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a b s t r a c t 

Retinopathy of prematurity (ROP) is a vasoproliferative disorder of the retina and a leading 

cause of visual impairment and childhood blindness worldwide. The disease is character- 

ized by an early stage of retinal microvascular degeneration, followed by neovascularization 

that can lead to subsequent retinal detachment and permanent visual loss. Several factors 

play a key role during the different pathological stages of the disease. Oxidative and ni- 
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trosative stress and inflammatory processes are important contributors to the early stage 

of ROP. Nitric oxide synthase and arginase play important roles in ischemia/reperfusion- 

induced neurovascular degeneration. Destructive neovascularization is driven by mediators 

of the hypoxia-inducible factor pathway, such as vascular endothelial growth factor and 

metabolic factors (succinate). The extracellular matrix is involved in hypoxia-induced reti- 

nal neovascularization. Vasorepulsive molecules (semaphorin 3A) intervene preventing the 

revascularization of the avascular zone. This review focuses on current concepts about sig- 

naling pathways and their mediators, involved in the pathogenesis of ROP, highlighting new 

potentially preventive and therapeutic modalities. A better understanding of the intricate 

molecular mechanisms underlying the pathogenesis of ROP should allow the development 

of more effective and targeted therapeutic agents to reduce aberrant vasoproliferation and 

facilitate physiological retinal vascular development. 

© 2022 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

First described in 1942 as retrolental fibroplasia, retinopathy
of prematurity (ROP) is a retinal neovascular disorder impact-
ing 30–50% of very low birth weight preterm infants, making
it one of the most prevalent causes of blindness and child-
hood visual impairment worldwide.187 , 202 , 306 Of those affected
by ROP, 25–30% develop serious eye complications, including
severe ametropia, strabismus, abnormalities of retinal func-
tion, and, in the most severe cases, blindness.187 Advances
in neonatal care have helped improve the survival rate of
preterm infants, resulting in an increased number of preterm
infants at-risk for ROP.202 

ROP is a multifactorial disease, with short gestational
period, low birth weight, and hyperoxia being the most
frequently associated factors.349 Its pathogenesis has been
widely studied in humans and animal models.142 Develop-
ment of human retinal vasculature begins during the 16 th

week of gestation and concludes at the 40 th week.94 There-
fore, preterm infants exhibit incomplete development of the
retinal vasculature and a peripheral avascular zone.94 In ad-
dition, an increase in oxygen bioavailability at birth exposes
preterm infants to a relatively hyperoxic environment that,
coupled with the infant’s immature antioxidant system, leads
to oxidative stress.24 The relative hyperoxia also inhibits the
expression of hypoxia-inducible factor (HIF) and vascular en-
dothelial growth factor (VEGF), disrupting the growth of reti-
nal blood vessels.62 During phase 1 of ROP, retinal microvascu-
lar degeneration occurs, associated with an arrest in the pro-
gressive vascularization of the peripheral retina.93 In phase 2,
these vascular changes result in retinal ischemia and trigger
the release of growth factors leading to abnormal intravitreal
neovascularization.93 

Several multicenter clinical trials conducted over the past
70 years have failed to find an ideal oxygen saturation range
that prevents ROP in Phase 1 without increasing morbidity
and mortality, and high-oxygen treatment in Phase 2 did not
show any benefit.78 , 271 The insights resulting from these stud-
ies, however, have significantly improved the clinical manage-
ment of ROP.78 Although the ideal oxygen saturation range re-
mains unknown, data from randomized clinical trials suggest
that maintaining an oxygen saturation range of 90–95% ap-
pears to be safer than 85–89%.75 Another insight from these
trials is that rigorous management to avoid fluctuations in
oxygen saturation is important in reducing the risk of ROP.78

More clinical trials are needed to optimize oxygen therapy and
help prevent ROP.78 

Currently, laser photocoagulation and ablative cryotherapy
are the primary treatments for ROP. They work by destroying
the avascular retina that produces the growth factors respon-
sible for neovascularization; however, neither of these thera-
pies target the main mechanisms of pathological neovascu-
larization.23 , 78 Both treatments can reduce the incidence of
blindness, but often do not improve visual acuity and have
potential adverse side effects, namely inflammation, myopia,
peripheral vision loss, and scar induction.61 , 154 Of the 2 treat-
ments, laser photocoagulation is more convenient to admin-
ister and results in less pain and inflammation, and relatively
few systemic complications. It is the standard therapy, espe-
cially for ROP stage 3 with plus disease in zone 2.23 Recent
studies have shown promising results for antiangiogenic ther-
apy with anti-VEGF agents. One of them, ranibizumab, was ap-
proved for the treatment of ROP in the European Union in 2019,
but has yet to be approved for this specific use by the US Food
and Drug Administration.78 While studies have shown anti-
VEGF to be the most effective treatment for severe ROP (zone
I),257 reports of recurrent intravitreal neovascularization pre-
senting as late as 60 weeks post-menstrual age,167 long-term
defects in visual acuity or size of the visual field, disorders in
photoreceptor functions, and the possibility of adverse out-
comes in other organs during the neonatal period, remain a
concern.11 , 118 , 146 

In almost 8 decades of clinical and laboratory research, ad-
vances have been made in clarifying the pathogenesis of ROP;
however, a better comprehension of ROP pathogenesis and the
mechanisms that regulate angiogenesis may lead to more ef-
fective and targeted therapeutic agents for the prevention and
treatment of severe ROP while preserving physiological reti-
nal angiogenesis. We focus on existing information on me-
diators involved in the pathogenesis of ROP and its signaling
pathways. Based on current knowledge of molecular mecha-
nisms, we describe new potentially preventive and therapeu-
tic modalities that can constitute important lines of investiga-
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Figure 1 – Timeline of normal vascular development versus 
pathological vascular development (ROP phases) by weeks 
of gestational age. The development of the choriocapillaris 
starts between 5.5 and 8 weeks and is completed at 20–22 
weeks. Retinal vascularization starts at around 16 weeks. 
Retinal blood vessels grow radially from the optic disc 
towards the ora serrata. Vascularization of the nasal retina 
is completed at around 36 weeks and that of the temporal 
retina at 40 weeks. The transition between phase 1 and 

phase 2 of ROP generally occurs around 32 weeks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tion. We begin with a description of the animal models used to
study the pathogenesis of ROP, followed by normal and patho-
logical retinal vascularization and, lastly, the molecular mech-
anisms involved in ROP that constitute our main objective,
highlighting potential therapeutic targets. 

2. Animal models of oxygen-induced 

retinopathy 

To avoid the ethical and safety concerns inherent in experi-
mentation with eyes of human preterm infants, animal mod-
els of oxygen-induced retinopathy (OIR) are typically used
to study the pathophysiology of ROP and evaluate potential
treatments.141 Animals such as mice, rats, and cats vascular-
ize their retinas after birth, resulting in a retinal vascular de-
velopment similar to preterm infants in eyes obtained at term
in these animals 349 ; however, a limitation to all animal mod-
els is that they cannot fully simulate complications that may
arise after birth in preterm infants.141 

In one of the most common models,119 , 140 the mouse OIR
model designed by Smith,348 newborn mice are exposed to a
high oxygen (75%) environment from postnatal day 7–12,130 

causing vaso-obliteration of capillaries already developed in
the central retina. They then return to ambient air to develop
OIR that leads to vasoproliferation into the vitreous at the
junctions of the vascularized and avascular central retina.140 

One advantage of the mice model is the ease of genetic ma-
nipulation which facilitates the study of the molecular mech-
anisms of ROP.231 

Penn’s rat model of fluctuating oxygen (50/10 OIR model)
is another commonly used OIR model.119 , 140 The oxygen-
controlled environment is changed from 50% to 10% oxygen,
every 24 hours, from birth to postnatal day 14. This leads to
a delay in development of the peripheral avascular retina fol-
lowed by vasoproliferation at the junction of vascularized and
avascular retina; similar to what is seen in human preterm
infants.140 This model is the most representative of human
ROP.119 , 140 Unlike mice, genetic manipulation of rats is compli-
cated, making analysis of molecular mechanisms more chal-
lenging. Newer techniques emerged to address this limita-
tion.141 One such technique involves the introduction of short-
hairpin RNAs or genetic mutations through gene therapy to
silence RNA through small interfering RNAs or knockout spe-
cific genes.141 For example, lentivirus has been used to link cell
specific promotors with short-hairpin RNAs to target specific
types of cells in the retina, resulting in the knockdown of gene
products in the targeted cells only.181 This new technique has
been useful to determine the effects of angiogenic signaling
on pathological and physiological retinal angiogenesis.30 , 181 

In another OIR animal model newborn beagles are exposed
to 100% oxygen up to postnatal day 4, causing a delay in
physiological retinal vascular development and vasoprolifer-
ation.237 The eyes of the beagle puppy have a size close to
that of human preterm infants, and this translational aspect
is useful when testing pharmaceutical agents to treat human
ROP.142 

The phases of ROP in animal models of OIR are similar to
those of human ROP. Human ROP is divided into two phases,
which are subdivided into five stages. Phase 1 of human ROP
(stages 1 and 2) is defined by delayed physiologic retinal vas-
cular development and corresponds to mouse and rat model
phase 1. The stage 3 of phase 2 of human ROP is defined by
neovascularization and corresponds to phase 2 of the mouse
and rat models.240 , 358 While part of phase 2, the final two
stages of ROP in humans (stages 4 and 5) are sometimes con-
sidered a pseudo-phase 3. They are characterized by fibrovas-
cular changes with retinal detachment.141 , 237 , 249 This “phase-
3 ′′ is absent from the mouse and rat models, as neither model
reproduces the retinal detachment seen in human ROP; how-
ever, the beagle model shows some characteristics of the ad-
vanced stages of human ROP, specifically the retinal folding
seen in stage 4.142 , 249 

3. Normal and pathological retinal 
vascularization 

3.1. Retinal vascularization 

Nutrients and oxygen are supplied to the retina via two-vessel
systems: the choroidal circulation that receives the largest
blood flow (65–85%) and nourishes the outer part of the retina
(photoreceptors) and the retinal circulation, responsible for
a smaller part of the flow (20–30%) and supplies the inner
layers.13 The choroidal circulation is complete at around 20
weeks of gestation ( Fig. 1 ).36 The development of retinal blood
vessels in humans begins at around 16 weeks of gestation and
spreads from the middle of the optical disc outward.173 The
nasal retina is vascularized at 36 weeks of gestation and the
temporal retina at around 40 weeks.94 For this reason, preterm
infants present incompletely vascularized retinas, with the
area of the peripheral avascular zone dependent on the ges-
tational age.173 , 349 

Vascular development occurs in two phases: vasculogenic
and angiogenic.172 The vasculogenic phase consists of the for-
mation of new blood vessels from bone marrow-derived an-
gioblasts and is usually seen during embryogenesis.55 , 105 , 172 
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Figure 2 – Schematic representation of the main events implicated in the pathogenesis of retinopathy of prematurity. 
Abbreviations: Ang-2 = angiopoietin 2; BDNF = brain-derived neurotrophic factor; bFGF = basic fibroblast growth factor; 
EPO = erythropoietin; HIF = hypoxia-inducible factor; IGF-1 = insulin-like growth factor-1; MMPs = matrix 

metalloproteinases; ω3-PUFA = omega-3 polyunsaturated fatty acids; ROP = retinopathy of prematurity; ROS = reactive 
oxygen species; Sema = semaphorin; VEGF = vascular endothelial growth factor. Images adapted from Servier Medical Art 
by Servier are licensed under a Creative Commons Attribution 3.0 Unported License.18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The angiogenic phase is characterized by the development of
new blood vessels that bud from existing blood vessels.105 , 172

Angiogenesis is driven by physiological hypoxia.172 

During fetal development, relative tissue hypoxia acts as
a stimulus for HIF to trigger the transcription of angiogenic
genes to produce growth factors, such as VEGF, its analog pla-
cental growth factor (PLGF), and the proangiogenic erythro-
poietin (EPO) .223 Tissue hypoxia that stimulates angiogene-
sis is not thought to be necessary for the vasculogenic pe-
riod.55 , 120 Maternal-fetal interaction in utero provides unique
factors and ideal oxygen levels to stimulate the growth of the
retinal vasculature.381 

3.2. ROP phases 

ROP progresses in 2 phases: the vascular attenuation phase
(phase 1) and the fibrovascular proliferative phase (phase
2).93 , 173 The first phase is vaso-obliterative and characterized
by an interruption and delay in retinal vascular growth asso-
ciated with microvascular degeneration.93 It occurs because
preterm infants are exposed to higher oxygen tension after
birth compared to that in utero ,24 eliminating the physiological
hypoxia.89 The hyperoxia leads to a downregulation of VEGF,
as well as an increase in vaso-obliteration of immature retinal
capillaries through the actions of oxidative stress and inter-
twined inflammation.82 , 88 , 94 During this phase, levels of HIF-1,
VEGF, insulin-like growth factor-1 (IGF-1), and EPO are all de-
creased ( Fig. 2 ).154 

The loss of blood vessels in an increasingly metabolically
active retina causes it to become gradually hypoxic.154 To en-
sure adequate perfusion, an overproduction of growth factors,
particularly VEGF, induce the growth, differentiation, and mi-
gration of endothelial cells.300 This leads to abnormal growth
of new blood vessels at the junction between the vascular and
avascular retina, corresponding to the vasoproliferative phase
of ROP (phase 2).350 This phase occurs at around 32–34 weeks
of postmenstrual age.24 , 349 The transition between phases 1
and 2 corresponds more closely to postmenstrual age than
to postnatal age,284 however, this association may not be ob-
served in extreme prematurity.16 These new blood vessels fail
to reperfuse the avascular retina. Instead of growing into areas
of need, they grow chaotically into the vitreous and can lead
to the development of a fibrous scar that can cause retinal de-
tachment and lead to vision loss.61 This critical phase of ROP
(stages 4–5) occurs most frequently around 34–36 weeks of
postmenstrual age 161 ; however, the timing of the ROP phases
can be modified by exposure to very high concentrations of
oxygen .331 Prenatal factors, such as inflammatory processes
and chorioamnionitis, can also affect intrauterine retinal neu-
rovascular development and predispose the fetal retina to se-
vere ROP.410 Understanding ROP phases and their causes can
allow the identification of the ideal postnatal environment for
the immature preterm infant.154 

The International Classification of ROP was originally pub-
lished in 1984,10 expanded in 1987, and revisited in 2005 308 and
2021,65 and describes 5 stages of ROP. ROP initially appears as
a fine demarcation line between the vascular and avascular
retina – stage 1. It then progresses, elevating this junction into
a ridge – stage 2. These first two stages may regress sponta-
neously and are considered as initial or mild ROP; however,
the pathological vasculature can continue to grow outside the
retinal plane, leading to the vascular stage – stage 3. These
neovessels are fragile and can bleed into the vitreous, causing
fibrotization and traction, ultimately resulting in the retinal
detachment that defines fibrovascular stage – stages 4 and 5.
Retinal detachment may have permanent blindness as a pos-
sible consequence.140 

3.3. The role of retinal and choroidal blood flow 

As a result of the incomplete retinal vascularization in
preterm infants, retinal oxygenation depends mainly on

https://doi.org/10.1016/j.survophthal.2022.11.007
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choroidal circulation, which seems to play a fundamental role
in the pathogenesis of ROP.73 Preterm infants are subject to
rises in blood oxygen tension that, in the absence of a fully de-
veloped autoregulatory control of ocular blood flow, may result
in an increase of retinal oxygenation.136 An elaborate genetic
and epigenetic interplay between prostanoids and nitric oxide
(NO) in vasomotor regulation leads to the absence of vascular
autoregulation and excessive oxygen delivery to the eyes.134 

