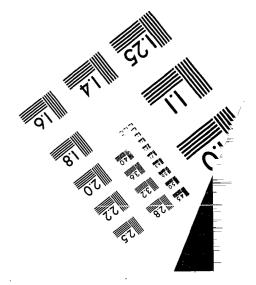


Association for Information and Image Management 1100 Wayne Avenue, Suite 1100 Silver Spring, Maryland 20910


301/587-8202

MANUFACTURED TO AIIM STANDARDS BY APPLIED IMAGE, INC.

DOE/EIA-M041(93)

RECLIVED JUN 18 1993 OSTI

Short-Term Integrated Forecasting System

1993 Model Documentation Report

May 1993

Energy Information Administration

κ.,

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Short-Term Integrated Forecasting System

1993 Model Documentation Report

May 1993

Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Contacts

The Short-Term Integrated Forecasting System: 1993 Model Documentation Report is prepared by the Energy Information Administration (EIA), Office of Energy Markets and End Use (EMEU). General questions concerning the content of the report may be addressed to W. Calvin Kilgore (202-586-1617), Director of EMEU; Arthur Andersen (202-586-1441), Director of the Energy Markets and Contingency Information Division; or Derriel Cato (202-586-6574), Chief of the Short Term Forecasting and Contingency Branch.

Detailed questions may be addressed to David Costello (202/586-1468) or the following analysts:

Michael Grillot (202-586-6577)
Kay A. Smith (202-586-1455)
Neil Gamson (202-586-2418)
Michael Morris (202-586-1199)
Tancred Lidderdale (202-586-7321)
Evelyn Amerchih (202-586-8760)
Elias Johnson (202-586-7277)
Evelyn Amerchih (202-586-8760)

ы

•

ii

2

Preface

The Short-Term Integrated Forecasting System (STIFS) was developed by the Office of Energy Markets and End Use and its predecessors within the Energy Information Administration (EIA). STIFS is the integrated system for the development of supply and demand forecasts that are published quarterly in the *Short-Term Energy Outlook* (*Outlook*).

This report is written for persons who want to know how integrated short-term forecasts are produced by EIA. The demand and price forecasts for petroleum, electricity, coal, and natural gas are described in the third chapter of this report. This report has been written to comply with the requirements specified in EIA Order EI 5910-.3B, "Guidelines and Procedures for Model Documentation," effective October 1, 1985. The requirement for a corresponding model archival package is met by the creation of the CN6777.PRJ.STIFS0193 archive tape, which contains all the files needed to replicate the forecasts published in the First Quarter 1993 *Outlook*. Instructions for loading and executing these files are contained in the last file (38) on the archive tape, CN6777.PRJ.STIFS0193.INSTALL.MANUAL.

An electronic copy of the model may be obtained from the National Technical Information Service (NTIS) at the address below:

National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, Virginia (703) 487-4807

The version of STIFS documented here was used by DOE to create the forecasts for the First Quarter 1993 *Outlook*.

Contents

1. Introduction to the Short-Term Integrated Forecasting System	
Model Summary	
Model Contact	
Archive Package	
Report Organization	. 3
2. Model Overview	. 5
Introduction	. 5
Model Development History	. 6
General Modeling Approach and Basic Assumptions	
Data Flow	
Statistical Overview	
Data Overview	
Forecast Accuracy	
Model Domain and Discontinuities	
Data Quality	
3. Mathematical Specifications	
Regression Equations	
Regression Equation Coefficients	
Autocorrelation Correction	
Distributed Lag Terms	
"Add" Factors	
Deseasonalized Variables	
Nonutility Petroleum Products Demand	
Overview	
Motor Gasoline Demand	
Jet Fuel	
Nonutility Distillate Fuel Oil	
Nonutility Residual Fuel Oil	. 24
Liquefied Petroleum Gases (LPG's)	
Other Petroleum Products	
Petroleum Products Supply	
Overview	
Refinery Inputs and Outputs	
Crude Oil Supply and Net Crude Oil Imports	
Field Production	
Inventories	
Imports and Exports	
Average Quarterly and Annual Price Weights	
Electricity Supply and Demand	
Overview	
Electricity Demand	
Electricity Supply	
Natural Gas Supply and Demand	
Natural Gas Demand	
Natural Gas Supply	
Coal Supply and Demand	
Overview	51

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

v

.

Electric Utility Coal Demand 5	1
Coking Coal Demand	
Retail and General Industry Demand 5	2
Coal Inventories	
Energy Prices	5
Överview	<i>i</i> 5
Petroleum Prices	
Natural Gas, Electricity, and Coal Prices 5	8

Appendices

A. Regression Results
B. Data Definitions and Sources 114
C. Alphabetical Variable Listing and Cross Reference 140
D. Short-Term Integrated Forecasting System (STIFS) Model Abstract
E. Sources of Exogenous Forecasts
F. References
G. Alternative R-squared Measures 186
H. Refined Product Supply Model

Tables

A1.	Automobile Fleet Fuel Efficiency (Seasonally Adjusted)	64
A2.	Vehicle Miles Traveled (Seasonally Adjusted)	64
A3.	Unleaded Motor Gasoline Demand Share	65
A4.	Log of Average Realized Airline Ticket Price (Seasonally Adjusted)	65
A5.	Log of Aircraft Traffic (Seasonally Adjusted)	66
A6.	Log of Aircraft Available Ton-Miles (Seasonally Adjusted)	66
A7.	Average Aircraft Efficiency (Seasonally Adjusted)	67
A8.	Transportation Sector Demand for Distillate Fuel Oil	67
A9.	Residential and Commercial Sectors Demand for Distillate Fue60Oil	68
A10.	Industrial Sector Demand for Distillate Fuel Oil	68
A11.	No. 2 Diesel Fuel Demand	69
A12.	Nonutility Demand for Residual Fuel Oil	69 70
A13.	Demand for Ethane (Seasonally Adjusted)	70
A14.	Demand for Liquefied Petroleum Gases (Seasonally Adjusted)	70 71
A15.	Demand for Propane	71
A16.	Log of Demand for Petrochemical Feedstocks (Seasonally Adjusted)	72
A17.	Log of Demand for Miscellaneous Petroleum Products (Seasonally Adjusted)	72
	Refinery Inputs of Crude Oil	72
A19.		73
A20.	Inputs to Primary Crude Distillation	73
A21.		74
A22.		75
A23.	Refinery Inputs of Other Petroleum Products	75
A24.		76
A25.	Refinery Outputs of Distillate Fuel Oil (Seasonally Adjusted)	
A26.	Refinery Outputs of Jet Fuel (Seasonally Adjusted)	
A27.	Refinery Outputs of Residual Fuel (Seasonally Adjusted)	
A28.		
A29.		
A30.	Net Imports of Crude Oil Excluding SPR	70

¢,

-

	Crude Oil Exports	79
	Crude Oil Losses	79
	NGL Plant Liquid Production	80
	Pentanes Plus Inventory	80
	Propane Inventory	81
A36.	Motor Gasoline Exports	81
A37.	Distillate Fuel Exports	82
A38.	Residual Fuel Exports	82
A39.	Jet Fuel Exports	83
A40.	Liquefied Petroleum Gases Exports	83
A41.	1	84
A42.		84
A43.		85
A44.	Distillate Fuel Sales for Resale	85
A45.	Residual Fuel Sales for End Users	86
A46.	Jet Fuel Sales to End Users	86
A47.	Propane Sales to End Users	87
A48.	Residential Sector Electricity Demand	87
A49.	Commercial Sector Electricity Demand	88
	Industrial Sector Electricity Demand	88
	Other Electricity Demand	89
A52.	Electricity Transmission and Distribution Loss Factor	89
A53.	Electricity Generation from Wind, Solar and Other	90
	Electricity Generation from Wood and Waste	90
	Electricity Generation from Geothermal Energy	91
	Electricity Generation from Coal	91
	Ratio of Electricity Generation from Natural Gas to Generation from Gas Plus Oil	92
A58.		92
A59.		93
A60.		93
A61.		94
A62.		94
	Demand for Natural Gas in Oil and Gas Well, Field, and Lease Operations	95
	Demand for Natural Gas by Pipelines	95
	Natural Gas Exports	96
Δ66	Natural Gas Demand/Supply Discrepancy	96
	Supplemental Gaseous Fuels Produced	97
	Natural Gas Working Inventory	97
A69.		98
	Wet Natural Gas Production	98
A70.		90 99
	Natural Gas Gross Imports	99 99
A73.		100
A74.		100
A75.		101
A76.		101
A77.		102
	Motor Gasoline Retail Price (Seasonally Adjusted)	102
	Distillate Fuel Wholesale Price (Seasonally Adjusted)	103
A80.		103
A81.		104
A82.		104
A83.		105
A84.	Propane Retail Price (Seasonally Adjusted)	105

_

A85.	Producer Price Index for Petroleum Products (Seasonally Adjusted)	106
A86.	Natural Gas Spot Price	106
A87.	Natural Gas Wellhead Price	107
A88.	Natural Gas Price to Electric Utilities	107
A89.	Natural Gas Price to Residential Customers (Seasonally Adjusted)	108
A90.	Natural Gas Price to Commercial Customers (Seasonally Adjusted)	108
A91.	Natural Gas Price to Industrial Customers (Seasonally Adjusted)	109
A92.	Electricity Price to Residential Customers (Seasonally Adjusted)	109
A93.	Coal Price (Seasonally Adjusted)	110
H1.	Correlations Between Predicted and Actual Values, Mean Squared Error Decompositions,	
	and Theil's U ₁ Statistics	
	Parameter Estimates for Inventory and Capacity Equations	
	Parameter Estimates for Refinery Input and Wholesale Price EQuations	
H4.	Short-Run Marginal Cost Elasticities	178
H5.	Short-Run Input Demand Elasticities	179

Figures

1.	Energy Sector Linkages in STIFS	. 7
2.	Electricity Supply and Demand Model	12
3.	Natural Gas Supply and Demand Model	13
4.	Short-Term Integrated Forecasting System: Data Flow	16
E1.	U.S. Oil Forecast Process	167

1. Introduction to the Short-Term Integrated Forecasting System

The purpose of this report is to define the Short-Term Integrated Forecasting System (STIFS) and describe its basic properties. The Energy Information Administration (EIA) of the U.S. Energy Department (DOE) developed the STIFS model to generate short-term (up to 8 quarters), monthly forecasts of U.S. supplies, demands, imports, exports, stocks, and prices of various forms of energy. The models that constitute STIFS generate forecasts for a wide range of possible scenarios, including the following ones done routinely on a quarterly basis:

- A base (mid) world oil price and medium economic growth.
- A low world oil price and high economic growth.
- A high world oil price and low economic growth.

All three of these cases assume normal weather scenarios. However, to determine the resulting change in petroleum demand due to changes in the weather, the weather assumptions are varied yielding petroleum demand sensitivities.

This report is written for persons who want to know how short-term energy markets forecasts are produced by EIA. The report is intended as a reference document for model analysts, users, and the public.

This report documents the First Quarter 1993, version of STIFS and has been written to comply with the requirements specified in Public Law 94-385, section 57.b.2, Energy Conservation and Production Act and EIA Standard 91-01-03, Model Documentation.

Model Summary

In January, April, July, and October of each year, quarterly forecasts of short-term supply, demand, and prices are revised for publication in the *Short-Term Energy Outlook (Outlook)*, DOE/EIA-0202, prepared by EIA's Office of Energy Markets and End Use (EMEU). Within EMEU, the Energy Markets and Contingency Information Division is responsible for the preparation of the quarterly prices, supply, and disposition tables published in the *Outlook*. The **SAS** programming language is used for model estimation and simulation.¹ The tables published in the *Outlook* are first compiled from **SAS** generated output tables that are then downloaded from the IBM mainframe computer to personal computer word processing program files.

Inputs to STIFS consist of historical data and forecasts that relate to production, demand, imports, exports, and stocks of both primary and end-use energy sources. Historical data comes mainly from the Integrated Modelling Data System (IMDS), an in-house EIA electronic database. The IMDS data are compiled primarily from data regularly reported in the following EIA publications:

Monthly Energy Review, DOE/EIA-0035 Petroleum Supply Monthly, DOE/EIA/0109 Quarterly Coal Report, DOE/EIA-0121

¹ See SAS Institute Inc., SAS/ETS User's Guide, Version 6, First Edition, (Cary, NC, 1988).

Electric Power Monthly, DOE/EIA-0226 Natural Gas Monthly, DOE/EIA-0130 Petroleum Marketing Monthly, DOE/EIA-0380

STIFS also utilizes as inputs, several satellite supply models that are maintained and operated within EIA, but outside of EMEU. These are:

Fuel	Source
Coal Supply	Office of Coal, Nuclear, Electric and Alternate Fuels
Crude Oil Production	Office of Oil and Gas
Natural Gas Productive Capacity	Office of Oil and Gas
Nuclear Power	Office of Coal, Nuclear, Electric and Alternate Fuels
Hydroelectric Power	Office of Coal, Nuclear, Electric and Alternate Fuels
Electricity Imports	Office of Coal, Nuclear, Electric and Alternate Fuels
Purchases of Electricity by Electric	
Utilities from Nonutility Producers	Office of Coal, Nuclear, Electric and Alternate Fuels

Forecasts of end-use energy demands, primary energy production, refinery inputs, refinery outputs, net imports, stocks and prices are generated by:

- Econometric techniques
- Time-series forecasting techniques
- Simulation Rules-of-Thumb
- Data analysis by EIA analysts
- Market-clearing assumptions

From alternative model structures, the criteria for choosing particular specifications of the equations estimated econometrically is primarily the adjusted R-square criteria. Parallel to this is the "alternative" R-square criteria which is described in Appendix G of this report. Also recent forecast performance is an important but second order criterium. Finally analysts' judgement about the sensibleness of the equation's properties is taken into account.

With STIFS, the user can simulate a variety of energy-market conditions that affect the projections of energy supply, demand, and prices by altering certain assumptions. For example, a severe winter weather scenario might be simulated by specifying very low temperatures for the next winter. An oil import disruption scenario can be simulated by specifying a future low level of petroleum imports and/or high world oil prices. Types of scenarios that can be simulated by STIFS include:

- Macroeconomic scenarios, characterized by differences in aggregate output, income and prices
- Oil price scenarios, characterized by exogenous shifts in world oil prices due to varying world oil market conditions
- Weather scenarios, characterized by abnormally high or low levels for heating or cooling degreedays
- Constrained imports scenarios, characterized, for example, by different levels of petroleum (and natural gas) imports
- Constrained production capacity scenarios, characterized by different levels of natural gas productive capacity

- Stock-level scenarios, characterized by alternative forecasts of petroleum and coal stock (and natural gas storage) patterns
- Electric utility supply interruption scenarios that are characterized, for example, by increased or reduced supplies of nuclear or hydroelectric power

However, considerable analyst intervention is necessary, at times, to obtain meaningful results relating to scenarios.

Model Contact

Questions concerning the STIFS model may be addressed to:

Dave Costello, EI-621 Energy Information Administration U.S. Department of Energy 1000 Independence Avenue Washington, DC 20585 (202)-586-1468

Archive Package

The requirement for a corresponding model archive package is met by EIA Standard 91-01-4, Model Archival, which provides the creation of CN6777.PRJ.STIFS0193 archive tape. This tape contains all the files needed to replicate the forecasts published in the First Quarter 1993 *Outlook*. Instructions for loading and executing these files are contained in the last file (38) on the archive tape CN6777.PRJ.STIFS0193.INSTALL.MANUAL. The archival contact for the STIFS model is:

Elias Johnson, EI-621 Energy Information Administration U.S. Department of Energy 1000 Independence Avenue Washington, DC 20585 (202) 586-7277

An electronic copy of the model may be obtained from the National Technica: Information Service (NTIS) at the address below:

National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22161 (703) 487-4807

Report Organization

Chapter 1 of this report is the Introduction with a brief model summary and reference to the available archive package.

Chapter 2 of this report is the Model Overview. This section presents the general process flow of STIFS, showing its purpose and scope. This also includes the level of aggregation and a description of the interrelationship between the various models of STIFS.

Chapter 3 of the report presents a detailed technical description of all individual models that compose STIFS. Included in this section are the theoretical and mathematical structures of the models.

Appendix A of this report presents the regression results summary statistics for the equations estimated in STIFS.

Appendix B includes data definitions, sources, and units for all the variables modeled in STIFS.

Appendix C provides an alphabetical listing of all STIFS variables with a cross reference to the archive model file name and line number for all endogenous variables.

Appendix D of the report presents a system abstract of STIFS, describing the model in whole, providing a detailed list of archive tapes, and referencing reviews and manuals.

Appendix E reviews the sources of energy variable forecasts which are exogenous to the STIFS model and briefly summarizes the methodology behind the generation of those forecasts.

Appendix F provides a list of references of source data used in the STIFS model.

Appendix G presents the "alternate" R-square statistic used to judge the "measure of fit" of the regression equations which may be more accurate than the traditional R-square for time series analysis.

Appendix H describes the new Refining Petroleum Supply Modei (RPSM) which is currently being tested and will soon be incorporated into STIFS, replacing the current petroleum products supply model.

4

2. Model Overview

Introduction

The Short-Term Integrated Forecasting System (STIFS) is a set of interlinked submodels which provide a model of the domestic energy market of the United States. These submodels can generally be classified as belonging to one of the following six groups:

- Refined petroleum products demand
- Refined petroleum products supply
- Electricity supply and demand
- Natural gas supply and demand
- Coal demand
- Petroleum and other energy prices

Figure 1 gives a broad indication of the structural links that exist between various portions of the STIFS model. The groups described here are identified as separate entities for convenience of exposition, but it should be noted that in estimation, STIFS generally handles the separate equations one at a time, often with varying periods of estimation for different variables. Nevertheless, numerous simultaneities exist in the model, and the model solution algorithm provides a dynamic simultaneous model solution.

The STIFS model runs on monthly data aggregated to the national or total industry level. It is designed to provide short-term forecasts (up to eight quarters) of the supplies, demands, imports, exports, stocks and prices of any of eight major products: motor gasoline, distillate fuel oil, residual fuel oil, jet fuel, liquefied petroleum gases, other petroleum products, natural gas, electricity, and coal. STIFS can also simulate the effect on any of these variables of changes in one or more of the input variables. Changes in macroeconomic conditions, weather conditions, energy tax policy, energy regulations or world oil price are some of the scenarios that are commonly simulated using STIFS.

STIFS has external links to several models maintained by outside offices or organizations. These external models provide forecasts of exogenous variables for use by STIFS in generating its own forecasts and simulations (refer to Appendix E for a more complete description of these outside models). Macroeconomic forecasts come from the DRI/McGraw-Hill quarterly model of the U.S. Economy.² The Office of Oil and Gas, Reserves and Production Branch, provides projections of domestic crude oil production. The Energy Markets and Contingency Information Division of the EIA supplies exogenous forecasts of the price of imported oil, using the Oil Market Simulation model. The Office of Coal, Nuclear, Electric and Alternate Fuels of the EIA provides coal production forecasts from the Short-Term Coal Analysis System, nuclear power forecasts from the Short-Term Nuclear Annual Power Production Simulation, and hydroelectric power forecasts from information obtained from a sample of utilities.

² Macroeconomic projections in the First Quarter 1993 *Outlook* are based on DRI/McGraw-Hill Forecast CONTROL 12/2. The DRI/McGraw-Hill model is run by the EIA's Office of Integrated Analysis and Forecasting, incorporating key oil price and other energy-related assumptions employed in the corresponding STIFS model runs.

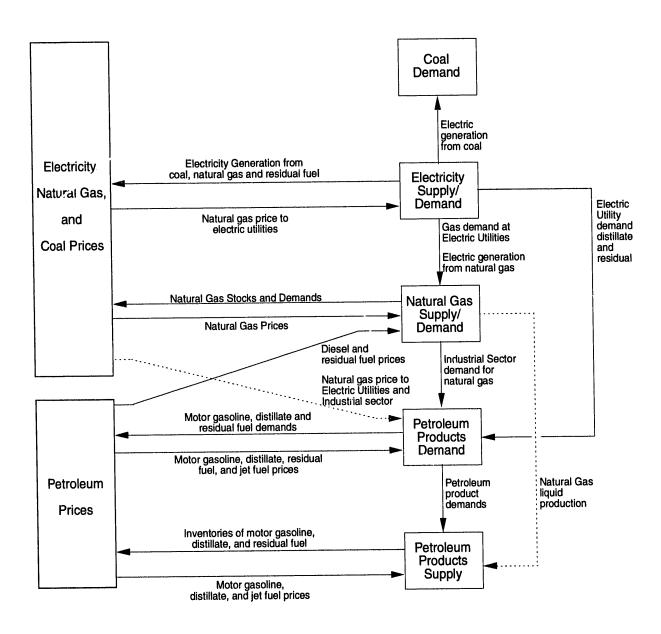
Model Development History

The first *Short-Term Energy Outlook* was published in November 1979 by the Energy Information Administration.³ The current version of the STIFS model represents an evolution from the original 1979 model. A heuristic approach to model development has led to changes in forecasting equations and procedures that have been periodically documented by the EIA in *Model Documentation Reports* and *Short-Term Energy Outlook Annual Supplements* (see Appendix D, Model Abstract, Bibliography, for references).

The model documented in this report represents the third generation of the STIFS model. This generation differs from earlier generations in that it implements a more integrated environment in which the coefficients of models can be more easily combined into a dynamic simultaneous framework. This is accomplished by means of the *MODEL* procedure in **SAS** Version 6.06.

General Modeling Approach and Basic Assumptions

STIFS is a collection of single equations designed to forecast short-run variations in key aggregate energy quantity and price concepts which are routinely reported by the Energy Information Administration and other government and non-government sources of energy data. The energy concepts covered follow rather closely the coverage provided for domestic energy demand, supply and prices in EIA's *Monthly Energy Review*. STIFS provides monthly domestic energy market demand and supply balances for each major energy source, and provides sectoral detail on energy demand where such data is available on a monthly basis. A comprehensive accounting of energy flows by detailed economic sector (i.e. residential, commercial, industrial, transportation, and electric utilities) is not attempted, although significant sectoral energy demand detail is provided for energy products other than petroleum. The discussion that follows provides a general view of the rationale behind the structure of the STIFS equations. Discussion of the particular estimating equations used is provided in Chapter 3.


STIFS focuses primarily on capturing short-run energy demand fluctuations, with the assumption that, in general, supply will flow to meet demand from available domestic sources or from imports, with relatively little feedback through prices to demand. In fact, as currently structured, STIFS takes some key energy supply variables (such as U.S. crude oil production) as exogenous inputs determined by other EIA models, so that to some extent STIFS performs more of an accounting function than an equilibration function.

In STIFS, aggregate demand for energy is the derived demand for energy products resulting from the collective demand for energy services (such as heating, cooling, lighting, personal travel, etc.) or the derived demand for energy inputs by industry in manufacturing or other industrial or commercial activities. It is generally assumed that relatively simple equations, amenable to linear estimation techniques, can be used to represent monthly energy demand according to the following general form:

$$D_{ij} = f_{ij}(P_{ij}, Y, W, Z, e_{ij})$$

³ Energy Information Administration, Short-Term Energy Outlook - October 1979, DOE/EIA-0202/1 (Washington, DC, November 1979).

Figure 1. Energy Sector Linkages in STIFS

where:

- D_{ii} = average daily demand for energy product i in sector j (where available)
- P_{ii} = real (or relative) price of product i in sector j
- Y'' = measure of income or output
- W = vector of weather variables (i.e. heating and/or cooling degree-days)
- Z = vector of other noneconomic variables, such as dummy variables for strikes and other unusual occurrences, time trends, etc.
- e_{ij} = a random disturbance term, possibly emanating from an autoregressive process, but otherwise assumed to be independently and identically normally distributed.

Whether all of the above factors appear in any particular equation depends upon the energy sector involved, or the type of energy product involved (e.g. heating fuel or feedstock, motor fuel or miscellaneous industrial material input).

As noted above, STIFS generally works on the assumption that domestic energy production is demand driven. This is particularly true for electricity and coal, less so for petroleum and natural gas which tend to be constrained by capacity limitations in the short run. Domestic energy sources are assumed to be utilized most heavily at first, with foreign sources assumed to be the residual source of energy supply once domestic capacity limits are reached. The last point is a broad characterization, however. Since it is observed that significant energy product imports exist across a broad range of domestic energy market conditions, some imports are expected for each product regardless of the U.S. market situation. By convention, STIFS treats electricity and coal imports as strictly exogenous, with the forecasts for these items being done by other EIA models not integrated directly into the STIFS system (see Appendix E). In general, however, imports are expected to be significantly more important once domestic capacity constraints (such as refinery capacity) are approached. As noted below, the implications of these assumptions for domestic energy prices are complex.

The following general formulation indicates how STIFS determines the demand and supply balances regularly reported in the *Short-Term Energy Outlook*:

$$Q_i = D_i + X_i - M_i - (K_{i,-1} - K_i) + B_i$$

where:

 $\begin{array}{l} Q_i = \text{domestic production of product i} \\ D_i = \text{domestic demand for product i (all sectors)} \\ X_i = \text{exports of product i} \\ M_i = \text{imports of product i} \\ (K_{i,-1} - K_i) = \text{inventory change of product i (where applicable)} \\ B_i = \text{statistical discrepancy or unaccounted-for supply} \end{array}$

A more formal microeconomic approach to energy supply and demand determination has not been implemented for several reasons: 1) data on supply are not defined the same way as data on demand and therefore no market equilibration (in a strict sense) can be done; 2) standard microeconomic theory generally abstracts from short-term market adjustment problems that dominate short-term forecasts (i.e. standard theory may not help much); 3) data on technology, costs, etc., are not available to implement the supply curve estimates. Despite these problems, in a few sectors a more formal microeconomic approach has been tried, such as for refined product supply, which is discussed in appendix H, and in the discussion of some of the individual equations.

Petroleum Supply and Demand Overview

An important feature of the first quarter 1993 version of STIFS is that the stock withdrawal term in the basic supply/demand balance equation given above (i.e. $K_{i,1} - K_i$) is specified exogenously for petroleum stocks, under the assumption that domestic crude oil and oil product inventories will quickly approach

pre-specified "normal levels," which are usually set at about the average of recent years, but in any case well within the average inventory range for petroleum products reported in EIA's Weekly Petroleum Status Report. An endogenous framework for petroleum inventories currently being tested for STIFS, using dynamic duality principles in the context of a monthly U.S. refined product supply model, is given in Appendix H.

For domestic crude oil production and coal production, Q is exogenous (see the specific discussions in Chapter 3, "Mathematical Specifications," and Appendix E, "Sources of Exogenous Forecasts"). It should be noted that, while strictly speaking domestic crude oil production is exogenous to STIFS, no standard model runs of STIFS are reported without a separate run of the external model which generates the exogenous oil production forecasts using consistent oil price assumptions.

The Q's relating to petroleum refinery output are endogenous to STIFS, subject to an overall average operable refinery capacity utilization limit on dis tillation unit inputs of 92 percent (which is about the maximum utilization rate observed to have been maintained for a period of one month or more). Refinery output for petroleum product k is given generally by:

$$Q_{Rk} = f_{Rk}(P_R, D_{cj}, D_k, Z, e_k)$$

where:

Crude oil and other refinery oil inputs are given as:

$$D_{cj} = D_{cj}(D_{p'}, S_{p'}, Z, e_c)$$

subject to:

 $D_{cd} \le C * 0.92$

where:

175.

 D_{cd} = fraction of D_{cj} entering distillation units D_p = total petroleum product demand S_p = a vector of petroleum product stocks e_c = random error term C = total operable refinery capacity

Thus, domestic refinery runs and production are favored in the first instance over imports, up the point at which maximum refinery capacity is reached.

Three major kinds of demand and supply balances are derived for petroleum: an aggregate crude oil balance; a refinery materials balance; and a refined products demand and supply balance.

The crude oil demand and supply balance starts with the equation for refinery inputs of crude oil (D_{cl}) given above (see equation A18 in Chapter 3 below). Since the United States is far from being self-sufficient in crude oil production, except for some short-term possibilities of relying on increased stock withdrawals, incremental crude oil demand in the United States is met by imports. Thus, given domestic

production, and given an exogenously specified path for petroleum inventories, crude oil imports are assumed to be directly related to increases in refinery crude oil demand (see equation A30 in Chapter 3). Once an appropriate level of net imports is determined, the B_i (unaccounted for crude oil in this case) is determined as the residual (see "Balancing Crude Oil Supply and Demand" in Chapter 3).

The refinery materials balance starts at the same place that the crude oil balance does, namely with the D_c function given above. Once crude oil and unfinished oil inputs are determined (subject to the distillation capacity constraint), liquefied petroleum gas (and other miscellaneous) refinery inputs are determined, and a total refinery input level is derived (see the "Refinery Inputs" section of Chapter 3). Since converting raw materials into finished products at refineries involves a volumetric "processing gain," a key identity for refinery operations is that the volume of refinery outputs must equal the volume of refinery inputs plus the processing gain. (The processing gain is somewhat of a misnomer because it includes an unknown amount of statistical discrepancy or unaccounted-for product as well as actual volumetric gain over input quantities due to distillation and other refinery processes, and therefore should be considered a net concept). A first pass at refinery outputs is made using econometric equations specified in the "Refinery Outputs" section of Chapter 3, with the general specification discussed above. The total of these outputs are checked against the total refinery inputs, and each component of output is scaled proportionately to enforce the refinery balance identity (see "Balancing Refinery Outputs with Refinery Inputs" in Chapter 3).

Finally, petroleum product demand and supply is determined by making net product imports a residual. The version of the supply/demand balancing identity given above in the context of petroleum products is:

$$NI_p = D_p - Q_p - (K_{p,-1} - K_p)$$

where "NI" refers to net imports and the "p" subscript refers to finished petroleum products. No discrepancy is assumed here. In fact, this product demand/supply balance identity is just a rearrangement of the identity used to actually define the variable D_p, which is also referred to in EIA data publications as "product supplied" or "disappearance from primary supply."⁴ For completeness, gross exports for petroleum products are determined independently and gross imports determined by adding this into net imports. (See the "Imports and Exports" section of Chapter 3).

Electricity Supply and Demand

The basic approach to electricity demand and supply modeling in STIFS is generally consistent with the formal approach outlined above. Figure 2 presents the general flow of the logic of the electricity-related portions of STIFS.

Demands for electricity by individual sectors are determined as a function of weather, aggregate economic activity and other factors. The sum of sectoral demands is assumed to be met from domestic production of electricity (including that from electric utilities and nonutility power producers) and imports.

STIFS takes electricity imports and nonutility sources of supply as exogenous ⁵, and concentrates on determining electricity supplied by electric utilities in the aggregate and by fuel source. STIFS only determines some of the electric utility supply endogenously, in particular electricity supplied from fuel sources other than nuclear and hydroelectric.

^{*}See the glossary in Petroleum Supply Monthly, DOE/EIA-0109, for a detailed definition of this demand concept.

⁵The source of these exogenous forecasts is EIA's Office of Coal, Nuclear, Electric and Alternate Fuels, and their derivation is described in Appendix D. It should be noted that STIFS does not identify and model electricity produced for own use by nonutility producers, and thus actually understates total electricity supply and demand somewhat. For the year 1990, nonutility electricity supplied for own use was estimated to be slightly more than 4 percent of total electric utility sales to all sectors. (See Energy Information Administration, *Annual Energy Outlook* 1993, DOE/EIA-0383(93), Table A4.

Electricity generated from nuclear and hydroelectric sources are provided exogenously by EIA's Office of Coal, Nuclear, Electric and Alternate Fuels, generally only once a quarter and usually only for a "base case" or "mid case" scenario. An implicit assumption accepted in this arrangement is that hydroelectric and nuclear power production are not sensitive to demand shifts or other electricity market variables. In general, this is a reasonable approach in that both sources of electricity are low-variable-cost base-load supply sources which are used to the maximum extent possible under existing capacity and water-level conditions. In reality, it is not likely that demand shocks have no short-run impact on these supply sources, particularly in the case of nuclear power. Nevertheless, the exogeneity assumption for nuclear and hydroelectric power is basically consistent with EIA's established view on the independence of these sources of supply from demand shifts, at least as this view is indicated in EIA's *Annual Energy Outlook*⁶.

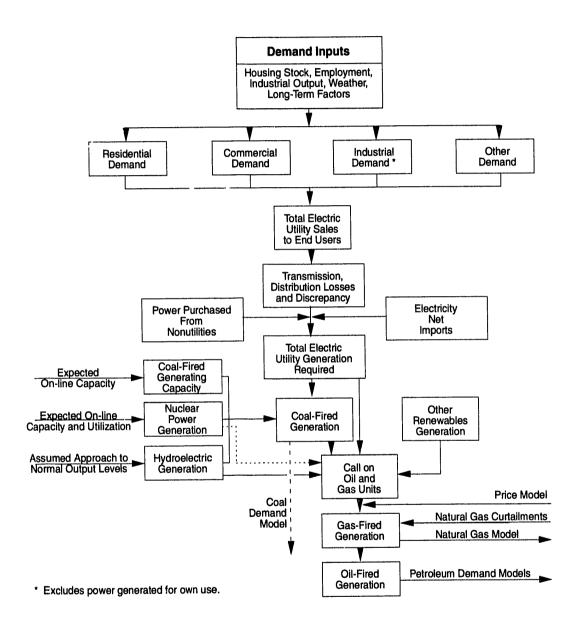
STIFS uses several estimated equations to split out the remaining sources of supply, based on assumed levels of coal generating capacity, relative oil and gas prices, and other factors, as detailed in the "Electricity Supply" section of Chapter 3.

Natural Gas Supply and Demand

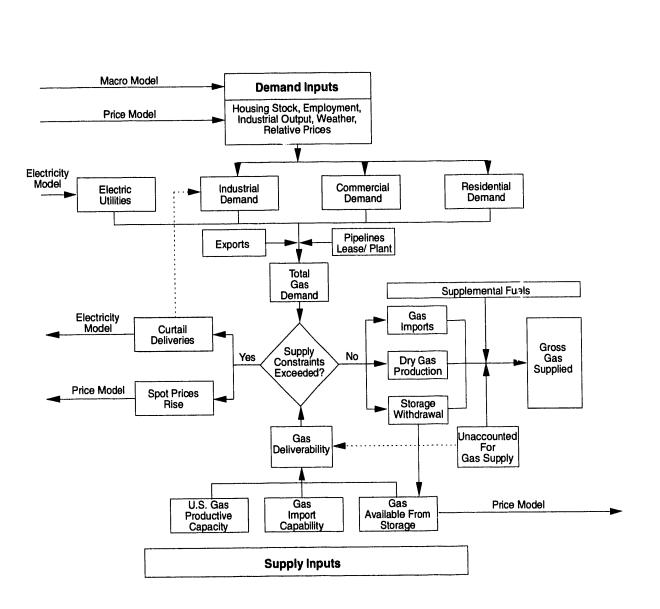
For the natural gas portion of STIFS, as elsewhere, the starting point is demand, which is estimated by sector using national-level equations (see equations A58 to A64 and associated identities in Chapter 3). Total demand plus exports must be met by current domestic production, imports, and withdrawals from storage. Figure 3 depicts the flow of logic used in STIFS to derive a demand and supply balance for natural gas.

Domestic production is assumed to be strictly responsive (with a lag) to current demand shifts up to the point at which maximum domestic productive capacity is reached. The main gas production relationship, prior to imposing any capacity constraints, is given in equation A69 in chapter 3. (Seasonality in the aggregate production relationship is assumed to be important and is related to the need for domestic producers to perform routine maintenance on producing facilities during off-peak periods.)

Natural gas imports are also subject to a constraint related to the capacity to transport gas by pipeline from Canada. (Liquefied natural gas imports are not treated separately but are generally small). Maximum gas productive capacity and maximum gas import capacity are given exogenously by EIA's Office of Oil and Gas. A different productive capacity trajectory is provided to STIFS for each standard oil price scenario considered (see "Natural Gas Supply" section in Chapter 3).


For natural gas, the B_i (i.e. unaccounted-for gas or the gas supply/demand balancing item) is assumed to be independent of other considerations and is held at some predetermined level on an annual basis, with an estimated "normal" seasonality imposed over the months. The fixed annual level is normally taken from the last historical year, and equation A66 is used to generate that level (and seasonality) with the add factor set so as to insure the prescribed annual level. This is done because, while the unaccounted for gas undoubtedly includes some significant gas losses as well as pure statistical discrepancy, not enough is known about this component of the balance to do anything but abstract from it as much as possible in the short-run forecasts.

Given a first pass at gas inventory changes (determined with normal seasonality through equation A68 in Chapter 3), supplemental gaseous fuels (equation A67), the unaccounted-for gas (equation A66), and gas exports (equation A65), the main question in STIFS for gas supply is: Is there enough domestic gas production or import capacity to meet demand? Given initial total demand estimates, STIFS calculates a required total of domestic production and imports needed to meet that demand (plus exports), given the other supply components including inventory change, supplemental fuels, and unaccounted-for gas.


....

⁶Virtually none of a hypothesized 1 percent shift in electric utility output for the year 1995 between reference and high economic growth scenarios reported in the last 1993 *AEO* was met by nuclear or hydroelectric power. See Energy Information Administration, *Annual Energy Outlook 1993*, Tables A4 and B4.

Figure 2. Electricity Supply and Demand Model

1

Ξ

13

STIFS sets gas production equal to the initial estimates from equation A69 and the associated reseasonalization identity or to the productive capacity maximum, whichever is smaller. A similar calculation is done for imports. If either the productive capacity or import constraints are binding, total gas demand is reduced by the difference between the unconstrained and constrained levels for production plus imports and is further adjusted by a minor recalculation of gas inventory levels (see "Natural Gas Supply" in Chapter 3). The demand reduction is shared out proportionately to the industrial and electric utility sectors, under the simplifying assumption that the other sectors are comprised of firm customers only.

In general, price responses to any shortfall in supply as described above are not handled directly or automatically in STIFS. A general simulation rule generally adhered to for routine forecasts, involving iterative re-simulations of the entire STIFS model, is that ultimate gas production levels should not exceed approximately 95 percent of total productive capacity. In the re-simulations, spot gas prices are gradually dialled upward, using the add factor shown in equation A86 in Chapter 3, until demand is forced down to a level which leaves solution values for production for any month at or below 95 percent of capacity. The 95 percent rule is an arbitrary restriction on maximum production, but it is designed to keep gas production forecasts at reasonable operational levels.

Coal Supply and Demand

The specifications of the coal portion of the STIFS model is provided in the "Coal Supply and Demand" section of chapter 3. A key feature of the coal market balance in STIFS is that coal production, imports, exports and producer stocks are exogenously supplied from an external model maintained by the Office of Coal, Nuclear, Electric and Alternate Fuels (see Chapter 3 and Appendix E). Electric utility coal demand is effectively determined in the electricity portion of STIFS, leaving coal demand for three other sectors (coking coal, non-coking industrial coal, and a relatively small amount of residential and commercial coal) to be determined separately.

Coking coal demand is a derived input demand in the coke-using portion of the steel industry. Coking coal is needed to produce coke which is used in the reduction of iron ore to pig iron (which is ultimately processed into raw steel) in the sector of the steel industry using basic oxygen furnace (BOF) technology. About 63 percent of raw steel produced in the United States is from BOF furnaces. Thus, coking coal demand derives from overall demand for raw steel which is not met by non-BOF processes (principally electric arc furnaces which use electricity to reconvert scrap steel to raw product). Raw steel demand (and thus raw steel production if one ignores steel inventory changes) is assumed to be a function of major economic variables affecting the output of domestic manufacturers of products using raw steel as a main input. Of the numerous macroeconomic variables tested in this context, manufacturers inventories and real fixed investment prove to be most significant, and these are included in the raw steel production and thus (coking coal demand) from raw steel production and the formulation of other minor coal demands are provided in Chapter 3.

Since coal supply (including primary inventory change) is exogenous to STIFS, total secondary (i.e. consumer) stock change (and stock levels given initial values for the latter) are determined identically. STIFS does produce estimates of share weights for distributing total consumer stocks across sectors. The basic assumption here is that coal stocks in each sector will approach, through a partial adjustment inechanism, pre-specified desired relative stock levels (specified in terms of days of supply relative to monthly demand) from initial levels observed at the beginning of the prediction period. The inventory sharing-out routine is discussed in the "Coal Inventories" section of Chapter 3.

Data Flow

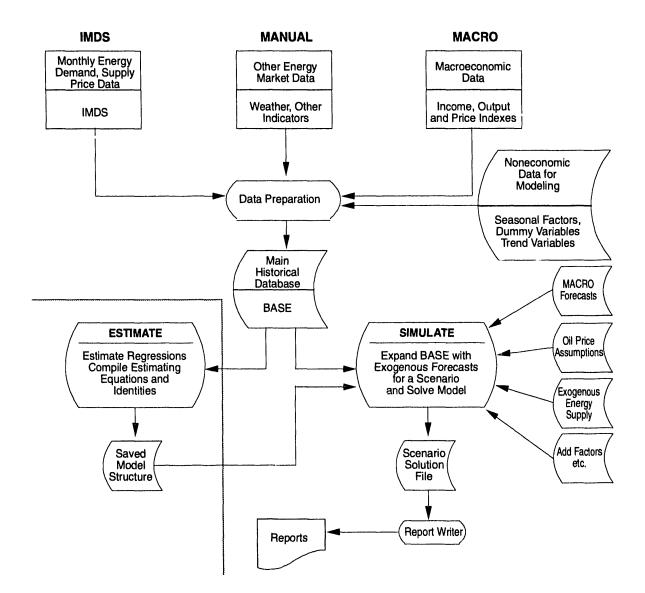
The flow of data in the STIFS model is described in Figure 4. The primary monthly data which comprise the STIFS historical database come from three sources: 1) "*IMDS*" (EIA's Integrated Modeling Data

System); 2) a separate collection of input datasets, called "*MANUAL*", which consists of additional energy market data (such as highway and air travel data) not available in IMDS; and 3) a collection of macroeconomic data series called "*MACRO*", a source of many of the key economic drivers for STIFS energy demand relationships. The STIFS model combines the historical energy, weather, macroeconomic, and other data into one main historical database called "*BASE*".

Regression equations which make up the STIFS model are then estimated from this historical data (the "*ESTIMATE*" step) and the estimation results are saved to a SAS model library. The *ESTIMATE* step is usually performed at most once every quarter.

The *BASE* database is then expanded with forecasts of exogenous variables, which represent a selected scenario, the model is solved, and a forecast is thus generated. The solution algorithm is described in *SAS/ETS User's Guide*, Version 6, First Edition, under the MODEL Procedure documentation.⁷ The expansion of the *BASE* dataset with the exogenous variable forecasts is done every time that a new scenario is specified, just prior to solving the model, designated in Figure 1 as the "*SIMULATE*" step. This expansion of the "*BASE*" dataset results in a complete set of data inputs for the specified scenario. The SAS "*MODEL*" procedure is used to interpret the model coefficients and lag structure (saved in the *ESTIMATE* step) to perform the model solution step. The *SIMULATE* step returns all of the historical and exogenous data forecasts, plus solution values for all of the endogenous variables in the model. These outputs are stored in a SAS library, identified by scenario, for report writing and further analysis.

The forecast range for any endogenous variable is normally from the first period after the last available history to the last period in which the forecast of all exogenous variables in the STIFS model are available in the expanded data set used as the input in the *SIMULATE* step. All of the endogenous and exogenous variables in STIFS are identified in Appendices B and C. Sources of historical and forecast data series are provided in Appendix B. Cross-references to locations in the archived STIFS model listing of the endogenous variable formulas are given in Appendix C.


The construction of the forecasted exogenous information prior to model solution in the *SIMULATE* step is done in several steps. The forecasts of macroeconomic data (such as industrial output, personal income, etc.) are derived by running the DRI/McGraw-Hill Quarterly Model of the U.S. Economy using the crude oil price assumptions employed in particular scenarios, as well as initial forecasts of end-use energy prices.⁸ The resulting macroeconomic forecasts are stored in a dataset which is read into the STIFS input dataset during the *SIMULATE* step. The oil price assumptions constructed by EIA are saved in a separate dataset and are also read in during the *SIMULATE* step. Weather forecasts, in terms of future heating and cooling degree-days, are based on the simple assumption that, for any particular month, the weather variables will be equal to a long-run (30-year) average, labeled "normal", from the National Oceanographic and Atmospheric Administration. Exogenous energy supply information, such as crude oil production, is similarly saved into datasets which are inputs to the *SIMULATE* step.

STIFS is updated quarterly in response to new data and information on new regulations and other institutional changes. The version of the model described in this report was used to produce the First Quarter 1993 *Outlook*.

⁷ For standard STIFS forecasts, the "SOLVE" command in the SAS "PROC MODEL" routine is invoked, with "FORECAST" and "DYNAMIC" options set, and the "NEWTON" solution method specified (by default).

^{*} Initial forecasts of energy end-use prices in a scenario are generated by a preliminary STIFS run under the given crude oil price assumptions and a previous set of macroeconomic forecast assumptions.

Statistical Overview

The STIFS model consists of 305 equations, of which 93 are estimated. The 93 estimated equations are linear regression equations that together form a system of interrelated equations. The selection of functional form and the estimation technique is generally done on an equation-by-equation basis. The general method of estimation is ordinary least squares. Some equations incorporate a correction for autocorrelation of the error term.

Data Overview

The historical energy data used to estimate the model come primarily from the IMDS electronic database. IMDS merges data regularly reported in several EIA publications: *Quarterly Coal Report, Petroleum Supply Monthly, Petroleum Marketing Monthly, Electric Power Monthly, Natural Gas Monthly,* and *Monthly Energy Review.* Because of data limitations there are inconsistencies in the level of disaggregation of each type of fuel. For example, electricity and natural gas demands are represented by market sector, but petroleum products are represented only as national totals or for a combination of sectors. Market-level data are available for the regulated industries (electricity and natural) gas while product-level data are available for the petroleum product markets.

These energy price and volume data are supplemented by data from outside sources; the most common are listed below.

Employment and Earnings, Bureau of Labor Statistics, U.S. Department of Labor.

Industrial Production, Board of Governors, U.S. Federal Reserve System.

Monthly Labor Review, Bureau of Labor Statistics, U.S. Department of Labor.

Monthly State, Regional, and National Heating/Cooling Degree-Days Weighted by Population, National Oceanic and Atmospheric Administration, U.S. Department of Commerce.

National Income and Product Accounts of the United States, Bureau of Economic Analysis, U.S. Department of Commerce.

Survey of Current Business, Bureau of Economic Analysis, U.S. Department of Commerce.

A variable-by-variable breakdown of data sources is provided in Appendix B.

Most of the data sources provide monthly data and are used directly. One exception is coal data, which are quarterly and must be interpolated into monthly series. In addition, the variables are transformed into a common set of units, and many are deseasonalized prior to estimation using the Census Bureau's X-11 procedure as it appears in SAS.

Forecast Accuracy

Forecasts from the STIFS model are compared with actual values in the *Short Term Energy Outlook Annual Supplement (Supplement)* for many of the variables. The *Supplement* evaluates model forecasts and presents tables showing forecast errors by fuel prices and quantities. The *Supplement* also compare EIA forecasts with relevant external forecasts. Model modifications and occasional articles on model modifications and improved forecast methodologies are also reviewed in the *Supplement*.

>

Model Domain and Discontinuities

The STIFS model is known to be robust within the following ranges of the exogenous variables around the First Quarter 1993 *Outlook* base case forecast:

Crude oil price	± 10%
Heating or cooling degree-days	± 20%
Gross domestic product (GDP) ⁹	± 2%

Tests for discontinuities in the model results outside of the ranges specified above or associated with variations in other variables have not been conducted.

Data Quality

Information on the quality of historical data used by the STIFS model is limited to the following published analyses:

Energy Information Administration, An Assessment of Principal Oil and Gas Data Series of the Energy Information Administration, DOE/EIA-00491, (Washington, DC, August 1984).

Energy Information Administration, An Assessment of the Quality of Selected EIA Data Series: Coal Data 1983 Through 1988, DOE/EIA-0292(89), (Washington, DC, December 1991).

Energy Information Administration, An Assessment of the Quality of Selected EIA Data Series: Electric Power Data, DOE/EIA-0292(87), (Washington, DC, May 1989).

Energy Information Administration, An Assessment of the Quality of Selected EIA Data Series: Petroleum Supply Data, DOE/ELA-0292(86), (Washington, DC, August 1987).

Energy Information Administration, "Comparisons of Independent Statistics on Petroleum Supply," *Petroleum Supply Monthly March* 1992, DOE/EIA-0109(92/03), (Washington, DC, March 1992).

Energy Information Administration, "Timeliness and Accuracy of Petroleum Supply Data," *Petroleum Supply Monthly September 1992*, DOE/EIA-0109(92/09), (Washington, DC, September 1992).

⁹ Indices of industrial output, personal income, inflation, and other macroeconomic variables are also adjusted to be consistent with the assumed variation in GDP.

3. Mathematical Specifications

This section summarizes the equations that appear in the STIFS model. While the method of simulating the model was revised in 1992, the STIFS model equations remain similar to those that appear in the last published model documentation for STIFS.¹⁰ The model presentation follows the following outline:

- Refined petroleum products demand
- Refined petroleum products supply
- Electricity supply and demand
- Natural gas supply and demand
- Coal demand
- Petroleum and other energy prices

The interrelationships between prices and the different fuel sectors are shown in Figure 2 below.

Regression Equations

All equations are estimated using ordinary least-squares (OLS). Parameter estimates and other regression statistics for the model equations appear in order of presentation in Appendix A tables. Definitions and data sources for each variable are provided in Appendix B.

Regression Equation Coefficients

In all equations, the estimated parameters appear before their associated right-hand-side variable. A standard naming convention is used in most equations. The first three or four letters of the coefficients correspond to the first three or four letters of the endogenous variable, followed by an underscore, then followed by two letters from the associated exogenous variable. For example, for nonutility distillate fuel demand (equation A11):

 $DSTCPUS_t = DSTC_01 + DSTC_AC * DFACPUS_t$

The coefficient DSTC_01 is the estimated equation intercept and DSTC_AC is the estimated coefficient associated with distillate demand in the transportation sector, DFACPUS.

The definitions and statistics associated with the estimated parameters are given by equation in Appendix A.

Autocorrelation Correction

When time series data are used in regression analysis, often the error term is not independent through time. If the error term is autocorrelated, the efficiency of ordinary least-squares parameter estimates is adversely affected and standard error estimates are biased. The Durbin-Watson statistic is used to test for the presence of first-order autocorrelation in OLS residuals and is reported in the regression results

¹⁰ Energy Information Administration, Short-Term Integrated Forecasting System: 1990 Model Documentation Report, DOE/EIA-M041.

in Appendix A. For equations in which a lagged dependent variable is present, the Durbin *h* statistic is reported.

Autocorrelation correction involves estimating the parameters of a linear model whose error term is assumed to be an autoregressive process of a given order p, denoted AR(p). The model for an autoregressive process is of the form:

$$\mathbf{y}_t = \mathbf{a} + \mathbf{b}_0 \, \mathbf{x}_t + \mathbf{u}_t$$

where,

 $u_t = \varepsilon_t - \alpha_1 u_{t-1} - \dots - \alpha_p u_{t-p}$ $\varepsilon_t = \text{normally and independently distributed white noise disturbance}$

The autoregression coefficients, α_i , are designated in the Appendix A estimation results as the name of the endogenous variable followed by "_Lp", where *p* refers to the specified order (usually 1 in this version of *STIFS*). For example, the nonutility distillate fuel demand (equation A11) is estimated with a first-order autoregressive error term:

 $DSTCPUS_t = DSTC_01 + DSTC_AC * DFACPUS_t + u_t$

where

 $u_t = \varepsilon_t - DSTCPUS_L1 * u_{t-1}$

Distributed Lag Terms

Some equations explain the current values of endogenous variables as functions of past values of exogenous variables using a polynomial distributed lag structure (also called an Almon lag model). For a regression equation in which the coefficient on the exogenous variable, x_{t} , is a polynomial distributed lag structure of the form:

$$y_t = a + b_0 x_t + b_1 x_{t-1} + b_2 x_{t-2} + \dots b_k x_{t-k}$$

The polynomial distributed lag is identified in the text as:

distlag(exogenous, degree=j, lags=i)

For example, the log of air travel capacity (equation A6) involves a distributed lag on the log of the aircraft utilization rate (LDRZM):

 $LDRTM_t = ... + distlag(LDRZM, degree = 2, lags = 2) +...$

The estimated coefficients. α_j , are reported in the Appendix A estimation results as the name of the endogenous variable followed by " k_j ", where *k* refers to the distributed lag term (usually equal to 1 where no equation contains more than one distributed lag term) and *j* refers to the degree of the polynomial (j = 0 to n).

 $LDRTM_{t} = \dots + b_0 LDRZM_{t} + b_1 LDRZM_{t-1} + b_2 LDRZM_{t-2} + \dots$

where, $b_0 = LDRZM1_1 + LDRZM1_2$ $b_1 = LDRZM1_0 + LDRZM1_1 + LDRZM1_2$ $b_2 = LDRZM1_0 + 2 * LDRZM1_1 + 4 * LDRZM1_2$

20

"Add" Factors

Forecasts can be corrected by using additive and multiplicative factors which are included in some of the regression equations. These factors are exogenously specified variables whose values are either added to a specified forecast series or multiplied by the forecast series. These factors allow the analyst to incorporate expected changes in supply, demand, or prices due to new taxes, environmental regulations, other changes in government policy, or some other expected change in market dynamics. In addition, add factors can be used to generate simulations in which target values for endogenous variables can be achieved (for special analysis purposes) with exogenizing that portion of the model.

Additive and multiplicative factors are designated in regression equations as the first four or five letters of the dependent variable's names followed by "AD" pr "MU", respectively (see Appendix B for a list of additive and multiplicative factors names). The default value for add factors is 0 when no change to a forecast is desired. The default value for multiplicative factors is 1.

An example of these forecast correction factors is in the seasonally adjusted wholesale motor gasoline price (equation A77):

MGWHUUSA = (MGWHP_01 +...+ MGWHUAD) * MGWHUMU

In this example the add factor, MGWHUAD, may be used to account for the expected additional costs of blending oxygenates with motor gasoline during the forecast period winter months to comply with the Clean Air Act Amendments of 1990. The multiplicative factor, MGWHUUMU, could be used to account for new fees which are based on a percentage of the product's market price.

Deseasonalized Variables

Several regression equations are estimated using seasonally-adjusted data. If the variable ends in an "A", such as *MGUCUUSA*, then the data for *MGUCUUS* has been deseasonalized using seasonal factors (in this case, *MGUCUUSS*) from the U.S. Census X-11 multiplicative seasonal adjustment routine. To obtain non-seasonally adjusted projections, the forecasts developed from seasonally-adjusted equations are the reseasonalized using the Census X-11 seasonal adjustment factors. A list of seasonally-adjusted variables and their corresponding seasonal adjustment factors are provided in Appendix B.

Nonutility Petroleum Products Demand

Overview

In the STIFS model, nonutility petroleum products consist of the following: motor gasoline, jet fuel, nonutility distillate fuel oil, nonutility residual fuel oil, liquefied petroleum gases (LPG's), and the other (minor) petroleum products. The major determinants of demand for these products are transportation activity, economic activity, and weather. Utility demand for distillate and residual fuel oil is derived through simulation of the electricity model (see Electricity Supply and Demand section).

Detailed statistical information for each of the estimating equations is provided in Appendix A, tables A1 to A17. Data descriptions are summarized in Appendix B.

Motor Gasoline Demand

Two components comprise seasonally-adjusted motor gasoline demand. They are: (seasonally-adjusted) fleet fuel efficiency (MPGA) and highway travel activity (MVVMPUSA). Both series are deseasonalized prior to estimation to ensure greater forecast accuracy. These estimating relationships are presented below:

MPGA = (MEFF_01 + MEFF_T * TIME + MEFF_D02 * D8412 + MEFF_D03 * D8302 (A1) + MEFF_D04 * DRVP89 + MEFF_D05 * DRVP90 + distlag (MGUCUUSA/CICPIUS, degree=1, lags=1) + MPGAAD) * MPGAMU MVVMPUSA = (MVMT_01 + MVMT_YT * YD870US * TIME

(A2)

- + MVMT_D01 * D8501 + MVMT_D02 * D89ON
- + distlag (MGUCUUSA/(MPGA * CICPIUS), degree=1, lags=1)
- + MVVMPAD) * MVVMPMU

The price terms, MGUCUUSA/CICPIUS and MGUUUUSA/(MPGA/CICPIUS), which represent (seasonally-adjusted) retail motor gasoline price per gallon and fuel cost per mile, respectively, are defined by one-month-long polynomial distributed lags with a polynomial degree of one. The dummy variables, D8412, D8302, and D8501 refer to months of unusually severe weather that affected motor gasoline demand. The dummy variable, DRVP89, refers to the implementation of new RVP standards during the summer months of 1989. DRVP90 pertains to RVP regulations which apply during the summer months of 1990 and following years. D89ON is an adjustment factor that reflects a one-time shift in the level of travel activity brought about by changes in reporting methodology beginning in 1989.

Fuel efficiency and highway travel activity define deseasonalized motor gasoline demand (MGTCPUSA) by the following identity:

MGTCPUSA = MVVMPUSA / MPGA / 42

These components are reseasonalized by their respective seasonal factors, MVVMPUSS and MPGS, to derive forecasts of motor gasoline demand, as depicted in the following relationship:

MGTCPUS = (MVVMPUSA * MVVMPUSS) / (MPGA * MPGS) / 42

The unleaded share of motor gasoline demand (MUTCSUS) is estimated using the following equation:

(A3) MUTCSUS = 1 / (1 + exp (MSH_01 + MSH_T * TIME + MSH_D01 * D88ON))

Jet Fuel

As with motor gasoline, jet fuel demand is derived with the use of seasonally-adjusted data. For modeling purposes, kerosene jet fuel and naphtha jet fuel are regarded as one product in anticipation of the phasing out of naphtha jet fuel use in the military during the next few years. The identity that defines (deseasonalized) jet fuel demand (JFTCPUSA), consists of three components: aircraft utilization (RMZZPUSA), load factor (LFSA), and fuel efficiency (EFFSA). Each of these is modeled separately. The identity is defined as follows:

JFTCPUSA = RMZZPUSA / LFSA / EFFSA

Aircraft utilization requires yield projections as an explanatory variable. The (deseasonalized) inflationadjusted yield (AARYFUSA), average ticket price divided by number of passenger miles, is estimated in logarithmic form (LDRYLD). It is a function of the inflation-adjusted wholesale price of kerosene jet fuel (JKTCUUSA/WPCPIUS).

$$LDRYLD = YLD0 + YLD1 * log (IKTCUUSA / WPCPIUS) + YLD2 * TIME + AARYFAD (A4)$$

The aircraft utilization rate (RMZZPUSA), revenue ton miles per day, is also modeled as a logarithmic function. The major explanatory variables are disposable income (YD87OUS) and yield.

$$LDRZM = RZM0 + RZM1 * log (YD87OUS * TIME) + RZM2 * D91$$
(A5)
+ distlag (LDRYLD, degree=2, lags=2) + RMZZPAD (A5)

The relationship shows that air travel activity responds to changes in ticket prices over a period of two months with a polynomial degree of 2. The projections are then retransformed for insertion into the jet fuel demand identity above:

RMZZPUSA = exp (LDRZM)

Air travel capacity (RMZTPUSA), available revenue ton miles per day, is also transformed into a logarithmic series (LDTRM) for modeling purposes to form the following equation:

$$LDRTM = RTM0 + RTM1 * D8082 + RTM2 * TIME$$
(A6)
+ distlag (LDRZM, degree = 2, lags = 6) + RMZTPAD

The equation shows that airline capacity responds to shifts in utilization over a period of six months. That projection is then "delogged" to form RMZTPUSA and used as the denominator to define the (seasonally-adjusted) load factor (LFSA).

RMZTPUSA = exp (LDRTM)

LFSA = RMZZPUSA / RMZTPUSA

Load factor projections are inserted into the demand identity and also used as an explanatory variable in the equation for aircraft efficiency (EFFSA):

$$EFFSA = (EFF0 + EFF1 * LFSA + EFF2 * TIME + EFF3 * D8912 + EFFSAD) * EFFSMU$$
(A7)

The deseasonalized demand projection for jet fuel (JFTCPUSA) is then reseasonalized:

JFTCPUS = JFTCPUSA * JFTCPUSS

Nonutility Distillate Fuel Oil

This product is modeled as three separate sectoral linear equations. The sectors are: (1) transportation; (2) residential and commercial; and (3) industrial and other nonutility consumers. Transportation demand (DFACPUS) is a function of manufacturing output (ZOMNIUS):

$$DFACPUS = (DFAC_01 + DFAC_JQ * ZOMNIUS + DFAC_06 * FEB + DFAC_07 * MAR + DFAC_08 * APR + DFAC_09 * MAY + DFAC_10 * JUN + DFAC_11 * JUL + DFAC_12 * AUG + DFAC_13 * SEP + DFAC_14 * OCT + DFAC_15 * NOV + DFAC_16 * DEC + DFACPAD) * DFACPMU$$
(A8)

Residential and commercial demand (DFHCPUS) is a function of the previous month's demand and the current month's population-weighted heating-degree-days deviation from normal in the Northeast (ZWHDDNO) adjusted for the number of days in each month (ZSAJQUS)

Industrial and other demand (DFICPUS) is modeled as a function of total industrial production (ZOTOIUS), a relative price term of wholesale distillate heating oil to industrial natural gas, and an adjustment factor (NGINPUSX - NGINPUS) that defines curtailments of natural gas deliveries to the industrial sector during peak periods (see Natural Gas Supply and Demand section). The factor (0.362*1.030/5.825) is the share (0.362) of total estimated switchable gas capacity in the industrial manufacturing sector (converted to million barrels per day) thought to be dedicated primarily to distillate fuel as an alternate fuel.¹¹ Thus, any reduction in industrial gas demand due to gas supply constraints are assumed to be made up by other fuels, with 36.2 percent (by Btu content) coming from distillate fuel oil.

DFICPUS = (DFIC_01 + (0.362*1.030/5.825) * (NGINPUSX-NGINPUS) (A10) + DFIC_JQ * ZOTOIUS + DFIC_P * ((D2WHUUS*DFTCZUS)/(NGICUUS*NGNUKUS)) + DFIC_W * (ZWHDDUS/ZSAJQUS) * (OCT+NOV+DEC+JAN+FEB+MAR+APR) + DFIC_06 * FEB + DFIC_07 * MAR + DFIC_08 * APR + DFIC_09 * MAY + DFIC_10 * JUN + DFIC_11 * JUL + DFIC_12 * AUG + DFIC_13 * SEP + DFIC_14 * OCT + DFIC_15 * NOV + DFIC_16 * DEC + DFICPAD) * DFICPMU

Total nonutility demand (DFNUPUS) is the sum of the three sectoral demands:

DFNUPUS = DFACPUS + DFHCPUS + DFICPUS

Demand for No. 2 diesel fuel through company-owned outlets (DSTCPUS) is also estimated for reporting purposes only:

$$DSTCPUS = DSTC_01 + DSTC_AC * DFACPUS$$
(A11)

Nonutility Residual Fuel Oil

Nonutility heavy fuel oil demand (RFNUPUS) is modeled as a linear function of the index of industrial production (ZOMNIUS), heating degree-days (ZWHDPUS), the relative price of retail residual fuel oil

¹¹ The shares of alternate fuels for switchable natural gas capacity are taken from the Energy Information Administration, *Manufacturing Energy Consumption Survey: Fuel Switching*, 1985, DOE/EIA-0515(88), Table 4.

(RFTCUUS*RFTCZPUS) to industrial natural gas (NGICUUS/NGNUKUS), a winter dummy variable (DUMWTR) defined as one for October through March and zero elsewhere, and the proxy for curtailments of natural gas deliveries (NGINPUSX - NGINPUS). The factor (0.321*1.030/6.287) is the share (0.321) of total estimated switchable gas capacity in the industrial manufacturing sector (converted to million barrels per day) thought to be dedicated primarily to residual fuel as an alternate fuel. Thus, any reduction in industrial gas demand due to gas supply constraints are assumed to be made up by other fuels, with 32.1 percent (by Btu content) coming from residual fuel oil.

 $RFNUPUS = RFNU_01 + RFNU_JQ * ZOMNIUS + RFNU_W * ZWHDPUS$ (A12)

)

+ RFNU_P * ((RFTCUUS*RFTCZUS)/(NGICUUS*NGNUKUS)) + RFNU_D2 * DUMWTR + (0.321*1.03/6.287) * (NGINPUSX-NGINPUS)

- + RFNU_W1 * HDDX85 + RFNU_T * TIMEX85 + RFNU_T1 * PRE85XT
- + RFNU_D1 * POST85 + RFNU_D3 * D8809

Liquefied Petroleum Gases (LPG's)

Demand for liquefied petroleum gases (LGTCPUS) is disaggregated into demand for ethane (ETTCPUS) and LPG's heavier than ethane (LXTCPUS):

LGTCPUS = ETTCPUS + LXTCPUS

The deseasonalized demand for ethane (ETTCPUSA) is estimated using the following linear equation:

ETTCPUSA = (ETH0 + ETH1 * (D2WHUUSA/NGEUDUSA) + ETH2 * D8184 (A13) + ETH3 * TD8184 + ETH4 * D8990 + ETH5*TD8990) * ETTCPMU

The relative price of wholesale distillate to the price for natural gas to electric utilities (D2WHUUSA/NGEUDUSA) is the principal driver in the equation. The absence of a proxy explanatory variable for economic growth such as petrochemical or industrial demand reflects the lack of upward trend in demand for this product. The ethane equation is reseasonalized after the initial demand estimation:

ETTCPUS = ETTCPUSA * ETTCPUSS

Demand for LPG's excluding ethane (LXTCPUS) is a linear function of the previous month's demand, dayweighted heating degree-days' deviations from normal (ZWHDPUS-ZWHNPUS)/ZSAJQUS, the index of chemical production (ZO28IUS), and an adjustment factor (NGINPUSX-NGINPUS) that defines interruptions of natural gas deliveries to industrial customers. The factor (0.273*1.030/3.836) is the share (0.273) of total estimated switchable gas capacity in the industrial manufacturing sector (converted to million barrels per day) thought to be dedicated primarily to LPG's as an alternate fuel. Thus, any reduction in industrial gas demand due to gas supply constraints are assumed to be made up by other fuels, with 27.3 percent (by Btu content) coming from liquefied petroleum gas.

