
STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES AND ENVIRONMENTAL CONTROL

FINAL REPORT

١; •

GROUNDWATER DECONTAMINATION CHEM SOLV SOLVENT RECOVERY FACILITY CHESWOLD, DELAWARE

MARCH, 1987

TABLE OF CONTENTS

1

		Page No.	
Chapter I.	INTRODUCTION	I-1	
	A. Background	1-1	
	B. Purpose	I-9	
	C. Scope	1-10	
Chapter II.	HYDROGEOLOGIC INVESTIGATION FOR ON-SITE GROUNDWATER RECOVERY	II-1	
	A. Review of Existing Conditions	II-1	
	B. Shallow Flow System	11-5	
	1. Monitoring and Observation	11-5	
	a. Construction of Additional Monitoring and Observation Wells	II-6	
	b. Sampling Methods	II-7	
	2. Recovery System	II-8	\sim
	a. Construction	II-8	\bigcirc
	b. Sampling Methods	II-9	
	c. Test Pumping	II-9	
	C. Intermediate Flow System	II-10	
	1. Monitoring and Observation	II-10	
	a. Construction	II-11	
	b. Samuling Methods	II-12	
	c. Test Pumping	II-14	
	D. Domestic and Commercial Well Inventory	II-14	
	E. Water Quality Analyses	II-16	
CHAPTER III.	INSTALLATION OF RECOVERY AND TREATMENT SYSTEMS	III-1	
	A. Design	III-l	
	1. Recovery System	AR 100159	
	2. Treatment System	III-2	\subseteq

if the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

. V Series

 \bigcirc

	В.	Installation	III-10
		1. Recovery System	II-10
		2. Treatment System	111-11
	с.	Total System Start Up	III-12
CHAPTER IV.	SYS	TEM OPERATION	IV-1
	Α.	Hydrogeologic Changes	IV -1
	в.	Groundwater Quality	IV-3
	с.	Treatment Efficiency	IV -5
CHAPTER V.	DISC	CUSSION OF FINDINGS	V-1
	А.	Aquifer Characteristics of the Shallow Zone	V-1
		l. Transmissivity and Storativity	V-1
		2. Water Table Map and Gradient	V-2
		3. Ground Water Velocity	V - 2
	В.	Aquifer Characteristics of the Intermediate Zone	<u>v</u> -3
		l. Transmissivity and Storativity	V-3
		2. Water Level Map and Gradient	V-4
		3. Ground Water Velocity	V-5
		4. Head Differences	V-5
	c.	Distribution of Contamination in the Shallow Zone	V-6
		1. Contamination from Chem Solv	V -6
		2. Contamination from Other Possible Sources	V-8
	D.	Contamination Potential of the Intermediate Zone	V-9
		1. Contamination from Chem Solv	
1		2. Contamination from Other Possible Sources	AR <u>10</u> 0160

ķ.

I

Đ

CHAPTER	VI.	CONCLUSIONS
CHAPTER	VII.	RECOMMENDATIONS

REFERENCES

ATTACHMENTS

- A. Well Completion Reports
- B. Pump Testing Well OB-5A
- C. Pump Testing Well OB-5AR
- D. Pump Testing Well OB-20AR
- E. Pump Testing Well OB-32AR
- F. Pump Testing Well OB-34AR
- G. Pump Testing Well OB-43AR
- H. Pump Testing Well OB-45B
- I. Analytical Test Methods
- J. Water Quality Data
- K. Water Level Data

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

AR100161

LIST OF EXHIBITS

r

Exhibit I-1	Location Map	
2	Site Plan	
3	DNREC Memorandum - Chem Solv Spill Incident (September 18, 1984)	
<u>,</u> 4	Order No. 84/SW-4 Cessation of Operation (September 21, 1984)	
5	Water Table Elevation Map	
6	Groundwater Contaminant Concentrations - Pre (April, 1985)	
7	Isoconcentration Maps	
8	Location Map-All Wells Sampled	
9	Monitoring and Recovery Well Data Tabulation	
10	Domestic Well Data Tabulation	
Exhibit II-1	Geologic Profile	
2	Typical Cross-Section-Wells OB-10A thru OB-42A	
3	Shallow Flow System-Well Locations	
4	Test/Recovery Well Development Data	
5	Recovery System and Other Nearby Wells	·
6	Cross Section-Monitoring Well OB-5B	
7	Intermediate Flow System Well Locations	
8	Cross Section-Test Well OB-45B	
9	Bail vs Pump Sampling Comparison	
Exhibit III-1	Recovery and Treatment System Site Plan	
2	Selection of Feasible Aeration Process for Control of Volatile Compounds	
3	Air Stripping Tower Cross-Section	AR100162
4	Effect of Henry's Constant Upon Removal Efficie	ncy

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

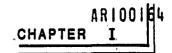
an da an an dadha

5	Effect of Air to Water Ratio on TCE Removal Costs
6	Influence of Temperature on Henry's Constant
7	Piping Schematic
8	Operating Log - Observation Wells
9	Operating Log - Recovery Wells
Exhibit IV-1	Well Elevation Data
2	Cone of Influence - August 20, 1986
3	Recovery Pumping
4	Recovery System VOC Concentrations
5	VOC Recovery
6	VOC Recovery Plot
7	Contaminant Plume - November 1985
8	TCE vs Time-Wells OB-5, OB-10A and Recovery
9	TCE vs Time-Wells OB-3A and OB-24A
10	TCE vs Time-Wells OB-4A, OB-11A, OB-25A
Exhibit V-1	Shallow Well Fump Test Data
. 2	Water Level Contours-Intermediate Zone (November 20, 1985)
3	Water Level Contours-Intermediate Zone (August 26, 1985)
4	Persistent Organic Contaminant Summary
5	TCE Distribution-Shallow Zone
6	Maximum TCE Concentrations-Intermediate Zone

. \$

0.17

١,


1

AR100163

一次印刷

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

INTRODUCTION

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

- 194

INTRODUCTION

τ.

A. Background

Chem Solv, Inc. operated a solvent recovery facility located approximately four (4) miles north of Dover, Delaware near the Town of Cheswold, as shown on the location map provided as Exhibit I-1. The facility occupied the southern third of a 1.5 acre property on the west side of U.S. Route 13 (DuPont Highway) just south of the junction of U.S. Route 13 and Delaware Route 42, an area known locally as Bishops Corner. The surrounding land is a combination of farm land, residential developments and commercial businesses. Strip development of commercial establishments and residences is found on both sides of Route 13 in the immediate vicinity of the site.

The facility consisted of a small concrete block office building, a distilling area and a concrete pad is shown on the site plan Exhibit I-2. The plan was adapted from a planning and zoning application for the site. The concrete block building was used as an office and to store equipment used in the solvent recovery process, while the concrete pad served as a storage area where the residues resulting from the recovery process were stored in 55 gallon drums prior to disposal. In addition to the recovery facility, a 3 unit apartment building and a concrete paved skateboard park are also located on the property. The apartment building is still occupied while the skateboard park is no longer in operation. A mobile home which once occupied the north west corner of the site has since been removed.

The solvent recovery operation was considered a hazardous waste generator and as such, was regulated under the Resource Conservation and Recovery Act (RCRA) Permit Program. The company collected used solvents amenable to purification and recovery by discillation. The recovered product was returned to its respective owner for reuse. The impurities and residues, referred to as "still bottoms", Are 1000005

I-1

from the stills and stored in 55 gallon drums on a concrete pad adjacent to the still area. It was because of the generation and handling of the still bottoms that the Chem Solv facility was considered a hazardous waste generator, transporter and storage facility under the RCRA Permit Program.

On September 7, 1984 an explosion and fire occurred at the facility. The Department of Natural Resources and Environmental Control was notified of the incident through the Kent County Call Board. In response, DNREC dispatched members of its SERT group to help control the situation. A September 18, 1984 DNREC memorandum summarizing the initial and follow up observations is included as Exhibit I-3. In that document, it is noted that witnesses observed a "chemical like" material running off the drum storage pad and onto the ground. That material infiltrated into the soil before it could be recovered.

DNREC staff made subsequent investigations verifying that organic chemicals, consisting primarily of Trichloroethylene; 1,1,1 Trichloroethene; 1,2 Dichloroethane; 1 Chloroethelene; Ethylbenzene and Toulene, had contaminated the soil in the area immediately surrounding the drum storage pad. A more detailed investigation of the history of the facility uncovered a number of additional violations of DNREC's Regulations Governing Hazardous Waste including evidence indicating that leaks of hazardous materials had previously occurred. On September 21, 1984 DNREC issued a Cessation of Operation Order to Chem Solv, Inc., which required that no additional hazardous wastes be received at the facility. It was further ordered that:

I-2

AR100166

- 1. All contaminated soil be removed.
- A complete groundwater monitoring program be implemented immediately.
- 3. An approved waste analysis and operating plan be developed.
- No further hazardous waste handling operations be conducted, except removal of existing waste from the site.
- Should Chem Solv elect to cease all operations, an approved DNREC closure/post closure plan be implemented.
- 6. That a bond or equivalent financial mechanism be purchased to insure complete removal of all waste, recyclable products and contaminated soil prior to resumption of handling of hazardous waste.

A copy of Order Number 84/SW-4 is included as Exhibit I-4.

To determine the extent of contamination that resulted from - and perhaps prior to - the 1984 explosion and fire, DNREC began a comprehensive investigation of the area around the Chem Solv facility. Specific interest focused on the extent of the contamination that may have already reached groundwater supplies for domestic and public wells in the surrounding area.

In September of 1984, DNREC installed five (5) observation wells above the first horizon of low permeability in the water table aquifer at the site. One well, OB-1, was installed near the September, 1984 spill (See Exhibit I-5). Four (4) others, OB-2 through OB-5, were installed

1-3

AR100167

around the perimeter of the solvent processing area. Sampling of these wells verified contamination of the ground water. Samples from Well OB-1 immediately beneath the spill site indicated heavy contamination with at least 1742 ppb (parts per billion) of TVO (Total Volatile Organics). A downgradient well (OB-5) showed a concentration of 850 ppb of TVO.

TCE (Trichloroethylene) was found in greater abundance than any other contaminant. TCE is used as an industrial solvent for degreasing and cleaning metals. It is also used to unclog septic tanks, in dry cleaning processes and for decaffeinating coffee. Prior to the fire, used TCE had been distilled at Chem Solv. TCE is biologically degraded in soil and in ground water to form other compounds. Some of these compounds include cis and trans-1,2-dichloroethane, vinylidene chloride and vinyl chloride. Along with petroleum based products (benzene, toluene and xylene) found as impurities in the process, other compounds frequently found at a distillation operation like Chem Solv include 1,1,1 trichloroethane, 1,1-dichloroethylene, 1,1-dichloroethane and chloroform. Most of these compounds were found in water samples collected from monitoring wells finished in the most contaminated portion of the plume. In addition to quality sampling, ground-water elevations were measured at each well and it was determined that the contaminant plume would most likely migrate to the northeast, towards the Liepsic River (See Exhibit I-5).

In November, 1984 DNREC had seven more monitoring wells installed to obtain additional information concerning the geology, hydrology and the quality of the ground water. These new wells were installed both above and below the shallow confining bed. At this time an identification system for each new well was established, i.e. OB-68,

AR100168

I-4

etc. Various letters in the sequentially numbered system refer to the following:

- OB Site identification
- A well above the shallow confining bed,
- B well below the shallow confining bed in the intermediate zone
- AR recovery well in the shallow zone.

The original 5 wells were then referred to as Wells OB-1A, 2A, 3A, 4A, and 5A and the new wells became wells OB-6B, OB-7A&B, OB-8A&B, and OB-9A&B. In conjunction with the new wells, sampling was expanded from the original wells to include the seven (7) new wells and six (6) domestic wells in the immediate area. To monitor migration of the contaminant plume, additional ground-water sampling was conducted in January and April 1985. The results are depicted in Exhibit I-6. Based on the concentrations of Total Volatile Organics (TVO) from these limited samplings, a series of four (4) isoconcentration maps, illustrating the growth of the contaminant plume, were developed. These maps have been combined on Exhibit I-7. They provide further confirmation of plume movement in an east-northeasterly direction.

During April 1985, in an effort to reduce the quantity of contaminants that might be trapped in the soil above the water table and eventually released to the ground water during the infiltration of rainwater, approximately 1,300 cubic yards of soil was excavated from the site and stockpiled for later treatment. Excavation was to the depth of the seasonal water table. Impermeable plastic covers were draped over the stockpile to preclude extraction of contaminants by infiltrating rainwater.

I-5

AR100169

SMC Martin, Inc. was retained by DNREC in April 1985 to assist in evaluating the initial data and remedial alternatives for soil and ground-water cleanup at the site. Martin determined that there were two hydrogeologic units, the upper being Columbia Aquifer and the lower the Cheswold Aquifer. The boundary between the upper Columbia Aquifer unit and the lower Cheswold Aquifer unit was thought to be between 40 and 100 feet below land surface. They noted that a confining clay layer between 17 and 20 feet below ground surface may partially isolate the lower part of the Columbia Aquifer from the upper portion. Martin observed that there was insufficient information to determine the effectiveness of of the confining layer in preventing the downward migration of contaminants throughout the area.

Aquifer testing was performed in shallow monitoring wells using short-term, in-situ "slug" tests. These tests attempted to determine the hydraulic conductivity (K) of the upper and lower sands of the Columbia Formation. They concluded that the sandy sediments above the clay had a higher K value than that below.

Martin next used a computer simulation model to make drawdown predictions using two scenarios:

- 1. That the contamination was limited to the sandy sediments above the clay layer in the Columbia Formation, and
- That the contamination was found both above and below the clay layer in the Columbia Formation and that the clay layer was not laterally extensive or confining.

AR100170

I-6

The purpose of modelling the two (2) scenarios was to estimate recovery well pumping rates that were required to create a cone of influence sufficient to retain and recover the contaminants in the ground water as well as to estimate ground water velocities and the time required to recover the contaminants. The modelling also allowed evaluation of the possible impact of the recovery system on nearby domestic supply wells. Both scenarios assumed the installation of single recovery wells. Information developed later indicated that recovery of contaminants by a single well in the upper portion of the Columbia was not possible due to limited available drawdown. Additionally, it was determimined that contamination below the clay layer was limited and therefore, the second contaminant recovery scenario was unnecessary.

Finally, Martin made recommendations for water and soil remedial actions. These recommendations included the following:

- Stockpiled, contaminated soils should be shredded to strip off volatile contaminants and then returned to the excavation on site.
- Ground water under the site should be recovered and treated to remove volatile organics by air stripping. This operation would be designed to recover contaminated ground water on-site and contaminated ground water that had moved downgradient and off-site.
- 3. Domestic wells in the area should be studied and sampled.
- Additional deep monitoring wells should be installed in the path of the predicted plume to determine the extent of contamination.

I-7

AR100171

Based on the Martin report and their own evaluation of available data, DNREC concluded that down-gradient domestic wells might become contaminated. In addition, there was concern that vertical movement of the contaminants might ultimately, or might have already, migrated into the deeper Cheswold Aquifer, a major source of public and industrial water supply in the Dover area (several miles from the Chem Solv site).

DNREC concluded that protection of local domestic water supplies required the design, construction, and operation of remedial projects to decontaminate both the soils and ground water in the vicinity of the spill. Soil remediation required no further research to implement. Therefore, DNREC immediately retained Guardian Construction to mechanically aerate stockpiled soil and then backfill the existing excavation. CABE Associates, Inc., with subconsultant Earth Data, Inc., was retained on August 5, 1985 to provide assistance in implementing a program of ground-water recovery, treatment, and disposal.

Since CABE's involvement with the project, thirty eight (38) wells have been added to the original twelve (12) bringing the total number of wells in the observation, monitoring and recovery systems on and around the Chem Solv site to fifty (50). In addition, information was collected on the location and design of domestic wells in the area. Fifteen (15) of these domestic wells have been sampled at various times as part of the entire effort to characterize ground-water quality. The location of all wells constructed and/or sampled to date is found in Exhibit I-8. In addition, construction information pertaining to each well is tabulated in Exhibit I-9. This information is based on the best available sources.

1-8

AR100172

The significance of information obtained from the monitoring and observation, recovery and domestic wells in both the shallow and intermediate flow zones is discussed in detail in subsequent chapters of this report. The reader is referred to the appropriate chapter for that information.

B. Purpose

(h

The first objective of the groundwater recovery and treatment program was to stop further movement of the contaminant plume toward local water supplies. To accomplish this, the hydraulic gradient of the water table was reversed by utilizing the drawdown effect of a series of recovery wells properly located in relationship to the leading edge of the plume.

The second objective was to provide a treatment system to decontaminate the recovered ground water. Specifically, the treatment system had to achieve a removal efficiency sufficient to reduce the concentration of trichlorethylene (TCE), the target parameter, to five (5) ppb or less. It was recognized that other Volatile Organic Compounds (VOC) existed in the ground water in varying concentrations; however, TCE was chosen as a target compound based on the available test data and the chemical properties of all the known contaminants.

The project objectives would be considered accomplished when the water sampled at the numerous observation wells indicated a concentration of TCE of five (5) ppb or less for three (3) consecutive months. From the onset, it was understood that the duration of the recovery and treatment operations could not be precisely determined. However, it was estimated that once gradient reversal did occur, there would be steady improvement in the quality of down-gradient water supplies

I-9

AR100173

until the target concentration was achieved. Initial estimates set the total duration of the cleanup operations in the range of 6 months to 2 years.

C. Scope

The ground-water decontamination project consisted of four (4) primary tasks. They are as follows:

Task 1 - Groundwater Recovery Task 2 - Water Treatment System Task 3 - Treated Water Disposal Task 4 - Summary Report

The following is a general description of the work required for each task.

Task No. 1

This task was to consist primarily of constructing the necessary recovery wells to produce a hydraulic gradient reversal. The recovery wells would be interconnected by a common header system and connected to the water treatment system. In conjunction with the recovery wells, numerous monitoring wells would also be constructed to assist in accurately predicting the progress and success of the cleanup operation. The exact location and number of all such monitoring wells would be determined by evaluating available data and through continued field studies. In addition, all existing well heads would be protected by the installation of steel casing and locking well caps.

1-10

AR100174

Task No. 2

Initially, CABE was to provide only design and inspection services for the treatment system. However, during the course of the work it became clear that much of the actual equipment necessary for recovery, treatment and disposal of the contaminated water could be acquired directly thereby saving not only considerable resources, but time as well. With response time being critical, DNKEC authorized CABE to directly purchase, install, construct, and operate the groundwater recovery and treatment system.

Task No. 3

Originally, an infiltration gallery was proposed for treated wastewater disposal. Initial investigations by CABE revealed that better recovery could be accomplished and implementation achieved more promptly if the treated water was discharged off site rather than returned to the site. If applied locally the infiltrated groundwater would detrimentally effect the slope of the hydraulic gradient and, thus, the zone of influence of the recovery well system. This would result in the possible loss of contaminated groundwater at the perimeter of the plume due to the inability of the recovery system to influence the direction of groundwater flow at that distance. In light of these considerations, DNREC concluded that a connection to the Kent County Sewer System was more desirable. Task No. 3 was altered to this end.

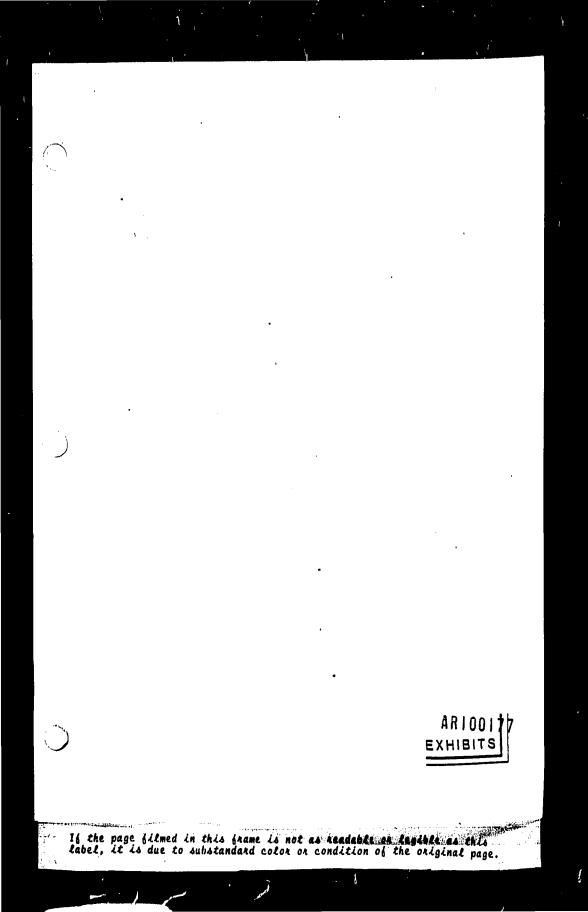
Task No. 4

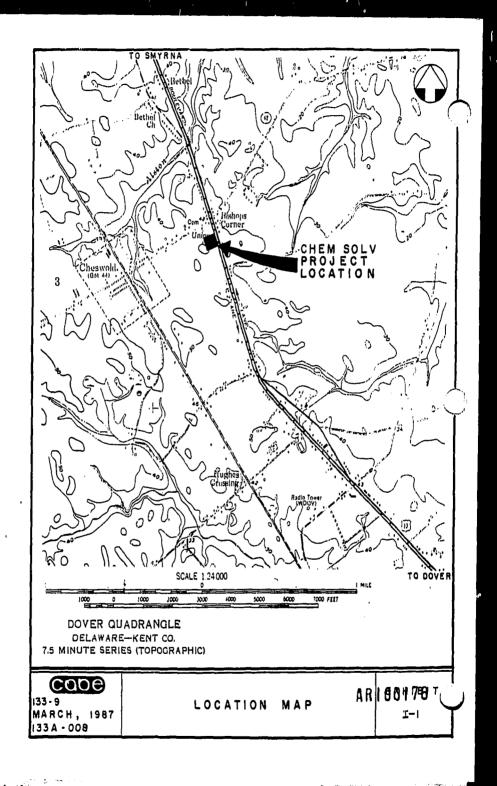
The intent of Task No. 4 was to provide a written report to summarize the findings and recommendations for continued operation of the

I-11

AR100175

recovery, treatment, and disposal system. This report is in response to that requirement.


 $\left(\right)$

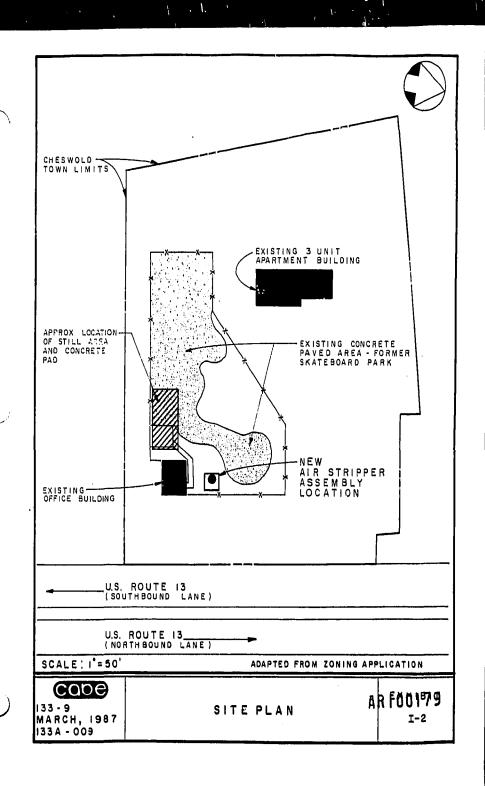

AR100176

I-12

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

11.00

7


1

(

1:

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

ł

8

1;

١

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

····

STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL DIVISION OF ENVIRONMENTAL CONTROL WATER RESOURCES SECTION 89 Kings Highwar P.O. Day 1401 Dover, Delaware 19903

TELEPHONE: (302) 736 - 4761

MEMORANDUM

TO: SERT Members

DATE: September 18, 1984

11 1

FROM:

SUBJECT: Chem-Solv Solvent Recovery, Rural R.D. 4, Box 176-A, North duFont Highway, Dover, DE 19901, Spill Incident

William G. Razor/George J. Bender

At 1645 hours on September 7, 1984, I received a call from the DNREC Radio Room to call the Kant County Call Board. I called the Kant County Call Board and I was informed that an explosion had occurred at Chem Solv facility. The Cheswold Fire Company had requested the Division of Environmental Control to come and advise them on the danger of the exploded chemical materials. The writer and Mr. Alan Simpson went to the site and was briefed by Second Assistant Chief, Charlie Brown; Steve Martin, State Fire School; and Robert J. Monegomery, Deputy State Fire Marshall, State Fire Marshall's Office. It was pointed out during the briefing that this had been the third incident over the last three years and there was considerable concern by the Fire Company over the previous incidents and the potential for future hazardous occurrences if sceething was not done in the near future. Mr. Simpson and I then informed these agencies that we would discuss this matter with the owners of Chem Solv, Mr. Thomas Jaggers and Mr. Eugene Erbes.

The owners indicated that the one still had blown up from unknown causes. They indicated that the distilled material had not run off onto the ground while they were observing it. One of the firemen indicated that he had observed a chemical-like material running off the concrete pad towards the ground. However, the owners indicated that this was the water that had been sprayed on the fire and it was draining off the pad onto the ground. I then indicated that we would check out the contamination of the soil with the HNU meter by the following Monday, September 10, 1984.

The explosion had occurred near the still which was not permitted, which is based on the RCRA regulations exempting distilled recycled material. Chem Solv typically goes to companies in the Delmarva area and collects solvent-type materials that are amenable for purification by discillation. They take the contaminated solvents distill of the purified material and return the purified

CODE 133--9 MARCH, 1987 133A - 010

DNREC MEMORANDUM Chem-solv spill incident AR 100180 EXHIBIT I-3

1207

Memo - Chem Solv Spill Page Two September 18, 1984

material to the owner for re-use. This operation is legal under present RCRA regulations because it is a hazardous waste that is being recycled by distillation. The still bottoms, however, cannot be purified and are removed and placed in drums and classified as hazardous waste. The Chem Solv operation is presently operating under a RCRA interim authorization permit for storage of the still bottoms hazardous waste.

Mr. Simpson and I then accompanied the owners to an area where the hazardous waste was being stored and observed that most barrels were labelled in accordance with RCRA regulations. However, some barrels were not properly labeled as required by RCRA hazardous waste regulations.

I then informed Mr. Montgomery, State Fire Marshall's Office; Steve Martin, State Fire Schol and Second Assistant Chief, Mr. Brown, that I wanted to stabilize the smoldering fire before they left the scene. They extinguished the smoldering flames and then left the scene after the Division of Environmental Control had taken charge of the incident.

I informed the owners of the company that we would be back on Monday, September 10, 1984, with field investigators to conduct sampling and investigate the compliance of the operation with RCRA regulations. We left the scene at approximately 1800 hours.

On Monday; George Bender and the writer want to Chem Solv, discussed the incident with the owners and took the HNU meter around the property to detect if any organic chemicals had contaminated the soil. There was evidence of chemically contaminated soil on the south edge of the concrete pad. We informed the owners that they would be responsible for excavating the soil. We also informed them that the Department of Health would take a water sample to determine baseline organic conditions at the property north of the site which is where Mr. Erbes lives.

On September 11, 1984, George Bender was contacted by Mr. Tom Jaggers of Chem Solv. Mr. Jaggers informed Mr. Bender that the contaminated soil had been removed and placed in 55-gallon drums. Approximately 30 drums have been filled with the contaminated soil.

Mr. Bender inspected the excavated area and obtained readings with the HNU of 10 - 20 ppm on the surface ranging from one - two feet below the original ground level. A hole was dug approximately one foot deep in the center of the contaminated area. HNU readings ranging from 100-150 ppm ware obtained from the bottom of the hole. Mr. Bender informed Mr. Jaggers that additional excavation was necessary to remove all contaminated soil. Mr. Bender requested that at least three more feet of soil be removed from the contaminated area before another HNU check was made. As of September 17, 1984, no additional soil was removed.

Mr. Jaggers informed Mr. Bender that they were in the process of negotiating with the insurance company for damages at their site. Mr. Jaggers' insurance company had informed him that no settlement'could be made for the removal of contaminated soil unless the State of Delaware brought suit against Chem Solv.

DNREC MEMORANDUM Chem-solv spill incident I – 3 (CONT.)

Memo - Chem Solv Spill Page Three September 18, 1984

•

On September 13th, a Secretary's Order was prepared to ensure Chem Solv complied with the Delaware Regulations Governing Hazardous Waste and other statutory requirements in a timely manner.

On September 17, 1984, Mark Boller and George Bender of the Water Resources Section visited Chem Solv. With the use of a three-inch hand auger, a hole was dug approximately five and one-half feet deep in the center of the contaminated area. Soil samples were removed during the digging operation and HNU readings of 100-200 ppm were obtained from these samples. The soil sample was taken at approximately seven feet below the original surface of the ground and transported to the laboratory for a volatile organic analysis.

Mr. Bender has been in contact with Steve Young in Water Supply and discussed the Chem Solv problem. Mr. Young informed Mr. Bender that the area of contamination at Chem Solv is considered a sensitive recharge zone for the Cheswold aquifer. Therefore, a clean up operation should begin at the earliest possible moment. Mr. Bender's recommendations for concluding this incident are as follows:

 Chem Solv's insurance company takes responsibility for the clean up and installation of the groundwater monitoring system, overseen by the Solid Waste Management Branch.

 If Chem Solv's insurance company does not take the responsibility for the clean up, the Division of Environmental Control will pursue one of the two , following options:

(a) The Division of Environmental Control will assume complete authorization at Chem Solv for excavation of contaminated soil and installation of the ground water monitoring system whereas all expenses for contractors, materials, and time would be recovered from Chem Solv through a civil suit; or

(b) The Division of Environmental Control will contact U. S. EPA Region III and request EPA emergency response operations for this site. This would include emergency removal of contaminated soil, emergency implementation of groundwater monitoring system.

Mr. Bender recommended Option 1 be pursued first. If Option 1 cannot be placed in effect, Option 2(b) should be pursued as long as EFA does not insist on placing Chem Solv on a remedial action plan. This incident needs to be handled under emergency conditions to protect the Cheswold aquifer. Option 2(a) should be reserved as our last resort due to the time constraints of the Solid Waste Management Branch personnel.

114

cc: John E. Wilson, III Robert J. Touhey

1

DNREC MEMORANDUM Chem-solv Spill incident

. ...

61

STATE OF DELAWARE DEPARTMENT OF NATURAL, RESOURCES & ENVIRONMENTAL CONTROL B9 Kings Highwar P. O. Bog 1401 Dover, BLAWARE 1990 1

OFFICE OF THE SECRETARY ١

TELEPHONE (302) 736 - 4403

ORDER NO. 84/SW-4

DATE OF ISSUANCE: September 21, 1984

ISSUED TO: Chem-Solv Solvent Recovery R. D. 4, Box 176-A North duPont Highway Dover, Delaware 19901

> ATTN: Thomas H. P. Jaggers Eugene Erbes Owners

RE: Cessation of Operation causing violation of hazardous waste requirements

FINDINGS OF FACT

 Chem-Solv, located R. D. 4, Box 176-A, North duPont Highway, Dover, Delaware, is classified as a hazardous waste generator, transporter, and storage facility.

2. As a result of the Department of Natural Resources and Environmental Control's (DNREC) response to the September 7, 1984, fire and explosion at the facility, the Solid Waste Management Branct, of the DNREC has noted numerous violations of DNREC's Regulations Governing Hazardous Waste and statutory requirements at the above facility.

3. The major areas of violations are as follows:

- a) Spillage of hazardous waste onto the ground at the facility as a result of apparent improper management of hazardous waste and the unplanned release of hazardous waste during the September 7, 1984, fire and explosion.
- b) The lack of proper waste analysis of incoming hazardous waste for the purpose of recycling.
- c) The improper storage of hazardous waste. As observed during a September 10, 1984, inspection, the drum storage area was cluttered, drum iids were not secure, evidence of past leaks was observed throughout the storage area, pooled waste was found on drum lids, and odors originating from

COOC 133-9 MARCH, 1987 1334 - 013

ORDER NO. 84/SW-4 CESSATION OF OPERATION 0 0×H83T 1-4

AR

 CREER NO. 84/SH-4 ISSUED TO: Chem-Solv Page Two September 21, 1984 vastes were detected in all areas. This is a lack of proper hazardous vastes management techniques. Improper labeling of drums, in violation of DNREC Regulations Governing Hazardous Waste and those of the U. S. Department of Transportation. There are inadequate resources to deal with emergencies that may arise at the facility. The financial resources such as an adequate trust fund or insurance policies were not available to handle immediate removal of spilled materials. The impact from these violations is summarized as follows: The impact from the spillage has a potential hazard which may affect the local residues, employees, and environmental resources including ground water. The discillation of the waste solvents without proper waste analysis poses an imminent hazard to public health and the environment. Storage and housekeeping practices employed at this facility may create an extreme explosion, fire, or toxic vapor hazard. DNREC has recently observed vapors and residues throughout the facility. The fire chief responding to the September 7, 1984, incident has urged DNREC's actions to correct this situation. He above-referenced violations and associated impacts may create an imminent and substantial hazard to the health of persons or the environment, the following etion is required at a minum: A case and contaminated soil must be immediately removed and dis- proprists corrective action has been taken as approved by DNREC. A waste analysis and operating plan, approved by DNREC, must be developed and adhered to financial metanisus mat provise hazerdous waste.)		ORDER NO. 84/SW-4 M CESSATION OF OPERATION		I - 4 (CONT.)
 ISSUED TO: Chem-Solv Page Tuo September 21, 1984 wastes were detected in all areas. This is a lack of proper hazardous waste management techniques. d) Improper labelling of drums, in violation of DNREC Regulations Governing Hazardous Waste and those of the U. S. Department of Transportation. e) There are inadequate resources to deal with emergencies that may arise at the facility. The financial resources such as an adequate trust fund or insurance policies were not available to handle immediate removal of spilled materials. 4. The impact from these violations is summarized as follows: a) The impact from the spillage has a potential hazard which may affect the local residents, employees, and environmental resources including ground water. b) The distillation of the waste solvents without proper waste analysis poses an imminent hazard to public health and the environment. c) Storage and housekeeping practices employed at this facility may create an extreme explosion, fire, or toxic wapor hazard. DNREC is sections to correct this situation. 5. The above-referenced violations and associated impacts may create an imminent and substantial hazard to the health of persons or the environment under 7 Del. C. 80306. d. In order to remedy these violations and to eliminate the imminent and substantial hazard to the health of persons or the environment, the following action is required at a minimum: a) Receipt of hazardous wastes at the above facility must cease until appropriate corrective action has been taken as approved by DNREC. b) Spilled waste and operating plan, approved by DNREC, must be developed and adhered to in order to meet the requirements of the Delaware Regulations Governing Hazardous Waste. d) A bond or equivalent financial mechanism must be purchase to ensure complete removal of all waste, regulabable products, and contanisated as ill waste. 	ac	e		R	T D @ xl+Rdu T
 ISUED TO: Chem-Solv Page Two September 21, 1984 wastes were detected.in all areas. This is a lack of proper hazardous waste management techniques. d) Improper labelling of drums, in violation of DNREC Regulations Governing Hazardous Waste and those of the U. S. Department of Transportation. e) There are indequate resources to deal with emergencies that may arise at the facility. The financial resources used as an adquate trust fund or insurance policies were not available to handle immediate removal of spilled materials. 4. The impact from these violations is summarized as follows: a) The impact from the spillage has a potential hazard which may affect the local residents, employees, and environmental resources including ground water. b) The distillation of the waste solvents without proper waste analysis poses an imminent hazard to public health and the environment. c) Storage and housekeeping practices employed at this facility may create an extreme explosion, fire, or toxic vapor hazard. DNREC has recently observed vapors and residues throughout the facility. The fire chief responding to the September 7, 1984, incident has urged DNREC's actions to correct this situation. 5. The above-referenced violations and associated impacts may create an imminent and substantial hazard to the health of persons or the environment under 7 Del. G. 85008. 6. In order to remedy these violations and to eliminate the imminent and sub- stantial hazard to health of persons or to the environment, the following action is required at a minimum: a) Receipt of hazardous wastes at the above facility must cease until ap- propriate corrective action has been taken as approved by DNREC. b) Spilled waste and contaminated soil must be immediately removed and dis- posed of in an approved hazardous waste landfill. c) A waste analysis and operating plan, approved by DNREC, must be dev	d)	complet soil, r	e removal of all waste, recycleable products, and com ather than the closure trust fund now in place at the	Cam:	Inated
 ISSUED TO: Chem-Solv Page Tvo September 21, 1984 wastes were detected in all areas. This is a lack of proper hazardous waste management techniques. d) Improper labelling of drums, in violation of DNREC Regulations Governing Hazardous Waste and those of the U. S. Department of Transportation. e) There are inadequate resources to deal with emergencies that may arise at the facility. The financial resources such as an adequate trust fund or insurance policies were not available to handle immediate removal of spilled materials. 4. The impact from these violations is summarized as follows: a) The impact from the spillage has a potential hazard which may affect the local residents, employees, and environmental resources including ground water. b) The distillation of the waste solvents without proper waste analysis poses an imminent hazard to public health and the environment. c) Storage and housekeeping practices employed at this facility may create an extreme explosion, fire, or toxic vapor hazard. DNREC has recently observed vapors and residues throughout the facility. The fire chief responding to the September 7, 1984, incident has urged DNREC's actions to correct this situation. 5. The above-referenced violations and associated impacts may create an imminent and substantial hazard to the health of persons or the environment under 7 <u>Del. G. 86308</u>. 6. In order to remedy these violations and to eliminate the imminent and substantial hazard to health of persons or to the environment, the following action is required at a minimum; a) Receipt of hazardous wastes at the above facility must cease until appropriate corrective action has been taken as approved by DNREC. b) Spilled waste and contaminated soil must be immediately removed and dis- 	c)	and adh	ared to in order to meet the requirements of the Delay		
 ISSUED TO: Chem-Solv Page Tvo September 21, 1984 vastes vere detected in all areas. This is a lack of proper hazardous waste management techniques. d) Improper labelling of drums, in violation of DNREC Regulations Governing Hazardous Waste and those of the U. S. Department of Transportation. e) There are inadequate resources to deal with emergencies that may arise at the facility. The financial resources such as an adequate trust fund or insurance policies were not available to handle immediate removal of spilled materials. 4. The impact from these violations is summarized as follows: a) The impact from the spillage has a potential hazard which may affect the local residents, employees, and environmental resources including ground water. b) The distillation of the waste solvents without proper waste analysis poses an imminent hazard to public health and the environment. c) Storage and housekeeping practices employed at this facility may create an extreme explosion, fire, or toxic vapor hazard. DNREC has recently observed vapors and residues throughout the facility. The fire chief responding to the September 7, 1984, incident has urged DNREC's actions to correct this situation. 5. The above-referenced violations and associated impacts may create an imminent and substantial hazard to the health of persons or the environment under 7 <u>Del. C.</u> 96008. 6. In order to remedy these violations and to eliminate the imminent and substantial hazard to health of persons or to the environment, the following action is required at a minimum: a) Receipt of hazardous wastes at the above facility must cease until ap- 	b)			ved	and dis-
 ISSUED T0: Chem-Solv Page Tvo September 21, 1984 wastes ware detected.in all areas. This is a lack of proper hazardous waste management techniques. d) Improper labelling of drums, in violation of DNREC Regulations Governing Hazardous Waste and those of the U. S. Department of Transportation. e) There are inadequate resources to deal with emergencies that may arise at the facility. The financial resources such as an adequate trust fund or insurance policies were not available to handle immediate removal of spilled materials. 4. The impact from these violations is summarized as follows: a) The impact from the spillage has a potential hazard which may affect the local residents, employees, and environmental resources including ground water. b) The distillation of the waste solvents without proper waste analysis poses an imminent hazard to public health and the environment. c) Storage and housekeeping practices employed at this facility may create an extreme explosion, fire, or toxic wapor hazard. DNREC has recently observed vapors and residues throughout the facility. The fire chief responding to the September 7, 1984, incident has urged DNREC's actions to correct this situation. 5. The above-referenced violations and associated impacts may create an imminent and substantial hazard to the health of persons or the environment under 7 Del. C. 96308. 6. In order to remedy these violations and to eliminate the imminent and substantial hazard to health of persons or to the environment, the following 	a)				
 ISSUED TO: Chem-Solv Page Two September 21, 1984 wastes were detected.in all areas. This is a lack of proper hazardous waste management techniques. d) Improper labelling of drums, in violation of DNREC Regulations Governing Hazardous Waste and those of the U. S. Department of Transportation. e) There are inadequate resources to deal with emergencies that may arise at the facility. The financial resources such as an adequate trust fund or insurance policies were not available to handle immediate removal of spilled materials. 4. The impact from these violations is summarized as follows: a) The impact from the spillage has a potential hazard which may affect the local residents, employees, and environmental resources including ground water. b) The distillation of the waste solvents without proper waste analysis poses an imminent hazard to public health and the environment. c) Storage and housekeeping practices employed at this facility may create an extreme explosion, fire, or toxic vapor hazard. DNREC has recently observed vapors and residues throughout the facility. The fire chief responding to the September 7, 1984, incident has urged DNREC's actions to correct this situation. 5. The above-referenced violations and associated impacts may create an imminent and substantial hazard to the health of persons or the environment under 	sta	ncial ha	zard to health of persons or to the environment, the s		
 ISSUED TO: Chem-Solv Page Two September 21, 1984 wastes were detected in all areas. This is a lack of proper hazardous waste management techniques. d) Improper labelling of drums, in violation of DNREC Regulations Governing Hazardous Waste and those of the U. S. Department of Transportation. e) There are inadequate resources to deal with emergencies that may arise at the facility. The financial resources such as an adequate trust fund or insurance policies were not available to handle immediate removal of spilled naterials. 4. The impact from these violations is summarized as follows: a) The impact from the spillage has a potential hazard which may affect the local residents, employees, and environmental resources including ground water. b) The distillation of the waste solvents without proper waste analysis poses an imminent hazard to public health and the environment. c) Storage and housekeeping practices employed at this facility may create an extreme explosion, fire, or toxic vapor hazard. DNREC has recently observed vapors and residues throughout the facility. The fire chief responding to the September 7, 1984, incident has urged DNREC's actions 	and	substan	tial hazard to the health of persons or the environment		
 ISSUED TO: Chem-Solv Page Tvo September 21, 1984 wastes were detected in all areas. This is a lack of proper hazardous waste management techniques. d) Improper labelling of drums, in violation of DNREC Regulations Governing Hazardous Waste and those of the U. S. Department of Transportation. e) There are inadequate resources to deal with emergencies that may arise at the facility. The financial resources such as an adequate trust fund or insurance policies were not available to handle immediate removal of spilled materials. 4. The impact from these violations is summarized as follows: a) The impact from the spillage has a potential hazard which may affect the local residents, employees, and environmental resources including ground water. b) The distillation of the waste solvents without proper waste analysis 	c)	an extr observe respond	eme explosion, fire, or toxic vapor hazard. DNREC has i vapors and residues throughout the facility. The f ing to the September 7, 1984, incident has urged DNREG	s re ire	chief
 ISSUED TO: Chem-Solv Page Two September 21, 1984 wastes were detected in all areas. This is a lack of proper hazardous waste management techniques. d) Improper labelling of drums, in violation of DNREC Regulations Governing Hazardous Waste and those of the U. S. Department of Transportation. e) There are inadequate resources to deal with emergencies that may arise at the facility. The financial resources such as an adequate trust fund or insurance policies were not available to handle immediate removal of spilled materials. 4. The impact from these violations is summarized as follows: a) The impact from the spillage has a potential hazard which may affect the local residents, employees, and environmental resources including 	b)				lysis
 ISSUED T0: Chem-Solv Page Two September 21, 1984 wastes were detected in all areas. This is a lack of proper hazardous waste management techniques. d) Improper labelling of drums, in violation of DNREC Regulations Governing Hazardous Waste and those of the U. S. Department of Transportation. e) There are inadequate resources to deal with emergencies that may arise at the facility. The financial resources such as an adequate trust fund or insurance policies were not available to handle immediate removal of spilled materials. 	a)	the loc	al residents, employees, and environmental resources		
 ISSUED T0: Chem-Solv Page Tvo September 21, 1984 wastes were detected in all areas. This is a lack of proper hazardous waste management techniques. d) Improper labelling of drums, in violation of DNREC Regulations Governing Hazardous Waste and those of the U. S. Department of Transportation. e) There are inadequate resources to deal with emergencies that may arise at the facility. The financial resources such as an adequate trust fund or insurance policies were not available to handle immediate removal of 	The	impacc	from these violations is summarized as follows:		
ISSUED TO: Chem-Solv Page Two September 21, 1984 wastes were detected in all areas. This is a lack of proper hazardous waste management techniques. d) Improper labelling of drums, in violation of DNREC Regulations Governing	e)	at the or insu	facility. The financial resources such as an adequat rance policies were not available to handle immediare	e ti	rust fund
ISSUED TO: Chem-Solv Page Two September 21, 1984 wastes were detected in all areas. This is a lack of proper hazardous	d)				
ISSUED TO: Chem-Solv Page Two				ha	zardous
ISSUED TO: Chem-Solv			984		
	SUED	TO: Che			
		d) e) The a) b) c) The and 7 <u>D</u> star act a) b) c) d) d) d) d) d) d) d) d) d) d	 two optember 21, 1 wastes waste minimized wastes waste minimized wastes waste minimized wasted w	 Two pressber 21, 1984 wastes ware detected in all areas. This is a lack of proper waste management techniques. Improper labelling of drums, in violation of DNREC Regulatio Hazardous Waste and those of the U. S. Department of Transport of insurance policies were not available to handle immediate spilled materials. The impact from these violations is summarized as follows: The impact from the spillage has a potential hazard which matche local residents, employees, and environmental resources ground water. The distillation of the waste solvents without proper waste poses an imminent hazard to public health and the environment of sources and matche local residents, employees, and environmental resources ground water. Storage and housekeeping practices employed at this facility an extreme explosion, fire, or toxic vapor hazard. DNREC has observed vapors and residues throughout the facility. The f responding to the September 7, 1984, incident has urged DNRE to correct this situation. Be above-referenced violations and associated impacts may creat and substantial hazard to the health of persons or the environment 7 <u>Del. C.</u> 86308. Receipt of hazardous wastes at the above facility must cease propriate corrective action has been taken as approved by DN. Spilled waste and contaminated soil must be immediately remo posed of in an approved hazardous waste landfill. A waste analysis and operating plan, approved by DNREC, must and adhared to in order to meet the requirements of the Dalay tions Governing Hazardous Waste. A bond or equivalent financial mechanism must be purchased to complete removal of all waste, recyclashle products, and con anoli, tather than the closure trust fund now in place at the prior to resumption of handling of hazardous waste. 	 Two prember 21, 1984 wastes were detected in all areas. This is a lack of proper has waste management techniques. Improper labelling of drums, in violation of DNREC Regulations of Hazardous Waste and those of the U. S. Department of Transportal et the facility. The financial resources such as an adequate to or insurance policies were not available to handle immediate resurspilled materials. The impact from these violations is summarized as follows: a) The impact from the spillage has a potential hazard which may all the local residents, employees, and environmental resources inciground water. b) The distillation of the waste solvents without proper waste anal poses an imminent hazard to public health and the environment. c) Storage and housekeeping practices employed at this facility may an extreme explosion, fire, or toxic vapor hazard. DNREC has to correct this situation. The above-referenced violations and associated impacts may create an and substantial hazard to the health of persons or to the environment of 7 bel. C. 86308. In order to remedy these violations and to eliminate the imminent at stantial hazard to health of persons or to the environment, the foll action is required at a minimum: A waste and contaminated soil must be immediately removed posed of in an approved hazardous wastes. A bond or equivalent financial mechanism must be purchased to encomplete removed of in an approved hazardous waste. A bond or equivalent financial mechanism must be purchased to encomplete removel of all waste, recyclashle products, and contamisation i, tather than the closure trust fund now in place at the factors wastes. A bond or equivalent financial mechanism must be purchased to encomplete removel of all waste, recyclashle products, and contamisation i, tather than the closure t

-1

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

111

D

ORDER NO. 84/SW-4 ISSUED TO: Chem-Solv Page Three September 21, 1984

e) A groundwater monitoring program must be implemented.

 7. 7 <u>Del. C.</u> 56308 provides comprehensive authority for the Secretary to take whatever action is necessary to protect the health of persons or the environment, including permanent or temporary cessation of operation.

ORDER

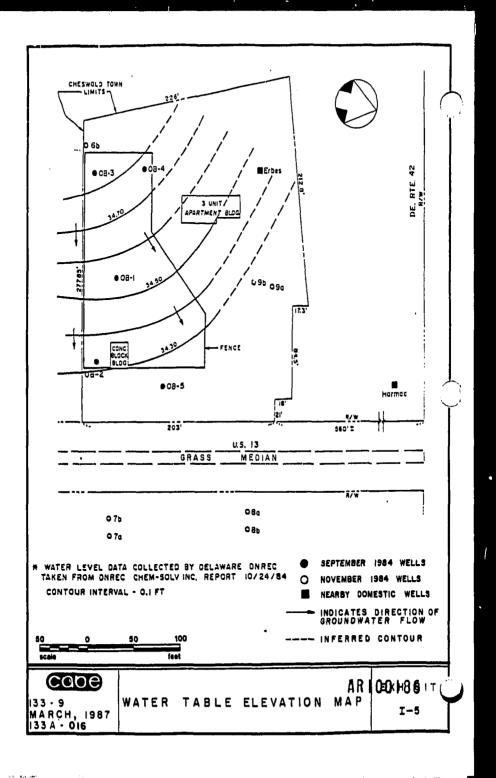
In consideration of the foregoing findings and in the interest of furthering the purposes of 7 <u>Del. C.</u> Chapter 63 and in accordance with the provisions of 7 <u>Del. C.</u> 86308, it is hereby ordered that Chem-Solv immediately cease receiving hazardous waste on the effective date of this Order.

It is further ordered that:

- 1. All contaminated soil be immediately removed.
- 2. A complete groundwater monitoring program be immediately implemented.
- 3. An approved waste analysis and operating plan be developed.
- 4. Chem-Solv shall not conduct any further hazardous waste handling operations at this facility, except removal of existing waste from the Cheswold site, until the above Order conditions have been completed and until written permission to resume operations is granted by DNREC. If the existing wastes are removed from the site, Condition 3 and the respective requirements of the 'Delaware Regulations Governing Hazardous Waste must be adhered to, along with the receipt of written permission of DNREC prior to removal.
- Should Chem-Solv elect to cease all operations, Conditions 1 and 2 must be complied with immediately, and a DNREC approved closure/post closure plan must be implemented.
- 6. A bond or equivalent financial mechanism must be purchased to ensure complete removal of all waste, recycleable products, and contaminated soil, rather than the closure trust fund now in place at the facility, prior to resumption of handling of hazardous waste.

The effective date of this Order is the date of issuance.

1 John E. Wilson, III; Secretary


Department of Natural Resources and Environmental Control

JEW,III:GJB:1mw cc: Charles M. Oberly, III; Attorney General Bart Dalton; Chief Deputy Attorney General

.

CODE 133-9 MARCH, 1987 133A - 015

ORDER NO. 84/SW-4 CESSATION OF OPERATION AR 0941865 1-4 (CONT.)

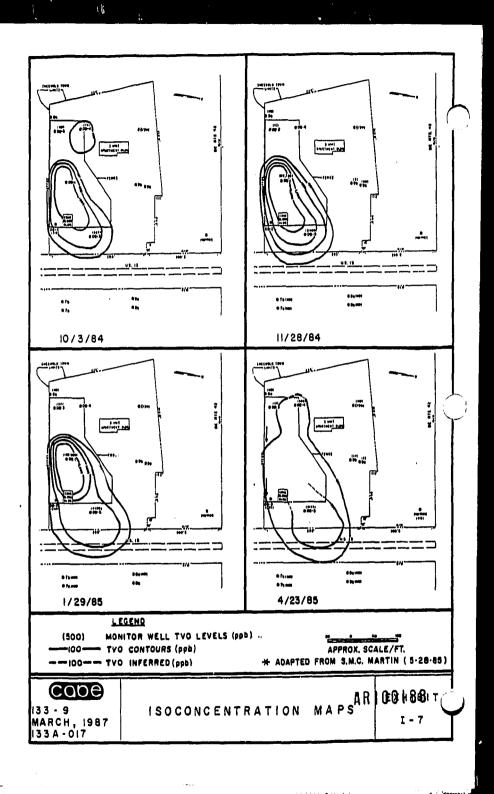
ļ

1.

ŀ

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

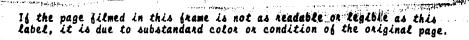
CODE 3-9 ARCH, 1987 3A - 048		GR			۱C		N٦	r R	A	۲I	0	N	8	-				NT		4	IR		-e	
	Sampling Date	Well	AL 24	3V VE	44	VC VC	4 2	78	84	88	V 6	75	Froes	Burne	Haraic	Truck Hart	Freedom	#All Result	TVO - Total	2				
		301	650	ę z	250	2	• •	ı	1	ı	,	,	1		'	1	1	- ug/1	- Total V	- Non-Det				
	10/03/84	Related	1092	99	24	-	11	ı	I	ı	ı	ı	I	1 1	ł	1	I		~ Trichloroethylene ~ Total Volatile Organics	Non-Detectarle				
		0 7	1742		274	887		ı	ı	ı	1	ı	t	1	1	ł	t		eani ce					
CROU		10	000,011	12.8		9,400	2 9	2	2	2	2	2.6	2 !	2	2	£								
NDWATER :	11/18/84	Related	2,730	2	!	6.2	2 9	9 9	QN	Ŷ	g	2	2	Ż	9	2								
GROUNDWATER SAMPLING RESULTS*		0VT	112,730	12.8		9,406.2	2 9	2	2	Ð	8	2.6	2	2	£	2								
results*		TCE		97 7		3		2 2																
	01/29/85	Related		2 9	9	2	2 9	2 9	2	Q														
		21		9% 9%	ł	4,400	2	2 5	2	QN														
		TCE		130	430	1,600	2	2 5	9	9	2.2	2.1	2	£.	2 5	2	2							
	04/22/85	Related		165	6 <i>L</i>	1,553	9	2 5	Ē		2	4-14	QN	8	5 F	2 5	2							
		0AL		295	n N	З,Н	-				-	64	*	4	м.	5 4	2							

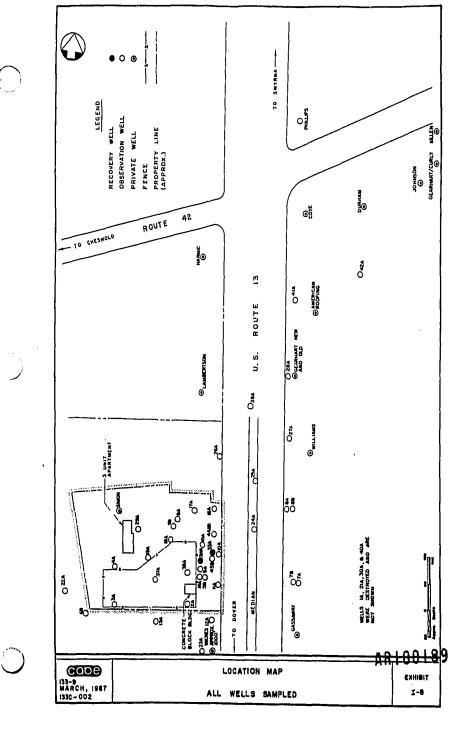

1

(

15

J


í



Ľ,

1

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

ł

	LLaN		Date		Material Length	Length	Denth	Hater Tevel	Measuring	Final	
	(sample ID) Driller	briller	Installed (inches)		casing/screen	(feet)	[feet]	Measurable	Elevation	Sarèles	SLALUS
) (44	Hander	9-27-84	.	pvc/pvc	33	20	01	45.58	eni toring	destroyed
		Hander	20-12-6	• •	pvc/pvc	39	9;	745	46.00	partotinon	active
)	5	Handex	9-27-84	• •	DVC/DVC		96	Yes	40° 48	Bonitoring	active
	54	Handex	9-27-84	-	DVC/DVC	91	: :	-42			
	SAR	Earth Date	8-20-85	• •	steel/pvc	22	18		23.15		
	5	Earth Data	8-12-85	1 1/2	steel/pvc	20	05		45.63	monitoring	ACLIV
		Burns	11-28-84	•	pvc/pvc	91	ę	Yea	46.27	monitoring	acti
		Burus	11-30-64	•	pvc/pvc	9	18	Yes	40.89	policing	ACLIVE
1	5	Burns		•••	Dvc/pvc	93	5	202	41.15	monitoring	active
M	15			• •	pvc/pvc	22	9	Yes	42°30	monitoring	active
0		Burns	11-28-84	•	pac/pac	39	2 4	Yes	05.24	monitoring	active
N		Burns	11-29-84	• •		22	95	yes	40-74	Bont Coring	activ
17	YOU	Earth Data	8-16-85	2/1	steel/pvc	1					ACTIVE
°O	VII	Earth Data	8-16-85	1/2	steel/pvc	1.5	17.5		5 10	monizoring	
	124	Earth Data	8-16-85	27	steel/pvc	1.5	17.5	Yes	£3.32	BODILOIIDO	ACC
	Vet	Earth Data		5	steel/pvc		18	yes	£\$*43	monitoring	active
		Earth Data		3:	steel/pvc		17.5	Yes	44.28	monitoring	acriv
3 .T		Farth Data		12	steel/pvc		21	708	53.59	monitoring	activ
A	ALL	Earth Data	8-22-85	12	steel/nvc		22	202		pont to the	activ
A	18A	Earth Data	8-22-85	77	steel/pvc	1.1	1			Popitoring	active
•••	A91	Earth Data	8-22-85	2/1	steel/pvc	1.5	11		46.68	monitoring	artive
D	ZDAR		9-18-85	• 7. T	steel/pvc	01	18.5 '	2	43-97	recovery	active
8		Easth Data		25	steel/pvc		9	Q	,	Bonitoring	destroyed
		Earth Date		1	steel/byc	с. Н	5	yes	48-11	monitoring	active
		Farth Dara	20-97-6	12	steel/pvc		51	748	42-90	pairos Loring	active
	254	Earth Data	9-26-85	12	steel/nuc	, v 	22	202		Bontcoring	active
	264	Earth Data	9-26-85	17	steel/byc					putroring	active
	ALE	Earth Data	9-26-85	12	steel/nyc		1				AT JUE
	284	Earth Date	9-26-85	22	ateel/Dvc						avi 124
- •	29A	Earch Data	9-26-85	27	steel/pvc	5	11		12.99		
21	VOR		10-07-65	1/2	steel/pvc	1.5	5	2	'	monitoring	destroved
1			10-04-85		steel/steel	10	20	202	45.68	monitoring	ACCIVE
		Earth Data	10-04-45	n ș	steel/pvc	ទុ	20.5	76a	£3.53	recovery	active
W				1,	DAG/Tagas		1	202	44.70	monitoring	active
E	35AR		10-16-05	• •	steel/nur	35		7.65		recovery	activ
Ľ	36AR	Earth Data	10-16-85	1	steel/pvr	2				recovery	ACCIVE
J	ATE	Earth Data	6-18-86	2/1	steel/pvc	1	1			recovery	
1			6-18-86	1/2	steel/pvc	1.5	1	10	44-07	sonitoring	
R	VGC		6-18-86	22	steel/pvc	1.5	97	Yes	\$2.61	monitoring	ALL
Ī		Earth Data		22	steel/pvc	5.1	18	8	1	monitoring	destroyed
C	V.C.				DAd/Teese			2.0	42-85	Bonitoring	ACLIVE
)(avc.					39			42-90	monitoring	active
- }	14AB		6-10-05	•		1.				Lecovery	ACCIV
	1 21	Earth Data	6-10-86	Ŧ	steel/pvc	1	5		42-05	monitoring	artive
99 • 9											
) 1											

م

. active SLALUS domestic Purpose M-asuring Point Elevation ~~~~~ Waltr Level Measurable Depth (feet) 252 **6**2 822 23 22 24 DOMESTIC WELL TABULATION Screen Length [feet] Casing/screen Material puc/puc 3 3 Diameter (inches) Date 1 Installed 2-18-72 1970 9-11-85 19742 -#C 4-84 ~ ~ ~ ~ ~ ~ Rudy Byler Lifetime Johns Well 7 John Fuhr Lifetime Well (sample ID) Driller Simon Huanberteon Huanberteon Hillen Gathlen Johnson Durham L Durham L Gasthert-oid Gasthert-oid Gasthert-oid Gasthert-oid Gasthert-oid Gasthert-oid Gassaway cape DOMESTIC WELL 133-9 MARCH, 1987 1334 - 019 DATA TABULATION

ŀ

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

¢ I

HYDROGEOLOGIC INVESTIGATION

(

II. HYDROGEOLOGIC INVESTIGATION FOR ON-SITE GROUND-WATER RECOVERY

A. Review of Existing Conditions

The Chem Solv site is located in the Atlantic Coastal Plain physiographic province. This province is characterized by a relatively flat landscape that begins at the Fall Line in northern Delaware and extends southeastward to the coastal margins of the Delaware River, Delaware Bay and the Atlantic Ocean. The Coastal Plain is underlain by a thick wedge of mostly unconsolidated sediments consisting of clays, silts, sands and gravels which dip and thicken southeastward. Elevations at the study site are between 45 to 50 feet above mean sea level.

The area receives an average of 43 inches of rainfall each year. Runoff from the precipitation eventually drains into the Leipsic River via drainage ditches and stream tributaries. At its closest point, the Leipsic River is approximately 1.5 miles north of the Chem Solv site. From there it flows west to east through the Bombay Hook Wildlife Refuge and discharges into the Delaware Bay.

The Leipsic River is the discharge point for some local groundwater flow (Adams et al., 1964 Hydrologic Atlas HA-139). There are several minor tributaries to the Leipsic River to the north and east of the site and several headwater tributaries of the St. Jones River to the south and west. The St. Jones River flows southeastward through Dover and discharges to the Delaware Bay at Bowers Beach.

A description of the soils at the Chem Solv site is found in the Kent County, Delaware Soil Survey and in the "Water-Table, Surface-Drainage, and Engineering Soils Map of the Dover Quadrangle, Delaware" by Adams et al., (USCS Hydrologic Investigations Atlas HA-139). According to the soil survey, the Chem Solv site API00193

II-l

If the page filmed in this frame is not as keadable or legible as this label, it is due to substandard color or condition of the original page.

()

underlain by soils of the Sassafras Series. This soil is described as:

"Sandy loam that is well drained and retains moisture and plant nutrients moderately well . . ."

Adams et al. (1964) describes the soil as nonplastic to slightly plastic sandy and silty soil that was derived from fluvial deposits of Pleistocene Age.

The coastal plain sediments under the site consist of gently dipping layers of clay, silt, sand and gravel that are of fluvial and marine origin that were deposited over 120 million years ago. The deposition began in the lower Cretaceous with the Potomac Formation and continued intermittently through the Quaternary with the Columbia Formation. These sediments were deposited on top of older consolidated basement rocks. The basement rocks are mainly igneous and metamorphic rocks similar to the gabbros, schists and gneisses which outcrop in the Piedmont Province to the northwest.

At the site, the unconsolidated sediments reach a thickness of nearly 3,300 feet. However, only the top 300 feet of this sedimentary sequence vill be discussed at length in this report. This section of sediments consists of the Miocene Calvert Formation as discussed by Pickett and Benson (1983) and the surficial Columbia Formation. Exhibit II-1 shows a general profile of the unconfined geologic section under the site.

Surficial sediments, locally known as the Columbia Formation, lie immediately below the Chem Solv site. This formation is locally characterized by unconsolidated, moderately to poorly sorted, coarse to fine quartz sand that is brown to orange in color. The color is

AR100194

II-2

due to iron oxyhydroxide coating of the sand grains (Spoljaric, 1971). Clay, silt and gravel have also been commonly found in the sand. According to Sundstrom and Pickett (1968), these sands are usually crossbedded and reflect a braided stream environment of deposition. South of Dover, these sediments become light tan to gray in color, and are found in well sorted broad sheets that suggest a nearshore marine depositional environment. It is believed that the original fluvial sediments have been reworked by nearshore processes.

The Columbia Formation ranges in thickness from 20 to 40 feet in the study area. When sufficiently saturated, this formation functions as a thin water-table aquifer. The water-table is usually found approximately 10 feet below ground surface. Due to its limited saturated thickness in the study area, only domestic well water needs can be met from this aquifer. The aquifer is more importantly a source of recharge through subcrop areas for deeper artesian aquifers and as a source of water for the base flow to streams. The aquifer's shallow depth and sandy soil cover make it vulnerable to contamination.

The surficial sediments of the Columbia Formation are immediately underlain by the Miocene aged sediments of the Chesapeake Group. These sediments are characterized by gray and bluish-gray, commonly fossiliferous silts with some sand (Pickett and Spoljaric, 1971). This wedge of sediments begins just south of Middletown, Delaware and reaches a maximum thickness of 1,550 feet at Fenwick Island (Sundstrom and Pickett, 1968). The nature of these sediments suggests that they were deposited under marine conditions reflective of transgressive and regressive sequences.

In the Dover area of Kent County, three major sand units (aquifers) in the Calvert Formation of the Chesapeake Group have been identified.

11-3

AR100195

They are: (from bottom to top) the Cheswold Aquifer, the Federalsburg Aquifer and the Frederica Aquifer. Each aquifer is usually confined by a silt and clay interval except where they subcrop below the surficial sands. In many places, however, the layers of silt and clay that separate these aquifers may be so thin that two of the aquifers may act as a single hydrogeologic unit. The Chesapeake Group aquifers can be characterized by mostly coarse grained, gray sand containing some silt and shell fragments.

The Cheswold Aquifer subcrops south of the Towns of Smyrna and Clayton, and dips southeastward at approximately 11 feet per mile. The top of the aquifer is projected to be about 100 feet below land surface at the Chem Solv site and about 170 feet below land surface at Dover. It reaches a maximum thickness of between 75 and 100 feet north of Frederica, Delaware. The maximum transmissivity of the Cheswold Aquifer occurs in the Dover area. It is a major source of public water supply for the City of Dover, the Dover Air Force Base and the Towns of Camden and Wyoming, where the aquifer is reported to be approximately 60 feet thick. In the last 20 years, between 3.0 to 5.5 mgd (million gallons per day) of water was withdrawn from the Cheswold Aquifer in the Dover area.

The Federalsburg Aquifer, as discussed by Cushing et al. (1973), is situated between the Cheswold and Frederica Aquifers. Little is known about this aquifer in the study area. However, it may be present between the Cheswold and the base of the surficial unit and may or may not be separated from the Cheswold by a confining unit.

The Frederica Aquifer subcrops at Dover and dips southeastward at approximately 9 feet per mile between Camden and Milford. It is a major source of water supply for the Town of Milford. Because it

AR100196

II-4

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

ないませ

appears to sub-outcrop south of the study site, it is not affected by the events at Chem Solv and is not discussed further.

B. Shallow Flow System

1. Monitoring and Observation

The shallow flow system at the Chem Solv site is herein defined as that which occurs in sandy sediments of the Columbia Formation above the clay layer that exists 18 - 20 feet below the ground surface. Based on the available data, it appears that the clay layer may be laterally continuous under the site, but that trace levels of the contaminants have migrated through gaps, relatively thin and/or permeable places, or along improperly sealed well bore holes.

The shallow flow system in the upper part of the surficial aquifer appears to be separated and distinct from groundwater flow below the clay layer. The next lower zone is called the intermediate zone and consists of sands in the Columbia Formation under the clay layer and any miocene sands which are in contact with them. Most of the monitoring wells constructed during the present investigation were installed in the shallow zone and it was in this zone that contaminant recovery pumping was initiated.

Well installation during the investigation consisted of 44 monitoring, observation and recovery wells. The former two types of wells were used to collect water samples, measure water levels and to perform aquifer tests. Wells of the latter type were connected together by a common manifold and used for contaminant containment and recovery.

The monitoring and observation wells were installed in predetermined locations using a variety of methods. The geologic logs of these

AR100197

II-5

wells show that the upper portion of the Columbia Formation above the clay layer is characterized by fine to coarse, poorly sorted orange to brown sands with some clay and silt.

a. Construction of Additional Monitoring and Observation Wells

A total of twenty seven (27) additional small diameter monitoring wells were installed at various locations on and adjacent to the Chem Solv property. Three (3) of these wells (OB-21A, 30A and 40A) were destroyed during subsequent work leaving 24 in service. These monitoring points were driven to a depth of approximately 18 feet below ground surface. The casing was then pulled back a total of 2 feet, exposing an inner PVC screen. Exhibit II-2 shows a cross-section of a typical well. These wells could be easily sampled using dedicated or expendable 1/4-inch tubing and a peristaltic pump. Water levels were measured in the wells prior to sampling and at various other times. The drive points were strategically located so that they could be used to define groundwater flow direction and to determine the shape and extent of the contaminant plume. The locations of the monitoring wells completed in the shallow flow system are shown on Exhibit II-3. Refer back to Exhibit I-9 for additional construction information.

The small diameter drive points allowed placement at locations not accessible by truck mounted drilling equipment. Some monitoring points were furnished with flush mounted caps (in the median strip of Route 13 for instance) to allow for grass cutting and other surface activities. Relatively short screwn lengths allowed for more accurate and representative sampling in the shallow aquifer.

The stratigraphy being well known in the vicinity of the conventionally constructed monitoring and recovery wells enabled the

AR100198

II-6

1/2-inch drive points to be installed a short distance away as "observation" wells for use during subsequent pumping tests. During these tests, water level response was continuously recorded at the 1/2-inch drive points using a recently developed sonic water level measuring system.

b. Sampling Methods

t i

The shallow monitoring and observation wells were all 1/2 inch diameter plezometers equipped with 1/4 inch dedicated sampling tubes. All samples were collected by DNREC personnel and analyses were made by their lab in Dover. The following procedure was used for sampling.

The sampling was performed with a peristaltic pump. The pump was connected to the dedicated tubing in the well and after 3 to 5 volumes of the water standing in the casing were removed, a water sample was collected. Only water that discharged in a steady flow without air bubbles was used for the samples. After the sample was taken, the outside of the tubing connected to the pump was rinsed with distilled water. Following this, the inside of the tubing connected to the pump was rinsed by pumping distilled water through it.

The sample bottles were 25 milliliter VOA (volatile organic analysis) glass serum vials with teflon faced septa in plastic screw caps. The vials were completely filled with sample water, sealed and inverted to check for air bubbles. If the sample contained air bubbles, it was discarded and a new sample was taken. This procedure was repeated until an acceptable sample was obtained. Four (4) samples bottles were collected at each well. The bottles were placed on crushed ice in a cooler and transported to the DNREC lab. Transport to the lab following sampling took only 20 minutes.

II-7

AR100199

2. Recovery System

a. Construction

Nine (9) test/recovery wells were installed downgradient of the fire site, i.e. wells OB-5AR, OB-2OAR, OB-31AR, OB-32AR, OB-34AR, OB-35AR, OB-36AR, OB-43AR and OB-44AR. Details concerning the construction of these wells are found in Attachment A. Due to the silty nature of the shallow zone and the lack of saturated thickness, a variety of construction and development methods were used to achieve maximum well efficiency. Hollow stem augering, rotary drilling with mud and clear water and driving techniques were used. A listing of wells and their respective specific capacities, adjusted to 100 minutes of pumping, appears in Exhibit II-4.

