
Answers to exercises

Answer to Exercise 1.3.2, page 15
If a−k = −ak in

f(x) =

∞∑

k=−∞
ak exp [i(2π)kx] ,

then

f(x) = a0+

∞∑

k=1

ak {exp [i(2π)kx]− exp [−i(2π)kx]} = a0+

∞∑

k=1

2iak sin [(2π)kx] .

In our case, we have ak = (−1)k/[−i(2π)k], so 2iak = (−1)k+1/(πk).
Answer to Exercise 1.3.3, page 16
We have a0 =

∫ 1

0
f(x)dx = 1/2, and

ak =

∫ 1

0

f(x) exp [i(2π)kx] dx =

∫ 3/4

1/4

exp [i(2π)kx] dx

=
exp [i(2π)k3/4]− exp [i(2π)k/4]

(2π)k

= 2 · exp [i(2π)k1/2]
(2π)k

· exp [i(2π)k/4]− exp [−i(2π)k/4]
2i

=
(−1)k sin(πk/2)

πk
.

As a result a2k = 0 for k 6= 0, while

a2k−1 =
(−1) sin(kπ − π/2)

(2k − 1)π
=

(−1)k

(2k − 1)π
.

Answer to Exercise 1.3.4, page 27

W̃2 =




1
2

1
2 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 1
2

1
2

− 1
2

1
2 0 0 0 0 0 0

0 0 − 1
2

1
2 0 0 0 0

0 0 0 0 − 1
2

1
2 0 0

0 0 0 0 0 0 − 1
2

1
2




1
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W̃1 =




1
2

1
2 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0

− 1
2

1
2 0 0 0 0 0 0

0 0 − 1
2

1
2 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




W̃0 =




1
2

1
2 0 0 0 0 0 0

− 1
2

1
2 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




.

Answer to Exercise 1.3.5, page 28
The columns and rows of all matrices above are normalised by multiplication
with

√
2 of the columns that are not canonical vectors, leading to

W̃2 =




1√
2

1√
2

0 0 0 0 0 0

0 0 1√
2

1√
2

0 0 0 0

0 0 0 0 1√
2

1√
2

0 0

0 0 0 0 0 0 1√
2

1√
2

− 1√
2

1√
2

0 0 0 0 0 0

0 0 − 1√
2

1√
2

0 0 0 0

0 0 0 0 − 1√
2

1√
2

0 0

0 0 0 0 0 0 − 1√
2

1√
2




W̃1 =




1√
2

1√
2

0 0 0 0 0 0

0 0 1√
2

1√
2

0 0 0 0

− 1√
2

1√
2

0 0 0 0 0 0

0 0 − 1√
2

1√
2

0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
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W̃0 =




1√
2

1√
2

0 0 0 0 0 0

− 1√
2

1√
2

0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




.

Answer to Exercise 2.1.2, page 36
The matrix J̃⊤

j has 5 rows and 9 columns

J̃⊤
j =




1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1



.

The matrix J̃o
⊤

j has 4 rows and 9 columns

J̃o
⊤

j =




0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0


 .

Answer to Exercise 2.1.3, page 41
The rescaling matrix is a 5× 5 = nj × nj diagonal matrix

Dj =
1

2
Inj

.

The update matrix is a 5× 4 = nj × (nj+1 − nj) matrix, given by

Uj =




1
2 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 1

2
0 0 0 0



.

The prediction matrix is a 4× 5 = (nj+1 − nj)× nj matrix, given by

Pj =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


 .
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Answer to Exercise 2.1.3, page 41
Switching the positions of the update and the rescaling leads to an equivalent
scheme if the rescaling uses the same diagonal matrix Dj and if the update
uses the matrix U′

j = D−1
j Uj . The nonzero elements of this matrix are

U ′
j;k,k =

(
∆j+1,2k

∆j,k

)−1
∆j+1,2k+1

∆j,k
=

∆j+1,2k+1

∆j+1,2k
.

Moving the rescaling further to the end of the forward transform leads to a
new prediction matrix P′

j = DjPj , which amounts to

P ′
j;k,k =

∆j+1,2k

∆j,k

for the nonzero matrix entries.
Answer to Exercise 2.1.5, page 42
The prediction and update matrices have the same shape and the same
elements as those in Exercise 2.1.3. The rescaling matrix is a 4×4 = (nj+1−
nj)× (nj+1 − nj) diagonal matrix

Dj =
1

2
Inj+1−nj

.

Answer to Exercise 2.1.6, page 47
The function ϕj,x(x) takes the form (x − xj,k−1)/(xj,k − xj,k−1) on the in-
terval [xj,k−1, xj,k]), and the form (xj,k+1 − x)/(xj,k+1 − xj,k) on the interval
[xj,k, xj,k+1]), and it is zero elsewhere. The first moment is the integral of the
function, which is the area under a triangle,

M
[0]
j,k = (xj,k+1 − xj,k−1)/2.
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The second moment is given by

M
[1]
j,k =

∫ xj,k

xj,k−1

u− xj,k−1

xj,k − xj,k−1
udu+

∫ xj,k+1

xj,k

xj,k+1 − u

xj,k+1 − xj,k
udu

=
x3j,k − x3j,k−1

3(xj,k − xj,k−1)
− xj,k−1

(x2j,k − x2j,k−1)

2(xj,k − xj,k−1)

−
x3j,k+1 − x3j,k

3(xj,k+1 − xj,k)
+ xj,k+1

(x2j,k+1 − x2j,k)

2(xj,k+1 − xj,k)

=
x2j,k + xj,kxj,k−1 + x2j,k−1

3
− xj,k−1

(xj,k + xj,k−1)