LXTCPUSA = (LXT0 + LXT2 * LXTCPUSA₋₁ + LXT1 * (ZWHDPUS-ZWHNPUS)/ZSAJQUS (A14) + LXT3 * ZO28IUS + (0.273*1.03/3.836) * (NGINPUSX-NGINPUS) + LXT4 * D9001 + LXTCPAD) * LXTCPMU

Subsequent reseasonalization yields the non-seasonally adjusted demand for this product group, as shown below:

LXTCPUS = LXTCPUSA * LXTCPUSS

Although propane (PRTCPUS) is part of the LPG product group (LXTCPUS), the STIFS model includes a separate estimating equation for propane. This variable is used in the estimation of propane retail sales

volume in the petroleum supply portion of the STIFS model (see equation A47). Because propane constitutes the bulk of the LXTCPUS group, LXTCPUS is the principal explanatory variable in the equation:

Other Petroleum Products

This group of products, sometimes referred to as "minor" petroleum products, is comprised of oil-based petrochemical feedstocks, and miscellaneous products.

Petrochemical Feedstocks

The oil-based petrochemical feedstocks (FETCPUS) category consists of naphtha and other oils > 400 degrees. The deseasonalized series (FETCPUSA) is modeled in logarithmic form:

 $LSFET = FET0 + FET1 * \log (ZO28IUS) + FET2 * \log (WP57IUS/WPCPIUS) + FETCPAD$ (A16)

The equation shows that petrochemical feedstocks are a logarithmic function of petrochemical activity and the producer price index of petroleum products adjusted by the producer price index for all goods. The following equations summarize the delogging and reseasonalization steps to generate the forecast for this product group:

FETCPUSA = exp(LSFET) FETCPUS = FETCPUSA * FETCPUSS

Miscellaneous Products

The miscellaneous products category (MITCPUS) consists of nine products: aviation gasoline, kerosene, special naphthas, lubricants, waxes, petroleum coke, asphalt and road oil, refinery gas, and other products defined as miscellaneous products in the *Petroleum Supply Monthly*. As with petrochemical feedstocks, the category is deseasonalized and restated in logarithmic form for estimation purposes:

LSMIS = MIS0 + distlag (log(WP57IUS/WPCPIUS, degree=2, lags=6) + MIS1 * log (ZOMNIUS) + MIS2 * D8301 + MIS3 * D8412 + MIS4 * D8611 + MIS5 * D8912 + MITCPAD (A17)

The industrial production index (ZOMNIUS) and a 6-month distributed lag for the inflation adjusted producer price index for petroleum products (WP57IUS/WPCPIUS) are the main determinants for this category. The corresponding delogging and reseasonalization steps are summarized below:

MITCPUSA = exp (LSMIS) MITCPUS = MITCPUSA * MITCPUSS

In addition to the categories explicitly modeled in the STIFS demand model, the other petroleum products group includes two components which are not modeled with conventional behavioral equations. These components are (a) crude oil directly consumed and pentanes plus, and (b) unfinished oils and motor gasoline blending components. Crude oil directly consumed (COTCPUS) is assumed to be a constant 20 thousand barrels per day throughout the forecast interval. Pentanes plus (PPTCPUS), unfinished oils (UOTCPUS), and motor gasoline blending components (MBTCPUS) are assumed to be proportions of

miscellaneous products (MITCPUS) based on actual demand for the last 12 months of the estimation interval. These relationships are defined below:

i

.

COTCPUS	= 0.020
PPTCPUS	= 0.099773 * MITCPUS
UOTCPUS	= - 0.10271 * MITCPUS
MBTCPUS	= 0.020938 * MITCPUS

Ŧ

Petroleum Products Supply

Overview

The driving forces in the STIFS refined crude oil product supply model are estimated refinery inputs and refined product demands. Estimated refinery outputs of individual products yield share weights with which to disaggregate total refinery inputs. Net product imports then bear the burden of balancing refined product supply and demand by individual product.

Inputs to refineries include crude oil, unfinished oils, liquefied petroleum gases, pentanes plus, aviation gasoline blending components, and "other" petroleum inputs. Refinery capacity presents a constraint on refinery inputs of crude oil and unfinished oils. The most recently reported operable refining capacity is carried through the forecast period unless a change in capacity is exogenously specified by the analyst. If projected refinery inputs exceed a specified operating factor (e.g., 92 percent of operable capacity), crude and unfinished oils are proportionately scaled downwards so that the constraint is satisfied.

Six categories of refinery outputs - motor gasoline, jet fuel, distillate fuel, residual fuel, and liquefied petroleum gases (LPGs), and "other" petroleum products - are represented individually in the model. The sixth category, other petroleum products, consists of petrochemical feedstocks, petroleum coke, waxes, lubricants, etc. Total refinery output is adjusted to equal total refinery inputs plus a refinery volumetric processing gain. Each refinery output is proportionately scaled upwards or downwards so that a refinery material balance holds.

The sources of crude oil supply to refineries include domestic production, net imports, inventory change, and imbalances between imports for the Strategic Petroleum Reserve (SPR) and the SPR fill rate (or withdrawal from the SPR for sales). Forecasts of domestic crude oil production are supplied by the EIA Office of Oil and Gas, Reserves and Natural Gas Division (refer to Appendix E for a description of the domestic crude oil production estimation method). Forecasts of the SPR balance are supplied by the EIA Office of Technical Management, Strategic Petroleum Reserve. Crude oil demand is represented by inputs to oil refineries, crude oil used directly as fuel, and losses. Imbalances between crude oil supply and demand are carried by an "unaccounted for" crude oil term.

Refinery Inputs and Outputs

Refinery Inputs

Inputs to refineries include crude oil, unfinished oils, liquefied petroleum gases, pentanes plus, aviation gasoline blending components, and "other" petroleum inputs.

۰.

Refinery input of crude oil (CORIPUS) is estimated as a linear function of a distributed lag of total petroleum demand (PATCPUS), one-month lags of motor gasoline stocks (MGPSPUS) and distillate stocks (DFPSPUS), and monthly dummy variables. The lagged relationship with demand is motivated by the notion that refiners will not adjust refinery runs immediately in response to short-run demand shifts, but will do so gradually, particularly so long as adequate primary product inventories (MGPSPUS and DFPSPUS) are available.

CORIPUSJ = COR_B0 + distlag (PATCPUS, degree=3, lags=6) (A18) + COR_MGPS * MGPSPUS₁ + COR_DFPS * DFPSPUS₁ + CORI_E1 * JAN + CORI_E2 * FEB + CORI_E3 * MAR + CORI_E4 * APR + CORI_E5 * MAY + CORI_E6 * JUN + CORI_E7 * JUL + CORI_E8 * AUG + CORI_E9 * SEP + CORI_E10 * OCT + CORI_E11 * NOV + CORIPAD Refinery input of unfinished oils (UORIPUS) is estimated as a function of total petroleum product demand (PATCPUS) and monthly dummy variables:

UORIPUSJ = UORI_B0 + UORI_PA * PATCPUS + UORI_D1 * D90ON (A19) + UORI_E1 * JAN + UORI_E2 * FEB + UORI_E3 * MAR + UORI_E4 * APR + UORI_E5 * MAY + UORI_E6 * JUN + UORI_E7 * JUL + UORI_E8 * AUG + UORI_E9 * SEP + UORI_E10 * OCT + UORI_E11 * NOV + UORIPAD

Total input to primary crude distillation (CODIPUS) is estimated from refinery inputs of crude oil and unfinished oils.

$$CODIPUSJ = CODI_CO * CORIPUSJ + CODI_UO * UORIPUSJ$$
(A20)

Total inputs to primary crude distillation are restricted to be less than or equal to 92% of total refinery atmospheric distillation capacity (ORCAPUS). The utilization rate is seen as the maximum monthly operable refinery utilization rate. The most recently reported operable refinery distillation capacity is carried through the forecast period unless a change in capacity is exogenously specified by the analyst. If this restriction is violated, crude oil and unfinished oil inputs to refineries are proportionately adjusted downwards.

CODIPUS = min (CODIPUSJ, ORCAPUS * .920)

CORIPUS = CORIPUSJ * CODIPUS / CODIPUSJ UORIPUS = UORIPUSJ * CODIPUS / CODIPUSJ

Refinery inputs are then deseasonalized using seasonal factors estimated using the Census X-11 multiplicative seasonal adjustment routine for use as independent variables in other estimating equations:

CORIPUSA = CORIPUS / CORIPUSS UORIPUSA = UORIPUS / UORIPUSS

Refinery utilization rate (ORUTCUS) is defined as total inputs to crude distillation units divided by operable refinery atmospheric distillation capacity:

ORUTCUS = CODIPUS / ORCAPUS

....

Linear regression equations are also estimated for refinery inputs of liquefied petroleum gases (LGRIPUSA), pentanes plus (PPRIPUSA), and "other" petroleum inputs (PSRIPUS).¹² A volume ratio of the annual averages of each refinery input to total annual average gasoline production (DUMYRLG, DUMYRPP, and DUMYRPS, respectively) is included as an explanatory variable in each of the three regressions. Thus, they are the same for all months within a year, but differ from year to year. The values of the DUMYxxx variables for the last full year of the estimation period are retained as the values for the forecast period (and the final year of the estimation period if it does not cover a full twelve months).

 $LGRIPUSA = LGRI_B0 + LGRI_MG * MGTCPUSA + LGRI_DL * DUMYRLG$ (A21)

LGRIPUS = LGRIPUSA * LGRIPUSS

 $PPRIPUSA = PPRI_B0 + PPRI_MG * MGTCPUSA + PPRI_DP * DUMYRPP$ (A22)

¹² Inputs of "other" petroleum products, PSRIPUS, is not seasonally adjusted because the series contains some negative values (January, 1989 and February, 1990) which cannot estimated using the Census X-11 method (without some adjustment to the series such as rescaling). This inconsistency is small and is assumed to insignificantly affect the results.

PPRIPUS = PPRIPUSA * PPRIPUSS

 $PSRIPUS = PSRI_DP * DUMYRPS + PSRI_E2 * FEB + PSRI_E3 * MAR$ (A23) + PSRI_E4 * APR + PSRI_E9 * SEP + PSRI_E10 * OCT + PSRIPAD

Refinery inputs of aviation gasoline blending components (ABRIPUS) is constrained to equal 0:

ABRIPUS = 0

Aggregate measures of refinery inputs are calculated for crude oil and unfinished oils (CURIPUS), other refinery inputs (MBOLPUS), and total refinery inputs (PARIPUS) by the following identities:

CURIPUS = CORIPUS + UORIPUS MBOLPUS = LGRIPUS + PPRIPUS + PSRIPUS PARIPUS = CORIPUS + UORIPUS + LGRIPUS + PPRIPUS + PSRIPUS + ABRIPUS

Refinery Outputs

Six categories of refinery outputs are estimated: (1) motor gasoline; (2) distillate fuel oil; (3) jet fuel; (4) residual fuel; (5) liquefied petroleum gases (LPGs); and (6) "other". The sixth category, other petroleum products, consists of petrochemical feedstocks, petroleum coke, waxes, lubricants, still gas, asphalt and road oil, special naphthas, kerosene, finished aviation gasoline, and miscellaneous products.

All refinery output series are deseasonalized using the Census X-11 multiplicative seasonal adjustment routine. The independent variables in the refinery output regression equations are specified on the basis of whether the product (dependent variable) is a substitute or complement to other products. All variables, for example, are treated as complements in production when the level of refinery inputs is changed, i.e., all dependent variables are positive functions of the level of refinery inputs.

The motor gasoline output (MGROPUSA) and distillate output (DFROPUSA) regressions also treat these two products as substitutes in production from a fixed supply of refinery inputs (both variables are a function of the motor gasoline-distillate wholesale price ratio).

MGROPUSA = MGRO_B0 + MGRO_PR * MGWHUUSA / D2WHUUSA + MGROPAD (A24) + MGRO_CO * (CORIPUSA + PSRIPUS + UORIPUSA + LGRIPUSA + PPRIPUSA)

$$DFROPUSA = DFRO_B0 + DFRO_PR * MGWHUUSA / D2WHUUSA$$
(A25)
+ DFRO_CO * (CORIPUSA + PSRIPUS + UORIPUSA)

Jet fuel output (JFROPUSA) is assumed to be a substitute in production of both gasoline and distillate (though statistical significance does not hold for the reciprocal relationship in the gasoline and distillate equations).

JFROPUSA = (JFRO_B0 + JFRO_CO * (CORIPUSA + PSRIPUS + UORIPUSA) (A26) + JFRO_P1 * MGWHUUSA/JKTCUUSA + JFRO_P2 * D2WHUUSA/JKTCUUSA + JFRO_D1 * D90ON + JFROPAD) * JFROPMU

Residual fuel oil output (RFROPUSA) is not significantly associated with relative petroleum product prices.

 $RFROPUSA = RFRO_B0 + RFRO_CO * (CORIPUSA + PSRIPUS + UORIPUSA)$ (A27)

30

Refinery output of LPGs (LGROPUSA) is found to be in part a byproduct to the production of gasoline.

 $LGROPUSA = LGRO_B0 + LGRO_CO * (CORIPUSA + PSRIPUS + UORIPUSA)$ (A28) + LGRO_MG * MGROPUSA

The refinery output of "other" petroleum products (PSROPUSA) presents problems in modeling because of the variety of products carried under its umbrella. For simplicity, refinery output of other petroleum products is posited to be a function of its own demand, in addition to being directly related to primary refinery inputs.

 $PSROPUSA = PSRO_B0 + PSRO_CO * (CORIPUSA + PSRIPUS + UORIPUSA)$ (A29) + PSRO_TC * PSTCPUSA

Balancing Refinery Outputs With Refinery Inputs

Refinery outputs are scaled upwards or downwards based on total refinery inputs and refinery volume processing gain. A volume ratio of the average annual refinery processing gain (PAGLPUS) to average annual refinery inputs of crude oil and unfinished oils (CORIPUS + UORIPUS) is calculated. The value of the refinery processing gain fraction, DUMYZWPG, for the last full year of the estimation period is retained for the forecast period. Total estimated refinery input plus processing gain is then multiplied by calculated refinery output shares for corrected refinery output volumes.

PAGLPUS = DUMYZWPG * (CORIPUS + UORIPUS)

PAROPUSX = MGROPUSA * MGROPUSS + DFROPUSA * DFROPUSS + JFROPUSA * JFROPUSS + LGROPUSA * LGROPUSS + PSROPUSA * PSROPUSS + RFROPUSA * RFROPUSS

PAROBAL = (PARIPUS + PAGLPUS)/PAROPUSX

MGROPUS = MGROPUSA * MGROPUSS * PAROBAL DFROPUS = DFROPUSA * DFROPUSS * PAROBAL JFROPUS = JFROPUSA * JFROPUSS * PAROBAL LGROPUS = LGROPUSA * LGROPUSS * PAROBAL PSROPUS = PSROPUSA * PSROPUSS * PAROBAL RFROPUS = RFROPUSA * RFROPUSS * PAROBAL

Individual corrected refinery outputs are then summed to arrive at total refinery output:

PAROPUS = MGROPUS + DFROPUS + JFROPUS + LGROPUS + PSROPUS + RFROPUS

Crude Oil Supply and Net Crude Oil Imports

The sources of crude oil supply to U.S. refineries include domestic production, net imports, inventory change, and imbalances between imports for the Strategic Petroleum Reserve (SPR) and the SPR fill rate. Crude oil demand is represented by inputs to oil refineries, crude oil used directly as fuel, and crude oil losses. Imbalances between crude oil supply and demand are carried by an "unaccounted for" crude oil term.

Total domestic crude oil production (COPRPUS) is calculated from exogenously specified production in the lower-48 states (PAPRP48) and Alaska (PAPRPAK) by the identity:

COPRPUS = PAPRP48 + PAPRPAK

Net imports of crude oil other than for the Strategic Petroleum Reserve (CONXPUS) are estimated based on the levels of domestic crude oil production and refinery inputs of crude oil. Crude oil net imports reported in the *Petroleum Supply Monthly* are adjusted to include imbalances between imports for the SPR (COCQPUS) and the SPR fill rate (COQMPUS).

CONXPUS = COCQPUS - COQMPUS + CONX_RI * CORIPUS + CONX_PR * COPRPUS (A30)

Total crude oil net imports including the SPR (CONIPUS) are defined by the following identity:

CONIPUS = CONXPUS + COQMPUS

Crude oil gross exports (COEXPUS) are estimated as a constant with seasonal dummies and a dummy variable to capture a shift in crude exports beginning in 1990:

COEXPUS = COEX_B0 + COEX_D1 * D90ON (A31) + COEX_E1 * JAN + COEX_E2 * FEB + COEX_E3 * MAR + COEX_E4 * APR + COEX_E5 * MAY + COEX_E6 * JUN + COEX_E7 * JUL + COEX_E8 * AUG + COEX_E9 * SEP + COEX_E10 * OCT + COEX_E11 * NOV

Total crude oil gross imports (COIMPUS) are then defined by the identity:

COIMPUS = CONXPUS + COEXPUS + COQMPUS

The Strategic Petroleum Reserve (SPR) fill rate (COCQPUS) and SPR supply from domestic crude oil (CODQPUS) are exogenously specified.

For simulations, imports of crude for the SPR (COQMPUS) are set equal to the SPR fill rate (if positive) less purchases of domestic crude for the SPR.

CODQPUSX = CODQPUS COQMPUS = COCQPUS - CODQPUSX

The level of crude inventory excluding the SPR (COSXPUS) is exogenously specified in the model. The SPR inventory level (COSQPUS) is projected using the identity:

COSQPUS = COSQPUS_{.1} + COCQPUS * ZSAJQUS

Crude oil losses (COLOPUS) have historically been very small (less than 5,000 barrels per day since 1981 and less than 500 barrels per day since 1986). Strictly for the purpose of generating a plausible simulation mechanism for this variable, crude oil loss is estimated as a constant with seasonal variation:

 $COLOPUS = COLO_B0 + COLO_E1 * JAN + COLO_E2 * FEB + COLO_E3 * MAR$ (A32) + COLO_E4 * APR + COLO_E5 * MAY + COLO_E6 * JUN + COLO_E7 * JUL + COLO_E8 * AUG + COLO_E9 * SEP + COLO_E10 * OCT + COLO_E11 * NOV

Crude oil product supplied (COTCPUS), which primarily represents crude oil used directly as fuel, is set at a fixed value of 20,000 barrels per day in the Miscellaneous Petroleum Demands Model:

COTCPUS = 0.020

Balancing Crude Oil Supply and Demand

A balance between crude oil supply and demand is attained by the identity for unaccounted for crude oil (COUNPUS):

COUNPUS = COPRPUS + CONXPUS + COQMPUS - COCQPUS - COLOPUS - COTCPUS - CORIPUS - (COSXPUS - COSXPUS,)/ZSAJQUS

Field Production

Three other refinery inputs are also domestically produced: LPG's, pentanes plus, and other hydrocarbons/alcohols. LPG's and pentanes plus are recovered as liquids from natural gas production. Other hydrocarbons/alcohols represent several sources of refinery inputs such as methyl tertiary butyl ether (MTBE) produced by petrochemical plants.

Field production of LPGs (LGFPPUS) and pentanes plus (PPFPPUS) are calculated as NGL plant liquid production (NLPRPUS) times the LPG or pentane plus fraction of total NGL liquid production. The LPG and pentane plus fractions of NGL plant liquid production (PRNLSUS and PPNLSUS, respectively) are exogenously specified.

LGFPPUS = NLPRPUS * PRNLSUS PPFPPUS = NLPRPUS * PPNLSUS

NGL plant liquid production (NLPRPUS) is estimated from the difference in thermal content between wet and dry natural gas (see Natural Gas section for estimation of wet and dry natural gas production).

NLPRPUS = NLPR_B0 + NLPR_01 * (NGMPPUS * NAPRKUS - NGPRPUS * NGPRKUS) (A33)

An estimating equation for field production of other hydrocarbons/alcohol (OHRIPUS) is included in the model. However, projections from this equation are overridden by an exogenously specified forecast developed off-line to accommodate MTBE blending under the new winter oxygenated gasoline program:

OHRIPUS = OHRIPAD + (MGTCPUS + 10/ZSAJQUS) / 100

No field production of motor gasoline (MGFPPUS), distillate fuel (DFFPPUS), jet fuel (JFFPPUS), residual fuel (RFFPPUS), and unfinished oils and gasoline blending components (PSFPPUS) has been reported since December, 1988. In the model, field production of each of these streams is exogenously constrained to zero.

Inventories

Inventories of most raw materials and refined products for the forecast period are exogenously specified. Total raw material plus refined product inventory (PASXPUS) is specified by the following identity:

PASXPUS = COSXPUS + UOPSPUS + PPPSPUS + MGPSPUS + JFPSPUS + DFFSPUS + RFPSPUS + LGPSPUS + PSPSPUS + MBPSPUS

Inventory of pentanes plus (PPPSPUS) is estimated as a fixed stock with seasonal variation:

PPPSPUS = PPPS_B0 + PPPS_E1 * JAN + PPPS_E2 * FEB + PPPS_E3 * MAR (A34) + PPPS_E4 * APR + PPPS_E5 * MAY + PPPS_E6 * JUN + PPPS_E7 * JUL + PPPS_E8 * AUG + PPPS_E9 * SEP + PPPS_E10* OCT + PPPS_E11* NOV The inventory of propane (PRPSPUS) is estimated as a function of the total inventory of LPGs (LGPSPUS):

PRPSPUS = PRPS_LG * LGPSPUS

(A35)

Imports and Exports

The STIFS model estimates gross exports, calculates net imports by means of a material balance around refinery output, inventory change and product demand, and then derives gross imports as the sum of net imports and gross exports.

. .

	Gross Imports		Gross Exports		<u>Net Imports</u>	
Pentanes plus	PPIMPUS	-	PPEXPUS	=	PPNIPUS	
Unfinished oils	n/a		n/a		UONIPUS	
Motor gasoline	MGIMPUS	-	MGEXPUS	=	MGNIPUS	
Distillate fuel oil	DFIMPUS	-	DFEXPUS	=	DFNIPUS	
Residual fuel oil	RFIMPUS	-	RFEXPUS	=	RFNIPUS	
Jet fuel	JFIMPUS	-	JFEXPUS	=	JFNIPUS	
LPGs	LGIMPUS	-	LGEXPUS	=	LGNIPUS	
"Other" petroleum products	PSIMPUS	-	PSEXPUS	=	PSNIPUS	

Refined product gross exports are modeled as constants with seasonal variation. Gross exports of motor gasoline (MGEXPUS) and distillate fuel oil (DFEXPUS) include a dummy variable for all months from January 1990 on to capture the recent increase in exports of these two products. Gross exports of jet fuel (JFEXPUS) include dummy variables which represent the Desert Shield and Desert Storm months. Gross exports of other petroleum products (PSEXPUS) includes the inverse of time (1/TIME) and as independent variable.

PSEXPUS = PSEX_B0 + PSEX_E1 * JAN + PSEX_E2 * FEB + PSEX_E3 * MAR (A41) + PSEX_E4 * APR + PSEX_E5 * MAY + PSEX_E6 * JUN + PSEX_E7 * JUL + PSEX_E8 * AUG + PSEX_E9 * SEP + PSEX_E10 * OCT + PSEX_E11 * NOV + PSEX_ET * 1 / TIME PPEXPUS = PPEX_B0 + PPEX_E1 * JAN + PPEX_E2 * FEB + PPEX_E3 * MAR (A42) + PPEX_E4 * APR + PPEX_E5 * MAY + PPEX_E6 * JUN + PPEX_E7 * JUL + PPEX_E8 * AUG + PPEX_E9 * SEP + PPEX_E10 * OCT + PPEX_E11 * NOV + PPEX_E9 * SEP

Net imports of LPGs (LGNIPUS), pentanes plus (PPNIPUS), and unfinished oils (UONIPUS) are balanced around demand, inventory change, refinery inputs, refinery outputs (except unfinished oils), and field production (except unfinished oils). In the LPG import balance (LGNIPUS), demand is separated into LPGs excluding ethane (LXTCPUS) and ethane (ETTCPUS).

LGNIPUS = LXTCPUS + ETTCPUS + (LGPSPUS - LGPSPUS_{.1})/ZSAJQUS + LGRIPUS - LGROPUS - LGFPPUS PPNIPUS = PPTCPUS + (PPPSPUS - PPPSPUS_{.1})/ZSAJQUS + PPRIPUS - PPROPUS - PPFPPUS

UONIPUS = UOTCPUS + (UOPSPUS - UOPSPUS.)/ZSAJQUS + UORIPUS

Net imports of refined products are derived using a material balance identity around product demand, inventory change, refinery output, and field production:

MGNIPUS = MGTCPUS + (MGPSPUS - MGPSPUS₁)/ZSAJQUS - MGROPUS - MGFPPUS

DFNIPUS = DFTCPUS + (DFPSPUS - DFPSPUS_1)/ZSAJQUS - DFROPUS - DFFPPUS

RFNIPUS = RFTCPUS + (RFPSPUS - RFPSPUS.)/ZSAJQUS - RFROPUS - RFFPPUS

JFNIPUS = JFTCPUS + (JFPSPUS - JFPSPUS_1)/ZSAJQUS - JFFOPUS - JFFPPUS

Net imports of "other" petroleum liquids (PSNIPUS) includes miscellaneous petroleum products, petrochemical feedstocks, and motor and aviation gasoline blending components.

PSNIPUS = PSTCPUS - COTCPUS - PPTCPUS + MBTCPUS + ABTCPUS + (PSPSPUS - PSPSPUS_1)/ZSAJQUS + (MBPSPUS - MBPSPUS_1)/ZSAJQUS + PSRIPUS - PSROPUS - PSFPPUS - OHRIPUS

Where,

PSTCPUS - COTCPUS - PPTCPUS = AVTCPUS + KSTCPUS + LUTCPUS + ARTCPUS + SGTCPUS + FETCPUS

Two aggregate measures of imports are calculated using identities: gross imports of crude oil plus net imports of unfinished oils (RAIMPUS) and net imports of refined finished and unfinished products (PANIPUS):

RAIMPUS = CONXPUS + COEXPUS + UONIPUS

PANIPUS = MGNIPUS + DFNIPUS + RFNIPUS + JFNIPUS + LGNIPUS + PPNIPUS + UONIPUS + PSNIPUS

Average Quarterly and Annual Price Weights

Volumes of motor gasoline and distillate sales for resale (MGWHPUS and D2WHPUS, respectively) and residual fuel, jet fuel, and propane product sales to end users (RFESPUS, JKESPUS, and PRESPUS, respectively) are estimated and used to volume weight monthly product prices to arrive at average quarterly and annual prices:

MGWHPUS = MGWH_TC * MGTCPUS	(A43)
D2WHPUS = D2WH_B0 + D2WH_TC * DFTCPUS	(A44)
$RFESPUS \approx RFES_B0 + RFES_TC * RFTCPUS + RFES_D1 * D90ON$	(A45)
JKESPUS = JKES_TC * JFTCPUS	(A46)
PRESPUS = PRES_B0 + PRES_TC * PRTCPUS + PRES_D1 * D90ON	(A47)

These quantity weights are carried in the STIFS forecast and used to derive weighted average prices not because they are of particular interest themselves, but because they are used as quantity weights to calculate average quarterly or annual prices in EIA historical data publications, such as the *Monthly Energy Review*. Extending these weights into the forecast period ensures compatability of average price calculations across time and between EIA publications.

36

1

Electricity Supply and Demand

Overview

The STIFS model determines monthly aggregate U.S. electricity demand by four major sectors and provides a national-level supply balance. Electricity supply is determined in terms of electric utility net electricity generation (that is, electric power actually transmitted to the transportation grid by electric utility-owned power plants) by fuel type (coal, petroleum, natural gas, nuclear power, hydroelectric and other renewables, including wind and solar, wood and waste, and geothermal), net imports of electricity from Canada and Mexico, purchases of electricity by electric utilities from nonutilities (including cogeneration facilities and independent power producers), and a catchall category representing the total of transportation and distribution losses of electricity and other items, including any pure statistical discrepancy between electricity supply and electricity demand.

The electricity module of STIFS is structured so as to be highly recursive in the following sense. Demand by sector is determined, leading to a calculation of aggregate electricity demand. Working backward from total demand, a certain level of transmission and distribution losses is calculated. Demand plus transmission and distribution losses equals total electricity gross supply. Contributions from nun-utility power producers (NUPPs) and imports are subtracted from total supply. This yields a net electricity generation total for domestic electric utilities. Total generation and a number of exogenous factors determine most of the categories of electricity production by fuel source, except that relative prices help determine the portions of electricity generation contributed by petroleum and natural gas units.

Electricity Demand

Electricity demand is measured in terms of monthly sales divided by the number of days in the month. For electricity demand, reported monthly sales are not strictly related to consumption in the month that they are reported. This is because reported sales are on a billing-cycle rather than calendar-month basis. A reported month's electricity sales actually represents consumption by customers for part of the current month and part of the previous month. The simple assumption is made that the average of the current month's reported sales rate and the proceeding month's reported sales rate is a better estimate of the current month's actual demand rate than either the current month's or the proceeding month's reported sales rate taken by themselves. For all sectors this average is used in constructing estimating equations.

Total electricity demand is calculated for four broad sectors: (1) residential; (2) commercial; (3) industrial; and (4) "other"¹³. The main determinants of electricity demand in the STIFS estimating equations are: household growth (residential sector); changes in commercial employment (commercial); growth in manufacturing output (industrial) or in real GDP (other); weather (residential and commercial); general seasonal factors (commercial, industrial, and other); and trends in demand intensity (residential, commercial, and other). Trends in the intensity of electricity use in the aggregate sectors are the net result of several (possibly counteracting) factors, such as cumulative efficiency changes, demographic shifts (for example from geographical areas with typically high electricity intensities to areas with low ones, or vice versa), increased penetration of electricity-using equipment (such as computers, electronic appliances, etc.), and so on. STIFS does not account for the separate components of these long-run trend factors, but only provides a quantification of the net result.

The principal determinants of short-term demand variations in the residential sector (ESRCPUS) are weather factors, although a significant trend in consumption per household persists in raising demand from year to year. For weather, non-zero parameter values for heating degree-days (ZWHDPUS) or cooling degree-days (ZWCDPUS) are allowed only during the season in which particular weather impacts

¹³ "Other" is public street and highway lighting, other sales to public authorities, sales to railroads and railways, and interdepartmental sales.

are meaningful for the aggregate data.¹⁴ In addition, growth in the total number of households in the United States adds proportionately to electricity demand, other things being equal.

ESRCPUSO	$=$ (ESRC_01 + ESRC_05 * TIME	(A48)
	+ (ESRC_03 * ZWHDPUS * (OCT + NOV + DEC + JAN + FEB + MAR -	⊦ APR)
	+ ESRC_04 * ZWCDPUS * (MAY + JUN + JUL + AUG + SEP))/ZSAJQ	US
	+ ESRCPAD) * ESRCPMU	

Where,

ESRCPUSQ = Residential electricity sales, billion kilowatt hours per million homes per day TIME = Integer valued time trend variable ZSAJQUS = Number of days in each month

While weather also measurably affects demand in the commercial sector (ESCMPUS), this factor is less important than strong, persistent trends in the intensity of electricity use due to the continued introduction of electronic equipment such as microcomputers into the work place. For a given level of expected electricity use per commercial employee per day, average daily consumption of electricity in the commercial sector is expected to increase (or decrease) proportionately with employment, leading to a somewhat more cyclical short-run pattern of underlying demand (that is, demand corrected for noneconomic factors such as weather) than is to be expected in the residential sector.

ESCMPUSO	$= (ESCM_01 + ESCM_02 * TIME $ (A49)
	+ (ESCM_04 * ZWHDPUS * (OCT + NOV + DEC + JAN + FEB + MAR + APR)
	+ ESCM_05 * ZWCDPUS * (MAY + JUN + JUL + AUG + SEP))/ZSAJQUS
	+ ESCM_06 * JAN + ESCM_07 * FEB + ESCM_08 * MAR + ESCM_09 * APR
	+ $ESCM_{10} * MAY + ESCM_{11} * JUN + ESCM_{12} * JUL + ESCM_{13} * AUG$
	+ $ESCM_10^{-1}MAT + ESCM_11^{-1}JOIN + ESCM_12^{-1}JOIN + ESCM_10^{-1} * SEP + ESCM_15^{+}OCT + ESCM_16^{+}NOV + ESCMPAD) * ESCMPMU$
	$+$ ESCM_14 * SEP + ESCM_15 * OC1 + ESCM_16 * NOV + ESCM17D) * ESCM17D

Where,

ESCMPUSQ = Commercial electricity sales, billion kilowatt hours per million commercial employees per day

.

Of the major electricity demand sectors, industrial demand (ESICPUS) is undoubtedly the most cyclical, being so dependent upon movements in the level of industrial output (ZOMNIUS). Seasonal shifts in industrial demand are apparent, although typical measurements of weather variability generally do not serve particularly well as indicators of industrial electricity use.

ESICPUSB	= exp (ESIC_01 + ESIC_Q * log (ZOMNIUS) + ESIC_17 * DUM8083	(A50)
	+ ESIC_06 * JAN + ESIC_07 * FEB + ESIC_08 * MAR + ESIC_09 * APR	
	+ ESIC_10 * MAY + ESIC_11 * JUN + ESIC_12 * JUL + ESIC_13 * AUG	
	+ ESIC_14 * SEP + ESIC_15 * OCT + ESIC_16 * NOV) * ESICPMU + ESICI	PAD

Where,

ESICPUSB = Industrial electricity sales, billion kilowatt hours per day DUM8083 = Intercept dummy variable for all months, 1980 through 1983

For the "other" electricity demand category (ESOTPUS), the simple assumption that, other things being equal, demand growth will be proportional to growth in the overall economy (in terms of real GNP) provides a good basis for estimating short-run demand changes. Even in this sector, a trend in the intensity of electricity use (in terms of demand per dollar of GNP) is evident, as is regular seasonal

¹⁴ Thus, heating degree-days affects residential demand only from October through April. This technique is designed to improve the credibility of the separate estimates of heating and cooling degree-day effects on electricity demand, which might otherwise be confounded due to a close (negative) correlation between aggregate measured cooling and heating degree-days.

variation. The latter effect may be partly related to weather factors, but may also be due to a combination of other non-economic factors such as variations in the amount of daytime hours (which affects the extent of use of municipal lighting, for example).

ESOTPUSO	= (ESOT_01 + ESOT_02 * TIME + ESOT_D1 * D90ON	(A51)
	+ ESOT_06 * JAN + ESOT_07 * FEB + ESOT_08 * MAR + ESOT_09 * APR	
	+ ESOT_10 * MAY + ESOT_11 * JUN + ESOT_12 * JUL + ESOT_13 * AUG	
	+ ESOT_14 * SEP + ESOT_15 * OCT + ESOT_16 * NOV + ESOTPAD) * ESO	TPMU

Where,

ESOTPUSQ = Other electricity sales, billion kilowatt hours per million dollars GNP per day D90ON = Intercept dummy variable for all months, 1990 on

Identities for retransforming estimated adjusted electricity demand values into daily consumption rates:

ESRCPUSB	=	ESRCPUSQ * KQHMPUS
ESCMPUSB	=	ESCMPUSQ * EMCMPUS
ESOTPUSB	=	ESOTPUSQ * GNPQXUS

Where,

KQHMPUS	=	Housing stock, millions
EMCMPUS	=	Commercial sector employment, millions
GNPQXUS	=	Real gross national product

Total electricity demand adjusted for billing cycle lags (ESTCPUSB) is then determined by the identity:

ESTCPUSB = ESRCPUSB + ESCMPUSB + ESICPUSB + ESOTPUSB

Identities for retransforming estimated adjusted daily demand values into daily as-reported consumption rates (in billion kilowatt hours per day):

ESRCPUS ESCMPUS ESICPUS ESOTPUS	= =	(ESRCPUSB + ESRCPUSB ₋₁) / 2 (ESCMPUSB + ESCMPUSB ₋₁) / 2 (ESICPUSB + ESICPUSB ₋₁) / 2 (ESOTPUSB + ESOTPUSB ₋₁) / 2
ESTCPUS	=	ESRCPUS + ESCMPUS + ESICPUS + ESOTPUS

Electricity Supply

The supply of electricity as presented in STIFS refers to electricity produced or purchased and delivered to customers by regulated electric utilities. Excluded are any amounts of electricity supplied to customers directly from cogeneration facilities or from independent power producers. Thus, in STIFS, electricity supply (and demand) is understated by however much electricity is demanded by users who either generate their own electricity or purchase electricity directly from nonutility power producers (NUPPs). The main components of electricity supply are: net imports of electricity; purchases of electricity by electric utilities from NUPPs; and generation of electricity by electric utilities. Electric utility power generation is further broken down into components by power source (that is, by fuel category). Generation from coal, petroleum, natural gas, nuclear power, hydroelectric power and geothermal and other renewable power sources is covered.

Purchases of electricity from both nonutilities and net imports are taken as exogenous. A detailed description of the methodology for determining these variables for use in STIFS is provided in Appendix E.

Modeling the Canadian electricity market is outside of the scope of STIFS and, therefore, imports are taken as exogenous. A major factor in the availability of electricity imports from Canada is the condition of watersheds affecting Canadian hydroelectric output. The exogenous information on imports is constructed to take account of most-likely outcomes for such key Canadian supply factors. Special scenarios which include variations in assumed electricity imports can be used to investigate the significance of greater or lesser availability of Canadian supply.

In the short run, nonutility supply is determined largely by available capacity because additional nonutility supply (capacity) entails building new units which take a number of years to complete. The capacity information used to determine supply in the *Outlook* is obtained using the EIA Form 867, *Annual Nonutility Power Producer Report*, which reports existing and planned nonutility units. The utilization of this capacity (to calculate nonutility sales to utilities and generation for own-use) are determined based on history. However, the utilization of these units can be varied to reflect different scenarios.

Net electricity generation from nuclear power plants and from hydroelectric facilities is exogenous. Detailed analysis of short-term hydroelectric and nuclear power availability is done regularly for routine STIFS runs, but the results are generally assumed to be insensitive to any alternative scenarios considered in simulations of STIFS. For nuclear power, under normal circumstances, only unforseen downtime would alter expectations about generation patterns, since these plants provide almost exclusively baseload rather than incremental or peaking power capacity. A similar argument applies to hydroelectric power, except that the unknown factor is the relative abundance (or lack) of rainfall and snowpack to feed watershed levels. STIFS does not attempt to directly incorporate rainfall data. However, the forecasts from the current year are based on information from a sample of utilities representing eight geographic regions that use precipitation and reservoir level data. The assumption of normal precipitation is the basis for exogenous hydroelectric power projections for the second year of the forecast. Special scenarios which alter these exogenous assumptions can of course be created to check for the significance of altering nuclear and hydroelectric power availability. A more detailed description of the hydroelectric and nuclear power assumptions in STIFS is provided in Appendix E.

In the electricity model, the demand side is linked to the supply side by exploiting observed regularities in the difference between total electricity demand adjusted for billing-cycle lags (ESTCPUSB) and total electricity supply, as defined by the sum of the three main supply components mentioned above (ELNIPUS + ELNSPUS + ELEOPUS). This difference (TDLOPUSB) includes any transmission and distribution loss of electrical energy, errors related to the imperfect knowledge about the true nature of the billing-cycle problem, and other discrepancies related to the independent measurement of electricity supply and demand. It is assumed that, other things being equal, TDLOPUSB will be proportional to ESTCPUSB. More specifically, the ratio of the two variables (labeled TDLOFUSB) is modeled as being constant except for some regular seasonal variation. Once TDLOFUSB and TDLOPUSB are calculated, total electricity generated by electric utilities (ELEOPUS) can be determined.

TDLOFUSB	= PTND_01 + PTND_17 * D89ON + PTND_06 * JAN + PTND_07 * FEB + PTND_08 * MAR + PTND_09 * API + PTND_10 * MAY + PTND_11 * JUN + PTND_12 * JUL + PTND_13 * AUG + PTND_14 * SEP + PTND_15 * OCT + PTND_16 * NOV	
TDLOPUSB TDLOPUS	= - TDLOFUSB * ESTCPUSB = (TDLOPUSB + TDLOPUSB.1) / 2	
ELEOPUS	= ESTCPUSB + TDLOPUSB - ELNIPUS - ELNSPUS	

Where,

D89ON = Intercept dummy variable for all months, 1989 on

Given exogenous estimates for nuclear and hydroelectric power as well as functionally independent estimates for renewable sources of supply other than hydropower, the requirements for generation from fossil fuel sources can be determined.

Wind- and solar-powered electricity generation (WNEOPUS) as well as the wood and waste category (WWEOPUS) exhibit some seasonality but no discernible trend, on balance appearing to have remained about flat since 1989 or 1990.

WNEOPUS	= WNEO_01 + WNEO_D1 * D890N	(A53)
	+ WNEO_06 * JAN + WNEO_07 * FEF + WNEO_08 * MAR + WNEO_09 *	
	+ WNEO_10 * MAY + WNEO_11 * JUN + WNEO_12 * JUL + WNEO_13 *	AUG
	+ WNEO_14 * SEP + WNEO_15 * OCT + WNEO_16 * NOV	۰.
WWEOPUS	= WWEO_01 + WWEO_D1 * D900N	(A54)
	+ WWEO_06 * JAN + WWEO_07 * FEB + WWEO_08 * MAR + WWEO_09	* APR
	+ WWEO_10 * MAY + WWEO_11 * JUN + WWEO_12 * JUL + WWEO_13	* AUG
	+ WWEO_14 * SEP + WWEO_15 * OCT + WWEO_16 * NOV	

Where,

D90ON = Intercept dummy variable for all months, 1990 on

Geothermal-based generation (GEEOPUS) has exhibited a significant downward trend since at least 1987, reflecting the much less favorable tax treatment afforded such projects following the Tax Reform Act of 1986.

$$GEEOPUS = \exp (GEEO_01 + GEEO_02 * TIME)$$
(A55)

In contrast to the assumptions applied to nuclear power and hydroelectric generation, the amount of coalbased power generation (CLEOPUS) is assumed to be strongly influenced by changes in the overall load on the power generating system (ELEOPUS):

CLEOPUS	$= (CLEO_01 + CLEO_02 * ELEOPUS + CLEO_04 * HYEOPUS $ (A56)
	+ CLEO_03 * (ELEOPUS * CLCAPUS) + CLEO_05 * NUEOPUS
	+ CLEO_06 * JAN + CLEO_07 * FEB + CLEO_08 * MAR + CLEO_09 * APR
	+ CLEO_10 * MAY + CLEO_11 * JUN + CLEO_12 * JUL + CLEO_13 * AUG
	+ CLEO_14 * SEP + CLEO_15 * OCT + CLEO_16 * NOV + CLEOPAD) * CLEOPMU

Where,

CLCAPUS	=	Nameplate capacity of coal-fired generating units, total U.S.
HYEOPUS	=	Net electricity generated at hydroelectric power stations
NUEOPUS	=	Net electricity generated at nuclear power plants

The response of coal generating units to changes in overall system load is assumed to be affected by the level of capacity in place at any point in time. This effect is captured in the "CLEO_03*(ELEOPUS*CLCAPUS)" term in equation (A56). Given some level for aggregate system load (ELEOPUS), coal is affected negatively by significant changes in nuclear power and hydroelectric power availability. The extent of these negative effects will tend to vary across regions of the country, tending to limit the accuracy of the above equation when estimating the effects of highly localized changes in nuclear or hydroelectric power. STIFS, however, is linked to an offline regional electricity generation algorithm which can assist in lining up baseline estimates for coal-based generation to be more realistic than the standard aggregate predictions from the equation above.

Once coal-based generation is determined, the problem is to calculate how much of the remaining required electricity output (XGONG) is to be made up from natural gas-fired units as opposed to oil-fired units.

XGONG = ELEOPUS - CLEOPUS - HYEOPUS - NUEOPUS - WNEOPUS - WWEOPUS - GEEOPUS

The ratio of natural gas-based generation to natural gas- plus oil-based generation (NGEOSHRX) is assumed to be a function of the relative price of heavy oil and natural gas delivered to electric utilities (RFEUDUS/NGEUDUS) as well as seasonal factors relating to seasonal shifts in the peak-load patterns across regions.

NGEOSHRX	= (NGEO_01 + NGEO_P1 * (RFEUDUS / NGEUDUS)	(A57)
	+ NGEO_R1 * NGEOSHR.1 + NGEO_06 * JAN + NGEO_07 * FEB	
	+ NGEO_08 * MAR + NGEO_09 * APR + NGEO_10 * MAY + NGEO_11 * J	UN
	+ NGEO_12 * JUL + NGEO_13 * AUG + NGEO_14 * SEP + NGEO_15 * OC	T
	+ NGEO_16 * NOV + NGEOSAD) * NGEOSMU	

The adjustment to changes in the relative price of natural gas is not immediate because incremental purchases of natural gas by utilities are not always possible because gas suppliers must maintain sufficient supplies for priority (particularly residential) customers during peak heating periods. Thus, a partial adjustment mechanism is assumed to describe the aggregate response toward relative price shifts, so far as oil and gas fuel choice at electric utilities is concerned.

Because of quantity constraints on certain natural gas supply variables, electric utility gas generation share (NGEOSHRX) is calculated as a temporary variable, while STIFS checks for whether or not initially calculated total natural gas demand is within assumed deliverability limits. (See the Natural Gas Model section for details on gas supply constraints.) If initially calculated natural gas demand exceeds the supply constraints, demand cutbacks may automatically be enforced (in the electric utility and industrial sectors only), unless accommodating changes in inventory patterns or higher price trajectories (or both) are instituted. The STIFS model automatically calculates final demand and supply quantities that may be equal to or less than quantities initially calculated.

Once a final (possibly truncated) level for natural gas consumed at electric utilities (NGEUPUS) is determined in the natural gas portion of the model, final natural gas-fired generation is determined and oil-based generation (PAEOPUS) falls out as a residual.

NGEOPUS	= NGEUPUS / NGEOK	US
NGEOSHR	= NGEOPUS / XGONG	
PAEOPUS	= XGONG - NGEOPUS	

Where,

NGEOPUS	=	Net electricity generated at natural gas-fired power plants
NGEOSHR	=	Final gas-fired share of gas- plus oil-fired generation
PAEOPUS	=	Net electricity generated at petroleum-fired power plants

Components of oil-based generation (for residual fuel (RFEOPUS), distillate fuel oil (DKEOPUS), and petroleum coke (PCEOPUS)) are shared out according to average percentages of total oil-based generation.

RFEOPUS	=	RFSHR * PAEOPUS
DKEOPUS	~	DFSHR * PAEOPUS
PCEOPUS	=	PCSHR * PAEOPUS

RFSHR = total oil-based generation from residual fuel oil, given as 0.925DFSHR = total oil-based generation from distillate fuel oil, given as 0.07 PCSHR = total oil-based generation from petroleum coke, given as 0.005

42

On rare occasions, the share of total oil-based generation from distillate-fired units (DFSHR) has been seen to rise sharply to levels significantly above normal average levels, which are generally quite low. When certain regions of the country are faced simultaneously with little or no excess generating capacity and high gas demand by firm customers, extraordinarily high reliance on relatively expensive peaking units may be resorted to as a short-run electricity supply option. If this happens during the winter heating season (which would be expected to be the case), significant impacts on fuel oil prices and quantities could result depending on the general supply and demand conditions in those markets. The effect of any propensity to heavily utilize distillate fuel oil for electricity generation in times of extreme peak demand can be handled through special simulations of STIFS in which DFSHR is allowed to assume extreme values.

Natural Gas Supply and Demand

Natural Gas Demand

In STIFS, natural gas demand is calculated for six sectors, including four major consumption or end-use categories as well as estimated consumption of natural gas by pipelines and natural gas consumption by gas field and natural gas plant operations. In addition, a small amount of gas exports is accounted for. Weather (particularly in the residential and commercial sectors), household formation (residential sector), commercial employment (commercial sector), natural gas prices relative to competing fuel prices, and industrial output (industrial sector) are all important factors in the short-term determination of natural gas demand. In the electric utility sector, gas demand is affected by the level of overall electricity output, which is determined primarily by various factors affecting electricity demand, as well as the availability of hydroelectric and nuclear power, excess coal generating capacity, and, to some extent, the price of gas relative to competing fuel oil. Some longer term factors, such as gradually improving energy efficiency of residential and commercial buildings and of industrial processes, ongoing penetration of high-efficiency gas appliances, and demographic trends, marginally influence the aggregate gas intensity (that is consumption per customer or per unit of output) and thus aggregate gas consumption in the short term. These longer term factors are generally captured by the inclusion of time trends in the equations for gas demand. All gas demand relationships are estimated based on monthly data, with demand data being expressed in terms of consumption per day, to correct for varying days in months.

For some of the natural gas demand categories used in STIFS (as is also true for similar categories in the electricity model), reported monthly sales are not strictly the same as demand in the month that they are reported. This is because reported sales are on a billing-cycle basis, which generally records monthly electricity sales which were actually used by customers in part of the current month and part of the previous month. In STIFS, the simple assumption is made that the average of the current month's reported sales rate and the following month's reported sales rate is a better estimate of the current month's actual demand rate than either the current month's or the following month's reported sales rate taken by themselves. For all sectors this average is used in constructing estimating equations.

Because of quantity constraints on certain natural gas supply variables (described below), temporary variables (usually identified with either an "X" or "Z" as the last character in the variable name) are calculated for some of the natural gas demand quantities until STIFS checks for whether or not initially calculated demand is within assumed deliverability limits. If initially calculated demand exceeds the supply constraints, demand cutbacks may automatically be enforced (in the electric utility and industrial sectors only), unless accommodating changes in inventory patterns or higher price trajectories (or both) are instituted. The STIFS model automatically calculates final demand and supply quantities that may be equal to or less than quantities initially calculated.

For the residential and commercial sectors, natural gas demand is calculated by first determining the number of customers in each sector (NGNRPUSA and NGNCPUSA, respectively), and then estimating natural gas consumption per customer (NGRCPUSX and NGCCPUSX for the residential and commercial sectors respectively), and, finally, multiplying use per customer times the number of customers.

The consumption-per-customer variables are modeled as a function of weather, monthly dummy variables and, in the case of commercial demand, a time variable to capture intensity trends. The only weather variable assumed to affect residential and commercial natural gas demand is heating degree-days which, for obvious reasons, has discernible effects only during the heating season. For this aggregate model, the heating season is assumed to extend from October through April, although the length of the season would obviously vary from region to region. It is assumed that, for the customer equations, changes in associated economic variables (housing stock for residential, commercial employment for the commercial sector) elicit proportional changes in the number of customers, given constant relative gas prices. In addition, relative gas prices are assumed to affect the level of customers somewhat in the short term (by changing marginally the penetration rates for natural gas or by sufficiently changing the incentives for conversion from other fuels for some proportion of the customer base). Relative prices are entered into the customer relationships with a polynomial distributed lag specification, and with an expected negative sign associated with them.

Deseasonalized number of residential gas customers:

Reseasonalizing:

NGNRPUS = NGNRPUSA * NGNRPUSS

Adjusted residential natural gas demand per customer per day:

```
NGRCPUSX = (NGRC_01 (A59)
+ NGRC_HD * (ZGHDPUS/ZSAJQUS) * (OCT+NOV+DEC+JAN+FEB+MAR+APR)
+ NGRC_09 * MAY + NGRC_10 * JUN + NGRC_11 * JUL + NGRC_12 * AUG
+ NGRC_13 * SEP + NGRCPAD) * NGRCPMU
```

Adjusted residential gas consumption per day:

NGRCPUSB = NGRCPUSX * NGNRPUS

As-reported residential gas consumption per day:

NGRCPUS = 0.5 * NGRCPUSB + 0.5 * NGRCPUSB.

Where,

DFTCZUS	= Thermal content of distillate fuel oil
D2RCUUSA	 Seasonally adjusted retail heating oil price
KQHMPUS	= Housing stocks, millions
NGNRPUS	 Residential natural gas customers (millions)
NGNUKUS	= Thermal content of nonutility natural gas
NGRCPUSX	= Adjusted residential natural gas demand per customer per day
NGRCPUSB	= Adjusted residential natural gas demand per day
NGRCPUS	= As-reported residential natural gas demand per day
NGRCUUSA	= Seasonally adjusted residential natural gas price
ZGHDPUS	= Gas-weighted heating degree-days

Deseasonalized commercial gas customers:

```
NGNCPUSA = exp (NGNC_01 + NGNC_E * log(EMCMPUS) (A60)
+ (NGNUKUS/DFTCZUS)
* distlag(log((NGCCUUSA*NGNUKUS)/(D2WHUUSA*DFTCZUS)), degree=2, lags=12))
```

Reseasonalizing:

NGNCPUS = NGNCPUSA * NGNCPUSS

Where,

EMCMPUS	 Commercial employment, millions 	
NGCCUUS	= Commercial natural gas price, not seasonally adjusted	
NGNCPUS	= Commercial gas customers (millions)	
NGNCPUSA	 NGNCPUS seasonally adjusted 	

Adjusted commercial natural gas demand per customer per day:

```
NGCCPUSX = (NGCC_01 + NGCC_P * (NGCCUUS/WPCPIUS) (A61)
+ NGCC_HD * (ZWHDPUS/ZSAJQUS) * (OCT+NOV+DEC+JAN+FEB+MAR+APR)
+ NGCC_T * TIME + NGCC_D1 * DTO87 + NGCC_D1T * DTO87 * TIME
+ NGCC_D2 * D8912 + NGCC_09 * MAY + NGCC_10 * JUN + NGCC_11 * JUL
+ NGCC_12 * AUG + NGCC_13 * SEP + NGCCPAD) * NGCCPMU
```

Adjusted commercial gas consumption per day:

NGCCPU3B = NGCCPUSX * NGNCPUS

As-reported commercial gas consumption per day:

NGCCPUS = $0.5 * NGCCPUSB + 0.5 * NGCCPUSB_{.1}$

Where,

D8912	= Dummy intercept variable for December 1989
DTO87	= Dummy intercept variable for pre-1988 period
NGCCPUSX	= Adjusted commercial natural gas consumption per customer per day
NGCCPUSB	= Adjusted commercial natural gas consumption per day
NGCCPUS	= As-reported commercial natural gas demand per day
NGCCUUS	= Commercial natural gas price, not seasonally adjusted
NGCCUUSA	= Seasonally adjusted commercial natural gas price
WPCPIUS	= Producer price index, total
ZWHDPUS	= Population weighted heating degree-days

The demand for natural gas in the industrial sector (NGINPUS) is determined by first estimating the amount of gas consumed per unit of industrial output (NGINPUSZ), and multiplying that variable by the gas consumption-weighted manufacturing production index (QSIC), which is taken as exogenous to the STIFS system. For gas consumed in the industrial sector, the measure of output is a composite index of selected 2-digit SIC manufacturing output indexes (as defined by the Federal Reserve Board), where the weights for the composite index are fixed proportions of natural gas consumption estimated for the component 2-digit SIC manufacturing sectors. Given constant relative prices for industrial natural gas relative to residual fuel oil, consumption per unit of output is modeled as having a time trend, and seasonal variation. The aggregate time trend was seen to have shifted around 1987, and slope dummies for this effect were introduced into the estimating relationship.

NGINPUSZ = (NGIN_01 + NGIN_TD * TIME * D87ON + NGIN_T * TIME (A62) + NGIN_P * (NGICUUSA * NGNUKUS) / (RFTCUUSA * RFTCZUS) + NGIN_06 * FEB + NGIN_07 * MAR + NGIN_08 * APR + NGIN_09 * MAY + NGIN_10 * JUN + NGIN_11 * JUL + NGIN_12 * AUG + NGIN_13 * SEP + NGIN_14 * OCT + NGIN_15 * NOV + NGIN_16 * DEC + NGINPAD) * NGINPMU NGINPUSB = NGINPUSZ * QSIC NGINPUSX = 0.5 * NGINPUSB + 0.5 * NGINPUSB_1 Where,

NGICUUSA	= Seasonally adjusted industrial natural gas price adjusted
RFTCUUSA	= Seasonally adjusted residual fuel oil price
RFTCZUS	= Thermal content of residual fuel oil

The method for determining natural gas demand in the electric utility sector is shown in the description of the electricity model, but the balancing of total gas demand and supply quantities is described below.

Two relatively minor categories of gas demand, gas used in oil and gas well, field, and lease operations (NGLPPUS) and pipeline fuel (NGACPUS), are assumed to be directly related to the volume of gas demand for the four major demand categories.

Initial calculations for natural gas consumption at electric utilities (NGEUPUSX) are made by converting the initial estimate for natural gas-fired generation at electric utilities (NGEOPUSX) into fuel requirements using an assumed heat rate at gas-fired power plants (NGEOKUS) and an average thermal content for natural gas delivered to electric utilities (NGEUKUS).

NGEUPUSX = NGEOPUSX * NGEOKUS / NGEUKUS

A small amount of natural gas exports (NGEXPUS) is expected, in amounts that have averaged between about 200 million and 500 million cubic feet per day since 1989.

 $NGEXPUS = NGEX_01 + NGEX_D * D89ON + NGEX_08 * APR + NGEX_09 * MAY$ (A65)

Initial calculations for total natural gas demand (NGTCPUSX) are made by adding up individual sectoral components:

NGTCPUSX = NGACPUS + NGLPPUS + NGRCPUS + NGCCPUS + NGINPUSX + NGEUPUSX

Natural Gas Supply

Domestic natural gas supply in STIFS encompasses aggregate production (including conventional dry natural gas (NGPRPUS) as well as supplemental gaseous fuels (NGSFPUS), imports (NGIMPUS) and inventory change. Inventories in this case are so-called "working gas" portions of underground storage volumes (NGWGPUS).

In STIFS, the volume of natural gas supplied at any time is subject to certain constraints on the capacity of the domestic supply system to produce and deliver gas to markets. In particular, exogenous constraints on total domestic productive capacity and on total import capability are imposed so as to prevent production and imports from exceeding maximums calculated from detailed analysis outside of the STIFS system.¹⁵ STIFS allows for excess demand to feed through automatically to price changes that will move the system toward an equilibrium, but a combination of involuntary cutbacks and significantly higher spot

¹⁵ EIA's Natural Gas Productive Capacity for the Lower 48 States, 1982 Through 1993, DOE/EIA-0542(93), is the basis for the current assumptions about aggregate natural gas productive capacity. Consultations with EIA's Reserves and Natural Gas Division resulted in the current assumptions for maximum gas import capacity.

natural gas price trajectories may be required to prevent solutions in which demand exceeds available supply.

For more than 10 years, the domestic gas market has generally been in an excess supply situation¹⁶, but, because of the cumulative effect of low domestic exploration efforts, the current situation is one in which the probability of demand trends impinging upon total supply capacity (and thus causing sharp increases in spot and average gas prices) is significantly increased. The domestic gas industry has not experienced a situation of general natural gas supply tightness in a deregulated environment, and this makes projections for natural gas wellhead prices more uncertain than they may have been in the past. A significant amount of judgement is required to construct reasonable gas price forecasts for any given scenario, particularly in cases where upward demand shocks are considered.

An initial estimate of total natural gas volumes supplied from imports and domestic production (NGSUPX) is calculated as the difference between total initial demand plus exports (NGTCPUSX + NGEXPUS) and the sum of initial net storage withdrawals (NGNWPUSX), supplemental fuels (NGSFPUS) and an assumed discrepancy term (BALIT), which contains losses and unaccounted for gas supply and which is set at observed average seasonal levels:

NGSUPX = (NGTCPUSX + NGEXPUS) - (BALIT + NGNWPUSX + NGSFPUS)

Both the gas demand/supply discrepancy variable (BALIT) and the minor supply component known as supplemental fuels (NGSFPUS) are captured as simple seasonal variables:¹⁷

BALIT = (NGBL_01 + NGBL_06 * FEB + NGBL_07 * MAR + NGBL_08 * APR + NGBL_09 * MAY + NGBL_10 * JUN + NGBL_11 * JUL + NGBL_12 * AUG + NGBL_13 * SEP + NGBL_14 * OCT + NGBL_15 * NOV + NGBL_16 * DEC + BALITAD) * BALITMU (A66)

 $NGSFPUS = NGSF_01 + NGSF_06 * FEB + NGSF_07 * MAR + NGSF_08 * APR$ (A67) + NGSF_09 * MAY + NGSF_10 * JUN + NGSF_11 * JUL + NGSF_12 * AUG + NGSF_13 * SEP + NGSF_14 * OCT + NGSF_15 * NOV (A67)

End-of-month natural gas storage volumes follow a very regular seasonal pattern although particularly high (or low) consumption in a month may swing storage to below (or above) average seasonal levels. Initial values for natural gas storage (NGWGPUS) is calculated as a function of initial natural gas demand and seasonal factors, from which initial storage net withdrawals (NGNWPUS) are calculated:

NGWGPUSX = (NGWG_01 + NGWG_DM * (NGTCPUSX * ZSAJQUS) (A68) + NGWG_06 * FEB + NGWG_07 * MAR + NGWG_08 * APR + NGWG_09 * MAY + NGWG_10 * JUN + NGWG_11 * JUL + NGWG_12 * AUG + NGWG_13 * SEP + NGWG_14 * OCT + NGWG_15 * NOV + NGWG_16 * DEC + NGWGPAD) * NGWGPMU

NGNWPUSX = (NGWGPUSX₁ - NGWGPUSX) / ZSAJQUS

In the short run, natural gas production is a function of gas demand, although significant changes in

¹⁶ Energy Information Administration, Natural Gas Productive Capacity for the Lower 48 States, 1982 Through 1993, DOE/EIA-0542(93), (Washington, DC, 1993).

¹⁷ The discrepancy variable BALIT is given consideration because, based on recent historical experience, its expected value is far from zero, although it does tend to change sign over the course of the year and to have more or less consistent seasonal patterns. Setting this term at average seasonal values acknowledges a systematic component of measured supply (or demand) that is not otherwise specifically accounted for.

demand (aside from normal seasonal variations) would induce only a partial response in terms of current production, because there is some lead time required to bring shut-in or underutilized facilities up to capacity and because productive capacity is strictly limited in the short run. On a seasonally adjusted basis, initial natural gas production (NGPRPUSZ) is assumed to be a function of seasonally adjusted demand and the lag of seasonally adjusted gas production estimates:

 $NGPRPUSZ = (NGPR_01 + NGPR_R1 * NGPRPUSA_1 + NGPR_DM * NGTCPUSA$ (A69) + NGPRPAD) * NGPRPMU

Reseasonalizing initial gas production estimates:

NGPRPUSX = NGPRPUSZ * NGPRPUSS

Final natural gas production estimates (NGPRPUS) are then calculated as the minimum of maximum dry natural gas production capacity (NGPRMX) or the proportionate share of calculated initial production plus gross imports (NGSUPX):

NGPRPUS = min (NGPRMX, (NGPRPUSX / (NGPRPUSX + NGIMPUSX)) * NGSUPX)

Wet natural gas production (NGMPPUS) is assumed to be linearly related to dry gas production:

$$NGMPPUS = NGMP_01 + NGMP_PR * NGPRPUS$$
(A70)

Resetting deseasonalized production for the proceeding period:

NGPRPUSA = NGPRPUS / NGPRPUSS

Gross imports of gas into the United States have been rising steadily in recent years. On a seasonally adjusted basis, initial natural gas imports (NGIMPUSZ) is assumed to be a linear function of time (although estimated aggregate impacts of known pipeline capacity expansions at the U.S.-Canada border are added in forecasts as they become known, through the exogenous add factor NGIMPAD).

$$NGIMPUSZ = NGIM_01 + NGIM_T * TIME + NGIMPAD$$
(A71)

Reseasonalizing initial natural gas imports estimates:

NGIMPUSX = NGIMPUSZ * NGIMPUSS

Final estimated natural gas total imports (NGIMPUS) are then calculated as the minimum of maximum import capacity (NGIMMX) or the proportionate share of calculated initial production plus gross imports (NGSUPX).

NGIMPUS = min (NGIMMX, (NGIMPUSX / (NGPRPUSX + NGIMPUSX)) * NGSUPX)

Natural gas net imports (NGNIPUS) are calculated as an identity:

NGNIPUS = NGIMPUS - NGEXPUS

Final natural gas storage withdrawals (NGNWPUS) are calculated as: (during the fall and winter, when withdrawals are usually positive), the minimum of initial gas storage withdrawal estimates and the total excess of initial demand estimates over final supply (other than inventory change); or (during the spring and summer, when withdrawals are usually negative), the maximum of initial gas storage withdrawal estimates and the total excess of initial demand estimates over final supply (other than inventory change); or (during the spring and summer, when withdrawals are usually negative), the maximum of initial gas storage withdrawal estimates and the total excess of initial demand estimates over final supply (other than inventory change).

NGNWPUS = min (NGNWPUSX, (NGTCPUSX-BALIT-NGPRPUS-NGIMPUS+NGEXPUS-NGSFPUS)) * (NOV + DEC + JAN + FEB + MAR) + max (NGNWPUSX, (NGTCPUSX-BALIT-NGPRPUS-NGIMPUS+NGEXPUS-NGSFPUS)) * (1 - NOV - DEC - JAN - FEB - MAR)

End-of-month natural gas storage levels (NGWGPUS) are then determined by the identity:

NGWGPUS = NGWGPUS₁ - NGNWPUS * ZSAJQUS

Final total demand estimates (NGTCPUS), which will equal initial estimates provided that maximums for imports or domestic gas production are not exceeded, is calculated by the identity:

NGTCPUS = NGPRPUS + NGIMPUS - NGEXPUS + NGSFPUS + NGNWPUS + BALIT

Reseasonalizing gas demand:

NGTCPUSA = NGTCPUS / NGTCPUSS

Final industrial and electric utility gas demands (NGINPUS and NGEUPUS, respectively) are calculated as follows:

NGINPUS = NGINPUSX * (1 - (NGTCPUSX - NGTCPUS)/(NGINPUSX + NGEUPUSX))

NGEUPUS = NGEUPUSX * (1 + (NGTCPUS-NGTCPUSX)/(NGEUPUSX + NGINPUSX))

If, as in the case of gas curtailments, final industrial and utility natural gas demand is below initial (or unconstrained) levels, then increments to alternative (petroleum-based) fuels are assumed to make up the difference in energy requirements in the respective markets. In the electric utility sector, the energy deficit is proportionately allocated to residual fuel oil, distillate fuel oil and petroleum coke (see "Electricity Demand and Supply" below). In the nonutility industrial sector, the deficit is allocated proportionately to residual fuel oil and liquefied petroleum gases, where the proportions are based on estimates of the relative capabilities of industrial energy users to switch to these alternative fuels from natural gas (see the petroleum demand section above).¹⁸

¹⁸ Energy information Administration, *Manufacturing Fuel-Switching Capability*, DOE/EIA-0515(88), (Washington, DC, September 1991).

Coal Supply and Demand

Overview

The STIFS model determines total coal consumption (CLTCPUS) as the total of demand for three major sectors: (1) electric utilities (CLEUPUS); (2) coke plants (CLKCPUS); and (3) retail and general industry (CLZCPUS).