The recovery wells were placed on the Ghem Solv property in what was thought to be the most contaminated portion of the plume, with the intention of creating as large a cone of influence as possible. While this cone of influence could not encompass all of the contaminant plume, it was felt that pumping would contain and, possibly recover, the bulk of the contamination under the property. It would also prevent future migration of contamination both off site in the shallow zone and vertically into the deeper intermediate flow zone. Seven (7) of the recovery wells were connected by a common manifold to the recovery pumping system. Wells OB-31AR and OB-44AR were not. However, they were used as additional monitoring points. A map showing the location of the recovery wells and other nearby observation and monitoring wells appears in Exhibit II-5. Again, additional construction information can be found by referring to Exhibit I-9.

II-8

AR100200

b. Sampling Methods

With the exception of limited inorganic sampling of well OB-5AR in August 1985, and wells OB-32AR and OB-35AR in October 1985, the recovery wells were sampled only by sampling the combined flow, from a sample tap located on the discharge side of the recovery pump. As was the case with the monitoring and observation wells, extreme care was taken to avoid air bubbles in the sample vials and the vials were handled with the same judicious care, from sampling to delivery at the DNREC lab.

c. Test Pumping

Most of the test/recovery wells were test pumped to determine the aquifer properties of the shallow zone and/or the potential productivity of a specific well as a recovery source. These tests were undertaken using standard aquifer testing procedures. Each well was pumped from between 0.25 to 3.0 hours with either a submersible pump, a shallow well jet pump or a centrifugal pump. Discharge was maintained at a constant rate, usually with a Dole flow control valve. Water-level measurements were taken in the pumping well and at least one observation well with either a hand held water level probe or a continuous sonic water level recorder. The two well method of testing provides more representative aquifer parameter values than do slug tests. This is because borehole storage and efficiency problems are avoided and the duration and rate of the tests are usually long and high enough to sufficiently stress the formation at least between the pumped well and observation well.

The data from the pumping tests was used to calculate individual specific capacities and aquifer parameter values. The data was analyzed generally using the Jacob semi-log method to determine the

AR100201

12

II-9

aquifer transmissivity (T) and storativity (S). The T values were then used to determine the hydraulic conductivity (K) of sediments in the shallow zone and to aid in the design of the recovery system. Pumping test data and the accompanying analysis of that data for each recovery/test well is found in Attachments B through G. h

C. Intermediate Flow System

1. Monitoring and Observation

1

The intermediate flow system is defined as the aquifer below the 18 -20 foot clay layer. It is comprised of the lower part of the Columbia Aquifer and the upper part of the Calvert Formation (possibly the Federalsburg Aquifer). As determined from the logs of deeper wells constructed on the site, it appears that the top of the Calvert Formation is about 45 to 75 feet below ground surface. The top of the Calvert Formation consists of coarse, gray sand with some shells and traces of gray clay. The Columbia Aquifer above, is characterized by orange to brown and sometimes, white fine to coarse sand. The Columbia sands appear to rest directly on Calvert sands with no separating clay layers. (The clay layer previously described between 18 and 20 feet appears to be situated in the middle of the Columbia Formation)

The lack of a deep test well (up to 300 feet) prevents the determination of the vertical continuity and the classification of the deeper Miocene sands. According to other studies (Pickett and Benson, 1983), the top of the Cheswold Aquifer should be approximately 100 feet below ground surface in the study area. Whether the sand below 45 feet is Cheswold or Federalsburg could not be determined. Similarly, if the Cheswold is present at depth, the nature of the contact and the presence of any intervening confining unit could not

AR100202

II-10

be established. It is possible that the Cheswold is directly connected to the surficial aquifer at the site.

a. Construction

The six (6) wells that are constructed in the intermediate zone and its accompanying flow system include OB-5B, OB-6B, OB-7B, OB-8B, OB-9B and OB-45B. Construction data concerning these wells is found in Attachment A. Additional information may also be found in Exhibit I-9. All of the deeper wells have a nearby well completed in the shallow flow zone. Water level data from these pairs of wells was used to determine the difference in vertical head between the two flow systems. Samples collected from the deeper wells allowed determination of the extent contamination had moved vertically downward from one zone to the next.

Well OB-5B was constructed as a monitoring and observation well. Because the well is located in the contaminant plume, it was double-cased to reduce the chance of vertical migration of contaminants through the bore hole. A 4-inch steel casing was driven into the clay (at a depth of 22 feet) and grouted from the bottom of the casing to ground surface. A hole was then drilled out the bottom of the casing to a depth of 50 feet. A 1-1/4 inch PVC screen was set to a depth from 30 to 50 feet and attached to a 1-1/4 inch PVC casing that continues from 30 feet below, to 2 feet above ground surface. The well was gravel packed with Jessie Morie #1 sand from 50 feet to 26 feet and then grouted with bentonite pellets and a bentonite grout up to the ground surface. The well was developed by surging with air.

A cross-section of well 08-58 appears in Exhibit II-6. Monitoring wells OB-68, OB-78, OB-88 and OB-98 were constructed during a previous investigation. Because these wells were drilled outside of

II-11

AR100203

what was thought to be the contaminant plume, they were single-cased and grouted. The locations of all monitoring and test wells completed in the intermediate zone are shown on Exhibit II-7.

Well OB-45B was double-cased using a method of construction similar to that of OB-5B. A boring was first made to 20 feet with mud rotary equipment. An 8-inch steel casing was set and grouted to the surface with cement. A hole was then drilled out the bottom of the 8-inch steel casing to 39 feet below ground surface where 10 feet of 4-inch PVC screen and 29 feet of casing were installed. The annular space adjacent to the screen area was gravel packed with Jessie Morie #1 sand from 39 to 27 feet. The remainder of the annular space was grouted with bentonite pellets for two (2) feet and with a volclay grout mixture up to the ground surface. A cross-section of well OB-45B is provided in Exhibit II-8. Other details concerning the construction of the wells are found in Attachment A and Exhibit I-9.

Both wells were finished in the intermediate flow system to allow for aquifer testing of the zone. Details of all wells completed in the intermediate zone are found in the referenced attachment.

b. Sampling Methods

As was the case with the shallow wells, each well was purged in order to evacuate standing water and to make sure the sample taken represented the water in the aquifer surrounding the well. For the 4-inch well, a cleaned and decontaminated 4-inch submarsible pump was lowered almost to the bottom, 3 to 5 volumes of water were removed and the pump was lifted from the well. The outside of the pump and hose were rinsed with alconox soap and water mix and rinsed with distilled water.

AR100204

II-12

After the 4-inch wells were purged, they were sampled with teflon bailers which were raised and lowered with a nylon rope. The bailers were cleaned and decontaminated before and after each use. The first three bailers filled were discarded. The sample bottles were then filled from the top end of the bailer. The rope was cut and discarded after each sampling at each well.

As indicated, the teflon bailers were decontaminated before each use. The bailers were disassembled and each part was handled separately. The parts were washed on the inside and out with soapy water and then rinsed with distilled water. The parts were then rinsed with acetone and set to dry. They were rinsed with distilled water for a final time and then reassembled. New nylon rope was used for each well and then discarded.

For each set of samples taken in one (1) day, a blank and duplicate sample was also obtained. The blank sample was taken by filling a cleaned and decontaminated bailer with distilled water. The sample was then removed from the bailer in the same manner as the samples from the monitoring wells. Blank samples were taken after sampling from the most contaminated well for the day. This allowed the blank sample to serve as a test of the efficiency of the decontamination process. A duplicate sample was taken on an individual well at random and was used by the lab to evaluate the reproducibility of the results using the same testing procedure.

DNREC realized the possibility that concentrations of volatile constituents could vary due to sampling methods. As a result, on November 18, 1986 several wells were sampled simultaneously using both the pump and bailer methods. A tabulation of the results appears in Exhibit II-9. In comparing the data, it appears that there is less likelihood of a VOC loss by using the peristaltic pump method.

11-13

AR100205

- را مىيەدىن

c. Test Pumping

To facilitate test pumping and sampling in the intermediate zone, a 4-inch diameter test well (OB-45B) was constructed during June 1986. Prior to constructing the well, it was anticipated that if contamination was found in the aquifer in the vicinity of the well, it could be used for recovery purposes.

An aquifer test was conducted in well OB-45B on June 18, 1986. Well OB-5B was used as an observation well. A one (1) HP submersible pump was lowered to a depth of 36 feet and run at a constant discharge rate of 21 gpm. The maximum drawdown in the pumped well was 5.22 feet and the maximum drawdown in the observation well was 0.54 feet. Data from this test appears in Attachment H. Aquifer parameters were calculated for the intermodiate zone using the same methods as used to analyze the shallow zone test results.

D. Domestic and Commercial Well Inventory

Domestic and commercial wells sampled in the Chem Solv study area are generally downgradient (north and east) of the site. A majority of these wells are single home residential wells that are believed to be screened in the intermediate flow zone. Other wells belong to small businesses and commercial establishments and are also believed to be screened in the intermediate flow zone. Most of these homes and businesses are more than a decade old. This preceded DNREC's development of reliable files on well construction information. This accounts for the sparsity of construction data shown in Exhibit I-10.

During the early sampling of the domestic wells near Chem Solv, organic contaminants consisting mainly of trichloroethylene were found

AR100206 5

II-14

in a shallow well on the Gearhart property on Route 13 (Gearhardtold). The concentrations of these organic compounds were high enough that the Delaware Division of Public Health (DPH) advised the residents not to drink the water. In response to this advice, the property owner had another well installed near the old well, which was then abandoned. The new well (Gearhardt-new) was completed to a depth of 50 feet (the old well was thought to be about 20 feet deep). The new well was not double cased. See Exhibit II-7 for the location of the wells.

Water from the new well continued to be contaminated by volatile organic compounds, but the primary constituent was now benzene - a compound never present above trace levels in water from wells on the Chem Solv site. With the approval of DPH, DNREC had a carbon treatment system installed in the house. The unit was installed to treat water used for drinking and cooking purposes. Periodic water quality samples of the treated water indicate that the filter was effective in removing volatile organic chemicals to concentrations below detection levels in the treated water. A discussion of the contaminants found in the Gearhardt's old and new well is found in a later section of this report.

The residential and commercial wells in the Chem Solv area are assumed to be completed in the intermediate flow zone which accounts for their being included in Exhibit II-7. The samples collected from these wells were used in conjunction with samples collected from the intermediate zone monitoring wells to determine the extent of contamination throughout the zone.

II-15

AR100207

E. Water Quality Analyses

Samples were collected from domestic and commercial wells to determine if the health of the local population was at risk based on current standards and knowledge. Samples were collected in 1984 from monitoring wells installed soon after the fire to determine the principal contaminants in the shallow aquifer. Water samples were subsequently collected form the monitoring network on a systematic basis to determine the spacial distribution of contamination at various times prior to and during recovery. Some water samples were collected during relatively short term pumping tests to determine the variability in concentration of selected parameters. Samples were also collected before and after the carbon filter that was installed on the Gearhart-Shane residence well to determine the effectiveness of treatment. Finally, water samples were routinely collected from the raw water discharge of the recovery system and after the air stripper was installed in order to determine variations in raw water quality with time and the effectiveness of treatment.

Samples collected in December, 1984 and January, 1985 were analyzed for the "priority pollutants." This analysis included 107 possible organic compounds which may have entered the ground water flow system. A priority pollutant analysis narrows down the list of potential contaminants. The analysis was carried out according to EPA (Environmental Protection Agency) methods. A majority of all the samples were analyzed by a VOA (Volatile Organic Analysis) scan using EPA methods described in Appendix I. The laboratory produced chromatographs for all indicated compounds specified in the EPA method. However, only those compounds that were detected during a round of samples were listed on many of the analysis sheets. If a compound was detected in one sample but not in others, it is listed as not detected in the other samples listed on the same analysis report. If a

II-16

AR100208

compound is not listed on the analysis sheet, it was not detected in any of the samples.

The completed analysis sheets were returned from DNREC's laboratory to the DNREC staff person who requested the analysis (following supervisory review). Upon receipt, DNREC released the sample results to CABE Associates and to Earth Data,

The analyses were entered into a computer data base having the following structure:

Date Lab Number Sample identification (Well name or number) Parameter Concentration Units (mg/l or ug/l)

This data base was sorted and then printed in four (4) separate formats:

1. Date, lab number

1.

10

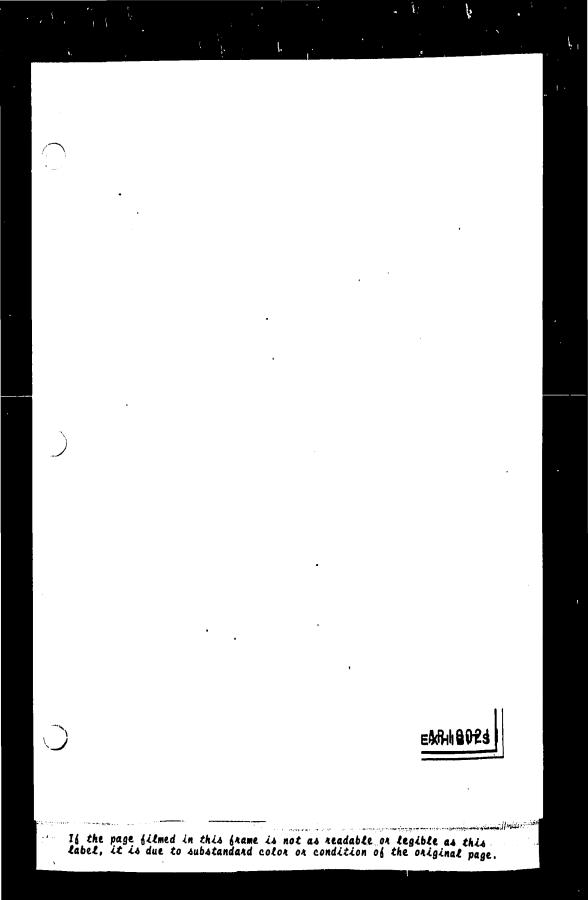
2. Date, parameter, sample ID

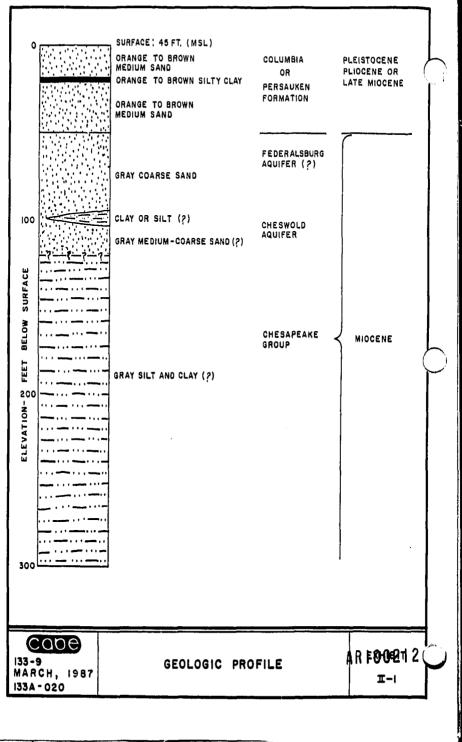
3. Parameter, sample ID, date

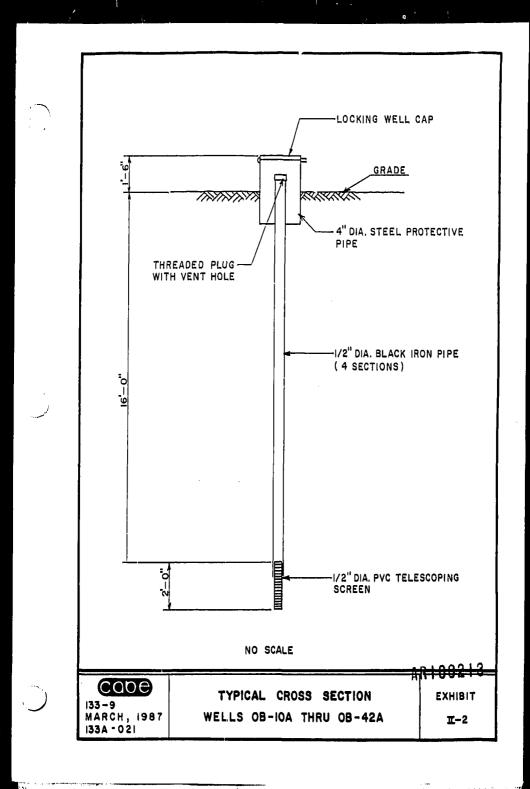
4. Sample ID, date, parameter

Format 1 provides a listing of each analysis and corresponds sequentially to the data provided by DNREC. This listing is provided in Attachment J. Formats 2, 3, and 4 provided listings which were

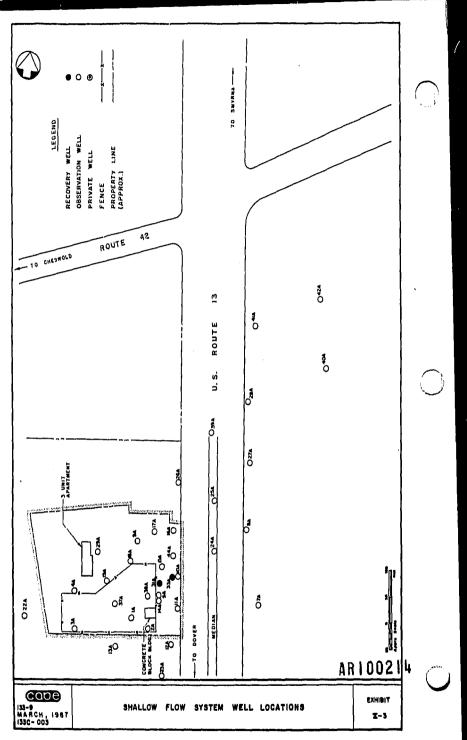
II-17


AR100209


used in preparing isoconcentration contour maps, determining time versus concentration trends and in attempting to decipher multiple contamination problems. The sorted data base listings also provided a means by which to examine the validity and consistency of results.


AR100210

1



If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

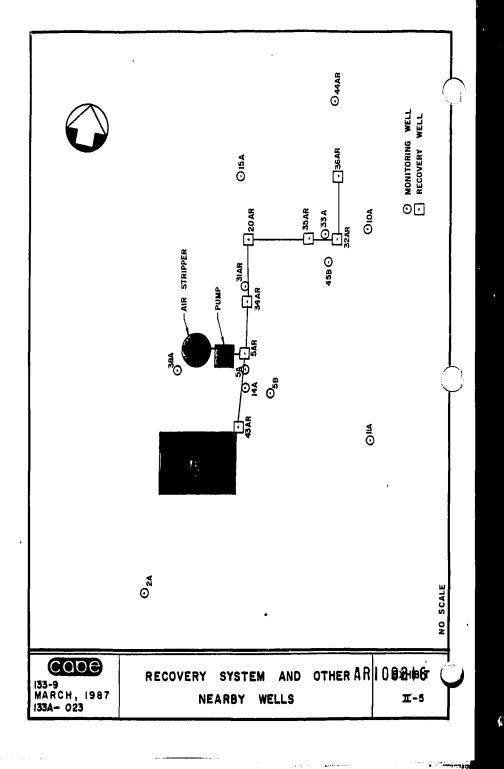
k.

١.

١

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

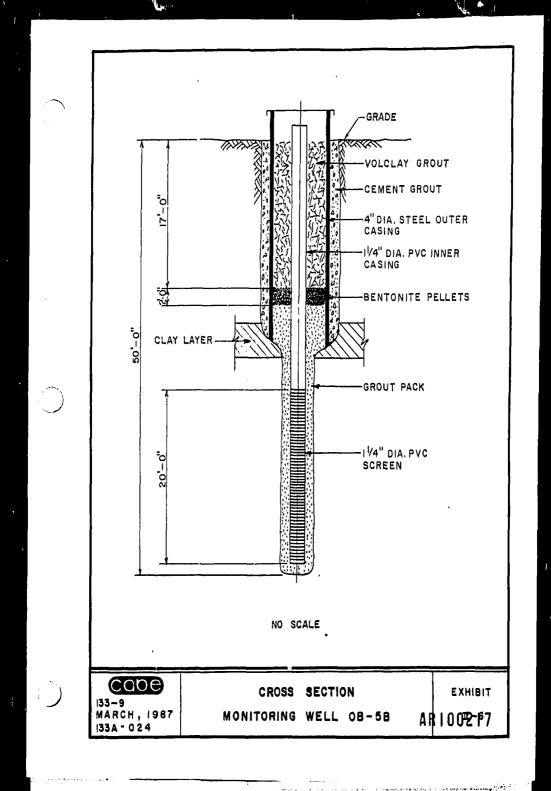
100 MIN DRILLING SPECIFIC CAPACITY PRESENT (GPM/FT) WELL METHOD STATUS Mud Rotary .15 Observation 5A (by others) Mud Rotary .42 5AR Recovery (EZ Mud) 20AR Augered .19 Recovery 31AR Driven .10 Observation 32AR Rotary .34 Recovery (Clear Water) ,58 34AR Rotary Recovery (Clear Water) 35AR .37 Rotary Recovery (Clear Water) 36AR Rotary .45 Recovery · (Clear Water) 43AR Mud Rotary .69 Recovery (Revert) 44AR Mud Rotary .45 Observation (Revert)


CODE 133 - 9 MARCH, 1987 133A - 022

TEST/RECOVERY WELL

DEVELOPEMENT DATA

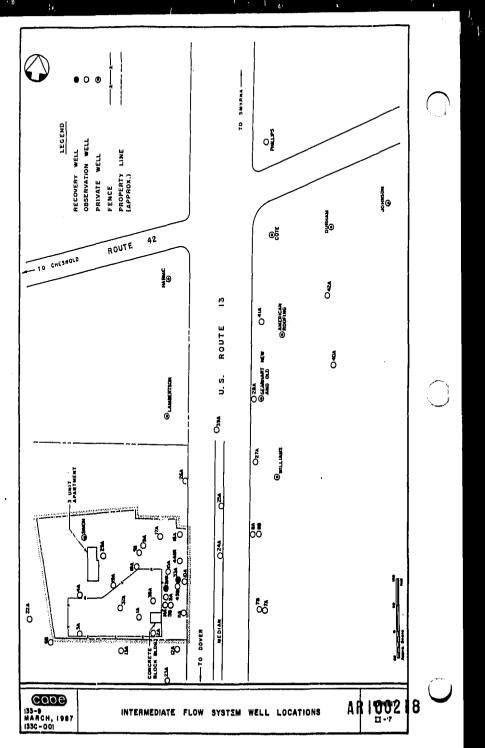
ARI 0602 P5


١,

L.

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

ł

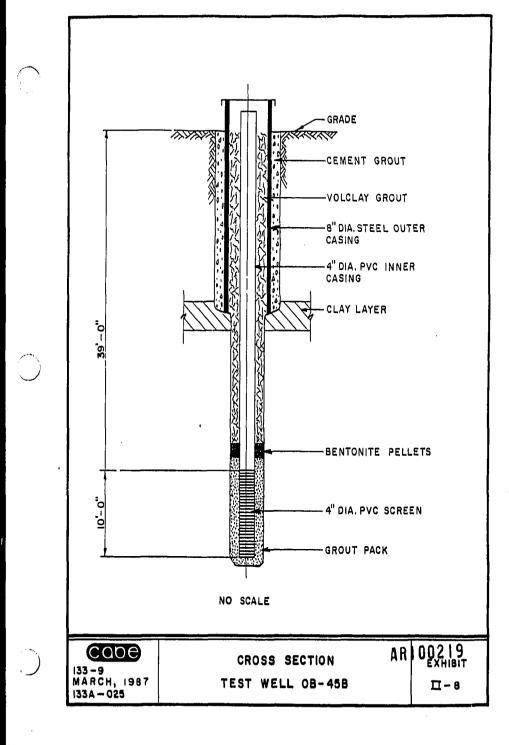


8

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

Ŀ

b



١.

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

1

! [;

k

If the page filmed in this frame is not as readable of legible as this label, it is due to substandard color or condition of the original page.

NOVEMBER 18, 1986 SAMPLING

ł,

		CONCENTRATION ppb	
WELL	PARAMETER	BAILED	PUMPED
5A	1,1 - Dichloroethylene	16.0	22
	1,1 - Dichloroethane	2.8	2.6
	trans - 1,2 - Dichloroethylene	15.0	15
	Chloroform	34.0	32
	l,l,l - Trichloroethane	296.0	224
	1,2 - Dichloropropane	nd	nd
	Chlorobenzene	nd	nd
	Trichloroethylene	1400	1152
2A	1,1 - Dichloroethylene	nd	1.0
	1,1 - Dichloroethane	nd	nd
	trans - 1,2 - Dichloroethylene	nd	nd
	Chloroform	nd	1.0
	1,1,1 - Trichloroethane	2	3.8
	1,2 - Dichloropropane	nd	30
	Chlorobenzene	nd	nd
	Trichloroethyleae	7.9	17
9 B	1,1 ~ Dichloroethylene	nd	nd
	1,1 - Dichloroethane	nd	nd
	trans - 1,2 - Dichloroethylene	nd	nd
	Chloroform	nd	1.0
	1,1,1 - Trichloroethane	5.5	2.9
	1,2 - Dichloropropane	nd	32.0
	Chlorobenzene	nd	nd
	Trichloroethylene	39.0	nd

CODE 133-9 MARCH, 1987 133A-026

BAIL VS. PUMP SAMPLING COMPARISON EXHIBIT

AR 1 Q.0 3 20

dentry active ac Statue domentic Purpose M-asuring Point Elevation DONESTIC WELL TABULATION - CHEN SOLV INVESTIGATION Water Level Measurable ***** Depth (feet) Screen Material Length Casing/screen {feet} Date Diameter Installed (inches) 1-18-72 6-83 Rudy Byler Lifetime Johns Well John Puhr Lifetime Well (sample ID) Driller Killen Gearh-Curley Johnson Durham Cote Amer. Roof. Gearbart-old Villiamu Michanu Michanu Michanu Simon Lambertson Harmic Phillips cope VI I GEORGEA AND COMMERCIAL DOMESTIC 133-9 March, 1987 1334-027 WELL INVENTORY II -10

INSTALLATION OF RECOVERY AND TREATMENT SYSTEMS

CHAPTER I

III. INSTALLATION OF RECOVERY AND TREATMENT SYSTEMS

A. Design

1. Recovery System

Limited available drawdown and, to a lesser extent, aquifer permeability in the shallow zone were the factors which controlled the design of the recovery system. Because of the limitations associated with these factors, a single relatively high yielding recovery well was not practical. Instead, it was decided that a series of relatively low yielding (0.5 to 3.0 gpm) wells should be installed and manifolded together in a manner similar to a dewatering system. Based on an analysis using aquifer parameter values, a spacing of between 10 and 30 feet between recovery wells was determined. Since the recovery wells could not be installed off the property and because site conditions to some extent controlled the location of wells, the configuration of the system as shown on Exhibit III-1 eventually evolved.

Recovery well efficiency was so important (due to limited available drawdown) that each well was designed and constructed in an attempt to maximize efficiencies. Design features included using artificial and natural gravel packs, experimenting with drive points and various well development methods and using a variety of different drilling fluids to accomplish this.

Calculations and field pumping tests indicated that the proposed system would be sufficient to contain the bulk of the contamination within a 150 foot radius of the center of the system, at a pumping rate of approximately 9 gpm. The transmissivity of the aquifer would not practically permit the capture of the entire contaminant plume downgradient of the site.

III-l

The recovery wells were thoroughly developed and water pumped from them was relatively sand free. This allowed the use of a close-coupled, self priming centrifugal pump to draw water from the manifold system and pump it to the top of the air stripping tower. A Goulds Model XSH pump with compatible suction and discharge head characteristics for the system was specified and placed into service. This pump is designed for irrigation, heat pump and water transfer operations which require a relatively high suction lift and low discharge head.

2. Treatment System

The purpose of the treatment system at the Chem Solv facility was to remove volatile organic compounds (VOC's), primarily in the form of solvents, from the ground water. These VOC's will vaporize if given adequate exposure to the atmosphere at ambient conditions. Historically, this property has provided the mechanism by which VOC's have been separated from other substances which they have contaminated. The soil decontamination at Chem Solv utilized this same propensity for volatilization. The soil was mechanically aerated with a shredder to expose the soil surfaces to the atmosphere. Upon exposure, the organic chemicals that adhered to the soil particles evaporated.

In removing the VOC's from the groundwater, their affinity for the vapor phase at atmospheric pressure and ambient temperatures was again utilized. The process is slightly different from that used with the soil aeration project because the VOC's contaminated a fluid as opposed to a solid. For this reason the mechanism for exposing the volatile organics to the atmosphere is slightly different. The concept however, remains the same and the process is commonly referred to as air stripping. The air stripping equipment is usually quite simple.

AR100224

III-2

Air stripping can be accomplished using any one of a variety of equipment designs, the most common designs including diffused aeration, coke tray aerator, cross-flow tower, and countercurrent packed tower. Selection of the appropriate equipment configuration for a particular situation depends primarily on process feasibility and cost. The device must provide satisfactory mass transfer with minimal energy losses. It was determined that countercurrent packed towers would be the most efficient for the range of removal efficiency and design parameters experienced at Chem Solv (See Exhibit III-2).

1 h

The contercurrent stripping system introduces the contaminated water to the top of a tower where it is distributed over a plastic packing medium. The tower media increases the total surface area of the contaminated water exposed to the atmosphere. Since the air stripping process is a mass transfer operation, the rate of stripping is directly proportional to the surface area of contaminated water exposed to the atmosphere. To further enhance mass flux, a blower is provided to introduce air near the bottom of the stripping tower. This air travels upward through the packing material and eventually is emitted through the top of the stripping column along with the volatized organic compounds. Treated water, containing little or no VOC contaminants, collects in a sump at the base of the tower and, in the Chem Solv operation, is discharged to the Kent County sewer. A typical cross-section of an air stripping tower is provided as Exhibit III-3.

In countercurrent systems the VOC contaminant level in the treated water can approach zero under optimum process conditions. The countercurrent packed tower air stripper was the only type described by SMC Martin in their report. CABE verified the capabilities and availability of such a tower and DNREC agreed that it appeared to be

AR100225

III-3

the most logical available alternative. Capital, energy and installation costs were very manageable and installation and site requirements were minimal.

The physical chemistry of air stripping can be understood by realizing that the solubility of a gaseous solute in a liquid solvent is an equibriium process. Gases can move freely between a liquid solvent and the atmosphere above the solvent. The concentration of the gas in the liquid solvent is directly dependent on the pressure of the gas above the solvent and, as the pressure changes, the equilibrium concentration of the gas in the liquid solvent changes. Therefore, if the pressure of the VOC in the air above the liquid solvent is in excess of its equilibrium level with the gas solute in the liquid solvent, the VOC will be released to the air until equilibrium is restablished. If the fresh air in contact with the water is continuously replenished with uncontaminated air, then the VOC's will eventually be removed from the water.

The principle of gas-liquid equilibrium must be outlined before suitable rate equations can be developed. Henry's Law is used to explain the behavior of gases which do not significantly react with solvents and are found in relatively low concentrations and pressures. It states that the equilibrium partial pressure of the contaminants in the air adjacent to a solution is proportional to the solution concentration of the contaminant. Mathematically this is represented by:

III-4

AR100226

 $P_a = H_a X_a$

Where

P_a = partial pressure of contaminant "a" in gas phase.
H_a = Henry's constant of contaminant "a".
X_a = mole fraction of containment "a" in liquid in equilibrium with gas phase.

From Dalton's Law it is known that the total pressure of an ideal gas mixture is the sum of the partial pressures of all its components. From this it may be shown that the partial pressure of a given contaminant in the air is the product of the total pressure and the factional volume or $g_{\rm d,0}$ phase mole fraction of the contaminant in the air. Mathematically Dalton's Law is represented by:

 $P_a = Y_a P_t$

Where

 Y_a = mole fraction of contaminant "a" in gas phase. P_t = total pressure

Thus, at equilibrium, the concentration or mole fraction of contaminant "a" in the liquid and gas phases can be described by mathematically solving Dalton's equation in terms of Henry's Law. The new expression is as follows:

 $Y_a = (X_a H_a) + P_t$

This equation shows that the larger the Henry's constant and the larger the concentration of the gas in the liquid, the greater will be

III-5

AR100227

the equilibrium concentration of "a" in the air. Contaminants with large Henry's constants are therefore more easily removed by air stripping. The converse of this is also true, meaning that contaminants with small Henry's constants are the most difficult to remove. Exhibit III-4 shows the effect of Henry's Constant on ease of removal by air stripping for a similar ground water remediation project. Referring to the exhibit, note that for a given air/water ratio, the percent of VOC remaining increases as the Henry's Constant for the VOC decreases.

It can also be shown that the rate of mass transfer of the gas from the aqueous phase is directly proportional to the concentration of solute in the aqueous phase as given by the following expression:

 $J = K_L a (C*-C)$

Where

J = mass flux

K_L = overall mass transfer coefficient (proportional to Henry's Constant)

C* = equilibrium concentration of gas in liquid

C = concentration of gas in liquid

Shown below is a list of the major contaminants at the Chem Solv site with their corresponding concentration and Henry's constant. These concentrations were obtained from a single sampling of well OB-5AR on October 28, 1985. The urgency of implementing the recovery system

AR100228

III-6

dictated the use of this data as it was the worst of the recovery well samples available at the time.

,		Henry's
	Concentration	Constant
Contaminant Name	ug/1	(atm)
a. Trichloroethylene (TCE)	28,400	550
b. 1,1,1 Trichloroethene	12,500	400
c. l Chloroethylene (Vinyl Chloride)	780	335,000
d. Chloroform	280	170
e. 1,2 Dichloroethane (DCE)	160	61
f. Ethylbenzene	40	-
g. Toluene	23	340

In comparing the Henry's Constants, contaminant "e" above has a relatively small Henry's Constant and appears to be the most difficult to remove. Contaminant "c", Vinyl Chloride, on the other hand, has a very large Henry's Constant and would seemingly be the easiest to remove. However, TCE is found in concentrations two orders of magnitude higher then the most difficult to remove contaminant (DCE), while Henry's Constant for TCE is only one order of magnitude greater than DCE. Likewise, vinyl chloride has a Henry's Constant three orders of magnitude higher then DCE, but is found in concentrations in the same order of magnitude as DCE. Since the mass flux for a gaseous solvent is directly proportional to both its Henry's Constant and its concentration, one would expect that the mass flux rate for TCE would be greater than for DCE and possibly greater than for vinyl chloride. Even though the removal of TCE would occur at a faster rate than for other VOC's, its concentration is so much greater that a design based solely on TCE removal will provide for subsequent removal of all other contaminants without specifically considering them. Laboratory

III-7

AR100229

tests performed by the packed tower manufacturer confirmed this theory. In these tests, it was demonstrated that if proper removal efficiencies were achieved for TCE, all other contaminants would experience equal if not greater efficiency removals. \:

Two (2) distinct but related design components are essential to developing an optimized packed tower air stripping system for volatile organics. The first is the hydraulic design which defines the required tower diameter. The second is the mass transfer design which dictates the height of the tower. These two (2) design components are discussed in the following paragraphs along with other design considerations.

Proper hydraulic design of a packed tower aerator will ensure that neither flooding of the tower nor entrainment of air in the treated water will occur. Flooding occurs when the upwardly mobile air prevents the water from percolating through the packing material. The resulting liquid detention is related to improper air velocity and results in poor removal efficiencies. Conversely, a water rate that is too high coupled with a low air velocity can cause entrainment of the air in the water as it passes through the tower. The effect of air/water ratio and water loading rates on capital costs, operating costs and overall costs are shown in Exhibit III-5 for a similar ground water remediation project.

The hyraulic design is effected primarily by three (3) parameters and their interactions; flow rate, packing material, and the air-to-water ratio. There is a decided economy of scale with increased flow rates through a packed tower aerator. The relationship between increasing diameter of a tower and increased flow is directly proportional to the increased surface area afforded by a larger tower. For this reason, one large tower is more cost effective than several small towers.

AR100230

III-8

The transfer of contaminants from the water to the air is influenced by several factors including the packing material, air-to-water ratio, and water temperature. Since aeration is an equilibrium process, the efficiency of removal is independent of concentration. However, the desired treatment efficiency is selected based on the prevailing concentrations. Therefore, higher levels of contamination will dictate higher removal efficiencies to attain desired levels in the tower effluent.

1:

The packing material directly affects mass transfer within the tower due to its available surface area, wetability and tortuosity of path provided for air and water. Packings must also be strong enough to support the weight of material above them. To avoid clogging and compaction, symmetrical interlocking packings are suggested. Packing material, however, is chosen mainly on the basis of low cost, durability, and efficiency of mass transfer.

The optimum air to water ratio is a function of the mass transfer coefficient for the particular organic to be removed. The water temperature directly affects the Henry's law constant for an organic contaminant and the equilibrium driving force is lowered with decreasing temperature. See Exhibit III-6 for a diagram of the effect of temperature upon Henry's Constant. Air temperature has little impact on removals by the air stripping because of its insignificant heat capacity (compared to water) and its increased density with decreasing temperature. At Chem Solv, the optimum tower design was calculated considering all the parameters previously mentioned, as well as on the other chemical constitutents in the water and, finally, pressure drop.

III-9

AR100231

In summary, the optimum tower design provides the desired efficiency at the required liquid capacity, operates at a minimum pressure drop, is easily cleaned and maintained, is constructed of corrosion resistent materials, and is easily modified to meet future requirements. The following list summarizes the air stripping tower selected as being of the most optimum design for Chem Solv site:

Diameter	-	16 inches
Tower Height	-	32 feet
Packing Height	-	25 feet
Pumping Rate	-	20 GPM
Air Flow Rate	-	350 CFM
Pressure Drop	-	3.5 Inches of Mercury
Air to Water	-	130:1
Ratio		

B. Installation

2

1. <u>Recovery System</u>

Recovery wells OB-5AR, OB-20AR, OB-32AR, OB-34AR, OB-35AR and OB-36AR were installed during September and October, 1985. Soon after completion, each well was equipped with a one iuch diameter lift pipe, vacuum gage and control valve. No foot valves were installed so that the system would drain ducing freezing weather if the pump stopped. Well head assemblies were housed in locked boxes and each well discharged into an above ground 1-1/2 inch galvanized suction manifold. This manifold was connected directly to the pump which was positioned on a concrete pad poured for the stripping tower. The manifold system was designed with plugs at either end to assist in priming prior to start up.

AR100232

III-10

Two additional recovery wells (OB-43AR and 44AR) were drilled during June, 1986 in an attempt to augment a declining rate of withdrawal. Well OB-43AR provided an additional 2 to 3 gpm but considerable silt was encountered in the screened interval OB-44AR and it was not placed into service due to its low yield.

2. Treatment System

1

The groundwater recovery system described above is connected to the treatment system by a common suction header as shown in Exhibit III-1, The galvanized steel header connects to a self-priming, Goulds AquaLawn Pump Model XSH having a 3/4 horsepower motor. Pump capacity is 22 GPM with a total suction lift of 25 feet and a discharge pressure of 20 psi. Water is withdrawn from the recovery well system and discharged near the top of the packed tower. Flow from the wells is controlled by throttling valves located at each well head.

Stripping tower air is provided by a blower unit manufactured by the New York Blower Company. The unit is a compact G.I. fan, size 103, arrangement Number 9X with a capacity of 350 cubic feet per minute at a 3-1/2 inch SW THD. The blower unit is powered by a 1/2 horsepower, single phase, 230 volt, adjustable speed electrical motor which operates at 3,600 RPM.

The final piece of equipment which comprises the complete treatment system is the air stripping tower. The tower was shipped to the site in five (5) sections. The sections included a base unit, a mist eliminator for the top of the tower, and three (3) 8 to 9 foot sections of 16 inch diameter PVC flanged pipe which house the plastic media packing. The base unit was attached to an 8 inch thick concrete slab by anchor bolts and the remaining four (4) sections were matched and bolted together according to manufacturer's instructions.

III-11

AR100233

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

1

Guidewires were attached to the tower at various points and anchored into the ground to add structural stability to the tower.

In addition to the recovery well pump, the unit is also provided with a recirculation pump that allows treated water to be returned to the top of the tower to enhance treatment or, in the alternative, for chemical addition for media cleaning.

To respond to the urgent need for installation of the unit, CABE personnel coordinated the purchase, and delivery of the air stripping unit. A small concrete pad was constructed on site, adjacent to the Chem Solv office building and the recovery wells. The necessary anchors were set and the unit was bolted in place. A telephone pole was set adjacent to the pad for installation of a security light and the electronic controls for the stripping system. During installation of the tower, a "cherry picker/ boom truck was brought on site and the tower sections were lifted in place and bolted. All installations were made in accordance with the manufacturer's instructions. Even with problems due to damage of the delivered tower sections and delays in getting electric power to the site, the unit was installed and operable within three (3) weeks of its delivery. The unit was placed on line on December 11, 1985 and, with limited interruptions due to power failures, has run continuously ever since. A schematic piping diagram is provided as Exhibit III-7.

C. Total System Start Up

The recovery and treatment system was started December 9, 1985, but due to initial problems with air leakage it wasn't until December 12, 1985 that the system completed 24 hours of continuous operation. Initial startup was accomplished by utilizing the following

AR100234

III-12

procedures taken directly from the O&M Manual prepared for the system.

- 1. Insure all drain plugs are properly installed.
- 2. Close the six (6) valves on the recovery wells.
- 3. Prime the pump and suction header. This is accomplished by removing the cap at the northeast end of the suction header and filling the suction header and pump with water. Approximately 20 gallons of water are required to prime the system. Once primed, the cap should be replaced on the suction header.
- The PVC ball valve (A) upstream of the float switch should be closed.
- Place the H-O-A switch for the blower in the "Hand" position.
- 6. Place the H-O-A switch for the pump in the "Hand" position.
- 7. Open the suction control valve slowly for Recovery Well SAR.
- Open the sample tap on the discharge side of the pump until a steady stream of water is observed.
- Close the sample tap and open the PVC ball valve (A) slightly.

III-13

AR100235

1

10. Once a flow is established to the stripper open the valve for each individual well until all wells are on line. As each additional recovery well is added to the system, the PVC ball valve (A) should be further opened. The recovery wells should be placed on line in the following order:

OB - 5 AR OB - 34 AR OB - 32 AR OB - 36 AR OB - 35 AR OB - 20 AR

* Well 43AR was added in the summer of 1986. Its sequencing in startup had no specific impact.

- 11. Once all wells are on line and the PVC ball valve (A) is fully opened, the control ball valve (B) next to the flow meter should be set to establish the desired flow rate. For startup the desired flow rate is 7 GPM.
- 12. The control switches for the valve pump should be placed in the automatic position while holding in the start button once a steady flow is established.

When shutting the system down for a short period of time, the suction control values were closed before stopping the well pump. This permitted restartup without priming the system. When the system was shutdown, all water was drained back into recovery well 32AR to prevent the system from freezing. A drain plug in the well pump and the bottom of the stripper column were provided to allow total draindown and to prevent freezing.

AR100236

III-14

Under normal operations the flow rate was adjusted to prevent excessive drawdown in the recovery wells to avoid drawing air and breaking suction. The flow rate was monitored by a flow meter and could be adjusted by means of a control valve. The drawdown in a particular well could also be adjusted by controlling the suction valve at each well head. Adjusting the suction valve for one (1) well varied the quantity pumped and the drawdown in that specific well. It also had a minor affect on drawdown and the quantity pumped from other wells.

During the initial operation of the facility, it was necessary to monitor the flow rate and drawdown on a near daily basis and make adjustments to the system as necessary. The following depths which identify the depths to the tops of the screen in each well, were used as operation guides.

Recovery Well	Drawdown Depth (feet)	<u> Vacuum Gage (in)</u>
OB-5AR	19.0	16.9
OB-34AR	19.0	16.3
OB-20AR	-	14.8
OB-35AR	17.5	15.3
OB-32AR	18.5	16.0
OB-36AR	17.0	14.8

The treatment system was designed to operate in a continuous automatic mode with minimal operator supervision. A water meter was installed in the pump discharge to provide a means of determining the flow rate and recording the total amount pumped. This also became the basis for establishing the number of gallons discharged to the Kent County sewer system. The control panel included H-O-A switches for the well pump

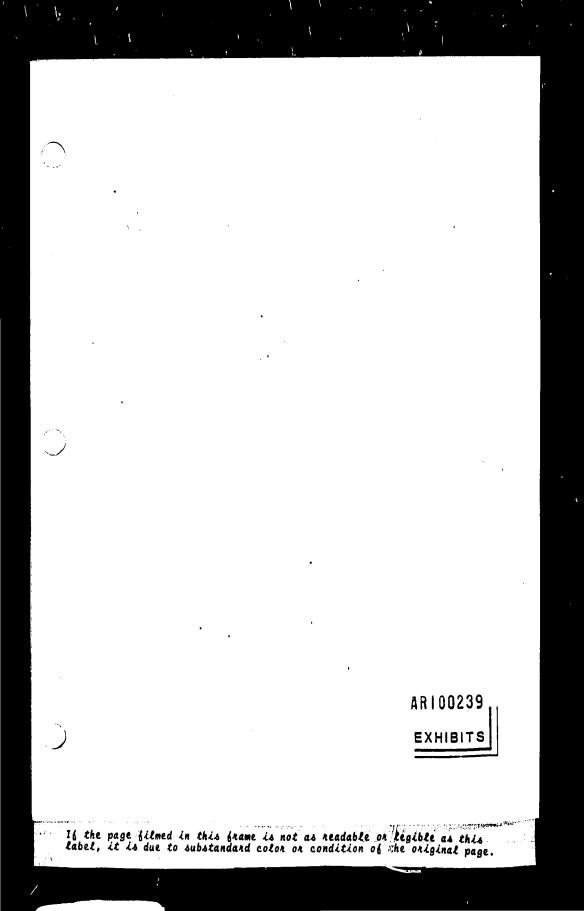
III-15

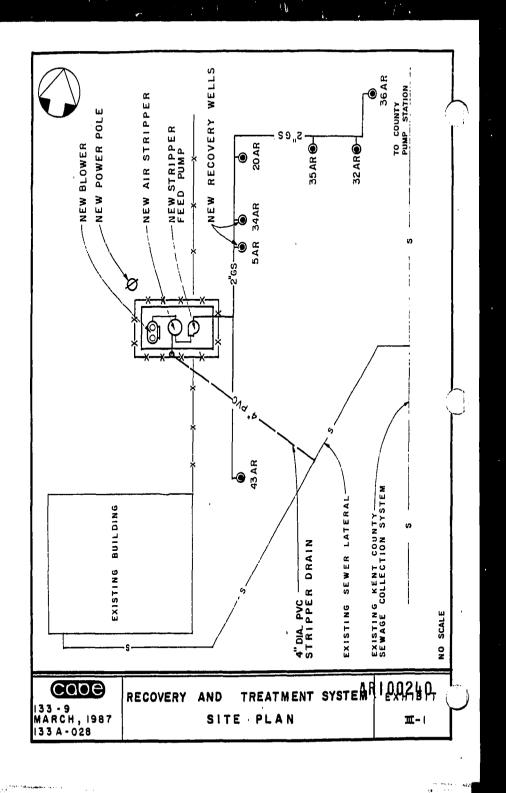
AR100237

ψÌ.

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

2

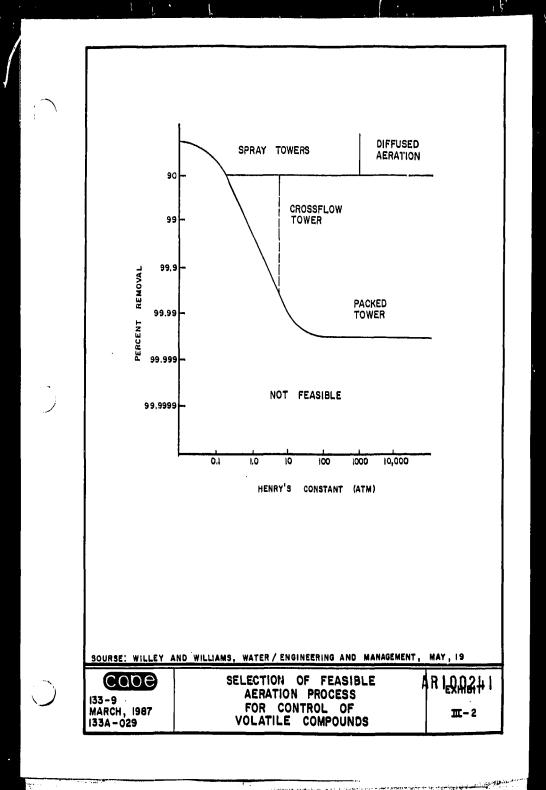

and blower, on/off switch for the recycle pump, and a system start button. With the well pump and blower in the "automatic" position, the system continued to function as long as flow continued to the air stripper. A flow sensor on the discharge of the well pump shut the system down if flow was interrupted for more than 30 seconds.


When the system shut down, an alarm signal was transmitted by automatic telephone dialer to the designated personnel involved in the operation and maintenance of the facility. Upon receiving an alarm condition, the alarm monitor must be called back to acknowledge the alarm. If no one acknowledges the alarm, the monitor continued calling until acknowledged. The alarm monitor could also be called at any time to monitor the temperature, sound level and alarm condition.

Besides responding to alarm conditions, CABE made weekly site visits to inspect the system. During these weekly visits, the operator completed an operating log for both the observation wells and the recovery wells (See Exhibits III-8 & III-9). The log included such data as the date, time, drawdown levels, vacuum gage readings, pressure gage readings, flow rates, and totalizer readings. Visual observations for adjustments to equipment were also recorded. These records became the basis for controlling and interpreting the efficiency of the operation. Once each month, the elevations of the groundwater in each of the recovery wells were checked and logged.

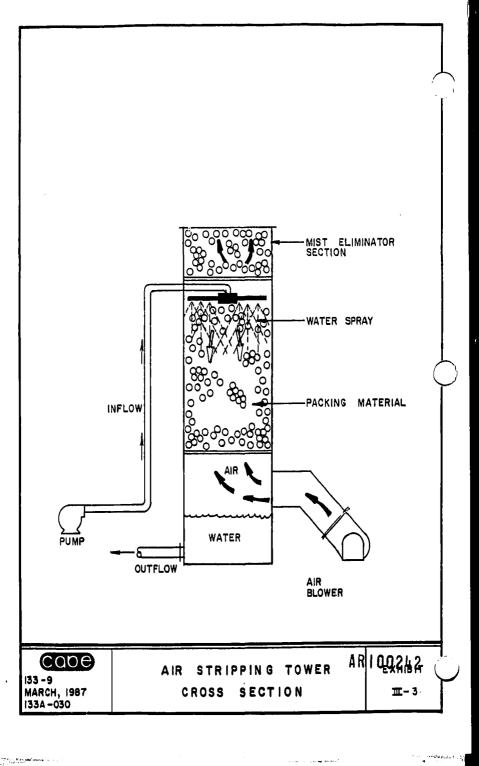
III-16

ARI00238

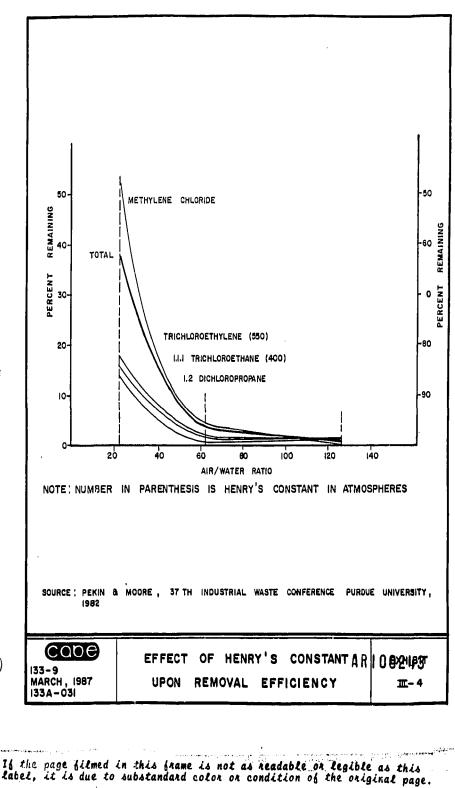


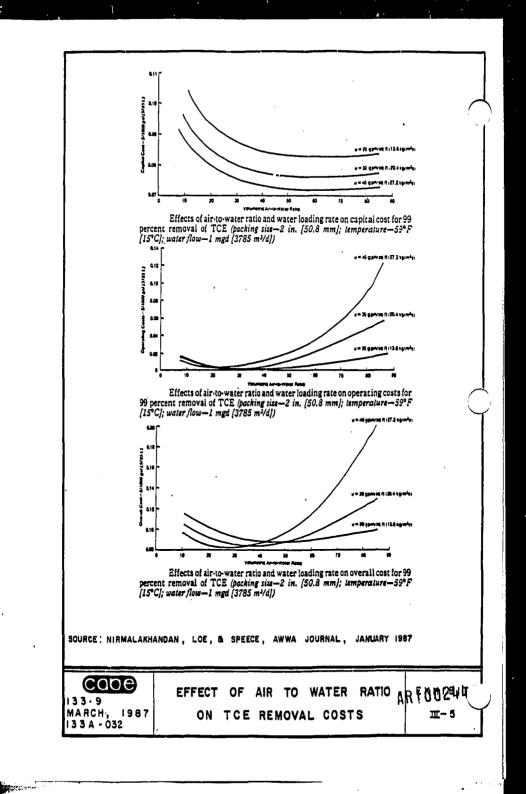
I,

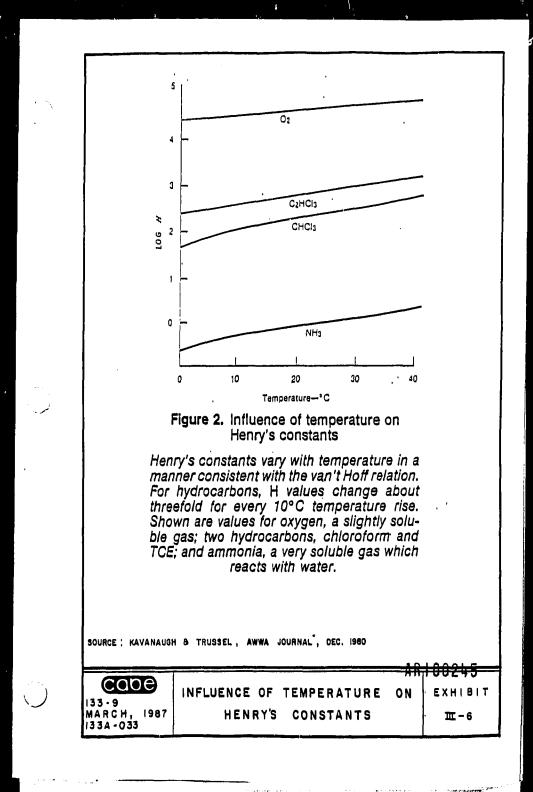
If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.


ge.

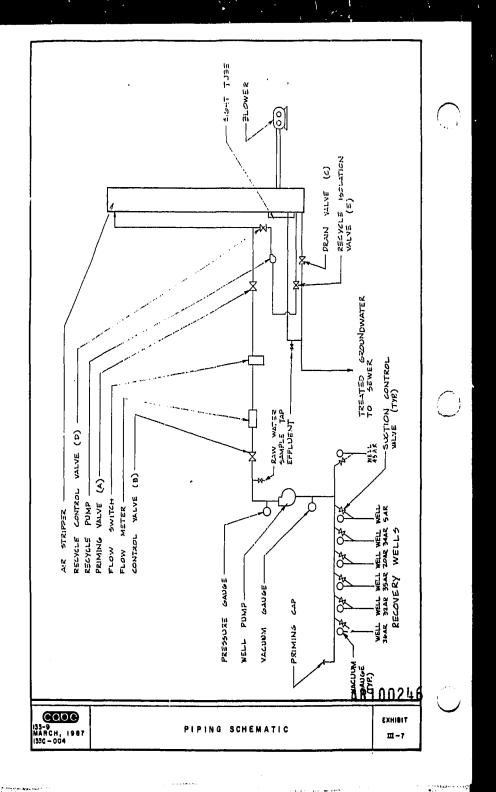
Ĭ,


If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.


•



If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.


ļ.

ŀ

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

Page 1 of 2 CHEM SOLV CHESWOLD, DELAWARE OPERATING LOG OBSERVATION WELLS Dace: _ Inspected By: Client No.: 133-9(s) Report No.: Time Arrived: Time Departed: Too of Casing Water Observation Elevation Drawdown Level El. (Feet) (Feec) (Feet) Well Sampled 2'A 46.00 46.88 3A 47.49 4A 45.42 5A 45.63 . 5B 46.27 6B 40.89 7A 41.15 7B 42.30 8A 42.30 8B 46.24 98 46.00 98 ... 43.46 10 A 43.45 114 43.32 12A Distribution: *Elevations were taken at top of 133-9(s) outer casing of flush wells. Original RHK Log Book DNREC - Mike Apgar cope ARIO9247 OPERATING LOG 133-9 MARCH, 1987 OBSERVATION WELLS <u>m - 8</u> 133A - 034

1-

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

Manharina a sa

Page 2 of 2 Top of Casing Water Observation Elevation Drawdown Level Well (Feec) (Feet) El. (Feet) Sampled 13A • 45.43 44.28 14A 45.59 15A 43.83 16A 45.24 17A 47.28 18A 46.68 19A 48.11 22A · .. 42.90 23A 42.47* 24A 42.68* 25 A 26 A 42.34* 42.91* 27 A 44.42* 28 A 46.73 29 A 45.68 31AR 44.70 33A 44AR OB-45B

3

1

Berler -

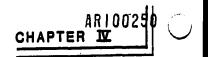
OPERATING LOG AR OBSERVATION WELLS

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

1

D-4	(-	CHEM SOLV ESWOLD, DELAWARE DPERATING LOG ECOVERY WELLS	Inspected Dec	
Date:			Inspected By:	
	133-9(s)		Report No.:_	
	n .)			í:
	Rain:	IR.		PF acAM/P
	Gal lons		Flow Race:	
Well Pump: Disc	harge Pressure	psi	Vacuum	in Hg.
Recovery Well	Top of Tubing Elevation (Feet)	Drawdown (Feet)	Vacuum (In. of Hg)	Water Level El.(Feet)
5 AR	44.65			
34 AR	44.42			
20 AR	43.97			
35 AR	43.63			
32 AR	43.53			
36 AR	45.83			
43 AR				
Remarks:				
<u></u>	'			
		•	<u>,</u> , <u></u> _,,	, , , ,
COOC 3-9 ARCH, 1987	9 · OPERATING LOG AN I DECHIBIT			

.


ŀ

÷

See.

15

SYSTEM OPERATION

I

IV. SYSTEM OPERATION

A. Hydrogeologic Changes

Water-levels were measured frequently in all monitoring, test and recovery wells using an Earth Science Instrument's Hydro-Probe (an electric tape or "M-scope" variation). The measurements were taken at least monthly beginning in November of 1985 and were made from a pre-defined measuring point, usually the lip of an inner casing.

To maintain continuity across the site and to allow comparison of groundwater elevations at each well, DNREC retained a licensed surveyor to establish a site datum and "top of well" elevations related to that datum. A summary of the elevations obtained from this survey appears in Exhibit IV-1.

Water-level data from each round of measurements was entered into a SuperCalc template designed to calculate water level elevations and to present such data in a tabular format. All water level readings and accompanying elevation data are found in Attachment J.

Water-level measurements in the recovery wells were made on a weekly basis by CABE Associates. These measurements were used primarily to make adjustments in the withdrawal rates of individual recovery wells as well as to determine the maximum amount of drawdown in the center of the recovery cone of influence. The data sheets documenting this data are too numerous to reproduce in this report, but are available at the offices of DNREC, Earth Data and CABE Associates, Inc.

A cone of influence sufficient to contain the bulk of the contamination was established under the property. The size and shape of this cone changed in response to the duration of pumping and in response to recharge conditions throughout 1986. As Exhipt 109251 indicates, the cone intersected the entire width of the contaminant

IV-1

plume at the site based on water table elevations taken on August 20, 1986. Even though the cone of influence was elongated in a downgradient direction, at no time did it extend much beyond monitoring wells OB-39A and OB-27A.

The cone of influence indicated on Exhibit IV-2 represents a maximum condition. When pumping stopped, the cone decayed. During the recharge season, especially late fall and in the spring, the cone became reduced in size. Water level data to be collected during late 1986 and 1987 will provide a better indication of the dynamic nature of the cone (as well as the quantity of water plumed) during recharge conditions.

Other factors which affect the size of the cone, and hence containment performance, are changes in recovery well efficiency due to clogging and pump efficiency due to impeller wear.

Between start up on December 10, 1985 and December 10, 1986, a total of 3.6 million gallons of contaminated water was withdrawn from the recovery system at Chem Solv. As Exhibit IV-3 indicates, monthly pumpage increased steadily as aquifer water levels rose and running time increased through March of 1986. A peak withdrawal rate of 450,000 gallons occurred during this month. Thereafter, the recovery pumping rate declined coincident with the seasonal decline in water table elevation.

An additional recovery well was constructed and placed on line in June of 1986 to boost or maintain the recovery pump rate while the watertable declined. This enabled a near continuous well recovery pumpage rate - and drought aggravated - through September of 1986 when the continuing seasonal decline of water levels again resulted in reduced pumpage. In response to recharge in November and the beginning of a

AR100252

IV-2

seasonal rise in water levels, pumpage from the system increased. This trend is expected to continue through the winter and early spring of 1987.

B. Groundwater Quality

During the first two months of operation, the raw water discharge from the recovery system contained a high concentration of VOC's. This was due to the proximity of the recovery wells to the highly contaminated volume of water in the shallow zone. As Exhibit IV-4 indicates, the monthly concentrations of VOC's in the recovery system discharge averaged 41,300 and 20,600 ug/l respectively, during December 1985 and January of 1986 and then exhibited a steady decline to 496 ug/l in April, 1986. The months of May, June and July resulted in significantly higher concentrations. This may have been due either to entrainment of a more highly contaminated volume of water from the outer edge of the cone of influence of the recovery wells, to decreased recharge which serves to dilute contaminant concentrations, or some other factor. Contaminate concentrations in the recovered water were as high in may 1986 as in July, after the addition of recovery well OB-43AR.

While a decrease in contaminant concentrations in the recovered water may be an indication of the effectiveness of recovery, a more meaningful measure is the volume or weight of the VOC's recovered. Using the monthly volumes of water pumped and the average VOC concentration for the same period, the pounds of VOC's recovered for each month were calculated and plotted (see Exhibits IV-5 and IV-6).

By the end of November 1986, approximately 134 pounds of material (mostly TCE) had been recovered from the shallow zone in the vicinity of the recovery system. It is anticipated that, as infiltrating

IV-3

AR100253

rain-water and melting snow moves vertically through the vadose zone during the winter and spring of 1987, additional VOC's suspended in the prepumping zone of saturation will be mobilized and enter the shallow flow system. Also, as the water table rises within the cone of influence, additional VOC's may become mobilized. This would result in an increase in the concentrations of VOC's in the recovery well discharge. However, recharge could dilute and therefore reduce contaminant concentrations. Thus, although the monthly volume of water pumped during the spring of 1987 is expected to increase, the mass of contaminants recovered may or may not increasc.

The effect of contaminant pumping and recovery on TCE concentrations in the shallow zone has been dramatic. Concentrations of TCE in most of the monitoring wells have dropped to below detectable limits. The off-site movement of VOC's appears to have been halted. As Exhibit IV-7 indicates, the original contaminant plume which existed in the vicinity of wells OB-10A, OB-16A, OB-26A and OB-25A prior to start up of recovery pumping had nearly vanished by November of 1986. While not entirely dissipated, the concentrations of TCE farther downgradient in the vicinity of wells OB-39A, OB-27A, OB-28A, OB-41A and OB-42A have also decreased significantly. The decrease in TCE levels in time for selected wells is shown graphically in Exhibits IV-8, 9 and 10. This decrease in concentrations is attributed to continued movement of TCE in the shallow zone and the consequences of dilution, dispersion, volatilization and/or biodegradation during transport.

IV-4

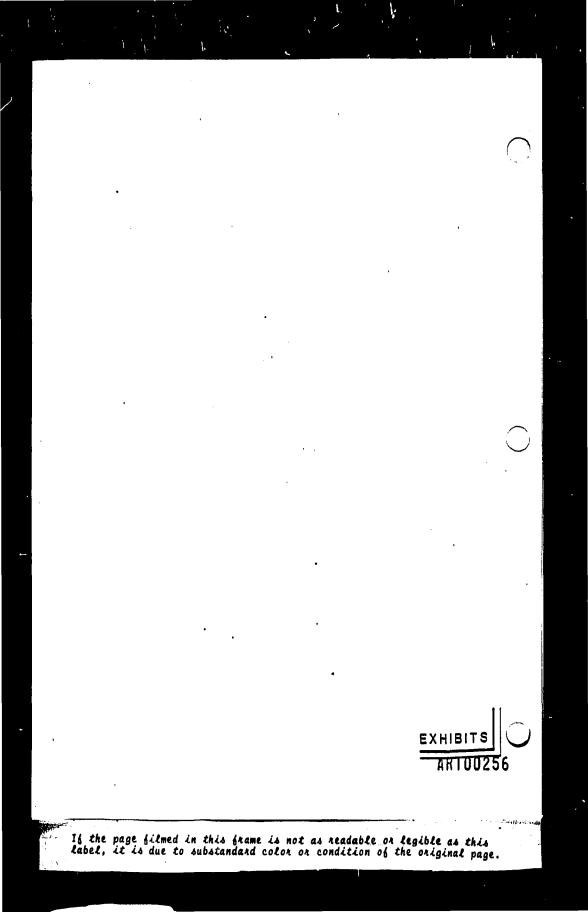
AR100254

Ó

C. Treatment Efficiency

J,

The design parameters for the air stripping unit were set to achieve a concentration of 5 ppb TCE in the treated effluent based on the inlet conditions described in Chapter III. This would result in at least a 99.99 percent renewed efficiency for all detected contaminants.


Since its startup in December of 1985, DNREC collected almost monthly samples from the influent and the outlet from the stripper. The following table shows the TCE inlet and outlet concentrations in the samples taken during the first year of operation. As can be seen, removal efficiencies were reasonably consistent with design requirements and met the target TCE level on all but two (2) occasions.

Date Of	ug/l	ug/1	7	
Sample	Inlet Concentration	Outlet Concentration	Efficiency	
11/26/85	34,200	29.1	99.915	
1/2/86	2,700	<1.0	>99.996	
3/27/86	2,352	0.3	99.987	
4/8/86	712*	<1.0	>99.860	
4/28/86	104*	<1.0	>99.038	
5/13/86	2,087	<1.0	>99.952	
7/14/86	1,524	<1.0	>99.934	
9/24/86	165	<1.0	>99.394	
11/17/86	84	5.2	93.810	

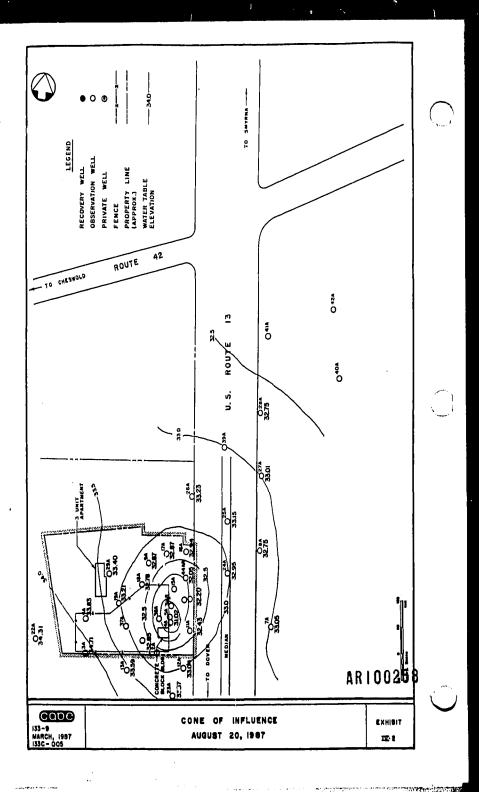
* Laboratory unable to separate exact contaminant. Concentration reflects combination of several compounds.

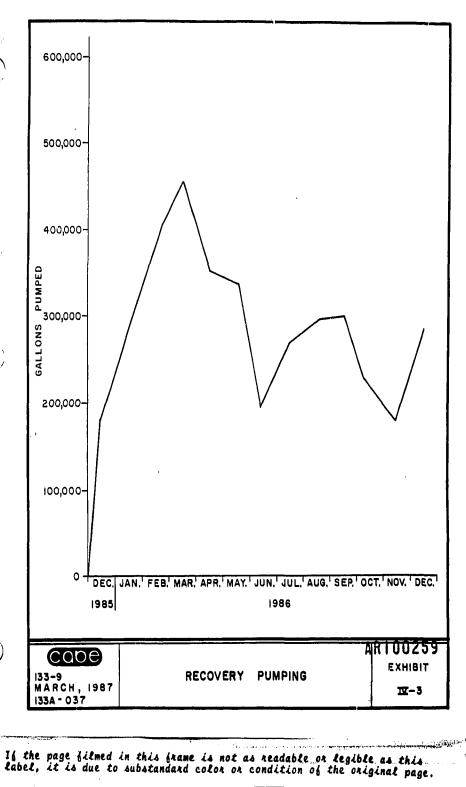
IV-5

AR100255

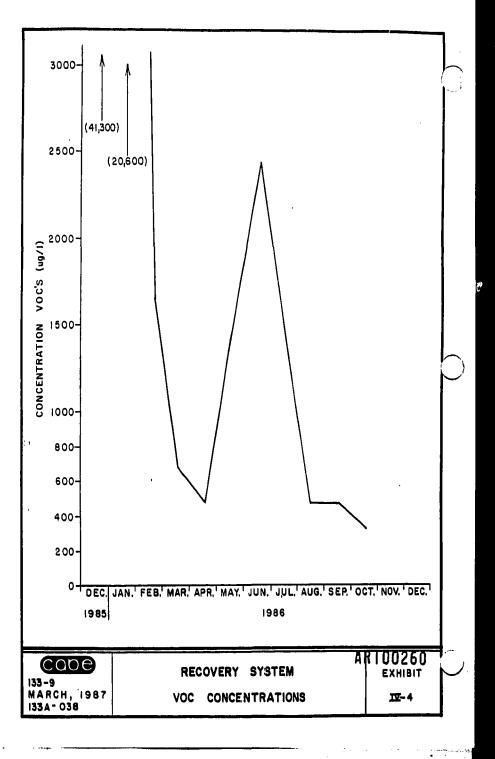
			· • • .
Surveyor: private	WELL ELEVATION DATA		update: 11-29-86
Monitoring Point	M.P. Elevation	G.S. Elevation	Stick-up
0B-11	45.58	45.58	.00
08-2A C2-3A	46.00 46.88	43.47 44.99	2.53
0B-4A	40.00	45.25	1.89 2.24
OB-5A	45.42	43.74	1.68
OB-5B	45.63	43.64	1.99
OB-5AR OB-6B	44.65 46.27	43.00 46.27	1.65
08-08 08-78	40.89	40.89	.00
0B-7B	41.15	41.15	.00
OB-8A	42.30	42.30	.00
08-88 08-98	42.30 46.24	42.30 46.24	.00
OB-9B	46.00	46.00	.00
OB-10A	43.46	42.71	.75
0B-11A	43.45	42.90	.55
OB-12A	43.32	42.69	.63
08-13A 08-14A	45.43 44.28	43.84 43.82	1.59 .46
OB-15A	45.59	45.15	.44
OB-16A	43.83	43.19	.64
08-17A 08-18A	• 45.24	44.97	.27
0B-19A	47.28 46.68	46.78 46.09	.50 .59
OB-20AR	43.97	42.72	1.25
OB-22A	48.11	47.61	.50
08-23A 08-24A	42.90 42.47	42.19	.71
0B-25A	42.68	42.47 42.68	.00
OB-26A	42.34	42.34	.00
0B-27A	42.91	42.91	.00
08-28A 08-29A	44.42 46.73	44.42 46.23	.00
OB-31AR	45.68	43.60	2.08
OB-32AR	43.53	41.98	1.55
08-33A 08-34AR	44.70 44.42	44.20	.50
OB-35AR	43.63	42.42 41.63	2.00
OB-36AR	45,83	44.33	1.50
OB-37A	44.92	44.92	.00
08-38A 08-39A	44.07	44.07 42.61	.00
OB-40A	42.46	42.46	.00
OB-41A	42.85	42.85	.00
OB-42A	42.90	42.90	.00
OB-43AR OB-44AR	46.00 45.88	44.00 43.88	2.00
OB-45B	42,05	40.05	2.00
CODE			AR 10025
133 - 9	WELL ELEVATIO	N DATA	
MARCH, 1987	WELL ELEVALIU	UN DATA	. 112-1
133A - 049			

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.


