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Highlights 

• Novel method for cloudy-sky albedo estimation involving passive microwave and 

climatological data 

• Higher accuracy of 1 km cloudy-sky albedo compared to other methods (especially in 

snow) 

• Significantly improved performance for capturing ephemeral snow events under clouds 

Abstract 

Land surface albedo (LSA) is an essential component of the surface radiation budget, and 

has been retrieved extensively as a basic remote sensing product; however, daily LSA products 

suffer from extensive data gaps primarily caused by cloud cover. Accordingly, several gap-filling 

methods were developed (e.g., spatiotemporal interpolation and data fusion with albedo 
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climatology), although the traditional methods are limited by cloud scale and surface heterogeneity. 

Further, as the largest varying surface landscape feature, seasonal snow cover substantially 

influences LSA and represents a major uncertainty factor of gap recovery because previous studies 

failed to employ actual surface signals to capture such ephemeral but intense albedo changes under 

cloud cover. To address this issue, a three-step framework was proposed for estimating 1 km 

cloudy-sky LSA using passive microwave (PMW) data, albedo climatology, and Visible Infrared 

Imaging Radiometer Suite (VIIRS) clear-sky albedo: 1) All-sky snow albedo was estimated from 

PMW brightness temperatures using a statistical model, 2) Continuous albedo dynamics were 

generated by combining the all-sky snow albedo with snow-free climatological albedo, and 3) The 

1 km cloudy-sky LSA was predicted after filtering 1 km VIIRS clear-sky LSA by the albedo 

dynamic series. PMW-derived snow albedo was assessed over the Contiguous US (CONUS), and 

the final 1 km cloudy-sky LSA was validated across 10 sites from SURFRAD and Core AmeriFlux 

in 2013. Based on the comparison with high-quality MODIS pixels, the estimated snow albedo 

yielded an overall RMSE of 0.064 over CONUS, with a bias of -0.010 (R2 = 0.845). The recovered 

1 km cloudy-sky LSA produced RMSEs of 0.074 (0.137) for all (snow) samples, a significant 

improvement over the Global Land Surface Satellite (GLASS) gap-free albedo products especially 

on snow cases (p-value = 0.027). Corresponding RMSE in calculating surface net radiation was 

also decreased by 38.91 W·m-2; and anomalous snow samples were corrected as well. The 

temporal analysis and all-sky LSA mapping suggest that the recovered LSA has satisfactory 

spatiotemporal continuity, and successfully captured details of spatiotemporal variability, 

especially for ephemeral snow events. This study provides an innovative solution to recover gaps 

in LSA data, and considerably improves the LSA accuracy under cloud cover, which can inform 

snow melting modeling, hazard forecasting, and irrigation management. 
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48 

49 1 Introduction  

Land surface albedo  (LSA) is  defined as  the fraction of reflected  surface  shortwave  

radiation flux among total incident shortwave radiation ( Trenberth et al., 2009), and is a critical  

surface radiation  component  that  characterizes  the reflective ability  of land surfaces  towards  solar  

energy  (Liang e t al., 2010).  Accordingly, it is  considered  an  Essential Climate Variable  (GCOS,  

2004),  and  determines  the surface energy balance  and partitioning  of  general circulation  (Heldens  

et al., 2017;  Lawrence  et al., 2019)  and  biophysical  models  (Anderson et al., 2011),  as well  as  

providing important data for  hydrological budget  monitoring  (Chen and Liu, 2020; Jiang e t al., 

2019)  and weather forecasting  (Boussetta et al., 2015).  LSA can be obtained by  ground  

measurement, model simulation,  and  satellite retrieval  (Gueymard et al., 2019); however, 

considering  the high spatiotemporal heterogeneity  of  LSA impacted  by land cover and soil types  

(Davidson and Wang, 2004; He et al., 2019), vegetation phenology  (Rechid et al., 2009), soil 

moisture  (Guan et  al., 2009),  deposited soot  and absorbing  aerosol  (Jia et al., 2020; Zhang e t al., 

2019a),  flooding and wildfire  (Huang et al., 2013; San Jose et al., 2001), etc.,  satellite retrieval 

remains  the only  practical  approach  for accurately  monitoring global  LSA.   

Satellite-derived LSA  datasets  have  been extensively  developed (Qu et al., 2015), 

including for  the Moderate Resolution Imaging Spectroradiometer  (MODIS)  (Schaaf  et al., 2011;  

Schaaf et  al., 2002), Visible  Infrared  Imaging Radiometer Suite (VIIRS)  (Wang et  al., 2013), 

Advanced Very-High-Resolution  Radiometer (AVHRR)  (Karlsson et al., 2013; Liang et al., 2013), 
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and Landsat (He et al., 2018). Although these global LSA products are easily accessible, they 

suffer from data gaps, primarily due to cloud cover, sensor malfunction, and orbital discontinuities. 

For example, one analysis of 12 yr MODIS data suggested that cloud cover over global land can 

reach 55% (King et al., 2013). Compared to the high surface heterogeneity, clouds severely restrict 

the application of the LSA products. Consequently, numerous studies have focused on LSA 

reconstruction and related satellite data gap-filling (Gerber et al., 2018; Shen et al., 2015; Yan and 

Roy, 2018), either through pre-processing with the Bidirectional Reflectance Distribution Function 

(BRDF) coefficients and nadir BRDF adjusted reflectance (Ju et al., 2010; Muller et al., 2012; 

Samain et al., 2006), or post-processing of LSA imagery (Fang et al., 2007; Jääskeläinen et al., 

2022; Liu et al., 2013a; Shuai et al., 2014). Based on input sources, these image reconstruction 

methodologies can be divided into three categories: data interpolation, data filtering using prior 

knowledge, and data fusion from multiple sensors. 

Interpolation-based methods reconstruct image gaps by applying the information only from 

temporally, spatially, or spatiotemporally adjacent non-missing pixels (Yan and Roy, 2020). 

Temporal interpolation generates a statistical time series model fit by neighboring clear-sky 

samples, such as the harmonic analysis of time-series (HANTS) (Roerink et al., 2000), spline 

interpolation (Sharifi et al., 2019), and temporal Fourier analysis (Scharlemann et al., 2008); 

however, accuracy is considerably affected by the temporal window size and cloud duration. Based 

on the spatial autocorrelation, missing pixels can be also filled by spatial interpolation, such as 

with inverse distance weighted (Tomar et al., 2014) and Kriging interpolation (Yang and Hu, 2018). 

Nevertheless, accuracy here depends on the spatial distribution of reference pixels and surface 

heterogeneity. Moreover, spatiotemporal interpolations can incorporate both texture and temporal 

variation around missing values, such as spatiotemporal Savitzky-Golay interpolation (Cao et al., 

4 



 
 

   

        

        

     

    

       

         

         

  

       

        

      

  

    

  

     

        

          

       

        

      

    

   

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

2018), nonnegative matrix factorization (Li et al., 2019b), and spatiotemporal tensor completion 

(Chu et al., 2021). Still, image spatial textures are not easily reconstructed when the scale of cloud 

cover is substantial (Wu et al., 2011). Subsequently, to fully extract spatiotemporally adjacent 

information, machine learning (ML)-based methods have been developed to deal with this issue 

and fill missing values for large cloudy regions (Sarafanov et al., 2020; Wang et al., 2022; Wu et 

al., 2019; Zhang et al., 2020a; Zhang et al., 2018). Although these methods are effective for 

maintaining image texture, they cannot capture ephemeral albedo disturbance without the accurate 

acquisition of signals under clouds (e.g., snowfall and melting), as such considerable albedo 

variation caused by snow could be mostly hidden, leaving reconstructed LSA with considerable 

bias. Further, the feasibility of ML-based models is limited by the quality and quantity of training 

samples. In addition, the statistical models mentioned above may not be properly constrained by 

physical relationships, such as the impacts of vegetation phenology on LSA (He et al., 2014; Jia 

et al., 2022c). 