CLTCPUS = CLEUPUS + CLKCPUS + CLZCPUS

Supply elements appearing in the coal model (domestic production, imports, exports, and producer and distributor stocks) are exogenous. Forecasts for these components are provided by the Energy Information Administration's Office of Coal, Nuclear, Electric and Alternative Fuels, Coal Division, Data Analysis and Forecasting Branch. Total production of coal is the sum of each sector's consumption, minus stock withdrawals, plus coal exports, minus coal imports.

Electric Utility Coal Demand

The model for electric utility coal demand is discussed in the section on electricity supply. To translate coal generation requirements into coal consumption at electric utilities, a simple equation is used, which does not assume strict proportionality between coal input and electricity output, but measures changes in coal consumption due to changes in electricity requirements. This equation allows for a trend and seasonality in the average net conversion rate of coal to electric power. Seasonality arises from normal geographic shifts of electricity requirements from month to month from areas with newer, more efficient plants, or with access to higher quality coal, to areas with older, less efficient plants, or with access to lower quality fuel. Also, ambient atmospheric conditions (temperature extremes) may affect conversion loss rates, and these conditions can change significantly over the course of a year. Thus, consumption of coal at electric utilities (CLEUPUS) is expressed as follows:

CLEUPUS = CLEU_01 + CLEU_02 * CLEOPUS + CLEU_17 * DS2 + CLEU_18 * TIME + CLEU_06 * JAN + CLEU_07 * FEB + CLEU_08 * MAR + CLEU_09 * APR + CLEU_10 * MAY + CLEU_11 * JUN + CLEU_12 * JUL + CLEU_13 * AUG + CLEU_14 * SEP + CLEU_15 * OCT + CLEU_16 * NOV (A73)

Coking Coal Demand

Coking coal is used in the manufacture of coke, which fuels blast furnaces that produce molten iron for the production of steel. Thus, coking coal demand is derived from the demand for steel. Coke is only used in steel plants that employ basic oxygen furnaces or open-hearth furnaces. Determining the domestic demand for coking coal requires estimates of how much of coke demand will be satisfied from coke production, coke stocks, and net coke imports.

Coke demand (CCTCPUS) is derived from a forecast of total steel production (RSPRPUS):

CCTCPUS = K1 * K5 * RSPRPUS

- K_1 = ratio of coke consumption to total raw steel production, given as 0.436
- K_5 = ratio of raw steel production at basic oxygen furnaces to total raw steel production, given as 0.629

Net imports of coke (CCNIPUS) are derived as a fraction of total coke demand:

CCNIPUS = K2 * CCTCPUS

 K_2 = ratio of coke net imports to coke consumption, given as 0.0372

The change in coke stocks is derived as a fixed fraction of the change in coke demand:

CCSDPUS - CCSDPUS.₁ = $K_3 * (CCTCPUS - CCTCPUS._1)$

 K_3 = ratio of coke stock withdrawal to the change in coke consumption, given as 0.334

Total coke production is determined from the identity:

CCPRPUS = CCTCPUS - CCNIPUS + (CCSDPUS - CCSDPUS.)

Demand for coking coal is then estimated from total coke demand by the following production function:

CLKCPUS = K4 * CCPRPUS

 K_4 = ratio of coking coal consumption to coke production, given as 1.41;

The above relationships are combined into one reduced-form equation for coking coal demand in the STIFS model:

CLKCPUSX = K1 * (1-K2+K3) * K4 * K5 * RSPRPUS - RSPRPUS₋₁ * K1 * K3 * K4 * K5

The only remaining task for forecasting coking coal consumption is to provide an estimate of raw steel production (RSPRPUS). Seasonally adjusted raw steel production is estimated as a linear function of the change in manufacturing inventories (KRDRXUS), real fixed investment (I87RXUS), and a time trend:

 $RSPRPUSA = (RSP_01 + RSP_02 * KRDRXUS + RSP_03 * I87RXUS + RSP_04 * TIME$ (A74) + RSPRPAD) * RSPRPMU

And, reseasonalizing:

RSPRPUS = RSPRPUSA * RSPRPUSS

To ensure that the estimated value of coking coal consumption does not exceed a maximum monthly consumption capacity of 3.16667 million short tons, the following adjustment mechanism is used:

CLKCPUS = min[CLKCPUSX, (3.16667/ZSAJQUS)] CCTCPUSX = K1 * K5 * RSPRPUS CCSDPUS = CCTCPUSX * K3 * 3.0 * ZSAJQUS COKEBAL = CCTCPUSX - (CCPRPUS + CCNIPUS) - (CCSDPUS - CCSDPUS₋₁)/ZSAJQUS COKEBAL = Difference between coke supply and demand

CCTCPUS = CCTCPUSX - COKEBAL

Retail and General Industry Demand

Two equations are used to forecast coal consumption in the retail and general industry sector. One forecasts the consumption of coal in the industrial sector (excluding use at coke plants and synfuel plants), and the other forecasts consumption by the residential/commercial sector. Coal used in the manufacture

of synfuels (CLFCPUS) is assumed to remain constant at the first quarter 1992 level of 1.7 million tons per quarter.

Industrial sector coal consumption net of synfuels-related consumption (CLXCPUS) is modeled as a function of the coal-weighted industrial production index (ZOSIIUS) and time dummy variables:

CLXCPUS =(CLXC_01 + CLXC_02 * DUM84 + CLXC_03 * TREND84 (A75) + CLXC_04 * ZOSIIUS + CLXC_05 * JAN + CLXC_06 * FEB + CLXC_07 * MAR + CLXC_08 * APR + CLXC_09 * MAY + CLXC_10 * JUN + CLXC_11 * JUL + CLXC_12 * AUG + CLXC_13 * SEP + CLXC_14 * OCT + CLXC_15 * NOV + CLXCPAD) * CLXCPMU

Total industrial sector coal demand (CLYCPUS) is then determined using the identity:

CLYCPUS = CLFCPUS + CLXCPUS

Residential and commercial coal consumption (CLHCPUS) is a small and relatively stable portion of total retail and general industry coal consumption. It is modeled as follows as a function of U.S. population-weighted heating degree-days (ZWHDPUS) and time dummy variables:

CLHCPUS = (CLHC_01 + CLHC_02 * DUM84 + CLHC_03 * TREND84 (A76) + CLHC_04 * ZWHDPUS + CLHC_05 * JAN + CLHC_06 * FEB + CLHC_07 * MAR + CLHC_08 * APR + CLHC_09 * MAY + CLHC_10 * JUN + CLHC_11 * JUL + CLHC_12 * AUG + CLHC_13 * SEP + CLHC_14 * OCT + CLHC_15 * NOV + CLHCPAD) * CLHCPMU

Total retail and general industry coal consumption (CLZCPUS) is given by the identity:

CLZCPUS = CLYCPUS + CLHCPUS

Coal Inventories

After consumption of coal has been forecast for the various sectors, the only remaining element of total coal demand is stock withdrawals. Secondary coal stocks in each sector are estimated using partial stock adjustment equations that relate actual stocks to target stock levels. Target stock levels are derived from forecasts of consumption and exogenously specified target days-of-supply:

```
CLSESTAR = CLDESTAR * CLEUPUS
CLSKSTAR = CLDKSTAR * CLKCPUS
CLSOSTAR = CLDOSTAR * CLYCPUS
```

CLSEPUSX = CLSEPUS_{.1} + CLSA_E * (CLSESTAR - CLSEPUS_{.1}) CLSKPUSX = CLSKPUS_{.1} + CLSA_K * (CLSKSTAR - CLSKPUS_{.1}) CLSOPUSX = CLSOPUS_{.1} + CLSA_O * (CLSOSTAR - CLSOPUS_{.1})

CLSTPUSX = CLSEPUSX + CLSKPUSX + CLSOPUSX

CLSESTAR	= Target stock levels at electric utilities
CLSKSTAR	= Target stock levels at coke plants
CLSOSTAR	= Target stock levels at retail and general industry sector
CLDESTAR	= Target days of supply of stocks at electric utilities
CLDKSTAR	= Target days of supply of stocks at coke plants
CLDOSTAR	= Target days of supply of stocks at retail and general sector
CLSEPUS	= Stocks at electric utilities

CLSOPUS	= Stocks at retail and general industry sector
CLSKPUS	= Stocks at coke plants

A recursive adjustment is utilized to calculate final secondary stocks. Indicated production (CLPRPUSX) is calculated as the sum of total consumption (CLTCPUS), exports (CLEXPUS), change in producer stocks (CLDSPUS), and the change in total secondary stocks (CLSTPUS), minus imports (CLIMPUS). The factor is calculated to be the difference between the exogenous and indicated production divided by total secondary stocks. The factor is then applied to each estimated component of secondary stocks to determine the final values.

CLPRPUSX = CLTCPUS + (CLSDPUS - CLSDPUS.) / ZSAJQUS - (CLIMPUS - CLEXPUS) + (CLSTPUSX - CLSTPUS.) / ZSAJQUS CLSTBAL = 1 + (CLPRPUS - CLPRPUSX) * ZSAJQUS / CLSTPUSX CLSEPUS = CLSEPUSX * CLSTBAL CLSOPUS = CLSOPUSX * CLSTBAL CLSKPUS = CLSKPUSX * CLSTBAL

Total secondary coal stocks (CLSTCPUS) then represents the sum of stocks in each sector:

CLSTPUS = CLSEPUS + CLSOPUS + CLSKPUS

Energy Prices

Overview

This section discusses the methodology for forecasting the various energy prices published in the *Outlook*. The prices are important in their own right, because they are widely used for budget planning and other purposes by local government and corporate planners. These prices are also used in the projections of energy supply and demand discussed in the previous sections.

In these equations, the dependent price variables are seasonally adjusted *prior* to being deflated by a price index. If the variable ends in "A", such as *MGUCUUSA*, then the data for *MGUCUUS*, have been deseasonalized using seasonal factors (in this case, *MGUCUUSS*) from the U.S. Census, X-11 multiplicative seasonal adjustment routine.

Petroleum Prices

Crude Oil

The price of imported crude oil (RAIMPUS) is based on the Oil Market Simulation (OMS) model of the International and Contingency Information Division. Forecasts from the model are benchmarked to the most recent available data. The price of domestic crude oil (RACPUUS) is assumed to equal the imported price for the forecast period

The composite refiner acquisition cost of crude oil (RACPUUS), a weighted average of imported and domestic crude oil costs, is therefore assumed to equal the imported cost of oil. The RACPUUS variable is not seasonally adjusted in any of the price equations because its seasonality was not statistically significant.

Motor Gasoline

The wholesale price of gasoline (MGWHUUS) is estimated as a function of the dependent variable lagged 1-month, the refiners' acquisition cost of crude oil, the wholesale price index for non-energy products (WPIINUS) as a measure of inflation, and the day's supply of motor gasoline (MGPSPUSA.,/MGTCPUSA). In the forecast an add factor (MGWHUAD) incorporates the additional costs of blending oxygenates with motor gasoline to comply with the Clean Air Act Amendments of 1990.

MGWHUUSA = (MGWHP_01 + MGWHP_PC * RACPUUS + MGWHP_WI * WPIINUS + MGWHP_DS * MGPSPUSA.₁/MGTCPUSA + MGWHUAD) * MGWHUMU (A77)

The retail price of motor gasoline (MGUCUUSA) is estimated as a function of the dependent variable lagged 1 month, the wholesale price of motor gasoline, and the Consumer Price Index (CICPIUS) as a measure of inflation.

MGUCUUSA = (MGUCP_01 + MGUCP_R1 * MGUCUUSA.₁ + MGUCP_WH * MGWHUUSA + MGUCP_CI * CICPIUS + MGUCUAD) * MGUCUMU (A78)

And, reseasonalizing:

MGWHUUS = MGWHUUSA * MGWHUUSS MGUCUUS = MGUCUUSA * MGUCUUSS

Distillate Fuel Oil

The wholesale price of distillate fuel oil (D2WHUUSA) is estimated as a function of the price of crude oil (RACPUUS) and days supply of distillate fuel oil (DFPSPUSA.₁/DFTCPUSA):

 $D2WHUUSA = (D2WHP_01 + D2WHP_PC * RACPUUS$ $+ D2WHP_DS * DFPSPUSA_1/DFTCPUSA + D2WHUAD) * D2WHUMU$ (A79)

Retail distillate prices (D2RCUUSA) are estimated as a function of the dependent variable lagged 1 month, the wholesale price of distillate fuel oil, and the Producer Price Index as a measure of inflation (WPCPIUS):

 $D2RCUUSA = (D2RCP_01 + D2RCP_R1 * D2RCUUSA_1 + D2RCP_WH * D2WHUUSA$ (A80) + D2RCP_WN * WPIINUS + D2RCUAD) * D2RCUMU (A80)

And, reseasonalizing:

D2WHUUS = D2WHUUSA * D2WHUUSS D2RCUUS = D2RCUUSA * D2RCUUSS

Diesel Fuel

The price of diesel fuel, excluding federal and state taxes (DSTCUUSA) is estimated a function of the price of crude oil (RACPUUS), days supply of distillate fuel oil (DFPSPUSA_{.1}/DFTCPUSA), and the consumer price index (CICPIUS), to account for inflation. A dummy variable (D9001) captures the effect of the severe winter in January 1990. In the forecast an add factor (DSTCUAD) incorporates the additional costs of low sulfur requirements to comply with the Clean Air Act Amendments of 1990:

DSTCUUSA = (DSTCP_01 + DSTCP_PC * RACPUUS + DSTCP_CI * CICPIUS + DSTCP_DS * DFPSPUSA.₁/DFTCPUSA + DSTCP_D1 * D9001 + DSTCUAD) * DSTCUMU (A81)

And, reseasonalizing:

DSTCUUS = DSTCUUSA * DSTCUUSS

Federal and state taxes (DSTXUUS), are then added to the retail price. Diesel taxes, in cents per gallon, are from the table "Federal and State Motor Fuel Taxes" in Table EN1 of the *Petroleum Marketing Monthly*, (DOE/EIA-0380). In the forecast, taxes are assumed to increase a rate of one cent per year.

DSRTUUS = DSTCUUS + DSTXUUS

Residual Fuel Oil

Retail residual fuel oil prices (RFTCUUS) are estimated as a function of the crude oil price (RACPUUS), days supply of residual fuel oil (RFPSPUS₁/RFTCPUS), and 11 monthly seasonal dummy variables. In the forecast, an add (negative) factor (RFTCUAD) incorporates the structural decline of the residual fuel oil market.

```
RFTCUUS = (RFTCP_01 + RFTCP_PC * RACPUUS + RFTCP_RF * RFPSPUS_1/RFTCPUS (A82)
+ RFTCP_06 * JAN + RFTCP_07 * FEB + RFTCP_08 * MAR + RFTCP_09 * APR
+ RFTCP_10 * MAY + RFTCP_11 * JUN + RFTCP_12 * JUL + RFTCP_14 * SEP
+ RFTCP_15 * OCT + RFTCP_16 * NOV + RFTCP_17 * DEC
+ RFTCUAD) * RFTCUMU
```

The deseasonalized price of residual fuel oil to electric utilities (RFEUDUSA), in dollars per million Btu, is calculated by dividing seasonally adjusted retail residual fuel price (RFTCUUSA), in dollars per barrel, by the heat content for residual fuel oil (6.287 million Btu per barrel).

RFTCUUSA = RFTCUUS / RFTCUUSS RFEUDUSA = RFTCUUSA / RFTCZUS * .42 + .20

And, reseasonalizing:

RFEUDUS = RFEUDUSA * RFEUDUSS

Jet Fuel

The average retail price of kerosene jet fuel (JKTCUUSA) is estimated as a function of the dependent variable lagged 1 month, the price of crude oil (RACPUUS), the wholesale price index for non-energy products as a measure of inflation (WPIINUS), and a dummy variable (DUMCOLD) representing the period of December 1989 through January 1990, when cold weather caused all petroleum product prices to surge.

 $JKTCUUSA = (JKTCP_01 + JKTCP_R1 * JKTCUUSA_1 + JKTCP_PC * RACPUUS$ (A83) + JKTCP_WN * WPIINUS + JKTCP_D1 * DUMCOLD + JKTCUAD) * JKTCUMU

And, reseasonalizing:

```
JKTCUUS = JKTCUUSA * JKTCUUSS
```

Propane

The average retail price of propane (PRTCUUSA) is estimated as a fuction of the dependent variable lagged 1 month, the price of a competing fuel, diesel fuel (D2RCUUSA), and the wholesale price index for non-energy products as a measure of inflation (WPIINUS):

 $PRTCUUSA = (PRTCP_01 + PRTCP_R1 * PRTCUUSA_1 + PRTCP_WI * WPIINUS$ (A84) + PRTCP_D2 * D2RCUUSA + PRTCUAD) * PRTCUMU

And, reseasonalizing:

PRTCUUS = PRTCUUSA * PRTCUUSS

Producer Price Index for Petroleum Products

The deseasonalized producer price index for petroleum products (WP57IUS) is estimated as a function of the refiner (wholesale) price of gasoline (MGWHUUSA), the price of diesel fuel oil (DSTCUUSA), and the price of kerosene jet fuel (JKTCUUSA):

WP57IUS = WP57P_01 + WP57P_MG * MGWHUUSA + WP57P_DS * DSTCUUSA + WP57P_JK * JKTCUUSA (A85)

Natural Gas, Electricity, and Coal Prices

Natural Gas Wellhead Price

The spot price of natural gas (NGSPUUS) is estimated as a function of a 1-month lag of natural gas underground storage (NGWGPUS), the price of residual fuel oil, a competitor fuel (RFTCUUS), and 11 monthly seasonal dummy variables:

NGSPUUS = (NGSPP_01 + NGSPP_WG * NGWGPUS_1 + NGSPP_RF * RFTCUUS (A86) + NGSPP_06 * JAN + NGSPP_07 * FEB + NGSPP_08 * MAR + NGSPP_09 * APR + NGSPP_10 * MAY + NGSPP_11 * JUN + NGSPP_12 * JUL + NGSPP_14 * SEP + NGSPP_15 * OCT + NGSPP_16 * NOV + NGSPP_17 * DEC + NGSPP_R1 * NGSPUUS_1 + NGSPUAD) * NGSPUMU

The wellhead price of natural gas (NGWPUUS) is estimated as a function of the spot price of natural gas (NGSPUUS), the dependent variable lagged one month, and 11 monthly seasonal dummy variables.

Natural Gas Price to Electric Utilities

The natural gas price to electric utilities (NGEUDUSA) is estimated as a function of the wellhead price (NGWPUUSA), the dependent variable lagged 1 month, and the price of a competing fuel, residual fuel oil to electric utilities (RFEUDUSA).

 $NGEUDUSA = NGEUP_01 + NGEUP_R1 * NGEUDUSA_1$ (A88) + NGEUP_WP * NGWPUUSA + NGEUP_RF * RFEUDUSA + NGEUDAD

Where, NGWPUUSA = NGWPUUS / NGWPUUSS

And, reseasonalizing:

NGEUDUS = NGEUDUSA * NGEUDUSS

Residential Natural Gas Price

The price of natural gas to residential consumers (NGRCUUSA) is assumed to be a function of the wellhead price (NGWPUUSA), the dependent variable lagged 1 month, and an index of inflation (WPIINUS):

 $NGRCUUSA = (NGRCP_01 + NGRCP_R1 * NGRCUUSA_1 + NGRCP_WI * WPIINUS$ (A89) + NGRCP_NP * NGWPUUSA_1 + NGRCUAD) * NGRCUMU

And, reseasonalizing:

NGRCUUS = NGRCUUSA * NGRCUUSS

58

Commercial Natural Gas Price

The price of natural gas to commercial users (NGCCUUSA) is assumed to be a function of the wellhead price (NGWPUUSA), the dependent variable lagged 1 month and an index of inflation (WPIINUS):

 $NGCCUUSA = (NGCCP_01 + NGCCP_R1 * NGCCUUSA_1 + NGCCP_WI * WPIINUS + NGCCP_WP * NGWPUUSA + NGCCUAD) * NGCCUMU$ (A90)

And, reseasonalizing:

NGCCUUS = NGCCUUSA * NGCCUUSS

Industrial Natural Gas Price

The price of natural gas to industrial users (NGICUUSA) is estimated as a function of the wellhead price (NGWPUUSA), and the dependent variable lagged 1 month:

 $NGICUUSA = (NGICP_01 + NGICP_R1 * NGICUUSA_1 + NGICP_WP * NGWPUUSA$ (A91) + NGICUAD) * NGICUMU

and, reseasonalizing:

NGICUUS = NGICUUSA * NGICUUSS

Residential Electricity Price

The residential electricity price (ESRCUUSA) is estimated as a function of the weighted price of fossil fuels and coal to electric utilities (AFUEUUS) lagged 2 months; a labor and material cost index (WPIINUS); a dummy variable for 1989 (D89) representing large increases in generation from the prior year in relatively inexpensive hydropower; a dummy variable (DUMELE) representing a slight structural shift upward in price after January 1991 caused by a decline in hydropower and increase in nuclear power; and a 12period lag of a 6 month moving average of the prime rate (PRIMEUS) as a measure of the cost of capital (PRIMELG). PRIMELG is defined as:

 $PRIMELG = (PRIMEUS_{.12} + PRIMEUS_{.13} + PRIMEUS_{.14} + PRIMEUS_{.15} + PRIMEUS_{.16} + PRIMEUS_{.17})/6$

AFUEUUS = (RFEUDUS * QRESD + NGEUDUS * QNGAS + CLEUDUS * QCOAL) / (QRESD + QNGAS + QCOAL)

Fossil fuel shares are defined as:

ORESD = RFEOPUS * RFEOKUS	(Generation from heavy oil times its heat rate)
QNGAS = NGEOPUS * NGEOKUS	(Generation from gas times its heat rate)
QCOAL = CLEOPUS * CLEOKUS	(Generation from coal times its heat rate)

Thus:

```
ESRCUUSA = (ESRCP_01 + ESRCP_IN * PRIMELG + ESRCP_WPI* WPIINUS
+ ESRCP_AF * AFUEUUS.<sub>2</sub> + ESRCP_D1 * DUMELE + ESRCP_D2 * DUM89
+ ESRCUAD) * ESRCUMU (A92)
```

And, reseasonalizing:

ESRCUUS = ESRCUUSA * ESRCUUSS

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

Utility Coal Price

The price of coal (CLEUDUSA) is estimated as a functio of transportation costs in the form of diesel prices (DSTCUUS), mining productivity in tons per miner-hour (CLMRHUS), and the dependent variable lagged 1 month. CLEUDAD is added to the forecast to account for structural changes due to stockpiling in anticipation of a coal miners strike in 1993, and increased costs due to the Clean Air Act.

ba kin

•

CLEUDUSA = (CLEUP_01 + CLEUP_R1 * LAG(CLEUDUSA) + CLEUP_MR * CLMRHUS + CLEUP_DS * DSTCUUS + CLE'JDAD) * CLEUDMU (93)

And, reseasonalizing:

CLEUDUS = CLEUDUSA * CLEUDUSS

-

Appendix A

Regression Results

10

.

.

Appendix A

Regression Results

Table A1. Automobile Fleet Fuel Efficiency (Seasonally Adjusted) (MPGA)

Equation	DF Model	DF Error	SSE	MSE	Root M	SE	R-Square	Adj R-Sq	Durbin-Watson
MPGA	9	179	20.10609	0.11232	0.3351	5	0.9740	0.9728	2.008
Parameter	Est	limate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	Label	el		
MEFF_01	10.91		0.22550 0.0006833	48.40 57.22	0.0001 0.0001		constant co		
MEFF_T MEFF_D02	0.60	9101 2276	0.33512	1.80	0.0740	MPGA	Coef of D84	12	
MEFF_D03 MEFF_D04	0.20	17054 19685 14281	0.34060 0.18798 0.16242	1.12 1.63	0.2661	MPG/	A coef for DR	VP89	
MEFF_D05 MPGA1_0	0.03	1256 2575	0.0094917 0.01887	3.29 -2.79	0.0012	PDL(N	MPGA1,1,1)	parameter for (parameter for (
MPGA1_1 MPGA_L1)8952	0.07583	1.44	0.1525			utocorrleation	

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 7701 TO 9208 $\,$

Table A2. Vehicle Miles Traveled (Seasonally Adjusted) (MVVMPUSA)

Equation	DF Model	DF Err	or SSE	MSE	Root MS	E	R-Square	Adj R-Sq	Durbin-Watson		
MVVMPUSA	7 1 Estimate	181	707038	3906.3	62.5003	0	0.9923	0.9921	2.304		
		Imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label					
MVMT 01	4495.60		124.71350	36.05	0.0001	MVV	MPUSA const	ant coef			
MVMT_YT		237522	0.0001357	17.50	0.0001	MVVMPUSA coef of YD87OUS*TIME					
MVMT D01	-126.64		52.99484	-2.39	0.017 9	MVVMPUSA coef of D8501					
MVMT_D02	186.49	6777	42.62524	4.38	0.0001		MPUSA coef				
MVVMPUS1_0	-66.73		16.19423	-4.12	0.0001	PDL(MVVMPUS1,1,1) parameter for (L)**0					
MVVMPUS1_1	50.62		29.87466	1.69	0.0919	PDL(MVVMPUS1,1,1) parameter for (L)**1					
MVVMPUSA_L		9760	0.05806	11.36	0.0001	MVVI	MPUSA 1st-o	rder autocorrel	ation coef		

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 7701 TO 9208

÷

Equation	DF Model	DF Error	SSE	MSE	E Root N	ASE	R-Square	Adj R-Sq	Durbin-Watsor
MUTCSUS	4	184	0.01989	0.0001	081 0.010	40	0.9978	0.9977	2.427
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITi	Lat	bel		
MSH_01	1.48	2042	0.33262	4.46	0.0001	мU	TCSUS constan	t coef	
MSH_T	-0.01	8193	0.0028205	-6.45	0.0001	MU	TCSUS coef of	TIME	
MSH_D01	-0.10	7930	0.06865	-1.57	0.1176	MU	TCSUS coef of	D88ON	
MUTCSUS_L1	0.96	6708	0.01936	49.92	0.0001	MU	TCSUS 1st-orde	er autocorrelati	ion coef

Table A3. Unleaded Motor Gasoline Demand Share (MUTCSUS)

RANGE of Fit: 7701 TO 9208

Table A4.	Log of Average	Realized	Airline	Ticket Price	e (Seasonally	Adjusted)
	(LDRYLD)					

Equation	DF Model	DF Error	SSE	MSE	E Root M	SE R-Square	Adj R-Sq	Durbin-Watsor
LDRYLD	4	125	0.06560	0.0005	248 0.0229	1 0.9580	0.9570	2.014
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITi	Label		
YLD0	2.62	8038	0.19932	13.18	0.0001	LDRYLD constant	coef	
YLD1	0.03	4336	0.03688	0.93	0.3536	LDRYLD coef for	JKTCUUS/WPC	PIUS
YLD2	-0.00	270911	0.0005323	-5.09	0.0001	LDRYLD coef for	TIME	
LDRYLD_1	0.90	8366	0.03979	22.83	0.0001	LDRYLD 1st-orde	r autocorrelation	n coef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8201 TO 9209

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson
LDRZM	7	158	0.06261	0.000396	62 0.01991	0.9942	0.9940	2.473
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	Label		
RZM0	8.53	3688	0.83812	10.19	0.0001	LDRZM constant co	oef	
RZM1	0.32	9191	0.05460	6.03	0.0001	LDRZM coef for LC	G(YD87OUS)	
RZM2	-0.05	3697	0.01399	-3.84	0.0002	LDRZM coef for DS	91	
LDRZM1_0	-0.17	3027	0.06166	-2.81	0.0056	PDL(LDRZM1,2,2)	parameter for	(L)**0
LDRZM1_1	0.024	4639	0.15152	0.16	0.8710	PDL(LDRZM1,2,2)	parameter for	(L)**1
LDRZM1_2	0.00	565498	0.07246	0.08	0.9379	PDL(LDRZM1,2,2)	parameter for	(L)**2
LDRZM L1	0.96	0546	0.02072	46.36	0.0001	LDRZM 1st-order a	utocorrelation	coef

Table A5. Log of Aircraft Traffic (Seasonally Adjusted) (LDRZM)

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 7901 TO 9209

Table A6. Log of Aircraft Available Ton-Miles (Seasonally Adjusted) (LDRTM)

Equation	DF Model	DF Error	SSE	MS	E F	loot MSE	R-Square	Adj R-Sq	Durbin-Watson
LDRTM	7	158	0.04505	0.0002	852	0.01689	0.9956	0.9954	1.973
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Appro Prob>		abel		
RTMO	-0.374	4828	0.61044	-0.61	0.540	1 L	DRTM constant co	ef	
RTM1	0.01	5634	0.0090363	1.73	0.085	6 L	DRTM coef for D8	082	
RTM2	0.00	054850	0.0002765	1.98	0.049) L	DRTM coef for TIM	ΛE	
LDRTM1_0	0.34	5193	0.05960	5.79	0.000	1 F	DL(LDRTM1,6,2)	parameter for	(L)**0
LDRTM1_1	-0.21	4071	0.05153	-4.15	0.000	1 F	PDL(LDRTM1,6,2)	parameter for	(L)**1
LDRTM1_2	0.03	2543	0.0082970	3.92	0.000	1 F	DL(LDRTM1,6,2)	parameter for	(L)**2
LDRTM_L1	0.56	9589	0.06663	8.55	0.000	1 L	DRTM 1st-order a	utocorrelation	coef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 7901 TO 9209

Equation	DF Model [OF Error	SSE	MSE	Root M	SE F	R-Square	Adj R-Sq	Durbin-Watsor
EFFSA	5	160	57761908	361011.9	600.842	68	0.9135	0.9113	1.955
Parameter	Estimat	6	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label			
EFF0	18022.53	1905	5.9	9.46	0.0001	EFFSA	constant coef		
EFF1	-832.555718	356	6.15523	-2.34	0.0206	EFFSA	coef for LFSA		
EFF2	40.897288	, -	.37654	29.71	0.0001	EFFSA	coef for TIME		
EFF3	-2310.54	581	1.14431	-3.98	0.0001	EFFSA	coef for D8912	2	
EFFSA_L1	0.274601	. (0.07668	3.58	0.0005	EFFSA	1st-order auto	correlation co	ef

Table A7. Average Aircraft Efficiency (Seasonally Adjusted) (EFFSA)

RANGE of Fit: 7901 TO 9209

Table A8. Transportation Sector Demand for Distillate Fuel Oil (DFACPUS)

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson
DFACPUS	14	127	0.41497	0.003267	7 5 0.05716	6 0.9216	0.9136	2.059
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label		
DFAC_01	0.08	5062	0.05425	1.57	0.1194	DFACPUS constant	coef	
DFAC_JQ	1.44	3216	0.05445	26.51	0.0001	DFACPUS coef of 2	OMNIUS	
DFAC_06	0.02	2896	0.02075	1.10	0.2719	DFACPUS coef of F	EB	
DFAC_07	0.08	5149	0.02331	3.65	0.0004	DFACPUS coef of N	/AR	
DFAC_08	0.12	8498	0.02394	5.37	0.0001	DFACPUS coef of A	APR .	
DFAC_09	0.12	9651	0.02411	5.38	0.0001	DFACPUS coef of N	ЛАҮ	
DFAC_10	0.18	3599	0.02416	7.60	0.0001	DFACPUS coef of J	IUN	
DFAC_11	0.20	2598	0.02418	8.38	0.0001	DFACPUS coef of J	IUL	
DFAC_12	0.15	7509	0.02418	6.52	0.0001	DFACPUS coef of A	AUG	
DFAC_13	0.14	8145	0.02414	6.14	0.0001	DFACPUS coef of S	SEP	
DFAC_14	0.13	1136	0.02447	5.36	0.0001	DFACPUS coef of C	DCT	
DFAC_15	0.07	7396	0.02388	3.24	0.0015	DFACPUS coef of N	VOV	
DFAC_16	0.07	2107	0.02134	3.38	0.0010	DFACPUS coef of D	DEC	
DFACPUS_L1	0.26	2525	0.08600	3.05	0.0028	DFACPUS 1st-orde	r autocorrelatio	on coef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8101 TO 9209

:

6

Equation	DF Model	DF Error	SSE	F.'SE	Root MSI	E R-Square	Adj R-Sq	Durbin-Watsor
DFHCPUS	14	102	0.42084	0.004125	9 0.06423	0.8833	0.8684	2.135
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITi	Label		
DFHC_01	0.38	6574	0.06088	6.35	0.0001	DFHCPUS constant		
DFHC_R1	0.63	2839	0.06059	10.44	0.0001	DFHCPUS coef of I		
DFHC W	0.03	8001	0.0055313	6.87	0.0001	DFHCPUS coef of 2		SAJQUS
DFHC_06	-0.05	2871	0.02890	-1.83	0.0702	DFHCPUS coef of		
DFHC 07	-0.11	9383	0.02887	-4.14	0.0001	DFHCPUS coef of		
DFHC_08	-0.23	4286	0.02983	-7.85	0.0001	DFHCPUS coef of		
DFHC_09	-0.22	7753	0.03344	-6.81	0.0001	DFHCPUS coef of	MAY	
DFHC_10	-0.17	6511	0.03655	-4.83	0.0001	DFHCPUS coef of	JUN	
DFHC_11	-0.19	8058	0.03709	-5.34	0.0001	DFHCPUS coef of	JUL	
DFHC 12		0257	0.03760	-3.73	0.0003	DFHCPUS coef of	AUG	
DFHC 13		7061	0.03625	-3.78	0.0003	DFHCPUS coef of		
DFHC 14		3577	0.03555	-2.63	0.0098	DFHCPUS coef of	OCT	
DFHC 15		3677	0.03342	-1.61	0.1113	DFHCPUS coef of	NOV	
DFHC_16	0.07	8417	0.03162	2.48	0.0148	DFHCPUS coef of	DEC	

Table A9. Residential and Commercial Sectors Demand for Distillate Fuel Oil (DFHCPUS)

Table A10. Industrial Sector Demand for Distillate Fuel Oil (DFICPUS)

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watsor
DFICPUS	15	101	1.18612	0.01174	0.10837	0.7612	0.7281	1.678
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label		
DFIC_01	0.70	0991	0.12970	5.40	0.0001	DFICPUS consta	nt coef	
DFIC_W		3102	0.0054685	4.22	0.0001	DFICPUS coef of	ZWHDDUS(OC	(TAPR)
DFIC_JQ	0.17	3328	0.13291	1.30	0.1952	DFICPUS coef of		
DFIC_P	-0.00	030225	0.0005232	-0.58	0.5647	DFICPUS coef of		ICUUS
DFIC_06	-0.02	1018	0.04870	-0.43	0.6669	DFICPUS coef of		
DFIC_07	-0.05	3814	0.04853	-1.11	0.2701	DFICPUS coef of		
DFIC_08	-0.26	5416	0.04894	-5.42	0.0001	DFICPUS coef of		
DFIC_09	-0.37	2213	0.04912	-7.58	0.0001	DFICPUS coef of		
DFIC_10	-0.44	2545	0.04910	-9.01	0.0001	DFICPUS coef of		
DFIC_11	-0.61	3190	0.04914	-12.48	0.0001	DFICPUS coef of		
DFIC_12	-0.44	5838	0.04933	-9.04	0.0001	DFICPUS coef o	f AUG	
DFIC_13	-0.42	8518	0.05080	-8.44	0.0001	DFICPUS coef o	f SEP	
DFIC_14		51719	0.05113	-4.92	0.0001	DFICPUS coef o		
DFIC_15		9508	0.05026	-4.77	0.0001	DFICPUS coef o	f NOV	
DFIC_16	-0.16	69590	0.05139	-3.30	0.0013	DFICPUS coef o	f DEC	

Table A11. No. 2 Diesel Fuel Demand

(DSTCPUS)	
-----------	--

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watsor
DSTCPUS	3	101	0.03664	0.000362	28 0.01905	5 0.8614	0.8587	2.334
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>lTl	Label		
DSTC_AC	0.04	2673	0.02347	1.82	0.0720	DSTCPUS coef of I	DFACPUS	
DSTC_01	0.14	8033	0.03613	4.10	0.0001	DSTCPUS constant	t coef	
DSTCPUS L1	0.98	7297	0.01715	57.57	0.0001	DSTCPUS 1st-orde	r autocorrelati	on coef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8101 TO 9208

Table A12. Non-Utility Demand for Residual Fuel Oil (RFNUPUS)

Equation	DF Model	DF Error	SSE	MSE	E Root	MSE	R-Square	Adj R-Sq	Durbin-Watson
RFNUPUS	11	117	1.03925	0.0088	825 0.0	9425	0.7738	0.7544	1.989
Parameter	Est	mate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	La	bel		
RFNU_01	2.112	2015	0.19620	10.76	0.0001	RF	NUPUS CONST.	ANT TERM	
RFNU_JQ	-0.043	3909	0.29540	-0.15	0.8821	RF	NUPUS coef of 2	ZOMNIUS	
RFNU_W	0.000)33420	0.00006349	5.26	0.0001	RF	NUPUS coef of 2	ZWHDPUS	
RFNU_W1	-0.000	06261	0.00005378	-1.16	0.2466	RF	NUPUS coef of I	HDDX85	
RFNU_P	-0.00	27006	0.0006400	-1.98	0.0495	RF	NUPUS coef of I	RFTCUUS/NG	ICUUS
RFNU_T	-0.00	C0870	0.0007777	-1.68	0.0951	RF	NUPUS coef of	TIMEX85	
RFNU_T1	-0.01	308	0.0021431	-5.28	0.0001	RF	NUPUS coef of I	PRE85XT	
RFNU_D1	-1.116	6472	0.20157	-5.54	0.0001	RF	NUPUS coef of I	POST85	
RFNU_D2	0.040	0420	0.03410	1.19	0.2383	Rf	NUPUS coef of I	DUMWTR	
RFNU_D3	-0.130	3612	0.09667	-1.38	0.1696	RF	NUPUS coef of I	D8809	
RFNUPUS_L1	-0.032	2826	0.09412	-0.35	0.7279	RF	NUPUS 1st-orde	r autocorrelati	on coef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8201 TO 9208

3 -

.

Equation	DF Model	DF Error	SSE	MSE	E Ro	ot MSE	R-Square	Adj R-Sq	Durbin-Watsor
ETTCPUSA	7	121	0.13163	0.0010	878 0	.03298	0.5842	0.5636	2.457
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>iT		bei ,		
ETH0	0.42	7947	0.03743	11.43	0.0001	ET	TCPUSA consta	nt coef	
ETH1	0.00	443494	0.0015380	2.88	0.0047	ET	TCPUSA coef fo	r D2WHUUSA	/NGEUDUSA
ETH2	-1.59	3763	0.76326	-2.09	0.0389	ET	TCPUSA coef fo	or D8184	
ETH3	0.34	3748	0.16593	2.07	0.0404	E1	TCPUSA coef fo	or TD8104	
ETH4	4.27	2131	4.14406	1.03	0.3046	El	TCPUSA coef fo	or D8990	
ETH5	-0.83	6604	0.80160	-1.04	0.2987	ET	TCPUSA coef to	or TD8990	
ETTCPUSA L1	0.61	4590	0.07327	8.39	0.0001	E1	TCPUSA 1st-ord	ter autocorrela	tion coef

Table A13. Demand for Ethane (Seasonally Adjusted) (ETTCPUSA)

Method of Estimation: OLS with 1st-order autocorrelation correction

RANGE of Fit: 8201 TO 9208

Table A14. Demand for Liquefied Petroleum Gas, Excluding Ethane (Seasonally Adjusted) (LXTCPUSA)

Equation	DF Model	DF Error	SSE	MSI	E Roo	t MSE	R-Square	Adj R-Sq	Durbin-Watson	
LXTCPUSA	5	CPUSA 5	135	0.73221	0.0054	238 0.0	7365	0.5191	0.5049	1.972
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	La	be!			
LXTO	0.294	4487	0.07014	4.20	0.0001	LX	(TCPUSA consta	nt coef		
LXT1	0.01	4400	0.0033117	4.35	0.0001	LX	TCPUSA coef fo	r (ZWHDPUS-	ZWHNPUS)/ZSAJQU	
LXT2	0.30	9779	0.07533	4.11	0.0001	LX	TCPUSA coef fo	r LAG(LXTCP	USA)	
LXT3	0.45	1470	0.07419	6.09	0.0001	LX	TCPUSA coef fo	r ZO28IUS	,	
LXT4	-0.19	5578	0.07932	-2.47	0.0149	LX	TCPUSA coef fo	r D9001		

Table A15.	Demand for Propane
	(PRTCPUS)

Equation	DF Model	DF Error	SSE	MSE	Root MSI	E R-Square	Adj R-Sq	Durbin-Watson
PRTCPUS	14	127	0.16890	0.001329	9 0.03647	0.9697	0.9666	2.215
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label		
PRTC_01	0.06	5204	0.04479	1.46	0.1479	PRTCPUS constan	t coef	
PRTC Q		7030	0.03241	24.59	0.0001	PRTCPUS coef for	LXTCPUS	
PRTC_06		0118	0.01218	1.65	0.1011	PRTCPUS coef for		
PRTC_07	-0.01	5655	0.01520	-1.03	0.3049	PRTCPUS coef for	FEB	
PRTC 08	-0.03	3033	0.01866	-1.77	0.0791	PRTCPUS coef for		
PRTC 09	-0.04	6484	0.02199	-2.11	0.0365	PRTCPUS coef for		
PRTC 10	-0.06	3248	0.02377	-2.66	0.0088	PRTCPUS coef for		
PRTC 11		1909	0.02390	-3.01	0.0032	PRTCPUS coef for		
PRTC 12		5129	0.02262	-2.88	0.0047	PRTCPUS coef for		
PRTC_13		27107	0.02234	-1.21	0.2272	PRTCPUS coef ior		
PRTC 14		32660	0.01904	-1.72	0.0887	PRTCPUS coef for	r SEP	
PRTC_15		20951	0.01609	-1.30	0.1953	PRTCPUS coef for	r OCT	
PRTC_16		27903	0.01282	-2.18	0.0314	PRTCPUS coef for	r NOV	
PRTCPUS_L1		55914	0.06753	9.71	0.0001	PRTCPUS 1st-ord	er autocorrelat	ion coef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8101 TO 9209

Table A16. Log of Demand for Petrochemical Feedstocks (Seasonally Adjusted) (LSFET)

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson
LSFET	4	101	0.76020	0.007526	7 0.08676	0.7384	0.7307	2.280
Parameter	Est	limate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label		
FETO FET1 FET2 LSFET_L1	-0.15	5572 8579 4819 19675	0.04624 0.22414 0.09084 0.08561	-19.37 5.97 -1.70 5.95	0.0001 0.0001 0.0914 0.0001			

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8401 TO 9210

_

71

Equation	DF Model	DF Error	SSE	MS	E Root	MSE	R-Square	Adj R-Sq	Durbin-Watson
LSMIS	9	120	0.12213	0.0010	178 0.03	190	0.8009	0.7877	1.518
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Lat	pel		
MISO	0.536	6406	0.01160	46.25	0.0001	LSI	VIS constant co	əf	
MIS1	0.290	0540	0.04962	5.86	0.0001	LSI	VIS coef of LOG	(ZOMNIUS)	
MIS2	-0.073	3873	0.03253	-2.27	0.0249	LSI	MIS coef of D83	D1	
VIS3	-0.063	3228	0.03219	-1.96	0.0518	LS	MIS coef of D84	12	
MIS4	-0.10	2823	0.03312	-3.10	0.0024	LSI	VIS coef of D86	11	
MIS5	-0.092	2418	0.03220	-2.87	0.0049	LS	MIS coef of D89	12	
_SMIS1_0	0.00	032431	0.02512	0.01	0.9897	PD	L(LSMIS1,6,2) p	arameter for (L)**0
LSMIS1_1	-0.02	5519	0.02622	-0.97	0.3324	PD	L(LSMIS1,6,2) p	arameter for (L)**1
LSMIS1_2	0.004	471822	0.0043404	1.09	0.2792	PD	L(LSMIS1,6,2) p	arameter for (L)**2

Table A17. Log of Demand for Miscellaneous Petroleum Products (Seasonally Adjusted) (LSMIS)

Table A18. Refinery Inputs of Crude Oil

(CORIPUSJ)

Equation	DF Model	DF Error	SSE	MSE	Root N	ISE	R-Square	Adj R-Sq	Durbin-Watsor
CORIPUSJ	18	123	9.13235	0.0742	5 0.2724	48	0.8914	0.8764	1.022
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Lab	el		
COR_B0	2.22	1079	0.75055	2.96	0.0037	CO	RIPUSJ constar	nt coef	
COR_MGPS	-0.01	7220	0.0027298	-6.31	0.0001		RIPUSJ coef for	•	
COR_DFPS		142226	0.0014186	1.00	0.3180		RIPUSJ coef for	•	JS)
CORI_E1	-0.19		0.11795	-1.66	0.0986		RIPUSJ coef for		
CORI_E2	-0.26		0.13728	-1.92	0.0568		RIPUSJ coef for		
CORI_E3	-0.23		0.14212	-1.65	0.1015		RIPUSJ coef for		
CORI_E4		198652	0.14948	-0.01	0.9894		RIPUSJ coef for		
CORI_E5	0.50		0.15415	3.26	0.0015		RIPUSJ coef for		
CORI_E6		7038	0.14415	5.46	0.0001		RIPUSJ coef for		
CORI_E7		5415	0.13364	5.58	0.0001		RIPUSJ coef for		
CORI_E8	0.63		0.12368	5.15	0.0001		RIPUSJ coef for		
CORI_E9		2243	0.12806	3.77	0.0003		RIPUSJ coef for		
CORI_E10		7640	0.12259	0.80	0.4273		RIPUSJ coef for		
CORI_E11	0.15	1333	0.12374	1.22	0.2237		RIPUSJ coef for		
CORIPUS1_0	0.19		0.05197	3.78	0.0002		L(CORIPUS1,6,		· ·
CORIPUS1_1		3520	0.10201	0.92	0.3610		L(CORIPUS1,6,		
CORIPUS1_2	-0.06		0.04253	-1.45	0.1508		L(CORIPUS1,6,		· ·
CORIPUS1_3	0.00	696184	0.0046843	1.49	0.1398	PDL	L(CORIPUS1.6.)	parameter f	or (L)**3

-

Equation	DF Model	DF Error	SSE	MSE	Root MSI	E R-Square	Adj R-Sq	Durbin-Watsor
UORIPUSJ	14	14 127	2.00593	0.01579	0.12568	0.5723	0.5285	1.466
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label		
UORI BO	-0.26	1467	0.23465	-1.11	0.2673	UORIPUSJ constar	nt coef	
UORI PA	0.05	1694	0.01378	3.75	0.0003	UORIPUSJ coef to		
UORI D1	0.17	6137	0.02679	6.58	0.0001	UORIPUSJ coef for		
UORI E1	-0.26	4312	0.05262	-5.02	0.0001	UORIPUSJ coef fo		
UORI E2	-0.27	8543	0.05283	-5.27	0.0001	UORIPUSJ coef fo		
UORI E3	-0.34	2023	0.05313	-6.44	0.0001	UORIPUSJ coef fo		
UORI E4	-0.22	1335	0.05406	-4.09	0.0001	UORIPUSJ coef fo		
UORI E5	-0.17	0216	0.05477	-3.11	0.0023	UORIPUSJ coef fo		
UORI E6	-0.09	5085	0.05324	1.79	0.0765	UORIPUSJ coef fo		
UORI_E7	-0.04	5715	0.05363	-u.^5	0.3956	UORIPUSJ coef fo		
UORI E8	-0.12	1837	0.05294	-2.30	0.0230	UORIPUSJ coef fo		
UORI E9	-0.13	9038	0.05387	-2.58	0.0110	UORIPUSJ coef fo		
UORI E10	-0.19	3841	0.05424	-3.57	0.0005	UORIPUSJ coef fo		
UORI E11	-0.07	1092	0.05454	-1.30	0.1947	UORIPUSJ coel fo	or NOV	

Table A19. Refinery Inputs of Unfinished Oils(UORIPUSJ)

RANGE of Fit: 8101 TO 9209

5

Table A20. Inputs to Primary Crude Distillation

(CODIPUS)

Equation	DF Model	DF Error	SSE	MSE	Root	MSE	R-Square	Adj R-Sq	Durbin-Watson
CODIPUSJ	2	103	0.21932	0.0021	293 0.04	4614	0.9956	0.9955	1.032
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Li	Label		
CODI_UO CODI_CO		4098 1631	0.02734 0.0011395	1.61 887.77	0.1098 0.0001		ODIPUSJ coef for ODIPUSJ coef for		
Method of Est RANGE of Fit	imation: OLS : 8401 TO 9209								

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watsor
LGRIPUSA	4	137	0.03758	0.00027	43 0.01656	6 0.5539	0.5441	1.825
Parameter	Est	limate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	Label		
LGRI BO	-0.02	3469	0.07746	-0.30	0.7624	LGRIPUSA consta	nt coef	
LGRI_MG		5398	0.0071971	2.14	0.0342	LGRIPUSA coef fo	r MGTCPUSA	
LGRI DL		5904	1.21960	3.93	0.0001	LGRIPUSA coef fo		
LGRIPUSA L1	0.53	9792	0.07575	7.13	0.0001	LGRIPUSA 1st-ord	ler autocorrela	tion coef

Table A21. Refinery Inputs of Liquefied Petroleum Gases (Seasonally Adjusted) (LGRIPUSA)

Table A22. Refinery Inputs of Pentanes Plus (Seasonally Adjusted)

(PPRIPUSA)

Equation	DF Model	DF Error	SSE	MSE	E Ro	ot MSE	R-Square	Adj R-Sq	Durbin-Watson
PRIPUSA	4	137	0.01413	0.0001	032 0	.01016	0.7289	0.7229	1.969
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx Prob>iT		abel		
PPRI_B0 PPRI_MG PPRI_DP PPRIPUSA_L1	5.91	2659 6147 5214 9942	0.04109 0.0044669 0.50796 0.08042	-2.26 3.61 11.65 4.35	0.0257 0.0004 0.0001 0.0001	PI	PRIPUSA constat PRIPUSA coef fo PRIPUSA coef fo PRIPUSA 1st-ord	r MGTCPUSA r DUMYRPP	

_ .. ____

¥-

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8101 TO 9209

,

Equation	DF Model	DF Error	SSE	MSE	Root	MSE	R-Square	Adj R-Sq	Durbin-Watson	
PSRIPUS	SRIPUS	6	135	0.38959	0.0028	859 0.053	372	0.5826	0.5671	2.061
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Lai	bel			
PSRI DP	6.20	2389	0.20744	29.90	0.0001		RIPUS coef for			
PSRI E2	-0.02	6790	0.01644	-1.63	0.1056		RIPUS coef for			
PSRI E3	0.05	8823	0.01644	3.58	0.0005	PS	RIPUS coef for	MAR		
PSRI E4	0.05	8763	0.01644	3.57	0.0005	PS	RIPUS coef for	APR		
PSRI_E9	-0.04	7853	0.01644	-2.91	0.0042	PS	RIPUS coef for	SEP		
PSRI_E10		1456	0.01713	3.00	0.0032	PS	RIPUS coef for	OCT		
Method of Esti	mation: OLS 8101 TO 9209									

Table A23. Refinery Inputs of Other Petroleum Products(PSRIPUS)

Table A24. Refinery Outputs of Motor Gasoline (Seasonally Adjusted)

(MGROPUSA)

Equation	DF Model	DF Error	SSE	MSE	Root	MSE	R-Square	Adj R-Sq	Durbin-Watsor
MGROPUSA	4	137	1.17777	0.0085	968 0.09	272	0.9104	0.9084	2.027
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Lal	bel		
MGRO_B0 MGRO_CO MGRO_PR MGROPUSA_L	0.34 0.69	3850 3487 1799 3346	0.27992 0.01984 0.14941 0.07164	4.19 17.31 4.63 7.72	0.0001 0.0001 0.0001 0.0001	MO	BROPUSA consi BROPUSA coef BROPUSA coef BROPUSA 1st-o	for refinery inp for MGWHUUS	SA/D2WHUUSA

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8101 TO 9209

Equation	DF Model	DF Error	SSE	MSE	Roc	t MSE	R-Square	Adj R-Sq	Durbin-Watsor
DFROPUSA	4	137	0.67012	0.0048	914 0.0	06994	0.8668	0.8638	1.858
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	La	bel		
DFRO_B0	0.29	9972	0.22389	1.34	0.1825		ROPUSA const		
DFRO_CO	0.24	6359	0.01585	15.55	0.0001		ROPUSA coef f		
DFRO_PR	-0.73	1765	0.11756	-6.22	0.0001		ROPUSA coef f		
DFROPUSA L1	0.60	0399	0.07134	8.42	0.0001	DF	FROPUSA 1st-or	der autocorrela	ation coet

Table A25. Refinery Outputs of Distillate Fuel Oil (Seasonally Adjusted) (DFROPUSA)

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8101 TO 9209

-

ų,

.

-

2

 $\stackrel{\sim}{=}$

1

a S

الألا المراد الأرا

-

Table A26. Refinery Outputs of Jet Fuel (Seasonally Adjusted) (JFROPUSA)

Equation	DF Model	DF Error	SSE	MSE	E Root MS	SE	R-Square	Adj R-Sq	Durbin-Watson
JFROPUSA	6	135	0.30850	0.0022	852 0.04780	0	0.9363	0.9340	2.422
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	Labe	1		
JFRO B0	0.46	4742	0.21021	2.21	0.0287	JFRC)PUSA consta	int coef	
JFRO_CO		0705	0.01390	5.09	0.0001			or refinery inpu	
JFRO P1	-0.17	5164	0.09049	-1.94	0.0550			or MGWHUUS	
JFRO P2	-0.30	3229	0.11705	-2.59	0.0106	JFRO	OPUSA coef fo	or D2WHUUSA	/JKTCUUSA
JFRO D1	0.07	8493	0.05223	1.50	0.1353	JFRO	OPUSA coef fo	or D90ON	
JFROPUSA L1	0.98	7923	0.01283	77.02	0.0001	JFRO	DPUSA 1st or	der autocorrela	tion coef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8101 TO 9209

5 G

76

Equation	DF Model	DF Error	SSE	MSE	5	Root MS	E R-Square	Adj R-Sq	Durbin-Watsor
RFROPUSA	3	138	0.30381	0.0022	015	0.04692	0.8862	0.8846	2.284
Parameter	Es	timate	Approx. Std Err	'T' Ratio	Appr Prob		Label		
RFRO_B0	0.40	07629	0.19127	2.13	0.03	48	RFROPUSA const		
RFRO_CO	0.07	6422	0.01313	5.82	0.00	01	RFROPUSA coef f		
RFROPUSA_L	1 0.99	94821	0.0081139	122.61	0.00	01	RFROPUSA 1st-or	rder autocorrela	ation coef

Table A27. Refinery Outputs of Residual Fuel (Seasonally Adjusted) (RFROPUSA)

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8101 TO 9209

Table A28. Refinery Outputs of Liquefied Petroleum Gases (Seasonally Adjusted) (LGROPUSA)

Equation	DF Model	DF Error	SSE	MSE	Roo	MSE	R-Square	Adj R-Sq	Durbin-Watson
LGROPUSA	4	137	0.06817	0.0004	976 0.0	2231	0.9543	0.9533	1.965
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	La	bel		
LGRO_B0 LGRO_MG LGRO_CO LGROPUSA_L1	0.02	2647 3556 5265 4000	0.10237 0.01586 0.0083635 0.02035	0.12 0.85 3.02 47.85	0.9019 0.3942 0.0030 0.0001	LG LG	ROPUSA consta ROPUSA coef fo ROPUSA coef fo ROPUSA 1st-or	or MGROPUS	uts

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8101 TO 9209

dh. I

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

Equation	DF Model	DF Error	SSE	MSE	E Root MS	E R-Square	Adj R-Sq	Durbin-Watsor
PSROPUSA	4	137	0.37108	0.0027	086 0.05204	4 0.8697	0.8669	2.173
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>iTí	Labei		
PSRO_B0	0.09	3876	0.16298	0.58	0.5656	PSROPUSA consta	int coef	
PSRO_CO	0.12	3611	0.01524	8.11	0.0001	PSROPUSA coef for	or refinery inpu	uts
PSRO_TC	0.24	5614	0.05384	4.56	0.0001	PSROPUSA coef for	or PSTCPUSA	
PSROPUSA L1	0.66	4425	0.06476	10.26	0.0001	PSROPUSA 1st-or	der autocorrela	ation coef

Table A29. Refinery Outputs of Other Petroleum Products (Seasonally Adjusted) (PSROPUSA)

Table A30. Net Imports of Crude Oil Excluding SPR (CONXPUS)

Equation	DF Model	DF Error	SSE	MSE	Root N	ISE	R-Square	Adj R-Sq	Durbin-Watson
CONXPUS	2	139	13.30569	0.09572	0.309	39	0.9389	0.9385	1.831
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob> Tl	Lat	bel		
CONX_RI CONX_PR	0.93 -0.91		0.01609 0.02476	58.14 -37.07	0.0001 0.0001	-	NXPUS coef of NXPUS coef of		
Method of Esti RANGE of Fit:	imation: OLS 8101 TO 9209								

78

1

. .

Table A31. Crude Oil Exports (COEXPUS)

Equation	DF Model	DF Error	SSE	MSE	Root MS	SE R-Square	Adj R-Sq	Durbin-Watson
COEXPUS	13	116	0.34818	0.003001	15 0.0547	9 0.3356	0.2668	1.854
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Labei		
COEX_B0	0.18	5690	0.01747	10.63	0.0001	COEXPUS constan	t coef	
COEX_E1	-0.02	5914	0.02395	-1.12	0.2635	COEXPUS coef for	JAN	
COEX_E2	0.01	9416	0.02395	0.81	0.4192	COEXPUS coef for	FEB	
COEX_E3	0.01	7332	0.02395	0.72	0.4707	COEXPUS coef for	MAR	
COEX_E4	-0.02	4821	0.02395	-1.04	0.3022	COEXPUS coef for	APR	
COEX_E5	-0.00	044337	0.02395	-0.02	0.9853	COEXPUS coef for	MAY	
COEX_E6	-0.01	2576	0.02395	-0.53	0.6006	COEXPUS coef for	JUN	
COEX_E7	-0.04	0674	0.02395	-1.70	0.0922	COEXPUS coef for	JUL	
COEX_E8	0.00	114855	0.02395	0.05	0.9618	COEXPUS coef for	AUG	
COEX_E9	-0.04	0885	0.02395	-1.71	0.0905	COEXPUS coef for	SEP	
COEX_E10	-0.03	8590	0.02450	-1.58	0.1180	COEXPUS coef for	OCT	
COEX_E11	0.00	271220	0.02450	0.11	0.9120	COEXPUS coef for	NOV	
COEX D1	-0.06	9606	0.01108	-6.28	0.0001	COEXPUS coef for	D90ON	

Table A32. Crude Oil Losses (COLOPUS)

_

Ú	υ	Ľ	U	P	U	S))

Equation	DF Model	DF Error	SSE	MSE	Root	MSE	R-Square	Adj R-Sq	Durbin-Watsor
COLOPUS	12	58	1.22133E-6	2.10575	E-8 0.000 ⁻	1451	0.0621	-0.1158	1.772
Parameter	Est	limate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	Label			
COLO_B0	0.00	0077419	0.0000649	1.19	0.2377	COLC	PUS constar	it coef	
COLO_E1	0.00	0067742	0.00008787	0.77	0.4439	COLC	PUS coef for	JAN	
COLO_E2	-1.06	468E-6	0.00008787	-0.01	0.9904	COLC	PUS coef for	FEB	
COLO_E3	0.00	0051613	0.00008787	0.59	0.5592	COLC	PUS coef for	MAR	
COLO_E4	0.00	0072581	0.00008787	0.83	0.4122		PUS coef for		
COLO_E5	0.00	0056989	0.00008787	0.65	0.5192	COLC	PUS coef for	MAY	
COLO_E6	0.00	0028136	0.00008787	0.32	0.7500	COLC	PUS coef for	JUN	
COLO_E7	0.00	0046237	0.00008787	0.53	0.6008	COLC	PUS coef for	JUL	
COLO_E8	-0.00	003978	0.00008787	-0.45	0.6524	COLC	PUS coef for	AUG	
COLO_E9	0.00	0072581	0.00008787	0.83	0.4122	COLC	PUS coef for	SEP	
COLO_E10	0.00	0019355	0.00008787	0.22	0.8264	COLC	OPUS coef for	OCT	
COLO_E11	9.24	7312E-6	0.00009178	0.10	0.9201	COLC	PUS coef for	NOV	

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

40

,

Equation	DF Model	DF Error	SSE	MSE	Root	MSE	R-Square	Adj R-Sq	Durbin-Watsor
NLPRPUS	2	139	0.46135	0.0033	191 0.0	5761	0.2226	0.2170	0.504
Parameter	Es	timate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	La	abel		
NLPR_B0 NLPR_01		31675 35966	0.08488 0.01363	12.51 6.31	0.0001 0.0001		LPRPUS constan LPRPUS coef for		NGPRPUS
NLPR_01 Method of Esti	0.08								NGPRPUS

Table A33. NGL Plant Liquid Production

(NLPRPUS)

Table A34. Pentanes Plus Inventory
(PPPSPUS)

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson
PPPSPUS	12	93	71.15176	0.76507	0.87468	3 0.4974	0.4379	0.437
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label		
PPPS_B0	7.28	9750	0.30925	23.57	0.0001	PPPSPUS constant	t coef	
PPPS_E1	-0.40	3083	0.42502	-0.95	0.3454	PPPSPUS coef for	JAN	
PPPS E2	-0.33	1639	0.42502	-0.78	0.4372	PPPSPUS coef for		
PPPS E3	-0.25	2306	0.42502	-0.59	0.5542	PPPSPUS coef for	MAR	
PPPS E4	0.27	8583	0.42502	0.66	0.5138	PPPSPUS coef for		
PPPS_E5	0.74	7472	0.42502	1.76	0.0819	PPPSPUS coef for	MAY	
PPPS_E6	1.33	3917	0.42502	3.14	0.0023	PPPSPUS coef for	JUN	
PPPS_E7	1.78	2361	0.42502	4.19	0.0001	PPPSPUS coef for	JUL	
PPPS_E8	1.87	4139	0.42502	4.41	0.0001	PPPSPUS coef for	AUG	
PPPS_E9	1.64	7917	0.42502	3.88	0.0002	PPPSPUS coef for	SEP	
PPPS_E10	1.04	7750	0.43734	2.40	0.0186	PPPSPUS coef for	OCT	
PPPS_E11	0.43	2125	0.43734	0.99	0.3257	PPPSPUS coef for	NOV	

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

Table A35.Propane Inventory(PRPSPUS)

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watsor
PRPSPUS	1	140	4083	29.16665	5.40062	.8058	0.8058	0.100
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	Label		
PRPS_LG	0.51	1516	0.0043762	116.89	0.0001	PRPSPUS coef for	LGPSPUS	
Method of Est RANGE of Fit:	imation: OLS : 8101 TO 9209							

Table A36. Motor Gasoline Exports (MGEXPUS)

Ξ

Equation	DF Model	DF Error	SSE	MSE	Root M	SE R-Square	Adj R-Sq	Durbin-Watson
MGEXPUS	13	116	0.04277	0.0003	687 0.0192	0 0.6448	0.6081	0.946
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITi	Label		
MGEX_B0	0.024	4242	0.0061325	3.95	0.0001	MGEXPUS constan	t coef	
MGEX_E1	-0.009	968982	0.0083904	-1.15	0.2505	MGEXPUS coef for	JAN	
MGEX_E2	-0.007	778434	0.0083904	-0.93	0.3555	MGEXPUS coef for		
MGEX_E3	0.000	073448	0.0083904	0.09	0.9304	MGEXPUS coef for		
MGEX_E4	-0.00	373067	0.0083904	-0.44	0.6574	MGEXPUS coef for	APR	
MGEX_E5	-0.00	652193	0.0083904	-0.78	0.4386	MGEXPUS coef for	MAY	
MGEX_E6	0.008	845645	0.0083904	1.01	0.3156	MGEXPUS coef for	JUN	
MGEX_E7	0.00	934671	0.0.33904	1.11	0.2676	MGEXPUS coef for	JUL	
MGEX_E8	0.00	734855	0.0083904	0.88	0.3829	MGEXPUS coef for	AUG	
MGEX_E9	-0.00	330739	0.0083958	-0.39	0.6944	MGEXPUS coef for	SEP	
MGEX_E10	-0.00	537589	0.0085875	-0.63	0.5325	MGEXPUS coef for	OCT	
MGEX_E11	0.00	102684	0.0085875	0.12	0.9050	MGEXPUS coef for	NOV	
MGEX D1	0.060	0182	0.0042860	14.04	0.0001	MGEXPUS coef for	D9009ON	

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson	
DFEXPUS	DFEXPUS	13	116	0.21811	0.001880	0.04336	0.6878	0.6555	1.251
Parameter	Es	timate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label			
DFEX B0	0.11	2721	0.01385	8.14	0.0001	DFEXPUS constant	coef		
DFEX_E1		062378	0.01895	0.03	0.9738	DFEXPUS coef for J	AN		
DFEX_E2	0.00	463988	0.01895	0.24	0.8070	DFEXPUS coef for F			
DFEX_E3	-0.04	6578	0.01895	-2.46	0.0154	DFEXPUS coef for N			
DFEX_E4	-0.05	59747	0.01895	-3.15	0.0021	DFEXPUS coef for A	APR .		
DFEX_E5	-0.04	13570	0.01895	-2.30	0.0233	DFEXPUS coef for M			
DFEX_E6	-0.06	61684	0.01895	-3.26	0.0015	DFEXPUS coef for J			
DFEX E7	-0.05	59309	0.01895	-3.13	0.0022	DFEXPUS coef for J			
DFEX E8	-0.05	55330	0.01895	-2.92	0.0042	DFEXPUS coef for A			
DFEX_E9	-0.0	57231	0.01896	-3.02	0.0031	DFEXPUS coef for S			
DFEX_E10	-0.0	50302	0.01939	-2.59	0.0107	DFEXPUS coef for (
DFEX_E11	-0.0	51886	0.01939	-2.68	0.0085	DFEXPUS coef for I			
DFEX_D1	0.14	41911	0.0096784	14.66	0.0001	DFEXPUS coef for I	D9009ON		

Table A37. Distillate Fuel Exports (DFEXPUS)

Table A38. Residual Fuel Exports (F

RFEXPUS	3)
---------	----

Equation	DF Model	DF Error	SSE	MSE	Root M	SE	R-Square	Adj R-Sq	Durbin-Watson
RFEXPUS	12	117	0.36034	0.003079	8 0.0555	50	0.1698 0.	0.0917	1.444
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>lTl	Label			
RFEX_B0	0.24	1915	0.01755	13.78	0.0001	RFEX	PUS consta	ant coef	<i>2</i> 0
RFEX_E1	-0.02	0751	0.02425	-0.86	0.3939	RFEX	PUS coef f	or JAN	
RFEX_E2	-0.03	6974	0.02425	-1.52	0.1300		PUS coef f		
RFEX_E3	-0.04	2105	0.02425	-1.74	0.0851		PUS coef f		
RFEX_E4	-0.03	3058	0.02425	-1.36	0.1754		PUS coef f		
RFEX_E5	-0.03	9609	0.02425	-1.63	0.1051		PUS coef f		
RFEX_E6	-0.05	8631	0.02425	-2.42	0.0171		PUS coef f		
RFEX_E7	-0.08	9750	0.02425	-3.70	0.0003		PUS coef f		
RFEX_E8	-0.04	4965	0.02425	-1.85	0.0662		PUS coef f		
RFEX_E9	-0.08	4978	0.02425	-3.50	0.0006		PUS coef f		
RFEX_E10	-0.05	3702	0.02482	-2.16	0.0325		PUS coef f		
RFEX_E11	-0.03	1289	0.02482	-1.26	0.2099	RFEX	PUS coef f	for NOV	

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

.

