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Abstract

In the past decade there have been great advances and emergence of new techniques

in the field of gene expression profiling. As the popularity of these techniques grew,

the amount of data that gets generated has also grown. The task of analyzing this

data to create a global picture to identify the biological pathways that are relevant

to the study has been addressed by many. These approaches (collectively termed as

enrichment analysis) have also grown in sophistication and accuracy making them

the default step following a gene profiling experiment. However, enrichment analysis

approaches do not provide pointers to likely regulators in their results.

In this project we built a system called Regulation Expression Pathway Analysis

or REPA to facilitate the biological interpretation of results from high throughput

gene expression profiling experiments. In particular, we provide researchers with gene

sets that were most active in the biological phenomenon under study and their likely

regulators. Users can input the gene expression profile data from their expression

profiling experiments in REPA and get a list of disturbed gene sets and inferred

transcription factors that possibly regulate these gene sets.

To build this system first we processed the transcription factor binding data from

the ENCODE project to quantify the strength of regulation that each transcription

factor has on each gene set. Then we build a gene expression enrichment analysis

system that can analyze the gene expression profiling data and list the most active
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gene sets. Finally we combine the results from the previous two steps to arrive at a

more complete picture that gives users information about not only the most active

gene sets, but also about the most likely regulators of these gene sets.
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Chapter 1

Introduction

It is now common knowledge that the entire genetic information of an organism is

coded in its DNA. Therefore the knowledge of the exact sequence of the DNA of an

organism is a valuable resource in the quest to understand how that organism func-

tions. In recent times great advances were made in the development of techniques

that enable high speed DNA sequencing. Any method or technology that can deter-

mine the exact order of the four bases of DNA is called a DNA sequencing technique.

Another method that have grown in popularity is the expression profiling techniques

which allow researchers to check the activity levels of thousands of genes at once.

These gene expression profiling techniques are extremely useful in determining the

functions of genes. The data generated from such methods is huge, but without

proper interpretation, is not of much use.

Our project is in the field of bioinformatics, which is an interdisciplinary field

dealing with the development and use of computer software and databases to facilitate

and enhance biological research. The main objective of this project is to facilitate the

biological interpretation of the results from gene expression profiling experiments. In

particular, we provide researchers with gene sets (or biological pathways) associated
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to the biological phenomenon under study and their likely regulators. Gene sets are

set of genes which have some feature in common such as genes that are involved in a

pathway. To achieve this goal we built a software system called Regulation Expression

Pathway Analysis (REPA) where users can input the gene expression profile data from

their expression profiling experiments and get a list of disturbed gene sets and inferred

transcription factors that possibly regulate these gene sets.

REPA uses an enrichment analysis approach called Functional Class Scoring or

FCS. Enrichment analysis are a set of software tools and techniques which attempt

to interpret the data from gene expression profiling experiments by finding functions

and pathways that summarize the observations. Over the past decade as expression

profiling grew in popularity, the need for accurate enrichment analysis also grew.

Many algorithms and software tools were developed to address this. An in depth

review can be found in the paper (Khatri, Sirota, and Butte 2012).

In REPA, we have mainly two modules. The first module links the transcription

factors to individual gene sets. The second module performs enrichment analysis on

the gene expression data. Combining the results from these two modules allows REPA

to predict three things:

• Transcription factors that may regulate a given pathway. This is the result from

the first module.

• Pathways that are affected in the given experiment. This is the result from the

second module.

• Transcription factors that are most likely regulating the pathways that are most

affected in the study. This is the result of combining the output of the two

modules.
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Over a hundred systems were developed in the past decade for performing en-

richment analysis in gene expression data. Some of the most widely used tools are

Gene Set Enrichment Analysis or GSEA (Subramanian et al. 2005), and Parametric

Analysis of Gene set Enrichment or PAGE (Kim and Volsky 2005). In 2009 a new

method called GAGE, or Generally Applicable Gene-set Enrichmen (Luo et al. 2009),

was published which could handle datasets of different sample sizes or experimen-

tal designs. GAGE showed significantly improved results compared to GSEA and

PAGE (Luo et al. 2009). For validation, we compared the second module of REPA to

GAGE. The novel aspect of REPA is that we are using hypothesis based statistical

testing to find regulators that control entire gene sets. Then we combine the results

from the enrichment analysis module to present more detailed analysis of the data

obtained from gene profiling experiments. Previous tools only perform enrichment

analysis on the gene expression data and provide gene sets that are perturbed in the

experiment whereas REPA also provides information about the likely regulators of

the perturbed pathways.

This thesis is organized in 5 chapters. After this initial introductory chapter, we

discuss the necessary biology that is required to understand this project in chapter

2. We also look at the work that has been done so far in this area, describe the

problem statement, and existing solutions. In chapter 3 we take a detailed look at

REPA and all its components. System validation and comparison is presented in

chapter 4 followed by a conclusion in chapter 5. The work described in this thesis

has been accepted for publication in the IEEE/ACM Transactions on Computational

Biology and Bioinformatics journal and presented at the Great Lakes Bioinformatics

Conference 2015.
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Chapter 2

Background Knowledge and

Related Work

This chapter describes the biological concepts required to understand the work done.

2.1 Flow of information in biological systems

The process of transmission of the genetic information from the genome of an organism

to its phenotype (i.e. the expression of observable characteristics as an individual) is

a complex process. A simplified description is provided here, as it is necessary to the

understanding of this project.

Figure 2.1 shows how genetic information flows within a biological system. This

was first proposed by Frank Crick in 1958 and published later in 1970 (Crick et al.

1970). Generally this information flows from DNA to DNA (replication), DNA to

RNA (transcription) and RNA to proteins (translation).

To fully understand the diagram we need to learn more about the macromolecules

such as DNA, RNA, and proteins, along with processes such as replication, translation,

12



2.1. FLOW OF INFORMATION IN BIOLOGICAL SYSTEMS

Figure 2.1: Flow of information in biological systems (Horspool 2008)

and transcription. This section describes each of them one by one.

2.1.1 Deoxyribonucleic acid (DNA)

The substance that is responsible for carrying the genetic information from parents

to offspring in most living organisms, including all prokaryotic and eukaryotic cells

and in many viruses, is an organic chemical of a complex molecular structure called

Deoxyribonucleic acid, or DNA (Klug et al. 2012).

Figure 2.2: Location of DNA in a cell (Mariana Ruiz 2012)
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2.1. FLOW OF INFORMATION IN BIOLOGICAL SYSTEMS

As shown in figure 2.2, DNA resides in the nucleus of eukaryotic cells, where

inside the chromosomes, the DNA is condensed in a DNA - protein complex called

chromatin. When the chromatin is uncoiled, its main component is revealed: the

DNA molecule.

Figure 2.3: The structure of the DNA double helix (Zephyris 2011)

DNA has a double helix structure (Watson, Crick, et al. 1953), that looks like a

long spiraling ladder (figure 2.3). It is formed of millions of elemental molecules, called

nitrogenous bases, linked together in chains. The sequence in which the nitrogenous

bases are linked amounts to a code that determines the characteristics of an individual,

such as their eye color. These coded instructions are called genes. Genetic information

is different for every individual making each of us unique.
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2.1. FLOW OF INFORMATION IN BIOLOGICAL SYSTEMS

The genetic material, or the DNA, of an organism contains instructions to control

all everyday cellular activities (Hunter 2012). Bases, or nucleotides, are the building

blocks of DNA, and there are four types: Adenine, Guanine, Cytosine and Thymine.

The structure of these bases are given in the figure 2.3.

The configuration of the DNA molecule is highly stable, allowing it to act as a

template for the replication of new DNA molecules, as well as for the production

(transcription) of the related RNA (ribonucleic acid) molecule.

2.1.2 Ribonucleic acid (RNA)

RNA is also a nucleic acid like DNA but unlike DNA it is a single stranded molecule.

Another difference between the two is that instead of thymine the fourth base pair in

RNA is uracil. The structural differences between the two nucleic acids are shown in

figure 2.4.

Figure 2.4: Comparison of a single-stranded RNA and a double-stranded DNA (Sponk
2011)
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2.1. FLOW OF INFORMATION IN BIOLOGICAL SYSTEMS

There are different types of RNA molecules, but in this thesis we are only interested

in the RNA molecule whose main function is to carry the genetic information from

the DNA to proteins via the steps of transcription and translation. This type of RNA

molecule is called messenger RNA or mRNA (Hunter 2012).

mRNA carries the coding instructions for protein synthesis from DNA to the

ribosome. During translation, the mRNA molecule specifies the sequence of the

amino acids in a polypeptide chain and thereby provides a template for joining amino

acids. (Pierce 2005). The folding of these amino acid chains gives birth to a protein

molecule.

2.1.3 Proteins

Figure 2.5: Myoglobin protein 3D structure (AzaToth 2008)

Proteins are large macromolecules that perform a wide array of functions. Each

organism uses thousands of different proteins in their life span (Hunter 2012). Some

functions that proteins perform are the catalyzation of metabolic reactions, the repli-

cation of DNA, responses to stimuli, and the transportation of molecules from one
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2.1. FLOW OF INFORMATION IN BIOLOGICAL SYSTEMS

location to another, among many more.

For example, the protein myoglobin is an iron and oxygen binding protein. It is

commonly found in the muscle tissues of vertebrates. It’s 3D structure is shown in

figure 2.5 (Kendrew et al. 1958).

2.1.4 Gene

A gene is a unit of heredity in a living organism. A gene is usually responsible for

influencing certain characteristics of the organism. It is normally a stretch of DNA

that codes for a type of protein, or for an RNA molecule that has a function. Genes

only have an effect on the cell when they are expressed (transcribed).

2.1.5 Gene expression

Figure 2.6: Steps in gene expression (Forluvoft 2007)

To be able to perform its functions, a gene needs to be expressed. The process of
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2.1. FLOW OF INFORMATION IN BIOLOGICAL SYSTEMS

gene expression allows the information from a gene to be used in the synthesis of a

functional gene product such as a protein molecule. Gene expression is of high impor-

tance because by controlling which genes are expressed and which are not expressed

in a given scenario, a cell can decide its phenotype and which proteins to synthesis.

The process of gene expression involves several steps as shown in figure 2.6.

A section of the DNA is first transcribed and then translated. This section is

called the transcription unit. Just above the transcription unit there is a sequence of

nucleotides which defines where the transcription unit begins. This is known as the

promoter region.

2.1.6 Transcription

Transcription is the process by which the information contained in a section of DNA

(a gene) is transferred to a newly assembled piece of RNA. It is facilitated by RNA

polymerase and transcription factors (described in section 2.2). In eukaryotic cells

protein encoding transcripts (pre-mRNA) must be processed further in order to ensure

translation.

2.1.7 Translation

In translation, messenger RNA (mRNA) produced by transcription is decoded by

ribosomes to produce a specific amino acid chain, or polypeptide, that will later fold

into an active protein molecule.

2.1.8 Putting it all together

So far in this section we have seen that, the genetic information that is passed on

from parents to offspring in most living organism is stored in DNA. Genes are a
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2.2. TRANSCRIPTION FACTORS

unit of heredity, and the entire genome of an organism could contain thousands of

genes. An individual gene is usually a small stretch of DNA, that when expressed,

codes for a specific protein. The process of gene expression involves several steps,

namely transcription, splicing, and translation. The final product of gene expression

is commonly a functional protein molecule. This way, the information that was passed

on from the organism’s parents gets expressed and performs real functions in the

organism.

2.1.9 Selective gene expression

Not every gene is expressed in all cells at all times. By controlling which genes

are active, a cell can take on special characteristics and respond to its environment.

Muscle cells and neurons have the same DNA, but perform different functions because

they express different sets of genes. Transcription factors are one of the mechanisms

to regulate which genes are expressed. In the nucleus, the DNA is condensed in the

chromatin. In places close to where genes are being expressed, there are often zones of

naked DNA. Transcription factors bind to these naked DNA sequences and regulate

gene expression (Lyons 2012).

2.2 Transcription Factors

As mentioned above, transcription factors play a part in the regulation of gene expres-

sion. Transcription factors are protein molecules that bind to a specific DNA sequence.

Once bound to the matching DNA sequence, the transcription factor molecule can

promote or block the transcription of a nearby gene. The location where the tran-

scription factor attaches itself to the DNA is called the transcription factor binding

site. After binding itself the transcription factor regulates a gene that is spatially
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2.2. TRANSCRIPTION FACTORS

near the binding location, for example, by making it easier for the RNA polymerase

to attach to the gene’s promoter region. In most cases the gene lies downstream to

the transcription factor binding site but in some cases, due to the complex nature of

the three dimensional structure of the chromatin, a transcription factor can regulate

a gene that is thousands of base pairs away but is close to the binding site in three

dimensional space.

By promoting (as an activator), or blocking (as a repressor), the recruitment of

RNA polymerase during transcription, transcription factors regulate the level of gene

expression. RNA polymerase is the enzyme that performs the transcription of genetic

information from DNA to RNA. Some transcription factors perform this function with

other proteins in a protein complex while some do it alone.

Figure 2.7: Transcription factors working as activators (Kelvinsong 2012)

A demonstration of how these proteins affect the level of gene expression is given

in figure 2.7. In this figure, several transcription factors are working together to create

a protein complex that makes it easier for RNA polymerase to attach to the promoter
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2.3. BIOLOGICAL PATHWAYS

region and start transcribing the gene. The gene that is being regulated here is located

in a distant part of the DNA but due to the three dimensional folding of DNA in the

chromatin, it is spatially close to the transcription factor binding site.

By regulating the gene expression, transcription factors enable different cells to

perform different functions. For example, different genes are turned on in liver cells

than those in skin cells and different genes are turned on in cancer cells than in healthy

cells. Through the action of transcription factors, the various cells of the body, which

all have the same genome, can function differently.

Roughly 8% of genes in the human genome encode transcription factors (Broad

2014). They play important roles in development, the sending of signals within the

cell, and the events in a cell that lead to division and duplication, known as the cell

cycle. Several human diseases are linked to mutations in transcription factors, such

as hearing loss, congenital heart disease, and cancer (Villard 2004; Peters et al. 2002;

Schott et al. 1998).

2.3 Biological Pathways

A biological pathway is a series of actions among molecules in a cell that leads to a

certain product or a change in that cell. A pathway can trigger the assembly of new

molecules, such as a lipids or proteins. Pathways can also turn genes on and off, or

spur a cell to move. Some of the most common biological pathways are involved in

metabolism, the regulation of genes, and the transmission of signals.

2.4 ChIP-X Experiments

Several in vivo experimental technologies such as ChIP-chip (Iyer et al. 2001), ChIP-

seq (Johnson et al. 2007), ChIP-PET (Wei et al. 2006) and DamID (Peric-Hupkes
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2.5. GENE EXPRESSION PROFILING

et al. 2010) provide details about possible binding sites for transcription factors at

a genome-wide level. These four methods together are referred to as ChIP-X. The

sites discovered using the ChIP-X methods are near genes and are found when the

chromatin structure of a specific cellular state allows binding of a particular tran-

scription factor. This means that unlike possible binding sites found using in vitro

approaches, the possibility of these sites to have actual biological significance is much

higher. Results from such experiments report the binding of specific transcription fac-

tors to DNA in proximity of a target gene’s location. Such experiments commonly list

hundreds to thousands of potential regulatory interactions (Lachmann et al. 2010).

2.5 Gene Expression Profiling

Gene expression profiling is the measurement of the abundance level (the expression)

of thousands of transcripts at once, to create a global picture of cellular state. These

profiles can, for example, distinguish between cells that are actively dividing, or show

how the cells react to a particular treatment.

A DNA microarray (also commonly known as a DNA chip or biochip) is a collection

of microscopic DNA spots attached to a solid surface. Scientists use DNA microar-

rays to measure the expression levels of large numbers of genes simultaneously, or

to genotype multiple regions of a genome. Each DNA spot contains segments of a

specific DNA sequence, known as probes (or reporters or oligos). These can be a

short section of a gene or other DNA element that are used to hybridize a cDNA

or cRNA (also called anti-sense RNA) sample (called target) under high-stringency

conditions. Probe-target hybridization is usually detected and quantified by detection

of fluorophore-, silver-, or chemiluminescence- labelled targets to determine relative

abundance of the targets in the sample. RNA-seq refers to the use of high-throughput
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2.6. PATHWAY ANALYSIS OF GENE EXPRESSION DATA

sequencing technologies to sequence cDNA in order to get information about a sam-

ple’s RNA content. The technique has been rapidly adopted in studies of diseases like

cancer.

