *		ND		ND		ND	0.53		ND	
Iron	0.040	mg/L	5.2		0.36		3.0		0.058 *	16		0.44	
Leed		mg/L	0.057	(0.0030)	0.0030 *	(0.0015)	0.023	(0.0015)		0.015) 0.015	(0.0015)	0.0038	(0.0015)
Magnerium		mg/L	27		25		22		23	ND		16	
Mangamere	0.010	mg/L	0.062		0.017 •		0.030 *		0.018 *	ND		ND	
Mercury	0.0002	mg/L	ND		ND		ND		ND	ND		ND	
Nickel Potassium	0.020	mg/L	ND		ND		ND		ND	ND		ND	
Selenium	3.0	mg/L	ND ND		ND		ND		ND	ND		ND	
Silver	0.0025 0.010	mg/L	ND		ND ND		ND		ND ND	ND		ND	
Sodium	1.0	mg/L	19		20		ND 23		23	ND 8.9		ND	
Thallium	0.0025	mg/L	ND		ND		ND 23		ND 23	ND		9.4 ND	
Vanadium	0.020	mg/L mg/L	ND		ND		ND		ND	ND		ND	
Zinc	0.020	mg/L	17		2.1		7.1		0.61	5.8		0.14	

Notes

+ Detection limits, when different, are shown in brackets to the right of each column

(

* Est. result less than 5 times detection limit.

.

U The parameter was analyzed but not detected above the associated value. The associated value is the PQL and has been adjusted to reflect possible laboratory contamination.

m Compound exceeded standard calibration range in the original analysis and was rerun with a dilution. G Reporting limit raised due to matrix interference.

1

\$

Page 1 of 2

INORGANICS ANALYTICAL DATA - LOWER AQUIFER RASMUSSEN SITE

Well Name Sample No. Sample Date			₩-			
L	Detection		Total		Dissolved	
Parameter	Limit	Units				
Aluminum	+ 0.0078	mg/L	0.23	(0.10)	ND	(0.10)
Antimony	0.0020	mg/L	ND	(0.050)	ND	(0.050)
Arsenic	0.0020	mg/L	ND	(0.0050)	ND	(0.0050)
Barium	0.010	mg/L	0.048	•	0.017	
Beryllium	0.0020	mg/L	ND		ND	
Cadmium	0.0050	mg/L	0.010	(0.00050)	NÐ	(0.00050)
Calcium	1.00	mg/L	17.4	(0.20)	13.3	(0.20)
Chromium	0.010	mg/L	0.027		ND	
Cobalt	0.010	mg/L	ND		ND	
Copper	0.020	mg/L	0.031	(0.010)	ND	(0.010)
Iron	0.040	mg/L	14.2	(0.10)	ND	(0.10)
Lead		mg/L	0.43 m	(0.050)	ND	(0.050)
Magnesium	1.0	mg/L	16.8	(0.20)	16.3	(0.20)
Manganese	0.010	mg/L	0.13		ND	
Mercury	0.0002	mg/L	ND		ND	
Nickel	0.020	mg∕L	ND	(0.040)	ND	(0.040)
Potassium	3.0	mg/L	ND	(5.0)	ND	(5.0)
Selenium	0.0025	mg/L	ND	(0.0050)	ND	(0.010)
Silver	0.010	₩g/L	ND		ND	
Sodium	1.0	mg/L	6.1	(5.0)	9.2	(ə.0)
Thallium	0.0025	mg/L	ND	(0.0050)	ND G	(0.0050)
Vanadium	0.020	mg/L	ND	(0.010)	ND	(0.010)
Zinc	0.020	mg/L	71.0		0.068 U	

Notes

.

+ Detection limits, when different, are shown in brackets to the right of each column

ND None detected at stated Practical Quantitation Limits (PQLs). Values in parenthesis are PQLs.

* Est. result less than 5 times detection limit

U The parameter was analyzed but not detected above the associated value. The associated value is the PQL and has been adjusted to reflect possible laboratory contamination.

(

.

m Compound exceeded standard calibration range in the original analysis and was rerun with a dilution.

G Reporting limit raised due to matrix interference.

í

4

TABLE 5

GENERAL CHEMISTRY - UPPER AQUIFER RASMUSSEN SITE

Well Name Sample No. Sample Date			81-8 RAS-2 5/30/90		RA-MW-18 RAS-3 5/31/90	8D	RA-MW-18D (Dup. RAS-4 5/31/90) SP-MW-5 RAS-6 5/31/90	D	81-5 RAS-7 5/31/90
Parameter	Detection Limit	Unit								
Alkalinity										
Bicarbonate Carbonate Total Alkalinity	1.0 1.0 1.0	mg/L mg/L mg/L	370 ND 370		370 ND 370		390 ND 390	560 ND 560		590 ND 590
Other Parameters										
BOD 5 Chemical Oxygen Demand Specific conductance pH Total dissolved solids Total organic carbon Total suspended solids	1.0 5.0 1.0 9.0 1.0 3.0	mg/L mg/L umhos/cm pH units mg/L mg/L mg/L	15 21 670 7.4 390 23 360	н •	20 46 690 7.5 420 32 160	H H	15 H 25 750 7.4 410 H 17 120	9 6.7 1100 6.9 710 11 20	• н	14 30 1100 7.0 700 22 80

(

Notes:

ND None detected at stated Practical Quantitation Limits (PQLs). Values in parenthesis are PQLs.
* Estimated result less than 5 times detection limit.
H The associated value is estimated due to holding time exceedances and may indicate a low bias in results.

NA Parameter not sampled.

GENERAL CHEMISTRY - UPPER AQUIFER RASMUSSEN SITE

Well Name Sample No. Sample Date		R	KA-MW-27 RAS-8 5/31/90	RA-MW-17 RAS-10 6/01/90	RA-MW-54 RAS-12 6/01/90	RA-MW-22 W-101090-WP-004 10/10/90	RA-MW-22 DUP W-101090-WP-005 10/10/90
Parameter	Detection Limit	Unit					
Alkalinity							
Bicarbonate Carbonate Total Alkalinity <i>Other Parameters</i>	1.0	mg/L mg/L mg/L	420 ND 420	380 ND 380	440 ND 440	780 j	730 J
BOD 5 Chemical Oxygen Demand Specific conductance pH Total dissolved solids Total organic carbon Total suspended solids	5.0 1.0 un 9.0 1.0	mg/L mg/L nhos/cm oH units mg/L mg/L mg/L	15 32 1600 7.1 1200 H 11 1400	17 60 620 H 7.4 430 H 16 130	36 100 670 H 6.9 570 H 26 2100	57 J 160 J NA NA 690 J 83 J 670 J	35 J 100 J NA NA 950 J 11 J 450 J

Notes:
ND None Jetected at stated Practical Quantitation Limits (PQLs). Values in parenthesis are PQLs.
* Estimated result less than 5 times detection limit.
H The associated value is estimated due to holding time exceedances and may indicate a low bias in results.

NA Parameter not sampled. J Value is an estimate.

and the second (

GENERAL CHEMISTRY - UPPER AQUIFER RASMUSSEN SITE

Well Name Sample No. Sample Date			RA-MW-28 W-101090-WP-001 10/10/90	RA-MW-32 W-101190-WP-006 10/11/90	RA-MW-34 W-101090-WP-002 10/10/90
D	Detection	18			
Parameter	Limit	Unit			
Alkalinity					
Bicarbonate	1.0	mg/L			
Carbonate	1.0	mg/L			
Total Alkalinity	1.0	mg/L	860 J	890 J	520 J
Other Parameters					
BOD 5	1.0	mg/L	13 J	8 J	6 J
Chemical Oxygen Demand	5.0	mg/L	12 j	110 J	33 J
Specific conductance	1.0	umhos/cm	NA	NA	NA
pH		pH units	NA	NA	NA
Total dissolved solids	9.0	ˈmg/L	9 70 J	2100 J	760 J
Total organic carbon	1.0	mg/L	23 J	13 J	11 J
Total suspended solids	3.0	mg/L	3400 J	1400 J	300 J

Notes:

.

ND None detected at stated Practical Quantitation Limits (PQLs). Values in parenthesis are PQLs.
* Estimated result less than 5 times detection limit.

H The associated value is estimated due to holding time exceedances and may indicate a low bias in results.

NA Parameter not sampled.

J Value is an estimate.

ى

GENERAL CHEMISTRY - LOWER AQUIFER **RASMUSSEN SITE**

Well Name Sample No. Sample Date			RA-MŴ-4 RAS-1 5/30/90	12	RA-MW- RAS-5 5/31/90		RA-MW-4 RAS-9 5/31/90	17	SP-MW-25D W-101190-WP-009 10/11/90
Parameter	Detection Limit	Unit							
Alkalinity									
Bicarbonate	1.0	mg/L	330 N/D		300		84		
Carbonate Total Alkalinity	1.0 1.0	mg/L mg/L	ND 330		ND 300		10 94		100 J
Other Parameters									
BOD 5	1.0	mg/L	15	Н	12		24		36 J
Chemical Oxygen Demand	5.0	mg/L	ND		8.7	٠	60		81 j
Specific conductance	1.0	umhos/cm	620		580		190		NA
pH		pH units	7.7		7.6		9.2		NA
Total dissolved solids	9.0	mg/L	370	r1	340	Н	100	Н	450 J
Total organic carbon	1.0	mg/L	10		8.4		19		20 J
Total suspended solids	3.0	mg/L	110		40		30		190 J

.

<u>Notes:</u>
ND None detected at stated Practical Quantitation Limits (PQLs). Values in parenthesis are PQLs.
* Est. result less than 5 times detection limit.
H The associated value is estimated due to holding time exceedances and may indicate a low bias in manufer results. NA Parameter not sampled. J Value is an estimate.

LABORATORY REPORTS

.

.

Rec'd CRA

Ç,

OCT 24

LINELS RECORDED THE A

Enseco

October 23, 1990

Mr. David Dempsey Conestoga-Rovers Associates 382 West County Road D St. Paul, MN 55112

Dear David:

Enclosed are the results of the analyses for Rasmussen (10/11/90). This project was received at Ensective Erco Laboratory on October 11, 1990, and was processed for a 14 day turneround time.

ter se de la fe

s firs. Ada

ំ ខ្លោះ

+ 133890

្រះទីស្រ

1412

This report is presented in three sections. The first section consists of the Sample Description Information page and Analytical Test Requests summary. The second section contains the analytical results and method references. The third section briefly describes the elements of Enseco's quality assurance/ quality control (QA/QC) program and contains the QA/QC results. This letter authorizes the release of the analytical results and should be considered an integral part of this report.

Please refer to this project by the Enseco project number 007299 to expedite any further discussions. I will be happy to address any questions or concerns that you may have.

Sincerely, Catherine_M2 Flaherty

Program Administrator

Encl.

Enseco Incorporated 205 Alewife Brook Parkway Cambridge, MA 02138 617/661-3111 617/354-5258

October 23, 1990

-

Project Narrative

Client: Conestoga-Rovers Associates Project Name: 10/11/90 Erco Project No.: 007299

- 1. This project consists of the results for samples received at Enseco - Erco Laboratory on October 11, 1990. Please see the sample description information sheet for a list of samples.
- Temperature of cooler upon receipt was 8.7 C. Bottles were not broken in transit. Bottles were properly labeled. Samples agree with chain of custody. Samples were properly preserved.
- 3. Samples 003 005 required additional dilutions for semivolatile analysis due to high concentrations of unknowns.

ια το προστοριστικό με στο το προστοριστικο πολλογιατικο πολλογιατικο το το το το το το το το το προστοριστικο .

- Munder

ANALYTICAL RESULTS

The method number provided on each data report sheet refers to a publication originating from a regulatory or standard-setting organization. In general, the methods employed are those specified by the U.S. Environmental Protection Agency and other state and federal agencies. In cases where an approved regulatory method does not exist, a method developed by Enseco will be employed to meet the specific needs of the client. The methods commonly employed by Enseco are based on methods from the following references.

- U.S. Environmental Protection Agency. 1983. <u>Methods for chemical analysis</u> of water and wastes. EPA-600/4-79-020. Cincinnati, OH, March.
- U.S. Environmental Protection Agency. 1984. <u>Test methods for evaluating</u> solid waste, physical/chemical methods. (SW-846); Washington, D.C. April.
- U.S. Environmental Protection Agency. 1986. <u>Methods for determination of organic compounds in finished drinking water and raw source water</u>. Cincinnati, OH, March.
- "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act," 40 CFR, Part 136; <u>Federal Register</u>, Vol. 49, No. 209.
- American Public Health Association, American Water Works Association, Water Pollution Control Federation. 1985. <u>Standard methods for the</u> <u>examination of water and wastewater</u>, 16th edition. Washington, D.C., April.

Current EPA Contract Laboratory Program (CLP) protocols for the analysis of organic and inorganic hazardous substances including chlorinated dioxins and furans.

SAMPLE DESCRIPTION INFORMATION for Conestoga-Rovers Associates

.

.

Lab ID	Client ID	Matrix	Sampled Date Time	Received Date
007299-0001-SA 007299-0002-SA 007299-0003-SA 007299-0004-SA 007299-0005-SA 007299-0006-SA 007299-0007-SA 007299-0008-SA 007299-0008-SA	W-101090-WP-001 W-101090-WP-002 W-101090-WP-003 W-101090-WP-004 W-101090-WP-005 W-101090-WP-001-dissolved W-101090-WP-002-dissolved W-101090-WP-004-dissolved W-101090-WP-005-dissolved	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	10 OCT 90 13:3 10 OCT 90 14:3 10 OCT 90 16:3 10 OCT 90 17:1 10 OCT 90 17:1 10 OCT 90 17:1 10 OCT 90 13:3 10 OCT 90 14:3 10 OCT 90 17:1 10 OCT 90 17:1	0 11 OCT 90 0 11 OCT 90 5 11 OCT 90 11 OCT 90 11 OCT 90 0 11 OCT 90 0 11 OCT 90

ANALYTICAL TEST REQUESTS for Conestoga-Rovers Associates

Lab ID: 007299	Group Code	Analysis Description	Custom Test?	
0001 - 0002, 0004 - 0005	A	Method 625 - TCL Semivolatile Organics Prep - Method 625 TAL Total Metals Prep - Total Metals, ICP Arsenic, FAA (Total) Prep - Total Metals, FAA Lead, FAA (Total) Mercury, CVAA (Total) Prep - Mercury, CVAA Selenium, FAA (Total) Thallium, FAA (Total) Cadmium, FAA (Total)	N N N N N N N N N N N N	
0006 - 0009	В	TAL Dissolved Metals Arsenic, FAA (Diss.) Lead, FAA (Diss.) Mercury, CVAA (Diss.) Selenium, FAA (Diss.) Thallium, FAA (Diss.) Cadmium, FAA (Diss.)	N N N N N	
0003	С	Method 625 - TCL Semivolatile Organics Prep - Method 625	N N	

•

TARGET COMPOUND LIST (TCL) SEMIVOLATILE ORGANICS Method 625

Client Name: Cones Client ID: W-101	toga-Rovers 090-WP-001	Associ ates				
	9-0001-SA US	Enseco ID: Sampled: Prepared:	2048565 10 OCT 90 16 OCT 90		Received: 11 Analyzed: 18	
Parameter			Result	Units	Reporting Limit	
Phenol bis(2-Chloroethyl) 2-Chlorophenol 1,3-Dichlorobenzen 1,4-Dichlorobenzen Benzyl alcohol 1,2-Dichlorobenzen 2-Methylphenol bis(2-Chloroisopro	e e		ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	
ether 4-Methylphenol N-Nitroso-di-	ר <u>י</u> קא		ND ND	ug/L ug/L	5.0 5.0	
n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nítrophenol 2,4-Dimethylphenol Benzoic acid			8.2 ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 25	
bis(2-Chloroethoxy methane 2,4-Dichlorophenol 1,2,4-Trichloroben Naphthalene 4-Chloroaniline Hexachlorobutadien 4-Chloro-3-methylp 2-Methylnaphthalen 2,4,6-Trichlorophe 2,4,5-Trichlorophe 2,4,5-Trichlorophe 2-Chloronaphthalen 2-Nitroaniline Dimethyl phthalate Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene	zene e henol e tadiene nol nol e		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 25.0 25.	

(continued on following page)

۰

ND = Not detected NA = Not applicable

Reported By: Marbela Bazile

#Enseco oming Company

TARGET COMPOUND LIST (TCL) SEMIVOLATILE ORGANICS (CONT.) Method 625

Client Name: Client ID:	Conestoga-Rovers W-101090-WP-001	Associates				
Lab ID: Matrix: Authorized:	007299-0001-SA AQUEOUS 11 OCT 90		2048565 10 OCT 90 16 OCT 90		Received: II OCT Analyzed: 18 OCT	
Parameter			Result	Units	Reporting Limit	
2,6-Dinitrot Diethyl phth 4-Chlorophen	alate		ND ND	ug/L ug/L	5.0 5.0	
phenyl e Fluorene 4-Nitroanili: 4,6-Dinitro-	ther		ND ND ND	ug/L ug/L ug/L	5.0 5.0 25	
2-methyl N-Nitrosodip 4-Bromopheny	henylamine		ND ND	ug/L ug/L	25 5.0	
phenyl e Hexachlorobe Pentachlorop Phenanthrene Anthracene Di-n-butyl p Fluoranthene Pyrene Butyl benzyl 3,3'-Dichlor	ther nzene henol hthalate phthalate	、	ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 25 5.0 5.0 5.0 5.0 5.0 5.0	
Benzo(a) anth bis(2-Ethylha phthalat Chrysene Di-n-octyl pi Benzo(b)fluo Benzo(k)fluo Benzo(a)pyre Indeno(1,2,3 Dibenz(a,h)a Benzo(g,h,i)	racene exyl) e hthalate ranthene ranthene ne -cd)pyrene nthracene		ND ND NC ND ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	
Nitrobenzene 2-fluorobiph Terphenyl-dl Phenol-d5 2-fluorophen 2,4,6-Tribro	enyl . 4 ol		46 41 49 10 12 18	% % % %		å

Note & : Surrogate recovery is outside of control limits.

n

ND = Not detected NA = Not applicable

Reported By: Marbela Bazile

TARGET COMPOUND LIST (TCL) SEMIVOLATILE ORGANICS Method 625

Client Name: Client ID:	Conestoga-Rovers W-101090-WP-002	Associates			
Lab ID: Matrix: Authorized:	007299-0002-SA AQUEOUS 11 OCT 90		2048566 10 OCT 90 16 OCT 90		Received: 11 OCT 90 Analyzed: 18 OCT 90
Parameter			Result	Units	Reporting Limit
Phenol bis(2-Chlorop 2-Chloropheno 1,3-Dichloro 1,4-Dichloro Benzyl alcon 1,2-Dichloro 2-Methylpheno bis(2-Chloro	ol benzene ol benzene ol		ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
ether 4-Methylphen	ol		ND ND	ug/l ug/l	5.0 5.0
N-Nitroso-di n-propyl Hexachloroeti Nitrobenzene Isophorone 2.Nitropheno 2,4-Dimethyl Benzoic acid	amine hane 1 phenol	`	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 25
bis(2-Chloro methane 2,4-Dichloro 1,2,4-Trichl Naphthalene 4-Chloroanil Hexachlorobu 4-Chloro-3-m 2-Methylnaph Hexachlorocy 2,4,6-Trichl 2,4,5-Trichl 2,4,5-Trichl 2-Chloronaph 2-Nitroanili Dimethyl pht Acenaphthyle 3-Nitroanili Acenaphthene 2,4-Dinitrop 4-Nitropheno Dihenzofuran 2,4-Dinitrot	phenol orobenzene ine tadiene ethylphenol thalene orophenol orophenol thalene ne halate ne henol l		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 25 5.0 25 5.0 25 5.0 25 5.0 25 5.0 25 5.0 25 5.0 25 5.0 25 5.0 25 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.

(continued on following page)

ND = Not detected NA = Not applicable

.

'n,

Reported By: Marbela Bazile

TARGET COMPOUND LIST (TCL) SEMIVOLATILE ORGANICS (CONT.) Method 625

	Conestoga-Rovers	Associates				
	W-101090-WP-002 007299-0002-SA AQUEOUS 11 OCT 90		2048566 10 OCT 90 16 OCT 90		Received: 11 0 Analyzed: 18 0	
Parameter			Result	Units	Reporting Limit	
2,6-Dinitroto Diethyl phth 4-Chlorophen	alate .		ND ND	ug/L ug/L	5.0 5.0	
phenyl e Fluorene 4-Nitroanilii	ther		ND ND ND	ug/L ug/L ug/L	5.0 5.0 25	
4,6-Dinitro- 2-methyl N-Nitrosodip 4-Bromopheny	nenylamine		ND ND	ug/L ug/L	25 5. J	
phenyl e Hexachlorobe Pentachloropi	ther nzene		ND ND ND	ug/L ug/L ug/L	5.0 5.0 25	
Phenanthrene Anthracene Di-n-butyl pl Fluoranthene	nthalate	•	ND ND ND ND	ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0	
Pyrene Butyl benzyl 3,3'-Dichlor Berzo(a)anth	obenzidine racene		ND ND ND ND	ug/L ug/L ug/L ug/L	5.0 5.0 10 5.0	
bis(2-Ethylho phthalato Chrysene Di-n-octyl pi	5		13 ND ND	ug/L ug/L	5.0 5.0 5.0	
Benzo(b)fluo Benzo(k)fluo Benzo(a)pyre	ranthene ranthene ne		ND ND ND	ug/L ug/L ug/L ug/L	5.0 5.0 5.0	
Indeno(1,2,3 Dibenz(a,h)a Benzo(g,h,i)	nthracene		ND ND ND	ug/L ug/L ug/L	5.0 5.0 5.0	
Nitrobenzene 2-Fluorobiph Terphenyl-dl Phenol-d5	enyl 4		42 37 47 16	% % %	 	&
2-Fluorophen 2,4,6-Tribro			25 43	% %		

Note & : Surrogate recovery is outside of control limits.

.

ND = Not detected NA = Not applicable

.

.

.

Reported By: Marbe a Bazile

....

TARGET COMPOUND LIST (TCL) SEMIVOLATILE ORGANICS Method 625

Client Name: Conestoga-Rovers Client ID: W~101090-WP-003	Associates	
Lab ID: 007299-0003-SA Matrix: AQUEOUS Authorized: 11 OCT 90	Enseco ID: 2048567 Sampled: 10 OCT 90 Prepared: 16 OCT 90	Received: 11 OCT 90 Analyzed: 18 OCT 90
Parameter	Result	Reporting Units Limit
Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2,Chloropicopropul)	ND ND ND ND ND ND	ug/L 26 ug/L 26 ug/L 26 ug/L 26 ug/L 26 ug/L 26 ug/L 26 ug/L 26 ug/L 26
bis(2-Chloroisopropyl) ether 4-Methylphenol		ug/L 26 ug/L 26
N-Nitroso-di- n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid	ND ND ND ND ND	ug/L 26 ug/L 26 ug/L 26 ug/L 26 ug/L 26 ug/L 26 ug/L 130
bis(2-Chloroethoxy)- methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 3-Nitroaniline 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/l 26 ug/l 130 ug/l 26 ug/l 130 ug/l 130 ug/l 130 ug/l 130 ug/l 26 ug/l 26

(continued on following page)

.

ND = Not detected NA = Not applicable

٩.