-ind


ŀ

~~

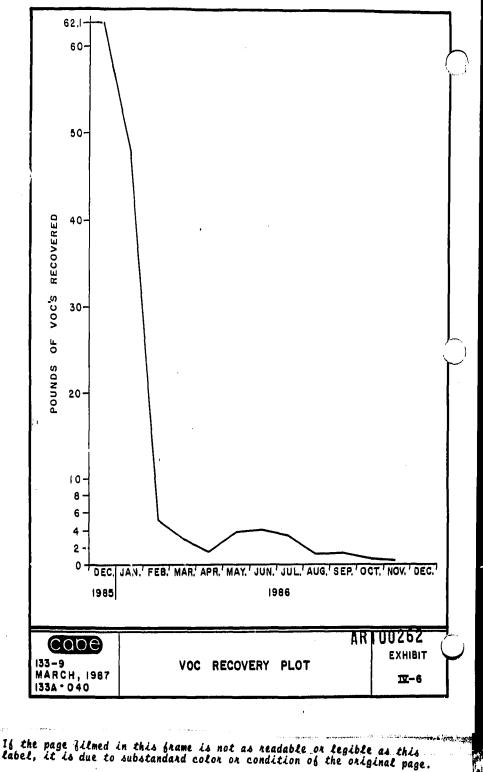

5 A.

a

Å

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

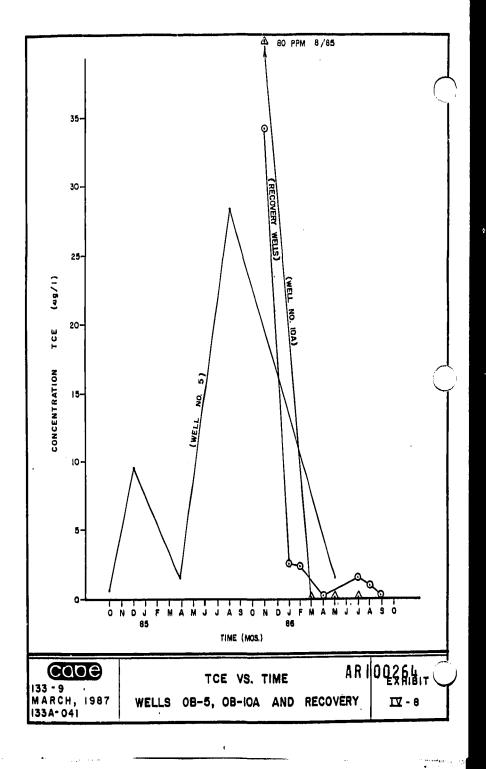
ł


Date	Gallons Pumped	Average VOC Concentration	Pounds of VOC's Recovered
12/85	180,480	41,299	62.1
1/86	276,830	20,622	47.6
2/86	401,490	1,648	5.5
3/86	454,200	694	2.6
4/86	354,010	496	1.5
5/86	332,050	1,433	3.9
6/86	196,580	2,416	4.0
7/86	267,160	1,481	3.3
8/86	292,200	487	1.2
9/86	295,154	487	1.2
10/86	234,406	319	0.6
11/86	190,080	319	0.5
		τοτα	L 134,0

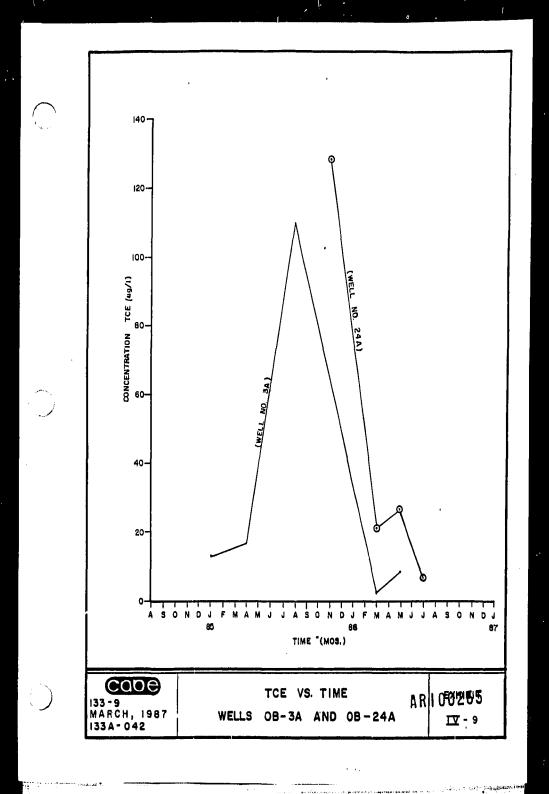
TOTAL

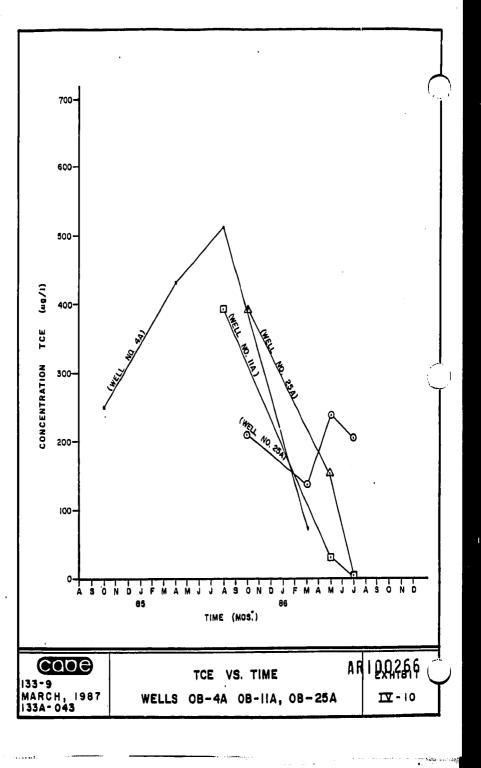
CODE 133-9 MARCH, 1987 133A - 039

VOC RECOVERY


EXHIBIT AR 1 049-26 1

į,


I,


If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

λ.

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

DISCUSSION OF FINDINGS

ſ

ta.

V. DISCUSSION OF FINDINGS

A. Aquifer Characteristics of the Shallow Zone

1. Transmissivity and Storativity

Pumping tests were conducted in 6 wells to determine the hydraulic properties of the shallow zone. Because of the varying duration of the tests, the varying distances between pumping and observation wells and the nature of the aquifer, there was a significant diversity of response in the observation wells. In some instances, the tests indicated a response typical of a confined aquifer. In others, the response was similar to a water-table aquifer. Because of these differences, and because there appeared to be differences in permeability based on an inspection of cuttings in individual wells during drilling, it was not easy to analyze and interpret the test pumping data. These differences probably are caused by variations in grain size and sorting in the layers of sediment which comprise the aquifer. Where possible, values of transmissivity (T) and storativity (S) were calculated from straight line segments of seim-logrithmic plots. Whether these segments included the effects of gravity drainage, was not always known.

Despite these difficulties, values of T and S were calculated and are provided in Exhibit V-1. As the table indicates, apparent transmissivity values ranged from 1,429 gpd/ft to 11,330 gpd/ft. Calculated storage coefficients ranged from .008 to .159. Considering the ultimate shape of the cone of influence around the recovery system, a transmissivity of 2,200 gpd/ft is probably a reasonable average value for the shallow zone near the source of contamination. If the average saturated thickness of the shallow zone is 9.5 feet, then the average hydraulic conductivity (K) is calculated to the PEFO 268 gpd/ft² or 31.0 ft/day. This value is typical for a fine to medium

V-1

sand. As expected, the storativity values indicate water-table to semi-confined conditions.

2. Water-Table Map and Gradient

The depth to the water-table under the site varies between 6.0 and 11.5 feet below ground surface depending on the time of the year and location. The natural annual range in any given year is estimated to be about 7.0 feet.

Prior to the initiation of pumping, ground-water movement at the site occurred under natural recharge and discharge conditions. As the water-level contour map shown in Exhibit V-2 indicates, ground water moves in a northeast direction under Route 13 towards the Leipsic River. This agrees with flow patterns on the Hydrologic Atlas sheet for the area. There is approximately a 1.0 foot difference in elevation of the water-table across the site. Exhibit V-2 and other water-level contour maps made prior to pumping indicate that the gradient of the water-table varies between 0.0014 and 0.0035 depending on the season of the year. The water-table gradient is typical of shallow, fine grained sediments in Delaware. This gradient is also similar to that on the Hydrologic Atlas sheet.

3. Ground-Water Velocity

Under natural conditions, the average ground-water velocity probably ranges between 0.30 and 0.75 feet per day. This calculation is based on an average permeability of 31 ft/day (K), a gradient between 0.0014 and 0.0035 and an average porosity of 0.15. Using an average gradient of 0.0024, the calculated velocities are also within the indicated range for porosities between 0.10 and 0.20.

AR100269

V-2

Based on the range of ground-water velocities for the shallow zone, the contaminant front could have traveled between 140 and 350 feet between the time of the fire and the time the recovery system went into operation. This would mean that the leading edge of the contaminant plume resulting from the fire may only have traveled as far as the median strip between monitoring wells OB-25A and OB-39A. More probably, it may have only started to leave the property in the indicated period of time. Contaminants found farther downgradient in the shallow zone are probably the result of prior spills and leaks on the site.

Contamination was observed on October 4, 1985 approximately 420 feet downgradient of the September 1984 fire and spill location. As the probable calculated time of ground water travel for this distance is 800 days, some contaminants must have been introduced to the subsurface prior to the fire incident.

B. Aquifer Characteristics of the Intermediate Zone

1. Transmissivity and Storativity

One pumping test was conducted in a well finished in the intermediate flow zone. Well OB-45B was pumped for 1 hour at a rate of 21.4 gpm on June 18, 1986. Water levels were continuously measured in well OB-5B which was screened over the same depth interval as the pumping well. As the analysis found in Attachment H indicates, a transmissivity value of 31,386 gpd/ft and a storativity value of 1.45×10^{-5} was calculated from the test data. These values are reasonable considering the nature of the sands encountered and their probable thickness. The low storativity value indicates confined conditions and may mean that the clay above the aquifer(s) is extensive at least in the local area.

V-3

AR100270

Į

Disposal of the large volumes of water produced during the pumping tests was accomplished by discharge to the Kent County Sewer System. This could not be accomplished directly and as a result, the test pumping water was pumped to a portion of the adjacent Skate Board Park that had been retrofitted for use as a temporary storage reservoir. From there, the water was pumped to the Kent County Sewer off site. This method was somewhat limited in that the well pump discharged significantly more water then the pump discharged to the County sewer. As a result, the test in Well OB-45B could not be run long enough to positively determine if leakage between the shallow and intermediate zones would occur. Water levels in the shallow zone wells near Well OB-45B showed no change in level during the test.

2. Water-Level Map and Gradient

Water levels in the intermediate zone are slightly deeper under non-pumping conditions than levels in the shallow zone. A difference in head of between 0.59 and 0.70 feet or vertical gradient of about 0.2 (assuming the clay avenges 3 feet thick) was commonly observed.

Prior to the initiation of pumping, ground-water movement in the intermediate zone was roughly parallel to that in the shallow zone (in a northeast direction). Gradients of the piezometric surface of the intermediate zone varied between 0.00025 and 0.00090. As the map in Exhibit V-3 indicates, the water-level difference across the site on August 26, 1985 was only 0.40 feet. This extremely low gradient is at least in part due to the relatively high permeability of the materials comprising the intermediate zone.

AR100271

٧-4

3. Groundwater Velocity

Because the thickness of the intermediate zone is not yet known, a value of hydraulic conductivity (K) for the zone cannot be directly calculated from the transmissivity value (T). Assuming, however, that the aquifer is at approximately 50 feet thick, the average hydraulic conductivity would be about 600 gpd/ft or 80 ft/day. If the effective porosity of the formation is 0.15 the average ground-water velocity in the intermediate zone under non-pumping conditions could be about 0.2 feet/day. This relatively low velocity is a direct result of low hydraulic gradients.

4. <u>Head Differences</u>

Wells finished at different depths at the same location provided an opportunity to measure water-level elevation differences between the shallow and intermediate zones. Prior to pumping, the average head in the shallow flow system was 0.5 feet above the head in the intermediate system. Because the head difference was relatively uniform throughout the area of the investigation, it is concluded that the clay layer separating the two zones has continuity and possible areal extent.

When pumping was initiated, the difference in head between the zones decreased in most coupled wells due to a lowering of the water-table in the upper zone. In wells OB-5A and OB-5B, which are situated near the center of pumpage, the head difference was reversed and an upward potential for flow from the intermediate to the shallow zone was established. The new difference in head within the center of the cone averaged 1.6 feet when the recovery system was in operation and running at peak capacity.

V-5

AR100272

C. Distribution of Contamination in the Shallow Zone

1. Contamination From Chem Solv

Extensive sampling and analysis at the Chem Solv site has indicated that trichloroethylene (TCE) is the principle contaminant originating on the property. It is not the only contaminant. As tabulated in Exhibit V-4, eight organic compounds have consistently appeared in the raw water discharged from the recovery system. While other organic compounds appeared in individual monitoring wells and in the recovery discharge, it was the listed compounds that appeared to compromise the bulk of the contamination emanating from the site. Of these compounds, TCE was used as an indicator contaminant of Chem Solv since it both appeared in the highest concentrations and is an assumed threat to human health. Dissolved TCE also tends to move at approximately the same velocity as the groundwater and does not appear to interact appreciably with the (low organic) sediment matrix through which it is moving.

TCE is not very soluble in water and when present in appreciable amount occurs as an immiscible dense-non-aqueous phase liquid (DNAPL). DNAPLs tend to sink in an aquifer. TCE has a solubility of approximately 200 mg/l and a density of 1.47. According to Schwille (1984), penetration through the vadose zone can be rapid, non-uniform and volatilization losses will generally be low. Below the water-table, penetration can also be rapid and non-uniform. Lower permeability strata can slow, deflect or trap DNAPLs. If this happens, DNAPLs may pool in pockets on top of a low permeability strata and then slowly dissolve into the ground water which moves horizontally above it. Immiscible DNAPL pools in an aquifer are not rapidly solubilized nor entrained directly by receiving well pumpage. If small immiscible pools of TCE are perched on the clay layer beneath

V-6

AR100273

the Chem Solv site, the duration of current contaminant recovery efforts could be extended for a considerable length of time while the TCE dissolves into the groundwater, requiring the pumping of large quantities of groundwater to assure its recovery. Unfortunately, the evidence accumulated by the recovery system to date indicates that such a condition may exist. Thus, in order to bring the recovery program to a codition of clean-up in a reasonable time frame, these DNAPL pools would have to be located and removed directly or degraded in place. Evidence of the existence of such immiscible pools is indirect and locating them would be extremely difficult.

Because of the phased installation of the monitoring network and the need to coordinate sampling with the laboratory's routine schedule, a complete round of water samples was not collected from monitoring wells over a one or two day period prior to the start up of the recovery system. However, samples were collected from different portions of the network during August and October, 1985. These results were combined to prepare the isoconcentration map which appears in Exhibit V-5. The map represents the distribution of TCE in the shallow zone approximately one year after the fire and explosion and depicts a dynamic situation. Because calculated ground-water velocities would not account for TCE having traveled the distance from behind the building to monitoring wells OB-27A and OB-28A in a one year period, it appears that contaminants had already entered the shallow ground water prior to the September 1984 fire. A close examination of Exhibit V-5 indicates that the greatest concentration of TCE is found in the vicinity of monitoring well OB-10A. This may represent the center of a slug of contamination which may have entered the ground during the fire. The time frame, the distance involved and groundwater velocities are all compatible with this interpretation.

٧-7

AR100274

Even though early data is limited due to a sparsity of monitoring wells, it appears that extremely high concentrations of VOC's did not appear in the shallow aquifer until December of 1984, a full three months after the fire. During 1985, this slug of contamination grew in radius and its center moved slowly in a northeast direction toward well OB-10A and the edge of the property. The excavation of a pit to remove contaminated soils may have contributed additional recharge to the shallow flow system and aided in this process.

In an effort to determine the horizontal extent of the contaminant plume, monitoring wells OB-39A through OB-42A were installed and sampled during June and July, 1986 (after recovery had been underway for seven months). Sample results indicated TCE to be present in Wells OB-39A and OB-41A with the highest concentrations in OB-39A.

The sampling also indicated an apparent shift in the axis of the plume in a direction more parallel with the north bound lane of Route 13. This shift of "refraction" may be due in part to a shadowing affect on the water-table resulting from a decrease in local recharge along the highway. Not only do the paved surfaces prevent recharge, so does the accompanying stormwater drainage system.

2. Contamination from Other Possible Sources

In addition to the obvious contamination plume eminating from the Chem Solv property, sampling in the area indicated other potential groundwater problems. Benzene and toluene were found in appreciable concentrations in monitoring well OB-26A and to a lesser extent in well OB-39A. The ratio of these compounds to TCE in the samples collected from the wells indicates that Chem Solv is not the source. In fact, during 1986 as recovery proceeded, TCE decreased to below non-detectable limits in OB-26A and benzene concentrations accually

V-8

AR100275

increased from 82 ug/l to 287 ug/l. It should be noted that the recovery operation on the Chem Solv property may at times create a large enough cone of influence to influence the movement of water and distribution of contaminants in this area. Tanks of abandoned gasoline or fuel oil are reported to be buried under the Lambertson property which is adjacent to and immediately north of the Chem Solv property. These are likely the source of benzene and toulene in the ground water.

Ľ

D. Contamination Potential of the Intermediate Zone

1. Contamination From Chem Solv

Water-level measurements made under non-pumping conditions indicated that a vertical gradient exists in a downward direction under the area. Only a silty clay layer at 18 to 20 feet prevents or at least greatly inhibits the movement of contaminants into the intermediate flow zone. The sampling of monitoring and domestic wells completed in this zone indicates that small amounts of TCE and possibly other contaminants may have entered the zone from the Chem Solv property. A map showing the maximum TCE concentration in all samples collected from intermediate zone wells eppears as Exhibit V-6. A sample collected from OB-29B once provided an analysis showing a TCE concentration of 39.0 ug/1. However, a bailed sampled collected at the same time indicated no TCE. The distribution of observed TCE as shown in Exhibit V-6 mirrors the contaminant plume in the shallow zone above at substantially lower concentrations.

While the location of the vertical pathways which resulted in the presence of TCE in the intermediate zone have not been determined, the concentrations of TCE do not seem to pose a serious health threat at this time. Recovery efforts in the shallow system should prevent any

AR100276

V-9

further downward migration near the pumping center as long as the wells are in operation. Pumping may even induce the upward movement of some TCE from the intermediate zone into the shallow zone. At the low, sporadic levels involved, implementation of any additional remedial action to recover TCE from the intermediate zone does not appear necessary.

2. Contamination From Other Possible Sources

During the sampling and analysis of the monitoring and domestic wells in the area, other groundwater contamination problems probably unrelated to Chem Solv were detected. The organic compound 1,2 dichloroethane was consistently found in a new well constructed on the Gearhart property (Gearhart-new) in concentrations between 31.0 and 55.0 ug/1. This compound was also found several times in a nearby shallow monitoring well OB-28A but in a much lower concentration. Except for a singular report of 349 ug/1 of 1,2 dichloroethane in the raw waster discharge of the recovery system on May 13, 1986, it was below detectable limits on all other occasions. 1, 2 DCE is a decomposition product of TCE.

Benzene was also found in the Gearhart well in concentrations between 10.0 and 297 ug/1. The source of the benzene and other VOC's in the Gearhart's new well is not known, but is likely from leaks or spills of gasoline on the site of a former gasoline station immediately north of Chem Solv.

Other unusual occurrences of organic compounds in wells finished in the intermediate zone are as follows:

V-10

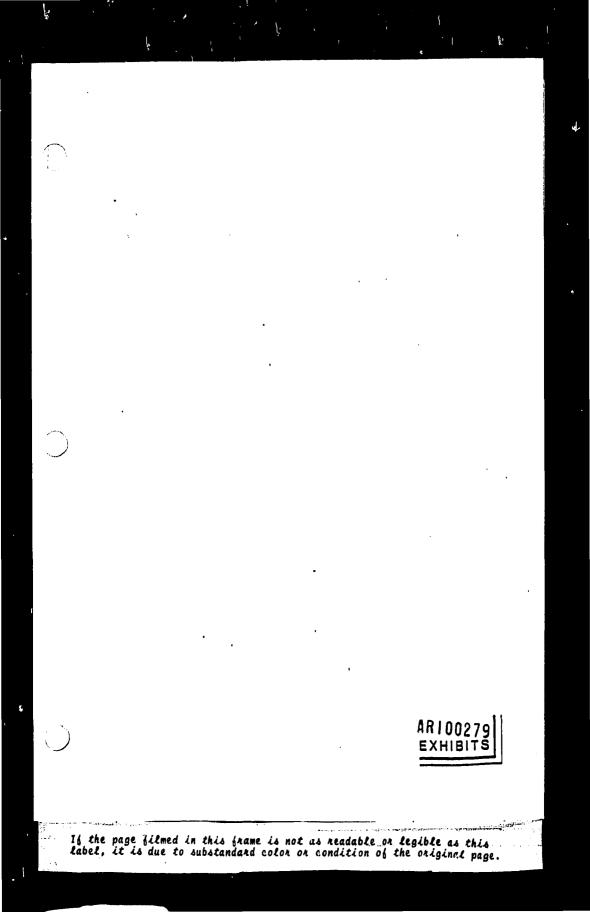
AR100277

- 1,2 dichloropropane found in wells OB-9B and the Gearhart's old and new wells.

)

AR100278

- Chloroform and 1,1,1 trichloroethane in OB-98.


The origin of these occurrences is unknown.

C

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

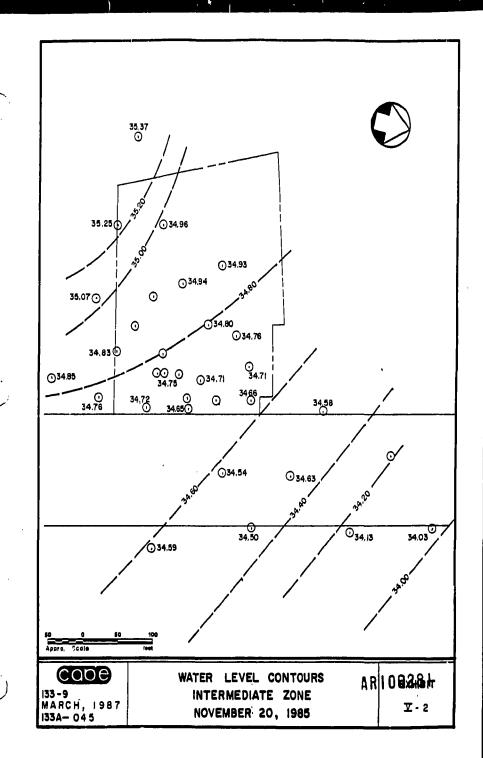
ļ

V-11

Pumped Well	Date of Test	Τ (gpd/ft)	S (dimensions)	Portion of Curve (mins)
OB-5A	10/9/85	6,114	.029	1-10
OB-5AR	8/26/85	2,480	.159	10-100
OB-20AR	10/9/85	1,429	.008	1-10
OB-32AR	10/9/85	1,532	.011	1-3
Same	10/9/85	11,330	-	5-30
OB-34AR	10/25/85	2,176	-	5-100
OB-43AR	6/30/86	4,888	-	20-100
Same	6/30/86	5,076	.010	3-100

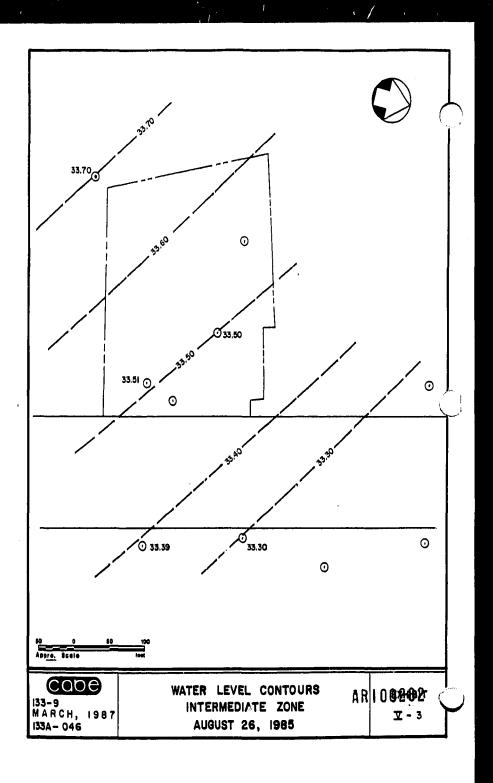
COOC 133-9 MARCH, 1987 133A-044

王和公子


ARIOD280 SHALLOW WELL PUMP TEST DATA

▼- |

If the page filmed in this frame is not as readable on legible as this label, it is due to substandard color or condition of the original page.

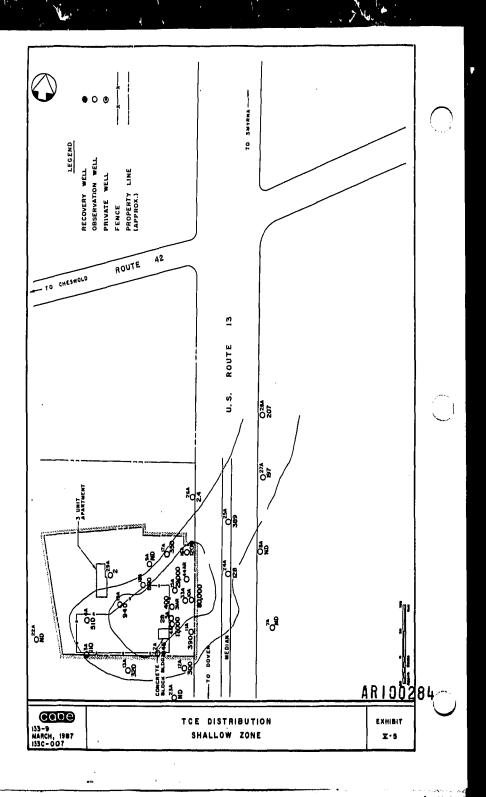

.

1

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

١.

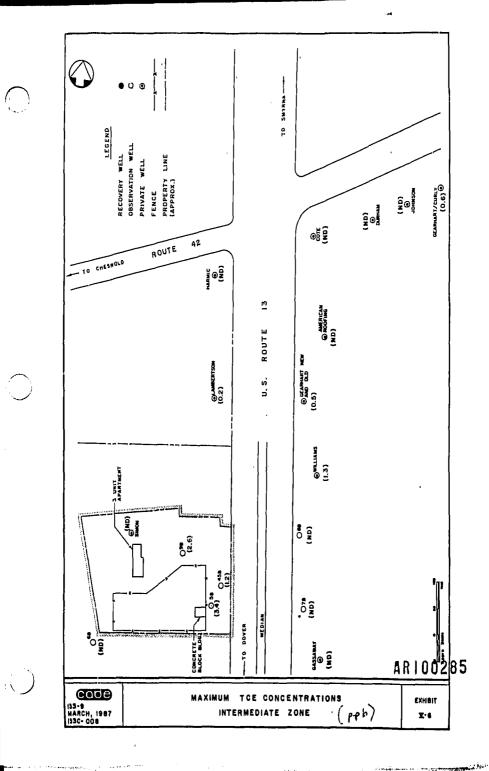
Compound	Concentration Range
Trichloroethylene	27,000 - 84
l,l,l, Trichlorethane	8,320 - 43
Trans - 1,2 Dichloroethylene	2,283 - nd
Chloroform	337 - nd
1,1 Dichloroethylene	143 - 3
1,1 Dichloroethane	129 - nd
Tetrachloroethylene	58 - nd
Benzene ·	37 - nd


CODE 133-9 MARCH, 1987 133A- 047

PERSISTENT ORGANIC

AR 100283

CONTAINMENT SUMMARY


⊻-4

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

.

ļ

i h

ŀ

ķ.

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

1

CONCLUSIONS

l

ì.

CHAPTER

Ć,

VI. CONCLUSIONS

Based on the recently completed investigation and one year's operation of the containment and recovery facilities at the Chem Solv site, the following conclusions have been reached:

- The Chem Solv site is underlain by unconsolidated sediments of the Atlantic Coastal Plan. The sediments immediately below land surface belong to the Columbia Fm, a Quaternary-Age fluvial deposit consisting predominantly of moderately to poorly sorted quartz sand.
- The Columbia Fm contains the water table aquifer. On site, this aquifer consists of fine sand with silt. The hydraulic conductivity of this sand is about 232 gpd/ft².
- 3. The depth to water beneath the site is 6.0 to 11.5 feet below land surface under natural (non-pumping) conditions.
- 4. A silty clay layer in the Columbia Fm occurs at a depth of 18 to 20 feet beneath land surface. This low permeability layer is 2 to 5 feet thick and impedes the movement of water and contaminants into the deeper sand.
- 5. Ground water movement in the Columbia Fm both above and below the silty clay layer under natural conditions is toward the north and northeast at a hydraulic gradient of 0.0014 to 0.0035. This ground water movement is toward the Leipsic River, the probable recipient of ground water discharge. The rate of ground water movement is about 0.30 to 0.75 feet per day or 110 to 274 feet per year.
- 6. Under non-pumping conditions, the hydraulic head is greater by a foot or so in the Columbia Fm above the silty clay layer than below the R100287

VI-1

silty clay layer. The natural vertical hydraulic graident is about 0.59 to 0.70.

- 7. The water table aquifer (above the silty clay layer) was contaminated by chemical spills which occurred on September 7, 1984 pursuant to an explosion and likely from spills before that time. The Chem Solv solvent recycling facility was in operation from about 1980 until the fire which temrinated the operation. The ground water contaminants include volatile organic compounds (VOC), principally trichloroethyelene (TCE). TCE concentrations in the upper part of the water table aquifer were as high as 130,000 ug/1. TCE concentrations below the silty clay layer have never exceeded 3.4 ug/1.
- 8. A contaminant recovery and treatment system, consisting of six (6) shallow wells and an air stripper, was placed in operation in December, 1985. Initially designed to pump 10-20 gallons per minute (GPM), this system has operated at only 5 GPM for the past six (6) months.
- 9. The recovery system has pumped over four million gallons of water and has markedly reduced VOC concentrations in the upper part of the water table aquifer and prevented further off-site migration. It has also lowered the hydraulic head in the aquifer above the clay layer below that in the deeper sand and prevented downward migration of dissolved organics. Treated water (which has no detectable VOC) has been discharged to the regional Kent County Sewage system.
- 10. The leading edge of the contaminant plume which had migrated from the Chem Solv site could not be captured by the on-site recovery well system. The limited thickness and hydraulic conductivity of the water table aquifer limits the radius of pumping influence in the downgradient direction of the middle of Route 13. The contaminated

AR100288

VI-2

water which escaped the recovery system has TCE concentrations of up to 200 ppb.

- 11. Several domestic wells draw water from the Columbia Fm and underlying Cheswold Aquifer downgradient of the Chem Solv site. These wells are * all screened below the silty clay horizon found beneath the Chem Solv property. Unfortunately, this clay layer is likely not laterally extensive thorughout the area. However, only one of the downgradient wells have been demonstrated to be contaminated VOCs. This well is screened in the Columbia Formation beneath the silty clay layer. Contaminant concentrations include 10 to 297 ug/l benzene. Low concentrations of toulene and xylene are also present. TCE concentrations are below 0.6 ug/1. Benzene concentrations in the Chem Solv recovery well water are below 37 ug/1/. This well appears contaminated by a gasoline spill. The property adjacent to and just north of the Chem Solv site was at one time a service station which reportedly had at least six (6) underground fuel storage tanks. A carbon treatment unit on the drinking water line of the contaminated domestic well has effectively removed all traces of VOC's from the drinking water used by the residents.
- 12. The concentrations of VOC's in the water pumped from the recovery wells at Chem Solv have fluctuated between 0.2 and 1.0 ppm VOC for the past five (5) months. A likely reason for these residual concentrations is the presence of immiscible pool(s) of solvent denser than water (TCE has a specific gravity of 1.4) on the silty clay layer beneath the site. Complete removal of any such immiscible pools by continued pumping will likely take years. To date, approximately 134 lbs (about 11 gallons) of TCE have been recovered. Location of any of the pools and direct removal of the contaminants will be difficult, uncertain and expensive.

VI-3

AR100289

RECOMMENDATIONS

CHAPTER R 10029

 \bigcap

 \bigcirc

VII. RECOMMENDATIONS

Based on the conclusions presented in Chapter VI, the following recommendations are offered for immediate consideration and implementation:

- Install additional shallow monitor/recovery wells in the area beneath the spill site to identify whether immiscible solvents exist, and if so, to improve the efficiency of contaminant recovery.
- 2. Conduct an investigation of contamination by gasoline and its soluble components on the property adjacent to and north of the Chem Solv site. Extend the investigation sufficiently to determine the extent of vertical and lateral contamination migration. Recover free and dissolved hydrocarbons to control the extent of off-site migration as soon as possible.
- Evaluate methods to degrade, volatilize, and/or solubilize and recover any immiscible VOC's atop the silty clay layer beneath the Chem Solv site.
- 4. Switch to a cyclic ground water contaminant recovery program on the Chem Solv site with the recovery system off for two (2) months and on for two (2) months over the next year. (This will prevent further off-site migration, save costs and make recovery more efficient.)
- 5. Route the discharge from the air stripper to a storm drain to reduce disposal costs.
- Replace any downgradient water supply wells contaminated or threatened by contamination with wells in the (deeper) Cheswold Aquifer or by a public water system.
- 7. Allow contaminants to attenuate downgradient to dischargepin the 29 | Leipsic River. This discharge would not occur for decades and would

VII-1

likely (because of attenuation enroute) be undetectable. It would most likely have no significant adverse impact on the environment.

U),

8. Establish a water well restriction zone downgradient of the Chem Solv site to prevent further exposure of people to the contaminants through water supplies. Require deeper (Cheswold) wells or public water for future water needs in this zone.

VII-2

AR100292

ARIOD29 REFERENCES

4

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

1

REFERENCES

- Adams, J. K., Boggess, D.H. and C.F. Davis, 1964. Water-Table, Surface-Drainge, and Engineering Soils Map of the Dover Quadrangle, Delaware. U.S. Geological Survey Hydrologic Investigations Atlas HA-139.
- Boller, M.F., Young, P.S. and M.A. Apgar, 1984. Hydrogeologic Conditions and the Potential for Contamination of Water Supplies at Chem-Solv Cheswold, Delaware. Report Prepared by DNREC, Water Supply Branch 12 p.
- Cushing, E.M. Kantrowitz, I.H. and K.R. Taylor, 1973. Water Resources of the Delmarva Peninsula. U.S. Geological Survey Professional Paper 822, 58p.
- Johnston, R.H. 1973. Hydrology of the Columbia (Pleistocene) Deposits of Delaware: An Appraisal of a Regional Water-Table Aquifer. DGS Bull. #14, 78 P.
- Johnston, R.H. 1977. Digital Model of the Unconfined Aquifer in Central and Southeastern Delaware, DGS Bull. #15, 47 p.
- Johnston, R.H. and P.P. Leahy, 1977. Combined Use of Digital Aquifer Models and Field Base-Flow Data to Identify Recharge-Leakage Areas of Arcesian Aquifers. Journal Research U.S. Geological Survey, Vol. 5, No. 4 5 p.
- Leahy, P.P., 1982. Ground-Water Resources of the Piney Point and Cheswold Aquifers in Central Delaware as Determined by a Flow Model. DGS Bull. #16, 68 p.
- Pickett, T.E. and R.N. Benson, 1983. Geology of the Dover Area, Delaware. DGS Geologic Map Series, No. 6.
- SMC Martin, Inc., 1985. Evaluation of Remedial Alternatives for Soil and Ground-Water Cleanup at the Chem Solv Solvent Recovery Site, Cheswold, Delaware, 61 p.
- Sundstrom, R.W. and T.E. Pickett, 1968. Availability of Ground Water in Kent County, Delaware with Special Reference to the Dover Area. University of Delaware Water Resources Center, 123 p.
- U.S. Department of Agriculture, 1971. Soil Survey, Kent County, Delaware. Soil Conservation Service, 67 p.
- McIntyre, George T., January, 1986. Design and Performance of a Groundwater Treatment System for Toxic Organics Removal, ganics Removal", IWPCF, Vol 58, No. 1
- Kavanaugh, Michael C. and Trussel, R. Rhodes, December, 1980. Design of Aeration Towers to Strip Volatile Contaminants From Drinking Water, Journal AWWA. ARIO0294

STATE OF DELAWARE DEPARTMENT OF NATURAL RESOURCES AND ENVIRONMENTAL CONTROL

ATTACHMENTS

GROUNDWATER DECONTAMINATION CHEM SOLV SOLVENT RECOVERY FACILITY CHESWOLD, DELAWARE

MARCH, 1987

<u>)</u>.

CABE ASSOCIATES, INC

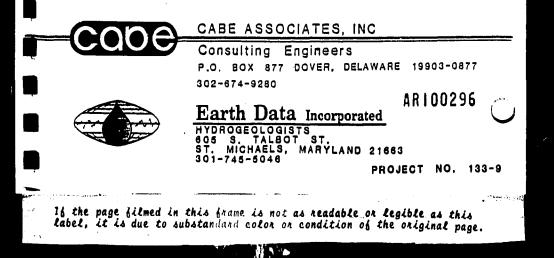
Consulting Engineers P.O. BOX 877 DOVER, DELAWARE 19903-0877 302-674-9280

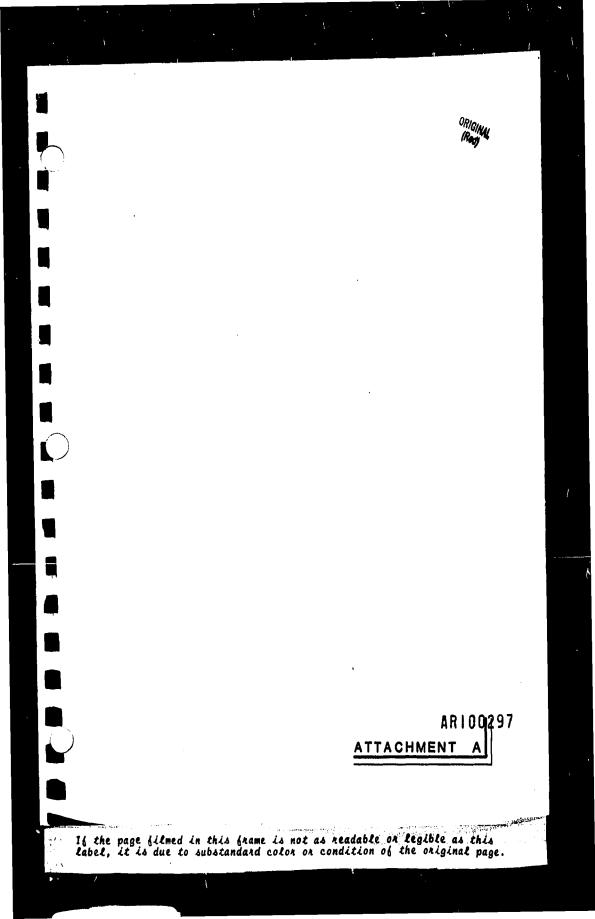
AR100295

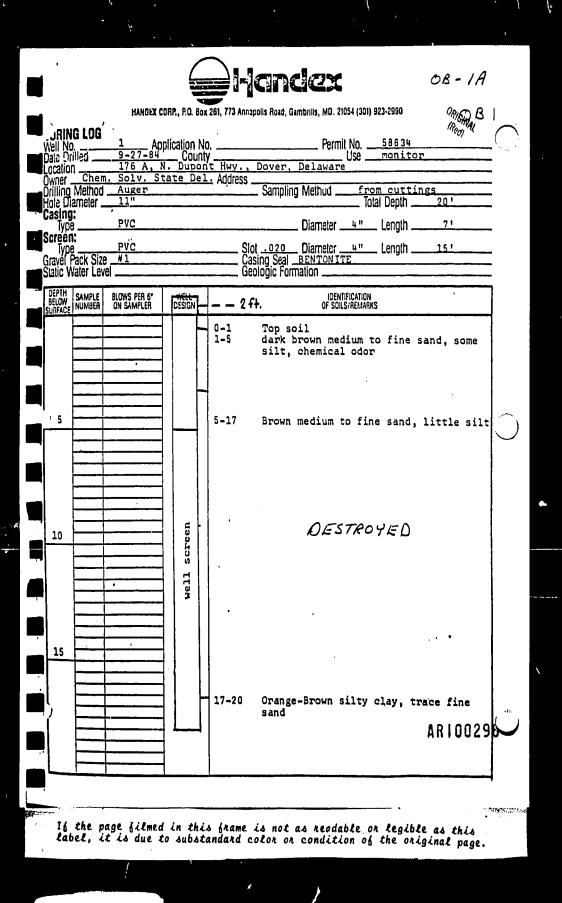
المتكافقين المشار

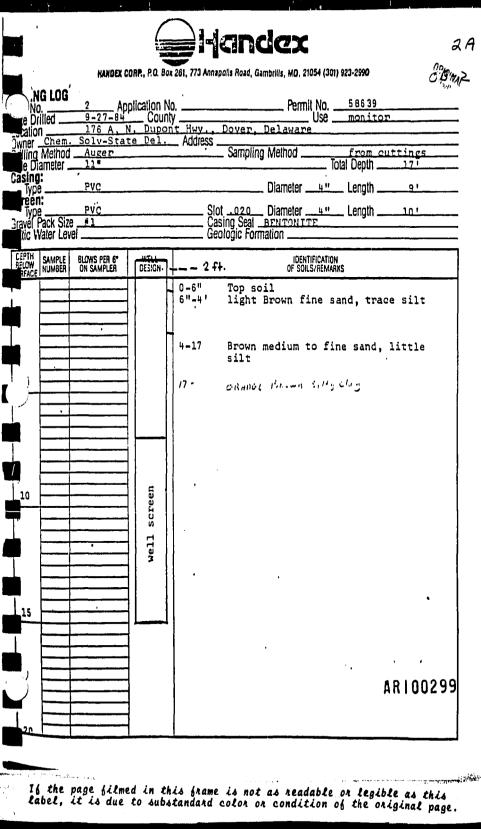
Earth lata Incorporated HYDROGEOLOGISTS ST 005

S. TALBOT MICHAELS, MARYLAND ŚŤ. 21663 301-745-5046

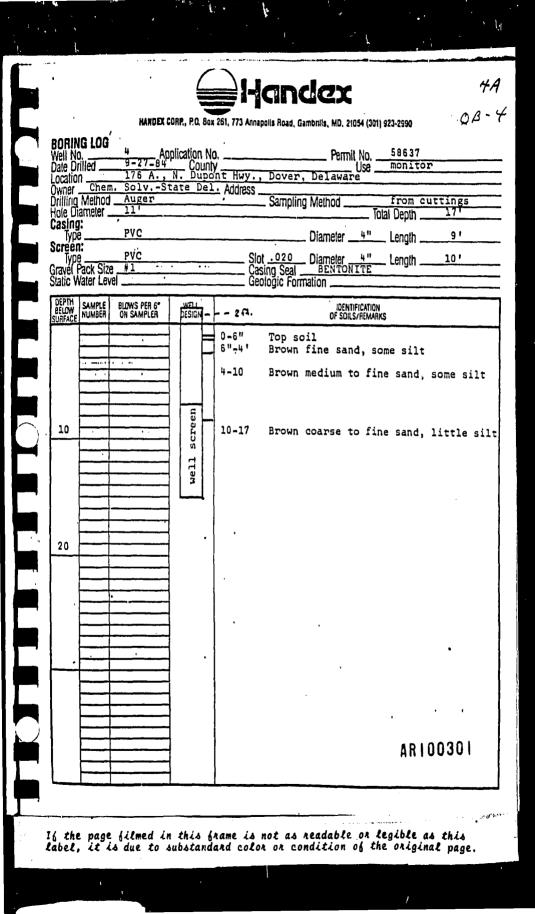

ORIGINAL (Red)

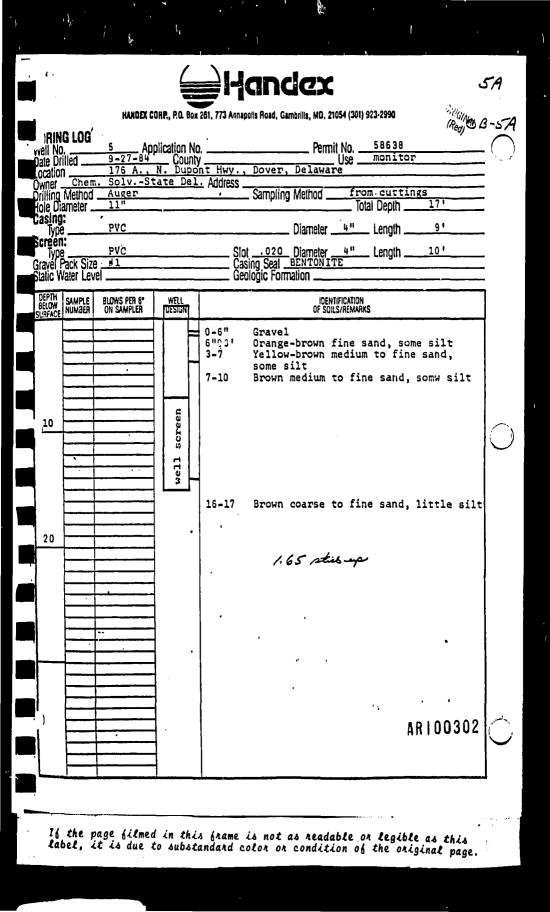

STATE OF DELAWARE


ATTACHMENTS


GROUNDWATER DECONTAMINATION CHEM SOLV SOLVENT RECOVERY FACILITY CHESWOLD, DELAWARE

MARCH, 1987





Region of the second	1 ()		
•		andex	ЗA
			211
,	HANDEK CORP., P.O. Box 261, 773 Annaj	iolis Road, Gambrills, MD. 21054 (301) 923-2990	-3
DRING LOG Well No. 3 Date Drilled 9-1	Application No.	Permit No. <u>58636</u> Use <u>monitor</u>	1/ar**
Location 166	6 A., N. Dupont Hwy., vState Del. Address	Dover, Delaware	
Drilling MethodAug Hole Diameter11	ger	Sampling Method <u>from cuttings</u> Tolal Depth <u>16'</u>	
Casing: Type PV(C	Diameter Length 8 *	
Screen: Type Gravel Pack Size#1		t <u>.020</u> Diameter <u>4"</u> Length <u>10'</u> ing Seal <u>BENTONITE</u>	······
Static Water Level	Geo	logic Formation	
DEPTH BELOW SAMPLE BLOWS SURFACE NUMBER ON SA	MPLER DESIGN 2 F4.	IDENTIFICATION OF SOILS/REMARKS	
	0-6" 6"-3' 3-9	Top soil dark Brown fine sand, some silt Brown medium to fine sand, some sil	t
	9-13	Brown medium to fine sand, little s	in L
		Brown coarse to fine sand, trace(+) silt	
20			
		•	
		AR 100300	
			$\left \right\rangle$
	<u>l</u>		
Label, it is c	ilmed in this frame i. Jue to substandard co	s not as readable or legible as this lor or condition of the original page	• • •
			1

Ļ

ł

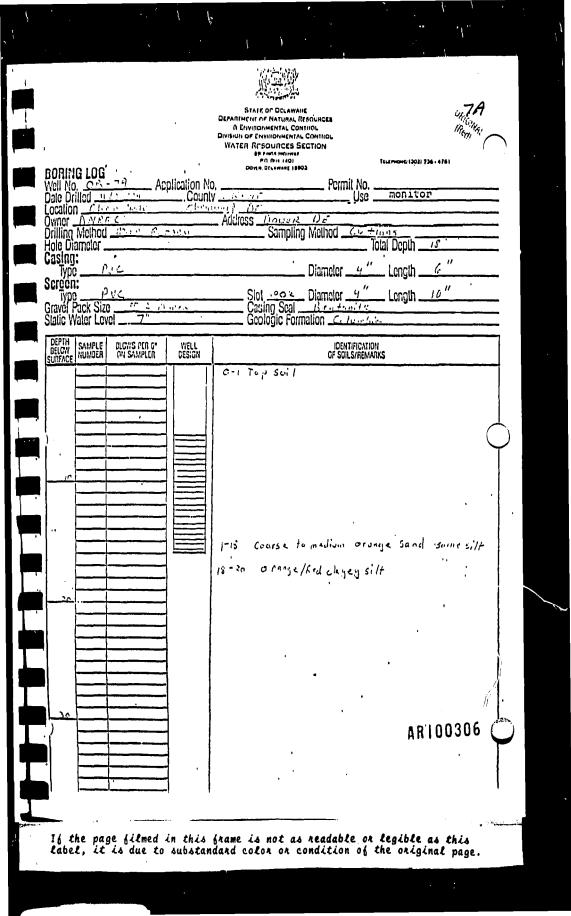
I		NC <u>Clem- Solv</u> CONSTRUCTION.	DNITOR WELL CONSTRUCT	'ION SUMMARY WELL NO. <u>OB-57412</u> ^(RIGNAL) (Reg)
I	DEPTH LOG	PROFILE	SEDIMENT/ROCK	(Red) ¹⁴⁴
	0 2 4 6 8 10 12 14 16 18 20 FORM 21-85		O ONANGE Brown SANdy CLAY -S SAND W/ON CLAY GUANGE/BROWN SAND -RS ONANGE CLAY -RS ONANGE CLAY	DESCRIPTION OF REFERENCE PTS: M.P. ELEVATION: 45, 46 DATE(S) DRILLED: 8-20-85 DEPTH DRILLED: 00 ft DEPTH OF WELL: 00 ft DRILLER: 0 of Alera and STICKUP: 65 CASING MATERIAL PUC PUC Steel DLAMETER 4" 4" 4" TOP 1 19 52 BOTTOM 9 20 71 WELL SCREEN MATERIAL PUC 19 52 NATERIAL PUC 19 52 DIAMETER 4" 4" SLOT SIZE 20 71 WELL SCREEN MATERIAL PUC 41 SLOT SIZE 20 71 SAND OR GRAVEL SIZE: Morie 41 GROUTING DETAILS: 6 of 160 PROTECTIVE CASING: NO LOCKING CAP? 150 NO INITIAL YIELD: DEVELOPMENT DETAILS: Single 4 Ramp WIELS: DATE: DATE:
			EARTH DATA INCORP	•••
		· .)		
		a literad in		as readable or legible as this

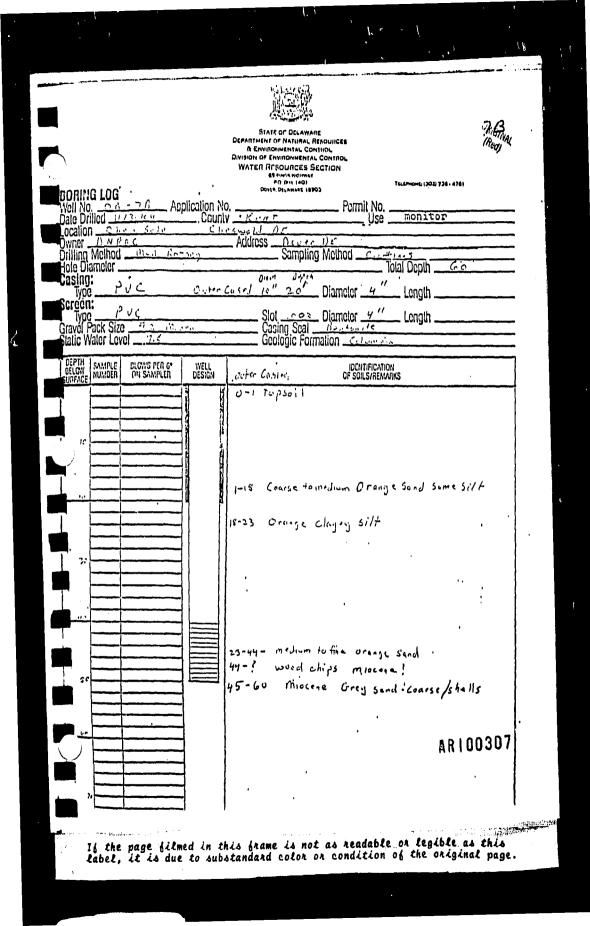
1

Į,

MONITOR WELL CONSTRUCTION SUMMARY Chen - Solv WELL NO. OB-58 PROJECT URIGINAL CONSTRUCTION DEPTH LOG PROFILE SEDIMENT/ROCK Reen DESCRIPTION OF REFERENCE PTS: C.S.A. Connation los 45.67 M.P. ELEVATION: DATE(S) DRILLED: 8-12 and 8-16-85 0 111-111-11-11 GROWN-SAND Ŧ DEPTH DRILLED: 50 det 4 DEPTH OF WELL: 50 Let H-W-IV-5 Brown SAND, day balk 4 DRILLER: andrew Miller COMPANY: Carth Data Anc. A 计忆识 LILL-LAN 1.99.11 STICKUP: Brown Med Grain CASING 2 SAND Steel MATERIAL -1 4 11 /H DIAMETER 16 42 (COANSE) 0 TOP OMANGE/BA CLAY 30 24 BOTTOM 20 On CLAY, white strut ł 33 - White SAND 33 OMANGE CLAY .JS OMANGE CLAY .JS OMANGE CLAY WELL SCREEN PUC MATERIAL 24. 1/4" DIAMETER • 20 SLOT SIZE 28-30 TOP Hiller Maran press and a second standard and the second standard and the second standard and second standard s Grey Brown 50 BOTTOM 32 SAND, FINE D. SAND OR GRAVEL SIZE: Morie #1 Some chippy GROUTING DETAILS: #1 Sand to 19. 36. CIAY ArEAS 1 fill w/ Sand Ben Cant Alleto. 40. PROTECTIVE CASING: Yes LOCKING CAP? (ES) NO HH . INITIAL YIELD: 2 DEVELOPMENT DETAILS: Sunged and 48 summed with Ain -50 PUMPING TEST DETAILS: sa STATIC WATER LEVEL: DATE: AR100304 FORM 21-85 EARTH DATA INCORPORATED

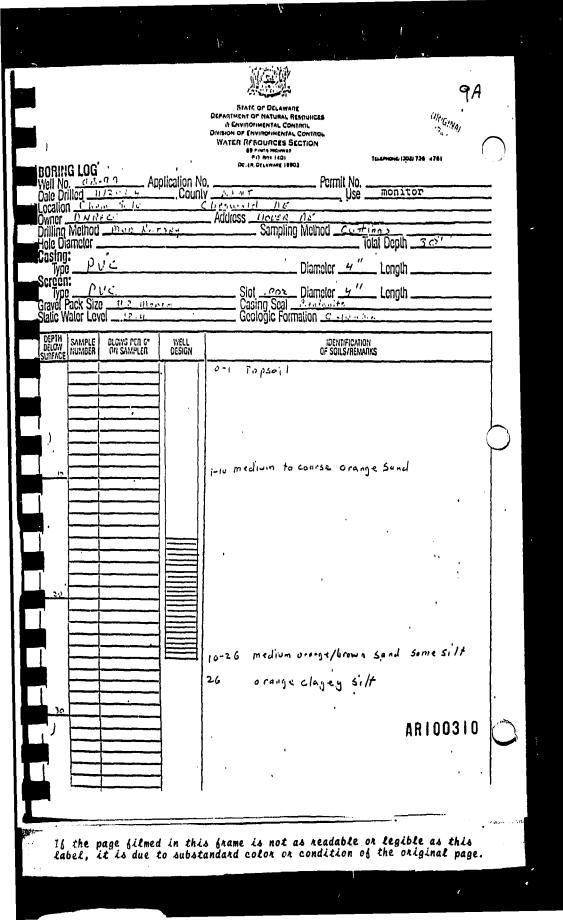
If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.


ł


STATE OF DELAWARE Sec. 1 6B DEPARTMENT OF NATURAL RESOURCES 4 & ENVITONMENTAL CONTINUL 11.1 DIVISION OF ENVIRONMENTAL CONTROL đ ÷, WATER RESOURCES SECTION ł BE FINDE NEWYAY a 13031 736 + 4761 COVER, DELAWARE 18803 BORING LOG Date Drilled <u>1725735</u> Application No. _ Date Drilled <u>1725735</u> County _ Location <u>Client</u> Solv · Permit No. County _ K # ~ 7 _ Use monitor Location <u>CIIE</u> 116 CHESWOLD
 Owner
 $D \times R \in C$

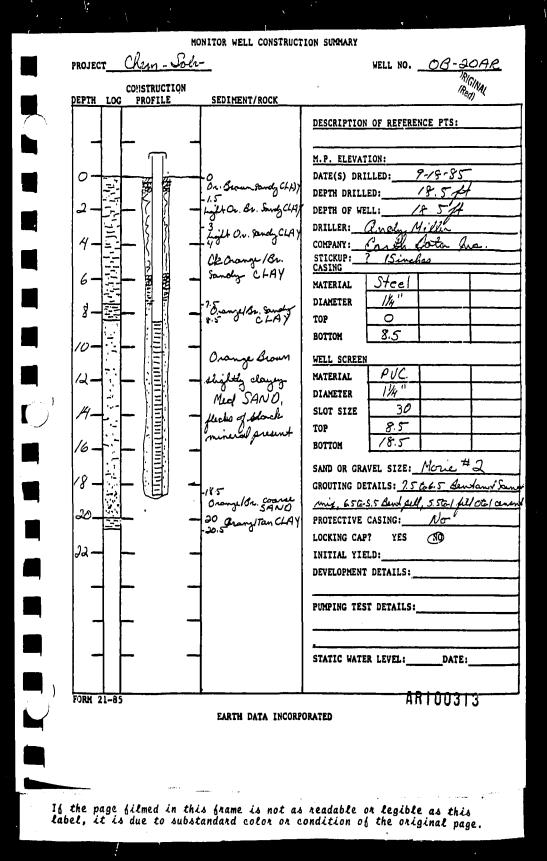
 Drilling
 Method

 Hole
 Diameter


 Casing:
 Output
 Address nover De Sampling Method . Kotory 1501.4 U Hings 10000 Total Depth 56 1.1.1 ы. .: // PVC Diameler 30 Type . Length Screen: 1 PVC Type <u>Pv</u> Gravel Pack Size Static Water Level Diameter Slot ,002 10 Length Casing Seal Morie Geologic Formation _ Columbia from tin 1 DEPTH SAMPLE DLOWS PER 6" ON SAMPLER WELL IDENTIFICATION OF SOILS/REMARKS BELOW SURFACE 0-1 Topsoil ... Medium to comise of anye Sand 1-10 10 ļ 30 10-35 in-divin to course orange/brown Sand ii#le silt 35-36 Orange clayty silt a. 36-43 medium to coarse orange/lirowa sand Trace orange clayey silt ... 43-47 firs to modium orange sand 'little silt 50 47-52 fine grange /brown sund some silt Trace black/Grey alay 52 Miocant 63-56 Coarse Grey Sand W/Shells 4 AR100305) If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

8A STATE OF DELAWARE · DEPARTMENT OF NATURAL RESOURCES A ENVIRONMENTAL CONTROL DIVISION OF ENVIRONMENTAL CONTROL WATER RESOURCES SECTION ALSOUNCES 2 88 Pints Heavier FO Shi 1401 TELEPHONE: (302) 738 + 4761 BORING LOG DOVER, DELAWARE 18903 Well No. 013-5A Date Drilled 11/20159 Application No. Permit No. County NENT monitor Use Date Dimod <u>CHEW-SELL</u> Location <u>CHEW-SELL</u> Owner <u>DNREC</u> Cheswesd Dr Address Daven 1) 6 Owner <u>PAR</u> Drilling Method Sampling Method Cotting Mico Burniet Total Depth Hole Diameter 20 asinn: . Diameter 4" 6 PUC Length Type Screen: 10' Diameter <u>4</u>" Slot <u>reaction</u> Diameter <u>47</u> Casing Scal <u>Accuston to</u> Geologic Formation <u>Coloure to</u> Length Type <u>Pure</u> Gravel Pack Size <u>Static</u> Water Level puc * 1 Margan 31 DELOW SAMPLE BLCIVS PER 6* ON SAMPLER IDENTIFICATION OF SOILS/REMARKS WELL 0-1 Topsoil . .. 1-10 medium to Coarse orange Sand 10-18 medium orange/brown Sand some 5,14 15-20 Orange /Red clayer silt AR100308 If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

8 B STATE OF DELAWARE DEPARTMENT OF NATURAL REPOURCES A ENVIRONMENTAL CONTROL DIVISION OF ENVIRONMENTAL CONTROL WATER RESOURCES SECTION 07 PH/14 HTHWAT TELEPHONE (302) 736 + 4761 DOVER DELAMARE 19903 BORING LOG Application No. . Well No. OB-9 8 Permit No. Date Drilled ______ * * 4 = monitor County. Use . CHILONGLA A. Owner <u>DARAC</u> Drilling Method Address _ A a the A NE PATARN more Sampling Method ۶Ż Hole Diameter _ Tolal Depth . Casing: P 1 C Outer Casing Ichar Zolan Diameter 4" 40' . Length Type Screion: Slot <u>was</u> Diameter <u>4"</u> Casing Scal <u>here</u> <u>l</u>e' Type _____ Gravel Pack Size Length T? Marie Static Water Level 91 Geologic Formation _____ DEPTH DELGW SURFACE DLGWS PER G" OM SAMPLER WELL Design IDENTIFICATION OF SOILS/REMARKS Outer Casing 0-1 Topseil i-10 madium to course orange sand 10 jo-18 medium Orange /brown sand some silt 18-20 Orange Ked clayer silt 20-30 medium orange/brown sand formesilt 50 Traces oringe/Rod cluggy silf fine romedium orange/Red sunds 30-45 50 Miccene 45-57 Coarse Gruy Sand w/ shells frace of confining clay he AR100309 If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.


9B STATE OF DELAWARE DEPARTMENT OF NATURAL REPOUNCES & ENVIRONMENTAL CONTROL DIVISION OF ENVIRONMENTAL CONTROL WATER RESOURCES SECTION 89 Finds Hannay PO The 1401 Dover, DeLaware 18903 nu (303) 736 + 478 (TALA DRING LOG Tell No. <u>ANA-ANA</u> Nate Drilled Application No. _______.County ______ . Permit No. Use . monitor CHI WORL D Dr DNPEC Address Doven he Drilling Method . Sampling Method _ Contrings 6 . 1 1 13 h Tolal Depth . 100 ble Diameler asing: . 1 PIL 40 4 Length Diameter Type . reen: 4" PUS 10' Gravel Pack Size Length . -12. alic Water Level Geologic Formation C Acrestic DEPTH DELOW RFACE NUMBER BLOWS PER 6* ON SAMPLER WELL Design IDENTIFICATION OF SOILS/REMARKS Topsoil ." 0-1 Madium to coarse orange Sand 1-10 10-26 Midium orange/brown sand some silt 2.6-Orange Glayoy Silt. 37 Mixduan crange sand Traces brange cloging site 26-.25 42 - 75 Fine Orange/briwn sands some silt Trace word chips 50 AR10031 Course graysand w/shells MINCERE 100 75 16 the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

BOX 1401 OVER, DELAWARE 19903 LEASE PRINT	F NATURAL RESOURCES NMENTAL CONTROL IPLETION REPORT
ERMIT NO 69257 LOCAL ID 68-10	H TYPE OF PERMANENT PUMP INSTALLED:
WNER LIV A'EC	
ONSTRUCTION DATE	RATED CAPACITY (GPM) FT. BELOW GRADE
URPOSE DI TEST DI PERMANENT	THE COMPLETED WELL IS? YES NO
SE DOMESTIC DAGRICULTURAL	A. AT LEAST 5' FROM ANY OVERHANG 🛛 🗖 🗖
	B. AT LEAST 50' FROM ANY SEPTIC TANK
	C. AT LEAST 10' FROM TOWN SEWER LINE S D
	THE NEAREST NEIGHBORS (CIRCLE ONE)
S THIS A REPLACEMENT WELL? YES D NO	SEPTIC TILE FIELD CESSPOOL OR PRIVY
BANDONMENT DATE FOR OLD WELL	
BANDONMENT METHOD	IS COMPLETED WELL LOCATED AS SHOWN
DRILLING METHOD	IF NO, DESCRIBE LOCATION CHANGE OR OTHER COMMENTS.
	mandard a state of the
	Typical completion report for 1/2"
	drive point wells.
OTAL DEPTH DRILLED 7 5	
	-
CASING SEQUENCE	
INNER	コー
ASING TOP	
ASING DIAMETER	
SCREEN SEQUENCE	
INNIA	ㅋ
CREEN TOP	
	DRILLERS LOG DESCRIPTION TOP OF STRATA BOTTOM OF STRA
CREEN MATERIAL	
DTHER	- <i>M/</i> +
ROM TO FEET	
NON-GROUT BACKFILL OF WELL ANNULUS	
GRAVEL PACK: TYPE 10 ////	
FROMFEET	
STATIC WATER LEVEL: DATE	_
FT. (Below, above) GROUND SURFACE	
PUMPING WATER LEVEL: FT, BELOW GRADE	· · · · · · · · · · · · · · · · · · ·
AFTER HOURS AT GPM.	
WELL HEAD COMPLETION:	
	PAGE 1 OF PAGES
DTHER D Controlling a certain will lead	COMPANY NAME CONTRACTOR
La INCHES ABOVE GRADE	SIGNATURE OF DRILLER IN CHANGE. DATE
l	
CUMENT NO 40.08-78-01-03	

l

.

1

ļ

ŀ

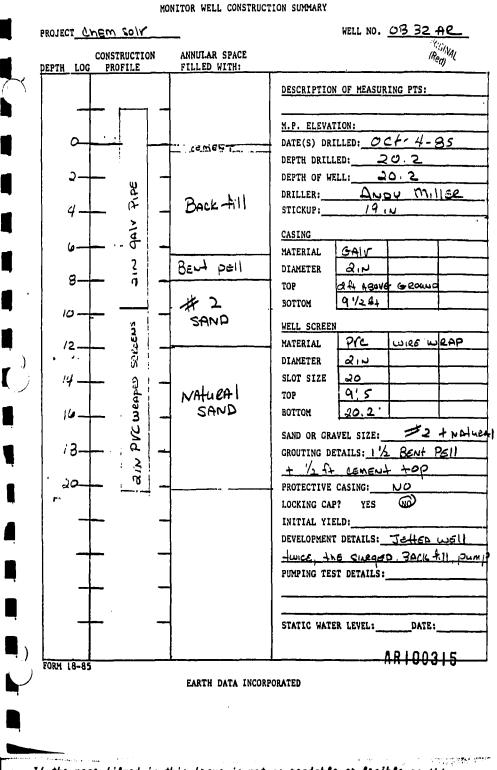
PROJECT CHEM SOLV		WELL NO. OB SUCHR
	ANNULAR SPACE Filled With:	HELL NO. <u>OB BURNER</u> Regular Deive Point.
DEPTH LOG PROFILE	FILLED WITH:	DESCRIPTION OF MEASURING PTS: Top <u>CF</u> <u>well</u> <u>M.P. ELEVATION:</u> DATE(S) DRILLED: <u>UCT-4-85</u> DEPTH DRILLED: <u>20.494</u> DEPTH OF WELL: <u>20.494</u>
		DRILLER: ANDY Miller STICKUP: 25 in
66 44 4 6 44 1 1/14 Galv		CASING MATERIAL GALY DIAMETER 11/4 TOP 25 IN ABOVE GEOUNT BOTTOM 9.5+
		WELL SCREEN MATERIAL S', S ,
14		DIAMETER 11/2 SLOT SIZE 20 Johnson Well Point
10 10		тор <u>Q.S</u> воттом <u>20.4</u>
13 - 13 - 20		SAND OR GRAVEL SIZE: NA GROUTING DETAILS: //1 44 CEMENT At ground is us a protective casing: No
		LOCKING CAP? YES INITIAL YIELD: DEVELOPMENT DETAILS: 76460 twice
		BACK Alush / pump. PUMPING TEST DETAILS:
- +		STATIC WATER LEVEL:DATE:
FORM 18-85	CARTU DATA INCOR	

•: 1 ٠. Ŀ ,

. . .

....

....


. ...

MONITOR WELL CONSTRUCTION SUMMARY

.

