
AD-AI02 165 INPUT OUTPUT COMPUTER SERVICES INC WALTHAM MA F/S 17/2
TWENTY-CHANNEL

VOICE RESPONSE SYSTEM.
U (U7

hIF J 1 O DOT-TSC-1313
WiLASSIFIEC FAA-RO-151

.5 Ehhhhhhmmml
IIIIIIIIIIIIIIffflfflf

REPORT NO. FAA-RD-81-51

TWENTY-CHANNEL VOI CE RESPONSE SYSTEM

00

INPUT OUTPUT COMPUTER SERVICES, INC.
400 Totten Pond Road
Waltham MA 02154

JUNE 1981
FINAL REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC
THROUGH THE NATIONAL TECHNICAL
INFORMATION SERVICE. SPRINGFIELD,
VIRGINIA 22161

.JUL -0 1981

Prepared forD

U.S. DEPARTMENT OF TRANSPORTATION

Systems Research and Developme't Service

U Washington DC 20591

'81 7 28 044~

NOTICE

This document is disseminated under the sponsorship
of the Department of Transportation in the interest
of information exchange. The United States Govern-
ment assumes no liability for its contents or use
thereof.

NOTICE

The United States Government does not endorse pro-

sidered essential to the object of this report.

1. epot H. 2 Goernmen Acesson o.3. Pecoimgit' Co*is sn N o. iN

FAA-RD-8OT1TS-FA-51-

400 Tten Pondtl Roa

V Wahngo DC 20591 -Wolo C4

15. Supp~ement. P Motes U.S Department ofTransportatio

*. PefrigOfeienNn n dreseac and Speia Prorm Aminis.tratio
nder Otrct Copt: TerancsotaIn Systms entr1

Walthambrdg MA 02142OTTS-
16. TIbof opue

U.S Dr~jeportmn dome npthetdesinanimlettonfaVic

RepeSystem r whic DvlprovidSesricUe r AcesII ~t h
WaAsition-ehr dat ba20hi5ytm9uprt10ideedn

ovSpeerar pusbto telehon ierfaet orlynsrfaeostation s
Under Cteralt torecas earch and forecat windrs Aft. tra~then

syste isiplemeted ns~ortlio compters: aC PPnter0os

" which mainrtan dcmnthe dsn and apPlmentafont-end wich

RsosSytmWWwhcprvdsDirect-User Access (DUA NOMTONSRIE PIOIto.th

Flight Svice St~ation daSta Vbase. 2216stmspprs20idpedn

ai .SerfrCsfo f chanes andei a . this ep e ot spieak three 21.e.ter 22.odue.

Unclssiiedl Uoeat'P), nclssfieas 444 aot-G h

syte isI DOTeene on 170. li2nk fsooed coputes: .whuaod P1/71

PREFPACE

The development work summarized in this final report was carried

out by Input Output Computer ServiCes, Inc., under contract to the

r.S. Department of Transportation, Transportation Systems Center

* (DOT/TSC). The research was sponsored by the Pederal Aviation

Administration (FAA) as part of their Flight Service Station (FSS)

automation program.

The system described in this report is intended to provide

preflight weather briefings to the aviation community via computer-

generated voice output. It is a 20-channel Voice Response System

(VRS) which uses Adaptive Differential Pulse Code Modulation (ADPC)

speech-compression techniques and a push-button telephone communi-

cation interface for a real-time pilot self-briefing system.

The work reported here was completed under the direction of the

TSC program manager, Manuel F. Medeiros, and the technical monitors,

• John J. Sigona and Vito P. Maglione. Carey Weigel of the FAA

* provided overall program guidance.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced I
Justification .

Distribution/

Availability Codes

SAa and/or

Dist Special

4

iii

't:

I4

III, ;: ii i i]ttAt

Is s -1 1 -6 a. 1

IL "I" r I" p r p I .' I I"I " 1..1 1.11.r' r' T r1 .r1 r 1 1.i 1 1..1 r 0 T-

fi l I M II i

I I 1 di It! 1all's

* :

iv

.MINIM

TABLE OF CONTENTS

Section Page

1, * INTRODUCTION .
1.1 VRS Functional Overview . . . * * * . * o * * 1-

1.1.1 PDP-1/340 Functions 1-2
1.1.2 PDP-1l/70' Functions 1-4
1.1.3 Global Functions 1-6

1.2 PDP-11/34 Hardware. 1-9
1.3 PDP-11/70 Hardware.1-12

2. VRS SOFTWARE DESIGN. 2-1
2.1 VRS Communications. 2-1

2.1.1 Establishing Communications 2-1
2.1.2 PDP-11/34 to PDP-11/70 Transmissions 2-2
2.1.3 PDP-11/70 to PDP-11/34 Transmissions 2-6

2.2 PDP-11/34 Resident Software 2-8
2.2.1 Data Bases 2-10
2.2.2 Device Drivers 2-20
2.2.3 Dialogue Program 2-21
2.2.4 Completion Routines. 2-26
2.2.5 Line Timeout Routine 2-29
2.2.6 Trap Handler 2-29

2.3 Statistics Package Overview 2-30
2.3.1 Statistics File Initialization 2-30
2.3.2 Statistics File Structure. 2-31

2.4 Resident PDP-11/70 Software 2-37
2.4.1 Overview of PDP-11/70 VRS Message Processing 2-37
2.4.2 Data Bases 2-38
2.4.3 Raw Data Processing 2-47
2.4.4 PDP-11/70 Retrieval Task 2-61

3. SUPPORT SOFTWARE 3-1
3.1 UDFPRG . 3-1
3.2 ERRCRT. 3-1
3.3 DEPTT 3-2
3.4 VRINIT . 3-33.5 VRSTOPe 3- 2
3.6 NLCUPD* 3- 2
3.7 SENDIC . 3- 3
3.8 WRDICT. 3-3

4. VRSMAINTENANC 11/34 4-1
4.1 Program Creation Procedure. 4-1
4.2 System Requirements 4-2

v

TABLE OF CONTENTS (Continued)

Section Page

5. VRS MAINTENANCE --11/70. 5-1
5.1 Task Creation Conventions .*....... 5-1
5.2 Software Conventions. 5-1
5.3 Support Software Task Creation 5-3

5.3.1 UDFPRG 5-3
5.3.2 ERRCRT 5-3
5.3.3 VRSGLB 5-3
5.3.4 VRINIT 5-4
5.3.5 VRSTOP 5-4
5.3.6 NLCUPD 5-4

5.4 VRS Weather Processor 5-5
5.5 Periodic Software Changes 5-7

6. OPERATIONS MANUAL. 6-1
6.1 Start Up 11/70 Subsystem 6-1

6.1.1 Log-on Terminal. 6-1
6.1.2 Bring Up Subsystem 6-7
6.1.3 Start Up 11/34 Subsystem 6-8
6.1.4 Shut Down 11/70 Subsystem. 6-12 a
6.1.5 Shut Down 11/34 Subsystem. 6-12
6.1.6 "Barge In" On 0 . 6-13
6.1.7 "Barge In" Off . . . 0 6-14
6.1.8 System Test. 6-14
6.1.9 system Trouble Chart 6-14

7. USERS' MANUAL. 7-1
7.1 Entering Data 7-1
7.2 Data Not Available. 7-5
7.3 Control Functions 7-7
7.4 Example of Typical VRS Dialogue 7-8

8. REFERENCES . 8-1

APPENDIX A PDP-l/34® AND PDP-11/700 SOFTWARE MODULE
DESCRIPTIONS A-I

A. 1 PDP-11/34 VRS...... A-2
A.2 PDP-ll/70 VRS. A-121
A.3 PDP-11/70 RETREV * A-155
A.4 PDP-11/70 VRSOUT . A-181
A.5 PDP-11/70 VRSFD. A-189
A.6 PDP-11/70 FDRTRV . A-191
A.7 PDP-11/70 UDFPRG A-199
A.8 PDP-11/70 VRINIT A-203

vi

TABLE OF CONTENTS (Continued)

Section Page

APPENDIX B PDP-11/34* AND PDP-l1/700 LINE COMMUNICATION o . B-1

B.1 PDP-11/34 and PDP-11/70 Communications Protocol. B-1
8 3.2 PDP-il/34-- PDP-11/70 DECNET (DDCMP) B-2
B.3 Transparent-Text Mode. 8-5
8.4 General Transmission Procedures. 3-6
B.4.1 Output Timing. B-7
8.4.2 Block Acknowledge Procedures B-7
B.4.3 Block Rerun Procedures B-8
B.4.4 Block Transmission Procedures. B-S
B.5 Line Synchronization Procedures B-8
B.6 Cyclic Redundancy Checking (CRC-16). B-9

APPENDIX C PDP-ii/70 SOFTWARE FLOW DIAGRAMS C-i

C .1 VREXEC . C-3

C.3 SA PROCESSOR . C-9
C.4 SA REMARKS PROCESSOR C-41

* C.5 FT PROCESSOR . C-59
C.6 RETREV . . . * * C-75

APPENDIX O REPORT OF NEW TECHNOLOGY D-1

vii

LIST OF ILLUSTRATIONS

Figure Page

1-1 PDP-ll/340 VRS Software- 1-3
1-2 PDP-l1/7O(DVRS Software e 1-7
1-3 PDP-11/34 Hardware Configuration 1-10
1-4 PDP-11/70 Hardware Configuration 1-13

2-1 'IRS System Components 2-9
2-2 Three Queue Examples 2-12
2-3 1/0OQueue Element 2-13
2-4 User Status Block 2-15
2-5 Dialogue Protocol index 2-19
2-6 Dialogue Program 2-22
2-7 Completion Routines 2-28
2-8 Record Pointer Block 2-32
2-9 Record Definition 2-33
2-10 Raw Weather Message Processor 2-39
2-11 Raw Data Base File KCW.DAT 2-40
2-12 VRS Universal Data File 2-42
2-13 VRSGLB Map Array 2-43
2-14 Locator Index Table Format 2-45
2-15 Message Unit Format for a 256-Word Block in UDF . . 2-46
2-16 Transmitted Message Units 2-56
2-17 Data Edit Configuration . . * * ' 2-60
2-18 PDP-11/70 Weather Retrieval Software. . . . 2-62
2-19 BUFFER, RETQUE, FREEPL 2-65
2-20 CRET and CRMUT 2-73

4-1 11/34 Software Subroutine Tree 4-3

5-1 PDP-11/70 'IRS Task/Overlay/Subroutine Tree 5-6
5-2 RETREV Subroutine Tree*. 5-8
5-3 FDRTRV and VRSFD Subroutine Tree 5-9

6-1 'IRS System Trouble Chart 6-2

C-2 'IRSOUT C-6
C-3 SA PROCESSOR C-10
C-4 SA REMARKS PROCESSOR C-42
C-S FT PROCESSOR C-60
c-6 PETREV C-76

LIST OF TABLES4

Table Pag

IBASE LEVEL FUNCTIONS PERFORMED 2-23

viii

i. ETRODICTION

The Direct User Access (DfiA) system is presently being developed

as a component of the FAA Flight Service Station Automation

Program. The system will enable pilots to interact with a computer

system to obtain weather briefings and file flight plans.

Transactions will be made over CRT and hardcopy terminals for

graphical and textual output, and over Touch-Tone@ telephones for

spoken briefings. The spoken material is the output of the

20-channel Voice Response System (VRS) developed at the

Transportation Systems Center (TSC) in Cambridge, Massachusetts. To

date, the VRS gives (speaks) three weather products over the

telephone with stored words: Hourly Surface Observations (SA),

Terminal Forecasts (FT), and Forecast Winds Aloft (Gr) (Air

Transport Association (ATA) Grid Winds -- prepared by the National

Meteorological Center for the airlines]. Using a special Touch-Tone
protocol, the pilot enters the three-character location identifier

for each airport or weather station of interest. The VRS prompts

the pilot to indicate which weather products are needed, and, if

* necessary, to enter specific altitudes and time for Winds Aloft data.

1.1 VRS FUNCTIONAL OVERVIEW

A Oigital Equipment Corporation (DEC) PDP-11/340 computer issues

the prompts and receives the user's requests, sending the requests

to a second computer, a DEC POP-ll/70® which has access to the

National Weather Service files in Kansas City, Missouri. The 11/70

weather orocessors are constantly translating incoming weather

products into sets of pointers which reference the VRS dictionary of

recorded words and phrases.

1-I

When the 11/70 weather report retrieval program receives a

request, the pointers corresponding to the required weather report

are located and sent back to the 11/34. The specified locations in

the dictionary file are read and the data sent to an output

subsystem (the Adaptive Differential Pulse Code Modulation (ADPC4)

decoder) which decodes the digital data and converts it to analog

signals (stored records) that the user can hear over the telephone.

1.1.1 PDP-ll/34& Functions

The VUS computer (i.e.,, the POP 11/34) performs all "trinl

functions. These functions include: accepting input from the user

via Touch-Tone6 phone, transmitting this input to the 11/70 and

providing voice output of information sent back from the 11/70. The

basic software flow diagram is presented in Figure 1-1. A brief

discussion on each block function is presented as follows in the

sequence that the computer processes the information.

The user input enters the software through the Touch-Tone

driver. The driver provides device-dependent function handling,

such as phone answering and producing ASCII characters from the
Touch-Tone input. The driver also separates the input from all

* channels into separate storage areas.

The separate storage areas are then examined by the dialogue
program. This module collects all information needed by the 11/70

to perform data retrieval. The information collected includes

location identifiers, altitudes and weather types.

At this point, the program prompts (speaks to) the user to input

the data required. The program has a collection of responses that

it *speaks" to the user. These responses are retrieved and spoken

to the user by using the disk driver, the disk driver completion

routine, the ADPCM driver, and the ADPCM completion routine. The

disk driver reads a portion of the message to be spoken and executes

1-2

0

14.-4

-4 '4 .

-P4d 4 0
W~ 1.4 G4))

a 0
C4 u

0

U) 4 r.4
> 0 >"r4

014 al 4 4J $4

-r4 4Jq b 0

m

E"411

r-44

E-44

1-34

the disk completion routine. The disk completion routine sends the

message fragment to the ADPCM driver. The ADPCZ4 driver speaks the

message fragment and executes the ADPCM completion routine which

requests another disk read from the disk driver. This process of

disk driver, to disk read completion, to ADPCM handler, to ADPCM

completion, continues until the enitire message is spoken. After

completing the spoken message the ADPCM completion routine returns

control to the dialogue program.

The information collected by the dialogue program is formatted

and transmitted to the PDP-1l/7O'0 by the line driver output. This

driver performs the functions required by the line protocol. This

includes insertion of all protocol characters, and data retrans-

missions required by invalid user entries or line interference.

The 11/70 prepares the requested data for transmission. The

data arrives at the line driver input in "message units" (defined in

Section 2.4.3.4). The message units must be specifically requested

by the VRS computer before they are sent. A request for the next

message unit is sent by the ADPCM completion routine when it has

completed the speaking of the previous one.

1.1.2 PDP-11/70 Functions

The PDP-11/70 maintains all of the weather data which are

required to be vocalized by the VRS computer. The PDP-11/70 will

eventually contain the software required to process eleven different

weather report types. it currently contains three weather

processors: Surface Observations (SA), Terminal Forecasts (FT), and

Forecast winds Aloft. The processing procedure consists of three

operations: accessing a dynamic data base of weather information to

recover raw weather data; translating the raw weather data into a
format which is recognized by the VRS 11/34 computer; and storing

the translated information in data files that are organized to

1-4

process is one of mapping ASCII* weather report words and phrases

into their corresponding dictionary tile addresses of the locations

where the actual digitized utterances are located.

The translation requires a dictionary (sort for indicating)

where each word and phrase are located in the vocabulary file. Two

copies of the dictionary exist, one on the 11/34 fixed head disk

where the vocabulary file itself resides, and the other on the 11/70

disk where it is accessed by the weather processors. (When the

dictionary is updated at the 11/34, it is sent to the 11/70 using an

off-line utility, SENDIC.)

In addition to translating the raw data, validity checks are

made and unrecognized words or formats are flagged as errors for

manual editing. The method of handling unrecognized ASCII com-

j binations is described in detail in Section 2.4.3.5.

The PDP-11/700 is required to retrieve weather information upon

request by the VRS computer. Three modes of retrieval (selected by

the pilot) have been defined as follows:

1. Local - Predefined data for particular locations are

presented in the following order, if available: Area Forecasts

e.g., (WA, WS, W4W, WH) Notices to Airmen-NOTAMS (NO), Density

Altitude, Surface Observations (SA), Pilot Reports (UA), Terminal

Forecasts (FT), Forecast Winds Aloft, and Weather Synopsis (SY).

2. Selected Weather - The weather reports: SA, FT, QA, NO, SY,

and Winds Aloft (time, altitude) are retrieved for each location

specified.

t*American Standard Code for information interchange (ASCII)

1-5

3. Prompt - The user is asked a series of questions requiring

yes/no answers concerning the report he wants for the specific

locations. The prompt mode is currently the mode in operation for

the 20-channel system.

The PDP-ll/70® uses a Location Index Table (LIT) in a Universal

Data Pile (TJDP) to locate the disk block numbers of the translated

weather reports requested by the user. A briefing table of these
block numbers is constructed and used for reading the blocks

containing disk pointers that indicate the stored utterances as
transmitted to the 11/34. The disk pointers are grouped into

logical divisions called message units (see Section 2.4.3.4). The

11/34 begins requesting successive message units when it is ready to
speak, and the 11/70, following its briefing table, reads the blocks

into a buffer and sends the data message a unit one at a time to the

11/34. The 11/70 software configuration is shown on Figure 1-2.

I

1.1.3 Global Wunctions

The division of work between the two systems implies a number of
functions are handled by both. These functions are system

initialization, error handling, and communications.

1.1.3.1 Initialization - Initialization of the VRS involves two

distinct operations, program startup and establishing communica-

tions. The exact implementation of operations may be different in
the two computers, but the function is the same.

Program startup is internal to the two systems. The proper
programs must be brought into core memory and all run time data

bases, such as I/O buffers, must be initialized. Establishing

communications consists of the 11/34 logging onto the 11/70, as a
human would, and issuing an RSX-11D monitor command to load and

execute the retrieval program (RETREV). Continued execution of

1-6

-i..

-4'

'U

* '4.N
0

r4

1-74

RETREV is thereafter verified by polling. if the 11/70 does not
respond to the polls, the 11/34 software prints an error message and
abor ts.

1.1.3.2. Error Handling - Errors may occur in the actual operation

of the program. A reporting function must exist to permit tracing

sources of error to improve operation.

Errors fall into two major categories. The first areas are
those which totally incapacitate the VRS. The second are those
which permit the system to continue operation, but in a degraded

manner,

The first category includes the following principal areas:

1) Disablement of the VRS computer. Hardware failure to
prevent the VRS computer from performing its VRS functions. This

type of error is determined using device status registers, and bus

timeouts induced by accessing totally disabled T/O registers.

2) Line Failure. Both the 11/70 and the VRS computer are
prevented from communicating as a result of serial line failure.

The total failure of either machine will appear to the other as a
line failure. Failures are determined by timeouts on the

communication line.

The second category of errors includes:

1. Raw Weather Data Errors. Format problems of the raw weather
data due to spelling errors, or other format problems result in

these errors being sent to the Data Editor (see Section 2.4.3.5).

2. Garbled Transmission. Messages sent on the Communications

line will occasionally suffer from noise and line outages. This

1.-8

includes only occasional distortion of messages, not total line

failure which was discussed previously.

3. 1/0 Errors. on occasion, peripheral devices will tail on an

attempted 1/O transfer. This type of error is-rare with current
* technology but should be accounted for on the few occasions when

* they do occur.

Other errors such as software failures can also occur. The

above list can be expanded as implementation proceeds, but is

adequate to define the error problem.

1.1.3.3. Communications - The communications task provides the link
between the systems. It must format data in a manner suitable for
serial transmissions, and must receive the data, checking it for

integrity and acknowledging receipt.

O The line is bi-directional and the messages are of 4 types. The

first is a briefing request.' This message is transmitted from the
11/34 to the 11/70. It contains data used by the 11/70 to access

the processed weathe r files. The 11/70 responds with either a

positive acknowledgment, or a diagnostic message indicating such

things as improperly spelled data, etc. If the request is accepted,
11/70 then internally prepares the data corresponding to the

retrieval request. Communications integrity is checked by check-sum

logic via the 11/34 and the Retrieval (11/70) program. This is

explained further in Chapter 2.

1.2 PDP-11/34 0HARDWARE

The various components of the 11/34 system (see Figure 1-3) are

as follows:

1-9

10 k.
N,

-4 -

xU3

00

-W-

&INN.

4

1-44

0 0

0
'U

r-4

a. 0

1-10

0 CP] - PDP-11/34A processor,

0 Memory - 64K word parity core memory for program execution.

0 TTY - System master cons6le (CDI Teleterm 1030) for running

the vRs system and for software development.

a
0 Calendar - TCU-100 Hardware clock calendar unit used by the

VRS to obtain the current date and time of day.

* Clock - KW-11/L real-time clock required by the operating

system to perform timing functions such as timing user

response time.

0 Magtape - TU-10 mag tape drive. Required for regular

back-up. Used to copy programs and vocabulary.

0 Telephone Company (TELCO) Switched Lines - provides access

to VRS using telephones.

* Bell 407C Data Sets - Converts the Touch-Tones® into

signals the equipment can handle incorporated in the Bell.

0 Touch-Tone Mux - VOTRhX MC-I decodes and multiplexes the

Touch-Tone input from the twenty 407C units.

0 DLII-E - Asynchronous interface to the 11/34 unibus for the

VOTRAX unit.

* 20 Channel ADPCM Decoder - a specially designed interface

for decoding the ADPCM code words into PCM samples and then

into analog signals.

RMore detaIls can be found in the references. See (1) for Digital
Equipment Corporation peripherals, Reference 2 for special purpose
hardware. See also (3) and (4) for the Bell Equipment.

1-1.1

* Audio Vocabulary Generator and A/D - audio hardware for

inputting the vocabulary (typically a tape recorder or

microphone).

0 Fixed-Head Disk - Digital-Development Corporatio

(DDC-9112-D-8) fixed-head disk. The disk is used for

storage of VRS software, program library, operating system,

and the VRS vocabulary. Capacity of 4 million 16-bit

words, 1800 RPM, 17 ms access time.

0 OL-1lE - 1200 bps Asynchronous tnterface.

0 Communications Multiplexor - A Computer Transmission

Corporation Model 1315 communications multiplexor for

communicating with the POP-11/700 computer.

1.3 POP-11/70 HARDWARE

The PDP-ll/70 hardware consists of 768K bytes of memory with

memory management and a dual 88 mega-byte disk storage system. The a

PDP-11/70 communicates with the VRS computer via a single channel in

the multi-channel DH-11 interface.

The PDP-11/70 system is controlled by RSX-llD/V6B, which is an

event driven, multiprogramming operating system offering up to 250

priority levels for task execution, multiple activity monitoring,

priority interrupt servicing, task scheduling, dynamic memory

partitioning, event flags for task notification and synchronization,

support of multiuser programs, etc., as well as on-line software

development, concurrent with task execution. A diagram of the 11/70

configuration is shown in Figure 1-4.

11

1-12

P0 0 SO U -

P-4 %Do w -o

"11 // ' f

.- U I- O MO.

z

eL r.0o. 0i"

o,-

cara

H 54
N, 54

E-44

0* __ ~..r-4

Ix 0.

'-r4

.0
(n.

r-4 z P4

0

aoa

ca

1-13/1-14

2. VRS SOFTWARE DesIGm

* 2.1 VRS COMMUNICATIONS

The nature and formats of the data transmitted between the two

VRS computers are described in this section. The topic of

communications line protocol and the associated protocol characters

is addressed in Appendix B.

2.1.1 Establishing Communications

When the 11/34 operator enters the RT-11 monitor command, 'R

'iRS,' to begin execution, one of the initialization procedures the

11/34 VRS software performs is logging onto a certain 11/70 disk

area to initiate execution of the weather report retrieval program,

* RETREV. The 11/34 sends the characters necessary for an ordinary

RSX-110 log on:

HEt (300,1001

(current password)

RUN RCTREV9

The log-on characters are echoed back to the 11/34 which types

them on the~ terminal as reassurance to the operator that the log-on

is happening as it should. (After this, no further transmissions to

the 11/70 are echoed.) if the log-on and all other initialization

procedures (discussed in subsequent sections) are successfully

completed, a message to that effect is typed on the terminal. If

the message does not appear, communication with the 11/70 has very

likely not been established and the operator would take off-line
remedial action. When communication has been successfully

£established, however, the 11/34 undertakes to monitor it by sending

2-1

a special polling message, MULL ZSC, every seven seconds to RETREV,

which must respond with '*l (ASCII asterisk one) within 20 seconds

or the 11/34 assumes that either RETREV, the 11/70, or the

communication line has failed. Without RETREV, the 11/34 can access '

no weather data, so it informs the operator of the trouble and

aborts itself.

2.1.2 POP-11/34 ® to POP-11/70 ® Transmissions

The 11/34 computer transmits two types of messages to the

11/70: briefing compilation requests (type 1) and demand response

requests (type 2). Type 1 messages are further defined into two
sub-types. One sub-type is briefing request message #1 (BRMI). The

other sub-type is briefing request message #2 (BRM2).

The briefing compilation request messages consist of ASCII

character strings (terminated by a carriage-return character) which
supply the parameters that the POP-11/70 employs to retrieve weather

data. The parametric information required by the PDP-11/70 consists

of such items as briefing mode, location identifiers, report types,

hours, and altitude.

The demand response requests consist of ASCII character strings

(terminated by a carriage-return character) which require either a

transfer of verbalization data from the PDP-11/70 to the VRS

computer or informs the PDP-1l/70 of some special condition of the

briefing (shut-down, hangup, etc.)

2.1.2.1 Type 1 VRS Computer to PDP-11/70 Transmission - There are

two sub-types of the type 1 transmission. They are identified as

briefing request message #1 (BRMI) and briefing request message #2

(BR12).

2-2

.4

p

BRM1 is used to inform the PDP-ll/70® of three briefing

parameters: channel, briefing mode, and location identifiers.

BRM2 is used to inform the POP-11/70 of four briefing

parameters: channel, report types-, time (hours from current time),

and altitude.

6 hn entire series of BRM2 transmissions may logically be issued

for a single BRM1 transmission and thus effectively cause a briefing

session to be a series of sub-briefings for the locations indicated

in the BRMI transmission. This permits the user to be actively

involved in the progressions of the briefing in order that he may

make subsequent requests based upon previous weather information.

The general form of BRM1 is shown below. The two fields are

generalized as ?l and P2.

BRMI: Xl-?2[CKS] [CR1

* X: Channel Number: ASCII 0-19

P1: Mode: LM, SM, PM, (for local, selected,

or prompt)

F2: Location identifier string

CKS: A three-character check-sum consisting of a

two-character encoded sum of all transmitted

characters followed by a character total of

the number of transmitted characters.

Example: X P1 P2
8PM-BOS/ALB/BUF [CKS]

2-3

.-,..-

Field Entry meaning

?l Mode Prompt Mode

P2 Locations Boston, Albany,

Buffalo

This briefing compilation request informs the PDP-11/70® that

the user has requested a prompt mode briefing for Boston, Albany,

and Buffalo. The VRS computer has assigned the user to channel 8.

The general form of BRM2 is shown below. The three fields are

generalized as Fl, F2, and P3.

BRM2: XFl-P2-F3[CKS [CR]

X: Channel Number: ASCII 0-19

Pl: Report types

F2: Times (hours from current time)

P3: Altitude (in feet or feet x 100)

Example: X Fl P2 F3

4 SA/FD-12-9700[CKS] (CR]

Field Entry Meaning

Pl Report types SA's, FD's (winds)

F2 Hours Winds for 12 hours

in advance

F3 Altitude Winds for 9700

feet

2-4

This briefing compilation request informs the PDP-ll/700 that

the user on channel 4 has requested Hourly Surface Observations and

Forecast Winds Aloft for the locations previously entered during a

BRMl transmission. The winds aloft are desired for 9700 feet and

the twelve-hour forecast is requested.
p

* 2.1.2.2 Type 2 VRS Computer to PDP-11/70 Transmission - This

transmission type is the method by which the VRS computer demands an

immediate response from the PDP-ll/70. The transmission is in

ASCIT-mode. There are three fields of information supplied, with an

optional fourth field. The request is terminated with a

carriage-return character.

The general form of a type 2 transmission is shown below. The

left and right brackets are used to indicate that the enclosed

information is optional. The brackets are for illustrative

purposes, and are not transmitted.

* Type 2: &XY[N 1 N 2P43 N41 [CKSI (CR
&

Field 1: &, type 2 identifier

Field 2: X, X = channel number ASCII 0-19

Field 3: Y, Y - command code (A, B, C, D)

Field 4: N12 N 3TN41 message unit number

The command codes (Field 3) represent the different types of

responses the VRS computer expects.

When Field 3 is an A, the VRS computer is informing the

PDP-11/70 that the briefing session is completed and that the

channel is released (i.e. telephone hang-up or disconnect).

2

~2-5

...-- -

When Field 3 is a B, the VRS computer is requesting that the

PDP-1l/700 supply the message unit data and, in addition, echo the

message unit number (See Section 2.1.3.2).

When Field 3 is a C, the VRS computer is requesting that the

PDP-Il/70 send the message unit number and message unit data of the

first message unit of the next report type of the briefing. When
Field 3 is a D, the VRS computer is requesting that the PDP-11/70
send the message unit number and message unit data for the first

message unit of the report that contains the requested message unit

(i.e., backup to the beginning of the current spoken report).

Field 3 Field 4 Required

A Yes = 0

B Yes -

C Yes =

D Yes -

2.1.3 POP-11/70 to PDP-II/34® Transmissions

The PDP-1/70 answers the two types of VRS computer trans-

missions with two types of responses. A type i response is an

ASCII-mode transmission which is used for two purposes: to indicate
a completely acceptable briefing request; and to "echo" an invalid

command string representing a request for a briefing. A type 2

response is a transparent-mode transmission which responds to a
demand response request. This is the transmission which delivers

the voice pointers and size data which the VRS computer uses to

vocalize the weather information.

2.1.3.1 Type 1 PDP-11/70 to PDP-11/34 Transmission - The type 1
response to the VRS computer is an ASCII-mode message which is a

response to a briefing request. The ASCII-mode message is used for

diagnostics: one of which is a statement that the PDP-11/70 can

2-6

comply with the transmitted request; the second of which is an echo

of a briefing request with 's substituted for the subfields which

are acceptable. Type 1 responses are terminated with carriage-

returns.

Type 1: Acceptable

X [CR] [CKS]

This transmission consists of the channel number (ASCII 0-19).

Type 1: BRM1 echo

X@-BOP/@/IAE [CR] [CKS]

This is a diagnostic response to a request on channel X (ASCII

0-19) in which the briefing mode was acceptable and the second

location identifier was acceptable. Locations SOP and IAE were not

located in the system data base.

Type 1: BRM2 echo

XPS/@-@-7 [CR [CRs]

This is a diagnostic response to a request on channel X (ASCII

0-19), in which an invalid report-type was requested (PS), a valid

report-type was requested, the time field is valid and the altitude

field is invalid.

2.1.3.2 Type 2 PDP-I1/70® to PDP-ll/34® Transmission - A type 2

transmission to the VRS computer is used to honor a demand response
request. This transmission is in binary transparent-mode and

consists of the command echo, the channel, the message unit number,

and the message unit data (if applicable). The general form of the

transmission (characters in brackets are optionally transmitted) is:

2-7

Type 2: CE N~P3t 4[1 2 . . * (A A *A

where, C is an eight bit echo of the demand;

E is an eight-bit channel number;

Nto N4 is a 32 bit message unit number;

Al to A n are the 8-bit bytes of the message

unit.

With reference to Section 2.1.2.2, request codes B, C, and 0

require the message unit data and request code h requires a special
message unit number zero, which is a confirmatory signal to the

POP-11/340 that the PDP-11/7O9 is closing all activity on the
specified channel. if any command other than A contains a response

of message unit zero, a message unit has been requested which is

beyond the range of the briefing.

2.2 POP-1134 RESIDENT SOFTWARE

Section 1.1 provides a brief introduction to the functions

provided by the 11/34 VRS computer. The software to perform these
functions is discussed here.

The RTV-11 Version 3 Extended Memory monitor is used as the

operating system for the VRS computer. The various components of
the VRS system are depicted in Figure 2-1. The function of each of

the components of the system will be given later. Here we will
discuss the different priority levels of the components.

The driver components operate at three priority levels. Read or

write 1/0 commands are initiated at priority zero, the lowest

2-8

Tiset Nandle
P1 6 71 7

Touch- OL&Lng
S ;ca~t~ui4.joxvve

Pa 0

Iawpetic. C 1ioveO

R o uti n e = T Pit s

LIUEi : RSSstmCopnet

Pa A17-

FIF
11/70 1170IM1to Ln u

FRouie 2-: R SsemCopnet

nM PR4 2%9

processor priority. Data characters sent or received by the drivers

are processed at priorities four or five. This guarantees instant

response to data interrupts. The disk and ADPCM completion routines

operate at interrupt priority five. The receive completion routine

operates at priority four. The dialogue program operates at

priority zero. The trap handler, the component synchronizer,

operates at priority seven, the highest process level. The line

timeout component,which monitors the activity of all lesser

components, operates at priority six.

The 11/34 software is examined under the following section

headings:

& Data Bases

• Device Drivers

0 Dialogue Program

W Completion Routines
0 Line Time-Out

* Trap Handler

S

2.2.1 Data Bases

The VRS computer maintains four data bases.

These data bases are:

" Queues

" Suffers

* User Status Blocks

" Dialogue Protocol Index.

2.2.1.1 Queues - Queues are linked lists consisting of a queue
header and a chain of any number of queue elements. The queue
header is a two-word field that determines the limits of the chain

2-10

of queue elements. The first word points to the first queue element

and the second word points to the last queue element. if there are

no queue elements in the queue, both words ace set to a zero value.

Figure 2-2 shows three examples of queued lists.

All queue elements linked to a specific queue header are members

of that particular queue. Each queue element of a particular queue

is a consecutive block of memory whose first word is a link pointer

to the next element of the queue. if the queue element is the last

element of the queue, the link pointer value is zero. The values

v contained in the remainder of the consecutive block of memory depend

on the queue function.

Figure 2-3 shows an I/0 queue element used by the RT-11 system

to queue I/0 orders. The link word's function is described in the

previous paragraph. Word 1 contains the VRS channel number and the

I/0 function code. word 2 is used by the RT-11 operating system.

Word 3 is the block address for random access devices. Word 4

contains the input or output buffer address. Word 5 is the word

count that determines the number of words to transfer. Word 6 is
£the completion code which determines the action to take upon

initiating or completing the I/0.

The VRS contains three different types of queued elements: the

1/0 queue elements, disk read queue elements and 11/70 receive queue

elements. The 1/0 queue elements we'd explained in the previous

paragraph. The disk read queue elements are elements whose

consecutive block of memory contains a link field, followed by a

five word 1/0 parameter list, followed by a 1024 word input/output

buffer. The element is used to read disk voice data and write the

data to the ADPCM driver. The receive queue elements contain a link

field followed by a 64-word data buffer used to send or receive data

to or from the 11/70.

2-11

header

a current

queue a

header

current
last

0

queue b

current
last

lement element

For a queue of length:

a) 0 elements
b) 1 element
c) 2 elements

FIGURE 2-2: Three Queue Examples

2-12

Word No. ______________

a tLink Word

1.5 8 7

1 1/0 Code VRS Channel

2 RT-11

3 Block Address

4 Buffer Address

5 Word Count

6 Completion Code

FIGURE 2-3: 1/0 Queue Element

2-13

2.2.1.2 Buffers - The VRS software uses three types of buffers.

The first is a 40-word Touch-ToneO input buffer permanently assigned

to each of the VRS channels. All translated Touch-Tone input is

placed into this buffer. The buffer is also used to transmit

briefing requests to the 11/70. The second is a 1024-word buffer I
used for reading disk voice data and speaking the data using the

ADPCM driver. The third is a 64-word buffer used to receive input

from the 11/70 and to echo Touch-Tone input.

2.2.1.3 rser Status Block - A user status block (USB) is assigned

to each VRS channel. The USB is a separate data base enabling

asynchronous operation of all VRS channels. Figute 2-4 defines the

fields of the TUSB. The following describes each field of the USB:

" Bytes 0,1 contain the beginning address of the permanently

assigned 40 word buffer.

* Bytes 2,3 contain the byte location within the 40 word

buffer that will receive the next translated Touch-Tone

input character.

" Bytes 4,5 contain the byte location within the 40 word

buffer of the start of the last input field, i.e.,

beginning of last location identifier or weather report

type, etc.

* Byte 6 contains the first character of a Touch-Tone input

keystroke pair.

" Byte 7 contains the current position within the dialogue.

. Bytes 10,11 contain the identifier of the last component of

the system that serviced the line.

I

HH -64

* 024

1 4 ,4 em W EAH CO C 4 H E-4 1-4am am U H U W Wr 1-4 U
S4 w z w w

wO NO a 040 04 0

00 "M XW w ral 0O 0 O0 AC

r (

4J 0 q % CD NO qw %Q COO w %a 4H

0 !4

00

W1 E- IX> H

m,, I ra , c l

i

Ca E- ad,0

2 10

H .. .0 ... 0 E.- 4 W

z q. qa fl fl a 0 '.0 a a. ~ t

00

HZ w

P-24
41H22 0 OD C % 0 %

0 r8 4 m M H

241
rid ~t2
0040 CO ri. CO H

OH CD 24 0 CA 24 15U0

0 Bytes 12,13 are the completion mask, which is a unique bit

for each VRS channel. The bit is used to distinguish which

particular VRS channel is signalling a significant event.

0 Byte 14 contains an event-vector to distinguish the
b

particular event being signalled by the completion mask.
4

• Byte 15 contains the flag bits that signal the functions to

take place during this particular step of the dialogue

protocol.

0 Bytes 16,17 contain flag bits that govern the functions to

take place during two or more steps of the dialogue

protocol.

0 Bytes 20,21 contain the flag bits that signal what report

types are available.

S Bytes 22,23 are the pointer to the sequence of field pairs

that define the message to be spoken.

0 Bytes 24,25 contain the number of words in the last block

of the voice data for the current utterance being spoken.

0 Bytes 26,27 are the number of disk blocks that contain the

utterance being spoken.

* Bytes 30,31 contain the disk block number of the utterance

being spoken.

0 Bytes 32,33 are the queue header and bytes 34, 35 are the

tail pointer of the read queue elements queued for the

ADPCM handler.

0 Bytes 36,37 are the address of the instruction where

processing will resume when the current message is spoken.

2-16

0 Bytes 40,41 contain the header and bytes 42, 43 contain the

tail for the read queue elements currently queued to the

disk handler.

0 Bytes 44 through 46 contain the return address pointers to

* the subroutines that are-to be returned to after a briefing

request completes.

0 Bytes 50,51 define the current briefing mode: selected,

local, or prompt.

0 Bytes 52 through 55 contain the ASCII number of the last

briefing message unit received from the 11/70.

