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Radiomics and Machine Learning for Skeletal
Muscle Injury Recovery Prediction
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Abstract—Radiomics as a novel quantitative approach to med-
ical imaging is an emerging area in the field of radiology.
Artificial intelligence offers promising tools for exploiting and
analyzing radiomics. The objective of the present study is to
propose a methodology for the design, development, and eval-
uation of machine learning (ML) models for the prediction of
the recovery progress of skeletal muscle injury over time in
rats using radiomics. Radiomics were extracted from contrast
enhanced computed tomography (CT) data and ML algorithms
were trained and compared for their predictive value based on
different CT imaging parameters. Ten different ML regression
algorithms were tested and the optimal combination of radiomics
for each algorithm and CT imaging parameter settings combina-
tion was studied. The best ensemble learning model, trained on
the 70 kVp, 100 mA imaging parameter dataset, achieved a mean
absolute error score of 1.22. The results suggest that radiomics
extracted from CT images can be used as input in ML regression
algorithms to predict the volume of a skeletal muscle injury in
rats. Moreover, the results show that CT imaging settings impact
the predictive performance of the ML regression models, indi-
cating that lower values of tube current and peak kilovoltage
contribute to more accurate predictions.

Index Terms—Computed tomography (CT), machine learn-
ing (ML), muscle injury, preclinical imaging, prediction model,
radiomics, recovery.
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I. INTRODUCTION

B IOMEDICAL imaging, since its invention, has been
an essential tool for clinical decision, medical inter-

vention, and research. Recent advancements in computer
technology, such as the increase in computing power, the
digitalization of medical imaging, and thus the increase in
dataset sizes and their harmonization, offer new possibili-
ties of utilizing medical images not just as pictures intended
solely for visual interpretation but as a source of data as
well [1], [2].

The concept of radiomics was initially introduced in 2012
by Lambin et al. [3] and is a process of extracting high-
dimensional feature data from digital medical images to quan-
titatively describe attributes of Regions of Interest (ROIs). The
field of radiomics is based on the hypothesis that biomedical
images contain information imperceptible by the human eye
that reflects underlying pathophysiology and that these rela-
tionships can be revealed via quantitative image analysis [2].
This way, by quantifying differences in image intensity, shape,
or texture, the use of radiomics does not only enhance the
existing data available to clinicians with additional information
but also helps overcoming the subjective nature of medical
image interpretation [4].

Radiomics extraction can lead to a significantly vast num-
ber of features from each medical image, that are usu-
ally combined with artificial intelligence (AI) methodolo-
gies and more precisely with machine learning (ML) algo-
rithms [7]. Moreover, the ability of radiomics to quantify
textural information from biomedical images allows ML algo-
rithms to focus on 1-D arrays of numerical input features
instead of 3-D images.

Radiomics have primarily been applied in oncology, how-
ever, the potential benefits of radiomics are not limited to
this field. Several recent studies in oncology utilize radiomics
features in combination with AI techniques for cancer diag-
nosis, prediction, and management in a variety of organs
and systems [8], such as prostate [9], [10], lung [11], [12],
[13], kidney [14], brain [15], [16], liver [17], [18], adrenal
gland [19], [20], and pituitary gland [21], [22]. Radiomics
studies not related to oncology have started to appear as well,
including studies on detection of cardiovascular risk factors on
cardiac structure and tissue [23], classification and prediction
of mild cognitive impairment and Alzheimer’s disease [24],
identification of temporal lobe epilepsy [25], diagnosis, clas-
sification and prediction of oral diseases [26], phenotyping
of cardiovascular disease [27], diagnosis, prediction and
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prognosis of stroke [28], and placental tissue characteriza-
tion [29]. In sports medicine, magnetic resonance imaging
(MRI) has been used extensively in studies focused on clas-
sification and assessment of muscle injuries. In such studies
researchers attempted to predict the time to return to sport
after injury, or return to play (RTP), of athletes based on MRI
muscle injury grade classification without being able to be
conclusive about its predictive value [31], [32], [33], [34].

