INFORMATION BULLETIN ON VARIABLE STARS
Nos. 4101-4200
1994 October - 1995 May

EDITORS: L. SZABADOS and K. OLAH TECHNICAL EDITOR: A. HOLL

TYPESETTING: K. ŐRI
KONKOLY OBSERVATORY
H-1525 BUDAPEST
P.O. Box 67 , HUNGARY

IBVS@ogyalla.konkoly.hu
URL: http://www.konkoly.hu/IBVS/IBVS.html
HU ISSN 0974-0676

CONTENTS

No. page
4101 E. F. GUINAN, J. J. MARSHALL, F. P. MALONEY: A New Apsidal Motion Determination For DI Herculis $1-4$
4102 D. TERRELL, D. H. KAISER, D. B. WILLIAMS: A Photometric Campaign on OW Geminorum 1-2
4103 B. GUROL: Photoelectric Photometry of OO Aql 1-3
4104 LIU QUINGYAO, GU SHENGHONG, YANG YULAN, WANG BI: New
Photoelectric Light Curves of BL Eridani $1-2$
4105 S. Yu. MELNIKOV, V. S. SHEVCHENKO, K. N. GRANKIN: Eclipsing Binary V530 Cyg=S 4539, Former Ins(a)-Type Variable $1-3$
4106 J. A. BELMONTE, E. MICHEL, M. ALVAREZ, S. Y. JIANG: IsPraesepe KW284 Actually a Delta Scuti Star?1-2
4107 V. L. TÓTH, Ch. M. WALMSLEY: Water Masers in L1251 1-2
4108 R. L. HAWKINS, K. F. DOWNEY: Times of Minimum Light for Four Eclipsing of Four Binary Systems $1-2$
4109 B. GÜROL, S. SELAN: Photoelectric Photometry of the Short-Period Eclipsing Binary HW Virginis $1-4$
4110 M. P. SCHEIBLE, E. F. GUINAN: The Spotted Young Sun - HD 129333 (=EK Dra) 1-3
4111 M. BOS: Photoelectric Observations of AB Doradus 1-3
4112 YULIAN GUO: A New V/R Cyclic Change of $\mathrm{H} \alpha$ in ζ Tau 1-2
4113 YULIAN GUO: A Detection of Moving Bumps in the Emission Profiles ofthe Be Star FX Lib$1-3$
4114 J. R. PERCY, W. AU: APT Observations of Small-Amplitude Red Variables 1-4
4115 J. C. THOMAS, I. PACHOULAKIS: V and UV Photometry of HD 159176 1-4
4116 J. MÁNEK: CF Cas = NSV 14787 $1-3$
4117 M. ALUIGI, G. GALLI, A. GASPANI: Photoelectric Observations of the Close Eclipsing Binary VW Cephei $1-4$
4118 V. MAKAROV, U. BASTIAN, E. HOEG, V. GROSSMANN,A. WICENEC: 35 New Bright Medium - and High - Amplitude VariablesDiscovered by the Tycho Instrument of the Hipparcos Satellite1-3
4119 D. H. KAISER: Five New DHK Variables 1-2
4120 C. STERKEN, J. MANFROID: A Flare Event on HR 2517 1-2
4121 W. WENZEL: The Long Term Photometric Behaviour of the Cataclysmic
Binary HX Pegasi $1-2$
4122 D. P. KJURKCHIEVA, D. V. MARCHEV: Eclipse Curves of UX UMa in 1992 1-4
4123 B. E. SCHAEFER, D. HOFFLEIT: KY Ara is Misidentified 1-2
4124 P. NORTH, M. BURNET: Geneva Photometry of the Eclipsing Binary TV Nor 1-4
4125 S. V. ANTIPIN: Ten New Variable Stars in Hercules and Corona Borealis 1-4

No.

page
4126 O. DEMIRCAN, M. TANRIVER, A. DEVLEN, A. BULUT, A. SAVRANLAR, Y. YÜKSEL, A. AŞÇILAR, Z. ASLAN, H. AK, A. GÖKÇE, E. ÇINAR, G. SEN, G. TAŞ, E. AÇIKGÖZ, C. IBANOĞLU, H. DÜNDAR, H. ÇALIŞKAN, H. VARLI, H. ÖZDEMIR, Y. ALEMDAR, B. BEKTAŞLI, Z. MÜYESSEROĞLU, B. ALBAYRAK, A. ISKENDER, N. ÇUBUKCU, Ö. ÇAKIRLI, R. T. YILDIRIM, F. GÖKSEN, S. O. SELAM, K. YÜCE, Y. KAYA, K. ULUÇ, M. DAĞCI, Y. ERDAL, N. KÖKER:

Photoelectric Observations and Minima Times of Four W UMa Systems:
LS Del, SW Lac, V 839 Oph and AQ Psc
1-4
4127 P. A. HECKERT: 1994 BVRI Photometry of CG Cygni 1-4
4128 L. T. MARKOVA, G. V. ZHUKOV: B and V Photoelectric Observations of the Contact Binary XY Leo $1-2$
4129 V. P. GORANSKIJ: The Identification of Variable Stars Discovered with the Hubble Space Telescope in the Globular Cluster Messier 3 $1-2$
4130 N. A. GORYNYA, N. N. SAMUS, A. S. RASTORGOUEV: Spectroscopic Binarity of the Cepheid BY Cas 1-2
4131 F. AGERER: WW Cephei: Elements Rediscovered and Improved 1-4
4132 F. AGERER, W. KLEIKAMP, W. MOSCHNER: V 406 Lyrae: New
Ephemeris and Lightcurve 1-3
4133 F. AGERER: Photometric Observation of V1187 Cygni 1-2
4134 F. AGERER, T. BERTHOLD: VW Canum Venaticorum: New Ephemeris and Lightcurve $1-3$
4135 K. T. JOHANSEN, B. NORDSTRÖM: A Pre-Main-Sequence Companion to AR Aurigae? $1-3$
4136 T. KATO: AK Cancri - a New Large-Amplitude SU UMa-Type Dwarf Nova $1-3$
4137 S. V. ANTIPIN, N. N. KIREEVA, N. N. SAMUS: Positions of Variable Stars in Plaut's Field 3 1-2
4138 A. P. ODELL: Timings of Selected Variable Stars 1-4
4139 E. BUDDING, G. HUDSON, R. HUDSON: UBV Observations of AB Dor, 1993 1-2
1995
4140 E. V. KAZAROVETS, N. N. SAMUS: The 72nd Name-List of Variable Stars 1-28
4141 L. N. BERDNIKOV, O. V. VOZIAKOVA, M. A. IBRAGIMOV: BVR Observations of the Double-Mode Cepheids AS Cas, V 367 Sct and BQ Ser . 1-44142 L. N. BERDNIKOV, O. V. VOZIAKOVA, M. A. IBRAGIMOV: UBVRObservations of the Double-Mode Cepheids CO Aur, TU Cas and EW Sct .. 1-4
4143 F. AGERER, P. FRANK: Photometric Observation of NS Monocerotis 1-3
4144 E. LAPASSET, N. GÓMEZ: AW Virginis: Photoelectric Times of Minimum and Improved Period $1-4$
4145 L. N. BERDNIKOV, O. V. VOZIAKOVA: Photoelectric UBVR Observations of the Peculiar Cepheid V 473 Lyr 1-3
4146 D. Yu. TSVETKOV, N. N. PAVLYUK: Observations of SN 1993ad 1-2
4147 P. NORTH, C. RICHARD: HD 121276: An Eclipsing Magnetic Ap Star at Last? 1-4
No. page
4148 J. D. FERNIE, N. R. EVANS, B. BEATTIE, S. SEAGER: A Database of Galactic Classical Cepheids 1
4149 CHA GUANGWEI, LI YONGSHENG, XU JUN: Short Time-Scale Variation of ϵ Aur $\mathrm{H} \alpha$ Blue Wing Emission $1-4$
4150 Z. BALOG, J. VINKÓ: Is TX Delphini a Population I (Classical) Cepheid? $1-3$
4151 E. PAUNZEN, U. HEITER, W. W. WEISS: Detection of Variability in HD 191850 $1-3$
4152 T. KATO: Observations of Superhumps in V1251 Cyg during the 1991 Superoutburst 1-4
4153 M. ALUIGI, G. GALLI, A. GASPANI: Photoelectric Observations of the Eclipsing Variable DO Cas $1-2$
4154 L. N. BERDNIKOV, O. V. VOZIAKOVA: Photoelectric UBVR Observations of the Peculiar Cepheid RU Cam $1-2$
4155 D. NOGAMI, T. KATO, S. MASUDA, R. HIRATA: Discovery of the Second PG 0943+521-Type Dwarf Nova V1159 Ori $1-4$
4156 S. RUCINSKI, R. F. GARRISON, B. DUFFEE: U-Filter Photometry of
AB Doradus $1-3$
4157 A. SKOPAL: Photometric Observations of Eclipses in the Symbiotic Triple System CH Cygni 1-3
4158 A. V. BERDYUGIN, T. M. RACHKOVSKAJA, S. I. ROSTOPCHIN,
A. E. TARASOV: The Discovery of $\mathrm{H} \alpha$ Emission in V373 Cas 1-2
4159 R. WASATONIC: A Possible Variable Star Reclassification for TX Piscium 1-4
4160 V. N. OBRIDKO, Yu. R. RIVIN: Solar Magnetic Field Modulation of the Neutrino Flux $1-3$
4161 J. J. MARSHALL, E. F. GUINAN, G. P. McCOOK: Possible Low
Amplitude Light Variations of DI Her 1-4
4162 E. S. PARSAMIAN: On the Age of Flare Star FS2 and the Cluster of α Persei 1
4163 D. NOGAMI, T. KATO, S. MASUDA, R. HIRATA: Observations of
a Newly Discovered SU UMa-Type Star HV Aurigae 1-4
4164 D. HOFFLEIT: More Clarification Needed for NSV 11271 and VY Lyrae 1-3
4165 M. J. SARNA, W. PYCH, R. C. SMITH: New Period Determination for EY Cyg $1-3$
4166 L. L. KISS, K. SZATMÁRY: Has the Delta Scuti Star BE Lyn a Companion? $1-4$
4167 R. G. SAMEC, B. CARRIGAN, E. E. PADGEN: Precision B, V Light Curves of EK Comae Berenices $1-3$
4168 D. H. KAISER, M. E. BALDWIN, J. GUNN, D. TERRELL, C. STEPHAN
B. HAKES: Period Correction for the New Eclipsing Binary DHK 41 1-2
4169 L. A. MILONE: Faint Companions to UX Antliae 1-2
4170 E. RODRIGUEZ, F. M. ZERBI: A Long Period Early F-Type Variable: HR 8799 1-4
4171 K. BARLAI, B. SZEIDL: Onset of Pulsation of V99 in M15? 1-4

No.
page
4172 H. ROVITHIS-LIVANIOU, P. ROVITHIS, G. OPRESCU,
A. DUMITRESCU: New Minima Times and Period Behaviour for the

Eclipsing Variables RT Andromedae, 44i Bootis and GO Cygni 1-4
4173 R. HUDEC: Optical Monitoring of Two X-Ray Transient Sources 1-2
4174 R. W. HANUSCHIK, S. ŠTEFL, W. HUMMEL, M. VRANCKEN:
Observations of a $V=R$ Transition in the Be Star 66 Oph 1-4
4175 A. SCHNELL, H. M. MAITZEN: Photometric Examination of CP2-Peculiarity for HD 200405, HR 44, HR 7752 and HR 9092 $1-4$ 4176 K. KRISCIUNAS, E. F. GUINAN, G. P. McCOOK, R. F. GRIFFIN, R. A. CROWE, M. ROBERTS, K. D. LUEDEKE, P. POBOCIK: Photometric Variability of the Ellipsoidal Star and Spectroscopic Binary 7 Camelopardalis 1-4 4177 J. D. GRAY, R. G. SAMEC, B. J. CARRIGAN: Complete CCD U, B, V, R, I Light Curves of the Short Period Eclipsing Binary: V361 Lyrae 1-4 4178 R. HAEFNER: CCD Photometry of Six Faint Cataclysmic Variables 1-3
4179 E. WUNDER: The First Period Change Discovered in the Bright Algol System UV Leonis $1-4$ 4180 M. JASCHEK, C. JASCHEK, P. KEENAN, N. GINESTET, J. M. CARQUILLAT: HD 6474: An UU Her Spectrum Variable? 1-2

4181 L. L. KISS, J. GÁL, G. KASZÁS: New Times of Minima of
Eclipsing Binaries VW Cep, U Cep and RZ Cas $1-3$ 4182 W. WENZEL, G. A. RICHTER, R. LUTHARDT, R. SCHWARTZ: The Orbital Period of the ROSAT Cataclysmic Variable S 10932 Comae Berenices $1-2$ 4183 W. WENZEL: A New Semiregular Variable S 10934 in Corona Borealis 1

Erratum 2
4184 E. STEINBRING, D. P. HUBE, B. E. MARTIN: The Ellipsoidal
Variability of $\operatorname{HR} 4646$. 1-2
4185 D. M. POPPER: Narrowing the Main Sequence Mass Gap 1-3
4186 R. G. SAMEC, R. J. McDERMITH, B. J. CARRIGAN: UBV Light
Curves of the Near-Contact Binary AK Canis Minoris . 1-3
4187 W. R. BENBOW, R. L. MUTEL: Eclipse Observations of EQ Tau 1-3
4188 G. HANDLER: HD 147491 Is Variable, but It Is Not a Delta Scuti Star . . . 1-4
4189 R. K. ZAMANOV, V. I. ZAMANOVA: X Persei . 1-2
4190 F. ZEINALI, M. T. EDALATI, M. T. MIRTORABI: Photoelectric
Observations of the Eclipsing Variable ER Vulpeculae . 1-3
4191 E. PAUNZEN, U. HEITER, W. WEISS: Confirmation of Variability in
the λ Bootis Stars HD 142994 and HD $142703 \ldots \ldots . \ldots$. $1-4$
4192 M. ROBB: The Active Star RE $0041+342 \ldots \ldots . \ldots$. 1-4
4193 T. KATO, D. NOGAMI, S. MASUDA. R. HIRATA: HS Virginis - a Dwarf
Nova with 8-Day Outburst Cycle Length . 1-3
4194 G. H. SANDBERG LACY, C. IBANOGLU, Z. TUNCA, S. EVREN, C.
AKAN, V. KESKIN, M. ZAKIROV, G. ARZUMANYANTS,
R. ISHANKULOV, V. KHARCHENKO: Times of Minima of Eight Eclipsing

Binaries . 1-2
4195 K. KRISCIUNAS, G. HANDLER: A List of Variable Stars Similar to
$\quad \gamma$ Dor . $1-2$
4196 D. B. WILLIAMS: Periods and Types for Six Red Variables 1-3
page
4197 T. S. METCALFE: BH Cas Is An Eclipsing Binary 1-2
4198 R. H. DIETHELM, L. MOSER: NSV 7020 Boo = BV 100: RRab Variable $1-2$
4199 N. A. GORYNYA, N. N. SAMUS, L. N. BERDNIKOV,
A. S. RASTORGOUEV, M. E. SACHKOV: Orbital Parameters of Six

Spectroscopic Binary Cepheids
1-4
4200 L. N. BERDNIKOV, O. V. VOZIAKOVA, D. G. TURNER: Photoelectric
Observations of the T Tau Type Variable BZ Sgr 1-2

AUTHOR INDEX

Açikgöz, E.
Agerer, F.
Ak, H.
Akan, C.
Albayrak, B.
Alemdar, V.
Aluigi, M.
Alvarez, M.
Antipin, S. V.
Arzumanyants, G.
Asscilar, A.
Aslan, Z.
Au, W.
Baldwin, M. E.
Balog, Z.
Barlai, K.
Bastian, M.
Beattie, B.
Bektaşli, B.
Belmonte, J. A.
Benbow, W. R.
Berdnikov, L. N.

Berdyugin, A. V.
Berthold, T.
Bos, M.
Budding, E.
Bulut, A.
Burnet, M.
Çalişkan, H.
Çalirli, Ö.
Carquillat, J. M.
Carrigan, B.
Cha Guangwei
Cinar, E.
Crowe, R. A.
Çubukcu, N.
Dağci, M.
Demircan, O.
Devlen, A.
Diethelm, R.
Downey, F.

4126	Duffee, B.	4156
4131, 4132, 4133,	Dumitrescu, A.	4172
4134, 4143	Dündar, H.	4126
4126	Edalati, M. T.	4190
4194	Erdal, Y.	4126
4126	Evans, N. R.	4148
4126	Evren, S.	4194
4117, 4153	Fernie, J. D.	4148
4106	Frank, P.	4143
4125, 4137	Gál, J.	4181
4194	Galli, G.	4117, 4153
4126	Garrison, R. F.	4156
4126	Gaspani, A.	4117, 4153
4114	Ginestet, N.	4180
4168	Gómez, M.	4144
4150	Goranskij, V. P.	4129
4171	Gorynya, N. A.	4130, 4199
4118	Göksen, F.	4126
4148	Görkçe, A.	4126
4126	Grankin, K. N.	4105
4106	Gray, J. D.	4177
4187	Griffin, R. F.	4176
4141, 4142, 4145,	Grossmann, V.	4118
4154, 4199, 4200	Gu Shenghong	4104
4158	Guinan, E. F.	4101, 4110, 4161, 4176
4134	Gunn, J.	4168
4111	Guo Yulian	4112, 4113
4139	Gürol, B.	4103, 4109
4126	Haefner, R.	4178
4124	Hakes, B.	4168
4126	Handler, G.	4188, 4195
4126	Hanuschik, R. V.	4174
4180	Hawkins, R. L.	4108
4167, 4177, 4186	Heckert, P. A.	4127
4149	Heiter, H.	4151, 4191
4126	Hirata, R.	4155, 4163, 4193
4176	Hoffleit, D.	4123, 4164
4126	Hoeg, E.	4118
4126	Hube, D. P.	4184
4126	Hudec, R.	4173
4126	Hudson, G.	4139
4198	Hudson, R.	4139
4108	Hummel, W.	4174

4156 4172 4126 4190 4126 4148 4194 4148 4143 4181 4153 4156 4153 4180 4144 4129
Gorynya, N. A. 4130, 4199
Göksen, F. 4126
Görkçe, A. 4126
Grankin, K. N. 4105
Gray, J. D. 4177
Griffin, R. F. 4176
4141, 4142, 4145, Grossmann, V. 4118
4154, 4199, 4200 Gu Shenghong 4104
4158 Guinan, E. F. 4101, 4110, 4161, 4176
4134 Gunn, J. 4168
4111 Guo Yulian 4112, 4113
4139 Gürol, B. 4103, 4109
4126 Haefner, R. 4178
4124 Hakes, B. 4168
4126 Handler, G. 4188, 4195
4126 Hanuschik, R. V. 4174
4180 Hawkins, R. L. 4108
4149 Heiter, H. 4151, 4191
4126 Hirata, R. 4155, 4163, 4193
4176 Hoffleit, D. 4123, 4164
4126 Hoeg, E. 4118
4126 Hube, D. P. 4184
4126 Hudec, R. 4173
4126 Hudson, G. 4139
4108 Hummel, W. 4174

Ibanoğlu, C.	4126,4194	Moser, L.	4198
Ibragimov, M. A.	4141,4142	Mutel, R. L.	4187
Ishankulov, Z.	4194	Müyesseroğlu, Z.	4126
Iskender, A.	4126	Nogami, D.	$4155,4163,4193$
Jaschek, C.	4180	Nordström, B.	4135
Jaschek, M.	4180	North, P.	4124,4147
Jiang S. Y.	4106	Obridko, V. N.	4160
Johansen, K. T.	4135	Odell, A. P.	4138
Kaiser, D. H.	$4102,4119,4168$	Oprescu, G.	4172
Kaszás, G.	4181	Ozzdemir, H.	4126
Kato, T. 4136, 4152, 4155, 4163, 4193	Pachoulakis, I.	4115	
Kaya, Y.	4126	Padgen, E. E.	4167
Kazarovets, E. V.	4140	Parsamian, E. S.	4162
Keenan, P.	4180	Paunzen, K.	4151,4191
Keskin, V.	4194	Pavlyuk, D. Yu.	4146
Kharchenko, V.	4194	Percy, J. R.	4114
Kiss, L. L.	4166,4181	Pobocik, P.	4176
Kireeva, N. N.	4137	Popper, D. M.	4185
Kjurkchieva, D. P.	4122	Pych, W.	4165
Kleikamp, W.	4132	Rachkovskaja, T. M.	4158
Köker, N.	4126	Rastorgouev, A. S.	4130,4199
Krisciunas, K.	4176,4195	Richard, C.	4147
Lacy, C. H. S.	4194	Richter, G. A.	4182
Lapasset, E.	4144	Rivin, Yu. R.	4160
Li Yongsheng	4149	Robb, M.	4192
Liu Quingyao	4104	Roberts, M.	4176
Luedeke, K. D.	4132	Smith, R. C.	4157
Luthardt, R.	4176	Rodriguez, E.	4170
Maitzen, H. M.	4182	Rostopchin, S. I.	4158
Makarov, V.	4175	Rovithis, P.	4172
Maloney, F. P.	4118	Rovithis-Livaniou, H.	4172
Mánek, J.	4101	Rucinski, S.	4156
Manfroid, J.	4116	Sachkov, M. E.	4199
Marchev, D. V.	4120	Samec, R. G.	$4167,4177,4186$
Markova, L. T.	4122	Samus, N. N.	$4130,4137,4140,4199$
Marshall, J. J.	4128	Sarna, M. J.	4165
Martin, B. E.	4101,	4161	Savranlar, A.

Štefl, S. 4174
Steinbring, E. 4184
Stephan, Ch. 4168
Sterken, C. 4120
Szatmáry, K. 4166
Szeidl, B. 4171
Tanriver, M. 4126
Tarasov, A. E. 4158
Taş, G. 4126
Terrell, D. 4102, 4168
Thomas, J. C. 4115
Tóth, V. L. 4107
Tsvetkov, D. Yu. 4146
Tunca, Z. 4194
Turner, D. G. 4200
Uluç, K. 4126
Varli, H. 4126
Vinkó, J. 4150
Voziakova, O. V. 4141, 4142, 4145,
4154, 4200
Vrancken, M. 4174
Walmsley, Ch. M. 4107
Wang Bi 4104
Wasatonic, R. 4159
Wenzel, W. 4121, 4182, 4183
Weiss, W. 4151, 4191
Wicenec, A. 4118
Williams, D. B. 4102, 4196
Wunder, E. 4179
Xu Jun 4149
Yang Yulan 4104
Yildirim, R. T. 4126
Yüce, K. 4126
Yüksel, Y. 4126
Zakirov, M. 4194
Zamanov, R. K. 4189
Zamanova, V. I. 4189
Zhukov, G. V. 4128
Zeinali, F. 4190
Zerbi, T. M. 4170

INDEX OF VARIABLES

Name	No.	Name	No.
RT And	4172, 4185	V704	4196
XZ	4108	U Cep	4181
BX	4138	VW	4117, 4181
UX Ant	4169	WW Cep	4131
FF Aql	4199	EK	4194
OO	4103	EK Com	4167
KY Ara	4123	V666 CrA	4137
AR Aur	4135	W Crv	4138
CO	4142	VZ Cyg	4199
HP	4185	CG	4127, 4185
HV	4163	CH	- 4157
Epsilon	4149	EY	4165
9	4170, 4195	GO	4172
TY Boo	4138	MW	4199
BY $=$ HR 5299	4114	V456	4108
$\mathrm{CF}=\mathrm{HR} 5300$	4114	$\mathrm{V} 530=\mathrm{S} 4539$	4105
CV	4185	V541	4194
44i	4172	V1187	4133
RU Cam	4154	V1251	4152
$7=$ HR 1568	4176	TX Del	4150
AK Cnc	4136	LS	4126
AK CMi	4186	AB Dor Gamma	$\begin{array}{r} 4111, \\ 4139,4156 \\ 4170,4195 \end{array}$
VW CVn	4134		
BP	4196	EK Dra = HD 129333 $\mathrm{CV}=\mathrm{HR} 5226$	$\begin{aligned} & 4110 \\ & 4114 \end{aligned}$
RZ Cas	4181		
XX	4108	BL Eri	4104
TU	4142		4138
AS	4141	OW Gem	4102
BH	4197	CF Gru	4178
BY	4130, 4199	CF Gru	4178
CE	4116	DI Her	4101, 4161
CF $=$ NSV 14787	4116	SW Lac	4126
DO	4153	V364	4194
IT	4194		
PV	4194	XY Leo	4128
QX	4116	UV	4179, 4185
V373	4158	DU	4185
$\mathrm{V} 487=\mathrm{HD} 6474$	4180	FX Lib	4113

Name	No.	Name		No.
BE Lyn	4166	V3180		137
VY Lyr	4164	V3200		137
V361	4177	V3220		137
V406	4132	V3243		137
V473	4145	V3288		137
		V3443		137
FS Mon	4194	V3447		137
NS Mon	4143	$\mathrm{V} 3475=\mathrm{V} 2355 \mathrm{Sgr}$		137
TV Nor	4124	$\mathrm{V} 3507=\mathrm{V} 2360 \mathrm{Sgr}$		137
		V3549		137
V839 Oph	4126	$\mathrm{V} 3723=\mathrm{V} 1635 \mathrm{Sgr}$		137
66	4174	$\mathrm{V} 3729=\mathrm{V} 2371 \mathrm{Sgr}$		137
FT Ori	4194	$\mathrm{V} 3746=\mathrm{V} 948$ Sgr $=$ V115		137
GG	4194	V3758		137
V1159	4155	V3774 Sgr		137
HX Peg	4121	Sigma Sco		138
LM	4196			
X Per	4189	EW Sct V367		142
V517	4196			
TX Psc	4159	BQ S		
UV	4185	TT Sex		196
AQ	4126	AP Tau		108
2 Pup B	4195	EQ		4187
		V1060		4196
S Sge	4199	Zeta		4112
BZ Sgr	4200	UX UMa		4122
V350	4199	ZZ		4185
$\mathrm{V} 655=\mathrm{V} 2988 \mathrm{Sgr}$	4137			
$\mathrm{V} 948=$ V1154 Sgr $=$ V3746 Sgr	4137	AW Vir		4144
$\mathrm{V} 1154=\mathrm{V} 948 \mathrm{Sgr}=$ V3746 Sgr	4137	BH - PG 1341-079		4185
V1188 $=$ NSV 10715	4137			4109
V1289 = NSV 10648	4137	HW		4109
$\mathrm{V} 1635=$ V3723 Sgr	4137	BW Vul		4138
$\mathrm{V} 2355=\mathrm{V} 3475$ Sgr	4137	ER		4190
$\mathrm{V} 2360=\mathrm{V} 3507 \mathrm{Sgr}$	4137	BV $100=$ NSV 720		198
$\mathrm{V} 2371=$ V3729 Sgr	4137	BV $100=\mathrm{NSV} 720$,
V2636	4137	DHK $37=$ GSC 2457.0279		4119
V2647	4137	DHK $38=$ SAO 124400		4119
V2705	4137	DHK $39=$ GSC 2661.1058		4119
V2852	4137	DHK $40=$ SAO 46698		4119
V2965	4137	DHK 41 = SAO 76494	4119	4168
$\mathrm{V} 2988=\mathrm{V} 655 \mathrm{Sgr}$	4137	GSC 353.301		4118
V3033	4137	GSC $709.46=$ NSV 2106		4118
V3081	4137	GSC 1089.751		4118

Name	No.	Name	No.
GSC 1466.869	4118	HD 106103	4195
GSC 2345.1896	4118	HD 110379	4195
GSC 2457.0279 = DHK 37	4119	HD 110380	4195
GSC 2549.677	4118	HD 111829	4195
GSC $2661.1058=$ DHK 39	4119	HD 117777	4195
GSC 2910.447	4118	HD $121276=$ CP -516430	4147
GSC 3062.0052	4125	HD 159176	4195
GSC 3062.0786	4125	HD 164615	4170
GSC 3065.0704	4125	HD 191850	4151
GSC 3066.0251	4125	HD 218396	4195
GSC 3075.0202	4125	HD 224638	4195
GSC 3079.0534	4125	HR $1568=7$ Cam	4176
GSC 3347.1499	4118	HR 4646	4184
GSC 3378.458	4118	HR 2517	4120
GSC 3738.234	4118	HR 5111	4114
GSC 5153.387	4118	HR 5123	4114
GSC 5511.693	4118	HR 5150	4114
GSC $6199.618=$ NSV 7344	4118	HR 5178	4114
GSC 6306.417	4118	HR 5215	4114
GSC 6513.1712	4118	HR $5226=$ CV Dra	4114
GSC $7102.1296=$ NSV 3379	4118	HR 5271	4114
GSC 7132.590	4118	HR 5280	4114
GSC 7362.894	4118	HR 5299 = BY Boo	4114
GSC 7572.1544	4118	HR $5300=$ CF Boo	4114
GSC 7729.173	4118	HR 8799	4170
GSC $7850.1060=$ NSV 7357	4118	HR 87	
GSC 7987.835	4118	KW 284	4106
GSC 7990.374	4118	L 1251	4107
GSC 8143.1629	4118		
GSC $8155.343=$ NSV 4166	4118	NSV 720= BV 100	4198
GSC 8212.1230	4118	NSV $1214=$ GSC 8503.158	4118
GSC 8353.620	4118	NSV $2106=$ GSC 709.46	4118
GSC 8468.104	4118	NSV 3379 = GSC 7102.1296	4118
GSC 8503.158 = NSV 1214	4118	NSV $4166=$ GSC 8155.343	4118
GSC 8585.1054	4118	NSV $06389=$ HR 5154	4114
GSC 8653.1082	4118	NSV $7344=$ GSC 6199.618	4118
GSC 8710.1370	4118	NSV 7357 = GSC 7850.1060	4118
GSC 8782.316	4118	NSV 9208	4178
GSC 8827.195	4118	NSV 10351	4137
GSC 8833.1050	4118	NSV 10364	4137
		NSV $10648=$ V1289 Sgr	4137
Hawkins V6	4178	NSV $10715=$ V1188 Sgr	4137
HD $6474=$ V487 Cas	4180	NSV 10777	4137
HD 23375	4195	NSV 11271	4164
HD 129333 = EK Dra	4110	NSV 14152	4178
HD 81997A	4195	NSV 14787 = CF Cas	4116

Name	No.	Name	No.
PG 1341-079 = HS Vir	4193	GSC 3738.234	4118
PG 1403-111	4178	GSC 5153.387	4118
PG $1522+122$	4178	GSC 5511.693	4118
RE $0041+342=\mathrm{BD}+33^{\circ} 94$	4192	$\text { GSC } 6199.618=\text { NSV } 7344$	4118
S $4539=$ V530 Cyg	4105	GSC 6513.1712	4118
S 10932	4182	GSC $7102.1296=$ NSV 3379	4118
S 10934	4182	GSC 7132.590	4118
SAO $46698=$ DHK 40	4119	GSC 7362.894	4118
SAO $76494=$ DHK 41	4119, 4168	GSC 7572.1544	4118
SAO $124400=$ DHK 38	4119	GSC 7729.173	4118
		GSC $7850.1060=$ NSV 7357	4118
SN 1993ad	4146	GSC 7987.835	4118
X-ray sources		GSC 7990.374	4118
GRO 1008-57	4173	GSC 8143.1629	4118
GROJ 1719-24 $=$ GRS 1716-249	$249 \quad 4173$	GSC $8155.343=$ NSV 4166	4118
GRS 1716-249 = GROJ 1719-2	$24 \quad 4173$	GSC 8212.1230	4118
		GSC 838.10	
New variables		GSC 8468.104	4118
1E1919+0427	4185	GSC $8503.158=$ NSV 1214	4118
in Alpha Per, FS 2	4162	GSC 8585.1054	4118
72 nd Name List	4140	GSC 8653.1082	4118
$7 \mathrm{Cam}=\mathrm{HR} 1568$	4176	GSC 8710.1370	4118
in Her and CrB (10)	4125	GSC 8782.316	4118
DHK $37=$ GSC 2457.0279	4119	GSC 8833.1050	4118
DHK $38=$ SAO 124400	4119		
DHK $39=$ GSC 2661.1058	4119	Hawkins V6	4178
DHK $40=$ SAO 46698	4119	HD 23375	4195
DHK $41=$ SAO 76494	4119, 4168	HD 81997A	4195
GSC 353.301	4118	HD 106103	4195
GSC $709.46=$ NSV 2106	4118	HD 110379	4195
GSC 1089.751	4118	HD 110380	4195
GSC 1466.869	4118	HD 111829	4195
GSC 2345.1896	4118	HD 117777	4195
GSC 2549.677	4118	HD $121276=$ CP - 16430	4147
GSC 2910.447	4118	HD 159176	4115
GSC 3062.0052	4125	HD 164615	4170
GSC 3062.0786	4125	HD 191850	4151
GSC 3065.0704	4125	HD 218396	4195
GSC 3066.0251	4125	HD 224638	4195
GSC 3075.0202	4125	HR $1568=7 \mathrm{Cam}$	4176
GSC 3079.0534	4125	HR 2517	4120
GSC 3347.1499	4118	HR 5111	4114
GSC 3378.458	4118	HR 5123	4114

Name	No.
HR 5150	4114
HR 5178	4114
HR 5215	4114
HR 5271	4114
HR 5280	4114
HR 4646	4184
HR 8799	4170
L 1251	4107
PG 1403-111	4178
PG 1522+122	4178
S 10932	4182
S 10934	4182
Variables in clusters	
in Alpha Per, FS2	4162
in M15, V99	4171
in M3 (40)	4129
in NGC 2516 (4)	4195

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4101

Konkoly Observatory
Budapest
12 October 1994
HU ISSN 0374-0676

A NEW APSIDAL MOTION DETERMINATION FOR DI HERCULIS

DI Herculis (HD 175227) is an 8th magnitude eclipsing binary consisting of two main sequence B stars (B 4 V and B 5 V) moving in a highly eccentric orbit $(\mathrm{e}=0.49)$ with a period of approximately 10.55 days. Rudkjøbing (1959) first called attention to this system as a possible test of general relativity since the relativistic contribution to the total apsidal motion is expected to be greater than that arising from classical (Newtonian) effects. For DI Her, the classical contribution to the apsidal motion rate, which arises from tidal and rotational deformation of the stars, is expected to be $\dot{\omega}_{c l}=1.93^{\circ} / 100 \mathrm{yr} \pm 0.26^{\circ} / 100 \mathrm{yr}$ while the theoretically expected general relativistic contribution is $\dot{\omega}_{g r}=2.34^{\circ} / 100 \mathrm{yr}$ $\pm 0.15^{\circ} / 100 \mathrm{yr}$ yielding a combined predicted value of $\dot{\omega}_{c l+g r}=4.27^{\circ} / 100 \mathrm{yr} \pm 0.30^{\circ} / 100 \mathrm{yr}$ (Guinan and Maloney, 1985). The rate of the observered apsidal motion of DI Her is well determined from measurements of the times of primary and secondary eclipse. However, in all studies done so far for DI Her, the results indicate an apsidal advance significantly smaller than predicted from theory. For example, Guinan and Maloney (1985) found a value of $\dot{\omega}_{o b s}=0.65^{\circ} / 100 \mathrm{yr} \pm 0.11^{\circ} / 100 \mathrm{yr}$ and Reisenberger and Guinan (1989) found $\dot{\omega}_{\text {obs }}=1.00^{\circ} / 100 \mathrm{yr} \pm 0.30^{\circ} / 100 \mathrm{yr}$. The observations used in these studies span a period of about 84 years and indicate an apsidal motion rate $4-7$ times smaller than expected from theory. This discrepancy between the observed and theoretical apsidal motions for this star is very puzzling. One of the possible explanations for the smaller than expected observed apsidal motion in DI Her is the presence of a third body which would perturb the orbit of the close eclipsing pair (see Guinan and Maloney 1985, Reisenberger and Guinan 1989, and Khaliullin, Khodykin, and Zakharov 1991).

We have continued to observe DI Her extending the observational baseline to provide a more accurate determination of the rate of apsidal motion and also to search for evidence of small period oscillations due to the presence of a possible third body. Here we report on three new times of minimum light obtained by us using a 0.8 m Automatic Photoelectric Telescope (APT); these data are combined with all the previous photoelectric timings to search for evidence of a third body and to refine the determination of the apsidal motion.

Photoelectric photometry was carried out during the spring of 1993 and 1994 resulting in three new timings of minimum light - a secondary eclipse on June 13, 1993 UT, and two primary eclipses on June 26, 1993 UT and May 19, 1994 UT. Observations were made using the Fairborn-Villanova 0.8 m APT on Mt. Hopkins, Arizona; observations were taken in Johnson U, B, and V filters. Differential magnitudes were computed in the sense variable minus comparison (V-C) where HD 174932 ($\mathrm{V}=+8.9$; B9) served as the comparison star while HD 343238 ($\mathrm{V}=+9.7$; A2) served as the check star. Extinction corrections were applied using atmospheric extinction coefficients determined from observations of the comparison star, and local standard times were converted into heliocentric Julian days (HJD). The data were reduced using software developed at Villanova University by G.P. McCook. The details of the reduction procedure have been described

Figure 1. A plot of the differential V-magnitudes obtained during primary eclipse of DI Her on 19 May 1994 UT.

Figure 2. The plots of the ($\mathrm{O}-\mathrm{C}$) values versus Julian Date for the photoelectric times of primary and secondary eclipses. The ($\mathrm{O}-\mathrm{C}$) s were computedfrom equations (1) and (2) and show no evidence of significant systematic variations expected to arise from a third body.

Figure 3. Plot of the displacement of the secondary minimum from a half period point of DI Her, in days, $\left(\mathrm{D}=\left(\mathrm{t}_{1}+t_{2}-0.5 P\right)\right)$, versus Julaian Date number.
elsewhere by Guinan et al. (1987). The differential V-magnitudes of the primary eclipse observed on 19 May 1994 UT are shown in Figure 1.

The times of minimum light were initially determined by a computerized version of the familiar "tracing-paper" method. The reduced data are plotted on the screen as observed and then plotted again with the time axis reversed. The second curve is then positioned so that the two curves appear superimposed and the time of minimum then appears at the same point on both curves. We then formally applied a second order (parabolic) and fourth order least squares fit on the data for the eclipses. The agreements between the times given by the computerized "tracing-paper" method and the least squares fits are very good. The best fits were obtained using the fourth order calculations. Because of the large number of data points (about 200 per night per filter) and good distribution through the minimum, we have obtained very precise determinations of the eclipse timings. The final times of minimum light were obtained by determining the time of minimum independently in the B and V filters, performing the fourth order least squares fit, and averaging the two results. We did not use the U band observations in these determinations because they were noisier than the B and V band data. Our three new times of minima and their corresponding (O-C) values determined using the ephemeris given by Reisenberger and Guinan (1989) are:

$$
\begin{array}{lllll}
\mathrm{T}(\min \mathrm{II}) & =\text { HJD } 2449151.8260 \pm 0.0005 & (\mathrm{O}-\mathrm{C}) & =+0.0015 & \text { day } \\
\mathrm{T}(\min \mathrm{I}) & =\text { HJD } 2449164.8082 \pm 0.0002 & (\mathrm{O}-\mathrm{C}) & =-0.0005 & \text { day } \\
\mathrm{T}(\min \mathrm{I}) & =\text { HJD } 2449491.8622 \pm 0.0002 & (\mathrm{O}-\mathrm{C}) & =-0.0017 & \text { day }
\end{array}
$$

It should be noted that the higher observational error indicated for the secondary minimum results, in part, because the lowest portion of the minimum was not covered. As a result of this, this timing should be given a somewhat lower weight.

These eclipse timings and those given by Khodykin and Volkov (1989), Caton and Burns (1993), and Lacy and Fox (1994) were combined with only the more accurate photoelectric timings that have been tabulated by Guinan and Maloney (1985) and Reisenberger and Guinan (1989). Linear least squares fits were made independently to the primary and secondary eclipse data and the following light elements were determined:

$$
\begin{align*}
& \mathrm{T}(\min \mathrm{I})=\text { HJD } 2442233.3480+10.55016766 \tag{1}\\
& \mathrm{~T}(\min \mathrm{II})=\text { HJD } 2442241.4600+10.55017413 \tag{2}
\end{align*}
$$

In Figure 2, we have plotted the ($\mathrm{O}-\mathrm{C}$) s found from these fits for both primary and secondary eclipses. This figure includes data from 1963 to 1994. As shown in these plots, there is no evidence of any systematic or periodic variations in the (O-C)s to a level of about ± 0.001 days that would suggest the light time effect from a putative third body. These data do not rule out the possibility of a companion, but certainly do not lend any support to this hypothesis. It should also be noted that there is no significant change (to within $\pm 0.01 \mathrm{mag}$) in the observed eclipse depth compared to previous photoelectric photometry. This indicates that the orbital inclination has been constant to within about $\pm 0.006^{\circ}$ and therefore there is no observed evidence for perturbations from a third body.

Following the procedure described by Guinan and Maloney (1985), an apsidal motion rate of $\dot{\omega}_{\text {obs }}=1.04^{\circ} / 100 \mathrm{yr} \pm 0.15^{\circ} / 100 \mathrm{yr}$ was determined from the change with time of the displacement of the secondary minimum from the half period point. Figure 3 shows the change in the displacement of the secondary minimum, $\mathrm{D}=\left(t_{1}+t_{2}-0.5 P\right)$ with time where t_{1} and t_{2} are the times of primary and secondary eclipse, respectively. The apsidal motion rate found here is essentially the same rate as found previously by Reisenberger and Guinan (1989) and in close agreement to the values given by Guinan and Maloney (1985) and Khodyin and Volkov (1989).

We plan to continue our study of DI Her and will attempt to obtain more photoelectric timings of primary and secondary eclipses during the next several years to further refine the observed rate of apsidal motion and to continue the search for evidence of a third body.

This work has been supported by NSF grants AST-861362 and AST-9315365 which we gratefully acknowledge.

Edward F. GUINAN James J. MARSHALL
Frank P. MALONEY
Department of Astronomy
and Astrophysics
Villanova University
Villanova, PA 19085
USA

References:

Caton, D.B. and Burns, W.C, 1993, I.B.V.S., No. 3900
Guinan, E.F., Najafi, S., Zamani-Noor, F., Boyd, P.T., and Carroll, S.M., 1987, I.B.V.S., No. 3070
Guinan, E.F. and Maloney, F.P., 1985, Astrophys. J., 90, 1519
Khaliullin, Kh.F., Khodykin, S.A., and Zakharov, A.I., 1991, Astrophys. J., 375, 314
Khodykin, S.A. and Volkov, I.M., 1989, I.B.V.S., No. 3293
Lacy, C.H.S and Fox, G.W., 1994, I.B.V.S., No. 4009
Reisenberger, M.P. and Guinan, E.F., 1989, Astron. J., 97, 216
Rudkjøbing, M., 1959, Ann. Astrophys., 22, 111

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4102

Konkoly Observatory
Budapest
14 October 1994
HU ISSN 0374-0676

A PHOTOMETRIC CAMPAIGN ON OW GEMINORUM

The eclipsing nature of the 8th magnitude variable star OW Gem (BD $+17^{\circ} 1281$, HDE 258878) was discovered by Kaiser (Kaiser et al., 1988), who also determined the period of 1258.6 days from a study of Harvard patrol plates (Kaiser, 1988). The remarkable primary eclipse is more than 1.5 magnitudes deep and two weeks in duration. Williams (1989) found the secondary eclipse, $00^{\mathrm{m}} 1$ deep, at phase 0.23 , indicating that the orbit is highly eccentric.

Griffin and Duquennoy (1993) published a first general investigation of the system, based on radial velocity measures over a full orbital cycle and matches of model light curves to the available eclipse photometry. They found that the system contains two luminous giants, the primary spectral type being F2 Ib-II and the secondary about G8 IIb. Component masses are close to $6 \mathrm{M}_{\odot}$ and $4 \mathrm{M}_{\odot}$.

The orbital eccentricity is 0.52 , in such an orientation ($\omega=140^{\circ}$) that the stars have twice the separation at secondary eclipse as at primary eclipse. As a result, the primary eclipse lasts 16 days, the secondary 30 days.

Eclipses and a double-lined spectrum make OW Gem a favorable subject for comprehensive investigation. Radial velocity observations are continuing, so better understanding of the system is now constrained by the available photometry-mostly visual and photographic estimates for the primary eclipse and sparse photoelectric observations in only one color for the secondary eclipse.

Since the 1988 primary and 1989 secondary minima, the eclipses have occurred near solar conjunction. During 1995, however, both eclipses will be favorably placed for observation, the primary eclipse occurring from February 4-20 and the secondary eclipse from November 17 - December 17.

Observations from widely spaced longitudes will help to fill in the eclipse light curves and avoid weather gaps during the northern hemisphere's winter months. We therefore invite suitably equipped observers to participate in an international photometric campaign on OW Gem during 1995, with the lead author serving as coordinator.

Participating observers should be able to achieve $0^{\text {m }} 01$ precision down to 9.9 in V and 10.6 in B during the primary eclipse. The secondary minimum, $8.3 \mathrm{~V}, 9.0 \mathrm{~B}$, is brighter, but the demand for precision remains high in order to define the shallow eclipse. Multiple passband observations are very desirable and infrared observations would show a deeper secondary eclipse than visible ones. Because observations from a variety of instruments and detectors must be combined, observers are asked to take particular care in determining color transformation coefficients and standardizing the observed differential magnitudes.

All observers should use the same comparison and check stars. The designated comparison star is SAO $95777\left(\mathrm{BD}+17^{\circ} 1280\right.$, HD 258848), 9.0 V , marked as star \#2 on the chart in IBVS No. 3196 (Kaiser et al. 1988). The check star is GSC 1332:0578, 9.9 V , star marked \#3 on the chart. These stars are similar in color to the variable and are located

Figure 1. Finding chart for OW Geminorum
within 3.5 arcminutes, which will assist observers using CCD detectors with limited fields. Figure 1 shows a finding chart for the system.

All interested observers are urged to register with the lead author. We intend to distribute a circular with final information prior to the first 1995 event and again following each of the two eclipses.

Dirk TERRELL
Department of Physics and Astronomy
University of Calgary
Calgary, Alberta T2N 1N4
E-Mail: terrell@algol.iras.ucalgary.ca

Daniel H. KAISER
Crescent Moon Observatory, 2631 Washington St., Columbus, IN 47201, USA
E-Mail: d.kaiser2@genie.geis.com
David B. WILLIAMS
9270-A Racquetball Way, Indianapolis, IN 46260, USA

References:
Griffin, R. F., and Duquennoy, A.: 1993, The Observatory, 113, 53
Kaiser, D. H.: 1988, Inf. Bull. Var. Stars, No. 3233
Kaiser, D. H., Williams, D. B., and Baldwin, M. E.: 1988, Inf. Bull. Var. Stars, No. 3196 Williams, D. B.: 1989, Journ. AAVSO, 18, 7

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4103

Konkoly Observatory
Budapest
17 October 1994
HU ISSN 0374-0676

PHOTOELECTRIC PHOTOMETRY OF OO Aql

OO Aquilae ($\mathrm{BD}+8^{\circ} 4224$, HD 187183 , SAO 125084) is a ninth-magnitude binary with a W Ursae Maioris-type light curve and relatively deep minima. Photoelectric light curves have been published by Binnendjik (1968) and Lafta and Grainger (1985). Binnendijk found over several seasons that the shape of the light curves varied with time. Demircan and Güdür (1981) have published B and V observations, and have also gathered a large number of times minimum light as a part of a period study. In addition, a number of other observers have published occasional times of minimum light.

A spectral type of G5 has been assigned to the system by Roman (1956), and K0 by Hill et al. (1975) based upon classification spectra.

Photoelectric UBV observations of the W UMa type eclipsing binary OO Aql were carried out in the years 1991, 1992 and 1993 at Ankara University Observatory. During a program of photoelectric observations of eclipsing binaries the system was observed in 1991 in two colours (B and V) and in 1992 and 1993 in three colours (U, B and V). The observations were made with a $30-\mathrm{cm}$ Maksutov telescope equipped with an SSP5-A photometer head which is used with an Hamamatsu R1414 photomultiplier tube. Before 29 September 1991 the observations were made by using an EMI 9789QB photomultiplier attached to the Maksutov telescope. The filters used are in close accordance with the standard UBV bands.

The same comparison star $\mathrm{BD}+8^{\circ} 4220$ was chosen as by Demircan and Güdür (1981), and Lafta and Grainger (1985) for nearness in position and brightness to OO Aql. All differential observations were reduced outside the atmosphere using the extinction coefficients calculated in the usual way, and heliocentric correction was made for all the observations. The phases were calculated with the new light elements as:

$$
\mathrm{T}_{0}=2448853.38634+0 \mathrm{~d} .50678848 \times \mathrm{E}
$$

The observations are shown in Figures 1, 2 and 3 for the years 1991, 1992 and 1993 respectively together with the $(\mathrm{B}-\mathrm{V})$ and $(\mathrm{U}-\mathrm{B})$ colour curves. 1991 observations in Figure 1 were made with both photomultipliers cited above.

Total of six primary and six secondary times of minima were calculated using Kwee and van Woerden's (1956) method and listed in Table 1 with their mean errors. The columns in Table 1 are minima type, heliocentric Julian Date, mean error (I) which found by Kwee and van Woerden's (1956) method and filters used respectively. The last two columns are the averaged minima times (mean) and mean errors (II) calculated using the function given as follows:

$$
\begin{gathered}
t_{\text {min(mean })}=\frac{\sum_{i}\left(t_{i} / \sigma_{i}^{2}\right)}{\sum_{i}\left(1 / \sigma_{i}^{2}\right)} \\
\text { and } \sigma_{\text {mean }}^{2}=\frac{1}{\sum_{i}\left(1 / \sigma_{i}^{2}\right)}(\text { Mean err. II })
\end{gathered}
$$

Figure 1

Figure 2

Figure 3

Table I

Min. Type	HJD min. +2400000	Mean err. (I)	Filters	HJD min. (mean)	Mean err. (II)
I	48475.3217	± 0.00093	B	48475.3217	± 0.00093
I	48477.34759	± 0.00047	V	48477.34765	± 0.00042
I	48477.34794	± 0.00101	B		
II	48530.30831	± 0.00036	B	48530.30876	± 0.00030
II	48530.30987	± 0.00056	V		
II	48531.32242	± 0.00029	B	48531.32242	± 0.00029
II	48532.3357	± 0.00036	V	48532.33591	± 0.00022
II	48532.33604	± 0.00028	B		
II	48838.43569	± 0.00046	U	48838.43601	± 0.00017
II	48838.436	± 0.00019	B		
II	48838.43679	± 0.00068	V		
I	48853.3862	± 0.00029	U	48853.38634	± 0.00014
I	48853.38632	± 0.00019	B		
I	48853.38651	± 0.00028	V		
I	48854.39871	± 0.00041	U	48854.39936	± 0.00016
I	48854.39935	± 0.00026	B		
I	48854.39957	± 0.00023	V		
II	49179.5057	± 0.00026	B	49179.50586	± 0.00021
II	49179.50602	± 0.00039	V		
II	49179.50681	± 0.00088	U		
I	49186.34666	± 0.00063	U	49186.34731	± 0.00017
I	49186.3471	± 0.00028	V		
I	49186.34752	± 0.00022	B		
I	49193.44171	± 0.00033	V	49193.44196	± 0.00019
I	49193.4419	± 0.00031	U		
I	49193.44227	± 0.00033	B		
II	49238.29217	± 0.00025	U	49238.29249	± 0.00016
II	49248.29257	± 0.00025	V		
II	49238.29301	± 0.00038	B		

Birol GÜROL
Ankara University Observatory
06100 Tandoğan-Ankara
Türkiye

References:

Binnendijk, L., 1968, A.J., 73, 32
Demircan, O., Güdür, N., 1981, in Photometric and Spectroscopic Binary Systems, ed. E. B. Carling and Z. Kopal, D. Reidel Publ., p. 413

Hill, G., Hilditch, R. W., Younger, F., and Fischer, W. A., 1975, Mem. RAS, 79, 131
Kwee, K. K., van Woerden, H., 1956, Bull Astron. Neth., 12, 327
Lafta, S. J., Grainger, J. F., 1985, Ap. Space Sci., 114, 23
Roman, N. G., 1956, Ap. J., 123, 247

Konkoly Observatory
Budapest
18 October 1994
HU ISSN 0374-0676

NEW PHOTOELECTRIC LIGHT CURVES OF BL ERIDANI

Photoelectric observations of BL Eri ($=\mathrm{BD}-12^{\circ} 0818$) were carried out in December 1991 with the 1-m telescope at Yunnan Observatory in China. Differential measurements made on two nights in B and V resulted in 254 individual observations in each bandpass. The two stars $\mathrm{BD}-12^{\circ} 0814$ and $\mathrm{BD}-12^{\circ} 0821$ were chosen as the comparison star and the check star, respectively. The observational accuracy throughout the observing period as derived from the magnitude differences between the two comparison stars is $\pm 0^{\mathrm{m}} 012$ (V) and ± 0 m 016 (B).

The times of minimum light for BL Eri shown in Table I were determined by a least squares analysis. The $\mathrm{O}-\mathrm{C}$ values in Table I were computed from the following ephemeris:

Min.I (Hel. J.D.) $=2444606.5884+0$ d $41691591 \times \mathrm{E}$

$$
\pm 3 \quad \pm 12 \text { (p.e.) }
$$

which was derived by a least squares analysis utilizing all the photoelectric times of minimum light.

Figure 1. Light curves of BL Eri in V. The open circles show the present observations and the filled circles indicate Yamasaki et al.'s observations in 1982 and 1986.

Figure 2. As Figure 1, but in B.
Table I. Times of minimum light for BL Eri

Hel. J.D.	Min.	Epoch	O-C
2448602.1026	II	9583.5	0.0006
2448603.1452	I	9586	0.0009

The light variations of BL Eri relative to $\mathrm{BD}-12^{\circ} 0814$, magnitudes differences in the sense variable - comparison, are shown in Figure $1(\Delta V)$ and Figure $2(\Delta B)$ as open circles (the present observations) and filled circles (Yamasaki et al.'s observations in 1982 and 1986 (Yamasaki et al., 1988). The light curves indicate that significant stellar activity probably occurs in this binary.