0 Bytes 56 through 61 are the queue header of all receive

queue elements of message units received from the 11/70.

o Bytes 62 through 65 contain the ASCII number of the last

briefing message unit requested from the 11/70.

0 Bytes 66,67 contain the queue header and bytes 70,71 are

the tail of the message units queued to be spoken.

0 Bytes 72 through 75 contain the ASCII number of the message

unit that is currently being spoken.

0 Byte 76 is the channel binary code.

o Byte 77 is the channel ASCII code.

2.2.1.4 Dialogue Protocol index - A dialogue protocol index is used

to prompt the user through one step of the protocol. The dialogue

protocol index indicates what functions are to take place

immediately before, during, and immediately after a single step of

2-17

the user dialogue. Vigure 2-5 shows the fields of a dialogue

protocol index.

" Bytes 0,1 contain the flag bits placed into the user status

block at the beginning of-this step of the user dialogue.

* Bytes 2,3 are the address of the special function

subroutine to be performed before speaking the prompt-

message.

* Byte 4 contains the number of seconds to wait before

L. speaking the prompt message.

* Byte 5 contains the number of seconds to wait before

echoing the user response.

0 Bytes 6,7 define a message link to enable all dialogue

protocol indices that speak the same prompt message to use

the same stored canned message.

0 Bytes 10,11 contain the address of the stored canned

message unit. -

0 Bytes 12,13 define the address of the special function

subroutine to be executed before performing the syntax

analysis check.

0 Bytes 14,15 define the syntax analysis check mask to verify

the user input.

0 Bytes 20,21 define the address of the special function

subroutine to be performed before beginning the next

dialogue protocol index.

* Byte 22 defines the next dialogue protocol index to execute

if the user makes a normal or yes response.

2-18

Byte Number
Octal

0 FLAG BITS

2 SPECIAL FUNCTION

BEFORE SPEAKING_

3 4 ECHO PROMPT

6 MESSAGE LINK

10 PROMPT MESSAGE

12 SPECIAL FUNCTION
BEFORE SYNTAX ANALYSIS

14 SYNTAX CHECK MASK

16 SPECIAL FUNCTION
* BEFORE ECHOING RESPONSE

20 SPECIAL FUNCTION
20 BEFORE NEXT DIALOGUE

NO or YES or
23 22 ABNORMAL BRANCHI NORMAL BRANCH

NOTE: All fields are optional except the prompt
message and the yes/no branch vector fields.

FIGURE 2-5: Dialogue Protocol index

2-19

Byte 23 defines the next dialogue protocol index to execute if

the user responds with an abnormal or no response.

2.2.2 Device Drivers

The VRS software performs all of its I/O using the programmed

requests provided by RT-ll. Hence, all reads and writes of

information must obey the conventions of the operating system.

Reference 9, the RT-11 Advanced Programmers Guide describes these

programmed requests and shows how specialized handlers must work

within the constraints of RT-ll. The RT-11 Advanced Programmers

Guide is recommended reading for full comprehension of the

specialized handlers.

2.2.2.1 Touch-Tone® Driver (MCX) - The Touch-Tone driver is RT-11

compatible with the exception of its servicing of read requests.

The driver services the input Touch-Tone keystrokes by decoding and

inserting the decode character into the fixed 40-word VRS Touch-Tone

input buffer for the designated channel. It decodes a pair of input

keystrokes if alphanumeric input is expected, or a single keystroke
if numeric inout is indicated. The Touch-Tone driver services write

requests to enable or disable a VRS channel. The driver notifies

the dialogue program when any significant event occurs on a VRS

channel by setting the user status block completion mask bit into a
fixed memory location. Significant events reported are: telephone

ringing, disconnect, input complete, invalid input, etc.

2.2.2.2 DL-ll Line Interface Driver - The DL-11 interface is

controlled entirely by line-in and line-out software.

%4

2.2.2.3 Fixed-Head Disk Driver (RPX) - The fixed-head disk driver

is an RT-11 driver. Exact details of what this implies are
described in Reference 6, Chapters 2, 4, and 5.

2-20

2.2.2.4 ADPCM Driver (ADX) - When VRS wants to speak a message to

the user, it calls the ADPCM driver, which initiates speech on the

proper channel. The ADPCM hardware does not require processor

intervention while speaking a message because it is a direct memory

" access device. When the ADPCM hardware runs out of speech data, it

calls the ADPCM interrupt routine-which checks for errors. Then it

starts the next speech message to the channel. If there are no

speech messages, it turns off the ADPCM hardware on that channel.

Finally, the ADPCM handler initiates the ADPCM completion routine

with the channel number.

2.2.3 Dialogue Program

The dialogue program, operating at priority zero (the lowest
machine priority) constantly checks the status of a significant

event completion indicator located in a fixed memory word. The

Touch-Tone® driver indicates a significant event by setting the user

status block completion mask bit for the affected channel. The

Touch-Tone driver also sets the particular significant event code.

Figure 2-6 is a schematic flow of the priority zero VRS software.

Table 1 presents the functions performed and their effects.

The dialogue program significant event recognition routine

sequentially checks each of the VRS channels. This sequential check

guarantees consecutive servicing of all VRS channels. Using the

completion event code set by the Touch-Tone driver, the significant

event recognition routine vectors to the proper servicing routine.

2-21

TOuch-Tone
Driver

Significant
Event

Analyzer

Yes/No andRepeat Skip
Disconnect Noral Ring Last or

Completion Prompt Repeat

Briefing

Dialogue
Protocol

Index

Special Echo Message
Function Briefing Routine PrcmptSubroutines

ESpeakSComponent
To 11/70 From 11/70

FIGURE 2-6: Dialogue Program

2-22

46
Ha Ia Ca

E4 E4 0 04 EA co
Ca a. 0 of wAd O

SC 03 co a .~m
wa C-4 A. E- 4 0 E50

aa x X C x z I U4
rdl W ca 4 44 04 *at 9

~ 2= =Ca. w 0 3 A
W ~ C4 a >0 Ca E- VaC w. w N

*z z 4C

C54 z

0. 6 as

54 WO u C

Ca CaC4 5

Z4 354 4

442

2 39 6 2 5D 3m of
0 0- H4 9 94 H 0 a

ra. za 2 5cxz 4 N z w no
I P4 H 4 =. 0 0 0. mt

z 0? 0 13
1.4 954 HC)1 f

0 0 2 4
H4n 54 0 0)

E-4 E--I)

Ca 0 a
E- 0~ u l

ra Ha C4>

040 0 >
4 l me ON n
> H ON 0

- ~ ~ ~ ~ v - - -- x-

u4 W

0

C) a,3 C C 4 A

~.Z~a0)CZJ C4S1u

2-23

The significant event service routines are:

* The telephone ringing service routine

which activates the 11/70 retrieval

program if no other VRS channels are

active and initializes the user status

block.

e The telephone disconnect service routine

which notifies the 11/70 retrieval program

that the briefing is complete for the given

channel and if no other VRS channels are

active, deactivates the 11/70 retrieval

program.

" The yes/no and normal completion service

routines set their unique status indicator into
the status field of the user status block.

" The repeat last prompt service routine a

enables the repetition of the last message

prompt.

* The skip or repeat service routine disables

the current operation of the briefing com-

ponent and requests from the 11/70 either

the previous message unit for a repeat, or

a skip to the next report.

All of the service routines, with the exception of the skip or

repeat service routines, interface to the dialogue protocol index

routine. The dialogue protocol index routine directs and conducts

the operation on a VRS channel. rsing the dialogue pointer

contained in the ,Sa, the dialogue protocol index routine executes

one step of the protocol. The routine initiates the speaking of a

2-24

message prompt to the user. The routine also directs the

Touch-ToneO driver to decode the user responses as alphanumeric or

numeric input. Finally, the routine performs a syntax analysis

check on the user input, echoing a correct response if the dialogue
protocol index indicates the user input is to be echoed. It

executes the appropriate special service subroutines.

The special service subroutines perform services that are unique

for a particular dialogue protocol index. Examples of some of the

services performed are:

o Formatting the Touch-Tone input to separate

logical fields.

o Changing briefing modes.

o Clearing the Touch-Tone input buffer.

o Recognition of last location identifier.T-

o Skipping to another dialogue protocol index.

o Formatting a specific weather report type.

o Sending briefing requests to the 11/70.

The dialogue protocol index routine, using its special service

subroutines, requests the user input location identifiers. The

complete set of location identifiers is formatted and sent to the

11/70 retrieval program. The retrieval program validates each

location identifier. if all location identifiers are valid, the

* 11/70 retrieval program sends back an acknowledgment to the 11/34

VRS software. if any location identifiers are invalid, the

r retrieval program sends back a diagnostic message which identifies
which location identifiers were valid and which location identifiersj were invalid. A special service subroutine within 11/34 VRS

2-25

requests the user correct the invalid location identifiers by

cancelling them or re-inputting another location identifier. The

correct location identifiers are retransmitted to the 11/70.

Dependent upon the particular br'iefing mode, the dialogue

protocol index routine may ask the user for additional input. For a

local mode briefing, no other information is requested and the

dialogue protocol index routine enters briefing mode. For a prompt

briefing, the user is asked a series of questions requiring a yes or

no response. For each yes response, a weather report type request

is sent to the 11/70 retrieval program and the dialogue protocol

index routine enters briefing mode. For a select mode briefing, the

u~ser is asked to input the weather report types. The input weather

report types are sent to the 11/70, and the dialogue protocol index

routine enters briefing mode.

The preceding material has explained the operation of the lowest

priority routines of the VRS software. The operation services in a

serial fashion each of the VRS channels that indicates a significant

event. For a given VRS channel to perform the functions detailed

above, there are a number of significant events. Each time a

message is spoken to the user, requesting a user response, a

significant event is required to cycle the user to the next step of

the dialogue protocol. In general, the VRS completes instructions

for a single VRS channel before it cycles back to check for a

significant event on another VRS channel.

2.2.4 Com-pletion Routines

The completion routines operate at an interrupt level priority

zero. They are capable of interrupting the processing of the zero

priority software. One of the completion routines is the receive

completion routine which receives messages from the 11/70. If the

received message is an acknowledgment from the 11/70 of a briefing

request, the receive completion routine transfers control to the

2-26

dialogue protocol index routine by setting a completion code and the

completion mask in the same manner as the Touch-ToneO driver.

Figure 2-7 demonstrates the logical flow of the completion routines.

If the received message from the 11/70 is a briefing message
unit, the receive completion routine interfaces with the speech
initiator. The speech initiator called by the receive completion

routine or by the dialogue protocol index routine, initiates the
verbal output by requesting a read of the appropriate voice data

from the disk driver. The disk driver activates the disk completion
routine when the disk read completes.

The disk completion routine requests the ADPCM driver speak the

voice data. After speaking the voice data, the ADPCM driver

executes the ADPCM completion routine. The ADPCM completion routine
determines if the entire message prompt or the entire briefing has

been spoken. If it determines that the entire speech has not been

spoken, it requests another disk read of the next portion of the

prompt message or briefing. If all of the current briefing
verbalization has been spoken and it is not the end of the briefing,

the ADPCM completion routine requests another briefing message unit

from the 11/70.

To effect continuous speech, all read requests to the disk
handler are buffered ahead so that the ADPCM driver always has the
next portion of the verbal message to be spoken. The ADPCm driver
automatically starts speaking the next portion upon completion of

the last. When the entire message or briefing is complete, the

ADPCM completion routine cycles back to the dialogue protocol index
by setting a completion code and the completion mask, the same as

the Touch-Tone driver and the receive completion routine.

i

2-27

11/70

Dial~oque Protocol Index

PLETIN nqlXATO

t

CEMSPEEC

DIAGUE2- Co1eonR tie

PROT2-2L

2.2.5 Line Timeout Routine

The line timeout routine performs two functions. First, it

resends unanswered requests to the 11/70. If a communication error

has occurred--either the 11/70 or the 11/34 has dropped a

message--then line timeout will retransmit the request three times,

at five-second intervals. If the data are not received, the user is

disconnected.

The second function performed by line timeout is checking for

pilot Touch-Tone* input. If no reply is made to a prompt by the

11/34 after fifteen minutes, then a disconnect message, "Your

briefing has been terminated due to excessive time," is spoken and
the line is disconnected.

2.2.6 Trap Handler

The trap handler operates at priority seven, the highest machine
priority. The trap handler synchronizes operations among the

- various components of the operating system. An example is the

adding or taking an element away from a queue header. Without the

synchronizing feature of the trap handler, a component of the system

operating at a certain priority could be taking the element from a

given queue, be interrupted by a high priority routine that takes an

element from the same queue. Without a synchronizing method, both

components may well receive the same queue element. The trap

handler routines are:

0 Adding an element to a queue (queue)

* Taking an element from a queue (dequeue)4.

0 Modifying the status field of the user status block

0 Resolving an absolute user status block address

I
2-29

0 Removing the significant event status bits from the fixed

memory location.

2.3 STATISTICS PACKAGE OVERVIEW

In order to measure the use of the Voice Response System, the

software on the PDP-11/34 (amaintains a data base describing each

user's actions. A record is kept of when each user called, what

reports were requested, which location identifiers were requested,

if any special commands were requested, and when the caller hung

up. The data base (VRDATA.DAT) is created by the VRS software each

day and is a chronological file indicating all "significant events"

for each call.

2.3.1 Statistics File Initialization

Each time the PDP-11/34 software is started, the statistics file

(VRDATA.DAT) is initialized. There are three types of

iitialization:

1. Start with no statistics file - under the condition

that the file VRDATA.DAT does not exist, the VRS

software creates a file of 1,000 blocks in length.

The file is zeroed such that all records are made

blank.

2. Start with a complete file - under the condition

that the system was taken down by the operator with

an "EXIT" command, the file is defined to be complete.

On normal EXIT of the system, pointers to the last

data written in the file are written. When the

system is started again, these pointers are used to

define where to write subsequent data.

2-30

3. Start up after a system failure - under the conditions

of a crash of the system, the pointers to the last

data written in the file are not updated. on initial-

ization, the software reads the file to the end and

begins writing data at the end of the previous data.

2.3.2 Statistics File Structure

2.3.2.1 overall File Structure - The statistics file is circular in

nature and is 1,000 blocks long. The first block of the file is

reserved as a pointer block. All other blocks in the file contain

data. The pointer block depicted in Figure 2-8 shows the format of

the pointer records.

* As mentioned above, VRDATA.DAT is a circular file, that is,

after the last physical block of the file is written, the software

will begin writing over the existing oldest data in the file. The

* file has been constructed sufficiently large to accommodate 24

hours' worth of data for twenty users without wrapping. if the file

should wrap, however, the pointers to the file are modified during

initialization to reflect the new start and end of file.

2.3.2.2 Record Structure - The record definition appears in

Figure 2-9. All values appearing in the text are octal. The first

element is the record header containing a value of -16. The field

data generated by each trace element is 16 bytes long. The second

element is the length of the variable data record. It is equal to

the number of bytes stored as data. The third element (rJS.CHN) is

the channel being recorded. The low byte contains the binary

value. The upper byte contains its ASCII equivalent (used in

* communications with the Retrieval Program). The fourth element

(rS.STA) contains the line status and as such defines the reason for

the trace. The low byte of TS.STA can take on the following values:

2-31

Word 0 2 4 6 10

Date Low Time -High Time Block Start Offset Start
12 14 16 20 22

Date Low Time High Time Block End Offset End

DATE 16 BIT INTEGER CONTAINING TODAY'S DATE

(See Section 2.4.10 of RT-11 Advanced Programmer's
Guide).

LOW TIME 16 BIT INTEGER CONTAINING LOW 16-BITS of the number

of seconds since midnight.

HIGH TIME =THE HIGH order number of seconds since midnight.

BLOCK START = STARTING BLOCK of data in the file. (3 until

file wraps).

OFFSET START How far into the block the data begins (usually 0)

BLOCK END Last block of data in the field.

OFFSET END E How far in the block the data are written.

FIGURE 2-8: Record Pointer Block

2-32

-16

LENGTH

CHANNEL

STATUS

KEY

FLAG

PERMANENT

TIME

TIME

DATA

4;.

FIGURE 2-9: Record Definition

2-33

NAME VALUE EXPLANATION

RING 40 Channel is ringing

DTSCON 41 Hang up in progress

STOP 42 Briefing stopped by user 4

GO 43 Briefing restarted by user U

REPEAT 45 Briefing repeated by user

SKIP 46 Report skipped by user

ST.TNV 47 Invalid entry by user

CANCEL 50 Cancel last entry

ST.SND 11 LOC-ID's Transmitted

ST.RNA 13 Receive from Washington

not accounted for

The fifth element is the current value of the protocol, US.

KEY. The high order byte of this record defines what the user is

currently doing. The low order byte contains a value only if a

control keystroke was the last character entered by the user.

The sixth element, US.PLG, contains temporary protocol bits

describing what the user's current status is in the high byte, and a

7ector to the routine last executed at base level in the program in

the low byte. Following is a list of low byte values of US.PLG.

NAME VALUE EXPLANATION

INVALK 0 rser took abnormal (NO)

response

NORMAL 1 User took normal (YES)

response

RECYC 2 User typed "Begin Over"

SKIP 3 riser requested a skip function

INVALK 4 User did not use valid

Touch-Tone® entry

RING 5 Telephone is ringing

ODSCON 6 Telephone has been disconnected

YES 7 rser answered "Yes"

NO 10 User answered "No"

* RETURN 11 Return from high level routine

2-34

BRIEFER 12 Leave briefing mode

REPEAT 13 Repeat question or report

CANCEL 14 Cancel last entry

GO 15 Proceed with briefing

STOP 16 Stop briefing

The high order byte contains the following status infor-

mation:

Position Name On OFF

Bit 8 FL.EWP User may not User may enter

enter data data

Bit 9 FL.NUM User must enter May enter alpha-

numeric numeric
Bit 10 FL. DAP Cyclic call Non-cyclic call

Bit 11 FL.ECH Response to be No echo of res-

echoed ponse
Bit 12 FL.PHE Phonetic echo Non-phonetic echo

Bit 13 FL.DTS User may not User may enter

enter data data

Bit 14 PL.TKD Speech is Speech in pro-

finished gress

Bit 15 FL.ECD Echo is Echo in progress

finished

The seventh element contains more status information
(US.PER), and is depicted below:

Position Name ON OFF

Bit 0 FL.TRA Software maint-

enance

Bit 1 FL.YER Yes response No response
Bit 2 FL.DBL Receive double Receive single

buffered buffered
Bit 3 PL.TRN Hang up in No hang up in

progress progress

2-35

Bit 4 FL.BGN Begin Protocol Continue Protocol
Bit 5 FL.LST Last LOC ID Last LOC ID not

entered entered
Bit 6 Ftj.BRP Briefing Mode Non-Briefing Mode
Bit 7 PL.BRD Briefin4 Briefing in prog-

finished ress
Bit 8 FL.FTR First pass No first pass

thru protocol
Bit 9 FT.TNT Stop speech Continue speaking
Bit 10 PL.SKP Skip ahead in N;ot skipping data

prog.
Bit 11 FL.LOC Entering LOC- Not entering LOC-

ID's ID's
Bit 12 FL.COR Correcting Not correcting LOC-

LOC-ID's ED'S
Bit 13 FL.SPC Special Key- Last character not

stroke entered special
Bit 14 FL.SP Speaking at Not speaking at U

base level base level
Bit 15 FL.RTS Skip or repeat Neither skip or

repeat

The eighth element contains the low order time since mid-
night in seconds. The ninth element contains the high order time
since midnight.

The tenth and final element is the data buffer for the user.
This buffer contains the message to be transmitted to the PDP-11/70®

retrieval program. It is variable in length and its length is
defined as the second element in the record. This element will
contain the location identifiers requested by the user.

2-36

Bit 4 FL. BGN Begin Protocol Continue Protocol

Bit 5 FL.LST Last LOC TD Last LOC ID not

entered entered

Bit 6 FL.BRF Briefing mode Non-Briefing mode

Bit 7 FL.BRD Briefing Briefing in prog-

finished ress

Bit 8 PL.FTR First pass No first pass

thru protocol

Bit 9 FL.TNT Stop speech Continue speaking

Bit 10 PL.SKP Skip ahead in Not skipping data

prog.

Bit 11 FL.LOC Entering LOC- Not entering LOC-

IO's ID'S

Bit 12 FL.COR Correcting Not correcting LOC-

LOC-IO's ID's
Bit 13 FL.SPC Special Key- Last character not

stroke entered special

Bit 14 FL.SPK Speaking at Not speaking at

base level base level

Bit 15 FL.RTS Skip or repeat Neither skip or

repeat

The eighth element contains the low order time since mid-

night in seconds. The ninth element contains the high order time

since midnight.

The tenth and final element is the data buffer for the user.

This buffer contains the message to be transmitted to the PDP-II/70®

retrieval program. It is variable in length and its length is

defined as the second element in the record. This element will

contain the location identifiers requested by the user.

A 2-36

2.4 RESIDENT PDP-11/70Oa SOFTWARE

The function of the resident software on the PDP-11/70 is to

transmit the requested weather data to the VRS computer. The

accomplishment of this process requires two separate and distinct

phases of data handling. The first is the-translation of weather

data into VRS recognizable pointers. The second function is the

selection and transmission of the proper data to the VRS computer.

The translation of the raw weather data into VRS pointers and

the update and maintenance of those files is referred to as the

"message processing" function. The selection of the VRS pointers

and their subsequent transmission to the VRS computer is the

"retrieval" function. The remainder of this chapter is devoted to

description of these two functions.

2.4.1 overview of PDP-11/70 VRS Message Processing

The data base to be accessed by the VRS system consists of data

which have been processed from a raw data file, KCW.DAT. The

processing procedure performs a translation of weather data which

are received via transmission line from the Federal Aviation

Administration's Weather Message Switching Center (WMSC), in Kansas

it City, Missouri. The translation procedure involves the following

steps: acquisition of the proper sub-file to access the reports of

a particular type; identification of the individual reports of that

type and correlation to a location identifier (LOC.ID) or geographic

region; separation (parsing) of the recognized words within the

report, and use of a dictionary look-up technique to translate the

ASCII words to binary representation. The binary information

represents position and length parameters that are correlated to

digitized words and phrases which are stored on the VRS computer

disk files.

2- 37

Figure 2-10 is a block diagram representation of the translation

procedures (message processing).

2.4.2 Data Bases

The VRS 11/70 Software uses three data bases and a global common

area (GCA). The data bases are KCW.DAT, UDF.DAT, and ERR.DAT. The

global common area, called VRSGLB, is a shareable global task area

linked to by the VRS processor tasks. VRSGLB contains input and
output arrays for report processing and a map array for report block

allocation (See Section 2.4.2.2.1). The following sections describe

KCW.DAT, UDF.DAT, and VRSGLB; however, ERR.DAT is 'described later in

Section 2.4.3.5.1.

2.4.2.1 Kansas City Weather Data Base - The weather data which are

to be translated reside in a disk file, KCW.DAT at the PDP-11/70
® -

system. The file consists of an index, followed by thirteen
mutually exclusive ASCII sub-files, each of which is a circular

buffer. The index maintains the current status of each sub-file,

with respect to sub-file boundaries, last disk block written, last

character written, and circular wrap-around indicator. Each

sub-file represents a different weather type, except in the case of
area forecasts and significant meteorological events which reside in

the same sub-file (see Figure 2-11).

Each sub-file consists of headers and reports, stored by weather
type. The headers and reports are stored in the sub-files in ASCII,

exactly as received from the WMSC. The weather reporting formats of
all the weather types are described in the National Weather

Service's Operations Manual.

2
~2-38

ME44

0 11

a Ix

~~IA

0

U -4

E4

E" >

.2-3

SUB-FILE INDEX

SA SUB-FILE 1

FT SUB-FILE 2

CARP SUB-FILE=13

FIGURE 2-11: RaW Data Base File CDT

2-40

2.4.2.2 Universal Data File - The general aviation weather from the
WmSC line is translated and placed in one file on the 11/70 disk.

This Universal Data File (TJDP) contains all the elements required to

perform the processing (translation) of the- raw weather data into
retrievable VRS *message-ufljts.' The UDF occupies an area of 10,240
blocks of disk space and is comprised of five primary components
(see Figure 2-12) .

F 2.4.2.2.1 Map Array A map array of 5120 words is used to depict
the allocation status of all the disk blocks in the file. Each

block of the disk is represented by a byte in the map array and its
value indicates the current status of its corresponding data block.
There are four general conditions represented by each byte in the
map array. They are: block allocated and contains a valid report;
block in use; block not in use, and available for a new report. The
map is used by both the processing and the retrieval functions of
the system. The map is read-into the Global Common Area (GCA) at
svstem initialization time. it will be replaced at system shut down
or oowerfail time (see Figure 2-13) . In its initial design, the
first twenty blocks of the rJDF were occupied by the map array. Now,
since the mao is only in the GCA, these twenty blocks are free for
system expansion.

2.4.2.2.2 Regional Report Table - The twenty-first block of the
Universal Data File is the Regional Report Table (RRT). This area
(256 words) will contain the identifiers for all regions of the U.S.
and the virtual block number where that report resides. The
dimen~sion of the array will be the number of regional areas by the
number of regional report types. When a regional report is being
reported, the retrieval software will first determine the region for
the requested location identifier, then get the report from the
block number indicated by the address in the RRT.

2-41

UNUSED - 20 blocks

REGIONAL - 1 block

REPORT TABLE

LOCATOR INDEX -233 blocks

TABLE

Up to four message units

(MU Is) per block; One

PROCSSEDreport per block; Blocks

PRE SEDAT chained for reports

IN. larger than four MU's
MESSAGE UNIT

FORMAT

8,246 blocks

1,740 blocks

Not in MUJ format.

WINDS ALOFT The first 1,271 blocks
DATA

unused. One block used

for Winds Aloft data

status.

468 data blocks.

FIGURE 2-12: VRS Universal Data File

2-42

Byte 1 2 3 4

I 1. 1 1)

254
11 -1 0 -1 2 1 0 -1

8,501
2 1 Byte

10,240

Each Byte represents the status of the corresponding
Block in the UDF. The first 254 and the last 1,740
Indicator Bytes will always be set = 1 to indicate
the presence of permanently allocated blocks.

Key: Byte -

-1 - block available for use

0 - block to be de-allocated; report
no longer valid

>0 - block contains valid report

FIGURE 2-13: VRSGLB Map Array

:2 -

2-43

2.4.2.2.3 Location.Index Table -The next area contains the matrix

of location identifiers by report type. It is an area of

approximately 60 thousand words and is used to determine the

location of a particular report wi-thin the -tDF. The value found at

the juncture of the report type requested, for a given location

identifier, represents the block number in the UDF where that report

has been placed by the message processor. The LIT is contiguous in

the file and does not contain any header or trailer information. A

stand-alone program (UDFPRG) creates the LIT array and the program

is also used to effect any updates to the index table. (See Figure

* 2-14.)

* 2.4.2.2.4 Message Unit Data - The remainder of the EJDF is comprised

4of the processed weather data. These data (with the exception of

the Winds Aloft data) reside in the file in message unit format.

* That is, the data have been processed and the reports have been
translated into message units ready to be retrieved and sent to the

* 11/34. All retrieval is accomplished by using block I/0. Each

block (512 bytes) contains up to four message units. Each message

unit is prepended by eight words of header information in integer

form. Also, each block contains an eight-word header. This leaves

room for four 54.word message units (27 spoken items) per block. No

block ever contains message units from more than one report. If a

report requires more than four message units, several blocks may be

chained together to link the message units together for the

retrieval function. These linked blocks need not be contiguous to

carry out this procedure. The link indicator in the header contains

the block number of the lined block for access purposes. The

internal format of the message units consists of paired voice

pointers. Each recognized word of the original report is converted

to a location pointer and corresponding length code via a dictionary

look-up task. The pointers and lengths are then put in the message

-unit and stored in tJDF. (See Figure 2-15.)

2-44

0'0 4

mO 0

0) U C
e..41

0 '

0

r-4 J

IZ 0
0 $4 04
--I00

4

• -r

4J () > $4

. o

d 0

c r-4 0 4

-4 u . ,j .0 c 0a) , 0,

4- 4

* 0X '0c
05

0_0_0_0__ 0,.J0 0

0. =0

-2-41

00 C 0

o4 -e

fa r. QN f-4

(L) 00
0 4-4 *.-4

q. 01 I*-41i.41

0 . .4 4 -4 1-10 0)~ -4 I J

C I 0 -4 u.IcJc
-4 17 0 0 a

(D 0 0 0 -4 .

r_'.. 08
0 41 (

0 0 0 0 40

2-4

wd. 1 2 3 4 5 6 7 8

CHAIN #M.U. DAT TM I M Block Header

9 #DTR TIM .Message Unit
17 Header

25
33 Message Unit-i

54 words41

49

57
65 Message Unit-2
73 Header

81

89
97 Message Unit-2

54 words
105

113

121
129 I #PTR Message Unit
137 - - - Header

145 i

153 1
161 1 Messaqe Unit-3

54 words
169
177

185

193 PTR Messaqe Unit201 1 Header

209 I

2.17: 217 Message Unit-4
225 54 words
233 I
241

249

FIGURE 2-15: Message Unit Format for a 256-Word Block in UDF

2-46

2.4.2.2.5 Winds Aloft Data -The last 1740 blocks of the rUop

vs contain the processed Grid winds Aloft data. The Winds Aloft data

are not stored in the message unit format as is the rest of the

processed data, but rather contain numerical values of temperature,

X and Y wind vector coordinates for various altitude levels at
specific geographical points. The further processing of the data

into message unit format is a function of the winds retrieval

software (PDRTRV). This is due to the nature of the winds data. To

H report the wind speed, direction and air temperature, a specific

location is required (latitude and longitude of a location

identifier) and an altitude. The desired values are then obtained

by interpolation of data for specific grid points. This process can>11 only be done at retrieval time. The winds data also carry a header

I indicating effective time and date of the forecast.

2.4.2.3 initialization of Data Base rDF.DAT - At system start-up a

stand-alone program is run, VRINIT, to initialize the TIDE data

base. First the map array is initialized by setting the weather

data blocks free, with all others, such as LIT and i'ind Data Block,

set for "in use." The LIT is then scanned for report blocks in

use. If an error has occurred and one block is in use for two

locations or reports, those reports are zeroed. After initializing

the map array, the KCW file pointers for the VRS are reset to the

last major weather transmission for each report type.

2.4.3 Raw Data Processing

The various types of weather data have significantly different

characteristics. This creates the need for multiple processors,

each tailored to the individual requirements of the data. Each

sub-file of raw data is accessed by its own processor routine. The

routines are in the form of overlaid modules to be used, in

conjunction with the executive routine (Figure 2-10), to accomplish

the raw data processing.

2-47

Each processor routine will be constructed to account for the
differences in structure and content of the various report types.

The general functions of recognizing individual-words, inserting

header of "blocking" words and per-forming maintenance procedures on

F the raw data file will be common to all processing routines.

2.4.3.1 Processor's Executive - An executive structure, called VRS

on the PDP-ll/709 maintains control of the execution of the

individual processor routines. The routines are brought in and used

as an overlay structure. The executive continuously monitors the

sub-file activity and brings in each processor to translate the data

in the raw KCW file. If there has been no activity (no new data

have been received), the executive continues to scan through the

sub-file indices. If there has been activity in the sub-files, the

appropriate processor is invoked. if there has been no activity,

the executive prints the processor statistics and then puts itself

in a wait state for two minuites. After this time, the executive

again begins polling the status of the raw data file.

2.4.3.2 Message Processing Routines -'Each type of weather data is
translated by a separate processor routine. Each routine is
tailored to suit the raw data configuration of a particular report
type. These routines are in the form of an overlay structure so

that only one processor is in execution at any time. An overlay

consists of the main processor and several supporting subroutines.

Under the RSX-11D system, this procedure is carried out similar to
regular Fortran subroutine calls after the overlay threading has

been accomplished during the task-build phase.

Each processor executes the translation procedure on a full

report basis. A complete report is translated and all recognized

words, plus any "blocking" words required, are placed in a single

array. This array of words is returned for dictionary translation.

When the entire report has been processed, the processor returns
program control to the executive.

2-48

The current weather processors available are for surface

observations (SA) and surface observation remarks, terminal

forecasts, and winds aloft. Following is a brief description of the

processor design as it interacts w-ith the VRS Executive. For a more

detailed description of weather data and content checks for each

processor, see Reference 7, "The Ten Channel VRS Processor Design

Report."

2.4.3.2.1 Surface Observation (SA) Processor - The SA processor is

an overlay module invoked by the VRS processor executive. The

function of this module is to unpack, decode, and translate surface

observation reports into ASCII text. The text is then translated

into voice pointers and stored in a data base. The procedure used

in decoding the SA data is of a scan and extract type. Initially,

the report is scanned to determine the presence of four critical

fields. These are the SA location identifier, the sky cover, the

visibility, and the wind field. During this process pointers are

set delimiting the fields present. After this is done, the

individual components of the report are extracted, decoded, and

placed in the output list. During this extraction process, limit

and quality checks are applied to the data.

The SA Processor consists of a main routine (VRSSA) and four

extraction subroutines (SUBFLD, VISWX, SKY, EXT!IED). The VRSSA main

routine begins the process by calling each of the extraction

routines. The routines return translated pieces of the SA report.

Then, VRSSA puts the pieces together in the proper order. If any of

the routines has discovered a serious error (one that leaves some

doubt regarding the validity of the translation), or if any of the

key fields is missing, VRSSA will flag the report as erroneous and

notify the executive that the report should not be placed in the

processed weather data base.

2-49

2.4.3.2.2 Surface Observation Remarks Processor - After the SA

Processor has decoded the report, the SA Remarks Processor Overlay

is called to decode the remaining remarks of the report. Then the

dictionary look-up task is called to translate the entire report.

The SA Remarks processor uses a "key-word" approach to translating

the data. The main routine (VRRMK) extracts one word at a time,

using a blank character as a delimiter. The process begins at the

start of the remarks field specified to VRRMK through a call

argument received from SA subroutine SUBPLD.

The remarks processor is a separate overlay within the VRS

program. It resides at the same level as the other processor

modules.

The processor always begins scanning the data from the left and

proceeds to the end of the remarks field. The beginning is usually

one character past the end of the altimeter field. If the altimeter

is missing, the beginning is assumed to be one character past the 4

end of the wind field. The main processor routine (VRRMK) extracts

a "word" from the raw data. A "word" in this context is any string

of characters preceded by and followed by a blank. The word may be

all numeric, all alpha, alpha-numeric, or alpha-numeric with special

characters. When alpha or alpha-numeric data are found in the word,

the program then attempts to identify a "key" within the word. If a

key is found, then VRRMK invokes the proper subroutine. each

subroutine orocesses a particular type of remark. The subroutine

receives the array and the pointer to where its key is found. The

subroutine knows if preceding or following information is required

and can step along the raw data to extract all the information

oertinent to that particular type of remark. When the remark has

been translated, the subroutine moves the pointer to where it ended

and returns to VRRMK.

At this point, the process is begun again. This process

continues until all remarks have been processed or until an

unrecoqnized or all-numeric field signals the end of remarks and

2-50

beginning of additive data. each remark field is handled separately

with no restrictions to sequence or amount of field type.

If a word containing alpha characters is extracted and no key is

found in that word, it is assumed to be free text and is entered

into the output array as such.

rsing this approach, highly coded remarks or free text in any

4 sequence or mix can be translated. Whenever a free-text entry is

made, the processor notes its position in the raw remark. These

pointers are saved and used by the on-line editor. It can be

assumed that if an error occurs during the dictionary look-up task,

it would be caused by a free-text entry and not by coded processing.

2.4.3.2.3 Terminal Forecast (FT) Processor - The principal

objective of the raw weather data processor array is to insure

* reliability of the processed weather report. The Terminal Forecast

* (FT) Processor must be able to discern the properties of each raw

weather data field to be processed such that the probability of

misrecognition is reduced to zero.

Tt is better for the processor to flag a weather field as a

non-recognition error than to process it incorrectly. The

Processor, however, must be sophisticated enough to reduce the

amount of non-recognition errors being sent to the editor.

In order to achieve this goal of zero misrecognition errors and

a low amount of non-recognized fields, the FT processor is designed

not only to determine what a field is, but more importantly, what a

field is not.

The Terminal Forecast (FT) Processor must process the eight

fields contained in an FT report. The FT fields are:

2-51

-- - -- -- --

1) Station Designator
2) Bulletin Notice

3) Date-Time Group

4) Sky/Ce-iling Cover

5) visibility/Precipitation

6) Winds

7) Remarks

8) Time.

An FT report always contains a heading of station designator, a

possible bulletin notice, and a date-time group. The body of the

report, however, contains multiple time groups in which the

remaining fields may or may not occur. Also, the field may be

embedded within a remarks field. in order to handle these

discrepancies efficiently, the processor routine calls a recognition

routine for each field as the characters are read in from the

array. Each recognition routine scans the "character" group and

reports one of three conditions: (1) it is definitely the

recognizer's field; (2) it is probably the recognizer's field; or

(3) the field is not recognized at all. The character group is then
processed by the appropriate field processor according to the

following protocol.

A single, definite recognition of a field is flagged as the

correct field, even though other routines may have reported probable

recognition. if there has been no definite recognition, then a

single, probable recognition is flagged as the correct field. All

other conditions cause the editor to be flagged. Thus, the

processor is able to make a finer distinction between fields whose

forms sometime seem identical and to recognize fields whose forms

frequently change even within a single time frame.

2-52

2.4.3.2.4 Wi in: Aluf I I'i)ee::;,)r - The Winds Aloft Processor (VRSFD)

accepts the winds aloft data in the order that they are transmitted

and decodes them into temperature, X and Y coordinates of the wind

vector, and additionally for Level 2 data, tropopause height. These

data are written to the Universal Data File along with header

information containing amendment designation, forecast day and time,

transmission day and time, blockette header time code, and a file

wrap index. The record location of the data within the UDF is

determined by the blockette number, altitude level, and forecast

time code.

The file structure for the Winds Aloft is organized so that data

for six forecast time periods starting from a time zero reference

point are available for retrieval. This is done by having a file

structure which wraps around continuously, with each new forecast

period data overlapping the previous forecast period data in the UDF

where the data are for the same forecast time period measured from

the zero reference point.

This file structure also allows accommodation of transmissions

with missing or erroneous data. One block in the UDF is set aside

for storing file record pointers, special information flags, and

time data for both the Winds Aloft processing program and retrieval

program. The information contained in this "master" block allows

the Winds Aloft programs to function correctly after periods of

computer down time and allows correct storage and retrieval of

processed data at all times.

2.4.3.3 DICT - The dictionary task translates ASCII text to a group

of speech file pointers. The task is installed and can be used by

any caller. The data is entered in VRSGLB array PDICIN if called by

the VRS processor and the speech file pointers are returned in the

array PDICO. When called by FDRTRV for winds retrieval, the VRSGLS

array is ATADII and output appears in ATADIO. DICT uses a binary

search algorithm to find the data. It returns the speech file

2-53

pointers and a word containing the length in bytes of the translated

pairs. On the event of a failure of translation, the routine

returns pointers to where the text was in the original string which

could not be translated.