Choroidal blood flow and retinal blood flow are autoregu-
lated over a narrow range of perfusion pressure in the new-
born, partly due to insufficient constriction but mainly from
high perinatal levels of prostaglandins, such as prostaglandin
D2 and prostaglandin E2 produced by cyclooxygenase (COX),
and NO produced by NO synthase (NOS).2 , 135 NO is a po-
tent signaling molecule in blood vessels and its increased
formation from endothelial cells activates guanylate cyclase
in the underlying smooth muscle cells. This leads to the
generation of cyclic guanosine monophosphate that induces
vasodilation and masks the effect of constrictors involved
in autoregulatory responses in newborns.136 , 137 The effects
of various prostaglandins are NO-dependent,1 and specific
prostaglandins regulate the expression and activity of en-
dothelial NOS (eNOS) in ocular blood vessels.87 NOS inhibition
improves choroidal blood flow response to hyperoxia, stabi-
lizes oxygen supply, and prevents the hyperoxia-induced in-
crease in retinal peroxidation .136 

In preterm infants, the increase in carbon dioxide tension
(hypercapnia) is another factor that contributes to the inter-
ruption of regulation of retinal blood flow and choroidal blood
flow.57 Because of the Bohr effect, as the pressure of carbon
dioxide increases, the oxygen dissociation curve is shifted to
the right, allowing more oxygen to be delivered, increasing its
negative effect on the developing retina.379 During sustained
hypercapnia, the increase in prostaglandin E2induces the ex-
pression of eNOS that releases NO and further reduces ocular
blood flow autoregulation.57 Hypercapnia has been associated
with ROP in humans and OIR animal models.379 

4. Oxidative and nitrosative stress, reduced 

anti-oxidative reserve 

Oxidative stress is a consequence of an imbalance in the gen-
eration and quenching of reactive oxygen species (ROS) and
has been implicated in the pathophysiology of ROP.140 With
high oxygen consumption,252 constant exposure to light and
rich content of easily oxidable long-chain polyunsaturated
fatty acids (PUFAs), retinal tissue is prone to lipid peroxidation
and highly susceptible to oxidative damage by ROS.63 , 225 Hy-
peroxia, inflammatory response due to hypoxia-reperfusion,
infection, long-term parenteral nutrition, blood transfusions
and increased levels of non-protein-bound iron produce high
levels of ROS.298 Fluctuations in oxygen saturation appear to
be more damaging than sustained hyperoxia.31 

Qanungo and coworkers demonstrated a notable increase
in the production of enzymatic and nonenzymatic antioxi-
dants such as superoxide dismutase, catalase, and glutathione
peroxidase in the late stage of gestation.304 Therefore, preterm
infants present a relative deficiency in antioxidant systems
and low levels of vitamin E and ascorbic acid to counterbal-
ance ROS increase.298 

ROS, namely superoxide anion (O 2 ̅), hydrogen peroxide
(H 2 O 2 ), and hydroxyl radical (HO 

●) 92 are by-products from
normal aerobic metabolism that activate signaling path-
ways.123 , 320 The mitochondrion is the main intracellular
source responsible for the production of superoxide radi-
cal, though some enzymes also have a role in ROS gener-
ation, namely nicotinamide-adenine-dinucleotide phosphate
(NADPH) oxidase (NADPH oxidase/ NOX) and NOS.8 , 317 In ex-
perimental OIR models, several isoforms of NOX, including
NOX1,409 NOX2,424 and NOX4,396 are implicated in the pro-
duction of ROS that interfere with peripheral retinal vascular-
ization and are involved in later intravitreal neovasculariza-
tion.321 Retinal vascular obliteration, seen in the first phase
of ROP, is thought to be partly due to endothelial cells apop-
tosis induced by oxidative stress 320 , 382 which is also associ-
ated with delayed retinal vascular development in models of
ROP.123 , 320 

In addition to hyperoxia, hypoxia that develops after hyper-
oxia damages newly developed capillaries can also lead to the
activation of NOX and NOS.397 The enhanced NOS is dysfunc-
tional (uncoupled) and contributes to oxidative stress ( Fig. 3 ).89 

Saito and coworkers found that activation of NOX and Janus
kinase (JAK)/signaling transducer and activator of transcrip-
tion 3 (STAT3), involved in pathways of apoptosis, is triggered
in hypoxia-exposed retinal microvascular endothelial cells.321 

In the 50/10 OIR model, the increased NOX activity induced by
supplemental oxygen caused intravitreal neovascularization
mediated by JAK/STAT3 activity.321 Inhibition of NOX activity
with apocynin reduced the percentage of the area of intravit-
real neovascularization to the total retinal area, but there was
no decrease in VEGF, suggesting that NOX can also act inde-
pendently from VEGF.321 

Saito and coworkers also demonstrated that inhibition of
NOX led to a reduction in apoptosis and avascular retina in an
animal model of ROP, but reduced vasoproliferation was only
observed if the hypoxic stimulus for angiogenesis was limited
when pups were placed into supplemental oxygen.142 , 320 This
showed that ROS may activate signaling of angiogenesis, indi-
rectly through NOX activation 

321 or directly through VEGF.92 

Bursts of superoxide generated by leukocytes are impor-
tant to combat invading microorganisms, and this may be
particularly important in the immune-suppressed preterm in-
fant.142 Therefore, NOX inhibition can have undesirable con-
sequences such as sepsis and necrotizing enterocolitis.39 , 185 

In addition, studies do not support the use of certain antiox-
idants such as n-acetyl cysteine in preterm infants.352 While
antioxidants may be effective in quenching external ROS, they
may not be able to access intracellular oxidative signaling
mechanisms.397 To find safer potential therapies, it is useful
to study the signaling cascades activated by ROS that mediate
the pathological characteristics of ROP.397 

Nuclear factor erythroid 2-related factor 2 (Nrf2), a cyto-
protective transcription factor, is upregulated in response to
oxidative stress.138 Heme oxygenase-1, a gene regulated by
Nrf2, catalyzes heme degradation and, in response to oxida-
tive stress, is upregulated to protect cells from ROS.138 Previ-
ous studies have suggested the modulation of Nrf2 and Heme
oxygenase-1 expression by the phosphatidylinositol 3-kinase

https://doi.org/10.1016/j.survophthal.2022.11.007


180 survey of ophthalmology 68 (2023) 175–210 

Figure 3 – Diagram showing the relationship between oxygen stress and retinopathy of prematurity. In the early life of 
preterm infants, oxygen stress leads to activation of NADPH oxidase, eNOS and arginase. The retinal hypoxia that occurs 
due to fluctuating oxygen tensions or when hyperoxia injures newly developed capillaries, triggers the overproduction of 
ROS and HIF stabilization. The signaling pathways activated by ROS/ nitro-oxidative stress, and HIF-1 α contribute to 

pathogenesis of retinopathy of prematurity. Abbreviations: eNOS = endothelial nitric oxide synthase; EPO = erythropoietin; 
JAK = Janus kinase; HIF = hypoxia-inducible factor; PI3K = phosphatidylinositol 3-kinase; ROS = reactive oxygen species; 
STAT3 = signaling transducer and activator of transcription 3; VEGF = vascular endothelial growth factor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(PI3K) / protein kinase B (Akt) and extracellular signal- regu-
lated kinase (ERK) pathways.86 , 201 Recently, Dong and cowork-
ers demonstrated in experimental studies that polypyrimi-
dine tract-binding protein-associated splicing factor induced
the expression of Nrf2 and Heme oxygenase-1 via PI3K/Akt
and ERK signaling, resulting in the elimination of intracellular
ROS and suppression of the development of pathological vas-
cularization.86 Protein-associated splicing factor appears to be
a potential antioxidant capable of regulating pathological reti-
nal angiogenesis.86 

4.1. Nitric oxide and endothelial nitric oxide synthase 

NO is a gas-signaling molecule,89 synthesized by NOS enzyme
catalysis in which L-arginine is converted to L-citrulline us-
ing molecular oxygen and reduced NADPH as co-substrates.50

NO binds to the only known NO receptor, the enzyme guany-
late cyclase.71 There are three main isoforms of NOS in ver-
tebrates: neuronal NOS (nNOS/ NOS I), inducible NOS (iNOS/
NOS II), and eNOS (NOS III).361 , 374 The isoform iNOS is usually
expressed following the exposure to proinflammatory stim-
uli 121 and is a hallmark molecule of the pro-inflammatory
M1 macrophages.418 NO generated by eNOS has the func-
tion of vasodilation, among other important vascular effects,
while nNOS is expressed in neurons, modulates neurogenesis
and some neurophysiological functions, and regulates vascu-
lar tone.107 , 121 

Among all isoforms, eNOS is the most abundant enzyme
in vascular endothelial cells.374 NO produced by eNOS is
crucial for the induction of angiogenesis.127 VEGF activates
eNOS through the Akt signaling pathway, and Akt-dependent
eNOS phosphorylation appears to play a key role in angio-
genesis.107 , 127 The contribution of eNOS-derived NO to VEGF-
induced vascular permeability 273 and to promoting endothe-
lial cell survival and migration is also well documented.263 , 351

Recently, Ninchoji and coworkers demonstrated that NO
causes vascular hyperpermeability by destabilizing the ad-
herens junctions of endothelial cells.273 Inhibition of eNOS in
mice stabilized the adherens junctions of endothelial cells in
vascular tufts, decreasing vascular leakage and, consequently,
reducing pathological neovascularization without affecting
the general blood perfusion of the retina.273 These findings
show that it is possible to prevent vascular leakage through
pharmacological inhibition of NO production.273 In another
recent study, Smith and coworkers showed that eNOS con-
trols the polarization of endothelial cells, influencing VEGF-
induced migration and the sprouting of angiogenesis in a
mouse model of OIR.351 The results of this study indicate
that eNOS inhibition increases endothelial cell polarization
and redirects revascularization of the avascular retina, pre-
venting misdirected vessels from growing into the vitreous
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body.351 Further studies are needed to assess the potential of
eNOS to prevent retinal neovascularization and as a strategy
for vascular regeneration of the ischemic retina.351 Combina-
tion therapy of NO inhibitors and anti-VEGF, given at low but
still effective doses, may prove to be beneficial for vascular
retinopathies.273 Local administration of NOS inhibitors may
be necessary to avoid adverse effects of systemic administra-
tion, such as hypertension or other complications associated
with vasoconstriction.273 

NO can have protective and proangiogenic properties in
the eye with different effects on OIR depending on the reti-
nal redox state.28 Oxidative stress may convert eNOS from a
NO-producing enzyme to a dysfunctional enzyme that gen-
erates O 2 ̅.89 This process is referred to as NOS uncoupling.89 

Beauchamp et al showed in an OIR model that eNOS expres-
sion and activity increases when the redox state is shifted to-
wards an oxidative environment.28 In this circumstance the
oxygen reduction by eNOS is uncoupled from the formation of
NO and eNOS produces less NO that can react with ROS, result-
ing in the generation of highly reactive nitrogen species .89 , 123 

Reactive nitrogen species can elicit several modifications of
macromolecules and lead to nitrosative stress .67 NO reacts
with superoxide to form peroxynitrite (ONOO ̅), an important
mediator of hyperoxia-induced vaso-obliteration, resulting in
microvascular degeneration.89 Excessive production of reac-
tive nitrogen species can result in harmful effects such as lipid
peroxidation, DNA damage, and superoxide dismutase inac-
tivation.225 , 279 An increase in oxidative stress results in in-
creased NO degradation due to nitrosative stress, ultimately
leading to endothelial dysfunction.107 The important role of
nitrosative stress in ROP was demonstrated by reducing the
severity of oxygen-induced retinal microvascular degenera-
tion in mice after genetic ablation 

40 and pharmacological in-
hibition of eNOS.194 

In summary, in retinal hypoxia, a greater retinal eNOS ex-
pression increases NO production and, consequently, vasodi-
lation and angiogenesis.317 In the early stages of OIR, vasodila-
tion induced by NO represents a compensatory mechanism to
reduce vascular obliteration.317 , 376 The subsequent improve-
ment in ocular blood flow induces the production of ROS .376 

Furthermore, although NO is essential for rapidly initiating
angiogenesis, it plays a critical role in retinal endothelial cells,
increasing vascular permeability and pathological neovascu-
larization.351 The evidence described above allow us to con-
clude that further research is needed to assess the poten-
tial of regulating NO production by eNOS in the prevention
of vascular retinopathies, including ROP. In addition, in an
OIR mouse model, iNOS modulated the activity of HIF-1 via
PI3K/Akt signaling and VEGF expression, presenting another
potential form of intervention.144 

4.2. Interaction between free-radicals and prostanoids 

Isoprostanes are primarily produced by free radical-mediated
oxidation of arachidonic acid (AA).301 Under oxidizing condi-
tions, the production of isoprostanes exceeds that of COX-
derived prostaglandins and may contribute to microvascu-
lar injury in ROP, as they induce the production of throm-
boxane A2 which has cytotoxic effects.165 Beauchamp and
coworkers demonstrated in an OIR model that inhibition
of COX and thromboxane A2 synthase selectively restricted
retinal oxygen-induced vaso-obliteration.27 Cis- to trans-
isomerization of AA by nitrative stress resulting in trans- AA
(TAA) formation was associated with vaso-obliteration and
retinal endothelial degeneration in the model.21 The forma-
tion of the antiangiogenic and proapoptotic thrombospondin-
1 194 via activation of long-chain fatty acid receptor GPR40 is
responsible for the endothelial cells toxicity induced by trans-
AA.162 

Phospholipase A2 enzymes can be activated in response
to physiological stimuli or to oxidative stress and hypoxia.25 

These enzymes hydrolyze fatty acids of membrane phospho-
lipids and can lead to the release of AA, platelet activation fac-
tor, and lysophospholipids.397 The platelet activation factor is
a pro-inflammatory mediator that contributes to microvascu-
lar damage to the retina, with its cytotoxic effects mediated
mainly by thromboxane A2.26 Barnett and coworkers suggest
that phospholipase A2 and its downstream signaling is asso-
ciated with both phases of ROP in OIR models, either indepen-
dently or in association with the activation of VEGF signaling
in vascular endothelial cells.25 

5. Arginase 

Arginase belongs to the ureohydrolase enzyme family, with
two isoforms encoded by two different genes.269 Arginase 1,
the cytosolic isoform, is mainly expressed in the liver, where
it has a central role in the urea cycle.261 , 269 Arginase 2, the mi-
tochondrial isoform, is expressed in extrahepatic tissues, es-
pecially the kidney.341 Both isoforms are also present in the
brain, retina, and other tissues.341 

Arginase converts L-arginine to urea and ornithine. The
production of hepatic urea is crucial for the detoxification of
ammonia.367 L-ornithine is metabolized by ornithine amino-
transferase to form proline needed for collagen synthesis and
by ornithine decarboxylase to form polyamines that enhance
cell differentiation and proliferation.311 , 367 The metabolism of
L-arginine by arginase also results in the formation of gluta-
mate.269 Arginase has an important role in wound repair and
has been implicated in neuroprotection and neural regenera-
tion via the production of polyamines.95 , 191 , 213 