2.6 Pathway Analysis of Gene Expression Data

Gene expression profiling experiments allow biologists to measure the activity lev-

els of genes. The data that is generated from such experiments usually is several

megabytes long. For example in (Emery et al. 2009) and (Lavery et al. 2008), the

research teams have performed typical gene expression profiling experiments and the

data after refinement is 88 MB and 21.7 MB in size respectively. To derive useful

information from this large quantity of data is a challenge. In the last decade or so,

as experiments of such nature have gained popularity, several approaches have been

devised to help researchers understand the meaning of this data and to determine the

biological activities taking place in the cells under observation.

This thesis is in the research area of facilitating the researchers who are performing

such experiments to understand the biological processes that are active in their studied

cellular state. It is done by performing statistical tests on the data obtained from high

throughput gene expression profiling experiments. Several individual research groups

have made important contributions to this field and this project built upon the work

that has been done so far. In the following sections, we discuss all those techniques

and databases that are related to this project.

2.7 Gene sets formation

Individual genes are annotated based on their functions, position and other charac-

teristics. For example, functional annotation for a gene can be its association with
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2.8. ENRICHMENT ANALYSIS (PATHWAY ANALYSIS)

a particular function in a metabolic pathway. Any information about the function

of this gene is a functional annotation of the gene. These annotations are stored in

publicly available databases. Using these publicly available gene annotations it is

possible to create gene sets by taking all the genes that have a common annotation

and clubbing them together. Usually every biological pathway, such as metabolic or

signaling pathways, are associated with certain genes. Thus, by clubbing together

genes based on their functions, we can connect biological processes or pathways to

sets of genes. An example of such a gene set could be the KEGG pathway Glycerolipid

metabolism (hsa00561) (Kanehisa and Goto 2000). Based on published studies, there

are 49 genes associated with the pathway (Norbeck et al. 1996; Karlsson et al. 1997;

Berg et al. 2001). These genes form the glycerolipid metabolism gene set.

2.8 Enrichment Analysis (Pathway Analysis)

High-throughput gene expression profiling techniques, such as DNA microarray and

RNA-Seq, allow researchers to simultaneously measure genome-wide levels of gene ex-

pression under specific biological conditions. Statistical approches such as limma (Smyth

2005) and edgeR (Robinson, McCarthy, and Smyth 2010) are then used to identify

differences in gene expression between two or more conditions. Enrichment analysis or

pathway analysis is an analytical approach to interpret the results of a gene expression

profiling experiments with respect to gene sets. It is the process with which we as-

sociate observed changes in gene expression with cellular functions and/or metabolic

pathways. Without such an analytical process, it will be very difficult to comprehend

which biological pathways are most active in the particular case under study.

Gene expression profiling experiments usually generate a list of differentially expressed

genes. Here is an example of how the data that is obtained from such an experiment
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looks (Lavery et al. 2008).

EntrezID 8hCont1 8hTrt 8hCult1 8hCont2 8hTrt 8hCult2
10000 6.666482 6.727039 7.859644 7.888743
10001 9.874859 9.873068 9.838792 9.757909
10002 5.524512 5.651697 5.299609 5.146715
10003 4.604491 4.661876 4.790255 4.705559
10004 7.904135 7.883218 8.00505 7.962769
...
...

Table 2.1: Expression profiling data sample

Such a list can be very useful in identifying genes that may have roles in a par-

ticular phenomena or phenotype. However, for many researchers this list would not

be sufficient in providing insight into the underlying biology of the condition being

studied. To individually study each gene and interpret the meaning would be a very

complex and time consuming process. Therefore, categorizing the genes based on

their common functional annotation helps in two ways.

Reduced complexity By grouping the genes into sets of genes, with each gene

set targeting a specific pathway or function, the complexity is reduced to just a few

hundred pathways for the experiment.

Higher explanatory power Pathways that have different activity levels between

two conditions would generally have a higher explanatory power than just a list of

genes would (Glazko and Emmert-Streib 2009).

Hence the lower complexity and higher explanatory power of enrichment analysis

has made it a de-facto in post gene expression analysis. Broadly, there are three

different approaches for performing enrichment analysis (Khatri, Sirota, and Butte

2012). They are :

• Over-Representation Analysis (ORA) approach
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• Functional Class Scoring (FCS) approach.

• Pathway Topology (PT) approach.

We look at them one by one in the following sections.

2.8.1 Over-Representation Analysis (ORA) Approach

The growth in the popularity of High-throughput sequencing, and also the develop-

ment of public gene set repositories such as Gene Ontology (GO) or Kyoto Encyclope-

dia of Genes and Genomes (KEGG), fueled the immediate need for functional analysis

of microarray gene expression data. To tackle these problems the Over-Representation

Analysis (ORA) approach was devised.

From the expression levels observed in the sequencing experiment, a list of signifi-

cant genes that were over-expressed or under-expressed is created. To create this list,

an arbitrary cut-off p-value is set. For example, a researcher may say that all genes

that have a p-value less than, or equal to, 0.05 qualify as significant genes. Next,

for each pathway (or gene set) the numbers of genes that are present in this list are

counted. Then, by using statistical analysis techniques, such as tests based on the

hyper geometric, chi-square, or binomial distribution, it is determined whether more

genes belonging to the gene set are present in the list than expected by chance.

This is a very simple technique, but it sheds some light on the gene sets that are

under or over expressed. ORA has a few shortcomings too, as discussed next.

Limitations of Over-Representation Analysis (ORA) Approach

Even though the ORA approach is the most popular approach, it has several short-

comings.
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Firstly, the statistical tests (e.g., hyper geometric distribution, binomial distribu-

tion, chi-square distribution, etc.) ignore the measurements found for the genes in

the gene expression experiments. As this data is ignored, all the genes that make the

list are treated equally despite their varying levels of expression. The list of signifi-

cant genes is generated based on an arbitrary threshold and the individual genes that

do not make the threshold are discarded. Genes whose expression levels fall in the

border of the threshold also have some significance but are totally ignored. This is a

disadvantage of having a hard cutoff threshold.

Secondly, one of the goals of gene expression analysis is to understand how interac-

tions between various gene products occur as the levels of gene expression changes. By

considering that all the genes are independent, ORA significantly reduces its ability to

analyze complex biological interactions that include several gene products. Because

the ORA techniques consider all genes as equal and independent, it fails to provide

any insight in this regard.

Finally, this approach works with the assumption that all the pathways are in-

dependent to each other, which is not true. For example, in signaling pathways in

KEGG, there is a presence of growth factors that activate the MAPK signaling path-

way. This signaling pathway in turn activates the cell cycle pathway. ORA methods

do not account for such inter-pathway interactions and dependences.

2.8.2 Functional Class Scoring (FCS) Approach

In most biological systems, significant effects on pathways can be caused by large

changes in individual genes, but they can also be caused by weaker coordinated

changes in the expression levels of several functionally related genes. By clubbing

such related genes into a gene set such that a gene set represents a biological path-

way, we can detect such effects. Almost all the FCS based methods have mainly three
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steps:

Step 1: Calculate Gene Level Statistic

First a gene level statistic is computed from the molecular measurement data

obtained from high-throughput expression analysis experiments such as DNA

microarray or RNA-Seq. This is done by calculating differential expression for

each of the genes. Several statistical methods, such as correlation of molecular

measurements with phenotype (Pavlidis et al. 2004), Q-statistic (Goeman et al.

2004), signal-to-noise ratio (Subramanian et al. 2005), t-statistic (Tian et al.

2005) or Z-score (Kim and Volsky 2005) can be used to represent the expression

levels.

Step 2: Calculate pathway level statistics

Next, gene level statistics for all genes in a given gene set are aggregated into a

single pathway level statistic. There are several statistical methods to do this but

some of the more common ones are Kolmogorov - Smirnov (Smirnov 1944), the

Wilcoxon rank sum test (Mann, Whitney, et al. 1947), or to take the sum, mean

or median of the gene level statistics. Whatever method is chosen to implement

this, it’s power can depend on factors such as the proportion of the genes present

in the pathway that were differentially expressed, the actual size of the pathway

(i.e. the number of genes present in the pathway) and the amount of correlation

that exists between the various genes in the pathway. Even though multivariate

statistics should show better results as they also account for inter-dependencies

among genes, it has been observed that for higher cut-offs (pV alue ≤ 0.001), the

uni-variate statistics show more power, and for less stringent cut-offs (pV alue ≤

0.05) the uni-variate statistics show equal power (Khatri, Sirota, and Butte

2012).
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Step 3: Assessing statistical significance of the pathway level statistic

In this step the statistical significance is computed by using a null hypothe-

sis. There are mainly two ways to do the testing: competitive null hypothesis

testing and self-contained null hypothesis testing. In the former method, class

labels (i.e. phenotypes) for each sample are permuted, and comparison is made

between the set of genes in a given pathway with itself. In the latter method,

gene labels are permuted for each pathway, and comparisons are made between

the set of genes that are in the pathway, with the set of genes that are not in

the pathway. The size of the gene sets remains the same.

Advantage of using FCS

Some of the limitations described above related to using the ORA approach have been

addressed in the FCS approach. This helps FCS provide better results and deeper

insight into the underlying biology of any given condition than those provided by

ORA. For example, FCS does not require any arbitrary cut-off threshold for dividing

the genes into significant and non-significant groups. It uses all the available molecular

measurements for its analysis. FCS uses the molecular measurement information to

detect coordinated changes in expression of genes in some pathways. By detecting

such coordinated changes, FCS can give us information about dependence between

genes.

Limitations to FCS

FCS analyzes each pathway independently, hence a problem arises when a single gene

is part of multiple pathways. In such a case, a given gene might be over-expressed

because it is playing an important role in a particular pathway, but this expression

level will be considered while evaluating the pathway level statistic of other pathways
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that the gene is a part of. Another limitation arises when the statistical method used

to implement FCS is a rank based method. In such a case, the value obtained in the

experiment is not considered in the analysis, but only the rank assigned is considered.

2.8.3 Pathway Topology (PT)-Based Approach

Pathway topology is the newest technique available for performing enrichment analy-

sis. It is similar to FCS, except for how pathway topology based-approaches compute

the gene level statistics. Several publicly available pathway knowledge bases hold

information about gene products that interact with each other, how those products

interact and where they interact in a given pathway. ORA and FCS do not utilize this

knowledge. An example of a PT-based approach is ScorePAGE proposed by (Rah-

nenfuhrer et al. 2004). ScorePAGE computes similarity between each pair of genes

in a pathway. The similarity is measured by calculating the correlation or covariance

between the two genes. The similarity score is comparable to the gene level score

in FCS based approaches. Then, these scores are averaged to arrive at the pathway

level statistics. However, ScorePAGE divides the similarity score with the number

of reactions needed to connect the two genes in the pathway. This strategy assigns

varying weights to the pairwise similarity scores.

Limitations

Some of the common limitations with this strategy are:

• Pathway topology depends upon the cell type and the condition being studied.

Hence this information is not readily available and is usually fragmented in

various knowledge bases. As the annotation becomes more comprehensive and

complete, these approaches are expected to perform better.
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• No existing PT-based approach can collectively model and analyze high-throughput

data as a single dynamic system.
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Chapter 3

Methodology and Implementation

3.1 Motivation

In the modern day world a plethora of data is produced everyday in laboratories per-

forming high throughput experiments such as DNA Sequencing and Gene Expression

Profiling. Trying to analyze and understand the mechanisms of the biological pro-

cesses under study is a non-trivial task. To extract knowledge from this data there

is a need for new computer programs to perform analytics and help interpret this

growing amount of data.

Some of the common questions that arise after any RNA sequencing or DNA

microarray experiment are: what biological pathways were affected in the sample,

and which transcription factors were regulating these biological pathways. Providing

answers to these questions can help researchers to make new discoveries or provide

direction to their future research.

Currently there are programs to identify the biological pathways that are getting

affected. As discussed in Khatri et al (Khatri, Sirota, and Butte 2012) programs such

as Gage (Luo et al. 2009) can identify the gene sets that are over or under expressed
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in the sample by statistical testing. There are also programs such as ChEA (Kou et

al. 2013) as described in the previous chapter that provide information about which

transcription factors have their targets over-represented in a list of genes. Presently

though, there is no such program that provides the full picture by predicting which

transcription factor is actually regulating the pathways that are most affected in the

study sample.

In this project, we combine the results of gene set enrichment analysis (FCS)

and Chip-X data driven analysis to make predictions that tell the researcher which

transcription factors might regulate pathways affected in the sample being studied.

3.2 Overview of the system

The software system that we built to materialize our idea had to perform several

tasks. First, it should quantify to what degree a given transcription factor regulates

any particular gene set. To achieve this, we performed a functional class scoring on

the data obtained from the ENCODE project. Second, the software should identify

which gene set was most affected in a given experiment. After conducting an exper-

iment, researchers can use this software to perform functional class scoring on the

data obtained from their experiment to reveal the biological pathways that were most

affected. Finally, the system should combine the results of the above two parts to

arrive at the final results. The final results will be a list of transcription factors and

gene sets that are playing an important role in the phenomena under study.

We named our system REPA for Regulation Expression Pathway Analysis.
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3.3 REPA description

We will now look at the inputs to the system. Then, we will see each module in a

greater detail. The modules of the system are as follows:

• Linking transcription factor binding sites with promoter regions of known human

genes

• Creating the Regulation Database

• Expression Analysis

• Combining Regulation and Expression Results

3.3.1 Inputs to the system

There are mainly three inputs to the system.

Gene sets from gene annotation databases

As described in the previous chapter, a gene set is a group of genes that has some

common functional annotation. A gene set may represent a biological pathway and

include all the genes that play a role in that pathway.

For this project we gather our gene sets from two sources:

• Molecular Signatures Database or MSigDB

MSigDB (Subramanian et al. 2005; Liberzon et al. 2011) is a collection of anno-

tated gene sets that were made publically available by various research groups

such as Reactome (Vastrik et al. 2007), Biocarta (Nishimura 2001), Gene On-

tology (Ashburner et al. 2000), Gene Arrays, KEGG (Kanehisa and Goto 2000;

Kanehisa et al. 2014) and more.
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MSigDB contains gene sets that are kept classified in six collections.

H Hallmark gene sets

Hallmark gene sets summarize and represent specific well-defined biological

states or processes and display coherent expression. These gene sets were

generated by a computational methodology based on identifying gene set

overlaps and retaining genes that display coordinate expression (Total 50

gene sets).

C1 Positional gene sets

These are gene sets corresponding to each human chromosome and each

cytogenetic band that has at least one gene. These gene sets are helpful

in identifying effects related to chromosomal deletions or amplifications,

dosage compensation, epigenetic silencing, and other regional effects (Total

326 gene sets).

C2 Curated gene sets

These are gene sets collected from various sources such as online pathway

databases, publications in PubMed, and knowledge of domain experts. The

gene sets in this group can be further classified into the following groups

(Total 4725 gene sets).

CGP: chemical and genetic perturbations These gene sets represent

expression signatures of chemical and genetic perturbations. For each

perturbation there is usually two sets: one set consisting of genes that

show increase in expression levels (XXX UP ) and another set consist-

ing of genes that show lower expression levels denoted by (XXX DOWN)

(Total 3395 gene sets).

CP: Canonical pathways These gene sets are from pathway databases.
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These are usually compiled by domain experts and are canonical rep-

resentation of any given biological process (Total 1330 gene sets).

CP:BIOCARTA: BioCarta gene sets These are genes derived from

BioCarta pathway database (Nishimura 2001) (Total 217 gene sets).

CP:KEGG: KEGG gene sets Genes derived from KEGG pathway database

(Kanehisa and Goto 2000; Kanehisa et al. 2014) (Total 186 gene sets).

CP:REACTOME: Reactome gene sets Genes derived from Reactome

pathway database (Vastrik et al. 2007) (Total 674 gene sets).

C3 Motif gene sets

Gene sets that contain genes that share a cis-regulatory motif that is con-

served across the human, mouse, rat, and dog genomes (Xie et al. 2005)

(Total 836 gene sets).

