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Introduction 

We summarize the statistical methods used to analyze the models.  In particular we 
describe the regions of analysis in Section S1, how we compensated for underlying drift 
in Section S2, how we estimated standard errors of the mean, including the effects of 
time-series autocorrelation in Section S3, the consequences of using more advanced 
statistical methods in section S4, the robustness of results in section S5, and the 
applicability of empirical orthogonal functions (EOFs) to reduction of confidence 
intervals in section S6.  In Section S7 we explore the contributions of individual species 
to total aerosol optical depth.  In Section S8 we list various potential contributions to the 
increase sulfate burden seen in the GFDL simulations.  Lastly, we plot surface 
temperature and dust burden responses in both the forcing and coupled runs in order to 
diagnose feedbacks in the CESM model over Africa. 

S1 Region Definitions 
We wish to analyze not only global average responses, but also responses in specific 
regions.  Figure S1 shows the regions over which we compute statistical measures and 
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Table S1 delineates the latitudinal and longitudinal boundaries of these regions.  
Constructing averages over these regions is meant to decrease the variability, and hence 
provide additional power in the statistical tests.  Looking at the Southern Australia 
regional average of temperature change in the CESM model, we see from Figure 11, that 
the change is marginally significant at the 68% level, however, in Figure 10, most of the 
land surface in this region is significant at the 95% level.   A similar loss of statistical 
power can be seen in the average over Northern Europe for the GFDL model, as it 
includes some significant cooling over ocean surfaces.  Sometimes the regional average 
includes regions of opposite sign or little change, diluting the significance of temperature 
change for a region.  Furthermore, there is enough horizontal correlation of temperature 
changes (for annual averages) that regional averages may not provide much reduction in 
variance.  This usefulness of regional averages for statistics of annual average changes 
should be reevaluated; however, in this study we maintain these definitions to be 
consistent with previous works.  
 
 

 
Figure S1. Regional boundaries.  In addition to studying global-average responses, we compute 
average responses in each of the regions above.  One additional region is the area north of 60oN.  
Boundaries are specified in the table below. 
 
South Australia  110E-180E / 50S-28S 
North Australia 110E-155W / 28S–10S 
Central America 115W-85W / 10N-30N 
Western North America 130W-105W / 30N-60N 
Central North America 105W-85W / 30N-50N 
Eastern North America 85W-60W / 25N-50N 
Alaska 170W-105W / 60N-70N 
Mediterranean Basin 10W-40E / 30N-50N 
Northern Europe 10W-40E / 50N-75N 
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South Asia 65E-100E / 5N-30N 
Central Asia 40E-75E / 30N-50N 
North Asia 40E-180E / 50N-70N 
Sahel 10W-40E / 10N-20N 
N60 60N-90N 
Niño 3.4 170W-120W / 5S-5N 
Table S1:  Regional Boundaries 
 

S2 Temperature Drift 
The global average surface temperatures drift upward in the control simulation from all 
three models (Figure S3).  Comparing with Table 3, the magnitude of the drift is 
comparable to (or larger than) both the size of the temperature responses we wish to 
detect and the variance of the samples. 
Performing a standard t-test comparing the test and control time series without 
accounting for this drift confounds the drift with the variance in the underlying control 
and test time series.   
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Figure S2: Global Average Temperature drift in control simulations.  Curve fits are illustrative only. 
 
Fortunately, the test (perturbation) simulations are constructed by branching at some 
point in time from the control simulation.  By computing statistics on the co-temporal 
differences between the control and test cases, the statistical tests have much more power.  
(This is a matched-pair, or paired z-test.)  We test to see if the temperature differences 
can be distinguished from zero at the 1-standard error or 2-standard errors (i.e., 68% or 
95% confidence level). 
To be explicit, given two co-temporal annual-average time sequences of temperatures, 
(𝑇"#	, 𝑇"&),	where the time is indexed by i, c indicates the control time series, and t 
indicates the test series, we compute the mean temperature difference between the 
sequences and the standard error of the mean difference as follows. 
Defining the annual-mean difference at each co-temporal sample between the control and 
test case, 

∆𝑇" = 𝑇"&−𝑇"# 
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we examine the statistics of the mean change in temperature. 
 