2.4.3.3.1 Dictionary Structure - The raw data in ASCII format must

be put in a form recognizable by the VRS system before it can be

spoken. This is accomplished by using a core resident dictionary

and corresponding look-up procedure.

The dictionary contains the VRS spoken word index number and a

length code for each word or phrase that can be spoken by the VRS

unit. The dictionary program uses a binary search to locate the

proper index and length code for each recognized ASCII word it

receives.

The look-up procedure is carried out as an installed task. The

task is invoked by the processor executive as stand-alone and is not

re-entrant. The dictionary task, when activated, is presented with -

the array of recognized words prepared by the individual processor

routine. The dictionary task proceeds to create a list of length

codes and pointers on a one-for-one basis and returns this list to

the executive by placing it in the GCA array. Also, an error flag

is set to indicate if the report contained any words that could not

be found in the VRS dictionary file. Control is then returned to

the executive.

2.4.3.4 VRSOUT - A separate installed task VRSOUT is called by the

VRS executive to write the array of dictionary pointers into the

UDr. The array is stored in the VRS global common area by the

dictionary. Upon being called by VRS (11/70) to output a report,

first, VRSOtJT checks for a Surface Observation (SA) special report.

If the report is special, it is appended to the current SA report by

the subroutine SASPEC.

2-54

The basic component of speech in the system is the message

unit. Each message unit can contain up to 27 pairs of VRS pointers

. (i.e., 27 spoken words or phrases). During the retrieval process,

the messages units are taken from the data file (JDF) and

transmitted to the VRS computer. The format of a transmitted

message unit is shown in Figure 2-16.

After a report has been translated by the processor, the array

of VRS pointers is taken by the block formatting routine (BLCR8).

This subroutine places the paired VRS pointers in the message unit

format and creates an output block. Each message unit is prepended

with appropriate header information for its report type. The format

of a message unit within the ODF is shown in Figure 2-16.

The map array is scanned for free UDF blocks and their

correspondinq map bytes are set. The subroutine IOBLCK is called to

output the block to the UDF. This procedure is repeated until the

entire array is output. A chain word is used to indicate the next

block of the sequence of blocks with zero indicating the last

block. The new report block then replaces the old report in the

LIT. -The old block number and its chained block map values are

decremented to free the unused blocks.

Before the VRS executive starts its wait cycle, it calls VRSOUT

to exit. When VRSOUT receives an exit command, it first scans the

map array for unused blocks (bytes equal to 0, see Figure 2-13). The

free indicator (bytes equal to -1) is set for each unused block.

VRSOUT then exits from memory.

VRSPURG - The function of the subroutine VRSPURG is to purge Hourly

Surface Observation (SA's) and Terminal Forecast (FT's) reports from

the data base when they are considered to be too old and no longer

valid. The routine is called by VRSOUT once each hour during the

time period of 15 minutes past the hour to 45 minutes past the

hour. As most of the SA and FT reports come in between on-the-hour

2-55

BLOCK HEADER

wd. 1 2 3 4 5 6 7 8

RAD-50O4
L LOC. ID

Append Special

Block Number

-Report Time
----Report Date

Number of Message Units in Block
Chain Indicator: 0 = no chain

> 0 - location of next block in chain

MESSAGE UNIT HEADER

wd. 1 2 3 4 5 6 7 8

SP ARE 6

-Time 1 - SA
-SA - Special Appended Message Unit Offset

-Report Time

"---Number of VRS INDEX/LENGTH pairs in Message Unit

MESSAGE UNIT STRUCTURE

wd. 1 2 3 4 5 6 7 8

91 INDEX LENGTH IINDEX L .GTH

INDEX LENGTH 0 o 0 o 0 o

47 48 49 50 51 52 53 54

If fewer than 27 spoken words, MU
will be padded with zero words.

FIGURE 2-16: Transmitted Message Units

2-56

and 15 minutes past the hour, calling VRSPURG in the time frame

given previously allows for new data to replace old data in a normal

* fashion and reduces the workload of VRSPURG by eliminating

unnecessary purging. Hourly Surface Observations are purged when

they have become more than 2 hours old. Terminal Forecasts are

purged when they have become more than 8 hours old.

Each time VRSPURG is called, it scans every SA and FT report in

each page of the locator index table (LIT). When a report is found

to require purging, VRSPURG calls the subroutine NOTAVB. The sole

purpose of MOTAVB is to create a standard message of "current report

not available" to replace the report to be purged. It does this,

returning the UD? block number of the canned message to VRSPURG..

VRSPUJRG then replaces the old SA/FT repoet block number in the LIT

with the canned message block number. When every LIT page has been

scanned, VRSPrJRG returns to VRSOUT.

2.4.3.5 Data Edit Position - When a report is determined

untranslatable by a weather processor, the report is written to an

error file. The Data Edit Position (DEP) software reads the report,

displays it on a screen, and allows a DEP opetator to correct it.

After an operator has made all the corrections to the report, it

is written into another area in the file for later translation by

the VRS weather processor. The data edit position software is

composed of three major components; terminal tasks, (DEPTT), a

service task, (DEPST), and a data base, (ERR.DAT). The following

sections describe the functional description of thd Data Edit

Position. For a complete description of the Data Edit Position,

including the Data Edit commands, see Reference 8.

2

2-57

2.4.3.5.1 Error File, ERR.DAT - The erroneous and corrected reports

are kept in the error file, ERR.DAT. The file is structured into

three parts: the pointer blocks, the error subfiles, and the

corrected subfiles. This file is created by the stand-alone program

ERRCRT.

The first section is contained in the first two blocks of the

file. The first block contains the VRS executive read and write

pointers to each subfile. The second block contains the DEP Service

Task read and write pointers for the subfiles. Each subfile has a

five parameter pointer set. These are the subfile start and end

block, the next report block and integer offset, and the report

sequence number. The only exception to this is that the VRS read

pointers contain the next report block and byte offset to correspond

to its GETRPT software. The next section of the file is the

circular subfiles containing the error reports received from the VRS

weather processors. Each subfile contains a report type.

The third section of the file is identical to the error file

except that this section contains the corrected reports received

from the Data Edit Position.

2.4.3.5.2 Data Edit Position Service Task - The DEP Service Task

(DEPST) is a communications driven service module which provides

information for the VRS and interfaces between the error file and

the DEP terminal tasks. All requests for service are queued by the

RSX-11D operation system and are handled in the order in which they

occur. Hence, the DEPST is dedicated to a specific task which is

making a request until the request is honored. After performing the

indicated service, DEPST suspends itself until more requests are

generated.

There are five types of requests sent to DEPST, one by the VRS

(11/70) and four from DEPTT. The VRS executive only requests the

service task to update its pointers to the corrected report subfiles.

2-58

when a terminal task enters memory, it requests the Service Task

to assign it buffer space in the Global Common Area. The Service

Task keeps track of which terminal has been assigned to each buffer

* space of 256 words. Upon request, the Service Task places the next

error report into this common area for the Terminal Task. The

Service Task obtains the error report from the proper error

subfile. It checks the date and time of the error report and the

current report in the rjop for the corresponding location. The error

report is dropped if it is not the most recent report in either

file. This insures that the operator would not have to correct an

already expired report. When a report has been corrected, the

Terminal Task requests it to be filed. The Service Task files the

report in the error file and updates the pointers. A DEPTT requests

exit permission when a DEP operator types the "EXIT" command.

Upon receiving the exit request, the DEPST frees the assigned

buffer space. If there are no other terminal tasks being serviced,

DEPST also exits memory.

2.4.3.5.3 Data Edit Position Terminal Tasks - The DEPTT's are

dedicated tasks which, when run, communicate with the DEP operators

by way of CRT displays. The tasks only interface with the rest of

the DEP system through data stored in the Global Common area and the

RSX-llD Send and Receive commands, which the Terminal Tasks use to

request operations from the Service Task. After initialization, a

Terminal Task first requests to be assi.gned buffer space by the

DEPST. when this has been completed, the Terminal Task then awaits

input from the operator requesting a report to edit. With this

information, the Terminal Task requests the report from the Service

Task. The report is placed into the Global Common Area assigned

buffer (see Figure 2-17). The operator's edit commands are then

performed on the report until a file or drop report is received. if

another report is requested, this process is continued. when all

error reports have been corrected, or when the operator types the

exit command, the Terminal Task notifies the Service Task, and then

exits memory.

2-59

czJ

1-1

-LJ

U9 0

r4

CCor

I-j

U-U

LU LU

CDo

U(U

0-6

2.4.4 PDP-11/708 Retrieval Task

The twenty-channel resident PDP-11/70 retrieval software is a

multi-channel program responsible for receiving and interpreting
results from the VRS computer and'honoring 'those requests by

supplying weather information from the weather data base. The
inputs from the VRS computer take the form of specific requests for

message unit elements of the weather data base (demand response), or
of supplying the parametric information defining the briefing

requested by the user (briefing request message Section 2.1.2.1).

It is the responsibility of the retrieval task to access the
weather data base independently, building briefing tables for

asynchronous access for the VRS computer. The process of

constructing briefing tables may occur several times during each

user session (briefing) in order to progress through briefing
* phases. Each briefing phase (sub-briefing) is delineated by a

briefing request message #2 (Section 2.1.2.1). The VRS computer

employs the briefing request- message #2 to cause the retrieval to
* build a sub-briefing. When the VRS computer has requested all of

the message units it requires (dependent upon user Touch-Tones

interactions) as a result of briefing request message #2, it may
issue a subsequent briefing message #2, to cause the retrieval
program to build another briefing table. During a channel briefing,

.4 there is only one briefing table, the progressions from sub-briefing

to sub-briefing are conducted only in a forward-going manner. That
is, the VRS computer may not request message units from the briefing
table for any briefing request message #2 prior to the briefing
request message #2 currently being processed. Figure 2-18 shows a

baseline structure for the PDP-11/70 retrieval task.

2.4.4.1 Retrieval Task Organization - In order to take advantage of
the RSXllD/V6B, event-driver, multi-programming system, the
PDP-11/70 retrieval task is comprised of three basic components: an
executive level; an interrupt level; and an internal data base used

2-61

0 8 AA

0

'-41

02 E4

W 0E4

(a 00

P4.
1 41 0 E-

(a La~I1L -,

L4J

94

4JJ

0 2 0 00
C~r-4

Ea 0 .

-4c

* 00

02 P- 01
r-4 z4 AC .u40

Z9 -.4 0Q4'
04c i I'm 0 m

0o

2-62

for communication between the executive and interrupt levels, and

also used for inter-computer communication, disk transfers, tables,

flags, and variables of processing. The interrupt level will be

defined as asynchronous trap (AST) processing. With reference to

Section 2.2, the executive level may be -onsidered as analogous to

the VRS computer background processing arnd the AST level may be

considered as analogous to the VRS computer completion routine

Processing.

2.4.4.1.1 Retrieval Task Data Base - To maintain channel

independence and integrity, a data base consisting of eight hundred

words per channel is used for all channel dependent variables,

flags, I/O areas, tables, etc. In addition, another area consisting

of twenty buffers of sixty-four bytes is maintained as a queued

input buffer, for receiving VRS computer commands.

2.4.4.1.1.1 Input Buffer Queue - The input buffer, labeled BUFFER,

consists of forty elements. Each element contains sixty-four

characters, where the first two bytes are used as a linkage thread,

and the last sixty-two are used for storing the commands received

from the VRS computer.

The threads are used to maintain information as to the logical

assignment of the elements. Two list headers (queues) are

maintained. Each list header contains two words, where the first

word is used to point to the top of the list, and the second word is

used to point to the tail (end) of the list. The two list headers

are used for maintaining a queue of "in use" elements, and for

maintaining a queue of "available" elements.

By the process of maintaining the elements' threads, buffer

elements may be accessed in the order in which the VRS computer

* transmits commands, thereby ensuring that the PDP-11/700 retrieval

Program services the VRS computer requests in the order presented.

2-63

This does not assure responses to the VRS computer will be in the

order of received requests. Because of the length of time of

command, services will not, in general, be uniform.

Figure 2-19 is a representation of the input buffer, and the two

list headers. The figure assumes that the queue for "in-use"

elements is labeled RETOTIE and the queue for "available" elements is

labeled FREEPL. The linkage threads are the element identifiers,

and the thread ends with the element whose linkage is zero. The

figure shows that elements 2, 3, and 4 are "in-use", element 5 is

currently assigned as the input area for the current outstanding

read function, and the remaining elements are "available." They will

be assigned in the order: element 6 through element 20 in order,

then element 1. If any "in-use" element were to be released, it

4 would be placed at the tail of the rRSEPL queue and element l's

linkage thread would be replaced with the freed element's

identifier, whose linkage thread would be zero.

2.4.4.1.1.2 Channel Status Block - In order to maintain complete

channel independence, and to maintain briefing state information for

each channel, a sixteen thousand word block of memory is allocated,

eight hundred words per channel. The channel status block (CSS) is

used for maintaining all the information relative to the operation

of the channel.

411 flags, status indicators, disk transfer buffers, VRS output

buffers, etc., are contained in this area. In addition, all driver

tables and parametric information required for constructing the

desired briefing are in this area.

The retrieval program constructs the briefing directly onto the

CSB. It consists of a list of virtual disk blocks of the weather

data base. The following items are entries in the CSI3.

2-64

Linkage
6 Thread Received Characters ElementcI c n-• 0 , C , • • • C .

0 1 2 n- I

3 2

4 3

0 4

0 5

7 6

8 7

9 8

10 9

11 10

12 11

13 12

14 13

15 14

16 15

17 i 16

18 17

19 18

20 _19

1 1 20

RETQUE: 2 (head) FREEPL: 6 (head)

4 (tail) 1 (tail)

FIGURE 2-19: BUFFER, RETQUE, FREEPL

2-65

* DTOA Disk 1/0 Area
This area occupies 256 words and is used as the block

transfer area from disk into memory.

0 QB This word contains the number of the BUJFFER element

currently in use for the channel. It is saved for the
requirement that element numbers must be retrievable

so that they can be used in the buffer release call.

* MODE This word is used to save the mode under which the

current briefing is operating.

* DIAGP This word is used to maintain the next available byte

position in the diagnostic buffer for the channel.

* CRBT Channel Response Block Table (Briefing Table). This

is a table which contains the r;F virtual block number
of each block required for the briefing currently in

progress. Every block is entered regardless of

whether it is the start of a linked-block indicating

report continuation. The table is constructed in a

top-down manner in which each succeeding entry

logically follows its predecessor for purposes of the

briefing presentation. There is no relationship of

the virtual block numbers to other virtual block

numbers, other than briefing order. (Size 300 words.)

e CRMUT Channel Response Message Ujnit Table. Because of the

requirement to deliver message units by number and

because of the construction of the data base in which

each block may contain either one, two, three or four

message units, a table of cumulative count of message
units must be maintained. The CRMUIT contains the

least message unit (LM) number and the greatest

message unit (GMtJ) number in the briefing message unit

2-66

sequence for the current block. A demand message

unit, not within the range of the CRMUT, will cause

4 the appropriate block to be read.

" DIAGS This is a sixty-four word area into which diagnostic

messages are constructed. These are the messages

which are transmitted to the VRS computer for the

purpose of either indicating command compliance or for

indicating why compliance is not possible

(Section 2.1.3).

" ALT This word contains the requested altitude for

processing Winds Aloft Data and for determining the

filtering of reporting points along a flight path.

" HOURS This word contains the "forecast-ahead" time for which

Winds Aloft Data are required.

" LMUS This word contains the number of the last message unit

sent.

" RPMSK This is a table of requested report types and is

constructed from the information received in a RM42

transmission.

" RLOCS This is a table of sixteen-word entries which are the

locator index table (LIT) entries corresponding to the
requested location identifiers. The entries are

extracted from the locator table index at the time of
location identifier confirmation. They are held in

the channel's status block area in order to obviate

the necessity for reading the disk each time a report

isolation is required. That is, the function of

* reading a report requires only reading the report and

not reading the locator index table again.

2-67

* tOCPTR This is a position indicator for accessing the RLOCS

tables.

* BRMIE Error indicator for briefing request message 1. The

indicator may be set for a variety of reasons:

request out of format; improper mode; illegal location
identifier(s); improper channel, etc. The indicator

is used as a switch at the end of decoding, as to

whether a confirmation message is required or a

diaanostic message.

LS-T.OC .,d.x to thie ni'ber of location identifiers residinc

* S1AGE The briefing stace currently attained. 3ecause the

-qtiv3; -rocran ooerates mainly as a ser;es of AST

c...... .'dica.toc is used as t

.e .ext function to be oerformed.

2.4. ...2 cornr2 De COvDEC) - T'e executive !eve of the

- -z~' i - (7v-.- .C .= m nc received from t' .e V.S

c': t, -cc? :a'-- ... t.. actio n which wf -- cause the
com.nc? to b- . .m.

.n c-;h t. ' m "i-h " .unction, COMDqC is recuired to parse

t.e ..o.,t corm nds 'Sectio- 2.1.2.2 , checking for both form and
content. Y,, ioc.-ss of scanninc the inout command, the

t~bes, fao?, ' .d -Kcn's of. the channel status block (previous

S .n nstructed in conformance with the

s cT .c co--anf. A'so, tine diagnostic area is initialized and its
co-t.-ctl- started.

2-68

The command decoder remains in a suspended state until resumed

by the asynchronous trap handler which receives the communications

line inputs. The input is dequeued from the input buffer area,

BUFFER (Section 2.4.4.1.1.1), and the channel status block, CSB

(Section 2.4.4.1.1.2), is constructed. The system is designed such

that each input request causes a series of disk accesses which are

processed on the AST level (Section 2.4.4.1.3). The command decoder

is not required to take any further action upon an input request

beyond causing the initial disk access. The disk access will in

turn cause further disk accesses for the purpose of either accessing

the locator index table (for location identifier verification),. or

accessing a block of data representing processed weather data (for

demand response delivery).

After the disk access is initiated, the command decoder dequeues

the next input command. If no input command has been received, the

command decoder suspends itself (to be resumed by the communications

line AST handler).

* 2.4.4.1.3 AST Processing - This level of processing may be

considered as analogous to the RT-11 completion routines described

in Section 2.2.4.

There are two asynchronous traps (AST) which the retrieval task

is required to implement- -one to handle input requests from the VRS

computer via the communications line, and one to handle disk read

completions.

The AST logic required for handling the communications line

consists of linking the current input buffer element to the "in-use"

list header (Section 2.4.4.1.1.1), acquiring the next available

input buffer element from the 'available" list header, resuming the

command decoder, and issuing a communications line read request. in

this manner, there is always an outstanding read request, which

ensures that no requests issued by the VRS computer will be missed.

2-69

The function of resuming the command decoder is an RSX-11D operating

system directive which will cause the command decoder to re-start if
it is suspended when the directive is issued, or will not cause any

action if the command decoder is n-ot suspended when the directfve is
issued.

The AST logic required for handling disk read completions is

dependent upon the original reason for generating the read. The
final function of the disk read AST logic may be to issue another

* I/O request, either another disk read (which will cause another AST)
or a communications line response to the VRS computer, or simply to

exit, without initiating further I/O action.

There are essentially three distinct stages during a briefing
session which require disk access. When the briefing request
message #1 is received, it is necessary to verify that all locations
requested exist in the weather data base. Each identifier
verification read completion-AST will start the read for the next

identifier, until the final identifier is verified. The final AST
will cause the AST logic to issue a message to the VRS computer.

During message unit delivery in response to VRS computer
* demands, the disk block containing the message unit is read. w~hen

the AST occurs, the proper message unit within the disk block must
be extracted and the AST logic terminates by issuing the message
unit to the VRS computer via the communications line.

2.4.4.1.4 PDP-11/700 Retrieval Task Inputs - The inputs required

for the retrieval task are the VRS computer command messages and the
processed weather data base.

The briefing request messages are used to construct channel
dependent directive tables and parameters which become secondary
inputs for locating the required weather data. The tables and
parameters are discussed in Section 2.4.4.1.1.2.

2-70

The demand response messages are used to retrieve specific

message units from the weather data base and send the message units

to the VRS computer. The message units may be recovered and

delivered to the VRS computer either in sequence (that is, in the

order requested) or out of sequence in the case of repeat and skip

functions. The VRS computer controls the briefing presentation

order by demanding which message unit to skip ahead from. In

addition, demand response messages are used to indicate channel

activity, such as end-briefing, hang-up, etc.

2.4.4.1.5 PDP-11/700 Retrieval Task Outouts - The primary output of

the retrieval tasK is message units of processed weather. The

message unit information is transmitted to 11/34 VRS in response to

the 11/34 demands.

In addition to the primary output there are required a series of

secondary outputs which are constructed as a function of compiling

the specific briefing requested.

The secondary outputs are two tables which are channel dependent

and reside in the CSB. They are the channel response briefing table

(CRdT) and the channel response message unit table (CRPMUT).

The CRBT is an ordered list of weather data base virtual block

numbers. The order is determined by compiling the list in the same

order as requested by the VRS computer. That is, for each weather

report type requested, the block numbers containing the weather data

are written to the table in location identifier order. For example,

if Hourly Surface Observations (SA) and Terminal Forecasts (FT) were

to be requested for Boston (SOS), Albany (ALS) and Washingtcn

National (DCA), the CRBT would consist of the virtual block numbers

of the weather data base, containing, in order, the BOS SA, the ALS

SA, the DCA SA, the BOS FT, the ALB FT, and the DCA FT.

2-71

Corresponding to each block number is a "flag" word containing

flag bits for new report type, skip type, and report location in the

Location index Table. As the briefing message units are demanded by

the VRS computer, the block message units are sequenced. The

sequence number of the first message unit of each block is entered

into the corresponding message unit number (MU#) of the CRBT as the

block is read. This number is also entered into the CRMUT as the

least message unit (LMr). The sum of this number and the number of

message units contained in the block is the greatest message unit

(GMU). When a message unit is demanded that is greater than the

current GMU, the next block of the briefing is read. If a message

unit is demanded that is less than the LMU, the appropriate block is

found by the previous MU#.

Figure 2-20 shows the construction process for the CRST and

CRMUT. The blocks are listed in briefing order with their

appropriate "flag" values. For example, block 256 contains the BOS

SA weather data. The flag values are:

Bit 1 - 1 SOS is the first SA report

Bit 2 - 1 SA skip protocol - skip to next report type

Last 4 bits * 1 SA is the first report in the Location

Index Table.

In this example, block 466 has been read into the buffer. Its

first message unit is the eighth message unit of the briefing.

Since block 466 contains three message units, the eighth through

tenth message unit is currently in the buffer. This is indicated by

the CRMUTJ values.

In addition to the outputs required to satisfy the briefing

(message units and briefing tables), an Error and Diagnostic File is

generated. This file maintains a history of activity of the

2-72

El1

P4
CA

V m -F4.

r- 0ia "4 -V 04t

% 00to

0 d 44 41 r-4 w

i-I~~ 0%)4U
0~~ 10"~"GII

1100"4 i4 ,-4 .

.4

r- n L h0 4.0

1.44

-4
I

C.'

o- I 4-

0 L O LA %a C4J C.' 0 1-4 14

M U) 0

r- 04
S0 40

.r
- 41E

Vi*-4 r-

000 f-4 P- 04-4 C
0a 000 0 00 0

rU () 04
0 4)

-4

0,0 00
-.4 d1i41

4 -P

ZI E-4&ii-

2-73.

AD-AI02 185 INPUT OUTPUT COMPUTER SERVICES INC WALTHAM MA F/B 17/2
TWENTYCANEL VOICE RESPONSE SYSTEM.(U)
JUM a1 DOT-TSC-1313

UNCLASSIFIED FAA-RD-1-51 N.

2 Ill IlllfIIIf
EIIIIIIIIIIIIu
/nlllll/lhulI
llllllllllIl
IIIIIIIIIIIIII
IIIIIIIIIIIIIu

retrieval task. Additional outputs of the retrieval task could be

accounting information files allowing an analysis of system resource

use.

2.4.4.1.5.1 message Uinit Transmission Format -The message units

are transmitted according to a fixed communications protocol

(Appendix B). The message units are buffered directly from the

channel status block area into which they are read from disk

(DIQA). That is, the address presented to the DV-ll handler is the

one representing the correct message unit position of the block of

data residing in the CSB.

2.4.4.2 Winds Aloft Retrieval - When a briefing request for winds

Aloft data is received by Retrieval, it, in turn, must request the

data from a special, installed task, winds Aloft Retrieval

(FODRTRV). This is because winds Aloft information must be

dynamically interpolated for each location from a grid of winds data

stored in the U3DF (see Section 2.4.3.2.4).

F'DRTRV receives and processes requests for Winds Aloft

information for a given location, altitude, and time period.

Restrictions on-the input to the program are that the altitude

cannot be greater than 45,900 feet and the time period cannot be

more than 30 hours beyond the effective date and time of the winds

aloft data. Blocks numbers returned by FDRTRV contain message unit

data for the given altitude, an altitude 4,000 feet higher, and an

altitude 4,000 feet lower (unless the given altitude was equal to or

less than 6,000 feet, in which case an altitude 2,000 feet lower is

given). Tf the altitude given Is determined to be less than the

estimated terrain height for the location given, then the values

returned are for an altitude equal to the terrain height plus 2,000

feet and a higher altitude equal to the previous value plus 2,000

feet and a higher altitude equal to the previous altitude value plus

4,000 feet. If the altitude given plus 4,000 feet is greater than

2-74

45,900 feet, then the higher altitude values are not returned by
FDRTRV. Alternatively, if the lower altitude calculated for the
given altitude is lower than the terrain height, no values are

returned for the lower altitude.

The values which are returned by FDRTRV for each altitude are
the wind direction in degrees, the wind speed in knots and the
temperature in whole degrees Celsius. Since these values are
determined by interpolation from retrieved data values, if critical
data are missing or have become too old, (more than 30 hours) a

message of "data not available" is returned.

After FDRTRV has calculated the Winds Aloft Data and stored them

in message units in the UDF, it then returns the block numbers to
the Retrieval program. These block numbers are inserted into the

appropriate Channel Response Briefing Table for use during the
weather briefing.

2-7S/2-76

3. SUPPORT SOFTWARE

In addition to the operating systems, there are programs

required to create and initialize the VRS data base.

3.1 UDFPW

Using a file (NLC.DAT) containing the name, region, and

geographic coordinates of each weather reporting station, UDFPRG

creates the file UDF.DAT where VRS processed weather reports are

stored (see Section 2.3.2.2).

3.2 ERRCRT

When raw weather reports read from the KCW.DAT file contain
errors, they are stored by VRS in an error file (ERR.DAT) where they
are accessible by the editor. ERRCRT creates ERR.DAT (see Section

2.4.3.5).

3.3 DEPTT

The Data Edit Position Terminal Tasks, in conjunction with
DEPST, constitute the editor used to correct erroneous raw weather
reports (see Section 2.4.3.5).

3.4 VRINIT

Before VRS can be executed, certain initialization functions

must be performed. The subroutine VRSMAP initializes the UDF block

allocation map by flagging all table blocks as being in use and the

3-1

remaining report blocks as being free. It then scans the Locator

Index Table for any report blocks in use and sets the corresponding

map bytes in the UDF block to one, signalling the blocks in use.

Also if there are any duplicate report blocks for locations,

signifying an error has occurred in block allocation, the blocks in

question are zeroed thus preventing invalid reports for location.

There exists a file, SFI.DAT, which is used by the VRS

subroutine VRPAOV to determine if any new reports have been recently

added to KCW.DAT. SFI.DAT contains the same subfile pointers that

are contained at the beginning of KCW.DAT itself. If new reports

have been added, the data will not be the same and VRS then knows it

must invoke the report processors. The VRINIT subroutine, VRSPTR,

initializes SFI.DAT to point to the most recent set of weather

reports so that the VRS will process them as soon as execution has

begun.

3.5 VRSTOP

To safely stop the VRS execution in a coordinated way that

insures all files are closed and an I/O function is not interrupted

before completion, VRSTOP is executed. A message is sent to the VRS

executive. When the VRS sees it, an acknowledgment is sent and both

the VRS and the VRSTOP exit.

3.6 NLCUPD

The file NLC.DAT, containing identifying information on each

weather reporting station, is used by UDFPRG to create the UDF (see
Section 3.1). NLC.DAT is built and modified by program NLCUPD,jwhich provides editing capabilities.

3-2

3.7 SENDIC

The "dictionary" portion of the 11/34 vocabulary disk file,

DIRECT.DVF, is needed by the 11/70 dictionary task. SENDIC sends it
to the VRS disk area on the 11/70.

3.8 WRDICT

Once SENDIC (above) has been executed, the file created at the

11/70 is made into a common block within the 11/70 dictionary task
by executing this utility.

+

3

3-3/3-4

4. VRS MAINTENANCE--11/34

Ivor discussion of the 11/34 maintenance procedures the reader

should be familiar with the RT-llV-3 Extended Memory Monitor and

MACRO-I1 programming. The reader should have a thorough

understanding of the functional flow of completion routines before

attempting to modify the 11/34 software (see Reference 9).

4.1 PROGRAM CREATTON PROCEDURE

The RT-11V03 indirect command file capability is used to create

the 11/34 VRS software. The indirect command file ASMVRS.COM

assembles the software from the MACRO sources. The following

modules must be present to assemble the system:

9 BACKGR.MAC

* * DAP.MAC

& DICT.MAC

* SPEC.MAC

& SPEAK.MAC

0 SEND.MAC

o CLOCK.MAC

e PURGE. MAC

* QrJErlE.MAC

* TRAP.MAC

e TABLE.MAC

9 TRAC.MAC
* PREPIX.MAC.

*The following four modules must be present to generate the

specialized data handlers for insertion into the RT-11 operating

system:

4-1

* AOX. MAC

* LCX. MAC
* LIX.MAC

SLOX. MAC.

By typing "@ASMVRS" all object modules listed above will be

generated. The object modules must be linked together to create the

VRS save image file. The command file VRSLNK performs this
operation. To list the software package, the users can type @ASMLST

and the sources of all seventeen modules will be listed on the line

printer. To generate the specialized handlers needed by the

software, the command file VRSHND should be invoked.

rigure 4-1 is a subroutine tree of the 11/34 modules. Since the

software is a Macro-ll asynchronous event-driven program, the tree

does not depict logical program flow. it is meant to depict

possible modular interface. See Appendix A for a more detailed
description of the modules.

4.2 SYSTEM REQUTREMENTS

To generate a twenty channel voice response system the following

assumptions are made:

H Hardware

a. PDP-11 with extended memory management

b. 64K words 16-bit memory

c. Past Random Access Disk with a capacity of at leaat

3.5 Megabytes

d. Specialized DMA ADPCM Module

4-2

VUS
S INITIALIZATIONI

DICTOAY--ST.RT4------CLKRPI-SNDPOI
*INITIALIZATION L-ALARN

BACKGR- --- AP - -SPEA--4PKST -. PEAKiEA... A C--jNAP

-SP ~-ENMNDAST
-SP.SRE

_P. CLX
-P.CSV-SP .CARt
_P.DIS-1 -COMON

RSET
ZGNAL

SP EN -P .CLA
P. ETA-SP.CAR

SP. FCT --- ASKYNO
-P .PDR-RPTY-P

E P.?P F-S P.SAB
-P . HYP
-P .LOS

F-sp.Loc
-S. LST-E--OISPL2

* ~~SP.5BL DR
* P.CAR ~~ISPLA- ONZ4OZ4

SEN CCi-LB
-SIGNAL

* H-TR.OQE

-SPEAK AP
Ls.CLR

SP .?OD
SP. SA-SPEAX (see DAP)

-P. SYR-ASX'INO

6-P * 1?R

-S -SSAS

P.-SP. T !NO

I -?YRAWT------4LDIRF

-SP.A

70PO--I9R ----- EET IC

-TACX-----ALVA-VALD----AR

FIG=fl 4-1: 11/34 Software Subroutine Tree

4-3

SACKGR (continued)

DOISABL-OISCON -LDBRF-SP.CLA
--H EQ- 'r--R. DE

-- CCMHO

-TINCREQ

_ _ _

T .U S S

L RTNOU-SIGNAL

f-R. 00!

7LRCVEX 4

RECYCL RESET

r-CHXEO-X---TI

- NAL (see Dx:)

-I-?.R.CLZ-

-PR4-4

!1

e. 2 asynchronous line units

f. i 20-channel Votrax MC-t

q. I TCrJ-100 Timing Control Unit

* Software -
9i

RT-11 V03 XM generated for use with the specifded disk.

• Data Bases -

DIRECT.DVF - this file (5000 blocks long) contains all

utterances spoken by the system. It is created using

the ADPCM encoder and programs VEDIT and RECORD (see

Reference 6, Chapter 8).

VRDATA.DAT - this file (1000 blocks long) is created

by the VRS software and contains all statistics data

generated in system operations.

4

*" 4-5/4-6

5. VRS MAINTENANCE--11/70

* For the discussion of 11/70 maintenance procedures, the reader

should be familiar with FORTRAN-IV PLUS and MACRO-11 programming

languages under the RSX-11D monitor and with the RSX-IID utilities,
special subroutines, overlay capabilities, event flags, priority

levels, and asynchronous system traps.

5.1 TASK CREATION CONVENTIONS

The RSX-11D command file capability is used to assemble,

compile, taskbuild, and install or remove most tasks. The command

files are named AAABBB.CMD, where AAA is the task name abbreviation

(e.g., VRS) and BBB is LST if a compiling command file, INS if an

installing command file and REM if a removing command file. BBB is

omitted if the command file is for taskbuilding. For example, if a

task were to be built from the FORTRAN source file VRS.FTN, the

procedures would be as follows:

o MCR F4P @VRSLST - to compile, then

o MCR TKB @VRS - to taskbuild.

If VRS.CMD used the TKB overlay switch an overlay definition

file must exist and would be named VRS.ODL.

The command files are written to create object files the same

name as the source file and to create nonspooled compiler listings

on disk.

5.2 SOFTWARE CONVENTIONS

The following items are miscellaneous practices in the 11/70 VRS
software. The 11/70 program written in MACRO-il are DICT, RETREV,

5-1

VRSTIM, and VRSGLB. These programs require the special capabilities

available only with MACRO-li, such as the asynchronous system

traps. The rest were written in FORTRAN-IV PLUS: VRIMIT, VRS,

VRSOUT, VRSFD, FDRTRV, VRSTOP, IDFPRG, and ERRCRT.

Many of the subroutines of the FORTRAN programs reference by
means of an INCLUDE statement the file VRPARAM.T?4 which contains

ubiquitous VRS parameters in common. The parameters are:

* ITT - Terminal logical unit number

* LPU - Line printer logical unit number

* LUNERR - ERR.DAT logical unit number

* LUNKCW - KCW.DAT logical unit number

* LtUTJDF - UDF.DAT logical unit number

* LUNHIS - SFT.DAT logical unit number

e MAXIN - Raw weather report buffer size (from KCW.DAT)

e MAXOTI - Processed weather buffer size (to UDF.DAT) -

0 ISLOTS - Location Index Table size in blocks

& IESTEDT - EST or EDT time indicator.

The VRS software makes use of the RSX-11D special subroutines to

handle inter-task communications. A variable number of parameters

oertinent to the transaction are transmitted using VSNDRR and

responses received using VRECRR.

All disk files are referenced within the software as residing on
disk structure DB7. An assignment can be made with the RSX-1lD

monitor that would define D87 as being any other single disk

structure.

Task priorities are fine-tuned through experience with the

system, but in general it can be said that the device handlers must
run under the highest priority used and that RETREV and FDRTREV must

run at a higher priority than the VRS processor to insure good
response time.

5-2

5.3 SUPPORT SOFTWARE TASK CREATION

The programs used to create and initialize data base files and

perform other auxiliary functions are discussed in Section 3.0.

This section will discuss how to create the executable file for each.

5.3.1 UDFPRG

The Universal Data File, UDF.DAT, is cree.ted with UDFPRG which
requires as input the file NLC.DAT containing the identifying data

for each weather reporting station and airport. UDFPRG is comprised
of five source files: UDFPRG, BLCR8, IOBLCK, VRSLIB, and NOMESG.

They are compiled and listed using the command file UDFLST.CMD and
taskbuilt using UDFPRG.CMD.

5.3.2 ERRCRT

Raw weather reports containing format errors are sent to the
file ERR.DAT which is created using program ERRCRT. ERRCRT is
contained on a single source file, ERRCRT.FTN, and so compile

command file is used. The compiler command line is as follows:

e MCR F4P ERRCRT, ERRCRT l-SP = ERRCRT.

* For taskbuilding, the command file ERRCRT.CMD is used.

5.3.3 VRSGLB

A VRS global common area is created with VRSGLB. The source
file, VRSGLB.MAC, is assembled using the MACRO Command File

GLBLST.CMD. Taskbuilding is accomplished when the DICT module is

*taskbuilt with DICT.CMD.

5-3

5.3.4 VRINT

SFI.DAT is a file containing the KCW.DAT pointers existing at

the time VRS last processed the r4w weather reports. When SFI.DAT

and the KCW pointers no longer match, VRS knows new reports have

been entered. SVI.DAT is created or initialized by a subroutine of

VRINIT, VRSPTR. VRIMIT also initializes the map array in the GCA.

VRITIT is comprised of 6 source files: VRINTT, VRSMAP, ZULUTIM,

OTELAP, EXTHED, and VRSLIB. They are compiled using VRINLST.CMD and

taskbuilt using VRINVT.CMD.

5.3.5 VRSTOP

The only safe way to stop the 11/70 VRS executive is to run

VRSTOP, which insures that the JDF block usage control array will be

in order. Any other method such as ABORT or a system crash will

require running VRI?4T before execution could be resumed. The 4P

command lines needed to compile the VRSTOP modules are as follows:

a MCR 4P VRSTOPwVRSTOP
9 MCR F4P VRSLIB=VRSLIB

The TKB command file, VRSTOP.CMD is used for taskbuilding.

5.3.6 LtCUPD

An editor is required to modify and add to NLC.DAT, the file

containing the weather reporting station identification data.

NtCVPD is compiled as follows:

MCR F4P NLCVPD-NLCVPD.

Taskbuilding is done with TWB command file NLC.CMD.

5-4

5.4 VRS WEATHER PROCESSOR

The VRS Processor executive is an overlaid task with the tree

structure shown in Figure 5-1. The VRS root contains the only

MACRO-l1 routine for the task, VRSTIM.KAC. The second level of

overlays constitute the primary VRS functions:

0 OPEND opens and closes files and check subfile pointers for

KCW.DAT, SFI.DAT, and ERR.DAT.

0 SA is the surface observations processor.

0 SARMK is the surface observations remarks processor.

0 FT is the Terminal Forecast processor.

* ERR is the erroneous report handler.

The names given are those used in the Overlay Definition Files.

Five other tasks also called by the VRS processor executive,
differ from the above in that they are independently executing

programs, not just subroutines of VREXEC.

1. VRSWD is the Winds Aloft processor. The compiler command

lines are as follows:

* MCR F4P VRSFDUVRSFD

* MCR F4P VRSLIBSVRSLIB.

