
1.  Introduction
The reflectance of vegetation (Gates et al., 1965; Shull, 1929), and its scaling from leaf to canopy, reveals infor-
mation on vegetation health, taxonomic and functional composition, and ecosystem processes. Early vegetation 
indices (Kriegler et al., 1969) linked light reflectance in the red and near-infrared to chlorophyll and leaf water 
content (Tucker, 1979). Vegetation indices such as the Normalized Difference Vegetation Index (NDVI) have 
since been used to infer net primary production (NPP) and biomass accumulation (Tucker & Sellers,  1986). 
These indices have advanced to more precisely control for the effects of atmospheric conditions, that is, the 
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canopy radiative transfer model, PROSAIL, to generate global, gridded, daily visible to shortwave infrared 
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PROSAIL parameters but at first order, LPJ-PROSAIL successfully simulates surface reflectance dynamics. 
Future work will optimize functional relationships required for improving PROSAIL parameters and include 
the development of the LPJ-model to represent improvements in leaf water content and canopy nitrogen. The 
LPJ-PROSAIL model is intended to support missions such as NASA's Surface Biology and Geology and 
subsequent modeled products related to the carbon cycle and hydrology.

Plain Language Summary  The reflectance of the land surface provides information on vegetation 
composition, health, and productivity. New satellite missions are designed to better capture finely resolved 
reflectance information using imaging spectroscopy or hyperspectral techniques. These missions require 
modeling support to evaluate uncertainties. Here we present a new integrated land surface model that 
simulates reflectance spectra from 400 to 2,500 nm at 10 nm resolution for the entire global land surface 
at daily resolution. The model is evaluated using tower and pathfinder hyperspectral missions. We find 
that the modeling approach reproduces surface reflectance and identifies areas of model and observational 
improvements.
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Enhanced Vegetation Index, EVI (Huete et al., 2002), or the removal of non-photosynthetic pigments, that is, the 
Near-Infrared Reflectance of Vegetation, NIRv (Badgley et al., 2019).

Beyond traditional two-band vegetation indices that rely on multispectral reflectance data are reflectance retriev-
als using imaging spectroscopy techniques (Rast & Painter, 2019). Imaging spectroscopy, also known as hyper-
spectral remote sensing, can resolve spectral information in ∼3–10 nm increments for the visible to shortwave 
infrared region (VSWIR; 400–2,500  nm) and thus be integrated within a variety of modeling approaches to 
estimate leaf and canopy properties (Gamon et al., 2019; Wold et al., 2001). When quantified, the chemical and 
physical constituents of vegetation canopies, such as chlorophyll and carotenoid content, leaf dry matter, and 
leaf water content, can improve our understanding of terrestrial carbon, water, and energy budgets. For example, 
retrievals of vegetation canopy chemistry can provide insights into photosynthesis (Campbell et al., 2022), poten-
tially reducing uncertainty in key components of the global carbon cycle, for example, where global gross  primary 
production estimates range from 103 to 166 PgC yr −1 (Norton et al., 2019).

The use of imaging spectroscopy has so far been limited mostly to airborne observations, which sample discrete 
spatial and temporal domains; for example, the Next Generation Airborne Visible InfraRed Imaging Spectrome-
ter (AVIRIS-NG) instrument has been used in specific campaigns over North America, Europe, and India. Space-
borne imaging spectroscopy has been carried out via pathfinder missions such as NASA's Hyperion mission 
(Folkman et al., 2001; Middleton et al., 2017), the Italian Space Agency's (ASI) Hyperspectral Precursor of the 
Application Mission (PRISMA) (Cogliati et al., 2021; Loizzo et al., 2018), the Japanese Space Agency's Hyper-
spectral Imaging Suite (HISUI), and the German Aerospace Center (DLR) Earth Sensing Imaging Spectrometer, 
DESIS (Alonso et al., 2019; Krutz et al., 2019). These missions also tend to have limited acquisition strategies, 
mission duration, or do not cover the full VSWIR range.

Over the next decade, an emergence in Earth observations using imaging spectroscopy will take place; in early 
2022, DLR launched the Environmental Mapping and Analysis Program (ENMAP), and in the summer of 2022, 
NASA launched Earth Surface Mineral Dust Source Investigation (EMIT, Connelly et al., 2021). By the end of this 
decade, NASA will have launched the Surface Biology and Geology (SBG) mission (Schimel & Poulter, 2022; 
Stavros et al., 2022), and ESA will have launched the Copernicus Hyperspectral Imaging Mission for the Environ-
ment (CHIME) mission (Nieke & Rast, 2018), providing global VSWIR retrievals at 10-nm spectral resolution, 
with high signal-to-noise, 30-m spatial resolution, and with potentially less than 8-days revisit when the SBG and 
CHIME constellation are taken together.

End-to-end (E2E) simulators will play an important role in supporting the traceability of mission requirements 
and in providing pre-launch characterization of expected science and applications products (Verrelst, De Grave, 
et al., 2021; Verrelst, Rivera-Caicedo, et al., 2021). E2E simulators quantify instrument, retrieval, and algorithmic 
uncertainties and the propagation of these uncertainties under various workflows. For example, the Hypertrace 
workflow was developed for SBG to assess science value trades and algorithm performance (Cawse-Nicholson 
et al., 2022; Raiho et al., 2022). Three dimensional radiative transfer models (RTMs), such as the Digital Imaging 
and Remote Sensing Image Generation (DIRSIG, Lentilucci & Brown, 2003; Schott et al., 1999) and Discrete 
Anisotropic Radiative Transfer (DART, Gastellu-Etchegorry et al., 2015), can also inform E2E as they provide a 
controlled simulation environment whereby surface leaving reflectances are modeled via detailed 3-dimensional 
representation of objects and the scattering, absorption and transmission of light (Goodenough & Brown, 2012). 
These approaches use ray-tracing methods that are computationally intensive and thus limited to small areas and 
single points in time.