2

−
x2j,k + xj,k+1xj,k + x2j,k+1

3
+ xj,k+1

(xj,k+1 + xj,k)

2

=
(xj,k − xj,k−1)

2

3
+ xj,kxj,k−1 − xj,k−1

(xj,k + xj,k−1)

2

− (xj,k+1 − xj,k)
2

3
− xj,k+1xj,k + xj,k+1

(xj,k+1 + xj,k)

2

=
(xj,k − xj,k−1)

2

3
+ xj,k−1

(xj,k − xj,k−1)

2

− (xj,k+1 − xj,k)
2

3
+ xj,k+1

(xj,k+1 − xj,k)

2
= (xj,k − xj,k−1)(xj,k/3 + xj,k−1/6) + (xj,k+1 − xj,k)(xj,k/3 + xj,k+1/6)

= (xj,k+1 − xj,k−1)
xj,k
3

− xj,k(xj,k+1 − xj,k−1)/6 + (x2j,k+1 − x2j,k−1)/6

= (xj,k+1 − xj,k−1)(xj,k−1 + xj,k + xj,k+1)/6

Answer to Exercise 2.1.7, page 47
Let ∆j = xj,k − xj,k−1 be the interknot distance at level j. The prediction
coefficients are given by (2.15), which becomes:

Pj;k,k =
∆j+1

∆j+1 +∆j+1
=

1

2

Pj;k,k+1 =
∆j+1

∆j+1 +∆j+1
=

1

2

According to Exercise 2.1.6, the moments are given byM
[0]
j,k = ∆j andM

[1]
j,k =

∆jxj,k. The moment conditions become

∆j+1 = Uj,k,k∆j + Uj,k+1,k∆j

∆j+1xj+1,2k+1 = Uj,k,k∆jxj,k + Uj,k+1,k∆jxj,k+1.

Using the fact that ∆j = 2∆j+1, this is

1 = 2Uj,k,k + 2Uj,k+1,k

xj+1,2k+1 = 2Uj,k,kxj,k + 2Uj,k+1,kxj,k+1.
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Now we use that xj,k = xj+1,2k = xj+1,2k+1 −∆j+1 and xj,k+1 = xj+1,2k+1 +
∆j+1:

1 = 2Uj,k,k + 2Uj,k+1,k

xj+1,2k+1 = 2Uj,k,k(xj+1,2k+1 −∆j+1) + 2Uj,k+1,k(xj+1,2k+1 +∆j+1).

Subtract xj+1,2k+1 times the first equation from the second equation to get

1 = 2Uj,k,k + 2Uj,k+1,k

0 = −Uj,k,k + Uj,k+1,k

from which it follows that Uj,k,k = Uj,k+1,k = 1/4.
Answer to Exercise 2.2.1, page 54

H̃2 =




1
2 0 0 0
1
2 0 0 0
0 1

2 0 0
0 1

2 0 0
0 0 1

2 0
0 0 1

2 0
0 0 0 1

2
0 0 0 1

2




and G̃2 =




− 1
2 0 0 0
1
2 0 0 0
0 − 1

2 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 1

2 0
0 0 0 − 1

2
0 0 0 1

2




H̃1 =




1
2 0
1
2 0
0 1

2
0 1

2


 and G̃1 =




− 1
2 0
1
2 0
0 − 1

2
0 1

2




H̃0 =

[
1
2
1
2

]
and G̃0 =

[
− 1

2
1
2

]
.

Answer to Exercise 2.2.2, page 55
From (2.15) it follows immediately that G̃j;2k+1,k = 1, G̃j;2k,k = −Pj;k,k, and

G̃j;2k+2,k = −Pj;k,k+1. This corresponds to G̃⊤
j,o = I. and G̃⊤

j,e = −Pj .
Next, from substitution of (2.15) into (2.16), we see that

sj,k = sj+1,2k + Uj,k,kdj,k + Uj,k,k−1dj,k−1

= sj+1,2k + Uj,k,k[sj+1,2k+1 − (Pj;k,ksj+1,2k + Pj;k,k+1sj+1,2k+2)]

+Uj,k,k−1[sj+1,2k−1 − (Pj;k−1,k−1sj+1,2k−2 + Pj;k−1,ksj+1,2k)]

= −Uj,k,k−1Pj;k−1,k−1sj+1,2k−2 + Uj,k,k−1sj+1,2k−1(1− Uj,k,kPj;k,k − Uj,k,k−1Pj;k−1,k)sj+1,2k

+Uj,k,ksj+1,2k+1 − Uj,k,kPj;k,k+1sj+1,2k+2,

meaning that

H̃j;2k−2,k = −Uj,k,k−1Pj;k−1,k−1

H̃j;2k−1,k = Uj,k,k−1

H̃j;2k,k = (1− Uj,k,kPj;k,k − Uj,k,k−1Pj;k−1,k)

H̃j;2k+1,k = Uj,k,k

H̃j;2k+2,k = −Uj,k,kPj;k,k+1.

This corresponds to H̃⊤
j,e = I−UjPj and H̃⊤

j,o = Uj .
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Answer to Exercise 2.2.3, page 56
From (2.55) we find P0 = −G̃⊤

0 J̃0 = 1/2 while (2.56) becomes U0 = 1/2.

This, however, leads to G̃⊤
0,o = I = 1 and G̃⊤

0,e = −P0 = −1/2.