Taskbuilding and installation are accomplished with the command

files VRSFD.CMD and FRSINS.CMD, respectively.

2. VRSOryr, the VRS 1/0 task, is comprised of eight source

modules which are compiled by means of the F4P command file

5-5

7 7CJV RS I7NPVRSSA
x VRTIM'EXTHED
GETRPT SUBFLD

L ------- iSKY
VRSLIB

FTPUNC
FTSKRE
FT VI RE
F? WI RE
F?? IRE
PTRERE
FTLOP R
FTVTPR
FTSKPR
F'TWIPR
FTTIPR
FTREPR
FTVIPR

FTP RDC

t *M

VRSLIB

VRSOUTK

VRPO

FIUR -1 PPl1VRSO TaLOelySbotn Tre

5-6CLO

VRSLST.CMD. Taskbuilding is done with VRSOUT.CMD and the overlay

definition file VRSOUT.ODL. Installation is done with VRSINS.CMD.

3. DTCT, the module that translates raw weather reports to

dictionary pointers, is comprised of the two modules DrCT.MAC and
VOCAB.MAC (Plus assembly contents contained on PREFIX.MAC) which as

assembled with the following MACRO command lines:

0 MCR MAC DICT PREFIX, DICT

*- MCR MAC VOCAB = PREFIX, VOCAS.

Taskbuilding is done with TKB command file DTCT.CMD and installation
with FRSIS.MD.

4. RETREV, the VRS weather data retrieval program, is comprised
of 10 MACRO source files which are assembled with MACRO command file

RETASM.CMD. To taskbuild, RETREV.CMD is used. See Figure 5-2.

5. FDRTREV, which calculates Winds Aloft data, consists of 5
source files compiled with P4P command file FDRLST.CMD.

Taskbuilding is done with FDRTRV.CMD. Installation is done with

* VRSTNS.CMD. See Figure 5-3.

5.5 PERIODIC SOFTWARE CHARGES

The PDP-11/70® system time is set to Eastern Standard or Eastern

Daylight Time. VRS, however, runs under Greenwich Mean Time and
three routines must be changed biannually: RETVER.MAC, a subroutine

of RETREV, DTELAP.FTN, and ZrLUTM.MAC, subroutines of VRSOUT. The

chanaes to the PORTRAN programs DTELAP, and ZTJLUTM may be made to a

change to include parameter TESTEDT.

5-7

RETINI SUSPEN QUEUE
DQUEUE
GETCSB
BRF2 FDBLK

SEND
SENDMU

CMDND QUEUE
.- GETCSB
-DBLOC(

'-SEND4U - OUTPUT
OUTSND

TINAST-- - ETCSB

QUEUE

SUSPEN

MKAST - RCVAST ~SEND

RDAST -~---ASTVER

ASTSKP

~~DEAND

SNDAST - SUSPEN

RCVAST -SEND

'ETCSB

FIGURE 5-2: RETREV Subroutine Tree

FDRTRV RECEV VECP

SUMMIT -~IOBLCK

WTFOR3

7 ACT IV V1 -- SNDRR
' EXIT

RECEV VIRECSP
ERRPRC

R50ASC
1--IDATE

TIME
IOBLCK

SBLCR8
VRECEX

VRSFD RECEV VRECSP
ERRPRC

GTRPT -BLOCK
LTSTR

EXTSTR
IDATE
IOBLCK

FIGURE 5-3: FD.RTRV &nd-VRSFD Subroutine Tree

5-9/5-10

6. OPERATTONS MANUAL

* The following is a summary of.steps required to start up

and shut down the VRS system:

* Start Up 11/70 Subsystem

a. Log On Terminal
b. Bring Up Subsystem

9 Start Up 11/34 Subsystem

a. Power Up System

b. Boot 11/34

c. Bring rp Subsystems

e "Abort RETREV" Line Clean rp

* Shut down 11/70 Subsystem

* Shut down 11/34 Subsystem

a "Barge Inq On

e *Barge tn" Off

* System Test.

Details of these procedures are given next in this

section. If there is a problem, refer to Figure 6-1 which

outlines in flow-chart form procedures for handling problems.

6.1 START UP 11/70 SUBSYSTEM

6.1.1 Log-on Terminal

Enter on the Terminal:

CTRL/Z

* CTRL/C

MCR HE.(£300,100] (Ca

* l PASSWORD (password) [CR]
*MCR

6-1

START SYSTEM
TROUBLE CHEXUT

HERE

FIGURE" 6 VRS System Trouble Char

11/700 TE4IAO RCDR

6-S

41

040

4 Q

(44

0w

6-3'

2

BRING DOWN

11/34 SUBSYSTEM

'RTrnV IS NOT ABO DIC?
ACV ON 11/70 AS VRSOUT

is IVSI IF' ICT' OR

ACCTIVE OK I11/70? ACTZ, ABORT IT

STAR UPSTART UP
./34 SUBSYSTEM 1/70 SUBSYSTEM

FIGURE 6-1: VRS System Trouble Chart (Cont'd.)

6-4

* 3

* L11/70 DOWNK ?I
CALL 8-2027827-
6008 FOR STATUS

*1Wks
F~G~Z 1: RS yst mTzou t ChA M FCORtd

f 6-5b=

YE

BR -M

I4 00 SYSTM TEST'

**
6A-SSEMN

m"

F I -: V S S s e r u l h r C n ' .

L \=" /

6.1.2 Bring Up Subsystem

6.1.2.1 Initial Procedure

MCR RUN DB7:VRINIT[ESC]

INITIALIZE VRS - START HH:f4M:SS EST

CALLING VRSMAP

CALLING VRSPTR

INITIALZATIC,4 COMPLETE: HH:MM:SS EST

CTRL/C

MCR RUN DB7:VRS[ESC]

DD-MMM-YY VRXEC HAS RESTARTED HH:MM:SS EST

AT I HH:MM:SS EST

etc.

6.1.2.2 Recovery Procedure

MCR RUN DB7: RECOVER(ESC]

RECOVER VRS - START; HH:MM:SS EST

CALLING VRSMAP

VRS RECOVER COMPLETE: HH:MM:SS EST

CTRL/C

MCR RUN D87:VRS(ESC] etc.

6-7

6.1.3 Start Upo 11/34 Subsystem

6.1.3.1 Power U.p System

a) 11/34 Computer

Switch to DC ON

b) Teleterm

Set switches: LOCAL #0-, O

C) ripper two VOTRAX units

Switch ON.

6.1.3.2 Boot 11/34

6.1.3.2.1. From Fixed Head Disk

Depress panel buttons: CTRL/I!ALT, CTRL/BOOT

Should print 4 octal numbers on terminal)

SL 177462[CRI

S 177400[CR]

SL 177460[CR]

$D 5(CRI

SL 0(CRI

SS(fCR1

•RT-i1XMV03 -02

.INS MC,ADLI,LO

.LOA MC,AD,LTL0,DP

46-8

. 56-2012

.DATE OD-MMM-YY[CRI

.TIME HH:MM:SS(CR] (GMT)

_DATE[CR] (Verification)

.TTMECCRI (Verification).

6.1.3.2.2 From CDC Backup Disk

Depress panel buttons: CTRL/HALR, CTRL/BOOTSL 1000(CR

(Should print 4 octal numbers on terminal)

ST 1000[CRI

SD 12700 [CR]

SD 176712[CR]

SD 12760 (CR1

sD l[CRI

SD 12 [CR1

SD 105760 [CR

SD 12[CR]

$D 100375 [CR

SD 5040[CR]

3D 5040 [CR]

$D 5040 [CR]

SD 12740(CR]
SD 400 (CR1

SD 12740 [CR]

$O 5(CRI

$D 105710 (CR]

SD 100376[CR]

So 5007 (CR1

SL 1000[CR1

$S (CR1

. RT-11XMV03
.TMS MC,RP,ADLILO

6-9

.LOA MCADLI,RP,LO

.D 56v2012

•TIME HH:MM:SS(CR] (GMT)

.DATE(CRI (Verification)

.TIME(CRI Verification).
0

6.1.3.3 Bring Up Subsystem

6.1.3.3.1 Initial Procedure

. DEL VRDATA.DAT(CR

PILES DELETED

DK:VRDATA.DAT ? Y[CR]

.R VRS[CR]

VRS VERSION-03X-00

(If the remaining print out does not appear as listed

below, enter "EXIT(CR] " on the 11/34 terminal and try

"R VRS(CR]" again.)

MCR

MCR HEL [300,100]

PASSWORD

MCR RUN RETREV S

IITTALIZATION COMPLETE

(At this point, do a "SYS" command on the 11/70

terminal anc check that "RETREV" is running.)

6.1.3.3.2 Recovery Procedure

Same as above (i.e., Section 6.1.2.3.1) except do not

delete VRDATADAT file. a

$: 6-10f

6.1.3.4 Console Commands

There are six console commands available to the

operator which affect the operation of VRS on a

particular channel. The commands are typed on the VRS

console in the following format:

.CnnX cr where

nn is the two digit channel specifier (single

digit channels must be preceded by a zero) and X

is the command letter identifier as listed below.

6.1.3.4.1 CnnN

The command turns off the trace function on the

channel nn.

6.1.3.4.2 CnnT

This command allows the trace functions to be

performed for the channel nn.

6.1.3.4.3 CnnD

This command disables the channel nn; that is, no

calls will be received on that line.

6.1.3.4.4 CnnR

This command re-enables the channel nn; that is, a

channel that has been disabled will now be able to
receive calls.

6-11

.L J _ ' .. - ,. i'i - u
' u

..lli

6.1.3.4.5 CnnX

This command dc-activates the fifteen-minute time-out

on the line nn.

6.1.3.4.6 CnnA

This command activates the fifteen-minute time-out on

the line nn.

6.1.4 Shut Down_11/70 Subsystem

Type the following in the 11/70 terminal:

CRTL/Z

CRTL/C

MCR RUN VR&STOPJESC1

****VRS EXEC TERMINATING

VRS- -STOP

(NOTE: It may take up to 5 minutes to obtain the last

line.)

6.1.5, Shut Down 11/34 Subsystem

6.1.5.1 Temporary Procedure

Enter the following on the 11/34 termin al:

6-12

EXIT [CR]

(All the channel lights should go out.)

6.1.5.2 Final Procedure

_EXIT[CR]
.COPY VRDATA.DAT DP:TRmmdd.yyV[CRI

.DIR *.yyV[CR]

.DEL VRDATA.DAT (CR]

FILES DELETED:

DK:VRDATA.DAT ? Y(CR]

The intention is to save the trace file on the CDC disk
under the file name TRmmdd.yyV where "mm" is the number of the
month, "dd" is the day of the month, and "yy" is the year. It
is suggested that these trace files be periodically archived to

magnetic tape.

6.1.6 "Barge In" On

1. Set switch on "barge in" phone to activate the message
of interest, i.e., either the "temporary down" or "overnight"
message.

2. Switch on the "barge in" to activate the "barge in"

unit.

3. Call 8-202-347-3222 to check the "barge in" message.

6-13

6.1.7 "Barge in" Off

1. Switch off "barge in".

2. Call 8-202-347-3222 to check on system response.

6.1.8 System Test

1. Call into system on a local line.

2. Enter "DCA" loc ID and check out all the weather

products.

6.1.9 System Trouble Chart

The intention of this section is to direct the operator to

the appropriate action that should be taken for various system

malfunctions.

f6-14

7. USERS' MANUAL

Any public, business, or home telephone with a 12-key

signalling system can be used to access the system. The

conventional rotary dial telephone may be used only for dialing

the access numbers, however, an acoustically-coupled tone

signalling device (in lieu of a Touch-Tone0 telephone) can be

employed in conjunction with the rotary dial telephone to enter

the information requests.

7.1 ENTERING DATA.

To communicate with the computer you must use the keypad in

a way that the computer "understands." Locations (weather

reporting stations and airports) are uniquely identified by

three-letter combinations and you enter these three-letter

identifiers to delineate a single location or a series of

S locations (e.g., a proposed flightpath) for which you desire to

" know the weather.

The keypad does not have enough keys to allow the entry of

an alphabetic character (letter) with a single keystroke. But

it is possible to make an unambiguous entry by depressing two

keys. You can enter a particular letter by depressing the key

on which that letter appears and another key to indicate which

of the three letters, 1st, 2nd, or 3rd. The numeral "1" key

indicates the 1st letter, the numeral "2" key indicates the 2nd

and the numeral "3" key indicates the 3rd. Thus the letter B

is signalled by depressing the key on which B appears (the

number "2" key) and then the numeral "2" key (2nd letter in the

group, ABC). The letter C is signalled by depressing the key

on which "C" appears and the numeral "3" key (3rd letter in

group ABC). For example, DCA is entered as D-1, C-3, A-l, as

shown below.

7-1

D

W uij LLJWL r 9*

GH w wJKLGIwK
CR E

1 6 f 4j 5

wm 7Twn~wT

PRS I V Fwx*

7-27 : V

A

As shown above, the letters Q and Z and the blank character

Hare assigned to the numeral "1" key. 0 is 1-1, q~ak is 1-2

and Z is 1-3. Each of the twenty-six letters of., the alphabet

can be entered in this fashion (two keystrokes) and no

confusion will result. The 'blank' is not used.

NOE: In addition to the 1- 2- 3- keys for second

keystroke denoting the letter position, left-middle-right keys

of the same row may also be used for a faster keystroke. For

example, the letter 'S' is contained on key seven as shown.

PRS TrI 8Y
7 8 9

7-3
.

The user may use the keystrokes 7-9 to denote IS' since I''

is on key seven in the right position thus 7-9 may be used

instead of 7-3. However, the left, middle, or right second

keystroke must be in the same row.

It does not suffice just to be able to communicate a string

of letters of the alphabet to the computer. You must be able

to tell the computer what you want done with the information
you have provided. At the lower right-hand corner of the

keypad, there is a key imprinted with a "#" symbol. W'e call

tis the 'computer entry' key or, for conciseness, the 'pound'

key. Since this key is not used to transmit letters or

numbers, it creates no confusion to employ it as a control key

to signal an action or a request. U~sed in conjunction with
other keys, a number of different actions can be signalled.
Other control functions will be explained later.

Some location identifiers use both letter and numerals.

For these entries, it is necessary to use two keystrokes for

each letter or numeral. The context of the pilot-computer

dialogue will often preclude ambiguities and permit simpler

data entry. Numbers can be entered unambiguously by depressing

the 'OPER' key and the appropriate numeral key. The 'OPERI key

is the key representing the numeral '0' (or zero) so that entry

of the numeral '0' involves two actuations of the 'OPER' key.
The numeral '5' is communicated by depressing 'OPER' and '5'

(as shown below) and the other numerals are similarly

communicated.

*F T-

7-4

The procedure described is used only for entering numbers

in three-letter location identifiers with mixed letters and

numbers. For all other numeric entries, single keystrokes for

numbers are required. For example, if the computer 'voice'

requests an altitude or a number of hours (from the present

* time), then the numeric entries for these fields may be made

* via a single keystroke tor each digit of the entry.

6

'

-- a 7.2 DATA NO P1VPILABLE

* WJhen data are not available, one of the following will

1 7-5

BK

7 T

0 Wrong Identifier - if a three-character entry which does

not constitute a valid location identifier is made

(e.g., ABC), the VRS will read back the characters as

entered. However, when the report requested is to be

read out, the VRS will say "ALPHA-BRAVO-CHARLIE... is

not a location identifier."

* tqo Report for a Given Location - If the location

identifier is a valid one but not a reporting station

for the type of report requested, the VRS will say

"ALPHA-BRAVO-CHARLIE... is not an Hourly Observation

Station" or "... is not a Terminal Forecast location."

* Noncurrent Data - If the location identifier is a valid

one but the current data are not available, the VRS will

say (e.g., SBY), "SIERRA-BRAVO-YANKEE... report not

available" for report type requested.

NOTE: 0 qourly Observations: Only the latest

available observation will be given provided

that the observation is not more than 2 hours

old. Soecial observations will be appended to

last hourly.

* In this system all reporting stations for

weather observations within the continental

United States are contained in the data base.

* Minimum altitude for forecasted winds Aloft is

approximately 2,000 feet above terrain level.

" The system has some time-out functions which

limit the amount of time an individual can use

the system. This feature has been

incorporated to preclude an individual from

tying up the phone lines for an extended

period.

7-6

The computer must be able to recognize the end of an entry
(i.e., a string of alphabetic, numeric or mixed characters) and
the request that it respond. The computer entry key (''key)
is depressed twice to provide the end-of- entry signal

J immediately following each and every field. Thus, to request
weather data for Martinsburg, W. Va. (and vicinity) the
keystroke sequence 'M-l', 'R-21, 'B-211 '#11#1 is generated

The computer will 'read back' each item entered so that the

correctness of the entry may be verified . The phonetic

alphabet will generally be used so that the identifier MIV will
be read back as "MIKE" "INDIA" "VICTOR"; CHO will be read back

as "CHARLIE" "HOTEL" "OSCAR". For some locations, the actual

name of the airport will be read back. For example, DCA
(Washington National Airport) will be read back as "Washington

* National."

7.3 CONTROL FUNCTIONS

The use of the 4#' key was discussed previously in sectionI 7.2. The '*' (STAR) key is used to stop the computer
response. while in the response mode, if it is necessary to
interrupt the computer voice response, depress the '*' key.

This will halt the voice response until the operator is ready

to proceed. The operator may then order a resumption of voice
response, a repeat, a jump ahead (skip) or a begin over, by

selecting the appropriate keystroke sequence shown below.
Notice that the enter command 1#'-1#1 is not required after the

control functions containing the '*' (STAR) keystroke.

ENTER # # REPEAT *7

YES 9 # JUMP AHEAD *5

7-7

NO 6 # # DELETE * 3

STOP * BEGIN OVER * 2

GO * 4

NOTE: "YES" or "NO" may be entered with a single pound

sign.

7.4 EXAMPLE OF TYPICAL VRS DIALOGUE

PILOT - pilot dials.

SYSTEM - "HELLO", Greenwich Time is XXXX."

SYSTEM- "Enter Location Identifier."

PILOT- (Desired location - PIT) P-1; 1-3; T-l; # #

SYSTEM - "PAPA", "INDIA", "TANGO" "ENTER NEXT LOCATION"

PILOT (Desired location - ILG) 1-3, L-3, G-1; # #

SYSTEM - "INDIA", "LIMA", "GOLF" "ENTER NEXT LOCATION"

PILOT (If no additional entries, enter ##)

SYSTEM - "DO you want hourly surface observations? Answer

yes or no."

PILOT - Y; # #

SYSTEM- reads hourlys for PIT, ILG, etc.

SYSTEM - "Do you want terminal forecasts? Answer yes or

no"

7-8

PILOT- Y; # #

SYSTEM - reads forecasts for PIT and ILG

SYSTEM - "Do you want winds aloft forecasts? Answer yes

or no."

q

PILOT- Y; ##

SYSTEM - "How many hours from now? The maximum is

30 hours.

PILOT- 6# #

SYSTEM - "six"

SYSTEM - "At what altitude?"

PILOT - 85; (or 8500; no matter) # #

SYSTEM - "eight five"

SYSTEM - reads winds aloft at requested altitude,

+4000 feet and -4000 feet for each location.

SYSTEM - "Do you need more information? Answer yes or no."

PILOT- Y; # #

SYSTEM - "Enter location identifier, etc."

7

~7-9/7-10

8. REFERENCES

1. "PDP-11 Peripherals Handbook," 1975, Digital Equipment

Corp., Maynard MA.

2. "Ten-Channel Voice Response System, Systems Design Report,"

Unpublished material on file at DOT/TSC. June 1977.

3. Bell System Technical Reference-Data Set 201C Interface

Specification. Nov. 1973, AT&T NY, NY.

4. "Bell System Data Communications - Technical Reference -

Data Set 407A - Interface Specifications," Nov. 1973.

AT&T NY, NY PUB41408.

5. "RT-11 Software Support Manual," DEC Order No.

DEC-1I-ORPGA-B-DO 1973, 1975, Digital Equipment Corp.,
Maynard MA.

6. "Single-Channel Voice Response System Program Documen-

tation, Final Report," FAA-RD-77-177, Vols 1-3, Dec. 1977.

7. "Ten-Channel VRS Processor Design Report (SA, SA Remarks,

FT, FD)," Unpublished material on file at DOT/TSC., Nov.

1977.

8. "Design Document for the Data Edit Position Software,"

Unpublished material on file at DOT/TSC, Aug. 1977.

9. RT-11 Advanced Programmers Guide,@ 1977, DEC Order No.

AA-5280B-TC, Digital Equipment Corp., Maynard MA.

-

8-1/8-2

APPENDIX A

PDP-11/34® and PDP-i1/70® Software Iodule.Descriptions

Page

I
A-2 PDP-11/34 VRS

A-2

A-2 202-11/70 VP.S
A-3 PDP-11/70 RETREV

A-1SA-4 PDP-11/70 VRSOUT
A-18]A-5 PDP-11/70 VRSFD
A-189A-6 PDP-11/70 FDRTRV
A-191A-7 PDP-11/70 UDFPRG
A-199A-8 PDP-11/70 VRINIT
A-203

A-1* 4J.S~t.*l

A.1 PDP-11/340 VRS

A- 2

MODULE NAME: ADX. SYS

PROGRAM: 11/34 VRS

SOURCE PILE: ADX.MAC

PURPOSE: ADPCM output device driver for 20 channels

CALLING ROUTINES:

CALLING SEQUENCE: Called by a WRITE request in speak module
QUEUE. QUEUE pointers are arranged by a trap
call which executes some code in trap handler,
then jumps to subroutine in handler which
links QUEUE pointers,

COMMON: ADCQE
ADLQE

SUBROUTTNES CALLED: DQUEUE - DE-QUEUE an element
OPP - take element off ADX QUEUE list

EQrJEUE- QUEUES an element
PUT - put element onto ADX QUEUE list

SETRPT - turn on interrupts

FUNCTION DESCRIPTTON: Output: Upon - WRITE request:
1. DEQUEUES PROM RT-11 QUEUE
2. QUEUES internally one-QUEUE per channel
3. Initiates NPR output

On completion of ADPCM write:

I. DEOUEUES from internal QUEUE
2. Transfers element back to RT-11 QUEUE
3. Requests write completion on ADPCM.

COMMENTS: This driver handles data synchonously for each
user by maintaining a separate output queue
for each user. When a write request is
issued, the element is removed (unlinked) from
the RT-11 queue and held until completion of
the write (speech), when it gets re-linked to
RE-li-" ue. Therefore, RT-11 never sees more
than 1 wri e on the channel at any point in
time.

A-3

MODULE NAME: LIX.SYS

PROGRAM: 11/34 VRS

SOURCE ?TLE: LrX.MAC

PURPOSE: Input driver for communication between 11/70
and 11/34 by serial line

CALLING ROUTINES:

CALLING SEQUENCE: Called by .READC in background routine during
INIT
Called by .READC in send/receive when
communicating

COMMON: LrCQE:
LILQE:

SUBROUTINES CALLED: SIVPTR

Monitor CUR's
SPUTBYT

FUNCTION DESCRIPTION: Input: Receives characters from 11/70 and
stores them in user buffer space associated
with channel to which data applies. <CR> is
treated as an end-of-file. "

COMMENTS: At initialization time, a series of 10 .READC
requests are issued for synchronization.

t

A-4

MODULE NAME: LOX.SYS

PROGRAM: 11/34 VRS

SOURCE FILE: LOX .MAC

PURPOSE: SLU device driver for output side of 11/34 to
11/70 communication

CALLING ROUTINES:

CALLING SEQUENCE: Called by WRITE in BACKGROUND module
Called by WRITE in SEND/RECEIVE module

COMMON: LOLQE
LOCQE

SUBROUTINES CALLED: $INPTR
RT-11 System Functions

SGTBYT

FUNCTION DESCRIPTION: Output: Functions like a DL-11
Receives characters from user buffer or text
string. Transfers one character at a time
under interrupt control at priority 4.

COMMENTS: This driver treats <CR>as an end-of-file.

A-5

A- 5

MODULE NAME: MCX.SYS

PROGRAM: 11/34 VRS

SOURCE FILE: MCX.MAC

PURPOSE: Touch-Toneg input handler for 20 channels

CALLING ROUTINES AND
CALLING SEQUENCE: Output- Called by .WRITE in background. This

occurs in response to reception of
STATUS CHARS from data set.

Input - Enabled by setting interrupt enable
bit (BIS #100, @#175630) after
initialization in background routine

COMMON: MCICQE
MCILQE
MCOCQE
MCOLQE

SUBROUTINES CALLED: DEFUSB - Define user status block
LVMCON - input character decoder
SIGNAL - signal significant event

FUNCTION DESCRIPTION: Input:
1. Accept chars from VOTRAX unit, check for

and remove SYNC CHAR, separate control
CHARS from data CHARS, if data numeric,
check for legality of numeric data.
Convert 2 numbers into a letter. If
control or status CHAR, signal the event,
if just data, stash in channel buffer

Output:
2. Produces line status changes (answer,

hang-up, disconnect)

COMMENTS: MCX never issues READ completions to RT-11.
Instead, it writes the data word directly into
the user buffer, then gives a completion
signal to the background. Causes interrupt
whenever a digit is received.

A-6

MODULE NAME: INITIALIZATION ROUTINES

PROGRAM: 11/34 VRS

SOURCE FILE: BACKGR.MAC

PURPOSE: To allocate memory set up I/O QUEUES

CALLING ROUTINES: This is first routine in VRS. entered thru
start address START. This code is executed" once only.

CALLING SEQUENCE:

COMMON: All TR.*** Parameters defined by PREPIX.MAC
US. ***
sP.***
FL. ***
DP. ***

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1. Allocates extra QUEUE elements.
2. Allocates space in extended memory for

dictionary.
3. Allocates space in extended memory for

buffers.
4. Defines extra 1/O channels.
5. Prints version ID.
6. Creates rJSB's one per line.

Then continues to dictionary initialization

COMMENTS:

A

A-7

MODULE NAME: DICTIONARY INITIALIZATION

PROGRAM: VRS

SOURCE FILE: BACKGR.MAC

PURPOSE: To open channels, read in dictionary and
assure proper communication with 11/70

CALLING ROUTINES: Entry point $PA001
Code is executed once only.

CALLING SEQrENCE:

COMMON: User Status block parameters

SUBROUTINES CALLED: DICT
STRTIM

TRAP TR.QUE
TR.DQE
TR.JSB

FUNCTION DESCRIPTION: 1. Opens.TTy handler.
2. Opens one file per channel for dictionary

reads.
3. Reads dictionary directory blocks into core.
4. Starts VRS clock by loading RT-11 time.
5. Assigns I/O channel numbers to ADPCM.

devices, Touch-Tone® receiver, 11/70 input,
and 11/70 output.

6. Logs into 11/70 RSX system and runs RETREV.
7. Prints initialization complete message.
8. Jumps to BACKGR to await significant events.

COMMENTS: During 11/70 log on, all messages from 11/70
are echoed on TTY.

A

MODULE NAME: BACKGR

PROGRAM: VRS

SOURCE FILE: BACKGR.MAC

PURPOSE: Polling loop to check for significant events

CALLING ROUTINES: Program returns to this module at completion
*of any function.

CALLING SEQUENCE: JMP BACKGR

COMMON: Parameters defined by PREFIX.MAC

SUBROUTINES CALLED: TRAP TR.SIG
TRAP TR.TUSB

FUNCTION DESCRIPTION: 1. Checks BTTMSK and BITMSK+@ FOR DEVICES
COMPLETIONS. If no completions, continues
checking.

2. when completion occurs, determines which
channel it was.

3. rses channel # to determine USB address.
4. Jumps to proper completion routine by

vectoring from DONVEC table.

Also prints appropriate error messages upon
detection of errors

COMMENTS:

d

It

MODULE NAME: DISABL

PROGRAM: 11/34 VRS

SOURCE FILE: BACKGR.MAC

PURPOSE: Disables a channel

CALLING ROUTINES: DAP

CALLING SEQUENCE: RI - channel #
RO USB ADDR
JSR PC, DISABL

COMMON:

SUBROUTINES CALLED: None

PUNCTION DESCRIPTION: 1. Pushes RO onto the stack.
2. Puts channel # into .WRITE parameter block

DISADW.
3. Does a .WRITE to MCX which puts selected

channel out of service.
4. Restores RO and returns via RTS PC.

COMMENTS:

I

e

A-lO

MODULE NAME: ENABLE

PROGRAM: 11/34 VRS

SOURCE FILE: BACKGR.MAC

PURPOSE: Enables Datasets in use by system.

CALLING ROUTINES: DISCON

• CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1. Pushes RO onto the stack.
2. Clears the line timeout flag.
3. Puts channel number into .WRITE parameter

block ENABDW.
4. Does a .WRITE to MCX, which enables one

channel.
5. Restores RO and returns via RTS PC.

COMMENTS:

t

A-ll

MODULE NAME: NXTCAR

PROGRAM: 11/34

SOrjRCE FILE: BACKGR.MAC

PJRPOSE: Routine decodes console commands of the fo:mat
C NN X where NN is a 2-digit channel number.
X is one of the following: N, T, D, R, A, X

CALLING ROUTINES: This is a read completion routine from TT.

CALLING SEQUENCE:

COMMON: TR.VS8
TTPAR

SUBROUTINES CALLED: TRAP TR.USB
PROCN
PROCT
PROCD
PROCR
PROCA
PROCX
PROCCR
PROCLF

FrNCTION DESCRIPTION: 1. Pushes R2, R3, R4, and R5 onto the stack.
2. Checks for exit command if so, restores

registers and exits to NXTSXT,
3. Checks for legal channel number. If OK,

resolves USB address; if error, prints
message and exits to NXTEXT.

* 4. Checks for legal character from list at
CARCK. Ignores character if not valid.

5. If valid character, vectors to proper
servicing routine. All service routines
exit thru NXTEXT.

COMMENTS:
_1

iI .

~A-12

MODULE NAME: NXTEXT

PROGRAM: 11/34 VRS.

SOURCE FILE: BACKGR. MAC

PURPOSE: Exit routine- for NXTCAR

CALLING ROUTINES: NXTCAR PROCR
PROCN PROCA
PROCT PROCXPROCD PROCL F

CALLING SEQUENCE: JMP NXTEXT

COMMON: NXTBUF

SUBROUTINES CALLED: None

FJNCTION DESCRIPTION: 1. Issues another .READC to TT:
2. Restores saved registers.
3. Exits from completion via RTS PC

COMMENTS:

A

A-13

MODULE NAME: PROCA

PROGRAM: 11/34 VRS.

SOURCE FILE: BACKGR.MAC

PURPOSE: Turns on lin timeout for channel specified if
not already on.

CALLING ROUTINES: NXTCAR

CALLING SEQUENCE: JMP @ VCT-2 (RI)

COMMON:

SUBROrTINES CALLED: None

FUNCTION DESCRIPTION: 1. Sets timeout bit in USS.
2. If user on that line, starts a marktime.
3. Exits to NXTEXT.

COMMENTS:

A.

q

11

MODULE NAME: PROCCR

PROGRAM: 11/34 VRS.

SOURCE FILE: BACKGR.MAC

PURPOSE: Treats <CR>-as a valid character, but ignores
it.

CALLING ROrJTINES: NXTC AR

CALLING SEQUENCE: JMP @ VECT-2 (RI)

COMMON:

SUBROUTINES CALLED: None

PUNCTION DESCRIPTION: 1. Returns immediately to NXTEXT.

COMMENTS:

1

I

p

I A-15

MODULE NAME: PROCM

PROGRAM: 11/34 VRS.

SOURCE PILE: BACKGR.MAC
*

PURPOSE: Disconnects user of channel specified and
disables line. s

CALLING ROUTINES: NXTCAR

CALLING SEQUENCE: JMP @VECT-2 (RI)

COMMON:

SUBROUTINES CALLED: COMMON
TRESET
SIGNAL

PTNCTION DESCRIPTION: 1. Causes a hard hang-up.
2. Clears the JSB.
3. Resets the Touch-Tone9 line.
4. Signals the event via BITMSK.
5. Exits to NXTEXT.

COMMENTS:

A

A-1A-l6

MODULE NAME: PROCLP

PROGRAM: 11/34 VRS

SOrRCE FILE: BACKGR.MAC

PURPOSE: Treats <LP>-as a valid character but ignores
it.

4

CALLING ROUTINES: NXTCAR

* CALLING SEQUENCE: JMP @ VECT-2 (R1)

COMMON:

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1. Returns immediately to NXTEXT.

COMMENTS:

I

I -

- 5

j A-17

A K.- , I I . II I I I . . .

MODULE N4AME: PROCN

PROGRAM: 11/34 VRS.

SOURCE FILE: BACKGR. MAC

PURPOSE: Turns off trace for channel specified.

CALLING ROUTINES: NXTCAR

CALLING SEQUENCE: JMP @ VECT-2 (RI)

COMMON: All ?L.*** as defined in PREPIX.MAC
rjs. ***

SUBROUTINES CALLED: MTCLOS

FUNCTION DESCRIPTION: 1. Turns off trace.

2. Closes trace statistics file.
3. Exit thru NXTEXT.

COMMENTS:

1

A-18

MOoJLE NAME: PROCR

PROGRAM: 11/34 VRS.

SOURCE FILE: BACKGR.MAC

PrRPOSE: Resets and enables data set for channel
specified.

CALLING ROUTINES: NXTCAR

CALLING SEQUENCE: JMP @ VECT-2 (RI)

COMMON:

SUBROUTINES CALLED: COMMON
TRESET
ENABLE

FUNCTION DESCRIPTION: 1. Initializes the buffers.
2. Puts a hang-up indicator in status field.
3. Resets channel.
4. Enables the line.
5. Exits to mXTEXT.

COMMENTS:

&1

ai

I

MODULE NAME: PROCT

PROGRAM: 11/34 VRS.

SOURCE FILE: BACKGR.MAC

PURPOSE: Turns on trace for specified channel

CNLLING ROrTINES: NXTCAR

CALLING SEQUENCE: JMP @ VECT-2 (RI)

COMMON: All PL.*** as defined in PREPIX.MAC
rJs.***

SUBROUTINES CALLED: OPNTR

FUNCTION oESCRIPTTON: 1. Sets trace but.
2. Opens trace file.
3. Exits to NXTEX.

COMMENTS:

t

e

A-20

Y|

MODUT.E RAME: PROCX

PROGRAM: 11/34 VRS.

SOURCE PILE: BACWGR. MAC

PURPOSE: Turns off line timeout for channel specified
£

CALLING ROUTINES: NXTCAR

CALLING SEQUENCE: JMP @ VECT-2 (RI)

COMMON:

SUBROUTTNES CALLED: None

PUNCTTON DESCRIPTION: 1. If timeout is already disabled, exits
immediately.
ELSE:

2. If timeout is not disabled, timeout by
setting a bit in USB. If channel in use,
cancels marktime and exits else exits
imediately.

COMMENTS:

A

A-21

t

MODULE NAME: STGNAL

PROGRAM: 11/34 VRS

SOURCE TLE: BACKGR. MAC

PURPOSE: Given channel number, sets appropriate bit in
BITMSW or BITMSK+2.

CALLING ROUTTNES: PROCO
MRKTIM TMOUU

SP.DIS MCX. SYS

CALLTNG SEQUENCE: JSR PC, SIGNAL

COMMON: US.CHN

SUBROUTTES CALLED: None

FU NCTTON DESCRIPTION: 1. Pushes RI, R2, R3 onto the stack.
2. Shifts a 1 into R1 and R2 the same number

of places as the channel number.
3. Puts RI into BITMSK+2 and R2 into BITMSKvia BIS instruction.
4. Restores Ri, R2, R3, and returns.

COMMENTS:

A
* A-22

I

MODULE NAME: STRTIM

PROGRAM: 11/34 VRS

SOURCE PILE: BACKGR.MAC

PURPOSE: Starts VRS clock
U

CALLING ROUTINES: DICTIONARY INTT.

* CALLING SEQUENCE: JSR PC, STRTIM

COMMON: TIME, TIME +2

SUBROUTNES CALLED: SMLI (Multiply Routine)

FUMCTION DESCRIPTION: 1. Gets GMT from TCU-0oo.
2. Converts to seconds since midnight.
3. Stores 2-word result in TIME and TIME+2.
4. Issues a 1-second marktime so next event

occurs as a completion routine.

COMMENTS:

A

A-23

MODULE NAME: TRESET

PROGRAM: 11/34 VRS

SOURCE PILE: BACKGR.MAC

PURPOSE: Unconditionally resets all Touch-Toneg lines.

CALLING ROUTINES: DISCON PROCD PROCR SP.DIS

CALLING SEQUENCE: JSR PC, TRESET

COMMON:

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1. Pushes RO onto the stack.
2. Puts channel number into write parameter

block TRESDW.
3. Does a .WRITE to MCX which resets all

channels.
4. Restores R0, then returns via RTS PC.

COMMENTS:

-

9

iN

+ A-24

MODULE NAME: CANCEL

PROGRAM: 11/34 VRS

SOURCE FTLE: DAP. MAC

PURPOSE: Deletes last Touch-Toneo input in response to
user command *3

CALLTNG ROUTTNES: BACKGR

CALLTG SEQUENCE:

COMMON:

SUBROUTINES CALLED: TRAP TR.MOD
SPEAK
CLRTTK

FrNCTION DESCRIPTTON: 1. Ignores command if user in briefing mode or
being disconnected.

2. Removes one locid from list if in entry mode.
3. Deletes response if yes/no.
4. Speaks "RE-ENTER" to user.
5. Returns,

COMMENTS:

A-25

MO ULE NAME: CLRTTK

PROGRAM: 11/34 VRS.SAV

SOURCE PILE: DAP.MAC

PURPOSE: Enables Touch-Tone® key-ins for specified
channel. *

CALLING ROUTINES: CANCEL RPTSKP
INVALK SKIP

CALLING SEQUENCE:

COMMON:

SrBROUTINES CALLED: None

PUNCTION SEXCRTPTION: 1. Enables Touch-Tone inputs by setting
appropriate bits in UJSB flag word (US.FLG).

2. Exits via RTS PC.

COMMENTS:

•2

U

A-2

MODULE NAME: COMMON

PROGRAM: 11/34 VRS

SOURCE PILE: DAP. MAC

PURPOSE: Initializeri rJsB for new userI _

CALLING ROrJTINES: RING

* CALLING SEQUENCE: JSR PC, COMMON

COMMON:

SUBROrTI'ES CALLED: ECHDON
TRAP TR.QUE

PNCTION DESCRIPTION: 1. Checks if ECHO buffer is in use.
2. Queues an element onto RDQUE.
3. Initializes USB PARAMETERS.

COMMENTS:

A-27

MODULE NAME: DAP

PROGRAM: 11/34 VRS.SAV

SOJRCE PTLE: DAP. MAC

PURPOSE: Dialogue prompt speaking routine.

CALLi?4G ROrTTES: DAPCOM, BACKGR

CALLiTG SEQrJENCE:

COMMON:

SUBROrUTTES CALLED: SPEAK
4ll SP.*** special functions, using routine
specified in TABLE (VECTOR)

FUNCTION DESCRIPTION: 1. Gets pointer to next protocol field.
2. Executes special function before prompt is

specified.
3. Speaks prompt.
4. Jumps to DAP if cycle request else to

8ACKGR.