Missing pixels can be predicted and physically constrained by filtering discontinuous clear-

sky data series based on prior knowledge, such as albedo climatology, ecosystem-dependent 

phenological profiles, and corresponding simulated series from physical models. Albedo 

climatology is the continuous annual series generated by averaging albedo records across multiple 

years for each day of year (DOY), thereby representing general albedo variation at the 

climatological scale for each pixel (Jia et al., 2022c). By filtering real-time retrievals of clear-sky 

days using the climatological information, gaps in the data can be accurately predicted (Fang et 

al., 2007; Liu et al., 2013a; Xiao et al., 2011). Ecosystem curve fitting methods have been proposed 

to generate continuous MODIS albedo products based on vegetation phenology (Moody et al., 

2005; Samain et al., 2006). Such phenological curve fitting studies typically combine neighboring 
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years of clear-sky samples into a single-year period for decreasing the fitting uncertainty (Kennedy 

et al., 2010; Rufin et al., 2019), as this prior knowledge can restrict predictions using physical 

correlations of albedo change with vegetation phenology; however, it still cannot confidently 

reflect real-time variation under clouds without introducing actual surface information, especially 

the substantial albedo change caused by snow. In comparison, model simulations continuously 

estimate real-time land surface and atmospheric interactions, clear-sky satellite retrievals can be 

filtered correspondingly via continuous simulations of temporal (Jia et al., 2021) or spatiotemporal 

data series (Jia et al., 2022a); nevertheless, the recovery accuracy is considerably affected by 

simulation uncertainty on cloudy days, especially at higher elevation regions. 

As the largest varying landscape features of the Earth's surface, snow cover is a 

predominant driving factor of LSA variations, and it is also a primary source of error for current 

reconstruction methodologies due to the distinct albedo difference with or without snow coverage 

(Moreno-Martinez et al., 2020). Previous reconstruction studies either only focused on snow-free 

conditions (Ju et al., 2010; Shuai et al., 2014), or produced considerable errors under snow-covered 

conditions. For example, cloudy-sky snow albedo has a root mean square error (RMSE; i.e., 

accuracy) of 0.198, substantially higher than snow-free reconstruction results (RMSE = 0.073) 

(Fang et al., 2007). Besides, most seasonal snow albedo samples were not captured by comparing 

reconstructed results with ground measurements in spring and fall (Liu et al., 2013a; Liu et al., 

2013b), resulting in bias greater than 0.13 (Urraca et al., 2022). The uncertainty is mainly because 

ephemeral snow is easily hidden under cloud cover, and such seasonal snow cover disturbance is 

difficult to be obtained only based on interpolation and climatology. The large uncertainties of 

snow albedo lead to ‘cold bias’ (−3 to −11 °C) of simulated surface air temperature at the Tibetan 

plateau (Meng et al., 2018), and ultimately affect the Asian monsoon system modeling. 
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Accordingly, it is urgent to improv snow albedo estimation under clouds by incorporating actual 

snow signals. 

Passive microwave radiometers (PMW) can penetrate clouds, and have shown their 

capacity to characterize land surface variations under cloud cover (Abdalati and Steffen, 1997). 

Data fusion of clear-sky optical retrievals and all-sky PMW retrievals has become an important 

method for generating gap-free high-resolution images of surface variables, such as snow cover 

extent (Li et al., 2019a; Metsämäki et al., 2015), land surface temperatures (Wu et al., 2022; Xu 

and Cheng, 2021; Zhang et al., 2019b), soil moisture (Cui et al., 2016; Sabaghy et al., 2018), and 

sea ice albedo (Laine et al., 2011; Pistone et al., 2014). To the best of the authors’ knowledge, few 

studies have focused on improving cloudy-sky snow albedo estimation by involving PMW data. 

Indeed, it has been shown that variations in snow can be observed through PMW radiometers that 

are capable of recording the scattering information caused by surface snow physical properties, 

such as snow depth, density, and grain size (COMET, 2015), and presence of melting (Foster et 

al., 1984). PMW data represent an important data source for retrieving snow cover and snow water 

equivalent (SWE) (Foster et al., 2005; Luojus et al., 2021; Mortimer et al., 2020; Vander Jagt et 

al., 2013). SWE is a widely used measurement of snow amount, and a decisive parameter for 

calculating snow cover fractions and albedo in land surface models based on snow depletion curves 

(Essery and Pomeroy, 2004), such as the Noah model (Barlage et al., 2010), biosphere-atmosphere 

transfer scheme (BATS) model (Yang et al., 1997), simple biosphere (SiB) model (Sellers et al., 

1996), and Goddard Institute of Space Studies (GISS) model (Hansen et al., 1983). Therefore, the 

snow depletion curve indicates that SWE and snow depth highly correlate with LSA before snow 

fully covers the ground (generally when snow depth is ≤ 20 cm, e.g., ephemeral snow) (Chen et 

al., 2014). Accordingly, emerging studies have utilized PMWs for retrieving snow cover fraction, 
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a direct component determining snow albedo value (Kostadinov et al., 2019; Xiao et al., 2021a; 

Xiao et al., 2021b). Based on the short revisit period of PMW data, and its clear physical 

relationship with SWE and snow fraction (Bair et al., 2019; Pan et al., 2015; Xue et al., 2014), it 

maintains strong potential for characterizing snow albedo dynamics under clouds as well (Painter 

et al., 2016). 

In order to improve the cloudy-sky LSA accuracy affected by snow cover, in this study, a 

three-step framework was developed using the PMW brightness temperatures (BTs), albedo 

climatology, and clear-sky LSA retrievals: 1) The all-sky snow LSA was retrieved from PMW 

BTs using a statistical model; 2) By combining the all-sky snow LSA with snow-free albedo 

climatological data, continuous albedo dynamic series were generated as prior knowledge, and 

considered as the first estimate of all-sky LSA; and, 3) To correct prior knowledge for fitting real-

time conditions, a spatiotemporal filtering method was implemented to fuse available clear-sky 

VIIRS albedo, with the albedo dynamic series, allowing for the 1 km LSA under clouds to be 

recovered. 

The proposed framework here was implemented over the Contiguous United States 

(CONUS) using blue-sky daily VIIRS albedo, and calibrated resolution-enhanced Special Sensor 

Microwave Imager/Sounder (SSMIS) BTs. The novelty of this research stems from its: 1) 

Recovery of cloudy-sky LSA by incorporating both actual observations under clouds, and prior 

knowledge from albedo climatology; 2) Substantial improvement in estimation accuracy of 

cloudy-sky snow albedo compared with existing albedo products, especially for ephemeral snow 

cover; 3) Suggestion that this framework is sensor-independent, and feasible across various regions; 

and 4) Capacity to decrease uncertainty when quantifying surface energy budgets on cloudy days, 

which is critical to snow cover and melting modeling (Kumar et al., 2020; Xu and Shu, 2014), 
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irrigation management (Wang et al., 2014), flood forecasting (Bryant et al., 2013), extreme 

weather assessments (Guan et al., 2010). 