Reported By: Marbela Bazile

TARGET COMPOUND LIST (TCL) SEMIVOLATILE ORGANICS (CONT.) Method 625

Enseco

A Coming Company

٦

))

i

1

Client Name: Client ID:	Conestoga-Rovers W-101090-WP-003	Associates				
	007299-0003-SA AQUEOUS		2048567 10 OCT 90 16 OCT 90		Received: 11 Analyzed: 18	
Parameter			Result	Units	Reporting Limit	
2,6-Dinitrot Diethyl phth	alate		ND ND	ug/L ug/L	26 26	
4-Chlorophen phenyl e Fluorene 4-Nitroanili	ther		ND ND ND	ug/L ug/L ug/L	26 26 130	
4,6-Dinitro- 2-methyl N-Nitrosodip 4-Bromopheny	henylamine		ND ND	ug/L ug/L	130 26	
phenyl e phenyl e Pentachlorobel Phenanthrene Anthracene Di-n-butyl pl Fluoranthene Pyrene Butyl benzyl 3,3'-Dichlore Benzo(a)anthi bis(2-Etiylhi phthalate Chrysene Di-n-octyl pl	ther nzene henol hthalate phthalate pbenzidine racene exyl) e		ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	26 26 130 26 26 26 26 26 26 26 26 26 26 26 26 26	
Benzo(b)fluo Benzo(k)fluo Benzo(a)pyre Indeno(1,2,3 Dibenz(a,h)a Benzo(g,h,i)	ranthene ranthene ne -cd)pyrene nthracene		ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l	26 26 26 26 26 26 26 26	
Nitrobenzene 2-Fluorobiph Terphenyl-dl Phenol-d5 2-Fluorophen 2,4,6-Tribro	enyl 4 ol		47 43 50 20 24 43	** % % % %	· · · · · · ·	

ND = Not detected NA = Not applicable

Reported By: Marbela Bazile

TARGET COMPOUND LIST (TCL) SEMIVOLATILE ORGANICS Method 625

Client Name: Conestoga Client ID: W-101090-'	-Rovers Associates			
Lab ID: 007299-00 Matrix: AQUEOUS Authorized: 11 OCT 90	04-SA Enseco ID Sampled	2048568 10 OCT 90 16 OCT 90		Received: 11 OCT 90 Analyzed: 19 OCT 90
Parameter		Result	Units	Reporting Limit
Phenol bis(2-Chloroethyl) eth 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopronyl)	er	ND ND ND ND ND ND 67	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50 50 50 50 50 50 50 50
bis(2-Chloroisopropyl) ether 4-Methylphenol		ND ND	ug/L ug/L	50 50
N-Nitroso-di- n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid	`	ND ND ND ND S0 ND	ug/l ug/l ug/l ug/l ug/l ug/l	50 50 50 50 50 50 250
bis(2-Chloroethoxy)- methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylpheno 2-Methylnaphthalene Hexachlorocyclopentadi 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene	1	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50 50 50 50 50 50 50 50 250 50 250 50 250 50 250 50 250 50 250 50 50 50 50 50 50 50 50 50 50 50 50 5

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Marbela Bazile

Approved By: Kerylynn Hemmerle

~

-3

TARGET COMPOUND LIST (TCL) SEMIVOLATILE ORGANICS (CONT.) Method 625

	Conestoga-Rovers	Associates				
Client ID: Lab ID: Matrix: Authorized:	W-10109Ö-WP-004 007299-0004-SA AQUEOUS 11 OCT 90	Enseco ID: Sampled: Prepared:	2048568 10 OCT 90 16 OCT 90		Received: 11 OC Analyzed: 19 OC	
Parameter			Result	Units	Reporting Limit	
2,6-Dinitrot Diethyl phth 4-Chlorophen	alate		ND ND	ug/L ug/L	50 50	
phenyl e Fluorene 4-Nitroanilii	ther		ND ND ND	ug/L ug/L ug/L	50 50 250	
4,6-Dinitro- 2-methyl N-Nitrosodip 4-Bromopheny	henylamine		ND 11	ug/L ug/L	250 0.0	
phenyl e Hexachlorobe Pentachloropi	ther nzene		ND ND ND	ug/L ug/L ug/L	50 50 250	
Phenanthrene Anthracene Di-n-butyl pl Fluoranthene	hthalate	`	ND ND ND ND	ug/L ug/L ug/L ug/L	50 50 50 50	
Pyrene Butyl benzyl 3,3'-Dichlor	obenzidine		ND ND ND	ug/L ug/L ug/L	50 50 100	
Bénzo(a)anth bis(2-Ethylh phthalat	exyl)			ug/L ug/L	50 50	
Chrysene Di-n-octyl pl Benzo(b)fluo Benzo(k)fluo	ranthene		ND ND ND ND	ug/L ug/L ug/L	50 50 50 50	
Benzo(k)fluo Benzo(a)pyre Indeno(1,2,3 Dibenz(a,h)a	ne -cd)pyrene		ND ND ND	ug/L ug/L ug/L ug/L	50 50 50	
Benzo(ĝ,h,i) Nitrobenzene	-d5		ND 55	ug/L %	50	
2-Fluorobiph Terphenyl-dl Phenol-d5	4		49 57 21	% % %		•
2-Fluorophen 2,4,6-Tribro			18 46	% %		å

Note & : Surrogate recovery is outside of control limits.

ND = Not detected NA = Not applicable

Reported By: Marbela Bazile

Approved By: Kerylynn Hemmerle

 $\mathbf{\tilde{}}$

LINSECO Coming Company

TARGET COMPOUND LIST (TCL) SEMIVOLATILE ORGANICS Method 625

🔁 Enseço

Coming Company

Client Name: Conestoga-Rovers	Associates	
Client ID: W-101090-WP-005 Lab ID: 007299-0005-SA Matrix: AQUEOUS Authorized: 11 OCT 90	Enseco ID: 2048569 Sampled: 10 OCT 90 Prepared: 16 OCT 90	Received: 11 OCT 90 Analyzed: 19 OCT 90
Parameter	Result Unit:	Reporting 5 Limit
Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene I,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl) ether 4-Methylphenol N-Nitroso-di- n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid bis(2-Chloroethoxy)- methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,Chloronaphthalene 2-Nitroaniline	ND ug/L ND ug/L	
Dimethyl phthalate Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran	ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L	60 60 300 60 300 300 60
2,4-Dinitrotoluene	ND ug/L	60

(continued on following page)

•

ND = Not detected NA = Not applicable

4

Reported By: Marbela Bazile

Approved By: Kerylynn Hemmerle

TARGET COMPOUND LIST (TCL) SEMIVOLATILE ORGANICS (CONT.) Method 625

🕏 Enseço

Coming Company

Client Name: Conestoga-Rovers Client ID: W-101090-WP-005	Associates			
Lab ID: 007299-0005-SA Matrix: AQUEOUS Authorized: 11 OCT 90	Enseco ID: 2048569 Sampled: 10 OCT 90 Prepared: 16 OCT 90		Received: 11 OCT Analyzed: 19 OCT	
Parameter	Result	Units	Reporting Limit	
2,6-Dinitrotoluene Diethyl phthalate 4 Chlemonhonyl	ND ND	ug/L ug/L	60 60	
4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline	ND ND ND	ug/L ug/L ug/L	60 60 300	
4,6-Dinitro- 2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl	ND ND	ug/L ug/L	300 60	
phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	60 60 300 60 60 60 60 120 60 60 60 60 60 60 60 60 60 60	
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ND ND	ug/L ug/L ug/L	60 60 60	
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	61 59 60 25 32 54	% % % %	 	

ND = Not detected NA = Not applicable

Reported By: Marbela Bazile

Approved By: Kerylynn Hemmerle

METALS

Client Name:	Conestoga-Rovers W-101090-WP-001	Associates				
Client ID: Lab ID: Matrix: Authorized:	007299-0001-SA AQUEOUS 11 OCT 90	Enseco ID: Sampled: Prepared:			d: 11 OCT 9 d: See Belo	
Parameter	Result	R Units	eporting Limit	Analytical Method	Prepared Date	Analyzed Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	36.0 ND 0.0090 0.28 0.0023 0.060 352 0.21 0.045 0.22 118 0.44 102 2.6 ND 0.18 10.7 ND ND 6.3 ND 0.12 30.8	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	$\begin{array}{c} 0.10\\ 0.050\\ 0.0050\\ 0.010\\ 0.0020\\ 0.00050\\ 0.20\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.050\\ 0.20\\ 0.010\\ 0.00020\\ 0.010\\ 0.010\\ 5.0\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.020\\ \end{array}$	200.7 200.7 200.7 200.7 200.7 239.2 200.7 200.7	12 OCT 90 12 OCT 90	15 OCT 90 15 OCT 90

Note m : Compound exceeded standard calibration range in the original analysis and was rerun with a dilution.

Note G : Reporting limit raised due to matrix interference.

ND = Not detected NA = Not applicable

Reported By: Tony Noce

Approved By: Vaughn Pusey

Enseco

Enseco

4

METALS

	Conestoga-Rovers W-101090-WP-002	Associates					۲
Client ID: Lab ID: Matrix: Authorized:	007299-0002-SA AQUEOUS 11 OCT 90	Enseco ID: Sampled: Prepared:	10 OCT 90		I: 11 OCT 9 I: See Belo		
Parameter	Result	R Units	eporting Limit	Analytical Method	Prepared Date	Analyzed Date	
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	1.8 ND ND 0.28 ND 0.0022 163 0.028 ND 0.012 8.2 0.055 41.7 0.11 ND ND ND ND ND ND ND ND ND ND ND ND 7.9	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	$\begin{array}{c} 0.10\\ 0.050\\ 0.0050\\ 0.0020\\ 0.00050\\ 0.20\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.0050\\ 0.20\\ 0.010\\ 0.00020\\ 0.040\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 0.010\\ 0.020\\ \end{array}$	200.7 200.7 200.7 200.7 200.7 239.2 200.7 200.7	12 OCT 90 12 OCT 90	15 OCT 90 15 OCT 90	G

Note G : Reporting limit raised due to matrix interference. ND = Not detected NA = Not applicable

.

Reported By: Tony Noce

.

Approved By: Vaughn Pusey

METALS

Client Name: Client ID:	Conestoga-Rovers W-101090-WP-004	Associates			
Lab ID: Matrix: Authorized:	007299-0004-SA AQUEOUS 11 OCT 90	Enseco ID: Sampled: Prepared:	10 OCT 9	0 Recei w Analy	ved: ll OCT 90 zed: See Below
Parameter	Result	Re Units	eporting Limit	Analytical Method	Prepared Analyzed Date Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	3.1 ND 0.24 0.34 ND 0.024 197 0.081 0.039 0.028 29.0 1.0 33.3 0.20 ND 0.092 ND ND ND ND ND ND ND S9.8	mg/l mg/l mg/ll mg/ll mg/ll mg/ll mg/ll mg/ll mg/ll mg/ll mg/ll mg/ll mg/ll mg/ll	$\begin{array}{c} 0.10\\ 0.050\\ 0.050\\ 0.010\\ 0.0020\\ 0.00050\\ 0.20\\ 0.010\\ 0.010\\ 0.010\\ 0.10\\ 0.12\\ 0.20\\ 0.010\\ 0.0020\\ 0.040\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 5.0\\ 0.0050\\ 0.010\\ 0.020\\ \end{array}$	200.7 200.7 200.7 200.7 200.7 239.2 200.7 200.7	12 OCT 90 15 OCT 90 12 OCT 90

Note m : Compound exceeded standard calibration range in the original analysis and was rerun with a dilution.
Note G : Reporting limit raised due to matrix interference.
ND = Not detected NA = Not applicable

Reported By: Tony Noce

Approved By: Vaughn Pusey

Enseco

METALS

Enseco

Client Name: Client ID: Lab ID: Matrix: Authorized:	Conestoga-Rovers W-101090-WP-005 007299-0005-SA AQUEOUS 11 OCT 90	Enseco ID: Sampled:	2048569 10 OCT 90 See Belov		eived: 11 OCT 90 lyzed: See Belov	
Parameter	Result	R Units	eporting Limit	Analytical Method	Prepared Date	Analyzed Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	3.5 ND 0.25 0.35 ND 0.026 210 0.10 0.045 0.032 31.3 1.2 34.8 0.22 ND 0.10 ND ND ND ND ND ND ND ND ND 72.2	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.10 0.050 0.010 0.0020 0.00050 0.20 0.010 0.010 0.010 0.10 0.10 0.10	200.7 200.7 200.7 200.7 200.7 239.2 200.7 200.7 200.7	12 OCT 90 12 OCT 90	15 OCT 90 15 OCT 90

Note m : Compound exceeded standard calibration range in the original analysis and was rerun with a dilution. Note G : Reporting limit raised due to matrix interference.

ND = Not detected NA = Not applicable

.

Reported By: Tony Noce

Approved By: Vaughn Pusey

METALS (DISSOLVED)

Client Name: Client ID: Lab ID: Matrix: Authorized:	Conestoga-Rovers W-101090-WP-001-d 007299-0006-SA AQUEOUS 11 OCT 90	issolved Enseco ID:	10 OCT 90) Receive Analyze	ed: 11 OCT 9 ed: See Belo	0 w
Parameter	Result	Ri Units	eporting Limit	Analytical Method	Prepared Date	Analyzed Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	ND ND ND 0.053 ND 0.0010 136 ND ND ND ND ND ND ND ND ND ND ND ND ND	<pre>mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L</pre>	$\begin{array}{c} 0.10\\ 0.050\\ 0.0050\\ 0.010\\ 0.0020\\ 0.00050\\ 0.20\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.0050\\ 0.20\\ 0.010\\ 0.0050\\ 0.010\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 0.010\\ 0.020\\ \end{array}$	200.7 200.7 206.2 200.7 200.7 213.2 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 270.2 200.7 279.2 200.7 200.7	NA NA NA NA NA NA NA NA NA NA NA NA NA N	15 OCT 90 15 OCT 90

Note G : Reporting limit raised due to matrix interference.

ND = Not detected NA = Not applicable

Reported By: Tony Noce

Approved By: Vaughn Pusey

G

🕏 Enseco

METALS (DISSOLVED)

Client Name: Client ID: Lab ID: Matríx: Authorized:	Conestoga-Rovers / W-101090-WP-002-d 007299-0007-SA AQUEOUS 11 OCT 90	issolved Enseco ID:	10 OCT 90	0 Recei w Analy	ved: 11 OCT 9 zed: See Belo	
Parameter	Result	Ro Units	eporting Limit	Analytical Method	Prepared Date	Analyzed Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	ND ND 0.27 ND 0.00060 155 ND ND 2.7 ND 40.9 0.037 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.10 0.050 0.0050 0.010 0.0020 0.00050 0.20 0.010 0.010 0.010 0.010 0.0050 0.20 0.010 0.010 0.010 0.010 5.0 0.010 0.010 0.010 0.010 0.020	200.7 200.7 200.7 200.7 200.7 239.2 200.7 200.7	NA NA NA NA NA NA NA NA NA NA NA NA NA N	15 OCT 90 15 OCT 90

Note G : Reporting limit raised due to matrix interference.

.

ND = Not detected NA = Not applicable

Reported By: Tony Noce

nseco

Approved By: Vaughn Pusey

G

METALS (DISSOLVED)

Client Name: Client ID: Lab ID: Matrix: Authorized:	Conestoga-Rovers W-101090-WP-004-d 007299-0008-SA AQUEOUS 11 OCT 90		2048572 10 OCT 90 See Below		ceived: 11 OCT 90 alyzed: See Belov	
Parameter	Result	R	eporting Limit	Analytica Method	l Prepared Date	Analyzed Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	ND ND 0.11 0.33 ND 0.0014 181 NO 0.013 ND 15.2 ND 34.0 0.12 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	$\begin{array}{c} 0.10\\ 0.050\\ 0.025\\ 0.010\\ 0.0020\\ 0.00050\\ 0.20\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.0050\\ 0.20\\ 0.010\\ 0.00020\\ 0.040\\ 5.0\\ 0.0050\\ 0.010\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 0.010\\ 0.020\\ \end{array}$	200.7 200.7 200.7 200.7 200.7 239.2 200.7 200.7	NA NA NA NA NA NA NA NA NA NA NA NA NA	15 OCT 90 15 OCT 90

Note G : Reporting limit raised due to matrix interference.

.

ND = Not detected NA = Not applicable

Reported By: Tony Noce

Approved By: Vaughn Pusey

•

щ

		META (DISSOL			<u> </u>	- Seco
Client Name: Client ID: Lab ID: Matrix: Authorized:	Conestoga-Rovers W-101090-WP-005-d 007299-0009-SA AQUEOUS 11 OCT 90	lissolved Enseco ID:	10 OCT 9		ved: 11 OCT 9 vzed: See Belo	
Parameter	Result	R Units	eporting Limit	Analytical Method	Prepared Date	Analyzed Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	ND ND 0.10 0.33 ND 0.0015 179 ND 0.012 ND 14.7 ND 33.6 0.12 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.10 0.050 0.0050 0.010 0.0020 0.00050 0.20 0.010 0.010 0.010 0.0050 0.20 0.010 0.00020 0.010 0.00020 0.010 0.010 0.00020 0.010 0.00020 0.010 0.00020 0.010 0.00020 0.010 0.00020 0.010 0.00020 0.010 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020	200.7 200.7 200.7 200.7 200.7 239.2 200.7 200.7	NA NA NA NA NA NA NA NA NA NA NA NA NA N	15 OCT 90 15 OCT 90

Note G : Reporting limit raised due to matrix interference.

ND = Not detected NA = Not applicable

_

Reported By: Tony Noce

Approved By: Vaughn Pusey

•

- QUALITY ASSURANCE/QUALITY CONTROL

QUALITY ASSURANCE/QUALITY CONTROL

As an indication of the overall quality of the data generated by Enseco - Erco Laboratory for this report, the following controls have been provided (when applicable).

<u>Method blanks</u> are analyzed to assess the level of contamination which exists in the analytical system. A method blank, analyzed with every batch of samples, consists of reagents specific to the method. This blank is carried through every aspect of the procedure, including preparation, cleanup, and analysis. Ideally, the concentration of an analyte in the blank is below the reporting limit for that analyte. However, some common laboratory solvents and metals are difficult to eliminate to the part-perbillion levels commonly reported in environmental analyses. Therefore, all method blank data is reported to the client. Data are not blank-corrected.

<u>Duplicate control samples</u> (DCS) are used to monitor the laboratory's day-to-day performance of routine analytical methods. A DCS consists of a standard, control matrix which is spiked with a group of target compounds representative of the method analytes. The DCS is analyzed with environmental samples to provide evidence that the laboratory is performing the method within accepted QC guidelines.

A DCS has been established for most routine analytical methods. Reagent water is used as the control matrix for the analysis of aqueous samples. The DCS compounds are spiked into reagent water and carried through the appropriate steps of the analysis. As stated in SW-846 (third edition), a universal blank matrix does not exist for solid samples and therefore no matrix is used. The DCS for solid samples consists of the DCS compounds spiked into a reagent blank and carried through the appropriate steps of the analysis. The data thus obtained are used to set the DCS control limits. As sufficient laboratory data become available, the control limits are redefined based upon the most recent six months of DCS data. Control limits for accuracy are based on the historical average recovery of the DCS plus or minus three standard deviation units, or alternatively on established control limits defined in the methodology.

<u>Surrogates</u> are organic compounds that are similar to the analytes of interest in chemical behavior but which are not normally found in environmental samples. Enseco routinely adds surrogates to samples requiring GC/MS and most GC analysis and reports these surrogate recoveries to the client. These surrogates are added to samples to monitor the effect of the matrix on the accuracy of the analysis. Results are reported in terms of percent recovery.

. .

QC LOT ASSIGNMENT REPORT Semivolatile Organics by GC/MS

a.

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
007299-0001-SA 007299-0002-SA 007299-0003-SA 007299-0004-SA 007299-0005-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	625-A 625-A 625-A 625-A 625-A 625-A	16 OCT 90-FA 16 OCT 90-FA 16 OCT 90-FA 16 OCT 90-FA 16 OCT 90-FA 16 OCT 90-FA	16 OCT 90-F12 16 OCT 90-F12 16 OCT 90-F12 16 OCT 90-F12 16 OCT 90-F12 16 OCT 90-F12

METHOD BLANK REPORT Semivolatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: 625-TCL-A Matrix: AQUEOUS QC Lot: 16 OCT 90-FA QC F	Run: 16 OCT 90-F12		
2,6-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl	ND ND	ug/L ug/L	10 10
phenyl ether Fluorene 4-Nitroaniline 4.6-Dinitro-	ND ND ND	ug/L ug/L ug/L	10 10 50
2-methylphenol N-Nitrosodiphenylamine	ND ND	ug/L ug/L	50 10
4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene	ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 50 10 10 10 10 10 20 10
bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 10

ţ

Ŧ

1

å

1

đ

METHOD BLANK REPORT Semivolatile Organics by GC/MS

÷

Analyte	Result	Units	Reporting Limit
Test: 625-TCL-A Matrix: AQUEOUS QC Lot: 16 OCT 90-FA QC Run: 16	OCT 90-F12		
Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10
ether 4-Methylphenol	ND ND	ug/L ug/L	10 10
N-Nitroso-di- n-propylamine Hexachloroethane Nitrobenzene 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid bio(2,6-Lanoethorm)	ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 50
bis(2-Chloroethoxy)- methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10 10 50 10 50 10 50 10 50 10

· .

Enseco

SINGLE CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

Analyte	Concentr	atíon	Accuracy(%)
	Spiked	Measured	SCS Limits
Category: 625-A Matrix: AQUEOUS QC Lot: 16 OCT 90-FA QC Run: 16 Concentration Units: ug/L	OCT 90-F12		
Phenol-d5	200	27.1	14 10-94
2-Fluorophenol	200	46.5	23 21-100
2,4,6-Tribromophenol	200	81.3	41 10-123
Nitrobenzene-d5	100	50.7	51 35-114
2-Fluorobiphenyl	100	44.5	44 43-116
Terphenyl-dl4	100	56.4	56 33-141

•

.

•

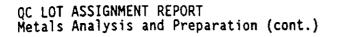
Calculations are performed before rounding to avoid round-off errors in calculated results.

DUPLICATE CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

A	Conc Spiked	entration	n Measured		Accuracy Average(%)			ion
Analyte	Spiked	DCS1	DCS2	AVG	DCS	Limits	(RPD) DCS Li	mit
Category: 625-A Matrix: AQUEOUS QC Lot: 16 OCT 90-FA Concentration Units: ug/L								
Pentachlorophenol Phenol 2-Chlorophenol 4-Chloro-3-methylphenol 4-Nitrophenol 1,2,4-Trichlorobenzene Acenaphthene 2,4-Dinitrotoluene Pyrene	200 200 200 200 100 100 100 100	31.2 62.2 110 106 49.6 56.2 47.8 68.4 58.1	51.9 50.5 118 120 40.1 66.2 50.8 76.8 68.0	41.6 56.4 114 113 44.9 61.2 49.3 72.6 63.0	21 28 57 56 22 61 49 73 63	9-103 12- 89 27-123 23- 97 10- 80 39- 98 46-118 24- 96 26-127	50 21 7.9 12 21 16 6.0 12 16	50 42 40 42 50 28 31 38 31
N-Nitroso-di- n-propylamine 1,4-Dichlorobenzene	100 100	61.0 43.3	64.3 51.9	62.6 47.6	63 48	41-116 36- 97	5.3 18	38 28

Calculations are performed before rounding to avoid round-off errors in calculated results.

,


•

QC LOT ASSIGNMENT REPORT Metals Analysis and Preparation

,

.

