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Worldwide, there are millions of people with severe motor and speech impairment,

which prohibits them from participating in daily functional activities such as per-

sonal care. While many individuals may understand language fully and retain cogni-

tive skills, they have no way to produce speech. Communication with other people,

especially with their family members and care providers, becomes a significant chal-

lenge. Brain computer interface (BCI) is a technology that uses neural signals as

the physiological input for various assistive technology applications. In BCIs, elec-

troencephalography (EEG) has drawn increasing attention of the researchers due to

noninvasiveness, portability, feasibility, and a relatively low cost.

In this work, we design an EEG based letter-by-letter BCI typing system, RSVP

KeyboardTM , which utilizes rapid serial visual presentation (RSVP). Differently

from the commonly used visual BCI presentation schemes, RSVP aims to be ac-

cessible to the population with limited eye gaze control by presenting sequences of

symbols on a screen over time at a fixed focal area and in rapid succession. As a

response to the infrequent novel target stimulus (oddball paradigm), brain generates

P300, an event related potential which is a positive deflection in the scalp voltage

mainly in the centro-parietal areas with an average latency just over 300 ms. This

natural novelty response allows us to design interfaces by detecting the intent using

EEG.

The intent detection of the BCI systems suffers from low symbol rates and accu-

racy due to existence of low signal-to-noise ratios and the variability of background

activity. Currently, most designers utilize high number of repetitions to increase

the accuracy by sacrificing the speed. Alternatively, we propose a probabilistic in-

corporation of a language model in decision making and we show that our method

significantly improves typing speed and accuracy. Additionally, we propose modeling

of trial dependencies to improve the typing speed.
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6.2 Näıve Bayesian Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.1 Fusion Rule 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.2 Fusion Rule 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2.3 Final Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.4 Deciding on the Next Sequence . . . . . . . . . . . . . . . . . 56

6.3 Recursive Bayesian Estimation Based Fusion . . . . . . . . . . . . . . 56

6.3.1 Experimental Offline Analysis . . . . . . . . . . . . . . . . . . 59

7 Real Time System 61

7.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2 Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2.2 Spelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2.3 Copy Phrase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2.4 Mastery Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.3 Performance Estimation Using Simulation . . . . . . . . . . . . . . . 63

7.4 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8 Consideration of Trial Dependency 70

8.1 Estimating Trial Conditionals . . . . . . . . . . . . . . . . . . . . . . 74

8.2 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9 Discussion and Future Work 81

Bibliography 84



List of Figures

2.1 Sample presentation screen for matrix speller. . . . . . . . . . . . . . 9

2.2 Sample presentation screen for RSVP KeyboardTM . . . . . . . . . . . 10

2.3 Sample presentation screen for Hex-o-Spell. . . . . . . . . . . . . . . . 11

6.1 An example of the change in AUC while searching shrinkage (λ) and
regularization (γ). Highest AUC is obtained for λ = 0.6 and γ = 0.1. 46

6.2 An example of an ROC curve corresponding to single sequence and
0-gram language model. . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 The average correct letter selection probability vs inverse of the num-
ber of repetitions for various language model orders and letter loca-
tions in the word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4 The average expected value of typing duration vs inverse of the num-
ber of repetitions for various language model orders and letter loca-
tions in the word. In the graphs 100 seconds mark is used jointly with
the failure case. If the subject has a probability of getting stuck it is
considered as a failure. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.5 Hidden Markov Model used in recursive Bayesian approach for the
fusion of language model with EEG scores. . . . . . . . . . . . . . . . 57

7.1 Successful completion probability for each subject for each scenario
for simulation and experiment. Top bars represent the experimental
results and bottom bars represent the simulation results with taller
the bar is better. Probability of 1 corresponds to successful completion
of all phrases and probability of 0 corresponds to failure to complete
any of the phrases. Consider only the absolute value of the vertical
axis values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2 Duration to copy 8 phrases for each subject for each scenario for
simulation and experiment. This corresponds to the total duration
spent on attempting to type all of the phrases. Top bars represent
the experimental results and bottom bars represent the simulation
results with shorter the bar is better. Consider only the absolute
value of the vertical axis values. . . . . . . . . . . . . . . . . . . . . . 67

vii



List of Figures viii

8.1 Graphical model considering the dependency between trials. EEG
features corresponding to a trial are affected by last M trials including
the current one. In this depiction, M is taken as 3. s represents the
intended symbol, xt,r,n and ct,r,n represents the EEG features and class
labels corresponding to trial n in sequence r and epoch t, respectively. 71



List of Tables

6.1 The minimum and the maximum values of the area under the ROC
curves obtained using fusion classifier under different scenarios. The
comparison is made using different number of sequences for classifi-
cation, different letter positions in the word and different language
model orders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 The minimum and the maximum values of the detection rates for 1%
false detection rate using fusion classifier under different scenarios. . . 48

6.3 The minimum and the maximum values of the detection rates for 5%
false detection rate using fusion classifier under different scenarios. . . 49

6.4 The minimum and the maximum values of the detection rates for 10%
false detection rate using fusion classifier under different scenarios. . . 49

6.5 The minimum and the maximum values of the correct symbol selection
ratios over different sessions for varying the number of sequences used
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Chapter 1

Introduction

1.1 Historical Overview

In 1970s, Vidal’s first attempts to demonstrate the feasibility of utilizing brain signals

for ”man-computer-dialogue” started the era of brain computer interfaces (BCI)

[1, 2]. It had taken more than 40 years for BCI to be born since the first recording

of human electroencephalography (EEG), measurement of scalp voltage potentials,

by Berger [3]. We, including the people with severe motor and speech impairments

(SSPI), had to wait 20 more years for computational power, accessibility, cost and

stability of computers and EEG amplifiers to attain a certain level for BCI field to

draw exploding interest from researchers. Growth of interest increased further owing

to the courtesy of researchers who built and shared packages of readily available

EEG processing or BCI tools, e.g. BCI2000, EEGLAB, OpenViBE [4–7]. Probably

due to heavy reliance on these available tools by new researchers entering the field,

the improvement of BCI system performance (e.g. speed of typing) slowed down,

contrary to the growing interest. For example, context awareness is ostensibly a

required component of BCI systems. However very limited amount of effort has

been put to utilization of context information.

1



Chapter 1. Introduction 2

1.2 Contributions of this Dissertation to the BCI

Field

The first contribution of this dissertation is the design of a rapid serial visual pre-

sentation (RSVP)-based BCI typing system. Since making the presentation at a

single focal location, RSVP does not require a strong gaze control, it is potentially

a good candidate for people with the most severe motor impairments. Correspond-

ingly, RSVP started to draw more attention from researchers especially following

a publication demonstrating the gaze dependency of by far the most popular BCI

presentation technique, the matrix speller [8]. The matrix speller utilizes a matrix

layout of symbols with various intensifications, whereas RSVP presents the symbols

at a central location with temporal separation.

Second, we constructed a theoretical framework for tight probabilistic context aware-

ness in P300-based BCIs. In our case the context is language and the letters needed

to spell out words. We incorporated a probabilistic fusion utilizing n-gram language

models and estimation of probability densities of the features. Such a fusion would

allow achieving high accuracies under low repetition conditions, correspondingly

speeding up overall typing performance. Offline and online analyses, demonstrated

significant improvements on typing performance.

Third, we designed a fusion and presentation methodology that does not commit to

a decision, but instead keeps track of all the history and correspondingly updates a

history of candidate symbols. In offline analysis, this recursive Bayesian fusion ap-

proach demonstrated significant improvement compared to the original fusion idea.

However, it is not implemented for operation in real time due to its current limita-

tions for cognitive load and memory requirement. After resolving such shortcomings,

this approach has a high potential on increasing the typing speeds.
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Finally, almost none of the P300 based BCIs consider the temporal dependency

between trials. We created a model considering the temporal dependency between

trials to potentially improve the typing speed.



Chapter 2

Brain Computer Interfaces

2.1 Augmentative and Alternative Communica-

tion

BCI is now considered as a possible access method for communication by individuals

with severe speech and physical impairments (SSPI) who cannot meet their expres-

sive language needs through natural speech, handwriting, or typing. BCIs interpret

brain activity directly, bypassing physical movement and relying on neurophysiologic

signals as an access method [9]. BCI for communication falls into a class of assistive

technology (AT) and is placed with other augmentative and alternative communica-

tion (AAC) devices as an access means for language expression [10, 11]. Historically,

AAC devices with different interfaces (i.e., mouse, joystick, binary switches, head

control or eye gaze) have offered individuals means to generate and speak messages,

when speech and writing are no longer functional [12]. A number of recent devel-

opments in AAC access strategies for people with minimal movement have been

proposed that involve tracking of head and eye movement, recognition of residual

speech and of gestures. BCI is one recent development that relies on monitoring the

electrical activity of the brain [13]. Together, these strategies should provide even

4



Chapter 2. Brain Computer Interfaces 5

greater access to face-to-face and electronic communication options to support en-

gagement for health management and social interactions [14] for people with SSPI.

As with any AT for communication, BCI translational research and development

can be discussed in terms of five components [15]: (1) the input modalities for the

device (for this work, we limit our discussion to electroencephalography (EEG)); (2)

the processing demands of the device (here we refer to the signal detection and clas-

sification options); (3) language representation (for BCI, this refers to the graphical

user interface (GUI) for language presentation and the manipulation of language

units by the device); (4) the output modalities (for BCI, this is usually text output,

though speech output is a possibility); and (5) the functional gains of the device

(here we refer to the target populations and the clinical demands they bring to the

task of BCI use). The long term objective of BCI translational research is to find

a reliable means to enhance communication and control so that individuals with

the most severe impairments have a means to participate in daily life for health,

employment, social interaction, and community involvement. Critical to any dis-

cussion of BCI for communication is the concept of user-centered design. Based

on the needs and preferences of the target population who will use this technology

for verbal engagement, we must evaluate functionality, satisfaction, and expected

outcomes of the users. We must consider the homes and environments where BCI

will be implemented and the involvement required of the care providers and family

members who will be operating the systems. The time for set up, the demands for

technical assistance, and the ease of problem solving for this new technology must

be considered with the users. These factors will ultimately be the true measures of

success [16]. We must caution, however, that BCI is not a practical, dependable ap-

plication for AT at this time. The sophisticated operations of the technology and the

challenges of the target population are huge; obstacles to functional use have not yet

been solved for independent implementation in users’ homes. Expert end-users have

told us that our challenge is to design a BCI that is safe, reliable, and that restores

function at near normal levels [17]. Despite the benefits that AAC technologies offer



Chapter 2. Brain Computer Interfaces 6

people with impairments, the potential of independent communication has not been

fully realized for a group of individuals who present with such severe physical im-

pairments that they cannot reliably or consistently control devices through available

access methods. BCI is the hopeful, though not yet practical, solution for them.

2.2 Electroencephalography

EEG measures the potential differences between various points on the scalp. It is

utilized to measure the neural activity corresponding to the electrical activity of

neurons with similar spatial orientation. Since the electrical field generated by these

neurons is extremely small, the activity below the cerebral cortex (outermost level)

reflects very poorly to EEG. Moreover, scalp acts as a low pass filter, correspondingly

blocking most high frequency content.

EEG components corresponding to a neural activity generally have an amplitude

of a couple of µV. However, general EEG activity may have a significantly higher

magnitude due to artifacts, overall background noise and environmental interference.

Some of the disadvantages of EEG can be listed as low spatial resolution, low signal-

to-noise ratio (SNR), setup time consumption. On the other hand, the advantages

make it very attractive for BCI research, e.g. high temporal resolution, safety, cost-

effectiveness and portability.

2.3 Input Modalities

EEG-based BCIs have become increasingly popular due to their portability, cost-

effectiveness, high temporal resolution, and demonstrated reliability. In the following

sections, we will categorize noninvasive BCI systems for expressive communication

based on the stimulus presentation paradigms. A number of physiological signals
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have been used in noninvasive BCI to detect user intent. Most popularly, BCI

systems have exploited:

Auditory and visual event related potentials (A-ERP/V-ERP): As a re-

sponse to infrequent novel/target stimuli, the brain generates a P300 response, a

positive deflection in centro-parietal scalp voltage with a typical latency just over

300ms [18] and other accompanying waves. This natural novelty detection or tar-

get matching response of the brain allows designers to detect user intent from EEG

signals, using either auditory or visual stimuli to elicit this response.

Volitional cortical potentials (VCP): Volitional synchronization and desyn-

chronization of cortical electrical activity have been utilized in numerous BCI sys-

tems that control external devices, including, cursors, avatars, and robotic agents to

perform simple activities of daily living, as well as to control typing interfaces for

communication.

Steady-state evoked potentials (SSEP): Fluctuating auditory or flickering vi-

sual stimuli (following periodic or other structured patterns) will elicit steady state

auditory/visual evoked potentials (SSAEP/SSVEP) in the auditory and visual cortex

areas, respectively. Focusing auditory or visual attention on one of several such stim-

uli causes temporally matching electrical oscillations in the cortex. Time-frequency

features can be analyzed to identify with high accuracy which stimulus the attention

is placed on.

2.3.1 Event Related Potentials

In their pioneering work, Farwell and Donchin illustrate the feasibility of P300 as a

control signal for BCI-based communication [19]. In this study, the subjects view

a 6x6 matrix (matrix speller) consisting of letters in the English alphabet, numbers



Chapter 2. Brain Computer Interfaces 8

from 1 to 9 and a space symbol. Since the publication of this work, extensive research

has focused on various configurations or algorithms designed to improve the speed

and the accuracy of communication with the matrix speller, as well as other audio,

visual, and tactile stimulus presentation techniques for eliciting P300 responses. In

the following subsections, we will first review these stimulus presentation techniques

and then the signal processing and inference techniques used.

2.3.1.1 Visuospatial Presentation Techniques

Existing visuospatial presentation techniques can be categorized under the following

heading.

Matrix Presentation: The Matrix Speller generally uses an RxC matrix of

symbols with R rows and C columns (Fig. 2.1) depicts a 6x6 symbol matrix with

the second column highlighted with the intention of inducing an ERP if the target

letter is in this column). To generate an oddball paradigm, traditionally each row

and column (and in modern versions each one of alternatively designed subsets of

symbols) is intensified in a pseudorandom fashion, while the participants count the

number of highlighted rows or columns (or, in general, subsets) that include the

desired symbol. Usually a sequence is defined as the intensification of all the rows

and columns in the matrix. The highlighting of the row and column containing the

target symbol are rare events, and will induce a P300 response. The objective of

the BCI system is to detect these deviations to identify the target letter to enable

typing.