2 Data and methods 

2.1 Data 

2.1.1 MODIS surface albedo product 

The MODIS Daily 0.05° shortwave surface albedo (MCD43C3) from 2015 to 2019 was 

sampled as the response variable during snow albedo model training. MODIS albedo was 

estimated from a semi-empirical linear kernel-driven model (Lucht et al., 2000), with > 20 years 

of accumulated data with high accuracy (Lawrence and Chase, 2007; Li et al., 2016); thus, it has 

been employed as the training label in numerous studies (Cho et al., 2022; Xiao et al., 2021a). 

Blue-sky albedo is calculated using black-sky albedo (BSA) and white-sky albedo (WSA) from 

MCD43C3, where the 0.55 μm aerosol optical depth (AOD) from MOD08 was utilized to assign 

weights to BSA and WSA (Jia et al., 2022c). Snow samples were included for training and 

evaluation only if the BRDF quality was “best”, and the “percent inputs” was 100%. Further, due 

to computational resource limitations, snow albedo from 2015 to 2019 (the period was randomly 

selected) was sampled over CONUS for constructing the statistical model, and the predictions were 

evaluated for 2013, the year when VIIRS LSA was offline produced for algorithm test. 

2.1.2 Interactive Multisensor Snow and Ice Mapping System (IMS) snow mask 

IMS all-sky binary snow mask from the National Oceanic and Atmospheric Administration 

(NOAA) was utilized to classify snow and snow-free pixels. The IMS snow mask is generated by 

fusing optical, infrared, and PMW satellite data, as well as ground measurements (Helfrich et al., 
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2007; Ramsay, 1998). The daily rate of agreement between IMS and site measurement mostly 

ranges between 80% and 90% (Chen et al., 2012), which meets the requirement for generating new 

datasets, such as seasonal melt duration/ice cover duration (Brown et al., 2014). It has been 

selected as the reference snow mask for reanalysis datasets (Dee et al., 2011; Muñoz-Sabater et al., 

2021), VIIRS series satellite product production (Peng et al., 2020), and other product assessments 

(Chiu et al., 2020; Hall et al., 2019; Orsolini et al., 2019). Here, only samples of snow days were 

utilized for the snow albedo model training and prediction. 

2.1.3 PMW observations 

As essential independent variables of snow albedo estimates, PMW observations typically 

maintain a coarse spatial resolution (> 0.1 °), which does not align with the optical LSA products. 

To address this limitation, the Calibrated Enhanced-Resolution Passive Microwave Daily Equal-

Area Scalable Earth Grid (EASE-Grid) 2.0 BTs, released by the Making Earth System Data 

Records for Use in Research Environments (MEaSUREs) from NASA, were employed, as they 

represent an improved, enhanced-resolution, daily PMW dataset for monitoring cryospheric and 

hydrologic long-term dynamics from Scanning Multichannel Microwave Radiometer (SMMR), 

SSMIS, and the Advanced Microwave Scanning Radiometer-Enhanced (AMSE) (Brodzik et al., 

2018). MEaSUREs project reconstructed the original spatial resolution by the effective 

measurement response function (MRF), and gridded the observations according to the “drop-in-

the-bucket” average algorithm (Brodzik and Long, 2018). This calibrated dataset has previously 

been used for mapping high resolution snow parameters (Meloche et al., 2022; Mortimer et al., 

2022; Pan et al., 2020; Xiao et al., 2021a). Three channels (19, 37, and 91 GHz) of SSMIS (F18), 

in both horizontal (H) and vertical (V) polarization from descending orbit (morning) were used 

here. Notably, 22 GHz was not included due to its high sensitivity to atmospheric water vapor 
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(Liljegren et al., 2005). The spatial resolution of 37 and 91 GHz was aggregated from 3.125 km to 

6.25 km (~ 0.05 °) to align with the 19 GHz data in Climate Modeling Grid (CMG). It should be 

noted that PMW data have swath gaps at lower latitudes due to their limited scanning widths. As 

the temporal duration of such swaths only lasts for a single day in a specific location (Zhang et al., 

2020b), temporal linear interpolations were used to fill gaps in the data based on observations from 

the previous and following days. As snow events primarily occur at mid- and high-latitudes, this 

simple approach was expected to have minimal impacts on the overall results.  

2.1.4 All-sky land surface temperature (LST) 

All-sky LST was an additional independent variable for snow albedo estimation. PMW 

signals depend on the amount of scattering and attenuation by the snowpack, while longwave 

emissions from the land surface below the snowpack can also substantially influence the final BTs 

received by satellites. Accordingly, LST is commonly required to accurately interpret PMW 

signals for SWE estimates (COMET, 2015; Hancock et al., 2013). Simultaneously, snow falling 

and melting also control LST variations (Meng et al., 2018; Thiebault and Young, 2020); thus, the 

all-sky hourly LST over the CONUS was generated by fusing clear-sky hourly retrievals from the 

Copernicus Global Land Service (Freitas et al., 2013) with ERA5 LST, while the reconstructed 

LST during cloud periods was further corrected using satellite radiation products based on the 

surface energy balance (SEB) equation (Jia et al., 2022a; Jia et al., 2022b). Therefore, 

meteorological reanalysis information was also used in the study. The all-sky LST was extracted 

according to the PMW passing time. 

2.1.5 Surface albedo climatology 
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Snow-free albedo climatology was employed to generate continuous albedo dynamics with 

PMW snow albedo, which was ultimately used to filter VIIRS clear-sky retrievals for predicting 

cloudy-sky LSA. Snow-free albedo climatology reflects general albedo variation primarily due to 

local vegetation phenology. By combining all-sky snow albedo from PMW, and snow-free albedo 

climatology, a continuous albedo dynamic series can be generated for characterizing the 

phenology-constrained LSA variation, and actual albedo disturbance due to snowfall and melting. 

Here, snow-free albedo climatology was calculated using Google Earth Engine by averaging 20-

year snow-free MODIS blue-sky albedo data (Jia et al., 2022c), as it maintains improved accuracy 

than other existing climatological datasets based on comprehensive site validation and product 

inter-comparison. 

2.1.6 VIIRS clear-sky surface albedo 

VIIRS blue-sky LSA retrievals were used to filter for albedo dynamic corrections at a 1 

km scale. A direct estimation algorithm was developed to retrieve instantaneous blue-sky LSA 

from clear-sky VIIRS top of the atmosphere (TOA) observations (Wang et al., 2013; Wang et al., 

2017), and is currently being produced as an important subset of the VIIRS surface Environmental 

Data Record (EDR) (Peng et al., 2022; Schueler et al., 2002; Yu, 2022). The direct estimation 

algorithm employs seven VIIRS bands (M1, M4, M5, M7, M8, M10, and M11) as the major inputs. 

Further, VIIRS LSA retrievals have been comprehensively validated using global field 

measurements and albedo reference maps derived from Landsat (Zhou et al., 2016). Officially 

released VIIRS blue-sky LSA began in 2019; whereas the clear-sky VIIRS LSA in 2013 was 

produced offline for algorithm testing and improvement. Here, VIIRS LSA was selected as it is 

the only LSA product that directly provides blue-sky albedo, and the present study aimed to 

improve its product quality by estimating LSA under clouds. 
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Product   Spatial 
resolution  

 Temporal 
resolution   Time span used   Usage  Reference 

response  

MCD43C3   0.05°  daily 2013, 2015– 
 2019 

 variable in snow 
 albedo model 

 Schaaf et al. 
 (2020) 

training  

MOD08 AOD   1° monthly  2013, 2015– 
 2019 

blue-sky LSA 
calculation  

 Platnick et al. 
 (2015) 

 BTs at 19, 37, 
 and 91 GHz  ~  0.05°  daily 2013, 2015– 

 2019 
  features in snow 

 albedo model 
 Brodzik et al. 