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
007299-0008-SA 007299-0008-SA 007299-0009-SA 007299-0009-SA 007299-0009-SA 007299-0009-SA 007299-0009-SA 007299-0009-SA 007299-0009-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	FAA1-AD FAA2-AD ICP-AD FAA1-AD FAA1-AD HG-CVAA-AD FAA1-AD FAA1-AD FAA1-AD FAA2-AD	12 OCT 90-546 12 OCT 90-546	12 OCT 90-546 12 OCT 90-546

• •

Enseco

Enseco

METHOD BLANK REPORT Metals Analysis and Preparation

Analyte	Result	Units	Reporting Limit
Test: ICP-TAL-AT Matrix: AQUEOUS QC Lot: 12 OCT 90-545 QC Run:	12 OCT 90-545		
Aluminum Antimony Barium Beryllium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Silver Sodium Vanadium Zinc	ND ND ND ND ND ND ND ND ND ND ND ND ND N	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	$\begin{array}{c} 0.10\\ 0.050\\ 0.010\\ 0.0020\\ 0.20\\ 0.010\\ 0.010\\ 0.010\\ 0.10\\ 0.10\\ 0.20\\ 0.010\\ 0.20\\ 0.010\\ 0.040\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 0.020\\ \end{array}$
Test: AS-FAA-AT Matrix: AQUEOUS QC Lot: 12 OCT 90-545 QC Run:	12 OCT 90-545		
Arsenic	ND	mg/L	0.0050
Test: PB-FAA-AT Matrix: AQUEOUS QC Lot: 12 OCT 90-545 QC Run:			
Lead	ND	mg/L	0.0050
Test: HG-CVAA-AT Matrix: AQUEOUS QC Lot: 12 OCT 90-545 QC Run:	12 OCT 90-545		
Mercury	ND	mg/L	0.00020

METHOD BLANK REPORT Metals Analysis and Preparation (cont.)

Analyte	Result	Units	Reporting Limit
Test: SE-FAA-AT Matrix: AQUEOUS QC Lot: 12 OCT 90-545 QC Run: Selenium	12 OCT 90-545 ND	mg∕L	0.0050
Test: TL-FAA-AT Matrix: AQUEOUS QC Lot: 12 OCT 90-545 QC Run: Thallium	12 OCT 90-545 ND	mg/L	0.0050
Test: CD-FAA-AT Matrix: AQUEOUS QC Lot: 12 OCT 90-545 QC Run: Cadmium	12 OCT 90-545 ND	mg/L	0.00050
	12 OCT 90-546		0.10
Aluminum Antimony Barium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Silver Sodium Vanadium Zinc	ND ND ND ND ND ND ND ND ND ND ND ND ND N	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	$\begin{array}{c} 0.10\\ 0.050\\ 0.010\\ 0.0020\\ 0.20\\ 0.010\\ 0.010\\ 0.010\\ 0.10\\ 0.20\\ 0.010\\ 0.20\\ 0.010\\ 0.040\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 0.020\\ \end{array}$

.

•

Enseco

METHOD BLANK REPORT Metals Analysis and Preparation (cont.)

c

Analyte	Result	Units	Reporting Limit
Test: AS-FAA-AD Matrix: AQUEOUS QC Lot: 12 OCT 90-546 QC Run: Arsenic	12 OCT 90-546 ND	mg/L	0.0050
Test: PB-FAA-AD Matrix: AQUEOUS QC Lot: 12 OCT 90-546 QC Run: Lead	12 OCT 90-546 ND	mg/L	0.0050
Test: HG-CVAA-AD Matrix: AQUEOUS QC Lot: 12 OCT 90-546 QC Run: Mercury	12 OCT 90-546 ND	mg/L	0.00020
Test: SE-FAA-AD Matrix: AQUEOUS QC Lot: 12 OCT 90-546 QC Run: Selenium	12 OCT 90-546 ND	mg/L	0.0050
Test: TL-FAA-AD Matrix: AQUEOUS QC Lot: 12 OCT 90-546 QC Run: Thallium	12 OCT 90-546 ND	mg/L	0.0050
Test: CD-FAA-AD Matrix: AQUEOUS QC Lot: 12 OCT 90-546 QC Run: Cadmium	12 OCT 90-546 ND	mg/L	0.00050

•

Enseco

DUPLICATE CONTROL SAMPLE REPORT Metals Analysis and Preparation

Analyte	Co Spiked	<mark>ncentra</mark> ti DCSI	on Measured DCS2	d AVG		uracy age(%) Limits	Precis (RPD) DCS Li	
Category: ICP-AT Matrix: AQUEOUS QC Lot: 12 OCT 90-545 Concentration Units: mg/L								
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Silver Sodium Tin Vanadium Zinc	2.0 0.5 2.0 0.05 100 0.25 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	2.09 0.510 0.519 2.08 0.0504 0.0487 101 0.206 0.494 0.261 0.971 0.520 49.3 0.491 0.490 53.2 0.0482 107 0.321 0.484 0.493	2.07 0.522 0.515 2.06 0.0497 0.0464 99.5 0.203 0.487 0.260 0.951 0.497 48.6 0.485 0.483 52.1 0.0462 106 0.273 0.481 0.488	2.08 0.516 0.517 2.07 0.0501 0.0476 100 0.204 0.491 0.260 0.961 0.509 48.9 0.488 0.486 52.6 0.0472 107 0.297 0.482 0.490	104 103 104 100 95 100 102 98 104 98 98 97 105 98 97 105 94 107 74 98	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	1.0 2.3 0.7 1.149 1.49 1.514 1.49 1	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Category: FAA1-AT Matrix: AQUEOUS QC Lot: 12 OCT 90-545 Concentration Units: mg/L								
Arsenic Lead Selenium Thallium	0.04 0.02 0.01 0.05	0.0401 0.0198 0.00920 0.0470	0.0410 0.0199 0.00850 0.0440	0.0406 0.0198 0.00885 0.0455	101 99 89 91	80-120 80-120 80-120 80-120 80-120	2.2 0.5 7.9 6.6	20 20 20 20

😼 Enseco

Calculations are performed before rounding to avoid round-off errors in calculated results.

~

DUPLICATE CONTROL SAMPLE REPORT Metals Analysis and Preparation (cont.)

Analyte	Co Spiked	ncentrati DCS1	on Measure DCS2			uracy age(%) Limits	Precis (RPD) DCS Li	, ,
Category: HG-CVAA-AT Matrix: AQUEOUS QC Lot: 12 OCT 90-545 Concentration Units: mg/L								
Mercury	0.001	0.00103	0.00106	0.00104	105	80-120	2.9	2u
Category: FAA2-AT Matrix: AQUEOUS QC Lot: 12 OCT 90-545 Concentration Units: mg/L								
Antimony Cadmium Chromium Copper Nickel Silver	0.002 0.002 0.05 0.05 0.05 0.05	NA 0.00189 NA NA NA NA	NA 0.00207 NA NA NA NA	NC 0.00198 NC NC NC NC	NC 99 NC NC NC	80-120 80-120 80-120 80-120 80-120 80-120	NC 9.1 NC NC NC NC	20 20 20
Category: ICP-AD Matrix: AQUEOUS QC Lot: 12 OCT 90-546 Concentration Units: mg/L								
Aluminum Antimony Arsenic Barium Carium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Silver Sodium Tin	2.0 0.5 2.0 0.05 100 0.25 0.5 0.5 0.5 0.5 0.5 0.05 100 0.4	2.02 0.503 0.545 1.99 0.0487 0.0434 96.6 0.197 0.476 0.251 0.946 0.466 46.8 0.471 0.480 49.9 0.0470 102 0.370	$\begin{array}{c} 2.02\\ 0.500\\ 0.490\\ 1.98\\ 0.0488\\ 0.0467\\ 96.5\\ 0.199\\ 0.477\\ 0.252\\ 0.944\\ 0.495\\ 46.8\\ 0.471\\ 0.472\\ 50.1\\ 0.0487\\ 1.2\\ 0.369\end{array}$	2.02 0.502 0.518 1.99 0.0488 0.0450 96.6 0.198 0.477 0.251 0.945 0.481 46.8 0.471 0.476 50.0 0.0479 102 0.369	101 100 99 98 90 97 99 95 101 95 96 94 95 100 96 102 92	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	0.1 0.5 11 0.4 0.3 7.3 0.2 0.7 0.4 0.5 0.3 5.9 0.1 1.8 0.5 0.5 0.3	20 20 20 20 20 20 20 20 20

ND = Not detected NC = Not calculated, calculation not applicable. NA = Not applicable

Calculations are performed before rounding to avoid round-off errors in calculated results

DUPLICATE CONTROL SAMPLE REPORT Metals Analysis and Preparation (cont.)

.

Analyte	Co Spiked	ncentra ti DCS1	on Measured DCS2	d AVG		uracy age(%) Limits	Precis (RPD) DCS Li)
Category: ICP-AD Matrix: AQUEOUS QC Lot: 12 OCT 90-546 Concentration Units: mg/L								
Vanadium Zinc	0.5 0.5	0.468 0.480	0.466 0.467	0.467 0.474	93 95	80-120 80-120	0.4 2.7	20 20
Category: FAAl-AD Matrix: AQUEOUS QC Lot: 12 OCT 90-546 Concentration Units: mg/L								
Arsenic Lead Selenium Thallium	0.05 0.05 0.05 0.05	0.0477 0.0480 0.0513 0.0480	0.0478 0.0490 0.0504 0.0480	0.0478 0.0485 0.0508 0.0480	96 97 102 96	80-120 80-120 80-120 80-120 80-120	0.2 2.1 1.8 0.0	20 20 20 20
Category: HG-CVAA-AD Matrix: AQUEOUS QC Lot: 12 OCT 90-546 Concentration Units: mg/L								
Mercury	0.001	0.00103	0.00106	0.00104	105	80-120	2.9	20
Category: FAA2-AD Matrix: AQUEOUS QC Lot: 12 OCT 90-546 Concentration Units: mg/L								
Antimony Cadmium Chromium Copper Nickel Silver	0.002 0.005 0.05 0.05 0.05 0.05	NA 0.00487 NA NA NA NA	NA 0.00499 NA NA NA NA	NC 0.00493 NC NC NC NC	NC 99 NC NC NC	80-120 80-120 80-120 80-120 80-120 80-120 80-120	NC 2.4 NC NC NC NC	20 20 20 20 20 20
311101	0.002		174			00-120	ne	20

Enseco

ND = Not detected NC = Not calculated, calculation not applicable. NA = Not applicable

Calculations are performed before rounding to avoid round-off errors in calculated results.

Enscep Erro Laboratory

Rec'd CRA

OCT 2 5. 90

October 24, 1990

Mr. David Dempsey Conestoga-Rovers Associates 382 West County Road D St. Paul, MN 55112

Dear David:

Enclosed are the results of the analyses for Rasmussen (10/12/90). This project was received at Enseco - Erco Laboratory on October 12, 1990, and was processed for a 14 day turnaround time.

This report is presented in three sections. The first section consists of the Sample Description Information page and Analytical Test Requests summary. The second section contains the analytical results and method references. The third section briefly describes the elements of Enseco's quality assurance/ quality control (QA/QC) program and contains the QA/QC results. This letter authorizes the release of the analytical results and should be considered an integral part of this report.

Please refer to this project by the Enseco project number 007352 to expedite any further discussions. I will be happy to address any questions or concerns that you may have.

Sincerely, Catherine M. Flaherty Program Administrator

Encl.

Enseco Incorporated 205 Alewife Brook Parkwey Cambridge, MA 02138 617/661-3111 617/354-5258

October 24, 1990

Project Narrative

Client: Conestoga-Rovers Associates Project Name: 10/12/90 Erco Project No.: 007352

- This project consists of the results for samples received at Enseco - Erco Laboratory on October 12, 1990. Please see the sample description information sheet for a list of samples.
- Temperature of coolers upon receipt was 15,5,16.1 C respectively. Bottles were not broken in transit. Bottles were properly labeled. Samples agree with chain of custody. Samples were properly preserved.
- 3. Per telephone conversation with Dave Dempsey on October 12, 1990, only analyze the matrix spike aliquot for BNA analysis. Not enough volume of sample W-101190-WP-08 was provided to perform both a matrix spike and a matrix spike duplicate for BNA analysis. A matrix spike and duplicate was assigned to W-101190-WP-06 for both total and dissolved metals.
- 4. Sample 01 and 02 required additional dilutions due to high concentration of unknowns (ester of alkanoic acid).

TARGET COMPOUND LIST (TCL) SEMIVOLATILE ORGANICS Method 625

Client Name:	Conestoga-Rovers	Associates				
Client ID: Lab ID:	W-101190-WP-06 007352-0001-SA	Enseco ID:	2048657			
Matrix:	AQUEOUS	Sampled:	11 OCT 9	0	Received: 12	
Authorized:	12 001 90	Prepared:	10 001 9	U	Analyzed: 19	001 30
					Reporting	
Parameter			Result	Units	Limit	
05 4 4 4 3			ND		10	
Phenol bis(2-Chloro	athull athar		ND ND	ug/L ug/L	10 10	
2-Chlorophen	ol		ND	ug/L	ĩŏ	
1,3-Dichloro			ND	uğ/L	10	
1,4-Dichloro			ND	ug/L	10	
Benzyl alcoh			ND ND	ug/L	10 10	
1.2-Dichloro 2-Methylphen			ND	ug/L ug/L	10	
bis(2-Chioro				49/ 5		
ether	• • • •		ND	ug/L	10	
4-Methylphen	6		ND	ug/L	10	
N-Nitroso-di			NO	u a /1	10	
n-propyl Herschlerest			ND ND	ug/L ug/L	10 10	
Hexachloroet Nitrobenzene		•	ND	ug/L	iŏ	
Isophorone			ND	ug/L	10	
2-Nitropheno	1		ND	ug/L	10	
2,4-Dimethyl	phenol		ND	ug/L	10	
Benzoic acid			ND	ug/L	52	
bls(2-Chloro methane	ecnoxy)-		ND	ug/L	10	
2,4-Dichloro	phenol		NĎ	ug/L	ĪŎ	
1,2,4-Trichl			ND	ug/L	10	
Naphthalene			ND	uġ/L	10	
4-Chloroanil			ND	ug/L	10	
Hexachlorobu 4-Chloro-3-m			ND ND	ug/L ug/L	10 10	
2-Methylnaph	thalene		ND	ug/L	10	
Hexachiorocy	clopentadiene		ND	ug/L	iŏ	
2,4,6-Trich]	orophenol		ND	ug/L	10	
2,4,5-Trich]	orophenol		ND	ug/L	52	
2-Chloronaph 2-Nitroanili	tha lene		ND ND	ug/L	10 52	
Dimethyl pht	halate		ND	ug/L ug/L	10	
Acenaphthyle	ne		ND	ug/L	10	
3-Nitroanili	ne		ND	ug/L	52	
Acenaphthene			ND	ug/L	10	
2,4-Dinitrop			ND ND	ug/L	52 52	
4-Nitropheno Dibenzofuran			ND	ug/L ug/L	52 10	
2,4-Dinitrot			ND	ug/L	10	
ND = Not det NA = Not app	ected	tinued on fo	ollowing ;	page)		
Reported By:	Marbela Bazile		Approved	8y: Ke	erylynn Hemmer	·le

.

•

ì

TARGET COMPOUND LIST (TCL) SEMIVOLATILE ORGANICS (CONT.) Method 625

Client Name: Client ID:	Conestoga-Rovers W-101190-WP-06	Associates				
Lab ID: Matrix:	007352-0001-SA AQUEOUS 12 OCT 90		2048657 11 OCT 90 16 OCT 90		Received: 12 Analyzed: 19	
Parameter		1	Result	Units	Reporting Limit	
2.6-Dinitrot Diethyl phth	alate		ND ND	ug/l ug/l	10 10	
4-Chlorophen phenyl e Fluorene 4-Nitroanilii	ther		ND ND ND	ug/L ug/L ug/L	10 10 52	
4,6-Dinitro- 2-methyl N-Nitrosodip	henylamine		ND ND	ug/L ug/L	52 10	
4-Bromopheny phenyle Hexachlorobe Pentachlorop Phenanthrene	ther nzene		ND ND ND	ug/L ug/L ug/L ug/L	10 10 52 10	
Anthracene Di-n-butyl pi Fluoranthene Pyrene Butyl benzyl			ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	10 10 10 10	
3,3'-Dichlor Benzo(a)anth bis(2-Ethylin	obenzidine racene		ND ND	ug/L ug/L	21 10	
phthal.t Chrysene Di-n-octyl pi Benzo(b)fluo Benzo(k)fluo Benzo(a)pyre Indeno(1,2,3 Dibenz(a,h)a Benzo(g,h,i)	e hthalate ranthene ranthene ne -cd)pyrene nthracene		ND ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 10	
Nitrobenzene 2-Fluorobiph Terphenyl-dl Phenol-d5 2-Fluorophen 2,4,6-Tribro	enyl 4 ol		51 45 60 21 31 50	****	 	

ND = Not detected NA = Not applicable

Reported By: Marbela Bazile

.

Approved By: Kerylynn Hemmerle

,

2

TARGET COMPOUND LIST (TCL) SEMIVOLATILE ORGANICS Method 625

Client Name:	Conestoga-Rovers	Associates			
Client ID: Lab ID:	W-101190-WP-07 007352-0005-SA	Enseco ID:	2048670		
Matrix: Authorized:	AQUEOUS 12 OCT 90	Sampled:	11 OCT 90 16 OCT 90		Received: 12 OCT 90 Analyzed: 19 OCT 90
					•
Parameter		ł	Result	Units	Reporting Limit
Phenol			ND	ug/L	5.4
bis(2-Chloro	ethyl) ether		ND ND	ug/L	5.4 5.4
2-Chlorophen 1,3-Dichlorol	benzene		ND	ug/L ug/L	5.4
1.4-Dichloro	benzene		ND	ug/L	5.4
Benzyl alcoh	01		ND ND	ug/L	5.4 5.4
1,2-Dichlorol 2-Methylphen	ol ol		NÖ	ug/L ug/L	5.4
bis(2-Chloro	isopropyl)			2.	
ether	-1		ND ND	ug/L	5.4
4-Methylphen N-Nitroso-di			ηυ	uğ/L	5.4
n-propyl	amine		ND	ug/L	5.4
Hexachloroet	hane	•	ND ND	uğ/L	5.4 5.4
Nitrobenzene Isophorone			ND	ug/L ug/L	5.4
2-Nitropheno			ND	ug/L	5.4
2,4-Dimethyl	phenol		ND	ug/L	5.4 27
Benzoic acid bis(2-Chioro	otharu).		ND	uğ/L	27
methane			ND	ug/L	5.4
2,4-Dichloro	phenol		ND	ug/L	5.4
1,2,4-Trich) Naphthalene	orobenzene		ND ND		5.4
4-Chloroanil	ine		NĎ	ug/L ug/L	5,4 ~
Hexachlorobu	tadiene		ND	ug/L	5.4 5.4
4-Chloro-3-m			ND	uğ/L	5.4
2-Methylnaph Hexachlorocy	clopentadiene		ND ND	uğ/L ug/L	5.4 5.4
2,4,6-Trich]	orophenol		DND	ug/L	5.4
2,4,5-Trich1	orophenol		ND	ug/L	27
2-Chloronaph 2-Nitroanili	thaléné		ND ND	ug/L	5.4 27
Dimethyl pht			ND	ug/L ug/L	5.4
Acenaphthyle	ne		ND	ug/L	5.4
3-Nitroanili	ne		ND	ug/L	27
Acenaphthene 2,4-Dinitrop	henal		ND ND	ug/L ug/L	5.4 27
4-Nitropheno	1		ND	ug/L	27
Dibenzofuran			ND	ug/L	5.4
2,4-Dinitrot	OIGEUR		ND	uğ/L	5.4
	1000	tinuad on fo		an)	

(continued on following page)

ND - Not detected NA = Not applicable

Reported By: Marbela Bazile

Approved By: Karylynn Hemmerle

,

,

Enseco

1

٨

TARGET COMPOUND LIST (TCL) SEMIVOLATILE ORGANICS (CONT.) Method 625

Client Name: Conestoga-Rovers Client ID: W-101190-WP-07	Associates		
Lab ID: 007352-0005-SA Natrix: AQUEOUS Authorized: 12 OCT 90	Enseco ID: 2048670 Sampled: 11 OCT 90 Prepared: 16 OCT 90	Re An	ceived: 12 OCT 90 alyzed: 19 OCT 90
Parameter	Result	Units	Keporting Limit
2,6-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl	ND ND	ug/L ug/L	5.4 5.4
phenyl ether Fluorene	ND ND ND	ug/L ug/L	5.4 5.4 27
4-Nitroaniline 4.6-Dinitro- 2-methylphenol	ND	ug/L ug/L	27
N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether	ND	ug/L ug/L	5.4 5.4
Hexachlorobenzene Pentachlorophenol Phenanthrene	ND ND ND	ug/L ug/L ug/L	5.4 27 5.4
Anthracene Di-n-butyl phthalate Fluoranthene	ND ND ND	ug/L ug/L ug/L	5.4 5.4 5.4
Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine	ND ND ND	ug/L ug/L ug/L	5.4 5.4 11
Bénzo(a)anthracene bis(2-Ethylhexyl) phtnalate	ND ND	ug/L ug/L	5.4 5.4
Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene	ND ND ND	uğ/L ug/L ug/L	5.4 5.4 5.4
Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	ND ND ND	ug/L ug/L ug/L	5.4 5.4 5.4
Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ND	ug/L ug/L	5.4 5.4
Nitrobenzene-d5 2-Fluoropiphenyl Terpheny <u>l</u> -d14	50 43 57	X X X	
Phenol-d5 2-Fluorophenol 2,4,5-Tribromophenol	57 13 25 35	* * *	••

ND - Not detected NA = Not applicable

.

Reported By: Marbela Bazile

Approved By: Kerylynn Hemmerle

.

TARGET COMPOUND LIST (TCL) SEMIVOLATILE ORGANICS Method 625

Client Name:	Conestoga-Rovers	Associates			
Client ID:	W-101190-WP-08 007352-0006-SA				
Lab ID:	007352-0006-SA	Enseco ID:	2048671		
Matrix:	AQUEOUS	Sampled:	11 OCT 9	0	Received: 12 OCT 90
Authorized:	12 OCT 90	Prepared:			Analyzed: 19 OCT 90
		- •			•
					Reporting
Parameter			Result	Units	Limit
Phenol			5.6	ug/L	5.0
bis(2-Chloro	ethyl) ether		ND	uğ/L	5.0
2-Chlorophen			ND	ug/l	5.0
1.3-Dichlorol	benzene		ND	ug/L	5.0
1.4-Dichloro	benzene		ND	ug/L	5.0
Benzyl alcoh	0]		ND	ug/L ug/L ug/L	5.0
1,2-Dichloro	benzene		ND	ug/L	5.0
2-Methylphen	01		ND	uğ/L	5.0
bis(2-Chloro	(sopropyl)				
`ether			ND	ug/L	5.0
4-Methylphen	סו		ND	ug/L	5.0
N-Nitroso-di					
n-propy)	amine		ND	ug/L	5.0
Hexachloroet	hane	•	ND	ug/L	5.0
Nitrobenzene			ND	ug/L	5.0
Isophorone			ND	ug/L	5.0
2-Nitropheno	۱. .		ND	ug/L	5.0
2.4-Dimethyl			ND	ug/L	5.0
Benzoic acid	- 4 6		ND	ug/l	25
bis(2-Chloro	etnoxy)-		ND	u e /1	5.0
methane	-		NÐ	ug/L	5.0
2,4-Dichloro 1,2,4-Trichl	arabanzana		ND	ug/L ug/L	5.0
Naphthalene	orobenzene		ND	ug/L	5.0
4-Chloroantl	ina		NĎ	ug/l	5.0
Hexachlorobu			NĎ	ug/l	5.0
4-Chloro-3-m	athylphanol		NĎ	ug/L	5.0
2-Methylnaph	thalono		ND	ug/L	5.0
Hexachiorocy	clopentadiene		ND	ug/L	5.0
2,4,6-Trich]	orophenol		ND	ug/L	5.0
2,4,5-Trich1	orophenol		ND	uğ/L	25
2-Chloronaph	thalene		ND	ug/L	5.0
2-Nitroanili	ne		ND	ug/L	25
Dimethyl pht	halate		ND	ug/L	5.0
Acenaphthyle	ne		ND	ug/L	_5.0
3-Nitroanili	ne		NĎ	uğ/L	25
Acenaphthene	_		ND	ug/L	5.0
2,4-Dinitrop			ND	ug/L	25
4-Nitropheno	1		ND	ug/L	25
Dibenzofuran			ND	ug/L	5.0
2,4-Dinitrot	oluene		ND	uğ/L	5.0
	1	tinued on fo	llowing -	Ianel	
ND - Not det		VIE I	arrowing b	14901	
NA = Not app					
••					
Reported By:	Marbela Bazile		Approved	By: Ke	rylynn Hemmerle
•					

.