EEG signals suffer from low signal-to-noise ratio; therefore, to achieve a desired

accuracy level, matrix speller systems require multiple presentation sequences before

a decision can be made. For example, using bootstrapping and averaging the trials

in different sequences, it was demonstrated that the matrix speller can achieve 7.8

characters/minute with 80% communication accuracy [20]. This speed and accuracy
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Figure 2.1: Sample presentation screen for matrix speller.

may not satisfactorily meet the needs of the target population. Therefore, various

signal processing and machine learning techniques have been proposed to develop

ERP-based matrix speller systems with higher speed and accuracy [21–43]. The

matrix speller was shown to be highly accurate in overt attention mode, but in

covert attention mode its performance degrades significantly [8, 44]. To overcome

such performance drops, BCI researchers have proposed gaze-independent stimulus

presentation techniques such as rapid serial visual presentation and balanced-tree

visual presentation.

Rapid Serial Visual Presentation (RSVP): RSVP is a technique in which

stimuli are presented one at a time at a fixed location on the screen (as depicted

in 2.2), at a rapid rate and in pseudorandom order. When the target is presented

(a rare event since there is one target symbol in the entire alphabet) and observed

by the user, ERP containing the P300 wave is generated in EEG as a consequence
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of the target matching process that takes place in the brain. Consequently, BCI

systems can be designed to detect these responses for typing. By utilizing temporal

separation of symbols in the alphabet instead of spatial separation as in the matrix

speller, RSVP aims to be less dependent on gaze control [45–48]. RSVP-based BCIs

Figure 2.2: Sample presentation screen for RSVP KeyboardTM .

that use only EEG evidence may be slower than matrix spellers, as the binary tree

that leads to symbol selections in a matrix speller could exploit the opportunity

to highlight multiple symbols at a time to reduce expected bits to select a symbol

(determined by entropy), while RSVP must follow a right-sided binary tree, which

is highly structured and could lead to larger expected bits per symbol. RSVP-based

typing has been demonstrated to achieve up to 5 characters/minute by Berlin BCI

and RSVP KeyboardTM groups [45–48]. Color cues and language models have been

used in an attempt to improve typing speeds with RSVP [46, 48]. On the positive

side, RSVP is potentially feasible even for completely locked-in users, who may have

difficulty with gaze control. RSVP BCIs, such as the RSVP KeyboardTM [48] and

Center Speller [49] have similar signal processing and machine learning demands as

matrix presentation based BCIs.
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Balanced-Tree Visual Presentation Paradigms: Balanced-tree visual pre-

sentation refers to a technique in which visual stimuli are distributed into multiple

presentation groups with equal numbers of elements. A variation would have been

distributing elements into groups balanced in probability according to a Huffman

tree based on a language model [50], but we have not encountered this approach

in the BCI literature. In Berlin BCI’s Hex-o-Spell, a set of symbols is distributed

among multiple presentation groups; for example, 30 symbols may be distributed

among 6 circles each containing 5 symbols, as shown in Fig. 2.3. Every presentation

group is highlighted in a random fashion to induce an ERP for the selection of the

group that contains the desired symbol. After the initial selection, the symbols in

the selected presentation group are distributed individually to different presentation

groups, typically with one empty group which represents a command to move back

to the first presentation stage. At this point, the individual symbols are highlighted

to elicit an ERP for selection of the desired symbol within the selected group [49, 51].

In Geospell, 12 groups of 6 symbols are arranged in a circular fashion similar to Hex-

o-Spell presentation [52, 53] ; and in another study these 12 groups are presented

to a user in RSVP manner in a random order to be employed in an ERP-based

BCI speller [54]. In these systems, the 12 groups represent all the possible rows and

columns of the 6x6 matrix speller such that the intersection of the selected row and

column gives the desired symbol.
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Figure 2.3: Sample presentation screen for Hex-o-Spell.

Other Visual Presentation Paradigms: The visual presentation paradigms

explained above do not exhaustively cover all the possible presentation techniques
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that could be (and have been) used in an ERP-based BCI system for communication.

Various alternatives have been proposed and tested for limited communication. Here,

we categorize systems that vary in their vocabulary extent from a few icons all the

way down to binary (yes/no) communication as limited communication systems.

Examples include:

• Icon-based limited communication - for example (i) systems for appliance or

gadget control in which icons are flashing in sequences of random order one

at a time [55, 56], and (ii) a system for expressing basic needs and emotions

by answering yes/no questions [57]. RSVP iconMessenger is a variation of

RSVP KeyboardTM that uses limited-vocabulary icon representations (based

on Rupal Patel’s iconCHAT system).

• Cursor control - for example, a system in which four flashing stimuli map to

movements of the cursor to one of four directions (up, down, left, right) [58–

61]. Exogenous-icon (four arrows or four icons flashing on the sides of the

screen) and endogenous-letter (letters representing directions) paradigms were

tested on users with ALS, revealing that the endogenous paradigm provides

better performance for a gaze-independent BCI [60]. Qualitatively, results were

similar when the signal processing approach was improved [59].

• Web browser - for example, (i) the Virtual Keyboard (RoBIK) project, which

employs a matrix-speller paradigm to provide the user with different tags which

are mapped to elements of the web browser [62]; and (ii) a system that employs

a matrix speller paradigm to allow complete keyboard and mouse control to

navigate through web browser options [57].
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2.3.1.2 Auditory Presentation Techniques

A-ERP signals have recently drawn attention for BCI design as an alternative or

supplement to visual presentation methods due to their applicability in the popu-

lation of users with impaired vision. Most A-ERP based BCIs employ a sequential

stimulus arrangement. In these arrangements, there exists a single stream of stim-

uli, and users are expected to attend to the targets in the stream. Examples of

stimulation methods include various combinations of tones for target and nontarget

stimuli [63–65], utilization of cues with different pitch [66, 67], utilization of differ-

ent sounds (bell, bass, ring, thud, chord, buzz) [68] and pronunciation of the stimuli

[69]. These techniques induce ERPs when the target stimulus is perceived. Some

groups also add directionality to the cues to improve discriminability or to utilize it

as an additional stimulation method [66, 67]. In most A-ERP based BCIs, auditory

presentation is utilized as a potential supplement for visual presentation and audio-

visual presentations are done jointly. Accompanying the visual cue with an auditory

one resulted in increased P300 amplitude and detection accuracy compared to only

visual correspondence. Systems relying only on auditory stimulation performed sig-

nificantly worse than visual BCIs. Although they are currently less accurate than

visual BCIs, auditory BCIs are an important alternative for people who are unable

to use visual BCIs.

2.3.1.3 Tactile Presentation Techniques

For users who cannot control their eye gaze or who have visual and/or hearing

impairments, a tactile presentation technique could be used as an alternative to

visuospatial and auditory presentation methods in BCI speller design [70]. One

tactile speller interface assigns a set of symbols to each of six fingers, with six symbols

in each set [71]. Symbols are selected in a two-stage process, as in the balanced tree

presentation techniques described above. The user first selects a symbol set by

focusing on a specific finger. The six letters in the selected set are then assigned to
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the six fingers, and the user again focuses on a specific finger to select the desired

symbol. A BCI system that employs this tactile presentation technique was shown

to demonstrate a typing accuracy performance similar to matrix and Hex-o-Spell

presentation techniques.

2.3.2 Volitional Cortical Potentials

Starting with motor imagery induced synchronization and desynchronization of cor-

tical potentials, BCI designs quickly started exploiting the ability of the brain to

learn new skills, including the volitional control of time-frequency characteristics of

cortical potentials. Consequently, among all designs, BCIs based on these synchro-

nization and desynchronization effects of volitional user brain activity can benefit

most from user training. In fact, it has been observed that subjects may achieve

some level of proficiency in highly variable durations, from a few hours of practice

to tens of hours or more [72]. It has also been noted that individual characteristics

may be influential factors in the ability to generate mu rhythms (see below) [73]. By

training and reinforcement, users can improve their skills and accordingly system

performance. The following VCP have been exploited to design BCI systems for

communication:

• Slow cortical potentials (SCP) are gradual changes in EEG voltage. These

fluctuations can last from hundreds of milliseconds to several seconds. Con-

tingent negative variation (CNV), readiness potential, and movement-related

potentials (MRP), are instances of SCRs, and some include P300 and N400 in

this category as well.

• Mu rhythms (also known as comb, wicket, or sensorimotor rhythms), are 8-

13 Hz synchronized patterns found primarily over the motor cortex in brain

regions that control voluntary movements. The mu pattern is suppressed when

a motor action is performed or even thought about. This phenomenon is an
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example of event related desynchronization (ERD). Alpha rhythm, a signal

with similar frequency range, but observed primarily over the visual areas of

the brain while eyes are closed and the brain is at rest, is not to be confused

with mu rhythm in BCI design.

• Beta rhythms, occurring in the frequency range 12-30 Hz, are typically consid-

ered in three subbands: low beta (12-16 Hz), beta (16-20 Hz), and high beta

(20-30 Hz). These waves are suppressed over the motor cortex when there is

a muscle contraction prior to and during movement. Beta energy is increased

when movement has to be resisted or voluntarily suppressed.

VCP based BCIs typically require long user training sessions [74–78]. The Thought

Translation Device (TTD) [86] is an example of this type of system. TTD utilizes

SCP, which are known to be producible in every subject, unlike EEG rhythmic com-

ponents. Although improvements in classification algorithms [74] and determination

of mental strategies for more effective control of VCP [77, 78] have enhanced per-

formance, long training sessions are still necessary. Some researchers, including the

Berlin BCI group, have shifted the burden of adaptation more towards the machine

learning algorithm to compensate for extensive user training requirements [79–82].

2.3.3 Steady State Evoked Potentials

SSEP-based interfaces include those that use auditory and visual stimulation in-

tended to evoke responses by flickering lights or fluctuating auditory stimuli (such

as click trains, tone pulses, or amplitude-modulated sounds). Several SSVEP-based

typing interfaces have been developed, beginning with Sutter [83, 84], who uses phase

shifted m-sequences to flicker each symbol on a matrix keyboard layout. Spuler et al

[42] investigate a similar design using phase shifted 63-length m-sequences as stimuli

to enable typing on a 32-symbol matrix keyboard. Hwang et al [85] have a 30-

symbol matrix keyboard layout where each symbol has a dedicated flickering LED
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with a unique frequency (between 5-10Hz, separated by frequency gaps on the order

of 0.1Hz). Cheng et al [86] utilize a phone key layout for digits and introduce a few

additional buttons, all flickering at different frequencies. Yin et al [87] use simul-

taneously flashing (to elicit ERPs) and different flickering frequencies for a matrix

layout keyboard with 36 symbols. Cecotti [88] uses a hierarchical balanced tree ap-

proach and breaks the alphabet of 29 symbols into a 3-level tree with three branches

at each (non-leaf) node. With this, they have 3 boxes that contain symbols and two

additional stimuli that represent delete and repeat commands, leading to five flick-

ering frequencies. On the other hand, Bremen BCI uses a 1-gram letter probability

based keyboard layout. The user navigates a cursor on it by attending visually to

one of four flickering arrows and selects the intended letter when ready using a fifth

flickering stimulus in the corner [89–94]. In systems using SSAEP, which have been

investigated only in recent years, dichotic fluctuating auditory stimuli are presented

using speakers or earphones. Specifically, in the streaming stimulus arrangement,

the stimuli are presented at the same time as multiple streams and distinguished by

detecting the stream the user is attending to [95]. To improve the effectiveness of

dichotic presentation, an amplitude modulation on the stream can be induced [74].

Hohne et al [67] combine streaming and sequential stimulus arrangements by con-

sidering sequential pitch-based cues applied to left, right or both ears and utilizing

a combination of SSAEP and A-ERP evidence to determine user intent.



Chapter 3

EEG Signal Processing

Signal processing is a required component of any BCI system, including RSVP

KeyboardTM . Therefore, we will give a brief literature review of the existing EEG

signal processing methodology and a detailed explanation of the procedures applied

in RSVP KeyboardTM for the purpose of completeness. However we do not make

any claim on the comparison of these techniques with other ones as the main focus of

this dissertation is not EEG feature extraction. The main purpose of this disserta-

tion is not to find the best feature extraction methodology, but to demonstrate the

effectiveness of the overall design choices including tight probabilistic fusion with

context information. The entire raw-EEG-to-feature pipeline could be improved,

and this is the subject of future research and development. Most of the proposed

context information fusion and temporal dependency modeling ideas can be utilized

with other preprocessing and classification algorithms.

In the remainder of the dissertation, we use the following definitions.

• Trial: A single stimulus.

• Sequence: A list of trials that are shown consecutively. At the end of each

sequence, a decision might be attempted to be made.

17
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• Epoch: A list of sequences, which the subject only have a single intended

symbol common to all of the sequences in the epoch. An epoch ends when a

decision is made.

3.1 Literature Survey

The signal processing and inference techniques used for BCI-based communication

systems can be used with little or no modification for other applications of BCI.

However, the particular application also presents some customization opportunities

to be exploited by designers of BCI-based communication systems.

3.1.1 Preprocessing and Dimensionality Reduction

EEG signals acquired as a response to presented stimuli are not only noisy, with

very low signal-to-noise ratio, but also have nonstationarities due to various factors

such as physiological or environmental artifacts, sensor failure, and subject fatigue.