 (2018) 

All-sky hourly  
 LST  0.045° hourly  2013, 2015– 

 2019 
 feature in snow 

 albedo model  Jia et al. (2022b) 

272 2.1.7 GLASS all-sky surface albedo  

The GLASS gap-free 1  km  LSA product  is the traditional representative of recovery  

methodologies, and was  employed  here  for LSA accuracy comparison  under clouds. GLASS  LSA  

was  retrieved  via  two direct estimation algorithms from either surface  or  TOA reflectance (Liang  

et al., 2021;  Liu et al., 2013b). With the help of  albedo climatology, a temporal filtering-based  

method was employed to fuse two albedo results,  and the cloudy pixels were filled  (Liu et al., 

2013a). GLASS BSA and WSA were  converted to blue-sky LSA,  and linearly  interpolated to daily  

values during  pre-processing. Additionally, cloudy-sky GLASS was assessed in 2013 by ground  

measurements  using  the same cloudy day mark as VIIRS  results.  Based on globally distributed 53  

Fluxnet  sites,  the GLASS albedo has an RMSE of 0.059 for all available samples  and an  RMSE 

of 0.126 for snow samples. C ompared to w ith MCD43A3, the  overall  RMSE  of clear-sky GLASS  

albedo was improved to 0.031 (0.080 for  snow cases)  (Liu et al., 2013b).  GLASS albedo products  

have been widely  utilized  in scientific research  (He et al., 2013; Hu et  al., 2016;  Li  et al., 2021)  

and considered as one of the essential albedo products  for  reference  (Tao et al., 2014).  

Characteristics  of all satellite products  utilized  in the study  are summarized in Table 1.  
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287 Table 1  Characteristics  of the satellite products used in the present  study.  
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All-sky snow 
mask 1 km daily 2013, 2015– 

2019 

mark snow and 
snow-free 
samples 

Helfrich et al. 
(2007) 

Snow-free 
albedo 

climatology 
1 km daily - prior knowledge Jia et al. (2022c) 

VIIRS LSA 1 km daily 2013 clear-sky LSA to 
be filled 

Wang et al. 
(2017) 

GLASS LSA 1 km 8-day 2013 
dataset for 
accuracy 

comparison 
Liu et al. (2011) 
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289 2.1.8  In situ  data  

To demonstrate the estimation accuracy of VIIRS cloudy-sky LSA,  as well as  to assess  its  

capacity  compared to other  gap-free albedo products, ground measurements are essential  in this  

study. SURFRAD  is a surface radiation network  constructed in 1993  and  designed to deliver  

accurate, continuous, and long-term surface radiation measurements  over  the  CONUS  (Augustine  

et al., 2000), and  it has been extensively employed in satellite radiation product validation (Franch  

et al., 2014; Jia et al., 2018; Wang et al., 2021).  Alternatively,  Core AmeriFlux sites provide  

continuous  radiation ground measurements,  ensure high-quality data  collection,  and  represent a  

broad range of  ecosystems and locations  across  the CONUS  (AmeriFlux, 2021).  In total, there  are 

10 sites  in 2013 that recorded  surface upward shortwave radiation,  and downward shortwave  

radiation; thus, both  were utilized  from  these networks  for  albedo computation  here. The  raw  

observations  marked as  “high quality”  were averaged  within  the 1-hour  time window  centralized  

by the VIIRS passing time.  The time window size  doesn’t affect the overall assessment due to the  

litte  albedo variation at  hourly scales [generally  less than 0.01 based on Wang et  al. (2015)]. 

SURFRAD have  1-min  time resolution, thus the high-quality  records were averaged once the  

amount in the window is more than 30. AmeriFlux has 30-min time resolution recorded.  As long 
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305 as they have high-quality  records in the time window, these records will be averaged.  Site locations  

are  illustrated in Fig.  1, and the  data details  are listed in  Table 2.  Ultimately, the 1 km LSA samples  

were validated in 2013.  
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Figure 1.  Distribution of sites with land cover types over  the  continental US (CONUS).  
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312 

Table 2  Metadata of the in situ  sites.  

 Name  Lat. (°)  Long. (°)  Elev. (m)  Land cover 

BND   40.0519  -88.3731  230  crop 

 FPK  48.3078  -105.1017  634  grass 

 GWN  34.2547  -89.8729  98  pasture 

 DRA  36.6237  -116.0195  1007  arid shrub 

 SXF  43.7340  -96.6233  473  grass 

 TBL  40.1250  -105.2368  1689  grass and shrub 

ARM   36.6058  -97.4888  314  crop 

 MMS  39.3232  -86.4131  275  forest 

 MOz  38.7441  -92.2000  219  forest 

 Ne1  41.1651  -96.4766  361  crop 

 



 
 

 

 

 

 

 

 

 

 

 

  

 

  

313 2.2 Methods  

2.2.1 Flowchart   

A three-step framework was developed for estimating 1 km cloudy-sky  LSA (Fig. 2). First,  

a statistical model was proposed to retrieve all-sky snow LSA from PMW BTs  (see Section 2.2.2). 

MCD43C3 provided clear-sky snow albedo samples from 2015 to 2019 over  the CONUS, and the  

snow albedo was  selected  according to  the IMS snow mask. PMW BTs  and all-sky LSTs  were 

considered  as  input features. The  statistical model  was trained using  the 2015–2019 clear-sky snow  

samples, and applied to 2013 data for estimating  all-sky snow albedo from PMW BTs  and LST. It  

was  assumed here that  the relationship built by clear-sky samples  can be used for all-sky cases.  
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323 Figure 2.  Flowchart of the three-step framework for 1 km cloudy-sky  LSA estimation.  
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Second, prior knowledge  of continuous  albedo time series  was  generated  by combining 

snow albedo retrievals  and snow-free albedo climatological data. Snow  LSA  from PMW was 

bilinearly interpolated to 1 km, and taken  as the initial estimate  of snow  albedo for 2013.  Initial 

downscaling  was conducted via bilinear  interpolation  (snow albedo was further corrected in the 

third step).  Snow-free climatological  values were replaced by  the PMW  albedo on days marked  

by the IMS snow mask. The combined prior knowledge  included the information from  both general  

albedo variation caused by  vegetation phenology, as well as  real  snow  variation  observed by PMW; 

thereby  making it the  first  such  scheme  to estimate  LSA that includes  both physical constraints  

and observed disturbances  under clouds.  

Third, a  three-dimensional (geographic location  + time) Kalman Filter  (KF)  was  

implemented to  assimilate the  clear-sky VIIRS  clear-sky albedo  to the albedo dynamic  model  

(Section 2.2.3),  as three dimensions can include  the maximum level of  information from 

neighboring clear-sky  retrievals for  each invalid pixel.  During the  filtering process, the  prior 

knowledge  was  corrected by  available clear-sky  VIIRS  albedo; thus,  the initial estimate  of albedo 

values  for invalid pixels  was  updated to actual albedo under clouds.  