 \sim

~

j,

TARGET COMPOUND LIST (TCL) SEMIVOLATILE ORGANICS (CONT.) Method 625

Client Name: Client ID:	Conestoga-Rovers W-101190-WP-08	Associates			
Lab ID:	007352-0006-SA AQUEOUS	Enseco ID: Sampled: Prepared:	2048671 11 OCT 90 16 OCT 90		Received: 12 OCT 90 Analyzed: 19 OCT 90
Parameter			Result	Units	Reporting Limit
2,6-Dinitrot Diethyl phth 4-Chlorophen	alate		ND ND	ug/L ug/L	5.0 5.0
phenyl e Fluorene 4-Nitroanili	ther		ND ND ND	ug/L ug/L ug/L	5.0 5.0 25
4,6-Dinitro- 2-methyl N-Nitrosodip	henylamine		ND ND	ug/L ug/L	25 5.0
4-Bromopheny phenyl e Hexachlorobe Pentachlorop	ther nzene		nd Nd Nd	ug/L ug/L ug/L	5.0 5.0 25
Phenanthrene Anthracene Di-n-butyl p		•	ND ND ND	ug/L ug/L ug/L	5.0 5.0 5.0
Fluoranthene Pyrene Butyl benzyl	phthalate		ND ND ND	ug/L ug/L ug/L	5.0 5.0 5.0
3,3'-Dichlor Benzo(a)anth bis(2-Ethylh phthalat	racene exyl)		ND ND 64	ug/L ug/L ug/L	10 5.0 5.0
Chrysene Di-n-octyl p Benzo(b)fluo	hthalate		ND 10 ND	ug/L ug/L ug/L	5.0 5.0 5.0
Benzo(k)fluo Benzo(a)pyre Indeno(1,2,3	ranthene ne		ND ND ND	ug/L ug/L ug/L	5.0 5.0 5.0
Dibenz(a,h)a Benzo(g,h,1)	nthräcene perylene		ND ND	ug/L ug/L	5.0 5.0
Nitrobenzene 2-Fluorobiph Terphenyl-dl Phonol-d5	enyl		55 49 55	* * * * *	•• •• ••
Phenol-d5 2-Fluorophen 2,4,6-Tribro			19 26 52	* * * * *	

ND = Not detected NA = Not applicable Reported By: Marbela Bazile

Approved By: Kerylynn Hemmerle

ţ.

Ð a.

Phenol bis(2-Chlorophenol 2-Chlorophenol 1,3-Oichlorobenzene 8enzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane 15s(2-Chloroethane Nitrobenzene 2.4-Dimethylphenol 2.4-Dimethylphenol 1.2.4-Dimethylphenol 5is(2-Chloroethoxy)-methane Hexachlorophenol 1.2.4-Dirophenol 2.4-Dirothlorobenzene A-Chloroaniline Hexachlorocyclopentadiene 2.4.6-Trichlorophenol 2.4.5-Trichlorophenol 2.4.5-Trichlorophenol 2.4.5-Trichlorophenol 2.4.5-Trichlorophenol 2.4.6-Trichlorophenol 2.4.6-Trichlorophenol 2.4.5-Trichlorophenol 2.4.6-Trichlorophenol 2.4.7-Nitrophenol 3.8-Nitrophenol 4-Nitrophenol 2.4-Dinitrophenol Client Client Client Lab ID: Matrix: Authori: NA Par ame, . Not iter ID: zed detected applicable ē ... AQUE 0073 estoga-Rovers 01190-wp-09 352-0002-SA EQUS 0CT 90 (continued TARGET COMPOUND LIST (TCL) SEMIVOLATILE ORGANICS Method 625 Associa Enseco ID: Sampled: Prepared: . 2 ites following Result 20486 11 0C 16 0C 888888888 SS ᅴᅴᇬ 00 page) 990 ug/L Units Received: Analyzed: Report فسيل شبيع فسير مبيع فيبير فيترج وكال 0000000 00 00000000 ct ---ß **WN** ន្តដ 88

A Curning Compuny

Approved

By:

Kerylynn

Henmerle

Reported

By:

Marbel

¢,

Bazile

н đ ٤ Ü ŵ t 49 ю 4 ¢ íĎ N

0 0

.

Ú.

£

TARGET COMPOUND LIST (TCL) SEMIVOLATILE ORGANICS (CONT.) Method 625

Client Name: Client ID:	Conestoga-Rovers W-101190-WP-09	Associates			
Lab ID: Matrix: Authorized:	007352-0002-SA AQUEOUS 12 OCT 90	Enseco ID: Sampled: Prepared:	2048658 11 OCT 90 16 OCT 90		Received: 12 OCT 90 Analyzed: 19 OCT 90
Parameter			Result	Units	Reporting Limit
2,6-Dinitrat Diethyl phth	alate		ND ND	ug/L ug/L	10 10
4-Chlorophen phenyl e Fluorene 4-Nitroanilis	ther		ND ND ND	ug/L ug/L ug/L	10 10 50
4,5-Dinitro- 2-methyl N-Nitrosodip	henylamine		ND ND	ug/L ug/L	50 10
4-Bromopheny phenyl e Hexachlorobe Pentachlorop	ther nzene		ND ND ND	ug/L ug/L ug/L	10 10 50
Phenanthrene Anthracene Di-n-butyl p		•	ND ND ND	ug/L ug/L ug/L	10 10 10
Fluoranthene Pyrene Butyl benzyl 3,3'-Dichlor	phthalate obenzidine		ND NO ND ND	ug/L ug/L ug/L ug/L	10 10 10 20
Bénzo(a)anth bis(2-Ethylh phthalat	racene exyl)		ND 87	ug/L ug/L	10
Chrysene Di-n-actyl p Benzo(b)fluo	ranthene		ND 25 ND	ug/L ug/L ug/L	10 10 10
Benzo(k)fluo Benzo(a)pyre Indeno(1,2,3 Dibenz(a,h)a	ne -cd)pyrene		ND ND ND ND	ug/l ug/l ug/l ug/l	10 10 10 10
Benzo(g,h,i) Nitrobenzene	perylene		ND 50	ug/L %	10
2-Fluorobiph Terphenyl-dl Phenol-d5	enyl		45 50 15	****	
2-Fluorophen 2,4,6-Tribro			21 45	2 2 2	

ND = Not detected NA = Not applicable

Reported By: Marbela Bazile

Approved By: Kerylynn Hemmerle

.

METALS

Enseco

Client Name: Client ID:	Conestoga-Rovers W-101190-WP-06	Associates				
Lab ID: Matrix: Authorized:	007352-0001-SA AQUEOUS 12 OCT 90	Enseco ID: Sampled: Prepared:	2048657 11 OCT 90 See Below		ed: 12 OCT 9(ed: See Beloy	
Parameter	Result	R Units	eporting Limit	Analytical Method	Prepared Date	Analyzed Date
Aluminum Antimony Arsenic Barium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	14.7 ND 0.018 0.15 ND 0.023 333 0.14 0.024 0.12 44.1 0.36 82.7 1.1 ND 0.13 5.8 ND ND ND 0.013 5.8 ND ND 0.013 5.8 ND ND 0.018 0.023 0.14 0.024 0.12 44.1 0.36 82.7 1.1 ND 0.018 0.024 0.024 0.12 44.1 0.036 82.7 1.1 ND 0.018 0.024 0.12 44.1 0.036 82.7 1.1 ND 0.018 0.024 0.12 44.1 0.036 82.7 1.1 ND 0.018 0.024 0.12 44.1 0.036 82.7 1.1 ND 0.018 0.024 0.12 0.12 0.13 0.14 0.026 0.12 0.12 0.12 0.12 0.13 0.14 0.026 0.13 0.14 0.026 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.14 0.026 0.13 0.061 0.061 0.4.9	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	$\begin{array}{c} 0.10\\ 0.050\\ 0.0050\\ 0.0020\\ 0.00050\\ 0.20\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.050\\ 0.20\\ 0.010\\ 0.00020\\ 0.040\\ 5.0\\ 0.010\\ 0.010\\ 5.0\\ 0.010\\ 0.010\\ 0.020\\ \end{array}$	200.7 200.7 206.2 200.7 200.7 213.2 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 279.2 200.7 200.7 200.7	17 OCT 90 17 OCT 90	17 OCT 90 17 OCT 90 17 OCT 90 17 OCT 90 19 OCT 90 17 OCT 90 17 OCT 90 17 OCT 90 17 OCT 90 17 OCT 90 17 OCT 90 18 OCT 90 16 OCT 90 17 OCT 90 18 OCT 90

Note m : Compound exceeded standard calibration range in the original analysis and was rerun with a dilution.

Note G : Reporting limit raised due to matrix interference.

ND = Not detected NA = Not applicable

•

Reported By: Vinora Nicholls

Approved By: Vaughn Pusey

METALS

Enseco

Client Name:	Conestoga-Rovers W-101190-WP-09	Associates				
Client ID: Lab ID: Matrix: Authorized:	007352-0002-SA AQUEOUS 12 OCT 90	Enseco ID: Sampled: Prepared:	11 OCT 90) Received W Analyzed	: 12 OCT 9 : See Belo	
Parameter	Result	R Units	eporting Limit	Analytical Method	Prepared Date	Analyzed Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	0.23 ND 0.048 ND 0.010 17.4 0.027 ND 0.031 14.2 0.43 16.8 0.13 ND ND ND ND ND ND ND ND ND ND ND 71.0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.10 0.050 0.0050 0.0020 0.00050 0.20 0.010 0.010 0.010 0.10 0.050 0.20 0.010 0.00020 0.040 5.0 0.0050 0.0050 0.010 5.0 0.0050 0.010 0.0050	200.7 200.7 200.7 200.7 200.7 239.2 200.7 200.7	17 OCT 90 17 OCT 90	17 OCT 90 17 OCT 90 17 OCT 90 19 OCT 90 17 OCT 90 17 OCT 90 17 OCT 90 17 OCT 90 17 OCT 90 18 OCT 90 17 OCT 90 16 OCT 90 17 OCT 90

Note m : Compound exceeded standard calibration range in the original analysis and was rerun with a dilution. ND = Not detected NA = Not applicable

Reported By: Vinora Nicholls

Approved By: Vaughn Pusey

.

Enseco A Coming Company

METALS (DISSOLVED)

Client Name: Client ID: Lab ID: Matrix: Authorized:	Conestoga-Rovers W-101190-WP-06 d1 007352-0003-SA AQUEOUS 12 OCT 90	ssolved Enseco ID: Sampled:	2048659 11 OCT 90 See Below) Receiv Analyz	ed: 12 OCT 9 ed: See Belo	0
Parameter	Result	R Units	eporting Limit	Analytical Method	Prepared Date	Analyzed Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	ND 0.051 ND 0.066 ND 220 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	$\begin{array}{c} 0.10\\ 0.050\\ 0.0050\\ 0.0020\\ 0.00050\\ 0.20\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.0050\\ 0.20\\ 0.010\\ 0.00020\\ 0.010\\ 0.00050\\ 0.010\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 0.010\\ 0.010\\ 0.020\\ \end{array}$	200.7 200.7 205.2 200.7 200.7 213.2 200.7	NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	17 OCT 90 17 OCT 90 18 OCT 90 17 OCT 90 17 OCT 90 19 OCT 90 17 OCT 90 18 OCT 90 17 OCT 90 18 OCT 90 17 OCT 90

Note G : Reporting limit raised due to matrix interference.

ND = Not detected NA = Not applicable

-

ν.

Reported By: Vinora Nicholls

•

Approved By: Vaughn Pusey

G

METALS (DISSOLVED)

Client Name: Client ID: Lab ID; Matrix: Authorized:	Conestoga-Rovers W-101190-WP+09 d1 007352-0004-SA AQUEOUS 12 OCT 90	Associates ssolved Enseco ID: Sampled: Prepared:	11 OCT 9	0 Received W Analyzed	: 12 OCT 9 ; See Belo	
Parameter	Result	R: Units	eporting Limit	Analytical Method	Prepared Date	Analyzed Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Marcury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	ND ND ND ND ND 13.3 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	$\begin{array}{c} 0.10\\ 0.050\\ 0.0050\\ 0.0020\\ 0.00050\\ 0.20\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.0050\\ 0.0050\\ 0.0050\\ 0.0050\\ 0.0050\\ 0.010\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 0.010\\ 0.010\\ 0.020\\ 0.010\\ 0.020\\ 0.020\\ 0.010\\ 0.020\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0$	200.7 200.7 200.7 200.7 200.7 200.7 239.2 200.7 200.7	NA NA NA NA NA NA NA NA NA NA NA NA NA N	17 OCT 90 17 OCT 90 18 OCT 90 17 OCT 90 17 OCT 90 19 OCT 90 17 OCT 90

Note G : Reporting limit raised due to matrix interference.

NO = Not detected NA = Not applicable

Reported By: Vinora Nicholls

Approved By: Vaughn Pusey

Finseco,

ing Company

QUALITY ASSURANCE/QUALITY CONTROL

As an indication of the overall quality of the data generated by Enseco - Erco Laboratory for this report, the following controls have been provided (when applicable).

<u>Method blanks</u> are analyzed to assess the level of contamination which exists in the analytical system. A method blank, analyzed with every batch of samples, consists of reagents specific to the method. This blank is carried through every aspect of the procedure, including preparation, cleanup, and analysis. Ideally, the concentration of an analyte in the blank is below the reporting limit for that analyte. However, some common laboratory solvents and metals are difficult to eliminate to the part-perbillion levels commonly reported in environmental analyses. Therefore, all method blank data is reported to the client. Data are not blank-corrected.

<u>Duplicate control samples</u> (DCS) are used to monitor the laboratory's day-to-day performance of routine analytical methods. A DCS consists of a standard, control matrix which is spiked with a group of target compounds representative of the method analytes. The DCS is analyzed with environmental samples to provide evidence that the laboratory is performing the method within accepted QC guidelines.

A DCS has been established for most routine analytical methods. Reagent water is used as the control matrix for the analysis of aqueous samples. The DCS compounds are spiked into reagent water and carried through the appropriate steps of the analysis. As stated in SW-846 (third edition), a universal blank matrix does not exist for solid samples and therefore no matrix is used. The DCS for solid samples consists of the DCS compounds spiked into a reagent blank and carried through the appropriate steps of the analysis. The data thus obtained are used to set the DCS control limits. As sufficient laboratory data become available, the control limits are redefined based upon the most recent six months of DCS data. Control limits for accuracy are based on the historical average recovery of the DCS plus or minus three standard deviation units, or alternatively on established control limits defined in the methodology.

<u>Surrogates</u> are organic compounds that are similar to the analytes of interest in chemical behavior but which are not normally found in environmental samples. Enseco routinely adds surrogates to samples requiring GC/MS and most GC analysis and reports these surrogate recoveries to the client. These surrogates are added to samples to monitor the effect of the matrix on the accuracy of the analysis. Results are reported in terms of percent recovery.

QC LOT ASSIGNMENT REPORT Semivolatile Organics by GC/MS

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
007352-0001-SA 007352-0002-SA 007352-0005-SA 007352-0006-SA 007352-0006-MS	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	625-A 625-A 625-A 625-A 625-A 625-A	16 OCT 90-FA 16 OCT 90-FA 16 OCT 90-FA 16 OCT 90-FA 16 OCT 90-FA 16 OCT 90-FA	16 OCT 90-F12 16 OCT 90-F12 16 OCT 90-F12 16 OCT 90-F12 16 OCT 90-F12 16 OCT 90-F12

•

CO	

METHOD BLANK REPORT Semivolatile Organics by GC/MS

<pre>Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol w-Nitrosa-di- n-propylamine Hexachloroethane Nitrobenzene 2.4-Dimethylphenol 2.4-Dimethylphenol 1.2,4-Trichloroethoxy)- methane 4-Chloro-3-methylphenol 2.4+G-Irichlorophenol 2.4,5-Trichlorophenol 2.4,5-Trichlorophenol 2.4,5-Trichlorophenol 2.4,5-Trichlorophenol 2.4,5-Trichlorophenol 2.4,5-Trichlorophenol 2.4-Dimethylphene 3-Nitroaniline Acenaphthalate Acenaphthene 2.4-Dinitrophenol 2.4-Dinitrophenol 2.4,5-Trichlorophenol 3.4,5-Trichlorophenol 3.4,5-Trichlorophenol 3.4,5-Trichlorophenol 3.4,5-Trichlorophenol 3.4</pre>	Test: 625-TCL-A Matrix: AQUEOUS QC Lot: 16 OCT 90-FA QC Run:	Analyte
, 8888888888888888888888888888888888888	16 OCT 90-F12	Result
		Units
668868668666666666666666666666666666666		Reporting Limit

(

1

METHOD BLANK REPORT Semivolatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: 625-TCL-A Matrix: AQUEOUS QC Lot: 16 OCT 90-FA QC	Run: 16 OCT 90-F12		
2,6-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl	ND ND	ug/L ug/L	10 10
phenyl ether Fluorene 4-Nitroaniline	ND ND ND	ug/L ug/L ug/L	10 10 50
4,6-Dinitro- 2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl	ND ND	ug/l ug/l	50 10
phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene	ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 10 10 10 10 20 10
bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10

•

Enseco A Corning Company

•

SINGLE CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

.

.

Analyte	Concentration Spiked Measured			racy(%) Limits
Category: 625-A Matrix: AQUEOUS QC Lot: 16 OCT 90-FA QC Run: 16 OCT Concentration Units: ug/L	90-F12			
Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	200 200 200 100 100 100	27.1 46.5 81.3 50.7 44.5 56.4	14 23 41 51 44 56	10- 94 21-100 10-123 35-114 43-116 33-141

Calculations are performed before rounding to avoid round-off errors in calculated results.

•

DUPLICATE CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

Analyte	Concentration Spiked Measured				Accuracy Average(%)		Precision (RPD)	
Analyte	Spiked	DCS1	DCS2	AVG	DCS	Limits	DCS	
Category: 625-A Matrix: AQUEOUS QC Lot: 16 OCT 90-FA Concentration Units: ug/L								
Pentachlorophenol Phenol 2-Chlorophenol 4-Chloro-3-methylphenol 4.Nitrophenol 1,2,4-Trichlorobenzene Acenaphthene 2,4-Dinitrotoluene Pyrene N-Nitroso-di- n-propylamine 1,4-Dichlorobenzene	200 200 200 200 200 100 100 100 100 100	31.2 62.2 110 106 49.6 56.2 47.8 68.4 58.1 61.0 43.3	51.9 50.5 118 120 40.1 66.2 50.8 76.8 68.0 64.3 51.9	41.6 56.4 114 44.9 61.2 49.3 72.6 63.0 62.6 47.6	21 28 57 56 22 61 49 73 63 63 48	9-103 12-89 27-123 23-97 10-80 39-98 46-118 24-96 26-127 41-116 36-97	50 21 7.9 12 21 16 6.0 12 16 5.3 18	50 42 40 42 50 28 31 38 31 38 31 38 31

Coming Company

•

Calculations are performed before rounding to avoid round-off errors in calculated results.

.

QC LOT ASSIGNMENT REPORT Metals Analysis and Preparation

-

•

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
Sample Number 007352-0001-SA 007352-0001-SA 007352-0001-SA 007352-0001-SA 007352-0001-SA 007352-0001-SA 007352-0001-MS 007352-0001-MS 007352-0001-MS 007352-0001-MS 007352-0001-MS 007352-0001-MS 007352-0001-MS 007352-0001-MS 007352-0001-DU 007352-0001-DU 007352-0001-DU 007352-0001-DU 007352-0001-DU 007352-0001-DU 007352-0001-DU 007352-0001-DU 007352-0001-DU 007352-0002-SA 007352-0003-SA	AQUEOUS AQUEOUS	ICP-AT FAA1-AT FAA1-AT HG-CVAA-AT FAA1-AT FAA1-AT FAA2-AT ICP-AT FAA1-AT HG-CVAA-AT FAA1-AD FAA1-AD FAA1-AD FAA1-AD FAA1-AD FAA1-AD FAA1-AD FAA1-AD FAA1-AD FAA1-AD FAA1-AD FAA1-AD FAA1-AD FAA1-AD FAA1-AD FAA1-AD FAA1-AD FAA1-AD FAA1-AD	(DCS) 16 OCT 90-555 16 OCT 90-557 18 OCT 90-557	(SCS/BLANK) 16 OCT 90-555 16 OCT 90-555 18 OCT 90-557 18 OCT 9
007352-0003-MS 007352-0003-DU 007352-0003-DU 007352-0003-DU 007352-0003-DU 007352-0003-DU 007352-0003-DU	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	FAA2-AD ICP-AD FAA1-AD FAA1-AD HG-CVAA-AD FAA1-AD	18 OCT 90-557 18 OCT 90-557 18 OCT 90-557 18 OCT 90-557 16 OCT 90-557 18 OCT 90-557 18 OCT 90-557	18 OCT 90-557 18 OCT 90-557 18 OCT 90-557 18 OCT 90-557 16 OCT 90-557 18 OCT 90-557 18 OCT 90-557

QC LOT ASSIGNMENT REPORT Metals Analysis and Preparation (cont.)

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
007352-0003-DU 007352-0003-DU 007352-0004-SA 007352-0004-SA 007352-0004-SA 007352-0004-SA 007352-0004-SA 007352-0004-SA 007352-0004-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	FAA1-AD FAA2-AD ICP-AD FAA1-AD FAA1-AD HG-CVAA-AD FAA1-AD FAA1-AD FAA2-AD	18 OCT 90-557 18 OCT 90-557 18 OCT 90-557 18 OCT 90-557 18 OCT 90-557 16 OCT 90-557 18 OCT 90-557 18 OCT 90-557 18 OCT 90-557 18 OCT 90-557	18 OCT 90-557 18 OCT 90-557

١

.