To design an effective inference method for BCI, it is essential that the most salient

EEG signal features are extracted as evidence. Preprocessing and dimension reduc-

tion are steps aimed at such feature extraction. In ERP-based BCIs the P300, in

VCP mu rhythms, and in SSVEP occipital rhythms are of primary interest and sta-

tistical preprocessing spatiotemporal filters with priors that favor these components

can be designed. In all designs, the removal of DC drift (the baseline fluctuations

due to frequencies ≪ 1Hz) and possibly artifact-related high frequency components

in EEG are partially achieved with a properly designed bandpass filter. This initial

bandpass filtering is a common step in all BCI systems. It is recommended that

linear-phase FIR (finite impulse response) filters be used to prevent phase-response-

induced distortions to waves and rhythms, as well as to make accounting for group

delay easy for downstream operations in the signal processing and inference pipeline.
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In particular, for visually evoked potentials the group delay of the bandpass filter

must be considered when aligning (unfiltered) event markers to filtered EEG. This

also means that for real-time operation the bandpass filter group delay should be

kept as small as possible (considering the tradeoff between having a high quality

magnitude response for desired and undesired frequencies and the delay introduced

to the inference process and the close-loop control dynamics; the latter consideration

is relevant in robotic agent control applications). After the initial bandpass filter-

ing, time-windowed data from different EEG channels are usually concatenated to

obtain the EEG feature vector. Based on the sampling frequency and the number

of channels used, this vector could have a high dimensionality. Several methods are

employed, before or after concatenation as suitable, for feature dimension reduction

and further noise and artifact reduction: grand average over all trials [20, 25, 57, 96],

downsampling [20, 21, 35, 36, 49, 51, 55, 71, 97], discrete/continuous wavelet trans-

form [20, 22, 24], feature selection by stepwise linear discriminant analysis [30],

decimation by moving average filtering [25, 26, 30, 31, 33, 38, 43], channel selection

[23, 26, 30, 35, 36], artifact removal through independent component analysis (ICA)

[39, 58–61, 69, 98], enhancing P300 response by adaptive spatial filtering including

common spatial pattern (CSP) and xDAWN algorithm [23, 24, 37, 40, 85, 99], and

dimensionality reduction through principal component analysis (PCA) [43, 47]. For

SSVEP-based designs two main inference techniques emerge: if flickering stimuli are

discriminated by frequency, then the sum of powers at the first two or three harmon-

ics of candidate frequencies are obtained from a power spectrum estimate [85–88];

if the flickering stimuli are discriminated by pseudorandom code phase shifts (or

with different codes), canonical correlation analysis (acting like a matched filter) is

employed [42, 91].
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3.1.2 Classification

The purpose of the classifier in ERP-based systems is to detect the existence of ERP

(especially P300) in the EEG response following each stimulus (e.g., intensification

of rows/columns/subsets in the matrix speller, presentation of letters/symbols in

the RSVP paradigm, or finger tapping events in a tactile stimulation paradigm).

In SSVEP/SSAEP-based systems the classifier uses temporal or frequency domain

features to detect which stimulus the user is attending to (e.g., flickering arrows or

textures on the screen for SSVEP/codeVEP or tones/clips in SSAEP paradigms).

In VCP, the classifier attempts to identify which imagery-induced brain rhythm is

prominent in EEG, especially over motor cortical areas for motor imagery paradigms,

using spatiotemporal filtering and feature extraction. The most commonly used

classification approaches include (1) linear discriminant analysis (LDA) based clas-

sifiers (e.g. Fisher LDA (FLDA), Stepwise LDA (SWLDA), and Bayesian LDA)

[20–23, 30, 31, 33, 37, 38, 41, 42, 49, 51, 52, 54, 55, 57, 64–66, 68, 78, 87, 97, 100],

and (2) support vector machine (SVM) [24–27, 30, 32, 35, 36, 43, 58–60, 69]. Other

, classifiers for BCI system include genetic algorithms [59], logistic linear regression

[71, 74], neural networks [61, 101, 102], matched filters [39], Pearson’s correlation

method [30], and regularized discriminant analysis (RDA) and its special cases [45–

48, 67, 103]. In addition, unsupervised and semisupervised methods including those

that assume hierarchical Gaussian distribution models for EEG [28, 29], that are

based on co-training of FLDA and BLDA [104], and that are based on offline learn-

ing of the ERP classifier from EEG using data from a pool of subjects followed by

online adaptation for different individuals [34] have also been employed. Semisuper-

vised classifier adaptation promises to reduce calibration data collection duration

and possibly adaptability against nonstationarities in EEG during test phase. A

BCI system’s performance depends not only on the choice of classifier, but also on

preprocessing methods, selected features, the users who participate in the study, and

a multitude of other factors [105]. Therefore, a comparison among different studies

to choose the “best” classifier for a BCI speller system is not feasible. However,



Chapter 3. EEG Signal Processing 21

within individual studies, comparisons among classifiers have been attempted. For

example, using offline EEG data, it was demonstrated that SWLDA and FLDA

provided better overall classification performance compared to Pearson’s correlation

method, linear SVM, and Gaussian Kernel SVM [30], a matched filter based classifier

outperformed a maximum likelihood based classifier [39], and BLDA outperformed

LDA, SWLDA and neural networks [106].

3.2 Processing in RSVP KeyboardTM

3.2.1 Preprocessing

EEG evidence needs to be extracted from the aforementioned P300-based novelty

detection or target recognition ERP in order to allow the detection of user intent

from EEG signals. This process starts with extracting stimulus-time-locked bandpass

(BP) filtered EEG signals for each stimulus in the sequence. Since, physiologically,

the most relevant non-motor signal components are expected to occur within the

first 500ms following the stimuli, the [0,500)ms portion of the EEG following each

stimulus is extracted. If the subject engages in intentional or unintentional motor

activity following target stimuli, this also allows omitting most of the related motor

cortex activity from the target-response feature extraction. For locked-in users with

motor capabilities, this restriction could be relaxed to allow the system to benefit

from any such motor responses for successful operation (at the cost of not truly being

a brain interface anymore).

To extract well separated features, we use the following methodology: (1) Time-

windowed EEG signals in each channel are filtered by [1.5,42]Hz bandpass filter

(FIR, linear phase, length 153, 0 DC-gain) to remove low frequency signal drifts

and noise at higher frequencies for each channel. Lower high-cutoff frequencies may

be used. (2) For each channel individually, signals corresponding to the [0,500)ms
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post-stimulus interval (after taking into account the group delay of the BP filter) are

vectorized and projected to a slightly lower dimensional space by linear dimension

reduction. In the existing system, this is achieved by principal component analysis

(PCA) to remove directions with negligible variance (as determined by calibration

EEG data). The principal directions with variance lower than 10−5 times that of

the first principal direction are removed. (3) Projected vectors corresponding to

each channel are concatenated to create a single aggregated feature vector. This

process amounts to a channel-specific energy preserving orthogonal projection of

raw temporal features through eigenfiltering and downsampling. (4) Using RDA

[107], a quadratic projection of this aggregate feature vector to R is achieved. This

reduces the dimensionality of EEG evidence for each trial to one in the current

implementation. Without a doubt, one can employ one of the numerous other feature

extraction methodologies, which might perform better or worse.

3.2.2 Regularized Discriminant Analysis

RDA is a modified quadratic discriminant analysis (QDA) model. If the feature vec-

tor corresponding to each class is assumed to have multivariate normal distribution,

the optimal Bayes classifier resides in the QDA family. This is due to the fact that

the logarithm of the ratio of two multivariate normal density functions is a quadratic

function. Consequently, under the Gaussianity assumption, QDA-projection in step

(4) above yields the best one dimensional feature in the minimum expected risk

sense. It only depends on the class means, covariance matrices, class priors, and a

relative-risk based threshold/weighting (threshold if only EEG evidence is used to

classify). All of these are to be estimated from the training data, in this case, from a

calibration session, except for the risk-dependent threshold. The calibration session

is supervised data collection to learn the signal statistics. When there exist a small

number of samples for high dimensional problems, singularities in the estimation of
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these covariance matrices become problematic. This is generally the case for ERP-

classification, since the duration of the calibration session is limited. Henceforth,

the maximum likelihood estimate of the covariance matrices will not be invertible,

which is needed for the corresponding QDA solution.

RDA is proposed as a remedy to this obstacle. It modifies the covariance estimates

to eliminate the singularities by applying shrinkage and regularization on them. The

shrinkage procedure makes the class covariance matrices closer to the overall data

covariance, and therefore to each other. Thus, it makes the discriminant closer to

being a linear function of the feature vectors instead of a quadratic one. Let yv ∈ R
p

be the set of feature vectors used to learn the discrimination function of RDA from,

where p is the number of features to administer RDA on and v ∈ {1, 2, · · · , N} is

the index of the samples. Correspondingly, the maximum likelihood estimates of the

means and covariances are given by

µk =
1

N

∑

c(v)=k

yv,

and

Σ̂k =
Sk

Nk
=

1

Nk

∑

c(v)=k

(yv − µk)(yv − µk)
T ,

where c(v) ∈ {0, 1} is the class label of sample v, k ∈ {0, 1} represents the class

label and Nk is the number of samples belonging to class k, i.e. |{v : c(v) = k}|.

The shrinkage procedure is administered as, ∀k ∈ {0, 1}

Σ̂k(λ) =
Sk(λ)

Nk(λ)
, (3.1)

where

Sk(λ) = (1− λ)Sk + λS,

and

Nk(λ) = (1− λ)Nk + λN,
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with

N =
∑

k∈{0,1}

Nk, S =
∑

k∈{0,1}

Sk.

The shrinkage parameter, λ ∈ [0, 1], determines how much the individual covariance

matrices are to be shrinked towards the pooled estimate. Further regularization is

applied as,

Σ̂k(λ, γ) = (1− γ)Σ̂k(λ) +
γ

p
tr[Σ̂k(λ)]I,

where Σ̂k(λ) is given by (3.1), tr[·] is the trace operator and I is the p × p identity

matrix. For a given λ, the regularization parameter, γ ∈ [0, 1] controls the shrinkage

towards the circular covariance.

RDA provides a broad family of regularization options. The four special cases of λ

and γ represent various well-known classifiers:

• λ = 0, γ = 0 : quadratic discriminant analysis

• λ = 1, γ = 0 : linear discriminant analysis

• λ = 0, γ = 1 : weighted nearest-means classifier

• λ = 1, γ = 1 : nearest-means classifier

For γ = 0, varying λ corresponds to the models between QDA and LDA.

To illustrate how much these operations are effective on decreasing the singularities,

we can investigate the ranks of the covariance matrices before and after. Before

shrinkage rank[Σ̂k] ≤ Nk, after shrinkage,

rank[Σ̂k(λ)] ≤











Nk, if λ = 0

N, otherwise

.
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With the further application of regularization ranks of the covariance estimates be-

come,

rank[Σ̂k(λ, γ)]



























≤ Nk, if λ = 0, γ = 0

≤ N, if λ > 0, γ = 0

= p, otherwise

.

Since Nk ≪ p and N < p most of the cases, shrinkage and regularization steps are

both expected to be helpful to reduce the singularities.

After carrying out classifier shrinkage and regularization on the estimated covariance

matrices, the Bayes classifier [108] is defined by the comparison of log-posterior-ratio

with a risk-dependent threshold. The corresponding discriminant score function is

given by,

δRDA(y) = log
fN (y; µ̂1, Σ̂1(λ, γ))π̂1

fN (y; µ̂0, Σ̂0(λ, γ))π̂0

,

where µk, π̂k are estimates of class means and priors respectively; fN (y;µ,Σ) is the

pdf of a multivariate normal distribution and y is the feature vector to apply RDA

on. In this work, we will consider the discriminant score function as a nonlinear

projection from y to x, i.e. x = δRDA(y). Subsequently, x = δRDA(y) will be the

one dimensional EEG feature for the fusion with language models as explained in

Chapter 6.

3.2.3 Kernel Density Estimation

KDE is a nonparametric method to estimate the probability density function (pdf)

of a random variable. It aims to obtain a smooth pdf using an i.i.d. sample set.

KDE is applied as following,

f̂(x = x) =
1

Nh

N
∑

n=1

Kh(x− xi), (3.2)
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where {x1, x2, · · · , xN} are the samples to be used in the estimation, h is the band-

width parameter and Kh(.) is the kernel function with bandwidth h. Selection of a

very small h would result with an undersmooth and jittery estimate of the pdf, on

the other hand a large h would result with an oversmooth one. For Gaussian kernel,

the bandwidth h is estimated using Silverman’s rule of thumb [109] for each class.

This assumes the underlying density has the same curvature as its variance-matching

normal distribution. For estimating the class conditional probabilities, trivially it

can be used as

f̂(x = x|c = k) =
1

Nk

∑

c(v)=k

Khk
(x− x(v)), (3.3)

where x(v) is the discriminant score corresponding to a sample v in the training data,

that is to be calculated during cross validation, andKhk
(.) is the kernel function with

bandwidth hk.



Chapter 4

Performance Evaluation Methods

4.1 Information Transfer Rate

Information transfer rate (ITR) is currently the most popular metric in the BCI

literature for assessing the performance [110]. The formula that has been heavily

utilized in BCI field has the following form,

B = log2 |S|+ p log2 p+ (1− p) log2[(1− p)/(|S| − 1)], (4.1)

where B represents ITR (bits/symbol), p is the probability of accurately deciding

the intended symbol, and |S| is the size of the symbol alphabet [9, 111, 112]. In

bits/min, it is usually employed as

Bt =
60B

Te
, (4.2)

where Te is the duration of one epoch, i.e. duration which user tries to select a

symbol. Equivalently Te = NsTs, where Ns is the number of sequences and Ts is

the duration of a sequence. For the calculation of ITR under adaptive number of

sequences, we will consider Ns as the average number of sequences per epoch.

27
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ITR has been inspired by Shannon’s channel coding theorem [113, 114].

Channel Coding Theorem: For a discrete memoryless channel, all rates below ca-

pacity C are achievable.

ITR measure considers the system between intent generation and decision making

as the channel of concern and tries to estimate the capacity, i.e. the upper bound on

the communication rate. Correspondingly, it does not represent the capacity that is

achievable using BCIs, instead it estimates an upper bound of the rate for a certain

decoder. Consecutively, by designing a different decoder, capacity might be changed.

For estimation purposes, the following assumptions are made,

• Channel is discrete and memoryless.

• Each symbol of the alphabet are equilikely to be the intended symbol.

• The channel is m-ary symmetric and the transition matrix of the channel has

the following form

p(y|x) =











p, x = y

(1− p)/(|S| − 1), x 6= y.

Unfortunately, these assumptions become significantly questionable for some BCIs.

If the context information has been utilized in a BCI, the assumption of the channel

being memoryless fails. Additionally, in a typing process in a context, the intended

symbols are not equilikely. Moreover, the transition probabilities of an unintended

symbols usually are not equal; due to not only potential similarities of the letters,

but also the existence of a bias based on the context. Since these concerns are

applicable to RSVP KeyboardTM , ITR with such assumptions is not a fit measure

for measuring performance. It might potentially overestimate the performance of

RSVP KeyboardTM . However we still calculate ITR for the sake of compliance to

the field.
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Increasing popularity and usage of information theory also cause many people to

misinterpret the concept of channel capacity. Even though channel coding theorem

states that any rate below the channel capacity is achievable, it merely proves the

existence of a channel code that can decrease the error as much as we want. Without

applying proper channel coding, not all rates below capacity might be achievable.

For some BCIs it might not even be practically possible to apply channel coding

without relaxing the assumptions, e.g. channel being memoryless. For example,

in a BCI based on volitional cortical potentials expecting a user to imagine a code

of movements (e.g. left hand-right foot-right foot-right hand) just to send a single

message might not be feasible for the user.