LIU QUINGYAO
GU SHENGHONG
YANG YULAN
WANG BI
Yunnan Observatory
Chinese Academy of Sciences
Kunming
P. R. of China

Reference:
Yamasaki, A., Jugaku, J. and Seki, M., 1988, Astron. J., 95, 894

ECLIPSING BINARY V530 Cyg=S 4539, FORMER Ins(a)-TYPE VARIABLE

The eclipsing binary V530 Cyg=S 4539 was discovered in the course of Sonneberg survey program (Ahnert et al., 1949). The following light elements were determined:

$$
\text { Min }=2429112.56+50 \mathrm{~d} 8611 \times \mathrm{E}
$$

Ahnert et al. (1949) determined the initial epoch and the period close to reality, but later on these elements were disregarded. Kukarkin et al. (1958) included V530 Cyg in the Second Edition of the General Catalog of Variable Stars (GCVS) as an RW Aur type variable. In the Third and Fourth Editions of the Star was marked as an Ins(a)-type variable of B5: spectral type. Kholopov (1959) supposed V530 Cyg to be a member of the Cyg T2 association. Filipiev (1980) did not find any light variability of the star. Pugach (1988) observed three minima of V530 Cyg and proposed a new formal period of $\mathrm{P}=35.519958$. Though, those moments of minima are well described with the above-mentioned ephemeris. Moreover, Pugach (1988) noted the presence of a shallow H absorption line profile.

In 1990 V530 Cyg was included in Mt. Maidanak ROTOR observational program (Shevchenko, 1989) to investigate its variability.

Our observations of V530 Cyg were made using the $0.5-\mathrm{m}$ reflector equipped with UBVR pulse counting photometer. 300 UBVR magnitudes were obtaine during 4 observational seasons.

We have recorded 9 times of the primary minimum and calculated the improved elements using all data of other authors:

$$
\begin{array}{r}
\text { MinI=JD.Hel. } 2448072.594+50 \mathrm{~d} 83141 \times \mathrm{E} \\
\pm 0.005 \pm 0.00005
\end{array}
$$

Julian Dates of the minima with phases and UBVR-data are listed in Table I. The folded V-curve and its primary minimum are shown in detail in Figures 1 and 2, respectively.

We have not enough data in the minimum to make an orbital solution. Nevertheless, we made a preliminary analysis of the light curve.

We suppose the following:

1. There is a partial eclipse at the minimum.
2. The secondary (fainter) star is passing in front of the small B5 primary in the primary minimum (see Figure 2.).

Table I

JD.Hel $2400000+$	Phase	V	$\mathrm{U}-\mathrm{B}$	$\mathrm{B}-\mathrm{V}$	$\mathrm{V}-\mathrm{R}$
8072.3946	.996	12.33	0.05	0.63	0.68
8123.3514	.997	12.41		0.63	0.63
8174.1931	.999	12.38		0.66	0.63
8428.4361	.000	12.40		0.65	0.61
8479.3323	.001	12.42	0.04	0.65	0.66
8835.3494	.004	12.36	0.01	0.65	0.59
8886.1710	.004	12.34	-0.02	0.65	0.61
9190.3641	0.989	12.10	0.04	0.61	0.62
9191.3547	0.008	12.18	0.00	0.64	0.63
9241.2487	0.990	12.15	0.03	0.62	0.62
mean light		11.82	-0.01	0.62	0.61
in maximum					

Figure 1. The V curve of V530 Cyg.

Figure 2. The minimum of V530 Cyg.

Taking into account the B5 spectral type of V530 Cyg we consider the total mass of the binary system not to be less than $8 \mathrm{M}_{\odot}$.

Then $\mathrm{R}_{1}>5 \mathrm{R}_{\odot}, \mathrm{R}_{2}>8 \mathrm{R}_{\odot}, \mathrm{M}_{\mathrm{v}}<-1.5, \mathrm{~A}_{\mathrm{v}} \approx 2.4, \mathrm{M}-\mathrm{m}>10.9, \mathrm{r}>1.5 \mathrm{kpc}$.
It takes about two more observational seasons to obtain the primary minimum in detail. Authors thank the C\&EE ESO committee and ISF Foundation for financial support of ROTOR program.
S. Yu. MELNIKOV
V.S. SHEVCHENKO
K. N. GRANKIN

Astronomical Institute of Ac. Sci.
Uzbekistan, Astronomical st. 33,
Tashkent 700052, Uzbekistan

References:
Ahnert, P., Hoffmeister, C., Rohlfs, E., van de Voorde, 1949, VSS, 1, No. 3, 309
Filipiev, G. K., 1980, Astron. Tsirk., No. 1089, 7
Kholopov, P. N., 1959, Sov. Astr.-A. Zhu., 36, 295
Kukarkin, B. V. et al., 1958, General Catalog of Variable Stars (GCVS) II, Moscow, Nauka
Pugach, A. F., 1988, IBVS, No. 3182
Shevchenko, V. S., 1989, Herbig Ae/Be stars, Tashkent, Fan.

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4106

Konkoly Observatory
Budapest
28 October 1994
HU ISSN 0374-0676

IS PRAESEPE KW284 ACTUALLY A DELTA SCUTI STAR?

The δ Scuti stars are nearly a hundred radial and non-radial pulsators located, close to the Main Sequence, at the Cepheid instability strip (Rodríguez et al., 1994), being objects of extreme interest for asteroseismic investigations (Brown and Gilliland 1994).

These variables show short periods (typically shorter than 5 hours and longer than half an hour) and luminosity amplitudes ranging from several tenths of a magnitude to a lowest level which is continuously decreasing from one day to another (frequency peaks with amplitudes of the order of 0.4 mmag have been found in recent campaigns).

In the last few years, extremely good observational results have been obtained on δ Scuti stars, especially on their multi-periodic character, which seems to be more the rule than the exception (Breger, 1994). On the other hand, pure theoretical work is also currently undertaken on the subject (see e.g. Dziembowski, 1994).

A connection between high quality frequency spectra, which are being obtained, and theoretical work, carried out in order to interpret them, is being produced (Goupil et al. 1993, Pérez Hernández et al. 1994).

On the fourth photometry campaign of the STEPHI network, the δ Scuti-like stars BN Cnc (HD73576) and BUC nc (HD73576) were simultaneously monitored during a three-week, three-continental run, in February 1992 (Belmonte et al., 1994). Both stars are members of the Praesepe cluster. The "constant" star HD 73712 (KW284) was chosen as comparison star since, at that moment, no variability about it had been reported.

However, we were really surprised when we realized that KW284 had been discovered as a possible Delta Scuti star by Rolland et al (1991), with observations performed in February 1991, a year before our campaign.

Rolland et al. (1991) obtained observations over two distant nights (five hours on JD 2448303 and five hours on JD 2448311). The resolution in frequency associated to such a window is very close to the one obtained for one single night of 5 hours ($50 \mu \mathrm{~Hz}$). We thus have considered that the error bar on the frequency determined by Rolland et al. was of order $\pm 20 \mu \mathrm{~Hz}$.

We have looked for this $80 \pm 20 \mu \mathrm{~Hz}$ oscillation frequency in our data. In principle, we noticed that some frequency peaks, that we had identified as possible noise signals in previous analyses, were found at the correct frequency and with significant amplitudes (Figure 1).

On the other hand, during the STEPHI IV analysis, we had produced and analysed three different differential light-curves: BU Cnc/HD 73712, BN Cnc/HD 73712 and BU Cnc/BN Cnc. The comparison of these three light curves was used to ascertain which oscillation frequency corresponds to which star.

Figure 1: Frequency spectra of the time series BN/Comp. and BU/Comp., for February 9, 1992, at Observatorio del Teide. A common peak, at $70 \pm 30 \mu \mathrm{~Hz}$, was initially believed to be caused by noise. However, we now consider that it could be related to an oscillation frequency of the "constant" comparison star KW284.

Besides the results produced in Belmonte et al. (1994), the presence of a peak at $69.5 \pm 0.5 \mu \mathrm{~Hz}$ was noticed in the two light-curves, involving the comparison star HD73712 and not in the third light curve. The detection confidence level was around 20% and, in the absence of further information, this peak was attributed to noise in the comparison lightcurve. However, the discovery of a $80 \pm 20 \mu \mathrm{~Hz}$ oscillation frequency in this star obliged to revise this detection.

We will not go into the details of the statistical test used in the analysis of the STEPHI campaigns. This test is derived from the Fisher's test (Fisher 1929, Koen 1990, Michel 1992). The point is that the confidence level attributed, according to this test, depends on the width of the frequency range in which one expects to detect oscillation frequencies. For a given peak, this dependence goes like the power of the frequency range ratio: CL1= $C L 2^{(F R 1 / F R 2)}$, where $C L 1$ is the confidence level associated with the frequency range $F R 1$, and $C L 2$, with the frequency range $F R 2$. This simply reflects the fact that the probability to find, in a Fourier spectrum, a noise peak higher than a given amplitude increases with the number of events considered, i.e. with the number of independent frequency samples investigated.

In the STEPHI IV analysis, we were looking for oscillation frequency in the complete range of oscillation frequencies expected for Delta Scuti stars: $\sim 46 \mu \mathrm{~Hz}$ to $\sim 1500 \mu \mathrm{~Hz}$, corresponding to periods from 6 hours to 10 minutes. However, if we now consider the detection, by Rolland et al. (1991), of an oscillation frequency in the range $[60 \mu \mathrm{~Hz}$, $100 \mu \mathrm{~Hz}]$ as completely secure (confidence level 100%), and if we investigate this restricted frequency range in the STEPHI data, the confidence level of the peak we see at $69.5 \mu \mathrm{~Hz}$ becomes: $0.2^{(40 / 1450)} \geq 95 \%$.

We thus conclude that the oscillation frequency detected by Rolland et al. is very probably the $69.5 \pm 0.5 \mu \mathrm{~Hz}$ detected in the STEPHI IV data. The difference in amplitude between the two analyses ($\sim 4 \mathrm{mmag}$ for Rolland et al. and 1.7 mmag and 3.0 mmag , for the two light curves considered in the STEPHI analysis) is not related to an amplitude change of the mode, but rather it can perfectly be attributed to the noise, which we found to be rather high at low frequency. Consequently, KW284 is probably a long period Delta Scuti star, located in the upper part of the Main Sequence -almost evolving to subgiantwhere it is crossed by the instability strip.

Further data will be needed to establish its frequency spectrum with high accuracy. Hopefully, further campaigns of STEPHI or the Delta Scuti Network will provide such high quality data in the future.

> J.A. BELMONTE ${ }^{1}$,
> E. MICHEL ${ }^{2}$,
> M. ALVAREZ ${ }^{3}$ and
> JIANG. S. 4
(1): Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain
(2): Observatoire de Meudon, DASGAL, URA 335, F-92195 Meudon, France
(3): Instituto de Astronomía de la UNAM, Ap.P. 877, Ensenada, BC, Mexico
(4): Beijing Observatory, Chinese Academy of Sciences, Beijing, China

References:
Belmonte J.A., Michel E., Alvarez M., Jiang S.Y. et al., 1994, AधA., 283, 121
Breger M., 1994, In: GONG workshop Helio- and Astero-seismology from the Earth and Space. R. Ulrich (ed.) ASP Conf. Ser. in press
Brown T.M. and Gilliland R.L., 1994, $A R A A$, in press
Dziembowski W., 1994, In: GONG workshop Helio- and Astero-seismology from the Earth and Space. R. Ulrich (ed.) ASP Conf. Ser. in press
Fisher C., 1929, Proc. Roy. Soc. London A, 125, 54
Goupil M.J., Michel E., Lebreton Y., Baglin A., 1993, A\&A, 268, 546
Koen C., 1990, ApJ, 348, 700
Michel E., 1992, Ph.D. Thesis. Université Paris VII
Pérez Hernández F., Claret A., Belmonte J.A., 1994, A $\because A$, in press
Rodríguez E., López de Coca P., Rolland A., Garrido R., Costa V., 1994, A $\mathcal{A} A$, in press
Rolland A., García Pelayo J.M., López de Coca P., Rodríguez E., Costa V., 1991, DSN, 4, 8

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4107

Konkoly Observatory
Budapest
31 October 1994

HU ISSN 0374-0676

WATER MASERS IN L1251

We report the results of a water maser search carried out with the Effelsberg-100m telescope on 1993 Oct. 3 in the direction of 11 IRAS sources in the L1251 (Lynds, 1962) dark cloud. A 2.0Jy emission was detected in the direction of IRAS $22343+7501$.

We observed the $6_{16} \rightarrow 5_{23}(22.23508 \mathrm{GHz})$ transition of $\mathrm{H}_{2} \mathrm{O}$ with a beamwidth of 40 arc sec on 1993 Oct. 3 from UTC=12:00 to UTC=19:00. A liquid He cooled maser receiver was used with system temperature in the zenith of about 90 K . We used the standard 1024 channel autocorrelator with bandwidths of 12.5 MHz and 6.25 MHz . This corresponds to 0.16 and $0.08 \mathrm{~km} / \mathrm{s}$ resolution and 165 and $82 \mathrm{~km} / \mathrm{s}$ velocity coverage respectively. We observed in the position switching mode with 3 minutes integration time on both the OFF and ON positions. NGC 7027 was used for flux calibration (see Baars et al. 1977).

The positions of the far infrared (FIR) sources in Kun \& Prusti (1993) (K\&P) with serial numbers: $1,3,4,5,7,8,13,14,15,16,17$ were observed.
$\mathrm{H}_{2} \mathrm{O}$ maser emission was detected towards IRAS $22343+7501$ ($\# 8$ of $\mathrm{K} \& \mathrm{P}$). The spectrum (obtained with 6.25 MHZ bandwidth, 25 min . integration time, RMS noise 0.12 Jy .) is shown in Figure 1.

There is a clear detection of a line at a velocity of $2.6 \mathrm{~km} / \mathrm{s}$ which is redshifted by about $7 \mathrm{~km} / \mathrm{s}$ relative to the rest velocity of the cloud $\left(v_{\mathrm{LSR}} \approx-4 \mathrm{~km} / \mathrm{s}\right.$, see e.g. Sato and Fukui, 1989), and there is no indication for other lines (i.e. $S>3 \sigma$ peaks) in the velocity range $[-40 \mathrm{~km} / \mathrm{s},+40 \mathrm{~km} / \mathrm{s}]$. The detected line has one gaussian component with a FWHM of $0.46 \pm 0.02 \mathrm{~km} / \mathrm{s}(\delta v=0.45 \mathrm{~km} / \mathrm{s}$ after correction for instrumental broadening), a peak flux of 2.0 Jy (rms=0.11 Jy), and line area of $0.97 \pm 0.04 \mathrm{Jy} \mathrm{km} / \mathrm{s}$. The corresponding luminosity (assumed to be isotropic) at a distance of 350 pc (Balázs, 1994) is $L_{\mathrm{H}_{2} \mathrm{O}}=2.7 \times 10^{-9} L_{\odot}$.

The FIR colour indices of IRAS $22343+7501$ are $\log \left(F_{25} / F_{12}\right)=0.72 ; \log \left(F_{60} / F_{25}\right)=0.40$ and $\log \left(F_{100} / F_{60}\right)=0.08$ similar to other maser sources found in Cepheus by Wouterloot and Walmsley (1986) (W\&W). Its total FIR flux is $F_{\text {IRAS }}=\int S_{\nu} d \nu=2.55 \times 10^{-12} \mathrm{Wm}^{-2}$ which corresponds to $\approx 22.5 L_{\odot}$ FIR luminosity at a distance of 350 pc , assuming isotropic FIR radiation.

Near-infrared and mm continuum observations of IRAS $22343+7501$ by Rosvick \& Davidge (1994) indicate that the source is possibly just past the protostellar phase. There is an optical jet (Balázs et al., 1992) and a CO outflow (Sato \& Fukui, 1989) associated with this source. The $\mathrm{H}_{2} \mathrm{O}$ maser emission in the direction of this source has also been detected by Wilking et al. (1994) and found by them to be variable in time.

The maser emission may originate in the shocked clumps near the driving source of the jet. Interferometric observations of this source with the aim of determining a precise position would help further interpretation.

Figure 1. The $\mathrm{H}_{2} \mathrm{O} 6_{16} \rightarrow 5_{23}$ spectrum of IRAS $22343+7501$, (measured on 1993 Oct. 3 in the time interval $\mathrm{UTC}=16: 15-\mathrm{UTC}=18: 05)$.

Viktor L. TÓTH
Loránd Eötvös University, Budapest, Ludovika tér 2., H-1083, Hungary

Charles M. WALMSLEY
Max-Planck-Institute für
Radioastronomie, Auf dem Hügel, 53000 Bonn 1, Germany

References:
Baars, J. W. M., Genzel R., Pauliny-Toth I. I. K., Witzel, A., 1977, A\&A 61, 99
Balázs, L. G., Eislöffel, J., Holl, A., Kelemen, J., Kun, M., 1992, A\&A, 255, 281
Balázs, L.G., 1994, personal communication
Kun, M. \& Prusti, T., 1993, A\&A, 272, 235
Lynds, B.T., 1962, ApJS, 7, 1
Rosvick, J.M. \& Davidge, T.J., 1994, The JCMT Newsletter No. 3, August 1994, p. 38.
Sato, F. \& Fukui, Y., 1989, ApJ, 343, 773
Wilking, B., Claussen, M. J., Benson, P. J., Myers, P. C., Terebey, S. and Wootten, A., 1994, ApJ, 431, L119
Wouterloot, J.G.A. \& Walmsley, C.M., 1986, A\&A, 168, 237

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4108

Konkoly Observatory
Budapest
1 November 1994
HU ISSN 0374-0676

TIMES OF MINIMUM LIGHT FOR FOUR ECLIPSES OF FOUR BINARY SYSTEMS

We report on a continuing program to observe systems suggested by Hegedüs (1988) that show apsidal motion, or that are likely candidates to show apsidal motion, but have not been observed extensively enough to confirm such motion.

The observations were made with the 0.61 m B\&C reflector and Photometrics PM512 CCD at the Whitin Observatory. The UBVRI filter set used was described by Bessell (1990). The data were acquired via a Macintosh IIci running IPLab. Data were taken in only one filter for a given eclipse, in order to minimize the time between points. This technique, along with the greater sensitivity of CCD's over PMT's, and the use of comparison stars in the same field as the variable, allows much fainter systems to be observed or much faster sampling on brighter systems.

The data were bias, dark, and flat corrected using standard scripts in IRAF. The data were then shifted to a common coordinate reference frame and photometered using custom scripts in IRAF developed by the authors (Downey and Hawkins, 1994). V/C intensity ratio and photometric errors were then calculated with the SC spreadsheet.

Once V/C intensity ratios had been calculated, the times of minimum light and standard errors in Table 1 were calculated via the method of Kwee and van Woerden (1956), using a program written by Ghedini (1982). This algorithm has been shown to give the most accurate estimation of conjunction for asymmetric or distorted light curves (Caton 1989). The comparisons used are listed by their coordinates from version 1.1 of the GSC CD-ROM (Epoch J2000). All comparisons were compared to two check stars, and found to be stable within the photometric errors over the time scale of the observations. Since the data were only intended for timing analysis, they were not transformed to Johnson standard magnitudes.

Table 1

System	Type of Eclipse	$\begin{gathered} \text { HJD } \\ (-2400000) \end{gathered}$	Standard Error	Comparison Coordinates	Filter
AP Tau	Secondary	48687.5562	0.0002	$04^{\mathrm{h}} 54^{\mathrm{m}} 36^{\mathrm{s}}+26^{\circ} 54^{\prime} 07^{\prime \prime}$	1
XX Cas	Primary	49308.5557	0.0001	$012949+605800$	R
XZ And	Primary	49313.5336	0.0001	$015653+420839$	I
V 456 Cyg	Secondary	49589.6918	0.0002	$20 \quad 28 \quad 35+391443$	R

Figure 1
Figure 1 is a light curve of XZ And near the time of minimum light, showing the low scatter and large number of points attainable with a CCD system.

We would like to thank Priscilla Benson, Kristin Laudadio, Molli Moss, Catherine Sinnott, and Sarah Weisman for their kind assistance in the observations of XX Cas and XZ And. This research was supported in part by a grant from the W.M. Keck Foundation to the Keck Northeast Astronomy Consortium.

R. Lee HAWKINS
Department of Astronomy
Whitin Observatory
Wellesley College
Wellesley, MA 02181
USA

Kyle F. DOWNEY
Department of Astronomy
Thompson Physics \& Astronomy Lab
Williams College
Williamstown, MA 01267
USA

References:
Caton, D.B., 1989, Bull. A.A.S., 21, 714
Bessell, M.S., 1990, P.A.S.P, 102, 1181
Downey, K.F. and Hawkins, R.L., 1994, in preparation
Ghedini, S., 1982, Software for Photometric Astronomy, Willman-Bell, Richmond, VA, p. 46
Hegedüs, T., 1988, Bull. Inform. CDS, 35, 15
Kwee, K. and van Woerden, H., 1956, B.A.N., 12, 327

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4109

Konkoly Observatory
Budapest
3 November 1994
HU ISSN 0374-0676

PHOTOELECTRIC PHOTOMETRY OF THE SHORT-PERIOD ECLIPSING BINARY HW VIRGINIS

During a UBV survey of UV-bright objects HW Vir (BD-07³477) was discovered to be an eclipsing binary ($\mathrm{P}_{\text {orb }} \sim 0.1167$ days) by Menzies and Marang (1986). As a part of this survey Berger and Fringant (1980) obtained spectroscopy of HW Vir and classified it as an sdB star. Menzies (1986) obtained UBVRI light curves of this system and then Menzies and Marang (1986) analysed these light curves by WD-code. They also measured the radial velocity of the primary star and calculated the absolute dimensions of the components. Wood et al. (1993) also made UBVR photometry of the system and analysed the light curves using WD-code. In the recent annual report of SAAO Marang and Kilkenny (1994) announced that HW Vir shows a definite period decrease.

We included HW Vir in our observing program in 1992 and observed the system on one night in 1992, one night in 1993 and seven nights in 1994. Differential observations with respect to the comparison star $\mathrm{BD}-08^{\circ} 3411$ were obtained with the 30 cm Maksutov telescope of Ankara University Observatory. We used an OPTEC SSP-5A photometer head which contains a side on R-1414 Hamamatsu photomultiplier. We used BD-07³467 as a check star and the magnitude differences between the check star and comparison star were constant within probable errors of $\pm 0.022, \pm 0.013$ and ± 0.016 in U, B and V bands respectively. The light curves formed by these differential observations (in the sense variable minus comparison) are shown in Figure 1 for different filters with their respective $B-V$ color curve (U observations are shifted vertically by +0.5 mag). Differential atmospheric extinction and heliocentric corrections were made. The phases of the light curves were calculated with the light elements

$$
\operatorname{HJD}(\operatorname{Min} \mathrm{I})=2448294.886472+0.11671953 \times \mathrm{E}
$$

We derived ten mean times of minima from the new observations (six primary, four secondary) by using the well-known method of Kwee-Van Woerden (1956). The new estimates in different filters and their mean values are listed in Table I. Mean times of minima and their mean errors were generated with the formula

$$
\begin{aligned}
& t_{\text {min }(\text { mean })}=\frac{\sum_{i}\left(t_{i} / \sigma_{i}^{2}\right)}{\sum_{i}\left(1 / \sigma_{i}^{2}\right)} \\
& \text { and } \sigma_{\text {mean }}^{2}=\frac{1}{\sum_{i}\left(1 / \sigma_{i}^{2}\right)}
\end{aligned}
$$

Light curves in all filters exhibit a large reflection effect as mentioned before by several authors. In all wavelength bands, there is a shoulder of extra light in 0.06-0.12 phase interval which may be interpreted as a mass transfer effect.

Figure 1

Figure 2

Table 1

$\begin{aligned} & \hline \text { Min. } \\ & \text { Type } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { HJD min } \\ & +2400000 \\ & \hline \end{aligned}$	Mean err.	Filter	$\begin{gathered} \text { HJD Min(mean) } \\ +2400000 \\ \hline \end{gathered}$	Std err.	Obs
I	48776.3548	± 0.00046	V	48776.3552	± 0.00013	SS
I	48776.3550	± 0.00021	B			
I	48776.3553	± 0.00018	U			
II	49149.3318	± 0.00021	U	49149.3323	± 0.00011	ZM
II	49149.3323	± 0.00026	B			
II	49149.3325	± 0.00015	V			
II	49393.5095	± 0.00032	B	49393.5095	± 0.00032	BA
I	49393.5671	± 0.00017	V	49393.5672	± 0.00005	BA
I	49393.5672	± 0.00006	B			
II	49400.5114	± 0.00050	B	49400.5121	± 0.00013	SÖ
II	49400.5119	± 0.00017	V			
II	49400.5125	± 0.00023	U			
I	49400.5704	± 0.00007	U	49400.5705	± 0.00005	SÖ
I	49400.5705	± 0.00008	B			
I	49400.5708	± 0.00021	V			
II	49427.4739	± 0.00010	B	49427.4742	± 0.00009	$B G$
II	49427.4750	± 0.00017	V			
I	49427.5327	± 0.00010	V	49427.5327	± 0.00005	BG
I	49427.5327	± 0.00005	B			
I	49511.3372	± 0.00016	V	49511.3373	± 0.00008	BG
I	49511.3373	± 0.00009	B			
I	49518.3407	± 0.00008	B	49518.3407	± 0.00008	BG

Observers: SS: S. Selam, ZM: Z. Müyesseroğlu, BA: B. Albayrak, SÖ: S. Özdemir, BG: B. Gürol.

We collected all available times of minima from the literature and constructed the O-C diagram which is shown in Figure 2. The E epochs were calculated with the light elements given by Menzies and Marang (1986) as,

$$
\text { HJD }(\text { Min I })=2445730.556074+0 \text { d } 1167196311 \times \mathrm{E}
$$

Both primary and secondary times of minima follow the same trend of $\mathrm{O}-\mathrm{C}$ variation which indicates zero eccentricity for the binary orbit. The $\mathrm{O}-\mathrm{C}$ diagram shows a clear rapid period decrease which can be interpreted as active mass change between component stars. But, Wlodarczyk (1994) pointed out from his analysis of their own light curves, both components are well located inside its Roche lobe, and he suggests that period
changes most likely are resulting from are extended common envelope, remaining after the giant phase. Only the future accurate observations will help to settle the true nature of this period variation.

We give our special thanks to the observers and to Z. Müyesseroğlu for making his observing computer code available to us.

Birol GÜROL
Selim SELAN
Ankara University Observatory
Science Faculty, 06100, Tandoğan
Ankara, Turkey

References:

Berger, J., Fringant, A. M., 1980, A\&A, 85, 367
Kilkenny, D., Harrop-Allin, M., Marang, F., 1991, IBVS, No. 3569
Kwee, K. K., van Woerden, H., 1956, BAN, 12, 327
Marang, F., Kilkenny, D., 1994, Ann. Rep. SAAO, 1993, p. 21
Marang, F., Kilkenny, D., 1989, IBVS, No. 3390
Menzies, J. W., 1986, Ann. Rep. SAAO, 1985, p. 20
Menzies, J. W., Marang, F., 1986, Eds: J. B. Hearnshaw, P. L. Cottrell, "Instrumentation and Research Programmes for Small Telescopes", p. 305
Wlodarczyk, K., 1994, private communication
Wood, J. H., Zhang, E. H., Robinson, E. L., 1993, MNRAS, 261, 103

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4110

Konkoly Observatory
Budapest
4 November 1994
HU ISSN 0374-0676

THE SPOTTED YOUNG SUN - HD 129333 (= EK Dra)

HD 129333 (= EK Dra) is a young, single, solar-type star with a rotational period of approximately 2.7 . Its $\mathrm{U}, \mathrm{V}, \mathrm{W}$ space velocity components $(+3,-29,-17)(\mathrm{km} / \mathrm{s})$ are very close to those of the Pleiades cluster $(+9,-27-12)$, making it a probable member of the Pleiades moving group of young stars with an age of $\approx 70 \mathrm{Myr}$ (Soderblom \& Clements, 1987). This star is part of a program being carried out at Villanova University called The Sun in Time. The program involves multiwavelength observations of single G0-G5 V stars with ages ranging from $\approx 70 \mathrm{Myr}$ to $\approx 9 \mathrm{Gyr}$. These stars are suitable proxies for the sun at several stages of its life history from the zero age main sequence (ZAMS) to the very late (terminal) main-sequence (TAMS) phase (Dorren \& Guinan, 1994a).

HD $129333\left(\mathrm{dG} 0, \mathrm{~B}-\mathrm{V}=+0.61, \mathrm{~T}_{\text {eff }}=5930 \mathrm{~K}\right.$, age $\left.\approx 70 \mathrm{Myr}\right)$ provides a look at the sun shortly after it arrived on the main-sequence (Dorren \& Guinan, 1994b). It has a very active chromosphere and transition region, which are consistent with its youth and rapid rotation. Furthermore, in 1991, HD 129333 was detected as an X-ray source during ROSAT pointed observations, with an X-ray luminosity of $\mathrm{L}_{x}(0.2-2.4 \mathrm{keV}) \sim 9 \times 10^{29} \mathrm{erg} / \mathrm{s}$, or about 300 times stronger than the Sun (Dorren \& Guinan, 1992). The X-ray emission probably originates from the stellar corona, while the UV emission features are associated with the chromosphere-corona transition region of the star (Dorren \& Guinan, 1994b). The best fit to the X-ray energy distribution indicates a two-temperature component corona with $\mathrm{T}_{1}=1.3 \times 10^{6} \mathrm{~K}$ and $\mathrm{T}_{2}=9.6 \times 10^{6} \mathrm{~K}$ (Dorren, Güdel \& Guinan 1994).

In 1983 this star was discovered to have low amplitude ($\operatorname{Amp}(\mathrm{V}) \approx 0.05)$ light variations with a period of ~ 2.7 (Dorren \& Guinan, 1994 b). These periodic 2.7 variations increase in amplitude with a decrease in wavelength and are assumed to be rotational modulation due to the presence of cool starspots. In that case, the photometric period (~ 2.7) represents the stellar rotational period. HD 129333 now has a variable star designation of EK Draconis (Kazarovets, Samus \& Goranskij, 1993).

Photoelectric photometry was obtained from 1990/91 to the present for HD 129333 in UBV, ubvy and $\mathrm{H} \alpha$ wide and narrow bandpasses with Automatic Photoelectric Telescopes (APTs) located at Mt.Hopkins, Arizona. The data presented in this report has come from the Four College Consortium (FCC) 0.8 m APT. The photoelectric observations were carried out relative to the nearby comparison star HD 129390 ($\mathrm{V}=+7.5 ; \mathrm{B}-\mathrm{V}=$ +0.4 ; F2) and check star HD 127821 ($\mathrm{V}=+6.09$; $\mathrm{B}-\mathrm{V}=+0.41$; F4IV) and followed the usual pattern of sky-comparison-check-variable-comparison-sky, with each measure lasting 10 seconds. The effects of differential atmospheric extinction were removed using extinction coefficients determined from the observation of standard stars. Normal points were computed for the observations of each night. Typically, each normal consists of 4-5 individual 10 sec measurements.

Figure 1: Photometric variations of HD 129333 versus phase. Each filter was fit with a model (solid lines on figure) using Binary Maker 2.0.

Table 1. Spot Parameters for HD 129333

> Assumed Quantities
> Inclination $i=60^{\circ}$
> $\mathrm{P}_{\text {rotation }}=2.74 \mathrm{~d}$
> $\mathrm{~T}_{\text {photosphere }}=5930 \mathrm{~K}^{a}$

Limb-Darkening Coefficients ${ }^{b}$ $x(\lambda 3700)=0.76$
$\mathrm{x}(\lambda 5500)=0.62$
Determined Quantities
Temperature Radius Longitude Latitude (K)

Spot $1 \quad 5470 \pm 40 \quad 20.5^{\circ} \pm 1.5^{\circ} \quad 240^{\circ} \pm 5^{\circ} \quad+40^{\circ} \pm 5^{\circ}$
Spot $2 \quad 5470 \pm 40 \quad 24.5^{\circ} \pm 1.5^{\circ} \quad 100^{\circ} \pm 5^{\circ} \quad+38^{\circ} \pm 5^{\circ}$
Total Spotted Area ${ }^{c}=7.4 \% \pm 0.5 \%$
${ }^{a}$ From dG0 spectral type.
${ }^{b}$ Al-Naimiy (1978).
${ }^{c}$ In terms of the total surface area of the star.

The data discussed here represents 15 nights over the period 1994 January 24 UT through 1994 February 26 UT. Nightly means were calculated and phases were computed using an arbitrary starting heliocentric Julian Date and a period of 2 d 74 . The data were then normalized to intensity units and plotted in intensity versus phase.

Figure 1 shows the nightly mean differential magnitudes for the y-band ($5500 \AA$) and the u-band $(3600 \AA)$. The differential yellow light curve has a broad primary minimum extending from $\approx 0.10 \mathrm{P}$ to $\approx 0.60 \mathrm{P}$. The light amplitude of the yellow curve is $\simeq 0.040$ mag. For the u-filter $(\lambda 3600)$, the shape is very similar to the yellow curve but the light amplitude is greater ($\simeq 0.062 \mathrm{mag}$). The intermediate filters (violet $4100 \AA$ and blue $4400 \AA$) have similar shapes and amplitudes which fall between the yellow and ultra-violet curves.

The fits for HD 129333 were done using Binary Maker 2.0, a synthetic modeler for binary star systems (Bradstreet, 1993), with the second component essentially turned off (given a very low mass and temperature) in order to model a single rotating star. The model consists of two large, mid-latitude spots separated by 140° in longitude. The total area spotted is about 7.4% of the stellar surface area. The spots were assumed to be circular and to have the same temperature. Table 1 gives a summary of the spot parameters used in the model.

The temperature difference between the spots and the photosphere was determined to be $460(\pm 40) \mathrm{K}$. The model was fit for several different starspot temperatures and radii in the y-band $(5500 \AA$) and then compared with the u-band ($3600 \AA$) to cover the full range of wavelength dependence in the data. The models that best fit to both colors were in the range $420-500 \mathrm{~K}$. This solution was found to fit the other light curves at the intermediate wavelengths. The uncertainty in the value results from the scatter in the data and ambiguities in the model.

Maureen P. SCHEIBLE
Edward F. GUINAN
Dept. of Astronomy and
Astrophysics
Villanova University
Villanova, PA 19085 U.S.A.

References:

Al-Naimiy, H.M., 1978, Astrophys. Space Sci., 53, 181
Bradstreet, D.H., 1993, Binary Maker 2.0: Light Curve Synthesis Program, (Contact Software, Norristown, PA)
Dorren, J.D. \& Guinan, E.F., 1992, BAAS, 24, 1205
Dorren, J.D., Güdel, M. \& Guinan, E.F., 1994, ApJ (submitted)
Dorren, J.D., \& Guinan, E.F., 1994a, The Sun as a Variable Star: Solar and Stellar Irradiance Variations, ed. J.M. Pap (Cambridge Univ. Press), p. 206
Dorren, J.D., \& Guinan, E.F., 1994b, ApJ, 428, 805
Kazarovets, E.V., Samus, N.N., \& Goranskij, V.P., 1993, IBVS, No. 3840
Soderblom, D.R., \& Clements, S.D., 1987, AJ, 93, 920

Konkoly Observatory
Budapest
8 November 1994
HU ISSN 0374-0676

PHOTOELECTRIC OBSERVATIONS OF AB DORADUS

AB Doradus is a chromospherically active rapidly rotating single star that has been extensively observed for over 16 years. Photoelectric measurements were made at Mt Molehill in November 1993 (13 \& 22) and in January 1994 (5, 19, 27, $28 \& 30$). A 200 mm f10 Schmidt-Cassegrain Telescope, an RCA 931b P.M.T., standard Johnson B \& V filters and DC electronics were used to make the observations. AB Doradus was monitored continuously in two colours, using differential photometry. Measurements of the comparison star and check were made regularly at about 15 minute intervals.

Reductions to the UBV standard system were carried out in accordance with the methods described by Henden and Kaitchuck (1982).

Figure 1. The two light curves collected in November 1993 (top) and in January 1994 (bottom). The square symbols are January 27, $28 \& 30$

Figure 2. The B-V plotted against phase, November 1993 (top) and Januar 1994 (bottom). The square symbols are January 27, 28 \& 30

Figure 3. Overall light level and range of V light plotted against year. Each bar gives the range and light level at the observed epochs.

Table 1. Check Star HD 37279

Date	n	V mag	S.D.	$\mathrm{B}-\mathrm{V}$	S.D.
individual nights					
J.D. 2449304	9	7.425	.009	0.263	.009
J.D. 2449313	7	7.425	.005	0.275	.008
J.D. 2449357	9	7.433	.011	0.261	.011
J.D. 2449371	6	7.438	.004	0.254	.008
J.D. 2449380	11	7.429	.005	0.260	.010

> S.D. = standard deviation

The observing sequence was sky-comp-var-comp-sky-var-check-comp-sky etc. Check star measurements (Table 1) had a standard deviation of 0.011 or less. Each data point on the light curve is the sum of three 10 sec integrations. Both the November and January light curves have amplitudes of approximately 0.14 magnitudes (Figure 1). The more complete light curve for January 1994 (Figure 1b) shows what appears to be a second spot at phase 0.37 . Figure 1 shows the amplitude of the light curves and the phase angle of the spots in relation to each other. There is a three hour phase shift between the November 1993 and January 1994 light curves. This corresponds to a linear phase shift of 1.7 per day when using the period of 0.51479 days derived by Innis et al. (1988). By changing the period to 0.5138 days the two data sets can be brought back into phase. The January 1994 (Figure 1b) light curve is a composite of five nights. The rise was observed on January 5 and the fall on January 28, thirteen days apart, and the resulting light curve is distorted. The rise and the fall on November 13, 1993 (Figure 1a) were observed during one observing session, and therefore would be more accurate. The B-V (Figures 2a \& 2 b) shows an apparent drop from 0.82 to 0.84 coinciding with the minimum of the V light curves. (Figure 3) is a plot of the overall brightness and amplitude of AB Doradus since 1978. Each bar gives the range and light level at the observed epochs.

Since observations started at Mt Molehill in December of 1990 AB Doradus has been steadily increasing in brightness, the light curves for November 1993 and January 1994 are in agreement with this.

Marc BOS
Mt Molehill Observatory
83a Hutton Street, Otahuhu
Auckland, New Zealand

References:

Henden, A. A., Kaitchuck, R. H., 1982, Astronomical Photometry, Van Nostrand Reinhold Innis, J. L.,Thompson, K., Coates, D. W., Lloyd Evans, T., 1988, Mon. Not. R. Astr. Soc., 235, 1411

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4112

Konkoly Observatory
Budapest
15 November 1994
HU ISSN 0374-0676

A NEW V/R CYCLIC CHANGE OF $\mathbf{H} \alpha$ in ζ Tau

Since the late 1970s, we have monitored the object. The observations reported in this paper were made with the grating spectograph of the 2.16 m telescope at the Xinglong Station of Beijing Astronomical Observatory during 1990 December - 1994 April. The detector was a CCD with 512×512 (or 576×384) pixels. The reciprocal linear dispersion of the spectra was $50 \AA \mathrm{~mm}^{-1}$ at $H \alpha$. One pixel corresponds to $1.35 \AA$ (or $1.15 \AA$). The S / N-ratio at the continuum was >150. The observational and data reduction techniques have already been described by Guo and Guo (1992). Our results showed that the $\mathrm{H} \alpha$ profiles underwent a cyclic change (c.f. Figure 1). The 1990 December $25 \mathrm{H} \alpha$ profile appeared as a single emission peak of asymmetric top and no visible central reversal. The profiles become distinct double emission peaks during 1991-1993. It is of interest to note that the 1994 April 28 profile become again a single emission peak, such as on 1990 December 25. In addition, the V / R ratio of $\mathrm{H} \alpha$ was larger (in 1990), equal to (around the beginning of 1992) and less (during 1992 November and 1993 October) than 1. Table 1 lists the results of the $\mathrm{H} \alpha$ measurements in the different observing periods. Throughout our observations no appreciable change in the $\mathrm{H} \alpha$ profiles obtained within each night has been detected. Hence we show only the mean profile measurements for each given night. It can be seen from the table that the equivalent width ($\mathrm{W} \alpha$) and the full-width-at-halfmaximum (FWHM) reached the maximum when the violet emission component is equal to the red one, and that the intensities (I_{v}) of the violet emission component declined gradually, while the intensities (I_{r}) of the red one rose slowly during our observing period.

Table 1

Date UT	No. of profiles	W α (\AA)	FWHM (\AA)	I_{v}	I_{a}	I_{r}
1990 Dec 25.727	5	-19.7	10.69		$(2.40)^{\star}$	
1991 Oct 09.876	20	-20.1	10.69	2.96	1.60	2.17
1991 Dec 16.674	15	-22.5	10.69	2.85	2.02	2.30
1991 Dec 27.717	4	-22.3	10.69	2.78	2.02	2.24
1992 Feb 26.620	4	-24.4	11.08	2.78	2.02	2.66
1992 Feb 27.644	6	-23.8	11.04	2.78	2.03	2.65
1992 Nov 14.804	3	-23.8	10.50	2.52	2.04	3.25
1992 Nov 15.809	6	-24.0	10.32	2.52	2.06	3.33
1993 Oct 28.659	2	-21.8	10.52	2.09	1.95	2.84
1994 Apr 28.495	6	-22.3	10.50		$(2.69)^{\star}$	

* values in paranthesis are central intensity of the emission line

Figure 1
Since the beginning of 1960s, the cyclic variations of the radial velocity of the Balmer absorption lines and the V / R ratio of the Balmer emission lines have been observed successively in the star on numerous occasions (Hubert-Deplace et al., 1982). Mon et al. (1992) showed the cyclic variations had terminated and the star seemed to have entered a new quiet phase around 1982. Our spectroscopic observations also indicate that the V/R cyclic variations of $\mathrm{H} \alpha$ had vanished since 1982 (Yulian Guo et al., 1994). Our results show that after their disappearance for several years, a new V/R cyclic variation of $\mathrm{H} \alpha$ emerged once again at the end of 1990 and lasted for about 3.5 years. It seems that the cyclic variations of the star were very complicated, not only the duration and the amplitude of each cycle are different but the cyclic variation is sometimes disappearance and at other times reappearance. Therefore, it is necessary to make further observations and discussions.

YULIAN GUO
Beijing Astronomical Observatory
Chinese Academy of Sciences Beijing, China

References:

Guo Yulian, Guo Xiozhen, 1992, Inf. Bull. Var. Stars, No. 3786
Guo Yulian, Huang Lin, Hao Jinxin, Cao Huilai, Guo Zihe, Gou Xiaozhen, 1994, in preparation
Hubert-Deplace, A. M., Jaschek, M., Hubert, H., Chambon, M. Th., 1982, in: Jaschek, M., Groth, H. G., (eds.) Proc. IAU Symp. 98. Be stars p. 125

Mon, M., Kogure, T., Suzuki, M., Singh, M., 1992, PASJ, 44, 73

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4113

Konkoly Observatory
Budapest
15 November 1994
HU ISSN 0374-0676

A DETECTION OF MOVING BUMPS IN THE EMISSION PROFILES OF THE Be STAR FX Lib

This star has a long history of spectroscopic observations. Since 1932-35, its shell become active. Long-term variations of the radial velocity of the shell absorption lines and of V / R ratio of Balmer emission lines are cyclic (Faraggiana, 1971; Delplace and Chambon, 1976; Aydin and Faraggiana, 1978, Hubert-Delplace et al., 1983). Its $\mathrm{H} \alpha$ profile also underwent rapid changes on a time scale of days as well as long-term changes on a time scales of years (Aydin and Faraggiana, 1978; Slettebak and Reynolds, 1978).

A series of CCD $\mathrm{H} \alpha$ spectra of the star were taken using the grating spectograph of the 2.16 m telescope at the Xinglong Station of Beijing Astronomical Observatory during 1994 April-June. The detector was a CCD with 512×512 pixels. The reciprocal linear dispersion of the spectra was $50 \AA \mathrm{~mm}^{-1}$ at $\mathrm{H} \alpha$. One pixel corresponds to $1.35 \AA$. The observational and data reduction techniques have already been described by Guo and Guo (1992). The following changes can be found from these data:

1. Night-to-night changes occur in the $\mathrm{H} \alpha$ emission profile. Figure 1 shows three $\mathrm{H} \alpha$ profiles which represent the mean profile obtained on 1994 April 27, 28 and June 25 respectively. It can be seen from the figures that 1994 April $27 \mathrm{H} \alpha$ profile appears as a double emission, but one day later, the $\mathrm{H} \alpha$ profile had three emission peaks. While in the H α profiles of η UMa and κ Dra which were observed in same two nights, were not found any changes. This demonstrates that the $\mathrm{H} \alpha$ profile changes of 48 Lib are reliable. It is worth noting that the 1994 June $25 \mathrm{H} \alpha$ profile become again a double emission peak but the violet emission component obviously weaker than red one. The remarkable change in the $\mathrm{H} \alpha$ profile observed on 1994 April 27-28 implies the possible occurrence of rapid violent activity in the stellar emission envelope.
2. $\mathrm{H} \alpha$ emission profiles of the star exhibit ultrarapid and as if cyclic changes. 16 spectra of the star were taken on 1994 April 28 (see Figure 2a). The H α displayed change with time. It is seen at a glance that, there were two red emission components varying in intensity. The bottom profile in Figure 2b represents the mean profile of these spectra, and the other which are formed by subtracting the mean profile from each spectrum, are the line profile residuals. It is obvious that its $\mathrm{H} \alpha$ emission undergoes the ultrarapid changes on a time scale of minutes.

It can be seen from Figure 2 b that the ultrarapid variations of the $\mathrm{H} \alpha$ profiles resemble the moving bumps which have been observed at high-resolution and high-signal-to-noiseratio in the absorption lines of some Be stars (Walker et al., 1979; Yang et al., 1990; Floquet et al., 1992, Bossi et al., 1993). At present, there were two interpretations for these line-profile variations in Be stars: photospheric non-radial pulsations (Vogt and Penrod, 1983), or corotating structures in the matter above the stellar photosphere (Harmanec, 1989; Gies, 1994). Our observations showed that the $\mathrm{H} \alpha$ profiles had dramatic moving features but the phenomenon was not found in HeI $\lambda 6678$. Therefore, we may infer that

Figure 1

Figure 2
the $\mathrm{H} \alpha$ line-profile variations could be due to the nonuniform distribution of the circumstellar matter. The nonuniform distribution of the circumstellar envelope is possibly related to the violent activity of the emission envelope in the star during 1994 April 2728. Unfortunately, our resolution is considerably lower and observations are limited only to $\mathrm{H} \alpha$ and $\mathrm{HeI} \lambda 6678$. In order to better understand the details of the variations and throughly investigate the nature of the variations, it is necessary to make high-resolution and high-signal-to-noise-ratio observations of different lines of interest at widely different wavelengths.

YULIAN GUO
Beijing Astronomical Observatory
Chinese Academy of Sciences
Beijing, China

References:
Aydin, C., Faraggiana, R., 1978, A\&A Suppl., 34, 51
Bossi, M., Guerrero, G., and Zanin, F., 1993, A\&A, 269, 343
Delplace, A. M., Chambon, M. Th., 1976, in: Slettebak A. (ed.) Proc. IAU Symp. 70, Be and Shell Stars. Reidel, Dordrecht, p. 79
Faraggiana, R., 1971, Ap. Letters, 8, 45
Floquet, M., Hubert, A. M., Janot-Pacheco, E., Mekkas, A., Hubert, H., and Leister, N. V., 1992, A\& A, 264, 177

Gies, D. R., 1994, in: Balona, L. A., Henrichs, H. F., and Le Contel, J. M., (eds.) Proc. IAU Symp. 162, Pulsation, Rotation and Mass Loss in Early-type Stars, Kluwer Academic Publishers, London, p. 89
Guo Yulian, Guo Xiozhen, 1992, Inf. Bull. Var. Stars, No. 3786
Harmanec, P., 1989, Bull. Astron. Inst. Czech, 40, 201
Hubert-Delplace, A. M., Mon, M., Ungerer, V., Hirata, R., Paterson-Beeckmans, F., Hubert, H., Baade, D., 1983, A\& A, 121, 174
Slettebak, A., Reynolds, R. C., 1978, Ap. J. Suppl., 38, 205
Vogt, S. S., and Penrod, G. D., 1983, Ap. J., 275, 661
Walker, G. A. H., Yang, S., and Fahlman, G. G., 1979, Ap. J., 233, 199
Yang, S., Walker, G. A. H., Hill, G. M. and Harmanec, P., 1990, Ap. J. Suppl., 74, 595

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4114

> Konkoly Observatory
> Budapest
> 16 November 1994
> HU ISSN $0374-0676$

APT OBSERVATIONS OF SMALL-AMPLITUDE RED VARIABLES

Small-amplitude red variables (SARVs) are M giants which are pulsating with small amplitudes $(<2.5 \mathrm{mag})$ and with periods of 20 to 200 days. SARVs are believed to be part of a sequence of red variables extending from the so-called σ Librae stars (periods 10 - 20 days, V amplitudes typically 0.1 mag) to the Mira stars. Along this sequence of red variables, the incidence of variability, and the period and amplitude of variability, tend to increase with later spectral type, but the correlation is not an exact one.

There are 164 known and 136 suspected variables among the approximately 500 M giants in the Yale Catalogue of Bright Stars. In order to clarify the variability status of these 500 M giants, one of us (JRP) has been conducting a search for SARVs using the 0.4 m"teaching telescope" of the University of Toronto (Percy and Fleming 1992; Percy and Shepherd 1992), and using the American Association of Variable Star Observers (AAVSO) network of photoelectric photometrists (Percy et al. 1994). Several SARVs which had not been assigned to a student observer or to the AAVSO observers were monitored for one season with an automatic photoelectric telescope (APT).

The seven SARVs listed in Table 1 were monitored automatically with the Phoenix 10 0.25 m reflector through the APT Service of the Fairborn Observatory, exactly as described by Percy (1993). Table 1 lists the program (P), comparison (C) and check (K) stars, their properties, the standard deviations of the differential U, B and V magnitudes of the program and check stars relative to the comparison stars, and the assessment of the variability of each star. A few observations were omitted for a priori reasons, e.g. if there was a large internal standard error, if the APT quality control information indicated that the night was a poor one, and/or if the observation was incomplete. The standard deviations of the constant stars (0.005 to 0.01 in B and $V, 0.01$ to 0.02 in U) are typical for observations of cool stars with this telescope.

In addition to the results given in Table 1, there are the following notes on individual stars; sample light curves are given for three stars:

HR 5123. VAR? (YCBS). The variability is marginal, at best.
HR 5150. VAR? (YCBS). The star varies on time scales of ~ 20 and >100 days (Figure 1); there is also a distinct peak in the power spectrum at ~ 6 days.

HR 5154. NSV 06389; $\mathrm{V}=4.63-4.73$ (NSV). We find a similar range. The variability is irregular, with a characteristic time scale of 20 days (Figure 2). The highest peak in the power spectrum is at 18 days.

HR 5215. VAR? (YCBS). The most obvious variability is on a time scale of ~ 100 days, but there is some evidence for more rapid variability as well (Figure 3).

HR 5226. CV Dra; V $=4.46-4.94$ (YCBS). Our observations show a much smaller range (but over a limited time interval). The power spectrum shows no dominant peak.

HR 5299. BY Boo; Lb? V = 5.1-5.28 (YCBS). The dominant peak in the power spectrum is at 30 days.

Table 1. APT Observations of Small-Amplitude Red Variables.

Star (HR)	SpT	V	$\sigma(\mathrm{U})$	σ (B)	$\sigma(\mathrm{V})$	Result	$\Delta \mathrm{V}$	Period (days)
P 5123	M2 III	5.74	0.0204	0.0096	0.0093	constant?	0.04	
C 5102	G8 III	6.11	-	-	-	constant		
K 5149	G9 III	5.62	0.0091	0.0057	0.0047	constant		
P 5150	M2 III	5.01	0.0546	0.0321	0.0262	variable	0.09	$6+$ longer
C 5111	G6 III	5.73	-	-	-	constant?		
K 5178	K5 III	6.05	0.0373	0.0091	0.0108	constant?		
P 5154	M2 III	4.66	0.0155	0.0170	0.0204	variable	0.08	$18 ?$
C 5177	F7IV-V	6.50	-	-	-	constant		
K 5142	A3 Vn	5.46	0.0075	0.0068	0.0061	constant		
P 5215	M2 III	5.87	0.0307	0.0198	0.0207	variable	0.07	$\sim 100 ?+$ shorter
C 5195	K0 III	5.62	-	-	-	constant		
K 5161	G5 III	5.98	0.0117	0.0048	0.0085	constant		
P 5226	M3.5 III	4.65	0.0248	0.0352	0.0317	variable	0.10	
C 5256	K3 V	6.37	-	-	-	constant		
K 5213	G3 V	5.96	0.0080	0.0058	0.0045	constant		
P 5299	M4 III	5.27	0.0329	0.0510	0.0547	variable	0.17	30
C 5335	gK3	6.24	-	-	-	constant		
K 5271	K2 III	6.27	0.0232	0.0120	0.0063	constant		
P 5300	M1.5 III	5.25	0.0308	0.0228	0.0230	variable	0.10	19
C 5271	K2 III	6.27	-	-	-	constant?		
K 5280	A2 V	6.15	0.0199	0.0074	0.0136	constant?		

Figure 1. The V light curve HR 5150 relative to HR 5111.
The standard error of the measurements is 0.010 .

Figure 2. The V light curve of HR 5154 relative to HR 5177.
The standard error of the measurements it 0.006 .

Figure 3. The V light curve of HR 5215 relative to HR 5195.
The standard error of the measurements is 0.008 .
HR 5300. CF Boo; $\mathrm{m}_{p g}=7.0-7.13$ (YCBS). The dominant peak in the power spectrum is at 19 days.