COMMENTS:

A-2

:11

ia

~A-28

MODULE NAME: DAPCOM

PROGRAM: 11/34 VRS

SOURCE FILE: DAP. MAC

PrJPPOSE: Dialogue pro-tocol cycling routine

CALLING ROUTINES: BACKGR, DAP

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: SYNTAX
ECHO
All SP.*** via dialogue TABLE pointers, at
vector

PUNCTION DESCRIPTION: 1. Gets cycle pointer from rS8.
2. Performs special function if any in table

before SYNCHK
3. Performs syntax check:
4. Performs special function before echo if

entry in table,
5. Echos response if required.
6. Performs special function before branching

if entry in table
7. Gets pointer to next dialogue table.

depending on yes, no or normal response.
8. Continues to DAP.

COMMENTS:

£

A-29

Jill Jll 'lI = . .. i i

MODULE NAME: DECRM

PROGRAM: 11/34 VRS•SAV

SOURCE FILE: DAP.MAC

PURPOSE: Decrements message unit number during repeat
and recycle.

CALLING ROUTINES: RPTSKP

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1. Adds USB BASE ADDRESS TO OFFSET IN R5.
2. Decrements message unit number.
3. If resulting message unit number is less

than 0, repleces that with 9.

COMMENTS:

A- 30

MODULE NAME: DISCON

PROGRAM: 11/34 VRS.SAV

SOURCE PILE: DAP.MAC

PURPOSE% Disconnects -user at end of briefing

• CALLING ROUTINES: BRIEVR

CALL ING SEQUENCE:

COMMON:

SUBROUTITNES CALLED: ECHDON RTWQUE COMMON
MRKTrM CHKREQ RPTREQ
BLDBRF TRESET REPDEC
SEND ENABLE TR.MOD

TR.QUE

UNCTON DESCRIPTION: 1. Cancels channel's TIMEOUT marktime.
2. Interrupts speech in progress.
3. Returns ECHO buffers.
4. Returns QUJErJE elements.
5. Informs 11/70 of disconect.
6. Performs disconnect.
7. If not a console disconnect (see section

6.1.3.4), enables line.
8. Exits to BACKGR.

COMMENTS:

8

!I

A-31

ii

MODJLE NAME: ECHO

PROGRAM: 11/34 VRS.SAV

SOURCE FILE: DAP.MAC

PURPOSE: Echoes user response e

CALLING ROUTINES: DAPCOM

CALLING SEQUENCE: JSR PC, ECHO

COMMON: PREFIX.MAC defined parameters

SUBROUTINES CALLED: TRAP TR. OQE
DICT
SPEAK

FUNCTION DESCRIPTION: 1. Resolves input string.
2. Dequeues an element from ROQUE.
3. ADDS "...' before phrase for short delay

checks for phonetic echo.
4. Translates phrase by call to DICT.
5. Busy's out echo buffer.
6. Speaks.

Exits via RTS,

COMMENTS:

A-32

(

MOrjLE NAME: ECHDON

PROGRAM: 11/34 VRS

SOURCE FILE: DAP.MAC

PURPOSE: Returns dynamic buffers used in echo function
S
* CALLING ROUTINES: COMMON

CALLING sEQrJENCE: JSR PC, CHDON

COMMON: PREPFX.mAC defined parameters

SUBROUTINES CALLED: TRAP TR.QrJE

FUNCTION DESCRIPTION: 1. If in briefing mode echo done flag is
cleared, then QUEUE ELEMENT AT US.SPK is
returned to RDQUE.

2. If incorrection mode, correction flag is
cleared, then QUEUE element at US. RCV is
returned to RDOQUE.

3. Return via RTS PC.

COMMENTS:

A

!£

* f

* A-33

MODULE NAME: GO

PROGRAM: 11/34 VRS.SAV

SOURCE FILE: DAP.MAC

PURPOSE: Resumes briefing in response to user command *4

CALLING ROUTINES: BACKGR

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: TRAP TR.MOD

FTJCTION DESCRIPTION: 1. Take a Trace.
2. Resume speech only if interrupted by stop

command.
3. Exit to BACKGR-

COMMENTS:

I0

A-34

MODULE NAME: INVALK

PROGRAM: 11/34 VRS

SOURCE FILE: DAP.MAC

$ PURPOSE: Handles invalid keystroke entries

CALLING ROUTINES: BACKGR

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: TRAP TR. MOD
SPEAK
CLRTTK

FUNCTION DESCRIPTION: 1. Puts invalid keystroke flag in status word
of USB.

2. Resets input buffer/.
3. Speaks message "invalid entry".
4. Enables more Touch-Tone0 inputs.
5. Exits to BACKGR.

COMMENTS:

A

I

A- 35

MODULE NAME: MORSPW

PROGRAM: 11/34 VRS.SAV

SOURCE ILE: DAP.MAC

PrJRPOSE: Checks if more inputs to speak

CALLING ROUTINES: MRKTIM

CALLING SEQUENCE:

COMMON:

SUBROT'WES CALLED: TRAP TR. '158
READ
TYRANT

FUNCTION DESCRIPTION: 1. Saves R2, R3, R4, and R5 on stack,
2. Gets uSB address.
3. If more inputs

READS inputs to double buffers
Restores registers
Exits completion routine
If no move inputs, it exits to Backgr.

COMMENTS:

b

II

-

~A-36

jr

MODULE NAME: MRKCOM

PROGRAM: 11/34 VRS

SOU7RCE FILE: DAP.MAC

PrRPOSE: "Marktime completion routine for MRKTIM

CALLING ROUTINES: Entered at completion of marktime request
issued by MRKTIM routine

* CALLING SEQUJENCE:

COMMON:

SUBROUTINES CALLED: SIGNAL

FUNCTION DESCRIPTION: 1. REsolves USB address.
2. Sets up RETRVN FLAG IN VS.FLG of USS.
3. Signals event by JSR PC, signal.
4. Returns via RTS PC.

COMMENTS:

A-* '

" A-37

MODULE NAME: MRKTIM

PROGRAM: 11/34 VRS

SOURC PTL: DAP.MAC

PURPOSE: To wait an interval of time specified by R4

CALLING ROUTINES: DISCO"

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1. Pops a word off the stack to save in USS
for return address.

2. Stores R1 in USB save area.
3. Gets time parameter from R4 and issues MRKT

request.
4. Returns to polling loop (JMP BACKGR).

COMMENTS:

A-

• A-38

MODULE NAME: NO

PROGRAM: 11/34 VRS

SOURCE PTLE: DAP.MAC

PURPOSE: Sets no response indication in rSS permanent
flag bits and line status word.
This occurs as a result of user answering a
yes/no query with a no.

CALLING ROUTINES: BACKGR

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: None

PUNCTION DESCRIPTION: 1 Sets appropriate bits in rjS. PER and in Rl.
2. Branches to CHUSB.
3. CHUSB puts R1 into rS.STA and returns to

DAPCOM.

COMMENTS:

A-39

MODULE NAME: NORMAL

PROGRAM: 11/34 VRS

SOURCE PILE: DAP. MAC

PURPOSE: Sets normal response indication in rss

CALLING ROUTINES: BACKGR

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: None

PTUNCTION DESCRIPTION: 1. Sets appropriate bits in RI.
2. Puts R1 into VS.STA and returns to DAPCOM.

COMMENTS:

A4

A-40

MODULE NME: UT

PROGRAM; 11/34 VRS.S&V

SOURCE F'ILE,: OAP.MAC

PURPOSE: Clears out talk required list (TRL)

* CALLING ROUTINES: RING

* CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: TRAP TR. OQE

TRAP TR.QUE
FUNqCTIONq DESCRIPTION:.1. Calculates TRL list head ADDR.

2. Dequeues an element.
3. Queues element onto ROQUE.
4. Loops until no elements in TRL, then

returns to BACKGR.

COMMENTS:

* A-41

MODULE NAMR: RECYC

PROGRAM: 11/34 VRS

SOURCE PILE: DAP. MAC

PURPOSE: In briefing mode, restarts briefing from
beginning in prompt mode, restarts from "hello"

CALLING ROUTINES: BACKGR

CALLING SEOUENCE:

COMMON: All FL.*** as defined in PREFIX.MAC
US. ***

TR. ***
ST. ***

SUBROUTINES CALLED: TRAP TR.MOD

FUNCTtON DESCRIPTION: 1. Puts beginning of protocal indication in
line status field.

2. If in briefing mode, starts at beginning of
briefing by putting message unit #00 in
US.SPK and executing the repeat function
(JMP REPEAT).

3. If not in briefing mode, re-starts the
session by executing the disconnect logic
(SR DISCON).

COMMENTS:

A4

, A-42

MODULE NAME: REPEAT

PROGRAM: 11/34 VRS

SOURCE FILE: DAP.MAC

S PURPOSE: Repeats last message unit

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: RPTSKP
TRAP TR.MOD

FUNCTION DESCRIPTION: 1. Modifies line status field of USB.
2. If in briefing mode, goes to RPTSKP. If

not, waits for completion of speech before
repeating last prompt.

3. Exits to BACKGR

COMMENTS:

aw

A- 43

MODULE NAME: RING

PROGRAM: 11/34

SOURCE PILE: DAP.MAC

PURPOSE: Ring indication routine for all channels.

CALLING ROrJTINES: BACKGR

CALLING SEQUENCE:

COMMON:

SUBROrTINES CALLED: COMMON PUTTR
TR.MOD

FUNCTION DESCRIPTION: 1. Executes common setup routines.
2. Sets ring indication in USB via tR.MOD.
3. Sets up line timeout if not disabled (15

min).
4. Sets briefing mode to prompt.
5. Clears out TRL.
6. Exits to DAP.

COMENTS:

A

A-44

MODULE NME: RP "REQ (Also REPDEC)

PROGRAM: 11/34 VRS.SAV

SOURCE PILE: DA P. MAC

* PURPOSE: Returns elem~ents to ROQUE

$CALLING ROUTINES: DISCON

CALLING SEQUENCE:

COMMOV:

STJBROrJTINES CALLED: TRAP TR.QUE

PUNCTION DESCRIPT~TON: 1. If entered thru RPT1REQ, queues one element,
address of which is in R5, to ROQUE and
exits to BACKGR,

2. If entered thru REPOEC, queues one element,
address of which is in R4, to ROQUE and
exits to BACKGR,

COMMENTS:

A-45

MODULE NAME: RPTSKP

PROGRAM: 11/34 VRS

SOURCE FILE: DAP.MAC

PURPOSE: Routine common to SKIP and REPEAT commands in
briefing mode only

CALLING ROUTINES: REPEAT
SKIP

CALLING SEQUENCE: JMP RPTSKP or
BR RPTSKP

COMMON: All TR.*** as defined in PREFIX.MAC
US. ***
FL.***

SUBROUTINES CALLED: BLDBRF TSTRCV
SEND SENDRT
RTNQUE SPEAK

CHKREQ TR.QUE
CLRTTK
INCREQ

FUNCTION DESCRIPTION: 1. If briefing done flag is high, ignores
repeat skip, and exits to GO-

2. if repeat request, backs up to beginning of
message unit and returns to BACKGR.

3. If skip request, dumps message unit
pointers, returns QUEUE elements,
re-enables Touch-Tone® inputs and exits by
JMP BRIEFR.

COMMENTS:

A4

A- 46

MODULE NAME: RTWOUR

PROGRAM: 11/34 VRS

SOURCE PTE: DAP.1MAC

PURPOSE: Dequeues all-QUEUE elements from speak QUEUE
and returns them to reads QUEUE

CALLING ROUTINES: RPTSKP DTSCON TOGO

CALLING SEQUENCE: JSR PC, RTNQUE

COMMON: All TR. ** defined in PREZIX.MAC
Us. ***
SP.***

* DP. ***

SUBROUTTES CALLED: TRAP TR.DQE
TRAP TR.QUE

PUNCTION DESCRIPTION: 1. Determine speak Q address from USS address.
2. Dequeues an element.
3. If no element, exit.
4. Queues the element to RDQUE.
5. Go back to step 1.

COMMENTS:

A-47

W

MOorL NAME: SKIP
PROGRAM: 11/34 VRS.SAv

SOURCE -'FTIL DAP. MAC
PURPOSE: Skips to next message" unit in response to user

command *5

CALLINqG ROU~TINES: BACXGR
CALLING SEQuV~CZ:

COMM(ON:

SUBROUTINES CALLED: CLRTTK GO
RPTSKP TR.MOD

PtNCTTON DESCRIPTION: 1. Mfodifies line status block.
2. Checks if user is in briefing mode. Ifnot, enables Touch-ToneO and exits to

BACKGR inputs.
3. Checks if briefing is done, if so ignorecommand.
4. Jumps to RPTSKP to skip report being spoken.

COMMENTS:

A-48

MODULE NAME: STOP

PROGRAM: 11/34 VRS.SAV

SOURCE ?TLE: DAP.MAC

PURPOSE: Stops briefing in response to user command *

CALLING ROUTINES: BACKGR

CALLING SEQUENCE:
S

COMMON:

SUBROUTTNES CALLED: TRAP TR.MOD

PUNCTON DESCRIPTION: 1. Takes a trace.
2. interrupts speech if in briefing mode.
3. Exits to BACKGR,

COMMENTS:

IA
0

A-49

MODUT NAME: TIMOUU

PROGRAM: 11/34 VRS.SAV

SOURCE FILE: DAP.MAC

PURPOSE: Line timeout completion routine

CALLING ROUTINES: RING issues a .MRKT which calls TIMOUU upon
completion

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: TRAP TR.rJSs
SIGNAL

FrNCTION DESCRIPTION: 1. Determines USB addr of offending channel,
2. Sets exit bit in USB.
3. Signals event to BACKGR-
4. Returns from completion routine.

COMMENTS:

A-50

MODULE NAME: TOGO

PROGRAM: 11/34 VRS.SAV

SOURCE FILE: DAP. MAC

PURPOSE: Waits for end of current message, then speaks
timeout message.

CALLING ROUTINES: BACKGR

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: TRAP TR.DQE
TR.QUE

MARKTTM
RTNQrJE
PUTTR
SPEAK
SP.DIS

FUNCTION DESCRIPTION: 1. Turns off briefing mode.
2. Waits 3 seconds.
3. Dequeues any talk header elements and

returns them to free element pool.
4. Also returns user's read header elements to

free pool.
5. Returns speak Queue elements.
6. Returns TRL Queue elements.
7. Speaks timeout message.
8. Waits 3 seconds.
9. Hangs up on user.

10. Returns to polling loop (BACKGR).

COMMENTS:

A

A-51

MODULE NAME: YES

PROGRAM: 11/34 VRS

SOURCE FILE: DAP.MAC

PURPOSE: Sets YES response bits in permanent flag and
line status words of USB

CALLING ROUTINES: BACKGR

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: i. Sets appropriate bits in USPER and in RI.
2. Branches to CHUSB.
3. CHUSB puts R1 into VS.STA and returns to

DAPCOM.

COMMENTS:

A-52

A- 52

MODULE NAME: DICT-DICTST

PROGRAM: 11/34 VRS

SOURCE FILE: VOCAB.MAC

PURPOSE: Translate ASCII text into VRS code pairs

CALLING ROUTINES: Dictionary initialization in BACKGR.MAC and
. ECHO in DAP.MAC

" CALLING SEQUENCE: Call DICTST, which calls DICT as a marktime
completion routine

COMMON:

SUBROUTINES CALLED: SIGNAL

FUNCTION DESCRIPTION: i. R2 -- Address of text string to be
transla ted.

2. R3 -- Address of word pair
1 word - byte length of translation
2 word - address of translation,

COMMENTS: DICTST is called to set a one second marktime
which will call DICT as a completion routine.

A-53

i -A102 IBS INPUT OU JT COMUTER SERVICES INC WALTHAM MA F/B 17/2
TrENTY-CANNEL VOICE RESPONSE SYSTEM.(U)
J &I 00T-TSC-1313

NCLASSIFIED FAA-RO-BI-51 NL3*5f//II///llflIIfflff
IIIIIIIIIIIEI
lllllillllEEEI
IIIIIIIIIIIIIu
IIIIIIIIIEIII
IIIIIIIIIIIIII
IIIEIIIIIIIEII

MODULE NAME.: ALPHA

PROGRAM: 11/34 VRS

SOURCE FILE: SPEC.MAC

PURPOSE: Check input buffer characters for proper locid
syntax - alpha-numeric

CALLING ROUTINES: SYNTAX

CALLIN SEQUENCE:

COMMON: SYWNLG: Flag for 1st character check - then
'/' will be allowed

SUBROUTINES CALLED: VALID, TNVALA (SYNTAX), ANEX

FUJNCTION DESCRIPTION: 1. Input: R3 - input buffer pointer,
2. Output: C-Bit set for invalid format.

COMMENTS:

4

A-54

-~~ * - -
-Mal,

MODULE lANE: ASKYNO

PROGRAM: VRS (11/34)

SOr1RE ? I: SPEC.MAC

PURPOSE: Sets error flag if Last response not yes.

CALLING ROUTINES: SP.FCT SP.PIOT
SP.F R SP.9'TR
•SP.LOS SP.PRP
SP.SYR SP.SAS

4

CALLING SEQUENCE:

COMMON: t.YER

UR.PER

SUBROUTTIWES CALLED: None

FUNCTTON DESCRIPTTON: 1. rnput: RO - USB address.
2. Output: C-bit set for error return,

COMMENTS: The return address is popped off stack if
error, that is, not a yes response.

5

t&-55

MOOULE NAME: 8RIEMR

PROGRAM: VRS (11/34)

SOURCE PTLE: SPzC.MAC

PURPOSE: Check for phone hang Up; if so jumps to
disconnect logic. If not, gets next protocol
address and puts the return address on stack.

CALLING ROUTINES: BACKGR

CALLING SEQUENCE:

COMMON: Prefix parameters:
F .TRN
US. PER
US. DAP
VECTOR
US SAl
US.SA2

SUBROUTINES CALLED: DISCON

FUNCTION DESCRIPTION: 1. Input: RO - USB address,
2. Output: Rl - protocol vector address

SP - saved return address.

COMMENTS:

]*II

A-56

MODULE NAME: CKHUNM

PROGRAM: 11/34 VRS

SOURCE FILE: SPEC.MAC

PURPOSE: To check input characters are numeric

CALLING ROUTINES: NUMINP

[CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: NINVAL

FUNCTION DESCRIPTION: 1. Input: R3 - pointer to character to be
checked,

2. Output: Calls 'NINVAL' if character not
number.

COMMENTS:

A

I *•

' A-57

MOoULE NAME: NUMBER

PROGRAM: 11/34 VRS

SOrRCE FILE: SPEC.MAC

PURPOSE: Count number--of characters process and check
that character is numeric

CALLING ROrTINES: DAP

CALLING SEQUENCE:

COMMON: SYVFLG: used as character processed flaq
NUMFLG: count of characters processed

SUBROUTINES CALLED: INVALN (see SYNTAX)

FUNCTION DESCRIPTION: Input: R3 - input buffer pointer.

COMMENTS:

A

iI

I

' A-58

MODULE NAME: CKHwUL4

PROGRAM: 11/34 VRS

SOURCE FILE: SPEC.MAC

PURPOSE: TO check input characters are numeric

* CALLING ROUTINES: NUMINP
4

CALLING SEQUENCE:

COMMON:

SUBRUTTWES CALLED: NTIVAL

VUNCTTON DESCRIPTION: 1. Input: R3 - pointer to character to be
checked,

2. Output: Calls ,INVAL, if character not
number.

COMMENTS:

I9

1 A-59

MOoULE NAME: SP. SaL

PROGRAM: VRS (11/34)

SOURCE pILE: SPZC.MAC

PURPOSE: Enter channel identifier, and briefing mode
into buffer and initialize location flags and
counters

CALLING ROUTINES: SP.LST

COMMON: US.BEG PL.LST
JUS.TRM FL.PTR

US.BRF
75 .CUR
US. RCV
r'S.PER

SUBROUTTNS CALLED: None

FUNCTTON DESCRIPTION: 1. Input: RO - USS address.
2. Output: Channel identifier and briefing

mode entered into buffer.

COMMENT~S:
0

0

A-60

I .____

MODULE NIAME: SP. BRE

PROGRAM: VRS (11/34)

SOURCE PILE: SPEC.MAC
PIRPOSE: Moves the br-iefing mode into the bufferI

* CALLIN.G Ror UTIES: DAP

CALLING SEQUENCE-.

* COMMON: US. BEG

US. BRP

Us .CUR
SUBROUTNES CALLED: None
Pr3CTqI N DESCRIPTiON: 1. Input: RO - US address'

US.BEG - contains beginning point
for buffer
US.BRP - contains briefing mode.2. Output: buffer now contains briefing mode,

COMMENTS:

A
a

" - . _.,= == - eI-' ", -', ' ...,1iill - -I I I I l l

MODrLE AME: SP.BRl

PROGRAM: VRS (11/34)

SOUJRCE F'ILE: SPEC.MAC
PrRPOSE: Check briefi-ng mode input against table of

valid modes ('Prompt,, 'Enmode,' 'local') and
inputs valid mode into buffer

CALLING ROUTINIES: DAP

CALLING sEQrJnwcz:

COMMON: rs.I P
rs .CUR
US. 8RF

S17BROrUTINLS CALLED: INVALK, SP.BRE
PUNCTIOR DESCRPTON: Input: RO rJ5s address.

COMMENTS:

A

;V

IiV
A-62

MODULE NAME: SP.CAR

PROGRAM: VRS (11/34)

SOURCE FILE: SPEC.MAC

PURPOSE: 1. Calculates number of characters in the
input buffer

.2. Saves the return addresses in the USB JMPS
to NSPLA to send data

CALLING ROUTINES: SP.CSV
SP.ETA
SP.FTR
SP.LST
SP.WRN

CALLING SEQUENCE:

COMMON: US.CUR
US. BEG
US. SAl
US.SA2

SUBROUTINES CALLED: DISPLA

FUNCTION DESCRIPTION: 1. Input: RO - USB address.
2. Output: R4 - number of characters.

COMMENTS:

V

A-63

MODULE NAME: SP.CLA

PROGRAM: VRS (11/34)

SOURCE PILE: SPEC.MAC

PURPOSE: Places the terminal identifier in 1st buffer
position and saves the next position as
current location pointer and last valid input
pointer

CALLING ROUTINES: BLDBRP
SP.ENR
SP. LST
SP.SMD
SP.WRN

CALLING SEQUENCE:

COMMON: US.BEG
US. TRM
US .CUR
US. ZND

SUBROUTINES CALLED: SP.CLR

PUNCTON DESCRIPTION: Input: RO USS address.

COMMENTS:

A

~A-64

MODULE NAME: SP.CLR

PROGRAM: VRS (11/34)

SOURCE FILE: SPEC.MAC

PURPOSE: Clear the buffer positions not used, that is,
those following the current buffer position as
defined by US.CUR.

CALLING ROUTINES: DAP

CALLING SEQUJENCE:I
COMMON: .LVBUF

rjs .CUR
US. BEG

SUBROUTINES CALLED: None

FrNCTION DESCRIPTION: Input: RO - US8 address,

COMMENTS:

A-65

q -6

MOCTUL NAME: sP.csv

PROGRAM: VRS (11/34)

SOrRCE PILE: SPEC.MAC

PURPOSE: To call SP.CAR for preparation to send message

CALLING ROTTINES: DAP

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: SP.CAR
PrNCTION DESCRIPTION: INPrJT: user status block address,

COMMENTS:

9

I£

i*

A-66

MODULE NAME: SP. DS

PROGRAM: 11/34 VRS

SOURCE FILE: SPEC.MAC

PURPOSE: Initialize USS, reset Touch Tone® line, and
disconnect line

CALLING ROUTINES: TOGO

CALLING SEQUENCE:

COMMON: S. PER
US.CHN
PL. DID
US. * LG

SUBROUTINES CALLED: COMMON, TRESET, SIGNAL, BACKGR

FUNCTION DESCRIPTION: 1. Input. RO - USS address,
2. Output: R1 - channel number.

COMMENTS: SP.DDD is same as SP.DOS except for 'excessive
time' terminator signal is first set.

A6

II
t

4I

A-67i

MO.r,,
--

AME: SP.ENR

PROGRAM: VRS 11/34

SOURCZE F'ILE: SPEC. MAC
PURPOSE: Clear out input buffer, insert 'SOO' for a

'scan data' request
CALLiTG ROUTTRES: DAP

CALURG sierIvpce:

COMMON: IPtYER
US. Pv R
SP.CLA

SUBROUTT.ES CALLED: SP.CLA
WNCTTONI DSCRIPTRi: Tnput: RO - US8 address.

COMMENTS:

I

_j
'p

!I A-68I

MOOULE . AME: SP. ETA

PROGRAM: 11/34 VRS

SOURCE PILE: SPEC.tMAC

PURPOSE: Clears 6 characters in input buffer and update
___ iUSB input buffer pointer, US.CUR.

CALLIN/G ROUTINES: DAP

CALLING SEQUENCE:

COMMON: US.CUR

SUBROUINES CALLED: SP.CAR

FUNCTION DESCRIPTION: Input: R - SB address,

COMMENTS:

A-69

A

MODUTE NAME: SP.FICT

PROGRAM: VRS (11/34)
SOURCE PILE: SP8C.KAC

PURPOSE: Por En route.mode, enters FT's and synopsis
into input buffer *

CALLTNG ROUTTNES: DAP

CALLING SEQUENCE:

COMMON:

SUSROUTrTMES CALLED: ASKYNO, RPTYP

.VNCTTON DESCRIPTON: Input: R3 input buffer pointer.

COMMENTS:

0

A-70

1

MODULE NAME: SP. FOR

PROGRAM: VRS (11/34)

SOURCE FILE: SPEC.MAC

PURPOSE: To determine if PO's requested, clears C-bit
if yes sets C-bit and sends data if not.

CALLING ROUTINES: DAP

CALLING SEQUENCE:

COMMON: Ft..PHB
US. LG

SUBROUTINES CALLED: SP.CAR

IUNCTION DESCRIPTION: 1. Input: RO - US8 address.
2. Output: C-bit set if PD's not requested

cleared otherwise.

COMMENTS:

: i7

A-71

MOoULE NAME: SP.-iR
ZR2GRAj.-

VRS (11/34)

SOOJRCR P'ILE: SPEC.MAC
PU R.POS E:---------

To add PD-request to Output buffer

C ALLICG ROUT IS: DAP

CALLING ~IJN~

Co€o: UrS.CUR
US.INP

STrSROUTIES CALED: AS KYN.O
trTONcm" DESCRIPTION : Input: aO - USB address,

R3 - output buffer pointer.
COMMENTS:

L

w

A-72

MODULE NAME: SP. PTB

PROGRAM: 11/34 VRS

SOURCE PTLE:' SPEC.MAC

PURPOSE: Sets report value to FT, then calls Check B to
t - check for reports available, none available
- species none in effect message

CALLING ROUTINES: DAP

CALLING SEQUENCE:

COmMON:

SUBROUTINES CALLED: CHECKB (in SP.SAB)

FUNCTION DESCRIPTION: 1. Input: R2- FT value.
2. Output: R3 - pointer to none in effect

message.

COMMENTS:

A-73

i

MODULE NAME: SP.HYP

PROGRAM: VRS (11/34)
So RCE FILE: SPEC.EMAC

PURPOSE: tnsert a hyphen into input data
CALLING ROUTINEs: DAP

CALLINGQ SEQUEgqCE:

COMMON: TjS.CUR

SrIMROUTfIS CALLPD: None
PTJCTTON DESCRTpTIO%. 1. Input: Ro - jSB address.

2. Output: R3 - points to current location
pointer (before hyphen).

COMMENTS:

A

£

*

A-74

" ____

MOULE NbAM4E: SP.LOB

PROGRAM: VRS (11/34)

SOURCE FILE: SPEC. 1AC

PURPOSE: Por En route mode; enters'SA's, A's, No's
into output -buffer

CALLING ROUTINES: DAP

CALLING SEQUMNE:

COMMON:

SUBROUTINES CALLED: AST(YWO, RPTYP

FUNCTION DESCRIPTION,: 1. Input: R3 -output buffer pointer.
2. output: R3 -output buffer pointer.

COMMEWI'S:

1b

A-75

MODULE NAME: SP.LOC

PROGRAM: VRS - 11/34

SORCt PILE: SPEC.MAC

PURPOSE: To check if loc entered is valid format and if
10 locs entered. g

CALLING ROUTINES: DAP

CALLING SEQQENCE: a
COMMON: US.rNP FL. ST

US.CUR PL.LOC
US. RCV
rsjPER

SJBROUTINES CALLED: IVALK

FUNCTION DESCRIPTION: 1. Input: RO - SS address.
2. Output: US.PER - last loc flag set on 10th

loc
- loc entered flag set if
format valid

!S.RCV+2 - increment total of locs
entered

C-bit - set for abnormal exit -
invalid loc or 10th loc.

COMMENTS:

A-76

MODULE NAME: SP.LST

PROGRAM: VRS (11/34)

SOURCE PILE: SPEC. MAC

PURPOSE: Checks if loc entered was last loc and/or
correction m-ode if not: normal return to DAP,

* if yes, the data are sent. If select mode, the
report types are also sent-

0

* CALLING ROUTINES: DAP

CALLTNG SEQUENCE:

COMMON: PT.LST RDQUE
rJS.PER TR.QUE - QUEUE trap address
FL.COR US.DAP
FL.YER UJS.BRP
US. RCV
US.CUR
US. BEG

SUBROUTTES CALLED: DISPL2, SP.BsL. SP.CAR, SP.CLA

FUNCTION DESCRIPTION: 1. Tnput - RO - USB address.
2. Output - C-bit set if not local mode

briefing when last location processed.

* COMMENTS:

A

i A- 77

MODULE NAME: SP.4OD

PROGRAM: VRS - 11/34
9

SOURCE PTLE: SPEC.MAC

PURPOSE: Checks if last response a 159 - '" if yes
sets up for briefing mode query

CALLTNG ROUTTES: DAP

CALLING SEQUENCE:

COMMON: US.CUR
TJS. DAP

SUBROUTINES CALLED: None

PFJNCTION DESCRIPTTON: 1. Input: RO USS address,
2. Output: #2 in dialogue protocol US.DAP-

COMMENTS: This is not used (commented out) while in
prompt mode only.

I

9

A-78

MODU7LE NAME: SP.SAB

*PROGRAM: 11/34 VRS

SOURCE PLE: SPEC.MAC

PURPOSE: Check for SA's available, if rnot, speak $none
in effect, message

* CALLING ROUTINES: DAP

CALLING SEQUJENCE:

COMMON: US.RPT
WONEPF
DP.ABN
NS.*DAP
FL.DIS
rIS . FLaG

SUBROUTINES CALLED: SPEAK

FUNCTION DESCRIPTION: 1. input: RO - TSB address.
2. Output: R3 -pointer to message to be

spoken.

COMMENTS:

A-79

5MOD~t.E NAME: SP. SM0
PROGRAM: VRS (11/34)

SOURCE PZLE: SPEC.-AC

PURPOSE: To determine ie briefing mode is 'En route' or'Prompt' and-points to proper dialogue. I

CALLIIG ROUTINES: DAP

CALLING SEQUEN-CE

COM tON: US.BRP
rJS. DAP

SUBROUTINES CALLED: SP.CLA

PUNCTION DESCRIPTION: input: RO - USB address.

COMMENTS:

4

A-80

MODULE NAME: 1. SP.SYR
2. SP.NOT
3. SP.F'TR
4. SP.PRP
5. SP.SAS

PROGRAM: 11/34 VRS

SOURCE PILE: SPEC.MAC

PURPOSE: To put request in output buffer for:
1. Synopsis
2. NOTAMS
3. Terminal Forecasts (FT)
4. Pilot REports (UA)
5. Surface observations (SA's)

CALLING ROUTINES: DAP

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: ASKYNO, RPTUP

FUNCTION DESCRIPTION: 1. Input: R3 - output buffer pointer.
2. Output: R3 - updated output buffer pointer

past inserted request.

COMMENTS:

A

~A-81

MODULE NAME: SP.TIM

PROGRAM: VRS (11/34)

SOURCE PILE: SPEC.MAC

PURPOSE: Gets present time, disables Touch-ToneO input,
speaks time,-and initializes users buffer, a

CALLING ROUTINES: DAP

CALLING SEQUENCE:

COMMON: US.SA1 L .DIS
US. LG
US .CUR

SUBROUTINES CALLED: ECHO, COMMON, GETTIM

PI"ICTION DESCRIPTION: Input: RO - USS address.

COMMENTS:

I
lV

* A-82

DrjE NAME: SP.WMD

PROGRAM: VRS (11/34)

SOURCE FILE: SPEC.MAC

PURPOSE: Checks if briefing mode local if not,
returns. 1f yes, pops return address of
stack, sets dialogue protocol for local and
jumps to DAP,

CALLING ROUTINES: DAP

CALLING SEQrENC'E:

COMMON: US.DAP
rS.BRF

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1. Input: RO - US5 address.
2. Output: 'JS.DAP set to 6 if briefing mode

local.

COMMENTS:

I

~A-83

MODULE it4E: S P. WRI

PROGRAM: VRS (11/34)

SOURCE PTLE: SPzC.MAC

PURPOSE: Puts briefing mode (En route, Select, or
Prompt: into-output buffer

CALLING ROUTINES: DAP

CALLING SEQUENCE:

COMMON: US.CUR
- US.DAP

US.BRF

SUBROUTINES CALLED: SP.CLA, SP.CAR

FUNCTION DESCRIPTION: Input: RO - USS'address,

COMMENTES:

A-84

MODULE NAME: SYNALT

PROGRAM: (11/34) VRS

SOURCE FILE: SPEC.MAC

PURPOSE: Check altitude input for proper format and
value alt - either greater than 1000 ft or
less than 4599 with either two digit or
4 digit input

CALLING ROUTINES: -SYNTAX (SPEC.MAC)

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: NUMI1M, NINVAL, OKVAL

FUNCTION DESCRIPTION: i. Input: R3 - input buffer pointer
R4 - No. of characters.

2. Output: Either clear or set C-bit for
valid or invalid syntax.

COMMENTS:

I

b

S A-85

MODULE NAME: SYWRT1A

PROGRAM: (LI/34) VRS

SOURCE PILE: SPVC.MAC

PURPOSE: Check syntax of ETA (winds) time characters in
input buffer-and adds.'z' for zulu time

CALLING ROUTINES: SYNTAX (SPEC. IAC)

CALLINqG SE2rJVE:

COMMO4N: US.CUR - current input pointer

SUBROUTINES CALED: NWMIMP, NP4VAL, OKVAL

PrNCTION DESCRIPTTOR: 1. Input: R4 - No. of characters.
R3 - pointer to input array.

2. Output: US.CUR is updated.

COMMENTS:

" IA- 86

i'

MODULE NAME: SYWRR

PROGRAM: (11/34) VRS

SOURCE FILE: SPZC.MAC

PURPOSE: Check hour value input for winds report must
be numeric and less than or equal to 30 hours

CALLING ROUTINES: SYNTAX

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: NINVkL, OKVAL, VUMTMP

FUNCTION DESCRIPTION: 1. Input: R3 - input buffer pointer
R4 - No. of characters.

2. Output: C-bit: Cleared for valid format
or value set for invalid-

COMMENTS:

S

I " A-87

MODJLE NAME: SYNTAX

PROGRAM: (11/34) VRS

SOURCE FILE: SPEC.MAC

PURPOSE: Check input buffer characters for appropriate
subroutine to call to. check format

CALLING ROUTINES: ALPHA DAPCOM YESCK

CALLING SEQUENCE: IWVALW - called by NUMBER (SPEC.MAC)
VALID, INVALY - call by YESCK (SPEC.4AC)
INVALT - call by WETPCK

COMMON: SYNVLG - first pass flag
NUMPLG - numeric flag
fSINP

SUBROUTINES CALLED: ALPHA, SYNHR, SYNALT, SYNETA, WETPCK, YESCK,
VALID

PUNCTION DESCRIPTION: .. Input: R2 - buffer pointer.
2. Output: C-bit set for invalid format.

COMMENTS: Following are 'mini' - routines contained in
Syntax

INVALA sets invalid alpha flag in ST.SNV -
into R3
INVkLN sets invalid number flag in ST.SNV -

into R3
INVALT sets invalid type flag in ST.SNV -

into R3
INVALY sets invalid Y/N flag in ST.SNY -
into R3
IWALrj - modifies the line status flag
according to the above flags that had been
set.

PI-88

MODULE RAME: WETPC

PROGRAM: (11/34) VRS

SOURCE FILE: SPEC.MAC

PURPOSE: Check input buffer for valid weather type

CALLING ROUTINES: SYNTAX (SPEC.MAC)

CALLING SEQrJENCE:

COMMON: FL.DHE
US. LG
SYMPLAG - hold weather type characters

SUBROUTT7NES CALLED: VALID, INVALT

FUNCTION DESCRIPTION: Input: R3 - input buffer pointer.
Output: If winds report, 'ED'; sets F0 flag
in US.FLG-

COMMENTS:

9

A-8

MODULE NAME: YESCK

PROGRAM: (11/34) VRS

SOURCE PILE: SPEC.MAC

PrRPOSE: Check input buffer for valid yes or no

response. Prompt must call for 4/m and 4/m
must be in right format.

CALLING ROUTINES: SYNTAX (SPEC.MAC)

CALLING SEQUENCE:

COMMON: USB parameters:
Pt..YES
US.PLG
PL.YER
US. PER
PL. NO

SUBROUTINES CALLED: VALID, INVALY (SYNTAX)

FUNCTION DESCRIPTION: 1. Input: RO - rJS8 address
R3 - input buffer pointer
Ri - protocol mask pointer,

2. Output: R2 - 50 for no response
R2 - 47 for a yes response

COMMENTS:

9I

A-90

MODULE NA4E: MAP

PROGRAM: (11/34) VRS

SOrRCE FTLE: SPEAK.MAC

PURPOSE: Maps 4K memory segments

* CALLiNG ROUTTMES: READC

CALLING .SEQUENCE:

COMMON:

SUBROUTT NES CALLED: HALT

PUNCTtON DESCRIPTIOV: 1. Saves RO on the stack-
2. Sets up window offsets and maps the region.
3. If error, calls HALT routine which bolts

the processor.
4. Restores RO and exits.

COMMENTS:

9

is

I A-91

MODULE NAME: READ

PROGRAM: 11/34 VRS

SOURCE PILE: SPEAK.MAC 9
PURPOSE: Reads data from vocabulary disk

CALLING ROUTINES: SPEAKR

CALLING SEQUENCE: JSR PC, READ

COMMON: All TR.*** as defined in PREFTX.MAC
US.**

F'L.
BQ. ***

SUBROUTINES CALLED: TRAP TR.DQE HALT
TRAP TR.Qr]E MAP

FUNCTION DESCRIPTION: 1. Gets a queue element from fill pool and
puts it on read list head.