-

Equation	DF Model	DF Error	SSE	MSE	E Roc	t MSE	R-Square	Adj R-Sq	Durbin-Watsor	
JFEXPUS	IFEXPUS	14	115	0.04200	0.0003	652 0.0	1911	0.5086	0.4530	1.277
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Lab	el			
JFEX_B0	0.040)199	0.0061539	6.53	0.0001	JFE	XPUS constant	coef		
JFEX_E1	-0.00	996571	0.0085281	-1.17	0.2450	JFE.	XPUS coef for	JAN		
JFEX_E2	-0.01	3052	0.0085281	-1.53	0.1286	JFE:	XPUS coef for	FEB		
JFEX_E3	-0.024	4810	0.0084302	-2.94	0.0039	JFE.	XPUS coef for	MAR		
JFEX_E4	-0.02	5849	0.0084302	-3.18	0.0019	JFE	XPUS coef for	APR		
JFEXE5	-0.03	0912	0.0084302	-3.67	0.0004	JFE.	XPUS coef for	MAY		
JFEX_E6	-0.02	9966	0.0084302	-3.55	0.0006	JFE	XPUS coef for	JUN		
JFEX_E7	-0.02	5794	0.0084302	-3.18	0.0019	JFE.	XPUS coef for	JUL		
JFEX_E8	-0.02	3725	0.0084302	-3.17	0.0020	JFE	XPUS coef for	AUG		
JFEX_E9	-0.02	1786	0.0084302	-2.58	0.0110	JFE	XPUS coef for	SEP		
JFEX_E10	-0.02	0128	0.0085461	-2.36	0.0202	JFE	XPUS coef for	OCT		
JFEX_E11	-0.01	2427	0.0085461	-1.45	0.1486	JFE	XPUS coef for	NOV		
JFEX_D1	0.06	3289	0.01163	5.44	0.0001	JFE	XPUS coef for	DSHIELD		
JFEX_D2	0.08	7378	0.01417	6.17	0.0001	JFE	XPUS coef for	DSTORM		

Table A39. Jet Fuel Exports

(JFEXPUS)

RANGE of Fit: 8201 TO 9209

Table A40. Liquefied Petroleum Gases Exports

(LGEXPUS)

Equation	DF Model	DF Error	SSE	MSE	E Root MS	E R-Square	Adj R-Sq	Durbin-Watson
LGEXPUS	12	117	0.05062	0.0004	326 0.02080	0.0860	0.0001	1.226
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob≻lTl	Labei		
LGEX_B0	0.06	2053	0.0065773	9.43	0.0001	LGEXPUS constant	coef	
LGEX_E1	-0.00	645273	0.0090879	-0.71	0.4791	LGEXPUS coef for .	JAN	
LGEX_E2	-0.01	0830	0.0090879	-1.19	0.2358	LGEXPUS coef for I	FEB	
.GEX_E3	-0.00	358933	0.0090879	-0.39	0.6936	LGEXPUS coef for I	MAR	
_GEX_E4	-0.01	0603	0.0050879	-1.17	0.2457	LGEXPUS coef for a	APR	
.GEX_E5	-0.01	7615	0.0090879	-1.94	0.0550	LGEXPUS coef for I	MAY	
.GEX_E6	-0.01	5981	0.0090879	-1.76	0.0813	LGEXPUS coef for a	JUN	
LGEX_E7	-0.01	8831	0.0090879	-2.07	0.0404	LGEXPUS coef for	JUL	
LGEX_E8	-0.01	7057	0.0090879	-1.88	0.0630	LGEXPUS coef for	AUG	
LGEX E9	-0.01	6680	0.0090879	-1.84	0.0690	LGEXPUS coef for	SEP	
_GEX_E10	-0.01	9976	0.0093017	-2.15	0.0338	LGEXPUS coef for	ОСТ	
LGEX E11	-0.01	3835	0.0093017	-1.49	0.1396	LGEXPUS coef for	NOV	

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watsor	
PSEXPUS	SEXPUS	13	116	0.18296	0.001577	3 0.03971	0.3786	0.3143	1.525
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label			
PSEX_B0	0.36	1744	0.01785	20.27	0.0001	PSEXPUS constan			
PSEX_E1	-0.03	4113	0.01737	-1.96	0.0519	PSEXPUS coef for			
PSEX_E2	-0.02	8869	0.01736	-1.66	0.0991	PSEXPUS coef for			
PSEX_E3	-0.03	1938	0.01736	-1.84	0.0683	PSEXPUS coef for			
PSEX_E4	-0.01	2760	0.01736	-0.74	0.4637	PSEXPUS coef for			
PSEX_E5	-0.01	7292	0.01735	-1.00	0.3211	PSEXPUS coef for			
PSEX_E6	0.02	2705	0.01735	1.31	0.1933	PSEXPUS coef for			
PSEX_E7	-0.00	034853	0.01735	-0.02	0.9840	PSEXPUS coef for			
PSEX_E8	-0.02	6459	0.01735	-1.52	0.1300	PSEXPUS coef for			
PSEX_E9	-0.00	363172	0.01735	-0.21	0.8346	PSEXPUS coef for			
PSEX_E10	-0.01	9351	0.01776	-1.09	0.2782	PSEXPUS coef for			
PSEX_E11	-0.00	865693	0.01776	-0.49	0.6269	PSEXPUS coef for			
PSEX_ET	-12.33	0665	1.79733	-6.86	0.0001	PSEXPUS coef for	1 / TIME		

Table A41. Other Petroleum Product Exports (PSEXPUS)

Method of Estimation: OLS RANGE of Fit: 8201 TO 9209

Table A42. Pentanes Plus Exports

(PPEXPUS)

Equation	DF Model	DF Error	SSE	MSE	Root MS	SE R-Squ	iare Adj R-Sc	Durbin-Watson
PPEXPUS	13	116	0.0004258	3.67048E	-6 0.00191	58 0.39	37 0.3309	0.987
Parameter	Est	limate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label		
PPEX_B0	0.00	145835	0.0006086	2.40	0.0182		onstant coef	
PPEX E	-0.00	007064	0.0008371	-0.08	0.9329	PPEXPUS o		
PPEX_E2	0.00	046152	0.0008371	0.55	0.5825	PPEXPUS o		
PPEX_E3	0.00	011255	0.0008371	0.13	0.8933		oef for MAR	
PPEX_E4	-0.00	032310	0.0008371	-0.39	0.7002	PPEXPUS o		
PPEX_E5	0.00	043563	0.0008371	0.52	0.6038		oef for MAY	
PPEX_E6	0.00	022478	0.0008371	0.27	0.7888	PPEXPUS (
PPEX_E7	0.00	045315	0.0008371	0.54	0.5893	PPEXPUS (
PPEX_E8	-0.00	028069	0.0008371	-0.34	0.7380		coef for AUG	
PPEX_E9	-0.00	084505	0.0008371	-1.01	0.3148		coef for SEP	
PPEX_E10	-0.00	0124481	0.0008568	-1.45	0.1490		coel for OCT	
PPEX_E11	0.00	028929	0.0008568	0.34	0.7362		coef for NOV	
PPEX_D1	0.00	470409	0.0005808	8.15	0.0001	PPEXPUS	coef for D89	

- 1

. . . .

-

Equation	DF Model	DF Error	SSE	MSE	Root MS	E	R-Square	Adj R-Sq	Durbin-Watson
MGWHPUS	1	103	2.20872	0.02144	0.14644		0.7700	0.7700	0.874
Parameter	Es	timate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label			
NGWH_TC	0.86	5318	0.0020155	429.33	0.0001	MGWI	HPUS coef fo	or MGTOPUS	
Method of Esti RANGE of Fit:	imation: OLS 8401 TO 9208								

Table A43. Motor Gasolines Sales for Resale (MGWHPUS)

Table A44. Distillate Fuel Sales for Resale (D2WHPUS)

Equation	DF Model	DF Error	SSE	MSE	Root M	SE	R-Square	Adj R-Sq	Durbin-Watson
D2WHPUS	2	102	3.10201	0.03041	0.174	39	0.5850	0.5809	0.438
Parameter	Est	limate	Approx. Std Err	'T' Ratio	Approx. Prob>ITi	Lal	bel		
D2WH_B0 D2WH_TC	-0.87 0.69	3516 0464	0.17225 0.05759	-5.07 11.99	0.0001 0.0001		WHPUS constar		
Method of Est RANGE of Fit:	imation: OLS : 8401 TO 9208								

Equation	DF Model	DF Error	SSE	MSE	Roc	ot MSE	R-Square	Adj R-Sq	Durbin-Watson
RFESPUS	3	101	0.37615	0.00372	242 0.1	06103	0.7500	0.7450	1.560
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	La	bel		
RFES_B0 RFES_TC RFES_D1	0.42	8337 9419 1409	0.04125 0.03044 0.01390	3.35 14.11 -4.42	0.0011 0.0001 0.0001	RI	ESPUS constan ESPUS coef for ESPUS coef for	RFTCPUS	
Method of Est RANGE of Fit:	imation: OLS : 8401 TO 9208								

Table A45. Residual Fuel Sales for End Users(RFESPUS)

Table A46. Jet Fuel Sales to End Users (JKESPUS)

103	0.30365	0.0029	481 0	.05430	0.4386		
				.05430	0.4300	0.4386	1.051
Estimate	Approx. Std Err	'T' Ratio	••		bei		
0.642957	0.0038373	167.55	0.0001	JK	ESPUS coef for	JFTCPUS	
		Estimate Std Err 0.642957 0.0038373	Estimate Std Err Ratio	Estimate Std Err Ratio Prob>IT 0.642957 0.0038373 167.55 0.0001	Estimate Std Err Ratio Prob>ITI La 0.642957 0.0038373 167.55 0.0001 JK	Estimate Std Err Ratio Prob>ITI Label	Estimate Std Err Ratio Prob>ITI Label 0.642957 0.0038373 167.55 0.0001 JKESPUS coef for JFTCPUS

Equation	DF Model	DF Error	SSE	MSE	Root	MSE	R-Square	Adj R-Sq	Durbin-Watson
PRESPUS	3	101	0.02768	0.00027	740 0.01	655	0.6272	0.6198	0.694
Parameter	Est	limate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	La	bel		
PRES_B0	-0.00	843848	0.0077607	-1.09	0.2795	PF	RESPUS constan	t coef	
PRES_TC		3540	0.0083668	12.38	0.0001	PF	RESPUS coel for	PRTCPUS	
PRES_D1	-0.01	9046	0.0035370	-5.38	0.0001	PF	RESPUS coel for	D90ON	
Method of Es	timation: OLS								
RANGE of Fil	t: 8401 TO 9208								

Table A47. Propane Sales to End Users

(PRESPUS)

Table A48. Residential Sector Electricity Demand

(ESRCPUSQ)

Equation	DF Model	DF Error	SSE	MSE	E Roc	t MSE	R-Square	Adj R-Sq	Durbin-Watson
ESRCPUSQ	5	147	0.0001235	8.40334	1E-7 0.00	009167	0.9014	0.8987	1.864
Parameter	Es	timate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	La	bel		
ESRC 01	0.01	3802	0.0003862	35.74	0.0001		SRCPUSQ const		
ESRC 03	0.00	028442	0.00001185	24.01	0.0001		SRCPUSQ coef f		
ESRC 04	0.00	093629	0.0000329	28.46	0.0001		SRCPUSQ coef f		(MAYSEP)
ESRC_05	0.00	0024023	2.11726E-6	11.35	0.0001		SRCPUSQ coef f		
ESRCPUSQ L1	0.20	01749	0.09057	2.23	0.0274	ES	SRCPUSQ 1st-or	der autocorrel	ation coef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8001 TO 9208

Equation	DF Model	DF Error	SSE	MSE	Root I	WSE	R-Square	Adj R-Sq	Durbin-Watson
ESCMPUSQ	16	136	0.0000127	9.30211E	-8 0.0003	8050	0.9834	0.9815	1.581
Parameter	Est	limate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	Labe	91		
ESCM_01	0.02	1469	0.0004297	49.96	0.0001	ESC	MPUSQ consta	int coef	
ESCM_02	0.00	0026804	2.09307E-6	12.81	0.0001	ESC	MPUSQ coef fo	or TIME	
ESCM_04	0.00	0055167	0.0000104	5.30	0.0001	ESC	MPUSQ coef fo	or ZWHDPUS	*(OCTAPR)
ESCM_05	0.00	022524	0.0000415	5.43	0.0001	ESC	MPUSQ coef fo	or ZWCDPLIS	*(MAYSEP)
ESCM_06	0.00	101544	0.00009672	10.50	0.0001	ESC	MPUSQ coef fo	or JAN	
ESCM_07	0.00	030030	0.0001195	2.51	0.0132	ESC	MPUSQ coef fo	or FEB	
ESCM_08	-0.00	088336	0.0001565	-5.64	0.0001	ESC	MPUSQ coef for	or MAR	
ESCM_09	-0.00	050996	0.0002220	-2.30	0.0232	ESC	MPUSQ coef fo	or APR	
ESCM_10	0.00	117786	0.0003492	3.37	0.0010	ESC	MPUSQ coef fo	or MAY	
ESCM_11	0.00	292676	0.0004382	6.68	0.0001	ESC	MPUSQ coef for	or JUN	
ESCM_12	0.00	310136	0.0005455	5.68	0.0001	ESC	MPUSQ coef fo	or JUL	
ESCM_13	0.00	338908	0.0005068	6.69	0.0001	ESC	MPUSQ coef for	or AUG	
ESCM_14	0.00	228882	0.0003781	6.05	0.0001	ESC	MPUSQ coef for	or SEP	
ESCM_15	0.00	053172	0.0002259	2.35	0.0200	ESC	MPUSQ coef fo	or OCT	
ESCM_16	-0.00	018965	0.0001361	-1.39	0.1657	ESC	MPUSQ coef for	or NOV	
ESCMPUSQ_L	1 0.74	7871	0.05668	13.20	0.0001	ESC	MPUSQ 1st-or	der autocorrel	ation coef

Table A49. Commercial Sector Electricity Demand (ESCMPUSQ)

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8001 TO 9208

Table A50. Industrial Sector Electricity Demand (ESICPUSB)

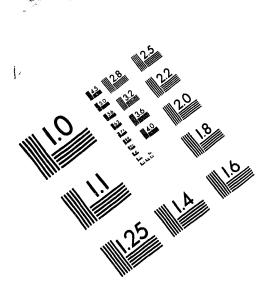
Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson
ESICPUSB	15	137	0.05945	0.000433	19 0.0208 3	0.9888	0.9876	1.625
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label		
ESIC_01	0.852	2265	0.01769	48.17	0.0001	ESICPUSB constan	t coef	
ESIC_06	0.042	2573	0.0025632	16.61	0.0001	ESICPUSB coef for	JAN	
ESIC_07	0.048	8247	0.0032806	14.71	0.0001	ESICPUSB coef for	FEB	
ESIC_08	0.020	6958	0.0037111	7.26	0.0001	ESICPUSB coef for	MAR	
ESIC_09	0.036	6269	0.0040201	9.02	0.0001	ESICPUSB coef for	APR	
ESIC_10	0.05	8187	0.0042235	13.78	0.0001	ESICPUSB coef for	MAY	
ESIC_11	0.06	9098	0.0043083	16.04	0.0001	ESICPUSB coef for	JUN	
ESIC_12	0.06	3035	0.0042655	14.78	0.0001	ESICPUSB coef for	JUL	
ESIC_13	0.08	1155	0.0041874	19.38	0.0001	ESICPUSB coef for	AUG	
ESIC_14	0.06	8227	0.0038479	17.73	0.0001	ESICPUSB coef for	SEP	
ESIC_15	0.04	6442	0.0032901	14.12	0.0001	ESICPUSB coef for	OCT	
ESIC_16	0.02	3608	0.0024336	9.70	0.0001	ESICPUSB coef for	NOV	
ESIC_17	0.03	0582	0.0095307	3.21	0.0017	ESICPUSB coef for	DUM8083	
ESIC_Q	0.68	6170	0.07748	8.86	0.0001	ESICPUSB coef for	LOG(ZOMNI	US)
ESICPUSB_L1	0.96	4638	0.02322	41.55	0.0001	ESICPUSB 1st-orde	er autocorrelat	ion coef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8001 TO 9208

Equation	DF Model	DF Srror	SSE	MSE	Root M	SE R-Squ	are A	dj R-Sq	Durbin-Watsor
ESOTPUSQ	15	101	1.3399E-10	1.3266E	-12 1.15178	E-6 0.86	23 ().8432	1.184
Parameter	Est	timate	Approx. Std Err	'T' Ratio	Approx. Prob>lTl	Labei			
ESOT_01	0.00	006193	3.80935E-6	16.26	0.0001	ESOTPUSQ	constant co	ef	
ESOT_02	-5.15	268E-8	2.49122E-8	-2.07	0.0412	ESOTPUSO	coef for TIM	1E	
ESOT_06	1.96	7579E-6	3.82475E-7	5.14	0.0001	ESOTPUSQ	coef for JAI	N	
ESOT_07	6.05	589E-7	4.88612E-7	1.24	0.2181	ESOTPUSQ	coef for FEI	в	
ESOT_08	-2.06	905E-6	5.56249E-7	-3.72	0.0003	ESOTPUSQ	coef for MA	R	
ESOT_09	-2.20	941E-6	5.99597E-7	-3.68	0.0004	ESOTPUSQ	coef for AP	R	
ESOT_10	-6.89	277E-7	6.24409E-7	-1.10	0.2723	ESOTPUSQ	coef for MA	Y	
ESOT_11	1.48	8154E-6	6.33231E-7	2.35	0.0207	ESOTPUSQ	coef for JUI	N	
ESOT_12	2.14	9315E-6	6.26816E-7	3.43	0.0009	ESOTPUSO	coef for JUI	_	
ESOT_13	2.38	4216E-6	6.04459E-7	3.94	0.0001	ESOTPUSQ	coef for AU	G	
ESOT_14	4.43	8003E-7	5.60209E-7	0.79	0.4301	ESOTPUSQ	coef for SE	Р	
ESOT_15	-1.32	166E-6	4.86342E-7	-2.72	0.0077	ESOTPUSQ	coef for OC	т	
ESOT_16	-9.44	651E-7	3.63946E-7	-2.60	0.0108	ESOTPUSQ	coef for NO	v	
ESOT_D1	3.12	4812E-8	1.14499E-6	0.03	0.9783	ESOTPUSQ	coef for D9	DON	
ESOTPUSO L	1 0.88	5030	0.04625	19.13	0.0001	ESOTPUSQ	1st-order au	utocorrela	ation coef

Table A51. Other Electricity Demand (ESOTPUSQ)

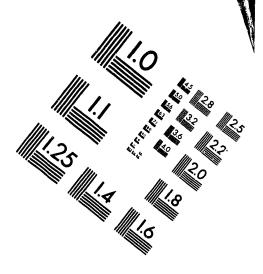
Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8301 TO 9208 $\,$

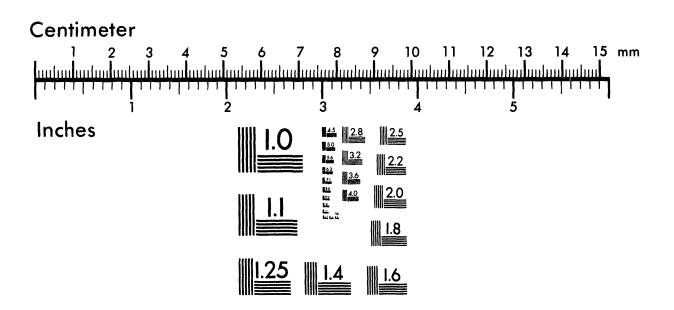

Table A52. Electricity Transmission and Distribution Loss Factor (TDLOFUSB)

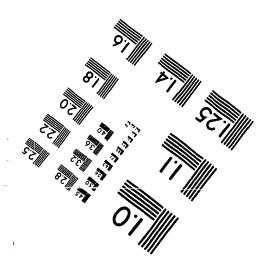
Equation	DF Model	DF Error	SSE	MSI	E R	oot MSE	R-Square	Adj R-Sq	Durbin-Watson
TDLOFUSB	14	138	0.01577	0.0001	143 0.01069		0.8901	0.8798	1.728
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx Prob>l1		bel		
PTND_01	-0.10	5341	0.0033526	-31.42	0.0001	тс	LOFUSB consta	nt coef	
PTND_06	0.04	7373	0.0036775	12.88	0.0001	тс	LOFUSB coef fo	or JAN	
PTND_07	0.04	9912	0.0042603	11.72	0.0001	TC	LOFUSB coef fo	r FEB	
PTND_08	0.02	7454	0.0044527	6.17	0.0001	TE	LOFUSB coef fo	r MAR	
PTND_09	0.00	927466	0.0045201	2.05	0.0421	TC	LOFUSB coef fo	or APR	
PTND_10	-0.02	1740	0.0045433	-4.79	0.0001	TC	LOFUSB coef fo	or MAY	
PTND_11	-0.02	4649	0.0045489	-5.42	0.0001	TC	LOFUSB coef fo	or JUN	
PTND_12	-0.01	1481	0.0045434	-2.53	0.0126	TC	LOFUSB coef fo	or JUL	
PTND_13	0.04	4561	0.0045204	9.86	0.0001	TC	DLOFUSE coef fo	ir AUG	
PTND_14	0.06	2820	0.0045235	13.89	0.0001	τt	LOFUSB coef fo	or SEP	
PTND_15	0.02	2242	0.0043296	5.14	0.0001	TC	LOFUSB coef fo	or OCT	
PTND_16	-0.00	316783	0.0037121	-0.85	0.3949	T	DLOFUSB coef fo	or NOV	
PTND_17	Ú.00	656653	0.0029409	2.23	0.0272	TE	DLOFUSB coef fo	r D89ON	
TDLOFUSB_L	0.36	2595	0.07948	4.56	0.0001	TC	DLOFUSB 1st-ord	ler autocorrela	tion coef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8001 TO 9208

Energy Information Administration/ Short-Term Integrated Forecasting System 1-93 Model Documentation

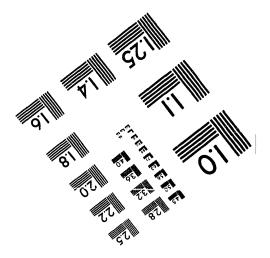

н





Association for Information and Image Management 1100 Wayne Avenue, Suite 1100 Silver Spring, Maryland 20910

301/587-8202



}

MANUFACTURED TO AIIM STANDARDS BY APPLIED IMAGE, INC.

.

. . . .

. .

•

. .

Equation	DF Model	DF Error	SSE	MSE	Root	NSE	R-Square	Adj R-Sq	Durbin-Watson
WNEOPUS	14	103	1.44329E-8	1.4013E-	10 0.0000	1184	0.7494 0.7178	1.978	
Parameter	Est	limate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	Lab	el		
WNEO_01	0.00	0014926	6.28124E-6	2.38	0.0193	WN	EOPUS constan	nt coef	
WNEO_06	4.64	6068E-6	4.21359E-6	1.10	0.2728	WN	EOPUS coef for	JAN	
WNEO_07	6.48	0238E-6	5.38454E-6	1.20	0.2315	WN	EOPUS coef for	FEB	
WNEO_08	0.00	0012021	6.06884E-6	1.98	0.0503	WN	EOPUS coef for	MAR	
WNEO_09	0.00	0018191	6.47984E-6	2.81	0.0060	WN	EOPUS coef for	APR	
WNEO_10	0.00	0025969	6.70357E-6	3.87	0.0002	WN	EOPUS coet for	MAY	
WNEO_11	0.00	0029144	6.77842E-6	4.30	0.0001	WN	EOPUS coef for	JUN	
WNEO_12	0.00	0024934	6.71594E-6	3.71	0.0003	WN	EOPUS coef for	JUL	
WNEO_13	0.00	0024087	6.50572E-6	3.70	0.0003	WN	EOPUS coef for	AUG	
WNEO_14	0.00	0022191	6.1108E-6	3.63	0.0004	WN	EOPUS coef for	SEP	
WNEO_15	0.00	0014318	5.43244E-6	2.64	0.0097	WN	EOPUS coef for	OCT	
WNEO_16	5.44	5503E-6	4.17064E-6	1.31	0.1946	WN	EOPUS coef for	r NOV	
WNEO_D1	-0.00	001901	7.38996E-6	-2.57	0.0115	WN	EOPUS coef for	D89ON	
WNEOPUS L1	0.74	1699	0.06639	11.17	0.0001	WN	EOPUS 1st-ord	er autocorrelat	tion coef

Table A53. Electricity Generation from Wind, Solar and Other (WNEOPUS)

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8301 TO 9209

Table A54. Electricity Generation from Wood and Waste (WWEOPUS)

Equation	DF Model	DF Error	SSE	MSI	E Roo	t MSE	R-Square	Adj R-Sq	Durbin-Watson
WWEOPUS	14	78	0.0000141	1.8037	1E-7 0.0)04247	0.8587	0.8352	2.205
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	La	bel		
WWEO_01	0.00	515065	0.0006922	7.44	0.0001	w	WEOPUS consta	nt coef	
WWEO_06	0.00	0048461	0.0001674	0.29	0.7730	W	WEOPUS coef fo	r JAN	
WWEO_07	-0.00	014673	0.0002121	-0.69	0.4910	W	WEOPUS coef fo	r FEB	
WWEO_08	-0.00	039416	0.0002414	-1.63	0.1065	W	WEOPUS coef fo	r MAR	
WWEO_09	-0.00	068007	0.0002606	-2.61	0.0109	W	WEOPUS coef fo	r APR	
WWEO_10	-0.00	087442	0.0002718	-3.22	0.0019	w	WEOPUS coef fo	r MAY	
WWEO_11	-0.00	039805	0.0002760	-1.44	0.1533	W	WEOPUS coef fo	r JUN	
WWEO_12	-0.00	020331	0.0002735	-0.74	0.4595	w	WEOPUS coef fo	r JUL	
WWE'O_13	0.00	035360	0.0002640	1.34	0.1843	w	WEOPUS coef fo	r AUG	
WWEO_14	0.00	022440	0.0002444	0.92	0.3613	w	WEOPUS coef fo	r SEP	
WWEO_15	-0.00	014814	0.0002116	-0.70	0.4860	w	WEOPUS coef fo	r OCT	
WWEO_16	-0.00	001117	0.0001578	-0.07	0.9437	w	WEOPUS coef fo	r NOV	
WWEO_D1		037092	0.0004716	-0.79	0.4340	Ŵ	WEOPUS coef fo	r D90ON	
WWEOPUS L	1 0.92	7973	0.04295	21.61	0.0001	Ŵ	WEOPUS 1st-ord	ler autocorrela	tion coef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8501 TO 9208

م الدارية

(i) Statistics of the state of the state

Equation	DF Model	DF Error	SSE	MSE	: 	Root MS	E	R-Square	Adj R-Sq	Durbin-Watsor
GEEOPUS	З	66	0.0000777	1.17665	iE-6	0.001084	7	0.8730	0.8692	1.995
Parameter	Est	imate	Approx. Std Err	'T' Ratio	App Prob		Labe	1		
GEEO_01	-2.71	693	0.07726	-35.19	0.00	001	GEE	OPUS constan	it coef	
GEEO_02	-0.00	537853	0.0004396	-12.23	0.00	001	GEE	OPUS coef for	TIME	
GEEOPUS L1	0.42	6347	0.11121	3.83	0.00	003	GEE	OPUS 1st-orde	er autocorrelati	ion coef

Table A55. Electricity Generation from Geothermal Energy (GEEOPUS)

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8701 TO 9209

Table A56. Electricity Generation from Coal

(CLEOPUS)

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson
CLEOPUS	17	135	0.27551	0.002040	8 0.04518	0.9927	0.9918	2.075
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	Label		
CLEO_01	0.79	8567	0.16229	4.92	0.0001	CLEOPUS constant	coef	
CLEO_02	0.16	5628	0.05548	2.99	0.0034	CLEOPUS coef for I	ELEOPUS	
CLEO_03	0.06	1833	0.0061293	10.09	0.0001	CLEOPUS coef for (ELEOPUS*C	LCAPUS)
CLEO_04	-0.68	2669	0.07826	-8.72	0.0001	CLEOPUS coef for I	HYEOPUS	
CLEO_05	-0.54	3132	0.05243	-10.36	0.0001	CLEOPUS coef for I	NUEOPUS	
CLEO_06	0.04	8160	0.01535	3.14	0.0021	CLEOPUS coef for a	JAN	
CLEO_07	0.034	4473	0.01875	1.84	0.0681	CLEOPUS coef for I	FEB	
CLEO_08	-0.08	9189	0.02167	-4.12	0.0001	CLEOPUS coef for I	MAR	
CLEO_09	-0.15	7027	0.02590	-6.06	0.0001	CLEOPUS coef for a		
CLEO_10	-0.17	6883	0.02577	-6.86	0.0001	CLEOPUS coef for		
CLEO_11	-0.15	3111	0.02349	-6.52	0.0001	CLEOPUS coef for		
CLEO_12	-0.16	3606	0.02649	-6.18	0.0001	CLEOPUS coef for	JUL	
CLEO_13	-0.17	2075	0.02651	-6.49	0.0001	CLEOPUS coef for a	AUG	
CLEO_14	-0.16	3559	0.02352	-6.95	0.0001	CLEOPUS coef for	SEP	
CLEO_15	-0.16	5470	0.02622	-6.31	0.0001	CLEOPUS coef for		
CLEO_16	-0.08	1833	0.01876	-4.36	0.0001	CLEOPUS coef for	NOV	
CLEOPUS_L1	0.70	5302	0.06432	10.97	0.0001	CLEOPUS 1st-order	r autocorrelati	on coef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8001 TO 9208

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

1901

(a) the protect of the experiment of the experiment of the second s second s

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson
NGEOSHRX	14	78	0.10688	0.001370	2 0.03702	0.8392	0.8124	2.116
Parameter	Est	Imate	Approx. Std Err	'T' Ratio	Approx. Prob>lTl	Label		
NGEO_01	0.01	1728	0.04658	0.25	0.8019	NGEOSHRX consta	ant coef	
NGEO_P1	0.06	2007	0.02305	2.69	0.0087	NGEOSHRX coef f	or RFEUDUS/	NGEUDUS
NGEO_R1	0.73	9093	0.06583	11.23	0.0001	NGEOSHRX coef f		SHR)
NGEO_06	0.05	5020	0.01971	2.79	0.0066	NGEOSHRX coef f		
NGEO_07	0.08	7589	0.01987	4.41	0.0001	NGEOSHRX coef f	or FEB	
NGEO_08	0.12	7091	0.01958	6.49	0.0001	NGEOSHRX coef f	or MAR	
NGEO_09	0.14	7347	0.01917	7.69	0.0001	NGEOSHRX coef f		
NGEO_10	0.12	0175	0.01946	6.18	0.0001	NGEOSHRX coef f		
NGEO_11	0.08	9223	0.01977	4.51	0.0001	NGEOSHRX coef f		
NGEO_12	0.11	1138	0.01947	5.71	0.0001	NGEOSHRX coef f		
NGEO_13	0.10	7829	0.01955	5.51	0.0001	NGEOSHRX coef f		
NGEO_14	0.11	8418	0.02010	5.89	0.0001	NGEOSHRX coef f		
NGEO_15	0.09	4360	0.02036	4.63	0.0001	NGEOSHRX coef f		
NGEO_16	0.03	8012	0.02025	1.88	0.0642	NGEOSHRX coef f	or NOV	

Table A57. Ratio of Electricity Ceneration from Natural Gas to Generation from Gas Plus Oil (NGEOSHRX)

Table A58. Number of Residential Natural Gas Customers (Seasonally Adjusted) (NGNRPUSA)

Equation	DF Model	DF Error	SSE	MSE	Root MS	SE 1	R-Square	Adj R-Sq	Durbin-Watson
NGNRPUSA	5	82	2.30109	0.0280	6 0.1675	2	0.9902	0.9897	0.183
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITi	Label			
NGNR 01	-1.69	2000	0.06344	-26.67	0.0001	NGNR	PUSA constr	ant coef	
NGNR_H	1.14	8041	0.01324	86.73	0.0001	NGNR	PUSA HOUS	SING STOCK I	ELAST
NGNRPUS1_0	-0.01	0489	0.0019724	-5.32	0.0001	PDL(N	GNRPUS1,1	2,2) paramete	r for (L)**0
NGNRPUS1_1	0.00	381644	0.0009055	4.21	0.0001	PDL(N	GNRPUS1,1	2,2) paramete	r for (L)**1
NGNRPUS1 2	-0.00	034208	0.00007436	-4.60	0.0001	PDL(N	GNRPUS1,1	2,2) paramete	r for (L)**2

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

بعهوره ويتهادين البهرين بينيونه بنعه وتحادثون العاقد الاحتار الالالا الالا

92

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Squar	e AdjR-Sq	Durbin-Watson
NGRCPUSX	8	91	0.04236	0.00046	54 0.02157	0.9835	0.9822	2.015
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label		
NGRC_01	0.06	3539	0.0068817	9.23	0.0001		onstant coef	
NGRC_HD	0.01	5026	0.0003104	48.41	0.0001	NGRCPUSX co	ef for (ZGHDPUS/	ZSAJQUS)*(OCTAPR
NGRC_09	0.07	1440	0.01118	6.39	0.0001	NGRCPUSX c	bef for MAY	
NGRC_10	0.03	4342	0.01033	3.32	0.0013	NGRCPUSX of	oef for JUN	
NGRC_11	0.01	9499	0.01094	1.78	0.0779	NGRCPUSX o	pef for JUL	
NGRC_12	0.02	2426	0.01021	2.20	0.0307	NGRCPUSX o	bef for AUG	
NGRC_13	0.05	3996	0.01148	4.70	0.0001	NGRCPUSX o	oef for SEP	
NGRCPUSX L	1 -0.36	6845	0.10031	-3.66	0.0004	NGRCPUSX 1	st-order autocorrel	ation coef

Table A59. Residential Sector Demand for Natural Gas (NGRCPUSX)

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8310 TO 9112

Table A60. Number of Commercial Natural Gas Customers (Seasonally Adjusted) (NGNCPUSA)

Equation	DF Model	DF Error	SSE	MSI	E Roo	t MSE	R-Square	Adj R-Sq	Durbin-Watsor
NGNCPUSA	5	5 82	0.09411	0.0011	477 0.0	3388	0.9662	0.9645	0.071
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>lTi	La	bel		
NGNC_01	-1.87	3470	0.07318	-25.60	0.0001	NG	NCPUSA const	ant coef	
NGNC_E	0.72	3596	0.01568	46.13	0.0001	NG	SNCPUSA EMPL	OYMENT ELA	ST
NGNCPUS1_0	-0.00	534717	0.0029915	-1.79	0.0776	PC	L(NGNCPUS1,1	2,2) paramete	r for (L)**0
NGNCPUS1_1	0.00	195566	0.0013502	1.45	0.1513	PC	L(NGNCPUS1,1	2,2) paramete	r for (L)**1
NGNCPUS1 2	-0.00	021276	0.0001105	-1.93	0.0576	PD	L(NGNCPUS1,1	2,2) paramete	r for (L)**2

Energy Information Administration/ Short-Term integrated Forecasting System 1993 Model Documentation

. . .

93

ومرافق وفرقته ومرسوسة بالمناجر وإلى المعقول بالمراجع المعاري والمراجع والمراجع والمراجع والمراجع والمراجع والم

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson
NGCCPUSX	13	86	0.97508	0.01134	0.10648	0.10648 0.9863 0.984	0.9844	2.016
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	Label		
NGCC_01	1.93	3890	0.39948	4.84	0.0001	NGCCPUSX const	ant coef	
NGCC_HD	0.08	2942	0.0015734	52.72	0.0001	NGCCPUSX coef for	or (ZGHDPUS/2	ZSAJQUS)*(OCTAPF
NGCC_T	-0.00	031015	0.0009387	-0.33	0.7419	NGCCPUSX coef (or TIME	
NGCC_D1	1.33	6370	0.23189	5.76	0.0001	NGCCPUSX coef t	or DTO87	
NGCC_D1T	-0.00	854982	0.0013809	-6.19	0.0001	NGCCPUSX coef t	or DTO87*TIM	E
NGCC_D2	-0.36	0727	0.10444	-3.45	0.0009	NGCCPUSX coef	or D8912	
NGCC_09	0.40	0119	0.05630	7.11	0.0001	NGCCPUSX coef	or MAY	
NGCC_10	0.24	1026	0.05115	4.71	0.0001	NGCCPUSX coef	ior JUN	
NGCC_11	0.18	2006	0.05533	3.29	0.0015	NGCCPUSX coef	for JUL	
NGCC_12	0.20	0046	0.05094	3.93	0.0002	NGCCPUSX coef	for AUG	
NGCC_13	0.36	3872	0.05773	6.30	0.0001	NGCCPUSX coef	for SEP	
NGCC_P	-0 29	0507	0.06791	-4.28	0.0001	NGCCPUSX coef	for NGCCUUS	WPCPIUS
NGCCPUSX_L1	1 -0.40	9291	0.10213	-4.01	0.0001	NGCCPUSX 1st-o	rder autocorrela	ation coef

I a

.

. .

ш.

.

Table A61. Commercial Sector Natural Gas Demand (NGCCPUSX)

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8310 TO 9112

Equation	DF Model	DF Erro	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson
NGINPUSZ	15	88	76.10310	0.86481	0.92995	0.7825	0.7479	0.325
Parameter	Estima	te	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	Label		
NGIN_01	17.71634	3	1.01596	17.44	0.0001	NGINPUSZ consta	nt coef	
NGIN_P	-263.34937	4	44.22600	-5.95	0.0001	NGINPUSZ coef fo		RFTCUUSA
NGIN_06	-0.75746	3	0.43843	-1.73	0.0876	NGINPUSZ coef fo		
NGIN_07	-1.78540	5	0.43856	-4.07	0.0001	NGINPUSZ coef fo	or MAR	
NGIN_08	-2.78840	5	0.43920	-6.35	0.0001	NGINPUSZ coef fo		
NGIN_09	-3.61161	0	0.43903	-8.23	0.0001	NGINPUSZ coef for		
NGIN_10	-4.02091	8	0.43936	-9.15	0.0001	NGINPUSZ coef for	or JUN	
NGIN_11	-4.26084	5	0.43909	-9.70	0.0001	NGINPUSZ coef for	or JUL	
NGIN_12	-4.11340	2	0.45249	-9.09	0.0001	NGINPUSZ coef for	or AUG	
NGIN_13	-3.62145	6	0.45248	-8.00	0.0001	NGINPUSZ coef for	or SEP	
NGIN_14	-2.72015	6	0.45236	-6.01	0.0001	NGINPUSZ coef for	or OCT	
NGIN_15	-1.69139	1	0.45222	-3.74	0.0003	NGINPUSZ coef for	or NOV	
NGIN_16	-0.72466	0	0.45228	-1.60	0.1127	NGINPUSZ coef for	or DEC	
NGIN_TD	-0.00627	742	0.0026046	-2.41	0.0180	NGINPUSZ coef for	or TIME*D87ON	4
NGIN_T	0.03813	5	0.0078811	4,84	0.0001	NGINPUSZ coef for	or TIME	

Table A62. Industrial Sector Demand for Natural Gas (NGINPUSZ)

and a second s

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson
NGLPPUS	5	94	0.83622	0.008895	9 0.09432	0.9065	0.9026	2.036
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label		
NGLP_01	2.15	9651	0.14422	14.97	0.0001	NGLPPUS constar	it coef	
NGLP_D1	0.28	3512	0.09903	2.86	0.0052	NGLPPUS coef for	DTO87	
NGLP_D2	0.50	0551	0.09186	5.45	0.0001	NGLPPUS coef for	D90ON	
NGLP_DM	0.01	2333	0.0013409	9.20	0.0001	NGLPPUS coef for	natural gas co	onsumption
NGLPPUS L1	0.91	7825	0.04159	22.07	0.0001	NGLPPUS 1st-orde	er autocorrelati	on coef

Table A63. Demand for Natural Gas in Oil and Gas Well, Field, and Lease Operations (NGLPPUS)

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8310 TO 9112

Table A64. Demand for Natural Gas by Pipelines (NGACPUS)

Equation	DF Model	DF Error	SSE	MSE	Root	MSE	R-Square	Adj R-Sq	Durbin-Watsor
NGACPUS	3	137	1.62731	0.0118	38 0.10	899	0.9042	0.9028	1.387
Parameter	Es	limate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	Ĺal	bel	******	
NGAC_01	0.63	0397	0.09022	6.99	0.0001	NG	ACPUS constan	t coef	
NGAC_DM	0.02	2667	0.0013339	16.99	0.0001	NG	ACPUS coef for	natural gas co	onsumption
NGACPUS_L1	0.85	8398	0.04496	19.09	0.0001	NG	ACPUS 1st-orde	er autocorrelat	on coef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8101 TO 9208

.

95

Table A65. Natural Gas Exports

(NGEXPUS)

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watsor
NGEXPUS	5	135	0.49375	0.00365	74 0.06048	0.7651	0.7582	2.506
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	Label		
NGEX_01	0.21	1302	0.03256	6.49	0.0001	NGEXPUS constar	it coef	
NGEX_D	0.09	2117	0.04688	1.97	0.0515	NGEXPUS coef for	D89ON	
NGEX_08	-0.02	9778	0.01563	-1.91	0.0589	NGEXPUS coef for	APR	
NGEX_09	-0.05	8520	0.01563	-3.75	0.0003	NGEXPUS coef for	MAY	
NGEXPUS_L1	0.81	0520	0.05890	13.76	0.0001	NGEXPUS 1st-ord	er autocorrelat	ion coef

RANGE of Fit: 8101 TO 9208

Table A66. Natural Gas Demand/Supply Discrepancy (BALIT)

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson
BALIT	13	127	578.95922	4.55873	2.13512	0.5328	0.4887	2.129
Parameter	Esti	mate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	Label		
NGBL_01	-1.095	5183	0.62831	-1.74	0.0837	BÁLIT constant coef		
NGBL_06	3.229	9813	0.79422	4.07	0.0001	BALIT coef for FEB		
NGBL_07	2.026	5299	0.87091	2.33	0.0216	BALIT coef for MAR		
NGBL_08	3.045	5318	0.88565	3.44	0.0008	BALIT coef for APR		
NGBL_09	1.407	7647	0.88861	1.58	0.1157	BALIT coef for MAY		
NGBL_10	0.540	0095	0.88921	0.61	0.5447	BALIT coef for JUN		
NGBL_11	-0.016	5171	0.88931	-0.02	0.9855	BALIT coef for JUL		
NGBL_12	-0.162	2262	0.88922	-0.18	0.8555	BALIT coef for AUG		
NGBL_13	-0.607	7454	0.90785	-0.67	0.5046	BALIT coef for SEP		
NGBL_14	-2.627	7362	0.90573	-2.90	0.0044	BALIT coef for OCT		
NGBL_15	-3.806	5299	0.89132	-4.27	0.0001	BALIT coef for NOV		
NGBL_16	-2.746	5278	0.81567	-3.37	0.0010	BALIT coef for DEC		
BALIT_L1	0.202	2806	0.08688	2.33	0.0211	BALIT 1st-order auto	correlation co	pef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8101 TO 9208

പ്പെട്ടും പ്രപ്പെട്ടും നിന്നും പ്രതിന്നും പ്രതിന്നും പ്രതിന്നും പ്രതിന്നും പിന്നും പ്രതിന്റെ അന്ത്രം പ്രതിന്ന് പ്രതിന് പ്രതിന്നും പ്രതിന്നും പ്രതിന്നും പ്രതിന്നും പ്രതിന്നും പ്രതിന്നും പ

lodei 2	DF Error 91	SSE 0.08574	MSE 0.00094		MSE	R-Square	Adj R-Sq	Durbin-Watson
	91	0.08574	0.00094	400 0.03				
				422 0.03	069	0.7236	0.6901	2.051
Estin	mate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	La	bei		
-0.109 -0.114 -0.101 -0.099 -0.117 -0.075	253 320 6671 9310 1691 9535 7878 5954	0.01150 0.01121 0.01398 0.01530 0.01596 0.01625 0.01625 0.01627 0.01637 0.01584 0.01455	32.68 -1.81 -5.81 -5.14 -6.85 -7.06 -6.22 -6.08 -7.44 -5.22 -4.67	0.0001 0.0741 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001		GSFPUS coef for GSFPUS coef for GSFPUS coef for GSFPUS coef for GSFPUS coef for	FEB MAR APR MAY JUN JUL AUG SEP OCT	
	-0.109 -0.114 -0.101 -0.099 -0.117 -0.075	-0.078671 -0.109310 -0.114691 -0.099535 -0.117878 -0.075954 -0.054893 0.596065	-0.109310 0.01596 -0.114691 0.01625 -0.101169 0.01627 -0.099535 0.01637 -0.117878 0.01584 -0.075954 0.01455 -0.054893 0.01175	-0.109310 0.01596 -6.85 -0.114691 0.01625 -7.06 -0.101169 0.01627 -6.22 -0.099535 0.01637 -6.08 -0.117878 0.01584 -7.44 -0.075954 0.01455 -5.22 -0.054893 0.01175 -4.67	-0.078971 0.01596 -6.85 0.0001 -0.109310 0.01596 -6.85 0.0001 -0.114691 0.01625 -7.06 0.0001 -0.101169 0.01627 -6.22 0.0001 -0.099535 0.01637 -6.08 0.0001 -0.117878 0.01584 -7.44 0.0001 -0.075954 0.01455 -5.22 0.0001 -0.054893 0.01175 -4.67 0.0001	-0.078671 0.01350 -0.14 0.0001 -0.109310 0.01596 -6.85 0.0001 N0 -0.114691 0.01625 -7.06 0.0001 N0 -0.101169 0.01627 -6.22 0.0001 N0 -0.099535 0.01637 -6.08 0.0001 N0 -0.117878 0.01584 -7.44 0.0001 N0 -0.075954 0.01455 -5.22 0.0001 N0 -0.054893 0.01175 -4.67 0.0001 N0	-0.078671 0.01530 -0.14 0.0001 NGSFPUS coel for -0.109310 0.01596 -6.85 0.0001 NGSFPUS coel for -0.114691 0.01625 -7.06 0.0001 NGSFPUS coel for -0.101169 0.01627 -6.22 0.0001 NGSFPUS coel for -0.199535 0.01637 -6.08 0.0001 NGSFPUS coel for -0.117878 0.01584 -7.44 0.0001 NGSFPUS coel for -0.075954 0.01455 -5.22 0.0001 NGSFPUS coel for -0.054893 0.01175 -4.67 0.0001 NGSFPUS coel for	-0.078671 0.01530 -0.14 0.0001 NGSFPUS coef for MAY -0.109310 0.01596 -6.85 0.0001 NGSFPUS coef for JUN -0.114691 0.01625 -7.06 0.0001 NGSFPUS coef for JUN -0.101169 0.01627 -6.22 0.0001 NGSFPUS coef for JUL -0.099535 0.01637 -6.08 0.0001 NGSFPUS coef for AUG -0.117878 0.01584 -7.44 0.0001 NGSFPUS coef for SEP -0.075954 0.01455 -5.22 0.0001 NGSFPUS coef for NOV -0.054893 0.01175 -4.67 0.0001 NGSFPUS coef for NOV

Table A67. Supplemental Gaseous Fuels Produced

(NGSFPUS)

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8401 TO 9207

Table A68. Natural Gas Working Inventory (NGWGPUSX)

12 stimate	6 438413 Approx.	3479.5	58.98	700	0.9891	0.9879	1 890
stimate	Approx.					0.9879	1.890
	Std Err	'T' Ratio	Approx. Prob>iTi	Lab	bel		
50 535143 242380 951464 879746 901496 750420 050316 910920 818823 .027100 .716698	145.63340 0.06328 23.20252 32.83194 50.48437 64.17178 71.46336 70.38827 69.76104 72.43054 62.76266 49.23787	23.45 -8.46 -20.35 -21.81 -16.10 -10.70 -6.63 -2.69 1.13 4.08 7.97 10.56	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0082 0.2601 0.0001 0.0001 0.0001	NG NG NG NG NG NG NG NG NG NG	WGPUSX coef WGPUSX coef WGPUSX coef	for NGTCPUS for FEB for MAR for APR for APR for JUN for JUL for JUL for AUG for SEP for OCT for NOV	X•ZSAJQUS
	910920 818823 027100	910920 69.76104 818823 72.43054 027100 62.76266 716698 49.23787 864842 23.54442	910920 69.76104 1.13 918823 72.43054 4.08 027100 62.76266 7.97 716698 49.23787 10.56 864842 23.54442 15.75	000010 69.76104 1.13 0.2601 910920 69.76104 1.13 0.2601 818823 72.43054 4.08 0.0001 027100 62.76266 7.97 0.0001 716698 49.23787 10.56 0.0001 864842 23.54442 15.75 0.0001	050316 70.36627 2.05 0.2601 NG 910920 69.76104 1.13 0.2601 NG 818823 72.43054 4.08 0.0001 NG 027100 62.76266 7.97 0.0001 NG 716698 49.23787 10.56 0.0001 NG 864842 23.54442 15.75 0.0001 NG	050316 70.36827 21.03 0.2601 NGWGPUSX coef 910920 69.76104 1.13 0.2601 NGWGPUSX coef 818823 72.43054 4.08 0.0001 NGWGPUSX coef 027100 62.76266 7.97 0.0001 NGWGPUSX coef 716698 49.23787 10.56 0.0001 NGWGPUSX coef 864842 23.54442 15.75 0.0001 NGWGPUSX coef	050316 70.36627 2.05 0.2601 NGWGPUSX coef for AUG 910920 69.76104 1.13 0.2601 NGWGPUSX coef for AUG 818823 72.43054 4.08 0.0001 NGWGPUSX coef for SEP 027100 62.76266 7.97 0.0001 NGWGPUSX coef for OCT 716698 49.23787 10.56 0.0001 NGWGPUSX coef for DEC 864842 23.54442 15.75 0.0001 NGWGPUSX coef for DEC

Method of Estimation: OLS with 1st-order autocorrelation correction

RANGE of Fit: 8101 TO 9208

97

and the second second second

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson
NGPRPUSZ	Э	137	93.60898	0.68328	0.82661	0.9054	0.9040	2.088
Parameter	E	stimate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label		
NGPR_01	2.9	27244	1.22764	2.38	0.0185	NGPRPUSZ consta	ant coef	
NGPR R1	0.7	50382	0.03640	20.62	0.0001	NGPRPUSZ coef f	or LAG(NGNR	PUSA)
NGPR_DM	0.1	78572	0.02723	6.56	0.0001	NGPRPUSZ coef f	or NGTCPUSA	N
Method of Esti	mation: OLS							
RANGE of Fit:	8101 TO 9208							

Table A69. Dry Natural Gas Production (Seasonally Adjusted) (NGPRPUSZ)

Table A70. Wet Natural Gas Production (NGMPPUS)

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson	
NGMPPUS	3	137	0.35821	0.002614	7 0.05113	0.9998	0.9998	2.171	
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label			
NGMP_01	0.194582		0.13944	1.40	0.1651	NGMPPUS constant coef			
NGMP_PR	1.04	3027	0.0028279	368.83	0.0001	NGMPPUS coef to	r NGPRPUS		
NGMPPUS L1	0.90	9137	0.03034	29.97	0.0001	NGMPPUS 1st-order autocorrelation coef			

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8101 TO 9208

Table A71. Natural Gas Gross Imports(NGIMPUSZ)

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watsor
NGIMPUSZ	3	3 78	3.44808	0.04421	0.21025	0.9689	0.9681	1.982
Parameter	Es	timate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	Label		
NGIM_01 NGIM_T NGIMPUSZ_L1	0.04	17019 18822 10359	0.54811 0.0031428 0.08415	-8.46 15.53 8.44	0.0001 0.0001 0.0001	NGIMPUSZ constant coef NGIMPUSZ coef for TIME*D88ON NGIMPUSZ 1st-order autocorrelation coef		

RANGE of Fit: 8601 TO 9209

Table A72. Withdrawals from Natural Gas Underground Storage (NGWSPUS)

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson
NGWSPUS	13	13 127	564.78180	4.44710	2.10882	0.9004	0.8910	2.137
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label		
NGWS_01	18.21	1078	0.64478	28.24	0.0001	NGWSPUS constant		
NGWS_D	-1.08	9959	0.36427	-2.99	0.0033	NGWSPUS coef for		
NGWS_06	-3.08	6147	0.86092	-3.58	0.0005	NGWSPUS coef for		
NGWS_07	-8.49	4624	0.86092	-9.87	0.0001	NGWSPUS coef for		
NGWS_08	-13.91	4158	0.86092	-16.16	0.0001	NGWSPUS coef for		
NGWS_09	-16.37	6344	0.86092	-19.02	0.0001	NGWSPUS coef for		
NGWS_10	-16.61	9713	0.86092	-19.30	0.0001	NGWSPUS coef for		
NGWS_11	-16.44	8925	0.86092	-19.11	0.0001	NGWSPUS coef for		
NGWS_12	-16.22	5806	0.86092	-18.85	0.0001	NGWSPUS coef for		
NGWS_13	-16.45	6862	0.88048	-18.69	0.0001	NGWSPUS coef for		
NGWS_14	-15.28	8729	0.88048	-17.36	0.0001	NGWSPUS coef for		
NGWS_15	-11.00	2316	0.88048	-12.50	0.0001	NGWSPUS coef for		
NGWS_16	-2.64	13568	0.88048	-3.00	0.0032	NGWSPUS coef for	DEC	

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watsor
CLEUPUS	16	125	0.01583	0.00012	66 0.01125	0.9980	0.9978	2.007
Parameter	Est	Imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label		
CLEU_01	0.138	5174	0.02083	6.49	0.0001	CLEUPUS constant	coef	
CLEU_02	0.449	9986	0.0071839	62.64	0.0001	CLEUPUS coef for	CLEOPUS	
CLEU_06	-0.002	200969	0.0040819	-0.49	0.6233	CLEUPUS coef for	JAN	
CLEU_07	-0.013	3260	0.0046923	-2.83	0.0055	CLEUPUS coef for	FEB	
CLEU_08	-0.040	0212	0.0055278	-7.27	0.0001	CLEUPUS coef for	MAR	
CLEU_09	-0.05	1688	0.0063573	-8.13	0.0001	CLEUPUS coef for	APR	
CLEU_10	-0.04	0594	0.0062134	-6.53	0.0001	CLEUPUS coef for	MAY	
CLEU_11	-0.014	4158	0.0051943	-2.73	0.0073	CLEUPUS coef for	JUN	
CLEU_12	0.01	2700	0.0054996	2.31	0.0226	CLEUPUS coef for	JUL	
CLEU_13	0.00	734608	0.0054447	1.35	0.1797	CLEUPUS coef for	AUG	
CLEU_14	-0.01	3211	0.0050356	-2.62	0.0098	CLEUPUS coef for	SEP	
CLEU_15	-0.03	2710	0.0053770	-6.08	0.0001	CLEUPUS coef for	OCT	
CLEU_16	-0.02	6103	0.0043899	-5.95	0.0001	CLEUPUS coef for	NOV	
CLEU_17	0.02	6385	0.0088010	3.00	0.0033	CLEUPUS coef for	DS2	
CLEU_18	0.00	039196	0.00007521	5.21	0.0001	CLEUPUS coef for	TIME	
CLEUPUS_L1	0.42	9709	0.08119	5.29	0.0001	CLEUPUS 1st-orde	r autocorrelati	on coef

Table A73. Coal Consumption at Electric Utilities (CLEUPUS)

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8101 TO 9209

Table A74. Total Raw Steel Production (Seasonally Adjusted) (RSPRPUSA)

Equation	DF Model	DF Error	SSE	MSI	E	Root MSE	E F	R-Square	Adj R-Sq	Durbin-Watson
RSPRPUSA	5	124	0.00740	0.0000	5968	0.0077254	4	0.9190	0.9164	1.661
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Appr Prob		Label			
RSP_01	-0.01	4608	0.07456	-0.20	0.84	50	RSPRF	USA consta	ant coef	
RSP_02		3621E-6	0.00004372	0.06	0.95				f KRDRXUS	
RSP_03		046662	0.0001126	4.14	0.00	÷ ·		USA coef c		
RSP_04	-0.00	039484	0.0002971	-1.33	0.18	62	RSPRF	USA coef c	of TIME	
RSPRPUSA_L1	0.96	1282	0.02326	41.33	0.00	01	RSPRF	USA 1st-or	der autocorrela	tion coef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8201 TO 9209

Equation	DF Model	DF Error	SSE	MSE	Root MS	SE R-Square	Ad) R-Sq	Durbin-Watson
CLXCPUS	16	137	0.00846	0.00006	173 0.00785	67 0.8292	0.8105	1.807
Parameter	Est	limate	Approx. Stol Err	'T' Ratio	Approx. Prob>ITi	Label		
CLXC_01	0.10	6887	0.03593	2. 9 7	0.0035	CLXCPUS constant	coef	
CLXC_02	0.02	9903	0.01052	2.84	0.0052	CLXCPUS coef of [DUM84	
CLXC_03	-0.00	020503	0.00008692	-2.36	0.0198	CLXCPUS coef of 1	REND84	
CLXC_04	0.10	5848	0.04117	2.57	0.0112	CLXCPUS coef of 2	zosiius	
CLXC_05	-0.00	353723	0.0025683	-1.38	0.170?	CLXCPUS coef of .	JAN	
CLXC_06	0.00	188420	0.0031499	0.60	0.5507	CLXCPUS coef of F	EB	
CLXC_07	-0.02	0790	0.0034160	-6.09	0.0001	CLXCPUS coef of I	MAR	
CLXC_09	-0.02	3557	0.0035505	-6.63	0.0001	CLXCPUS coef of /	APR	
CLXC_09	-0.03	4389	0.0036138	-9.52	0.0001	CLXCPUS coef of I	MAY	
CLXC_10	-0.03	4691	0.0036316	-9.55	0.0001	CLXCPUS coef of .	JUN	
CLXC_11	-0.03	7502	0.0036156	-10.37	0.0001	CLXCPUS coef of .	JUL	
CLXC_12	-0.03	4499	0.0035550	-9.70	0.0001	CLXCPUS coef of /	AUG	
CLXC_13	-0.03	3296	0.0034238	-9.72	0.0001	CLXCPUS coef of S	SEP	
CLXC_14	-0.02	2166	0.0031787	-6.97	0.0001	CLXCPUS coef of (DCT	
CLXC_15	-0.00	852733	0.0025743	-3.31	0.0012	CLXCPUS coef of I	VOV	
CLXCPUS_L1	0.54	5596	0.07423	7.35	0.0001	CLXCPUS 1st-o, le	r autocorrelati	on coef

Table A75. Coal Demand by Synfuels and Other Industrial Users (CLXCPUS)

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of $\vec{\mathrm{Nit}}$: 8001 TO 9209

Table A76. Residential and Commercial Demand for Coal (CLHCPUS)

Equation	DF Model	DF Error	SSE	MSE	Root M	SE R-Square	Adj R-Sq	Durbin-Watson
CLHCPUS	16	137	0.00103	7.482598	E-6 0.00273	354 0.8486	0.8320	1.916
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>!Ti	Label		
CLHC_01	0.01	9889	0.0032425	6.13	0.0001	CLHCPUS constant	t coef	
CLHC_02	0.01	0353	0.0028385	3.65	0.0004	CLHCPUS coef of I	DUM84	
CLHC_03	-C.00	007246	0.00001687	-4.29	0.0001	CLHCPUS coef of	TREND84	
CLHC_04	0.00	0014597	3.5078E-6	4.16	0.0001	CLHCPUS coef of 2	ZWHDPUS	
CLHC_05	-0.00	574036	0.0009571	-6.00	0.0001	CLHCPUS coef of	JAN	
CLHC_06	-0.00	506621	0.0011570	-4.38	0.0001	CLHCPUS coef of I	FEB	
CLHC_07	-0.01	0896	0.0014407	-7.56	0.0001	CLHCPUS coef of i	MAR	
CLHC_08	-0.00	273637	0.0021734	-1.26	0.2102	CLHCPUS coef of a	APR	
CLHC_09	-0.00	792912	0.0027671	-2.87	0.0048	CLHCPUS coef of I	MAY	
CLHC_10	-0.00	789188	0.0031249	-2.53	0.0127	CLHCPUS coef of	JUN	
CLHC_11	-0.00	226091	0.0032184	-0.70	0.4836	CLHCPUS coef of	JUL	
CLHC_12	-0.00	290058	0.0031949	-0.91	0.3655	CLHCPUS coef of a	AUG	
CLHC_13	-0.00	187763	0.0029877	-0.63	0.5308	CLHCPUS coef of	SEP	
CLHC_14	-0.00	492818	0.0022820	-2.16	0.0325	CLHCPUS coei of	ОСТ	
CLHC_15	-0.00	336978	0.0014355	-2.35	0.0203	CLHCPUS coef of	NOV	
CLHCPUS_L1	0.48	8446	0.07493	6.52	0.0001	CLHCPUS 1st-orde	r autocorrelati	on coef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE cf Fit: 8001 TO 9209

4

0. F

Equation	DF Model	DF Erro	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson
MGWHUUSA	5	100	467.03138	4.67031	2.16109	0.9687	0.9674	1.640
Parameter	Est	lmate	Approx. Std Err	'T' Ratio	Approx. Prob>lTl	Labei		
MGWHP_01	36.41	1816	20.61301	1.77	0.0804	MGWHUUSA cons	tant coef	
MGWHP_PC	1.97	597 9	0.12304	16. 06	0.0001	MGWHUUSA coef	of RACPUUS/	4
MGWHP_DS	-0.81	8036	0.28740	-2.85	0.0054	MGWHUUSA coef	of LAG1(MGP	SPUSA)/MGTCPUS/
MGWHP_WI	12.23	6449	14.26416	0.86	0.3930	MGWHUUSA coef	of WPIINUS	
MGWHUUSA_L1	0.82	5318	0.05804	14.22	0.0001	MGWHUUSA 1st-o	order autocorre	lation coef

Table A77. Motor Gasoline Wholesale Price (Seasonally Adjusted) (MGWHUUSA)

Table A78. Motor Gasoline Retail Price (Seasonally Adjusted) (MGUCUUSA)

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin h
MGUCUUSA	4	138	289.60172	2.09856	1.44864	0.9901	0.9899	3.419
Parameter	Esti	mate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Labei		
MGUCP_01	-8.928	3245	1.62123	-5.51	0.0001	MGUCUUSA const	ant coef	
MGUCP_R1	0.455	612	0.02293	19.87	0.0001	MGUCUUSA coef of	of LAG(MGUCU	USA)
MGUCP_WH	0.573	3358	0.02347	24.43	0.0001	MGUCUUSA coef of	of MGWHUUSA	
MGUCP_CI	24.389	9231	1.28556	18.97	0.0001	MGUCUUSA coef	of CICPIUS	
Method of Estin	mation: OLS							
RANGE of Fit:	8101 TO 9210							

а — на конструкции и респолнитирует собруганиется сонострука соотрука собруганиется украниется конструкции нас

.

102

-

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson
D2WHUUSA	4	101	646.03578	6.39639	2.52911	0.9656	0.9646	1.841
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label		
D2WHP_01	32.83	3172	5.13369	6.40	0.0001	D2WHUUSA const	ant coef	
D2WHP_PC	2.26	5838	0.12679	17.87	0.0001	D2WHUUSA coef	of RACPUUSA	
D2WHP_DS	-0.42	2316	0.11615	-3.64	0.0004	D2WHUUSA coef	of EXDFDS	
D2WHUUSA_L1	0.71	7978	0.07409	9.69	0.0001	D2WHUUSA 1st-o	rder autocorrela	ation coef

Table A79. Distillate Fuel Wholesale Price (Seasonally Adjusted) (D2WHUUSA)

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8401 TO 9209

Table A80. Distillate Fuel Retail Price (Seasonally Adjusted) (D2RCUUSA)

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin h
D2RCUUSA	4 101		334.23012	3.30921	1.81912	0.9803	0.9797	3.502
Parameter	Est	Imate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	Label		
D2RCP 01	-7.488	3132	2.83955	-2.64	0.0097	D2RCUUSA consta	int coef	
D2RCP_R1	0.348	3961	0.03427	10.18	0.0001	D2RCUUSA coef o	f LAG1(D2RCU	USA)
D2RCP_WH	0.636	6426	0.03325	19.14	0.0001	D2RCUUSA coef o	f D2WHUUSA	
D2RCP_WN	24.51	1329	2.43105	10.08	0.0001	D2RCUUSA coef o	f WPIINUS	
Method of Esti	mation: OLS							
RANGE of Fit:	8401 TO 9209							

.....