Preterm infants tend to have low levels of arginine and glu-
tamine due to the inability to maintain endogenous synthesis
of these semi-essential amino acids.378 Experimental studies
show a significant contribution of these amino acids to reti-
nal vascular function.108 , 199 , 270 , 341 In an OIR mouse model, in-
travitreal neovascularization and vascular hyperpermeability
were reduced by supplementary treatment with arginine and
glutamine.270 

Arginase activity and expression are increased by inflam-
matory processes and ROS states.19 , 54 When arginase activity
is increased, it can compete with NOS for the common sub-
strate L-arginine, causing NOS to become uncoupled, resulting
in a decrease of NO production and contributing to nitrosative
stress.367 For this reason, arginase can regulate the function of
the three isoforms of NOS, eNOS, iNOS, and nNOS.108 

Arginase 1 upregulation in endothelial cells decreases NO,
resulting in decreased endothelial cell-dependent vasorelax-
ation, and ultimately leading to reduced blood flow and sub-
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sequent ischemia 110 , 269 ; however, the expression of arginase
1 in immune cells can decrease NO production by iNOS,
reducing oxidative stress and inflammation.110 , 340 In fact,
arginase 1 is considered a marker of antiinflammatory M2
macrophages.340 Fouda and coworkers showed that intravit-
real treatment with arginase 1 reduces retinal neurovascu-
lar degeneration in wild-type mice after ischemia-reperfusion
injury.110 This study also demonstrated the importance of
arginase 1 in macrophage polarization towards a reparative
phenotype allowing neurovascular recovery.108 , 199 , 270 , 341 In a
translational study, Fouda and coworkers also demonstrated
that the systemic administration of the pegylated arginase 1
(polyethylene glycol linked to recombinant human arginase)
dampens the inflammatory response of macrophages and
markedly protected against neurovascular injury after retinal
ischemia-reperfusion injury.109 Pegylated arginase was also
reported to cross the blood-retinal barrier and its penetration
was enhanced by impairment of the blood-retinal barrier.109 

While studies have demonstrated a protective role of
arginase 1, other studies provide evidence that arginase 2
plays a role in retinal damage. Elevated arginase 2 levels have
been associated with retinal neurovascular degeneration in
models of ischemic retinopathy through mechanisms involv-
ing increased oxidative stress, glial activation, and changes in
polyamine pathways.340 The catabolic products of polyamine
oxidation and glutamate can lead to oxidative stress and DNA
damage that can cause cell damage.269 Shosha and coworkers
suggested that arginase 2 is a downstream target of NOX2.341

The superoxide produced from activated NOX2, along with in-
creases in other ROS after ischemia/reperfusion, may play an
important role in arginase 2 upregulation, leading to cell death
and ischemia/reperfusion-induced neurovascular degenera-
tion.341 

L-citrulline is a precursor to L-arginine via the L-arginine
recycling pathway; however L-citrulline has been shown to
have an inhibitory effect on arginase.332 , 333 This inhibitory ef-
fect may further increase NO production by providing more
L-arginine to the NOS pathway.332 Shatanawi and coworkers
demonstrated that supplementation of L-citrulline reduces
arginase activity and increases nitric oxid plasma levels in
patients with type 2 diabetes.332 In humans, oral L-arginine
treatment is impaired by metabolism in the gut and liver. L-
citrulline, the precursor of L-arginine, is not subject to pre-
systemic elimination, and for this reason, oral L-citrulline
supplementation increases the plasma concentration of L-
arginine more effectively.327 L-citrulline is available in oral and
intravenous forms and has been used safely in clinical tri-
als with infants undergoing cardiac surgery and in children
with sickle cell disease and mitochondrial disease.91 , 346 , 400 A
clinical trial aims to evaluate the safety profile, efficacy and
adequate dosage of enteral L-citrulline supplementation in
preterm infants (NCT03649932). The investigators intend to
use the information from this study to conduct a random-
ized placebo-controlled trial to assess the role of L-citrulline
supplementation to treat pulmonary hypertension associated
with bronchopulmonary dysplasia in preterm infants. 

In summary, more studies are needed to evaluate the
arginase pathway as a therapeutic target to treat oxidative
stress-related retinopathy. The development of methods for
cell-specific targeting and specific inhibitors of arginase iso-
forms could facilitate progress in this area.340 Specific delivery
of pegylated arginase 1 to microglial cells/macrophages may
be an option to limit inflammation, avoiding potentially harm-
ful effects on vascular endothelium.340 Pegylated arginase 1
is being clinically tested in patients with melanoma and ad-
vanced hepatocellular carcinoma and appears to be safe and
well tolerated.108 , 199 , 270 , 83 , 341 , 423 While the role of arginase
in ROP is clearer than before, many aspects still need to be
explored. For example, the mechanisms of arginase-induced
retinal damage and the complimentary or contradictory ac-
tions of the two arginase isoforms need to be better under-
standed.340 Potential systemic adverse effects on immune re-
sponses and endothelial cell function should also be stud-
ied.108 

6. Hypoxia-inducible factor 

All responses to hypoxia in cells share HIF as a common de-
nominator.66 HIF is a transcription factor and a heterodimeric
complex composed of two subunits: an oxygen-dependent
subunit HIF-1 α (or its analogs HIF-2 α and HIF-3 α) and a con-
stitutively expressed nuclear subunit HIF-1 β (1, 2) 97 , 394 – also
denominated as aryl hydrocarbon receptor nuclear translo-
cator.122 In normoxic conditions, HIF-1 α is hydroxylated by
prolyl hydroxylase domain (PHD) in the cytosol. PHDs be-
long to a small family of proteins. In humans, there are
3forms (PHD1, PHD2, PHD3) with their own specialized activ-
ity.253 The hydroxylation of HIF-1 α by PHD provides a bind-
ing signal for Von Hippel-Lindau (VHL) tumor suppressor pro-
tein,45 thus enabling ubiquitination by the cullin-2 E3 lig-
ase complex (CRL2 VHL E3) 203 and degradation by the 26S
proteasome.45 

Since PHD uses oxygen and iron as cofactors, a state of hy-
poxia inhibits the enzymatic activities of PHD, allowing the
stabilization of HIF-1 α.203 As a result, the HIF-1 α level in-
creases and binds to HIF1- β in the nucleus to activate the an-
giogenic mechanisms which help cells adjust to hypoxia.97

In addition, the Krebs cycle activity is linked to oxidative
phosphorylation which is both impacted by hypoxia.187 Inhi-
bition of succinate dehydrogenase by hypoxia results in the
accumulation of succinate, which is exported to the cytosol,
binds to and activates its receptor, GPR91, and leads to in-
hibition of PHD and activation of HIF expression.264 Another
Krebs cycle intermediate, fumarate, also accumulates during
hypoxia and inhibits PHD activity leading to an increase in
HIF- α.128 

Consequently, in hypoxia, HIF-1 α hydroxylation is inhib-
ited and it escapes from VHL binding and 26S proteasome-
dependent degradation.203 This results in the stabilization
of HIF-1 α and subsequent translocation into the nucleus .384

The protein dimerizes with constitutively expressed HIF-1 β
to form the HIF-1 complex which binds to E-box-like hypoxia
response elements (HREs) in the promoter region of hypoxia-
inducible genes.177 The HIF-1 complex enables the transcrip-
tion of hundreds of genes, including those involved in an-
giogenesis, such as VEGF, EPO, platelet-derived growth fac-
tor (PDGF), angiopoietin (Ang)-1, and angiotensin-converting
enzyme 1; glucose/iron metabolism; stem cell maintenance;
and cell survival and proliferation. This process helps the cells
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adapt to low oxygen conditions.171 , 303 , 406 , 425 Synnestvedt and
coworkers found that adenosine, another angiogenic factor, is
also controlled by HIF-1 α.368 HIF-1 and HIF-2 regulate many
common transcriptional targets, but some genes are not co-
regulated. For example, the expression of EPO and certain
genes linked to iron metabolism are controlled by HIF-2 while
HIF-1 controls anaerobic glycolysis.128 

There is also evidence that non-hypoxic stimuli induce HIF.
Under normoxic conditions, various growth factors and cy-
tokines such as IGF-1 and transforming growth factor β may
stabilize HIF-1 α via specific kinase pathways [PI3K or mitogen-
activated protein kinase (MAPK)].220 ROS can also increase
the transcriptional activity of HIF-1, even in normoxia.53 The
same is reported for angiotensin-converting enzyme and an-
giotensin II receptors.230 

As described above, relative hypoxia, such as that seen dur-
ing fetal development, inhibits PHD activity, increasing levels
of HIF-1 α.282 This plays a crucial role in retinal vascular de-
velopment, both directly increasing the transcription of ma-
jor angiogenic factors 402 and indirectly increasing the apop-
totic effects caused by the HIF-1–responsive gene RTP801 .37 

Preterm infants are exposed to a high oxygen tension after
birth,94 often including supplemental oxygen therapy. Hyper-
oxia suppresses HIF-1 α levels and leads to a reduction in VEGF
expression and induction of retinal capillary obliteration.13 , 349 

Therefore, suppression of HIF-1 α by hyperoxia plays a pivotal
role in the onset and progression of the first phase of ROP,
while its upregulation by tissue hypoxia is crucial for the sec-
ond phase.13 

Several studies have demonstrated that HIF stabilization
during hyperoxia (hypoxiamimesis) may prevent retinal ves-
sel loss and subsequently, the second phase of ROP. Sears et al
demonstrated that PHD inhibitors stabilize HIF in mice and
maintain conditions to stimulate physiological retinal vas-
cular development in phase 1 ROP in OIR models.328 Hoppe
and coworkers tested 7 small molecule HIF PHD inhibitors
and reported that at least 2 of them administered system-
ically during the hyperoxic phase prevent vaso-obliteration
and subsequent pathologic angiogenesis in OIR mice.163 One
of these molecules is roxadustat, a carbonyl glycine approved
in many countries for the treatment of anemia associated
with chronic kidney disease.329 The other, AR0, is a benzo-
lamide constructed by modeling the oxoglutarate binding site
of PHD2. Both molecules targeted PHD2 better than PHD1 or
3.163 The researchers observed that retinal expression of PHD2
became dominant at postnatal day 8, and suggested that the
inhibition of PHD at this point should be maximal to obtain
the best protection.163 They also demonstrated that roxadu-
stat can prevent OIR in two ways: directly in the retina, by
stabilizing HIF and up-regulating enzymes for aerobic glycoly-
sis, or indirectly in the liver, by stabilizing HIF-1 and stimulat-
ing the secretion of angiogenic hepatokines.164 These findings
lead the authors to suggest a clinical trial with intermittent
use of low doses of PHD inhibitor in preterm infants, start-
ing one week after birth and continuing to 30 weeks postmen-
strual age, to allow oxygen supplementation without impair-
ing normal retinovascular growth.163 Another interesting con-
sideration is that iron and oxygen-dependent PHDs are ery-
thropoiesis regulators.128 PHD inhibitors, such as roxadustat,
are used to treat anemia, a risk factor associated with ROP. We
think that this effect of HIF-PHD inhibitors should also be in-
vestigated in the prevention of ROP. 

In response to hypoxia, HIF-1 mediates metabolic repro-
gramming for cellular adaptation, increasing flux through gly-
colysis and decreasing glycolytic carbon entry into the tricar-
boxylic acid cycle.200 , 344 HIF also induces serine synthesis and
metabolism, increasing mitochondrial NADPH production.344 

One-carbon metabolism is folic acid and methylenetetrahy-
drofolate redutase dependent.416 Singh and coworkers found
that serine/one-carbon metabolism are dependent on hepatic
HIF-1 and mediate HIF protection against hyperoxia-induced
retinal vessel in OIR.344 This study suggests that pharmaco-
logical stabilization of HIF can induce aerobic glycolysis and
control serine metabolism, resulting in a protected phenotype
in mice.344 , 378 

Other studies suggest that HIF inhibition during phase
2 OIR may be an ideal strategy, as it seems to be directed
towards the pathological action of proangiogenic factors
(mainly VEGF-A), while maintaining the physiological role of
these factors, essential in protecting the retina.217 

In one mouse OIR model, the peak levels of expression of
HIF-1 α and HIF-2 α were reached after two hours of exposure
to hypoxia .262 Jiang and coworkers demonstrated that inhi-
bition of HIF-1 α suppresses the production of pro-angiogenic
factors that cause the neovascular phase (phase 2).180 Studies
have demonstrated the role of HIF in the pathogenesis of ROP
( Table 1 ). 

Miwa and coworkers studied two HIF inhibitors with
different mechanisms: topotecan, which suppresses the ac-
cumulation of HIF-1 α protein but not mRNA expression and,
doxorubicin, which inhibits HIF- αs by preventing its binding
to the hypoxia response element 258 ( Table 1 ). Shoda and
coworkers screened marine products and found six species of
fish with HIF inhibitory effects.339 Between them, Decapterus
tabl components suppressed retinal neovascularization in
a mouse model of OIR, however, the mode of action and
effector compounds have not been clarified.217 , 339 Usui-Ouchi
et al demonstrated that intravitreal injection of peptides
derived from the intrinsically disordered protein CITED2, an
endogenous negative feedback regulator of HIF-1 α prevented
ROP in a mouse model of OIR.383 It was also reported that the
combination of this peptide inhibitor of HIF with a reduced
concentration of the anti-VEGF aflibercept causes suppression
of neovascularization and stimulates the revascularization of
the ischemic retina.383 

Apurinic/apyrimidinic endonuclease 1/reduction-
oxidation factor 1 (APE1/Ref-1) is a multifunctional protein
that has a role of redox-transcription activator and of en-
donuclease.138 , 221 APE1/Ref-1 is expressed during retinal
development and in retinal and choroidal endothelial cells,
retinal pigment epithelial cells, and pericytes.287 APE1/Ref-1
regulates transcription factors that are involved in retinal
neovascular diseases, including HIF-1 α, STAT3, and NF- κB.138 

Low oxygen levels and APE1/Ref-1 redox activity induce
HIF-1 α expression.138 The inhibition of APE1/Ref-1 as a new
option for the treatment of retinal neovascular diseases,
including ROP, is addressed by another review.138 

Phase II and III clinical trials of PHD inhibitors for ane-
mia of chronic kidney disease and of HIF inhibitors for the
treatment of cancer are summarized in the reviews by Haase
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Table 1 – Results of studies investigating molecules or pathways involved in the pathogenesis of retinopathy of prematurity and related pharmacological agents. 