Enseco A Corning Company

- Enseco

METHOD BLANK REPORT Metals Analysis and Preparation

Analyte	Result	Units	Reporting Limit
Test: ICP-TAL-AT Matrix: AQUEOUS QC Lot: 16 OCT 90-555 QC Run:	16 OCT 90-555		
Aluminum Antimony Barium Beryllium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Silver Sodium Vanadium Zinc	ND ND ND ND ND ND ND ND ND ND ND ND ND N	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	$\begin{array}{c} 0.10\\ 0.050\\ 0.010\\ 0.0020\\ 0.20\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.10\\ 0.20\\ 0.010\\ 0.20\\ 0.010\\ 0.040\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 0.020\\ \end{array}$
Test: AS-FAA-AT Matrix: AQUEOUS QC Lot: 16 OCT 90-555 QC Run:	16 OCT 90-555		
Arsenic	ND	mg/L	0.0050
Test: PB-FAA-AT Matrix: AQUEOUS QC Lot: 16 OCT 90-555 QC Run: Lead	16 OCT 90-555 ND	mg/L	0.0050
Test: HG-CVAA-AT Matrix: AQUEOUS QC Lot: 16 OCT 90-555 QC Run: 1	16 OCT 90-555		
Mercury	ND	mg/L	0.00020

1

Analyte	Result	Units	Reporting Limit
Test: SE-FAA-AT Matrix: AQUEOUS QC Lot: 16 OCT 90-555 QC Run: Selenium	16 OCT 90-555 ND	mg/L	0.0050
Test: TL-FAA-AT Matrix: AQUEOUS QC Lot: 16 OCT 90-555 QC Run: Thallium	16 OCT 90-555 ND	mg/L	0.0050
Test: CD-FAA-AT Matrix: AQUEOUS QC Lot: 16 OCT 90-555 QC Run: Cadmium	16 OCT 90-555 ND	mg/L	0.00050
Test: ICP-TAL-AT Matrix: AQUEOUS QC Lot: 16 OCT 90-555 QC Run:			
Aluminum Antimony Barium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Silver Sodium Vanadium Zinc	ND ND ND ND ND ND ND ND ND ND ND ND ND N	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	$\begin{array}{c} 0.10\\ 0.050\\ 0.010\\ 0.0020\\ 0.20\\ 0.010\\ 0.010\\ 0.010\\ 0.10\\ 0.20\\ 0.010\\ 0.20\\ 0.010\\ 0.040\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 0.020\\ \end{array}$

Enseco A Corning Company

6

4

Analyte Result	Units	Reporting Limit
Test: AS-FAA-AT Matrix: AQUEOUS QC Lot: 16 OCT 90-555 QC Run: 16 OC T 90-555		
Arsenic ND	mg/L	0.0050
Test: PB-FAA-AT Matrix: AQUEOUS QC Lot: 16 OCT 90-555 QC Run: 16 OC T 90-555 Lead ND	mg/L	0.0050
Test: HG-CVAA-AT Matrix: AQUEOUS QC Lot: 16 OCT 90-555 QC Run: 16 OCT 90-555 Mercury ND	mg/L	0.00020
Test: SE-FAA-AT Matrix: AQUEOUS QC Lot: 16 OCT 90-555 QC Run: 16 OCT 90-555 Selenium ND	mg/L	0.0050
Test: TL-FAA-AT Matrix: AQUEOUS QC Lot: 16 OCT 90-555 QC Run: 16 OC T 90-555 Thallium ND	mg/L	0.0050
Test: CD-FAA-AT Matrix: AQUEOUS QC Lot: 16 OCT 90-555 QC Run: 16 OCT 90-555 Cadmium ND	mg/L	0.00050

Analyte	Result	Units	Reporting Limit
Test: CD-FAA-AD Matrix: AQUEOUS QC Lot: 18 OCT 90-557 QC Run:			
Cadmium	ND	mg/L	0.00050
Test: TL-FAA-AD Matrix: AQUEOUS QC Lot: 18 OCT 90-557 QC Run:	18 OCT 90-557		
Thallium	ND	mg/L	0.0050
Test: SE-FAA-AD Matrix: AQUEOUS QC Lot: 18 OCT 90-557 QC Run:	,		
Selenium	ND	mg/L	0.0050
Test: HG-CVAA-AD Matrix: AQUEOUS QC Lot: 16 OCT 90-557 QC Run:	16 OCT 90-557		
Mercury	ND	mg/L	0.00020
Test: PB-FAA-AD Matrix: AQUEOUS QC Lot: 18 OCT 90-557 QC Run: Lead	18 OCT 90-557 ND	mg/l	0.0050
Test: AS-FAA-AD Matrix: AQUEOUS QC Lot: 18 OCT 90-557 QC Run:	18 OCT 90-557		
Arsenic	ND	mg/L	0.0050

Lnseco A Corning Company

.

Analyte	Result	Units	Reporting Limit
Test: ICP-TAL-AD Matrix: AQUEOUS QC Lot: 18 OCT 90-557 QC Run: 1	18 OCT 90-557		
Aluminum Antimony Barium Beryllium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Silver Sodium Vanadium Zinc	ND ND ND ND ND ND ND ND ND ND ND ND ND N	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	$\begin{array}{c} 0.10\\ 0.050\\ 0.010\\ 0.0020\\ 0.20\\ 0.010\\ 0.010\\ 0.010\\ 0.10\\ 0.20\\ 0.010\\ 0.20\\ 0.010\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 5.0\\ 0.010\\ 0.020\\ \end{array}$

•

Enseco

ng Company

DUPLICATE CONTROL SAMPLE REPORT Metals Analysis and Preparation

	Concentration				Accuracy			sion
Analyte	Spiked	DCS1	Measured DCS2	i AVG	Aver DCS	age(%) Limits	(RPD) DCS L	
Category: ICP-AT Matrix: AQUEOUS QC Lot: 16 OCT 90-555 Concentration Units: mg/L					-			
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Silver Sodium Tin Vanadium Zinc	$\begin{array}{c} 2.0\\ 0.5\\ 0.05\\ 0.05\\ 100\\ 0.25\\ 0.25\\ 1.0\\ 0.55\\ 0.5$	$\begin{array}{c} 2.17\\ 0.573\\ 0.537\\ 2.20\\ 0.0541\\ 0.0490\\ 103\\ 0.214\\ 0.511\\ 0.273\\ 1.01\\ 0.525\\ 49.9\\ 0.504\\ 0.496\\ 51.6\\ 0.0507\\ 112\\ 0.424\\ 0.518\\ 0.532\end{array}$	$\begin{array}{c} 2.27\\ 0.602\\ 0.586\\ 2.31\\ 0.0567\\ 0.0543\\ 109\\ 0.225\\ 0.540\\ 0.287\\ 1.08\\ 0.568\\ 52.7\\ 0.534\\ 0.522\\ 54.6\\ 0.0525\\ 118\\ 0.440\\ 0.545\\ 0.553\end{array}$	2.22 0.588 0.561 2.25 0.0554 0.0516 0.220 0.525 0.280 1.04 0.547 51.3 0.519 0.509 53.1 0.509 53.1 0.509 53.1 0.516 115 0.432 0.543	111 118 112 113 106 110 105 112 104 103 104 102 106 103 115 108 106 109	80-120 80-120	4.5 4.9 8.1 4.10 5.7 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Category: FAA1-AT Matrix: AQUEOUS QC Lot: 16 OCT 90-555 Concentration Units: mg/L								
Arsenic Lead Selenium Thallium	0.04 0.02 0.01 0.05	0.0410 0.0214 0.00980 0.0477	0.0440 0.0214 0.00980 0.0489	0.0425 0.0214 0.00980 0.0483	106 107 98 97	80-120 80-120 80-120 80-120 80-120	7.1 0.0 0.0 2.5	20 20 20 20 20

Calculations are performed before rounding to avoid round-off errors in calculated results.

DUPLICATE CONTROL SAMPLE REPORT Metals Analysis and Preparation (cont.)

.

		Saikad		on Moncuro	4	A	uracy	Precis	ion
Ana	lyte	Spiked	DCS1	Measure DCS2		DCS	age(%) Limits	(RPD) DCS Li	mit
Mati OC 1	egory: HG-CVAA-AD rix: AQUEOUS Lot: 16 OCT 90-557 centration Units: mg/L								
Mer	cury	0.001	0.00110	0.00120	0.00115	115	80-120	8.7	20
Mat: OC 1	egory: ICP-AD rix: AQUEOUS Lot: 18 OCT 90-557 centration Units: mg/L								
Ant Ars Bar Cad Cal Cop Iro Lea Man Nic Sod Tin	yllium nium cium omium alt per n d nesium ganese kel assium ver ium adium	2.0 0.5 2.0 0.05 100 0.2 0.5 0.25 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	$\begin{array}{c} 2.09\\ 0.571\\ 0.530\\ 2.11\\ 0.0514\\ 0.0520\\ 102\\ 0.211\\ 0.505\\ 0.267\\ 0.990\\ 0.531\\ 49.1\\ 0.494\\ 0.489\\ 51.3\\ 0.0520\\ 108\\ 0.399\\ 0.505\\ 0.506\end{array}$	$\begin{array}{c} 2.08\\ 0.557\\ 0.541\\ 2.10\\ 0.0507\\ 0.0483\\ 101\\ 0.208\\ 0.501\\ 0.266\\ 0.985\\ 0.513\\ 48.8\\ 0.491\\ 0.496\\ 50.9\\ 0.0523\\ 107\\ 0.386\\ 0.502\\ 0.517\end{array}$	$\begin{array}{c} 2.09\\ 0.564\\ 0.535\\ 2.11\\ 0.0511\\ 0.0501\\ 102\\ 0.209\\ 0.503\\ 0.266\\ 0.988\\ 0.522\\ 49.0\\ 0.493\\ 0.522\\ 49.0\\ 0.493\\ 0.521\\ 107\\ 0.393\\ 0.503\\ 0.511\end{array}$	104 113 107 105 102 100 102 105 101 106 99 104 98 99 99 102 104 107 98 101 102	80-120 80-120	0.6 2.5 2.2 0.5 1.3 7.4 0.9 1.1 0.8 0.6 1.5 0.6 5.8 0.6 5.8 0.6 5.8 0.7 0.8 2.2 0.5 1.3 0.5 0.5 0.5 2.2 5 1.3 0.5 2.2 5 1.3 0.5 2.2 5 1.3 0.5 2.2 5 1.3 0.5 2.2 5 1.3 0.5 2.2 5 1.3 7.4 0.5 2.2 5 1.3 7.4 0.5 2.2 5 1.3 7.4 0.5 2.2 5 1.3 7.4 0.5 2.2 5 1.3 7.4 0.5 2.2 5 1.3 7.4 0.5 2.2 5 1.3 7.4 0.5 2.2 5 1.3 7.4 0.5 2.2 5 1.3 7.4 0.5 2.5 5 1.5 2.5 5 1.5 2.5 2.5 5 1.5 7.5 0.5 2.5 5 1.5 7.5 0.5 2.5 5 0.5 2.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	20 20 20 20 20 20 20 20 20 20 20 20 20 2

Enseco 🖉

ming Company

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPECIFIC QC ASSIGNMENT REPORT Metals Analysis and Preparation

QC SAMPLE TYPE	TEST	LABORATORY SAMPLE NUMBER	QC LOT
MATRIX DUPLICATE	ICP-TAL-AT	007352-0001-DU	16 OCT 90-555
MATRIX DUPLICATE	AS-FAA-AT	007352-0001-DU	16 OCT 90-555
MATRIX DUPLICATE	PB-FAA-AT	007352-0001-DU	16 OCT 90-555
MATRIX DUPLICATE	HG-CVAA-AT	007352-0001-DU	16 OCT 90-555
MATRIX DUPLICATE	SE-FAA-AT	007352-0001-DU	16 OCT 90-555
MATRIX DUPLICATE	TL-FAA-AT	007352-0001-DU	16 OCT 90-555
MATRIX DUPLICATE	CD-FAA-AT	007352-0001-DU	16 OCT 90-555
MATRIX DUPLICATE	ICP-TAL-AD	007352-0003-DU	18 OCT 90-557 👅
MATRIX DUPLICATE	AS-FAA-AD	007352-0003-DU	18 OCT 90-557
MATRIX DUPLICATE	PB-FAA-AD	007352-0003-DU	18 OCT 90-557
MATRIX DUPLICATE	HG-CVAA-AD	007352-0003-DU	16 OCT 90-557
MATRIX DUPLICATE	SE-FAA-AD	007352-0003-DU	18 OCT 90-557
MATRIX DUPLICATE	TL-FAA-AD	007352-0003-DU	18 OCT 90-557
MATRIX DUPLICATE	CD-FAA-AD	007352-0003-DU	18 DCT 90-557
MATRIX SPIKE	ICP-TAL-AT	007352-0001-MS	16 OCT 90-555

Æ

A Corning Company

MATRIX SPIKE	ICP-TAL-AD	007352-0003-MS	18 OCT 90-557
MATRIX SPIKE	AS-FAA-AD	007352-0003-MS	18 OCT 90-557

MATRIX SPECIFIC QC ASSIGNMENT REPORT Metals Analysis and Preparation (cont.)

QC SAMPLE TYPE	TEST	LABORATORY SAMPLE NUMBER	QC Lot
MATRIX SPIKE	PB-FAA-AD	007352-0003-MS	18 OCT 90-557
MATRIX SPIKE	HG-CVAA-AD	007352-0003-MS	16 OCT 90-557
MATRIX SPIKE	SE-FAA-AD	007352-0003-MS	18 OCT 90-557
MATRIX SPIKE	TL-FAA-AD	007352-0003-MS	18 OCT 90-557
MATRIX SPIKE	CD-FAA-AD	007352-0003-MS	18 OCT 90-557

:

MATRIX DUPLICATE REPORT Metals Analysis and Preparation

	Conce	A /	
Analyte	Sample	Matrix Duplicate	% RPD
Test: ICP-TAL-AT Matrix AQUEOUS Sample: 007352-0001 Units: mg/L			
Aluminum Antimony Barium Beryllium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Silver Sodium Vanadium Zinc	14.7 ND 0.15 ND 333 0.14 0.024 0.12 44.1 82.7 1.1 0.13 5.8 ND ND 0.061 64.9	13.7 ND 0.15 ND 355 0.13 0.026 0.12 45.8 87.6 1.1 0.13 5.5 ND ND 0.055 68.6	6.6 NC 0.0 NC 6.2 2.1 8.0 4.7 4.0 5.8 5.2 2.6 5.7 NC 11 5.4
Test: AS-FAA-AT Matrix AQUEOUS Sample: 007352-0001 Units: mg/L			
Arsenic	0.018	0.018	5.0
Test: PB-FAA-AT Matrix AQUEOUS Sample: 007352-0001 Units: mg/L			
Lead	0.36	0.37	1.9

LINSECO A Corning Company

ND = Not detected NC = Not calculated, calculation not applicable.

All calculations are performed before rounding to avoid round-orf errors in calculated results.

MATRIX DUPLICATE REPORT Metals Analysis and Preparation (cont.)

	Concentration		
Analyte	Sample	Matrix Duplicate	% RPD
Test: HG-CVAA-AT Matrix AQUEOUS Sample: 007352-0001 Units: mg/L			
Mercury	ND	ND	NC
Test: SE-FAA-AT Matrix AQUEOUS Sample: 007352-0001 Units: mg/L			
Selenium	ND	ND	NC
Test: TL-FAA-AT C Matrix AQUEOUS Sample: 007352-0001 Units: mg/L			
Thallium	ND	ND	NC
Test: CD-FAA-AT Matrix AQUEOUS Sample: 007352-0001 Units: mg/L			
Cadmium	0.023	0.024	3.8
Test: ICP-TAL-AD Matrix AQUEOUS Sample: 007352-0003 Units: mg/L			
Aluminum Antimony Barium Beryllium Calcium Chromium Cobalt	ND 0.051 0.066 ND 220 ND ND	ND ND 0.063 ND 213 ND ND	NC NC 3.7 NC 3.2 NC NC

ND = Not detected NC = Not calculated, calculation not applicable.

,

All calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX DUPLICATE REPORT Metals Analysis and Preparation (cont.)

	Concentration				
Analyte Copper Iron Magnesium Manganese Nickel Potassium Silver Sodium Vanadium Zinc	Sample ND 52.7 0.21 ND ND ND ND 9.7	Matrix Duplicate ND 51.0 0.21 ND ND ND ND ND 9.4	% RPD NC 3.3 2.9 NC NC NC NC 3.4		
Test: AS-FAA-AD Matrix AQUEOUS Sample: 007352-0003 Units: mg/L					
Arsenic	ND	ND	NC		
Test: PB-FAA-AD Matrix AQUEOUS Sample: 007352-0003 Units: mg/L					
Lead	ND	ND	NC		
Test: HG-CVAA-AD Matrix AQUEOUS Sample: 007352-0003 Units: mg/L					
Mercury	ND	ND	NC		
Test: SE-FAA-AD Matrix AQUEOUS Sample: 007352-0003 Units: mg/L					
Selenium	ND	ND	NC		
ND = Not detected NC = Not calculated, calculation not	applicab	le.			

inseco

A Coming Company

All calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX DUPLICATE REPORT Metals Analysis and Preparation (cont.)

.

	Concentration				
Analyte	Sample	Matrix Duplicate	% RPD		
Test: TL-FAA-AD Matrix AQUEOUS Sample: 007352-0003 Units: mg/L					
Thallium	ND	ND	NC		
Test: CD-FAA-AD Matrix AQUEOUS Sample: 007352-0003 Units: mg/L					
Cadmium	ND	ND	NC		
ND = Not detected NC = Not calculated, cal	••				

Enseco

All calculations are performed before rounding to avoid round-off errors in calculated results.

•

MATRIX SPIKE REPORT Metals Analysis and Preparation

		Concent	Concentration		
Analyte	Sample	Matrix Spike	Amount Spiked	% Rec	
Test: ICP-TAL-AT Matrix AQUEOUS Sample: 007352-0001 Units: mg/L					
Aluminum Antimony Barium Beryllium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium Silver Sodium Vanadium Zinc	14.7 ND 0.15 ND 333 0.14 0.024 0.12 44.1 82.7 1.1 0.13 5.8 ND ND 0.061 64.9	14.0 0.90 4.0 0.096 515 0.47 0.91 0.59 41.1 171 1.9 0.96 98.3 0.091 208 0.97 60.1	4.0 1.0 4.0 0.10 200 0.40 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	NC 90 97 94 84 88 95 NC 88 80 84 93 91 104 90 NC	

LINSECO A Corning Company

ł.

ŧ.

١

 $ND \approx Not$ detected NC $\approx Not$ calculated, calculation not applicable.

All calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE REPORT Metals Analysis and Preparation (cont.)

ς.

		Concenti		
Analyte	Sample	Matrix Spike	Amount Spiked	% Rec
Test: HG-CVAA-AT Matrix AQUEOUS Sample: 007352-0001 Units: mg/L				·
Mercury	ND	0.0010	0.0010	105

:

A Corning Company

Test: ICP-TAL-AD Matrix AQUEOUS Sample: 007352-0003 Units: mg/L				
Aluminum Antimony	ND 0.051	2.0	2.0 0.50	101 98
Barium Beryllium	0.066 ND	2.1 0.049	2.0 0.050	103 98
Calcium	220	305	100	NC
Chromium	ND	0.20	0.20	100
Cobalt	ND	0.48	0.50	95

ND = Not detected NC = Not calculated, calculation not applicable.

All calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE REPORT Metals Analysis and Preparation (cont.)

Analyte Copper Iron Magnesium Manganese Nickel Potassium Silver Sodium Vanadium Zinc	Sample ND S2.7 0.21 ND ND ND ND ND 9.7	Concentr Matrix Spike 0.26 0.93 98.2 0.67 0.46 52.3 0.047 111 0.48 9.1	ration Amount Spiked 0.25 1.0 50.0 0.50 50.0 0.050 100 0.50 0.50	% Rec 102 93 91 91 93 105 93 111 97 NC
Test: AS-FAA-AD Matrix AQUEOUS Sample: 007352-0003 Units: mg/L				
Arsenic	ND	0.038	0.040	95
Test: PB-FAA-AD Matrix AQUEOUS Sample: 007352-0003 Units: mg/L	:			
Lead	ND	0.018	0.020	92
Test: HG-CVAA-AD Matrix AQUEOUS Sample: 007352-0003 Units: mg/L				
Mercury	ND	0.0011	0.0010	110
Test: SE-FAA-AD Matrix AQUEOUS Sample: 007352-0003 Units: mg/L				
Selenium	ND	0.012	0.010	120
ND = Not detected NC = Not calculated, ca	lculation not appli	cable.		
All calculations are pe errors in calculated re	rformed before roun sults.	nding to avoi	d round-off	

Enseco A Corning Company MATRIX SPIKE REPORT Metals Analysis and Preparation (cont.)

~

•

		Concentr		
Analyte	Sample	Matrix Spike	Amount Spiked	% Rec
Test: TL-FAA-AD Matrix AQUEOUS Sample: 007352-0003				
Units: mg/L				
Thallium	ND	0.037	0.050	75
Test: CD-FAA-AD Matrix AQUEOUS Sample: 007352-0003 Units: mg/L				
Cadmium	ND	0.0025	0.0020	125
ND = Not detected NC = Not calculated, calculation	on not applie	cable.		

All calculations are performed before rounding to avoid round-off errors in calculated results.

,

.