Equation	DF Model	DF Erro	SSE	MSE	Root MS	E R-Squa	re Adj R-Sq	Durbin-Watson
DSTCUUSA	6	100	263.36134	2.63361	1.62284	0.9848	3 0.9840	1.911
Parameter	Esti	mate	Approx. Std Err	'T' Ratio	Approx. Prob>IT!	Label		
DSTCP_01	39.177	684	12.19323	3.21	0.0018	DSTCUUSA o	onstant coef	
DSTCP_PC	2.104	490	0.09490	22.18	0.0001	DSTCUUSA o	oef of RACPUUSA	
DSTCP_DS	-0.314	921	0.07484	-4.21	0.0001	DSTCUUSA c	oef of LAG1(DFPSI	PUS)/DFTCPUS
DSTCP_D1	8.269	422	1.21574	6.80	0.0001	DSTCUUSA c	oef of D9001	
DSTCP_CI	4.357	190	9.34143	0.47	0.6419	DSTCUUSA c	oef of CICPIUS	
DSTCUUSA L1	0.82	415	0.04722	18.75	0.0001	DSTCUUSA 1	st-order autocorrela	ition coef

Table A81. Diesel Fuel Price (Seasonally Adjusted)

(DSTCUUSA)

Method of Estimation: ULS with 1st-order autocorrelation correction RANGE of Fit: 8401 TO 9210

Table A82. Residual Fuel Retail Price

(RFTCUUS)

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson	
RFTCUUS	15	90	375.29536	4.16995	2.04205	0.9803	0.9772	1.626	
Parameter	Esti	mate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Labei			
RFTCP_01	11.535	752	4.24687	2.72	0.0079	RFTCUUS constant	coef		
RFTCP_PC	1.766	080	0.12955	13.63	0.0001	RFTCUUS coef of R	ACPUUSA		
RFTCP_RF	-0.116	252	0.05630	-2.06	0.0418	RFTCUUS coef of L	AG1(RFPSPL	JS)/RFTCPUS	
RFTCP_06	4.724	068	1.19446	3.95	0.0002	RFTCUUS coef of J	AN		
RFTCP_07	2.504	219	1.20686	2.07	0.0408	RFTCUUS coef of F	EB		
RFTCP_08	1.477	'194	1.17866	1.25	0.2134	RFTCUUS coef of N	1AR		
RFTCP_09	0.551	080	1.12149	0.49	0.6244	RFTCUUS coef of A	PR		
RFTCP_10	0.512	545	1.03861	0.49	0.6229	RFTCUUS coef of N	MAY		
RFTCP_11	-0.045	6995	0.88645	-0.05	0.9587	RFTCUUS coef of J	UN		
RFTCP_12	0.050	120	0.65925	0.08	0.9396	RFTCUUS coef of J	UL		
RFTCP_14	-0.124	664	0.68125	-0.18	0.8552	RFTCUUS coef of S	EP		
RFTCP_15	1.048	371	0.96153	1.09	0.2785	RFTCUUS coef of C	ЮСТ		
RFTCP_16	2.027	972	1.07040	1.89	0.0614	RFTCUUS coef of N	IOV		
RFTCP_17	3.034	922	1.15381	2.63	0.0100	RFTCUUS coef of D	DEC		
RFTCUUS_L1	0.942	932	0.03287	28.68	0.0001	RFTCUUS 1st-order	· autocorrelati	on coef	

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8401 TO 9209

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

1

 ~ 2

and the second sec

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Sq	uare	Adj R-Sq	Durbin h
JKTCUUSA	6	123	651.11385	5.29361	2.30078	0.98	314	0.9807	0.304
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label			
JKTCP_01	-8.67	5293	6.77263	-1.28	0.2026	JKTCUUSA	constant	coef	
JKTCP_R1	0.39	9989	0.05448	7.34	0.0001	JKTCUUSA	coef of L	AG1(JKTCUL	JSA)
JKTCP_PC	1.64	1122	0.14355	11.43	0.0001	JKTCUUSA	coef of F	ACPUUSA	-
JKTCP_D1	5.97	7097	1.91400	3.12	0.0022	JKTCUUSA	coef of D	DUMCOLD	
JKTCP_WN	12.73	1694	5.01674	2.54	0.0124	JKTCUUSA	coef of V	VPIINUS	
JKTCUUSA L1	0.48	7644	0.09418	5.18	0.0001	JKTCUUSA	1st-orde	r autocorrelati	on coef

Table A83. Kerosene Jet Fuel Retail Price (Seasonally Adjusted) (JKTCUUSA)

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8201 TO 9209

Table A84. Propane Retail Price (Seasonally Adjusted) (PBTCLUUSA)

1	(רחו	0003	5M)	

Equation	DF Model	DF Error	SSE	MSE	Root N	ISE	R-Square	Adj R-Sq	Durbin h
PRTCUUSA	5	123	1483	12.0536	9 3.471	84	0.6585	0.6474	-0.104
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Lab	el		
PRTCP_01	8.05		5.75616	1.40	0.1641		CUUSA consta		0 43
PRTCP_R1 PRTCP_WI	0.84 -0.65		0.05149 2.99069	16.34 -0.22	0.0001 0.8258		CUUSA coef o	f LAG(PRTCUU	SA)
PRTCP_D2	0.03		0.02036	1.91	0.0580		CUUSA coef o		
PRTCUUSA_L1			0.09959	-1.59	0.1140	• • • •		der autocorrelati	on coef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8201 TO 9208

.

inan ta k

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-S	quare	Adj R-Sq	Durbin-Watson
WP57IUS	5	75	0.02244	0.000299	2 0.01730	0.	9720	0.9705	1.654
Parameter	E	stimate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label			
WP57P_01 WP57P_MG WP57P_DS WP57P_JK WP57IUS_L1	0.0 0.0 0.0	15160 0437316 00162068 00344970 329578	0.02974 0.0008897 0.0012891 0.0008383 0.09906	0.51 4.92 1.26 4.12 6.36	0.6118 0.0001 0.2126 0.0001 0.0001	WP57IUS WP57IUS	coef of I coef of I coef of I	t coef MGWHUUSA DSTCUUSA JKTCUUSA or autocorrelatio	on coef

Table A85. Producer Price Index for Petroleum Products (Seasonally Adjusted) (WP57!US)

Table A86. Natural Gas Spot Price(NGSPUUS)

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin h
NGSPUUS	15	41	0.58151	0.01418	0.11909	0.8374	0.7819	3.684
Parameter	Es	limate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label		
NGSPP_01	1.85	1201	0.40273	4.60	0.0001	NGSPUUS const		
NGSPP_RF		618051	0.0025637	2.41	0.0205	NG3PUUS coef		
NGSPP_WG		055425	0.0001365	-4.06	0.0002	NGSPUUS coef		
NGSPP_R1	••••	9497	0.10131	5.92	0.0001		of LAG(NGSPUUS)	
NGSPP_06		51081	0.09185	1.75	0.0869	NGSPUUS coef		
NGSPP_07		33970	0.09152	-4.20	0.0001	NGSPUUS coef		
NGSPP_08	•	38626	0.11705	-4.60	0.0001	NGSPUUS coef		
NGSPP_00		31623	0.14056	-4.14	0.0002	NGSPUUS coef		
NGSPP_09		99351	0.13384	-3.73	0.0006	NGSPUUS coef		
NGSPP_11		55602	0.10627	-3.35	0.0018	NGSPUUS coef		
NGSPP_12		32001	0.08314	-2.79	0.0079	NGSPUUS coef		
NGSPP_12		45854	0.08996	1.62	0.1126	NGSPUUS coef		
NGSPP_15		65145	0.11020	3.31	0.0019	NGSPUUS coef		
NGSPP_15		41887	0.12713	4.26	0.0001	NGSPUUS coef		
NGSPP_10		72004	0.12613	3.74	0.0006	NGSPUUS coef	of DEC	

Method of Estimation: OLS RANGE of Fit: 8801 TO 9208

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

فستشقص سرحا محمس وحالي وحالي والموجد الالاني حالتهما عروانا يحتا المحمول والمحمد المحمول والمحمو

1.1.4

-

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin h
NGWPUUS	14	64	0.31906	0.004985	3 0.07061	0.8816	0.8576	3.258
Parameter	Es	timate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label		
	0.27	/8349	0.08658	3.22	0.0020	NGWPUUS consta		
NGWPP_01 NGWPP_B1		2277	0.05966	8.25	0.0001	NGWPUUS coef of		S)
NGWPP_D	••••	2376	0.04991	8.46	0.0001	NGWPUUS coef of		
NGWPP_06	÷	748091	0.04259	0.18	0.8611	NGWPUUS coef of		
NGWPP_07	÷	5266	0.04344	-3.57	0.0007	NGWPUUS coef of		
NGWPP_08		32580	0.03902	-2.12	0.0382	NGWPUUS coef o		
NGWPP_09		51150	0.03816	-1.34	0.1848	NGWPUUS coef o		
NGWPP_10	•	16193	0.03783	-1.22	0.2265	NGWPUUS coef o		
NGWPP_11	÷	32483	0.03778	-0.86	0.3932	NGWPUUS coef o		
NGWPP_12	÷	47917	0.03786	-1.27	0.2103	NGWPUUS coef o		
NGWPP_14	-0.0-	43666	0.03930	-1.11	0.2707	NGWPUUS coef o		
NGWPP_15		0980030	0.03947	0.25	0.8047	NGWPUUS coef o		
NGWPP_16	-0.0	12952	0.04040	-0.32	0.7496	NGWPUUS coef o		
NGWPP_17	÷	0977594	0.04166	0.23	0.8152	NGWPUUS coef c	of DEC	

Table A87. Natural Gas Wellhead Price (NGWPUUS)

RANGE of Fit: 8603 TO 9208

-

Table A88. Natural Gas Price to Electric Utilities(NGEUDUSA)

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin h
NGEUDUSA	4	74	0.31890	0.00430	0.06565	o 0.7516	0.7415	3.551
Parameter	Es	limate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	Label		
NGEUP_01 NGEUP_R1 NGEUP_WP NGEUP_RF	0.47 0.32	00882 17442 24763 78546	0.12954 0.06569 0.06116 0.01676	3.33 7.27 5.31 4.69	0.0014 0.0001 0.0001 0.0001	NGEUDUSA cons NGEUDUSA coef NGEUDUSA coef NGEUDUSA coef	of LAG(NGEUD of NGWPUUSA	USA)

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

وأراحه والمحادثة فالمحادثة

an da a ser a ser an an

...

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin h
NGRCUUSA	4	52	0.27673	0.00532	18 0.07295	0.8020	0.7906	-0.033
Parameter	Est	limate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	Label		
NGRCP_01	0.54	0255	0.41002	1.32	0.1934	NGRCUUSA const	ant coef	
NGRCP_R1	0.58	0810	0.11006	5.28	0.0001	NGRCUUSA coef o	of LAG(NGRCUI	USA)
NGRCP_WI	1.35	8175	0.46391	2.93	0.0051	NGRCUUSA coef of		•
NGRCP_NP	0.20	6256	0.09096	2.27	0.0275	NGRCUUSA coef of	of LAG1(NGWP	UUS)
Method of Estin	mation: OLS							
RANGE of Fit:	8801 TO 9208							

Table A89. Natural Gas Price to Residential Customers (Seasonally Adjusted) (NGRCUUSA)

Table A90. Natural Gas Price to Commercial Customers (Seasonally Adjusted) (NGCCUUSA)

Equation	DF Model	DF Error	SSE	MSI	E Root	MSE	R-Square	Adj R-Sq	Durbin h
NGCCUUSA	5	73	0.30334	0.0041	553 0.06	146	0.7938	0.7825	0.130
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	La	bel		
NGCCP_01	0.55		0.28924	1.92	0.0585		ACCUUSA const		
NGCCP_R1	0.79		0.05269	15.08	0.0001		SCCUUSA coef o	•	JSA)
NGCCP_WP NGCCP_WI	0.16	3413 4087	0.05295 0.09508	3.09 1.21	0.0029 0.2304		GCCUUSA coef o		
NGCCUUSA_L1			0.12027	-2.23	0.0288		SCCUUSA 1st-or		ion coef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8603 TO 9208

Energy Information Administration/ Short-Term integrated Forecasting System 1993 Model Documentation

Equation	DF Model	DF Error	SSE	MSE	Root	NSE	R-Square	Adj R-Sq	Durbin h
NGICUUSA	3	75	0.25908	0.00345	544 0.058	377	0.8869	0.8839	1.526
Parameter	Est	timate	Approx. Std Err	'T' Ratio	Approx. Prob>ITI	La	bei		
NGICP_01 NGICP_R1 NGICP_WP	0.71	2819 3356 1)909	0.10740 0.04358 0.05764	2.54 16.37 5.57	0.0131 0.0001 0.0001	N	GICUUSA consta GICUUSA coef o GICUUSA coef o	f LAG(NGICUUS	5A)
Method of Est RANGE of Fit	imation: OLS : 8603 TO 9208								

Table A91. Natural Gas Price to Industrial Customers (Seasonally Adjusted) (NGICUUSA)

Table A92. Electricity Price to Residential Customers (Seasonally Adjusted) (ESRCUUSA)

Equation	DF Model	DF Error	SSE	MSE	Root MS	E R-Square	Adj R-Sq	Durbin-Watson
ESRCUUSA	7	71	0.26226	0.003693	9 0.06078	0.9607	0.9574	2.089
Parameter	Es	timate	Approx. Std Err	'T' Ratio	Approx. Prob>iTi	Label		
ESRCP_01 ESRCP_IN ESRCP_WPI ESRCP_AF ESRCP_D1 ESRCP_D2 ESRCUUSA_L	0.04 2.89 0.26 0.25	2653 (4482 (9921 88514 51607 24256 (8459	0.62352 0.01549 0.30390 0.24749 0.03935 0.05009 0.10554	5.31 2.87 9.51 1.17 6.39 -2.48 4.91	0.0001 0.0054 0.0001 0.2476 0.0001 0.0155 0.0001	ESRCUUSA cons ESRCUUSA coef ESRCUUSA coef ESRCUUSA coef ESRCUUSA coef ESRCUUSA coef ESRCUUSA 1st-c	of PRIMELG of WPIINUS of AFUEUUS of DUMELE of DUM89	ation coef

Method of Estimation: OLS with 1st-order autocorrelation correction RANGE of Fit: 8603 TO 9208

والمحمد فالمقصر كالمترابع المحمور منازع والمراجع والمراجع

Equation	DF Model	DF Error	SSE	MSI	E F	loot MSE	R-Square	Adj R-Sq	Durbin h
CLEUDUSA	4	76	0.00548	0.0000	7204 (.0084877	0.9753	0.9743	-1.324
Parameter	Est	imate	Approx. Std Err	'T' Ratio	Appro Prob>		abel		
CLEUP_01	0.18	9884	0.07333	2.59	0.011	5 C	LEUDUSA consta	nt coef	
CLEUP_R1	0.89	0588	0.03740	23.81	0.000	1 C	LEUDUSA coef of	LAG(CLEUDU	SA)
CLEUP_MR	-0.01	1201	0.0059493	-1.88	0.063	3 C	LEUDUSA coef of	CLMRHUS	
CLEUP_DS	0.00	014184	0.00009685	1.46	0.147	2 C	LEUDUSA coef of	DSTCUUS	
Method of Esti	mation: OLS								
RANGE of Fit:	8601 TO 9208								

Table A93. Coal Price (Seasonally Adjusted) (CLEUDUSA)

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

Appendix B

Data Definitions and Sources

where the state of the state of the

Appendix B

Data Definitions and Sources

Nearly 600 variables are used in the STIFS model for estimation, simulation, and report writing. Most of these variables follow the following naming convention:

Characters	MG	TC	Р	US	A
Positions	1 and 2	3 and 4	5	6 and 7	8
Identity	Type of Energy	Energy Activity or consumption end- use sector	Type of data	Geographic area or special equation factor	Data treatment

In this example, MGTCPUSA is the identifying code for motor gasoline total consumption in physical units in the United States which is deseasonalized.

The type of energy categories, which is represented by the first two letters of the variable name, are:

- AB = aviation gasoline blending components
- CC = coal coke
- CL = coal
- CO = crude oil, including lease condensate
- CP = crude oil and pentanes plus
- CU = crude oil and unfinished oils
- DF = distillate fuel, including diesel fuel and heating oil
- DS = diesel fuel
- D2 = heating oil
- EL = electricity
- ES = electricity sales
- ET = ethane
- FE = petrochemical feedstocks
- GE = geothermal energy
- HY = hydroelectric power
- JF = jet fuel
- JK = jet fuel, kerosene-type
- LG = liquefied petroleum gases
- LX = liquefied petroleum gases, excluding ethane
- MB = motor gasoline blending components
- MG = finished motor gasoline
- MI = miscellaneous petroleum products
- ML = leaded motor gasoline
- MU = unleaded motor gasoline
- NA = natural gas, including natural gas liquids

- NG = natural gas
- NL = natural gas liquids
- NU = nuclear power
- OH = other hydrocarbons/alcohol
- PA = all petroleum products
- PC = petroleum coke
- PP = pentanes plus
- PR = propane
- PS = other petroleum products
- RF = residual fuel
- RS = raw steel
- UO = unfinished oils
- WN = wind, photovoltaic, and solar thermal energy

Energy activity or consumption end-use sectors, identified by characters three and four of each variable name, are:

- AC = transportation sector consumption
- CA = capacity
- CC = commercial sector consumption
- CM = commercial sector consumption
- EO = electricity production
- ES = sales to end-users
- EU = electricity sector consumption
- EX = gross export
- FC = synfuels consumption
- FP = field production
- HC = residential/commerical sector consumption
- IC = industrial sector consumption
- IM = gross import
- KC = coke oven consumption
- LO = losses
- NI = net import
- NS = nonutility supply
- PR = production
- PS = petroleum product stocks
- RC = residential sector consumption
- RI = refinery input
- RO = refinery output
- RT = retail sales
- TC = total consumption of all sectors
- TX = Federal, state, and local taxes
- UN = unaccounted for
- WH = wholesale sales

The fifth character of the variable names in STIFS identifies the type of data by using one of the following letters:

- D = price per million Btu
- K = factor for converting data from kilowatthours to Btu
- M = data in alternative physical units
- P = data in standardized physical units
- S = share or ratio expressed as a fraction
- U = price per standardized physical unit
- Z = factor for converting data from barrels to Btu

The physical units for data series in the STIFS model, represented by a "P" in the fifth character, include some of the following: coal data are in thousand short tons, petroleum data are in thousand barrels, natural gas data are in million cubic feet, and electricity data are in billion kilowatthours. Conversion factors, represented by a "K" in the fifth character, are applied to the physical unit data to convert the data to British thermal units, a common unit for all forms of energy.

The two characters in positions 6 and 7 represent a geographic identification or denote special additive or multiplicative factors used in estimating equations. The codes used in the STIFS model are:

AD = "Add" factor

AK = Alaska

MU = "Multiply" factor

- 48 = The contiguous 48 states and the District of Columbia
- US = United States

Data treatment:

A = deseasonalized data series

- S = seasonal factors derived from Census X-11 method
- B,Q,X,Z = temporary variables

Exogenous Variables

Add Factors

ì

2

.

2

.

> т. П

> > 4

1.11

-

Variable	Units	ADD Factor For	
AARYFAD	LDPM		
BALITAD	BCFD	BALIT	
CLEOPAD	BKWD	CLEOPU	
CLEUDAD	DMMB	CLEUDUSA	
CLHCPAD	MMTD	CLHCPUS	
CLKCPAD	MMTD	CLKCPUSX	
CLXCPAD	MMTD	CLXCPUS	
CORIPAD	MMBD	CORIPUS	
DFACPAD	MMBD	DFACPUS	
DFHCPAD	MMBD	DFHCPUS	
DFICPAD	MMBD	DFICPUS	
DSTCUAD	CPG	DSTCUUSA	
D2RCUAD	CPG	D2RCUUSA	
D2WHUAD	CPG	D2WHUUSA	
EFFSAD	HTMB	EFF	
ESCMPAD	BKWD	ESCMPUSQ	
ESICFAD	BKWD	ESICPUSB	
ESOTPAD	BKWD	ESOTPUSQ	Units Key
ESRCPAD	BKWD	ESRCPUSQ	Units Key
ESRCUAD	CKWH	ESRCUUSA	BCFD = Billion cubic feet per day
FETCPAD	LMMBD	LSFET	
JFROPAD	MMBD	JFROPUS	
JKTCUAD	MMBD	JKTCUUSA	BKWD = Billion kilowatthours per day
LXTCPAD	MMBD	LXTCPUSA	CKWH = Cents per kilowatthour
MGROPAD	MMBD	MGROPUSA	CPG = Cents per gallon
MGUCUAD	CPG	MGUCUUSA	DMCF = Dollars per million cubic feet
MGWHUAD	CPG	MGWHUUSA	DMMB = Dollars per million Btu
MITCPAD	MMBD	MITCPUS	LDPM = Log dollars per passenger mile
MPGAAD	MPG	MPGA	LMMBD = Log million barrels per day
MVVMPAD	MM	MVVMPUSA	LRTMD = Log revenue ton miles per day
NGACPAD	BCFD	NGACPUS	MMB = Million barrels
NGCCPAD	BCFD	NGCCPUSX	MMBD = Million barrels per day
NGCCUAD	BCFD	NGCCUUSA	
NGEOSAD	BKWD	NGEOSHRX	
NGEUDAD	DMMB	NGEUDUSA	
NGICUAD	DMCF	NGICUUSA	
NGIMPAD	BCFD	NGIMPUSZ	
NGINPAD	BCFD	NGINPUSZ	
NGLPPAD	BCFD	NGLPPUS	
NGPRPAD	BCFD	NGPRPUSZ	
NGRCPAD	BCFD	NGRCPUSX	
NGRCUAD	DMCF	NGRCUUSA	
NGSPUAD	DMMB	NGSPUUS	
NGWGPAD	BCF	NGWGPUSX	
NGWPUAD	DMCF	NGWPUUS	
OHRIPAD	MMBD	OHRIPUS	
PRTCUAD	CPG	PRTCUUSA	
PRICUAD	MMBD	PSRIPUS	
	CPG	RFTCUUS	
RFTCUAD		LDRTM	
RMZTPAD	LRTMD	LDRZM	
RMZZPAD	MMTD	FSPRPUSA	
RSPRPAD			
UORIPAD	MMBD	UORIPUSJ	

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

H

*

.

يريده والمناقب المرافع المراجع والمراجع والمراجع والمراجع والمراجع

/ariable	Multiplicative Factor For	
	BALIT	
BALITMU	CLEOPUS	
	CLEUDUSA	
	CLHCPUS	
	CLXCPUS	
	DFACPUS	
DFACPMU	DFHCPUS	
DFHCPMU	DFICPUS	
DFICPMU	DSTCUUSA	
DSTCUMU	D2RCUUSA	
D2RCUMU	D2WHUUSA	
D2WHUMU	EFF	
EFFSMU	ESCMPUSQ	
ESCMPMU	ESICPUSB	
ESICPMU	ESOTPUSQ	
ESOTPMU	ESCIPUSQ	
ESRCPMU	ESRCUUSA	
ESRCUMU		
ETTCPMU	ETTCPUSA JFROPUS	
JFROPMU		
JKTCUMU	JKTCUUSA	
LXTCPMU	LXTCPUSA	
MGUCUMLI	MGUCUUSA	
MGWHUMU	MGWHUUSA	
MITCPMU	MITCPUS	
MPGAMU	MPGA	
MVVMPMU	MVVMPUSA	
NGACPMU	NGACPUS	
NGCCPMU	NGCCPUSX	
NGCCUMU	NGCCUUSA	
NGEOSMU	NGEOSHRX	
NGICUMU	NGICUUSA	
NGINPMU	NGINPUSZ	
NGLPPMU	NGLPPUS	
NGPRPMU	NGPRPUSZ	
NGRCPMU	NGRCPUSX	
NGRCUMU	NGRCUUSA	
NGSPUMU	NGSPUUS	
NGWGPMU	NGWGPUSX	
NGWPUMU	NGWPUUS	
PRTCUMU	PRTCUUSA	
RFTCUMU	RFTCUUS	
RSPRPMU	RSPRPUSA	

2

алар таку калана калану калану калану калану калану кушка сикалар билика так бакериен. Инар которус кар ти кину

Seasonal Factors

Variable	Seasonal Factors For	
AARYFUSS	AARYFUS	
CLEUDUSS	CLEUDUS	
CORIPUSS	CORIPUS	
DFPSPUSS	DFPSPUS	
DFROPUSS	DFROPUS	
DFTCPUSS	DFTCPUS	
DSRTUUSS	DSRTUUS	
DSTCUUSS	DSTCUUS	
D2RCUUSS	D2RCUUS	
D2WHUUSS	D2WHUUS	
ESRCUUSS	ESRCUUS	
ETTCPUSS	ETTCPUS	
FETCPUSS	FETCPUS	
JFROPUSS	JFROPUS	
JFTCPUSS	JFTCPUS	
JKTCUUSS	JKTCUUS	
LGRIPUSS	LGRIPUS LGROPUS	
LGROPUSS	LGTCPUS	
LGTCPUSS	LXTCPUS	
LXTCPUSS	MGPSPUS	
MGPSPUSS	MGROPUS	
MGROPUSS	MGTCPUS	
MGTCPUSS	MGUCUUS	
MGUCUUSS MGWHUUSS	MGWHUUS	
MITCPUSS	MITCPUS	
MITCHUSS	MLTCPUS	
MUTCPUSS	MUTCPUS	
MVVMPUSS	MVVMPUS	
NGCCUUSS	NGCCUUS	
NGEUDUSS	NGEUDUS	
NGICUUSS	NGICUUS	
NGIMPUSS	NGIMPUS	
NGNCPUSS	NGNCPUS	
NGNRPUSS	NGNRPUS	
NGPRPUSS	NGPRPUS	
NGRCUUSS	NGRCUUS	
NGSPUUSS	NGSPUUS NGTCPUS	
NGTCPUSS	NGTCFUS	
NGWGPUSS	NGWQFUUS	
NGWPUUSS	ORUTCUS	
ORUTCUSS	PATCPUS	
PATCPUSS	PPRIPUS	
PPRIPUSS	PRTCUUS	
PRTCUUSS PSROPUS	PSROPUS	
PSTCPUSS	PSTCPUS	
RACPUUSS	RACPUUS	
RFEUDUSS	RFEUDUS	
RFPSPUSS	RFPSPUS	
RFROPUSS	RFROPUS	
RFTCPUSS	RFTCPUS	
RFTCUUSS	RFTCUUS	
RMZTPUSS	RMZTPUS	
RMZZPUSS	RMZZPUS	
RSPRPUSS	RSPRPUS	
UORIPUSS	UORIPUS	

Source: Derived from Census X-11 multiplicative seasonal adjustment routine.

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

 $(1+1)_{M \in \mathbb{N}} = (1+1)_{M \in \mathbb{N}} + (1+1)_{M \in$

des las roma

Variable	Туре	Definition
APR	DUMM	1 for April
AUG	DUMM	1 for August
DATE	DATE	Numeric year/month
DATEX	DATE	Starting date for equation estimation
DAYSMO	INTS	Number of days in the month
DEC	DUMM	1 for December
DRVP89	DUMM	DATE greater than 8903 and less than 8908
DRVP90	DUMM	DATE greater than 9003 and less than 9008
DS2	DUMM	DATE greater than or equal to 8104 and less than or equal to 8106
DSHIELD	DUMM	DATE greater than or equal to 9010 and less than or equal to 9012
DSTORM DTO87		DATE equal to 9101 or 9102 DATE less than or equal to 8712
DUM84	DUMM	DATE greater than 8401
DUM89	DUMM	DATE greater than 8910 and less than 9001
DUM8083	DUMM	YEAR greater than 1979 and less than 1984
DUMCOLD	DUMM	DATE equal to 8912 or 9001
DUMELE	DUMM	DATE greater than 9102
DUMIRAN	DUMM	DATE greater than 7904 and less than 9010
DUMWTR	DUMM	YEAR greater than 1980 and MO equal to 1, 2, 3, 4, 11, OR 12
D87ON	DUMM	DATE greater than 8703
D88ON	DUMM	YEAR greater than 1987
D890N	DUMM	YEAR greater than 1988
D90ON	DUMM	YEAR greater than 1989
D9009ON	DUMM	DATE greater than 9009
D81	DUMM	YEAR equal to 1981
D89	DUMM	YEAR equal to 1989
D91	DUMM	DATE equal to 9102 or 9103
D8002 D8082		DATE equal to 8002 DATE greater than 7912 and less than 8301
D8082 D8184	DUMM	DATE greater than 8012 and less than 8404
D8301	DUMM	DATE equal to 8301
D8302	DUMM	DATE equal to 8302
D8412	DUMM	DATE equal to 8412
D8501	DUMM	DATE equal to 8501
D8611	DUMM	DATE equal to 8611
D8809	DUMM	DATE equal to 8809
D8912	DUMM	DATE equal to 8912
D8990	DUMM	DATE greater than 8902 and less than 9002
D9001	DUMM	DATE equal to 9001
FEB	DUMM	1 for February
JAN	DUMM	1 for January
JUL	DUMM	1 for July
JUN MAR		1 for June 1 for March
MAY	DUMM	1 for May
MO	INTS	2-digit month of observation
NOV	DUMM	1 for November
OCT	DUMM	1 for October
POST85	DUMM	DATE greater than or equal to 8501
PRE85XT	DUMM	Slope dummy, (1 - POST85) * TIME
SEP	DUMM	1 for September
TD8184	DUMM	Slope dummy, Log(TIME) * D8184
TD8990	DUMM	Slope dummy, Log(TIME) * D8990
TDTO87	DUMM	Slope dummy, integers where DATE less than or equal to 8712
TIMEX85	MMUC	Slope dummy, integers, where DATE greater than 8412
TIME	INTS	Integers 1 - n, where n = number of observations
TREND	INTS	Temporary variable for time
TREND84	DUMM	Slope dummy, integers, where DATE greater than 8312
YEAR	INTS	2-digit Year of observationexample: 89 = 1989
ZSAJQUS	INTS	Number of days in a month

Dummy, Integer, Date, and Time Variables

Type Key: DATE = Numeric year/month - example: 8901 = January 1989

DUMM = Dummy variable, 1 where specified, 0 otherwise INTS = Positive integer

Heat Rates and Thermal Contents

Variable	Units	Definition	
CLEOKUS	MBtuK MMBtuT	Heat rate for coal Thermal content of coal at electric utilities	
DFEOKUS	MBtuK	Heat rate for distillate fuel oil	
DFTCZUS	MMBtuB MBtuK	Thermal content of distillate fuel oil Heat rate for electricity consumption	
FFEOKUS	MBtuK	Heat rate for hydropower generation	
NAPRKUS NGEOKUS	MMBtuCF CFK	Thermal content of wet natural gas production Heat rate for natural gas	
NGNUKUS	MMBtuCF	Thermal content of nonutility natural gas	
NGPRKUS NUEOKUS	MMBtuCF MBtuK	Thermal content of dry natural gas production Heat rate for nuclear power	
PCEOKUS	MBtuK	Heat rate for petroleum coke	
PCTCZUS QCOAL	MMBtuB TBtuD	Thermal content of petroleum coke Heat generation from coal	
QNGAS	TBtuD	Heat generation from natural gas	
QRESD RFEOKUS	TBtuD MBtuK	Heat generation from residual fuel oil Heat rate for residual fuel oil	
RFTCZUS	MMBtuB	Thermal content of residual fuel oil	

Units Key:

-

CFK = Cubic feet per kilowatt hour

MMBtuB = Millions of Btu's (British Thermal Units) per barrel.

MMBtuT = Millions of Btu's per short ton.

MBtuK = Thousands of Btu's per kilowatt hour.

MBtuCF = Thousands of Btu's per cubic foot.

Source: Energy Information Administration, Monthly Energy Review, EIA/DOE-0035.

121

The set of the second sec

Weather Variables

Source

المتركبة فالمتحدث وأرت

Variable	Units	Definition	History	Forecast
DZWCD	CDD	Deviation from normal for CDD's	NOA	ROT
DZWHD	HDD	Deviation from normal for HDD's	NOA	ROT
DZWHDN	HDD	DZWHD for fall/winter months only	NOA	ROT
DZWHDP	HDD	DZWHD for spring/summer months only	NOA	ROT
D_MATL	HDD	HDD's deviation from normal, Mid-Atlantic Region	NOA	ROT
D_NENG	HDD	HDD deviation from normal, New-England Region	NOA	ROT
HDDX85	HDD	HDD's after 8501, 0 otherwise	NOA	ROT
W_MATL	FRAC	Mid-Atlantic region, population weighted	CEN	ROT
W_NE	FRAC	North East (W_MATL + W_NENG), population wtd.	CEN	ROT
W_NENG	FRAC	New England, population weighted	CEN	ROT
ZGHDPUS	HDD	Natural gas weighted HDD's	NOA	ROT
ZGHNPUS	HDD	Normal natural gas-weighted HDD's	NOA	ROT
ZWCDPUS	CDD	Average population weighted CDD's	NOA	ROT
ZWCNPUS	CDD	Average 'Normal' population weighted CDD's	NOA	ROT
ZWHDDNO	HDD	Northern (NE & MA) deviations from normal	NOA	ROT
ZWHDDUS	HDD	Deviations from normal HDD, U.S.	NOA	ROT
ZWHDPMA	HDD	Mid-Atlantic population weighted HDD's	NOA	ROT
ZWHDPNE	HDD	New England population weighted HDD's	NOA	ROT
ZWHDPNO	HDD	Northeast (NE & MA) HDD's	NOA	ROT
ZWHDPUS	HDD	Average population weighted HDD's	NOA	ROT
ZWHNPMA	HDD	Normal HDD's for the Mid-Atlantic	NOA	ROT
ZWHNPNE	HDD	Normal HDD's for New England	NOA	ROT
ZWHNPNO	HDD	Northeast (NE & MA) normal HDD's	NOA	ROT
ZWHNPUS	HDD	Average 'Normal' population weighted HDD's	NOA	ROT

Units Key:

CDD = Cooling degree-days.

HDD = Heating degree-days.

FRAC = Fraction.

Source Key:

CEN = U.S. Department of Commerce, Bureau of the Census, "Estimates of the Population of the United States." NOA = National Oceanic and Atmospheric Administration, *Monthly State, Regional, and National Heating/Cooling Degree-Days Weighted by Population.*

ROT = "Rule of Thumb." For CDD's and HDD's, the forecasts assume a 30-year normal (1951-1981). The population weights are assumed to remain constant.

Exogenous Macro Variables

Source History Forecast Definition Units Variable BLS DRI Consumer price index, Urban INDX CICPIUS DRI BLS Commercial employment MM EMCMPUS BLS DRI Non-farm employment **EMNFPUS** MM BLS DRI Manufacturing employment MM **EMPIPUS** DRI BLS Mining employment MM EMPMPUS DRI MGT Real exchange rate INDX FEERIUS DRI BEA Gross domestic product implicit price deflator INDX **GDPDIUS** DRI BEA Gross national product implicit price deflator (PGNP) **GNPDIUS** INDX BEA DRI Real gross domestic product, 1987 dollars **GDPQXUS** BIL\$ DRI BEA Real gross national product, 1987 dollars **GNPQXUS** BIL\$ DRI Private domestic fixed investment, 1987 dollars BEA BIL\$ **187RXUS** DRI CEN Housing stocks MM KQHMPUS DRI CEN Single family dwelling housing stocks MM KQH1PUS DRI BEA Change in manufacturing inventories BIL\$ KRDRXUS 12 month lag of 6-month moving average of PRIMEUS STF STF PCT PRIMELG FRB DRI **Prime Rate** PCT PRIMEUS STF Natural gas-weighted industrial production index STF INDX QSIC BLS DRI Producer price index 1984 = 1.00 INDX **WPCPIUS** DRI BLS Producer price index, less energy and food **WPIINUS** INDX BLS STF Producer price index, petroleum products INDX WP57IUS DRI BEA Real disposable personal income, 1987 dollars BIL\$ YD87OUS DRI FRB Industrial production index: basic chemicals INDX ZOCBIUS DRI FRB Industrial production index: iron and steel INDX ZOISIUS DRI FRB Industrial production index: manufacturing INDX ZOMNIUS DRI STF Coal weighted production index INDX ZOSIIUS FRB DRI Industrial production index: total ZOTOIUS INDX DRI FRB Industrial production index: food INDX **ZO20IUS** FRB DRI Industrial production index: paper INDX ZO26IUS DRI FRB Industrial production index: chem INDX **ZO28IUS** DRI FRB Industrial production index: petroleum refineries INDX **ZO29IUS** DRI Industrial production index: stone, clay and glass FRB INDX **ZO32IUS** FRB DRI Industrial production index: total INDX **ZO33IUS**

Units Key:

BIL\$ = Billion Dollars. FRAC = Fraction. INDX = Index. MM = Million.

PCT = Percent.

Source Key:

BEA = Bureau of Economic Analysis, National Income and Product Accounts of the U.S.

BLS = Bureau of Labor Statistics: Price Indices from the Monthly Labor Review. Employment data are from the survey: Employment and Earnings.

CEN = U.S. Bureau of the Census, Census of Housing, Housing Completions.

DRI = DRI/McGraw-Hill Forecast CONTROL1292.

FRB = Federal Reserve System, Statistical Release G 17.

MGT = Morgan Guarantee Trust, New York, N.Y.

STF = Short-Term Integrated Forecasting System (January, 1993) calculation

Exogenous Energy Variables

Source

Variable	Units	Definition	History	Forecast
CLDESTAR	DAYS	Target days supply of coal stocks at electric utilities	CAL	ROT
CLDKSTAR	DAYS	Target days supply of coal stocks at coke plants	CAL	ROT
CLDOSTAR	DAYS	Target days supply of coal stocks at other industrial users	CAL	ROT
CLMRHUS	TNHR	Coal miner productivity in tons/hour	CP9	RO1
COCQPUS	MMBD	Total strategic petroleum reserve fill rate	PSM	SPO
CODQPUS	MMBD	Strategic Petroleum Reserve fill rate from domestic sources	PSM	SPO
COPRPUS	MMBD	Total U.S. crude oil production	PSM	O&G
COOMPUS	MMBD	Strategic petroleum reserve imports	PSM	SPO
ELNIPUS	BKWD	Net imports of electricity	EPM	OCE
ELNSPUS	BKWD	Non-utility supply of electricity	759	OCE
HYEOENC	BKWD	Hydroelectric generation, East North Central region	759	OCE
HYEOESC	BKWD	Hydroelectric generation, East South Central region	759	OCE
HYEOMTN	BKWD	Hydroelectric generation, Mountain region	759	OCE
HYEOPAC	BKWD	Hydroelectric generation, Pacific region	759	OCE
HYEOPMA	BKWD	Hydroelectric generation, Mid-Atlantic region	759	OCE
HYEOPNE	BKWD	Hydroelectric generation, New England region	759	OCE
HYEOPSA	BKWD	Hydroelectric generation, South Atlantic region	759	OCE
HYEOPUS	BKWD	Hydroelectric generation, Total U.S.	EPM	OCE
HYEOWNC	BKWD	Hydroelectric generation, West North Central region	759	OCE
HYEOWSC	BKWD	Hydroelectric generation, West South Central region	759	OCE
NGIMMX	BCFD	Natural gas import capacity	CAL	RO2
NUEOENC	BKWD	Electricity generation by nuclear power, East North Central region	759	SNP
NUEOESC	BKWD	Electricity generation by nuclear power, East South Central region	759	SNP
NUEOMTN	BKWD	Electricity generation by nuclear power, Mountain region	759	SNP
NUEOPAC	BKWD	Electricity generation by nuclear power, Pacific region	759	SNP
NUEOPMA	BKWD	Electricity generation by nuclear power, Mid-Atlantic region	759	SNP
NUEOPNE	BKWD	Electricity generation by nuclear power, New England region	759	SNP
NUEOPSA	BKWD	Electricity generation by nuclear power, South Atlantic region	759	SNP
NUEOPUS	BKWD	Electricity generation by nuclear power, total U.S.	EPM	SNP
NUEOWNC	BKWD	Electricity generation by nuclear power, West North Central region	759	SNP
NUEOWSC	BKWD	Electricity generation by nuclear power, West South Central region	759	SNP
ORCAPUS	MMBD	Monthly U.S. operable refinery capacity	PSM	ROT
PAPRP48	MMBD	Crude oil production, Lower 48 States	PSM	O&G
PAPRPAK	MMBD	Crude oil production, Alaska	PSM	O&G
PAPRPUS	MMBD	Domestic crude oil production	PSM	O&G

Exogenous Energy Variables (Continued)

Variable			Source	
	Units	Definition	History	Forecast
RACPUUS	DPB	Refiner acquisition cost for crude oil (composite)	PMM	OMS
RACPUUSA	DPB	RACPUUS seasonally adjusted	STF	STF
RAIMUUS	DPB	Imported crude oil refiner acquisition cost	PMM	OMS
RAIMUUSA	DPB	RAIMUUS seasonally adjusted	STF	STF

Units Key:

BCFD = Billion cubic feet per day.

BKWD = Billion kilowatthours per day.

DAYS = Number of days.

DPB = Dollars per barrel.

FRAC = Fraction.

MMB = Million barrels.

MMBD = Million barrels per day.

TNHR = Short tons per hour.

Source Key:

CP9 = Energy Information Administration, Coal Production 1991, DOE/EIA-0118(91).

EPM = Energy Information Administration, *Electric Power Monthly*, DOE/EIA-0226.

OCE = Office of Coal, Nuclear, Electricity, & Alternate Fuels OCE provides exogenous forecasts of hydroelectric generation, based on forecasts of selected utilities.

O&G = Office of Oil and Gas (EIA).

OMS = Oil Market Simulation model. The composite RAC is assumed to equal the imported RAC in the forecast.

PMM = Energy Information Administration, Petroleum Marketing Monthly, DOE/EIA-0380.

PSM = Energy Information Administration, Petroleum Supply Monthly, DOE/EIA-0109.

PSA = Energy Information Administration, Petroleum Supply Annual, DOE/EIA-0340.

ROT = "Rule of Thumb." In the forecast, these variables with the exception of the "target" variables are assumed to remain constant, equal to the last available historical data. The "target" variables are set at the observed historical minimum.

RO1 = Based on the implied assumption in the Annual Energy Outlook 1993, DOE/EIA-0383 that productivity remains unchanged in their forecast, and on historical data, productivity is assumed to increase by 0.7 percent per year in the forecast.

RO2 = Import capacity is assumed to increase by 6 percent per year in the forecast, based on data from Energy Information Administration, Natural Gas Productive Capacity for the Lower 48 States, DOE/EIA-0542(92).

SNP = Short-Term Nuclear Annual Power Production Simulation (SNAPPS) model, Office of Coal, Nuclear, Electricity, & Alternate Fuels, (EIA).

SPO = Office of Strategic Petroleum Reserve.

STF = Short-Term Integrated Forecasting System (January, 1993) calculation

759 = Form EIA-759, "Monthly Power Flant Report."

Endogenous Variables

Petroleum Products Demand

			Sou	rce
Vari a ble	Units	Definition	History	Forecast
	СРРМ	Average realized airline ticket price	FAA	STF
AARYFUS	CPPM	AARYFUS seasonally adjusted		
AARYFUSA	MMBD	Reclassified aviation gasoline blending components	PSM	STF
ABTCPUS COTCPUS	MMBD	Demand for unprocessed crude oil	PSM	ROT
CPM	CPG	Real price per mile travelled for motor gasoline	CAL	STF
CPMSA	CPG	CPM seasonally adjusted		 0TE
CPTCPUS	MMBD	Demand for crude oil and pentanes plus	PSM	STF
DFACPUS	MMBD	Demand for diesel fuel - transportation sector	PPM	STF
DFHCPUS	MMBD	Demand for distillate fuel oil - residential and commercial sectors	PMM	STF
DFICPUS	MMBD	Demand for distillate fuel oil - industrial sector	PMM	STF
DFNUPUS	MMBD	Non-utility demand for distillate fuel: DFTCPUS - DFEPPUS	CAL	STF STF
DFTCPUS	MMBD	Demand for distillate fuel oil	PSM	
DFTCPUSA	MMBD	DFTCPUS seasonally adjusted	PMM	STF
DSTCPUS	MMBD	Demand for No. 2 diesel fuel oil	PMM	STF
D2RCPUS	MMBD	Demand for No. 2 heating oil, residential	PMM PSM	STF
ETTCPUS	MMBD	Demand for ethane		
ETTCPUSA	MMBD	ETTCPUS seasonally adjusted	CAL	STF
EFF	нтмв	Average aircraft efficiency RMZTPUS / JFTCPUS	CAL	
EFFSA	HTMB	EFF seasonally adjusted	PSM	STF
FETCPUS	MMBD	Demand for petrochemical feedstocks	PSM	311
FETCPUSA	MMBD	FETCPUS seasonally adjusted	PSM	STF
JFTCPUS	MMBD	Demand for jet fuel	- 3M	
JFTCPUSA	MMBD	JFTCPUS seasonally adjusted	—	_
LDRYLD	LDPM	Log(AARYFUSA)		
LDRZM	LRTMD	Log(RMZZPUSA)		_
LDRTM	LRTMD	Log(RMZTPUSA)	CAL	STF
LF	FRAC	Revenue ton miles/available ton-miles: RMZZPUS/RMZTPUS	OAL	-
LFSA	FRAC	LF seasonal adjusted	PSM	STF
LGTCPUS	MMBD	Demand for liquefied petroleum gas		
LGTCPUSA	MMBD	LGTCPUS seasonally adjusted		_
LSFET	LMMBD	Log(FETCPUSA)		
LSMIS	LMMBD	Log(MITCPUSA)	PSM	STF
LXTCPUS	MMBD	Demand for liquefied petroleum gas, excluding ethane		
LXTCPUSA	MMBD	LXTCPUS seasonally adjusted	PSM	STF
MBTCPUS	MMBD	Demand for motor gasoline blending components	CAL	STF
MGDAYSP	DAYS	Motor gasoline days' supply	PSM	STF
MGTCPUS	MMBD	Demand for finished motor gasoline		
MGTCPUSA	MMBD	MGTCPUS seasonally adjusted	PSM	STF
MITCPUS	MMBD	Demand for miscellaneous petroleum products		
MITCPUSA	MMBD	MITCPUS seasonally adjusted components	PSM	STR
MLTCPUS	MMBD	Demand for leaded gasoline	_	
MLTCPUSA	MMBD	MLTCPUS seasonally adjusted	CAL	ST
MOGP	CPG	Real seasonalized price of motor gasoline Real deseasonalized price of motor gasoline	CAL	ST
MOGPSA	CPG	Real deseasonalized price of motor gasoline Automobile fleet fuel efficiency, MGTCPUS / MVVMPUS	CAL	ST
MPG	MPG		_	-
MPGA	MPG	MPG seasonally adjusted Demand for unleaded motor gasoline	PSM	ST
MUTCPUS	MMBD	Demand for Unleaded motor yasonine		
MUTCPUSA	MMBD	MUTCPUS seasonally adjusted Unleaded motor gasoline demand share	PSM	ST
MUTCSUS	%	Vehicle miles travelled	FHA	ST
MVVMPUS	MM			
MVVMPUSA	MM	MVVMPUS seasonally adjusted	PSM	ST
PPTCPUS	MMBD	Demand for pentanes plus	PSM	ST
PRTCPUS	MMBD	Demand for propane		

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

Petroleum Products Demand (Continued)

Variable			Source	
	Units	Definition	History	Forecas
	MMBD	Demand for "other" petroleum products	PSM	STF
PSTCPUSA	MMBD	PSTCPUS seasonally adjusted	_	
RFNUPUS	MMBD	Non-utility demand for residual fuel oil	CAL PSM	STF STF
RFTCPUS	MMBD	Demand for residual fuel oil	PSM	-
RFTCPUSA	MMBD	RFTCPUS seasonally adjusted	FAA	STF
RMZTPUS	MTMD	Air travel capacity		
RMZTPUSA	MTMD	RMZTPUS seasonally adjusted	FAA	STF
RMZZPUS	MTMD	Aircraft utilization rate		
RMZZPUSA UOTCPUS	MTMD MMBD	RMZZPUS seasonally adjusted Reclassified unfinished oils	PSM	STF

Units Key:

CPG = Cents per gallon. CPPM = Cents per passenger mile. DAYS = Number of days. FRAC = Fraction. HTMB = Hundred ton-miles per barrel. MM = Million. MMBD = Million barrels per day. MPG = Miles per gallon. MTMD = Million ton miles per day. % = Percent.

Source Key:

CAL = Calculated.

FAA = Department of Transportation, Federal Aviation Administration, Form 41, Schedule T1.

FHA = Federal Highway Administration, Traffic Volume Trends.

PMM = Energy Information Administration, Petroleum Marketing Monthly, DOE/EIA-0380.

PSM = Energy Information Administration, Petroleum Supply Monthly, DOE/EIA-0109.

ROT = "Rule of Thumb." In the forecast, these variables are assumed to remain constant, equal to the last historical data.

STF = Short-Term Integrated Forecasting System (First Quarter 1993) calculation.

Petroleum Products Supply

Source

Variable	Units	Definition	History	Forecast
ABRIPUS	MMBD	Refinery inputs, aviation gasoline blending components	PSM	STF
CODIPUS	MMBD	Gross inputs to crude distillation units	PSM	STF
CODIPUSJ	MMBD	Temporary variable for CODIPUS		
COEXPUS	MMBD	Exports of crude oil	PSM	STF
COIMPUS	MMBD	Gross imports of crude oil (including SPR)	PSM	STF
COLOPUS	MMBD	Crude oil losses	PSM	STF
CONIPUS	MMBD	Net imports of crude oil (including SPR)	PSM	STF
CONXPUS	MMBD	Net imports of crude oil (excluding SPR)	PSM	STF
CORIPUS	MMBD	Refinery inputs of crude oil	PSM	STF
ORIPUSA	MMBD	CORIPUS seasonally adjusted		
CORIPUSJ	MMBD	Temporary variable for CORIPUS		_
COSQPUS	MMB	Strategic petroleum reserve level	PSM	STF
COSQPUSI	MMB	One-period lag of COSQPUS	PSM	STF
COSXPUS	MMB	Stocks of crude oil	PSM	STF
COUNPUS	MMBD	Unaccounted crude oil	PSM	STF
CURIPUS	MMBD	Refinery inputs of crude and unfinished oils	PSM	STF
D2WHPUS	MMBD	Demand for no. 2 heating oil (wholesale)	PMM	STF
OFEXPUS	MMBD	Exports of distillate fuel oil	PSM	STF
DFFPPUS	MMBD	Field production of distillate fuel oil	PSM	STF
DFIMPUS	MMBD	Gross imports of distillate fuel oil	PSM	STF
DENIPUS	MMBD	• • • • • • • • • • • • • • • • • • • •	PSM	STF
		Net imports of distillate fuel oil Stocks of distillate fuel oil	PSM	STF
DFPSPUS	MMB	Stocks of distillate fuel oil		
OFPSPUSA	MMB	DFPSPUS seasonally adjusted	 PSM	
DFROPUS	MMBD	Refinery output of distillate fuel oil	POM	STF
DFROPUSA	MMBD			
DUMYRLG	FRAC	Annual ratio of LGRIPUS/MGROPUS	STF	ROT
DUMYRPP	FRAC	Annual ratio of PPRIPUS/MGROPUS	STF	ROT
DUMYRPS	FRAC	Annual ratio of PSRIPUS/MGROPUS	STF	ROT
JFEXPUS	MMBD	Exports of jet fuel	PSM	STF
JFFPPUS	MMBD	Field production of jet fuel	PSM	STF
JFIMPUS	MMBD	Gross imports of jet fuel	PSM	STF
JFNIPUS	MMBD	Net imports of jet fuel	PSM	STF
JFPSPUS	MMB	Stocks of jet fuel	PSM	STF
JFROPUS	MMBD	Refinery output of jet fuel	PSM	STF
JFROPUSA	MMBD	JFROPUS seasonally adjusted	<u> </u>	
JKESPUS	MMBD	Kerosene jet fuel sales to end-users	PMM	STF
LGEXPUS	MMBD	Exports of LPG's	PSM	STF
LGFPPUS	MMBD	Field production of LPG's	PSM	STF
LGIMPUS	MMBD	Gross imports of LPG's	PSM	STF
LGNIPUS	MMBD	Net imports of LPG's	PSM	STF
LGPSPUS	MMB	Stocks of LPG's	PSM	STF
LGRIPANN	MMB	Annual monthly average of refinery inputs of LPGs	PSA	ROT
LGRIPUS	MMBD	Refinery inputs of LPG's	PSM	STF
LGRIPUSA	MMBD	LGRIPUS seasonally adjusted		
LGROPUS	MMBD	Refinery output of LPG's	PSM	STF
LGROPUSA	MMBD	LGROPUS seasonally adjusted		_
MBOLPUS	MMBD	Other refinery inputs	PSM	STF
MBPSPUS	MMB	Stocks of motor gasoline blending components	PSM	STF
MGEXPUS	MMBD	Exports of motor gasoline	PSM	STF
MGFPPUS	MMBD	Field production of finished motor gasoline	PSM	STF
MGIMPUS	MMBD	Gross imports of motor gasoline	PSM	STF
MGNIPUS	MMBD	Net imports of motor gasoline	PSM	STF
MGPSPUS	MMB	Stocks of motor gasoline	PSM	STF
MGPSPUSA	MMB	MGPSPUS seasonally adjusted		
MGROPANN	MMB	Annual monthly average of refinery output of motor gasoline	PSA	ROT

ومريدة معكرة المترحفون ومنقم

Petroleum Products Supply (Continued)

Variable			Sou	urce
	Units	Definition	History	Forecast
MGROPUS	MMBD	Refinery output of motor gasoline	PSM	STF
MGROPUSA	MMBD	MGROPUS seasonally adjusted	-	
MGWHPUS	MMBD	Wholesale volume: motor gasoline	PMM	STF
NLPRPUS	MMBD	Natural gas plant liquid production	PSM	STF
OHRIPUS	MMBD	Other hydrocarbons and alcohol field production	PSM	STF
ORUTCUS	FRAC	Refinery utilization rate, CODIPUS / ORCAPUS		
ORUTCUSA	FRAC	ORUTCUS seasonally adjusted	—	
PAGLPUS	MMBD	Refinery processing gain	PSM	STF
PANIPUS	MMBD	Net imports of petroleum products	PSM	STF
PARIPUS	MMBD	Total refinery inputs	PSM	STF
	MMBD	Refinery output balancing item	CAL	ROT
PAROBAL	MMBD	Total refinery output	PSM	STF
PAROPUS	MMBD	Temporary variable for PAROPUS		—
PAROPUSX	MMB	Total petroleum stocks (excluding SPR)SM	STF	
PASXPUS	MMBD	Total petroleum product demand	PSM	STF
PATCPUS	MMBD	PATCPUS seasonally adjusted		
PATCPUSA	MMBD	Exports of pentanes plus	PSM	STF
PPEXPUS	MMBD	Field production of pentanes plus	PSM	STF
PPFPPUS	MMBD	Gross imports of pentanes plus	PSM	STF
PPIMPUS		Net imports of pentanes plus	PSM	STF
PPNIPUS	MMBD	Pentanes plus fraction of NGPL's	CAL	ROT
PPNLSUS	FRAC	Stocks of pentanes plus	PSM	STF
PPPSPUS	MMB	Annual refiner inputs of PPRIPUS	PSA	ROT
PPRIPANN	MMB	Refinery inputs of pentanes plus	PSM	STF
PPRIPUS	MMBD	PPRIPUS seasonally adjusted		—
PPRIPUSA	MMBD	Retail volumes of propane	PMM	STF
PRESPUS	MMBD	LPG fraction of NGPL's	CAL	ROT
PRNLSUS	FRAC		PSM	STF
PRPSPUS	MMB	Stocks of propane Exports of "other" petroleum products	PSM	STF
PSEXPUS	MMBD	Field production of "other" petroleum	PSM	STF
PSFPPUS	MMBD	Gross imports of "other" petroleum products	PSM	STF
PSIMPUS	MMBD	Gross imports of lighter performing products	PSM	STF
PSNIPUS	MMBD	Net imports of "other" petroleum products	PSM	STF
PSPSPUS	MMB	Stocks of "other" petroleum products	PSA	ROT
PSRIPANN	MMB	Annual refinery inputs of "other" petroleum	PSM	STF
PSRIPUS	MMBD	Refinery inputs of "other" petroleum products	PSM	STF
PSROPUS	MMBD	Refinery output of "other" petroleum products		
PSROPUSA	MMBD	PSROPUS seasonally adjusted	CAL	STF
RACPPUS	MMBD	Refiner volume of crude oil RACPPUS = CODIPUS	CAL	ROT
RAIMPUS	MMBD	Gross imports crude oil plus unfinished oils	PMM	STF
RFESPUS	MMBD	Residual fuel oil sale to end-users	PSM	STF
RFEXPUS	MMBD	Exports of residual fuel oil	PSM	STF
RFFPPUS	MMBD	Field production of residual fuel oil	PSM	STF
RFIMPUS	MMBD	Gross imports of residual fuel oil	PSM	STF
RFNIPUS	MMBD	Net imports of residual fuel oil	PSM	STF
RFPSPUS	MMB	Stocks of residual fuel oil	PSM	STF
RFROPUS	MMBD	Refinery output of residual fuel oil	F-5M	
RFROPUSA	MMBD	RFROPUS seasonally adjusted		

алаан талан талан талан талан балаан жана байдага кайтак башка кана байка талан байка байка байка байга кайта ба

Petroleum Products Supply (Continued)

Variable			So	Source	
	Units	Definition	History	Forecast	
UONIPUS	MMBD	Net Import of unfinished oils	PSM	STF	
JOPSPUS	MMB	Stocks of unfinished oils	PSM	STF	
JORIPUS	MMBD	Refinery inputs of unfinished oils	PSM	STF	
JORIPUSA	MMBD	UORIPUS seasonally adjusted	—		
UORIPUSJ	MMBD	Temporary variable for UORIPUS	_		
ZWPGIUS	FRAC	Refinery processing gain fraction	PSM	STF	

Units Key:

FRAC = Fraction.

MMB = Million barrels. MMBD = Million barrels per day.

Source Key:

CAL = Calculated.

PMM = Energy Information Administration, Petroleum Marketing Monthly, DOE/EIA-0380.

PSM = Energy Information Administration, Petroleum Supply Monthly, DOE/EIA-0109.

ROT = "Rule of Thumb." In the forecast, these variables are assumed to remain constant, equal to the last available historical data.

STF = Short-Term Integrated Forecasting System (First Quarter 1993), calculation.

Cherry March 1997 and the second s

Electricity Supply and Demand

. . .

-

-

Source

Variable	Units	Definition	History	Forecast
CLCAPUS	BKWD	Coal-electricity generation capacity	860	ROT
CLEOPUS	BKWD	Electricity generation by coal	EPM	STF
DFEPPUS	MMBD	Shipments of distillate fuel oil to electric utilities	EPM	STF
DKEOPUS	BKWD	clearing generation by distillate fuel oil	EPM	STF
DKEUPUS	MMBD	Demand for distillate fuel at electric utilities	EPM	STF
DKSEPUS	MMB	Stocks of distillate fuel at electric utilities	EPM	STF
ELEOPUS	BKWD	Total utility electricity generation	EPM	STF
ESCMPUSQ	FRAC	Ratio: commercial electricity demand to commercial employment	CAL	STF
ESCMPUS	BKWD	Commercial electricity demand	EPM	STF
ESCMPUSB	BKWD	ESCMPUS seasonally adjusted 2-month moving average		—
ESICPUS	BKWD	Industrial electricity demand	EPM	STF
ESICPUSB	BKWD	ESICPUS 2-month moving average		_
ESOTPUS	BKWD	Other electricity demand	EPM	STF
ESOTPUSB	BKWD	ESOTPUS 2-month moving average		
ESOTPUSQ	FRAC	Ratio: ESOTPUSB/GNPQXUS	CAL	STF
ESRCPUS	BKWD	Residential electricity demand	EPM	STF
ESRCPUSB	BKWD	ESRCPUS 2-month moving average		
ESRCPUSQ	FRAC	Residential electricity demand to housing stocks	CAL	STF
ESTCPUS	BKWD	Total electricity demand	EPM	STF
ESTCPUSB	BKWD	ESTCPUS 2-month moving avg.		
ETOTSUP	BKWD	Total electricity supply (utility + nonutility + imports)	EPM	STF
GEEOPUS	BKWD	Electricity generation by geothermal power	759	STF
NGEOPUS	BKWD	Electricity generation by natural gas	EPM	STF
NGEOSHR	FRAC	Share of gas generation to oil and gas generation	CAL	STF
NGEOSHRX	FRAC	Temporary variable for NGEOSHR		-
NGEUPUS	BCFD	Demand for natural gas at electric utilities	NGM	STF
NGEUPUSX	BCFD	Temporary variable for NGEUPUS		
PAEOPUS	BKWD	Electricity generation by petroleum	EPM	STF
PCEOPUS	BKWD	Electricity generation by petroleum coke	759	STF
PCEUPUS	MMBD	Demand for petroleum coke at electric utilities	759	STF
PCSEPUS	MMB	Petroleum coke stocks at electric utilities	759	STF
RFEOPUS	BKWD	Electricity generation by residual fuel oil	EPM	STF
RFEPPUS	MMBD	Shipments of residual fuel oil to electric utilities	EPM	STF
RFEUPUS	MMBD	Demand for residual oil to produce electricity	EPM	STF
RFSEPUS	MMB	Stocks of residual oil at electric utilities	EPM	STF
TDLOPUS	BKWD	Transmission and distribution losses	CAL	STF

/ н

131

.

Electricity Supply and Demand (Continued)

Variable			Source	
	Units	Definition	History	Forecast
TDLOFUSB	FRAC	TDLOPUS/ESTCPUS	CAL	STF
TDLOPUSB	BKWD	TDLOPUS 2-month moving average		
WNEOPUS	BKWD	Electricity generation by wind, solar and other	759	STF
WWEOPUS	BKWD	Electricity generation by wood and waste	759	STF
XGONG	BKWD	Oil and natural gas generation at electric utilities	EPM	STF
XTCLEL	MMT	Shipments of coal to electric utilities	EPM	STF
XTDSEL	MMB	Shipments of distillate fuel to electric utilities	EPM	STF
XTRSEL	MMB	Shipments of residual fuel to electric utilities	EPM	STF

Units Key:

BCFD = Billion cubic feet per day. BKWD = Billion kilowatthours per day. FRAC = Fraction. MM = Millions MMB = Million barrels. MMT = Million tons. MMTD = Million tons per day.

Source Key:

CAL = Calculated.

EPM = Energy Information Administration, *Electric Power Monthly*, DOE/EIA-0226.

NGM = Energy Information Administration, Natural Gas Monthly, DOE/EIA-0130.

STF = Short-Term Integrated Forecasting System (January, 1993) calculation.

759 = Form EIA-759, "Monthly Power Plant Report."

860 = Form EIA-850, "Annual Electric Generator Report."

1. 1. 1. 1.

1.1

			Source	
Variable	Units	Definition	History	Forecast
BALIT	BCFD	Natural gas balancing item	NGM	STF
NGACPUS	BCFD	Demand for natural gas, pipeline use	NGM	STF
NGCCPUS	BCFD	Demand for natural gas, commercial sector	NGM	STF
NGCCPUSB	BCFD	NGCCPUS 2-month moving average		
NGCCPUSX	FRAC	Ratio of NGCCPUSB/NGCCPUS	CAL	STF
NGEUPUS	BCFD	Demand for natural gas, electric utilities	NGM	STF
NGEUPUSX	BCFD	Temporary variable for NGEUPUS		
NGEXPUS	BCFD	Exports of natural gas	NGM	STF
NGICPUS	BCFD	Natural gas demand, industrial sector	NGM	STF
NGIMPUS	BCFD	Total imports of natural gas	NGM	STF
NGIMPUSA	BCFD	NGIMPUS seasonally adjusted	_	
NGIMPUSX	BCFD	Temporary variable for NGIMPUS		
NGIMPUSZ	BCFD	Temporary variable for NGIMPUSA		
NGINPUS	BCFD	NGICPUS plus NGLPPUS	NGM	STF
NGINPUSB	BCFD	NGINPUSA 2-month moving average	_	
NGINPUSX	BCFD	NGINPUS 2-month moving average		
NGINPUSZ	FRAC	Ratio: NGINPUSB/QSIC (gas weighted industrial production index)	CAL	STF
NGLPPUS	BCFD	Demand for natural gas (lease & plant)	NGM	STF
NGMPPUS	BCFD	Production of wet marketed natural gas	NGM	STF
NGNCPUS	MM	Number of commercial natural gas customers	AGA	STF
NGNCPUSA	MM	NGNCPUS seasonally adjusted		
NGNIPUS	BCFD	Net imports of natural gas	NGM	STF
NGNRPUS	MM	Number of residential natural gas customers	AGA	STF
	MM	NGNRPUS seasonally adjusted	AGA	
NGNRPUSA	BCFD	Net withdrawals of natural gas from underground storage	NGM	STF
NGNWPUS			INCIVI	31F
NGNWPUSX	BCFD	Temporary variable for NGNWF/US Natural gas productive capacity	GPC	CAL
NGPRMX	FRAC			
NGPRPUS	BCFD	Dry natural gas production	NGM	STF
NGPRPUSA	BCFD	NGPRPUS seasonally adjusted		
NGPRPUSX	BCFD	Reseasonalized NGPRPUSA		
NGPRPUSZ	BFCD	Temporary term for NGPRPUSA	—	
NGRCPUS	BCFD	Demand for natural gas, residential sector	NGM	STF
NGRCPUSB	BCFD	NGRCPUS 2-month moving average		
NGRCPUSX	BCFD	Temporary term for NGRCPUSB		
NGSFPUS	BCFD	Supplemental gaseous fuels produced	NGM	STF
NGSIPUS	BCFD	Injections of natural gas to underground storage	NGM	STF
NGSUPX	BCFD	Total primary natural gas supply	NGM	STF
NGTCPUS	BCFD	Demand for dry natural gas	NGM	STF
NGTCPUSA	BCFD	NGTCPUS seasonally adjusted		
NGTCPUSX	BCFD	Temporary variable for NGTCPUS		
NGWGPUS	BCF	Stocks working natural gas in underground storage	NGM	STF
NGWGPUSA	BCF	NGWGPUS seasonally adjusted		

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

.

133

and a second contract of the second second

Natural Gas Supply and Demand (Continued)

Variable			Source		
	Units	Definition	History	Forecast	
NGWGPUSX NGWSPUS	BCF BCFD	Temporary variable for NGWGPUS Withdrawals from natural gas underground storage	 NGM	 STF	
IXSCPUS	BCFD	Net withdrawals of natural gas from underground storage	NGM	STF	

Units Key:

BCF = Billion cubic feet. BCFD = Billion cubic feet per day. FRAC = Fraction. MM = Million.

Source Key:

AGA = American Gas Association, Gas Stats.

CAL = Calculated.

GPC = Energy Information Administration, Natural Gas Productive Capacity for the Lower 48 States, DOE/EIA-0542(92).

NGM = Energy Information Administration, Natural Gas Monthly, DOE/EIA-0130.

STF = Short-Term Integrated Forecasting System (First Quarter 1993) calculation.

.