4.2 Expected Symbol Duration

The typing duration can be directly related to the correct decision accuracy. If the

correct decision making probability, p, is constant and greater than 0.5, the expected

symbol selection duration becomes

TsNs

2p− 1
,

where Ts is the duration of a sequence, and Ns is the number of sequences. If p < 0.5,

with a nonzero probability the system will not be able to type the intended symbol,

since it will not be able to correct its mistakes. Therefore, p < 0.5 is considered

to be failure, as users might get stuck at a symbol. A similar relationship between

expected time and probability of detection is also independently obtained in [115].

An alternative derivation for the formula is given in the following.

Catalan numbers: Catalan numbers arise in various counting problems [116].

One of the problems that results with Catalan numbers is the nested parentheses

problem. The number of orderings of k left parentheses and k right parentheses
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so that it becomes a properly nested ordering, correspond to kth Catalan number.

Explicitly it is, Ck =
1

k+1

(

2k
k

)

. If we replace left parentheses with 0 and right paren-

theses with 1, the problem can equivalently be restated as the number of ways to

order k 0s and k 1s so that no initial segment contains more 1s than 0s.

Lemma 1: Let Bn ∈ {0, 1} be i.i.d. Bernoulli random variables with success

probability of p, i.e. P (Bn = 1) = p. Let b1b2 · · · bl be a successful serie if following

two conditions are satisfied,

(i) ∀r ∈ {1, 2, · · · , l − 1} b1b2 · · · br, contains at least as many 0s as 1s,

(ii) b1b2 · · · bl contains more 1s than 0s.

The probability of achieving a successful serie is

P (success) =











1, if p ≥ 0.5

1−2p
1−p

, if p < 0.5

.

Proof. Using binomial series expansion

(1 + y)v =
∞
∑

k=0

(

v

k

)

yk, (4.3)
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where
(

v
k

)

is the Binomial coefficient at y = −4z and v = −1
2
,

(1− 4z)1/2 =

∞
∑

k=0

(

1/2

k

)

(−4z)k =

∞
∑

k=0

∏k−1
r=0(

1
2
− r)

k!
(−4)kzk

= 1 +
∞
∑

k=1

−

∏k−1
r=1(2r − 1)

k!
2kzk

= 1 +

∞
∑

k=1

−
(2k − 2)!

2k−1(k − 1)!k!
2kzk

= 1− 2
∞
∑

k=1

1

k

(

2(k − 1)

k − 1

)

zk

= 1− 2z

∞
∑

k=0

1

k + 1

(

2k

k

)

zk.

This converges if |4z| ≤ 1. Rearranging the equation,

∞
∑

k=0

1

k + 1

(

2k

k

)

zk =
1− (1− 4z)1/2

2z
. (4.4)

Let sm be the number of 1s in b1b2 · · · bm. ∀m ∈ N, sm+1 ≤ sm + 1, with the

equality condition is satisfied only if bm+1 = 1. If b1b2 · · · bl is a successful serie,

sl ≥ ⌈(l+1)/2⌉ from condition (ii), and sl−1 ≤ ⌊(l− 1)/2⌋ from condition (i), where

⌊.⌋ and ⌈.⌉ represent the floor and ceil operators, respectively. Combining these three

inequalities, we obtain

⌈(l + 1)/2⌉ ≤ sl ≤ sl−1 + 1 ≤ ⌊(l − 1)/2⌋+ 1 = ⌊(l + 1)/2⌋ ≤ ⌈(l + 1)/2⌉.

Consequently, ≤ sl = sl−1 + 1, and ⌊(l + 1)/2⌋ = ⌈(l + 1)/2⌉. Hence bl = 1 and

l is odd, i.e. l = 2k + 1. Therefore P (Success using 2k trials) = 0. Furthermore

sl = ⌈(2k+1+1)/2⌉ = k+1. As a conclusion, a successful serie of length l = 2k+1

contains k zeros and k + 1 ones. Since each element of the serie is obtained via

independent Bernoulli trials, achieving a given successful serie of length 2k + 1 has

the probability of pk+1(1 − p)k. The probability of achieving success with 2k + 1
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trials is

P (Success using 2k + 1 trials) = pk+1(1− p)kCk, (4.5)

where Ck is the number of different successful series with length 2k + 1. In all

successful series, b2k+1 = 1, therefore Ck is the number of different ways k 0s and

k 1s where ∀r ∈ {1, 2, · · · , 2k}, b1b2 · · · br has no more 1s than 0s. Hence Ck is kth

Catalan number, Ck =
1

k+1

(

2k
k

)

. Correspondingly the probability of success becomes,

P (Success) =
∞
∑

l=1

P (Success using l trials)

=

∞
∑

k=0

P (Success using 2k + 1 trials)

=
∞
∑

k=0

pk+1(1− p)k
1

k + 1

(

2k

k

)

Using (4.4) for z = p(1− p),

P (Success) = p
1− (1− 4p(1− p))1/2

2p(1− p)

=
1− (1− 4p+ 4p2))1/2

2(1− p)

=
1− |2p− 1|

2(1− p)

=











1, if p ≥ 0.5

p
1−p

, otherwise

.

Corollary. If p < 0.5, with 1−2p
1−p

probability there will never be a success.
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Lemma 2: If p ≥ 0.5, the expected length of the series with success is 1/(2p− 1),

i.e.,

E[L] =
1

2p− 1
,

where L is a rv representing the length of the successful series.

Proof. Similar to Lemma 1, using Binomial series for (4.3) for y = −4z and v =

−1/2,

(1− 4z)−1/2 =
∞
∑

k=0

(

−1/2

k

)

(−4z)k =
∞
∑

k=0

∏k−1
r=0(−

1
2
− r)

k!
(−4)kzk

=

∞
∑

k=0

∏k−1
r=0(2r + 1)

k!
2kzk

=
∞
∑

k=0

(

2k

k

)

zk

For z = p(1− p),

∞
∑

k=0

(

2k

k

)

pk(1− p)k = (1− 4p(1− p))−1/2 =
1

2p− 1
(4.6)
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Since from Lemma 1, all of the probability mass is contained by successful series for

p > 0.5, using (4.5) we obtain,

E[L] =

∞
∑

l=0

lP (Success with l trials)

=
∞
∑

k=0

(2k + 1)P (Success with 2k + 1 trials)

=

∞
∑

k=0

(2k + 1)pk+1(1− p)kCk

=
∞
∑

k=0

(2k + 1)pk+1(1− p)k
1

k + 1

(

2k

k

)

=

∞
∑

k=0

pk+1(1− p)k
1

2

(

2(k + 1)

k + 1

)

=
1

2(1− p)

(

−1 +
∞
∑

k=0

pk(1− p)k
(

2k

k

)

)

Using 4.6,

E[L] =
1

2(1− p)

(

−1 +
1

2p− 1

)

=
1

2(1− p)
·
2(1− p)

2p− 1
=

1

2p− 1

4.2.1 BCI perspective

Assume that the correctness of a decision at the end of each epoch be i.i.d. Bernoulli

random variables with success probability of p and the duration of the epoch, the

duration a decision is made, to be T .

To be able to type a symbol accurately, we have the following tree.
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Target symbol: s

B1 = 1

(done)

B1 = 0

(target: undo 1)

B2 = 1

(target: s)

B3 = 1

(done)

B3 = 0

(target: undo 1)
...

B2 = 0

(target: undo 2)

B3 = 1

(target: undo 1)
...

B3 = 0

(target: undo 3)
...

Whenever the number of correct selections is more than the number of incorrect

selections, the target symbol is typed correctly. The correct typing of a symbol is

equivalent to having a successful serie as defined in Lemma 1. As an example, the

successful conditions using 7 epochs are,

0101011

0100111

0011011

0010111

0001111.

Let the duration of an epoch is T . If we assume that the success of the decisions

are independent and identically distributed, than the problem becomes equivalent to

Lemma 2. Correspondingly we can calculate the expected symbol typing duration.

If p > 0.5, expected duration of typing a symbol becomes T
2p−1

by Lemma 2. If
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p < 0.5, the system would not be able to operate, since the there is a nonnegative

probability of failure.



Chapter 5

Language Modeling

Language modeling is very important for many text processing applications, such as

speech recognition, machine translation, as well as for the kind of typing application

being investigated here [117]. In the BCI field, there exist recent attempts to use

word prediction to speed up the typing process [38]. Typically, these approaches

do not directly influence the decision making for an individual epoch, but instead

give options for word completion. On the other hand, if the language models are

incorporated into the decision making process, it might be possible to increase the

speed and accuracy of the selection and our previous off-line analyses support this

expectation. To utilize this idea, the prefix string (what has already been typed)

is used to predict the next symbol(s) to be typed, using an appropriate language

model. Consequently, the next letters to be typed become highly predictable in

certain contexts, particularly letters internal to a word (after the first letter). In ap-

plications where text generation/typing speed is very slow, the impact of language

modeling can become much more significant. BCI-spellers, including the RSVP Key-

board paradigm presented here, can be extremely low-speed letter-by-letter writing

systems, and thus can greatly benefit from the incorporation of probabilistic letter

predictions from an accurate language model during the writing process.

37
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Recently other researchers in BCI literature have also utilized language models, by

incorporating word prediction [38, 118, 119] or Bayesian fusion methods with n-gram

models [41, 120, 121], similarly to this dissertation.

5.1 n-gram Models

The language model used in this dissertation is based on the n-gram sequence mod-

eling paradigm, widely used in all of the application areas mentioned above. An

L-gram model estimates the conditional probability of every letter in the alphabet

given L− 1 preceding letters using a Markov model of order L− 1. In this context,

let st : Ω→ S be the random variable corresponding to the correct symbol for epoch

t, i.e. during tth symbol selection, where S is the set of possible symbols. Since there

might be an operation of deletion, the total number epochs might be larger than

the number of characters written. Hence, we can define the number of characters

written as a function of epoch index; in other words let it be the number of charac-

ters already typed until epoch t. With this notation, we have it < t. Additionally,

the corresponding random sequence of the last L − 1 characters written prior to

epoch t are represented as wj : Ω → A where j ∈ {it − L + 2, · · · , it − 1, it} and

A ⊂ S is the alphabet (the set containing all symbols that can be selected, including

backspace, letters, punctuation, digits, etc., in a general typing system). For rep-

resentation simplicity, let wt = [wit ,wit−1, · · · ,wit−L+2] correspond to the random

string of last L − 1 characters during the selection of the target of tth epoch and

w = [w1, w2, · · · , wL−1] corresponds to a character string of length L−1. In L-gram

models, the symbol prediction is made using the latest string of length L as

P (st = s|context) ≈ P (st = s|wt = w) =
P (st = s,wt = w)

P (wt = w)
, (5.1)

from Bayes’ Theorem. In this equation, the joint probability mass functions are

estimated using a large text corpus.
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If the language model order is 1, the prediction probability is equal to the context-

free letter occurrence probabilities in the English language, which is not dependent

on the previous letters, i.e. P (st = s|wt = w) = P (st = s). Zero-gram model is

defined as, having no active language model or equivalently P (st = s) is assumed to

be a uniform distribution over the alphabet, i.e. P (st = s) = 1/|S|.

For the online system, a 6-gram language model was estimated from a one million

sentence (210M character) sample of the NY Times portion of the English Gigaword

corpus. Corpus normalization and smoothing methods were as described in [117].

Most importantly for this work, the corpus was case normalized, and we used Witten-

Bell smoothing for regularization [122].

5.2 Backspace Probability

The ability to erase a typed symbol is an integral component of any typing system.

However since the probability of the user intending to erase a symbol significantly

depends on the error rate of the system, it is not accessible from the corpus lan-

guage model is trained on. As the system makes more errors, user intends to select

backspace considerably. To select the backspace probability we utilize the following

ideas in RSVP KeyboardTM .

• Constant backspace probability: The probability of the backspace according

to the context is assumed to be constant.

P (st =← |context) = constant,

where← corresponds to the backspace symbol. Currently, the backspace prob-

ability has been set to 0.05. The constant backspace probability may be further

optimized to increase the overall typing accuracy and decrease the typing speed

using the simulation method explained in Section 7.3.
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• Confidence based backspace probability: The probability of the backspace for

the context is determined according to the confidence of the previous deci-

sion. If the estimated probability of correctness for the selected symbol in the

previous epoch is p, correspondingly the probability for the decision being er-

roneous becomes 1−p. Correspondingly, before we collect any additional EEG

evidence for the current decision, the context probability of backspace being

the intended symbol may be set as the estimated probability of the previous

decision being erroneous. In other words,

P (st =← |context) = P (sτit 6= wit |context,EEG),

where wit corresponds to the last typed symbol at the tth epoch and τit rep-

resents the epoch wit is selected. The method for making a joint decision

and estimating P (sτit 6= wit |context,EEG) with the utilization of both of the

evidences from the context and EEG is explained in detail in Chapter 6.



Chapter 6

Joint Decision Making with the

Context Information

6.1 Single Trial Decision Making

The evidence obtained from EEG and the language model can be used collaboratively

to make a more informed decision about the class that each symbol belongs to. An

epoch, i.e. multiple repetitions of each sequence, is going to be shown for each

symbol to be selected. Each symbol is assumed to belong to the class of either

positive or negative attentional focus or intent. Let c : Ω → {0, 1} be the random

variable representing the class of intent, where 0 and 1 corresponds to negative and

positive intents, respectively and x : Ω → R
d be a random vector of EEG features

corresponding to a trial. For example, an ERP discriminant function that projects

the EEG data corresponding to a trial into a single dimension may be used as a

feature extraction method. In this case, since d = 1, which represents there is only

one EEG feature per trial. The fusion methodology explained here does not depend

on the feature extraction method, and practically can be used with any feature vector

41
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in R
d. The only requirement is an estimate of the conditional probability density

function of EEG features given the class label, i.e. f(x = x|c = c) ∀c ∈ {0, 1}.