Regarding skeletal muscle injury recovery studies,
Paun et al. [30] focused on the applicability of in vivo
computed tomography (CT) imaging to track skeletal muscle
lesion recovery over time in rats. The least absolute residual
(LAR) method available in MATLAB was used to train
an exponential model that predicts the recovery of skeletal
muscle injury over time in rats. Feeding their model with the
volume of the initial injury (Day 0) and the post-injury time,
in days, Paun et al. achieved a mean root-mean-square error
(RMSE) of 6.8 in their predictions. In the current study, we
are assessing the ability of radiomic features to predict the
recovery of skeletal muscle injury over time on the same CT
dataset of Paun et al. when used as input in ML algorithms.

To the best of our knowledge, there are no studies where
radiomics features, and AI have been used to predict the heal-
ing process of skeletal muscle injuries. Consequently, the aim
of this study was to introduce a methodology of creating a
model that predicts the recovery progress of skeletal muscle
injury in rats by applying ML techniques on radiomics fea-
tures data and comparing the predictive quality of different CT
imaging parameter settings.

II. MATERIALS AND METHODS

A. Data Description—Dataset Preclinical

In this study, we used the preclinical imaging dataset of
skeletal muscle injuries in rats of Paun et al. study [30]. The
dataset consists of CT images of 23 Wistar male adult rats.
For the acquisition of all CT images a Quantum FX micro-
CT scanner (PerkinElmer, Hopkinton, MA, USA) was used. In
preparation for the CT studies the rats were anaesthetized and
immobilized. Skeletal traumatic muscle injuries were induced
by a transverse biopsy procedure in the muscle-tendon junc-
tion level of the rats’ left leg medial gastrocnemius muscle
by an 18-gauge biopsy needle with a 0.84-mm inner diame-
ter [35]. To help distinguish between injury and neighboring
tissue, iopamidol was administered to the rats as a contrast
agent.

In order to track injury recovery at different time points, two
studies were conducted, the Single Post-Injury study, where
injury is monitored only once after the injury and the longitudi-
nal one, where injury is tracked for several days post injury. In
the Single Post-injury study, 20 rats were sorted into five sepa-
rate groups (n = 4 per group) according to the single follow-up
day at 2, 4, 7, 10, or 14 days after injury, respectively, provid-
ing in total 40 CT instances (two instances for each mouse, one
at the day of injury and one at each follow-up day post injury).
In the longitudinal study, three rats were imaged at all five
mentioned follow-up days, providing a total of 18 CT instances
(six instances per mouse, including the one at the day of

Fig. 1. Injury segmentation and Radiomic feature extraction process
flowchart.

injury). Each instance consists of four CT images of different
value combinations of the imaging parameters peak kilovolt-
age (kVp) and tube current (mA) as follows: 90 kVp_200 mA,
70 kVp_200 mA, 90 kVp_100 mA, and 70 kVp_100 mA.
A schematic representation instances’ dataset can be seen in
Table A1 (supplementary material). More details about the
methods utilized for the acquisition of the CT studies’ data
can be found in the study by Paun et al. [30].

B. Injury Segmentation

A semi-automated segmentation approach of the ROIs was
adopted and was initially used on all the 90 kVp_200 mA
CT images. The segmentation of the injuries was performed
on 3-D Slicer (version 4.10.2) using the WandEffect label
tool [36]. The “Threshold Paint” option was selected and
the thresholds for minimum and maximum gray level inten-
sity values, after experimentation, were set at 100 and 1200,
respectively. In case of an air bubble forming inside the skele-
tal muscle after the injury was induced, the air bubble was
included in the ROI. The “maximum pixels per click” selec-
tion setting of the WandEffect label tool kit was set at 2000
pixels and the “Fill Volume” option was selected. Finally,
manual correction of the segmented area had to be applied
as well.

Consequently, all CT instances were aligned to the
90 kVp_200mA CT images and the masks created during the
segmentation of the 90 kVp_200 mA CT images were then
used as segmentation masks to extract the ROIs from the rest
of the CT images of the different imaging parameters as well
for all CT instances. Exceptions were two instances where the
90 kVp_200 mA CT images were rotated in relation to the
CT images of different value combinations of imaging param-
eters. This resulted in slightly different ROIs to be extracted
from the 90 kVp_200 mA CT images which would not allow
the results of the different imaging parameters settings to be
comparable and as a result these two instances were excluded
from the dataset. In Fig. 1, the image processing flowchart is
depicted, including the muscle injury segmentation stage.

