```
HE
    18.5
    .A37
    1)OT-
    「ぶっ
    UNTA-
    77-
    31.1
```

 ПO. \(\quad\) RT NO. UMTA-MA-06-0041-77-8

A COMPREHENSIVE FIELD TEST AND EVALUATION OF AN ELECTRONIC SIGNPOST AVM SYSTEM

Volume I：Test Results

G．W．Gruver

```
Hoffrann Information Identification Inc.
    Fort Worth TX 76107
```

AUGUST 1977
FINAL REPORT

DOCUMENT IS AVAILABLE TO THE U．S．PUBLIC
THROUGH THE NATIONAL TECHNICAL
INFORMATION SERVICE，SPRINGFIELD，
VIRGINIA 22161

> Prepared for
> U.S. DEPARTMENT OF TRANSPORTATION
> URBAN MASS TRANSPORTATION ADMINISTRATION Office of Technology Development and Deployment
> Washington DC 20590

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOT ICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

1. Report No. UMTA-MA -06-0041-77-8	2. Gavernment Ac	3. Recipientis Cotalog	
4. Title and Subitle A COMPREHENSIVE FIELD TEST AND EVALUATION OF AN ELECTRONIC SIGNPOST AVM SYSTEM Volume I: Test Results		5. Report Dote August 1977	
		6. Performing Orgonizotion Code DOT-TSC-UMTA-77-31/I	
7. Author's) George W. Gruver		8. Perfarming Organization Report No.RO-77-0026	
9. Performing Organizotion Name and Address Hoffman Information Identification, Inc.* Fort Worth TX 76107		$\begin{aligned} & \text { 10. Work Unip No. (TRA1S) } \\ & \text { UM711/R7716 } \end{aligned}$	
		$\begin{aligned} & \text { 11. Contract or Grant No. } \\ & \text { DOT-TSC-1237 } \end{aligned}$	
		13. Type of Report and Periad Covered Final Report Sept 1976 - March 1977	
12. Sponsoring Agency Name and Address U.S. Department of Transportation Urban Mass Transportation Administration Office of Technology Development and Deployment Washington DC 20590			
		14. Sponsoring Agency Cade	
1s. Supplementory Notes U.S. Department of Transporation *Under contract to: Transportation Systems Center Kendall Square Cambridge MA 02142			
16. Absitoct A comprehensive test of a direct proximity electronic signpost AVM system was conducted under operational conditions in downtown Philadelphia. Tests involved operation of a test vehicle while operating as a random route vehicle; e.g., police, taxi; and a fixed route vehicle; e.g., a transit bus. During random route tests, the vehicle operated on an unrestricted basis in a designated area in which the Hoffman overlapping signpost AVM system was installed. The vehicle's lozation was computed every 0.5 second by the AVM system and compared with its actual location at designated "checkpoints" in the random route area. In the random route tests, the system showed the capability of locating the vehicle to within 282 feet, at 95 parcent of the sample points under a wide range of urban and environmental conditions. Fixed route tests involved operation as a transit bus. An odometer and 15 signposts provided the vehicle's location to within 105 feet at 95% of the sample points along a 13 mile route. The time of passage of designated bus schedule "timepoint" was automatically determined to within 11 seconds 95 percent of the time. This report contains two volumes. Volume II is an appendix.			
17. Key Words Automatic Vehicle Locatio Automatic Vehicle Monitol Electronic Signpost, Direct Proximity Random Route AVM, Fixe Multi-User AVM	stem (AVL), System (AVM) ate AVM,	ment nt is available to t THE NATIONAL TECH tion service, spring 22161	U.S. Public ICAL IELD.
19. Security Classif. (of this report) Unclassified	20. Security Clossif. (of this poge) Unclassified	$\begin{aligned} & \text { 21. No. af Pages } \\ & 336 \end{aligned}$	22. Price

!

r

PREFACE

During the winter of 1976-77, four different techniques for automatically locating land vehicles were tested in both the low- and high-rise regions in Philadelphia, Pa. The tests were carried out by four different companies under separate contracts to the United States Department of Transportation, Transportation Systems Center. The tests were designed to evaluate the techniques for their applicability as location subsystems for automatic vehicle monitoring systems. This document represents one of the contractors' final report. A summary report on all systems tested is available as Report No. UMTA-MA-06-0041-77-2. This report describes the Phase I program which involved the installation and test of the Hoffman AVM System. Dr. George W. Gruver, the program director for Hoffman, prepared the report and personally conducted most of the testing. Ron Waits developed all of the program software and processed the test data. Jerry McKinney was in charge of the location and test equipment deployment and also performed most of the driving during formal tests.

We want to thank all of the technical, program, and contract personnel at the DOT. In particular the personnel in the offices of Messrs Blood, Symes, and Nelson were very helpful and enthusiastic. A special thanks is given to Bernie Kliem, our technical monitor and Joe Herlihy, who helped monitor our test. Also, Mr. Jack Ludwick of the Mitre Corporation helped make our software task much easier. We would also like to thank the many people in the City of Philadelphia who assisted us in deploying and housing our equipment.
METRIC CONVERSION FACTORS

Symol	Apprarimate Convarsions to Mattic Masaras			
	What yen Xemem	Moruptry by	Te Fiod	symbol
		LENGTH		
in	incros	2.5	conimaters	cm
H	1001	30	Contimetors	cm
-	mios:	0.9 1.6	cretars	$\stackrel{m}{m}$
	AREA			
mi^{2}	ravero inctor	6.5	sauste contimater	cm^{2}
n^{2}	Sumer loet	0.09	Rouser moiers	m_{2}
	nourerever	0.8	zovereremers.	m^{2}
	square miles ecre	2.6 0.4		mm^{2}
	MASS (werght)			
1010	ances	28	grems	$\stackrel{ }{ }$
	pands	$\begin{aligned} & 0.45 \\ & 0.9 \end{aligned}$	cilogems	1
	12000161			
	volume			
120	Loumocons	3	millictor	m1
roep	Loblersoons.	15	millidicors milliliters	mi $m 1$
-	cuer	0.24	${ }_{116015}$	1
a	oints	0.47	liters	1
91	avers	0.95	${ }^{\text {liners }}$	1
an	Pallon,	3.8	${ }^{\text {liters }}$	${ }^{1}$
$\stackrel{\text { n }}{ }{ }^{\text {J }}$		0.03 0.8	cubic moles,	${ }^{m}{ }^{3}$
	IEMPERATURE (OXOCT)			
\cdot	Fownenteit tempertiture	5/3 lafter ebercting 01	Colsur conocratuc	${ }^{\circ} \mathrm{C}$

TABLE OF CONTENTS
Section Page
1 INTRODUCTION 1-1
INTRODUCTION -2
2
2 EXECUTIVE SUMMARY EXECUTIVE SUMMARY 2-1 2-1
2.1
2.1 HI^{3} AVM Technique HI^{3} AVM Technique 2-2 2-2
2.2 Phase I Test Program 2-4
2.3 Test Results 2-6
3 3-13.13.1.13.1.23.1 .33.23.2 .1
3.2 .23.2 .33.3
3.444.14.24.2 .14.2 .24.2 .34.2 .44.2 .54.355.15.25.35.4
Random Route Test Configuration 3-1
Test Vehicle 3-1
Location Subsystem Equipment 3-1
Data Acquisition System (DAS) 3-12
Random Route Location Subsystem Deployment 3-21
Signpost Deployment 3-21
Random Route Area Mapping 3-29
Location Subsystem Calibration 3-30
Random Route Data Acquisition 3-33
Random Route Test Data 3-39
RANDOM ROUTE DATA PROCESSING 4-1
Sample Size 4-1
Random Route Data Processing 4-9
Vehicle Actual Location at Checkpoints 4-9
Vehicle Computed (Location Subsystem) Location 4-9
Vehicle Actual Location at Pseudo Checkpoints 4-12
Vehicle Computed (AVM System) Location at 4-17
Pseudo Checkpoints
AVM System Simulation 4-17
Random Route Data Processing Software 4-17
RANDOM ROUTE TEST RESULTS 5-1
Location Subsystem Errors 5-1
Random Route AVM System Errors 5-17
Average Error Over One-Tenth Mile Segments 5-22
Random Route Data Processing Anomalies 5-45

TABLE OF CONTENTS (CONT'D)

Section		Page
6	FIXED ROUTE TESTS	6-1
6.1	Fixed Route Test Configuration	6-1
6.1 .1	Test Vehicle	6-1
6.1 .2	Location Subsystem Equipment	6-1
6.1 .3	DAS Equipment	6-4
6.2	Fixed Route Location Subsystem Deployment	6-8
6.2 .1	Signpost Deployment	6-8
6.2 .2	Fixed Route Mapping	6-8
6.2 .3	Timepoint Location and Marking	6-16
6.2 .4	Location Subsystem Calibration	6-16
6.3	Fixed Route Data Acquisition	6-16
6.4	Fixed Route Test Data	6-23
7	FLXED ROUTE DA TA PROCESSING	7-1
7.1	Sample Size	7-1
7.2	Fixed Route Data Processing	7-1
7.2 .1	Fixed Route Location Errors	7-1
7.2 .2	AVM System Simulation	7-7
7.2 .3	Timepoint Performance Computation	7-7
7.2 .4	Average Error Over One-Tenth Mile Segments	7-7
7.3	Fixed Route Data Processing Software	7-7
8	FLXED ROUTE TEST RESULTS	8-1
8.1	Location Subsystem Test Results	8-1
8.2	AVM System Test Results	8-42
8.2 .1	AVM System Vehicle Location	8-42
8.2 .2	AVM System Timepoint Performance Results	8-45
8.3	Fixed Route Data Processing Anomalies and Corrections	8-93
8.3.1	Location Subsystem Data Processing	8-93
8.3.2	AVM System Data Processing	8-104
9	SPECIAL CASE TESTS	9-1
9.1	Special Urban Conditions	9-1
9.1.1	Large Metallic Structures	9-2
9.1.2	Freeway Overpasses and Tunnels	9-2
9.1.3	Buildings Extending Over Roadways	9-7
9.1 .4	Narrow Streets and Deep "High Rise" Canyons	9-7
9.1 .5	Wide Boulevards, Open Areas, Parks, and Malls	9-8
9.1.6	Trolley and Other Overhead Wires	9-8
9.1.7	Signpost Mounting Conditions	9-11

TABLE OF CONTENTS (CONT ${ }^{\prime}$ D)
Section Page
9.2 9-16
Special Environmental Conditions9.2.19.2 .29.2 .39.2.49.2 .59.39.3.19.3.29.3.39.3.4
10 SPECIAL PHASE II CONSIDERATIONS 10-110.110.1 .1
10.1.210.1 .310.2
10.2 .1
9-18
Power Substation EMI
9-18
RF Survey
9-18
EMI from Trolleys
9-22
Temperature Environment
9-24
Weather, Traffic, and Time of Day
9-28
Special Vehicle Related Conditions
9-28
Vehicle Velocity
9-30
Vehicle Making U-Turns
9-33
Parking Lots and Garages
9-33
Vehicle Unit Power Requirements
Relationship between Phase I and Phase II Equipment 10-1
Signposts 10-1
Vehicle Units 10-1
Auxiliary Equipment 10-2
Desirability of Eliminating Odometer 10-2
Method of Computing Location and Timepoint 10-3
Performance without Using an Odometer
Cost Benefit of Eliminating Odometers 10-5
10.2 .2
FCC Requirements and Status of HI^{3} Equipment 10-6
10.3 Federal, State, and Local Requirements for Phase II 10-6
10.510.6
10.7
Nationwide Multi-User AVM 10-7
HI^{3} Random Route Location Subsystem Supplementary Analysis 10-9
Special Phase II Considerations 10-11

Number		Page
2-1	HI_{3}^{3} Multi-User AVM Basic Principle of Operation	2-3
2-2	HI ${ }^{3}$ Multi-User AVM Basic Approach	2-5
2-3	Demonstrated AVM System Performance	2-9
3-1	HI^{3} Test Vehicle Equipment Layout	3-2
3-2	HI^{3} Signpost Block Diagram	3-3
3-3	HI^{3} Signpost Electrical Specifications	3-4
3-4	HI^{3} Signpost Mechanical Specifications	3-5
3-5	HI^{3} Test L.S. Vehicle Unit	3-7
3-6	HI^{3} Vehicle Unit Block Diagram	3-8
3-7	HI_{3}^{3} Vehicle Unit Information Flow Diagram	3-10
3-8	HI^{3} Vehicle Equipment Interface Diagram	3-13
3-9	Basic DAS Record Format	3-15
3-10	Fifth Wheel Configuration	3-16
3-11	HI_{3}^{3} Interface Controller Unit (ICU)	3-18
3-12	HI^{3} Random Route Test Area and Signpost Layout	3-22
3-13	Random Route Signposts	3-23
3-14	Overlap Region Created by Adjacent "Chaining" Signposts	3-26
3-15	$\mathrm{HI}^{3} \mathrm{LS}$ Location Regions	3-28
3-16	Map of HI^{3} Location Regions	3-31
3-17	HI_{3}^{3} Data Handling Logistics	3-34
3-18	HI^{3} Test Data Log	3-35
3-19	HI^{3} Random Route Test Procedures	3-36
3-20	Primary Random Route and Checkpoints	3-37
3-21	Secondary Random Route and Checkpoints	3-40
4-1	Random Route Data Processing	4-2
4-2	M β vs. Sample Size	4-8
4-3	Method of Computing (LS) Vehicle Location in Random Route Tests	4-11
4-4	Fixed Route Location Error Algorithm	4-15
4-5	Use of TA and CP Events with 5th Wheel to Determine Pseudo Checkpoint Location	4-16
4-6	Use of Guard Band to Poll Specific Vehicles in Which Communication Error Detected	4-18
4-7	General Method for Simulating Communication Errors	4-19
4-8	Flow Chart of CPMAIN	4-21
4-9	Flow Chart of RRSL	4-22
4-10	Random Route Data Processing Software	4-24
5-1	Random Route Location Subsystem Errors, Runs 1-5	5-9
5-2	Random Route Location Subsystem Errors, Runs 1-5	5-10
5-3	Random Route Location Subsystem Errors, Runs 6-10	5-19
5-4	Random Route Location Subsystem Errors, Runs 6-10	5-20
5-5	Random Route Location Subsystem Errors, Runs 1-10	5-21
5-6	Random Route AVM System Level Error, Run \#1	5-28

LIST OF ILLUSTRA TIONS (CONT'D)

5-7	Random Route AVM System Level Error, Run \#2	5-29
5-8	Random Route AVM System Level Error, Run \#3	5-30
5-9	Random Route AVM System Level Error, Run \#4	5-31
5-10	Random Route AVM System Level Error, Run \#5	5-32
5-11	Random Route AVM System Level Error, Run \#6	5-33
5-12	Random Route AVM System Level Error, Run \#7	5-34
5-13	Random Route AVM System Level Error, Run \#8	5-35
5-14	Random Route AVM System Level Error, Run \#9	5-36
5-15	Random Route AVM System Level Error, Run \#10	5-37
5-16	Random Route AVM System Level Error, Runs \#1-10	5-38
6-1	Basic Fixed Route Vehicle Logic	6-3
6-2	Typical Quick Look Verification Display	6-7
6-3	Timepoint Performance Display	6-9
6-4	HI^{3} Fixed Route and Fixed Route Signposts	6-10
6-5	Fixed Route Signposts	6-11
6-6	HI^{3} Timepoint Parameters	6-14
6-7	HI^{3} Fixed Route Test Data Log	6-18
6-8	Fixed Route Event Markers	6-19
6-9	Fixed Route Test Procedure	6-22
7-1	Fixed Route Data Processing Software	7-2
7-2	Simplified Flow Chart of FRLS Location Error Algorithm	7-5
7-3	Simplified Flow Chart of Timepoint Performance Algorithm	7-8
8-1	Fixed Route Location Subsystem Errors, All Runs	8-8
8-2	Fixed Route Location Subsystem Errors, Run 11	8-9
8-3	Fixed Route Location Subsystem Errors, Run 12	8-10
8-4	Fixed Route Location Subsystem Errors, Run 13	8-11
8-5	Fixed Route Location Subsystem Errors, Run 14	8-12
8-6	Fixed Route Location Subsystem Errors, Run 15	8-13
8-7	Fixed Route Location Subsystem Errors, Run 16	8-14
8-8	Fixed Route Location Subsystem Errors, Run 17	8-15
8-9	Fixed Route Location Subsystem Errors, Run 18	8-16
8-10	Fixed Route Location Subsystem Errors, Run 20	8-17
8-11	Fixed Route Location Subsystem Errors, Run 21	8-18
8-12	Fixed Route Location Subsystem Errors, Run 22	8-19
8-13	Fixed Route Location Subsystem Errors, Run 23	8-20
8-14	Fixed Route Location Subsystem Errors, Run 24	8-21
8-15	Fixed Route Location Subsystem Errors, Run 25	8-22
8-16	Fixed Route Location Subsystem Errors, Run 26	8-23
8-17	Fixed Route Location Subsystem Errors, Run 27	8-24
8-18	Fixed Route Location Subsystem Errors, Run 28	8-25
8-19	Fixed Route Location Subsystem Errors, Run 29	8-26
8-20	Fixed Route Location Subsystem Errors, Run 30	8-27
8-21	Fixed Route Location Subsystem Errors, Run 31	8-28
8-22	Fixed Route Location Subsystem Errors, Run 32	8-29
8-23	Fixed Route Location Subsystem Errors, Run 34	8-30

LIST OF ILLUSTRATIONS (CONT'D)

Number		Page
8-24	Fixed Route Location Subsystem Errors, Run 35	8-31
8-25	Fixed Route Location Subsystem Errors, Run 36	8-32
8-26	Fixed Route Location Subsystem Errors, Run 37	8-33
8-27	Fixed Route Location Subsystem Errors, Run 38	8-34
8-28	Fixed Raute Location Subsystem Errors, Run 39	8-35
8-29	Fixed Route Location Subsystem Errors, Run 40	8-36
8-30	Fixed Route Location Subsystem Errors, Run 41	8-37
8-31	Fixed Route Location Subsystem Errors, Run 42	8-38
8-32	Fixed Route Location Subsystem Ermors, Run 43	8-39
8-33	Fixed Route AVM System Errors, All Runs	8-52
8-34	Fixed Route AVM System Errors, Run 11	8-53
8-35	Fixed Route AVM System Errors, Run 12	8-54
8-36	Fixed Route AVM System Errors, Run 13	8-55
8-37	Fixed Route AVM System Errors, Run 14	8-56
8-38	Fixed Route AVM System Errors, Run 15	8-57
8-39	Fixed Route AVM System Errors, Run 16	8-58
8-40	Fixed Route AVM System Errors, Run 17	8-59
8-41	Fixed Route AVM System Errors, Run 18	8-60
8-42	Fixed Route AVM System Errors, Run 21	8-61
8-43	Fixed Route AVM System Errors, Run 22	8-62
8-44	Fixed Route AVM System Errors, Rum 23	8-63
8-45	Fixed Route AVM System Errors, Run 24	8-64
8-46	Fixed Route AVM System Errors, Run 25	8-65
8-47	Fixed Route AVM System Errors, Run 26	8-66
8-48	Fixed Route AVM System Errors, Run 27	8-67
8-49	Fixed Route AVM System Errors, Run 28	8-68
8-50	Fixed Route AVM System Errors, Run 29	8-69
8-51	Fixed Route AVM System Errors, Run 30	8-70
8-52	Fixed Route AVM System Errors, Run 31	8-71
8-53	Fixed Route AVM System Errors, Run 34	8-72
8-54	Fixed Route AVM System Errors, Run 35	8-73
8-55	Fixed Route AVM System Errors, Run 36	8-74
8-56	Fixed Route AVM Sys tem Errors, Run 37	8-75
8-57	Fixed Route AVM System Errors, Run 38	8-76
8-58	Fixed Route AVM System Errors, Rum 39	8-77
8-59	Fixed Route AVM System Errors, Run 40	8-78
8-60	Fixed Route AVM System Errors, Run 41	8-79
8-61	Fixed Route AVM System Errors, Run 42	8-80
8-62	Fixed Route AVM System Errors, Run 43	8-81
8-63	AVM System Errors Plotted vs. Route Distance, Run 28	8-82
8-64	Fixed Route AVM System Timepoint Performance	8-89
8-65	Timepoint Error Frequency Density	8-90
8-66	Fixed Route AVM System Errors, Run 25	8-92
8-67	Partial Listing Showing Bad Records, Run 34	8-94
8-68	Partial Listing Showing Bad Records, Runs 24, 40, and 43	8-95

LIST OF ILLUSTRATIONS (CONT'D)

Number		Page
8-69	Recording Errors, Run 25	8-102
9-1	Filbert Street Tunnel Tests	9-4
9-2	Signpost Installation in 8th Street Tumel	9-5
9-3	8th Street Tunnel Tests	9-6
9-4	Narrow Roadway Tests	9-9
9-5	Wide Boulevard Tests	9-10
9-6	A Variety of Signpost Installations	9-12
9-7	Signpost Height Test Results	9-13
9-8	Signpost Region 1 Contour, Narrow Streets	9-14
9-9	Signpost Region 1 Contour, Wide Streets	9-15
9-10	Power Substation Test Configuration	9-19
9-11	Inclement Weather Test Conditions	9-27
9-12	Vehicle Velocity Test Configuration	9-29
9-13	Vehicle U-Turn Tests	9-32
9-14	Parking Garage Test Configuration	9-34
10-1	Use of HI^{3} Signposts to Provide Fixed Route Vehicle Location and Time Point Performance	10-4
10-2	HH3 Random Route Location Subsystem Error Distribution	10-10
10-3	HI^{3} Random Route Location Subsystem Region Width Data Secondary Runs 6-10	10-12

Namber Page
2-1 3-1
Summary Results of Phase I Testing 2-7
Primary Checkpoints 3-383-23-34-14-24-35-15-2
Secondary Checkpoints 3-41
Listing of Recorded Random Route Test Data 3-42
Type I and Type II Errors 4-6
Random Route Checkpoint File (Bases for CPTABL) 4-10
Random Route Signpost File (SPTABL) 4-13
Location Subsystem Errors at Primary Checkpoints 5-2
Random Route Error Statistics, Run 1 5-4
Random Route Error Statistics, Ran 2 5-5
Random Route Error Statistics, Ran 3 5-6
Random Route Error Statistics, Run 4 5-7
Random Route Error Statistics, Run 5 5-8
Location Subsystem Errors at Secondary Checkpoints 5-11
Random Route Error Statistics, Rain 6 5-12
Random Route Error Statistics, Run 7 5-13
Random Route Error Statistics, Ran 8 5-14
Random Route Error Statistics, Ran 9 5-15
Random Route Error Statistics, Run 10 5-16
Tabular Listing of Location Subsystem Errors, Run \#10 5-18
RRSL Output Listing for Random Route Run \#3 5-23
Error Statistics for Run \#3 5-27
Summary Random Route AVM System Error Statistics, 5-39
No Communication Errors
Impact of 5 Percent Communication Errors on AVM 5-40
System Accuracy
Average Error Over One-Tenth Mile Segments of 5-41 Random Route, Runs 1-5
Average Error Over One-Tenth Mile Segments of 5-43
Random Route, Runs 6-10
Random Route Data Processing Anomalies 5-46
Experimental Determination of $R(i)$ 6-5
Fixed Route Timepoints and $R(i)$ Reset Points 6-13
Experimental Determination of ΔT 6-15
HI^{3} Timepoints 6-17
Fixed Route Manual Data Entry Anomalies 6-21
Adjustments Required to DAS During Fixed Route Tests 6-24
Typical Fixed Route Data Listing 6-25
Odometer and 5th Wheel Test Data 6-27
Typical Odometer/5th Wheel Calibration Data 6-28
Fixed Route Checkpoint Stateplane Coordinates 7-3
Fixed Route STSEG File 7-6
Fixed Route Location Subsystem Test Results 8-2
Fixed Route Data Processing Anomalies (FRLS) 8-3
Fixed Route Run \#27 Checkpoint Errors 8-5

8-4

8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-25
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10

Average Errors Over One-Tenth Mile Segments of $\quad 8-40$ Fixed Route, Runs 13 and 18
Summary Results of One-Tenth Mile Segments, Fixed Route 8-41
Fixed Route AVM System Location Accuracy Results 8-43
Fixed Route Data Processing Anomalies (FRSYS) 8-44
AVM System Test Results, Run 28 8-46
Timepoint Performance Output Data, Run 27 8-83
Timepoint Performance Errors (Seconds) 8-84
Timepoint Anomalies 8-87
Composite Timepoint Performance Error Statistics 8-88
Average Speed of Travel Past Timepoints 8-91
Location Subsystem Error Statistics, Run 14 8-97
Location Subsystem Error Statistics, Run 24 8-98
Location Subsystem Error Statistics, Run 34a 8-99
Location Subsystem Error Statistics, Run 40a 8-100
Location Subsystem Error Statistics, Run 43a 8-101
Corrected Checkpoint Errors, Run 25 8-103
LS Errors for Checkpoints 37-40 on Runs 39-43 8-104
Fixed Route AVM System Errors, Run 24 8-105
Fixed Route AVM System Errors, Run 34 8-106
Fixed Route AVM System Errors, Run 40 8-107
Fixed Route AVM System Errors, Run 43 8-108
Manually Corrected AVM System Error Results, Run 25 8-109
Random Route Location Errors near Large Metallic 9-3
Structures
HI^{3} Location Subsystem Performance on Nar row Streets 9-7
in High-Rise AreaSignpost Level 1 Contour Data9-17
Test Data Taken Near Power Substation 9-20
Philadelphia RF Survey 12-15-76 9-21
Hoffman Signpost Parameters Vs. Temperature 9-23
HI^{3} Signpost Receiver Temperature Characteristics 9-25
HI^{3} Test Data (Weather, Temperature, and Time) 9-26
Vehicle Velocity Tests 9-31
U-Turn Test Data 9-34
-

1. INTRODUCTION

The application of Automatic Vehicle Monitoring (AVM) to enhance the management of mobile resources has, in recent years, become a subject of continued interest to all types of fleet vehicle operations. Transit, police, cargo, and mining operations have been involved in the development of AVM systems and are currently gathering data pertinent to quantifying the cost/benefits of AVM in a variety of commercial and service operations.

The United States Department of Transportation (DOT) has been interested in AVM for nearly a decade; this interest being directed, in particular, to improving transit and para-transit management activities. Under the sponsorship of the Urban Mass Transportation Authority (UMTA), the DOT is currently attempting to quantify the improvements which AVM can provide to transit, para-transit, and other types of fleet operations. This report contains the interim results obtained by Hoffman Information Identification, Inc. $\left(\mathrm{HI}^{3}\right)$ of Fort Worth, Texas, as a contractor to the Transportation Systems Center of the DOT on the UMTA Multi-User AVM Contract DOT-TSC-1237. This report covers the activities of Phase I which involved the installation and test of a HI^{3} AVM System in the City of Philadelphia during the winter of 1976-1977. These tests represent the most extensive tests ever performed on an AVM system which can locate vehicles which operate either as fixed-route vehicles (transit) or as random-route vehicles (police, para-transit, taxi, etc.).

This volume contains a description of all test configurations, test procedures, location algorithms, data processing, and test results. An Appendix, Volume II, contains the test data and detailed data processing results.
\square

2. EXECUTIVE SUMMARY

In September 1976, the Transportation Systems Center of the U.S. Department of Transportation entered into contracts with four companies for the design, development and deployment of a multi-user Automatic Vehicle Monitoring (AVM) System which can be deployed in any city. Hoffman Information Identification Incorporated (HI^{3}) of Fort Worth, Texas, a wholly owned subsidiary of Hoffman Electronics Corporation and its subcontractor, IBM, received one of these contracts. The program, sponsored by the Urban Mass Transportation Administration (UMTA) is referred to as Multi-User AVM since it is intended to provide AVM benefits to a multiplicity of users, including those fleets of vehicles which generally travel on fixed routes (transit) and those which may travel random routes (taxis, para-transit, dial-a-ride, police, pick-up and delivery, etc.).

The objectives of the Multi-User AVM program were to design, implement, and operate a multi-user AVM system in Los Angeles for the purpose of making a quantitative evaluation of AVM effectiveness, first for transit and para-transit, and second for other AVM users. From the outset, the program was divided into two phases. Phase I, which Hoffman completed on 28 February 1977, involved the demonstration and test of each contractor's vehicle location subsystem in Philadelphia, Pa. Phase II, which will be performed by one of the four contractors, will include the design, development, implementation, test, and operational support of a modern transit management system using a reliable, economical AVM system. The Phase Π program will be conducted in conjunction with the Southern California Rapid Transit District (SCRTD) and other users, to be specified, in the Los Angeles area. The primary objective set for Phase I was that of quantifying through formal controlled tests, the ability of each contractor's AVM system to meet specified vehicle location and bus time-of-passage requirements.

The results presented in this report show that the HI^{3} AVM system proposed for Phase $I I$ can provide a transit dispatcher with the location of all buses to within an accuracy of 10.5 feet 95 percent of the time. The average error in bus lozation was less than 50 feet for all Phase I tests. As an aid to providing improved service through adherence to schedule, the HI^{3} AVM system can provide the time-of-passage of buses to within 11 seconds for 95 percent of the occurrences in which the bus fleet passes predesignated "timepoints". The average time-of-passage error for Phase I was 3.9 seconds. The same HI^{3} AVM system can provide a dispatcher with the location of each unit of a fleet of random route vehicles, e.g., police, taxi, etc., to within 282 feet 95 percent of the time.

The overall goal of HI^{3} during Phase I was to demonstrate the reliable and accurate performance of the HI^{3} nationwide AVM system under conditions to be expected in the operation of a multi-user AVM system in any city in the United States. During previous UMTA AVM development programs, beginning
in 1970 with the "Monitor CTA" and including tests of several different location techniques in Philadelphia in 1972, UMTA and TSC developed a high degree of understanding of the requirements for a multi-user AVM system. In establishing the Statement of Work for Phase I, these requirements were translated into an explicit set of vehicle location test requirements. In response to these requirements, HI^{3} prepared a Location Subsystem Test Requirements Plan which formed the basis for all Phase I tests, data processing and analyses.

Phase I tests were divided into two primary categories: (1) random route tests, and (2) fixed route tests. This report is organized in the same order, which was the order in which the HI^{3} tests were conducted. A third category involved special case tests. These tests were conducted at various times throughout Phase I in Fort Worth, Texas, and in Philadelphia, Pa. The random route test equipment, data acquisition techniques and test data are described in Section 3. Random route data processing is described in Section 4. The results of the data processing and analysis are contained in Section 5. Similar information appropriate to fixed route tests, data processing and results are presented in Sections 6, 7, and 8 respectively. The special case tests are described and results are presented in Section 9. Section 10 has been dedicated to the presentation of a number of items which pertain directly to Phase II. These items include (1) the relationship between Phase I and Phase II equipment, (2) a proposed method for eliminating the use of an odometer on fixed route vehicles, (3) FCC requirements and the status of HT^{3} equipment, (4) Federal, State, and loeal requirements for Phase Π, (5) a discussion of a hybrid signpost-Loran system for "over-the-road" vehicles, and (6) special considerations pertinent to Phase II.

$2.1 \mathrm{HI}^{3}$ AVM TECHNIQUE

HI^{3} proposed to use a direct proximity signpost AVM system during Phase II and all Phase I tests were conducted through the use of a Phase II signpost system. As illustrated in Figure 2-1, the HI^{3} AVM system receives basic location information, in the vehicle, as a result of the vehicle equipment receiving digitally coded RF transmissions from electronic "signposts." Each signpost transmits a unique $16-\mathrm{BIT}$ code which represents an address (or an X, Y coordinate) in the city analogous to visual street sign identification. The vehicle's proximity to one or more of the signposts results in a simple location region code being stored in the vehicle. This location region code is transmitted to the base station over a mobile radio under base station computer control. At the base station, a simple table look-up by the computer determines a unique street address or X, Y coordinate pair as the vehicle's current location.
HI^{3} signposts are powered by Lithium batteries and transmit at a frequency of 49.860 MHz . As a result of the extremely low power output requirements, they may be operated without a license as low power devices under Part 15 of the FCC rules. The use of lithium batteries provides a 7-10 year operating lifetime without battery replacement, and this is achieved over the temperature environment from -55 to 175 degrees F.

When installed in a city, all users (transit, para-transit, taxi, police, pick-up and delivery, etc.) simultaneously share the use of the HI^{3} signpost system. This is illustrated in Figure 2-2. Although a number of companies have proposed the use of signposts, a unique feature of the HI^{3} approach is the use of overlapping signposts to create additional location regions, thereby reducing the number of signposts required to achieve a specified location accuracy within a given area.

The overlap technique has been previously tested by HI^{3} in Los Angeles as part of the Cargo Security System and an overlapping signpost AVM system developed by HI^{3} is currently operational in the Huntington Beach, California Police Department. Although proven during those two programs, the UMTA Phase I test program required the most comprehensive demonstration of the HI^{3} overlap technique to date. The results obtained prove conclusively that the HI^{3} AVM system proposed for Phase II can meet all of the vehicle location subsystem and system level specificiations set forth in the UMTA Multi-User AVM Specification. In addition, the HI^{3} AVM system is a nation-wide system and can be operated in any city (where 99.99% of users operate) and can be interfaced with wide area type systems, e.g., Loran for special "over the road" applications. The nationwide feature is a result of the use of 49.86 MHz which may be used throughout the United States.

2.2 PHASE I TEST PROGRAM

The Phase I test program involved the installation of a HI^{3} AVM location subsystem in Philadelphia to provide random-route coverage of an area and fixed-route coverage of a simulated bus route. The area and the route were selected by TSC. The location subsystem was to provide a basic location accuracy of at least 300 feet at 95 percent and 450 feet at 99.5 percent of all locations in the random route coverage area and along the specified fixed route. In order to establish the performance of the HI^{3} location subsystem, a test vehicle, with an AVM vehicle unit and a recording system installed was repeatedly driven over routes selected by TSC while recording on cassettes every half-second, the output of the vehicle unit location register. During each test run, manual event markers were used to mark (record on cassette) the passage of physical landmarks called "checkpoints". Checkpoints were designated by TSC after installation of the location subsystem was complete. The X, Y coordinates of these checkpoints become the reference against which the performance of the AVM system was measured. During off-line data processing, the radial error between the X, Y coordinates of the checkpoint and the X, Y coordinates as computed through use of the AVM technology was computed. For example, during each of 10 random route test runs, each of which was over 11 miles in length, the passage of 62-63 checkpoints was recorded. All information necessary to compute the X, Y coordinates of the vehicle, as determined by the AVM system, were also recorded on cassette. At the end of 10 such runs, the cassettes were processed to determine the location error at each point. The location algorithm utilized was identical to that proposed for use in Phase II.
DIRECT RF PROXIMITY SIGNPOSTS PROVIDE ALL USER VEHICLES WITH LOCA TION
ADDRESSES AND ARE BASIC SOURCE OF BUS SCHEDULE INFORMATION.

FIG. 2-2 HI^{3} MULTI-USER AVM BASIC APPROACH

Fixed route tests involved the same activities as random route tests, however, an odometer was used to determine the vehicle's location along the fixed route after being automatically reset at signposts spaced approximately one mile apart along the route. In addition to the marking of TSC checkpoints, manual entries were made to document passage of the vehicle by "timepoints" which were designated by TSC to represent typical transit route timepoints. Also, the opening and closing of the door was simulated at approximately onehalf of the 15 timepoints on each of the fixed route test runs. During off-line processing, the location errors and the errors between the actual time of passage by each timepoint and the time of passage estimated by use of the AVM system were computed. The AVM system was to determine the time of passage of the vehicle at timepoints to ± 15 seconds for 95 percent and ± 60 seconds for 99.5 percent of all such occurrences.

A total of 10 random route test runs were performed. This resulted in 622 checkpoint samples at which location errors were computed. When these same data were also processed through an AVM system simulation a total of 2235 samples were obtained corresponding to 1 sample every 20 seconds during the 10 runs. This simulation included the injection of communication errors into 5 percent of the samples. The HI^{3} Phase Π technique for detection and correction of these errors was simulated. Two different random routes were traveled involving passage through tunnels, along narrow streets through high-rise "canyons" and along wide boulevards. All tests were conducted under normal traffic conditions in downtown Philadelphia. A TSC Monitor was in the test vehicle during all tests.

A total of 33 fixed route test runs were performed over a 13 mile route. Each test provided data at 76 checkpoints and 15 timepoints. When processed through the AVM system simulation, a total of 7459 pseudo checkpoint samples were obtained.

Formal demonstrations of the HI^{3} AVM system were conducted in Philadelphia on 15 and 28 December 1976 for UMTA personnel and their guests. These demonstrations involved operation of the HI^{3} test vehicle in the random route area with 6-8 observers on board. All such demonstrations involved operation as a random-route vehicle with the vehicle location being provided in real-time on the on-board CRT. All demonstrations were 100 percent successful.

2.3 TEST RESULTS

All random route and fixed route data taken during the Phase I tests were processed by HI^{3} to determine the AVM system performance. Data processing was performed off-line using an exact simulation of the proposed Phase II location subsystem and AVM communication system. These data show conclusively that the HI^{3} AVM system can meet or exceed all performance criteria set for Phase Π. Phase I results are summarized in Table 2-1. Detailed discussions of these results are contained in Sections 5 and 8.

TABLE 2-1 SUMMARY RESULTS OF PHASE I TESTING

LOCATION SUBSYSTEM LOCATION ACCURACY: Random Route: 622 samples 95\% of samples less than 99.5% of samples less than Average error, all samples Maximum Average Error Over One-Tenth Mile Segment Fixed Route: 2313 samples 95% of all samples less than 99.5% of all samples less than Average error, all samples Maximum Average Error Over One-Tenth Mile Segment:	Specification (feet) 300 450 -- 450 300 450 $-\infty$ 450	HI^{3} Results (feet) 242 461 91 315 107 156 50 256
AVM SYSTEM LOCATION ACCURACY: Random Route: 2235 samples 95% of samples less than 99.5% of samples less than Average error, all samples Fixed Route: 7459 samples 95% of samples less than 99.5% of samples less than Average error, all samples	$\begin{aligned} & 300 \\ & 450 \\ & -- \\ & \\ & \\ & 300 \\ & 450 \end{aligned}$	$\begin{array}{r} 282 \\ 464 \\ 114 \\ \\ \\ 105 \\ 188 \\ 48 \end{array}$
AVM TIMEPOINT PERFORMANCE: 451 samples 95% of samples less than 99.5% of samples less than Average error	Specification (seconds) 15 60	HI^{3} Results (seconds) $\begin{gathered} 11 \\ 24 \\ 3.9 \end{gathered}$

Figure 2-3 contains cumulative error distributions of random route and fixed route test data results. When translated into an operational system for random route vehicles, these data indicate that under similar urban conditions, a police dispatcher would know, with a 95 percent confidence level, the location of each and every AVM-equipped vehicle to within 282 feet. Similarly, the fixed route data indicates that a bus dispatcher would have at his fingertips the location and schedule performance of every bus on all routes to within 105 feet and to within 11 seconds at a 95 percent confidence level. The application of this information to providing increased service, improved response time, better schedule adherence, etc., forms the basis for the entire Phase II program.

FIG. 2-3 DEMONSTRATED AVM SYSTEM PERFORMANCE

3. RANDOM ROUTE TESTS

3.1 RANDOM ROUTE TEST CONFIGURATION

The test system configuration used in the Phase I random route tests consisted of (1) the HI^{3} test Location Subsystem (LS) and (2) a Data Acquisition System (DAS). The HI^{3} test LS tested during Phase I random route tests is functionally identical to that proposed for Phase II.

3.1.1 TestVehicle

The Phase I test vehicle was a 1976 Winnebago equipped with a 4 -KVA, 110 -volt, auxiliary power unit. A special rack was provided for the DAS equipment. Figure 3-1 is the layout of the test vehicle which was so designed that the DAS operator was seated facing forward at the table on the right-hand side. The CRT/keyboard was located on the table. The DAS operator and the TSC Monitor could sit side-by-side during test runs.

3.1.2 Location Subsystem Equipment

In the random route configuration, the LS consists of (1) signposts and (2) a vehicle unit.
3.1.2.1 Signposts. HI^{3} signposts are small, lithium-battery-powered transmitters which transmit a digitally coded message at 49 MHz at an interval of approximately $2 / 3$ of a second. Signpost electrical specifications are presented in Figures $3-2$ and 3-3. Only 20 KHz of spectrum are utilized in order to comply with the most recent FCC rule (Docket No. 20119). Signpost mechanical specifications are shown in Figure 3-4. Test LS signposts are production HI ${ }^{3}$ signposts (Model SP-03) and are identical to those proposed for installation in Phase Π.

During the test program, the signposts utilized in Philadelphia were operated at 49.860 MHz . However, a number of special tests were conducted in Fort Worth by using signposts which were operated at 27.095 MHz with a corresponding vehicle unit receiver. HI^{3} currently has a signpost system operating at Huntington Beach, California, and is in the second phase of a Cargo Security System, under LEAA sponsorship, in Los Angeles; this system also contains $27.095-\mathrm{MHz}$ signposts. These units are operated as low power devices under Part 15 of the FCC rules in effect in November 1975. HI^{3} has applied for type certification of the HI^{3} signpost by the FCC in accordance with FCC Docket 20119 which was released 12 February 1976. In correspondence with Mr. Raymond Spence, FCC Chief Engineer, we have received assurance that there is no proposal pending before the FCC which would affect the operation of nonvoice devices such as the HI^{3} signpost in the $27-\mathrm{MHz}$ band chosen for operation.

FIG. 3-1 HI ${ }^{3}$ TEST VEHICLE EQUIPMENT LAYOUT

FIG. 3-2 HI ${ }^{3}$ SIGNPOST BLOCK DIAGRAM

Communication Method -- Coherent FSK with BIT - BIT Technique
Message Length -- (16 Information Bits +16 Bit Complements +2 Error Bits)
$=34 \mathrm{Bits}$
Data Rate -- 4.5K BITS/Sec.
Transmitter Timing --

Bandwidth -- 20 KHz
Duty Cycle -- . 015
Battery Cepacity -- 10 AH
Average Current Drain $=.015 \times 5.0 \mathrm{ma}+50 \mathrm{ua}=125 \mathrm{ua}$
Antenna Gain -- - 14 dBI
Signpost PRF -- 1.5 Hz
Transmitter Frequency -- $\mathrm{f}_{\mathrm{c}}=49.860 \mathrm{MHz}$

NORTH FIELD
EAST FIELD
FIG. 3-3 HI^{3} SIGNPOST ELECTRICAL SPECIFICATIONS

FIG. 3-4 HI^{3} SIGNPOST MECHANICAL SPECIFICA TIONS

However, low power operation at 27 MHz is contingent upon not producing harmful interference to licensees in the 27 MHz band. At 49.86 MHz , there are no licensees, and each user must oparate within the environment created by all other users; consequently, any constraints on operation in any city are eliminated. The $49.86-\mathrm{MHz}$ system tested during Phase I demonstrated superior AVM performance over 27 MHz . As a result of the test results obtained, it is proposed to utilize 49.86 MHz signposts in HI^{3} during Phase II. Signposts operated at 49.86 MHz are subject to the same type of certification as that required for low-power devices operated at 27 MHz . HI^{3} has applied for such certification. This action is discussed in Section 10.3.
HI^{3} signposts are mounted on any available utility poles or street and traffic light standards in such a manner that the HI^{3} vehicle equipment is able to receive the coded transmissions from one or more signposts and, through simple code and signal level comparis ons in the vehicle unit, to determine a unique 18-bit code which corresponds to the center of a unique location region. This capability is explained fully in Paragraph 3.2.1. Forty-one signposts were available for use during Phase I testing. An odometer was utilized during fixed route tests to supplement the signpost system so that signposts were only needed at or near TSC designated timepoints. The use of the odometer in Phase I is fully explained in Section 6. A method of eliminating the need for an odometer in Phase II is discussed in Section 10.2.
3.1.2.2 Vehicle Equipment. In the random route configuration, $\mathrm{HI}^{3} \mathrm{LS}$ vehicle equipment consists of two items: (1) a $49.860-\mathrm{MHz}$ antenna and a coax cable, and (2) a HI^{3} vehicle unit. During Phase I, a standard, monopole (Antenna Specialist Model 303) was mounted on the roof of the test vehicle. The same vehicle unit was used during fixed route tests without modification.

The HI^{3} vehicle unit shown in Figure 3-5 is a single electronic package which consists of the following equipment:

49. $860-\mathrm{MHz}$ Signpost Receiver	Digital Controller
Signpost Data Processor	Formatter
Location Region Storage	FSK Generator

The test LS vehicle unit draws its power directly from the test vehicle 12 -volt system just as it will in the Phase Π system. The vehicle unit is fused to prevent equipment damages and contains a built-in voltage regulator to compensate for voltage fluctuations.

Figure 3-6 is a block diagram of the major furctions performed in the HI^{3} vehicle unit. This unit is a standard HI^{3} AVL vehicle unit which normally interfaces with a mobile radio. In the Phase I system, the normal radio interface is replaced with a hardwired interface to the HI^{3} Interface Controller Unit (ICU).

FIG. 3-5 HI ${ }^{3}$ TEST L.S. VEHICLE UNIT

(a) PHASE I VEHICLE UNIT

(b) PHASE II VEHICLE UNIT

FIG. $3-6 \mathrm{HI}^{3}$ VEHICLE UNIT BLOCK DIAGRAM

The $49.860-\mathrm{MHz}$ signpost receiver performs the following functions:
a. Receives the coherent FSK transmissions from signposts.
b. Synchronizes the information stream.
c. Performs demodulation of the FSK signal.
d. Determines the signal amplitude via the threshold detection circuitry.
e. Checks the signpost message for errors.
f. Decodes the 16-BIT signpost code.
g. Supplies the threshold level (Level 1, 2, or 3), a "data good" signal (if the signal passes the error filter) and the signpost code to the signpost data processor.
h. Supplies a "Level 1" or "NOT Level 1" logical signal to the ICU.

The hardwired signpost data processor performs the following functions, as illustrated in Figure 3-7 Information Flow Diagram:

1. In conjunction with the "last" signpost code, processes the "new" signpost code to derive an 18-BIT location region code which is comprised of the following information:

7-BIT East Code from nearest (highest level) signpost 7-BIT North Code from nearest (highest level) signpost 4-BIT Region Code which identifies the overlap region between signposts.

NOTE: Section 3.2 .1 contains a detailed description of the process through which the 18 -BIT location region code is generated.
2. Identifies timepoint signpost through bits E_{7} and N_{7} (this function was simulated during fixed route testing).
3. Stores the 18 -BIT location region code as the vehicle's "current" location in the Location Region Storage.
4. Compares each newly computed 18-BIT location region code with the stored value and, if a difference is indicated, replacement of the previous code with the new code.
5. Supplies the "current" location region code to the digital controller for transmittal to the ICU.

FIG. 3-7 HI ${ }^{3}$ VEHICLE UNIT INFORMATION FLOW DIAGRAM

The Digital Controller controls the sampling of the location region storage and controls the transmission of location region data to the ICU.

The formatter encodes the message to the ICU in the B- $\overline{\mathrm{B}}$ format. B corresponds to the bit (logical 1 or logical 0) and \bar{B} corresponds to the bit complement. The $B-\bar{B}$ format requires that each bit be followed by the bit complement. For example, if a logical 1 were to be encoded, a 1-bit followed by a 0 -bit would actually be encoded. This encoding technique provides effective error control through the use of an error filter at the base station. Note that a similar encoding scheme and error filters are incorporated in the signpost-to-vehicle unit link. The FSK generator generates the two audio frequencies, $\mathrm{f}_{\text {high }}$ and $\mathrm{f}_{\text {low }}$, which correspond to the B and \bar{B} respectively.

During Phase I, the vehicle unit operated in the "Automatic" mode in that all changes in the current location region code were automatically transmitted to the ICU. The ICU in turn stored this information until it was requested by the computer (every 0.5 second). During Phase II, the vehicle unit will operate in a functionally identical manner, i.e., data will only be supplied to the base station over the communication subsystem when it is requested by the computer.

The addition of the odometer, auxiliary sensors, bus status display, and radio receiver interfaces which will be implemented in Phase II is shown in the lower figure (Figure 3-6b). Actually, the Buffer Amplifier and Channel Open Detector, the PSK Demodulator, and the Error Filter and Decoder were included in the Phase I vehicle unit. However, they were not utilized since a radio link was not implemented. Thus, the only difference between the Phase I and Phase II vehicle units is in the Digital Controller Unit.

In Phase II, the digital controller unit will perform all of the functions performed in Phase I, plus the following additional functions:
a. Receive commands from the base station and control the message response via the radio transmitter.
b. Receive and accumulate pulses from the odometer and control , the encoding of the odometer accumulator into the vehicle-to-base message. (Fixed Route only). Refer to Section 10 for a proposed means of eliminating the odometer from Phase II.
c. Receive inputs from auxiliary sensors (doors, passenger counters, etc.) and control the encoding of these data into the vehicle-to-base message.
d. Control the message traffic to and from the bus status display.
e. Identify timepoint signposts and the Level 1 drop-out signal and thereby control the generation of timepoint performance data.
f. Compare incoming message addresses to stored vehicle ID and control message response.

In the Phase I system, the contents of the location register were sent to an Interface Controller Unit (ICU) where they were sampled by the DAS as the "computed" vehicle location at the sample time. Under operational conditions (Phase II), the contents of the location register would be encoded by the Digital Controller and formatter as part of the vehicle-to-base message and transmitted via the communication subsystem to the base station under base station computer control. However, in the HI^{3} design, this process was quite simple to simulate since vehicle location computations performed at the base station do not depend on any past history since only the last transmitted location data are used. Thus, the achievement of an exact system simulation is only a matter of the sampling rate (i.e., 20 seconds for Phase II versus every $1 / 2$ second in the Phase I tests). Consequently, HI^{3} LS accuracy is not influenced.