EARTH DATA INCORPORATED

١

ŀ

1

l

I

ł

ł

l

ļ

l

l

I

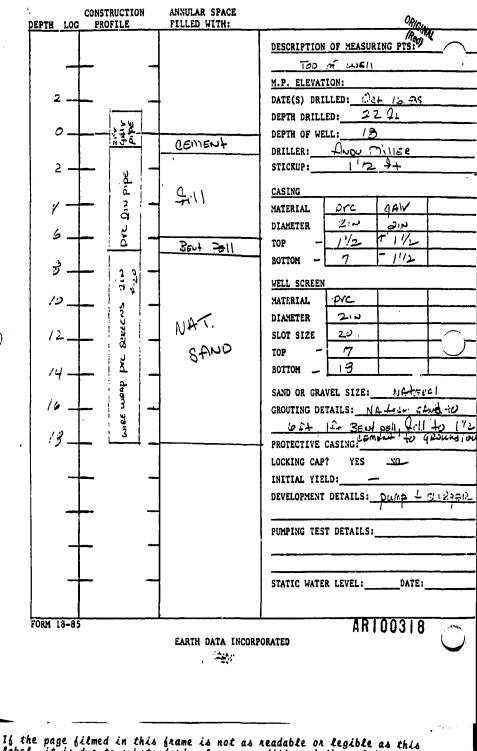
I

l

I

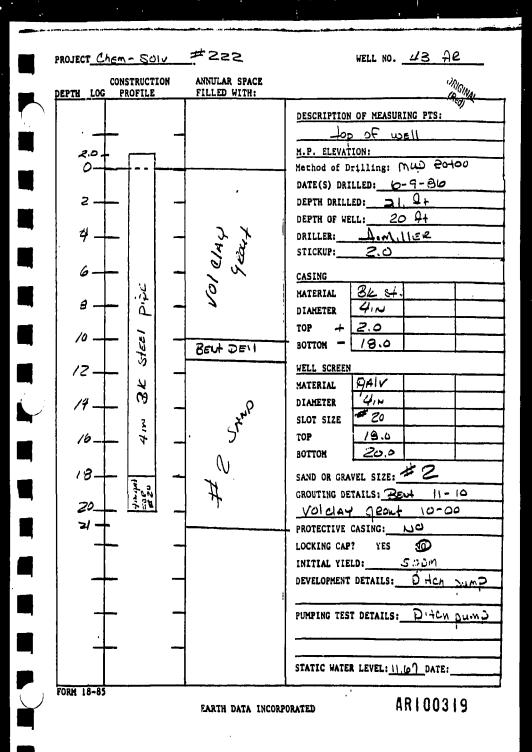
	project <u>Chan</u>	u-Solv	••• •• •	WE	ELL NO	A-35	AR_
		TRUCTION	ANNULAR SPACE FILLED WITH:			ORIO	
			BACK fill With Cuttings BENT: Pellets #2 SAND NAtural SANd	DIAMETER TOP BOTTOM WELL SCREEN MATERIAL DIAMETER SLOT SIZE TOP BOTTOM SAND OR GRAVEL GROUTING DETAI CULLANS, ACC PROTECTIVE CAS LOCKING CAP? INITIAL YIELD: DEVELOPMENT DE DEVELOPMENT DE DEVELOPMENT DE DEVELOPMENT DE STATIC WATER L	Caching Ai: Ii:	2 AP 20/16/8. 20' 20' 20' 2' 2' 2' 2' 2' 2' 2' 2' 2' 2	afuna/ Natur Natur Natur
			EARTH DATA INCORP				
lf the Label	e page filmed , it is due t	in this (o substanc	frame is not as r lard color or con	eadable or le dition of the	gible as original	this nano	

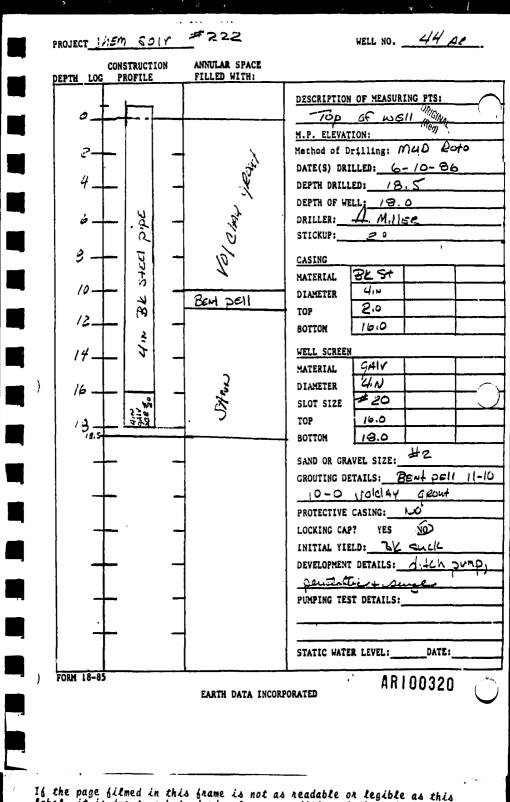
1


K.

1

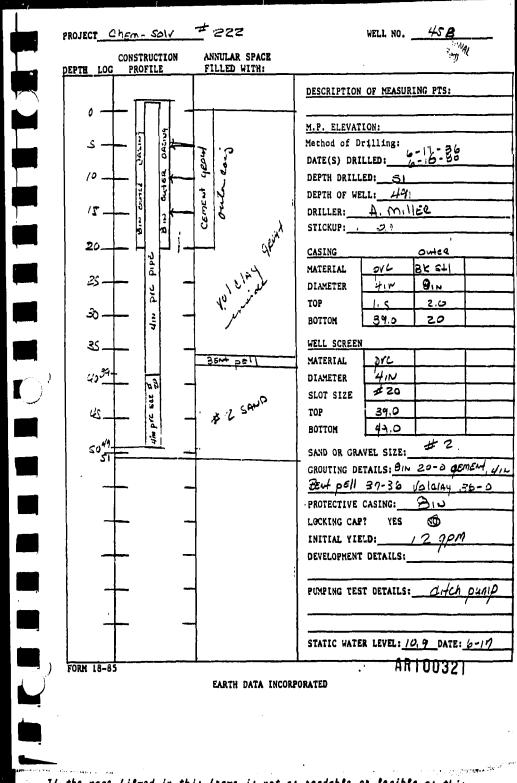
ú


PROJECT Inem- Sol


WELL NO. - 36 AR

label, it is due to substandard color or condition of the original page.

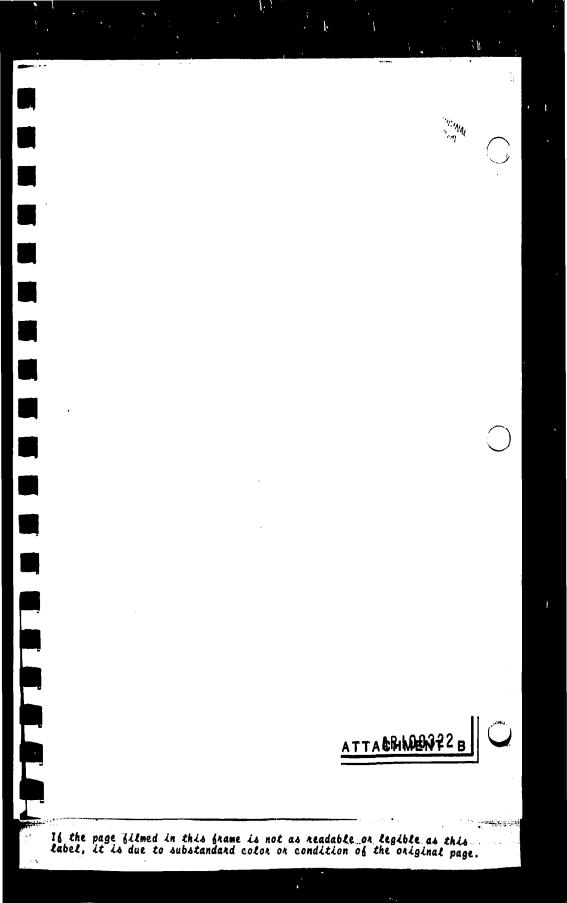
۰.



Ì;

1.

label, it is due to substandard color or condition of the original page.



1:

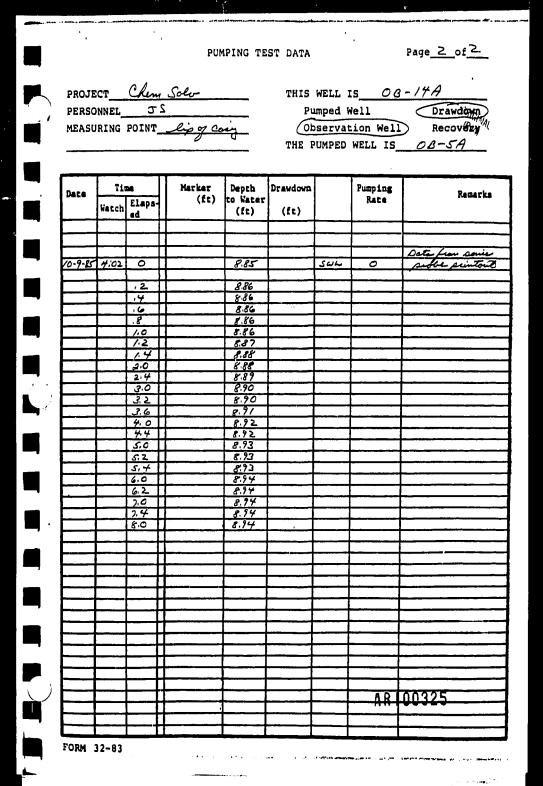
If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

/

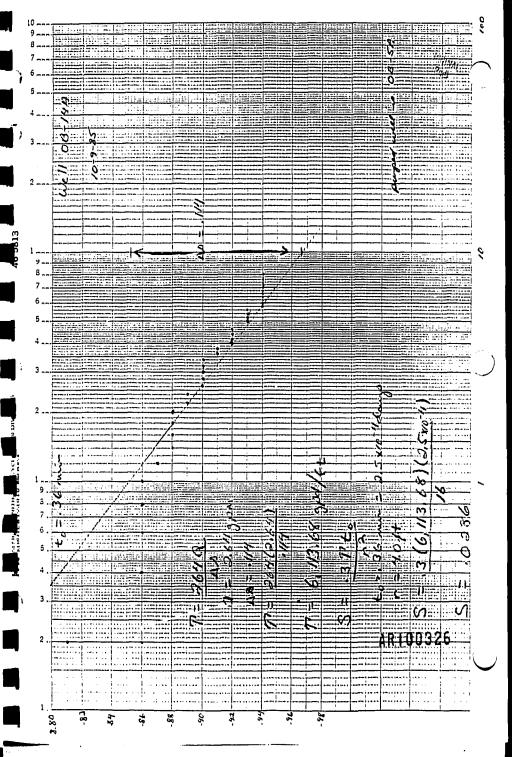
PUMPING TEST ADMINISTRATIVE DATA

. .

TYPE OF TEST PURPOSE OF TEST deter	nune speife	<u>ie copaity</u>	aquipu p	remit
PUMPING EQUIPMENT			V	
TYPE shallow welf job M	AKE Goulda	MODEL	Hp <u>/</u>	2
SETTING ft. DIAMETER PUMP RATING: MAXIMUM DISCHARGE		<u>/"in.</u> AT	POWER SOURCE	genei
PRE-EXISTING CONDITIONS				
WEATHER PRIOR TO TEST		DURI	16 sunny	
PRE-TEST NATURAL FLUCTUA WATER LEVELS: EFFECTS FROM OT		none		
TEST SEQUENCE		STARTED:	10-9-85	-
			ATION	
DATE TIME				
DRAWDOWN from 10-9-85 4:02 RECOVERY from	to <u>/0-9 _</u>	4:10 8	<u>MIN. (</u>	<u>н</u> н
SUPERVISED BY		CONTRACTO	Centh De	
PERSONNEL ON TEST				
TIME METHOD OF MEASUREMENT	digital elege	sed tine	., conjenta	-
CLOCK TIME			EL.	APSED I
DISCHARGE				
DISCHARGE RATE(S) 2.64	apm	MEASUREMEN	NT METHOD bu	chet/s
DISPOSITION OF DISCHARCE	tinto sho	Reboond in	te (temporo	7)
WATER-LEVEL MEASUREMENTS		DESCRIPTIO	N OF MEASURI	NG POIN
	0		•	
PRE-TEST SWL <u>999</u> ft. TIME MAXIMUM PWLft. TIME		lip of	conjecting	
MAXIMUM DRAWDOWNft. TIME		G.S. TO M	······································	
NATURE OF RECOVERY		M.P. ELEV.		
SPECIFIC CAPACITY N/A	gpm/ft.	after <u>8</u>	at6	1.6
WATER QUALITY			, anime	
FIELD TESTS:	0			• ,
LAB:		NUMBER	OF SAMPLES	
ANALYSES REQUESTED WELL DISINFECTION: DATE	METHOD	NA	·	
OBSERVATION WELLS OB-		ford to ol	Low rocu	and d
	o very in			
OTHER DATA COLLECTED	0	00	AR.1	003
REMARKS Sonie water	level me	Learning s	pten used	
FORM 31-86				
LOW 21-00				
row 31-00				

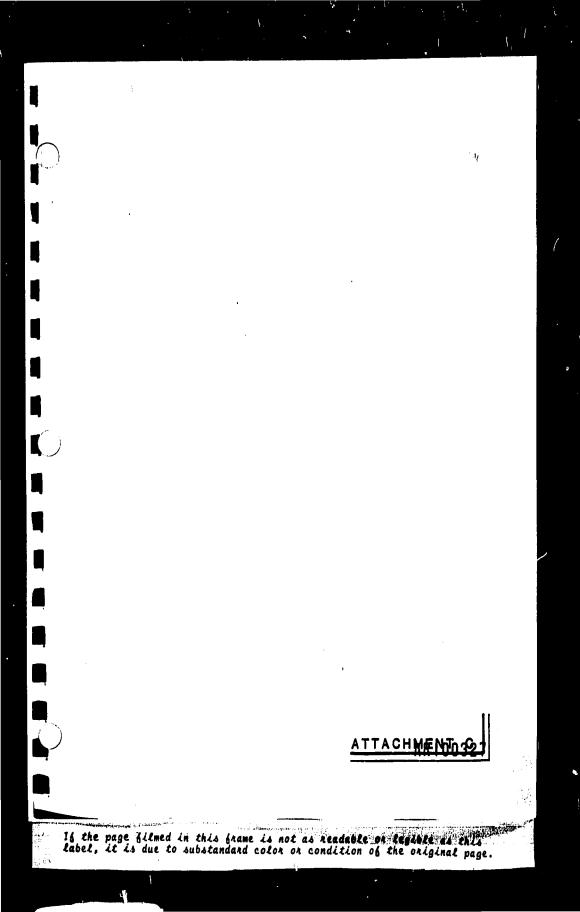

1

Ļ


١.

PUMPING TEST DATA Page / of 2 Chen Solo OB-SA. PROJECT THIS WELL IS σS Pumped Well PERSONNEL Drawdown) MEASURING POINT lips of coupling Observation Well Recovery . THE PUMPED WELL IS 08-5A Markar Pumping Time Depth Drawdown Date Remarks (ft) to Water Rate Elaps Watch (ft) (ft) ad 505 1125.0 fr/an PM 10-9-85 3:40 7.98 0 0 SWL 3:41 10.50 1.0 gan 1 Dole Volve 3 10.97 11.19 5 " 6 11.30 " 8 11.43 " stopped, allowed recovery to Sul 4:02 0 9.99 SWL Ô. 11.22 / 2.64 2 11.70 " 12.11 3 " 12.51 4 " 13.26 11 16.89 H 8 atopped sens . proke su N19' rec 29 12.55 AR100324 FORM 32-83

EARTH DATA INCORPORATED



37

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

ŗ.

PUMPING TEST - ADMINISTRATIVE DATA

)

:

	PUMPING WELL: OB - 5 AR PROJECT : China
TYPE OF TEST	Aquiler test
PURPOSE OF TE	ST - Cliften icianic Core, agente Danametters to
PUMPING EQUIP	MENT
SETTING	de ft. DIAMETER LIFT PIPE
PUMP RATING:	MAKE Grandels HP 1/2 POWER SOURCE generation AC FE. DIAMETER LIFT PIPE /// 1 MAXIMUM DISCHARGE /2 AT
NATURAL CONDI	TIONS
	OR <u>cloudy - some rain</u> DURING <u>clumy (canne</u>): WHEN <u>24 Aus</u> AMOUNT
PRE-TEST WATER LEVELS:	NATURAL FLUCTUATION
TEST SEQUENCE	DATE TEST STARTED: 8-26-85
	DATE TIME DATE TIME DURATION
DRAWDOWN from	8-26 2140 to 8-26 5140 180 MIN. (-3 HRS)
RECOVERY from	8-26 5140 to 8-26 6130 50 MIN. (19 HRS)
SUPERVISED BY PERSONNEL ON "	B-26 A170 to 8-26 5'140 180 MIN. (-3 HRS) 8-26 5140 to 8-26 6130 50 MIN. (19 HRS) 7. Morrakeed CONTRACTOR Earth Pata Contractor Pata TEST TTH TS C.U Contractor Contractor
TIME: METHOD	OF MEASUREMENT <u>Digital elapsed times</u>
DISCHARGE	-
DISCHARGE	-
DISCHARGE DISCHARGE RATH DISPOSITION OF	E(S) 3.1 GAML MEASUREMENT METHOD buckets stopus F DISCHARGE
DISCHARGE DISCHARGE RATH DISPOSITION OF WATER LEVEL ME	E(S) <u>3.1 grant</u> MEASUREMENT METHOD buckets a Stoplant F DISCHARGE <u>inter starte largace</u> <u>winds</u>
DISCHARGE DISCHARGE RATH DISPOSITION OF WATER LEVEL ME	E(S) <u>3.1 grant</u> MEASUREMENT METHOD buckets a Stoplant F DISCHARGE <u>inter starte largace</u> <u>winds</u>
DISCHARGE DISCHARGE RATH DISPOSITION OF WATER LEVEL ME	E(S) <u>3.1 grant</u> MEASUREMENT METHOD buckets a Stoplant F DISCHARGE <u>inter starte largace</u> <u>winds</u>
DISCHARGE DISCHARGE RATH DISPOSITION OF WATER LEVEL ME	E(S) <u>3.1 grant</u> MEASUREMENT METHOD buckets a Stoplant F DISCHARGE <u>inter starte largace</u> <u>winds</u>
DISCHARGE DISCHARGE RATH DISPOSITION OF WATER LEVEL ME PRE-TEST LEVEL MAXIMUM PUMPIN MAXIMUM DRAWDO NATURE OF RECO	E(S) <u>3./ GAM</u> MEASUREMENT METHOD <u>buckets + stapeter</u> F DISCHARGE <u>into sizete /score(sizete</u> EASUREMENTS L <u>// 3.3</u> ft. TIME <u>3/400</u> DESCRIPTION OF MEASURING POINT NG LEVEL <u>12.49</u> ft. TIME <u>5:400</u> G.S. TO GI.P. DWN <u>8.15</u> ft. TIME <u>5:400</u> G.S. TO GI.P. DVERY <u>meducate</u> . ELEVATION: G.S <u>ft. M.P.</u> f
DISCHARGE DISCHARGE RATH DISPOSITION OF WATER LEVEL ME PRE-TEST LEVEL MAXIMUM PUMPIN MAXIMUM DRAWDO NATURE OF RECO	E(S) <u>3./ gpm</u> MEASUREMENT METHOD <u>buckets</u> + Stapler F DISCHARGE <u>into shere farmed stables</u> EASUREMENTS L <u>1/33</u> ft. TIME <u>3/400</u> DESCRIPTION OF MEASURING POINT NG LEVEL <u>2,49</u> ft. TIME <u>5/400</u> G.S. TO 44.P. <u>DVERY</u> <u>recellente</u> ELEVATION: G.S <u>ft. N.P.</u> f CITY <u>38</u> gpm/ft. after <u>3</u> hr.at <u>3./</u> gp
DISCHARGE DISCHARGE RATH DISPOSITION OF WATER LEVEL ME PRE-TEST LEVEL MAXIMUM PUMPIN MAXIMUM DRAWDO NATURE OF RECO	E(S) <u>3.1 gpm</u> MEASUREMENT METHOD <u>buckets + stapeter</u> F DISCHARGE <u>into state to farmed almost</u> EASUREMENTS L <u>11.33</u> ft. TIME <u>5.7000</u> <u>Chirot descup</u> DWN <u>8.15</u> ft. TIME <u>5.7000</u> <u>C.S. TOCH.P.</u> <u>DVERY</u> <u>modelette</u> , ELEVATION: G.S <u>ft. N.P.</u> <u>f</u> CITY <u>38</u> gpm/ft. after <u>3</u> hr. at <u>3.1</u> gp
DISCHARGE DISCHARGE RATH DISPOSITION OF WATER LEVEL ME WAXINUM PUMPIN MAXIMUM DRAWDO NATURE OF RECO SPECIFIC CAPAC WATER QUALITY	E(S) <u>3.1 gpm</u> MEASUREMENT METHOD <u>buckets + stapeter</u> F DISCHARGE <u>into state farmed states</u> EASUREMENTS L <u>11.33</u> ft. TIRE <u>31400</u> DESCRIPTION OF MEASURING POINT NG LEVEL <u>2.48</u> ft. TIRE <u>5.400</u> G.S. TO A.P. <u>DWN</u> <u>8.15</u> ft. TIME <u>5.400</u> G.S. TO A.P. <u>mondunte</u> . ELEVATION: G.S <u>ft. N.P.</u> f CITY <u>.38</u> gpm/ft. after <u>.3</u> hr.at <u>3.1</u> gp .42 gpm/ft " 100 mine.
DISCHARGE DISCHARGE RATH DISPOSITION OF WATER LEVEL ME WAXINUM PUMPIN MAXIMUM DRAWDO NATURE OF RECO SPECIFIC CAPAC WATER QUALITY	E(S) <u>3.1 gpm</u> MEASUREMENT METHOD <u>buckets + stapeter</u> F DISCHARGE <u>into state farmed states</u> EASUREMENTS L <u>11.33</u> ft. TIRE <u>31400</u> DESCRIPTION OF MEASURING POINT NG LEVEL <u>2.48</u> ft. TIRE <u>5.400</u> G.S. TO A.P. <u>DWN</u> <u>8.15</u> ft. TIME <u>5.400</u> G.S. TO A.P. <u>mondunte</u> . ELEVATION: G.S <u>ft. N.P.</u> f CITY <u>.38</u> gpm/ft. after <u>.3</u> hr.at <u>3.1</u> gp .42 gpm/ft " 100 mine.
DISCHARGE DISCHARGE RATH DISPOSITION OF WATER LEVEL ME PRE-TEST LEVEL MAXIMUM PUMPIN MAXIMUM DRAWDO NATURE OF RECO SPECIFIC CAPAC MATER QUALITY WELL DISINFECT FIELD TESTS:	E(S) <u>3.1 gpm</u> MEASUREMENT METHOD <u>buckets</u> ; <u>steptur</u> F DISCHARGE <u>intersidents</u> ; <u>steptur</u> EASUREMENTS L <u>1133</u> ft. TINE <u>5.1400</u> DESCRIPTION OF MEASURING POINT NG LEVEL <u>12,49</u> ft. TIME <u>5.1400</u> G.S. TO A.P. DWN <u>8.15</u> ft. TIME <u>5.1400</u> G.S. TO A.P. DVERY <u>murdurate</u> , ELEVATION: G.S <u>ft. M.P.</u> <u>ft. M.P.</u> ft. <u>142 gpm/ft.</u> after <u>3</u> hr. at <u>3.1</u> gp <u>.42 gpm/ft</u> " 100 mine, TION: DATE <u>N/A</u> <u>METHOD</u> <u>METHOD</u>
DISCHARGE DISCHARGE RATH DISPOSITION OF WATER LEVEL ME PRE-TEST LEVEL MAXIMUM PUMPIN MAXIMUM DRAWDO NATURE OF RECO SPECIFIC CAPAC MATER QUALITY WELL DISINFECT FIELD TESTS:	E(S) <u>3.1 gpm</u> MEASUREMENT METHOD <u>buckets + stapeter</u> F DISCHARGE <u>into state farmed states</u> EASUREMENTS L <u>11.33</u> ft. TIRE <u>31400</u> DESCRIPTION OF MEASURING POINT NG LEVEL <u>2.48</u> ft. TIRE <u>5.400</u> G.S. TO A.P. <u>DWN</u> <u>8.15</u> ft. TIME <u>5.400</u> G.S. TO A.P. <u>mondunte</u> . ELEVATION: G.S <u>ft. N.P.</u> f CITY <u>.38</u> gpm/ft. after <u>.3</u> hr.at <u>3.1</u> gp .42 gpm/ft " 100 mine.
DISCHARGE DISCHARGE RATH DISPOSITION OF WATER LEVEL ME WAXIMIM PUMPIN MAXIMIM DRAWDO NATURE OF RECO SPECIFIC CAPAC WATER QUALITY VELL DISINFECT FIELD TESTS: ANALYSES REQUE 7	E(S) <u>3.1 gpm</u> MEASUREMENT METHOD <u>buckets</u> + <u>stopue</u> F DISCHARGE <u></u>
DISCHARGE DISCHARGE RATH DISPOSITION OF WATER LEVEL ME WAXIMUM PUMPIN WAXIMUM DRAWDO NATURE OF RECO SPECIFIC CAPAC WATER QUALITY JELL DISINFECT FIELD TESTS: ANALYSES REQUE DESERVATION WE	E(S) <u>3.1 gpm</u> MEASUREMENT METHOD <u>buckets</u> ; <u>stoplus</u> F DISCHARGE <u></u>
DISCHARGE DISCHARGE RATH DISPOSITION OF WATER LEVEL ME WAXIMUM PUMPIN WAXIMUM DRAWDO NATURE OF RECO SPECIFIC CAPAC WATER QUALITY JELL DISINFECT FIELD TESTS: ANALYSES REQUE DESERVATION WE	E(S) <u>3.1 gpm</u> MEASUREMENT METHOD <u>buckets</u> ; <u>stoplus</u> F DISCHARGE <u></u>
DISCHARGE DISCHARGE RATH DISPOSITION OF WATER LEVEL ME WAXIMUM PUMPIN WAXIMUM DRAWDO NATURE OF RECO SPECIFIC CAPAC WATER QUALITY JELL DISINFECT FIELD TESTS: ANALYSES REQUE DESERVATION WE	E(S) <u>3.1 gpm</u> MEASUREMENT METHOD <u>buckets</u> ; <u>stepture</u> F DISCHARGE <u>inte</u> <u>starte</u> <u>largent</u> , <u>alinely</u> EASUREMENTS L <u>11.33</u> ft. TINE <u>5.1400</u> DESCRIPTION OF MEASURING POINT NG LEVEL <u>12.49</u> ft. TIME <u>5.1400</u> G.S. TO A.P. DWN <u>8.15</u> ft. TIME <u>5.1400</u> G.S. TO A.P. DVERY <u>mercluste</u> . ELEVATION: G.S <u>ft. M.P.</u> <u>f</u> DVERY <u>mercluste</u> . ELEVATION: G.S <u>ft. M.P.</u> <u>f</u> <u>14.2 gen</u> /fd " 100 mine. TION: DATE <u>N/A</u> <u>METHOD</u> <u>1.42 gen</u> /fd " 100 mine. ESTED <u>artlation</u> <u>14.42</u> <u>1.456</u> <u>Gover two</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u>
DISCHARGE DISCHARGE RATH DISPOSITION OF WATER LEVEL ME WAXIMUM PUMPIN WAXIMUM DRAWDO NATURE OF RECO SPECIFIC CAPAC VATER QUALITY JELL DISINFECT FIELD TESTS: ANALYSES REQUE DESERVATION WE	E(S) <u>3.1 gpm</u> MEASUREMENT METHOD <u>buckets</u> ; <u>stepture</u> F DISCHARGE <u>inte</u> <u>starte</u> <u>largent</u> , <u>alinely</u> EASUREMENTS L <u>11.33</u> ft. TINE <u>5.1400</u> DESCRIPTION OF MEASURING POINT NG LEVEL <u>12.49</u> ft. TIME <u>5.1400</u> G.S. TO A.P. DWN <u>8.15</u> ft. TIME <u>5.1400</u> G.S. TO A.P. DVERY <u>mercluste</u> . ELEVATION: G.S <u>ft. M.P.</u> <u>f</u> DVERY <u>mercluste</u> . ELEVATION: G.S <u>ft. M.P.</u> <u>f</u> <u>14.2 gen</u> /fd " 100 mine. TION: DATE <u>N/A</u> <u>METHOD</u> <u>1.42 gen</u> /fd " 100 mine. ESTED <u>artlation</u> <u>14.42</u> <u>1.456</u> <u>Gover two</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u> <u>1.480RATORY</u>

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

Ċ,

ĺ

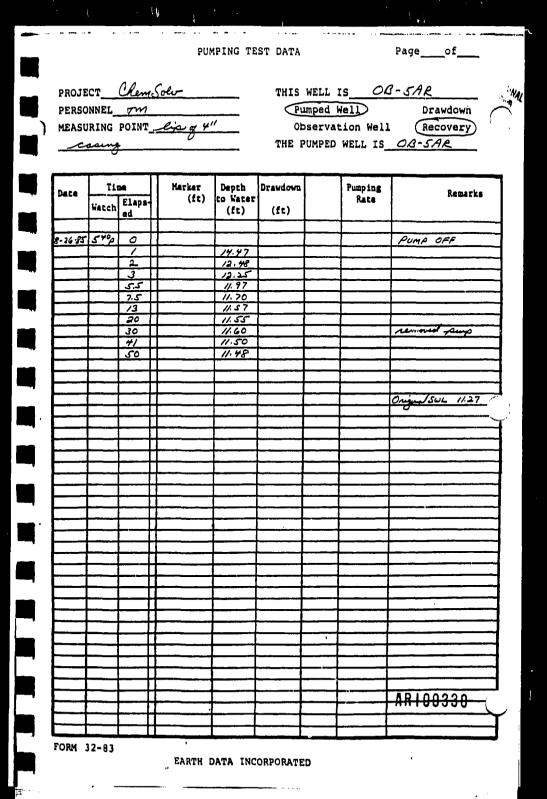
EARTH DATA INCORPORATED

WELL <u>OB-SAR</u> PROJECT <u>Classico</u>

inval.

:

35


PUMPING TEST DATA

PURPOSE <u>Aunqued Wed</u> PERSONNEL MEASURING POINT <u>Lip & 4" Carring</u> <u>Purposed</u> Weel

Date	Time		Marker	Depth	Drawdown	Pumping	Remarks
	Watch	Elaps- ed	(ft)	to Water (ft)	(ft)	8.2 6fm	
-26.85	130			11.27	<u> </u>		500-
	154		1	11.30	<u> </u>	3.5 gpm	
2:15	$\overline{\mathbf{w}}$			1	<u>├</u>		woterents pro
	1.00			15.26			tersoptimen.
	1.50			16.55	h		54
	3.55		1	11.81		и	
	Stoppe	· bake	e etim				eadjusted value
2:40	0.0		1	11.33		3.290	SWL
	1.59		1	14.92		3.2 gpm	
	2.04			15 41			
	7.00		1	11.37			SAMPLED SE
	446		1	117.18			Jamping S S
	119		1	17.71	<u>├──</u> ── <u></u> ┤──	3.2 9.00	mean ,
	11.6		1	18.11			
	13.50			17.19			···
	15 00		·	18 25			
	17.00		1	18.75		······································	
	11.00			18.78			
	10.00			18.35			SAMPLED 20ET
	23.5		1	18.42		11	
	26			12.44			······
	29		1	18.48			
	32		1	18.52		4	
	41			18.60			
	47			18.67		11	
	· . · . ·		· · · · · · · · · · · · · · · · · · ·			3.1.6(m)	hens
2:40	60		1	18.80			SAMPLEA GOI
	70		1	18.86		"	
	085			18.71		li li	
	095		1	18.96	าเก		@ 100 mino
	11.1		1	19.12		11	AS2 7.7
4.40			1	19.20			. 13 yam 1.48
	/30		1	17.25		"	
	735		1			3.1 gpm	
	140	 	1	19.32			<u> </u>
	1500		1	19.37			
	1100		1	19.45			
_	175.0		1	19.48			,,,,
5140				19.48	121		F. IMP OFF
	,		ļ				
			<u> </u>				AR100329
			1	┟╍╌╌╌──┧			

FORM JA-23

1

Į,

ŀ

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

1

EARTH DATA INCORPORATED

Page_ of

1

1

PUMPING TEST DATA

PURPOSE <u>Observation</u> Usel PERSONNEL MEASURING FOINT <u>Lip g cany</u>

h.

Data from Chart

WELL <u>CB-5A</u> PROJECT <u>Chimpeine</u>

Pumped Well is OB-SAR

Date	Time		Marker	Depth	Drawdown		Pumping	Remarks
	Watch	Elaps- ed	(ft)	to Water (ft)	(ft)		Rate	
8-26-85	· · .	0		11.33			+	502
		2.5	<u> </u>	11.35	f	f		
		5		11.37		t	+	
		25		11. 70		t		
		10	1	11. 425		t	+	+
		12		11.44				
		15		11.432		t		<u> </u>
		20		11.47		t		
		25		11.52		;		<u> </u>
		20		11 545	h	<u> </u>		1
		35		11.57	r		1	1
		40	1	11.59		<u> </u>	<u> </u>	1
		45	1	11.605				<u> </u>
		50	1	11.62			<u> </u>	ţ
		55		11625			1	<u> </u>
		60		11.65			1	†
		65	1	11.655			<u> </u>	†
		70		11.66			+	
		20		11 675			1	<u> </u>
		90	1	11 69				<u>h</u>
(100		11.71			1	f
		110		11.72			<u>+</u>	
		120		11 74				h
		130		11.755			1	†
		140		11.77				
		150		11.78				
		1-0	1	11.79				<u> </u> -
		170		11.80				
		180		11225			1	
							<u> </u>	
			1			<u> </u>	1	1
							1	i
		<u></u>			i		1	[
			<u> </u>				1	
							[
			11				1	
		t-	i i	~t			1	····-··
			<u> </u> 1	I			· · · · · ·	
			 					
——†								
			<u> </u>					AR100331
			i					
			f	f	f			

FORM 32-83

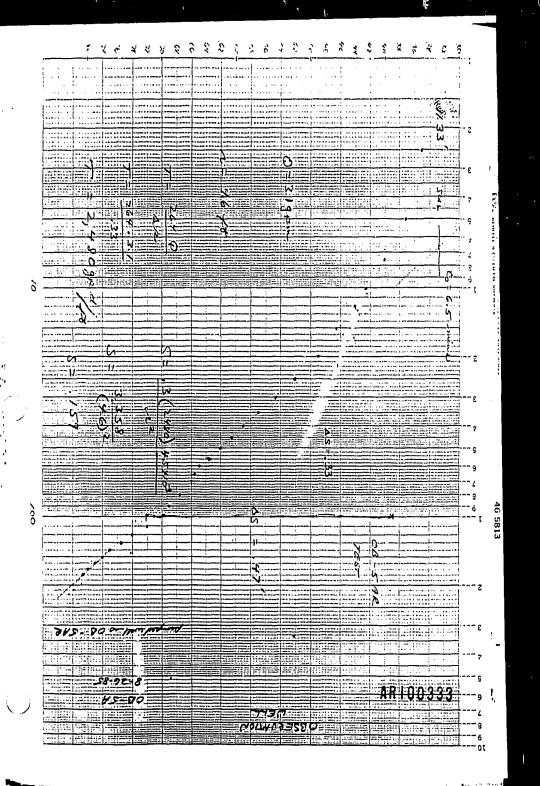
WATER LEVELS IN MONITORING WELLS Oclar Observation Wells.										7	
			-			. حلقت	Proje	ect ථ	lens &	olv.	
Weathie:	Suid	t Sern	kumid,	~85%	<u>-</u>		Pump	act () ing Well	: 06	-SAR	-
onitoring	-									. (Ł
Well	0B-10A		3-10A 0B-1		03	-12A	00	- 2A	03	-157	
	Line	1 12 Courd		<i>n</i>		· ·	hip 7	PUC)	1402	'L' -	
escription of Mons. Pt. G.SM.P.	7-7	10 - T	<u>م</u>	,55	+	.63	<u>ζ</u>	pue)		young	4
levation HP	4	3.45	4	3.45	4	3.31:	<u> </u>	•	4	5.58	
istance to		<u>3.45</u> 51.40		16.6	9	6.5			5,	5-5 <u>-8</u> 7.00]
DATE		SWL		SUL		Siul	-	Seul		Sur	
3-26-85	000	938	900	9.26	000	8.99	000	11.65	000	11.52	1
	074	9.41.	0.26.	9.29	028	9.01	024	11.64	035	11.52	
]
	078	4.4D	079	9.31	080	9.01	082	11.64	1075	11.53	1
	167	9.42	169	9.34	170	4.03	172	11.66	166	11.56	
	101										1
											! .
		 		 		<u> </u>					
				┣──┼	+					<u> </u>	1 1
		 									
											1
·						<u> </u>		ļ	·		
		 				<u> </u>					
		<u> </u>	+			╞╼╼╌┠╼					
						l					
, <u> </u>		#			- 					<u> </u>	ł
		<u>₿</u> }									
											ļ
		╉┥		╂───┤		<u> </u>				 	
- 	<u> </u>	╫───┼	+	╟━┅━╾┼╴	+	·			+	┝╍╌╌┼╍	ł
											l
											I.
	L	ļi !			1				L		ľ
Remarks : K	Hlo	dasin	d lin.	il. the	nist	+ 1.1	+li	E da			1
•			y 21-400		Ţ	you	ins 7	er,			1
										,	I
									ARIQC) <u>332 (</u>	\sim
						•			CLOCK	LAVELI	[
PORM: 22-	-82		C A PTH				•	Sample:	E.T.	ELEV.	
·		I	674KU 11		1CORFU				1 1.1		1
											-
in in											

į.,

ţ

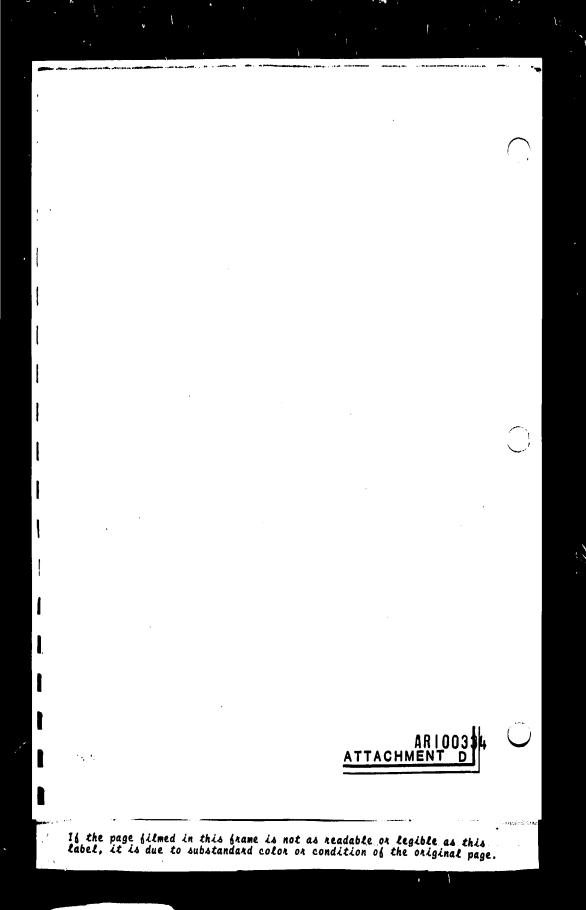
ł

3


1

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

.


ŗ

Ϊ

16 the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

. . .

PUMPING TEST ADMINISTRATIVE DATA

I

II.

()

PURPOSE OF TEST	Disudoun /	server	specify,	- aquipur p	anne
PUMPING EQUIPME	NT		•	V	
SETTING 20	ft. DIAMETER	LIFT PIPE		HPIN. POWER SOU	IRCE 90
PRE-EXISTING CO	NDITIONS				
	NATURAL FLUCTUA	TIONS	none	DURING	my
TEST SEQUENCE		DATE TE	ST STARTE	0: <u>/0-9-8</u> -	5
1	DATE TIME	DATE	TIME	DURATION	
DRAWDOWN from RECOVERY from SUPERVISED BY PERSONNEL ON TES	T. Moorcher	:0 <u>/0/9</u> :0 <u>/0/9</u>	عدد 	<u>/5</u> MIN. <u>25</u> MIN. RACTOR <u>Eart</u>	
	F MEASUREMENT	lopsed	temer ;	field computer 2:45 pm	(Mode ELAPSI
DISCHARGE					~ ~ ~
DISCHARGE RATE(S DISPOSITION OF D		for So shat	MEASI	JREMENT METHOD	Dola l kuchet
WATER-LEVEL MEAS	SUREMENTS		DESCI	RIPTION OF MEAS	URING P
MAXIMUM PWL <u>/</u>	7.48 ft. TIME 3.37 ft. TIME N <u>3.7/</u> ft. TIME ERY	2*5 ₁₂	G.S.	i g <u>.co.plin</u> TO M.P/ ELEV	۲ م حرم
SPECIFIC CAPACIT	,29	gpm/ft.	after		1.12
WATER QUALITY					
FIELD TESTS: LAB: <u>N/A</u> ANALYSES REQUEST	NED	mounting		WHER OF SAMPL	
WELL DISINFECTIO		METHOD	4.25'f	an puper w	Ll.
OTHER DATA COLLE	CTED			AR	003
REMARKS		·			
FORM 31-86	·····		······		<u> </u>

or condition of the original page. COLOR

PUMPING TEST DATA

i.

Į

Page / of 3

.

PROJECT Chem Solv	THIS WELL IS OB-	20 AR
PERSONNEL	Pumped Well	Drawdown
MEASURING POINT	Observation Well	Recovery
-coupling	THE PUMPED WELL IS	06-20 AR

Daca	Time		Marker	Depth	Drawdown		Pumping	Remarks	
	Watch	Elaps- ed		(ft)	to Water (ft)	(ft)		Rate	
10-9-85	275	0	╋	·	9.48	 			SWL
	<u> </u>	3	+		12.58				
		4	+		12.82			1.11 gam	
		5	+		12.95				
		6	+		13.01				
		7	╈		13.04			"	
		8	+		13.07			4	
		9	+		13.10			1.12900	
		10			13.13			"	
		12			13.34			"	
	300	15	1		13.39	3.91			
									. 29 gam/ 40
	RE	COVER	4-						
		19	t		9.57				
		20			9.55				
		22	Ĩ.,		9.54				
	3 22	25			4.51				····
			1_		L				
					L				
			1		<u> </u>				
			+						·····
			4_				~~~~		
			4						1
		<u> </u>							
			┼──						
			╋						
			┢				· · · · ·		
			┢						
			<u> </u>						
			<u> </u>						
			+						
			+			ł	····		
			+		┝╼╾┿╼╾╾┫	ł			
		└── ┠	+						
ł	<u> </u>		+		I				
			+						
		┝──╂	+		┝ ╌ ──┫				APIN020C
		├── ╂	+						AR100336
		┝──╋	\vdash				——		
			+		┝ ╌ ──┨				
	2-83						_		

PUMPING TEST DATA

ŀ

1. 1

- - -

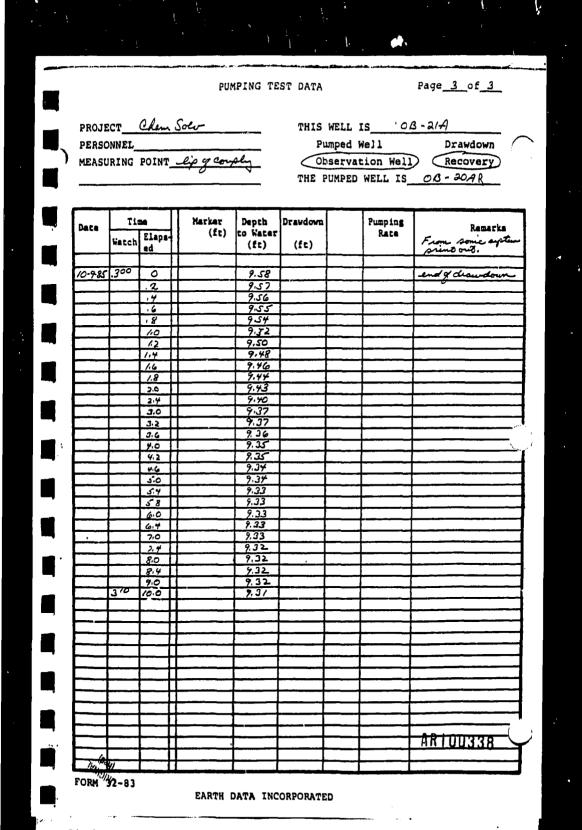
-

Page <u>2</u> of <u>3</u>

1

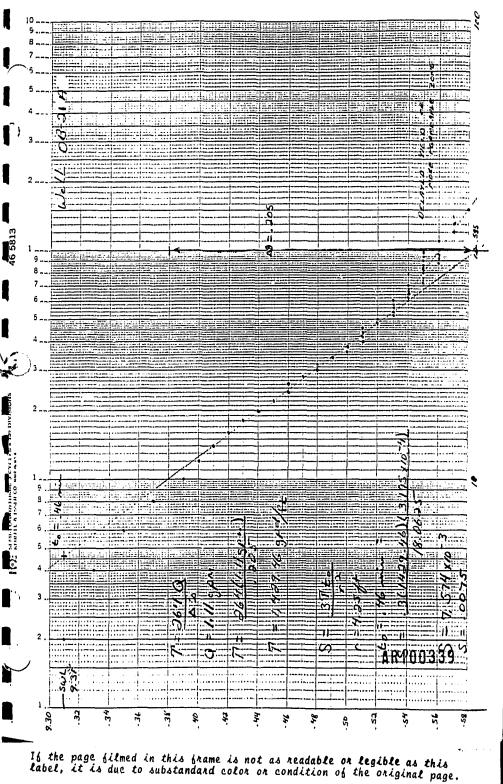
۰,

Then Solo
POINT lip & coupling

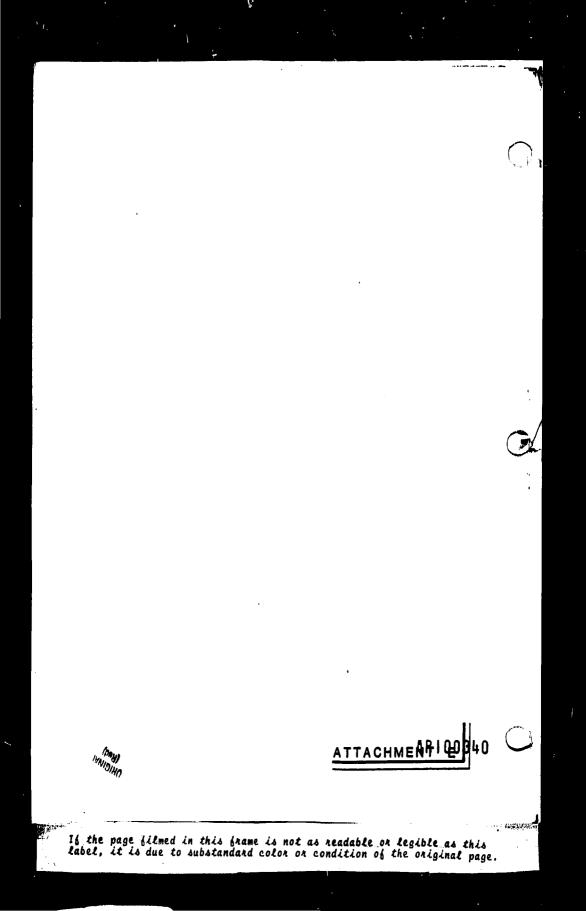

.........

THIS WELL IS	0B-21A
Pumped Well	Drawdown
Observation	Well Recovery
THE PUMPED WEL	LIS OB-20AR

Marker Time Depth Dravdown Pumping Reserve Date (ft) to Water Rate Elaps Watch (ft) (ft) e supti son ed 10-9.85 245 0 9.31 SUL ,2 9.31 9.33 14 .6 9.35 L 9.37 .8 1 1.2 9.40 F 1.6 9.42 2 9.44 F 9.45 2.2 Г 9.48 3 П 9.49 3.4 9.51 4 9.52 5 6 9.53 9.54 7 L 8 9.55 9.55 9.55 10 9.56 11 9.57 12 9.57 13 I. 9.57 Γ 14 300 15 9.58 stord recovery. AR10033


FORM 32-83

EARTH DATA INCORPORATED



16 the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

.

ŀ

PUMPING TEST ADMINISTRATIVE DATA

١.

ł

I

Î

l

	PUMPING WELL: OB-32AR PROJECT : Chan Solar
TYPE OF TEST <u>Purping Tend</u> PURPOSE OF TEST <u>detamme specific coparty</u>	
PURPOSE OF TEST determine specific capacity	and aquiper parenetus
PUMPING EQUIPMENT	
TYPE Shallow and get MAKE Coulds MODEL	1/2 HP 1/2
TYPE <u>Statton and 10</u> MAKE <u>Coulds</u> MODEL SETTING <u>18</u> ft. DIAMETER LIFT PIPE <u>1</u> PUMP RATING; MAXIMUM DISCHARGE <u>10 gpm</u>	AT 20 FEET
PRE-EXISTING CONDITIONS	
WEATHER PRIOR TO TESTD	URING
PRE-TEST NATURAL FLUCTUATIONSWATER LEVELS: EFFECTS FROM OTHER WELLS	
TEST SEQUENCE DATE TEST STARTED:	10 - 9-85
DATE TIME DATE TIME	DURATION
DRAWDOWN from 10/9 1100 Afto 10/9 1130 RECOVERY from 10/9 1130 A to 10/9 1150 SUPERVISED BY OTTOCHARCECONTRA	30 MIN. (
PERSONNEL ON TEST 711	
TIME METHOD OF MEASUREMENT digital eloparia	ctimer, conjuntar
	D. O ELAPSED TIME
DISCHARGE	
DISCHARGE RATE (S) 2.06 gpm MEASUR DISPOSITION OF DISCHARCE into stateboard	EMENT METHOD Stopuster
	PTION OF MEASURING POINT
PRE-TEST SWL 9.27 ft. TIME 1100 A	o of 2" Coupling
MAXIMUM PWL /6.90 ft. TIME // 30 A	
PRE-TEST SWL 9.27 ft. TIME 1/00 A MAXIMUM PWL 16.90 ft. TIME 1/00 A MAXIMUM DRAWDOWN 2.65 ft. TIME 0 NATURE OF RECOVERY 1000 M M.P. E	LEV
SPECIFIC CAPACITY	.5 hr. at 2.06 gpm
WATER QUALITY	
FIELD TESTS:	MBER OF SAMPLES
ANALYSES REQUESTED	
WELL DISINFECTION: DATEMETHOD	
OBSERVATION WELLS 33 A is 3.18' from 32	AR; response in
OTHER DATA COLLECTED $\rho H = 6.2$ temp = 18.	2°C ARTO0349-D-
REMARKS 1.50 Test (prior to devely	ment); sonic prove
FORM 31-86	

If the page filmed in this frame is not as readable or legible as this tabel, it is due to substandard color or condition of the original page.

PUMPING TEST DATA

t

Page / of 3

5.0

PROJECT Cham Solo	THIS WELL IS .? 2	AR
PERSONNEL	Pumped Well	Drawdown
MEASURING POINT _ lip of 2" coupling.	Observation Well	Recovery
MP is 1.55' above G.S.	THE PUMPED WELL IS_	32AR

)

1

1

Į

Date	Tis	e	Harker	Depth	Drawdown	Pumping	Remarks
	Watch	Elaps- ed	(ft)	to Water (ft)	(ft)	Rate	
2-9-85	9450			9.27			SWL
100	10SSA			9.25			
	1100A	0		9.25			
	<u>// / / / / / / / / / / / / / / / / / /</u>	<u>⊢ → </u>		15.96		2.06.00	
		2 1		14.90	<u> </u>	2.06 90	
		25		15.13			
		3		15.30			
		4 1		15.47			
		6.5		15.73		2.0590-	
		2.5		15.82			
		8		15.87			
		9		15.92			
		10		16.00			
		/2		16.12			
		13		16.08			
		14		16.25			
		16 20		16.36			
				16.36	L	2.06-9	om
		26		16.76			
	1130 AM	30		16.90	7.65		STOPPED PUMP
	REG	OVERY		<u> </u>			370720 7 410
		┝━━╾╂╋	·	<u> </u>			
		┝──── ── ┼ ┼		16.00			
		2		14.37			
		3.5		9.37		╾┾╍╍╍┝	
		4.5		9.35	└── <u>└</u> ──		
		55		9.34			
		6.5		9.33			
		2.5		9.33	└── ──		
		10.5		9.33			
	11 48	18		9.31			
			·				
	1						
	÷.,						
							AR100342
							ANIUUJ42
]							

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

2

PUMPING TEST DATA Page 2 of 3 PROJECT Chem Solo THIS WELL IS <u>33A</u> Pumped Well Drawdown PERSONNEL MEASURING POINT Lip gr 1/2" coupling Observation Well) Recovery 55 MPTOGS THE PUMPED WELL IS 32 AR Pumping Time Marker Depth Dravdovn Date Remarks Watch Elaps-(ft) to Water Rate DATA from some (ft) (ft) ed 0-9-86 945A 1055A 8.33 SUL SWL 8.32 11 A ٥ 8.32 SWL .4 8.35 8.39 .6 18 8.44 8.47 1 1.2 8.50 8.54 1.4 2 8.59 2.4 8.61 3 8.64 3.4 8.65 4 8.65 4.4 8.66 5 8.67 5.5 8.675 6 8.68 7 8.69 8.70 8 9 8,70 8,70 10 11 8.70 8.71 12 2 8.71 8,72 14 15 8.72 8.72 16 8.72 18 8.73 8 22 8.73 8.74 24 26 8.74 8.74 28 1130A 30 8.74 AR 100343 'n

ş

1 1

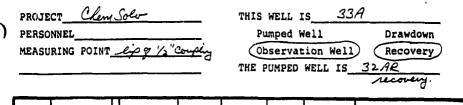
ĩ

FORM 32-83

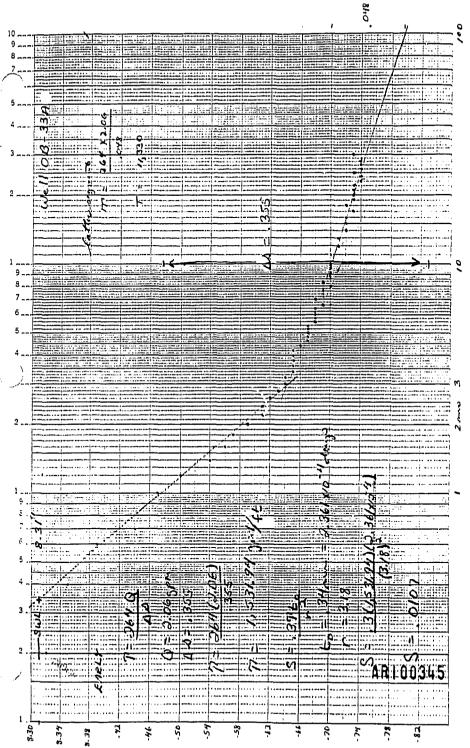
. 1

If the page filmed in this frame is not as readable or **legible as this** label, it is due to substandard color or condition of the original page.

. . .

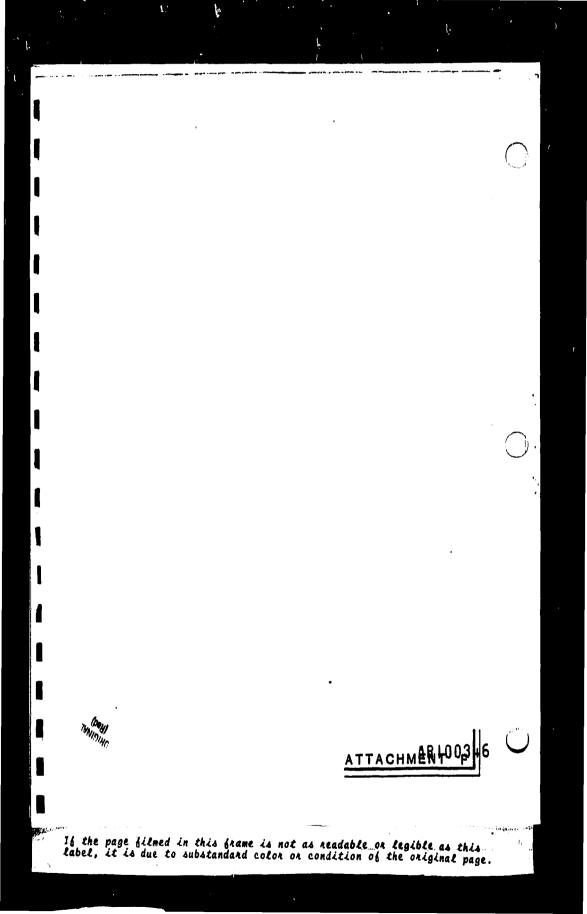


PUMPING TEST DATA


Page 3 of 3

Ì.

Į


Dace	Tir	M		Harker	Depth	Drawdown	Pumping	Remarks
	Watch	Elaps- ed		(fc)	to Water (ft)	(ft)	Rate	
			T					
10-9-85	1130	0	T		8.74		· · · · · · · · · · · · · · · · · · ·	·····
- / 04		, 2.	H		8.74			
		.7	+		8.73			
		.6	t		8.67			
		.8	t		8.63			
		10	H		8.57			
		1.2			8.51			
		1.4	+		8.47		<u> </u>	
		1.6			8.44			
		1.8	+		8.43			
		2	t		8.42			
		3	+		8.40			
		<u> </u>	╈		8.37			·····
		5	+		8.38			
		6	┿		8.37		╺─┼╴──┼	
		- (+		8.37			
		8	╈		8.36			
		-9	+		8.36			
		10	┿		8.36			
		10	+		8.36		╾╋╍╾╍╋	
		/2	┿		8.36			
			┿		8.36			
		/3	+		8.36		┉┝╸┈┍┞	
		14	╉		8.36			
		15	+		8.36		-++	····
		16	╉		8.36			
		17	╇		2:35			······································
		18	╉		8.35			
		_11	╋		8.35			
	1150	20	╉		8.35			
			╇					
			4					
			╇					
			1					
			L					
							<u> </u>	
			1		_			
			Γ					
			Τ					AR LUING44
	ili.		Τ					
	10. 10		Т					
	12.14		T					

3

2

-

PUMPING TEST - ADMINISTRATIVE DATA

1

5

I

I

TYPE OF TEST	Constant rate - dra	PROJECT	
PUMPING EQUIPMENT	1		
TYPE feet	MAKE <u>Goulds</u> ft. DIA MUM DISCHARGE	HP POWER	SOURCE generator
PIMP RATING MAXT	MIM DISCHARGE	METER LIFT PIPE	
NATURAL CONDITIONS			
WEATHER: PRIOR	Clean	DURING	rlean
PRECIPITATION : W	REN	AMOUNT	
PRE-TEST NAT	URAL FLUCTUATION		.
WATER LEVELS: EFF	ECTS OF OTHER WELLS		
TEST_SEQUENCE	DATE TEST ST	ARTED: 10-25-	85
DAT	E TIME DATE	TIME DURATION	
DRAWDOWN from 10-2	S 330 AM to 10.25	4:45 75	MIN. (1.25 HRS)
RECOVERY from	to		MIN. (HRS)
PERSONNEL ON TEST	Mooralised	CONTRACTOR	. Ortes
TIME: METHOD OF M	EASUREMENT Digit	al cloped times	Field Conputer
DISCHARGE	Ũ		•
DISPOSITION OF DIS	3.05 gpm CHARGE	MEASUREMENT METHOD	bucket + Goulds Ten alored sind
WATER LEVEL MEASUR			
PRE-TEST LEVEL	<u>/0.96</u> ft. TIME	description of <u>م</u>	F MEASURING POINT
MAXIMUM PUMPING LE	VEL 16.09 Ft. TIME 4	" <u>G.S. TO M.P.</u>	
NATURE OF RECOVERY	<u></u>	ELEVATION: G.S.	ft. M.P. ft
injected		100 min	
SPECIFIC CAPACITY	.58, gp	m/ft. afterh	r. at <u>3.05 g</u> pm
WATER QUALITY			
WELL DISINFECTION:	DATE	METHOD	
FIELD TESTS:	none	LABORATORY	ONREL
ANALYSES REQUESTED	Fe Ma	·····	
OBSERVATION WELLS	0 <u>8-31A (son</u>	in proces) "; c	B-3A Land
measurement	<u> </u>		
		<u> </u>	AR1003
OTHER DATA COLLECT	ED		
OTHER DATA COLLECT			······
	I start may be offerd .	sue to prining sup	

PUMPED WELL

١.

.

34 AR

.

.

Measureing Point:

Pumping Test - Water Level Data

Date	Time		Marker (ft)	to Water	Drawdown	Pu	mping ate	Remarks	
	watch	mins.		(21)	(ft)				13
			Į					3gam dole vola	
-25-8	320p			10.96			0	SWL	m
		5		13.55			3.18		11
	L	7		13.75	-		#		H
		18		15.67	·		3.74	mass flow	#
		کک		15.88	-				- 11
		40		<u> </u>			4	restanted ET on ole well	"
		41	+	15.90			11		4
		46				3	1.04	muss flow	4
		55		15.96			4	<u> </u>	·"
		75	+	16.08			11	Sangeled.	<u> •</u>
		80			<u>├</u>		. 03	stopped pump.	<u> "</u> .
				+	┝────				┿──
		100		16.20	5.24		=	sugested	┝
			+	+					<u>-</u>
									┢
1			<u> </u>						<u> </u>
									
			<u> </u>	<u> </u>					
			+						
									<u> </u>
									L
			<u></u>						
								······································	
			<u> </u>						
┯╼┥									
				+					
			<u> </u>		-				
			. <u> </u>					· · · · · · · · · · · · · · · · · · ·	
									
			<u>}</u>						
				<u> </u>]
		·	+					AR100348	
			1			·····			
	1101004								
	12/10 7		<u></u>						
	^/·		÷						

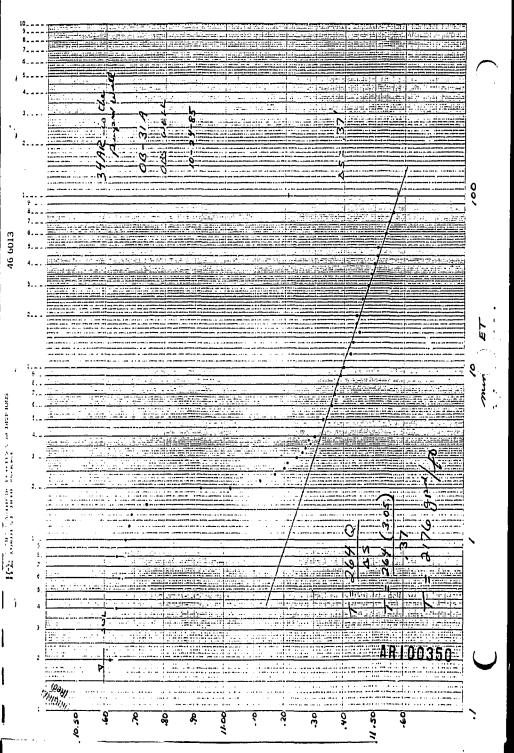
ObsWeel

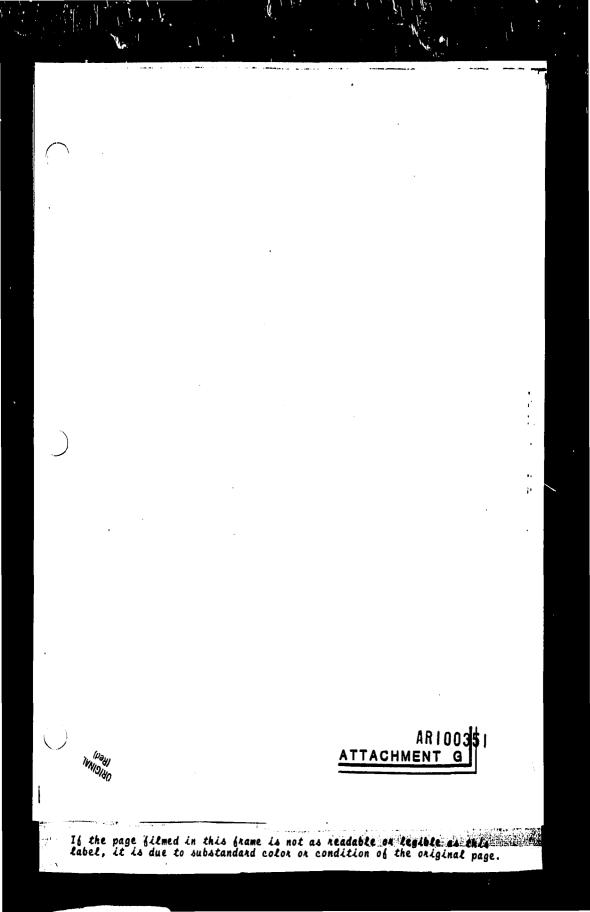
tabulated from Some Pushe printowit

.....

0B-31A

0


ł


Heasureing Point:

١

Pumping Test - water Level Data

Date	Time	Marker	Depth	Drawdown	Pumping	F	
Jace	watch mins.	(ft)	to Water		Rate	Remarks	
			(ft)	(<u>ft</u>)			
			10.59			<i></i>	
	0.0			,03		SWL	
	.4		10.62	.05			
	.6	{	10.65	.03			
			10.63				
	8.		10.67	, 08			
	1.0	┟┦	10.68	,09			
	1.2		10.69	,10			
	1.4	<u> </u>		.15			-+
	1.6		10.74	,30			
	1.8		the second se	, 30			
	2.0		11.02	,53		·····	
	2.2	- <u>-</u>	11.12	.58			
	2.4		11.17			······································	
	2.6		11.20	.61			
	3.0		11.21	.65			
·	3.2		11.26	,67			
_لر	3.4		11.27	,48			-+-
	4		11.30	,7/			
	5		11.33	124			
			11.36	,77			
	6	1	11.37	. 18			
	8		11.37	.79		······································	
			11.37	.80			
	10		11.40	181			
	/2		11.42	.83			
	14	+	11.44	185			
	16		11.44	.85			
	18	+	11.44	.83			
	20	 	11.45	186			
	25	+	11.76	187		· · · · · · · · · · · · · · · · · · ·	_
	30	+	11.475	,885			-+
	30	1	11.49	,90			+
	40	+	11.50	.11			
	45	<u>+</u>	11.52	.93		······································	
	50		11.51	,92		· · · · · · · · · · · · · · · · · · ·	-+-
	55	1	11.52	.93			+-
	60	i	11.54	.95			-+-
Π	20		11.55	.96		AR10034	d.
7		<u></u>	11.565	.975			4
		1					
		;	h		<u> </u>		-+
	SILL		1	—			

PUMPING TEST ADMINISTRATIVE DATA

1

١.