C. Feature Extraction

Currently, there are two approaches to radiomic features
extraction. The first approach uses mathematical models to
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extract features relating to imaging features, such as texture,
intensity, or shape and is usually referred to as “feature-based”
or “hand-crafted” radiomics [5]. The second is usually referred
to as “deep learning-based radiomic (DLR) features” and is
based on the hypothesis that once the ROI has been seg-
mented accurately from a medical image by a deep neural
network, the information about the segmented region is already
stored within the network. Since the total number of avail-
able instances from the dataset would be considered limited
for the purpose of DLR extraction, the “hand-crafted” feature
extraction approach was selected. The open source radiomics
platform PyRadiomics [37] was used for the extraction of
hand-crafted radiomics features, that can be categorized into
the following groups [5]. The follow-up day after the injury
was included as well in the initial pool of features, resulting
in a total of 114 features.

1) Shape Features [38]: Which provide quantitative
description of geometric properties of the ROIs/VOIs,
such as surface area, total volume, diameter, sphericity,
or surface-to-volume ratio.

2) First Order Statistics (Histogram-Based Features) [38]:
Which describe the fractional volume for the selected
region of voxels and the distribution of the voxels’ inten-
sity, for example minimum, maximum, mean, variance,
skewness, or kurtosis.

3) Second Order Statistics (Textural Features) [5], [39]:
These features are extracted based on the following
matrices derived from intensity relationships of neigh-
boring voxels in a 3-D image.

a) Gray Level Co-occurrence Matrix.
b) Gray Level Run Length Matrix.
c) Gray Level Size Zone Matrix.
d) Neighboring Gray Tone Difference Matrix.
e) Gray Level Dependence Matrix.

The shape “Voxel Volume” feature, which represents the
volume of the skeletal muscle injury (ROI), was selected as
the target value to predict for the ML models. Radiomics were
extracted from all 58 instances forthfold, resulting in four sep-
arate datasets, one for each different value combination of the
CT imaging parameters, as can be seen in Fig. 1.

D. Data Preprocessing

The range of the extracted radiomic feature values can
vary greatly. Standardization is a technique often used as
part of data preprocessing in an ML study when features of
the input dataset have significant differences between their
ranges. On distance-based ML algorithms, like support vec-
tor machines (SVMs) or k-nearest neighbors (k-NN), features
with values that are of different ranges do not weigh the same
when calculating distance. Standardization gives all features
the same influence on the distance metric. Also, regressions
like LASSO or Ridge that place a penalty on the magnitude of
the coefficients associated to each variable can have deficient
performance when fitting data with feature values of different
variance.

Since in this study models based on support vector regressor
(SVR), Ridge, and Lasso regressors are going to be created and

tested, the StandardScaler implementation of the free software
ML library Scikit-learn [40] was used to produce scaled data
that has zero mean and unit variance.

On distance-based ML algorithms, like SVR, Ridge, and
LASSO regressors, if the features of the input dataset have
significant differences between their ranges, they do not have
equal weight when calculating distance. Also, regressions like
LASSO or Ridge that place a penalty on the magnitude of
the coefficients associated to each variable can have deficient
performance when fitting data with feature values of differ-
ent variance. Since the range of the extracted radiomic values
used in this study varies greatly, we used Standardization to
harmonize influence on all features on the distance metric.
Specifically, the StandardScaler implementation of the free
software ML library Scikit-learn [40] was used to produce
scaled data that has zero mean and unit variance.

E. Feature Selection

For the feature selection process, we tested a combina-
tion of feature selection techniques. Initially, we used two
filter techniques, one supervised (mutual information) and one
unsupervised (Pearson’s correlation coefficient), in order to
quickly minimize the dimensionality of the dataset and after-
wards we proceed with three wrapper techniques (Backward
Elimination, Forward Selection, and Bidirectional Elimination)
to find the optimal feature combination for each ML algorithm,
as described below. We also included three ML algorithms that
use embedded feature selection methods in our set (LASSO,
Ridge, and ElasticNet regressors).

