
Vol.:(0123456789)

Marine Biodiversity           (2024) 54:17  
https://doi.org/10.1007/s12526-024-01404-0

ORIGINAL PAPER

Tropical seamounts as stepping‑stones for coral reef fishes: range 
extensions and new regional distributions from mesophotic 
ecosystems in the Coral Sea, Australia

G. F. Galbraith1,2  · B. J. Cresswell1,2  · E. C. McClure1,2  · A. S. Hoey1,2 

Received: 23 April 2023 / Revised: 30 December 2023 / Accepted: 11 January 2024 
© The Author(s) 2024

Abstract
Seamounts and remote oceanic islands serve as valuable natural laboratories in which to study patterns and processes in 
marine biodiversity. A central hypothesis arising from studies of these systems is the ecological function of seamounts as 
stepping-stones for dispersal and population connectivity. Evidence of this mechanism exists for a range of taxa, including 
coral reef fishes, but is still lacking from many tropical seamounts in remote regions. In this study, we used remotely oper-
ated vehicles and baited remote underwater video systems to survey fish and benthic communities between 1 and 100 m 
on seamounts in the Coral Sea Marine Park (CSMP), Australia. We found evidence to support the stepping-stone model of 
ecological connectivity from new observations of 16 coral reef fishes which have previously not been recorded by quantitative 
surveys in the region. The widespread distribution of many of these species throughout the full latitudinal extent of the CSMP 
suggests that there is greater connectivity between mesophotic habitats in the Coral Sea and surrounding biogeographic 
regions than previously known. We also found a wide variety of mesophotic habitats and recorded significant depth range 
extensions for 78 fishes in these habitats. This further highlights the potential role of increased habitat area and heterogeneity 
in a stepping-stone effect throughout the region. Four of the fish occurrence records represent significant range extensions into 
the Coral Sea from adjacent biogeographic regions, and 13 fishes recorded by this study in the CSMP are not known from the 
neighbouring Great Barrier Reef, despite its close proximity. Although the Coral Sea remains relatively understudied, these 
findings suggest that larger-scale models of marine biogeography are relevant to communities in the region, particularly at 
mesophotic depths. Given the extent and the spatial arrangement of seamounts in the Coral Sea, our findings emphasise that 
the region is an important link between the centre of marine biodiversity in the Coral Triangle and the Southwest Pacific. 
Greater mesophotic sampling effort and genetic studies are necessary to understand the nature of connectivity and to establish 
the role of regional seamount chains, like the Coral Sea reefs, in broader marine biogeographic processes.
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Introduction

The Coral Sea, in the southwest Pacific Ocean, is the 
second largest tropical marginal sea on earth and is 
characterised by a complex bathymetry and diverse 
seascape of distinct marine habitats (Ceccarelli et  al. 
2013; McKinnon et  al. 2014). These habitats include 
the deep sea, submerged banks, canyons, island chains 
and large oceanic coral reef systems atop of seamounts 
rising from deep waters (up to 3000 m) (Davies et al. 
1989; Bridge et al. 2019). Ecologically, seamounts have 
been variously considered as either stepping-stones for 
marine dispersal that can promote regional connectivity 
via chains of suitable habitat across deep open oceans 
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(Hubbs 1959; Rowden et al. 2010; Mazzei et al. 2021) 
and conversely, as isolated islands that can give rise to 
unique ecological communities (Richer de Forges et al. 
2000; Hobbs et  al. 2008, 2012; McClain et  al. 2009). 
The general application of these contrasting hypotheses 
remains unclear and it is broadly agreed that the ecological 
function of seamounts in marine connectivity depends on 
multiple factors including geomorphology, depth, spatial 
isolation, oceanographic processes and taxa-specific 
dispersal capabilities (Mcclain 2007; Clark and Bowden 
2015; Miller and Gunasekera 2017; Pinheiro et al. 2017).

The basis of the function of seamounts as stepping-stones 
for the dispersal of marine organisms depends on the avail-
ability of suitable habitat at a given seamount, the distance 
between seamounts and the nature and direction of ocean 
currents and localised seamount-generated flows (Rowden 
et al. 2010). The typical arrangement of seamounts in linear 
chains is a particularly important feature of this hypothesis. 
In combination with large-scale ocean currents, this spatial 
arrangement can facilitate the successive transport of marine 
larvae across oceanic basins or extending from mainland 
coastlines (Mazzie et al. 2021; Simon et al. 2022). Moreover, 
localised seamount-generated hydrodynamics are a unique 
feature of these habitats and the stepping-stone model of 
connectivity. These mechanisms may include closed recircu-
lating currents that can trap and retain larvae over seamount 
summits, subsequently enhancing recruitment and settle-
ment along seamount chains (Mulineaux and Mills 1997; 
Sponaugle et al. 2002). Despite wide recognition as highly 
productive biodiversity hotspots and this important function 
for connectivity in both tropical and temperate oceans, sea-
mounts remain one of the least explored and studied marine 
biomes on earth (Clark et al. 2010b; Wagner et al. 2020; 
Yesson et al. 2021). Consequently, many regional seamount 
chains require considerably greater sampling effort to estab-
lish patterns of biodiversity and the mechanisms driving 
ecological connectivity with wider biogeographic regions 
(Rogers 2018).