Molecule/ 
Pathway 

Pharmacological agent Intervention Tested in Effect Adverse effect Reference 

HIF-1 Dimethyloxalylglycine (PHD 

inhibitor) (Phase 1) 
Intraperitoneal injection Mouse OIR model Prevents loss of vessels, vascular 

tortuosity, and tufts formation 
328 

Roxadustat or AR0 (PHD 

inhibitors) (Phase 1) 
Intraperitoneal injection Mouse OIR model Prevent vaso-obliteration and 

subsequent pathologic 
angiogenesis 

163 

Topotecan or doxorubicin 
(HIF inhibitors) (Phase 2) 

Intraperitoneal injection Mouse OIR model Both prevent pathological but not 
physiological retinal 
neovascularization. In addition, 
topetecan protects the visual 
function 

258 

2-azahypoxanthine (HIF 
inhibitor) (Phase 2) 

Oral administration Mouse OIR model Suppress VEGF upregulation and 
retinal neovascularization 

218 

HIF-1 + VEGF HIF-1 α siRNA (Phase 2) Subretinal injection Mouse OIR model Neovascular tufts and neovascular 
nuclei were decreased 

180 

CITED2 (HIF-1 α inhibitor) Subretinal injection Mouse OIR model Inhibits vaso-obliteration and 
pathological angiogenesis 

383 

HIF-1 α siRNA and VEGF 
siRNA (Phase 2) 

Subretinal injection Mouse OIR model Result in maximum effects in 
suppression of VEGF in vitro and 
in vivo 

180 

CITED2 (HIF-1 α inhibitor) 
+ Aflibercept (Phase 2) 

Intravitreal injection Mouse OIR model Suppress neovascularization and 
stimulate ischemic retinal 
revascularization 

383 

VEGF VEGF (Phase 1) Intraocular injection Rat OIR model Prevention of endothelial cell 
apoptosis and rescue of retinal 
vasculature 

7 

Anti-VEGF (Phase 2) Intravitreal injection Rat OIR model Reduction of intravitreal 
neovascularization area 

Reduction in weight gain 247 

Bevacizumab (Phase 2) Intravitreal injection Clinical Study Effective for treatment of zone I 
ROP (compared to laser treatment) 
but not for zone 2 

Persistent avascular retina and 
recurrent intravitreal 
neovascularization; serum levels 
suppressed for 2 months 

167,256,413 

Bevacizumab (Low dose) 
(Phase 2) 

Intravitreal 
Injection 

Clinical Study The lowest effective dose of 
bevacizumab may be 0,004mg 

Ocular results (strabismus, high 
myopia, nystagmus, retinal 
detachment) in 1 year identical to 
those of studies with higher doses 

74,393 

Ranibizumab (Phase 2) Intravitreal injection Clinical Study Effective in the treatment of ROP Reduction in serum VEGF levels for 
less than 4 weeks 

157 

Intravitreal injection Clinical Study Ranibizumab at a dose of 0.12 mg 
and 0.20 mg was shown to be safe 
and effective at 1 and 2 years of 
follow-up 

Recurrences were frequent 357 

( continued on next page ) 
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Table 1 ( continued ) 

Molecule/ 
Pathway 

Pharmacological agent Intervention Tested in Effect Adverse effect Reference 

Ranibizumab versus laser 
therapy (Phase 2) 

Intravitreal Injection Clinical Study 
(Clinical trial: 
NCT02375971 ) 

Ranibizumab 0.2 mg may be 
superior to laser therapy and has 
an acceptable safety profile of 24 
weeks 

Less myopia with ranibizumab 
than laser therapy. No adverse 
advents reported with 
ranibizumab. 

243,359 

Aflibercept (Phase 2) Intravitreal injection Clinical Study Serum IGF-1 levels did not change 
significantly 

Serum VEGF levels were 
suppressed for at least 8 weeks. 
Aflibercept in systemic circulation 
after 4 weeks 

118 

Aflibercept versus laser 
therapy (Phase 2) 

Intravitreal 
Injection 

Clinical Study Aflibercept is effective in the 
treatment 
of ROP 

Aflibercept requires more 
additional treatments than laser 
photocoagulation 

90 

Aflibercept versus 
Ranibizumab (Phase 2) 

Intravitreal 
Injection 

Clinical Study Both are effective in the treatment 
of ROP 

Lower rate of ROP recurrence with 
aflibercept than with ranibizumab 

364 

Aflibercept versus 
Bevacizumab (Phase 2) 

Intravitreal injection Clinical Study Higher rate of ROP recurrence with 
bevacizumab than with 
aflibercept. Serum VEGF 
significantly reduced for 3 months 

170 

Intravitreal injection Clinical Study Regression rate significantly 
higher with aflibercept compared 
with bevacizumab. 

Recurrence rate significantly 
higher with aflibercept compared 
with bevacizumab. 

312 

Aflibercept versus 
Bevacizumab versus 
Ranibizumab (Phase 2) 

Intravitreal 
Injection 

Clinical Study Aflibercept, bevacizumab and 
ranibizumab are effective for the 
treatment of ROP 

Recurrence is more frequent and 
earlier with ranibizumab. 
Bevacizumab is associated with 
myopic shift 

366 

VEGFA shRNA (Phase 2) Subretinal injection Rat OIR model Reduction of VEGF expression; 
Inhibited intravitreal 
neovascularization without 
affecting physiological retinal 
vascular development or puppy 
weight gain 

395 

VEGF164 shRNA (Phase 2) Subretinal injection Rat OIR model Maintained long-term inhibition of 
intravitreal neovascularization, 
limited cell death, and preserved 
the outer nuclear layer compared 
with shRNA to VEGFA 

181 

( continued on next page ) 
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Table 1 ( continued ) 

Molecule/ 
Pathway 

Pharmacological agent Intervention Tested in Effect Adverse effect Reference 

β- adrenergic 
receptors 

Propanolol (Phase 2) Subcutaneous injection Mouse OIR model Markedly reduced 
neovascularization; reduced 
upregulated VEGF 

313 

Oral (0.25 or 0.5 
mg/kg/6 hours) 

Clinical Study 
(Clinical trial: 
NCT01079715 ) 

Effective in reducing the 
progression of ROP 

Serious adverse effects 
(hypotension, bradycardia) 
associated with sepsis, anesthetic 
induction or tracheal stimulation 
were observed in 5 of 26 infants 

101 

Topical administration Clinical Study 
(Clinical trials 
NCT02504944 ; 
NCT02014454) 

Propanolol 0.2% dose but not 0.1% 

dose reduces ROP progression 
102,103 

IGF-1 IGFBP3 (Phase 1 and 2) Intraperitoneal injection Mouse OIR model Protects against the 
oxygen-induced retinal vessel loss, 
increases vessel regrowth, and 
decrease retinal 
neovascularization 

233 

IGF-1 Intraperitoneal injection Mouse OIR model Early administration (prior to 
exposure to hyperoxia) reduce the 
risk of OIR 

386 

Fresh-frozen plasma as a 
source of IGF-1/IGFBP3 
(Phase 1) 

Transfusion Clinical Study Increases serum IGF-1 and IGFBP3 
levels 

131 

IGF-1/IGFBP3 (Phase 1 and 
2) 

Intravenous Clinical Study Well tolerated, safe, and efficient 
in increasing serum IGF-1 levels 

234 

Intravenous Clinical Study (Phase 
II clinical trial, 
NCT01096784 ) 

Does not affect the development 
of ROP 

13.1% emerging adverse effects 
possibly related to study drug 

224 

EPO and 
derivates 

EPO for preventing red 
blood cell transfusion 

Intravenous/ subcutaneous A systematic review 

of 2 clinical studies 
Risk factor for ROP (any grade) and 
a trend for ROP stage > 3 with 
early EPO treatment 

4 

EPO for treatment of 
anemia 

Intravenous/ subcutaneous Clinical Study Does not influence markedly the 
incidence and severity of ROP 

330 

EPO (ROP phase 1) Intravenous/ subcutaneous Clinical Study 
(Clinical trials: 
NCT02036073, 
NCT03919500) 

Effective for type 2 ROP in infant 
boys or preterm infants with 
gestational age greater than 28 
weeks and birth weight greater 
than 1500g 

365 

Darbepoetin for preventing 
red blood cell transfusion 

Subcutaneous Clinical Study (small 
sample size) 

Does not influence markedly the 
incidence and severity of ROP 

278 

Abbreviations: EPO = erythropoietin; HIF = Hypoxia-inducible factor; IGF-1 = insulin-like growth factor-1; IGFBP3 = insulin-like growth factor-binding protein 3; PHD = prolyl hydroxylase domain; 
ROP = retinopathy of prematurity; shRNA = short-hairpin RNA; siRNA = small interfering RNA; VEGF = vascular endothelial growth factor. 

https://doi.org/10.1016/j.survophthal.2022.11.007
http://clinicaltrials.gov/show/NCT01079715
http://clinicaltrials.gov/show/NCT02504944
http://clinicaltrials.gov/show/NCT01096784
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and coworkers and Fallah and coworkers.97 , 129 Although to
date, no clinical trials of HIF inhibitors or PHD inhibitors for
retinopathies have been performed.337 

The studies mentioned above provide molecular mecha-
nisms to support the use of HIF PHD inhibitors during hyper-
oxia or of HIF inhibitors during the second phase of ROP in
severely preterm infants at risk of ROP.163 , 164 Some of these
molecules have passed phase 2 and 3 trials and, once ap-
proved for adults, may be eligible for clinical trials in infants,
as safety concerns may be lessened using an agent known to
be proven safe in adults.164 

7. Growth factors 

7.1. Vascular endothelial growth factor 

VEGF is a family of glycoproteins composed of 5 struc-
turally similar factors: VEGF-A, VEGF-B, VEGF-C, VEGF-D, and
PLGF.34 , 204 , 292 Although the term VEGF is a designation for the
VEGF family of polypeptides, it generally refers to VEGF-A, the
prototype growth factor, originally identified as vascular per-
meability factor. VEGF-A is the main focus of angiogenesis re-
search.34 , 141 , 204 Members of the VEGF family are homodimeric
polypeptides, although natural heterodimers of VEGF-A and
PLGF have also been described.204 The VEGF superfamily and
its receptors play a key role in physiological and pathological
angiogenesis and vascular permeability .192 , 272 

The gene encoding VEGF-A yields alternatively spliced
products,34 termed VEGF isoforms, which have different,
sometimes opposite, functions.275 In humans, these include
the relatively abundant VEGF121, VEGF165, VEGF189, and
VEGF206, as well as other less abundant forms.292 The proan-
giogenic isoforms are designated as VEGF-Axxx, while antian-
giogenic isoforms are VEGF-Axxxb (where xxx represents the
number of amino acids in the mature form of the protein).244 

The pro- or anti-angiogenic tissue effect depends on the iso-
form balance. The isoform balance is controlled by mRNA
splicing that is influenced by several factors, including HIF-
1, IGF-1, and cytokines.275 VEGF-A165, the most common iso-
form of VEGF-A found in the human eye, appears to be the
most relevant for pathological ocular neovascularization and
represents the primary therapeutic target.244 VEGF-A165b, the
best-studied VEGF-Axxxb isoform, has a protective effect for
neuronal, epithelial, and endothelial cells.241 Although VEGF-
A165b binds to VEGF receptor (VEGFR) 2, it does not activate
it.411 Konopatskaya and coworkers showed that the adminis-
tration of VEGF-A165b is a potent inhibitor of retinal neovas-
cularization.209 

VEGFR-1 and VEGFR-2 (KDR/Flk-1 in mice), together with
structurally related receptors, Flt-3/Flk-2 and VEGFR-3/Flt-4,
are tyrosine kinase receptors.290 , 292 VEGFR-1 and -2 are mainly
involved in angiogenesis,419 while Flt-3 and Flt-4 are involved
in hematopoiesis and lymphangiogenesis 292 . VEGFR expres-
sion is increased by hypoxia and potentiated by VEGF.309 

VEGFR-2 is the main receptor inducing the proliferation, mi-
gration, differentiation, and maturation of endothelial cells,
as well as vascular permeability.334 It preferably uses the
phospholipase C-protein kinase C-MAPK pathway for signal-
ing.334 The VEGFR-1 gene encodes two isoforms: a full-length
transmembrane VEGFR-1 (also known as Flt-1) and a soluble
VEGFR-1 (sFLT-1).192 Flt1 has a higher affinity for VEGF-A , even
in soluble form, but has a tyrosine kinase activity approxi-
mately 10 times less than VEGFR-2.370 Therefore, VEGFR-1 can
negatively modulate VEGFR-2 activity.290 The normal placenta
has a high expression of sFLT-1,334 an endogenous VEGF in-
hibitor, and its potential clinical application as an angiogene-
sis inhibitor has received considerable attention.70 , 245 , 345 

Neuropilin 1 and neuropilin 2 are non-tyrosine kinase
receptors that, in endothelial cells, serve as receptors for
semaphorins class 3 (Sema 3), and co-receptors for the VEGF
family members.276 VEGF signaling via neuropilin 1 stimu-
lates endothelial cell migration and adhesion.276 Studies have
shown that neuropilin 1 interacts with VEGFR-1, significantly
reducing its binding affinity for VEGF165 116 and considerably
enhancing VEGF165 binding to VEGFR-2.353 

Different cells have been shown to synthesize VEGF-A in
the retina, including retinal ganglion cells,395 astrocytes,225 

Müller cells,225 retinal pigment epithelium (RPE) cells,34 , 272 

glial cells,244 vascular endothelial cells, and pericytes.272 In
pathological intravitreal neovascularization, the VEGF-A sig-
nal was located in many of the same cells, specifically Müller
cells,20 astrocytes,402 and perhaps retinal ganglion cells.395 

VEGFR-2 is primarily found on vascular endothelial cells.399 

The main role of the VEGF/VEGFR-2 system is therefore to sig-
nal cascade pathways involved in the proliferation, migration
and survival of endothelial cells, leading to tubulogenesis, and
later, vessel formation.244 , 399 

VEGF has a fundamental role in both phases of ROP.306 

In experimental models, levels of VEGF decrease within 6
hours under normoxic or hyperoxic conditions leading to
a decrease in the angiogenic signaling and allowing vaso-
obliteration caused by apoptosis of vascular endothelial
cells.7 , 335 The exogenous administration of VEGF may pre-
vent this effect of hyperoxia in the first phase of ROP.7 As
the retina becomes hypoxic in phase 2 of ROP, VEGF lev-
els rise within 6–12 hours and affect endothelial cells in a
paracrine fashion.295 These endothelial cells increase their
expression of high affinity VEGFR-2, specific for proliferative
neovascularization.295 

Pieh and coworkers suggested the involvement of VEGF
and VEGFR-2 in ROP development,294 and Budd and cowork-
ers showed in a rat model of OIR that intravitreal neovascu-
larization is reduced by a VEGFR-2 inhibitor.41 McColm and
coworkers found that both VEGFR-2 and VEGF164, an analog
to human VEGF165, are increased secondary to repeated oxy-
gen fluctuations, a factor associated with ROP,248 and Hartnett
demonstrated that they may have roles in phases 1 and 2 of
OIR and the early and vascular phases of human ROP.140 Ad-
ditionally, results from Hartnett and coworkers supported the
hypothesis that overactivation of VEGFR-2 disorders dividing
endothelial cells, permitting them to grow outside the plane
of the retina in a pattern comparable to intravitreal neovascu-
larization.139 

The VEGF-VEGFR system is a prime target for anti-
angiogenic treatment .334 A standard procedure in clinical
practice for the treatment of intravitreal neovascularization
is inhibition of VEGF-A by anti-VEGF monoclonal antibodies;
however, it is associated with RPE degeneration and may im-
pact the viability of photoreceptors, choriocapillaris, and the
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signaling of Müller cells.11 Different anti-VEGF molecules have
been studied for the treatment of ROP ( Table 1 ). 