Feature selection is a pivotal step in a radiomics studies’
workflow, due to the high-dimensional dataset that radiomics
feature extraction produces [42], [43], [44]. Although the num-
ber of extracted radiomics features can be exceptionally large,
the usual case is that a lot of them can be either highly cor-
related to one another and/or irrelevant to the target value.
Including such features can result in a model that is easy to
overfit, noise sensitive and with reduced generalizability [41].
In short, by reducing the number of input features the data
becomes more statistically significant.

As a first step in our feature selection process the con-
cept of mutual information [47] was used to measure the
mutual dependence between the target value and the rest of
the extracted radiomic features. All features with a mutual
information score of 0 toward the target value were excluded
from the dataset as being independent of the target value and
thus irrelevant to the task at hand. Consequently, Pearson’s cor-
relation coefficient [48] was utilized to measure the strength
and direction of linear association between all pairs of remain-
ing features. Highly correlated features with a Pearson’s
correlation coefficient value greater than 0.97 were compared
with one another and only the features with the highest cor-
relation to the target value were evaluated. The rest of the
highly correlated features were considered redundant and were
excluded from the dataset. As the last step in the feature selec-
tion process, three wrapper methods were used to search for
the feature subset that leads to optimal predictive performance
for each of the ML algorithms tested in the study. Wrapper
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Fig. 2. Feature Selection process flowchart for Algorithm X.

methods [45], [46] search for an optimal feature subset fit to a
specific ML algorithm by creating different subsets of features,
building ML models based on the algorithm selected using the
feature subsets and evaluating the models’ performance on a
chosen metric [49]. In this study, the metric that the models’
performance was evaluated on was the mean absolute error
(MAE), described in metrics section that follows.

Different strategies of creating the feature subsets result in
different wrapper methods. For the purposes of this study, we
used the following.

1) Forward Selection: The model starts empty, and fea-
tures keep being added to it for as long as the models’
performance keeps being improved. In each iteration the
feature that gets added to the features subset is the one
that leads to the greatest improvement of the models’
performance.

2) Backward Elimination: The model starts with all the fea-
tures and in each iteration, features keep being removed
from it for as long as the models’ performance keeps
getting improved. In each iteration the feature that gets
removed from the features subset is the one that leads to
the greatest improvement of the models’ performance.

3) Bidirectional Elimination: Works as Forward Selection,
starting from an empty feature subset and adding the
feature that leads to the greatest improvement of the
models’ performance in each iteration but with the
possibility of deleting a feature that was previously
added.

Since the values of the radiomics change depending on
the different value combinations of the CT imaging param-
eters, the filter methods feature selection process had to be
performed for each CT image dataset separately. Moreover,
because wrapper methods are algorithm specific, the wrapper
methods feature selection process had to be performed sepa-
rately for each combination of CT imaging parameters and ML
algorithm, as can be seen in Fig. 2. The optimal feature combi-
nation for any ML algorithm and any CT imaging parameters
was selected according to the best performing model on the
metric MAE.

F. Machine Learning Regression Algorithms

In total ten supervised ML regression algorithms were eval-
uated: 1) Least Squares Linear Regression [50]; 2) Ridge
Regression [51]; 3) LASSO Regression [52]; 4) Elastic

Net [53] Regression; 5) AdaBoost [54] regressor; 6) Gradient
Boost [55] regressor; 7) eXtreme Gradient Boosting
(XGBoost) [56] regressor; 8) Random Forest [57] regressor;
9) Decision Tree [58] regressor; and 10) SVR [59]. All the ML
algorithm implementations used in this study can be found in
the open-source software ML library Scikit-learn [40], except
for XGBoost’s implementation which can be found in the
XGBoost open-source software library [60].

Linear Regression, being one of the most well-known and
understood ML regression algorithms, can be used as a bench-
mark in this study. In addition to the ordinary least squares
linear regression, three more implementations of the algorithm
were tested which by the application of different regularization
terms are enhancing the performance of linear regression in
high-dimensional problems. LASSO and Ridge Regressions
impose the L1 and L2 regularization to the cost function,
respectively, while Elastic Net uses a linear combination of
L1 and L2 regularization [61].