Because of the limited span of the observations, it is not possible to derive precise information about the amplitude and time scales of the variability. The observations have, however, given estimates of the amplitude of short-term (days to months) variability which are useful for statistical purposes. Most of these stars are early M giants, and the amplitudes are relatively small, and the time scales short. HR 5150, for instance, shows some evidence of very short time scale variability. A few of the stars show conspicuous time scales of variability of order weeks. At least two show variability on a time scale ≥ 100 days. The origin of these long-term variations is not known. In general, the incidence, amplitude and time scales of variability, as a function of spectral type, are consistent with previous results.

Acknowledgements. JRP thanks Michael Seeds for his excellent work as Principal Astronomer for the APT Service, and the Natural Sciences and Engineering Research Council of Canada for a research grant. Winnie Au was a participant in the University of Toronto Mentorship Program, which enables outstanding senior high school students to work on research projects at the university.

John R. PERCY
Winnie AU
Erindale Campus
University of Toronto
Mississauga, Ontario
Canada L5L 1C6

References:

Kholopov, P.N. ed., 1982, New Catalog of Suspected Variable Stars (Moscow, Nauka)
Percy, J.R., 1993, PASP, 105, 1422
Percy, J.R. and Fleming, D.E.B., 1992, PASP, 104, 96
Percy, J.R. and Shepherd, C., 1992, IAU Inf. Bull. Var. Stars, No. 3792
Percy, J.R. et al., 1994, PASP, 106, 611

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4115

Konkoly Observatory
Budapest
23 November 1994
HU ISSN 0374 - 0676

V AND UV PHOTOMETRY OF HD 159176

HD 159176 is a bright ($\langle V\rangle=+5 \cdot{ }^{\mathrm{m}} 70$), early ($\mathrm{O} 6 \mathrm{~V}+\mathrm{O} 6 \mathrm{~V}$), non-eclipsing binary in the center of the open galactic cluster NGC 6383. Thomas (1975) reported an ellipsoidal variability in the V bandpass and in this contribution we communicate that photometry supplemented by optical and UV data derived from a number of spectral images secured by the International Ultraviolet Explorer (IUE).

Table I: V differential photometry of HD 159176					
1975	UT	ΔV	s.d.	N	Phase
March	15.367	-1.568	0.004	11	0.244
	16.390	-1.543	0.003	16	0.548
	19.395	-1.539	0.003	11	0.441
	20.328	-1.558	0.003	15	0.718
	21.332	-1.534	0.004	8	0.016
	22.340	-1.563	0.004	7	0.315
	23.293	-1.556	0.003	19	0.590
	24.322	-1.541	0.004	8	0.904
	26.363	-1.547	0.002	15	0.510
	27.243	-1.562	0.004	20	0.772
	29.337	-1.551	0.002	18	0.394
	31.325	-1.534	0.003	16	0.984
April	01.293	-1.557	0.003	16	0.272
	02.297	-1.553	0.003	20	0.570

The Thomas (1975) differential photoelectric photometry, with HD 158859 ($\mathrm{V}=+7^{\mathrm{m}} 20$) used as a comparison star, is listed in Table I. N is the number of magnitude differences that were averaged to obtain each tabulated magnitude difference, and s.d. is their standard deviation. The photometry used the V filter of the UBV system and a 1P21 photomultiplier tube. The magnitudes were derived from capacitor charge integrations displayed on strip chart paper, acquired with the Lowell 0.6 meter telescope at the Cerro Tololo Inter-American Observatory. A second comparison star provided a check on the possible variability on HD 159176. Each tabulated magnitude difference in Table I (HD 159176 minus HD 158859) represents an observing time interval of about 20 minutes. Corrections for extinction did not enter into the calculations. Offset by $+20^{\mathrm{m}} 68$ in the ordinate in order to bring it on scale, this photometry appears as triangles in Figure 1, revealing an ellipsoidal variation with an amplitude of about $0 .{ }^{\mathrm{m}} 05$.

Table II: V magnitudes and UV data from IUE images

Image $S W P$	Phase	$1270 \AA-1350 \AA$ $\left(\times 10^{-10}\right)$	$1420 \AA-1480 \AA$ $\left(\times 10^{-10}\right)$	$1650 \AA-1850 \AA$ $\left(\times 10^{-10}\right)$	FES m_{V}
45704	0.0467	3.366	2.591	1.801	+5.76
45705	0.0539	3.388	2.608	1.811	+5.77
45708	0.0796	3.379	2.609	1.810	+5.76
45709	0.0880	3.403	2.628	1.810	+5.72
45711	0.1205	3.357	2.599	1.795	+5.77
45712	0.1288	3.423	2.623	1.812	+5.71
45715	0.1535	3.415	2.621	1.809	+5.75
45716	0.1616	3.315	2.558	1.794	+5.77
45719	0.1859	3.421	2.639	1.823	+5.74
45720	0.1937	3.451	2.665	1.857	+5.75
45723	0.2190	3.463	2.672	1.849	+5.73
45724	0.2268	3.478	2.701	1.866	+5.73
45727	0.2521	3.444	2.674	1.848	+5.73
45729	0.2757	3.486	2.693	1.855	+5.75
45731	0.2947	3.489	2.678	1.857	+5.78
45733	0.3203	3.476	2.695	1.849	+5.77
45735	0.3378	3.463	2.656	1.841	+5.78
45794	0.4220	3.233	2.522	1.750	+5.75
45795	0.4294	3.293	2.542	1.768	+5.78
45746	0.6247	3.402	2.591	1.802	+5.76
45748	0.6429	3.423	2.638	1.827	+5.74
45680	0.6826	3.400	2.639	1.817	+5.72
45683	0.7173	3.481	2.675	1.846	+5.73
45686	0.7503	3.512	2.684	1.856	+5.73
45687	0.7574	3.519	2.696	1.861	+5.75
45693	0.9003	3.340	2.570	1.761	+5.76
45694	0.9086	3.383	2.600	1.802	+5.76
45697	0.9333	3.422	2.612	1.811	+5.75
45698	0.9410	3.408	2.610	1.815	+5.72
45701	0.9639	3.376	2.609	1.806	+5.77

Column 1 of Table II lists the image numbers of 30 IUE spectra that were secured during three consecutive periods of the binary. These high resolution images were obtained by the $S W P$ (Short Wavelength Primary) camera aboard the spacecraft through the large aperture. Phases for the photometry data in the present paper were calculated from the following constant-period ephemeris kindly provided by R. H. Koch:

$$
\text { Pri.Min. }=\text { HJD } 2,448,886.263+3.366764 \times \text { E, }
$$

which is consistent with the optical photometry of Thomas and the accurate radial velocity solution of Stickland et al. (1992) based on the IUE material.

Figure 1
UV light curves were derived from the IUE spectral images in the following way. A square filter $[1270 \AA-1350 \AA$] applied on a given spectral image integrated all flux between $1270 \AA$ and $1350 \AA i e$, filter transmittance is 100% within the bandpass and zero outside). This integrated flux was then divided by the bandwidth (in this case $80 \AA$) to yield average monochromatic flux (in units of MFU) over that bandpass. These measures are listed in column 3, Table II. Two additional data sets, derived in the $[1420 \AA-1480 \AA]$ and $[1650 \AA-$ $1850 \AA$] bandpasses, are also listed in Table II. This UV photometry was restricted to the 30 most recent large-aperture, high-dispersion SWP spectral images, since the other archival images were obtained through the small aperture, or span a different (LWP) spectral region, or are of low resolution.

UV magnitudes in each bandpass were computed from the listed fluxes by first multiplying by the bandwidth (yielding fluxes in FU), and then calculating $m_{U V}=-2.5 \cdot \log ($ flux $)$. The light curves so computed are displayed in Figure 1, displaced in the ordinate scale by the following quantities to bring them on scale:
crosses: $[1270 \AA-1350 \AA]$, by -0 . ${ }^{\mathrm{m}} 10$
stars: $[1420 \AA-1480 \AA]$, by -0 . 58
diamonds: $[1650 \AA-1850 \AA]$, by $+0{ }^{\mathrm{m}} 43$.
None of the three bandpasses is contaminated by wind lines and the estimated accuracy of the measures is better than ± 0 m 01 .

All three UV light curves are remarkably similar, even though they span almost $600 \AA$. The ellipsoidal variability evidenced in the optical light curve is also present in all three UV data sets at a level of 0.05 to $0 .{ }^{\mathrm{m}} 08$, depending on the significance attributed to the two fainter measures near phase 0.42 and to the one near phase 0.9 .

The Fine Error Sensor ($F E S$) is an optical sensor aboard the IUE spacecraft intended for target acquisition rather than photometry. Nevertheless, each IUE image is supplemented with "FES counts" from the source which were converted to the V magnitudes listed in Table II, column 6, using IUE Data Analysis Center (IUEDAC) software. This FES-derived photometry, displaced by $+12^{\mathrm{m}} 95$ in the ordinate scale, is displayed in Figure 1 by squares. The errors, commonly claimed to be $\pm 0^{\mathrm{m}} 10$, clearly hide the ellipsoidal variability revealed in the Thomas data and in the UV light curves.
J. C. THOMAS

2290 Montezuma Dr.
Campbell, CA 95008
U.S.A.
I. PACHOULAKIS

Department of Physics
and Astronomy
University of Pennsylvania 209 S. $33^{\text {rd }}$ Str. Philadelphia, PA 19104 U.S.A.

References:
Stickland, D. J., Lloyd, C., Koch, R. H., Pachoulakis, I., and Pfeiffer, R. J., 1992, The Observatory, 112, 150
Thomas, J. C., 1975, Bull.A.A.S., 7, 533

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4116

Konkoly Observatory
Budapest
24 November 1994
HU ISSN 0374-0676

CF Cas = NSV 14787

During my work on PICA project (Precise Identification and Coordinate Adjustment of about 7000 variables) I have found that CF Cas is identical with NSV 14787.

CF Cas $=347.1931=$ SVS 256 is a well known classical cepheid located in the open cluster NGC 7790. It was discovered by Beljawsky (1931) and soon received its final designation (Guthnick, Prager, 1934). From the time of its discovery the star was included in many photometric and spectroscopic researches.

NSV 14787 is listed as star No. 750 in a catalogue of proper motions of stars in the region of open clusters NGC 7788 and NGC 7790 (Ishmukhamedov, 1966). Neither chart nor equatorial coordinates were published for this star in his paper. Later it was included in the New Catalogue of Suspected Variable Stars (Kholopov et al., 1982).

While working on field variable stars around $Q X$ Cas I have noticed that coordinates reported in NSV for NSV 14787 are about 1' north of the star I have earlier identified as $Q X$ Cas. To find additional information, usable for correct identification, I have checked Ishmukhamedov's paper (the only one found for NSV 14787 at all). He gives there the used procedures and also a catalogue, listing star sequence number, photographic magnitude, approximate $x y$ coordinates in mm , proper motion components and a short remark. From the $x y$ coordinates and magnitudes I have plotted a chart, covering field around star No. 750 (see Figure 1, in the middle). Comparison of this plot with scanned paper copy of POSS plate O-1233 (Figure 1, left) gave following results :
— star No. 692 without var remark was identified as NSV 14781.
— star No. 705 without var remark was identified as CEab Cas.

- star No. 840 with var remark was identified as QX Cas.
— star No. $750=$ NSV 14787 with var remark has no suitable optical counterpart at the plotted position.
From this it is clear that NSV 14787 cannot be identical with $Q X$ Cas. From the comparison one can also see that the coordinates given in NSV for NSV 14787 are erroneous. So where is this star ?

Another comparison of plot and scanned POSS shows that while star No. 750 is superfluous in it's location, one bright star (by chance variable CF Cas) is missing on the plot. Close look shows that plotted stars do NOT exactly match their counterparts on the sky. This can explained partly by the fact that catalogue $x y$ coordinates are only approximate, having the precision stated to be 0.1 mm , but in fact a bit worse. But such errors can't help us. Therefore I have checked the whole catalogue for evident misprints - and found 13 of these (stars Nos. $87,113,161-165,282,609,793,847,1055$ and 1072), out of 1088 listed stars. I have found also some other misprints in the text part so I have checked the possibility there is a misprint in $x y$ coordinates of stars No. 750 and I have found a solution. The printed y coordinate is -6.0 , while at -2.0 (and same x coordinate) is the

Left: Scanned POSS plate O-1233. The picture was processed after scanning to eliminate the faintest stars. Middle: Plot from catalogue of Ishmukhamedov (1966). The open circle marks the position of star No. 750 on its original place. Right: Plot from GSC. Arrowed stars are CEab Cas, CF Cas, QX Cas and NSV 14781, while crossed circles mark the (bad) GCVS and NSV positions for QX Cas and NSV 14787. The area covered by all the charts is the same - about $15^{\prime} \times 20^{\prime}$ with north up.

Table 1. Comparative table of original data for NSV 14787, GSC 4281.1902, GSC 4281.1230, CF Cas and QX And. CF Cas and QX And. Data concerning NSV 14787 are from NSV, data for CF Cas and QX Cas are from GCVS, data for CF Cas (Plaut) are by Plaut (1977) and data for GSC 4281.1902 for GSC 4281.1902 and GSC 4281.1230 are from GSC. Photometric system code 1 for GSC represents the Kodak IIa-D plate with W12 filter. Coordinates printed in italics were computed from the above stated data sources.

Name	Position (B1950)		Position (J2000)		Type	$\begin{aligned} & \operatorname{Max} \\ & \operatorname{mag} \end{aligned}$	$\begin{aligned} & \text { Min } \\ & \text { mag } \end{aligned}$	Phot. system
	$\mathrm{h} \quad \mathrm{m}$ s	$\bigcirc 1$	h m s	- , "				
NSV 14787	235612	+60 54.0	235844	+6110.7	-	12.0		P
CF Cas	235546	+60 56.6	235818	+6113.3	δ Cep	10.80	11.47	V
CF Cas (Plaut)	235545.88	+605634.2	235818.09	+611915.9				
GSC 4281.1902	235545.79	+605634.4	235818.00	+611316.1		11.00		1
QX Cas	235558	+60 52.8	235830	+6109.5	EA/DM	10.19	10.70	V
GSC 4281.1230	235610.76	+605258.3	235843.20	+6109 40.0		10.00		1

bright star, having up to this moment no counterpart in catalogue. I suppose these stars are identical for these reasons :

- after correction the match with real star is quite good.
- misprints are often in the paper of Ishmukhamedov.
- star No. 750 has a var remark and CF Cas is variable.
- the photographic magnitude of star No. 750 does not contradict B magnitudes of CF Cas.

Summary information can be found in Table 1. Following cross-identifications are valid:

CF Cas $=347.1931=$ SVS $256=$ NSV $14787=$ Vat ph $23^{\mathrm{h}} 52^{\mathrm{m}}+61^{\circ}$ No. $39660=$ GSC 4281.1902

QX Cas $=$ SVS $969=$ CSV $5816=$ GSC 4281.1230

Jan MÁNEK
Štefánik Observatory
Petřín 205
11846 Praha Czech Republic
Internet: observ@earn.cvut.cz

References:

Beljawsky, S., 1931, Astronomische Nachrichten, 243, 115
Guide Star Catalogue v1.1, 1992, The Space Telescope Science Institute, Baltimore, Maryland, USA, on CD-ROM
Guthnick, P., Prager, R., 1934, Astronomische Nachrichten, 251, 257
Ishmukhamedov, Kh., 1966, Circular Tashkentskoi Astr. Observatorii, No. 345
Kholopov, P.N., et al., 1982, New Catalogue of Suspected Variable Stars, Nauka, Moscow Kholopov, P.N., et al., 1985, General Catalogue of Variable Stars, 4th ed., Nauka, Moscow Plaut, L., 1977, Astronomy \& Astrophysics Suppl., 28, 169

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4117

Konkoly Observatory
Budapest
28 November 1994
HU ISSN 0374-0676

PHOTOELECTRIC OBSERVATIONS OF THE CLOSE ECLIPSING BINARY VW CEPHEI

Differential photoelectric photometry of the close eclipsing binary VW Cephei (SAO $9828, \mathrm{M}_{v}=7.45 \pm 0.12, \mathrm{~B}-\mathrm{V}=+0.73 \pm 0.20$) was carried out during the summer 1993 at the station of Capanne di Cosola (AL, Italy). A total of 473 data points were collected in the instrumental V color.

The comparison star was HIC 103219 (SAO 9911, $\mathrm{M}_{v}=6.047 \pm 0.031, \mathrm{~B}-\mathrm{V}=+0.934$ ± 0.015) and the check one was HIC $101824\left(\mathrm{SAO} 9836, \mathrm{M}_{v}=7.076 \pm 0.031, \mathrm{~B}-\mathrm{V}=+0.934\right.$ ± 0.015).

Photometry of VW Cephei was carried out with a 200 mm Schmidt-Cassegrain f15 telescope equipped with a solid state photoelectric photometer Optec SSP3 operating in the Johnson-Morgan B and V bands.

Five heliocentric times of minimum were computed using the available observations. The heliocentric times of minimum obtained with the Minimum Entropy SOP method (MEMSOP, Gaspani 1993a) are listed in Table 1. The O-C residuals computed with respect to the ephemeris (Navratil, 1994):

$$
\begin{equation*}
\mathrm{T}_{\min }(\mathrm{HJD})=2448862.5255+0.27831460 \times \mathrm{E} \tag{1}
\end{equation*}
$$

are listed in the same table. It is interesting to remark that all the residuals are systematically negative. This means that the ephemeris (1) must be updated in order to satisfy our data.

On the other hand the moments of minima observed by Abbott et al. (1994) as well as Vinkó et al. (1993) give as yet negative residuals of comparable magnitude with respect to the ephemeris (1).

Therefore we computed an updated ephemeris making use of our data as well as the recent data of Navratil (1994), Abbott et al. (1994) and Vinkó et al. (1993) in order to increase the accuracy of the least squares fit.

On the basis of the available times we obtained the following least squares fit:

$$
\begin{gather*}
\text { Min.I }(\mathrm{HJD})=2448862.5220+0.2783076 \times \mathrm{E} \tag{2}\\
\pm 0.0026 \pm 0.0000024
\end{gather*}
$$

Table 2 shows the residuals computed with respect to the ephemeris (2).
VW Cephei is an active close binary whose light curve shows temporal changes. This variability has been interpreted as arising from the presence of dark starspots located mainly on the photosphere of the more massive star of the system (Bradstreet and Guinan, 1990).

After these premises, it seems to be useful to try to recover the true light curve from the noisy data in order to show changes in the height of the maxima, depth of the minima and photometric perturbations.

Figure 1. Light curve of VW Cephei. The solid line is the signal restored with the optimum Wiener filter and the squares are the individual data points.

Table 1. Heliocentric times of minimum

Observed Minima	E	$\mathrm{O}-\mathrm{C}$	
2449186.479 ± 0.003	1164	-0.005	(Min.I)
2449191.479	± 0.008	1182	-0.014
(Min.I)			
2449192.457 ± 0.006	1185.5	-0.010	(Min.II)
2449192.604 ± 0.005	1186	-0.003	(Min.I)
2449193.42	± 0.02	1189	-0.022

In order to recover a convenient estimate of the true signal from the noisy data we processed the noisy phased data with a signal restoration technique based on the Optimum Wiener Filter Theory (Gaspani, 1993b).

Figure 1 shows the restored light curve, graphed as a solid line across the original data points and Table 3 shows the results obtained.

Table 2. Residuals from the ephemeris (2).

Epoch E	Observed time of minimum JD $2440000+$	Residual $(\mathrm{O}-\mathrm{C})$	Source
-7.5	8860.438	0.002	(a)
-0.5	8862.386	0.002	(a)
0.0	8862.525	0.003	(a)
1161.0	9185.637	-0.001	(b)
1164.0	9186.479	0.006	(c)
1164.5	9186.614	0.003	(b)
1165.0	9186.750	-0.001	(b)
1182.0	9191.479	-0.003	(c)
1185.5	9192.457	0.001	(c)
1186.0	9192.604	0.008	(c)
1189.0	9193.420	-0.011	(c)
1261.0	9213.465	-0.004	(d)
1401.0	9252.431	-0.001	(d)
1404.5	9253.405	0.000	(d)

(a) Navratil (1994), (b) Abbott et al. (1994), (c) Aluigi et al. (present paper), (d) Vinkó et al. (1993)

Table 3

	Delta V
	(VW Cep-HIC 103219)
Primary Minimum	-1.748
Maximum I	-1.367
Secondary Minimum	-1.630
Maximum II	-1.380

Marco ALUIGI
GEOS - 3, Promenade Venezia, F-78000 Versailles (France)

Gianni GALLI
GEOS - 3, Promenade Venezia, F- 78000 Versailles (France)

Adriano GASPANI
Osservatorio Astronomico di Brera
Via Brera 28, Milano (Italy), and
GEOS - 3, Promenade Venezia, F-78000 Versailles (France)

References:

Abbott, B. Rumignani, D., 1994, Inf. Bull. Var. Stars, No. 4041
Bradstreet D., Guinan, E., 1990 in "Active Close Binaries", ed. C. Ibanoglu, pag. 467
Gaspani, A., 1993a, "The algorithms useful in finding the extrema of the light curves". Talk presented to the Second GEOS Workshop on the Eclipsing Variable Stars and their Data Processing", S.Pellegrino Terme (Italy), 1993, 21-22 May
Gaspani, A., 1993b, "The processing and the restoration of the light curves". Talk presented to the Second GEOS Workshop on the Eclipsing Variable Stars and their Data Processing", S.Pellegrino Terme (Italy), 1993, 21-22 May
Navratil M., 1994, Inf. Bull. Var. Stars, No. 3997
Vinkó, J., Gál, J., Szatmáry, K., Kiss, L. 1993, Inf. Bull. Var. Stars, No. 3965

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4118

Konkoly Observatory
Budapest
29 November 1994
HU ISSN 0374-0676

35 NEW BRIGHT MEDIUM- AND HIGH- AMPLITUDE VARIABLES DISCOVERED BY THE TYCHO INSTRUMENT OF THE HIPPARCOS SATELLITE ${ }^{1}$

The HIPPARCOS project will discover a large number of hitherto unknown variable stars, as a side result of a primarily astrometric satellite (for a description see Perryman, 1989, and references therein). The HIPPARCOS main instrument is expected to detect low-amplitude variability in several 10000 stars, while the TYCHO instrument will scan 1 million stars down to about $\mathrm{B}=12$ for medium- to high-amplitude variations. The four-year lifetime of the satellite ended in August 1993. The reduced data, including the individual photometric measurements of all observed stars, will become available to the general astronomical community in 1997.

Here we present a small list of new bright medium- to high-amplitude variables that became obvious during routine astrometric processing of the TYCHO data. All were checked for known counterparts in the General Catalogue of Variable Stars (GCVS), in the New Catalogue of Suspected Variables (NSV), and in the five name lists of newly designated variable stars issued since 1985 (IBVS 2681, 3058, 3323, 3530, 3840). Groundbased follow-up observations are encouraged to clarify the nature of the stars and to assess the quality of these preliminary TYCHO results. The amplitudes (as observed by TYCHO) are mostly above 0.5 magnitude, with 6 of them exceeding 1 magnitude.

The 35 new variables are listed in Table 1. The columns of the table contain, in turn: the designation of the star in the Space Telescope Guide Star Catalogue, the J2000 position, the observed range of variability in the T magnitude (defined below) and remarks. For each of the stars there are of the order of 100 TYCHO observations in two wavelength bands (close to B and V, respectively). Nevertheless light curve classification from these data is very difficult because the observations are extremely unevenly distributed in time. Table 1 therefore gives only rough indications on the character of the variability.

Among the 35 stars in Table 1 there are six NSV stars (indicated in the remarks column). The TYCHO measurements thus confirm the suspected variability of these objects.

Figures 1 and 2 show the observed light curves for two of the NSV objects as an illustration of the TYCHO data. The T magnitude is a broad-band optical magnitude derived from the sum of the photon counts in the TYCHO B and TYCHO V photometric channels, under the condition that $T=B=V$ if $B-V=0$. See Halbwachs et al., 1992, for more details.

Acknowledgements: This work was supported by Bundesministerium für Forschung und Technologie, Deutsche Agentur für Raumfahrtangelegenheiten (DARA), Projects 500092020 and 500091060 , and by the Danish Space Board. The results presented here are based on the collaborative effort of the HIPPARCOS and TYCHO scientists and engineers, scattered all over Europe.

[^0]Table 1. Results on the 35 new variables

GSC/TIC Id	R.A. 2000	Dec. 2000	T(max)	T(min)	Remarks
8468104	$0^{\mathrm{h}} 20^{\mathrm{m}} 20.2$	$-57^{\circ} 9^{\prime} 48^{\prime \prime}$	9.37	10.66	
23451896	31901.5	324116	7.90	8.33	
8503158	33744.6	-552347	8.67	10.13	NSV 1214
75721544	34418.7	-415352	8.22	8.99	350 days period?
33471499	44815.4	471629	9.24	9.77	
3738234	50631.7	552113	7.73	8.51	periodic, 90 days
2910447	53126.8	381911	7.54	8.23	
70946	53254.5	130307	9.04	9.69	NSV 2106
3378458	61021.3	474422	8.16	8.67	
65131712	61601.9	-273034	8.29	9.44	
71021296	70513.9	-355623	7.42	8.31	NSV 3379
81431629	75620.9	-495855	8.38	9.69	
7132590	80132.9	-371150	8.06	8.60	400 days period?
8155343	83801.0	-465416	7.89	9.35	NSV 4166
85851054	93614.7	-523241	8.13	8.98	360 days period?
7729173	110213.9	-410651	7.14	7.55	
82121230	110431.4	-511319	8.43	10.00	SRb type?
$5511 \quad 693$	111523.6	-113517	7.62	7.96	periodic?
86531082	131408.3	-544135	8.59	9.15	
1466869	134359.2	214905	8.81	9.73	
2549677	141558.3	342615	8.91	9.53	
6199618	155640.1	-220140	8.85	9.83	NSV 7344, R CrB type?
78501060	155759.7	-435749	8.94	10.07	NSV 7357
353301	155905.8	03545	7.51	8.2	eclipsing?
87101370	160136.3	-540836	8.67	9.28	slowly variable
7362894	171515.5	-303214	8.77	9.38	
8353620	172104.6	-510714	9.47	10.73	
6306417	193009.6	-192308	8.74	9.28	
$5153 \quad 387$	194107.6	-035510	8.38	9.05	
8782316	194313.7	-561536	8.25	8.65	
1089751	204649.3	73311	8.64	9.12	eclipsing?
7987835	212528.4	-414207	8.26	8.98	periodic?
7990374	215422.3	-411558	8.59	9.36	
8827195	225705.8	-572404	7.68	8.71	
88331050	234419.2	-542610	8.12	8.74	

Figure 1: TYCHO light curve of GSC $8155343=$ NSV 4166. All raw observations of the star by TYCHO are shown. The different symbols denote different apertures of the instrument. The T magnitude is defined in the text. The strong clumping of the points is an unavoidable consequence of the (primarily astrometric) measuring schedule of the HIPPARCOS satellite. The scatter of the points within each clump is due to the random measurement errors. They will be somewhat smaller after the final photometric reduction of the TYCHO data. The variability of this suspected variable is confirmed by the data shown here.

Figure 2: TYCHO light curve of GSC $6199618=$ NSV 7344. Same remarks as for Figure 1

Valeri MAKAROV ${ }^{(1)}$, Ulrich BASTIAN ${ }^{(2)}$, Erik HOEG ${ }^{(1)}$, Volkmar GROSSMANN ${ }^{(3)}$, Andreas WICENEC ${ }^{(3)}$
${ }^{(1)}$ Copenhagen University Observa tory, Copenhagen, Denmark
${ }^{(2)}$ Astronomisches Rechen-Institut, Heidelberg, Germany
${ }^{(3)}$ Astronomisches Institut der Universitaet, Tuebingen, Germany

References:
Halbwachs, J.-L. et al., 1992, Astron. Astrophys., 285, 193
Perryman, M.A.C., 1989, Nature, 340, 111

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4119

Konkoly Observatory
Budapest
30 November 1994
HU ISSN 0374-0676

FIVE NEW DHK VARIABLES

My continuing photographic patrol has resulted in the discovery of four more variable stars that are not listed in the General Catalogue of Variable Stars (Kholopov et al., 1985) or the subsequent Name Lists of the Variable Stars (Kholopov et al., 1985, 1987, 1989; Kazarovets and Samus 1990; Kazarovets et al., 1993). Nor are they listed in the New Catalogue of Suspected Variable Stars (Kholopov et al., 1982). In addition, a fifth new variable star, DHK 38, was discovered photoelectrically during observations of Nova Aql 1993 (Green, 1993). Positions and preliminary magnitude ranges, types, and periods are given in Table 1, which continues the list in Kaiser (1992).

I have confirmed photoelectrically the variability of DHK 37, 38, 40 and 41. David B. Williams has examined DHK 37 and 39-41 on the Harvard patrol plates, confirmed their variability, and provided the photographic magnitude ranges cited in the Table. Marvin E. Baldwin has visually monitored the new eclipsing binaries, detected additional minima, and helped to determine the periods. The observations of each star will be published when analysis is completed.

DHK 39-41 were discovered using photographs taken with the newly completed Automatic Photographic Patrol (APP). The APP is an automated camera in equatorial mount controlled by computer. It will be described in detail elsewhere.

Table 1

Var. Designation	RA (1950)	Dec (1950)	Range	Type	P (days)
$\begin{aligned} & \text { DHK } 37= \\ & \text { GSC } 2457: 0279 \end{aligned}$	$07^{\mathrm{h}} 35^{\mathrm{m}} 11^{\text {s }}$	$32^{\circ} 39^{\prime} 41^{\prime \prime}$	$10.4-11.8 \mathrm{pg}$	SR:	?
DHK $38=$ SAO 124400 HD 179624 PPM 167402	191043	012929	9.31-9.69 V	Lb:	-
DHK 39= GSC 2661:1058	191021	351813	$10.9-11.6 \mathrm{pg}$	SR:	?
$\begin{gathered} \text { DHK } 40=\text { SAO } 46698 \\ \text { BD }+49^{\circ} 2630 \\ \text { PPM } 56164 \end{gathered}$	172309	494116	9.38-9.87 V	EB	0.530
$\begin{gathered} \text { DHK } 41=\text { SAO } 76494 \\ \text { HD } 284195 \end{gathered}$	040906	214911	8.98-9.4: V	EA	3.176

The APP is supported by a grant from NASA administered by the American Astronomical Society, for which I am most grateful. I would also like to thank David B. Williams and Marvin E. Baldwin for helping to confirm the variability and determine the periods of these stars. The variables were detected using a projection blink comparator (PROBLICOM) as described by Mayer (1977).

Daniel H. KAISER
2631 Washington Street
Colombus, IN 47201
USA

References:

Green, D. W. E., 1993, I.A.U. Circ, No. 5818
Kaiser, D. H., 1992, Inform. Bull. Var. Stars, No. 3814
Kazarovets, E. V., and Samus, N. N., 1990, Inform. Bull. Var. Stars, No. 3530
Kazarovets, E. V., Samus, N. N. and Goranskiy, V. P., 1993, Inform. Bull. Var. Stars, No. 3840
Kholopov, P. N. editor, et al., 1982, New Catalogue of Suspected Variable Stars, Moscow
Kholopov, P. N. editor, et al., 1985, General Catalogue of Variable Stars, Moscow
Kholopov, P. N., Samus, N. N., Kazarovets, E. V., and Perova, N. B., 1985, Inform. Bull. Variable Stars, No. 2681
Kholopov, P. N., Samus, N. N., Kazarovets, E. V., and Perova, N. B., 1987, Inform. Bull. Variable Stars, No. 3058
Kholopov, P. N., Samus, N. N., Kazarovets, E. V., and Perova, N. B., 1989, Inform. Bull. Variable Stars, No. 3323
Mayer, B., 1977, Sky and Tel., 54, 246

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4120

Konkoly Observatory
Budapest
5 December 1994
HU ISSN 0374-0676

A FLARE EVENT ON HR 2517^{1}

HR $2517=$ SAO 114465 (spectral type B II-III, $V=6.15$) was not known as a variable. It is even listed as "a photoelectric standard with confirmed long-term stability" in the Hipparcos Input Catalogue (Turon et al. 1992). The star was used for more than ten years as comparison star to the Be star V 505 Mon (Vogt \& Sterken 1993) in the framework of the "Long-term Photometry of Variables" (LTPV) project (Sterken 1983). HR 2517 also figured as a standard star for the LTPV project, until 1992, when it suddenly brightened by about $0 . \mathrm{m} 10$ in the y, b and v bands, and by $00^{\mathrm{m}} 15$ in u. As shown in Fig. 1, this flash-like activity is modulated with a period slightly longer than one month, suggesting rotation of a hot spot.

Figure 1

[^1]Unfortunately, this increased activity approximately coincided with the end of the observations of the star, so that only two cycles have been monitored. Only a few points have been obtained in 1993, but they show that the star was still active.

Detailed analysis of this flare and of the previous microvariability of HR 2517 is being carried out. We plan to secure more photometric and spectroscopic observations of this object in the following months. Photometric monitoring of HR 2517 by other observers, with special emphasis towards the determination of the duration of the active state, is strongly encouraged.

All data used here will become available in the course of 1995 through the CDS Data Center in Strasbourg.

C. STERKEN ${ }^{1}$
University of Brussels (VUB)
Pleinlaan 2
B-1050 Brussels, Belgium
${ }^{1}$ Belgian Fund for Scientific Research (NFWO)
${ }^{2}$ Belgian Fund for Scientific Research (FNRS)

References:

Sterken, C., 1983, The Messenger 33, 10.
Turon, C., Crézé, M., Egret, D. et al., 1992, The Hipparcos Input Catalogue, ESA SP-1136 Vogt N., Sterken C. 1993, Inf. Bull. Var. Stars, 3958

THE LONG TERM PHOTOMETRIC BEHAVIOUR OF THE CATACLYSMIC BINARY HX PEGASI

The photometric history of HX Pegasi has been unclear until now. Green and Kristian (1975) believed (from three scattered observations) the star to have had "remained bright" near V=13m from July 1973 to October 1974 at least. Eachus and Liller (1976) found it "irregularly varying" between $\mathrm{B}=13 \mathrm{~m}^{\mathrm{m}} 2$ and $16 . \mathrm{m}$ with "no evidence of nova-like activity" on 162 Harvard plates of 70 years. I. Meinunger (1976) was not able to detect the star above threshold of Sonneberg Sky Patrol exposures; this was, however, because she searched at a wrong position (that has nothing to do with the misprint in the heading of her article. Greenstein et al. (1977) called the star "erratically variable". Ringwald (1993) in the course of a thorough spectroscopic investigation caught the object during a rapid ascent of its brightness in one night, followed by a decline in the next one.

Moreover, the star has been included erroneously in the listings of nearby stars of Gliese and Jahreiss (1979) and of Petit (1980), because McCook and Sion (1977) and others took the object for a white dwarf of 13 th apparent magnitude.

As this binary deserves special interest because of its probable sdK secondary, I have determined its brightness on a sample of almost 500 Sonneberg Sky Patrol plates taken since 1962 mainly by H. Huth and B. Fuhrmann, and I came to the following results: the long-term light curve is characterized by numerous dwarf-nova-like eruptions up to $12 \mathrm{~m}^{\mathrm{m}} 4 \mathrm{pg}$ (Figure 1). The Mt. Wilson magnitude system of Selected Area 91 served as a standard. From this light curve and from statistical considerations (after Wenzel and Richter, 1986) a mean cycle length C of about 30 days can be derived. Strong secondary fluctuations (range: 0.5 mag , time scale: hours to days) are observed during several high states.

Figure 1

We did not find any short full range eruptions of a length of the order of one day. But, as this might be attributed to the rather limited length of our sample, the nature of the rapid decline observed by Ringwald (1993) is still undecided. If we take into account the faint observations of Greenstein (1986) ($\mathrm{B}=17^{\mathrm{m}} 2$) and the minimum data of Eachus and Liller (1976) ($\mathrm{m}_{p g}=16^{\mathrm{m}} 5$), an amplitude of about $44^{\mathrm{m}} 5 \mathrm{pg}$ can be deduced. This is rather large a value as compared with an average taken from the Kukarkin-Parenago relationship for dwarf novae (e.g. Richter and Bräuer, 1989) at $\mathrm{C}=30$ days. Far reaching plates are not at our disposal. We hope that CCD observations which we have been performing at one of the Sonneberg 60 cm mirrors since October 1994 will clear up the low state behaviour and whether there are eclipses.

I thank the German Bundesministerium für Forschung und Technologie for funds under contract No. 05-2S052A.
W. WENZEL

Sternwarte
D 96515 Sonneberg
Germany

References:

Eachus, L. J., and Liller, W., 1976, IAU Circ., No. 2907
Gliese, W., and Jahreiss, H., 1979, Astron. Astrophys. Suppl. Ser., 38, 423
Green, R. F., and Kristian, J., 1975, IAU Circ., No. 2892
Greenstein, J. L., 1986, Astron. J., 92, 867
Greenstien, J. L., Arp, H. C., and Shectman, S., 1977, Publ. Astron. Soc. Pacific, 89, 741
McCook, G. B., and Sion, E. M., 1977, Villanova Univ. Obs. Contr., No. 2
Meinunger, I., 1976, Mitt. Veränderl. Sterne Sonneberg, 7, 182
Petit, M., 1980, Inf. Bull. Var. Stars, No. 1788
Richter, G. A., and Bräuer, H.-J, 1989, Astron. Nachr., 310, 413
Ringwald, F. A., 1993, Thesis. Dartmouth College
Wenzel, W., and Richter, G. A., 1986, Astron. Nachr., 307, 209

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4122

Konkoly Observatory
Budapest
12 December 1994
HU ISSN 0374-0676

ECLIPSE CURVES OF UX UMa IN 1992

UX UMa is considered as an example of relative orbital stability for an interacting binary although the shape of its light curve is quite variable. Besides eclipses and flickering Mandel (1965) proposed that the orbital period itself of this eclipsing binary varies with a period of 10600 days.

The presented photoelectric data of UX UMa were obtained during 8 nights at the end of December 1992 and at the beginning of January 1993. The observations were carried out with a 0.6 m telescope of Mt. Suhora Observatory (Poland), equipped with a double beam photometer and an autoguider (Kreiner et al., 1992). In order to satisfy the requirement of the two-channel photometer (that the distance between a variable and a comparison star to be between 10 and 20 arcmin), we used the star marked " B " in Figure 1 as a comparison and $\mathrm{BD}+52^{\circ} 1720$ (marked "N") and $\mathrm{BD}+52^{\circ} 1722$ (marked "C") as check stars. Figure 2 shows that the star "B" is constant.

The data were phased according to the ephemeris of Mandel (1965)

$$
\begin{equation*}
\text { MIN }=\text { J.D. }(\mathrm{Hel}) 2427341.22392+0.196671299 \times \mathrm{E} \tag{1}
\end{equation*}
$$

Some of our eclipse curves are presented in Figure 3. On the right side on every curve is the cycle number introduced in Table 1 (down). The magnitude difference in the sense comparison-variable on the vertical axis is relative to the central curve in every colour. The other curves are moved up or down to get a good visibility. (The U curves are omitted from Figure 3 because their quality is too poor.)

Figure 3
Table 1 includes the observed times of minima with the errors of their determination and respective $\mathrm{O}-\mathrm{C}$ values according to the ephemeris (1).

Table 1

Cycle number E $110000+$	Filter	Minima J.D.(Hel.) $2448900 .+$	$\mathrm{O}-\mathrm{C}$
7	no	76.63824 ± 0.00015	-0.00194
22	no	79.58831 ± 0.00002	-0.00194
27	no	80.57149 ± 0.00002	-0.00212
31	no	81.35816 ± 0.00003	-0.00213
32	no	81.55583 ± 0.00010	-0.00114
37	U	82.53816 ± 0.00033	-0.00206
37	B	82.53831 ± 0.00042	-0.00191
37	V	82.53844 ± 0.00060	-0.00181
42	B	83.52089 ± 0.00025	-0.00279
42	V	83.52137 ± 0.00022	-0.00231
43	B	83.71715 ± 0.00054	-0.00320
43	V	83.71796 ± 0.00038	-0.00139
52	B	85.48882 ± 0.00014	-0.00157
52	V	85.48858 ± 0.00010	-0.00181
53	U	85.68473 ± 0.00079	-0.00233
53	B	85.68531 ± 0.00030	-0.00175
53	V	85.68539 ± 0.00035	-0.00167
78	B	90.60191 ± 0.00005	-0.00194

Analysis of our eclipse curves allows us to draw the following conclusions:
(1) The times of minima in different colours in the same cycle coincide within the errors of their determination. The small differences between the times of the minima in different colors, when observed simultaneously, show that the minima occur in a sequence U, B and V (except for cycle 52).
(2) The mean phase of our observations relative to the Mandel's 29.02 yr cycle (Nather \& Robinson, 1974) is

$$
\begin{equation*}
\psi=(\text { J.D.Hel. }-2435000) \times 0.0000934=0.32 \tag{2}
\end{equation*}
$$

Then it turns out that our mean $\mathrm{O}-\mathrm{C}$ residual value -0.00199 (marked as a diamond in Figure 4) falls just on the periodic curve adapted from Quigley \& Africano (1978), i.e. our observational data support 29.02 yr cycle of UX UMa.
(3) In this observational season we obtain the mean orbital period of 0 d 1966714 . This value is very near to that of Mandel (1965) and Kukarkin (1977).
(4) The shape of the eclipse curves in the same colours changes from cycle to cycle. Usually the bottom of the eclipse is almost symmetric with respect to the light minimum, but in some cases its rising branch is deformed. Similar peculiarities were seen by Warner \& Nather (1972);
(5) The mean duration of the whole minima in different colours is about 42 minutes and the mean duration of the stillstand on the ascending branch of the eclipse is about 17 minutes;

Figure 4. O-C residuals according to Mandel's 29.02 yr cycle
(6) The mean depth of minima in different colours is respectively $\Delta \mathrm{V}=1^{\mathrm{m}} ; \Delta \mathrm{B}=1^{\mathrm{m}} 25$; $\Delta \mathrm{U}=1^{\mathrm{m}} \mathrm{F}$.
(7) A small stillstand is visible on the descending branch of the eclipse nearly symmetrically to the one on the ascending branch. It is most apparent in the cycles 22 and 42 . This feature is more clearly visible in B than in V .

Acknowledgements. This work was partially supported by a grant $\phi-104$ from Bulgarian National Science Foundation. The authors are grateful to the Krakow Pedagogical University for the telescope time and to Dr. G. Pajdosz for the useful discussion.

> Diana P. KJURKCHIEVA
> Dragomir V. MARCHEV
> Shoumen University, 9700 Shoumen, Bulgaria

References:

Kreiner, J. et al., 1993, IAU Coll., No. 136 - Poster Papers on Stellar Photometry, ed. I. Elliott and C. Butler, Dublin Institute for Advanced Studies, p. 80
Kukarkin, B., 1977, MNRAS, 180, 5P
Mandel, O., 1965, Perem.Zvezdy, 15, 474
Nather, E., Robinson, E., 1974, ApJ, 190, 637
Quigley, R., Africano, J., 1978, PASP, 90, 445
Warner, B., Nather, R., 1972, MNRAS, 159, 429

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4123

Konkoly Observatory
 Budapest
 13 December 1994

HU ISSN 0374-0676

KY Ara IS MISIDENTIFIED

KY Ara was discovered by E. Boyce (Shapley et al., 1939) and was classified as a possible dwarf nova. Finder charts appear in Tsesevitch \& Kazanasmas (1971), Wyckoff and Wehinger (1978), and Duerbeck (1987), with the later two being based on the 1971 paper. This 1971 finder chart is based on examination of the original Harvard plates (Tsesevits \& Kazanasmas, 1971).

Only one outburst has been seen, in early July 1937 (JD 2428715-721), and this was on four unidentified plates in the Harvard archival plate collection (Shapley et al., 1939). This single eruption was selected from a search through the GCVS as a candidate for being an event similar to those expected from gravitational lensing by a foreground MACHO star. Such events must be color-neutral, time symmetric, and unique. We looked into the case of KY Ara to see if the eruption could be a MACHO event.

Photometry of the star identified by Duerbeck (1987) was performed at the Cerro Tololo Inter-American Observatory on 25 July 1994. The brightness of this star was measured with various standard filters as $\mathrm{U}=16.88, \mathrm{~B}=16.82, \mathrm{~V}=16.21, \mathrm{R}=15.82$, and $\mathrm{I}=15.45$ with uncertainties of roughly 0.02 magnitudes. These are the normal colors of a G0 main sequence star, not those of a dwarf nova.

Table 1

Plate	JD	Comments on brightness of KY Ara
A 19438	2428692	KY Ara invisible, G0 star visible
A 19446	2428694	KY Ara invisible, G0 star visible, poor plate
A 19456	2428696	KY Ara invisible, G0 star visible
MF 23368	2428699	KY Ara invisible, G0 star visible
MF 23383	2428701	KY Ara invisible, G0 star visible
MF 23387	2428703	KY Ara invisible, G0 star visible
A 19530	2428715	Discovery plate, B~15.8, KY Ara is to east of G0 star
B 62154	2428716	Poor plate limit, consistent with plate A 19530
A 19538	2428716	KY Ara slightly brighter than G0 star, B~16.5
MF 23447	2428719	Neither KY Ara nor G0 star visible
A 19546	2428719	KY Ara roughly equal to G0 star in brightness
A 19553	2428721	KY Ara roughly equal to G0 star in brightness
MF 23469	2428721	Neither KY Ara nor G0 visible, poor plate limit
MF 23481	2428722	KY Ara invisible, G0 star visible
A 19568	2428727	Neither KY Ara nor G0 star visible
A 19594	2428741	KY Ara invisible, G0 star visible
MF 23642	2428755	KY Ara invisible, G0 star visible

We then examined the original records and plates at Harvard. Table 1 summarizes the relevant plates. The discovery plate was A 19530, wich displayed a well-formed significant image of KY Ara. The other three plates with images of KY Ara are A 19538, A 19546, and A 19553, although the variable is close to the plate limit in all three cases. The existence of four good images at the same location over a six day period convinces us that KY Ara is indeed a true variable star.

KY Ara is identified in the original notes of E. Boyce as the following star of a double. Examination of plate A 19530 shows this to be true, with the preceding star being the G0 star mistakenly identified in later finder charts. The origin of this mistake arises from the chart of Tsesevich \& Kazanasmas (1971) which correctly depicts the discovery plate, yet has the circle centered on the preceding star. Subsequent finder charts merely followed this first chart.

Terry Girard (Yale University) made PDS astrometric scans of plates A 19530, A 19538, and the ESO sky survey plate. These confirm that the preceding star is the G0 star. KY Ara is found to be roughly 1 magnitude brighter than the G0 star, or B~15.8, on the discovery plate. The position of KY Ara is 9.5 east and 4.2 south of the G0 star. With the position of the G0 star reported by Wyckoff and Wehinger, the 1950.0 coordinates for KY Ara are $18^{\mathrm{h}} 4^{\mathrm{m}} 99^{5} 5-54^{\circ} 56^{\prime} 50^{\prime \prime} 3$. Examination of the sky survey plates shows this position to be empty to below B magnitude 20. Examination of our CCD images from Cerro Tololo show the position to be empty to below B magnitude 21. Thus, the amplitude of KY Ara is greater than approximately 5 magnitudes.

The true nature of KY Ara is unclear. The amplitude, duration, and singularity of the 1937 event are consistent with the Boyce's suggestion of a dwarf nova (with a large amplitude and rare outbursts). Alternatively, since there is only one observed maximum, KY Ara could be a fast nova or even a large amplitude MACHO event.

Bradley E. SCHAEFER
Dorrit HOFFLEIT
Departments of Physics and Astronomy
Yale University
New Haven, Connecticut 06520-8101 USA

References:

Duerbeck, H., 1987, Space Sci. Rev., 45, 1
Shapley, H., Boyce, E. H., and Boyd, C. D., 1939, Harvard Annals, 90, 239
Tsesevich, V. P., and Kazanasmas, M. S., 1971, Atlas of Finding Charts of Variable Stars, (Moscow: Acad. Sci., USSR)
Wyckoff, S., and Wehinger, P. A., 1978, Publ. Astron. Soc. Pacific, 90, 557

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4124

Konkoly Observatory
Budapest
13 December 1994
HU ISSN 0374-0676

GENEVA PHOTOMETRY OF THE ECLIPSING BINARY TV Nor

The eclipsing binary HD 143654 = TV Nor has been brought to the attention of spectroscopists by Renson (1990) because it has been classified Ap EuCrSr by Houk (1978). Indeed, there is as yet no clear-cut case of an Ap star of the Si or SrCrEu type belonging to an eclipsing system. This is probably because of the lack of short period binaries among this kind of peculiar stars (see e.g. Gerbaldi et al. 1985). However, such a system would be most interesting, because it is known that the abundance anomalies are not evenly distributed on the surface of the star, but are concentrated into patches following the large-scale magnetic structure. Many Ap stars are therefore spectrum variables simply because their rotation brings these patches into view and away from it; the art of "Doppler imaging" exploits the resulting line variations to map the abundance anomalies on the surface of the star. Such maps, however, present ambiguities, especially regarding the latitudes of the patches. Observing an Ap star undergoing an eclipse by a normal, constant companion would help to remove the ambiguities, and even to build an independant map of the eclipsed hemisphere for the corresponding rotational phase (Piskunov \& Rice, 1993; Vincent et al., 1993).

In the hope that HD 143654 could be such a rare system, we monitored it with Geneva photometry in order to obtain a good quality lightcurve. All measurements have been made from the European Southern Observatory, La Silla, Chile, with the double-beam "P7" photometer attached to the 0.7 m Swiss telescope. The first three, routine measurements were made as early as 1982, 1983 and 1984 respectively, and 5 additional measurements were made in April 1989 by the late Dr. Zdenek Kviz. Systematic monitoring began essentially in June 1990, stimulated by Renson's IBVS note, and continued each following season until July 1994.

We expected that this well-detached system would present periodic variations outside the eclipses, due to the intrinsic variations of the Ap component. The result is, however, disappointing from this point of view, as shown in Figure 1 which displays the [U-B], [B-V] and V curves. Outside the eclipses, the r.m.s. standard deviations are respectively $0.0090,0.0049$ and 0.0047 , which can be entirely attributed to measurement uncertainties. Thus, neither the primary nor the secondary is photometrically variable in a significant way, making any spectral variation rather improbable.

It is interesting to notice that the minima have different depths in V and vary in opposite ways in [B-V], while [U-B] remains constant. This means that the components have significantly different effective temperatures and spectral types. The primary is probably an early or mid- A dwarf while the secondary may be an A8 or F0 giant. This fact is probably significant regarding the Ap classification: the spectrum appears composite, and was very likely misinterpreted as that of a single Ap EuCrSr star.

Figure 1. Geneva [U-B], [B-V] and V lightcurves of the eclipsing binary TV Nor, folded according to the period of Hertzsprung (1937). Notice the lack of variability between the eclipses.

This is confirmed by the behaviour of the peculiarity parameter $\Delta(V 1-G)$ as a function of phase: while this parameter is generally positive for Ap stars (see e.g. Hauck \& North 1982), it remains here at the constant value

$$
\Delta(V 1-G)=-0.006
$$

with an r.m.s. residual scatter of only 0.0055 magnitudes. There is no significant variation at all during the eclipses. Therefore, the $\Delta(V 1-G)$ value of not only the whole system, but also of each component of TV Nor is quite typical of normal stars.

Furthermore, one of us (PN) has taken a spectrum of this system with the 1.4 m CAT telescope of the European Southern Observatory, equipped with the CES spectrograph, the Long Camera and the FA 2048 CCD detector (ESO CCD \# 30). The resolving power was $\mathrm{R}=60000$. The spectrum was taken in the H_{α} region on the night of May 16-17, 1994 at HJD $=2449489.607$, i.e. at phase $\phi=0.2531$ according to the ephemeris given in Figure 1. This is practically at a quadrature and allows us to estimate the total mass of the system from the relative velocity at that phase and from the Kepler's third law. Fitting a gaussian to the core of the H_{α} line of each component, we obtain $\lambda_{p}=6560.984 \AA$ and $\lambda_{s}=6564.447 \AA$, implying a relative velocity $\Delta V_{r}=158.2 \mathrm{~km} \mathrm{~s}^{-1}$. If the orbit is circular, which is very probably the case since the eclipses have the same duration and are separated by exactly half a period, and if the inclination i of the orbital plane is close to 90° as the very existence of deep eclipses suggests, then we obtain for the semi-major axis

Figure 2. High-resolution spectrum of TV Nor taken at orbital phase 0.253, i.e. at quadrature, and showing the star as a double-lined system.

$$
\mathrm{a}=0.124 \mathrm{AU}
$$

and for the total mass

$$
M_{p}+M_{s}=3.50 M_{\odot}
$$

which is quite consistent with the spectral types and luminosity classes proposed above for the two components.

This binary may well be spectroscopically normal, which would designate it as a very good candidate for precise mass and radius determination.

Acknowledgements: This work was supported in part by the Fonds National de la Recherche Scientifique. Drs. Z. Kviz, P. Lampens and Mrs. C. Nitschelm and F. Barblan contributed to the photometric observations, which were reduced by Mr. C. Richard.

P. NORTH
Institut d'Astronomie de l'Université de Lausanne CH-1290 Chavannes-des-Bois, Switzerland
\section*{M. BURNET}
Observatoire de Genève
CH-1290 Sauverny, Switzerland

References:

Gerbaldi, M., Floquet, M., Hauck, B., 1985, A $\begin{gathered}\text { A A 146, } 341\end{gathered}$
Hauck, B., North, P., 1982, A\&A 114, 23
Hertzsprung, E., 1937, Bull. Astr. Netherlands 8, 168
Houk, N., 1978, Michigan Catalogue of two-dimensional spectral Types for the HD Stars, Vol. 2
Piskunov, N.E., Rice, J.B., 1993, PASP 105, 1415
Renson, P., 1990, IBVS, No. 3452
Vincent, A., Piskunov, N.E., Tuominen, I., 1993, $A \& A$ 278, 523

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4125

Konkoly Observatory
Budapest
15 December 1994
HU ISSN 0374-0676

TEN NEW VARIABLE STARS IN HERCULES AND CORONA BOREALIS

Ten new variables were discovered using the positive-negative method in a field $10^{\circ} \times 10^{\circ}$ centered on η Her ($\alpha=16^{\mathrm{h}} 40^{\mathrm{m}}, \delta=+39^{\circ}, 2000$).