When G̃⊤
0 = [ −1 1 ] and H̃⊤

0 = [ 1 1 ]/2, we find P0 = 1 and U0 =

1/2, which leads back to the same G̃⊤
0 and H̃⊤

0 .
Answer to Exercise 2.2.4, page 56
As in Exercise 2.2.3, we find from (2.55) that

P1 = −G̃⊤
1 J̃1 = −

[
−1 1 0 0
0 0 −1 1

]



1 0
0 0
0 1
0 0


 =

[
1 0
0 1

]
.

From (2.56) it follows that

U1 = H̃⊤
1 J̃

o
1 = 1

2

[
1 1 0 0
0 0 1 1

]



0 0
1 0
0 0
0 1


 = 1

2

[
1 0
0 1

]
.

From there we find

H1 = J̃1 + J̃o1P1 =




1 0
0 0
0 1
0 0


+




0 0
1 0
0 0
0 1



[

1 0
0 1

]
=




1 0
1 0
0 1
0 1


 ,

G1 = J̃o1(I−P1U1)− J̃1U1

=




0 0
1 0
0 0
0 1



([

1 0
0 1

]
−
[

1 0
0 1

]
1

2

[
1 0
0 1

])
−




1 0
0 0
0 1
0 0



1

2

[
1 0
0 1

]

=
1

2




−1 0
1 0
0 −1
0 1


 .

Answer to Exercise 2.2.5, page 56
For the reconstruction from the update-first lifting scheme, identification of
sj+1,o = dj + Pjsj , and sj+1,e = (I − UjPj)sj − Ujdj with (2.46), i.e.,
sj+1,o = Hj,osj + Gj,odj, and sj+1,e = Hj,esj + Gj,edj yields Hj,o = Pj ;

Gj,o = I;Hj,e = I−UjPj ; and Gj,e = Uj . Using the identity J̃j J̃
⊤
j + J̃oj J̃

o⊤

j =
Inj+1

, it follows that

sj+1 = J̃jsj+1,e + J̃ojsj+1,o =
[
J̃j(I−UjPj) + J̃ojPj

]
sj +

[
J̃oj − J̃jUj

]
dj ,

meaning that

Hj = J̃j(I−UjPj) + J̃ojPj

and
Gj = J̃oj − J̃jUj .



8 Answers to exercises

The forward transform matrices follow from (2.35)

sj = sj+1,e +Ujsj+1,o =
(
J̃⊤
j +Uj J̃

o⊤

j

)
sj+1,

meaning that

H̃⊤
j = J̃⊤

j +Uj J̃
o⊤

j ,

and from (2.36)

dj = sj+1,o −Pjsj =
[
J̃o

⊤

j −Pj

(
J̃⊤
j +Uj J̃

o⊤

j

)]
sj+1,

meaning that

G̃⊤
j = (I−PjUj)J̃

o⊤

j −Pj J̃
⊤
j .

Answer to Exercise 2.2.6, page 58
The dual matrices are found by

[
H̃⊤
j

G̃⊤
j

]
= [HjGj ]

−1.

Answer to Exercise 2.2.7, page 58
The perfect reconstruction condition (2.61) is also satisfied when replacing

Gj by G
[1]
j . The dual detail matrix should satisfy (2.63), which becomes

G̃
[1]⊤
j G

[1]
j = Ij+1,o ⇔ G̃

[1]⊤
j GjAj = Ij+1,o.

This is fulfilled if

G̃
[1]⊤
j = A−1

j G̃⊤
j ⇔ G̃

[1]
j = G̃jA

−⊤
j .

Answer to Exercise 2.2.8, page 58
It is straightforward to check that

ϕj,k = χ[xj,k,xj,k+3)(x) = χ[xj+1,2k,xj+1,2k+6)(x)

= χ[xj+1,2k,xj+1,2k+3)(x) + χ[xj+1,2k+3,xj+1,2k+6)(x) = ϕj+1,2k(x) + ϕj+1,2k+3(x).

Answer to Exercise 2.2.9, page 58
This amounts to taking a different basis of the same detail space. The new
basis is a linear combination of the basis Ψj(x), as indeed

Ψj(x)
[1] = Φj+1(x)G

[1]
j = Φj+1(x)GjAj = Ψj(x)Aj .

Answer to Exercise 2.2.10, page 59
We have ϕ0 = 1, ϕ1 = (1, 0, 0, 1), ϕ2 = (1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1), and so
on. The vector does not converge to a vector of function values of ϕ0,0(xj,k).
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Answer to Exercise 2.2.11, page 59
1. The forward dual transform has matrices H⊤

j and G⊤
j in the filter-

bank. Together, this is

[
H⊤
j

G⊤
j

]
= W⊤

j = W̃−⊤
j ,

and similarly we find that the inverse of the dual transform is given

by the matrices W̃⊤
j = W−⊤

j . As a conclusion, the dual transform
matrices are given by the inverse transposes of the primal trans-
form.

2. The forward dual transform has matrices H⊤
j and G⊤

j . In a predic-
tion first scheme, these matrices follow from (2.57):

H⊤
j = J̃⊤

j +P⊤
j J̃

o⊤

j

G⊤
j = (I−U⊤

j P
⊤
j )J̃

o⊤

j −U⊤
j J̃

⊤
j .

Careful comparison of the results above with the expressions from
Exercise 2.2.5 reveals that the dual transform of a prediction first
lifting scheme is an update first scheme with update P⊤

j and pre-

diction U⊤
j .