∆𝑇++++ =
1
𝑛.∆𝑇" 

where the sum is over co-temporal years excluding the first 5 years following the branch 
point and 𝑛 is the number of co-temporal years in the sum.   

S3 Standard deviations, autocorrelations, standard errors, and z-scores 
The sample standard deviation, 𝜎, is defined as 

𝜎0 =
1

𝑛 − 1.(∆𝑇" − ∆𝑇++++	)0 
and the lag-k autocorrelation as 

𝑟3 =
1

𝜎0(𝑛 − 𝑘)0.(∆𝑇" − ∆𝑇++++)(∆𝑇"53 − ∆𝑇++++) 

As can be seen in Figure S3, the CESM model shows significant autocorrelation for 
offsets of 1, 2, 3, 5, and 6 years, indicating that consecutive years are not independent 
samples.  As a result, computation of the standard error, without accounting for the 
autocorrelation, overestimates the number of independent samples as discussed in Jones 
[1975].  There are a couple of ways to think of this.  One is that if neighboring (in time) 
samples are correlated, there are fewer samples.  Zwiers [1994] constructs an effective 
number,	𝑛677, of samples based on the lag-1  autocorrelation:  

𝑛677 = 𝑛
1 − 𝑟8
1 + 𝑟8
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Figure S3: Autocorrelation of global average surface temperature in CESM model.  The dashed 
boundaries are 1-sigma boundaries corresponding to white noise.  

Unfortunately, observational studies have identified multi-decadal modes of variability, 
and these multidecadal modes are not strictly periodic, so computation of autocorrelation 
using the methods above (which depend upon strict periodicity in order to identify the 
autocorrelation) may still underestimate the total autocorrelation and therefore 
overestimate the number of independent samples. Using the autocorrelation function to 
correct confidence estimates has a limitation for non-periodic internal variability (e.g., 
PDO or ENSO) in climate models.   (E.g., have you sampled enough of the slow 
oscillations to accurately compute their influence on the mean value?)  We see no 
obvious way to eliminate this limitation to constructing a more valid and complete 
statistical model.  Empirical orthogonal functions (EOFs) are one attempt to identify (and 
remove) modes of variability in order to construct a more complete and powerful 
statistical model.   We will review the possible use of EOFs for this work below. 
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For the purposes of this paper, we define (following Zwiers and von Storch [1995]) the 
standard error of the mean as 

𝑠. 𝑒. = =
σ0

𝑛
1 + 𝑟8
1 − 𝑟8

 

As shown in Figure S4, the standard error gives an estimate of the confidence in the 
sample mean.  As you can see, using a simulation length of 10 could often lead to an 
incorrect expectation that the control was warmer than the perturbed run.  However, for a 
sequence of more than 50 years, such an incorrect conclusion would be less likely.  As 
the number of samples increases (say with 200 samples), the confidence interval is small 
enough to differentiate the means with confidence.  The statement that “the result is 
significant” is a statement that one has enough samples that the confidence intervals do 
not overlap and thus the means are probably different.  Thus, significance is a statement 
about both the sample size and the distance between the averages.  If there is a difference 
between the test and control averages, enough samples will eventually resolve that 
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difference; however, the required number of samples can be quite large since the size of 
the confidence interval shrinks proportionally to 1/√n. 
 

 
Figure S4: Standard error is the range over which the estimated parameter (in this case the mean) is 
likely be reside.  Abscissa is labeled with the number of samples included in the mean.  The abscissa 
is 𝟏/√𝒏, since standard error is 𝝈/√𝒏.  Ordinate is the sample average.  Black markers are means 
computed using a sample of (n) consecutive values from the underlying control time sequence.  Red 
markers are the same, but using the perturbed simulation. Boxes indicate the confidence intervals 
corresponding to 1 standard error for that sample size.  The box could be centered on any one of the 
sample means shown.   

As Crawford and Hale [1998] demonstrate, the z-score 

𝑧 = ∆𝑇++++/𝑠. 𝑒. 
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is, in practice, sufficiently close to the t-score for more than 50 independent samples.  In 
these simulations, n is larger than 180 and the effective number of samples, as seen in 
Figure S5, is almost always larger than 100 for these samples, implying that the z-score 
should be very close to the t-score.  Significance at the 68% level is defined as when the 
z-score is larger than 1, 

abs(𝑧) > 	1 

and significance at the 95% level is defined when the z-score is larger than 2. 