3.1.3 Data Acquisition System (DAS)

In the random route configuration, the DAS included the following equipment:

```
HI }\mp@subsup{}{}{3}\mathrm{ Interface Control Unit (ICU)
PDP 11/05
DECassette
Cassettes
CB Monitor Unit (used during special 27 MHz tests only)
5th Wheel System
ADM-2 CRT/Keyboard
TI 743 Terminal.
```

Figure 3-8 is an interface block diagram of the DAS and its interface with the LS.

During random route testing, the DAS controlled the sampling of the LS location register as well as the 5th wheel. Tests were conducted by recording (1) a complete data record every $1 / 2$ second and (2) each event marker entered manually by the DAS operator.
3.1.3.1 Recording Equipment. Recording equipment included the PDP 11/05 minicomputer, the DECassette, and the ADM-2 CRT/Keyboard. Under software control the PDP 11/05 caused data from the ICU and the keyboard to be recorded on cassette tapes.

Data were recorded on Mylar Cassettes (Dual Drive). A pair of cassettes were used to record all data on each test rum.

Data were recorded single-bit-serial sequentially. Each data sample consisted of a $80-$ BIT record as follows:

Item	Bits
Location Code	18
Odometer	12
5th Wheel	14
Clock	10 (ticks only)
Event Codes	8
Spare	$\underline{18}$
\quad TOTAL	
	80

Figure 3-9 reflects the basic DAS record format as it was divided into five 16 -BIT words. Cassettes were duplicated onto IBM compatible magnetic tapes at the Blue Bell, Pennsylvania facility of Digital Equipment Corporation, for processing by MITRE Corporation.
3.1.3.2 Fifth Wheel Equipment. The fifth wheel was used (1) for verifying checkpoint relative X, Y coordinate distance from known locations and (2) for generating "pseudo" checkpoints during data analysis to simulate Phase II polling rates. The fifth wheel equipment included a Nucleus Corporation Model NC-7 fifth wheel, a Nu-Metrics Model P-1070 distance measuring instrument (DMI), and a Nu-Metrics Model P-160 Distance Event Controller (DEC). The configuration is shown in Figure 3-10.
3.1.3.3 Event Marking Equipment. Event marking was accomplished through use of the ADM-2 keyboard. Manual input of an event code via the keyboard caused a new record to be recorded. Event codes were entered by pressing, in sequence, the appropriate event function key, the event ID number, e.g., checkpoint number, and the RETURN key. A complete 80 -BIT data record was recorded on cassette whenever the RETURN key was pressed. The following event codes were available.

Mark Passage of Checikpoint XX
Mark Passage of Signpost NN, EE
(Only used during calibration runs)
Mark Turn Intersection for use with
"Pseudo" signposts
Signify Door Open at Timepoint YY
Signify Door Close at Timepoint YY
Signify Error in preceding event ZZ
Mark Time of Departure from
Function Key Event ID Return

Timepoint YY

CP	XX	$"$
SP	NN, EE	$"$
		$"$
TA	XX	$"$
		$"$
DO	YY	$"$
DC	YY	$"$
EE	ZZ	$"$
TD	$Y Y$	$"$

HEADER RECORD

Run Number	lst Word
Year	2nd Word
Month	3rd Word
Day	4th Word
Hour	5th Word
Minutes	6th Word
Seconds	7th Word
Tick $(1 / 60$ of second $)$	8th Word

DATA RECORD

$\operatorname{sscs~O} \mathrm{O}_{11} \mathrm{O}_{10} \mathrm{O}_{9} \mathrm{O}_{8} \mathrm{O}_{7} \mathrm{O}_{6} \mathrm{O}_{5} \mathrm{O}_{4} \mathrm{O}_{3} \mathrm{O}_{2} \mathrm{O}_{1} \mathrm{O}_{0} \quad$ 2nd Word
$\operatorname{S~S~} N_{6} N_{5} N_{4} N_{3} N_{2} \quad N_{1} N_{0} \quad E_{6} \quad E_{5} \quad E_{4} \quad E_{3} \quad E_{2} \quad E_{1} E_{0} \quad$ 3rd Word
$V_{7} V_{6} V_{5} V_{4} V_{3} V_{2} V_{1} V_{0} \quad S \quad S \quad S \quad S \quad B_{3} B_{2} B_{1} B_{0}$ 4th Word
S S $\mathrm{F}_{13} \mathrm{~F}_{12} \mathrm{~F}_{11} \mathrm{~F}_{10} \mathrm{~F}_{9} \mathrm{~F}_{8} \mathrm{~F}_{7} \mathrm{~F}_{6} \mathrm{~F}_{5} \mathrm{~F}_{4} \mathrm{~F}_{3} \mathrm{~F}_{2} \mathrm{~F}_{1} \mathrm{~F}_{0}$ 5th Word
where

$$
\begin{aligned}
& T-\text { Time } \\
& \text { V }- \text { Event } \\
& B-\text { Region Field } \\
& N-\text { North Field } \\
& E-\text { East Field } \\
& \text { F }-5 \text { th Wheel } \\
& S-\text { Spare } \\
& \text { O Odometer }
\end{aligned}
$$

FIG. 3-9 BASIC DAS RECORD FORMAT

FIG. 3-10 FIFTH WHEEL CONFIGURATION

$$
3-16
$$

When the RETURN was depressed, an 80-BIT data record corresponding to the event key stroke time was added to the data stream in the appropriate time sequence, and the contents of the ICU output buffer were simultaneously written to the cassette and displayed on the CRT.

The Error Event was used to signify that an error had occurred in the previous event code, presumably an operator error, e.g., wrong checkpoint ID entered, etc. When the Error Event was used, an entry was made into the Run Log in terms of the nature of the error. During off-line data processing, such errors were flagged to the computer by the occurrence of the Error Event and ignored by the Data Processing Routine. A log of such errors is contained in the Appendix in association with the raw data.
3.1.3.4 Interface Controller Unit. The ICU controlled the acquisition of data for recording via the PDP 11/05 and DECassette and performed the function of a high-speed communication link between a vehicle and the base station. The input and output functions of the ICU are identified in Figure 3-11. During operation under control of the PDP 11/05, the ICU received a request-data pulse from the $11 / 05$, set a flag which froze all data registers, caused an interrupt to the 11/05, and responded with a serial bit stream of 48 bits in the following sequence:

NOTE: These three words were output from the ICU to the DAS where they were reformatted and merged with time and event data to form the 5 -word record shown in Figure 3-9. This word was recorded on cassette. This sequence relates only to the output of the ICU to the computer. The data was reformatted, as shown in Figure 3-9, for recording on cassette.

In Figure 3-11, the Signpost Location Region Register contains the most recent 18 -BIT Location Region code generated by the Digital Controller Unit in

the vehicle unit. This code includes a 7-BIT North code, a 7-BIT East Code, and a 4-BIT region or "B" code as follows:

Valid Region Codes which could be generated by the Phase I vehicle unit included the following:

Region Code				Region	
B_{3}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{0}$		
0	0	0	0	Region 1	
0	0	0	1		
0	1	0	1	Region 2 East	
1	1	0	1	Region 2 North	
1	0	0	1	Region 2 West	
0	0	1	0	Region 3 South	
0	1	1	0	Region 3 East	
1	1	1	0	Region 3 North	
1	0	1	0	Region 3 West	

(The physical meaning of these codes and their method of generation relative to signpost placement is discussed in detail in Paragraph 3.2.1).

The modifier block in Figure 3-11 caused an additional Region code, " 0011 ", to be generated; this code corresponds to a Level 1 drop-out. This code was only used in computing timepoint performance. It is discussed in detail in paragraph 6.1.2.2. Thus, the buffer block in Figure 3-11 contains the 18-BIT signpost location region (with the region field possibly having been modified to a 0011) which became part of the recorded data.
3.1.3.5 Recording Software. Operation of the DAS was under software control through use of the CAPS operating system. Random Route data were recorded by using the program RANDOM which performed data recording and provided two displays as follows:
a. Display 1: Quick Look Verification Display
b. Display 2: Location Accuracy Summary Display.
3.1.3.6 In-Vehicle Displays. The DAS provided the capability of displaying selected data on the CRT for use in the testing, calibration, and verification of operation of the LS system. These displays were independent of and had no effect whatsoever on the cassette data recording function.
a. Quick Look Verification Display. To aid in the initial LS installation and calibration and in formal tests, a real-time display was used to examine the following parameters:

Event Code	North Field	East Field	Region Code	Odometer Distance	5th Wheel Distance	Time			Min		Sec
-			---	---							
-	6	8	R2	West	1900	1900	08	42			
1	6	8	R2	West	1920	1920	09	12			
-											
-	6	8	R2	East	2104	2108	10	01			
2	6	8	R3	East	2216	2218	10	32			
-				---							
-	8	8	R1	---	2542	2542	11	17			

The occurrence of each new location region or event marker caused a new line to be printed; the most current line was printed at the bottom of the screen.
b. Location Accuracy Summary Display. Another aid in the initial installation and testing was an in-the-vehicle display which provided a real-time estimate of performance. This display indicated (1) the X and Y values corresponding to each checkpoint (vehicle actual location), (2) the X and Y values of each recorded location region (vehicle's estimated location), and (3) the computed delta distance or error between these two X, Y values. The format was the following:

Checkpoint Number	$\begin{aligned} & \text { Checkp } \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Location } \\ \mathrm{Y} \\ \hline \end{gathered}$	Signpost Region		$\begin{aligned} & \text { Error } \\ & \text { (feet) } \end{aligned}$
1	720300	403631	720100	403630	200
2	721731	402245	721700	402250	31
3	722190	401806	722185	401770	36
4	722729	401257	722730	401285	28
5	723195	400606	723150	400580	52

NOTE: The checkpoints provided by TSC were not loaded into the data recording software at any time during the Phase I test and calibration activities.

In generating this display, input data consisted of (1) the ICU output data, (2) the stored signpost data base, and (3) a stored checkpoint data base. The signpost data base consisted of approximately 369 locations (refer to Section 4) stored on cassette and read into memory as part of the program "RANDOM".

Similarly, a set of 79 checkpoints generated by HI^{3} (not the TSC primary or secondary checkpoints) were read into memory prior to running the program.

3.2 RANDOM ROUTE LOCATION SUBSYSTEM DEPLOYMENT

3.2.1 Signpost Deployment

Signposts were installed in the HI^{3} random route test area in accordance with a pattern which provided the specified coverage of the test area and is that proposed for the Phase II program. Thus, no location support equipment simulation, such as the expected Phase II S / N conditions vs. Philadelphia deployment S / N conditions, was required for the HI^{3} system. The test area was selected by TSC and was composed of 40 square blocks which included virtually all conditions of a typical metropolitan environment. The area included high-rise, low-rise, narrow and wide streets, underpasses, tunnels, trolleys, commercial, industrial, and residential areas. The area was surveyed by HI^{3} and poles tentatively selected on 10 September 1976; pole agreements for these selected poles were contracted with the City of Philadelphia and the Philadelphia Electric Company. On 21 September, a data package was submitted to these agencies requesting permission to use selected poles. This permission was granted on 7 October 1976. A preliminary signpost layout was completed by utilizing 36 signposts (15 of which were used to simulate the infinite space of a wide area coverage). The signposts were coded and installed in a comparable area (street patterns and environment) of Fort Worth for preliminary checkout. These signposts allowed a determination of location to be made at any point within the random route test area (infinite space simulation). Originally, these signposts were operated at 27 MHz . However, after special tests in Fort Worth showed the superiority of 49 MHz , all were converted to 49.860 MHz . This conversion process required only three (3) working days. Five additional signposts were later added in Philadelphia in order to provide complete random route coverage within and in the vicinity of the 9 railroad overpasses and covered streets within the selected test area.

The test vehicle was used to perform preliminary and special tests of the LS in Fort Worth. Upon completion of these tests, the signposts were transported to Philadelphia and installed by HI^{3} personnel in accordance with the original layout. Installation of the signposts required an average of 3.2 minutes per signpost including parking of the installation vehicle. This short time can be realized because HI^{3} signposts need not be located at any specific height and installation methods have been pe rfected on such programs as the Huntington Beach AVM System. Refinements of the layout included the movement of 5 signposts in order to take advantage of or to reduce the effects of peculiar structures which were encountered, particularly in and near tunnels. Such refinements were routine and were fully documented prior to the initiation of formal tests. No signposts were moved or adjusted in any manner after the initiation of formal tests.

The HI^{3} Random Route test area is shown in Figure 3-12 along with the signpost locations and the signpost codes. Figure 3-13 contains photographs of all installed random-route signposts.

FIG. 3-12 HI ${ }^{3}$ RANDOM ROUTE TEST AREA AND SIGNPOST LAYOUT

FIG. 3-13

Signposts were deployed in a grid and are coded so as to create NorthSouth and East-West chains. Along a North-South chain, only the 7-BIT NorthSouth fields of the signpost codes change, increasing from South to North. Along an East-West chain, only the 7-BIT East-West fields of the signpost codes change, increasing from West-to-East. Examples of these respective cases are clearly evident on 13th Street which is a (North-South chain) and Market Street which is an (East-West chain).

Along any chain, receipt in the vehicle of the transmission from each of the two adjacent signposts provides sufficient information to allow the vehicle to identify up to 5 different location regions. This arrangement is depicted in Figure 3-14. The region nearest a signpost is called Region 1 and is declared as a result of receiving a valid signpost signal which exceeds a predetermined signal level, Level 1. Thus, a vehicle near signpost $(6,6)$ at 13 th and Market would store a " 6 " in its North register, a " 6 " in its East register and a "Region 1 " code in its Region register. The resulting 18-BIT code would be as follows:

In the region between two signposts, $(6,6)$ and $(6,8)$, for example, the vehicle may receive signals from both signposts at equal or at different signal levels. Two types of information are used to determine the three overlap regions between chaining signposts. First, the direction from a signpost is determined in the vehicle by comparing the 4 LSB's of the North and East fields received from two different signposts. The following truth table is used to determine direction in the vehicle:

Result of Comparing 4 LSB's of North/South and East/West Fields

North/South	East/West	Declaration
Increasing	No Change	North of
Decreasing	No Change	Soath of
No Change	Increasing	East of
No Change	Decreasing	West of
Not Same	Not Same	No Decision

Thus, a vehicle leaving 13th and Market, signpost $(6,6)$, traveling East would receive a signal from signpost $(6,8)$ at 11 th and Market which, when the 4 LSB's of the North-South and East-West fields were compared, indicate that only the East-West field was changing, and that it was increasing. Therefore, the vehicle would declare that it was "East of" signpost (6,6), e.g., East of the intersection of 13th and Market, and on Market Street.

FIG. 3-14 OVERLAP REGION CREATED BY ADJACENT "CHAINING" SIGNPOSTS

The distance along Market would be determined (simultaneously with the determination of direction) by comparing the strength of the received signals from signposts $(6,6)$ and $(6,8)$. The following table identifies the results of this level comparison and Figure 3-15 illustrates the location of Region(s) 1, Region(s) 2, and Region(s) 3 relative to a pair of signposts:

		Signpost A		
		Greater than $-58 \mathrm{dBm} *$	Between -72 and -58 dBm	Between -82 and -72 dBm
	Greater than -58 dBm	${ }^{\mathrm{R}} 1_{A}$ or B	$\mathrm{R1}_{\text {B }}$	$\mathrm{R1}_{\mathrm{B}}$
	Between -72 and -58	$\mathrm{R}_{1}{ }_{\text {A }}$	${ }^{R 3} A$ or B	$\mathrm{R}^{\text {B }}$
	Between -. 82 and -72	${ }^{\mathrm{R} 1}{ }_{\mathrm{A}}$	${ }^{\mathrm{R} 2} \mathrm{~A}$	${ }^{R} 3$ A or B

* dBm refers to the power level in decibels above a milliwatt and is $\mathrm{P}(\mathrm{dBm})=10 \log _{10}$ p(milliwatts). Thus power level of 1 mw corresponds to $0 \mathrm{dBm},-60 \mathrm{dBm}$ corresponds to a power level of 10^{-6} milliwatts or 10^{-9} watts.

Thus, if a Level 1 (signal greater than -58 dBm) is received from a signpost, the vehicle declares itself within the "Region 1 " of that signpost or "at" the signpost. If a Level 2 or Level 3 is received, then either a Region 2 or Region 3 is declared, depending on the relative field strength received from the chaining signpost. If signals are received from two non-chaining signposts, e.g., signposts $(6,6)$ and $(15,13)$ the information is ignored and the previous location region is retained in the vehicle unit.

Combining the signpost code, region, and direction information allows each signpost to contribute to the formation of nine (9) location regions. For signpost $(8,8)$ in Figure 3-12, these regions are as follows:

Signpost	Signpost Location Region	Approximate Center of Location Region
8,8	Region 1	11th and Arch
	Region 2 North of (8,8)	11th and Appletree
	Region 2 South of $(8,8)$	11 th and Cuthbert
	Region 2 East of (8,8)	290 feet East of 11th and Arch
	Region 2 West of $(8,8)$	290 feet West of 11th and Arch
	Region 3 North of $(8,8)$	11th and Cherry
	Region 3 South of (8,8)	11th and Filbert
	Region 3 East of $(8,8)$	10th and Arch
	Region 3 West of $(8,8)$	12 th and Arch

FIG. 3-15 HI^{3} LS LOCATION REGIONS

Note that the location region identified as "Region 3 East of signpost $(6,6)$ would also be located at 12th and Market, the only difference between this region and Region 3 West of $(6,8)$ being the referenced signpost. Thus, in general, only five of the nine location regions associated with a signpost are unique, all Region 3's being duplicated. During Phase I, a set of X, Y stateplane coordinates were assigned to each location region in the coverage area. Whenever a new 18 -BIT location code was received, the vehicle was assumed to be located at the corresponding X, Y stateplane coordinates.

Repeating, for clarity, the makeup of the 18-BIT location region code for random route location with signpost $(8,10)$ was:

Also, the HI^{3} LS requires only one measurement to determine a new vehicle position, exactly as proposed for Phase II.

3.2.2 Random Route Area Mapping

After deployment of the signposts in Philadelphia, the system was calibrated to determine the location at which the boundaries between adjacent location regions occurred. After determining these boundary locations, through use of the in-vehicle display and manual analysis of listings of test cassettes, each location region was assigned a specific location region center, corresponding to a physical X, Y location in the test area. These locations were then utilized to create the signpost location region data base. During subsequent data prozessing, when an 18-BIT code recorded on cassette was processed, the vehicle's estimated location was given by the data base location corresponding to that 18-BIT code. Thus, a simple table look-up algorithm allowed the vehicle to be located at one of the 194 unique locations in the test area.

The generation of these 194 locations was accomplished by recording signpost location region codes, fifth wheel distance data, and event codes while driving the test vehicle over all streets within the test area. The boundary transitions were referenced (via the fifth wheel) to known X, Y locations supplied by the MITRE Corporation (locations identified by use of event codes). Analysis at Fort Worth allowed these boundaries to be located on a test area map. This map, presented in Figure 3-16, reflects the "Center" of all location regions on the basis of compiling multiple test runs through each region, including runs through different lanes. The map "center" of a location region was selected so as to minimize the location error on the basis of test and calibration data through the use of the HI^{3} checkpoints. The centroid of a location region was selected as the point to be used in locating the vehicle when it declares a particular region code. In general, if a location region contained a street intersection, the center of the intersection was selected as the center of the location region.

Checkpoint Location and Marking. On 2 December 1976, TSC provided HI^{3} with a list of sixty-three (63) primary checkpoints forty-eight (48) hours prior to initiating test runs 1 through 5 . These checkpoints were identified in general (e.g., on Race East of 12th Street, West of Reading Railroad). HI ${ }^{3}$ then identified specific landmarks: e.g., nearby street light, utility pole, sign, traffic standards, etc., which were approved by TSC as checkpoints. Each such point was identified by number, description, and location in terms of offset distances (X and Y) from the center of the nearest intersection. Subsequent to the completion of Test Runs 1 through 5, these offsets were translated into stateplane X, Y coordinates and became a part of the HI^{3} Data Processing Software Data Base. Random Route Runs 1 through 5 were completed on 7 December 1976. On 12 December, TSC provided a list of 62 secondary checkpoints which were used during Random Route Runs 6 through 10. Random Route Runs 6 through 10 were conducted on 14 December 1976.

3.2.3 Location Subsystem Calibration

Calibration of the LS for random route testing involves (1) the establishment of the threshold levels for Levels 1, 2, and 3 in the vehicle unit, (2) the calibration of the fifth wheel over a measured distance calibration range, and (3) the use of the calibrated vehicle unit and fifth wheel to map the location area and generate the location region data base. Subsequently, only the threshold levels in the vehicle unit and the fifth wheel needed to be verified prior to the tests each day.

X and Y coordinate offset distances of checkpoints were determined through the use of the fifth wheel and DMI and a Measure Master manual device; when this measuring device was rolled along the pavement, it provided a direct counter readout of elapsed distance in feet.
3.2.3.1 Vehicle Unit Calibration. The calibration of the vehicle unit was verified on each test day with a calibrated signpost signal simulator and variable attenuator. Calibration involved attaching the output of the battery-powered

simulator to the vehicle unit antenna input connector with a short length of coax and a variable attenuator. The output of the simulator is -23 dBm . During calibration, the top of the vehicle unit box was removed in order to allow observation of three Light Emitting Diodes (LED's) which lighted whenever Level 3, 2 and 1 were respectively tripped. The trip level, in dBm , was obtained by subtracting the attenuation setting required to cause a level light (LED) to be extinguished from the -23 dBm value. Vehicle unit threshold level settings were not changed during random route testing. Threshold levels were $-82,-72$, and -58 dBm , respectively, for Levels 3,2 , and 1 .

The threshold levels selected for use in the LS were determined so that they would provide adequate operation throughout a city (in this case the test area). Two factors influence the value of these thresholds: (1) the nominal spacing between signposts and (2) the RF background noise. The nominal spacing between signposts is primarily dictated by the street and block layout in a city. In most instances, HI^{3} signposts are placed at intersections so as to take advantage of propagation down both streets in orthogonal directions. However, in some instances (e.g., signpost $(15,16)$ in the tumnel near Filbert and 8th) use of this method was not practical. Still, the threshold levels are set so as to divide the space between the signposts into location regions which allow the LS and system location accuracy specifications to be met.

The influence of RF background noise within the bandwidth of a signpos t receiver is such that the signal-to-noise ratio at the receiver is reduced and the probability of an error in a received signpost transmission is increased. Although such an error will be detected and rejected by the vehicle unit's error filter, a missed transmission can cause an error if it occurs at or near a location region boundary. A survey of the in-band RF noise was made by HI^{3} as part of Special Case Tests and is subsequently discussed in subsection 9.2. Analysis of this data demonstrates that the normal urban RF noise environment has been properly accounted for in the HI^{3} system S / N design.
3.2.3.2 Fifth Wheel Calibration. The fifth wheel and odometer were calibrated each test day by driving a measured 1000 -foot distance along Delaware Street. Neither odometer or fifth wheel calibrations were changed after initially being set at 979 and 872 , respectively. With the exception of driving on ice and slush (when the fifth wheel introduced errors), both systems were always accurate within 0.2 percent of 1000 feet when the calibration was verified.
3.2.3.3 Location Region Data Base Calibration. The initial calibration of the location region data base was established through the use of the calibrated vehicle unit and the calibrated fifth wheel in the manner described in Paragraph 3.2.1. During the 48 -hour period prior to commencing each series of tests, the operation of the signpost system was checked to verify its operation by driving the test area and simultaneously observing the CRT display. During calibration runs, a set of HI^{3} checkpoints were used for which X, Y locations were available.

3.3 RANDOM ROUTE DATA ACQUISITION

Test data were recorded on cassettes during all test runs. The sequence of events concerning data handling lozistics is shown in Figure 3-17. Prior to a test run, header data identifying the test run parameters (refer to paragraph 3.1 .3 .1) were recorded on each pair of cassettes under the control of the RANDOM computer program.

A corresponding data log sheet was manually filled out by the Program Test Director and signed by the TSC Monitor after each Test Run. Figure 3-18 reflects a typical log sheet. At the conclusion of the Random Route test runs, all data cassettes were duplicated onto IBM compatible magnetic tapes. The master cassettes were retained by TSC until HI^{3} software was validated at MTTRE.

After keystroking the header data in response to prompters on the CRT display, the test vehicle driver proceeded to traverse the specified route. Passage of each designated checkpoint and each turn was recorded by keystroking the coded event marker. This action caused a time-coincident data record to be recorded on cassette. As a checkpoint or turn was approached, the test vehicle driver informed the test director/DAS operator to prepare for checkpoint NN. The DAS operator pressed first the CHECKPOINT function key and then keystroked the number NN. He then prepared to depress the RETURN key. As the test vehicle approached the checkpoint, the driver called out "standby", and then, as the front bumper of the test vehicle passed the designated checkpoint, he called out "MARK." Upon hearing this MARK, the DAS operator depressed the RETURN key. This action produced a data record and the appropriate checkpoint or turn number to be recorded on cassette. The Random Route Test Procedures are illustrated in Figure 3-19. All recorded data were retained and processed. No data were eliminated as poor or potentially poor.

All Random Route Tests commenced at 7 th and Market heading North on 7 th and ended at 7th and Market heading East on Market. The beginning and end of each run was indicated by entry of TA 64 (Turn 64) which was the number assigned by HI^{3} to the intersection of 7 th and Market.

The route traveled during Random Route Runs 1 through 5 is shown in Figure 3-20. TSC primary checkpoints are indicated by CP1, CP2, etc. Turn intersections are indicated by TA7, TA44, etc. The specific locations and landmarks selected by TSC as primary checkpoints are identified in Table 3-1. When the test vehicle left the random route test area and headed West at 13 th and Market, TA58 was entered. TA58 was subsequently entered again when the vehicle re-entered the test area at 13th and Market and headed East after completing a turn-around at the City Hall. HI ${ }^{3}$ Data Processing Software was designed to ignore data between successive entries of the same turn intersection number. This algorithm was authorized by TSC and was designed to keep from processing data outside of the random route test area during "pseudo" checkpoint processing for system simulation.

* LOG TAPE WITH TSC MONITOR

FIG. $3-17 \quad \mathrm{HI}^{3}$ DATA HANDLING LOGISTICS

TEST DATA LOG
TEST RUN NO. $\frac{4}{\text { TYPE OF TEST: Hufforanandomfrote }}$
SHEET NO. $/ \mathrm{OF}$ \qquad 1 brief narrative description of test tinge Síant 20.55 END 2150 TEMP H6"F, DEY liNiNg.
\qquad
\qquad
ROUTE IDENTIFICATION: \qquad ISC Pamingrat
\qquad
\qquad
\qquad
EVENT MARKER NUMBER: $1-63$ ines 31 Mu i 4 SEC AT C.P 25 GURU CP. 28 Trawey GAR FILCHiNG DIRECTLY GEAWD TEST VCHCUE,
\qquad
EQUIPMENT UTILIZED/TEST CONDITION: \qquad VEHICLE UNIT THRESHOLD LEVELS: $1-59 \mathrm{dAn}^{2}-72 \mathrm{d6} \mathrm{~A}^{3}-92 \mathrm{~d} 6 \mathrm{dm}$ ODOMETER CAL: 997 FPS 2 TH WHEEL CAL_ \qquad FP \qquad
R1 DROPOUT SWITCH: Off/On O/A OTHER: TEMPERATURE: 45^{0} PRECIPITATION: hon ROAD CONDITIONS: W上 TEST TAPE NOS). $\frac{4-1,4-2}{05}$ FILE NO. 1 SAMPLE RATE: 0.5 RUN TIE: $1 \mathrm{Hl}-25 \mathrm{~min}$. \qquad
FIG. $3-18 \mathrm{HI}^{3}$ TEST DATA LOG

FIG. $3-19 \mathrm{HI}^{3}$ RANDOM ROUTE TEST PROCEDURES

FIG. 3-20 PRIMARY RANDOM ROUTE AND CHECKPOINTS

TABLE 3-1 PRIMARY CHECKPOINTS

C. P. \#	LOCA TION / LANDMARK
1	on 7th, curb northside of Market
2	on 8 th, Center of Filbert
3	on Market, Center of 9th
4	on Market, Westside curb of 10 th
5	on Filbert, Fireplug after West Turn from 11th
6	on 12th, Center of Commerce
7	on 13th, Center of Filbert
8	on 13th, Center of Cherry
9	on Race, St. Light West of Reading Tunnel, Between 11 th \& 12th
10	on Race, Center of 9th
11	on Race, Freeway sign between 7th \& 8th
12	on Vine, Traffic Standard, Corner of 7th
13	on Vine, Traffic Standard, Northwest Corner of Ridge
14	on 11th, Center of Pearl
15	on Wood, Center of 10 th, Manhole Cover
16	on Ridge, Center of Race
17	on 8th, Center of Appletrec
18	on Arch, Center of 10th
19	on 11th, Center of Cherry
20	on 11 th, Center of Spring
21	on 11 th, Center of Vine
22	on 10th , Center of Pearl
23	on Vine, St. Light Northwest of Train Overpass Between 11th \& 12th
24	on 13th, Center of Pearl
25	on 12th, Center of Pearl
26	on 12 th, Stop Sign, Southside of Summer
27	on 12 th, North East Curb of Quarry
28	on 12 th, Curb, Northside of Arch
29	on 13th, Center of Appletree
30	on 13th, Center of Summer, Fireplug
31	on Vine, St. Light Northeast of Elevated Train Overpass Between 11 th \& 12th
32	on 10 th, Pole, Center of Winter
33	on 10 th, Center of Cherry
34	on 10 th, Northwest Curb of Filbert
35	on Filbert, After 11th at East Edge of Overpass
36	on Filbert, Black Pole Northside between 12th \& 13th
37	on 13th, Center of Cherry
38	on 13th, Center of Summer Fireplug (westside)
39	on Vine, Center of 11 th
40	on Vine, Center of 9th
41	On Ridge, Center of Race
42	on 9th, Center of Cherry
43	on 10 th, North Curb of Arch
44	on 11 th, Center of Cherry
45	on 12th, Center of Appletree
46	on 12 th, Center of Commerce
47	on Market Curb Eastside of 13th
48	on 13th, Center of Filbert
49	on 13th, Center of Cherry
50	on 13th, Center of Summer Fireplug (westside)
51	on 12 th, Stop Sign, South side of Summer
52	on Race, between 11 th \& 12 th, St. Light South Eastside of Train Overpass
53	on Race, Center of 10 th
54	on Race, Sign Southslde, Between 8th \& 9th
55	on 8th, Center of Appletree
56	on 8th, Center of Filbert
57	on Market, St. Light southside between 8th \& 9 th
58	on Market, Curb, westside of 10 th
59	on Market, Center of 12th
60	on Market, Center of 12th
61	on Market, Center of 10th
62	on Market, Pole, Southside between 8 th \& 9 th
63	on Market, Center of 7th

The test route, secondary checkpoints, and turn intersections used during random route test runs 6 through 10 are shown in Figure 3-21. The specific secondary checkpoint locations are identified in Table 3-2.

3.4 RANDOM ROUTE TEST DATA

As previously discussed in Section 3.1.3, test data were recorded on cassette every 0.5 second. This operation resulted in over 90,000 records, which, if printed out, would produce over 90,000 lines of print. In order to reduce the volume of data for this report, HI^{3} wrote a computer program which prints out only those records which (1) contain an event marker or (2) contain a change in location region code. Only data of the type (1) and (2) are of interest during location subsystem data processing since only data at checkpoints are processed. During system level processing, all records or tape are of interest. However, in the interest of keeping this report manageable, complete listings of random route tapes have been provided to TSC separately. Listings of Random Route Test Runs 1 through 10 which show records of types (1) and (2) above are included in the Appendix. However, a listing of Run 7 is presented in Table 3-3 in order to show typical random route data. A list of column headings has been inserted; otherwise data is a direct dump of Run 7. However, only records which contain a location region change and/or a manual event entry are listed. Note that the odometer/fifth wheel columns are presented in terms of the number of pulses. To convert these columns to feet, they must be multiplied by the FPP calibration number which indicates the number of feet par pulse. In all cases during Phase I, this multiplier is two (2), so that the column values, when multiplied by 2 are converted to feet.

By recalling that the HI^{3} vehicle unit stores the last received 18-BIT location code until a new valid code is received, it will be observed that either or both time and distance may change without a change in location code. In addition, the location code may change "toggle" while the vehicle is not moving, particularly if it is stopped in the vicinity of a boundary between two regions or in a location in which more than one 18 -BIT code (e.g. , Region 3) is used to describe a region. For example, between Time 34 minutes 14 seconds, and Time 34 minutes 25 seconds, Run 7 data in Table 3-3 is observed to toggle between the three codes $(12,06)$ R2N, $(14,06)$ R2S, and $(14,06)$ R3S. By referring to Figure $3-12$ and Table 3-2, it can be seen that Secondary Checkpoint 27 is located at 13 th and Pearl, which is approximately $1 / 3$ of the distance North of signpost $(12,06)$, between signpost $(12,06)$ and signpost $(14,06)$. Reference to Table 5-7 will indicate that the location error incurred at CP 27 during Run 9 was 51 feet. If, for example, the CP had been marked at a time in which the location code was $(12,06)$ R2N, i.e., 2 seconds and 38 feet later, the location error would have been 26 feet. However, in either case, the error would be considerably less than 300 feet.

Another typical case occurs at Times 11 minutes 7 seconds and 11 minutes 9 seconds in Table 3-3. In this case, the odometer readings are the same but the location codes are different. Note, however, that $(13,15)$ R2N and $(15,15)$ R3S are regions which share a common boundary as illustrated in Figure 3-16.

FIG. 3-21 SECONDARY RANDOM ROUTE AND CHECKPOINTS

TABLE 3-2 SECONDARY CHECKPOINTS

C.P. \#	LOCATION/ LANDMARK
1	on 7th, Fire Plug, Northwest side of Market
2	on 7th, Center of Arch
3	on 7th, Center of Race
4	on Vine, Light Pole, North Side, betwcen 7th \&8th
5	on 8th, Center of Race
6	on Arch, After west turn on Arch, Fire Plug Southside
7	on Arch, Center of Ilutehison
8	on 10th, Center of Filbert
9	on Market, Center of 11 th
10	on Market, Overhead Sismal Between 12th \& 13 th
11	on 13th, Center of Cuthbert
12	on Race, Wastebasket, North Side, After turn on Race
13	on Race, light Pole, East Side of Elevated Train Overpass
14	on Race, Center of 9 th
15	on 8 th, Center of Cherry
16	on $*$ th, "NO STOPPLVG" sign east side between Arch \& Filbert
17	on 11th, Center of Commeree
18	on 11th, Center of Arch
19	on 11th, Center of (quarry
20	on 11th, "ONF WAY" sign, west side of Winter
21	on 10 th, Center of Spring
22	on 10th, Center of Anpletrce
23	on Filbert, South side "NO STOPPNG" sign, between 10th and 11th
24	on Filbert, at west edge of Tunnel
25	on Filbert, Black Pole, North East Side of 13th
26	on 13th, Center of Spring
27	on 13th, Center of Pearl
28	on 12 th, Center of Vine
29	on 12th, Center of Appletree
30	on 13th, Center of Race
31	on 13th, Pole, South Eastsidc of Vine
32	on Vine, "NO PARKNG" sign, south Eastside of elevated Train Overpass
33	on 10 th, Center of Winter
34	on 10th, Center of Cherry
35	on Arch, "NO PARKNG'" sign, west of 11th \& East of Elevated Train Overpass
36	on Areh, Overhead Traffic Signal, West of Elevated Train Overpass, \& East of 12 th
37	on 12th, Center of Cuthbert
38	on 12 th, Edge of Building, Northside of Market
39	on Vinc, Center of 12th
40	on Vinc, Center of 11th
41	on Vine, Center of 10 th
42	on Vine, Center of 9th
43	on 7th, Tclephonc Booth, Westside, Between Race \& Vine
44	on Vine, Center of 8th
45	on Vine, Center of 9th
46	on 11th, Center of Pearl
47	on 10th, Center of Pearl
48	on 10 th, Center of Spring
49	on Cherry, Light Polc, Eastside of Elevated Train Overpass, \& West of 11th
50	on Cherry, Light Pole, Westside of Elevated Train Cverpass, East of 12th
51	on Cherry, Center of Iseminger
52	on 12 th, Center of Pcarl
53	on 12th, Center of Spring
54	on Race, Center of 11th
55	on 10 th, Center of Cuthbert
56	on Market, Traffic Light, Nothwest Corner of 10 th
57	on Market, Center of 11th
58	on Market, Overhead Signal, Between 12th \& 13th
59	on Market, Overhead Signal, Between 13th \& 12th
60	on Market, Center of 11th
61	on Market, Center of 9th
62	on Market, Center of 7th

TABLE 3－3 LISTING OF RECORDED RANDOM ROUTE TEST DATA

		WHEEL	FEET／FU	SE	000		OLOMETEF		EET／FPUL		000													
	000	Ot．	12	Fil		1）	0011\％	F	tir．rioo	I	00	50		00\％	－	nis	ト． 1		11	U＋ヅサ1	F	00.000	1	11.34
iA	064	4 U6	1？	Fil		\square	00206	F	00000	1	01	37	CF．	009	be	ins	$1 \cdot 1$		0	－3576	＋	aviou	T	1141
C．F．	001	Ot．	12	Til		0	COS 62	F	00000	T	01	44		004	it	is	h2	w	0	611832	F	vic．u	\dagger	1159
	000	5\％	12	K．	N	0	00.338	Γ	00000	T	01	51		000	06	ni	H3	F．	0	03193	F	． 20000	\dagger	1202
	000	OE	12	F 2	S	0	00.379		00000	1	01	54		000	08	08	H 2	W	0	03238	F	00000	T	12 0b
	000	06	リ2	F 2	N	0	00403	F	00000	T	01	56		000	06	06	F\％ 3	E	0	03295	r	00000	1	12.25
	000	06	12	F：3	N	0	no416	F	00000	r	11	57		000	On	05	F1		0	$0344{ }^{\circ}$	F	00000	T	1243
	000	06	に	fi：	N	c	00432	F	1，0000	T	02	00	CF．	010	06	06	E：1		0	03476	F	00000	T	1314
	000	－ 08	12	H	S	0	：0469	F	20000	1	0.	02	TA	058	06	0.5	H1		0	03529	F	00000	T	1336
	000）	） 03	1 ！	$\therefore 1$		0	00509	r	00003	1	02	26		000	ct	ch	K^{7}	4	0	0.615	F	00000	T	1401
CF．	002	203	12	¢1		0	0058？	，	cicolv	r	0	40		000	0 O	OS	F 2	5	0	076？	F	00000	T	14 0：1
	000	OE	1 ：	Fご	11	1	00683	F	018000	1	03	14	CF．	011	08	fis	R：	S	0	0.3786	F	$000 \cdot 0$	T	1420
	000	0 OE	1.	Hit		\bigcirc	． 0.0687	F	60000	「	03	14		000	08	06	Fil		\checkmark	03803	F	00000	r	1433
	000	03	17	$\mathrm{H}=$	N	0	4．0707	\ddagger	W0000	；	¢1．3	18		000	16	11	F1		0	0404？	F	00000	T	1515
	000	－ 08	12	F－1		0	90714	1	0.000	1	0.3	19		000	10	06	F2	5	0	00045	F	$0 ; 000$	r	1527
	000	－ 98	$1{ }^{\text {？}}$	に，	N	a	00737	1	00008	r	$0 \cdot 3$	20		000	10	06	F1		\bigcirc	00091	F	00．000	1	1554
	000	－ 08	12	F！		${ }_{1}$	007．0	F	ObOCO	Γ	03	$\therefore 1$	TA	022	10	06	K1		0	00139	F	06：000	r	1600
	000	0.08	12	1：3	N	$1)$	$00 \% 50$	r	00000	r	） 3	24	CF	01.	16）	00	Fi 1		0	00135	＋	00000	\square	16 04
	000	1） P	12	k：	N	\bigcirc	00：11	1	3tiou	r	03	213		000	10	0.6	F2	E	0	00251	F	00000	T	1628
	000	－ 0	12	1 F	S	1	307．14	r	O0000	1	0.2	\therefore ；		00\％	10	i， 4 ，	1．3	w	0	00251	F	00000	r	1629
	000	－ 68	1 ．	$\mathrm{H}=$	N	11	ncial	1	iocuer	1	2.1	（r）		000	10	u7	${ }_{61}$		$\stackrel{0}{2}$	00390	F	20000	I	1654
	000	3！	12	k：	S	${ }^{1}$	061／6＇́	1	（，000 \cdot ？	1	（6）	06		000	10	0%	1，	W	0	00507	1	v0000	r	1704
	1.00	10	1.2	H2？	S	11	OD84 4	＊	arions．	I	$0 \cdot$	15		000	10	0 ？	$1 \cdot 3$	E	(1)	00523	1	00000	1	1766
	000	10	1.7	＊）		11	008：52	1	innooo	1	w	la	CF．	01.3	10	07	F^{3}	E	10	， 0559	F	00000	T	1706
	000	10	12	R：	5	0	$\therefore 0856$	$\stackrel{+}{4}$	00000	1	1	1 n		000	10	OP：	Hil		0	00544	－	00000	T	1708
	000	10	$1 . ?$	H1		0	00860	F	000001	T	（）A	17		oci．	10	OR	K？	F	0	00795	F	30coo	r	1741
	000	10	12	＊＊	S	0	0087：	$\stackrel{1}{ }$	－00 10	r	U4	18		000	17	15；	K2	S	1	00815	F	10000	T	18 os
	000	10	12	H1		i）	0098．3	，	i） 0 （11） 0	F	04	$\because 0$		000	16	15	ト3	N	\square	0081%	\dagger	noo：10	T	18 Of
	000	10	12.	12.	5	17	008	F	0003，	Y	4	21		000	10	$n 8$	H 2	E	$1)$	2084	1	0000	T	1809
	000	10	12	Hi		0	008月9	F	¿．0000	！	04	2：		000	10	$\therefore 3$	$1: 3$	，	0	008cre	1	000：10	T	1812
CF	203	310	12	Fil		0	009 ？	1	0enomr	1	U＊	1.		000	10	10	ii．？	w	0	0087\％	I	000v0	1	1813
TA	029	10	12	Hi		$1)$	$0094{ }^{\text {a }}$	1	1）0000	T	\cdots	19		000	10	10	F 1		$(1$	20，994	F	000000	1	18 25
	000	10	17	H2	N	0	01053	F	orroro	1	0 －	30	CF．	014	10	1）	K1		11	G103：3	t	00060	I	$18 \quad 24$
	000	10	1.	ki 3	N	0	$\cdots 1118$	1	－6000	1	$0 \times$	15，		000	10	$1{ }^{1}$	ト．3	1	11	－11188	1	अ，weso	1	184.3
14.	080	10	12	H3	N	0	01123	r	00000	1	05	2． 6	1 A	028	1.	1．）	\＆	1	11	（12A．${ }^{\text {a }}$	r	00006	T	1933
	000	－ 12	1.	c．）	S	11	01155	f	00008：	1	OE	38		000	$\therefore 7$	16	F：－	S	11	4131？	5	u：000	T	19 39
	000	12？	1.1	F＊		r	912\％	1	06，000	T	0 S	45		000	16	14	kis	＋	0	013：？	F	00000	T	1941
16.	019	1：	12	E1		11	01．2＋6	$\stackrel{ }{ }$	（1）000	1	On	01		000	1s	1%	k．？	N	${ }^{1}$	01386	1.	000na	r	19 4h
＇F＇	004	12	1：	：1		11	$013^{\text {r }} \cdot 1$	F	$\therefore 0006$	1	0.	12		000	16	16	＊1		0	01.342	$\stackrel{+}{ }$	0.000	T	19 4］
	000	12	1.	F．，	ω	13	01．313		（1）（10．11）	1	IIM	18	CF．	015	16	16	R1		11	014.26	F	00000	T	19.50
TA	018	1：＇	$1:$	H：	ω	\therefore	0141A	1	000．．．s	1		$\therefore 1$		000	15	16	F＊3	H	11	0157゙	1	$0 n 000$	r	2004
	000	19	1 s	K．	\because	${ }^{1}$	（）19：6		Bucroo	，	Of．	$\because 3$		000	15	16	H 1		ก	＜1601	F	00000	1	20 OA
	100	19	16	1．2	s	1	（1） S $_{\text {c }} 9$	F	－	f	02.	26	CF．	01.	$1:$	16	H1		1	6189．3	F	00000	7	2015
	000	1.$)$	16	ト2\％	5	4	（1）171	t	บช欠（210）	1	116	$\therefore 7$		000	$1:$	16	F ：	S	0	0180%	1	00011）	T	$\because 025$
	000	17	1%	k：	11	${ }^{1}$	014%	F	tror ces	1	18.	2－1		000	13	15	H．3	N	1）	91898：	1	coous	T	$\therefore 0.14$
	000	17	16	F1		11	01：．1． 5	r	（）（\％い）	1	de	31	TA	0a3	13	1 h	H， F	N	11	019\％	$\stackrel{ }{+}$	00010	T	$20 \quad 43$
	000	19	19	1.6	＋	11	013\％	1	…10：20）	：	0）	13		000	On	1.	k：	w	$1)$	01978	1.	2000，	T	2045
	000	17	16.	Fil		1	vodsta		corocu					000	c－A	10	k：	F	$(1$	（198i	1	OOO（a）	T	$\therefore 46$
1．F．	005	17	$1{ }^{\text {a }}$	F：1		1	017：1	F	कीisio	1	0 ；	27		000	Of	10	H_{4} ：	E	II	0．．10．3．－	，	00012）	T	Tr 54
	000	16	1 c	k． 5	N	ก	－） （80） 1	，	0ッヶい0	1	（1）	41		00\％	06	10	k1		11	0：03．	，	00mio	1	3058
	000	16	1.4		N	0	C1UtC	1	ach	－		¿ ${ }^{\text {a }}$		00.7	， 6	10	ki2	E	－1	021 ＋A	1	－．0wo	\uparrow	$\because 102$
	000	16	16	kit		1	0taw	1	可いち0	1	（1）	3 A		U0．－	6	10	Fil		11	0.714%	t	r．01－．to	T	$\because 103$
	000	15	18	$1 \cdot$	N	$1)$	0：${ }^{(1)}$	1	（1．00）	1	（1）	S．		coun	0 O	10	k．	w	11	0．23\％	1	00001？	1	2200
	000	16	16	k． 3	5	(1)	020.16	1	v00 iti	T	）：1	0.3		000	0 A	0 P．	K．？		11	071．14	＋	10000	T	2215
TA	044	15	16	H3	S	4	（12059	1	000.1	T	い 4	OR		000	06	10	K． 3	ω	11	02450	F	＜10000	t	$\because 211$
	000	15	is	${ }^{1} 1$		0	12070	1	00000	r	． 1 A	（）\＆		000	13	21	F． 1		0	0：455	F	00000	1	224
	000	08	12	ゃ？	w	0	020月	F	$000 \cdot 0$	\dagger	08	14.		000	Os	08	F2	t．	0	vこath	F	00000	1	2248
1 F	006	C． 8	$1:$	F^{\prime}	ω	1	020 OO	$+$	Donfo	\uparrow		10		Ou＇	06	10	h． 3	W	0	1）： 484	f	N0050	1	22 Sil
	000	08	10	に：3	E．	1	－201k？	\therefore	00ヶc． 0	，	0 C	1.		001	06	08	F 2	Σ	U	（2500：－	＋	00000	7	2251
	000	OR	10	R22	E	0	021A	1	moino	1	04	$\therefore 1$		000	06	08	h 1		1	02528	＋	00000	r	225.3
	000	OR	10	F： 2	N	11	（221／3	F	00．．36	，	ก9	$\because \because$		000	06	08	R2	E	0	025 7 \％	I	00000	T	$2: 57$
	000	OH	10	62	E	0	0？1：\％	$\stackrel{1}{ }$	oocrior）	，	0 H	$\because ?$		OGir	0%	OH	H1		${ }^{\prime}$	0258\％	1	00000	T	2759
	000	OB	10	1		ก	はごい4	，	ロハいが	1	． 4.	\therefore ，	Fn	O－1	1） 6	OH／	h 1		\square	0.5650	F	00000	T	$23 \quad 41$
IF＇	007	08	10	H1		$1]$	O：2014	1	60．－30	1	गti	3^{\prime}	CF．	$01{ }^{-1}$	08	088	1i1		11	0ごアか4	，	iocooi	T	$23 \quad 57$
	000	08	10	K？	W	$1)$	02411	1	（1）：${ }^{\text {a }} 0$	1	－\％	3 H		boc	（：）	14	ril		11	028：1	＋	010000	1	24 （1）4
	000	OR	10	1.3	W	$1)$	02042，	$+$	nfowne	，	C 4	\therefore		000	O8	$\bigcirc \mathrm{OH}$	\therefore＇	－	1）	A：2977	F	0 0，1080	1	$24=0$
ía	042	08	10	R．3	ω	\bigcirc	02491	1	000301	7	0%	$\cdots 8$		O0n	0 H	Os	H．1		11	（） 50.1	F	00000	1	24 ： 24
	000	15	1\％	に！		$1)$	0：50\％	1	（10．1．1）	1	19	0．－	C．F．	018	28	i 1	1：1		11	－ 3.3020	＋	$\cdots 3$	T	24
	000	1.4	15	$\mu \mathrm{F}$	5	i）	025．\％：	＋	noc．un	\dagger	09	$0: 3$		00：	16	14	Fil		11	1．${ }^{\text {a }} 12 \mathrm{i}$	1		1	24 41
	000	$1{ }^{\circ}$	15	$1 \times$	H	1	025：＂，	＋	Onc．u）	T	－	Os	CF－	014	16	14	K1		I	6134．	，	1，0000	I	$25 \cdot 10$
	000	15.	1：	E：		11	02s	，	00060	1	19	10		$00 \cdot$	10	08	$\mathrm{F}^{\prime \prime}$	ω	11	05000	1	0）003：	T	2501
じF	008	1＇，	15	K1		11	02， 1	1	dorrio	1		$3{ }^{2}$		000	10	OH	kl		1	0 53．${ }^{\text {a }}$ ．	1	－	T	$\therefore 05$
	000	1.5	15	$1: 3$	N	11	$02 \cdots 11$	－	000100	1	09	$\therefore 1$		000	10	118	H．3	w	11	0．334＇	＋	（m）びッ？	，	2507
	000	1.6	15	H2，	N	11	928．40	1	（10003：	1	11	0%		000	10	08	（i）		11	0．3．34：－		niporlo	1	250 \％
	000	15	15	$\mathrm{H}^{\text {² }}$	S	1	02833	，	（000（\％）	1	11	196		000	10	09	R2．	N	$\therefore 1$	03484	，	00000	1	2520
	000	13	15	ト2	N	（1）	028.18	F	20000	1	11	07		000	10	$\bigcirc \mathrm{OH}$	K1		(1)	0348\％	F	00000	T	25 2\％
	000	15	15	13	S	4	02838	F	00000	1	11	09		000	10	OH	ト2	${ }^{\mathrm{N}}$	0	0349r3	t	00000	T	$\because 521$
IA	061	1.3	15	51		0	0．erios	F	00000	\dagger	11	1is		000	$1:$	08	F．3	5	0	0351）	F	00000	T	2\％ 23
	000	08	10	だこ	ω	0	0.2883	$\stackrel{ }{ }$	0r．0ijo	T	11	21		000	10	08	H：	N	0	0352h	F	00000	，	$25 \quad 24$
	000	06	08	F2？	E	0	02908	Γ	10000	1	11	25		000.	1.	OR	F3	5	0	03534	F	00000	I	．5 25
	000	08	10	F：2	w	$1)$	0291：	F	noopo	1	11	23		000	12	08	R2	5	0	1，3549	＋	00000	r	25 21
	000	O6	08	FiP^{2}	E	11	02941	，	000001	1		28		005	10	（1）	F3	N	0	0350n	t	00000	T	$25: 28$
	000	06	08	－ Fl 1		0	029：？	$\stackrel{1}{+}$	DOM，	1	11	29		vow	12	08	H？	5	0）	03558	r	no000	r	$\because 529$
	000	06	08	R 2	E	$!$	029n4	F	00\％his	1	11	30		Ona	10	（\％）	H：3	N	1	03561	，	nooon	T	$\because 30$
	000	06	08	\％3	E	D）	02915		600．）0	！		3 i		0， 0	12	－． 8	H．？			0.356 .3	1.	00000	1	$\because 3$

1103.sen

- Direnes

$\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 11 \\ 0 & 0 \\ 11 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 11 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 11 & 1\end{array}$

TABLE 3-3 LISTING OF RECORDED RANDOM ROUTE TEST DATA (CONT ${ }^{+}$D)
8

[^0]

TABLE 3-3 LSTING OF RECORDED RANDOM ROUTE TEST DATA (CONT'D)

TABLE 3-3 LISTING OF RECORDED RANDOM ROUTE TEST DATA (CONT'D)

	000	06	08	$R 2$	E	0	0.)1186	F	00000	\dagger	8834
	000	06	08	F3	E	0	$0(19)$.	F	00000	T	\%:8 4?
	000	06	OR	F2	E	0	$0<9909$	F	00000	T	3843
	000	13	15	F1		0	00941	1	00004)	1	138 23
	000	06	08	F3	E	0	00944	1	00000	T	Hy 24
	000	06	08	H 2	E	0	0n970	F	00000	T	ど: 27
	000	06	10	63	W	0	00977	F	00000	T	-49 38
	000	06	10	F\%	W	0	01000	F	00000	T	(:\% 31
	000	06	08	1 H 3	E	0	()1009	F	00000	1	H4 33
	000	06	10	R2	W	0	01012	F	00000	Γ	(i') 33
	000	06	10	R3	W	0	01023	F	0000 ${ }^{0}$	\dagger	[3) 41
	000	06	10	K2	W	0	01036	F	000:0	T	H5 56
	000	06	10	F1		0	01047	F	00000	T	4.3 03
	000	06	10	F2	W	0	01047	F	00000	T	$\cdots 08$
	000	06	10	K1		0	01047	F	00000	T	7041
	000	06	10	K:	W	0	01047	F	00000)	T	$\rightarrow 043$
	000	06	10	K1		0	01047	F	00001	t	7044
	000	06	10	F?	W	0	01047	F	00000	T	4047
	000	06	10	K1		0	01047	F	00000	T	4057
	000	06	10	R2	W	0	01047	F	00000	T	4759
	000	06	10	F1		0	01047	F	00000	t	9102
	000	06	10	R\%	W	0	01047	F	00000	I	4104
	000	06	10	F1		0	01053	F	00000	\dagger	4108
	000	06	10	R2	W	0	01091	F	00000	I	4201
	000	06	10	K1		0	01098	F	00000	1	9202
C.F'	061	06	10	R1		0	01171	F	00000	r	925
	000	06	10	F2\%	E	0	01251	F	00000	1	9734
	000	06	10	F1		0	01260	F	00000	T	9335
	000	06	10	F?	E	0	01278	$\stackrel{1}{1}$	00000	T	7.3188
	000	06	10	F1		0	01280	F	O000.3	\dagger	7.339
	000	06	10	R2	E	0	01.787	F	00000	\dagger	9340
	000	06	10	F3	E	0	01312	F	00000	T	4401
	000	06	10	F\%?	E	0	01312	F	00000	1	9404
	000	06	10	F3	E	0	01370	F	00000	I	- 721
	000	06	10	F2	E	0	01392	1	00000	T	6424
	000	06	10	F3	E	0	0140 B	1	00000	1	0120
	000	06	12	F2	W	0	01428	r	00000	T	7428
	000	06	12	K1		0	01505	F	00000	$\stackrel{T}{T}$	74 35
CF	062	06	12	F1		0	01631	$\stackrel{F}{ }$	00000	T	${ }^{7} 446$
TA	064	06	12	F1		0	01650	F	00000	\dagger	9449

At Time 22 minutes 47 seconds, the reason for signpost code $(13,21)$, which is an invalid code, cannot be explicitly determined. It is thought to be a power transient in the auxiliary generator. This and other occurrences of invalid code had no influence on the test results since only one invalid code was recorded at a TSC checkpoint, and this occurrence (CP 18 during Run 8) was automatically screened out by the data processing screening algorithm in exactly the same manner as that proposed for use in Phase II. It should be noted that only 9 out of 11,476 records on Run 7 contained an invalid data record signpost code, 0.078 percent. It should be noted that, during use of CPMAIN, only 1 of 1,563 samples required use of the screening algorithm, 0.064 percent compared to the allowable 2 percent.