Answer to Exercise 2.3.1, page 62
We proceed by top-down induction, for j = J∗, J∗ − 1, . . ., that is. Assume
that ∫ 1

0

Φ⊤
j+1(x)Φ̃j+1(x)dx = Ij+1 =

∫ 1

0

Φ̃⊤
j+1(x)Φj+1(x)dx,

then we know that Φj(x) = Φj+1(x)Hj and Φ̃j(x) = Φ̃j+1(x)H̃j . As a result

∫ 1

0

Φj(x)
⊤Φ̃j(x)dx =

∫ 1

0

H⊤
j Φ

⊤
j+1(x)Φ̃j+1(x)H̃jdx = H⊤

j Ij+1H̃j = Ij ,

because of the perfect reconstruction in (2.60). The other results follow in a
similar way.
Answer to Exercise 2.3.3, page 64
Construct a tridiagonal update for three primal vanishing moments in a Haar
detail basis, i.e., using a Haar scaling basis, find Gj through a tridiagonal
update so that the wavelet basis Ψj(x) has three vanishing moments. Then
switch the roles of primal and dual bases by taking the dual wavelet transform
as above.
Answer to Exercise 3.1.1, page 68
The functions in ΨL(x) do not overlap, so

∫ 1

0

ΨL(x)
⊤ΨL(x)dx = WL,
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where WL is a diagonal matrix with elements

WL;k,k =

∫ 1

0

[ϕL+1,2k+1(x)]
2
dx

=

∫ xL+1,2k+1

xL+1,2k

(
x− xL+1,2k

xL+1,2k+1 − xL+1,2k

)2

dx

+

∫ xL+1,2k+2

xL+1,2k+1

(
xL+1,2k+2 − x

xL+1,2k+2 − xL+1,2k+1

)2

dx

= (xL+1,2k+2 − xL+1,2k)/3.

The matrix defined by

VL =

∫ 1

0

ΨL(x)
⊤ΦL(x)dx

is bidiagonal, as indeed

VL;k,l =

∫ 1

0

ψL,k(x)ϕL,l(x)dx =

∫ 1

0

ϕL+1,2k+1(x)ϕL,l(x)dx

which is nonzero if l ∈ {k, k + 1}. We have

VL;k,k =

∫ xL+1,2k+1

xL+1,2k

x− xL+1,2k

xL+1,2k+1 − xL+1,2k
· xL+1,2k+2 − x

xL+1,2k+2 − xL+1,2k
dx

+

∫ xL+1,2k+2

xL+1,2k+1

xL+1,2k+2 − x

xL+1,2k+2 − xL+1,2k+1
· xL+1,2k+2 − x

xL+1,2k+2 − xL+1,2k
dx

=
1

6
(2xL+1,2k+2 − xL+1,2k+1 − xL+1,2k)

and

VL;k,k+1 =

∫ xL+1,2k+1

xL+1,2k

x− xL+1,2k

xL+1,2k+1 − xL+1,2k
· x− xL+1,2k+2

xL+1,2k+2 − xL+1,2k
dx

+

∫ xL+1,2k+2

xL+1,2k+1

xL+1,2k+2 − x

xL+1,2k+2 − xL+1,2k+1
· x− xL+1,2k+2

xL+1,2k+2 − xL+1,2k
dx

=
1

6
(xL+1,2k+2 + xL+1,2k+1 − 2xL+1,2k).

The detail coefficients are given by

dL,k = − VL;k,k
WL;k,k

sL,k −
VL;k,k+1

WL;k,k
sL,k+1.
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Answer to Exercise 3.1.2, page 69
1. This is a straightforward rewriting of the refinement equation in

(2.28):

Φj(x) = Φj+1,e(x) + Φj+1,o(x)Pj

= Φj+1(x)J̃j +Φj+1(x)J̃
o
jPj

= Φj+1(x)
[
J̃j + J̃ojPj

]
.

2. With Gj = J̃ojAj we have Ψj(x) = Φj+1(x)J̃
o
jAj = Φj+1,oAj . The

qth moments, as defined in (2.30) and (2.31) are then given by

O
(q)
j = A⊤

j M
(q)
j+1,o. With Aj a non-singular matrix, the only vector

M
(q)
j+1,o in the null space is the zero vector.

As the multiplication with Aj amounts to a basis transform, all de-
compositions in the oiginal hierarchical basis, including the nontriv-
ial decompositions of the zero function, transform into decomposi-
tions in the transformed basis.

Answer to Exercise 3.1.3, page 71
The two-scale equation in (2.28) does not depend on Uj . This is confirmed by

the Expression (2.57) from which Hj can be identified to be Hj = J̃j + J̃ojPj .
When the update comes before the prediction in the forward transform, the
refinement becomes (2.39), which does depend on the update.
Answer to Exercise 3.1.4, page 71
We have var(sj,k) = (1− u)2 +2u2 − 2(u/2)2, which takes a minimum at u =
2/7. The value is different from the u = 1/4 for vanishing moment updates. A
compromise with just one vanishing moment is impossible, because, on an
equidistant grid, the first vanishing moment implies the second, for reasons
of symmetry.
Answer to Exercise 3.1.6, page 75
Let j = J − 1 = L, then dj = 0, so ŝj+1,2k = sj,k = (1 − u)sj+1,2k +
usj+1,2k−1 + usj+1,2k+1 − (u/2)sj+1,2k−2 − (u/2)sj+1,2k+2, while

ŝj+1,2k+1 =
1

2
(ŝj+1,2k + ŝj+1,2k+2).

=
1

2
[(1 − 3u/2)sj+1,2k + (1− 3u/2)sj+1,2k+2

+usj+1,2k−1 + 2usj+1,2k+1 + usj+1,2k+3

−(u/2)sj+1,2k−2 − (u/2)sj+1,2k+4].

The variance is then

var(ŝj+1,2k+1) = [2(1− 3u/2)2 + (u2 + 4u2 + u2) + 2(u/2)2]/4.