Most seamount reef systems in the Coral Sea occur in 
Australia’s Exclusive Economic Zone (EEZ) and are man-
aged as the Coral Sea Marine Park (CSMP). Together with 
the French Natural Park of the Coral Sea (Le Parc Naturel de 
la Mer de Corail), the Coral Sea possesses the largest com-
bined protected area in the world (Director of National Parks 
2018). In Australia’s CSMP, over 30 individual reef systems 
are spread across 22° of latitude on the Queensland and Mar-
ion Plateaus and constitute ~24,000  km2 of shallow-water (< 
30 m) emergent coral reef habitat (Bridge et al. 2019). The 
CSMP is bordered by major global marine biodiversity and 
productivity hotspots; Australia’s Great Barrier Reef (GBR) 
to the west, the Coral Triangle (specifically, Papua New 
Guinea and the Solomon Islands) to the north, Vanuatu and 
New Caledonia to the east and the Tasman Sea to the south 

(Fig. 1). It is therefore not surprising that the CSMP sup-
ports a relatively high diversity of reef fish (~1200 species) 
and high abundance and biomass of sharks and other large 
predatory fishes (Randall et al. 1997; Ceccarelli et al. 2013; 
Stuart-Smith et al. 2013; Hoey et al. 2022). Shallow-water 
reef habitats in the CSMP have also been shown to sup-
port unique coral and reef fish communities that are distinct 
from those of the adjacent GBR to the west and share more 
similarities with those found in New Caledonia to the east 
(Ceccarelli et al. 2013; Hoey et al. 2020). Oceanographic 
processes and historic environmental conditions explain a 
significant proportion of the evolutionary processes driving 
genetic connectivity and biodiversity patterns within Coral 
Sea populations and between surrounding regions (Cec-
carelli et al. 2013; Kessler and Cravatte 2013; Payet et al. 
2022). However, the extent and spatial arrangement of coral 
reef habitat on seamounts in the Coral Sea is also a signifi-
cant component of ecological connectivity in this region and 
within the wider Central Pacific Ocean.

Although recent large-scale monitoring efforts (Hoey 
et  al. 2020, 2022) and some baseline surveys (Ayling 
and Ayling 1984; Oxley et  al. 2004) have established 
quantitative ecological data for shallow-water coral reefs 
in the CSMP, the remote nature of reefs in the Coral Sea 
mean, they remain poorly documented compared to those 
in the surrounding GBR or the Coral Triangle (Ceccarelli 
2010). Additionally, there is a paucity of research 
conducted on coral reefs below 30 m compared to shallow 
reefs, particularly in Australia (Pyle and Copus 2019, 
Eyal et al. 2021). Mesophotic coral ecosystems (MCEs) 
are defined as light-dependent coral reef communities in 
depths of 30–150 m (Loya et al. 2016). The exceptionally 
clear oligotrophic waters of the Coral Sea allow light 
penetration to considerable depths,and several exploratory 
studies have confirmed the presence of MCEs in the 
region to depths of up to 125m (Sarano and Pichon 1988; 
Bongaerts et al. 2011; Muir et al. 2015; Englebert et al. 
2015, 2017). At these depths, the complex bathymetries 
of the Coral Sea seamounts are also highly variable, both 
among and within individual reef systems (Harris et al. 
2003; Beaman 2012). Some rise as vertical walls to the 
surface (e.g. Bougainville and Osprey reefs), while others 
have less abrupt slopes and many possess near-horizontal 
areas along flanks and submerged shelves (e.g. Holmes 
Reefs and East Diamond Islet). On more moderate slopes, 
where hard substrate is present and light availability is 
optimal, mesophotic depths can support high percentage 
cover of photosynthetic habitat-forming taxa (Pérez-
Rosales et al. 2022). Hard and soft corals, macroalgae, 
sponges and large benthic foraminifera are all important 
constituents of MCEs and in turn provide habitats for other 
marine organisms (Slattery and Lesser 2012; Lesser et al. 
2018). This said, the extent of MCEs or other important 
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benthic habitats between 0 and 150 m have not been 
quantified or confirmed at most Coral Sea reefs. Further, 
the few exploratory studies of MCEs in the CSMP are 
restricted to a select number of reefs and have all focused 
on benthic organisms, specifically scleractinian corals. 
To date, there have been no quantitative surveys of fish 
communities in the CSMP, or the Coral Sea more broadly, 
at depths below 20 m. The ecology and biodiversity of 
mesophotic coral reef fish communities in the Coral Sea 
are therefore scarcely known.