MIR: microRNA targets Gene sets that contain genes that share a 3’-

UTR microRNA binding motif (Total 221 gene sets).

TFT: transcription factor targets Gene sets that contain genes that

share a transcription factor binding site defined in the TRANSFAC

database (version 7.4) (Wingender 2008). Each of these gene sets is

annotated by a TRANSFAC record (Total 615 gene sets).

C4 Computational gene sets

Computational gene sets defined by mining large collections of cancer-

related microarray data (Total 858 gene sets).

C5 GO gene sets

These are the gene sets that are named after GO terms and contain genes

annotated by that term (Total 1454 gene sets). The gene sets in this group

can be further classified into the following groups.
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BP: GO biological process Gene sets derived from the Biological Pro-

cess Ontology (Total 825 gene sets).

CC: GO cellular component Gene sets derived from the Cellular Com-

ponent Ontology (Total 233 gene sets).

MF: GO molecular function Gene sets derived from the Molecular Func-

tion Ontology (Total 396 gene sets).

C6 Oncogenic signatures

These gene sets represent signatures of cellular pathways which are of-

ten dis-regulated in cancer. The majority of signatures were generated

directly from microarray data from NCBI GEO (Edgar, Domrachev, and

Lash 2002) or from internal unpublished profiling experiments which in-

volved perturbation of known cancer genes. In addition, a small number of

oncogenic signatures were curated from scientific publications (Total 1454

gene sets).

C7 Immunologic signatures

Gene sets that represent cell states and perturbations within the immune

system (Total 1454 gene sets).

• KEGG: Kyoto Encyclopedia of Genes and Genomes

Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.genome.jp/

kegg/ or http://www.kegg.jp/) is a database that provides manually curated

gene sets (Kanehisa and Goto 2000; Kanehisa et al. 2014). KEGG collects infor-

mation on functional annotations of various DNA elements and integrates this

information. Genes from completely sequenced genomes are linked to higher-

level systemic functions of the cell, the organism and the ecosystem. Then

this information is used to create a knowledge base for organizing experimental
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knowledge in computable forms; namely, in the forms of KEGG pathway maps.

Any KEGG pathway includes a list of all the genes which play a functional

role in the pathway and also other details such as the pathway map and any

diseases linked with this pathway. The genes in a given pathway form a gene

set. In REPA we used the gene sets from KEGG along with the gene sets from

MSigDB. We included directly KEGG pathways as gene sets, as we noted that

MSigDB does not include the most recent version of the KEGG.

We represent gene sets in the format that is used by MSigDB. Namely first column

gives the name of the gene set. The second column is not used by the program but

specifies a URL that gives more information about the specific gene set. After that

we have a list of entrez ids that specify the genes that are present in the gene set.

The file is a tab delimited text file without headers. For example, table 3.1 shows the

format of a sample gene set.

Gene Set Name URL Entrez IDs of members

KEGG STEROID BIOSYNTHESIS
http://www.broadinstitute.org/
gsea/msigdb/cards/
KEGG STEROID BIOSYNTHESIS.html

6646,4047,6713,10682,
1595,1717,1594,1718,
51478,6307,2222,6309,
3988,1056,7108,50814,
8435

...
...

...

Table 3.1: Sample Gene Set

Transcription Factor Binding Data (TFBD)

As described in the previous chapter in section 3.4.1 one of the goals of the public

research project Encyclopedia of DNA Elements or ENCODE (Consortium et al.

2012) was to identify the transcription factor binding sites. The data produced under

this project from numerous Chip-Seq (Johnson et al. 2007) and Chip-Chip (Iyer et al.

2001) experiments provide information about the binding sites of 160 transcription
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factors in 44 cell lines. This data was then processed and used by ChEA2 (Kou et al.

2013). ChEA2 also made the processed data freely available for download on their

website (Kou 2014).

The ENCODE data compiled by ChEA2 includes 920 experiments done in 44

cell-lines profiling 160 transcription factors for a total of approximately 1.4 million

transcription-factor / target-gene interactions (Kou et al. 2013). This data is given

in the bed format which includes the transcription factor, cell line, start and end of

peaks, score and signal. The score and signal values are directly proportional to the

strength of the binding between DNA and the given transcription factor at any given

site. The score value is derived from the signal and lies between 0 and 1000 and it is

proportional to the maximum signal strength. We use the signal strength as input to

our algorithm.

Genomic positions of human genes

To link the transcription factor binding sites to the genes that the transcription fac-

tors likely regulate, we needed the locations of both the transcription factor binding

sites and the genes. As mentioned above, we got the ENCODE transcription factor

binding sites data from ChEA2. For a list of all human genes and their position we

used Ensembl’s Biomart (Kinsella et al. 2011) website http://www.ensembl.org/

biomart/martview/. Using this website we gathered the genomic positions of all

human genes. The version that was used was Ensembl Release version 71 and the

data set was Homo sapiens genes (GRCh37.p10) (may 21, 2013). We included all

genes coding for lincRNA, miRNA and proteins.

A sample of the data downloaded from Ensembl’s biomart website is given in

table 3.2.
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Ensembl Gene ID Associated Gene Name Chromosome Name Strand Gene Start (bp)
ENSG00000248425 AC006296.2 4 1 14392063
ENSG00000236437 AP001891.1 11 -1 116367616
ENSG00000240567 RP11-3P17.4 3 1 161144215
ENSG00000235357 RP1-159G19.1 6 -1 80513300
...

...
...

...
...

Table 3.2: Ensembl Biomart Human Gene List

Gene expression profiling experiment data

After processing the results obtained from a high throughput gene expression profil-

ing experiments such as DNA micro-array or RNA-seq a list with all the genes in the

experiment with their corresponding level of activity is generated. To represent the

gene level activity various types of statistics can be used. Some of the popular statis-

tics user are log fold change, Z-statistic, t-statistic, etc. Table 3.3 gives an example

of how the data looks.

Entrez ID logFC AveExpr t-statistic P.Value adj.P.Val
5228 4.066771195 8.984909943 30.01850012 1.75E-06 0.030867069
8200 -2.937752131 9.096127188 -22.30635557 6.85E-06 0.060528957
3400 3.107500295 8.990624466 18.99550122 1.43E-05 0.066519298
133 -3.11990311 9.026165624 -17.69540658 1.98E-05 0.066519298

Table 3.3: Sample gene expression profiling experiment data

3.3.2 Step 1: Linking transcription factor binding sites with

promoter regions of human genes

As discussed in (Kristiansson et al. 2009) “A gene’s promoter region is traditionally

(if loosely) defined with respect to its transcription start site (TSS): 1000-3000 base

pairs upstream, and 100-300 basepairs downstream.” In our project we focus on

cis-regulated regions which are within 3000 base pairs upstream of the genes as the

majority of the binding sites are located there. We ignored the enhancer regions which
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are binding sites but typically at a much larger distance from the TSS.

We found all such instances where in the ENCODE data, a transcription factor

binding site existed within 3000 base pairs upstream of a gene’s TSS.

Inputs to this part were the bed file with the location of the DNA - transcription

factor binding peaks and the bed file with the genomic coordinates from the gene’s

transcription start site to 3000 base pairs upstream for all human genes as described in

section 3.3.1. We used Bedtools (Quinlan and Hall 2010) to accomplish this. Intersect

command in Bedtools was used to find those promoter regions where a binding event

occured. The command used was as follows:

i n t e r s e c tBed −a encode . bed −b geneL i s t . bed −wo

The −wo flag writes side by side the original A and B entries plus the number of

base pairs of overlap between the two features.

3.3.3 Step 2: Creating the Gene Set - Transcription Factor

Binding Database

The goal of this step is to associate a transcription factor with given gene sets based

on the binding strength of that transcription factor with the promoter region of the

genes in each gene set. In other words we want to find out whether a transcription

factor may regulate a given gene set. To achieve this we ran a functional class scoring

with the transcription factor binding signals associated to human genes and the gene

sets obtained from MSigDB and KEGG.

As described in the previous chapter, a functional class scoring approach has three

steps. First is to calculate the gene level statistic. Next step is to find a gene set level

statistic using the gene level statistic and finally using null hypothesis testing we find

out the statistical significance of the gene sets.
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A step by step description of the process follows.

Inputs

1. Gene sets in the format described in the section 3.3.1.

2. Transcription factor binding data from the output obtained in step 1 de-

scribed in section 3.3.2.

Step 2.1: Parsing and loading input files The two input files are parsed and

loaded in memory. A hash table is used to store the data to quickly access

the values based on transcription factor name and the gene’s Entrez Id.

Steps 2.2 through 2.6 are performed for each transcription factor - gene set pair.

Step 2.2: Map TFBSs to strongest signal Get the signal values from the tran-

scription factor binding sites database for each of the gene in the gene set. If

multiple values exist from different cell lines, the maximum value is considered.

If there are values for at least 5 genes in the gene set we proceed to the next

step else we skip to the next gene set - transcription factor pair.

Steps 2.3 and 2.4 are executed 1000 times.

Step 2.3: Generate vector with random signal values To run the permutation

test, we first generate a gene set of randomly selected genes of the same size as

that of the real gene set. We collect the signal values for this randomly chosen

gene set from the transcription factor binding database as done in step 2.2 for

the real gene sets.

Step 2.4: Statistical hypothesis testing We use the following three statistical

tests in our program with the real gene set values and the random gene set

values as input.
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Two-sample pooled test (ALGLIB project ; Broad 2014)

This test checks hypotheses about the fact that the means of two random

variables X and Y which are represented by samples xS and yS are equal.

In our case xS represents the signals from real gene sets we found in step

2.2 and yS represents the randomly selected signal in the step 2.3. The test

works correctly under the following conditions:

• Both random variables have a normal distribution

• Dispersions are equal (or slightly different)

• Samples are independent.

During its work, the test calculates t-statistic:

t = xS−yS√∑
(xi−xS)2+

∑
(yi−yS)2

Nx+Ny−2

(
1
Nx

+ 1
Ny

)
NX and NY are the sizes of X and Y respectively.

Note 1 If X and Y have a normal distribution, the t-statistic will have

Student’s distribution with NX+NY −2 degrees of freedom. This allows the

use of the Student’s distribution to define a significance level corresponding

to the value of the t-statistic.

Note 2 If X or Y are not normal, t will have an unknown distribution

and, strictly speaking, the t-test is inapplicable. However, according to the

central limit theorem, as the sample sizes increase, the distribution of t

tends to be normal. Therefore, if sample sizes are big enough, we can use

the t-test even if X or Y is not normal. But there is no way to find what
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values for NX and NY are big enough. These values depend on how X and

Y deviate from the normal distribution.

After running this test we store the right-tailed p-value. The null hypoth-

esis for the right-tailed test is that the mean of yS is less than or equal to

the mean of xS.

Two-sample unpooled test (ALGLIB project) Similar to the two-sample

pooled test, this test checks hypotheses about the fact that the means of

two random variables X and Y which are represented by samples xS and

yS are equal. The test works correctly under the following conditions:

• Both random variables have a normal distribution

• Samples are independent.

Unlike the previous test, for this test, dispersion equality is not required.

During its work, the test calculates the t-statistic:

t = xS−yS√
V ar(xS)

NX
+

V ar(yS)
NY

If X and Y have a normal distribution, the t-statistic will have Student’s

distribution with DF degrees of freedom:

DF = (NX−1)(NY−1)
(NY−1)c2+(NX−1)(1−c2)

c =
V ar(XS)

NX
V ar(XS)

NX
+

V ar(XS)
NY
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This allows the use of the Student’s distribution to define the significance

level corresponding to the value of the t-statistic. Note 2 from the two

sampled pooled test section is also applicable to this test.

Mann-Whitney U test The Mann-Whitney U-test (Mann, Whitney, et al.

1947; McKnight and Najab 2010; Bochkanov and Bystritsky 1947) is a

non-parametric method which is an alternative to the two-sample Student’s

t-test. This test is used to compare medians of non-normal distributions

X and Y . The test works correctly under the following conditions:

• X and Y are continuous distributions (or discrete distributions well-

approximating continuous distributions)

• X and Y have the same shape. The only possible difference is their

position (i.e. the value of the median)

• The number of elements in each sample is not less than 5

• The samples are independent

• Scale of measurement should be ordinal, interval or ratio (i.e. test

could not be applied to nominal variables)

Here is a simple step by step description of how the Mann-Whitney U test

works:

• Both samples (having sizes N and M) are combined into one array

which is sorted in ascending order keeping track of which sample the

element had come from.

• After sorting, each element is replaced by its rank (its index in array,

from 1 to N +M).

• Then the ranks of the first sample elements are summarized and the

U-value is calculated using the following formula:
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U = N ×M + N(N+1)
2 −

∑
xi
Rank(xi)

The mean of U equals 0.5 × N ×M . If U is close to this value, the

medians of X and Y are close to each other. If we know distribution

quantiles, we can get the significance level corresponding to the value

of U .

• For a big enough N and M , U could be approximated by the normal

distribution with a mean of 0.5×N ×M and a standard deviation of

σ =
√

N×M(N+M+1)
12

The p-value is calculated from the mean and standard deviation.

All the three tests mentioned above namely two-sample pooled test, two-sample

unpooled test and Mann-Whitney U-test returns three p-values:

p-value for two-tailed test The null hypothesis here is that the medians for

the two samples are equal.

p-value for left-tailed test The null hypothesis here is that the median of yS

is greater than or equal to the median of xS.

p-value for right-tailed test The null hypothesis is that the median of yS is

less than or equal to the median of xS.

Step 2.5 For three pre-determined thresholds of significance namely 0.05, 0.01 and

0.001 we count number of times the mean / median of the values of the actual

gene set is to the right of the mean / median of the values of the random gene

set with a p-value of:

• less than 0.001

• between 0.01 and 0.001
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• between 0.05 and 0.01

• greater than 0.05

Transcription Factor E2F6
Gene set name DOANE BREAST CANCER CLASSES UP
Total genes in the gene set 72
Genes for which values were found 14
Pooled tTest [< 0.001] 11
UnPooled tTest [< 0.001] 7
MWU test [< 0.001] 5
Pooled tTest [< 0.01] 74
UnPooled tTest [< 0.01] 75
MWU test [< 0.01] 70
Pooled tTest [< 0.05] 238
UnPooled tTest [< 0.05] 237
MWU test [< 0.05] 249
Pooled tTest [Remaining] 677
UnPooled tTest [Remaining] 681
MWU test [Remaining] 676
Pooled tTest Average p-value 0.1937
UnPooled tTest Average p-value 0.194217
MWU test Average p-value 0.18896
Genes in gene set for
which values were found 347, 253190, 51181 . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.4: Sample of the gene set - transcription factor binding database

Results After running the program for all the transcription factors and gene sets

available, the generated results are as shown in table 3.4. Due to space con-

strains, the columns are presented as rows and rows as columns.

3.3.4 Step 3: Expression Analysis

The purpose of this step is to identify which gene set is over-expressed or under-

expressed in the given biological sample. To achieve this goal, we used a functional

class scoring approach.

The inputs to the system are as follows:
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1. Gene sets in the format described in the section 3.3.1

2. High throughput Gene expression profiling experiment data in the format de-

scribed in section 3.3.1.

Step 3.1: Parse and load input data

First the two data files i.e. the expression levels and gene set database are read

and loaded in the memory.

The following steps are executed for each available gene set in the database.

Step 3.2: Get expression levels for member genes of the gene set

For each of the genes present in the selected gene set, their corresponding values

are retrieved and stored in a vector.

If the number of values found is greater than 5, proceed with the following steps.

Step 3.3: Create a random value vector of equal size

Here we select values from the expression levels files and insert them into a new

vector. The number of values randomly selected and inserted are equal to the

number of values found in the previous step.

Step 3.4: Running the statistical hypothesis tests

To understand the statistical significance of the values found in step 2, we com-

pare them with the randomly generated values from step 3. We use the following

three statistical hypothesis tests for this:

1. Two-sample pooled test

2. Two-sample unpooled test

3. Mann-Whitney U test
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This step is similar to the step 4 in section 3.3.3 and the detailed description of

the tests are also given in the same section.

Results After running the tests for all the available gene sets, we arrive at p-values

for each gene set for the particular case. We can conclude that the gene sets

with the lowest p-values are either over-expressed or under-expressed. In either

case their behavior is different from what is expected hence it can be concluded

that there is a strong likelihood that the gene set is playing an important role

in the cellular condition under study.