Alternatively, more computationally efficient two-stream radiative transfer approximations make general-
ized assumptions about leaf structure (i.e., gas-like behavior) that can be used to simulate reflectance (Yuan 
et  al., 2017). Combined with process-based models, such as land-surface models and ocean biogeochemistry 
models, 2-stream RTMs can also inform E2E as the basis of Observing System Simulation Experiments (OSSEs, 
Gelaro & Zhu, 2009). For example, ocean biogeochemical models have been coupled with RTMs to simulate 
water-leaving radiances in support of NASA's Plankton, Aerosols, Cloud and Ocean Ecosystem (PACE) mission 
instrument design and algorithm performance (Fan et al., 2021; Gregg & Rousseaux, 2017). For the land surface, 
the coupling of vegetation models and RTMs has been shown to produce canopy VSWIR spectra that are compa-
rable to observations (Antonarakis et al., 2022; Shiklomanov et al., 2020) and provide insights into plant traits 
and chemical composition.
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Here we describe the development of LPJ-PROSAIL, where LPJ is a dynamic global vegetation model (DGVM) 
developed for global-scale studies of vegetation dynamics and biogeochemistry (Sitch et al., 2003), and PROSAIL 
is a canopy radiative transfer model (Jacquemond et al., 2009) that combines leaf optical properties to simulate 
bidirectional reflectances. The integration of the two modeling approaches enables simulation of global scale, 
gridded time series of daily vegetation reflectances. We evaluate the model performance at five sites and for 
global applications. This activity supports NASA's SBG E2E tools and provides an opportunity to evaluate data 
volumes and formats, to assess instrument and algorithm performance, and to explore Level 4 mission products.

2.  Methods
2.1.  LPJ Dynamic Global Vegetation Model

The LPJ DGVM was developed in 2003 and couples a dynamic representation of vegetation demography with a 
mechanistic representation of plant physiology and biogeochemistry at a daily time step (Calle & Poulter, 2021; 
Sitch et  al.,  2003). LPJ simulates soil hydrology and vegetation dynamics in 0.5° grid cells where climate, 
atmospheric CO2, and soil texture are prescribed from different driver datasets (Figure 1). A “two-bucket” soil 
hydrology model is coupled to stomatal conductance, via atmospheric water demand and soil-water supply, thus 
limiting CO2 diffusion from the atmosphere to leaf under drought conditions (i.e., when atmospheric demand is 
greater than soil water supply).

Within LPJ, vegetation is categorized into 10 plant functional types (PFTs), namely tropical broad-leaved ever-
green (TrBE), tropical broad-leaved raingreen (TrBR), temperate needle-leaved evergreen (TeNE), temperate 
broad-leaved evergreen (TeBE), temperate broad-leaved summergreen (TeBS), boreal needle-leaved evergreen 

Figure 1.  LPJ-PROSAIL workflow, linking drivers with LPJ processes and the PROSAIL RTM. Surface reflectances are produced via this workflow, through 
PROSAIL and its coupling with LPJwsl. Global grid cells in the bottom panel are exaggerated 10× for display; actual resolution is 50 km 2.
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(BeNE), boreal needle-leaved summergreen (BoNS), boreal broad-leaved summergreen (BoBS), and a C3 and 
C4 photosynthetic-pathway herbaceous PFT. Each PFT competes for light, space, and soil water with mortality 
occurring as a result of insufficient light, low growth efficiency, a negative annual carbon balance, heat stress, 
or when the PFT-specific bioclimatic limits are sufficiently exceeded (Sitch et al., 2003). The PFTs are char-
acterized by leaf, fine root, sapwood and heartwood biomass pools for woody functional types and leaf and 
fine root pools for grasses. Photosynthesis is represented by the Farquhar biochemical model, determined as a 
co-limited process between maximum carboxylation capacity (Vcmax), electron transport (Jmax), and sucrose utili-
zation (Farquhar et al., 1980). Vcmax is estimated prognostically, as a function of photosynthetic active radiation 
(PAR), air temperature, and shortwave radiation, based on optimality theory to maximize photosynthesis when 
radiation is at its peak (Haxeltine & Prentice, 1996). Leaf area index (LAI) is estimated by integrating specific 
leaf area (SLA) with leaf biomass and scaled by a phenology “ramp” factor determined by growing-degree day 
requirements (Sitch et al., 2003). The canopy is represented as a single big leaf (Fisher et al., 2018), with no 
distinction for sun or shade-lit leaves and the model applies Beer's Law to approximate vertical light profile to 
estimate the fraction of absorbed PAR used in photosynthesis.

Disturbances include fire, with the sub-module based on the Glob-FIRM model by Thonicke et al. (2001) and 
implementation is described in Sitch et al. (2003). An age-class specific land use change and landcover (LUCLC) 
module was created and implemented by Calle and Poulter  (2021) within LPJ but was not run for this initial 
integration with PROSAIL.

2.2.  PROSAIL: The PROSPECT 5-b and 4SAIL Model

PROSAIL combines the PROSPECT 5-b generalized plate directional-hemispherical model (Feret et al., 2008) 
and the 4SAIL (Scattering by Arbitrary Inclined Leaves) canopy reflectance model (Verhoef et  al.,  2007). 
PROSAIL simulates canopy reflectance from 400 to 2,500  nm (at 1  nm resolution) by passing leaf optical 
properties (reflectance and transmittance) from PROSPECT through to 4SAIL, a four-stream radiative transfer 
approximation, which incorporates sun-angle geometry and filtering through a canopy. Using 14 input variables 
(see sections below for parameterization), six from PROSPECT-5b and eight from 4SAIL (Table 1), PROSAIL 
therefore links spectral variation in canopy reflectance to leaf biochemical properties, canopy architecture, and 
soil/vegetation interactions (Figure 2a).