4. RANDOM ROUTE DA TA PROCESSING

The processing of random route data was accomplished in three parts by the three computer programs depicted in Figure 4-1. Program CPMAIN was used to compute LS location errors at TSC checkpoints. Program RRSL was used to compute AVM System Level errors at pseudo checkpoints which were representative of a simulated polling interval of 20 seconds with a simulated communication system error rate of 5 percent. Program RRTEN was used to compute the average location error over each one-tenth mile segment of the random route.

4.1 SAMPLE SIZE

The end result of Phase I was directed toward evaluating the performance of the HI^{3} LS and AVM system. The performance specifications were stated in terms of 95 and 99.5 percentile values of the data samples. The sample space for the random route tests was selected by TSC to be representative of a typical urban environment which covered approximately 40 square blocks of downtown Philadelphia (previously shown in Figure 3-12).

In the HI^{3} proposal and in the HI^{3} memorandum to TSC of April 15, 1976, HI^{3} addressed sample size requirements in terms of 2σ and 3σ values, based on the normal distribution. In actuality, the 2σ value of the normal distribution is the 97.7 percent point and the 3σ value is the 99.87 percentile value. Thus, if a sufficient number of samples were obtained to reflect the 2σ and 3σ values accurately, then the 95 and 99.5 percentile requirements should have automatically been satisfied, provided that the sample size is sufficiently large to invoke the law of large numbers; e.g., the ultimate normality of the distribution in question. Use of the 2σ and 3σ values allowed explicit mathematical expressions to be used in deriving the required sample size under the assumption that, in the limit, the distribution of location errors approaches the normal distribution.

In order to arrive at an explicit formulation, normality of the HI^{3} location error density function was assumed. As noted subsequently, Phase I tests showed that this assumption was not strictly valid.
HI^{3} rationale for use in the 2α and 3α values in determining sample size was based on Mood, Introduction to the Theory of Applied Statistics, (McGrawHill, 1950) p. 214.

FIG. 4-1 RANDOM ROUTE DATA PROCESSING

Following Mood, and assuming that the radial error is normally distributed with mean α_{1}, and variance α_{2}, the distribution can be written as

$$
\mathrm{f}\left(\mathrm{X} ; \alpha_{1}, \alpha_{2}\right)=\frac{1}{\sqrt{2 \pi \alpha_{2}}} \mathrm{e}-\left(\frac{1}{2 \alpha_{2}}\right)\left(\mathrm{X}-\alpha_{1}\right)^{2}
$$

Then the estimators of α_{1} and α_{2} are given by

$$
\begin{aligned}
& \hat{\alpha}_{1}=\frac{1}{\mathrm{~N}} \sum \mathrm{X}_{\mathrm{i}} \text { (mean estimate) } \\
& \hat{\alpha}_{2}=\frac{1}{\mathrm{~N}} \sum\left(\mathrm{X}_{\mathrm{i}}-\hat{\alpha}_{1}\right)^{2} \text { (variance estimate) }
\end{aligned}
$$

In accordance with the theorem, these two estimates will themselves be normally distributed for large samples. It can be shown that the exact distribution of $\widehat{\alpha}_{2}$, the variance estimator, approaches the normal form,

$$
f\left(\hat{\alpha}_{2} ; \mu_{\mathrm{s}} \sigma_{\mathrm{S}}\right)=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{\frac{2}{n}} 2 \alpha_{2}} \text { e } \frac{-\left(\hat{\alpha}_{2}-\alpha_{2}\right)^{2}}{2 \alpha_{2}^{2} \sqrt{\frac{2}{n}}}
$$

Thus, as n becomes large, the sample standard deviation σ_{S} of the distribution of $\hat{\alpha}_{2}$ becomes

$$
\begin{equation*}
\sigma_{s}=\sqrt{\frac{2}{n}} \alpha_{2} \tag{4-1}
\end{equation*}
$$

and the sample mean, μ_{S} of the distribution of $\hat{\alpha}_{2}$, becomes α_{2} where α_{2} is the variance of the parent distribution ($\sqrt{\alpha_{2}}$ would then be the parent distribution's standard deviation). Use of equation $4-1$ allows us to bound the sample σ_{S}. For example, assume that there will be no more than 0.26 percent chance that the standard deviation, σ_{S}, of the sample distribution differs from the standard deviation, $\sqrt{\alpha_{2}}$, of the parent distribution by more than X percent. Then we want

$$
P\left\{\left[(1-X) \sqrt{\alpha}_{2}\right]^{2} \leq \sigma_{S}^{2} \leq\left[(1+X) \sqrt{\alpha_{2}}\right]^{2}\right\} \geq(1-0.0026)=0.9974
$$

or

$$
\mathrm{P}\left\{(1-\mathrm{X})^{2} \alpha_{2} \leq \sigma_{\mathrm{S}}^{2} \leq(1+\mathrm{X})^{2} \alpha_{2}\right\} \geq 0.9974
$$

Thus, we want $\sigma_{s}{ }^{2}$, the sample variance, to be within a specified percentage of α_{2} the parent distribution's variance, 99.74 percent of the time.

If $\mathrm{X}=15$ percent, then

$$
\mathrm{P}\left\{.7225 \alpha_{2} \leq \sigma_{\mathrm{S}}^{2} \leq 1.3225 \alpha_{2}\right\} \geq 0.9974
$$

This is true if the 3 sigma value of the sample distribution, $3 \sigma_{S}$, is less than $0.2775 \alpha_{2}$.

$$
3 \sigma_{\mathrm{s}}<0.2775 \alpha_{2}
$$

By substituting from Equation 4-1, then

$$
3 \sqrt{\frac{2}{n}} \alpha_{2}<0.2775 \alpha_{2}, \quad \text { or } \quad n \quad>\frac{18}{\left(1-(1-\mathrm{X})^{2}\right)^{2}}
$$

and, subsequently solving for n gives the required sample size, n, for the standard deviation of the sample population to differ from the standard deviation of the parent population by no more than 15 percent.

In this case

$$
3 \sqrt{\frac{2}{n}}<0.2775 \quad n \quad>\frac{18}{\left(1-(1-.15)^{2}\right)} 2
$$

and

$$
\mathrm{n}>233
$$

This statement also holds for the $2 \sigma_{S}$ value of the sample population. The data in the following table indicate the number of independent samples, n, necessary to assure that the sample 2σ differs from the actual 2σ by no more than X percent with a confidence of 99.74 percent.

X(Percent Error ${ }^{\prime}$ in $\left.2 \sigma_{\mathrm{s}}\right)$ of the sample	N (Number of Samples)
0.20	139
0.15	233
0.11	416
0.10	499
0.05	1894

Therefore, 499 independent samples will verify with 99.74 percent confidence that the sample $2 \sigma_{\mathrm{S}}$ will deviate from the actual 2^{σ} by no more than 10 percent.

In order to relate the sample size more directly to the AVM specification and to minimize the dependence of the analysis on an assumed density function, MITRE and TSC investigated the use of a non-parametric approach. The basis for this approach was simply that a sample would pass an accuracy requirement with a probability p (and fail with a probability of 1-p). Then in a set of repeated Bernouilli trials, the probability that a specific number of data points (r) out of a sample of size (n) do not meet the accuracy requirement can be represented by the binomial probability distribution $e(n, r, p)$:

$$
e(n, r, p)=\frac{n!}{r!(n-r)!}(1-p)^{n-r} p^{r}
$$

where

$$
\begin{aligned}
& \mathrm{n}=\text { sample size } \\
& \mathrm{r}=\text { number of unsuccessful samples } \\
& \mathrm{p}=\text { the system error probability }
\end{aligned}
$$

The probability that at least r unsuccessful data points will occur is represented by the cumulative binomial probability distribution $E(n, r, p)$:

$$
\mathrm{E}(\mathrm{n}, \mathrm{r}, \mathrm{p})=\sum_{\mathrm{x}=\mathrm{r}}^{\mathrm{n}} \mathrm{e}(\mathrm{n}, \mathrm{x}, \mathrm{p})
$$

Using "Tables of the Cumulative Binomial Probability Distribution" published by the Computation Laboratory of Harvard University in 1955, - TSC generated Table 4-1. Sample sizes from 50 to 1000 were considered. For each sample size, a value of r was selected such that the Type I error* was as near to 0.05 as could be obtained from the cumulative binomial distribution tables. This was to insure that the probability of rejecting a good system was only 5 percent. The column of Type I errors in Table 4-1 corresponds to a 95% system, one which has a system error probability p_{0}, equal to 0.05 . For example, for $n=300$, the system will fail the test if the test sample contains 22 or more unsuccessful data points (22 or more samples with errors equal to or exceeding 300 feet). Thus, there is a 0.049 probability (Type I error) that an actual 95 percent system will fail the test.

However, of equal concern is the Type II error. For example, Table 4-1 shows that for $n=300$ there is a 0.05 probability (Type II error) that a 90 percent system (one with an error rate of $p_{1}=0.1$) will pass the test and a 0.56 probability that a 93 percent system ($p_{1}=0.07$) will pass the test.

[^1]TABLE 4-1 TYPE I (δ) AND TYPE Π (β) ERRORS FOR VARIOUS SAMPLE SIZES

No. of Samples n	No. of Failures r	$\begin{aligned} & \text { Type I Error } \\ & \boldsymbol{\alpha} \\ & \mathrm{p}^{*}=.05 \end{aligned}$	Type II Errors for Values of $\mathrm{p}_{1}{ }^{* *}$				
			$\begin{gathered} \beta_{1} \\ \mathrm{p}_{1}{ }^{*}=.06 \end{gathered}$	$\begin{gathered} \beta_{1} \\ p_{1}=.07 \end{gathered}$	$\begin{gathered} \beta_{1} \\ \mathrm{p}_{1}=.08 \end{gathered}$	$\begin{gathered} \beta_{1} \\ p_{1}=.09 \end{gathered}$	$\begin{gathered} \beta_{1} \\ \mathrm{p}_{1}=.10 \end{gathered}$
50	6	. 038	. 92	. 86	. 79	. 69	. 62
100	9	. 063	. 85	. 64	. 59	. 45	. 32
200	16	. 044	. 85	. 67	. 46	. 28	. 14
220	17	. 051	. 83	. 63	. 41	. 22	. 11
260	20	. 039	. 85	. 64	. 40	. 20	. 09
300	22	. 049	. 81	. 56	. 30	. 13	. 05
340	25	. 037	. 83	. 57	. 30	. 12	. 04
380	27	. 044	. 79	. 50	. 23	. 08	. 02
400	28	. 047	. 77	. 47	. 21	. 06	. 01
420	29	. 052	. 76	. 44	. 18	. 05	. 01
460	32	. 04	. 78	. 46	. 18	. 05	. 01
500	34	. 045	. 75	. 40	. 14	. 03	. 005
550	37	. 044	. 74	. 38	. 12	. 02	. 003
600	40	. 042	. 73	. 35	. 10	. 02	. 002
650	43	. 04	. 72	. 33	. 08	. 01	. 001
700	45	. 054	. 66	. 26	. 05	. 005	. 000
750	48	. 051	. 66	. 24	. 04	. 004	. 000
800	51	. 048	. 65	. 23	. 04	. 003	. 000
850	54	. 046	. 65	. 21	. 03	. 002	. 000
900	57	. 043	. 64	. 19	. 03	. 001	. 000
1000	62	. 051	. 59	. 15	. 01	. 000	. 000

${ }^{*} p_{o}$ is the assumed failure rate of the system
${ }^{* *} p_{1}$ is the actual failure rate of the system

In contrast, if the sample size n were 600 , there would be only a 0.002 probability that a 90 percent system would pass the tests; however, a 0.73 probability would exist for a 94 percent system passing。

TSC developed a measure of Type Π error severity which it used in quantifying the effects of Type II errors in order to more clearly define the sample size requirements. This measure was

$$
\mathrm{M}_{\beta}=\sum \beta_{1} \frac{\left(\mathrm{p}_{1}-\mathrm{p}_{0}\right)}{0.1}
$$

where

$$
\left.\begin{array}{rl}
M_{\beta}= & \text { the measure of potential Type } \Pi \text { error severity for a given } \\
& \text { sample size }
\end{array}\right\} \begin{aligned}
\beta_{1}= & \text { the Type } \Pi \text { error assosiated with a system error probability } \\
& \left(\mathrm{e} . \mathrm{g} ., \quad 1=0.21 \text { for } p_{1}=0.08 \text { and } n=400 \text { from Table } 4-2 .\right) \\
p_{1}= & \text { system error probability } \\
p_{0}= & \text { maximum allowable system error probability. }
\end{aligned}
$$

The number of terms in the summation for M_{β} is equal to the number of p 's that have a Type II error of approximately 0.05 or more. For example, for 700 samples (reference Table 4-1).

$$
M_{\beta}=\frac{0.66 \times(.06-.05)+0.26(.07-.05)+0.5(.08-0.5)}{0.01}
$$

or

$$
M_{\beta}=1.3
$$

A plot of M_{β} versus (n) is shown in Figure 4-2. The sample size to be used is not clearly obvious since the knee of the curve is not well defined. However, the major bend in the curve is completed somewhere between 500 and 700 samples.

The results obtained by HI^{3} and the non-parametric results obtained by TSC were both indicative of a required sample size greater than 450 . This material, when weighed with the costs of requiring a much larger sample size (as a means of minimizing the Type I and Type $I I$ errors) resulted in TSC approving the following minimum sample size requirements.
Random Route Checkpoints 600
Fixed Route Checkpoints 600
Fixed Route Timepoints 450.

Test routes, checkpoints, and timepoints were selected by TSC as a means of assuring that these minimum sample sizes were realized.

Subsequent to the tests, HI^{3} analyzed test data to determine the actual distribution of the location subsystem errors. These data are presented in Section 10.

To insure that the samples are random, TSC chose the sample points (checkpoints) in the test area prior to the installation of the location subsystem. However, the location subsystem was installed by HI^{3} without knowledge of the checkpoint locations. To further insure that the samples were independent, the checkpoints were located more than 500 feet apart; consequently, the samples were independent at both time and space for a designed 300 -foot location system. Also, the samples were obtained during a number of random route tests taken on different days and at different times during the day. Performance of the tests at different times during the day resulted in the elimination of potential time of day biases (e.g., morning and evening rush hours) which might have been otherwise incurred.

In order to assure that the sample size was more than adquate, a total of 622 samples were taken during 10 test runs by using two different sets of TSC designated checkpoints. 622 samples corresponds to a 9 percent error in the $2 \sigma_{\mathrm{s}}$ of the sample.

4.2 RANDOM ROUTE DATA PROCESSING

Data processing of random route data involved (1) the determination of the vehicles actual location at each checkpoint spacified by TSC and (2) the calculation of the radial location error at each checkpoint by using the location subsystem calculated location. In addition, steps (1) and (2) were repeated at points separated by 20 seconds to simulate the Phase II polling scheme as well as communication errors.

4.2.1 Vehicle Actual Location at Checkpoints

The actual vehicle position was always assumed to be the X, Y coordinates of the checkpoint at the time the checkpoint event was recorded on the raw data tape. The actual vehicle location was determined from the CPTABL file contained in Table 4-2.

4.2.2 Vehicle Compated (Location Subsystem) Location

In the case of random route data processing at TSC checkpoints, the computed location of the vehicle was also determined directly from a table look-up in the Signpost File (SPTABL). As a result of HI^{3} pretest mapping and calibration, each possible 18-BIT location region code had been assigned a specific pair of stateplane coordinates. Figure 4-3 is an illustration of the algorithm used to determine the vehicle's computed (Location Subsystem) location.

TABLE 4-2 RANDOM ROUTE CHECKPOINT FILE (BASES FOR CPTABL)

$\begin{gathered} \text { Primary } \\ \text { CP\# } \end{gathered}$	State Plane Coordinates		Secondary CP	Staie Plane Coordinates	
	X (feet)	Y (fect)		$\chi($ feet $)$	Y (feet)
1	2728180	235705	1	2728183	235731
2	2727835	236136	2	2728277	236397
3	2727321	235782	3	2728354	237054
4	2726852	235848	4	2728150	237778
5	2726455	236268	5	2727969	237159
6	2726009	236222	G	2727830	236470
7	2725585	236389	7	2727140	236596
8	2725705	237100	8	2726918	236223
9	2726369	237383	9	2726427	235897
10	2727500	237204	10	2725645	236003
11	2728211	237127	11	2725618	236511
12	2728298	237738	12	2725771	237426
13	2727515	237919	13	2726509	237341
14	2726741	238159	14	2727500	237204
15	2727147	238153	15	2727910	236813
16	2727969	237159	16	2727860	236290
17	2727891	236661	17	2726451	236137
18	2726956	236572	18	2726530	236631
19	2726580	236988	19	2726600	237104
20	2726655	237544	20	2726693	237755
21	2726714	237933	21	2727090	237458
22	2727157	238093	22	2726981	236811
23	2726464	238014	23	2726545	236276
24	2725867	238275	24	2726046	236355
25	2726296	238232	25	2725646	236397
26	2726239	237764	26	2725745	237541
27	2726156	237203	27	2725867	238275
28	2726075	236713	28	2726247	237988
29	2725684	236934	29	2726102	236886
30	2725809	237838	30	2725730	237421
31	2726459	237919	31	2725813	237865
32	2727090	237702	32	2726638	237895
33	2726996	236930	33	2727090	237702
34	2726920	236239	34	2726996	236930
35	2726316	236285	35	2726453	236641
36	2725756	236411	36	2726147	236705
37	2725705	237100	37	2726044	236446
38	2725809	237838	38	2725994	235984
39	2726710	237886	39	2726267	237988
40	2727589	237840	40	2726714	237933
41	2727969	237159	41	2727121	237879
42	272744 4	236878	42	2727591	237859
43	2726958	236590	43	2728288	237464
44	2726580	236988	4.4	2728059	237803
45	2726102	236885	45	2727591	237859
46	2725996	236139	46	2726741	238159
47	2725553	236009	47	2727157	238093
48	2725585	236389	48	2727090	237458
49	2725705	237100	49	2726427	237006
50	2725809	237838	50	2726284	237063
51	2726239	237764	51	2725830	237115
52	2726507	237341	52	2726396	238232
53	2727055	237376	53	2726192	237484
54	2727715	237176	54	2726627	237326
55	2727891	236661	55	2726909	236376
56	2727837	236109	56	2726838	235874
57	2727561	235756	57	2726427	235897
58	2726865	235846	58	2725645	236003
59	2725988	235938	59	2725645	236003
60	2725988	235938	60	2726427	235897
61	2726865	235846	61	2727321	235782
62	2727561	235756	62	2728176	235673
63	2728176	235673			

FIG. 4-3 METHOD OF COMPUTING (LS) VEHICLE LOCATION IN RANDOM ROUTE TESTS

During the data reduction process, a "reasonableness" or screening algorithm was used to check the 18-BIT location region code recorded at each checkpoint for validity against the stored data base. If the code were not valid, that data record was rejected and subsequently printed out as a "bad data" record The table, SPTABL, of valid $18-$ BIT codes and X, Y coordinates was supplied to the TSC Monitor prior to recording and data processing, and the data became part of the computer data base. SPTABL is contained in Table 4-3. The X, Y locations of each checkpoint, relative to the closest intersection center, were also determined and supplied to the TSC Monitor prior to commencing the tests. Thus, all of the data listed in Tables 4-2 and 4-3 were supplied to the TSC Monitor prior to the actual test runs.

4.2.3 Vehicle Actual Location at Pseudo Checkpoints

During AVM System level data processing, Program RRSL, raw data on tape was used to take samples every 20 seconds. Each such sample, in order, was assigned a pseudo checkpoint number (PCP). The actual location of the vehicle at each PCP was determined through use of the fifth wheel in terms of the distance from a known location, Turn (TA) or Checkpoint (CP), and the passage of the vehicle was recorded on cassette by a manual entry. The algorithm used to determine the actual vehicle location at PCP's is shown in Figure 4-4. The geometry associated with this algorithm is illustrated in Figure 4-5.

Note that four possible situations can be used for locating a PCP
Between two successive CP's
Between two successive TA's
After a TA and prior to a CP
After a CP and prior to a TA.
The case illustrated in Figure 4-5 corresponds to (3) in which the PCP (the sample) occurred after a turn and prior to a checkpoint. As shown in Figure 4-4, the marking of turns (TA's) in no way affects the operation of the location subsystem or the AVM system. The sole function of the location subsystem is to determine, at the sample point (either checkpoint or pseudo checkpoint), the signpost location region code which, throagh the use of the SPTABL, uniquely determines the X, Y location assigned to the vehicle at the sample point. The turn event serves only as a means of establishing the vehicle's actual or reference location at those locations (pseudo checkpoints) which were not determined by physical measurement prior to the tests.

In summary, the TA and CP events, in conjunction with the 5 th wheel, determine the actual location of pseudo checkpoints. The signpost location region code associated with the pseudo checkpoint sample determines the AVM system and LS location.

TABLE 4－3 RANDOM ROUTE SIGNPOST FILE（SPTABL）

－ETEE 06．906．	－EYYE：	．FYTE 10．907．	，RYTE：12．0．07
5553.906009.	R1 6298． 0.0690.	R1 6379．907344．	R1 6523．907974．
R2S 55w	R2S 6298． 06690.	R2S 6352.007126.	R2S 6475.9097964.
	R2E 6298．，06690	R2E 6503． 07335.	R2E 6623．97965．
	R2N 6325．，06908	R2N6463．907\％以6．	R2N6523．y07974．
R2W5553．06009．R	R2W 6080．， 0670 \％．	R2W 6176．， 07358.	R2W6294．，07997．
R3S 5553．906009．	R3S 6 m98．0．0669	R3S 6339，07017．	R3S 64\％1．，》7699．
R3E 5988．905933．	R3E 6414．906661．	R3E 6503． 07335.	R3E 6623，07965．
R3N 5585．，06389．	R3N 6339．007017	R3N 6451．907659．	R3N6523．，07974．
R3W5553． 06009.	R3W 5771．， 067	R3W 6055． 0073	R3W6193．，080
－BYTE 06	－EYTE 08．908．	－EYTE 10．	，EYTE：
	R1 6530， 006631.	R1 6627．907326．	R1 6714．，07933．
R2S 642\％＊ッ05897．	R2S 6496.406306.	R2S 6595.907094.	
R2E 6725.905859	R2E 682 L .906590	R2E 6918．007285．	R2E 7006.007908.
R2N 646\％－D6Itar．	R2N 6562． 06862.	R2N 6056.07528.	R2N6742：， 08.141.
R2W 613 3 ． 405934.	R2W 6453．06051．	R2W6503．，07335．	R2W6623． $079765^{\text {a }}$
R3S 64？ 0.05897.	R3S 6465． 06266.	R3S 6580．906983．	R3S 6671．907630．
R3E 6865． 055846.	R3E 6956． 066572.	R3E 7055.907276.	R3E 71
R3N ó468．906266．	R3N 6580．006988．	R3N 6671．，07530．	R3N6739，y 08205．
R3W 5988． 0 0．5938．	R3W 6414．，06661．	R3W 6503.07335.	R3W6623．，07965．
－EYTE 06．9	，FYTE O8，	，EYTE 1．0．，IO．	
R1 7321．05782．	R1 7403．906509．	R1 7500．，07204．	R1 7591．，07859
R2S 7321． 0.05782.	R2S 7375．，0626\％．	R2S 7468．，05972．	R2S 7618．， 076
R2E 7606．905746．	R2E 769 ． 0 ， 6504.	R2E 7785.007154.	R2E $/ 834.07813$.
R2N 7348．006024．	R2N 7435．906741．	R2N7720．，07422．	R2N7591．y07959．
R2W 7023.005820.	R2W $711 \% .96550$.	R2W7209．，07245．	R2W7295．，07884．
R3S 732 L ． 05782.	R3S 7374．，06159．	R3S フ444．，06878．	R3S 7691 ，07532．
R3E 7779.05728.	R3E 7882． 906463	R3E 7969.07159	R3E7956．，07803．
R3N 7374．06159．	R3N 74，4．0．06578．	R3N $7691 . y$ ¢ 753 。	R3N7591．，07859．
R3W 6865．905846．	R3W 6956．906572．	R3W 7055.907275.	R3W7133．，07896．
＋EYTE：OS．y 1	，BYTV 09．y	－EYTE 10．912．	EYYE
R1 91．76．905673．	R1 8277． 206397.	R1 8354． 07054	R1 8321．90772．
R2S 8176．005673．	R2S 8243．0．0656．	R2S 8328．y0683\％．	R2S 8283．407499．
R2E 8176．，05673．	R2E 82ツ7．，06397．	R2E 8354．07054．	R2E8321．，07721．
R2N 8210．005914．	R2N 8303．，06616．	R2N 82．76． 07276	R2N8321．，07721．
R2W 7891． 405709.	R2W 7986．，06434．	R2W8069．，07104．	R2W8059．07803．
R3S 8176．005673．	R3S 82，41．，06069．	R3S 8336．006743．	R3S 8263．907388．
R3E 3176．905673．	R3E 8277．，06，397．	R3E 8354．，07054．	
R3N 8．41．906069．	R3N 8336．906743．	R3N 8263．，07388．	R3N8321．，0772 1.
R3W 7779.005728.	R3W 7385． 0 06463．	R3W7969．，071．59．	R3W7956．，078
－EYPE O8：，06．	．BYTE 10．906．	＋FYTE 12．06．	
R1 5644． 06738.	R1 5730．，07421．	R1 5837．．08045．	R1 5916．，08533
R2S 5619．0651\％	R2S 5701．，07192．	R2S 5801．，07837．	R2S 5881． 08456.
R2E 586\％．y06571．	R2E 5946．07395．	R2E 6065.08021.	R2E6201．，08626．
R2N 5673．906964．	R2N 5766．907629．	R2N 5859．908250．	R2N 59 Lo 。，08533．
R2W 564，． 06735.	R2W 5730．y 0748 c 1．	R2W5837．908045．	R2W：916． 08533.
R3S 5585．906389．	R3S 5705．，07100．	R3S 5784．907733．	R3S 587．1．08326．
R3E 5971． 9067 L	R3E 6055． 0707383.	R3E 6173.908011.	R3E63．39．08600．
R3N 5705．907100．	R3N 5784．y07733．	R3N 5871．908323．	R3N5916． 085 S 3.
R3W 5644， 0 06735．	R3W 5730.907421.	R3W5837． 08045	R3W5916． 08533.

TABLE 4-3 RANDOM ROUTE SIGNPOST FILE (SPTABL) (CONT'D)

FIG. 4-4 FIXED ROUTE LOCATION ERROR ALGORITHM

FIG. 4-5 USE OF TA AND CP EVENTS WITH 5TH WHEEL TO DETERMINE PSEUDO CHECKPOINT LOCATION

$$
4-16
$$

4.2.4 Vehicle Compated (AVM System) Location at Pseudo Checkpoints

As summarized in the previous paragraph, the random route vehicle's location, as computed by the AVM system, is always determined solely by the signpost location region code stored in the vehicle at the sample time. This identification is true whether the sample time is determined by a manual checkpoint entry or by offline sampling of the data recorded at half-second intervals.

4.2.5 AVM System Simulation

During the first pass through the recorded data, as shown in Figure 4-3, a pseudo checkpoint was selected every 20 seconds (40 records). This operation simulated the 20 -second polling interval proposed for Phase II. In addition, the effects of a base-to-vehicle-to-base communication link were simulated in terms of simulating a 5 -parcent communication error rate. This simulation was affected by selecting in a random manner, 5 percent of the pseudo checkpoints and by assuming that the base station detected an error in the polling response or did not receive a response. When such an error is detected, the proposed Phase II system would poll the vehicle in question during the next 1 -second guard-band time interval set aside for the transit route under consideration. For each route, this guard-band would occur within a maximum of two (2) seconds after the route poll began. Thus, within two seconds of detecting the error, the base station would poll the affected vehicle again. This was simulated by substituting the 18-BIT location code from the record occurring two (2) seconds (four records) further into the tape for the location code associated with the PCP. The proposed Phase II Polling scheme is illustrated in Figure 4-6 and was exactly simulated by the routine summarized in Figure 4-7.

In this simulation, the actual vehicle location is that computed for the original PCP. The AVM system location is the location region associated with the record (PCP) occurring two (2) seconds later.

A third routine, RRTEN, processed random route data to compute the average location error over 528 foot segments. This routine treats each sample record as a PCP, thereby prosessing approximately 9600 samples during each run.

4.3 RANDOM ROUTE DATA PROCESSING SOFTWARE

Random Route Data Processing Software was developed as three separate programs: (1) Random Route Location Subsystem Data Processor (CPMAIN), (2) Random Route System Level Data Processor (RRSL), and (3) Random Route One-Tenth Mile Average (RRTEN) routine. These programs were used to perform the data processing associated with the items discussed in subsection 4.2. Software was coded in FORTRAN IV for use on the HI^{3} PDP-11/05 computer and, after checkout, converted for running on the IBM 370/145 at MITRE.

FIG. 4-6 USE OF GUARD BAND TO POLL SPECIFIC VEHIC LES IN WHICH COMMUNICATION ERROR DETECTED

> | RANDOM NUMBER GENERATOR |
| :--- |
| 100 NUMBERS IRANUM(I) |
| GENERA TED AT RANDOM ON |
| THE INTERVAL I = $1-360$ |
| THESE 100 NUMBERS ARE |
| PART OF THE DATA BASE |
| FROM THIS SET OF RANDOM |
| NUMBERS, A SET OF 0.05 X 3 X T |
| NUMBERS WAS SELECTED TO |
| ACCOUNT FOR 5 PERCENT OF THE |
| PSEUDO CHECKPOIN TS (3 PER |
| MINUTE OVER THE RUN TIME T) |
| |
| DURING SYSTEM SIMULATION, |
| OCCURRENCE OF A PCP NUMBER, |
| NNNN, CORRESPONDING TO ONE |
| OF THE SELECTED RANDOM |
| ROUTE NUMBERS IRANUM CAUSED |
| THE LOCATION REGION SAMPLE |
| OCCURRING 2 SECONDS LATER ON |
| TAPE TO BE SUBSTITUTED FOR THE |
| ORIGINAL PCP'S LOCATION REGION |

ERROR (SYSTEM SIMULATION) =

$$
\sqrt{\mathrm{X}\left(\mathrm{SP} \text { at } \mathrm{PCP}^{\prime}\right)-\mathrm{X}(\mathrm{PCP})^{2}+\mathrm{Y}\left(\mathrm{SP} \text { at } \mathrm{PCP}^{\prime}\right)-\mathrm{Y}(\mathrm{PCP})^{2}}
$$

PCP $=$ ORIGINAL PSEUDO CHECKPOINT SAMPLE
$\mathrm{PCP}^{\prime}=$ SUBSTITUTE SAMPLE OCCURING 2 SECONDS LATER

FIG. 4-7 GENERAL METHOD FOR SIMULATING COMMUNICATION ERRORS

Figure 4-8 contains a flow chart of the CPMAIN routine used to process random roate checkpoint data. A complete FORTRAN listing and documentation of CPMAIN was submitted to TSC and MITRE. Section 5 contains output data from this program which were used to process HI^{3} Random Route Data Runs 1 through 10 The data base requirements for this routine are as follows:

1. SPTABL - X, Y state plane coordinates of each signpost location region 18-bit code
2. CPTABL - X, Y state plane coordinates of each TSC designated checkpoint (primary or secondary) (Table 4-1).

Figure 4-9 contains a flow chart of the RRSL routine used to process Random Ro^te AVM System level data. A complete listing and documentation of RRSL was also provided to TSC and MITRE. Section 5 contains oatput data from this routine. In addition to SPTABL and CPTABL, this routine involves the use of TPTABL, and the X, Y state plane coordinates of each run on TSC designated primary and secondary random routes.

The overall methodology of the HI^{3} software, including data recording, data handling, and data processing is shown in Figure 4-10.

FIG. 4-8 FLOW CHART OF CPMAIN

FIG. 4-9 FLOW CHART OF RRSL

FIG. 4-9 FLOW CHART OF RRSL (CONT'D)
 ORDERED ERRORS AVERAGE ERRORS STANDARD DEVIA TION BAD RECORDS

AVM SYSTEM LEVEL DATA PROCESSING
FIG. 4-10 RANDOM ROUTE DATA PROCESSING SOFTWARE

5. RANDOM ROUTE TEST RESULTS

The results obtained by processing Random Route Runs 1 through 10 by use of data processing routines CPMAIN, RRSL, and RRTEN are presented in this section. Location error data, associated with the location subsystem in which TSC checkpoints are the reference, are shown separately from the data associated with pseudo checkpoints that represent AVM System Level errors. In each instance, however, the error incurred at each individual checkpoint and the statistics of the errors are presented. The results obtained for both the location subsystem and the AVM system simulation presented in this section are summarized in the following table.

SUMMARY OF RANDOM ROU TE TEST RESULTS

	Location Subsystem	AVM System
	622	2235
No. of Samples	91 Feet	114 Feet
Average Error 95% Error	242 Feet	289 Feet
99.5\% Error	461 Feet	460 Feet
\% Samples Less than 300 Feet \% Samples Less than 450 Feet	97.26	95.66

The impact of simulating 5 percent communication errors was negligible.

Maximum average error over any $1 / 10$ th mile segment was 315 feet.

5.1 LOCATION SUBSYST EM ERRORS

The location errors incurred at each Primary Checkpoint on each of Runs 1 through 5 are presented in Table 5-1. Of the 313 samples (CP 30 on Run 1 was not processed because it was incorrectly entered and CP 18 on Run 3 was screened out because of an invalid signpost code; refer to Subsection 3.7). Of the 313 samples, the error for 11 samples exceeded 300 feet and the error for 6 samples exceeded 450 feet. Thus, for TSC Primary Checkpoints, Runs 1 through 5 , the following error statistics were obtained:

95 percent of samples were less than 245 feet
99.5 percent of samples were less than 466 feet
TABLE 5－1 LOCATION SEBSYST EM ERRORS AT PRIMARY CHECKPOINTS

31	0000			3	$===$
$\stackrel{1}{1}$		7	圭佥 $0=0$	3	
\bigcirc		3	コロのロコ	\cdots	
\sim	00100	\％	두ำ	E	ミロ ヨ
\bigcirc		3.	$\infty \infty$	合	ミロバき
\bigcirc	0000 J	$\stackrel{0}{0}$	渞说会会说	6	$=0_{0}^{\circ}$
12	00000	\％		动	
\pm	윤ํํํํ	${ }_{3}^{3}$		洨	
$\stackrel{9}{-}$		7		is	
\sim		\％ 3	Osce＝	阿	$\sum_{i 1}^{=} \sum_{i 1} \mathfrak{\sim}$
7	成	$\hat{¢}$	$\bigcirc \underset{1}{7} \times \underset{+1}{7}$	\％	－ 0×12
안）	$000=0$	7		is	にールー
－	어아 울운	8	，n $\sum_{0}^{2} \sum_{1}^{\infty}$	13	
x		3		방	
$1-$	O 0000	6		$三$	
0	通鹍	8		－	O0＝0
is				$\stackrel{\square}{7}$	
＋		\％		\bigcirc	
\cdots	$0 \sim 0$			－	
\sim		樓	にここた下	$=$	
$-$		$\therefore 1$		？	ニュュ2์
	－9010－10		－$=1 \because$ \％		－$\because=-10$

Maximum average error over one-tenth mile segment: 315 feet.

Individual output error statistics obtained by use of CPMAIN for Runs 1 through 5 are contained in Tables 5-2 through 5-6. Figure 5-1 is a plot of the error histograms for each of these runs and Figure 5-2 is a plot of the error histogram for all five primary runs, as well as a cumulative error distribution based on all five runs. The 95 percent and 99.5 percent points are indicated on the cumulative distribution. Note that a number of errors are zero. This zero error condition is obtained because of the discrete nature of the HI^{3} location subsystem. Generally, the X, Y location coordinates assigned to a location region are coordinates of the center of the nearest intersection. Thus, in those cases in which the TSC checkpoints were associated with the center of an intersection, the resulting error may be zero. (Note: The X, Y stateplane coordinates of intersections in central Philadelphia was provided to HI^{3} by TSC.) These coordinates were generated by MITRE through the process of digitizing the intersections of a 2000:1 scale map of Philadelphia. The stated error of this process was 40 feet RMS.

Table 5-7 contains a list of the location errors incurred at each Secondary Checkpoint on each of Runs 6 through 10. Of these 309 samples (CP 18 was missed on Run 8), only 6 exceeded 300 feet and only one exceeded 450 feet. For Runs 6 through 10, the following error statistics were obtained:

95 percent of samples less than 242 feet
39.5 percent of samples less than 411 feet

Average error was 73 feet.
Maximum average error over one-tenth mile segment: 234 feet.
Individual output error statistics obtained using CPMAIN for Runs 6 through 10 are contained in Tables $5-8$ through $5-12$. As a result of a bad cassette on Run 10, CPMAIN was unable to process the last 21 checkpoints of Run 10. However, a dump of this cassette was obtained by using the CAPS operating system. The first 41 were processed successfully. The last 21 were processed manually as follows:

1. Read location region code at each checkpoint from the dump of Run 10
2. Manually look up X, Y coordinates from signpost data base SPTABL
3. Manually look up X, Y coordinates of secondary checkpoint from CPTABL

TABLE 5-2 RANDOM ROUTE ERROR STATIS TICS, RUN 1

EFFOFF FI EFFROF INTEFVAL			QUENCY I NURAEF	ENSITY FEFECENT
			FOIMTS	OF FOINTS
	0-	- 25	21	33.87\%
	25-	- 50	7	11. 29%
	$50-$	- 75	3	4.84\%
	75-	- 100	3	4.84\%
	100-	- 125	1	1.61\%
	125-	- 150	6	9.68\%
	150-	- 175	11	17.74\%
	175	- 200	1	1.61\%
	200-	- 225	6	9.68\%
	225-	- 250	2	3.23\%
	450-	- 475	1	1.61\%
Cumulative EfFiofis				
EFFOF	:	EFFiOFS	F'EFCENT	
FEET		T FEET	EFIFIORS	
0		13	20.97\%	
25		21	33.87\%	
50		29	46.77\%	
75		31	50.00%	
100		34	54.84\%	
125		3'3	56.45\%	
150		41	66.1.3\%	
175		52	83.87\%	
200		53	85.48\%	
225		59	95.16\%	
250		61	98.39\%	
475		62	100.00\%	

TABLE 5-3 RANDOM ROUTE ERROR STATISTICS, RUN 2

EFFEOR	Noy	
Wrofi	IUMBEF	PEFCENT
INTEFVAL	FOINTS	OF FOI

$0-$	25	22	34.92%
25	50	6	9.52%
$50-$	75	3	4.76%
75	100	3	4.76%
$100-$	125	1	1.54%
$125-$	150	6	9.52%
$150-$	175	9	14.29%
200	225	7	$11.1 .1 \%$
$225-$	250	4	6.35%
$350-$	375	1	1.57%
$450-$	475	1	1.59%

CIM㑆ATIUE EFFOFS
EFROF: A EFFOFS FUHCENT FEET LT FEET EFFOFS

0	14	22.22%
25	22	34.92%
50	29	46.03%
75	31	$49.2 .1 \%$
100	34	63.97%
125	35	55.56%
150	41	65.08%
175	50	79.37%
225	57	90.48%
250	61	96.83%
375	62	93.41%
475	63	100.00%

TABLE 5-4 RANDOM ROUTE ERROR STATISTICS, RUN 3

EFFOF FFFQUENCY IENSITY	
EFROR	NUMREF FEFCENT
INTEFUAL	FOTNTS OF FOINTS

$0-$	25	20	31.75%
$25-$	50	5	7.94%
$50-$	75	4	6.35%
$75-$	100	4	6.35%
$100-$	125	1	1.59%
$125-$	150	6	9.52%
$150-$	175	11	17.46%
$200-$	225	7	11.11%
$225-$	250	4	0.35%
$450-$	475	1	1.59%

CUMULATIVE EFFROFS
EFFROR A EFRORS FEFCEINT
FEET IT FEET EFHORS

0	13	20.63%
25	20	31.75%
50	25	41.27%
75	29	46.03%
100	33	52.38%
125	34	53.97%
150	40	63.49%
175	51	80.95%
225	58	92.06%
250	62	98.41%
475	63	100.00%

$0-$	25	21	32.31%
$25-$	50	4	6.25%
$50-$	75	3	4.69%
$75-100$	1	1.55%	
$100-$	125	2	3.12%
$125-150$	7	10.94%	
$150-$	175	8	12.50%
$175-$	200	2	3.12%
$200-$	225	0	9.37%
$225-$	250	4	6.25%
$275-$	300	1	1.55%
$350-$	375	2	3.12%
$425-$	450	1	1.55%
$450-$	475	1	1.65%
$550-$	575	1	1.55%

CUMULATIUE EFFFOFS
EFROF T EFFORS FEFCENT FEET LT FEET EFFFORS

0	1%	23.44%
25	21	32.81%
50	26	40.62%
75	28	43.75%
100	27	45.31%
125	31	48.44%
150	38	57.37%
175	46	71.87%
200	48	75.00%
225	54	54.37%
250	58	90.62%
275	59	92.19%
375	61	95.31%
450	62	96.8%
475	63	98.44%
575	64	100.00%

FIG. 5-1 RANDOM ROUTE LOCATION SUBSYSTEM ERRORS, RUNS 1-5

FIG. 5-2 RANDOM ROUTE LOCATION SUBSYSTEM ERRORS, RUNS 1-5
TABLE 5－7 LOCATION SUBSYSTEM ERRORS AT SECONDARY CHECKPOINTS

2	00000		00000		
8		7		잉	
9	呙号号品号号刮	앙	00000	\cdots	
\pm	00188	9	のミミのに	8	00
\bigcirc		\％		\％	성 상 잉 削
\bigcirc	으으으으은	$\stackrel{\text { ch }}{ }$	¢ $8 \times \infty$	앙	잉잉ㅇㅇㅇㅇㅇㅇ
9	00000	9	贰豆豆畐司	约	－
\pm	0000	10	통으․	涌	
\cdots	$\infty \infty \infty$	3	00000	觡	00
$\stackrel{\sim}{\sim}$	7 7 7 7 7	¢	우옥우역우	勀	0000
\exists	$\bigcirc 0$ 込 0 刮	$\stackrel{y}{0}$		3	$\vec{\infty} \vec{\infty}$ ल्लेख
\bigcirc	앙 앙 성ㅇㅇㅇㅇㅇㅇㅣ	¢	$\underset{\sim}{x} \underset{\sim}{\infty} \underset{\sim}{\sim} \times \underline{\sim}$	人，	운웅군
σ	00000	\％	00000	1.	䍓号毕年
∞		9		8	우룽우윽
\cdots		${ }_{0}^{0}$		\％	0000
\bigcirc		ה		x	$=$
－		\％	웍용웍앙	$\stackrel{7}{7}$	888 8
$+$	$\stackrel{\sim}{\sim}$	㫛	30389\％	\bigcirc	우우우ํ
\cdots	00000	तi）	요요1웅우의	12	0000
\sim	00000	9		7	000 स
－		人̀	ㅋㅋㅋㅋㅋㅋㅋㅢ	9	
	ormas		$0 \sim x a 0$		$\cdots \mathrm{A}=0$

TABLE 5-8 RANDOM ROUTE ERROR STATISTICS, RUN 6

EFFFOF FFEEQUETSCY LENSITY		
EFFFOR	NUPIBEF	FEECEENT
INTEFIVAL	FOINTS	OF FFOIN

$0-$	25	26	41.94%
$25-$	50	8	12.90%
$50-$	75	5	8.06%
$75-$	100	8	12.90%
$100-$	125	3	4.84%
$125-$	150	1	1.61%
$150-$	175	3	4.84%
$175-$	200	5	8.06%
$225-$	250	1	1.61%
$275-$	300	1	1.61%
$400-$	425	1	1.61%

CUMULATIVE EFFROFS

EFFiCR	: EFFFOFS	FEFECENT
FEET	L.T FEET	EFifiOFS

0	22	35.48%
25	27	43.55%
50	35	56.45%
75	39	62.90%
100	47	75.81%
125	50	30.55%
150	51	82.26%
175	54	87.10%
200	50	95.16%
250	60	95.77%
700	61	90.29%
425	62	100.00%

TABLE 5-9 RANDOM ROUTE ERROR STATISTICS, RUN 7

TABLE 5-10 RANDOM ROUTE ERROR STATISTICS, RUN 8

EFFROF FFEOUENCY IENSITY	
EFFOR	NUMBEF FERCENT
INTEFUAL	FOINTS OF FOINTS

$0-$	25	25	40.98%
$25-$	50	7	11.48%
$50-$	75	7	11.48%
$75-$	100	8	13.11%
$100-$	125	1	1.64%
$150-$	175	3	4.92%
$175-$	200	4	6.56%
$225-$	250	3	4.92%
$250-$	275	1	1.04%
$300-$	325	1	1.64%
$400-$	425	1	1.64%

CUMULATIVE EFFROFS
EFFOR \# EFRORS FEFCENT
FEET I..T FEET EFFORS

0	21	34.43\%
29	26	A2. 22%
50	33	54.10\%
75	39	6. 6.93%
100	47	77.05\%
125	48	75.69\%
17:3	5	8\%. 61%
200	55	70.16\%
225	56	91. 80%
250	58	96.72\%
325	60	98.36%
425	6.1	1.00.00\%

$0-$	25	26	41.27%
2 C	50	5	7.94\%
50-	75	7	11.11\%
75.	100	9	14.29\%
100	125	2	3.17\%
12 y	100	2	3.17\%
1:50-	17'	3	4.76\%
17 '-	200	6	9.52\%
225-	250	1	1.55\%
250	275	1	1. 5.5%
9090-	0975	1	1.59\%

Cumbrave Effors
EREOE A EFRCRS FEFCENT

0	20	31.75%
20,	26	A1.27\%
\%	32	50, 70\%
\%	36	60.22\%
106	4	\%4.60\%
12 O	*9	7\% 78%
150	4.	80, 95%
13		85.71\%
200	60	95.2.2\%
2 O	6 L	$56+53 \%$
2 F	6	98. 4.1%
89	63	100.00\%

TABLE 5-12 RANDOM ROUTE ERROR STATISTICS, RUN 10

$0-$	25	12	28.57%
$5-$	50	5	11.90%
$50-$	75	3	7.14%
$75-$	100	6	14.29%
100	125	1	2.38%
125	150	2	4.76%
$150-$	175	4	9.52%
$175-$	200	2	4.76%
$225-$	250	2	4.76%
$250-$	275	1	2.38%
$275-$	300	1	2.38%
$350-$	375	1	2.38%
375	100	1	2.38%
$350-1375$	1	2.38%	

clmulative EFFROFS
EFROFX \quad EFFORFS FEFREENT
FEET LT FEET EFFFORS

0	9	21.43%
25	13	30.95%
50	17	40.48%
75	20	47.62%
100	26	61.90%
125	27	64.29%
150	29	69.05%
175	33	78.57%
200	35	63.33%
225	36	85.71%
250	33	90.48%
300	35	92.36%
375	40	95.24%
400	41	97.52%
137%	42	100.00%

$$
\operatorname{ERROR}(C P)=\sqrt{(X(S P)-X(C P))^{2}+(Y(S P)-Y(C P))^{2}} .
$$

Table 5-13 contains the results obtained by using CPMAIN to compute the location error at CP 1 through CP 41 and manual computation necessary to compute the location error at CP 42 through CP 62. The tabular results obtained for all random route runs are contained in the Appendix.