Specifically, let xt,s,r be the random EEG feature vector corresponding to a trial for

epoch t ∈ N, symbol s ∈ S and repetition r ∈ {1, 2, · · · , R}, R is the total number

of repetitions or sequences of the symbols per epoch. Furthermore, let ct,s be the

random variable representing the class of epoch t and symbol s. Consequently, for

a symbol s, the posterior probability of the class being c using the L − 1 previous

symbols and EEG features for all of the repetitions of symbol s in epoch t can be

written as,

Q = P (ct,s = c|xt,s,1 = x1, xt,s,2 = x2, · · · , xt,s,R = xR,

wit = w1,wit−1 = w2, · · · ,wit−L+2 = wL−1), (6.1)

where xr ∈ R
d for r ∈ {1, 2, · · · , R}. Using Bayes’ Theorem on (6.1), we obtain

Q =
f(xt,s,1 = x1, · · · , xt,s,R = xR,wt = w|ct,s = c)P (ct,s = c)

f(xt,s,1 = x1, · · · , xR = xR,wt = w)
. (6.2)

We can assume that the EEG features corresponding to the symbol in question

and the text that has been written already are conditionally independent given

the class label of the symbol. This assumption is reasonable, because after the

subject decides on a target symbol by considering the previously typed text, he/she

is expected to show positive intent for the target and negative intent for the others,

and after the class of a symbol is decided the EEG response is expected not to get

affected by the text already written. This assumption can formally be written as

xt,s,1, · · · , xt,s,R ⊥⊥ wt|ct,s. Accordingly, (6.2) transforms to,

Q =
f(xt,s,1 = x1, · · · , xt,s,R = xR|ct,s = c)P (wt = w|ct,s = c)P (ct,s = c)

f(xt,s,1 = x1, · · · , xR = xR,wt = w)
. (6.3)

It can be further assumed that the EEG responses for each repetition of the symbol
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are conditionally independent given the class of the symbol. This assumption expects

intents to be independent and identically distributed for a symbol in an epoch. As

an example, if the subject shows a stronger intent for the second repetition, then

the assumption fails. Since estimating such a joint conditional probability density

function would be difficult as the number of repetitions gets higher, this assumptions

constitutes a useful simplifying approximation. More formally, this can be written

as xt,s,1 ⊥⊥ xt,s,2 ⊥⊥ · · · ⊥⊥ xt,s,R|ct,s, reducing (6.3) to,

Q =

(

∏R
r=1 f(xt,s,r = xr|ct,s = c)

)

P (wt = w|ct,s = c)P (ct,s = c)

f(xt,s,1 = x1, · · · , xt,s,R = xR,wt = w)
.

Using Bayes’ Theorem once again on P (wt = wt|ct,s = c), we obtain,

Q =

(

∏R
r=1 f(xt,s,r = xr|ct,s = c)

)

P (ct,s = c|wt = w)P (wt = w)

f(xt,s,1 = x1, · · · , xt,s,R = xR,wt = w)
. (6.4)

We can apply the likelihood ratio test for ct,s to make a decision between two classes.

The likelihood ratio of ct,s, can be written from (6.1) as,

Λ(ct,s|Xt,s = X,wt = w) =
P (ct,s = 1|Xt,s = X,wt = w)

P (ct,s = 0|Xt,s = X,wt = w)
,

where Xt,s = {xt,s,1, xt,s,2, · · · , xt,s,R} and X = {x1,x2, · · · ,xR}. Using the form we

obtained after simplifications and approximations from (6.1) to (6.4), likelihood ratio

can be rewritten as

Λ(ct,s|Xt,s = X,wt = w) =

(

∏R
r=1 f(xt,s,r = xr|ct,s = 1)

)

P (ct,s = 1|wt = w)
(

∏R
r=1 f(xt,s,r = xr|ct,s = 0)

)

P (ct,s = 0|wt = w)
.

In terms of the probabilities obtained from the language model, we can directly

plug in these equivalent probabilities, P (ct,s = 1|wt = w) = P (st = s|wt = w) and
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P (ct,s = 0|wt = w)) = 1− P (st = s|wt = w). Finally, ratio of class posterior proba-

bilities can be estimated as,

Λ(ct,s|Xt,s = X,wt = w) =

(

∏R
r=1 f(xt,s,r = xr|ct,s = 1)

)

P (st = s|wt = w)
(

∏R
r=1 f(xt,s,r = xr|ct,s = 0)

)

(1− P (st = s|wt = w))
.

(6.5)

In this equation, f(xt,s,r = xr|ct,s = c) is to be estimated using the feature extraction

algorithm and P (st = s|wt = w) is to be estimated using the language model.

Therefore the decision on the class label of symbol st for epoch t, ĉt,s may be done

comparing the likelihood ratio with a risk dependent threshold, τ , i.e.,

Λ(ct,s|Xt,s = X,wt = w) ≷
ĉt,s=1
ĉt,s=0 τ, (6.6)

or in other words,

ĉt,s =











1, if Λ(ct,s|Xt,s = X,wt = w) > τ

0, otherwise

.

6.1.1 Experimental Offline Analysis

Two healthy subjects, one man and one woman, were recruited for this study. Each

subject participated in the experiments for two sessions. In each session 200 let-

ters are selected (with replacement, out of 26) according to their frequencies in the

English language and randomly ordered to be used as target letters in each epoch.

In each epoch, the designated target letter and a fixation sign are each shown for

1s, followed by 3 sequences of randomly ordered 26 letters in the English alphabet

with 150 ms inter-stimuli interval. Correspondingly each sequence takes 4.9 seconds

including the 1 second fixation duration. Subjects are asked to look for the target

letter shown at the beginning of the epoch.
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The signals recording is done using a g.USBamp biosignal amplifier using active

g.Butterfly electrodes from G.tec (Graz, Austria) at 256Hz sampling rate. The

EEG electrodes are applied with g.GAMMAcap (electrode cap) and the positioned

according to the International 10/20 System were O1, O2, F3, F4, FZ, FC1, FC2,

CZ, P1, P2, C1 C2, CP3, CP4. Signals were filtered by a nonlinear-phase 0.5-60 Hz

bandpass filter and a 60 Hz notch filter (G.tec’s built-in design). Afterwards signals

filtered further by the previously mentioned 1.5-42 Hz linear-phase bandpass filter

(our design). The filtered signals were downsampled to 128Hz. For each channel,

stimulus-onset-locked time windows of [0,500)ms following each image onset was

taken as the stimulus response.

Let us denote by ej the jth epoch in a given session and let E be the ordered set con-

taining all epochs in the session. E is partitioned into 10 equal-sized nonintersecting

blocks, Ek; for every ej there is exactly one kj such that ej ∈ Ekj . For every ej acting

as a test sample, the ERP classifier is trained on the set E\Ekj . During training,

the classifier parameters λ and γ are determined using this 10-fold cross-validation

approach and grid search within the set E\Ekj . The kernel density estimates of the

conditional probabilities of classification scores for EEG classifiers are obtained using

scores obtained from E\Ekj . The trained classifiers are applied to their respective

test epochs to get the 10-fold cross-validation test results presented in the tables.

In signal detection theory, receiver operating characteristic (ROC) curve has usually

been used to assess the performance [123]. ROC is a parametric plot of false alarm

probability and detection probability for changing the test threshold. Since it is

preferable to select an operating point with high detection rate and low false alarm

rate, the shape of the ROC is an important representative of the performance of

the detector. Consequently, the area under the curve (AUC) of an ROC is usually

utilized as a summary statistic representing the ROC. AUC (∈ [0, 1]) becomes 1 for

the perfect detector (no false alarm, no miss) and becomes 0.5 for no discrimination.

Even though it has been frequently utilized as a tool, it is important to note that
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AUC does not capture all of the information contained in the ROC curve and does

not represent the detectors actual operation.

An example of the change in AUC during the grid search is given in Fig. 6.1 for

single sequence with no language model (0-gram). This figure demonstrates that the

regularization and shrinkage are both necessary and significantly effective. However

if the regularization is applied too much it might degrade the performance.

Figure 6.1: An example of the change in AUC while searching shrinkage (λ) and
regularization (γ). Highest AUC is obtained for λ = 0.6 and γ = 0.1.

The language model was trained as described in Chapter 5. For each letter in the

alphabet, 1000 random samples were drawn from the same corpus (separate from

the language model training data) for testing purposes. For each letter sample we

simulate the fusion of EEG responses and the language model in the following way:

(i) each sample is assumed to be the target letter of a typing process using BCI; (ii)

the predecessor letters of the target letter for each epoch are taken from the corpus

to calculate the letter probabilities of the n-gram language models for each letter in

the alphabet (Since subjects only focus on a single target letter without knowing the

predecessor letters of the typing process in this experiment, it is assumed that the
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EEG responses created during an epoch are independent from the predecessors.); (iii)

under the assumption of independence of EEG responses with the previous letters

selected, for each epoch, the EEG responses for every letter is converted to EEG

classifier scores; (iv) matching model probabilities for each letter are obtained from

the language model; (v) and the fusion of ERP classifier scores and language model

predictions was achieved as described above, resulting in a joint discriminant score

that needs to be compared with a threshold depending on risk ratios for missing a

target letter and a false selection.
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Figure 6.2: An example of an ROC curve corresponding to single sequence and
0-gram language model.

Fusion results were obtained for n-gram model orders L = 0, 1, 4, and 8. The

EEG scores were assumed to have been evaluated for R = 1, 2, and 3 sequences

(to evaluate the contribution of multi-trial information) to decide if a letter under

evaluation was a desired target letter or not. In the results, only EEG data from

the first R sequences of each epoch were used to classify each selected sequence

count. Receiver operating characteristics (ROC) curves were obtained using the

decision rule given in (6.5) by changing the risk based threshold, τ . An example
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ROC curve is given in Fig. 6.2. Area under the ROC curves were calculated for

different orders of the language model, for different number of sequences used and

for different positions of the sample target letter in the corresponding word from the

corpus. In Table 6.1, the area under the ROC curves (AUC) are compared. Each

entry contains the pair of minimum and maximum AUC over the sessions, i.e. each

pair represent the performance of the worst and best session. In Table 6.2, Table 6.3,

and Table 6.4 the correct detection rates are given for false positive rates of 1%, 5%,

and 10%, respectively. These correspond to different values of the τ , since selecting

a point on the ROC curve correspond to a false alarm rate, true positive rate and τ

triplet.

1 sequence 2 sequences 3 sequences
0-gram (0.812, 0.884) (0.907, 0.956) (0.957, 0.985)
1-gram (0.892, 0.922) (0.944, 0.973) (0.972, 0.986)

4-gram
If 1st letter (0.892, 0.941) (0.954, 0.983) (0.977, 0.991)

If not 1st letter (0.975, 0.983) (0.985, 0.992) (0.991, 0.997)

8-gram
If 1st letter (0.905, 0.945) (0.960, 0.984) (0.979, 0.992)

If not 1st letter (0.991, 0.993) (0.995, 0.997) (0.995, 0.998)

Table 6.1: The minimum and the maximum values of the area under the ROC
curves obtained using fusion classifier under different scenarios. The compari-
son is made using different number of sequences for classification, different letter

positions in the word and different language model orders.

1 sequence 2 sequences 3 sequences
0-gram (0.101, 0.348) (0.500, 0.532) (0.625, 0.698)
1-gram (0.255, 0.371) (0.468, 0.583) (0.591, 0.698)

4-gram
If 1st letter (0.263, 0.416) (0.434, 0.774) (0.621, 0.810)

If not 1st letter (0.597, 0.684) (0.748, 0.849) (0.848, 0.927)

8-gram
If 1st letter (0.294, 0.448) (0.465, 0.782) (0.647, 0.835)

If not 1st letter (0.810, 0.854) (0.886, 0.932) (0.936, 0.972)

Table 6.2: The minimum and the maximum values of the detection rates for 1%
false detection rate using fusion classifier under different scenarios.

The letter decisions after an epoch may be made by selecting the symbol with max-

imum likelihood ratio. This corresponds to selecting the symbol with maximum

Λ(ct,s|Xt,s = X,wt = w) from (6.5). If applied with our offline analysis structure,
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1 sequence 2 sequences 3 sequences
0-gram (0.453, 0.548) (0.700, 0.810) (0.828, 0.889)
1-gram (0.556, 0.660) (0.767, 0.841) (0.900, 0.953)

4-gram
If 1st letter (0.606, 0.688) (0.740, 0.884) (0.886, 0.971)

If not 1st letter (0.842, 0.899) (0.912, 0.966) (0.960, 0.989)

8-gram
If 1st letter (0.614, 0.716) (0.766, 0.905) (0.899, 0.971)

If not 1st letter (0.951, 0.971) (0.972, 0.990) (0.986, 0.996)

Table 6.3: The minimum and the maximum values of the detection rates for 5%
false detection rate using fusion classifier under different scenarios.

1 sequence 2 sequences 3 sequences
0-gram (0.550, 0.661) (0.800, 0.906) (0.900, 0.969)
1-gram (0.633, 0.797) (0.817, 0.905) (0.917, 0.984)

4-gram
If 1st letter (0.692, 0.836) (0.857, 0.961) (0.948, 0.990)

If not 1st letter (0.933, 0.961) (0.966, 0.991) (0.983, 0.996)

8-gram
If 1st letter (0.729, 0.840) (0.873, 0.964) (0.950, 0.990)

If not 1st letter (0.983, 0.990) (0.992, 0.997) (0.995, 0.998)

Table 6.4: The minimum and the maximum values of the detection rates for
10% false detection rate using fusion classifier under different scenarios.

the correct letter selection probabilities averaged over subjects are given by Fig. 6.3.

The plots show correct letter selection probabilities vs inverse of number of repeti-

tions. Since the number of repetitions is a direct measure of epoch duration, we used

its inverse as a speed indicator. These curves indicate that usual speed/accuracy

trade-offs apply to the proposed typing system and better language models result in

better performance.

The typing duration can be directly related to the correct decision accuracy. If the

correct decision making probability, p, is constant and greater than 0.5, the expected

symbol selection duration becomes,

TsNs

2p− 1
,

where Ts is the duration of the of a sequence, and Ns is the number of sequences.

If p < 0.5, with a nonzero probability the system will not be able to type the
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Figure 6.3: The average correct letter selection probability vs inverse of the
number of repetitions for various language model orders and letter locations in

the word.

intended symbol, since it will not be able to correct its mistakes. Therefore p < 0.5 is

considered to be failure as subject might get stuck at a symbol. A similar relationship

between expected time and probability of detection is also independently obtained

independently in [115]. An alternative derivation for the formula is given in the

appendix.

Typing duration per symbol, estimated using this relation, for various number of

sequences, language model orders are given in Fig. 6.4 after averaging over sessions

and subjects.
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Figure 6.4: The average expected value of typing duration vs inverse of the
number of repetitions for various language model orders and letter locations in
the word. In the graphs 100 seconds mark is used jointly with the failure case. If

the subject has a probability of getting stuck it is considered as a failure.