3.3.5 Step 4: Combining two p-values

From the two previous steps we have the following information:

From Step 2 A p-value quantifying the level of binding a transcription factor has

on a gene set.

From Step 3 A p-value representing the level of perturbation shown by any given

gene set in the experimental condition under study.

The next step is to combine the two p-values to obtain another p-value that rep-

resents the likelihood of a transcription factor regulating the gene set in the biological

condition under study.

To achieve this we follow the method suggested in the article titled ‘Combining

p-values via averaging’ (Vovk 2012). In this article, the authors explains an old result

by Rüschendorf which shows that the p-values can be combined by scaling up their

average by a factor of two. In our case since the there are only two p-values, we

calculate the combined p-value as below:

pcombined := 2
K (p1 + p2 + ... + pK)
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with K = 2

3.4 Brief survey of existing approaches for associ-

ating transcription factors to gene lists

The task of associating transcription factors with genes based on specific biological

conditions has been tackled by some researchers. The work done in this field that we

came across has been described and compared with in this section.

3.4.1 ChIP-X Enrichment Analysis (ChEA)

ChEA is a software tool that utilizes ChIP-X experiments data for linking transcrip-

tion factors to gene expression changes by computing over-representation of transcrip-

tion factor targets in an input list of genes. ChEA essentially counts the number of

targets in a list and compares them with the number of targets that were identified

in the database, i.e. an ORA approach of transcription factor targets on an input list

of genes (Lachmann et al. 2010).

ChEA is based on a manually curated database from the literature reporting ChIP-

X experiment results. In this database, each record contains a list of genes potentially

regulated by a specific transcription factor under a specific condition. This database

was then used as the prior knowledge base to analyze mRNA expression data where

enrichment analysis was performed. The current database as of September 2014 has

the following statistics:

• Transcription Factors: 209

• Publications: 237

• Genes: 47197
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• Total Entries: 483786

ChEA is commonly used after a genome-wide gene expression profiling study is per-

formed. The steps that follow are: First, a list of genes that significantly changed their

expression levels is prepared and given as an input to the ChEA software. Next, the

software computes over-representation for targets of transcription factors per study

in the ChIP-X database. To compute statistical enrichment, ChEA implements the

Fisher exact test with Bonferroni’s correction, where the proportions for the test are

the number of genes in the input list, the number of genes identified in the ChIP-X

experiment, the genes that are shared among the two lists, and the number of overall

targets in the ChIP-X database. Finally, ChEA reports a ranked list of ChIP-X exper-

iments that show statistically significant overlap with the input list. Identified genes

from the input list, potentially regulated by a specific transcription factor, are also

connected and visualized as a network, using known protein - protein interactions.

The ENCODE (Consortium et al. 2012; Raney et al. 2011) project was started

with the main purpose of finding the functional elements of the human genome. Along

with assigning function to DNA elements, a big part of the ENCODE project is to

identify the transcription factor binding sites on the entire human genome.

The results from the experiments performed under ENCODE provide us with

details about the location in the genome where a transcription factor binds and also

the intensity of its binding. ChEA2 (Kou et al. 2013) also includes in its database all

ChIP-X experiments from the ENCODE project.

Similarities between ChEA and REPA

The two programs are similar in the following ways:

• Both ChEA and REPA attempt to identify transcription factors regulating a col-

lection of genes thereby predicting likely regulators of biological systems under
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study.

• The data used by both ChEA2 and REPA comes from the ENCODE project.

Differences between ChEA and REPA

• REPA uses a functional class scoring algorithm instead of the over representation

analyses approach used by ChEA. This allows REPA to identify gene sets instead

of transcription factors that may regulate a list of genes that may or may not

be co-functional. By using over representation analyses approach ChEA suffers

from disadvantages arising from using hard cutoffs.

3.4.2 Inferring condition-specific transcription factor func-

tion from DNA binding and gene expression data

‘CRACR’ (McCord et al. 2007) (Combination Rank-order Analysis of Condition-

specific Regulation; pronounced ‘cracker’), derives information about condition-specific

gene regulation and transcription factor activity by combining comprehensive, condition-

independent protein binding microarray (PBM) (Berger and Bulyk 2009) data for a

given TF with gene expression microarray data under a variety of biological condi-

tions. Specifically, CRACR searches for conditions in which differentially expressed

genes are enriched or genes whose upstream intergenic regions (IGRs) contain a pat-

tern to which a transcription factor has significant preference in PBM data. In contrast

to earlier studies, CRACR integrates PBM-derived transcription factor sequence pref-

erence data with gene expression data without imposing arbitrary cut-offs that define

which IGRs are ‘bound’ or which genes are ‘differentially expressed’. In addition,

CRACR uses rank order statistics, which facilitates comparison of gene expression

data from different microarray platforms.
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To predict the condition specific functions of yeast Saccharomyces cerevisiae’s

transcription factors, the team first collected 1327 publicly available gene expression

microarray data sets for Saccharomyces cerevisiae. Each of these datasets refers to a

specific cellular condition. Next, for each of these conditions, the genes were ordered

based on their expression fold change levels. At the top were the genes that were highly

induced, and at the bottom the ones that were repressed. Parallel to the previous

step, ranks were assigned to the genes according to the PBM P-values of transcription

factors binding to their upstream IGRs. Then using a rank based statistical test, a

comparison was made between the PBM defined ranks of similarly expressed genes

within a sliding foreground window to the ranks of a length-matched background

set of genes outside this window. The result of this statistical test yields a value

which is referred to as the enrichment score and represents the degree to which PBM-

derived target genes of a given TF are significantly enriched within each window of

similarly expressed genes. The statistical significance of the maximum enrichment in

a condition is derived by permutation testing. Using the method described above,

CRACR can list expression conditions in which predicted transcription factor target

genes show statistical significance in expression levels. From such a list of cellular

conditions, one can hypothesize about the functions of the transcription factor.

Difference between CRACR and our approach

• CRACR focuses on similarly expressed genes whereas REPA looks at gene sets

that represent biological pathways. Similarly expressed genes may or may not

belong to the same gene set.

• CRACR attempts to derive information about condition specific gene regulation

and transcription factor binding whereas the goal of this project is to help

provide researchers information about which biological pathways are active in
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the biological condition they are studying along with the transcription factors

that are most likely to regulate these pathways.

• CRACR ranks the genes based on their expression levels and then for each

transcription factor, it compares the p-values (derived from in-vitro PBM ex-

periments) of similarly expressed genes with the p-values of the other genes in

the list. PBM data does not account for the cell’s chromatin state. On the other

hand our approach is dependent on in-vivo ChIP-X data which takes into ac-

count the cell’s chromatin state and hence the results obtained can be expected

to have a higher biological significance although chromatin state depends on

cell’s state and cell line.

• CRACR used data from studies on Saccharomyces cerevisiae (yeast) whereas

this project focuses on human data from the ENCODE project.
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Chapter 4

Results and Comparison

The goal of this chapter is to assess the accuracy and strength of REPA. For the first

module, i.e. regulation pathway analysis, we identified TF - gene set associations

with a strong signal and predicted these as true TF - gene set associations. Then we

analyzed the accuracy of these predictions. Since we expect many of the predictions

to be novel, we might not find any evidence in the existing literature confirming

them even when the predictions are correct. This is probably the most significant

contribution of REPA as it points to new research avenues.

For the second module, i.e. enrichment analysis, we look at the results obtained

after running REPA with sample data from studies involving gene expression analysis

and compare the results with preexisting applications.

Finally we combine the results of the two above mentioned parts and present an

alternative analysis of the data.

4.1 Module 1: Regulation Pathway Analysis

The data obtained from the ENCODE project provided transcription factor binding

sites information for 131 distinct human transcription factors. The MSigDB and
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KEGG pathway libraries provided a total of 10192 gene sets. The results obtained

after running the first module of REPA with this data are discussed in the following

sections.

4.1.1 Inferred associations

REPA calculated a permutation-based p-value for a total of 803711 transcription fac-

tor - gene set associations and predicted that 68008(8.5%) of these pairs are true

associations. To explore the effect of the significance threshold used in the Mann-

Whitney U test in the distribution of permutation-based p-values, we set the signifi-

cance threshold at 0.001, 0.01 and 0.05.

Figure 4.1 shows the distribution of permutation based p-values. The plot has

following features that indicate a successful differentiation between real and non-

existing Transcription factor - gene set associations.

1. A peak on the left side, containing Transcription factor - gene set associations

with strong signal for which the null hypothesis was rejected.

2. A uniform distribution between the interval [0.015,1].

3. A peak at the upper end at 1.

The last two features correspond to transcription factor - gene set bindings for

which the null hypothesis was accepted.

We consider the associations that form the peak on the left side as the predicted

true associations. By performing a visual inspection of figure 4.1 we can see that the

peak ends at about 0.015 (shown by the vertical red line). We set this as the cut-off

for significant associations.
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Figure 4.1: Transcription factor - Gene set association distribution

The number of REPA’s predictions varied from 68008 to 29317 depending upon the

significant threshold used for Mann-Whitney U test. Since the permutation based p-

value distribution remain stable at the different significance thresholds for the Mann-

Whitney U test, we set the significant threshold of Mann-Whitney U test to 0.05.

There are total 68,008 (8.5%) associations that form this peak.
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4.1.2 Number of REPA’s predictions per transcription factor

As discussed earlier, we executed module one with over 10,000 gene sets as input.

Several of these gene sets were created based on the location of their member genes or

were computationally generated as described in section 3.3.1. For performing further

analysis including taking a closer look at specific predictions, we only focus on manu-

ally curated gene sets that represent functions or pathways. These gene sets are more

widely studied and usually include findings from more than a single study. Hence,

from now on, we considered predictions involving a total of 2,677 gene sets from the

following sources.

• Canonical pathways and functions representing biological pathways curated by

domain experts. This includes pathway databases such as KEGG (282 gene

sets), GO (1454 gene sets), REACTOME (674 gene sets) and BIOCARTA (217

gene sets).

• Hallmark gene sets representing specific well-defined biological states or pro-

cesses and display coherent expression (Total 50 gene sets).

Out of the 68,008 predictions, 8,948 (13.2%) pass this criterion. Figure 4.2 shows

the number of REPA’s predictions per transcription factor. There are 88 unique tran-

scription factors that could be found in REPA’s predictions. 74 (84%) are associated

to at least one gene set. 28 (37.8%) are associated to more than 50 gene sets and

three (3.4%), namely GR, POL2 and YY1, are associated with more than 500 gene

sets.

Next we discuss why it makes sense that these three transcription factors are

predicted to regulate a large amount of gene sets.

Glucocorticoid Receptor (GR) It is known that GR regulates diverse cellular

functions (such as mitosis and apoptosis) and essential biological processes (such
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Figure 4.2: Predictions per transcription factor

as growth, development, metabolism, and behaviour), and is expressed in most

cell types (Zhou and Cidlowski 2005; Lu and Cidlowski 2005). To explain how

a single transcription factor can regulate such a variety of processes, it has

been proposed that different GR isoforms allow for regulation of genes in a cell

type specific manner, and that each GR isoform regulates both a common and

a unique group of genes in each cell type (Zhou and Cidlowski 2005; Lu and

Cidlowski 2005).

Polymerase (RNA) II (DNA directed) polypeptide A (POL2) The POL2 gene

encodes for the largest subunit of RNA polymerase II, the polymerase that syn-

thesize mRNA in eukaryotes. POL2 is a general transcription factor that initi-

ates transcription and is responsible for transcriptional regulation (Orphanides,

Lagrange, and Reinberg 1996).
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Yin Yang 1 (YY1) YY1 is an ubiquitously expressed transcription factor that reg-

ulates cell proliferation and differentiation, and is a multifunctional mediator of

different signaling pathways that modulates an impressive and increasing list of

genes (Deng et al. 2010)

Thus, one would expect that these three transcription factors regulate many dif-

ferent gene sets and REPA’s results reflect this.

4.1.3 Number of REPA’s predictions per gene set

We also looked at the number of REPA’s predictions per gene set. There were 1,980

canonical pathways, GO gene sets and hallmark gene sets predicted to be regulated by

at least one transcription factor. Out of these 1,980, 30 (or 1.5%) were associated to

more than 30 transcription factors. Figure 4.3 shows gene sets associated by REPA

with at least 25 transcription factors. Many of the gene sets listed in Figure 4.3

are tightly regulated cellular processes. We examined the literature related to the

regulation of the Reactome pathway and the KEGG pathway associated to the largest

number of transcription factors.

The Reactome pathways metabolism of RNA and cell cycle mitotic were the Re-

actome pathways associated to the largest number of transcription factors. The Re-

actome pathway metabolism of RNA has been deleted from Reactome since version

50 (current version is 52); thus, we investigated the cell cycle mitotic pathway which

contains 325 genes. Cell cycle regulation is critical for growth and development,

and its misregulation plays an important role in diseases such as cancer. There is

a large variety of cell cycle programs within a single species that corresponds to

specific cell types, developmental stages or physiological conditions (Harashima, Diss-

meyer, and Schnittger 2013). In the budding yeast, cell cycle is controlled by a large
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Figure 4.3: Predictions per gene set

and complex interacting network of regulatory proteins, and the general organiza-

tion of this control system is conserved across the Eukaryota (Haase and Wittenberg

2014). REPA associated the following 41 transcription factors with the Reactome
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cell cycle mitotic pathway (literature supporting the involvement of these transcrip-

tion factors during the cell cycle is referred to after the corresponding transcription

factor): AP2ALPHA (Prasov and Glaser 2012), AP2GAMMA, ATF1 (Bandyopad-

hyay et al. 2014), BCLAF1, CBX3, CEBPB, CJUN, CREB1, E2F4, E2F6 (Haase

and Wittenberg 2014), ELF1, ELK1 (Demir and Kurnaz 2013), ETS1 (Oikawa and

Yamada 2003), FOXM1 (Wierstra and Alves 2007), GABP (Imaki et al. 2003),

GR (Zhou and Cidlowski 2005; Lu and Cidlowski 2005), HEY1, INI1 (Versteege

et al. 2002), KAP1 (White et al. 2012), MAX (Amati and Land 1994), MTA3,

MXI1 (Lee and Ziff 1999), MYBL2 (Joaquin and Watson 2003), PAX5, PBX3, PML,

POL2, POU2F2 (Prasov and Glaser 2012), RUNX3, SIN3AK20, SMC3, SP1, STAT3,

STAT5A, TAF1, TBLR1, TCF12, WHIP, YY1, ZNF143, and ZNF263. Thus, we

found literature support for 14 (or 34%) of these transcription factors. The central

components of the cell-cycle control system, cyclin-dependent protein kinases (CDKs),

are missing from this list because they were missing from the linked-transcription fac-

tor binding data used as REPA’s input.

The KEGG ribosome pathway consists of 135 genes including the ribosomal pro-

teins and ribosomal RNAs. The mechanisms regulating ribosome biogenesis are only

partially understood, and they are the focus of current research. Recently, ribosome

biogenesis has been linked to various diseases and aging, and studies have revealed an

elaborate control of ribosome biogenesis that requires coordinate regulation of all three

RNA polymerases and that includes feedback and feed-forward loops (Lempiainen

and Shore 2009; Thomson, Ferreira-Cerca, and Hurt 2013). A large number of tran-

scription factors have been implicated in ribosome biogenesis; for instance, roughly 80

factors have been associated in the maturation of the 60S subunit (Thomson, Ferreira-

Cerca, and Hurt 2013). REPA predicted the following 38 transcription factors to be

associated with the KEGG ribosome pathway (supporting literature is referred to
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after the corresponding transcription factor): ATF1, ATF2, ATF3, BCL3, BCLAF1,

CBX3, CEBPB, CJUN, CREB1 (Nosrati, Kapoor, and Kumar 2014), ELF1 (Algire

et al. 2002), ETS1, GABP (Perry 2005), GR (Shah et al. 2002), HEY1, IRF3, MTA3,

MYBL2, NFATC1, NFIC, NRSF, PML (Vilotti et al. 2012), POL2 (Lempiainen and

Shore 2009), POU2F2, RFX5, RUNX3, SIN3AK20, SIX5, SP1 (Perry 2005), SP4,

STAT5A, TAF1 (Lin et al. 2002), TAF7, TBLR1, TCF12, WHIP, YY1 (Perry 2005),

ZNF143, and ZNF263. Thus, we found literature support for 9 (or 24%) of these

transcription factors.