PROSAIL estimates four reflectance factors for directional or hemispherically-integrated incident (incoming) and 
exitant (outgoing) light as a function of latitude, time of year, and time of day that are integrated across the canopy 

Table 1 
Parameters Used in Initializing the PROSAIL Model and How They Vary by Plant Functional Type (PFT) and Time

Var. name Unit Value Variability Source/equation

PROSPECT-5b parameter

  Leaf structure parameter n_layer - f (SLA) PFT, daily Jacquemond and Baret (1990)

  Chlorophyll a + b conc. Cab μg/cm 2 f (Vcmax) PFT, daily Croft et al. (2017)

  Carotenoid conc. Car μg/cm 2 8.0 - Feret et al. (2008)

  Brown pigment Cbrown - 0.01 - Feret et al. (2008)

  Equivalent water thickness Cw cm f (LAI * phen) PFT, daily see Figure 2b

  Dry matter content Cm g/cm 2 1/SLA PFT, yearly n/a

4SAIL parameter

  Leaf area index LAI - LAI * phen PFT, daily Sitch et al. (2003)

  Dry/wet soil reflectance ps - f (soil moisture) Tile, daily Top layer soil moisture

  Hotspot parameter hspot - 0.01 -

  Ratio of diffuse to total incident radiation SKYL - 0–1 Lat, DOY, time

  Solar zenith angle tts deg - Lat, DOY, time Pierce et al. (2005)

  Sun-observer zenith angle tto deg 0° - Assume nadir geometry

  Relative azimuth angle psi deg - Lat, DOY, time Pierce et al. (2005)

  Distribution of leaf angles within the canopy TypeLidf - 1 - Jacquemond et al. (2009)
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(Figure 1). The four reflectances are the pairwise combination of incident 
and exitant direct (i.e., directional, beam, collimated, or angle-dependent) 
versus diffuse (i.e., hemispherical, hemispherically-integrated, uncollimated, 
or angle-independent) radiation. Explicitly, the four reflectance outputs 
are bi-directional reflectance (BDR; i.e., direct incident, direct exitant); 
directional-hemispherical reflectance (DHR; i.e., direct incident, diffuse 
exitant), hemispherical-directional reflectance (HDR; i.e., diffuse incident, 
direct exitant), and bi-hemispherical reflectance (BHR; i.e., diffuse incident, 
diffuse exitant).

Some of the streams are insensitive to certain parameters, for exam-
ple, hot-spot has no effect on the hemispherical reflectance outputs 
(Schaepman-Strub et al., 2006). Of importance, PROSAIL does not estimate 
radiance, only reflectance, thus is independent of the quality of incident light. 
PROSAIL does take as input the solar zenith and azimuth angles for incident 
light, but those only affect the incident directional reflectance outputs (DHR 
and BDR).

For the purpose of comparison, we simulate a fifth reflectance output from 
LPJ-PROSAIL: top-of-canopy outgoing directional reflectance (TOCref). 
While BHR is the closest representation of intrinsic surface properties, BHR 
is insensitive to observer zenith angle by definition. As such, to compare with 
airborne and satellite instrumentation, we use a combination of BDR (direct 
incident and exitant) and HDR (diffuse incident and direct exitant) to esti-
mate TOCref (Equation 1). TOCref is scaled by the grid cell-specific ratio of 
diffuse-to-direct solar irradiance, is in the sensor direction, and is estimated 
as the ratio of BDR and HDR as follows:

TOCref =
(BDR × RADdir + HDR × RADdif )

(RADdir + RADdif )
� (1)

RADdir = (1 − SKYL) × Es� (2)

RADdif = (SKYL) × Ed� (3)

SKYL = 0.847 − 1.61 × sin
(

(90 − tts) ×
( � �
180

))

+ 1.04 × sin
(

(90 − tts) ×
( � �
180

))

× sin
(

(90 − tts) ×
( � �
180

))

� (4)

where Es and Ed are wavelength-specific direct and diffuse solar irradiance (W m −2 nm −1), respectively, as spec-
ified by Feret et al. (2008). These are scaled by SKYL, or the fraction of diffuse solar irradiance which itself is 
a function of the solar zenith angle (tts; units of degrees), defined by latitude, date, time of day, and declination. 
Because we assume cloud-free conditions, SKYL ranges from ∼0.2–0.3, with higher latitudes and early/late 
times of day resulting in a higher diffuse fraction due to longer distance of light travel through the atmosphere. 
This approach results in a ratio of total direct radiation to diffuse radiation roughly around 0.8. This implies that 
TOCref is the direct reflectance from a composite of ∼20% diffuse incident light and ∼80% direct incident light, 
as this is what most closely represents what airborne and satellite instruments actually measure.

2.3.  Integrating LPJ and PROSAIL

For integration with LPJ-wsl 2.0, the PROSAIL model code was translated from Fortran 90 to C (the codebase of 
LPJwsl) based on http://teledetection.ipgp.jussieu.fr/prosail/. LPJ calls on PROSAIL sub-routines each day when vege-
tation is present (i.e., LAI => 0). When LAI is equal to 0, the reflectances are equal to a weighted average of (a) soil, (b) 
branch (if present), (c) snow (if present), or (d) mineral-surface reflectances (see next section). Five of the 14 PROSAIL 
inputs (Table 1) are dynamic and based on PFT-specific temporal variation (Figure 1). The eight 4SAIL parameters are 
derived from LAI and from latitude, day of year, and time of day. The spectral response functions are output for each 