6.2 Näıve Bayesian Fusion

The evidence obtained from EEG and the language model is used collaboratively

to make a more informative symbol decision. An epoch, combination of sequences

that consist of trials corresponding to different symbols, is shown for each symbol to

be selected. There exists two different context incorporation approaches currently

available in RSVP KeyboardTM . In both approaches, each symbol is assumed to

belong to the class of either positive or negative intent and features for each trial

are assumed to be i.i.d. for each class. The main difference between these rules is

the assumptions they make.
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6.2.1 Fusion Rule 1

Let c : Ω → {0, 1} be the random variable representing the class of intent, where

0 and 1 corresponds to negative and positive intents, respectively and x : Ω → R
d

be a random vector of EEG features corresponding to a trial. For example, an

ERP discriminant function that projects the EEG data corresponding to a trial

into a single dimension may be used as a feature extraction method. In this case,

since d = 1, which represents there is only one EEG feature per trial. The fusion

methodology explained here does not depend on the feature extraction method, and

practically can be used with any feature vector in R
d. The only requirement is an

estimate of the conditional probability density function of EEG features given the

class label, i.e. f(x = x|c = c) ∀c ∈ {0, 1}.

Specifically, let xt,s,r be the random EEG feature vector corresponding to a trial for

epoch t ∈ N, symbol s ∈ S and repetition r ∈ {1, 2, · · · , Rs}, Rs is the total number

of repetitions of symbol s in epoch t. Furthermore, let ct,s be the random variable

representing the class of epoch t and symbol s. Consequently, for a symbol s, using

Bayes’ theorem the posterior probability of the class being c using the L−1 previous

symbols and EEG features for all of the repetitions of symbol s in epoch t can be

written as,

P (ct,s = c|Xt,s = X,wt = w) =
f(Xt,s = X,wt = w|ct,s = c)P (ct,s = c)

f(Xt,s = X,wt = w)
, (6.7)

where Xt,s = {xt,s,1, xt,s,2, · · · , xt,s,Rs
} and X = {x1,x2, · · · ,xRs

} with xr ∈ R
d for

r ∈ {1, 2, · · · , Rs}.

We can assume that the EEG features corresponding to the symbol in question and

the text that has been written already are conditionally independent given the class

label of the symbol. This assumption is reasonable, because after the subject decides

on a target symbol by considering the previously typed text, he/she is expected to

show positive intent for the target and negative intent for the others, and after the
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class of a symbol is decided the EEG response is expected not to get affected by

the text already written. This assumption can formally be written as Xt,s ⊥⊥ wt|ct,s.

Accordingly, (6.7) transforms to,

P (ct,s = c|Xt,s = X,wt = w) =
f(Xt,s = X|ct,s = c)P (wt = w|ct,s = c)P (ct,s = c)

f(Xt,s = X,wt = w)
.

(6.8)

It can be further assumed that the EEG responses for each repetition of the symbol

are conditionally independent given the class of the symbol. This assumption expects

intents to be independent and identically distributed for a symbol in an epoch. As

an example, if the subject shows a stronger intent for the second repetition, then

the assumption fails. Since estimating such a joint conditional probability density

function would be difficult as the number of repetitions gets higher, this assumptions

constitutes a useful simplifying approximation. More formally, this can be written

as xt,s,1 ⊥⊥ xt,s,2 ⊥⊥ · · · ⊥⊥ xt,s,Rs
|ct,s, reducing (6.8) to,

P (ct,s = c|Xt,s = X,wt = w) =

P (wt = w|ct,s = c)P (ct,s = c)

Rs
∏

r=1

f(xt,s,r = xr|ct,s = c)

f(Xt,s = X,wt = w)
. (6.9)

Assuming there exists exactly one target symbol among the symbol set in an epoch,

which is reasonable since the user is expected to look for only one target symbol,

the symbol posterior probability using all of the evidence in the epoch becomes,

P (s = s|X t = X ,wt = w) = P

(

ct,s = 1|X t = X ,wt = w,
∑

s′∈S

cs′ = 1

)

, (6.10)
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where X t = {Xt,s|s ∈ S} and X = {Xs|s ∈ S}. Using the definition of conditional

probability on (6.10), we obtain

P (s = s|X t = X ,wt = w) =

P (ct,s = 1, ct,s′ = 0 ∀s′ 6= s ∈ S|X t = X ,wt = w)
∑

s′′∈S P (ct,s′′ = 1, ct,s′ = 0 ∀s′ 6= s′′ ∈ S|X t = X ,wt = w)
.

This can be further approximated by the assumption that class labels for each symbol

are conditionally independent given all the evidence. Correspondingly we obtain,

P (s = s|X t = X ,wt = w) ≈ β
P (ct,s = 1|Xt,s = X,wt = w)

P (ct,s = 0|Xt,s = X,wt = w)
,

where

β =
1

∑

s′∈S

P (ct,s′ = 1|Xt,s′ = X,wt = w)/P (ct,s′ = 0|Xt,s′ = X,wt = w)
.

6.2.2 Fusion Rule 2

In general form the posterior probability of the intended symbol given all the evidence

can be written as,

P (s = s|X t = X ,wt = w) ∝ P (X t = X ,wt = w|s = s)P (s = s), (6.11)

after applying Bayes’ Theorem.

We can assume that given the intended symbol EEG evidence and previously typed

text are conditionally independent and we obtain (6.12). This is reasonable as once

the intended symbol is decided by the subject, the response of the subject is expected

not to depend on the previously typed text.

P (s = s|X t = X ,wt = w) ∝ f(X t = X |s = s)P (wt = w|s = s)P (s = s), (6.12)
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After applying Bayes’ Theorem and assuming EEG evidences for each trial are con-

ditionally independent given the intended symbol, we obtain,

P (s = s|X t = X ,wt = w) ∝





∏

s′∈S

Rs′
∏

rs′=1

f(xt,s′,r = xt,s′,r|s = s)



P (s = s|wt = w).

(6.13)

This assumption corresponds to EEG responses to individual trials are independent

to each other, if the intended symbol is known. In other words, the response distri-

butions do not depend on the symbol itself, and subject does not respond differently

over time.

After simplification, (6.13) reduces to the following final fusion rule

P (s = s|X t = X ,wt = w) ∝

(

Rs
∏

rs=1

f(xt,s,r = xt,s,r|ct,s = 1)

f(xt,s,r = xt,s,r|ct,s = 0)

)

P (s = s|wt = w).

(6.14)

In the current version of RSVP KeyboardTM , the second fusion rule is being used

since it has cleaner assumptions.

6.2.3 Final Decision

After applying one of the fusion rules and the intended symbol is decided by selecting

the symbol with maximum probability given the EEG and context evidences,

ŝ = argmax
s

P (s = s|X t = X ,wt = w).

At the end of each sequence P (s = ŝ|X t = X ,wt = w) is used as a confidence

measure. Using the maximum value in the probability mass function as the measure

of certainty corresponds to utilizing Renyi’s order-infinity entropy definition as the

measure of uncertainty in the decision we make. One could use other definitions of
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entropy to measure uncertainty/certainty in the current decision. Decision in the

epoch is finalized if one of the following conditions satisfied,

• maxs P (s = ŝ|X t = X ,wt = w) > γ, where γ is the confidence threshold that

is currently set to 0.9.

• Number of sequences reaches the maximum number of sequences allowed per

epoch, e.g. 4, 8, 16

6.2.4 Deciding on the Next Sequence

After each sequence the posterior probabilities for the symbols are calculated. If the

number of trials per sequence is smaller than |S|, the symbols to be shown in the

following sequence is decided either randomly or selecting the most likely symbols

according to the current posterior probabilities. In the mode that selects most likely

symbols, it might potentially prevent context unlikely symbols not to be shown.

However they are expected to show up as subject demonstrates negative intent for

the rest. Indeed, the subjects were even able to select very context-unlikely symbols

like Q.

6.3 Recursive Bayesian Estimation Based Fusion

The näıve approach has the disadvantage of committing to one selection of a string

of symbols, which might potentially cause the language model to be more harmful

than beneficial after an erroneous selection. Therefore, as a remedy to this problem,

we propose a typing strategy that does not immediately commit to a single selection.

Correspondingly we construct a hidden Markov model (HMM) where the substring

of last nLM letters of the current epoch constitute the latent variable and EEG

scores of all symbols corresponding to an epoch constitute the observed variable. An
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illustration of the corresponding HMM is given in Fig. 6.5, where δRDA,i represents

δRDA for epoch i.

Figure 6.5: Hidden Markov Model used in recursive Bayesian approach for the
fusion of language model with EEG scores.

Using recursive Bayesian estimation [124], marginalizing over older state variable the

current state probability mass given all observed EEG scores is obtained in (6.15)

where s = {s1, s2, · · · , slast} is a specific state.

P (Wi = s|δRDA,1, · · · , δRDA,i) ∝ p(δRDA,i|Wi = slast)·
∑

s
′∈SnLM

P (Wi = s|Wi−1 = s′)P (Wi−1 = s′|δRDA,1, · · · , δRDA,i−1) (6.15)

There are common variables between consecutive latent states, therefore P (Wi =

s|Wi−1 = s′) becomes zero for many s′ which decreases the number of summations
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required. If i ≤ nLM it becomes (6.16),

P (Wi = s|Wi−1 = s′) =











P (Wi = slast|Wi−1 = s1:last−1) , s1:last−1 = s′1:last

0 , otherwise

(6.16)

consequently the posterior probability of state variable becomes (6.17)

P (Wi = s|δRDA,1:i) ∝ p(δRDA,i|Wi = slast)P (Wi = slast|Wi−1 = s1:last−1)·

P (Wi−1 = s1:last−1|δRDA,1:i−1).(6.17)

If i > nLM , similarly we obtain (6.18) and (6.19).

P (Wi = s|Wi−1 = s′) =











P (Wi = slast|Wi−1 = s1:last−1) , s1:last−1 = s′2:last

0 , otherwise

(6.18)

P (Wi = s|δRDA,1:i) ∝ p(δRDA,i|Wi = slast)·

P (Wi = slast|Wi−1 = slast−1, · · · ,Wi−nLM+1 = s1)·
∑

s′
0
∈S

P (Wi−1 = slast−1, · · · ,Wi−nLM+1 = s1,Wi−nLM
= s′0|δRDA,1:i−1) (6.19)

Assuming all EEG scores for an epoch are conditionally independent given the class

labels, we can calculate p(δRDA,i|Wi = s) as (6.20),

p(δRDA,i|Wi = s) =

(

NS
∏

ns=1

p(δRDA,i(xs,ns
)|c

s
= 1)

)

·

∏

s′∈S\{s}

NS
∏

ns′=1

p(δRDA,i(xs
′,ns′

)|c
s
′ = 0)

where p(δRDA,i(xs,ns
|cs = c) is estimated using KDE as in 3.2.3, P (Wi = slast|Wi−1 =
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slast−1, · · · ,Wi−nLM+1 = s1) or P (Wi = slast|Wi−1 = s1:last−1) is estimated using n-

gram language model and P (Wi−1 = s1:last−1|δRDA,1:i−1) is calculated recursively.

Finally, at any epoch, we can estimate the latest substring using maximum likelihood,

Ŵi = arg max
s∈SnLM

P (Wi = s|δRDA,1:i).

Similarly, at ith epoch, we can estimate Wj for 1 ≤ j ≤ i − nLM using maximum

likelihood as (6.20).

Ŵj = argmax
s0∈S

P (Wj = s0|δRDA,1:i) = argmax
s0∈S

P (Wj = s0|δRDA,1:j+nLM
)

= argmax
s0∈S

∑

s′
1
,··· ,s′nLM−1

∈S

P (Wj+nLM−1 = s′nLM−1, · · · ,Wj+1 = s′1,Wj = s0|δRDA,1:j+nLM
) (6.20)

6.3.1 Experimental Offline Analysis

For this study, the same data as in 6.1.1 are used and the same preprocessing is

applied. The language model was trained as described in 5. 36000 words are ran-

domly drawn from a word lexicon weighted according to word occurrences and letter

count. Fusion results were obtained for an n-gram model order of 4. The EEG scores

1 sequence 2 sequences 3 sequences
Näıve Bayesian fusion (0.26, 0.36) (0.46, 0.64) (0.63, 0.82)
Recursive Bayesian fusion (0.35, 0.49) (0.64, 0.73) (0.76, 0.87)

Table 6.5: The minimum and the maximum values of the correct symbol selec-
tion ratios over different sessions for varying the number of sequences used in EEG
classification for näıve Bayesian fusion and recursive Bayesian fusion approaches.

were assumed to have been evaluated for NS = 1, 2, and 3 sequences (to evaluate

the contribution of multi-trial information) to decide if a letter under evaluation

was a desired target letter or not. In the results, only EEG data from the first NS
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sequences of the epoch were used for classification for each selected sequence count.

Ratio of total number of letters selected correctly and the total number of letters is

presented in Table 6.5 for all sessions.

In all of the sessions, the approach with recursive Bayesian estimation outperformed

considerably the näıve fusion rule for all sequences per epoch, where the performances

increase monotonically with the number of sequences as expected. The results are

very promising, however it is important to note that there is no erasure symbol in

these simulations. Since the näıve approach is less resistant to errors, existence of

an erasure symbol might improve its performance more considerably than the other.

As future work, we are planning to collect data for a similar analysis including

the erasure symbol and using different model orders, which would result in a more

accurate comparison.

The incorporation of the recursive Bayesian approach to the real time system would

also be useful to assess its performance. However this approach has some disadvan-

tages which might become important during the real time implementation. Firstly,

it requires a large amount of memory since it keeps all the states from the previous

selection. Secondly, the interface needs to be more confusing for the subject since

previously selected symbols are ambiguous. These considerations become signifi-

cantly important when the system is being implemented in real time.
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Real Time System

7.1 System Design

RSVP KeyboardTM is a complete BCI typing system. It consists of the following

main components

• Presentation: Presentation paradigms utilized in RSVP KeyboardTM are im-

plemented in Matlab the Psychophysics Toolbox extensions [125–127]. Triggers

corresponding to the visual stimuli are sent to the EEG amplifiers via parallel

port. For laptops containing express card slot, we have used an ExpressCard

to parallel port converter.

• Data Acquisition: EEG signal acquisition is done using a g.USBamp biosignal

amplifier via Matlab.

• Language Model: Pre-trained language models are run on a local server on

the experiment computer and accessed via TCP-IP.

• Signal Monitoring: A signal monitoring interface is designed to visually ob-

serve the signals in real time.

61
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7.2 Operation Modes

RSVP KeyboardTM consists of four operation modes. One of the operation modes

is for calibration and the remainder are for typing.