We found an intriguing gene set (i.e., systemic lupus erythematosus (SLE)) among

the top 10 genes sets shown in Figure 4.3, and thus decided to look at the transcription

factors inferred by REPA to be associated with this disease. SLE is an autoimmune

disease with more than 40 genes and loci identified as associated with this disease.

However, these genes and loci only account for 10 to 20% of disease heritability.

This indicates that there are many factors still to be identified (Frangou, Bertsias,

and Boumpas 2013). REPA inferred 37 transcription factors associated with the

KEGG systemic lupus erythematosus pathway which consists of 138 genes. Out

of those 37 transcription factors predicted to regulate genes in the SLE pathway,

we found literature support for 13 (or 35%). The transcription factors associated

by REPA with SLE are the following (supporting literature is referred to after the

corresponding transcription factor): ATF2, ATF3 (Cai et al. 2014), BCLAF1, CBX3,

CEBPB, CEBPD, ETS1 (Lu et al. 2015), FOS (Frangou, Bertsias, and Boumpas

2013), FOXM1, GR (Chen et al. 2015), HEY1, INI1, JUND (Tenbrock et al. 2007),

MBD4 (Balada et al. 2007), MTA3, MYBL2, NFATC1 (Tenbrock et al. 2007), NFIC,

P300 (Leung et al. 2015), PAX5 (Dozmorov, Wren, and Alarcón-Riquelme 2014),

PML, POL2, POU2F2, RUNX3 (Jeffries et al. 2011), RXRA, SIN3AK20, SP1 (Hikami

et al. 2011), SP4, STAT5A, TAF1, TAF7, TBP (Chauhan et al. 2004), TCF12, TCF3,
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TEAD4, YY1 (Zhao et al. 2012), and ZBTB33.

4.1.4 Literature based evaluation of REPA’s predictions

Since REPA is the first approach to systematically infer relationships between tran-

scription factors and gene sets, there is no benchmark available that can be used

to do a direct comparison. Therefore, to gain intuition into the quality of REPA’s

predictions and assess the level of precision, we performed a literature analysis on

50 randomly selected predictions. The number of predictions we could examine was

limited by available resources as literature curation is a time consuming effort. For

this analysis, we focused only on predictions that associate transcription factors to

well established manually curated gene sets from sources such as KEGG, Biocarta,

Gene Ontology, MSigDB’s hallmark collection and Reactome. These manually cu-

rated gene sets are well studied unlike several other gene sets which could be created

on the basis of a single study. To avoid over-weighting particular transcription fac-

tors, we only allowed two predictions per transcription factor. Related literature was

searched using PubMed, Disgenet (Bauer-Mehren et al. 2011), and ChEA (Lachmann

et al. 2010). Table 4.1 contains the list of 50 randomly selected REPA’s predictions

that we investigated for literature support. The number of genes in the gene sets

examined varied from 57 to 320, and the percentage of genes in the gene set with a

binding signal value varied from 18% to 94% (see third column of Table 4.1).

We classified the evidence found in the literature into four types:

1. Direct evidence

2. Binding evidence

3. Indirect evidence

4. Refuting evidence
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Transcription
Factor

Gene Set (GS)

# of genes in
GS with a
binding signal
value / # of
genes in GS

p-Value
Type of
evidence

Reference

ATF2 Meiosis 38/116 0.001 NE
ATF2 Ribosome 68/135 0.001 I Johnson et al. 2003
BCLAF1 Alcoholism 52/180 0.001 NE
BCLAF1 Chromosome maintenance 49/122 0.001 I Lee et al. 2012b
CEBPB Spliceosome 69/131 0.001 B Lefterova et al. 2010
CEBPB Viral carcinogenesis 128/206 0.001 D Watanabe-Okochi et al. 2013
CJUN FOXO signalling 36/133 0.001 D Xu et al. 2011
CREB1 E2F targets 105/200 0.001 B Zhang et al. 2005b; Martianov et al. 2010
CREB1 MYC targets v1 (Hallmark) 104/200 0.001 B Zhang et al. 2005b
E2F6 Pathways in cancer 145/327 0.001 D Oberley, Inman, and Farnham 2003
E2F6 Signaling by the B Cell Receptor 59/126 0.001 B Lam et al. 1999
ELF1 Huntington’s disease 100/183 0.001 B Hollenhorst et al. 2007
ELF1 Spliceosome 61/131 0.001 B Hollenhorst et al. 2007
FOXM1 Alcoholism 49/180 0.001 NE
GABP Metabolism of RNA 118/330 0.001 B Hollenhorst et al. 2007; Wallerman et al. 2009
GABP Ribosome 64/135 0.001 D Donadini et al. 2006
GR Acute myeloid leukemia 54/57 0.001 D Haarman et al. 2002
GR Neurotrophin signalling 110/120 0.001 I Adachi et al. 2014
HEY1 HIV infection 101/207 0.001 I Pinzone et al. 2015; Wang et al. 2014b
HEY1 RNA transport 75/164 0.001 NE
JUND Alcoholism 48/180 0.001 I Taqi et al. 2011
KAP1 miRNAs in cancer 69/296 0.012 D Min et al. 2013
MBD4 Amyloids 22/83 0.001 NE
MBD4 Systemic lupus erythematosus 25/138 0.002 D Balada et al. 2007
MTA3 Herpes simplex infection 106/188 0.001 NE
MTA3 Ribosome biogenesis in eukaryotes 40/85 0.004 NE
MYBL2 Alcoholism 52/180 0.001 NE
NFATC1 Systemic lupus erythematosus 45/138 0.001 D Lu et al. 2008
NFIC Viral carcinogenesis 107/206 0.005 I Schuur et al. 1995
PAX5 Epstein Barr virus infection 101/203 0.001 D Tierney et al. 2007
PML HTLV I infection 129/263 0.001 D Ariumi et al. 2003
PML Viral carcinogenesis 103/206 0.001 D Singh et al. 2013

POL2
Bacterial invasion of
epithelial cells

65/76 0.001 D Lutay et al. 2013

POL2
Cytokine Cytokine receptor
interaction

156/271 0.001 NE

POU2F2 mTORC1 signaling 89/200 0.001 NE

POU2F2
Transcriptional misregulation
in cancer

47/179 0.001 NE

RUNX3 Metabolism of RNA 140/330 0.001 NE

RUNX3
Protein processing in
endoplasmic reticulum

86/167 0.001 I Evans et al. 2011

SIN3AK20 Metabolism of mRNA 101/284 0.001 D Dong et al. 2007
SP1 Alcoholism 63/180 0.001 D Harada et al. 1998
SP1 Carbon metabolism 51/105 0.002 D Lin, Lai, and Chau 2011
STAT5A Herpes simplex infection 89/188 0.001 R Kriesel et al. 2004
TAF1 Huntington’s disease 87/183 0.001 I Kaji et al. 2005
TAF1 Ribosome 65/135 0.001 D Lin et al. 2002
TCF3 Meiotic synapsis 26/73 0.004 B Cole et al. 2008

TCF12
Class I MHC mediated antigen
processing & presentation

112/251 0.001 NE

TCF12 E2F targets 110/200 0.001 NE
YY1 Oxidative phosphorylation 61/133 0.001 D Lescuyer, Martinez, and Lunardi 2002
YY1 Spliceosome 62/131 0.001 B Mendenhall et al. 2010
ZNF143 RNA Transport 70/164 0.009 I Yuan et al. 2007

Table 4.1: REPA’s predictions evaluated based on the literature. In type of evidence;
B indicates “binding”, D “direct”, I “indirect”, NE “No Evidence” and R “Refuting
Evidence”

Direct evidence indicates that current literature directly links a transcription fac-
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tors with a given gene set; for example, the association of the transcription factor

YY1 with oxidative phosphorylation is supported by promoter analysis for a complex

I gene (NDUFS8) (Lescuyer, Martinez, and Lunardi 2002).

Binding evidence indicates that targets of a transcription factor identified by a

published Chip-Seq or Chip-ChIP study are over-represented in a given gene set.

This type of evidence was found using ChEA. In the case of binding evidence, current

literature does not directly discuss the link of that transcription factor with the given

gene set.

Indirect evidence indicates that current literature suggests the involvement of a

transcription factor in the regulation of a given gene set; for example, in (Taqi et al.

2011), is suggested that a single nucleotide polymorphism (SNP) in the promoter

region of PDYN, which is associated with alcohol-dependence, may impact PDYN

transcription in the human brain and that this SNP is located within a regulatory

region that may be targeted by the transcription factor JUND.

Finally, refuting evidence indicates that current literature contains experimental

data against the prediction; for example, REPA associated STAT5A with herpes

simplex infection; however, current literature (Kriesel et al. 2004) shows that STAT1,

but not STAT5A, binds to the herpes simplex virus latency-associated transcript

promoter.

Out of the 50 predictions investigated, 17 (34%) were supported by direct evi-

dence and 9 (18%) by binding evidence (see Table 4.1). These 26 (52%) associations

supported by direct or binding evidence were correct or likely to be correct associa-

tions. Out of the 50 associations examined, 23 had indirect evidence or could neither

be confirmed nor refuted by current literature. One (2%) of the 50 associations in-

vestigated was considered to be incorrect or likely to be incorrect based on current

literature. These results suggest that REPA’s precision lies above 52%. This level
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of precision is quite promising as several of REPA’s predictions are expected to be

novel and therefore lack literature support. Moreover, gene function predictions with

similar precision levels have been successfully used in yeast (Peng et al. 2003) and

mouse (Peña-Castillo et al. 2008). Based on this, we expect REPA’s predictions to

be an useful resource to guide further biological research.

4.1.5 Estimation of REPA’s recall

The Collection 3: Transcription Factor Targets (C3-TFT) of MSigDB consists of 615

gene sets that contain genes that share a transcription factor binding site defined in the

TRANSFAC (version 7.4, http://www.gene-regulation.com/) database. Each of

these gene sets is annotated by a TRANSFAC record. Additionally, the transcription

factor known to bind the given motif is provided for 500 of these 615 gene sets. In

total, 282 transcription factors are matched to a given DNA-binding motif in the

C3-TFT collection. Out of these 282 transcription factors, 33 are also present in

the linked-TFBD used as REPA’s input, and REPA generated a prediction for 26 of

them (see Figure 4.4). The 7 transcription factors for which REPA did not make a

prediction had binding signal values for very few genes (four of them had binding

signal values for less than 505 genes). To estimate REPA’s recall, we counted the

number of transcription factors associated by REPA with the corresponding C3-TFT

gene set; for instance, since REPA associated SP1 to the V$SP1 01 gene set (which

consists of genes whose promoter regions contain the motif GGGGCGGGGT which

matches annotation for SP1) we counted SP1 as successfully retrieved by REPA.

REPA associated 14 TFs to their corresponding C3-TFT gene set. Based on this,

REPA’s recall is at 53.8% (14/26).
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Figure 4.4: Venn diagram indicating the number of TFs in common between MSigDB
C3-TFT collection, ENCODE’s TFBD and REPA’s predictions.

4.2 Module 2: Enrichment analysis

Over the past decade several methods and software tools were developed to address

the task of enrichment analysis. Many approaches adapted functional class scoring

(FCS) as their preferred technique. As the methods grew in sophistication and became

more matured the accuracy of the results increased (Khatri, Sirota, and Butte 2012;

Khatri and Drăghici 2005).

To test the performance and accuracy of the enrichment analysis using FCS module

of REPA (Regulation Expression Pathway Analysis) we compare our results against

those of Generally Applicable Gene-set Enrichment (GAGE). GAGE is arguably the

most widely used gene set enrichment analysis system. GAGE was published in

the year 2009 (Luo et al. 2009). Before GAGE, tools such as Gene Set Enrichment

Analysis or GSEA (Subramanian et al. 2005) and Parametric Analysis of Gene set

Enrichment or PAGE (Kim and Volsky 2005) were still widely used tools but those

methods had limited usage because they couldn’t handle datasets of different sample
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sizes or experimental designs. GAGE overcame those limitations and when compared

with GSEA and PAGE showed significantly improved results as discussed in (Luo

et al. 2009). The datasets that were used for the comparison between GAGE, GSEA

and PAGE in (Luo et al. 2009) were of varying sample sizes, experimental designs

and microarray profiling techniques. We compare REPA with GAGE using the same

datasets along with one more dataset that was derived from a study done to under-

stand infection of influenza A viruses.

The purpose of this comparison is to confirm that REPA’s results are mostly in

agreement with GAGE’s results. Module 2 was added to REPA for the convenience

of running the complete analysis within the same software. However, results from

REPA’s module 1 (regulatory enrichment) can be combined with results from other

tools for gene set analysis of expression data such as GAGE. REPA’s module 1 is the

novel contribution of this thesis.

4.2.1 Description of the datasets

To perform the comparisons we used the datasets provided by the R package “gage-

Data” (Luo 2013). Gagedata is a supporting data package for the software package,

GAGE (Luo et al. 2009). It contains microarray datasets that GAGE uses in its pa-

per to compare itself against GSEA and PAGE. Therefore the data supplied here is

also useful for our purposes since we can use it to run REPA and compare it against

GAGE.

The R package “gageData” contains the microarray datasets from the following

two experiments.
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Case 1: BMP6 treated vs untreated hMSC

In this study, microarrays were used to profile the global gene expression in human

mesenchymal stem cells (hMSC). These hMSCs were treated with an endogenous

regulator Bone morphogenetic protein 6 or BMP6. The dataset contains a total of 4

gene chip measurements from duplicate experiments each with paired measurements

of human MSC with or without 8 hours of BMP6 treatment (Luo et al. 2009). This is a

typical small dataset with as few as two samples per condition. BMP6 treated samples

and controls are one-on-one matched. This dataset is also registered as GSE13604 in

Gene Expression Omnibus or GEO (Edgar, Domrachev, and Lash 2002).

Case 2: Dataset derived from breast cancer study on 12 patients

This study covers 12 breast cancer patients each with histologically normal (HN),

atypical ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS) RMA sam-

ples (Emery et al. 2009). Due to space constraints, the dataset was split into two

halves. The gage package only includes the first half dataset for 6 patients as the

example dataset of this study as gse16873. Most of the comparison analyses that was

done by GAGE were done on these samples. For our comparison purposes we use the

gse16873. This dataset is also registered as GSE16873 in GEO.

Case 3: Infection of influenza A viruses

The goal of this study was to investigate the early host responses of influenza A

viruses in human lung epithelial cells (Gerlach et al. 2013a). Gene expression pro-

filing was performed on host transcriptional responses of well-differentiated, primary

human bronchial epithelial cells during infection of influenza A viruses. We used gene

expression data of uninfected cells and cells infected with H1N1pdm isolates from a

nonfatal case (A/KY/136/09). The data set contains 3 biological replicates for each
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group. This dataset is also registered as GSE48466 in GEO.

4.2.2 Running GAGE with the datasets

To run GAGE with the first dataset we took the following steps:

1. Load the gage and gageData libraries.

library(gageData)

library(gage)

2. Load the gene sets.

c2.gs=readList("msig5_kegg.txt")

3. Run GAGE with the following arguments.

bmp6.c2.p <- gage(bmp6, gsets = c2.gs, ref =c(1,3),

samp = c(2,4), same.dir = FALSE, compare = "as.group")

Description of the parameters:

• bmp6 contains the gene expression data.

• gsets is a named list. Each element contains a gene set.

• ref = c(1,3) is a numeric vector and indicates that in this data, columns 1

and 3 store the expression levels of the controls.

• samp = c(2,4) indicates that columns 2 and 4 store the expression levels

of the treated samples.

71



4.2. MODULE 2: ENRICHMENT ANALYSIS

• same.dir is a boolean. It indicates whether the input gage result test for

changes in a gene set toward a single direction (all genes up or down reg-

ulated, same.dir = TRUE) or changes towards both directions simulta-

neously (same.dir = FALSE). Since in REPA we consider absolute scores

(fold change, log ratio etc.) we set same.dir as FALSE.

• compare = “as.group”. This argument indicates which comparison scheme

to be used. “as.group” indicates that group-on-group comparison between

the controls and treated samples.