Coal Demand

ariable	Units	Definition	History	Forecast
			QCR	STF
CNIPUS	MMTD	Net imports of coal coke	QCR	STF
CPRPUS	MMTD	Production of oven and beehive coke	QCR	STF
CSDPUS	MMT	Coal coke producer stocks	QCR	STF
CTCPUS	MMTD	Demand for coal coke		-
CTCPUSX	MMTD	Temporary variable for CCTCPUS	QCR	STF
CLEUPUS	MMTD	Demand for coal to produce electricity	QCR	SCL
CLEXPUS	MMTD	Exports of coal	QCR	ROT
CLFCPUS	MMTD	Demand for synfuels coal	QCR	STF
CLHCPUS	MMTD	Demand for coal: residential and commercial	QCR	SCL
CLIMPUS	MMTD	imports of coal	QCR	STF
CLKCPUS	MMTD	Monthly U.S. coal shipments to coke ovens	-	
CLKCPUSX	MMTD	Temporary variable for CLKCPUS	QCR	SCL
CLPRPUS	MMTD	Total coal production		
CLPRPUSX	MMTD	Temporary variable for CLPRPUS	QCR	SCL
CLSDPUS	MMT	Stocks of coal at producers and distributors	QCR	STF
CLSEPUS	MMT	Stocks of coal at electric utilities		
CLSEPUSX	MMT	Temporary variable for CLSEPUS	STF	BOT
CLSESTAR	MMT	Target stocks for CLEUPUS	QCR	STF
CLSKPUS	MMT	Stocks of coal at coke plants	yun	
CLSKPUSX	MMT	Temporary variable for CLSKPUS	STF	BOT
CLSKSTAR	MMT	Target stocks for CLSKPUS		STF
CLSOPUS	MMT	Stocks of coal at retail and general industry	QCR	
CLSOPUSX	MMT	Temporary variable for CLSOPUS		BOT
CLSOSTAR	MMT	Target stocks for CLYCPUS	STF	STF
CLSTBAL	MMTD	Balancing item for coal supply	QCR	STF
CLSTPUS	MMT	Total secondary coal stocks	QCR	
CLSTPUSX	MMT	Temporary variable for CLSTPUS		 STF
CLTCPUS	MMTD	Total coal demand	QCR	STF
CLXCPUS	MMTD	Coal demand by synfuels and other industrial users	QCR	
CLYCPUS	MMTD	Demand for coal by other industrial users	QCR	STF
CLZCPUS	MMTD	Demand for coal by retail and general industry	QCR	STF
COKEBAL	MMTD	Temporary measure of coke supply-demand imbalance	•	STF
K1	FRAC	Coal coke demand to steel production	STF	ROT
K2	FRAC	Net imports of coal to coal coke demand	STF	ROT
K2 K3	FRAC	Coal coke producer stocks to coal coke demand	STF	ROT
K3 K4	FRAC	Shipments of coal to coke ovens/production of oven & beehive coke	STF	ROT
	FRAC	Electric arc raw steel production/total raw steel production	STF	ROT
K5	MMTD	Raw steel production - electric arc	1&S	STF
RSELPUS	MMTD	Raw steel production - total	1&S	STF
RSPRPUS RSPRPUSA	MMTD	RSPRPUS seasonally adjusted		

Units Key:

FRAC = Fraction.

MMT = Million tons.

MMTD = Million tons per day.

Source Key:

I&S = American Iron and Steel Institute, Raw Steel and Pig Iron Production (monthly).

QCR = Energy Information Administration, Quarterly Coal Report, DOE/EIA-0121. ROT = "Rule of Thumb." In the forecast, these variables with the exception of the "target" variables are assumed to remain constant, equal to the last available historical data. The "target" variables are set at the observed historical minimum.

SCL = Short-Term Coal Analysis System (SCOAL) model, Office of Coal, Nuclear, Electric & Alternate Fuels.

STF = Short-Term Integrated Forecasting System (January, 1993) calculation.

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

. ·· ,

144

Source

Petroleum and Non-Petroleum Prices

Variable			So	urce
	Units	Definition	History	Forecast
AFUEUUS	DMMB	Weighted price fossil fuel to electric utilities	CAL	STF
CLEUDUS	DMMB	Cost of coal to electric utilities	EPM	STF
CLEUDUSA	DMMB	CLEUDUS seasonally adjusted	_	
DSRTUUS	CPG	Retail price of diesel fuel oil	PMM	STF
DSRTUUSA	CPG	DSRTUUS seasonally adjusted		
DSTCUUS	CPG	No.2 diesel fuel prices	PMM	STF
DSTCUUSA	CPG	DSTCUUS seasonally adjusted		-
DSTXUUS	CPG	No. 2 diesel fuel taxes	PMM	STF
D2RCUUS	CPG	No. 2 heating oil, residential price	PMM	STF
D2RCUUSA	CPG	D2RCUUS seasonally adjusted	_	-
D2WHUUS	CPG	No. 2 heating oil wholesale price	PMM	STF
D2WHUUSA	CPG	D2WHUUS seasonally adjusted		
ESRCUUS	СКШН	Residential electricity price	EPM	STF
ESRCUUSA	CKWH	ESRCUUS seasonally adjusted		
EXDFDS	DAYS	Excess days' supply of distillate fuel oil	CAL	STF
JKTCUUS	CPG	Price of kerosene based jet fuel	PMM	STF
JKTCUUSA	CPG	JKTCUUS seasonally adjusted	_	
MGUCUUS	CPG	Motor gasoline, all grades and all services, retail price	BLS	STF
MGUCUUSA	CPG	MGUCUUS seasonally adjusted		-
MGWHUUS	CPG	Wholesale price of motor gasoline	PMM	STF
MGWHUUSA	CPG	MGWHUUS seasonally adjusted		
NGCCUUS	DMCF	Price of natural gas, commercial sector	NGM	STF
NGCCUUSA	DMCF	NGCCUUS seasonally adjusted	-	-
NGEUDUS	DMMB	Cost of natural gas to electric utilities	EPM	STF
NGEUDUSA	DMMB	NGEUDUS seasonally adjusted	—	
NGICUUS	DMCF	Price of natural gas, industrial sector	NGM	STF
NGICUUSA	DMCF	NGICUUS seasonally adjusted		
NGRCUUS	DMCF	Residential natural gas price	NGM	STF
NGRCUUSA	DMCF	NGRCUUS seasonally adjusted		
NGSPUUS	DMMB	Spot natural gas wellhead price	NGW	STF
NGSPUUSA	DMMB	NGSPUUS seasonally adjusted		
NGWPUUS	DMCF	Natural gas wellhead price	NGM	STF
NGWPUUSA	DMCF	NGWPUUS seasonally adjusted		
PRTCUUS	CPG	Retail price of propane	PMM	STF
PRTCUUSA	CPG	PRTCUUS seasonally adjusted		
RFEUDUS	DMMB	Cost of residual fuel oil to electric utilities	EPM	STF
RFEUDUSA	DMMB	RFEUDUS seasonally adjusted	_	
RFTCUUS	CPG	No.6 residual fuei oli retail price	PMM	STF
RFTCUUSA	CPG	RFTCUUS seasonally adjusted	_	

Units Key:

BCFD = Billion cubic feet per day. BKWD = Billion kilowatthours per day. CKWH = Cents per kilowatthour. CPG = Cents per gallon. DAYS = Number of days. DMCF = Dollars per million cubic feet. DMMB = Dollars per million Btu's.

Source Key:

BLS = Bureau of Labor Statistics, Monthly Labor Review.

CAL = Calculated.

EPM = Energy Information Administration, *Electric Power Monthly*, DOE/EIA-0226.

NGM = Energy Information Administration, Natural Gas Monthly, DOE/EIA-0130.

NGW = Natural Gas Week, Washington D.C.

PMM = Energy Information Administration, Petroleum Marketing Monthly, DOE/EIA-0380.

ROT = "Rule of Thumb." Diesel fuel taxes are assumed to increase at a rate of one cent per year.

STF = Short-Term Integrated Forecasting System (First Quarter 1993) calculation.

Appendix C

Alphabetical Variable Listing and Cross Reference

فيستمهونه ويهوسك بقلاط بقرقان الكريد فانحان فالمحارف فحرير يحاجه والمركبة ومحاصرا المحركية وحدا المتحردان الدرار الرياسا والماري

Appendix C

Alphabetical Variable Listing and Cross Reference

This appendix provides an alphabetical listing of all variables used in the STIFS model.

A cross reference to the variable categories used in Appendix B is provided. Variable category code corresponding to Appendix B is:

Add	= Add factor
CL	= Coal supply or demand
Dumm	= Dummy, integer, date, or time variable
EL	= Electricity supply or demand
Heat	= Heat rate or thermal content
Mult	= Multiplicative factor
NG	= Natural gas supply or demand
PD	= Petroleum product demand
PR	= Petroleum or non-petroleum price
PS	= Petroleum product supply
Seas	= Seasonal factor
Wthr	= Weather variable
XE	= Exogenous energy variable

XM = Exogenous macro variable

A cross reference is also provided to the archive file name and file line number for all endogenous variables in the STIFS model. Endogenous variables include the 93 estimated variables listed in Appendix A, and 212 variables calculated by identities in STIFS. The archive file name codes are:

CLMOD	= CN6777.PRJ.STIF0193.SIMULATE.SAS(CLMOD)
D2MOD	= CN6777.PRJ.STIF0193.SIMULATE.SAS(D2MOD)
ELMOD	= CN6777.PRJ.STIF0193.SIMULATE.SAS(ELMOD)
JFMOD	= CN6777.PRJ.STIF0193.SIMULATE.SAS(JFMOD)
LPMOD	= CN6777.PRJ.STIF0193.SIMULATE.SAS(LPMOD)
MGMOD	= CN6777.PRJ.STIF0193.SIMULATE.SAS(MGMOD)
MIMOD	= CN6777.PRJ.STIF0193.SIMULATE.SAS(MIMOD)
NGMOD	= CN6777.PRJ.STIF0193.SIMULATE.SAS(NGMOD)
POMOD	= CN6777.PRJ.STIF0193.SIMULATE.SAS(POMOD)
PPMOD	= CN6777.PRJ.STIF0193.SIMULATE.SAS(PPMOD)
RFMOD	= CN6777.PRJ.STIF0193.SIMULATE.SAS(RFMOD)
SUMOD	= CN6777.PRJ.STIF0193.SIMULATE.SAS(SUMOD)

فيراعهم المراجعة فطرووهم أسلمتهم والمراجع والمراجع

Variable	Category	Definition	Archive File Nam e	File Line Number
	4			
AARYFAD	Add	Add factor for LDRYLD	JFMOD	50
AARYFUS	PD	Average realized airline ticket price	JFMOD	46
AARYFUSA	PD	AARYFUS seasonally adjusted		
AARYFUSS	Seas	Seasonal factor for AARYFUS	SUMOD	400
ABRIPUS	PS	Refinery inputs, aviation gasoline blending components	MIMOD	33
ABTCPUS	PD	Reclassified aviation gasoline blending components	POMOD	55
AFUEUUS	PR	Weighted price fossil fuel to electric utilities		
APR	Dumm	1 for April		
AUG	Dumm	1 for August	NGMOD	188
BALIT	NG	Natural gas balancing item	Namob	100
BALITAD	Add	Add factor for BALIT		
BALITMU	Mult	Multiplicative factor for BALIT	CLMOD	79
CCNIPUS	CL	Net imports of coal coke	CLMOD	75
CCPRPUS	CL	Production of oven and beehive coke	CLMOD	77
CCSDPUS	CL	Coal coke producer stocks	CLMOD	84
CCTCPUS	CL	Demand for coal coke	CLMOD	73
CCTCPUSX	CL	Temporary variable for CCTCPUS	CLINOD	75
CICPIUS	XM	Consumer price index, Urban		
CLCAPUS	EL	Coal-electricity generation capacity		
CLDESTAR	XE	Target days supply of coal stocks at electric utilities		
CLDKSTAR	XE	Target days supply of coal stocks at coke plants		
CLDOSTAR	XE	Target days supply of coal stocks at other industrial users		
CLEOKUS	Heat	Heat rate for coal		
CLEOPAD	Add	Add factor for CLEOPUS		
CLEOPMU	Mult	Multiplicative factor for CLEOPUS		117
CLEOPUS	EL	Electricity generation by coal	ELMOD	117
CLEUDAD	Add	Add factor for CLEUDUSA		
CLEUDMU	Mult	Multiplicative factor for CLEUDUSA		101
CLEUDUS	PR	Cost of coal to electric utilities	POMOD	101
CLEUDUSA	PR	CLEUDUS seasonally adjusted	POMOD	5
CLEUDUSS	_	Seasonal factor for CLEUDUS		050
CLEUKUS	Heat	Thermal content of coal at electric utilities	ELMOD	252
CLEUPUS	CL	Demand for coal to produce electricity	ELMOD	142
CLEXPUS	CL	Exports of coal		
CLFCPUS	CL	Demand for synfuels coal		
CLHCPAD	Add	Add factor for CLHCPUS		
CLHCPMU	Mult	Multiplicative factor for CLHCPUS		
CLHCPUS	CL	Demand for coal: residential and commercial	CLMOD	14
CLIMPUS	CL	Imports of coal		
CLKCPAD	Add	Add factor for CLKCPUSX		74
CLKCPUS	CL	Monthly U.S. coal shipments to coke ovens	CLMOD	71
CLKCPUSX		Temporary variable for CLKCPUS	CLMOD	68
CLMRHUS	XE	Coal miner productivity in tons/hour		
CLPRPUS	CL	Total coal production		
CLPRPUS		Temporary variable for CLPRPUS	CLMOD	106
CLSDPUS	CL	Stocks of coal at producers and distributors		
CLSEPUS	CL	Stocks of coal at electric utilities	CLMOD	113
CLSEPUS		Temporary variable for CLSEPUS	CLMOD	98
CLSESTAF		Target stocks for CLEUPUS	CLMOD	92
CLSESTA	CL	Stocks of coal at coke plants	CLMOD	115
CLSKPUS		Temporary variable for CLSKPUS	CLMOD	102
CLSKPUS		Target stocks for CLSKPUS	CLMOD	96
OLONDIAN		Stocks of coal at retail and general industry	CLMOD	114

Ξ.

Variable	Category	Definition	Archive File Name	File Line Number
CLSOPUSX	CL	Temporary variable for CLSOPUS	CLMOD	100
CLSOSTAR	CL	Target stocks for CLYCPUS	CLMOD	94
CLSTBAL	CL	Balancing item for coal supply	CLMOD	111
CLSTPUS	CL	Total secondary coal stocks	CLMOD	117
CLSTPUSX	CL	Temporary variable for CLSTPUS	CLMOD	104
CLTCPUS	CL	Total coal demand	CLMOD	90
CLXCPAD	Add	Add factor for CLXCPUS		
CLXCPMU	Mult	Multiplicative factor for CLXCPUS		
CLXCPUS	CL	Coal demand by synfuels and other industrial users	CLMOD	3 9
CLYCPUS	CL	Demand for coal by other industrial users	CLMOD	86
CLZCPUS	CL	Demand for coal by retail and general industry	CLMOD	88
COCQPUS	XE	Total strategic petroleum reserve fill rate		
CODIPUS	PS	Gross inputs to crude distillation units	SUMOD	57
CODIPUSJ	PS	Temporary variable for CODIPUS	SUMOD	52
CODQPUS	XE	Strategic Petroleum Reserve fill rate from domestic sources		
CODQPUSX	PS	Temporary variable for CODQPUS	SUMOD	400
COEXPUS	PS	Exports of crude oil	SUMOD	175
COIMPUS	PS	Gross imports of crude oil (including SPR)	SUMOD	432
COKEBAL	CL	Temporary measure of coke supply-demand imbalance	CLMOD	81
COLOPUS	PS	Crude oil losses	SUMOD	350
CONIPUS	PS	Net imports of crude oil (including SPR)	SUMOD	433
CONXPUS	PS	Net imports of crude oil (excluding SPR)	SUMOD	167
COPRPUS	XE	Total U.S. crude oil production	SUMOD	165
COQMPUS	XE	Strategic petroleum reserve imports	SUMOD	401
CORIPAD	Add	Add factor for CORIPUS		
CORIPUS	PS	Refinery inputs of crude oil	SUMOD	58
CORIPUSA	PS	CORIPUS seasonally adjusted	SUMOD	61
CORIPUSJ	PS	Temporary variable for CORIPUS	SUMOD	5
CORIPUSS	Seas	Seasonal factor for CORIPUS	0	
COSQPUS	PS	Strategic petroleum reserve level	SUMOD	403
COSQPUS1	PS	One-period lag of COSQPUS	SUMOD	402
COSXPUS	PS	Stocks of crude oil		
COTCPUS	PD	Demand for unprocessed crude oil	MIMOD	37
COUNPUS	PS	Unaccounted crude oil	SUMOD	446
CPM	PD	Real price per mile travelled for motor gasoline	MGMOD	54
CPMSA	PD	CPM seasonally adjusted	MGMOD	53
CPTCPUS	PD	Demand for crude oil and pentanes plus	MIMOD	38
CURIPUS	PS	Refinery inputs of crude and unfinished oils	SUMOD	429
DATE	Dumm	Numeric year/month		
DATEX	Dumm	Starting date for equation estimation Number of days in the month		
DAYSMO DEC	Dumm Dumm	1 for December		
	PD	Demand for diesel fuel - transportation sector	D2MOD	5
DFACPUS	Add	Add factor for DFACPUS	DZIVIOD	5
	Mult	Multiplicative factor for DFACPUS		
DFACPMU DFEOKUS	Heat	Heat rate for distillate fuel oil		
DFEPPUS	EL	Shipments of distillate fuel oil to electric utilities	ELMOD	246
DFEXPUS	PS	Exports of distillate fuel oil	SUMOD	240
DFFPPUS	PS	Field production of distillate fuel oil	0011100	210
DFHCPUS	PD	Demand for distillate fuel oil - residential and commercial	D2MOD	32
DFHCPAD	Add	Add factor for DFHCPUS		UL.
DFHCPMU	Mult	Multiplicative factor for DFHCPUS		
DFICPUS	PD	Demand for distillate fuel oil - industrial sector	D2MOD	61
510100			0211100	U 1

Variable	Category	Definition	Archive File Name	File Line Number
DFICPAD	Add	Add factor for DFICPUS		
DFICPMU	Mult	Multiplicative factor for DFICPUS		
DFIMPUS	PS	Gross imports of distillate fuel oil	SUMOD	435
DFNIPUS	PS	Net imports of distillate fuel oil	SUMOD	411
DFNUPUS	PD	Non-utility demand for distillate fuel: DFTCPUS - DFEPPUS	D2MOD	93
DFPSPUS	PS	Stocks of distillate fuel oil		
DFPSPUSA	PS	DFPSPUS seasonally adjusted	PPMOD	92
DFPSPUSS	Seas	Seasonal factor for DFPSPUS		
DFROPUS	PS	Refinery output of distillate fuel oil	SUMOD	155
DFROPUSA	PS	DFROPUS seasonally adjusted	SUMOD	100
DFROPUSS	Seas	Seasonal factor for DFROPUS		
DFTCPUS	PD	Demand for distillate fuel oil	D2MOD	95
DFTCPUSA	PD	DFTCPUS seasonally adjusted	D2MOD	96
DFTCPUSS	Seas	Seasonal factor for DFTCPUS		
DFTCZUS	Heat	Thermal content of distillate fuel oil		
DKEOPUS	EL	Electricity generation by distillate fuel oil	ELMOD	239
DKEUPUS	EL	Demand for distillate fuel at electric utilities	ELMOD	243
DKSEPUS	EL	Stocks of distillate fuel at electric utilities		
DRVP89	Dumm	DATE greater than 8903 and less than 8908		
DRVP90	Dumm	DATE greater than 9003 and less than 9008 DATE greater than 9009 and less than 9101		
DSHIELD DSRTUUS	Dumm PR	Retail price of diesel fuel oil	PPMOD	87
DSRTUUSA	PR	DSRTUUS seasonally adjusted	PPMOD	66
DSRTUUSS	Seas	Seasonal factor for DSRTUUS		00
DSTCPUS	PD	Demand for No. 2 diesel fuel oil	D2MOD	99
DSTCUAD	Add	Add factor for DSTCUUSA	DEmod	
DSTCUMU	Mult	Multiplicative factor for DSTCUUSA		
DSTCUUS	PR	No.2 diesel fuel prices	PPMOD	86
DSTCUUSA	PR	DSTCUUS seasonally adjusted	PPMOD	54
DSTCUUSS	Seas	Seasonal factor for DSTCUUS		
DSTORM	Dumm	DATE equal to 9101 or 9102		
DSTXUUS	CPG	No. 2 diesel fuel taxes	,	
DS2	Dumm	DATE greater than 8103 and less than 8107		
DTO87	Dumm	DATE less than or equal to 8712		
DUM84	Dumm	DATE greater than 8401		
DUM89	Dumm	DATE greater than 8910 and less than 9001		
DUM8083	Dumm	YEAR greater than 1979 and less than 1984		
DUMCOLD	Dumm	DATE equal to 8912 or 9001		
DUMELE	Dumm	DATE greater than 9102		
DUMIRAN	Dumm	DATE greater than 7904 and less than 9010		
DUMWTR	Dumm	YEAR greater than 1980 and MO equal to 1, 2, 3, 4, 11, OR	12	
DUMYRLG	PS	Annual ratio of LGRIPUS/MGROPUS		
DUMYRPP	PS	Annual ratio of PPRIPUS/MGROPUS		
DUMYRPS	PS	Annual ratio of PSRIPUS/MGROPUS		
DZWCD	Wthr	Deviation from normal for CDD's		
	Wthr	Deviation from normal for HDD's		
	Wthr Wthr	DZWHD for fall/winter months only		
DZWHDP	Wthr	DZWHD for spring/summer months only Demand for No. 2 heating oil, residential	D2MOD	98
D2RCPUS	PD Add	Demand for No. 2 heating oil, residential Add factor for D2RCUUSA		30
	Mult	Multiplicative factor for D2RCUUSA		
D2RCUMU D2RCUUS	PR	No. 2 heating oil, residential price	PPMOD	83
D2RCUUSA	PR	D2RCUUS seasonally adjusted	PPMOD	25
DENOUUSA	111	Dentototo addotnany adjuatod		

يستخدد ومروحا

ليم فاستقد يعطينان عبساند.

والمراجع والمراجع والمراجع والمراجع

D2RCUUSS Seas Seasonal factor for D2RCUUS 375 D2WHUAD Add Add factor for D2WHUUSA SUMOD 375 D2WHUAD Add Add factor for D2WHUUSA SUMOD 375 D2WHUAD Add Add factor for D2WHUUSA PMOD 82 D2WHUUSA PR D.2 heating oil wholesale price PPMOD 82 D2WHUUSA PR D2WHUUS seasonally adjusted PPMOD 17 D380N Dumm DATE greater than 1987 PSSON PMOD 17 D880N Dumm YEAR greater than 1989 PBO PATE greater than 1989 PBO PBO PBO PBO PD PD PATE greater than 1980 PBO PBO PBO PD PD PATE greater than 1980 PBO PBO PBO PD	Variable	Category		Archive File Name	File Line Number
Downers PS Demand for no. 2 healing oil (wholesale) SUMOD 375 D2WHUND Add Add factor for D2WHUNSA D2WHUND D2WHUND D2WHUND D2WHUND D2WHUND D2WHUND D2WHUND PR D0. 2 healing oil wholesale price PPMOD 82 D2WHUNS Seas Seasonally adjusted PPMOD 17 D2WHUNDS Seas Seasonall factor for D2WHUNDS PPMOD 17 D2WHUNDS PPMOD D2WHUNDS PPMOD 17 D2WHUNDS PPMOD D2WHUNDS PPMOD 17 D2WHUNDS PPMOD D2WHUNDS D2WHUNDS D2WHUNDS D2WHUNDS D2WHUNDS D2WHUNDS D2WHUNDS D2WHUNDS					
D2WHPUS PS Definition for 0.2 Walturgs on (Withousako) Common D2WHUMU Mult Multiplicative factor for D2WHUUSA D2WHUUSA PR No. 2 heating of wholesale price PPMOD 82 D2WHUUSA PR D2WHUUS easonally adjusted PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUS PR No. 2 heating of wholesale price PPMOD 17 D2WHUS PR No. 2 heating of wholesale price PPMOD 18 D2WH PMDU 2 heating to 801 D2WHU PMD 2 heating to 802 D2WHU PMD 2 heating to 801 D2WHU PMD 2 heating to 802 D2WHU PMD 2 heating t	D2RCUUSS			SUMOD	375
Devinition Write Multiplicative factor for D2WHUUSA D2WHUUS PR No. 2 heating oil wholesale price PPMOD 17 D2WHUUS Seas Seasonally adjusted PPMOD 17 D2WHUUS Seas Seasonall factor for D2WHUUS PPMOD 17 D2WHUUS Seas Seasonal factor for D2WHUUS PPMOD 17 D2WHUWS Seas Seasonal factor for D2WHUUS PPMOD 17 D2WHUWS Seas Seasonal factor for D2WHUUS PPMOD 17 D2WHUWS VeRA greater than 1990 D2 D2WHUWS PPMOD 17 D8002 Dumm DATE equal to 8002 D2WHUM D2WEA D2WEA D2WEA D8184 Dumm DATE equal to 8611 D2WEA D2WEA D2WEA <td>D2WHPUS</td> <td></td> <td>Demand for no. 2 heating on (wholesale)</td> <td>0011102</td> <td></td>	D2WHPUS		Demand for no. 2 heating on (wholesale)	0011102	
Display PF No. 2 heating oil wholesale price PFMOD 62 D2WHUUS PR D2WHUUS PPMOD 17 D2WHUUS Seas Seasonally adjusted PPMOD 17 D880N Dumm VEAR greater than 1987 Datte greater than 9009 Datte greater than 9012 and less than 8301 Datte greater than 9012 and less than 8301 Datte greater than 9012 and less than 8301 Datte greater than 9012 and less than 8404 D8301 Datte greater than 8012 and less than 8404 D8301 Datte greater than 8902 and less than 8404 D8302 Datte greater than 8902 and less than 8002 D8611 Datte greater than 8902 and less than 9002 D8611 Datte greater than 8902 and less than 9002 D8611 Datte greater than 8902 and less than 9002 D8610 Dumm DATE equal to 8912 Datte greater than 8902 and less than 9002 D8611	D2WHUAD		Add factor for D2WHUUSA		
D2WHUUS PR No. 2 heating of wholesale pluce PPMOD 17 D2WHUUS Seas Seasonal factor for D2WHUUS Seasonally adjusted PPMOD 17 D2WHUUSS Seas Seasonal factor for D2WHUUS D87ON Dumm VEAR greater than 1987 D88ON Dumm YEAR greater than 1987 D99ON Dumm YEAR greater than 1989 D9900N Dumm YEAR greater than 1989 D9900N Dumm YEAR greater than 1989 D900SON Dumm YEAR greater than 1989 D900SON Dumm YEAR queat to 1981 D890 D47E greater than 1989 D900 D47E greater than 9009 D81 Dumm D4TE greater than 9009 D810 D47E greater than 7912 and less than 8301 D8002 Dumm D4TE greater than 7912 and less than 8301 D8184 Dumm D4TE greater than 7912 and less than 8404 D8301 D47E greater than 802 and less than 8404 D8301 D47E greater than 8012 and less than 8404 D8301 D47E greater than 812 and less than 8404 D8301 D47E greater than 812 and less than 8404 D8302 D47E greater than 812 and less than 9002 D8412 D47E greater than 8192 and less than 9002 D8611 D47E greater than 8192 and less than 9002 D8900 D47E greater than 8192 and less than 9002 D8900 D47E greater than 8192 and less than 9002 D8901 D47E greater than 8192 and less than 9002 D8900 D47E greater than 8192 and less than 9002 D8901 D47E greater than 9104 greater than 902 Addies than 9002 D8901 D47E greater than 9104 greater than 902 Addies than 9002 D8901 D47E greater than 9104 greater than 902 Addies than 9002 D8901 D47E greater than 9104 greater than 9002 Addies than 9002 D8901 D47E greater than 9104 greater than 9002 Addies than 900 Addies tha	D2WHUMU		Multiplicative factor for D2vvHOUSA	PPMOD	82
D2WHUUSS Sees Seasonal factor for D2WHUUS D87ON Dumm YEAR greater than 1987 D88ON Dumm YEAR greater than 1987 D89ON Dumm YEAR greater than 1988 D900ON Dumm YEAR greater than 1989 D900SON Dumm YEAR greater than 1989 D900SON Dumm YEAR greater than 9009 D81 Dumm YEAR equal to 1989 D900SO Dumm DATE greater than 9009 D81 Dumm YEAR equal to 1989 D901 DATE greater than 9009 D81 Dumm DATE equal to 1980 D8002 Dumm DATE greater than 8012 or 9103 D8002 Dumm DATE greater than 8012 and less than 8301 D8002 Dumm DATE greater than 7812 and less than 8404 D8301 Dumm DATE greater than 7812 and less than 8404 D8301 Dumm DATE greater than 7812 and less than 8404 D8301 Dumm DATE greater than 8012 and less than 8404 D8301 Dumm DATE equal to 8301 D8602 Dumm DATE equal to 8301 D8602 Dumm DATE equal to 8301 D8603 Dumm DATE equal to 8301 D8604 Dumm DATE equal to 8412 D8601 Dumm DATE equal to 8401 D8609 Dumm DATE equal to 8401 D8609 Dumm DATE equal to 8401 D8809 Dumm DATE equal to 8401 D8809 Dumm DATE equal to 8402 D8901 Dumm DATE equal to 8402 D8901 Dumm DATE equal to 8402 D8900 Dumm DATE equal to 8404 EFFSAD Add Add factor for EFF EFFSMU Mult Multiplicative factor for EFF ELEOPUS At Non-diare employment ELNPUS XK Non-farm employment EMPIPUS XM Manufacturing employment EMPIPUS XM Manufacturing employment EMPIPUS XM Manufacturing employment EMPIPUS XM Manufacturing employment ESCMPAD Add Add factor for ESCMPUSQ ESCMPUS EL Commercial electricity demand ELMOD 454 ESCMPUS EL ESCPUS EL Haltor for ESCMPUSQ ES	D2WHUUS		NO. 2 heating of wholesale photo		
Darto Darte greater than 1973 DBRON Dumm YEAR greater than 1987 DBRON Dumm YEAR greater than 1987 DBRON Dumm YEAR greater than 1986 DBRON Dumm YEAR greater than 1986 DBRON Dumm YEAR greater than 1988 DBRON Dumm YEAR equal to 1981 DBRON Dumm ATE greater than 3009 DBR1 Dumm DATE equal to 9102 or 9103 DBRO2 Dumm DATE equal to 9102 or 9103 DBRO2 Dumm DATE equal to 8002 DBRO2 Dumm DATE equal to 8002 DBRO2 Dumm DATE equal to 8301 DBRO2 Dumm DATE equal to 8301 DBRO2 Dumm DATE equal to 8301 DBRO3 DUMM DATE equal to 8301 DBRO4 DUMM DATE equal to 8301 DBRO5 DUMM DATE equal to 8912 DBRO9 DUMM DATE equal to 8912 DBRO9 DUMM DATE equal to 8912 DBRO5 DUMM DATE equal to 8010 DMATL Wihr HDD's deviation from normal, Mid-Atlantic Region D_NENG Wihr HDD's deviation from normal, New-England Region EFFF PD Average alicraft efficiency RMZTPUS / JFTCPUS JFMOD 54 EFFSAD Add Add factor for EFF EFFSAD Add Add factor for EFF ELEOPUS EL Total utility electricity generation ELINPUS XE Not-utility supply of electricity ELNSPUS XE Not-Utility supply of electricity EMNPUS XM Mon-farm employment EMNPUS KM Mining employment EMNPUS EL Commercial electricity demand ELMOD 48 ESCMPUS EL ESCPUS 2-month moving average ELMOD 48 ESCMPUS EL ESCPUS 2-month moving average ELMOD 490 ESICPUS EL Industrial electricity d			DZWHOUS seasonally adjusted	111102	
DBBON Dumm YEAR greater than 1987 DBSON Dumm YEAR greater than 1988 Secondary Seco					
DBSON Dumm YEAR greater than 1988 D9009ON Dumm DATE greater than 9009 D81 Dumm VEAR equal to 1981 D89 Dumm DATE greater than 9009 D81 Dumm DATE greater than 9009 D81 Dumm DATE equal to 1980 D80 Dumm DATE greater than 7912 and less than 8301 D8082 Dumm DATE greater than 8012 and less than 8404 D8301 Dumm DATE greater than 8012 and less than 8404 D8302 Dumm DATE equal to 8301 D8412 Dumm DATE equal to 8601 D8611 Dumm DATE equal to 8611 D8602 Dumm DATE equal to 8609 D8912 Dumm DATE equal to 8902 and less than 9002 D8901 Dumm DATE equal to 8902 and less than 9002 D9001 Dumm DATE equal to 8002 DMATE HDD deviation from normal, Mid-Atlantic Region EFFSA PD EFF seasonally adjusted JFMOD 54 EFFSAN Add factor for EFF ELMOD 207 ELEOPUS EL To					
DepON Doum DATE greater than 1969D9009N D81Dumm DATE greater than 9009D81 D89 D89 D89Dumm VEAR equal to 1981D89 D802 D802 D802Dumm DATE equal to 9102 or 9103D802 D8032 D814 D8301DATE equal to 9102 or 9103D802 D8164 D817Dumm DATE equal to 8002D8032 D8302 D8412 D8414Durm DATE equal to 8301D8302 D8412 D8414Durm DATE equal to 8301D8303 D8412 D8414Durm DATE equal to 8301D8414 D8501 D8412 D8611Darm DATE equal to 8412D8601 D8612 D8612Durm DATE equal to 8912D8613 D8614Durm DATE equal to 8912D8614 D8809 D9011 D.MTE equal to 8912D9011 DATE equal to 8901 DATE equal to 8902D9011 DATE equal to 8901 DATE equal to 8901 DATE equal to 8902D9011 DATE equal to 8902 D9011 DATE equal to 8901 DATE equal to 8902D9011 DATE equal to 8902 D9011 DATE equal to 8902D9012 DMATE HDD deviation from normal, Mid-Atlantic Region HDD deviation from normal, Mid-Atlantic Region Avarage aircraft efficiency RMZTPUS / JFTCPUS JFMODEFFS EFFSAD Add Add factor for EFF ELEOPUS ELCOKUS ELNEVUS ELNEVUS XK Mont farm employment EMPIPUS SKM Mon-farm employment ESCMPUSA ESCMP					
D9009ON Dumm DATE greater than 9009 D81 Dumm YEAR equal to 1981 D89 Dumm DATE equal to 1902 or 9103 D8002 Dumm DATE equal to 8002 D8032 Dumm DATE greater than 7912 and less than 8301 D814 Dumm DATE greater than 8012 and less than 8404 D8301 Dumm DATE equal to 8302 D8412 Dumm DATE equal to 8301 D8611 Dumm DATE equal to 8301 D8611 Dumm DATE equal to 8801 D8602 Dumm DATE equal to 8801 D8611 Dumm DATE equal to 8801 D8611 Dumm DATE equal to 8801 D8902 Dumm DATE equal to 8802 and less than 9002 D9001 Dumm DATE equal to 801 D_MATL Wthr HDD's deviation from normal, New-England Region D_MATL Wthr HDD deviation from normal, New-England Region EFF P Add datactor for EFF EFFSA PD EFF seasonally adjusted ELNPUS XE Net imports of electricity <					
DB1Dumm YEAR equal to 1981DB9Dumm VEAR equal to 202 or 9103DB02Dumm DATE equal to 2002 or 9103DB02Dumm DATE greater than 7912 and less than 8301DB184Dumm DATE greater than 8012 and less than 8404DB301Dumm DATE equal to 8301DB302Dumm DATE equal to 8302DB412Dumm DATE equal to 8412DB501Dumm DATE equal to 8611DB602Dumm DATE equal to 8611DB603Dumm DATE equal to 8611DB6041Dumm DATE equal to 8612DB6050Dumm DATE equal to 8614DB6060Dumm DATE equal to 8612DB601Dumm DATE equal to 8614DB601Dumm DATE equal to 8614DB601Dumm DATE equal to 8612DB601Dumm DATE equal to 8614DB602Dumm DATE equal to 8012DB603Dumm DATE equal to 8012DB604Dumm DATE equal to 70000DATE equal to 70000DegoDS604Dumm DATE equal to 8012DB605Dumm DATE equal to 8012DB606Dumm DATE equal to 8012DB607Dumm DATE equal to 8012DB608Dumm DATE equal to 8014DATE equal to 8014DegoDATE equal to 802JFMODDS601Dumm DUmm DATE equal to 802DATE equal to 7000Deviation from normal, Net-England Region JFMODD_NENCStateEFF PDAverage alicraft efficiency RMZTPUS / JFTCPUSJFMOD					
D89 Dumm YEAR equal to 1989 D91 Dumm DATE equal to 9102 or 9103 D8002 Dumm DATE equal to 8002 D8082 Dumm DATE greater than 8012 and less than 8301 D8144 Dumm DATE equal to 8301 D8302 Dumm DATE equal to 8301 D8302 Dumm DATE equal to 8301 D8412 Dumm DATE equal to 8611 D8601 Dumm DATE equal to 8809 D8912 Dumm DATE equal to 8812 D8900 Dumm DATE equal to 8912 D8901 Dumm DATE equal to 8912 D8900 Dumm DATE equal to 8912 D8901 Dumm DATE equal to 9001 D_MENG Withr HDD deviation from normal, Mid-Atlantic Region D_NENG Withr HDD deviation from normal, New-England Region EFFSAP PD EFF seasonally adjusted JFMOD 32 EFFSAP DE EFF seasonally adjusted JFMOD 32 ELLOKUS Heat BKWD/quad electricity consumption ELMOD 207	D9009ON				
D91 Dumm DATE equal to 9102 or 9103 D8002 Dumm DATE equal to 8002 D8082 Dumm DATE greater than 7912 and less than 8301 D8184 Dumm DATE greater than 8012 and less than 8404 D8301 Dumm DATE equal to 8301 D8412 Dumm DATE equal to 8601 D8611 Dumm DATE equal to 8601 D8612 Dumm DATE equal to 8801 D8611 Dumm DATE equal to 8801 D8612 Dumm DATE equal to 8812 D8690 Dumm DATE equal to 901 D.MATL Whr HDD deviation from normal, Mid-Atlantic Region D_NENG Witr HDD deviation from normal, New-England Region EFFS PD Average aircraft efficiency RMZTPUS / JFTCPUS JFMOD 32 EFFS AP D EFF seasonally adjusted JFMOD 32 EFFSAD Add Add factor for EFF ELMOD 207 ELEOKUS Heat BKWD/quad electricity consumption ELMOD 207 ELEOKUS Heat BKWD/quad electricity demand ELMOD 89 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
DB002DummDATE equal to 8002DB082DummDATE greater than 7912 and less than 8301DB184DummDATE equal to 8301DB301DummDATE equal to 8302DB412DummDATE equal to 8302DB412DummDATE equal to 8412DB501DummDATE equal to 8611DB808DummDATE equal to 8611DB809DummDATE equal to 8611DB809DummDATE equal to 8912D9901DummDATE equal to 8912D9901DummDATE equal to 8902 and less than 9002D9001DummDATE equal to 8901D_MATLWthrHDD's deviation from normal, Nid-Attantic RegionD_NENGWthrHDD deviation from normal, New-England RegionEFFPDAverage aircraft efficiency RMZTPUS / JFTCPUSJFMODEFFSADAddAdd factor for EFFELCOPUSELTotal utility electricity generationELMODELNIPUSXENon-utility supply of electricityEMCMPUSXMMon-arm employmentEMPIPUSXMManufacturing employmentEMPMPUSXMManufacturing employmentESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCPUSELIndustrial electricity demandESCPUSELIndustrial electricity demandESICP					
DateDategreater than 7912 and less than 8301DateDategreater than 8012 and less than 8404DasoDummDATE equal to 8301DateDummDATE equal to 8302DateDummDATE equal to 8412DasoDummDATE equal to 8611DateDummDATE equal to 8611DateDummDATE equal to 8612DasoDummDATE equal to 8912DasoDummDATE equal to 8912DasoDummDATE equal to 8912DasoDummDATE equal to 9001D_NENGWthrHDD's deviation from normal, Mid-Atlantic RegionD_NENGWthrHDD deviation from normal, New-England RegionEFFPDAverage aircraft efficiency RMZTPUS / JFTCPUSEFFSAAdd factor for EFFEFFSADAdd Add factor for EFFELCOPUSELTotal utility electricity generationELNIPUSXKNon-tarm employmentENSPUSXENon-utility supply of electricityENSPUSXMMon-tarm employmentESCMPADAddAdd factor for ESCMPUSQESCMPADAAddAdd factor for ESCMPUSQESCMPUSELCommercial employmentESCMPADAAddAdd factor for ESCMPUSQESCMPUSELCommercial electricity demandESCMPADAAddAdd factor for ESCMPUSQESCMPUSELCommercial electricity demandESCMPADAAddAdd factor for ESCPUSBESICPUSEL					
DataDummDATE greater than 8012 and less than 8404DasoDummDATE equal to 8301DasoDummDATE equal to 8302DB412DummDATE equal to 8412D8501DummDATE equal to 8611D8699DummDATE equal to 6811D8990DummDATE equal to 6809D9912DummDATE equal to 6912D9901DummDATE equal to 6912D9901DummDATE equal to 6901D_NENGWthrHDD's deviation from normal, Mid-Atlantic RegionEFFPDAverage aircraft efficiency RMZTPUS / JFTCPUSJFMODS4S4Add factor for EFFEFFSADAddAdd factor for EFFELCOPUSELTotal utility electricity generationELMODELNIPUSXENon-utility supply of electricityELNPUSXENon-tarm employmentEMMPUSXMManufacturing employmentESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSELESCMPUSQESCMPUSQELRatic: commercial electricity demandESCMPUSQELRatic: commercial electricity demandESCPADAddAdd factor for ESCPUSBESCPUSQELIndustrial electricity demandESCMPUSQELRatic: commercial electric demand/commercial employmentESCPUSQELRatic: commercial electricity demandESCPUSBELESCPUSBESICPUSEL <td></td> <td></td> <td>DATE equal to 6002</td> <td></td> <td></td>			DATE equal to 6002		
DB301DummDATE equal to 8301DB302DummDATE equal to 8302D8412DummDATE equal to 8412DB601DummDATE equal to 8601D8612DummDATE equal to 8609D8912DummDATE equal to 8912D8990DummDATE equal to 8912D8990DummDATE equal to 8901D_MATLWthrHDD's deviation from normal, Mid-Atlantic RegionD_NENGWthrHDD's deviation from normal, New-England RegionEFF PDAverage aircraft efficiency RMZTPUS / JFTCPUSJFMODEFF SADAddAdd factor for EFFEFFSMUMulti Multiplicative factor for EFFELCORUSHeatELNIPUSXENon-utility supply of electricityENSPUSXMCommercial employmentEMNFPUSXMMonfarm employmentEMNFPUSXMMultiplicative factor for ESCMPUSQESCMPADAddAdd factor for ESCMPUSQESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSQELESCMPUSQELESICPADAddAdd factor for ESCPUSBESICPUSELIndustrial electricity demandESICPUSELIndustrial electricity demandESICPUSELESICPUSELIndustrial electricity demandESICPUSELESICPUSEL <tr< td=""><td></td><td></td><td>DATE greater than 7912 and less than 8004</td><td></td><td></td></tr<>			DATE greater than 7912 and less than 8004		
DB302 Dumm DATE equal to 8302 DB412 Dumm DATE equal to 8412 DB501 Dumm DATE equal to 8501 DB611 Dumm DATE equal to 8611 D8609 Dumm DATE equal to 8912 D8900 Dumm DATE equal to 8912 D9901 Dumm DATE equal to 8901 D9001 Dumm DATE equal to 9001 D_MATL Wthr HDD's deviation from normal, Mid-Atlantic Region D_NENG Wthr HDD deviation from normal, New-England Region EFF PD Average aircraft efficiency RMZTPUS / JFTCPUS JFMOD 54 EFFSAD Add Add factor for EFF ELMOD 32 EFFSMU Mult Multiplicative factor for EFF ELMOD 207 ELEORUS EL Total utility supply of electricity ENSPUS XE Non-taim employment EMNFPUS XM Non-farm employment EMNFPUS XM Manufacturing employment ESCMPAD Add Add factor for ESCMPUSQ ELMOD 89 ESCMPUS EL Commercial electricity demand					
DB412Dumm DATE equal to 8412DB501Dumm DATE equal to 8501D8611Dumm DATE equal to 8601D869Dumm DATE equal to 8912D8900Dumm DATE equal to 8912D9001Dumm DATE equal to 9001D_MATLWthr HDD's deviation from normal, Mid-Attantic RegionD_NENGWthr HDD deviation from normal, New-England RegionEFF EFFSAPDEFFSAPDEFFSADAdd Add factor for EFFELCOPUSEL Total utility electricity consumptionELNPUSXE Non-farm employmentEMNFPUSXM Multiplicative factor for ESCMPUSQESCMPUSEL SM Commercial electricity demandESCMPUSEL Commercial electricity demandESCMPUSEL EL Contercial electricity demandESCPUSEL EL NotESCPUSEL Houstrial electricity demandESCPUSEL Houstrial electricity demandESCPUSEL Houstrial electricity demandESCPUSEL Houstrial electricity demandESCPUSEL Houstrial electricity dem					
D8501 Dumm DATE equal to 8501 D8611 Dumm DATE equal to 8611 D8609 Dumm DATE equal to 8809 D8912 Dumm DATE equal to 8912 D8990 Dumm DATE equal to 8901 D_MATL Wthr HDDs deviation from normal, Mid-Atlantic Region D_NENG Wthr HDD deviation from normal, New-England Region EFF PD Average aircraft efficiency RMZTPUS / JFTCPUS JFMOD 54 EFFSAD Add factor for EFF JFMOD 32 EFFSMU Mult Multiplicative factor for EFF ELMOD 207 ELORUS EL Total utility electricity generation ELMOD 207 ELNPUS XE Non-utility supply of electricity EMOD 24 EMNFPUS XM Commercial employment EMNFPUS XM Manufacturing employment ESCMPAD Add factor for ESCMPUSQ ELMOD 89 ESCMPUS EL Commercial electricity demand ELMOD 89 ESCMPUS EL Commercial electricity demand ELMOD 89					
D8611 Dumm DATE equal to 8611 D8609 Dumm DATE equal to 8809 D8912 Dumm DATE equal to 8912 D8900 Dumm DATE equal to 9001 D_MATL Wthr HDD's deviation from normal, Mid-Atlantic Region D_NENG Wthr HDD deviation from normal, New-England Region EFF PD Average aircraft efficiency RMZTPUS / JFTCPUS JFMOD 54 EFFSAD Add Add factor for EFF JFMOD 32 EFFSMU Mult Multiplicative factor for EFF ELMOD 207 ELEORUS EL Total utility electricity generation ELMOD 207 ELNIPUS XE Non-utility supply of electricity EMOD 207 ELNIPUS XE Non-tarm employment EMOD 207 EMMFPUS XM Commercial employment EMOD 89 ESCMPAD Add Add factor for ESCMPUSQ ELMOD 89 ESCMPUS EL Commercial electricity demand ELMOD 84 ESCMPUS EL Commercial electricity demand ELMOD <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
D8809DummDATE equal to 8809D8912DummDATE equal to 8912D8900DummDATE equal to 8912D9001DummDATE equal to 9001D_MATLWthrHDD's deviation from normal, Mid-Atlantic RegionD_NENGWthrHDD deviation from normal, New-England RegionEFFPDAverage aircraft efficiency RMZTPUS / JFTCPUSJFMODEFFSAPDEFF seasonally adjustedJFMODEFFSADAddAdd factor for EFFEFFSMUMultMultiplicative factor for EFFELEOPUSELTotal utility electricity generationELNIPUSXENet imports of electricityELNPUSXKCommercial employmentEMMPIPUSXMManufacturing employmentEMPMPUSXMMining employmentESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSELRatio: commercial electricity demandESCMPUSELRatio: commercial electricity demandESICPNDAddAdd factor for ESICPUSBESICPUSELIndustrial electricity demandESICPUSELIndustrial electricity demandESICPUSELIndustrial electricity demandESICPUSELIndustrial electricity demandESICPUSELIndustrial electricity demandESICPUSELEL					
D8912DummDATE equal to 8912D8990DummDATE greater than 8902 and less than 9002D9001DummDATE greater than 8902 and less than 9002D_MATLWthrHDD's deviation from normal, Mid-Atlantic RegionD_NENGWthrHDD deviation from normal, New-England RegionEFFPDAverage aircraft efficiency RMZTPUS / JFTCPUSEFFSADAddAdd factor for EFFEFFSMUMultMultiplicative factor for EFFELEOPUSELTotal utility electricity generationELMODELNIPUSXENon-utility supply of electricityELNIPUSXENon-utility supply of electricityEMMFPUSXMMon-farm employmentEMMPUSXMMining employmentESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESICPADAddAdd factor for ESICPUSBESICPUSELIndustrial electricity demandESICPUSELIndustrial electricity demandESICPUSELIndustrial electricity demandESICPUSELESICPUS 2-month moving averageESICPUSELIndustrial electricity demandESICPUSELESICPUS 2-month moving av					
D8990DummDATE greater than 8902 and less than 9002D9001DummDATE equal to 9001D_MATLWthrHDD's deviation from normal, Mid-Atlantic RegionD_NENGWthrHDD deviation from normal, New-England RegionEFFPDAverage aircraft efficiency RMZTPUS / JFTCPUSJFMODEFFSAPDEFF seasonally adjustedJFMODEFFSADAddAdd factor for EFFEFFSMUMultMultiplicative factor for EFFELEORUSELTotal utility electricity generationELMODELNIPUSXENon-tarm employmentEMNFPUSXMCommercial employmentEMNFPUSXMManufacturing employmentESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSELCommercial electricityESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCPADAddAdd factor for ESCPUSBESICPADAddAdd factor for ESICPUSBESICPADAddAdd factor for ESICPUSBESICPUSELIndustrial electricity demandESICPUSELIndustrial electricity demandESICPUSELIndustrial electricity demandESICPUSELESICPUS2ESICPUSELESICPUSELESICPUSEL <td></td> <td></td> <td></td> <td></td> <td></td>					
D9001DummDATE equal to 9001D_MATLWthrHDD's deviation from normal, New-England RegionD_NENGWthrHDD deviation from normal, New-England RegionEFFPDAverage aircraft efficiency RMZTPUS / JFTCPUSJFMODEFFSAPDEFF seasonally adjustedJFMODEFFSADAddAdd factor for EFFEFFSMUMultMultiplicative factor for EFFELEOPUSELTotal utility electricity generationELMODELNPUSXENet imports of electricityELNSPUSXENon-tullity supply of electricityEMNFPUSXMCommercial employmentEMNFPUSXMManufacturing employmentESCMPADAddAdd factor for ESCMPUSQESCMPADAddAdd factor for ESCMPUSQESCMPUSELCommercial electricity demandESCMPUSELCommercial electric demand/commercial employmentESCMPUSELCommercial electric demandESCMPUSELRatio: commercial electric demand/commercial employmentESICPADAddAdd factor for ESICPUSBESICPADAddAdd factor for ESICPUSBESICPUSELIndustrial electricity demandESICPUSELIndustrial electricity demandESICPUSELESICPUS 2-month moving averageESICPUSELESICPUS 2-month moving averageESICPUSELESICPUS 2-month moving averageESICPUSELESICPUS 2-month moving averageESICPUSEL <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
D_MATLWthrHDD's deviation from normal, Mid-Atlantic RegionD_NENGWthrHDD deviation from normal, New-England RegionEFFPDAverage aircraft efficiency RMZTPUS / JFTCPUSJFMODEFF PDAverage aircraft efficiency RMZTPUS / JFTCPUSJFMODEFFSADAddAdd factor for EFFEFFSMUMultMultiplicative factor for EFFELEOPUSELTotal utility electricity generationELMODELNIPUSXENet imports of electricityELNIPUSXENon-utility supply of electricityEMCMPUSXMCommercial employmentEMNFPUSXMMon-farm employmentESCMPADAddAdd factor for ESCMPUSQESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSQELRatio: commercial electric demand/commercial employmentESICPADAddAdd factor for ESICPUSBESICPADAddAdd factor for ESICPUSBESICPUSELIndustrial electricity demandESICPUSELESICPUS 2-month moving averageESICPUSELIndustrial electricity demandESICPUSELESICPUS2-month moving averageESICPUSBELESICPUS2-month moving averageESICPUSBELESICPUS2-month moving averageESICPUSB <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
D_NENGWthrHDD deviation from normal, New-England RegionEFFPDAverage aircraft efficiency RMZTPUS / JFTCPUSJFMOD54EFFSAPDEFF seasonally adjustedJFMOD32EFFSADAddAdd factor for EFFEFFSMUMultMultiplicative factor for EFFELEOPUSELTotal utility electricity generationELMOD207ELEOKUSHeatBKWD/quad electricity consumptionELNIPUSXENet imports of electricityEMCMPUSXMCommercial employmentEMNFPUSXMNon-farm employmentESCMPADAddAdd factor for ESCMPUSQELMOD89ESCMPUSELCommercial electricity demandELMOD84ESCMPUSELCommercial electric demand/commercial employmentELMOD84ESCMPUSELCommercial electric demand/commercial employmentELMOD15ESICPADAddAdd factor for ESICPUSBELMOD15ESICPUSELIndustrial electricity demandELMOD90ESICPUSELIndustrial electricity demandELMOD39ESOTPADAddAdd factor for ESOTPUSQELMOD39ESOTPADAddAdd factor for ESOTPUSQELMOD39			UDD's deviation from normal Mid-Atlantic Region		
EFFPDAverage aircraft efficiency RMZTPUS / JFTCPUSJFMOD54EFFSAPDEFF seasonally adjustedJFMOD32EFFSADAddAdd factor for EFFEFFJFMOD32EFFSMUMultMultiplicative factor for EFFELMOD207ELEORUSHeatBKWD/quad electricity generationELMOD207ELEOKUSHeatBKWD/quad electricity consumptionELMOD207ELNPUSXENot-tarm employmentEMOD207EMNFPUSXMCommercial employmentEMOD207ENPUSXMNon-farm employmentEMOD84ESCMPADAddAdd factor for ESCMPUSQESCMPADAddESCMPUSELCommercial electricity demandELMOD89ESCMPUSELCommercial electric demand/commercial employmentELMOD84ESCMPUSELCommercial electricity demandELMOD84ESCMPUSELCommercial electric demand/commercial employmentELMOD84ESCMPUSQELRatio: commercial electric demand/commercial employmentELMOD84ESICPADAddAdd factor for ESICPUSBELMOD15ESICPUSELIndustrial electricity demandELMOD90ESICPUSBELIndustrial electricity demandELMOD39ESOTPADAddAdd factor for ESOTPUSQELMOD39ESOTPADAddAdd factor for ESOTPUSQELMOD39ESOTPAD<			HDD deviation from normal New-England Region		
EFFSAPDEFF seasonally adjustedJFMOD32EFFSADAddAdd factor for EFFEFFSMUMultMultiplicative factor for EFFELCOPUSELTotal utility electricity generationELMOD207ELEOPUSELTotal utility electricity generationELMOD207ELEORUSHeatBKWD/quad electricity consumptionELMOD207ELNIPUSXENet imports of electricityELMODXENon-utility supply of electricityEMONPUSXMCommercial employmentEMNFPUSXMNon-farm employmentEMPIPUSXMManufacturing employmentESCMPADAddAdd factor for ESCMPUSQESCMPADAddAdd factor for ESCMPUSQESCMPUSELCommercial electricity demandELMOD89ESCMPUSELESCMPUS seasonally adjusted 2-month moving averageELMOD84ESICPADAddAdd factor for ESICPUSBELMOD15ESICPADAddAdd factor for ESICPUSBELMOD90ESICPUSELIndustrial electricity demandELMOD39ESOTPADAddAdd factor for ESICPUSQELMOD39ESOTPADAddAdd factor for ESOTPUSQELMOD39ESOTPADAddAdd factor for ESOTPUSQELMOD39ESOTPMUMultMultiplicative factor for ESOTPUSQELMOD39ESOTPMUMultMultiplicative factor for ESOTPUSQELMOD39ESOTPMUMultMultiplicative factor for ESOTPUSQ<			Average aircraft efficiency BMZTPUS / JFTCPUS	JFMOD	
EFFSADAddAdd factor for EFFEFFSMUMultMultiplicative factor for EFFELEOPUSELTotal utility electricity generationELMODELEOKUSHeatBKWD/quad electricity consumptionELNIPUSXENet imports of electricityELNIPUSXENon-utility supply of electricityEMCMPUSXMCommercial employmentEMNFPUSXMMon-farm employmentEMNFPUSXMManufacturing employmentESCMPADAddAdd factor for ESCMPUSQESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSELCommercial electricity demandESCMPUSQELRatio: commercial electric demand/commercial employmentESICPADAddAdd factor for ESICPUSBESICPADAddAdd factor for ESICPUSBESICPADAddAdd factor for ESICPUSBESICPUSELIndustrial electricity demandESICPUSELIndustrial electricity demandESICPUSELIndustrial electricity demandESICPUSELESICPUS 2-month moving averageESICPUSBELESICPUS 2-month moving averageESOTPADAddAdd factor for ESOTPUSQESOTPADAddAdd factor for ESOTPUSQESOTPADAddAdd factor for ESOTPUSQESOTPADAddAdd factor for ESOTPUSQESOTPADAddAdd factor for ESOTPUSQESOTPMUMultMultiplicative factor f				JFMOD	32
EFFSMUMultMultiplicative factor for EFFELMOD207ELEOPUSELTotal utility electricity generationELMOD207ELEOKUSHeatBKWD/quad electricity consumptionELMOD207ELEOKUSHeatBKWD/quad electricity consumptionELNIPUSXENet imports of electricityELNPUSXENon-utility supply of electricityEMCMPUSXMCommercial employmentEMNFPUSXMNon-farm employmentEMPIPUSXMManufacturing employmentESCMPADAddAdd factor for ESCMPUSQESCMPMUMultiplicative factor for ESCMPUSQESCMPUSELCommercial electricity demandELMOD89ESCMPUSELRatio: commercial electric demand/commercial employmentELMOD84ESCMPUSELRatio: commercial electric demand/commercial employmentELMOD84ESICPADAddAdd factor for ESICPUSBELMOD15ESICPMUMultMultiplicative factor for ESICPUSBELMOD90ESICPUSELIndustrial electricity demandELMOD39ESOTPADAddAdd factor for ESOTPUSQELMOD39ESOTPADAddAdd factor for ESOTPUSQELMOD91			Add factor for EEE		
ELEOPUSELTotal utility electricity generationELMOD207ELEOKUSHeatBKWD/quad electricity consumptionELMOD207ELEOKUSHeatBKWD/quad electricity consumptionELNIPUSXENet imports of electricityELNSPUSXENon-utility supply of electricityELMOD207EMCMPUSXMCommercial employmentEMOD80EMPIPUSXMMon-farm employmentEMPMPUS80ESCMPADAddAdd factor for ESCMPUSQESCMPAD89ESCMPUSELCommercial electricity demandELMOD89ESCMPUSELCommercial electric demand/commercial employmentELMOD84ESCMPUSQELRatio: commercial electric demand/commercial employmentELMOD15ESICPADAddAdd factor for ESICPUSBELMOD90ESICPUSELIndustrial electricity demandELMOD90ESICPUSBELESICPUS 2-month moving averageELMOD39ESOTPADAddAdd factor for ESOTPUSQELMOD39ESOTPADAddAdd factor for ESOTPUSQELMOD39ESOTPMUMultMultiplicative factor for ESOTPUSQELMOD91					
ELEOKUSHeatBKWD/quad electricity consumptionELNIPUSXENet imports of electricityELNSPUSXENon-utility supply of electricityEMCMPUSXMCommercial employmentEMNFPUSXMNon-farm employmentEMPIPUSXMManufacturing employmentEMPMPUSXMMining employmentESCMPADAddAdd factor for ESCMPUSQESCMPMUMultMultiplicative factor for ESCMPUSQESCMPUSELCommercial electricity demandELMODESCMPUSBELESCMPUS seasonally adjusted 2-month moving averageELMODESICPADAddAdd factor for ESICPUSBELMODESICPADAddAdd factor for ESICPUSBELMODESICPUSELIndustrial electricity demandELMODESICPUSBELIndustrial electricity demandELMODESICPUSBELESICPUS 2-month moving averageELMODESICPUSBELESICPUS 2-month moving averageELMODESOTPADAddAdd factor for ESOTPUSQ39ESOTPADAddAdd factor for ESOTPUSQELMODESOTPMUMultMultiplicative factor for ESOTPUSQELMODESOTPMUMultMultiplicative factor for ESOTPUSQELMODESOTPMUMultMultiplicative factor for ESOTPUSQELMOD			Total utility electricity generation	ELMOD	207
ELNIPUSXENet imports of electricityELNSPUSXENon-utility supply of electricityEMCMPUSXMCommercial employmentEMNFPUSXMNon-farm employmentEMPIPUSXMManufacturing employmentEMPMPUSXMMining employmentESCMPADAddAdd factor for ESCMPUSQESCMPUSELCommercial electricity demandESCMPUSELCommercial electric demand/commercial employmentESCMPUSQELBSCMPUS seasonally adjusted 2-month moving averageESICPADAddAdd factor for ESICPUSBESICPADAddAdd factor for ESICPUSBESICPUSELIndustrial electricity demandESICPUSELIndustrial electricity demandESICPUSBELESICPUS 2-month moving averageESOTPADAddAdd factor for ESOTPUSQESOTPMUMultMultiplicative factor for ESOTPUSQ			RKWD/quad electricity consumption		
ELNSPUSXENon-utility supply of electricityEMCMPUSXMCommercial employmentEMNFPUSXMNon-farm employmentEMPIPUSXMManufacturing employmentEMPMPUSXMMining employmentESCMPADAddAdd factor for ESCMPUSQESCMPMUMultMultiplicative factor for ESCMPUSQESCMPUSELCommercial electricity demandELMODESCMPUSBELESCMPUS seasonally adjusted 2-month moving averageELMODESICPADAddAdd factor for ESICPUSBELMODESICPADAddAdd factor for ESICPUSBELMODESICPUSELIndustrial electricity demandELMODESICPUSBELESICPUS 2-month moving averageELMODESOTPADAddAdd factor for ESOTPUSQ39ESOTPADAddAdd factor for ESOTPUSQELMODESOTPMUMultMultiplicative factor for ESOTPUSQELMOD			Not imports of electricity		
EMCMPUSXMCommercial employmentEMNFPUSXMNon-farm employmentEMPIPUSXMManufacturing employmentEMPMPUSXMMining employmentESCMPADAddAdd factor for ESCMPUSQESCMPMUMultMultiplicative factor for ESCMPUSQESCMPUSELCommercial electricity demandELMODESCMPUSBELESCMPUS seasonally adjusted 2-month moving averageELMODESCMPUSQELRatio: commercial electric demand/commercial employmentELMODESICPADAddAdd factor for ESICPUSBELMOD15ESICPMUMultMultiplicative factor for ESICPUSBELMOD90ESICPUSELIndustrial electricity demandELMOD39ESOTPADAddAdd factor for ESOTPUSQSecorpusQELMOD39ESOTPADAddAdd factor for ESOTPUSQELMOD91			Non-utility supply of electricity		
EMNFPUSXMNon-farm employmentEMPIPUSXMManufacturing employmentEMPMPUSXMMining employmentESCMPADAddAdd factor for ESCMPUSQESCMPADAddAdd factor for ESCMPUSQESCMPUSELCommercial electricity demandELMODESCMPUSBELESCMPUS seasonally adjusted 2-month moving averageELMODESCMPUSQELRatio: commercial electric demand/commercial employmentELMODESICPADAddAdd factor for ESICPUSBELMODESICPMUMultMultiplicative factor for ESICPUSBELMODESICPUSELIndustrial electricity demandELMODESICPUSBELESICPUS 2-month moving averageELMODESOTPADAddAdd factor for ESOTPUSQ39ESOTPADAddAdd factor for ESOTPUSQELMODESOTPMUMultMultiplicative factor for ESOTPUSQELMODESOTPMUMultMultiplicative factor for ESOTPUSQELMODESOTPMUMultMultiplicative factor for ESOTPUSQELMOD			Commercial employment		
EMPIPUSXMManufacturing employmentEMPMPUSXMMining employmentESCMPADAddAdd factor for ESCMPUSQESCMPADAddAdd factor for ESCMPUSQESCMPUSELCommercial electricity demandELMODESCMPUSBELESCMPUS seasonally adjusted 2-month moving averageELMODESCMPUSQELRatio: commercial electric demand/commercial employmentELMODESICPADAddAdd factor for ESICPUSBELMODESICPMUMultMultiplicative factor for ESICPUSBELMODESICPUSELIndustrial electricity demandELMODESICPUSBELESICPUS 2-month moving averageELMODESOTPADAddAdd factor for ESOTPUSQ39ESOTPADAddAdd factor for ESOTPUSQELMODESOTPMUMultMultiplicative factor for ESOTPUSQELMOD					
EMPMPUSXMMining employmentESCMPADAddAdd factor for ESCMPUSQESCMPADMultMultiplicative factor for ESCMPUSQESCMPUSELCommercial electricity demandELMODESCMPUSBELESCMPUS seasonally adjusted 2-month moving averageELMODESCMPUSQELRatio: commercial electric demand/commercial employmentELMODESICPADAddAdd factor for ESICPUSBESICPMUMultMultiplicative factor for ESICPUSBESICPUSELIndustrial electricity demandELMODESICPUSBELESICPUS 2-month moving averageELMODESOTPADAddAdd factor for ESOTPUSQ39ESOTPADAddAdd factor for ESOTPUSQELMODESOTPMUMultMultiplicative factor for ESOTPUSQELMODESOTPMUMultMultiplicative factor for ESOTPUSQELMODESOTPMUMultMultiplicative factor for ESOTPUSQELMODESOTPMUMultMultiplicative factor for ESOTPUSQELMOD					
ESCMPADAddAdd factor for ESCMPUSQESCMPADMultMultiplicative factor for ESCMPUSQESCMPUSELCommercial electricity demandELMODESCMPUSBELESCMPUS seasonally adjusted 2-month moving averageELMODESCMPUSQELRatio: commercial electric demand/commercial employmentELMODESICPADAddAdd factor for ESICPUSBESICPMUMultMultiplicative factor for ESICPUSBESICPUSELIndustrial electricity demandELMODESICPUSBELESICPUS 2-month moving averageELMODESOTPADAddAdd factor for ESOTPUSQ39ESOTPMUMultMultiplicative factor for ESOTPUSQELMODESOTPMUMultMultiplicative factor for ESOTPUSQELMODESOTPMUMultMultiplicative factor for ESOTPUSQELMODESOTPMUMultMultiplicative factor for ESOTPUSQELMODESOTPMUMultMultiplicative factor for ESOTPUSQELMOD					
ESOMPULMultMultiplicative factor for ESCMPUSQELMOD89ESCMPUSELCommercial electricity demandELMOD84ESCMPUSBELESCMPUS seasonally adjusted 2-month moving averageELMOD84ESCMPUSQELRatio: commercial electric demand/commercial employmentELMOD15ESICPADAddAdd factor for ESICPUSBELMOD15ESICPUSELIndustrial electricity demandELMOD90ESICPUSBELESICPUS 2-month moving averageELMOD39ESOTPADAddAdd factor for ESOTPUSQELMOD39ESOTPMUMultMultiplicative factor for ESOTPUSQELMOD91					
ESCMPUSELCommercial electricity demandELMOD89ESCMPUSELESCMPUS seasonally adjusted 2-month moving averageELMOD84ESCMPUSQELRatio: commercial electric demand/commercial employmentELMOD15ESICPADAddAdd factor for ESICPUSBELMOD90ESICPUSELIndustrial electricity demandELMOD90ESICPUSBELESICPUS 2-month moving averageELMOD39ESOTPADAddAdd factor for ESOTPUSQSOTPMUMultMultiplicative factor for ESOTPUSQ91					
ESCMPUSBELESCMPUS seasonally adjusted 2-month moving averageELMOD84ESCMPUSQELRatio: commercial electric demand/commercial employmentELMOD15ESICPADAddAdd factor for ESICPUSBELMOD90ESICPUSELIndustrial electricity demandELMOD90ESICPUSBELESICPUS 2-month moving averageELMOD39ESOTPADAddAdd factor for ESOTPUSQELMOD91				ELMOD	
ESCMPUSQELRatio: commercial electric demand/commercial employmentELMODTSESICPADAddAdd factor for ESICPUSBESICPMUMultMultiplicative factor for ESICPUSBESICPUSELIndustrial electricity demandELMOD90ESICPUSBELESICPUS 2-month moving averageELMOD39ESOTPADAddAdd factor for ESOTPUSQELMOD91			ESCMPUS seasonally adjusted 2-month moving average	ELMOD	
ESICPADAddAdd factor for ESICPUSBESICPMUMultMultiplicative factor for ESICPUSBESICPUSELIndustrial electricity demandESICPUSBELESICPUS 2-month moving averageESOTPADAddAdd factor for ESOTPUSQESOTPMUMultMultiplicative factor for ESOTPUSQESOTPMUMultMultiplicative factor for ESOTPUSQ			Batio: commercial electric demand/commercial employment	ELMOD	15
ESICPMUMultMultiplicative factor for ESICPUSBELMOD90ESICPUSELIndustrial electricity demandELMOD39ESICPUSBELESICPUS 2-month moving averageELMOD39ESOTPADAddAdd factor for ESOTPUSQELMOD91ESOTPMUMultMultiplicative factor for ESOTPUSQELMOD91			Add factor for ESICPUSB		
ESICPUSELIndustrial electricity demandELMOD90ESICPUSBELESICPUS 2-month moving averageELMOD39ESOTPADAddAdd factor for ESOTPUSQELMOD91ESOTPMUMultMultiplicative factor for ESOTPUSQELMOD91					
ESICPUSB EL ESICPUS 2-month moving average ELMOD 39 ESOTPAD Add Add factor for ESOTPUSQ ESOTPMU Multiplicative factor for ESOTPUSQ ELMOD 91			Industrial electricity demand	ELMOD	
ESOTPAD Add Add factor for ESOTPUSQ ESOTPMU Mult Multiplicative factor for ESOTPUSQ			ESICPUS 2-month moving average	ELMOD	39
ESOTPMU Mult Multiplicative factor for ESOTPUSQ			Add factor for ESOTPUSQ		
ELMOD 91			Multiplicative factor for ESOTPUSQ		
ESOTPUS EL Other electricity demand			Other electricity demand	ELMOD	91