2. Performs mapping if necessary,
3. Issues a .READC request to disk.

COMMENTS:

I
tr A-92

ft

MODULE NAME: READC

PROGRAM: (11/34) VRS

SOURCE FILE: SPEAK.MAC

PURPOSE: Read completion routine for disk (reading
speech file)

CALLING ROUTINES: READ

CALLING SEQUENCE: Called at completion of a .READC request

COMMON:
All. as defined in PREFIX.MAC

US. ***
FLt. ***

SUBROTITTIES CALLED: MAP
HALT

FUNCTION DESCRIPTION: 1. if error on previous read, prints error
message-

2. Calculates USB address.
3. Saves R2, R3, R4, R5 on the stack.
4. Moves Queue element from read queue to talk

list head,
5. Maps user into extended memory buffer.
6. issues a -WRITE request to ADPCM outputdevice.
7. Restores USB addres and saved registers,

enables Touch-Tonew and exits#

COMMENTS:

A-9

J A-93

,_ _ _ +..+

*1 F

MODULE NAME: SPEAKR

PROGRAM: (11/34) VRS
4

SOURCE FILE: SPEAK.MAC
#

PURPOSE: Queue speak buffer and issue reads to disk for
.

speech data

CALLING ROUTINES: SPEAKST

CALLING SEQUENCE: JSP PC, SPEAKR

COMMON:
All ST. *** as defined in PREVIX.MAC

FL. ***
US. ** *

SUBROUTINES CALLED: READ
TYRANT

FUNCTTON DESCRTPTTON: 1. Records speak indication in USB.
2. Queues element onto speak queue.
3. Extracts message fields
4. Initiates double-buffered disk reads'
5. Exits,

COMMENTS:

A-9

MODULE NAME: SPKST

PROGRAM: 11/34 VRS

SOURCR FILE: SPEAK.MAC

PURPOSE: Sets up speech buffers

CALLING ROOTITNS: Completion routine from MARKTTME issued in
speak module

CALLING SEQUENCE:

COMMON: All TR.*** as defined in PREFTX.MACrjs. *

FL.** *

SUBROUTTES CALLED: TRAP TR.USB
SPEAKR

* FUNCTION DESCRIPTTON: 1. Saves R2, R3, R4, R5 on the stack.
2. Gets USS address.
3. Sets speak indicator in USB and executes

speak routine.
4. Clears speak indicator,
5. Restores saved registers and returns,

COMMENTS:

A-95

MODULE NAME: TYRANT

PROGRAM: (11/34) VRS

SOURCE FILE: SPEAK.MAC

PURPOSE: Controls speaking process. Sets Ist block
address, number of blocks and last words.
Returns if end of message and not hanging up.
Dequeues element from message queue, queues
the last message buffer to free pool queue and
requests next message if end of briefing or
hang up, i dicates end of briefing and enables
Touch Tone% Input.

CALLING ROUTINES: MORSPK WRITC SPEAKR

CALLING SEQUENCE:

COMMON:
US.lst FL.INT TR.DQE
US.FLG
US. NUM
US. BLK
US.MSG
US.PER
US.DMB

SUBROUTINES CALLED: INCREQ
BLDBRF
SENDRT

FUNCTION DESCRIPTION: 1. Input: RO - USB address.
2. Output: US.NUM (RO) number of consecutive

blocks.
US.LST (RO) number of words in
last block-
US.BLK (RO) address of 1st block.
US.MJG (RO) updated pointer for
next speak .pass.
US.FLG (RO) end of talk mode flag
set if end.

COMMENTS:

A-96

MODULE NAME: WRITC

PROGRAM: (11/34) VRS

SOJRCE PILE: SPEAK.MAC

PrRPOSE: Write completion routine for ADPCM output

CALLING ROUTINES: READC

CALLING SEQU1ENCE: This is completion routine for .WRITC.in READC
module#

COMMOn: All TR.*** as defined in PREFTX.MAC
us.***

ST. ***

SUBROUTINES CALLED: TRAP TR.QUE
TRAP TR.IQE
TYRANT
READ
SIGNAL

FUNCTION DESCRIPTION: 1. If error on write, orints error message.
2. Saves R2, R3, R4, R5 on the stack.
3. Calculates USB address if illegal rJsS

address, prints a message.
4. Returns speech element to free pool-
S. Gets next message field and reads from disk.
6. Restores saved registers and exits.

COMMENTS:

A-97

MODULE NAME: ALARM/ALARMP

PROGRAM: 11/34

sorjCE PILE: SEND.MAC

PURPOSE: Alerts the operator if task RETREV or VREXEC
is not running

CALLING ROrUTINES: RCVER, CLKRPT a

CALLING SEQUENCE: I' a processor (VREXEC) alarm, jump to ALARMP.
I-, a RETREV alarm, jump to ALARM.

COMMON:

SUBROUTINES CALLED: None

PUNCTION DESCRIPTION: Rings the terminal bell 10 times and types one
of the following messages:

1. RETREV NOT RUNNING. VRS ABORTING.
2. PROCESSORS NOT RUNNING.

The system exits if message $1 was typed.

COMMENTS:

9

JS

A-98

MODULE NAME: BLDBRF

PROGRAM: 11/34 VRS

SOURCE FILE: SEND.MAC

PURPOSE: Composes a demand request

CALLING ROUTINES: SPEAK, ODSCON, DISPLA, RPTSKP

CALLING SEQUENCE: RO - User Status Block pointer
R2 u Demand request type

COMMON:

SUBROUTINES CALLED: SP.CLA

FUNCTION DESCRIPTION: Composes a demand request, storing it in the
"current input location" pointed to by word 2
of the USB, and getting the channel and demand
request number from the rSB.

COMMENTS:

A-99

....--- w--

MODULE NAME: CHKREQ

PROGRAM: (11/34) VRS

SOUCE F'ILE: SEND.MAC

PURPOSE: Check ASCII Channel Number. £

CALLING ROrJTINES: DISCO", RPTSKP

CALLING SEQUENCE: RO v points to USB.

COMMON:

SUBROUTITNES CALLED: TRAP TR.QE

FUNCTION DESCRIPTION: Compares the ASCII channel, number in the USB
with the one in an 11/70 receive QUEUE element.

COMMENTS:

A

; A-1OO

.. . , i . ..A| IIIII - l i 11

MODULE NAME: DISPLA

PROGRAM: (11/34) VRS

SOUME PTLE: SEND.MAC

" PURPOSE: Initiates sends to the 11/70 and fields the
responses

CALLING ROUTINES: SPEC

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: SPEAK, SEND, BLDRP, COMMON

FUNCTION DESCRIPTION: Briefing requests are sent and the address of
the start of the coding which fields the
responses is stored in U.S. RTN (by SEND) for
the channel. This address is returned to from
BACKGR when a read completes later on. When
that happens, the various response formats are
checked for: the message acceptable response,
the diagnostic responses, and the type 2
message unit responses.

COMMENTS:

A-10].

MODULE NAME: RCVC

PROGRAM: (11/34) VRS

SOURCE FILE: SEND.MAC

PURPOSE: Fields data sent from 11/70 "

CALLING ROUTINES: Completion routine for the .READC issued in
module RCVEX

CALLING SEQUENCE: R4 points to FWA of data buffer

COMMON:

SUBROUTINES CALLED: SIGNAL, ALARM, DEFUSB, TR.DQE, TR.QUE

FUNCTION DESCRIPTION: Handles the two types of 11/70 messages
queueing them for the appropriate processing.
A validity check is performed and if the
message is not a valid briefing request
acknowledgment not a briefing message unit,
the error path checks for RETREV log-on
echoes, which are sent to the terminal, or for
*1, indicating a response by RETREV to a poll
message sent by the 11/34 every 7 seconds, or
for *2, sent by RETREV if the weather
processors do not wake up every 15 minutes. A
branch is made to ALARM when *2 is received.
When *1 is received a new 20-second MKTM
issued (after cancelling the one in effect).

COMMENTS:

A-102

MODULE NAME: RCVEX

PROGRAM: (11/34) VRS

SOURCE PILE: SEND.MAC

PURPOSE: Receive protocol for 11/70 to 11/34
commun ication

CALLING ROUTINES: RCVC

CALLING SQrJENCE:

COMMON:

SUBROUTTINES CALLED: RCVC completion routine, TR.DQE, TR-.QUE

FUNCTION DESCRIPTION: Fetches an available QUEUE address and issues
a read with completion on Channel 3.

COMMENTS:

S

!£

I'

A-103

MODULE NAME: SEND - SENDRT

PROGRAM: (11/34) VRS

SOURCE FILE: SEND.MAC

PURPOSE: Sends a byte string to the 11/70

CALLING ROUTINES: DISPLA RPTSKP
DISCON TSTRCV

CALLING SEQUENCE: R3 = Data buffer start address
R4 - Data buffer length

COMMON: SENDC, the completion routine.

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: Writes a string of bytes to the 11/70 on
channel 4. A checksum is computed and
appended to the data.

COMMENTS:

A

q

A- 104

I ..

MODULE NAME: INCREQ

PROGRAM: (11/34) VRS

SOURCE FILE: SEND.MAC

PURPOSE: Increment the ASCII message unit number by one.

CALLING ROUTINES: RPTSKP, SPEAK

CALLING SEQUENCE: RO - User status block pointer
R5 v Message unit number USB offset

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION: Increments the 4-character ASCII message unit
number by one.

COMMENTS:

-- lO

MODUILE NAME: TSTRCV

PROGRAM: (11/34) VRS

SOURCE VILE: SEND. MAC

PURPOSE: Validity check on message unit data
3

CALLING ROUTINES: DAP

CALLING SEQUENCE: R4 points to start of input buffer.

COMMON:

SUBROrUTINES CALLED: BLDBRP, SEND (SENORT)

FUNCTION DESCRIPTION: Checks message unit pairs for validity. If
the block number of a pair is invalid, the
briefing request is rebuilt and sent to the
11/70 again.

COMMENTS:

A

iI

A-106

MODULE NAME: EXIT

PROGRAM: (11/34) VRS

SOURCE FILE: PURGE. 14AC

* PURPOSE: Exit routine for 11/34 VRS

S CALLING ROUTINES: 8ACKGR

CALLING SEQUENCE: NXTEXT sets EXTTVL signal for BACKGR when a
Terminal input of 'EXIT' received

COMMON:

SUBROUTTWES CALLED: TRESET, MRKTTM, DISABLE, STRT

P NCTION DESCRIPTION: 1. Closes o each line channel to ADPCM
hardware and disable each Touch
Tone* line

o Dictionary file.
2. Sends. exit message to 11/70 program RETREV

o closes input channel to 11/70
o closes output channel to 11/70
o closes Touch-Tone (MCX) channel
o closes ADPCM channels,

COMMENTS:

1

I.

• A-107 "

MODULE NA E: CLKRP1t

PROGRAM: (11/34) VRS

SOURCE FTLE: CLOCK.MAC

PURPOSE: Tics the VRS clock and attends to certain
real-time scheduled functions

CALLING ROUTiES: Completion routine to a 1-sec MRKT, issued by
STRTTM and issued each time thereafter by
itself

CALLING SEQUENCE:

COMMON:

S;BROTTNES CALLED: SNOPOI
ALARM

FrNCTION DESCRTPTTON: When a 1-sec MRKT expires, a second is added
to the seconds-past-midnight counter. Every 7
seconds, a poll message (ESC NULL) is sent to
RETREV. Also, a check is made for delays in
11/70 responses (in SNDPOI).

COMMENTS:

A1

A-lO8

MODULE NAME: GETTIM

PROGRAM: (11/34) VRS

SOURCE PILE: CLOCK.MAC

PURPOSE: Put current time of day into LVM50 Touch-Tone®

input buffer.

CALLING ROUTINES: SP.TIM

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED: ST4LI, DV, SCO

FUNCTION DESCRIPTION: Converts time to ASCII (hhmm) and stores in
Touch-Tone input buffer.

COMMENTS:

A-109

4ODULE RAME: SDVI

PROGRAM: (11/34) VRS

SOURCE PTLE: CLOCK.MAC

PURPOSE: Inteqer divide routine

CALLING ROUTINES: GETTTM

CALLING SEQUENCE: R4 * HI order dividend
R3 v LO order dividend
R1 - divisor

RETURNS: R4 m HI order quotient
R3 - LO order quotient

COMMON:

SUBROUTTNES CALLED: None

PUNCTTOR DESCRIPTTON: Divides a 32-bit dividend by a 16-bit divisor
for a 32-bit quotient.

COMMENTS: *

-1

d

A-t10

MODJ LE IAME: $ML-

PROGRAM: 11/34 VRS

SOUCE PILE: CLOCK.MAC

PURPOSE: Enteger multiply routine

CALIIG ROUTIrNES: GETTIM

CALLTG SEQUENCE: R4 - HT order multiplicand
R3 - LO order multiplicand
R v multiplier

RETURNS: R4 - HI order product
R3 - LO order product

COMMON:

suBROrTINES CALLED:

PUNCTION DESCRIPTION: Multiplies a 32-bit multiplicand by a 16-bit
multiplier for 32-bit product.

COMMENTS:

A-Ill

MODULE NAME: TR.HAN

PROGRAM: 11/34 VRS

SOURCE FILE: TRAP.MAC
0

PURPOSE: Handles entry to all TRAP routines

CALLING ROrTINES: BACKGR DAP SPEC

CALLING SEQUENCE: TRAP TR.***

COMMON: TR.LST

SUBROUTINES CALLED: All TRAP routines (TRAP.TR.***)

PUNCTION DESCRIPTION: 1. Gets TRAP code from stack.
2. Checks for legal TRAP code-
3. Resolves address of desired TRAP routine,
4. Enters routine via JSR.
5. On return from routine does error checking.
6. Returns via RTI,

COMMENTS:

A
A-112

MODULE NAM4E: TR.MOD (MOOLSB)

PROGRAM: 11/34 VRS

SOURCE PILE: TRAP. MAC

" PURPOSE: Modifies line status field of USS.

* CALLING ROUTINES: RING

CALLING SEQUENCE: TRAP TR.MOD

COMMON: ALL TR.*** As defined in PREFIX.MAC
US.

SP.***

DP.*

SUBROUTINES CALLED: TRACE

PUNCTION DESCRIPTION: 1. Places R1 in line status field,
2. If input received from 11/70, clears

line timeout flag in clock.
3. Performs a trace.
4. Returns.

COMMENTS: This routine is entered thru a TRAP vector
* in order to change processor priority to 7,

thus preventing device interrupts from
changing vital parameters.

A

MODULE NAME: TR.SIG (SrGMAN)

PROGRAM4: 11/34 VRS

SOURCE FILE: TRAP.MAC

PURPOSE: Signal flag modification routine .

CALLING ROUTINES: BACKGR

CALLING SEQUENCE: TRAP TR.SIG

COMMON:

SUBROUTINES CALLED: None
FUNCTION DESCRIPTION: 1. Moves BITMSK into R. and clears BITMSK.

2. Moves BITMSK+2 into R2 and clears
BITMSK+2

3. Returns.

COMMENTS; This routine is entered thru a TRAP vector
in order to change processor priority to 7,
thus preventing device interrupts from
changing vital parameters.

A

i! A-2L14

MODULE NAME: TR.SPK

PROGRAM: 11/34 VRS

SOURCE FILE: TRAP.MAC

PURPOSE: Executives SPEAK routine

CALLING ROUTINES: SPEAKR

CALLING SEQUENCE: TRAP TR.SPK

COMMON: ALL TR.*** as defined in PREFIX.MAC
US ***

FL ***SP.***
DP. * **

SUBROUTINES CALLED: TRAP TR.QUE

FUNCTION DESCRIPTION: 1. QUEUES message pointer into SPEAK QUEUE.
2. Checks to see if done talking. If so,

returns with carry bit clear. If
still talking, returns with carry bit
set.

COMMENTS: This routine is entered thru a TRAP vector
in order to change processor priority to 7,
thus preventing device interrupts from
changing vital parameters.

A-115

MODULE NAME: TR.USB (DEPUSE)

PROGRAM: 11/34 VRS

SOURCE FILE: TRAP.MAC

PURPOSE: Calculates USB address from channel # in RO

CALLING ROUTINES: MCX.SYS U

CALLING SEQUENCE: TRAP TR.USB

COMMON: All TR.*** as defined in PREFIX.MAC
US,*

FL ***
SP .***
DP. **

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1. Checks for legal channel #.returns
with C-bit set if error.

2. Multiples channel # by 64 and adds
base address of USB.

3. Returns.

COMMENTS:

A-116

MODULE NAME: TR.DQE (DQUEUE)

PROGRAM: 11/34 VRS

SOURCE FILE: QUEUE.MAC

* PURPOSE: Removes one element from AQUEUE list

CALLING ROUTINES: BACKGR,DAP,SPEC

CALLING SEQUENCE: MOV #QLIST, R3

t, TRAP TR.DQE

COMMON:

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1. Address of a queue list header is
placed in R3.

2. Routine exits with carry bit set if
no elements in list.

3. List header and tail pointer are
adjusted.

4. Routine exits with R4 containing
address of QUEUE element.

COMMENTS: This routine is entered thru a TRAP vector
in order to change processor priority to 7,
thus preventing device interrupts from
changing vital parameters.

%

A-117

MODULE NAME: TR.QUE (EQUEUE)

PROGRAM: 11/34 VRS

SOURCE FILE: QUEUE.MAC

PURPOSE: Inserts one element into QUEUE list

CALLING ROUTINES: 8ACKGR,DAPSPEC f

CALLING SEQUENCE: NOV #QLIST, R3
MOV #ELADDR, R4
TRAP TR.QUE

COMMON:

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1. Address of QUEUE list reader is placed
in R3.

2. Address of QUEUE element is placed in
R4.

3. List reader and tail pointer are
adjusted.

4. Routine exits with carry bit clear.

COMMENTS: This routine is entered thru a TRAP vector
in order to change processor priority to 7,
thus preventing device interrupts from
changing vital paramenters.

A1

l1

• A- 118

MODULE NAME: TRACE

PROGRAM: 11/34 VRS

SOURCE FILE: TRACE.MAC

* PURPOSE: Creates a statistical data file VRDATA.DAT.

CALLING ROUTINES: TR.MOD (MODLSB)

CALLING SEQUENCE:

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION: Fills a buffer with selected data from the
User Status Block for each briefing
performed and writes it to a revolving
file, VRDATA.DAT, along with a record
pointer block in block 0 and data record
definitions prepended to each briefing's
record. Upon initialization of VRS, if no
file exits on disk, it is created. If one
exits but was not concluded during a normal
exit, the file is scanned and a record
pointer block constructed.

COMMENTS:

A-119

MODULE NAME: TABLE

PROGRAM. 11/34 VRS

FSOURCE FILE: TABLE-MAC

PURPOSE: Steps each user channel through the system
dialogue.

CALLING ROUTINES: DAP

FCALLING SEQUENCE: Twice the value in US.DAP CR0) added to the
top address of TABLE (VECTOR) yields the
address of the desired table.

COMMON: The special function entry points, SP.xxx.

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: For each step of the dialogue protocol
there is a table of pointers and flags as
follows:I
1. A word of flags indicating certain

temporary conditions, and expectations.
2. Address of any special function.

necessary before speaking a prompt.
:1 3. Wait interval before speaking prompt.

4. Wait interval before speaking echo.
5. Flag if to repeat same utterance after

response.
6. Address of the prompt message units.
7. Address of any special function

necessary to user syntax analysis.
8. Address of masks used in syntax

checking.
9. Address of any special function

necessary before speaking an echo.
10. Address of special function necessary

before branching to next function in
DAP.

11. yes or normal response branch vector.
12. No or abnormal response branch vector.

The elements of the tables are
accessed as follows: A constant stored
in some address DP.XXX is added toI
current value of R1 to point to the
right table. Another DP.XXX value is
added to point to the desired element
of the table.

COMMENTS: f

A- 120

A-2 PDP-11/7
00 VRS

A-121

MODULE NAME: DICT

PROGRAM: VREXEC

SOURCE FILE: VOCAB.MAC

PURPOSE: To translate ASCII text to Speech File
Pointers

t
CALLING ROUTINES: START (DICT.MAC) interface module

CALLING SEQUENCE: FORTRV - ASCII text in ATADII
VSNDRR DICT

COMMON: Requires VRSDIC for Global Common

SUBROUTINES CALLED:

FUNCTION DESCRIPTION: Given the ASCII weather report text, a
binary search is done on a list for each
word to obtain the vocabulary file pointers
and record lengths to be sent to the 11/34
VRS.

COMMENTS:

0

A-122

MODULE NAME: EXTHED

PROGRAM: VREXEC

SOURCE FILE: EXTHED.FTN

PURPOSE: This subroutine extracts the date/time
group from a header report.

CALLING ROUTINES: VRSSA, VRSPTR

CALLING SEQUENCE: Call EXTRED (A, ILEN)
where: A - raw data input array

ILEN a length in bytes of raw data array

COMMON:

SUBROUTINES CALLED: None

FUNCTIONAL DESCRIPTION: To extract the six-digit header date and
time from the report header passed to it.
Input:

A - A byte array containing the report
header.
ILEN - The length, in bytes, of the
report header contained in the array A.

COMMON/ZULU/HTIME, IRTIM, STIME where
HTIME, IRTIM, and STIME are all
six-byte arrays.

Ou tpu t:
The six-digit header date and time
group is placed into the six-byte
array HTIME in the labeled common ZULU.

COMMENTS:

A-123

MODULE NAME: LGTNG

PROGRAM: VREXEC

SOURCE FILE:

PURPOSE: This subroutine decodes lighting SA remarks. 4

CALLING ROUTINES: VRRMK

CALLING SEQUENCE: Call LGTNG (WORK, WLEN, RMK, RLEN, INDX,
IERR)
where: WORK = raw data word

WLEN - length in bytes of raw
data word

RMK = raw Remarks data array
RLEN = length in bytes of Remarks

raw data array
INDX = current index position in

Remarks raw data array

OERR = error flag

COMMON:
SUBROUTINES CALLED: None

SYSTEM ROUTINE REQUIRED: INDSTR

FUNCTION DESCRIPTION: To decode lighting remarks which occur in
the Remarks portion of SA reports.
Input:

WORD a A byte array containing the
data word to be decoded.

WLEN - The length, in bytes, of the
data word.

RMK = A byte array containing the SA
Remarks data.

RLEN - The length, in bytes, of the SA
Remarks data.

INDX - The current pointer position
within the SA Remarks data.

COMMON/RSTUFF/RLIST, IRNDS, NWX
where RLIST = A byte array containing

the decoded Remarks
IRNDX - The current pointer

position within the
decoded remoars data.

NWX - A flag indicating if
weather data were
decoded in the
subroutine VISWX.

A-124

Output:
The decoded lighting phrase is placedinto the RLIST array and IRNDX isappropriately incremen ted.IERR a An error flag which is set ifthe lighting remark cannot be decoded.

COMMENTS:

I

I

I

A -
- A 1 2 5

MODULE NAME: PCPMOD

PROGRAM: VREXEC

SOURCE FILE:

PURPOSE: This subroutine decodes precipitation SA
remarks relating to hail stone size, ground
fog depth', snow increasing, and
precipitation in inches.

CALLING ROUTINES: VRRMF.

CALLING SEQUENCE: Call PCPMOD (WORD, WLEN, RMIC, RLEN, INDX,
rERR)
where: WORD - raw data word

WLEN = length in bytes of raw
data word

RMK = raw Remarks data array
RLEN a length in bytes of Remarks

raw data array
INDX - current index position in

Remarks raw data array
IERR - error flag

COMMON:

SUBROUTINES CALLED: none

SYSTEM ROUTINE REQUIRED: INDSTR, INUM

FUNCTION DESCRIPTION: To decode precipitation remarks which occur
in the Remarks portion of SA reports.
Input:

WORD - A byte array containing the
data word to be decoded.

WLEN = The length, in bytes, of the
data word.

RMK - A byte array containing the SA
Remarks data.

RLEN - The length, in bytes, of the SA
Remarks data.

INDX = The current pointer position
within the SA Remarks data.

COMMON/RSTUFF/RLIST, IRNDX, NWX
where RLIST = A byte array containing

the decoded Remarks.
IRNDS - The current pointer

position within the
decoded Remarks data.

NX - A flag indicatiRg if
weather data were decoded
in the subroutine VISWX.

A-126

Output:
IERR - An error flag which is set if

the precipitation remark cannot
be decoded.

The decoded precipitation phrase is
placed into the RUIST array and rRNDX
is appropriately incrementod.

COMMNTS:

.1 A-12 7

MODULE NAME: INC REQ

PROGRAM: 11/34 YRS

SOURCE FILE: SEND.MAC

PURPOSE: Increment the ASCII message unit number by

one.

CALLING ROUTINES: RPTSKP, SPEAK

CALLING SEQUENCE: RO - User Status Block pointer
R5 - Message Unit Number USS offset.

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION: Input:
R7 - USB pointer.

Output:
US.DMB incremented by one.

COMMENTS:

A- 128

MODULE NAME: PRES

PROGRAM: VREXEC

SOURCE FILE:

PURPOSE: This subroutine decodes SA remarks relating
to pressure.

CALLING ROUTINES,: VRRMK

CALLING SEQUENCE: Call PRES (WORD, WLEN, RMK, RLEN, INDX,
IERR)
where: WORD - raw data word

WLEN - length in bytes of raw
data word

RMK - raw Remarks data array
RLEN = length in bytes of remarks

raw data array
INDX = current index position in

remarks raw data array
IERR = error flag

COMMON:

SUBROUTINES CALLED: None

SYSTEM ROUTINE REQUIRED: INDSTR, INUM

FUNCTION DESCRIPTION: To decode pressure remarks which occur in
the Remarks portion of SA reports.

Input:
WORD = A byte array containing the

data word to be decoded.
WLEN - The length, in bytes, of the

data word.
RMK a A byte array containing the SA

Remarks data.
RLEN - The length, in bytes, of the SA

Remarks data.
INDX = The current pointer position

within the SA Remarks data.
COMMON/RSTUFF/RLIST, IRNDX, NWX
where RLIST- A byte array containing

the decoded Remarks
IRNDX- The current pointer

position within the
decoded Remarks data.

NWX- A flag indicating if
weather data were decoded
in the subroutine VISWX.

A-129

Output:
The decoded pressure phrase is placed
into the RLIST array and IRNDX is
appropriately incremen ted.
IERR- An error flag which is set if

the pressure remark cannot be
decoded.

COMMENTS:

A1

• : -- , i " li m l l J " " "1 ' 1 - - .,A -I II13 0l

MODULE NAME: RNWY

PROGRAM: VREXEC

SOURCE FILE: RNWY.FTN

PURPOSE: This subroutine decoded runway visibility
and visual range SA remarks.

CALLING ROUTINES: VRRMK

CALLING SEQUENCE: Call RNWY (INDX, WORD, LENGTH, ICALL, IKEY,
ING)
where INDX - current position in raw

data array
WORD - current raw data word

LENGTH - length in bytes of data
word

ICALL - 1 for runway visibility
decode, 2 for runway
visual range decode

ING - error flag

COMMON:

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: To decode runway visibility and visual
range remarks which occur in the REmarks
portion of SA reports.
Input:

INDX - The current pointer position
within the SA Remarks data.

WORD a A byte array containing the
data word to be decoded.

LENGTH a The length, in bytes, of the
data word.

ICALL = 1 for visibility decode, 2 for
visual range decode.

IKEY - Points to position of 'VV' or
'VRI within the data work being
decoded.

COMMON/RSTUFF/RLIST, IRNDX, NWX
where RLIST - A byte array containing

the decoded Remarks.
IRNDX - The current pointer

position within the
decoded Remarks data.

NWX - A flag indicating if
weather data were decoded
in the subroutine VISWX.

A-131

output:
The decoded runway phrase is placed
into the RLIST array and IRNDX is
appropriately incremen ted.
ING -An error flag which is set if

the runway remiark cannot be
decoded.

COMMENTS:F

A- 132

MODULE NAME: RNYCND

PROGRAM: VREXEC

SOURCE FILE:

PURPOSE: This subroutine decodes runway condition SA
remarks.

CALLING ROUTINES: VRRMK

CALLING SEQUENCE: Call RNYCND (WORD, WLEN, RMK, RLEN, INDX,
IERR)
where: WORD - raw data word

WLEN = length in bytes of raw
data word

RMK = raw remarks data array
RLEN - length in bytes of remarks

raw data array
INDX a current index position in

remarks raw data array
IERR a error flag

COMMON:

SUBROUTINES CALLED: None

SYSTEM ROUTINES REQUIRED:

FUNCTION DESCRIPTION: To decode runway condition remarks which
occur in the Remarks portion of SA reports.
Input:

WORD - A byte array containing the
data word to be decoded.

WLEN - The length, in bytes, of the
data word.

RMK = A byte array containing the SA
Remarks data.

RLEN - The length, in bytes, of the SA
Remarks data.

INDX = The current pointer position
within the SA Remarks data.

COMMON/RSTUFF/RLIST, IRNDX, NWX
where RLIST - A byte array containing

the decoded Remarks.
IRNDX a The current pointer

position within the
ddecoded Remarks data.

NWX - A flag indicating if
weather data were
decoded in the
subroutine VISWX.

A-133

Ou tpu t:The decoded runway condition phrase is
placed into the RLIST array and IRNDX
is appropriately incremented.
IERR = An error flag which is set ifthe runway condition remark

cannot be decoded.

COMMENTS:

A-13

S

,Ii

A-134

MODULE NAME: SKY

PROGRAM: VREXEC

SOURCE FILE: SKY.FTN

PURPOSE: This subroutine extracts and decodes sky
cover data.

CALLING ROUTINES: VRSSA

CALLING SEQUENCE: Call SKY (A, SKYCVR, ISKILL)
where A = raw data input array

SKYCVR - decoded sky cover data
ISKILL = flag indicating error in sky

over field.

COMMON:

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: To extract and decode sky cover data
occurring in the main body of an SA report.
Input:

A - A byte array containing the SA
report being decoded.
COMMON/INDS/IVSTART, IVEND, I SKSTR, I SKEND
where IVSTART - Points to beginning of

the visibility field
in the SA report.

IVEND - Points to the end of
the visibility field
in the SA report.

ISKSTR = Points to the begin-
ning of the sky cover
field in the SA report

ISKEND = Points to the end of
the sky cover field in
the SA report.

Output:
SKYCVR = A byte array containing the

decoded sky cover data.
IKILL = An error flag which is set if

the sky cover data cannot be
decoded.

COMMON/ERROR/IERROR (10)
where: IERROR is an integer array

pointing to any errors in the
SA report.

COMMON/ERRPTS/NDXERR, NDXTEX
where: NDXERR = Number of errors in

IERROR array
NDXTERX Number of free text

items

COMMENTS:

A-135

MODULE NAME: SKYRMK

PROGRAM: VREXEC

SOURCE FILE:

PURPOSE: This subroutine decodes SA remarks relating
to sky cover, compass directions, and
miscellaneous words.

CALLING ROUTINES: VRRMK

CALLING SEQUENCE: Call SKYRMK (WORD, LENGTH, RMK, LNRMKS,
INDX, IBAD)
where: WORD = raw data word

LENGTH = length in bytes of raw
data word

RMK = raw remarks data array
LNRMKS = length in bytes of remarks

raw data array
INDX = current index position in

remarks raw data array.
IBAD = error flag

COMMON:

SUBROUTINES CALLED: None

SYSTEM ROUTINE REQUIRED: ILET, INUM

FUNCTION DESCRIPTION: To decode SA Remarks relating to sky cover
and compass directions.

Input:
WORK = A byte array containing the

data word to be decoded.
LENGTH = The length, in bytes, of the

data word.
RMK - A byte array containing the SA

Remarks data.
LNRMKS = The length in bytes, of the SA

Remarks data.
INDX = The current pointer position

within the SA Remarks data.
COMMON/RSTUFF/RLIST, IRNDX, NWX
where: RLIST = A byte array containing

the decoded Remarks
IRNDX = The current pointer

position within the
decoded Remarks data.

NWX - A flag indicating if
weather data were
decoded in the
subroutine VISWX.

A-136

Ou tpu t:
The decoded skycover phrase is placedinto the RUST array and IRNDX is
appropriately incremented.
TBAD - An error flag which is set if

the sky cover remark cannot be
decoded.

COMMENTS:

A

-..

A-137

MODULE NAME: START

PROGRAM: VREXE2

SOURCE FILE: DICT.4AC

PURPOSE: Interface between the main dictionary
translator, VOCAB.MAC, and VRS

CALLING ROUTINES: VRINP

CALLING SEQUENCE: VRINP performs a SEND with R (4) set to
indicate weather, winds, or exit (see below)

COMMON:

SUBROUTINES CALLED: DICT
FUNCTION DESCRIPTION: 1. Performs a VRCS$ and VSDR$ to receive

and send data stored in array R:
R (4) = Process identifier: exit,

winds, weather.
R (6) = Returned error indicator.
R (7) = Returned data length.2. Calls DICT, which does the translating.

COMMENTS:

A1

A- 138tv

MODULE NAME: SUBFLD

PROGRAM: VREXEC

SOURCE FILE: SUBFLD.FTN

PURPOSE: This subroutine extracts the following
items from an SA report:
1. Report location identifier
2. Beginning -nd end points of sky and

visibility/weather fieldsI 3. Temperature, dew point, wind
direction, and speed.

4. Altimeter Setting
5. Remarks starting point

CALLING ROUTINES: VRSSA

CALLING SEQUENCE: Call SUBFLD (A, ILEN, TEMP, DP, WIND, DIR,
SQLL, GUST, ALTIM, LOC, IGNORE, IK, IRMK)
where: A = raw data input array

ILEN - length in bytes of raw
data array

TEMP - extracted temperature
DP = extracted dew point
WIND a extracted wind velocity
DIR - extracted wind direction
SQLL - extracted wind squall

velocity
GUST - extracted wind gust

velocity
ALTIM - extracted altimeter setting
LOC - location identifier
IGNORE- flag indicating insuffi-

cient data to process
IK , flag indicating error in

report
IRMK - start position of Remarks

in raw data array

COMMON:

SUBROUTINES CALLED: None

FUNCTIONAL DESCRIPTION: Besides extracting the items listed above
in the calling sequence, SUBFLD also sets
the following flags in the common area FLGS:
COMMON/FLGS/IWXFLG, IGFLG, IQFLG, ITFLG,
IDFLG, IWFLG, IAFLG, ISPFLG, ICOFLG,
IAMFLG, IAEST, IWEST, IFRAC, IVIS
of which the following are output in SUBFLD:
IGFLG = A flag which is set if wind gusts

are present.
IQFLG = A flag which is set if squalls

are present.
ITFLG - A flag which is set if temperature

is present.
A-139

'IM

IDFLG - A flag which is set if dew point
is present.

IWFLG - A flag which is set if wind speed
is present.

IAFLG - A flag which is set if altimeter
setting is present.

ISPFLG = A flag which is set if the report
is a SA Special.

ICOFLG -A flag which is set if the report
is a SA correction.

IAMFLG - A flag which is set if the report
is a SA AMOS or AUTOB report.

IAEST * A flag which is set if the
altimeter setting is estimated.

IWEST - A flag which is set if the wind
speed is estimated.

IFRAC - A flag which is set if a
fractional visibility is present.

COMMON/INDS/IVSTRT,IVEND, ISKSTR, ISKEND
where IVSTRT - Points to beginning of the

visibility field in the SA
report.

IVEND - Points to the end of the
visibility field in the SA
report.

ISKSTR = Points to the beginning of
the sky cover field in the
SA report.

ISKEND = Points to the end of the
sky cover field in the SA
report.

COMMENTS:

A1-iA- 140

MODULE NAME: VDATE

PROGRAM: VREXEC

SOURCE FILE: VDATE.FTN

PURPOSE: Converts the report date (day of month)
into a four digit number representing the
report date in terms of year and day of
year.

CALLING ROUTINES: VRSOUT, VRERR, VRSPURG

CALLING SEQUENCE: Call VDATE (DAY, DATE)
where: DAY - report day of the month date

in byte format
DATE - 4 digit integer value

representing report date by
year and day of year. Last 3
digits = day of year, First
digit = last digit of current
year, i.e. 1 - 1981

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION: To convert a given day of the month value
into a four digit number representing the
day of the year and year.
Input:

DAY - A 2-byte array containing the
day of the month.

Ou tpu t:
DATE mAn integer variable containing

the 4-digit value representing
the year and day of the year
for the given day of the month.

COMMENTS:

A

, A- 141

MODULE NAME: VIS

PROGRAM: VREXEC

SOURCE FILE:

PURPOSE: This subroutine decodes visibility SA
remarks

CALLING ROUTINES: VRRMK

CALLING SEQUENCE: Call VIS (RtK, WORK, LNRMKS, LENGTH, INDX,
ING, IAEND, IRMK)
where: RMK a raw Remark data array

WORD - raw data word
LNRMKS = length in bytes of Remarks

raw data array
LENGTH - length in bytes of raw

data word
INDX - current index position in

Remarks raw data array
ING - error flag
IAEND a length in bytes of

translated SA report
contained in byte array
ALIST.

IRMK a start position of Remarks
in raw SA report.

SUBROUTINES CALLED: None

SYSTEM ROUTINE REQUIRED: INUM, ILET

FUNCTION DESCRIPTION: TO decode visibility remarks which occur in
the Remarks portion of SA report.
Input:

RMK a A byte array containing the SA
Remarks data.

WORD a A byte array containing the
data word to be decoded.

LNRMKS a The length, in bytes, of the SA
Remarks data.

LENGTH - The length, in bytes, of the
data word

INDX - The current pointer position
within the SA Remarks data.

IAEND- The length, in bytes, of the
translated main body SA report.

IRMK - Points to the beginning of
Remarks in the SA report.

COMMON/RSTUFF/RLIST, IRNDX, NWX
where: RLIST a A byte array

containing the decoded
Remarks.

A-142

.. . . -i-i

IRNDX - The current pointer
position within the
decoded Remarks data.

NWX - A flag indicating if
weather data were
decoded in the
subroutine VISWX.

Output:
The -decoded visibility phrase is
placed into the RLIST array and IRNDX
is appropriately incremented..
ING - An error flag which is set if

* the visibility remark cannot
be decoded.

COMMON/ERRPTS/NDXEER, NDXTEX
where: NDXERR - Number of errors in

IERROR array
NDXTEX = Number of free text

i tems.
COMMON/FRTEXT/FRTEXR (40), FRTEXP (40)
where: FRTEXR - An integer array

which points to
each free text word
in the decoded SA
report data.

FRTEXP = An integer array
which points to
each free text word
in the decoded SA
report data.

COMMENTS:

A-143

MODULE NAME: VISWX

PROGRAM: VREXEC

SOURCE FILE: VISWX.FTN

PURPOSE: This subroutine extracts and decodes the SA
visibility and weather data.

CALLING ROUTINES: VRSSA t

CALLING SEQUENCE: Call VISWX (A, MILES, WX, IVKILL) b
where: A - raw data input array

MILES a decoded visibility value
WX - decoded weather data

IVKILL - flag indicating error in
visibility/weather field

COMMON:

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: To extract and decode visibility and
weather data occuring in the main body of
an SA report.
Input:

A - A byte array containing the SA
report being decoded.