The first anti-VEGF drug to be reported for ROP therapy
was bevacizumab.256 It was approved for cancer therapy but
is used off-label for eye diseases.403 Although it has shown an
advantage over laser therapy for ROP stage 3 with plus disease
in zone I but not in zone II, recurrence of ROP is not uncom-
mon.167 , 255 , 256 In addition, bevacizumab has been associated
with several serious adverse outcomes in clinical studies.15 , 96

These results have caused setbacks in the development of be-
vacizumab for ROP treatment.78 

The randomized, multicenter RAINBOW trial showed in-
travitreal ranibizumab (0.2 mg/eye) to be superior to laser ther-
apy, with a 24-week safety profile and fewer unfavorable oc-
ular outcomes.243 , 359 These findings led to the approval of
ranibizumab for the treatment of ROP in the European Union
in 2019.216 The randomized multicenter CARE-ROP trial that
compared 0.12 mg with 0.20 mg ranibizumab also found a
safety profile on functional eye outcomes and neurodevelop-
ment although ROP reactivation was a challenge during the
follow-up phase.357 

Wu and coworkers reported that intravitreal therapy with
bevacizumab or ranibizumab for infants with ROP resulted
in a significant decrease in serum VEGF up to 8 weeks.414

Serum VEGF levels were less affected after treatment with
ranibizumab than with bevacizumab in patients with ROP
type 1.414 

Aflibercept, the most potent inhibitor of pathological an-
giogenesis among anti-VEGF agents, binds not only to VEGF-
A but also to VEGF-B and PLGF.285 , 364 Ekinci and coworkers
confirmed the efficacy of intravitreal aflibercept in the treat-
ment of ROP, although it required more treatments than laser
photocoagulation during follow-up visits.90 Two randomized
phase 3 clinical trials, FIREFLYE (NCT04004208) and BUTTER-
FLYE (NCT04101721) are underway to compare intravitreal in-
jection of aflibercept with laser therapy for ROP treatment. 

As VEGF is necessary for the normal development of many
organs, the potential systemic toxicity of anti-VEGF is a con-
cern.12 , 48 , 371 , 413 Clinical studies seek to find a lower effec-
tive dose of bevacizumab that can reduce the risk of im-
paired neurological development or harmful effects on other
organs.74 , 393 A recent study by Wallace and coworkers indi-
cated positive retinal structural results with low-dose beva-
cizumab for ROP treatment, but many patients required addi-
tional treatment.392 

Another angiogenic factor, secretogranin III, has been de-
scribed as selectively inducing pathological but not physiolog-
ical angiogenesis.78 Secretogranin III-targeted therapies are
expected to selectively block angiogenesis in diseased but not
healthy vessels, while VEGF binds to and drives angiogenesis
in diseased and healthy vessels.77 Experimental evidence on
the potential advantages of secretogranin III as a target for the
treatment of ROP is addressed in another review.78 

7.2. Erythropoietin 

The glycoprotein hormone EPO is an oxygen-regulated
growth factor controlled by HIF-2 128 which, in addition to
its role in regulating the formation of red blood cells in
hematopoiesis,244 has other important neuroprotective,155 , 280 
antiapoptotic,398 antioxidative,398 and angiogenic 195 func-
tions, and possibly contributes to the maintenance of the
blood-retinal barrier.155 EPO is therefore a pleiotropic growth
factor that protects and stimulates the growth of many differ-
ent cells, including endothelial cells.78 

EPO participates in physiological and pathological angio-
genesis in the retina 422 and exerts its actions through the EPO
receptor.155 Additional EPO receptors have been described that
may mediate the tissue protective function of EPO in non-
hematopoietic tissue, particularly in the nervous system.280

Three possible neuroprotective EPO receptors are: a heterore-
ceptor consisting of the EPO receptor and common β recep-
tor, the Ephrin B4 receptor, and the human orphan cytokine
receptor-like factor 3.38 , 280 , 291 Su et al suggested that the com-
mon β receptor may act as an integrator of eNOS activation
mediated by EPO signaling in endothelial cells 362 ; however,
other studies do not support a functional interaction between
the EPO receptor and the common β receptor.64 

There is particular interest in EPO derivatives to reduce
transfusion requirements for preterm infants 278 and as a
neuroprotective agent to stimulate cognitive development 355 ;
however, a recent randomized trial (PENUT, NCT01378273)
found contradictory results with regards to its role in cog-
nitive development.189 In addition, some studies have found
that EPO treatment for anemia of prematurity was associated
with an increased risk of severe ROP, although other studies
have not confirmed this association ( Table 1 ). 

High concentrations of endogenous EPO in preterm in-
fants are associated with high blood concentrations of
inflammation-related proteins 404 and with various morbidi-
ties, including ROP and respiratory problems 160 ; however, this
association may depend on the postnatal day or ROP phase.
Lundgren and coworkers studied serum EPO levels and ane-
mia as risk factors for severe ROP requiring treatment and
concluded that, among infants born before 28 weeks of gesta-
tional age, anemia during the first week of life was a significant
risk factor but not high levels of EPO.235 In clinical studies by
Holm and coworkers the high systemic concentrations of EPO
around postnatal day 14, before ROP-associated neovascular-
ization, were consistent with the possibility that EPO plays a
direct role in stimulating angiogenesis.159 , 160 

Like VEGF, EPO is an important angiogenic factor and its
production is induced by HIF.141 Morita and coworkers provide
evidence that HIF deficient mice under OIR have reduced lev-
els of EPO and no ROP.260 

A small interfering RNA targeting EPO markedly decreased
ROP in OIR mice.59 EPO may have different functions depend-
ing on the phase of ROP development.60 Concentrations of EPO
are low during the vaso-obliterative phase and may contribute
to a stop in angiogenesis.60 Administration of exogenous EPO
during this phase may stabilize blood vessels.142 Conversely,
during the vasoproliferative phase of ROP, high EPO levels may
increase pathological neovascularization.142 

The OIR model provided evidence that VEGFA may activate
VEGFR2, which subsequently phosphorylates the EPO receptor
forming an interaction with the phosphorylated EPO receptor
to activate the JAK/STAT pathway in endothelial cells induc-
ing the proliferation of these cells.422 It is possible that the
EPO receptor, activated by EPO or VEGFA, enhances VEGFR2
signaling and mediates the pathological angiogenesis seen
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in phase 2 ROP .422 In normal physiological angiogenesis, the
concentration of VEGFA is not likely to be sufficiently high
enough to activate the EPO receptor or cause its interaction
with VEGFR2.422 Lastly, it is possible that certain forms of EPO
preferentially bind to neuroprotective EPO receptors and may
have a protective role for ROP.141 

7.3. Insulin-like growth factor-1 

IGF-1 is a polypeptide protein hormone supplied by the pla-
centa and amniotic fluid, and is essential for fetal develop-
ment, including healthy retinal angiogenesis.150 , 214 , 229 Plasma
levels of IGF-1 increase with gestational age, mainly during the
third trimester of pregnancy,214 and suffer a sudden decrease
after preterm birth due to the lack of maternal-fetal interac-
tion.349 Inflammation may further reduce the limited produc-
tion of IGF-1 in preterm infants.132 

Low serum IGF-1 levels in preterm infants have been as-
sociated with poor postnatal growth,296 poor brain growth,133 

prematurity-related morbidities,149 and delays in retinal blood
vessels growth.149 , 232 A persistent reduction in circulating IGF-
1 in preterm infants is strongly correlated with the develop-
ment of ROP.46 , 147 , 176 Patients with a genetic defect in the pro-
duction of IGF-1 have reduced retinal vascularity that is not
restored after administration of VEGF alone.148 

IGF-1 binds to the IGF-1 receptor. In an OIR mice model,
Kondo and coworkers found that the IGF-1 receptor knock-
out mice showed less retinal neovascularization compared to
a control group.208 This result also provided evidence that IGF-
1 signaling in vascular endothelium plays a key role in retinal
neovascularization.208 

Cakir and coworkers found that in extremely preterm in-
fants, early postnatal hyperglycemia was associated with re-
duced levels of IGF1 and increased severity of ROP.46 They
also found in a mouse model of hyperglycemia-associated
retinopathy that reduced insulin signaling led to a decrease
in hepatic IGF-1 production and an increase in neovascular-
ization.46 IGF-1 administration promoted retinal revascular-
ization and reduced retinal pathological neovascularization.46 

These findings support early IGF-1 supplementation as a po-
tential treatment to decrease the risk of ROP. 

Insulin-like growth factor-binding protein 3 (IGFBP3), the
major IGF-1-binding protein in serum, is decreased in preterm
infants,232 possibly contributing to the depletion of retinal
blood vessels.293 Lofqvist and coworkers observed that higher
serum levels of IGFBP3 correlated with less severe ROP in
preterm infants.233 Clinical studies have been conducted to
address the merits of treatment with IGF-1 and IGFBP3 at
an early stage to prevent vaso-obliteration in preterm infants
( Table 1 ). 

In one phase 2 randomized clinical trial (NCT01096784) the
administration of recombinant human IGF-1/IGFBP-3 complex
decreased the development of severe bronchopulmonary dys-
plasia, but did not impact the development of ROP.224 The rea-
son for the lack of effect on ROP prevention is unclear, but may
be related to a need for dosage optimization.224 The results
of this study encourage the continuous evaluation of recom-
binant human IGF-1/IGFBP-3 complex in preterm infants for
the prevention of diseases related to prematurity. An ongoing
phase 2b randomized clinical trial (NCT03253263) with a larger
number of patients will bring additional data that could help
elucidate this issue.378 

Although VEGF is increased by HIF-1 under hypoxia, IGF-1
is necessary for angiogenesis to occur. Hellstrom et al demon-
strated that low levels of IGF-1 prevented VEGF-induced acti-
vation of Akt, a kinase critical to the survival of endothelial
cells.152 Therefore, IGF-1 acts as a permissive factor for the
growth of VEGF-dependent vascular endothelial cells.154 It is
assumed that if IGF-1 levels are insufficient at birth, VEGF can-
not activate Akt and the retina stays avascular,306 as observed
during the first phase of ROP.152 This leads to increased apop-
tosis despite normal VEGF levels.152 Consequently, the retina
becomes hypoxic, leading to the accumulation of VEGF in the
vitreous 152 , 225 until IGF-1 levels reach a limit. At this point
neovascularization is triggered, beginning the second phase
of ROP.152 , 306 Apoptosis of endothelial cells is then blocked
and neoangiogenesis is promoted, presumably by activating
Akt signaling.152 Vascular proliferation is also regulated by the
IGF-1 receptor via the p44/ 42 MAPK pathway that increases
VEGF activity.152 , 347 Therefore, inhibition of IGF-1 and VEGF
can prevent neovascularization in phase 2 of ROP.152 , 225 Hell-
strom and coworkers also found that low serum IGF-1 levels
are a biomarker which can be used to determine risk of ROP
in preterm infants weeks before it manifests.152 As such, IGF-1
was initially included in a clinical algorithm to predict the risk
of developing severe ROP.388 

Recently, Jenssen and coworkers reported that low levels
of IGF-1 are associated with early thrombocytopenia, and this
in turn is related to the subsequent development of severe
ROP in preterm infants.175 The investigators hypothesize that
IGF-1 delivery by platelets is the mechanism linking thrombo-
cytopenia with severe ROP development.175 This hypothesis
requires confirmation by further laboratory and clinical stud-
ies.175 In addition, Cakir and coworkers demonstrated in an
OIR mice model that platelet transfusion was associated with
decreased retinal VEGF-A and reduced neovascularization.47 

These data suggest that the release of platelet-derived factors
has an antiangiogenic action on endothelial cells,47 and sup-
port the hypothesis that, in preterm infants, maintenance of
platelet levels, and therefore platelet-derived growth factors,
including IGF-1 and VEGF-A, may reduce the risk of ROP de-
velopment.147 

IGF-1 plays an important role in cell cycle progression and
reversal of endothelial cells apoptosis via the NOS-NO sig-
naling pathway 238 and IGFBP3 regulates its actions.183 Kiel-
czewski and coworkers showed that IGFBP-3 improves is-
chemic retinal vascular repair by increasing the expression
of eNOS and the generation of NO, an essential signaling
molecule that promotes angiogenesis and regulates vascular
remodeling.198 Therefore, the interaction of IGFBP-3 is another
potential line of treatment that warrants further exploration. 

7.4. Retinal pigment epithelium and pigment 
epithelium-derived factor 

The main producers of trophic factors in the eye are the RPE
and Müller cells.206 The RPE is a monolayer of tight cells lo-
cated between the neurosensory retina and the vascularized
choroid.29 It performs essential functions for the survival of
photoreceptors, such as phagocytosis and renewal of shed
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photoreceptor outer segments, and secretes important factors
for the homeostasis of the external retina.29 , 246 The RPE pre-
vents the choroidal vasculature from invading the subretinal
space and the outer retina,184 has a key role in both preserving
the blood-retinal barrier and protecting the retina from oxida-
tive and toxic damage,206 and plays an important role in the
pathophysiology of the retina.11 , 29 Formed by polarized cells,
the RPE secretes components in a directional way.11 , 29 

One of the most relevant molecules secreted by the RPE is
the pigment epithelium-derived factor (PEDF), an extracellular gly-
coprotein that is a member of the serine protease inhibitors
family (serpin family).245 With neurogenic and neuroprotec-
tive properties, PEDF is one of the most potent anti-angiogenic
and anti-inflammatory factors.11 , 184 , 251 Michelis and cowork-
ers demonstrated that PEDF protected photoreceptors from
apoptosis, promoting its survival and differentiation.251 The
effects of PEDF on photoreceptors are like those exerted by do-
cosahexaenoic acid (DHA).251 , 363 This similarity results from
the phospholipase A activity of the PEDF receptor, whose PEDF
binding increases the hydrolysis of phospholipids, resulting in
the release of fatty acids, including DHA.251 , 363 The protective
role of DHA on photoreceptors is discussed in more depth in
section 12. Long-chain polyunsaturated fatty acids. 

In another study, the transfer of the SERPINF1 gene via vi-
ral vectors and the exogenous administration of PEDF protein
were found to be valuable in defending photoreceptors against
death and degeneration caused by environmental and/or ge-
netic factors.299 The balance between VEGF and PEDF plays the
largest role in maintaining the external retina avascular. This
is essential to preserve a suitable environment for photorecep-
tors and neurons in the retina.184 Experimental studies have
demonstrated PEDF’s therapeutic potential for the treatment
of retinal angiogenic diseases.9 , 184 

7.5. Other growth factors 

PLGF , a homologous factor of VEGF-A primarly expressed in
the placenta but also produced for various cell types 17 , 56 acts
as a pro-angiogenic factor for retinal endothelial cells 5 and
plays a role in recruiting immune cells.428 There are four PLGF
isoforms, encoded by the human PLGF gene. While all iso-
forms bind to VEGFR-1, PLGF-2 and 4 also bind to neuropilins
1 and 2.76 VEGFR-1 signaling activated by PLGF is distinct from
the signaling mediated by VEGF-A because different tyrosine
residues are phosphorylated on the receptor, leading to target-
specific downstream regulation.76 

In preeclampsia, a serious pregnancy complication often
associated with intrauterine growth restriction and preterm
birth, there is an increase in plasma levels of soluble antian-
giogenic VEGFR-1 (sFLT-1) in relation to the proangiogenics
PLGF and VEGF. The circulating sFLT-1/PLGF ratio may serve
as a predictor of early preeclampsia.307 

Although PLGF is associated with pathological rather than
physiological angiogenesis, its precise contribution to this
process is less understood than that of VEGF.385 Its expression
can be induced by VEGF and hyperglycemia,182 , 426 but unlike
other members of the VEGF family, PLGF is down-regulated
during hypoxia and has an anti-apoptotic effect during hy-
peroxia,335 , 343 likely playing an important role in the aberrant
neovascular phase of ROP.343 Luttun and coworkers showed
that PLGF deficiency reduced pathological vascular leakage in
a mouse model of OIR.236 

Even though aflibercept, primarily an anti-VEGF-A, also
inhibits PLGF, there are currently no approved therapies for
retinopathies that exclusively target PLGF.76 In fact, the ben-
efits of specific PLGF inhibition in humans with neovascular
diseases of the retina remain controversial.272 Clinical studies
and further research are needed to better elucidate the un-
derlying molecular and cellular mechanisms that determine
whether PLGF inhibition may have advantages over VEGF in-
hibition and, in clinical practice, whether or not they can be
co-administered.385 