Figure 5-3 contains error histograms of the results obtained during each of Runs 6 through 10. Figure 5-4 is an error histogram for Runs 6 through 10 combined and a cumulative error distribution.

Figure 5-5 contains the overall results obtained diring Runs 1 through 10 inclusive, in terms of the frequency of errors over 25 -foot error intervals and the cumulative error distribution for all 622 samples .

It is significant to note that, of the 6 errors which exceeded 450 feet, three occurred at the same location, CP 6 on Run 1 and Run 5 and CP 46 on Run 5 (primary checkpoints 6 and 46 were at the same location). In each of the cases, analysis of the cassette dumps shows that a Region 1 from signpost $(15,13)$ was not received, even though the test vehicle passed within 40 feet of the signpost just prior to approaching the checkpoint. Subsequent to the completion of Runs 1 through 5, it was determined (refer to Section 3 for details) that the vehicle unit clock frequency had been slightly maladjusted and caused a slight degradation in the ability of the unit to lock up on all signposts as their FSK changed (within design tolerance) as a function of temperature. This phenomenon was noticed as the temperature was rapidly dropping towards freezing during Run 5. Prior to Run 6, the vehicle unit clock frequency was correctly set. Subsequent test runs were made in temperatures as low as $8^{\circ} \mathrm{F}$, following overnight low temperatures of $0^{\circ} \mathrm{F}$.

This adjustment reduced the location subsystem error significantly, i.e., whereas Runs 1 through 5 incurred 5 errors, exceeding 450 feet, Runs 6 through 10 incurred only 1 such error, and whereas Runs 1 through 5 incurred 11 errors exceeding 300 feet, Runs 6 through 10 incurred only 6 such errors.

5.2 RANDOM ROUTE AVM SYSTEM ERRORS

The results obtained by processing Random Route Runs 1 through 10 by use of data processing routine RRSL are presented in this subsection. Location errors associated with the HI^{3} AVM System in which pseudo checkpoints serve as the reference are also presented. Pseudo checkpoints were determined by simulating a 20 -second polling interval. This simulation was affected by selecting every 40 th data record from the test data. The methodology for computing the reference location at each pseudo checkpoint is described in paragraph 4.2.3.

TABLE 5－13 TABULAR LISTING OF LOCATION SUBSYSTEM ERRORS，RUN \＃ 10

1.1	\therefore ¢I．F，	（ (CF)		Fiftoiolid	そ（，）	引（．1）	1 ¢ ¢ ¢ ，
1	6163	＇sisil	6,12	F 1	3176	$\therefore \therefore 73$	58
？	ロッフ7	－ $3: 7$	8，1？	F1	9217	6.997	\bigcirc
7	\％ 3 ¢	7054	10．12	F1	3354	Or．	0
9	6150	7778	12.12	F1	83．21	フ721	180
5	7969	7159	17，16	F2S	7937	7283	128
44	4059	7803	15.16	F 3 W	7882	6463	1351
6	7830	6470	15，16	F 2 N	7882	6463	52
7	7110	6596	8，10	「1	7403	6.509	277
8	6919	＜223	15.15	R1	6909	6376	153
c	6927	5697	6， 8	R1	6427	5897	0
10	\％461	6021	6， 6	K1	5553	6009	92
11	5618	6511	8， 6	K1	5644	6735	225
12	5771	7126	10， 6	F1	5730	7421	41
13	6509	73．41	10， 8	FこW	6503	7335	8
14	7500	7204	10，10	K1	7500	7204	0
15	7910	6813	16.16	K1	7910	6813	0
16	7360	6290	15，16	K1	7856	6280	10
17	6451	6137	6． 8	F1	6427	5897	241
38	6530	6631	8， 8	F3S	8468	6266	370
19	6600	7104	10， 8	K2W	6503	7335	250
20	6593	7755	12， 8	F：2S	6685	7731	25
21	7090	7458	17．15	R1	7090	7458	0
22	6981	6811	16．15	R1	6996	6930	119
23	6545	6276	15，14	F 2 E	6468	6266	77
24	6046	6355	15，13	K1	¢C2b	＋35．8	20
25	5646	6397	15，11	Fize	5゙0	6417	139
26	5745	7541	10，6	N：2N	5780	7629	90
27	5367	8275	14， 6	F38	5271	85.26	51
29	6247	7938	12， 8	R．7W	8123	7965	376
29	6102	6886	14.13	R1	－122	7042	157
30	5730	7421	10．6	R1	5730	7421	0
31	5813	78ก5	12， 6	Fil	9837	8045	181
32	cis38	7895	12， 8	K1	6714	7933	84
33	－9\％0	7702	17，15	R2N	7083	7062	40
＊ 3 ？	6903	6930	16.15	Kil	6896	6930	0

CT1：FIUNO10．001

35	c 153	ót 41	8， 8	だ3W	6414	＜661	43
ぶっ	6147	¢ 705	8.7	K1	6298	6690	151
37	60¢1	64.16	15．13	K1	6026	6358	89
38	5904	5984	15，13	F2S	5996	6139	155
39	E26\％	7988	12， 6	K3E	6193	8011	77
40	6714	7933	12， 8	K．1	6714	7933	0
41	7121	7879	19，15	N゙2S	7135	7922	45
42	7591	7859	12， 10	R1	7591	7859	0
43	8288	7464	10， 12	R3N	823	7388	80
44	8059	7803	12， 12	R1	8321	7721	274
45	7591	7850	12， 10	R1	7581	7859	0
46	6741	8150	12， 8	R2W	6823	7965	227
47	7157	8093	19， 15	R1	7147	8153	60
48	7090	7458	17， 15	R1	7090	7458	0
49	6427	7006	16， 14	R1	6427	7006	0
50	6284	7063	8， 7	R2N	6325	6908	160
51	5820	7115	16， 13	R3W	5837	7071	47
52	6296	8232	19， 13	R1	6300	8282	50
53	6192	7484	17， 13	R1	6219	7561	81
54	6627	7326	10， 8	R1	6627	7326	0
55	6909	6376	15， 15	R1	6909	6376	0
56	6838	5874	6， 10	R2W	7023	5820	192
57	6427	5897	6，18	R1	6427	5897	0
58	5461	6021	6，16	R1	5553	6009	92
59	5461	6021	6， 6	R1	5553	6009	92
60	6427	5897	6， 8	R1	6427	5897	0
61	7321	5782	6， 8	R3E	6035	5846	460
62	8178	5673	6，12	R1	8176	5673	0

FIG. 5-3 RANDOM ROUTE LOCATION SUBSYSTEM ERRORS, RUNS 6-10

FIG. 5-4 RANDOM ROUTE LOCATION SUBSYSTEM ERRORS, RUNS 6-10

FIG. 5-5 RANDOM ROUTE LOCATION SUBSYSTEM ERRORS, RUNS 1-10

Individual listing of pseudo checkpoint errors for Runs 1 through 10 are presented in the Appendix. However, for illustration, Table 5-14 contains a copy of the RRSL output listing for Run 10. This listing represents the first pass through the program which simulates the 20 -second polling interval but does not simulate communication errors. Table 5-15 contains the error statistics for these data as well as those for the results obtained when a 5 -percent communication error was to shift one error from the $50-75$ foot interval to the $325-350$ foot interval.

Figures 5-6 through 5-15 contain error histograms and cumulative error distributions of Random Route AVM System Errors for Runs 1 through 10. As in the case of Location Subsystem data processing of Run 10, the last portion (CP 41 to end of tape) of the run was processed manually. In Figures 5-6 through 5-15, the solid lines represent the results obtained with no communication errors simulated. Where a difference occurred, a dashed line has been used to represent the results obtained when a 5 -percent communication error rate was simulated. Note that, in general, this difference is hardly perceptible.

Table 5-16 contains a summary of the Random Route AVM System error statistics for Runs 1 through 10. Note that Run 5, during which the maladjusted vehicle unit clock frequency produced the most location subsystem errors (as a result of the temperature being the lowest), contributed 17 system level errors which exceeded 300 feet whereas the other 9 runs contributed only 81 such errors. Thus, Run 5, representing only 7.6 percent of the total samples processed, produced 17.3 percent of the errors exceeding 300 feet. Similarly only 7.6 percent of the data produced 3 samples, or 21 percent of the errors exceeding 450 feet. Subsection 9.2 . 4 contains a detailed discussion of this frequency maladjustment. Section 10 contains a discussion of pertinent problems in recording, processing, and analyzing test data.

Figure 5-16 contains a histogram and cumulative distribution of Random Route AVM system errors, both with and without communication errors, for Random Route Runs 1 through 10. As a result of the HI^{3} communication error detection and correction technique, the impact of 5 percent communication errors is negligible. In Table 5-17, the impact of 5 percent communication errors on AVM system accuracy are quantified.

5.3 AVERAGE ERROR OVER ONE-TENTH MILE SEGMENTS

The results obtained by processing Runs 1 through 10 by use of the RRTEN routine are tabulated in Tables 5-18 and 5-19. Table 5-18 contains results associated with Runs 1 through 5 and the Primary Route. Table 5-19 contains results associated with Runs 6 through 10 and the Secondary Route. The largest single one-tenth mile average on any single run was 455 feet. This occurred during the 64 th segment on Run 8. The average error obtained over this segment during Runs $6,7,8$, and 9 (Run 10 could not be processed past the 60 th segment) was 234 feet. Tables 5-18 and 5-19 also contain data averaged over these corresponding five runs. The
(Text continued on 5-45)

TABLE 5-14 RRSL OUTPUT LISTING FOR RANDOM ROUTE RUN \# 3 SIMULATEX EFFORS FSEUMO OF 非

ERKOR
TTME
OHOM

1	0
2	14
2	70
4	3
5	2
6	63
7	279
8	85
9	211
10	27

$12 \quad 199$
13
47
14
1.53
$15 \quad 97$
$16 \quad 46$
$\begin{array}{lr}18 & 162 \\ 18 & 48\end{array}$
19
20
21
22
23
24
19

25
26
27
28
28
30
31.

32
33
34
35
36
37
38
236
22
22
56
8
21
152
226
229
18
69
36
120
56
32
28
48
1.5

39
40
4.

43
44
45
46
47
48
49
50
51
5
24
24
139
372
113
180
82
221
99
142
31
92
9.1

217

139

TABLE 5-14 RRSL OUTPUT LISTING FOR RANDOM ROUTE RUN \# 3 (Cont'd)

53	1.37	20:12	2383
54	137	20:32	2383
55	196	20:54	2575
56	1.33	21:12	2782
57	0	21:32	2867
58	10	21:52	3049
59	68	22:12	3186
60	216	22:34	3284
61	58	22:52	3476
62	161	23:12	3649
63	335	23:32	3777
64	107	23:52	389.1
65	155	24:12	4050
66	44	24:32	122
67	42	24:52	123
68	12	25:12	138
69	6	25:32	312
70	112	25:152	406
71.	67	26:12	496
72	7	26:32	641
73	57	26:52	31.4
74	53	27:12	916
75	197	27:32	989
76	1.97	27:52	989
77	78	28:12	1048
78	67	28:32	1206
79	62	28:52	1209
80	122	29:12	1287
81	127	29:32	1498
82	48	29:52	1676
83	48	30:12	1676
84	42	30:32	1788
85	217	30:52	1943
86	13	31:12	2072
87	21.4	31:32	2180
88	74	31:52	2180
89	362	32:12	2180
90	182	32:32	2311
91	156	32:52	2476
92	381	33:12	2536
93	77	33:32	2619
94	16.3	33:52	2801
95	269	34:12	2936
96	58	34:32	3100
97	34	34:52	3112
98	166	3'5:12	3261
99	205	35:3\%	3455
100	1.68	35:52	3655
101	49	36:12	3761.
102	119	$36: 32$	3884
103	95	36:52	4066
104	20.1	37:12	202
105	1.1	37:32	359
106	18	37:52	51.8

TABLE 5-14 RRSL OUTPUT IISTING FOR RANDOM ROUTE RUN \# 3 (Cont'd)

107	118	38:12	594
108	109	38:32	750
109	233	38:59	941
110	26	39:12	1108
111	92	39:32	1241
112	170	39:52	1391
113	66	40:12	1511
114	21	40:32	1619
115	21	40:54	1619
116	38	41:12	1648
117	321	41:32	1791
118	220	41:52	1924
119	103	42:12	2086
120	158	42:32	2263
121	40	42:52	2427
122	177	43:12	2637
123	103	$43: 32$	2674
124	258	$43: 52$	2833
125	1.54	44:12	2981
126	88	44:32	3211
127	238	44:52	3438
128	36	45:12	3598
129	36	45:32	3598
130	2	45:52	3624
131	570	46:33	3858
132	0	46:53	4025
133	53	47:13	79
134	175	47:33	200
135	136	47 ± 53	278
136	190	48:13	418
137	7%	48:33	542
138	6	48:53	683
139	12	49:46	69%
140	12	50:3	692
141	141.	50:23	704
142	65	$50: 43$	886
143	17	51:3	910
144	158	51:23	1053
145	29	51:43	1179
146	106	52:3	1294
147	246	52:23	1402
148	249	52:45	1514
149	40)	53: 3	1604
150	257	53:23	1753
151	102	53:43	1831
152	1. 43	54: 3	1853
153	250	54:23	1986
154	1.40	54:43	2041
155	110	55:3	2056
156	72	55:23	2075
157	9	$55: 43$	2181
158	164	56:3	2342
159	117	$56: 23$	2494
160	159	56:43	2653

TABLE 5-14 RRSL OUTPUT LISTING FOR RANDOM ROUTE RUN \# 3 (Cont'd)

161	48	57: 3	2774
162	72	57:23	2831
163	198	57:43	3033
164	224	58:0	3097
165	147	58:20	3272
166	169	58:40	3398
167	187	59:0	3576
168	42	59:20)	3714
169	114	59:42	3911
170	127	60: 0	4046
171	179	60:20	104
172	46	60:40	171
173	46	61: 0	171
174	47	611:20	316
175	103	61:40	389
176	103	62: 0	389
177	5	62:20	413
178	24	62:40	574
179	61.	63: 0	750
180	120	63:20	927
181	30	63:40	1072
182	111	64: 0	1166
183	69	64:20	1336
184	242	64:40)	1492
185	48	65: 0	1545
186	230	65:20	1720
187	107	65:40	1782
188	21.3	66: 0	1942
189	24	66:20	1.993
190	56	66:42	2098
191	82	67:0	2235
192	10	67:20	2281
193	20	68: 0	4035
194	249	68:20	117
195	62	68:40	211
196	62	69: 0	211
197	75	69:20	354
198	18	69:40	542
199	1.13	70: 0	740
200	12.2	70:20	931
20.1	18	70:40)	1148

TABLE 5-15 ERROR STATISTICS FOR RUN \#3

0.-	25	31	1.5.50\%	()-	25	31	15.50\%
25-	50	32	16.00\%	25	(-)	32	16.00\%
50-	75	26	1.3.00\%	50	7 7-	27	13.50\%
75--	1.00	15	7.50\%	75	100	15	7.50\%
100-	125	21	10.50%	$100-$	125	21	10.50\%
125	1.50	1.3	6. 50%	125-	150	1.3	6. 50%
150	175	18	9, 00%	150-	175	18	9.00\%
17\%	200	10	'5.00\%	1750	200	10	5.00%
$200 \ldots$	225	11	5.50%	200-	225	11	5. 50%
225	20	8	4.00%	225-	250	8	4.00\%
250	29	4	2-00\%	250-	275	4	2.00\%
27.	300	3	1. 50%	270	300	3	1. 50%
300	35	.	0. $.50 \%$	$300-$	325		0.50\%
305	350	2	1.00\%	325-	350	1	0. 50%
350-	375	2	1.0) 0 \%	350-	375	2	1.00\%
375	400	1	0.50\%	$375-$	400	1	
$400-$	455	1.	0. 50%	100-	425	1	0.50\%
550	575	1	0. 50%	50	5	1	(). 50%

	CWMULATIVE	Rote
ERFER	- EFFRORS	FEECEINT
FEET	BT FEET	EFtiofs

0	3	1.50\%	0	3	\therefore, 50\%
5 5	3 j	15.50\%	25	31	15.50%
50	63	3. 1.50%	50	63	31.50\%
75	8\%	A4.50\%	75	90	4, 5 . 00%
100	104	52.00%	100	105	85.50\%
25	125	62.50\%	125	126	63.00\%
1.50	139	67.50\%	150	1.40	70.00\%
170	1. 5%	7, ${ }^{\text {a }}$. 50%	475	1.58	79.00\%
200	1.66	23.00\%	200	167	83.3.50\%
225	1.77	98.50\%	22	1\%'8	899.00\%
250	186	93.00\%	250	187	93.50\%
275	189	$9.7 .50 \%$	275	190	95.00\%
300	19%	96.00\%	300	193	96.50\%
325	1.93	76.50\%	325	194	97.00%
350	185	97.50\%	350	195	97.50\%
-	1.77	98.50\%	37	197	98.50\%
000	1.56	98.00\%	400	150	95.00\%
4	1.59	99.50\%	425	180	99.50\%
5	200	100.00\%	57.6	200	100.00\%
AUESOQE	EFFOF =	113.5%			
STABCAED	I MEVIATIGN	- 92.84			
-LAFSEI	TIME -	411.	ELAFSED	TTYE $=$ a	111

FIG. 5-6 RANDOM ROUTE AVM SYSTEM LEVEL ERROR RUN \#1

FIG. 5-7 RANDOM ROUTE AVM SYSTEM LEVEL ERROR RUN \#2

FIG. 5-8 RANDOM ROUTE AVM SYSTEM LEVEL ERROR RUN \#3

FIG. 5-9 RANDOM ROUTE AVM SYSTEM LEVEL ERROR RUN \#4

FIG. 5-10 RANDOM ROUTE AVM SYSTEM LEVEL ERROR RUN \#5

FIG. 5-11 RANDOM ROUTE AVM SYSTEM LEVEL ERROR RUN \#6

FIG. 5-12 RANDOM ROUTE AVM SYSTEM LEVEL ERROR RUN \#7

FIG. 5-13 RANDOM ROUTE AVM SYSTEM LEVEL ERROR RUN \#8

FIG. 5-14 RANDOM ROUTE AVM SYSTEM LEVEL ERROR RUN \#9

FIG. 5-15 RANDOM ROUTE AVM SYSTEM LEVEL ERROR RUN \#10

FIG. 5-16 RANDOM ROUTE AVM SYSTEM LEVEL ERROR, RUNS \#1-10

TABLE 5-16 SUMMARY RANDOM ROUTE AVM SYSTEM ERROR STATISTICS, NO COMMUNICATION ERRORS

Run \#	Average Error (feet)	\% Samples < 300'	\% Samples < 450^{\prime}	$\begin{aligned} & \text { Max Error } \\ & \text { (feet) } \end{aligned}$
1	115	97.03	98.88	617
2	109	93.89	99.13	496
3	110	96.0	99.50	570
4	114	96.05	100.00	420
5	133	90.06	98.25	721
6	109	95.15	100.00	446
7	116	96.54	99.62	480
8	114	96.85	99.61	482
9	109	97.39	100.00	794
10	112	95.69	98.56	794
All Runs Com- bined	114	95.66	99.38	794
All Runs Excluding Run \#5	112	96.16	99.47	794

TABLE 5-17 IMPACT OF 5 PERCENT COMMUNICATION ERRORS ON AVM SYSTEM ACCURACY

Run \#	No. PCP's	No Errors which Increased	No Errors which Decreased	$\%$ Less than $300^{\prime}-$ No Com Error	\% Less than $300^{\prime}-5 \%$ Com Errors
1	269	3	1	97.03	97.03
2	206	1	1	93.69	93.20
3	201	0	1	97.01	97.01
4	228	0	4	96.05	96.05
5	171	0	1	90.64	91.23
6	206	1	1	96.12	95.63
7	260	0	4	96.54	96.92
8	254	1	1	96.85	9724
9	230	0	0	97.39	97.39
10	210	4	17	95.71	95.71
Com- bined $1-10$	2235	10		95.79	95.88

TABLE 5-18 AVERAGE ERROR OVER ONE-TENTH MILE SEGMENTS OF RANDOM ROUTE RUNS 1-5

RUUN 1 FANDIOM ROUTE
AUEFAGE ERFOF TN FEET OUEF OME-TENTH MILE SEGMENTS

59	179	113	102	122	214	106	227	184	56
73	114	96	84	188	51	115	226	78	105
258	100	151	205	367	84	142	152	171	75
779	47	154	136	110	159	90	114	161	103
CT1150NOO1.001.									
122	93	188	173	93	116	117	105	75	75
197	119	57	57	102	128	121	94	113	125
193	118	131	73	137	137	147	105	119	68
51	111	111	155	129	74	204	67	124	114
131	75	122	115	85	121	148	135	174	78

RUUN 2 FAANOM FOUTE
AUEFAGE EFROR TR FEET OUEF ORE--TENTH MILE SEGMENTS

168	99	127	76	178	90	75	83	98	68
91	89	51	5	227	43	76	158	106	175
146	114	89	209	358	105	99	142	139	104
86	71.	127	144	94	140	76	85	143	146
*198	134	179	60	75	117	225	123	71	83
149	89	122	144	194	70	1.53	161	142	255
208	389	143	1. 1.9	81	110	73	231	172	71
102	93	132	90	195	142	76	239	67	102
120	79	99	149	1.15	69	61	96	223	11.4
74									

REUN 3 FEAMDOM FEOUTE
AUEFAGEE FEFFOF TN FEET OUEF ONE-TENTH MILE SEGMFNTS

126	81	57	68	84	102	133	51	72	28
173	152	78	140	4	85	83	236	80	102
88	1:17	165	142	154	1. 1.3	$3{ }^{2}$	129	207	125
116	93	70	16.1	94	71.	148	146	146	1.73
3:176	95	129	II 17	12.1	1.81	12 L	103	15.1	13.1
CT:L:FUNOO3:001									
110	125	107	129	112	200	96	139	9	335
11.3	118	11.0	143	106	104	1.77	139	116	73
188	62	115	151	110	152	66	99	98	119
81	83	107	8.1	88	71	77	97	89	

RUJN 4 FRANLIOM ROUTE
AUERAGE ERFOR TN FEET OUEF ONE-TENTH MLLE SEGMENTS

144	1.34	95	78	103	80	125	65	75	57
77	263	12 20	76	169	83	116	202	64	8.1
148	70	87	16.6	23	105	-1 12	:L : 1.1	119	151
74	85	114	135	94	150	83	236	190	133
*162	148	129	122	94	100	145	94	87	87
CT1:F゙UNOO4.001									
123	88	80	129	100	93	11 13	88	158	1. 60
147	149	110	64	107	139	186	19.1	L L 16	66
54	118	L 113	156	118	62	I. 41.	91.	72	148
63	88	95	80	108	44	76	172	149	10.1

RUN E RANDOM FOUTE
AUEFAGE EFROR TM FEET OUER ONE-TENTH MILE SEGYENTS

253	149	127	108	75	93	102	295	160	85
46	89	84	78	208	19	212	142	248	139
177	153	93	174	437	359	174	185	97	104
139	106	164	228	103	180	115	125	188	191
231	177	285	102	97	115	270	91	60	119
$* 110$	117	167	147	83	149	194	214	134	75

CT:FUNOOS.001

85	151	101	41	153	155	330	406	103	65
139	69	101	149	145	135	85	148	110	119
163	88	60	50	39	82	126	117	88	

COMFOSLTE FREMARY F゙UNS 1-5
AVEFAGE EFFOR IN FEET OUEF ONE-TENTH MILE SEGMENTS

L60	128	104	87	11.3	116	108	1. 44	1.18	59
92	141	9	112	167	107	120	193	11.30	120
1.63	110	11%	179	31.7	153	170	144	1.47	1.12
99	80	126	1.61	99	142	102	1. 11	166	149
128	129	182	1.15	96	1206	1.76	1.03	89	9%
138	107	86	120	118	128	130	1. 39	1.39	190
149	185	119	88	117	129	182	214	125	69
10%	114	1. 14	I. 40	139	113	114	129	94	120
L L 2	82	97	95	87	77	98	1. 23	145	97
$\because 4$									

TABLE 5－18 AVERAGE ERROR OVER ONE－TENTH MILE SEGMENTS OF RANDOM ROUTE RUNS 6－10

FiUN \＆FiMNXUM FOMUTE：

138	68	71.	I． 89	1． 4 （）	145	96	182	83	168
106	128	IL I． 0	9%	1.39	96	62	2.47	11． 1	10.3
62	98	77	95	9%	1.94	1．62	94	1． 1.7	107
75	98	152	9 L	63	90	122	89	1． 0 \％	93
＊ 12 y	A 1.	181	80	103	118	180	158	85	109
CTJ：F゙UNOO6．OO1．									
117	63	99	128	77	49	88	59	7%	78
228	14.1	266	72	8．1	I． 1.17	L3：L	I． 67	100	80
9 9	69	75	94	89	86	1． 04	1 La	14.1	109
132	70	97	1．05	83	158	91	96	125	78
67									

F゙UN 7 FIANOOM FOUTE

92	71.	76	1.34	82	$1.3{ }^{12}$	103	136	102	110
110	115	80	10%	84	2 l 2	73	199	79	IL） 6
113	74	69	5	103	160	1． 7.1	45	108	35
＊ 118	85	15\％令	60	73	109	1.34	130	13.3	171
CT1：FUNO07．001									
134	81.	$18: 5$	6%	1.44	$1: 14$	1132	160	98	106
7%	1135	135	90	163	59	86	13.	68	83
77	107	165	3112	6	98	93	L W\％	10\％	．1． 1.9
175	88	\cdots	93	8.4	171	120	112	\cdots	48
123	1． 28	236	12 l	1． 25	96	11．Wi	5	95	1． 29
10%	83								

FUN 8 RANOOM ROUTE
AUEFAGE EFFOF TN FFET OUER ONE－TENYH MTLE SEGMENTS

L． 1.7	83	98	72	97	1． 17	1．9\％	11.9	92	136
63	1.39	9	93	164	38	W8	226	49	82
76	（6）	104	93	83	162	1176	78	9%	31
＊ 71	68	174	97	49	89	I． 6 \％ 1.	1．1． 7	123	61
CTL FiUMOO8．00．									
106	126	123	91	11.3	88	101	16.1	1． 4.6	69
85	1.47	142	1．71	1． 2.1	54	125	1 CO	78	116
73	205	63	466	79	7 ？	77	98	84	106
W1	13.3	7%	7%	94	158	77	94	237	129
157	1.02	89	82	2 L 8	81	109	42	67	145
77	1．24								

RUN 9 REANGOM FOUTE
AUERAGE EFFOF IN FEET OUEF ONE-TENTH MIIEE SEGMENTS

57	83	85	116	116	158	124	101	94	122
65	83	90	99	149	84	73	154	138	104
77	76	70	80	107	184	165	60	119	86
55	108	146	108	50	117	110	110	100	92
$* 138$	104	175	112	129	91	133	90	122	69
$C 710$	$R U N O 09001$								
112	108	98	135	77	67	180	85	108	107
156	119	276	86	91	135	119	156	80	152
119	131	1103	79	109	132	99	97	162	101
110	142	67	163	96	82	72	94	131	73
71									

R゙UN 10 FRNNOM FOUTE
AUERAGE EFROR TM FEEET OUER ORE-TENTH MTLE SEGMENTS

55	76	49	11.8	117	122	96	128	100	120
100	96	99	122	106	45	98	124	122	74
69	94	151	75	85	184	177	87	91	106
166	68	89	143	77	66	99	109	82	87
* 1.9	1.66	90	133	160	103	14.1	117	182	176
CTI : FINNOIO.001									
95	100	1.48	84	120	180	57	83	149	98
TEFR	61 Tllegal MEMOFIY FEEFERENCE								
IN	FOUTINE ".MATN." LINE 40								

COMFOSITE SECONMAFIY RUNS 6-10
AUEFAGE ERFOF IN FEET OUER ONE-TENTH MILE SEGMENTS

94	76	76	126	110	134	115	133	94	131
89	112	86	102	128	105	73	190	100	94
79	71	94	79	95	177	170	73	105	93
97	85	143	84	62	94	125	111	108	101
124	118	151	96	130	102	126	137	127	104
97	110	124	122	112	82	107	102	96	96
134	143	193	234	78	106	105	144	91	114
110	105	82	86	94	137	101	108	149	97
131	116	122	118	131	94	107	71	105	106
90	104								

largest segment average was 315 feet and 234 feet respectively for the Primary and Secondary Routes respectively.

Processing with RRTEN began at Checkpoint 1 and ended at TA 64 on each run. The turnaround route around City Hall between TA 58 and TA 58 was not processed since this area was not within the designated random route area.

As noted in subsection 5.1 and 5.2 , Run 10 could not be processed past Checkpoint 41. Whereas both checkpoints and pseudo checkpoints corresponding to the remainder of Run 10 were processed manually, no attempt was made to process the 2310 individual records manually as a supplement to RRTEN. HI ${ }^{3}$ believes that the approximately 87,000 samples processed by RRTEN and the subsequent results were sufficient to warrant this decision.

5.4 RANDOM ROUTE DATA PROCESSING ANOMALIES

During the recording of random route data, a few manual entry errors were made. These errors were flagged through entry of the EE event and, in four cases, subsequently corrected via card input to the CPMAIN, RRSL and RRTEN programs. These errors are identified in Table 5-20.

As noted in Table 5-20, Run 10 could not be processed past CP 41. A listing of the data recorded during Run 10 is shown in Figure 5-13. The data recorded during the five records following Time 53:04 are erroneous. Note that the signpost codes are non-existent, the odometer has jumped over 2100 counts, the fifth wheel column contains data, and time is erratic. Since time is recorded via the CPU and is independent of the location subsystem and ICU, this indicates that this is a data recording problem and not a system problem. A more detailed discussion of this problem is contained in Subsection 8.3 in association with fixed route data.

TABLE 5-20 RANDOM ROUTE DATA PROCESSING ANOMALIES

RUN NO.	PROBLEM	SOLUTION
1	TA 63 entered two times following CP56	Deleted second entry of TA 63 after CP56 via card input to RRSL and RRTEN
1	CP30 entered in error early	EE30 followed by correct entry of CP30
3	TA34 entered in error following CP17, should have been TA44	EE34 followed by TA44
3	Missed entry of CP18	Missed checkpoint
4	TA58 entered in error at beginning of tape	EE58 followed by TA64
5	TA64 entered too early at beginning of tape	EE64 followed by correct entry of TA64
7	TA64 entered twice	No effect
8	TA64 entered twice	No effe ct
9	CP64 entered in error for TA64	Replace CP64 with TA64 via card input
10	CP44 entered in error for TA44 following CP5	Replace CP44 with TA44 via card input
10	CP61 entered in error for TA61 following CP55	Replace CP61 with TA61 via card input
10	Couldn't process past checkpoint 41	Computed 21 checkpoint and 57 pseudo checkpoint manually

6. FIXED ROUTE TESTS

6.1 FIXED ROUTE TEST CONFIGURATION

The fixed route system configuration tested in Philadelphia consisted of (1) the test LS as proposed in the HI^{3} Proposal, and (2) a Data Acquisition System (DAS). The IS tested in the fixed route tests was functionally identical to that proposed for Phase II, and such factors as deployment technique, signal-to-noise ratios, and signpost design are exactly those proposed for Phase II.

6.1.1 Test Vehicle

The test vehicle used during fixed route tests is the same vehicle described in paragraph 3.1.1.

6.1.2 Location Subsystem Equipment

In the fixed route configuration, the LS consisted of (1) signposts and (2) vehicle equipment functionally identical to that proposed for Phase II.
6.1.2.1 Signposts. The signposts used during the fixed route tests were identical to those described in paragraph 3.1.2.1 and used during the random route tests.

During fixed route tests, signposts were mounted on available utility poles or street and traffic light standards in such a manner that the HI^{3} vehicle equipment was able to receive the coded transmissions from each signpost. Fifteen signposts were used, one near each timepoint. Thus, signposts were separated, on the average, by 4,900 feet.
6.1.2.2 Vehicle Equipment. In the fixed route configuration, HI^{3} test LS vehicle equipment consisted of three items: (1) a $49.860-\mathrm{MHz}$ antenna and coax cable, (2) a HI^{3} vehicle unit, and (3) an odometer. For the Philadelphia tests, a standard, monopole (Antenna Specialist Model M303) tuned to 49.860 MHz was mounted on the roof of the test vehicle. The vehicle unit and antenna were the same as those used during random route tests and described in detail in paragraph 3.1.2.2.

During operation as a fixed route vehicle, the operation of the Phas e II vehicle unit is identical to that of a Phase II random route vehicle unit in that all received signpost codes are received and processed to determine an 18-bit location region code. The only difference is that when a valid signpost Region 1 code is received onboard a Phase II vehicle operating in the fixed route mode, the vehicle unit would check to determine if this were the first occurrence of a Region 1 code from that signpost, and, if so, it would (1) automatically generate a signal that resets, to zero, an odometer counter, (2) store the 18-BIT location region code, and (3) check the two special signpost bits, E_{7} and N_{7}, to determine the type of signpost used in the proposed Phase II system.

	$\begin{array}{lllllllllllllllll}\mathrm{N}_{7} & \mathrm{~N}_{6} & \mathrm{~N}_{5} & \mathrm{~N}_{4} & \mathrm{~N}_{3} & \mathrm{~N}_{2} & \mathrm{~N}_{1} & \mathrm{~N}_{0}\end{array}$															
Random Route	0	X	X	X	X	X	X	X	0	X	X	X	X	X	X	X
Timepoint	1	X	X	X	X	X	X	X	1	X	X	X	X	X	X	X

In this way, the vehicle unit always knows if timepoint performance is to be reported. The action then in each case is shown in the following table:

BIT PA TTERN $\left(\mathrm{N}_{7}, \mathrm{E}_{7}\right)$	TYPE SIGNPOST	PHASE II VEHICLE LOGIC
0,0	Random Route or Fixed Route	When Region 1 is first received: Store 18-BIT location region code Reset odometer When next polled, transmit 18-BIT location region code and odometer reading
1,1	Timepoint	When Region 1 is first received: Store 18-BIT location region code When next polled transmit 18-BIT location region code and odometer reading
		Compute timepoint information and store When next polled, transmit 18-BIT location region code, odometer reading and timepoint information

The Phase II fixed route vehicle unit logic is shown in Figure 6-1. All signposts in the Phase I tests were coded with a $(0,0)$ in the $\left(N_{7}, E_{7}\right)$ bits; therefore, the DAS was used to simulate the $(1,1)$ in the $\left(N_{7}, E_{7}\right)$ bits for all fixed route runs. This simulation was effected by having the Data Processing Routine check all received signpost codes against a table of valid fixed-route signposts.

When fixed route test data were being recorded, the modifier block shown in Figure 3-11 was enabled so that R1 dropout (R1D) was recorded upon receipt of a not Level 1 signal after receipt of a Level 1 signal. In the ideal case, a vehicle passing in close proximity to a signpost would encounter a Level 1

signal at the R1 radius as it approached the signpost and a not Level 1 signal just past the R 1 radius on the far side of the signpost. In actual practice, the effects of local structures create nulls and dips in the signpost field pattern. In a few instances, these cause more than one R1D. However, the location of the R1 and the last R1D are extremely stable as can easily be shown from observation of the test data. Refer to Table 6-1 for R1 stability. The stability of the R1D location is evidenced in the results obtained for the timepoint performance subsequently presented in Section 8.

The LS vehicle unit drew its power directly from the test vehicle 12 -volt system just as it would in the Phase II system. The vehicle unit was fuzed to prevent damage, and it included a built-in voltage fluctuation in the vehicle power system.

The contents of the ICU were sampled by the DAS. Those data constituted the "computed" vehicle location at the sample time (checkpoint or pseudo checkpoint). Under operational conditions, (Phase II), the contents of the vehicle unit location register and odometer would be encoded as part of the vehicle-to-base message and transmitted via the communications subsystem to the base station under base station computer control.
6.1.2.3 Odometer. In fixed route tests, an odometer was used to determine vehicle location between signposts. This instrument consisted of eight permanent magnets attached to the left front wheel and a magnetic pickup coil. The odometer senses revolutions of the front wheel through a magnetic pickup as the magnets pass across the pickup coil. The odometer was powered from the vehicle 12 -volt DC power system. Pulses from the calibrated odometer were accumulated in the ICU and recorded on cassette through the interface shown in Figure 3-11.

6.1.3 DAS Equipment

The DAS hardware used during fixed route tests was identical to that used in random route tests. Only the functions of event marking, software, and invehicle displays were different. Only during the fixed route tests, a switch on the ICU enabled the modifier block (Figure 3-11) so that it could generate the 0011 code in the " B " field whenever an R1 dropout occurred.
6.1.3.1 Fixed Route Event Marking. The event codes described in paragraph 3.1.3.4 and the method of marking events were the same used for fixed route testing. During fixed route testing, the following events were "marked" to cause a time-coincident record of vehicle and DAS data to be recorded on cassette.
TABLE 6-1 EXPERIMENTAL DETERMINATION OF R(i)

Distance From R1 to Next Timepoint :									
SP	TP	$\begin{gathered} 12-28-76 \\ \# 6 \end{gathered}$	$\begin{gathered} 12-28-76 \\ \# 7 \end{gathered}$	$\begin{gathered} 12-17-76 \\ \# 5 \end{gathered}$	$\begin{gathered} 12-12-76 \\ \# 4 \end{gathered}$	$\begin{gathered} 12-29-76 \\ \# 10 \end{gathered}$	$\begin{gathered} 12-29-76 \\ \# 11 \end{gathered}$	Average $\widehat{\mathrm{R}}(\mathrm{i})$	$\begin{array}{\|c\|} \text { STD } \\ \text { Deviation } \\ \sigma \\ \hline \end{array}$
7, 13	1	198	250	234	264	244	246	239	20.5
14, 6	2	326	324	316	342	364	354	338	17.2
15, 13	3	$\begin{gathered} 258 \\ 1-11-77 \text { \# } 1 \end{gathered}$	$\begin{gathered} 286 \\ 1-11-77 \# 1 \end{gathered}$	$\begin{gathered} 288 \\ 1-11-77 \text { \#2 } \end{gathered}$	$\begin{gathered} 308 \\ 1-11-77 \text { \#3 } \end{gathered}$	270	276	281	15.7
12,6	4	272	266	258	260			264	14.0
6,8	5	268	288	282	282	310	290	287	10.6
6,6	6	212	214	228	258	220	202	222	17.8
16, 13	7	220	256	-	-	228	230	234	13.5
12, 10	8	214	220	-	224	166	200	205	20.9
14,8	9	262	256	276	314	244	320	279	28.6
15, 11	10	394	404	390	-	378	398	393	8.7
19, 13	11	326	324	304	326	318	322	320	10.6
16, 11	12	274	288	322	302	324	292	300	18.0
13, 13	13	276	292	274	348	264	300	292	27.6
8,7	14	256	214	208	252	260	246	239	20.6
10,6	15	208	268	210	206	-	260	230	27.6

Function	Function Key	Event ID	Return
Mark Passage of Checkpoint XX	CP	XX	$"$
Mark Passage of Signpost NN, EE	SP	NN, EE	$"$
Mark Turn Intersection YY	TA	YY	$"$
Mark Departure from Timepoint XX	TD	XX	$"$
Signify Door Open at Timepoint XX	DO	XX	$"$
Signify Door Close at Timepoint XX	DC	XX	$"$
Signify Error in Preceding Event ZZ	EE	ZZ	$"$

The door open/close events and the departure times were recorded under the direction of the TSC Monitor.
6.1.3.2 Fixed Route Recording Software. The only basic difference between fixed and random route DAS recording software was that associated with generation of the in-vehicle displays and the number of records recorded on cassette No. 1. Computer program FROUTE was used to record Fixed Route Data.
6.1.3.3 In-Vehicle Displays. Three display formats were implemented for use in the test vehicle. These displays included (1) a "Quick-Look Verification Display", (2) a "Fixed Route Location Accuracy Summary Display," and (3) a "Timepoint Performance Display." Only the "Quick-Look Verification Display" was used during formal test runs.
a. Fixed Route Quick-Look Verification Display. Typical display format corresponding to Fixed Route Run \#40 is shown in Figure 6-2. All event codes were manually entered via the CRT keyboard. Note the occurrence of R1 dropouts (R1D). The method in which the R1D is used in computing timepoint performance has been discussed in paragraph 6.1.2.2. The quick-look display allowed the DAS operator to verify operation of the LS and the DAS. The odometer reading was not actually reset in the vehicle during the Phase I tests, but during off-line processing. If used during Phase II, the odometer would be reset automatically.
b. Fixed Route Location Accuracy Summary Display. The Location Accuracy Summary Display was intended to provide a real-time estimate of location during test calibration. The display actually showed both computed and actual locations and the location error at each checkpoint. However, as a result of the fact that the PDP cassette operating system did not allow the use of floating point arithmetic, implementation of this process was too coarse in terms of computed error values to be of value. Therefore, it was not used.
c. Timepoint Performance Display. This display provided, in real time, the timepoint performance error including full implementation of the timepoint performance algorithm described in paragraph 7.2.3. This display was extensively used during H^{3} test and calibration runs to verify timepoint performance.

FIG. 6-2 TYPICAL QUICK LOOK VERIFICATION DISPLAY

However, this display was called only one time during formal fixed route testing, and that time was as a demonstration for the TSC Monitor during Run 11, the first fixed route test run. Figure 6-3 contains a sketch of this display.

6.2 FLXED ROUTE LOCATION SUBSYSTEM DEPLOYMENT

6.2.1 Signpost Deployment

Fifteen signposts were installed along the test route near the timepoints designated by TSC. The test route and the fifteen timepoint locations were selected by TSC. The area was surveyed by HI ${ }^{3}$ personnel, poles selected, and a pole agreement for the selected poles obtained from the City of Philadelphia. These 15 signposts, in conjunction with the odometer, allowed a determination of location to be made at any point along the selected test route. Upon completion of the random route tests, the 15 signposts were installed along the fixed route. All 15 were installed within less than two hours including driving time by HI^{3} personnel.

Figure 6-4 reflects the test route, the signpost locations, and the signpost codes. Figure 6-5 contains photographs of all 15 fixed route signposts.

6.2.2 Fixed Route Mapping

Even though fixed route location can be determined as a computed location in terms of the elapsed odometer distance along a fixed route, HI^{3} provided computed X, Y locations of the vehicle during data processing. This action necessitated the determination of X, Y coordinates for Region 1 reset points and measurement of offset coordinates for those checkpoints which were not at the centered intersections.

Determination of Region 1 Reset Points. For each fixed route signpost, a reset point (Ri) was determined experimentally. The reset point of a fixed route signpost is the average location, including effects of different traffic lanes, time of day, etc., at which the Region 1 boundary occurs when the signpost is approached along the fixed route. This value would be used in the base station computer in Phase II (in the data processing algorithm in Phase I) as a reference for the odometer, which would be reset to zero at each Region 1 reset point. The reset point and its relationship to the signpost and the odometer have been shown in Figure 6-1.

The reset location for each signpost was determined by repeatedly driving the test vehicle past the signpost, each time recording the distance between (1) the occurrence of the Region 1 and (2) the point of passage of the timepoint (the latter a known X, Y location). The Fixed Route Quick Look Verification Display was used to accumulate a number of such recordings with the test vehicle traveling in all possible lanes and at different speeds. From each set of values, a value of Ri was selected for the $i^{\text {th }}$ fixed route signpost for use during off-line processing as part of the permanent data base.

Timepoint	Estimated TOD	Actual TOD	Error	Door
1	$0: 58.5$	$0: 57.0$	1.5	
2	$5: 33.0$	$5: 31.0$	2.0	
3	$13: 23.5$	$13: 27.5$	-4.0	Yes
4	$20: 00.5$	$20: 12.5$	-12.0	Yes
5	$31: 15.0$	$31: 42.5$	-27.5	Yes
6	$35: 37.5$	$35: 45.5$	-8.0	Yes
7	$41: 29.0$	$41: 28.5$	0.5	
8	$48: 51.0$	$48: 56.5$	-5.5	Yes
9	$56: 43.5$	$56: 45.5$	-2.0	
10	$66: 32.0$	$66: 34.5$	-2.5	Yes
11	$71: 23.5$	$71: 26.0$	-2.5	Yes
12	$75: 37.0$	$75: 37.5$	-0.5	
13	$85: 20.5$	$85: 29.0$	-4.0	Yes
14	$90: 38.0$	$90: 40.0$	-2.0	
15	$99: 38.5$	$99: 38.5$	0.0	

FIG. 6-3 TIMEPOINT PERFORMANCE DISPLAY

FIG. 6-4 HI^{3} FIXED ROUTE \& FIXED ROUTE SIGNPOSTS

Table 6-1 contains the results of these calibration runs. In each case, at least four passes by each signpost were made, and the FROUTE Program was used to record the odometer values at which the Region 1 was received and upon the occurrence of the event marking the passage of the timepoint. The X, Y location of the Ri point was computed as an offset from the timepoint location, which was known in terms of stateplane coordinates. The radius at signpost " i " was the average, Ri , presented in Table 6-1 and computed on the basis of the four or more passes. The small variance in Ri at each signpost, as well as the small average variance (18.1 feet for all 15 signposts), is significant in that it represents the stability of the Region 1 radius of HI^{3} signposts. Once the offset distance was established, the stateplane coordinates of the Ri points were computed by using the following pair of equations:

$$
\begin{aligned}
& \mathrm{X}^{\prime}(\mathrm{Ri})=\mathrm{X}^{\prime}(\mathrm{TPi})+\mathrm{X} \cos 7.3^{\mathrm{O}}+\mathrm{Y} \sin 7.3^{\circ} \\
& \mathrm{Y}^{\prime}(\mathrm{Ri})=\mathrm{Y}^{\prime}(\mathrm{TPi})+\mathrm{Y} \cos 7.3^{\mathrm{O}}+\mathrm{X} \sin 7.3^{\circ}
\end{aligned}
$$

where X and Y are the street offset coordinates of the Ri point relative to the timepoint; X^{\prime} (TPi), Y^{\prime} (TPi) are the stateplane coordinates of the $\mathrm{i}^{\text {th }}$ timepoint and 7.3° is the angle between the stateplane coordinate system and the nominally North-South and East-West oriented streets in downtown Philadelphia。 The location of each fixed route timepoint and the associated Ri are identified in Table 6-2.