2.2.2  Snow albedo estimation from PMW  

To capture the LSA variation caused by  actual  snow falling  and melting unde r clouds, a  

linear model was proposed to estimate snow albedo from PMW  (Eq. (1)):  

𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑏𝑏1𝑇𝑇91𝐻𝐻 + 𝑏𝑏2𝑇𝑇91𝑉𝑉 + 𝑏𝑏3𝑇𝑇37𝑉𝑉 + 𝑏𝑏4𝑇𝑇19𝑉𝑉  

+  𝑏𝑏5(𝑇𝑇91𝐻𝐻 − 𝑇𝑇91𝑉𝑉 ) + 𝑏𝑏6(𝑇𝑇37𝐻𝐻 − 𝑇𝑇37𝑉𝑉 ) +  𝑏𝑏7(𝑇𝑇37𝑉𝑉 − 𝑇𝑇91𝑉𝑉 ) +  𝑏𝑏8(𝑇𝑇19𝑉𝑉 − 𝑇𝑇19𝐻𝐻) + 𝑏𝑏9𝑇𝑇𝑠𝑠 + 𝑏𝑏10, (1)  
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where αsnow is snow albedo, TnH (TnV) is the PMW BT at channel n in H (V) polarization, Ts is the 

all-sky LST, and bi is the regression coefficient. The selection of channels and channel differences 

was based on previous related studies (see the summary in Table 1 of Xiao et al. (2021b)). αsnow 

was identified according to the all-sky IMS snow mask, and in instances of misclassified pixels, 

αsnow values less than corresponding snow-free albedo climatology was excluded. The input 

features have the same gridding format and very similar resolution with MCD43C3, and they were 

bilinearly interpolated to match with MCD43C3 pixels, and then input features were extracted 

based on dates and locations of the selected MCD43C3 samples. It should be noted that the issue 

of spatial mismatch and the simple bilinear interpolation are the potential source of errors in albedo 

estimation. An improved representation of footprint mismatch and albedo spatial heterogeneity 

should be explored in the future study. 

The relationships between PMW observations and snow are substantially influenced by 

topography (i.e., elevation, slope, and aspect). Whereas previous studies have typically considered 

topographic factors as independent variables, complicated terrains still create considerable 

uncertainty in estimates (Dai et al., 2017; Liu et al., 2018; Xiao et al., 2021a). To minimize this 

impact, a pixel-wise modeling was employed by only using time series information from clear 

days at each pixel (Jia et al., 2021; Sun et al., 2019). As the topography was constant over time, its 

impacts could be ignored. Further, if snow events are rare in some regions at lower or mid-latitudes, 

the model searched neighboring pixels (< 100 km) to acquire enough samples for model regression. 

A sensitivity analysis was performed in advance to demonstrate the importance of all input 

data for snow albedo estimates from PMW observations. Following training the snow albedo 

model with samples from 2015 to 2019, random noises of certain levels were added to an input 

feature to increase its relative errors during the 2013 prediction, while maintaining all other input 
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369 data  (control variates). Here, the level of noise corresponded  to  specific percentages  of the feature  

values. As  the percentages were adjusted, the noise magnitude  of the feature to be examined  also 

changed, and the final  estimates of  RMSE of snow albedo changed accordingly. To improve  

computational  speed, samples were randomly selected  at 50 locations  according to different plant  

functional types (FPTs) over the CONUS.  
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377 Figure  3.  RMSE variation of  passive microwave (PMW)-derived snow albedo b y introducing  
error to all input data, for  different plant  functional types (PFTs): (a) all samples, (b) tree,  (c) 

shrub, (d)  grass, (e)  crop, and (f) other types.  
378 
379 

380 

381 19V  was  the most important input band of the statistical models  across  all PFTs  (Fig. 3). 

Notably, lower  frequencies have  improved  correlations with snow/ice, as confirmed by previous  

estimates  of sea ice albedo using PMW observations  (Laine et  al., 2011). 37V  was  the second most  

important factor for most types  (except croplands,  where 19H  was  equally important). In  

comparison, snow albedo had the lowest sensitivity towards  all-sky  LST, especially for forest  

regions. This is mainly because the underlying surface of forest regions is dominated by  canopy  

cover,  and LST is more  closely correlated to air temperature rather than soil temperature.  Based  

on Jia et  al. (2022b), the  RMSEs of cloudy-sky  LST vary from 1.5 K to 5 K  through validation at  

200 sites over the globe. The  LSTs of snow-covered surface is assumed to be within 200 K  –  273 

K, and the  relative uncertainty of  LST is 1% to 4%  that will  not introduce substantial errors  to 

albedo estimation. No  further  techniques  for band selection were employed here,  as all input data  

had a clear impact on the model prediction.  
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394 2.2.3  Spatiotemporal filtering  

KF is a basic data fusion method for assimilating  discontinuous observations  into a  

dynamic  model  (Welch  and Bishop, 1995). Here, the dynamic  model  took the form of  prior 

knowledge. Once a new  observation was made available, the model prediction was  updated us ing 

a weighted average  of the available  observations  and initial modeling  result. As the model  

iteratively predicts  from  the revised  values, t he prediction of   future  cloudy  days  will be  recovered  
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420

with higher accuracy; however, basic KF is  typically utilized  along the temporal  dimension, and  

thus only a limited number of  clear-sky  observations can be  assimilated. Therefore, a  spatial  

module  was added,  and a 3D-KF method  was  created in previous studies  to  assimilate  

spatiotemporally adjacent clear-sky retrievals  within a  spatial window  (Jia et al., 2022a; Zhang et  

al., 2013). This process included two independent modules:  In the temporal module, the dynamical  

albedo series from prior knowledge at window center  c  was  represented by  an albedo dynamic  

model (Eq. (2)):  

�𝛼𝛼  −𝑡𝑡 �= 𝛼𝛼𝑡𝑡  +  𝐹𝐹𝑡𝑡 𝑐𝑐,𝑑𝑑 𝑐𝑐,𝑑𝑑−1 𝑐𝑐,𝑑𝑑 , (2)  

� � − 𝑡𝑡  −𝛼𝛼 𝑡𝑡  �𝑡𝑡
𝑐𝑐 𝑑𝑑 = 𝛼𝛼 𝑡𝑡

, 𝑐𝑐,𝑑𝑑 +  𝐾𝐾𝑑𝑑 (𝛼𝛼𝑑𝑑,𝑐𝑐 − 𝛼𝛼𝑐𝑐,𝑑𝑑 ), (3)  

𝐾𝐾𝑡𝑡 = 𝑃𝑃−  
𝑑𝑑 (𝑃𝑃− −1 

𝑡𝑡,𝑑𝑑 𝑡𝑡,𝑑𝑑 + 𝑅𝑅) , (4)  

𝑃𝑃 = (𝐼𝐼 𝑡𝑡 )𝑃𝑃−𝑡𝑡,𝑑𝑑  − 𝐾𝐾𝑘𝑘 𝑡𝑡,𝑑𝑑, (5)  

� −where 𝛼𝛼𝑡𝑡  is the initial albedo prediction of the  dynamic  model on day  d  from  d-1,  𝐹𝐹𝑡𝑡 𝑐𝑐,𝑑𝑑 𝑐𝑐,𝑑𝑑  is the  

albedo difference between two days based on prior knowledge, while the  – symbol  means it is the  

initial model prediction. To minimize the influence of systematic biases  from  prior knowledge,  

only the albedo differences  of neighboring days  were used for building the dynamic model  (rather  

than the absolute albedo values).  