í

ŀ

1

ł

	PUMPING WELL: <u>C-3-4-34</u> PROJECT : <u>Chan-fo</u> lm
TYPE OF TEST <u>Constant Rate Purpseis Te</u> PURPOSE OF TEST <u>Settemine Agings</u> Chartrace	et teristics
PUMPING EQUIPMENT	
TYPE <u>Centifical</u> Make <u>Ryps</u> MODEL <u>description</u> SETTING <u>Z</u> / fc. DIAMETER LIFT PIPE <u>/''</u> PUMP RATING; MAXIMUM DISCHARGE	ATFEDT
PRE-EXISTING CONDITIONS	
WEATHER PRIOR TO TEST <u>Moster</u> Some Showing PRE-TEST NATURAL FLUCTUATIONS WATER LEVELS: EFFECTS FROM OTHER WELLS	DURING <u>Cart Zacays</u>
TEST SEQUENCE DATE TEST STARTED	6-30-86
<u>DATE TIME DATE TIME</u>	DURATION
DRAWDOWN from 6/30 9 ³⁰ AM to 6/30 10 ⁴⁵ RECOVERY from to to CONTR SUPERVISED BY T. Sufficient CONTR PERSONNEL ON TEST TS AM	<u>75</u> MIN. (<u>125</u> HRS) MIN. (<u>HRS</u>) ACTOR <u>FARTH OATA</u>
TIME METHOD OF MEASUREMENT <u>digital logaced</u> to CLOCK TIME <u>930 AM</u>	0.0 ELAPSED TIME
CLOCK TIME 2930 AM	
CLOCK TIME 0930 AM = DISCHARGE DISCHARGE RATE(S) 5.0 gpm MEASU DISPOSITION OF DISCHARGE	0.0 ELAPSED TIME
CLOCK TIME 0930 Am = DISCHARGE DISCHARGE RATE(S) 5.0 gom MEASU DISPOSITION OF DISCHARGE MEASUREMENTS DESCR WATER-LEVEL MEASUREMENTS DESCR PRE-TEST SWL 1.07 ft. TIME MAXIMUM FWL 18,23 ft. TIME MAXIMUM DRAWDOWN 7.16 ft. TIME G.S. 7	0.0 ELAPSED TIME
CLOCK TIME 0930 Am = DISCHARGE S.O gom MEASU DISPOSITION OF DISCHARGE measu measu WATER-LEVEL MEASUREMENTS DESCR PRE-TEST SWL 1.07 ft. TIME MAXIMUM PWL 18.23 ft. TIME MAXIMUM DRAWDOWN 7.16 ft. TIME G.S. NATURE OF RECOVERY M.P.	<u>0.0</u> ELAPSED TIME REMENT METHOD <u>Authority structure</u> IPTION OF MEASURING POINT D G Cascing TO M.P.
CLOCK TIME 0930 Am = DISCHARGE S.O gom MEASU DISPOSITION OF DISCHARGE measu measu WATER-LEVEL MEASUREMENTS DESCR PRE-TEST SWL 1.07 ft. TIME MAXIMUM PWL 18.23 ft. TIME MAXIMUM DRAWDOWN 7.16 ft. TIME G.S. NATURE OF RECOVERY M.P.	<u>0.0</u> ELAPSED TIME REMENT METHOD <u>Authority structure</u> IPTION OF MEASURING POINT D G Cascing TO M.P.
CLOCK TIME 0930 AM = DISCHARGE DISCHARGE RATE(S) 5.0 9pm MEASU DISPOSITION OF DISCHARGE <u>inte</u> <u>MEASU</u> WATER-LEVEL MEASUREMENTS <u>DESCR</u> PRE-TEST SWL <u>//.07</u> ft. TIME <u></u> MAXIMUM DRAWDOWN 7.16 ft. TIME <u></u> G.S. TIME <u></u> MAXIMUM DRAWDOWN 7.16 ft. TIME <u></u> SPECIFIC CAPACITY .70 gpm/ft. after 62 amul CONT	<u>0.0</u> ELAPSED TIME REMENT METHOD <u>Authority structure</u> IPTION OF MEASURING POINT D G Cascing TO M.P.
CLOCK TIME 0930 AM = DISCHARGE DISCHARGE RATE(S) 5.0 gem MEASU DISPOSITION OF DISCHARGE <u>shatlend</u> measu WATER-LEVEL MEASUREMENTS <u>DESCR</u> WATER-LEVEL MEASUREMENTS <u>DESCR</u> MAXIMUM PWL 18,23 ft. TIME MAXIMUM DRAWDOWN 7.16 ft. TIME MATER QUALITY	<u>0.0</u> ELAPSED TIME REMENT METHOD <u>Authority structure</u> IPTION OF MEASURING POINT D G Cascing TO M.P.
CLOCK TIME 0930 AM = DISCHARGE DISCHARGE RATE(S) 5.0 gom MEASU DISPOSITION OF DISCHARGE MEASUREMENTS DESCR WATER-LEVEL MEASUREMENTS DESCR MATER-LEVEL MEASUREMENTS DESCR MATER-LEVEL MEASUREMENTS DESCR MATER COVERY M.P. SPECIFIC CAPACITY .70 gpm/ft. after WATER QUALITY .69 gpm/ft. after WATER QUALITY .69 gpm/ft. after FIELD TESTS:	<u>0.0</u> ELAPSED TIME REMENT METHOD <u>Authority/stagestice</u> IPTION OF MEASURING POINT b of Cascing TO M.P. ELEV. 75 JAT. at <u>5.0</u> gpm 50.
CLOCK TIME 0930 AM = DISCHARGE DISCHARGE RATE(S) 5.0 gem MEASU DISPOSITION OF DISCHARGE MEASUREMENTS DESCR WATER-LEVEL MEASUREMENTS DESCR WATER-LEVEL MEASUREMENTS DESCR MAXIMUM PWL /8,23 ft. TIME MAXIMUM DRAWDOWN 7./6 ft. TIME MATER QUALITY	<u>0.0</u> ELAPSED TIME REMENT METHOD <u>Author</u> /styperstee IPTION OF MEASURING POINT <u>0 graning</u> TO M.P TO M.P
CLOCK TIME 0930 AM = DISCHARGE DISCHARGE RATE(S) 5.0 gpm MEASU DISPOSITION OF DISCHARGE where a statistic and a stat	<u>0.0</u> ELAPSED TIME REMENT METHOD <u>Author</u> /styperstee IPTION OF MEASURING POINT <u>0 graning</u> TO M.P TO M.P
CLOCK TIME 2930 Am =	<u>0.0</u> ELAPSED TIME REMENT METHOD <u>Authol/superflue</u> IPTION OF MEASURING POINT b g Case TO M.P. TO
CLOCK TIME 2933 Am =	<u>0.0</u> ELAPSED TIME REMENT METHOD <u>Authol/superflue</u> IPTION OF MEASURING POINT b g Case TO M.P. TO