P. 01

CON	RA Consulting ESTOGA-ROV Joiby Drive, Wate	/284 & 84	SOCIATE Canada N2	\$ IV 162			10 (Labord UN (Mi			eWI)	
СН	AIN OF REC		TODY	PROJECT		A	ect names	. er	\]
SAM	PLEN'S SIGNATU	ré W	eteri f	YEL	<u> </u>		SAMPLE			EMARKS]
92.Q.	SAMPLE HA	DATE	TIME	BAMPLE	LOCATO	IN	TYPE				
	190-10806 190-108-09		1430				NATER	341	Alkal	D. TOS, TSS AHY, CHIMANE Concrete_BOD	B
										······	
ANTI		AL HAZARD	13;	TOTAL NUN	ABER O	FCONT	AINERS	6			}
RELIN	IQUISHED BY	Water	FReh	- 10/11/9	121	130	RECEIVED	BYI O	(SIGN()	
	IQUISHED BY:	(6484)		-			RECEIVED	0-	(HANO	
		(3004)				FC.	THE MEDITEL	O -		Beni)	
HEE	TONAL SIGNATU	اسيا 									
Du	od of shipmed JERAJIGH	Τ		D-X		(94040)	ED FOR LABO		RY 61		
ENE	AL CONDITION	OF COOLER				CDOLI (9/890	er opened b	M			
YEL PIN	K L	CRA OFFICE RECEIVING CRA LABOR SHIFFERS	LABORATOR	IY COPY PY			1		NU I	011671	

•

~

CON	RA Consulting IESTOGA-RD Dolby Drive, Wate	vers & Al	BBOCIATEI 8 Canada N2		od i	TO (Labora ふん (Mi	lw:	nemej: zukee	ωľ,
CH	AIN OF REC		TODY	PROJECT Nº:		Lect Names CUSYNUSS CN			
SAM	PLER'S SIGNATU	ri W	abrin ft	fichan		SAMPLE		REM	ARKS
SEO. M	SAMPLE Nº.	DATE	TIME	SAMPLE LOCAT	NIC				
2-10 2-10	190-101-06 192-108-09	10/11/80	1430			LATER	3	TOC,CCD	TIX TS
J		<u> </u>			<u> </u>	<u></u>	+-	Bitusha	nate B
							-		
						······································			
					╶╼╍╁╸				
	*							······	
									•
-+	······································						╂────		
						~			**
				<u></u>	~		┝──		
ANTK	SPATED CHEMIC	AL HAZARD		total number o	CONT	NNERS	6		
RELIN		Water	+ Tah	DATE/TH	E 30	RECEIVED	3¥1 (2)-		
RELIN	QUISHED BT;			DATE/TH		RECEIVED	iy: Dy:	(5)(3)	
RELIN	QUISHED BY	(1964) (1964)	·····	OATE/TIN	e	RECEIVED			
ADOIT	IONAL SIGNATUR							(<u> </u>
UETHO OC	DO OF SHIPHEN	ħ	SHIPPED FEV	8m -7		ED FOR LABO	RATO	RY BY: C	
	TION OF SEAL					IN OPENED B	Y:		
MH	TE	CRA OFFICE RECEIVING L CRA LABOR SHIPPERS	COPY		Canal I	1			

\$

P.02

٩ ;

CON	Consulting ESTOGA-ROV ofby Drive, Water	1275 à Al	BOCIATE Canada Ná	8 IV 102	SHIPPE EN	5 T	CO (Laborat	hory undr	name) I ge		
CH	AIN OF REC		TODY	PROJECT		1.	ot name: 0.smuss	.6 v			
	LER'S SIGNATUR	ne <u>Ne</u>					SAMPLE	P. C.		REMARKS]
skq. M.	SAMPLE Nº.	DATE	TIME	SAMPLE (LOCATOIN			18			
<u>2-10</u>	110-WR-06	IORIA.	1100				JAILK	14		Tota Mulals	Bay
<u>3-14</u>	112-11-09	10/1/95	1430			$\mathbf{J}^{\mathbf{a}}$	WATER	17,	_165/05	olug Moyale	$\mathbf{P}^{\mathbf{x}}$
╶╱┦			V+	-/-/	++	+	<i>← ←</i>	\mathbf{F}	-/-	+++	-
	8-WA 07		1035			+	DATEIS	\mathbf{x}	ÍJUA		4
-101	NO-WAOS		1250	mistm	<u></u>	_	WTFZ	2		me (ms)	1
Ť	and the second s			<u> </u>		T	• • • • • • •			<u></u>	1
7						T]
						L					
							•			· · · · · · · · · · · · · · · · · · ·	
						╆					1
╾┢						┢		┟╼╍╼┥			
						╆╼╸		┟──┦		ور د د د د د د د د د د د د د د د د د د د	4
						╈		╏╌╍┨			ł
						*	~			<u></u>	1
											1
				TOTAL NUN	BER OF C	NTA	INERS	4			
ANTIC	APATED CHEMIC	al hazare	191								
						_					
REUN	QUISHED BY	Inter &	Tich-		18/11ME		RECEIVED	_			
-		(\$1411)/						2-		300	
XELN	QUISHED BY			DA	TE/TIME		RECEIVED				
	<u> </u>	(HOIP)						@	(909	i
RELIN	QUISHED BY:			DA	TE/THE		RECEIVED	-			
		(NOR)						<u></u>	(N#Q	
NODI T SHEET	IONAL SIGNATUR										
	od of shipmen) ERNJG H		SHUPPE FE	0-X	REC		D FOR LADO	RATO	NY BYI	DATE/TIME	
COND	TON OF SEAL	UPON RECE	ipti				R OPENED B	Y:		DATE/THE	
DENER	AL CONDITION	of Cooler	2		(344						
PINI	LOW - K -	CRA OFFICI RECEIVING CRA LABOR SHIPPERS	LABORATON	Y COPY			<u> </u>		N'. (0116 ⁵ 2	

• • • • •

2.0				NN ANN ARBO		31366555	-			1
CON 651 C	Consulting ESTOGA-ROV Colby Drive, Wate	ERS & A	BOCIÁTEI Canada N2	V 1C2		nidje)	Y	hame)		
СН	AIN OF REC	CUS ORD	TODY	PROJECT Nº:	POX.	ECT NAME:				
SAMP	PLER'S SIGNATU	RE DU	L-17	he in i		SAMPLE				
SEQ. Nº.	SAMPLE Nº.	/ DATE	TIME	SAMPLE LOCAT		THE STATE	N O		ENARKS	
	195-101-001	10/11/00	1331		241	NO PARA	4	BNA		
	90-WP-002	10/1. Ko	1430				4		Metals	<u>, 1</u> 2
	<u>597-109-109</u>		1710	:		Carl Start Barr	4	Piste	Ivo Mota	<u>ا ا</u>
μ - μ	<u>193-41-005</u>	1.1.1.0	1715			All and	4			
┝─┤		<u> </u>		<u> </u>			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u> </u>	<u> </u>
	-70-WP-CO3	1 11. 10-	1630			7 . A (4)	$\frac{1}{2}$		<u></u>	4
μ	CYC-WF-COS	1 <u>-11:145</u>	16501			1	4	RN/		<u> </u>
┝━─┼		~		• • •						~
			;	·····	<u></u>				<u></u>	
	PO	<u>ے ب</u> دینہ								÷.
		للمر					ר '			
		Post	-It" brand fax	ctransmittal memo	7671 **	Trages P	4			
┝━━━╀		To/	avo Down	ACer From	\mathcal{L}	ochos	4		<u> </u>	
		Co.	CRN-	Co	CR	4	4			
		Oep	(LFV	M Phoge	313-6	65-4444	1	3.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-ſ
		Fax	612-639-	0923 Fax #	313-4	65-555	3]-			
		(016-021						¥ 19	
				1. NJ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	N. 14	6 38 36 38 31			L K. Carlos and	
				TOTAL NUMBER O	FCONT	ANERS	19	• , ;	·王音·林汉法司	4
ΑΝΤΙΟ		AL HAZARD)5:	्र २ २ २ २ २ २ २ २ 		物線		`	1. 1. <i>1. 1. 1.</i> (1. 1.	2
RELIN	QUISHED BY:	111	JII	DATE/T						÷
	⊡ ⁄	(304)	liet-	- 10/10/51/S	<u>00</u> -		Ø -,	0	IN I	- 1
RELIN	QUISHED BY:	<u>,</u>		DATE/TIL	Æ	RECEIVED B				
	2	(INCH)		-	÷.		O -		IQN)	-
RELIN	QUISHED BY:			DATE/TR		RECEIVED B		S., 2¥.5		н Н
ADDIT	IONAL SIGNATUI	(190N) RE	· ·			X		0	IQ)	-
METH	OD OF SHIPMEN		SHIPPET) BY: D-×		VED FOR LABO	RATO	RY BY:	DATE/TIME	
	ITION OF SEAL		and the second		(300)				DATE /TUE	
	RAL CONDITION			! 		ER OPENED B	r:			_
YE1 Pin	K –	CRA OFFICE RECEIVING CRA LABOR SHIPPERS	E COPY LABORATOR RATORY COP	Y COPY			5	12 0	06183	

ļ

. . . .

E

È

Ē

ł

10

•

		V	500			50	1010	50
CRA Consulting I CONESTOGA-ROVE 651 Colby Drive, Wateri	ers & Ass(SHIPPEL Radi Sau	ian		tory no	ime):
CHAIN OF		DDY ,		N ^e : PR	OJECT	NAME:		
RECO	<u> JRD, </u>		HS.	5	EU-	smu ^g	sen	<u> </u>
SAMPLER'S SIGNATUR	E_ <u>_/Nat</u>		and we	<u> </u>	1	AMPLE TYPE	Nª DF CONTANERS	REMARKS
Nº. SAMPLE M.	DATE	TIME	SAMPLE L	OCATOIN				
1-101080-111A-00(10/10/90 1	331			$ \omega_{\ell} $	FIEK_	<u> </u> }	Vac
<u>0-101090-wr-002</u>		430				·	2	<u> </u>
J-101090-WP-003		1630			<u> </u>			$\frac{100}{100}$
1-10/090-69-004		715			+		2	
	10/10/90 1	113				<u>v </u>	<u></u>	
THEP BLANK	10/11/65-				$+\omega_{4}$	ulen		
	<u> </u>			•	+		┼──┤──	•
	$\overline{}$					<u> </u>	+	
	$\rightarrow \pm$					<u> </u>	╉╾╍┠━	
							┼╶┼╸	·····
							+	
						<u></u>		
						<u> </u>	+-+	
							\mathbf{k}^{+}	
				··· · · ···· · ·				~
		·····			1			
					1			
					<u> </u>		1 1-	
I	I		TOTAL NUM	BER OF CO	NTAINE	RS	11	• • • • • • • • • • •
ANTICIPATED CHEMIC	AL HAZARDS:		2. 2. 1.					<u></u>
RELINQUISHED BY: /		7	0/	TE/TIME	F	ECEIVED	BY:	
	(attend 1)	s		01900			2	(SIGN)
RELINQUISHED BY:		-		TE/TIME		ECEIVED	BY:	
[2]	(SIGN)	· · · · · · · · · · · · · · · · · · ·	-		_		3—	(Son)
RELINQUISHED BY:				TE/TIME		ECEIVED	_	
<u>3</u>	(SICN)				_		()	(SCN)
ADDITIONAL SIGNATUR SHEET REQUIRED	^{(E}							
METHOD OF SHIPMEN FED -X OU		SHIPPED		RE(FOR LAB	DRATORY	BY: DATE/TIME
CONDITION OF SEAL		ŧ				OPENES E		DATE/TIME
GENERAL CONDITION		••					Lese 1	141490 11:00
YELLOW - PINK -	CRA OFFICE RECEIVING LA CRA LABORA	BORATORY					Ng	2 006213
	SHIPPERS							

]

1

]

ĥ

-It" brand fax transmittal		ol pages >	3 SHI	PED T	O (Labora	tory	name):
we longson		och 12-			monto		
CKA-	Phone P			· · · · · · · · · · · · · · · · · · ·	CT NAME:		<u> </u>
5198840525	Part		NP:		γ		_
			د سہ	ļ I	Lasmi	122	e.v.
SAMPLER'S SIGNATU	RE <u>Ma</u>		flala		SANPLE Type		REMARKS
SEQ SAMPLE N.	DATE	TIME	SAMPLE LOCAT	OIN		18	
W MADWA 06	10/11/90	1100			NATER	I A	Voc
W-1000-W1-07		1035				131	Voc
W-101182 WA 03		1250	MS/msD			141	VOC MS/MSI
W-10/190-w2-09	↓	430					Voc
W-INLIGO-WALD		1510			14	13	Voc
W-10/190-WP-11		1515				3	<u> </u>
TRIPBLANK			·····				<u> </u>
			·			╀──┧	
						╉╌╌┥	
	k				`	┿╍╾┤	
						┿╍╍┾	
├── ┥ <u></u> ─────	`		_	<u></u> - } -		┼╌┼	
						╉──┤	
┠ ╼ ╍╌ ┝ ───	┝────────					╈╍╌┨	
						╉──┨	
┠╼━━╇╴╴╴╴						╉╼╍┨	
	┟┈┉┉╸╸╍┣╍						
╞ ┈┊ ╌┤╶─────	 					╉──┨	
l	L	╺━━━━┼	TOTAL NUMBER			15	
ANTICIPATED CHEMIC			TOTAL NUMBER		AINERS	1/51	
		• 					
RELINQUISHED BY	ALL 1	01-	DATE/T	NK	RECEIVED	6Yn	
D-4	SOU	A Channer	- puller 1	730	[@ ~~	(904)
RELINQUISHED BY			DATE/T	VE	RECEIVED	BY:	
2	- Ionnui)		-			D	(IIGN)
RELINQUISHED BY:	(904)		DATE/T		RECEIVED	RY.	
				ruli; ,		` @	
		<u> </u>			┢────		(201)
ADDITIONAL SIGNATU SHEET REQUIRED							
METHOD OF SHIPMEN	NT:	SHPPED		BERGEN V	ED FOR LAD		NY BY DATE/TH
OVERNIG		FE	0- <i>1</i> -	1	en i vit bribi	w1 w1 i W	
			· · · · · · · · · · · · · · · · · · ·	(MaN) -			
CONDITION OF SEAL		. 8		COOL	er opened i	βY;	DATE/TIM
GENERAL CONDITION	UT VUULER:			(SIGN)			{ }

-SENT BY:

ir L

.

.

•

BY: 10-12-90 ; 9:43 ; CONESTOGA-ROVERS -OCT-12-90 FRI 9:24 HOLIDAY INN ANN ARBOR 313663558

6126390923:≠ 1/ 4 ₽**.03**

	0-90 WED 2		IDAY I	NN ANN ARB	OR	31366555			
C C 651	RA consultin NESTOGA-RO Colby Drive, Wal	e Engineers VERS & A erico, Ontari	SOCIATE	8 1V 1C2			-0 C		
Cł	HAIN OF	CUS CRD	TODY	PROJECT Nº:	1 I A	ECT NAME	ser		
L	MPLER'S SIGNATL		tra	- Pul		SAMPLE	CANERS .	REMARKS	
SEQ N.	SAMPLE Nº	DATE	TIME 💈	SAMPLE LOCA	TOIN	neenes	* 8		- 7
12-10	1080-101-001	10/10/10	1331		TYNA H	DATE K -	3	JTC LET 1	
	105-W1-002		1430			<u>\$ 'n ' </u>	2	j <u>r</u>	48
	1090-WR-003		1630			1.58 1. 344		\mathcal{O}	- 3
	1090-WA-004		1710	· · · · · ·	1 and	Radia di Anglia di An Anglia di Anglia di Ang	2	UOC	
10 <u>-10</u>	pro-unoos		1715	24				UPC	
	TIP ISLAN	10/12/2	• 		<u>438661</u>	<u>L'alm</u>		Voc	4 8
		<u> </u>							-1 :
					39.93 E			· · · · · · · · · · · · · · · · · · ·	
ļ		$ \rightarrow $				and the second	· · · · · · · · · · · · · · · · · · ·	4	- 7
		·				at state and the second	+		
	+	- /				1947 - 2019 1947 - 2019 1947 - 2019			-
	• •				· · · · · ·	Lord S. St.			4
	· · ·					Real Property and			<u> </u>
	· · ·				2	And the second se	72 73		
	ļ			2.2	14.7				
					1.14 4 6 1				
	· · · · · · · · · · · · · · · · · · ·								4
		· · ·			*******				<u>.</u>
							4 A		Ĩ.
				TOTAL NUMBER		and the second secon	11 - *		
AN1		CAL HAZARD	5:	1					
REL		Vate 1	int	- Lolingoi		• RECEIVED)Y: 2		
REL	INQUISHED BY:	······		DATE		RECEIVED			-
	[2]	Am an + 1		· · · ·			· 🔊	(110)	
05		(SICH)	· ·		MAR /2/L		• Tu hanse		-
	INQUISHED BY:	(1964)		DATE/	19.55	RECEVED (O	(1991)	
ADD	TIONAL SIGNATU	RE			~	1 19 19 19 19 19 19 19 19 19 19 19 19 19	4 4 4 7 7 4		ŀ
MET	HOD OF SHIPMED ED -X O	verniy 6		d br D-X	RECEIV (SIGH) -	ED FOR LABO	RATORY B		
	·····							DATE/TIME	1
	DITION OF SEAL ERAL CONDITION			•	(310H)	ER OPENED 5	ті 		
YI Pi	ELLOW -	CRA OFFICE RECEIVING I CRA LABOR SHIPPERS	ABORATOR	Y COPY			Me	006213	-

STATES STATES]

2T - 1	0-30 WED 2	1:39 HO	IDAY I	NH ANN ARBOR	2	313665558	-			33
651	MA consulting NESTOGA-ROV Colby Drive, Wale	IERS & Al	BSOCIATE Canada N2	8 V 1C2	M)		, X		Ι	
CF	IAIN OF REC		TODY	PROJECT Nº: 2433		SMUSLI	eЛ			1
SAN	IPLER'S SIGNATU	RE Un	tor fr	Tork		SAMPLE			144 PKC	
SEQ.	SAMPLE N.	DATE	TIME	(MM) Sample Locatt		TYPE	Nº CF CONTANED	- KE	MARKS	
	1090-111-001		1331	1. ¹ .	<u> </u>	John		and the second se	SAL	
	090-WP-002		1430	· · · · · · · · · · · · · · · · · · ·		1 1 1 1 1			when TC	
	1090-WA 004		1710			5 (S)			teicon	L
24010	90-WA-005		1715				3	ROD.		91 A.
	4 e -						°,			
					- 1		·			
										1
						「おお何」を行	1 i)	بر المراجع المحموم الم منابع		<u>- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10</u>
					; • 			***. *		¥ -
	<u>`</u>						 			
		/				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	•.			
										·
				the sheet of		Contraction and	1		213.65	
						State Section	1	<u> </u>		л.
·					形式 10	1944 ARTIC	\$.4.8			:.
						- 4V 2 8 2 1			• N. 25	-
		·						<u> </u>	<u> </u>	
			·			「「金田市」	1 87			.÷1
								14 14	* * · · · · ·	<u> </u>
			·	TOTAL NUMBER O	F' CONT/	NNERS (ろ			્રેત
ANT.	TPS, TSS	AL HAZARD	s: 1 / (urh.)	Toc, wo, Boi	٥ (٥	late to	r eu	ch Sam	ple #	
REL	NQUISHED BY: /	1.1.1.	VI	DATE/TH	KE I SK	RECEIVED B	Y:	Y.		р ¹ 2
ļ	U A	JANTEST (SEAL)	lah-	- 10/10/20 19	100		2-	(8)	N)	<u></u>
REL	NOUISHED BY:			DATE/TIM	<u> </u>	RECEIVED B	Y:			
	[2]—	4			· •		G —			
	NOUISHED BY:	(SICN)		C DATE (TH)		RECEIVED		· · · ·		<u></u>
	13	(SIGN)					O -		24)	
	TIONAL SIGNATUR	*E		· .	•	2007 - 2007 2007 - 2007				່. ນີ້,
MET	100 OF SHIPMEN	T:	SHIPPE	D BY:	RECEIV	ED FOR LABO	RATO	RY BY:	DATE/TIM	IE
01	FRUIGH	7 .	FE	₩-×	(aq)-	· · · · · · · · · · · · · · · · · · ·				·
CON	DITION OF SEAL	UPON RECE	IPT;			ER OPENED B	Y:		DATE/TIM	E
GENE	TAL CONDITION				(SIGN) —				L	
		CRA OFFICE RECEIVING		YCOPY						

A CONTRACT OF

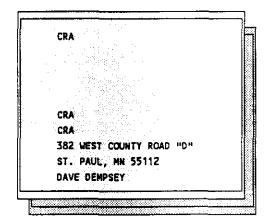
PINK - CRA LABORATORY COPY GOLDEN ROD - SHIPPERS

Nº 006214

1

<u>,</u> †,

60


ر**1 تا**

4; -

OCT :: 0 1990

Analytical Report 10/23/90

Customer Work Identification RASMUSSEN Purchase Order Number 2433

Contents:

- 1 Analytical Data Summary
- 2 Sample History
- 3 Comments Summary
 - 4 Notes and Definitions
 - ·

Radian Corporation 5103 West Beloit Road Milwaukee, WI 53214

414-643-2719

Client Services Coordinator: WLBROWN

CRA

Radian Work Order: MO-10-067

Method/Analyte	Sample Identifications									
Hethody Analyte	W-101090-WP-0-			W-101090-WP-0-			W-101090-WP-0-			
	01			02			05			
	01			02			03			
Matrix	water			water			water			
	Result Det. Limit		Result		Det. Límit	Result	De	t. Limit		
Alkalinity						*******			10000-000-000-00	
Alkalinity	860	mg/L	1.0	<u>520</u>	<u> </u>	1.0	730	mg/L	1.0	
BOD 5 day	1		1.0						1.0	
BOD 5	13	mg∕L	1.0	6	_ mg/L	1.0	<u>35</u>	mg/L	1.0	
Chemical oxygen demand Chemical Oxygen Demand	12 a	mg∕L	5.0	33		5.0	100		5.0	
Total dissolved solids	<u>32 @</u>	ացյու	310 0000.000	<u>,,,</u>	_ mg/L	2+4	100	mg/L	3.0	
Total dissolved solids	970	mg/L	9.0	760	mg/L	9,0	950	mg/L	9.0	
Total organic carbon			769797000000000000000				<u></u>		10497-1 John Shi	
Total organic carbon	23	mg/L	1.0	11	mg/L	1.0	11	mg/L	1,0	
Tatal suspended solids,								_ ·		
Total suspended solids	3400	mg/L	3.0	<u>300 </u>	mg/L	3.0	<u>450</u>	mg/L	3.0	

RADIAN

CRA

Radian Work Order: MO-10-067

Method/Analyte Matrix	₩-1010 90-₩₽ 04	- 0-	METHOD B	LANK	MATRI	MATRIX SPIKE	
	04 water		05 water		06 water		
	Result	Det. Limit	Result	Det. Li	mit Result	De	t. Limit
lkalinity Alkalinity	<u>780 </u>	1.0					
00 5 day		1.0					
800 5 hemical oxygen demand	<u>57</u> mg/L	3.0		1000			
Chemical Oxygen Demand	<u>160 mg/L</u>	5.0	ND	ng/L 5.0	96	%	
otal dissolved solids		200200000000		:8000			
Total dissolved solids otal organic carbon	<u>690</u> mg/L	9.0					- (1-1) - (1-1)(1-1)(1-1)
Total organic carbon	8.3 mg/L	1.0	ND	ng/L 1.0	102	%	
otal suspended solids,							n an earaichte Na bhailte chaolachte
Total suspended solids	<u>670 mg/L</u>	3.0					

r

RADIAN

CRA

.

٢

Method/Analyte	MATO		-	Sample Identifications	
		IX SPIKE	•		
Matrix	water	- 			
	Result		Det. Limit		
Chemical oxygen demand					
Chemical Oxygen Demand	103	2			
Total organic carbon Total organic carbon	102	*			

Ŷ

•

÷

i

CRA

Radian Work Order: NO-10-067

Sample Identifications and Dates									
Si	ample ID	W-101090-WP-	0- W-101090-WP-	0- W-101090-WP-0-	W-101090-WP-0-	METHOD BLANK	MATRIX SPIKE		
		01	02	05	04				
De	ste Sampled	10/10/90	10/10/90	10/10/90	10/10/90				
Da	ste Received	10/11/90	10/11/90	10/11/90	10/11/90	10/11/90	10/11/90		
Ma	itrix	water	water	water	water	water	water		
		01	02	03	04	05	06		
lkalinity			i						
	Prepared	10/13/90	10/13/90	10/13/90	10/13/90				
	Analyzed	10/13/90	10/13/90	10/13/90	10/13/90				
	Analyst	MJB	BLW	МЈВ	MJB				
	File ID	23843-9	23843-9	23843-9	23843-9		ĺ		
	Blank ID	23843-9	23843-9	23843-9	23843-9		Í		
	Instrument	NA	NA	NA	NA				
	Report as	received	received	received	received				
00 5 day			1						
·	Prepared	10/11/90	10/11/90	10/11/90	10/11/90				
	Analyzed	10/11/90	10/11/90	10/11/90	10/11/90		-		
	Analyst	RAF	RAF	RAF	RAF				
	File ID	23527-37	23527-37	23527-37	23527-37				
	Blank ID	23527-37	23527-37	23527-37	23527-37				
	Instrument	ysi	ysi	ysi	ysi				
	Report as	received	received	received	received				
hemical ox	ygen demand								
	Prepared	10/11/90	10/11/90	10/11/90	10/11/90	10/11/90	10/11/90		
	Analyzed	10/11/90	10/11/90	10/11/90	10/11/90	10/11/90	10/11/90		
	Analyst	MJB	MJB	MJB	MJB	MJB	MJB		
	File ID	23843-7	23843-7	23843-7	23843-7	23843-7	23843-7		
	Blank ID	23843-7	23843-7	23843-7	23843-7	23843-7	23843-7		
	Instrument	носн	носн	носн	HOCH	HOCH	НОСН		
	Report as	received	received	received	received	received	received		
otal disso	lved solids	I GOULTED	I ECE I VCU	19491750	received	19561460	lieceived		
	Prepared	10/13/90	10/13/90	10/13/90	10/13/90				
	Analyzed	10/13/90	10/13/90	10/13/90	10/13/90				
	Analyst	MJB	MJB	MJB	MJ8				
	File ID	23843-10	23843-10	23843-10	23843-10				
	Blank ID	23843-10	23843-10	23843-10	23843-10				
	Instrument	NA	NA	NA	NA				
	Report as	received	received	received	received				
otal organi	•		, www.red		, coerred				
	Prepared	10/15/90	10/15/90	10/15/90	10/15/90	10/15/00	10/15/00		
	Analyzed	10/15/90	10/15/90	10/15/90	10/15/90	10/15/90	10/15/90		
	Analyst	RAF	RAF			10/15/90	10/15/90		
	File ID	23532-40	23532-40	RAF	RAF	RAF	RAF		
	Blank ID	23532-40		23532-40	23532-40	23532-40	23532-40		
			23532-40	23532-40	23532-40	23532-40	23532-40		
	Instrument Report as	DOHRMANN received	DOHRMANN	DOHRMANN received	DOHRMANN	DOHRMANN received	DOHRMANN received		

CRA Radian Work Order: MO-10-067

.