Angiopoietins are growth factors that modulate physiologi-
cal and pathological neovascularization particularly in asso-
ciation with VEGF.326 Ang-1 and Ang-2 are the most evaluated
angiopoietins in preclinical studies.99 The action of Ang-3 and
Ang-4 are less described.99 In humans, only the expression of
Ang-1, Ang-2, and Ang-4 is reported.318 Ang-1, Ang-2, and Ang-
4 bind to the Tie2 receptor.197 Ang-1 and Ang-4 are known ag-
onists of the Tie-2 receptor and are bound to Tie2 in the phys-
iologic state.197 After physiologic activation, Tie2 is phospho-
rylated, leading to the activation of the cellular pathways AKT
and ERK, which are involved in the reduction of angiogenesis
and vascular permeability and favor vascular stability.197 Fur-
thermore, Tie-2 activation induces eNOS expression, leading
to an improvement in endothelial cell function and the ex-
pression of survivins, molecules that trigger endothelial cell
survival.99 There is also an inhibition of the inflammatory cas-
cade through the down-regulation of the NF- κB transcription
factor pathway.99 In pathophysiologic states, Ang-2 is highly
secreted and acts as a competitive inhibitor of Ang-1 and Ang-
4 binding. Ang-2 functions as a negative regulator, leading to
dephosphorylation of Tie2.197 Therefore, the Ang-1/Tie2 sig-
naling pathway plays an important role in maintaining vascu-
lar integrity and in the later stages of vascular remodeling 297

while Ang-2 initiates vascular proliferation 

14 and is upregu-
lated by hypoxia and VEGF.277 

An increase in the levels of Ang-1 and Ang-2 in the vitre-
ous of eyes with severe ROP has been documented. Further-
more, the concentration of Ang-2 was found to be significantly
higher, indicating that the balance between them may be im-
portant for ROP pathophysiology.326 Additional studies in an-
imal models of OIR demonstrate that combined inhibition of
Tie2 and VEGF signaling may be more effective in suppress-
ing intravitreal neovascularization in ischemic retinopathies,
in particular ROP, than VEGF inhibition alone.179 , 227 , 369 

Several new agents targeting the angiopoietin/Tie pathway
have promising results in phase II and III clinical trials for ad-
dressing diabetic macular edema, wet age-related macular de-
generation and retinal vein occlusions.99 , 197 One such biolog-
ical agent, faricimab– a bispecific antibody administered by
intravitreal injection– acts as an inhibitor of both VEGF and
Ang-2.99 , 197 Phase III clinical trials support its safety, tolera-
bility, efficacy, and potential to reduce treatment burden of
wet age-related macular degeneration and diabetic macular
edema.99 , 196 , 197 The findings led to its recent approval in the
USA and Japan for the treatment of these retinal vascular dis-
eases and it is under review in the European Union.338 An-
other new agent, razuprotafib (AKB-9778), is a small molecule
administered via subcutaneous injections.99 Razuprotafib acts
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by selectively inhibiting vascular endothelial protein tyrosine
phosphatase and causing Tie-2 phosphorylation and activa-
tion, regardless of the presence of Ang-1 or Ang-2.99 , 197 In a
phase IIa clinical trial, razuprotafib showed good tolerability
and an optimal safety profile.49 The researchers also found
that combination therapy of razuprotafib with ranibizumab
was more effective for the treatment of diabetic macular
edema than ranibizumab alone.49 , 99 Therefore, there is evi-
dence from both preclinical studies and initial phase III clini-
cal trials demonstrating that dual inhibition of the VEGF and
Ang/Tie pathways can be superior to anti-VEGF therapy alone
in treating retinal vascular diseases.99 

While the studies mentioned above have encouraging re-
sults, to-date, there have been no clinical trials with these
drugs for ROP. Additional research is needed, including
Ang/Tie modulation as a possible target for gene therapy.99 

Granulocyte colony-stimulating factor (G-CSF) is a growth
factor that stimulates hematopoietic progenitor cells. It
is extensively used in neutropenic patients,354 including
preterm infants 219 . Several studies report that G-CSF induces
anti-inflammatory, anti-apoptotic, and neuroprotective ef-
fects.143 , 207 Sato et al measured the vitreous levels of twenty-
seven types of cytokines in a retrospective study and found
levels of six cytokines, including G-CSF, significantly increased
in eyes with ROP compared to the control group.325 In an an-
imal OIR study, G-CSF reduced vascular obliteration and neo-
vascularization by increasing the levels of IGF-1.205 Shima and
coworkers reported that systemic therapy with G-CSF can pro-
tect inner retinal layers and retinal ganglion cells from is-
chemia/reperfusion injury, and these effects may be associ-
ated with AKT activation.336 In a retrospective study with neu-
tropenic neonates, Bhola and coworkers found a tendency to
decrease the incidence of ROP requiring treatment in preterm
infants who received GCS-F 35 ; however, the differences were
not statistically significant.35 

Findings from systematic reviews and clinical trials show
that recombinant GCS-F is well tolerated and safe at all ges-
tational ages.6 , 52 , 342 In addition, the biosimilar GCS-F filgras-
tim was shown to be as safe as the original drug in children.42

G-CSF may have a potential role in preventing ROP; however,
further studies are needed to establish a benefit from its ad-
ministration in the initial phase of ROP.244 

Neurotrophins are a family of closely related proteins, orig-
inally identified as growth factors for the survival, devel-
opment, and function of neurons, and later discovered to
also play a role in the immune and reproductive systems.319 

These neuroprotective factors activate a specific tropomyosin-
related kinase receptor and a common receptor.79 Some of
them, such as nerve growth factor and brain-derived neu-
rotrophic factor (BDNF), play an important role in the process
of angiogenesis.319 Sood and coworkers reported lower serum
concentrations of neurotrophin 4 and BDNF during the first 3
weeks of life in preterm infants who developed severe ROP.356 

Rao and coworkers found that BDNF concentrations on P60
were lower in preterm infants who developed ROP .310 

New treatment modalities using neuroprotective factors
have targeted diseases caused primarily by retinal ganglion
cell degeneration, such as glaucoma, as well as other oph-
thalmic diseases, such as macular degeneration, ischemic
optic neuropathy, retinitis pigmentosa, and cystoid macular
edema.115 Phase I and II clinical trials of these therapies are
summarized in the review by Fudalej and coworkers.115 

The PDGF family comprises four polypeptide chains with
structural similarities to the VEGF family and includes five
dimeric isoforms: PDGF-AA, -AB, -BB, -CC, and -DD.111 PDGFs
are important mitogens for many types of cells, mainly of
mesenchymal origin, and play an important role in angiogen-
esis and wound healing.33 , 407 Accumulated data suggest the
important roles of PDGF-CC and PDFG-DD in pathological an-
giogenesis.166 , 211 Wågsäter and coworkers found that PDGF-
CC up-regulates matrix metalloproteinase-2 and -9 expres-
sion and induces monocyte migration.391 Inhibition of PDGF-
CC or PDFG-DD in animal models suppressed both choroidal
and retinal neovascularization.166 , 211 

In a study of preterm infants born at a gestational age of
less than 28 weeks, Hellgren and coworkers found that severe
ROP is significantly associated with low platelet counts and
lower serum levels of PDGF-BB, VEGF-A and BDNF at the post-
menstrual age of 32 weeks.147 These data suggest that factors
released from platelets may be involved in the regulation of
retinal angiogenesis after extreme preterm birth.147 

Fibroblast growth factors (FGF) are a family of cell signaling
proteins,174 including bFGF (also FGF2) which, like other FGF
family members, are a strong mitogen of endothelial, neu-
ronal, and smooth muscle progenitor cells, expressed in the
retina.98 While some studies have shown that bFGF is not nec-
essary for normal or pathological retinal vascularization,281 

other studies attribute it with vascular 174 and retinal develop-
ment,315 as well as retinal neuroprotective effects.186 Sato and
coworkers documented increased bFGF expression in the vit-
reous of preterm infants who have undergone vitrectomy for
stage 4 ROP.325 Fang and coworkers found increased expres-
sion of bFGF during the resolution of surface vasculopathy in
an OIR mouse model, indicating its possible role in maintain-
ing neuroretinal function in OIR/ROP.98 

FGF21, a new member of the FGF family, is an important
regulator of lipid and glucose metabolism.114 , 378 FGF21 acti-
vates Nrf2, which in turn regulates the expression of antiox-
idant enzymes and plays a critical role in the retina’s de-
fense against oxidative stress.114 , 267 Fu and coworkers demon-
strated in a mouse model of OIR that FGF21 reduces patho-
logical retinal vasoproliferation and stimulates physiological
retinal vascularization.112 The inhibitory effects were medi-
ated by adiponectin and appeared to be independent of VEGF-
A.112 Furthermore, Fu and coworkers found that in mice with
hereditary retinal degeneration, FGF21 enables the preserva-
tion of retinal neuronal responses.113 The effectiveness of
FGF21 against pathological vascular proliferation could make
it the next generation standard of care for patients with
ROP.112 Yet, further exploration of the underlying mechanisms
is necessary.112 

A compensatory mechanism between vascular growth fac-
tors in ROP has been described. In this, the inhibition of VEGF
expression leads to an up-regulation of other angiogenic fac-
tors such as bFGF and Ang-1, while the opposite occurs when
VEGF is up-regulated in endothelial cells under hypoxic con-
ditions.415 This phenomenon could partially explain why the
inhibition of a single growth factor cannot effectively prevent
the recurrence of neovascularization in ROP, and why a com-
bined strategy may be more effective.415 
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8. Semaphorins 

The same families of attractive and repulsive molecular cues,
including Sema 3 – secreted glycoproteins expressed in the
retina – are responsible for the conduction of both blood ves-
sels and nerves throughout the body.51 , 84 Most Sema 3, except
Sema 3E, bind to neuropilin family receptors to transduce their
signals and posteriorly associate with plexin family receptors
to form functional receptors.377 Sema 3E uses Plexin D1 as its
main binding receptor.377 

In an OIR model, Rivera and coworkers proposed that ar-
eas of retinal ischemia cause the microglia to prematurely
produce interleukin 1 (IL-1) β which sustains microglia acti-
vation and leads to microvascular damage by releasing Sema
3A from the adjacent retinal ganglion cells.314 Although hy-
poxic neurons initially secrete VEGF, as they become more
severely ischemic, the production of Sema 3A becomes pre-
dominant.188 Sema 3A exerts opposing effects on vessels, in-
creases apoptosis of endothelial cells and repels neovessels of
the avascular neural retinal towards the vitreous, preventing
revascularization of the hypoxic retinal tissue.188 In contrast,
normal vascular regeneration is increased by the IL-1 recep-
tor antagonist or by silencing Sema 3A expression. This pre-
serves the microvascular bed and decreases the subsequent
pathological pre-retinal neovascularization seen in ischemic
retinopathies.314 

Through an OIR model, Fukushima and coworkers showed
that the binding of Sema 3E to its Plexin D1 receptor activates
a signaling pathway that leads to the normalization of angio-
genic directionality in ischemic retinopathy and in developing
retinas.117 The increased expression of Plexin D1 in extrareti-
nal vessels prevents disoriented VEGF-induced projections of
the endothelial filopodia.117 Yang et al found a similar result
with the intravitreal administration of recombinant Sema 3C
in an OIR model.421 More recently, Noueihed and coworkers
discovered in a model of ischemic retinopathy that mesenchy-
mal stromal cells stimulate retinal vascular repair of the is-
chemic retina through modulation of Sema 3E and IL-17A.274 

Chen and coworkers found that Sema 3G, which is only ex-
pressed in retinal endothelial cells in mice, plays an important
role in promoting both regression of pathological neovascular-
ization and healthy vascular formation in blood vessel remod-
eling.58 There is evidence that under hypoxic conditions Sema
3G transcription is directly regulated by HIF-2 α.58 Sema 3G in-
creased the stability of β-catenin in vascular endothelium via
neuropilin 2/Plexin D1 receptor – coordinating the interplay
between β-catenin and vascular endothelial cadherin.58 Sup-
plementation with Sema 3G has been shown to have a protec-
tive effect on blood vessel remodeling.58 

The involvement of other semaphorin family classes such
as Sema 6A and Sema 4D in ischemic retinal vasculopathies
has also been documented.401 , 412 Sema 6A appears to play
a role in a neuronal stress response, reducing the resistance
of ischemic neurons to reparative angiogenesis.401 Wei and
coworkers reported that, in a HIF-1 α-dependent mechanism,
Nrf2 expression is increased in the ischemic retina and pro-
motes vascularization towards the avascular zone by sup-
pressing the expression of Sema 6A.401 It is postulated that
Nrf2 suppresses the antiangiogenic effect of Sema 6A and re-
 

programs angiogenesis in the ischemic neuroretina.401 Nrf2
activity can be modulated pharmacologically, suggesting a
therapeutic potential for ischemic retinopathies.401 Addition-
ally, experimental studies by Nakamura and coworkers indi-
cated that RS9, an activator of Nrf2, may be a candidate for
the treatment of retinal diseases characterized by pathologi-
cal vascularization and hyperpermeability.268 

Wu and coworkers observed an increase in Sema 4D ex-
pression in an OIR model and in a model of diabetic retinopa-
thy. Results of the OIR model showed that the presence
of Sema 4D/Plexin B1 led to endothelial cell dysfunction,
while inhibition of Sema 4D/Plexin B1 prevented endothe-
lial cell dysfunction.412 A humanized monoclonal antibody,
VX15/2503, specifically inhibits Sema 4D by binding to its re-
ceptors.104 , 412 Two phase 1 clinical trials with VX15/2503, one
targeting advanced solid tumors (NCT01313065) 288 , 412 and the
other targeting multiple sclerosis (NCT01764737),212 , 412 were
successfully completed. Both studies found that VX15/2503
given intravenously at various doses was shown to be well
tolerated and safe. Future research should address whether
Sema 4D/Plexin B1 inhibition may be useful for the treatment
of retinal vascular diseases such as ROP.412 

Like semaphorins, the ephrin/ephrin receptor system
also functions as guidance cues for neurons and the vi-
sual pathway during the embryonic period. This influ-
ences cell migration and differentiation during developmental
processes.125 , 250 Membrane-bound ephrin receptors are the
biggest subgroup of tyrosine kinase receptors.125 As noted in
a review by Medori, there is a gradient of selected ephrins
and their receptors in the retina and visual pathways, creat-
ing a map for neurons.250 In addition, Kozulin and coworkers
demonstrated that ephrin A1 to A4 and their A6 receptors play
an important role in retinal vascular development .210 A review
by Kaczmarek and coworkers focuses on the role of ephrins
and ephrin receptors in retinal diseases.190 Studies of partic-
ular interest to ROP research are those that demonstrate that
the blocking of selected ephrine receptors inhibits patholog-
ical angiogenesis without affecting the normal development
of blood vessels.190 

In conclusion, the findings of the studies mentioned above
support the targeting of semaphorins in vascular regeneration
therapy, particularly by directing neovascularization towards
the ischemic retina. 