If  a valid  VIIRS LSA retrieval  ( �α )  is available on d  at  c, 𝛼𝛼𝑡𝑡  −d,c 𝑐𝑐,𝑑𝑑  will be corrected to  �𝛼𝛼𝑡𝑡𝑐𝑐,𝑑𝑑  

by Kalman Gain  𝐾𝐾𝑡𝑡 𝑡𝑡 − 
𝑑𝑑  (Eq. (3)). 𝐾𝐾𝑑𝑑  was then  determined by prediction error  𝑃𝑃 𝑡𝑡,𝑑𝑑  of the temporal  

module  and VIIRS retrieval error  R  according to Eq. (4). R  is constant and set to 0.04 based on 

Zhou et  al. (2016); whereas  the initial uncertainty  magnitude of the model prediction  was  set  to  

the same  as the modeled error of PMW albedo compared with MCD43C3 in 2013. Prediction  
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421 uncertainty was  also corrected  to Pt,d  (Eq. (5)), where I  is a unit matrix.  The KF is iterative and the  

predicted albedo  on d+1  was based on �𝛼𝛼𝑡𝑡  
𝑐𝑐,𝑑𝑑  (Eq. (2)).  

If  no valid  VIIRS LSA  were present at  c on d, the  temporal module  can  still  predict  �𝛼𝛼𝑡𝑡  −
𝑐𝑐,𝑑𝑑 , 

while the  spatial module  was  activated to  identify  spatially  adjacent  clear-sky VIIRS LSA  pixels  

within a spatial window  as references for correction.  When the spatial module  was  activated, any  

adjacently  available VIIRS  LSA (αd,m) at the adjacent pixel  m  will firstly correct corresponding 

−
prior knowledge  (𝛼𝛼�𝑠𝑠𝑚𝑚,𝑑𝑑 ) according to Eq. (6):   

�𝑠𝑠  �−𝑠𝑠 𝑠𝑠  �
−

𝛼𝛼𝑚𝑚,𝑑𝑑 = 𝛼𝛼𝑚𝑚,𝑑𝑑 +  𝐾𝐾𝑑𝑑 (𝛼𝛼𝑑𝑑,𝑚𝑚 − 𝛼𝛼𝑡𝑡𝑚𝑚,𝑑𝑑 ), (6)  

where 𝐾𝐾𝑠𝑠 
𝑑𝑑  is the  Kalman  gain  of the spatial module, and the  remaining calculation is  similar  to  Eq. 

−
(4). Then, the spatial module predicts  the possible  center albedo  values  (𝛼𝛼�𝑠𝑠  

𝑐𝑐,𝑑𝑑 ) from all corrected  

values at  adjacent locations  (the total number of  m  is N), and  are averaged  to obtain the output of  

−
the spatial module (𝛼𝛼�𝑠𝑠  𝑠𝑠 

𝑐𝑐,𝑑𝑑 ). In Eq. (7), 𝐹𝐹𝑐𝑐,𝑑𝑑  is the albedo difference of  c  and m  on day  d  (based on  

prior knowledge  data), and  the  weight  wm  is pre-determined by the relative magnitude of the  

correlation coefficient (R) of prior knowledge  series between  c and m:  

𝑁𝑁 �𝑑𝑑  
� ∑𝑠𝑠  −

𝑠𝑠 

𝛼𝛼 = 1 𝑠𝑠𝑚𝑚(𝛼𝛼𝑚𝑚,𝑑𝑑 +  𝐹𝐹𝑐𝑐,𝑑𝑑 )
𝑐𝑐,𝑑𝑑 . (7)  

𝑁𝑁 

Pixel  m  with  R  values <  0.8 were excluded, as higher  R  values imply  that  m  has  a similar albedo  

response as the target  c  towards vegetation phenology and snow  cover.  The spatial module  

typically produced  an accurate prediction to  c, as it only  processed  one-time  predictions  from  

neighboring clear-sky pixels;  thus, its uncertainty  (𝑃𝑃− 
𝑠𝑠,𝑑𝑑)  was  set to  0.05, slightly larger than clear-

− −
sky retrieval. Finally, by averaging �  

𝛼𝛼𝑠𝑠𝑐𝑐,𝑑𝑑  from the spatial module, and �𝛼𝛼𝑡𝑡  
𝑐𝑐,𝑑𝑑  from the temporal 

module, the 1 km  LSA under clouds (𝛼𝛼�𝑐𝑐,𝑑𝑑) was  estimated via (Eq. (8)):  
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𝑃𝑃−𝛼𝛼 � − −
 𝑃𝑃 − 

� = 𝑡𝑡,𝑑𝑑 𝛼𝛼𝑠𝑠 + 𝑠𝑠,𝑑𝑑 �𝑡𝑡 
𝑐𝑐,𝑑𝑑 − − 𝑐𝑐,𝑑𝑑𝑃𝑃 +𝑃𝑃  𝑃𝑃− +𝑃𝑃−

𝛼𝛼𝑐𝑐,𝑑𝑑 , (8)  
𝑡𝑡,𝑑𝑑 𝑠𝑠,𝑑𝑑 𝑡𝑡,𝑑𝑑 𝑠𝑠,𝑑𝑑 

− − 
where  weights of 𝛼𝛼�

 𝑠𝑠 
,𝑑𝑑  and �𝛼𝛼𝑡𝑡 𝑐𝑐 𝑐𝑐,𝑑𝑑  are  determined by  the relative magnitude of  the prediction errors  

of spatial  (𝑃𝑃−𝑠𝑠,𝑑𝑑 )  and temporal  (𝑃𝑃−𝑡𝑡,𝑑𝑑 )  modules. To improve computational  efficiency, two  

modules  were designed independently.  Specifically, if VIIRS  LSA  was  available on  d  at  c, only  

the correction function  of  the temporal module  (Eqs. 3–5) was  activated; otherwise, the cloudy-

sky LSA  was  predicted from  both modules. Additionally, the spatial window  was  set to 100 km  in  

order to balance the number of  VIIRS  LSA  pixels available with  computational  resources; whereas  

the adjacent  pixel number inside the window was  reduced based on R.  

 

3 Results and discussion  

3.1 Assessment of PMW-derived snow  albedo  

The statistical model of snow albedo was evaluated for 2013 over  the  CONUS, and the 

prediction results were  compared with corresponding  high-quality  MCD43C3 snow samples  

masked  by IMS.  Samples were extracted  and paired across  basic  PFTs  (tree, shrub, grass, and crop,  

classified by MCD12C1), and each type was randomly sampled  at  500 locations. Comparative  

results are illustrated in  Fig. 4.  
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458 

459 

460 
461 
462 
463 Figure  4.  Density scatterplots of predicted snow albedo and corresponding MCD43C3 for 

different  plant functional  types (PFTs): (a) all selected samples, (b) trees,  (c) shrubs, (d)  grasses, 
(d) crops, and (e) other.   
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Based on the 2013 validation, the overall RMSE of the PMW-derived snow albedo was 

0.064, with a bias of -0.010 and R2 of 0.845. In addition, RMSEs didn’t change considerably at 

different PFTs and biases remain low. Some samples with small albedo values could have been 

misclassified by the IMS snow mask, although these samples still fell along the 1:1 line, suggesting 

that this framework was tolerant of snow misclassification. In comparison, forest and shrub 

samples (Figs. 4b and c) had lower R2 of 0.321 and 0.537, respectively. This is because they 

displayed a small snow albedo value range more related to vegetation height; thus, snowfall and 

melting do not considerably affect the reflective surface landscape. Nevertheless, forest and shrub 

samples still matched closely with the 1:1 line, with few biases. Further, grass and crops produced 

higher R2 of 0.703 and 0.707, respectively, with a large snow albedo range (Figs. 4d and e). Crop 

samples were relatively scattered across the lower snow albedo range, and Fig. 4f displayed a 

similar scatter pattern due to the relatively limited available training samples in lower value ranges. 