Our study was based on Moscow collection plates taken with the 40 cm astrograph in Crimea.

Table 1 contains coordinates and GSC identifications of new variables (for GSC stars, the coordinates are taken from GSC). Table 2 presents for each star: number of observations and time interval covered (n and JD); maximum and minimum brightness (B band); type of variability and light elements. Magnitudes of comparison stars, presented in Table 3, were obtained using a standard near M13 (Arp and Johnson, 1955) with improved photometry from Forbes and Dawson (1986). Finding charts and light curves of the periodic variables are presented in Figures 1 and 2, respectively.

Sincere thanks are due to S.Yu. Shugarov for the software used for period determinations. This study was partially supported by the Russian Foundation for Fundamental Research through grant No. 93-62-17108.

Table 1

Star	$\alpha_{(2000)}$	GSC	
Var 1	$16^{\mathrm{h}} 49^{\mathrm{m}} 44^{\mathrm{s}} 2$	$39^{\circ} 38^{\prime} 57^{\prime \prime}$	
$\operatorname{Var} 2$	163533.9	410650	
$\operatorname{Var} 3$	162745.4	414023	3066.0251
$\operatorname{Var} 4$	162516.3	405349	3065.0704
$\operatorname{Var} 5$	163511.2	424626	
$\operatorname{Var} 6$	161659.5	393837	3062.0786
$\operatorname{Var} 7$	161914.1	393998	3062.0052
$\operatorname{Var} 8$	170238.3	393227	
$\operatorname{Var} 9$	165950.5	411114	3075.0202
$\operatorname{Var} 10$	165936.7	415725	3079.0534

Remarks for individual stars
Var 4. Period varies. The data from JD 2441750 to 45960 are used in Fig. 2 for Var 4. Seven latest observations (2447027-48778) are not represented with the elements. $1=64.79, \mathrm{~b}=+44.35$, confirming the suggested CWA classification.
Var 7. Blazhko effect.
Var 9. Red on Palomar charts. Fragments of the light curve are given in Fig. 3. A brightness decrease during $\mathrm{JD}=2441782-41813$ resembles an eclipse.

Var 10. A secondary minimum exists. $\mathrm{D}=0$. 1 . Primary minima:

| $\mathrm{JD}=2441565.28$ | 41947.33 | 42217.43 | 42686.28 | 43017.38 | 43934.54 | 45580.30 | 47027.32 |
| ---: | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 41570.28 | 41952.36 | 42309.24 | 42869.47 | 43659.43 | 45524.36 | 45585.34 | 47679.44 |
| 41840.42 | 42212.43 | 42365.16 | 42920.50 | 43807.20 | 45529.39 | 45911.39 | |

Figure 1

Figure 2

Table 2

Star	n	JD 24...	Type	$\mathrm{B}_{\text {g } M \text { M }}$	$\mathrm{B}_{p g \text { M IN }}$	Light elements
Var 1	240	41750-48778	RRab	$15^{\mathrm{m}} 1$	$16 .{ }^{\mathrm{m}} 8$	$\mathrm{JD}_{\text {MAX }}=2447296.48 \pm 0 . \mathrm{d} 04545 \times \mathrm{E}$
Var 2	238	41750-48778	RRab	15.1	16.4	$\mathrm{JD}_{\text {MAX }}=2441837.42 \pm 0 .{ }^{\text {d }} 532464 \times \mathrm{E}$
Var 3	239	41750-48778	RRab	15.2	16.9	$\mathrm{JD}_{\text {MAX }}=2442363.20 \pm 0.488907 \times \mathrm{E}$
Var 4	254	41750-48778	CWA	14.3	15.5	$\mathrm{JD}_{\text {MAX }}=2445616.20 \pm 1 \mathrm{~S}^{\text {d }} 501 \times \mathrm{E}$
Var 5	244	41750-48778	RRab	14.5	16.6	$\mathrm{JD}_{\text {MAX }}=2443969.49 \pm 0.502775 \times \mathrm{E}$
Var 6	229	41750-48778	RRab	14.5	16.7	$\mathrm{JD}_{\text {MAX }}=2445588.35 \pm 0 .{ }^{\text {d }} 578174 \times \mathrm{E}$
$\operatorname{Var} 7$	312	37080-48778	RRab	12.9	14.6	$\mathrm{JD}_{\text {MAX }}=2442633.43 \pm 0$ d $480107 \times \mathrm{E}$
Var 8	299	37087-48778	RRab	14.8	16.4	$\mathrm{JD}_{\text {MAX }}=2444849.30 \pm 0$ d $568397 \times \mathrm{E}$
Var 9	322	37087-48778	?	12.1	14.2	
Var 10	315	37087-48778	EA	12.95	14.1	$\mathrm{JD}_{\text {MIN }}=2442217.42 \pm 5$ d $0952 \times \mathrm{E}$

Table 3

Star	a	b	c	d	e	f	g
Var 1	14.75	15.37	16.42	16.94			
Var 2	14.90	15.89	16.08	16.52			
Var 3	14.83	15.26	15.83	16.13	16.78		
Var 4	14.00	14.62	14.77	15.50			
Var 5	14.57	15.20	15.78	16.53			
Var 6	14.20	14.82	15.28	16.40	17.50		
Var 7	12.43	12.05	13.87	14.22	14.68		
Var 8	14.26	15.23	15.89	16.48			
Var 9	11.80	12.21	12.32	12.84	13.34	13.49	14.42
Var 10	12.73	13.54	14.32				

Figure 2 (cont.)

Figure 3

S. V. ANTIPIN

Sternberg Astronomical Institute
13, Universitetskij Prosp.
Moscow 119899, Russia

References:
Arp, H.C. and Johnson, H.L., 1955, ApJ, 122, 171
Forbes, D. and Dawson, P.C., 1986, PASP, 98, 102

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4126

Konkoly Observatory
Budapest
16 December 1994
HU ISSN 0374 - 0676

PHOTOELECTRIC OBSERVATIONS AND MINIMA TIMES OF FOUR W UMa SYSTEMS: LS Del, SW Lac, V839 Oph AND AQ Psc ${ }^{1}$

During the Summer School of Young Astronomers held at Ankara University Observatory, between 22 Aug.-3 Sept. 1994, four W UMa systems: LS Del, SW Lac, V839 Oph and AQ Psc were observed in B and V filters using a single channel unrefrigerated SSP-5 photometer attached to the 30 cm Maksutov telescope. The observations were carried out by the 28 participant students (six groups in turn) and some colleagues of the Ankara University Observatory, as part of the Summer School program. The school was sponsored by The Ankara University Science Faculty, The Ankara University Graduate School of Natural and Applied Sciences, The Technical and Research Council and The Turkish Astronomical Society.

The identification and general properties of program stars are listed in Table 1, where $\mathrm{Sp}, \mathrm{No}, \mathrm{T}_{0}$ and P stand for the spectral type of the system, number of observations obtained in each filter, epoch and orbital period used in phase calculation. Each observation comprises three five second integrations through B or V filter in sequence comparison-sky-variable-sky-variable-comparison-sky with occasional interruptions for background and check star measurements. Typical r.m.s. error of a single observation is around 0.01 mag. The control of the photometer head, data acquisition and data reduction for atmospheric extinction and heliocentric correction were carried out with a software prepared by Müyesseroğlu (1992). The light and color curves of the program stars by using the light elements from Table 1 are shown in Figures 1, 2 and 3. Part of the scatter in observations (see figures) is due to night to night light variations. The observations of AQ Psc cover only the phase interval $0.46-0.86$ around secondary minimum.

Table 1. Identification and general properties of the program stars.

LS Del	SW Lac	V839 Oph	AQ Psc	
Var. Star	$\mathrm{BD}+19^{\circ} 4574$	$\mathrm{BD}+37^{\circ} 4717$	$\mathrm{BD}+09^{\circ} 3584$	$\mathrm{BD}+06^{\circ} 0203$
Comp. Star	$\mathrm{BD}+19^{\circ} 4568$	$\mathrm{BD}+37^{\circ} 4715$	$\mathrm{BD}+09^{\circ} 3578$	$\mathrm{BD}+05^{\circ} 0177$
Check Star	$\mathrm{BD}+19^{\circ} 4576$	$\mathrm{BD}+37^{\circ} 4711$	$\mathrm{BD}+09^{\circ} 3590$	$\mathrm{BD}+06^{\circ} 0204$
Sp	G 5	$\mathrm{G} 8 \mathrm{~V}+\mathrm{G} 8 \mathrm{~V}$	F 8 V	F 8 V
No	132	335	379	133
$\mathrm{~T}_{0}$	47790.42696	49594.4684	49590.3794	44562.4691
P	0.363840	0.3207209	0.40899532	0.47564
Reference	Demircan	Pena et al.	Niarchos	Sarma and
	et al. 1991	1993	1989	Radhakrishnan
				1982

[^2]

Figure 1

Figure 2

Figure 3
Table 2. Times of minima

LS Del	SW Lac	V839 Oph	AQ Psc
49588.3451 B II	49589.4973 B II	49590.3780 B I	49596.4629 B II
± 0.0007	± 0.0003	± 0.0009	± 0.0009
49588.3431 V II	49589.4989 V II	49590.3797 V I	49596.5183 V II
± 0.0008	± 0.0003	± 0.0004	± 0.0006
	49594.4696 B I	49596.3118 B II	
	± 0.0003	± 0.0002	
	49594.4674 V I	49596.3116 V II	
	± 0.0003	± 0.0003	
	49597.5156 B II	49598.3573 B II	
	± 0.0003	± 0.0003	
	49597.5159 V II	49598.3573 V II	
	± 0.0003	± 0.0003	

From these new observations 16 new times of minimum light were calculated by using the method of Kwee and Woerden (1956). The times of minimum light for the asymmetric eclipse curves of SW Lac were checked by using the well known graphical"chord" method. The resulting new times of minimum light together with their r.m.s. errors are listed in Table 2 for each system.

O. Demircan	Z. Aslan	C. Ibanoğlu	Z. Müyesseroğlu	S.O. Selam
M. Tanriver	H. Ak	H. Dündar	B. Albayrak	K. Yüce
A. Devlen	A. Gökçe	H. Çalışkan	A. Iskender	Y. Kaya
A. Bulut	E. Çınar	H. Varlı	N. Çubukcu	K. Uluç
A. Savranlar	G. Şen	H. Özdemir	O. Çakırlı	M. Dağcı
Y. Yüksel	G. Taş	Y. Alemdar	R. T. Yıldırım	Y. Erdal
A. Aşçilar	E. Açıkgöz	B. Bektaşli	F. Göksen	N. Köker

Ankara University Observatory
Faculty of Science
TR 06100 Tandogan, Ankara
Turkey

References:

Demircan, O., Selam, S.O. and Derman,E., 1991, Ap $3 S S$, 186, 57
Kwee, K.K. and van Woerden, H.,1956, Bull. Astr. Neth., 12, 327
Müyesseroğlu Z., 1992, Ankara Univ. Obs. (unpublished)
Niarchos, P.G., 1989, Ap\&SS, 153, 143
Pena, J.H., Hobart, M.A. and Rodriguez, E., 1993, it Rev. Mex. A\&Ap., 25, 63
Sarma, M.B.K. and Radhakrishnan, K.R., 1982, IBVS, No. 2073

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4127

Konkoly Observatory
Budapest
20 December 1994
HU ISSN 0374-0676

1994 BVRI PHOTOMETRY OF CG CYGNI

CG Cygni ($=\mathrm{BD}+34^{\circ} 4217=\# 177$ in the catalog of Strassmeier et al., 1993) is a member of the short period eclipsing RS CVn class of stars. Budding and Zeilik (1987) first modeled the spots on this star. Zeilik et al. (1994) model the spot structure for available data from 1922 to 1993 and review the literature on this star.

I observed CG Cyg on the nights of 13, 15, 16, 18, and 19 August 1994 using the San Diego State University $61-\mathrm{cm}$ telescope on Mt. Laguna. The telescope is equipped with a photometer using a Hamamatsu R943-02 tube operated at -1450 V and cooled to -15°. The BVRI filters are chosen to closely match the Johnson-Cousins system. I used $\mathrm{BD}+34^{\circ} 4216$ ($=$ SAO 70728) as a comparison star. The data, plotted in Figures 1 and 2, are differential magnitudes (star-comparison) in the standard Johnson-Cousins system. Zeilik et al. (1994) discuss small amplitude variations outside the eclipses that are seen by several different independent observers. These variations are apparent in the 1994 data, but their nature is still uncertain.

I modeled the data using the Information Limit Optimization Technique (ILOT) described in detail by Budding and Zeilik (1987). I extracted a distortion wave from the initial binary star fit, then fit the distortion wave for the longitude and radius of two 0K circular spots at a fixed 45° latitude. Figures 3 and 4 show these fits for the B band. The fits for each wavelength are performed independently. I get:

	B band	V band	R band	I band
Longitude	254.7 ± 10.1	258.5 ± 8.1	257.5 ± 7.0	259.9 ± 7.5
Latitude	45	45	45	45
Radius	8.2 ± 1.0	9.1 ± 0.9	10.1 ± 0.8	9.6 ± 0.9
Longitude	106.5 ± 10.7	113.9 ± 16.0	125.3 ± 13.6	130.6 ± 20.5
Latitude	45	45	45	45
Radius	6.9 ± 1.2	5.3 ± 1.6	6.1 ± 1.4	5.5 ± 1.5
χ^{2}	132.2	103.3	92.9	85.0

Note that the models in the different bands agree to within the errors. Zeilik et al. (1994) find that the spots for CG Cyg tend to cluster in Active Longitude Belts at 90° and 270°. These models show the same phenomenon.

CG CYGNI-1994

Figure 1
CG CYGNI-1994

Figure 2

CG CYGNI-1994

Figure 3
CG CYGNI-1994

Figure 4

After performing the spot fits, the effects of the distortion wave were removed and clean fits were made to the corrected light curve. I get:

λ	L_{1}	$\mathrm{k}=\mathrm{r}_{2} / \mathrm{r}_{1}$	r_{1}	i	L_{2}	$\mathrm{q}=\mathrm{M}_{2} / \mathrm{M}_{1}$	χ^{2}
B	0.700 ± 0.076	0.948 ± 0.181	0.237 ± 0.024	82.8 ± 1.3	0.264 ± 0.079	0.623 ± 0.293	107
V	0.686 ± 0.012	0.883 ± 0.023	0.248 ± 0.005	fixed	0.280 ± 0.012	0.485 ± 0.077	73
R	0.695 ± 0.011	0.836 ± 0.019	0.257 ± 0.005	fixed	0.277 ± 0.012	0.469 ± 0.097	162
I	0.705 ± 0.014	0.790 ± 0.017	0.265 ± 0.005	fixed	0.272 ± 0.015	0.544 ± 0.373	50

The values of L_{1}, k, r_{1}, i, and L_{2} all agree with the values found by Zeilik et al. (1994). I was only able to simultaneously fit the inclination and mass ratio in the B band. In the other bands I fixed the inclination to try to get some information on the mass ratio because the results of Zeilik et al. (1994) give a good value for the inclination. Most previous values of the mass ratio are 1.0 (Naftilan and Milone 1985, Sowell et al. 1987). Jassur (1980) gets 0.95 and Popper (1993) gets 0.84 . The values above are derived from only photometric data at one epoch and are therefore less reliable than values derived using spectroscopic data. However these values lend credence to the lower value of the mass ratio found by Popper (1993).

Because I was unable to observe an entire primary or secondary eclipse on a single night I am not able to give a reliable observed time for either the primary or secondary eclipse. However, the ILOT program makes a best fit correction to the phase of primary minimum. From that information averaged over the 4 observed wavelengths, I find that the eclipses are observed $0.02245+0.0001$ days before they are computed to occur during this epoch.

I thank Ron Angione for scheduling generous amounts of observing time at Mt. Laguna and the Research Corporation for providing generous financial support.

P. A. HECKERT
Dept. of Chem. \& Physics
Western Carolina University
Cullowhee, NC 28723 USA

References:

Budding, E. and Zeilik, M., 1987, Astrophys. J., 319, 827
Jassur, D. M. Z., 1980, Ap. Space Sci., 67, 19
Naftilan, S. A. and Milone, E. F., 1985, Astron. J., 90, 761
Popper, D. M., 1993, Astrophys. J., 404, L67
Sowell, J. R., Wilson, J. W., Hall, D. S., and Peyman, P. E., 1987, Pub. Astron. Soc. Pac., 99, 407
Strassmeier, K., et al., 1993, Astron. \& Astrophys. Suppl., 100, 173
Zeilik, M., Gordon, S., Jaderlund, E., Ledlow, M., Summers, D. L., Heckert, P. A., Budding, E., and Banks, T. S., 1994, Astrophys. J., 421, 303

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4128

Konkoly Observatory
Budapest
23 December 1994
HU ISSN 0374-0676

B AND V PHOTOELECTRIC OBSERVATIONS OF THE CONTACT BINARY XY Leo

XY Leo is a short period contact binary with multiple CaII H and K emission lines and strong X-ray emission (Hrivnak et al., 1984; Vilhu and Rucinski, 1983). The O-C diagram has a sine-like shape, but sudden changes of period of XY Leo were observed three times (Gehlich et al., 1972). These phenomena were explained sucessfully by BY Dra type activity of the other pair of stars in the system (Barden, 1987). The variations in the light curves of the binary were detected as usually for all W -systems.

Our observations of XY Leo were carried out on three nights: 28, 29 and 30 November 1990). The four channel WBVR photometer attached to the $48-\mathrm{cm}$ reflector was used (Kornilov and Krylov, 1990). The observations were made at High Altitude Alma-Ata Observatory of Sternberg Astronomical Institute. BD $+28^{\circ} 2036$ served as the comparison star. The mean error of magnitudes range from $0 .{ }^{\mathrm{m}} 01$ to $0 . \mathrm{m} 03$ in each filter. These values are due to small ratio of signal to noise (~ 3) for stars of such brightness. V and B light curves of XY Leo are presented in Figure 1. Phases are calculated by the ephemeris from Krzesinski et al. (1990):

$$
\text { MinI=J.D.hel } 2447612.34748+0 \text { d } 2841034 \times \text { E }
$$

The observations allowed us to determine the times of one primary and two secondary minima by graphical method separately for each colour. Table I contains the moments of minima, type of minima and $\mathrm{O}-\mathrm{C}$ values as calculated from the same ephemeris.

Figure 1

Table I

$\mathrm{JD}_{\text {hel }}$ $2448000+$	Min	Filter	O-C
$224.4477:$	II	V	-0.0194
$224.4470:$	II	B	-0.0201
225.4393	I	V	-0.0222
225.4399	I	B	-0.0216
226.4348	II	V	-0.0210
226.4351	II	B	-0.0207

L. T. MARKOVA

Laboratory of Astrophotometry and Stellar Atmospheres
G. V. ZHUKOV

Department of Astronomy
Kazan University
Lenina 18, 420008 Kazan
Russia
E-mail: gera@astro.kazan.su

References:
Barden, S. C., 1987, Astrophys. J., 317, 333
Gehlich, U. K., Prolss, J., Wehmeyer, R., 1972, Astron. Astrophys., 18, 477
Hrivnak, B. J., Milone, E. F., Hill, G., Fisher, W. A., 1984, Ap. J., 285, 683
Kornilov, V. G., Krylov, A. V., 1990, Soviet Astronomy, 67, 173
Krzesinski, J., Kuczawska, E., Kurpinska-Winiarska, M., 1990, IBVS, No. 3458
Vilhu, O., Rucinski, S. M., 1983, Astron. Astrophys., 127, 5

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4129

Konkoly Observatory
Budapest
27 December 1994
HU ISSN 0374 - 0676

THE IDENTIFICATION OF VARIABLE STARS DISCOVERED WITH THE HUBBLE SPACE TELESCOPE IN THE GLOBULAR CLUSTER MESSIER 3

Recently Guhathakurta et al. (1994) published a list of 40 variable stars detected in the core of the globular cluster M3 using HST images. The stars have relative astrometric positions. In another list, by Evstigneeva et al. (1994), accurate astrometric positions are given for all known variable stars in this cluster, except 4 objects which the authors could not identify. The examination of these lists shows that they contain common objects. I have reduced the relative positions by Guhathakurta et al. to equatorial co-ordinates in the system by Evstigneeva et al. using 26 common objects. The agreement between the positions is very good, the r.m.s. deviation being 0 ". 09 .

As a result, 20 variables were identified with 19 ones from the list by Sawyer Hogg (1973), two variables being close components of one earlier known variable V4. V201, a variable lost by Evstigneeva et al., was identified with ID 1600 using a chart by Kholopov (1977). 6 variables were discovered earlier by Kholopov (1977) and 3 variables by Kadla and Gerashchenko (1980).

The identifications are given in the Table. Two identifications, ID 9019 with V156 and ID 9012 with X23, are marginal, because their positions measured with a ground-based telescope may be not accurate. So 11 variables may be new discoveries with the HST. The equatorial co-ordinates are those reduced from relative astrometry by Guhathakurta et al.
> V.P.GORANSKIJ

> Sternberg Astronomical Institute,
> 13, Universitetskij Prospekt, 119899, Moscow, Russia

References:

Evstigneeva, N.M., Samus', N.N., Tsvetkova, T.M., and Shokin, Yu.A.: 1994, Pis'ma v Astron. Zhurn. (Russian Astronomy Letters), 20, No. 8-9, 693
Guhathakurta, P., Yanny, B., Bahcall, J.N., and Schneider, D.P.: 1994, Astron. J., 108, No. 5, 1786
Kadla, Z.I. and Gerashchenko, A.N.: 1980, Astron. Circ. (Russia), No. 1923, 1
Kholopov, P.N.: 1977, Variable Stars, 20, No. 4, 313
Sawyer-Hogg, H.: 1973, David Dunlap Obs. Publ., 3, No. 6

ID No. Desig. $\operatorname{RA}(2000) \quad \operatorname{Decl}(2000)$ Deviation Remarks

9001	V132	$13^{\mathrm{h}} 42^{\mathrm{m}} 07^{\text {s }} .443$	$28^{\circ} 22^{\prime} 199^{\prime \prime} 85$	$0{ }^{\prime \prime} 1$	
9002	V168	134208.078	282249.36	0.1	
9003	V4n	134208.193	282233.21	0.2	
9004	V4s	134208.216	282232.86	0.3	
9005	V143	134208.904	282258.93	0.1	
9006	X40	134208.999	282156.60	0.1	
9007	V122	134209.046	282155.05	0.1	
9008	new	134209.197	282228.75		
9009	V142	134209.259	282143.58	0.0	
9010	X14	134209.458	282234.79	0.2	
9012	new?	134209.550	282243.82	1.7	from X23
9011	V213	134209.569	282212.30	0.1	
9013	V184	134209.570	282227.36	0.1	
9014	V189	134209.591	282221.54	0.1	
9015	X36	134209.667	282249.23	0.1	
9016	new	134209.780	282247.53		SX Phe type var.
9017	V212	134209.868	282203.90	0.1	
9018	X13	134209.877	282215.33	0.1	
9019	new?	134209.992	282159.90	1.3	from V156
32	new	134210.082	282239.96		
85	V221	134210.217	282228.50	0.1	
238	V215	134210.439	282241.25	0.1	
9020	V195	134210.492	282214.33	0.1	
9021	V160	134210.807	282158.94	0.0	
507	X17	134210.767	282237.50	0.2	
552	new?	134210.818	282237.00	0.7	from X17
9022	V174	134210.841	282208.38	0.1	
576	new	134210.867	282224.23		SX Phe type var.
586	new	134210.867	282229.74		
684	KG3	134210.958	282233.51	0.4	
734	KG4	134211.000	282243.51	0.1	
9023	V217	134211.467	282215.34	0.0	
9024	V154	134211.647	282213.56	0.1	Cepheid.
9025	new	134211.699	282214.02		
1489	new	134211.709	282215.69		
1600	V201	134211.792	282233.56	-	
1711	new	134211.881	282237.45		Var RGB star.
2042	KG7	134212.149	282232.35	0.1	
9026	X22	134212.255	282215.13	0.1	
2538	V193	134212.614	282235.35	0.1	

Catalogues: V - Sawyer-Hogg (1973); X - Kholopov (1977); KG - Kadla and Gerashchenko (1980).

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4130

Konkoly Observatory
Budapest
27 December 1994
HU ISSN 0374-0676

SPECTROSCOPIC BINARITY OF THE CEPHEID BY Cas

The variability of BY Cas was discovered by Beljawsky (1931). According to Szabados (1991), this s-type Cepheid shows considerable period variability and after JD 2443000 varies with the period 3 d 222199 .

Joy (1937) published 6 radial velocity values for BY Cas, one radial velocity measurement was later published by Rastorgouev et al. (1990). Szabados (1991) was not able to derive γ-velocity for this star. Usenko (1990) suggested the presence of a B5 companion from the star's position in the two-color diagram. In our catalog (Gorynya et al., 1992) of Cepheid radial velocities measured with the CORAVEL-type spectrometer designed by Tokovinin (1987), we presented 9 velocities of the star and suspected variability of its γ-velocity.

We have now added 5 new measurements of the radial velocity of BY Cas. These results clearly confirm that the star is a spectroscopic binary. Though the radial velocity data are still not very abundant, we have attempted to determine provisional orbital elements. Several sets of orbital elements still remain possible, but presently we prefer the solution with small eccentricity: $T_{0}=2449298, P_{o r b}=553^{d} \pm 20^{d}, e=0.05 \pm 0.05, \omega=240^{\circ}$, $\gamma=-58 \mathrm{~km} / \mathrm{s}, K=9.5 \mathrm{~km} / \mathrm{s}$.

Table 1

$\mathrm{JD}_{\text {hel }}$ $244 \ldots$	V_{r}, hel, km / s	$\sigma, \mathrm{km} / \mathrm{s}$	Phase, orbit.	Phase, puls.	V_{r}, orbit.	V_{r}, puls.
7792.507	-45.0	1.1	0.279	0.469	-48.7	3.7
7793.515	-43.5	1.3	0.281	0.782	-48.7	5.2
8253.282	-49.9	0.8	0.112	0.466	-55.4	5.5
8555.375	-67.3	1.0	0.657	0.217	-61.8	-5.5
8557.306	-58.9	2.0	0.661	0.817	-62.0	3.1
8562.289	-61.5	0.8	0.670	0.363	-62.4	0.9
8565.307	-65.3	0.8	0.675	0.300	-62.7	-2.6
8566.353	-54.4	1.6	0.677	0.624	-62.8	8.4
8567.323	-69.2	1.0	0.679	0.925	-62.9	-6.3
9252.500	-58.8	0.7	0.917	0.563	-66.3	7.5
9255.507	-59.1	0.7	0.923	0.497	-66.2	7.1
9610.585	-49.1	0.6	0.564	0.692	-56.8	7.7
9613.597	-49.8	0.7	0.570	0.626	-57.1	7.3
9615.604	-62.0	0.6	0.574	0.249	-57.2	-4.8

Table 1 presents available correlation-spectrometer radial velocities of BY Cas, as well as the Cepheid's velocities separated into an orbital and a pulsational term. The columns contain: heliocentric Julian dates; measured heliocentric radial velocities; their internal r.m.s. errors; phases of the orbital cycle calculated with our provisional elements; phases of the pulsational cycle calculated using improved light elements in the time interval $\mathrm{JD}_{\text {hel }}$ 2448200-900:

$$
\text { Max }_{\text {hel }}=2448441.895+3 \mathrm{~d} 22227 \times E ;
$$

orbital motion components of the radial velocity computed from the orbital elements; radial velocity residuals (to be attributed to pulsations).

Thanks are due to Dr. A. Tokovinin for providing possibility to use his spectrometer, and to Sternberg Institute observers and students who took part in observations according to our program.

N.A. GORYNYA
N.N. SAMUS
Institute of Astronomy
of Russian Academy of Sciences
48, Pyatnitskaya Str.
Moscow 109017, Russia
A.S. RASTORGOUEV
Sternberg Astronomical Institute
13, Universitetskij Prosp.,
Moscow 119899, Russia

References:
Beljawsky, S., 1931, Astron. Nachr., 243, 116
Gorynya, N.A., Irsmambetova, T.R., Rastorgouev, A.S., Samus, N.N., 1992, Sov. Astron. Letters, 18, 316
Joy, A.H., 1937, Astrophys. J., 86, 376
Rastorgouev, A.S., Valitova, A.M., Glushkova, E.V., Kulagin, Ju.V., Pavlov, M.V., Samus, N.N., 1990, in: Catalog of Measured Stellar Radial Velocities. Catalog of Proper Motions, Tokovinin, A.A. (ed.), Moscow: Moscow University Press, p. 29
Szabados, L., 1991, Budapest Mitt., Nr. 96, 125
Tokovinin, A.A., 1987, Soviet Astronomy, 31, 98
Usenko, I.A., 1990, Kinem. Fiz. Neb. Tel, 6, 91 (English translation in Kinem. Phys. Celest. Bodies, 6, No. 3)

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4131

Konkoly Observatory
Budapest
28 December 1994
HU ISSN 0374-0676

WW CEPHEI: ELEMENTS REDISCOVERED AND IMPROVED

[BAV Mitteilungen Nr. 71]

The Algol-type eclipsing binary WW Cep $=241.1928$ Cephei was discovered by Schneller (1928) on photographic plates of Babelsberg Observatory. Later, Schneller (1931) published a list of individual photographic magnitudes ranging between $11^{\mathrm{m}} .0$ and $11^{\mathrm{m}} .8$, determined the time between first and last contact of the primary minimum as $\mathrm{D}=4 .{ }^{\mathrm{h}} 1$ and reported the following first elements:

$$
\operatorname{Min} \mathrm{I}=\mathrm{HJD} 2425098.527+4 \mathrm{~d}^{\mathrm{d}} 60086 \times \mathrm{E} .
$$

Metzger rediscovered the variable independently on the same photographic plates and found $\mathrm{D}=0.15$ and $\mathrm{d}=0.03$ (Staker, 1931). WW Cep was again investigated by Götz (1951) on plates of the Sonneberg Sky Survey. He submitted four minima timings and calculated new elements:

$$
\operatorname{Min} \mathrm{I}=\mathrm{HJD} 2425029.495+\mathrm{1}^{\mathrm{d}} 53360 \times \mathrm{E} .
$$

With these elements WW Cep is listed in the GCVS (1985). Šilhán (1982) reported that in a photographic and visual search the primary minimum could not be found. Lacy (1990) noted that his spectrograms are inconsistent with the ephemeris listed in the GCVS (1985). Photoelectric photometry by Lacy (1992) showed no sign of an eclipse at phase 0.0327. Using the photographic magnitudes published by Schneller (1931) together with the elements from the GCVS, a reduction to one cycle shows that seven measurements contradict the ephemeris used. In spite of all that, two BBSAG observers published 17 visual minima which follow quite well the published elements. These discrepancies made WW Cep a candidate for the observing program of the author.

The observations were made at his private observatory with an SBIG ST6 CCD-camera without filters attached to a 20 cm SC-telescope. WW Cep was observed on 20 nights between Apr. 1993 and Oct. 1994. The rather large scatter in the lightcurve is due to not always photometric weather conditions. The minima times were calculated using the Kwee - van Woerden (1956) method. From about two and a half thousand pictures over almost all phases the true period could be rediscovered. It is very near the original one suggested by Schneller. In the instrumental system the depth of the primary and secondary minima were found to be 0.64 and $0 . \mathrm{m} \cdot 16$, respectively.

Using the minima from Parenago and Schneller together with the new observations, a least squares fit yields the following linear ephemeris. The visual observations by the BBSAG seem to be affected by systematic error and had to be excluded.

$$
\begin{gather*}
\operatorname{Min} \mathrm{I}=\mathrm{HJD} 2449662.4438+4 .{ }^{\mathrm{d}} 60084540 \times \mathrm{E} \\
\pm 2 \tag{1}
\end{gather*}
$$

Figure 1: Differential light curve of WW Cep computed with respect to the new ephemeris (1).

Figure 2: O-C-diagram for WW Cep computed with respect to the new ephemeris (1) using all available minima timings.

- represents photoelectric, o photographic series,
+ visual observations and \square photographic plate minima.

Figure 3: O-C diagram for WW Cep computed with respect to the new ephemeris (1) using only photoelectric observations.

Table 1. Observed times of minima for WW Cep, epochs and residuals computed with respect to the ephemeris (1) derived in this paper.

N	$\begin{aligned} & \text { JD hel. } \\ & 2400000+ \end{aligned}$	W	T*	Epoch	(O-C)	Lit	N	$\begin{gathered} \text { JD hel. } \\ 2400000+ \end{gathered}$	W	T*	Epoch	(O-C)	Lit
1	16375.36	2	P	-7235.0	+0.03	[1]	20	47757.392	0	V:	-414.0	-0.302	[11]
2	25029.518	2	P	-5354.0	+0.000	[2]	21	48125.455	0	$\mathrm{V}:$:	-334.0	-0.306	[12]
3	25098.526	20	F	-5339.0	-0.004	[2]	22	48444.452	0	V:	-265.5	-1.068	[13]
4	25121.530	2	P	-5334.0	-0.004	[2]	23	48467.451	0	$\mathrm{V}:$:	-260.5	-1.073	[13]
5	25503.400	1	P :	-5251.0	-0.005	[2]	24	48490.456	0	V:	-255.5	-1.073	[13]
6	25908.280	1	P:	-5163.0	+0.001	[2]	25	48619.267	0	V:	-227.5	-1.085	[14]
7	32119.308	0	$\mathrm{P}:$:	-3813.0	-0.112	[3]	26	48852.363	0	$\mathrm{V}:$:	-176.0	-0.332	[15]
8	32292.554	0	$\mathrm{P}:$:	-3776.5	+0.602	[3]	27	49217.394	0	V:	-97.5	-1.068	[16]
9	33134.551	0	$\mathrm{P}:$:	-3593.5	+0.644	[3]	28	49218.4690	60	E	-97.5	+0.0068	[17]
10	33151.454	0	$\mathrm{P}:$:	-3589.5	-0.856	[3]	29	49220.435	0	V:	-96.0	-0.328	[16]
11	43509.335	0	V::	-1338.5	+0.522	[4]	30	49563.5213	60	E	-22.5	-0.0043	[17]
12	45932.434	0	$\mathrm{V}:$:	-811.5	-1.025	[5]	31	49586.5283	60	E	-17.5	-0.0016	[17]
13	46320.404	0	$\mathrm{V}:$:	-727.5	+0.474	[6]	32	49593.427	30	E:	-15.0	-0.004	[17]
14	47116.329	0	$\mathrm{V}:$:	-554.5	+0.453	[7]	33	49600.328	30	E:	-14.5	-0.004	[17]
15	47323.387	0	$\mathrm{V}:$:	-509.5	+0.473	[8]	34	49625.6366	60	E	-8.0	-0.0004	[17]
16	47392.381	0	V::	-494.5	+0.454	[9]	35	49632.5410	60	E	-7.5	+0.0027	[17]
17	47412.324	0	$\mathrm{V}:$:	-489.0	-0.306	[10]	36	49639.4405	60	E	-5.0	+0.0009	[17]
18	47415.390	0	$\mathrm{V}:$:	-489.5	+0.459	[9]	37	49646.3424	60	E	-4.5	+0.0016	[17]
19	47737.432	0	V:	-419.5	+0.442	[11]	38	49662.4427	60	E	0.0	-0.0011	[17]

[1]: Parenago (1934), [2]: Schneller (1931), [3]: Götz (1951), [4]: Peter (1978), [5]: Peter (1984), [6]: Peter (1985), [7]: Peter (1988a), [8]: Blättler (1988), [9]: Peter (1988b), [10]: Blättler (1989), [11]: Peter (1989), [12]: Peter (1990), [13]: Peter (1991), [14]: Peter (1992a), [15]: Peter (1992b), [16]: Peter (1994), [17]: this paper *) P denotes pg plate min., E CCD min., F pg series and V visual estimates. Those marked with ':' got reduced weight while those marked with ' $::$ ' were discarded.

It should be mentioned that plate E409 at epoch $2425505.468(\mathrm{~m}=11.13)$ of the list of photographic magnitudes by Schneller (1931), if significant, seems to indicate the descend to a secondary minimum. If this is true, the phase of min II would have been at phase 0.46 whereas the new measurements show min II at phase 0.5 . Therefore WW Cep may be a system with apsidal motion.

F. AGERER

Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV)
Zweikirchen, Dorfstrasse 19,
D-84184 Tiefenbach, Germany

References:

Blättler, E.: 1988, BBSAG Bull., 89,
Blättler, E.: 1989 BBSAG Bull., 90,
Götz, W.: 1951, Mitt. Ver. Sterne, 135
Kholopov P.N. et al.: 1985, Gen. Cat. of Var. Stars, $4^{\text {th }}$ Ed., Nauka, Moscow
Kwee, K.K., van Woerden, H.: 1956, Bull. Astr. Inst. Netherlands, 12, 327
Lacy, C. H.: 1990, Inf. Bull. Var. Stars, No. 3448
Lacy, C. H.: 1992, Astr. Journal, 104, 801
Parenago, P.: 1934, Perem. Zvezdy, 4, 351
Peter, H.: 1978, BBSAG Bull., 36
Peter, H.: 1984, BBSAG Bull., 73
Peter, H.: 1985, BBSAG Bull., 78
Peter, H.: 1988a, BBSAG Bull., 86

Peter, H.: 1988b, BBSAG Bull., 89
Peter, H.: 1989, BBSAG Bull., 92
Peter, H.: 1990, BBSAG Bull., 96
Peter, H.: 1991, BBSAG Bull., 98
Peter, H.: 1992a, BBSAG Bull., 100
Peter, H.: 1992b, BBSAG Bull., 102
Peter, H.: 1994, BBSAG Bull., 105
Schneller, H.: 1928, Astr. Nachrichten, No. 5571
Schneller, H.: 1931, Ver. Berlin-Babelsberg, 8, 6.29
Šilhán, J.: 1982, Contr. N. Copernicus Obs. and Plan. Brno, 23, 26
Staker, P.: 1931, Astr. Nachrichten, No. 5828

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4132

Konkoly Observatory
Budapest
28 December 1994
HU ISSN 0374 - 0676

V406 LYRAE: NEW EPHEMERIS AND LIGHTCURVE

[BAV Mitteilungen Nr. 72]

In this paper we report on our photographic and CCD photometry on the β Lyr type variable V406 Lyr.

V406 Lyr = SVS $1015=$ CSV 4208 was announced as a short period variable by Parenago (1946) with a brightness range between $12^{\mathrm{m}} \cdot 4$ and $13^{\mathrm{m}} 3$. Meinunger (1970) investigated this variable on plates of the Sonneberg Sky Survey. He classified the star as eclipsing, gave 23 minima, calculated from them a first ephemeris as

$$
\operatorname{Min} \mathrm{I}=H J D 2438525.500+1 . \mathrm{d} 51130 \times \mathrm{E}
$$

and published a first photographic light curve. The range in this lightcurve is roughly between $12^{\mathrm{m}} .5$ and $13^{\mathrm{m}} \cdot 0$. The variable got its definitive name in the $58^{\text {th }}$ name-list of variable stars (Kukarkin et al. 1972). With the data above V406 Lyr was included in the fourth edition of the GCVS (Kholopov et al. 1985).

For more than twenty years the variable had remained obviously unobserved when the BAV published a photographic minimum timing (Moschner, Kleikamp 1990). Since that time we have investigated V406 Lyr photographically and photoelectrically. The photographic observations were made with a 32 cm RC telescope and the exposures were evaluated with a fixed diaphragm photometer. The CCD observations were performed with an SBIG ST6 camera without filters attached to a 20 cm SC telescope (F.A.) or to the 32 cm RC telescope (W.M.). Altogether three new photographic and nine CCD minima could be collected. All minima times were calculated with the Kwee-van Woerden (1956) method. In the instrumental system of the CCD observations the depth of the primary and secondary minima were found to be 0.88 and about 0 m. 56 , respectively. In compiling the lightcurve (Figure 1) from our data it became evident that the period published in the GCVS was a spurious one with the relation

$$
\frac{1}{\mathrm{P}}-\frac{1}{\mathrm{P}_{\mathrm{GCVS}}}=\frac{1}{2}
$$

Using all published minima found in the 'BAV Database of Minima of Eclipsing Binaries' together with our new observations, a weighted least squares fit yields the following linear ephemeris:

$$
\begin{array}{r}
\text { Min } I=\text { HJD } 2449250.4582+0.86078384 \times E \\
\pm 4 \tag{1}
\end{array}
$$

Figure 1: Differential lightcurve of V406 Lyr computed with respect to the new ephemeris (1).

Figure 2: O-C diagram for V406 Lyr computed with respect to the new ephemeris (1) using all available minimum timings.

- represents photoelectric, o photographic series and \quad photographic plate minima.

Table 1. Observed times of minima for V406 Lyr, epochs and residuals computed with respect to the ephemeris (1) derived in this paper.

N	$\begin{gathered} \text { JD hel. } \\ 2400000+ \end{gathered}$	W	T*	Epoch	(O-C)	Lit	N	$\begin{gathered} \text { JD hel. } \\ 2400000+ \end{gathered}$	W	T*	Epoch	(O-C)	Lit
1	29321.61	2	P	-23152.0	+0.02	[1]	22	39289.502	2	P	-11572.0	+0.034	[2]
2	29365.52	2	P	-23101.0	+0.03	[1]	23	39348.395	2	P	-11504.5	-0.036	[2]
3	29403.41	2	P	-23057.0	+0.04	[1]	24	39351.422	2	P	-11500.0	-0.022	[2]
4	29495.46	2	P	-22950.0	-0.01	[1]	25	39376.325	2	P	-11471.0	-0.082	[2]
5	29515.29	2	P	-22927.0	+0.02	[1]	26	39619.536	2	P	-11189.5	-0.042	[2]
6	29527.36	2	P	-22913.0	+0.04	[1]	27	39709.486	2	P	-11084.0	-0.044	[2]
7	38525.540	2	P	-12460.5	+0.018	[2]	28	39760.295	2	P	-11025.0	-0.021	[2]
8	38528.520	2	P	-12456.0	-0.015	[2]	29	40150.274	2	P	-10572.0	+0.023	[2]
9	38550.470	2	P	-12431.5	-0.015	[2]	30	47969.609	10	F:	-1488.0	-0.003	[3]
10	38553.470	2	P	-12427.0	-0.027	[2]	31	48013.520	20	F	-1437.0	+0.008	[4]
11	38556.510	2	P	-12424.5	-0.000	[2]	32	48016.530	20	F	-1434.5	+0.005	[4]
12	38559.510	2	P	-12420.0	-0.013	[2]	33	48746.477	20	F	-586.5	+0.008	[4]
13	38584.490	2	P	-12391.0	$+0.004$	[2]	34	49216.4598	60	E	-40.5	+0.0026	[5]
14	38587.520	2	P	-12388.5	+0.022	[2]	35	49250.4595	60	E	0.0	+0.0013	[5]
15	38640.424	2	P	-12326.0	-0.013	[2]	36	49485.4519	60	E	273.0	-0.0003	[6]
16	38883.570	2	P	-12044.5	-0.038	[2]	37	49525.4758	60	E	319.5	-0.0028	[5]
17	39021.309	2	P	-11884.5	-0.024	[2]	38	49547.4292	60	E	345.0	+0.0006	[5]
18	39024.310	2	P	-11880.0	-0.036	[2]	39	49568.5188	60	E	369.5	+0.0010	[5]
19	39027.348	2	P	-11877.5	-0.011	[2]	40	49580.5682	60	E	383.5	-0.0006	[5]
20	39052.300	2	P	-11848.5	-0.022	[2]	41	49597.3529	60	E	403.0	-0.0012	[5]
21	39286.501	2	P	-11576.5	+0.046	[2]	42	49625.3281	60	E	435.5	-0.0015	[5]

[1]: Parenago (1946), [2]: Meinunger (1970), [3]: Moschner, Kleikamp (1990), [4]: Moschner, Kleikamp: this paper, [5]: Agerer: this paper, [6]: Moschner: this paper.
*) P denotes pg plate min., E CCD min. and F photographic series. Those marked with ' $:$ ' got reduced weight.

F. AGERER
W. KLEIKAMP
W. MOSCHNER
Bundesdeutsche Arbeitsgemeinschaft
für Veränderliche Sterne e.V. (BAV) Munsterdamm 90, D-12169 Berlin, Germany

References:

Meinunger, L.: 1970, Mitt. Ver. Sterne, 5, 128
Moschner, W., Kleikamp, W.: 1990, BAV - Mitteilungen, Nr. 56
Kholopov P.N. et al.: 1985, Gen. Cat. of Var. Stars, $4^{\text {th }}$ Ed., Nauka, Moscow.
Kukarkin B.V. et al.: 1972, $58^{\text {th }}$ name-list of variable stars, IBVS No. 717
Kwee, K.K., van Woerden, H.: 1956, Bull. Astr. Inst. Netherlands, 12, 327
Parenago, P.: 1946, Perem. Zvezdy, 6, 26

Konkoly Observatory
Budapest
28 December 1994
HU ISSN 0374-0676

PHOTOMETRIC OBSERVATION OF V1187 CYGNI

[BAV Mitteilungen Nr. 73]

V1187 Cyg was discovered by Mayer (1965) as a variable of EA-type with 0.35 and 0 m 31 deep primary and secondary minima respectively. He submitted three moments of minima and gave a first ephemeris as:

$$
\begin{equation*}
\operatorname{Min} \mathrm{I}=\mathrm{HJD} 2438634.5462+\mathrm{7}^{\mathrm{d}} 535 \times \mathrm{E} . \tag{1}
\end{equation*}
$$

With the above data V1187 Cyg is listed in the fourth edition of the GCVS (Kholopov et al. 1985) as to be variable between 10 m .88 and 11 m .23 .

The variable had remained obviously unobserved for about 28 years when the BAV published two times of minima (Agerer 1994). Together with V1191 Cyg, which is in the same field of our CCD camera, this variable was further investigated. In contradiction to the ephemeris above, an observing run on Aug. 22 shows a minimum of V1187 Cyg. Two additional minima at times when the variable was expected to be constant, together with observations between minima, proved that the period listed in the GCVS has to be divided by five.

Using all minima times available from the 'BAV Database for Minima of Eclipsing Binaries by D. Lichtenknecker', a least squares fit yields the following linear elements:

$$
\begin{gather*}
\text { Min } I=\text { HJD } 2438634.5496+1 \mathrm{~d} 50700136 \times \mathrm{E} \\
\pm 3 \tag{2}
\end{gather*}
$$

Figure 1: CCD image of V1187 Cyg (a) and V1191 Cyg (b).

Figure 2: O-C diagram for V1187 Cyg computed with respect to the new ephemeris (2) using all available minima timings.
Table 1. Observed times of minima for V1187 Cyg, epochs and residuals computed with respect to the ephemeris (2) derived in this paper.

| N | JD hel.
 $2400000+$ | | W | Epoch | (O-C) | Lit | N | JD hel.
 $2400000+$ | W | T^{*} | Epoch | (O-C) | Lit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 38634.5462 | 60 | E | 0.0 | -0.0034 | $[1]$ | 6 | 49587.439 | 30 | $\mathrm{E}:$ | 7268.0 | +0.004 | $[3]$ |
| 2 | 38653.392 | 30 | $\mathrm{E}:$ | 12.5 | +0.005 | $[1]$ | 7 | 49599.4897 | 60 | E | 7276.0 | -0.0018 | $[3]$ |
| 3 | 38668.459 | 30 | $\mathrm{E}:$ | 22.5 | +0.002 | $[1]$ | 8 | 49608.528 | 30 | $\mathrm{E}:$ | 7282.0 | -0.006 | $[3]$ |
| 4 | 49168.4910 | 60 | E | 6990.0 | +0.0019 | $[2]$ | 9 | 49621.3428 | 60 | E | 7290.5 | -0.0002 | $[3]$ |
| 5 | 49217.4681 | 60 | E | 7022.5 | +0.0014 | $[2]$ | | | | | | | |

[1]: Mayer (1965), [2]: Agerer (1994), [3]: Agerer: this paper

F. AGERER

Bundesdeutsche Arbeitsgemeinschaft
für Veränderliche Sterne e.V. (BAV)
Zweikirchen, Dorfstrasse 19,
D-84184 Tiefenbach, Germany

References:

Agerer, F.: 1994, BAV Mitteilungen, 68
Kholopov, P.N. et al.: 1985, Gen. Cat. of Var. Stars, $4^{\text {th }}$ Ed., Nauka, Moscow Mayer, P.: 1965, Bull. Astron. Inst. Czechoslovakia, 16, 225

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4134

Konkoly Observatory
Budapest
28 December 1994
HU ISSN 0374 - 0676

VW CANUM VENATICORUM: NEW EPHEMERIS AND LIGHTCURVE
 [BAV Mitteilungen Nr. 74]

In this paper we report on our photographic and CCD photometry on the RR Lyr type variable VW CVn.

VW CVn = SVS 1291 was discovered by Kurochkin (1961) as variable of W UMa or β Lyr type with a range of brightness between $11^{\mathrm{m}} \cdot 4$ and $12^{\mathrm{m}} \cdot 6$. Kurochkin calculated two sets of first elements and gave first photographic light curves. Elements valid after JD 2436360 were:

$$
\operatorname{Min} \mathrm{I}=\mathrm{HJD} 2435923.246+0 \mathrm{~d} 850012 \times \mathrm{E}
$$

With the above data VW CVn is listed in the fourth edition of the GCVS (Kholopov et al. 1985). Until recently the variable remained almost unobserved (exceptions Diethelm 1976, Diethelm 1980 and German 1982) when Vandenbroere (1994) found the elements to be in error. This prompted us to put VW CVn on our observing program.

One of us (T.B.) investigated this variable on 443 plates of the Sonneberg Sky Survey. The observations by the other were made with an SBIG ST6 camera without filters attached to a 20 cm SC telescope. From these measurements we found the variable to be of RR Lyr type, the range of brightness is between $11^{\mathrm{m}} \cdot 96$ and $12 \cdot \mathrm{~m} \cdot 43(\mathrm{pg})$ and $\mathrm{M}-\mathrm{m}=0.46$.

Analysing the CCD measurements we got first elements:

$$
\begin{equation*}
\operatorname{Min} \mathrm{I}=\mathrm{HJD} 2449466.42+0 \mathrm{~d} 425 \times \mathrm{E} \tag{1}
\end{equation*}
$$

The timespan covered by the Sonneberg plates (1956-1994) was divided into several parts. Using this first ephemeris (1) for each of these parts a mean lightcurve was calculated and the time of the normal maximum was derived (see Table 1). Obviously the period did not remain constant in the time interval studied. Considering the accuracy of estimates on photographic plates the period probably changed about epoch number -21000. Least squares fits in each of these intervals yield the following linear elements:

$$
\begin{gather*}
\text { Min } I=H J D ~ \\
2438387.169+0 . \tag{2}\\
\pm 7
\end{gather*}
$$

(valid between JD 2435861 and JD 2440000)

$$
\begin{array}{r}
\text { Min } I=H J D ~ 2449466.428+0 . \\
\pm 6 \tag{3}
\end{array} 4249786 \times \mathrm{E}
$$

(valid after JD 2440000)

Figure 1: Mean light curve from all photographic estimates of VW CVn on plates of the Sonneberg Sky Survey computed with respect to the new ephemeris (3). Magnitudes according to Kurochkin. The hump near the maximum is a result of very bright observations appearing only temporarily in exactly that range of phase.

Figure 2: Differential CCD light curve of VW CVn computed with respect to the new ephemeris (3). Each point is the result of one CCD image.

Figure 3: O-C diagram for VW CVn computed with respect to the new ephemeris (3) using all available maximum timings.

- represents photoelectric, o photographic normal maxima.

Times of normal maxima for VW CVn, epochs and residuals computed with respect to the ephemeris (3) derived in this paper.

N	JD hel. $2400000+$	W	$\mathrm{T} *$	Epoch	$(\mathrm{O}-\mathrm{C})$	Observer
1	36632.372	1	P	-30199.0	-0.127	T.Berthold
2	38387.167	1	P	-26070.0	-0.069	$"$
3	39352.330	1	P	-23799.0	-0.032	$"$
4	40291.988	1	P	-21588.0	-0.002	$"$
5	41393.545	1	P	-18996.0	+0.010	$"$
6	42840.186	1	P	-15592.0	+0.024	$"$
7	44292.729	1	P	-12174.0	-0.010	$"$
8	45486.055	1	P	-9366.0	-0.023	$"$
9	46914.822	1	P	-6004.0	-0.034	$"$
10	48761.379	1	P	-1659.0	-0.010	$"$
11	49466.435	6	E	0.0	+0.007	F.Agerer
*) P denotes photographic normal maxima,						
E CCD observed normal maximum.						

A detailed paper dealing with further analysis of the long-time behaviour of the period and the results of the CCD photometry is now in progress.

F. AGERER
T. BERTHOLD
Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV)
Munsterdamm 90,
D-12169 Berlin, Germany

References:

Diethelm, R.: 1976, BBSAG Bull., 25
Diethelm, R.: 1980, BBSAG Bull., 47
German, R.: 1982, BBSAG Bull., 61
Kholopov, P.N. et al.: 1985, Gen. Cat. of Var. Stars, $4^{\text {th }}$ Ed., Nauka, Moscow
Kurochkin, N.E.: 1961, Perem. Zvezdy, 13, 5, 331
Vandenbroere, J.: 1994, BBSAG Bull., 105

ERRATUM

In the No. 4134 issue of the IBVS all ephemerides of VW CVn refer to normal maxima and not Min I (as stated erroneously in the text). The authors of that note and editors of the IBVS are grateful to Dr. N. Samus for calling their attention to this inconsistency.