Figure 2.  (a) interpretation of representative visible to shortwave infrared 
region spectral response and sensitivity to biochemical and structural 
constituents (where N = 1.2, Cw = 0.009, Car = 8, Cab = 15, Cm = 0.005, 
Cbrown = 0.01), and (b) functional form selected to estimate variability in 
leaf water content (Cw) as a function of simulated upper layer (0–0.5 m) soil 
moisture. Green shading represents regions influenced by leaf nitrogen (largely 
due to chlorophyll a + b), although carotenoids and flavonoids also influence 
this region, and blue shading indicates wavelengths strongly influenced by 
water absorption.

http://teledetection.ipgp.jussieu.fr/prosail/
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grid cell at either daily or monthly timesteps. The user is provided a series of compiler flags that determine whether to 
run LPJ-PROSAIL (flag PROSAIL), the spectral resolution (LAMBDA_BINWIDTH), the output frequency (DAILY 
or MONTHLY), start year for writing, and an experimental averaging of trait values to inform PROSPECT-5b rather 
than area-weighted averaging of PFT, soil and snow spectra.

2.4.  PROSPECT-5b: Chlorophyll Content (Cab)

We derive chlorophyll a and b (Cab) from LPJ's prognostic PFT-specific canopy Vcmax (μmol CO2 m −2 s −1) based 
on empirical relationships between the quantities derived in Croft et al. (2017). For deciduous phenology PFTs, 
a 10-day running average of Vcmax is estimated to smooth day-to-day variability where PAR equal to zero causes 
Vcmax to drop to zero (Haxeltine & Prentice, 1996). For evergreen phenology PFTs, we assumed Vcmax was equal 
to the previous year's maximum value to avoid artifacts from the strong optimality assumption of Haxeltine and 
Prentice (1996), which drives Vcmax to zero at low temperature or low PAR values. We standardize Vcmax to 25°C 
(Vcmax25) using Equations 8.9 to 8.11 for C3 and C4 photosynthetic pathways from Oleson et al. (2013). For all 
PFTs, Cab is estimated by Croft et al. (2017) as:

Cab =
(𝑉𝑉cmax25 − 3.72)

1.3
� (5)

2.5.  PROSPECT-5b: Equivalent Water Thickness (Cw)

Cw is measured in units of cm, and the maximum value is around 0.01 cm (Jacquemond & Ustin, 2019). Cw 
is challenging to derive from land-surface models as field studies for calibration are sparse or involve scaling 
assumptions that are not directly comparable to modeled variables. Stand-scale metrics of field measured Cw that 
is, Roberts et al. (2004), show that Cw scales intrinsically with LAI, thus is a combination of canopy structure and 
leaf internal water, but PROSAIL requires leaf level Cw.

We instead approximate Cw from soil moisture (SM) in the uppermost soil layer of LPJ, using an exponential 
scaling factor (alpha = 5.5) and reasonable bounds on Cw (see Figure 2b):

𝐶𝐶w = (max𝐶𝐶w − (max𝐶𝐶w − min𝐶𝐶w)) ∗ 𝑒𝑒
−alpha∗soilmoisture� (6)

where maxCw = 0.01 and minCw = 0. The uncertainty of this approach is evaluated at first-order by changing the 
shape of the response function. Future work will calibrate this relationship for each PFT using tower or airborne 
measurements, or potentially incorporate plant hydraulics to get a more accurate estimate of Cw.

2.6.  PROSPECT-5b: Carotenoid (Car) and Brown Pigment (Cbrown)

The total carotenoid content (Car) is maintained at a constant 8.0 μg cm −2 as in Feret et al. (2008). Leaf brown 
pigment (Cbrown) is useful for discriminating between photosynthetic and non-photosynthetic (i.e., polyphenols, 
tannins, secondary metabolites, and defensive compounds in the leaves) light absorption within a leaf. Cbrown is 
poorly defined in the literature, and its interpretation varies from, most commonly, brown pigment concentrations 
(such as phenols or tannins) to the color of senesced leaves (Danner et al., 2019). Therefore, we set Cbrown to a 
constant value (0.01) to reduce dynamic uncertainty.

2.7.  PROSPECT 5-b: Leaf Structure (n_layer), Dry Matter Content (Cm)

The leaf structure coefficient (n_layer) is the number of compact layers specifying the average number of air and 
cell wall interfaces within the mesophyll cells of the leaves. We vary n_layer based on its relationship with SLA 
(g cm −2) and the proposed hyperbolic relationship from Jacquemond and Baret (1990) and Ceccato et al. (2002):

n_layer =
(0.9 SLA + 0.025)

(SLA − 0.01)
� (7)

Dry matter content, Cm (g cm −2), is estimated from the LPJ prescribed PFT SLA values (Sitch et al., 2003):

𝐶𝐶m =
1

SLA
� (8)
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2.8.  4SAIL

4SAIL requires eight parameters related to canopy structure and to solar and viewing geometry. LAI is PFT 
specific and varies daily and is used directly as an input to 4SAIL. The leaf inclination distribution function (LIDF) 
consists of two components, average leaf slope (LIDFa) and the leaf distribution bimodality (LIDFb). We assume 
a spherical LIDF, with LIDFa equal to −0.35 and LIDFb equal to −0.15 (Campbell, 1990; Verhoef, 1998). The 
hot spot parameter (SL), defined as the ratio of leaf width to canopy height, for our simulations, we assume to be 
no shadow (0.01), that is, pure hot spot, to reflect no canopy obstructions. The 4SAIL soil reflectance factor (ps) 
is assumed Lambertian (see Hapke, 1981; Verhoef & Bach, 2007) and is a function of LPJ SM in the upper layer:

𝑝𝑝s = SM ∗ 𝑅𝑅1 + (1 − SM) ∗ 𝑅𝑅2� (9)

where R1 and R2 are empirically-derived dry and wet soil reflectances, respectively (Feret et al., 2008).