9. Succinate, its receptor GPR91, and 

adenosine 

Neurons, endothelial cells and the macroglia (astrocytes and
Müller cells) are anatomically and functionally interconnected
to orchestrate physiologic and pathologic retinal vasculariza-
tion.323 In humans at approximately 15 weeks of gestation,
astrocytes emerge from the optic nerve head and establish a
network that delineates the path of vascular growth.302 , 322 

During episodes of ischemic hypoxia, cells respond to an
imbalance of energy and signal to restore vascular supply.323

In addition to their traditional roles, a physiological function
of the Krebs cycle intermediates, of which succinate is the best
example, is to serve as signaling factors, which respond to the
compromised energy state and lead to an increase in retinal
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vascularization.265 Similarly, metabolic purine products (ATP,
ADP, AMP, and adenosine) accumulate during hypoxia and ac-
tivate purinergic receptors that can contribute to neovascu-
larization.254 , 403 As succinate and adenosine levels increase
in hypoxic conditions, they activate their cognate G protein-
coupled receptor (GPCR), and reestablish adequate blood flow
in tissues.187 In the short term, this occurs through vasorelax-
ation, while in the long term it is a result of the stimulating
effect that GPCR activation has on angiogenesis.187 Therefore,
in response to hypoxia, there is initially rapid vasodilation and
accumulation of Krebs cycle intermediates (mainly succinate)
and adenosine, followed by stabilization of HIF-1 α, alteration
of the redox state and activation of survival factors. The pri-
mary goal of this process is to restore oxygen delivery and
protect the retina.429 Several studies have shown that a hy-
poxic microenvironment leads to the accumulation of succi-
nate in macrophages, resulting in stabilization of HIF-1 α and
the expression of the proinflammatory cytokine IL-1 β.372 , 405 

This induces a ‘‘Warburg effect”, a process of metabolic re-
organization in which mitochondrial oxidative phosphoryla-
tion decreases while aerobic glycolysis increases.372 , 405 Un-
like succinate, α-ketoglutarate promotes the enzymatic activ-
ity of PHD and depletes HIF-1 α.239 , 405 Thus, α-ketoglutarate
and succinate have opposite effects on HIF-1 α -IL-1 β
signaling.405 

In an OIR model, Zhou and coworkers observed a consider-
able increase of IL-1 β in the RPE and choroid in the early stages
of retinopathy. This increase was correlated with choroidal in-
volution, subsequent progressive loss of photoreceptors and
RPE, and visual degradation.429 Early IL-1 β receptor blockade
protected the choroid, reduced subretinal hypoxia, and pre-
served photoreceptors and RPE, resulting in better visual func-
tion in OIR animals treated with IL-1 β receptor antagonist.429 

These findings suggest that inhibition of IL-1 β may consti-
tute a new therapeutic potential, through the prevention of
choroidal involution and retinal degeneration.429 

The signaling system of the succinate receptor (GRPR91)
is not only essential for neural and retinal development, but
also for its regulatory role in many vital processes that in-
volve pathophysiological mechanisms.228 In fact, in an OIR
rat model, the contribution of succinate and adenosine to
the proliferative phase of ROP was established by suppressing
the expression or activity of their GPCR. Knockdown of GPR91
disrupts normal retinal vascular development and decreases
aberrant intravitreal neovascularization in the OIR model.323 

Similarly, the A2B adenosine receptor antagonism markedly
reduces pre-retinal neovascularization.254 

GPR91 is abundantly expressed in both highly vascularized
tissues 145 as well as retinal ganglion cells 226 and behaves as an
early sensor for metabolic demands. Sapieha and coworkers
provided evidence that GPR91 controls the expression of sev-
eral important angiogenic factors, such as VEGF, Ang-1, and
Ang-2, and suppresses antiangiogenic thrombospondin-1.323 

Studies by Li and coworkers in a rat OIR model suggest that
in hypoxia the GPR91-ERK1/2-C/EBP β (c-Fos, HIF-1 α) signaling
pathway plays a key role in regulating VEGF transcription in
retinal ganglion cells.226 

Succinate signaling operates before HIF-1 stabilization and
is therefore an antecedent sensor for metabolic demand and
hypoxic stress.187 The metabolic changes induced by hypoxia
in neurons correspond to an attempt to restore the vascular
supply.187 

GPR91 is considered a valuable target in developing molec-
ular interventions.228 Blocking GPR91 may be an option to pre-
vent secretion of excessive growth factors and to reduce in-
travitreal neovascularization 

168 , 323 ; however, a better under-
standing of the mechanisms involving the binding of GPR91
to various agonists and antagonists and the relationship be-
tween activity and structure is needed to identify compounds
that may pave the way for preclinical investigation.228 

10. Heparan sulfate proteoglycans and 

heparanase 

Heparan sulfate proteoglycans are ubiquitous macromolecules
present at the cell surface. As either transmembrane or
membrane-anchored proteins, they are important compo-
nents of the extracellular matrix.169 Heparan sulfate proteo-
glycans are composed of a core protein covalently attached
to one or more chains of glycosaminoglycan polysaccharide
heparan sulfate.390 , 417 

Heparan sulfate anionic glycosaminoglycan chains bind to
extracellular matrix and cell surface proteins, providing the
scaffolding for matrix organization and cell-cell or cell-matrix
interactions.22 As components of the plasma membrane and
the basement membrane, heparan sulfate proteoglycans play
more than a structural role 22 influencing cell proliferation, dif-
ferentiation, migration, and shape.22 , 324 , 373 

Heparanase is an endo- β-glucuronidase that cleaves hep-
aran sulfate polysaccharide chains at the cell surface and in
the extracellular matrix.390 An important step in the neo-
vascularization process involves changing the integrity of
the extracellular matrix and the subendothelial basement
membrane.169 At sites of injury or inflammation, heparanase
degrades heparan sulfate proteoglycans from the basement
membrane, allowing extravasation of immune cells to non-
vascular spaces 22 and release of heparan sulfate-linked an-
giogenic growth factors, including bFGF and VEGF, as well as
heparan sulfate-fragments, thereby promoting cell prolifera-
tion and angiogenesis.169 

Jie Hu and coworkers demonstrated that heparanase and
VEGF are upregulated in hypoxia-induced retinal neovas-
cularization and that heparanase inhibition by phospho-
mannopentaose sulfate (PI-88 or muparfostat), results in
down-regulation of VEGF expression and formation of fewer
new blood vessels, suggesting a role for heparanase in the reg-
ulation of VEGF expression.169 

El Asrar and coworkers found an important increase in
heparanase expression in vitreous samples from patients with
proliferative diabetic retinopathy compared to nondiabetic
controls.3 Heparanase levels positively correlated with VEGF
and syndecan-1 levels, suggesting a link between them in the
progression of proliferative disease.3 

Knowledge gathered to date shows that heparanase may
be a possible new therapeutic target for retinal diseases char-
acterized by hypoxia-ischemia, such as ROP.169 The search
for molecules that inhibit heparanase has been increasing
due to their importance in clinical practice; however, despite
enormous efforts, programs to develop heparanase inhibitors
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have brought few into clinical trials.283 They are synthetic or
semi-synthetic oligosaccharides and polysaccharides, such as
muparfostat (PI-88), pixatimod (PG545), necuparanib (M-402),
and roneparstat (SST0001), mainly evaluated in cancer ther-
apy and for inflammatory pathologies.283 In general, these
molecules were well tolerated and side effects were limited,
but they all have some limitations related to their nature and
origin that can make their standardization difficult. In addi-
tion, they all need to be administered parenterally.283 

Other approaches have been used to achieve pharmacolog-
ical inhibition of heparanase, including inhibitors based on
nucleic acids, and monoclonal antibodies.283 The search for
synthetic small molecules heparanase inhibitors has gained
momentum in recent years and remains an option of inter-
est due to their more favorable pharmacokinetic profiles and
possibility of oral administration.259 Some of them were de-
veloped and evaluated in pre-clinical stages.283 The use of
high-throughput quantitative screening systems is expected
to help accelerate the development of clinically applicable
small molecule inhibitors.259 

11. Metalloproteinases 

Metalloproteinases (MMPs) constitute a family of endopep-
tidases that hydrolyze components of the extracellular ma-
trix.68 They play a central role in different biological processes,
such as remodeling of normal tissue, wound healing, inflam-
matory responses, embryogenesis, and angiogenesis.389 Se-
cretion of MMP-2 and MMP-9 by the RPE increases when stim-
ulated by the angiogenic molecules VEGF, fibronectin, and tu-
mor necrosis factor-alpha.158 

Inflammatory cytokines, growth factors, and ROS control
the activity of MMPs, including at the beginning of their tran-
scription.68 Inversely, MMPs can be inactivated by the tissue
inhibitors of MMPs (TIMPs) family of proteins.68 This family is
composed of four proteins (TIMP-1 to 4) with an endogenous
regulatory action and present in the extracellular matrix. They
inhibit MMPs and members of the “a” disintegrin and metal-
loproteinase (ADAM) family.44 

Das and coworkers provided evidence that MMP-2 and
MMP-9 levels were significantly increased in association with
phase 2 of retinopathy in an OIR model and that systemic in-
hibition of MMPs led to a significant decrease in neovascular-
ization.80 These results suggest that pharmacological inter-
vention in the MMPs pathway may constitute an alternative
approach in the treatment of proliferative retinopathy.80 

In an OIR animal model, Di and coworkers reported that
an increased retinal expression of MMP-9 upregulates the
expression of VEGF, promoting retinal neovascularization.85

They also demonstrated that intravitreal injection of TIMP-1
markedly reduced retinal expression of MMP-9 and VEGF, and
retinal neovascularization. These results support TIMP-1 as a
potential target to prevent and treat ROP.85 

The ADAM family of enzymes is also involved in the degra-
dation of extracellular matrix components.427 Several sub-
types of the ADAM family have been implicated in the patho-
genesis of ROP. Weskamp and coworkers showed that patho-
logical neovascularization is reduced in the ADAM17 knock-
out mice without affecting normal vascular development.408
Guaiquil and coworkers found that Adam8_/_, Adam9_/_ mice
and mice lacking Adam10 in endothelial cells were partially
protected from plus disease, suggesting that ADAM 8, 9, and
10 may be targets for the treatment of plus disease.124 In an
animal study, Gutsaeva and coworkers showed that ADAM17
contributes to retinal ischemia-reperfusion-induced inflam-
mation, oxidative stress, and neurovascular cell injury and
that regulation of ADAM17 activity can prevent these conse-
quences of retinal ischemia.126 The TIMP-3 protein, a known
physiological inhibitor of ADAM17,242 decreased the forma-
tion of neovascular tufts in a mouse model of OIR, suggesting
its potential therapeutic application.156 

Interest in the development of synthetic inhibitors of
MMPs arose more than three decades ago, but suffered a set-
back as a result of several failed clinical trials.222 This was
largely due to the low individual selectivity for different MMPs
because of the high structural homology within this family
and, consequently, a high risk of side effects and toxicity.43

Additionally, most clinical trials were performed using com-
pounds with poor metabolic profile and low bioavailability.222

An alternative approach may be to use TIMPs designed with
limited inhibitory specificities.44 

The current challenge of developing new molecular en-
tities with selectivity between specific MMPs has led to the
emergence of new non-hydroxamate compounds, and a re-
newed interest in MMPs as therapeutic targets.222 A review
by Lenci and coworkers describes patents published between
January 2014, and June 2020, that are related to new MMPs
inhibitors with clinical application in several areas.222 These
patents concern compounds that target only a few MMPs,
more specifically, MMP-2, -9, -12, -13, -14 (Membrane-type 1-
MMP) and -17 (Membrane-type 4-MMP).222 To date, doxycy-
cline, a broad MMP inhibitor, is the only MMP inhibitor com-
pound approved by the US Food and Drug Administration for
therapy of disorders related to elevated MMP activity.43 

12. Catecholamines 

Catecholamines (epinephrine, noradrenaline, and dopamine)
play an important role as neurotransmitters in the central and
peripheral nervous system and, in addition are hormones in
the endocrine system.286 The targets of catecholamines, es-
pecially epinephrine and noradrenaline, are adrenoceptors.286

The adrenoceptor family is subdivided into three subfami-
lies: alpha1 ( α1), alpha2 ( α2), and beta ( β).316 Each of these
subfamilies consists of three subtypes ( α1A, α1B, and α1D;
α2A, α2B, and α2C; β1, β2, and β3).316 Ristori and coworkers
demonstrated that hypoxia causes catecholaminergic over-
stimulation, activating β-adrenoreceptors.313 Different stud-
ies have shown the effects on the expression of angiogenic
factors mediated by β-adrenergic receptors.375 , 420 In addition,
β-adrenoceptor stimulation also induces proliferation and mi-
gration of retinal endothelial cells.360 

Much of the information on the contribution of β-
adrenoreceptors to hypoxia-induced neovascularization
emerged from the confirmation that infantile hemangiomas
are effectively reduced by treatment with propranolol, a β-1
and β-2 adrenergic receptor antagonist.215 Subsequently,
several studies showed that the action of propranolol re-
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sults mainly from the blockade of β2-adrenoreceptors.178 In a
mouse model of OIR, the administration of propranolol during
the hypoxic phase prevented the upregulation of HIF-1 α and
its proangiogenic cascade, reducing retinal neovasculariza-
tion.313 This suggests that blocking the β-adrenergic system
may contribute to uncoupling hypoxia from vascularization,
indirectly modulating oxygen-induced vascularization.100 

Other studies demonstrated that propranolol is promising in
the treatment of ROP ( Table 1 ). Fillipi and coworkers showed
that oral propranolol was effective in reducing severe ROP,
but there were serious adverse side effects.101 Clinical trials
showed that, at the 0.2% dose, propranolol in topical eye drops
was well tolerated and effective in preventing progression of
ROP to advanced stages, but not at the 0.1% dose.102 , 103 

In addition to its antiangiogenic activity in hypoxic stages,
propranolol may also have a neuroprotective effect.100 Despite
the promising results of preclinical and clinical trials with pro-
pranolol in ROP, randomized clinical trials with larger samples
and with adequate dose ranges and routes of administration
are needed to draw definitive conclusions.23 , 100 That said, the
ideal timing of administration is clearer, as the protective ef-
fects of propranolol appear to exist only when administered
in the proliferative phase and not prophylactically, during the
avascular phase.100 

13. Long-chain polyunsaturated fatty acids 

PUFAs such as DHA and AA are essential structural con-
stituents of neuronal and endothelial cells and are indis-
pensable for the physiological functions of the retina, es-
pecially with regards to photoreceptors.106 DHA, eicosapen-
taenoic acid and alpha-linolenic acid are ω-3 PUFAs, and AA
is an ω-6 PUFA.78 During the third trimester of pregnancy a
considerable transfer of long-chain ω-3 and ω-6 PUFAs from
the mother to the fetus occurs.72 , 51 Because of premature
birth, preterm infants lack this maternal supply of essential
PUFAs.266 Connor and coworkers demonstrated in a mouse
model of ROP that dietary ω-3-PUFAs decrease the avascular
area of the retina, resulting in an increase in the growth of
blood vessels after injury, and a reduction in the hypoxic stim-
ulus for neovascularization.69 The protective effect of ω-3 PU-
FAs and their bioactive metabolites was mediated, in part, by
suppression of tumor necrosis factor-alpha.69 

DHA protects mitochondrial functionality, promotes differ-
entiation, and prevents apoptosis of photoreceptors.251 To re-
pair infant DHA, two strategies have been used: intravenous
administration of lipid emulsions containing fish oil and en-
teral supplementation with unicellular oils or fish oil.378 Re-
sults of reviews comparing early supplementation with fish
oil versus lipid emulsions without fish oil have yielded in-
consistent results.387 , 193 As fish oil is rich in DHA and eicos-
apentaenoic acid, but proportionally low in omega-6 AA, its
use in preterm supplementation reduces circulating AA, and
this aspect can be potentially negative.81 A meta-analysis by
Qawasmi and coworkers revealed that supplementation of in-
fant formulas with long-chain PUFAs improves visual acuity
up to the age of 12 months.305 Pawlik et al found that par-
enteral ω-3 supplementation reduces the risk of severe ROP
in very low birth weight preterm infants.289 In a recent clinical
trial (NCT03201588), infants born with a gestational age of less
than 28 weeks received a daily enteral intake of an oil provid-
ing AA (100 mg/kg) and DHA (50 mg/kg) from the third day af-
ter birth until 40 weeks of postmenstrual age. Results showed
a significant reduction in severe ROP and no significant ad-
verse effects.151 Higher levels of DHA were only effective in
protecting from severe ROP in infants with minimal levels of
AA.153 In another clinical trial (NCT02683317), enteral DHA
supplementation (75 mg/kg/day) for fourteen days in preterm
infants significantly reduced the risk of stage 3 ROP.32 

Further studies should seek to identify the ideal fatty acid
composition that may contribute to the prevention of ROP and
other pathologies associated with prematurity.153 In addition
to evidence of mechanisms involving lipidomics in the patho-
genesis of ROP, investigations are also underway on the contri-
bution of proteomics and metabolomics. Detailed clinical and
experimental evidence on these mechanisms and on potential
therapeutic targets related to their modulation is discussed in
another review.378 

14. Conclusion 

Interruption of the angiogenic phase of retinal vascular de-
velopment by preterm birth leads to ROP, which occurs in 2
phases. Phase 1 is characterized by an early stage of retinal
microvascular degeneration and an arrest in the progressive
vascularization of the peripheral retina and is associated with
reduced levels of VEGF and IGF-1. This is followed by Phase
2, in which retinal ischemia increases HIF levels and induces
the transcription of angiogenic factors (VEGF, EPO) and IGF-1,
causing neovascularization, which in severe cases can lead to
retinal detachment and permanent visual loss. The primary
objective of this review was to summarize research on the var-
ious molecular mechanisms of ROP and identify potential tar-
gets for future studies, specifically related to possible treat-
ment modalities. 