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4135

Konkoly Observatory
Budapest
28 December 1994
HU ISSN 0374-0676

A PRE-MAIN-SEQUENCE COMPANION TO AR AURIGAE?

A recent analysis of the well-known bright eclipsing binary AR Aurigae (HD 34364, $\mathrm{HR} 1728, \mathrm{~V}_{\max }=6.15, \mathrm{~B} 9 \mathrm{VpHgMn}+\mathrm{B} 9.5 \mathrm{~V}, \mathrm{P}_{A B}=4 \mathrm{~d} 13$ days) suggests that the secondary star is still contracting towards the ZAMS, while the primary star appears to be exactly on the ZAMS (Nordström \& Johansen 1994). Moreover, AR Aur is a triple system, the existence of the as yet unseen third star being inferred from a light-time effect in the observed minima with a period of ~ 24 years (Chochol et al. 1988, Nordström \& Johansen 1993).

AR Aur $\mathrm{A}\left(2.5 \mathrm{M}_{\odot}\right)$ and $\mathrm{B}\left(2.3 \mathrm{M}_{\odot}\right)$ are of considerable interest as coeval and nearly equal-mass stars apparently just arriving on the ZAMS. Given the remaining observational uncertainties in the absolute dimensions, it is of interest to verify this scenario by other means. Direct detection of star C would support this scenario and provide an estimate of the mass of star C and the inclination between the two orbital planes. This note discusses how this test could be made.

Models by Mazzitelli (1989) have been used to estimate the radius (R_{C}), temperature (T_{C}), and luminosity (L_{C}) for star C at an age of $4 \times 10^{6} \mathrm{yr}$ (the time for star A to reach the ZAMS from the birthline), for different assumed values of i, the inclination of the longperiod orbit (the eclipsing pair has $i=88^{\circ} 5$). The results are given in Table 1. Values of i less than 30° are not listed, since the mass of $\operatorname{star} \mathrm{C}\left(M_{C}\right)$ would be high enough for C to make a detectable contribution at visible wavelengths, contrary to what is observed. Assuming black-body radiation, the luminosity of star C can then be computed for any wavelength and normalised to units of $L_{A}+L_{B}$; thus, the quantity l_{C} ("third light") plotted in Figure 1 and given for some standard photometric passbands in Table 1 is l_{C} $=L_{C} /\left(L_{A}+L_{B}\right)$.

Table 1. Model properties for AR Aur C at an age of 4×10^{6} years

i	M_{C}	R_{C}	T_{C}	$l_{C}(R)$	$l_{C}(I)$	$l_{C}(J)$	$l_{C}(H)$	$l_{C}(K)$	$l_{C}(L)$	$l_{C}(M)$
90°	0.523	1.097	3825	0.01	0.01	0.02	0.03	0.03	0.05	0.05
70°	0.559	1.129	3877	0.01	0.01	0.02	0.03	0.04	0.05	0.06
60°	0.611	1.172	3953	0.01	0.01	0.02	0.03	0.04	0.05	0.06
50°	0.698	1.218	4090	0.01	0.02	0.03	0.04	0.05	0.06	0.07
40°	0.847	1.348	4321	0.01	0.03	0.04	0.05	0.07	0.08	0.09
30°	1.124	1.553	4682	0.02	0.05	0.06	0.09	0.10	0.12	0.14

Figure 1. Fractional light of star C as a function of assumed orbital inclination and wavelength.

If the light contribution from star C is significant, the depth of the minima in the light curves of the eclipsing pair AB will be reduced. The question we wish to address is the following: Given the photometric elements, radii and inclination, from our previous analysis of light curves of AB at wavelengths where third light is negligible, at what (larger) wavelength could we observe a reduction in eclipse depth due to star C relative to what we would predict without it?

Using the $b_{F}(4747 \AA)$ light curve and analysis tools from our previous study, we have studied this question by adding specified amounts of third light and then redetermining l_{C} from the light curve, gradually reducing the number of points used. We find that we can recover l_{C} rather accurately with a surprisingly few observations of the precision of the b_{F} light curve, 0.01 mag: Typical standard errors are 0.01 with 40 points, 0.02 with just 10 well-distributed points on the light curve (about half near both mid-eclipses, half outside eclipse). This remarkable economy is possible because the existing high-quality analysis provides an accurate prediction of the eclipse depths in the absence of third light. The errors in l_{C} scale, of course, with the mean errors of the actual new observations, which will also depend on the wavelength of observation.

The dotted line in Figure 1 indicates the usable wavelength for which 0.04 of third light is measurable with certainty. For inclinations close to 90° (i.e., near co-planarity of the orbits), the K band $(2.2 \mu \mathrm{~m})$ is just at the detection limit for star C with 1% photometry. In the L and M bands (3.5 and $5 \mu \mathrm{~m}$), detection will be easier, but photometry probably correspondingly more difficult. The N band $(9 \mu \mathrm{~m})$ should be avoided, as dust emission might be significant.

Deviations from the ephemeris derived earlier for the eclipsing pair AB:

$$
\operatorname{Min} \mathrm{I}=\mathrm{HJD} 2438402.1847+4 . \mathrm{d} 1346662 \times \mathrm{E}
$$

due to motion in the $\mathrm{AB}-\mathrm{C}$ orbit are not more than 12 minutes, and secondary minima occur midway between primary eclipses since the $A B$ orbit is circular. In planning followup photometry, observers should be aware of the problems with variable comparison stars described in Nordström \& Johansen (1994). It is proposed to use two of the reliable stars:

HR 1734, HR 1738, or HR 1749. HR 1734 has a faint ($\mathrm{m}_{V}=11.8$) companion at a distance of 3.18 , which always should be included.

K. T. JOHANSEN
B. NORDSTRÖM
The Niels Bohr Institute of Astronomy,
Physics and Geophysics
Astronomical Observatory
Brorfeldevej 23
DK-4340 Tølløse
Denmark

References:

Chochol D., Juza K., Mayer O., Zverko J., Ziznovsky J., 1988, Bull. Astron. Inst. Czech., 39, 69
Mazzitelli I., 1989, in Low-Mass Star Formation and Pre-Main-Sequence Objects, B.
Reipurth (ed.), ESO Conference and Workshop Proceedings No. 33, p. 433
Nordström B., Johansen K.T., 1993, IBVS, No. 3871
Nordström B., Johansen K.T., 1994, A\& A, 282, 787

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4136

Konkoly Observatory
Budapest
28 December 1994
HU ISSN 0374-0676

AK CANCRI - A NEW LARGE-AMPLITUDE SU UMA-TYPE DWARF NOVA

AK Cnc was discovered by Morgenroth (1933), who classified it as a possible shortperiod variable star. After a long period of confusion, the object was identified as a dwarf nova (for a review, see Wenzel 1993). The peculiarity of this object was noted by Szkody and Howell (1992), who identified strong Balmer and helium emission lines and a red continuum in the spectrum of AK Cnc , and estimated the quiescent M_{V} value between 10.4 and 11.9. The faintness of quiescent M_{V} and a large outburst amplitude ($>6 \mathrm{mag}$) make AK Cnc a good candidate for a TOAD (Tremendous Outburst Amplitude Dwarf Nova; Howell 1993). A search for a photometric period, however, has remained unsuccessful (Howell et al. 1990).

On 1992 Jan. 13, the object was caught in one of its rare outbursts at $\mathrm{m}_{V}=13.6$ (Koshiro, private communication). We obtained a V-band CCD photometry of this star on three nights between Jan. 17 and Jan. 22. The observations were carried out using a 60 cm reflector and a Thomson TH7882 chip (576×384 pixels) at Ouda Station, Department of Astronomy, Kyoto University (for a description of the instruments see Ohtani et al. 1992). The exposure time was between 30 and 60 s to avoid saturation from the strong moonlight. The frames were first corrected for standard de-biasing and flat fielding, and were then processed by a microcomputer-based automatic-aperture photometry package developed by the author. The differential magnitudes of the variables were determined using a local standard star (C_{1} : $08^{\mathrm{h}} 55^{\mathrm{m}} 155.42+11^{\circ} 14^{\prime} 53^{\prime \prime} .8$ (J2000.0), $V=13.3$), whose constancy was confirmed using a check star (C_{2} : $08^{\mathrm{h}} 55^{\mathrm{m}} 26^{\mathrm{s}} 05+11^{\circ} 20^{\prime} 04$ ". 5 (J2000.0), $V=15.1$). Total number of useful frames was 1007 .

The resulting overall light curve is shown in Figure 1. The zero-point corresponds to $V=13.3$. A general trend of slow linear decline is evident. Superimposed on this decline, superhumps with an amplitude of 0.18 mag were detected on all nights. The star was thus for the first time identified as being an SU UMa-type dwarf nova.

A representative light curve is shown in Figure 2; a large scatter in the light curve is caused by a high sky background due to the proximity of the object to the nearly full moon. A period analysis using the phase dispersion minimization (PDM) method (Stellingwerf 1978) implemented in the IRAF package after removing the steady decline yielded the best estimate of the superhump period of 0.06735 ± 0.00005 day. A light curve folded on this period is shown in Figure 3. Each point represents an average of 0.05 phase bin and its standard error. This clearly demonstrates all the characteristics of fully grown superhumps: a rather steep rise to maximum, slower decline, and a broader secondary maximum around superhump phase $0.4-0.5$. The superhump makes AK Cnc a member of short orbital-period SU UMa-type dwarf novae. This picture is in good agreement with the spectroscopic features described by Szkody and Howell (1992).

Figure 1. General V-band light curve of AK Cnc.
The zero point of the relative magnitudes corresponds to $V=13.3$.

Figure 2. Sample light curve (1992 Jan. 18).
Superhumps with an amplitude of 0.18 mag are clearly seen.

Figure 3. Light curve folded on the superhump period of 0.06735 day.
The outburst characteristics of this dwarf nova is still uncertain. Wenzel (1993) gives five outburst records from Sonneberg plates. The second one in his table (1993 March 8 -15) is clearly a superoutburst. Further monitoring for outbursts of this dwarf nova is encouraged in order to determine its true outburst frequency and number ratio of superand normal outbursts, both of which would also be good indicators for discriminating TOADs from other dwarf novae.

The author is grateful to Masami Koshiro (VSOLJ) for notifying us of the outburst. Part of this work was supported by a Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists.

Taichi KATO
Dept. of Astronomy, Faculty of Sci.
Kyoto University
Sakyo-ku, Kyoto 606-01 Japan

References:

Howell, S. B. 1993, in Cataclysmic Variables and Related Physics, ed O. Regev, G. Shaviv, Annals of the Israel Physical Society, Vol. 10, p. 67
Howell, S. B., Szkody, P., Kreidl, T. J., Mason, K. O., and Puchnarewicz, E. M. 1990, Publ. Astron. Soc. Pacific, 102, 758
Morgenroth, O. 1933, Astron. Nachricht., 249, 383
Ohtani H., Uesugi A., Tomita Y., Yoshida M., Kosugi G., Noumaru J., Araya S., Ohta K. et al. 1992, Memoirs of the Faculty of Science, Kyoto University, Series A of Physics, Astrophysics, Geophysics and Chemistry, 38, 167
Stellingwerf, R. F., 1978, Astrophys. J., 224, 953
Szkody, P. and Howell, S. B. 1992, Astrophys. J. Suppl., 537, 547
Wenzel, W. 1993, IBVS, No. 3921

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4137

Konkoly Observatory
Budapest
28 December 1994
HU ISSN 0374-0676

POSITIONS OF VARIABLE STARS IN PLAUT'S FIELD 3

This paper continues the study announced in our previous publication (Antipin et al., 1994a) and deals with the variable stars in the Palomar-Groningen Field 3 (Plaut, 1971). This field contains 1474 variable stars discovered by Plaut. Using photographic finding charts prepared by L. Plaut and available in Moscow, we have checked for possible GSC identifications. 174 stars have been identified with the GSC. We have also checked 83 stars discovered in this field by other authors and identified 23 of them with GSC objects. We are not able to present the corresponding table here because of volume restrictions and are planning to publish this list in Astronomical and Astrophysical Transactions. We have not found very significant positional mistakes among those stars we were able to identify with GSC. We have also checked positions for non-GSC variable stars and found quite a number of serious mistakes in GCVS positions. The corrected coordinates presented in

Table 1. Corrected Coordinates for Variable Stars

Plaut	GCVS, NSV	$\alpha(2000.0)$	$\delta(2000.0)$	$\Delta \alpha$	$\Delta \delta$
23	V2636 Sgr	$18^{\mathrm{h}} 12^{\mathrm{m}} 23.0$	$-31^{\circ} 200^{\prime} 40 "$	$-0^{\mathrm{m}} \mathrm{m}^{\mathrm{s}} 01^{\mathrm{s}}$	$-1^{\circ} 000^{\prime} 0$
34	V2647 Sgr	181238.1	-310800	-003	-000.6
111	V2705 Sgr	181349.7	-342046	-002	-000.8
307	V2852 Sgr	181643.2	-340122	+000	-003.4
437	V2965 Sgr	181827.0	-321039	-001	-011.2
474	V2988 Sgr	181142.2	-361144	+010	-001.5
521	V3033 Sgr	181232.2	-323915	-042	-004.0
580	V3081 Sgr	182036.2	-344621	+007	+000.2
707	V3180 Sgr	182302.2	-335725	+000	-000.9
732	V3200 Sgr	182326.6	-305407	-002	-017.6
755	V3220 Sgr	182349.5	-311143	-002	-016.1
782	V3243 Sgr	182446.0	-320301	-032	+000.1
835	V3288 Sgr	182515.0	-333346	+001	+011.3
881	NSV10777	182613.4	-314159	+004	+000.1
1027	V3447 Sgr	182113.8	-305346	+842	-000.8
1030	V3443 Sgr	182956.2	-305737	+001	-344.3
1158	V3549 Sgr	183313.3	-312227	+000	-011.2
1388	V3723 Sgr	183939.1	-344116	+014	-152.0
1395	V3729 Sgr	183816.7	-365146	+152	+000.6
1427	V3758 Sgr	183214.2	-310934	-100	+000.1
1453	V3774 Sgr	184141.2	-325435	+004	-033.4
1474	V666 SrA	182222.7	-365957	-009	+000.1
	NSV 10351	181220.9	-315024	+015	+001
	NSV 10364	181259.4	-314647	+013	+000.2

Table 2. Identifications of Several GCVS Stars

474	V2988 Sgr $=$ V655 Sgr	Plaut, 1971
595	NSV 10648 $=$ V1289 Sgr	Mayall, 1951 (chart)
723	V1188 Sgr $=$ NSV 10715	Strohmeier et al., 1964
1063	V3475 Sgr $=$ V2355 Sgr	Rosino, 1962
1105	V3507 Sgr $=$ V2360 Sgr	Rosino, 1962
1388	V3723 Sgr $=$ V1635 Sgr	Plaut, 1971
1395	V3729 Sgr $=$ V2371 Sgr	Plaut, 1971
1414	V3746 Sgr $=$ V948 Sgr $=$ V1154 Sgr	GCVS

Table 1 have been determined by one of us (S.A.) relative to GSC stars. The columns of the table contain: Plaut's numbers (the two last lines, without Plaut's numbers, refer to variables discovered by Rosino (1962), in the field of the globular cluster NGC 6569); GCVS or NSV designations; right ascensions and declinations (2000.0); positional differences found (in the sense GCVS minus present study).

Table 2 contains 8 stars for which positional inaccuracies have led to multiple entries in the GCVS and the NSV catalogue. The first column gives Plaut's numbers. The second column presents the existing GCVS or NSV designations. The last column of the table identifies the source of error. If the star in Table 2 does not enter also Table 1, Plaut's coordinates for this star are to be preferred.

Several final remarks deal with difficult cases. It turns out that Plaut's variable No. 239 $\left(18^{\mathrm{h}} 12^{\mathrm{m}} 32^{\mathrm{s}},-31^{\circ} 07!3,1950.0\right.$, Cepheid with a period of 51 : days according to Plaut, 1971) never got a GCVS designation. The reasons for this are presently unclear, no indication of any mistakes revealed is present in GCVS team records. Though the star could not be identified with any GSC star, Plaut's coordinates agree with the photograph. We have not been able to find Plaut's No. $1282=$ V3643 Sgr. The photograph does not agree with the coordinates, a great mistake in coordinates is probable.

Mr. J. Mánek has turned our attention to a mistake in the second paper of the present series (Antipin et al., 1994b). The declination presented there for V448 Oph $=$ GSC 6237.1702 is wrong, the correct $\delta(2000.0)$ value is $-18^{\circ} 06^{\prime} 56^{\prime \prime}$.

Thanks are due to Mr. Jan Mánek for his attention to our work.

S.V. ANTIPIN
Sternberg Astronomical Institute
of Moscow University
13, Universitetskij Prosp.
Moscow 119899, Russia

N.N. KIREEVA
N.N. SAMUS
Institute of Astronomy
of Russian Academy of Sciences
48, Pyatnitskaya Str.
Moscow 109017, Russia

References:

Antipin, S.V., Kireeva, N.N., and Samus, N.N., 1994a, Inf. Bull. Var. Stars, No. 4020
Antipin, S.V., Kireeva, N.N., and Samus, N.N., 1994b, Inf. Bull. Var. Stars, No. 4021
Mayall, M.W., 1951, Harvard Obs. Bull., No. 920, 36
Plaut, L., 1971, Astron. and Astrophys. Suppl. Ser., 4, No. 2, 75
Rosino, L., 1962, Asiago Obs. Contrib., No. 132, 7
Strohmeier, W., Knigge, R., and Ott, H., 1964, Inf. Bull. Var. Stars, No. 74

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4138

Konkoly Observatory
Budapest
29 December 1994
HU ISSN 0374-0676

TIMINGS OF SELECTED VARIABLE STARS ${ }^{1}$

Changes in the periods of variable stars can be determined by timing the occurrence of a certain point in the light curve, usually the maximum or minimum value. It is necessary to have such timings at frequent enough intervals so that cycle counts can be reliably determined in between. Often in the course of other routine observations, such timings are obtained and the purpose of this paper is to make available such data to other researchers.

Most of the photometric data were obtained with telescopes at Lowell Observatory in Flagstaff, AZ but some came from CTIO in Chile (σ Sco and ν Eri). The raw photometry was corrected for sky, and the atmospheric extinction was removed using a comparison star. Then differential magnitudes were determined and heliocentric corrections applied. For stars with a single mode, plots of the light curves were made and a cross-correlation technique between the ascending and descending branch was used to derive the time of maximum or minimum. The uncertainty of an individual timing varies with data quality, but is typically 0.0005 days. It is planned to submit all of the data upon which these timings have been made to the Journal of Astronomical Data, Twin Press, The Netherlands.

Table 1. Times of Photometric Minimum of Eclipsing Binary Stars.

Star Name	HJD	notes
BX And	2447108.7773	primary min
	2447535.7064	secondary min
	2447573.6826	primary min
TY Boo	2447641.7811	primary min
	2447641.9398	secondary min
W Crv	2447234.7467	primary min
	2447237.8561	primary min
	2447250.8553	secondary min
	2449108.7855	primary min
	2449109.7580	secondary min

[^3]Table 2. Times of Photometric Maximum/Minimum of β Cephei Stars.

Star Name	HJD	notes
ν Eri	2444450.8184	\max for $\mathrm{P} 1=0.173506 \mathrm{~d}$
	2444450.8937	max for $\mathrm{P} 2=0.178063 \mathrm{~d}$
σ Sco	2444457.6980	max for $\mathrm{P} 2=0.246836 \mathrm{~d}$
	2444457.7130	max for $\mathrm{P} 1=0.239670 \mathrm{~d}$
BW Vul	2447704.7345	max
	2447704.8300	min
	2447803.6580	max
	2447826.6639	min
	2447833.6100	max
	2447827.5755	max
	2447833.7020	min
	2447840.6484	max
	2447840.7373	min
	2448062.8020	max
	2448062.8885	min
	2448084.8152	min
	2448193.6753	max
	2448193.7676	min
	2448194.6820	max
	2448403.8630	min
	2448403.9713	max
	2448421.7744	min
	2448421.8685	max
	2449662.6000	min
	2449662.7120	max
	2449663.6025	min
	2449663.7164	max

Table 1 lists the times of primary and secondary minimum for three close binary stars. There is enough new data only for W Crv to produce a new ephemeris at this time. For these close binaries, it might be expected that the orbital period might be changing due to mass exchange between the two stars, so both a linear and quadratic ephemeris were computed, combining 12 timings for W Crv from the literature with the five listed in Table 1. The least squares quadratic ephemeris yielded only marginally smaller residuals than the linear, and in any case produced a rate of period change of just 0.025 seconds/century, which is probably only an upper limit. The linear ephemeris can be used to schedule future observations; it is:

$$
\mathrm{HJD}=2427861.3634+0.388080835 \times \mathrm{E} .
$$

Table 2 gives times of maximum and minimum brightness for three β Cephei stars. For those with multiple modes, cosine functions were fit using the known periods, but solving for the best phase and amplitude of each mode, and the time of maximum was derived.

Figure 1. O-C diagram for BW Vul
These timings are completely independent of each other, and depend on the beat phase of the star at the time of the observation. For BW Vul, times of minimum light are included because of the suggestion by Sterken, Young, and Furenlid (1987) that the stillstand in this star's light curve could alter the timings derived for maximum brightness.

A least squares linear ephemeris was fit to all times of maximum brightness measured for BW Vul since 1980, which can be used for predicting maximum brightness for the near future:

$$
\mathrm{HJD}=2447700.1158+0.201044444 \times \mathrm{E}
$$

with an rms residual of 1.25 minutes.
The period history of BW Vul has been controversial for about ten years, since the discovery of a periodic variation of the residuals after a quadratic ephemeris has been removed, made by Odell (1984). The quadratic ephemeris can be explained in terms of the star's evolution to larger size, and the periodic residuals can be explained either by the light-travel-time over a binary orbit or by two modes beating with a period of about 30 years. The controversy arises from the claim of Chapellier (1985) that the period has been constant except for sudden jumps in 1945 and 1968, and again in 1980 (Chapellier and Garrido, 1990). Pigulski (1993) has derived the properties of the binary star orbit, including an orbital period of 33.5 years.

In order to distinguish between the two proposed behaviors of this star, a linear ephemeris was fit to the previously published timings of maximum between 1968 and 1980, and the residuals computed for all timings since 1950; these are shown in Figure 1.

The diamond symbols in the figure represent timings used in the linear fit, while the pluses represent eras in which a different ephemeris must be used. It can be seen that the residuals are fit well by three straight lines, but the residuals predicted from a quadratic ephemeris also agree reasonably well, especially if a periodic variation on either side of the quadratic is allowed for.

Figure 1 gives a method of determining which of the two types of ephemeris is the correct one. If the quadratic-with-variations ephemeris is correct, the figure predicts that there must be another increase in the period by about 0.25 seconds at HJD about 2452000 , or in the year 2000 . If the piecewise-linear ephemeris is correct, there is no way to predict when the next period change will occur, or the magnitude, or even the sign of the change. Thus the monitoring of this star for the next ten years becomes important to distinguishing the correct ephemeris form.

Andrew P. ODELL
Northern Arizona University
Dept of Physics and Astronomy
Flagstaff, AZ 86011, U.S.A.
Internet: odell@nauvax.ucc.nau.edu

References:

Chapellier, E., 1985, Astron. Astrophys., 147, 135
Chapellier, E. and Garrido, R., 1990, Astron. Astrophys., 230, 304
Odell, A. P., 1984, P.A.S.P., 96, 657
Pigulski, A., 1993, Astron. Astrophys., 274, 269
Sterken, C., Young, A., Furenlid, I. 1987, Astron. Astrophys., 177, 150

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4139

Konkoly Observatory
Budapest
29 December 1994
HU ISSN 0374-0676

UBV OBSERVATIONS OF AB Dor, 1993

The peculiar, active, cool dwarf AB Dor ($=$ HD 36705, SAO 249286) has received considerable international attention in recent years (cf. Vilhu et al., 1993), being the target of several multi-site, multi-wavelength 'campaigns', most recently in 1994 when the HST, EUVE, ASCA and other major facilities were brought into concerted action in its direction.

A good earlier photometric review is that of Innis et al. (1988), who supplied the ephemeris Min $=$ JD $2444296.575+0.51479 \times$ E, that has been generally favoured in subsequent studies. AB Dor has been usually assigned a peculiar, early K spectral type.

The star was observed using the automated photometer ('APT') of the Kotipu Place Observatory (Hudson et al., 1993) on six nights between 29 Sep and 14 November, 1993, using the $U B V$ filters provided with the SSP 5 photometer of Optec Inc. The observation period overlaps with the recently published data set of Anders (1994) and Bos (1994). The (partial) light curves of these authors for the time interval involved are essentially confirmed by the APT.

The main comparison star was HD 37297 ($V=5.34, B-V=1.04, U-B=0.85$, sp. type K0III - cf. SIMBAD) with occasional checks being made on HD 35537, also a K0III star. For this star we derive the following: $V=7.84, B-V=0.99, U-B=0.71$.

The observations have been reduced on a PC (cf. Budding, 1993), and the resulting V light curve is presented in Figure 1. This light curve results from binning some 683 individual data into 85 "normal" points, and correcting slightly the magnitudes due to the small redness excess of the comparison star with respect to AB Dor $(\Delta(B-V)=$ $0.20, \epsilon=0.019$).

The B and U light curves are essentially similar in shape to the V one. The B magnitude ranges from 7.68 at brightest $(V=6.82)$ to 7.82 at the phases 0.0 and 0.2 , corresponding to the lowest (6.94) on this V data set. Individual B observations have a scatter of about 0.02 mag , i.e. comparable to that of the raw data in V. The U data, on the other hand, has a noticeably larger dispersion - up to 0.04 mag around the phase region $0.4-0.5$, where the raw data quality appears to be at its poorest. The U light curve ranges from about 8.03 to 8.19 mag . The conformities in shape, though slightly greater ranges in the B and U, when set against the V light curve, support maculation as a likely explanation for the photometric behaviour. The slight reddening at the minimum was also noted by Bos (1994).

These light curves are almost complete, though there is a small phase interval close to the bottom of the minimum not covered by the present dataset. Bos (private communication) observed this region on Nov 13 1993, just before the last APT night presented here, and essentially confirmed the phase, magnitude range and shape of this minimum.

AB Dor
Binned V data

Figure 1
There is a slight difference in phase of Bos' minimum (~ 0.06) and ours, however, which, from the shape of the descending sides would be located somewhat closer to 0.1 . Anders' (1994) minimum, which derives from observations a few weeks later, is still earlier in phase - close to zero, in fact. Hence, there is a suggestion, from these three data sets, which range over the later months of 1993 , of a tendency for the 'spot(s)' associated with the maculation, to have drifted slightly backwards in phase, relative to the ephemeris of Innis et al. (1988), while preserving the overall shape of the photometric effect.

E. BUDDING,
G. HUDSON and
R. HUDSON
Carter and Kotipu Place
Observatories,
Wellington, New Zealand

References:

Anders, G.J., 1994, IBVS, No. 3985
Bos, M., 1994, IBVS, No. 4111
Budding, E., 1993, An Introduction to Astronomical Photometry, Cambridge Univ. Press, Cambridge.
Innis, J.L., Thompson, K., Coates, D.W. and Lloyd Evans, T., 1988, Mon. Not. Roy. Astron. Soc., 235, 1411
Hudson, G., Hudson, R. and Budding, E., 1993, Proc. IAU Coll. 136, (Posters) eds. I.S. Elliott and C.J. Butler, Dublin Institute for Advanced Studies, 107
Vilhu, O., Tsuru, T., Cameron, A.C., Budding, E., Banks, T., Slee, O.B., Ehrenfreund, P. and Foing, B.H., 1993, Astron. Astrophys., 278, 467

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4140

Konkoly Observatory
Budapest
2 January, 1995
HU ISSN 0374-0676

THE 72ND NAME-LIST OF VARIABLE STARS

The present 72nd Name-List of Variable Stars, compiled in the manner first introduced in the 67 th Name-List (IBVS No. 2681, 1985), contains all data necessary for identification of 491 new variables finally designated in 1994. The total number of designated variable stars has now reached 31193.

The 72nd Name-List consists of two tables. Table 1 contains the list of new variables arranged in the order of their right ascensions. It gives the ordinal number and the designation of each variable; its equatorial co-ordinates for the equinox 1950.0; the range of variability (sometimes the column "Min" gives, in parentheses, the amplitude of light variation); and the system of magnitudes used (the symbol "Ic" means magnitudes in Cousins' I system, the symbols "y", "b", Strömgren's y, b magnitudes); the type of variability according to the classification system described in the forewords to the first three volumes of the 4th GCVS edition (with the additions introduced in the 68th NameList, IBVS No. 3058, 1987, and in the 69th Name-List, IBVS No. 3323, 1989, and one addition described below); two references to the reference list which follows Table 2 (the first reference is to the investigation of the star, the second one indicates the paper containing a finding chart, or the corresponding Durchmusterung - BD, CoD, or CPD containing the variable, or the Hubble Space Telescope Guide Star Catalog - GSC - if the star can be found using it).

In order not to continue using (*) symbols for comparatively long-period pulsating B stars (periods exceeding one day; see the 71st Name-List, IBVS No. 3840, 1993), we introduce for such variables a provisional type LBV.

In a small number of cases, the value of the variability amplitude (column "Min", in parentheses) could not be expressed in the same system of magnitudes as the star's brightness; in such cases we indicate the photometric band for the amplitude separately, an asterisk in the corresponding position for V2027 Cyg means the amplitude measured in white light.

Table 2 contains the list of variables arranged in the order of their variable star names within constellations. After the designation of a variable, its ordinal number from Table 1 is given, as well as identifications with several major catalogues and identifications necessary to find this star in the papers with the first (or independent) announcement of the discovery of its variability. References to such papers are given in square brackets after the corresponding identification. The name of the discoverer accompanies the reference only in the case of its being different from the name of the author(s) of the paper referred to. For the stars having NSV catalogue numbers, the references to discovery papers already taken into account in the NSV catalogue are not always given. After the identifications, some minimal remarks are given if necessary.

Several new corrections to earlier Name-Lists have been found. In the 68th NameList (IBVS No. 3058, 1987), Table 1, p. 4, there is an obvious misprint in the GCVS name of the star No. 121 (instead of V900 Tau, read V909 Tau). In the same Table, p. 9, the classification given for the star No. 368 (V345 Nor) actually refers to another star (named only in the present, 72 nd Name-List as V352 Nor); the most probable variability type for V345 Nor is M:. In Table 2, p. 21, for IW Peg add identification with NSV 14392. In the 70th Name-List (IBVS No. 3530, 1990), Table 2, p. 7, add identification with AFGL 751 for V1028 Tau; p. 8, identifications with IRC+30229 and Gliese 423 should be added for ξ UMa. Three corrections refer to the 71st Name-List (IBVS No. 3840, 1993). Rather regretfully, one of them is connected with... a correction to the Name-List No. 69; this correction (p. 2) deals with KR Peg, not KP Peg. Identifications of Table 2 for V1241 Ori (p. 17) should be added with TSN 392 and Haro 404. In the same Table, add He 3-436 to identifications for LX Vel (p. 21).

Thanks are due to S.V. Antipin for his assistance in GSC identifications and positional determinations, to E.N. Pastukhova for help during the preparation of the computer version of the present Name-List, and to members of the GCVS team who prepared information for the variable star data base.

E.V. KAZAROVETS
N.N. SAMUS
Institute of Astronomy
of Russian Academy of Sciences
48, Pyatnitskaya Str.
Moscow 109017, Russia

Table 1

No.	Name					9	$\begin{gathered} 950.0 \\ 0 \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ \mathrm{m} \end{gathered}$	Min			Type		ef
72001	CO	Tuc	00	26	25	-72	26.7	13.67	14.14		V	RRC	164	165
72002	BU	Cet	00	32	40	-03	52.1	3.86	3.96		K	RS	054	BD
72003	BV	Cet	00	41	15	-10	16.8	14.51	(0.1)	V	ZZ	055	056
72004	PZ	And	02	17	39	+49	55.4	5.59	(0.045)	V	ACV	001	BD
72005	V703	Cas	02	24	01	+60	37.	14.6	15.8		B	I	37	
72006	EP	Eri	02	50	07	-12	58.3	6.03	6.08		V	RS	087	BD
72007	XY	Ari	02	53	22	+19	13.5	13.54	17.60		J	NL+EA+X	017	018
72008	V704	Cas	03	03	39	+60	17.8	11.4	12.1		P	SR	022	BD
72009	V514	Per	03	16	05	+49	56.0	11.4	(0.32)	V	E	138	138
72010	V515	Per	03	23	47	+47	47.0	12.7	(9.0).	U	UV	39	139
72011	V516	Per	03	25	18	+50	05.9	14.1	(4.6)	U	UV	139	139
72012	epsil	Eri	03	30	34	-09	37.6	3.73	(0.05)	V	BY	089	BD
72013	V517	Per	03	37	24	+38	50.4	10.5	11.4		P	LB	022	BD
72014	V1064	Tau	03	40	54	+23	07.0	14.8	(18.		U	UV	156	
72015	BU	Hyi	03	41	07	-72	04.8	16.96	17.57		B	RR	082	082
72016	BV	Hyi	03	42	23	-72	01.0	19.63	20.29		B	RR	082	082
72017	V1065	Tau	03	43	42	+23	20.7	12.18	(0.15)	V	RS:	15	158
72018	BW	Hyi	03	45	33	-72	05.5	18.78	21.12		B	RRAB	082	082
72019	BX	Hyi	03	45	34	-72	04.8	19.10	20.06		B	RRC	082	082
72020	V1066	Tau	03	47	34	+21	51.3	14.3	(18.		U	UV	156	
72021	BY	Hyi	03	48	05	-71	45.5	19.07	19.98		B	RRAB	082	082
72022	V1067	Tau	04	00	12	+25	44.7	12.86	12.98		V	INT:	157	020
72023	V1068	Tau	04	13	22	+28	00.2	14.66	15.74		U	INT	159	160
72024	V1069	Tau	04	15	59	+17	16.0	12.16	12.36		V	INT	019	020
72025	V1070	Tau	04	16	36	+27	42.5	14.35	15.20		U	INT	159	160
72026	V518	Per	04	18	30	+32	47.4	13.15	(22.4		V	XND+ELL:	14	140
72027	V1071	Tau	04	18	57	+28	18.6	13.40	13.60		V	INT	019	160
72028	V1072	Tau	04	24	17	+17	44.0	10.24	10.37		V	INT	161	020
72029	EQ	Eri	04	27	58	-28	59.3	7.7	(0.10)	V	DSCT	088	CoD
72030	V1073	Tau	04	28	30	+18	09.6	10.27	10.34		V	INT	161	020
72031	V1074	Tau	04	28	34	+17	00.0	12.51	12.64		V	INT	019	020
72032	V1075	Tau	04	29	16	+17	51.0	12.01	12.36		V	INT	01	020
72033	V1076	Tau	04	29	50	+17	56.7	13.14	13.30		V	INT	161	020
72034	V1077	Tau	04	31	24	+18	23.9	12.69	12.82		V	INT	161	020
72035	V1078	Tau	04	32	20	+18	15.5	10.92	11.02		V	INT	161	020
72036	TV	Ret	04	34	52	-59	21.4	16.61	20.77		B	UG:	082	082
72037	V1079	Tau	04	36	18	+22	15.2	11.91	12.89		V	INT	019	160
72038	V1080	Tau	04	37	30	+24	20.8	10.29	10.56		V	INA	019	BD
72039	AK	Dor	04	37	51	-59	07.6	16.98	17.70		B	RR	082	082
72040	V1081	Tau	04	40	54	+22	51.1	6.9	7.3		V	E	162	162
72041	V396	Aur	04	52	26	+30	13.2	10.78	11.01		V	INT	019	020
72042	V397	Aur	04	52	51	+30	16.3	11.46	11.71		V	INT	019	020
72043	V398	Aur	05	02	45	+51	32.0	4.93	5.03		V	I :	021	BD
72044	V1261	Ori	05	19	55	-08	42.8	6.91	(0.27)	V	EA/GS/WD	9	BD

Table 1 (continued)

No.	Name		R.A., Decl., 1950.0				$\begin{gathered} \operatorname{Max} \\ \mathrm{m} \end{gathered}$	Min m			Type		Ref.
72045	V399	Aur	0522	2229	+29	35.8	11.1	11.8		P	SR	022	GSC
72046	V1262	Ori	0524	2452	-05	42.9	15.4	16.7		U	UVN	130	130
72047	V400	Aur	0525	2533	+32	23.1	11.1	11.7		P	SR	022	GSC
72048	V401	Aur	0525	2537	+32	26.3	9.6	10.1		P	SR:	022	BD
72049	V1263	Ori	0526	2657	-07	26.0	14.0	16.8		U	UVN	130	130
72050	V1264	Ori	0527	2750	-06	31	15.0	(18.4		U	UVN	130	130
72051	V1265	Ori	0528	2822	-06	09	15.4	(18.4		U	UVN	130	130
72052	V1266	Ori	0529	2952	-06	35.9	16.0	(18.6		U	UVN	130	130
72053	V1267	Ori	0530	3027	-06	08.1	14.5	(18.4		U	UVN	130	130
72054	V1268	Ori	0530	3032	-04	49.4	14.2	16.8		U	UVN	130	130
72055	V1269	Ori	0531	3120	-07	18.5	15.7	(18.5		U	UVN	130	130
72056	V1270	Ori	0531	3132	-04	23.2	17.1	17.6		U	UVN	130	130
72057	V1271	Ori	0532	3224	+10	00.5	9.83	9.95		y	INA	131	BD
72058	V1272	Ori	0532	3225	-04	31.0	14.6	16.2		U	UV	130	130
72059	V1273	Ori	0532	3227	-05	24.4	15.7	(0.39)	Ic	IN	132	133
72060	V1274	Ori	0532	3237	-05	25.1	12.9	(0.39)	Ic	IN	132	133
72061	V1275	Ori	0532	3240	-05	31.2	15.0	(0.20)	Ic	IN	132	133
72062	V1276	Ori	0532	3245	-05	32.2	15.1	(0.21)	Ic	IN	132	133
72063	V1277	Ori	0532	3245	-05	17.3	13.9	(0.27)	Ic	IN	132	133
72064	V1278	Ori	0532	3248	-05	24.3	12.7	(0.32)	Ic	IN	132	133
72065	V1279	Ori	0532	3249	-05	26.0	11.5	(0.34)	Ic	IN	132	133
72066	V1280	Ori	0532	3253	-04	17.9	16.4	(18.6		P	UVN	130	130
72067	V1281	Ori	0532	3254	-05	16.9	15.5	(0.16)	Ic	IN	132	133
72068	V1282	Ori	0532	3254	-05	28.6	14.1	(0.16)	Ic	IN	132	133
72069	V1283	Ori	0532	3257	-05	28.4	13.7	(0.25)	Ic	IN	132	133
72070	V1284	Ori	0532	3258	-05	28.6	13.6	(0.26)	Ic	IN	132	133
72071	V1285	Ori	0532	3259	-05	27.7	13.5	(0.35)	Ic	IN	132	133
72072	V1286	Ori	0533	3300	-05	28.3	12.6	(0.24)	Ic	IN	132	133
72073	V1287	Ori	0533	3300	-05	29.3	13.6	(0.33)	Ic	IN	132	133
72074	V1288	Ori	0533	3301	-05	26.9	13.1	(0.18)	Ic	IN	132	133
72075	V1289	Ori	0533	3302	-05	18.4	13.3	(0.06)	Ic	IN	132	133
72076	V1290	Ori	0533	3302	-05	26.8	13.2	(0.24)	Ic	IN	132	133
72077	V1291	Ori	0533	3302	-05	11.0	15.6	(0.34)	Ic	IN	132	133
72078	V1292	Ori	0533	3303	-05	30.4	14.1	(0.47)	Ic	IN	132	133
72079	V1293	Ori	0533	3303	-05	29.2	13.8	(0.20)	Ic	IN	132	133
72080	V1294	Ori	0533	3304	-05	17.4	12.1	(0.16)	Ic	IN	132	133
72081	V1295	Ori	0533	3323	-03	59.7	15.5	16.1		U	UVN	130	130
72082	V1296	Ori	0533	3325	-06	11.9	15.	17.16		U	UVN	134	135
72083	V1297	Ori	0533	3328	-04	13.3	16.0	(18.4		U	UVN	130	130
72084	V1298	Ori	0534	3448	-04	03.0	15.4	18.2		U	UVN	130	130
72085	V1299	Ori	0535	3522	-01	39.2	12.1	13.0		P	IB :	022	GSC
72086	V1300	Ori	0535	3525	-06	41.5	12.3	15.47		U	UVN	130	130
72087	V1301	Ori	0535	3539	-05	03.0	15.6	16.5		U	UVN	130	130
72088	V1302	Ori	0536	3604	-05	05.7	13.7	15.0		U	UVN	130	130

Table 1 (continued)

No.	Name		R.A	A. , D	Decl	95	$\begin{gathered} 950.0 \\ 0 \end{gathered}$	$\begin{gathered} \text { Max } \\ \mathrm{m} \end{gathered}$	Min m			Type	Ref.	
72089	V1303	Ori	05	37	38	-05	33.9	16.1	17.0		P	UVN	30	130
72090	V1304	Ori	05	38	01	-08	09.1	13.58	13.98		V	INT	36	136
72091	V1305	Ori	05	39	26	-08	01.9	13.12	13.35		U	INT	36	136
72092	V1306	Ori	05	39	51	-05	29.5	15.7	16.6		U	UVN	30	130
72093	TZ	Col	05	50	19	-28	40.0	9.05	(0.06)	V	RS	060	CoD
72094	V1307	Ori	05	59	06	+16	31.0	9.48	(0.35)	V	INA	131	029
72095	V696	Mon	06	01	48	-06	42.3	5.12	5.18		B	*	113	BD
72096	UV	Lep	06	09	07	-15	46.8	6.77	(0.01	B)	V	ACVO	098	BD
72097	V697	Mon	06	10	24	-06	12.3	15.40	16.67		B	INT	114	051
72098	V1308	Ori	06	15	54	+15	18.1	11.47	11.62		V	INA	028	051
72099	V698	Mon	06	28	04	+10	35.3	12.86	13.36		V	IA	028	051
72100	V699	Mon	06	29	56	+10	11.4	10.36	10.84		V	INA	115	029
72101	V700	Mon	06	30	19	+10	21.6	8.62	8.91		V	INA	115	029
72102	PP	Gem	06	53	43	+14	22.9	11.1	12.2		P	SR	022	090
72103	HT	CMa	07	00	22	-11	21.8	11.87	12.24		,	IA	028	029
72104	HU	CMa	07	01	46	-11	21.6	11.61	12.05		V	IA	028	029
72105	HV	CMa	07	02	49	-14	56.4	7.10	9.93		J	M	007	142
72106	HW	CMa	07	06	15	-22	19.7	9.19	(0.13)	J	EA	030	BD
72107	HX	CMa	07	09	54	-20	12.3	6.94	8.62		J	M	007	031
72108	BK	CMi	07	12	59	+05	08.0	12.	13.5		B	SR	032	BD
72109	BL	CMi	07	21	13	+01	43.2	11.5	12.5		P	E:	033	034
72110	V352	Pup	07	38	50	-47	47.3	12.62	(2.4)	V	INT	141	GSC
72111	V701	Mon	07	43	58	-04	37.2	15.27	15.63		Ic	EW	116	116
72112	V702	Mon	07	44	04	-07	37.9	18.20	18.68		Ic	EW/KW	116	116
72113	V703	Mon	07	44	05	-04	35.0	17.70	18.52		Ic	EW/KW	116	116
72114	V704	Mon	07	44	17	-04	34.6	17.20	17.65		Ic	EW/KW	116	116
72115	V705	Mon	07	44	18	-04	30.9	15.96	16.04		Ic	EW/KW	116	116
72116	V706	Mon	07	44	18	-04	36.7	15.28	15.54		Ic	EW/KW	116	116
72117	V707	Mon	07	44	18	-04	35.0	18.31	19.37		Ic	EW	116	116
72118	V708	Mon	07	44	19	-04	35.3	14.55	14.69		Ic	E:	116	116
72119	V709	Mon	07	44	22	-04	28.7	16.16	16.72		Ic	EW/KW	116	116
72120	V710	Mon	07	44	23	-04	34.2	14.57	15.01		Ic	EW/KW	116	116
72121	V711	Mon	07	44	24	-04	32.9	16.85	17.01		Ic	EW/KW	116	116
72122	V712	Mon	07	44	32	-04	31.3	16.85	17.21		Ic	EW/KW	116	116
72123	V353	Pup	07	44	38	-32	11.1	3.10	3.55		J	SR	036	CoD
72124	PQ	Gem	07	48	31	+14	52.1	13.7	14.50		B	XPM	091	091
72125	CD	Cam	07	53	06	+72	54.4	11.63	11.85		V	EW	023	024
72126	FF	Cnc	08	26	49	+17	27.1	10.82	11.40		V	EA	025	025
72127	EQ	UMa	08	32	43	+53	45.1	12.4	(0.2)	V	EW/KW	166	166
72128	FG	Cnc	08	39	18	+20	51.	15.0	15.6		U	UV	026	
72129	FH	Cnc	08	44	06	+20	46.	13.5	(17.		U	UV	026	
72130	BK	Lyn	09	17	08	+34	09.5	14.49	(0.32)	V	NL	109	085
72131	LY	Vel	09	18	48	-47	21.2	7.75	(0.02)	V	LBV	172	CoD
72132	ER	UMa	09	43	47	+52	07.9	12.4	15.2		V	UG:	167	085

Table 1 (continued)

No.	Name		$\text { R.A.,Decl., } 1950.0$				Max	$\begin{array}{r} \text { Min } \\ \mathrm{m} \end{array}$			Type	Ref.	
72133	ES	UMa	0950	22	+69	27.5	10.99	11.38		V	EW	168	217
72134	LZ	Vel	0952	38	-43	05.1	7.27	7.39		V	RS:	173	CoD
72135	MM	Vel	1011	32	-44	49.7	14.9	19		B	XND	174	
72136	ET	UMa	1020	33	+65	49.2	4.91	(0.05)	B	ACV	169	BD
72137	V433	Car	1022	06	-57	12.6	8.12	8.17		V	BCEP	035	CPD
72138	V434	Car	1028	43	-57	33.4	9.26	12.0		J	SRC	036	
72139	TU	Crt	1101	09	-21	21.6	12.1	17.5		B	UGSU	067	068
72140	V870	Cen	1136	00	-63	04.0	10.41	10.68		V	BE	077	CPD
72141	V871	Cen	1136	00	-63	05.7	6.48	(0.12)	V	EB	041	CPD
72142	V872	Cen	1144	45	-61	53.2	12.67	13.12		I	CEP	042	
72143	V873	Cen	1146	32	-62	09.0	11.32	11.75		I	CEP	042	
72144	EU	UMa	1147	20	+29	01.8	16.45	16.93		B	AM	170	170
72145	V874	Cen	1149	14	-62	57.3	13.76	14.15		I	CEP	042	
72146	V875	Cen	1151	25	-58	41.7	3.90	5.62		L'	,	007	
72147	V876	Cen	1152	11	-62	00.7	12.12	12.54		I	CEP	042	
72148	CI	Cru	1158	13	-62	04.7	13.52	13.85		I	CEP	042	
72149	CK	Cru	1200	24	-62	13.1	12.26	12.67		I	CEP	042	
72150	CL	Cru	1204	23	-64	17.8	6.18	7.74		K	M	007	
72151	CM	Cru	1231	04	-62	33.3	8.03	(1.75)	J	M	036	
72152	BP	CVn	1245	17	+34	39.3	11.9	12.8		P	SR	022	027
72153	DK	Cha	1249	38	-76	50.7	9.28	11.15		J	INA	057	058
72154	CN	Cru	1250	51	-60	06.7	8.61	(0.24)	B	EB	069	070
72155	IP	Com	1254	09	+30	09.9	14.48	15.14		V	RRAB	061	062
72156	V877	Cen	1256	38	-61	21.9	10.44	11.15		V	EB	043	044
72157	V878	Cen	1301	09	-61	02.9	10.37	11.12		V	EB	043	044
72158	EV	UMa	1305	47	+54	07.5	17.	21.		V	AM	171	218
72159	V879	Cen	1315	46	-64	21.7	6.8	9.2		K	M	036	
72160	V880	Cen	1319	05	-62	35.5	12.44	12.89		I	CEP	042	
72161	V881	Cen	1324	00	-62	45.6	10.26	10.93		I	CEP	042	
72162	V882	Cen	1332	19	-62	24.7	11.56	11.79		I	CEP	042	
72163	V883	Cen	1405	24	-59	02.4	6.40	6.63		b	E	040	CPD
72164	HX	Lup	1419	22	-48	05.6	6.09	(0.06)	V	ELL:	099	CoD
72165	HY	Lup	1428	26	-50	57.3	7.97	17.		V	N	197	
72166	sigma	Lup	1429	14	-50	14.2	4.42	(0.02)	V	ELL:	099	CoD
72167	V884	Cen	1429	46	-60	10.4	7.93	(1.71)	H	M	036	
72168	ER	Dra	1430	21	+60	26.7	6.18	(0.03)	V	DSCTC	083	BD
72169	HZ	Lup	1503	31	-30	43.5	5.96	(0.07	U)	V	ACV	101	CoD
72170	delta	Cir	1512	53	-60	46.4	5.08	(0.1)	V	ELL	059	CPD
72171	II	Lup	1519	27	-51	15.3	4.37	5.97		H	M	007	102
72172	ES	Dra	1524	37	+62	11.4	13.9	16.3		P	NL	084	085
72173	theta	CrB	1530	55	+31	31.6	4.06	4.33		V	BE	066	BD
72174	IK	Lup	1536	16	-34	36.6	12.59	12.89		V	INT	103	104
72175	V351	Nor	1540	50	-54	13.7	6.97	7.19		J	LB	036	
72176	IL	Lup	1543	34	-47	30.9	14.6	16.7		V	XNG	105	106

Table 1 (continued)

No.	Name			$\begin{aligned} & \text { A. , Decl. } \\ & \text { h m s } \end{aligned}$		$\begin{gathered} 950.0 \\ 0 \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ \mathrm{m} \end{gathered}$	Min m			Type		ef
72177	IM	Lup	15	5251	-37	47.4	11.73	12.09		y	INT	107	108
72178	V839	Her	15	5349	+42	42.6	5.74	5.84		V	BE	093	BD
72179	V352	Nor	16	0303	-51	56.5	13.	(16		B	ZAND:	117	118
72180	UY	CrB	16	0419	+28	15.1	12.5	13.8		P	RR:	065	065
72181	V1000	Sco	16	0815	-18	57.0	11.90	12.06		V	INT	063	151
72182	V1001	Sco	16	0905	-18	59.2	11.61	11.70		V	INT	063	151
72183	V1002	Sco	16	0946	-18	51.8	10.74	10.93		V	INT	063	151
72184	V353	Nor	16	1042	-51	39.8	7.38	(2.16)	K	M	036	
72185	V840	Her	16	3023	+07	01.0	11.2	12.2		V	E	094	095
72186	V1003	Sco	16	3454	-43	18.0	5.83	(0.03)	V	ELL:	099	CoD
72187	V835	Ara	16	4026	-48	33.7	9.0	(0.008)	B	ACVO	014	CoD
72188	V1004	Sco	16	4132	-44	57.8	8.25	(1.39)	K	M	036	
72189	V1005	Sco	16	4726	-44	18.4	7.92	(1.46)	H	M	036	
72190	V1006	Sco	16	4931	-43	27.7	7.80	10.40		J	SR	036	
72191	V2292	Oph	16	5027	+00	04.5	6.78	(0.04)	V	BY:	119	BD
72192	V1007	Sco	16	5039	-41	44.7	6.06	(0.24)	V	EB	041	CoD
72193	V841	Her	16	5522	+35	21.8	11.08	11.25		U	UV	096	096
72194	V836	Ara	16	5613	-46	14.6	7.51	(0.15)	V	E:	015	CoD
72195	V1008	Sco	17	0025	-41	19.8	3.00	5.85		L'	M	036	
72196	V1009	Sco	17	0350	-40	26.9	3.52	5.10		L'	SR	036	
72197	V837	Ara	17	0448	-56	51.1	10.9	12.4		V	*	179	CPD
72198	V1010	Sco	17	0721	-42	25.1	9.11	(1.43)	H	M	036	
72199	V1011	Sco	17	0725	-39	55.0	7.53	(2.72)	J	M	036	
72200	V1012	Sco	17	1157	-38	09.4	6.76	6.83		b	EB	040	CoD
72201	V1013	Sco	17	1252	-37	48.8	8.34	(1.64)	K	SR	036	
72202	V1014	Sco	17	1428	-37	45.9	10.83	(1.61)	J	M	036	
72203	V1015	Sco	17	1605	-37	18.6	10.47	(2.68)	H	SR	036	
72204	V2293	Oph	17	1633	-24	58.0	17.1	21.5		B	XND	120	
72205	V2294	Oph	17	1709	-08	44.0	3.99	5.7		K	M	121	
72206	V2295	Oph	17	2204	-23	08.5	9.0	(21.		V	NA	122	
72207	V2296	Oph	17	2540	+05	04.7	3.0	4.1		K	M	121	
72208	V1016	Sco	17	2708	-34	25.5	9.44	(2.79)	K	SR	036	
72209	V1017	Sco	17	2711	-34	30.1	8.23	8.27		V	RS:	152	CoD
72210	V2297	Oph	17	3049	+08	22.7	6.7	7.5		K	M	121	
72211	V1018	Sco	17	3145	-33	31.6	2.42	4.70		L'	SR	036	
72212	V1019	Sco	17	3602	-30	12.9	8.11	(3.39)	J	SR	036	
72213	V2298	Oph	17	4117	+05	33.3	14.0	14.9		B	RRC:	123	124
72214	V2299	Oph	17	4358	+05	32.2	12.42	(0.08)	V	BY:	125	126
72215	V1020	Sco	17	4434	-35	43.1	16.0	18.5		B	UV	153	153
72216	V1021	Sco	17	4648	-35	49.4	16.0	18.0		B	UV	153	153
72217	V1022	Sco	17	4801	-35	12.4	15.5	18.0		B	UV	153	153
72218	V1023	Sco	17	4908	-36	67.1	16.7	18.1		B	UV	153	153
72219	V4201	Sgr	17	5011	-26	56.0	7.76	(2.20)	J	SR	036	142
72220	V1024	Sco	17	5031	-36	14.6	15.9	17.7		B	UV	153	153