Sun-observer viewing zenith angle (vza) is fixed to nadir, 0-degrees. Solar zenith angle (sza) and relative azimuth 
angle (raa) are estimated from day of year, latitude, and time of day (assuming a 10:30 a.m. local time overpass).

2.9.  Reflectances for Branches, Snow, and Mineral Soil

PROSAIL does not include reflectances for woody components (branches), water, snow or ice, or mineral soils, 
but does incorporate soil reflectance into the reflectance estimates. When LAI is zero, PROSAIL assumes that 
the reflectance is composed entirely of the background/soil component. In the basic 4SAIL model (Verhoef 
et al., 2007) the background component is based on a soil reflectance spectrum provided by a modified version of 
the Hapke model that includes a SM effect and accounts for a hot spot effect, for example, Equation 9. To expand 
the realism of our simulation and to avoid the assumption of background reflectance only coming from soils, we 
instead took representative spectra for branches from the ECOSTRESS spectral library (Meerdink et al., 2019), 
snow from Stamnes et  al.  (1988), and representative mineral spectra (GDS74, quartz, tectosilicate) from the 
USGS spectral library (Kokaly et al., 2017) and mixed these with the spectra simulated from PROSAIL (see 
Figure S2 in Supporting Information S1 for the spectra). We do not include open water or ice spectra.

Representative snow spectra >1,500 nm was smoothed using a loess smoother due to very high noise (k = 2, 
span = 0.15). The spectra for branches, snow, and desert mineral soil are mixed with the PROSAIL spectra based 
on the following simple assumption that when LAI < 1, the PROSAIL spectra are mixed with branch or snow as 
follows:

if LAI < 1& annual precipitation > 250mm&snowdepth == 0

TOCref = lai ∗ canopy ref lectance + (1 − lai) ∗ branch ref lectance
� (10)

if LAI < 1 and annual precipitation < 250mm&snowdepth == 0

TOCref = lai ∗ canopy ref lectance + (1 − lai) ∗ mineral soil ref lectance
� (11)

if LAI < 1 and snow depth > 0

TOCref = lai ∗ canopy ref lectance + (1 − lai) ∗ snow ref lectance)
� (12)

if LAI == 0 and snow depth == 0

TOCref = soil ref lectance
� (13)

if LAI == 0 and snow depth > 0 (assumes soil and branches are covered)

TOCref = snow ref lectance
� (14)

This approach assumes that (a) when snow is present, it covers branches and soil, (b) when precipitation is below 
250 mm, branches are absent due to insufficient moisture and therefore soil mineral reflectance is not mixed with 
branch reflectance, and (c) snow does not accumulate on the vegetation canopy and only partially masks out 
the soil reflectance. In future, a horizontal canopy structure scheme (e.g., clumping index) will be implemented 
following Braghiere et al., 2021, allowing us to estimate wood area index (WAI, Kuusinen et al., 2021) to more 
realistically determine the branch area and contribution to reflectance (Leblanc & Chen, 2001).
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2.10.  Averaging Spectra to the Grid Cell

PROSAIL is applied to each PFT following the steps described previously to estimate parameters for 
PROSPECT-5b and 4SAIL, and the mixing of branch and snow, if present. The individual PFT spectra are then 
averaged together, weighting the average based on the fractional coverage of each PFT within a grid cell.

2.11.  Simulations: Site Descriptions and Global Set Up

LPJ-PROSAIL was run globally at 0.5-degree spatial resolution using meteorological forcing from the Climatic 
Research Unit for years 1901–2020, CRUv4.05 (Harris et al., 2020) and soil data from the Harmonized World 
Soils Database version 2.0. The land-use change module was not used in the simulations, and thus the distribu-
tion and physiology was simulated for natural PFTs. The year 2020 was the output for evaluating the spectra. 
Five sites were selected for evaluation (Figures 3b–3f; Figure S1 in Supporting Information S1), these include 
sites equipped with canopy spectrometers and spaceborne data available from the DESIS and PRISMA imaging 
spectrometers. The five sites included a tropical forest, a temperate forest, temperate cropland, boreal forest, and 
a semi-arid desert.

The “Southern Old Black Spruce” site (SOBS) in Saskatchewan was used as a representative boreal forest (lati-
tude/longitude: 53.98°N, 105.12°W). The SOBS site is a mixed forest stand with a stand density of ∼10% larch 
(Larix laricina) and ∼90% black spruce (Picea mariana). Canopy reflectance spectra were collected using Photo-
Spec using an Ocean Optics Flame Spectrometer (400–900  nm; Grossmann et  al.,  2018, for full instrument 
description). PhotoSpec was installed atop the site's 25-m scaffolding tower and collected data from September 
2018–April 2021. PhotoSpec has a narrow field of view (0.7°) and takes a representative canopy scan over 44 
target locations every 30 min (Pierrat et al., 2021, 2022). 30-min representative canopy averages were filtered for 
clear sky conditions and averaged monthly over the entire collection period between 10:00–14:00 to reflect an 
approximate satellite overpass time equivalent to PROSAIL configuration.

The temperate forest site is Blackhawk Island, WI, USA (43.65°N, 89.79°W), a 73-ha island in the Wisconsin 
River. The island is composed of a mix of broadleaf and coniferous species, including oak (Quercus), maple 
(Acer), and pine (Pinus) species. A HySpex imaging spectrometer was used to measure full range canopy reflec-
tance (400–2,400 nm) at 1-m spatial resolution over Blackhawk Island on eight dates during the 2018 growing 
season (May–October) (Chlus & Townsend, 2022).