Two major global marine biogeographical regions meet 
in the Coral Sea; the Southwest Pacific and the Central 
Indo-Pacific, the latter of which includes the Coral Tri-
angle (Kulbicki et al. 2013) (Fig. 1b). There has been 
increasing recognition that “peripheral habitats” (typi-
cally isolated archipelagos, marginal seas and seamounts) 
in regions surrounding major biodiversity centres can also 
export biodiversity and connect biogeographical regions, 
rather than function only as isolated population sinks 
(Bowen et al. 2013; Simon et al. 2022). Over the past 
10–20 years, updated species checklists from locations in 
the Southwest Pacific have listed occurrence records for 
several Indo-Pacific fishes not previously reported from 
these areas (Randall et al. 2003; Fricke et al. 2011b, a). 
Additionally, aquarist collections from one location in 

the central Coral Sea Marine Park (Holmes Reefs) have 
also reported deep-water fishes typically known only from 
either the Central Indo-Pacific or Central Pacific regions 
(Fenton Walsh, pers. com). Large-scale connectivity pat-
terns are not well established in the Coral Sea, but these 
observations suggest greater connectivity between the 
Central Indo-Pacific and Western Pacific region through 
the Coral Sea than may currently be known. This may 
be particularly true for mesophotic species that are not 
recorded in shallow reef community surveys but utilise 
deeper reef habitats.

In this study, we used Remotely Operated Vehicles 
(ROVs) and Baited Remote Underwater Video systems 
(BRUVs) to survey fish and benthic communities in the 
Coral Sea Marine Park at depths between 1 and 100 m. 
Here, we present the first occurrence records of 16 spe-
cies from quantitative ecological surveys of coral reef 
fishes from seamounts in the Coral Sea. We also compare 
fish species richness between shallow-water monitoring 
surveys and ROV/BRUV surveys and identify a range of 
mesophotic habitats found in the CSMP during this study. 
We discuss these observations in the context of regional 
connectivity, biogeography and the importance of sea-
mounts in tropical coral reef seascapes.

Fig. 1  a Location of the Coral 
Sea relative to major marine 
biodiversity regions adapted 
from dissimilarity analysis 
between shallow species 
occurrence data by Kulbicki 
et al. (2013) and Spalding et al. 
(2007) for nested ecoregions 
within bioregions; b Bathym-
etry of the Coral Sea from the 
same region bounded in red as 
in a (data from Beaman 2012). 
Most seamounts in the Coral 
Sea Marine Park can be seen 
in a chain on the Queensland 
plateau, offshore to the east 
from the Great Barrier Reef. 
The Southwest Pacific region 
in the Coral Sea extends east 
to New Caledonia and north to 
the border of the Coral Triangle 
and Papua New Guinea. The 
northern seamounts of the Coral 
Sea extend to the border with 
the Central Indo-Pacific region, 
west through the Torres Strait. 
Arrows indicate conceptual 
borders and connectivity with 
adjacent biogeographical 
regions
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Material and methods

Four separate voyages in the Coral Sea Marine Park were 
undertaken in 2021, 2022 and 2023. ROVs and BRUVs 
were used to survey fish communities and benthic habitats 
at 17 reefs and between 1 and 100 m (Fig. 2). Single-camera 
BRUVs were deployed for 1 h following the standard oper-
ating procedures outlined in Langlois et al. (2020). ROVs 
(BlueRobotics BlueROV2) were fitted with a forward-facing 
stereo-video system (SVS) to enable length estimates to be 
made. SVS cameras (Paralenz or GoPro Hero 8 systems) 
were calibrated prior to surveys using the software CAL and 
the associated calibration method (SeaGis Pty, Australia). 
ROV transects, each 30 × 5 m, were conducted parallel to 
the reef contour using a timed swim method (ROV speed 
0.2 m/s for 2 min 30 s) at a constant depth (+/− 2 m). For 
each ROV deployment, two transects were conducted within 
each 10-m depth band, starting with the deepest transects 
and working upwards to the shallows. Sufficient horizontal 

and vertical separation was attained between transects and 
between depth bands by the known speed and time of the 
ROV. Three GoPro Hero8 cameras inside deep-rated T-hous-
ings were mounted facing outwards left and right and down-
wards on the ROV. These cameras were set to the timelapse 
photo function (1 photo every 10 s), capturing an image of 
the benthos every ~2 m (15 photos per transect). For fish 
community data, videos were interrogated in EventMeas-
ure (SeaGIS, Pty Australia), and each individual fish enter-
ing the frame (BRUV) or transect field-of-view (ROV) was 
identified to the lowest possible taxonomic resolution. For 
ROV stereo-video footage, length estimates were also made 
of individual fishes in each transect (fork length) using the 
software EventMeasure Stereo (SeaGIS, Pty Australia). All 
major habitats at each reef were surveyed (outer reef, lagoon, 
back-reef and reef passes between the lagoons and leeward 
outer reef), with BRUVs mostly conducted in lagoons and 
inner reef areas due to the steep sides of many Coral Sea 
seamount reefs.