COMMON/INDS/IVSTRT, IVEND, ISKSTR,
ISKEND
where: IVSTRT = Points to beginning

of the visibility
field in the SA
report.

WrEND = Points to the end
of the visibility
field in the SA
report.

ISKSTR = Points to the
beginning of the
sky cover field in
the SA report.

ISKEND - Points to the end
of the sky cover
field in the SA
report.

Ou tpu t:
MILES = Decoded visibility value
WX - A byte array containing the

decoded weather data.
IVKILL - An error flag which is set if

the visibility/weather data
field cannot be decoded.

A-144I

COMMON/FLGS/IWXFLG, IGFLG, IQFLG,
ITFLG, IDFLG, IWFLG, IAFLG, ISPFLG,
ICOFLG, IAMFLG, IAEST, IWEST, IFRAC,
IVIS of which the following are
output in VISWX:
IWXFLG - A flag which is set if

weather data were decoded.
IVIS a Points to visibility mileage

-- position.
COMMON/ERROR/IERROR (10)
where: IERROR is an integer array

pointing to any errors in the
SA report.

COMMON/ERRPTS/NDXERR, NDXTEX
where: NDXERR = Number of errors in

IERROR array.
NDXTEX - Number of free test

i tens.

COMMENTS:

A

" A- 145

MODULE NAME: VRRMK

PROGRAM: VREXEC

SOURCE FILE: VRRMK.FTN

PURPOSE: This subroutine extracts SA Remarks and,
based upon Keyword analysis, calls
appropriate subroutines for decoding. If
no Keyword is found, it then determines
whether the data are free text items,
additive data item, PIREP, NOTAM, garbage,
or error.

CALLING ROUTINES: VREXEC

CALLING SEQUENCE: Call VRRMK (A, ILEN, IRMK, ALIST, IAEND,
IRKILL, NWXPASS
where: A = raw data input array

ILEN - length in bytes of raw data
array

IRMK - start position of Remarks in
raw data array

IRKILL = flag indicating error in
Remarks

IAEND - length in bytes of translated
message in output array ALIST

COMMON:

SUBROUTINES CALLED: RNWY, WINDS, VIS, SKYRMK, RNYCND, PCPMOD,
WXMOD, PRES, LGTNG, WETHER

FUNCTION DESCRIPTION: To extract SA Remarks and, based upon
Keyword analysis, call the appropriate
subroutine for decoding.
Input:

A = A byte array containing the SA
report being decoded.

ILEN = The length, in bytes, of the SA
report contained in the array A.

IRMK = Points to the beginning of
Remarks in the SA report.

NWXPASS * A flag indicating if weather
data were decoded in the
subroutine VISWX.

COMMON/CHKLOC/LOC
where: LOC A byte array containing

the report location
identifier

A

i A- 146

Output:
ALIST a A byte array containing the

decoded SA report, including
Remarks.

IAEND a The length, in bytes, of the
decoded SA report contained
in ALIST.

IRKILL - An error flag which is set if
the Remarks cannot be decoded.

COMMON/RSTUFF/RLIST, IRNDX, NWX
where: RLIST - A byte array

containing the decoded
Remarks.

IRNDX - The current pointer
position within the
decoded Remarks data.

NWX s A flag indicating if
weather data were
decoded in the
subroutine VISWX.

COMMON/ERROR/IERROR (10)
where: !ERROR is an integer array

pointing to any erors
in the SA report.

COMMON/ERRPTS/NDXERR, NDXTEX
where: NDXERR- Number of errors in

IERROR array.
NDXTEX= Number of free text

i tems.
COMMON/FRTEXT/FRTEXR (40), FRTEXP (40)
where: FRTEXR - An integer array

containing pointers
to free text items
in the raw SA
report.

FRTEXP = An integer array
containing pointers
to free text items
in the decoded SA
report.

COMMENTS:

A1

. A- 147

MODULE NAME: VRSSA

PROGRAM: VREXEC

SOURCE FILE: VRSSA.FTN

PURPOSE: This subroutine receives a SA report from

VREXEC and determines whether or not it is
a SA header or a valid SA report. If it is
a valid report, VRSSA calls the appropriate %
routines to decode it, and returns the
decoded SA (excluding SA Remarks) to
VREXEC. It also identifies whether or not
the SA is a Special and identifies the
position in the report where Remarks begin,
if any exist.

CALLING ROUTINES: VREXEC

CALLING SEQUENCE: call VRSSA (ARRAY, ILEN, ALIST, IAEND, LOC,
IHEAD, IGNORE, IKILL, IRMK, XWX, SPCLSA)
where: ARRAY - raw data input array

ILEN = length in bytes of raw
data array

ALIST = translated message output
array

IAEND - length in bytes of
translated message

LOC = location identifier 4

IHEAD = flag indicating whether or
not report was a header

IGNORE = flag indicating
insufficient data to
process

IKILL = flag indicating error in
report

IRMK = start position of Remarks
in raw data array

XWX = flag indicating whether or
not report contained
weather data

SPCLSA - flag indicating whether or
not report was a Special
SA.

COMMON:

SUBROUTINE CALLED: EXTHED, SUBFLD, VISWX, SKY

FUNCTION DESCRIPTION: Input:
ARRAY = A byte array containing the

SA report to be analyzed.
ILEN w The length, in bytes, of the

SA report contained in ARRAY.

A-148

Output:
ALIST - A byte array containing the

decoded SA report, not
including Remarks however.

IAEND - The length, in bytes, of the
* decoded SA report contained

in ALIST.
LOC - A byte array containing the

location identifier for the
SA report.

IHEAD - A flag which is set if thereport was a header.
IGNORE - A flag which is set if there

were insufficient data to
process.

IKILL - An error flag which is set if
the SA report cannot be
decoded.

IRMK - Points to the beginning of
Remarks in the SA report.

XWX - A flag indicating if weather
data were decoded in the
subroutine VISWX.

SPCLSA = A flag indicating if the
report was a Special SA.

COMMON/ZULU/HTIME, IRTIM, STIME
where: HTIME = A byte array

containing the header
time.

IRTIM = A byte array
containing the report

4time.
STIME = A byte array

containing the output
message time.

COMMON/ERROR/IERROR (10)
where: IERROR is an integer array

pointing to any errors
in the SA report.

COMMON/ERRPTS/NDXERR, NDXTEX
where: NDXERR = Number of errors in

IERROR array
NDXTEX Number of free text

i tems.
COMMON/FRTEXT/FRTEXR (40), FRTEXP (40)
where: FRTEXR = An integer array

containing pointers to
free text items in the
raw SA report.

FRTEXP = An integer arraycontaining pointers to
free text items in the
decoded SA report.

COMMENTS:

A-149

r AAIG2 165 INPUT OUTPUT COMPUTER SERVICES INC WALTHAM MA F/6 17/2
TWENTY-CHANNEL VOICE RESPONSE SYSTEM.(U)
JUN &I OOT-TSC-1313

UNCLASSIFIED FAA-R-81-51 NA4.5 mhIII/I/I//l
I lflllflflllllll
IIIIIIIIIIIIII
IIIIIIIIIIIIIu
IIIIIIIIIIIIII
IIIIIIIIIIIIIu

MODULE NAME: WETHER

PROGRAM: VREXEC

SOURCE FILE:

PURPOSE: This subroutine decodes weather SA remarks.

CALLING ROUTINES: VRRMK

CALLING SEQUENCE: Call WETHER (WORK, LN, INDX, LNRMKS, ING)
where: WORD - raw data word

LN - length in bytes of raw
data word

INDX - current index position in
remarks raw data array

LNRMKS a length in bytes of remarks
raw data array

ING a flag indicating whether or
not a successful weather
decode occurred.

COMMON:

SUBROUTINES CALLED: None

SYSTEM ROUTINE REQUIRED: INUM, INDSTR

FUNCTION DESCRIPTION: To decode weather remarks which occur in
the Remarks portion of SA reports.
Input:

WORD - A byte array containing the
data word to be decoded.

LN - The length, in bytes, of the
data word

INDX a The current pointer position
within the SA Remarks data.

LNRMXS - The length, in bytes, of the SA
Remarks data.

COMMON/RSTUFF/RLIST, IRNDX, NWX
where: RLIST * A byte array

containing the decoded
Remarks.

IRNDX a The current pointer
position within the
decoded Remarks data.

M - A flag indicating if
weather data were
decoded in the
subroutine VISWX.

~Ou tpu t:
The decoded weather phrase is placed
into the RLIST array and IRNDX is
appropriately incremented.

A-150

ING -An error flag which is set if
the weather remark cannot be
decoded.

COMMNTS:

MODULE NAME: WINDS

PROGRAM: VREXEC

SOURCE FILE:

PURPOSE: This subroutine decodes wind SA remarks.

CALLING ROUTINES: VRRMK

CALLING SEQUENCE: Call WINDS (WORD, LENGTH, ING, INDX, RMK,

LNRMKS)
where: WORK - raw data word

LENGTH - length in bytes of raw
data word

ING - error flag
INDX - current index position in

Remarks raw data array
RMK - raw REmarks data array

LNRMKS - length in bytes of Remarks
raw data array

COMMON:

SUBROUTINES CALLED: None

SYSTEM ROUTINE REQUIRED: INDSTR, INUM

FUNCTION DESCRIPTION: To decode wind remarks which occur in the
Remarks portion of SA reports.
Input:

WORD - A byte array containing the
data word to be decoded.

LENGTH - The length, in bytes, of the
data word.

INDX = The current pointer position
within the SA Remarks data.

RMK - A byte array containing the
SA Remarks data,

LNRMKS - The length, in bytes, of the
SA Remarks data.

COMMON/RSTUFF/RLIST, IRNDX, NWX
where RLIST - A byte array containing

the decoded Remarks
IRNDX - The current pointer

position within the
decoded Remarks data.

NWX - A flag indicating if
weather data were
decoded in the
subroutine VISWX.

Ou tpu t:
The decoded wind phrase is placed into
the RLIST array and IRNDX is
appropriately incremented.
ING - An error flag which is set if

the wind remark cannot be
decoded.

COMMENTS:

-A-152

MODULE NAME: WXMOD

PROGRAM: VREXEC

SOURCE FILE:

PURPOSE: This subroutine decodes dispersal SA
&remarks such as dispersal schedule to

begin/end at ttime] and dispersal
began/ended at [time].

4 CALLING ROUTINES: VRRMK

CALLING SEQUENCE: Call WXMOD (WORD, WLEN, PJK, RLEN, INDX,
IERR)
where: WORD - raw data word

WLEN a length in bytes of raw
data word

RMK - raw remarks data array
RLEN a length in bytes of remarks

raw data array
INDX a current index position in

remarks raw data array
IERR - error flag

COMMON:

SUBROUTINES CALLED: None

SYSTEM ROUTINE REQUIRED: INDSTR, INUM, ILET

FUNCTION DESCRIPTION: To decode dispersal remarks which occur in
the Remarks portion of SA reports.
Input:

WORD - A byte array containing the
data word to be decoded.

WLEN - The length, in bytes, of the
data word.

RMK - A byte array containing the SA
Remarks data.

RLEN - The length, in bytes, of the SA
Remarks data.

INDX - The current pointer position
within the SA Remarks data.

COMMON/RSTUFF/RLIST, IRNDX, NWX
where: RLIST - A byte array

containing the
decoded Remarks

IRNDX a The current pointerposition within the
decoded Remarks data.

NWX a A flag indicating if
* weather data were

decoded in the
subroutine VISWX.

.F

A- 15!

Output:
The decoded dispersal phrase is placed
into the RLIST array and IRNDX is
appropriately incremented.
IERR - An error flag which is set if

the dispersal remark cannot be
decoded.

COMMENTS: U

d.

A-154

A.3 PDP-11/70 RETREV

- A- 155

MODULE NAME: ASTDMD

PROGRAM: RETREV

SOURCE FILE: RETVER.MAC

PURPOSE: Gets the first M.U requested from Block
read into CSB ADDS in 'previous repor-t
message Lf report old "

CALLING ROUTINES:

CALLING SEQUENCE:

COMMMON: CSB PARAMETERS:
$CRMUT+LMU $BKVB
CMU BLOCK
BRM.LN .BKHDR
$BRMIE .MUHDR
SAB $DIAGB
$CRBT
FLAG
PMAD
$CRBTPT

SUBROUTINES CALLED: SENDMU
STIM
DEMAND (DMNDMU RETDMD.MAC)

FUNCTION DESCRIPTION: 1. Input: RI-CSB Address.
2. Output: MU requested is put into

11/34 send buffer.

COMMENTS: Must change EMT time addition until system
value given as Greenwich mean time.

A

I A- 156

I

MODULE NAME: ASTVER

PROGRAM: RETREV

SOURE PILE: RETVER.MAC

PURPOSE: Subroutine to verify requested loc from lit
block - set report's available mask

CALLING ROUTINES: RDAST

CALLING SEQUENCE: The AST address after a read complete

COMMON: CSB PARAMETERS:
SLOCPTR
LOCSIZ
$CRMUT + LMU (RI) (used as count of locs

at this pt must be less
than 10)

SAB BRM.ER
.tUDMOD $BRIME.
$RPMSK UDBAS
$DIAGP $BKBV

SUBROUTINES CALLED:

FUNCTION DESCRIPTION: 1. Input: Address of CSB - Rb.
2. Output: location verification - @

sign replaces proper loc
report mask -.

RPMSK - bits set for report types
available. Suffer sent to
last loc - next read issued
if not.

COMMENTS:

0

A-157

i .

MODULE NAME: BRF 2

PROGRAM: RETREV

SOURCE FILE: RETBRF

PURPOSE: Process 11/34 Briefing Request #2; Build a
Channel Response Briefing Table (CRBT) of
Blocks f6r each report per location
requested; send request accepted or error
w/request acknowledgment back to 11/34.

CALLING ROUTINES:

CALLING SEQUENCE: SUSPEN (RETMAN.MAC)

COMMON: CSB PARAMETERS:
$BRMIE $ALT
SCRMUT SLOST
LMU $ALOCS
GMU FLAG, BLOCK, MUNUM
$DIAGB $SAVCB
$DIAGP LOCSIZ
$CRBT SOB
$CRBTPT FREEPL- free pool
SHOURS (of buffers)

list head

SUBROUTINES CALLED: FDBLK -
SEND
System: CDTB convert data to binary BSDRSS

FUNCTION DESCRIPTION: 1. Input: Briefing Request #2 from 11/34
x F /F /F -n -n cr

1 2 3 1 2
x = Channel #
F1 - report type 1 F = FD

3
request, n - hours, n alt

1 2
2. Output: CRBT the FLAG bits for SKIP

type, start of report type,
the BLOCK containing report
requested for loc; the
message unit no. slot (only
1st filled in). These three
words (FLAG, BLOCK, MUNIM)
are filled for each loc per
report block requested.

R1 - CSB address
R3 - input buffer address

COMMENTS:

A-158

MODULE NAME: DBLOCK

PROGRAM: RETRZV

SOURCE FILE: RETSUB.MAC

PURPOSE: Decrement map for all report blocks listed
in previous briefing table for channel then
clears out the RLOCS table.

CALLING ROUTINES:

CALLING SEQUENCE: SUSPEN (RETMAN.MAC)
DEMAND (RETDMD. MAC)

COMMON: CSB Parameters:
sCRBT
BLOCK
SLSTLOC
$RLOCS
.NUM No. of report types
#SA SA offset

SUBROUTINES CALLED: FDBLK

FUNCTION DESCRIPTION: 1. Input R1 - CSB Address.
2. Output Map decremented for each olock

in RLOCS table RLOCS table
cleared.

COMMENTS:

t

A-1S9

I

i.

MODULE NAME: DEMAND

PROGRAM: RETREV

SOURCE FILE: RETDMD. MAC

PURPOSE: Process all 11/34 demands for message unit
data

CALLING ROUTINES:

CALLING SEQUENCE: SUSPEN: (RETMAN.MAC) - after 1st input
buffer character is decoded as '&'
a demand directive

ASTDMD: (send to DMNDMU) RETREV.MAC

COMMON: CSB PARAMETERS:
SQB $STAG
$DIAGB $BKVB
DIAGP $CRBTPT
$CRBT GMU
BLOCK LMU
ERR.DM MUNUM
$IOST $MURQ
BRM.CE CRBTSZ
$BRMIE FLAG

SUBROUTINES CALLED: GETCSB SYSTEM ROUTINES
QUEUE READ
SUSPEN $CDTB-ASCII- to-BINARY conversion
DBLOCK $CBDMG-Binary-to ASCII conversion
SENDMU $CBDSG-Binary-to signed decimal

magn i tude

FUNCTION DESCRIPTION: 1. Input: Input buffer address.
2. Output: Check buffer for channel number

and demand type key:
A. Hang up demand,
B. Send message unit,
C. 'jump ahead' to message

unit and send,
D. repeat message unit demand.
A. Decrements map values and

returns to 11/34 hangup
acknowledge 'A'.

B. If message unit requested
in core - send 1) channel
#, 2) B-demand type, 3)
message unit data; if
message unit not in core,
proper block is read,
(AST) the stage indicator
is set to 1, and message
is requeued until read
completed.

A-160

C. Checks if MU requested
less than least message
unit (LMU) in core, output
same as for B - demand.
If MU requested greater or
equal, then skip ahead
flag is checked, link flag
checked and proper block
read.

D. Back-up in CRBT to proper
block requested and block
read (AST), message
requested, stage indicator
set to 1.

COMMENTS: Any error in format of demand from 11/34 is
sent back with error diagnostic (ERRTN).

A-161

MODULE NAME: DQUEUE

PROGRAM: RETREV

SOURCE PILE: RETSUB.MAC

PURPOSE: DEQUEUES an element from the CSB QUEUE
is t-head.

CALLING ROUTINES:

CALLING SEQUENCE: RETINI (MAC)
SUSPEN - (RETMAN.MAC)
TINAST (RETAST.MAC)

COMMON: None

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1. Input: R3-CSB-QUEUE hold location.
2. Output: R3-CSB QUEUE address which now

holds the next QUEUE link - it
no more QUEUE elements CSB head
and tail QUEUE list head is zero
R4-QUEUE address link.
Sets carry bit if no elements
QUEUED on list head.

COMMENTS:

A1

I

a

*A- 162

I

MODULE NAME: ERRTN

PROGRAM: RETREV

SOURCE FILE: RETDMD. MAC

PURPOSE: Routine for processing error conditions

CALLING ROUTINES:

CALLING SEQUENCE: DEMAND (RETDMD.MAC)
RETINI - (RETINI.MAC)
RDAST - (RETAST.MAC)
TINAST (RETAST.MAC)

COMMON:

SUBROUTINES CALLED: Send system $CBDMG. Binary to ASCII decimal
magnitude

FUNCTION DESCRIPTION: 1. Input: 1 - CSB address
R4 - Error code buffer
R5 - Error code number.

2. Output: RO - address of translation of
error code,

COMMENTS:

A

; .

' A-163

MODULE NAME: EXIT

PROGRAM: RETREV

SOURCE FILE: RETMAN.MAC
a

PURPOSE: Performs retrieval exit tasks

CALLING ROUTINES:

CALLING SEQUENCE: SUSPEN - if exit flag has been set by
TINPUT upon receiving 11/34 exit directive
RETINI - if error opening or reading UDFfile

COMMON: .LINE - CSB parameter
INPFDB - UDF-DAT file descriptor block

SUBROUTINES CALLED: GETCSB - get CSB address
DBLOCK - free blocks in RLOCS
FDBLK - free block allocate for winds.

Data in CRBT - channel response
block table

TINPUT - detach terminal directive

FUNCTION DESCRIPTION: 1. Input: None required.
2. Output: 1) A send directive to

'FDRTRV' task to exit.
2) Map decremented to free

report blocks for all
channels.

3) Close UDF.DAT file-
4) Cancel all mark-time

requests.
5) Detach terminal.

COMMENTS:

A-164

MODULE NAME: FDBLK

PROGRAM: RETREV

SOURCE FILE: RETBRF.MAC

PURPOSE: TO decrement map values for FD - winds data
blocks in the CRBT

* CALLING ROUTINES:

CALLING SEQUENCE: EXIT (RWZMAN.MAC)
DBLOCK (RETSUB. MAC)
BRF2 (RETBRF.MAC)

COMMON: CSB Parameters
$CRBT
BLOCK
FLAG
CRBTSZ

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1. Input: R1 - CSB Address.
2. Ouptut: Map values corresponding to FD

Blocks in CRBT are decremented.

COMMENTS:

A

*A- 165

MODULE NAME: GETCS8

PROGRAM: RETREV

SOURCE FILE: RTU.A

PUPS:Translates binary or ASCII channel number
to its channel status block address

CALLING ROUTINES:

CALLING SEQUENCE: RETINI .MAC RCVAST (RITAST .MA)
SUSPEN (RETMAN .MAC) TINAST (RETABT.NAC)
EXIT (RETMAN.MAC)
DEMAND (RETDIED.MAC)

COMMON: None

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1. Input: RI - the binary or ASCII
channel #.

2. Output: R1 - the CSB address,

COMMENTS: R1 is reserved throughout RETREv to hold
this CSB address. (unless it must be
changed when calling a system routine
requiring RI) .

A-166

MODULE NAME: MRKAST

PROGRAM: RETREV

SOURCE FILE: RETAST.MAC

PURPOSE: Set timer to check for data received for
FDRTRV (this is a precautionary measure to
insure all sends from FDRTRV are received
since there are some 1l/70 system problems
with the receive AST logic)

CALLING ROUTINES:

CALLING SEQUENCE: System traps to this routine when the mark
time elapses

COMMON: MARK FLAG

SUBROUTINES CALLED: RCVAST

FUNCTION DESCRIPTION: 1. Input: None.
2. Output: Resets new mark time.

COMMENTS: uses mark time AST routines MRKT$S to
continuously check for data received from
'FDRTRV .

A-167i7=

MODULE NAME: OUTSEND

PRORAM: RETREV

SOURCE FILE: RETBRF.MAC

PURPOSE: Perform check sum logic on buffer to be sent
to 11/34 and QUEUE the buffer to be sent

CALLING ROUTINES: %

CALLING SEQUENCE: SEND (RETBRF. MAC)
SENDMU (RETBRF.4AC)

COMMON: $IOST - CSB parameter

TINPUT

SUBROUTINES CALLED:

FUNCTION DESCRIPTION: 1. Input: R2 - Buffer address for data to
be sent.

2. Output: Performs check sum logic and
adds check sum characters to
output buffer.

COMMENTS: Outsend kills any pending reads to the
terminal, then outputs the buffer. A
terminal read is then reissued in order to
receive input continuously. The checksum
logic is as follows:
EXAMPLE: D

rn 46 46

is 15
A) initial output 0

buffer
14B) output buffer

7 with check sum
charac ters

Figure A is the initial output buffer, with
each character inserted at a byte location.
The output buffer is an acknowledge of a
hangup demand to 11/34. The check sum logic
then appends the two null characters, the
binary sum of the characters, followed by
the number of characters sent, including the
check sum characters - as shown in Example B.

A-168

MODULE NAME: QUEUE

PROGRAM: RETREV

SOURCE FILE: RETSUB.MAC

PURPOSE: Add buffer to QUEUE

CALLING SEQUENCE: SUSPEN (RETMAN.MAC)
DEMAND (RETDMD.MAC)
TINAST (RETAST.MAC)

COMMON: None

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1. Input: R3 - QUEUE list head address -
(QUEUE head & tail pointer)
R4 - SOB (RI) the buffer address
RI - the CSB address.

2. Output: The QUEUE tail pointer updated
to addition of buffer QUEUED
the last buffer tail pointer
changed to point to added buffer.

COMMENTS:

"I "z
t A- 169

tP

MODULE NAME: RCVAST

PROGRAM: RETREV

SOURCE FILE: RETAST.MAC

PURPOSE: AST location for data received from 11/70
programs currently (9/1/78) only from FDRTRV

CALLING ROUTINES:

CALLING SEQUENCE: RCVAST is trap location for data received
from 11/70 programs FDRTRV but is also
called by MRKAST. (RETAST.MAC)

COMMON: CSB parameters
$BRMIE
$SAVCB
BLOCK
CRBTSZ
$DIAGB
FLAG

SUBROUTINES CALLED: SEND GETSSB

FUNCTION DESCRIPTION: 1. Input: Data block of 4 words queued by
11/70 program FDRTRV word
1 RAD5O 'FDR'
2 RAD 50 'TRV' name of sender
3 Channel # task
4 Block # of FD report

requested by RETREV.
2. Output: Fills block # received into

CRBT BLOCK LOC as pointed to by
$SAVCB
if 1st FDBLOCK received, then
the output buffer containing
acknowledge to 11/34 is sent.

COMMENTS:

A-170

MODULE NAME: RDAST

PROGRAM: RETREV

SOURCE FILE: RETAST.MAC

PURPOSE: The AST address after a read completes, the
program vectors either for an LIT read for
LOC verification or an UDF report block
read for message units.

CALLING ROUTINES:

CALLING SEQUENCE: AST address after a read on UDF completes

COMMON: CSB parameters:
$IOST
$STAGE

SUBROUTINES CALLED: ERRTN ASTSKP
ASTVER
ASTDMD

FUNCTION DESCRIPTION: 1. Input: SP contains # characters
transferred on read and the 10 status
word in CSB.

2. Output: vectors program to either
ASTVER - verify LOC IDS
ASTDMO - DEMAND request
ASTSKP - skip to next briefing block.

COMMENTS:

A-171

MODULE NAME: Retrieval Constant Area

PROGRAM: RETREV

SOURCE FILE: RETCON.MAC

PURPOSE: Storage area for retrieval program

CALLING ROUTINES:

CALLING SEQUENCE: All routine use the area

COMMON: The storage areas are:
19: Channel Status Blocks - a block for
each channel line the block is described in
template file prefix.max (3200 bytes - size
per CSB)
75600 - Freepool list head
75602 - Freepool buffers - (41 buffers)

Free 1 - Free 41
Each buffer has link pointer 1
word plus 25 words

101730 - return QUEUE list head (head &
tail pointer two words)

101736 - ro QUEUE list head
101740 - INPFDB - UDF file descriptor block

FUNCTION DESCRIPTION:

COMMENTS:

A-172

MODULE NAME: RETINI.MAC

PROGRAM: RETREV

SOURCE FILE:

PURPOSE: Initialization module for program RETREV

CALLING ROUTINES:

CALLING SEQUENCE: The VRS 11/34 logs onto the 11/70 and runs
RETREV the start address for RETREV IS AT
BEGINNING OF RETINI

COMMON: Channel status block parameters
$BKVB MRKAST - Mark time AST address
LOCSIZ TINPUT - Terminal QIO address
.BLKHD FREEPL - Free pool list head
SCSBIN TINAST - Terminal input AST address
$EVMSK
INPFDB - File Descriptor Block UDF address
CSBADR - Channel status block
PMAD - 'previous message' address
RCVAST - receive AST address

SUBROUTINES CALLED: EXIT SYSTEM ROUTINES:
ERRTN WAIT FINIT QO
GETCSB SRDA$$ OPNS$M READ

FUNCTION DESCRIPTION: i) Opens UDF.DAT.
2) Gets 'previous report' messasge from

block number given at zero loc in UDF
LIT, stores the messagae for future
use at global address PMAD.

3) Sets receive AST address.
4) Attaches terminal for RETREV task.
5) Issues another terminal read.
6) Jumps to suspend address in main body

code of RETMAN

COMMENTS: The channel status block offsets are
defined in the prefix file RETINI.MAC, each
module of RETREV must be compiled with this
module.

,

' A-173

MODULE NAME: RETURN

PROGRAM: 11/34 VRS.

SOURCE FILE: BACKGR.MAC

PURPOSE: Routine to return address
specified in US.RTN

*

CALLING ROUTINES:

CALLING SEQUENCE:

COMMON: All FL.***us. ***
TR. ***

SUBROUTINES CALLED: TRAP TR-QUE

FUNCTION DESCRIPTION: 1. if echo-done bit is set, return one
element to RDQUE.

2. in any case, restore RI from US.SAI.
3. Jumps to address specified in US.RTN

of USE.

COMMENTS:

A-174

*Q

MODULE NAME: SEND

PROGRAM: RETREV

SOURCE FILE: RETBRF.MAC

PURPOSE: Count number of characters in buffer -
insert two null characters insert character
count and buffer address into QIO block

CALLING ROUTINES:

CALLING SEQUENCE: RCVAST (RETAST.MAC)
ERRTN (RETDMD.MAC)
BRF 2 (RETBRF.MAC)

COMMON: Output:
address of Q10 parameter block for
output to 11/34

SUBROUTINES CALLED: (Output - QIO$ Output) System: IOKILL -
kill any pending I/O to terminal OUTSND

FUNCTION DESCRIPTION: 1. Input: RI, CSB address
R2, the output buffer address,

2. Output: The character count and buffer
address in the Q 0 output block.

COMMENTS:

A1

" A- 175

MODULE NAME: SENDMU

PROGRAM: RETREV

SOURCE FILE: RETBRF.MAC

PURPOSE: 1) Compute end-of-send buffer (without
two null terminator) then

2) Call-outsend to perform check sum and •
1/O to 11/34

CALLING ROUTINES:

CALLING SEQUENCE: BRF2 (RETBRF.MAC)
ASTDMD. (RETVER. MAC)
DEMAND (RETDMD.MAC)

COMMON: Output - Address of QIC request block

SUBROUTINES CALLED: Output - QIO for output to 11/34

FUNCTION DESCRIPTION: 1. Input: R2 - output buffer address
R3 - no of characters to send.

2. Output: the output buffer with check
sum characters to be sent by
11/34.

COMMENTS:

A-176

;4

MODULE NAME: SNDAST

PROGRAM: RETREV

SOURCE FILE: RETAST. MAC

PURPOSE: Send AST address to resume RETREVAL, and
queue next event for channel

CALLING ROUTINES:

CALLING SEQUENCE: 11/70 system traps to this address after an
11/70 - 11/34 send completes

COMMON: CSB parameters:
$IOST
I3RM.BY
$BRMIE
$EVNSK
EVENT - event word for channel activity bit
flags

SUBROUTINES CALLED:

FUNCTION DESCRIPTION: 1. Input: I0 status block from stack
pointer (computes CSB from
$IOST word',

2. Output: Event word with bit set for
appropriate channel busy
cleared in the channel busy

* word SBRMIE.

*COMMENTS:

A-177

MODULE NAME: SUSPEN

PROGRAM: RETREV

SOURCE FILE: RETMAN. MAC

PURPOSE: Check event flag for channel activity if
yes jump to briefing request routines or
demand processing if not suspend

CALLING ROUTINES:

CALLING SEQUENCE: The initialization module calls suspend
initially, after that it is the suspend
address called after each channel activity
has been completed. Demand (RETMAN.MAC)

COMMON: Channel status block parameters:
$DIAGB BRM.BY $MODE $BRMIE
$EVMSK .UDMOD SQUEUE .UDBAS
$QB $BKVB $RPMSK $STAGE
$RLOCS $LOCSPTR BRM.ER
EVENT - double word containing bits set

for each channel to be serviced
FREEPL- address of free pool list head

(head & tail pointer)

SUBROUTINES CALLED: GETCSB DEMAND QUEUE SYSTEM ROUTINES
DQUEUE DBLOCK SCATS

FUNCTION DESCRIPTION:

COMMENTS: Inhibits AST processing while checking
event flags and dequeueing an element.

A-178
I.

• -<'

MODULE NAME: TINAST

PROGRAM: RETREV

SOURCE FILE: RETAST.MAC

PURPOSE: AST address for terminal read complete

CALLING ROUTINES;

CALLING SEQUENCE: AST address upon terminal input received
from 11/34

COMMON: CSB paramenters:
$QUEUE
FREEPL
$EVMSK

Event - word of channel activity bit flags

A

p

-A-179

.4

Exit FL - flag word for exit directive

SUBROUTINES CALLED: RSUM$ RETREV GETCSB
QUEUE DQUEUE ERRTN

FUNCTION DESCRIPTION: 1. Input: Buffer queued to terminal by
11/34

2. Output: 1. DEQUEUES buffers for
particular channel if
receive is a hang up
directive

2. Sets exit flag if receive
is an exit directive

3. Issues next terminal
receive for continuous
terminal input.

COMMENTS: TINAST performs check sum logic on receive
data and checks it against the received
11/34 check sum characters (see outsend
module for description of check-sum logic).

Ai!. A- 180

* A.4 POP-11./700 VRSOT

i
fl

MODULE NAME: BLCR8

PROGRAM: VRSOUT

SOURCE FILE: BLCR8.FTN

PURPOSE: To format the report into message unit
block format

I

CALLING ROUTINES: VRSOUT

CALLING SEQUENCE: BLCR8 (ITIM, NMUS, PDICO, IPNDX, IPAIRS,
IFILE, BLOCK)

V

COMMON: ITIM - time of report
NMS - number of message units in Block

PLICO - start address of the report in
common

IPNDX - pointer to the report array
PDICO

IPAIRS - number of PTR pairs in block
IFITE - report type subfile number
BLOCK - the Block Buffer

SUBROUTINES CALLED: None

FUNCTION DESCRIPTION: 1. Input: The offset in the ARRAY PDICO
to the format into block format.

2. Output: The report pointers in block
format that is 4 message unit
headers followed by the message
unit of 27 pointer pairs.

COMMENTS:

A

* A- 182-I

MODULE NAME: IOBLCK

PROGRAM: VRSOUT

SOURCE FILE: IOBLCK. T

PURPOSE: To read/write data to UDF.DAT

CAL rG ROU.TTRES: VRSOU]T
CALLTNG SEQUEICE: CALL OBLCX (FUNC, BLVM, BLCK)

COMMON: FUC the function to per form
1 - Read
2 - Write

BLNUM - Block number to be written
BLCK - the buffer to receive the block

read or to be written in the
UDP.DAT depending on the function
requested

SUBROUJTINES CALLED: System Routines : Read - Write

FUNCTON DESCRIPTTON: 1. tnput: Block number function to
perform buffer for block.

2. Output: The block to rIOF. or the block
read into buffer an error flag
is returned in the function
parameter - ?13tC.

ii

a

COMM ENTS:

4-183

MODULE NAME: NOTAkVB

PROGRAM: VRSOUT

SOURCE FILE: NOTAVB.PTN

PURPOSE:

CALLING ROUTINES: VRSPURG

CALLING SEQUENCE: Call NOTAVB (LOC, IPILE, NOTBLK)
where LOC - location identifier

IFTLE - 1 value for SA purge, 2
value for FT purge

NOTBLK - block number where the
purge message was
written in the UDF

COMMON:

SUBROUTINES CALLED: BLCR8, TOBLCK, ACTIV, DICT

FUNCTION DESCRIPTION: This subroutine inserts a "Report Not
Available" message for a given locid SA or
FT report into the UDF and returns the
block number where it was written to the
calling program, VRSPURG, for insertion in
the LIT.

COMMENTS:

A

A&-184

MODULE NAME: SASPEC

PROGRAM: VRSOUT

SOORCE FILE: SASPEC. T

PURPOSE: To append SA specials to the SA report for
the same hour

CALLING ROUTTNES: VRSOUT

CALLING SQ'JENCE: Call SASPEC (MAP, HODR, KB, POICO, MP,
TOLD, ITIM)

COMMON: MAP - the address of the (global common)
amp array

HDDR - buffer containing first block of
current report

KB - the first free block available
(for ichain value)

PDICO - the report array
tOLD w the rjDF block number of current

reoort
NP - the number of PTR pairs in report
ITIM the report time

SUBROrUTTNES CALLED: None

FUNCTION DESCRIPTION: 1. Tnput: The SA special report
2. Output: The report appended to the

current SA report, the
,. remaining report is returned

to VRSOUT for regular
orocessing by 8LCR8 - and
IOBLCK,

COMMENTS: If a report currently contains an appended
report, the time is checked. If the new

report is more recent it is written over
the old special/ and any remaining linked
blocks are freed - (map value decremented).

A-185

MODULE NAME: VRSOUT

PROGRAM: VRSOUT

SOURCE PTE: VRSOUT. PTIb
£

PURPOSE: Receives directive from VRS (processor
executive) to output data to UDF.DAT file

CALLTNG ROUTTNES:

CALLING SEQUENCE: VRSOUT is an installed task wiich is loaded
into memory upon initial
send/request/resume directive from
VRS.VRSOUT then remains suspended until it
receives an exit directive.

COMMON: VRS global common area
MAP - index to rD b-ock usage
PDICN - processe.- _.ort array (ASSCII)
POICO - trans .ed report array (integer

ptrs)
ATADIT - winds data (raw)
ATADIO - winds data (translated)

SEND BLOCK RECSND/R
Rl - sender name in RAD50
R2 - sender name in RADSO
R3 - Report type
R4 - LOC-in RAD5O
R5 - Translated pairs
R6 - PDICIN length
R7 - Date (day of month in ASCII)
R8 - Date
R9 - Time (time - HH-MN in ASCT)
RI0- Time
Rll- Time
R12- Time

SUBROUTINES CALLED: BLCR8
LOBLCK
SASPEC

PUTNCTTON DESCRIPTION; 1. Input: The received send-block R16
integers the report to output
in POICO.

2. Output: The report in block format
chained to addition blocks is
necessary and output to rJDF

COMMENTS: VRSOUT is an installed task installed by
VRSINS.CMD.

A-186

MODULE NAME: VRSPURG

PROGRAM: VRSOUT

SOURCE FILE: VRSPURG. PTN

PURPOSE:

CALLING ROUTINES: VRSOUT

CALLING SEQUENCE: Call VRSPJRG

COMMON:

SrJBROUTINES CALLED: ZULUTM, VDATE, R50ASC, NOTAVB, ACTIV, DICT

FUNCTION DESCRIPTION: This subroutine purges from the UDP those
SA reports which are more than 2 hours old
and those FT reports that are more than 8
hours old.

COMMENTS:

S?

A-LB87/A-188

i

A.5 POP-11/70 VRSFD

A-189

a

MODULE NAME: VRSFD (installed task)

PROGRAM: VRSFD

SOURCE PILE: VRSFD.F TN

PURPOSE: This program retrieves and processes Winds
Aloft data from the KCW.DAT file and stores
it, according to a record number
calculation, in the UD? for later VRS
retrieval by FDRTRV.

CALLING ROUTINES: VREXEC

CALLING SEQUENCE: Called through ACTTV

COMMON:

SUBROUTINES CALLED: GTRPT, IDATE, IOBLCK, EXTSTR, RECMV

FUNCTION DESCRIPTION: To extract Winds Aloft data from the
KCW.DAT file and process and store it in
the UDF for later VRS retrieval by FDRTRV.
Input:

PAR u A 7 integer array passed in the
ACTIV send block containing the
KCW.DAT file pointers for Winds
Aloft.

Output:
None

'41 COMMENTS:

4-190

I

I

A.6 PDP-11/700 PORTRV

p

a

A-L91

MODULE NAME: FDRTRV (installed task)

PROGRAM: FDRTRV

SOURCE FILE: FDRTRV.FTN

PURPOSE: To retrieve ATA winds data requested by
RETREV.