		0	~ .					
ROJE	ст <u>с</u>	-Kenny	Jol~	,	THIS	WELL I	(<u>s</u>)	B-43AR
ERSO	NNEL_	J5 Au	lipog co	·····		mped W		Drawdown
EASU	RING	POINT_	lipa co	sug-				Recovery
				,	104 6	UMPED	WELL 15	0B-43AR
	Tir		Markar	Depth	Drawdown		Fumping	
ą t a	Watch	Elaps-	(ft)	to Water (ft)		gpm	Rate	Remarks
30.56	930 A	ed		11.07		<u></u>		SWL
~~~~		13		17.90		5.0		
		3/		18.01	L	5.0	5gal/min	02.14
		40		18.14		5.0 5.0		OLAC
		72		18.23		5.0		
		75		18.23	L	5:0		end of test
		┝ <u></u>	<u>├</u>	<u>†</u>			·	
				ļ				
			· · · · · · · · · · · · · · · · · · ·	<b> </b>				
		┝───╂┤						
							]	
<u> </u>		┝┈╾╌╋╢						
		H						
		┝╼═╾╊┨				<del> </del>		
		┝───┣┨		<b>├────</b> ┨				
								AR108353
		1						MI 100000
		┝╼╼╊╋						

1

١

. 12

.

· )

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

1

PROJE PERSO	CT	Cheme.	Solo-		THIS	WELL IS	11 11	B-14A Drawdown Recovery	$\int$
MEASU	RING	POINT	lip g 4		(OD THE P	UMPED W	on Well IELL IS_ .//.0'	) Recovery <u>08-43AR</u>	
Date	Tit		Marker (ft)	Depth to Water	Drawdown	······	Pumping Rate	Remarks	1
	Watch	Elaps- ed		(ft)	(ft)				
.30.86		0		9.36	Ċ			SWL	
		2.5		9.85	.49				1
		3 4		9.90	-60				-
		6.5		10.00	.64				1
		8		10.01	.65	+			-
		11		10.035	.72				1
		14		10.05	, 69				
		16		10.08	. 705	+	·		1
		20		10.09	.73				1
		22	[	10.10	.74				-
		27		10.12	.76				<b>1</b>
		30		10.12	.76				1
		32	·	10.13	.77			· · · · · · · · · · · · · · · · · · ·	ł
		36		10.14	- 78				1
		38		10.15	.79			· · · · · · · · · · · · · · · · · · ·	4
		40 42		10.16	.80				ł
		44		10.16	.80				1
		47 50		10.17	.82				4
		55		10.18	83				1
		60		10.20	. 84				
		65 70		10.21	- 85			· · · · · · · · · · · · · · · · · · ·	1
		75		10.24	.88			end of test	1
									I
		┝╾╍╼╼╄┤							ł
									1
									ļ
		┝╾╍╾╊┥	<u> </u>						ł
						+			1
	WIDING	┝───┼┦				<u> </u>		AR100354	
									1

ŕ

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

Į

I

I

F

I

I

I

I

ŀ

I

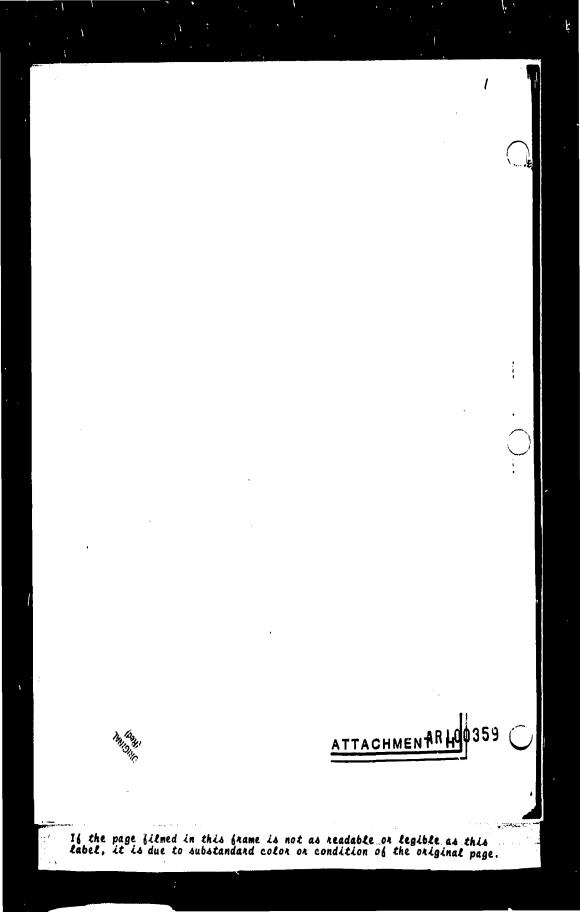
ł

. .

1

Lin out 4 1. 17 X 3. 17 X 10 + X (11) +-e1x E ~ (11) - 81 1.5×10 1.87x 3.17 × 10 + X 1.21 × 102 . 14 days = +888 t 4.888×10 3 × 10-1 +865×103 Ħ 7.17×10-2 4.88 × 10> 1.87 512 = ų A 74 1 4 6.9  $t_{sl} =$ η η ي م ا H

AR100355


-i.i-1.a سيغمد بتيوسيون ك ereie diel - Philippe starten -----1-1--1:*: <u>a:</u>[25 ······ فنفق 1 . . . for 52 . . . deing. . .... 1 6 0 ٥ transie addatate and the second Contraction in the last T .... i: i: ----------date 19.00 وتعروش ماندت na a na kanin -2010010 (minutes * ---------..... δ 9---m 3 N. 3 _____ 21. F. 🛲 a ş 3 1. 2 1.2.22 M ¥.;; ..... 1 tt . . . . ŝ 0 T ¥ -----О 5 ħ O, T ম 'V 1 ١ ant Mathematical Astronom 1. . . . . Ť •--Vaix .... m 7 ć : N=:: ð ٩. 4 ----11111 111 12 14 1 i ti -----4 and the second stars 1 . . . . . . . . -1.45 . . . 1 23 . je dini na jerstra n ...... . la: .... . . ..... -----3 u^Q . . . . ; -----356 -----ARIOO 1 ••••• 4 *1.3*; ..... _____ ..... ..... . . . . . . ••• ..... ..... ō Ģ anomacoun (fut) If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

			PU	MPING TE	ST DATA		Page 3 of 3
			-				·
OJE	ст (	Kem So	;l:		THIS	WELL IS	03-54
-10	NNEL				Pu		Drawdown
.0	RING	POINT			05	servation Wel	Recovery
					THE P	UMPED WELL IS	OB-43AR
						= 15-1-40	
C.	TI	26	Harker	Depch	Drawdown	Funping	Reparks
-	Watch	Elaps- ed	(fc)	to Water (ft)	(ft)	Race	
3286		0	1	10.52	L		364
		5		10.62	.10		
		14.5	┿	10.72	.20		
		49	+	10.80	. 28		
		2/		10.93	. 41		
				L			
		┟──┤	<u> </u>	+	┟╾╼╾┥		
		++	+	<u> </u>	├ <b> </b>		1
		<u> </u> ]		<u></u>			
		┼──┤	+	<u> </u>	┟┈╼╌╴┨		+
			1				1
J							
4		┢╍╍┥		┟┉╾╌╴	┟╌╌╾╌┥		
		┼──┤	+	<u> </u>			<u> </u>
		┼──┤	<u> </u>				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		┼──┼	- <del> </del> -	┟╌╌╌╌╴	<u>├</u>	·····	
			1				
			ļ				<u> </u>
		╋╼╍┥	4	<b> </b>	┝───┤		<u> </u>
		<del>   </del>					
			+				<u> </u>
		╁╍╍┈┧	- <del> </del>	<u> </u>	├ <b> </b>		}
							L
			1				
		╆──┥	<u> </u>	<b>├</b> ────┤	┝╾╍╼╋		
	- <u></u>	┼──┤	+	<u>├</u> ───┤	<b>├</b>		
			6				
	_			L			
	<b></b>	┢──┤	¥	╉────┤	┝╾╾╍╋		
$\succ$		++	+	<u>+</u>	<b></b>		AR1003
			1				
_				1			
أحجب							

10.1.1 enel une di La presente Harne Brannie Ŷ., ..... é -1-national and an and a second second ξœ 5 .... 000 3 ---------*** ..... .... Leider auf -----1-121--- 11:2 -----1 one Caumits ----0---------N 5 I MINING BARAS ------All and the second s à., hadding P.y Ē ..... . . . . . . . .... 0 <u>M...</u> • ø N . 0 <u>...</u>., 17 . . . . . . . d 🙄 ... 3 15pDc ... 0.... 9 h 0 فششوا ويصغره المت 0 ..... 7 ή= en de la chianada Ś n Ś Ű, 4 4 n •••t 竹 12 21 14-14 学情节 <u>1-1-10-11-</u> an caller been iii. 1 S..... ::... - 11 5 difficient t 48100358 THAN SHO 1033 A product of a state J 3 ۵ Chamblown (Jut )

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

.



PUMPING TEST ADMINISTRATIVE DATA

ιţ

TYPE OF TEST       Constant Rate       disandoms/succession         PURPOSE OF TEST       cittermile square cope       consider galaxies         PUNPING EQUIPMENT       TYPE       scripter weeks.       pp / 0         TYPE       scripter weeks.       no       pp / 0         SETTING       36       ft. DIAMETER LIFT PIPE / 1/4 _ In. POMER SOURCE contents         PUNP RATING:       MAXIMUM DISCHARGE       AT
PUMPING EQUIPMENT         TYPE       SETTING       36       ft.       DIAMETER LIFT PIPE       //4       in. POWER SOURCE         PUMP RATING:       MAXIMUM DISCHARGE       AT       FEET         PPE-EXISTING CONDITIONS       WEATHER PRIOR TO TEST       DURING       dug - dummy         PRE-TEST       NATURAL FLUCTUATIONS       DURING       dug - dummy         WEATHER PRIOR TO TEST       dug       DURING       dug - dummy         PRE-TEST       NATURAL FLUCTUATIONS       DURING       dug - dummy         WEATHER PRIOR TO TEST       dug       DURING       dug - dummy         PRE-TEST       NATURAL FLUCTUATIONS       DURING       dug - dummy         WEATHER PRIOR TO TEST       dug       DATE       TIME       DURING       dug - dummy         TEST SEQUENCE       DATE       TIME       DURATION       dug - dummy       dug - dummy         DEATE       TIME       DATE       TIME       DURATION       dug - dummy       dug - dummy         DRAWDOWN from from for defetor       SUPERVISED BY       The conditions       dug - dug - dummy       dug -
SETTING       36       ft. DIAMETER LIFT PIPE       ///4       in. POWER SOURCE       SETTING         PUMP RATING:       MAXIMUM DISCHARGE       AT
WEATHER PRIOR TO TEST $diggeneration for the formation of the$
PRE-TEST       NATURAL FLUCTUATIONS
DATETIMEDATETIMEDURATIONDRAWDOWN from $6-18-86$ $5^{10}$ to $6-18-86$ $6^{20}$ $50$ MIN. (83 HRS)RECOVERY from $my_{ev}$ request to
DRAWDOWN from $6 - 18 - 16 \ 5'^{0} \rho$ to $6 - 18 - 16 \ 6^{0} \rho$ <u>SD</u> MIN. ( <u>.83</u> HRS) RECOVERY from <u>migner diameter</u> to <u>MIN.</u> ( <u>.83</u> HRS) SUPERVISED BY <u>T. Providence</u> <u>CONTRACTOR Carte Bate</u> PERSONNEL ON TEST <u>TM_em_JS</u> <u>TIME</u> METHOD OF MEASUREMENT <u>STop write</u> <u>CLOCK TIME</u> <u>S'O pm_=</u> <u>O</u> <u>ELAPSED TIME</u> <u>DISCHARGE</u> <u>30.0 game Dode Value</u> <u>DISCHARGE</u> <u>31.44 game</u> <u>MEASUREMENT METHOD buckB+ write</u> <u>DISCHARGE into obscalerate rink</u> <u>WATER-LEVEL MEASUREMENTS</u> <u>DESCRIPTION OF MEASURING POINT</u> <u>PRE-TEST SWL 10.34</u> ft. TIME <u>5'O</u> <u>MAXIMUM PWL 157.79</u> ft. TIME <u>SOmis</u> <u>G.S. TO M.P.</u> <u>NATURE OF RECOVERY M/A</u> <u>M.P. ELEV.</u> <u>SPECIFIC CAPACITY</u> <u>4.10</u> gpm/ft. after <u>hr. at 21.44</u> gpm
RECOVERY from migne densite to
CLOCK TIME       5'0 pm       =       0       ELAPSED TIME         DISCHARGE       D0.0 gam       Dode Value       0       DISCHARGE       0       DISCHARGE         DISCHARGE       2/.4 gam       MEASUREMENT METHOD buckBt witch       DISCHARGE       0       DISCHARGE       0         WATER-LEVEL MEASUREMENTS       DESCRIPTION OF MEASURING POINT       PRE-TEST SWL 10.34 ft. TIME 5'0 p       10 g alote on 6" which is         MAXIMUM PWL 157.79 ft. TIME       Somis       0.5 2'alone #"prc       0         MAXIMUM DRANDOWN 5.22 ft. TIME       0       0.5 10 M.P.       0         SPECIFIC CAPACITY       4/.0       gpm/ft.       after 1 hr. at 2/.4 gpm
DISCHARGE RATE(S)       2/.4 gram       MEASUREMENT METHOD buck B+ write         DISCHARGE RATE(S)       2/.4 gram       MEASUREMENT METHOD buck B+ write         WATER-LEVEL MEASUREMENTS       DESCRIPTION OF MEASURING POINT         PRE-TEST SWL       /0.34 ft. TIME       5 ¹⁰ p         MAXIMUM PWL       /57.79 ft. TIME       0.53 almee 4* prc         * MAXIMUM DRAWDOWN 5722 ft. TIME       G.S. TO M.P.         NATURE OF RECOVERY       M/A         SPECIFIC CAPACITY       4.10       gpm/ft.
DISCHARGE RATE(S)       2/4 gam       MEASUREMENT METHOD buckets with         DISPOSITION OF DISCHARCE       into shatlowed nink         WATER-LEVEL MEASUREMENTS       DESCRIPTION OF MEASURING POINT         .PRE-TEST SWL       /0.34 ft. TIME       5/0 p         MAXIMUM PWL       /57.79 ft. TIME       1/52/alone #*prc         * MAXIMUM DRAWDOWN       5/22 ft. TIME       G.S. TO M.P.         NATURE OF RECOVERY       M/A       M.P. ELEV.         SPECIFIC CAPACITY       4/10       gpm/ft.       after hr. at2/.4/_ gpm
PRE-TEST SWL $/0.34^{\circ}$ ft. TIME $5^{10}$ Lis of slate on 6" which isMAXIMUM PWL $/57.29^{\circ}$ ft. TIME $0.53^{\circ}$ almee $4^{\circ}$ prc# MAXIMUM DRAWDOWN $522$ ft. TIME $0.53^{\circ}$ almee $4^{\circ}$ prcMAXIMUM DRAWDOWN $522$ ft. TIME $0.53^{\circ}$ almee $4^{\circ}$ prcSPECIFIC ORPACITY $1/4$ M.P. ELEV. $M.P.$ SPECIFIC CAPACITY $4.10$ gpm/ft.after $/$ hr. at $2/.4^{\circ}$ gpm
MAXIMUM PWL $15.79$ ft. TIME <u>'0'SJ'alma 4"pvc</u> MAXIMUM DRAWDOWN 522 ft. TIME <u>Some</u> G.S. TO M.P. NATURE OF RECOVERY <u>N/A</u> M.P. ELEV. <u>SPECIFIC CAPACITY</u> <u>4.10</u> gpm/ft. after <u>1</u> hr. at <u>21.4</u> gpm
,
WATER QUALITY
LAB: ONREC NUMBER OF SAMPLES
ANALYSES REQUESTED votalle scan WELL DISINFECTION: DATE - METHOD not disingusted - monitory well.
OBSERVATION WELLS 45:0' OB 45 B G OB 5 B .
<u>and an and an and a second</u>
OTHER DATA COLLECTED
REMARKS * Will developed during test, lost we reading used to
FORM 31-86
If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

 $l^{l}$ 

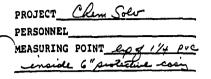
渐

OJE RSOI ASU	CT	<u>lem</u> <u>TM</u> POINT	 C	Solv M. JS			servat	ion Well	-	$\subset$
0 0 52	al	ve 4	<u>cn</u> " /	6011 1VC		THE P	OMPED	WELL IS_	<u>08-45 B</u>	_
:•	Tie Watch	Elaps		Marker (ft)	Depth to Water (ft)	Drawdown (ft)	Rate	Pumping Rate	Remarks	
		ed	╫		10.32		grow.		SWL	4
_	140	0	Ħ		10.37				SWL	1
	510	0	Π		10.34				SWL	1
	]		Щ		15.79		21.4		well is still	1
		-4	╟		15.72		"	Egal / MARC	demegaing	1
		7	H		15.67			p-gac/17/82	<b> /</b>	1
		9	Ħ		15.69		"		<u>├──</u>	1
		12	Π		15.61		23.0	Sol/13ac		1
		16	П		15.61		"	0		ł
		21	₽		15.54		"		<u>├</u>	ł
+		34	⊢		13.50		21.4	Syd Iller	<u> </u>	ł
+		39	╓		15,55		"	free free free free free free free free		
+	6000	50	Ħ		15.54	5.22	#		4.10 gpm / ft	1
			П						0.70	I
			П							
			μ.						Caroline Webber	<b>.</b>
			┢╌┢╌		<b> </b>				sapled.	
			┝╋╸							· ·
+			H		h					
- 1										
_									45.0.1 + latingen	
-			╟						OB-4SBancf OB-SB	
+			⊬						00-00	
			╟╴							
-+			H							
			Tİ.							
			Ц.							
			╟╋╍		{					
-+			╟╋╌		┝d					
-+			+							
			+-		├ <b></b>					
			T							I
			T				T			
4	1	6								
-+		6	4						AR10036	· ( )
		30					1			~ ~ /

5

EARTS DATA INCORPORATED

If the page filmed in this frame is not as readable on legible as this label, it is due to substandard color or condition of the original page.


1

# PUMPING TEST DATA

1

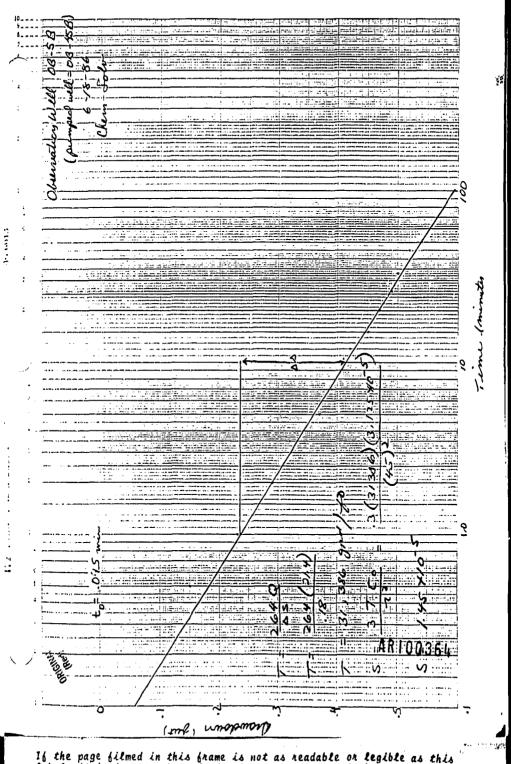
Page 2 of 2

2

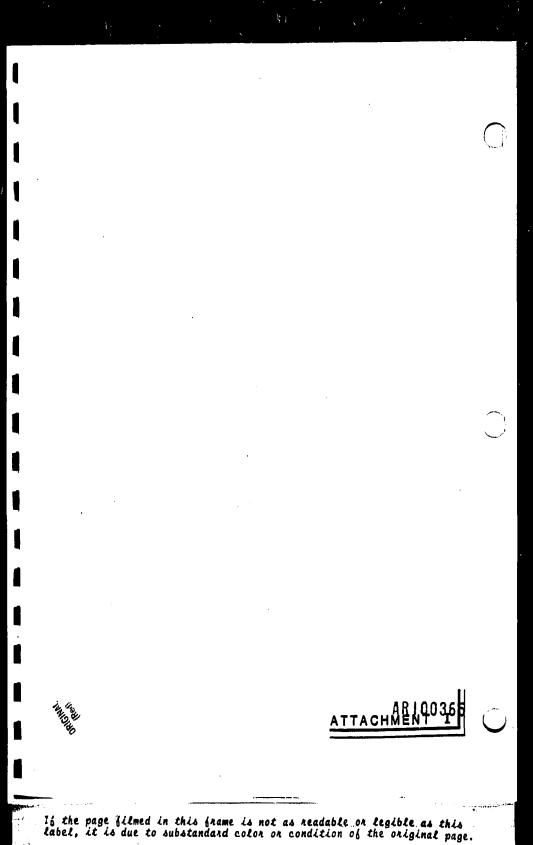


I

I


THIS WELL IS OB-5B	
Pumped Well	Drawdown
Observation Well	Recovery
THE PUMPED WELL IS	0B-45 B

Date	Ti	• _	Markar (ft)	Depth to Water (ft)	Drawdown (ft)	Pumping Rate	Remarks
	Watch	Elaps- ed					
	230				L		
	230			10.89			SWL
6-18-86	695	┝╼╼┼╉		10 81	<b>├</b> ────┤		
6-16-16	3-0	<del>6</del> H		10.90			
		.5		10.91 [1.06	-15		
		1.0		11.14	.23		[
		2.0		11.20	.29		
	<u> </u>	3.5		11.23	.32		
		50	·····	11.28	.37		
		2.0		11. 30	.39		
_		10.5		11. 32	.41		
		/2		11. 23	.42		
		15		11.36	.45		
		20		11. 38	.47		
		26		11.40	.49 .50		
		33		11. 41	.50		
,		40		11.41	.50		
		#5		11.43	.52		
		50		11.45	.54		
		┝━━━╋╉	0.50		┞╼────╇		
			RECOVER	11.25	└── <u></u>		
		┝╤╫		11.20			
		<del>_2</del>		11.16	<b>├───</b>		
		4		11.13			
				1.10			
			,	11.08			
		14		11.07			
		18		11.04			
		20		11.04			
		25		11.02			
		38		11.00			
							-AR100362
		L	·				
6						1 1	


FORM 32-83

EARTH DATA INCORPORATED

Teron 0B 45.B SHALLOW OBSERVATION WELLS 6-18-86 33 31 AR m 0 0114 Ì Probe # 30 47 Ð 0 0B. 31AR Probe #30 OB-14A 03-33 A 06-10A 9.37 8.57 8.82 9.45 SUL 2'Spm 8.56 9.38 6.82 SUL 9.43 9.34 9.72 8.82 8.57 .27 AR100363 If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.



. ....



Manual: TSSLABPROCED Method No. ____265_____ Page 11 of 6

• {

Date: _Aug__30, 1985_ Revision No. 0

DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL DIVISION OF ENVIRONMENTAL CONTROL TECHNICAL SERVICES SECTION

Analytical Method 265

Purgeable Halocarbons

Application:

Materials:

1

"**.** . '

A set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of a set of

and a second and a second and a second and a second and a second sec

.

This method can be used to determine ' the listed halogenated compounds in waters and wastewaters.

Vial - 40 ml with screw cap with hole in center (Pierce £13075 or equivalent).

Septum - Teflon lined silicone (Pierce £12722 or equivalent).

Purge and trap device - includes sample purger, trap and desorber (Tekmar LSC 2 or equivalent).

Sparging vessel ~ 25 ml or 5 ml.

Trap - 25 cm long, ≥ 0.105" ID.

a. Tenax

· • . . .

۰.

.

. . .

b. 1 cm 3% OVI, 7.7 cm Tenax, 7.7 cm silica gel, 7.7 gm coconut .

Desorber - capable of rapidly heating " _trap to 180º C. na parti dalla di sua di s

Gas chromatograph - with temperature programming capabilities.

Automated data processor. Column 1 - 6' x 0.1" glass packed with 1% SP1000 on Carbopack B 60/60. Column 2 - 6' x 0.1" glass packed with n-octane on Porasil- C (100/120) mesh.

Detector - electrolytic conductivity (Hall 700A); 100% n-propanol as ffil 00366 ductivity solution. 133-9(s) DAA

Manual: TSSLABPROCED Method No. ___265____ Page _2_ of __6___

14.1.4.

, fiftefin figgen (* 1990) 19. september - Albert Freiser, september (* 1990) 19. september - Albert Freiser, september (* 1990)

and the second s

• •

Reagents:

Date: _Aug__30__1985_ Revision No.___0___

Syringes - 25 ml or 5 ml gas-tight with Luerlok end.

Syringes - 5 ul and 10 ul.

. Volumetric flasks - 100 ml with ground glass stopper.

Organic free water - prepared by a water purification system.

Methyl Alcohol - Pesticide grade,

Stock standard solutions - prepared from pure standard materials or purchased. Stock standard solutions should be prepared in methanol. Store standards at -10 to -20°C protected from light.

Working standard solutions - 200 ng/ul prepared in methanol (may be purchased from Supelco).

Surrogate halocarbon standards - 200 ng/ul prepared in methanol purchased from Supelco. A combination of bromochloromethane, 2-bromo-1-chloropropane, and 1,4 - dichlorobutane is recommended periodistant dougles the balance of the temperature program used in this method,

Glassware should be carefully cleaned. Detergent wash in hat water then rinse with tap water followed by distilled at 105°C before use. Dry sparging vessels and volumetric flasks in 105°C vessels and volumetric flasks in 105°C drying oven prior to use.

Sample Collection Fill sample bottle to overflowing filled.

Seal the bottle with septum lined cap (Teflon face on sample side) so that no شتواسه و وم * دده و در د ده سه مع و سب

÷.,

(Teflon face on sample side) so that no air bubbles are entrapped. Maintain seal until time of analysis. AR 100367

Date: Aug. 30, 1985 Revision No.___0

8₹

Ð

Manual: TSSLABPROCED Mothod No. ____265 Page _____ of ____6___. .

. 

į.

Gas Chromatograph/ Purge and Trap:

. . .

المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة ال المراجعة الم Harris and

(A) a second se second sec

a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar A solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar A solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar A solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar A solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar a solar Solar a s

and a second 
"Procedure:

....

Follow manufacturers instructions to set detector conditions.

All samples must be ided or refrigerated

Allow sample to come to room temperature

from the time of collection until

extraction.

prior to analysis.

Condition new trap overnight at 180°C while back flushing with helium at 40 cc/min. then condition daily at 180°C for 10 minutes.

Set purge and trap device for the following conditions:

purge - 11 minutes with 40 cc/min. helium desorb - 4 minutes at 1800C

Column I - 1% SP1000/Carbopack B Flow - 40 cc/min helium Initial - 4 minutes at 45°C Ramp - 8°C/minute Final - 220°C for 10 minutes Injection port - 2000C

Column'II - n-Octane on Porasil C Flow - 40 cc/min helium Initial - 4 minutes at 50°C Ramp - 6°C/minute Final - 170°C for 4 minutes . . . Injection port - 2000C

Calibration, external standard

Analyze an organic free distilled water blank to assure a contamination free distilled background. Fill a 100 ml volumetric flask with contamination free distilled water.

Prepare a 4 ug/1 aqueous calibration 

Prepare a 4 ug/l aqueous calibration standard from working standard solution by inverting flask two times. Discard aqueous standard after one hour.

Manual: _TSSLABPROCED Method No. ____265_____ Page __4_ of ___6___

Date: <u>Aug. 30, 1985</u> Revision No.___0___

Remove the plunger from a 25 ml air tight syringe. Pour the standard solution into the syringe barrel to almost overflowing.

ŀ

Replace the plunger and adjust sample volume to 25 ml. Hold syringe so that Luer end is up and entrapped air can be vented.

Add 1 ul of a 200 ng/ul surrogate standard solution in methanol (8 ug/1 standard) by injecting directly into syringe containing sample.

Inject sample into sparging vessel then close valve to vessel.

Sparge and analyze standard as given under GC/purge and trap section.

Start data collection system as desorb cycle begins. Prepare a standard file which includes concentrations and response factors.

Determine the linearity of system by analyzing a series of calibration standards over the desired working range.

Daily verify calibration file by analyzing at least one standard in working range. If response is greater than  $\pm$  10% of predicted response, repeat test with factory results are not obtained, new response factors should be calculated.

ана (¹. 4) 1. 1. 1. 1. 1.

- . . . .

Analysis of Sample: Condition trap at 180°C for 10 minutes then cool to room temperature.

then cool to room temperature. Analyze a blank of organic free water to mannation assure it is free from contamination. Calibrate system with a freshly prepared ni onto tre tiere و بر جودون خار م 

aqueous standard. Allow sample to reach ambient temperature

Allow sample to reach amplent temperature prior to analysis. AR100369 Remove plunger from air tight syringe.

Manual: _TSSLABPROCED Method No. 265 Page 5 of 6

. 5 ï

. . . .

Quality Assurance:

na ang santa na ang santa ang santa na ang sa Na ang santa na ang s

. . .

...... 

a standard a se

Date: Aug. 30, 1985 Revision No. 0

Fill barrel to top with sample.

. . .

Replace plunger and adjust volume to 25 ml. Invert syringe so that Luer end is up and expel entrapped air.

Add 1 ul of a 200 ng/ul surrogate standard solution in methanol (8 ug/1) by injecting directly into syringe containing sample. . .

Attach syringe to sparging vessel and inject sample, 

Purge then analyze samples according to procedure given under GC/Purge and Trap.

Samples with a high response for any parameter should be followed by a blank analysis.

Analyze a duplicate sample after every 10th sample.

Spike one sample with a calibration compound in the working range every 7th sample.

Analyze an organic free distilled water blank at the start of each day. Analyze blank water after every sample giving a ---. . . 'n i staten i

Determine method detection limit (MDL) for each parameter. The MDL is defined automation substance that can be measured and reported with 99% confidence that the 22

reported with 99% confidence that the tvalue is above zero." Samples must be analyzed within 14 days of collection. Samples must be iced or refrigerated from

Samples must be ided or reirigereet. time of collection until analyzed.

AR100370

Manual: _TSSLABPROCED Method No. _____265 Page 6 of 6

..... 4.1.4

#### Date: <u>Aug. 30, 1985</u> Revision No. ___0_

----

Parameter	Column I	Column II	MDL, <u>ug/1</u>
Chloromethane		2.51	1.0
Bromomethane	1.54	7.05	1.0
/inyl chloride	1.54	2.51	1.0
Chloroethane	1,86	5.93	1.0
fethylene chloride	2.70		1.0
1,1 Dichloroethylene	4.18	. 4.58	1.0
L.1 Dichloroethylane	5.51	10.07	1.0
rans-1,2-Dichloroethylene	6.84	6.79	1.0
Chloroform	7.00	9.55	1.0
1.2 Dichloroethane	7.69	13.84	- 1.0
1,1,1-Trichloroethane	8.89	10.44	1.0
Carbon tetrachloride	9.28	8.02	. 1.0
Bromodichloromethane	10.16	12.56	1.0
L.2-Dichloropropane	11.36	15.45	1.0
trans-1,3-Dichloropropene	11.79	15.45	1.0
Frichloroethylene	12.33	10.44	1.0
Dibromochloromethane	13.15	15.45	1.0
1,1,2-Trichloroethane	13.15	16.68	1.0
cis-1,3-Dichloropropylene	13.15	16.68	1.0
2-Chloroethylvinyl ether	14.29	D/N	2.0
Bromoform	15.96	17.4	2.0
1,1,2,2-Tetrachloroethane	18.53	20.66	1.0
Tetrachloroethylene	18.53	12.56	1.0
Chlorobenzene	22.05	17.9	1.0
SJR:08/16/85			
يروي استعاد المحادث الموجعة متعا وتوريها	•		••••

· · · · · · · · · · ..... . . ۰. .

• • • • 22.2 

terrente de la construcción de la c November de la construcción de la co November de la construcción de la c ing a sign of the second sign of 

۰. 21 . ..... . . .

AR100371 يلير مردد فا 77

Manual: _TSSLABPROCED Method No. 270 Page 1 of 6

. . . .

Date: Aug. 30, 1985 Revision No.___0

1.1

•• •

DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL DIVISION OF ENVIRONMENTAL CONTROL TECHNICAL SERVICES SECTION

Analytical Method 270

Purgeable Aromatics

Application: Mark de la

And the second Materials: """"

eMar Sugar e

A construction of the second sec

11

ا برد ام

> This method can be used to determine the listed purgeable aromatic compounds in waters and wastewaters.

"Vial, 40 ml with screw cap with hole in center (Pierce £13075 or equivalent)

Septum, Teflon lined silicon (Pierce £12722 or equivalent).

Purge and trap device, includes sample purger, trap and desorber (Tekmar LSC 2 or equivalent).

Sparging vessel, 25 ml or 5 ml.

Trap - 25 cm long,  $\geq$  0.105" ID.

a. Tenax b. 1 cm 3% OV1, 7.7 cm Tenax, 7.7 cm merisilicagel, 7.7 gm coconut charcoal.

Desorber - capable of rapidly heating + Gas chromatograph, with temperature pro-

gramming capabilities. Automated data processor.

Detector, PID. Column I - 5% SP-1200/1.75% Bentone - 34 The supervision and the second s stainless steel column. ·····

Column II - 1% SP1000 on Carbopack E 60/80 mesh, 8' x 2 mm. Column II - 1% SP1000 on Carbopack B

60/80 mesh, 6' x 2 mm. Volumetric pipettes, 25 ml or 5 ml. Syringes - 5 ul and 10 ul. ARHO0372

Manual: <u>TSSLABPROCE</u> Method No. <u>220</u> Page 2 of 6

and a state

.. Reagents:

10

.

Glassware:

12

Date: <u>Aug. 30, 1985</u> Revision No.___0 - ----

Strain Standing

ł

Volumetric flasks, 10 ml and 100 ml with ground glass stoppers.

Analytical balance, accuracy ±.05 mg,

"Organic free water - prepared by a -Cwater purification system.

Methyl alcohol, Pesticide grade.

Stock standard solutions, prepared from pure standard materials or purchased, Stock standard solutions should be prepared in methanol. Store standards 4°C protected from light.

Working standard solutions, 200 ng/ul prepared in methanol.

Glassware should be carefully cleaned. Detergent wash in hot water then rinse in tap water followed by distilled water. Dry vials and septa for one hour at 105°C before using. Dry sparging vessels, volumetric flasks and volumetric pipettes at 105°C prior to use.

# 

.

Sample Collection and Preservation: Fill sample bottle to overflowing алан санан айсан алан алан айсан айсан m. without aerating sample as bottle is

Seal the bottle with septum lined cap (Teflon face on sample side) so that no air bubbles are entrapped. Maintain seal until time of analysis. . . . until time of analysis.

All samples must be iced or refrigerated

Gas Chromatograph/Purge and Trap: Cundition new trap overnight at 180°C while backflushing with helium (40 cc/min) then condition daily at 180°C for

cc/min) then condition daily at 180°C for

10 minutes. 12.933

10 minutes. ******

Date: Aug. 30, 1985 Revision No. ____0

Set purge and trap device for the following conditions: purge - 11 minutes with 40 cc/min

م مرد اود اد د

helium desorb - 4 minutes at 180°C

..... Set gas chromatograph for the following conditions:

Column - 5% SP-1200/1.75% Bentone

34. Flow - 36 cc/min helium

Injection port - 200°C

Initial - 50°C for 2 minutes 👘 🗮

Ramp - 6ºC/minute

Final - 150°C for 15 minutes

2 . . . . .

Detector - 250°C

Preparation of Standard Solutions:

· ·······

.

Manual: TSSLABPROCED

Method No. 270

Page 3_ of 6___6___

÷ ...,

.....

. .**. .** 

12 N. 1.64

1 2

Heat clean 10 ml volumetric flasks to 130°C for at least 1 hour.

<u>e e brite de la sectore de sectore de la /u>

Fill flask to neck with methanol. Allow to sit 10 minutes without top in place. Zero analytical balance. Check the accuracy of the balance with a 100 mg class A weight. Place volumetric flask containing methan-

100 mg class A weight. Place volumetric flask containing methan-ol on balance and determine weight. Tare out flask weight: With a clean Pasteur pipette, add two drops concentrated standard to middle of flask. Do not allow standard to run down sides of the flask. sides of the flask.

sides of the flask. Reveigh flask. Concentration sAdd 4003-74 2000 ng/ui.

Manual: _TSSLABPROCED Date: Aug. 30, 1905_ Method No. 270 Revision No. 0 Page _____ of 6____ 7 Invert several times to mix. Repeat procedure for all standards. : ..... a dia ari mari 1.58 . . . Combine all standards in a volumetric . . . . . . . . flask so that final concentration of each standard is 2 200 ng/ul. Dilute to volume with methanol. Allow sample to come to room temperature . . prior to analysis. ۰. . . . . . a a segueden i • • • Calibration (External Standard Method): Analyze an organic free distilled water . . . blank to assure a contamination froe background. Fill'a 100 ml volumetric flask with contamination free distilled water. . Prepare a 10 ug/l aqueous calibration standard from 200 ng/ul working standard solutions. : Deliver the standard by injecting from a syringe beneath the water at least 1.5 inches. Mix standard solution by inverting flask two times. Discard aqueous standard • • • ... . .. Transfer 25 ml or 5 ml aqueous calibration standard to sparging vessel. Sparge and analyze standard as given under GC/purge and trap section. Start data collection system as desorb cycle begins. Prepare a standard file which includes concentrations and response factors. Determine detector system linearity by analyzing a series of calibration stan-dards over the desired working APP 20375

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

.

Date: Aug. 30, 1985_ Revision No. 0

Daily verify calibration file by analyzing at least one standard in the working range. If response is greater than ± 10% of predicted response, repeat test with fresh calibration standard. If satisfactory results are not obtained, . new response factors should be calculated.

1.

Manual: _TSSLABPEQCED

Method No. ____270

Page __5_ of ___6___

Analysis/Sample:

1.8.2.

Quality Assurance:

- 7

Condition trap at 180°C for 10 minutes then cool to room temperature.

Analyze a blank of organic free water to assure it is free from contamination.

Calibrate system with a freshly prepared aqueous standard.

Allow sample to reach ambient temperature prior to analysis.

Transfer 25 ml or 5 ml to sparging vessel.

Purge then analyze sample according to procedure given under GC/Purge and Trap,

.Samples with a high response for any parameter should be followed by a blank . analysis,

See Analyze a duplicate sample of every it in the same of the same in the sample. . . . . .

and the same of the second state of the sample with a calibration . . compound in the working range after every 7th sample.

Analyze an organic free distilled water blank at the start of each day. Analyze blank water after every sample giving a high response for any parameter. يبادهم والمتهمة الووقة الرمعوام Determine method detection limit (MDL) ---for each parameter. The MDL is defined as "The minimum concentration of a substance that can be measured and

substance that can be measured and reported with 99% confidence that the value is above zero."

e Mange Angemen general provide a construction and general equilation of a structure of the second s An angement of the second se An angement of the second An angement of the second s

Manual: TSSLABPROCED Date: Aug. 30, 1985_ Method No. 270 Revision No. ___0 Page 5 of 6 . 1 Daily verify calibration file by analyzing at least one standard in the working range. If response is greater than ± 10% of predicted response, repeat test with fresh calibration standard. If satisfactory results are not obtained, new response factors should be calculated. Analysis/Sample: Condition trap at 180°C for 10 minutes then cool to room temperature. Analyze a blank of organic free water to assure it is free from contamination.

> Calibrate system with a freshly prepared aqueous standard.

Allow sample to reach ambient temperature prior to analysis.

Transfer 25 ml or 5 ml to sparging vessel.

Purge then analyze sample according to procedure given under GC/Purge and Trap.

Samples with a high response for any parameter should be followed by a blank analysis.

Analyze a duplicate sample of every 10th sample.

Spike one sample with a calibration . compound in the working range after every 7th sample.

Analyze an organic free distilled water blank at the start of each day. Analyze blank water after every sample giving a high response for any parameter.

Determine method detection limit (MDL) for each parameter. The MDL is defined as "The minimum concentration of a substance that can be measured and reported with 99% confidence that the value is above zero." . -AR100377

•

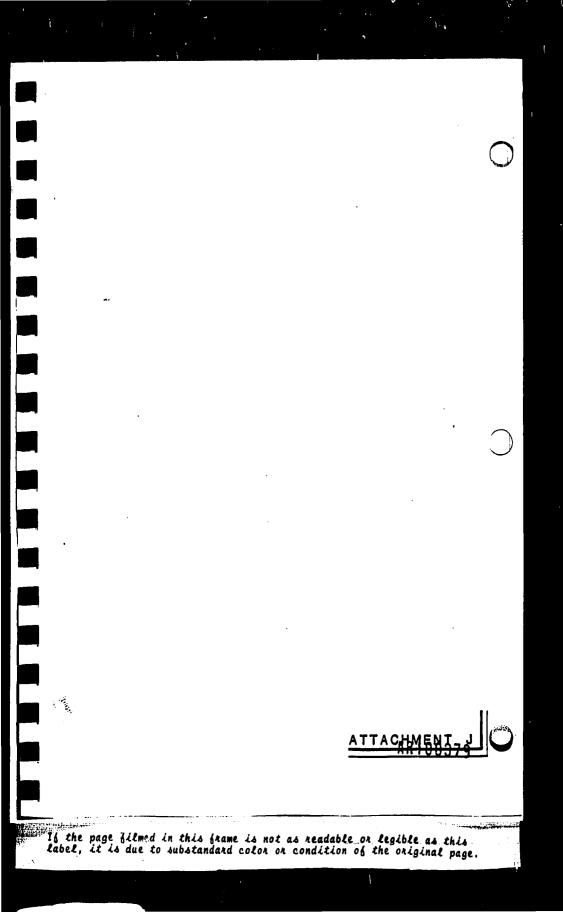
. . . . . . . . . . . . . ...... 

Quality Assurance:

1. ¹. 1 a nga ngangangangangan pengangan pengangan pengangan pengangan pengangan pengangan pengangan pengangan pengang The Star March 1

and a conjunction of the

16 the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.


• .

. .

جايد الحداثين

Manual: <u>TSSLABPROCED</u> • Method No. <u>270</u> Page <u>6</u> of <u>6</u>		Date: Au Revision	19. <u>30.1985</u> No. <u>0</u>	
t "J" gažas "' ensčena 7	1			
	Samples must of collection	be analyzed wi	thin 14 days	
(a) A second se second second sec	Samples must	be iced or ref action until ar	igerated from alyzed.	•
(a) A set of the se	•		-	٠.
PARAMETER	RETENTION	TIME, MIN	MDL ug/1	
· · · ·	COLUMN 1	COLUMN II		
Benzene	3.48	18.04	2.0	
Toluene	6.35	24.64 27.75	2.0 2.0	
p-Xylene	9,71	31.87	2.0	
m-Xylene o-Xylene	9,96	32,80 [']	2.0	
1 4 - Dichlorobenzene	. 14.84	32.80 37.80	2.0	
1,3 - Dichlorobenzene	. 15,14	36.30	2.0	•
1,2 - Dichlorobenzene a,a,a-Trifluorotoluene		37.23 23.89	2.0	
References:	Methods for (	Organic Chemica	11 Analysis	
1184 G1 WILLES /	of Municipal	and Industria	L Wastewater,	
	Environmenta	l Monitoring an Cincinnati, Ohi	d Support	_
· ·	Laboratory, 62-057, 1982		<u>E</u> r-000/4.	-
• • • • • • •				
SJR:08/16/85	a ang ang ang ang ang ang ang ang ang an	· · · · · · · · · · · · · · · · · · ·		•
(a) A set of a "Angle of the set of the s	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		· · · ·	
	a and a second of the second sec		сана 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 191	
			· · · · · · · · · · · · · · · · · · ·	•
			1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000	
				• • •
			1995 - K	· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·
				····· • • • • • • • • • • • • • • • • •
				····· • • • • • • • • • • • • • • • • •
				· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·
				····· • • • • • • • • • • • • • • • • •
				· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·
				3.7.8

l.



AGE NO. 00001

CHEM SOLV WATER QUALITY DATA

(	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
.0-03-84	3776	OB-1A	1, 1-Dichloroethane		ug/l
10-03-84	3776	OB-1A	1,1,1-Trichloroethane	5.1	ug/l
L0-03-84	3776	OB-1A	Trichloroethylene	650.0	ug/l
10-03-84	3776	OB-1A	Benzene	<16.0	ug/l
10-03-84	3776	OB-1A	Toluene	660.0	ug/l
10-03-84	3776	OB-1A	Ethylbenzene	150.0	ug/l
10-03-84	3776	OB-1A	P-xylene	<16.0	ug/l
10-03-84	3776	OB-1A	M-xylene	250.0	ug/l
10-03-84	3776	OB-1A	0-xylene	27.0	ug/l
10-03-84	3777	OB-2A	1, 1-Dichloroethane	nd	ug/l
10-03-84	3777	OB-2A	1,1,1-Trichloroethane	210.0	ug/l
10-93-84	3777	OB-2A	Trichloroethylene	500.0	ug/l
10-03-84	3777	OB-2A	Benzene	nd	ug/l
10-03-94	3777	OB-2A	Toluene	nd	ug/l
10-03-84	3777	OB-2A	Ethylbenzene	nd	ug/l
10-03-84	3777	OB-2A	P-xylene	nd	ug/l
10-03-84	3777	OB-2A	M-xylene	nd	ug/l
10-03-84	3777	OB-2A	0-xylene	nd	ug/l
10-03-84	3779	OB-3A	Chloromethane	nd	ug/l
10-03-84	3779	OB-3A	1, 1-Dichloroethane	nd	ug/l
10-03-84	3779	OB-3A	1,1,1-Trichloroethane	nd	ug/l
10-03-84	3779	OB-3A	Benzene	nd	ug/l
10-03-84	3779	ов-за	Toluene	nd	ug/l
10-03-84	3779->	OB-3A	Ethylbenzene	AR100380 nd	ug/l
<del>1</del> -84 م	3779	OB-3A	P-xylene		ug/l
10-03-84	3779	OB-3A	M-xylene	nd	ug/l

PAGE NO. 00002 02/04/87

١

9

				CHEM SOLV WATER QUALITY D.	ATA	$\frown$
	DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UN
	10-03-84	3779	OB-3A	0-xylene	nd	ug/l
	10-03-84	3780	OB-4A	1, 1-Dichloroethane	1.4	ug/l
	10-03-84	3780	OB-4A	1,1,1-Trichloroethane	23.0	ug/l
	10-03-84	3780	OB-4A	Trichloroethylene	250.0	ug/l
	10-03-84	3780	OB-4A	Benzene	nd	ug/l
	10-03-84	3780	OB-4A	Toluene	nd	ug/l
	10-03-84	3780	OB-4A	Ethylbenzene	nd	ug/1
	10-03-84	3780	OB-4A	P-xylene	nd	ug/l
	10-03-84	3780	OB-4A	M-xylene	nd	ug/l
	10-03-84	3780	OB-4A	<b>O-xylene</b>	nd	ug/l
	10-03-84	3781	OB-5A	Chloroform	7.0	ug/l
	10-03-84	3781	ов-5а	1,1,1-Trichloroethane	110.0	ug
	10-03-84	3781	OB-5A	Trichloroethylene	770.0	ug/I
	10-03-84	3781	OB-5A	Benzene	nd	ug/l
	10-03-84	3781	OB-5A	Toluene	nd	ug/l
	10-03-84	3781	OB-5A	Ethylbenzene	nd	ug/l
	10-03-84	3781	OB-5A	P-xylene	nd	ug/l
	10-03-84	3781	OB-5A	M-xylene	nd	ug/l
	10-03-84	3781	OB-5A	O-xylene	nd	ug/l
	12-05-84	4543	OB-5A	2-Chlorophenol	nd	ug/l
	12-05-84	4543	OB-5A	2-Nitrophenol	nđ	ug/l
	12-05-84	4543	OB-5A	Phenol	nd	ug/l
	12-05-84	4543	OB-5A	2,4-Dimethylphenol	nd	ug/l
•	12-05-84	4543	OB-5A	2,4-Dichlorophenol	AP LOOG	ug/l
	12-05-84	4543	OB-5A	2,4,6-Trichlorophenol	AR 100381	ug( ^{phe} )
	12-05-84	4543	OB-5A	4-Chloro-3-methylphenol		ug/l

AGE NO. 00003 2/04/87

CHEM SOLV WATER QUALITY DATA

14

۱<u>.</u>

	( )					
	( ) Augure	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
	2-05-84	4543	OB-5A	2,4-Dinitrophenol	nd	ug/1
	2-05-84	4543	OB-5A	2-Methyl-4,6-dinitrophenol	nd	ug/l
	2-05-84	4543	OB~5A	Pentachlorophenol	nd	ug/l
	2-05-84	4543	OB-5A	4-Nitrophenol	nd	ug/l
	2-05-84	4543	OB-5A	1,3-Dichlorobenzene	nd	ug/l
	2-05-84	4543	OB-5A	1,4-Dichlorobenzene	nd	ug/l
	2-05-84	4543	OB-5A	Hexachloroethane	nd	ug/l
	2-05-84	4543	OB-5A	Bis (2-chloroisopropyl)ether	nd	ug/l
	2-05-84	4543	OB-5A	Hexachlorocyclopentadiene	nd	ug/l
	2-05-84	4543	OB-5A	2-Chloronaphthalene	nd	ug/l
	2-05-84	4543	OB-5A	Acenaphthylene	nd	ug/l
	-84	4543	OB-5A	Acenaphthene	nd	ug/l
	2-05-84	4543	OB-5A	Dimethyl phthalate	nd	ug/l
	2-05-84	4543	OB-5A	2,6-Dinitrotoluene	nd	ug/l
	2-05-84	4543	OB-5A	Fluorene	nd	ug/l
	2-05-84	4543	OB-5A	2,4-Dinitrotoluene	nd	ug/l
	2-05-84	4543	OB-5A	1,2-Diphenylhydrazine	nd	ug/l
	2-05-84	4543	OB-5A	Diethyl phthalate	nd	ug/l
	2-05-84	4543	OB-5A	N-nitrosodiphenylamine	nd	ug/l
	2-05-84	4543	OB-5A	Hexachlorobenzene	nd	ug/l
	2-05-84	4543	OB-5A	4-Bromophenyl phenyl ether	nd	ug/l
	2-05-84	4543	OB-5A	Phenanthrene ,	nd	ug/l
	2-05-84	4543	OB-5A	Anthracene	nd	ug/l
l	2-05-84	19.43 49.43	OB-5A	Dibutylphthalate	nd	ug/l
	<b>€</b> €	≪ 4543	OB-5A	Fluoranthene	AR I 0 0 😹	j <b>v</b> g₁/1
	2-05-84	4543	OB-5A	Pyrene	nd	ug/l
L						

PAGE NO. 00004 02/04/87 L.

			CHEM SOLV WATER QUALITY DATA		$\bigcirc$
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNIT
12-05-84	4543	OB-5A	Benzidine	nd	ug/l
12-05-84	4543	OB-5A	Butyl benzyl phthalate	nd	ug/l
12-05-84	4543	OB-5A	Bis (2-ethyl hexyl) phthalate	nd	ug/l
12-05-84	4543	OB-5A	Chrysene	nd	ug/l
12-05-84	4543	OB-5A	Benzo(a) anthracene	nd	ug/l
12-05-84	4543	OB-5A	3,3' -Dichlorobenzidine	nd	ug/l
12-05-84	4543	OB-5A	Dioctylphalate	nd	ug/l
12-05-84	4543	OB-5A	Benzo(b)fluoranthene	nd	ug/l
12-05-84	4543	OB-5A	Benzo(k)fluoranthene	nd	ug/l
12-05-84	4543	OB-5A	Benzo(a) pyrene	nd	ug/l
12-05-84	4543	OB-5A	Indeno(1,2,3-c,d)pyrene	nd	ug/l
12-05-84	4543	OB-5A	Dibenzo(a, h) anthracene	nđ	ug/1
12-05-84	4543	OB-5A	Benzo(g, h, i)perylene	nd	ug/1
12-05-84	4543	OB-5A	N-nitrosidimethyl amine	nd	ug/l
12-05-84	4543	OB-5A	Chloromethane	nd	ug/l
.2-05-84	4543	OB-5A	Bromomethane	nd	ug/l
2-05-84	4543	OB-5A	Vinyl Chloride	nd	ug/l
2-05-84	4543	OB-5A	Chloroethane	nd	ug/l
.2-05-84	4543	OB-5A	Methylene Chloride	nd	ug/l
12-05-84	4543	OB-5A	1, 1-Dichloroethane	nd	ug/l
12-05-84	4543	OB-5A	trans-1,2-Dichloroethylene	nd	ug/l
12-05-84	4543	OB-5A	Chloroform	nd	ug/l
12-05-84	4543	OB-5A	1,2 - Dichloroethane	nd	ug/l
12-05-84	4543	OB-5A	1,1,1-Trichloroethane	nd	ug/l
.2-05-84	4543	OB-5A	Carbon Tetrachloride	AKIOO35	13 ug/1
.2-05-84	4543	OB-5A	Bromodichloromethane	nd	ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

ļ

الميا ويهوكانه

PAGE NO. 00005 02/04/87

CHEM SOLV WATER QUALITY DATA

)

-					
$\left( \begin{array}{c} \end{array} \right)$	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITAR
12-05-84	4543	OB-5A	1,2-Dichloropropane	nd	ug/l
12-05-84	4543	OB-5A	trans-1,3-Dichloropropene	nd	ug/l
12-05-84	4543	OB-5A	Trichloroethylene	9400.0	ug/l
12-05-84	4543	OB-5A	Dibronochloromethane	nd	ug/l
12-05-84	4543	OB-5A	cis -1,3 -Dichloropropene	nd	ug/l
12-05-84	4543	OB-5A	1,1,2-Trichloroethane	nd	ug/l
12-05-84	4543	OB-5A	Benzene	nd	ug/l
12-05-84	4543	OB-5A	2-Chloroethylvinyl Ether	nd	ug/l
12-05-84	4543	OB-5A	Bromoform	nd	ug/l
12-05-84	4543	OB-5A	Tetrachloroethylene	nd	ug/l
12-05-84	4543	OB-5A	1,1,2,2-Tetrachloroethane	nd	ug/l
11 15-84	4543	OB-5A	Toluene	6.2	ug/l
1. 05-84	4543	OB-5A	Chlorobenzene	nd	ug/l
12-05-84	4543	OB-5A	Ethylbenzene	nd	ug/l
12-05-84	4543	OB-5A	1,1 - Dichloroethylene	nd	ug/l
12-05-84	4543	OB-5A	P-xylene	nd	ug/l
12-05-84	4543	OB-5A	M-xylene	nd	ug/l
12-05-84	4543	OB-5A	0-xylene	nd	ug/l
12-05-84	4545	OB-7A	2-Chlorophenol	nd	ug/l
12-05-84	4545	OB-7A	2-Nitrophenol	nd	ug/l
12-05-84	4545	OB-7A	Phenol	nd	ug/l
12-05-84	4545	OB-7A	2,4-Dimethylphenol	nd	ug/l
12-05-84	4545	OB-7A	2,4-Dichlorophenol	nd	ug/l
12-05-84	4545	OB-7A	2,4,6-Trichlorophenol		ug/l
1 3-84	4545	OB-7A	4-Chloro-3-methylphenol	AR 1003,8	ug/1
12-05-84	4545	OB-7A	2,4-Dinitrophenol	nd	ug/l

PAGE NO. 00006 02/04/87

CHEM SOLV WATER QUALITY DATA

١.

				<b>~</b> • • • • •		1
	DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNIL
	12-05-84	4545	0B-7A	2-Methyl-4,6-dinitrophenol	nd	ug/l
	12-05-84	4545	OB-7A	Pentachlorophenol	nd	ug/l
	12-05-84	4545	OB-7A	4-Nitrophenol	nd	ug/l
	12-05-84	4545	OB-7A	1,3-Dichlorobenzene	nd	ug/l
	12-05-84	4545	OB-7A	1,4-Dichlorobenzene	nd	ug/l
	12-05-84	4545	OB-7A	Hexachloroethane	nd	ug/l
	12-05-84	4545	OB-7A	Bis (2-chloroisopropyl)ether	nd	ug/l
	12-05-84	4545	OB-7A	Hexachlorocyclopentadiene	nd	ug/l
	12-05-84	4545	OB-7A	2-Chloronapthalene	nd	ug/l
	12-05-84	4545	OB-7A	Acenaphthylene	nd	ug/l
	12-05-84	4545	OB-7A	Acenaphthene	nd	ug/l
	12-05-84	4545	OB-7A	Dimethyl phthalate	nd	ug/]
	12-05-84	4545	ов-7а	2,6-Dinitrotoluene	nd	ug/1
	12-05-84	4545	OB-7A	Fluorene	nd	ug/l
	12-05-84	4545	OB-7A	2,4-Dinitrotoluene	nd	ug/l
	12-05-84	4545	OB-7A	1,2-Diphenylhydrazine	nd	ug/l
	12-05-84	4545	OB-7A	Diethyl phthalate	nd	ug/l
	12-05-84	4545	OB-7A	N-nitrosodiphenylamine	nd	ug/l
ľ	12-05-84	4545	OB-7A	Hexachlorobenzene	nd	ug/l
	12-05-84	4545	OB-7A	4-Bromophenyl phenyl ether	nd	ug/l
ľ	12-05-84	4545	OB-7A	Phenanthrene	nd	ug/l
	12-05-84	4545	OB-7A	Anthracene	nd	ug/l
ŀ	12-05-84	4545	OB-7A	Dibutylphthalate	nd	ug/l
	12-05-84	4545	OB-7A	Fluoranthene		ug/1
	12-05-84	4545	9в-7а	Pyrene	ARIOQ2	85/1
	12-05-84	4545	OB-7A	Benzidine	nd	ug/l

PAGE NO. 00007 02/04/87

CHEM SOLV WATER QUALITY DATA

. ...

ł

	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
12-05-84	4545	ов-7А	Butyl benzyl phthalate		ug/l
12-05-84		OB-7A	Bis (2-ethyl hexyl) phthalate	_	ug/l
12-05-84		OB-7A	Chrysene	nd	ug/l
12-05-84	4545	OB-7A	Benzo(a)anthracene	nd	ug/l
12-05-84	4545	OB-7A	3,3' -Dichlorobenzidine	nd	ug/l
12-05-84	4545	OB-7A	Dioctylphalate	nd	ug/l
12-05-84	4545	OB-7A	Benzo(b)fluoranthene	nd	ug/l
12-05-84	4545	OB-7A	Benzo(k)fluoranthene	nd	ug/l
12-05-84	4545	ов-7а	Benzo (a) pyrene	nđ	ug/l
12-05-84	4545	OB-7A	Indeno(1,2,3-c,d)pyrene	nd	ug/l
12-05-84	4545	ов-7а	Dibenzo(a,h) anthracene	nd	ug/l
5-84	4545	OB-7A	Benzo(g,h,i)perylene	nd	ug/l
12-05-84	4545	OB-7A	N-nitrosidimethyl amine	nd	ug/l
12-05-84	4545	ов-7а	Chloromethane	nđ	ug/l
12-05-84	4545	0B-7A	Bromomethane	nd	ug/l
12-05-84	4545	0B-7A	Vinyl Chloride	nd	ug/l
12-05-84	4545	0B-7A	Chloroethane	nd	ug/l
12-05-84	4545	0B-7A	Methylene Chloride	nd	ug/l
12~05-84	4545	0B-7A	1, 1-Dichloroethane	nd	ug/l
12-05-84	4545	0B-7A	trans-1,2-Dichloroethylene	nd	ug/l
12-05-84	4545	0B-7A	Chloroform	nd	ug/l
12-05-84	4545	ов-7а	1,2 - Dichloroethane	nd	ug/l
12-05-84	4545	0B-7A	1,1,1-Trichloroethane	nd	ug/l
12-05-84	4545	0B-7A	Carbor Tetrachloride	AR 100 3 8 6	ug/1
5-84	4545	0B-7A	Bromodichloromethane	nd	D ug/l
12-05-84	4595	OB-7A	1,2-Dichloropropane	nd	ug/l

PAGE NO. 00008 02/04/87

١

CHEM SOLV WATER QUALITY DATA CONCENTR UNITE LAB # SAMPLE ID PARAMETER DATE 12-05-84 4545 OB-7A trans-1,3-Dichloropropene nd ug/1 12-05-84 4545 Trichloroethylene nd ug/l OB-7A 12-05-84 4545 OB-7A Dibronochloromethane nd ug/l 12-05-84 4545 OB-7A cis -1,3 -Dichloropropene nd ug/1 12-05-84 4545 OB-7A 1,1,2-Trichloroethane nd ug/l 12-05-84 4545 OB-7A Benzene nd ug/l 12-05-84 4545 OB-7A 2-Chloroethylvinyl Ether nd ug/l 12-05-84 4545 OB-7A Bromoform nd ug/1 12-05-84 4545 OB-7A Tetrachloroethylene nd ug/1 12-05-84 4545 1, 1, 2, 2-Tetrachloroethane OB-7A nd ug/1 12-05-84 4545 OB-7A Toluene nd ug/1 12-05-84 4545 OB-7A Chlorobenzene nd ug/? 12-05-84 4545 OB-7A Ethylbenzene nd ug/1 12-05-84 4545 OB-7A 1,1 - Dichloroethylene nd ug/1 12-05-84 4545 OB-7A nd ug/l P-xylene 12-05-84 4545 OB-7A nd ug/l M-xylene nd ug/l 12-05-84 4545 OB-7A 0-xylene 12-05-84 4546 OB-8A 2-Chlorophenol nd ug/1 12-05-84 4546 OB-BA 2-Nitrophenol nd ug/l 12-05-84 4546 OB-8A Phenol nd ug/l 12-05-84 4546 OB-8A 2,4-Dimethylphenol nd ug/1 12-05-84 4546 OB-8A 2,4-Dichlorophenol nd ug/l 12-05-84 4546 OB-BA 2,4,6-Trichlorophenol nd ug/1 12-05-84 4546 nd ug/1 OB-8A 4-Chloro-3-methylphenol AR100387./1 12-05-84 4546 OB-8A 2,4-Dinitrophenol 12-05-84 4546 OB-8A 2-Methyl-4,6-dinitrophenol nd ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

C. Min. 175

PAGE NO. 00009 02/04/87

CHEM SOLV WATER QUALITY DATA

120

_					
$\bigcirc$	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNIT#
12-05-84	4546	0B-8A	Pentachlorophenol	nd	ug/l
12-05-84	4546	OB-8A	4-Nitrophenol	nd	ug/l
12-05-84	4546	A8-80	1,3-Dichlorobenzene	nd	ug/l
12-05-84	4546	OB-8A	1,4-Dichlorobenzene	nd	ug/1
12-05-84	4546	OB-8A	Hexachloroethane	nd	ug/l
12-05-84	4546	OB-8A	Bis (2-chloroisopropyl)ether	nd	ug/l
12-05-84	4546	A8-80	Hexachlorocyclopentadiene	nd	ug/l
12-05-84	4546	OB-8A	2-Chloronaphthalene	nd	ug/l
12-05-84	4546	OB-8A	Acenaphthylene	nd	ug/l
12-05-84	4546	OB-8A	Acenaphthene	nd	ug/l
12-05-84	4546	OB-8A	Dimethyl phthalate	nd	ug/l
12-05-84	4546	OB-8A	2,6-Dinitrotoluene	nd	ug/l
5-84	4546	OB-8A	Fluorene	nd	ug/l
12-05-84	4546	OB-8A	2,4-Dinitrotoluene	nd	ug/l
12-05-84	4546	0B-8A	1,2-Diphenylhydrazine	nd	ug/l
12-05-84	4546	OB-8A	Diethyl phthalate	nd	ug/l
12-05-84	4546	OB-8A	N-nitrosodiphenylamine	· nd	ug/l
12-05-84	4546	OB-8A	Hexachlorobenzene	nd	ug/l
12-05-84	4546	OB-8A	4-Bromophenyl phenyl ether	nd	ug/l
12-05-84	4546	OB-8A	Phenanthrene	nd	ug/l
12-05-84	4546	0B-8A	Anthracene	nd	ug/l
12-05-84	4546	OB-8A	Dibutylphthalate	nd	ug/l
12-05-84	4546	OB-8A	Fluoranthene	nd	ug/l
12-05-84	4546	OB-8A	Pyrene	nd	ug/l
12-05-84	1556	OB-8A	Benzidine		ug/l
15-84	4546	OB-8A	Butyl benzyl phthalate	AU 100000	ug/l

PAGE NO. 00010 02/04/87 ......

......

			CHEM SOLV WATER QUALITY DATA		$\bigcirc$
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITES
12-05-84	4546	OB-8A	Bis (2-ethyl hexyl) phthalate	nd	ug/l
12-05-84	4546	OB-8A	Chrysene	nd	ug/l
12-05-84	4546	OB-8A	Benzo(a) anthracene	nd	ug/l
12-05-84	4546	OB-8A	3,3' -Dichlorobenzidine	nd	ug/l
12-05-84	4546	OB-8A	Dioctylphalate	nd	ug/l
12-05-84	4546	OB-8A	Benzo(b)fluoranthene	nd	ug/l
12-05-84	4546	OB-8A	Benzo(k)fluoranthene	nd	uq/1
12-05-84	4546	OB-8A	Benzo(a)pyrene	nd	ug/l
12-05-84	4546	OB-8A	Indeno(1,2,3-c,d)pyrene	nd	ug/l
12-05-84	4546	OB-8A	Dibenzo(a,h)anthracene	nđ	ug/l
12-05-84	4546	0B-8A	Benzo(g,h,i)perylene	nd	ug/1
12-05-84	4546	OB-8A	N-nitrosidimethyl amine	nd	ug
12-05-84	4546	OB-8A	Chloromethane	nd	ug/l
12-05-84	4546	OB-8A	Bromomethane	nd	ug/l
12-05-84	4546	OB-8A	Vinyl Chloride	nđ	ug/l
12-05-84	4546	OB-8A	Chloroethane	nd	ug/l
12-05-84	4546	OB-8A	Methylene Chloride	nd	ug/l
12-05-84	4546	OB-8A	1, 1-Dichloroethane	nd	ug/l
12-05-84	4546	OB-8A	trans-1,2-Dichloroethylene	nd	ug/l
12-05-84	4546	OB-8A	Chloroform	nd	ug/l
12-05-84	4546	OB-8A	1,2 - Dichloroethane	nd	ug/l
12-05-84	4546	OB-8A	1,1,1-Trichloroethane	nd	ug/l
12-05-84	4546	OB-8A	Carbon Tetrachloride	nd	ug/l
12-05-84	4846	OB-8A	Bromodichloromethane	nd	ug/l
12-05-84	<b>4</b> 546	OB-8A	1,2-Dichloropropane	AR I 0038	9.9/
12-05-84	4546	ов-8а	trans-1,3-Dichloropropene	nd	ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

ĮĮ

b. ii

PAGE NO. 00011 02/04/87

CHEM SOLV WATER QUALITY DATA

$\frown$					i
()e	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNIT:
12-05-84	4546	OB-8A	Trichloroethylene	nd	ug/l
12-05-84	4546	OB-8A	Dibronochloromethane	nd	ug/l
12-05-84	4546	OB-8A	cis -1,3 -Dichloropropene	nd	ug/l
12-05-84	4546	OB-8A	1,1,2-Trichloroethane	nd	ug/l
12-05-84	4546	OB-8A	Benzene	nd	ug/l
12-05-84	4546	OB-8A	2-Chloroethylviny] Ether	nd	ug/1
12-05-84	4546	OB-8A	Bromoform	nd	ug/l
12-05-84	4546	OB-8A	Tetrachloroethylene	nđ	ug/l
12-05-84	4546	OB-8A	1,1,2,2-Tetrachloroethane	nd	ug/l
12-05-84	4546	OB-8A	Toluene	nd	ug/l
12-05-84	4546	OB-8A	Chlorobenzene	nd	ug/l
-05-84	4546	OB-8A	Ethylbenzene	nd	ug/l
Szz <b>-</b> 05−84	4546	OB-8A	1,1 - Dichloroethylene	nd	ug/l
12-05-84	4546	OB-8A	P-xylene	nd	ug/l
12-05-84	4546	OB-8A	M-xylene	nd	ug/l
12-05-84	4546	OB-8A	O-xylene	nd	ug/l
12-05-84	4548	Simon	2-Chlorophenol	nd	ug/l
12-05-84	4548	Simon	2-Nitrophenol	nđ	ug/l
12-05-84	4548	Simon	Phenol	nd	ug/l
12-05-84	4548	Simon	2,4-Dimethylphenol	nd	ug/l
12-05-84	4548	Simon	2,4-Dichlorophenol	nđ	ug/l
12-05-84	4548	Simon	2,4,6-Trichlorophenol	nd	ug/l
12-05-84	4548	Simon	4-Chloro-3-methylphenol	nd	ug/l
12-05-84	4548	Simon	2,4-Dinitrophenol	nd	ug/l
25-84	4548	Simon	2-Methyl-4,6-dinitrophenol	AR 1003,940	Jug/1
12-05-84	4548	Simor	Pentachlorophenol	nd	ug/l

If the page filmed in this frame is not as readable or **legible as this** label, it is due to substandard color or condition of the original page.

15

ó

PAGE NO. 00012 02/04/87

ŀ

١.

			CHEM SOLV WATER QUALITY DATA		$\frown$
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UN
12-05-84	4548	Simon	4-Nitrophenol	nd	ug/l
12-05-84	4548	Simon	1,3-Dichlorobenzene	nd	ug/l
12-05-84	4548	Simon	1,4-Dichlorobengene	nd	ug/l
12-05-84	4548	Simon	Hexachloroethane	nd	ug/l
12-05-84	4548	Simon	Bis (2-chloroisopropyl)ether	nd	ug/l
12-05-84	4548	Simon	Hexachlorocyclopentadiene	nd	ug/l
12-05-84	4548	Simon	2-Chloronaphthalene	nd	ug/l
12-05-84	4548	Simon	Acenaphthylene	nd	ug/l
12-05-84	4548	Simon	Arenaphthene	nd	ug/l
12-05-84	4548	Simop	Dimethyl phthalate	nd	ug/l
12-05-84	4548	Simon	2,6-Dinitrotoluene	nd	ug/l
12-05-84	4548	Simor	Fluorene	nd	ug,
12-05-84	4548	Simon	2,4-Dinitrotoluene	nd	ug/1
12-05-84	4548	Simon	1,2-Diphenylhydrazine	nd	ug/l
12-05-84	4548	Simon	Diethyl phthalate	nd	ug/l
12-05-84	4548	Simon	N-nitrosodiphenylamine	nđ	ug/l
12-05-84	4548	Simon	Hexachlorobenzene	nd	ug/l
12-05-84	4548	Simon	4-Bromophenyl phenyl ether	nd	ug/l
12-05-84	4548	Simon	Phenanthrene	nd	ug/l
12-05-84	4548	Simon	Anthracene	nd	ug/l
12-05-84	4548	Simon	Dibutylphthalate	nd	ug/l
12-05-84	4548	Simor	Fluoranthene	nd	ug/l
12-05-84	4548	Simon	Pyrene	nd	ug/l
12-05-84	4548	Simon	Benzidine	AR 1 0 0 3 9	¥g/1
12-05-84	45.8	Simon	Butyl benzyl phthalate		ug/
12-05-84	4548	Simon	Bis (2-ethyl hexyl) phthalate	nd	ug/l

ŀ

V

Δ

-----

١

PAGE NO. 00013 02/04/87

.

**N**.

CHEM SOLV WATER QUALITY DATA

ŗ

E	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS 27
12-05-84	4548	Simon	Chrysene	nđ	ug/l
12-05-84	4548	Simon	Benzo (a) anthracene	nd	ug/1
12-05-84	4548	Simon	3,3' -Dichlorobenzidine	nd	ug/1
12-05-84	4548	Simon	Dioctylphalate	nd	ug/l
12-05-84	4548	Simon	Benzo(b)fluoranthene	nd	ug/1
12-05-84	4548	Simon	Benzo(k)fluoranthene	nd	ug/l
12-05-84	4548	Simon	Benzo(a)pyrene	nd	ug/l
12-05-84	4548	Simon	Indeno(1,2,3-c,d)pyrene	nd	ug/l
12-05-84	4548	Simon	Dibenzo(a,h)anthracene	nd	ug/l
12-05-84	4548	Simon	Benzo(g, h, i) perylene	nd	ug/l
12-05-84	4548	Simon	N-nitrosidimethyl amine	nd	ug/l
17-05-84	4548	Simon	Chloromethane	nd	ug/l
5-84	4548	Simon	Bromomethane	nd	ug/l
12-05-84	4548	Simon	Vinyl Chloride	nd	ug/l
12-05-84	4548	Simon	Chloroethane	nd	ug/l
12-05-84	4548	Simon	Methylene Chloride	nd	ug/l
12-05-84	4548	Simon	1, 1-Dichloroethane	nd	ug/l
12-05-84	4548	Simon	trans-1,2-Dichloroethylene	nd	ug/l
12-05-84	4548	Simon	Chloroform	nd	ug/l
12-05-84	4548	Simon	1,2 - Dichloroethane	nd	ug/l
12-05-84	4548	Simon	1,1,1-Trichloroethane	nđ	ug/l
12-05-84	4548	Simon	Carbon Tetrachloride	nd	ug/l
12-05-84	4548	Simon	Bromodichloromethane	nd	ug/l
12-05-84	4548	Simon	1,2-Dichloropropane		ug/1
11-05-84	4548	Simon	trans-1,3-Dichloropropene	ARIOD	ug/1
5-84	4548	Simon	Trichloroethylene	nd	ug/l

PAGE NO. 00014 02/04/87

CHEM SOLV WATER QUALITY DATA PARAMETER CONCENTR UN SAMPLE ID DATE LAB # Dibronochloromethane nd ug/l 12-05-84 4548 Simon 12-05-84 4548 nd ug/1 Simon cis -1,3 -Dichloropropene 12-05-84 4548 Simon 1,1,2-Trichloroethane nd ug/l Benzene nd ug/l 12-05-84 4548 Simon 2-Chloroethylvinyl Ether 12-05-84 4548 Simon nd ug/l 12-05-84 4548 Bromoform nd ug/l Simon 12-05-84 4548 Simon Tetrachloroethylene nd ug/1 1,1,2,2-Tetrachloroethane 12-05-84 4548 Simon nd ug/1 12-05-84 4548 Simon Toluene nd ug/1 12-05-84 4548 Simor Chlorobenzene nd ug/1 12-05-84 4548 Simon Ethylbenzene nd ug/1 12-05-84 4548 Simon 1,1 - Dichloroethylene nd ug/ 12-05-84 4548 Simon P-xylene nd ug/l nd ug/l 12-05-84 4548 Simon M-xylene 12-05-84 4548 Simon 0-xylene nd ug/l 2-Chlorophenol nd ug/l 12-05-84 4549 Harmic 12-05-84 4549 Harmic 2-Nitrophenol nd ug/1 12-05-84 4549 Harmic Pheno1 nd ug/1 12-05-84 4549 Harmic 2,4-Dimethylphenol nd ug/1 12-05-84 4549 Harmic 2,4-Dichlorophenol nd ug/1 12-05-84 4549 Harmic 2,4,6-Trichlorophenol nd ug/l 12-05-84 4549 Harmic 4-Chloro-3-methylphenol nd ug/1 12-05-84 4549 Harmic 2,4-Dinitrophenol nd ug/1 12-05-84 4549 Harmic 2-Methyl-4,6-dinitrophenol nd ug/1 12-05-84 4549 Harmic Pentachlorophenol uq 12-05-84 4549 4-Nitrophenol Harmic nd ug/l

PAGE NO. 00015 02/04/87

CHEM SOLV WATER QUALITY DATA

7						
- (s 	ATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
	12-05-84	4549	Harmic	1,3-Dichlorobenzene	nd	ug/l
	12-05-84	4549	Harmic	1,4-Dichlorobenzene	nd	ug/l
•	12-05-84	4549	Harmic	Hexachloroethane	nd	ug/l
	12-05-84	4549	Harmic	Bis (2-chloroisopropyl)ether	nd	ug/l
-	12-05-84	4549	Harmic	Hexachlorocyclopentadiene	nd	ug/l
	12-05-84	4549	Harmic	2-Chloronaphthalene	nd	ug/l
1	12-05-84	4549	Harmic	Arenaphthylene	nd	ug/l
	12.05-84	4549	Harmic	Acenaphthene	nd	ug/l
	12-05-84	4549	Harmic	Dimethyl phthalate	nd	ug/l
_	12-05-84	4549	Harmic	2,6-Dinitrotoluene	nd	ug/l
	12-05-84	4549	Harmic	Fluorene	nd	ug/l
1	12-05-84	4549	Harmic	2,4-Dinitrotoluene	nd	ug/l
<b>.</b>	12-05-84	4549	Harmic	1,2-Diphenylhydrazine	nd	ug/l
F	12-05-84	4549	Harmic	Diethyl phthalate	nd	ug/l
_	12-05-84	4549	Harmic	N-nitrosodiphenylamine	nd	ug/l
	12-05-84	4549	Harmic	Hexachlorobenzene	nd	ug/l
•	12-05-84	4549	Harmic	4-Bromophenyl phenyl ether	nd	ug/l
٦	12-05-84	4549	Harmin	Phenanthrene	nd	ug/l
	12-05-84	4549	Harmic	Anthracene	nd	ug/l
-	12-05-84	4549	Harmic	Dibutylphthalate	nd	ug/l
	12-05-84	4549	Harmic	Fluoranthene	nd	ug/l
	12-05-84	4549	Harmic	Pyrene	nd	ug/l
	12-05-84	4549	Harmic	Benzidine	nd	ug/l
1	12-05-84	4549	Harmic	Butyl benzyl phthalate	nd	ug/l
- <b></b>	?-05-84		Harmic	Bis (2-ethyl hexyl) phthalane 00	)394 nd	ug/l
	12-05-84	4549	Harmic	Chrysene	nd	ug/l

PAGE NO. 00016 02/04/87 ŀ

			CHEM SOLV WATER QUALITY DAT	'A	$\bigcirc$
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITE
12-05-84	4549	Harmic	Benzo(a)anthracene	nđ	ug/1
12-05-84	4549	Harmic	3,3' -Dichlorobenzidine	nd	ug/l
12-05-84	4549	Harmic	Dioctylphalate	nd	ug/l
12-05-84	4549	Harmic	Benzo(b)fluoranthene	nd	ug/l
12-05-84	4549	Harmic	Benzo(k)fluoranthene	nd	ug/l
12-05-84	4549	Harmic	Benzo(a)pyrene	nd	ug/l
12-05-84	4549	Harmic	Indeno(1,2,3-c,d)pyrene	nd	ug/l
12-05-84	4549	Harmic	Dibenzo(a,h)anthracene	nd	ug/l
12-05-84	4549	Harmic	Benzo(g, h, i) perylene	nd	ug/l
12-05-84	4549	Harmic	N-nitrosidimethyl amine	nd	ug/l
12-05-84	4549	Harmic	Chloromethane	nd	ug/1
12-05-84	4549	Harmic	Bromomethane	nd	ug, 🔵
12-05-84	4549	Harmic	Vinyl Chloride	nd	ug/l
12-05-84	4549	Harmic	Chloroethane	nd	ug/l
12-05-84	4549	Harmic	Methylene Chloride	nđ	ug/l
12-05-84	4549	Harmic	1, 1-Dichloroethane	nd	ug/l
12-05-84	4549	Harmic	trans-1,2-Dichloroethylene	nd	ug/l
12-05-84	4549	Harmic	Chloroform	nd	ug/l
12-05-84	4549	Harmic	1,2 - Dichloroethane	nd	ug/l
12-05-84	4549	Harmic	1,1,1-Trichloroethane	nd	ug/l
12-05-84	4549	Harmic	Carbon Tetrachloride	nd	ug/l
12-05-84	4549	Harmic	Bromodichloromethane	nd	ug/l [:]
12-05-84	4549	Harmic	1,2-Dichloropropane	nđ	ug/l
12-05-84	4549	Harmic	trans-1,3-Dichloropropene	AR 1 0 0 3 9 5	ug/l
12-05-84	4549	Harmic	Trichloroethylene		ug
12-05-84	4549	Harmic	Dibronochloromethane	nd	ug/l

PAGE NO. 00017 02/04/87

ŀ

h.

CHEM SOLV WATER QUALITY DATA

.....

( )					
L	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS;
12-05-84	4549	Harmic	cis -1,3 -Dichloropropene	nd	ug/l
12-05-84	4549	Harmic	1,1,2-Trichloroethane	nđ	ug/l
12-05-84	4549	Harmic	Benzene	nd	ug/l
12-05-84	4549	Harmic	2-Chloroethylviny] Ether	nd	ug/l
12-05-84	4549	Harmic	Bromoform	nd	ug/l
12-05-84	4549	Harmin	Tetrachloroethylene	nd	ug/l
12-05-84	4549	Harmic	1,1,2,2-Tetrachloroethane	nd	ug/l
12-05-84	4549	Harmin	Toluene	nd	ug/l
12-05-84	4549	Harmic	Chlorobenzene	nđ	ug/l
12-05-84	4549	Harmic	Ethylbenzene	nd	ug/l
12-05-84	4549	Harmic	1,1 - Dichloroethylene	nd	ug/l
: 5-84	4549	Harmic	P-xylene	nd	ug/l
12-05-84	4549	Harmic	M-xylene	nd	ug/l
12-05-84	4549	Harmic.	0-xylene	nd	ug/l
12-05-84	4550	Williams	2-Chlorophenol	nd	ug/1
12-05-84	4550	Williams	2-Nitrophenol	nd	ug/l
12-05-84	4550	Williams	Phenol	nd	ug/l
12-05-84	4550	Williams	2,4-Dimethylphenol	nd	ug/l
12-05-84	4550	Williams	2,4-Dichlorophenol	nd	ug/l
12-05-84	4550	Williams	2,4,6-Trichlorophenol	nd	ug/l
12-05-84	4550	Williams	4-Chloro-3-methylphenol	nd	ug/l
12-05-84	4550	Williams	2,4-Dinitrophenol	nd	ug/l
12-05-84	4550	Williams	2-Methy1-4,6-dinitrophenol	nd	ug/l
12-05-84	4550	Williams	Pentachlorophenol		ug/l
<u>(</u>	455	Williams	4-Nitrophenol	AR 100,39	)6 
12-05-84	4550	Williams	1,3-Dichlorobenzene	nd	ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

. ...

 $u_{\rm L}^{\rm int} v$ 

PAGE NO. 00018 02/04/87

----

.....

...

CHEM SOLV WATER QUALITY DATA

- Ch

			Bond House Plan		()
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITE
12-05-84	4550	Williams	1,4-Dichlorobenzene	nđ	ug/l
12-05-84	4550	Williams	Hexachloroethane	nd	ug/l
12-05-84	4550	Williams	Bis (2-chloroisopropyl)ether	nd	ug/l
12-05-84	4550	Williams	Hexachlorocyclopentadiene	nd	ug/l
12-05-84	4550	Williams	2-Chloronaphthalene	nd	ug/l
12-05-84	4550	Williams	Acenaphthylene	nd	ug/l
12-05-84	4550	Williams	Acenaphthene	nd	ug/l
12-05-84	4550	Williamp	Dimethyl phthalate	nd	ug/l
12-05-84	4550	Williams	2,6-Dinitrotoluene	nd	ug/l
12-05-84	4550	Williams	Fluorene	nd	ug/l
12-05-84	4550	Williams	2,4-Dinitrotoluene	nd	ug/1
12-05-84	4550	Williams	1,2-Diphenylhydrazine	nd	ug
12-05-84	4550	Williams	Diethyl phthalate	nd	ug/l
12-05-84	4550	Williams	N-nitrosodiphenylamine	nd	ug/l
12-05-84	4550	Williams	Hexachlorobenzene	nd	ug/l
12-05-84	4550	Williams	4-Bromophenyl phenyl ether	nd	ug/l
12-05-84	4550	Williams	Phenanthrene	nd	ug/l
12-05-84	4550	Williams	Anthracene	nd	ug/l
12-05-84	4550	Williams	Dibutylphthalate	nd	ug/l
12-05-84	4550	William#	Fluoranthene	nd	ug/l
12-05-84	4550	Williams	Pyrene	nd	ug/l
12-05-84	4550	Williams	Benzidine	nd	ug/l
12-05-84	ξ. Š	Williams	Butyl benzyl phthalate	nd	ug/l
12-05-84	4550	Williams	Bis (2-ethyl hexyl) phthalate		ug/1
12-05-84	4550	Williams	Chrysene	R10039	ug/O
12-05-84	4550	Williams	Benzo(a)anthracene	nd	ug/l

## PAGE NO. 00019 02/04/87

والتحمر مناد العصب

ه د د د د دردی سرد.

CHEM SOLV WATER QUALITY DATA

.

.....

$( \cdot )$					
L	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
12-05-84	4550	Williams	3,3' -Dichlorobenzidine	nd	ug/l
12-05-84	4550	Williams	Dioctylphalate	nd	ug/l
12-05-84	4550	Williams	Benzo(b)fluoranthene	nd	ug/l
12-05-84	4550	Williams	Benzo(k)fluoranthene	nd	ug/l
12-05-84	4550	Williams	Benzo(a) pyrene	nd	ug/l
12-05-84	4550	Williams	Indeno(1,2,3-c,d)pyrene	nd	ug/l
12-05-84	4550	Williams	Dibenzo(a,h)anthracene	nd	ug/l
12-05-84	4550	Williams	Benzo(g,h,i)perylene	nd	ug/l
12-05-84	4550	Williams	N-nitrosidimethyl amine	nd	ug/l
12-05-84	4550	Williams	Chloromethane	nđ	ug/l
12-05-84	4550	Williams	Bromomethane	nd	ug/l
5-84	4550	Williams	Vinyl Chloride	nd	ug/l
12-05-84	4550	Williams	Chloroethane	nđ	ug/l
12-05-84	4550	William#	Methylene Chloride	nd	ug/l
12-05-84	4550	Williams	1, 1-Dichloroethane	nđ	ug/l
12-05-84	4550	Williams	trans-1,2-Dichloroethylene	nd	ug/l
12-05-84	4550	Williams	Chloroform	nd	ug/l
12-05-84	4550	Williams	1,2 - Dichloroethane	nd	ug/l
12-05-84	4550	Williams	1,1,1-Trichloroethane	nd	ug/l
12-05-84	4550	Williams	Carbon Tetrachloride	nd	ug/l
12-05-84	4550	Williams	Bromodichloromethane	nd	ug/l
12-05-84	4550	Williams	1,2-Dichloropropane	nd	ug/l
12-05-84	4358	Williams	trans-1,3-Dichloropropene	nd	ug/l
12-05-84	4550	Williams	Trichloroethylene	AR 10039	ug/1
5-84	4550	Williams	Dibronochloromethane	HULDA?	10 ug/1
12-05-84	4550	Williams	cis -1,3 -Dichloropropene	nd	ug/l

If the page filmed in this frame is not as readable or legible as this with label, it is due to substandard color or condition of the original page.

Ŀ

PAGE NO. 00020 02/04/87

CHEM SOLV WATER QUALITY DATA CONCENTR UN LAB 5 SAMPLE ID PARAMETER DATE 1,1,2-Trichloroethane nd ug/1 12-05-84 4550 Williams 12-05-84 4550 Williams Benzene nd ug/l 2-Chloroethylvinyl Ether 12-05-84 4550 Williams nd ug/1 12-05-84 4550 Williams Bromoform nd ug/l 12-05-84 4550 Williams Tetrachloroethylene nd ug/l 1,1,2,2-Tetrachloroethane nd ug/1 12-05-84 4550 Williams 12-05-84 4550 Toluene Williams nd ug/l 12-05-84 4550 Williams Chlorobenzene nd ug/l 12-05-84 4550 Ethylbenzene Williams nd ug/l 12-05-84 4550 Williams 1,1 - Dichloroethylene nd ug/1 12-05-84 4550 Williams P-xylene nd ug/1 12-05-84 4550 Williams M-xylene nd ug/ nd ug/r 12-05-84 4550 Williams O-xylene 2-Chlorophenol nd ug/l 12-05-84 4551 Gassaway 12-05-84 4551 2-Nitrophenol nd ug/l Gassaway 12-05-84 4551 Gassaway Phenol nd ug/l 12-05-84 4551 Gassaway 2,4-Dimethylphenol nd ug/1 nd ug/l 12-05-84 4551 Gassaway 2,4-Dichlorophenol 12-05-84 4551 Gassaway 2,4,6-Trichlorophenol nd ug/l 4-Chloro-3-methylphenol nd ug/1 12-05-84 4551 Gassaway 12-05-84 4551 2,4-Dinitrophenol nd ug/l Gassaway 2-Methyl-4,6-dinitrophenol 12-05-84 4551 Gassaway nd ug/1 12-05-84 4551 Pentachlorophenol Gassaway nd ug/l 12-05-84 4551 nd ug/1 Gassaway 4-Nitrophenol 12-05-84 4551 AR 100399 ug/ " Gassaway 1,3-Dichlorobenzene 12-05-84 4551 nd ug/1 Gassaway 1,4-Dichlorobenzene

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

an an Eiseggerenten an Br

λ,

## PAGE NO. 00021 02/04/87

5

----

CHEM SOLV WATER QUALITY DATA

.....

-

$\bigcirc$			CHEM SOLV WATER QUALITI DATA	•	
TE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
12-05-84	4551	Gassaway	Hexachloroethane	nd	ug/l
12-05-84	4551	Gassaway	Bis (2-chloroisopropyl)ether	nd	ug/l
12-05-84	4551	Gassaway	Hexachlorocyclopentadiene	nd	ug/l
12-05-84	4551	Gassaway	2-Chloronaphthalene	nd	ug/l
12-05-84	4551	Gassaway	Acenaphthylene	nd	ug/l
12-05-84	4551	Gassaway	Acenaphthene	nd	ug/l
12-05-84	4551	Gassaway	Dimethyl phthalate	nd	ug/l
12-05-84	4551	Gassaway	2,6-Dinitrotoluene	nd	ug/l
12-05-84	4551	Gassaway	Fluorene	nd	ug/l
12-05-84	4551	Gassaway	2,4-Dinitrotoluene	nd	ug/l
12-05-84	4551	Gassaway	1,2-Diphenylhydrazine	nd	ug/l
05-84	4551	Gassaway	Diethyl phthalate	nd	ug/l
12-05-84	4551	Gassaway	N-nitrosodiphenylamine	nd	ug/1
12-05-84	4551	Gassawav	Hexachlorobenzene	nd	ug/1
12-05-84	4551	Gassaway	4-Bromophenyl phenyl ether	nd	ug/l
12-05-84	4551	Gassaway	Phenanthrene	nd	ug/l
12-05-84	4551	Gassaway	Anthracene	nd	ug/l
12-05-84	4551	Gassaway	Dibutylphthalate	nd	ug/l
12-05-84	4551	Gassaway	Fluoranthene	nd	ug/l
12-05-84	4551	Gassaway	Pyrene	nd	ug/l
12-05-84	4551	Gassaway	Benzidine	nd	ug/l
12-05-84	4551	Gassaway	Butyl benzyl phthalate	nd	ug/l
12-05-84	4551	Gassaway	Bis (2-ethyl hexyl) phthalate	nd	ug/l
12-05-84	4551	Gassaway	Chrysene		ug/1
5-84	4551	Gassaway	Benzo(a) anthracene	ARIOUHU	ug/1
12-05-84	4551	Gassaway	3,3' -Dichlorobenzidine	nd	ug/l

interesting of the second If the page filmed in this frame is not as readable or legible as the label, it is due to substandard color or condition of the original page.

i i international

PAGE NO. 00022 02/04/87

CHEM SOLV WATER QUALITY DATA

٥.

ł						
	DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITE
	12-05-84	4551	Gassaway	Dioctylphalate	nd	ug/l
	12-05-84	4551	Gassaway	Benzo(b)fluoranthene	nd	ug/l
	12-05-84	4551	Gassaway	Benzo(k)fluoranthene	nd	ug/l
	12-05-84	4551	Gassaway	Benzo (a) pyrene	nd	ug/l
· · · · · · · · · · · · · · · · · · ·	12-05-84	4551	Gassaway	Indeno(1,2,3-c,d)pyrene	nd	ug/l
	12-05-84	4551	Gassaway	Dibenzo(a,h)anthracene	nd	ug/l
	12-05-84	4551	Gassaway	Benzo(g,h,i)perylene	nd	ug/l
Í	12-05-84	4551	Gassawav	N-nitrosidimethyl amine	nd	ug/l
	12-05-84	4551	Gassaway	Chloromethane	nd	ug/l
	12-05-84	4551	Gassawav	Bromomethane	nd	ug/l
	12-05-84	4551	Gassaway	Vinyl Chloride	nd	ug/l
	12-05-84	4551	Gassaway	Chloroethane	nd	ug/J
	12-05-84	4551	Gassaway	Methylene Chloride	nd	ug/1