The Beltsville site is managed by the USDA Agricultural Research Service in Beltsville, Maryland (39.03°N, 
76.85°W). The local climate is temperate with hot and humid summers, long fall and typically mild winters, 
which strongly vary in seasonal LAI, canopy chlorophyll, and biomass patterns. The site is a 22-ha rainfed 
maize production field, planted annually and maintained under optimal nitrogen treatment, monitored by an 
eddy covariance tower. During the 2017–2020 time period, the site was instrumented with an automated canopy 
spectrometer system Dual FLuorescence boX (FloX, JB Hyperspectral Devices UG, Dusseldorf, Germany; Julitta 
et al., 2017), collecting diurnal reflectance measurements throughout the seasons. The FLoX down-welling optics 
were mounted at the top of a portable platform at approximately 3 m height. The upwelling optics were positioned 
at nadir and maintained at 1.5 m above the canopy throughout the growing season, by lifting periodically the 
measurement arm as new leaves developed and the canopy grew taller, viewing a 25° field of view (Campbell 
et al., 2019, 2022).

The semi-arid grassland site is the Rainfall Manipulation in the Santa Rita Experimental Range experimental facil-
ity (RainManSR) near Tucson, Arizona (31.79°N, 110.90°W). The spectra used for comparison were obtained 
using a full spectrum ASD FieldSpec3 (Zhang et  al.,  2022). Measurements were pre-season (a senescenced 
period during the driest June month before the monsoon), peak season (when NDVI peaks in early September), 
and post season (late September when NDVI has decreased to a winter minimum). The plots received the long-
term mean annual precipitation of 384 mm (2004–2018), which is consistent with total mean annual precipitation 
used in model runs (Figure 3).

The tropical site is La Selva, Costa Rica (10.34°N, 84.00°E), an evergreen tropical forest where a PhotoSpec 
imager is located on a 40-m tower providing continuous reflectance information from 400 to 1,000 nm. The same 
measurement and data filtering and aggregation approach was used for this site that was developed for the SOBS 
site.
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2.12.  Remote-Sensing Observations

Two spaceborne imaging spectrometers provided hyperspectral reflectance observations, DESIS and PRISMA. 
We acquired the spectra for DESIS and PRISMA for three sites from teledyne.tcloudhost.com and prisma.asi.it 
for the months June to August of 2020 and 2021. DESIS covers the spectral range 400–1,000 nm (VNIR) with 
bandwidth of 3.5 nm and spectral sampling of 2.5 nm, totaling 235 channels. PRISMA covers the full VSWIR 
spectrum, that is, 400–2,500 nm, with bandwidth of 12 nm and spectral sampling of about 9.3 nm resulting in 
240 bands. Both sensors collect data at 30-m spatial resolution. The used images were collected with clear-sky 
conditions over the target sites and rated as “acceptable” during the quality assessment. We downloaded surface 

Figure 3.  (a) Locations of the five intensive sites across North and Central America. The sites (b–f) were selected to be 
representative of temperature, moisture, and phenology gradients and for locations where tower or remote sensing data were 
accessible. The base map for (a) is the simulated reflectance for June at 550 nm. Tair is surface air temperaure, SWdown is 
downward shortwave radiation, and PPT is monthly precipitation.

http://teledyne.tcloudhost.com
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reflectance products processed to Levels 2A (DESIS) and 2D (PRISMA) and extracted the average spectra from 
2 × 2 pixels (3,600 m 2) polygons around the site's central coordinates.

AVIRIS-NG data were used for the boreal (flight ID  =  ang20170817t180204) and temperate (flight 
ID = ang20190620t150429) forest site (Gao et al., 1993; Thompson et al., 2015). For the boreal site, atmospher-
ically reflectance was available to download. However, the boreal forest site location was shaded by clouds in the 
available image, so we selected 25 evergreen spectra in the vicinity of the site and reported the average across 
the wavelengths. For the temperate forest site, radiance for the single site was downloaded and processed through 
atmospheric correction software, Imaging Spectrometer Optimal FITting (ISOFIT; Thompson et al., 2018), to 
obtain site-level reflectance.

2.13.  Analysis

The analysis consists of qualitative and quantitative comparisons between the simulated and observed spectra. 
The assumptions and uncertainty for Cw functional form are evaluated. Results from the comparisons are used to 
evaluate model performance, assumptions for linking LPJ and PROSAIL, and to identify further research areas 
for field studies and theoretical developments.

3.  Results and Discussion
Compared with ecosystem models that simulate reflectances internally, for example, Sellers (1985), our approach 
links the PROSAIL RTM with a global vegetation dynamic model. Many canopy RTMs exists and range in 
complexity from simpler models such as GeoSAIL (Huemmrich, 2001) and SCOPE (Soil Canopy Observation 
Photosynthesis Energy; van der Tol et al., 2009), to more complex models such as FLIGHT (three-dimensional 
Forest LIGHT interaction, North, 1996). PROSAIL provides intermediate complexity, that provides mechanisms 
and appropriate scaling in time and space for our global applications.

3.1.  Cross-Walking of LPJ to PROSAIL

We made several assumptions to provide the parameters required for PROSAIL listed in Table  1. For 
PROSPECT-5b, the parameters n_layers, Cab, Cw, and Cm were estimated directly from LPJ variables, and for 
Car and Cbrown, we used constant values due to lack of information. The main sources of error identified were in 
LAI, where values over the grassland site were unreasonably high, and in Vcmax, where values in the temperate 
forest site were lower than observed. Lower-than-normal Vcmax values also impart a negative influence on the Cab 
parameter (Croft et al., 2017). These light harvesting pigments have a strong influence on the nitrogen absorption 
region of the spectra (Figure 2a). Assumptions in the functional forms used to approximate leaf water content 
were evaluated through sensitivity analysis. The mixing of spectra from snow, branch and soil assumed linear 
mixing with the potential to explore more complex weighting schemes in the future. From a theoretical perspec-
tive, LPJ represents canopy structure via a simplistic big-leaf approximation and Beer's Law to approximate light 
penetration within the canopy. In addition, scaling assumptions between LPJ and PROSAIL, that is, simplifica-
tion of canopy structure by LPJ, versus representation of leaf and air space in PROSAIL, differ from one another 
and drive uncertainties.