CALLING ROUTINES: RETREV

CALLING SEQUENCE: Called through ACTIV

COMMON:

SUBROUTINES CALLED: R50ASC, IDATE, TIME, IOBLCK, SUMMIT, RECEV,
ACTIV, BLCR8, VRECEX, DICT, RETREV

FUNCTION DESCRIPTION: This program is activated upon a winds
Aloft request from RETREV. Data received
from RETREV consist of the channel number
of the request, altitude requested, number
of hours to departure, RADSO representation
of the locid, latitude and longitude of the
locid. The program then determines the
appropriate data to obtain from the UDF,
interpolates the data, and creates a voice
response message containing the decoded
results. It then stores the message in the
UDF and returns to RETREV the block number
where it was stored as well as the channel
number of the request.

Input:
R-A16 integer word array passed in
RECEV where:

R(4) - channel number
R(5) - altitude
R(6) - number of hours to departure
R(7) - RADS0 locid
R(8) = latitude
R(9) - longitude

COMMON/VRSGLB/MAP (10240), PDICIN
(700), PDICO (350) ATADII (160),
ATADIO (160)
where: MAP - A byte array

representing the status
of the UDF.

PDICIN U A byte array
containing dictionary
input from VRSINP.

PDICO = An integer array
containing dictionary
output corresponding
to PDICIN.

A-192

ATADII - A byte array
con taining dictionaryinput from FDRTRV.

ATADIO - An integer arraycontaining dictionary
output corresponding

Ou tpu t: to ATADII.
R - A 16 integer word array passed in
ACTIV
where: R(4) - channel number• R(S) - winds Aloft responsemessage location in UDF.

COMMENTS:

A-193

......_ _ _ _ '

MODULE NAME: IOBLCK

PROGRAM: FDRTRV, VRSOUT

SOURCE FILE: IOBLCK.FTN

PURPOSE: This subroutine reads or writes a block of
data from or into the UDF.

CALLING ROUTINES: Call IOBLCK (FUNC, BLNUM, BLCK)
where: FUNC - 1 for read operation, 2

for write operation
BLNUM - block number of data to be

read or written
BLCK - data block

CALLING SEQUENCE: None

COMMON:

SUBROUTINES CALLED:

FUNCTION DESCRIPTION: This subroutine reads or writes a block of
data from or into the UDF.
Input:

FUNC = 1 for a read operation, 2 for a
write operation

BLNUM = Block number of data to be
read or written

BLCK = Data block to be written.
Ou tpu t:

BLCK - Data block read.

COMMENTS:

A1jI
*

~A-194

(

MODULE NAME: SUMMIT

PROGRAM: FDRTRV

SOURCE FILE: SUMMIT.FTN

PURPOSE: Interpolate Winds Aloft data for a
requested geographical position.

CALLING ROUTINES: FDRTRV

CALLING SEQUENCE: Call SUMMIT (LVL, NDAT, SUMT, SUMX, SUMY,
MASTER)
where: LVL - data level required (1, 2

or 3 value)
NDAT - pressure level required

within data level
SUMT - interpolated temperature

value
SUMX - interpolated X coordinate

value of the wind vector
SUMY - interpolated Y coordinate

value of the wind vector
MASTER - UDF record 9972 containing

special flag and time
values for diagnosing
invalid data.

COMMON:

SUBROUTINES CALLED: IOBLCK, WTFOR3

FUNCTION DESCRIPTION: This subroutine retrieves Wind Aloft data
for the data level, blocks, and subsquares
given in the calling statement and FDSUM
labeled common. It then interpolates the
data for the geographical point requested
according to calculated weighting factors
and returns the results to the calling
program FDRTRV.
Input:

LVL - Winds Aloft data level
required (1, 2 or 3 valve)

NDAT - Pressure level required
within the data level.

MASTER = UDF record 9972 containing
special flag and time values
for diagnosing invalid data.

COMMON/FDSUM/ITIME, BKI, BK2, BK3,
BK4, SQ1, SQ2, SQ3, SQ4, PT1, PT2,
PT3, PT4, IFOLD, IFUNK, NREAD
where: ITIME - Forecast time period

required

A-195

BKl
BK2 Grid blocks required
BK3
BK4
SQl
SQ2 Subsquares required
SQ3
sQ4
PTl
PT2 Weighting factors of
PT3 subsquare points
PT4
IFOLD - An error flag which is

set if the current
Winds Aloft data are
too old,

IFUNK = An error flag which is
set if the Winds Aloft
data required are
missing or unknown.

NREAD - Number of disk reads
required in order to
compute the Winds
Aloft results.

Output:
SUMT - Interpolated temperature valve.
SUMX - Interpolated x coordinate of

the wind vector.
SUMY = Interpolated Y coordinate of

the wind vector.

COMMENTS:

A1

~A- 196

MODULE NAME: WTFOR3

PROGRAM: PORTRV

SOJRCE FILE: WTOR3.PTN

PUROSE: This subroutine re-apportions the weighting
factor of a subsquare point having unknown
wind data amongst the three other points in
order to complete interpolation of wind
data within this plane.

CALLING ROUTINES: SUMMIT

CALL'G SEQrUENCE: call WTFOR3 (PTlK, PT2K, PT3K, PTUNK)
where: PTIK v weighting factor of point I

PT2K v weighting factor of point 2
PT3K v weighting factor of point 3

PTUNK - weighting factor of point
having unknown data values

COMMON:

SUBROUT NES CALLED: None

PUNCTION DESCRIPTION: This subroutine re-aportions the weighting
factor of a subsquare point having unknown
wind data amongst the three other ooints in
order to complete interpolation of wind
data within this plane.
tnput:

PTlK - Weighting factor of point 1.
PT2K - Weighting factor of point 2.
PT3K - Weighting factor of point 3.

PTUNK - weighting factor of point
having unknown data values.

Output:
PTlK v New weighting factor of point 1.
PT2K w New weighting factor of point 2.
PT3K - New weighting factor of point 3.

COMMENTS:

*

A-197/A-198

t

A.7 PDP-11/70 0 r.DFPRG

A-199

MODULE NAME: UDFPRG

PROGRAM: UDFPRG

SOrRCE FTLE: rIDPPRG°FT'N

PURPOSE: To create the VRS report data file UDF.DAT

CALLITG ROr1TtiES: Run by user to re-create the universal Data
File

CALLITNG SEQUENCE: None

COMMON:

STIBROUTIES CALLED: NOMESG, GETADR, WTQIO, IDATE, TTME, GETLrN,
ACTIV, DICT

PUNCTTON OESCRIPTTON: This program creates the Universal Data
File (UD?) and stores the message, "Report
Not Available" within each SA and FT report
location. tt also inserts the special
message, "Current Report Not Available,
Previous Valid Report Is...." for locid
'$00'. This is a special locid used by VRS
Retrieval.
Input:

COMMON/VRSGLB/MAP (10240), PDICTN
(700), PDICO (350), ATADIT (160),
ATADIO (160)
where: MAP v A byte array

representing the status
of the rYoD.

PDICI % A byte array containing
dictionary input from
NOMESG.

POICO - An integer array
containing dictionary
output corresponding to
PDICIN.

ATADII * A byte array containing
dictionary input from
FDRTRV.

ATADIO - An integer array
containing dictionary
output corresponding to
ATADII.

Output:
None

COMMENTS:

A-200

-" i

MODULE N.AME: NOMESG

PROGRAM: rDFPRG

SOURCE FILE: NOMESG.FTN

PURPOSE: To create a 'report not available' report
for given location.

CALLING ROUTINES: JDPPRG

CALLING SEQUENCE: Call NOMESG (LOC, SAMESG, PTMESG)
Where: LOC v location identifier

SAMESG - block number of SA message
FTMESG u block number of FT message

COMMON:

SUBROUJTINES CALLED: BLCR8, TOBLCK, ACTIV, DTCT

FUNCTTON DESCRIPTION: This subroutine, called by UDFPRG, creates
the message "Report Not Available* for each
SA and FT report locid and the message
"Current Report Not Available, Previous
Valid Report Is..." for locid 'SOO'. It
returns the block number where each message
is stored to rUDFPRG for insertion into the
Locator Index Table.
Input:

LOC - Location identifier.
COMMON/VRSGLB/MAP (10240), PDICTN

* (700) , POICO (350) , ATADII (160),
ATADIO (160)
where: MAP u A byte array

representing the status
of the rDp.

POICIN - A byte array containing
dictionary input from
NOMESG.

POICO - An integer array
containing dictionary
output corresponding to
POTCTN.

ATADI - A byte array containing
dictionary input from
FDRTRV.

ATADTO v An integer array
containing dictionary
output corresponding to
ATADIT.

COMMON/UBLOC K/UD FBLK
where: rJDPULK v Number of Last UDP

Outt block written.i Output::
*SAMESG v Block number of SA message.

FTMESG v Block number of FT message.

COMMENTS:

A-201/A-202

U A-8 POP 11-70O VRIN!T

A-203

MODULE NAME: VRINIT

PROGRAM: VRINT

SOURCE PILE: VRINIT.VTN I

PURPOSE: To initialize the VRS processor data base
map and pointers

CALLING ROUTINES: Run by user at start-up time

CALLING SEQUENCE: None

COMMON:

SUBROUTINES CALLED: TIME, VRSMAP, VRSPTR

FUNCTION DESCRIPTION: This program clears and re-initializes the
VRS data base map based upon current report
information within the LIT and re-sets the
history file pointers for SA's, PT's and
Winds Aloft to their last major
transmission point in the KCW.DAT file.
Input:

COMMON/VRSGLB/MAP (10240), PDICIN
(700), PDICO (350), ATADII (160),
ATADTO (160) of which only MAP is used.
MAP w A byte array representing the

status of the UDF.
Output:

None

COMMENTS:

A2

A -204

'C

MODULE NAME: VRSMAP

PROGRAM: VRI"JIT

SOrRCE PILE: VRSMAP. FTN
t+

PURPOSE: To initialize the VRS processor data base
map.

CALLING ROUTINES: VRINIT

CALLING SEQUENCE: call VRSMAP (MAP)
where: MAP . 10240 byte map array of

VRS which will be stored
in the global common VRSGLB

COMMON:

SUBROUTINES CALLED: None

FtUWCTION DESCRIPTION: This subroutine initializes the VRS global
common map. The map contains a byte
corresponding to each block in the UDP.
Wor all pre-allocated blocks in the UDF,
i.e., the map, the region table, the LIT,

. and the winds Aloft data blocks, the
corresponding bytes of the map are set to a
value of one (1). All other bytes are
initialized to -1 to indicate that the
blocks are free. The subroutine then scans
the Locator Index Table (LIT) and sets the

. bytes for each block containing a report,
including blocks chained for a report. If
there is a discrepancy for a report block,
such as a block number out of range, then
all the blocks for that locator index for
the report are zeroed.
Input:

MAP - A byte array representing the
status of the UDP.

Outpu t:
MAP * A byte array representing the

status of the rDF.

COMMENTS:

A-205

MODULE NAME: VRSPTR

PROGRAM: VRI1VTT

SOURCE FILE: VRSPTR.FTN

PURPOSE: To initialize the VRS processor data base
pointers.

CALLtNG ROUTIES: VRINIT

CALLING SEQUENCE: Call VRSPTR

COMMON:

SUBROUTINES CALLED: DTELAP, ZrL,,tM, TIME, GTRPT, EXTHED, EXTSTR

FUNCTION DESCRIPTION: This subroutine re-sets the history file
(SFI.OAT) pointers to the last major
transmission points in KCW.DAT for SA's,
WT's and Winds Aloft. The method used for
each report type is to back-up half a file
size from the current pointer position in
the KCW.DAT file and sequentially read
headers until the calculated desired
starting point is found.
Input:

None
Output:

None

COMMENTS:

A-206

APPENDIX B

PDP-11/34 and PDP-11/70 (SLine Communication

j B.1. PDP-11/34 and PDP-11/70 Communications Protocol

During communications among the VRS computer, the

* PDP-ll/34, and the Processor computer the PDP-11/70, errors

occur in transmitting information over the 1200 BAUD
* asynchronous dedicated line. In order to recognize and

eliminate these errors, two validity checks are performed on
all communications. Appended to each message from the 11/70 to

the 11/34 are a check-sum of two digits followed by a character

count of data characters to be transmitted. Before

transmitting the message to the 11/34, Retrieval sums the value
of each character to be transmitted. The sixteen bit check-sum

is added to the transmitted message, along with an 8-bit count

of the number of characters to be transmitted. As each

character is received by the PDP-ll/34, its sum is added to the

value of the previous characters received in a particular
message. When the message is complete, the check-sum is

compared to the check-sum transmitted by the 11/70. The-I character count is also compared. if both tests pass, the

11/34 assumes the message is correct. If a heck fails, the

message is dropped on the floor. The 11/34 line timeout
routine would then request the information again as the VRS

software on the 11/34 never sees the errant message.

The same procedure is followed on transmissions by the

11/34 to the 11/70 with one difference: The terminal handler

recognizes some character values as special, which will
initiate action by RSX-1lD. As a result, the check-sum

characters transmitted by the 11/34 contain none of these
*characters. instead, the first ten bits of the check-sum are

divided into two five-bit fields and added to octal 40.

B-1.

Likewise, the character count is added to octal 40. This
procedure insures that no control characters are passed to the

RSX-11D operating system.

In the future, the software will use a 2400 band

synchronous line using a DMC-11 on the PDP-11/34 and DECNET

software on the PDP-11/70 . The following sections describe

how that communication will proceed. When using DECNET-DDCMP,

the error checks now performed will be deleted as redundant.

B.2 PDP-11/34 ® --PDP-I1/70 a DECNET (DDCMP)

Channel Type - Full Duplex Synchronous

Data Code - ASCII and Transparent Text

Line Speed - 2400 Baud

Error Controls - CRC-16 Block Parity. Block

ACK/NAK procedures

Block Size - 194 characters (including framing
characters). Last block is variable in

length up to 194 characters.

DATA LINK CONTROL CHARACTERS

(ASCII)

ENQ - 00000101 Octal 5 - Enquiry

SPH - 00000001 Octal 1 - Start of Header

STX - 00000000 Octal 2 - Start of Text

ETB - 00010111 Octal 27 - End of Transmission Block

ETX - 00000011 Octal 3 - End of Text

SYN - 00020220 Octal 26 - Synchronous Idle

B-2

ACK - 00000110 Octal 6 - Affirmative Acknowledgment

NAK - 00010101 Octal 25 - Negative Acknowledgment

DLE - 00010000 Octal 20 - Data-Link Escape

The first character (ENQ) is an out-of-block (not framed)
t character while the remaining characters enable the hardware to

detect the beginning and end of data transmission.

All data transmitted must be preceded by at least three SYN

characters.

Message Formats

A. Data Messages (1st and intermediate blocks)

character #:

1 2 3 4 5 190 191 192 193 194

message:

0 SOH N DLE STX Transparent Text Data DLE ETB BCC

Data Messages (last block)

character #:

1 2 3 4 5 K K+1 K+2 K+3 K+4

message:

0 SOH N DLE STX Transparent Text Data DLE ETX BCC

where K + 4 - 194

B. Acknowledgment Message

character #: 2 3 4 5 6
message: 0 SOH N ACK/NAK ETX BCC

t. B-3

* .4!.

C. Line Synchronization Messages

1

0 ENO

where:

0 - Required number of SYN characters

SOH - Start of header character

N - Block sequence number (0-9)-l ASCII

character

OLE STX - Start of Transparent text characters

OLE ETB - End of intermediate transparent text
charac ters

OLE ETX - End of transparent text message characters

BCC - Block check characters (CRC-16;

2 characters)

ACK - Affirmative acknowledgment character

NAK - Negative acknowledgment character

ENO - Enquiry character

The block check character (BCC) is used to provide a block

data integrity check. It is a cyclic-redundancy check

(CRC-16)* that uses an arithmetic accumulation that is reset

*See Section 0.6.

B-4

MON

with the SON character in the transmission, and restarted with

the character following. Thereafter, all characters in the
transmission up to and including the ETB or ETX character are

included in the CRC calculation. Within blocks of transparent

text, the first OLE character of all two-character DLE
sequences is excluded from the BCC.

I

* B.3 Transparent-Text Mode

This mode permits greater versatility in the range of coded
data that can be transmitted. This is because all data,

including the normally restricted data-link line-control

characters, are treated only as specific bit patterns when

transmitted in transparent mode. Thus, unrestricted coding of

data is permitted for transparent-mode operation. This mode is

particularly useful for transmitting binary data and unique

specialized codes.

Any data-link control characters transmitted during

transparent mode and required to be effective must be preceded
by a OLE. Thus, the following sequences are effective during

transparent-mode operation:

SEQUENCE USE

DLE STX Initiates the transparent mode for the
following block of data.

DLE ETB Terminates a block of transparent data,
returns the data link to ASCII mode, and

calls for a reply.

B-5

DLE ETX Terminates the transparent data, returns the

data link to ASCII mode, and calls for a

reply.

OLE ENO Indicates a "disregard this block of

transparent data" and returns to ASCII mode.

OLE DLE Used when a bit pattern equivalent to DLE

appears with the transparent data to permit

transmission of the DLE as data.

All replies, inquiries, and headers are transmitted in

ASCII mode. Transparent data are received on a

character-by-character basis; thus, character phase is
maintained in the usual manner.

NOTE: ASCII data may also be transmitted in ASCII mode by

omitting the OLE character from the data link control
sequences - OLE STX, OLE ETB, OLE ETX, etc.

B.4 General Transmission Procedures •S
Each data block transmitted and received will be

acknowledged when feasible. The acknowledgment may be a

positive ACK or negative NAK. A positive ACK is sent if the

following conditions are met:

1. The block size is correct.

2. The SOH/STX and ETB/ETX characters are proper (valid

and expected).

3. The BCC is correct.

4. The block sequence number is correct.

B-6

Each time a center is forced into a cancel mode during a

transmission regardless of the reason, the ENQ procedure will

be initiated before the next transmission is started.

If the center receives an ENQ after the start of a data

transmission (on input) and prior to an end transmission
character (ETX) it will treat the ENQ as a cancel transmission

request from the transmitting center.

B.4.1 Output Timing

A center establishes a timeout value of 5.9 seconds for

every block transmitted. If the receiving center does not
acknowledge receipt of the block before the timeout is

detected, an automatic block return procedure is invoked. The
timeout value increases to one minute for ETX blocks with the

same block rerun procedure when a timeout is experienced.

If any of the above conditions are not met, the center will

either transmit a negative acknowledgment (NAK) or refuse to
respond, forcing the transmitting center to rerun the block
when expected acknowledgment is overdue.

B.4.2 Block Acknowledge Procedures

A center will transmit an ACK or NAK reply block for every
block received. The data block ACK/NAK format is the same as

the ENQ response except for the content of the N field. That
is, for data block acknowledgment the N field of the reply

block contains the block number being acknowledged (ACK or NAK)
whereas, for an ENO response, the N field is always ASCII zero.

B-7

B.4.3 Block Rerun Procedures

Data blocks are retransmitted every time a center receives

an NAK acknowledgment from the other center or when no

acknowledgment is received within the allotted -time

(5.9 seconds NON-ETX blocks; 60 seconds for. ETX blocks). If an

NAK or data timeout occurs three times for the same data block,

the center initiates a cancel and returns to the ENQ
procedure. If a message is retransmitted three times without

success, it is aborted. When a message abort procedures are
used, the center will generate a printout (3NAK) and continue

with the next message available for transmission.

B.4.4 Block Transmission Procedures

A center will stop transmitting when a persistent error
condition has been detected. When a positive acknowledgment is
received, the center will resume transmission.

8.5 Line Synchronization Procedures

A center will initiate an ENQ procedure to determine
circuit viability an operational interface capability with the

other center. The format for the ENQ transmission is:

character #: 1
message: 0 ENQ

where 0 represents the required SYN character sequence.

The SYN characters are followed by a single ASCII ENQ

character. The ENQ sequence is sent at one second intervals
until two consecutive positive replies are received. After 150

unanswered ENO's have been transmitted, the center will

II

generate a printout indicating a possible line problem exists.
The center takes no other action at this time and continues to
ENO the other center. (It should be noted here that the other
center has a similar responsibility regarding the transmission

and acknowledgment of the ENQ procedure).

The format for the response to the ENQ block is:

character #: 1 2 3 4 5,6
message: *0 SOB N ACK/NAK ETX BCC

All ENQ reply blocks are framed with SOB and ETX control
characters. The rule which governs BCC generation for data

blocks is also valid for reply blocks. The N field is always

an ASCII zero when responding to an ENO. If the center is not

in an operational mode that would permit a large volume of data
transfers on the circuit, a NAK responds is sent to the ENQ.
The center receiving the NAK response must withhold the
transmission of the next ENQ for thirty seconds.

B.6 Cyclic Redundancy Checking (CRC-16)

* Cyclic Redundancy Checking (CRC-16) is a sophisticated
method of block checking a data stream. This type of checking
involves a polynomial division of the data stream by a CRC

polynomial. The l's and O's of the data become the

coefficients of the dividend polynomial while the CRC
polynomial is present at X + X + dX + 1. The division

uses subtraction modulo 2 (no carries) and the remainder serves
as the Cyclic Redundancy Check. The receiving station compares
the transmitted remainder with its own computed remainder and
an equal condition indicates that no error has occurred.

B-9

APPENDIX 5 REFERENCES

1. MITRE document entitled "WS High Speed interface
Prcdue, Dec. 1975.

2. Digital Data Communications message Protocol, Dec. 10, 1974.

£ 3- 10

APPENDIX C

*PDP-11/70 SOFTWARE FLOW DIAGRAMS

c-i/c- z

C. 1 VREXEC

C-3

PRO-
CZSSOR VRS PROCESS= rXCWMMT

A

VFXW07 C
TO: 7IPARAKRTZRs

LAST
SawILZ yo macmumn

ROCZSSED TO
=ILDA2 MMT so na

cl-ceEKk.DA
YES

WMITZ TOTALS a
STATISTI=

V"Am DATA
TO CM= rOR NEW
SUW=X OATA =

DAT OR zMnRMR.

WME
REPORTS P

LAST A
NOMR rATIL? c

NO
ywo

YES

GZTRPT
Go nao 2

wan STATETO (IET m=

LPORT FROM r=

PROPER rimEw rm
VEIVAY EMM WORT
rm Smw= ItPT 33 suW=

TzpizvpT

Cam DICT To
TFAMUATZ

PROCzsaw FwojtT
TO VOC

SMW TO
TO OUTPUT RZ- FIGURE C-1. vpm=

PORT ry

a
C-4

C.2 VRSOUT

C-5

VRSOGT

'BASH, =O BLOC

(ROUTPU BLOCKh

22 - LZr.K) RPR n ~

IMLTs
BLCKumLo 1 PUT NE REPOR

BLOCK= Li
a itTSDX

GETREOR W

MICKR C2: FORSOUT

"-AD'

C

zS

15 4o m= 90 CLEAR PUME A
PAST FLAG

YES

SET YES
Tax aWR? A

no

SIT PMM pTjw,-
evirr. VRSPOW
FOR Pu ALL
Famans ni uDG

L PI
=ip, I

SET A" mmsm
w - al BLO=
Ir (MAPS - 1)

T pr

IMURZ C-2- VRSWT (Cont'd.)

C-7/C-8

C-3 SA PROCESSOR

C- 9

VRSSA
ENTER VIA CALL FROM VREXUC

INITIALIZE iZERO ARftAYS

ARRAYM YES

SU FLD C

~GET TME

VlSWX CALL
VISWw

RETURN

SKY CLI SKY

INSERT
LOC IN
ALIST

INSERT
'AT'

2 FIGURE C-3: SA PROCESSOR

c-i0

2

PITT ALALL

PUTTUU ALL

4, ~ ~ ~ D AD'n-OTT11'A

INET SKYCVR
REOVE TRAIL

REMEOVE DOUBLE
OLKS FROM

MILES

INSERT
VlSInILITY FIGURE C-3:SA PROCESSOR (Cont'd.)

FlELD

3

3

INSERT

iXFr

FIGHAVE N-:S RcSOR C~'

C-
TE

2

4

-"m
DIR

INSERT
'AT'

INSERT

INDR

'PCGUSTS'

TAG

GUSTS

YES PIGURE C-3:
SA PROCESSOR (Cont'd.'

C-13

INSERT 9

F TAG~

SAS

S~ALK

FKFL
N C4

EXTHED

INIT.
* SET LENGTH

SET INDEX
TO ED
cr DATA

EXTRACT
LAST 6

NUMERICS

tTIME

N

< 2400

TAKE SYS

FIGURE ~ ~ ~ ~ UL CCOMMORCESONCot'

C-15

C sar ENTER VIA CALL

ID

INITIALIZE
BLANK ARRAYS '6

LOCATE 1ST
CHAR OF RPT

I
GET FOURTH
CHARACTER

NO DO NOT
PROCESS

Bs K

GET THE
LOCATION M

SET:
IX - IND+4 FIGURE C-3: SA PROCESSOR (Cont'd.)
LL - IX

2

C-i16

2

YES
SP.?

SET SPFLG

NO DME XX TO END
OF SP.

INSERT S PCL

SA?

SET SAFLG
MOVE IX TO NO
mo or I SRI

COR? YES

SET COR FW

NO MOVE IX TO END
OF COR

WSERT 'CRCTU'

YES SW?

MOVE 3M TO
END OF 'SN' NO

SET SWFW

2A
2B NO

AMOS?
YES

MOVE ZK TO END
OF AMOS

GET IJ4MFLG TO SM
IX - 0

GET TIME
MOVE lK TO
EM OF TZKE

2B

3 FIGURE C-3: SA PROCESSOR (Cont'd.)

FIG,

C-17

3

7- y
ISKSTR - XX

BEGnwiNa op
SKY COVER FIEW

3A

nm rnm
SLAM.

ISLSH -
POS OF FRST

MAKE NO
A SLASH

ICH --w In

SET FRACPW YES SA

im nm+l

BLK
W17MIN NECT

10?

NO

RAVE
140 NEXT SISK?

SET - IND

SA
YES

FIND BLANK
PRECEDING
IS - 0 OF
CHARC.

4

3 3
wnm or camm PRES

SA 4
TEMPI= 2

TEmP is Fnm
IN= ISLSX

ISISH ISLSH-15 FIGURE C-3: SA PROCESSOR (Cont'd.)

4A C-18

4

aISLSH - is

uv (miss) -i
FROM A,

PUT IN TEMP

ZSISH'INXT
InD'isisH+.

SAVE OLD LN

FIND NEXT
SLASH WITH

InDCTR

NOaV

SLASH-:SAPOESO Cot.

c-IA

EXTRACT
D.P.

FOR LN CHAR.
IPUT nu1 Dv

IDPFLG 1

ISISH - IMX

(IN- ISLSH) -

.4

SAUEC: SAPOESR Cn'.

>c 4 6

6

mDGmISLSH+5

IGiZ (nrAT-INDrG)-|

INSERT VAI

W1'o GUST

63

I "

flNDQmISLSH+5
NxT-INDG)-l

EXTRACT VAX
AND PUT
To SQLL

TAKE FIRST
2 CHARS TO DIR.

DIR(3) - '0'

SUB 50,
SET FIG TO ADD

'9' TO SPD

FIGURE C-3: SA PROCESSOR (Cont'd.)

IWFLG - 1.
TAKE LAST TWO

CHARS TO WIND.
IF FLAG ADD '1'..

C-21

• __, . ., ~n~lgl I ..7

r1

I7
'HAV

A3F
~1NO

W.ICK-

isrG aE C- SsP~nSS R C o t' .

MOVE BACK
FROM IVN To

IVSTR?- (n-ix)
+1

HOVE BACK FROM
IVSTAT TO FZND

SKY mmD

(IVSTRT-Ix)

8B

FLAG

FIGURE C-3: SA PROCESSOR (Contd.)

C-23

INITIALIZE

OUTPa2 ARRAY,
SKYCVR, TO ALL

movTE POINTER. To
FIRST NON-BLiNK

ClARACTER

DETERMInE
LENGTH OF SKY

RAW DATA. IN

issLENTH- YE
_ l NO l

EXTRACT RAW SCY
DATA & ASSIGN TO
SM ARRAY. SET

INDA INDEX
POINTER

TO L

FIGURE C-3: SA PROCESSOR (Cont'd.)

C-24

is YES
nMk>LENGTH?

No a

is
nWA-nMA+l SKYA (nWA)

NO

is YES
lajt-l?

NO
7

is YES
SMM (INDA)

N UKMUC

NO s

2

FIGIM C-3.- SA PR=SSOR (Cont'd.)

C-25

2

C -l ES

2A

*Y

s

ES-NO

2B

YES 282

2C

2B2

SKY COVE TM
7

CC2?

2D

?SDNO

INDA-LNGTH YE

__ _ NO__ _ 7-3

2E

SET K2-0

INDA+3 YES

2F NO 7

SET Ki-O

2R

'SCT'? YE s

2 N NO 2J

Kl-Kl+l

K2-1?

NO

2G

KI VALUE?

w3 21 E>
a 2G

K1-2
2H

Kl VALUE? K1-3

-4

7

FIGURE C-3: SA PROCESSOR (Cont'd.)

C-31

2G

IBM,? YES

NO

2N

2H

I (WC
I

!S

t NO

Yr10 2,

21

NUNFTZ-I? NO

YES NO

FIGURE C-3: SA PROCESSOR (Cr-nt'd.)

C-1 2

2J

Nm4Frz-l? YES

NO

NOT
rJM' OR 'OVC' YES

AND IMM3-1?

NO

SET n4m-o

Issax-o?
NO

YES 7

<*YES >M-

IF NOT 'CLR',
SET ISBOX-1

K2-1?

*>

ES

NO

.mmalormll
nmA-nm+l

FTGURW C-3: SA PROCESSOR (Cont'd.)

C-3.3

coNTInUE

SK=CVRmInSCT'
lime

%OvcI

11c'

.NO

C34

AAI 185 INPUT OUJTPIT C0MPUTER SERVICES INC WALTHAM MA F/6 1?/2

UCASF.TWENTY-CHANNEL VOICE RESPONSE SYSTEM.IU)

UNCLASSIFIED UN8 FAA-RD-61-51 DO-SC113N

IIII~l::

SET ICLR-1

FIGURE C-3: SA PRCESSOR (Cont'd.)

C- 35

5 PROCESS NWU.ZC 0ACTERS

imm~w

5A

NO7

YES 5B

CMI-NU36G

5B

NUNDIG-2 AND LAST
DMIT EQUAL 0. OR 5

IF > 50? NO
NUMDIG-3 AND LAST

E EQUAL 0?
DTOGIT NOT 0

YES

gUAIT

O;M

.0
FIND NECT
NON-BjLANK
CHARACTER

MORE NO
DATA?

YES

is
NEXT NON- YES
BLANK A

Ic

7
NO

is YES
IT AN 'X'?

6)

rs
IT A 7 nWA-nMA+I.

2R No

Kl-o
YESX2-0

NUPOW-1

FIGURE C-3: SIL PFwESSOR (Cont'd.)

C-37

6

SET NumplWa

NUNDI-l? N

YES,

6A0

FIGRE 3:S& ACSSO (antd.

SC-38

7

[MENT3Y
zRROR,

5~h OUT mXCVR
ARRAY,

SET ILnL

RETURN

FIGUR C-3-, P&1RO SSOR (Cont'd'.)

C-39/C-40

C.4 SA REMARKS PROCESSOR

C.41

VRUI REMARKS PROCSSOR xMR3

PTR

mx TO

STR VZU -: AlIKSP0SO

MOTU 2E o

- - FLAG

'RRDAT'
no OR

RCM@
7

US YES4 O yzs 4yz,

Sn Ch= SUB
C&M RNKY FRZZ PUZZ
raw

PRES
IVUTI? OR PPJM

YESUs +

SUB SUB
v p

VIS is PRES RES

4

lPK#

3 OR 'WND' 0
IpRWA

US YES

yz> +YES

DZCWZ CALL SnWnw SKM wnm wnm
OR FROWM

FIGURE C-41 SA RZKU33 PROCESSOR
(Cont'd.).

C-43

3C

NO S= OR W AS
PnW 3 Fm TX

Y=~

MAK n

110c

iOMSFLl

No k MOR

WE
*~ A CcsoL NOZ~ZC4 AW4JS ~ (atd

TRANSC-44

USaU?!M WM (A, DID, RSIST, zmn)

ItRO
VR EWC

SET PTUS.

SSTCU NT

2PK so -:asac PSO Cn'.

US4

DU 4

VREL BEEIN' CURS (UM) TW OMIZTS

Dm8OO =S I AT'

TIn pUHUcr S MMS AND

ADD 0.N~ EI

nism''~AD 'ATI MP

ANVG 'AN'

zz

AM 0.46

s3usumi VIs cA, no,. RunS, mum, ZUVx)

nixT

* ~ST Fm'

TO PO8 or

VURT

WORD

nISERTU No RSLm

YS

U 2

C-4 7

" M 3

'PO C-4 S V2M PR=SZIt fCbnt d.I

A C-48

gDEGT= XlM! (At ID, ELII!, ZC~ZiL. IDX)

733L Ch

Di?!VR~.INT1
SE COOws

SE r

(7~)FZGUZ -4: A R(INSR

33Cont'd.OR)

?.4

INETN

KU

B

Ichn

>1
>1 DZ=Z

Mr

vFrAG ON

TMW VrLw 0".
ADD AM

sxT mx
w mx

TO Curjt=T
=a CTIt

B

RIT

?I== C-4: Sh RZMAM PRDCZSSDR tCont'd.)

C-50

SUTMZ rn (A, RLIST, IWX, MM =11L)

vz CRJL

Gmz

SYE

V~i C: I UIME P~oR(std.

OR17

no5 OR'L SUD
za SC

M~

Jo

YZS zj W? Rz C 4: A R U s PR CEI~i (ant

n= Try5o2

Vc

mu

As - N AW

maw

4 AM

CIYv MIGTS
TO FTX100

ADD MM

F!O~Z C4 IARDB~YES8O

AM5

gnmoma mn A* = RST, mn, =jN)

Ic

13Zs

W=IS

~ij. Cno

IPAL

z

RG

mm, T ?ct
'SEAN, T~M,

AD
n=#'

INm?

VZT TMNZ, FIG=R C-4: a os inam pvtm

SAY! 2 NW (Cotl'd)

C-56

GZT UNDXG

('WiDE TZ3U

KmENC

uNXCT

?ZGOU C-4: fl UWIARK POCSS (Cont' d.)

- C- S7/C- 58

C.5 FT PROCESSOR

S-S

oiLL

lac. M.

mmwv ANa

FIGUU C5: FT POZZSSO
as CwI IO

D1Z=

>na
1 L n

sa=1

FIGURE C-5: FT PROCESSOR (Cont'd.)

C-61

AMM
POSITZ=
To saw

snx MP

"T DZC= XEM rxrvr

1011--WAM

cumcm

v , ir I

UMM 2M TM
am =zn Camp as

bb

IN=

AFAW Tna
PaLWM of w

scr

Tm
w no="

Imcm
T=

v "WCZIMD-PZAG

skvlt Zia =a
P02=0 or

ax"T Ll

GFZM

Zrm =0 v
TUN no AMT

so

we win 2

nib cm. xUrr am
TvM-QXM

rtAG

=cm no
Tm

30

an PASU-50=0
UW-Ck=

rvamu. naa

am" To L
3m -20 TU F'GURE C-5: FT PROCESSOR (Cont'd.)

C-6z

I va

IF Ma To.

urin

Tu <
-

m

C-63-

MtMM
mm Ku,

ml4

as=.*U

m t~

w1

- l vumo

3 I

sommm MUMinw J~

w FIGUR C-5: FT PROCESSOR (Cont'd.)

C-6 4

ALL
PEUzS

25 so HOW T A

A0WZ

FIUEC5MF RCSOR(otd
AD

C-6 5o

mm~ 00ml
ft wom

a Ilvml

II

NO m

son~ur IDM ul

VON a- -w

a-eAm w

mom

C"6

2 l

C-67)

*Wp

%LPtma InA

nVIM

yuy

NOFGR -5 TF~SC Ca'.

(czn VA- y

pv* " m

O~

I Mama. no
T= or~ vMM!

... t a I

ma"03

sm G C-:P RCSOR(Cnm .

ouST I

?"M

0I

C-6 9

C-70

aa

II

aa

Ii' li

C-71?

II'
I

8,

I S.

I-

48

I! if

B
ha

a

C-7 2

I
I) P

I

N,!

L9 ipsi

fill~c
i a Deli

......

0~~ C-73C-7

C.6 RETREV

C-7

TRANISISSION

140

CIKNA1RD DE OD YEST~U!

FSzND U RESPONSE~

C-?S

YE

SET "B3MFN
u="w zm

PROGRESS

REPOTSBZfE

C77

2&

DRVETAR1

NO9

RESHPOSE YLES
FIGUR C-E:RZTRE

C- 78EXTGTICTO
iE / RKDIE

I 3

In

I/ n

- DDIAND G RZS PO S

* FZG 3RZ ES 4ER V (C n ' .

DEERE

DEKAND~C- 9N .U

4

SET UST m.a. YES
s2w -

EM-BRIEF

0 NO

STOP YES
BRowim cSENMI

NO

M. (7. No mw YES GET PROPER
ozomm M. a. alp

? REPMtT

YES NO

NO wrmm END
D MM-LD= REPORT TYPE Elm

? ? YES BRMMPIM
? yl

NO

MM M.U. A
FROM cmwmm B 0
RESPONSE F=Z

SEM M. a.

SENM -- We

mmm mmom

FT0RE C-6: RETRE7 (Cont@d.)

C-80

SIM

ii.~ MU

CMUCTF

IN

MITGBmx C: . N CO nd

C-8h/cUA LL YCs2T

APPENDIX D

* REPORT OF NEW TECHNOLOGY

There have been no inventions or important discoveries made during
the performance of this contract. However, the Voice Response System
has been implemented using a unique software design on both the PDP-11/34 '
and the PDP-ll/70

The PDP-11/34 software was designed to run under the single-user
operating system RT-11 and operationally to perform as a multi-user (20-
channel) system. This was accomplished by using the RT-11 capability of
asynchronous I/O with assigned priority. The priority assignment for
each VRS I/O component was developed for uninterrupted speech on each
channel.

Each channel follows a table-driven protocol using separate storage
areas in memory to maintain channel status after asynchronous I/O com-
pletion. Improvements were made to the system in upgrading VRS from 10
to 20 channels by taking advantage of the extended memory management of
RT-11 to utilize the 32K of memory added to the system. This involved
the allocation and access of the speech buffers and dictionary in upper
memory. See section 2.2 for the software description.

A single-user/20-channel design has been implemented for the PDP-
11/70 weather retrieval program. See section 2.4.4. It employs separate
storage areas for maintaining channel-briefing status upon completion of
the asynchronous I/O. A unique file system has been designed for storage
and retrieval of the weather reports processed on the PDP-lI/70. This
file system allows multi-task (processor and retrieval tasks) access and
update without conflict. It exercises the RSX-11 operating system feature
of shared global common areas in memory for the file block map and for
multi-task communications. This system is described in section 2.4.

D-1/D-2
1

110 Copies