Determination of $\Delta T_{工}$. This parameter is used during off-line processing (and in the Phase II base station) to compute the time of departure whenever the vehicle door is not opened and closed at a transit timepoint. $\Delta \mathrm{T}_{\mathrm{L}}$ is defined in association with Figure 6-6. During off-line data processing, the time of departure, TOD, is computed as follows:

Door Opens/Closes	TOD Set Equal to --
Yes	Time Door Closes (TDC)
No	TLR1D $-\Delta \mathrm{T}_{\mathrm{L}}$

where TLR1D is the time of occurrence of the last $R 1$ dropout from the signposts (the last time the "B" field is set to 0011 at the signpost code).

Values of $\Delta \mathrm{T}_{\mathrm{L}}$ were determined experimentally by repeatedly measuring the times of TD and TLR1D under typical traffic conditions. Table 6-3 contains experimental data taken to determine the values of $\Delta \mathrm{T}_{\mathrm{L}}$ for use in computing the time of departure. These data were obtained by driving the test vehicle past each timepoint while using FROUTE to record all data, including marking the passage of the timepoint NN with a TD(NN) event. For each timepoint, the average difference between occurrence of the last R1 dropout (TLR1D) and the TD marker

TABLE 6-2 FIXED ROUTE TIME POINTS AND R(i)RESET POINTS

TMMEPODT	GEOMETRY OF RI RELATION TO TDMEPOINT	RI DISTANCE TO TIMEPONT	STATE PLANE COORDINATES OF TIMEPOINS	$\begin{aligned} & \text { OFFSET } \\ & \text { IN FT. } \\ & \text { TOTP } \end{aligned}$	CORRECTED STATE PLANE COORDINATES OF R
\#1		$\mathrm{Y}=239$	$\begin{aligned} & X=2722388 \\ & Y=234383 \end{aligned}$	$\begin{aligned} & \Delta X^{\prime}=30 \\ & \Delta Y^{\prime}=237 \end{aligned}$	$\begin{aligned} & \mathrm{X}^{\prime}=2722418 \\ & \mathrm{Y}^{\prime}=234620 \end{aligned}$
W2		$\mathrm{X}=\mathbf{- 3 3 8}$	$\begin{aligned} & X=2725180 \\ & Y=233508 \end{aligned}$	$\begin{aligned} & \Delta X^{\prime}=-335 \\ & \Delta Y^{\prime}=43 \end{aligned}$	$\begin{aligned} \mathrm{X}^{\prime} & =2724845 \\ \mathrm{Y}^{\prime} & =233551 \end{aligned}$
*3		$\mathrm{Y}=\mathbf{- 2 8 1}$	$\begin{aligned} & X=2725921 \\ & Y=238663 \end{aligned}$	$\begin{aligned} & \Delta X^{\prime}=-36 \\ & \Delta Y^{\prime}=-279 \end{aligned}$	$\begin{aligned} & \mathrm{X}^{\prime}=2725885 \\ & \mathrm{Y}^{\prime}=238384 \end{aligned}$
4		$Y=264$	$\begin{aligned} & X=2728078 \\ & Y=237808.3 \end{aligned}$	$\begin{aligned} & \Delta X^{\prime}=33 \\ & \Delta Y^{\prime}=262 \end{aligned}$	$\begin{aligned} & X^{\prime}=2728111 \\ & Y^{\prime}=238070 \end{aligned}$
*5		$\mathrm{X}=287$	$\begin{aligned} & X=2723857 \\ & Y=237304.9 \end{aligned}$	$\begin{aligned} & \Delta X^{\prime}=285 \\ & \Delta Y^{\prime}=-36 \end{aligned}$	$\begin{aligned} & X^{\prime}=2724142 \\ & Y^{\prime}=237289 \end{aligned}$
" ${ }_{6}$		$R=222 '$	$\begin{aligned} & X=2721134 \\ & Y=240231 \end{aligned}$	$\begin{aligned} & \Delta X=-71^{\prime} \\ & \Delta Y=-131^{\prime} \end{aligned}$	$\begin{aligned} & \dot{X}=2721063 \\ & \dot{Y}^{\prime}=240100 \end{aligned}$
\% 7		$X=-234$	$\begin{aligned} & X=2724216 \\ & Y=237591.6 \end{aligned}$	$\begin{aligned} & \Delta X^{\prime}=-232 \\ & \Delta Y^{\prime}=30 \end{aligned}$	$\begin{aligned} & \mathrm{X}^{\prime}=2723984 \\ & \mathrm{Y}^{\prime}=237622 \end{aligned}$
*8		$Y=205$	$\begin{aligned} & X=2728698 \\ & Y=2363 \text { \&. } \end{aligned}$	$\begin{aligned} & \Delta X^{\prime}=26 \\ & \Delta Y^{\prime}=203 \end{aligned}$	$\begin{aligned} X^{\prime} & =2728724 \\ Y^{\prime} & =236517 \end{aligned}$
49		$\mathrm{R}=279^{\circ}$	$\begin{aligned} & X=2725101 \\ & Y=236454.3 \end{aligned}$	$\begin{aligned} & \Delta X^{\prime}=168 \\ & \Delta Y^{\prime}=-183 \end{aligned}$	$\begin{aligned} & X^{\prime}=2725269 \\ & Y^{\prime}=236271 \end{aligned}$
\#10		$\mathrm{X}=+393{ }^{\prime}$	$\begin{aligned} & X=2721955 \\ & Y=235324.0 \end{aligned}$	$\begin{aligned} & \Delta X^{\prime}=390^{\prime} \\ & \Delta Y^{\prime}=-50 \end{aligned}$	$\begin{aligned} & X^{\prime}=2722345 \\ & Y^{\prime}=235274 \end{aligned}$
\#11	Walnut $\left.\right\|_{\text {TP11 }} ^{\text {T3 }}$	$\mathrm{X}=+320$	$\begin{aligned} & X=2717519 \\ & Y=235944 \end{aligned}$	$\begin{aligned} & \Delta X^{\prime}=317 \\ & \Delta Y^{\prime}=-41 \end{aligned}$	$\begin{aligned} \dot{X}^{\prime} & =2717836 \\ \mathrm{Y}^{\prime} & =235903 \end{aligned}$
$\begin{aligned} & 9 \\ & \dot{x} \end{aligned}$	22nd R12 PPI Market	$x=-300$	$\begin{aligned} & \mathrm{X}=2721257 \\ & \mathrm{Y}=236561.2 \end{aligned}$	$\begin{aligned} & \Delta X^{\prime}=-297 \\ & \Delta Y^{\prime}=38 \end{aligned}$	$\begin{aligned} & \mathrm{X}=2720960 \\ & \mathrm{Y}^{\prime}=236599 \end{aligned}$
\#13		$X=-292$	$\begin{aligned} & \mathrm{X}=2724675 \\ & \mathrm{Y}=234527 \end{aligned}$	$\begin{aligned} & \Delta \mathrm{X}^{\prime}=-290 \\ & \Delta \mathrm{Y}^{\prime}=37 \end{aligned}$	$\begin{aligned} & X=2724385 \\ & Y^{\prime}=234564 \end{aligned}$
\#14	R14 8th TP14 Pine	$\mathrm{X}=+239{ }^{\prime}$	$\begin{aligned} & X=2727418 \\ & Y=233227 \end{aligned}$	$\begin{aligned} & \Delta X^{\prime}=30 \\ & \Delta Y^{\prime}=237 \end{aligned}$	$\begin{aligned} & \dot{X}=2727448 \\ & \dot{Y}=233464 \end{aligned}$
\#15		$X=+230$	$\begin{aligned} & X=2725844 \\ & Y=234799 \end{aligned}$	$\begin{aligned} & \Delta X^{\prime}=228 \\ & \Delta Y^{\prime}=-29 \end{aligned}$	$\begin{aligned} & \mathrm{X}^{\prime}=2726072 \\ & \mathrm{Y}^{\prime}=234770 \end{aligned}$

FIG. 6-6 HI ${ }^{3}$ TIMEPOINT PARAMETERS

was taken as the value of $\Delta \mathrm{T}_{\mathrm{L}}$ to be used in the data processing program. These values became the timepoint data base, TPDELT.

6.2.3 Timepoint Location and Marking

Timepoint locations were selected by TSC. Specific landmarks, i.e., signs, street lights, etc. which served as timepoints were selected by HI^{3} and approved by TSC. The landmarks selected as timepoints are identified in Table 6-4.

6.2.4 Location Subsystem Calibration

Calibration of the LS for the fixed route test involved (1) the establishing of the vehicle unit Level 1 threshold, (2) the calibrating of the fifth wheel against a measured distance, (3) the calibration of the odometer against a measured distance, and (4) the use of the vehicle unit and DAS to determine the values of the Region 1 boundaries and $\Delta \mathrm{T}_{\mathrm{L}}$ for each timepoint for use in the data base. On the day of each formal test run, only the calibration of the vehicle unit Level 1 threshold and the fifth wheel and odometer had to be verified. Calibration of the items was accomplished in the same manner as that primarily described in paragraph 3.2.2 for random route tests. The fifth wheel was calibrated in exactly the same manner as the odometer. Except in those instances in which snow and ice caused an accumulation of the fifth wheel, the odometer and fifth wheel were calibrated to within 1 foot in 1000 feet on the calibration run.

6.3 FIXED ROUTE DATA ACQUISITION

Fixed route test data were recorded on cassettes during Runs 11 through 43. The sequence of events depicted in Figure 3-17 was utilized during data acquisition and handling. Header data were recorded on each cassette pair under the control of program FROUTE just prior to commencing a test run. A data log sheet was filled out for each rum and signed by the HI^{3} Test Director and the TSC Monitor. Figure 6-7 contains a typical fixed route data log. Copies of all \log sheets are contained in the Appendix. At the conclusion of the 33 fixed route test runs, all cassettes were duplicated onto magnetic tapes for use at MITRE. Since HI^{3} data processing software was not checked out and running at MLTRE, all cassettes were retained by the TSC Monitor until February, 1977, when software checkout was completed at MITRE.

Checkpoint, Door Open, Door Close, Timepoint, and Turn Event were manually entered at designated locations during each run. Locations of fixed route checkpoints, turns, and timepoints are shown in Figure 6-8. The following entries were required for a typical run.

```
1. Timepoint (TD's) --------------- 15
2. Door Open -------------------- 7-8
```

TABLE 6-4 HI^{3} TIMEPOINTS

T P Number	Identification/Landmarks
1	Traffic light on S.W. corner 19th \& Spruce
2	Traffic Light on N. W. corner of 13th \& Pine
3	Traffic Light on N. E. corner of 13th \& Callowhill
4	Street Light on N. E. corner of 8th \& Vine
5	Last ornamental Street Light Pole on Cherry at S. E. Corner of Cherry and Ben Franklin Parkway
6	Street light on Crescent at S. E. corner of Crescent and Spring Garden
7	Center of 16th \& Race
8	Street light on S. W. corner of 6 th \& Arch
9	No Parking Sign on north side of JFK Blvd. at N. E. corner of Broad \& JFK
10	SEPTA STOP (sign) at N. W, corner of 20th \& Walnut
11	Street Light at N. E. corner of 33rd and Walnut
12	SEPTA STOP (sign) at S. E. Corner of 22nd and Market
13	Street Light at S. W. corner of Broad and Locust
14	SEPTA STOP (sign) at N. W. corner of 8th \& Pine
15	Street Light at S. E. corner of 12 th \& Walnut

EQUIPMENT UTIJIZED/TEST CONDITION:
VEHICLE UNIT NO.: 1
VEHICLE UNIT THRESHOLD LEVEIS: $1-55 \mathrm{dBm} 2-121 \mathrm{Bm} 3-82 \mathrm{dBm}$. ODOMETER CAL: 979 FPS 2 FTH WHEEL CAL 872 FPS 2
R1 DROPOUT SWITCH: Off/ OM OTIFR:
MATURE $\%$ PRECIPITATION: NONE ROAD
$A P E$ NO (S). 39-1 an $39-2$ FILE NO.
SAMPLE RATE: 0.5
RUN TIME: $1 H R-30 M$ IN 230 TLC MONITOR

FIG. 6-7 HI^{3} FIXED ROUTE TEST DATA LOG
FIG. 6-8 FIXED ROUTE EVENT MARKERS

3. Door Close (DC's) ---------- 7-8
4. Checkpoints (CP's) --------- 76
5. Turnpoints (TA's) ---------- 32

Total ---------------------- 139 Events per run.
Entry of these 139 events involved the use of approximately 521 separate keystroking entries during each run for a total of over 17,000 separate keyboard entries during the fixed route test program. As a result of manual entry errors (wrong event or event at wrong time), the Error Event (EE) was used 22 times during the 33 runs. In conjunction with these errors, Table 6-5 contains a list of the anomalies which occurred during manual data entry. The card input corrections required for data processing are also included. Note that in cases in which a TD or a CP were missed, these entries were simply not processed, no attempt being made to insert these entries into the data. However, since the TA's are necessary for pseudo checkpoint compatation of the reference location of the vehicle, these were inserted at the approximate location of the associated turn.

After each test, the fixed route cassette rum was dumped in the test vehicle, by using program FRUMP. During this process it was found that Runs 19 and 33 could not be dumped. It was subsequently found by reference to the printer output during the FROUTE loading cycle that the Test Director failed to zero the Run 33 cassettes prior to beginning the rum. Run 20 could not be dumped past checkpoint 46 , as a result of an auxiliary generator failure at that point. Because of these problems and loss of a magnet from the fifth wheel during Run 32, three additional fixed route runs were made in order to assure an adequate number of timepoint samples.

Formal fixed route test procedures involved the following procedures. After loading the fixed route data recording program FROUTE, the test vehicle driver proceeded to traverse the specified route. Coincident with passage of each designated checkpoint, turn, and timepoint, a coded event marker, CP(NN), TA(XX), or $\mathrm{TD}(\mathrm{YY})$, respectively, and a time coincident data record were recorded on cassette. As a checkpoint, turn, or timepoint was approached, the driver informed the DAS operator to prepare for event NN. The DAS operator pressed first the appropriate event function key and then keystroked the number NN. He then prepared to depress the "RETURN" key. As the test vehicle approached the event, the driver called out "standby" and then, as the front bumper of the test vehicle passed the designated event he called out "MARK." Upon hearing this MARK, the DAS operator depressed the RETURN key and thus caused a data record and the event number to be recorded on cassette. Door Open (DO) and Door Close (DC) events were similarly recorded. The fixed route test procedures are shown in Figure $6-9$. Automatic switch-over from cassette No. 1 to cassette No. 2 occurred at the end of 60 minutes of recording when program FROUTE was used.

TABLE 6-5 FIXED ROUTE MANUAL DATA ENTRY ANOMALIES

RUN NO.	ANOMALIE	ACTION REQUIRED TO PROCESS DATA
14	Missed TA16	Card Input of TA16 at proper location
16	Missed TA24	Card Input of TA24 at proper location
17	Missed TD11	None Required
18	Missed CP43	None Required
20	Missed CP37	None Required
21	Missed CP6	None Required
22	Missed CP11	None Required
26	Missed TD15	None Required
27	Missed CP48	None Required
27	Missed TA10	Card Input of TA10 at proper location
27	Entered TD10 in error	Card Input of Delete TD10
30	Entered DC13 for DC11	None Required
31	Missed TA10	Card Input of TA10 at proper location
32	Entered TD13 for DO13	Card Input of DO13 for first TD13
33	Couldn't enter DO10 and noted that cassette was not turning during 10-30 second period	Noye Required
34	Missed CP40 and 54	
34	$\mathrm{DO} 2, \mathrm{DC} 2$, and TD2 entered 1 block early	Deleted with EE events
40	Entered CP40 twice	Card Input to Delete first occurrence
37	Entered DC7 in Error	Card Input to Delete first DC7

FIG. 6-9 FIXED ROUTE TEST PROCEDURE

No adjustments were made in the LS during a test run. However, minor adjustments of the fifth wheel were required twice during the fixed route test program. A log of all such adjustments was made a part of the test results and is summarized in Table 6-6. All data recorded were retained and processed. No data were eliminated as poor or potentially poor.

Twenty four hours prior to the scheduled commencement of the first fixed route test run and 24 hours after receipt of the fixed route checkpoint locations, HI ${ }^{3}$ informed the TSC Monitor that the test was "go." Run 11 began at 1310 on 13 January 1977. The final test run, Run 43 ended at 2140 on 17 January 1977. The average run time was 1 hour and 23 minutes. Thus, nearly 46 hours of formal test runs were completed during a 104 hour period. Snow began falling during Run No. 18. All subsequent test runs encountered slick slushy streets, snow, sleet, or freezing rain and temperatures as low as $8^{\circ} \mathrm{F}$ and as high as $38^{\circ} \mathrm{F}$.

The TSC Monitor was in the test vehicle during all fixed route test runs.

6.4 FIXED ROUTE TEST DATA

Fixed route test data were recorded every 0.5 seconds during the test runs. Except as noted in subsection 6.3, all data were listed by using program FRUMP to certify that the data were recorded on the cassettes. As in the case of random route data, only "change" data and event data records were dumped or listed. Copies of these listings are provided in the Appendix. As an example, Table 6-7 contains a listing of typical fixed route test data dump corresponding to Run 27. Note the occurrence of TA's, CP's, TD's, DO's, DC's, and signpost codes. With regard to the signpost codes, only the R1 and R1D codes were significant. For example, the fact that the R3N code occurs after CP 7 is a result of overlap between signposts $(14,06)$ and $(10,06)$. Although all signpost data were recorded, the occurrence of overlap regions had no effect on the fixed route tests since only the R1 and R1D were used during data prosessing.

Note that the R1D record is followed by an R1 record. This combination results from the fact that the last valid location code is always stored in the vehicle. The R1D code is a special code used only for fixed roate vehicles and is not a location region code per se. As soon as the R1D code is sampled by the computer, the ICU clears the 0011 code from the " B " field, and since the resulting 0000 code corresponds to the Region 1, this location code is automatically recorded as the subsequent sample.

As previously discussed in paragraph 6.1.3.1, more than one $R 1 D$ may occur, particularly if the test vehicle should stop near a Region 1 boundary. However, the timepoint performance algorithm used during Phase I (and proposed for use during Phase II) has been designed to use only the last R1D occurring for each timepoint signpost.

TABLE 6-6 ADJUSTMENTS REQUIRED TO DAS DURING FIXED ROUTE TESTS

Run \#	Problem	Required Action
20	Auxiliary Generator Stalled after CP\#46	Repaired automatic choke. Required approximately 5 minutes to wire choke open
32	Lost magnet from 5th Wheel 36 minutes into Run due to heavy ice on streets	Replaced magnet with spare magnet. Required 20 minutes to replace.
26	Connector to 5th Wheel sensor filled with water due to melting ice and water thrown up from fifth wheel	Dried out connector and sealed with tape.

Both odometer and fifth wheel values recorded on cassette and shown in Table 6-7 are recorded in pulses and must be multiplied by 2 in order to be converted to feet. Both units were calibrated to provide one pulse every two feet. Note also that whereas the odometer rolls over after CP's 11, 20, 26, and 34, the fifth wheel does not roll over until after CP 34. This action occurs since only 12 bits $\left(2^{12}=4096\right)$ were used to record odometer data and 14 bits $\left(2^{14}=16,384\right)$ were used to record fifth wheel data. During data processing, all such modulo 2^{N} features are recognized by the data processing routine. The time printed out in Table 6-7 is correct to the second although the data recorded on cassette and used during data processing are correct to the half-second.

The DO 085 codes observed in the last two records are the end-offile marks. All data prosessing is terminated upon the occurrence of the last TA entry, TA 32, which signifies the end of run. The DO 085 code is written on tape automatically as a result of action of the Close Tape function key.

The odometer was driven from magnets attached to the left front wheel, whereas the fifth wheel was mounted on the centerline of the test vehicle. As a result, they traveled different distances when the vehicle turaed. This is evident in the data shown in Table 6-7. For example, at time $00: 28$, the odometer is 4 feet ahead of the fifth wheel. At TA3, a left turn was made, subsequently, the fifth wheel caught up with the odometer. The left turn at TA4 caused the fifth wheel to exceed the odometer (see time 06:05). Note that, at the and of the run, the odometer indicates a total elapsed distance of 68,660 feet in comparisoz to the 68,522 feet indicated by the fifth wheel, a difference of 138 feet, or 0.2 percent. Analysis of the test route indicates that 5 more 90 -degree right turns are made than left turns. This action would result in the adometer's traveling a greater distance than the fifth wheel. Theoretically, an offset of X feet from the center line of the vehicle would result in $\pi / 2 \mathrm{X}$ feet difference for each 90 -degree turn. By using an offset value of $\mathrm{X}=4$ feet and five turns, $5 \times \pi / 2 \times 4=31$ feet of this difference are accounted for. The remaining difference (107 feet or 0.156 percent) is attributed to calibration of the two units over only a 1000 -foot range.

Within human judgment, each test run was started at the same location and ended at the same location. Table 6-8 is a summary of the elapsed distances indicated by the odometer and fifth wheel during the fixed route runs. The temperature during the run and the street conditions are also appended.

Table 6-9 contains a typical odometer/fifth wheel calibration run over the 1000-foot Delaware Street range. CP 1 signified the start of the run. CP2 signified the end of the run. The TA events were used to record data at interim times. This run was made after replacing the magnet which was lost from the fifth wheel during Run 32. The indicated odometer distance was $2 \times 502=1004$ feet. The indicated fifth wheel distance was $2 \times 500=1000$ feet. No attempt was made to "improve" the calibration by changing the DEM calibration numbers as a result of these tests since street conditions were uncertain.

TABLE 6-8 ODOMETER AND 5TH WHEEL TEST DATA

Run No.	Total Run Elapsed Distance		ODOM-Fifth	Temperature	Street Conditions
	Odometer (ft)	5th Wheel (ft)			
11	68562	68610	-48	24	Dry
12	68336	68608	-272	23	Dry
13	68736	68770	-34	24	Dry
14*	49800	49816	-16	24	Dry
15	68478	68596	-118	23	Dry
17	68408	68598	-190	30	Dry
18	68490	68596	-106	32	Began Snowing
21	68950	68092	858	33	Slush
23 24	69048	67714	1334	32	Freezing Rain
25*	23234	22912	322	32	Rain
26	68776	68510	266	33	Slush
27	68650	68512	138	34	Slush
28	68596	68512	84	38	Slush
30	68680	68610	70	34	Slush
31	68576	68900	-324	34	Slush
$34 *$	36684	36364	320	26	Snow
35	68876	68320	556	26	Snow
36	68802	68456	446	28	Snow
38	68894	68356	540	15	Slush
39	68872	68474	398	8	Ice
40*	38552	38368	184	8	Ice
41	68760	68536	224	12	Ice
42	68838	68516	322	12	Ice
43*	56718	56492	226	12	Ice

[^2]test data log
TEST RUN \# 32 CONTINUED SHEET 4 OF 4
-L FFIIMF. LII

- 5 T $1+15$

data dump as described on sheet sol 4

7. FIXED ROUTE DATA PROCESSING

The processing of fixed route data was accomplished in three parts by use of three computer programs FRLS, FRSYS, and FRTEN. The same data were input to the three programs. The programs were coded separately in order to accommodate the PDP 11/05 processor at HI^{3}. As shown in Figure 7-1, FRLS processed timepoint and checkpoint data, whereas FRSYS processed AVM System Level Errors (pseudo checkpoints) and FRTEN processed each record to generate average errors over 528 foot street segments.

7.1 SAMPLE SIZE

The sample size for fixed route data was determined through the use of the processes described in Subsection 4.1. Since TSC designated 76 checkpoints, 30 runs would result in processing of 2280 checkpoints, considerably more than the number of samples required. However, since only 15 timepoints could be accommodated per run during a 13 -mile run and be representative of the spacing between timepoints on actual transit routes, the number of timepoint samples dictated the number of runs. As discussed in subsection 4.1, the sample size analyses coupled with the cost of requiring additional runs, resulted in TSC requiring 30 runs, for a total of 450 timepoint samples. HI^{3} actually processed exactly 451 timepoint samples.

7.2 FIXED ROUTE DATA PROCESSING

7.2.1 Fixed Route Location Errors

Location error data processing of fixed route data involved computing (1) the vehicle's actual location (at checkpoints and pseudo checkpoints), (2) the vehicle's estimated location (using the location subsystem or AVM system), and (3) the radial error between the locations determined in (1) and (2).
7.2.1.1 Vehicle Actual Location at Checkpoints. The actual location of the vehicle was assumed to be the X, Y location of the TSC checkpoint at the time the appropriate CP event was recorded on tape. The CPTABL file contained the X, Y location of each checkpoint as determined by (1) the digitized intersections provided by MITRE and (2) the offset distances measured by H^{3}. The actual values used in CPTABL were the X^{\prime} and Y^{\prime} values of the stateplane coordinates shown in the Appendix except that $2,710,000$ was subtracted from X^{\prime} values and 230,000 was subtracted from Y^{\prime} values. Table 7-1 contains actual CPTABL stateplane entries.

FIG. 7-1 FIXED ROUTE DATA PROCESSING SOFTWARE

TABLE 7-1 FIXED ROUTE CHECKPOINT STATEPLANE COORDINATES

Checkpoint No.	State Plane	Coordinates	Checkpoint No.	$\begin{array}{\|c} \text { State Plane } \\ \hline \mathrm{X}(\text { feet }) \end{array}$	$\frac{\text { Coordinates }}{\bar{Y}(\text { feet })}$
	X (feet)	Y (feet)			
1	2722431	234529	44	2724055	235037
2	2722895	233792	45	2723388	235138
3	2723632	233698	46	2722862	235200
4	2724904	233541	47	2721518	235369
5	2725277	234035	48	2720787	235472
6	2725334	234441	49	2720462	235513
7	2725383	23486.9	50	2719558	235647
8	2725475	235453	51	2718740	235757
9	2725644	236735	52	2718145	235840
10	2725730	237421	53	2717537	236481
11	2725809	237838	54	2717652	236971
12	2776042	239499	55	2718320	236948
13	2726512	239618	56	2719345	236825
14	2726941	239578	57	2719894	236731
15	2727368	239554	58	2722136	236444
16	2727811	239507	59	2722561	236405
17	2728095	238454	60	2723099	236331
18	2728109	238343	61	2723452	236271
19	2727929	236962	62	2723455	235695
20	2726580	236988	63	2723388	235138
21	2725087	237167	64	2723372	234812
22	2724282	237260	65	2723787	234668
23	2723313	237718	66	2724242	234594
24	2722500	238500	67	2725770	234381
25	2721590	239350	68	2726152	234347
26	2722190	240181	69	2727121	234202
27	2723151	240036	70	2727491	233736
28	2723130	239554	71.	2728691	233072
29	2723052	239039	72	2729268	233498
30	2723699	237663	73	2728484	234477
31	2725123	237495	74	2727621	234597
32	2725948	237393	75	2726706	234705
33	2726627	237326	76	2725624	234856
34	2727500	237204			
35	2728354	237054			
36	2728300	235657			
37	2727779	235728			
38	2726908	235840			
39	2726427	235897			
40	2725645	236003			
41	2724638	236127			
42	2724717	235780			
43	2724816	235222	7-3		

7.2.1.2 Vehicle Actual Loeation at Pseudo Checkpoints. In Fixed Route Data Processing, pseudo checkpoints were selected in exactly the same manner as in Random Route Data Processing, i.e., by sampling the recorded data every 20 seconds. The technique used to determine the vehicle location at a pseudo checkpoint was also exactly the same as that used in the Random Route System Level routine RRSL, as previously discussed in paragraph 4.2.3. As in the case of RRSL, the vehicle's actual location (i.e., that of the pseudo checkpoint) was determined explicitly through use of (1) the last TA or CP, (2) the next TA or CP, and (3) the 5th wheel distance from the last TA or CP to the pseudo checkpoint.
7.2.1.3 Vehicle Computed Location. The estimated location of the vehicle was computed through use of the last reset signpost code, and the elapsed odometer distance from that signpost's region 1 boundary ($R(i)$). The simplified flow chart in Figure 7-2 shows the process incorporated in FRIS to compute location errors. The odometer is first used to compute the vehicle's distance along the route from the last reset point to establish on which street segment the vehicle is located, and then it is used to compute the X, Y location on the basis of the distance the vehicle has traveled along the street segment. Table 7-2 contains the street segment file STSEG. Each point in the STSEG file is identified in Figure 6-8.

7.2.1.4 Vehicle Computed (AVM System) Location at Pseudo Checkpoints.

 At pseudo checkpoints, the exact same algorithm discussed in paragraph 7.2.1.3 was used to determine the vehicle's computed location. This approach was used regardless of whether or not a communication error has been simulated. Thus, as in the case of checkpoints, the vehicle's compated location was determined totally on the basis of the elapsed odometer distance from the last encountered fixed route signpost. Note that the marking of turns in no way influences the computation of vehicle location through the use of the location subsystem.7.2.1.5 Off-Route Declaration. During off-line data processing, each recorded signpost code is checked against a valid signpost file. If an invalid code is observed, it is ignored as part of the screening algorithm. Each recorded signpost code is also checked against the fixed route signpost file. If a valid signpost code is not a fixed route signpost for the route in question, an "offroute" declaration is made. This function was simulated during runs 38 through 43 by installing a pair of signposts along the route so that their codes would be recorded in the test vehicle. In each instance, the data processing routine declared an off-route condition upon the first occurrence of a code from either of these signposts. The locations of these signposts are indicated in Figure 6-4. The actual algorithm by which the vehicle's estimated location was determined, off-line, is indicated in the flow chart in Figure 7-2.

WHERE: CP IS CHECKPOINT
INCREM(LS) IS THE ELAPSED ODOMETER READNG (IN FEET) SINCE LAST RESET
STSEG FILE IS AS SHOWN IN TABLE 7-2
DELTAR(j) IS THE LENGTH IN FEET OF THE jth STREET SEGMENT
$\sum_{\mathrm{Ri}}^{\mathrm{R}^{+} \mathrm{p}} \mathrm{DELTAR}(\mathrm{j})$ IS THE DISTANCE FROM THE LAST RESET TO THE Ri+pth STREET SEGMENT
DELTAR(Ri+p) IS THE STREET SEGMENT ON WHICH THE VEHICLE IS ON
$X(L S)$ IS COMPUTED X BY LS, $Y(L S)$ IS COMPUTED Y BY LS $\mathrm{X}(\mathrm{CP}), \mathrm{Y}(\mathrm{CP})$ IS X, Y FROM CPTABL
FIG. 7-2 SIMPLIFIED FLOW CHART OF FRLS LOCATION ERROR ALGORITHM

* Add 2710,000 to X and 230,000 to Y to get State Plane Coordinate.

7.2.2 AVM System Simulation

During the first pass, when fixed route test data were processed through the use of program FRSYS, the location error was computed for every 40th record (20 -second sampling interval). On the second pass, 5 percent of the samples (selected in a random manner) were assumed to contain a communcation error. In these cases, the vehicle's actual location (fifth wheel) was not changed; however, detection of a communication error (simulated) caused the AVM system to poll the vehicle within 2 seconds to obtain a new AVM computed lozation. As in the random route case, this correction technique was implemented by computing the vehicle's location on the basis of the fourth record (2 seconds) subsequent to the originally selected PCP. The error was then computed as follows for the two cases:

No Communication Error Detected

$$
\text { Location Error }=\sqrt{\left(X(L S \text { at } P C P)-X(P C P)^{2}+(Y(L S ~ a t ~ P C P)-Y(P C P))^{2}\right.}
$$

Communication Error Detected at PCP

$$
\text { Location Error } \left.=\sqrt{(X(L S \text { at } P C P+2 \mathrm{sec})-X(P C P))^{2}+(Y(L S ~ a t ~ P C P+2 s e c-Y(P C P)}\right)^{2}
$$

7.2.3 Timepoint Performance Computation

The computation of timepoint performance was performed by use of the FRLS routine at each event-marked timepoint recorded on cassette during each fixed route test run. Figure 7-2 contains the algorithm used to determine timepoint passage. The TDO, TDC, and TLRID information would be stored in the Phase II vehicle until requested by the base station. This information consists of values for TDO and TDC or a value for TLR1D. These values are stored in the vehicle until the next timepoint is encountered. If a communication error is detected during transmission of timepoint data to the base station, it will be retrieved on a subsequent poll; however, the values would not be changed.

7.2.4 Average Error Over One-Tenth Mile Segments

Computer program FRTEN was used to compute the average location error over 528 foot segments of the fixed route tests. This program treated each record as if it were a pseudo checkpoint thereby computing each location error in exactly the same manner as FRSYS. The average of all such errors over each 528 foot long segment of the 13 -mile route was then determined.

7.3 FIXED ROUTE DATA PROCESSING SOFTWARE

Flow charts of fixed route data processing software routines FRSYS, and FRTEN are contained in the Appendix.

FIG. 7-3 SIMPLIFIED FLOW CHART OF TIMEPOINT PERFOMANCE A LGORITHM

8. FIXED ROUTE TEST RESULTS

The results obtained by processing Fixed Route Runs 11 through 43 through the use of the data processing routines FRLS, FRSYS, and FRTEN are presented in this section. Location error data are presented separately from timepoint performance error data. The results obtained for both the location subsystem and the AVM system simulation are summarized in the following table:

SUMMARY OF FIXED ROUTE TEST RESULTS

Location Subsystem:	
No. of Samples .	2313
Average Error .	50 feet
95\% Error	107 feet
99.5\% Error	156 feet
\% Errors Less Than 300 Feet	99.91
\% Errors Less Than 450 Feet	99.96
Maximum Average Error over 1/10th Mile Segment	256 feet
AVM System (Location Error): With 5\% Comm Errors	
No. of Samples .	7459
Average Error	48 feet
95\% Error .	105 feet
99.5\% Error .	188 feet
\% Errors Less Than 300 Feet	99.84
\% Errors Less Than 450 Feet .	99.97
AVM System (Timepoint Performance)	
No. of Samples	451
Average Error	3.9 second
95\% Error .	11 seconds
99.5\% Error . .	24 seconds
\% Errors Less Than 15 Seconds .	98.67
\% Errors Less Than 60 Seconds	100.00

8.1 LOCATION SUBSYSTEM TEST RESULTS

The vehicle location results obtained by processing fixed route data tapes through the Fixed Route Location Subsystem (FRLS) routine are summarized in Table 8-1. As a result of certain anomalies, some of which were described in Section 6, all 33 data runs could not be processed in total. Table 8-2 contains a brief description of the problems encountered in processing each data rum. In

TABLE 8-1 FIXED ROUTE LOCATION SUBSYSTEM TEST RESULTS

Run No.	No. of Checkpoints Processed	Average Error (feet)	95\% of Errors Less than (feet)	99.5\% of Errors Less than (feet)
11	76	51.48	104	128
12	76	56.79	115	143
13	76	52.44	107	142
14	76	49. 16	102	119
15	76	50.28	108	140
16	76	48.86	100	117
17	76	50.88	102	119
18	75	54.13	119	130
19	Bad Tape	---	---	---
20	45	58.47	125	162
21	73	41.06	106	144
22	76	45.14	107	152
23	76	46.73	135	174
24	75	67.60	145	1509 *
25	76	62.84	244	309
26	76	38.16	91	101
27.	76	48.10	102	126
28	75	45.54	92	113
29	74	43.58	99	104
30	76	44.23	89	120
31	76	56.60	105	405
32	75	42.73	95	125
33	Bad Tape	-	---	---
34	75	46.04	97	139
35	75	40.94	87	131
36	76	50.16	11.5	156
37	76	51.72	111	148
38	76	53.81	101	119
39	76	53.35	103	144
40	76	47.44	103	111
41	76	37.45	79	118
42	76	53.60	107	306
43	75	61. 10	127	185
Total	2313	49.85	107	156

*Computation error: Manual computation yields 12 feet at CP3.

TABLE 8-2 FIXED ROUTE DATA PROCESSING ANOMALIES (FRLS)

most cases, the information contained in Table 8-2 applies to use of the AVM system simulation routine also. Pertinent differences are described in Subsection 8.2. A detailed discussion of processing anomalies is contained in subsection 8.3.

As a result of the problems described in Table 8-2, only 31 of 33 runs were successfully processed through use of FRLS. Two runs, Runs 19 and 33, could not be processed at all. Runs 19 and 33 were known to have contained recording errors which were confirmed in the test vehicle immediately after each run. Also, Run 20 was cut short due to failure of the auxiliary generator just after checkpoint 46. Run 20 could not be processed through the FRSYS routine. Runs $24,25,34,40$, and 43 also could not be processed completely due to data recording errors. All of these problems were noted on the appropriate test data logs or made known to the TSC Monitor while at DEC transferring data from cassettes to magnetic tape. Details are discussed in subsection 8.3

Assuming that 30 runs were processed, the number of checkpoints would then be $30 \times 76=2280$ checkpoints minus the 20 (4 during each of 5 runs), which were not processed due to an "off-route" declaration on Runs 39 through 43, leaves 2260 possible checkpoints. A total of 2171 checkpoints representing 98 percent of these possible samples were actually processed through the use of FRLS. A total of 142 checkpoints were processed manually (as noted in Table 8-2) for a grand total of 2313 checkpoints.

Table 8-3 contains typical results obtained as output data from the FRIS routine when Run 27 was processed. Figure 8-1 contains a plot of the error statistics of all fixed route location subsystem data combined. These results document conclusively the performance obtained through use of the HI^{3} location subsystem as a means of maintaining the location of fixed route transit vehicles. Note that the average error of 50 feet is approximately the length of a standard bus.

Figures 8-2 through 8-32 contain error histograms and cumulative error distributions corresponding to each set of test data which were processed. These results, coupled with the results obtained during random route tests, also demonstrate the ability of the HI^{3} fixed route AVM system which is described in Subsection 10.2 (odometer eliminated) to meet the fixed route transit AVM requirements of the UMTA Multi-User AVM Program. The HI^{3} fixed route system was installed, calibrated, and data recording software checked out in the test vehicle, during only five working days. Output data corresponding to each set of processed data are contained in the Appendix.

Table 8-4 contains typical results obtained by processing test data through use of the FRTEN routine. During each such run, every recorded data record on the test tape was processed as a pseudo checkpoint for a total of approximately 10,000 points per run using the FRTEN routine. Although similar results for all rums would be too voluminous to present in this volume, Table 8-5 contains a
(Text continued on 8-42)

TABLE 8-3 FLXED ROUTE RUN \# 27 CHECKPOINT ERRORS

FIXEII ROUTE RUN * 27 CHECKFOINT ERRORS

CP*	$X(C P)$	$Y(C P)$	SF'	SEG.	INCREM	COMP X	COMP Y	ERROR
1	12431	4529	1	3	40.	12413.	4580.	54.
2	12895	3792	1	4	559.	12886.	3807.	18
3	13632	3698	1	4	1305.	13626.	3711.	14.
4	14904	3541	2	5	26.	14871.	3547 .	34.
5	15277	4035	2	6	449.	15263.	3934.	102.
6	15334	4441	2	6	905.	15326.	4385.	56.
7	15383	4869	2	6	1321.	15384.	4797.	72.
8	15475	5453	2	6	1895.	15463.	5366.	88.
9	15644	6735	2	6	3203.	15644.	6661.	74.
10	15736	7421	2	6	3891.	15739.	7342.	79.
11	15809	7838	2	6	4335.	15801.	7782.	57.
12	16042	9499	3	7	1086.	16035.	9460.	40.
13	16512	9618	3	8	372.	16435.	9641.	80.
14	16941	9578	3	8	810.	16872.	9607.	75.
15	17368	9554	3	8	1274.	17334.	9571.	38.
16	17811	9507	3	8	1718.	17777.	9536.	45.
17	18095	8454	3	9	1009.	18112.	8501.	50.
18	18109	8343	3	9	1117.	18112.	8393.	50.
19	17929	6962	4	10	1170.	17926.	6915.	47.
'20	16580	6988	4	11	1395.	16525.	6981.	56.
21	15087	7167	4	11	2899.	15032.	7161.	56.
22	14282	7260	4	11	3679.	14257.	7255.	25.
23	13313	7718	5	13	551.	13339.	7715.	26.
24	12500	8500	5	15	401.	12450.	8552.	72.
25	11590	9350	5	15	1633.	11544.	9387.	58.
26	12190	10181	6	18	943.	12170.	10196.	25.
27	13151	10036	6	18	1895.	13114.	10072.	52.
28	13130	9554	6	19	440.	13127.	9626.	72.
29	13052	9039	6	19	974.	13045.	9099.	60.
30	13699	7663	6	21	930.	13808.	7649.	110.
31	15123	7495	7	22	1172.	15148.	7482.	28.
32	15948	7393	7	22	2012.	15982.	7381.	36.
33	16627	7326	7	22	2684.	16649.	7301.	33.
34	17500	7204	7	22	3590.	17548.	7193.	50.
35	18345	7054	7	22	4488.	18440.	7085.	100.
36	18300	5657	8	25	297.	18347.	5646.	49.
37	17779	5728	8	25	865.	17784.	5718.	12.
38	16908	5840	8	25	1719.	16937.	5826.	32.
39	16427	5897	8	25	2221.	16439.	5889.	14.
40	15645	6003	8	25	3009.	15658.	5989.	19.
41	14638	6127	9	29	427.	14627.	6043.	85.
42	14717	5780	9	30	248.	14842.	5763.	126.
43	14816	5222	9	31	632.	14811.	5131.	91.
44	14055	5037	9	32	771.	14024.	5053.	35.
45	13388	5138	9	32	1443.	13357.	5141.	31.
46	12862	5200	9	32	2013.	12792.	5215.	71.

TABLE 8-3 FIXED ROUTE RUN \#27 CHECKPOINT ERRORS (CONT'D)

$C F \#$	X(CF)	$Y(C P)$	SF $\#$	SEG.	INCFEM	COMF X	COMF Y	ERFOR
47	11518	5369	10	33	810.	11543.	5386.	30.
48	10787	5472	10	33	1448.	10911.	5474.	124.
49	10462	5513	10	33	1888.	10475.	5535.	26.
50	9558	5647	10	33	2860.	9513.	5669.	50.
51	8740	5757	10	33	3616.	8764.	5774.	29.
52	8145	5840	10	33	4250.	8136.	5861.	23.
53	7537	6481	11	35	538.	7560.	6454.	35.
54	7652	6971	11	35	1036.	7645.	6945.	27.
55	8320	6948	11	36	609.	8264.	6955.	57.
56	9345	6825	11	36	1655.	9301.	6818.	45.