3.2.  Site Level Characteristics

For the individual sites, Figures  4–8, LPJ-PROSAIL simulated the full VSWIR spectral response, including 
the month-to-month temporal and spatial variability. The boreal site (Figure 4) showed seasonal reflectances 
that included a snow signal for winter months mixing with the canopy reflectances. The temperate forest site 
(Figure 5) showed higher seasonal variation in the spectra compared to the boreal site because of the greater 
abundance of deciduous PFTs. High reflectance in the red region was symptomatic of low Vcmax values simulated 
by LPJ (30–40 μmol CO2 m −2 s −1) in comparison to measured values ranging from 60 to 100 μmol CO2 m −2 s −1. 
The temperate managed grassland (Figure 6) had less seasonal variation, and changes in the spectra were mainly 
from seasonality in Vcmax. As expected, the semi-arid grassland site (Figure 7) had lower overall reflectance and 
even less seasonality than the temperate site, although annual variability here would be expected to be quite high 
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as the region is prone to large precipitation fluctuations. Finally, at the tropical site (Figure 8), low seasonal vari-
ation in the spectra was simulated due to a combination of little to no seasonality in LAI. Together, Figures 4–8 
show that LPJ-PROSAIL captures adequate seasonal variation to inform changes in the reflectance spectra across 
the year.

Figure 4.  (a) Monthly top of canopy reflectance spectra from for the boreal evergreen forest site for 2020, (b) monthly leaf 
area index (LAI) for the plant functional types (PFT) location at the site, (c) monthly Vcmax for the same PFTs in (b), (d) 
monthly snowpack dynamics, and (e) monthly leaf water content weighted by PFT fractional area.
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Compared to observations, Figure  9 and Figure S3 in Supporting Information  S1, LPJ-PROSAIL tended to 
have a positive bias in reflectance across the full VSWIR range. This was mainly due to the LPJ LAI being 
higher  than what is realistic. The spectral features were generally similar to the observations from the tower, but 
the space-based spectra differ significantly from both model and tower reflectance and from each other. This 
could be related to the remote instruments' calibration or atmospheric correction; for example, sharp spectral 

Figure 5.  (a) Monthly top of canopy reflectance spectra for the temperate deciduous forest site for 2020, (b) monthly leaf 
area index (LAI) for the plant functional types (PFT) location at the site, (c) monthly Vcmax for the same PFTs in (b), (d) 
monthly snowpack dynamics, and (e) monthly leaf water content weighted by PFT fractional area.
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features at 940 and 1,140 nm are likely artifacts from atmospheric water-vapor absorption. Sun-sensor viewing 
geometries were held constant for PROSAIL but compared to the tower observations the view angles and field 
of view introduce significant biases. Figure 10 uses Hoevmueller plots to illustrate how the full VSWIR spectra 
evolve over a representative calendar year (2020). For each site, the reflectance features show the simultaneous 
effects of changes in biochemistry, vegetation structure, soil, snow, and branch mixing.

Figure 6.  (a) Monthly top of canopy reflectance spectra for the temperate C3 managed grassland site for 2020, (b) monthly 
leaf area index (LAI) for the plant functional types (PFT) location at the site, (c) monthly Vcmax for the same PFTs in (b), (d) 
monthly snowpack dynamics, and (e) monthly leaf water content weighted by PFT fractional area.
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3.3.  Sensitivity in Leaf Water Content

Figure 11 shows the biases of the spectra, representative for July 2020, in relation to how the functional form 
of Cw to SM is parameterized. The non-linear (default scheme used in the global simulations) shows the 
mid-wave infrared (MWIR) and short-wave infrared (SWIR) are most sensitive to the parameterization of 
the Cw. As expected, the boreal (Figure 11a) and semi-arid (Figure 11d) site are the most sensitive to the Cw 
parameter as they are the most water limited sites, whereas the tropical site (Figure 11e) is not sensitive to the 
change in functional form because SM is high enough to not affect Cw. Further work is needed to relate leaf 

Figure 7.  (a) Monthly top of canopy reflectance spectra for the semi-arid grassland site for 2020, (b) monthly leaf area 
index (LAI) for the plant functional types (PFT) location at the site, (c) monthly Vcmax for the same PFTs in (b), (d) monthly 
snowpack dynamics, and (e) monthly leaf water content weighted by PFT fractional area.
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moisture to fitting Cw using tower and leaf-level observations or by integrating airborne data, including radar 
that can retrieve canopy moisture content.

3.4.  Global-Scale Characteristics

The spectral response functions and their seasonal dynamics from the five sites show that LPJ-PROSAIL captures 
expected variability across biomes, where phenology, SM, and seasonality are different. At the global scale, 
LPJ-PROSAIL simulated spectra for each grid cell, 0.5-degrees resolution, at a daily temporal resolution. These 

Figure 8.  (a) Monthly top of canopy reflectance spectra for the tropical evergreen forest site for 2020, (b) monthly leaf area 
index (LAI) for the plant functional types (PFT) location at the site, (c) monthly Vcmax for the same PFTs in (b), (d) monthly 
snowpack dynamics, and (e) monthly leaf water content weighted by PFT fractional area.
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spectra can be used with empirical algorithms to derive canopy properties as independent verification or eval-
uation of the LPJ model or to be used to update model states and assess errors and uncertainties. Additionally, 
vegetation indices can be derived from the simulation as alternative measures for site-level evaluation or space-
borne observations. Figure 12 illustrates how LPJ-PROSAIL NDVI can be derived for the winter and summer 
months using ((850 nm − 650 nm)/(850 nm + 650 nm)) and its comparison to the MOD13C2 v6.1 NDVI product. 
In January, snow cover and deciduous phenology lead to low NDVI in high latitudes, with fairly high NDVI in 
the pan-tropics. The differences between LPJ-PROSAIL and MODIS are most noticeable in the mid-latitudes, 
where land use and agriculture, not included in LPJ-PROSAIL, are causing differences in observed and simulated 

Figure 9.  Comparison of August 2020 spectra for the five sites (a–e) and the available in-situ (e.g., PhotSpec, FieldSpec) and spaceborne observations (AVIRIS-NG, 
DESIS, PRISMA).