Fig. 2  Map of the Coral Sea, 
East Coast Australia and survey 
sites from this study. All sites in 
the CSMP surveyed by BRUV, 
ROV and shallow diver surveys 
are labelled by text. Locations 
with yellow stars indicate reefs 
with new locality observa-
tions for coral reef fishes. The 
Holmes Reefs, where several 
of these species have been 
previously noted by aquarium 
fish collectors, are marked by a 
red circle. Reefs marked with a 
black circle indicate locations 
where no new observations of 
reef fishes were recorded.
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We compared species records from shallow underwater 
visual census monitoring surveys conducted by divers on 
SCUBA (1–10 m depth) at the same reefs during the same 
voyages (Hoey et al. 2021, 2022; Galbraith et al. 2022), as well 
as fish species records from previous surveys of the same reefs 
conducted by the Reef Life Survey Foundation (Edgar and Stu-
art-Smith 2014). Occurrence records and locations for species 
only recorded by BRUV and ROV surveys in this study were 
obtained from the Ocean Biodiversity Information System 
(OBIS 2023a) and Global Biodiversity Information Facility 
(GBIF.org 2023a) and were cross-referenced with other online 
databases; Eschmeyer’s Catalogue of Fishes (Fricke et al. 
2023), Atlas of Living Australia (ALA 2023), Fishes of Aus-
tralia (Bray and Gomon 2023), Reef Life Survey (RLS 2023), 
FishBase (Froese and Pauly 2023), CSIRO Codes for Austral-
ian Aquatic Biota (Rees et al. 2023) and the Australian Faunal 
Directory (ABRS 2020) as well as taxonomic experts. Known 
depth records for all fishes recorded were also extracted from 
FishBase using the rfishbase package (Boettiger et al. 2012) 
and compared to depths at which they were observed by ROV 
and BRUV surveys. To illustrate notable range extensions for 
three species, previous extant range extents were calculated as 
Extent of Occurrence (EOO) based on records obtained from 
the aforementioned databases and plotted in R (R Core Devel-
opment Team 2023) using the packages ggmaps (Kahle and 
Wickham 2013) and maps (Becker et al. 2022).

Results

A total of 274 ROV transects and 108 BRUV drops 
were analysed and cumulatively recorded 361 species of 
fishes from 41 families from depths between 1 and 100 
m. Of these 361 species, 73 were recorded exclusively 
by BRUVs, 105 exclusively by ROV and the remaining 
183 were recorded by both methods (Online Resource 1). 
Of the total 361 fish species, 128 (36%) were observed 
at depths below their reported maximum known depth 
as listed on the FishBase database (Online Resource 
2). Thirty-four of these depth record extensions are for 
species observed at depths greater than double their 
previously reported maximum depth.

Compared to available data from shallow (< 10 
m) underwater visual census surveys in the Coral 
Sea (Ceccarelli et al. 2013; Stuart-Smith et al. 2013; 
Hoey et al. 2020, 2021, 2022), this study recorded 50 
additional species. Prior to this study, thirteen of these 
50 species were previously only known from a single 
location in the central Coral Sea through observations 
and/or collections by aquarium fish collectors at the 
Holmes Reefs (F.Walsh pers. Com). Outside of these 
collections, these are the first observations of these 
thirteen species from quantitative fish community 

surveys in the Coral Sea Marine Park, and broader 
Coral Sea region (Table 1).

A further three species have single records from 
Boot (Anampses melanurus, Atlas of Living Australia, 
2023a), Frederick (Mulloidichthys pfluegeri, Atlas of 
Living Australia, 2023b) and Osprey (Valenciennea 
helsdingenii, Australian Faunal Directory 2023) reefs 
respectively, but were recorded in our surveys at 11 
other reefs (Table 1). These records increase the range 
extent of these three species in the region by between 4 
and 12° of latitude.