 
Figure S5: Effective number of samples in each model at each grid point.  Zonal means are to the 
right and global averages are in the upper right.  However, the zonal means are not the number of 
effective samples for the estimates of zonal mean responses.  Similarly, the global mean of the point-
wise temperatures is not the effective number of samples of the global time series. 
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S4 Alternative statistical models 
We also evaluated the use of more complex statistical models.  While an ARIMA (3,0,1) 
process (three-step autoregressive, one-step moving average) with autoregression weights 
of (0.3,0.1,0.3) minimizes the Akaike [1974] information criterion for the GFDL time 
series in Figure S1, model estimates of mean and standard error from the method of 
Zwiers and von Storch [1998] and the ARIMA (3,0,1) model are very similar (almost 
indistinguishable) on global plots and bar and whisker plots.   In addition, differences 
between models dwarf the improvement to estimates provided by the more sophisticated 
statistical models in our tests of global and regional surface temperature.  Furthermore, 
the optimal statistical model depends on which chemistry-climate model is being 
analyzed, the variable being analyzed, and even the region being analyzed, raising the 
question of how to compare statistical results between models when the statistical models 
are distinct. 

S5 Robustness of results 
As discussed by Tebaldi and Knutti [2007] combining results from multiple models 
increases skill of predictions.  However, narrowing the confidence range also requires 
comparing results from multiple models where the models have reasonable but distinct 
physical parameterization [Knutti et al., 2017].  It is unclear to what extent these models 
have sufficiently “distinct physical parameterizations”, however the range of sensitivities 
(SO4 per SO2, AOD per SO4, forcing per AOD, and temperature change per forcing) 
indicates significant diversity of parameterization.  The inclusion of error measures on 
each of these intermediate sensitivities allows us to know that these models are distinct 
with some level of confidence.  As a result, the multi-model averages of surface 
temperature change are likely to have more confidence than any one of these models 
alone; however, the inclusion of only three models makes the construction of an error 
estimate for the multi-model average difficult.  Lacking such an estimate, we simply 
compute a standard deviation of the multi-model temperature responses as a measure of 
confidence of the multi-model mean temperature responses seen in Figure 11. 

S6 Modes of variability 
Each model shows different strengths of autocorrelation at each individual grid point 
(Figure S5). And the patterns of strong autocorrelation between models are quite distinct.  
However, those plots show nothing about the horizontal correlation between the time 
series at different grid points.  Performing a singular value decomposition on the time 
series of all the grid points leads to the empirical orthogonal functions (EOFs) which 
describe the time series of spatial patterns that describe (orthogonal) spatial patterns and 
(orthogonal) time series of all the variability in the time series of all grid points 
[Preisendorfer and Mobley 1988, Bretherton et al. 1992].   
Appealing to the idea that each EOF is a physical mode of variability, one can remove 
(project out) a number of modes accounting for a significant amount of the variance in 
the system.  We constructed EOFs from the control simulation and projected the first 5 
modes from both the control and the perturbed time series of the surface temperatures.  
We computed means and standard deviations on the residual time series.  As can be seen 
comparing Figures S6 and S7, by projecting out the first 5 EOFs, there is some decrease 
in the standard deviation of the residual time series over the tropical pacific, perhaps 
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corresponding to ENSO variability that is partially captured in these EOFs.  It is unclear 
how to incorporate this type of analysis into a refinement of the estimates of the means or 
a tightening of the confidence intervals.  In summary, projecting (removing) a mode of 
variability from the time series does not improve the confidence in the estimate of the 
mean.  

 
Figure S6: Plot of average grid point temperature difference for the CESM model in the upper left 
plot, masked to show only regions of significance at the 95% level.  The z score is plotted in the upper 
right.  The standard deviation for the control run is plotted in the lower left and the standard 
deviation for the perturbed (no US SO2 emissions) in the lower right.  In this case no EOFs have been 
removed from the time series before the statistical analysis; compare with Figure S7.   
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Figure S7:  Plot as in Figure S6.  In this case the first 5 EOFs have been removed from the time series 
before the statistical analysis.  Note the change in scale for the plots of standard deviation.   