In addition to low gestational age and birth weight, ex-
posure to oxygen is the other primary risk factor associated
with ROP. Recent results from randomized clinical trials sug-
gest that an oxygen saturation range of 90–95% in the first few
weeks of life appears to be the safest level for preterm infants.
Another important emerging notion is that rigorous manage-
ment of oxygen saturation, geared towards avoiding oxygen
fluctuations and periods of intermittent hypoxia, helps to re-
duce the risk of ROP. Additional clinical trials are still needed
to optimize oxygen therapy. 

Oxidative and nitrosative stress is involved in the early
obliterative phase of ROP and induces HIF-1 α, VEGF and the
JAK/STAT pathway, while also mediating inflammation and
angiogenesis. Additional evidence is needed to fully support
the safety and efficacy of broad inhibition of ROS generation as
a therapy for ROP. Future therapies may target ROS-activated
downstream pathological effectors. In addition, more research
is needed to assess the potential for regulating NO production
by eNOS in preventing ROP. 

Oxidative stress increases the activity of arginase, which
competes with NOS for the common substrate, L-arginine,
causing NOS uncoupling and further exacerbating oxidative
stress and inflammation. Upregulation of arginase 2 is associ-
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ated with ischemic retinal neurovascular degeneration, while
arginase 1 – a marker of anti-inflammatory M2 macrophages
– reduces oxidative stress and inflammation. Further stud-
ies are needed to evaluate arginase as a therapeutic target
for oxidative stress-related retinopathies. The development of
specific inhibitors of arginase isoforms and methods for cell-
specific targeting may facilitate progress in this area. 

HIF mediates the adaptive responses of cells to hypoxia.
In the first phase of ROP, HIF stabilization during hyperoxia
(hypoxiamimesis) may prevent retinal vessel loss. During the
second phase, inhibition of HIF may target the pathological
action of proangiogenic factors. 

Given the important role of VEGF in the pathological an-
giogenesis of ROP and the experience with anti-VEGF agents
for other retinal neovascular pathologies, there is an interest
in the use of anti-VEGF for the treatment of ROP. However,
there is great concern about the safety of anti-VEGF therapy
in ROP because VEGF is essential for physiological angiogene-
sis and development of the retina and other organs. Currently,
the standard treatment for stage 3 ROP with plus disease (es-
pecially that located in zone II) is laser photocoagulation. Al-
though, it destroys parts of the retina and may have potential
adverse ocular side effects. 

Other growth factors of interest in the pathogenesis and
treatment of ROP are: 

• EPO – an oxygen-regulated growth factor controlled by HIF-
2 and an important angiogenic factor. In phase 1 ROP, low
serum levels of EPO may contribute to the interruption of
angiogenesis, while in phase 2, high levels of EPO may in-
crease pathological neovascularization.

• IGF-1 – a polypeptide hormone required for VEGF-
stimulated angiogenesis to occur. Decreased levels of
serum IGF-1 and IGFBP3 in preterm infants increase the
risk of ROP. Clinical studies are being conducted to eval-
uate treatment with IGF-1 and IGFBP3 to prevent stage 1
ROP.

• RPE – a monolayer of tight cells that aids in preserving the
blood-retinal barrier and protecting the retina from oxida-
tive damage.

• PEDF – a member of the serine protease inhibitor family
(serpin family) secreted by the RPE with potent antiangio-
genic and anti-inflammatory properties.

• PLGF – a homologous factor of VEGF-A, associated
with pathological rather than physiological angiogenesis.
Aflibercept, primarily an anti-VEGF-A, also inhibits PLGF;
however, the advantages of PLGF inhibition for treatment
of retinal neovascular diseases remain controversial.

• Ang-2 – a growth factor that modulate physiological and
pathological neovascularization, particularly in associa-
tion with VEGF. It is upregulated by VEGF and hypoxia and
stimulates neovascularization. Clinical trials in retinal vas-
cular diseases have shown that combined inhibition of the
VEGF and Ang-2 is superior to anti-VEGF therapy alone.

A compensatory mechanism between vascular growth fac-
tors in ROP has been described, which may partially explain
why inhibition of a single growth factor is not effective in pre-
venting recurrence of neovascularization. A combined strat-
egy may be more effective. 
The involvement of semaphorin family classes in ischemic
retinal vasculopathies has been demonstrated. Some of them,
such as Sema 3A, are vasorepulsive molecules that repel
neovessels from the avascular neural retina towards the vit-
reous, preventing revascularization of the avascular zone. Fu-
ture research should evaluate semaphorins as targets in vas-
cular regeneration therapy for ROP. 

The Krebs cycle intermediates, of which succinate is the
best example, are sensors of hypoxic stress, promoting angio-
genesis trough activation of its GPR91 receptor. Succinate sta-
bilizes HIF-1 α and increases IL-1 β expression, contributing to
the proliferative phase of ROP. GPR91 is considered a valuable
target in developing molecular intervention to reduce intrav-
itreal neovascularization. 

Heparanase cleaves heparan sulfate polysaccharide chains
at the cell surface and in the extracellular matrix, an impor-
tant step for neovascularization. The search for heparanase
inhibitors is increasing; however, studies to-date have fo-
cused on their use in cancer therapy and for inflammatory
pathologies. Recently, synthetic small molecules heparanase
inhibitors were developed and evaluated in pre-clinical stud-
ies. They have favorable pharmacokinetic profiles and can be
administered orally. Therefore, heparanase should be consid-
ered for additional research as a possible new target in the
treatment of ROP. 

MMPs hydrolyze the extracellular matrix and play an im-
portant role in the neovascularization process. MMP-2 and
MMP-9 have been implicated in ROP. MMPs can be inactivated
by the TIMPs family of proteins. The ADAM family of enzymes
is also involved in the degradation of components of the ex-
tracellular matrix. Several subtypes of the ADAM family have
been implicated in the pathogenesis of ROP. Developing syn-
thetic inhibitors of MMPs with selectivity has been a chal-
lenge. An alternative approach may be the use of TIMPs de-
signed with limited inhibitory specificities. 

During the second phase of ROP, the administration of a
β adrenergic receptor antagonist, propranolol, prevented the
upregulation of HIF-1 α and its pro-angiogenic cascade, reduc-
ing retinal neovascularization. More prospective randomized
clinical trials with longer follow-ups are needed to assess the
efficacy, safety, and optimal dose for administration of anti-
VEGF agents and propranolol for ROP. 

Low plasma levels of essential fatty acids DHA and AA in
the postnatal period in preterm infants are correlated with
progression of ROP. The benefit of DHA supplementation on
ROP appears to be influenced by the levels of AA present in
the infant, and also by DHA and AA metabolites. 

In conclusion, a better understanding of the intricate
molecular mechanisms underlying the pathogenesis of ROP,
especially in the early stages, will aid the development of
new therapeutic approaches to ROP. Despite the benefits of
photocoagulation and anti-VEGF therapy during the prolifera-
tive phase, these treatment modalities have limitations. New
treatments are needed to promote physiological retinal vas-
cular development, vascular repair and inhibit vasoprolifera-
tion by regulating the mediators involved in VEGF, IGF-1, or
EPO signaling pathways. Researchers are currently evaluat-
ing a series of future treatments aimed at reducing exces-
sive oxidative/nitrosative stress, and understanding progeni-
tor cells,380 and neurovascular and glial vascular interactions.
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As advances in medical technology contribute to increased
survival rates in extremely preterm infants, the absolute num-
ber of infants at-risk of developing severe ROP rises. Therefore,
the need to better understand the mechanisms involved in
ROP and to discover novel treatment modalities is more im-
portant than ever. 

15. Methods of literature search 

An extensive bibliographical search was performed in the
Pubmed, Medline and Embase databases from 1983 through
2022, using the keywords: “Retinopathy of Prematurity,”
“Retrolental Fibroplasia,” “Retinopathy,” “Oxidative Stress,”
“Nitrative Stress,” “Free Radicals,” “Arginase,” “Nitric Ox-
ide,” “Preterm Infant,” “”Premature Birth,” “Angiogenesis,”
“Neovascularization,” “Vascular endothelial growth factor,”
“Hypoxia-inducible Factor,” “Erythropoietin,” “Insulin-like
Growth Factor-1,” “Nerve Growth factors,” “Granulocyte
Colony-stimulating Factor,”“Pigment Epithelium-derived Fac-
tor,” “Fibroblast Growth Factors,” “Endothelial cells,” “Extra-
cellular Matrix,” “Heparanase,” “Semaphorins,” “Succinate,”
“Adenosine,” “Retinal Pigment Epithelium,” “Matrix Metal-
loproteinases,” “Prostaglandins,” “Angiopoietins,” “Polyun-
saturated Fatty Acids,” and “Signal Pathway.” Publications
regarding hereditary pathologies of the retina were excluded.
Abstracts not peer-reviewed and not in English were ex-
cluded. To select articles with thematic that fit the scope
of this review, the titles and abstracts of the articles were
read. In this first selection, the article was also read in its
entirety if considered necessary to assess its importance
according to the purpose of the review. When the topic of the
article was relevant, the article was read in its entirety. In the
second selection, the articles were chosen based on criteria
such as relevance of the results for the chosen topic, general
assessment of the quality of the study and article. Some
articles cited in the reference lists of other selected articles
were included. As the pathophysiology of ROP and its sig-
naling pathways is complex, the result was that a significant
proportion of articles were considered relevant and included
in the review. Publications not yet detected were evaluated
and added to the review if they met the inclusion criteria.
In the first evaluation of non-English articles, abstracts in
English were used. If necessary, the translation of the full text
was carried out. 

. Key References 

Retinopathy of prematurity involves complex signaling 

pathways, with several research studies contributing to a 

better understanding of its pathophysiology. We highlight 

the following five studies on different topics in this area: 

1) Becker S, Wang H, Simmons AB, Suwanmanee T, Stod- 

dard G J, Kafri T, Hartnett M E. Targeted Knockdown of 

Overexpressed VEGFA or VEGF164 in Müller cells main- 

tains retinal function by triggering different signaling 

mechanisms. Sci Rep. 2018;8(1):2003. https://doi.org/10. 

1038/s41598-018- 20278- 4 . 

This study provided evidence that reducing intravit- 

real neovascularization by selective knockdown of 
VEGFA, and specially VEGF164, in Müller cells may 

have less harmful effects than non-selective inhibi- 

tion of VEGFA for all retinal cells. It also showed 

that different signaling mechanisms are triggered 

depending on whether VEGFA or VEGF164 is inhib- 

ited. 

2) Yang Z, Wang H, Jiang Y, Hartnett ME. VEGFA acti- 

vates erythropoietin receptor and enhances VEGFR2- 

mediated pathological angiogenesis. Am J Pathol. 2014 

Apr;184(4):1230-1239. doi: 10.1016/j.ajpath.2013.12.023. 

Epub 2014 Mar 12. PMID: 24630601; PMCID: 

PMC3969997. 

This study showed that p-VEGFA receptor 2 activates 

the erythropoietin receptor, enhancing endothelial 

cell proliferation by STAT3 activation, resulting in 

pathological angiogenesis. It provided important in- 

sights for a better understanding of pathological an- 

giogenesis signaling. 

3) Rivera JC, Sitaras N, Noueihed B, Hamel D, Madaan 

A, Zhou T, Honoré JC, Quiniou C, Joyal JS, Hardy 

P, Sennlaub F, Lubell W, Chemtob S. Microglia and 

interleukin-1 β in ischemic retinopathy elicit microvas- 

cular degeneration through neuronal semaphorin-3A. 

Arterioscler Thromb Vasc Biol. 2013;33(8):1881-91. doi: 

10.1161/ATVBAHA.113.301331. Epub 2013 Jun 13. PMID: 

23766263. 

Findings of this study suggested that in the early stages 

of hyperoxia-induced retinopathy, retinal microglia 

is activated to produce IL-1 β that maintains the ac- 

tivation of the microglia and induces microvascular 

damage by releasing semaphorin 3A from adjacent 

neurons. It broughts important new insights to the 

understanding of pathological angiogenesis. 

4) Shosha E, Xu Z, Yokota H, Saul A, Rojas M, Caldwell RW, 

Caldwell RB, Narayanan SP. Arginase 2 promotes neu- 

rovascular degeneration during ischemia/reperfusion 

injury. Cell Death Dis. 2016;7(11):e2483. doi: 10.1038/cd- 

dis.2016.295. PMID: 27882947; PMCID: PMC5260867. 

This study demonstrated that after retinal ischemia/ 

reperfusion, neurovascular injury is mediated by in- 

creased Arginase 2 expression. According to these 

results, Arginase 2 can be considered a therapeutic 

target for the treatment of retinopathy related to ox- 

idative stress and, in particular, retinopathy of pre- 

maturity. 

5) Hu J, Song X, He YQ, Freeman C, Parish CR, Yuan 

L, Yu H, Tang S. Heparanase and vascular endothe- 

lial growth factor expression is increased in hypoxia- 

induced retinal neovascularization. Invest Ophthalmol 

Vis Sci. 2012;53(11):6810-7. doi: 10.1167/iovs.11-9144. 

PMID: 22956610. 

This study provided evidence that in hypoxia-induced 

retinal diseases, heparanase is upregulated and pro- 

motes the VEGF expression. It revealed the im- 

portance of heparanase and extracellular matrix in 

hypoxia-induced neovascularization and suggests 

heparanase as a new therapeutic target. 
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