Table 1 (continued)

No.	Name		R.A.,Decl., 1950.0				$\begin{gathered} \operatorname{Max} \\ \mathrm{m} \end{gathered}$	$\begin{array}{r} \text { Min } \\ \mathrm{m} \end{array}$			Type	Ref.	
72221	ET	Dra	17	5103	+70	46.3	11.52	11.83		U	FKCOM	08	BD
72222	V1025	Sco	17	5208	-36	25.7	15.7	17.2		B	UV	15	153
72223	V2300	Oph	17	5741	+06	33.3	6.7	(0.02)	V	ELL:	04	BD
72224	V2301	Oph	17	5812	+08	10.2	16.0	22.0		V	E+AM	12	085
72225	V4202	Sgr	18	0023	-22	37.2	8.21	(0.25)	V	E:	01	BD
72226	V4203	Sgr	18	0119	-24	22.4	9.60	10.19		V	INA	028	143
72227	V4204	Sgr	18	0246	-24	15.6	11.06	11.35		V	INA	02	143
72228	V4205	Sgr	18	0329	-24	54.2	16.5	18.1		B	RRAB	14	144
72229	V4206	Sgr	18	0340	-31	21.9	16.6	17.7		B	RRAB	14	145
72230	V4207	Sgr	18	0341	-31	06.5	16.8	18.3		B	RRAB	14	145
72231	V4208	Sgr	18	0341	-31	01.7	17.0	18.2		B	RRAB	14	145
72232	V4209	Sgr	18	0344	-31	35.9	16.6	17.0		B	RRC	14	145
72233	V4210	Sgr	18	0349	-30	48.6	17.1	18.5		B	RRAB	14	145
72234	V4211	Sgr	18	0350	-25	22.2	15.5	16.9		B	RRAB	14	144
72235	V4212	Sgr	18	0353	-31	21.3	17.3	18.3		B	RRAB	14	145
72236	V4213	Sgr	18	0355	-31	21.1	16.1	17.6		B	RRAB	14	145
72237	V4214	Sgr	18	0401	-31	41.0	16.6	18.0		B	RRAB	145	145
72238	V4215	Sgr	18	0410	-31	40.9	17.6	18.1		B	RRC	14	145
72239	V4216	Sgr	18	0410	-30	46.5	18.0	18.6		B	RRC	145	145
72240	V4217	Sgr	18	0410	-31	42.1	17.7	18.7		B	RRAB	145	145
72241	V4218	Sgr	18	0411	-31	38.9	16.7	17.8		B	RRAB	14	145
72242	V4219	Sgr	18	0412	-31	07.3	16.5	18.2		B	RRAB	145	145
72243	V4220	Sgr	18	0412	-31	19.6	17.5	18.0		B	EW	145	145
72244	V4221	Sgr	18	0413	-31	24.8	17.3	17.7		B	RRC	145	145
72245	V4222	Sgr	18	0414	-30	38.6	16.8	18.1		B	RRAB	14	145
72246	V4223	Sgr	18	0419	-31	31.3	17.3	18.3		B	RRAB	14	145
72247	V4224	Sgr	18	0420	-30	53.9	17.6	18.2		B	RRC	14	145
72248	V4225	Sgr	18	0422	-31	26.4	16.8	17.7		B	RRAB	14	145
72249	V4226	Sgr	18	0423	-31	33.9	16.7	18.1		B	RRAB	14	145
72250	V4227	Sgr	18	0424	-30	50.2	16.9	17.9		B	RRAB	14	145
72251	V4228	Sgr	18	0425	-31	24.0	16.7	18.3		B	RRAB	14	145
72252	V4229	Sgr	18	0425	-31	04.1	17.4	18.1		B	RRAB	14	145
72253	V4230	Sgr	18	0431	-31	43.1	16.8	18.1		B	RRAB	14	145
72254	V4231	Sgr	18	0434	-31	23.1	16.2	17.5		B	RRAB	14	145
72255	V4232	Sgr	18	0436	-30	40.6	17.1	18.0		B	RRAB	14	145
72256	V4233	Sgr	18	0438	-31	27.0	17.5	18.0		B	EW/KW	14	145
72257	V4234	Sgr	18	0440	-30	41.6	16.1	17.1		B	RRAB	145	145
72258	V4235	Sgr	18	0440	-30	43.6	17.1	18.3		B	RRAB	145	145
72259	V4236	Sgr	18	0440	-30	49.0	18.0	18.7		B	RRC	14	145
72260	V4237	Sgr	18	0440	-31	33.8	17.1	18.1		B	RRAB	14	145
72261	V4238	Sgr	18	0441	-30	43.5	17.2	18.3		B	RRAB	145	145
72262	V4239	Sgr	18	0445	-31	27.7	16.8	18.1		B	RRAB	14	145
72263	V4240	Sgr	18	0445	-31	25.0	16.9	18.0		B	RRAB	14	145
72264	V4241	Sgr	18	0446	-30	58.9	16.7	18.3		B	RRAB	14	145

Table 1 (continued)

Table 1 (continued)

No.	Name		R.A., Decl., 1950.0					$\begin{gathered} \operatorname{Max} \\ \mathrm{m} \end{gathered}$	$\begin{array}{r} \text { Min } \\ \mathrm{m} \end{array}$		Type		ef.
72309	V4286	Sgr	18	061	18	-30	51.9	16.8	17.7	B	RRAB	145	145
72310	V4287	Sgr	18	062	20	-31	36.3	16.9	17.4	B	RRC:	145	145
72311	V4288	Sgr	18	062	25	-31	34.0	16.1	17.6	B	RRAB	145	145
72312	V4289	Sgr	18	063	34	-31	34.4	16.2	17.3	B	RRAB	145	145
72313	V4290	Sgr	18	063	35	-30	43.2	17.1	18.2	B	RRAB	145	145
72314	V4291	Sgr	18	063	38	-30	51.9	17.0	17.5	B	RRC	145	145
72315	V4292	Sgr	18	064	40	-31	23.4	16.5	17.9	B	RRAB	145	145
72316	V4293	Sgr	18	064	44	-31	05.3	15.8	17.0	B	RRAB	145	145
72317	V4294	Sgr	18	064	46	-30	45.6	17.2	18.1	B	RRAB	145	145
72318	V4295	Sgr	18	064	48	-30	47.5	17.4	18.2	B	EA	145	145
72319	V4296	Sgr	18	065	50	-30	59.0	16.6	17.2	B	RRAB	145	145
72320	V4297	Sgr	18	065	51	-30	49.7	15.7	17.3	B	RRAB	145	145
72321	V4298	Sgr	18	065	52	-30	54.0	16.6	17.6	B	RRAB	145	145
72322	V4299	Sgr	18	065	55	-31	27.7	16.8	17.3	B	RRC	145	145
72323	V4300	Sgr	18	065	55	-30	50.2	16.8	17.9	B	RRAB	145	145
72324	V2302	Oph	18	065	56	+09	11.7	4.07	5.5	K	M	121	
72325	V4301	Sgr	18	065	58	-31	44.4	17.1	18.0	B	RRAB	145	145
72326	V4302	Sgr	18	070	00	-31	22.8	16.2	17.3	B	RRAB	145	145
72327	V4303	Sgr	18	070	07	-31	09.2	16.7	17.2	B	RRC	145	145
72328	V4304	Sgr	18	07	08	-30	44.6	16.0	17.4	B	RRAB	145	145
72329	V4305	Sgr	18	071	11	-31	03.4	15.5	16.5	B	RRAB	145	145
72330	V4306	Sgr	18	071	14	-31	35.8	16.8	17.9	B	RRAB	145	145
72331	V4307	Sgr	18	071	16	-31	23.8	17.0	17.4	B	RRC	145	145
72332	V4308	Sgr	18	071	16	-31	00.8	17.5	18.0	B	DSCT	145	145
72333	V4309	Sgr	18	071	17	-31	17.0	16.8	17.9	B	RRAB	145	145
72334	V4310	Sgr	18	071	17	-30	36.6	16.5	17.7	B	RRAB	145	145
72335	V4311	Sgr	18	071	19	-30	54.4	15.5	16.5	B	RRAB	145	145
72336	V4312	Sgr	18	071	19	-30	45.7	16.0	17.2	B	RRAB	145	145
72337	V4313	Sgr	18	071	19	-30	55.7	16.0	17.4	B	RRAB	145	145
72338	V4314	Sgr	18	072	20	-30	23.3	16.9	17.4	B	RRC:	145	145
72339	V4315	Sgr	18	072	25	-30	43.5	17.6	18.2	B	EA	145	145
72340	V4316	Sgr	18	072	26	-30	56.8	16.0	17.3	B	RRAB	145	145
72341	V4317	Sgr	18	073	30	-31	08.4	17.4	18.2	B	DSCT	145	145
72342	V4318	Sgr	18	073	34	-30	39.6	16.4	17.1	B	RRAB	145	145
72343	V4319	Sgr	18	073	37	-30	45.6	15.7	17.2	B	RRAB	145	145
72344	V4320	Sgr	18	073	39	-30	57.2	16.6	17.2	B	EA	145	145
72345	V4321	Sgr	18	074	42	-31	32.6	15.5	16.8	B	RRAB	145	145
72346	V4322	Sgr	18	074	44	-31	12.0	16.6	17.5	B	RRAB	145	145
72347	V4323	Sgr	18	074	44	-30	49.2	18.0	18.5	B	EA	145	145
72348	V4324	Sgr	18	074	45	-31	02.5	15.8	17.4	B	RRAB	145	145
72349	V4325	Sgr	18	074	47	-31	28.6	16.5	17.8	B	RRAB	145	145
72350	V4326	Sgr	18	074	49	-31	06.8	16.8	17.8	B	RRAB	145	145
72351	V4327	Sgr	18	093	38	-29	29.9	8	(12.	V	NA	146	
72352	V4328	Sgr	18	14	40	-31	10.0	9.32	12.73	H	M	147	

Table 1 (continued)

No.	Name		R.A., Decl., 1950.0					$\underset{m}{\operatorname{Max}}$	Min			Type	Ref.	
72353	V4329	Sgr	18	14	59	-32	23.6	8.22	9.02		J	M	147	
72354	NW	Ser	18	19	01	+05	24.7	5.39	5.59		U	BE	093	BD
72355	V4330	Sgr	18	24	04	-28	32.3	10.48	12.94		J	M	147	
72356	V445	Sct	18	27	40	-14	31.0	11.45	11.7		J	SR	155	155
72357	V4331	Sgr	18	27	56	-27	07.8	9.61	12.20		J	M	147	
72358	NX	Ser	18	33	19	+05	33.3	2.8	4.7		K	M	121	
72359	V2303	Oph	18	36	09	+11	08.9	11.1	(12.5		VB	SR	128	128
72360	V491	Lyr	18	38	22	+40	17.0	9.2	10.5		B	SRB	075	BD
72361	V1417	Aql	18	39	48	-02	20.4	12.0	13.4		I	M	006	006
72362	V492	Lyr	18	41	45	+40	36.8	18.23	(0.22)	V	UG	110	
72363	V4332	Sgr	18	47	37	-21	27.0	8.	17.		V	*	149	
72364	V702	CrA	18	58	39	-37	12.0	10.48	10.58		V	INT	063	064
72365	V493	Lyr	18	59	58	+42	50.4	13.2	(17.2		P	UG	111	111
72366	V1418	Aql	19	00	53	+07	26.3	6.66	9.33		J	M	007	008
72367	V494	Lyr	19	01	22	+33	53.5	11.2	(15.0		,	M	071	071
72368	V337	Vul	19	04	15	+25	30.0	12.5	(16.0		V	M	071	071
72369	V495	Lyr	19	05	23	+31	38.1	12.6	14.4		V	SR	071	071
72370	V496	Lyr	19	05	38	+35	41.7	12.0	13.0		V	IB	071	071
72371	V497	Lyr	19	06	02	+36	18.3	11.9	13.5		,	IB	071	071
72372	V498	Lyr	19	07	10	+32	48.5	11.3	12.3		V	SR	071	071
72373	V338	Vul	19	08	07	+23	15.7	13.2	(15.		V	SR	071	071
72374	V339	Vul	19	09	08	+24	39.4	12.7	16.0		\checkmark	M	071	071
72375	V1419	Aql	19	10	35	+01	29.2	7.66	(22.		V	NA	009	010
72376	V340	Vul	19	10	36	+23	06.3	11.8	(15.		V	M	071	071
72377	V499	Lyr	19	10	52	+30	14.5	16.4	17.1		B	SRD :	112	112
72378	V500	Lyr	19	11	17	+26	53.6	13.8	(15.3		V	M	071	071
72379	V501	Lyr	19	12	51	+36	55.8	11.5	14.8		V	M	071	071
72380	V502	Lyr	19	15	55	+34	20.4	12.0	14.8		V	M	071	071
72381	V1420	Aql	19	17	35	-08	07.9	6.18	8.33		J	M	007	011
72382	V341	Vul	19	19	40	+24	37.4	12.9	(15.8		V	SR	071	071
72383	V342	Vul	19	19	54	+23	00.8	12.2	15.2		V	M	071	071
72384	V343	Vul	19	19	59	+26	16.6	13.4	(16.2		V	SR	071	071
72385	V344	Vul	19	20	37	+25	52.8	12.5	(15.2		V	M	071	071
72386	V345	Vul	19	21	46	+26	21.3	13.3	14.7		V	IB	071	071
72387	V503	Lyr	19	22	28	+32	13.3	11.7	(15.2		V	SRB	071	071
72388	V346	Vul	19	23	52	+26	32.3	13.2	(15.2		V	SR	071	071
72389	V504	Lyr	19	24	12	+34	56.9	11.6	(15.2		V	M	071	071
72390	V1421	Aql	19	24	48	+06	58.2	6.66	7.98		J	M	007	031
72391	V1985	Cyg	19	25	17	+35	17.6	11.6	(15.2		V	M	071	071
72392	V347	Vul	19	25	41	+24	36.4	11.9	15.2		V	M	071	071
72393	V348	Vul	19	28	09	+24	04.0	14.2	(16.0		V	M	071	071
72394	V1986	Cyg	19	28	13	+28	03.2	12.4	(15.2		V	M	071	071
72395	V349	Vul	19	29	04	+23	24.2	11.4	15.2		V	M	071	071
72396	V1987	Cyg	19	29	42	+28	44.0	12.7	14.5		V	SR	071	071

Table 1 (continued)

No.	Name		$\begin{array}{r} \text { R.A } \\ \mathrm{h} \end{array}$	$\begin{aligned} & \text { A. }, \mathrm{De} \\ & \mathrm{~h} \quad \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { Decl } \\ & m \quad s \end{aligned}$	195	$\begin{aligned} & 50.0 \\ & 0 \end{aligned}$	$\begin{gathered} \text { Max } \\ m \end{gathered}$	Min m			Type	Ref.	
72397	V345	Pav	19	312	26	-59	15.0	13.5	14.7		B	EA+NL	13	137
72398	V4333	Sgr	19	333	31	-18	57.9	5.48	5.60		V	DSCT	15	BD
72399	V1988	Cyg	19	335	59	+34	09.2	12.3	15.2		V	M	07	071
72400	QS	Tel	19	345	58	-46	19.8	15.25	16.09		V	AM	16	163
72401	V350	Vul	19	371	13	+23	37.5	11.7	(15.0		V	M	07	071
72402	V351	Vul	19	381	13	+23	26.0	14.0	15.0		V	IB	07	071
72403	V352	Vul	19	385	57	+24	45.5	12.1	(15.2		V	M	07	071
72404	V1989	Cyg	19	40	09	+30	06.6	12.0	(15.2		V	M	07	071
72405	V1990	Cyg	19	414	41	+34	22.2	10.4	13.0		V	M	07	071
72406	V1991	Cyg	19	415	55	+32	22.2	10.2	14.7		V	M	07	071
72407	V1992	Cyg	19	442	27	+31	32.8	11.9	15.0		V	M	07	071
72408	V1993	Cyg	19	452	27	+35	38.4	12.7	14.6		V	SRA:	07	071
72409	V1994	Cyg	19	463	35	+31	58.6	13.0	15.1		V	SRA	07	071
72410	V353	Vul	19	471	12	+22	30.2	13.0	(15.5		V	M	07	1071
72411	V1995	Cyg	19	471	13	+29	24.0	10.0	12.6		V	M	07	1071
72412	V354	Vul	19	475	58	+22	25.0	13.2	(15.2		V	M	07	071
72413	V1996	Cyg	19	48	45	+29	21.5	12.8	15.2		V	M	07	071
72414	V355	Vul	19	4910	10	+26	02.9	12.7	(15.2		V	M	07	071
72415	V1997	Cyg	19	493	33	+32	40.0	13.0	(15.1		V	M	07	071
72416	V356	Vul	19	495	58	+27	01.8	12.0	15.0		V	SR	07	071
72417	V1998	Cyg	19	50	23	+30	42.4	12.5	14.2		V	SR	07	071
72418	V357	Vul	19	514	49	+23	00.7	13.0	15.0		V	SR	07	071
72419	V1999	Cyg	19	52	29	+33	56.7	12.5	(15.2		V	M	07	071
72420	V358	Vul	19	530	03	+22	23.1	12.1	(15.0		V	M	07	071
72421	V359	Vul	19	534	47	+22	13.1	11.3	14.5		V	M	07	071
72422	V360	Vul	19	541	19	+23	08.4	12.4	14.2		V	SRB	07	071
72423	V2000	Cyg	19	553	31	+30	35.0	13.9	(15.2		V	SR	07	071
72424	v361	Vul	19	55	53	+22	41.3	13.0	14.7		V	IB	07	071
72425	V2001	Cyg	19	56	07	+31	46.7	14.1	(15.2		V	SRA:	07	1071
72426	V2002	Cyg	19	561	13	+29	33.1	12.6	(15.2		V	M	07	071
72427	V2003	Cyg	19	570	08	+31	05.3	11.9	15.1		V	M	07	071
72428	V2004	Cyg	20	002	29	+29	43.3	11.8	15.1		V	M	07	1071
72429	V362	Vul	20	003	37	+22	20.0	16.0	17.7		P	NL	17	176
72430	V2005	Cyg	20	011	12	+31	15.8	12.8	13.7		V	I	07	071
72431	V2006	Cyg	20	012	23	+29	46.4	11.8	13.6		V	SR	07	071
72432	V363	Vul	20	041	14	+25	18.9	12.5	(15.2		V	M	07	1071
72433	V2007	Cyg	20	0420	20	+35	09.0	12.6	15.1		V	M	07	1071
72434	V2008	Cyg	20	043	30	+35	50.0	5.36	(0.05)	V	RS:	07	BD
72435	V2009	Cyg	20	04	43	+33	49.4	12.5	15.1		V	M	07	1071
72436	V1422	Aql	20	045	51	+15	07.3	8.09	(0.10)	V	BY	01	2 BD
72437	V1423	Aql	20	060	09	+15	31.8	7.8	(0.045)	V	RS	01	2 BD
72438	V364	Vul	20	062	21	+25	27.3	13.8	(15.2		V	IB	07	071
72439	V2010	Cyg	20	074	44	+31	49.9	13.0	(15.2		V	M	07	071
72440	V365	Vul	20	075	56	+25	29.2	11.8	15.1		V	M	07	1071

Table 1 (continued)

No.	Name			$\begin{aligned} & \text { A. . De } \\ & \text { h m } \end{aligned}$			50.0	$\begin{gathered} \text { Max } \\ \mathrm{m} \end{gathered}$	Min			Type		ef
72441	V1424	Aql	20	08	27	+15	03.1	8.69	(0.14)	V	EA	013	BD
72442	V366	Vul	20	10	30	+24	27.7	12.4	(15.2		V	M	071	071
72443	V2011	Cyg	20	10	47	+40	07.0	7.93	(0.07)	B	*	074	BD
72444	V367	Vul	20	13	34	+25	17.7	10.3	(15.2		V	M	071	071
72445	V368	Vul	20	13	57	+24	04.4	11.6	(15.2		V	M	071	071
72446	V2012	Cyg	20	15	11	+31	23.9	11.6	12.2		P	LB	07	BD
72447	V369	Vul	20	16	16	+26	29.8	11.8	(15.2		V	M	071	071
72448	V370	Vul	20	16	33	+28	25.7	13.5	15.0		V	SRA	07	071
72449	V371	Vul	20	18	11	+22	34.2	6.7	8.7		K	M	121	
72450	V2013	Cyg	20	19	30	+30	15.1	13.0	(15.2		V	SR	071	071
72451	V372	Vul	20	193	31	+29	05.1	12.4	15.0		V	SR	071	071
72452	V373	Vul	20	19	57	+22	13.8	13.0	14.9		V	SRD	071	071
72453	v374	Vul	20	24	03	+27	59.7	12.8	(15.0		V	SR:	071	071
72454	V375	Vul	20	25	18	+24	07.5	12.0	(16.0		V	M	071	071
72455	V2014	Cyg	20	28	31	+48	47.0	4.86	(0.03		B	BCEP :	045	BD
72456	V2015	Cyg	20	32	16	+46	31.3	5.62	(0.02		B	ACV	04	BD
72457	LV	Del	20	39	56	+18	58.6	14.2	15.4		V	RV:	081	081
72458	V379	Cep	20	415	58	+56	56.0	6.65	(0.06		B	EA	045	BD
72459	V2016	Cyg	20	44	51	+43	33.5	13.46	13.90		V	INA	028	076
72460	V2017	Cyg	20	44	56	+43	35.8	15.13	15.		V	INA	02	076
72461	V2018	Cyg	20	45	00	+43	34.1	11.83	11.97		V	INA	028	076
72462	V2019	Cyg	20	46	18	+43	36.3	11.15	11.42		V	INA	028	076
72463	V2020	Cyg	20	46	34	+43	28.8	10.96	11.33		V	INA	028	076
72464	V2021	Cyg	20	51	10	+33	55.8	8.9	9.5		V	EA	07	BD
72465	V2022	Cyg	20	51	13	+44	03.8	11.88	12.15		V	INA	028	076
72466	V2023	Cyg	20	53	24	+44	51.7	11.77	12.18		V	INA	028	076
72467	V2024	Cyg	20	57	30	+44	06.1	14.24	14.40		V	INA	028	076
72468	V2025	Cyg	20	57	45	+44	24.3	13.78	13.91		V	INA	028	076
72469	V2026	Cyg	20	59	54	+44	08.3	13.37	14.02		V	INA	028	076
72470	V380	Cep	21	01	00	+67	57.9	7.10	7.36		U	INA	187	046
72471	HU	Aqr	21	05	20	-05	29.8	15.3	19.8		V	XRM +E	003	177
72472	V2027	Cyg	21	15	03	+33	59.8	13.16	(0.04		V	ZZO	07	080
72473	V381	Cep	21	17	53	+58	24.7	5.51	5.71		V	LC:	047	BD
72474	V382	Cep	21	18	20	+64	39.6	5.08	5.23		V	BE	048	BD
72475	HV	Aqr	21	18	49	-03	22.4	9.71	10.11		V	EW/KW/RS	004	BD
72476	KY	Peg	21	47	23	+12	28.7	10.7	11.2		P	SR	02	BD
72477	V383	Cep	21	50	20	+61	42.4	7.27	7.58		V	EB	050	050
72478	V384	Cep	22	24	08	+60	05.4	13.72	15.34		I	M	006	006
72479	V376	Lac	22	30	41	+54	57.3	13.5	14.6		B	SRB	097	097
72480	V385	Cep	22	47	12	+61	55.3	13.97	14.74		V	INA	028	051
72481	V377	Lac	22	505	54	+39	54.0	6.25	(0.02		B	LBV	045	BD
72482	V386	Cep	22	51	19	+61	01.2	8.8	11.5		V	SR	052	052
72483	KZ	Peg	22	51	40	+08	37.9	3.61	(1.41		J	M	036	
72484	V387	Cep	23	011	19	+60	10.5	6.72	(0.02	b)	B	LBV	045	BD

Table 1 (continued)

No.	Name		R.A., Decl., 1950.0				$\begin{gathered} \text { Max } \\ m \end{gathered}$	$\begin{array}{r} \text { Min } \\ \mathrm{m} \end{array}$			Type	Ref.	
72485	CG	Gru	230	0504	-47	43.1	15.06	15.47		V	EW/KW	092	092
72486	V388	Cep	231	1341	+70	36.9	5.56	(0.07)	V	DSCT:	053	BD
72487	QQ	And	23	1528	+40	34.3	10.5	11.2		P	SR	002	BD
72488	LL	Peg	23	1643	+16	55.1	9.64	11.60		K	M	007	
72489	LM	Peg	233	3338	+27	24.6	10.6	11.3		P	SR	022	BD
72490	V705	Cas	233	3923	+57	14.4	5.8	(16.		V	NA	039	039
72491	HW	Aqr	234	4847	-24	24.9	15.52	(0.2)	B	ZZA	005	

Table 2

PZ	And $=$	72004	$\begin{aligned} & =63 \text { And }[001, \text { Winzer }]=\text { HR } 682=\text { HD } 14392(A 0 p)=\text { SAO } 037960=\text { NSV } \\ & 00790 . \end{aligned}$
QQ	And $=$	72487	$=\mathrm{BD}+40^{\circ} 5040$ (9.1) [002] $=\mathrm{ADS} 16659$.
HU	Aqr $=$	72471	$=\mathrm{RX} 21[003]=$ RXJ 2107.9-0518 $=$ RE 2107-05 [177] = GSC 5200.0849.
HV	Aqr $=$	72475	$=\mathrm{BD}-3^{\circ} 5183$ (9.3) [004, Hutton] $=$ GSC 5198.0659.
HW	$\mathrm{Aqr}=$	72491	= EC 23487-2424 [005].
V1417	Aql $=$	72361	```= IRC 00365 = AFGL 2233 = IRAS 18398-0220 = CCS 2642 = NSV 11233 [006].```
V1418	$A q \mathrm{l}=$	72366	$\begin{aligned} & =\text { IRC }+10401[007]=\text { AFGL } 2310=\text { IRAS } 19008+0726=\text { CCS } 2694=\text { NSV } \\ & 11689 . \end{aligned}$
V1419	Aql $=$	72375	$=$ Nova Aql 1993 [009, Yamamoto].
V1420	Aql $=$	72381	$=$ IRC-10502 [007] $=$ AFGL $2368=$ IRAS 19175-0807 $=$ NSV 11912.
V1421	Aql $=$	72390	$=$ AFGL $2392[007]=$ IRAS 19248+0658.
V1422	Aql $=$	72436	$\begin{aligned} & =\mathrm{HD} 191011(\mathrm{~K} 5)[012]=\mathrm{BD}+14^{\circ} 4179(8.0)=\mathrm{SAO} 105709=\text { IRAS } \\ & 20048+1507 . \end{aligned}$
V1423	$\mathrm{Aql}=$	72437	$=\mathrm{HD} 191262$ (G5) [012] = $\mathrm{BD}+15^{\circ} 4057$ (7.8) = SAO 105740.
V1424	Aql $=$	72441	$=\mathrm{HD} 191706(\mathrm{A0})[178]=\mathrm{BD}+14^{\circ} 4211$ (8.0) $=\mathrm{SAO} 105786$.
V835	Ara $=$	72187	$\begin{aligned} & =\mathrm{HD} 150562(\mathrm{~A} 2)[014]=\mathrm{CoD}-48^{\circ} 11127(9.8)=\mathrm{CPD}-48^{\circ} 8769(9.0)=\mathrm{SAO} \\ & 227125 . \end{aligned}$
V836	Ara $=$	72194	$\begin{aligned} & =\mathrm{HD} 153140(\mathrm{~B} 3)=\mathrm{CoD}-46^{\circ} 11150(7.6)=\mathrm{CPD}-46^{\circ} 8327(7.6)=\mathrm{SAO} 227533 \\ & =\mathrm{LSS} 3877=\text { NSV } 08082 . \end{aligned}$
V837	Ara $=$	72197	$=$ CPD $-56^{\circ} 8032(9.8)[016]=$ IRAS $17047-5650=$ He 3-1333. PNN. RCB-like minima.
XY	Ari $=$	72007	$=\mathrm{H} 0253+193[017,018]=1 \mathrm{H} 0253+193$.
V396	Aur $=$	72041	$=\mathrm{LkCa} 19[019]=\operatorname{HBC} 426=$ NTTS $045226+3013=$ TAP $56[161]$.
V397	Aur	72042	$=$ HBC $427[019]=$ NTTS $045251+3016[180]=$ TAP 57NW [020].
V398	Aur $=$	72043	$\begin{aligned} & =9 \mathrm{Aur}=\mathrm{HR} 1637[181]=\mathrm{HD} 32537(\mathrm{~F} 0)=\mathrm{BD}+51^{\circ} 1024(5.2)=\mathrm{SAO} \\ & 025019=\operatorname{ADS} 3675 \mathrm{~A}=\text { Gliese } 187.2=\text { IRAS } 05027+5131 . \end{aligned}$
V399	Aur	72045	$=$ DHK $30[022]=$ IRAS $05224+2935=$ GSC 1859.0163
V400	Aur	72047	$=$ DHK $32[022]=$ IRAS $05255+3222=$ GSC 2407.0390.
V401	Aur $=$	72048	$\begin{aligned} & =\text { DHK } 31[022]=\text { HD } 35816(\mathrm{Mb})=\mathrm{BD}+32^{\circ} 996(8.8)=\mathrm{SAO} 058083= \\ & \text { IRC }+30117=\text { IRAS } 05256+3226 . \end{aligned}$
CD	Cam $=$	72125	$=$ Comparison star c for UY Cam [023].
FF	$\mathrm{Cnc}=$	72126	$=$ GSC 1383.0600 [025,182].
FG	Cnc =	72128	$=\operatorname{Ton~} 25[026]=\operatorname{Prf} 25$.
FH	Cnc	72129	$=\operatorname{Ton~} 26[026]=\operatorname{Prf} 26$.
BP	$\mathrm{CVn}=$	72152	$=$ DHK $26[022]=$ Wr 127 [027] = GSC $2533.2081=$ CSV $6959=$ NSV 05949.
HT	$\mathrm{CMa}=$	72103	$=\mathrm{LkH} \alpha 218[028]=$ HBC $548=$ IRAS 07003-1121.
HU	$\mathrm{CMa}=$	72104	$=\mathrm{LkH} \alpha 220[028]=$ HBC $551=$ IRAS 07017-1121.
HV	$\mathrm{CMa}=$	72105	$=$ AFGL $1062[007]=$ IRAS 07028-1456.
HW	$\mathrm{CMa}=$	72106	$\begin{aligned} & =\mathrm{HD} 54549(\mathrm{~A} 2)[030]=\mathrm{BD}-22^{\circ} 1714(9.0)=\mathrm{CoD}-22^{\circ} 4063(9.1)=\mathrm{CPD} \\ & -22^{\circ} 1793(8.7)=\mathrm{SAO} 173044 . \end{aligned}$

Table 2 (continued)

HX	$\mathrm{CMa}=$	72107	$=$ AFGL $1085[007]=$ IRAS 07098-2012.
BK	$\mathrm{CMi}=$	72108	$\begin{aligned} & =\text { DHK } 17[032]=\mathrm{BD}+5^{\circ} 1606(9.5)=\mathrm{SAO} 115161=\mathrm{IRC}+10158=\text { IRAS } \\ & 07129+0509 . \end{aligned}$
BL	$\mathrm{CMi}=$	72109	$=\mathrm{P} 461=132.1929=$ CSV $1032=$ NSV 03570.
V433	Car $=$	72137	$\begin{aligned} & =\text { HD } 90288(\mathrm{~B} 3)[035, \text { Lampens }]=\mathrm{CoD}-56^{\circ} 3324(8.4)=\mathrm{CPD}-56^{\circ} 3250(8.2) \\ & =\text { SAO } 238024 . \end{aligned}$
V434	Car $=$	72138	$=\mathrm{OH} / \mathrm{IR} 285.05+0.07[036]=$ IRAS 10287-5733 $=\mathrm{OH} 285.05+0.07$.
V703	Cas	72005	= M 301 [037].
V704	Cas $=$	72008	$\begin{aligned} & =\text { DHK } 25[022]=\mathrm{BD}+59^{\circ} 594(9.5)=\mathrm{IRC}+60111=\mathrm{AFGL} 4249 \mathrm{~S}=\mathrm{IRAS} \\ & 03036+6017=\mathrm{Zi} 173=\mathrm{CSV} 100256=\text { NSV } 01040 . \end{aligned}$
V705	Cas	72490	$=$ Nova Cas 1993 [038, Kanatsu].
V870	Cen	72140	$=\mathrm{CPD}-62^{\circ} 2167$ (9.4) [183].
V871	$\mathrm{Cen}=$	72141	$=\mathrm{HD} 101205(\mathrm{~B} 2)[041]=\mathrm{CoD}-62^{\circ} 551(7.5)=\mathrm{CPD}-62^{\circ} 2168$ (7.2) $=\mathrm{SAO}$ $251511=$ IDS 1133.7 S6249 $=$ LSS $2427=$ CSV $102670=$ NSV 05277 . Erroneously named HD 101191 in [040].
V872	Cen $=$	72142	$=11447-6153$ [042].
V873	Cen	72143	$=11465-6209$ [042].
V874	$\mathrm{Cen}=$	72145	= 11492-6257 [042].
V875	Cen $=$	72146	$=$ IRAS 11514-5841 [007].
V876	Cen	72147	$=11521-6200$ [042].
V877	Cen	72156	$=$ LSS 2854 [043].
V878	Cen $=$	72157	$=$ LSS 2895 [184, 185, 043].
V879	Cen	72159	$=\mathrm{OH} / \mathrm{IR} 305.91-1.91[036]=$ IRAS 13157-6421 $=$ OH 305.91-1.91 [186].
V880	$\mathrm{Cen}=$	72160	$=13190-6235$ [042].
V881	Cen	72161	$=13240-6245$ [042].
V882	Cen	72162	= 13323-6224 [042].
V883	Cen $=$	72163	$\begin{aligned} & =\mathrm{HR} 5292=\mathrm{HD} 123335(\mathrm{~B} 5)[040]=\mathrm{CoD}-58^{\circ} 5469(6.9)=\mathrm{CPD}-58^{\circ} 5383 \\ & (7.0)=\mathrm{SAO} 241478 . \end{aligned}$
V884	Cen $=$	72167	$=\mathrm{OH} / \mathrm{IR} 315.22+0.01[036]=$ IRAS 14297-6010 $=\mathrm{OH} 315.22+0.01$ [186].
V379	Cep $=$	72458	$=\mathrm{HR} 7940[045]=\mathrm{HD} 197770(\mathrm{~B} 3)=\mathrm{BD}+56^{\circ} 2477(6.7)=\mathrm{SAO} 032832=$ $\text { IRAS } 20420+5655$
V380	Cep $=$	72470	$\begin{aligned} & =\mathrm{HD} 200775(\mathrm{~B} 5)=\mathrm{BD}+67^{\circ} 1283(6.8)=\mathrm{SAO} 019158=\mathrm{MWC} 361=\mathrm{HBC} \\ & 726=\mathrm{Zi} 1979=\text { CSV } 102052=\text { NSV 13489. In ref. neb. NGC } 7023 . \end{aligned}$
V381	Cep $=$	72473	$\begin{aligned} & =\operatorname{HR} 8164[047]=\operatorname{HD} 203338(\mathrm{~K} 0)=\mathrm{BD}+58^{\circ} 2249(5.6)=\mathrm{SAO} 033318= \\ & \text { ADS } 14864=\text { IRC }+60313=\text { AFGL } 2748=\text { IRAS } 21178+5824 . \end{aligned}$
V382	Cep $=$	72474	$=6$ Cep $[048$, Szabados, Kun $]=$ HR $8171=$ HD $203467(B 3 p)=B D+64^{\circ} 1527$ $(5.5)=$ SAO $019313=$ MWC $367=$ IRAS 21183+6439. According to [049], 4.8-5.3 vis during JD 2445123-46773.
V383	Cep	72477	$=\mathrm{HD} 208106$ (B3) $[050]=\mathrm{BD}+61^{\circ} 2209=\mathrm{SAO} 019685=\mathrm{NSV} 13911$.
V384	Cep $=$	72478	$=$ AFGL $2901[006]=$ IRAS $22241+6005$.
V385	Cep $=$	72480	$=\mathrm{LkH} \alpha 350[028]=$ HRC $314=$ NSV 14330.
V386	Cep $=$	72482	$\begin{aligned} & =\text { TAV } 2251+61[052, \text { Collins }]=\text { IRC }+60374=\text { AFGL } 2982=\text { IRAS } \\ & 22512+6100 . \end{aligned}$
V387	Cep $=$	72484	$\begin{aligned} & =\operatorname{HR} 8777[045]=\operatorname{HD} 217943(\mathrm{~B} 5)=\mathrm{BD}+59^{\circ} 2631(6.7)=\mathrm{SAO} 020393= \\ & \mathrm{ADS} 16481 . \end{aligned}$
V388	Cep $=$	72486	$=\operatorname{HR} 8851[053]=\operatorname{HD} 219586(\mathrm{~A} 3)=\mathrm{BD}+70^{\circ} 1311(6.0)=\mathrm{SAO} 010671=$ IRAS $23137+7037$.
BU	Cet $=$	72002	$=13 \mathrm{Cet}=\mathrm{HR} 142=\mathrm{HD} 3196(\mathrm{G} 0)=\mathrm{BD}-4^{\circ} 62(5.0)=\mathrm{SAO} 128839=\mathrm{ADS}$ $490 \mathrm{~A}=$ Gliese $23 \mathrm{~A}=$ IRAS $00327-0351=$ RE $003517-033558=\mathrm{P} 20=\mathrm{CSV}$ $100041=$ NSV 00212.
BV	Cet $=$	72003	$=$ Feige $7[055]=$ G $270-48[188]=$ Gr $267=$ WD $0041-102=$ BPM $70331=$ PHL $814=$ L 795-7 $=$ LP 705-94.
DK	Cha $=$	72153	$=$ IRAS 12496-7650 [058].
δ	$\mathrm{Cir}=$	72170	$=\delta \operatorname{Cir}[059$, Cousins $]=\mathrm{HR} 5664=\mathrm{HD} 135240(\mathrm{Oe} 5)=\mathrm{CoD}-60^{\circ} 5539$ (5.3) $=\mathrm{CPD}-60^{\circ} 5701$ (5.4) $=\mathrm{SAO} 253084=\operatorname{IDS} 1508.9 \mathrm{~S} 6035=\mathrm{LSS} 3331=\mathrm{CSV}$ $7175=$ NSV 06998.
TZ	$\mathrm{Col}=$	72093	$\begin{aligned} & =\mathrm{HD} 39576(\mathrm{G0})[060]=\mathrm{CoD}-28^{\circ} 2525(8.7)=\mathrm{CPD}-28^{\circ} 1019(8.8)=\mathrm{SAO} \\ & 170952=1 \mathrm{H} 0543-289 . \end{aligned}$
IP	Com $=$	72155	$=$ Case 167 = SVS $1250[062]=$ CSV $6968=$ NSV 06031.

Table 2 (continued)

V702	$\mathrm{CrA}=$	72364	$=\mathrm{CoD}-37^{\circ} 13029$ (9.4) $=\mathrm{CPD}-37^{\circ} 8453$ (9.6) $=\mathrm{HBC} 678$ [063] $=\mathrm{Wa} \mathrm{CrA} / 2$.
UY	$\mathrm{CrB}=$	72180	$=\mathrm{Wr} 88=\mathrm{CSV} 7263=$ NSV 07453.
θ	$\mathrm{CrB}=$	72173	$\begin{aligned} & =\theta \mathrm{CrB}=4 \mathrm{CrB}=\operatorname{HR} 5778=\mathrm{HD} 138749(\mathrm{~B} 5)=\mathrm{BD}+31^{\circ} 2750(4.2)=\mathrm{SAO} \\ & 064769=\text { MWC } 237=\text { IRAS } 15309+3131=\text { NSV } 07134 . \end{aligned}$
TU	Crt $=$	72139	$=\mathrm{J} 05.23$ [189].
CI	$\mathrm{Cru}=$	72148	$=11582-6204$ [042].
CK	$\mathrm{Cru}=$	72149	$=12003-6213$ [045].
CL	$\mathrm{Cru}=$	72150	$=$ IRSV 1204-6417 [007] = IRAS 12043-6417.
CM	$\mathrm{Cru}=$	72151	$=\mathrm{OH} / \mathrm{IR} 300.93-0.03[036]=$ IRAS 12310-6233 $=\mathrm{OH} 300.93-0.03$ [186].
CN	$\mathrm{Cru}=$	72154	$=\mathrm{CPD}-59^{\circ} 4557$ (9.7) $=$ III-05 (NGC 4755) [190, 069].
V1985	$\mathrm{Cyg}=$	72391	$=$ LD 125 [071] = GSC 2662.2213.
V1986	$\mathrm{Cyg}=$	72394	$=$ LD 127 [071] = IRAS 19282+2803.
V1987	$\mathrm{Cyg}=$	72396	$=$ LD 129 [071].
V1988	$\mathrm{Cyg}=$	72399	$=\mathrm{LD} 130$ [071].
V1989	$\mathrm{Cyg}=$	72404	$=\mathrm{LD} 134$ [171].
V1990	$\mathrm{Cyg}=$	72405	$\begin{aligned} & =\text { TAV } 1941+34[072, \text { Collins }]=\text { LD } 135[071]=\text { IRAS } 19416+3422=\text { AFGL } \\ & 2443=\text { CCS } 2783=\text { IRC }+30385=\text { GSC } 2664.0331=\text { Q } 1989 / 78 . \end{aligned}$
V1191	$\mathrm{Cyg}=$	72406	$=$ LD $136[071]=$ IRAS 19419+3222.
V1992	$\mathrm{Cyg}=$	72407	$=$ LD 137 [071] = IRAS 19444+3132.
V1993	$\mathrm{Cyg}=$	72408	$=$ LD 139 [071].
V1994	$\mathrm{Cyg}=$	72409	$=\mathrm{LD} 176$ [071].
V1995	$\mathrm{Cyg}=$	72411	$=$ LD 141 [071] = IRAS 19472+2923 = GSC 2152.0824.
V1996	$\mathrm{Cyg}=$	72413	$=$ LD 177 [071] = IRAS 19487+2921 = GSC 2152.0122.
V1997	$\mathrm{Cyg}=$	72415	$=$ LD $146[071]=$ IRAS 19495+3239.
V1998	$\mathrm{Cyg}=$	72417	$=$ LD $178[071]=$ IRAS 19503+3042.
V1999	$\mathrm{Cyg}=$	72419	$=$ LD $179[071]=$ IRAS 19524+3356.
V2000	$\mathrm{Cyg}=$	72423	$=$ LD $181[071]=$ IRAS 19554+3035.
V2001	$\mathrm{Cyg}=$	72425	$=$ LD $152[071]=$ IRAS $19560+3146$.
V2002	$\mathrm{Cyg}=$	72426	$=$ LD $153[071]=$ IRAS $19562+2933$.
V2003	$\mathrm{Cyg}=$	72427	= LD 154 [071] = GSC 2670.2068.
V2004	$\mathrm{Cyg}=$	72428	$=$ LD $155[071]=$ IRAS $20004+2943$.
V2005	$\mathrm{Cyg}=$	72430	$=$ LD $156[071]=$ GSC 2670.2272 .
V2006	$\mathrm{Cyg}=$	72431	$=$ LD 157 [071] = IRAS 20013+2946 = GSC 2153.0130.
V2007	$\mathrm{Cyg}=$	72433	$=$ LD $159[071]=$ IRAS $20043+3508$.
V2008	$\mathrm{Cyg}=$	72434	$\begin{aligned} & =27 \text { Cyg }[191,192]=\text { HR } 7689=\text { HD } 191026(\mathrm{~K} 0)=\mathrm{BD}+35^{\circ} 3959(5.5)= \\ & \text { SAO } 069413=\text { IRAS } 20044+3549 . \end{aligned}$
V2009	Cyg $=$	72435	$=$ LD $160[071]=$ IRAS $20047+3349$.
V2010	$\mathrm{Cyg}=$	72439	$=$ LD 162 [071] = IRAS $20077+3149$.
V2011	$\mathrm{Cyg}=$	72443	$=\mathrm{HD} 192281(\mathrm{~B} 3)[074]=\mathrm{BD}+39^{\circ} 4082(7.5)=\mathrm{SAO} 049319=\mathrm{LS} \mathrm{II}+40^{\circ} 5=$ NSV 12907. Periodic $(\mathrm{P}=9 \mathrm{~d} 59)$ variability of an $\mathrm{O} 5 \mathrm{Vnfp}\left(\mathrm{SB} 1, P_{\text {orb }}=5.480\right)$ star.
V2012	$\mathrm{Cyg}=$	72446	$=\text { DHK } 22[032]=\mathrm{HD} 332077(\mathrm{~K} 2)=\mathrm{BD}+31^{\circ} 4024(9.2)=\mathrm{SAO} 069757=$ IRAS $20152+3124$.
V2013	Cyg $=$	72450	$=$ LD 168 [071] = IRAS 20194+3015.
V2014	$\mathrm{Cyg}=$	72455	$\begin{aligned} & =\omega^{1} \mathrm{Cyg}[045]=45 \mathrm{Cyg}=\operatorname{HR} 7844=\text { HD } 195556(\mathrm{~B} 3)=\mathrm{BD}+48^{\circ} 3142(4.9) \\ & =\mathrm{SAO} 049712=\mathrm{ADS} 13932=\text { IRAS } 20285+4846 . \text { Similar to } \lambda \text { Eri. } \end{aligned}$
V2015	Cyg $=$	72456	$=\operatorname{HR} 7870[193,045]=\mathrm{HD} 196178(\mathrm{~B} 9)=\mathrm{BD}+46^{\circ} 2977$ (6.0) $=\mathrm{SAO} 049804$.
V2016	$\mathrm{Cyg}=$	72459	$=\mathrm{LkH} \alpha 131[028]=\mathrm{UH} \alpha 18=$ NSV 13293.
V2017	$\mathrm{Cyg}=$	72460	$=\mathrm{LkH} \alpha 132[028]=$ CSV $8572=$ NSV 13294.
V2018	$\mathrm{Cyg}=$	72461	$=$ AS 441 [028] = MH α 235-37 = NSV 13295.
V2019	$\mathrm{Cyg}=$	72462	$=\mathrm{LkH} \alpha 134[028]=$ AS $443=$ NSV 13317.
V2020	$\mathrm{Cyg}=$	72463	$=\mathrm{LkH} \alpha 135[028]=\mathrm{AS} 444=\mathrm{MH} \alpha 148-95=\mathrm{UH} \alpha 28=$ NSV 13322.
V2021	$\mathrm{Cyg}=$	72464	$=$ DHK $29[022]=\mathrm{BD}+33^{\circ} 4070$ (8.8) = SAO 070629.
V2022	$\mathrm{Cyg}=$	72465	$=\mathrm{LkH} \alpha 176[028]=$ NSV 13384.
V2023	$\mathrm{Cyg}=$	72466	$=\mathrm{LkH} \alpha 183$ [028] = NSV 13409.
V2024	$\mathrm{Cyg}=$	72467	$=\mathrm{LkH} \alpha 192$ [028].
V2025	$\mathrm{Cyg}=$	72468	$=\mathrm{LkH} \alpha 193$ [028] = NSV 13452.
V2026	$\mathrm{Cyg}=$	72469	$=\mathrm{LkH} \alpha 194$ [028] = NSV 13470.

Table 2 (continued)

V2027	Cyg $=$	72472	$=$ RXJ 2117.1+3412 [194, Watson; 079]. * - white light amplitude.
LV	Del $=$	72457	$=$ New var near HR Del [081].
AK	Dor $=$	72039	= R 5 [082].
ER	Dra $=$	72168	$=\operatorname{HR} 5437[083]=\mathrm{HD} 127929(\mathrm{~F} 0)=\mathrm{BD}+60^{\circ} 1547$ (6.2) $=\mathrm{SAO} 016411=$ IRAS $14303+6026$.
ES	Dra $=$	72172	$=$ PG 1524+622 [084].
ET	Dra $=$	72221	$\begin{aligned} & =\mathrm{BD}+70^{\circ} 959(9.5)=1 \mathrm{E} 1751+7046 \quad[195]=1 \mathrm{E} 1751.0+7046=\mathrm{MS} \\ & 1751.0+7046=\text { GSC } 4432.1301 . \end{aligned}$
EP	Eri $=$	72006	$\begin{aligned} & =\text { HR } 857=\text { HD } 17925(\mathrm{G} 5)[087]=\mathrm{BD}-13^{\circ} 544(5.8)=\mathrm{SAO} 148647=\mathrm{IRAS} \\ & 02501-1258=\text { Gliese } 117=\text { LTT } 1372=\text { NSV } 00975 . \end{aligned}$
EQ	Eri $=$	72029	$\begin{aligned} & =\mathrm{HD} 28665(\mathrm{F0} 0)[088]=\mathrm{CoD}-29^{\circ} 1748(7.5)=\mathrm{CPD}-29^{\circ} 588(7.9)=\mathrm{SAO} \\ & 169509 . \end{aligned}$
ε	Eri $=$	72012	$=\varepsilon$ Eri $[089]=18$ Eri $=$ HR $1084=$ HD $22049(\mathrm{~K} 0)=\mathrm{BD}-9^{\circ} 697(3.3)=$ SAO $130564=$ IRC-10048 $=$ AFGL $497=$ IRAS $03305-0937=$ Gliese $144=$ LFT 291.
PP	Gem $=$	72102	$\begin{aligned} & =\text { DHK } 34[022]=(1900.0) 06^{\mathrm{h}} 50^{\mathrm{m}} 53^{\mathrm{s}}+14^{\circ} 27^{\prime} \text { Gem }[090]=\text { Wr } 25=\text { IRAS } \\ & 06537+1422=\text { CSV } 6529=\text { NSV } 03288 . \end{aligned}$
PQ	Gem $=$	72124	$=\mathrm{RE} 0751+14[091]=$ REJ $0751+14$.
CG	Gru =	72485	$=\mathrm{V}$ [092].
V839	Her $=$	72178	$\begin{aligned} & =4 \text { Her }[196,093]=\operatorname{HR} 5938=\text { HD } 142926(\mathrm{~B} 8)=\mathrm{BD}+42^{\circ} 2652(6.0)= \\ & \text { SAO } 045790=\text { MWC } 584 . \end{aligned}$
V840	Her $=$	72185	$=\mathrm{Zi} 1256=$ CSV $101596=$ NSV 07814 [094].
V841	Her $=$	72193	$=\mathrm{BD}+35^{\circ} 2891$ (8.4) $[096]=\mathrm{SAO} 065670=$ IRAS $16553+3521$.
BU	Hyi $=$	72015	$=$ No. 1 [082].
BV	Hyi $=$	72016	$=$ No. 2 [082].
BW	Hyi $=$	72018	$=$ No. 3 [082].
BX	Hyi $=$	72019	$=$ No. 4 [082].
BY	Hyi $=$	72021	$=$ No. 5 [082].
V376	Lac $=$	72479	$=\mathrm{P} 2345=736.1933=$ IRAS $22307+5456=$ CSV $5571=$ NSV $14200[097]$.
V377	Lac $=$	72481	$\begin{aligned} & =\operatorname{HR} 8706[045]=\mathrm{HD} 216538(\mathrm{~B} 8)=\mathrm{BD}+39^{\circ} 4957(6.7)=\mathrm{SAO} 072812= \\ & \text { CSV } 103106=\text { NSV } 14346 . \end{aligned}$
UV	Lep $=$	72096	$=\mathrm{HD} 42659$ (A3) $[098]=\mathrm{BD}-15^{\circ} 1299(7.0)=\mathrm{SAO} 151199$.
HX	Lup $=$	72164	$\begin{aligned} & =\mathrm{HR} 5375[099]=\mathrm{HD} 125721(\mathrm{~B} 3)=\mathrm{CoD}-47^{\circ} 9082(6.5)=\mathrm{CPD}-47^{\circ} 6483 \\ & (6.6)=\mathrm{SAO} 224870=\mathrm{LSS} 3231 . \end{aligned}$
HY	Lup $=$	72165	$=$ Possible Nova in Lupus [100, Liller] = Nova Lup 1993.
HZ	Lup $=$	72169	$\begin{aligned} & =\text { HR } 5619[101]=\text { HD } 133652(\mathrm{~A} 0 \mathrm{p})=\mathrm{CoD}-30^{\circ} 11960(6.5)=\mathrm{CPD}-30^{\circ} 3961 \\ & (7.0)=\text { SAO } 206300 . \end{aligned}$
II	Lup $=$	72171	$=$ IRAS 15194-5115 [007].
IK	Lup $=$	72174	$=\mathrm{Sz} 65[103]=$ HBC $597=$ IRAS 15362-3436.
IL	Lup $=$	72176	$=$ Optical counterpart of the transient X-ray source 4U 1543-47 [198].
IM	Lup $=$	72177	$=$ HBC $605=\mathrm{Sz} 82[103]=$ The $15-2=$ IRAS 15528-3747.
σ	Lup $=$	72166	$\begin{aligned} & =\sigma \operatorname{Lup}[199]=\operatorname{HR} 5425=\text { HD } 127381(\mathrm{~B} 2)=\mathrm{CoD}-49^{\circ} 8831(5.2)=\mathrm{CPD}- \\ & 49^{\circ} 7073(4.5)=\mathrm{SAO} 241781=\text { IRAS } 14292-5014 . \end{aligned}$
BK	Lyn $=$	72130	$=\mathrm{PG} 0917+342[200]=$ CBS $96=$ Ton 1051.
V491	$\mathrm{Lyr}=$	72360	$=$ DHK $19[032]=\mathrm{HD} 172740(\mathrm{Mb})=\mathrm{BD}+40^{\circ} 3449$ (8.4) $=\mathrm{SAO} 047682=$ IRC $+40324=$ AFGL $2225=$ IRAS $18383+4017$.
V492	Lyr $=$	72362	= LP 229-30 = LHS 3406 [110].
V493	Lyr $=$	72365	$=\mathrm{UG}$ type var $[111]=\mathrm{S} 10930$.
V494	Lyr $=$	72367	$=$ LD $106[071]=$ IRAS 19013+3353.
V495	$\mathrm{Lyr}=$	72369	$=$ LD $108[071]=$ IRAS $19054+3138=$ GSC 2640.2384.
V496	Lyr $=$	72370	$=\mathrm{LD} 109$ [071].
V497	Lyr $=$	72371	$=\mathrm{LD} 110[071]=$ GSC 2652.1471.
V498	$\mathrm{Lyr}=$	72372	$=$ LD 111 [071] = IRAS 19071+3248 = GSC 2644.1985.
V499	$\mathrm{Lyr}=$	72377	$=\operatorname{Var}[112]$.
V500	Lyr $=$	72378	$=$ LD $115[071]=$ IRAS $19112+2653$.
V501	$\mathrm{Lyr}=$	72379	$=$ LD $116[071]=$ IRAS 19128+3655.
V502	Lyr $=$	72380	$=\mathrm{LD} 173$ [071].
V503	Lyr $=$	72387	$=$ LD $122[071]=$ IRAS 19224+3213.
V504	Lyr $=$	72389	$=$ LD $124[071]=$ IRAS $19241+3457$.