ML algorithms based on the concept of ensemble learning
are considered the state-of the art solution when dealing with
complex and high-dimensional data [62]. There are three main
categories of ensemble learning algorithms: 1) bagging [63];
2) boosting [64]; and 3) stacked generalization or stack-
ing [65]. Embedded bagging and boosting ensemble learning
regression algorithms were implemented in this study with
Random Forest and AdaBoost, Gradient Boost and XGBoost,
respectively.

G. Training and Evaluation

To train an ML model to predict the volume of the muscle
injury of a given rat over time we need to rearrange our dataset
into pairs of starting and ending instances. We will be referring
to these pairs as snapshots. The ML model will be fed with the
selected input features, including the initial “Voxel Volume,” of
the injury’s starting instance as well as the time length in days
between the initial and the target instance, and the output will
be the “Voxel Volume” of the injury during the target instance.

Each of the three rats of the longitudinal study contributed
with 15 snapshots of injuries. Two of the instances of rat
no. 2 had to be excluded from the dataset because these
90 kVp_200 mA CT images were rotated in relation to CT
images of different value combinations of imaging parameters
and thus contributing with only six snapshots. As a result,
the longitudinal study offered 36 snapshots, while each rat
(n = 20) of the Single Post-injury study contributed with one
snapshot, which led to a total of 56 snapshots of injuries per
value combination of imaging parameters.

A variation of the leave one out cross validation
(LOOCV) [66] method was used to evaluate the models’
performance. LOOCV method was selected in order to counter
the limited number (n = 56) of snapshots of starting and
ending points of injuries per value combination of imaging
parameters. The LOOCV method allows us to use more data
on the training of our models than any other validation method.
According to this method, our data are divided into two sep-
arate sets; 1) a training and 2) a validation set. The training
set consists of all the snapshots, apart from the one snapshot
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which incorporates the validation set of each training iteration.
So, only one snapshot is used for validation, and the rest of the
dataset is used for the training of the model. This validation
process will be repeated as many times as the total number
of snapshots. This way we end up having a prediction of the
Voxel Volume for each of the 56 snapshots. In our variation of
the LOOCV method, when the snapshot of the validation set
is part of the longitudinal study, the rest of the snapshots that
were produced by CT images of the same rat were excluded
from the training set as well, to prevent the introduction of
bias.

H. Metrics

To compare the predictive performance of the ML models
we computed the following performance measures.

1) MAE is the average of the absolute errors of the model’s
predictions against the snapshots’ target values.

2) RMSE is the square root of the average of the squared
errors of the model’s predictions against the snapshots’
target values.

3) R-squared (R2) or coefficient of determination repre-
sents the proportion of the variance of the target value
explained by the input features in a regression model.

MAE and RMSE are scale dependent, so they can be used
to compare the performance of different predictive regression
models for a particular dataset but not between datasets [67].
Smaller MAE and/or RMSE values indicate better predictive
performance, while larger R2 values indicate better fit of the
data with values ranging from 0 to 1.

Since, according to literature [68], MAE is the more
natural measure of average error magnitude, and that, unlike
RMSE, it is unambiguous, it was used as the primary model
performance measure in this study for performance compari-
son and optimization purposes.

I. Hyperparameter Optimization

Hyperparameter optimization or tuning is the process of
finding a set of hyperparameter values which allow an ML
algorithm to better fit the data achieving the best possible
performance according to a predefined metric, MAE in this
case, on a cross validation set. Hyperparameter optimization
plays a vital role in the prediction accuracy of ML algorithms.
Different automatic hyperparameter optimization search algo-
rithms have been proposed, such as grid search [69], random
search [69], Bayesian search [70], gradient-based search [71],
and multifidelity search [72] methods.

In this study, we applied the implementation of Bayesian
optimization available in the open-source software ML library
Scikit-Optimize [73] on the best performing algorithms
after the feature selection process was completed. Table
A2 (supplementary material) lists the sets and the ranges
of the hyperparameters per ML algorithm that were opti-
mized with the use of Bayesian optimization. Bayesian
optimization was selected due to its ability to achieve com-
parable improvement of the predictive performance of ML
algorithms in significantly reduced runtime compared with
other optimization methods [74].