	12-05-84	4551	Gassaway	1, 1-Dichloroethane	nđ	ug/l
	12-05-84	4551	Gassaway	trans-1,2-Dichloroethylene	nd	ug/l
	12-05-84	4551	Gassaway	Chloroform	nd	ug/l
	12-05-84	4551	Gassaway	1,2 - Dichloroethane	nd	ug/l
	12-05-84	4551	Gassaway	1,1,1-Trichloroethane	nd	ug/l
	12-05-84	4551	Gassaway	Carbon Tetrachloride	nd	ug/l
	12-05-84	4551	Gassawav	Bromodichloromethane	nd	ug/l
	12-05-84	4551	Gassaway	1,2-Dichloropropane	nd	ug/l
I	12-05-84	4551	Gassaway	trans-1,3-Dichloropropene	nd	ug/l
	12-05-84	4551	Gassaway	Trichloroethylene	nd	ug/l
ĺ	12-05-84	4551	Gassaway	Dibronochloromethane	nd	ug/l
	12-05-84	4551	Gassaway	cis -1,3 -Dichloropropene	ARIOQ4	
	12-05-84	4551	Gassaway	1,1,2-Trichloroethane	nd	ug/l
Í						

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

2

## PAGE NO. 00023 02/04/87

CHEM SOLV WATER QUALITY DATA

(	· )					
1	TATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
	12-05-84	4551	Gassaway	Benzene	nd	ug/l
	12-05-84	4551	Gassaway	2-Chloroethylvinyl Ether	nd	ug/l
	12-05-84	4551	Gassaway	Bromoform	nd	ug/l
	12-05-84	4551	Gassaway	Tetrachloroethylene	nd	ug/l
	12-05-84	4551	Gassaway	1,1,2,2-Tetrachlordethane	nd	ug/l
	12-05-84	4551	Gassaway	Toluene	nd	ug/l
	12-05-84	4551	Gassaway	Chlorobenzene	nd	ug/l
	12-05-84	4551	Gassaway	Ethylbenzene	nd	ug/l
	12-05-84	4551	Gassaway	1,1 - Dichloroethylene	nd	ug/l
	12-05-84	4551	Gassaway	P-xylene	nd	ug/l
	12-05-84	4551	Gassaway	M-xylene	<2.0	ug/l
ţ	05-84	4551	Gassaway	0-xylene	nd	ug/l
	12-05-84	4578	ов-9а	2-Chlorophenol	nd	ug/l
	12-05-84	4578	OB-9A	2-Nitrophenol	nd	ug/l
	12-05-84	4578	OB-9A	Phenol	nd	ug/l
	12-05-84	4578	OB-9A	2,4-Dimethylphenol	nd	ug/l
	12-05-84	4578	OB-9A	2,4-Dichlorophenol	nd	ug/l
	12-05-84	4578	OB-9A	2,4,6-Trichlorophenol	nd	ug/l
	12-05-84	4578	ов-9а	4-Chloro-3-methylphenol	nd	ug/l
	12-05-84	4578	OB-9A	2,4-Dinitrophenol	nd	ug/l
	12-05-84	4578	OB-9A	2-Methyl-4,6-dinitrophenol	nd	ug/l
	12-05-84	4578	OB-9A	Pentachlorophenol'	nd	ug/l
	12-05-84	4578	0B-9A	4-Nitrophenol	nd	ug/l
	12-05-84	د 4578	0B-9A	1,3-Dichlorobenzene	AR 1 0 0 4 0 2	ug/l
	5-84	4578 4578	8 8 8 9 8	1,4-Dichlorobenzene	nd	ug/l
	12-05-84	4578 2	5 ов-9а	Hexachloroethane	nd	ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

دهيد المراجع

the substitution of the second

PAGE NO. 00024 02/04/87 ١

			CHEM SOLV WATER QUALITY DATA	1	
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNI
12-05-84	4578	ов-9а	Bis (2-chloroisopropyl)ether	nd	ug/l
12-05-84	4578	0B-9A	Hexachlorocyclopentadiene	nd	ug/l
12-05-84	4578	OB-9A	2-Chloronaphthalene	nd	ug/l
12-05-84	4578	OB-9A	Acenaphthylene	nd	ug/l
12-05-84	4578	OB-9A	Acenaphthene	nd	ug/l
12-05-84	4578	OB-9A	Dimethyl phthalate	nd	ug/l
12-05-84	4578	OB-9A	2,6-Dinitrotoluene	nd	ug/l
12-05-84	4578	OB-9A	Fluorene	nd	ug/l
12-05-84	4578	OB-9A	2,4-Dinitrotoluene	nd	ug/l
12-05-84	4578	OB-9A	1,2-Diphenylhydrazine	nd	ug/l
12-05-84	4578	OB-9A	Diethyl phthalate	nd	ug/l
12-05-84	4578	OB-9A	N-nitrosodiphenylamine	nd	ug/
12-05-84	4578	OB-9A	Hexachlorobenzene	nd	ug/1
12-05-84	4578	OB-9A	4-Bromophenyl phenyl ether	nd	ug/l
12-05-84	4578	OB-9A	Phenanthrene	nd	ug/l
12-05-84	4578	0B-9A	Anthracene	nd	ug/l
12-05-84	4578	ов-9а	Dibutylphthalate	nd	ug/l
12-05-84	4578	OB-9A	Fluoranthene	nd	ug/l
12-05-84	4578	OB-9A	Pyrene	nd	ug/l
12-05-84	4578	0B-9A	Benzidine	nd	ug/l
12-05-84	4578	0B-9A	Butyl benzyl phthalate	nd	ug/l
12-05-84	4578	ов-9а	Bis (2-ethyl hexyl) phthalate	nd	ug/l
12-05-84	4578	ов-9а	Chrysene	nd	ug/l
12-05-84	4579	OB-9A	Benzo(a) anthracene	nd	ug/l
12-05-84	4570	ов-9а	3,3' -Dichlorobenzidine	ARIOOTO	¥9/
12-05-84	4578	OB-9A	Dioctylphalate		ug/l

- î.

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

1

. .

PAGE NO. 00025 02/04/87

1.

CHEM	SOLV	WATER	OUALITY	DATA
------	------	-------	---------	------

Ļ

7.1	N.			~		-
	DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
4	12-05-84	4578	OB-9A	Benzo(b) fluoranthene	nd	ug/l
	12-05-84	4578	OB-9A	Benzo(k)fluoranthene	nd	ug/l
	12-05-84	4578	OB-9A	Benzo(a)pyrene	nd	ug/l
	12-05-84	4578	ов-9а	Indeno(1,2,3-c,d)pyrene	nd	ug/l
	12-05-84	4578	OB-9A	Dibenzo(a, h) anthracene	nd	ug/l
	12-05-84	4578	ов-9а	Benzo(g,h,i)perylene	nd	ug/l
8	12-05-84	4578	ов-9а	N-nitrosidimethyl amine	nd	ug/l
	12-05-84	4578	OB-9A	Chloromethane	nd	ug/l
	12-05-84	4578	OB-9A	Bromomethane	nd	ug/l
-	12-05-84	4578	OB-9A	Vinyl Chloride	nd	ug/l
	12-05-84	4578	ов-9а	Chloroethane	nd	ug/l
1	2-05-84	4578	OB-9A	Methylene Chloride	nd	ug/l
<b>n</b>	12-05-84	4578	OB-9A	1, 1-Dichloroethane	nd	ug/l
	12-05-84	4578	OB-9A	trans-1,2-Dichloroethylene	nd	ug/l
-	12-05-84	4578	OB-9A	Chloroform	nd	ug/l
	12-05-84	4578	OB-9A	1,2 - Dichlorcethane	nd	ug/l
	12-05-84	4578	OB-9A	1,1,1-Trichloroethane	nd	ug/l
	12-05-84	4578	OB-9A	Carbon Tetrachloride	nd	ug/l
	12-05-84	4578	OB-9A	Bromodichloromethane	nd	ug/l
	12-05-84	4578	OB-9A	1,2-Dichloropropane	nd	ug/l
	12-05-84	4578	OB-9A	trans-1,3-Dichloropropene	nd	ug/l
	12-05-84	4578	OB-9A	Trichloroethylene	nd	ug/l
	12-05-84	4578	OB-9A	Dibronochloromethane	nd	ug/l
	12-05-84	457.8	OB-9A	cis -1,3 -Dichloropropene		ug/l
<b>₽</b>	)-05-84	4578	OB-9A	1,1,2-Trichloroethane	AR1004.QI	ug/l
Ì	12-05-84	4578	OB-9A	Benzene	nd	ug/l
-						

PAGE NO. 00026 02/04/87

i 🎙

Į

ç

		CHEM SOLV WATER QUALITY DAY	та
DATE LAB #	SAMPLE ID	PARAMETER	CONCENTR UNITS
12-05-84 4578	OB-9A	2~Chloroethylvinyl Ether	nd ug/1
12-05-84 4578	OB-9A	Bromoform	nd ug/l
12-05-84 4578	OB-9A	Tetrachloroethylene	nd ug/l
12-05-84 4578	OB-9A	1,1,2,2-Tetrachloroethane	nd ug/l
12-05-84 4578	OB-9A	Toluene	nd ug/l
12-05-84 4578	OB-9A	Chlorobenzene	nd ug/l
12-05-84 4578	OB-9A	Ethylbenzene	nd ug/1
12-05-84 4578	OB-9A	1,1 - Dichloroethylene	nd ug/l
12-05-84 4578	ов-9а	P-xylene	nd ug/l
12-05-84 4578	OB-9A	M-xylene	nd ug/l
12-05-84 4578	OB-9A	O-xylene	nd ug/
12-05-84 4579	OB-9B	2-Chlorophenol	nd ug
12-05-84 4579	OB-9B	2-Nitrophenol	nd ug/l
12-05-84 4579	0B-9B	Phenol	nd ug/l
12-05-84 4579	OB-9B	2,4-Dimethylphenol	nd ug/l
12-05-84 4579	OB-9B	2,4-Dichlorophenol	nd ug/l
12-05-84 4579	OB-9B	2,4,6-Trichlorophenol	nd ug/l
12-05-84 4579	OB-9B	4-Chloro-3-methylphenol	nd ug/l
12-05-84 4579	0B-9B	2,4-Dinitrophenol	nd ug/l·
12-05-84 4579	OB-9B	2-Methyl-4,6-dinitrophenol	nd ug/l
12-05-84 4579	0B-9B	Pentachlorophenol	nd ug/l
12-05-84 4579	0B-9B	4-Nitrophenol	nd ug/l
12-05-84 4579	0B-9B	1,3-Dichlorobenzene	nd ug/l
12-05-84 4579	0B-9B	1,4-Dichlorobenzene	nd ug/
12-05-84 4579	OB-9B	Hexachloroethane	ARIOO4nd 5ug/
12-05-84 4579	OB-9B	Bis (2-chloroisopropyl)ether	nd ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

l

- 1

۱

PAGE NO. 00027 02/04/87

.

· l

CHEM SOLV WATER QUALITY DATA

۰.

١

11,

•				<b>H</b>		1
1,	E	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITE
	12-05-84	4579	OB-9B	Hexachlorocyclopentadiene	nd	ug/1
	12-05-84	4579	OB-9B	2-Chloronaphthalene	nd	ug/1
	12-05-84	4579	OB-9B	Acenaphthylene	nd	ug/l
	12-05-84	4579	OB-9B	Acenaphthene	nd	ug/l
	12-05-84	4579	OB-9B	Dimethyl phthalate	nd	ug/l
	12-05-84	4579	OB-9B	2,6-Dinitrotoluene	nd	ug/l
	12-05-84	4579	ов-9в	Fluorene	nd	ug/l
	12-05-84	4579	OB-9B	2,4-Dinitrotoluene	nd	ug/l
	12-05-84	4579	OB-9B	1,2-Diphenylhydrazine	nd	ug/l
	12-05-84	4579	0B-9B	Diethyl phthalate	nd	ug/l
	12-05-84	4579	ов-9в	N-nitrosodiphenylamine	nd	ug/l
	15-84	4579	OB-9B	Hexachlorobenzene	nd	ug/l
	12-05-84	4579	ов-9в	4-Bromophenyl phenyl ether	nd	ug/l
	12-05-84	4579	ов-9в	Phenanthrene	nd	ug/l
,	12-05-84	4579	OB-9B	Anthracene	nd	ug/l
	12-05-84	4579	ов-9в	Dibutylphthalate	nd	ug/l
	12-05-84	4579	ОВ-9В	Fluoranthene	nd	ug/l
	12-05-84	4579	0B-9B	Pyrene	nđ	ug/l
	12-05-84	4579	ов-9в	Benzidine	nd	ug/l
	12-05-84	4579	0B-9B	Butyl benzyl phthalate	nđ	ug/l
	12-05-84	4579	0B-9B	Bis (2-ethyl hexyl) phthalate	nd	ug/l
	12-05-84		ов-9в	Chrysene	nd	ug/l
	12-05-84	45796	0B-9B	Benzo(a) anthracene	nđ	ug/1
	12-05-84	4579 80	0B-9B	3,3' -Dichlorobenzidine	nđ	ug/l
	5-84	4579	ов-9в	Dioctylphalate	AR 100406	5 _{ug/1}
	12-05-84	4579	OB-9B	Benzo(b)fluoranthenc		ug/l

PAGE NO. 00028 02/04/87

I

			CHEM SOLV WATER QUALITY DATA		$\bigcirc$
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNIT
12-05-84	4579	0B-9B	Benzo(k)fluoranthene	nd	ug/l
12-05-84	4579	OB-9B	Benzo(a) pyrene	nđ	ug/l
12-05-84	4579	OB-9B	Indeno(1,2,3-c,d)pyrene	nd	ug/l
12-05-84	4579	OB-9B	Dibenzo(a,h)anthracene	nd	ug/l
12-05-84	4579	OB-9B	Benzo(g,h,i)perylene	nd	ug/l
12-05-84	4579	OB-9B	N-nitrosidimethyl amine	nd	ug/l
12-05-84	4579	OB-9B	Chloromethane	nd	ug/l
12-05-84	4579	OB-9B	Bromomethane	nd	ug/l
12-05-84	4579	OB-9B	Vinyl Chloride	nd	ug/l
12-05-84	4579	0B-9B	Chloroethane	nd	ug/l
12-05-84	4579	0B-9B	Methylene Chloride	nd	ug/l
12-05-84	4579	0B-9B	1, 1-Dichloroethane	nd	ug/
12-05-84	4579	0B-9B	trans-1,2-Dichloroethylene	nd	ug/l
12-05-84	4579	OB-9B	Chloroform	nd	ug/l
12-05-84	4579	OB-98	1,2 - Dichloroethane	nd	ug/l
12-05-84	4579	0B-9B	1,1,1-Trichloroethane	nd	ug/l
12-05-84	4579	ов-9в	Carbon Tetrachloride	nd	ug/l
12-05-84	4579	ов-9в	Bromodichloromethane	nd	ug/l
12-05-84	4579	ов-9в	1,2-Dichloropropane	nd	ug/l
12-05-84	4579	OB-98	trans-1,3-Dichloropropene	nd	ug/l
12-05-84	4579	0B-9B	Trichloroethylene	2.6	ug/l
12-05-84	4579	ов-9в	Dibronochloromethane	nd	ug/l
12-05-84	4579	0B-9B	cis -1,3 -Dichloropropene	nd	ug/l
12-05-84	4579	OB-98	1,1,2-Trichloroethane		ug/l
12-05-84	4579	OB-98	Benzene	AR I O Q4	Q7
12-05-84	4579	ов-9в	2-Chloroethylviny' Ether	nd	ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

-----

PAGE NO. 00029 02/04/87

1

CHEM SOLV WATER QUALITY DATA

ŀ

Discont	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS€ ₅₇₇
12-05-84	4579	OB-9B	Bromoform	nd	ug/l
12-05-84	4579	OB-9B	Tetrachloroethylene	nd	ug/l
12-05-84	4579	OB-9B	1,1,2,2-Tetrachloroethane	nd	ug/l
12-05-84	4579	OB-9B	Toluene	nd	ug/l
12-05-84	4579	OB-9B	Chlorobenzene	nd	ug/l
12-05-84	4579	OB-9B	Ethylbenzene	nd	ug/l
12-05-84	4579	OB-9B	1,1 - Dichloroethylene	nd	ug/l
12-05-84	4579	OB-9B	P-xylene	nd	ug/l
12-05-84	4579	OB-9B	M-xylene	nd	ug/l
12-05-84	4579	OB-9B	0-xylene	nd	ug/l
12-05-84	4580	OB-1A	2-Chlorophenol	nd	ug/l
1/	4580	OB-1A	2-Nitrophenol	nd	ug/l
12-05-84	4580	OB-1A	Phenol	nd	ug/l
12-05-84	4580	OB-1A	2,4-Dimethylphenol	nd	ug/l
12-05-84	4580	OB-1A	2,4-Dichlorophenol	nd	ug/1
12-05-84	4580	OB-1A	2,4,6-Trichlorophenol	nd	ug/l
.2-05-84	4580	OB-1A	4-Chloro-3-methylphenol	nd	ug/l
.2-05-84	4580	OB-1A	2,4-Dinitrophenol	nd	ug/l
12-05-84	4580	OB-1A	2-Methyl-4,6-dinitrophenol	nd	ug/l
12-05-84	4580	OB-1A	Pentachlorophenol	nd	ug/l
12-05-84	4580	OB-1A	4-Nitrophenol	nd	ug/l
12-05-84	4580	OB-1A	1,3-Dichlorobenzene	nd	ug/l
12-05-84	4580	OB-1A	1,4-Dichlorobenzene	nd	ug/l
12-05-84	4580	OB-1A	Hexachloroethane	nd	ug/l
184	4580	0B-1A	Bis (2-chloroisopropyl)ether	ARIOOH	0-6/1
12-05-84	4580	OB-1A	Hexachlorocyclopentadiene		ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

. . .

PAGE NO. 00030 02/04/87

1

CHEM SOLV WATER QUALITY DATA

					$\sim$
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	ואט
12-05-84	4580	OB-1A	2-Chloronaphthalene	nđ	ug/l
12-05-84	4580	OB-1A	Acenaphthylene	nd	ug/l
12-05-84	4580	ob-1a	Arenaphthene	nd	ug/l
12-05-84	4580	OB-1A	Dimethyl phthalate	nd	ug/l
12-05-84	4580	OB-1A	2,6-Dinitrotoluene	nd	ug/1
12-05-84	4580	OB-1A	Fluorene	nd	ug/l
12-05-84	4580	OB-1A	2,4-Dinitrotoluene	nd	ug/l
12-05-84	4580	OB-1A	1,2-Diphenylhydrazine	nd	ug/l
12-05-84	4580	ob-1a	Diethyl phthalate	nd	ug/l
12-05-84	4580	OB-1A	N-nitrosodiphenylamine	nd	ug/l
12-05-84	4580	OB-1A	Hexachlorobenzene	nd	ug/l
12-05-84	4580	OB-1A	4-Bromophenyl phenyl ether	nd	ug//
12-05-84	4580	ob-1a	Phenanthrene	nd	ug/1
12-05-84	4580	ob-1a	Anthracene	nd	ug/l
12-05-84	4580	OB-1A	Dibutylphthalate	nđ	ug/l
12-05-84	4580	OB-1A	Fluoranthene	nd	ug/l
12-05-84	4580	OB-1A	Pyrene	nd	ug/l
12-05-84	4580	OB-1A	Benzidine	nd	ug/l
12-05-84	4580	ob-1a	Butyl benzyl phthalate	nd	ug/l
12-05-84	4580	OB-1A	Bis (2-ethyl hexyl) phthalate	nd	ug/l
12-05-84	4580	OB-1A	Chrysene	nd	ug/l
12-05-84	4580	ов-1а	Renzo(a)anthracene	nd	ug/l
12-05-84	4580	0B-1A	3,3' -Dichlorobenzidine	nd	ug/l
12-05-84	4580	OB-1A	DioCtylphalate	nd	ug/l
12-05-84	4580	OB-1A	Benzo(b)fluoranthene	ARI0040	nð\\$
12-05-84	4580	OB-1A	Benzo(k)fluoranthene	nd	ug/l

PAGE NO. 00031 )2/04/87 ŀ

CHEM SOLV WATER QUALITY DATA

	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNIT _{Ś;}
2-05-84	4580	OB-1A	Benzo (a) pyrene	nd	ug/l
2-05-84	4580	OB-1A	Indeno(1,2,3-c,d)pyrene	nd	ug/l
2-05-84	4580	OB-1A	Dibenzo(a,h)anthracene	nd	ug/l
2-05-84	4580	OB-1A	Benzo(g,h,i)perylene	nd	ug/l
2-05-84	4580	OB-1A	N-nitrosidimethyl amine	nd	ug/l
2-05-84	4580	OB-1A	Chloromethane	nđ	ug/l
2-05-84	4580	OB-1A	Bromomethane	nđ	ug/l
2-05-84	4580	OB-1A	Vinyl Chloride	nd	ug/l
2-05-84	4580	OB-1A	Chloroethane	nd	ug/l
2-05-84	4580	OB-1A	Methylen ^e Chloride	nd	ug/l
2-05-84	4580	OB-1A	1, 1-Dichloroethane	nd	ug/l
2 84	4580	OB-1A	trans-1,2-Dichloroethylene	nd	ug/l
2-05-84	4580	OB-1A	Chloroform	nd	ug/l
2-05-84	4580	OB-1A	1,2 - Dichloroethane	nd	ug/l
2-05-84	4580	OB-1A	1,1,1-Trichloroethane	1800.0	ug/l
2-05-84	4580	OB-1A	Carbon Tetrachloride	nd	ug/l
?-05-84	4580	OB-1A	Bromodichloromethane	nd	ug/l
2-05-84	4580	0B-1A	1,2-Dichloropropane	nd	ug/l
2-05-84	4580	OB-1A	trans-1,3-Dichloropropene	nd	ug/l
2-05-84	4580	0B-1A	Trichloroethylene	110000.0	ug/l
2-05-84	4580	0B-1A	Dibronochloromethane	nd	ug/l
2-05-84	4580	0B-1A	cis ~1,3 -Dichloropropene	nd	ug/l
2-05-84	4580	OB-1A	1,1,2-Trichloroethane	nd	ug/l
2-05-84	4580	OB-1A	Benzene	ARIODI	1991 ¹
2 84	45,800	OB-1A	2-Chloroethylvinyl Ether	-	ug/l
2-05-84	45800	OB-1A	Bromoform	nd	ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

1

PAGE NO. 00032 02/04/87

.

••

Ļ

			CHEM SOLV WATER QUALITY DATA		$\bigcirc$
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNI'I'Se ; ;
12-05-84	4580	OB-1A	Tetrachloroethylene	nd	ug/l
12-05-84	4580 .	OB-1A	1,1,2,2-Tetrachloroethane	nd	ug/l
12-05-84	4580	OB-1A	Toluene	324.0	ug/l
12-05-84	4580	OB-1A	Chlorobenzene	nd	ug/l
12-05-84	4580	OB-1A	Ethylbenzene	159.0	ug/l
12-05-84	4580	OB-1A	1,1 - Dichloroethylene	nd	ug/l
12-05-84	4580	OB-1A	P~xylene	111.0	ug/l
12-05-84	4580	OB-1A	M-xylene	230.0	ug/l
12-05-84	4580	OB-1A	0-xylene	106.0	ug/l
12-05-84	4581	ов-6а	2-Chlorophenol	nd	ug/l
12-05-84	4581	ов-6а	2-Nitrophenol	nđ	ug/l
12-05-84	4581	ов-ба	Phenol	nd	ug.
12-05-84	4581	ов-6а	2,4-Dimethylphenol	nd	ug/l
12-05-84	4581	OB-6A	2,4-Dichlorophenol	nd	ug/l
12-05-84	4581	OB-6A	2,4,6-Trichlorophenol	nđ	ug/l
12-05-84	4581	OB-6A	4-Chloro-3-methylphenol	nd	ug/l
12-05-84	4581	OB-6A	2,4-Dinitrophenol	nd	ug/l
12-05-84	4581	ов-6а	2-Methyl-4,6-dinitrophenol	nd	ug/l
12-05-84	4581	ов-6а	Pentachlorophenol	· nd	ug/l
12-05-84	4581	OB-6A	4-Nitrophenol	nd	ug/l
12-05-84	4581	OB-6A	1,3-Dichlorobenzene	nd	ug/l
12-05-84	4581	OB-6A	1,4-Dichlorobenzene	nd	ug/l
12-05-84	4581	OB-6A	Hexachloroethane	nd	ug/l
12-05-84	4581	OB-6A	Bis (2-chloroisopropyl)ether	nd	ug/1
12-05-84	4581	OB-6A	Hexachlorocyclopentadiene	nd	ug
12-05-84	4582	OB-6A	2-Chloronaphthalene	AR I O O.Ha	up/1

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

Ś

PAGE NO. 00033 02/04/87

١.

l,

5

1.

$\bigcirc$			CHEM SOLV WATER QUALITY DATA		
DATE	LAB #	SAMPLE ID	PARAMETER COL	NCENTR	unitš _{ij}
12-05-84	4581	OB-6A	Arenaphthylene	nd	ug/l
12-05-84	4581	OB-6A	Acenaphthene	nd	ug/l
12-05-84	4581	OB-6A	Dimethyl phthalate	ba	ug/l
12-05-84	4581	OB-6A	2,6-Dinitrotoluene	nd	ug/l
12-05-84	4581	OB-6A	Fluorene	nd	ug/l
12-05-84	4581	OB-6A	2,4-Dinitrotoluene	nd	ug/l
12-05-84	4581	OB-6A	1,2-Diphenylhydrazine	nd	ug/l
12-05-84	4581	OB-6A	Diethyl phthalate	nd	ug/l
12-05-84	4581	OB-6A	N-nitrosodiphenylamine	nd	ug/l
12-05-84	4581	OB-6A	Hexachlorobenzene	nd	ug/l
12-05-84	4581	OB-6A	4-Bromophenyl phenyl ether	nd	ug/l
-05-84	4581	OB-6A	Phenanthrene	nd	ug/l
12-05-84	4581	OB-6A	Anthracene	nd	ug/1
12-05-84	4581	OB-6A	Dibutylphthalate	nd	ug/l
12-05-84	4581	ов-ба	Fluoranthene	nd	ug/l
12-05-84	4581	OB-6A	Pyrene	nd	ug/l
12-05-84	4581	OB-6A	Benzidine	nd	ug/l
12-05-84	4581	OB-6A	Butyl benzyl phthalate	nd	ug/l
12-05-84	4581	OB-6A	Bis (2-ethyl hexyl) phthalate	nd	ug/l
12-05-84	4581	OB-6A	Chrysene	nd	ug/l
12-05-84	4581	OB-6A	Benzo(a)anthracene	nd	ug/l
12-05-84	4581	OB-6A	3,3' -Dichlorobenzidine	nd	ug/l
12-05-84	4581	OB-6A	Dioctylphalate	nd	ug/l
12-05-84	4581	OB-6A	Benzo(b)fluoranthene	nd	ug/l
05-84	4581	ов-ба	Benzo(k)fluoranthene ARIO	04.12	ug/l
12-05-84	Å581	OB-6A	Benzo (a) pyrene	nd	ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

.

14

PAGE NO. 00034 02/04/87

CHEM SOLV WATER QUALITY DATA DATE LAR # SAMPLE TO PARAMETER CONCENTR UN1 Indeno(1,2,3~c,d)pyrene nd ug/l 12-05-84 4581 OB-6A Dibenzo(a,h)anthracene nd ug/l 12-05-84 4581 OB-6A 12-05-84 4581 OB-6A Benzo(g, h, i) perylene nd ug/l 12-05-84 4581 OB-6A N-nitrosidimethyl amine nd ug/l 12-05-84 4581 OB-6A Chloromethane nd ug/l Bromomethane nd ug/l 12-05-84 4581 OB-6A Vinyl Chloride 12-05-84 4581 OB-6A nd ug/l Chloroethane nd ug/l 12-05-84 4581 OB-6A Methylene Chloride 12-05-84 4581 OB-6A nd ug/l 12-05-84 4581 OB-6A 1. 1-Dichloroethane nd ug/l 12-05-84 4581 OB-6A trans-1, 2-Dichloroethvlene nd ug/l Chloroform nd ug/? 12-05-84 4581 OB-6A 12-05-84 4581 1.2 - Dichloroethane nd ug/1 OB-6A 1.1.1-Trichloroethane nd ug/l 12-05-84 4581 OB-6A 12-05-84 4581 OB-6A Carbon Tetrachloride nd ug/1Bromodichloromethane nd ug/l 12-05-84 4581 OB-6A 12-05-84 4581 OB-6A 1.2-Dichloropropane nd ua/1nd ug/l trans-1, 3-Dichloropropene 12-05-84 4581 OB-6A 12-05-84 4581 08-6A Trichloroethylene nd ug/l 12-05-84 4581 OB-6A Dibronochloromethane nd ug/l 12-05-84 4581 08-6A cis -1,3 -Dichloropropene nd ug/l 12-05-84 4581 OB-6A 1,1,2-Trichloroethane nd ug/l 12-05-84 4581 OB-6A Benzene nd ug/1 12-05-84 4581 OB-6A 2-Chloroethylvinyl Ether nd ug/l 12-05-84 4581 OB-6A Bromoform AR 1004 19 ug/ 12-05-84 4581 nd ug/1 OB-6A Tetrachloroethylene

.

١.

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

ļ

CONTRACTOR OF THE

PAGE NO. 00035 02/04/87

ł

ŀ

CHEM SOLV WATER QUALITY DATA

-----

	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITE
12-05-84	4581	OB-6A	1,1,2,2-Tetrachloroethane	nd	ug/l
12-05-84	4581	OB-6A	Toluene	nd	ug/l
12-05-84	4581	OB-6A	Chlorobenzene	nd	ug/l
12-05-84	4581	ов-6а	Ethylbenzene	nd	ug/l
12-05-84	4581	ов-ба	1,1 - Dichloroethylene	nd	ug/l
12-05-84	4581	ов-ба	P-xylene	nd	ug/l
12-05-84	4581	OB-6A	M-xylene	nd	ug/l
12-05-84	4581	OB-6A	O-xylene	nd	ug/l
12-05-84	4582	ов-за	2-Chlorophenol	nd	ug/l
12-05-84	4582	OB-3A	2-Nitrophenol	nd	ug/l
12-05-84	4582	OB-3A	Phenol	nd	ug/l
1-5-84	4582	OB-3A	2,4-Dimethylphenol	nd	ug/l
12-05-84	4582	OB-3A	2,4-Dichlorophenol	nđ	ug/l
12-05-84	4582	ов-за	2,4,6-Trichlorophenol	nd	ug/l
12-05-84	4582	OB-3A	4-Chloro-3-methylphenol	nd	ug/l
12-05-84	4582	OB-3A	2,4-Dinitrophenol	nd	ug/l
.2-05-84	4582	OB-3A	2-Methyl-4,6-dinitrophenol	nd	ug/l
.2-05-84	4582	OB-3A	Pentachlorophenol	nd	ug/l
12-05-84	4582	OB-3A	4-Nitrophenol	nd	ug/l
12-05-84	4582	OB-3A	1,3-Dichlorobenzene	ndi	ug/l
12-05-84	4582	OB-3A	1,4-Dichlorobenzene	nd	ug/l
12-05-84	4582	OB-3A	Hexachloroethane	nđ	ug/l
12-05-84	4582	ob-3a	Bis (2-chloroisopropyl)ether	nd	ug/l
12-05-84		OB-3A	Hexachlorocyclopentadiene	nd	ug/l
1 -84	4582	OB-3A	2-Chloronaphthalene	AR 1004	կե/1
12-05-84	7,	OB-3A	Acenaphthylene	nd	ug/l

PAGE NO. 00036 02/04/87

CHEM SOLV WATER QUALITY DATA

. . . . .

-----

6),

, and the second

			CHIM DODY HATEK YORUTTI DATA		( )
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITE
12-05-84	4582	OB-3A	Acenaphthene	nd	ug/1
12-05-84	4582	OB-3A	Dimethyl phthalate	nd	ug/l
12-05-84	4582	OB-3A	2,6-Dinitrotoluene	nd	ug/l
12-05-84	4582	OB-3A	Fluorene	nd	ug/l
12-05-84	4582	OB-3A	2,4-Dinitrotoluene	nd	ug/l
12-05-84	4582	OB-3A	1,2-Diphenylhydrazine	nd	ug/l
12-05-84	4582	OB-3A	Diethyl phthalate	nd	ug/1
12-05-84	4582	OB-3A	N-nitrosodiphenylamine	nd	ug/l
12-05-84	4582	OB-3A	Hexachlorobenzene	nd	ug/l
12-05-84	4582	OB-3A	4-Bromophenyl phenyl ether	nd	ug/l
12-05-84	4582	OB-3A	Phenanthrene	nd	ug/l
12-05-84	4582	OB-3A	Anthracene	nd	ug/
12-05-84	4582	ов-за	Dibutylphthalate	nd	ug/1
12-05-84	4582	OB-3A	Fluoranthene	nd	ug/l
12-05-84	4582	OB-3A	Pyrene	nd	ug/l
12-05-84	4582	OB-3A	Benzidine	nd	ug/l
12-05-84	4582	OB-3A	Butyl benzyl phthalate	nd	ug/l
12-05-84	4582	OB-3A	Bis (2-ethyl hexyl) phthalate	nđ	ug/l
12-05-84	4582	OB-3A	Chrysene	nd	ug/l
12-05-84	4582	OB-3A	Benzo (a) anthracene	nd	ug/l
12-05-84	4582	OB-3A	3,3' -Dichlorobenzidine	nd	ug/l
12-05-84	4582	OB-3A	Dioctylphalate	nd	ug/l
12-05-84	4582	OB-3A	Benzo(b)fluoranthene	nd	ug/l
12-05-84	4582	OB-3A	Benzo(k)fluoranthene	nđ	ug/l
12-05-84	\$582	OB-3A	Benzo(a) pyrene		ug/
12-05-84	9 4 582	OB-3A	Indeno(1,2,3-c,d)pyrene		13 ug/1
	-				

PAGE NO. 00037 02/04/87

CHEM SOLV WATER QUALITY DATA

$\sim$					
<u> </u>	LAB #	SAMPLE ID	PARAMETER	CONCENTR	units _{\$57}
12-05-84	4582	ов-за	Dibenzo(a,h) anthracene	nð	ug/l
12-05-84	4582	OB-3A	Benzo(g,h,i)perylene	nđ	ug/l
12-05-84	4582	OB-3A	N-nitrosidimethyl amine	nd	ug/l
12-05-84	4582	OB-3A	Chloromethane	nd	ug/l
12-05-84	4582	OB-3A	Bromomethane	nd	ug/l
12-05-84	4582	OB-3A	Vinyl Chloride	nd	ug/l
12-05-84	4582	OB-3A	Chloroethane	nd	ug/l
12-05-84	4582	OB-3A	Methylene Chloride	nd	ug/l
12-05-84	4582	OB-3A	1, 1-Dichloroethane	nd	ug/l
12-05-84	4582	OB-3A	trans-1,2-Dichloroethylene	nd	ug/l
12-05-84	4582	OB-3A	Chloroform	nd	ug/l
12 95-84	4582	OB-3A	1,2 - Dichloroethane	nd	ug/l
15-84	4582	OB-3A	1,1,1-Trichloroethane	nd	ug/l
12-05-84	4582	OB-3A	Carbon Tetrachloride	nd	ug/l
12-05-84	4582	OB-3A	Bromodichloromethane	nd	.ug/l
12-05-84	4582	OB-3A	1,2-Dichloropropane	nd	ug/l
12-05-84	4582	OB-3A	trans-1,3-Dichloropropene	nd	ug/l
12-05-84	4582	CB-3A	Trichloroethylene	12.8	ug/l
12-05-84	4582	ов-за	Dibronochloromethane	nd	ug/l
12-05-84	4582	08-3А	cis -1,3 -Dichloropropene	nd	ug/l
12-05-84	4582	0B-3A	1,1,2-Trichloroethane	nd	ug/l
12-05-84	4582	OB-3A	Benzene	nd	ug/l
12-05-84	4582	OB-3A	2-Chloroethylvinyl Ether	nd	ug/l
12-05-84	4582	ов-за	Bromoform	nd	ug/l
17 5-84	A582	0B-3A	Tetrachloroethylene	nd	ug/l
12-05-84	\$582	OB-3A	1,1,2,2-Tetrachloroethane	ARIO	4   6 ug/1
	~				

PAGE NO. 00038 02/04/87

CHEM SOLV WATER QUALITY DATA

					U I
JATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNIT: SFR
12-05-84	4582	OB-3A	Toluene	nd	ug/l
12-05-84	4582	OB-3A	Chlorobenzene	nd	ug/l
12-05-84	4582	ов-за	Ethylbenzene	nd	ug/l
12-05-84	4582	ов-за	1,1 - Dichloroethylene	nd	ug/l
12-05-84	4582	ов-за	P-xylene	nd	ug/l
12-05-84	4582	OB-3A	M-xylene	nd	ug/l
.2-05-84	4582	ов-за	O-xylene	nd	ug/l
)1-29-85	355	OB-5A	Trichloroethylene	4400.0	ug/l
1-29-85	357	ов-2а	Trichloroethylene	340.0	ug/l
)1-29-85	358	ов-за	Trichloroethylene	34.0	ug/l
)1-29-85	361	OB-6B	Trichloroethylene	nd	ug/l
1-29-85	362	OB-7A	Trichloroethylene	nd	ug/1 🤇
1-29-85	363	ов-7в	Trichloroethylene	nd	ug/l
1-29-85	364	OB-8A	Trichloroethylene	nd	ug/l
1-29-85	365	OB-8B	Trichloroethylene	nd	ug/l
1-31-85	382	OB-1A	Trichloroethylene	130000.0	ug/l
4-22-85	1163	OB-7A	Trichloroethylene	nd	ug/l
4-22-85	1163	OB-7A	1,1,1-Trichloroethane	nd	ug/l
4-22-85	1163	OB-7A	1,2-Dichloropropane	nd	ug/l
4-22-85	1163	OB-7A	Chloroform	nd	ug/l
4-22-85	1164	OB-7B	Trichloroethylene	nd	ug/l
4-22-85	1164	OB-73	1,1,1-Trichloroethane	nd	ug/l
4-22-85	1164	0B-7B	1,2-Dichloropropane	nd	ug/l
4-22-85	1164	0B-7B	Chloroform	nd	ug/l
4-22-85	1,1,65	OB-8A	Trichloroethylene	AR1004 P7	ug/1 🌑
4-22-85	11665	OB-8A	1,1,1-Trichloroethane	nd	ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

ble as this

۲

A

PAGE NO. 00039 02/04/87

ł

(			CHEM SOLV WATER QUALITY DATA		
DATE	LÀB #	SAMPLE ID	PARAMETER	CONCENTR	UNIT
04-22-85	1165	OB-8A	1,2-Dichloropropane	nđ	ug/l
04-22-85	1165	OB-8A	Chloroform	nđ	ug/l
04-22-85	1166	0B-8B	Trichloroethylene	nd	ug/l
04-22-85	1166	OB-8B	1,1,1-Trichloroethane	nd	ug/l
04-22-85	1166	OB-8B	1,2-Dichloropropane	nd	ug/l
04-22-85	1166	OB-8B	Chloroform	nd	ug/l
04-22-85	1167	OB-9A	Trichloroethylene	2.2	ug/l
04-22-85	1167	OB-9A	1,1,1-Trichloroethane	nd	ug/l
04-22-85	1167	OB-9A	1,2-Dichloropropane	nd	ug/l
04-22-85	1167	OB-9A	Chloroform	nd	ug/l
04-22-85	1168	OB-9B	Trichloroethylene	2.1	ug/l
2-85	1168	ов-9в	1,1,1-Trichloroethane	2.1	ug/l
04-22-85	1168	OB-9B	1,2-Dichloropropane	38.0	ug/l
04-22-85	1168	OB-9B	Chloroform	1.3	ug/l
04-22-85	1169	0B-6B	Trichloroethylene	nd	ug/1
04-22-85	1169	0B-6B	1,1,1-Trichloroethane	, nd	ug/l
04-22-85	1169	OB-6B	1,2-Dichloropropane	rd	ug/l
04-22-85	1169	OB-6B	Chloroform	nd	ug/l
04-22-85	1172	Simon	Trichloroethylene	nd	ug/l
04-22-85	1172	Simon	1,1,1-Trichloroethane	nd	ug/l
04-22-85	1172	Simon	1,2-Dichloropropane	nd	ug/l
04-22-85	1172	Simon	Chloroform •	nd	ug/l
04-23-85	1192	OB-2A	1,2-Dichloropropane	nd	ug/l
04-23-85	1192	OB-2A	1,1,1-Trichloroethane	AR 1 00 40	107/1
3-85	11974	0B-2A	Trichloroethylene		ug/l
04-23-85	1192	OB-2A	1,1 - Dichloroethylene		ug/l
1					

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

1

PAGE NO. 00040 02/04/87

1. 1. 1.

Seal.

			CHEM SOLV WATER QUALITY DATA		$\cap$
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
04-23-85	1192	OB-2A	trans-1,2-Dichloroethylene	nd	ug/l
04-23-85	1192	OB-2A	Chloroform	nd	ug/l
04-23-85	1192	OB-2A	Toluene	nd	ug/l
04-23-85	1192	OB-2A	Ethylbenzene	nd	ug/l
04-23-85	1193	OB-3A	1,2-Dichloropropane	nd	ug/l
04-23-85	1193	OB-3A	1,1,1-Trichloroethane	3.1	ug/l
04-23-85	1193	OB-3A	Trichloroethylene	16.0	ug/l
04-23-85	1193	OB-3A	1,1 - Dichloroethylene	nd	ug/l
04-23-85	1193	OB-3A	trans-1,2-Dichloroethylene	nd	ug/l
04-23-85	1193	OB-3A	Chloroform	nd	ug/l
04-23-85	1193	OB-3A	Toluene	nd	ug/1
04-23-85	1193	OB-3A	Ethylbenzene	nd	ug/1
04-23-85	1194	OB-4A	1,2-Dichloropropane	nd	ug/l
04-23-85	_194	OB-4A	1,1,1-Trichloroethane	79.0	ug/l
04-23-85	1194	OB-4A	Trichloroethylene	430.0	ug/l
04-23-85	1194	OB-4A	1,1 - Dichloroethylene	nd	ug/l
)4-23-85	1194	OB-4A	trans-1,2-Dichloroethylene	nd	ug/l
)4-23-85	1194	OB-4A	Chloroform	nđ	ug/l
04-23-85	1194	OB-4A	Toluene	nd	ug/l
04-23-85	1194	OB-4A	Ethylbenzene	nđ	ug/l
04-23-85	1195	OB-5A	1,2-Dichloropropane	nd	ug/l
04-23-85	1195	OB-5A	1,1,1-Trichloroethane	1300.0	ug/l
04-23-85		0B-5A	Trichloroethylene	1600.0	ug/l
04-23-85	1195 🦄	OH-5A	1,1 - Dichloroethylene	1°2701 88	ya/1
04-23-85	1195	OB-5A	trans-1,2-Dichloroethylene	11.0	ug/1
04-23-85	1195	OB-5A	Chloroform	76.0	ug/l

١.

PAGE NO. 00041 02/04/87

----

6

ç

CHEM SOLV WATER QUALITY DATA

3

1

(· ) Derr E	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
04-23-85	1195	ов-5а	Toluene	64.0	ug/l
04-23-85	1195	OB-5A	Ethylbenzene	35.0	ug/l
04-23-85	1196	Gassaway	1,2-Dichloropropane	nd	ug/l
04-23-85	1196	Gassaway	1,1,1-Trichloroethane	nd	ug/l
04-23-85	1196	Gassaway	Trichloroethylene	nð	ug/l
04-23-85	1196	Gassaway	1,1 - Dichloroethylene	nd	ug/l
04-23-85	1196	Gassaway	trans-1,2-Dichloroethylene	nd	ug/l
04-23-85	1196	Gassaway	Chloroform	nd	ug/l
04-23-85	1196	Gassaway	Toluene	nd	ug/l
04-23-85	1196	Gassaway	Ethylbenzene	nd	ug/l
04-23-85	1197	Gearhart - old	1,2-Dichloropropane	2.9	ug/l
و3-85	1197	Gearhart - old	1,1,1-Trichloroethane	nd	ug/l
04-23-85	1197	Gearhart - old	1,1 - Dichloroethylene	nd	ug/l
04-23-85	1197	Gearhart - old	Trichloroethylene	nd	ug/l
04-23-85	1197	Gearhart - old	trans-1,2-Dichloroethylene	nđ	ug/l
04-23-85	1197	Gearhart - old	Chloroform	nd	ug/l
04-23-85	1197	Gearhart - old	Toluene	nđ	ug/l
34-23-85	1197	Gearhart - old	Ethylbenzene	nđ	ug/l
04-23-85	1198	Harmic	1,2-Dichloropropane	nd	ug/l
04-23-85	1198	Harmic	1,1,1-Trichloroethane	nđ	ug/l
04-23-85	1198	Harmic	Trichloroethylene	nd	ug/l
04-23-85		Harmic	1,1 - Dichloroethylene	nd	ug/l
04-23-85	1,900	Harmic	trans-1,2-Dichloroethylene	nd	ug/l
04-23-85	1198%	Harmic	Chloroform	AR10042	0 ^{g/1}
ه-85	1198	Harmic	Toluene		ug/l
04-23-85	1198	Harmic	Ethylbenzene	nd	ug/l

PAGE NO. 00042 02/04/87

Į

33 1 1

			CHEM SOLV WATER QUALITY DATA		$\cap$
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITE
04-23-85	1199	Williams	1,2~Dichloropropane	nd	ug/l
04-23-85	1199	Williams	1,1,1-Trichloroethane	nd	ug/l
04-23-85	1,199	Williams	Trichloroethylene	nd	ug/l
04-23-85	1199	Williams	1,1 - Dichloroethylene	nd	ug/l
04-23-85	1199	Williams	trans-1,2-Dichloroethylene	nđ	ug/l
04-23-85	1199	Williams	Chloroform	nđ	ug/l
04-23-85	1199	Williams	roluene	nd	ug/1
04-23-85	1199	Williams	Ethylbenzene	nd	ug/l
04-23-85	1200	Lambertson	1,2-Dichloropropane	nd	ug/l
04-23-85	1200	Lambertson	1,1,1-Trichloroethane	nd	ug/l
04-23-85	1200	Lambertson	Trichloroethylene	nd	ug/1
04-23-85	1200	Lambertson	1,1 - Dichloroethylene	nd	ug/1(
04-23-85	1200	Lambertson	trans-1,2-Dichloroethylene	nd	ug/l
04-23-85	1200	Lambertson	Chloroform	nd	ug/l
04-23-85	1200	Lambertson	Toluene	nd	ug/l
34-23-85	1200	Lambertson	Ethylbenzene	nd	ug/l
)8-14-85	2570	0B-5A	Trichloroethylene	250.0	ug/l
18-14-85	2570	OB-5A	1,1,1-Trichloroethane	26.0	ug/l
18-14-85	2570	OB-5A	Benzene	360.0	ug/l
)8-14-85	2570	OB-5A	Toluene	4.0	ug/l
)8-22-85	2696	0B-14A	1,1 - Dichloroethylene	3200.0	ug/l
)8-22-85	2696	OB-14A	1, 1-Dichloroethane	110.0	ug/l
)8-22-85	2696	OB-14A	trans-1,2-Dichloroethylene	165.0	ug/l
)8-22-85	2696, 1	0B-14A	Chloroform	53.0	ug/1
)8-22-85	2696	0B-14A	1,1,1-Trichloroethane	A R18 PO9 1.0	949/1 🕻
)B-22-85		OB-14A	Trichloroethylene	17000.0	ug/1

PAGE NO. 00043 02/04/87

**.** 

CHEM SOLV WATER QUALITY DATA

----

ľ

----

\$

1	ίt Ν					
1	L1'E	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
	08-22-85	2696	OB-14A	Toluene	7.2	ug/l
	08-22-85	2696	OB-14A	1,2-Dichloropropane	nd	ug/l
	08-22-05	2696	OB-14A	Ethylbenzene	nd	ug/l
	08-22-85	2696	OB-14A	Chlorobenzene	2.8	ug/l
	08-22-85	2696	OB-14A	1,2 - Dichloroethane	7.9	ug/l
	08-22-85	2697	OB-10A	1,1 - Dichloroethylene	510.0	ug/l
	08-22-85	2697	OB-10A	1, 1-Dichloroethane	11.0	ug/l
	08-22-85	2697	OB-10A	trans-1,2-Dichloroethylene	141.0	ug/1
	08-22-85	2697	OB-10A	Chloroform	669.0	ug/l
	08-22-85	2697	OB-10A	1,1,1-Trichloroethane	4200.0	ug/l
	08-22-85	2697	OB-10A	Trichloroethylene	80000.0	ug/l
	()2-85	2697	OB-10A	Toluene	2300.0	ug/l
	08-22-85	2697	OB-10A	1,2-Dichloropropane	nd	ug/l
	08-22-85	2697	OB-10A	Ethylbenzene	1100.0	ug/l
	08-22-85	2697	OB-10A	Chlorobenzene	nd	ug/l
	08-22-85	2697	OB-10A	1,2 - Dichloroethane	30.0	ug/l
	08-22-85	2698	0B-11A	1,1 - Dichloroethylene	3.5	ug/l
	08-22-85	2698	0B-11A	1, 1-Dichloroethane	113.0	ug/l
	08-22-85	2698	0B-11A	trans-1,2-Dichloroethylene	nd	ug/l
	08-22-85	2698	0B-11A	Chloroform	1.9	ug/l
	08-22-85	2698	OB-11A	1,1,1-Trichloroethane	110.0	ug/l
	08-22-85	2698	0B-11A	Trichloroethylene '	390.0	ug/l
	08-22-85	2698	0B-11A	Toluene	3.9	ug/l
	08-22-85	2698	0B-11A	1,2-Dichloropropane	nd	ug/l
			% 08-11A	Ethylbenzene	AR100422	ug/l
	08-22-85	2698	0B-11A	Chlorobenzene	nd	ug/l

PAGE NO. 00044 02/04/87

			CHEM SOLV WATER QUALITY DATA	,	$\cap$
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
08-22-85	2698	0B-11A	1,2 - Dichloroethane	nd	ug/l
08-22-85	2699	OB-12A	1,1 - Dichloroethylene	nd	ug/l
08-22-85	2699	OB-12A	1, 1-Dichloroethane	nd	ug/l
08-22-85	2699	OB-12A	trans-1,2-Dichloroethylene	nd	ug/l
08-22-85	2699	OB-12A	Chloroform	1.03	ug/l
08-22-85	2699	OB-12A	1,1,1-Trichloroethane	22.0	ug/l
08-22-85	2699	OB-12A	Trichloroethylene	300.0	ug/l
08-22-85	2699	OB-12A	Toluene	2.6	ug/1
08-22-85	2699	OB-12A	1,2-Dichloropropane	nd	ug/l
08-22-85	2699	OB-12A	Ethylbenzene	nd	ug/l
08-22-85	2699	OB-12A	Chlorobenzene	nd	ug/1
08-22-85	2699	OB-12A	1,2 - Dichloroethane	nd	ug/1
08-22-85	2700	OB-13A	1,1 - Dichloroethylene	nd	ug/l
08-22-85	2700	0B-13A	1, 1-Dichloroethane	nd	ug/l
08-22-85	2700	0B-13A	trans-1,2-Dichloroethylene	nd	ug/l
08-22-85	2700	OB-13A	Chloroform	nd	ug/l
08-22-85	2700	0B-13A	1,1,1-Trichloroethane	20.0	ug/l
08-22-85	2700	OB-13A	Trichloroethylene	320.0	ug/l
08-22-85	2700	0B-13A	Toluene	2.7	ug/1
08-22-85	2700	0B-13A	1,2-Dichloropropane	nd	ug/l
08-22-85	2700	0B-13A	Ethylbenzene	nd	ug/l
08-22-85	2700	0B-13A	Chlorobenzene	nd	ug/l
08-22-85	2700	0B-13A	1,2 - Dichloroethane	nd	ug/l
08-22-85	2701 🎪	<b>08</b> -58	1,1 - Dichloroethylene		ug/1
08-22-85		08-5в	1, 1-Dichloroethane	AR 100 442	
08-22-85	2701	0B~5B	trans-1,2-Dichloroethylene	nd	ug/l

r.

ł

PAGE NO. 00045 02/04/87

1

ľ

- -

-----

CHEM SOLV WATER QUALITY DATA

	DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
	08-22-85	2701	OB-5B	Chloroform	nd	ug/l
	08-22-85	2701	OB-5B	1,1,1-Trichloroethane	nd	uġ/l
	08-22-85	2701	OB-5B	Trichloroethylene	3.4	ug/l
	08-22-85	2701	OB-5B	Toluene	1.7	ug/l
	08-22-85	2701	ов-5в	1,2-Dichloropropane	nd	ug/l
	08-22-85	2701	OB-5B	Ethylbenzene	nd	ug/l
	08-22-85	2701	ов-5в	Chlorobenzene	nd	ug/1
	08-22-85	2701	ов-5в	1,2 - Dichloroethane	nd	ug/1 [']
	08-22-85	2703	0B-15A	1,1 - Dichloroethylene	390.0	ug/l
	08-22-85	2703	0B-15A	1, 1-Dichloroethane	414.0	ug/l
	08-22-85	2703	0B-15A	trans-1,2-Dichloroethylene	1000.0	ug/l
	.(2-85	2703	OB-15A	Chloroform	170.0	ug/l
	08-22-85	2703	0B-15A	1,1,1-Trichloroethane	4700.0	ug/l
	08-22-85	2703	0B-15A	Trichloroethylene	29000.0	ug/1
	08-22-85	2703	0B-15A	Toluene	110.0	ug/l
	08-22-85	2703	0B-15A	1,2-Dichloropropane	nd	ug/l
	08-22-85	2703	OB-15A	Ethylbenzene	88.0	ug/l
	08-22-85	2703	0B-15A	Chlorobenzene	nd	ug/l
	08-22-85	2703	0B-15A	1,2 - Dichloroethane	nd	ug/l
	08-22-85	2704	0B-16A	1,1 - Dichloroethylene	6.7	ug/l
	08-22-85	2704	0B-16A	1, 1-Dichloroethane	3.2	ug/l
	08-22-85	2704	0B-16A	trans-1,2-Dichloroethylene	7.4	ug/l
ľ	08-22-85	2704	0B-16A	Chloroform	1.4	ug/l
	08-22-85	27	0B-16A	1,1,1-Trichloroethane	86.0	ug/l
	¢85	27 04 7	0B-16A	Trichloroethylene	ARI00424	ug/l
	08-22-85	2704	0B-16A	Toluene	4.0	ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

ļ

'AGE NO. 00046 2/04/87

ş

. .

CHEM SOLV WATER QUALITY DATA

.

•

....

......

					;
ATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
-8-22-85	2704	OB-16A	1,2-Dichloropropane	nd	ug/l
8-22-85	2704	OB-16A	Ethylbenzene	nd	ug/l
-8-22-85	2704	0B16A	Chlorubenzene	nd	ug/l
8-22-85	2704	OB-16A	1,2 - Dichloroethane	nd	ug/l
8-22-85	2705	OB-18A	1,1 - Dichloroethylene	2.9	ug/l
8-22-85	2705	OB-18A	1, 1-Dichloroethane	nd	ug/l
8-22-85	2705	OB-18A	trans-1,2-Dichloroethylene	4.1	ug/l
8-22-85	2705	OB-18A	Chloroform	1.0	ug/l
8-22-85	2705	OB-18A	1,1,1-Trichloroethane	65.0	ug/l
8-22-85	2705	OB-18A	Trichloroethylene	890.0	ug/l
8-22-85	2705	OB-18A	Toluene	3.2	ug/l
8-22-85	2705	OB-18A	1,2-Dichloropropane	nd	ug/1 🤇
8-22-85	2705	OB-18A	Ethylbenzene	nd	ug/l
8-22-85	2705	OB-18A	Chlorobenzene	nd	ug/l
8-22-85	2705	OB-18A	1,2 - Dichloroethane	nd	ug/l
8-22-85	2706	0B-19A	1,1 - Dichloroethylene	2.6	ug/l
8-22-85	2706	OB-19A	1, 1-Dichloroethane	2.9	ug/l
3-22-85	2706	OB-19A	trans-1,2-Dichloroethylene	4.4	ug/l
8-22-85	2706	0B-19A	Chloroform	nd	ug/l
8-22-85	2706	0B-19A	1,1,1-Trichloroethane	67.0	ug/l
8-22-85	2706	0B-19A	Trichloroethylene	940.0	ug/l
8-22-85	2706	0B-19A	Toluene	11.0	ug/l
8-22-85	2706	0B-19A	1,2-Dichloropropane	nd	ug/l
8-22-85	2706	OB-1940	Ethylbenzene	AR10042	ug/1
8-22-85	2706	0B-19A	Chlorobenzene	nd nd	ug/1
8-22-85	2706	0B-19A	1,2 - Dichloroethane	nd	ug/l

PAGE NO. 00047 02/04/87

CHEM	SOLV	WATER	OUALITY	DATA
------	------	-------	---------	------

$\bigcap$			CHEM SOLV WATER QUALITY D	ATA	
DHIE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS; 💦
08-22-85	2707	OB-17A	1,1 - Dichloroethylene	nd	ug/l
08-22-85	2707	OB-17A	1, 1-Dichloroethane	nd	ug/l
08-22-85	2707	OB-17A	trans-1,2-Dichloroethylene	nd	ug/l
08-22-85	2707	OB-17A	Chloroform	nd	ug/l
08-22-85	2707	OB-17A	1,1,1-Trichloroethane	24.0	ug/l
08-22-85	2707	OB-17A	Trichloroethylene	350.0	ug/l
08-22-85	2707	OB-17A	Toluene	nd	ug/l
08-22-85	2707	OB-17A	1,2-Dichloropropane	nd	ug/l
08-22-85	2707	OB-17A	Ethylbenzene	nd	ug/l
08-22-85	2707	OB-17A	Chlorobenzene	nd	ug/l
08-22-85	2707	OB-17A	1,2 - Dichloroethane	nđ	ug/l
Q	2772	OB-8A	1,1 - Dichloroethylene	nd	ug/l
08-25-85	2772	OB-8A	1, 1-Dichloroethane	nd	ug/l
08-25-85	2772	OB-8A	Trans-1,2-Dichloroethane	nd	ug/l
08-25-85	2772	OB-8A	1,1,1-Trichloroethane	nd	ug/l
08 <b>-</b> 25-85	2772	OB-8A	Trichloroethylene	nd	ug/l
)8-25-85	2772	OB-8A	Toluene	nð	ug/l
)8-25-85	2772	OB-8A	1,2-Dichloropropane	nd	ug/l
08-25-85	2772	OB-8A	Ethylbenzene	nd	ug/l
08-25-85	2772	OB-8A	Chloroform	nd	ug/l
<u>0</u> 8-25-85	2773	OB-8B	1,1 - Dichloroethylene	nd	ug/l
08-25-85	2773	0в-8в	1, 1-Dichloroethane	nd	ug/l
08-25-85	2773	OB-8B	Trans-1,2-Dichloroethane	nd	ug/l
08-25-85	2773	OB-8B	1,1,1-Trichloroethane	nd	ug/l
0 -85	2773	OB-8B	Trichloroethylene		ug/l
08-25-85	2773	OB-8B	Toluene	AR 100426	ug/l

PAGE NO. 00048 02/04/87

1.0

				CHEM SOLV WATER QUALITY DA	<b>TA</b>	$\frown$
	DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
	08-25-85	2773	OB-8B	1,2-Dichloropropane	nd	ug/l
	08-25-85	2773	OB-8B	Ethylbenzene	nd	ug/l
	08-25-85	2773	OB-8B	Chloroform	nd	ug/l
	08-25-85	2774	OB-7A	1,1 - Dichloroethylene	nd	ug/l
	08-25-85	2774	OB-7A	1, 1-Dichloroethane	nd	ug/l
	08-25-85	2774	OB-7A	Trans-1,2-Dichloroethane	nd	ug/l
	08-25-85	2774	OB-7A	1,1,1-Trichloroethane	nd	ug/l
	08-25-85	2774	OB-7A	Trichloroethylene	nd	ug/l
	08-25-85	2774	OB-7A	Toluene	nd	ug/l
	08-25-85	2774	OB-7A	1,2-Dichloropropane	nd	ug/l
	08-25-85	2774	OB-7A	Ethylbenzene	nd	ug/l
•	08-25-85	2774	OB-7A	Chloroform	nd	ug 💭
	08-25-85	2775	ов-7в	1,1 - Dichloroethylene	nd	ug/l
	08-25-85	2775	ов-7в	1, 1-Dichloroethane	nd	ug/l
	08-25-85	2775	OB-7B	Trans-1,2-Dichloroethane	nd	ug/l
	08-25-85	2775	ов-7в	1,1,1-Trichloroethane	nd	ug/l
	08-25-85	2775	ОВ-7В	Trichloroethylene	nd	ug/l
	08-25-85	2775	OB-7B	Toluene	nd	ug/l
	08-25-85	2775	ов-7в	1,2-Dichloropropane	nd	ug/l
	08-25-85	2775	ов-7в	Ethylbenzene	nd	ug/l
	08-25-85	2775	OB-7B	Chloroform	nd	ug/l
	08-25-85	2776	OB-6B	1,1 - Dichloroethylene	nd	ug/l
	08-25-85	2776	OB-6B	1, 1-Dichloroethane	nd	ug/l
	08-25-85	2776	0B-6B	Trans-1,2-Dichloroethane	nd	ug/l
	08-25-85	277.6	OB-6B	1,1,1-Trichloroethane	AR1004273	ug
	08-25-85	2776	OB-6B	Trichloroethylene	nd	ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

1

----

eller et a

PAGE NO. 00049 02/04/87

CHEM SOLV WATER QUALITY DATA

۰. --- ÷

.

					•	
1	E	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS 約
	08-25-85	2776	ов-6в	Toluene	nd	ug/l
	08-25-85	2776	OB-6B	1,2-Dichloropropane	nd	ug/l
	08-25-85	2776	OB-6B	Ethylbenzene	nd	ug/l
	08-25-85	2776	OB-6B	Chloroform	nd	ug/l
	08-25-85	2777	ов-9а	1,1 - Dichloroethylene	nd	ug/l
	08-25-85	2777	ов-9а	1, 1-Dichloroethane	nd	ug/l
	08-25-85	2777	ов-9а	Trans-1,2-Dichloroethane	nđ	ug/l
	08-25-85	2777	ов-9а	1,1,1-Trichloroethane	nd	ug/l
	08-25-85	2777	ов-9а	Trichloroethylene	nd	ug/l
	08-25-85	2777	ов-9а	Toluene	nd	ug/l
	08-25-85	2777	ов-9а	1,2-Dichloropropane	nđ	ug/l
	<u>(</u> )5-85	2777	ов-9а	Ethylbenzene	nđ	ug/l
	08-25-85	2777	ов-9а	Chloroform	nd	ug/l
	08-25-85	2778	OB-9B	1,1 - Dichloroethylene	nd	ug/1
	08-25-85	2778	OB-9B	1, 1-Dichloroethane	1.2	ug/l
	08-25-85	2778	0B-9B	Trans-1,2-Dichloroethane	nd	ug/l
	08-25-85	2778	OB-9B	1,1,1-Trichloroethane	nđ	ug/l
	08-25-85	2778	0B-9B	Trichloroethylene	nd	ug/l
	08-25-85	2778	0B-9B	Toluene	nd	ug/l
	08-25-85	2778	0B-9B	1,2-Dichloropropane	13.0	ug/l
	08-25-85	2778	0B-9B	Ethylbenzene	nd	ug/l
	08-25-85	2778	0B-9B	Chloroform .	nd	ug/l
	08-25-85	2780	OB-4A	1,1 - Dichloroethylene	4.1	ug/l
	08-25-85	27,80	OB-4A	1, 1-Dichloroethane	AR100428	A ^{ug/1}
	() <del></del>	2780	0B-4A	Trans-1,2-Dichloroethane		ug/l
	08-25-85	2780	0B-4A	1,1,1-Trichloroethane	93.0	ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

تكحل ورسعه

ľ

PAGE NO. 00050 02/04/87

			CHEM SOLV WATER QUALITY DATA		
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
08-25-85	2780	OB-4A	Trichloroethylene	510.0	ug/l
08-25-85	2780	OB-4A	Toluene	nd	ug/l
08-25-85	2780	OB-4A	1,2-Dichloropropane	nd	ug/l
08-25-85	2780	OB-4A	Ethylbenzene	nd	ug/l
08-25-85	2780	OB-4A	Chloroform	nd	ug/l
08-25-85	2781	OB-3A	1,1 - Dichloroethylene	nd	ug/l
08-25-85	2781	OB-3A	1, 1-Dichloroethane	nd	ug/l
08-25-85	2781	OB-3A	Trans-1,2-Dichloroethane	nd	ug/l
08-25-85	2781	OB-3A	1,1,1-Trichloroethane	32.0	ug/l
08-25+85	2781	ob-ja	Trichloroethylene	110.0	ug/l
08-25-85	2781	OB-3A	Toluene	nd	ug/1
08-25-85	2781	OB-3A	1,2-Dichloropropane	nd	ug/
08-25-85	2781	ов-за	Ethylbenzene	nd	ug/l
08-25-85	2781	OB-3A	Chloroform	nd	ug/l
08-25-85	2782	OB-2A	1,1 - Dichloroethylene	8.6	ug/l
08-25-85	2782	OB-2A	1, 1-Dichloroethane	6.1	ug/l
08-25-85	2782	OB-2A	Trans-1,2-Dichloroethane	4.4	ug/l
08-25-85	2782	OB-2A	1,1,1-Trichloroethane	195.0	ug/l
08-25-85	2782	OB-2A	Trichloroethylene	846.0	ug/l
08-25-85	2782	OB-2A	Toluene	nd	ug/l
08-25-85	2782	OB-2A	1,2-Dichloropropane	nd	ug/l
08-25-85	2782	OB-2A	Ethylbenzene	nd	ug/l
08-25-85	2782	OB-2A	Chloroform	nd	ug/l
08-25-85	hi.	0B-5A	1,1 - Dichloroethylene	780.0	ug/1
08-25-85	200	OB-5A	1, 1-Dichloroethane	R10042	$\theta_{\rm s}$
08-25-85	2783	OB-5A	Trans-1,2-Dichloroethane	160.0	ug/l

PAGE NO. 00051 02/04/87

•, 1

5

CHEM SOLV WATER QUALITY DATA

$(\cdot)$			-		
Dr l'E	LAB #	SAMPLE ID	Parameter	CONCENTR	UNITS &
08-25-85	2783	OB-5A	1,1,1-Trichloroethane	12500.0	ug/l
08-25-85	2783	OB-5A	Trichloroethylene	28400.0	ug/l
08-25-85	27 83	OB-5A	Toluene	23.0	ug/l
08-25-85	2783	OB-5A	1,2-Dichloropropane	nd	ug/l
08-25-85	2783	OB-5A	Ethylbenzene	4.0	ug/l
08-25-85	2783	OB-5A	Chloroform	280.0	ug/l
08-26-85	2738	OB-5AR 5 mins.	1,1 - Dichloroethylene	1092.0	ug/1 '
08-26-85	2738	OB-5AR 5 mins.	1, 1-Dichloroethane	nd	ug/l
08-26-85	2738	OB-5AR 5 mins.	trans-1,2-Dichloroethylene	120.0	ug/l
08-26-85	2738	OB-5AR 5 mins.	Chloroform	260.0	ug/l
08-26-85	2738	OB-5AR 5 mins.	1,1,1-Trichloroethane	10500.0	ug/l
:6-85	2738	OB-5AR 5 mins.	Trichloroethylene	21000.0	ug/l
08-26-85	2738	OB-5AR 5 mins.	Toluene	69.0	ug/l
08-26-85	2738	OB-5AR 5 mins.	Ethylbenzene	32.0	ug/l
08-26-85	2739	OB-5AR 20 mins	. 1,1 - Dichloroethylene	940.0	ug/l
08-26-85	2739	OB-5AR 20 mins	. 1, 1-Dichloroethane	nd	ug/l
08-26-85	2739	OB-5AR 20 mins	. trans-1,2-Dichloroethylene	130.0	ug/l
08-26-85	2739	OB-5AR 20 mins	. Chloroform	160.0	ug/l
08-26-85	2739	OB-5AR 20 mins	. 1,1,1-Trichlor@ethane	10600.0	ug/l
08-26-85	2739	OB-5AR 20 mins	. Trichloroethylene	21000.0	ug/l
08-26-85	2739	OB-5AR 20 mins	. Toluene	66.0	ug/l
08-26-85	2739	OB-5AR 20 mins	. Ethylbenzene	29.0	ug/l
08-26-85	2740	OB-5AR 60 mins	. 1,1 - Dichloroethylene	103.0	ug/l
08-26-85	2740	OB-SAP 60 mins	. 1, 1-Dichloroethane	AR 1004 30	ug/l
.6-85	2740	OB-5AR 60 mins	. trans-1,2-Dichloroethylene	ANTUU430 130.0	ug/l
08-26-85	2740	OB-5AR 60 mins	. Chloroform	260.0	ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

PAGE NO. 00052 02/04/87

......

-----

CHEM SOLV WATER QUALITY DATA

	DATE	LAB #	SAMPLE ID		PARAMETER	CONCENTR	UNITS
	08-26-85	2740	OB-5AR 60 min	ns.	1,1,1-Trichloroethane	9500.0	ug/l
	08-26-85	2740	OB-5AR 60 mi	ns.	Trichloroethylene	19000.0	ug/l
	08-26-85	2740	OB-5AR 60 min	ns.	Toluene	61.0	ug/l
	08-26-85	2740	OB-5AR 60 mi	ns.	Ethylbenzene	27.0	ug/l
	08-26-85	2741	OB-5AR 120 m	ins	1,1 - Dichloroethylene	104.0	ug/l
	08-26-85	2741	OB-5AR 120 m.	ins	1, 1-Dichloroethane	nd	ug/l
	08-26-85	2741	OB-5AR 120 m	ins	trans-1,2-Dichloroethylene	150.0	ug/l
	08-26-85	2741	OB-5AR 120 m	ins	Chloroform	176.0	ug/l
	08-26-85	2741	OB-5AR 120 m	ins	1,1,1-Trichloroethane	10900.0	ug/l
	08-26-85	2741	OB-5AR 120 m.	ins	Trichloroethylene	22000.0	ug/l
	08-26-85	2741	OB-5AR 120 m	ins	Toluene	61.0	ug/l
	08-26-85	2741	OB-5AR 120 m	ins	Ethylbenzene	29.0	ug/1
	08-26-85	2742	OB-5AR 180 m	ins	1,1 - Dichloroethylene	114.0	ug/l
	08-26-85	2742	OB-5AR 180 m.	ins	1, 1-Dichloroethane	nd	ug/l
	08-26-85	2742	OB-5AR 180 m.	ins	trans-1,2-Dichloroethylene	160.0	ug/l
	08-26-85	2742	OB-5AR 180 m	ins	Chloroform	180.0	ug/l
	08-26-85	2742	OB-5AR 180 m	ins	1,1,1-Trichloroethane	12000.0	ug/l
	38-26-85	2742	OB-5AR 180 m	ins	Trichloroethylene	25000.0	ug/l
	08-26-85	2742	OB-5AR 180 m	ins	Toluene	62.0	ug/l
	08-26-85	2742	OB-5AR 180 m.	ins	Ethylbenzene	30.0	ug/l
	08-29-85	2796	Williams		Trichloroethylene	1.3	ug/l
1	08-29-85		Williams		1,2-Dichloropropane	nd	ug/l
	08-29-85	2797	Gearhart - o	1d	Trichloroethylene	nđ	ug/l
	08-29-85	2797	Gearhart - o	1d	1,2-Dichloropropane	6.1	ug/l
	08-29-85	2798	Cote		Trichloroethylene	AR10043	ug/1
	08-29-85	2798	Cote		1,2-Dichloropropane	nd	ug/l
1							

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

*, .* 

1. 1. 1. PAGE NO. 00053 02/04/87

Ì

14,211.00  $\mu_{1},\mu_{2},\mu_{3}$  CHEM SOLV WATER QUALITY DATA

ł,

ł

1	E	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS: h
	08-29-85	2799	Durham	Trichloroethylene		ug/1
	08-29-85	2799	Durham	1,2-Dichloropropane	nd	ug/l
	08-29-85	2800	Johnson	Trichloroethylene	nd	ug/l
	08-29-85	2800	Johnson	1,2-Dichloropropane	nd	ug/l
	08-29-85	2801	Harmic	Trichloroethylene	nd	ug/l
	08-29-85	2801	Harmic	1,2-Dichloropropane	nd	ug/l
	08-29-85	2802	Lambertson	Trichloroethylene	nd	ug/l
	08-29-85	2802	Lambertson	1,2-Dichloropropane	nd	ug/l
	08-29-85	2803	Simon	Trichloroethylene	nd	ug/l
	08-29-85	2803	Simon	1,2-Dichloropropane	nd	ug/l
	08-29-85	2805	American Roof.	Trichloroethylene	nd	ug/l
	ph-29-85	2805	American Roof.	1,2-Dichloropropane	nd	ug/l
	6-12-85	2987	OB-1A	Total Iron	nd	mg/l
	09-12-85	2987	OB-1A	Total Dissolved Iron	nd	mg/l
	09-12-85	2987	OB-1A	Manganese	10920.0	mg/l
	09-12-85	2988	ÓB-1B	Total Iron	nd	mg/l
	09-12-85	2988	OB-1B	Total Dissolved Iron	nd	mg/l
	09-12-85	2988	OB-1B	Manganese	9280.0	mg/l
	09-12-85	2989	OB-2A	Total Iron	nđ	mg/l
	09-12-85	2989	OB-2A	Total Dissolved Iron	nd	mg/l
	09-12-85	2989	OB-2A	Manganese	8830.0	mg/l
	09-12-85	2990	OB-2B	Total Iron	nđ	mg/l
	09-12-85	2990	OB-2B	Total Dissolved Iron	nd	mg/l
	09-12-85	2990	OB-2B	Manganese	AR 100432	mg/l
	1 94-85	3306	OB-23A	1,1 - Dichloroethylene	nd	ug/l
	10-04-85	3306	OB-23A	1, 1-Dichloroethane	nd	ug/l

PAGE NO. 00054 02/04/87

CHEM SOLV WATER QUALITY DATA

ŀ

					$\sim$
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNIT
10-04-85	3306	OB-23A	trans-1,2-Dichloroethylene	nd	ug/l
10-04-85	3306	OB-23A	Chloroform	nd	ug/l
10-04-85	3306	OB-23A	1,2 - Dichloroethane	nd	ug/l
10-04-85	3306	ов-23а	1,1,1-Trichloroethane	nd	ug/l
10-04-85	3306	OB-23A	Trichloroethylene	nd	ug/l
10-04-85	3306	OB-23A	Benzene	nd	ug/l
10-04-85	3306	OB-23A	Toluene	nd	ug/l
10-04-85	3307	OB-22A	1,1 - Dichloroethylene	nd	ug/l
10-04-85	3307	OB-22A	1, 1-Dichloroethane	nd	ug/l
10-04-85	3307	OB-22A	trans-1,2-Dichloroethylene	nd	ug/l
10-04-85	3307	OB-22A	Chloroform	' nd	ug/1
10-04-85	3307	OB-22A	1,2 - Dichloroethane	nd	ug/1
10-04-85	3307	OB-22A	1,1,1-Trichloroethane	nd	ug/1
10-04-85	3307	OB-22A	Trichloroethylene	nd	ug/l
10-04-85	3307	OB-22A	Benzene	nd	ug/l
10-04-85	3307	OB-22A	Toluene	, nd	ug/l
10-04-85	3308	OB-29A	1,1 - Dichloroethylene	nd	ug/l
10-04-85	3308	OB-29A	1, 1-Dichloroethane	nd	ug/l
10-04-85	3308	OB-29A	trans-1,2-Dichloroethylene	nd	ug/l
10-04-85	3308	ов-29а	Chloroform	nd	ug/l
10-04-85	3308	OB-29A	1,2 - Dichloroethane	nđ	ug/l
10-04-85	53,08	0B29A	1,1,1-Trichloroethane	nd	ug/l
10-04-85	3308	OB-29A	Trichloroethylene	1.9	ug/l
10-04-85	3308	OB-29A	Benzene	nd	ug/l
10-04-85	3308	OB-29A	Toluene	AR 10048	39/4 ···
10-04-85	3309	OB-24A	1,1 - Dichloroethylene	4.8	ug/1

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

ł

AGE NO. 00055 2/04/87

· • • • • •

CHEM SOLV WATER QUALITY DATA

١,

l.

( )			Arrent Bernette		
A	LAB #	SAMPLE ID	PARAMETER	CONCENTR	units 🏤
0-04-85	3309	OB-24A	1, 1-Dichloroethane	91.0	ug/l
0-04-85	3309	OB-24A	trans-1,2-Dichloroethylene	nd	ug/l
0-04-85	3309	OB-24A	Chloroform	nd	ug/l
0-04-85	3309	OB-24A	1,2 - Dichloroethane	nd	ug/l
0-04-85	3309	OB-24A	1,1,1-Trichloroethane	nd	ug/l
0-04-85	3309	OB-24A	Trichloroethylene	128.0	ug/l
0-04-85	3309	0B-24A	Benzene	nd	ug/l
0-04-85	3309	0B-24A	Toluene	nd	ug/l
0-04-85	3310	0B-25A	1,1 - Dichloroethylene	4.0	ug/l
0-04-85	3310	0B-25A	1, 1-Dichloroethane	nd	ug/l
0-04-85	3310	0B-25A	trans-1,2-Dichloroethylene	9.0	ug/l
0 85	3310	0B-25A	Chloroform	2.0	ug/l
0-04-85	3310	0B-25A	1,2 - Dichloroethane	nd	ug/l
0-04-85	3310	08-25A	1,1,1-Trichloroethane	14.0	ug/l
0-04-85	3310	0B-25A	Trichloroethylene	389.0	ug/l
0-04-85	3310	0B-25A	Benzene	nd	ug/l
)-04-85	3310	0B-25A	Toluene	nđ	ug/l
)-04-85	3311	0B-27A	1,1 - Dichloroethylene	nd	ug/l
0-04-85	3311	0B-27A	1, 1-Dichloroethane	nd	ug/l
0-04-85	3311	0B-27A	trans-1,2-Dichloroethylene	nd	ug/l
0-04-85	3311	OB-27A	Chloroform	nd	ug/l
0-04-85	33.14	OB-27A	1,2 - Dichloroethane	nd	ug/l
J-04-85	- ZQ	ов-27а	1,1,1-Trichloroethane	5.0	ug/l
J-04-85	3311	OB-27A	Trichloroethylene	AR 1004	$\frac{1}{1}$
ງ 85	3311	ОВ-27А	Benzene		ug/1
J-04-85	3311	0B-27A	Toluene	nd	ug/l

PAGE NO. 00056 12/04/87

n

CONCENTR UNITS PARAMETER JATE LAB # SAMPLE ID 10-04-85 3312 OB-28A 1,1 - Dichloroethylene nd ug/1 10-04-85 3312 OB-28A 1, 1-Dichloroethane 1.6 ug/l 10-04-85 3312 **OB-28A** trans-1, 2-Dichloroethylene nd ug/l .0-04-85 3312 OB-28A Chloroform nd ug/1 .0-04-85 3312 **OB-28A** 1,2 - Dichloroethane. nd ug/l .0-04-85 3312 OB-28A 1,1,1-Trichloroethane 4.9 ug/l .0-04-85 3312 OB-28A Trichloroethylene 207.0 ug/1 .0-04-85 3312 OB-28A Benzene nd ug/l .0-04-85 3312 OB-28A Toluene nd ug/1 .0-04-85 3313 OB-26A 1,1 - Dichloroethylene nd ug/l .0-04-85 3313 OB-26A 1, 1-Dichloroethane 1.9 ug/l .0-04-85 3313 OB-26A trans-1, 2-Dichloroethylene nd ug/l .0-04-85 3313 OB-26A Chloroform nd ug/l .0-04-85 3313 OB-26A 1,2 - Dichloroethane nd ug/l 0-04-85 3313 OB-26A 1,1,1-Trichloroethane nd ug/1 0-04-85 3313 OB-26A Trichloroethylene 2.4 ug/1 0-04-85 3313 OB-26A Benzene 144.0 ug/l 0-04-85 3313 OB-26A Toluene nd ug/1 0-09-85 3408 OB~20A рH 6.4 mg/1 0-09-85 3408 OB-20A Alkalinity 92.0 mg/1 0-09-85 3408 OB-20A Hardness 150.0 mg/1 0-09-85 3409 OB-32AR рH 6.4 mg/l 0-09-85 3409 OB-32AR Alkalinity 80.0 mg/1 0-09-85 34,09 AR 100435'1 OB-32AR Hardness 0-24-85 3617 OB-34AR Acidity 79.0 mg/l OB-34AR 0-24-85 3617 Hardness 158.0 mg/l

CHEM SOLV WATER QUALITY DATA

PAGE NO. 00057 02/04/87

1's

Ì,

Dr.s.         LAB #         SAMPLE ID         PARAMETER         CONCENTR UNITS#           10-24-85         3617         OB-34AR         Total Iron         .36 mg/l           10-24-85         3617         OB-34AR         Manganese         6.1 mg/l           10-24-85         3617         OB-34AR         Total Dissolved Iron         nd mg/l           10-24-85         3618         OB-35AR         Acidity         55.0 mg/l           10-24-85         3618         OB-35AR         Hardness         116.0 mg/l           10-24-85         3618         OB-35AR         Total Iron         .14 mg/l           10-24-85         3618         OB-35AR         Total Dissolved Iron         nd mg/l           10-24-85         3618         OB-35AR         Total Dissolved Iron         nd mg/l           11-26-85         4020         Recovery RAN         Ethylbenzene         125.0 ug/l           11-26-85         4020         Recovery RAN         1,1 - Dichloroethylene         10.0 ug/l           11-26-85         4020         Recovery RAN         1,2 - Dichloroethane         6.0 ug/l           11-26-85         4020         Recovery RAN         1,1 - Trichloroethane         6.0 ug/l           11-26-85         4020					CHEM SOLV WATER QUALITY	DATA	
10-24-85 3617       OB-34AR       Manganese       6.1 mg/l         10-24-85 3617       OB-34AR       Total Dissolved Iron       nd mg/l         10-24-85 3617       OB-34AR       Total Dissolved Iron       nd mg/l         10-24-85 3618       OB-35AR       Acidity       55.0 mg/l         10-24-85 3618       OB-35AR       Hardness       116.0 mg/l         10-24-85 3618       OB-35AR       Total Iron       .14 mg/l         10-24-85 3618       OB-35AR       Total Dissolved Iron       nd mg/l         10-24-85 3618       OB-35AR       Total Dissolved Iron       nd mg/l         11-26-85 4020       Recovery RAW       Ethylbenzene       125.0 ug/l         11-26-85 4020       Recovery RAW       1,1 - Dichloroethylene       10.0 ug/l         11-26-85 4020       Recovery RAW       trans-1,2-Dichloroethylene       865.0 ug/l         11-26-85 4020       Recovery RAW       trans-1,2-Dichloroethane       6.0 ug/l         11-26-85 4020       Recovery RAW       1,1.2 - Dichloroethane       8000.0 ug/l         11-26-85 4020       Recovery RAW       Trichloroethane       5.5 ug/l         11-26-85 4020       Recovery RAW       Trichloroethylene       34200.0 ug/l         11-26-85 4020       Recovery RAW	UniE	LAB #	SAMPLE ID		PARAMETER	CONCENTR	units 🛓
10-24-85 3617       OB-34AR       Total Dissolved Iron       nd mg/l         10-24-85 3618       OB-35AR       Acidity       55.0 mg/l         10-24-85 3618       OB-35AR       Hardness       116.0 mg/l         10-24-85 3618       OB-35AR       Total Iron       .14 mg/l         10-24-85 3618       OB-35AR       Total Iron       .14 mg/l         10-24-85 3618       OB-35AR       Manganese       5.88 mg/l         10-24-85 3618       OB-35AR       Total Dissolved Iron       nd mg/l         11-26-85 4020       Recovery RAW       Ethylbenzene       125.0 ug/l         11-26-85 4020       Recovery RAW       1,1 - Dichloroethylene       10.0 ug/l         11-26-85 4020       Recovery RAW       trans-1,2-Dichloroethylene       865.0 ug/l         11-26-85 4020       Recovery RAW       1,2 - Dichloroethane       6.0 ug/l         11-26-85 4020       Recovery RAW       1,2 - Dichloroethane       8000.0 ug/l         11-26-85 4020       Recovery RAW       Trichloroethylene       34200.0 ug/l         11-26-85 4020       Recovery RAW       Trichloroethylene       34200.0 ug/l         11-26-85 4020       Recovery RAW       Trichloroethylene       305.0 ug/l         11-26-85 4020       Recovery RAW <t< td=""><td>10-24-85</td><td>3617</td><td>OB-34AR</td><td></td><td>Total Iron</td><td>.36</td><td>mg/1</td></t<>	10-24-85	3617	OB-34AR		Total Iron	.36	mg/1
10-24-85 3618       OB-35AR       Acidity       55.0 mg/l         10-24-85 3618       OB-35AR       Hardness       116.0 mg/l         10-24-85 3618       OB-35AR       Total Iron       .14 mg/l         10-24-85 3618       OB-35AR       Total Iron       .14 mg/l         10-24-85 3618       OB-35AR       Manganese       5.88 mg/l         10-24-85 3618       OB-35AR       Manganese       5.88 mg/l         10-24-85 3618       OB-35AR       Total Dissolved Iron       nd mg/l         11-26-85 4020       Recovery RAW       Ethylbenzene       125.0 ug/l         11-26-85 4020       Recovery RAW       1,1 - Dichloroethylene       10.0 ug/l         11-26-85 4020       Recovery RAW       1,1 -Dichloroethane       76.0 ug/l         11-26-85 4020       Recovery RAW       trans-1,2-Dichloroethylene       865.0 ug/l         11-26-85 4020       Recovery RAW       1,2 - Dichloroethane       6.0 ug/l         11-26-85 4020       Recovery RAW       1,1 - Trichloroethane       8000.0 ug/l         11-26-85 4020       Recovery RAW       Trichloroethylene       34200.0 ug/l         11-26-85 4020       Recovery RAW       Trichloroethylene       34200.0 ug/l         11-26-85 4020       Recovery RAW       Totlo	10-24-85	3617	OB-34AR		Manganese	6.1	mg/l
10-24-85 3618       OB-35AR       Hardness       116.0 mg/1         10-24-85 3618       OB-35AR       Total Iron       .14 mg/1         10-24-85 3618       OB-35AR       Total Iron       .14 mg/1         10-24-85 3618       OB-35AR       Manganese       5.88 mg/1         10-24-85 3618       OB-35AR       Total Dissolved Iron       nd mg/1         11-26-85 4020       Recovery RAW       Ethylbenzene       125.0 ug/1         11-26-85 4020       Recovery RAW       1,1 - Dichloroethylene       10.0 ug/1         11-26-85 4020       Recovery RAW       trans-1,2-Dichloroethylene       865.0 ug/1         11-26-85 4020       Recovery RAW       trans-1,2-Dichloroethane       6.0 ug/1         11-26-85 4020       Recovery RAW       trans-1,2-Dichloroethane       6.0 ug/1         11-26-85 4020       Recovery RAW       1,1 - Trichloroethane       8000.0 ug/1         11-26-85 4020       Recovery RAW       1,1 - Trichloroethane       8000.0 ug/1         11-26-85 4020       Recovery RAW       Trichloroethylene       34200.0 ug/1         11-26-85 4020       Recovery RAW       Totloroethylene       5.5 ug/1         11-26-85 4020       Recovery RAW       Totloroethylene       305.0 ug/1         11-26-85 4020 <t< td=""><td>10-24-85</td><td>3617</td><td>OB-34AR</td><td></td><td>Total Dissolved Iron</td><td>nd</td><td>mg/l</td></t<>	10-24-85	3617	OB-34AR		Total Dissolved Iron	nd	mg/l
10-24-85 3618       OB-35AR       Total Iron       .14 mg/l         10-24-85 3618       OB-35AR       Manganese       5.88 mg/l         10-24-85 3618       OB-35AR       Total Dissolved Iron       nd mg/l         11-26-85 4020       Recovery RAW       Ethylbenzene       125.0 ug/l         11-26-85 4020       Recovery RAW       1,1 - Dichloroethylene       10.0 ug/l         11-26-85 4020       Recovery RAW       1,1 - Dichloroethylene       865.0 ug/l         11-26-85 4020       Recovery RAW       trans-1,2-Dichloroethylene       865.0 ug/l         11-26-85 4020       Recovery RAW       thans-1,2-Dichloroethylene       865.0 ug/l         11-26-85 4020       Recovery RAW       thans-1,2-Dichloroethylene       865.0 ug/l         11-26-85 4020       Recovery RAW       1,2 - Dichloroethane       6.0 ug/l         11-26-85 4020       Recovery RAW       1,1,1-Trichloroethane       8000.0 ug/l         11-26-85 4020       Recovery RAW       Trichloroethylene       34200.0 ug/l         11-26-85 4020       Recovery RAW       Tetrachloroethylene       5.5 ug/l         11-26-85 4020       Recovery RAW       Totaloroethylene       305.0 ug/l         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/l	10-24-85	3618	OB-35AR		Acidity	55.0	mg/l
10-24-85 3618       OB-35AR       Manganese       5.88 mg/l         10-24-85 3618       OB-35AR       Total Dissolved Iron       nd mg/l         11-26-85 4020       Recovery RAW       Ethylbenzene       125.0 ug/l         11-26-85 4020       Recovery RAW       1,1 - Dichloroethylene       10.0 ug/l         11-26-85 4020       Recovery RAW       1,1 - Dichloroethylene       10.0 ug/l         11-26-85 4020       Recovery RAW       1,1 - Dichloroethylene       865.0 ug/l         11-26-85 4020       Recovery RAW       trans-1,2-Dichloroethylene       865.0 ug/l         11-26-85 4020       Recovery RAW       1,2 - Dichloroethane       6.0 ug/l         11-26-85 4020       Recovery RAW       1,2 - Dichloroethane       8000.0 ug/l         11-26-85 4020       Recovery RAW       1,1 - Trichloroethane       8000.0 ug/l         11-26-85 4020       Recovery RAW       Trichloroethylene       34200.0 ug/l         11-26-85 4020       Recovery RAW       Trichloroethylene       5.5 ug/l         11-26-85 4020       Recovery RAW       Tetrachloroethylene       58.0 ug/l         11-26-85 4020       Recovery RAW       Toluene       305.0 ug/l         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/l	10-24-85	3618	OB-35AR		Hardness	116.0	mg/l
10-24-85 3618       OB-35AR       Total Dissolved Iron       nd mg/l         11-26-85 4020       Recovery RAW       Ethylbenzene       125.0 ug/l         11-26-85 4020       Recovery RAW       1,1 - Dichloroethylene       10.0 ug/l         11-26-85 4020       Recovery RAW       1,1 - Dichloroethylene       10.0 ug/l         11-26-85 4020       Recovery RAW       1,1 -Dichloroethylene       865.0 ug/l         11-26-85 4020       Recovery RAW       trans-1,2-Dichloroethylene       865.0 ug/l         11-26-85 4020       Recovery RAW       Chloroform       375.0 ug/l         11-26-85 4020       Recovery RAW       1,2 - Dichloroethane       6.0 ug/l         11-26-85 4020       Recovery RAW       1,1 -Trichloroethane       8000.0 ug/l         11-26-85 4020       Recovery RAW       Trichloroethylene       34200.0 ug/l         11-26-85 4020       Recovery RAW       Tetrachloroethylene       58.0 ug/l         11-26-85 4020       Recovery RAW       Tetrachloroethylene       305.0 ug/l         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/l         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/l         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/l	10-24-85	3618	OB-35AR		Total Iron	.14	mg/l
11-26-85 4020       Recovery RAW       Ethylbenzene       125.0 ug/l         11-26-85 4020       Recovery RAW       1,1 - Dichloroethylene       10.0 ug/l         11-26-85 4020       Recovery RAW       1,1 - Dichloroethylene       10.0 ug/l         11-26-85 4020       Recovery RAW       1,1 - Dichloroethylene       865.0 ug/l         11-26-85 4020       Recovery RAW       trans-1,2-Dichloroethylene       865.0 ug/l         11-26-85 4020       Recovery RAW       Chloroform       375.0 ug/l         11-26-85 4020       Recovery RAW       1,2 - Dichloroethane       6.0 ug/l         11-26-85 4020       Recovery RAW       1,1.1-Trichloroethane       8000.0 ug/l         11-26-85 4020       Recovery RAW       Trichloroethylene       34200.0 ug/l         11-26-85 4020       Recovery RAW       Trichloroethylene       58.0 ug/l         11-26-85 4020       Recovery RAW       Tetrachloroethylene       58.0 ug/l         11-26-85 4020       Recovery RAW       Toluene       305.0 ug/l         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/l         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/l         11-26-85 4021       Recovery TR       1,1 -Dichloroethane       nd ug/l	10-24-85	3618	OB-35AR		Manganese	5.88	mg/l
11-26-85 4020       Recovery RAW       1,1 - Dichloroethylene       10.0 ug/1         11-26-85 4020       Recovery RAW       1, 1-Dichloroethane       76.0 ug/1         5-85 4020       Recovery RAW       trans-1,2-Dichloroethylene       865.0 ug/1         11-26-85 4020       Recovery RAW       trans-1,2-Dichloroethylene       865.0 ug/1         11-26-85 4020       Recovery RAW       Chloroform       375.0 ug/1         11-26-85 4020       Recovery RAW       1,2 - Dichloroethane       6.0 ug/1         11-26-85 4020       Recovery RAW       1,2 - Dichloroethane       8000.0 ug/1         11-26-85 4020       Recovery RAW       1,1 - Trichloroethane       8000.0 ug/1         11-26-85 4020       Recovery RAW       Trichloroethylene       34200.0 ug/1         11-26-85 4020       Recovery RAW       Tetrachloroethylene       58.0 ug/1         11-26-85 4020       Recovery RAW       Toluene       305.0 ug/1         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/1         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/1         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/1         11-26-85 4021       Recovery TR       1,1 -Dichloroethylene       nd ug/1	10-24-85	3618	OB-35AR		Total Dissolved Iron	nd	mg/l
11-26-85 4020       Recovery RAW       1, 1-Dichloroethane       76.0 ug/1         5-85 4020       Recovery RAW       trans-1,2-Dichloroethylene       865.0 ug/1         11-26-85 4020       Recovery RAW       Chloroform       375.0 ug/1         11-26-85 4020       Recovery RAW       1,2 - Dichloroethane       6.0 ug/1         11-26-85 4020       Recovery RAW       1,1 -Trichloroethane       8000.0 ug/1         11-26-85 4020       Recovery RAW       1,1 -Trichloroethane       34200.0 ug/1         11-26-85 4020       Recovery RAW       Trichloroethylene       34200.0 ug/1         11-26-85 4020       Recovery RAW       Trichloroethylene       5.5 ug/1         11-26-85 4020       Recovery RAW       Tetrachloroethylene       58.0 ug/1         11-26-85 4020       Recovery RAW       Toluene       305.0 ug/1         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/1         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/1         11-26-85 4021       Recovery TR       1,1 -Dichloroethane       nd ug/1         11-26-85 4021       Recovery TR       1,1 -Dichloroethane       nd ug/1         11-26-85 4021       Recovery TR       1,1 -Dichloroethane       nd ug/1	11-26-85	4020	Recovery R	RAW	Ethylbenzene	125.0	ug/l