Table 2 (continued)

V696	Mon $=$	72095	$=\operatorname{HR} 2142$ [113] = HD $41335(\mathrm{~B} 2 \mathrm{p})=\mathrm{BD}-6^{\circ} 1391$ (6.0) = SAO $132793=$ MWC 133 $=$ IRAS $16017-0642=$ CSV $6419=$ NSV 02817. Be star, mass transfer binary with recurrent shell events.
V697	Mon $=$	72097	$=$ Bretz 4 in GGD 17 [114] = HRC $198=$ GSC 4795.1414 = NSV 02871.
V698	Mon $=$	72099	$=\mathrm{LkH} \alpha 341$ [028] = HRC $201=$ NSV 02992.
V699	Mon $=$	72100	$=\mathrm{LkH} \alpha 215[201]=$ HBC $528=$ AFGL $5198=$ IRAS 06299+1011.
V700	Mon $=$	72101	$\begin{aligned} & =\mathrm{HD} 259431(\mathrm{~B} 3)[202,201]=\mathrm{BD}+10^{\circ} 1172(8.7)=\mathrm{SAO} 095823=\mathrm{HBC} \\ & 529=\text { MWC } 147=\text { LS VI }+10^{\circ} 9=\text { RAFGL } 4508 \mathrm{~S}=\text { IRAS } 06303+1021 . \end{aligned}$
V701	Mon $=$	72111	= V10 (open cluster Be 39) [116].
V702	Mon $=$	72112	= V11 (open cluster Be 39) [116].
V703	Mon $=$	72113	= V8 (open cluster Be 39) [116].
V704	Mon $=$	72114	$=\mathrm{V} 7$ (open cluster Be 39) [116].
V705	Mon $=$	72115	= V3 (open cluster Be 39) [116].
V706	Mon $=$	72116	= V2 (open cluster Be 39) [116].
V707	Mon $=$	72117	= V9 (open cluster Be 39) [116].
V708	Mon $=$	72118	= V12 (open cluster Be 39) [116].
V709	Mon $=$	72119	= V4 (open cluster Be 39) [116].
V710	Mon $=$	72120	= V1 (open cluster Be 39) [116].
V711	Mon $=$	72121	$=\mathrm{V} 5$ (open cluster Be 39) [116].
V712	Mon $=$	72122	= V6 (open cluster Be 39) [116].
V351	Nor $=$	72175	$=$ IRAS 15408-5413 = IRSV 1540-5413 [203].
V352	Nor $=$	72179	$=$ Possible Nova in Norma [117, Liller] $=$ Nova Nor 1985/2 $=$ Liller's variable in the vicinity of NSV $07429=$ IRAS 16030-5156.
V353	Nor	72184	$=$ IRAS 16107-5139 [036].
V2292	$\mathrm{Oph}=$	72191	$\begin{aligned} & =\mathrm{HD} 152391(\mathrm{G} 5)[204,205]=\mathrm{BD}+0^{\circ} 3593(7.0)=\mathrm{SAO} 121921=\text { Gliese } \\ & 641=\mathrm{G} 19-4=\text { LFT } 1307 . \end{aligned}$
V2293	$\mathrm{Oph}=$	72204	$=$ X-ray Nova in Ophiuchus [120, Della Valle, Mirabel, Cordier] $=$ Optical counterpart of X-ray transient GRS 1716-249 = GRO J1719-24 = X-ray Nova Oph 1993.
V2294	$\mathrm{Oph}=$	72205	$=$ IRAS 1717-087P04 [206] = IRAS 17171-0843.
V2295	$\mathrm{Oph}=$	72206	$=$ Nova Oph 1993 [122, Camilleri].
V2296	$\mathrm{Oph}=$	72207	$=$ IRC $+10329[206]=$ IRAS $17256+0504$.
V2297	$\mathrm{Oph}=$	72210	$=$ IRAS 1730+083P08 [206] $=$ IRAS $17308+0822$.
V2298	$\mathrm{Oph}=$	72213	$=$ HV $11030=$ CSV $3406=$ NSV 09595.
V2299	$\mathrm{Oph}=$	72214	$=\mathrm{P} 38(\mathrm{IC} \mathrm{4665)} \mathrm{[125]}=\mathrm{V} 108$.
V2300	$\mathrm{Oph}=$	72223	$=\mathrm{HD} 164257$ (A0) [045] $=\mathrm{BD}+6^{\circ} 3593$ (7.5) = SAO 123001.
V2301	$\mathrm{Oph}=$	72224	$=1 \mathrm{H} 1758+081$ [085, Remillard].
V2302	$\mathrm{Oph}=$	72324	$=$ IRAS $1806+091 \mathrm{P} 08[207]=$ IRAS $18069+0911$.
V2303	$\mathrm{Oph}=$	72359	$=$ TAV $1836+11[128]=$ IRAS $18361+1108$.
V1261	Ori $=$	72044	$\begin{aligned} & =\mathrm{HD} 35155(\mathrm{~K} 5 \mathrm{p})\left[208, \text { Wing; 219] = BD- } 8^{\circ} 1099(7.0)=\mathrm{SAO} 132035=\right. \\ & \text { IRC }-10086=\text { CSS } 98=\text { AFGL } 736=\text { IRAS } 05199-0842 . \end{aligned}$
V1262	Ori $=$	72046	$=$ Ton $340[130]=$ Tof $340=$ GSC 4765.0053.
V1263	Ori $=$	72049	$=$ Ton 341 [130] = Tof $341=$ GSC 4765.1740.
V1264	Ori $=$	72050	$=$ Ton $342[130]=$ Tof 342.
V1265	Ori $=$	72051	$=$ Ton 343 [130] = Tof 343.
V1266	Ori $=$	72052	$=$ Ton $344[130]=$ Tof 344.
V1267	Ori $=$	72053	$=$ Ton $345[130]=$ Tof 345.
V1268	Ori $=$	72054	$=$ Ton $346[130]=$ Tof $346=\Pi 1062=$ GSC 4774.0542.
V1269	Ori $=$	72055	$=$ Ton 347 [130] = Tof 347 .
V1270	Ori $=$	72056	$=$ Ton 348 [130] = Tof 348.
V1271	Ori $=$	72057	$\begin{aligned} & =\mathrm{HD} 245185(\mathrm{~A} 5)=\mathrm{BD}+9^{\circ} 880(9.3)[211,131]=\mathrm{HBC} 451=\operatorname{IRAS} \\ & 05324+0959 . \end{aligned}$
V1272	Ori $=$	72058	$=$ Ton 350 [130] $=$ Tof $350=\Pi 1631=$ GSC 4774.0059.
V1273	Ori $=$	72059	= JW 145 [132].
V1274	Ori $=$	72060	= JW 248 [132].
V1275	Ori $=$	72061	$=\mathrm{JW} 311$ [133, 132].
V1276	Ori $=$	72062	= JW 379 [132].
V1277	Ori $=$	72063	$=\mathrm{JW} 388$ [133, 132].

Table 2 (continued)

V1278	Ori $=$	72064	$=\mathrm{JW} 466$ [132].
V1279	Ori $=$	72065	$=\mathrm{JW} 526[212]=\Pi 1896$.
V1280	Ori $=$	72066	$=$ Ton 351 [130] $=$ Tof 351.
V1281	Ori $=$	72067	$=\mathrm{JW} 691$ [132].
V1282	Ori $=$	72068	= JW 695 [132].
V1283	Ori $=$	72069	$=\mathrm{JW} 758$ [132].
V1284	Ori $=$	72070	= JW 786 [132].
V1285	Ori $=$	72071	= JW 792 [132].
V1286	Ori $=$	72072	$=\mathrm{JW} 813[132]=\Pi 2047$.
V1287	Ori $=$	72073	= JW 815 [132].
V1288	Ori $=$	72074	$=\mathrm{JW} 830$ [132].
V1289	Ori $=$	72075	= JW 837 [132].
V1290	Ori $=$	72076	$=\mathrm{JW} 839$ [132].
V1291	Ori $=$	72077	$=\mathrm{JW} 842$ [132].
V1292	Ori $=$	72078	$=\mathrm{JW} 855$ [132].
V1293	Ori $=$	72079	$=\mathrm{JW} 860$ [132].
V1294	Ori $=$	72080	$=\mathrm{JW} 866[132]=\Pi 2073$.
V1295	Ori $=$	72081	$=$ Ton $352[130]=\operatorname{Tof~} 352=\Pi 2220=$ GSC 4774.0609.
V1296	Ori $=$	72082	$\begin{aligned} & =\text { TSN } 333=\text { Haro } \mathrm{H} \alpha 204=\text { IRAS } 05334-0611=\text { CSV } 6303=\text { NSV } 02379 \\ & {[134]=\text { Kiso Area A-0976 No. } 217 .} \end{aligned}$
V1297	Ori $=$	72083	$=$ Ton 353 [130] = Tof 353.
V1298	Ori $=$	72084	$=\operatorname{Ton~} 354$ [130] = Tof 354.
V1299	Ori $=$	72085	$=$ DHK $33[022]=$ GSC 4767.0829.
V1300	Ori $=$	72086	$=$ Ton 355 [130] = Tof $355=\Pi 2612=$ GSC $4778.0437=$ NSV 02486.
V1301	Ori $=$	72087	$\begin{aligned} & =\text { Ton } 356[130]=\text { Tof } 356=\text { TSN } 460=\text { Haro H } \alpha 65=\text { Kiso Area A- } 0976 \\ & \text { No. } 318 . \end{aligned}$
V1302	Ori $=$	72088	$=\operatorname{Ton~} 357$ [130] $=$ Tof $357=\Pi 2685=$ GSC 4775.0141.
V1303	Ori $=$	72089	$=\operatorname{Ton~} 358$ [130] = Tof 358.
V1304	Ori $=$	72090	$\begin{aligned} & =\text { HRC } 179=\text { TSN } 515=\text { Haro } \operatorname{H} \alpha 478=\text { Haro } 7-4=\text { IRAS } 05380-0809[136] \\ & =\text { NSV } 02551 . \end{aligned}$
V1305	Ori $=$	72091	$\begin{aligned} & =\text { HRC } 182=\text { TSN } 527=\text { Haro } 7-2=\text { IRAS } 05394-0801[136]=\text { GSC } 5346.0193 \\ & =\text { NSV } 02582 . \end{aligned}$
V1306	Ori $=$	72092	$=$ Ton 359 [130] = Tof 359 = GSC 4775.387.
V1307	Ori $=$	72094	$\begin{aligned} & =\text { HD } 250550(\mathrm{~A} 0)[131]=\mathrm{BD}+16^{\circ} 974(9.1)=\text { HRC } 192=\text { MWC } 789= \\ & \text { IRAS } 05591+1630=\text { NSV } 02784 . \end{aligned}$
V1308	Ori $=$	72098	$=$ MWC 137 [028] = HRC $199=$ LSS $33=$ Central star of PN Sh 2-266 $=$ IRAS $06158+1517=$ NSV 02906.
V345	Pav $=$	72397	$=$ EC 19314-5915 [137].
KY	Peg $=$	72476	$=$ DHK $36[022]=\mathrm{BD}+12^{\circ} 4694$ (9.1) $=$ BV $317=$ CSV $8691=$ NSV 13889.
KZ	Peg $=$	72483	$=$ IRC+10523 [036] = AFGL $2984=$ IRAS $22516+0838=$ NSV 14352.
LL	$\mathrm{Peg}=$	72488	$=$ CRL 3068 [210] = AFGL 3068 [007] = IRAS 23166+1655.
LM	$\mathrm{Peg}=$	72489	$=$ DHK $28[022]=\mathrm{BD}+26^{\circ} 4660$ (9.0) $=$ SAO $091369=$ IRAS $23336+2724$.
V514	Per $=$	72009	$=$ Comparison star A for AP 125 (α Per cluster) [138].
V515	Per $=$	72010	=FS 2 in the α Per cluster region [139].
V516	Per	72011	= FS 1 in the α Per cluster region [139].
V517	Per $=$	72013	$\begin{aligned} & =\text { DHK } 27[022]=\text { HD } 275647(\mathrm{G} 5)=\mathrm{BD}+38^{\circ} 780(9.2)=\mathrm{SAO} 056620= \\ & \text { IRC }+40064=\text { IRAS } 03374+3850 . \end{aligned}$
V518	Per $=$	72026	= GRO J0422+32 [140] = X-ray Nova Per 1992.
V352	Pup $=$	72110	$=$ PDS $28[141]=$ Wray $15-54=$ IRAS 07388-4747 $=$ GSC 8137.2426.
V353	Pup $=$	72123	$\begin{aligned} & =\mathrm{CoD}-31^{\circ} 5049(8.4)=\mathrm{CPD}-32^{\circ} 1761(10.0)=\mathrm{SAO} 198422=\mathrm{IRC}-30100[036] \\ & =\mathrm{AFGL} 4633 \mathrm{~S}=\mathrm{IRAS} 07446-3210 \mathrm{~A}=\mathrm{GSC} 7110.2226=\text { NSV } 03431 . \mathrm{Sp} \\ & \mathrm{~A} 0(\mathrm{SAO}) \text { is doubtful. } \end{aligned}$
TV	Ret $=$	72036	= R1 [082].
V4201	$\mathrm{Sgr}=$	72219	$\begin{aligned} & =\mathrm{OH} / \mathrm{IR} 02.60-0.4[186,036]=\mathrm{OH} 2.58-0.43=\mathrm{CRL} 2019[142]=\text { IRAS } \\ & 17501-2656 . \end{aligned}$
V4202	$\mathrm{Sgr}=$	72225	$\begin{aligned} & =\mathrm{HD} 164717 \text { (B3) }[015]=\mathrm{BD}-22^{\circ} 4522(8.3)=\mathrm{CoD}-22^{\circ} 12481(8.6)=\mathrm{CPD} \\ & -22^{\circ} 6589(8.6)=\text { SAO } 186185=\text { LSS } 4586=\text { IRAS } 18004-2238=\text { BV } 551= \\ & \text { NSV } 10075 . \end{aligned}$
V4203	$\mathrm{Sgr}=$	72226	$\begin{aligned} & =\mathrm{CoD}-24^{\circ} 13830(10)=\mathrm{CPD}-24^{\circ} 6162(9.2)=\mathrm{LkH} \alpha 112[028]=\mathrm{K} / \mathrm{W} 58 \\ & (\mathrm{NGC} 6530)[213]=\mathrm{V} / \mathrm{J} 180(\mathrm{NGC} 6530) . \end{aligned}$

Table 2 (continued)

Table 2 (continued)

V4261	Sgr $=$	72284	$=\operatorname{Var} 51$ [145].
V4262	Sgr $=$	72285	$=\operatorname{Var} 52$ [145].
V4263	Sgr $=$	72286	$=\operatorname{Var} 53$ [145].
V4264	$\mathrm{Sgr}=$	72287	$=\operatorname{Var} 54$ [145].
V4265	Sgr $=$	72288	$=$ Var 55 [145].
V4266	$\mathrm{Sgr}=$	72289	$=\operatorname{Var} 56$ [145].
V4267	Sgr $=$	72290	$=\operatorname{Var} 57$ [145].
V4268	$\mathrm{Sgr}=$	72291	$=\operatorname{Var} 58$ [145].
V4269	Sgr $=$	72292	$=\operatorname{Var} 59$ [145].
V4270	Sgr $=$	72293	$=\operatorname{Var} 60$ [145].
V4271	Sgr $=$	72294	$=$ Var 61 [145].
V4272	Sgr	72295	= Var 62 [145].
V4273	$\mathrm{Sgr}=$	72296	$=\operatorname{Var} 63$ [145].
V4274	Sgr	72297	$=$ Var 64 [145].
V4275	Sgr	72298	$=\operatorname{Var} 65$ [145].
V4276	$\mathrm{Sgr}=$	72299	$=\operatorname{Var} 66$ [145].
V4277	$\mathrm{Sgr}=$	72300	$=\operatorname{Var} 67$ [145].
V4278	Sgr $=$	72301	$=\operatorname{Var} 68$ [145].
V4279	Sgr $=$	72302	$=$ Var 69 [145].
V4280	Sgr $=$	72303	$=\operatorname{Var} 70$ [145].
V4281	Sgr $=$	72304	$=$ Var 71 [145].
V4282	Sgr $=$	72305	$=\operatorname{Var} 72$ [145].
V4283	Sgr $=$	72306	= Var 73 [145].
V4284	Sgr $=$	72307	$=$ Var 74 [145].
V4285	Sgr $=$	72308	$=\operatorname{Var} 75$ [145].
V4286	$\mathrm{Sgr}=$	72309	$=\operatorname{Var} 76$ [145].
V4287	Sgr $=$	72310	$=$ Var 77 [145].
V4288	Sgr $=$	72311	$=\operatorname{Var} 78$ [145].
V4289	Sgr $=$	72312	$=\operatorname{Var} 79$ [145].
V4290	Sgr $=$	72313	$=\operatorname{Var} 80$ [145].
V4291	$\mathrm{Sgr}=$	72314	$=\operatorname{Var} 81$ [145].
V4292	Sgr $=$	72315	$=\operatorname{Var} 82$ [145].
V4293	Sgr $=$	72316	$=\operatorname{Var} 83$ [145].
V4294	$\mathrm{Sgr}=$	72317	$=\operatorname{Var} 84$ [145].
V4295	Sgr $=$	72318	$=$ Var E6 [145].
V4296	Sgr $=$	72319	$=$ Var 85 [145].
V4297	$\mathrm{Sgr}=$	72320	$=\operatorname{Var} 86$ [145].
V4298	Sgr $=$	72321	$=\operatorname{Var} 87$ [145].
V4299	Sgr $=$	72322	$=\operatorname{Var} 88$ [145].
V4300	Sgr $=$	72323	$=\operatorname{Var} 89$ [145].
V4301	Sgr $=$	72325	$=$ Var 90 [145].
V4302	Sgr $=$	72326	$=$ Var 91 [145].
V4303	Sgr $=$	72327	= Var 92 [145].
V4304	$\mathrm{Sgr}=$	72328	$=\operatorname{Var} 93$ [145].
V4305	Sgr $=$	72329	$=$ Var 94 [145].
V4306	Sgr $=$	72330	$=\operatorname{Var} 95$ [145].
V4307	Sgr $=$	72331	$=\operatorname{Var} 96$ [145].
V4308	Sgr $=$	72332	$=\operatorname{Var} 97$ [145].
V4309	$\mathrm{Sgr}=$	72333	$=$ Var 98 [145].
V4310	Sgr $=$	72334	$=$ Var 99 [145].
V4311	Sgr $=$	72335	$=$ Var 100 [145]
V4312	Sgr $=$	72336	= Var 101 [145]
V4313	Sgr $=$	72337	= Var 102 [145]
V4314	$\mathrm{Sgr}=$	72338	$=$ Var 103 [145]
V4315	Sgr $=$	72339	= Var E7 [145].
V4316	Sgr $=$	72340	$=\operatorname{Var} 104$ [145]

Table 2 (continued)

V4317	Sgr $=$	72341	$=\operatorname{Var} 105$ [145].
V4318	Sgr $=$	72342	$=\operatorname{Var} 106$ [145].
V4319	Sgr $=$	72343	$=$ Var 107 [145].
V4320	Sgr $=$	72344	$=$ Var E8 [145].
V4321	$\mathrm{Sgr}=$	72345	$=$ Var 108 [145].
V4322	$\mathrm{Sgr}=$	72346	$=$ Var 109 [145].
V4323	Sgr $=$	72347	$=$ Var E9 [145].
V4324	$\mathrm{Sgr}=$	72348	$=$ Var 110 [145].
V4325	$\mathrm{Sgr}=$	72349	$=$ Var 111 [145].
V4326	$\mathrm{Sgr}=$	72350	$=$ Var 112 [145].
V4327	$\mathrm{Sgr}=$	72351	$=$ Nova Sgr 1993 [146, Sugano, Liller].
V4328	$\mathrm{Sgr}=$	72352	$=$ IRAS 18146-3110 [147].
V4329	$\mathrm{Sgr}=$	72353	$=$ IRAS 18149-3223 [147]. To E from V2952 Sgr, close to it.
V4330	Sgr $=$	72355	$=$ IRAS 18240-2832 [147]. Not identical with V931 Sgr.
V4331	$\mathrm{Sgr}=$	72357	$=$ IRAS 18279-2707 [147]. Not identical with V1897 Sgr.
V4332	$\mathrm{Sgr}=$	72363	$=$ Nova Sgr 1994 [148, Yamamoto] = Luminous red variable in Sgr. A red star with a nova-like outburst.
V4333	Sgr $=$	72398	$\begin{aligned} & =\mathrm{HR} 7439[150]=\mathrm{HD} 184705(\mathrm{~A} 5)=\mathrm{BD}-19^{\circ} 5521(5.8)=\mathrm{CPD}-19^{\circ} 7544 \\ & (6.5)=\mathrm{SAO} 162809 . \end{aligned}$
V1000	Sco $=$	72181	$=\mathrm{HBC} 630[063]=\mathrm{Wa}$ Oph $/ 1=160814-1857$ [180] $=$ GSC 6209.0968.
V1001	Sco $=$	72182	$=$ HBC $633[063]=$ Wa Oph $/ 2=$ GSC 6209.1039.
V1002	Sco $=$	72183	$=$ HBC $634[063]=$ Wa Oph $3=$ GSC 6209.1316.
V1003	Sco $=$	72186	$\begin{aligned} & =\text { HR } 6174[099]=\text { HD } 149711(\mathrm{~B} 3)=\mathrm{CoD}-43^{\circ} 10959(6.3)=\mathrm{CPD}-43^{\circ} 7635 \\ & (6.6)=\text { SAO } 226989 . \end{aligned}$
V1004	Sco $=$	72188	$=\mathrm{OH} / \mathrm{IR} 339.93+0.37[036]=\mathrm{OH} 339.93+0.37[186]=$ IRAS 16415-4458.
V1005	Sco $=$	72189	$=\mathrm{OH} / \mathrm{IR} 341.12-0.01[036]=\mathrm{OH} 341.12-0.00[186]=$ IRAS 16474-4418.
V1006	Sco $=$	72190	$=\mathrm{OH} / \mathrm{IR} 342.01+0.25[036]=\mathrm{OH} 342.01+0.25[186]=$ IRAS 16494-4327.
V1007	Sco $=$	72192	$\begin{aligned} & =\text { HD } 152248(\mathrm{~B})[041]=\mathrm{CoD}-41^{\circ} 11033(7.3)=\mathrm{CPD}-41^{\circ} 7728(6.6)=\mathrm{SAO} \\ & 227382=\text { IDS } 1647.1 \text { S4140 }=\text { Seggewiss } 291(\mathrm{NGC} 6231)=\text { Braes } 143(\mathrm{NGC} \\ & 6231)=\text { CSV } 7520=\text { NSV } 08022 . \end{aligned}$
V1008	Sco $=$	72195	$=\mathrm{OH} / \mathrm{IR} 344.93+0.01[036]=\mathrm{OH} 344.93+0.01=$ IRAS 17004-4119.
V1009	Sco $=$	72196	$=\mathrm{OH} / \mathrm{IR} 346.01+0.04[036]=\mathrm{OH} 346.01+0.04=$ IRAS 17038-4026.
V1010	Sco $=$	72198	$=\mathrm{OH} / \mathrm{IR} 344.83-1.67[036]=\mathrm{OH} 344.83-1.67[186]=$ IRAS 17073-4225.
V1011	Sco $=$	72199	$=\mathrm{OH} / \mathrm{IR} 346.86-0.18[036]=\mathrm{OH} 346.86-0.18[186]=$ IRAS 17073-3955.
V1012	Sco $=$	72200	$\begin{aligned} & =\mathrm{HD} 155775(\mathrm{~B} 3)[040]=\mathrm{CoD}-38^{\circ} 11680(7.1)=\mathrm{CPD}-38^{\circ} 6750(7.2)=\mathrm{SAO} \\ & 208582 . \end{aligned}$
V1013	Sco $=$	72201	$=\mathrm{OH} / \mathrm{IR} 349.18+0.20[036]=\mathrm{OH} 349.18+0.20[186]=$ IRAS $17128-3748$.
V1014	Sco	72202	$=\mathrm{OH} / \mathrm{IR} 349.39-0.01[036]=\mathrm{OH} 349.39-0.01[186]=$ IRAS 17144-3745.
V1015	Sco $=$	72203	$=\mathrm{OH} / \mathrm{IR} 349.96-0.03[036]=\mathrm{OH} 349.96-0.03[186]=$ IRAS 17160-3718.
V1016	Sco $=$	72208	$=\mathrm{OH} / \mathrm{IR} 353.60-0.23[036]=\mathrm{OH} 353.60-0.23[186]=$ IRAS 17271-3425. Not identical with V481 Sco.
V1017	$\mathrm{Sco}=$	72209	$\begin{aligned} & =\operatorname{HD~} 158394 / 5\left(\text { F5,A5) }[152]=\mathrm{CoD}-34^{\circ} 11732(7.8)=\mathrm{CPD}-34^{\circ} 6846(8.5)\right. \\ & =\text { SAO } 208893=\text { EXOSAT } 1727-3430 . \end{aligned}$
V1018	Sco $=$	72211	$=\mathrm{OH} / \operatorname{IR} 354.88-0.54[036]=\mathrm{OH} 354.88-0.54[186]=\text { IRAS } 17317-3331=$ AFGL 5356.
V1019	$\mathrm{Sco}=$	72212	$=\mathrm{OH} / \operatorname{IR} 358.16+0.50[036]=\mathrm{OH} 358.16+0.49=\operatorname{AFGL} 1992[142,186]=$ IRAS 17360-3012.
V1020	Sco $=$	72215	$=$ No. 1 (M7) [153].
V1021	Sco $=$	72216	$=$ No. 6 (M7) [153].
V1022	Sco $=$	72217	$=$ No. 4 (M7) [153].
V1023	Sco $=$	72218	$=$ No. 2 (M7) [153].
V1024	Sco $=$	72220	$=$ No. 5 (M7) [153].
V1025	Sco $=$	72222	$=$ No. 3 (M7) [153].
V445	Sct $=$	72356	$\begin{aligned} & =\mathrm{OH} / \mathrm{IR} 17.7-2.0[154]=0 \mathrm{H} 17.7-2.0[214]=\text { AFGL } 5497=\text { IRAS } 18276- \\ & 1431 . \end{aligned}$

Table 2 (continued)

NW	Ser $=$	72354	$\begin{aligned} & =\text { HR } 6873[093]=\mathrm{HD} 168797(\mathrm{~B} 5)=\mathrm{BD}+5^{\circ} 3704(6.9)=\mathrm{SAO} 123385= \\ & \text { MWC } 601=\text { NSV } 10688 . \end{aligned}$
NX	Ser $=$	72358	$=$ AFGL $2199[142]=$ IRAS 18333+0533 [121].
V1064	Tau $=$	72014	= Nos.92, 93 [156].
V1065	Tau $=$	72017	= HII 1136 [157].
V1066	Tau $=$	72020	$=$ No. 99 [156]. Co-ordinates in [156] are wrong.
V1067	Tau $=$	72022	$\begin{aligned} & =\text { WTT } 040012+2545[157]=\text { NTTS } 040012+2545 \mathrm{~N}+\mathrm{S}=\text { TAP } 14[161]= \\ & \text { HBC } 356 / 357 . \end{aligned}$
V1068	Tau $=$	72023	$=\operatorname{LkCa} 4[019,159]=$ HBC 370.
V1069	Tau $=$	72024	$=\operatorname{TAP} 26[019,161]=$ HBC $376=$ NTTS $041559+1716$.
V1070	Tau $=$	72025	$=\mathrm{LkCa} 7[160]=$ HBC $379=$ TAP $29=$ NTTS $041636+2743$.
V1071	Tau $=$	72027	$=\mathrm{LkCa} 21[019]=$ HBC 382.
V1072	Tau $=$	72028	$=$ TAP $35[161]=$ HBC $388=$ NTTS $042417+1744$.
V1073	Tau $=$	72030	$=$ TAP 39 [161].
V1074	Tau $=$	72031	$=$ TAP $40[019,161]=$ HBC $392=$ NTTS $042835+1700$.
V1075	Tau $=$	72032	$=\mathrm{TAP} 41[019,161]=$ HBC $397=$ NTTS $042916+1751=\mathrm{L} 1551-51$.
V1076	Tau $=$	72033	$=\operatorname{TAP} 45[161]=$ HBC $403=$ NTTS $042950+1757=\mathrm{L} 1551-55$.
V1077	Tau $=$	72034	$=$ TAP $49[161]=$ HBC $407=$ NTTS $043124+1824$.
V1078	Tau $=$	72035	$=$ TAP 51S $[161]=$ NTTS $043220+1815$.
V1079	Tau $=$	72037	$=\mathrm{LkCa} 15[160]=$ HBC $419=$ IRAS $04363+2215$.
V1080	Tau $=$	72038	$=\mathrm{BD}+24^{\circ} 676$ (9.4) [019].
V1081	Tau $=$	72040	$=\mathrm{HD} 29935$ (B9) = BD+22 ${ }^{\circ} 743$ (8.0) [162] = SAO $076729=$ NSV 01702.
QS	$\mathrm{Tel}=$	72400	$=$ RE 1938-4612 [163].
CO	Tuc $=$	72001	$=$ HV $814=7317($ NGC 104 $)=$ V 12 (Globular cluster NGC $104=47$ Tuc). Not cluster member, not SMC member.
EQ	UMa $=$	72127	$=$ New variable in the SW UMa field [166].
ER	UMa $=$	72132	$=$ PG 0943+521 [167, Iida $]=$ GSC 3439.0550.
ES	UMa $=$	72133	$=$ GSC 4383.0384 [215].
ET	UMa $=$	72136	$\begin{aligned} & =30 \mathrm{H} \text { UMa }=\mathrm{HR} 4072[169]=\mathrm{HD} 89822(\mathrm{~A} 0)=\mathrm{BD}+66^{\circ} 664(5.0)=\mathrm{SAO} \\ & 015163=\text { IRAS } 10205+6549=\mathrm{Zi} 814=\mathrm{CSV} 101122=\mathrm{NSV} 04839 . \end{aligned}$
EU	UMa $=$	72144	$=$ RE $1149+28$ [170].
EV	UMa =	72158	$=$ RE 1307+535 [171].
LY	$\mathrm{Vel}=$	72131	$\begin{aligned} & =\mathrm{HD} 80859(\mathrm{~B} 8)[172]=\mathrm{CoD}-47^{\circ} 4850(7.7)=\mathrm{CPD}-47^{\circ} 3241(7.9)=\mathrm{SAO} \\ & 221084 . \end{aligned}$
LZ	$\mathrm{Vel}=$	72134	$\begin{aligned} & =\text { HD } 86005(\mathrm{~K} 0)[216,173]=\mathrm{CoD}-42^{\circ} 5741(7.9)=\mathrm{CPD}-42^{\circ} 4159(8.4)= \\ & \text { SAO } 221596=\text { IRAS } 09526-4305 . \end{aligned}$
MM	$\mathrm{Vel}=$	72135	$=$ X-ray Nova in Vela $[174$, Della Valle, Benetti $]=$ Optical counterpart of GRC 1009-45.
V337	$\mathrm{Vul}=$	72368	$=$ LD 107 [071] = IRAS 19042+2529.
V338	$\mathrm{Vul}=$	72373	$=$ LD $112[071]=$ IRAS 19081+2315 = GSC 2123.1515.
V339	$\mathrm{Vul}=$	72374	$=$ LD 113 [071] = IRAS 19091+2439.
V340	$\mathrm{Vul}=$	72376	$=$ LD $114[071]=$ IRAS 19105+2306 $=$ GSC 2123.1937.
V341	$\mathrm{Vul}=$	72382	$=$ LD 174 [071] = IRAS 19196+2437.
V342	$\mathrm{Vul}=$	72383	$=$ LD 117 [071] = IRAS 19199+2300.
V343	$\mathrm{Vul}=$	72384	$=\operatorname{LD~} 118[071]=$ IRAS $19199+2616=$ GSC 2132.2539.
V344	$\mathrm{Vul}=$	72385	$=\mathrm{LD} 119$ [071].
V345	$\mathrm{Vul}=$	72386	$=$ LD 121 [071] = IRAS 19217+2621.
V346	$\mathrm{Vul}=$	72388	$=$ LD 123 [071] = IRAS 19238+2632.
V347	$\mathrm{Vul}=$	72392	$=\mathrm{LD} 126$ [071].
V348	$\mathrm{Vul}=$	72393	= LD 175 [071].
V349	$\mathrm{Vul}=$	72395	$=$ LD $128[071]=$ IRAS 19290+2324 $=$ IRC $+20412=$ GSC 2125.0932.
V350	$\mathrm{Vul}=$	72401	$=$ LD $131[071]=$ IRAS $19372+2337$.

Table 2 (continued)

V351	$\mathrm{Vul}=$	72402	$=$ LD $132[071]=$ IRAS $19382+2325$.
V352	$\mathrm{Vul}=$	72403	$=$ LD $133[071]=$ IRAS $19389+2445=$ GSC 2143.1826.
V353	$\mathrm{Vul}=$	72410	$=$ LD $140[071]=$ IRAS $19472+2230$.
V354	$\mathrm{Vul}=$	72412	= LD 143 [071].
V355	$\mathrm{Vul}=$	72414	$=$ LD $145[071]=$ IRAS 19491+2602.
V356	$\mathrm{Vul}=$	72416	$=$ LD 147 [071] = IRAS 19499+2701 = GSC 2148.1963.
V357	$\mathrm{Vul}=$	72418	$=$ LD $148[071]=$ IRAS $19518+2300$.
V358	$\mathrm{Vul}=$	72420	$=$ LD $149[071]=$ IRAS 19530+2223 $=$ GSC 2140.2164.
V359	$\mathrm{Vul}=$	72421	$=$ LD $150[071]=$ AFGL $2474=$ IRAS 19537+2212.
V360	$\mathrm{Vul}=$	72422	$=$ LD $151[071]=$ IRAS $19543+2308$.
V361	$\mathrm{Vul}=$	72424	$=$ LD $182[071]=$ IRAS 19558+2241.
V362	$\mathrm{Vul}=$	72429	$=\mathrm{E} 2000+223$ [175]. Not identical with QQ Vul.
V363	$\mathrm{Vul}=$	72432	$=\mathrm{LD} 158$ [071].
V364	$\mathrm{Vul}=$	72438	$=$ LD $161[071]=$ IRAS $20063+2527$.
V365	$\mathrm{Vul}=$	72440	$=$ LD $163[071]=$ IRAS $20079+2529$.
V366	$\mathrm{Vul}=$	72442	$=$ LD $165[071]=$ IRAS $20104+2427=$ GSC 2158.1697.
V367	$\mathrm{Vul}=$	72444	$=$ LD $166[071]=$ IRAS 20135+2517.
V368	$\mathrm{Vul}=$	72445	$=$ LD $167[071]=$ IRAS $20139+2404$.
V369	$\mathrm{Vul}=$	72447	$=$ LD 184 [071] = IRAS 20162+2629.
V370	$\mathrm{Vul}=$	72448	$=\mathrm{LD} 185$ [071].
V371	$\mathrm{Vul}=$	72449	$=$ IRAS $20181+2234$ [121].
V372	$\mathrm{Vul}=$	72451	$=$ LD $169[071]=$ IRAS $20195+2905$.
V373	$\mathrm{Vul}=$	72452	= LD 170 [071].
V374	$\mathrm{Vul}=$	72453	$=$ LD $171[071]=$ IRAS $20240+2759$.
V375	$\mathrm{Vul}=$	72454	$=$ LD $172[071]=$ IRAS $20253+2407$.

References

1. S.J.Adelman, R.J.Dukes, D.M.Pyper, AJ 104, No.1, 314, 1992.
2. D.B.Williams, B.A.Skiff, IBVS No.3833, 1993.
3. A.D.Schwope, H.-C.Thomas, K.Beuermann, AsAp 271, No.2, L25, 1993.
4. R.M.Robb, IBVS No.3798, 1992.
5. R.S.Stobie, A.Chen, D.O'Donoghue, D.Kilkenny, MN 263, No.1, L13, 1993.
6. A.Alksnis, D.Z̆aime, Issledovanie Solntsa i Krasnych Zvezd No.35, 36, 1992.
7. T.Le Bertre, AsAp Suppl 94, No.2, 377, 1992.
8. Hideo Maehara, Takao Soyano, NAO Japan Publ 1, No.3, 207, 1990.
9. IAU Circ No.5791, 1993.
10. The Astronomer 30, No.349, 14, 1993.
11. M.Cohen, L.V.Kuhi, PASP 89, No.532, 829, 1977.
12. D.S.Hall, G.W.Henry, AJ 104, No.5, 1936, 1992.
13. E.W.Burke, Jr., B.Etter, R.Fried, T.J.Kreidl, IBVS No.3924, 1993.
14. P.Martinez, D.W.Kurtz, IBVS No.3750, 1992.
15. J.W.Menzies, F.Marang, J.E.Westerhuys, SAAO Circ No.14, 33, 1990.
16. D.L.Pollacco, D.Kilkenny, F.Marang, F.van Wyk, G.Roberts, MN 256, No.4, 669, 1992.
17. B.Zuckerman, E.E.Becklin, I.S.McLean, J.Patterson, ApJ 400, No.2, 665, 1992.
18. D.P.Clemens, R.W.Leach, ApJ 345, No.1, 1, 1989.
19. J.Bouvier, S.Cabrit, M.Fernandes, E.L.Martin, J.M.Matthews, AsAp 272, No.1, 176, 1993.
20. E.D.Feigelson, J.M.Jackson, R.D.Mathieu, P.C.Myers, F.M.Walter, AJ 94, No.5, 1251, 1987.
21. K.Krisciunas, C.Aspin, T.R.Geballe, H.Akazawa, C.F.Claver, E.F.Guinan, H.J. Landis, K.D.Luedeke, N.Ohkura, O.Ohshima, D.R.Skillman, MN 263, No.3, 781, 1993.
22. D.H.Kaiser, IBVS No.3814, 1992.
23. P.Broglia, P.Conconi, IBVS No.3753, 1992.
24. E.A.Baker, MN 98, No.1, 65, 1937.
25. P.Pravec, IBVS No.3839, 1993.
26. G.Gonzáles, C.Escamilla, E.Parsamian, IBVS No.3794, 1992.
27. R.Weber, IBVS No.21, 1963.
28. V.S.Shevchenko, Herbig Ae/Be Stars, Tashkent, Fan, 1989.
29. G.H.Herbig, ApJ Suppl 4, No.43, 337, 1960.
30. Liu Qingyao, J.Andersen, J.V.Clausen, B.Nordström, R.P.Stefanik, IBVS No. 3813, 1992.
31. M.J.Lebofsky, S.G.Kleinmann, AJ 81, No.7, 534, 1976.
32. D.H.Kaiser, IBVS No.3677, 1991.
33. A.Paschke, BBSAG Bull No.95, 6, 1990.
34. C.Hoffmeister, Sonn Mitt No.16, 1929.
35. D.Heynderickx, AsAp Suppl 96, No.2, 207, 1992.
36. T.Le Bertre, AsAp Suppl 97, No.3, 729, 1993.
37. V.Gasperoni, P.Maffei, G.Tosti, IBVS No.3573, 1991.
38. IAU Circ No.5902, 1993.
39. G.M.Hurst, The Astronomer 30, No.359, 253, 1994.
40. L.A.Balona, MN 254, No.3, 404, 1992.
41. P.Mayer, R.Lorenz, H.Drechsel, IBVS No.3765, 1992.
42. P.L.Schechter, I.M.Avruch, J.A.R.Caldwell, M.J.Keane, AJ 104, No.5, 1930, 1992.
43. D.Kilkenny, F.van Wyk, F.Marang, G.Roberts, K.Sekiguchi, IBVS No.3801, 1992.
44. C.B.Stephenson, N.Sanduleak, Warner and Swasey Publ 1, No.1, 1971.
45. M.Jerzykiewicz, AsAp Suppl 97, No.2, 421, 1993.
46. V.S.Shevchenko, M.A.Ibragimov, S.D.Yakubov, Soviet Astronomy 33, No.5, 487, 1989.
47. E.M.Halbedel, PASP 103, No.661, 310, 1991.
48. IAU Circ No.5813, 1993.
49. V.A.Bartalog, MS, 1987.
50. R.Gröbel, IBVS No.3837, $1993=$ BAV Mitt No. 64.
51. G.H.Herbig, N.K.Rao, Lick Contr No.355, 1971.
52. D.Böhme, MVS 12, H.8, 137, 1992.
53. Hao Jinxin, Huang Lin, IBVS No.3832, 1993.
54. Wang Gang, Hu Jingyao, Qian Zhongyu, Zhou Xu, AAp Sinica 7, No.4, 255, 1987.
55. N.Achilleos, D.T.Wickramasinghe, J.Liebert, R.A.Saffer, A.D.Grauer, ApJ 396, No.1, 273, 1992.
56. H.L.Giclas, R.Burnham, Jr., N.G.Thomas, Lowell Bull No.160, 273, 1973.
57. J.D.Hughes, P.Hartigan, J.A.Graham, J.P.Emerson, F.Marang, AJ 101, No.3, 1013, 1991.
58. J.D.Hughes, J.P.Emerson, H.Zinnecker, P.A.Whitelock, MN 236, No.1, 117, 1989.
59. D.J.Stickland, R.H.Koch, I.Pachoulakis, R.J.Pfeiffer, Obs 113, No.1114, 139, 1993.
60. K.G.Strassmeier, H.M.Maitzen, M.Pranka, IBVS No.3735, 1992.
61. T.D.Kinman, Invited paper, IAU Coll No.139, July 1992, Victoria, B.C.
62. N.E.Kurochkin, Perem Zvezdy 12, No.6, 409, 1960.
63. E.Covino, L.Terranegra, M.Franchini, C.Chavarria-K., R.Stalio, AsAp Suppl 94, No.2, 273, 1992.
64. I.S.Glass, M.V.Penston, MN 172, No.1, 227, 1975.
65. S. Yu.Shugarov, IBVS No.3778, 1992.
66. G.Guerrero, M.Bossi, M.Scardia, AsAp 260, No.1/2, 311, 1992.
67. M.L.Hazen, IBVS No.3888, 1993.
68. J.Maza, L.E.Gonzalez, M.Wischnjewsky, F.Barrientos, PASP 104, No.681, 1060, 1992.
69. Ch.Koen, MN 264, No.1, 165, 1993.
70. H.C.Arp, C.T.van Sant, AJ 63, No.8, 341, 1958.
71. L.Dahlmark, IBVS No.3855, 1993.
72. The Astronomer 26, No.311, 237, 1990.
73. J.T.Hooten, D.S.Hall, ApJ Suppl 74, No.1, 225, 1990.
74. A.A.Barannikov, Astronomy Letters 19, No.6, 420, 1993.
75. D.B.Williams, IBVS No.3726, 1992.
76. G.H.Herbig, ApJ 128, No.2, 259, 1958.
77. Ch.L.Perry, A.U.Landolt, AJ 92, No.4, 844, 1986.
78. D.H.Kaiser, M.E.Baldwin, IBVS No.3815, 1992.
79. G.Vauclair, J.A.Belmonte, B.Pfeiffer, M.Chevreton, N.Dolez, C.Motch, K.Werner, M. W.Pakull, AsAp 267, No.1, L35, 1993.
80. C.Motch, K. Werner, M.W.Pakull, AsAp 268, No.2, 561, 1993.
81. R.K.Honeycutt, J.W.Robertson, D.N.Vesper, B.D.Kern, G.W.Turner, J.R.Pier, IBVS No. $3795,1992$.
82. T.D.Kinman, L.L.Stryker, J.E.Hesser, J.A.Graham, A.R.Walker, M.L.Hazen, J.M. Nemec, PASP 103, No.670, 1279, 1991.
83. Li Zhiping, Jiang Shiyiang, AsAp Suppl 93, No.1, 87, 1992.
84. I.L.Andronov, IBVS No.3645, 1991.
85. R.A.Downes, M.M.Shara, PASP 105, No.684, 127, 1993.
86. L.Jetsu, R.Anttila, E.Dmitrienko, K.N.Grankin, J.Huovelin, S. Yu.Melnikov, V.S. Shevchenko, I.Tuominen, AsAp 262, No.1, 188, 1992.
87. G.Cutispoto, AsAp Suppl 95, No.3, 397, 1992.
88. C.Koen, G.Roberts, IBVS No.3830, 1993.
89. G.J.Frey, B.Grim, D.S.Hall, P.Mattingly, S.Robb, J. Wood, K.Zeigler, AJ 102, No.5, $1813,1991$.
90. R. Weber, DOC No.12, 1957.
91. K.O.Mason, M.G.Watson, T.J.Ponman, P.A.Charles, S.R.Duck, B.J.M.Hassall, S.B.Howell, M.Ishida, D.H.P.Jones, J.P.D.Mittaz, MN 258, No.4, 749, 1992.
92. D. Cieslinski, F.J.Jablonski, IBVS No.3929, 1993.
93. J.R.Percy, A.Attard, PASP 104, No.682, 1160, 1992.
94. R.de Martino, Ch.J.Predom, JAAVSO 20, No.2, 250, 1991.
95. AAVSO Variable Star Atlas, 1990.
96. R.K.Konstantinova-Antova, A.P.Antov, M.M.Ivanov, IBVS No.3858, 1993.
97. S. Yu.Shugarov, A.V.Savenkov, IBVS No.3878, 1993.
98. P.Martinez, D.W.Kurtz, R.Ashley, IBVS No.3844, 1993.
99. M.Jerzykiewicz, C.Sterken, AsAp 261, No.2, 477, 1992.
100. IAU Circ No.5867, 1993.
101. T.Lanz, D.A.Bohlender, J.D.Landstreet, IBVS No.3678, 1991.
102. P.J.Meadows, A.R.Good, R.D.Wolstencroft, MN 225, No.3, 43p, 1987.
103. R.D.Schwartz, P.Noah, AJ 83, No.7, 785, 1978.
104. R.D.Schwartz, ApJ Suppl 35, No.2, 161, 1977.
105. M.Della Valle, L.Pasquin, IAU Circ No.5512, 1992.
106. H.Pedersen, The Messenger No.34, 21, 1983.
107. G.F.Gahm, E.Gullbring, C.Fischerström, K.P.Lindroos, K.Lodén, AsAp Suppl 100, No.2, 371, 1993.
108. Pik-Sin The, Bosscha Contr No.15, 1962.
109. D.R.Skillman, J.Patterson, ApJ 417, No.1, 298, 1993.
110. D.G.Monet, C.C.Dahn, F.J.Vrba, H.C.Harris, J.R.Pier, C.B.Luginbuhl, H.D. Ables, AJ 103, No.2, 638, 1992.
111. W. Wenzel, IBVS No.3883, 1993.
112. A.P.Katsyka, N.N.Samus, IBVS No.3881, 1993.
113. S.J.Adelman, PASP 104, No.676, 392, 1992.
114. R.Carballo, C.Eiroa, AsAp 262, No.1, 295, 1992.
115. K.G.Dzhakusheva, K.S.Kuratov, D.B.Mukanov, Yu.K.Bergner, A.S.Miroshnichenko, R.V.Yudin, N.Yu. Yutanov, Soviet Astronomy Letters 14, No.4, 317, 1988.
116. J.Kaluzny, B.Mazur, W.Krzeminski, MN 262, No.1, 49, 1993.
117. IAU Circ No. $4075,1985$.
118. H. W.Duerbeck, Space Sci Rev 45, Nos.1-2, 1987.
119. V.Reglero, J.Fabregat, A.de Castro, IBVS No.2959, 1986.
120. IAU Circ No.5876, 1993.
121. B.Carter, F.Marang, P.A.Whitelock, R.M.Catchpole, M.W.Feast, SAAO Ann Rep 1992, p. 22.
122. IAU Circ No.5765, 1993.
123. A.Paschke, BBSAG Bull No.99, 1992.
124. D.A. Mitrofanov, Perem Zvezdy 22, No.3, 409, 1986.
125. C.F.Prosser, AJ 105, No.4, 1441, 1993.
126. M.F.McCarthy, S.J., S.O'Sullivan, S.J., Ric Astr 7, No.17, 483, 1969.
127. A.D.Silber, R.A.Remillard, K.Horne, H.V.Bradt, ApJ 424, No.2, 955, 1994.
128. M.Collins, The Astronomer 30, No.354, 139, 1993.
129. A.Jorissen, M.Mayor, J.Manfroid, C.Sterken, IBVS No.3730, 1992.
130. E.S.Parsamian, E.Chavira, G.González, Rev Mex 25, No.2, 71, 1993.
131. E.A.Bibo, P.S.The, AsAp Suppl 89, No.2, 319, 1991.
132. J.M.Attridge, W.Herbst, ApJ 398, No.1, L61, 1992.
133. B.F.Jones, M.F.Walker, AJ 95, No.6, 1755, 1988.
134. V.S.Shevchenko, S.D.Yakubov, Soviet Astronomy 36, No.4, 359, 1992.
135. E.S.Parsamian, E.Chavira, Ton Bol 3, No.1, 69, 1982.
136. V.S.Shevchenko, S.D. Yakubov, Soviet Astronomy 36, No.5, 509, 1992.
137. D.A.H.Buckley, D.O'Donoghue, R.S.Stobie, R.A.Remillard, MN 258, No.2, 285, 1992.
138. C.F.Prosser, IBVS No.3827, 1993.
139. E.H.Semkov, K.P.Tsvetkova, M.K.Tsvetkov, C.F.Prosser, IBVS No.3917, 1993.
140. A.J.Castro-Tirado, E.P.Pavlenko, A.A.Shlyapnikov, S.Brandt, N.Lund, J.L.Ortiz, AsAp 276, No.2, L37, 1993.
141. J.Grigorio-Hetem, J.R.D.Lépine, G.R.Quast, C.A.O.Torres, R.de la Reza, AJ 103, No.2, 549, 1992.
142. D.A.Allen, A.R.Hyland, A.J.Longmore, J.L.Caswell, W.M.Goss, R.F.Haynes, ApJ 217, No.1, 108, 1977.
143. G.H.Herbig, ApJ 125, No.3, 654, 1957.
144. M.L.Hazen, AJ 106, No.3, 1055, 1993.
145. B.M.Blanco, AJ 103, No.6, 1872, 1992.
146. IAU Circ No.5862, 1993.
147. P.Whitelock, M.Feast, R.Catchpole, MN 248, No.2, 276, 1991.
148. IAU Circ No.5942, 1994.
149. IAU Circ No.5949, 1994.
150. D.W.Kurtz, J.Egan, ApSS 196, No.1, 57, 1992.
151. F.M.Walter, ApJ 306, No.2, 573, 1986.
152. G.Cutispoto, G.Tagliaferri, P.Giommi, C.Gouiffes, R.Pallavicini, L.Pasquini, M. Rodonó, AsAp Suppl 87, No.2, 233, 1991.
153. K.L.Jones, A.A.Page, Proc ASA 9, No.2, 277, 1991.
154. T.Le Bertre, AsAp 180, No.1, 160, 1987.
155. T.Le Bertre, N.Epchtein, C.Gouiffes, M.Heydari-Malayeri, C.Perrier, AsAp 225, No.2, 417, 1989.
156. J.Kelemen, IBVS No.3103, 1987.
157. C.F.Prosser, R.E.Schild, J.R.Stauffer, B.F.Jones, PASP 105, No.685, 269, 1993.
158. E.Hertzsprung, Leiden Ann 19, part 1A, 1947.
159. F.J.Vrba, P.F.Chugainov, W.B.Weaver, J.S.Stauffer, AJ 106, No.4, 1608, 1993.
160. G.H.Herbig, F.J.Vrba, A.E.Rydgren, AJ 91, No.3, 575, 1986.
161. K.N.Grankin, IBVS No.3823, 1993.
162. L.L.Chinarova, I.L.Andronov, Astron Tsirk No.1555, 15, 1993.
163. D.A.N.Buckley, D.O’Donoghue, B.J.M.Hassall, B.J.Kellett, K.O.Mason, K.Sekiguchi, M.G.Watson, P.J. Wheatley, A.Chen, MN 262, No.1, 93, 1993.
164. M.W.Feast, A.D.Thackeray, A.J.Wesselink, MN 120, No.1, 64, 1960.
165. S.-W.Lee, AsAp Suppl 27, No.3, 381, 1977.
166. J.A.De Young, R.E.Schmidt, IBVS No.3759, 1992.
167. G.M.Hurst, The Astronomer 29, No.338, 45, 1992.
168. Z.Mikulášek, D.Hanžl, IBVS No.3914, 1993.
169. F.A.Catalano, F.Leone, AsAp 244, No.2, 327, 1991.
170. J.P.D.Mittaz, S.R.Rosen, K.O.Mason, S.B.Howell, MN 258, No.2, 277, 1992.
171. J.P.Osborne, A.P.Beardmore, P.J.Wheatley, P.Hakala, K.O.Mason, B.J.M.Hassall, A.R.King, Cataclysmic Vars and Rel Physics, Annals of the Israel Physical Society, No.10, 303, 1993.
172. A.M.van Genderen, F.C.van den Bosch, F.Dessing, R.van der Heiden, J.P.de Jong, R.L.J.van der Meer, R.van Ojik, J.M.Smit, M.J.Zijderveld, AsAp 259, No.2, 574, 1992.
173. T.R.Scott, J.B.Hearnshaw, R.D.Watson, P.M.Kilmartin, A.C.Gilmore, JApAs 13, No.3, 279, 1992.
174. IAU Circ No.5890, 1993.
175. I.L.Andronov, MVS 11, H.4, 84, 1988.
176. L.O.Takalo, J.A.Nousek, PASP 97, No.593, 570, 1985.
177. P.J.Hakala, M.G.Watson, O.Vilhu, B.J.M.Hassall, B.J.Kellett, K.O.Mason, V. Piirola, MN 263, No.1, 61, 1993.
178. B. Vetö, W.Schöneich, Yu.S.Rustamov, AN 301, No.6, 317, 1980.
179. W.A.Lawson, A.F.Jones, Obs 112, No.1110, 231, 1992.
180. M.M.Zakirov, A.A.Azimov, K.N.Grankin, IBVS No.3898, 1993.
181. K.Krisciunas, E.Guinan, IBVS No.3511, 1990.
182. P.Frank, IBVS No.3859, 1993.
183. A.Ardeberg, E.Maurice, AsAp Suppl 39, No.3, 325, 1980.
184. B.E.Westerlund, R.Garnier, AsAp Suppl 78, No.2, 203, 1989.
185. J.S.Drilling, ApJ Suppl 76, No.3, 1033, 1991.
186. D.Engels, IBVS No.2301, 1983.
187. Yu.K.Bergner, A.S.Miroshnichenko, R.V.Yudin, N.Yu.Yutanov, K.S.Kuratov, D.B. Mukanov, Astron Tsirk No.1396, 1, 1985.
188. Yu.S.Efimov, Izv Krym Astr Obs 63, 118, 1981.
189. W.Wenzel, IBVS No.3829, 1993.
190. S.M.Jakate, AJ 83, No.10, 1179, 1978.
191. F.C.Fekel, D.S.Hall, IAPPP Comm No.20, 37, 1985.
192. J.R.Percy, M.G.Richer, H.Božič, P.Harmanec, J.Horn, P.Koubský, S.Kř̌z̈, L.A.Kelsey, D.B.Hoff, H.J. Landis, R.C.Reisenweber, R.Wasson, IBVS No.2891, 1986.
193. J.E. Winzer, Ph.D.Thesis, Univ Toronto, 1974.
194. IAU Circ No.5603, 1992.
195. E.A.Bergin, M.L.Fritz, E.F.Guinan, G.Innella, H.Leckenby, G.P.McCook, B.J. Hrivnak, BAAS 20, No.4, 993, 1988.
196. H.J.Landis, H.P.Lovell, D.S.Hall, D.G.Uckotter, AA 27, No.3, 265, 1977.
197. IAU Circ No.5868, 1993.
198. H.Pedersen, M.Véron, P.Véron, H.-E.Schuster, IAU Circ No.3858, 1983.
199. D.vander Linden, C.Sterken, AsAp Suppl 69, No.2, 157, 1987.
200. S.B.Howell, P.Szkody, T.J.Kreidl, D.Dobrzycka, PASP 103, No.661, 300, 1991.
201. D.C.Whittet, J.K.Davies, A.Evans, M.F.Bode, E.I.Robson, R.M.Banfield, SAAO Circ No.9, 55, 1985.
202. M.A.Pogodin, Soviet Astronomy 25, No.4, 454, 1981.
203. T.Le Bertre, N.Epchtein, M.Heydari-Malayeri, AsAp 197, No.1/2, 143, 1988.
204. J.D.Dorren, E.F.Guinan, AJ 87, No.11, 1546, 1982.
205. R.R.Radick, M.S.Wilkerson, S.P.Worden, J.L.Africano, A.Klimke, S.Ruden, W. Rogers, T.E.Armandroff, M.S.Giampapa, PASP 95, No.567, 300, 1983.
206. P.Whitelock, M.Feast, MN 211, No.2, 25p, 1984.
207. P.Whitelock, MN 213, No.2, 51p, 1985.
208. R.F.Wing, S.B.Yorka, MN 178, No.2, 383, 1977.
209. Th.B.Ake III, H.R.Johnson, M.M.Ameen, ApJ 383, No.2, 842, 1991.
210. M.J.Lebofsky, G.H.Rieke, AJ 82, No.8, 646, 1977.
211. M.V.Penston, D.A.Allen, C.Lloyd, Obs 96, No.1010, 22, 1976.
212. G.N.Mandel, W.Herbst, ApJ 383, No.2, L75, 1991.
213. G.C.Kilambi, AA 27, No.2, 179, 1977.
214. J.Herman, R.Isaacman, A.Sargent, H.J.Habing, AsAp 139, No.1, 171, 1984.
215. D.Hanžl, J.Kyselý, K.Hornoch, IBVS No.3879, 1993.
216. B.W.Bopp, J.Africano, R.Quigley, AJ 92, No.6, 1409, 1986.
217. G.de Vaucouleurs, H.G.Corwin, Jr., B.A.Skiff, PASP 106, No.696, 156, 1994.
218. J.P.Osborne, A.P.Beardmore, P.J.Wheatley, P.Hakala, M.G.Watson, K.O.Mason, B.J.M.Hassall, A.R. King, MN 270, No.3, 650, 1994.