7.2.1 Calibration

Calibration occurs during the session where the signal statistics for the subject are

learned. A predefined target symbol is selected and shown to the user before an

RSVP sequence. Subjects are instructed to look for the target symbol in the sequence

and show intent for the predefined symbol. Using the collected supervised data, the

EEG feature extraction parameters are optimized. Typing performance might be

estimated using the approach proposed in Section 7.3.

7.2.2 Spelling

Free spelling is the main typing mode. The subjects can type whatever they want

and use the system to communicate.

7.2.3 Copy Phrase

Copy phrase mode is a guided typing mode. Subjects are asked to copy a phrase

in a sentence, letter by letter. Subjects are also instructed to delete any of their

mistakes. Copying continues to the next phrase if one of the following conditions is

satisfied.

• Exactly copying the phrase (success).

• Timeout (failure): Reaching to a predefined time allowed for the phrase.
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• Sequence Limit (failure): The number of sequences spent is limited by

κ× (Number of letters in phrase)× (Max. number of sequences per epoch),

where κ is a scale parameter, which is currently set to 2.

• Consecutive erroneously typed symbols (failure): If there exists 3 consecutive

unintended letters in the typed text, it is considered as failure.

7.2.4 Mastery Task

Mastery task is a variation of the copy phrase mode, that is designed to train the

subject on using the system. The phrases are divided into levels with increasing

difficulty. The difficulty of the phrases are assessed by the ratio of the context

probability of the intended symbol to unintended most likely symbol for each letter

in the phrase. Each level consists of multiple sets of phrases. Subjects pass through

levels by successfully completing 2/3 of the phrases in a set.

7.3 Performance Estimation Using Simulation

Not all parameters can be easily theoretically optimized in a complex system. Ex-

perimentation on human subjects is a very time consuming process, therefore trial

and error with the user-in-the-loop is not feasible. In order to be able to get a

reliable performance estimate for a setting, one might need to do multiple sessions

that might take more than an hour each. If the researcher/clinician would like to do

comparative experiments on different operation scenarios, e.g., number of maximum

sequences per epoch, backspace probability, bandpass cut-off frequencies, etc., then

the experiments might take exponentially increasing amount of time (by parame-

ter space dimensionality, for grid search). The number of sessions needed might

exponentially grow with the number of parameters being searched.
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As a supplement to experimentation, we utilize a simulation methodology to estimate

the performance of the system. In simulation, the copy phrase task is employed, since

the user would need to attempt perfect phrase copying and the user strategy can

be simulated exactly. In other words, the simulated user in the simulation always

attempts to correct any errors. Consequently, at any instant the intended action

is known. Afterwards, EEG features are sampled from (3.3), the conditional pdf

estimates learned after cross validation. The features corresponding to the trials of

the intended symbol are sampled from the target pdf and rest are sampled from the

non-target pdf.

The simulations are based on the assumption of i.i.d. target and non-target trials

EEG evidences. It ignores potentially different responses to different non-target

symbols (nonstationarity). It ignores fatigue effects or change in signal statistics or

temporal dynamics of the EEG due to other physiological reasons, as well. However

it is still a very beneficial tool for estimating the performance. In our experience,

actual copy phrase results with subject-in-the-loop are usually consistent with Monte

Carlo simulation estimates.

7.4 Experimental Analysis

EEG is recorded using a g.USBamp biosignal amplifier using active g.Butterfly elec-

trodes from G.tec (Graz, Austria) at 256Hz sampling rate. The EEG electrodes are

applied using the g.GAMMAcap (electrode cap) and positioned according to the

International 10/20 System with locations of Fp1, Fp2, F3, F4, FZ, Fc1, Fc2, Cz,

P1, P2, C1 C2, Cp3, Cp4, P5, P6. Internal to the amplifier, signals were filtered

by a nonlinear-phase [2,60]Hz Butterworth bandpass filter and a 60Hz notch fil-

ter. Afterwards, signals were filtered further by the previously mentioned [1.5,42]Hz

linear-phase bandpass filter (our design). The filtered signals were downsampled to

128Hz. For each channel, stimulus-onset-locked time windows of [0,500)ms following
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- THE DOG WILL BITE YOU
- LEARN TO WALK BEFORE YOU RUN
- GOOD AT ADDITION AND SUBTRACTION
- INTERACTIONS BETWEEN MEN AND WOMEN
- ACCOMPANIED BY AN ADULT
- PLEASE KEEP THIS CONFIDENTIAL
- FISH ARE JUMPING
- SHE WEARS TOO MUCH MAKEUP

Table 7.1: Phrase and sentence pairs to be copied in copy phrase task. The
phrase to be copied is marked as bold in the sentence.

each image onset was taken as the stimulus response and features were extracted as

described earlier.

Ten healthy subjects (4 female, 6 male) were recruited for this study. Each subject

participated in the experiments for 5 or 6 sessions. The first session was a calibration

session with randomly selected 100 sequences of 10 trials with 200 ms inter stimulus

interval. If the single trial area under the ROC curve is lower than 0.7, the calibration

session is repeated once again. Consequently, 4 copy task sessions with following

parameter selections are conducted.

• Scenario 1: No language model, 28 trials/sequence, at most 4 sequences/epoch

• Scenario 2: 6-gram model, 28 trials/sequence, at most 4 sequences/epoch

• Scenario 3: 6-gram model, 14 trials/sequence, at most 8 sequences/epoch

• Scenario 4: 6-gram model, 7 trials/sequence, at most 16 sequences/epoch

In the copy task, 8 phrase and sentence pairs, given in Table 7.1 are presented to be

copied. These sentences are selected from MacKenzie & Soukoreff’s balanced phrase

list [128]. Results of the experiments (one user-in-the-loop session per scenario)

and simulations (average of Monte Carlo runs) are given in Fig. 7.1 and Fig. 7.2.

As seen from these plots, average simulation estimates of probability of completion

and duration are qualitatively similar to actual experimental session outcomes. To
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Figure 7.1: Successful completion probability for each subject for each scenario
for simulation and experiment. Top bars represent the experimental results and
bottom bars represent the simulation results with taller the bar is better. Proba-
bility of 1 corresponds to successful completion of all phrases and probability of 0
corresponds to failure to complete any of the phrases. Consider only the absolute

value of the vertical axis values.

estimate the performance in a similar fashion to the BCI literature, information

transfer rates (ITR) calculated according to Section 4.1 are given in Table 7.2 and

Table 7.3. The typing speeds according to online performance are given in Table 7.4.

In calculation of the typing speed, the amount of text that is written accurately per

minute is considered.

We can compare these results with the other leading efforts on online typing BCIs in

the literature (Table 7.5). It is important to note that these results are not directly

comparable due to differences on the stimulation methodology and performance

estimation. These systems might experimentally differ due to gaze dependency,

subject inclusion criteria, or text used for estimating the performance. Moreover

some of the systems do not require error correcting during the typing process, but

try to estimate the additional load corresponding to erasure. According to these
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Figure 7.2: Duration to copy 8 phrases for each subject for each scenario for
simulation and experiment. This corresponds to the total duration spent on at-
tempting to type all of the phrases. Top bars represent the experimental results
and bottom bars represent the simulation results with shorter the bar is better.

Consider only the absolute value of the vertical axis values.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
No lang. model 6-gram model 6-gram model 6-gram model
Max. 4 seq Max. 4 seq Max. 8 seq Max. 14 seq
28 trials/seq 28 trials/seq 14 trials/seq 7 trials/seq

User 1 1.10 2.18 3.81 2.56
User 2 0.24 0.60 1.68 1.17
User 3 0.10 1.70 3.81 2.19
User 4 0.84 1.87 2.68 1.43
User 5 1.74 2.00 3.81 3.69
User 6 1.36 1.09 0.40 0.37
User 7 3.13 4.51 4.29 4.81
User 8 4.51 4.51 4.29 4.51
User 9 1.06 2.81 2.76 3.16
User 10 0.78 2.23 3.00 3.59
Average 1.49 2.35 3.05 2.75
Maximum 4.51 4.51 4.29 4.81

Table 7.2: Information Transfer Rate (bits/symbol) for different scenarios and
different users.
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Scenario 1 Scenario 2 Scenario 3 Scenario 4
No lang. model 6-gram model 6-gram model 6-gram model
Max. 4 seq Max. 4 seq Max. 8 seq Max. 14 seq
28 trials/seq 28 trials/seq 14 trials/seq 7 trials/seq

User 1 2.17 4.92 9.63 5.56
User 2 0.46 1.27 3.61 2.14
User 3 0.19 3.43 8.71 3.92
User 4 1.66 4.59 5.84 2.30
User 5 3.41 4.47 10.59 9.61
User 6 2.64 2.45 0.82 0.76
User 7 7.08 16.71 29.17 29.14
User 8 12.61 16.11 22.27 30.69
User 9 2.02 6.63 5.95 7.18
User 10 1.50 5.56 7.36 11.85
Average 3.37 6.62 10.40 10.32
Maximum 12.61 16.71 29.17 30.69

Table 7.3: Information Transfer Rate (bits/minute) for different scenarios and
different users.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
No lang. model 6-gram model 6-gram model 6-gram model
Max. 4 seq Max. 4 seq Max. 8 seq Max. 14 seq
28 trials/seq 28 trials/seq 14 trials/seq 7 trials/seq

User 1 0.16 0.92 1.99 1.07
User 2 0.14 0.36 0.88 0.41
User 3 0.12 0.46 1.80 0.88
User 4 0.15 1.15 1.45 0.60
User 5 0.82 0.83 2.19 1.97
User 6 0.49 0.62 0.27 0.28
User 7 1.35 3.51 6.13 6.06
User 8 2.65 3.39 4.68 6.45
User 9 0.20 1.39 1.04 1.38
User 10 0.32 1.38 1.37 2.85
Average 0.64 1.40 2.18 2.19
Maximum 2.65 3.51 6.13 6.45

Table 7.4: Typing speed in characters per minute for different scenarios and
different users. Only correctly typed text at the end is considered effective towards

the number of characters.
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Best Best Mean Mean
(bpm) (sym/min) (bpm) (sym/min)

Townsend et al [129] Matrix 39 6.3 31 5.1
Serby et al [39] Matrix - 6.9 - 4.5
Trader et al [49] Matrix - - 9.8 2
Blankertz et al [80] Hex-o-spell - 4.6-7.6 - -
Acqualagna et al [46] RSVP 7 1.4 - 1.4
RSVP KeyboardTM RSVP 31 6.4 10 2.2
Chapter 8 RSVP 36 7.5 13 2.6

Table 7.5: Comparison with other BCI typing systems in the literature. It is
important to note that these results are not directly comparable due to difference

in the operation.

results, the maximum typing speed of RSVP KeyboardTM was at least on par with

other BCI typing systems including the ones which are gaze dependent. However

average performance was worse than the matrix based spellers.



Chapter 8

Consideration of Trial Dependency

In P300-based BCIs, the problem of detecting a positive intent is often considered as

a binary classification problem. This assumption groups all non-target trials in one

class and target trials in another. Correspondingly, SVM, LDA, step-wise LDAs or

RDA have usually been employed in a two class manner to separate between classes.

It is usually assumed that EEG data corresponding to the trials immediately after

the target one also belong to the same class or distribution as the rest of the non-

target trials. However this model/assumption might not be a good fit in certain

circumstances. If the inter-symbol-interval is shorter than the duration of the ERPs,

there is an overlap of the consecutive ERPs. The ERP response corresponding to a

target stimuli might last longer than 500 ms. Consequently, if the trial duration is

200 ms, there is overlap between ERPs of consecutive trials.

As in most of the BCI literature, we also first assumed all trials to be independent

given the targetness, i.e. condition of being target or not, of each trial. Consequently,

the effect of the overlap of the ERPs were, so far, ignored even for the consecutive

trials. To be able to consider this effect, one can relax this assumption. We consider a

dependency model that considers the dependency to the targetness of previous trials.

The targetness or non-targetness of recent trials are considered to affect the EEG

70
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s

ct,r,1 ct,r,2 ct,r,3 ct,r,4 · · · ct,r,Nr

xt,r,1 xt,r,2 xt,r,3 xt,r,4 · · · xt,r,Nr

Figure 8.1: Graphical model considering the dependency between trials. EEG
features corresponding to a trial are affected by last M trials including the current
one. In this depiction, M is taken as 3. s represents the intended symbol, xt,r,n
and ct,r,n represents the EEG features and class labels corresponding to trial n in

sequence r and epoch t, respectively.

features in a manner consistent with the duration between trials. The corresponding

graphical model is depicted in Fig. 8.1.

According to this revised model, it is assumed that at any time instant at mostM last

trials affect the current EEG feature. In this approach, given the targetness labels of

last M trials, the response comes from the same distribution. For an inter-stimulus-

interval of 200 ms, selecting M > 2 would be a reasonable choice, considering that

the ERP response for the target trials might take longer than 400ms. We will select

M = 3 in the experimental studies conducted, however in the actual system M is

selected according to the inter stimulus interval of the RSVP presentation and the

window duration, which specifies the temporal limit on the expected ERP responses.

To be able to construct the fusion rule for this new model we can start from (6.12),

which only assumes the conditional independence of the EEG evidence and the
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context evidence. Obviously as before (6.12) reduces to (8.1) after utilizing Bayes’

Theorem.

P (s = s|X t = X ,wt = w) ∝ f(X t = X |s = s)P (s = s|wt = w). (8.1)

We can assume EEG evidences from different sequences are conditionally indepen-

dent given the intended symbol. This assumption essentially corresponds to the

expectation of sequence order invariance of the response of the subject. For exam-

ple, this assumption ignores that the user might be responding differently to the later

sequences compared to earlier ones due to fatigue or excitement. More formally we

can write this assumption as Xt,1 ⊥⊥ Xt,2 ⊥⊥ · · · ⊥⊥ Xt,R|s, where Xt,r is the r.v. cor-

responding to the EEG evidence corresponding to rth sequence, R is the number of

sequences, and X t = {Xt,1,Xt,2, · · · ,Xt,R}. Utilizing this conditional independence

assumption on (8.1), we obtain (8.2).

P (s = s|X t = X ,wt = w) ∝

(

R
∏

r=1

f(Xt,r = Xr|s = s)

)

P (s = s|wt = w), (8.2)

where X = {Xt,1,Xt,2, · · · ,Xt,R} corresponding observations split based on se-

quences.