Variable	Category	Definition	Archive File Name	File Line Number
	F 1	ESOTPUS 2-month moving average	ELMOD	85
ESOTPUSB	EL	Ratio: ESOTPUSB/GNPQXUS	ELMOD	62
ESOTPUSQ	EL	Add factor for ESRCPUSQ		
ESRCPAD	Add	Multiplicative factor for ESRCPUSQ		
ESRCPMU	Mult		ELMOD	88
ESRCPUS	EL	Residential electricity demand	ELMOD	83
ESRCPUSB	EL	ESRCPUS 2-month moving average Residential electricity demand to housing stocks	ELMOD	5
ESRCPUSQ	EL			
ESRCUAD	Add	Add factor for ESRCUUSA		
ESRCUMU	Mult	Multiplicative factor for ESRCUUSA	POMOD	105
ESRCUUS	PR	Residential electricity price	POMOD	58
ESRCUUSA	PR	ESRCUUS seasonally adjusted	101102	
ESRCUUSS	Seas	Seasonal factor for ESRCUUS	ELMOD	92
ESTCPUS	EL	Total electricity demand	ELMOD	86
ESTCPUSB	EL	ESTCPUS 2-month moving avg.	ELMOD	208
ETOTSUP	EL	Total electricity supply (utility + nonutility + imports)	LLMOD	
ETTCPMU	Mult	Multiplicative factor for ETTCPUSA	LPMOD	32
ETTCPUS	PD	Demand for ethane	LPMOD	19
ETTCPUSA	PD	ETTCPUS seasonally adjusted		10
ETTCPUSS	Seas	Seasonal factor for ETTCPUS		
EXDFDS	PR	Excess days' supply of distillate fuel oil		
FEB	Dumm			
FEERIUS	XM	Real exchange rate		
FETCPAD	Add	Add factor for LSFET	MIMOD	32
FETCPUS	PD	Demand for petrochemical feedstocks	MIMOD	28
FETCPUSA	PD	FETCPUS seasonally adjusted	IVITIVIOD	20
FETCPUSS	Seas	Seasonal factor for FETCPUS		
FFEOKUS	Heat	Heat rate for hydropower generation		
GDPDIUS	XM	Gross domestic product implicit price deflator		
GDPQXUS	XM	Real gross domestic product, 1987 dollars		201
GEEOPUS	EL	Electricity generation by geothermal power	ELMOD	201
GNPDIUS	XM	Gross national product implicit price deflator (PGNP)		
GNPQXUS	XM	Real gross national product, 1987 dollars		
HDDX85	Wthr	HDD's after 8501, 0 otherwise		
HYEOENC	XE	Hydroelectric generation, East North Central region		
HYEOESC	XE	Hydroelectric generation, East South Central region		
HYEOMTN	XE	Hydroelectric generation, Mountain region		
HYEOPAC	XE	Hydroelectric generation, Pacific region		
HYEOPMA	XE	Hydroelectric generation, Mid-Atlantic region		
HYEOPNE	XE	Hydroelectric generation, New England region		
HYEOPSA	XE	Hydroelectric generation, South Atlantic region		
HYEOPUS	XE	Hydroelectric generation, Total U.S.		
HYEOWNC	XE	Hydroelectric generation, West North Central region		
HYEOWSC	XE	Hydroelectric generation, West South Central region		
187RXUS	XM	Private domestic fixed investment, 1987 dollars		
JAN	Dumr			
JFEXPUS	PS	Exports of jet fuel	SUMOD	253
JFFPPUS	PS	Field production of jet fuel		
JFIMPUS	PS	Gross imports of jet fuel	SUMOD	436
JENIPUS	PS	Net imports of jet fuel	SUMOD	413
JFPSPUS	PS	Stocks of jet fuel		
	Add	Add factor for JFROPUS		
JFROPAD	Mult	Multiplicative factor for JFROPUS		
JFROPMU	PS	Refinery output of jet fuel	SUMOD	156
JFROPUS	гə	nomory output of jot two		

piper programme and

Variable	Category	Definition	Archive File Name	File Line Number
JFROPUSA	PS	JFROPUS seasonally adjusted	SUMOD	107
JFROPUSS	Seas	Seasonal factor for JFROPUS		
JFTCPUS	PD	Demand for jet fuel	JFMOD	55
JFTCPUSA	PD	JFTCPUS seasonally adjusted	JFMOD	42
JFTCPUSS	Seas	Seasonal factor for JFTCPUS		
JKESPUS	PS	Kerosene jet fuel sales to end-users	SUMOD	387
JKTCUAD	Add	Add factor for JKTCUUSA		
JKTCUMU	Mult	Multiplicative factor for JKTCUUSA		-
JKTCUUS	PR	Price of kerosene based jet fuel	PPMOD	81
JKTCUUSA	PR	JKTCUUS seasonally adjusted	PPMOD	5
JKTCUUSS	Seas	Seasonal factor for JKTCUUS		
JUL JUN	Dumm Dumm	1 for July 1 for June		
KQHMPUS	XM	Housing stocks		
KQH1PUS	XM	Single family dwelling housing stocks		
KRDRXUS	XM	Change in manufacturing inventories		
K1	CL	Coal coke demand to steel production		
K2	CL	Net imports of coal to coal coke demand		
K3	CL	Coal coke producer stocks to coal coke demand		
K4	CL	Shipments of coal to coke ovens/prod of oven & beehive coke	•	
K5	CL	Electric arc raw steel production/total raw steel production		
LDRTM	PD	Log(RMZTPUSA)	JFMOD	23
LDRYLD	PD	Log(AARYFUSA)	JFMOD	6
LDRZM	PD	Log(RMZZPUSA)	JFMOD	15
LF	۲D	Revenue ton miles/available ton-miles: RMZZPUS/RMZTPUS	JFMOD	53
LFSA	PD	LF seasonal adjusted	JFMOD	31
LGEXPUS	PS	Exports of LPG's	SUMOD	274
LGFPPUS	PS	Field production of LPG's	SUMOD	424
LGIMPUS	PS	Gross imports of LPG's	SUMOD	437
LGNIPUS	PS	Net imports of LPG's	SUMOD	414
LGPSPUS	PS	Stocks of LPG's		
LGRIPANN	PS	Annual monthly average of refinery inputs of LPGs		70
	PS	Refinery inputs of LPG's	SUMOD	70 62
LGRIPUSA LGRIPUSS	PS Seas	LGRIPUS seasonally adjusted Seasonal factor for LGRIPUS	SUMOD	63
LGROPUS	PS	Refinery output of LPG's	SUMOD	157
LGROPUSA	PS	LGROPUS seasonally adjusted	SUMOD	119
LGROPUSS	Seas	Seasonal factor for LGROPUS	001100	115
LGTCPUS	PD	Demand for liquefied petroleum gas	LPMOD	34
LGTCPUSA	PD	LGTCPUS seasonally adjusted	LPMOD	35
LGTCPUSS	Seas	Seasonal factor for LGTCPUS		
LSFET	PD	Log(FETCPUSA)	MIMOD	22
LSMIS	PD	Log(MITCPUSA)	MIMOD	5
LXTCPAD	Add	Add factor for LXTCPUSA		
LXTCPMU	Mult	Multiplicative factor for LXTCPUSA		
LXTCPUS	PD	Demand for liquefied petroleum gas, excluding ethane	LPMOD	17
LXTCPUSA	PD	LXTCPUS seasonally adjusted	LPMOD	5
LXTCPUSS	Seas	Seasonal factor for LXTCPUS		
MAR	Dumm	1 for March		
MAY	Dumm	1 for May		
MBOLPUS	PS	Other refinery inputs	SUMOD	428
MBPSPUS	PS	Stocks of motor gasoline blending components		
MBTCPUS	PD	Demand for motor gasoline blending components	MIMOD	34

алада басы бардайна алаар басыл бай жалардага арырырдага баша жалардык жалардык жалардык жалардык жалардага жал Жалардык

Variable	Category	Definition	Archive File Name	File Line Number
MGDAYSP	PD	Motor gasoline days' supply	MGMOD	55
MGEXPUS	PS	Exports of motor gasoline	SUMOD	195
MGFPPUS	PS	Field production of finished motor gasoline		
MGIMPUS	PS	Gross imports of motor gasoline	SUMOD	438
MGNIPUS	PS	Net imports of motor gasoline	SUMOD	410
MGPSPUS	PS	Stocks of motor gasoline		
MGPSPUSA	PS	MGPSPUS seasonally adjusted	MGMOD	48
MGPSPUSS	Seas	Seasonal factor for MGPSPUS		
MGROPAD	Add	Adr! factor for MGROPUSA		
MGROPANN	PS	Annual monthly average of refinery output of motor gasoline		
MGROPUS	PS	Refinery output of motor gasoline	SUMOD	154
MGIROPUSA	PS	MGROPUS seasonally adjusted	SUMOD	92
MGROPUSS	Seas	Seasonal factor for MGROPUS		
MGTCPUS	PD	Demand for finished motor gasoline	MGMOD	50
MGTCPUSA	PD	MGTCPUS seasonally adjusted	MGMCD	49
MGTCPUSS	Seas	Seasonal factor for MGTCPUS		
MGUCUAD	Add	Add factor for MGUCUUSA		
MGUCUMU	Mult	Multiplicative factor for MGUCUUSA		
MGUCUUS	PR	Motor gasoline, ail grades and all services, retail price	PPMOD	85
MGUCUUSA	PR	MGUCUUS seasonally adjusted	PPMOD	44
MGUCLIUSS	Seas	Seasonal factor for MGUCUUS		
MGWHPUS	PS	Wholesale volume: motor gasoline	SUMOD	390
MGWHUAD	Add	Add factor for MGWHUUSA		
MGWHUMU	Mult	Multiplicative factor for MGWHUUSA		
MGWHUUS	PR	Wholesale price of motor gasoline	PPMOD	84
MGWHUUSA	PR	MGWHUUS seasonally adjusted	PPMOD	34
MGWHUUSS	Seas	Seasonal factor for MGWHUUS		
MITCPAD	Add	Add factor for MITCPUS		
MITCPMU	Mult	Multiplicative factor for MITCPUS		
MITCPUS	PD	Demand for miscellaneous petrolerm products	MIMOD	20
MITCPUSA	PD	MITCPUS seasonally adjusted components	MIMOD	29
MITCPUSS	Seas	Seasonal factor for MITCPUS		
MLTCPUS	PD	Demand for leaded gasoline	MGMOD	58
MLTCPUSA	PD	MLTCPUS seasonally adjusted	MGMOD	59
MLTCPUSS	Seas	Seasonal factor for MLTCPUS		
MO	Dumm	2-digit month of observation		
MOGP	PD	Real seasonalized price of motor gasoline	MGMOD	52
MOGPSA	PD	Real deseasonalized price of motor gasoline	MGMOD	51
MPG	PD	Automobile fleet fuel efficiency, MGTCPUS / MVVMPUS	MGMOD	46
MPGA	PD	MPG seasonally adjusted	MGMOD	5
MPGAAD	Add	Add factor for MPGA		
MPGAMU	Mult	Multiplicative factor for MPGA		
MUTCPUS	PD	Demand for unleaded motor gasoline	MGMOD	5 9
MUTCPUSA	PD	MUTCPUS seasonally adjusted	MGMOD	57
MUTCPUSS	Seas	Seasonal factor for MUTCPUS		
MUTCSUS	PD	Unleaded motor gasoline demand share	MGMOD	32
MVVMPAD	Add	Add factor for MVVMPUSA		
MVVMPMU	Mult	Multiplicative factor for MVVMPUSA		
MVVMPUS	PD	Vehicle miles travelled	MGMOD	47
MVVMPUSA	PD	MVVMPUS seasonally adjusted	MGMOD	21
MVVMPUSS	Seas	Seasonal factor for MVVMPUS		
NAPRKUS	Heat	Thermal content of wet natural gas production		
NGACPAD	Add	Add factor for NCACPUS		

• •

1

Variable	Category	Definition	Archive File Name	File Line Number
NGACPMU	Mult	Multiplicative factor for NGACPUS		
NGACPUS	NG	Demand for natural gas, pip sline use	NGMOD	113
NGCCPAD	Add	Add factor for NGCCPUSX		
NGCCPMU	Mult	Multiplicative factor for NGCCPUSX		
NGCCPUS	NG	Demand for natural gas, commercial sector	NGMOD	68
NGCCPUSB	NG	NGCCPUS 2-month moving average	NGMOD	67
NGCCPUSX	NG	Ratio of NGCCPUSB/NGCCPUS	NGMOD	47
NGCCUAD	Add	Add factor for NGCCUUSA		
NGCCUMU	Mult	Multiplicative factor for NGCCUUSA		
NGCCUUS	PR	Price of natural gas, commercial sector	POMOD	108
NGCCUUSA	PR	NGCCUUS seasonally adjusted	POMOD	90
NGCCUUSS	Seas	Seasonal factor for NGCCUUS		
NGEOKUS	Heat	Heat rate for natural gas		
NGEOPUS	EL	Electricity generation by natural gas	ELMOD	235
NGEOSAD	Add	Add factor for NGEOSHRX		
NGEOSHR	EL	Share of gas generation to oil and gas generation	ELMOD	236
NGEOSHRX	EL	Temporary variable for NGEOSHR	ELMOD	211
NGEOSMU	Mult	Multiplicative factor for NGEOSHRX		
NGEUDAD	Add	Add factor for NGEUDUSA		
NGEUDUS	PR	Cost of natural gas to electric utilities	POMOD	104
NGEUDUSA	PR	NGEUDUS seasonally adjusted	POMOD	40
NGEUDUSS	Seas	Seasonal factor for NGEUDUS		
NGEUPUS	EL	Demand for natural gas at electric utilities	ELMOD	234
NGEUPUSX	EL	Temporary variable for NGEUPUS	ELMOD	233
NGEXPUS	NG	Exports of natural gas	NGMOD	123
NGICPUS	NG	Natural gas demand, industrial sector	NGMOD	119
NGICUAD	Add	Add factor for NGICUUSA		
NGICUMU	Niult	Multiplicative factor for NGICUUSA		
NGICUUS	P'3	Price of natural gas, industrial sector	POMOD	107
NGICUUSA	PR	NGICUUS seasonally adjusted	POMOD	82
NGICUUSS	Seas	Seasonal factor for NGICUUS		
NGIMMX	XE	Natural gas import capacity		
NGIMPAD	Add	Add factor for NGIMPUSZ		
NGIMPUS	NG	Total imports of natural gas	NGMOD	238
NGIMPUSA	NG	NGIMPUS seasonally adjusted	NGMOD	239
NGIMPUSS	Seas	Seasonal factor for NGIMPUS		
NGIMPUSX	NG	Temporary variable for NGIMPUS	NGMOD	237
NGIMPUSZ	NG	Temporary variable for NGIMPUSA	NGMOD	232
NGINPAD	Add	Add factor for NGINPUSZ		
NGINPMU	Mult	Multiplicative factor for NGINPUSZ		
NGINPUS	NG	NGICPUS plus NGLPPUS	NGMOD	254
NGINPUSB	NG	NGINPUSA 2-month moving average	NGMOD	96
NGINPUSX	NG	NGINPUS 2-month moving average	NGMOD	97
NGINPUSZ	NG	Ratio: NGINPUSB/QSIC (gas weighted ind. prod. index)	NGMOD	72
NGLPPAD	Add	Add factor for NGLPPUS		
NGLPPMU	Mult	Multiplicative factor for NGLPPUS		
NGLPPUS	NG	Demand for natural gas (lease & plant)	NGMOD	101
NGMPPUS	NG	Production of wet marketed natural gas	NGMOD	244
NGNCPUS	NG	Number of commercial natural gas customers	NGMOD	44
NGNCPUSA	NG	NGNCPUS seasonally adjusted	NGMOD	37
NGNCPUSS	Seas	Seasonal factor for NGNCPUS		
NGNIPUS	NG	Net imports of natural gas	NGMOD	241
NGNRPUS	NG	Number of residential natural gas customers	NGMOD	16

ю I

-

Variable	Category	Definition	Archive File Name	File Line Number
NGNRPUSA	NG	NGNRPUS seasonally adjusted	NGMOD	9
NGNRPUSS	Seas	Seasonal factor for NGNRPUS		
NGNUKUS	Heat	Thermal content of nonutility natural gas		
NGNWPUS	NG	Net withdrawals of natural gas from underground storage	NGMOD	178
NGNWPUSX	NG	Temporary variable for NGNWPUS	NGMOD	177
NGPRKUS	Heat	Thermal content of dry natural gas production		
NGPRMX	NG	Natural gas productive capacity		
NGPRPAD	Add	Add factor for NGPRPUSZ		
NGPRPMU	Mult	Multiplicative factor for NGPRPUSZ	Nono	
NGPRPUS	NG	Dry natural gas production	NGMOD	229
NGPRPUSA	NG	NGPRPUS seasonally adjusted	NGMOD	230
NGPRPUSX	NG		NGMOD	228 221
NGPRPUSZ	NG	Temporary term for NGPRPUSA Seasonal factor for NGPRPUS	NGMOD	221
NGPRPUSS	Seas Add	Add factor for NGRCPUSX		
NGRCPAD NGRCPMU	Mult	Multiplicative factor for NGRCPUSX		
NGRCPUS	NG	Demand for natural gas, residential sector	NGMOD	33
NGRCPUSB	NG	NGRCPUS 2-month moving average	NGMOD	32
NGRCPUSX	NG	Temporary term for NGRCPUSB	NGMOD	19
NGRCUAD	Add	Add factor for NGRCUUSA	Hamob	10
NGRCUMU	Mult	Multiplicative factor for NGRCUUSA		
NGRCUUS	PR	Residential natural gas price	POMOD	106
NGRCUUSA	PR	NGRCUUS seasonally adjusted	POMOD	72
NGRCUUSS	Seas	Seasonal factor for NGRCUUS		
NGSFPUS	NG	Supplemental gaseous fuels produced	NGMOD	205
NGSIPUS	NG	Injections of natural gas to underground storage	NGMOD	184
NGSPUAD	Add	Add factor for NGSPUUS		
NGSPUMU	Mult	Multiplicative factor for NGSPUUS		
NGSPUUS	PR	Spot natural gas wellhead price	POMOD	15
NGSPUUSA	PR	NGSPUUS seasonally adjusted	POMOD	102
NGSPUUSS	Seas	Seasonal factor for NGSPUUS		
NGSUPX	NG	Total primary natural gas supply	NGMOD	138
NGTCPUS	NG	Demand for dry natural gas	NGMOD	252
NGTCPUSA	NG	NGTCPUS seasonally adjusted	NGMOD	253
NGTCPUSS	Seas	Seasonal factor for NGTCPUS		100
NGTCPUSX	NG	Temporary variable for NGTCPUS	NGMOD	120
NGWGPAD	Add	Add factor for NGWGPUSX		
NGWGPMU	Mult	Multiplicative factor for NGWGPUSX	NCMOD	100
NGWGPUS	NG	Stocks working natural gas in underground storage	NGMOD	183
NGWGPUSA		NGWGPUS seasonally adjusted Seasonal factor for NGWGPUS		
NGWGPUSS NGWGPUSX		Temporary variable for NGWGPUS	NGMOD	141
NGWPUAD	Add	Add factor for NGWPUUS	NGINOD	1-41
NGWPUMU	Mult	Multiplicative factor for NGWPUUS		
NGWPUUS	PR	Natural gas wellhead price	POMOD	27
NGWPUUSA		NGWPUUS seasonally adjusted	POMOD	103
NGWPUUSS		Seasonal factor for NGWPUUS		
NGWSPUS	NG	Withdrawals from natural gas underground storage	NGMOD	158
NLPRPUS	PS	Natural gas plant liquid production	SUMOD	370
NOV	Dumm			
NUEOENC	XE	Electricity generation by nuclear power, East North Centra	l region	
NUEOESC	XE	Electricity generation by nuclear power, East South Centra		
NUEOKUS	Heat	Heat rate for nuclear power	-	

mentant .

Variable	Category	Definition	Archive File Name	File Line Number
NUEOMTN	XE	Electricity generation by nuclear power, Mountain region		
NUEOPAC	XE	Electricity generation by nuclear power, Pacific region		
NUEOPMA	XE	Electricity generation by nuclear power, Mid-Atlantic region		
NUEOPNE	XE	Electricity generation by nuclear power, New England region	า	
NUEOPSA	XE	Electricity generation by nuclear power, South Atlantic regio	n	
NUEOPUS	XE	Electricity generation by nuclear power, total U.S.		
NUECWNC	XE	Electricity generation by nuclear power, West North Central	region	
NUEOWSC	XE	Electricity generation by nuclear power, West South Central	region	
NXSCPUS	NG	Net withdrawals of natural gas from underground storage	NGMOD	185
OCT	Dumm	1 for October		
OHRIPAD	Add	Add factor for OHRIPUS		
OHRIPUS	PS	Other hydrocarbons and alcohol field production	SUMOD	445
ORCAPUS	XE	Monthly U.S. operable refinery capacity		
ORUTCUS	PS	Refinery utilization rate, CODIPUS / ORCAPUS	SUMOD	443
ORUTCUSA	PS	ORUTCUS seasonally adjusted	SUMOD	444
ORUTCUSS	Seas	Seasonal factor for ORUTCUS		
PAEOPUS	EL	Electricity generation by petroleum	ELMOD	237
PAGLPUS	PS	Refinery processing gain	SUMOD	144
PANIPUS	PS	Net imports of petroleum products	SUMOD	430
PAPRP48	XE	Crude oil production, Lower 48 States	001101	100
PAPRPAK	XE	Crude oil production, Alaska		
PAPRPUS	XE	Domestic crude oil production		
PARIPUS	PS	Total refinery inputs	SUMOD	142
PAROBAL	PS	Refinery output balancing item	SUMOD	152
PAROPUS	PS	Total refinery output	SUMOD	161
PAROPUSX	PS	Temporary variable for PAROPUS	SUMOD	145
PASXPUS	PS	Total petroleum stocks (excluding SPR)	SUMOD	441
PATCPUS	PS	Total petroleum product demand	SUMOD	453
PATCPUSA	PS	PATCPUS seasonally adjusted	SUMOD	455
PATCPUSS	Seas	Seasonal factor for PATCPUS	00000	400
PCEOKUS	Heat	Heat rate for petroleum coke		
PCEOPUS	EL	Electricity generation by petroleum coke	ELMOD	240
PCEUPUS	EL	Demand for petroleum coke at electric utilities	ELMOD	240
PCSEPUS	EL	Petroleum coke stocks at electric utilities		244
PCTCZUS	Heat	Thermal content of petroleum coke		
POST85	Dumm	DATE greater than or equal to 8501		
PPEXPUS	PS	Exports of pentanes plus	SUMOD	312
PPFPPUS	PS	Field production of pentanes plus	SUMOD	425
PPIMPUS	PS	Gross imports of pentanes plus	SUMOD	
				440
PPNIPUS PPNLSUS	PS PS	Net imports of pentanes plus Pentanes plus fraction of NGPL's	SUMOD	419
	PS	•	CUMOD	220
PPPSPUS		Stocks of pentanes plus	SUMOD	332
PPRIPANN	PS	Annual refiner inputs of PPRIPUS		70
PPRIPUS	PS	Refinery inputs of pentanes plus	SUMOD	79
PPRIPUSA	PS	PPRIPUS seasonally adjusted	SUMOD	72
PPRIPUSS	Seas	Seasonal factor for PPRIPUS		
PPTCPUS	PD	Demand for pentanes plus	MIMOD	36
PRESPUS	PS	Retail volumes of propane	SUMOD	393
PRE85XT	Dumm	Slope dummy, (1 - POST85) * TIME		
PRIMELG	XM	12 month lag of 6-month moving average of PRIMEUS	POMOD	50
PRIMEUS	XM	Prime Rate		
PRNLSUS	PS	LPG fraction of NGPL's		
PRPSPUS	PS	Stocks of propane	SUMOD	405
			CONCD	400

and a second second second second second plant second plant proves and plant proves and plant second s

Variable	Category	Definition	Archive File Name	File Line Number
			LPMOD	37
PRTCPUS	PD	Demand for propane	LFWOD	07
PRTCUAD	Add	Add factor for PRTCUUSA		
PRTCUMU	Mult	Multiplicative factor for PRTCUUSA	PPMOD	111
PRTCUUS	PR	Retail price of propane	PPMOD	102
PRTCUUSA	PR	PRTCUUS seasonally adjusted	FFINIOD	102
PRTCUUSS	Seas	Seasonal factor for PRTCUUS	SUMOD	292
PSEXPUS	PS	Exports of "other" petroleum products	301000	202
PSFPPUS	PS	Field production of "other" petroleum	SUMOD	439
PSIMPUS	PS	Gross imports of "other" petroleum products	SUMOD	416
PSNIPUS	PS	Net imports of "other" petroleum products	30100	410
PSPSPUS	PS	Stocks of "other" petroleum products		
PSRIPAD	Add	Add factor for PSRIPUS		
PSRIPANN	PS	Annual refinery inputs of "other" petroleum	SUMOD	81
PSRIPUS	PS	Refinery inputs of "other" petroleum products	SUMOD	158
PSROPUS	PS	Refinery output of "other" petroleum products	SUMOD	126
PSROPUSA	PS	PSROPUS seasonally adjusted	30100	120
PSROPUSS	Seas	Seasonal factor for PSROPUS	MIMOD	39
PSTCPUS	PD	Demand for "other" petroleum products	MIMOD	40
PSTCPUSA	PD	PSTCPUS seasonally adjusted	MINOD	40
PSTCPUSS	Seas	Seasonal factor for PSTCPUS	DOMOD	54
QCOAL	Heat	Heat generated by coal	POMOD	53
QNGAS	Heat	Heat generated by natural gas	POMOD	53 52
QRESD	Heat	Heat generagted by residual fuel oil	POMOD	52
QSIC	XM	Natural gas-weighted industrial production index		426
RACPPUS	PS	Refiner volume of crude oil RACPPUS = CODIPUS	SUMOD	420
RACPUUS	XE	Refiner acquisition cost for crude oil (composite)		93
RACPUUSA	XE	RACPUUS seasonally adjusted	PPMOD	93
RACPUUSS	Seas	Seasonal factor for RACPUUS		434
RAIMPUS	PS	Gross imports crude oil plus unfinished oils	SUMOD	434
RAIMUUS	XE	Imported crude oil refiner acquisition cost		
RAIMUUSA	XE	RAIMUUS seasonally adjusted		
RFEOKUS	Heat	Heat rate for residual fuel oil		000
RFEOPUS	EL	Electricity generation by residual fuel oil	ELMOD	238 247
RFEPPUS	EL	Shipments of residual fuel oil to electric utilities	ELMOD	
RFESPUS	PS	Residual fuel oil sale to end-users	SUMOD	380
RFEUDUS	PR	Cost of residual fuel oil to electric utilities	PPMOD	90 89
RFEUDUSA	PR	RFEUDUS seasonally adjusted	PPMOD	09
RFEUDUSS		Seasonal factor for RFEUDUS		242
RFEUPUS	EL	Demand for residual oil to produce electricity	ELMOD	
RFEXPUS	PS	Exports of residual fuel oil	SUMOD	235
RFFPPUS	PS	Field production of residual fuel oil		173
RFIMPUS	PS	Gross imports of residual fuel oil	SUMOD	412
RFNIPUS	PS	Net imports of residual fuel oil	SUMOD	5
RFNUPUS	PD	Non-utility demand for residual fuel oil	RFMOD	5
RFPSPUS	PS	Stocks of residual fuel oil		
RFPSPUSS		Seasonal factor for RFPSPUS		150
RFROPUS	PS	Refinery output of residual fuel oil	SUMOD	159
RFROPUSA		RFROPUS seasonally adjusted	SUMOD	133
RFROPUSS		Seasonal factor for RFROPUS		
RFSEPUS	EL	Stocks of residual oil at electric utilities		00
RFTCPUS	PD	Demand for residual fuel oil	RFMOD	26
RFTCPUSA		RFTCPUS seasonally adjusted	RFMOD	28
RFTCPUSS	-			

2

-

and some of the second

and a contraction of straight spectra contract of the data data and

Variable	Category	Definition	Archive File Name	File Line Number
RFTCUAD	Add	Add factor for RFTCUUS		
RFTCUMU	Mult	Multiplicative factor for RFTCUUS		
RFTCUUS	PR	No.6 residual fuel oil retail price	PPMOD	68
RFTCUUSA	PR	RFTCUUS seasonally adjusted	PPMOD	88
RFTCUUSS	Seas	Seasonal factor for RFTCUUS		
RFTCZUS	Heat	Thermal content of residual fuel oil		
RSELPUS	CL	Raw steel production - electric arc	CLMOD	66
RSPRPUS	CL	Raw steel production - total	CLMOD	64
RSPRPUSA	CL	RSPRPUS seasonally adjusted	CLMOD	4
RMZTPAD	Add	Add factor for LDRTM		
RMZTPUS	PD	Air travel capacity	JFMOD	52
RMZTPUSA	PD	RMZTPUS seasonally adjusted	JFMOD	48
RMZTPUSS	Seas	Seasonal factor for RMZTPUS		
RMZZPAD	Add	Add factor for LDRZM		
RMZZPUS	PD	Aircraft utilization rate	JFMOD	51
RMZZPUSA	PD	RMZZPUS seasonally adjusted	JFMOD	47
RMZZPUSS	Seas	Seasonal factor for RMZZPUS		
RSPRPAD	Add	Add factor for RSPRPUSA		
RSPRPMU	Mult	Multiplicative factor for RSPRPUSA		
RSPRPUSS	Seas	Seasonal factor for RSPRPUS		
SEP	Dumm	1 for September		
TDLOFUSB	EL	TDLOPUS/ESTCPUS	ELMOD	95
TDLOPUS	EL	Transmission and distribution losses	ELMOD	115
TDLOPUSB	EL	TDLOPUS 2-month moving average	ELMOD	114
TD8184	Dumm	Slope dummy, Log(TIME) * D8184		
TD8990	Dumm	Slope dummy, Log(TIME) * D8990		
TDTO87	Dumm	Slope dummy, integers where DATE less than 8801		
TIME	Dumm	Integers $1 - n$, where $n = n$ umber of observations		
TIMEX85	Dumm	Slope dummy, integers, where DATE greater than 8412		
TREND	Dumm	Temporary variable for time		
TREND84	Dumm	Slope dummy, integers, where DATE greater than 8312	SUMOD	420
UONIPUS	PS PS	Net imports of unfinished oils Stocks of unfinished oils	30100	420
UOPSPUS UORIPAD	Add	Add factor for UORIPUSJ		
UORIPUS	PS	Refinery inputs of unfinished oils	SUMOD	59
UORIPUSA	PS	UORIPUS seasonally adjusted	SUMOD	62
UORIPUSA	PS	Temporary variable for UORIPUS	SUMOD	29
UORIPUSS	Seas	Seasonal factor for UORIPUS	COMOD	20
UOTCPUS	PD	Reclassified unfinished oils	MIMOD	35
WNEOPUS	EL	Electricity generation by wind, solar and other	ELMOD	165
WPCPIUS	XM	Producer price index 1984 = 1.00	LINOD	100
WPIINUS	XM	Producer price index, less energy and food		
WP57IUS	XM	Producer price index, petroleum products	PPMOD	94
WWEOPUS	EL	Electricity generation by wood and waste	ELMOD	183
W_MATL	Wthr	Mid-Atlantic region, population weighted	12000	
W_NE	Wthr	North East (W_MATL + W_NENG), population wtd.		
W_NENG	Wthr	New England, population weighted		
XGONG	EL	Oil and natural gas generation at electric utilities	ELMOD	209
XTCLEL	EL	Shipments of coal to electric utilities	ELMOD	250
XTDSEL	EL	Shipments of distillate fuel to electric utilities	ELMOD	248
XTRSEL	EL	Shipments of residual fuel to electric utilities	ELMOD	249
YD87OUS	XM	Real disposable personal income, 1987 dollars		
YEAR	Dumm	2-digit Year of observation-example: 89 = 1989		

ى يەرىكى ئەرىكىيىلىكى بىيە ئۇدىلىكى بىرىيىلىكى بىرى بىلىكى بىرى ئەرىكەن ئەرىكە تەرىكى ئەرىكى بىرى ئەرىكى بىرى ب

Variable	Category	Definition	Archive File Name	File Line Number
ZGHDPUS	Wthr	Natural gas weighted HDD's		
ZGHNPUS	Wthr	Normal natural gas-weighted HDD's		
ZOCBIUS	XM	Industrial production index: basic chemicals		
ZOISIUS	XM	Industrial production index: iron and steel		
ZOMNIUS	XM	Industrial production index: manufacturing		
ZOSIIUS	XM	Coal weighted production index		
ZOTOIUS	XM	Industrial production index: total		
ZO20IUS	XM	Industrial production index: food		
ZO26IUS	XM	Industrial production index: paper		
ZO28IUS	XM	Industrial production index: chem		
ZO29IUS	XM	Industrial production index: petroleum refineries		
ZO32IUS	XM	Industrial production index: stone, clay and glass		
ZO33IUS	XM	Industrial production index: total		
ZSAJQUS	Dumm	Number of days in a month		
ZWCDPUS	Wthr	Average population weighted CDD's		
ZWCNPUS	Wthr	Average 'Normal' population weighted CDD's		
ZWHDDNO	Wthr	Northern (NE & MA) deviations from normal		
ZWHDDUS	Wthr	Deviations from normal HDD, U.S.		
ZWHDPMA	Wthr	Mid-Atlantic population weighted HDD's		
ZWHDPNE	Wthr	New England population weighted HDD's		
ZWHDPNO	Wthr	Northeast (NE & MA) HDD's		
ZWHDPUS	Wthr	Average population weighted HDD's		
ZWHNPMA	Wthr	Normal HDD's for the Mid-Atlantic		
ZWHNPNE	Wthr	Normal HDD's for New England		
ZWHNPNO	Wthr	Northeast (NE & MA) normal HDD's		
ZWHNPUS	Wthr	Average 'Normal' population weighted HDD's		
ZWPGIUS	PS	Refinery processing gain fraction		

ورجاره والمحافظة الانتقاب

்கில் கால் காலக்கு பிருந்து பிருந்து கால் காலக் கிறைக்கு குறையும் குறையில் கால்கள் காலக்குக்கள் குறையும் காலக்

Appendix D

as l

Short-Term Integrated Forecasting System (STIFS) Model Abstract

. The second second second second second statement of the second second second second second second second second

Appendix D

Short-Term Integrated Forecasting System (STIFS) Model Abstract

A. Model Name:	Short-Term Integrated Forecasting System
B. Acronym:	STIFS
C. Description:	The STIFS model is used for producing the forecasts in the <i>Short-Term</i> <i>Energy Outlook (Outlook)</i> . It provides a national monthly data base and accounting framework for energy supply, demand, stocks, and conversion processes (refineries and electric utilities). The model balances historical data and forecasts the entire energy network for up to two years in the future, based on prices, income, and weather. It also reflects the effects on prices likely to result from inventories, world oil prices, and inflation rates.
D. Model's Purpose:	STIFS generates short-term (up to 8 quarters), monthly and quarterly forecasts of U.S. supplies, demands, imports, exports, and stocks of all fuels for up to two years into the future.
E. Model Updated:	October 1992
F. Part of Another Model:	No
G. Model Interface:	 STIFS utilizes forecasts of several satellite models maintained by the Energy Information Administration: Crude oil price - Oil Market Simulation (OMS) model Electricity supply from nuclear power - Short-Term Nuclear Annual Power Simulation (SNAPPS) model Coal supply - Short-Term Coal Analysis System (SCOAL)
H. Official Model Representative:	Sponsoring Agency: Energy Information Administration Office: Energy Markets and End Use Division: Energy Markets and Contingency Information Division Branch: Short-Term Forecasting and Contingency Branch, EI-621 Model Contact: David Costello Telephone: (202) 586-1468
I. Documentation References:	Decision Analysis Corporation of Virginia, Second Quarter STIFS III Update and Evaluation Draft Model Evaluation Report, July 16, 1992
	Decision Analysis Corporation of Virginia, Short-Term Integrated Forecasting System III: Model Documentation, December 31, 1991

a sure a sure data di anna a sure e sidente destruit a sure di sidente destruit de la sure di sidente di sure a

.

-

J. Archive Media and	
Installation Manual:	Model archived: First Quarter 1993 <i>Outlook</i> Model archival tape: CN6777.PRJ.STIFS0193 Model installation manual: CN6777.PRJ.STIFS0193.INSTALL.MANUAL
	Archival contact:
	Elias Johnson, EI-621
	Energy Information Administration
	U.S. Department of Energy 1000 Independence Avenue
	Washington, DC 20585
	(202) 586-7277
K. Energy System	
Described by Model:	U.S. energy production, consumption, imports, exports, stocks, and prices. All major fuels: oil, gas, coal, and electricity on a national basis.
L. Coverage:	Geographic: National
	Time Unit/Frequency : Monthly. Published results show only quarterly statistics plus forecasts for up to two years.
	Product(s) : Motor gasoline, distillate fuel oil, residual fuel oil, jet fuel, liquefied petroleum gases, other petroleum products, natural gas, coal, electricity, nuclear energy, hydroelectricity, and gross and net energy consumption.
	Economic Sector(s) : Total U.S. with explicit treatment given to electric utility and nonutility consumption, imports, and exports.
M. Modeling Features:	Model Structure: Accounting and algorithmic to balance supply and demand
	Modeling Technique: Includes accounting, algorithmic, econometric, and time-trending techniques
	Modeling Technique: Includes accounting, algorithmic, econometric, and
N. Input Data - Non-DOE:	Modeling Technique: Includes accounting, algorithmic, econometric, and time-trending techniques
N. Input Data - Non-DOE:	Modeling Technique: Includes accounting, algorithmic, econometric, and time-trending techniques Special Features: None U.S. Department of Transportation, Federal Highway Administration,
N. Input Data - Non-DOE:	 Modeling Technique: Includes accounting, algorithmic, econometric, and time-trending techniques Special Features: None U.S. Department of Transportation, Federal Highway Administration, Highway Statistics Division, <i>Traffic Volume Trends</i> (monthly)
N. Input Data - Non-DOE:	 Modeling Technique: Includes accounting, algorithmic, econometric, and time-trending techniques Special Features: None U.S. Department of Transportation, Federal Highway Administration, Highway Statistics Division, <i>Traffic Volume Trends</i> (monthly) Vehicle miles traveled Form 41 Data Base, collected by I.P. Sharp for U.S. Department of Transportation Revenue ton-miles
N. Input Data - Non-DOE:	Modeling Technique: Includes accounting, algorithmic, econometric, and time-trending techniques Special Features: None U.S. Department of Transportation, Federal Highway Administration, Highway Statistics Division, <i>Traffic Volume Trends</i> (monthly) - Vehicle miles traveled Form 41 Data Base, collected by I.P. Sharp for U.S. Department of Transportation - Revenue ton-miles - Aircraft yield - Aircraft load factor
N. Input Data - Non-DOE:	Modeling Technique: Includes accounting, algorithmic, econometric, and time-trending techniques Special Features: None U.S. Department of Transportation, Federal Highway Administration, Highway Statistics Division, <i>Traffic Volume Trends</i> (monthly) - Vehicle miles traveled Form 41 Data Base, collected by I.P. Sharp for U.S. Department of Transportation - Revenue ton-miles - Aircraft yield - Aircraft load factor - Available ton-miles
N. Input Data - Non-DOE:	Modeling Technique: Includes accounting, algorithmic, econometric, and time-trending techniques Special Features: None U.S. Department of Transportation, Federal Highway Administration, Highway Statistics Division, <i>Traffic Volume Trends</i> (monthly) - Vehicle miles traveled Form 41 Data Base, collected by I.P. Sharp for U.S. Department of Transportation - Revenue ton-miles - Aircraft yield - Aircraft load factor
N. Input Data - Non-DOE:	Modeling Technique: Includes accounting, algorithmic, econometric, and time-trending techniques Special Features: None U.S. Department of Transportation, Federal Highway Administration, Highway Statistics Division, <i>Traffic Volume Trends</i> (monthly) - Vehicle miles traveled Form 41 Data Base, collected by I.P. Sharp for U.S. Department of Transportation - Revenue ton-miles - Aircraft yield - Aircraft load factor - Available ton-miles

. 1972 - 1974 - 1974 - 1974 - 1975 - 1975 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974

-

157

.....

U.S. Department of Labor, Bureau of Labor Statistics, Monthly Labor Review

- Consumer price index

U.S. Department of Labor, Bureau of Labor Statistics, Employment and Earnings

- Employment

U.S. Department of Labor, Bureau of Labor Statistics, *Producer Price Index* (monthly)

- Producer price index
- Producer price index for petroleum products

Data Resources Inc., U.S. Central Data Base

- Consumer price index projections
- Disposable personal income projections
- Employment, projections
- Industrial production, index, projections
- Chemical production index, projections
- Change in manufacturing inventories, projections
- Raw steel production, projections
- AA bond rating for utilities, projections

Data Resources Inc.

- Real exchange rate plus projections
- AA bond rating for utilities plus projections

U.S. Department of Commerce, Bureau of Economic Analysis, National Income and Product Accounts of the United States

- Gross national product
- Gross domestic product
- Disposable personal income
- Gross national product implicit price deflator
- Gross domestic product implicit price deflator
- Gross private domestic fixed investment
- Change in manufacturing inventories

U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Monthly State, Regional and National Heating/Cooling Degree-Days Weighted by Population

- New England heating degree-days
- Mid Atlantic heating degree-days
- Population-weighted heating and cooling degree-days

U.S. Federal Reserve System, Board of Governors, Statistical Release G 17

- Industrial production index

	U.S. Federal Reserve System, Board of Governors, Federal Reserve Bulletin
	- Bank prime loan rate
	American Gas Association, Quarterly Report of Gas Industry Operations
	- Number of customers, residential and commercial
	American Iron and Steel Institute, <i>Raw Steel and Pig Iron Production Reports</i> , AIS-7 (monthly reports)
	- Raw steel production
	Merrill Lynch Bond Pricing Survey
	- AA bond rating for utilities
O. Input Data - DOE:	Publications and Forms:
-	Energy Information Administration, <i>Monthly Energy Review</i> , DOE/EIA-0035, (Washington, DC, most recent and 2 previous months' data)
	 Retail pricesmotor gasoline, distillate and residual fuel oil Product suppliedtotal motor gasoline, no.2 fuel oil (industrial sector), nonutility distillate and residual fuel oil Price of natural gasfor industrial users and to electric utilities Electricity generationtotal, nuclear, hydroelectric, petroleum, natural gas, coal) Price of residual fuel to electric utilities Natural gas deliveredto residential and commercial consumers Natural gas used by pipelines Coal consumptionat electric utilities and by industrial users Price of imported crude oil Domestic and composite refiner acquisition cost of crude oil Natural gas wellhead prices Residential and commercial natural gas prices Price of coal to electric utilities
	Energy Information Administration, Weekly Petroleum Status Report, DOE/EIA-0208, (Washington, DC)
	- Retail price of motor gasoline
	Energy Information Administration, <i>Petroleum Marketing Monthly</i> , DOE/EIA-0380, (Washington, DC, most recent and 2 previous months' data)
	 Product suppliedNo.2 diesel fuel, No.2 fuel oil (industrial sector) Price of diesel fuel oil Wholesale pricesheating oil, motor gasoline Average retail price for kerosene jet fuel

Energy Information Administration, *Petroleum Supply Monthly*, DOE/EIA-0109, (Washington, DC, most recent and 2 previous months' data)

- Product supplied--liquefied petroleum gases (excluding ethane), jet fuel (kerosene-type, naphtha-type, total), petrochemical feedstocks, miscellaneous products, crude oil and pentanes plus
- Demand for ethane

Energy Information Administration, *Electric Power Monthly*, DOE/EIA-0226, (Washington, DC, most recent and 2 previous months' data)

- Electricity sales
- Electricity generation
- Net imports of electricity
- Consumption of fuels at electric utilities
- Residential electricity price

Energy Information Administration, Natural Gas Monthly, DOE/EIA-0130, (Washington, DC, most recent and 2 previous months' data)

- Natural gas consumption

Energy Information Administration, *Coke and Coal Chemicals*, DOE/EIA-0120, (Washington, DC, most recent and 2 previous months' data)

- Coke production and consumption, and end-of-month coke stocks (December 1977 through December 1980)

Energy Information Administration, *Coke Plant Report*, DOE/EIA-0121, (Washington, DC, most recent and 2 previous months' data)

- Coke production and consumption, and end-of-month coke stocks (January 1981 through December 1981)

Energy Information Administration, *Quarterly Coal Report*, DOE/EIA-0121, (Washington, DC, most recent and 2 previous months' data)

- Coke production and consumption, and end-of-month coke stocks
- Net coke imports
- Coking coal demand
- Coal consumption--by industrial users, residential and commercial and total retail and general industry
- Coal production
- Net imports of coal
- Coal exports

Energy Information Administration, Form EIA-860, "Annual Electric Generator Report"

- Coal-fired generating capacity

Energy Information Administration, Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants" - Prices to electric utilities--natural gas, residual fuel, coal

Models and Other:

	Energy Information Administration, Economics and Statistics Division, Integrated Modeling Data System
	 Residential and commercial demand for distillate Electricity generationwind, wood and waste, geothermal Transmission and distribution losses Natural gas delivered
	Energy Information Administration, internal documents
	 Coal consumption by industrial users Synfuels-related consumption of coal
P. Output Data:	Projections of production, stocks, net imports, and demands for the following major products: motor gasoline, distillate fuel oil, residual fuel oil, jet fuel, liquefied petroleum products, other petroleum products, electricity, natural gas, and coal.
Q. Computing Environment:	Hardware Used: IBM 3084 Operating System: OS/MVS2 Language/Software Used: SAS, Version 6.07 Memory Requirement: 2000K Storage Requirement: 2000 Tracks Estimated Run Time: 150 CPU seconds for each simulation
R. Independent Reviews:	Maddala, G.S., "Independent Expert Review of the EIA Short-Term Integrated Forecasting System (STIFS)," University of Florida, Gainesville, FL, May 23, 1991.
	Kundra, Inderjit, "Model Quality Audit Short-Term Integrated Forecasting System," Energy Information Administration, Office of Statistical Standards, Washington, DC, July 21, 1992.
	Mount, Timothy, "Independent Expert Review of the EIA Short-Term Integrated Forecasting System," Cornell University, Ithaca, NY, May 1991.
	Trost, Robert P., "Replication of STIFS and Sensitivity Analysis of STIFS," Energy Information Administration, Office of Statistical Standards, Washington, DC, January 1992.
	Trost, Robert P., "A Brief Critique of STIM," Energy Information Administration, Office of Statistical Standards, Washington, DC, May 1992.
	Price Forecasting in DOE's Short-Term Integrated Forecasting System. Sitzer, S., Paxson, D., and Gamson,N., Energy Economics, Policy, and Management, Winter 1982

يستود الإعلامات كالمحطورة التركي فالخاطي وتشكالته والأ

161

Assessment of the Compliance of Short-Term Integrated Forecasting System (STIFS) Methodo. ,gy and Model Descriptions with EIA Documentation Standards

Edmonds, James A., "Assessment of the Short-Term Integrated Forecasting System Methodology and Model Descriptions," June 13, 1980.

Kneiser, Thomas J., "Short-Term Integrated Forecasting System (STIFS) Data Base Documentation," December 11, 1980.

S. Status of Evaluation Efforts: Comparisons of forecast to reported values for major projections are published annually in the Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.

T. Bibliography: Decision Analysis Corporation of Virgir 'a, Second Quarter STIFS III Update and Evaluation Draft Model: Evaluation Report, July 16, 1992

> Decision Analysis Corporation of Virginia, Short-Term Integrated Forecasting System III: Model Documentation, December 31, 1991

> Decision Analysis Corporation of Virginia, Unified Demand and Price Analysis Subsystem, December 1989.

Energy Information Administration, Model Documentation: Short-Term Integrated Forecasting System Demand Model, March 1983, DOE/EIA-0391

Energy Information Administration, Model Documentation: Short-Term Integrated Forecasting System Demand Model, May 1984, DOE/EIA-0391(84)

Energy Information Administration, Model Documentation Report: Short-Term Integrated Forecasting System Demand Model 1985, July 1985, DOE/EIA-M009

Energy Information Administration, Model Documentation Report: Short-Term Integrated Forecasting System, June 1986, DOE/EIA-M017

Energy Information Administration, Short-Term Integrated Forecasting System: 1988 Model Documentation Report, 1988, DOE/EIA-M030

Energy Information Administration, Short-Term Integrated Forecasting System: 1990 Model Documentation Report, 1990, DOE/EIA-M041

Energy Information Administration, *Short-Term Energy Outlook*, *Methodology*, "An Alternative Integrating Procedure for STIFS," July 1985, DOE/EIA-0202(85/2Q)/2, pp. 77-86.

Kilkeary, Scott, and Associates, Inc., Sho.1-Term Integrated Forecasting System: Data Base Description, September 1981

Kilkeary, Scott, and Associates, Inc., Short-Term Integrated Forecasting System: Model Description, May 1986

Kilkeary, Scott, and Associates, Inc., Short-Term Integrated Forecasting System: Model Summary, May 1986

Kilkeary, Scott, and Associates, Inc., Short-Term Integrated Forecasting System: Software Description, May 1986

Kilkeary, Scott, and Associates, Inc., Short-Term Integrated Forecasting System Operations Manual, May 1986

Logistics Management Institute, Short-Term Integrated Forecasting System (STIFS) Methodology and Model Descriptions, September 1981

MIL Corp., Short-Term Integrated Forecast System Price Model: User's Manual, September 1983.

.

•

and the state of the second

Appendix E

Sources of Exogenous Forecasts

Appendix E

Sources of Exogenous Forecasts

Macroeconomic Variables

The forecasts of exogenous economic variables like gross national product, real disposable personal income, and industrial production indexes, are taken from the DRI/McGraw Hill macroeconomic model. The DRI/McGraw-Hill model is run by EIA's Office of Integrated Analysis and Forecasting, incorporating key oil price and other energy-related assumptions employed in the corresponding STIFS model runs.

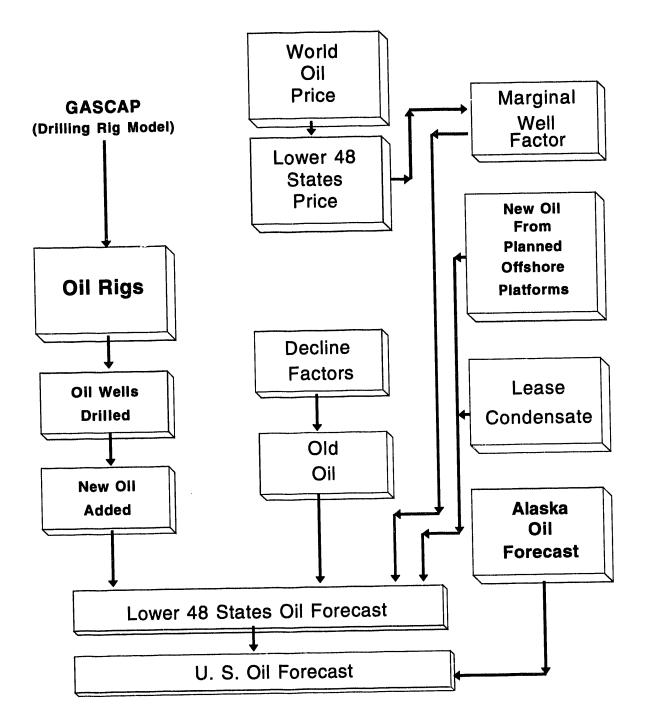
U.S. Crude Oil Production

Domestic crude oil production forecasts are prepared by EIA's Office of Oil and Gas, Reserves and Production Branch. Crude oil production estimates for the United States are the sum of the estimates for the lower 48 States and Alaska. Quarterly estimates are done separately for the lower 48 States and Alaska based on the three world oil price cases (low, mid, and high). Crude oil estimates for the various components involved in the oil forecast process are combined in a systematic manner to obtain the results required (Figure E1).

Alaskan Crude Oil Production

Crude oil production estimates for Alaska consist of individual estimates for the North Slope fields and an estimate for south Alaska fields together. Each quarter, operators of the North Slope fields provide information pertaining to their latest oil production forecasts for the currently active fields and also, if applicable, for new fields that are scheduled to come on production during the forecast period. For example, an operator of the giant Prudhoe Bay field in the North Slope provides a forecast that takes into account new field developments and response from waterfloods, enhanced recovery projects, well stimulations, and recompletions. Furthermore, the forecast is adjusted for downtime due to shutdowns for scheduled maintenance, etc. The expected decline rates for this giant field are varied to account for the difference in the three price cases and also for the uncertainty of the estimates. Monthly estimates of oil production are developed for the remainder of the fields from the operator's information. These are added to the estimates for the giant Prudhoe Bay field to obtain the North Slope totals for the forecast period.

Crude oil production estimates for south Alaska are extrapolated from a least squares fit of the monthly data to an exponential function. The set of data points selected for the fit usually represent the most recent trend. Adjustments to results are made in case interruptions to production are expected during the forecast period. The monthly estimates for the North Slope are further added to the monthly estimates for south Alaska and summarized by quarters to obtain the quarterly estimates for Alaska for the three price cases.


Lower 48 States Crude Oil Production

Estimates of crude oil production (excluding lease condensate) for the lower 48 States are made taking into account such factors as the price of oil, decline rate of old oil, the impact on production from marginal wells, and new oil added by drilling. In addition, new oil expected from the offshore fields

-

- H - -

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

167

scheduled to be placed on production during the forecast period is included in the forecast. Estimates of lease condensate production are also included. Monthly estimates of lease condensate production are based on historical production patterns.

The price of oil for the lower 48 States is estimated for the three price cases by assuming that it will change in the same proportion as the world oil price. Thus, a price path for each of the price cases is established. Crude oil production estimates are prepared for each of the three price cases. An old oil base rate is estimated at the beginning of each forecast year. This oil base rate is declined on a monthly basis based on assumed decline rates for each of the three cases to obtain the old oil estimates.

The impact on production from marginal wells depends on how the crude oil price varies during the forecast period. As the price drops, marginal wells that are no longer economical to operate at the lower price levels are shut-in. Conversely, as the price increases, some marginal wells that were uneconomical to operate at the lower price levels and as a result were shut-in previously are placed anew on production if they become economical to operate at the higher price levels. The loss or gain in production is estimated from a tabulation of the percentage of the lower 48 States production that becomes uneconomical at various price levels. The price levels in the tabulation range from \$8 to \$25 per barrel and the price interval is \$2 except where a \$1 interval was used. The data for the tabulation are based on the estimated operating cost data developed for the lower 48 States, individual field data and a range of crude oil prices. The gain in production from marginal wells (increased prices) is derived taking into account that a minimum increase in price of \$2 per barrel has to occur before any oil is added back into the production stream. The \$2 per barrel of oil price increase is used because it is assumed that it will take capital expenditures to return a well to production and this increase will allow such capital expenditures to be realized in 3 to 6 months. The source of cost data is the report titled Costs and Indices for Domestic Oil and Gas Field Equipment and Production Operations, 1985 by the Energy Information Administration (EIA), and the source for the individual field data is Dwight's Energydata, Inc.

The new oil added depends on the number of new oil wells drilled each year. The number of new oil wells drilled is obtained from an estimate of the number of rigs drilling for oil. Models formulated to predict the number of drilling rigs and the percentage of rigs drilling for gas for the EIA report *Natural Gas Productive Capacity for the Lower 48 States 1982 through 1993* are used to generate monthly estimates of the rigs drilling for oil. These are converted to monthly oil wells drilled based on historical monthly ratios of the number of oil wells drilled to the number of rigs drilling for oil. From the monthly oil wells drilled, the new oil added per month is estimated based on a set contribution per new oil well. A description of the drilling rig and percentage gas rigs models follows.

A model was formulated to predict the number of drilling rigs from oil and gas income. The model generates monthly rig counts from January 1984 through history and into the immediate future (2 to 3 years). In addition to oil and gas incomes, a term to account for seasonality is included in the model.

Oil income is used as a daily rate each month and is calculated by multiplying the lower-48 daily oil production by the world oil price. Gas income is calculated in the same manner. Lower-48 daily gas production is multiplied by the U.S. average gas price to obtain the gas income. Prices are adjusted to constant dollars using the gross domestic product (GDP) deflator. Both income streams are exponentially smoothed prior to being used in the model.

The model formulation is as follows:

$$Rigs_{i} - Sn * b * \left[(SOI_{i})^{d} + a * \left(\frac{\sum_{i=24}^{i-12} GI}{12} \right) * \left(\frac{SGI_{i}}{SGI_{i-12}} \right)^{d} \right]$$
(E1)

the total number of rigs drilling for oil and gas where Rigs = SOI = smoothed oil income SGI = smoothed gas income GI gas income = Sn = seasonality factor (equation E4) current month i = a,b,d = constants

Oil income and gas income are exponentially smoothed using the following equation:

$$SI_i - I_i * \alpha + SI_{i-1} * (1 - \alpha) \tag{E2}$$

where

e SI = smoothed income I = income α = exponential smoothing coefficient i = current month α_{SGI} = constant exponential smoothing coefficient for smoothed gas income.

The exponential smoothing coefficient for oil income is determined by the following equation:

$$\alpha_{SOI_{i}}^{-} - \frac{2}{2 + [h * \exp^{\left(c \cdot ((SOI6_{i} - SOI6_{i}, 2) - |SOI6_{i} - SOI6_{i}, 1)\right)}]}$$
(E3)

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

A seasonality factor was calculated for each month in the following manner:

$$Sn_{i+1} - f \text{ for January}$$

$$Sn_{i+2} - f + \frac{l}{2^{i+1}} \text{ for February}$$

$$Sn_{i+3} - f + \frac{l}{2^{i+2}} + \frac{l}{2^{i+1}} \text{ for March}$$

$$Sn_{i+4} - f + \frac{l}{2^{i+3}} + \frac{l}{2^{i+2}} + \frac{l}{2^{i+1}} \text{ for April}$$

$$Sn_{i+5,11} - Sn_{i+4} + j * (i-4) \text{ for May thru November}$$

$$Sn_{i+12} - Sn_{i+1} + \frac{j}{3} \text{ for December}$$
(E4)

where	Sn	=	the 12 different seasonality factors for January through December
	i	=	1 through 12 for the corresponding months January through December
	f,j,l	=	constants

The Solver routines contained in a personal computer spreadsheet file are used to determine simultaneously the values for all the parameters in equations E1 through E4. To define the parameter values, Solver is required to minimize the sum of the squares of the differences between the actual and estimated number of drilling rigs. Equation E1 was given a condition that the number of rigs drilling for gas determined by the gas income term had to be at least 25 percent of the total rigs determined by equation E1 each month.

To normalize or benchmark the model data to the actual data, all parameters are fixed except for the multiplier b. Solver is run again but only over the last 12 months. The new "benchmarked" value for b is determined. Benchmarked model data are used for the forecast period.

Oil and gas production for the current forecast period are taken from the previous *Short-Term Energy Outlook* (*Outlook*) oil forecast, while the prices are those projected for the current *Outlook* forecast period. The mid case gas production forecast from the previous *Outlook* gas forecast is decreased by 4 percent for the low case gas production forecast and is increased by 4 percent for the high case gas production forecast.

A model was formulated to determine the percentage of rigs drilling for gas. The model uses oil and gas income and a special factor to handle coalbed methane and tight gas sand drilling. Historical data start in January 1984 through the latest month for which a rig count is available. Monthly percentages are determined from monthly income values for the time period January 1984 through the end of the forecast period.

Oil income is used as a daily rate each month and is calculated by multiplying the lower-48 daily oil production by the world oil price. Gas income is calculated in the same manner. Lower-48 daily gas production is multiplied by the U.S. average gas price to obtain the gas income. Prices are adjusted to constant dollars using the GDP deflator. Both income streams are exponentially smoothed prior to being used in the model.

The percent gas rigs model is as follows:

$$GRR_{i} = \left[a + e * (SOI_{i-1}) + \left(\left(d * (SGI_{i-1}) + f * \left(\frac{GI3_{i-1} - GI3_{i-13}}{GI3_{i-13}}\right)\right) * (1+b)\right)\right] * 100$$
(E5)

where	GRR	=	gas rig ratio as a percent
	SOI	=	smoothed oil income
	SGI		smoothed gas income
	GI3	=	3-month running average of gas income
	$\alpha_{\rm SGI}$	Ξ	constant exponential smoothing coefficient for gas income
	α_{sol}	=	constant exponential smoothing coefficient for oil income
	b	=	constant coalbed methane and tight gas sand drilling factor $(1+b)$
	a,d,e,f		constants
	i	=	current month.

The Solver routines contained in the spreadsheet are used to determine simultaneously values for all the parameters in equation E5. To define the parameter values, Solver is required to minimize the sum of the squares of the differences between the actual and estimated gas rig ratios. All parameters are determined for the time period from January 1984 through the latest month for which a rig count is available.

Because of increasing tax credits, coalbed methane and tight gas sand drilling started to become a significant portion of gas well drilling in 1988. The coalbed methane and tight gas sand drilling factor (1+b) is first applied in January 1988 at 1/24 its full value. The factor grows linearly until it reaches its full value in December 1989 (24 months). The factor remains at full value until January 1993 when it is reduced by half. It remains at half value for the rest of the forecast period.

The model data are normalized or benchmarked to the actual data. The model data are spliced to the actual data at the latest month for which a rig count is known. The splicing ratio is applied to the model data for the forecast period. Benchmarked model data are used for the forecast period.

Oil and gas production for the current forecast period are taken from the previous *Outlook* oil forecast, while the prices are those projected for the current forecast period. Three scenarios are used to forecast the percent gas rigs: a mid case, a low case, and a high case. The mid case gas production forecast from the previous *Outlook* gas forecast is decreased by 4 percent for the low case gas production forecast and is increased by 4 percent for the high case gas production forecast.

Crude oil estimates for each of the components (old oil, new oil, condensate, marginal wells, and new offshore fields if applicable) are added and summarized by quarter to obtain the estimates for all three price cases. In addition, crude oil production estimates for the low and high price cases contain an uncertainty component as well as a component due to price impacts. The uncertainty component was introduced in order to have the low and high cases generally cover the likely range of crude oil production estimates during the forecast period. The two basic types of uncertainties applicable to the low and high price cases are those associated with the current production level and those associated with the timing of expected events such as the onset of production from a relatively large field. The uncertainty portion (associated with the current production level) for the estimates results by varying the low and high price case oil production estimates (plus for the high case and minus for the low case) by an amount equal to 1 percent of the latest known quarterly rate of oil production and declining that amount throughout the forecast period.

Crude Oil Prices

The Oil Market Simulation (OMS) model is used by EIA's Energy Markets and Contingency Information Division to help determine the price of imported crude oil by benchmarking the forecasts to the most recent available data. The domestic crude oil price for the forecast period is assumed to be equal to the imported oil price. The composite refiner acquisition cost of crude oil, a weighted average of imported and domestic crude oil costs, is assumed to be equal to the cost of imported crude oil.