$\begin{aligned} & * 57 \\ & \text { CT1 } \end{aligned}$	9894 : FUNO27	$\begin{aligned} & 6731 \\ & 001 \end{aligned}$	11	36	2211.	9852.	6745.	45.
58	12136	6444	12	37	1184.	12134.	6444.	2
59	12561	6405	12	37	1594.	12541.	6391.	25.
60	13099	6331	12	37	2164.	13106.	6316.	16.
61	13452	6271	12	37	2504.	13443.	6272.	9.
62	13455	5695	12	38	528.	13494.	5733.	55.
63	13388	5138	12	38	1088.	13421.	5178.	51.
64	13372	4812	12	38	1378.	13382.	4890.	79.
65	13787	4668	12	39	367.	13721.	4656.	67.
66	14242	4594	12	39	815.	14165.	4595.	77.
67	15770	4381	13	40	1366.	15740.	4392.	32.
68	16152	4347	13	40	1768.	16139.	4341.	14.
69	17121	4202	13	40	2712.	17076.	4223.	50.
70	17491	3736	13	41	410.	17495.	3756.	21.
71	18691	3072	14	43	1294.	18713.	3068.	23.
72	18782	3565	14	44	521.	18813.	3581.	35.
73	18484	4477	14	45	448.	18469.	4489.	19.
74	17621	4597	14	45	1344.	17579.	4593.	42.
75	16706	4705	14	45	2228.	16701.	4696.	10.
76	15624	4856	15	46	420.	15656.	4830.	42

TABLE 8-3 FLXED ROUTE RUN \#27 CHECKPOINT ERRORS (CONT'D)

EFIROR SAMFLES	PERCENT SAMFLES	
	LT EFRROR	LT EFROR

10	2	2.63
20	11	14.47
30	22	28.95
40	34	44.74
50	43	56.58
60	57	75.00
70	58	76.32
80	67	88.16
90	70	92.11
100	72	94.74
110	74	97.37
120	74	100.00

```
AUEFAGE EFRKOR = = 48.10
STANIIARII IIEUIATION = 27.26
ELAFSEII TIME = 80:0
ELAFPSEII IISTANCE = 68512. (5TH WHEEL)
ELAF'SEII IIISTANCE = 68650. (OIOMETER )
```