These scattered samples can be also partially attributed to snow aging as PMW data is not sensitive 

to the snow color darkening that affects spectral albedo at visible bands. Therefore, PMW-

estimated results may have positive bias for dark snow samples at low snow albedo range (Figs. 

4e). Nevertheless, surface characteristics (e.g., LST) are also impacted during snow aging, 

providing an auxiliary information for snow albedo estimation. Overall, the samples still match 

1:1 line with RMSE less than 0.07. The slow albedo variation due to snow aging will be further 

corrected by clear-sky retrievals in step three. The accuracies of all snow pixels over the CONUS 

were further predicted to generate the corresponding distribution maps (Fig. 5). To ensure the 

representativeness of the statistics, only pixels with snow days > 5 in 2013 were included in the 

maps. 
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492 Figure 5.  Accuracy  patterns  and corresponding hi stograms over the CONUS:  (a, b) bias, (c, d) 
RMSE,  and  (e, f) R2 . 493 
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The accuracy patterns in Fig. 5 indicate that the predicted results over the CONUS were 

relatively consistent, as ~90% of pixels produced a bias within ±0.100 (median value, -0.011; Fig. 

5b), and no clear spatial patterns of large error emerged. Comparatively, the west did produce more 

scattered, larger-biased pixels than the east (Fig. 5a), likely related to its more complex topography 

and elevation producing greater uncertainties during pixel matching of input features. Further, the 

southcentral region was characterized by a slightly negative bias pattern, and it was inferred here 

that was attributable to the limited snow sampling history. The RMSE suggested that 95% of the 

pixels produced values < 0.200 (median, 0.07; Fig. 5d). The central region produced a relatively 

higher RMSE, likely because it is dominated by grass and croplands (Fig. 5c) with higher snow 

albedo values (translating into slightly higher RMSE values; Fig. 4). The distribution of R2 was 

not clustered (maximum = 0.66, Fig. 5f), and was primarily affected by forest and shrubs. The 

proposed model well estimated the overall magnitude of snow albedo for trees and shrubs (Figs. 

4b and c). However, as albedo variation at these regions is less sensitive to the snow cover 

compared to other land cover types, capturing the all-sky snow albedo variation with high 

confidence (R2) at tree and shrub covered regions remains a challenge. 

Accordingly, it was concluded here (Fig. 5) that the proposed scheme can be used on 

continental scales. 

Feb. 14, 2013                   Dec. 05, 2013 
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513 

514 

515 

516 Figure  6.  Snow  albedo on (a, c,  e)  Feb. 14 and (b, d, f) Dec. 05  in 2013  for (a, b)  PMW-derived  
results, (b, d) MCD43C3, and (e, f) IMS snow mask, where snow pixels are marked  in  yellow.   517 

518 

519 The snow  albedo maps on Feb. 14 and Dec. 5, two randomly selected dates  from 2013,  are  

drawn in Fig. 6, where the corresponding MCD43C3 and IMS snow  mask are also included. The 520 
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521 PMW-derived snow albedo maps  did well  to  recover the invalid pixels  compared with MCD43C3  

and the corresponding snow mask. Figure  6a and b illustrate that the recovered snow  albedo maps  

on different days produced relatively  continuous and reasonable spatial  patterns, with  natural  

transitions  from high to low value regions. Further, they matched well  with clear-sky pixels in Fig.  

6c and d.  The limited number of  clear-sky  pixel patterns  here also indicates the difficulty when  

accurately reconstructing  all cloudy-sky pixels based  solely on interpolation. 

 

3.2 Validation of 1 km cloudy-sky LSA  

After combining the PMW-derived snow albedo and snow-free albedo  climatological data, 

the albedo dynamic series and further filtered clear-sky VIIRS albedo was generated  to obtain the  

1 km cloudy-sky LSA, which in turn was validated  using  10 ground sites from SURFRAD and  

Core AmeriFlux networks. GLASS  LSA  samples were also  extracted and  validated  for accuracy  

comparison (Fig.  7); whereas corresponding  shortwave net  radiation (RSN)  was  incorporated to 

demonstrate the impact  of  LSA  error on SEB,  and downward shortwave radiation was  directly  

from ground measurements. 
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537 
538 
539 
540 Figure  7.  Density scatterplots of:  (a, b) cloudy-sky albedo, and (c, d)  corresponding  shortwave net  

radiation (RSN) samples  from (a, c) this study, and  (b, d)  GLASS.  541 

542 

543 The estimated cloudy-sky LSA in  the present  study produced  better  accuracy and scatter  

patterns  than GLASS, especially  over  snow  cover. The overall RMSE of  the present  study was  

0.074 (bias, 0.017;  R2, 0.75), compared to that  of GLASS being 0.095 (bias, -0.012;  R2, 0.54). 

Comparatively, the RMSE for snow cases  in this study  (0.137)  was  more accurate than  that for  

GLASS (0.186). Furthermore, GLASS produced numerous  scattered samples  with  considerable  

variations from in situ  measurements, partly due to  cloudy-sky GLASS albedo values missing 

snow cases without actual observations included in the algorithm (Liu et al., 2013a). After  

calculating  the corresponding RSN using the noon downward shortwave radiation  of site  

observations, it was found that the RSN of  this study  matched  with  the  1:1 line well,  while  the 

RMSE  of snow  cases  (66.19 W·m-2) was more accurate than the corresponding  GLASS samples  

(96.31 W·m-2). Although the  majority of GLASS  samples have  higher accuracy, suggesting  that  

the albedo climatology-based method is  sufficient for  predicting  LSA under clouds  for  snow-free  

cases, GLASS RSN  produces  some anomalies that substantially  affect accuracy,  primarily with  

544 

545 

546 

547 

548 

549 

550 

551 

552 

553 

554 

555 

30 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Site This  
 study 
 (snow) 

This  
 study 

(snow-
 free) 

GLASS 
 (snow) 

GLASS 
(snow-

 free) 

BND   0.133  0.062  0.278  0.088 

 FPK  0.124  0.021  0.118  0.039 

 GWN  -  0.031  -  0.046 

 DRA  -  0.030  -  0.029 

 SXF  0.076  0.045  0.142  0.063 

 TBL  0.161  0.047  0.229  0.053 

ARM   0.171  0.044  0.273  0.030 

 MMS  0.149  0.050  0.061  0.021 

 MOz  0.142  0.047  0.061  0.017 

556 cloudy-sky snow  cases. The comparison in Fig.  7 s upports  that cloudy-sky snow cases can caused  

considerable abnormalities  in the traditional pixel reconstruction methods; whereas the method  

proposed by the present  study addressed this issue  by including actual signals under clouds.  

The RMSE statistics at each  site  are  also listed in  Table  3. The snow median value of  the 

present  study was  0.144 (values  ranging  0.124–0.171);  whereas  GLASS snow cases  produced a 

median RMSE of 0.185 (0.061–0.278). Notably, both produced close RMSEs for snow-free cases,  

although the filtering methods  were  different.  The GWN and DRA sites  are  snow-free,  so they  

were recovered using  strictly  climatological data  as prior knowledge. GLASS  produced higher  

snow albedo  accuracies at MMS and MOz than  the present  study possibly  due to  the  higher spatial  

heterogeneity at these two AmeriFlux  forest  sites  and GLASS only utilized temporal filtering. 