J. Ensemble Learning

As a final step in our methodology, we implemented ensem-
ble learning techniques on the results of the ML regression
algorithms to further improve our predictions. Ensemble learn-
ing [75] refers to the process of developing a single “strong”
ML model that solves a computational problem by strate-
gically combining multiple differently performing “weaker”
ML models, treating them as a “committee” of solvers. The
principle is that the prediction of the committee, when individ-
ual predictions are combined appropriately, should have better
overall accuracy than any individual model (committee mem-
ber). After the completion of the hyperparameter optimization
process, we used the outputs of the four best performing mod-
els (XGBoost, Ridge regression, Gradient Boost, and Random
Forest) of the 70 kVp, 100 mA dataset to create weighted
average ensemble learning models.

Weighted average or weighted sum ensemble [76] is an
ensemble learning approach that combines predictions from
multiple models, where the contribution of each model is
weighted proportionally to the model’s predictive ability. That
weight is then multiplied by the model’s prediction and is used
for the calculation of the average prediction. In regression, the
average prediction is calculated using the arithmetic mean, as
shown in following equation:

Pe =
∑n

i=1 wi × Pi
∑n

i=1 wi

where Pe is the prediction of the ensemble, n is the total
number of predictors contributing to the ensemble, Pi is
the prediction of predictor i, wi is the weight assigned to
predictor i.

We tested three different ensemble combinations, starting
with the best performing model and progressively adding mod-
els according to best performance. We also used six different
approaches for the assignment of weight to the ML models
where each model contributes.

1) Equally (w = 1) to the prediction.
2) By w = 1/MAE to the prediction.
3) By w = 1/RMSE to the prediction.
4) By w = R2 to the prediction.
5) According to the model’s MAE performance to the

prediction. Weights get values from 1 to the number
of models.

6) According to the model’s RMSE performance to the
prediction. Weights get values from 1 to the number
of models.

The sixth approach of weight assignment gave the best
results. In Table II, we present the performance metrics of all
the ensemble combinations for the sixth weight assignment
approach.

III. RESULTS

In this section, we evaluate the trained models’ ability to
predict the volume of skeletal muscle injury in rats over time
for the two sets of imaging parameters. In Table I, we can
see the performance metrics of the six best performing algo-
rithms after the optimization process for the 70 kVp, 100 mA
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Fig. 3. Diagram of the Voxel Volume predictions of the six best models over
a period of 14 days for the Longitudinal’s study Rat 1.

Fig. 4. Diagram of the Voxel Volume predictions of the six best models over
a period of 14 days for the Longitudinal’s study Rat 3.

TABLE I
BEST PERFORMING MODELS AFTER THE OPTIMIZATION PROCESS PER

IMAGING PARAMETERS COMBINATION

dataset. The model that achieves the best MAE score of 1.336
uses the XGBoost algorithm on the 70 kVp, 100 mA dataset
and uses seven input features, six of which are radiomics fea-
tures plus the follow-up day from initial injury. It is notable
that the best R2 score is achieved with Ridge regression for
the same imaging parameter dataset, but with double number
of features (15) although its main principle leads on penal-
izing and minimizing the feature space. Figs. 3 and 4 depict
the Voxel Volume predictions of the six best models over a
period of 14 days for the longitudinal’s study Rats 1 and 2,
respectively.

Individual diagrams for the best performing models per
ML algorithm can be seen in Figs. A1–A12 (supplementary

TABLE II
METRICS OF THE BEST PERFORMING WEIGHTED AVERAGE ENSEMBLE

MODELS FOR THE 70 kV, 100 mA IMAGING PARAMETERS COMBINATION

material), while the input features of the six best perform-
ing models for the 70 kVp, 100 mA dataset can be seen
in Supplementary Material in Table A3 in the supplemen-
tary material. The performance metrics of the best performing
models after the conclusion of the feature selection process
of the ten ML algorithms that were tested in this study for
each of the different imaging parameters datasets can be seen
in Tables A4–A7 of the supplementary material. The best
performing models highlighted in Tables A4–A7, in the sup-
plementary material, with green, were subjected to Bayesian
hyperparameter optimization. The metrics of the best models
after the optimization process are depicted in Tables A8–A11
of the supplementary material.