Figure 10.  Hoevmueller plots illustrating the full temporal variation in spectra for each of the five sites (a–e).
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vegetation. In summer, the main differences are in the southern hemisphere sub-tropical regions, like the cerrado 
and miombo areas. In the winter, there is overestimation in the eastern United States and Europe, possibly due to 
an overestimate of LAI or PFT mismatches (e.g., too high a fraction of deciduous PFTs). A combination of land 
use, disturbance histories, and parameterization of LPJ PFTs are causing mismatches in phenology and can be 
areas of future model improvement.

Figure 11.  Spectra for two functional forms of leaf water content, Cw, for month of July 2020 for each of the five sites (a–e).
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3.5.  E2E Applications

As imaging spectroscopy advances from targeted airborne campaigns to global spaceborne missions, there is an 
increasing need for advancing modeling tools to provide E2E support and to take advantage of new observations. 
Here, we describe the coupling of a DGVM model with the PROSAIL canopy radiative transfer model and 
demonstrate a simulation of global daily spectral responses. While our approach makes assumptions to match the 
theoretical basis of modeling approaches, the cross-walking of parameters, and functional forms, we show at first 
order that the spectral features and their changes over time compare well to independent observations from tower 
observations and from spaceborne instruments. The coupling also shows how key variables in LPJ, such as Vcmax 
and LAI, require development to be more consistent with observations.

The coupling of LPJwsl and PROSAIL has identified areas of future research to improve the cross-walking of 
physiological and structural parameters. Future work will consist of improving the structural representation of 
vegetation, the physiological parameterization, and the calibration of parameters responses using field observa-
tions. First, we intend to move beyond “big-leaf” representation to multi-layer canopy scheme (i.e., Braghiere 
et al., 2021) by including a clumping index to estimate horizontal structure. This approach can reduce reflectance 
values due to the increased scattering. This is particularly pertinent for needle-leaved canopies which can be 
highly clumped. This will reduce the large discrepancies between modeled versus measured reflectance from our 
Saskatchewan location (Figure 9a). Furthermore, this will allow us to better partition the fraction of reflectance 
derived from wood and branches (Leblanc & Chen, 2001).

Figure 12.  Derived global NDVI ((850 nm − 650 nm)/(850 nm + 650 nm)) for 2020 January (a) and for July (b), compared to MODIS (MOD13C2 v6.1) (c, d), and the 
difference between MODIS and LPJ-PROSAIL (e, f). See Figure S4 in Supporting Information S1 for density plot.
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We also intend to implement an interactive nitrogen scheme where the effects of nitrogen limitation on Vcmax can 
be better estimated and Cab can be partitioned into its separate components to better inform PROSPECT-5b. 
We expect these modifications to subsequently reduce reflectance values in the 400–800 nm region, which are 
most apparently different where needle-leaved PFTs are present (Figures 9a and 9b; Zhang et al., 2017). Func-
tional forms of LPJ-PROSAIL parameters will be derived using tower (i.e., SpecNet) or airborne (i.e., National 
Ecological Observation Network, NEON) time series. Assumptions for the 4SAIL parameterization will be 
explored by evaluating changes in assumptions for leaf angle distributions (e.g., LIDF) by PFT (planophile, 
erectophile, plagiophile, extremophile, and uniform). Simulations will be set up to use land use, improving some 
of the PFT representation in heavily managed regions. The developments also enable dynamic-trait modeling to 
be further explored, moving away from fixed-trait modeling that many land surface models have relied on for the 
past two decades (Trugman, 2022; Verheijen et al., 2013). In addition, model experiments can be carried out to 
understand spectral responses to climate trends, climate extremes, natural disturbances such as fire, and vegeta-
tion stress to water shortages (Shiklomanov et al., 2021).

The remote-sensing comparison underscores the need for continued improvement in instrument calibration and 
atmospheric correction. Differences between remote and in-situ reflectances were far larger than the discrepancy 
between the model and in situ data. This suggests that, even if models were perfect, the remote data might not be 
sufficient to accurately estimate LPJ-PROSAIL parameters. Previous studies of trait measurements often rely on 
limited airborne campaigns with careful, manual attention to instrument calibration and atmospheric correction. 
Operational trait estimation on global scales will require similarly high-fidelity estimates of surface reflectance 
to be produced automatically. Reconciling model predictions with remote data will require continual progress to 
improve atmospheric correction uncertainties (LeBauer et al., 2013).

LPJ-PROSAIL creates opportunities for both informing mission design and to also enable the global Earth system 
modeling community to be able to take advantage of upcoming missions (Angel & McCabe, 2022). Because  the LPJ 
model represents generalized ecosystem properties and at large spatial scales, and that the spectra measured from 
towers or aircraft of satellites have their own sources of uncertainty and bias, it may not possible to perfectly match the 
modeled with observed. The LPJ-PROSAIL model will be used for mission support that will help quantify mission 
performance and improve ments to the carbon and hydrologic cycles, core science focal areas for NASA's SBG mission.

Data Availability Statement
The code is available via Zenodo at https://zenodo.org/record/7477764#.Y6XZLS-B3T8.
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