FIG. 8-1 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, ALL RUNS

FIG. 8-2 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 11

FIG. 8-3 FLXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 12

FIG. 8-4 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 13

FIG. 8-5 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 14

FIG. 8-6 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 15

FIGURE 8-7 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 16

FIG. 8-8 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 17

FIG. 8-9 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 18

FIG. 8-10 FIXED ROUTE LOCATI ON SUBSYSTEM ERRORS, RUN 20

FIG. 8-11 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 21

FIG. 8-12 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 22

FIG. 8-13 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 23

FIG. 8-14 FIXED ROUTE LOCATION SUBSYSTEM ERROR STATISTICS, RUN 24

FIG. 8-15 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 25

FIG. 8-16 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 26

FIG. 8-18 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 28

FIG. 8-19 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 29

FIG. 8-20 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 30

FIG. 8-21 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 31

FIG. 8-22 FIXED ROUTE LOCATION SUBSYS TEM ERRORS, RUN 32

FIG. 8-23 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 34

FIG. 8-24 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN35

FIG. 8-25 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 36

FIG. 8-26 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 37

FIG. 8-27 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 38

FIG. 8-28 FLXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 39

FIG. 8-29 FIXED ROUTE LOCA TION SUBSYSTEM ERRORS, RUN 40

FIG. 8-30 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 41

FIG. 8-31 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 42

FIG. 8-32 FIXED ROUTE LOCATION SUBSYSTEM ERRORS, RUN 43

TABLE 8-4 AVERAGE ERRORS OVER ONE-TENTH MILE SEGMENTS

 OF FIXED ROUTE RUNS 13 AND 18```
FUN 13 FIXET FOUTE
AUEFAGE EFROF IN FEET OUEF ONE-TENTH MILE SEGMENTS
```

| 28 | 25 | 18 | 16 | 14 | 13 | 4 | 34 | 25 | 31 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 59 | 61 | 60 | 43 | 44 | 19 | 2 | 36 | 65 | 87 |
| 76 | 57 | 23 | 39 | 60 | 30 | 17 | 47 | 49 | 49 |
| 45 | 45 | 42 | 26 | 14 | 20 | 17 | 39 | 105 | 85 |
| 80 | 73 | 115 | 142 | 155 | 31 | 34 | 49 | 71 | 52 |
| 40 | 50 | 58 | 54 | 34 | 29 | 13 | 24 | 19 | 10 |
| 23 | 52 | 55 | 36 | 16 | 36 | 71 | 19 | 27 | 38 |

CT1:FUNO13.001

| 39 | 57 | 52 | 130 | 78 | 124 | 116 | 132 | 53 | 43 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 72 | 35 | 17 | 27 | 38 | 33 | 34 | 44 | 29 | 34 |
| 32 | 43 | 68 | 80 | 82 | 83 | 75 | 94 | 93 | 68 |
| 67 | 34 | 45 | 27 | 44 | 87 | 87 | 89 | 50 | 19 |
| 17 | 19 | 15 | 21 | 41 | 22 | 20 | 36 | 38 | 47 |
| 46 | 44 | 49 | 48 | 29 | 37 | 53 | 41 |  |  |

FUN IS FTXEO ROUTE
AUEFAGE EFFOR IN FEET OUER ONE-TENTH MTLE SEGMENTS

| 57 | 58 | 59 | 52 | 42 | 41 | 5 | 27 | 42 | 29 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51 | 59 | 60 | 52 | 47 | 37 | 16 | 34 | 106 | 111 |
| 98 | 71 | 45 | 63 | 87 | 28 | 18 | 54 | 54 | 47 |
| 33 | 31 | 28 | 30 | 14 | 11 | 27 | 42 | 85 | 72 |
| 66 | 57 | 93 | 51 | 41 | 20 | 25 | 39 | 54 | 37 |
| 48 | 45 | 54 | 49 | 32 | 28 | 16 | 32 | 25 | 15 |
| 21 | 49 | 51 | 38 | 20 | 44 | 83 | 45 | 53 | 59 |
| $6 T 18 F U N 018.001$ |  |  |  |  |  |  |  |  |  |
| 56 | 61 | 39 | 256 | 50 | 105 | 106 | 142 | 38 | 46 |
| 63 | 23 | 19 | 27 | 30 | 31 | 34 | 47 | 35 | 32 |
| 27 | 33 | 53 | 69 | 68 | 70 | 64 | 71 | 72 | 65 |
| 65 | 55 | 55 | 30 | 44 | 92 | 104 | 104 | 95 | 31 |
| 30 | 29 | 18 | 23 | 42 | 24 | 15 | 19 | 19 | 36 |
| 33 | 24 | 24 | 24 | 18 | 10 | 29 | 57 |  |  |

TABLE 8-5 SUMMARY RESULTS OF ONE-TENTH MILE SEGMENTS, FLXED ROUTE

| Run No. | Max Avg. <br> Error (feet) | Segment <br> Number | Run No. | Max Avg。 <br> Error (feet) | Segment <br> Number |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 116 | 43 | 27 | 113 | 76 |
| 12 | 121 | 107 | 28 | 169 | 77 |
| 13 | 155 | 145 | 29 | 159 | 43 |
| 14 | $999 * *$ | 75 | 30 | 135 | 43 |
| 15 | 127 | 74 | 31 | $390^{*}$ | 10 |
| 16 | 140 | 43 | 34 | 159 | 43 |
| 17 | 113 | 20 | 35 | 140 | 43 |
| 18 | 256 | 74 | 36 | 152 | 77 |
| 20 | 154 | 74 | 37 | 133 | 84 |
| 21 | 155 | 44 | 38 | 108 | 20 |
| 22 | 149 | 42 | 39 | 126 | 43 |
| 23 | 169 | 77 | 40 | 109 | 43 |
| 24 | 158 | 77 | 41 | 105 | 53 |
| 25 | 123 | 42 | 42 | 122 | 43 |
| 26 | 156 | 61 | 43 | 137 | 76 |

* 5th wheel error between CP2 and CP4 caused large error during segments 10 and 11 .
** As noted in Table 6-5, and as recorded on the Run 14 log sheet, 'TA16 was erroneously not entered during Run 14. As noted in Table 4.3-2 of the Appendix, TA16 was inserted via card input during processing with the FRSYS routine. Inadvertently, however, the card input was not used when FRTEN was used to process Run 14. This allowed large errors to be generated when the vehicle was between TA16 and TA17. The fifth wheel value at TA17 was 6.64 miles. The three one-tenth mile segments which indicate large errors on Run 14 are the three segments ending in $6.4,6.5$, and 6.6 miles respectively. The street segment between TA16 and TA17 is 1466 feet in length which includes the three effected one-tenth mile segments which exhibited maximum errors of $743, * * *$, (the computer prints out *** if 999 feet is exceeded), and 752 feet respectively. As a result of the obvious card input error, these three large values may be disregarded as resulting from a data recording/processing error rather than an AVM error.

This error was discovered just prior to submittal, coincident with the unavailability of the $\mathrm{HI}^{3}$ computer at Fort Worth.
summary of these data. The Appendix contains individual results obtained for each run. Note that of all data processed, the largest average error on any one-tenth mile segment on any run was 256 feet, nearly 200 feet less than the AVM specification.

### 8.2 AVM SYSTEM TEST RESULTS

The results obtained by simulating a complete AVM sys tem through imposition of a 20 -second polling interval and 5 percent communication errors are presented in this subsection. The timepoint performance results are also presented.

### 8.2.1 AVM System Vehicle Location

The results obtained by processing fixed route data through use of the FRSYS routine are summarized in Table 8-6. The cases in which no communication errors were present and in which a 5 percent communication error rate was simulated are both presented. Data processing problems associated with use of the FRSYS program are described in Table 8-7 and in subsection 8.3.

A total of 7,139 pseudo checkpoint samples were processed through the FRSYS routine. Runs 19 and 33 could not be processed. Run 20 (power failure and Run 32 (magnet lost from fifth wheel) were not processed. Table 8-7 summarizes all such problems associated with system level processing. A total of 320 pseudo checkpoints were processed manually, for a grand total of 7459 pseudo checkpoint samples. During the recording of fixed route test data it was observed that a total of 5 turns (TA events) were erroneously recorded or not recorded at all on six runs. In order to run these tapes through FRSYS (and FRTEN), card input data had to be utilized so that each and every TA event was available for processing each run. In cases in which a TA was not recorded on tape, it was inserted by use of one of the following processes:

1. On Run 14, TA 16 was inserted 478 feet (on the fifth wheel) after CP 35.
2. On Run 16, TA 24 was inserted 54 feet (on the fifth wheel) after TD 11.
3. On Run 21, first occurrence of TA 16 changed to TA 6.
4. On Run 24, TA 33 was deleted.
5. On Run 27, first occurrence of TD 10 changed to TA 10.

Items 1, 2, and 3 were noted on their respective data logs at the time of occurrence. Items 4 and 5 were not discovered until a dump of the recorded data was examined. All fixed route data processing anomalies are discussed in subsection 8.4.

TABLE 8-6 FIXED ROUTE AVM SYSTEM LOCATION ACCURACY RESULTS

| Run No. | No. of Pseudo Checkpoints Processed | No Communication Errors |  |  | 5\% Communication Errors |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Average <br> Error <br> (feet) | 95\% <br> Error <br> (feet) | $\begin{aligned} & 99.5 \% \\ & \text { Error } \\ & \text { (feet) } \end{aligned}$ | Average <br> Error <br> (feet) | $\begin{aligned} & 95 \% \\ & \text { Error } \\ & \text { (feet) } \end{aligned}$ | $\begin{gathered} 99.5 \% \\ \text { Error } \\ \text { (feet) } \end{gathered}$ |
| 11 | 307 | 48.96 | 104 | 150 | 48.63 | 104 | 150 |
| 12 | 300 | 51.48 | 106 | 138 | 50.75 | 106 | 138 |
| 13 | 283 | 48.78 | 111 | 177 | 48.98 | 111 | 177 |
| 14 | 234 | 44.88 | 98 | 108 | 44.74 | 98 | 108 |
| 15 | 219 | 46.14 | 125 | 131 | 46.06 | 125 | 131 |
| 16 | 200 | 41.22 | 97 | 123 | 40.78 | 97 | 123 |
| 17 | 260 | 43.43 | 94 | 121 | 42.82 | 94 | 121 |
| 18 | 322 | 53.05 | 108 | 303 | 53.61 | 108 | 303 |
| 19 | * |  |  |  |  |  |  |
| 20 | * |  |  |  |  |  |  |
| 21 | 272 | 42.59 | 128 | 165 | 43.36 | 128 | 165 |
| 22 | 239 | 45.50 | 125 | 140 | 46.87 | 125 | 140 |
| 23 | 252 | 47.70 | 127 | 169 | 48.57 | 127 | 169 |
| 24 | 239 | 51.25 | 146 | 177 | 51.25 | 144 | 177 |
| 25 | 241 | 50.17 | 133 | 216 | 50.76 | 135 | 227 |
| 26 | 238 | 43.62 | 105 | 188 | 44.30 | 107 | 188 |
| 27 | 240 | 43.20 | 96 | 126 | 42.23 | 101 | 126 |
| 28 | 259 | 39.30 | 82 | 116 | 39.85 | 103 | 125 |
| 29 | 261 | 39.97 | 90 | 123 | 40.01 | 90 | 123 |
| 30 | 257 | 43.50 | 82 | 110 | 43.70 | 88 | 110 |
| 31 | 259 | 54.62 | 129 | 407 | 54.37 | 129 | 406 |
| 32 | *** |  |  |  |  |  |  |
| 33 | * |  |  |  |  |  |  |
| 34 | 289 | 41.22 | 87 | 199 | 40.80 | 87 | 199 |
| 35 | 255 | 39.05 | 83 | 128 | 38.74 | 87 | 128 |
| 36 | 229 | 47.85 | 109 | 154 | 48.20 | 116 | 154 |
| 37 | 247 | 50.84 | 117 | 151 | 51.07 | 117 | 151 |
| 38 | 222 | 54.62 | 91 | 867 | 53.75 | 91 | 867 |
| 39 | 281 | 55.81 | 109 | 383 | 55.82 | 109 | 383 |
| 40 | 269 | 46.50 | 90 | 267 | 46.58 | 90 | 267 |
| 41 | 329 | 37.26 | 80 | 116 | 37.37 | 80 | 116 |
| 42 | 231 | 45.44 | 94 | 150 | 44.80 | 94 | 150 |
| 43 | 225 | 58.52 | 138 | 243 | 58.46 | 138 | 243 |
| Total | 7459 | 48.09 | 105 | 188 | 46.79 | 105 | 188 |

[^3]TABLE 8-7 FIXED ROUTE DATA PROCESSING ANOMALIES (FRSYS)

| RUN NO. | PROBLEM | RESULT |
| :---: | :---: | :---: |
| 14 | Missed TA 16 | Inserted TA 16 at FIFTH $=33678$ feet* |
| 16 | Missed TA 24 | Inserted TA 24 at TD 11** |
| 19 | Bad Tape, Couldn't dump in vehicle | No Results |
| 20 | Generator Stalled | Not Processed |
| 24 | TA 33 entered in error | Deleted TA 33 |
|  | Couldn't read past CP 62 | 39 PCP's Processed Manually |
| 31 | 5th Wheel problem between CP3 and CP 4 | 406 foot errors *** |
| 32 | Lost magnet during run | Didn't process |
| 33 | Bad Tape, Couldn't dump in vehicle | No Results |
| 34 | Couldn't read past CP 37 | 122 PCP's Processed Manually |
| 37 | CP 30 entered in error | Deleted 2nd CP 30 |
| 38 | CP 71 entered in error | Deleted 1st CP 71 |
| 40 | Couldn't read past CP 36 | 119 PCP's Processed Manually |
| 42 | CP 40 Entered in error | Deleted 1st CP 40 |

* The value of FIFTH was estimated by adding the distance, (from the data base) from the preceding event marker to Turn 16, to the fifth wheel reading at the preceding event marker.
** TD 11 was approximately 54 feet from TA 24 and was a convenient entry point for inserting TA 24.
*** As noted on log sheet, 5th wheel gained over 300 feet between CP3 and CP4. The resulting errors were not modified and are included in Phase I results.

Table 8-8 contains typical results obtained as output data from the FRSYS routine when Run 28 was processed.

Figure 8-33 contains an error histogram and a cumulative error distribution of all AVM system location data which were processed. The impact of 5 percent communication errors is so small as to be imperceptible in these statistics so only one curve is shown, that corresponding to a perfect communication system. Reference to Table 8-6 supports the fact that the $\mathrm{HI}^{3}$ communication error detection and correction technique proposed for Phase II works effectively to minimize the impact of communication errors on vehicle location accuracy. Figures 8-34 to 8-62 contain the plotted error statistics corresponding to each individual fixed route test run. Figure 8-63 contains a plot of the 259 pseudo checkpoints computed for Run 28.

Output data corresponding to each set of processed test data are contained in the Appendix.

### 8.2.2 AVM System Timepoint Performance Results

Each data run was also processed to determine the capability of the $\mathrm{HI}^{3}$ AVM system to accurately determine the time of departure from timepoints. During each test run, 15 timepoints were marked, through use of the TD event marker, as the front bumper of the test vehicle passed the predetermined timepoint location. Including missed or erroneous data entries, these 33 runs resulted in a total of 418 timepoint samples which were processed. An additional 32 were processed manually from the run listings.

The time of departure error results obtained by processing 451 timepoints are summarized as follows:

In 95 percent of the samples, the error was less than 11 seconds In 99.5 percent of the samples, the error was less than 24 seconds

Percent samples with error less than 15 seconds: 98.67 percent
Percent samples with error less than 60 seconds: 100 percent

Average error: 3.9 seconds
Maximum error: 42.5 seconds

Of the 451 timepoint performance computations, 226 involved the use of the Door Close event, and the AVM system algorithm involving the R1 dropout was used to process the remaining 225. Table 8-9 contains a typical set of output data on timepoint performance for Run 27 . Table $8-10$ contains a tabulation of the computed errors corresponding to each timepoint and each test run.
(Text continued on 8-86)

TABLE 8-8 AVM SYSTEM TEST RESULTS, RUN 28
FIUN $\# 28$ SYSTEM LOCATION EFIFOFIS (NO COMMUNICATION EFFFOFSS) FCF OIIOM TIME FIFTH STSEG SSGE AUM $X$ AUM Y FIEF $X$ FEEF Y ERFIOR

| 1 | 396. | 0:31.0 | 394. | 3 | CF 1 | 12396 | 4435 | 1241.3 | 4414 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 556. | 0:51.0 | 554. | 3 | CF 1 | 12378 | 4276 | 12389 | 4256 | 22 |
| 3 | 994. | 1:11.0 | 998. | 4 | TA 3 | 12370 | 3874 | 12375 | 3873 | 5 |
| 4 | 1332. | 1:31.0 | 1334. | 4 | TA 3 | 12705 | 3831 | 12707 | 3821 | 0 |
| 5 | 1664. | 1:51.0 | 1666. | 4 | CF'? | 13035 | 3787 | 13027 | 3775 | 14 |
| 6 | 1964. | 2:11.0 | 1968. | 4 | CF 2 | 13332 | 3748 | 13327 | 3736 | 13 |
| 7 | 2474. | 2:31.0 | 2476. | 4 | CF 3 | 13838 | 3682 | 13822 | 3674 | 17 |
| 8 | 2970. | 2:51.0 | 2970. | 4 | CF 3 | 14330 | 3618 | 14312 | 3613 | 18 |
| 9 | 3120. | 3:11.0 | 3122. | 4 | CF 3 | 14479 | 3598 | 14463 | 3595 | 16 |
| 10 | 3120. | 3:31.0 | 3122. |  | CF' 3 | 14479 | 3598 | 14463 | 3595 | 16 |
| 11 | 3356. | 3:51.0 | 3356. | 4 | CF 3 | 14713 | 3568 | 14695 | 3566 | 18 |
| 12 | 3650. | 4:11.0 | 3652. | 5 | CF 4 | 15010 | 3522 | 15016 | 3521 | 6 |
| 13 | 3774. | 4:31.0 | 3776. | 5 | CF 4 | 15132 | 3500 | 15138 | 3499 | 6 |
| 14 | 4128. | 4:51.0 | 4134. | 6 | TA 4 | 15240 | 3771 | 15242 | 3788 | 17 |
| 15 | 4272. | 5:11.0 | 4278. | 6 | TA 4 | 15260 | 3913 | 15262 | 3930 | 17 |
| 16 | 4272 . | $5: 31.0$ | 4278 。 | 6 | TA 4 | 15260 | 3913 | 15262 | 3930 | 17 |
| 17 | 4524. | 5:51.0 | 4532. | 6 | CF 5 | 15295 | 4163 | 15305 | 4237 | 74 |
| 18 | 4792. | 6:11.0 | 4802. | 6 | CF' 6 | 15332 | 4428 | 15336 | 4458 | 30 |
| 19 | 5166. | 6:31.0 | 5178. | 6 | CF' 6 | 15384 | 4799 | 15378 | 4832 | 33 |
| 20 | 5166. | 6:51.0 | 5178. | 6 | CF 6 | 15384 | 4799 | 15378 | 4832 | 33 |
| 21 | 5428. | 7:11.0 | 5438. | 6 | CF 7 | 15420 | 5058 | 15419 | 5102 | 44 |
| 22 | 5862. | 7:31.0 | 5872. | 6 | CF- 8 | 15480 | 5488 | 15488 | 5554 | 66 |
| 23 | 6236. | 7:51.0 | 6248. | 6 | CF 8 | 15532 | 5858 | 15537 | 5926 | 68 |
| 24 | 6458. | 8:11.0 | 6468. | 6 | CF' 8 | 15562 | 6078 | 15566 | 6145 | 67 |
| 25 | 6600. | 8:31.0 | 6612. | 6 | CF 8 | 15582 | 6219 | 15585 | 6287 | 68 |
| 26 | 6670. | 8:51.0 | 6680. | 6 | CF 8 | 15592 | 6.288 | 15593 | 6355 | 67 |
| 27 | 7114. | 9:11.0 | 7124. | 6 | CF 8 | 15653 | 6728 | 15651 | 6795 | 67 |
| 8 | 7648. | 9:31.0 | 7660. | 6 | CP 8 | 15727 | 7257 | 15722 | 7326 | 69 |
| 29 | 8178. | 9:51.0 | 8190. | 6 | CF10 | 15800 | 7781 | 15808 | 7832 | 51 |
| 30 | 8538. | 10:11.0 | 8548. | 6 | CP11 | 15850 | 8138 | 15856 | 8176 | 38 |
| 31 | 8910. | 10:31.0 | 8922. | 7 | CFP11 | 15904 | 8526 | 15908 | 8547 | 21 |
| 32 | 9316. | 10:51.0 | 9328. | 7 | CF11 | 15960 | 8928 | 15964 | 8949 | 21 |
| 33 | 9596. | 11:11.0 | 9608. | 7 | CF11 | 15999 | 9206 | 16003 | 9226 | 20 |
| 34 | 9926. | 11:31.0 | 9938. | 7 | CFP12 | 16044 | 9533 | 16055 | 9608 | 75 |
| 35 | 9934. | 11:51.0 | 9946. | 7 | CFO 12 | 16046 | 9541 | 16057 | 9616 | 75 |
| 36 | 9934. | 12:11.0 | 9946. | 7 | CFI2 | 16046 | 9541 | 16057 | 9616 | 75 |
| 37 | 10186. | 12:31.0 | 10194. | 8 | TA 5 | 161.85 | ? 860 | 16276 | 9645 | 92 |
| 38 | 10248. | 12:51.0 | 10256. | 8 | TA 5 | 16247 | 9655 | 16338 | 9638 | 92 |
| 39 | 10660. | 13:11.0 | 10668. | 8 | CF'13 | 16658 | 9623 | 16760 | 9594 | 106 |
| 40 | 11088. | 13:31.0 | 11096. | 8 | CF'14 | 17085 | 9590 | 17172 | 9564 | 90 |
| 41 | 11580. | 13:51.0 | 11588. | 8 | CF15 | 17575 | 9559 | 17636 | 9525 | 66 |
| 42 | 12068. | 14:11.0 | 12076. | 8 | CF'16 | 18062 | 9514 | 18114 | 9510 | 52 |
| 43 | 12656. | 14:31.0 | 12658. | 9 | TA 6 | 18113 | 8975 | 18104 | 8940 | 36 |
| 44 | 13172. | 14:51.0 | 13176. | 9 | CF17 | 181.12 | 8459 | 18104 | 8378 | 81 |
| 45 | 13570. | 15:11.0 | 13572. | 10 | CF18 | 18094 | 7965 | 18061 | 7980 | 36 |
| 46 | 13722. | 15:31.0 | 13724. | 10 | CF18 | 18070 | 7815 | 18042 | 7829 | 31 |
| 47 | 13722. | 15:51.0 | 13724. | 10 | CF18 | 18070 | 7815 | 18042 | 7829 | 31 |
| 48 | 13984. | 16:11.0 | 13988. | 10 | CFF' 18 | 18028 | 7556 | 18007 | 7567 | 23 |
| 析 | 14286. | 16:31.0 | 14292. | 10 | CFi18 | 17981 | 7258 | 17968 | 7266 | 15 |

TABLE 8-8 AVM SYSTEM TEST RESULTS, RUN 28 (CONT'D)


TABLE 8-8 AVM SYSTEM TEST RESULTS, RUN 28 (CONTיD)
FCP OLIOM TIME FIFTH STSEG SSGE AUM X AUM Y FEF $X$ FEF Y ERFOR

10430360 . $34: 51.0$
1.0530852.
10631.354.
10731640. 1.0831752. 10931752. 11031924. 11132160. 11232470. 11332936. 11433484. 11533624. 1.1633740 . $117 \quad 34198$. 11834368. 1.1 .9 34858. 39:51.0 120 35202. 40:11.0 121 35426. 40:31.0 12235722 . $40: 51.0$ 123 35792. 41:11.0 124 35792. 41:31.0 $12535842.41: 51.0$ 126 35842. 42:11.0 127 35986. 42:31.0 12836236 . $42: 51.0$ 129 36352. 43:11.0 13036722 . 43:31.0 $13136762.43: 51.0$ 132 37194. 44:11.0 133 37224. 44:31.0 134 373A8. 44:51.0 1.35 37676, 45:11.0 13637676. 13737676. 13837716. 13937764. 1.4038118. 14138118. 1.4238304. 14338390. 14438390. 14538390. 14638522. 1.4733712. 14838856. 14939000. 15039438. 1513962. 1.5239736. 15340058. 15440512. 15540870. 156 41076. 15741196.

उ":11.0 307326. $3: 3: 31.0$
$3:: 51.0$
$36: 11.0$
$36: 31.0$
$36: 51.0$
$37: 11.0$
$37: 31.0$
$37: 51.0$
$38: 11.0$
$38: 31.0$ 38551.0 39:11.0 39:31.0 $39: 51.0$
$40: 11.0$
 35124. 35348. 35642.

$$
35712
$$

$$
35712
$$

$$
35762
$$

$$
31283
$$

$$
35762
$$

$$
35906
$$

$$
36156
$$

$$
36274 \text {. }
$$

$$
36642
$$

$$
36682
$$

$$
37114 \text {. }
$$

$$
37146
$$

$$
37268 .
$$

$$
37576
$$

$$
45: 31.0
$$

$$
45: 51.0
$$

$$
46: 11.0
$$

$$
46: 31.0
$$

$$
46: 51.0
$$

$$
47: 11.0
$$

$$
47: 31.0
$$

$$
47: 51.0
$$

$$
48: 11.0
$$

$$
43: 31.0
$$

$$
48: 51.0
$$

$$
49: 11.0
$$

$$
47: 31.0
$$

$$
49: 51.0
$$

$$
50: 11.0
$$

$$
50: 31.0
$$

$$
50: 51.0
$$

$$
51: 11.0
$$

$$
51: 31.0
$$

$$
51: 51.0
$$

$$
52: 11.0
$$

52:31.0
22

CF31
CF32
CF3?
CF3
CF33
CF33
CF33
CF33
CFP3
CF34
CF35
CP35
Th16
Talb
TAls
2
2
2
2

## 25

## 25

2
2
2

## 2

## 2

2
2

## 2

2
25
25
.
,

- 

-25
CF. 40
CF40
CF:40CF-40CFAOTa18
TA.19
TA19TA"OTaso
taz1
TA22
taz2CF: 43 CF:37 CF3 37 CF. 37
CF. 37 CF38 CF38 CF3 39 CF. 39 CF:39 CF. 39 CF. 39 CF39 CFAO CF4O

$$
0 .
$$

,

15624742415603 16104736616061 1660373061656.1 16837727216856 16998725816967 16998725816967 17169723817138 17403721017371 17711717317663 18173711718122 18717705118636 18826701318778 18803689918823 18719646918762 18704629918740 18660581218376 185045625185.11 18231565318250 17938569117959 $17918 \quad 570017889$ $17918 \quad 5700 \quad 17889$ 17839570617840 $17869 \quad 570617840$ $17726 \quad 572417757$ $17478 \quad 5756 \quad 17509$
「

1 173
16
1
16
16
91
1
15
,

1. 56

15
1.5

15
743

23 7381 $4!$ 7332 48 37 36

| 79 | 36 |
| :--- | :--- |
| 7254 | 34 |

7254. 

34
7221 33
717448
709356
70448.1

7039
$6974 \quad 77$
$6518 \quad 65$
635264
$\begin{array}{ll}5866 & 56 \\ 5626 & 7\end{array}$
32
$\begin{array}{ll}5703 & 31 \\ 5712 & 31\end{array}$
$\begin{array}{ll}5712 & 31 \\ 5719 & 31\end{array}$
$5719 \quad 31$
571931
$5730 \quad 3$
31
31
$\begin{array}{ll}5762 & 31 \\ 5777 & 29\end{array}$
592431
5818 17027
582316987
587716534
588116502
589716389
593816064
593816064
$5938 \quad 16064$
597316024
594915977
555月 15621
5994 15621
S018 15437
602915348
602915348
602015.348

606515235
625315259
638015239
640115092
646414661
624114653
$6188 \quad 14647$
$5938 \quad 14628$
568214881
532714832
512214805
500314792

5829
5884
5888
5902
5946
5946
5946
595
595716
$6005 \quad 14$
6005
602
6031
6031
603.

6056
624
6385
6406
6469
625
6199
5785
569
5337
ت1. 16
4995

14
31
31

TABLE 8－8 AVM SYSTEM TEST RESULTS，RUN 28 （CONT＇D）
F．CF OHOM TIME FIFTH STSEG SSGS AUM $X$ AUM Y FEEF $X$ FEF Y EFRLOR 15841540 • 52： 5.041460 .32 TA2 $159415 \%$ ．53：11．0 41494．32 Tn2 160 41718．53：31．0 416月0． 30 个月， 1.6141946. 16242070 ． 1.6342070. 1.6442150. 16542666. 1．6．6 43206． 1．67 43708． 1.68 43850． 16943860. 17043916. 17144044. 17244428. 17344454. 17444526. 17544894. 17645288. 1.7745780. 17846334. 1．79 46624． 18046830. 181 46850．
18247366.
1.8347938.
1.8448462.
1.8548864.
18649040. 18749092. 1.88495 .58. 18949748. 19050168. 191 50628． 19250722. 103 51150． 1.9451626. 19551906. 19652484. 19752990. 1.9853226. 199 53268． 20053316. 201 5373． 20254236. 20354724. 204 55202． 205 55618． 20655990. 20756110. 208 56378． 20956613.
$21056990.70: 11.056900 \cdot 38$ $21157238.70: 31.057154 .39$

53：ت1．（）41864．3＇2 Cl：AA
54：11．0 4：1990． 32 CF44
54：31．0 41990． 32 CFA4
54：51．0 42070． 32 CFAA
55：11．0 42586． 32 CF45
$55: 31.043124$ ． 32 CFA6
$55: 51.043628 \cdot 33$
ت6：11．0 43768． 33
E6：31．0 43780． 33
56：51＋043836． 33
57：11．0 43962． 33
$57: 31.044350 \cdot 33$
$57: 51 \cdot() 44376 \cdot 33$
58：11．0 44448． 33
$58: 31.044814 .33$
58：51．0 45210． 33
$59: 11 .() 45702 \cdot 33$
59：31．0 46256． 33
$59 \div 51.046546 .33$
$60: 11.046752 \cdot 33$
$60: 31.046972$ • 33
60：51．0 47290． 33
61：11．（）47862． 33
$61: 31.048386 \cdot 34$
61：51．0 48782． 35
62：11．0 48960．35
$62: 31.049012 \cdot 35$
62：51．0 49478．35
63：11．0 49662． 36
63：31．（）5（）084． 36
$63: 5.1 .050544 .36$
64：11．0 50638．36 $64: 31.051066 .36$ $64: 51.051542 \cdot 36$ 6 6：11．0 51822． 36 $65 \div 31.052404 .36$ $65: 51.052908 \cdot 36$ 66：11．（）53146． 37 $66: 31.053186 \cdot 37$ $66: 51.053234 .37$ $67: 11.0$ 53650． 37 67：31．0 ت4154． 37 67：5．1．0）54640． 37 $68: 11.055118 \cdot 37$ $68: 31.0$ 55534． 37 68：51．055902． 38 $69: 11.0560 \% 4.38$ $69: 31.0$ 56290． 38 $69: 31.056530 \cdot 38$

14497
1． 1.465
14321

14094 13972 13972 13892 13381 CFFA CF4 CF 4 CFA CFA
CF 4
CFA
CFFA7
CFAク
CFM 48
CF49
CF． 49
CFSO
CFOC
CFFO
CF：5
CFSO
CFS2
TA24
TASA
TASA
CF：
CFS 3
TA25
TA：
CFFS
CFFS
CF：S6
CFIV
CF゙57 10420
CFFT 109\％？
CF：57 11156
CF゙ら7 11197
CFF7 11945
CF゙ロ7 11660
CFF8 12157
CFF9 12641
CF60 13115
CF゙大日 13528
TA26 13519
TA26 13503
CFFO 13468
CF62 13436
CF63 113387
TH27 13378
$\begin{array}{ll}4991 & 14 \% 0 \% \\ 4996 & 14472 \\ 5014 & 14257 \\ 5044 & 14029 \\ 5060 & 13904 \\ 5060 & 13004 \\ 5070 & 13825 \\ 5137 & 13314\end{array}$

| 5137 | 13314 | 5146 | 67 |
| :--- | :--- | :--- | :--- |
| 5208 | 12808 | 5206 | 37 |


| 4985 | 10 |
| ---: | ---: |
| 4989 | 9 |

500510
5040 6

## ت059 68

## 5059 68

## 507：． 67

| 5277 | 12308 | 5269 | 10 |
| :--- | :--- | :--- | :--- |


| 5299 | 12169 | 5287 | 13 |
| :--- | :--- | :--- | :--- |


| 5300 | 12157 | 5288 | 12 |
| :--- | :--- | :--- | :--- |
| 5308 | 12101 | 5295 | 13 |

53211976 14

| 5378 | 1.1592 | 5359 | 19 |
| :--- | :--- | :--- | :--- |
| 5 | 582 | 11566 | 569 |


| 5392 | 11566 | 5362 | 20 |
| :--- | :--- | :--- | :--- |
| 5392 | 11480 | 5374 | 23 |


| 5443 | 11117 | 5425 | 22 |
| :--- | :--- | :--- | :--- |
| 5497 | 10699 | 5483 | 43 |


| 5565 | 10262 | 5542 | 24 |
| ---: | ---: | ---: | ---: |
| $564 \%$ | 9714 | 5623 | 21 |


| $564 \%$ | 9714 | 5623 | 21 |
| :--- | :--- | :--- | :--- |
| 5682 | 9456 | 5660 | 44 |


| 5710 | 9252 | 5688 | 44 |
| :--- | :--- | :--- | :--- |
|  | 5713 | 9232 | 5690 |


| 5713 | 9232 | 5690 | 45 |
| :--- | :--- | :--- | :--- |
| 5734 | 8648 | 5769 | 37 |


| 5863 | 8133 | 5341 | 27 |
| :--- | :--- | :--- | :--- |
| 5017 |  | 513 | 5906 |

$\begin{array}{llll}5917 & 7613 & 5906 & 36 \\ 6211 & 7504 & 6217 & 15\end{array}$
$6385 \quad 7526 \quad 6394 \quad 23$
$\begin{array}{llll}6436 & 7532 & 6446 & 26 \\ 6896 & 7643 & 6934 & 38\end{array}$
$\begin{array}{llll}7028 & 7778 & 701.9 & 70\end{array}$
$\begin{array}{llll}6973 & 8197 & 6964 & 73 \\ 6913 & 8653 & 6907 & 73\end{array}$
$6901 \quad 8746 \quad 6896 \quad 72$
$\begin{array}{llll}6844 & 9171 & 6845 & 73 \\ 6782 & 9638 & 6774 & 68\end{array}$
$6745 \quad 9911 \quad 6728 \quad 66$
$667010489 \quad 6654 \quad 70$
600310989
$\begin{array}{ll}6590 & 68 \\ 6560 & 70\end{array}$
$656711264 \quad 65508$
$656 \mathrm{~L} 11312 \quad 6549 \quad 68$
$\begin{array}{llll}6506 & 11725 & 6496 & 65 \\ 6441 & 12179 & 6439 & 22\end{array}$
637712693
631513136
$626013568 \quad 625040$
$\begin{array}{llll}5804 & 13470 & 5774 ~ 44\end{array}$
$55.3813427 \quad 5468 \quad 8.1$
$\begin{array}{llll}5300 & 13399 & 5230 & 79\end{array}$
$4931 \quad 13374 \quad 4864 \quad 69$
83

TABLE 8－8 AVM SYSTEM TEST RESULTS，RUN 28 （CONT＇D）

| F．CF＇ | M | TIME | FIFTH STSEG | SSG5 | A | AUM Y | FiEF X | FEFF |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 212 | 57488． | 70：51 | 57402． 39 | TA27 | 13626 | 4669 | 13708 | 674 | 2 |
| 213 | 57604 | 71：11．0 | 57518．39 | CF＇65 | 13741 |  |  | 4660 | 89 |
| 214 | 57980 | 71：31．0 | 57894． 39 | CFF65 | 14113 | 4601 | 14201 | 4600 | 88 |
| 215 | 58400 | 71：51．0 | 58312． 40 | CF66 | 14609 | 4535 | 14620 | 4541 | 12 |
| 216 | 58436. | 72：11．0 | 58348． 40 | CF＇66 | 14644 | 4531 | 14655 | 4536 | 2 |
| 217 | 58436. | 72：31．0 | 58348． 40 | CF＇66 | 14644 | 4531 | 14655 | 4536 | 12 |
| 18 | 58766. | 72：51．0 | 58678． 40 | CF＇66 | 14972 | 4489 | 14982 | 4490 | 10 |
| 19 | 59318 | 73：11．0 | 59232． 40 | CFF66 | 15520 | 4419 | 15531 | 4414 | 12 |
| 220 | 59510. | 73：31．0 | 59424． 40 | CFF66 | 15710 | 4395 | 15721 | 4387 | 13 |
| 221 | 59724. | 73：51．0 | 59640． 40 | CF＇67 | 15922 | 4368 | 15931 | 4366 | 9 |
| 222 | 60140. | 74：11．0 | 60056． 40 | CF＇68 | 16335 | 4316 | 16337 | 4319 | 3 |
| 223 | 60334. | 74：31．0 | 60250． 40 | CF＇68 | 16528 | 4291 | 16529 | 4290 |  |
| 224 | 60724. | 74：51．0 | 60638． 40 | CF＇68 | 16915 | 4242 | 16913 | 4233 | 9 |
| 225 | 60852. | 75：11．0 | 60766． 40 | CF68 | 17042 | 4226 | 17040 | 4214 | 2 |
| 226 | 60908. | 75：31．0 | 60822． 40 | CF69 | 17097 | 4219 | 17128 | 4201 | 35 |
| 227 | 61318. | 75：51．0 | 61232． 40 | CF＇69 | 17504 | 4168 | 17537 | 4163 | 33 |
| 228 | 61348. | 76：11．0 | 61262． 40 | CF69 | 17534 | 4164 | 17567 | 4160 | 33 |
| 229 | 61692. | 76：31．0 | 61600． 41 | TA？8 | 17509 | 3847 | 17506 | 3833 | 14 |
| 230 | 61764. | 76：51．0 | 61674． 41 | TA28 | 17498 | 3775 | 17494 | 3760 | 15 |
| 231 | 62166. | 77：11．0 | 62076． 42 | CF70 | 17437 | 3332 | 17447 | 3372 | 41 |
| 232 | 62470. | 77：31．0 | 62382． 43 | TA29 | 17584 | 3173 | 17554 | 3177 | 30 |
| 233 | 62698. | 77：51．0 | 62612． 43 | TA29 | 17811 | 3152 | 17783 | 3155 | 28 |
| 234 | 63026. | 78：11．0 | 62940． 43 | TA29 | 18137 | 31.21 | 18110 | 3125 | 27 |
| 235 | 63188. | 78：31．0 | 63102． 43 | TA29 | 18299 | 3106 | 18271 | 3110 | 28 |
| 236 | 63486. | 78：51．0 | 63398． 43 | TA29 | 18595 | 3078 | 18566 | 3083 | 29 |
| 237 | 63770. | 79：11．0 | 63686． 44 | TA30 | 18766 | 3190 | 18759 | 3181 | 11 |
| 238 | 63938. | 79：31．0 | 63080.44 | TA30 | 18786 | 3356 | 18768 | 3347 | 20 |
| 239 | 64138. | 79：51．0 | 64050． 44 | ta30 | 18809 | 3555 | 18780 | 3545 | 30 |
| 240 | 64428. | 80：11．0 | 64340． 44 | CFFP | 18843 | 3843 | 18820 | 3816 | 35 |
| 241 | 64806. | 80：31．0 | 64716． 44 | CFF72 | 18888 | 4218 | 18876 | 4187 | 33 |
| 242 | 65110. | 80：51．0 | 65024．45 | TA31 | 18830 | 4446 | 18844 | 4443 | 14 |
| 243 | 65444. | 81：11．0 | 65358． 45 | TA31 | 18498 | 4485 | 18511 | 4474 | 17 |
| 244 | 65636. | 81：31．0 | 65548． 45 | CFF73 | 18308 | 4507 | 18319 | 4499 | 13 |
| 245 | 65940. | 81：51．0 | 65852． 45 | CFF73 | 18006 | 4543 | 18018 | 4541 | 12 |
| 246 | 66294. | 82：11．0 | 66204． 45 | CFP73 | 17654 | 4584 | 17669 | 4590 | 16 |
| 247 | 66514. | 82：31．0 | 66424． 45 | CFP7 | 17435 | 4610 | 17479 | 4613 | 4 |
| 248 | 66772． | 82：51．0 | 66684． 45 | CFF74 | 17179 | 4640 | 17221 | 4644 | 42 |
| 249 | 66772. | 83：11．0 | 66684． 45 | CFP74 | 17179 | 4640 | 17221 | 4644 | 42 |
| 250 | 66828. | 83：31．0 | 66742． 45 | CFP74 | 17123 | 4646 | 17.164 | 4650 | 41 |
| 251 | 67270. | 83：51．0 | 67184． 45 | CFP5 | 16684 | 4698 | 16696 | 4706 | 14 |
| 252 | 67560. | 84：11．0 | 67474．45 | CFP5 | 16.396 | 4731 | 16408 | 4746 | 19 |
| 253 | 67686. | 84：31．0 | 67598． 45 | CFP75 | 16271 | 4746 | 16286 | 4763 | 2 |
| 254 | 67688. | 84：51．0 | 67602． 45 | CF75 | 16269 | 4746 | 16282 | 4764 | 22 |
| 255 | 67972. | 85：11．0 | 67886． 46 | CF゙フ5 | 16060 | 4771 | 16000 | 4803 | 68 |
| 256 | 68128. | 85：31．0 | 68042． 46 | CF゙フ5 | 15905 | 4793 | 15846 | 4824 | 66 |
| 257 | 68128. | 85：51．0 | 68044． 46 | CFP75 | 15905 | 4793 | 15844 | 4825 | 68 |
| 258 | 68128. | 86：11．0 | 68044． 46 | CFF75 | 15905 | 4793 | 15844 | 4825 | 68 |
| 59 | 845 | 86：11． | 68368． 46 | CFF76 | 15584 | 4839 | 15542 | 4860 | 46 |

Table 8-8 AVM SYSTEM TEST RESULTS, RUN 28(CONT'D)
NO COMMUNICATION ERRORS
ERROR FREQUENCY IIENSITY
$\begin{array}{ccc}\text { EFFOR } & \text { NO } & \text { FEFCENT OF } \\ \text { INTEFVAL SAMFLES } & \text { SAMFLES }\end{array}$

| $0-$ | 10 | 20 | 7.72 |
| ---: | ---: | ---: | ---: |
| $10-$ | 20 | 53 | 20.46 |
| $20-$ | 30 | 35 | 13.51 |
| $30-$ | 40 | 43 | 16.60 |
| $40-$ | 50 | 27 | 10.42 |
| $50-$ | 60 | 18 | 6.95 |
| $60-$ | 70 | 32 | 12.36 |
| $70-$ | 80 | 15 | 5.79 |
| $80-$ | 90 | 7 | 2.70 |
| $90-100$ | 5 | 1.93 |  |
| $100-110$ | 2 | 0.77 |  |
| $110-120$ | 1 | 0.39 |  |
| $120-130$ | 1 | 0.39 |  |

CUMULATIUE ERFROFS
ERFOR: $\#$ SAMFILES FFEFCENT SAMFLLES EFFROF: SAMFLES FEFRCENT SAMFLES LT EFiFOR LT EFIFOO




FIG. 8-33 FIXED ROUTE AVM SYSTEM ERRORS, ALL RUNS



FIG. 8-34 FIXED ROUTE AVM SYSTEM ERRORS, RUN 11




FIG. 8-36 FIXED ROUTE AVM SYSTEM ERRORS, RUN 13


FIG. 8-37 FIXED ROUTE AVM SYSTEM ERRORS, RUN 14



FIG. 8-38 FIXED ROUTE AVM SYSTEM ERRORS, RUN 15



FIG. 8-39 FIXED ROUTE AVM SYSTEM ERRORS, RUN 16


FIG. 8-40 FIXED ROUTE AVM SYSTEM ERRORS, RUN 17


FIG. 8-41 FIXED ROUTE AVM SYSTEM ERRORS, RUN 18



FIG. 8-42 FIXED ROUTE AVM SYSTEM ERRORS, RUN 21


FIG. 8-43 FIXED ROUTE AVM SYSTEM ERRORS, RUN 22



FIG. 8-45 FIXED ROUTE AVM SYSTEM ERRORS, RUN 24


FIG. 8-46 FIXED ROUTE AVM SYSTEM ERRORS, RUN 25



FIG. 8-47 FIXED ROUTE AVM SYSTEM ERRORS, RUN



FIG. 8-48 FIXED ROUTE AVM SYSTEM ERRORS, RUN 27



FIG. 8-49 FIXED ROUTE AVM SYSTEM ERRORS, RUN 28


FIG. 8-50 FIXED ROUTE AVM SYSTEM ERRORS, RUN 29


FIG. 8-51 FIXED ROUTE AVM SYSTEM ERRORS, RUN 30



FIG. 8-53 FIXED ROUTE AVM SYSTEM ERRORS, RUN 34



FIG. 8-54 FIXED ROUTE AVM SYSTEM ERRORS, RUN 35




FIG. 8-56 FIXED ROUTE AVM SYSTEM ERRORS, RUN 37



FIG. 8-57 FIXED ROUTE AVM SYSTEM ERRORS, RUN 38


ERROR IN FEET



FIG. 8-59 FIXED ROUTE AVM SYSTEM ERRORS, RUN 40



FIG. 8-60 FIXED ROUTE AVM SYSTEM ERRORS, RUN 41



FIG. 8-61 FIXED ROUTE AVM SYS TEM ERRORS, RUN 42


FIG. 8-62 FIXED ROUTE AVM SYSTEM ERRORS, RUN 43


TABLE 8-9 TIMEPOINT PERFORMANCE OUTPUT DATA, RUN 27

| $\begin{aligned} & \text { RUN } \\ & \text { TF\# } \end{aligned}$ | * | $\begin{aligned} & 27 \text { TI } \\ & \text { OFEN } \\ & \text { MIN:SEC } \end{aligned}$ | $\begin{aligned} & \text { E FOINT } \\ & \text { CLOSE } \\ & \text { MIN:SEC } \end{aligned}$ | PERFOFIMAN TOI MIN:SEC | TLFR1LI <br> MIN:SEC | IIELTAT SEC | EFROR SEC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 0: 0.0 | 0: 0.0 | 0:37.5 | 0:46.0 | 7.0 | 1.5 |
| 2 |  | 4:52.0 | 0: 0.0 | 4:57.0 | 5:3.0 | 7.0 | -1.0 |
| 3 |  | 0: 0.0 | 0: 0.0 | 11: 5.0 | 11:11.5 | 7.0 | -0.5 |
| 4 |  | 14:50.0 | 15: 7.5 | 15:16.5 | 15:20.0 | 5.0 | -9.0 |
| 5 |  | 0: 0.0 | 0: 0.0 | 23: 2.0 | 23: 6.0 | 6.0 | -2.0 |
| 6 |  | 26:40.0 | 26:43.0 | 26:29.0 | 26:31.0 | 2.0 | 14.0 |
| 7 |  | 0: 0.0 | 0: 0.0 | 32:30.5 | 32:29.5 | -2.0 | 1.0 |
| 8 |  | 37:39.5 | 37:49.5 | 37:54.5 | 37:58.0 | 2.0 | $-5.0$ |
| 9 |  | 47:55.5 | 48: 2.5 | 48: 6.0 | 48:12.0 | 9.0 | -3.5 |
| 10 |  | 53:27.0 | 53:39.0 | 53:42. 5 | 53:47.0 | 5.0 | -3.5 |
| 11 |  | 57:12.0 | 57:16.5 | 57:20.0 | 57:23.5 | 5.0 | -3.5 |
| 12 |  | 60:52.0 | 61: 5.5 | 61: 7.5 | 61: 6.5 | 1.0 | -2.0 |
| 13 |  | 0: 0.0 | 0: 0.0 | 66:56.5 | 66:58.5 | 1.0 | 1.0 |
| 14 |  | $0: 0.0$ | 0: 0.0 | 71:24.0 | $71: 26.5$ | 5.0 | $-2.5$ |
| 15 |  | 0: 0.0 | 0: 0.0 | 80:16.0 | 80:20.5 | 5.0 | $-0.5$ | ERROR FREQUENCY DENSITY


| ERROR | NO. OF | FFRRCENT OF |
| :---: | :---: | :---: |
| INTERUAL | SAMPLES | SAMPLES |


| $0-$ | 1 | 2 | 13.33 |
| ---: | ---: | ---: | ---: |
| $1-$ | 2 | 4 | 26.67 |
| $2-$ | 3 | 3 | 20.00 |
| $3-$ | 4 | 3 | 20.00 |
| $5-$ | 6 | 1 | 6.67 |
| $9-$ | 10 | 1 | 6.67 |
| $14-$ | 15 | 1 | 6.67 |

CUMULATIUE EFRRORS
ERROR NO. OF SAMFLES FERCENT OF SAMPLES LT ERFOR

LT ERROR

| 1 | 2 | 13.33 |
| ---: | ---: | ---: |
| 2 | 6 | 40.00 |
| 3 | 9 | 60.00 |
| 4 | 12 | 80.00 |
| 5 | 12 | 80.00 |
| 6 | 13 | 86.67 |
| 7 | 13 | 86.67 |
| 8 | 13 | 86.67 |
| 9 | 13 | 86.67 |
| 10 | 14 | 93.33 |
| 11 | 14 | 93.33 |
| 12 | 14 | 93.33 |
| 13 | 14 | 93.33 |
| 14 | 14 | 93.33 |
| 15 | 15 | 100.00 |

TABLE 8-10 TIMEPOLNT PERFORMANCE ERRORS (SECONDS) (CONT'D)


[^4]All anomalies are explained in Table 8-11. Note that a signpost failure between Runs 37 and 38 resulted in no R1D data at Timepoint 12 on Runs 38 through 43. In the Phase II system, an absence or R1D information would result in no computation of timepoint performance at that timepoint unless the bus door were first opened and then closed at the timepoint. The Phase II procedure was followed to the letter in Phase I in that timepoint performance at Timepoint 12 was only computed during Runs 40, 41, and 42 when the door close event was utilized. Table 8-12 contains composite timepoint error statistics for all fixed route runs.

Figure 8-64 contains a histogram and cumulative distribution of the absolute time-of-departure errors resulting from processing Runs 11 through 43. Figure 8-65 contains an error frequency density of these errors, with the sign preserved.

By using the Door Open event as an indication of time of arrival, the following results were obtained:

Number of Door Open Samples: 221 Samples
95 percentile value of (TOA-TD): 37 Seconds
99.5 percentile value of (TOA-TD): 56 Seconds

Average (TOA-TD): 16 Seconds.
Note that use of the Time of Door Open to indicate TOA has a built in error if the stop is a near side stop since the time during which the door is open is included.

The speed of the test vehicle while passing timepoints was computed for each case in which the Door Open/Door Close events were not utilized. Table 8-13 shows the results obtained. Note that the maximum vehicle speed of passage was 23 mph , a constraint imposed by both traffic and legal speed limits. In order to determine if there was a correlation between vehicle speed of passage and time of passage ercors, a plot was constructed showing the time of passage error versus vehicle velocity. This plot, shown in Figure 8-65, indicates that the errors were rather uniformly distributed over the interval between 5 and 18 miles per hour. In particular, there is no indication that high (or low) speeds tend to produce larger errors. Note that all data shown in Figure 8-65 resulted from the use of the Region 1 dropoat, and therefore would also apply to the proposed Phase II system with the odometer eliminated as described in Subsection 10.2.

The application of the Door Close event to determine time of passage as presented herein has been in strict accordance with the AVM specification. However, it is of interest to note the results obtained if one assumed that the vehicle passes the timepoint at the exact time of door closure. This would prodace zero error in each case in which the Door Close event was employed. The effect on the overall error statistics obtained during Phase I would be as follows:

TABLE 8-11 TIMEPOINT ANOMALIES

| RUN NO. | PROBLEM | RESULT |
| :---: | :---: | :---: |
| 14 | Couldn't process second cassette | 4 TP's computed manually |
| 17 | Missed TD 11 | 14 TP's |
| 19, 33 | Couldn't process | No Results |
| 20 | Auxiliary power failure at CP 46 | 9 TP 's |
| 24 | Couldn't process all tapes | 3 TP's computed manually |
| 24 | First TD 12 entered early | Deleted with EE 12 |
| 25 | Couldn't process all of tape | 9 TP's computed manually |
| 25 | No R1D from TP 6 due to 0.5 second sampling interval | 14 TP's |
| 26 | Missed TD 15 | 14 TP's |
| 27 | First TD 10 should be TA 10 | Card input change |
| 34 | Couldn't process all of tape | 7 TP's computed manually |
| 34 | DP 15 and DC 15 entered early | Deleted with EE 15 |
| $\begin{gathered} 38,39,41 \\ 43 \end{gathered}$ | No R1D from TP 12 due to signpost failure | Missed TP 12 |
| 40 | Time record error at TD 6 | Missed TP 6 |
| 40 | Couldn't process all of second cassette | 6 TP's computed manually |
| 42 | TD 15 entered early | Deleted with EE 15 |
| 43 | Couldn't process all of second cassette | 3 TP's computed manually |

TABLE 8-12 COMPOSITE TIMEPOINT PERFORMANCE ERROR STATISTICS

| ERROR FREQUENCY DENSITY |  |  |
| :---: | :---: | :---: |
| Error * <br> Interval | No. <br> Samples | Percent <br> Samples |
| $0-1$ | 80 | 17.74 |
| $1-2$ | 79 | 17.52 |
| $2-3$ | 58 | 12.86 |
| $3-4$ | 49 | 10.86 |
| $4-5$ | 49 | 10.86 |
| $5-6$ | 39 | 8.65 |
| $6-7$ | 27 | 5.99 |
| $7-8$ | 13 | 2.88 |
| $8-9$ | 16 | 3.55 |
| $9-10$ | 14 | 3.10 |
| $10-11$ | 7 | 1.55 |
| $11-12$ | 5 | 1.11 |
| $12-13$ | 4 | .89 |
| $13-14$ | 2 | .44 |
| $14-15$ | 3 | .67 |
| $15-16$ | 1 | .22 |
| $17-18$ | 1 | .22 |
| $19-20$ | 1 | .22 |
| $23-24$ | 1 | .22 |
| $27-28$ | 1 | .22 |
| $42-43$ | 1 | .22 |


| CUMULATTVE ERRORS |  |  |
| :---: | :---: | :---: |
| Error* | No.Samples <br> LT Error | \% Sample <br> LT Error |
| 1 | 80 | 17.74 |
| 2 | 159 | 35.25 |
| 3 | 217 | 48.12 |
| 4 | 266 | 58.98 |
| 5 | 315 | 69.84 |
| 6 | 354 | 78.49 |
| 7 | 381 | 84.48 |
| 8 | 394 | 87.36 |
| 9 | 410 | 90.91 |
| 10 | 424 | 94.01 |
| 11 | 431 | 95.57 |
| 12 | 436 | 96.67 |
| 13 | 440 | 97.56 |
| 14 | 442 | 98.00 |
| 15 | 445 | 98.67 |
| 16 | 446 | 98.89 |
| 18 | 447 | 99.11 |
| 20 | 448 | 99.33 |
| 24 | 449 | 99.56 |
| 28 | 450 | 99.78 |
| 43 | 451 | 100.00 |

* Error in Seconds


FIG. 8-64 FIXED ROUTE AVM SYSTEM TIMEPOINT PERFORMANCE


FIG. 8-65 TIMEPOINT ERROR FREQUENCY DENSITY
TABLE 8-13 AVERAGE SPEED OF TRAVEL PAST TIMEPOINTS



Assuming use of DC event results in zero TOD error, then for 451 samples:

95 percent value of TOD error: 3.5 seconds 99.5 percent value of TOD error: 24 seconds

The error statistics obtained for the 225 samples in which the $R 1$ dropout algorithm was used resulted in the following time-of-departure error statistics:

95 percent value of TOD error: 5 seconds 99.5 percent value of TOD error: 8 seconds.

### 8.3 FIXED ROUTE DATA PROCESSING ANOMALIES AND CORRECTIONS

Tables 8-2 and 8-7 summarized the problems encountered in processing fixed route data. The details of these problems and the procedures through which these data were ultimately processed are addressed in this subsection. Specific instances in which erroneous results were obtained by processing contaminated data records are also addressed.

### 8.3.1 Location Subsystem Data Processing

Five tapes, Runs $14,24,34,40$, and 43 , could not be processed to completion as a result of the inability of the RT-11 operating system to read past erroneous data records. Figure 8-67 shows a typical record damp of the data between checkpoints CP37 and CP38 on Run 34. The eight data records beginning at time 56:04 and ending with the record having signpost code $(68,01)$ are not valid data. This is evident since (1) the event codes $54099,204,205$, etc. are meaningless; (2) the signpost codes are non-existent; (3) the odometer and fifth wheel values are obviously meaningless; and (4) the time does not change. Subsequently, the correct signpost code and incremented odometer and fifth wheel values are read from the tape.

The exact source of the bad data is unknown; however it obviously affects each word of the data record and is definitely not related to the location subsystem signposts or vehicle unit. The source is probably a transient induced by the 115 volt auxiliary AC power generator and it affected the transfer of data from the computer to the cassette. This is evident from the data since the correct signpost code and odometer and fifth wheel values are maintained in the ICU and correctly transferred to the cassette subsequent to the end of the erroneous data.

Figure 8-68 contains similar records from Runs 24, 40, and 43. In each instance, the event code entry is non-existent and time is incremented erroneously. In the cases of Runs 24 and 40, the signpost code are also nonexistent. The fact that time is altered indicates that these are indeed data recording anomalies since time ticks are recorded on the cassette directly from the computer and are completely independent of the AVM system and the ICU.

|  | － | － | ル | ＇－ | し いいい。 | －－－－ | －～－ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 000 | 12 | 10 | R1 | 0 01857 | F 01699 | T 5549 |  |
|  | 000 | 12 | 10 | R1 | 0 ¢1861 | F 01702 | T 5550 |  |
|  | 000 | 12. | 10 | R1 | 0 ¢1864 | F 01706 | T 5550 |  |
|  | 800 | 12. | 10 | R1 | 0 01663 | F 01709 | T 5551 | PCP\＃167 |
|  | 900 | 12 | 10 | Q1 | 0 ¢18\％\％ | F 0icis | － 5551 |  |
|  | 809 | 12 | 10 | P1 | 0 ¢ 118 F 5 | F 日！r！e | T 555 ？ |  |
|  | 900 | ご） | $\because$ | R． 1 | －91E0\％ | －リ1アご | 755 |  |
|  | －00 | 12 | 10 | R： | 001585 | －0：7こ5 | －5 53 |  |
|  | ［ma | 12 | 10 | R 1． | 0 91889 | F 01？ | T 5553 |  |
|  | 1：8 | ！！ | 10 | $\Gamma 1$ | 0811293 | F 0 ：35 | T 5554 |  |
|  | Lics | $\cdots$ | 18 | R． 1 | 0 01898 | F 0174 | － 5554 |  |
|  | 000 | 12 | 10 | R1 | 061903 | F 01744 | T 5555 |  |
|  | 000 | 12. | 10 | R1 | 0 01907 | F 01749 | T 5555 |  |
|  | 000 | 12 | 10 | R1 | 001912 | F 01753 | T 5556 |  |
|  | 000 | 12 | 10 | R1 | 0 ¢1917 | F 01758 | T 5556 |  |
|  | 000 | 12. | 10 | R1 | 0 ¢11922 | F 01763 | T 5557 |  |
|  | ビS： | 1.1 | 1. | Cl | 081927 | F 01pes | T 3557 |  |
|  | －00． | $\because$ | 10 | Ri | 0011932 | F Q17\％ | T 5558 |  |
|  | －9่วด | 12 | 10 | R． 1 | 0111937 | F 01778 | T 5558 |  |
|  | 日อท | 12 | 10 | R1 | 0 ¢）1942 | F 01783 | T 5559 |  |
|  | 010 | ：2 | 10 | R1 | 0 011547 | F 01788 | T 5559 |  |
|  | $0 \cdot 0$ | 18 | 10 | R1 | 061953 | F 91793 | T 5690 |  |
|  | リリロ | 1： | 10 | R1 | －E） 1958 | F 91798 | T 5600 |  |
|  | 000 | 12. | 10 | R1 | 001963 | F 01804 | T 5601 |  |
|  | 000 | $1 \%$ ， | 10 | R1 | 001968 | F 01809 | 7 TE 01 |  |
|  | 900 | 12 | 10 | R1 | 0111974 | F 91814 | T 56 02 |  |
|  | 0u0 | 12. | 10 | R1 | 011979 | F 01619 | T 5602 |  |
|  | 0100 | 12 | 10 | R1 | 061984 | F 01225 | T 5603 |  |
|  | 890 | 12 | 10 | R1 | 061989 | F 01830 | T 56 03 |  |
| 54 | 118： | 「く！ | ca | R2 S | c） 1.4042 | F 225－ | 7 ¢ ¢ | $\uparrow$ |
|  | 204 | 25 | 01 | R1 | 0 9054i | F 2440 | 755 |  |
|  | 205 | ？1） | 01 | $r!$ | 0 O以fぐ | F－ 26.50 | T ¢\％ | BAD |
|  | 20＊ | 26 | 01 | K1 | 0 CEGA！ | F 23259 | ？ち 174 |  |
|  | 2138 | 201 | 01 | $\bigcirc 1$ |  | F F 020.9 | $\because$ EG $\%$ | RECORDS |
|  | 2197 | ？ l | 01 | ก． 1 | （1）Eroci | 「 ここ129 |  |  |
|  | ＂10 | $\cdots$ | 0！ | R1 | 0 ¢（20゙心 | r 34948 | it \％ 7 |  |
|  | 000 | Ei | 0！ | R1 | 0106641 | F 01871 | T 5604 | 1 |
|  | 1800 | $1 \%$ | 10 | R1 | 0012036 | F 01876 | T 5625 |  |
|  | 008 | 12\％ | 10 | R1 | 0022041 | F 01881 | T 5e 25 |  |
|  | 900 | ！ 2 | 12 | R1 | 0122045 | F 01686 | T 5020 |  |
|  | Can | 8 | 10 | R1 | 012050 | F 81890 | T 56 26 |  |
|  | $C^{\circ}$ | $\because$ | 1 | r： | 0 び心us | U＇s | $\cdots \because$ |  |
|  | 090 | $\therefore<$ | 13 | R： | 17 reess | r． 42890 | $\because$ \％ |  |
|  | 20］ | 13 | 10 | R！ | （1）リ2e6玉 | － 91903 | $\because \because$－ | PCP基168 |
|  | 0319 | ！？ | 10 | Ri | －\％\％ 1 6T | \％ 010.1 | T 3 |  |
|  | どう！ | 引 2 | ： 0 | R： | 0 920？！ | F 0！5：1 | T 5 ¢ |  |
|  | ごB | 120 | ： | Fi | i］ 12 RE 4 | F 019：－ | － |  |
|  | G01 | 12 | 15. | E！ | 0 1ここの7 | F $019!\%$ | T 505 |  |
|  | 65：19 | 10 | $11 \%$ | ＇： | － 02075 | F Cione | $\because 6$ |  |
|  | Bun | 12 | 10 | R． 1 | －๗2caz | P 日1922 | T 56 उ！ |  |
| C？ | しลジ | 10\％ | 18 | R1 | 062004 | F 01924 | T 5631 |  |
|  | 比仿 | 1\％ | 10 | R1 | C 12086 | F 1926 | T 50－32 |  |
|  | 090 | $1 ?$ | 10 | R1 | 0.12087 | F 01927 | T 5632 |  |

FIG．8－67 PARTIAL LISTING SHOWING BAD RECORDS，RUN 34

| 000 | 16 | 1：1 | Fil |  | 0 | 03930 | F | 1166.1 | T | 67 | 16 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000 | 16 | 11 | Fil |  | 0 | 03935 | F | 11.666 | T | 67 | 17 | $\pi$ |
| 045 | 0.1 | 12 | Fi＊ | A | 0 | 02059 | F | 00466 | T | 67 | 17 |  |
| 045 | 01 | 12 | Fi2 | W | 0 | 02059 | F | 00496 | T | 68 | 08 |  |
| 045 | 01 | 12 | 下＇＊ | H | 0 | 02059 | F | 00526 | T | 68 | 08 | Run \＃24 |
| 045 | 01 | 12 | 「゙＊ | A | 0 | 02059 | F | 00556 | r | 68 | 08 |  |
| 045 | 01 | 12 | Fi？ | W | 0 | 02059 | F | 00586 | T | 68 | 08 |  |
| 045 | 01 | 12 | F 3 | N | 0 | 02059 | F | 00616 | T | 68 | 08 |  |
| 045 | 01 | 12 | Fil | I | 0 | （）2059 | F | 00646 | T | 68 | 08 |  |
| 000 | 01 | 12 | Fil |  | 0 | （）2059 | F | 11707 | T | 68 | 08 |  |
| 000 | 16 | 11 | Fil |  | 0 | 0398 ？ | F | 11713 | T | 68 | 08 |  |
| 000 | 16 | 11 | Fil |  | 0 | 03987 | F | 11718 | T | 68 | 08 |  |


| 090 | 15 | ！ 6 | R2 5 | 002892 | F 02800 | T 5022 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 900 | 15 | 16 | R2 5 | 002892 | F 02800 | T 5022 |  |  |
| EE ！20 | 13 | 37 | R1 | 003823 | F 43780 | T 5022 | 1 |  |
| 120 | 13 | 03 | R1 | 002053 | F 47620 | T 5022 |  |  |
| 120 | 13 | 03 | R1 | 002053 | F 51460 | T 5022 |  |  |
| 120 | 13 | 03 | R1 | 002053 | F 55300 | T 5022. |  |  |
| ！20 | 13 | 03 | R1 | 002053 | F 59140 | T 5022 | PCP \＃ 151 |  |
| 129 | 13 | 03 | R1 | 002053 | F 62980 | T 5022 |  |  |
| 120 | 13 | 03 | R1 | 002053 | F 01285 | T 50 2a |  |  |
| 120 | 13 | 03 | R1 | 002053 | F 05125 | T 5022 |  | Run \＃40 |
| 120 | 13 | 93 | R1 | 002053 | F 08965 | T 50 22 |  | Run |
| 120 | 13 | 03 | R1 | 002053 | F 12805 | T 5022 |  |  |
| 14 ¢ 3 | 13 | 03 | R1 | 002053 | F 02800 | T 5022 | 1 |  |
| 040 | 15 | 16 | R2 S | 002892 | F 02800 | T 5302 |  |  |


| 000 | 19 | 13 | $F i 1$ | 0 | 03769 | $F$ | 11843 | $T$ | 62 | 40 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 000 | 19 | 13 | $F i 1$ | 0 | 03771 | $F$ | 11850 | $T$ | 62 | 40 |  |
| 000 | 19 | 13 | $F i 1$ | 0 | 03777 | $F$ | 11856 | $T$ | 62 | 41 |  |
| 000 | 19 | 13 | $F i 1$ | 0 | 03783 | $F$ | 11862 | $T$ | 62 | 41 |  |
| 063 | 19 | 13 | $F i 1$ | 0 | 03789 | $F$ | 11937 | $T$ | 62 | 42 |  |
| 000 | 19 | 13 | $F i 1$ | 0 | 03864 | $F$ | 11942 | $T$ | 62 | 48 | Ran |
| 000 | 19 | 13 | $F i 1$ | 0 | 03869 | $F$ | 11947 | $T$ | 62 | 49 |  |
| 000 | 19 | 13 | $F 1$ | 0 | 03874 | $F$ | 11952 | $T$ | 62 | 49 |  |

FIG．8－68 PARTIAL LISTINGS SHOWING BAD RECORDS，RUNS 24，40，and 43

As a result of being able to read these cassettes with a different operating system, a complete record dump was made of each tape on which processing problems were experienced. The required data were then extracted manually from those listings (such as those shown in Figure 8-67 and 68) and the location error data recorded manually. Tables $8-14,-15,-16,-17$ and 18 contain location subsystem results which were obtained by manual processing of data from Runs 14, 24, 34, 40 and 43. These results have been incorporated in Table 8-1.

Data processing errors were also experienced on run 25. These were traced to bad data records as shown in Figure 8-69. However, although the computer was able to read this tape, the location errors computed for checkpoints 26 through 30 were incorrect, as a result of the erroneous records beginning just after TD006. Recalling that the $\mathrm{HI}^{3}$ Phase I system determines fixed route location based on elapsed odometer distance from a reset signpost, one notes from Figure 8-69 that signpost ( 6,6 ) R1 was initially received at time 26:08.00. This was the correct reset point. However, due to the erroneous interjection of the code $(6,8)$ R1 for five records beginning at time 26:17:05, the data processing routine uses the record at time 26:36:05 (re-occurrence of $(6,6) \mathrm{R} 1$ ) as the reset point for computation of checkpoint 26 through 30 .

Table 8-19 contains the correct values of the errors corresponding to CP26-CP30. When corrected, the location subsystem results for run 25 should be as follows:

Corrected Results for Run 25, FRLS: 76 Samples
Corrected Results Incorrect Results

| Average Error: | 50.18 Feet | 62.84 Feet |
| :--- | :--- | :--- |
| $95 \%$ Error: | 135 Feet | 244 Feet |
| $99.5 \%$ Error: | 216 Feet | 309 Feet |

As noted previously, checkpoints $37,38,39$ and 40 were not processed by FRIS during Runs 39, 40, 41, 42 and 43 as a result of the simulation of an off-route condition during the passage of those checkpoints. These checkpoints were processed manually and the results are shown in Table 8-20. The 306 foot error at CP40 on Run 42 resulted from entering CP40 late after initially entering it early and subsequently entering on EE40. As a result, the last CP40 entry was delayed. This action was recorded on the Test Data Log in the presence of the TSC monitor.

With the inclusion of all location subsystem data (including those having all tape errors corrected, the data in Table 8-20 and the correct value for CP3).
(Text continued on 8-104)

TABLE 8-14 FLXED ROUTE LOCATION SUBSYSTEM ERROR STATISTICS, RUN 14

ERROR FREQUENCY DENSITY RUN 14a

| Error <br> Interval | No. <br> Samples | Percent of <br> Samples |
| :---: | :---: | :---: |
| $0-10$ | 5 | 6.57 |
| $10-20$ | 8 | 10.52 |
| $20-30$ | 11 | 14.47 |
| $30-40$ | 14 | 18.42 |
| $40-50$ | 4 | 5.26 |
| $50-60$ | 9 | 11.24 |
| $60-70$ | 5 | 6.57 |
| $70-80$ | 5 | 6.57 |
| $80-90$ | 7 | 9.21 |
| $90-100$ | 3 | 3.94 |
| $100-110$ | 3 | 3.94 |
| $110-120$ | 2 | 2.63 |

CUMULATIVE ERRORS RUN 14a

| Error | Samples | Percent Samples |
| :---: | :---: | :---: |
|  | LT Error | LT Error |


| 10 | 5 | 6.57 |
| ---: | ---: | ---: |
| 20 | 13 | 17.10 |
| 30 | 24 | 31.57 |
| 40 | 38 | 50.00 |
| 50 | 42 | 55.26 |
| 60 | 51 | 67.10 |
| 70 | 56 | 73.68 |
| 80 | 61 | 80.26 |
| 90 | 68 | 89.47 |
| 100 | 71 | 93.42 |
| 110 | 74 | 97.36 |
| 120 | 76 | 100.00 |

TABLE 8-15 FIXED ROUTE LOC̣ATION SUBSYSTEM ERROR STATISTICS, RUN 24

## ERROR FREQUENCY DENSITY RUN 24a

| Error <br> Interval | No. Samples | Percent of Samples |
| :---: | :---: | :---: |
| 0-10 | 1 | 1.61 |
| 10-20 | 13 | 17.33 |
| 20-30 | 14 | 18.66 |
| 30-40 | 14 | 18.66 |
| 40-50 | 5 | 8.06 |
| 50-60 | 10 | 13.33 |
| 60-70 | 4 | 6.45 |
| 70-80 | 2 | 3.23 |
| 80-90 | 2 | 3.23 |
| 90-100 | 1 | 1.61 |
| 100-110 | 2 | 3.23 |
| 120-130 | 1 | 1.61 |
| 130-140 | 2 | 3.23 |
| 140-150 | 2 | 3.23 |
| 170-180 | 1 | 1.61 |
| 1500-1510 | 1 | 1.61 |
| Cumulative Errors Run 24a |  |  |
| Error | Samples | Percent Samples |
|  | LT Error | LT Error |
| 10 | 1 | 1.61 |
| 20 | 14 | 17.33 |
| 30 | 28 | 37.33 |
| 40 | 42 | 56.00 |
| 50 | 47 | 62.66 |
| 60 | 57 | 76.00 |
| 70 | 61 | 81.33 |
| 80 | 63 | 84.00 |
| 90 | 65 | 86.66 |
| 100 | 66 | 88.00 |
| 110 | 68 | 90.66 |
| 120 | 68 | 90.66 |
| 130 | 69 | 92.00 |
| 140 | 71 | 94.66 |
| 150 | 73 | 97.33 |
| 160 | 73 | 97.33 |
| 170 | 73 | 97.33 |
| 180 | 74 | 98.66 |
| 1510 | 75 | 100.00 |

TABLE 8-16 FIXED ROUTE LOCATION SUBSYSTEM ERROR STATISTICS, RUN 34a

## ERROR FREQUENCY DENSITY RUN 34a

| Error <br> Interval | No. <br> Samples | Percent of <br> Samples |
| :---: | :---: | :---: |
| $0-10$ | 1 | 1.33 |
| $10-20$ | 11 | 14.66 |
| $20-30$ | 14 | 18.66 |
| $30-40$ | 12 | 16.00 |
| $40-50$ | 11 | 14.66 |
| $50-60$ | 5 | 6.66 |
| $60-70$ | 6 | 8.0 |
| $70-80$ | 5 | 6.66 |
| $80-90$ | 3 | 4.0 |
| $90-100$ | 4 | 5.33 |
| $110-120$ | 2 | 2.66 |
| $130-140$ | 1 | 1.33 |
| Cumulative Errors Run 34a |  |  |


| Error | Samples | Percent Samples |
| :---: | :---: | :---: |
|  | LT Error | LT Error |

10
1
1.33

20
30
12
16.00

40
26
34.66

38
50.66

50
49
65.33

60
54
72.00

70
60
80.00

80
65
86.66

90
68
90.66

100
72
72
96.00

110
120
74
96.00

130
74
98.66

140
75
98.66
100.00

## ERROR FREQUENCY DENSITY RUN 40a

| Error <br> Interval | No. <br> Samples | Percent of <br> Samples |
| :---: | :---: | :---: |
| $0-10$ | 4 |  |
| $10-20$ | 6 | 5.26 |
| $20-30$ | 12 | 7.89 |
| $30-40$ | 12 | 15.78 |
| $40-50$ | 11 | 15.78 |
| $50-60$ | 11 | 14.47 |
| $60-70$ | 4 | 14.47 |
| $70-80$ | 7 | 5.26 |
| $80-90$ | 4 | 9.21 |
| $90-100$ | 1 | 5.26 |
| $100-110$ | 1 | 1.31 |
| $110-120$ | 2 | 1.31 |
| $170-180$ | 1 | 2.63 |
| Cumulative Errors Run 40 a | 1.31 |  |
|  |  |  |
| Error | Samples | Percent Samples |
|  | LT |  |
|  |  | Error |

TABLE 8-18 FIXED ROUTE LOCATION SUBSYSTEM ERROR STA TISTICS, RUN 43a

## ERROR FREQUENCY DENSITY RUN 43a

| Error <br> Interval | No. <br> Samples | Percent of <br> Samples |
| :---: | :---: | :---: |
| $0-10$ | 3 | 4.0 |
| $10-20$ | 3 | 4.0 |
| $20-30$ | 6 | 8.0 |
| $30-40$ | 8 | 10.66 |
| $40-50$ | 14 | 18.66 |
| $50-60$ | 9 | 12.0 |
| $60-70$ | 2 | 2.66 |
| $70-80$ | 12 | 16.00 |
| $80-90$ | 3 | 4.0 |
| $90-100$ | 5 | 6.66 |
| $100-110$ | 5 | 6.66 |
| $110-120$ | 1 | 1.33 |
| $120-130$ | 1 | 1.33 |
| $130-140$ | 1 | 1.33 |
| $140-150$ | 1 | 1.33 |
| $180-190$ | 1 | 1.33 |

CUMULATIVE ERRORS RUN 43a

| Error | Samples | Percent Samples |
| :---: | :---: | :---: |
|  | LT Error | LT Error |


| 10 | 3 | 4.00 |
| ---: | ---: | ---: |
| 20 | 6 | 8.00 |
| 30 | 12 | 16.00 |
| 40 | 20 | 26.66 |
| 50 | 34 | 45.33 |
| 60 | 43 | 57.33 |
| 70 | 45 | 60.00 |
| 80 | 57 | 76.00 |
| 90 | 60 | 80.00 |
| 100 | 65 | 86.66 |
| 110 | 70 | 93.33 |
| 120 | 71 | 94.66 |
| 130 | 72 | 96.00 |
| 140 | 73 | 97.33 |
| 150 | 74 | 98.66 |
| 190 | 75 | 100.00 |



FIG. 8-69 RECORDING ERRORS, RUN 25

TABLE 8-19 CORRECTED CHECKPOINT ERRORS, RUN 25

| Checkpoint | ODOM (CP) <br> (Count) | ODOM (R6) <br> (Count) | SP | SEG | INCREM <br> (feet) | Comp <br> X | Comp <br> Y | Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 26 | 3997 | 3368 | 6 | 18 | 979 | 12206 | 10192 | 19 |
| 27 | 373 | 3368 | 6 | 18 | 1923 | 13141 | 10068 | 34 |
| 28 | 630 | 3368 | 6 | 19 | 460 | 13124 | 9606 | 52 |
| 29 | 903 | 3368 | 6 | 19 | 1006 | 13040 | 9067 | 30 |
| 30 | 2026 | 3368 | 6 | 21 | 955 | 13833 | 7645 | 135 |

On Run 24, the following overall location subsystem results were obtained:
Number of Samples: 2313 of a possible 2326 ( $99.44 \%$ of recorded data) 95 Percent of Errors Less than: 106 feet
99.5 Percent of Errors Less than: 146 feet.

TABLE $8-20$ LOCATION SUBSYSTEM ERRORS FOR CHECKPOINTS 37-40 ON RUNS 39-43 WHILE "OFF ROUTE" CONDITION WAS SIMULATED

| $*$ <br> Run Checkpoint | Location Error in Feet |  |  |  |
| :---: | ---: | ---: | ---: | ---: |
|  | 37 | 38 | 39 | 40 |
| 39 | 24 | 26 | 16 | 17 |
| 40 | 22 | 28 | 18 | 27 |
| 41 | 10 | 26 | 11 | 15 |
| 42 | 36 | 60 | 41 | 306 |
| 43 | 13 | 26 | 6 | 12 |

### 8.3.2 AVM System Data Processing

As in the case of FRIS, Runs 24, 34, 40 and 43 could not be processed to completion through the use of FRSYS. However, the data which could not be processed via the use of FRSYS was processed manually using the exact same algorithm. The results obtained are contained in Tables 8-21 through 8-24. These results have been incorporated in Table 8-6.

An anomaly was also detected in the results obtained for Run 18. FRSYS produced an error of 12321 feet at PCP'(2). Manual processing of these data resulted in an error of 18 feet. In processing the cassette data, the value of AVM y only was in error with all other values correct. The 18 foot value was incorporated in Table 8-6.

When Run 25 was processed by use of FRSYS, the bad records noted in Figure 8-69 resulted in erroneous results for PCP 77 through PCP 97. As discussed in subsection 8.3.1, the use of the later reset value of R8 was partially at fault. The erroneous record also made it appear as if the odometer had rolled over an additional $4096\left(2^{12}\right)$ counts. This was offset to some extent by the use of the later reset point. Table $8-25$ contains the correct results for these pseudo checkpoints as computed manually using the correct reset point and the correct odometer values. Details of these computations are included in the appendix.

TABLE 8-21 FIXED ROUTE AVM SYSTEM ERRORS, RUN 24

## ERROR FREQUENCY DENSITY RUN 24

| Error <br> Interval | No. <br> Samples | Percent of <br> Samples |
| ---: | :---: | :---: |
| $0-10$ | 18 | 7.53 |
| $10-20$ | 38 | 15.90 |
| $20-30$ | 33 | 13.81 |
| $30-40$ | 31 | 12.97 |
| $40-50$ | 24 | 10.04 |
| $50-60$ | 15 | 6.28 |
| $60-70$ | 22 | 9.21 |
| $70-80$ | 13 | 5.44 |
| $80-90$ | 10 | 4.18 |
| $90-100$ | 4 | 1.67 |
| $100-110$ | 9 | 3.77 |
| $110-120$ | 2 | 8.37 |
| $120-130$ | 5 | 2.09 |
| $130-140$ | 1 | 0.42 |
| $140-150$ | 6 | 2.51 |
| $160-170$ | 3 | 1.26 |
| $170-180$ | 4 | 1.67 |
| $180-190$ | 1 | 0.42 |

Cumulative Errors Run 24

| Error | Samples <br> LT | Error |
| :---: | :---: | :---: |
|  |  | LT $\quad$ Error |
| LT |  |  |

ERROR FREQUENCY DENSITY RUN 34

| Error | No. | Percent of |
| :---: | :---: | :---: |
| Interval | Samples | Samples |
| 0-10 | 19 | 6.59 |
| 10-20 | 52 | 18.05 |
| 20-30 | 52 | 18.05 |
| 30-40 | 55 | 19.09 |
| 40-50 | 27 | 9.37 |
| 50-60 | 23 | 7.98 |
| 60-70 | 17 | 5.90 |
| 70-80 | 19 | 6.59 |
| 80-90 | 13 | 4.51 |
| 90-100 | 4 | 1.38 |
| 110-120 | 1 | . 34 |
| 120-130 | 1 | . 34 |
| 140-150 | 1 | . 34 |
| 150-160 | 2 | . 69 |
| 190-200 | 2 | . 69 |
| 280-290 | 1 | . 34 |
| Cumulative Errors Run 34 |  |  |
| Error | Samples | Percent Samples |
|  | LT Error | LT Error |
| 10 | 19 | 6.59 |
| 20 | 71 | 24.65 |
| 30 | 123 | 42.70 |
| 40 | 178 | 61.80 |
| 50 | 205 | 71.18 |
| 60 | 228 | 79.16 |
| 70 | 245 | 85.06 |
| 80 | 264 | 91.66 |
| 90 | 277 | 96.18 |
| 100 | 281 | 97.56 |
| 120 | 282 | 97.91 |
| 130 | 283 | 98.26 |
| 150 | 284 | 98.61 |
| 160 | 286 | 99.30 |
| 200 | 288 | 100.00 |
| 280-290 | 289 |  |

TABLE 8-23 AVM SYSTEM ERRORS, RUN 40

## ERROR FREQUENCY DENSITY RUN 40

| Error | No. | Percent of |
| :--- | :---: | :---: |
| Interval | Samples | Samples |


| $0-10$ | 14 | 5.2 |
| ---: | ---: | ---: |
| $10-20$ | 37 | 13.75 |
| $20-30$ | 37 | 13.75 |
| $30-40$ | 48 | 17.84 |
| $40-50$ | 43 | 15.98 |
| $50-60$ | 26 | 9.66 |
| $60-70$ | 17 | 6.31 |
| $70-80$ | 24 | 8.92 |
| $80-90$ | 10 | 3.71 |
| $90-100$ | 2 | .74 |
| $100-110$ | 1 | .37 |
| $110-120$ | 4 | 1.48 |
| $200-210$ | 1 | .37 |
| $240-250$ | 1 | .37 |
| $260-270$ | 2 | .74 |
| $280-290$ | 2 | .74 |

Cumulative Errors Run 40

| Error | Samples | Percent SamplesLT Error |
| :---: | :---: | :---: |
|  | LT Error |  |
| 10 | 14 | 5.2 |
| 20 | 51 | 18.95 |
| 30 | 88 | 32.7 |
| 40 | 136 | 50.5 |
| 50 | 179 | 66.54 |
| 60 | 205 | 76.2 |
| 70 | 222 | 82.5 |
| 80 | 246 | 91.44 |
| 90 | 256 | 95.16 |
| 100 | 258 | 95.91 |
| 110 | 259 | 96.28 |
| 120 | 263 | 97.76 |
| 210 | 264 | 98.14 |
| 250 | 265 | 98.51 |
| 270 | 267 | 99.25 |
| 290 | 269 | 100.00 |

TABLE 8-24 FLXED ROUTE AVM SYSTEM ERRORS, RUN 43

## ERROR FREQUENCY DENSITY RUN 43

| Error <br> Interval | No. <br> Samples | Percent of Samples |
| :---: | :---: | :---: |
| 0-10 | 15 | 6.66 |
| 10-20 | 18 | 8.0 |
| 20-30 | 17 | 7.5 |
| 30-40 | 28 | 12.44 |
| 40-50 | 33 | 14.66 |
| 50-60 | 27 | 12.0 |
| 60-70 | 11 | 4.8 |
| 70-80 | 32 | 14.22 |
| 80-90 | 11 | 4.88 |
| 90-100 | 10 | 4.44 |
| 100-110 | 7 | 3.11 |
| 110-120 | 2 | . 88 |
| 120-130 | 2 | . 88 |
| 130-140 | 2 | . 88 |
| 140-150 | 3 | 1.33 |
| 180-190 | 2 | . 88 |
| 220-230 | 1 | . 44 |
| 210-220 | 1 | . 44 |
| 240-250 | 3 | 1.33 |
| Cumulative Errors Run 43 |  |  |
| Error | Samples <br> LT Error | Percent Samples <br> LT Error |
|  |  |  |
| 10 | 15 | 6.66 |
| 20 | 33 | 14.66 |
| 30 | 50 | 22.22 |
| 40 | 78 | 34.66 |
| 50 | 111 | 49.33 |
| 60 | 138 | 61.33 |
| 70 | 149 | 66.22 |
| 80 | 181 | 80.44 |
| 90 | 192 | 85.33 |
| 100 | 202 | 89.77 |
| 110 | 209 | 92.88 |
| 120 | 211 | 93.77 |
| 130 | 213 | 94.66 |
| 140 | 215 | 95.55 |
| 150 | 218 | 96.88 |
| 190 | 220 | 97.77 |
| 220 | 221 | 98.22 |
| 230 | 222 | 98.66 |
| 250 | 225 | 100.00 |
| 8-108 |  |  |

TABLE 8-25 MANUALLY CORRECTED AVM SYSTEM ERROR RESULTS, RUN 25

## ERROR FREQUENCY DENSITY

| Error | No. | Percent |  | No. Samples | \% Samples |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Interval | Samples | Samples | Error | LT Error | LT Error |
| $0-10$ | 18 | 7.46 | 10 | 18 | 7.46 |
| $10-20$ | 23 | 9.54 | 20 | 41 | 17.01 |
| $20-30$ | 42 | 17.43 | 30 | 83 | 34.43 |
| $30-40$ | 33 | 13.69 | 40 | 116 | 48.13 |
| $40-50$ | 39 | 16.18 | 50 | 155 | 64.31 |
| $50-60$ | 24 | 9.95 | 60 | 171 | 74.27 |
| $60-70$ | 11 | 4.56 | 70 | 190 | 78.83 |
| $70-80$ | 10 | 4.14 | 80 | 200 | 82.98 |
| $80-90$ | 12 | 4.98 | 100 | 212 | 87.96 |
| $90-100$ | 8 | 3.32 | 110 | 222 | 91.28 |
| $100-110$ | 2 | 0.83 | 120 | 224 | 92.16 |
| $110-120$ | 2 | 0.83 | 130 | 227 | 92.85 |
| $120-130$ | 3 | 1.24 | 140 | 230 | 94.19 |
| $130-140$ | 3 | 1.24 | 160 | 233 | 95.43 |
| $150-160$ | 3 | 1.24 | 170 | 236 | 96.68 |
| $160-170$ | 3 | 1.24 | 190 | 237 | 97.92 |
| $180-190$ | 1 | 0.41 | 200 | 239 | 98.34 |
| $190-200$ | 2 | 0.83 | 220 | 240 | 99.17 |
| $210-220$ | 1 | 0.41 | 230 | 241 | 99.59 |
| $220-230$ | 1 | 0.41 |  | 100.0 |  |

## 9. SPECIAL CASE TESTS

The $\mathrm{HI}^{3}$ location subsystem was subjected to a large number of special case tests, both in Fort Worth and in Philadelphia, in order to assess its performance under the most stringent urban conditions. These tests provided results which supplement the data obtained during random- and fixed-route testing. Special Case Tests have been grouped into three generic categories:

Special Urban Conditions<br>Special Environmental Conditions<br>Special Vehicle Related Conditions

### 9.1 SPECIAL URBAN CONDITIONS

The random route area assigned to $\mathrm{HI}^{3}$ in Philadelphia included a full spectrum of conditions which provided a comprehensive test of the location subsystem technique used by $\mathrm{HI}^{3}$. The area, shown in Figure 3-12, included the Reading Railroad terminal and eight elevated steel railroad crossings, two of which were over 250 feet long. At two separate locations, the entire roadway was covered by portions of parking garages, one for a distance of 297 feet. Electric trolleys operated on both 11th and 12 th streets through the entire random route area. Reference to Figure 3-13 will show the building structures in the area which included many miles of highrise "canyons". The area also included narrow streets (Wood Street is only 18 feet wide curb-to-curb), wide boulevards (Vine Street is eight lanes wide (134 feet) with three separate medians); Market Street is 63 feet wide, curb-to-curb, with numerous metal traffic standards extending completely across the roadway. Although most available utility poles were metal, a wide variety of poles and configurations were used. On Wood Street, three wooden poles with overhead wires were used. Street patterns in the area varied, all North-South streets were one-way, and only Vine and Market streets were two-way. Since the $\mathrm{HI}^{3}$ location system operates independent of the direction of vehicle travel, this traffic engineering pattern offered no problems.