This is minimised at u = 3/11.
Answer to Exercise 3.1.7, page 75
The multiscale variance propagation depends on the projections onto the

coarse scaling spaces, not on the detail offsets, so not on the choice of G
[1]
j =

GjAj .
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Answer to Exercise 3.1.12, page 80
The proof inserts the transpose of the perfect reconstruction of (2.58),

H̃jH
⊤
j + G̃jG

⊤
j = I,

leading to

Ψj(x) = Φj+1(x)Gj = Φ̃j+1(x)Πj+1Gj

= Φ̃j+1(x)(H̃jH
⊤
j + G̃jG

⊤
j )Πj+1Gj

= Φ̃j+1(x)H̃j ·H⊤
j Πj+1Gj + Φ̃j+1(x)G̃j ·G⊤

j Πj+1Gj

= Φ̃j(x)Υj + Ψ̃j(x)Ξj = 0+ Ψ̃j(x)Ξj .

Answer to Exercise 3.2.3, page 90
Since the scaling basis is interpolating, the associated wavelet transform con-
sists of one prediction step and one update step. Hence, following (2.23),
sj = sj+1,e +Ujdj . If dj = 0 or if Uj is the zero matrix, then sj = sj+1,e =
fj+1,e = fj .
Answer to Exercise 4.1.1, page 101
Since

[HjGj ] = [H
[0]
j G

[0]
j ]

[
Ij+1,e −Uj

0j+1,o,e Ij+1,o

]
,

we have

[H̃j G̃j ] =

[
H̃⊤
j

G̃⊤
j

]⊤
= [Hj Gj ]

−⊤

= [H
[0]
j G

[0]
j ]−⊤

[
Ij+1,e −Uj

0j+1,o,e Ij+1,o

]−⊤

=

[
H̃

[0]⊤
j

G̃
[0]⊤
j

]⊤ [
Ij+1,e +Uj

0j+1,o,e Ij+1,o

]⊤

= [H̃
[0]
j G̃

[0]
j ]

[
Ij+1,e 0j+1,e,o

U⊤
j Ij+1,o

]

We used the facts that (AB)−1 = B−1A−1 and (AB)⊤ = B⊤A⊤, so
(AB)−⊤ = A−⊤B−⊤.
The dual wavelet transform is lifted by a prediction at the coarse scale side,
using U⊤

j as prediction matrix in

H̃j = H̃
[0]
j + G̃

[0]
j U⊤

j .

This is the same form as (4.14).
Answer to Exercise 4.1.8, page 108
The dual refinement in a semi-orthogonal wavelet transform is given by (3.6)
or (3.12). These dual refinements satisfy the perfect reconstruction (2.60).

From (4.35), it then follows that Uj = J̃⊤
j G

[0]
j .
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Answer to Exercise 4.1.9, page 108
The perfect reconstruction (2.60) is satisfied, as

H̃⊤
j Hj = J̃⊤

j (J̃j + J̃ojPj) = Ij+1,e.

The choice H̃j = J̃j corresponds to a hierarchical, interpolating basis, see

Exercise 3.1.2. From (4.35), it then follows that Uj = J̃⊤
j G

[0]
j , meaning that

the final update is one half of the detail matrix accumulated in the process of
factoring the refinement.
Answer to Exercise 4.1.10, page 108
Let H̃j and G̃

[1]
j be the dual transform matrices of the given multiscale de-

composition, defined by

[HjG
[1]
j ]

[
H̃⊤
j

G̃
[1]⊤
j

]
= Ij+1.

With G
[0]
j the detail matrix that follows from the factoring in (4.30), fix Uj =

H̃⊤
j G

[0]
j as in (4.35) and Gj = G

[0]
j −HjUj . Then

HjH̃
⊤
j +GjG̃

⊤
j = Ij+1 = HjH̃

⊤
j +G

[1]
j G̃

[1]⊤
j ⇒ GjG̃

⊤
j = G

[1]
j G̃

[1]⊤
j .

The latter equality can be right multiplied by Gj and G
[1]
j . Perfect recon-

struction in the multiscale transform induced by the factoring given multi-

scale transform then reads G̃
[1]⊤
j G

[1]
j = Ij , leading to G

[1]
j = Gj(G̃

⊤
j G

[1]
j ),

while perfect reconstruction in the given multiscale transform leads to Gj =

G
[1]
j (G̃

[1]⊤
j Gj). This can be understood as G

[1]
j = GjAj and Gj = G

[1]
j A−1

j ,

where Aj = G̃⊤
j G

[1]
j and A−1

j = G̃
[1]⊤
j Gj . The forward transform with H̃j

and G̃
[1]
j is realised by the lifting factoring for H̃j and G̃j (including the fi-

nal update), followed by a multiplication with A−1
j on the detail branch, as in

Exercise 2.2.7.
The example of hierarchical bases has G

[1]
j = J̃oj . The even rows of Gj =

G
[1]
j A−1

j will therefore contain zero elements.
Answer to Exercise 4.2.7, page 111
We have p̃ intervals on which sj,k(x) is a piecewise polynomial. That means
that we have p̃2 coefficients al,q: l ∈ {k − ⌊p̃/2⌋ , . . . , k + ⌈p̃/2⌉} and q ∈
{0, 1, . . . , p̃ − 1. We have p̃+ 1 knots with p̃ − 1 continuity conditions, stating
that left and right limits of the qth derivative at each knot are the same, for
q = 0, 1, . . . , p̃ − 2. All these consitions lead to a homogeneous system of
(p̃ + 1)(p̃ − 1) = p̃2 − 1 independent linear equations. In the leftmost and
rightmost knots, this means that the qth derivatives are zero. In the leftmost
interval, we find that sj,k(x) = ak−⌊p̃/2⌋,p̃−1x

p̃−1. Putting ak−⌊p̃/2⌋,p̃−1 = 0
leads to the zero solution.
Answer to Exercise 5.1.2, page 133
The factoring of Hj defines a dual detail matrix, as in (4.32). The dual detail
matrix defined by the factoring need not be exactly the same as the solution