4. Finally we select only the cases that gave complete results and are significant

with their adjusted p-values less than 0.01.

results <- bmp6.c2.p$greater[complete.cases(bmp6.c2.p$greater),]

gage.bmp6.sigResults <- results[results[,"q.val"] < 0.01,]

The same procedure was followed for the datasets from case 2.

For case 3, we executed gage with the following parameters:

gage_results_influenza <- gage(gse48466_perGene,

gsets = msigv5_kegg.gs, ref = 10:12, samp =4:6,

same.dir = TRUE, compare = "unpaired")

4.2.3 Running REPA with the datasets

In this section we go through the steps that were taken to run our system with

the datasets provided in the the R package “gageData” (Luo 2013) to perform the

comparison between the two systems.
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Preprocessing with Limma

Limma or Linear Models for Microarray Data is a R package for differential expression

analysis of data arising from microarray experiments (Smyth 2005). We use Limma

with the raw data from the experiments to fit a linear model to the expression data

for each gene.

Inputs to Limma:

1. Design matrix The design matrix for the smaller dataset BMP6 is stored in

a text file called “13604DesignMatrix.txt”. It stores the information shown in

the following table.

Control BMP6 Treated
8hCont1 1 0

8hTrt 8hCult1 0 1
8hCont2 1 0

8hTrt 8hCult2 0 1

Table 4.2: 13604 Design Matrix

The design matrix for the larger dataset follows the same pattern.

2. Microarray data

The second input to Limma is the raw expression level data from the microarray

experiments. Table 4.3 shows the first few rows of the bmp6 dataset.

8hCont1 8hTrt 8hCult1 8hCont2 8hTrt 8hCult2
10000 6.666482 6.727039 7.859644 7.888743
10001 9.874859 9.873068 9.838792 9.757909
10002 5.524512 5.651697 5.299609 5.146715
10003 4.604491 4.661876 4.790255 4.705559
10004 7.904135 7.883218 8.00505 7.962769
...

...
...

...
...

Table 4.3: bmp6 expression data sample
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The expression data table for the larger breast cancer patient dataset also follows

the same pattern.

Steps in running Limma

1. Load the library Limma using the following command.

library(limma)

2. Next load the experiment design matrix.

designMatrix <- read.table("13604DesignMatrix.txt")

3. Fit linear model for each gene from the given series of arrays. The variable

bmp6 holds the data shown in Table 4.3

fit <- lmFit(bmp6, designMatrix)

4. The next step is the contrast step, which uses the contrasts.fit() function. This

allows the fitted coefficients to be compared in as many ways as there are ques-

tions to be answered, regardless of how many or how few these might be.

contrastFit <- makeContrasts(BMP6_Treated-Control, levels=fit)

5. In this step we calculate the empirical Bayes statistics. The eBayes() function

is used to rank genes in order of evidence for differential expression.

eBayesTable <- eBayes(contrastFit)

6. Finally we extract a table of the top-ranked genes from the linear model. bmp6

contains the data from the gagedata library and is shown in the Table 4.3.
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results <- topTable(eBayesTable, adjust = ‘‘fdr’’,

coef = 1, number = nrow(bmp6))

The “results” variable contains the output from Limma. Table 4.4 shows few lines

from the Limma results.

Gene LogFC Avg Expr t P.Val Adj P.Val B
5228 4.066771195 8.984909943 30.01850012 1.75E-06 0.030867069 2.719129297
8200 -2.937752131 9.096127188 -22.30635557 6.85E-06 0.060528957 2.461454621
3400 3.107500295 8.990624466 18.99550122 1.43E-05 0.066519298 2.261904761
133 -3.11990311 9.026165624 -17.69540658 1.98E-05 0.066519298 2.15765175
3399 3.819738229 11.38550593 17.22309034 2.24E-05 0.066519298 2.115050187

Table 4.4: Results after running Limma with bmp6 data

We input the Limma results along with the file containing all the gene sets to

REPA. Few rows of REPA’s output are shown in the following table.

Test Name Gene Set Name Total Genes Values Found <0.001 <0.01 <0.05 >0.05 Average pValue
Two-sample student’s pooled t-test KEGG GLYCOLYSIS GLUCONEOGENESIS 62 60 0 1 12 987 0.461956
Two-sample student’s unpooled t-test KEGG GLYCOLYSIS GLUCONEOGENESIS 62 60 0 1 12 987 0.461977
Mann-Whitney U-test KEGG GLYCOLYSIS GLUCONEOGENESIS 62 60 0 1 3 996 0.521978
Two-sample student’s pooled t-test KEGG CITRATE CYCLE TCA CYCLE 32 30 0 0 0 1000 0.695003
Two-sample student’s unpooled t-test KEGG CITRATE CYCLE TCA CYCLE 32 30 0 0 0 1000 0.694662
Mann-Whitney U-test KEGG CITRATE CYCLE TCA CYCLE 32 30 0 0 0 1000 0.717507
Two-sample student’s pooled t-test KEGG PENTOSE PHOSPHATE PATHWAY 27 26 0 0 3 997 0.414412
Two-sample student’s unpooled t-test KEGG PENTOSE PHOSPHATE PATHWAY 27 26 0 0 2 998 0.414801
Mann-Whitney U-test KEGG PENTOSE PHOSPHATE PATHWAY 27 26 0 0 9 991 0.511711

Table 4.5: Enrichment analysis module results

4.2.4 Comparison between results from GAGE and REPA

In this section we compare the results that were obtained from running GAGE and

REPA with the same gene expression level data and the same gene sets.

Case 1: BMP6 treated vs untreated hMSC

The results obtained after running GAGE and REPA were stored in two lists. Both

the systems were run with the same gene sets and datasets as inputs.
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• The list from GAGE contained 133 gene sets that had an adjusted P.value of

less than 0.01.

• The list from REPA contains 142 gene sets that had a P.value of less than 0.01.

We expected to see some significant overlap of the two as both the systems were

trying to solve the same problem. To analyze the results we look at the results in the

following three ways.
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Figure 4.5: REPA vs GAGE plot for BMP6 dataset

The Spearman’s correlation coefficient between the significant results obtained

from the two systems is 0.491. Correlation coefficient for all the gene sets together is

0.542. In Figure 4.5 each gene set is represented by a circle. On the X-axis we have

the log of REPA p-values and on Y-axis we have the log of GAGE p-values. This

indicates that there is an agreement in how both systems rank the gene sets.
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Figure 4.6: BMP6 dataset Venn diagram

Out of all the total 146 gene sets that were predicted to be significant by both

systems combined, 22.2% were unique to REPA, 16.9% were unique to GAGE and

60.8% were common to both. The Venn diagram of this comparison is shown in

figure 4.6.

Case 2: Dataset derived from breast cancer study on 12 patients

Similar to case 1, we get two lists of gene sets, one each from running GAGE and

REPA. For comparing the results we again look at the correlation coefficients and

the plots. GAGE predicted 463 significant gene sets where as REPA predicted 543

significant gene sets.

The Spearman’s correlation coefficient for the two lists is 0.316 for significant gene

sets and 0.547 for all gene sets combined. Figure 4.7 shows the plot between the two

results.

In this case there were total 658 gene sets that were predicted to be significant by

both systems combined. 17.5% were unique to GAGE whereas 29.6% were unique to

REPA. 52.9% were common to both. The Venn diagram of this comparison is shown

in figure 4.8.
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Figure 4.7: REPA vs GAGE plot for breast cancer dataset

Figure 4.8: Breast cancer dataset Venn diagram

Case 3: Infection of Influenza A viruses

Here, we looked at gene expression profiling data obtained from a study performed

to investigate the early host responses of seasonal and pandemic influenza A viruses

in primary well-differentiated human lung epithelial cells (Gerlach et al. 2013b). We
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4.2. MODULE 2: ENRICHMENT ANALYSIS

used gene expression data of uninfected cells and cells infected with H1N1pdm isolates

from a nonfatal case (A/KY/136/09). We performed enrichment analysis using both

GAGE and REPA on this dataset. Then we compared the list of significant gene sets

produced by both the systems and made the following conclusions:
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Figure 4.9: REPA vs GAGE plot for Infection of Influenza A viruses

Figure 4.10: Infection of Influenza A viruses dataset Venn diagram
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MODULES AND DERIVING CONCLUSIONS

1. Out of the provided 10192 gene sets, REPA predicted 124 (1.22%) gene sets as

significant where GAGE produced a much larger list of 833 (8.17%) significant

gene sets.

2. The spearman’s correlation coefficient (0.6726835 overall; 0.6480139 for signifi-

cant gene sets) and the plot in figure 4.9 shows a higher degree of agreement in

the rankings of the two systems when compared to the previous two cases.

3. Looking at the venn diagrams in figure 4.10, we can see that 119 out of 124 or

95.97% of the gene sets predicted by REPA are also present in the GAGE’s list

of significant gene sets.

In a specific case like this where there is a more comprehensive list generated by

GAGE, we can substitute the results obtained by REPA for module 2 with the results

obtained by GAGE or any other competing software and use them to process with

the results obtained in REPA’s module 1.

4.3 Module 3: Combining the results from the first

two modules and deriving conclusions

The next and final step was to combine the results obtained from the first two modules

and make final conclusions on the data. We looked at each of the three cases described

in the previous section. Although we used all the available 10,192 gene sets for

performing the enrichment analysis in module 2, in this section we only focus on the

canonical pathways and manually curated gene sets. Therefore gene sets from the

following sources:

• KEGG (283 gene sets)
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• Reactome (674 gene sets)

• Biocarta (217 gene sets)

• Gene Ontology (1,454 gene sets)

• MSigDB’s Hallmark gene sets (50)

Total 2,678 gene sets.

4.3.1 Case 1: BMP6 treated vs untreated hMSC

The final results were obtained by combining the outputs of the first two modules.

The list of the statistically significant gene sets (p-value < 0.01 for MWU test with

significant threshold = 0.05) and their likely regulators are given below in table 4.6.

Differentially expressed gene sets REPA’s predicted putative regulators

(H) Genes regulated by NF-kB in response to TNF
POL2, CEBPB, PAX5, GR, TCF12, YY1, TAF1, HEY1, AP2GAMMA, CEBPD,
ATF2, CREB1, SP1, JUND, NFIC, SIN3AK20, E2F6, ELF1, PML, BCLAF1,
P300, CJUN, MTA3, RUNX3, STAT5A, TCF3, BCL3, POU2F2, NFATC1, BAF155

(H) Genes down-regulated in response to
ultraviolet (UV) radiation

POL2, GR, YY1, TAF1, HEY1, CREB1, SP1, E2F6

(H) Genes up-regulated in response to
Interferon Gamma

POL2, CEBPB, PAX5, GR, YY1, HEY1, IKZF1, EBF, E2F6, ELF1, PML,
CJUN, MTA3, RUNX3, STAT5A, SMC3, POU2F2

(H) Inflammatory response POL2, CEBPB, GR, E2F6, MTA3, POU2F2
(H) Genes defining early response to estrogen POL2, GR, E2F6
(K) TGF-beta signaling pathway POL2, GR, YY1, TAF1, E2F6
(H) APOPTOSIS POL2, CEBPB, GR, TCF12, YY1, TAF1, SIN3AK20, E2F6, PML, MTA3, POU2F2

(K) HTLV-I infection
POL2, CEBPB, GR, TCF12, YY1, TAF1, HEY1, CREB1, SP1, SIN3AK20,
EBF, E2F6, ELF1, PML, BCLAF1, ZNF143, CJUN, MTA3, RUNX3, STAT5A,
POU2F2, NFATC1, CBX3, KAP1

(K) TNF signaling pathway
POL2, CEBPB, PAX5, GR, TCF12, YY1, E2F6, ELF1,
PML, BCLAF1, MTA3, RUNX3, POU2F2

(K) Pathways in cancer
POL2, CEBPB, PAX5, GR, TCF12, YY1, TAF1, HEY1, CREB1, SP1,
SIN3AK20, E2F6, ELF1, PML, ZNF143, ATF1, CJUN, MTA3,
RUNX3, STAT5A, POU2F2

(G) Anatomical structures morphogenesis
(H) Genes up-regulated in response to alpha interferon proteins POL2, CEBPB, GR, MTA3
(K) Cytokine-cytokine receptor interaction POL2, CEBPB, GR, E2F6

Table 4.6: Case 1: Final results with the statistically significant gene sets and their
likely regulators

The analysis links the Bmp6 (Bone Morphogenetic Protein 6) to 37 transcription

factors. We could find evidence linking 6 of these 37 transcription factors to the Bmp6

protein. Many of the remaining 31 predictions could be novel and could be discovered

to be true in the future.
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AP2GAMMA, ATF1, ATF2, BAF155, BCL3, BCLAF1, CBX3, CEBPB (Lin

et al. 2013), CEBPD, CJUN, CREB1, E2F6, EBF, ELF1, GR (Kano et al. 2005),

HEY1 (Sivertsen et al. 2007), IKZF1, JUND, KAP1, MTA3, NFATC1, NFIC, P300,

PAX5, PML (Topić et al. 2013), POL2, POU2F2, RUNX3, SIN3AK20, SMC3, SP1 (Zhang

et al. 2005a), STAT5A, TAF1, TCF12, TCF3, YY1 (Lee et al. 2004) and ZNF143.

4.3.2 Case 2: Dataset derived from breast cancer study on

12 patients

Out of the total 10,192 gene sets, REPA listed 543 as perturbed. 24 out of these 543

gene sets come from sources such as KEGG, Biocarta, GO, Reactome or MSigDB’s

Hallmark.

The results from module 1 shows that REPA also predicted likely regulators for

22 out of these 24 gene sets. Figure 4.11 provides a full list of these 24 gene sets and

the associated transcription factors.

This list provides clues about likely regulatory mechanisms underlying the ob-

served gene expression changes. REPA’s predictions associated 59 transcription fac-

tors with these 24 gene sets identified as differentially expressed in the breast cancer

expression profiling study. Out of these 59 TFs, 45 (or 76.3%) have previously been

directly linked to breast cancer; namely, AP2ALPHA (McPherson, Woodfield, and

Weigel 2007) AP2GAMMA (McPherson, Woodfield, and Weigel 2007) ATF1 (Jones

et al. 2012) ATF2 (Lau and Ronai 2012) ATF3 (Yin et al. 2010) BAF155 (Wang

et al. 2014a) BCL3 (Choi et al. 2010) BCLAF1 (Savage et al. 2014) BHLHE40 (Wu

et al. 2014; Cadenas et al. 2014) BRCA1 (Wang and Di 2014) CBX3 (Choi, Park,

and Lee 2012) CEBPB (Abreu and Sealy 2010) CJUN (Xu et al. 2013) COREST (Vi-

cent et al. 2013) CREB1 (Phuong et al. 2014) E2F6 (Oberley, Inman, and Farnham

2003) EBF (Geng et al. 2007) ELF1 (Gerloff et al. 2011) ELK1 (Laliotis et al. 2013)
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Differentially+expressed+gene+sets REPA's+predicted+putative+regulators
(R)$SRP'dependent$cotranslational$protein$

targeting$to$membrane
POL2,$CEBPB,$GR,$ZNF263,$TCF12,$YY1,$TAF1,$HEY1,$TAF7,$MYBL2,$GABP,$ATF2,$CREB1,$SP1,$SIX5,$SIN3AK20,$
ELF1,$ETS1,$PML,$BCLAF1,$SP4,$TBLR1,$CJUN,$MTA3,$STAT5A,$WHIP,$NRSF,$BCL3,$POU2F2,$NFATC1,$CBX3

(R)$Antigen$processing'Cross$presentation POL2,$GR,$YY1,$TAF1,$CREB1,$SIN3AK20,$ELF1,$PML,$CJUN,$MTA3,$STAT5A

(R)$ER'Phagosome$pathway POL2,$GR,$YY1,$TAF1,$SIN3AK20,$ELF1,$PML,$CJUN,$MTA3,$STAT5A

(R)$Adaptive$Immune$System

(R)$Translation
POL2,$CEBPB,$GR,$ZNF263,$TCF12,$YY1,$TAF1,$HEY1,$TAF7,$MYBL2,$GABP,$ATF2,$CREB1,$SP1,$SIX5,$SIN3AK20,$
E2F6,$ELF1,$ETS1,$PML,$BCLAF1,$ZNF143,$SP4,$CJUN,$MTA3,$RUNX3,$STAT5A,$WHIP,$NRSF,$BCL3,$POU2F2,$