Electricity Supply

Forecasts for nuclear and hydroelectric generation and coal production, coal imports, and coal exports are generated independent of the STIFS model by the EIA Office of Coal, Nuclear, Electric, and Alternate Fuels.

Nuclear Power Electricity Generation

The Short-Term Nuclear Annual Power Simulation (SNAPPS) model produces forecasts of electricity generation by U.S. commercial nuclear power plants. The SNAPPS model is sponsored and maintained by the Analysis and Systems Division (ASD), Office of Coal Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), U.S. Department of Energy (DOE).

SNAPPS is a relatively simple, straightforward accounting model programmed in FORTRAN; it does not contain any stochastic features. The model consists of code that provides accounting for each nuclear reactor's generation over the projection period. It does this by developing reactor activity schedules, determining if the reactor is generating power or is shutdown for an extended period. Individual reactor monthly generation is computed using the central equation in SNAPPS:

NUEOPUS = CAPACITY * CAPACITY FACTOR * TIME

NUEOPUS is the individual reactor monthly generation. CAPACITY is the net summer capability value for the reactor from Form EIA-860, "Annual Electricity Generator Report." CAPACITY FACTOR is the ratio of the kilowatthours the reactor is expectd to generate during a month to the total number of kilowatthours of generation in a month. For the near term, about six months, the values are calculated in a preprocessor that estimates system-wide monthly capacity factors by applying time-series techniques to historical data. For the remainder of the projection period, SNAPPS uses estimates of average, full-cycle capacity factors based on reactor type (BWR or PWR) and fuel cycle (1st, 2nd, or equilibrium). The SNAPPS system adjusts the full cycle capacity factors for seasonality (monthly perturbations) and longerterm trends (annual adjustments) to obtain monthly capacity factors. The TIME variable is the number of hours in the month.

SNAPPS calculates each reactor's electricity generation for each month in the forecast period. The resulting reactor generation values are then cumulated into monthly, annual and regional totals.

The SNAPPS system establishes a decision hierarchy for calculating electricity generation as follows:

- For months for which it is available, SNAPPS uses historical electricity generation, by reactor, month, and year. The data are obtained by direct access to the generation data reported on the Form EIA-759.
- When historical data are not available, SNAPPS employs system-wide monthly capacity factors. These values are developed from information on expected refueling outages or major maintenance outages of each reactor gathered from sources at the Nuclear Regulatory Commission (NRC), trade press and direct utility contacts.

Snergy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

• ' --

• If neither historical data nor information to support monthly capacity factors are available, SNAPPS uses generic capacity factors categorized by reactor type and cycle. These values are derived from an analysis of historical nuclear capacity factors.

The estimates of operable dates for new units are based on utility schedules, NRC licensing schedules, information from the industry press, and historical construction schedule dates.

Hydroelectric Generation

Hydroelectric generation is forecast exogenously. For each month during the current water year, which ends September 30, or a nine-month period from presently available data if longer, hydroelectric generation projections are based upon information obtained from a sample of utilities representing eight U.S. geographic regions. Generation in each region is projected to change by the same percentage as generation for the sample. That is, estimations for each of the forecast months are determined by calculating a monthly ratio of each utility's projected generation to its actual generation in the past year. This ratio is applied to the region's generation for the previous year to arrive at a projected value for the corresponding month of the current year. The regional projections are aggregated to obtain a national projection for generation. The results achieved by this approach are assessed based on historically observed month-to-month patterns or other factors, such as precipitation, weather, demand, or market conditions.

Hydroelectric generation in the succeeding years is assumed to be normal. Normal generation is calculated for conventional and pumped storage units by using capacity information from the Form EIA-860, "Annual Electric Generator Report," and historical monthly capacity factors averaged over ten years.

Region	State
1	Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont, New Jersey, Delaware, District of Columbia, New York, Pennsylvania.
2	Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, W. Virginia, Tennessee, Alaska, Hawaii
3	California
4	Nevada, Utah, Arizona, Colorado, New Mexico
5	Washington, Oregon, Idaho
6	Minnesota, Iowa, Kansas, Oklahoma, Texas, Wisconsin, Illinois, Missouri, Arkansas, Louisiana, Michigan, Ohio, Indiana
7	Montana, Wyoming
8	North Dakota, South Dakota, Nebraska

Net Electricity Imports

International electricity trade projections are based on existing firm and interruptible contracts of U.S. and Canadian utilities that import or export electricity. Firm power contracts are identified from publications prepared by the Department of Energy's Office of Fuels Programs and the Canadian National Energy Board, as well as resource plans of U.S. and Canadian utilities. Current water and economic conditions in both the United States and Canada and discussions with U.S. and Canadian utilities are used in conjunction with terms specified in existing contracts to estimate interruptible trade and exchanges of electricity.

Electric Utility Power Purchases from Nonutilities

Utility purchases from nonutilities include all receipts of electricity by utilities from generators that are not utilities. Nonutilities include firms which generate electricity for sale to utilities and/or for their own consumption. They include independent power producers, cogenerators, and small power producers. Many are "qualifying facilities" (QF) under the Public Utility Regulatory Policies Act of 1978 (PURPA, P.L. 95-617), which requires utilities to purchase the power that QFs generate.

The Energy Information Administration (EIA) estimates utility purchases from nonutilities in a year to be the total sales to utilities in the prior year as reported on the Form EIA-861, "Annual Electric Utility Report," or estimated by EIA, plus the estimated sales from planned capacity additions for the forecast year as reported on the Form EIA-867, "Annual Nonutility Power Producer Report." A small percentage increase is also added to account for increases in output over time. Quarterly estimates are based on the previous year's distribution of utility purchases from nonutilities as reported by the Edison Electric Institute.

Coal Production, Imports, and Exports

Forecasts for coal production, coal imports, and coal exports are also generated independent of the STIFS model by the EIA Office of Coal, Nuclear, Electric and Alternate Fuels. The short-term quarterly projections of coal production, imports, and exports for 6 to 8 quarters are made by using the Short-Term Coal Analysis System (SCOAL).

Total Coal Production

Total U.S. coal production is derived as the sum of two separate estimates, one for anthracite and the other for bituminous coal and lignite. The equations for estimating coal production are given below.

Anthracite Production

Although anthracite accounts for a very small portion of total U.S. coal production (about 3 percent in 1992), it is separately estimated from bituminous coal and lignite production. The equation for anthracite production is estimated as a function of a one-period lag of the dependent variable, a time trend, and seasonal dummy variables. The structural specification is:

LACP. =
$$B_1DQ_1 + B_2DQ_2 + B_3DQ_3 + B_4DQ_4 + B_5TIME_t + B_6LACP_{t-1}$$
 (E6)

(m <)

where:

LACP _t	= Anthracite coal production in thousand short tons
DQ ₁	= Quarterly dummy variable = 1 in selected quarter i, 0 otherwise; $i = 1,2,3,4$
TIME	= Time variable that has an increasing value of 1 per quarter, starting with the
B ₁ , B ₆	first quarter of 1973 equal to 1 = Regression coefficients

Bituminous Coal and Lignite Production

Bituminous coal and lignite account for almost all of the coal produced in the United States (97 percent in 1992). Bituminous coal and lignite production is estimated as a function of a one-period lag of coal

production, relative prices of coal to oil, seasonal dummy variables, and relevant coal strike dummy variables.

$$LCPTOT_{t} = B_{1}DQ_{1} + B_{2}DQ_{2} + B_{3}DQ_{3} + B_{4}DQ_{4} + B_{5}LCPTOT_{t-1} + B_{6}LPRTO_{t} + B_{7}STRIKE3$$
(E7)
+ $B_{8}PS3 + B_{9}D824 + B_{10}D833 + B_{11}NS843 + B_{12}NS844$

where:

LCPTOT,	= Bituminous coal and lignite production in thousand short tons
DQ ₁	= Quarterly dummy variable = 1 in selected quarter i, 0 otherwise; $i = 1,2,3,4$
LPRTO	= The ratio of the delivered price of coal to the delivered price of oil for electric utilities in cents per million Btu.
STRIKE3	= A dummy variable that has a value of 1 in the second quarter of 1981 and a value of 0 otherwise
PS3	= A dummy variable that has a value of 1 in the third quarter of 1981 and a value of 0 otherwise, representing post strike period
D824	= A dummy variable that has a value of 1 in the fourth quarter of 1982 and a value of 0 otherwise
D833	= A dummy variable that has a value of 1 in the third quarter of 1983 and a value of 0 otherwise
NS843	= A dummy variable for the pre-strike buildup in production in the third quarter of 1984 in anticipation of a UMWA strike that has a value of 1 in that quarter and a value of 0 otherwise
NS844	= A dummy variable for the non-strike slowdown in production in the fourth quarter of 1984 (when a contract was signed without a strike) that has a value of 1 in that quarter and a value of 0 otherwise
B ₁ , B ₁₂	= Regression coefficients

Total U.S. coal production is calculated as LACP_t + LCPTOT_t

Coal Imports

Coal imports into the United States are a small percentage of domestic coal consumption (about 0.4 percent in 1992) but have been increasing during the past few years. U.S. coal imports are estimated in SCOAL as a function of a one-period lag of coal imports, seasonal dummy variables, and relevant strike dummy variables.

The estimating equation for U.S. coal imports used within SCOAL is as follows:

$$LCIM_{t} = B_{1}DQ_{1} + B_{2}DQ_{2} + B_{3}DQ_{3} + B_{4}DQ_{4} + B_{5}LCIM_{t-1} + B_{6}D893 + B_{7}CCAL$$
(E8)

where:

LCIM _t	= U.S. Coal imports in thousand short tons
DQ_1	= Quarterly dummy variable = 1 in selected quarter i, 0 otherwise; $i = 1,2,3,4$
D893	= A dummy variable for coal strike in the third quarter of 1989, with a value of
	1 in that quarter and 0 otherwise
CCAL	= Model calibration dummy variable that has a value of 1 in the third quarter of
	1992 and a value of 0 otherwise
B ₁ , B ₇	= Regression coefficients

Coal Exports

U.S. metallurgical and steam coal exports are estimated separately in order to take into account their different characteristics. Estimates of total coal exports are then derived as the sum of the two separate estimates.

Steam Coal Exports

Steam coal exports accounted for 42 percent of total U.S. coal exports in 1992. The model estimates steam coal exports separately to Canada, the Far East, and the rest of the world. The results from these three equations are then summed to obtain total U.S. steam coal exports.

The equation for steam coal exports to Canada is an ordinary least squares equation specified as a seasonal model, with dummy variable for low hydroelectric generation whenever it has occurred. The structural specification is:

LCSCEXP, =
$$B_1DQ_1 + B_2DQ_2 + B_3DQ_3 + B_4DQ_4 + B_5OHYDRO$$
 (E9)

where:

LCSCEXP,	= Steam coal exports to Canada in thousand short tons
DQ ₁	= Quarterly dummy variable = 1 in selected quarter i, 0 otherwise; $i = 1,2,3,4$
OHYDRO	= Dummy variable that has a value of 1 in the first quarter of 1987 and 1989
	when low hydropower was available and a value of 0 otherwise
B ₁ , B ₅	= Regression coefficients

Steam coal exports to the Far East are estimated as a function of seasonal dummy variables, the ratio of U.S. coal export price to the Far East (F.A.S.) to Indonesian crude oil price (F.O.B.), and a dummy variable representing the drop in crude oil price in 1986 through 1988.

LFSCEXP_t =
$$B_1LFIPRICE + B_2DQ_1 + B_3DQ_2 + B_4DQ_3 + B_5DQ_4 + B_6COPD + B_7CCAL$$
 (E10)

where:

LFSCEXP,	= Steam coal exports to the Far East in thousand short tons
DQ_1	= Quarterly dummy variable = 1 in selected quarter i, 0 otherwise; $i = 1,2,3,4$
LFIPRICE	= Price ratio of the F.A.S. price of steam coal exports per million Btu to the F.O.B.
	price of crude oil per million Btu.
COPD	= Dummy variable for crude oil price drop that has a value of 1 in the quarters
	of 1986 through 1988 and a value of 0 otherwise
CCAL	= Model calibration dummy variable that has a value of 1 in the third quarter of
	1992 and a value of 0 otherwise
B ₁ , B ₇	= Regression coefficients

Steam coal exports to the rest of the world are estimated as a function of the ratio of U.S. coal export price to other countries (F.A.S.) to Saudi Arabian crude oil price (F.O.B.) and disruptions in foreign countries such as Iraq.

$$LOSCEXP_{t} = B_{1}LOSPRICE_{t} + B_{2}PD + B_{3}COL + {}_{4}DIRAQ + B_{5}CCAL1$$
(E11)

where:

LOSCEXP	= Steam coal exports to the rest of the world in thousand short tons
LOSPRICE,	= Price ratio of the F.A.S. price of steam coal exports per million Btu to the F.O.B.
	price of crude oil per million Btu.

i.

States and the state of the states of the st

= Dummy variable for labor problems in Poland and Australia that has a value
of 1 in the first quarter of 1981 through the second quarter of 1982, a value of 0.5
in the third and fourth quarter of 1982, and a value of 0 otherwise
= A dummy variable for rapidly increasing exports from Colombia that has a
value of 0 through 1984, 0.5 for 1985, and 1 for the rest of the estimation period.
= Dummy variable representing Iraq's invasion of Kuwait with a value of 1 in the
third quarter 1990, a value of 0.75 in the fourth quarter 1990 and a value of 0
otherwise
= Model calibration dummy variable that has a value of 1 in the third quarter of
1992 and a value of 0 otherwise
= Regression coefficients

Metallurgical Coal Exports

Metallurgical coal exports accounted for about 58 percent of total U.S. coal exports in 1992. Like steam coal exports, the model divides the metallurgical coal exports sector into the same three regions: Canada, the Far East, and the rest of the world. Total U.S. metallurgical coal exports are derived as the sum of the three regional estimates.

The equation for metallurgical coal exports to Canada is estimated as a function of seasonal variation, a strike period dummy variable, representing a UMWA strike that occurred in the second quarter of 1981, and a dummy variable for the first quarter 1985 when coal exports to Canada were zero. The structural specification is:

$$LMCEXC_{t} = B_{1}DQ_{1} + B_{2}DQ_{2} + B_{3}DQ_{3} + B_{4}DQ_{4} + B_{5}D851 + B_{6}STRIKE3$$
(E12)

where:

LMCEXC _t	= Metallurgical coal exports to Canada in thousand short tons
DQ_1	= Quarterly dummy variable = 1 in selected quarter i, 0 otherwise; $i = 1,2,3,4$
D851	= Dummy variable for zero coal exports to Canada in the first quarter of 1985,
	with a value of 1 in that quarter and 0 otherwise
STRIKE3	= A dummy variable for UMWA strike that has a value of 1 in the second quarter
	of 1981 and a value of 0 otherwise
B ₁ , B ₆	= Regression coefficients

Metallurgical coal exports to the Far East are estimated as a function of seasonal dummy variables and relevant dummy variables representing labor problems in Australia, the main supplier of coal to the Far East.

$$LMCEXA_{1} = B_{1}DQ_{1} + B_{2}DQ_{2} + B_{3}DQ_{3} + B_{4}DQ_{4} + B_{5}PD80 + B_{6}PD81 + B_{7}CCAL1$$
(E13)

where:

LMCEXA _t	= Metallurgical coal exports to the Far East in thousand short tons
DQ ₁	= Quarterly dummy variable = 1 in selected quarter i, 0 otherwise; $i = 1,2,3,4$
PD80	= Dummy variable for Australian labor problems that has a value of 1 in the
	second through fourth quarters of 1980 and a value of 0 otherwise
PD81	= Dummy variable for Australian labor problems that has a value of 1 in the third
	quarter of 1981 through the first quarter of 1982 and a value of 0 otherwise
CCAL1	= Model calibration dummy variable that has a value of 1 in the third quarter of
	1992 and a value of 0 otherwise
B ₁ , B ₇	= Regression coefficients

Metallurgical coal exports to the rest of the world are estimated, using a least squares equation, as a function of French and Italian pig iron production and a coal strike dummy variable for Poland.

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

LMCEXRW _t	$= B_1 STRIKE3 + B_2 LEUIRN_t + B_3 PDON + B_4 CCAL$	(E14)
----------------------	--	-------

where:

LMCEXRW _t STRIKE3	 Metallurgical coal exports to the rest of the world in thousand short tons Dummy variable for UMWA strike that has a value of 1 in the second quarter
STRIKES	of 1981 and a value of 0 otherwise
LEUIRN _t	= Combined estimate of the French and Italian pig iron production in thousands
	of metric tons per quarter
PDON	= Dummy variable for disruption in the Polish coal supplies that has a value of
	1 in the second quarter of 1982, a value of 0.5 in the third quarter of 1982 through
	the second quarter of 1983, and a value of 0 otherwise
CCAL	= Model calibration dummy variable that has a value of 1 in the third quarter of
	1992 and a value of 0 otherwise
B ₁ , B ₄	= Regression coefficients
1/ 7	0

Appendix F References

Appendix F

References

- 1. American Iron and Steel Institute, Annual Statistical Report, 1984, Washington, DC, June 1985.
- 2. American Iron and Steel Institute, *Raw Steel and Pig Iron Production Reports* (AIS-7), Washington, DC, monthly reports.
- 3. DRI/McGraw-Hill, U.S. Central Data Base, Washington, DC.
- 4. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, *Monthly State*, *Regional, and National Heating/Cooling Degree-Days Weighted by Population*, National Climatic Center, Asheville, North Carolina, monthly issues.
- 5. U.S. Department of Commerce, Bureau of Economic Analysis, National Income and Product Accounts of the United States, Washington, DC, monthly issues.
- 6. U.S. Department of Commerce, *Report FT-410, Commodity by Country,* Schedule E and Schedule B, Washington, DC, monthly issues.
- 7. U.S. Department of Commerce, *Report FT-546*, *Commodity by Country*, Schedule B, Washington, DC, monthly issues.
- 8. U.S. Department of Energy, Energy Information Administration, Form EIA-860, Annual Electric Generator Report.
- 9. U.S. Department of Energy, Energy Information Administration, *Coke and Coal Chemicals*, Washington, DC, monthly issues, December 1977 through December 1980.
- 10. U.S. Department of Energy, Energy Information Administration, *Coke Plant Report*, Washington, DC, quarterly issues, January 1981 through December 1981.
- 11. U.S. Department of Energy, Energy Information Administration, Costs and Indices for Domestic Oil and Gas Field Equipment and Production Operations, DOE/EIA-0185, Washington, DC.
- 12. U.S. Department of Energy, Economic Regulatory Administration, *Electricity Transactions Across* International Borders--1984, DOE/RG-0066, Washington, DC, October 1985.
- 13. U.S. Department of Energy, Energy Information Administration, *Electric Power Monthly*, DOE/EIA-0226, monthly issues.
- 14. U.S. Department of Energy, Energy Information Administration, Monthly Energy Review, DOE/EIA-0035, Washington, DC, monthly issues.
- 15. U.S. Department of Energy, Energy Information Administration, from Federal Energy Regulatory Commission Form 423, *Monthly Report of Cost and Quality of Fuels for Electric Plants*, monthly reports.

- 16. U.S. Department of Energy, Energy Information Administration, *Natural Gas Monthly*, DOE/EIA-0130, monthly issues.
- 17. U.S. Department of Energy, Energy Information Administration, *Petroleum Marketing Monthly*, DOE/EIA-0380, monthly issues.
- 18. U.S. Department of Energy, Energy Information Administration, *Petroleum Supply Monthly*, DOE/EIA-0109, monthly issues.
- 19. U.S. Department of Energy, Energy Information Administration, *Quarterly Coal Report*, Washington, DC, quarterly issues.
- 20. U.S. Department of Energy, Energy Information Administration, *Short-Term Energy Outlook, Annual Supplement*, DOE/EIA-0202, Washington, DC, annual issues.
- 21. U.S. Department of Energy, Energy Information Administration, *Short-Term Energy Outlook*, DOE/EIA-0202, Washington, DC, quarterly issues.
- 22. U.S. Department of Energy, Energy Information Administration, Weekly Petroleum Status Report, DOE/EIA-0208, weekly issues.
- 23. U.S. Department of Labor, Bureau of Labor Statistics, *Monthly Labor Review*, Washington, DC, monthly issues.
- 24. U.S. Department of Labor, Bureau of Labor Statistics, *Consumer Prices--Energy and Food*, Washington, DC, monthly press release, Table 3.
- 25. U.S. Department of Labor, Bureau of Labor Statistics, *Employment and Earnings*, Washington, DC, monthly issues.
- 26. U.S. Department of Labor, Bureau of Labor Statistics, *Producer Price Index*, Washington, DC, monthly issues.
- 27. U.S. Department of Transportation, Federal Highway Administration, Highway Statistics Division, *Traffic Volume Trends*, Washington, DC, monthly issues.
- 28. U.S. Federal Reserve System, Board of Governors, *Statistical Release G* 17, Washington, DC, monthly issues.

Appendix G

Alternative R-squared Measures

Appendix G

Alternative R-squared Measures

The standard measure of how well a model fits the data is R-squared. It is usually interpreted as the proportion of the variation in Y, the dependent variable, that is explained by the X's, the independent, or explanatory, variables. However, using this measure to evaluate time series regressions can be misleading. This is most clearly seen by using an alternative interpretation in which R-squared is viewed as a comparison of two models, the proposed explanatory model and a benchmark model which assumes that Y is a constant.

The problem arises from the fact that time series commonly have a trend or seasonal variation. In such cases it is easy to see that the choice of a constant Y as a benchmark is a poor one and will tend to provide the analyst with an inflated notion of the quality of the explanatory model. Any variable which has a trend of its own will correlate with the trend of the dependent variable and appear to explain some of it's variation. It is irrelevant whether or not there is any theoretical connection between the two. For example, a completely artificial variable generated by a random walk with drift will 'explain' some of the variation in any trending series. Thus, to adequately measure the quality of an explanatory time series model, a better choice for the benchmark model is needed; one that will pick up some of the trend and seasonal components. In the STIFS model the benchmarking takes one of two forms. When the dependent variable has been deseasonalized, the benchmark model sets Y equal to lagged-Y plus an estimated constant term. Otherwise, Y is set equal to lagged-Y plus estimated seasonal dummy variables (i.e., a constant term and eleven monthly dummy variables, or no constant and twelve monthly dummies).

The alternative R-squared value can be calculated either directly from the definition of the R-squared measure, or from the normal R-squared measures reported in all statistical software packages. Using the definition, the alternative R-squared is one minus the ratio of the sums-of-squared errors for the explanatory and benchmark models,

$$R^{2}(alt) = 1 - \frac{SSE(X)}{SSE(B)}$$

where X refers to the explanatory model and B refers to the benchmark model. If $R^2(X)$ is the reported normal R-squared from the explanatory model regression and $R^2(B)$ is the normal R-squared for the benchmark model, then the alternative R-squared can also be represented as

$$R^{2}(alt) = \frac{R^{2}(X) - R^{2}(B)}{1 - R^{2}(B)}$$

If the alternative R-squared measure is negative, it means the benchmark model outperformed the explanatory model. For purposes of forecasting one may want to substitute the benchmark forecasts while the explanatory model is being examined for possible improvements. The table below presents the alternative R-square values for the equations in STIFSIII, along with an F-statistic as a crude indicator of the reliability of the result. The higher the F-value, the more likely it is that the alternative R-square has the correct sign (in practice, an F-value greater than 1.3 usually can be considered a reliable result).

As indicated in the table below, 17 of the 93 equations in STIFSIII have a negative alternative R-square value (about half have since been revised to correct this problem). Of those, 11 have an F-statistic greater

than 1.3, indicating that the problem cannot be attributed to an unfortunately bad sample. However, there is one further caution to be noted. If the benchmark model does very well, the alternative R-square will make the problem look much worse than it is. For example, the equation for NGNRPUSA has an alternative R-square of -7.91, with an F-statistic of 9.36; it looks like a terrible fit. However, the R-square for the explanatory equation is .99. It is probably not worth expending much effort in trying to improve an equation that has so little room for improvement.

Variable	Alt(R ²)	F	Variable	Alt(R ²)	F
	.0636	1.04	ESRCUUSA	.2309	1.20
RSPRPUSA	.0636 .3657	1.53	NGCCUUSA	.2860	1.33
CLHCPUS	.3657 .2574	1.30	NGEUDUSA	.4922	1.89
CLXCPUS		-1.67	NGWPUUS	.5942	2.39
DSTCPUS	8309	1.72	NGRCUUSA	.2996	1.35
DFHCPUS	.4288	2.09	NGSPUUS	.3698	1.48
DFICPUS	.5354	1.61	MGUCUUSA	.8153	5.31
DFACPUS	.3880	10.98	JKTCUUSA	.6926	3.14
CLEOPUS	.9126	1.55	WP57IUS	.8090	5.77
ESCMPUSQ	.3759		DSTCUUSA	.8420	6.01
ESICPUSB	.2911	1.38 -1.73	D2RCUUSA	.7915	4.66
ESRCPUSQ	8125	1.22	D2WHUUSA	.6518	2.79
TDLOFUSB	.1883		MGWHUUSA	.6809	3.01
ESOTPUSQ	0783	-1.11	RFTCUUS	.6457	2.72
CLEUPUS	.9756	40.50	PRTCUUSA	.1494	1.14
WNEOPUS	.1069	1.10	RFNUPUS	.5493	2.24
NGEOSHRX	.1821	1.19	CONXPUS	.2353	1.41
WWEOPUS	.0427	1.02		.2085	1.21
GEEOPUS	6137	-1.40	CORIPUSJ	-1.6909	-2.50
EFFSA	.4214	1.69	NLPRPUS	-3.8309	-4.44
LDRYLD	.051 9	1.03	PRPSPUS	9098	-1.72
LDRZM	.0937	1.07	D2WHPUS	-2.0070	-2.68
LDRTM	.3333	1.44	JKESPUS	-2.0070 .4367	1.99
PRTCPUS	.8612	7.10	MGWHPUS	-1.1562	-1.96
LXTCPUSA	.4858	1.89	PRESPUS		1.32
ETTCPUSA	.2107	1.21	RFESPUS	.1683	2.62
MPGA	.5229	2.00	DFROPUSA	.6268	1.34
MUTCSUS	2222	-1.21	JFROPUSA	.2810	2.96
MVVMPUSA	.2667	1.33	MGROPUSA	.6700	1.24
LSMIS	.4649	1.75	RFROPUSA	.2025	1.24
LSFET	.2502	1.30	LGROPUSA	.0439	
NGACPUS	.0771	1.16	LGRIPUSA	.1901	1.21
NGMPPUS	.9979	514.50	PPRIPUSA	.3685	1.55
NGPRPUSZ	.2784	1.37	PSRIPUS	.5027	2.11
BALIT	.3976	1.65	PSROPUSA	.5562	2.21
NGEXPUS	0459	-0.99	UORIPUSJ	.2872	1.38
NGWGPUSX	.4011	1.64	COEXPUS	.4709	1.87
NGWSPUS	.5477	2.19	DFEXPUS	.2062	1.25
NGIMPUSZ	.1313	1.12	JFEXPUS	.3401	1.49
NGCCPUSX	0538	-1.06	LGEXPUS	.1917	1.24
NGLPPUS	.2667	1.48	MGEXPUS	0392	-1.05
NGRCPUSX	-,3306	-1.27	PPEXPUS	.0772	1.07
NGINPUSZ	3951	-1.44	PSEXPUS	.3442	1.51
NGSFPUS	.2916	1.41	RFEXPUS	.3195	1.47
	-36.5556	-39.44	COLOPUS	.4771	1.91
	-7.9091	-9.36	CODIPUSJ	.9720	39.09
NGNRPUSA	.1869	1.20	PPPSPUS	.0394	1.04
NGICUUSA		1.13			
CLEUDUSA	.1512	1.10			

Alternative R-squared Measures for the STIFSIII System

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

محجوري ويحج

Appendix H

Refined Product Supply Model

Appendix H

Refined Product Supply Model

Introduction

This appendix describes a theoretically consistent model of short-run petroleum product markets that is being tested for use in STIFS forecasting and policy analysis of monthly developments in oil markets.¹ The model is designed to predict refinery inputs, inventories and prices in wholesale petroleum product markets.

One of the key features of petroleum refining is joint production. Therefore, a multiproduct formulation is adopted. Five product aggregates are examined: gasoline, distillate, residual fuel, jet fuel, and other petroleum products.

The economic model is derived assuming firms minimize variable costs subject to stocks of quasi-fixed factors. The conditional cost n inimization problem can be modeled in a variety of ways. For instance, Ramey (1989, 1991), Pindyck (1991) and Considine (1992) specify a dynamic optimization problem and estimate Euler equations. This approach permits considerable flexibility in specifying expectations. One disadvantage, however, is that solving for fixed factors is very difficult if there are curvature violations. Consequently, this study derives partial adjustment equations for stocks using the dynamic duality methods developed by Epstein and Denny (1983). This raises the odds of successful model simulation but does so at the cost of assuming static expectations.

The Theoretical Framework section derives the key behavioral equations in the model. In the Model Formulation section, the estimating equations and parameter restrictions are derived. In the Econometric Results section, the econometric results of model estimation are presented.

Theoretical Framework

Many researchers have exploited the duality between cost and production functions to derive output supply and input demand functions consistent with either cost minimization or profit maximization. Following the early work by Lucas (1967) and Treadway (1971) on the flexible accelerator model, McLaren and Cooper (1980) and Epstein and Denny (1983) have extended the dual approach to dynamic problems.

A dynamic problem often embodies the distinction between the short-run when some factors of production are fixed and the long-run when all factors can adjust to their equilibrium levels. Adjustment costs are often claimed as the reason for this dichotomy. These costs are not generally observed and so are often expressed as the reduction in output resulting from diverting resources within the firm to change quasi-fixed factors of production.

¹ Considine, Timothy J., "Refined Product Supply Module for EIA's Short-Term Integrated Forecasting System Version III (STIFS-III)," (The Washington Consulting Group, Inc.: Washington, DC, September 28, 1992). Prepared for Energy Information Administration under contract No. DE-AC01-89-E121033, task assignment number 92073.

In petroleum refining, there may be significant costs associated with changing capacity levels. In addition, adjusting inventories may may be costly due to logistical difficulties in transport and scheduling. Consequently, consider the following short-run restricted cost function for a petroleum product firm:

$$C(w, y, x, \dot{x}) = \text{minimize } w \cdot z \tag{H1}$$

C(.) = cost function
w = refiner acquisition cost of crude oil and petroleum liquids
y = vector of refinery production
x = vector of quasi-fixed factors
x = vector of changes in levels of quasi-fixed factors
z = vector of variable inputs

The vector of variable inputs, *z*, is the choice variable in the cost minimization problem and is subject to a production transformation function:

$$F(y, z, x, \dot{x}) = 0$$
 (H2)

Note that $F_x > 0$, $F_z > 0$, and $F_x < 0$, in which the last derivative reflects internal adjustment costs.

The refinery production vector, y, is linked to sales and product inventory change by the identity:

$$s = y - \dot{x} \tag{H3}$$

s = vector of refinery product sales

Assume that the firm attempts to minimize the present discounted value of future costs over an infinite horizon by adjusting input purchases and net accumulations of quasi-fixed factors. In this case, given initial states for the quasi-fixed factors, x_0 , the discounted value function, J, is:

$$J(w, y, v, x) = \min \int_{0}^{\infty} \exp(-r t) \left[C(w, y, x, \dot{x}) + v' x\right] dt$$
(H4)

v = vector of rental costs for quasi-fixed factorsr = discount factor (assumed fixed)

subject to equation (H3) and positive starting values for the quasi-fixed factors.

The discounted value function is assumed to be real, non-negative, twice continuously differentiable, nondecreasing and concave in w and v and decreasing in x (Epstein and Denny, 1983). Under these conditions, the Hamilton-Jacobi-Bellman expression (Kamien and Schwartz, 1991), often referred to as the dynamic programming equation, is as follows:

$$J(w, y, v, x) = \min \int_{0}^{\infty} \exp(-r t) \left[C(w, y, x, \dot{x}) + v' x + \dot{x}' J_{x}\right] dt$$
(H5)

This equation simply states that the discounted long-run shadow cost is equal to the sum of total variable costs, total rental costs of the quasi-fixed factors, v'x, and the implicit value of additional fixed factors, \dot{x} J_x (Stefanou, 1989).

This restatement of the objective function can be used to derive a set of first-order conditions for the dynamic problem. Consider one such first-order condition involving the rate of change in quasi-fixed factors, x:

$$C_{x} = -J_{x} \tag{H6}$$

which states that the marginal adjustment costs of the quasi-fixed factors must equal their respective shadow values. Also, consider the first-order condition with respect to the level of quasi-fixed factors, x:

$$v' = -(C_x + J_{xx})$$
 (H7)

which implies that rental values should reflect the shadow value and net capital gains from stock holding. If we differentiate (H5) with respect to the rental costs for quasi-fixed factors, v, we obtain:

$$r J_{v} = x + \dot{x}^{*} J_{xv} + (C_{\dot{x}} + J_{x}) \frac{\partial \dot{x}^{*}}{\partial v} + (v' + C_{x} + J_{xx}) \frac{\partial x^{*}}{\partial v}$$
(H8)

Using (H6) and (H7), and solving (H8) for \dot{x}^* we obtain the following expression for optimal net investment in quasi-fixed factors:

$$\dot{\mathbf{x}}^* = \frac{\mathbf{r} \mathbf{I}_{\mathbf{v}} - \mathbf{x}}{\mathbf{J}_{\mathbf{x}\mathbf{v}}} \tag{H9}$$

The demands for the variable inputs can be obtained by differentiating (H5) with respect to w and using Shephard's lemma ($z^* = \partial C / \partial w$) to obtain:

$$z^* = r J_w - \dot{x}' J_{xw} \tag{H10}$$

If the production targets are consistent with long-run profit maximization under perfect competition, then the firm solves the following problem:

$$\max_{\substack{j \in xp(-r t) [p' y - r J] dt}} \int_{0}^{\infty} exp(-r t) [p' y - r J] dt$$
(H11)

The first order condition for (H11) with respect to refinery production, y, (assuming $d\dot{x} = 0$ in long-run equilibrium) is:

 $\mathbf{p} = \mathbf{r} \mathbf{J}_{\mathbf{y}} \tag{H12}$

which states that output prices should equal long-run marginal shadow cost of production (Stefanou, 1989).

Model Formulation

Most empirical applications of dynamic dual models utilize a second-order linear quadratic approximation (Epstein and Denny, 1983; and Stefanou, 1992a,b). An alternative approach is to use a translog or generalized Leontief approximation. Both such forms, however, must be modified to accommodate the linear adjustment mechanism in (H9) (see Taylor and Monson, 1985; and Luh and Stefanou, 1991). To avoid potential convergence problems with these mixed functional forms, a quadratic approximation of the value function will be used below. Typically a normalized quadratic formulation is used so that linear homogeneity in prices can be imposed on the cost function. Mahmud *et al* (1986), however, finds that parameter estimates from normalized models vary depending upon the selection of the numeriare.

Furthermore, as noted above data on refining costs are incomplete. Accordingly, an unrestricted model that is not homogeneous in factor prices is used.

The quadratic value function then takes the following form:

$$J = \begin{bmatrix} a'_{w} & a'_{v} & a'_{x} & a'_{y} \end{bmatrix} \begin{bmatrix} w \\ v \\ x \\ y \end{bmatrix} + \frac{1}{2} \begin{bmatrix} w'v'x'y' \end{bmatrix} \begin{bmatrix} g_{w} & g_{v} & g_{x} & g_{y} \\ g'_{v} & B & M^{-1} & C \\ g'_{x} & M^{-1} & D & T \\ g'_{y} & C' & T' & G \end{bmatrix} \begin{bmatrix} w \\ v \\ x \\ y \end{bmatrix}$$

$$+ u' \left[f'_{w} f'_{v} f'_{x} f'_{y} \right] \begin{bmatrix} w \\ v \\ x \\ y \end{bmatrix} + \left[e'_{w} e'_{v} e'_{x} e'_{y} \right] \begin{bmatrix} w \\ v \\ x \\ y \end{bmatrix}$$
(H13)

where the variables are defined as follows:

- w = 2x1 vector of real prices for the refiners acquisition cost of crude oil and for liquefied petroleum gases,
- y = 5x1 vector of refinery production of gasoline, distillate, residual fuel, jet fuel and keromene, and other petroleum products,
- x = 8x1 vector of seven inventory categories including crude oil and liquids, unfinished oils, and the five products, and crude distillation capacity,
- v = 8x1 vector of rental prices for the quasi-fixed factors, and
- u = 2x1 vector of heating and cooling degree-days.

The parameter vectors and matrices are defined as follows:

a _v ', a _x '	are 1x8
a"′	is 1x2
a,'	is 1x5
$g_{y'}$ $f_{y'}$	are 2x5
g _w , f _w '	are 2x2
$g_{v}, g_{x}, f_{v}', f_{x}'$	are 2x8
B, M, D	are 8x8
С, Т	are 8x5
G	is 5x5

The *e* vectors are random error terms that reflect errors in dynamic optimization described by McElroy (1987).

In light of the linear adjustment mechanism in the quasi-fixed factor investment equation (H9) above, the estimating equations for the quasi-fixed factors can be derived by taking three derivatives of the quadratic value function given in equation (H13). First, take the derivative of J with respect to v, which is

$$J_{v} = a_{v} + g_{v}' w + B v + M^{-1} x + C y + f_{v} u + e_{v}$$
(H14)

Next, take the derivative of J with respect to x to obtain:

$$J_{x} = a_{x} + g_{x}' w + M^{-1} v + D x + T y + f_{x} u + e_{x}$$
(H15)

Third, take the derivative of (H15) with respect to v to get the adjustment coefficients:

$$J_{xy} = M^{-1} \tag{H16}$$

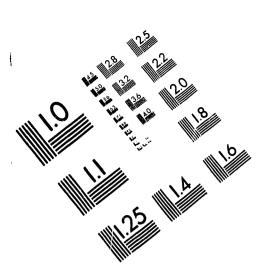
Now substituting (H14) and (H16) into (H9), the general form for the quasi-fixed factor investment equations follow:

$$\dot{x}^* = r M (a_v + g_v' w + B v + C y + f_v u) + (r I - M) x + r M e_v$$
 (H17)

Note that if the error terms are serially correlated, they must move at the rate of adjustment M.

Epstein and Denny (1983) show that the nonlinear structural form given by (H17) can be expressed as a linear reduced form model. To derive the reduced form for estimation rewrite (H17) as follows:

$$\dot{x}^* = (r \ I - M) (x - \bar{x})$$
 (H18)

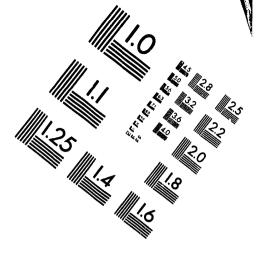

where,

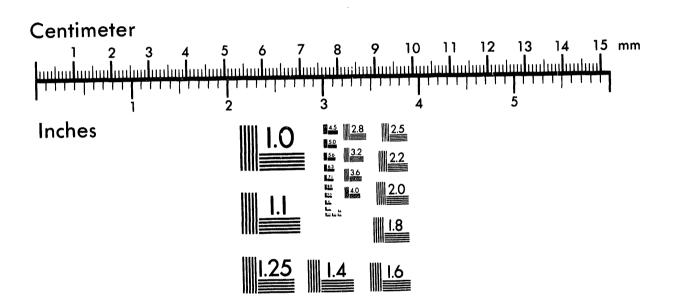
$$\overline{\mathbf{x}} = -\mathbf{r} (\mathbf{I} - \mathbf{M})^{-1} \mathbf{r} \mathbf{M} (\mathbf{a}_{v} + \mathbf{g}_{v}' \mathbf{w} + \mathbf{B} \mathbf{v} + \mathbf{C} \mathbf{y} + \mathbf{f}_{v} \mathbf{u} + \mathbf{e}_{v})$$
(H19)

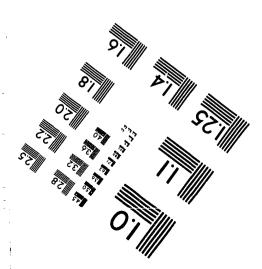
Using the discrete approximation $(x - x_1)$ for x^* and $(x_1 - \overline{x})$ for $(x - \overline{x})$ in (H18) and rearranging, the following partial adjustment equations for the quasi-fixed factors are obtained:

$$x = r M [a_v + g_v'w + Bv + Cy + f_v u] + [(1+r) I - M] x_{-1} + r M e_v$$
(H20)

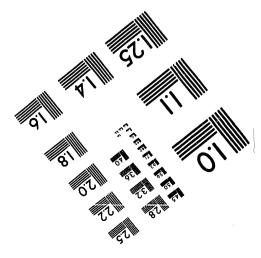
The terms in the first set of brackets on the right-hand side of (H19) constitute the target or long-run equilibrium level of stocks. These targets depend upon crude oil cost shocks, rental values, final product sales, and sales shocks represented by u. Given that the adjustment coefficients, M, are identified, the model can be estimated in reduced form from which the structural parameters can be derived (see, Epstein and Denny, 1983). The demands for the variable inputs are obtained by taking the derivative of J and J_x with respect to w and substituting into (H10):







Association for Information and Image Management 1100 Wayne Avenue, Suite 1100 Silver Spring, Maryland 20910


301/587-8202

MANUFACTURED TO AIIM STANDARDS BY APPLIED IMAGE, INC.

$$z^{*} = r (a_{w} + g_{w}'w + g_{v}v + g_{v}x + g_{v}y + f_{w}u) - g_{x}(x - x_{1}) + e_{w}$$
(H21)

The second to the last term on the right of (H21) represents the extent of disequilibrium in short-run input demands.

The supply functions consistent with long-run profit maximization are derived by simply taking the derivative of J with respect to y and using (H12):

$$p = r (a_s + g_s' w + C' v + T' x + G y + f_s u) + r e_s$$
(H22)

So wholesale product prices are a function of crude oil prices, rental prices, ending stocks of inventories, refining capacity, sales shocks, and refinery production. The degree of jointness in production is captured by the parameters, G.

Equations (H20)-(H22) constitute the core of the supply model. The input demand and supply functions are linear in their parameters. The investment equations are nonlinear. The model, however, contains a set of cross equation restrictions, namely those involving the parameter matrix C in (H20) and (H22). Hence, the unrestricted model cannot be estimated in reduced form.

Fortunately, there are a number of parameter restrictions that directly follow from the simple fact that stocks of capacity and inventories can be either built up or drawn down. Up to this point, gross investment is implicitly assumed to be positive. Obviously, this is not true for petroleum product inventories. Allowing for stock reductions implies certain simplifying parameter restrictions. Epstein and Denny (1983) show that marginal adjustment costs should be negative when disinvestment occurs, or $C_x < 0$ should be imposed for x < 0.

Given the quadratic cost function dual to J defined in (H13), these requirements can be satisfied by imposing an additively separable structure on adjustment costs, which implies the following restrictions on the dual cost function:

$$C_{xx} = 0, \qquad i \neq j \tag{H23}$$

$$C_{xj} = 0$$
 for $j = w, x, y, u$ (H24)

$$C_x = 0 \quad \text{when} \quad \dot{x} = 0 \tag{H25}$$

The parameter restrictions implied by these constraints can be derived by substituting (H15) into (H6) to get a parametric expression for marginal adjustment costs:

$$C_{x} = -[a_{x} + g_{x}'w + M^{-1}v + Dx + Ty + f_{x}u + e_{x}]$$
(H26)

Since (H26) must be evaluated at equilibrium, solve (H17) for v and substitute into (H26) to obtain:

$$C_{x} = [M^{-1}B^{-1}a_{v} - a_{x}] + [M^{-1}B^{-1}g_{v} - g_{x}] w + \{M^{-1}B^{-1}[M^{-1} - r^{-1}I] - D\} x$$
$$+ [M^{-1}B^{-1}f_{v} - f_{x}] u + [M^{-1}B^{-1}C - T] y - r^{-1}M^{-1}B^{-1}M^{-1}\dot{x}$$
(H27)

Condition (H23) can be imposed by making M and B diagonal, which greatly simplifies the model. The monotonicity conditions imply that the first five terms in parentheses on the right-hand side of (H27) must equal zero, which implies the following parameter restrictions:

$$a_x = M^{-1} B^{-1} a_y \tag{H28}$$

$$g_x' = M^{-1} B^{-1} g_y'$$
 (H29)

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

$$D = M^{-1} B^{-1} [M^{-1} - r^{-1} I]$$
(H30)

$$f_x = M^{-1} B^{-1} f_y$$
 (H31)

$$C = M B T$$
(H32)

Notice that the first three constraints given by (H28)-(H30) involve parameters that do not appear in the structural equations, (H20)-(H22). Consequently, some additional identifying relationship is needed to impose these constraints. Two approaches are available.

First, the value function given by (H5) can be solved for cost and, therefore, could be estimated with the above constraints imposed. The model would be highly nonlinear in the parameters and could, therefore, be difficult to estimate much less simulate. Nevertheless, this approach deserves further research.

Another approach is to specify an equilibrium arbitrage relationship between user costs and the marginal benefits of stocks along the lines explored by Pindyck (1991). An essential ingredient in this approach is futures prices (a rational price expectations formulation could be adopted but would fundamentally change our model). While heating oil futures have been traded since 1978, this market was fairly thin during the early 1980's. Furthermore, trading in crude oil and gasoline futures did not begin until the mid-1980's. Incorporating futures prices into the user cost terms would truncate our sample and force us to aggregate products under the smaller degrees of freedom.

Accordingly, a compromise is proposed. The key aspect of additively separable adjustment costs (H23) will be preserved by imposing the diagonality of M and B. As a result, the monotonicity conditions are simplified and can be tested by imposing the parameter restriction implicit in equation (H32). The remaining parameters for marginal adjustment costs could k_2 computed using equations (H28)-(H31).

In addition, constraints were placed on the C matrix to further facilitate a test for the monotonicity conditions. The following specific form for C is used:

$$C = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & 0 \\ C_{21} & C_{22} & C_{23} & C_{24} & 0 \\ C_{31} & 0 & 0 & 0 & 0 \\ 0 & C_{42} & 0 & 0 & 0 \\ 0 & 0 & C_{53} & 0 & 0 \\ 0 & 0 & 0 & C_{64} & 0 \\ 0 & 0 & 0 & 0 & 0 \\ C_{81} & C_{82} & C_{83} & C_{84} & 0 \end{bmatrix}$$

(H33)

.

So refinery capacity, crude oil and work-in-process inventories are affected by refinery production levels for all products except other petroleum products, which were eliminated to reduce convergence problems that arise from the absence of a supply equation for other products. Similarly, wholesale product prices are affected by rental costs for capital, crude oil, and work-in-progress inventories and their respective own product rental cost. Furthermore, given that the matrices B and M are diagonal, the montonicity condition (H32) implies that the T matrix, which measures the effects of month-end stocks on wholesale prices, must take the same form as C. Finally, the demand for variable inputs are assumed to be unaffected by user costs for quasi-fixed factors.

Given these assumptions, the base model can be described in summation notation as follows:

$$x_{it} = r \left[a_{vi}^{*} + \sum_{j=1}^{2} g_{vij}^{*} w_{jt} + b_{ii}^{*} v_{t} + \sum_{j=1}^{4} c_{ij}^{*} y_{jt} + f_{ih} u_{ht} + f_{ic} u_{ct} \right] + \left(1 + r - m_{ii} \right) x_{it 1} + e_{it}^{*}, \qquad i = 1, 2, 8$$
(H34)

$$x_{it} = r \left[a_{vi}^{*} + \sum_{j=1}^{2} g_{vij}^{*} w_{jt} + b_{ii}^{*} v_{t} + c_{ii}^{*} y_{i-2t} + f_{ih} u_{ht} + f_{ic} u_{ct} \right] + \left(1 + r - m_{ii} \right) x_{it-1} + e_{it}^{*}, \qquad i = 3, ..., 7$$
(H35)

$$z_{it} = r \left[a_{wi} + \sum_{j=1}^{2} g_{vij} w_{jt} + \sum_{j=1}^{8} g_{xij} x_{jt} + \sum_{j=1}^{5} g_{yij} y_{jt} + f_{zih} u_{ht} + f_{zic} u_{ct} \right]$$
$$- \sum_{j=1}^{8} g_{xij} \left(x_{jt} - x_{jt-1} \right) + e_{wt}^{*} , \qquad i = 1,2$$
(H36)

$$P_{it} = r \left[a_{yi} + \sum_{j=1}^{2} g_{yji} w_{jt} + \sum_{j=1}^{2} \left(\frac{c_{ji}}{m_{jj}} \right) v_{jt} + \left(\frac{c_{i+2,i}}{m_{i+2,i+2}} \right) v_{it} + \left(\frac{c_{8i}}{m_{88}} \right) v_{8t} + \sum_{j=1}^{2} t_{ji} x_{jt} + t_{i+2} x_{it} + \sum_{j=1}^{5} g_{ij} y_{jt} + f_{ih} u_{ht} + f_{ic} u_{ct} + e_{yit}^{*} \right], \qquad i = 1, \dots, 4$$
(H37)

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

=

197

ý

Note that the investment equations are estimated in reduced form so that $c_{ij}^* = m_{ii} c_{ij}$. The monotonicity conditions then can be tested by imposing a set of constraints consistent with (H32). Notice that this model is nonlinear in the parameters due to the cross equation constraints involving C. The restrictions, however, are fairly simple given the diagonal structure of M and B.

Econometric Results

The models are estimated with instrumental variables to correct for simultaneous equations bias. The supply model given by equations (H34) to (H37) is estimated as a system with nonlinear three stage least squares (3SLS).

The instrumental variables are seasonally unadjusted and have been carefully selected so that they are exogenous to the model. They include housing starts, the M1 measure of the money supply, manufacturing labor hours, consumer prices net of energy, the Standard and Poor 500 stock price index, industrial production, heating and cooling degree-days, long-term bond rates, and 30-day rates on certificates of deposit. Lagged values of these variables also are used as instruments. In addition, three regime shift variables for OPEC unity are included as instruments. The first regime represents "Desert Storm" from January to February 1991. The second period is from August to December 1990, known as "Desert Shield." The third variable accounts for the crude oil price war from February to November 1986. A set of monthly dummy variables also are used as instruments to account for fixed seasonal effects.

The first step in the analysis is to (cst the monotonicity conditions. The value of the objective function for the unrestricted model is 522. Imposing the monotonicity conditions and using the covariance matrix of the equations errors from the unrestricted model results in an objective value of 695. This implies a Chi-squared test statistic is 346, which far exceeds the critical value of 32 for 16 degrees of freedom at the one percent significance level. Hence, the monotonicity conditions given by (H32) cannot be accepted.

The summary fit statistics for the nonmonotonic refinery supply model are presented in Table H1. Three measures of goodness of fit are presented. First, the correlations between predicted and actual values for wholesale prices and refinery inputs are very high. The correlation coefficients for the inventory equations are lower but also indicate a reasonably good fit. The very low values for the bias and regression values for the mean squared error decompositions indicate no systematic linear bias in the inventory, capacity, and wholesale price equations. Finally, the Theil statistics, which are equal to one for the naive model, are extremely small suggesting that the model could provide accurate forecasts.

The explanatory variables in the inventory equations can be classified into three categories: cost factors including refinery input prices and rental values, production levels, and sales shocks represented by the weather variables. All seven user cost terms in the inventory equations are correctly signed with statistically significant effects at the 1 percent level for gasoline and residual fuel oil stocks (see Table H2). Inventories of crude oil and gasoline are estimated to significantly increase with higher petroleum liquid input prices. So cost shocks play a limited role in explaining petroleum inventories.

The evidence on the role of production levels also is mixed. Inventories of crude oil generally increase in response to higher refinery production with significant effects for residual and jet fuel. Of the remaining production coefficients only jet fuel stocks significantly decline with higher production of that fuel (see Table H2). Hence, refinery production levels are important for crude oil inventories but considerably less so for work-in-process and final product inventories.

The sales shock variables are substantial and statistically significant. The response of inventories to weather varies by product and by season. For instance, the estimated parameter for cooling degree-days in the crude oil stock equation is more than 10 times greater than the corresponding heating degree-day coefficient, which is consistent with the well-known spring drawdown of crude oil inventories. Gasoline stocks increase more than twice as much during the summer driving season and than during the winter. Distillate fuel oil stocks drop with colder weather and rise during the summer.

	Mean Squared Error Decomposition				
	Correlation	Bias	Regression	Distrube	Theil's U ₁
Inventories					
Crude Oil	0.782	0.000	0.030	0.970	0.0254
Work-in-Process	0.881	0.000	0.003	0.996	0.0289
Gasoline	0.745	0.000	0.007	0.993	0.0354
Distillate	0.923	0.000	0.001	0.999	0.0628
Residual	0.852	0.000	0.022	0.978	0.0651
Jet Fuel	0.860	0.001	0.037	0.963	0.0423
Other	0.955	0.001	0.001	0.998	0.0263
Refinery Capacity	0.989	0.000	0.002	0.997	0.0053
Refinery Inputs					
	0.982	0.000	0.011	0.989	0.0120
Liquids	0.773	0.000	0.182	0.818	0.1172
Wholesale Prices					
Gasoline	0.993	0.004	0.000	0.996	0.0228
Distillates	0.996	0.000	0.003	0.997	0.0223
Residual	0.995	0.006	0.006	0.987	0.0308
Jet Fuel	0.996	0.000	0.021	0.979	0.0229

Table H1. Correlations Between Predicted and Actual Values, Mean Squared Error Decompositions, and Theil's U1 Statistics

The estimated rates of adjustment are substantially faster than the very slow adjustment rates criticized by Blinder (1981). For example, 24 percent of the total adjustment of crude oil stocks occurs within one month. The adjustment rate for gasoline is even quicker with more than 40 percent of the adjustment occurring within one month. Other petroleum product inventories are the next fastest to adjust. Jet fuel and residual fuel oil inventories respond more slowly with 13 and 16 percent of their respective adjustments occurring during the first month. Nevertheless, these rates of adjustment are plausible and suggest that petroleum stocks on average take about 4 to 5 months to adjust to equilibrium levels. The adjustment coefficients for distillate fuels and refining capacity are negative, but are insignificant.

All four of the short-run marginal cost schedules conform with the conventional notion of an upward sloping supply curve (see Table H3).

Wholesale prices for gasoline and distillate fuel rise about 5 percent for each 10 percent increase in production levels (see Table H4). The corresponding elasticities for residual fuels and jet fuel fall around 0.20. The multi-product nature of petroleum refining is reflected by the estimated complementarity between gasoline, distillate, and residuat fuel oil production. Complementarity is also found between other petroleum products and distillate, residual, and jet fuels.

As expected, refinery input prices are highly significant in explaining the variation in wholesale product prices. The relation for residual fuel is nearly one to one. In contrast, roughly two-thirds of monthly charges in input costs show up in gasoline and distillate prices.

Parameter	Estimate	"t" Ratio	Parameter	Estimate	"t" Ratio
	Intercepts	te gegentingen meder offen destriken die eine destriken destriken.		Production	
AV1	20151.4600	4.91	C11	22.5103	1.68
AV2	5241.6400	2.68	C12	22.1356	1.93
AV3	5849.0700	3.63	C13	38.4538	2.91
AV4	-215.6000	-0.20	C14	47.9390	3.39
AV4 AV5	1092.4100	1.50	C21	-6.4906	-0.69
AV6	1011.7 800	1.83	C22	-3.3696	-0.79
AVO AV7	8118.0300	8.85	C23	-1.8365	-0.47
	146.4400	1.56	C24	-1.7434	-0.43
AV8	140.4400	1.50	C31	-9.4800	-0.83
	On at Oheelke		C42	2.9676	1.14
	Cost Shocks		C53	-7.7773	-0.91
0.444	0 4750	0.06	C64	-14.6483	-1.93
GV11	6.4758	0.96	C81	2.5242	0.27
GV21	8.3100	1.49	C81 C82	-8,2970	-0.75
GV31	4.0958	0.84		-21.0075	-0.90
GV41	-7.5906	-1.14	C83		-0.30
GV51	0.3617	0.09	C84	-3.6612	-0.25
GV61	-2.4811	-1.22		Wasther Checks	
GV71	-5.1649	-1.69		Weather Shocks	
GV81	-0.0832	-0.60		00.0074	1.40
GV12	37.7182	-2.12	FX1H	-23.8674	-1.49
GV22	13.2782	-1.21	FX2H	-10.1552	-1.14
GV32	37.2468	2.98	FX3H	34.5419	2.69
GV42	8.6995	0.59	FX4H	-72.5042	-4.38
GV52	0.4069	0.06	FX5H	-26.1365	-3.60
GV62	1.5724	0.47	FX6H	-11.3690	-3.34
GV72	-14.6076	-1.82	FX7H	-57.6726	-7.08
GV82	-0.4050	-1.78	FX8H	0.0391	0.18
B11	-15.4774	-0.37	FX1C	-126.7427	-2.86
B22	-35.0205	-1.67	FX2C	-37.8781	-1.55
B33	-76.0246	-2.81	FX3C	77.2130	2.18
B44	-32.0922	-1.19	FX4C	63.3434	1.49
B55	-21.0507	-1.59	FX5C	-57.5488	-3.48
B66	-3.3430	-0.50	FX6C	-17.2534	-1.79
B77	-28.8808	-1.53	FX7C	12.3614	0.54
B88	183.9253	0.47	FX8C	-0.4167	-0.78
	Adjustment Rates				
M11	0.2400	3.58			
M22	0.2039	3.38			
M33	0.4143	5.50			
M44	-0.0382	-0.87			
M55	0.1262	1.84			
M66	0.1654	2.33			
M77	0.2848	9.50			
M88	-0.0024	-0.76			

Table H2. Parameter Estimates for Inventory and Capacity Equations

Parameter	Estimate	"t" Ratio	Parameter	Estimate	"t" Ratio
	Refinery Inputs			Production/Cost	
AW1	-84.4507	-1.50	GY11	122.9210	14.15
AW2	10.7316	0.21	GY12	116.2641	14.21
GW11	0.1302	0.68	GY13	95.0065	11.26
GW12	-0.0312	-0.21	GY14	97.0767	10.96
GW22	0.4134	2.41	GY15	86.6514	4.37
GX11	-0.0060	-2.36	GY21	-1.6020	-0.21
GX12	-0.0294	-6.05	GY22	27.9383	3.74
GX13	0.0060	1.47	GY23	19.8601	2.57
GX14	0.0133	3.31	GY24	14.7416	1.94
GX15	-0.0190	-2.08	GY25	1.8548	0.11
GX16	0.0187	1.75			
GX17	-0.0032	-0.96		Stock Levels	
GX18	0.7115	3.21			
GX21	0.0054	2.47	T11	11.6494	2.92
GX22	0.0229	5.43	T12	-0.9309	-0.28
GX23	-0.0006	-0.18	T13	0.7131	0.22
GX24	-0.0111	-3.22	T14	-1.0932	-0.33
GX25	0.0155	1.99	T21	19.9916	2.73
GX26	-0.0129	-1.39	T22	9.3626	1.49
GX27	0.0011	0.39	T23	-1.8478	-0.28
GX28	-0.5002	-2.61	T24	2.8999	0.44
			T31	-0.003526	-0.00
Proc	duction Interaction	8	T42	3.0627	1.43
			T53	11.1375	1.53
G11	514.9138	3.25	T64	-22.1494	-1.57
G12	-130.2202	-0.91	T81	92.3024	0.26
G13	-159.6592	-1.00	T82	-172.1820	-0.59
G14	58.7433	0.36	T83	-735.2236	-2.43
G15	309.2931	0.58	T84	-529.6054	-1.68
G22	1134.2000	4.63			
G23	191.0698	0.83		Weather Shocks	
G24	164.8320	0.81			
G25	-1035.0400	-2.32	FZ1H	-0.5282	-0.86
G33	831.9899	1.67	FZ1C	3.3971	3.06
G34	11.7143	0.03	FZ2H	0.1674	0.32
G35	-296.9526	-0.65	FZ2C	-2.2480	-2.38
G44	1208.5100	2.54	FY1H	-6.4311	-0.93
G45	-837.6373	-1.80	FY2H	-12.9192	-2.30
			FY3H	-3.1945	-0.54
			FY4H	-11.5267	-1.92
			FY1C	4.6940	0.37
			FY2C	-4.2961	-0.38
					· · · · · · · · · · · · · · · · · · ·
			FY3C	24.6643	2.10

Table H3. Parameter Estimates for Refinery Input and Wholesale Price Equations

Energy Information Administration/ Short-Term Integrated Forecasting System 1993 Model Documentation

4

201

	Short-Run Marginal Costs				
Explanatory Variables	Gasoline	Distillate Fuels	Residual Fuel Oli	Jet Fuel	
Input Prices					
Crude Oil	0.5831	0.6217	0.8564	0.4710	
Propane	-0.0142	0.1494	0.3353	0.1336	
Production Levels					
Gasoline	0.4997	-0.1424	-0.2944	0.0583	
Distillate	-0.0533	0.5241	0.1488	0.0691	
Residual	-0.0221	0.0299	0.2193	0.0017	
Jet Fuel	0.0118	0.0375	0.0045	0.2496	
Other	0.1146	-0.4323	-0.2091	-0.3174	
Inventories					
Crude Oil	0.4989	-0.0449	0.0580	-0.0479	
Work-in-Process	0.3762	0.1986	-0.0661	0.0558	
Gasoline	-0.0001				
Distillate		0.0654			
Residual			0.1394		
Jet Fuel				-0.1458	
Refining Capacity	0.1915	-0.4027	-2.8985	-1.1237	
Degree Days					
Heating	-0.0207	-0.0468	-0.0195	-0.0379	
Cooling	0.0003	-0.0003	0.0026	0.0003	

Table H4. Short-Run Marginal Cost Elasticities

Only three inventory-price relations were found statistically significant. Wholesale gasoline and distillate prices rise with higher levels of crude oil inventories. Only jet fuel prices decline with higher own-stock levels and that estimate is only marginally significant. Surprisingly, residual fuel oil prices are positively related to residual fuel inventories. Three of the four prices are inversely related to refiner capacity but only the elasticities for residual fuel are significant. Finally, while some of the weather effects on product prices are significant, most are small. Overall, the results suggest that refinery wholesale price movements are affected largely by input costs and production levels.

The short-run input demand elasticities are presented in Table H5. Crude oil and petroleum liquids are estimated to be complements although the parameter estimates are insignificant. Furthermore, the own price effects for crude oil also are insignificant. Refinery product output levels are an important determinant of crude oil and liquids consumption. In addition, inventory levels are also generally significant (see Table H3). In summary, while own and cross price effects are negligible, production and inventories are significant factors in determining refinery consumption of crude oil and petroleum liquids.

The summary fit statistics for the net import equations are presented in Table H1. Given the extreme volatility of these series, the correlations between predicted and actual values are reasonably good falling between 0.6 and 0.8. Although the mean squared error decompositions suggest no systematic bias in the forecasts, the relatively high Theil statistics are somewhat troubling. Nevertheless, the models are substantially better than the naive forecasting model.

Explanatory Variables	Crude Oil	Liquids
Input Prices		
Crude Oil	0.0029	-0.0001
Propane	-0.0012	0.0029
Production Levels		
Gasoline	0.5572	-0.0012
Distillate	0.2227	0.0092
Residual	0.0616	0.0022
Jet Fuel	0.0916	0.0024
Other	0.1499	0.0005
Inventories		
Crude Oil	-0.0012	0.0002
Gasoline	0.0007	-0.0001
Distillate	0.0019	-0.0002
Residual	-0.0006	0.0000
Jet Fuel	0.0006	0.0000
Refining Capacity	0.0069	-0.0008
Degree Days		
Heating	-0.0079	0.0025
Cooling	0.0008	-0.0006

Table H5. Short-Run Input Demand Elasticities

References

Considine, T.J. (1992) "A Short-Run Model of Petroleum Product Supply, "*The Energy Journal*, Vol. 13, No. 2, pp. 61-91.

Epstein, L.G. and M.G.S. Denny (1983) "The Multivariate Accelerator Model: Its Empirical Restrictions and an Application to U.S. Manufacturing," *Econometrica*, vol. 51, 647-674.

Kamien, Morton I, and N.L. Schwartz (1991) Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management, (Amsterdam: North Holland).

Lucas, R. (1967) "Optimal Investment Policy and the Flexible Accelerator," International Economic Review, 78-85.

McElroy, M. (1987) "Additive General Error Models of Production, Cost, and Derived Demand or Share Systems," *Journal of Political Economy*, vol. 95, 737-5 7.

Mahmud, S.F., A.L. Robb, and W.M. Scarth, (1986) "On Estimating Dynamic Factor Demands," *Journal of Applied Econometrics*.

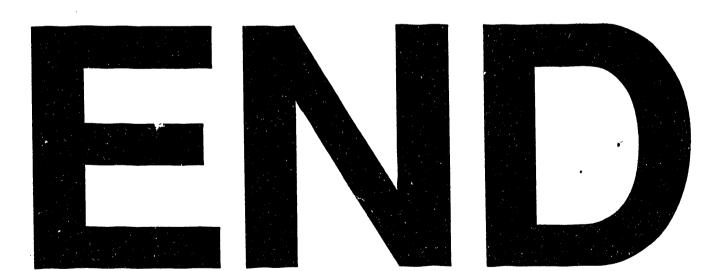
McLaren, K. and R. Cooper (1980) "Intertemporal Duality: Application to the Theory of the Firm," *Econometrica*, vol. 48, 1755-1762.

Pindyck, Robert S. (1991) "Inventories and the Short-Run Dynamics of Commodity Prices," M.I.T., mimeo.

Ramey, Valerie A., (1989) "Inventories as Factors of Production and Economic Fluctuations," American Economic Review, 79, 338-354.

Ramey, Valerie A., (1991) "Nonconvex Costs and the Behavior of Inventories," *Journal of Political Economy*, Vol. 99, 306-334.

Stefanou, S.E. (1989) "Returns to Scale in the Long-Run: The Dynamic Theory of Cost," *Southern Economic Journal*, vol. 55, 570-579.


Stefanou, S.E. (1992a) "Dynamic Measures of Scope and Scale Economies: An Application to German Agriculture," *American Journal of Agricultural Economics*, (forthcoming).

Stefanou, S.E. (1992b) "Dynamic Structure of Production Under a Quota: The Case of Milk Production in the Federal Republic of Germany," European Review of Agricultural Economics, (forthcoming).

Taylor, Timothy G. and M.J. Monson (1985) "Dynamic Factor Demands for Aggregate Southeastern United States Agriculture," *Southern Journal of Agricultural Economics*, December, 1-9.

Treadway, A. (1971) "The Rational Multivariate Flexible Accelerator," Econometrica, vol. 39, 845-856.

DATE FILMED9/17/93