Special tests categories under Special Urban Conditions were designed to determine the effects of the following items:

1. Large metallic structures
2. Freeway overpasses and tunnels
3. Buildings extending over roadways
4. Narrow streets and deep canyons
5. Wide boulevards, open areas, parks, and malls
6. Trolley and other overhead wires
7. Signpost mounting conditions.

### 9.1.1 Large Metallic Structures

All ten (10) Random Route tests included tests under the Reading Railroad Terminal on Filbert Street, under the steel reinforced parking garage on 8th Street, and under railroad tumnels on Cherry, Race, and Vine Streets. Table 9-1 contains a list of the location errors associated with TSC checkpoints which were located near these elevated metal structures. Not only are there no errors exceeding 179 feet at these locations, but the repeatability of the location region is demonstrated by the extremely low variance in the errors incurred at each checkpoint. Additional data relating to large metallic structures are discussed in subsequent paragraphs in this section.

### 9.1.2 Freeway Overpasses and Tunnels

The data presented in Table 9-1 is also applicable to demonstrate the fact that the $\mathrm{HI}^{3}$ location subsystem performed within specification in the vicinity of overpasses and tunnels. In addition, special tests were performed to demonstrate the ability of the $\mathrm{HI}^{3}$ location subsystem to generate location regions within tumnels and for signposts to propagate energy through tunnels and under overpasses. Figure 9-1 contains data taken during Random Route Test 10 during travel West on Filbert Street beneath the Reading Railroad Terminal. As shown in the figure, signposts were installed on street light poles near each end of the tunnel. Three different location regions were received by the vehicle while moving through the tunnel at the locations shown (to scale) in the figure.

A similar test involved installation of a signpost in the center of the 297foot long covered roadway on 8 th Street between Filbert and Arch. The signpost was installed, as shown in Figure 9-2, by simply setting the signpost on 2 by 12inch wooden walkway with the antenna extended downward between two 2 - by 12inch boards. This signpost $(15,16)$ created a Region 1 location region within the tunnel and produced overlap regions in conjunction with signposts $(16,16)$ to the North and $(13,16)$ to the South. Data obtained during Random Route Test Run 8 are also shown in Figure 9-3. The vehicle was traveling South on 8th after passing signpost $(16,16)$ at 8 th and Cherry. At the intersection of 8 th and Arch, the vehicle received a Level 3 from signpost $(15,16)$ in the tunnel and declared a new location region $(16,16)$ R3S, 230 feet from signpost $(15,16)$. While the vehicle stopped, the location toggled to a $(16,16)$ R2S and a $(15,16)$ R3N. Just under the tunnel entrance, a Region 1 from signpost $(15,16)$ was declared. 144 feet from signpost $(15,16)$, a $(15,16) \mathrm{R} 3 \mathrm{~N}$ was declared followed by a $(15,16) \mathrm{R} 1$ at a distance of 128 feet from signpost $(15,16)$. This code was stored throughout the remainder of the tumnel until a $(15,16)$ R2S was declared 194 feet south of signpost $(15,16)$. The location error incurred during this run is shown plotted in Figure 9-3.
TABLE 9-1 RANDOM ROUTE LOCATION ERRORS NEAR LARGE METALLIC STRUCTURES


* Primary Checkpoints are denoted Pnn
Secondary Checkpoints are denoted Snn


FIG. 9-1 FILBERT STREET TUNNEL TESTS


FIG. 9-2 SIGNPOST INSTALLATION IN 8TH STREET TUNNEL


The effect of the tunnel in this latter case was to slightly reduce the distance from the signpost at which the specified signal level was received. For this reas on, the signpost within the tunnel was located closer ( 520 feet) to the adjacent signpost than the average for the remainder of the random route area. However, this simple procedure still allowed the location subsystem error specification to be met in the confines of so restrictive a situation. It is noted that there were no poles available for mounting a signpost within the 8th Street tunnel. The adaptability of $\mathrm{HI}^{3}$ signposts to virtually any mounting environment was demonstrated in this case.

### 9.1.3 Buildings Extending Over Roadways

The ability of the $\mathrm{HI}^{3}$ location subsystem to meet the multi-user AVM performance specifications in the presence of buildings which extend over roadways was adequately demonstrated in the two preceding special case tests. Additional data pertinent to this situation are discussed in subsequent paragraphs in terms of parking garages.

### 9.1.4 Narrow Streets and Deep "High Rise" Canyons

The ability of the $\mathrm{HI}^{3}$ location subsystem to meet multi-user AVM performance specifications on narrow streets and in deep canyons formed by high-rise buildings was repeatedly demonstrated during Random Route tests. Many TSC checkpoints were located along narrow streets which were framed by high-rise buildings. Notable among these were secondary checkpoints $8,11,23,24,25$, 37 , and 55 , which were located on streets $27-, 26-, 50-5-, 26$-, and 25 -feet wide respectively, and framed on each side by multistory buildings which were cons tructed 10 to 20 feet from the curb line. Table 9-2 is a summary of the location errors recorded at these checkpoints during all five secondary random route test runs.

Table 9-2 $\mathrm{HI}^{3}$ LOCATION SUBSYSTEM PERFORMANCE ON NARROW STREETS IN HIGH-RISE AREA

|  | Secondary Checkpoint |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Run No. | S8 | S11 | S23 | S24 | S25 | S37 | S55 |
| 6 | 153 | 0 | 77 | 20 | 61 | 89 | 0 |
| 7 | 153 | 0 | 77 | 20 | 61 | 89 | 0 |
| 8 | 153 | 225 | 226 | 20 | 61 | 89 | 0 |
| 9 | 153 | 0 | 77 | 20 | 139 | 89 | 0 |
| 10 | 153 | 225 | 77 | 20 | 139 | 89 | 0 |
| Location Error in Feet |  |  |  |  |  |  |  |

Figure 9-4 contains a plot of location error as a function of vehicle location recorded during Random Route Test Run 10 traveling East on Race Street through the heart of Philadelphia's Chinatown. Along this stretch of Race Street, the roadway is only 25 feet wide, and both sides of the street are wall-to-wall buildings at least three stories high. It is noted that, even in this extremely narrow canyon, the location error is less than 300 feet over 98 percent of this roadway.

### 9.1.5 Wide Boulevards, Open Areas, Parks, and Malls

The area on Vine Street between 9th and 11th Streets is representative of this type of area. Vine Street itself consists of eight traffic lanes separated into four separate roadways by three raised medians. The total curb-to-curb width is 134 feet. The 9 th-Street end is totally open on all sides with no buildings. However, 10th Street, which crosses Vine perpendicularly, is only 27 feet wide, curb-to-curb, and is solidly framed by two- and three-story buildings, on both sides.

Figure 9-5 contains data obtained during Random Route Test Run 1 between 9 th; and 11 th Streets, eastbound on Vine. Signposts $(12,8)$ and (12, 10 ) were located on the center medians at 11 th and 9 th Streets, respectively, and were separated by 880 feet. Signposts $(19,15)$ and $(17,15)$ were located on 10 th Street at Wood and Spring Streets, respectively, and separated by 700 feet. At only two locations along this stretch of Vine Street, corresponding to less than $6 \%$ of the roadway shown, did the location error exceed 300 feet.

These data show that the performance of the $\mathrm{HI}^{3}$ location subsystem is not degraded in areas containing wide boulevards and open areas and that the use of signposts on narrow streets (10th Street) opening onto open areas (Vine Street) is effective in the formation of location regions. Additional data on this same area is discussed in paragraph 9.7 which is directed to a discussion of vehicles making U-Turns.

### 9.1.6 Trolley and Other Overhead Wires

Both 11 th and 12 th Streets had trolleys operating from overhead wires. Typical signpost installations near these wires, as well as near other overhead wires are shown in Figure 3-13. Secondary checkpoints 9, 17, 18, 19, 20, 24, $28,29,37,38,39,40,46,52,53,57$, and 60 were all on 11 th and 12 th Streets within 15 feet of overhead trolley wires. The data taken on Random Route Test Runs 6 through 10 for these 17 checkpoints is summarized as follows:

Total number of samples: 84
Number of samples with error < 250 feet: $82(97.62 \%$ )
Maximum error among samples: 376 feet
Average location error: 81 feet
$95 \%$ confidence error: 241 feet
Percent samples with less than 450 feet errors: 100



DISTANCE ALONG TRACK (FEET)

* $(12,8) \mathrm{R} 3 \mathrm{E} ;(12,8) \mathrm{R} 3 \mathrm{~W},(19,15) \mathrm{R} 3 \mathrm{~S}$ and $(19,15) \mathrm{R} 2 \mathrm{~S}$ ARE OFFSET NORTH OF THE EAST BOUND LINE OF VINE.

FIG. 9-5 WIDE BOULEVARD TESTS

These results are consistent with the overall results obtained during random route tests and show that trolley wires and other overhead wires, e.g., those near Wood and Pearl Streets, had no effect on the performance of the $\mathrm{HI}^{3}$ location subsystem.

### 9.1.7 Signpost Mounting Conditions

Figure 3-13 contains photographs of all $\mathrm{HI}^{3}$ signpost installations in Philadelphia. In most instances, signposts were mounted 18 to 26 feet above the roadway. However, some signposts $(19,15),(19,16)$, and $(15,13)$ were mounted less than 16 feet above the ground. Photographs of 12 different installations in Philadelphia are shown in Figure 9-6. These installations were simply dictated by the availability of permanently installed poles owned either by the City of Philadelphia or by the Philadelphia Electric Company. $\mathrm{HI}^{3}$ contracted pole agreements with both of these organizations prior to installation.

At a given distance from a $\mathrm{HI}^{3}$ signpost, the strength of the signal received from the signpost is relatively independent of the signpost height above the ground. This relationship is illustrated in Figure 9-7 which contains a plot of the distances, from a signpost, where a Region 1 was received for signpost heights of $20,22.5$, and 25 feet above the ground. The test vehicle was utilized during these tests, and the signpost was approached from two opposite directions. These data were taken in Fort Worth during Special Test Runs 19 through 36. The average and standard deviation of the R1 radius for all of 10 samples taken were 245 feet and 26 feet, respectively. This latter value is very close to the 18 -foot standard deviation in R1 boundary location for all 15 fixed route signposts.

These tests show that the $\mathrm{HI}^{3}$ location subsystem can be utilized in any type of installation without modification to any part of the location subsystem. Height is not critical, and the unit can be attached to any space available on the pole, preferably out of reach of passersby. And, on poles with overhead wires, flexible mounting specifications will permit the installation to adhere to OSHA safety requirements concerning the minimum space between power wires and items mounted on the pole.

A second item of consideration is the effect of local structures near the signpost; in particular, buildings which are very close to the signpost. Figures $9-8$ and $9-9$ contain contour plots of data obtained during special tests in Philadelphia under the following conditions:

Wide open streets with no buildings near the signpost
Narrow streets with tall buildings on all sides and very close to the signpost.

The same signpost was utilized and antennas mounted at the same height, 23 feet, during both sets of measurements although the poles were quite different, as shown
(Text continued on 9-16)


FIG. 9-6 A VARIETY OF SIGNPOST INSTALLATIONS

## VEHICLE HEADING



| Run \# | Vehicle Heading | Signpost Height (feet) | R1 Radius (feet) |
| :---: | :---: | :---: | :---: |
| 19 | West | 25 | 222 |
| 20 | East | 25 | 240 |
| 29 | West | 22.5 | 270 |
| 30 | East | 22.5 | 250 |
| 31 | West | 22.5 | 270 |
| 32 | East | 22.5 | 260 |
| 33 | West | 20 | 260 |
| 34 | East | 20 | 180 |
| 35 | West | 20 | 250 |
| 36 | East | 20 | 250 |
| $\mu\left(\mathrm{R} 1_{\text {West }}\right)=254^{\prime}$ | $\mu\left(\mathrm{R} 1_{\text {East }}\right)=236{ }^{\prime}$ | $\mu(\mathrm{R} 1)=245^{\prime}$ |  |
| $\sigma_{\mathrm{R} 1}{ }_{\text {West }}=18$ | $\left.\sigma_{(\mathrm{R} 1}{ }_{\text {East }}\right)=28^{\prime}$ | $\sigma_{(R 1)}=26^{\prime}$ |  |

FIG. 9-7 SIGNPOST HEIGHT TEST RESULTS


FIG. 9-8 SIGNPOST REGION 1 CONTOUR, NARROW STREETS


FIG: 9-9 SIGNPOST REGION 1 CONTOUR, WIDE STREETS
in Figure 9-6. Data were taken in all driving lanes heading in all possible directions, the latter being limited because Callowhill is one-way in both directions leading into Broad. There were no other crossing two-way streets in the Center City region of Philadelphia which included a narrow street.

Table 9-3 contains the data obtained during these tests. Where possible, both R1 and R1 dropout data were recorded. The mean and standard deviations of the two sets of data were as follows:

At Broad and Callowhill (Narrow Streets - Congested Structures)

$$
\begin{aligned}
\mu & =179 \text { feet } \\
\sigma & =42 \text { feet }
\end{aligned}
$$

At Broad and Vine (Wide Streets - No Large Structures)

$$
\begin{aligned}
\mu & =206 \text { feet } \\
\sigma & =49 \text { feet }
\end{aligned}
$$

Both Sets of Data Combined

$$
\begin{aligned}
\mu & =224 \text { feet } \\
\sigma & =46 \text { feet }
\end{aligned}
$$

These data show the consistency obtained from the $\mathrm{HI}^{3}$ location subsystem under quite different installation conditions. In one case the signpost was only 21 feet from a 12 -story building. In the other case, there were no structures within 77 feet of the signpost.

### 9.2 SPECIAL ENVIRONMENTAL CONDITIONS

Special tests categorized under Special Environmental Conditions included the following:

Power substations electromagnetic interference
RF survey
Electromagnetic interference from trolleys
Temperature environment
Traffic and weather
Signpost battery drain .

TABLE 9-3 SIGNPOST LEVEL 1 CONTOUR DATA

Broad and Vine St.

$$
\begin{aligned}
& \text { 12-15-76 } \\
& \text { Temp }=46^{\circ} \quad 2025-2135 \text { HRS } \\
& \text { Dry }
\end{aligned}
$$

odometer setting : 1 Foot Per Pulse

| LANE | HEADING | Odometer Reading |  |  | $\Delta R$ <br> in <br> feet | $\Delta R$ out feet |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | At R1 | At Center of Intersection | At R1D |  |  |
| 1 | South | 0419 | 645 | 853 | 226 | 208 |
| 2 | South | 488 | 641 | 822 | 153 | 181 |
| 3 | North | 713 | 866 | 1101 | 153 | 234 |
| 4 | North | 602 | 767 | 973 | 165 | 206 |
| 1 | East | 1298 | 1442 | 1636 | 144 | 194 |
| 2 | East | 1509 | 1610 | 1856 | 101 | 246 |
| 3 | East | 408 | 517 | 755 | 109 | 238 |
| 4 | East | 1290 | 1409 | 1643 | 119 | 234 |
| 5 | West | 466 | 641 | 776 | 175 | 135 |
| 6 | West | 379 | 509 | 751 | 190 | 182 |
| 7 | West | 1793 | 2000 | 2188 | 207 | 188 |
| 8 | West | 658 | 843 | 956 | 185 | 113 |

BROAD \& CALLOWHILL
ODOMETER SETTING: 2 Feet Per Pulse

| 1 | West | 401 | 477 | - | 152 | - |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- |
| 2 | West | 128 | 189 | - | 150 | - |
| 1 | East | 341 | 416 | - | 150 | - |
| 2 | East | 698 | 823 | - | 250 | - |
| 1 | South | 15 | 163 | 264 | 296 | 202 |
| 2 | South | 198 | 340 | 434 | 284 | 188 |
| 3 | North | 107 | 190 | 310 | 166 | 240 |
| 4 | North | 70 | 168 | 268 | 196 | 200 |

NOTE: Odometer Calibration 0. 2 Percent Low.

### 9.2.1 Power Substation EMI

These tests were conducted at the intersection of 11th and Noble. As shown in Figure 9-10, both the Southwest and Northwest corners of this intersection are covered by power substations. The tests were conducted by operating the test vehicle against signpost $(15,13)$ which was mounted on a street light on the Southwest corner. Table 9-4 contains the results obtained. The signpost was successfully received and decoded on each and every pass. When the test vehicle was located near the Reading Railroad crossing, on 11th Street, an overlap region between signpost $(15,13)$ and signpost $(19,13)$ was recorded. Signpost $(19,13)$ was located approximately 680 feet South on 11th Street. A strong 60 cycle hum could be distinctly heard emitting from the substation as far as 1 block away. The overall results obtained during this test document the fact that 60 -cycle EMI has no perceptable effect on the $\mathrm{HI}^{3}$ location subsystem.

### 9.2.2 RF Survey

A survey of in-band RF energy at 49.860 MHz was conducted in order to establish the background level of in-band radio frequency interference. Data were taken manually through use of a special RF signal strength meter and a calibrated attenuator. The test vehicle and test location subsystem antenna were used during the tests. The calibrated attenuator was adjusted so as to produce midscale on the meter which had previously been calibrated at -81.5 dBm . Tests were conducted at a number of locations throughout the random and fixed route test areas in downtown Philadelphia. Table 9-5 contains the results of this survey. Signal levels below -81.5 dBm were estimated from the meter by calibrating it with the attenuator and a calibrated signal source. The receiver in the RF survey meter was a standard vehicle unit signpost receiver.

With signposts installed, the indicated level of attenuation was required in order to produce midscale deflection of the meter. The attenuation required was, of course, dependent on the distance to the signpost.

In the vicinity of the power substation at 11th and Noble streets, the in-band energy was -88 dBm . No perceptable difference was observed when a train passed nearby. The most significant sou rce of in-band energy was ignition noise; however, this was quite spurious and difficult to quantify. The RF noise produced by the test vehicle was approximately -80 dBm at the receiver at 49 MHz contrasted with -49 dBm at a similar $27-\mathrm{MHz}$ receiver. In the few instances, automobiles passing directly by the test vehicle produced a transient signal as high as -76 dBm . However, in no case was the presence of ignition noise correlatable to any location error.

### 9.2.3 EMI From Trolleys

On a number of occasions, the test vehicle followed or was followed by trolleys operating from overhead wires. In these cases, visual observation of

FIG. 9-10 POWER SUBSTATION TEST CONFIGURATION

TABLE 9-4 TEST DATA TAKEN NEAR POWER SUBSTATION

| RUN \# | HEADING | ODOM iRI) <br> (feet.) | ODOM (center of Inter- <br> section) (feet) | R <br> (feet) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | E | 126 | 224 | 93 |
| 2 | E | 274 | 376 | 192 |
| 3 | E | 302 | 374 | 72 |
| 4 | N | 192 | 214 | 112 |
| 5 | N | 333 | 493 | 13.9 |
| 6 | S | 100 | 193 | 98 |
| 7 | W | 169 | 402 | 212 |

## TABLE 9-5 PHILADELPHIA RF SURVEY 12-15-76

FREQUENCY 49.860 MHz EXCEPT AS NOTED

| TIME | LOCATION | REMARKS | SIGNA L LEVEL <br> (dBm) |
| :---: | :---: | :---: | :---: |
| 1940 | Broad and Hamilton | Attenuator Removed | -83 |
| 1943 | 12th and Hamilton |  | -88 |
| 1952 | 9th and Spring Garden |  | -88 |
| 1955 | 11th and Noble <br> 30 feet from signpost | Signpost Installed | ( 34 dB atten for 0.5 ma ) |
| 1957 | 11th and No.ble | Signpost Removed | -88 |
| 2006 | Broad and Callowhill | Signpost Installed | ( 55 dB for 0.5 ma ) |
| 2008 | Broad and Callowhill | Signpost Removed | -88 |
| 2012 | Broad and Spring Garden |  | -88 |
| 2015 | 15th and Ridge |  | -88 |
| 2035 | 16 th and Vine |  | -88 |
| 2036 | 17th and Vine |  | -88 |
| 2038 | 18th and Hamilton |  | -88 |
| 2039 | 19th and Spring Garden |  | -88 |
| 2043 | Ben Franklin Parkway Circle | Near Signpost 6, 6 | -80 |
| 2044 | 22nd and Ben Franklin P.W. |  | -88 |
| 2045 | 19th and Cherry |  |  |
| 2050 | 18th and Market | No cars within 1 block | -88 to -78 |
| 2051 |  | Cars passing 150' away | -88 |
| 2052 |  | Cars passing in next lane | -81.5 to -76 |
| 2053 |  | Cars passing 2 lanes away | -88 to -87 |
| 2055 |  | Many cars passing simult eously | -83 |
| 2210 | 4 th and Vine |  |  |
| 12-16-76 |  |  |  |
| 1020 | 11th and Noble | Motor On | -80 |
| 1020 | 11th and Noble | at 27 MHz - Motor On | -49 |
| -1021 | 11 th and Noble | Motor Off | -88 |
| 1022 | 11th and Noble | at 27 MHz - Motor Off | -80 |
| 0.530 | 15th and Market | Heavy Traffic - Motor Off | -88 to -76 |

*With signpost installed, attenuation was increased to provide mid scale deflection of the meter corresponding to -81.5 d BM . The attenuation necessary depends on the distance to the signpost.
sparking at the trolley wire connection occurred. During Random Route Rum 1, as noted in the test log, the test vehicle followed directly behind a trolley heading South on 12th Street from CP 45 to CP 46. Reference to Run 1 test data in Table 5-1 will indicate that the location errors associated with these two checkpoints were not influenced by the presence of the trolley since the error was the same for Runs 1, 2, 3, and 4 and no trolley was present during those latter runs. On Run 4, a trolley followed directly behind the test vehicle from CP 25 through CP 28. Again, reference to Table 5-1 will indicate that the presence of the trolley during Run 4 did not influence the location error since the errors incurred at CP 25, 26, 27, and 28 were exactly the same in 17 out of 20 cases. It is concluded from those tests that the $\mathrm{HI}^{3}$ AVM system can operate without degradation in performance near, and most probably on, electric trolleys.

### 9.2.4 Temperature Environment

A series of tests were performed in order to establish the ability of the $\mathrm{HI}^{3}$ signpost to operate over a wide variation in temperature. The results of these tests are presented in Table 9-6.

Each $\mathrm{HI}^{3}$ signpost used in Phase I was checked for operation over the temperature range $-25^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ in the environmental chamber. Thes e tests were not part of the special case tests; however, the results are directly applicable to Phase I and Phase II. These tests were conducted by using the field strength meter which includes a built-in signpost decoder to monitor the signpost output while the signpost was in the chamber. During this test, the signal strength meter was at room temperature and the test was simply a go, no-go type test which was based on the ability to decode the signpost code over the temperature range. The purpose of the test was to assure that the signposts were operating over the expected temperature range. Note that the signal strength meter is normally battery operated.

Subsequent to these tests, during the process of adjusting the vehicle units for use in Phase I, the receiver in the signal strength meter was used as a reference; however, it was connected to a 12 -volt power supply at the time the clock frequency was being determined. As a result, the clock frequency in both Vehicle Unit 1 and 2 were erroneously set a few kilohertz too high ( 204 KHz versus 198 KHz ). This error caused :o problem at normal temperatures; however, at lower temperatures, the signpost FSK frequencies change within a design tolerance. This design tolerance is within the capture bandwidths of the correctly adjusted vehicle unit. However, in this case, the capture bandwidth of the erroneously adjusted vehicle units was too narrow. Hence, during Runs 1 through 5, as the temperature decreased, some degradation in system performance resulted.

As noted in the random route data log in the Appendix, this error was discovered and corrected between Runs 5 and 6 , with the highly significant results previously described in Section 5 of this volume.
TABLE 9-6 HOFFMAN SIGNPOST PARAMETERS VS. TEMPERATURE

|  |  | 49.860 MHz Signpost SP-03 |  |  |  | 27.095 MHz Signpost SP-02 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Temperature } \\ { }_{\mathrm{C}} \end{gathered}$ | Source Voltage Volts | RF Freq. MHz | $\begin{aligned} & \text { RF } \\ & \text { P-P } \\ & \text { Out } \\ & \text { Volts } \end{aligned}$ | $\begin{gathered} \% \\ \text { MOD } \end{gathered}$ | $\begin{aligned} & \mathrm{F}_{\text {low }} \\ & \mathrm{KHz} \end{aligned}$ | $\begin{gathered} \text { RF Freq. } \\ \mathrm{MHz} \end{gathered}$ | RF <br> P-P <br> Out <br> Volts | \% <br> MOD | $\begin{gathered} F_{\text {low }} \\ \mathrm{KHz} \end{gathered}$ |
| +20 | 11.6 | 49.860 437 | 1.80 | . 2 | 3.776 | 27.094528 | 2.05 | . 24 | 3. 275 |
| +20 | 11.4 | 49.860 430 | 1. 75 | . 2 | 3.249 | 27.094520 | 1.95 | . 24 | 3.240 |
| +20 | 11.2 | 49.860 411 | 1. 70 | . 2 | 3.210 | 27. 094492 | 1.95 | . 24 | 3. 205 |
| +20 | 13.34 | 49.860 283 | 1. 50 | . 25 | 2.981 | 27.094397 | 1. 80 | . 2 | 2.956 |
| +20 | 9.86 | 49.860 743 | 2. 10 | . 2 | 3.544 | 27.093802 | 2.15 | . 3 | 3. 563 |
| 0 | 11.6 | 49.861280 | 1. 75 | . 2 | 3.261 | 27. 094517 | 2.00 | . 24 | 3. 272 |
| 0 | 11.4 | 49.861133 | 1. 70 | . 2 | 3.228 | 27.094490 | 1.98 | . 24 | 3. 229 |
| 0 | 11.2 | 49.861 122 | 1. 60 | . 2 | 3. 195 | 27. 094483 | 1.93 | . 24 | 3. 195 |
| -20 | 11.6 | 49.861875 | 1. 70 | . 25 | 3.259 | 27.094486 | 1.90 | . 26 | 3.281 |
| -20 | 11.4 | 49.861876 | 1.66 | . 25 | 3.225 | 27.094473 | 1.85 | . 26 | 3. 728 |
| -20 | 11.2 | 49.861849 | 1.63 | . 25 | 3. 193 | 27.094427 | 1. 70 | . 26 | 3. 192 |
| +50 | 11.6 | 49.859 001 | 1. 78 | . 18 | 3.274 | 27. 094566 | 2.05 | . 26 | 3. 270 |
| +50 | 11.4 | 49.858976 | 1. 75 | . 18 | 3.241 | 27. 094553 | 2.00 | . 26 | 3.237 |
| +50 | 11.2 | 49.858965 | 1. 70 | . 168 | 3.211 | 27.094546 | 1.95 | . 24 | 3. 203 |
| +50 |  |  |  |  |  | 27.094571 | 2. 10 | . 26 | 3. 302 |

[^5]At first, it was believed that signpost failures produced the problems observed in Run 5 since the same type of problem was observed during preliminary calibration of the system. Isolation and correction of the vehicle frequency adjustment problem shed new light on this problem, and it is now documented that $\mathrm{HI}^{3}$ experienced only one signpost failure during the 90 days in which the 41 signposts were installed in Philadelphia. That failure occurred during extremely cold weather when a mica capacitor failed in signpost $(16,11)$ on the night of 16 January between fixed route Runs 37 and 38 . The failure was possibly due to a faulty capacitor which could not stand the thermal shock of the temperature dropping 11 degrees in less than three hours during the period in which the signpost failed. As a result of this failure and tests run on signposts to be installed in Labrador, these mica capacitors are being replaced with ceramic capacitors.

Table 9-7 contains data taken on a $\mathrm{HI}^{3}$ vehicle unit during operation over the temperature range between $-25^{\circ} \mathrm{C}$ and $65^{\circ} \mathrm{C}$ at source voltages between 11 and 14 volts DC. As in the case of the signpost, a standard environmental system, Model TB12 environmental chamber, was utilized. These data show that the Level 3 and Level 2 thresholds do not change with temperature over the $-25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ operating range and over a source voltage range from 11 to 14 volts . The Level 1 threshold varied a total of 1.5 dB over this same range. However, this change represents only a few feet since this level change is associated with the steepest portion of the RF field produced by the signpos $t$.

### 9.2.5 Weather, Traffic, and Time of Day

A total of 10 random route, 33 fixed route, and approximately four full days of special case tests were performed in Philadelphia. At no time was any test delayed as a result of weather, traffic conditions, or the time of day. Table 9-8 reflects the weather and traffic conditions and the start and finish times of each formal test rum. Figure 9-11 contains photographs taken during fixed route Runs 18, 19, and 34 and one taken when the "off-route" signposts were being installed during $5^{\circ} \mathrm{F}$ weather after completing Run 38.

The only problems created by the weather involved the 5th wheel. These included (1) a shorted connector caused by water on Run 26, (2) loss of a magnet during Run 32 , probably because of roadway ice ruts, and (3) an accumulation of up to $1 / 4$ inch of ice and slush on the 5 th wheel as shown in Figure 9-11. An average accumulation of $1 / 8$-inch increase in the radius of this 13 -inch radius wheel produces an error since the wheel would turn 1 percent fewer revolutions per foot, or, on the basis of assuming a total distance traveled of 68,000 feet, a total of 100 fewer revolutions. This difference would produce an error (shorter indicated distance traveled by the 5 th wheel) of 681 feet. A comparison of odometer and 5 th wheel distances for the fixed route indicated that this buildup of snow and ice in conjunction with some sliding of the 5 th wheel did indeed cause the 5 th wheel to lose distance during those runs where the centers of streets were icy.
TABLE 9-7 HI ${ }^{3}$ SIGNPOST RECEIVER TEMPERATURE CHARACTERISTICS

| Temperature | Input Voltage Volts | Minimum Decode Level db | Maximum Decode Level db | $\begin{gathered} \text { Level \#1 } \\ \text { db } \end{gathered}$ | $\begin{gathered} \text { Level \#2 } \\ \mathrm{db} \end{gathered}$ | $\begin{gathered} \text { Level \#3 } \\ \text { db } \end{gathered}$ | *Levcl \#1 Drop Out db |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| +25 | 11.0 | 66 | 10 | 38 | 53 | 63 | $<4$ |
| +25 | 12.5 | 66 | 7 | 38 | 53 | 63 | < 4 |
| +25 | 14.0 | 66 | 10 | 38 | 50 | 63 | $<4$ |
| 0 | 11.0 | 65 | 10 | 39 | 53 | 63 |  |
| 0 | 12.5 | 65 | 10 | 39 | 53 | 63 |  |
| 0 | 14.0 | 63 | 12 | 39 | 53 | 63 | $<4$ |
| -25 | 11.0 | 62.5 | 21 | 39.5 | 53 | 63 |  |
| -25 | 12.5 | 62.5 | 15 | 39.5 | 53 | 63 | $<4$ |
| -25 | 14.0 | 62.5 | 23 | 39.5 | 53 | 63 | $<4$ |
| +50 | 11.0 | 65 | 19 | 37.5 | 53 | 63 | < 4 |
| +50 | 12.5 | 65 | 17 | 37.5 | 53 | 63 |  |
| +50 | 14.0 | 65 | 20 | 37.5 | 53 | 63 |  |
| $+65$ | 11.0 | 64 | 29 | 37 | 53 | 63 | 6 |
| +65 | 11.5 | 65 | 24 | 37 | 53 | 63 | 6 |
| +65 | 12.5 | 65 | 19 | 37 | 53 | 63 | 6 |
| $+65$ | 14.0 | 63 | 24 | 37 | 53 | 63 | 6 |



TABLE 9-8 $\mathrm{HI}^{3}$ TEST DATA (WEATHER, TEMPERA TURE, AND TIME)

| Run \# | ${ }_{\mathrm{o}_{\mathrm{F}}}^{\text {Temperature }}$ | Weather | Traffic | Start Time Hrs. Min | End Time Hrs. Min. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 48 | Wet Streets | Heavy | 15:41 | 17:15 |
| 2 | 48 | Wet Streets | Heavy | 17:35 | 18:48 |
| 3 | 46 | Wet Streets | Moderate | 18:56 | 20:05 |
| 4 | 45 | Wet Streets | Moderate | 20:25 | 21:50 |
| 5 | 41 | Wet Streets | Light | 21:56 | 22:57 |
| 6 | 28 | Dry | Moderate | 09:45 | 10:55 |
| 7 | 34 | Dry | Heavy | 1-1:05 | 12:35 |
| 8 | 36 | Dry | Heavy | 12:40 | 14:09 |
| 9 | 38 | Dry | Moderate | 14:20 | 15:35 |
| 10 | 36 | Dry | Heavy | 17:05 | 18:18 |
| 11 | 24 | Dry | Moderate | 13:10 | 14:50 |
| 12 | 25 | Dry | Moderate | 15:00 | 16:37 |
| 13 | 24 | Dry | Heavy | 16:50 | 18:20 |
| 14 | 24 | Dry | Moderate | 20:25 | 21:40 |
| 15 | 23 | Dry | Light | 22:00 | 23:10 |
| 16 | 23 | Dry | Light | 23:20 | 00:30 |
| 17 | 30 | Dry | Moderate | 08:50 | 10:15 |
| 18 | 32 | Snowing | Heavy | 10:20 | 12:00 |
| 19 | 31 | Snowing | Heavy | 13:30 | 15:35 |
| 20 | 32 | Snowing | Heavy | 16:00 | 17:30 |
| 21 | 33 | $2^{\prime \prime}$ Slush | Moderate | 18:00 | 19:30 |
| 22 | 33 | 2" Slush Freezing Rain | Light | 20:40 | 21:55 |
| 23 | 32 | Freezing Rain | Light | 22:00 | 23:20 |
| 24 | 32 | Freezing Rain | Light | 23:30 | 00:45 |
| 25 | 32 | Light Rain | Light | 00:50 | 02:10 |
| 26 | 33 | Slush | Moderate | 10:35 | 12:00 |
| 27 | 34 | Slush | Moderate | 12:10 | 13:22 |
| 28 | 38 | Slush | Moderate | 13:30 | 14:55 |
| 29 | 37 | Slush | Moderate | 15:00 | 16:20 |
| 30 | 34 | Slush | Heavy | 17:15 | 18:38 |
| 31 | 34 | Slush | Moderate | 18:45 | 20:10 |
| 32 | 32 | Slush | Light | 20:25 | 21:50 |
| 33 | 26 | Snow | Light | 10:10 | 12:25 |
| 34 | 26 | Snow | Moderate | 12:35 | 14:05 |
| 35 | 26 | Snow | Moderate | 14:15 | 15:35 |
| 36 | 28 | Snow | Heavy | 15:50 | 17:05 |
| 37 | 26 | Slush | Heavy | 17:15 | 18:30 |
| 38 | 15 | Slush | Moderate | 20:40 | 21:50 |
| 39 | 8 | Ice | Light | 10:15 | 11:45 |
| 40 | 8 | Ice | Light | 12:15 | 13:40 |
| 41 | 12 | Ice | Moderate | 15:35 | 17:15 |
| 42 | 12 | Ice | Moderate | 18:55 | 20:10 |
| 43 | 12 | Ice | Light | 20:30 | 21:40 |


FIG. 9-11 INCLEMENT WEA THER TEST CONDITIONS

### 9.3 SPECIAL VEHICLE RELATED CONDITIONS

During the Phase I test program, a number of tests were conducted to assess the limitations, if any, and capabilities of the $\mathrm{HI}^{3}$ AVM System in terms of special conditions which pertain to the AVM-equipped vehicle. $\mathrm{HI}^{3}$ selected a large motor home for use as a test vehicle for two reasons: (1) it provided an ideal working space for the DAS and for observers during tests and demonstrations, and (2) it was an ideal simulation for a bus in terms of height, width, and maneuverability. The success achieved through use of the Phase I test vehicle makes it a logical choice for use during Phase $\Pi$ test program in Los Angeles as a test and calibration vehicle.

Special vehicle related tests were categorized as follows:

> Vehicle velocity
> U-Turns
> Parking Garages.

### 9.3.1 Vehicle Velocity

During the random route and fixed route tests in Philadelphia, the test vehicle operated under prevailing traffic conditions and speed limits. As a result, the vehicle was rarely able to exceed a spaed of 30 miles per hour during formal tests. In order to demonstrate the performance of the $\mathrm{HI}^{3}$ LS at speeds much greater than 30 mph , a series of special tests were conducted in Fort Worth, Texas, on 27 October 1976. Two types of tests were conducted. The first involved making repeated passes at a constant speed by a signpost mounted on a street light and recording the distance from the signpost at which the R1 boundary was detected. These tests (Special Case Runs 17 through 28) covered speeds from 10 to 48 mph . Higher velocity tests were performed by attaching a signpost to the top of another vehicle and subsequently driving the two vehicles toward each other at constant speeds. By recording these speeds and the location, ODOM (R1), at which the R1 was received, and the location, ODOM(P), at which the vehicles passed, the actual R1 radius associated with the relative velocity between the test vehicle and the signpost could be computed. The value of the odometer at the occurrence of the R1 was automatically recorded by the data recording software. Passage of the two vehicles was recorded by use of a CP event code.

The geometry involved in the latter test is shown in Figure 9-12. If it is assumed that the test vehicle was traveling at a speed of $V_{T V}$ and the signpost at a speed of $V_{S P}$, then the actual vehicle velocity relative to the signpost is

$$
\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{TV}}+\mathrm{V}_{\mathrm{SP}} .
$$



FIG. 9-12 VEHICLE VELOCITY TEST CONFIGURATION

During the period of time between receipt of the R 1 by the test vehicle and the passing of the two vehicles, the test vehicle traveled a distance of

$$
\mathrm{D}_{\mathrm{TV}}=\mathrm{ODOM}(\mathrm{P})-\mathrm{ODOM}(\mathrm{R} 1)
$$

The time required to travel this distance is

$$
\mathrm{R}=\frac{\mathrm{D}_{\mathrm{TV}}}{\mathrm{~V}_{\mathrm{TV}}}
$$

During the same time period, the signpost traveled a distance of $\mathrm{D}_{\mathrm{SP}}=\mathrm{T} \times \mathrm{V}_{\mathrm{SP}}$. The actual R1 distance is given by

$$
\mathrm{R} 1=\mathrm{D}_{\mathrm{TV}}+\mathrm{D}_{\mathrm{SP}}=\mathrm{D}_{\mathrm{TV}}+\mathrm{T}^{2} \mathrm{~V}_{\mathrm{SP}}=\mathrm{D}_{\mathrm{TV}}+\mathrm{D}_{\mathrm{TV}} \frac{\mathrm{~V}_{\mathrm{SP}}}{\mathrm{~V}_{\mathrm{TV}}}
$$

or

$$
\begin{aligned}
& R 1=D_{T V} 1+V_{S P} / V_{T V} \\
& R 1=\operatorname{ODOM}(P)-\operatorname{ODOM}(R 1) \quad\left(1+V_{S P} / V_{T V}\right)
\end{aligned}
$$

This last relationship was used to compute the R1 distances shown in Table 9-9 for the case of two vehicles. The slightly shorter R1 value that resulted during Runs 43 through 49 are primarily attributed to the manner in which the signpost was mounted on top of a van. The signpost height was only 9 feet above the ground. Note that the average R1 radius is 216 feet for the data in Figure 9-9 and the standard deviation is less than 54 feet, including the effect of both vehicle speed and the height difference of the vehicle-mounted signpost. The standard deviation of the pole-mounted signpost tests was 37 feet while that of the vehiclemounted signpost tests was 22.8 . The results show that the $\mathrm{HI}^{3}$ AVM System performance is not degraded at any speed contemplated for either fixed or random route vehicles.

### 9.3.2 Vehicle Making U-Turns

The $\mathrm{HI}^{3}$ AVM System is independent of the direction of travel of the vehicle. No dead-reckoning is performed, and no application of location history is made in computing subsequent locations. Each vehicle simply computes and stores its most current location as it determined by the 18-BIT location region code. The process of making a U-Turn in no way affects the performance of the $\mathrm{HI}^{3}$ system. This fact was demonstrated during a special test conducted on Vine Street between 9th and 10th Streets. Figure 9-13 reflects the path of the vehicle on a scale drawing of the street, which is 134 feet wide. The small solid circles on the vehicle path indicate the occurrence of a new location region code. The locations of these $\mathrm{HI}^{3}$ test and calibration checkpoints 14,15 , and 17 are also

TABLE 9-9 VEHICLE VELOCITY TESTS

| Run \# Heading | $\mathrm{V}_{\mathrm{TV}}$ <br> mph | $\mathrm{V}_{\mathrm{SP}}$ <br> mph | $\mathrm{V}_{\mathrm{R}}$ <br> mph | R1 Radii <br> Feet | Odometer <br> CAL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | West | 10 | NA | 10 | 280 |
| 18 | East | 10 | NA | 10 | 290 |
| 19 | West | 20 | NA | 20 | 272 |
| 20 | East | 20 | NA | 20 | 298 |
| 21 | West | 30 | NA | 30 | $*$ |
| 22 | East | 30 | NA | 30 | $*$ |
| 23 | West | 40 | NA | 40 | 240 |
| 24 | East | 40 | NA | 40 | 170 |
| 25 | West | 45 | NA | 45 | 240 |
| 26 | East | 45 | NA | 45 | 260 |
| 27 | West | 48 | NA | 48 | 210 |
| 28 | East | 40 | NA | 40 | 260 |
| 43 | East | 20 | 0 | 20 | 190 |
| 44 | East | 20 | 20 | 40 | 180 |
| 45 | East | 30 | 30 | 60 | 160 |
| 46 | East | 40 | 40 | 80 | 140 |
| 47 | East | 40 | 45 | 85 | 191 |
| 48 | East | 48 | 50 | 98 | 163 |
| 49 | East | 48 | 54 | 102 | 127 |

* Experienced problem recording output of odometer

FIG. 9-13 VEHICLE U-TURN TESTS
indicated. The inset is the street geometry and the location of signposts and location region coordinates. Table 9-10 contains a listing of the U-Turn Test Data.


### 9.3.3 Parking Lots and Garages

In paragraph 9.1.2, it was shown that coverage within a covered garage can be easily obtained by placing a $\mathrm{HI}^{3}$ signpost within the covered area. This arrangement allows, for example, all cars leaving a fleet vehicle garage to be accurately located from the instant their systems are turned on.

### 9.3.4 Vehicle Unit Power Requirements

During special tests conducted in Fort Worth, the Phase I test vehicle unit was tested to determine its power drain. The source voltage was $12-5$ volts DC and the total current drawn was 201-212 milliamps, with the vehicle unit operating under operational conditions. This resulted in a power drain of 2.59 watts.

## TABLE 9-10 U-TURN TEST DATA




FIG. 9-14 PARKING GARAGE TEST CONFIGURATION

## 10. SPECIAL PHASE II CONSIDERATIONS

The $\mathrm{HI}^{3}$ proposals for the Multi-User AVM System were submitted to TSC on 14 October 1975. Contract go-ahead was received on 2 September 1976. During this 11 -month period and during the period in which Phase I was conducted, $\mathrm{HI}^{3}$ was continuously involved in specific and general studies which may have a direct bearing on Phase II of the Multi-User AVM Program. A number of items considered are briefly discussed in this section.

### 10.1 RELATIONSHIP BETWEEN PHASE I AND PHASE II EQUIPMENT

The location subsystem equipment used during Phase I tests was functionally identical to that proposed for use in Phase II. Specific differences are discussed in this section.

### 10.1.1 Signposts

The signposts proposed in $\mathrm{HI}^{3}$ proposal of 14 October 1975 were Model SP-02 which operated at 27.095 MHz . Phase I tests were conducted through the use of signpost Model SP-03 which operates at 49.860 MHz . Model SP-03 signposts are proposed for use in Phase II. Other than minor component replacement and new printed circuit board layout with an etched loading coil designed for use at 49.860 MHz , no signpost design changes are contemplated for Phase II. The loading coil used during Phase I was designed to operate at 27.095 MHz and was modified for operation at $49.860 \mathrm{MHz} . \mathrm{HI}^{3}$ signposts were connected to batteries on 27 September 1976. Except for a two day period during which they were modified to operate at 49.860 MHz , these 41 signposts were operated continuously from that date through 31 March 1977, when this report went to press. During that 183 day period only one signpost failure occurred, as discussed in Subsection 8.2. That failure occurred on the 111th day of operation.

The design MTBF of the $\mathrm{HI}^{3}$ signpost is 100,000 hours. Operation of 41 signposts for 183 days corresponds to 180,072 signpost hours of operation. If, as is commonly assumed, a second failure is assumed to have occurred on the 183 rd day, one computes an observed failure rate of 2 signposts in 180,072 hours or 1 failure in 95,000 hours, very close to the design MTBF.

### 10.1.2 Vehicle Units

During Phase I, a separate Interface Controller Unit (ICU) was used to interface the vehicle unit to the computer. In Phase II, all functions incorporated in the ICU would be incorporated on a single communication interface board within the vehicle unit. The primary reason for use of the ICU was to accommodate the odometer and fifth wheel inputs. If the odometer is eliminated from the $\mathrm{HI}^{3}$ AVM system, the communication interface becomes significantly simpler. Subsection 10.2 contains the rationale for elimination of the odometer. No vehicle unit failures occurred during Phase I. Between random route runs 5 and 6, both vehicle units were found to have erroneously set clock frequencies; however, this was not considered a failure.

### 10.1.3 Auxiliary Equipment

In Phase I, the CRT keyboard was used to simulate the opening and closing of the bus door. In Phase II, this function would be performed by use of a door position sensor and direct interface to the vehicle unit.

### 10.2 DESIRABILITY OF ELIMINATING ODOMETER

A number of AVM or AVL systems are currently installed in transit systems. These include the CTA in Chicago, and systems in Zurich, Paris, Hamburg, and London. In each of these systems, odometers are used to determine the distance of a bus along a route from a reference point. The reference points are determined either through (1) being manually reset (Paris' SECAMA system), (2) use of electronic signposts (CTA, Zurich's VBZ, and Hamburg's HVV) and (3) London's optical inverse proximity system. These systems are common to the extent that all use odometers and all are limited to fixed route vehicles. In all of these systems, one key cost element is the design, development, installation, and maintenance of the odometer system.

The development of a true random route AVM system has required a significant departure from the technology utilized in these fixed route systems. The $\mathrm{HI}^{3}$ random route system, for example, can provide all of the information required of a fixed route system; however, the inverse is not true.

In the interest of making all vehicle units (for use in both random and fixed-route vehicles) identical, in terms of location processing, $\mathrm{HI}^{3}$ has conducted a study into the cost-benefit of eliminating the odometer. The results of this study are summarized below.

In the Phase II system originally proposed, only fixed-route vehicles would incorporate the odometer. In those vehicles, the odometer would perform the following two functions:
a. Accumulate the elapsed distance along the route from the last signpost.
b. Set a flag when the vehicle has traveled 600 feet from the last R1. This flag signifies that the last R1 dropout has occurred.

Both of these functions can be eliminated by providing complete signpost coverage along the fixed route. The advantages associated with this are many, and they include

1. Timepoints may be moved without requiring movement of any signposts.
2. All multi-user vehicle unit location processors are identical.
3. Non-recurring design costs associated with the odometer system are eliminated,
4. Installation costs of odometer systems are eliminated.
5. Logistics and maintenance problems associated with the odometer are eliminated.
6. Maintenance and logistics are simplified with the multi-user system through increased commonality.
7. Costs of the additional required signposts are less than the cost of providing an odometer system in all fixed-route bases.
8. Software is simplified.
9. All signposts in the system are identical; i.e., there are no differences between "random route", "fixed route", or "timepoint" signposts .

### 10.2.1 Method of Computing Location and Timepoint Performance Without Using an Odometer

If overlapping signposts are installed along each fixed route, the location of fixed route vehicles is obtained in exactly the same manner as is that of the random route vehicles. Each location region along the route is assigned a pair of X, Y coordinates which are part of the base station data base. Thus, receipt of an 18 -bit code location region at the base station allows the bus to be located to within the specified system accuracy.

In the all-signpost system, timepoint performance could be computed as often as each new signpost is received. The vehicle would sense a timepoint through the signpost code. One approach would be that signposts near timepoints would have a logical 1 in the most significant bit. Recall from subsection 3.2.1 that only the four least significant bits are utilized in determining overlap codes. After having sensed a level 1 (Region 1) from a timepoint signpost, a fixed route vehicle would record the time at which the next overlap code was received in the vehicle. This time would be used in exactly the same manner as the TLR1D was used during Phase I. This process is illustrated in Figure 10-1.

At the base station, predetermined values of $\Delta T_{L}$ would be stored for each timepoint and for each direction of bus travel that the timepoint must service. For example, if it is assumed that signpost $(71,8)$ is used as a "timepoint" signpost at timepoint 15, then a data base file (TPTABL) would provide two values of $\Delta T ; \Delta T(N)$ that corresponds to the average time required for a bus to travel from the timepoint to the TLR1D point when it is heading north and $\Delta T(S)$ that corresponds to the average time required for a bus to travel from the timepoint to the TLR1D point when it is heading south. Note that the bus must transmit only the single TLR1D time (or the time the door is closed), as in Phase I;


FIG. 10-1 USE OF $\mathrm{HI}^{3}$ SIGNPOSTS TO PROVIDE FIXED ROUTE VEHICLE LOCA TION AND TIMEPOINT PERFORMANCE
however, it need not store or transmit the 12-14 bit odometer code. Consequently, the odometer storage register and all associated odometer logic can be eliminated from the fixed-route vehicle units, and the communication technique is simplified. Furthermore, a significant gain in the flexibility of timepoint selection is achieved since timepoints may be selected without requiring movement of any signposts.

### 10.2.2 Cost Benefit of Eliminating Odometers

From an economic point of view, the elimination of the odometer from the fixed route system is beneficial, particularly as the number of vehicles is increased. An analysis of this cost benefit follows:

1. Non-recurring Costs - These costs are independent of the number of vehicles. They include engineering and development costs associated with the odometer system. No additional non-recurring costs are incurred by expanding the sigmpost system.
2. Recurring Costs - If a cost per vehicle of $\$ 40$ per installed odometer system is assumed and a cost of $\$ 70$ per installed signpost, one can establish the following relationship:

$$
\text { Delta Recurring Cost }=70 N_{S P}-40 N_{V}
$$

An analysis of the designated SCRTD lines $7,21,26,29,83$, and 89 indicates a total of 70 miles would require signpost coverage. The total route miles of all these lines is 102.7 miles; from this distance was subtracted the 29.3 miles which occurs within the random route area and 3.7 miles which are common to more than one route. The installation of a signpost every 1000 feet along this 70 miles would require 370 signposts and meet the LS and system accuracy specification at all points along the routes. Thus, for Phase II

$$
N_{V}=200 \text { fixed route vehicles }
$$

and

$$
\mathrm{N}_{\mathrm{SP}}=370 \text { signposts }
$$

which results in a total Delta Recurring Cost of $\$ 17,900$.
3. Cost Saving - In order to compute the cost saving achieved by eliminating the odometer, the amount bid in the Phase II cost proposal for Fixed Route and Timepoint signposts must be subtracted from the recurring costs. Since 260 units were proposed, the net recurring saving is

$$
\$ 18,200-17,900=\$ 300
$$

To this value must be added the saving in non-recurring cost, $\$ 10,000$. The result is a total saving of $\$ 10,300$ that results from elimination of the odometer, without loss in performance.
4. Additional Cost Savings - Additional areas in which use of a signpostonly system (no odometers) would provide cost savings include:
a) Training - Simpler system involves less training for maintenance.
b) Maintenance - No in-vehicle maintenance, just replace vehicle units.
c) Spares - Fewer required since all units are identical.
d) Software - Simpler coding and simpler maintenance.
e) Quantity buy - More signposts allow per-unit cost savings.

The inclusion of this change involves no design changes in the $\mathrm{HI}^{3}$ vehicle unit used in Phase I since the odometer was accumulated within the ICU, not in the vehicle unit. Thus, use of a signpost-only system during Phase II allows the vehicle unit location region processor to be even more identical to the Phase I system than originally proposed.

### 10.3 FCC REQUIREMENTS AND STATUS OF HI ${ }^{3}$ EQUIPMENT

Operation of $\mathrm{HI}^{3}$ signposts Model SP-03 requires certification by the FCC pursuant to Subpart D of Part 15 of the current FCC Rules and Regulations. To be certified under Part 15 as a low-power device, the signpost must meet the specified technical requirements and be certified through the process set forth in Subpart B of Part 15.

Model SP-03 signposts certification requires that a set of simple measurements be taken; however, the calibrated equipment necessary to conduct these measurements is not available at $\mathrm{HI}^{3}$. For this reason, $\mathrm{HI}^{3}$ provided test units to Approved Test Engineering Laboratory of Chatsworth, California. That laboratory has provided the technical data necessary for certification by the FCC, which has been applied for.
$\mathrm{HI}^{3}$ has held numerous meetings with FCC personnel with regard to AVM. The $\mathrm{HI}^{3}$ AVM system installed at Huntington Beach, California, is certified by the FCC under Part 15 under the rules in force at the time of manufacture of that 27.095 MHz system. In the near future $\mathrm{HI}^{3}$ intends to petition the FCC for a nationwide dedicated signpost frequency. We believe such a step would be beneficial to the government.

### 10.4 FEDERAL, STATE, AND LOCAL REQUIREMENTS FOR PHASE II

Installation of Phase II equipment will involve obtaining permits for the use of space on existing street light and/or utility poles in the cities of Los Angeles, Santa Monica, Culver City, and Beverly Hills, and the County of Los Angeles. Well over 90 percent of these poles will be in the City of Los Angeles.
$\mathrm{HI}^{3}$ has initiated the process of obtaining pole agreements from the organizations and municipalities involved. Our success rate in obtaining similar agreements from the Cities of Huntington Beach, Los Angeles, Santa Monica, and Vernon, California, Palm Beach, Florida, Fort Worth, Texas, and Philadelphia, Pennsylvania has been 100 percent. We have provided engineering data to these organizations and demonstrated full compliance with state and Federal Occupational Safety Hazards Act in terms of both equipment and installation procedures.

### 10.5 NATIONWIDE MULTI-USER AVM

Within the confines of a given city or metropolis, the $\mathrm{HI}^{3}$ Multi-User AVM System can provide AVM benefits to all potential users within the area, regardless of type. Since all users may simultaneously share the same signpost system, proliferation of users does not result in the requirement for additional signposts. Different users may or may not utilize a common communication link. Generally, users would utilize their own assigned mobile radio frequencies. Since the great majority of vehicle fleets operate in the VHF or higher bands, the spatial distance over which a particular vehicle can be located is limited by the achievable mobile radio coverage, generally line-of-sight. For example, frequencies assigned to vehicle fleets in the UHF band are generally limited to use over approximately a 35 -mile radius.

As a result of these limitations imposed by mobile communications, there has been little emphasis on having different cities or metropolises having a common signpost frequency. For example, a PUD truck which normally operates in Los Angeles might be required to operate temporarily in San Diego. Unless the truck's mobile radio was initially equipped to operate at the frequency assigned to that fleet in San Diego, it would not be able to communicate directly with the San Diego fleet base station. Therefore, the primary reason for having signposts in LosAngeles and San Diego operate on the same frequency would be one of economics, i.e., common design and common parts allow reduced costs.

If, however, a vehicle fleet has the capability of operating inter-city or even nationwide, it would be highly advantageous, if not necessary, that all such cities be provided with a common-frequency signpost system. Assuming that communication with different base stations is available over long range (for example at HF), communication to a base station can be maintained, and a common signpost frequency would allow the location of such a vehicle to be known within each city. It is assumed that a vehicle operating in this mode would come under the control of a local base station upon entry into a coverage area. The attainment of this capability by use of a $\mathrm{HI}^{3}$ AVM system operating at 49.860 MHz is currently achievable without design change to the location subsystem. Nationwide operation at 49.860 MHz is currently acceptable to the FCC. However, since operation at 49.860 MHz is on a suffrage basis, it seems reasonable that the expansion of a signpost AVM system to many cities would certainly be sufficient justification for licensing of a single narrow-band dedicated frequency.

However, provisions to obtain location subsystem coverage in nonurban areas, especially on long cross-country routes between cities can best be achieved through use of a hybrid system which would incorporate the proven economic and technical benefits of the $\mathrm{HI}^{3}$ signpost approach with a wide-area AVM system such as Loran. Such a hybrid system would take advantage of the useable signal-to-noise ratios achievable through the use of Loran in non-urban areas and the proven signpos $t$ technology in urban areas.

Major drawbacks to an urban Loran system has always been (1) high vehicle unit costs and (2) costs associated with providing some type of augmentation of the Loran system to overcome the signal-to-noise problems associated with the urban environment. If Loran is only used for wide-area, non-urban coverage, then oaly those vehicles which are required to operate in non-urban areas would require the Loran portion of the system. As a result, the cost benefits and superior urban operation of the signpost system are provided to all urban vehicles as well as those which operate inter-city and use Loran during intercity operation. Vehicles which operate only cross country or whose location, intra-city, is not of importance, might only incorporate the Loran portion of the system.

The development of a hybrid signpost-triangulation AVM system is not new to $\mathrm{HI}^{3}$. In December of $1975, \mathrm{HI}^{3}$ (then Information Identification, Inc.) began the development of a hybrid signpost - AM Phase AVM System for the Justice Department, under contract to The Aerospace Corporation as part of a Cargo Security System for PUD trucks. This system involves the use of a triad of phase-locked AM stations as a basic source for a triangulation location system. Overlapping signposts were also used (1) as a reference for testing the AM Phase system and (2) as a means of augmenting the AM Phase system in fade zones. This system was successfully pilot tested in Los Angeles, Santa Monica, and Vernon, California in the Spring of 1976. A single base station provided control of the hybrid AVM system through the use of a shared voice communication link in the participating trucking company.
$\mathrm{HI}^{3}$ is currently under contract to produce an operational Cargo Security System to be installed in 40 PUD trucks operating in a 400 square mile area of greater Los Angeles including 40 different municipalities in Los Angeles and Orange counties. Radio stations KFI, KNX, and KPOL provide the phase locked AM carriers and 331 signposts provide location updates and fade-zone augmentation. This system is scheduled to become operational in June of 1977 at which time an extensive 12 -month evaluation period will commence.

The purpose of this discussion is to show that the development of a hybrid AVM system using signposts in the cities and Loran in the country is not just a concept, for the groundwork has already been carefully laid. Such
a system can be developed without technical risk since wide-area, vehicle location in non-urban areas through use of Loran is proven and vehicle location in urban areas through use of the $\mathrm{HI}^{3}$ signpost AVM is proven. The development of a hybrid vehicle unit consisting of plug-in optional modules and the use of modular software would allow the use of a considerable amount of existing hardware and algorithms and would culminate in a nation-wide system which would meet the technical specifications of both urban and non-urban AVM yet not impose the costs of non-urban AVM on the high percentage of users which operate only on a metropolitan basis.

## 10.6 $\mathrm{HI}^{3}$ RANDOM ROUTE LOCATION SUBSYSTEM SUPPLEMENTARY ANALYSIS

In the interest of determining more explicitly the distribution of errors for the random route configuration of the $\mathrm{HI}^{3}$ location subsystem, the program RRTEN was modified to print out the error statistics for all samples obtained during Run 6 . This procedure resulted in the processing of 8304 samples with the following pertinent results:

> 50 percent of samples less than: 94 feet. 95 percent of samples less than: 274 feet. 99.5 percent of samples less than: 389 feet.

The overall results are shown plotted in Figure 10-2. The distribution function is virtually identical to the composite error distribution obtained for 2235 pseudo checkpoint samples and shown in Figure 5-16. That curve is replotted in Figure 10-2 to illustrate their similarities. The density function which most closely approximates the error frequency density appears to be of the Raylergh form

$$
f(x)=x e^{-\frac{x^{2}}{2 \alpha^{2}}}
$$

although a few errors having a value of zero are observed.
Other parameters of interest relative to the $\mathrm{HI}^{3}$ location subsystem are the distribution of overlap region sizes. These parameters could not be explicitly determined from Phase I data because the passage of each signpost was not marked and the occurrence of cross-track overlaps partially obscured the occurrence of on-track overlaps. However, an approximation to these distributions was obtained by analyzing the listings of recorded data from Random Route Runs 6 through 10. The distances from the checkpoints which were located near signposts to the first occurrence of Region 2's and Region 3's was determined. Of the 5 runs analyzed, 116 such occurrences were observed. Of these, 91 occurrences involved receiving a region 2 after having passed through a Region 1 and 25 occurrences involved receiving a Region 3 after passing through a Region 1. 64 occurrences of Region 2 to Region 3 transitions (equivalent to Region 2 widths) were also analyzed. The distributions of these three distances



FIG. $10-2 \mathrm{HI}^{3}$ RANDOM ROUTE LOCATION SUBSYSTEM ERROR DISTRIBUTION
are plotted in Figure 10-3. Note that the distance from signpost-to-Region 2 or Region 3 is half of a region width, since it is on one side of a signpost whereas the Region 2-to-Region 3 width represents the width of a full region. As a result of the presence of cross-track overlaps at intersections, it was impossible to determine widths of Region 3's.

### 10.7 SPECIAL PHASE II CONSIDERATIONS

$\mathrm{HI}^{3}$ has initiated or completed a number of activities which relate directly to achieving all cost and schedule milestones on Phase II. For example, $\mathrm{HI}^{3}$ has digitized every intersection in the entire Los Angeles basin and has these on file on diskettes at Fort Worth. Computer programs to print these $\mathrm{X}, \mathrm{Y}$ coordinates and intersection names, delete and add intersections, etc. are currently available at $\mathrm{HI}^{3}$. Digitization was accomplished in exactly the same manner used by MITRE to digitize the intersections in Philadelphia.

As mentioned in subsection 10.3 , the $\mathrm{HI}^{3}$ location subsystem requires no FCC license. $\mathrm{HI}^{3}$ has recently applied for and received an experimental license for use of two UHF frequencies in the Los Angeles area for communication between AVM equipped vehicles and a base station. Thus, we understand the mechanism and timing necessary to obtain all necessary FCC permits.

As mentioned in subsection $10.4, \mathrm{HI}^{3}$ has extensive experience in obtaining pole agreements from municipalities and utility companies. We have already initiat the process in 40 municipalities in Los Angeles and Orange Counties in conjunction with the Cargo Security System. Installation of the signposts for that system will be accomplished in April and May of 1977 and although temporary ( 12 months) this will lay the groundwork necessary for proceeding directly with the Phase II pole agreements upon go-ahead. Hoffman's Corporate engineering and manufacturing facility in El Monte, California will be the base of these operations.


FIG. 10-3 HI ${ }^{3}$ RANDOM ROUTE LOCATION SUBSYSTEM REGION WIDTH DATA SECONDARY RUNS 6 THROUGH 10

付U.S. GOVERNMENT PRINTINGOFFICE: 1977-701-620/162

```
l
i
```


ODES＇3Sก 31母ヘIBd YO』 A17ロN3d



MOIIV LYOdSNVYL 」O LNJMLYVdJO＇S in



[^0]:    

[^1]:    * A Type I error is the probability of rejecting the null hypothesis (e.g., the system error probability is less than 5 percent) when it is indeed true. A Type II error is the probability of accepting the null hypothesis when it is actually false.

[^2]:    *Data incomplete due to record errors daring run.

[^3]:    * Bad Tape
    ** Power Failure
    *** Lost Magnet

[^4]:    T - Time Error on Tape R1D - R1D Not Received TD - Missed Event Marker

[^5]:     Environmental Chamber.