Four species recorded by ROV in the CSMP represent 
notable range extensions based on previous global occur-
rence records. Hoplolatilus randalli (Allen, Erdman & 
Hamilton, 2010), a relatively newly described species of 
tile fish (family Malacanthidae), is currently known only 
from Indonesia, the Philippines, Palau, Yap and the Solo-
mon Islands (Froese and Pauly 2023). A total of eight indi-
viduals were recorded at reefs spanning the northern and 
central CSMP (Ashmore and Lihou Reefs and East Dia-
mond Islet), all at depths below 70 m (Table 1, Fig. 3a). We 
mostly observed H. randalli in pairs beside large mounds 
of rubble, apparently built by the fish over their burrows. 
The observations from this study are the southernmost 
occurrence records for the species and expand the known 
extent of occurrence for H. randalli by almost 10° of lati-
tude. Cephalopholis polleni (Bleeker, 1868) was previously 
only known in Australian waters from the Cocos (Keeling) 
and Christmas Islands in the Indian Ocean. Elsewhere, C. 
polleni, (family Serranidae), occurs at scattered localities 
on oceanic islands across the Indian Ocean and wider Indo-
Pacific (Bray 2023). In the Coral Sea, this study recorded 
one individual C. polleni at 97 m under a ledge at Osprey 
Reef by ROV survey (Fig. 3b), and it has also been col-
lected at Holmes Reefs (Fenton Walsh pers. com). These 
Coral Sea records extend the southern range of C. polleni 
in the Southwest Pacific by 6° of latitude. Pseudanthias 
flavicauda (Randall & Pyle, 2001) was recorded by ROV 
survey at Osprey and Bougainville reefs in the northern 
Coral Sea. P. flavicauda (family Serranidae) is known 
from the Central and Southwest Pacific (Bray 2022; Fro-
ese and Pauly 2023), and recently from Tonga (Fricke et al 
2011b) and New Caledonia (Fricke and Kulbicki 2007). 
We observed abundant schools of P. flavicauda between 80 
and 100 m at Osprey and Bougainville Reefs, and although 
also collected from the Holmes Reefs (Fenton Walsh pers. 
com), the observations from this study are the most west-
ern records for this species and the most northern extent 
in the Coral Sea (Fig. 3c). Bodianus paraleucosticticus 
(Gomon, 2006) was found in ROV surveys at Lihou and 
Osprey Reefs at depths between 70 and 90 m. Together 
with collections from Holmes Reefs, these new observa-
tions of B. paraleucosticticus (family Labridae) extend the 
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previously reported distribution west from New Caledo-
nia and south from Papua New Guinea into the Coral Sea 
(Fig. 3d).

The presence of mesophotic coral ecosystems was con-
firmed at all 17 of the reefs surveyed by ROV and BRUV 
(Fig. 4). Several sites possessed remarkable hard coral cover 

Fig. 3  Current extent of occurrence plotted as coloured hulls for 
a Hoplolatilus randalli; b Cephalopholis polleni; c Pseudanthias 
flavicauda; d Bodianus paraleucosticticus. Occurrence data were 

obtained from OBIS (2023b,c,d,e) and GBIF (2023b,c,d,e). New 
observations of each species from the Coral Sea by this study are rep-
resented by yellow stars
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(preliminary estimates ~70–85%) at depths between 50 and 
100 m (Fig. 5a and d). Multiple other non-coral dominated 
mesophotic habitats were also found including Cycloclypeus 
fields (large benthic foraminifera) (Fig. 5b), octocoral domi-
nated walls (Fig. 5c), seagrass (Fig. 5e) and extensive Hal-
imeda meadows (Fig. 5f).

Discussion

The new occurrence records presented here span a 
considerable latitudinal gradient and provide evidence 
of more widespread distributions for multiple fishes at 
mesophotic depths in the region than previously known. 
These observations are consistent with the role of seamounts 

as stepping-stones for mesophotic fishes within the Coral 
Sea and between other neighbouring biogeographic regions. 
The provision and amount of suitable habitats at mesophotic 
depths throughout the seamount chain, together with the 
spatial arrangement of seamounts across the Coral Sea basin, 
are likely key mechanisms supporting a stepping-stone 
model of ecological connectivity in the region.

Total habitat area and the arrangement of a variety of 
habitat types are fundamental components of species-area-
isolation relationships that drive biodiversity patterns (Mac-
Arthur and Wilson 1967; Connor and McCoy 1979; Fahrig 
2013; Hanski 2015). The presence of multiple deep-water 
habitats at individual Coral Sea reefs highlights that there is 
considerably greater habitat area and habitat heterogeneity 
within the Coral Sea than known from shallow reefs alone. 

Fig. 4  Twelve species of coral reef fish recorded by ROV and BRUV 
surveys in the Coral Sea Marine Park (CSMP) between depths of 
50 and 100 m. All are previously known from one reef location in 
the CSMP but are reported here from multiple other reefs spanning 
the full latitudinal extent of the CSMP. a Pogonoperca punctata; b 
Pycnochromis leucura; c Valenciennea helsdingenii; d Abalistes fila-
mentosus; e Liopropoma sp. “yellow tail”; f Xanthichthys auromar-

ginatus; g Mulloidichthys pfluegeri; h Anampses melanurus; i Cir-
rhilabrus roseafascia; j Genicanthus bellus; k Hoplolatilus marcosi; 
l Pyronotanthias aurulentus. C. roseafascia, M. pfluegeri and H. mar-
cosi have been recorded on the outer GBR shelf break (Sih et  al. 
2017) but were previously not confirmed to be widely distributed 
throughout the Coral Sea
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This is significant given that most metrics of ecological iso-
lation comprise some measure of patch size combined with 
distance from nearest neighbouring habitat and the prop-
erties of the surrounding matrix (Moilanen and Nieminen 
2002; Prugh et al. 2008). Compared to continental scales 
(thousands of kilometres), seamounts in the Coral Sea are 
separated by relatively small distances (< 450 km maxi-
mum distance). Isolation can both positively and negatively 
affect biodiversity, either via demographic effects (Hanski 
et al. 2013; Fahrig 2013; Jones et al. 2020) or distance from 
anthropogenic influences (Demartini et al. 2008; Williams 
et al. 2011; Bennett et al. 2018). In the context of this study, 
the relatively small distance between many reefs throughout 
the seamount chain, in combination with increased habitat 
area and heterogeneity at mesophotic depths, may represent 
an optimal level of isolation between populations. This in 
turn would facilitate dispersal and enhanced connectivity 
for some taxa through the stepping-stone model (Baum et al. 
2004; Saura et al. 2014).