.

•

~

.

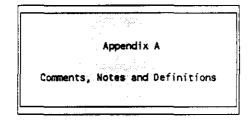
Page:8

CRA

ſ

.

Radian Work Order: MO-10-067


Sample Identifications and Dates								
	Sample ID	W-101090-WP-0-	W-101090-WP-0	- W+101090-WP-0-	W-101090-WP-0-	METHOD BLANK	MATRIX SPIKE	
		01	02	05	04			
	Date Sampled	10/10/90	10/10/90	10/10/90	10/10/90			
	Date Received	10/11/90	10/11/90	10/11/90	10/11/90	10/11/90	10/11/90	
	Matrix	water	water	water	water			
		01	02	03	04	05	06	
tal	suspended solids,	,,,,, _, _, _, _, _,				<u>_</u>		
	Prepared	10/13/90	10/13/90	10/13/90	10/13/90			
	Analyzed	10/13/90	10/13/90	10/13/90	10/13/90			
	Analyst	BLW	MJB	мјв	мјв			
	File ID	23843-10	23843-10	23843-10	23843-10			
	Blank ID	23843-10	23843-10	23843-10	23843-10			
	Instrument	NA	NA	NA	NA			
	Report as	received	received	received	received			

CRA Radian Work Order: NO-10-067

	Sample Identific	ations and Dates			
Sample ID	MATRIX SPIKE				
	DUPLICATE				
Date Sampled		-			
Date Received	10/11/90				
Matrix	water				
	07	· · · · · · · · · · · · · · · · · · ·	 		
Chemical oxygen demand	······································		 		
Prepared	10/11/90				
Analyzed	10/11/90				
Analyst	MJ8				
File ID	23843-7				
Blank ID	23843-7				
Instrument	HOCH	}			
Report as	received				
otal organic carbon					
Prepared	10/15/90		}		
Analyzed	10/15/90				
Analyst	RAF				
File ID	23532-40				
Slank ID	23532-40				
Instrument	DOHRMANN				
Report as	received			1	

CRA Radian Work Order: MO-10-067

a ALL METHODS EXCEPT CLP

The results which are less than five times the method specified detection limit.

EXPLANATION

Uncertainty of the analysis will increase as the method detection limit is approached. These results should be considered approximate.

ND ALL METHODS EXCEPT CLP

This flag is used to denote analytes which are not detected at or above the specified detection limit. EXPLANATION

The value to the right of the < symbol is the method specified detection limit for the analyte.

CRA Radian Work Order: NO-10-067

TERMS USED IN THIS REPORT:

Analyte • A chemical for which a sample is to be analyzed. The analysis will meet EPA method and QC specifications.

Compound - See Analyte.

Detection Limit - The method specified detection limit, which is the lower limit of quantitation specified by EPA for a method. Radian staff regularly assess their laboratories' method detection limits to verify that they meet or are lower than those specified by EPA. Detection limits which are higher than method limits are based on experimental values at the 99% confidence level. The detection limits for EPA CLP (Contract Laboratory Program) methods are CROLs (contract required quantitation limits) for organics and CRDLs (contract required detection limits) for inorganics. Note, the detection limit may vary from that specified by EPA based on sample size, dilution or cleanup. (Refer to Factor, below)

EPA Method - The EPA specified method used to perform an analysis. EPA has specified standard methods for analysis of environmental samples. Radian will perform its analyses and accompanying QC tests in conformance with EPA methods unless otherwise specified.

Factor - Default method detection limits are based on analysis of clean water samples. A factor is required to calculate sample specific detection limits based on alternate matrices (soil or water), reporting units, use of cleanup procedures, or dilution of extracts/ digestates. For example, extraction or digestion of 10 grams of soil in contrast to 1 liter of water will result in a factor of 100.

Matrix - The sample material. Generally, it will be soil, water, air, oil, or solid waste.

Radian Work Order - The unique Radian identification code assigned to the samples reported in the analytical summary.

Units - ug/L	micrograms per liter (parts per billion);liquids/water
ug/kg	micrograms per kilogram (parts per billion); soils/solids
ug/M3	micrograms per cubic meter; air samples
mg/L	milligrams per liter (parts per million);liquids/water
mg/kg	milligrams per kilogram (parts per million);soils/solids
X	percent; usually used for percent recovery of QC standards
u\$/cm	conductance unit; microSiemans/centimeter
mL/hr	milliliters per hour; rate of settlement of matter in water
NTU	turbidity unit; nephelometric turbidity unit
ເນ	color unit; equal to 1 mg/L of chloroplatinate salt

-

•

Appendix A

Comments, Notes and Definitions

CONESTOGA ROVERS & ASSOCIATES Radian Work Order: 50-10-128

General Comments

SAMPLE 11 WAS ANALYZED TWICE. SEVERE MATRIX EFFECTS REDUCED INTERNAL STANDARD RECOVERIES TO NEARLY ZERO. NO USEFUL DATA COULD BE RETRIEVED FROM THE DATA.

Report Comments and Narrative

Page: A-3

CONESTOGA ROVERS & ASSOCIATES Radian Work Order: S0-10-128

a ALL METHODS EXCEPT CLP The results which are less than five times the method specified detection limit. EXPLANATION Uncertainty of the analysis will increase as the method detection limit is approached. These results should be considered approximate. INORGANIC CLP 8 This flag incdicates that a reported value is less than the Contract Required Detection Limit (CRDL), but greater than the Instrument Detection Limit (IDL). ORGANIC METHODS This flag indicates that an analyte is found in the associated blank, but the sample results are not corrected for the amount in the blank. ND ALL METHODS EXCEPT CLP This flag is used to denote analytes which are not detected at or above the specified detection limit. EXPLANATION The value to the right of the < symbol is the method specified detection limit for the analyte. Q ALL METHODS EXCEPT CLP This quality control standard is outside method or laboratory specified control limits.

EXPLANATION

This flag is applied to matrix spike, analytical QC spike, and surrogate recoveries; and to RPD(relative percent difference) values for duplicate analyses and matrix spike/matrix spike duplicate result.

CONESTOGA ROVERS & ASSOCIATES Radian Work Order: S0-10-128

> TERMS USED IN THIS REPORT: Analyte - A chemical for which a sample is to be analyzed. The analysis will meet EPA method and QC specifications.

Compound - See Analyte.

Detection Limit - The method specified detection limit, which is the lower limit of quantitation specified by EPA for a method. Radian staff regularly assess their laboratories' method detection limits to verify that they meet or are lower than those specified by EPA. Detection limits which are higher than method limits are based on experimental values at the 99% confidence level. The detection limits for EPA CLP (Contract Laboratory Program) methods are CRQLs (contract required quantitation limits) for organics and CRDLs (contract required detection limits) for inorganics. Note, the detection limit may vary from that specified by EPA based on sample size, dilution or cleanup. (Refer to Factor, below)

EPA Method - The EPA specified method used to perform an analysis. EPA has specified standard methods for analysis of environmental samples. Radian will perform its analyses and accompanying QC tests in conformance with EPA methods unless otherwise specified.

Factor - Default method detection limits are based on analysis of clean water samples. A factor is required to calculate sample specific detection limits based on alternate matrices (soil or water), reporting units, use of cleanup procedures, or dilution of extracts/ digestates. For example, extraction or digestion of 10 grams of soil in contrast to 1 liter of water will result in a factor of 100.

Matrix - The sample material. Generally, it will be soil, water, air, oil, or solid waste.

Radian Work Order - The unique Radian identification code assigned to the samples reported in the analytical summary.

	mi:/hr NTU	milliliters per hour; rate of settlement of matter in water turbidity unit; nephelometric turbidity unit
	uS/cm	conductance unit; microSiemans/centimeter
	X	percent; usually used for percent recovery of QC standards
	.mg/kg	milligrams per kilogram (parts per million);soils/solids
	mg/L	milligrams per liter (parts per million);liquids/water
	ug/M3	micrograms per cubic meter; air samples
	ug/kg	micrograms per kilogram (parts per billion); soils/solids
Units	- սց/է	micrograms per liter (parts per billion);liquids/water

CONESTOGA ROVERS & ASSOCIATES Radian Work Order: \$0-10-128

Sample ID	W-101190-WP-06	W-101190-WP-07	W-101190-WP-08	W-101190-WP-09	W-101190-WP-10	W-101190-WP-0 8 MS
Date Sampled	10/11/90	10/11/90	10/11/90	10/11/90	10/11/90	10/11/90
Date Received	10/12/90	10/12/90	10/12/90	10/12/90	10/12/90	10/12/90
Matrix	water	Water	water	water	water	Water
	01	02	03	04	05	07
olatiles by SW8240 (25mL)						
Prepared						
Analyzed						10/24/90
Analyst						RY
File ID						1012807A
Blank ID				[1010607A
Instrument			1			F3
Report as	}		Ì			received
olatiles by SW8240 (25mL)						
Prepared			j (
Analyzed						10/24/90
Analyst						RY
File ID						10128078
Blank ID		1	1			1010607A
Instrument						F3
Report as		Ì				received
olatiles by SW8240 (25mL)		ļ				
Prepared						
Analyzed	10/24/90	10/23/90	10/24/90	10/23/90	10/23/90	
Analyst	RY	RY	RY	RY	RY	
File ID	1012801R	1012802A	1012803R	1012804A	1012805A	
Blank ID	101060 7B	1010607A	1010607B	1010607A	1010607A	
Instrument	F3	F3	F3	F3	F3	
Report as	received	received	received	received	received	

CONESTOGA ROVERS & ASSOCIATES Radian Work Order: S0-10-128

	Sample Identifications and Dates									
Sample ID	TRIP BLANK	REAGENT BLANK								
Date Sampled	10/11/90									
Date Received	10/12/90	10/12/90								
Matrix	water	water								
	08	09								
Volatiles by SW8240 (25mL)										
Prepared	[
Analyzed	10/24/90	10/23/90								
Analyst	RY	RY								
File ID	1012808A	1010607A								
Blank ID	1010607A									
(nstrument	F3	F3								
Report as	received	received								
/olatiles by SW8240 (25mL)										
Prepared	(
Analyzed		10/24/90								
Analyst		RY								
File ID		1010607B								
Blank ID										
Instrument		F3								
Report as		received								

Page:8

4

ì

CONESTOGA ROVERS & ASSOCIATES

Radian Work Order: 50-10-128

List:Target compound list								
Sample ID:	W-101190-WP-10		-101190-WP-10 TRIP BLANK		REAGENT BLANK		REAGENT BLANK	
Factor:	0,20	00	0.20	0	0.20	00	0.20	0
Results in:	ug/L		ug/L		ug/l		ug/L	
	05A		A 80		0 9A		09B	
Matrix:	wate	Pr	wate	r	wate	۲۲ 	wate	ŕ
	Result	Det. Limit	Result	Det. Limit	Result	Det. Limit	Result	Det. Limit
Acetone	ND	0.60	4.5	0.60	ND	0_60	3.0	0.60
Benzene	ND	0,12	ND	0.12	ND	0.12	NÐ	0.12
Bromodichloromethane	ND	0,14	ND	0.14	ND	0.14	ND	0.14
Bromoform	ND	0.10	ND	0.10	ND	0,10	ND	0.10
Bromomethane	ND	0.10	ND	0,10	ND	0.10	ND	0.10
2-Butanon e	ND	6.0	ND	6.0	ND	6.0	ND	6.0
Carbon disulfide	ND	0.10	2.3	0.10	ND	0.10	ND	0.10
Carbon tetrachloride	ND	0.12	ND	0.12	ND	0.12	ND	0.12
Chlorobenzene	ND	0.14	ND	0.14	ND	0.14	ND	0.14
Chloroethane	ND	0.20	ND	0.20	ND	0.20	ND	0.20
Chloroform	0.9	0,12	ND	0.12	ND	0.12	ND	0.12
Chloromethane	ND	0,10	ND	0.10	ND	0.10	ND	0.10
)ibromochloromethane	ND	0.12	ND	0.12	ND	0.12	ND	0.12
1,1-Dichloroethane	ND	0.12	ND	0.12	ND	0.12	ND	51.0
1,2-Dichloroethane	ND	0.12	ND	0.12	ND	0.12	ND	0.12
1,2-Dichloroethene (total)	ND	0.10	NO	0.10	ND	0.10	ND	0.10
l,1-Dichloroethene	NÐ	0.10	ND	0.10	ND	0.10	ND	0.10
1,2-Dichloropropane	ND	0.10	ND	0.10	ND	0,10	ND	0.10
is-1,3-Dichloropropene	ND	0.16	ND	0.16	ND	0.16	ND	0.16
rans-1,3-Dichloropropene	ND	0.12	ND	0.12	ND	0.12	ND	0.12
Ithylbenzene	ND	0.12	ND	0.12	ND	0,12	ND	0.12
2-Hexanon e	ND	0.24	ND	0.24	ND	0.24	ND	0.24
-Methyl-2-pentanone	ND	1.0	ND	1.0	ND	1.0	ND	1.0
ethylene chloride	ND	0.10	0.4 ва	0,10	0.6	0.10	0.5	0.10
Styrene	ND	0.12	ND	0,12	ND	٥,12	ND	0.12
1,1,2,2-Tetrachloroethane	ND	0.10	ND	0,10	ND	0.10	ND	0.10
fetrachloroethene	ND	0.12	ND	0,12	ND	0.12	ND	0.12
foluene	ND	0.14	ND	0.14	ND	0.14	ND	0.14
fotal Xylenes	ND	0.10	ND	0,10	ND	0,10	ND	0.10

ND Not detected at specified detection limit a Est. result less that 5 times detection limit B Inorg-result < CRDL but > than IDL/Org-detected in blank

CONESTOGA ROVERS & ASSOCIATES Radian Work Order: S0-10-128

Method:Volatiles by SW8240 (2) List:Target compound list								
Sample 1D:	₩-10	31190-WP-10	TRIP	BLANK	REAG	ENT BLANK	REAG	ENT BLANK
Factor:	0.20	00	0.20	0	0.20	0	0.20	0
Results in:	ug/l 05A	•	ug/L 08A		ug/L 098:		ug/L 0 96	
Matrîx:	wate	۶۲ 	wate	۲	wate	r	wate	г
	Result	Det. Limit	Result	Det. Limit	Result	Det. Limit	Result	Det. Limit
1,1,2-Trichloroethane	ND	0.14	ND	0.14	ND	0.14	ND	0.14
Trichloroethene	ND	0.10	ND	0.10	ND	0.10	ND	0.10
Vinyl acetate	ND	0.20	ND	0.20	ND	0.20	ND	0.20
Vinyl chloride	ND	0.10	ND	0.10	ND	0.10	ND	0,10
Surrogate Recovery(%)								
1,4-Bromofluorobenzene	98		100		96		94	
Control Limits: 86 to 115	}							
1,2-Dichloroethane-d4	102		110		102		120 Q	
Control Limits: 76 to 114								
Toluene-d8	101		101		100		98	

ND Not detected at specified detection limit

Q Outside control limits

CONESTOGA ROVERS & ASSOCIATES

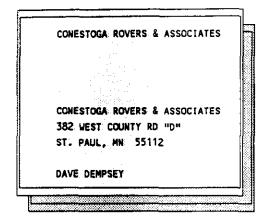
Radian Work Order: \$0-10-128

lethod:Volatiles by SW8240 (2	5mL) (1)								
List:Target compound list									
ample ID:	W-101190-WP-06		W-101190-WP-06 W-101190-WP-07		1190-WP-07	W-10	01190-WP-08	W-1011	190-WP-09
actor:	0.40	0	0.20	0	0.40	00	0.200		
esults in:	ug/L	· ·	ug/i		ug/l	-	ug/L		
	01A		02A		0 3A		04 A		
latrix:	wate	r	wate	۲ .	wate	er	water		
	Result	Det. Limit	Result	Det. Limit	Pesult	Det. Limit	Pecult)et, Limit	
cetone	ND	1.2	ND	0,60	ND	1.2	ND	0.60	
enzene	ND	0.24	ND	0.12	2.8	0.24	0.3 a	0.12	
romodichloromethane	ND	0.28	ND	0.14	ND	0.28	ND	0.14	
romoform	ND	0.20	ND	0.10	ND	0.20	ND	0.10	
romomethane	NÐ	0.20	ND	0.10	ND	0.20	ND	0.10	
-Butanone	ND	12	ND	6.0	ND	12	ND	6.0	
arbon disulfide	ND	a .20	ND	0.10	ND	0.20	ND	0.10	
arbon tetrachloride	ND	0.24	ND	0.12	ND	0.24	ND	0.12	
hlorobenzene	ND	0.28	ND	0.14	ND	0.28	ND	0.14	
hloroethane	ND	0_40	ND	0.20	ND	0.40	ND	0.20	
hloroform	ND	0.24	0.9	0.12	ND	0.24	ND	0.12	
hloromethane	ND	0.20	ND	0.10	ND	0.20	ND	0.10	
ibromochloromethane	ND	0.24	ND	0.12	ND	0.24	ND	0.12	
,1-Dichloroethane	ND	0,24	ND	0.12	ND	0.24	ND	0.12	
,2-Dichloroethane	ND	0.24	ND	0.12	ND	0.24	ND	0.12	
,2-Dichloroethene (total)	ND	0.20	ND	0,10	ND	0.20	ND	0,10	
,1-Dichloroethene	ND	0.20	ND	0,10	ND	0.20	ND	0.10	
,2-Dichloropropane	ND	0.20	ND	0.10	ND	0.20	ND	0.10	
is-1,3-Dichloropropene	ND	0.32	ND	0.16	ND	0.32	ND	0.16	
rans-1,3-Dichloropropene	ND	0.24	ND	51.0	ND	0.24	ND	0.12	
thylbenzene	ND	0.24	ND	0.12	ND	0.24	ND	0.12	
-Hexanone	ND	0.48	ND	0.24	ND	0.48	ND	0.24	
-Methyl-2-pentanone	ND	2.0	ND	1.0	53	2.0	ND	1.0	
ethylene chloride	<u>1.8 B</u>	0.20	0.5 8	0.10	1.7	0.20	0.4 80	_ 0.10	
tyrene	ND	0.24	ND	0_12	ND	0.24	ND	0.12	
,1,2,2-Tetrachloroethane	ND	0.20	ND	0.10	ND	0.20	ND	0.10	
etrachloroethene	ND	0.24	ND	0.12	ND	0.24	ND	0.12	
oluene	ND	0.28	ND	0.14	ND	0.28	0.8	0.14	
otal Xylenes	ND	0.20	ND	0,10	ND	0.20	DN	0.10	

ND Not detected at specified detection limit a Est. result less that 5 times detection limit B Inorg-result < CRDL but > than IDL/Org-detected in blank

CONESTOGA ROVERS & ASSOCIATES Radian Work Order: \$0-10-128

List:Target compound list				
Sample ID:	W-101190-WP-06	W-101190-WP-07	W-101190-WP-08	W-101190-WP-09
Factor:	0.400	0.200	0.400	0.200
Results in:	ug/L	ug/L	ug/L	ug/L
	01A	02A	03A	04 A
Matrix:	water	water	water	water
1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride	Result Det. Limit ND 0.28 0.20 ND 0.20 0.40 ND 0.20 0.20	Result Det. Limit ND 0.14 0.14 ND 0.10 0.20 ND 0.10 0.10	Result Det. Limit ND 0.28 0.20 ND 0.40 0.40 ND 0.20 0.20	Result Det. Limit ND 0.14 ND 0.10 ND 0.20 ND 0.10
Surrogate Recovery(%) 1,4-Bromofluorobenzene	98	101	99	99
Control Limits: 86 to 115 1,2-Dichloroethane-d4	110	102	109	104
Control Limits: 76 to 114				
Toluene-d8	101	101	101	100
Control Limits: 88 to 110				4


ND Not detected at specified detection limit

. .

OCT 3 0 1990

Analytical Report 10/29/90

Customer Work Identification RASMUSSEN Purchase Order Number EXTERNAL

Contents:

- 1 Analytical Data Summary
- 2 Sample History
- 3 Comments Summary
- 4 Notes and Definitions

Radian Analytical Services 10395 Old Placerville Road Sacramento, CA 95827

916-362-5332

Client Services Coordinator: WLBROWN

certified by: Marilyn Melton

CONESTOGA ROVERS & ASSOCIATES Radian Work Order: \$0-10-128

Sample ID:	W-101190-WP-0- 8 MS	W-101190-WP-0- 8 MSD	
Factor:	2.000	2.000	
Results in:	% RECOV.	% RECOV.	
	07 A	07 B	
Matrix:	water	water	· ·····
	Result Det. Limit	Result Det. Limit	,
Benzene	137 Q		
Chlorobenzene	92	88	
1,1-Dichloroethene	107	99	
Toluene	100	97	
Trichloroethene	98	93	
Surrogate Recovery(%)			
1,4-Bromofluorobenzene	92	103	
Control Limits: 86 to 115			
1,2-Dichloroethane-d4	102	103	
Control Limits: 76 to 114			
Toluene-d8	101	100	
Control Limits: 88 to 110			

Page: A-2

CONESTOGA ROVERS & ASSOCIATES Radian Work Order: S0-10-106

duplicate result.

a ALL METHODS EXCEPT CLP The results which are less than five times the method specified detection limit. EXPLANATION Uncertainty of the analysis will increase as the method detection limit is approached. These results should be considered approximate. 8 INORGANIC CLP This flag incdicates that a reported value is less than the Contract Required Detection Limit (CRDL), but greater than the Instrument Detection Limit (IDL). ORGANIC METHODS This flag indicates that an analyte is found in the associated blank, but the sample results are not corrected for the amount in the blank. ND ALL METHODS EXCEPT CLP This flag is used to denote analytes which are not detected at or above the specified detection limit. **EXPLANATION** The value to the right of the < symbol is the method specified detection limit for the analyte. N\A ALL METHODS EXCEPT CLP A result or value is not available for this parameter, usually a detection limit. Q ALL METHODS EXCEPT CLP This quality control standard is outside method or laboratory specified control limits. EXPLANATION This flag is applied to matrix spike, analytical QC spike, and surrogate recoveries; and to RPD(relative percent difference) values for duplicate analyses and matrix spike/matrix spike

CONESTOGA ROVERS & ASSOCIATES Radian Work Order: \$0-10-106

TERMS USED IN THIS REPORT:

Analyte - A chemical for which a sample is to be analyzed. The analysis will meet EPA method and QC specifications.