Table II shows the performance of the applied ensemble
learning using weighted average among the four best mod-
els for the same imaging parameters case of 70 kVp and
100 mA. One can clearly see that performance gets enhanced
when XGBoost is combined with Ridge regression and more
learners (Gradient Boost and Random Forest) with all met-
rics exhibiting significant improvement compared to the best
performing individual ML model (XGBoost). Finally, the best
performing model presents to be the XGB+Ridge+GB ensem-
ble model, with the lowest mean average error and the highest
R2 value of all. RMSE had a very similar value for both
XGB+Ridge ensemble cases, with and without GB (2.178 and
2.174, respectively).

IV. DISCUSSION

The results revealed that the predictions of the injury’s vol-
ume of the XGBoost and Gradient Boost models follow very
closely the recovery trend of the muscle injury in the longitu-
dinal study’s Rats 1 and 3, as seen in Figs. 3 and 4 (also in
Figs. A1–A4 of the supplementary material), contrary to the
rest algorithms and for example Ridge regression (Figs. A5
and A6 in the supplementary material), that appears to achieve
comparable performance to XGBoost (the best performing
model).

Hyperparameter optimization improved model performance
up to ∼20% depending on the case and the metric. R2

presented the smaller improvement in most cases.
As seen in Table I, even though models were trained on

datasets of different CT imaging parameters combinations,
all best performing models were trained on datasets where
the tube current was set to 100 mA, indicating an advantage
in comparison to 200 mA. Moreover, four out of the six
best performing models were trained on the dataset where
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the peak kilovoltage was set to 70 kVp indicating an advan-
tage in comparison to 90 kVp. The best individual predictive
model was based on the XGBoost Regressor algorithm and
was trained using seven input features, six of which were
radiomics extracted from the 70 kVp, 100 mA dataset. This
model achieved an MAE score of 1.336, an RMSE score of
2.469, and an R2 score of 0.796. Ensemble learning for the
same imaging parameters led to improved model performance
when combining XGBoost with Ridge regression and slightly
with GB too, but exhibited worse performance when Random
Forest was also included in the ensemble procedure, as seen in
Table II. This verifies that ensemble learning reaches a plateau
in the improving performance depending on the involved
algorithms and their inner-working variation.

The best achieved RMSE value of 2.174 (XGB+Ridge
ensemble model) that corresponds to 6.7% of the mean initial
injury volume, shows indeed a big improvement (3.1 times
better performance) compared to the exponential model of
Paun et al. on the same dataset who achieved RMSE of 6.8
in their calculations.

The small size of the cohort (n = 23) which led to a lim-
ited (n = 56) number of snapshots is the main limitation of
the current study. However, a comparison was applied on the
different ML algorithms for the best performing model for
skeletal muscle injury healing process based on the evaluation
of hand-crafted radiomic features. Due to the small cohort
size, the proposed methodology should be further validated
with larger datasets.

V. CONCLUSION

In this study, we developed a methodology to apply ML
techniques on radiomics extracted from contrast enhanced
CT images of skeletal muscle injuries in rats to develop
ML models to predict the injury recovery progress over
time in rats. Our results suggest that radiomics can success-
fully be used to predict the volume of a skeletal muscle
injury in rats over time. Moreover, our results show that dif-
ferent CT imaging parameter settings for tube current and
peak kilovoltage impact the predictive performance of the
ML regression models, indicating that lower values of tube
current and peak kilovoltage contribute to more accurate
predictions.

As further steps, multi-institutional studies on larger cohorts
and different animal species should be conducted to further
validate and standardize our methodology. Applications of our
methodology and/or findings could be used as a tool to assist
clinicians on skeletal muscle injury diagnosis and treatment,
through the prediction of the unassisted recovery progress.
Following the study of Contreras-Muñoz et al. [35] on the
development of a surgical model of skeletal muscle injury in
rats that reproduces human sports lesion, our work can also
have a direct impact on human studies. Our aim is to further
investigate ML models for human translation of the predictions
Finally, the complete methodology proposed in this study can
be implemented in different applications (beyond oncology
and skeletal muscle injuries) using the relevant CT imaging
data.
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