Now to estimate f(Xt,r = Xr|s = s), we will use the new graphical model. Let xt,r,n

be the EEG features corresponding to the temporal window corresponding to times

between nth trial and (n + 1)st trials, with Xt,r = {xt,r,1, xt,r,2, · · · , xt,r,Nr
}, where

Nr is the number of trials in sequence r. From the graphical model we obtain the
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factorization in (8.3).

f(s = s, ct,r,1 = cr,1, · · · , ct,r,Nr
= ct,r,Nr

, xt,r,1 = xr,1, · · · , xt,r,Nr
= xr,Nr

) =

P (s = s)P (ct,r,1 = cr,1, · · · , ct,r,Nr
= ct,r,Nr

|s = s)·
[

T−1
∏

n=1

f(xt,r,n = xr,n|ct,r,1 = cr,1, · · · , ct,r,n = cr,n)

]

·

[

Nr
∏

n=T

f(xt,r,n = xr,n|ct,r,n−T+1 = cr,n−T+1, · · · , ct,r,n = cr,n)

]

(8.3)

If the intended symbol is known, the class label of each trial is uniquely determined.

Since the symbols corresponding to each individual trial is known, the class label of a

trial becomes 1 (target), if its symbol matches the intended one. Otherwise, the class

label becomes 0 (non-target). For each intended symbol, we can construct a class

label sequence corresponding to the trials. Let ζr : S → {0, 1}Nr , be the function

that evaluates the class label sequence for a symbol, and ζr(s)n be n
th output of ζr(s).

For example, if the trial symbols in the sequence are [K,W,D, S, E,H,Q,G, U, I],

corresponding ζ functions become,

ζ1(A) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

ζ1(D) = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

ζ1(U) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0].

Corresponding to determinism of the class labels given the intended symbol s, we

can write P (ct,r,1 = cr,1, · · · , ct,r,Nr
= ct,r,Nr

|s = s) as

P (ct,r,1 = cr,1, · · · , ct,r,Nr
= ct,r,Nr

|s = s) =
Nr
∏

n=1

δ[cr,n, ζr(s)n], (8.4)

where δ[i, j] represents the Kronecker delta function, i.e. δ[i, j] =











1, i = j

0, i 6= j.
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Marginalizing (8.3) with respect to class labels and using 8.4, we obtain (8.5).

f(s = s, xt,r,1 =xr,1, · · · , xt,r,Nr
= xr,Nr

) =

∑

[cr,1,··· ,cr,Nr ]∈{0,1}
Nr

{

P (s = s)
Nr
∏

n=1

δ[cr,n, ζr(s)n]·

[

T−1
∏

n=1

f(xt,r,n = xr,n|ct,r,1 = cr,1, · · · , ct,r,n = cr,n)

]

·

[

Nr
∏

n=T

f(xt,r,n = xr,n|ct,r,n−T+1 = cr,n−T+1, · · · , ct,r,n = cr,n)

]}

(8.5)

Using the sifting property of Kronecker delta function, we obtain (8.6).

f(s = s,xt,r,1 = xr,1, · · · , xt,r,Nr
= xr,Nr

) = P (s = s)·
[

T−1
∏

n=1

f(xt,r,n = xr,n|ct,r,1 = ζr(s)1, · · · , ct,r,n = ζr(s)n)

]

·

[

Nr
∏

n=T

f(xt,r,n = xr,n|ct,r,n−T+1 = ζr(s)n−T+1, · · · , ct,r,n = ζr(s)n)

]

(8.6)

Finally, using the definition of conditional probability, we obtain 8.7.

f(Xt,r = Xr|s = s) =

[

T−1
∏

n=1

f(xt,r,n = xr,n|ct,r,1 = ζr(s)1, · · · , ct,r,n = ζr(s)n)

]

·

[

Nr
∏

n=T

f(xt,r,n = xr,n|ct,r,n−T+1 = ζr(s)n−T+1, · · · , ct,r,n = ζr(s)n)

]

(8.7)

8.1 Estimating Trial Conditionals

To be able to calculate f(Xt,r = Xr|s = s), the only remaining part is to esti-

mate f(xt,r,n = xr,n|ct,r,1 = ζr(s)1, · · · , ct,r,n = ζr(s)n) and f(xt,r,n = xr,n|ct,r,n−T+1 =

ζr(s)n−T+1, · · · , ct,r,n = ζr(s)n). Due to the limitation on the duration of the cal-

ibration session, we would significantly suffer from low number of samples in the
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estimation of these conditionals. Therefore, we will make further assumptions or

approximations to be able to operate in low sample conditions.

Firstly, we will make the assumption of existence of non-target trials before the first

trial of the sequence. This assumption allows all of the trial data, x, to depend on

same number of classes including the trials with trial index n < T . Equivalently,

∀n < T ,

f(xt,r,n = xr,n|ct,r,1 = ζr(s)1, · · · , ct,r,n = ζr(s)n) =

f(xt,r,n = xr,n|ct,r,n−T+1 = 0, · · · , ct,r,0 = 0, ct,r,1 = ζr(s)1, · · · , ct,r,n = ζr(s)n).

Conformably, the presentation paradigm can be changed to fit to this assumption.

We can insert distractor trials, which are never targets, prior to first trial in the

sequence. Similarly, distractors can be added to the end of the sequence to better

capture the responses to the last trials. In the experiments, we added T−1 randomly

selected digits pre-sequence and post-sequence as distractors. Ultimately, to prevent

unnecessary time loss in the typing speed, we will let to have undivided continuous

presentation of trials, instead of artificially divided sequences. By detecting the

attention level of the user, blinks or eye movements, we should aim to let the subject

rest whenever they desire, instead of forcing them to obey the compulsory sequencing

imposed currently.

Furthermore, if we assume there does not exist more than one repetition of any trial

symbol in a sequence, or there exist at least T−1 other trials between the repetitions

of any trial symbol, then the set of class conditionals requiring estimation becomes

significantly restricted. For T = 3, we would only need to estimate the following



Chapter 8. Consideration of Trial Dependency 76

class conditionals:

f(xt,r,n = xr,n|ct,r,n−2 = 0, ct,r,n−1 = 0, ct,r,n = 0)

f(xt,r,n = xr,n|ct,r,n−2 = 1, ct,r,n−1 = 0, ct,r,n = 0)

f(xt,r,n = xr,n|ct,r,n−2 = 0, ct,r,n−1 = 1, ct,r,n = 0)

f(xt,r,n = xr,n|ct,r,n−2 = 0, ct,r,n−1 = 0, ct,r,n = 1).

Estimation of class conditionals may be done parametrically, using a distribution

model, or non-parametrically, e.g. using kernel density estimation. It is imperative

to note that applying a binary classifier for dimensionality reduction might cause this

proposed model to lose its meaning. Likewise, in the processing of the previous chap-

ters, we were applying dimensionality reduction via RDA with two class assumption.

Consequently, to have consistent assumptions, we utilize multi-class RDA directly as

the pdf estimator for the temporal dependency model. This corresponds to assum-

ing each class distribution to belong to a different multivariate normal distribution,

where the distribution parameters are estimated via shrinkage and regularization. It

is worthwhile to remark that one can apply other dimensionality reduction and pdf

estimation methodology.

8.2 Experimental Analysis

For experimental analysis of the proposed temporal dependency model, 8 healthy

participants, 5 males and 3 females, were recruited. Users attended three sessions, 1

calibration and 2 copy-phrase tasks. EEG recording and the preprocessing procedure

were almost the same as Section 7.4. The differences are listed in the following.

• For both models, the linear-phase bandpass filter was replaced with another

design with the cutoff frequencies of [2.5, 17] Hz. Filtering is followed by
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an increased downsampling to 256/6 ≈ 43 Hz. Changing the filter allowed

us to downsample further without causing aliasing. With the construction of

temporal dependency model, the conditional pdf estimates became more reliant

on the conditional probability estimates from the RDA model. Downsampling

is expected to decrease the number of features, correspondingly decrease the

reliance on the shrinkage and regularization procedures. This would potentially

give us more reliable pdf estimates.

• We added 2 distractors which were randomly selected digits to the beginning

and end of the sequences.

• Maximum number of sequences per epoch was set to 16.

• Number of trials per sequence was 14.

The calibration session consisted of 100 sequences of 10 trials, which contained the

target symbol in a randomized location in the sequence. We used the same cali-

bration file to assess the single sequence target selection performance and learn the

models to use in the copy-phrase tasks for two different modeling approaches, with

and without consideration of temporal dependency between trials. In Fig. 8.1, the

offline comparison of the models under cross validation is given. For each sequence,

maximum likelihood decision is made on selecting the target. It is important to

note that these hit rates are expected to be higher than real time single sequence

maximum likelihood selection performance, since there exists only 10 trials per se-

quence compared to 28 candidate symbols in typing operation. This corresponds

to having a chance level of 10% compared to 3.6%. For almost all of the subjects,

single sequence target detection rate has increased using the temporal dependency

model.

Following and using the calibration, subjects attended to two copy-phrase tasks, one

for the original model and one for the model that considers the temporal dependency.

In these copy tasks, subjects tried to copy the sentences in Table 7.1. Comparison
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Without the Consideration of With the Consideration of
Temporal Dependency Temporal Dependency

User 1 0.37 0.40
User 2 0.44 0.49
User 3 0.70 0.77
User 4 0.52 0.57
User 5 0.31 0.29
User 6 0.76 0.77
User 7 0.26 0.33
User 8 0.45 0.49
Average 0.47 0.51
Maximum 0.76 0.77

Table 8.1: Hit rates for correctly selecting the target trial in single sequence
under cross validation. Chance level is 0.10.

of ITR and typing speeds are given in Tables 8.2, 8.3 and 8.4. Among these limited

number of subjects, we noticed that the subjects with higher typing speeds (above 1

char/min) experienced significant typing speed gains from the temporal dependency

model, whereas others experienced performance drops. When we investigated the

experimental results in greater detail, we noticed that the temporal dependency

model tended to make earlier decisions even if the decision and the intended symbol

did not match. This might be due to the high dimensionality and unreliability of

the pdf estimation in the temporal dependency model. Correspondingly it might

possible to experience non-robustness to outliers. However making a claim on the

actual reason requires further investigation and experimentation.
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Without the Consideration of With the Consideration of
Temporal Dependency Temporal Dependency

User 1 3.32 1.04
User 2 0.25 4.11
User 3 4.51 3.81
User 4 2.96 2.48
User 5 1.04 0.17
User 6 4.81 4.29
User 7 4.29 0.92
User 8 4.51 2.98
Average 3.21 2.48
Maximum 4.81 4.29

Table 8.2: Information Transfer Rate (bits/symbol) with or without temporal
dependency modeling for different users.

Without the Consideration of With the Consideration of
Temporal Dependency Temporal Dependency

User 1 3.67 2.74
User 2 1.72 8.06
User 3 18.65 28.04
User 4 8.22 10.70
User 5 0.75 0.86
User 6 28.26 35.81
User 7 4.39 2.53
User 8 11.93 15.02
Average 9.70 12.97
Maximum 28.26 35.81

Table 8.3: Information Transfer Rate (bits/minute) with or without temporal
dependency modeling for different users.
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Without the Consideration of With the Consideration of
Temporal Dependency Temporal Dependency

User 1 0.72 0.32
User 2 0.47 1.69
User 3 3.92 5.79
User 4 1.78 1.97
User 5 0.15 0.49
User 6 5.88 7.53
User 7 0.92 0.36
User 8 2.51 2.79
Average 2.04 2.62
Maximum 5.88 7.53

Table 8.4: Typing speed in characters per minute for different scenarios and
different users. Only correctly typed text at the end is considered effective towards

the number of characters.
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Discussion and Future Work

In this dissertation, we have designed a context aware and gaze independent typing

BCI, RSVP KeyboardTM . Gaze independence 1 is accomplished through the use

of RSVP. Only very few research groups are utilizing gaze independent presentation

paradigms for typing. Most of them suffer from very low symbol rates compared to

matrix-based versions. As a remedy, we probabilistically incorporated the context

information to improve symbol rates.

In Chapter 6, we proposed a fusion methodology to jointly utilize ERP and context

information. Firstly, we proposed a method to improve the labeling decision for a

trial; target or nontarget. Via experimental offline analyses, we observed a significant

accuracy increase when context information is utilized. Secondly, we proposed two

Näıve Bayesian fusion approaches for online decision making purposes based on

two different assumption sets. Additionally, we proposed a recursive Bayesian fusion

methodology that does not commit to a single decision, but keeps track of all possible

histories. This approach improved the performance significantly compared to the

Näıve method in offline analysis. However, we did not implement the fusion with

a recursive Bayesian method due to practical considerations of additional cognitive

load and memory.

1of course, the user still needs to be able to see the screen and letters in the RSVP sequences

81
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In Chapter 7, we gave the details for operational modes of the real time system. This

includes a simulation methodology to estimate the typing performance for various

settings and conditions. A comparative experiment-based approach would be very

time consuming. We compared the real time typing performance with the experi-

mental results, and observed a qualitative similarity.

In Chapter 8, we propose a model considering the temporal dependency between tri-

als. Temporal dependency modeling slightly increased target selection performance

in offline analysis, this reflected to real time system as a more significant increase

in typing speed for users with typing performance above a certain level. However,

it did not improve performance for users with lower performance. Temporal depen-

dency model tended to make earlier decisions (sometimes incorrect), which might be

due to unreliability of high dimensional pdf estimation with low number of samples.

In future work, we will investigate potential ways to increase the conditioning of

the probability density function. This might be achievable by artifact filtering and

outlier rejection.

Even though RSVP KeyboardTM has a sufficiently high symbol rate to be able to

compete with other BCI typing systems, a significant effort has not been made for the

improvement of the EEG signal processing and classification procedure. Moreover,

most of the BCI field heavily relies on utilization of readily available, prepackaged

algorithms to solve the machine learning problems. Therefore there is potentially

significant room for improvements in signal processing and future work. In future

work, we would like to investigate the following.

• Time-frequency analysis of EEG: Most of the time-frequency analysis in BCI

field has been done using discrete Wavelet transforms. However, dWT is po-

tentially weak in denoising of signals with frequency content changing over

time. A potentially promising approach would be, time-frequency analysis

of target and nontarget ERP responses using Wigner-Ville distributions and
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correspondingly designing filters in time or frequency based on the informa-

tiveness of time-frequency features [130, 131]. Designing a filter to extract a

signal with frequency content changing over time, fractional Fourier transform

or its cascaded extensions can also be used [130].

• Continuous presentation: Splitting the presentation into sequences signifi-

cantly reduces the typing speed, since time is lost while nothing is shown

on the screen. Modifying the presentation into a continuous sequence and

detecting the attention level and blinks, we can activate the typing mode of

operation whenever the user pays attention.
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