S7 Relation of total optical depth to column masses of aerosol species 
In order to see how the change in each of the aerosol species affects the total aerosol 
optical depth we have plotted the time-average change in total optical depth, as well as 
changes in masses of species contributing to aerosol optical depth.  Plotting the change in 
optical depth against the change in column mass for each lat-lon grid point for the CESM 
model (Figure S8), we see that contributions to the total optical depth are dominated by 
both sulfate and dust.  There are also contributions at some locations from sea salt and 
primary organic material (POM).  Changes in relative humidity and internal mixing are 
not considered by this regression model. 
 
 We regressed the change in total optical depth against change in column masses, 
 
𝑑𝐴𝑂𝐷(𝜃,𝜑) = 𝛼Q𝑑𝑆𝑢𝑙𝑓𝑎𝑡𝑒(𝜃, 𝜑) + 𝛼XY𝑑𝐵𝑙𝑎𝑐𝑘𝐶𝑎𝑟𝑏𝑜𝑛(𝜃, 𝜑) + 𝛼_`a&𝑑𝐷𝑢𝑠𝑡(𝜃, 𝜑)

+ 𝛼bcd𝑑𝑃𝑂𝑀(𝜃, 𝜑) + 𝛼QQ𝑑𝑆𝑒𝑎𝑆𝑎𝑙𝑡(𝜃, 𝜑) + 𝛼Qcg𝑑𝑆𝑂𝐴(𝜃, 𝜑)
+ 𝛼h6a"i`jY  

 
where 𝑑𝐴𝑂𝐷(𝜃,𝜑)	is the average change in the total optical depth at each latitude and 
longitude, 𝑑𝐵𝑙𝑎𝑐𝑘𝐶𝑎𝑟𝑏𝑜𝑛(𝜃,𝜑) is the change in column mass of black carbon as well as 
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terms for the corresponding dust, primary organic matter, sea salt, and secondary organic 
aerosols.  The residual is not a function of latitude or longitude.  As can be seen in Figure 
S8 below, for the CESM model, the largest contributors to aerosol optical depth are 
sulfate and dust.  After computing the regression coefficients, 𝛼", (using least squares), 
we can compute the resulting contributions from each species (e.g., the dust contribution 
as 𝛼_`a&𝑑𝐷𝑢𝑠𝑡(𝜃, 𝜑)) as seen in Figure S9.  Similarly, we compute this regression for the 
GFDL model in Figures S10 and S11.  From the scatter plots, it seems that almost all of 
the change in AOD in the GFDL model is from sulfate.  Whereas for CESM, there is a 
significant contribution from sulfate but also due to the large range of dust mass changes, 
there is an additional contribution from dust.  Note that the 𝛼’s are effective aerosol 
extinction cross sections for each of the species.  For externally mixed aerosols it is 
possible to simply divide the species optical depth by the species column mass to get an 
estimate of the effective extinction cross section, however for internally mixed aerosols, 
there is no species-specific optical depth; thus, the need to compute these results through 
some method such as multiple linear regression. 
 
Table S1 Regression coefficients and regressed global contributions of column masses to total aerosol 
optical depth.  For some regression coefficients (marked with an *), the regression coefficients may 
not even have one significant digit; other coefficients are likely to have 1-2 significant digits. 

Regression coefficients (𝜶) 
[m2/mg] 

CESM 
 

GFDL 
 

Sulfate   6.5  17.7 
Black Carbon 94.4*  29.1* 

Dust     .4      .4 
Primary Organic Matter   1.7*  11.1 
Sea Salt   3.4*    2.8* 
Secondary Organic Aerosol   5.7* -13.6* 
intercept   0.111   -0.097 
Global average regressed 
contribution to AOD change 

  

Sulfate -1.153 -3.699 
Black Carbon -0.047  0.016 
Dust -0.412 -0.066 
Primary Organic Matter -0.005  0.107 
Sea Salt  0.050  0.034 
Secondary Organic Aerosol -0.022 -0.035 
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Figure S8.  For the CESM model, a scatter plot of change in total aerosol optical depth vs change in 
column mass for each group of aerosol species.  The y-axis is change in optical depth, and x-axis is 
the change in column mass in mg m-2.  Each point represents a particular latitude and longitude 
point from the time-average of the differenced (zeroed US SO2 – control) simulations. The largest 
contributors are SO4 and Dust.  
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Figure S9. For the CESM model, regressed estimate of the contribution of each species to the total 
aerosol depth through regression.  E.g., the dust contribution is computed as 𝜶𝑫𝒖𝒔𝒕𝒅𝑫𝒖𝒔𝒕(𝜽,𝝋).  
The residual is computed for each latitude and longitude as the (total – sum (all species)).  Global 
averages are in the upper right hand of each plot. 
 