After removing  these  two sites,  two groups of snow albedo RMSE statistics (Table 3) have  

significant difference (p-value = 0.027) based on the single factor analysis of  variance.  

557 

558 
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564 

565 

566 

567 

568 Table 3.  Cloudy-sky  LSA RMSE statistics of individual sites.  
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 Ne1  0.145  0.044  0.262  0.066 

 Median  0.144  0.045  0.185  0.043 

  

 

 

 

 

 

 

 

 

 

To demonstrate the present model’s  capacity to  capture ephemeral  snow coverage,  

temporal analyses were performed  across distinct snow events from four sites. The cloudy-sky 

LSA of  the present study was combined with VIIRS clear-sky retrievals, and depicted as  all-sky 

LSA series in Fig. 8. Compared with ground measurements, the data in  Fig. 8 illustrates that the  

all-sky series  of present  study  can capture short-term  snow events, closely  matching with  the in 

situ data, even though s ome snow durations  were completely  covered by  clouds. In comparison, 

the GLASS series can only reconstruct snow albedo where there is  an obvious  snow season (Fig.  

8b). Even for longer  duration snow  cases  (DOY 350;  Fig 8a, c, and d), GLASS may miss peak  

values and dates, due to its limited capture of overall snow  albedo variation.  
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581 Figure 8. Temporal variation of  LSA at four sites: (a)  BND, (b) SXF, (c) TBL, and (d) Ne1.  
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Jan. 17, 2013 
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583 Furthermore, the proposed framework was implemented at  the regional scale  to test the  

spatial continuity of 1 km  images. The tile H11V04 (located  over  the Great  Lakes, and the same 

tile number for  MODIS) was  chosen  for its  clear snow patterns. Three days (Jan. 17, 19, and 21, 

2013) were selected, as  they encompassed  a short snow coverage event  (circled in  Fig  9a)  for a 

detailed analysis.  The all-sky  LSA maps were  compared with corresponding gap-free  GLASS LSA 

maps, and the results are  presented in Fig. 9.  
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600

605

610

615

620

597 Figure  9.  LSA maps  of  H11V04 on (a–c) Jan. 17, (d–e) Jan. 19, and (f–i)  Jan. 21, 2013,  from (a,  
d, g)  all-sky  LSA, (b, e, h) VIIRS clear-sky  LSA, and (c, f, i) GLASS.  Water and  cloudy  pixels  
are  masked as invalid by  dark blue color.   

598 
599 

601 The recovered  cloudy-sky  LSA (Fig.  9a, d, and g)  produced  good spatial continuity with  

clear-sky VIIRS pixels (Fig.  9b, e, and h),  and reflects clear spatial details. There is long-term  

snow coverage with high  surface albedo values  are located to the  top  of the image,  while  snow-

free albedo  is concentrated towards  the bottom. The overall spatial patterns closely  matched  with  

GLASS LSA maps (Fig.  9c, f, and i) without artificial textures; however,  GLASS displayed limited  

spatial pattern changes  over  these three days, whereas  the all-sky  albedo of  the present  study 

illustrated  some  important  detailed variation.  For example,  the  circled  short-term snow albedo  

event at the bottom left of the image was  taken as  an example. Here,  this short-term  snow coverage  

was observed by VIIRS on Jan. 17 (Fig.  9a  and b), and is also shown on the  corresponding G LASS  

map (Fig.  9c).  It had  almost melted on  Jan. 19, as evidenced  by the recovered cloudy-sky LSA  

from  the present  study (Fig.  9d), while complete melting was observed by  Jan. 21 according to the 

VIIRS clear-sky retrievals (Fig.  9h),  and the recovered all-sky  LSA from the present study  

reflected  this  ephemeral snow events  correctly  (Fig. 9g); however, this snow coverage  event  

persists on all GLASS maps  for these days  (Figs. 9c, f, and i). Such comparisons  indicate that the  

proposed methodology  can  successfully  recover cloudy-sky LSA  with spatial continuity and 

texture details, especially for disturbances caused  by snow.    
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618 4 Conclusions  

LSA  characterizes  the ability of  the Earth's  surface to reflect solar  radiation, and plays a  

central  role in the SEB.  A  novel  three-step framework  for  recovering  cloudy-sky LSA  was thus  
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proposed here: 1) All-sky snow albedo was estimated from PMW observations based on a 

statistical model; 2) Albedo dynamics were initially generated by combining the all-sky snow 

albedo with snow-free albedo climatological data; and, 3) The 1 km cloudy-sky LSA was estimated 

after assimilating 1 km VIIRS clear-sky retrievals to the albedo dynamic series. 

The all-sky snow albedo was estimated from PMW BTs over the CONUS for 2013. Based 

on comparisons with high-quality MODIS clear-sky pixels, the overall RMSE was 0.064 (bias, -

0.010; R2, 0.845), and the accuracy kept stable across different PFTs. In addition, when compared 

with MCD43C3 and the corresponding snow mask, the PMW-derived snow albedo adequately 

recovered invalid pixel data to produce a continuous spatial pattern over the CONUS. 

Cloudy-sky albedo was then estimated at the 1 km scale after filtering the VIIRS retrieval 

using combined snow albedo with snow-free albedo climatological data. Based on 10 ground sites, 

the overall RMSE of the recovered cloudy-sky LSA was 0.074 (bias, 0.017; R2, 0.75); whereas the 

overall RMSE of all-sky GLASS LSA was 0.095 (bias, -0.012; R2, 0.54). In comparison, the 

RMSE of 0.137 obtained for snow cases of this study was notably more accurate than GLASS 

(0.186). The impacts of albedo uncertainty on RSN was further evaluated, and indicated that the 

RMSE of snow cases of VIIRS cloudy-sky LSA was 66.19 W·m-2 , more accurate than the 

corresponding GLASS samples (96.31 W·m-2), while the uncertainty due to snow albedo of 

GLASS further caused a considerable number of abnormal RSN values. The 1 km all-sky LSA 

displayed satisfactory spatiotemporal continuity, and successfully captured short-term albedo 

disturbances from snow. 

To the best of the author’s knowledge, the research here represents the first study to 

includes PMW in the cloudy-sky LSA recovery for improving the uncertainty caused by seasonal 

snow albedo. Although it was supplemented here with VIIRS data, the presented approach is 
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sensor independent, and maintains the practicality to be used in other LSA products, such as 

MODIS and AVHRR. Its downscaling accuracy, however, may be limited by surface 

heterogeneity due to the relatively coarse resolution of PMW data, but employing active 

microwave observations could represent a potential solution for improving future framework, 

particularly in high elevation regions. Besides, this framework is currently not suitable for real-

time albedo production due to input latency and computation efficiency. Further, capturing all-sky 

snow albedo variation in details at tree and shrub regions remains a challenge to be explored in the 

future. Additionally, the impact of snow darkening, surface snow wetness, snow morphology, and 

grain size change during snow aging on snow albedo needs to be considered in the future by adding 

snow melting model. This framework further improves the accuracy of cloudy-sky LSA estimation, 

enables the capture of more realistic snow impacts on SEB, and can ultimately broaden the 

application of albedo products for snow modeling, irrigation management, flood forecasting, and 

other essential processes on which modern humanity is dependent. 
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