The relationships between increased habitat area 
and reduced isolation, together with levels of habitat 
heterogeneity and quality, also drive biodiversity through 
other ecological dynamics (Gratwicke and Speight 2005; 

Szangolies et  al. 2022). For example, Halimeda spp. 
meadows, seagrass and other macroalgae habitats are known 
to provide valuable nursery habitats for reef fish settlement 
and recruitment (Sambrook et al. 2019; Tang et al. 2020; 
Sievers et al. 2020). Although this function has not been 
extensively tested in MCEs, Halimeda meadows are known 
to support diverse mesophotic fish communities (Langston 
and Spalding 2017; Spalding et al. 2019), and we found these 
habitats on deep outer reef slopes and in lagoons of all the 
Coral Sea reefs surveyed. Given their isolation from other 
coastal nursery habitats, these habitats may be particularly 
important for the early life stages of fishes and invertebrates, 
and thereby the replenishment and maintenance of Coral 
Sea populations. Similarly, areas of high coral cover at 
mesophotic depths increase total habitat area and resource 
availability for coral-associated and dependent fishes. 
Although resources at range margins, including depth, can 
be of lower quality and affect the physiological condition of 
some reef fishes (Munday 2001; Srinivasan 2003; Hoey et al. 
2007), others including highly specialised obligate coral-
feeding butterflyfishes have been shown to access equal or 
greater resources from deeper reefs without impacting their 
fitness (MacDonald et al. 2018; MacDonald et al. 2019). 

Fig. 5  Varied mesophotic coral 
ecosystems and other meso-
photic habitats in the Coral Sea 
a areas of high coral cover, 77 
m, Lihou Reef; b Oxychellinus 
orientalis and Cirrhilabrus 
bathyphilus on a dense slope 
of Cycloclypeus at 82 m, East 
Diamond Islet; c Oxycheilinus 
orientalis on a steep wall with 
soft corals and gorgonians, 
94 m, Osprey Reef; d high 
abundance of fishes with high 
and complex coral cover, 57 m 
Bougainville Reef; e seagrass 
(Halophila gradients) at 43 m 
East Diamond Islet; f dense 
Halimeda meadows at 67 m, 
Lihou Reef
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Further, other studies of energetic trade-offs associated 
with marginal coral reef habitats have found that deep reefs 
support robust subpopulations through demographic and 
reproductive plasticity (Goldstein et al. 2016). Biological 
traits including habitat preference, diet and dispersal ability 
therefore also strongly influence connectivity differentially 
between species and ontogenetic stages (Hixon and Jones 
2005; Goldstein et al. 2017). In the context of this study, 
this is evident from the function of seamounts as stepping-
stones for deep-sea invertebrates, where mismatches 
between expected and observed dispersal patterns can be 
explained by a combination of environmental parameters 
and biological traits (Miller and Gunasekera 2017).

The occurrence of several fishes in the Coral Sea which 
were previously only known from either the Indo-Pacific 
region or South and Western Central Pacific also aligns with 
other ecological hypotheses explaining larger-scale patterns 
in marine biodiversity. “The biodiversity feedback” theory 
proposes that peripheral regions actively contribute to the 
export of taxa and lineages back to biodiversity hotspots, 
rather than acting only as sink populations (Bowen et al. 
2013). Range expansions into the Coral Sea from both the 
Central Indo-Pacific (e.g. H. randalli) and the Western 
Central Pacific (e.g. P. flavicauda) suggest multiple 
directions of connectivity between these biogeographical 
regions through the Coral Sea. The proximity of the Coral 
Sea to the global centre of marine biodiversity, the Coral 
Triangle in the Indo-Pacific, mean reef habitats in the Coral 
Sea may represent a particularly important link in larger-
scale patterns of reef fish biodiversity, rather than isolated 
populations with limited distribution (Hobbs et al. 2009; 
Budd and Pandolfi 2010). Though often speculated, prior to 
this study, there has been scant empirical evidence to support 
the role of the Coral Sea seamounts as stepping-stones for 
reef fish populations (but see Van Herwerden et al. 2009), 
or in contributing to biodiversity feedback between regions.