 
 

16 
 

 
Figure S10. For the GFDL model, a scatter plot of change in total aerosol optical depth vs change in 
column mass for each group of aerosol species.  The y-axis is change in optical depth, and x-axis is 
the change in column mass in mg m-2.  Each point represents a particular latitude and longitude of 
the time-average of the differenced (zeroed US_SO2 – control) simulations. The largest contributor is 
SO4.  
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Figure S11  GFDL regressed contributions as in Figure S9. 
 

S8 Remote increase of sulfate in GFDL model over North Africa. 
In an attempt to discover the source of increased sulfate burden over Northern Africa and 
Southern Asia seen in Figure 1, we examined the sulfur dioxide source contributions near 
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these regions.  While the sulfate-burden increases over these regions are an order of 
magnitude smaller than the sulfate-burden decreases over the source regions, they are still 
significant.  As can be seen in Figure S12, there are no additional sulfur sources near 
these regions.  The remaining possibilities are transport of sulfate or sulfur dioxide to 
North Africa, or a change in removal processes over this region.  As can be seen in 
Figure S13, the burden changes are very similar in magnitude to the changes in removal 
processes.  The lifetimes are very similar between the simulations; however, it is 
interesting to see that the lifetime over North Africa is nearly a factor of 15 larger than in 
extratropical regions.  This indicates that if sulfate is transported to this region, it is likely 
to stay around for a while, and that transport through this region is more likely than in 
regions with rapid removal processes. This leaves open the possibility that transport from 
some remote region could be an explanation of this response seen in the GFDL model.  
Additional explanations could be the changes in photolytic conversion of sulfur dioxide, 
or changes in oxidation processes.  Additional work would need to be done to tease out 
the possible cause of this small but significant change seen in this particular model.  
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Figure S12 SO2 emissions changes in GFDL model.  There are no remote emission changes in SO2. 
Compare with figure 1, where remote SO4 burden changes in the GFDL model are also more than 2 
orders of magnitude smaller than the source region. 
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Figure S13 Sulfate burden and removal rate in the GFDL model.  The burden is the total column 
sulfate.  The relative change is relative to the control simulation.  The removal rate is the combined 
removal due to wet and dry deposition.  The lifetime is burden divided by combined removal rate at 
each grid point.  The lifetime relative change is the difference between the perturbed simulation 
lifetime and the control simulation lifetimes divided by the control.  The dry areas of Africa have a 
factor of 8-15 longer sulfate lifetimes than extratropical regions; however, there is almost no change 
in lifetime over any of the dry areas of Africa. There is a small increase in lifetime over much of Asia. 
 

S9 Feedback diagnosed in surface temperature and dust burden responses 
The surface temperature responses between the forcing runs and the coupled runs are 
distinct in some regions.  In the CESM model (Figure S14), the pattern of temperature 
changes from Southern Europe Southward through most of Africa show an opposite 
pattern.  In addition, the temperatures in Eastern Australia are of opposite sign. The 
responses from Brazil through Mexico are distinct as well. And lastly, the temperature 
response over Greenland is of opposite sign as well. While for each grid point, the 
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temperature responses are rarely significant (Figure 10), regional changes (Figure 11) are 
often significant.  A complete analysis would require significantly more work to diagnose 
the reason for these feedbacks but the difference in patterns of temperature response over 
Africa indicate that there are temperature feedbacks as well as dust feedbacks in Africa. 
The dust feedbacks are significant on the global level as seen in Tables 3 and 4.

 
Figure S14  Land surface temperature responses in the forcing and coupled simulations are plotted 
in the top panels.  Similarly, the dust burden response in the forcing and coupled simulations are 
plotted in the bottom panels.  Zonal average responses are seen to the right of each plot.  