Compound - See Analyte.

Detection Limit - The method specified detection limit, which is the lower limit of quantitation specified by EPA for a method. Radian staff regularly assess their laboratories' method detection limits to verify that they meet or are lower than those specified by EPA. Detection limits which are higher than method limits are based on experimental values at the 99% confidence level. The detection limits for EPA CLP (Contract Laboratory Program) methods are CRQLs (contract required quantitation limits) for organics and CRDLs (contract required detection limits) for inorganics. Note, the detection limit may vary from that specified by EPA based on sample size, dilution or cleanup. (Refer to Factor, below)

EPA Method - The EPA specified method used to perform an analysis. EPA has specified standard methods for analysis of environmental samples. Radian will perform its analyses and accompanying QC tests in conformance with EPA methods unless otherwise specified.

Factor - Default method detection limits are based on analysis of clean water samples. A factor is required to calculate sample specific detection limits based on alternate matrices (soil or water), reporting units, use of cleanup procedures, or dilution of extracts/ digestates. For example, extraction or digestion of 10 grams of soil in contrast to 1 liter of water will result in a factor of 100.

Matrix - The sample material. Generally, it will be soil, water, air, oil, or solid waste.

Radian Work Order - The unique Radian identification code assigned to the samples reported in the analytical summary.

Units -	ug/L	micrograms per liter (parts per billion);liquids/water
	ug/kg	micrograms per kilogram (parts per billion); soils/solids
	ug/M3	micrograms per cubic meter; air samples
	mg/L	milligrams per liter (parts per million);liquids/water
	mg/kg	milligrams per kilogram (parts per million);soils/solids
	X :	percent; usually used for percent recovery of QC standards
	uS/cm	conductance unit; microSiemans/centimeter
	mL/hr	milliliters per hour; rate of settlement of matter in water
	NTU	turbidity unit; nephelometric turbidity unit
	cu	color unit; equal to 1 mg/L of chloroplatinate salt

CONESTOGA ROVERS & ASSOCIATES Radian Work Order: S0-10-106

Sample Identifications and Dates					
Sample ID	REAGENT BLANK				
Date Sampled					
Date Received	10/11/90	1 - A			
Matrix	water				
	07	<u></u>			
latiles by SW8240 (25mL)					
Prepared					
Analyzed	10/23/90				
Analyst	RY				
File ID	1010607A				
Blank ID					
Instrument	F3				
Report as	received				
atiles by SW8240 (25mL)					
Prepared					
Analyzed	10/24/90				
Analyst	RY				
File ID	1010607B				
Blank ID					
Instrument	F3				
Report as	received				

Appendix A

-

Comments, Notes and Definitions

CONESTOGA ROVERS & ASSOCIATES Radian Work Order: S0-10-106

Sample 1D:	REAGENT BLANK					
Factor:	0.20					
Results in:	ug/L					
	07B					
Matrix:	water					
				· · · · · · · · · · · · · · · · · · ·		
	Result Det. Limit	*000000000		10 Text (40,000 (30)		
1,1,2-Trichloroethane	ND 0.14					
Trichloroethene	ND 0.10					
Vinyl acetate	ND 0.20					
Vinyl chloride	ND 0.10					
Surrogate Recovery(%)						
1,4-Bromofluorobenzene	94					
Control Limits: 86 to 115						
1,2-Dichloroethane-d4	120 @					
Control Limits: 76 to 114						
Toluene-d8	98					
Control Limits: 88 to 110		<u> </u>				

CONESTOGA ROVERS & ASSOCIATES Radian Work Order: S0-10-106

ſ

Sample Identifications and Dates						
Sample ID Date Sampled Date Received Matrix	W-101090-WP-0- 01 10/10/90 10/11/90 water 01	W-101090-WP-0- 02 10/10/90 10/11/90 water 02	W-101090-WP-0- 03 10/10/90 10/11/90 water 03	W-101090-WP-0- 04 10/10/90 10/11/90 water 04	W-101090-WP-0- 05 10/10/90 10/11/90 water 05	TRIP BLANK 10/10/90 10/11/90 water 06
folatiles by SW8240 (25mL) Prepared Analyzed Analyst File ID Blank ID Instrument Report as folatiles by SW8240 (25mL) Prepared Analyzed Analyst File ID Blank ID Instrument Report as	10/24/90 RY 1010601R 1010607B F3 received	10/23/90 RY 1010602A 1010607A F3 received	10/23/90 RY 1010603A 1010607A F3 received	10/23/90 RY 1010604A 1010607A F3 received	10/23/90 RY 1010605A 1010607A F3 received 10/23/90 RY 1010605C F3 received	10/23/90 RY 1010606A 1010607A F3 received

CONESTOGA ROVERS & ASSOCIATES

۰,

Sample ID:	W-101090-WP-0- 05	METHOD SPIKE	TRIP BLANK	REAGENT BLANK
Factor:	20.000	2.000	0.200	0.200
Results in:	ug/L	X RECOV.	ug/L	ug/L
	05A	050	06A	07A
Matrix:	water	Water	water	water
	Result Det. Limit	Result Det. Limit	Result Det. Limit	Result Det. Limit
1,1,2-Trichloroethane	ND 14	N/A	ND 0.14	ND 0.14
Trichloroethene	ND 10	95	ND 0.10	ND 0.10
Vinyl acetate	ND 20	N/A	ND 0.20	ND 0.20
Vinyl chloride	ND 10	112	ND 0.10	ND 0.10
Surrogate Recovery(%)				
1,4-Bromofluorobenzene	102	102	108	96
Control Limits: 86 to 115				
1,2-Dichloroethane-d4	102	102	106	102
Control Limits: 76 to 114				
loluene-d8	101	100	101	100
Control Limits: 88 to 110				

RADIAN

Analytical Data Summary

Page: 6

.

CONESTOGA ROVERS & ASSOCIATES Radian Work Order: S0-10-106

Method:Volatiles by SW8240 (2 List:Target compound list	25mL) (1)			
Sample 1D:	REAGENT BLANK		· .	
Factor: Results in: Matrix:	0.20 ug/L 078 water			
		1		
Acetone	Result Det. Limit 3.0 0.60			
Benzene	ND 0.12			
Bromodichloromethane	ND 0.14			
Bromoform	ND 0.10			
Bromomethane	ND 0.10			
2-Butanone	ND 6.0			
Carbon disulfide	ND 0.10			
Carbon tetrachloride	ND 0.12			
Chlorobenzene	ND 0.14	{		
Chioroethane	ND 0.20			
Chloroform	ND 0.12			
Chloromethane	ND 0.10			
Dibromochloromethane	ND 0.12			
1.1-Dichloroethane	ND 0.12			
,2-Dichioroethane	ND 0.12			
1,2-Dichloroethene (total)	ND 0.10			
1,1-Dichloroethene	ND 0.10			
1,2-Dichloropropane	ND 0.10			
cis-1,3-Dichloropropene	ND 0.16			
trans-1,3-Dichloroprop ene	ND 0.12			
Ethylbenzene	ND 0.12			
2-Hexanone	ND 0.24			
4-Methyl-2-pentanone	NO 1.0			
Methylene chloride	0.50.10			
Styrene	ND 9.12			
1,1,2,2-Tetrachloroethane	ND 0.10			
Tetrachioroethene	ND 0.12			
Toluene	ND 0.14			
Total Xylenes	ND 0.10			
1,1,1-Trichloroethane	ND 0.12			

ND Not detected at specified detection limit

CONESTOGA ROVERS & ASSOCIATES Radian Work Order: S0-10-106

*

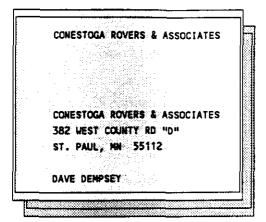
List:Target compound list Sample ID: Factor: Results in: Matrix:	W-101090-WP-0- 01 0.400 ug/L 01A water	W-101090-WP-0- 02 0.200 ug/L 02A Water	W-101090-WP+0- 03 4.000 ug/L 03A water	W-101090-WP-0- 04 20.000 ug/L 04A water
1,1,2-Trichloroethane Trichloroethene Vinyl acetate	Result Det. Limit ND 0.28 2.9 0.20 ND 0.40 0.40 0.40	Result Det. Limit ND 0.14 ND 0.10 ND 0.20	Result Det. Limit ND Z.8 ND 2.9 ND 4.0	Result Det. Limit ND 14 ND 10 ND 20
Vinyl chloride <u>Surrogate Recovery(%)</u> 1,4-Bromofluorobenzene Control Limits: 86 to 115	ND 0.20	ND 0, 10 97	<u>130</u> 2.0 96	NO 10
1,2-Dichloroethane-d4 Control Limits: 76 to 114	108	92	117 Q	115 Q
Tol uene-d8 Control Limits: 88_ to 110	98	101	101	101

Page: 4

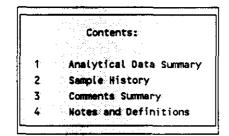
••

COMESTOGA ROVERS & ASSOCIATES Radian Work Order: S0-10-106

List:Target compound list Sample ID:	W-101090-WP-0-	METHOD SPIKE	TRIP BLANK	REAGENT BLANK
	05			
Factor:	20.000	2.000	0.200	0.200
Results in:	ug/t.	X RECOV.	ug/L	ug/L
	05A	05C	06A	07A
Matrix:	water	water	water	Water
				<u></u>
	Result Det. Limi	it Result Det. Limit	Result Det. Limit	Result Det. Limit
Acetone	700 60	86	ND 0.60	ND 0.60
Benzene	47 a 12	92	ND 0.12	ND 0.12
Bromodichloromethane	ND 14	106	ND 0.14	ND 0.14
Bromoform	ND 10	100	0.6 0.10	ND 0.10
Bromomethane	ND 10	53	ND 0.10	ND 0.10
2-Butanone	ND 500	N/A	14 9 6.0	ND 6.0
Carbon disulfide	ND 10	N/A	1.8 0.10	ND 0.10
Carbon tetrachloride	ND 12	90	NO 0.12	ND 0.12
Chlorobenzene	850 14	89	<u>0.2 a</u> 0.14	ND 0.14
Chloroethane	ND 20	77	ND 0.20	ND 0.20
Chloroform	ND 1Z	96	ND 0.12	ND 0.12
Chloromethane	ND 10	99	ND 9,10	ND D.10
Dibromochloromethane	ND 12	95	ND 0,12	ND 0.12
1,1-Dichloroethane	<u>120</u> 12	96	ND 0.12	ND D.12
1,2-Dichloroethane	ND 12	98	ND 0,12	ND 0.12
1,2-Dichloroethene (total)	<u>43 a</u> 10	N/A	ND 0.10	ND 0.10
1,1-Dichloroethene	ND 10	99	ND 0.10	ND 0.10
1,2-Dichloropropane	ND 10	93	ND 0.10	ND 0.10
cis-1,3-Dichloropropene	ND 16	161	ND 0.16	ND 0116
trans-1,3-Dichioropropene	ND 12	73	ND 0.12	ND 0.12
Ethylbenzene	<u>650</u> 12	97	<u>0.2 a</u> 0.12	ND 0.12
2-Hexanone	ND 24	N/A	ND 0.24	ND 0,24
4-Methyl-2-pentanone	ND 100	N/A	ND 1.0	ND 1.0
Methylene chloride	<u>110 в</u> 10	98 8	<u>0.4 80 </u>	<u>0.6</u> 0.10
Styrene	ND 12	N/A	ND Q.12	ND 0.12
1,1,2,2-Tetrachloroethane	ND 10	112	<u>1.4</u> 0.10	ND 0.10
Tetrachioroethene	ND 12	N/A	ND 0.12	ND 0,12
Taluene	ND 14	97	ND 0.14	ND 0.14
Total Xylenes	<u>3800</u> 10	0.3	ND 0.10	ND 0.10
1,1,1-Trichioroethane	<u> </u>	84	ND 0.12	ND 0.12
	······································	······································		
a Est, result less that 5 ti			cted at specified deter	ction limit
B Inorg-result < CRDL but >	than IDL/Org-detected	in blank N\A Not ava	nilable	



14


Rec'd CRA

ØCT 30 1990

Analytical Report 10/26/90

Customer Work Identification RASMUSSEN Purchase Order Number EXTERNAL

Radian Analytical Services 10395 Old Placerville Road Sacramento, CA 95827

916-362-5332

Client Services Coordinator: WLBROWN

certified by: Marily Melton

Page: 2

I

CONESTOGA ROVERS & ASSOCIATES Radian Work Order: S0-10-106

Method:Volatiles by SW8240 (2	COMPT (1)			a an				
List:Target compound list	11 1010	W-101090-WP-0-		W-101090-WP-0+				
Sample ID:	01	VU-WP-U-	9-10 02	1090-WP-0-	03	1090-WP-0-	W-101090-WP+0+ 04	
P	0_400	· · · ·	0.20	n	4.00	in :	20.0	100
Factor: Results in:	ug/L		ug/L	Ryfey - Selections	4.00 ug/L	-	20.0 ug/l	
Results in:	01A	u official units A contraction de	024		03A		04A	•
Matrix:	water	and the second sec	wate		wate		wate	
	Result De	et. Limit	Result	Det. Limit	Result	Det. Limit	Result	Det. Limit
Acetone	<u>4.2 80</u>	1.2	ND	0.60	230	12	700	60
Benzene	ND	0.24	ND	0.12	170	2.4	<u>51 a</u>	12
Bromodichloromethane	ND	0.2B	ND	0.14	ND	2.8	ND	14
Bromoform	ND	0.20	ND	0.10	ND	2,0	ND	10
Bromomethane	ND	0,20	ND	0.10	ND	2.0	ND	10
2-Butanone	ND	12	ND	6.0	ND	120	ND	600
Carbon disulfide	ND	0,20	ND	0.10	ND	2.0	ND	10
Carbon tetrachloride	ND	0.24	ND	0.12	ND	2.4	ND	12
Chlorobenzene	ND	0.28	ND	0.14	650	2.8	890	14
Chloroethane	ND	0.40	ND	0.20	<u>110</u>	4.0	ND	20
Chloroform	ND	0,24	ND	0.12	ND	2.4	ND	12
Chioromethane	ND	0.20	ND	0.10	ND	2.0	ND	10
Dibromochloromethane	ND	0.24	ND	0,12	ND	2.4	ND	12
1,1-Dichloroethane	2.1	0.24	۸D	0.12	67	2.4	<u>130</u>	12
1,2-Dichloroethane	ND	0.24	ND	0.12	ND	2.4	ND	12
1,2-Dichloroethene (total)	ND	0.20	ND	0.10	DИ	2.0	<u>51</u>	10
1,1-Dichloroethene	ND	0.20	ND	0,10	ND	2.0	ND	10
1,2-Dichloropropane	ND	0.20	ND	0.10	ND	2.0	ND	10
cis-1,3-Dichloroprop ene	ND	0.32	ND	0.16	ND	3.2	ND	16
trans-1,3-Dichloropropene	ND	0.24	ND	0.12	ND	2,4	ND	12
Ethylbenzene	ND	0.24	ND	0_12	280	2.4	<u>680</u>	¹²
2-Hexanone	ND	0.48	ND	0.24	ND	4.8	ND	24
4-Methyl-2-pentanone	ND	2.0	ND	1.0	DN	20	ND	100
Methylene chloride	<u>4.0 B</u>	0.20	<u>0.5 B</u>	0,10	<u>24 B</u>	2.0	<u>130 b</u>	¹⁰
Styrene	ND	0.24	ND	0.12	ND	2.4	ND	12
1,1,2,2-Tetrachloroethane	ND	0.20	ND	0.10	ND	2.0	ND	10 .
Tetrachloroethene	ND	0.24	ND	0.12	ND	2.4	ND	12
Toluene	ND	0.28	ND	0.14	<u>30</u>	2.8	ND	14
Total Xylenes	ND	0.20	ND	0,10	<u>1300</u>	2.0	<u>4100</u>	10
1,1,1-Trichloroethane	40	0.24	ND	0.12	ND	2.4	75	12

B Inorg-result < CRDL but > than IDL/Org-detected in blank ND Not detected at specified detection limit

@ Est: result less that 5 times detection limit

CRA Radian Work Order: NO-10-070

This flag is used to denote analytes which are not detected at or above the specified detection limit. EXPLANATION

The value to the right of the < symbol is the method specified detection limit for the analyte.

CRA Radian Work Order: NO-10-070

TERMS USED IN THIS REPORT:

Analyte - A chemical for which a sample is to be analyzed. The analysis will meet EPA method and QC specifications.

Compound - See Analyte.

Detection Limit - The method specified detection limit, which is the lower limit of quantitation specified by EPA for a method. Radian staff regularly assess their laboratories' method detection limits to verify that they meet or are lower than those specified by EPA. Detection limits which are higher than method limits are based on experimental values at the 99% confidence level. The detection limits for EPA CLP (Contract Laboratory Program) methods are CRQLs (contract required quantitation limits) for organics and CRDLs (contract required detection limits) for inorganics. Note, the detection limit may vary from that specified by EPA based on sample size, dilution or cleanup. (Refer to Factor, below)

EPA Method - The EPA specified method used to perform an analysis. EPA has specified standard methods for analysis of environmental samples. Radian will perform its analyses and accompanying QC tests in conformance with EPA methods unless otherwise specified.

Factor - Default method detection limits are based on analysis of clean water samples. A factor is required to calculate sample specific detection limits based on alternate matrices (soil or water), reporting units, use of cleanup procedures, or dilution of extracts/ digestates. For example, extraction or digestion of 10 grams of soil in contrast to 1 liter of water will result in a factor of 100.

Matrix - The sample muterial. Generally, it will be soil, water, air, oil, or solid waste.

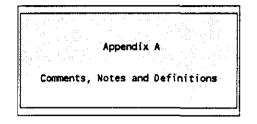
Radian Work Order - The unique Radian identification code assigned to the samples reported in the analytical summary.

Units -	ug/L	micrograms per liter (parts per billion);liquids/water
	ug/kg	<pre>micrograms: per kilogram: (parts: per billion); soils/solids</pre>
	ug/M3	micrograms per cubic meter; air samples
	mg/L	milligrams per liter (parts per million);Liquids/water
	mg/kg:	milligrams per kilogram (parts per million);soils/solids
	X :	percent; usually used for percent recovery of QC standards
	uS/cm	conductance unit; microSiemans/centimeter
	mi/hr	millifters per hour; rate of settlement of matter in water
	NTU	turbidity unit; nephelometric turbidity unit
	CU	color unit; equal to 1 mg/L of chloroplatinate salt

Page:6

.

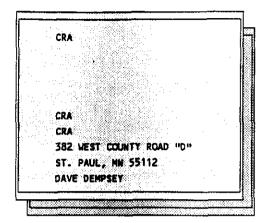
Radian Work Order: MO-10-070

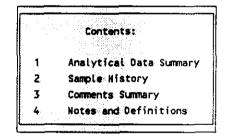

7

H

CRA

	Sample Id	dentifications and Dates
Sample ID	W-101190-WP	-06 W-101190-WP-09 NETHOD BLANK
Date Sampled	10/11/90	10/11/90
Date Received	10/12/90	10/12/90 10/12/90
Matrix	Water	water
	01	02
Total suspended solids,		
Prepared	10/13/90	10/13/90
Analyzed	10/13/90	10/13/90
Analyst	МЈВ	MJB
File ID	23843-10	23843-10
Blank ID	23843-10	23843-10
Instrument	NA	NA
Report as	received	received


.


OCT : 0 1990

Rec'd CRA

Analytical Report 10/23/90

Customer Work Identification RASMUSSEN Purchase Order Number 2433

Radian Corporation 5103 West Beloit Road Milwaukee, WI 53214

414-643-2719

Client Services Coordinator: WLBROWN

Certified by:

Method/Analyte	Sample Identifications							
	W-101190-WP-06		W-101190-WP-09		METHOD BLANK			
Matrix	01 water		02 Water			03 water		
	Result	Det. Limit	Result		Det. Limit	Result	Det	. Limit
Alkalinity Alkalinity	<u>890 </u>	/L 1.0	<u>100</u>	mg/L	1,0			
BOD 5 day BOD 5	8mg,	/L 1.0	36	mg/L	1.0			
Chemical oxygen demand Chemical Oxygen Demand	<u>110 </u>	/L 5.0	<u>81</u>	mg/L	5.0	ND	mg/L	5.0
Total dissolved solids Total dissolved solids	<u>2100 </u>	/L 9.0	450	mg/L	9,0			
otal organic carbon Total organic carbon	<u>13 </u>	/L 1.0	20	_ mg/L	1.0	ND	_ mg/L	1.0
Total suspended solids, Total suspended solids	<u>1400 mg/</u>	'L 3.0	190	_ mg/L	3,0			

CRA

Radian Work Order: NO-10-070

	Sample I	dentifications	and Dates						
Sample ID	W-101190-WP	W-101190-WP-06 W-101190-WP-09 METHOD BLANK							
Date Sampled Date Received Matrix	10/11/90 10/12/90 water	10/11/90 10/12/90	10/12/90						
	01	water 02	Water 03						
llkalinity									
Prepared	10/13/90	10/13/90							
Analyzed	10/13/90	10/13/90							
Analyst	МЈВ	MJB							
File ID	23843-9	23843-9							
Blank ID	23843-9	23843-9							
Instrument	NA	NA							
Report as	received	received							
SOD 5 day									
Prepared	10/12/90	10/12/90							
Analyzed	10/12/90	10/12/90							
Analyst	RAF	RAF							
File ID	23527-39	23527-39							
Blank ID	23527-39	23527-39							
Instrument	YSI	23327-34 YSI		1					
Report as	received	received				1		i	
Chemical oxygen demand			1		1	I	1	ļ	
Prepared	10/12/90	10/12/90	10/12/90	1		1	1		
Analyzed	10/12/90	10/12/90	10/12/90						
Analyst	MJB	MJB	MJ8						
File ID	23843-8	23843-8	23843-8						
Blank ID	23843-8	23843-8	23843-8						
Instrument	НОСН	23843-8 HOCH							
Report as	received	received	HOCH						
otal dissolved solids	1 6461460	1 CLG I VEQ	received						
Prepared	10/13/90	10/13/90							
Analyzed	10/13/90								
Analyst		10/13/90							
File ID	MJB 23843-10	MJ8 278/3-10							
Blank ID	23843-10	23843-10 23843-10				j			
Instrument	23843-10	23843-10							
	NA	NA							
Report as otal organic carbon	received	received				ĺ			
	10 (17 (24	10/15/00	10.110.000						
Prepared Analyzed	10/15/90	10/15/90	10/15/90						
	10/15/90	10/15/90	10/15/90						
Analyst File ID	RAF	RAF	RAF			ļ			
File ID	23532-40	23532-40	23532-40			1			
Blank ID	23532-40	23532-40	23532-40		1				
Instrument	DOHRMANN	DOHRMANN	DOHRMANN						
Report as	received	received	received	1	1				

.

CRA			•	i.		
Radian	Work	Order:	MO	10	070)

- - -

.

•••

1

4

٦ *