14 Answers to exercises

proposed in (5.20). Therefore, the dual detail generated by the factoring can

be denoted here by G̃
[1]
j . Then both G̃j proposed in (5.20) and G̃

[1]
j , proposed

in (4.32) satisfy the PR condition in (2.62), meaning that the columns of both
matrices span the left null space of Hj. As a result, there exists a matrix

Aj so that G̃j = G̃
[1]
j Aj . Let H̃

[0]
j be the primitive dual refinement matrix

resulting from the factoring in (4.32), then we have

[
H̃

[0]⊤

j

G̃⊤
j

]
=

[
Inj

0

0 A⊤
j

] [
H̃

[0]⊤

j

G̃
[1]⊤

j

]

=

[
D−1
j 0

0 A⊤
j

](u−1∏

s=0

[
Inj

0

−P
[q−s]
j In′

j

][
Inj

U
[q−s]
j

0 In′

j

])
.

The primitive inverse transform then follows straightforwardly

[
Hj G

[0]
j

]
=

(
u∏

s=1

[
Inj

−U
[s]
j

0 In′

j

] [
Inj

0

P
[s]
j In′

j

])[
Dj 0

0 A−⊤
j

]
.

A final update as in Section 4.1.5 can be added to enrich the wavelet trans-
form with more properties.
Answer to Exercise 5.2.4, page 135

ψj,l(x) =

∞∑

k=−∞
gk−2lϕj+1,k(x)

=

∞∑

k=−∞
gk−2ld

j+1ϕ
(
2j+1x− k

)

= djc

∞∑

m=−∞
gmϕ

(
2(2jx)− 2l −m

)

= djc

∞∑

m=−∞
gmϕ

(
2
(
2jx− l

)
−m

)

= djψ
(
2jx− l

)
.

Answer to Exercise 5.3.1, page 138
We have h(x) =

∫ 1

0
g(x − u)du =

∫ x
x−1

g(v)dv. The derivative is h′(x) =
g(x) − g(x − 1), which is a difference between two piecewise polynomials
of degree p̃ − 1 with common knots. Therefore h′(x) is a spline of degree
p̃− 1, order p̃, ans so h(x) is a spline of order p̃+ 1, nonzero on the interval
[0, p̃+ 1]. As the result in Lemma 4.2.8 on equispaced knots simplifies to the
same expression as h′(x) = g(x) − g(x − 1), we conclude that h(x) is the

B-spline defined on the knots {0, 1, . . . , p̃ + 1}. Note that this is N
[p̃]
j,0(x), not

ϕ
[p̃]
j,0(x).
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Answer to Exercise 5.3.2, page 138
The density of a sum of independent random variables is given by the con-
volution integral of the two densities. Using the result in Exercise 5.3.1 as
induction step, repeated convolution of the uniform density of [0, 1] (which
is the Haar scaling function, which is the B-spline of order 1 on the knots
{0, 1}) leads to a B-spline basis function on the knots {0, 1, . . . , p̃}. Rescaling
of the random variable corresponds to a mere stretching (dilation) of its den-
sity function. The central limit theorem provides a proof for the B-splines of
increasing order converging to the Gaussian bell curve.
Answer to Exercise 5.4.9, page 147
We have to prove that limn→∞ supx∈D |Rn(x)| = 0, where

Rn(x) = log(1 + x)−
n∑

k=1

(−1)k−1

k
xk = 0.

Taking the derivative

R′
n(x) =

1

1 + x
−

n∑

k=1

(−x)k−1 =
1

1 + x
− 1− (−x)n

1 + x
=

(−x)n
1 + x

,

it is found that R′
n(0) = 0, leading to a local and global minimum at the

origin (not surprisingly for a Taylor series) while the absolute error increases
monotoneously from there, reaching its maximum on D at x = 1. As the
series converges at x = 1, it does so uniformly on the whole interval.
Answer to Exercise 6.1.2, page 165
With ϕ(x) = sin(πx)/(πx) and Φ(ω) = 1

2π

∫∞
−∞ ϕ(x) exp(−iωx)dx its Fourier

transform, we have ∫ ∞

−∞

sin(πx)

πx
dx = 2πΦ(0).

From Example 6.1.1, we know that Φ(ω) = 1/(2π), leading immediately to
the conclusion that the integral equals one.
Answer to Exercise 6.1.11, page 168
Plugging in

H(ω) =

∞∑

s=−∞
hs exp(−iωs)

into
H(ω)H̃(−ω) +H(π + ω)H̃(π − ω) = 2,

we find

∞∑

s=−∞

∞∑

t=−∞
hsh̃t exp[−iω(s−t)]+

∞∑

s=−∞

∞∑

t=−∞
hsh̃t(−1)s+t exp[−iω(s−t)] = 2.

With r = s− t, we have s = r + t and s+ t = r + 2t, so we get

∞∑

r=−∞

∞∑

t=−∞
hr+th̃t exp[−iωr] +

∞∑

r=−∞

∞∑

t=−∞
hr+th̃t(−1)r exp[−iωr] = 2,
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which simplifies to

∞∑

r=−∞

∞∑

t=−∞
2h2r+th̃t exp[−iω2r] = 2,

or, with k = −r and l = t,

∞∑

k=−∞

∞∑

l=−∞
hl−2kh̃l exp[iω2k] = 1.