NFATC1,$CBX3
(R)$Class$I$MHC$mediated$antigen$

processing$&$presentation
POL2,$CEBPB,$PAX5,$GR,$TCF12,$YY1,$TAF1,$HEY1,$AP2GAMMA,$GABP,$CREB1,$SP1,$SIN3AK20,$E2F6,$ELF1,$ETS1,$

PML,$BCLAF1,$ZNF143,$CJUN,$MTA3,$RUNX3,$STAT5A,$POU2F2,$CBX3,$BAF155
(R)$Metabolism$of$proteins

(R)$Metabolism$of$mRNA
POL2,$CEBPB,$PAX5,$GR,$ZNF263,$TCF12,$YY1,$TAF1,$HEY1,$TAF7,$MYBL2,$GABP,$ATF2,$CREB1,$SP1,$NFIC,$SIX5,$
SIN3AK20,$USF2,$E2F6,$ELF1,$ETS1,$PML,$SIN3A,$BCLAF1,$FOXM1,$ZNF143,$SP4,$ATF1,$CJUN,$ELK1,$MTA3,$

RUNX3,$STAT5A,$WHIP,$NRSF,$BCL3,$POU2F2,$NFATC1,$CBX3,$KAP1
(K)$Protein$processing$in$endoplasmic$

reticulum
POL2,$CEBPB,$PAX5,$GR,$ZNF263,$TCF12,$YY1,$TAF1,$HEY1,$CREB1,$SP1,$SIN3AK20,$E2F6,$ELF1,$ETS1,$PML,$

BCLAF1,$ZNF143,$ATF1,$CJUN,$MTA3,$RUNX3,$STAT5A,$SMC3,$POU2F2,$KAP1,$BRCA1
(H)$Genes$defining$early$response$to$

estrogen
POL2,$GR,$E2F6

(H)$Genes$defining$late$response$to$
estrogen

POL2,$CEBPB,$GR,$E2F6

(H)$Genes$defining$epithelial'
mesenchymal$transition,$as$in$wound$

healing,$fibrosis$and$metastasis
POL2,$GR,$E2F6

(H)$Genes$up'regulated$through$
activation$of$mTORC1$complex

POL2,$CEBPB,$PAX5,$GR,$TCF12,$YY1,$TAF1,$HEY1,$MYBL2,$CREB1,$SP1,$SIN3AK20,$E2F6,$ELF1,$PML,$BCLAF1,$
ZNF143,$SP4,$ATF1,$CJUN,$MTA3,$RUNX3,$STAT5A,$POU2F2,$CBX3,$KAP1

(H)$Interferon$gamma$response POL2,$CEBPB,$PAX5,$GR,$YY1,$HEY1,$IKZF1,$EBF,$E2F6,$ELF1,$PML,$CJUN,$MTA3,$RUNX3,$STAT5A,$SMC3,$POU2F2

(H)$Hypoxia
POL2,$CEBPB,$PAX5,$GR,$TCF12,$YY1,$TAF1,$HEY1,$AP2GAMMA,$AP2ALPHA,$CREB1,$SP1,$MBD4,$FOS,$SIN3AK20,$

BHLHE40,$E2F6,$BCLAF1,$MTA3,$STAT5A
(H)$Genes$up'regulated$in$response$to$

alpha$interferon$proteins
POL2,$CEBPB,$GR,$MTA3

(H)$Genes$mediating$programmed$cell$
death$(apoptosis)$by$activation$of$

caspases.
POL2,$CEBPB,$GR,$TCF12,$YY1,$TAF1,$SIN3AK20,$E2F6,$PML,$MTA3,$POU2F2

(H)$Genes$up'regulated$during$unfolded$
protein$response,$a$cellular$stress$

response$related$to$the$endoplasmic$
reticulum.

POL2,$CEBPB,$GR,$TCF12,$YY1,$TAF1,$HEY1,$ATF2,$CREB1,$SP1,$SIN3AK20,$E2F6,$ELF1,$PML,$BCLAF1,$ZNF143,$
CJUN,$MTA3,$STAT5A,$POU2F2

(H)$Genes$encoding$proteins$involved$in$
glycolysis$and$gluconeogenesis

POL2,$CEBPB,$GR,$YY1,$TAF1,$HEY1,$CREB1,$SP1,$SIN3AK20,$E2F6,$ELF1,$PML,$ATF1,$MTA3

(H)$Genes$regulated$by$NF'kB$in$response$
to$TNF

POL2,$CEBPB,$PAX5,$GR,$TCF12,$YY1,$TAF1,$HEY1,$AP2GAMMA,$CEBPD,$ATF2,$CREB1,$SP1,$JUND,$NFIC,$
SIN3AK20,$E2F6,$ELF1,$PML,$BCLAF1,$P300,$CJUN,$MTA3,$RUNX3,$STAT5A,$TCF3,$BCL3,$POU2F2,$NFATC1,$

BAF155

(H)$A$subgroup$of$genes$regulated$by$
MYC$'$version$1$(v1)

POL2,$CEBPB,$PAX5,$GR,$ZNF263,$TCF12,$YY1,$TAF1,$HEY1,$TAF7,$MYBL2,$AP2GAMMA,$GABP,$AP2ALPHA,$ATF2,$
CREB1,$MAX,$SP1,$MBD4,$NFIC,$SIN3AK20,$E2F6,$ELF1,$ETS1,$PML,$BCLAF1,$FOXM1,$ATF3,$ZNF143,$SP4,$COREST,$

CJUN,$MTA3,$RUNX3,$STAT5A,$NRSF,$SMC3,$BCL3,$POU2F2,$NFATC1,$CBX3,$KAP1
(G)$Proteinaceous$extracellular$matrix POL2,$GR

(G)$Oxidoreductase$activity
POL2,$CEBPB,$PAX5,$GR,$TCF12,$YY1,$TAF1,$HEY1,$CREB1,$SP1,$SIN3AK20,$E2F6,$ELF1,$PML,$ZNF143,$ATF1,$CJUN,$

MTA3,$WHIP,$CBX3

(G)$Endoplasmic$reticulum
POL2,$CEBPB,$PAX5,$GR,$ZNF263,$TCF12,$YY1,$TAF1,$HEY1,$AP2GAMMA,$CREB1,$SP1,$SIN3AK20,$E2F6,$ELF1,$

PML,$ZNF143,$ATF1,$CJUN,$MTA3,$RUNX3,$STAT5A,$POU2F2,$CBX3

Figure 4.11: Breast cancer case study results

ETS1 (Furlan et al. 2014) FOXM1 (Koo, Muir, and Lam 2012) GABP (Thomp-

son, MacDonald, and Mueller 2011) GR (Vilasco et al. 2011) HEY1 (Bolós et al.

2013) IKZF1 (Yang, Luo, and Wei 2010) KAP1 (Addison et al. 2015) MAX (Il-

iopoulos, Rotem, and Struhl 2011) MBD4 (Cunha et al. 2014) MTA3 (Fujita et
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al. 2003) MYBL2 (Shi et al. 2012) NFATC1 (Yiu et al. 2011) NFIC (Eeckhoute

et al. 2006) NRSF (Bronson et al. 2010) PAX5 (Moelans, Verschuur-Maes, and Di-

est 2011) PML (Carracedo et al. 2012) POL2 (Han et al. 2014) RUNX3 (Bai et al.

2013) SMC3 (Wernicke et al. 2011) SP1 (Kong et al. 2014) SP4 (Wu et al. 2009)

STAT5A (Zeng et al. 2014) TAF1 (McDonnell et al. 1995) TBLR1 (Li et al. 2014)

TCF12 (Lee et al. 2012a) and YY1 (Lieberthal et al. 2009; Wan et al. 2012).

These results indicate that REPA’s precision may be higher than the one suggested

by our literature-based evaluation done in section 4.1.4. Moreover, REPA’s predictions

suggested 14 additional transcription factors that may play a role in breast cancer.

These are CEBPD, FOS, JUND, P300, POU2F2, SIN3A, SIN3AK20, SIX5, TAF7,

TCF3, USF2, WHIP, ZNF143 and ZNF263. Some of these 14 additional regulators

have already been implicated in other types of cancer.

4.3.3 Case 3: Infection of influenza A viruses

In the previous section, we discussed that when we used REPA’s enrichment analysis

module to analyze this data set, we got a list of 124 perturbed gene sets. GAGE, on

the other hand, predicted 833 gene sets to be active. Since GAGE’s list was more

comprehensive and includes 119 out of 124 of REPA’s predictions, we substituted the

results of module 2 with GAGE’s results.

To reduce the amount of redundancy in GAGE results, we compared every pair

of differentially expressed gene sets. We obtained the number of genes in common

between each pair and removed those gene sets with a significant overlap with another

gene set (p-value < 0.0001 using the hypergeometric distribution) and at least 50%

of their genes lying on the intersection between both gene sets. This filtering reduced

the number of gene sets by 70%; however, the number of associated TFs decreased by

only 7%. This indicates that REPA’s predictions are replicated in different annotation
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scheme.

Figure 4.12: Infection of influenza A viruses case study results

In the original study, pathway analyses were performed using Ingenuity Pathway

Analysis (IPA, Ingenuity Systems) software. As in the original study, we identified

gene sets related to cytokine signalling, interferon signalling, apoptosis, complement

system, and antigen presentation. In addition, we identified several influenza-related
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gene sets (see figure 4.12).

Upon identification of the differentially expressed gene sets, we used REPA’s pre-

dictions to list putative regulators of those differentially expressed gene sets (see fig-

ure 4.12). REPA’s predictions associated 58 TFs with the gene sets identified as dif-

ferentially expressed in the influenza infection transcriptional profiling study. These

58 TFs are the following (supporting literature is referred to after the corresponding

TF): AP2ALPHA, AP2GAMMA, ATF1, ATF2 (Hrincius et al. 2010), ATF3 (Whit-

more et al. 2007), BAF155, BCL3, BCLAF1, BRCA1, CBX3, CEBPB (Zhu et al.

2010), CEBPD, CJUN (Cannon et al. 2014), COREST, CREB1 (Liu et al. 2012),

E2F4 (Zhu et al. 2010), E2F6 (Zhu et al. 2010), EBF, ELF1, ELK1 (Harii et al. 2005),

ETS1, FOXM1, GABP, GR (Ge et al. 2011), HEY1, IKZF1, INI1, JUND, KAP1,

MAX, MBD4, MTA3, MYBL2, NFATC1 (Zhang et al. 2009), NFIC, NRSF, P300,

PAX5 (Savitsky and Calame 2006), PML (Li et al. 2009), POL2, POU2F2 (Bussfeld

et al. 1997), PU1, RFX5, RUNX3, SIN3AK20, SMC3, SP1 (Barbier et al. 2012),

SP4, STAT5A, TAF1, TAF7, TBLR1, TCF12, TCF3, USF2, YY1, ZNF143, and

ZNF263. We found literature linking with influenza infection 14 (or 24%) of these

TFs. Additionally, ATF3 and SP1 were found to be expressed in cells infected with

pandemic influenza A virus (H1N1pdm) but not in cells infected with seasonal in-

fluenza virus (Gerlach et al. 2013a).

4.4 Summary

In this chapter, we present the results of evaluating REPA. Our results suggested

that between 24% and 76% of the regulatory associations predicted by REPA are

likely correct, and that REPA’s recall is around 54%. In addition, REPA’s module

2 results are mostly in agreement with the gene sets obtained by GAGE, a widely
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used tool for gene set analysis of expression data. This suggests that REPA’s novel

predicted regulatory associations may indeed be useful to guide further biological

investigations.
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Chapter 5

Conclusion

To measure the activity levels of various genes, biologists often use gene expression

profiling experiments. After obtaining the activity levels of all the genes and analyz-

ing the data from such experiments, researchers then resort to enrichment analysis

techniques. Enrichment analysis is usually the next step after performing a gene ex-

pression profiling experiment because it helps researchers gain a better understanding

of the cellular activities and processes relevant to the study performed. Transcription

factors are regulator proteins that control the level of activity of various genes. A

transcription factor usually regulates a gene by binding to its promoter region. Tran-

scription factor binding (TFB) data for the entire human genome was made publicly

available under the ENCODE project. Even though there is an important relation-

ship between transcription factors and biological pathways, so far enrichment analysis

techniques have not looked at those connections.

In this thesis we developed a novel method of analyzing TFB data and com-

bining it with gene set enrichment analysis. An article describing REPA has been

accepted for publication in the IEEE/ACM Transactions on Computational Biology

and Bioinformatics journal. We also built a software application, REPA (Regulation
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Enrichment Pathway Analysis), as an implementation of this approach. We explored

the appropriate statistical testing methods for our purpose and evaluated the results

of this new approach.

The greatest advantage of using REPA is that it allows the user to see a more

complete picture of the cellular activity by providing information about which tran-

scription factors may regulate the genes being affected in an expression profiling study.

Our hope is that by informing researchers about likely regulators, they might be able

to identify future research paths that could have been overlooked.

We can further improve the accuracy and scope of REPA by looking at certain

aspects of the system. By adding TFB data for other species we can use the same

system to analyze other species. We can also use orthology relationships to transfer

information between species. We also want to test the system with biological data

from ongoing wet lab experiments. Finally, having the system as a web service will

make the tool accessible to a larger research community.

We found literature backing several of the predictions relating transcription factors

to gene sets, and we found that there was a significant overlap between the results of

GAGE and the enrichment analysis part of REPA. Even though the results from these

tests appear to be promising, the final test would be in the hands of the researchers in

terms of whether or not they find REPA useful and continue using it as their preferred

enrichment analysis technique.

One of the challenges we faced while doing this project is the lack of transcription

factor binding data for all the known human transcription factors. There are over

1,391 known sequence-specific DNA-binding human transcription factors (Vaquerizas

et al. 2009) however, in this project, we have information of only 120 transcription

factors. The ENCODE project was the first effort to undertake this massive task of

functionally annotating human DNA, but with the advent of new DNA sequencing
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techniques more and more such data can be generated for a much lower cost (Resnick

2011). As these technologies become less expensive and start producing more data,

our approach will have the information it needs to become more accurate. Therefore

it is fair to say that the biggest significance of this project is that it takes enrichment

analysis in a new direction where it will be possible to provide information on not

only which gene sets are interesting, but also how they are regulated.
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Appendix A

R script used for comparing REPA

with GAGE.