The stepping-stone model of dispersal has been shown 
to contribute to the biodiversity feedback process for 
reef fish assemblages in other regional seamount chains 
(Pinheiro et  al. 2015, 2018; Mazzei et  al. 2021). From 
studies in the Southwest Atlantic, coastal populations 
closer to the Brazilian continental shelf represent areas of 
higher biodiversity, and genetic connectivity exists in both 
directions between these populations and the most offshore 
seamounts (Simon et al. 2022). Interestingly, of the 16 new 
occurrence records found in this study from the Coral Sea 
Marine Park, 13 are not known from the neighbouring Great 
Barrier Reef. At least nine of these species are deep-water 
specialists, typically only known from depths greater than 
30 m and up to 120 m. We include H. marcosi in these 
deep-water specialists which, prior to these multiple new 
Coral Sea observations, is only reported in Australia from 
a single individual at 100 m at the GBR shelf break (Sih 

et al. 2017) and has not been recorded from the reefs of the 
GBR itself. Although a lack of observations on the GBR for 
these 13 species may reflect low sampling from mesophotic 
depths, the shallow geomorphology of the GBR shelf 
(30–50 m, Hopley 2006) likely restricts the establishment 
of populations of the deep-water specialist, or mesophotic, 
species reported here. Indeed, the occurrence of these 
mesophotic species throughout the full latitudinal extent of 
the CSMP, but not on the GBR, suggests that connectivity 
for these species is greater latitudinally along the seamount 
chain, where deep-water habitat is available between the 
Coral Triangle and island chains of the Southwest Pacific.

Connectivity patterns in the Coral Sea remain unclear but 
for shallow-water studies, both genetic analyses (Planes et al. 
2001; Payet et al. 2022) and dispersal-driven connectivity 
models (Treml et al. 2008) suggest that connectivity between 
the Coral Sea and GBR is generally weak. The barriers to 
connectivity between these regions have not been fully 
established, but the spatial separation of these two regions 
by deep open water and the lack of mesophotic habitat on 
the GBR would certainly contribute to a dispersal barrier 
for mesophotic species from the Coral Sea seamounts to 
the shallow GBR shelf. Further studies utilising genetic 
sampling of mesophotic fishes with extended ranges 
throughout the CSMP and from neighbouring regions are 
required to test these aspects of the biodiversity feedback 
hypothesis. Regional and localised oceanographic processes 
will also determine the nature and direction of population 
connectivity and barriers to dispersal throughout deep reefs 
of the region. For example, dispersal via large-scale ocean 
currents may be the main mode of seamount colonisation for 
some taxa (Leal and Bouchet 1991), but localised seamount-
generated flows may be more important for explaining the 
distribution of others (Richer de Forges et al. 2000). Finally, 
although there is limited connectivity between shallow and 
mesophotic ecological assemblages in many regions for 
some taxa (Morais and Santos 2018; Bongaerts and Smith 
2019; Stefanoudis et al. 2019), the depth extensions for 158 
species in the Coral Sea reported by this study suggest that 
boundaries between shallow and deep assemblages may be 
shifted deeper here than community breaks known from 
other regions (Lesser et al. 2019). Although MCEs clearly 
warrant conservation actions and scientific investigation 
independent from shallow-water reefs (Bridge et al. 2013; 
Rocha et al. 2018), it is recognised that the degree of MCE 
species overlap with shallow-water assemblages can vary 
considerably by taxon and location (Laverick et al. 2018). 
This necessitates further ecological and environmental 
sampling from MCEs in remote geographic regions, like 
the Coral Sea, and in understudied habitats, like seamounts.

A second mechanism, particularly relevant to patterns 
of mesophotic fish diversity, is the “Habitat Persistence 
Hypothesis” (HPH) (Copus et al. 2022). This theory posits 
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that during periods of lower relative sea level, deeper marine 
habitats can persist, particularly on complex bathymetries 
where there are horizontal and low aspect areas, while 
shallow-water habitats are dried out and communities here 
are lost. Multiple biogeographical hypotheses of global pat-
terns and processes in reef fish diversity are supported to 
varying degrees by often overlapping empirical evidence 
(Mora et al. 2003; Gaither and Rocha 2013; Bowen et al. 
2013; Cowman et al. 2017). Yet, most of this evidence is 
derived from shallow-water coral reefs (< 30 m) which are 
estimated to represent only 20% of global coral reef habitat 
(Pyle and Copus 2019). These data therefore must be con-
sidered incomplete regarding both species inventories and 
the extent of available habitat. Indeed, unlike shallow-water 
reef fishes, diversity for mesophotic fishes does not appear to 
attenuate with distance from the Coral Triangle (Pyle 2000, 
2005; Pyle and Copus 2019), and this mismatch suggests 
that there are further mechanisms shaping reef fish diversity 
than have currently been considered (Pinheiro et al. 2023). 
Again, although the lack of mesophotic sampling effort in 
the region must be acknowledged, the absence of fishes 
which are reported in this study from the adjacent GBR 
aligns with several mechanisms proposed by the HPH. Dur-
ing periods of lower relative sea level, species richness may 
have been retained in deeper habitats of the Coral Sea, and 
in these persisting habitats, evolutionary processes would 
continue among populations, potentially driving higher rates 
of speciation. Certainly, taxonomic revisions and redefined 
species complexes within some reef fish genera demonstrate 
high levels of speciation across broad distributions which 
span island chains, oceanic islands and seamounts in the 
Western and Indo-Pacific. These include the Pomacentrus 
philippinus group, which in the Coral Sea is represented 
by P. imitator but in the adjacent GBR is P. magniseptus 
(Allen et al. 2017), the goby genus Nemateleotris (Tea and 
Larson 2023) and multiple Pseudanthias species (Anderson 
2018, 2022; Gill 2022) many of which are deep-water spe-
cialists. The compilation and comparison of updated species 
inventories is required to test the applicability of the HPH 
in the Coral Sea, as well as genetic sampling to establish 
patterns of connectivity between mesophotic populations in 
adjacent regions. The complex bathymetries of the Coral Sea 
seamounts do, however, constitute a significant system that 
aligns with many of the mechanisms proposed by the HPH 
and is a promising region in which to test these concepts 
further.