The left hand side can be seen as a Fourier series as in (1.2) with ω = πx of
the function f(ω) = 1 on the right hand side. The coefficients are here

ak =
∞∑

l=−∞
hl−2kh̃l.

By (1.4) These coefficients equal

ak =

∫ 1

0

1 [−i(2π)kx] dx = δk,

from which (5.16) follows.
Answer to Exercise 6.2.3, page 173
We find

F (f(x− a)) =
1

2π

∫ ∞

−∞
f(x− a) exp(−iωx)dx

=
1

2π

∫ ∞

−∞
f(u) exp(−iω(u+ a))du

= exp(−iωa)F (ω)

and

F (exp(ibx)f(x)) =
1

2π

∫ ∞

−∞
f(x) exp(ibx) exp(−iωx)dx = F (ω − b).

The Fourier transform of exp(ibx)f(x− a) is then

F (exp(ibx)f(x− a)) = exp[−i(ω−b)a]F (ω−b) = exp(iab) exp(−iωa)F (ω−b).

The effect of a dilation (stretching) is found by

F (f(sx)) =
1

2π

∫ ∞

−∞
f(sx) exp(−iωx)dx

=
1

2π

∫ ∞

−∞
f(u) exp(−iωu/s)du

s
=

1

s
F
(u
s

)
.
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Dilation and translation combined lead to

F (f(sx− a)) =
1

2π

∫ ∞

−∞
f(sx− a) exp(−iωx)dx

=
1

2π

∫ ∞

−∞
f(u) exp(−iω(u+ a)/s)

du

s

=
exp(−iωa/s)

s
F
(u
s

)
.

Note that f(sx− a) is a dilation of a translation of f(x): the translation comes
first, then the dilation. That is, we dilate the function f(x− a) by evaluating it
in sx. This is in contrast to the function f(s(x− a)) which is a translation of a
dilation: the dilated function f(sx) is evaluated in (x− a).
Answer to Exercise 6.2.4, page 173
We have xg = xf + a/s, which can be seen from

xg =

∫ ∞

−∞
|g(x)|2xdx

∫ ∞

−∞
|g(x)|2dx

=

∫ ∞

−∞
|f(sx− a)|2xdx

∫ ∞

−∞
|f(sx− a)|2dx

=

∫ ∞

−∞
|f(u)|2

(
u+ a

s

)
du

s∫ ∞

−∞
|f(u)|2 du

s

=

1

s

∫ ∞

−∞
|f(u)|2(u+ a)du

∫ ∞

−∞
|f(u)|2du

=
xf + a

s
.

The width of the uncertainty window is

(∆gx)
2 =

∫ ∞

−∞
|g(x)|2(x− xg)

2dx

∫ ∞

−∞
|g(x)|2dx

=

∫ ∞

−∞
|f(sx− a)|2

(
x− xf + a

s

)2

dx

∫ ∞

−∞
|f(sx− a)|2dx

=

∫ ∞

−∞
|f(u)|2

(
u− xf
s

)2
du

s∫ ∞

−∞
|f(u)|2 du

s

=
(∆fx)

2

s2
.
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From Exercise 6.2.3, we can see that |G(ω)| = (1/s)|F (ω/s)|. The factor 1/s
in front has no impact on (∆Gω)

2, while the scaling by 1/s leads, in line with
the result above, to (∆Gω)

2 = s2(∆Fω)
2. As a result of all this, we conclude

that
(∆fx)(∆Fω) = (∆gx)(∆Gω).

Answer to Exercise 6.2.5, page 173
Using partial integration

F (f ′(x)) =
1

2π

∫ ∞

−∞
f ′(x) exp(−iωx)dx

=
1

2π
[f(x) exp(−iωx)]∞−∞ − 1

2π

∫ ∞

−∞
f(x)(−iω) exp(−iωx)dx

= 0 + iωF (ω).

Answer to Exercise 6.2.6, page 173
Isolation of a squared sum in the integrand, followed by a substitution u =
x+ iωσ2 yields

F (ω) =
1

2π

∫ ∞

−∞
exp

[
− x2

2σ2
− iωx

]
dx

=
1

2π

∫ ∞

−∞
exp

[
− x2

2σ2
− 2iωσx

2σ
− (iωσ)2

2

]
exp

[
(iωσ)2

2

]
dx

=
1

2π
exp

[
−(ωσ)2/2

] ∫ ∞

−∞
exp

[
−
(

x√
2σ

+
iωσ√
2

)2
]
dx

=
1

2π
exp

[
−(ωσ)2/2

] ∫ ∞

−∞
exp(−u2/2σ2)du =

σ√
2π

exp
[
−(ωσ)2/2

]
.

Answer to Exercise 6.2.7, page 173
Applying Fubini’s theorem, we find

H(ω) =
1

2π

∫ ∞

−∞
h(x) exp(−iωx)dx

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(u)g(x− u)du exp(−iωx)dx

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(u)g(v)du exp(−iω(u+ v))dv

=
1

2π

∫ ∞

−∞
f(u) exp(−iωu)du ·

∫ ∞

−∞
f(v) exp(−iωv)dv

= (2π)F (ω)G(ω).
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Let ϕ(x) be the Haar scaling function, which is the characteristic function on
[0, 1]. Then

Φ(ω) =
1

2π

∫ ∞

−∞
ϕ(x) exp(−iωx)dx

=
1

2π

∫ 1

0

exp(−iωx)dx =
1

2π

[
exp(−iω)− 1

−iω

]

=
exp(−iω/2)

2π

exp(iω/2)− exp(−iω/2)
2i(ω/2)

=
exp(−iω/2)

2π

sin(ω/2)

ω/2
.