5-85 4020       Recovery RAW       trans-1, 2-Dichloroethylene       865.0 ug/1         11-26-85 4020       Recovery RAW       Chloroform       375.0 ug/1         11-26-85 4020       Recovery RAW       1,2 - Dichloroethane       6.0 ug/1         11-26-85 4020       Recovery RAW       1,2 - Dichloroethane       6.0 ug/1         11-26-85 4020       Recovery RAW       1,1 - Trichloroethane       8000.0 ug/1         11-26-85 4020       Recovery RAW       Trichloroethylene       34200.0 ug/1         11-26-85 4020       Recovery RAW       Trichloroethylene       34200.0 ug/1         11-26-85 4020       Recovery RAW       Bromoform       5.5 ug/1         11-26-85 4020       Recovery RAW       Tetrachloroethylene       58.0 ug/1         11-26-85 4020       Recovery RAW       Toluene       305.0 ug/1         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/1         11-26-85 4021       Recovery TR       Toluene       7.3 ug/1         11-26-85 4021       Recovery TR       1, 1-Dichloroethane       nd ug/1         11-26-85 4021       Recovery TR       1, 1-Dichloroethane       nd ug/1         11-26-85 4021       Recovery TR       1, 2-Dichloroethane       nd ug/1         11-26-85 4021 <td>11-26-85</td> <td>4020</td> <td>Recovery R</td> <td>RAW</td> <td>1,1 - Dichloroethylene</td> <td>10.0</td> <td>ug/l</td>	11-26-85	4020	Recovery R	RAW	1,1 - Dichloroethylene	10.0	ug/l
11-26-85 4020       Recovery RAW       Chloroform       375.0 ug/l         11-26-85 4020       Recovery RAW       1,2 - Dichloroethane       6.0 ug/l         11-26-85 4020       Recovery RAW       1,1,1-Trichloroethane       8000.0 ug/l         11-26-85 4020       Recovery RAW       1,1,1-Trichloroethane       8000.0 ug/l         11-26-85 4020       Recovery RAW       Trichloroethylene       34200.0 ug/l         11-26-85 4020       Recovery RAW       Bromoform       5.5 ug/l         11-26-85 4020       Recovery RAW       Tetrachloroethylene       58.0 ug/l         11-26-85 4020       Recovery RAW       Toluene       305.0 ug/l         11-26-85 4020       Recovery RAW       Toluene       305.0 ug/l         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/l         11-26-85 4021       Recovery TR       Toluene       7.3 ug/l         11-26-85 4021       Recovery TR       1, 1-Dichloroethane       nd ug/l         11-26-85 4021       Recovery TR       1, 1-Dichloroethane       nd ug/l         11-26-85 4021       Recovery TR       1, 2-Dichloroethylene       nd ug/l         11-26-85 4021       Recovery TR       1, 2-Dichloroethylene       nd ug/l         11-26-85 4021	11 <b>-</b> 26-85	4020	Recovery R	RAW	1, 1-Dichloroethane	76.0	ug/l
11-26-85 4020       Recovery RAW       1,2 - Dichloroethane       6.0 ug/1         11-26-85 4020       Recovery RAW       1,1,1-Trichloroethane       8000.0 ug/1         11-26-85 4020       Recovery RAW       Trichloroethane       34200.0 ug/1         11-26-85 4020       Recovery RAW       Trichloroethylene       34200.0 ug/1         11-26-85 4020       Recovery RAW       Bromoform       5.5 ug/1         11-26-85 4020       Recovery RAW       Tetrachloroethylene       58.0 ug/1         11-26-85 4020       Recovery RAW       Tetrachloroethylene       305.0 ug/1         11-26-85 4020       Recovery RAW       Toluene       305.0 ug/1         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/1         11-26-85 4021       Recovery TR       Toluene       7.3 ug/1         11-26-85 4021       Recovery TR       1, 1-Dichloroethane       nd ug/1         11-26-85 4021       Recovery TR       1, 1-Dichloroethane       nd ug/1         11-26-85 4021       Recovery TR       1, 1-Dichloroethane       nd ug/1         11-26-85 4021       Recovery TR       1, 2-Dichloroethylene       nd ug/1         11-26-85 4021       Recovery TR       Chloroform       nd ug/1         11-26-85 4021 <td< td=""><td>5-85</td><td>4020</td><td>Recovery R</td><td>RAW</td><td>trans-1,2-Dichloroethylene</td><td>865.0</td><td>ug/l</td></td<>	5-85	4020	Recovery R	RAW	trans-1,2-Dichloroethylene	865.0	ug/l
11-26-85 4020       Recovery RAW       1,1,1-Trichloroethane       8000.0 ug/1         11-26-85 4020       Recovery RAW       Trichloroethylene       34200.0 ug/1         11-26-85 4020       Recovery RAW       Bromoform       5.5 ug/1         11-26-85 4020       Recovery RAW       Bromoform       5.5 ug/1         11-26-85 4020       Recovery RAW       Tetrachloroethylene       58.0 ug/1         11-26-85 4020       Recovery RAW       Tetrachloroethylene       58.0 ug/1         11-26-85 4020       Recovery RAW       Toluene       305.0 ug/1         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/1         11-26-85 4021       Recovery TR       Toluene       7.3 ug/1         11-26-85 4021       Recovery TR       1, 1-Dichloroethane       nd ug/1         11-26-85 4021       Recovery TR       1, 1-Dichloroethane       nd ug/1         11-26-85 4021       Recovery TR       trans-1, 2-Dichloroethylene       nd ug/1         11-26-85 4021       Recovery TR       Chloroform       nd ug/1         11-26-85 4021       Recovery TR       Chloroform       nd ug/1         11-26-85 4021       Recovery TR       1,2 - Dichloroethane       ARI00436 _{hd} ug/1	11-26-85	4020	Recovery R	RAW	Chloroform	375.0	ug/l
11-26-85 4020       Recovery RAW       Trichloroethylene       34200.0 ug/l         11-26-85 4020       Recovery RAW       Bromoform       5.5 ug/l         11-26-85 4020       Recovery RAW       Tetrachloroethylene       58.0 ug/l         11-26-85 4020       Recovery RAW       Tetrachloroethylene       58.0 ug/l         11-26-85 4020       Recovery RAW       Toluene       305.0 ug/l         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/l         11-26-85 4021       Recovery TR       Toluene       7.3 ug/l         11-26-85 4021       Recovery TR       1, 1-Dichloroethylene       nd ug/l         11-26-85 4021       Recovery TR       1, 1-Dichloroethylene       nd ug/l         11-26-85 4021       Recovery TR       1, 1-Dichloroethane       nd ug/l         11-26-85 4021       Recovery TR       trans-1, 2-Dichloroethylene       nd ug/l         11-26-85 4021       Recovery TR       Chloroform       nd ug/l         11-26-85 4021       Recovery TR       1,2 - Dichloroethane       ARI00436 _{hd} ug/l	11-26-85	4020	Recovery R	RAW	1,2 - Dichloroethane	6.0	ug/l
11-26-85 4020       Recovery RAW       Bromoform       5.5 ug/l         11-26-85 4020       Recovery RAW       Tetrachloroethylene       58.0 ug/l         11-26-85 4020       Recovery RAW       Toluene       305.0 ug/l         11-26-85 4021       Recovery TR       1.1 - Dichloroethylene       nd ug/l         11-26-85 4021       Recovery TR       Toluene       7.3 ug/l         11-26-85 4021       Recovery TR       Toluene       7.3 ug/l         11-26-85 4021       Recovery TR       1, 1-Dichloroethane       nd ug/l         11-26-85 4021       Recovery TR       1, 1-Dichloroethane       nd ug/l         11-26-85 4021       Recovery TR       1, 1-Dichloroethane       nd ug/l         11-26-85 4021       Recovery TR       Chloroform       nd ug/l         11-26-85 4021       Recovery TR       Chloroform       nd ug/l         11-26-85 4021       Recovery TR       1,2 - Dichloroethane       ARI00436 _{hd} ug/l	11-26-85	4020	Recovery R	RAW	1,1,1-Trichloroethane	8000.0	ug/l
11-26-85 4020       Recovery RAW       Tetrachloroethylene       58.0 ug/l         11-26-85 4020       Recovery RAW       Toluene       305.0 ug/l         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/l         11-26-85 4021       Recovery TR       Toluene       7.3 ug/l         11-26-85 4021       Recovery TR       Toluene       7.3 ug/l         11-26-85 4021       Recovery TR       1, 1-Dichloroethane       nd ug/l         11-26-85 4021       Recovery TR       1, 1-Dichloroethane       nd ug/l         11-26-85 4021       Recovery TR       trans-1, 2-Dichloroethylene       nd ug/l         11-26-85 4021       Recovery TR       thoroform       nd ug/l         11-26-85 4021       Recovery TR       Chloroform       nd ug/l         11-26-85 4021       Recovery TR       Chloroform       nd ug/l         11-26-85 4021       Recovery TR       1,2 - Dichloroethane       ARI00436 _{hd} ug/l	11-26-85	4020	Recovery R	RAW	Trichloroethylene	34200.0	ug/l
11-26-85 4020       Recovery RAW       Toluene       305.0 ug/1         11-26-85 4021       Recovery TR       1,1 - Dichloroethylene       nd ug/1         11-26-85 4021       Recovery TR       Toluene       7.3 ug/1         11-26-85 4021       Recovery TR       1, 1-Dichloroethylene       nd ug/1         11-26-85 4021       Recovery TR       1, 1-Dichloroethane       nd ug/1         11-26-85 4021       Recovery TR       trans-1, 2-Dichloroethylene       nd ug/1         11-26-85 4021       Recovery TR       Chloroform       nd ug/1	11-26-85	4020	Recovery R	RAW	Bromoform	5.5	ug/l
11-26-85 4021Recovery TR1,1 - Dichloroethylenend ug/l11-26-85 4021Recovery TRToluene7.3 ug/l11-26-85 4021Recovery TR1, 1-Dichloroethanend ug/l11-26-85 4021Recovery TRtrans-1, 2-Dichloroethylenend ug/l11-26-85 4021Recovery TRChloroformnd ug/l11-26-85 4021Recovery TRChloroformnd ug/l11-26-85 4021Recovery TR1, 2 - DichloroethaneAR 100436hd ug/l	11-26-85	4020	Recovery R	RAW	Tetrachloroethylene	58.0	ug/l
11-26-85 4021       Recovery TR       Toluene       7.3 ug/1         11-26-85 4021       Recovery TR       1, 1-Dichloroethane       nd ug/1         11-26-85 4021       Recovery TR       trans-1, 2-Dichloroethylene       nd ug/1         11-26-85 4021       Recovery TR       trans-1, 2-Dichloroethylene       nd ug/1         11-26-85 4021       Recovery TR       Chloroform       nd ug/1         11-26-85 4021       Recovery TR       Chloroform       nd ug/1         11-26-85 4021       Recovery TR       1,2 - Dichloroethane       AR 100436hd ug/1	11-26-85	4020	Recovery R	VAN	Toluene	305.0	ug/l
11-26-85 4021       Recovery TR       1, 1-Dichloroethane       nd ug/1         11-26-85 4021       Recovery TR       trans-1, 2-Dichloroethylene       nd ug/1         11-26-85 4021       Recovery TR       Chloroform       nd ug/1         11-26-85 4021       Recovery TR       Chloroform       nd ug/1         1       -85 4021       Recovery TR       1,2 - Dichloroethane         ARI00436nd ug/1	11-26-85	4021	Recovery 1	rR	1,1 - Dichloroethylene	nd	ug/l
11-26-85 4021     Recovery TR     trans-1,2-Dichloroethylene     nd ug/l       11-26-85 4021     Recovery TR     Chloroform     nd ug/l       1     -85 4021     Recovery TR     1,2 - Dichloroethane     ARI00436hd ug/l	11-26-85	4021	Recovery T	"R	Toluene	7.3	ug/l
11-26-85 4021 Recovery TR Chloroform nd ug/1 -85 4021 Recovery TR 1,2 - Dichloroethane AR 100436hd ug/1	11-26-85	4021	Recovery T	rR	1, 1-Dichloroethane	nd	ug/l
1 -85 4021 Recovery TR 1,2 - Dichloroethane AR100436hd ug/1	11-26-85	4021	Recovery T	'R	trans-1,2-Dichloroethylene	nđ	ug/l
	11-26-85	4021	Recovery T	ſR	Chloroform		
11-26-85 4021 Recovery TR 1,1,1-Trichloroethane 5.3 ug/1	¥85	4021	Recovery I	ſR	1,2 - Dichloroethane	AR100436nd	ug/l
-	11-26-85	4021	Recovery T	ſR	1,1,1-Trichloroethane	5.3	ug/l

ļ

02/04/87

CHEM SOLV WATER QUALITY DATA

DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
11-26-85	4021	Recovery TR	Trichloroethylene	29.1	ug/1
11-26-85	4021	Recovery TR	Bromoform	1.2	ug/l
11-26-85	4021	Recovery TR	Tetrachloroethylene	nd	ug/l
11-26-85	4021	Recovery TR	Ethylbenzene	nd	ug/l
01-02-86		Recovery RAW	1,1 - Dichloroethylene	6.7	ug/l
01-02-86		Recovery RAW	trans-1,2-Dichloroethylene	2283.0	ug/l
01-02-86		Recovery RAW	Chloroform	337.0	ug/1
01-02-86		Recovery RAW	1,1,1-Trichloroethane	8320.0	
-		•	Trichloroethylene	27006.0	
01-02-86		Recovery RAW	•		
01-02-86		Recovery TR	1,1 - Dichloroethylene		ug/l
01-02-86	117	Recovery TR	trans-1,2-Dichloroethylene		ug/l
01-02-86	117	Recovery TR	Chloroform	nd	ug/l
01-02-86	117	Recovery TR	1,1,1-Trichloroethane	3.5	ug/1
01-02-86	117	Recovery TR	Trichloroethylene	nd	ug/1
01-02-86	646	Recovery RAW	1,1 - Dichloroethylene	143.0	ug/l
01-02-86	646	Recovery RAW	trans-1,2-Dichloroethylene	91.0	ug/l
01-02-86	646	Recovery RAW	1,1,1-Trichloroethane	86.0	ug/l
01-02-86	646	Recovery RAW	Trichloroethylene	2352.0	ug/l
01-02-86	647	Recovery TR	1,1 - Dichloroethylene	nd	ug/l
01-02-86	647	Recovery TR	trans-1,2-Dichloroethylene	nd	ug/l
01-02-86	647	Recovery TR	1,1,1-Trichloroethane	nd	ug/l
01-02-86	647	Recovery TR	Trichloroethylene	0.3	ug/l
02-19-86		Johnson	Trichloroethylene	nd	ug/l
02-19-86	H358	Durham	Trichloroethylene		ug/l
02-19-86	H360	Killen	Trichloroethylene		ug/l
02-19-86	H361	Phillips	Trichloroethylene		ug/l
02-19-86	H362	Lambertson	1,1,1-Trichloroethane		
02-19-86	H362	Lambertson '	Trichloroethylene	AR100437	ug/1
02-19-86	H363	Simon	Trichloroethylene		ug/l
02-19-86	H364	Williams	Trichloroethylene		ug/1
					-

## PAGE NO. 00002 02/04/87

1

CHEM SOLV WATER QUALITY DATA

ł

n

ñ

$\sim$			dini bobi mini Yumrii biili		
) );	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
)2-19-86	H365	American Roof.	1,1,1-Trichloroethane	0.1	ug/l
)2-19-86	H365	Gearh - Curley	Trichloroethylene	0.6	ug/l
02-19-86	H366	Gearhart - new	1,2 - Dichloroethane	31.0	ug/l
)2 <b>-19-8</b> 6	H366	Gearhart - old	Trichloroethylene	0.5	ug/l
)2-19-86	H367	Cote	Trichloroethylene	nđ	ug/l
02-19-86	H368	Harmic	Trichloroethylene	nd	ug/l
)3-11-86	766	OB-12A	Chloromethane	nd	ug/l
)3-11-86	766	OB-12A	1, 1-Dichloroethane	nd	ug/l
<b>)3-11-8</b> 6	766	OB-12A	trans-1,2-Dichloroethylene	nd	ug/l
J <b>3-11-8</b> 6	766	OB-12A	Chloroform	nd	ug/l
<b>3-11-86</b>	766	OB-12A	1,2 - Dichloroethane	nd	ug/l
3€CC	766	OB-12A	1,1,1-Trichloroethane	nd	ug/l
03-11-86	766	OB-12A	Bromodichloromethane	nd	ug/l
33-11-86	766	OB-12A	Trichloroethylene	nd	ug/l
03-11-86	766	OB-12A	Chlorobenzene	nd	ug/l
)3-11-86	766	OB-12A	Benzene	nd	ug/1
3-11-86	766	<u>OB-12A</u>	Toluene	nd	ug/l
3-11-86	766	OB-12A	Ethylbenzene	nd	ug/l
)3-11-86	767	OB-3A	Chloromethane	nđ	ug/l
)3-11-86	767	OB-3A	1, 1-Dichloroethane	nd	ug/1
)3-11-86	767	OB-3A	trans-1,2~Dichloroethylene	nd	ug/l
)3-11-86	767	OB-3A	Chloroform	nd	ug/l
)3-11-86	767	OB-3A	1,2 - Dichloroethane	nd	ug/l
)3~11-86	767	OB-3A	1,1,1-Trichloroethane		ug/l
) B <b>6</b>	<b>1</b> 93	OB-3A	Bromodichloromethane	1R10043	8 _{ug/1}
)3-11-86	787	OB-3A	Trichloroethylene	2.50	ug/l

PAGE NO. 00003 02/04/87

CHEM SOLV WATER QUALITY DATA

.....

.......

				-	( :
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
03-11-86	767	0B-3A	Chlorobenzene	nd	ug/l
03-11-86	767	ов-за	Benzene	nd	ug/l
03-11-86	767	OB-3A	Toluene	nd	ug/l
03-11-86	767	OB-3A	Ethylbenzene	nd	ug/l
03-11-86	768	0B-13A	Chloromethane	nd	ug/l
03-11-86	768	OB-13A	1, 1-Dichloroethane	nd	ug/l
03-11-86	768	0B-13A	t.ans-1,2-Dichloroethylene	nd	ug/l
03-11-86	768	0B-13A	Chloroform	nd	ug/l
03-11-86	768	OB-13A	1,2 - Dichloroethane	nd	ug/l
03-11-86	768	0B-13A	1,1,1-Trichloroethane	nd	ug/l
03-11-86	768	0B-13A	Bromodichloromethane	nd	ug/1
03-11-86	768	0B-13A	Trichloroethylene	nd	ug/1
03-11-86	768	0B-13A	Chlorobenzene	nd	ug/l
03-11-86	768	0B-13A	Benzene	nd	ug/l
03-11-86	768	OB-13A	Toluene	nđ	'ug/l
03-11-86	768	0B-13A	Ethylbenzene	nd	ug/l
)3-11-86	769	OB-4A	Chloromethane	nđ	ug/l
)3-11-86	769	OB-4A	1, 1-Dichloroethane	nd	ug/l
03-11-86	769	OB-4A	trans-1,2-Dichloroethylene	nđ	ug/l
03-11-86	769	OB-4A	Chloroform	nd	ug/l
03-11-86	769	OB-4A	1,2 - Dichloroethane	nd	ug/l
03-11-86		OB-4A	1,1,1-Trichloroethane	47.0	ug/l
03-11-86	769	OB-4A	Bromodichloromethane	nd	ug/l
03-11-86	769 46	OB-4A	Trichloroethylene	73.0	ug/l
03-11-86		OB-4A	Chlorobenzene	AR 1 0 0 49	99/1
03-11-86	769	OB-4A	Benzene	nd	ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

1.1.2.2

PAGE NO. 00004 02/04/87

CHEM SOLV WATER QUALITY DATA

1

۱

E	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
03-11-86	769	OB-4A	Toluene	nd	ug/l
03-11-86	769	OB-4A	Ethylbenzene	nd	ug/l
03-11-86	770	OB-10A	Chloromethane	nd	ug/l
03-11-86	770	OB-10A	1, 1-Dichloroethane	nd	ug/l
03-11-86	770	OB-10A	trans-1,2-Dichloroethylene	nd	ug/l
03-11-86	770	OB-10A	Chloroform	nd	ug/l
03-11-86	770	OB-10A	1,2 - Dichloroethane	nd	ug/l
03-11-86	770	OB-10A	1,1,1-Trichloroethane	nd	ug/l
03-11-86	770	OB-10A	Bromodichloromethane	nd	ug/l
03-11-86	770	OB-10A	Trichloroethylene	4.0	ug/l
03-11-86	770	OB-10A	Chlorobenzene	nd	ug/1
11-86	770	0B-10A	Benzene	nd	ug/l
11-86-	770	OB-10A	Toluene	nd	ug/1
03-11-86	770	OB-10A	Ethylbenzene	nd	ug/l
03-11-86	771	OB-14A	Chloromethane	nd	ug/l
03-11-86	771	OB-14A	1, 1-Dichloroethane	51.0	ug/l
03-11-86	771	OB-14A	trans-1,2-Dichloroethylene	1.0	ug/l
03-11-86	771	OB-14A	Chloroform	nd	ug/l
03-11-86	771	OB-14A	1,2 - Dichloroethane	nd	ug/l
03-11-86	771	0B-14A	1,1,1-Trichloroethane	192.0	ug/l
03-11-86	771	OB-14A	Bromodichloromethane	nd	ug/l
03-11-86	771	0B-14A	Trichloroethylene	249.0	ug/l
03-11-86	771	0B-14A	Chlorobenzene	nd	ug/l
03-11-86		OB-14A	Benzene	AR 1 0 0 4 4	( ^{gg/1}
° 1-86	771	0B-14A	Toluene	nd	ug/l
05-11-86	771	0B-14A	Ethylbenzene	nd	ug/l

PAGE NO. 00005 02/04/87

CHEM SOLV WATER QUALITY DATA CONCENTR UNITS 25 PARAMETER DATE LAB # SAMPLE ID 03-11-86 772 OB-17A Chloromethane 3.0 ug/1 03-11-86 772 OB-17A 1, 1-Dichloroethane nd ug/l 03-11-86 772 OB-17A trans-1,2-Dichloroethylene nd ug/1 03-11-86 772 **OB-17A** Chloroform nd ug/1 03-11-86 772 OB-17A 1,2 - Dichloroethane nd ug/1 03-11-86 772 OB-17A 1,1,1-Trichloroethane nd ug/l 03-11-86 772 OB-17A Bromodichloromethane nd ug/l 03-11-86 772 OB-17A Trichloroethylene nd ug/l 03-11-86 772 OB-17A Chlorobenzene nd ug/1 03-11-86 772 **OB-17A** Benzene nd ug/l 03-11-86 772 OB-17A Toluene nd ug/l 03-11-86 772 OB-17A Ethylbenzene nd ug/l 03-11-86 773 OB-18A Chloromethane 1.0 ug/1 03-11-86 773 1, 1-Dichloroethane nd ug/l OB-18A 03-11-86 773 **OB-18A** trans-1,2-Dichloroethylene 2.0 ug/1 )3-11-86 773 OB-18A Chloroform nd ug/1 1,2 - Dichloroethane 2.0 ug/1 )3-11-86 773 OB-18A 3-11-86 773 OB-18A 1,1,1-Trichloroethane 1.0 ug/l 33-11-86 773 **OB-18A** Bromodichloromethane 7.0 ug/1 03-11-86 773 **OB-18A** Trichloroethylene 2.0 ug/1 J3 ·11-86 773 Chlorobenzene OB-18A 1.0 ug/1 03-11-86 773 OB-18A Benzene 3.50 ug/1 3-11-86 773 Toluene **OB-18A** nd ug/1 AR1004441 )3-11-86 773 Ethylbenzene **OB-18A** 3-11-86 774 OB-19A Chloromethane nd ug/l 33-11-86 774 OB-19A 1, 1-Dichloroethane nd ug/1

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

11.3

PAGE NO. 00006 02/04/87

ŀ

1- 1

CHEM SOLV WATER QUALITY DATA

7

11

	LAB	#	SAMPLE ID		PARAMETER	CONCENTR	UNITS
03-11-86	774		0B-19A		trans-1,2-Dichloroethylene	nd	ug/l
03-11-86	774		0B-19A		Chloroform	nd	ug/l
03-11-86	774		0B-19A		1,2 - Dichloroethane	nd	ug/l
03-11-86	774		0B-19A		1,1,1-Trichloroethane	15.0	ug/l
03-11-86	774		0B-19A		Bromodichloromethane	nd	ug/l
03-11-86	774		OB-19A		Trichloroethylene	31.0	ug/l
03-11-86	774		OB-19A		Chlorobenzene	nd	ug/l
03-11-86	774		OB-19A		Benzene	nd	ug/l
03-11-86	774		OB-19A		Toluene	nd	ug/l
03-11-86	774		OB-19A		Ethylbenzene	nd	ug/l
03-11-86	775		Recovery	RAW	Chloromethane	nd	ug/l
1-86	775		Recovery	RAW	1, 1-Dichloroethane	129.0	ug/l
03-11-86	775		Recovery	RAW	trans-1,2-Dichloroethylene	74.0	ug/l
03-11-86	775		Recoverv	RAW	Chloroform	28.0	ug/l
03-11-86	775		Recovery	RAW	1,2 - Dichloroethane	nd	ug/1
03-11-86	775		Recovery	RAW	1,1,1-Trichloroethane	171.0	ug/l
03-11-86	775		Recovery	RAW	Bromodichloromethane	nd	ug/l
03-11-86	775		Recovery	RAW	Trichloroethylene	217.0	ug/l
03-11-86	775		Recovery	RAW	Chlorobenzene	nd	ug/l
03-11-86	775		Recovery	RAW	Benzene	nd	ug/l
03-11-86	775		Recovery	RAW	Toluene	nd	ug/l
03-11-86	775	·. •	Recovery	RAW	Ethylbenzene	nd	ug/l
03-11-86	777	Non	ÓB-24A		1,1 - Dichloroethylene	2.0	ug/l
03-11-86	777		OB-24A		Chloroform		ug/l
86-ر	777		OB-24A		1,2 - Dichloroethane	AR100442	ug/l
03-11-86	777		OB-24A		1,1,1-Trichloroethane	75.0	ug/l

If the page filmed in this frame is not as readable or legible as this have a label, it is due to substandard color or condition of the original page.

.....

PAGE NO. 00007 02/04/87

			CHEM SOLV WATER QUALITY DATA		
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITE
03-11-86	777	OB-24A	Trichloroethylene	21.0	ug/l
03-11-86	777	OB-24A	Benzene	nd	ug/l
03-11-86	778	OB-25A	1,1 - Dichloroethylene	1.0	ug/l
03-11-86	778	OB-25A	Chloroform	2.5	ug/l
03-11-86	778	OB-25A	1,2 - Dichloroethane	nd	ug/l
03-11-86	778	OB-25A	1,1,1-Trichloroethane	4.0	ug/l
03-11-86	778	OB-25A	Trichloroethylene	152.0	ug/l
03-11-86	778	OB-25A	Benzene	nd	ug/l
03-11-86	779	OB-28A	1,1 - Dichloroethylene	nd	ug/l
03-11-86	779	OB-28A	Chloroform	nd	ug/l
03-11-86	779	OB-28A	1,2 - Dichloroethane	nd	ug/1
03-11-86	779	OB-28A	1,1,1-Trichloroethane	3.0	ug/1
03-11-86	779	OB-28A	Trichloroethylene	138.0	ug/l
03-11-86	779	OB-28A	Benzene	nđ	ug/l
03-11-86	780	Gearh - Curley	1,1 - Dichloroethylene	nđ	ug/l
03-11-86	780	Gearh - Curley	Chloroform	nd	ug/l
03-11-86	780	Gearh - Curley	1,2 - Dichloroethane	25.0	ug/l
03-11-86	780	Gearh - Curley	1,1,1-Trichloroethane	nđ	ug/l
03-11-86	780	Gearh - Curley	Trichloroethylene	nd	ug/l
03-11-86	780	Gearh - Curley	Benzene	110.0	ug/l
04-08-86	1092	Gearhart-new RA	Benzene	. 10.0	ug/l
04-08-86	1092	Gearhart-new RA	Toluene	nd	ug/l
04-08-86	1092	Gearhart-new RA	Ethylbenzene	nd	ug/l
04-08-86	- 14 -	Gearhart-new RA	P-xylene	ARIOOR	49/1
04-08-86	<b>3092</b>	Gearhart-new RA	M-xylene	nd	ug/1
04-08-86	1092	Gearhart-new RA	O-xylene	2.6	ug/l
1					

4

ľ

1

## PAGE NO. 00008 02/04/87

.

5

(				CHEM SOLV WATER QUALITY DATA		
Dara'E	LAB #	SAMPLE ID		PARAMETER	CONCENTR	UNITS
04-08-86	1092	Gearhart-new F	RA	Chloromethane	nd	ug/l
04-08-86	1092	Gearhart-new F	RA	Vinyl Chloride	nd	ug/l
04-08-86	1092	Gearhart-new F	RA	1,1 - Dichloroethylene	nd	ug/l
04-08-86	1092	Gearhart-new F	RA	1, 1-Dichloroethane	nd	ug/l
04-08-86	1092	Gearhart-new F	RA	1,2 - Dichloroethane	55.0	ug/l
04-08-86	1092	Gearhart-new F	RA	1,1,1-Trichloroethane	nd	ug/l
04-08-86	1092	Gearhart-new F	RA	Carbon Tetrachloride	nd	ug/l
04-08-86	1092	Gearhart-new F	RA	Tetrachloroethane	nd	ug/l
04-08-86	1093	Gearhart-new 1	TR	Chloromethane	nd	ug/l
04-08-86	1093	Gearhart-new 1	TR	Vinyl Chloride	nđ	ug/l
04-08-86	1093	Gearhart-new 1	TR	Benzene	3.1	ug/l
8-86	1093	Gearhart-new 1	TR	Toluene	3.0	ug/l
04-08-86	1093	Gearhart-new 1	TR	Ethylbenzene	2.2	ug/l
04-08-86	1093	Gearhart-new 1	TR	P-xylene	2.3	ug/l
04-08-86	1093	Gearhart-new 1	TR	M-xylene	2.9	ug/l
04-08-86	1093	Gearhart-new 1	TR	O-xylene	2.7	ug/l
04-08-86	1093	Gearhart-new 7	TR	1,1 - Dichloroethylene	nd	ug/l
04-08-86	1093	Gearhart-new 1	TR	1, 1-Dichloroethane	nd	ug/l
04-08-86	1093	Gearhart-new 1	TR	1,2 - Dichloroethane	nd	ug/l
04-08-86	1093	Gearhart-new 1	TR	1,1,1-Trichloroethane	nd	ug/l
04-08-86-	1093	Gearhart-new 7	TR	Carbon Tetrachloride	nd	ug/l
04-08-86	1093	Gearhart-new 1	TR	Tetrachloroethane	nd	ug/l
04-08-86	1094	Recovery RAW		1,1,1-Trichloroethane	712.0	ug/l
04-08-86	1094	Recovery RAW		0-xylene		ug/l
86-بر م	1094	Recovery RAW		Toluene	ARIOQL	44/1
04-08-86	1094	Recovery RAW		Chloromethane		ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

-

PAGE NO. 00009 02/04/87

l

I				CHEM SOLV WATER QUALITY DA	та	$\bigcirc$
1	DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	נאט 🛄
ł	04-08-86	1094	Recovery RAW	Vinyl Chloride	1.0	ug/l
1	04-08-86	1094	Recovery RAW	1,1 - Dichloroethylene	23.50	ug/l
	04-08-86	1094	Recovery RAW	1, 1-Dichloroethane	4.0	ug/l
	04-08-86	1094	Recovery RAW	1,2 - Dichloroethane	nd	ug/l
i	04-08-86	1094	Recovery RAW	Benzene	nd	ug/l
ļ	04-08-86	1094	Recovery RAW	Ethylbenzene	nd	ug/l
I	04-08-86	1094	Recovery RAW	P-xylene	nd	ug/l
1	04-08-86	1094	Recovery RAW	M-xylene	nd	ug/l
	04-08-86	1094	Recovery RAW	Carbon Tetrachloride	712.0	ug/l
	04-08-86	1094	Recovery RAW	Tetrachloroethane	16.0	ug/l
ļ	04-08-86	1095	Recovery TR	Benzene	. nd	ug/l
I	04-08-86	1095	Recovery TR	Toluene	nd	ug
ł	04-08-86	1095	Recovery TR	Ethylbenzene	nd	ug/1
1	04-08-86	1095	Recovery TR	P-xylene	nd	ug/l
	04-08-86	1095	Recovery TR	M-xylene	nd	ug/l
	04-08-86	1095	Recovery TR	0-xylene	nd	ug/l
	04-08-86	1095	Recovery TR	Chloromethane	nd	ug/l
	04-08-86	1095	Recoverv TR	Vinyl Chloride	nd	ug/l
1	04-08-86	1095	Recovery TR	1,1 - Dichloroethylene	nd	ug/l
	04-08-86	1095	Recovery TR	1, 1-Dichloroethane	nd	ug/l
1	04-08-86	1095	Recovery TR	1,2 - Dichloroethane	nd	ug/l
	04-08-86	1095	Recovery TR	1,1,1-Trichloroețhane	nd	ug/l
1	04-08-86	1095	Recovery TR	Carbon Tetrachloride	nd	ug/l
	04-08-86	<i>K</i> .	Recovery TR	Tetrachloroethane	AR100445	ug/l
	04-11-86	<b>1</b> 89	Gearhart-new RA	Benzene		ug 🖾
	04-11-86	1189	Gearhart-new RA	0-xylene	2.4	ug/l

ŀ.

Werter Start If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

PAGE NO. 00010 02/04/87

CHEM SOLV WATER QUALITY DATA

1				THE PART WITH REAL PROPERTY OF		
1	TE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
	04-11-86	1189	Gearhart-new RA	1,2 - Dichloroethane	29.0	ug/l
	04-11-86	1189	Gearhart-new RA	Tetrachloroethylene	8.0	ug/l
	04-11-86	1189	Gearhart-new RA	Toluene	3.50	ug/l
	04-11-86	1190	Gearhart-new TR	Benzene	nd	ug/l
	04-11-86	1190	Gearhart-new TR	O-xylene	nd	ug/l
	04-11-86	1190	Gearhart-new TR	1,2 - Dichloroethane	nd	ug/l
	04-11-86	1190	Gearhart-new TR	Tetrachloroethylene	nd	ug/1
	04-11-86	1190	Gearhart-new TR	Toluene	nd	ug/l
	04-28-86	1364	Recovery RAW	1,1 - Dichloroethylene	66.0	ug/l
	04-28-86	1364	Recovery RAW	Chloroform	58.0	ug/l
	04-28-86	1364	Recovery RAW	Trichloroethylene	104.0	ug/l
{	28-86	1364	Recovery RAW	0-xylene	nd	ug/l
	04-28-86	1365	Recovery TR	1,1 - Dichloroethylene	nd	ug/l
	04-28-86	1365	Recovery TR	Chloroform	nd	ug/l
	04-28-86	1365	Recovery TR	Trichloroethylene	nd	ug/l
	04-28-86	1365	Recovery TR	0-xylene	nd	ug/l
	05-13-86	1592	0B-14A	1,1 - Dichloroethylene	nd	ug/l
	05-13-86	1592	0B-14A	1, 1-Dichloroethane	nd	ug/l
	05-13-86	1592	0B-14A	trans-1,2-Dichloroethylene	nđ	ug/l
	05-13-86	1592	0B-14A	Chloroform	nd	ug/l
	05-13-86	1592	0B-14A	1,2 - Dichloroethane	nđ	ug/l
	05-13-86	1592	0B-14A	1,2-Dichloropropane	nd	ug/l
	05-13-86	1592	0B-14A	1,1,1-Trichloroethane	24.0	ug/l
	05-13-86	1592	0B-14A	Trichloroethylene	AR 1 0 0 4 4 6	ug/l
	.3-86	1592	0B-14A	Benzene		ug/l
	05-13-86	1592	OB-14A	P-xylene	nd	ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

Ľ

s along t

PAGE NO. 00011 02/04/87

. ....

			CHEM SOLV WATER QUALITY D.	ATA	$\frown$
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
05-13-86	1592	OB-14A	M-xylene	nd	ug/l
05-13-86	1592	OB-14A	0-xylene	nd	ug/l
05-13-86	1593	OB-11A	1,1 - Dichloroethylene	nd	ug/l
05-13-86	1593	0B-11A	1, 1-Dichloroethane	nd	ug/l
05-13-86	1593	OB-11A	trans-1,2-Dichloroethylene	nd	ug/l
05-13-86	1593	0B-11A	Chloroform	nd	ug/l
05-13-86	1593	OB-11A	1,2 - Dichloroethane	nd	ug/l
05-13-86	1593	OB-11A	1,2-Dichloropropane	nd	ug/l
05-13-86	1593	0B-11A	1,1,1-Trichloroethane	4.1	ug/l
05-13-86	1593	0B-11A	Trichloroethylene	33.0	ug/l
05-13-86	1593	0B-11A	Benzene	nd	ug/1
05-13-86	1593	OB-11A	P-xylene	nd	ug(
05-13-86	1593	OB-11A	M-xylene	nd	ug/l
05-13-86	1593	OB-11A	0-xylene	nd	ug/l
05-13-86	1594	OB-12A	1,1 - Dichloroethylene	nd	ug/l
05-13-86	1594	OB-12A	1, 1-Dichloroethane	nd	ug/l
05-13-86	1594	0B-12A	trans-1,2-Dichloroethylene	nd	ug/l
05-13-86	1594	OB-12A	Chloroform	nd	ug/l
05-13-86	1594	0B-12A	1,2 - Dichloroethane	nd	ug/l
05-13-86	1594	0B-12A	1,2-Dichloropropane	nd	ug/l
05-13-86	1594	OB-12A	1,1,1-Trichloroethane	nd	ug/l
05-13-86	1594	0B-12A	Trichloroethylene	6.1	ug/l
05-13-86	1594*%	0B-12A	Benzene	nd	ug/l
05'-13-86	1594	OB-12A	<b>P-xylene</b>		ug/l
05-13-86	1594	0B-12A	M-xylene	AR100447	ug
05-13-86	1594	0B-12A	0-xylene	nd	ug/l

۰ŀ

ľ

PAGE NO. 00012 02/04/87

CHEM SOLV WATER QUALITY DATA

١

ŝ

1

(	) e	LAB #	SAMPLE ID	PARAMETER	CONCENTR	units _i
	05-13-86	1595	OB-10A	1,1 - Dichloroethylene	nd	ug/l
	05-13-86	1595	OB-10A	1, 1-Dichloroethane	nd	ug/l
	05-13-86	1595	OB-10A	trans-1,2-Dichloroethylene	nd	ug/l
	05-13-86	1595	OB-10A	Chloroform	nd	ug/l
	05-13-86	1595	OB-10A	1,2 - Dichloroethane	nđ	ug/l
	05-13-86	1595	OB-10A	1,2-Dichloropropane	nd	ug/l
	05-13-86	1595	OB-10A	1,1,1-Trichloroethane	nd	ug/l
	05-13-86	1595	OB-10A	Trichloroethylene	4.2	ug/l
	05-13-86	1595	0B-10A	Benzene	nd	ug/l
	05-13-86	1595	OB-10A	P-xylene	nd	ug/l
	05-13-86	1595	OB-10A	M~xylene	nd	ug/1
	0° 13-86	1595	OB-10A	O-xylene	nd	ug/l
	u-13-86	1596	OB-17A	1,1 - Dichloroethylene	nd	ug/l
	05-13-86	1596	OB-17A	1, 1-Dichloroethane	nd	ug/l
	05-13-86	1596	OB-17A	trans-1,2-Dichloroethylene	nd	ug/l
	05-13-86	1596	OB-17A	Chloroform	nd	ug/l
	05-13-86	1596	0B-17A	1,2 - Dichloroethane	nd	ug/l
	05-13-86	1596	OB-17A	1,2-Dichloropropane	nd	ug/l
	05-13-86	1596	0B-17A	1,1,1-Trichloroethane	nd	ug/l
	05-13-86	1596	0B-17A	Trichloroethylene	nd	ug/l
	05-13-86	1596	OB-17A	Benzene	nd	ug/l
	05-13-86	1596	0B-17A	P-xylene	nd	ug/l
	05-13-86	1596	0B-17A	M-xylene	nd	ug/l
	05-13-86	1596	0B-17A	O-xylene	nd	ug/l
	( ',3-86	1597	OB-18A	1,1 - Dichloroethylene	AR 1004 446	ug/l
	05-13-86	1597	OB-18A	1, 1-Dichloroethane	nd	ug/l

..... If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

PAGE NO. 00013 02/04/87

.

.

				CHEM SOLV WATER QUALITY DAT	.'A	$\frown$
	DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITES
	05-13-86	1597	OB-18A	trans-1,2-Dichloroethylene	nd	ug/l
	05-13-86	1597	0B-18A	Chloroform	nd	ug/l
	05-13-86	1597	OB-18A	1,2 - Dichloroethane	nđ	ug/l
	05-13-86	1597	OB-18A	1,2-Dichloropropane	nd	ug/l
	05-13-86	1597	OB-18A	1,1,1-Trichloroethane	nd	ug/l
	05-13-86	1597	OB-18A	Trichloroethylene	nd	ug/l
	05-13-86	1597	OB-18A	Benzene	nd	ug/l
	05-13-86	1597	OB-18A	P-xylene	nd	ug/l
	05-13-86	1597	OB-18A	M-xylene	nd	ug/l
	05-13-86	1597	OB-18A	0-xylene	nd	ug/l
	05-13-86	1598	OB-19A	1,1 - Dichloroethylene	4.9	ug/1
	05-13-86	1598	OB-19A	1, 1-Dichloroethane	nd	ug/
	05-13-86	1598	OB-19A	trans-1,2-Dichloroethylene	nđ	ug/1
	05-13-86	1598	OB-19A	Chloroform	nđ	ug/l
	05-13-86	1598	0B-19A	1,2 - Dichloroethane	'nđ	ug/1
	05-13-86	1598	OB-19A	1,2-Dichloropropane	nd	ug/l
	05-13-86	1598	OB-19A	1,1,1-Trichloroethane	44.0	ug/l
	05-13-86	1598	0B-19A	Trichloroethylene	nd	ug/l
	05-13-86	1598	0B-19A	Benzene	nd	ug/1
	05-13-86	1598	0B-19A	P-xylene	nd	ug/l
	05-13-86	1598	0B-19A	M-xylene	nd	ug/l
	05-13-86	1598	0B-19A	0-xylene	nd	ug/l
	05-13-86	1599	OB-24A	1,1 - Dichloroethylene	nd	ug/l
	05-13-86	1599	0B-24A	1, 1-Dichloroethane		ug/1
	05-13-86	1599	0B-24A	trans-1,2-Dichloroethylene	AR 100449	ug/
	05-13-86	1599	OB-24A	Chloroform	nd	ug/l
4						

ï

18

PAGE NO. 00014 02/04/87

CHEM SOLV WATER QUALITY DATA

ì

( ) LE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS:
05-13-86	1599	OB-24A	1,2 - Dichloroethane	nd	ug/l
05-13-86	1599	OB-24A	1,2-Dichlcropropane	nd	ug/l
05-13-86	1599	OB-24A	1,1,1-Trichloroethane	5.3	ug/l
05-13-86	1599	OB-24A	Trichloroethylene	26.0	ug/l
05-13-86	1599	OB-24A	Benzene	nd	ug/l
05-13-86	1599	OB-24A	P-xylene	nd	ug/l
05-13-86	1599	0B-24A	M-xylene	nd	ug/l
05-13-86	1599	OB-24A	<b>O-xylene</b>	nd	ug/l
05-13-86	1600	OB-28A	1,1 - Dichloroethylene	nd	ug/l
05-13-86	1600	OB-28A	1, 1-Dichloroethane	nd	ug/l
05-13-86	1600	0B-28A	trans-1,2-Dichloroethylene	nd	ug/l
()3-86	1600	OB-28A	Chloroform	nd	ug/l
05-13-86	1600	OB-28A	1,2 - Dichloroethane	nd	ug/l
05-13-86	1600	0B-28A	1,2-Dichloropropane	1.1	ug/l
05-13-86	1600	OB-28A	1,1,1-Trichloroethane	3.1	ug/l
05-13-86	1600	OB-28A	Trichloroethylene	236.0	ug/l
05-13-86	1600	OB-28A	Benzene	nd	ug/l
05-13-86	1600	08-28A	P-xylene	nd	ug/l
05-13-86	1600	0B-28A	M-xylene	nd	ug/l
05-13-86	1600	0B-28A	O-xylene	nd	ug/l
05-13-86	1602	Gearhart-new RA	1,1 - Dichloroethylene	nd	ug/l
05-13-86	1602	Gearhart-new RA	1, 1-Dichloroethane	nd	ug/l
05-13-86	1602	Gearhart-new RA	trans-1,2-Dichloroethylene	2.9	ug/l
05-13-86	1602	Gearhart-new RA	Chloroform		ug/1
3-86	1602	Gearhart-new RA	1,2 - Dichloroethane	AR10045	ug/1
05-13-86	1602	Gearhart-new RA	1,2-Dichloropropane	1.5	ug/l

PAGE NO. 00015 02/04/87

		CHEM SOLV WATER QUALITY DA	та	$\frown$
DATE LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITE
05-13-86 1602	Gearhart-new RA	1,1,1-Trichloroethane	20.0	ug/l
05-13-86 1602	Gearhart-new RA	Trichloroethylene	208.0	ug/l
05-13-86 1602	Gearhart-new RA	Benzene	297.0	ug/l
05-13-86 1602	Gearhart-new RA	P-xylene	nd	ug/l
05-13-86 1602	Gearhart-new RA	M-xylene	nd	ug/l
05-13-86 1602	Gearhart-new RA	0-xylene	nd	ug/l
05-13-86 1603	Recovery RAW	1,1 - Dichloroethylene	58.0	ug/l
05-13-86 1603	Recovery RAW	1, 1-Dichloroethane	5.4	ug/l
05-13-86 1603	Recovery RAW	trans-1,2-Dichloroethylene	98.0	ug/l
05-13-86 1603	Gearhart-new RA	Chloroform	9.6	ug/l
05-13-86 1603	Recovery RAW	1,2 - Dichloroethane	349.0	ug/l
05-13-86 1603	Recovery RAW	1,2-Dichloropropane	nd	ug/1
05-13-86 1603	Recovery RAW	1,1,1-Trichloroethane	nd	ug/l
05-13-86 1603	Gearhart-new RA	Benzene	31.0	ug/l
05-13-86 1603	Recovery RAW	P-xylene	nđ	ug/1 .
05-13-86 1603	Recovery RAW	M-xylene	nd	ug/l
05-13-86 1603	Recovery RAW	0-xylene	nd	ug/l
05-13-86 1604	Recovery TR	1,1 - Dichloroethylene	nđ	ug/l
05-13-86 1604	Recovery TR	1, 1-Dichloroethane	nd	ug/l'
05~13-86 1604	Recovery TR	trans-1,2-Dichloroethylene	nđ	ug/l
05-13-86 1604	Gearhart-new TR	Chloroform	nd	ug/l
05-13-86 1684	Recovery TR	1,2 - Dichloroethane	nd	ug/l
05-13-86 1604	Recovery TR	1,2-Dichloropropane	nd	ug/l
05~13-86 1604	Recovery TR	1,1,1-Trichloroethane		ug/l
05~13-86 1604	Recovery TR	Trichloroethylene	AR10045	ug/1
05-13-86 1604	Gearhart-new TR	Benzene	nd	ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

-----

PAGE NO. 00016 02/04/87

CHEM SOLV WATER QUALITY DATA

1 1 1					
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
05-13-86	1604	Recovery TR	P-xylene	nđ	ug/l
05-13-86	1604	Recovery TR	M-xylene	nd	ug/l
05-13-86	1604	Recovery TR	0-xylene	nd	ug/l
05-13-86	1646	OB-5B	Chloroform	nd	ug/l
05-13-86	1646	OB-5B	1,2 - Dichloroethane	nd	ug/l
05-13-86	1646	ов-5в	1,1,1-Trichloroethane	nd	ug/l
05-13-86	1646	OB-5B	1,2-Dichloropropane	nd	ug/l
05-13-86	1646	ов-5в	trans-1,2-Dichloroethylene	nd	ug/l
05-13-86	1646	OB-5B	Trichloroethylene	2.7	ug/1
05-13-86	1646	OB-5B	Benzene	nd	ug/l
05-13-86	1646	OB-5B	Toluene	nd	ug/l
3-86	1646	OB-5B	P-xylene	nd	ug/l
05-13-86	1646	OB-5B	M-xylene	nd	ug/l
05-13-86	1646	ОВ-5В	0-xylene	nd	ug/l
05-13-86	1647	OB-5A	Chloroform	25.0	ug/l
05-13-86	1647	OB-5A	1,2 - Dichloroethane	nd	ug/l
05-13-86	1647	OB-5A	1,1,1-Trichloroethane	199.0	ug/l
05-13-86	1647	OB-5A	1,2-Dichloropropane	nd	ug/l
05-13-86	1647	OB-5A	trans-1,2-Dichloroethylene	nd	ug/l
05-13-86	1647	OB-5A	Trichloroethylene	1708.0	ug/l
05-13-86	1647	OB-5A	Benzene	nd	ug/l
05-13-86	0	OB-5A	Toluene	nd	ug/l
05-13-86	1647	OB-5A	P-xylene	nd	ug/l
05-13 86	1647	OB-5A	M-xylene	nd	ug/l
d 3-86	1647	OB-5A	<b>O-xylene</b>	AR1004	32/1
05-13-86	1648	OB-3A	Chloroform		ug/l

PAGE NO. 00017 02/04/87

l

ŀ

ł

				CHEM SOLV WATER QUALITY DA	та	$\frown$
1	DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	ן באט
	05-13-86	1648	OB-3A	1,2 - Dichloroethane	nd	ug/1
ſ	05-13-86	1648	OB-3A	1,1,1-Trichloroethane	nd	ug/l
•	05-13-86	1648	OB-3A	1,2-Dichloropropane	nd	ug/l
	05-13-86	1648	OB-3A	trans-1,2-Dichloroethylene	nd	ug/l
1	05-13-86	1648	OB-3A	Trichloroethylene	8.0	ug/l
ł	05-13-86	1648	OB-3A	Benzene	nd	ug/l
ſ	05-13-86	1648	OB-3A	Toluene	nd	ug/l
•	05-13-86	1648	OB-3A	<b>P-xylene</b>	nd	ug/l
	05-13-86	1648	ов-за	M-xylene	nd	ug/l
•	05-13-86	1648	ов-за	0-xylene	nd	ug/l
	05-13-86	1649	OB-26A	Chloroform	nd	ug/l
1	05-13-86	1649	OB-26A	1,2 - Dichloroethane	nd	ug (j)
l	05-13-86	1649	OB-26A	1,1,1-Trichloroethane	nd	ug/l
1	05-13-86	1649	OB-26A	1,2-Dichloropropane	nd	ug/l
1	05-13-86	1649	OB-26A	trans-1,2-Dichloroethylene	nd	ug/l
l	05-13-86	1649	OB-26A	Trichloroethylene	4.1	ug/l
;	05-13-86	1649	OB-26A	Benzene	82.0	ug/l
	05-13-86	1649	OB-26A	Toluene	8.7	ug/l
l	05-13-86	1649	OB-26A	P-xylene	nd	ug/l
	05-13-86	1649	OB-26A	M-xylene	nd	ug/l
	05-13-86	1649	OB-26A	0-xylene	nđ	ug/l
1	05-13-86	1650	Gearhart-new RA	Chloroform	nd	ug/1
I	05-13-86	1650	Gearhart-new RA	1,2 - Dichloroethane	39.0	ug/l
	05-13-86	1650	Gearhart-new RA	1,1,1-Trichloroethane	AR100453	ug/l
•	05-13-86	1650	Gearhart-new RA	1,2-Dichloropropane	nd	12000
•	05-13-86	1650	Gearhart-new RA	trans-1,2-Dichloroethylene	nd	ug/l

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

~

PAGE NO. 00018 02/04/87

CHEM SOLV WATER QUALITY DATA

. . . . . . . . . . . .

. ....

.....

(	· • •						
	DATE	LAB #	SAMPLE ID		PARAMETER	CONCENTR	units:
	05-13-86	1650	Gearhart-ne	ew RA	Trichloroethylene	nd	ug/l
	05-13-86	1650	Gearhart-ne	ew RA	Benzene	201.0	ug/l
	05-13-86	1650	Gearhart-ne	ew RA	Toluene	nd	ug/l
	05-13-86	1650	Gearhart-ne	ew RA	P-xylene	nd	ug/l
	05-13-86	1650	Gearhart-ne	w RA	M-xylene	<2.0	ug/l
	05-13-86	1650	Gearhart-ne	w RA	<b>O-xylene</b>	nd	ug/l
	06-18-86	2050	OB-45B 5 mi	ns.	Trichloroethylene	1.2	ug/l
	06-18-86	2051	OB-45B 35 m	ins.	Trichloroethylene	nd	ug/l
	07-14-86	2305	Recovery RA	W	1,1 - Dichloroethylene	24.0	ug/l
	07-14-86	2305	Recovery RA	/W	1, 1-Dichloroethane	3.4	ug/l
	07-14-86	2305	Recovery RA	W	trans-1,2-Dichloroethylene	62.0	ug/l
	14-86	2305	Recovery RA	W	Chloroform	7.8	ug/l
	07-14-86	2305	Recovery RA	W	1,1,1-Trichloroethane	553.0	ug/l
	07-14-86	2305	Recovery RA	W	Trichloroethylene	1524.0	ug/l
•	07-14-86	2305	Recovery RA	W	Tetrachloroethylene	4.9	ug/l
	07-14-86	2305	Recoverv RA	W	Benzene	37.0	ug/l
	07-14-86	2305	Recovery RA	W	1,2 - Dichloroethane	nd	ug/l
	07-14-86	2305	Recovery RA	W	1,2-Dichloropropane	nd	ug/l
	07-14-86	2305	Recovery RA	W	Chlorobenzene	nd	ug/l
	07-14-86	2305	Recovery RA	W	Vinyl Chloride	nd	ug/l
	07-14-86	230 <b>6</b>	Recovery TR		1,1 - Dichloroethylene	nd	ug/1
	07-14-86	2306	Recovery TR		1, 1-Dichloroethane	nd	ug/1 .
	07-14-26		Recovery TR	•	trans-1,2-Dichloroethylene	nd	ug/l
	07-14-86	2306	Recovery TR	ŀ	Chloroform	AR 100454	ug/l
1	14-86	2306	Recovery TR		1,1,1-Trichloroethane	nd nd	ug/l
	07-14-86	2306	Recovery TR		Trichloroethylene	nd	ug/l

## PAGE NO. 00019 02/04/87

I

Í

Í

ſ

ł

1

-1

þ

ł					CHEM SOLV WATER QUALITY	DATA	$\frown$
	DATE	LAB #	SAMPLE ID		PARAMETER	CONCENTR	מט אין
	07-14-86	2306	Recovery TR		Tetrachloroethylene	nd	ug/l
	07-14-86	2306	Recovery TR		Benzene	nd	ug/l
	07-14-86	2306	Recovery TR		1,2 - Dichloroethane	nd	ug/l
	07-14-86	2306	Recovery TR		1,2-Dichloropropane	nd	ug/l
	07-14-86	2306	Recovery TR		Chlorobenzene	nd	ug/l
	07-14-86	2306	Recovery TR		Vinyl Chloride	nd	ug/l
	07-14-86	2307	Gearhart-new	RA	1,1 - Dichloroethylene	nd	ug/l
	07-14-86	2307	Gearhart-new	RA	1, 1-Dichloroethane	nd	ug/l
	07-14-86	2307	Gearhart-new	RA	trans-1,2-Dichloroethylene	nd	ug/l
	07-14-86	2307	Gearhart-new	RA	Chloroform	nd	ug/l
	07~14-86	2307	Gearhart-new	RA	1,1,1-Trichloroethane	nd	ug/l
	07-14-86	2307	Gearhart-new	RA	Trichloroethylene	nd	u
	07-14-86	2307	Gearhart-new	RA	Tetrachloroethylene	nd	ug/1
	07-14-86	2307	Gearhart-new	RA	Benzene	146.0	ug/l
	07-14-86	2307	Gearhart-new	RA	1,2 - Dichloroethane	33.0	ug/1
	07-14-86	2307	Gearhart-new	RA	1,2-Dichloropropane	1.8	ug/l .
	07-14-86	2307	Gearhart-new	RA	Chlorobenzene	nd	ug/l
	07-14-86	2307	Gearhart-new	RA	Vinyl Chloride	nd	ug/l
	07-14-86	2308	Gearhart-new	TR	1,1 - Dichloroethylene	nd	ug/1
	07-14-86	2308	Gearhart-new	TR	1, 1-Dichloroethane	nđ	ug/l
	07-14-86	2308	Gearhart-new	TR	trans-1,2-Dichloroethylene	nd	ug/l
	07-14-86		Gearhart-new	TR	Chloroform	nd	ug/l
	07-1475		Gearhart-new	TR	1,1,1-Trichloroethane	nd	ug/l
	07-14-80	2308	Gearhart-new	TR	Trichloroethylene	nd	ug/1
	07-14-86	2308	Gearhart-new	TR	Tetrachloroethylene	AR100455.a	<b>W</b>
	07-14-86	2308	Gearhart-new	TR	Benzene	nd	ug/l

)

ŝ

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

## PAGE NO. 00020 02/04/87

. . .

CHEM SOLV WATER QUALITY DATA

1	$\left[ \begin{array}{c} \end{array} \right]$					
1	ATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
	07-14-86	2308	Gearhart-new TR	1,2 - Dichloroethane	nd	ug/l
	07-14-86	2308	Gearhart-new TR	1,2-Dichloropropane	nd	ug/l
	07-14-86	2308	Gearhart-new TR	Chlorobenzene	nd	ug/l
	07-14-86	2308	Gearhart-new TR	Vinyl Chloride	nd	ug/l
	07-28-86	2572	OB-42A	1,1 - Dichloroethylene	nd	ug/l
	07-28-86	2572	0B-42A	1, 1-Dichloroethane	nd	ug/l
	07-28-86	2572	0B-42A	trans-1,2-Dichloroethylene	nd	ug/l
	07-28-86	2572	OB-42A	Chloroform	2.9	ug/l
	07-28-86	2572	OB-42A	1,2 - Dichloroethane	nd	ug/l
	07-28-86	2572	0B-42A	1,1,1-Trichloroethane	nd	ug/l
	07-28-86	2572	0B-42A	Trichloroethylene	nd	ug/l
í	128-86	2572	OB-42A	Benzene	nd	ug/l
	07-28-86	2572	0B-42A	Toluene	nd	ug/l
	07-28-86	2573	0B-39A	1,1 - Dichloroethylene	2.7	ug/l
	07-28-86	2573	0B-39A	1, 1-Dichloroethane	2.0	ug/l
	07-28-86	2573	0B-39A	trans-1,2-Dichloroethylene	1.9	ug/l
	07-28-86	2573	0B-39A	Chloroform	1.6	ug/l
	07-28-86	2573	0B-39A	1,2 - Dichloroethane	1.9	ug/l
	07-28-86	2573	0B-39A	1,1,1-Trichloroethane	8.0	ug/l
	07-28-86	2573	0B-39A	Trichloroethylene	460.0	ug/l
	07-28-86	2573	0B-39A	Benzene	30.0	ug/l
	07-28-86	2573	0B-39A	Toluene	nd	ug/l
	07-28-86	2574	0B-26A	1,1 - Dichloroethylene	nd	ug/l
	07-28-85	2574	0B-26A	1, 1-Dichloroethane	nd	ug/l
I	28-86		0B-26A	trans-1,2-Dichloroethylene	R10045	<b>6</b> g/1
	07-28-86	2574	0B-26A	Chloroform	nđ	ug/l

PAGE NO. 00021 02/04/87

887

ŀ

١.

				,		
				CHEM SOLV WATER QUALITY DATA		$\bigcirc$
	DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UN
j.	07-28-86	2574	OB-26A	1,2 - Dichloroethane	nd	ug/l
ł	07-28-86	2574	OB-26A	1,1,1-Trichloroethane	nd	ug/l
ł	07-28-86	2574	OB-26A	Trichloroethylene	nd	ug/l
	07-28-86	2574	OB-26A	Benzene	133.0	ug/l
,	07-28-86	2574	OB-26A	Toluene	11.0	ug/l
1	07-28-86	2575	OB-25A	1,1 - Dichloroethylene	nd	ug/l
1	07-28-86	2575	OB-25A	1, 1-Dichloroethane	nd	ug/l
1	07-28-86	2575	OB-25A	trans-1,2-Dichloroethylene	nd	ug/l
	07-28-86	2575	OB-25A	Chloroform	nd	ug/l
	07-28-86	2575	OB-25A	1,2 - Dichloroethane	nd	ug/l
	07-28-86	2575	OB-25A	1,1,1-Trichloroethane	nd	ug/l
1	07-28-86	2575	OB-25A	Trichloroethylene	1.6	ug
ļ	07-28-86	2575	OB-25A	Benzene	nd	ug/I
1	07-28-86	2575	OB-25A	Toluene	6.5	ug/l
-	07-28-86	2576	OB-27A	1,1 - Dichloroethylene	nđ	ug/l
ļ	07-28-86	2576	ов-27А	1, 1-Dichloroethane	nd	ug/l
I	07-28-86	2576	OB-27A	trans-1,2-Dichloroethylene	nd	ug/1
I	07-28-86	2576	OB-27A	Chloroform	nd	ug/l
í	07-28-86	2576	OB-27A	1,2 - Dichloroethane	nd	ug/l
	07-28-86	2576	0B-27A	1,1,1-Trichloroethane	2.4	ug/l
	07-28-86	2576	OB-27A	Trichloroethylene	100.0	ug/l
4	07-28-86	2576	OB-27A	Benzene	nd	ug/l
	07-28-86	2576	0B~27A	Toluene	nd	ug/l
f	07-28-8	2577	OB-28A	1,1 - Dichloroethylene	nd	ug/l
	07-28-86	2577	OB~28A	1, 1-Dichloroethane ARI(	)0457 nd	uniting
	07-28-86	2577	OB~28A	trans-1,2-Dichloroethylene	1.0	ug/l

ì.

1

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

**.** ۳

PAGE NO. 00022 02/04/87

				CHEM SOLV WATER QUALITY I	data	
	) ATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS :
	07-28-86	2577	OB-28A	Chloroform	nd	ug/l
	07-28-86	2577 ·	OB-28A	1,2 - Dichloroethane	1.4	ug/l
	07-28-86	2577	OB-28A	1,1,1-Trichloroethane	nd	ug/l
	07-28-86	2577	OB-28A	Trichloroethylene	204.0	ug/l
	07-28-86	2577	OB-28A	Benzene	nd	ug/l
	07-28-86	2577	OB-28A	Toluene	nd	ug/l
	07-28-86	2578	OB-41A	1,1 - Dichloroethylene	nd	ug/l
	07-28-86	2578	OB-41A	1, 1-Dichloroethane	nd	ug/l
ļ	07-28-86	2578	OB-41A	trans-1,2-Dichloroethylene	nd	ug/l
1	07-28-86	2578	OB-41A	Chloroform	nd	ug/l
	07-28-86	2578	OB-41A	1,2 - Dichloroethane	nd	ug/1
K	-28-86	2578	OB-41A	1,1,1-Trichloroethane	nd	ug/l
1 -	07-28-86	2578	OB-41A	Trichloroethylene	55.0	ug/l
	07-28-86	2578	OB-41A	Benzene	nd	ug/l
4	07-28-86	2578	OB-41A	Toluene	nd	ug/1
	07-28-86	2579	OB-40A	1,1 - Dichloroethylene	nd	ug/l
I	07-28-86	2579	OB-40A	1, 1-Dichloroethane	nd	ug/l
ł	07-28-86	2579	OB-40A	trans-1,2-Dichloroethylene	nd	ug/l
Í	07-28-86	2579	OB-40A	Chloroform	nd	ug/l
4	07-28-86	2579	OB-40A	1,2 - Dichloroethane	nđ	ug/l
J	07-28-86	2579	OB-40A	1,1,1-Trichloroethane		ug/l
1	07-28-86	2579	OB-40A	Trichloroethylene		ug/l
I	07-28-86	2579	OB-40A	Benzene	nd	ug/1
	07-28-86	2579	OB-40A	Toluene		ug/l
	J-28-86		OB-24A	1,1 - Dichloroethylene	AR100458a	ug/l
	07-28-86	2580	OB-24A	1, 1-Dichloroethane	nd	ug/l

ŀ

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

PAGE NO. 00023 02/04/87 ι.

CHEM SOLV WATER QUALITY DATA LAB # SAMPLE ID PARAMETER CONCENTR UNIT. DATE 07-28-86 2580 OB-24A trans-1,2-Dichloroethylene nd ug/l Chloroform OB-24A nd ug/l07-28-86 2580 07-28-86 2580 OB-24A 1,2 - Dichloroethane nd ug/l 07-28-86 2580 **OB-24A** 1, 1, 1-Trichloroethane 1.2 ug/l 07-28-86 2580 OB-24A Trichloroethylene 6.5 ug/1 07-28-86 2580 OB-24A Benzene nd ug/l OB-24A Toluene nd ug/l 07-28-86 2580 07-29-86 2617 OB-11A 1,1 - Dichloroethylene nd ug/1 07-29-86 2617 **OB-11A** 1, 1-Dichloroethane nd ug/1 07-29-86 2617 OB-11A trans-1,2-Dichloroethylene nd ug/l 07-29-86 2617 Chloroform **OB-11A** nd ug/1 07-29-86 2617 **OB-11A** 1,1,1-Trichloroethane nd ug/Y07-29-86 2617 OB-11A Trichloroethylene nd ug/l 07-29-86 2617 OB-11A Ethylbenzene nd ug/l 1,1 - Dichloroethylene 07-29-86 2618 OB-16A nd ug/1 07-29-86 2618 OB-16A 1, 1-Dichloroethane nd ug/l 07-29-86 2618 OB-16A trans-1,2-Dichloroethylene nd ug/l 07-29-86 2618 OB-16A Chloroform nd ug/l 07-29-86 2618 1,1,1-Trichloroethane **OB-16A** nd ug/l 07-29-86 2618 **OB-16A** Trichloroethylene nd ug/107-29-86 2618 **OB-16A** Ethylbenzene nd ug/1 07-29-86 2619 **OB-19A** 1,1 - Dichloroethylene nd ug/l 07-29-86 2619 **OB-19A** 1, 1-Dichloroethane nd ug/1 07-29-86 2619 trans-1,2-Dichloroethylene nd ug/l OB-19A 07-29-86 2619 **OB-19A** Chloroform AR100459 ug/ 07-29-86 2619 0B-19A nd ug/l 1,1,1-Trichloroethane

ļ,

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

-----

PAGE NO. 00024 02/04/87

ورورتها الشكرور

1

-				CHEM SOLV WATER QUALITY DA	та	
	JATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
1	07-29-86	2619	OB-19A	Trichloroethylene	nd	ug/l
ſ	07-29-86	2619	0B-19A	Ethylbenzene	nd	ug/l
,	07-29-86	2620	OB-37A	1,1 - Dichloroethylene	11d	ug/l
1	07-29-86	2620	0B-37A	1, 1-Dichloroethane	nd	ug/l
,	07-29-86	2620	08-37A	trans-1,2-Dichloroethylene	16.0	ug/l
l	07-29-86	2620	0B-37A	Chloroform	nd	ug/l
í	07-29-86	2620	0B-37A	1,1,1-Trichloroethane	3.1	ug/l
•	07-29-86	2620	0B-37A	Trichloroethylene	3.0	ug/l
	07-29-86	2620	0B-37A	Ethylbenzene	nd	ug/1
1	07-29-86	2621	0B-38A	1,1 - Dichloroethylene	nd	ug/l
	07-29-86	2621	OB-38A	1, 1-Dichloroethane	14.0	ug/l
(	-29-86	2621	0B-38A	trans-1,2-Dichloroethylene	9.5	ug/l
	07-29-86	2621	0B-38A	Chloroform	399.0	ug/l
1	07-29-86	2621	OB-38A	1,1,1-Trichloroethane	117.0	ug/l
	07-29-86	2621	0B-38A	Trichloroethylene	904.0	ug/l
	07-29-86	2621	0B-38A	Ethylbenzene	nd	ug/l
ı	07-29-86	2622	Recovery RAW	1,1 - Dichloroethylene	8.7	ug/l
ļ	07-29-86	2622	Recovery RAW	1, 1-Dichloroethane	11.0	ug/l
l	07-29-86	2622	Recovery RAW	trans-1,2-Dichloroethylene	519.0	ug/l
	07-29-86	2622	Recovery RAW	Chloroform	nd	ug/l
	07-29-86	2622	Recovery RAW	1,1,1-Trichloroethane	111.0	ug/l
	07-29-86	2622	Recovery RAW	Trichloroethylene	96.0	ug/l
	07-29-86	2622	Recovery RAW	Ethylbenzene	nd	ug/l
ſ	07-29-86	2623	0B-10A	1,1 - Dichloroethylene	nd	ug/l
(	-29-86	2623	OB-10A	1, 1-Dichloroethane	AR 100460	ug/l
	07-29-86	2623	OB-10A '	trans-1,2-Dichloroethylene	nd	ug/l

PAGE NO. 00025 02/04/87

CHEM SOLV WATER QUALITY DATA

					$\sim$
DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNIT
07-29-86	2623	0B-10A	Chloroform ,	nd	ug/l
07-29-86	2623	OB-10A	1,1,1-Trichloroethane	1.5	ug/l
07-29-86	2623	0B-10A	Trichloroethylene	nd	ug/1
07-29-86	2623	0B-10A	Ethylbenzene	nd	ug/l
07-29-86	2624	OB-15A	1,1 - Dichloroethylene	nd	ug/l
07-29-86	2624	OB-15A	1, 1-Dichloroethane	nd	ug/l
07-29-86	2624	0B-15A	trans-1,2-Dichloroethylene	nd	ug/l
07-29-86	2624	0B-15A	Chloroform	nd	ug/l
07-29-86	2624	OB~15A	1,1,1-Trichloroethane	nd	ug/1
07-29-86	2624	0B-15A	Trichloroethylene	11.0	ug/l
07-29-86	2624	OB-15A	Erhylbenzene	35.0	ug/l
09-25-86	3548	Recovery RAW	1,1 - Dichloroethylene	5.7	ug/1
09-25-86	3548	Recovery RAW	1, 1-Dichloroethane	nd	ug/1
09-25-86	3548	Recovery RAW	trans-1,2-Dichloroethylene	5.6	ug/1
09-25-86	3548	Recovery RAW	Chloroform	8.9	ug/l
09-25-86	3548	Recovery RAW	1,1,1-Trichloroethane	43.0	ug/l
09-25-86	3548	Recovery RAW	Trichloroethylene	165.0	ug/l
09-25-86	3549	Recovery TR	1,1 - Dichloroethylene	nd	ug/1
09-25-86	3549	Recovery TR	1, 1-Dichloroethane	nd	ug/l
09-25-86	3549	Recovery TR	trans-1,2-Dichloroethylene	nd	ug/l
09-25-86	3549	Recovery TR	Chloroform	nd	ug/l
09-25-86	3549	Recovery TR	1,1,1-Trichloroethane	nd	ug/l
09-25-86	3549	Recovery TR	Trichloroethylene	nd	ug/l
11-18-86	lin	OB-38A	trans-1,2-Dichloroethylene		ug/l
11-18-86	<b>%</b>	OB-38A	Chloroform	AR1004461	ug/1,388
11-18-86	4169	OB-38A	1,2 - Dichloroethane	nd	ug/l

PAGE NO. 00026 02/04/87 r¹

5 4

CHEM SOLV WATER QUALITY DATA

~	<b>`</b>			· • • • • •		
	ATE	LAB #	SAMPLE ID	Parameter	CONCENTR	UNITS
	11-18-86	4169	OB-38A	1,1,1-Trichloroethane	3.5	ug/l
ł	11-18-86	4169	OB-38A	Trichloroethylene	6.6	ug/l
•	11-18-86	4169	OB-38A	Methylene Chloride	nd	ug/l
	11-18-86	4169	OB-38A	trans-1,3-Dichloropropene	nd	ug/l
	11-18-86	4169	OB-38A	1,1 - Dichloroethylene	nd	ug/l
	11-18-86	4169	OB-38A	1, 1-Dichloroethane	. nd	ug/l
1	11-18-86	4170	Recovery RAW	trans-1,2-Dichloroethylene	19.0	ug/l
	11-18-86	4170	Recovery RAW	Chloroform	nd	ug/l
I	11-18-86	4170	Recovery RAW	1,2 - Dichloroethane	nd	ug/l
-	11-18-86	4170	Recovery RAW	1,1,1-Trichloroethane	254.0	ug/l
	11-18-86	4170	Recovery RAW	Trichloroethylene	84.0	ug/l
•	-41-18-86	4170	Recovery RAW	Methylene Chloride	47.0	ug/l
	-11-18-86	4170	Recovery RAW	trans-1,3-Dichloropropene	nd	ug/l
ſ	11-18-86	4170	Recovery RAW	1,1 - Dichloroethylene	2.3	ug/l
-	11-18-86	4170	Recovery RAW	1, 1-Dichloroethane	2.3	ug/l
I	11-18-86	4171	Recovery TR	trans-1,2-Dichloroethylene	nd	ug/l
•	11-18-86	4171	Recovery TR	Chloroform	nd	ug/l
ļ	11-18-86	4171	Recovery TR	1,2 - Dichloroethane	nđ	ug/l
<b>f</b>	11-18-86	4171	Recovery TR	1,1,1-Trichloroethane	3.0	ug/l
	11-18-86	4171	Recovery TR	Trichloroethylene	5.2	ug/l
I	11-18-86	4171	Recovery TR	Methylene Chloride	nd	ug/l
-	11-18-86	4171	Recovery TR	trans-1,3-Dichloropropene	nd	ug/l
	11-18-86	4171	Recovery TR	1,1 - Dichloroethylene	nd	ug/l
<b>1</b>	11-18-86	4171	Recovery TR	1, 1-Dichloroethane	nd	ug/l
1	1-18-85	4172	OB-10A	trans-1, 2-Dichloroethylene	AR10046æ	ug/1
Ì	11-18-86	4172	OB-10A	Chloroform	nd	ug/l

If the page filmed in this frame is not as readable on legible as this label, it is due to substandard color or condition of the original page.

۰. ,

PAGE NO. 00027 02/04/87

11-18-86 4174

11-18-86 4175

OB-16A

OB-24A

DATE PARAMETER CONCENTR UN: LAB # SAMPLE ID 11-18-86 4172 OB-10A 1,2 - Dichloroethane nd ug/l 1, 1, 1-Trichloroethane OB-10A nd ug/l 11-18-86 4172 nd ug/1 11-18-86 4172 **OB-10A** Trichloroethylene Methylene Chloride 11~18-86 4172 OB-10A 1.8 ug/l 11-18-86 4172 OB-10A trans-1, 3-Dichloropropene nd ug/l 11-18-86 4172 OB-10A 1,1 - Dichloroethylene nd ug/l 11-18-86 4172 1, 1-Dichloroethane OB-10A nd ug/1 trans-1, 2-Dichloroethylene 1.7 ug/1 11-18-86 4173 **OB-15A** 11-18-86 4173 OB-15A Chloroform 1.4 ug/l 1,2 - Dichloroethane 11-18-86 4173 OB-15A nd ug/l 11-18-86 4173 1, 1, 1-Trichloroethane **OB-15A** 5.6 ug/l 11-18-86 4173 Trichloroethylene 630.0 ug/2 OB-15A Methylene Chloride 11-18-86 4173 **OB-15A** 11.5 ug 11-18-86 4173 OB-15A trans-1, 3-Dichloropropene nd ug/l 11-18-86 4173 OB-15A 1,1 - Dichloroethylene nd ug/l 11-18-86 4173 1, 1-Dichloroethane nd ug/l OB-15A nd ug/l 11-18-86 4174 OB-16A trans-1,2-Dichloroethylene 11-18-86 4174 OB-16A Chloroform nd ug/l 11-18-86 4174 OB-16A 1,2 - Dichloroethane nd ug/l 11-18-86 4174 OB-16A 1, 1, 1-Trichloroethane nd ug/l 11-18-86 4174 OB-16A Trichloroethylene 1.7 ug/l 11-18-86 4174 OB-16A Methylene Chloride nd ug/l 11-18-86 4174 OB-16A trans-1, 3-Dichloropropene nd ug/l 11-18-86 4174 OB-16A 1.1 - Dichloroethylene nd ug/l ARIO0463a ugen

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

1, 1-Dichloroethane

1,1 - Dichloroethylene

CHEM SOLV WATER QUALITY DATA

١.

nd ug/1

PAGE NO. 00028 02/04/87

CHEM SOLV WATER QUALITY DATA

Ľ

16

:

5

	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNI
11-18-8	6 4175	OB-24A	1, 1-Dichloroethane	nd	ug/:
11-18-8	6 4175	OB-24A	trans-1,2-Dichloroethylene	nd	ug/:
11-18-8	6 4175	OB-24A	Chloroform	nd	ug/:
11-18-8	6 4175	OB-24A	1,2 - Dichloroethane	nd	ug/:
11-18-8	6 4175	OB-24A	Trichloroethylene	3.2	ug/:
11-18-8	6 4175	OB-24A	Benzene	nd	ug/:
11-18-8	6 4175	OB-24A	Toluene	nd	ug/:
11-18-8	6 4175	OB-24A	Chlorobenzene	nd	ug/:
11-18-8	6 4175	OB-24A	Ethylbenzene	nd	ug/:
11-18-8	6 4175	OB-24A	1,1,1-Trichloroethane	nd	ug/:
11-18-8	6 4176	OB-25A	1,1 - Dichloroethylene	nd	ug/:
11-18-8	6 4176	OB-25A	1, 1-Dichloroethane	nd	ug/:
8-8	6 4176	OB-25A	trans-1,2-Dichloroethylene	nd	ug/:
11-18-8	6 4176	OB-25A	Chloroform	nd	ug/]
11-18-8	6 4176	OB-25A	1,2 - Dichloroethane	nd	ug/l
11-18-8	6 4176	OB-25A	Trichloroethylene	nd	ug/l
11-18-8	6 4176	OB-25A	Benzene	, nd	ug/l
11-18-8	6 4176	OB-25A	Toluene	nd	ug/l
11-18-8	6 4176	OB-25A	Chlorobenzene	nd	ug/l
11-18-8	6 4176	OB-25A	Ethylbenzene	nd	ug/l
11-18-8	6 4176	OB-25A	1,1,1-Trichloroethane	nd	ug/l
11-18-8	6 4177	OB-39A	1,1 - Dichloroethylene	nd	ug/l
11-18-8	6 4177	OB-39A	1, 1-Dichloroethane	3.1	ug/l
11-18-8 11-18-8	N/2 77	OB-39A	trans-1,2-Dichloroethylene		<b>ug/</b> 1
11-18-8	6 4977	OB-39A	Chloroform	AR100464	ug/l
1-18-8	6 4177	OB-39A	1,2 - Dichloroethane	1.3	ug/l

PAGE NO. 00029 02/04/87

CHEM SOLV WATER QUALITY DATA

1.1

ł						
	DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNI
	11-18-86	4177	OB-39A	Trichloroethylene	233.0	ug/
t	11-18-86	4177	OB-39A	Benzene	13.0	ug/:
l	11-18-86	4177	ов-39а	Toluene	nd	ug/:
ſ	11-18-86	4177	OB-39A	Chlorobenzene	nd	ug/:
;	11-18-86	4177	ов-39а	Ethylbenzene	nd	ug/:
l	11-10-86	4177	ов-39а	1,1,1-Trichloroethane	4.4	ug/:
,	11-18-86	4179	OB-28A	1,1 - Dichloroethylene	nd	ug/:
l	11-18-86	4179	OB-28A	1, 1-Dichloroethane	1,4	ug/:
í	11-18-86	4179	OB-28A	trans-1,2-Dichloroethylene	1.9	ug/:
•	11-18-86	4179	OB-28A	Chloroform	nd	ug/:
ļ	11-18-86	4179	OB-28A	1,2 - Dichloroethane	7.4	ug/:
	11-18-86	4179	OB-28A	Trichloroethylene	123.0	ug/:
	11-18-86	4179	OB-28A	1,1,1-Trichloroethane	nd	ug
1	11-18-86	4179	OB-28A	Benzene	nd	ug/l
l	11-18-86	4179	OB-28A	Toluene	nd	ug/l
ĺ	11-18-86	4179	OB-28A	Ethylbenzene	nd	ug/l
-	11-18-86	4179	OB-28A	Chlorobenzene	nd	ug/l
l	11-18-86	4180	OB-27A	1,1 - Dichloroethylene	nd	ug/l
đ	11-18-86	4180	OB-27A	1, 1-Dichloroethane	nd	ug/l
ļ	11-18-86	4180	OB-27A	trans-1,2-Dichloroethylene	nd	ug/l
Í	11-18-86	4180	OB-27A	Chloroform	nd	ug/l
	11-18-86	4180	OB-27A	1,2 - Dichloroethane	nd	ug/l
ļ	11-18-86	4180	OB-27A	Trichloroethylene	74.0	ug/l
í	11-18-86		OB-27 <b>A</b>	1,1,1-Trichloroethane	1.4	ug/l
ļ	11-18-86	4180	OB-27A	Benzene	AR100465a	ug/]
1	11-18-86	4180	OB-27A	Toluene	nd	ug

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

1

Ļ

PAGE NO. 00030 02/04/87

CHEM SOLV WATER QUALITY DATA

ĺ.

	$\sim$						
1	E	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNII	:
	11-18-86	4180	OB-27A	Ethylbenzene	nd	ug/l	
	11-18-86	4180	ов-27а	Chlorobenzene	nđ	ug/l	
	11-18-86	4181	OB-26A	1,1 - Dichloroethylene	nd	ug/l	
	11-18-86	4181	OB-26A	1, 1-Dichloroethane	nd	ug/l	
	11-18-86	4181	OB-26A	trans-1,2-Dichloroethylene	nd	ug/l	
	11-18-86	4181	OB-26A	Chloroform	nd	ug/l	
	11-18-86	4181	OB-26A	1,2 - Dichlorcethane	nd	ug/l	
	11-18-86	4181	OB-26A	Trichloroethylene	nd	ug/l	
	11-18-86	4181	OB-26A	1,1,1~Trichloroethane	nd	ug/1	
	11-18-86	4181	ов-26а	Benzene	287.0	ug/l	
	11-18-86	4181	OB-26A	Toluene	13.0	ug/l	
	18-86	4181	ов-26а	Ethylbenzene	5.6	ug/l	
	11-18-86	4181	OB-26A	Chlorobenzene	nd	ug/l	
i	11-18-86	4193	OB-5A - bailed	1,1 - Dichloroethylene	16.0	ug/l	
ł	11-18-86	4193	OB-5A - bailed	1, 1-Dichloroethane	2.8	ug/l	
'	11-18-86	4193	OB-5A - bailed	trans-1,2-Dichloroethylene	15.0	ug/l	
	11-18-86	4193	OB-5A - bailed	Chloroform	34.0	ug/l	
	11-18-86	4193	OB-5A - bailed	1,1,1-Trichloroethane	296.0	ug/l	
1	11-18-86	4193	OB-5A - bailed	1,2-Dichloropropane	nd	ug/l	
I	11-18-86	4193	OB-5A - bailed	Chlorobenzene	nd	ug/l	
1	11-18-86	4193	OB-5A - bailed	Trichloroethylene	1400.0	ug/l	
	11-18-86	4194	OB-5A - pump	1,1 - Dichloroethylene	22.0	ug/l	
I	11-18-86	4194	OB-5A - pump	1, 1-Dichloroethane	2.6	ug/1	
1	11-18-86	Sec. Carlo	OB-5A - pump	trans-1,2-Dichloroethylene	15.0	ug/l	
	18-86	44.94	OB-5A - pump	Chloroform	AR I <b>OO</b> 40	<b>5-5</b> /1	
f	11-18-86	4194	OB-5A - pump	1,1,1-Trichloroethane	224.0	ug/l	

PAGE NO. 00031 02/04/87

k,

CHEM SOLV WATER QUALITY DATA

ł.

ż,

ļ,

				CUM DODA HUTDY KOUNTIL DUTY		
DATE	LAB #	SAMPLE ID		PARAMETER	CONCENTR	UNI
11-18-86	4194	OB-5A - pum	np	1,2-Dichloropropane	nd	ug/:
11-18-86	4194	OB-5A - pum	n <b>p</b>	Chlorobenzene	nd	ug/l
11-18-86	4194	OB-5A - pum	qn	Trichloroethylene	1152.0	ug/l
11-18-86	4195	OB-5B - pum	ą	1,1 - Dichloroethylene	nd	ug/:
11-18-86	4195	OB-5B - pum	<b>n</b> p	1, 1-Dichloroethane	nd	ug/:
11-18-86	4195	08-58 - рит	n <b>p</b>	trans-1,2-Dichloroethylene	nd	ug/]
11-18-86	4195	OB-5B - pum	ą	Chloroform	nd	ug/l
11-18-86	4195	OB-5B - pum	q	1,1,1-Trichloroethane	nd	ug/l
11-18-86	4195	OB-5B - pum	qn	1,2-Dichloropropane	nd	ug/l
11-18-86	4195	08-58 - pum	ņ	Chlorobenzene	nd	ug/l
11-18-86	4195	03-53 - pum	n <b>p</b>	Trichloroethylene	3.3	ug/l
11-18-86	4196	OB-2A - bai	iled	1,1 - Dichloroethylene	nd	ug/1
11-18-86	4196	OB-2A - bai	lled	1, 1-Dichloroethane	nd	ug/
11-18-86	4196	OB-2A - bai	lled	trans-1,2-Dichloroethylene	nd	ug/l
11-18-86	4196	OB-2A - bai	lled	Chloroform	nđ	ug/l
11-18-86	4196	OB-2A - bai	lled	1,1,1-Trichloroethane	2.0	ug/l
11-18-86	4196	OB-2A - bai	lled	1,2-Dichloropropane	nd	ug/l
11-18-86	4196	OB-2A - bai	lled	Chlorobenzene	nd	ug/l
11-18-86	4196	OB-2A - bai	lled	Trichloroethylene	7.9	ug/l
11-18-86	4197	OB-2A - pum	nped	1,1 - Dichloroethylene	1.0	ug/l
11-18-86	4197	0B-2A - pum	nped	1, 1-Dichloroethane	nd	ug/l
11-18-86	4197	OB-2A - pum	nped	trans-1,2-Dichloroethylene	nd	ug/l
11-18-86	4197	OB-2A - pum	nped	Chloroform	1.0	ug/l
11-18-86	4197	OB-2A - pum	nped	1,1,1-Trichlorcethane	3.8	ug/l
11-18-86	4197	OB-2A - pum	nped	1,2-Dichloropropane	AR 1 00 46	<b>54/1</b>
11-18-86	4197	OB-2A - pum	nped	Chlorobenzene	• •	ug/

## PAGE NO. 00032 )2/04/87

.

CHEM SOLV WATER QUALITY DATA

19 j

•1..

ţ

$\sim$						
$\bigcirc$	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNIT	5
11-18-86	4197	OB-2A - pumped	Trichloroethylene	17.0	ug/:	
11-18-86	4198	08-98 - pumped	1,1 - Dichloroethylene	nd	ug/l	
11-19-86	4198	OB-9B - pumped	1, 1-Dichloroethane	nd	ug/l	
11-18-86	4198	OB-9B - pumped	trans-1,2-Dichloroethylene	nd	ug/:	
11-18-86	4198	08-98 - pumped	Chloroform	nd	ug/:	
11-18-86	4198	0B-9B - pumped	1,1,1-Trichloroethane	5.5	ug/l	
11-18-86	4198	OB-9B - pumped	1,2-Dichloropropane	nd	ug/l	
11-18-86	4198	OB-9B - pumped	Chlorobenzene	nd	ug/:	
11-18-86	4198	OB-9B - pumped	Trichloroethylene	39.0	ug/l	
11-18-86	4199	OB-9B - bailed	1,1 - Dichloroethylene	nd	ug/l	
11-18-86	4199	OB-9B - bailed	1, 1-Dichloroethane	nd	ug/l	
1,1-1,8-86	4199	OB-9B - bailed	trans-1,2-Dichloroethylene	nd	ug/l	
1-18-86	4199	OB-9B - bailed	Chloroform	1.0	ug/l	
11-18-86	4199	OB-9B - bailed	1,1,1-Trichloroethane	2.9	ug/l	
11-18-86	4199	OB-9B - bailed	1,2-Dichloropropane	32.0	ug/l	
11-18-86	4199	OB-9B - bailed	Chlorobenzene	nd	ug/l	
11-18-86	4199	OB-9B - bailed	Trichloroethylene	nd	ug/l	
11-18-86	4203	OB-41A	1,1 - Dichloroethylene	nd	ug/l	
11-18-86	4203	OB-41A	1, 1-Dichloroethane	nd	ug/l	
11-18-86	4203	OB-41A	trans-1,2-Dichloroethylene	nd	ug/l	
11-18-86	4203	OB-41A	Chloroform	nd	ug/l	
11-18-86,	4203	0B-41A	1,1,1-Trichloroethane	nd	ug/l	
11-18-86	4203	OB-41A	1,2-Dichloropropane	nđ	ug/l	
11-18-86	4203	OB-41A	Chlorobenzene	nd	ug/l	
J 18-86	4203	OB-41A	Trichloroethylene	AR 100488	}ug/l	
11-18-86	4203	OB-41A	Benzene	nd	ug/l	

If the page filmed in this frame is not as readable on legible as this label, it is due to substandard color or condition of the original page.

· . . . . . . . .

PAGE NO. 00033 02/04/87

				CHEM SOLV WATER QUALITY D	АТА	$\bigcirc$
4	DATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
	11-18-86	4203	OB-41A	Toluene	nd	ug/l
Í	11-18-86	4203	OB-41A	Ethylbenzene	nd	ug/l
,	11-18-86	4203	OB-41A	1,2 - Dichloroethane	nd	ug/l
	11-18-86	4204	ов-42а	1,1 - Dichloroethylene	nd	ug/l
-	11-18-86	4204	OB-42A	1, 1-Dichloroethane	nd	ug/l
J	11-18-86	4204	ов-42а	trans-1,2-Dichloroethylene	nd	ug/l
1	11-18-86	4204	OB-42A	Chloroform	nd	ug/l
	11-18-86	4204	ов-42а	1,1,1-Trichloroethane	nd	ug/l
ĺ	11-18-86	4204	ов-42а	1,2-Dichloropropane	nd	ug/l
_	11-18-86	4204	ов-42а	Chlorobenzene	nd	ug/l
	11-18-86	4204	OB-42A	Trichloroethylene	1.0	ug/1
4	11-18-86	4204	OB-42A	Benzene	nd	u
J	11-18-86	4204	ов-42а	Toluene	nd	ug/l
1	11-18-86	4204	OB-42A	Ethylbenzene	nà	ug/l
	11 18-86	4204	OB-42A	1,2 - Dichloroethane	nđ	ug/l
	11-18-86	4205	Durham	1,1 - Dichloroethylene	nd	ug/l
	11-18-86	4205	Durham	1, 1-Dichloroethane	nd	ug/l
	11-18-86	4205	Durham	trans-1,2-Dichloroethylene	nd	ug/l
í	11-18-86	4205	Durham	Chloroform	nd	ug/l
	11-18-86	4205	Durham	1,1,1-Trichloroethane	nd	ug/l
	11-18-86	4205	Durham	1,2-Dichloropropane	nd	ug/l
	11-18-86	4205	Durham	Chlorobenzene	nd	ug/l
	11-18-86	4205	Durham	Trichloroethylene	nd	ug/l
1	11-18-86	4205	Durham	Benzene	nd	ug/1
	11-18-86	4205	Durham	Toluene	AR 100469	u
	11-18-86	4205	Durham	Ethylbenzene	nd	ug/l

PAGE NO. 00034 02/04/87 Ì

CHEM SOLV WATER QUALITY DATA

1.

1

1

	ATE	LAB #	SAMPLE ID	PARAMETER	CONCENTR	UNITS
I	11-18-86	4205	Durham	1,2 - Dichloroethane	nd	ug/l
ļ	11-18-86	4206	Johnson	1,1 - Dichloroethylene	nd	ug/l
•	11-18-86	4206	Johnson	1, 1-Dichloroethane	nđ	ug/l
	11-18-86	4206	Johnson	trans-1,2-Dichloroethylene	nd	ug/l
	11-18-86	4206	Johnson	Chloroform	nd	ug/l
	11-18-86	4206	Johnson	1,1,1-Trichloroethane	nd	ug/l
1	11-18-86	4206	Johnson	1,2-Dichloropropane	nd	ug/l
	11-18-86	4206	Johnson	Chlorobenzene	nd	ug/l
ł	11-18-86	4206	Johnson	Trichloroethylene	nd	ug/l
_	11-18-86	4206	Johnson	Benzene	nd	ug/l
	11-18-86	4206	Johnson	Toluene	nd	ug/l
Ć	1-18-86	4206	Johnson	Ethylbenzene	nd	ug/l
<b>b</b>	11-18-86	4206	Johnson	1,2 - Dichloroethane	nd	ug/l
	11-18-86	4207	Gearh - Curley	1,1 - Dichloroethylene	nd	ug/l
_	11-18-86	4207	Gearh - Curley	1, 1-Dichloroethane	nd	ug/l
	11-18-86	4207	Gearh - Curley	trans-1,2-Dichloroethylene	nd	ug/l
6	11-18-86	4207	Gearh - Curley	Chloroform	nd	ug/l
	11-18-86	4207	Gearh - Curley	1,1,1-Trichloroethane	nd	ug/l
ĺ	11-18-86	4207	Gearh - Curley	1,2-Dichloropropane	nd	ug/l
_	11-18-86	4207	Gearh - Curley	Chlorobenzene	nd	ug/l
	11-18-86	4207	Gearh - Curley	Trichloroethylene	nd	ug/l
•	11-18-86	4207	Gearh - Curley	Benzene	nd	ug/l
	<b>11-18-86</b>	4207	Gearh - Curley	Toluene	nd	ug/l
1	11-18-86	4207	Gearh - Curley	Ethylbenzene		ug/l
	1-18-86	4207	Gearh - Curley	1,2 - Dichloroethane	AR100470	ug/l
ſ	11-18-86	4208	Gearhart-new RA	1,1 - Dichloroethylene	nd	ug/l

PAGE NO. 00035 02/04/87

١

ł

l					CHEM SOLV WATER QUALITY DATA		$\bigcirc$
Ē	DATE	LAB #	SAMPLE ID		PARAMETER	CONCENTR	UNIS
]	11-18-86	4208	Gearhart-new	RA	1, 1-Dichloroethane	nd	ug/:
1	11-18-86	4208	Gearhart-new	RA	trans-1,2-Dichloroethylene	nd	ug/1
1	11-18-86	4208	Gaarhart-new	RA	Chloroform	nd	ug/:
ļ	11-18-86	4208	Gearhart-new	RA	1,1,1-Trichloroethane	nd	ug/:
•	11-18-86	4208	Gearhart-new	RA	1,2-Dichloropropane	1.0	ug/:
	11-18-86	4208	Gearhart-new	RA	Chlorobenzene	nd	ug/:
1	11-18-86	4208	Gearhart-new	RA	Trichloroethylene	nd	ug/:
ľ	11-18-86	4208	Gearhart-new	RA	Benzene	nd	ug/1
I	11-18-86	4208	Gearhart-new	ra	Toluene	nd	ug/1
4	11-18-86	4208	Gearhart-new	RA	Ethylbenzene	nd	ug/1
	11-18-86	4208	Gearhart-new	RA	1,2 - Dichloroethane	30.0	ug/l
	11-18-86	4209	Gearhart-new	TR	1,1 - Dichloroethylene	nd	ug )
	11-18-86	4209	Gearhart-new		1, 1-Dichloroethane	nd	ug/:
	11-18-86	4209	Gearhart-new	TR	trans-1,2-Dichloroethylene	nd	ug/1
4	11-18-86	4209	Gearhart-new	TR	Chloroform	nd	ug/l
	11-18-86	4209	Gearhart-new	TR	1,1,1-Trichloroethane	nd	ug/1
ł	11-18-86	4209	Gearhart-new	TR	1,2~Dichloropropane	' nd	ug/l
J	11-18-86	4209	Gearhart-new	TR	Chlorobenzene	nd	ug/l
(	11-18-86	4209	Gearhart-new	TR	Trichloroethylene	nd	ug/l
	11-18-86	4209	Gearhart-new	TR	Benzene	nđ	ug/1
	11-18-86	4209	Gearhart-new	TR	Toluene	nđ	ug/l
ł	11-18-86		Gearhart-new	TR	Ethylbenzene	nd	ug/l
]	11-18-86	4 <b>2</b> 09	Gearhart-new	TR	1,2 - Dichloroethane	nd	ug/l

AR100471 🧲

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

4