Increased mesophotic surveys will likely continue to 
increase diversity records for the region and comprehensive 
fish species checklists for the Coral Sea Marine Park, 
and Coral Sea region more broadly, will undoubtedly 
continue to expand on the observations presented by this 
study. Recent large-scale survey efforts in the region have 
collected the most detailed bathymetry data for these reefs 

to date (Carroll et al. 2021; Beaman et al. 2022; Brooke 
and Schmitt Ocean Institute 2022) and have substantially 
expanded our understanding of deep-sea habitats of the 
Coral Sea. Unfortunately, despite the evident value of 
deep-sea exploration, technical constraints on large ship-
based ROVs mean that such work often only focuses on 
mesophotic habitats for short periods of time. Our findings 
highlight the utility of small, affordable ROVs as an effective 
tool for conducting mesophotic surveys in remote regions 
where technical diving is often not feasible. Although 
beyond the scope of this study, trait-based analysis of the 
fish community data collected by ROV surveys would be 
an informative line of further investigation to establish 
how ecological characteristics (e.g. body size, depth range, 
habitat preference, dispersal ability) contribute to habitat use 
and geographical ranges throughout the Coral Sea. Further, 
despite significant advances in understanding connectivity 
and recruitment patterns in tropical reef fishes (Jones et al. 
1999; Mora et al. 2003; Mora 2004; Planes et al. 2009; 
Jones 2015; Almany et al. 2017), ecological studies from 
seamounts are typically focused on cold-water, true deep-
sea taxa (Rowden et al. 2005, 2010; Pitcher et al. 2007; 
Clark et al. 2010a; Rogers 2018). Coral reef communities 
from tropical seamounts, including those inhabiting MCEs, 
are therefore underrepresented in an already understudied 
global marine habitat but are known to support abundant 
and diverse reef fish communities (Letessier et al. 2019; 
Galbraith et al. 2021; Leitner et al. 2021). As biodiversity 
hotspots and important patch habitats for connectivity, 
seamounts should more widely be considered global 
conservation priorities in coral reef seascapes (McCook 
et al. 2009; Riva and Fahrig 2022; Thompson et al. 2023). 
Increased mesophotic community surveys in the Coral 
Sea region and in other tropical seamount chains will 
contribute to baseline knowledge of reef fish community 
structure and species distributions in these habitats. Further 
observational studies examining species turnover between 
seamounts should also be supported by genetic sampling to 
establish the nature and direction of population connectivity 
throughout tropical seamount chains and within adjacent 
biogeographical regions.

The findings from this study support the stepping-stone 
model of dispersal for seamounts in a tropical seascape. 
The new records of 16 fishes recorded throughout the 
Coral Sea Marine Park confirm that the geographic range 
of many tropical reef fishes is more widespread than 
currently reported. Sampling deficiencies in the region 
and at mesophotic depths are clearly a significant reason 
behind new species observations. Nevertheless, these 
new records from the Coral Sea contribute to evidence 
that tropical seamounts are important habitats for reef 
fish dispersal and connectivity between the Indo-Pacific, 
Coral Triangle and Western Pacific region. The discovery 



Marine Biodiversity           (2024) 54:17  Page 13 of 18    17 

of high coral-cover mesophotic reefs, combined with other 
diverse deep-water benthic communities, demonstrates 
the potential of mesophotic habitats of the Coral Sea to 
provide valuable corridors for the dispersal of coral reef 
fishes. The spatial arrangement of the Coral Sea seamounts 
along the boundary of major biogeographical regions 
also suggests that these tropical seamounts function in 
processes driving large-scale marine biodiversity patterns. 
These include but are likely not limited to biodiversity 
feedback between peripheral regions and centres of 
marine biodiversity and differences in the distribution and 
diversity of mesophotic fishes driven by habitat persistence 
through periods of sea-level change. These paradigms may 
operate across other regional tropical seamount chains 
and suggests these habitats have an important role in the 
maintenance and regulation of global biodiversity patterns 
for coral reef taxa.
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