Answer to Exercise 6.2.8, page 174
The denominator is

∫ ∞

−∞
|f(x)|2dx = 2

∫ 1

0

(1− x)2dx =
2

3
.

Since xf = 0, the numerator is

∫ ∞

−∞
|f(x)|2x2dx = 2

∫ 1

0

(1− x)2x2dx =
1

15
.

Hence (∆fx)
2 = 1

20 .
Answer to Exercise 6.2.9, page 174
The denominator is the same as in Exercise 6.2.8. The numerator becomes

∫ ∞

−∞
|f ′(x)|2dx =

∫ 0

−1

12dx+

∫ 1

0

(−1)2dx = 2.

All together we find

(∆fx)(∆Fω) =

√
(1/15) · 2
(2/3)

= 0.5477 ≥ 1

2
.

Answer to Exercise 6.2.10, page 174
We have

|F (ω)|2ω2 =

∣∣∣∣
sin(ω/2)

ω/2

∣∣∣∣
2

ω2 = 4 sin2(ω/2),

which has an infinite integral on the R.
Answer to Exercise 6.2.11, page 174
The denominators of (∆gx)

2 and (∆Gω)
2 are given by

∫ ∞

∞
|g(x)|2dx = 2

(∫ 1

0

x2dx+

∫ 3

1

(3− x)2/4dx

)
= 2

(
1

3
+

1

4
· 8
3

)
= 2.

The numerator of (∆gx)
2 becomes

∫ ∞

∞
|g(x)|2x2dx = 2

(∫ 1

0

x4dx+

∫ 3

1

(3− x)2x2/4dx

)
=

18

5
.
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The numerator of (∆Gω)
2 is

∫ ∞

∞
|g′(x)|2dx =

∫ −1

−3

(
−1

2

)2

dx+

∫ 1

−1

12dx+

∫ 3

1

(
−1

2

)2

dx = 3,

leading to (∆gx)
2 = 9

5 , (∆Gω)
2 = 3

2 , and (∆gx)(∆Gω) = 1.643. Somehow
suprisingly, the wavelet function has a much less precise time-frequency win-
dow than the accompanying scaling function.
Answer to Exercise 6.2.17, page 177
Let S∆(ω) =

∑
k∈Z F

(
ω+2πk

∆

)
, then S∆(ω + 2π) = S∆(ω). Hence, by (1.9),

we have S∆(ω) =
∑∞

s=−∞ as exp(−iωs), where

ak =
1

2π

∫ π

−π
S∆(ω) exp(iωk)dω

=
1

2π

∫ π

−π

∑

s∈Z
F

(
ω + 2πs

∆

)
exp(iωk)dω

=
1

2π

∑

s∈Z

∫ π

−π
F

(
ω + 2πs

∆

)
exp(iωk)dω

=
1

2π

∑

s∈Z

∫ π+2πs

−π+2πs

F
(w
∆

)
exp(iwk) exp(−i2πsk)dw

=
1

2π

∫ ∞

−∞
F
(w
∆

)
exp(iwk)dw

=
∆

2π

∫ ∞

−∞
F (v) exp(i∆vk)dv =

∆

2π
f(k∆).

Answer to Exercise 9.1.1, page 221
From (9.7), taking α = 1/2, and using the primal version of (9.5), we find

s
[q]
j+1 =

1

2

[
H

[2q]
j s

[2q]
j +G

[2q]
j d

[2q+1]
j +H

[2q+1]
j s

[2q+1]
j +G

[2q+1]
j d

[2q]
j

]

=
1

2

[
H

[q]
j J̃j J̃

⊤
j s

[2q,2q+1]
j + G

[q]
j J̃

[1]
j J̃

[1]⊤
j d

[2q,2q+1]
j

+ H
[q]
j J̃

[1]
j J̃

[1]⊤
j s

[2q,2q+1]
j + G

[q]
j J̃j J̃

⊤
j d

[2q,2q+1]
j

]
.

Now, (2.54), which reads here as

J̃j J̃
⊤
j + J̃

[1]
j J̃

[1]⊤
j = Inj+1

,

leads straightforwardly to (9.8).
Answer to Exercise 9.1.1, page 221
We look for the vector sj+1 that minimises

r(sj+1) = ‖H̃[2q]⊤
j sj+1 − s

[2q]
j ‖22 + ‖G̃[2q]⊤

j sj+1 − d
[2q]
j ‖22

+‖H̃[2q+1]⊤
j sj+1 − s

[2q+1]
j ‖22 + ‖G̃[2q+1]⊤

j sj+1 − d
[2q+1]
j ‖22.
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Because of the orthogonality, this can be written as

r(sj+1) = ‖sj+1 − s
[2q]
j+1‖22 + ‖sj+1 − s

[2q+1]
j+1 ‖22,

where s
[2q]
j+1 = H

[2q]
j s

[2q,2q+1]
j,e +G

[2q]
j d

[2q,2q+1]
j,o and s

[2q+1]
j+1 = H

[2q+1]
j s

[2q,2q+1]
j,o +

G
[2q+1]
j d

[2q,2q+1]
j,e . The minimisation of r(sj+1) proceeds componentwise. The

kth component is

r(sj+1,k) = (sj+1,k − s
[2q]
j+1,k)

2 + (sj+1,k − s
[2q+1]
j+1,k )

2.

In general r(x) = (x− x0)
2 + (x− x1)

2 takes a minimum at x = (x0 + x1)/2.