A.1 Dataset 1: 8 hours BMP6 treated vs untreated

human mesenchymal stem cells

# 13604 Comparison S c r i p t

# To i n s t a l l the gage package , s t a r t R and enter :

source ( ” http : //bioconductor . org/ b i o c L i t e .R” )

b i o c L i t e ( ” gage ” )

#To i n s t a l l t he a u x i l l a r y data f o r gage package :

b i o c L i t e ( ”gageData” )

# Load L i b r a r i e s
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A.1. DATASET 1: 8 HOURS BMP6 TREATED VS UNTREATED HUMAN
MESENCHYMAL STEM CELLS

l ibrary ( gageData )

l ibrary ( gage )

# Set working d i r

setwd ( ”GAGE Comparison” )

# Run gage and g e t r e s u l t s o f a n a l y s i s

c2 . gs=readL i s t ( ” c2 c5 c6 hal lmark kegg 12 Apr i l2015 . txt ” )

data (bmp6)

lapply ( c2 . gs [ 1 : 3 ] , head )

head (rownames(bmp6) )

bmp6 . c2 . p <− gage (bmp6 , g s e t s = c2 . gs , r e f =c ( 1 , 3 ) , samp = c

( 2 , 4 ) , same . dir = FALSE, compare = ” as . group” )

r e s u l t s <− bmp6 . c2 . p$ g r e a t e r [ complete . c a s e s (bmp6 . c2 . p$ g r e a t e r

) , ]

gage . bmp6 . s i g R e s u l t s <− r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 0 1 , ]

r e s u l t sA l l S y s t em s <− l i s t ( )

r e s u l t sA l l S y s t em s $gageBMP6 <− row .names( gage . bmp6 . s i g R e s u l t s )

write . table ( f i l e = ” gage13604 r e s u l t s . txt ” , r e s u l t s , sep = ”\

t ” )

system <− read . table ( ”13604 system r e s u l t s . txt ” , sep = ”\ t ” ,

header = FALSE, s t r i ng sAsFac to r s = FALSE)

system$pvalue <− 1 .001 − (system [ , ”V4” ] + system [ , ”V5” ] ) /1000
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A.1. DATASET 1: 8 HOURS BMP6 TREATED VS UNTREATED HUMAN
MESENCHYMAL STEM CELLS

row .names(system ) <− system [ , ”V1” ]

system <− system [ row .names( r e s u l t s ) , ]

length ( intersect (system [ system [ , ” pvalue ” ] < 0 . 01 , ”V1” ] , row

.names( r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 0 1 , ] ) ) )

s i g n i f i c a n t B o t h <− union (system [ system [ , ” pvalue ” ] < 0 . 01 , ”

V1” ] , row .names( r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 0 1 , ] ) )

# For a l l gene s e t s

cor (system [ row .names( r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 0 1 , ] ) , ”

pvalue ” ] , r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 01 , ”q . va l ” ] ,

method = ”spearman” )

# For s i g n i f i c a n t gene s e t s

cor (system [ s i gn i f i c an t Bo th , ” pvalue ” ] , r e s u l t s [

s i gn i f i c an tB ot h , ”q . va l ” ] , method = ”spearman” )

# Generate REPA vs GAGE p l o t .

pdf ( ” Plot 13604 Comparison . pdf ” )

plot(−log10 (system [ row .names( r e s u l t s ) , ” pvalue ” ] ) , −log10 (

r e s u l t s [ , ”q . va l ” ] ) , main = ”” , ylab = ”−l og10 GAGE

pvalues ” , xlab = ”−l og10 REPA pvalues ” )

l ines ( lowess ( x= −log10 (system [ row .names( r e s u l t s ) , ” pvalue ” ] )

, y = −log10 ( r e s u l t s [ , ”q . va l ” ] ) ) , col = ” red ” , lwd = 2)

93



A.2. DATASET 2: DERIVED FROM BREAST CANCER STUDY ON 12
PATIENTS

dev . of f ( )

# Generate venn diagram

l ibrary ( g p l o t s )

pdf ( ”Venn 13604 Comparison . pdf ” )

venn ( l i s t (GAGE= row .names( r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 01 ,

] ) , REPA = system [ system [ , ” pvalue ” ] < 0 . 01 , 1 ] ) )

dev . of f ( )

A.2 Dataset 2: Derived from breast cancer study

on 12 patients

# To i n s t a l l the gage package , s t a r t R and enter :

source ( ” http : //bioconductor . org/ b i o c L i t e .R” )

b i o c L i t e ( ” gage ” )

#To i n s t a l l t he a u x i l l a r y data f o r gage package :

b i o c L i t e ( ”gageData” )

# load the gage and gageData l i b r a r i e s :

l ibrary ( gageData )

l ibrary ( gage )

# load the gene s e t s

c2 . gs <− r eadL i s t ( ” gene s e t s . txt ” )
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A.2. DATASET 2: DERIVED FROM BREAST CANCER STUDY ON 12
PATIENTS

#item Run GAGE with the f o l l o w i n g arguments .

data ( gse16873 )

lapply ( c2 . gs [ 1 : 3 ] , head )

head (rownames( gse16873 ) )

gse16873 . c2 . p <− gage ( gse16873 , g s e t s = c2 . gs , r e f =c ( 1 , 3 , 5 ) ,

samp = c ( 2 , 4 , 6 ) , same . dir = FALSE, compare = ” as . group” )

r e s u l t s <− gse16873 . c2 . p$ g r e a t e r [ complete . c a s e s ( gse16873 . c2 . p

$ g r e a t e r ) , ]

gage . gse16873 . s i g R e s u l t s <− r e s u l t s [ r e s u l t s [ , ”q . va l ” ] <

0 . 0 1 , ]

write . table ( f i l e = ” gage r e s u l t s 16873 . txt ” , r e s u l t s , sep = ”

\ t ” )

r e s u l t sA l l S y s t em s <− l i s t ( )

r e s u l t sA l l S y s t em s $gageGSE16873 <− row .names( gage . gse16873 .

s i g R e s u l t s )

write . table ( f i l e = ” gage r e s u l t s 16873 . txt ” , r e s u l t s , sep = ”

\ t ” )

system <− read . table ( ”GSE16873 Repa Resu l t s . txt ” , sep = ”\ t ” ,

header = FALSE, s t r i ng sAsFac to r s = FALSE)

system <− system [ , c ( 1 : 5 ) ]

system$pvalue <− 1 .001 − (system [ , ”V4” ] + system [ , ”V5” ] ) /1000

row .names(system ) <− system [ , ”V1” ]

system <− system [ row .names( r e s u l t s ) , ]
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length ( intersect (system [ system [ , ” pvalue ” ] < 0 . 01 , ”V1” ] , row

.names( r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 0 1 , ] ) ) )

s i g n i f i c a n t B o t h <− union (system [ system [ , ” pvalue ” ] < 0 . 01 , ”

V1” ] , row .names( r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 0 1 , ] ) )

# For a l l gene s e t s

cor (system [ row .names( r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 0 1 , ] ) , ”

pvalue ” ] , r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 01 , ”q . va l ” ] ,

method = ”spearman” )

# For s i g n i f i c a n t gene s e t s

cor (system [ s i gn i f i c an t Bo th , ” pvalue ” ] , r e s u l t s [

s i gn i f i c an tB ot h , ”q . va l ” ] , method = ”spearman” )

# Generate REPA vs GAGE p l o t .

pdf ( ” Plot 16873 Comparison . pdf ” )

plot(−log10 (system [ row .names( r e s u l t s ) , ” pvalue ” ] ) , −log10 (

r e s u l t s [ , ”q . va l ” ] ) , main = ”” , ylab = ”−l og10 GAGE

pvalues ” , xlab = ”−l og10 REPA pvalues ” )

l ines ( lowess ( x= −log10 (system [ row .names( r e s u l t s ) , ” pvalue ” ] )

, y = −log10 ( r e s u l t s [ , ”q . va l ” ] ) ) , col = ” red ” , lwd = 2)

dev . of f ( )

# Generate venn diagram

l ibrary ( g p l o t s )

pdf ( ”Venn 16873 Comparison . pdf ” )
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A.3. DATASET 3: INFECTION OF INFLUENZA A VIRUSES

venn ( l i s t (GAGE= row .names( r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 01 ,

] ) , REPA = system [ system [ , ” pvalue ” ] < 0 . 01 , 1 ] ) )

dev . of f ( )

write . table ( f i l e = ” gage s i g r e s . txt ” , r e s u l t s [ r e s u l t s [ , ”q .

va l ” ] < 0 . 0 1 , ] , sep = ”\ t ” )

write . table ( f i l e = ” repa s i g r e s . txt ” , system [ system [ , ”

pvalue ” ] < 0 . 01 , ”V1” ] , sep = ”\ t ” )

A.3 Dataset 3: Infection of influenza A viruses

# To i n s t a l l the gage package , s t a r t R and enter :

source ( ” http : //bioconductor . org/ b i o c L i t e .R” )

b i o c L i t e ( ” gage ” )

#To i n s t a l l t he a u x i l l a r y data f o r gage package :

b i o c L i t e ( ”gageData” )

# Load L i b r a r i e s

l ibrary ( gageData )

l ibrary ( gage )

# Set working d i r

setwd ( ”GAGE Comparison” )

### Code f o r I n f l u e n z a A
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A.3. DATASET 3: INFECTION OF INFLUENZA A VIRUSES

msigv5 kegg . gs <− r eadL i s t ( ”msig5 kegg . txt ” )

length ( msigv5 kegg . gs )

#Early hos t responses o f s e a s o n a l and pandemic i n f l u e n z a A

v i r u s e s in primary we l l−d i f f e r e n t i a t e d human lung

e p i t h e l i a l c e l l s .

#PMID: 24244384 Gerlach2013

# load s e r i e s and p la t form data from GEO

l ibrary ( Biobase )

l ibrary (GEOquery)

gse48466 raw <− getGEO( ”GSE48466” , GSEMatrix =TRUE)

i f ( length ( gse48466 raw ) > 1) idx <− grep ( ”GPL570” , attr (

gse48466 raw , ”names” ) ) else idx <− 1

gse48466 raw <− gse48466 raw [ [ idx ] ]

# load NCBI p la t form annotat ion

gpl <− annotat ion ( gse48466 raw )

p l a t f <− getGEO( gpl , AnnotGPL=TRUE)

ncb i fd <− data . frame ( attr ( dataTable ( p l a t f ) , ” t ab l e ” ) )

probe ent r e z <− ncb i fd [ , c ( ”ID” , ”Gene . ID” ) ]

probe ent r e z <− probe ent r e z [ probe ent r e z$Gene . ID != ”” , ]

probe ent r e z <− probe ent r e z [ ! g r ep l ( ”///” , probe ent r e z$Gene .

ID , f i x e d = TRUE) , ] # f i l t e r promiscuous probes

98



A.3. DATASET 3: INFECTION OF INFLUENZA A VIRUSES

row .names( probe ent r e z ) <− probe ent r e z [ , 1 ]

head ( probe ent r e z )

gse48466 <− exprs ( gse48466 raw )

head ( gse48466 )

length ( intersect (row .names( gse48466 ) , probe ent r e z [ , ”ID” ] ) )

#Get average i n t e n s i t y per gene Entrez ID

gse48466 perGene <− apply ( gse48466 , 2 , function (c , f ) {

tapply (c , f ,mean)

} , probe ent r e z [ row .names( gse48466 ) , 2 ] )

gse48466 perGene <− log2 ( gse48466 perGene )

gage r e s u l t s i n f l u e n z a <− gage ( gse48466 perGene , g s e t s =

msigv5 kegg . gs , r e f = 10 :12 , samp =4:6 , same . dir = TRUE,

compare = ” unpaired ” )

r e s u l t s <− gage r e s u l t s i n f l u e n z a $ g r e a t e r [ complete . c a s e s ( gage

r e s u l t s i n f l u e n z a $ g r e a t e r ) , ]

gage . i n f l u e n z a . s i g R e s u l t s <− r e s u l t s [ r e s u l t s [ , ”q . va l ” ] <

0 . 0 1 , ]

r e s u l t sA l l S y s t em s <− l i s t ( )
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r e s u l t sA l l S y s t em s $ gage in f l u enza <− row .names( gage . i n f l u e n z a .

s i g R e s u l t s )

write . table ( f i l e = ” gage r e s u l t s i n f l u e n z a . txt ” , r e s u l t s , sep

= ”\ t ” )

system <− read . table ( ” repa r e s u l t s i n f l u e n z a . txt ” , sep = ”\ t ”

, header = FALSE, s t r i ng sAsFac to r s = FALSE)

#system <− read . t a b l e (” repa r e s u l t s 13604. t x t ” , sep = ”\ t ” ,

header = FALSE, s t r i n g s A s F a c t o r s = FALSE)

system <− system [ , c ( 1 : 5 ) ]

system$pvalue <− 1 .001 − (system [ , ”V4” ] + system [ , ”V5” ] ) /1000

row .names(system ) <− system [ , ”V1” ]

system <− system [ row .names( r e s u l t s ) , ]

length ( intersect (system [ system [ , ” pvalue ” ] < 0 . 01 , ”V1” ] , row

.names( r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 0 1 , ] ) ) )

s i g n i f i c a n t B o t h <− union (system [ system [ , ” pvalue ” ] < 0 . 01 , ”

V1” ] , row .names( r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 0 1 , ] ) )

# For a l l gene s e t s

cor (system [ row .names( r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 0 1 , ] ) , ”

pvalue ” ] , r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 01 , ”q . va l ” ] ,

method = ”spearman” )

# For s i g n i f i c a n t gene s e t s

cor (system [ s i gn i f i c an t Bo th , ” pvalue ” ] , r e s u l t s [

s i gn i f i c an tB ot h , ”q . va l ” ] , method = ”spearman” )
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# Generate REPA vs GAGE p l o t .

pdf ( ” Plot i n f l u e n z a Comparison . pdf ” )

plot(−log10 (system [ row .names( r e s u l t s ) , ” pvalue ” ] ) , −log10 (

r e s u l t s [ , ”q . va l ” ] ) , main = ”” , ylab = ”−l og10 GAGE

pvalues ” , xlab = ”−l og10 REPA pvalues ” )

l ines ( lowess ( x= −log10 (system [ row .names( r e s u l t s ) , ” pvalue ” ] )

, y = −log10 ( r e s u l t s [ , ”q . va l ” ] ) ) , col = ” red ” , lwd = 2)

dev . of f ( )

# Generate venn diagram

l ibrary ( g p l o t s )

pdf ( ”Venn i n f l u e n z a Comparison . pdf ” )

venn ( l i s t (GAGE= row .names( r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 01 ,

] ) , REPA = system [ system [ , ” pvalue ” ] < 0 . 01 , 1 ] ) )

dev . of f ( )

# 13606 Comparison S c r i p t

# Load L i b r a r i e s

l ibrary ( gageData )

l ibrary ( gage )
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# Set working d i r

setwd ( ”GAGE Comparison” )

# Run gage and g e t r e s u l t s o f a n a l y s i s

c2 . gs=readL i s t ( ” c2 . a l l . v4 . 0 . en t r e z . gmt” )

data (bmp6)

lapply ( c2 . gs [ 1 : 3 ] , head )

head (rownames(bmp6) )

bmp6 . c2 . p <− gage (bmp6 , g s e t s = c2 . gs , r e f =c ( 1 , 3 ) , samp = c

( 2 , 4 ) , same . dir = FALSE, compare = ” as . group” )

r e s u l t s <− bmp6 . c2 . p$ g r e a t e r [ complete . c a s e s (bmp6 . c2 . p$ g r e a t e r

) , ]

gage . bmp6 . s i g R e s u l t s <− r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 0 1 , ]

r e s u l t sA l l S y s t em s <− l i s t ( )

r e s u l t sA l l S y s t em s $gageBMP6 <− row .names( gage . bmp6 . s i g R e s u l t s )

write . table ( f i l e = ” gage13606 r e s u l t s . txt ” , r e s u l t s , sep = ”\

t ” )

system <− read . table ( ”13606 system r e s u l t s . txt ” , sep = ”\ t ” ,

header = FALSE, s t r i ng sAsFac to r s = FALSE)

system$pvalue <− 1 .001 − (system [ , ”V4” ] + system [ , ”V5” ] ) /1000

row .names(system ) <− system [ , ”V1” ]
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A.3. DATASET 3: INFECTION OF INFLUENZA A VIRUSES

system <− system [ row .names( r e s u l t s ) , ]

length ( intersect (system [ system [ , ” pvalue ” ] < 0 . 01 , ”V1” ] , row

.names( r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 0 1 , ] ) ) )

s i g n i f i c a n t B o t h <− union (system [ system [ , ” pvalue ” ] < 0 . 01 , ”

V1” ] , row .names( r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 0 1 , ] ) )

# For a l l gene s e t s

cor (system [ row .names( r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 0 1 , ] ) , ”

pvalue ” ] , r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 01 , ”q . va l ” ] ,

method = ”spearman” )

# For s i g n i f i c a n t gene s e t s

cor (system [ s i gn i f i c an t Bo th , ” pvalue ” ] , r e s u l t s [

s i gn i f i c an tB ot h , ”q . va l ” ] , method = ”spearman” )

# Generate REPA vs GAGE p l o t .

pdf ( ” Plot 13606 Comparison . pdf ” )

plot(−log10 (system [ row .names( r e s u l t s ) , ” pvalue ” ] ) , −log10 (

r e s u l t s [ , ”q . va l ” ] ) , main = ”” , ylab = ”−l og10 GAGE

pvalues ” , xlab = ”−l og10 REPA pvalues ” )

l ines ( lowess ( x= −log10 (system [ row .names( r e s u l t s ) , ” pvalue ” ] )

, y = −log10 ( r e s u l t s [ , ”q . va l ” ] ) ) , col = ” red ” , lwd = 2)

dev . of f ( )
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# Generate venn diagram

l ibrary ( g p l o t s )

pdf ( ”Venn 16873 Comparison . pdf ” )

venn ( l i s t (GAGE= row .names( r e s u l t s [ r e s u l t s [ , ”q . va l ” ] < 0 . 01 ,

] ) , REPA = system [ system [ , ” pvalue ” ] < 0 . 01 , 1 ] ) )

dev . of f ( )
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