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4141

Konkoly Observatory
Budapest
11 January 1995
HU ISSN 0374-0676

BVR OBSERVATIONS OF THE DOUBLE-MODE CEPHEIDS AS Cas, V367 Sct and BQ Ser

Recently one of us (Berdnikov, 1992) has decomposed the available photoelectric observations of all double-mode Cepheids into two oscillations. It was pointed out as well that the number of existing observations is not sufficient for reliable investigation of light curve variations for the majority of these stars. Therefore we continue to carry out observations of all accessible double-mode Cepheids.

Photoelectric observations of double-mode Cepheids were carried out in summer autumn 1994. The $60-\mathrm{cm}$ reflector of the Mt. Maidanak observatory was used and 87 BVR_{c} measurements of AS Cas (Table 1), $83 \mathrm{BVR}_{c}$ measurements of V367 Sct (Table 2), and $85 \mathrm{BVR}_{c}$ measurements of BQ Ser (Table 3) were obtained.

This study was partially supported by the Russian Foundation for Fundamental Research through grants No. 94-02-04344 and No. 94-02-04347.

Table 1. BVR_{c} observations of AS Cas.

JD hel $2440000+$	V	$\mathrm{B}-\mathrm{V}$	$\mathrm{V}-\mathrm{R}_{c}$	JD hel $2440000+$	V	$\mathrm{B}-\mathrm{V}$	$\mathrm{V}-\mathrm{R}_{c}$
9617.3164	12.322	1.255	.863	9623.4090	12.112	1.314	.815
9617.3504	12.259	1.386	.852	9623.4310	12.123	1.298	.814
9618.3861	12.354	1.298	.883	9623.4534	12.151	1.329	.834
9620.3324	11.918	1.205	.737	9623.4716	12.191	1.324	.850
9620.3539	11.908	1.132	.736	9623.4832	12.170	1.336	.831
9620.3766	11.887	1.165	.754	9624.1588	12.503	1.538	.877
9620.4128	11.819	1.211	.721	9624.2814	12.569	1.490	.908
9620.4432	11.895	1.152	.764	9624.3650	12.584	1.506	.921
9621.1692	12.280	1.343	.857	9624.3841	12.565	1.518	.908
9621.3032	12.390	1.383	.874	9624.4003	12.515	1.523	.893
9621.3502	12.435	1.434	.862	9624.4195	12.542	1.530	.888
9621.3744	12.441	1.420	.874	9624.4383	12.528	1.505	.913
9621.4077	12.454	1.472	.876	9624.4607	12.505	1.484	.889
9621.4436	12.455	1.417	.863	9625.1723	12.529	1.504	.875
9622.3680	12.693	1.498	.906	9625.2322	12.521	1.468	.885
9622.4203	12.637	1.444	.901	9625.3175	12.533	1.463	.871
9623.3008	12.048	1.256	.799	9625.3804	12.498	1.406	.886
9623.3332	12.169	1.289	.790	9625.3995	12.492	1.451	.888
9623.3576	12.137	1.325	.801	9625.4333	12.460	1.453	.882
9623.3780	12.132	1.310	.816	9625.4523	12.441	1.461	.892

Table 1 (cont.)

JD hel $2440000+$	V	$\mathrm{B}-\mathrm{V}$	$\mathrm{V}-\mathrm{R}_{c}$	JD hel $2440000+$	V	$\mathrm{B}-\mathrm{V}$	$\mathrm{V}-\mathrm{R}_{c}$
9626.2049	12.403	1.348	.877	9633.4340	12.333	1.337	.862
9631.1784	12.654	1.550	.884	9633.4456	12.324	1.362	.868
9631.3015	12.686	1.508	.931	9633.4655	12.308	1.419	.853
9632.1944	12.210	1.336	.831	9634.2147	12.439	1.474	.850
9632.2367	12.218	1.327	.825	9634.3259	12.408	1.483	.876
9632.2991	12.293	1.321	.825	9635.3464	11.917	1.198	.764
9632.3259	12.208	1.379	.823	9635.3636	11.916	1.183	.776
9632.3449	12.159	1.286	.824	9635.3751	11.891	1.211	.756
9632.3457	12.182	1.395	.807	9635.3899	11.911	1.182	.795
9632.3758	12.250	1.407	.826	9635.4033	11.870	1.193	.718
9632.3922	12.285	1.345	.865	9635.4134	11.818	1.198	.721
9632.3940	12.116	1.293	.813	9635.4379	11.851	1.199	.759
9632.4123	12.244	1.406	.830	9635.4521	11.837	1.236	.747
9632.4317	12.288	1.374	.869	9635.4655	11.833	1.241	.743
9632.4552	12.280	1.399	.849	9635.4751	11.847	1.203	.776
9632.4740	12.238	1.334	.843	9635.4833	11.830	1.191	.752
9633.2048	12.309	1.395	.840	9635.4998	11.824	1.193	.744
9633.2313	12.401	1.346	.828	9640.2452	12.335	1.401	.876
9633.3173	12.427	1.383	.867	9640.3355	12.357	1.387	.866
9633.3380	12.391	1.356	.859	9640.4015	12.321	1.378	.857
9633.3590	12.339	1.345	.872	9641.3499	12.202	1.274	.821
9633.3734	12.311	1.400	.815	9647.3170	12.096	1.285	.806
9633.3949	12.342	1.369	.871	9647.4003	12.080	1.284	.786
9633.4108	12.312	1.400	.871				

Table 2. BVR $_{c}$ observations of V367 Sct.

JD hel $2440000+$	V	$\mathrm{B}-\mathrm{V}$	$\mathrm{V}-\mathrm{R}_{c}$	JD hel $2440000+$	V	$\mathrm{B}-\mathrm{V}$	${\mathrm{V}-\mathrm{R}_{c}}$
9514.3396	11.440	1.755	1.139	9534.3365	11.732	1.952	1.230
9514.4089	11.467	1.757	1.175	9535.2592	11.895	1.961	1.256
9515.3672	11.525	1.774	1.189	9535.3229	11.913	1.990	1.263
9516.3873	11.786	1.913	1.247	9535.3923	11.902	1.970	1.263
9517.3863	11.928	1.956	1.261	9536.2505	11.804	1.878	1.243
9519.4093	11.304	1.674	1.132	9536.3729	11.792	1.880	1.238
9521.3388	11.697	1.910	1.230	9537.2542	11.516	1.796	1.161
9522.3603	11.843	1.916	1.244	9537.3209	11.531	1.765	1.185
9522.4212	11.841	1.938	1.243	9537.3932	11.520	1.771	1.173
9523.3170	11.812	1.882	1.245	9538.2774	11.493	1.783	1.173
9523.3971	11.730	1.921	1.199	9538.3272	11.485	1.824	1.159
9524.2973	11.618	1.821	1.186	9539.2520	11.611	1.830	1.200
9524.3667	11.632	1.796	1.203	9539.3396	11.604	1.861	1.188
9524.4299	11.601	1.861	1.180	9542.3691	11.777	1.947	1.242
9525.2927	11.574	1.778	1.210	9543.2439	11.803	1.918	1.232
9534.2910	11.732	1.917	1.238	9543.3125	11.789	1.926	1.230
9534.3296	11.743	1.947	1.222	9545.2329	11.339	1.701	1.124

Table 2 (cont.)

JD hel $2440000+$	V	$\mathrm{B}-\mathrm{V}$	$\mathrm{V}-\mathrm{R}_{c}$	JD hel $2440000+$	V	$\mathrm{B}-\mathrm{V}$	$\mathrm{V}-\mathrm{R}_{c}$
9545.2881	11.365	1.685	1.144	9557.2403	11.576	1.812	1.208
9546.2361	11.505	1.786	1.180	9559.2140	11.502	1.825	1.190
9946.3026	11.508	1.801	1.172	9559.2894	11.512	1.854	1.187
9546.3769	11.535	1.811	1.188	9560.2235	11.776	1.940	1.237
9547.2263	11.752	1.926	1.238	9560.3277	11.775	1.977	1.244
9547.2830	11.773	1.932	1.248	9561.3035	11.924	2.013	1.248
9548.3120	11.915	1.969	1.259	9563.3070	11.322	1.684	1.123
9548.3508	11.934	1.971	1.265	9564.2313	11.478	1.814	1.173
9549.2258	11.788	1.908	1.215	9621.1487	11.572	1.811	1.144
9549.2979	11.793	1.868	1.237	9623.1519	11.958	1.935	1.252
9549.3458	11.756	1.898	1.224	9624.1356	11.938	1.978	1.253
9550.2969	11.421	1.687	1.155	9625.1434	11.685	1.877	1.168
9551.2928	11.501	1.761	1.179	9631.1407	11.771	2.036	1.193
9552.2914	11.678	1.825	1.224	9632.1379	11.659	1.859	1.200
9553.2830	11.716	1.843	1.209	9633.1322	11.348	1.715	1.144
9554.2971	11.714	1.815	1.223	9634.1418	11.512	1.856	1.174
9556.2860	11.736	1.949	1.251				

Table 3. BVR observations of BQ Ser.

$\begin{gathered} \text { JD hel } \\ 2440000+ \end{gathered}$	V	B-V	$\mathrm{V}-\mathrm{R}_{c}$	$\begin{gathered} \text { JD hel } \\ 2440000+ \end{gathered}$	V	B-V	$\mathrm{V}-\mathrm{R}_{c}$
9514.3464	9.755	1.568	. 951	9534.2937	9.509	1.491	. 907
9514.4133	9.751	1.575	. 940	9534.3406	9.524	1.489	. 911
9515.3724	9.241	1.315	. 821	9534.3965	9.522	1.520	. 903
9516.3902	9.409	1.458	. 887	9535.2625	9.750	1.585	. 936
9517.3892	9.709	1.592	. 950	9535.3275	9.771	1.583	. 955
9519.4131	9.364	1.391	. 866	9535.3956	9.769	1.604	. 950
9521.3329	9.540	1.480	. 911	9536.2553	9.458	1.424	. 866
9522.3627	9.576	1.518	. 917	9536.3761	9.367	1.367	. 854
9522.4247	9.597	1.513	. 913	9537.2575	9.288	1.393	. 856
9523.3214	9.656	1.521	. 922	9537.3236	9.320	1.397	. 855
9523.4009	9.648	1.491	. 915	9537.3965	9.342	1.415	. 859
9524.3012	9.230	1.355	. 828	9538.2810	9.621	1.548	. 919
9524.3704	9.244	1.331	. 846	9538.3301	9.639	1.567	. 932
9524.4329	9.238	1.342	. 844	9539.2555	9.718	1.558	. 939
9525.2976	9.457	1.473	. 907	9539.3417	9.699	1.551	. 929
9526.2867	9.733	1.584	. 947	9539.3794	9.703	1.534	. 932
9529.2874	9.553	1.541	. 919	9540.2445	9.446	1.431	. 887
9530.2713	9.652	1.541	. 923	9540.3371	9.420	1.429	. 870
9530.3559	9.650	1.530	. 924	9541.2485	9.450	1.453	. 874
9530.4108	9.636	1.534	. 914	9541.3138	9.468	1.432	. 884
9533.2732	9.318	1.400	. 848	9541.3805	9.459	1.449	. 883
9533.3506	9.321	1.399	. 854	9542.2496	9.440	1.479	. 883
9533.4046	9.322	1.409	. 861	9542.3022	9.463	1.457	. 895

Table 3 (cont.)

JD hel $2440000+$	V	$\mathrm{B}-\mathrm{V}$	$\mathrm{V}-\mathrm{R}_{c}$	JD hel $2440000+$	V	$\mathrm{B}-\mathrm{V}$	$\mathrm{V}^{2} \mathrm{R}_{c}$
9530.3559	9.650	1.530	.924	9541.2485	9.450	1.453	.874
9530.4108	9.636	1.534	.914	9541.3138	9.468	1.432	.884
9533.2732	9.318	1.400	.848	9541.3805	9.459	1.449	.883
9533.3506	9.321	1.399	.854	9542.2496	9.440	1.479	.883
9533.4046	9.322	1.409	.861	9542.3022	9.463	1.457	.895
9542.3715	9.466	1.449	.883	9556.2931	9.729	1.595	.945
9543.2500	9.534	1.520	.904	9557.2447	9.632	1.462	.914
9543.3144	9.549	1.508	.922	9559.2195	9.545	1.520	.917
9545.2367	9.291	1.355	.841	9559.2952	9.567	1.522	.907
9545.2912	9.260	1.356	.836	9560.2280	9.701	1.546	.947
9546.2404	9.376	1.416	.885	9560.3322	9.682	1.563	.926
9546.3047	9.386	1.433	.874	9561.3083	9.517	1.478	.886
9546.3794	9.406	1.458	.879	9563.3111	9.391	1.419	.869
9547.2296	9.663	1.573	.936	9564.2363	9.498	1.485	.902
9547.2857	9.696	1.578	.955	9617.0962	9.627	1.486	.885
9548.3153	9.714	1.541	.920	9620.2112	9.785	1.542	.939
9548.3546	9.693	1.527	.932	9621.1813	9.551	1.461	.873
9549.2296	9.294	1.362	.837	9623.1762	9.500	1.444	.886
9549.3012	9.290	1.367	.839	9625.1939	9.651	1.545	.912
9549.3496	9.310	1.364	.858	9626.2175	9.438	1.423	.877
9550.3007	9.474	1.494	.883	9631.1572	9.406	1.478	.858
9551.2960	9.592	1.510	.907	9632.2027	9.620	1.530	.928
9552.2953	9.566	1.514	.909	9633.1754	9.634	1.497	.931
9553.2908	9.607	1.509	.907	9634.1830	9.591	1.518	.925
9554.3017	9.270	1.351	.831				

L.N. BERDNIKOV
O.V. VOZIAKOVA

Sternberg Astronomical Institute
13, Universitetskij prosp.
Moscow 119899, Russia
M.A. IBRAGIMOV

Astronomical Institute
33, Astronomicheskaya str. Tashkent, 700052
Republic of Uzbekistan

Reference:
Berdnikov L.N., 1992, Pis'ma Astron. Zh., 18, 654

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4142

Konkoly Observatory
Budapest
11 January 1995
HU ISSN 0374-0676

UBVR PHOTOELECTRIC OBSERVATIONS OF THE DOUBLE-MODE CEPHEIDS CO Aur, TU Cas AND EW Sct

Recently one of us (Berdnikov, 1992) has decomposed the available photoelectric observations of all double-mode Cepheids into two oscillations. It was pointed out as well that the number of existing observations is not sufficient for reliable investigation of light curve variations for the majority of these stars. Therefore we continue to carry out observations of all accessible double-mode Cepheids.

Photoelectric observations of double-mode Cepheids were carried out in summer autumn 1994. The $60-\mathrm{cm}$ reflector of the Mt. Maidanak observatory was used and 79 UBVR_{c} measurements of CO Aur (Table 1), $121 \mathrm{UBVR}_{c}$ measurements of TU Cas (Table 2), and $85 \mathrm{UBVR}_{c}$ measurements of EW Sct (Table 3) were obtained.

This study was partially supported by the Russian Foundation for Fundamental Research through grants No. 94-02-04344 and No. 94-02-04347.

Table 1. UBVR observations of CO Aur.

$\begin{gathered} \text { JD hel } \\ 2440000+ \end{gathered}$	V	U-B	B-V	$\mathrm{V}-\mathrm{R}_{c}$	$\begin{gathered} \text { JD hel } \\ 2440000+ \end{gathered}$	V	U-B	B-V	$\mathrm{V}-\mathrm{R}_{c}$
9617.3379	-	-	. 655	. 369	9623.4852	7.805	.405	. 616	. 420
9617.3620	7.654	. 319	. 644	. 391	9623.4996	7.787	. 347	. 634	. 405
9620.3451	7.461	. 428	. 580	. 355	9624.3407	7.696	. 492	. 699	. 423
9620.3931	7.427	. 452	. 592	. 341	9624.3685	7.748	. 502	. 682	. 418
9620.4579	7.523	. 412	. 557	. 383	9624.3699	7.736	. 412	. 667	. 413
9621.3914	7.910	. 415	. 762	. 451	9624.3866	7.758	. 422	. 672	. 428
9621.5005	7.969	. 416	. 728	. 451	9624.4029	7.743	. 410	. 691	. 411
9622.4244	7.642	. 474	. 640	. 398	9624.4240	7.764	. 415	. 683	. 411
9622.4455	7.655	. 404	. 654	. 398	9624.4425	7.781	. 383	. 682	. 414
9622.4795	7.666	-	. 639	. 381	9624.4532	7.788	. 441	. 688	. 424
9622.4994	7.776	. 389	. 584	. 404	9624.4850	7.745	. 407	. 698	. 437
9623.3030	7.824	. 436	. 770	. 441	9624.5015	7.759	.417	. 684	. 452
9623.3247	7.825	. 446	. 719	. 440	9625.3671	7.768	. 436	. 677	. 408
9623.3502	7.807	. 444	. 700	. 429	9625.4255	7.730	. 366	. 659	. 410
9623.3852	7.809	. 375	. 728	. 412	9625.4455	7.717	. 384	. 628	. 420
9623.3985	7.802	. 395	. 690	. 416	9625.4666	7.727	-	. 634	. 405
9623.4245	7.802	-	. 696	. 415	9625.4851	7.712	-	. 625	. 404
9623.4464	7.824	. 394	. 648	. 416	9625.4963	7.727	. 436	. 597	. 393
9623.4648	7.820	. 418	. 663	. 415	9631.3256	7.683	. 417	. 691	. 413
9623.4762	7.813	. 374	. 634	. 419	9631.3575	7.661	-	. 671	. 393

Table 1 (cont.)

JD hel	V	$\mathrm{U}-\mathrm{B}$	$\mathrm{B}-\mathrm{V}$	$\mathrm{V}-\mathrm{R}_{c}$	$\mathrm{JD} h e l$ $2440000+$	V	$\mathrm{U}-\mathrm{B}$	$\mathrm{B}-\mathrm{V}$	$\mathrm{V}-\mathrm{R}_{c}$
$2440000+$									
9632.3020	7.776	.384	.696	.402	9633.4483	7.754	.418	.641	.405
9632.3283	7.802	.445	.712	.435	9633.4682	7.770	-	.664	.408
9632.3497	7.813	.461	.711	.426	9633.4874	7.768	.378	.664	.404
9632.3624	7.812	.398	.699	.436	9634.3088	7.785	.460	.673	.395
9632.3665	7.808	.396	.691	.435	9634.3426	7.733	.428	.675	.410
9632.3867	7.811	.403	.681	.422	9635.3701	7.826	-	.701	.451
9632.4068	7.803	.406	.679	.425	9635.3948	7.845	-	.707	.429
9632.4353	7.806	.384	.662	.416	9635.4536	7.879	-	.725	.429
9632.4482	7.795	.365	.653	.406	9635.4684	7.878	-	.732	.429
9632.4681	7.745	-	.665	.409	9635.4777	7.889	-	.727	.437
9632.4849	7.773	.448	.687	.488	9635.4863	7.896	-	.711	.437
9632.5026	7.739	.445	.687	.481	9635.5045	7.946	-	.690	.438
9632.5236	7.713	-	.654	.414	9635.5145	7.897	-	.723	.441
9633.2856	7.634	.428	.672	.409	9640.4056	7.637	-	.633	.409
9633.3301	7.656	.436	.664	.414	9640.4702	7.650	-	.649	.410
9633.3530	7.682	.404	.663	.397	9640.5272	7.671	-	.664	.410
9633.3682	7.697	.421	.650	.420	9644.3946	7.899	-	.750	.469
9633.3894	7.706	.456	.671	.409	9644.4938	7.869	-	.724	.455
9633.4060	7.708	.419	.676	.412	9647.4171	7.601	-	.624	.400
9633.4277	7.731	.437	.669	.399					
9617.3238	8.082	-	.737	.415	9622.4310	7.127	.414	.345	.196
9617.3623	8.041	.467	.762	.419	9622.4536	7.171	.317	.365	.233
9618.3919	7.610	-	.576	.340	9622.4738	7.216	.293	.365	.232
9618.4572	7.659	.385	.580	.348	9622.5094	7.287	.340	.415	.226
9619.1962	7.941	.365	.680	.388	9623.1427	7.910	.411	.687	.416

Table 2. UBVR observations of TU Cas.

$\begin{gathered} \text { JD hel } \\ 2440000+ \end{gathered}$	V	U-B	B-V	$\mathrm{V}-\mathrm{R}_{c}$	$\begin{gathered} \text { JD hel } \\ 2440000+ \end{gathered}$	V	U-B	B-V	$\mathrm{V}-\mathrm{R}_{c}$
9620.3307	7.557	. 331	. 487	. 295	9623.2952	7.886	. 400	. 710	. 406
9620.3514	7.513	. 329	. 488	. 290	9623.3190	7.934	. 413	. 734	. 406
9620.3595	7.505	. 326	. 499	. 282	9623.3308	8.048	. 409	. 703	. 412
9620.3831	7.499	. 341	. 488	. 281	9623.3556	7.996	. 407	. 731	. 412
9620.4213	7.438	. 321	. 493	. 293	9623.3837	8.001	-	. 724	. 422
9620.4496	7.460	. 337	. 465	. 296	9623.4076	7.981	. 440	. 734	. 409
9621.1741	7.811	-	. 647	. 368	9623.4297	7.985	. 400	. 726	. 409
9621.3012	7.893	. 405	. 647	. 397	9623.4516	8.017	. 433	. 734	. 411
9621.3585	7.923	. 401	. 692	. 401	9623.4701	8.009	. 425	. 729	. 428
9621.3815	7.997	. 419	. 716	. 411	9623.4819	8.026	. 462	. 705	. 427
9621.4154	7.946	. 425	. 700	. 386	9623.5078	8.030	. 387	. 724	. 418
9621.4408	7.959	. 459	. 691	. 394	9624.1577	7.780	-	. 596	. 336
9621.5106	7.990	-	. 702	. 402	9624.2802	7.647	. 343	. 513	. 309
9622.3899	7.114	. 334	. 301	. 205	9624.3203	7.618	. 326	. 509	. 390

Table 2 (cont.)

$\begin{gathered} \text { JD hel } \\ 2440000+ \end{gathered}$	V	U-B	B-V	$\mathrm{V}-\mathrm{R}_{c}$	$\begin{gathered} \text { JD hel } \\ 2440000+ \end{gathered}$	V	U-B	B-V	$\mathrm{V}-\mathrm{R}_{c}$
9624.3607	7.589	. 341	. 501	. 306	9632.5077	8.100	. 460	. 730	. 420
9624.3819	7.550	. 324	. 496	. 298	9633.1570	7.263	. 302	. 374	. 239
9624.3987	7.546	. 322	. 483	. 300	9633.2036	7.314	. 357	. 411	. 260
9624.4252	7.529	. 337	. 495	. 287	9633.2306	7.370	. 276	. 442	. 265
9624.4439	7.540	. 294	. 513	. 293	9633.2860	7.474	. 339	. 469	. 273
9624.4667	7.547	. 328	. 488	. 307	9633.3029	7.462	. 328	. 472	. 294
9624.4780	7.552	-	. 496	. 306	9633.3163	7.462	. 337	. 489	. 294
9624.4870	7.572	. 335	. 493	. 310	9633.3362	7.483	. 361	. 519	. 311
9624.5064	7.557	. 293	. 518	. 291	9633.3574	7.532	. 315	. 511	. 317
9624.5150	7.574	. 307	. 530	. 297	9633.3723	7.553	. 404	. 509	. 312
9625.1716	7.736	. 332	. 593	. 361	9633.3935	7.562	. 364	. 545	. 336
9625.2397	7.773	. 327	. 589	. 364	9633.4102	7.564	. 385	. 555	. 330
9625.3156	7.780	. 322	. 608	. 364	9633.4334	7.598	. 388	. 568	. 317
9625.3405	7.766	. 353	. 630	. 361	9633.4526	7.624	. 412	. 549	. 336
9625.3588	7.768	. 399	. 631	. 367	9633.4646	7.631	. 355	. 586	. 336
9625.3781	7.779	. 371	. 627	. 357	9633.4953	7.657	. 378	. 596	. 350
9625.3973	7.805	. 334	. 621	. 375	9634.1781	7.987	. 427	. 709	. 404
9625.4312	7.799	. 356	. 628	. 373	9634.2131	7.997	. 392	. 707	. 382
9625.4508	7.803	. 397	. 612	. 386	9634.2543	7.997	. 343	. 716	. 391
9625.4824	7.798	-	. 639	. 361	9634.2798	8.049	. 375	. 706	. 394
9625.5013	7.833	. 377	. 638	. 392	9634.2948	8.056	-	. 720	. 410
9625.5140	7.825	-	. 642	. 377	9634.3313	8.016	. 485	. 707	. 403
9626.2044	8.046	. 412	. 686	. 407	9634.3532	8.029	. 415	. 712	. 411
9631.1773	7.387	. 316	. 448	. 270	9635.3431	7.596	-	. 502	. 325
9631.2207	7.398	. 275	. 455	. 267	9635.3620	7.590	-	. 499	. 324
9631.2999	7.412	. 317	. 458	. 318	9635.3743	7.603	-	. 525	. 313
9631.3264	7.508	. 286	. 448	. 285	9635.3894	7.603	-	. 551	. 325
9631.3461	7.451	-	. 475	. 290	9635.4025	7.604	-	. 522	. 313
9631.3562	7.431	-	. 476	. 296	9635.4124	7.584	-	. 526	. 305
9632.1928	8.005	. 397	. 719	. 407	9635.4374	7.604	-	. 541	. 321
9632.2352	8.011	. 356	. 713	. 396	9635.4584	7.607	-	. 552	. 311
9632.2980	8.086	. 412	. 697	. 406	9635.4695	7.627	-	. 550	. 340
9632.3252	8.042	. 393	. 716	. 416	9635.4789	7.623	-	. 550	. 340
9632.3506	7.986	. 462	. 741	. 412	9635.4872	7.617	-	. 547	. 335
9632.3514	8.046	-	. 730	. 419	9635.5042	7.609	-	. 583	. 310
9632.3741	8.060	. 419	. 725	. 410	9640.2521	7.851	-	. 649	. 381
9632.3911	8.074	. 431	. 712	. 418	9640.3318	7.859	-	. 663	. 380
9632.3979	8.056	-	. 730	. 410	9640.3995	7.872	-	. 657	. 384
9632.4113	8.082	. 436	. 731	. 418	9641.3461	7.896	-	. 644	. 373
9632.4365	8.083	. 420	. 736	. 421	9647.3231	7.987	-	. 701	. 403
9632.4542	8.071	. 423	. 738	. 418	9647.4045	8.014	-	. 719	. 409
9632.4787	8.101	-	. 751	. 420					

Table 3. UBVR ${ }_{c}$ observations of EW Sct

$\begin{gathered} \text { JD hel } \\ 2440000+ \end{gathered}$	V	U-B	B-V	$\mathrm{V}-\mathrm{R}_{c}$	$\begin{gathered} \text { JD hel } \\ 2440000+ \end{gathered}$	V	U-B	B-V	$\mathrm{V}-\mathrm{R}_{c}$
9514.3505	7.752	-	1.644	1.074	9541.3840	8.160	-	1.794	1.155
9514.4166	7.758	-	1.659	1.081	9542.2532	7.778	-	1.628	1.076
9515.3758	7.933	-	1.754	1.129	9542.3059	7.743	-	1.636	1.056
9516.3930	8.220	-	1.861	1.177	9542.3754	7.747	-	1.605	1.066
9517.3920	8.259	-	1.828	1.169	9543.2529	7.734	-	1.648	1.069
9519.4161	7.792	-	1.668	1.086	9543.3171	7.754	-	1.652	1.079
9521.3289	8.145	-	1.819	1.159	9545.2402	8.229	-	1.863	1.186
9522.3669	8.082	-	1.775	1.137	9545.2950	8.233	-	1.883	1.187
9522.4278	8.077	-	1.786	1.139	9546.2441	8.192	-	1.818	1.157
9523.3250	8.004	-	1.757	1.128	9546.3076	8.164	-	1.816	1.151
9523.4044	8.009	-	1.744	1.121	9546.3826	8.154	-	1.807	1.145
9524.3050	8.013	-	1.763	1.124	9547.2328	7.838	-	1.662	1.079
9524.3773	8.014	-	1.748	1.128	9547.2888	7.821	-	1.663	1.076
9524.4418	8.007	-	1.764	1.121	9548.3187	7.877	-	1.704	1.105
9525.3014	7.889	-	1.680	1.102	9548.3584	7.884	-	1.707	1.095
9526.2907	7.820	-	1.686	1.087	9549.2327	7.988	-	1.766	1.130
9529.2910	8.245	-	1.854	1.175	9549.3056	7.994	-	1.766	1.129
9530.2756	7.786	-	1.653	1.060	9549.3532	7.998	-	1.773	1.133
9530.3598	7.747	-	1.627	1.061	9550.3050	8.010	-	1.785	1.120
9530.4150	7.719	-	1.633	1.053	9551.3001	7.997	-	1.750	1.130
9533.2763	8.196	-	1.861	1.172	9552.2994	8.076	-	1.808	1.142
9533.3543	8.199	-	1.866	1.168	9553.2950	8.077	-	1.782	1.139
9533.4084	8.204	-	1.864	1.170	9554.3074	7.775	-	1.652	1.075
9534.2965	8.140	-	1.816	1.290	9556.2972	8.014	-	1.777	1.144
9534.3444	8.148	-	1.799	1.153	9557.2504	8.230	-	1.862	1.172
9534.4006	8.118	-	1.793	1.145	9559.2233	7.739	-	1.616	1.058
9535.2654	7.920	-	1.715	1.100	9559.3000	7.727	-	1.608	1.059
9535.3318	7.919	-	1.691	1.099	9560.2314	7.824	-	1.689	1.089
9535.4003	7.915	-	1.700	1.105	9560.3365	7.853	-	1.700	1.101
9536.2586	7.929	-	1.713	1.114	9561.3126	8.061	-	1.784	1.148
9536.3799	7.933	-	1.720	1.113	9563.3152	8.036	-	1.759	1.130
9537.2611	7.929	-	1.724	1.111	9564.2392	8.013	-	1.753	1.129
9537.3266	7.930	-	1.732	1.109	9617.0997	7.938	1.575	1.698	1.103
9537.3996	7.931	-	1.728	1.114	9620.2012	7.938	1.320	1.714	1.117
9538.2840	7.930	-	1.727	1.117	9621.1548	8.036	1.497	1.792	1.114
9538.3328	7.928	-	1.725	1.117	9624.1679	7.680	1.373	1.587	1.056
9539.2585	7.949	-	1.738	1.122	9625.1553	7.872	1.367	1.683	1.091
9539.3445	7.949	-	1.749	1.119	9626.2098	8.149	-	1.889	1.154
9539.3826	7.960	-	1.738	1.124	9631.1458	8.047	-	1.786	1.119
9540.2474	8.143	-	1.832	1.162	9632.1564	7.996	1.600	1.761	1.124
9540.3405	8.152	-	1.828	1.159	9633.1592	8.030	1.453	1.745	1.131
9541.2516	8.183	-	1.834	1.156	9634.1468	8.180	-	1.803	1.160
9541.3167	8.172	-	1.807	1.152					

L.N. BERDNIKOV
O.V. VOZIAKOVA
Sternberg Astronomical Institute
13, Universitetskij prosp.
Moscow 119899, Russia

M.A. IBRAGIMOV
Astronomical Institute
33, Astronomicheskaya str.
Tashkent, 700052
Republic of Uzbekistan

Reference:

Berdnikov L.N., 1992, Pis'ma Astron. Zh., 18, 654

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4143

Konkoly Observatory
Budapest
12 January 1995
HU ISSN 0374-0676

PHOTOMETRIC OBSERVATION OF NS MONOCEROTIS

[BAV Mitteilungen Nr. 76]

NS Mon $=$ CSV $783=\mathrm{BD}+7^{\circ} 1367$ (9.5) was discovered by Hoffmeister (1934). He classified the variable as possibly Algol type in the range between 10.5 and $11^{\mathrm{m}}(\mathrm{pg})$. First investigation of this variable was performed by Kippenhahn (1955) based on 87 plates. He found the maximum brightness not to be constant, suspected β Lyr-type and gave three times of minimum light. Three additional minima timings were submitted by Wasiljanowskaja (1954). She supposed the variable to be of Algol type. Variability of the star between $10 .{ }^{\mathrm{m}} 8$ and $11 . \mathrm{m} 3(\mathrm{pg})$ was confirmed by Weber (1956). An investigation on 320 photographic plates by Olijnyk (1963) resulted in 15 times of minimum light of NS Mon but the elements could not be found. An even larger set of photographic plates was used by Häussler (1978). He investigated this star on 501 plates of the Sonneberg and Hartha Sky Patrols and derived first elements:

$$
\begin{equation*}
\operatorname{Min} \mathrm{I}=\mathrm{HJD} 2441599.600+0 \mathrm{~d} 9399163 \times \mathrm{E} . \tag{1}
\end{equation*}
$$

Using the estimates on the Sonneberg plates together with the above elements a first photographic lightcurve and an $\mathrm{O}-\mathrm{C}$ diagram were given. Unfortunately two weak stars north and south of NS Mon led to a rather large scatter in the lightcurve. NS Mon was classified as W UMa type in the range between $10{ }^{\mathrm{m}} 64$ and $11 \mathrm{~m}^{\mathrm{m}} 08(\mathrm{ph})$. With these above data NS Mon is listed in the fourth edition of the GCVS (Kholopov et al. 1985).

For seventeen years the variable had remained obviously unobserved when we put NS Mon on our program, scheduled to look after seldom observed or in some other way problematic eclipsing binaries.

The photoelectric observations were made at the private observatory of one of us (F.A.) with a 0.35 m automatic photoelectric telescope (Agerer 1988). The photometer was equipped with an uncooled EMI 9781A tube and Schott filters for B and V. SAO 114137 (G5) was used as comparison star and SAO 114096 (G0) to check its constancy.

One minimum was observed photographically (P.F.) with a Lichtenknecker FlatfieldCamera $\mathrm{f}=576 \mathrm{~mm}$, $\mathrm{f} / \mathrm{D}=2.0$ on hypered KODAK Technical Pan 2415. The exposures were evaluated with a fixed diaphragm photometer. Altogether one new photographic and 10 photoelectric minima in two colours could be collected. All minima times were calculated with the Kwee - van Woerden (1956) method.

In compiling the lightcurve (Figure 1) from our data it became evident that the period published in the GCVS was a spurious one with the relation

$$
\frac{1}{\mathrm{P}_{\mathrm{GCVS}}}-\frac{1}{\mathrm{P}}=\frac{1}{2} .
$$

Figure 1: Differential light curves in B and V of NS Mon computed with respect to the new ephemeris (2).

Figure 2: O-C diagram for NS Mon computed with respect to the new ephemeris (2) using all available minimum timings. - represents photoelectric, - photographic series and \quad photographic plate minima.

Using all published minima found in the 'BAV Database of Minima of Eclipsing Binaries' together with our new observations, a weighted least squares fit yields the following linear ephemeris:

$$
\begin{array}{r}
\text { Min } I=H J D ~ 2449002.4539+1.77761517 \times E \tag{2}\\
\pm 4
\end{array}
$$

Our observations show the primary and secondary minima to be almost equally deep with an amplitude of 0 m 54 . A distinction between them was not possible. If both minima are primary ones, the period has to be halved. As can be seen from the lightcurve, NS Mon is in any case of the type EA.

Table 1
Observed times of minima for NS Mon, epochs and residuals computed with respect to the ephemeris (2) derived in this paper.

N	JD hel. $2400000+$	W	T*	Epoch	O-C	Lit	N	$\begin{gathered} \text { JD hel. } \\ 2400000+ \end{gathered}$	W	T*	Epoch	O-C	Lit
1	26030.345	2	P	-12923.0	+0.012	[1]	29	41330.330	20	F	-4316.0	+0.063	[4]
2	27100.452	2	P	-12321.0	-0.005	[1]	30	41385.334	2	P	-4285.0	-0.039	[4]
3	27157.352	2	P	-12289.0	+0.011	[1]	31	41599.585	2	P	-4165.5	+0.009	[4]
4	29700.182	2	P	-10859.5	-0.038	[2]	32	41680.468	2	P	-4119.0	+0.011	[4]
5	29913.533	2	P	-10739.5	-0.000	[3]	33	41983.569	2	P	-3949.5	+0.029	[4]
6	29913.559	2	P	-10739.5	+0.026	[3]	34	42448.326	2	P	-3687.0	-0.061	[4]
7	30762.298	2	P	-10261.0	-0.047	[3]	35	48690.4786	60	V	-176.5	-0.0038	[5]
8	30768.469	2	P	-10258.5	-0.097	[3]	36	48690.4805	60	B	-176.5	-0.0019	[5]
9	31090.335	2	P	-10077.5	$+0.020$	[3]	37	48985.5648	60	V	-10.5	-0.0018	[5]
10	31531.184	2	P	-9829.5	$+0.021$	[2]	38	48985.5654	60	B	-10.5	-0.0012	[5]
11	31903.145	0	P:	-9619.0	-0.429	[2]	39	48986.4537	60	B	-9.0	-0.0017	[5]
12	34807.290	2	P	-7986.5	-0.018	[3]	40	48986.4541	60	V	- 9.0	-0.0013	[5]
13	34823.291	2	P	-7977.5	-0.015	[3]	41	49002.4527	60	B	0.0	-0.0012	[5]
14	35135.285	2	P	-7801.0	$+0.007$	[3]	42	49002.4532	60	V	0.0	-0.0007	[5]
15	35862.283	2	P	-7392.0	-0.040	[3]	43	49018.451	30	B:	9.0	-0.001	[5]
16	35870.300	2	P	-7388.5	-0.022	[3]	44	49018.454	30	V :	9.0	$+0.002$	[5]
17	36194.329	0	$\mathrm{P}:$:	-7205.0	-0.408	[3]	45	49059.3379	60	B	32.0	+0.0003	[5]
18	36230.273	2	P	-7185.0	-0.016	[3]	46	49059.3380	60	V	32.0	$+0.0004$	[5]
19	36278.301	2	P	-7158.0	$+0.016$	[3]	47	49067.340	20	F	36.5	$+0.003$	[6]
20	36286.257	2	P	-7154.5	-0.027	[3]	48	49370.419	30	V :	207.0	-0.001	[5]
21	36613.327	2	P	-6970.5	-0.038	[3]	49	49370.419	30	B:	207.0	-0.001	[5]
22	38673.614	2	P	-5811.5	-0.007	[4]	50	49371.310	30	V :	207.5	$+0.001$	[5]
23	39057.613	2	P	-5595.5	$+0.027$	[4]	51	49371.313	30	B:	207.5	+0.004	[5]
24	39146.426	2	P	-5545.5	-0.041	[4]	52	49402.420	30	V :	225.0	$+0.003$	[5]
25	39441.534	2	P	-5379.5	-0.017	[4]	53	49402.421	30	B:	225.0	$+0.004$	[5]
26	40152.585	2	P	-4979.5	-0.012	[4]	54	49688.6123	60	V	386.0	-0.0011	[5]
27	40504.560	2	P	-4781.5	-0.005	[4]	55	49688.6126	60	B	386.0	-0.0008	[5]
28	41329.375	20	F	-4317.5	-0.003	[4]							

[1]: Kippenhahn (1955), [2]: Wasiljanowskaja (1955), [3]: Olijnyk (1963), [4]: Häussler (1978), [5]: Agerer: this paper, [6]: Frank: this paper.
*) P denotes pg plate min., V photoelectric min. in visual and B in B Filter and F photographic series. Those marked with ' $:$ ' got reduced weight while those marked with ': $:$ ' were discarded.

F. AGERER
P. FRANK
Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV) Munsterdamm 90, D-12169 Berlin, Germany

References:

Agerer, F.: 1988, BAV Rundbrief, 37, 60
Häussler, K.: 1978, Mitt. B.-H.-Bürgel-Sternw. Hartha, 15, 12
Hoffmeister, C.: 1934, Astr. Nachr., 253, 195
Kholopov, P.N. et al.: 1985, Gen. Cat. of Var. Stars, $4^{\text {th }}$ Ed., Nauka, Moscow.
Kippenhahn, R.: 1955, Astr. Nachr., 282, 76
Kwee, K.K., van Woerden, H.: 1956, Bull. Astr. Inst. Netherlands, 12, 327
Olijnyk, G.T.: 1963, Lvov Circ., 39-40, 60
Wasiljanowskaja, O.P.: 1955, Astr. Circ., 157, 19
Weber, R.: 1956, J. des Observateurs, 39, 113

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4144

Konkoly Observatory
Budapest
12 January 1995
HU ISSN 0374-0676

AW VIRGINIS: PHOTOELECTRIC TIMES OF MINIMUM AND IMPROVED PERIOD

The variable star AW Virginis ($\alpha=13^{\mathrm{h}} 25^{\mathrm{m}} 0, \delta=+03^{\circ} 10.0$; 1950.0) was discovered by Hoffmeister (1935). Jensch (1935) classified this star as a W UMa type system based on the first photographic light curve. He also obtained fourteen times of minimum light and derived the following ephemeris:

$$
\begin{equation*}
\text { Min I=J.D.hel. } 2427871.495+0 \text { d } 353998 \times \text { E } \tag{1}
\end{equation*}
$$

Whitney (1955) and Koch (1961) published photographic times of minimum light and the first author calculated an orbital period of $\mathrm{P}=0.3539968$ days. More recently, Hoffmann (1983) determined two additional photoelectric times of minimum.

Figure 1 shows the BV light curves obtained in April 1988 at Las Campanas (Chile) with the 60 cm telescope of the David Dunlap Observatory and in March 1989 at the Complejo Astronomico El Leoncito -CASLEO- (San Juan, Argentina). An RCA 1P21 photomultiplier refrigerated by dry ice, and a photon-counting system were used in the first case and the Vatican Observatory photo-polarimeter VATPOL (Magalhães et al., 1984) with two dry-ice cooled RCA 31034 Ga-As photomultipliers were employed in the second.

The measurements were made differentially with respect to a comparison star. No variation in the light of this star was detected. All the observations were corrected for first and second order differential extinction. As the comparison is located very near to the variable the corrections were small. Absolute photometry of the comparison star allowed to determine a $\mathrm{V}_{\max }=10.93$ for the variable star.

A total of 608 observations in each BV passband were obtained. These observations well cover the orbital period and show minima of approximately the same depth of ~ 0.7 mag (see Figure 1). From these measurements we determined 17 times of minimum light (9 times of primary minimum and 8 times of secondary minimum) using the bisection-of-chords method. A linear least squares fit to our photometric data yields an updated ephemeris:

$$
\begin{array}{r}
\text { Min I=J.D.hel. } 2447269.82175+0 \mathrm{~d} 35399736 \times \mathrm{E} \tag{2}\\
\pm 0.00012 \quad \pm 0.00000029
\end{array}
$$

We compiled all the previously determined times of minimum as well as those reported is this note. Using a linear least squares solution we derived an improved ephemeris:

$$
\begin{array}{r}
\text { Min I=J.D.hel. } 2447269.82135+0.3353997025 \times \mathrm{E} \tag{3}\\
\pm 0.00016 \quad \pm 0.000000046
\end{array}
$$

Figure 1

Figure 2

Table 1. Photoelectric times of minimum light of AW Virginis

Min.	JDhel.	E	$(\mathrm{O}-\mathrm{C})_{(3)}$	$(\mathrm{O}-\mathrm{C})_{(2)}$	reference
	$2400000 .+$				
					(1)
II	25680.429	-60987.5	0.001		(1)
I	25735.468	-60832.0	-0.006		(1)
II	26363.652	-59057.5	0.010		(1)
II	26771.459	-57905.5	0.012		(1)
II	27155.522	-56820.5	-0.011		(1)
I	27180.472	-56750.0	-0.018		(1)
I	27191.465	-56719.0	0.001		(1)
I	27539.466	-55736.0	0.023		(1)
II	27543.498	-55724.5	-0.016		(1)
I	27573.427	-55640.0	0.000		(1)
I	27866.541	-54812.0	0.005		(2)
I	27871.493	-54798.0	0.001		(3)
I	27873.619	-54792.0	0.003		(4)
I	27874.674	-54789.0	-0.004		(5)
I	34425.385	-36284.0	-0.008		(5)
I	34750.716	-35365.0	-0.001		(5)
I	34886.711	-34981.0	0.060		(5)
II	45002.645	-6404.5	-0.002		(5)
I	45022.645	-6348.0	-0.003		(5)
I	47257.7843	-34.0	-0.0011	-0.0016	(5)
I	47257.7855	-34.0	0.0001	-0.0003	(5)
II	47259.7330	-28.5	0.0006	0.0001	(5)
II	47259.7331	-28.5	0.0007	0.0003	(5)
II	47259.7332	-28.5	0.0008	0.0004	(5)
I	47268.7593	-3.0	-0.0000	-0.0004	(5)
I	47268.7597	-3.0	0.0004	-0.0000	(5)
II	47269.6447	-0.5	0.0004	-0.0000	(5)
II	47269.6451	-0.5	0.0008	0.0003	(5)
I	47269.8224	0.0	0.0011	0.0006	(5)
I	47269.8224	0.0	0.0011	0.0006	(5)
II	47270.7068	2.5	0.0005	0.0001	(5)
II	47270.7070	2.5	0.0007	0.0003	(5)
II	47270.7064	2.5	0.0001	-0.0003	(5)
I	47615.6770	977.0	0.0006	-0.0002	(5)
I	47615.6773	977.0	0.0009	0.0001	(5)
I	47615.6772	977.0	0.0008	0.0000	(5)

Note: (1) Jensch (1935); (2) Whitney (1955); (3) Koch (1961); (4) Hoffmann; (5) this note.

Table 1 lists all the times of minimum light used to derive equation (3). The columns give: the Julian date corresponding to each minimum, the epoch number, and the $(\mathrm{O}-\mathrm{C})$ residuals calculated from equation (3). For the new times of minimum light we included the residuals derived from equation (2). Figure 2 shows the ($\mathrm{O}-\mathrm{C}$) vs E diagram corresponding to equation (3). The residuals are, in general, randomly distributed and except for one minimum (Koch, 1961) the amplitude of the dispersion is of ~ 0.002 days. According to the precision of the ephemerides the orbital period of the system seems to have remained practically constant over the last ~ 50 years. However, additional times of minimum distributed on a longer time base are needed to confirm this preliminary result.

E. LAPASSET and M. GÓMEZ
Observatorio Astronómico
Universidad Nacional de Córdoba
Laprida 854, 5000 Córdoba
Argentina

References:

Hoffmann, M., 1983, Inf. Bull. Var. Stars, No. 2344
Hoffmeister, C., 1935, Astronomische Nachrichten, 255, 401
Jensch, A., 1935, Astronomische Nachrichten, 256, 279
Koch, R. H., 1961, AJ, 66, 35
Magalhães, A. M., Benedetti E., and Roland, E. H., 1984, PASP, 96, 383
Whitney, B. S., 1955, AJ, 60, 453

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4145

Konkoly Observatory
Budapest
13 January 1995
HU ISSN 0374-0676

PHOTOELECTRIC UBVR OBSERVATIONS OF THE PECULIAR CEPHEID V473 Lyr

We have observed V473 Lyr at the Mt. Maidanak observatory in September - October 1994. The $60-\mathrm{cm}$ reflector was used and $63 \mathrm{UBVR}_{c}$ differential measurements were obtained (Table 1); the accuracy of the individual data is near 0.01 mag in all filters. The magnitude of the comparison star HD 180316 in UBVR_{c} determined by us is: $\mathrm{V}=6.858$, $\mathrm{U}-\mathrm{B}=-0.479, \mathrm{~B}-V=-0.044, \mathrm{~V}-\mathrm{R}_{c}=-0.037$. This star is classified as Cepheid with irregularly variable amplitude in the GCVS. According to our data the amplitude of light curve (Fig.1) is near 0.4 mag . in V.

The phases are calculated with the elements:

$$
\text { MaxJDhel }=2428738.767+1.490813 \times E .
$$

This study was partially supported by the Russian Foundation for Fundamental Research through grants No. 94-02-04344 and No. 94-02-04347.

Table 1

JD hel	Phase	$\Delta \mathrm{V}$	$\Delta(\mathrm{U}-\mathrm{B})$	$\Delta(\mathrm{B}-\mathrm{V})$	$\Delta\left(\mathrm{V}-\mathrm{R}_{c}\right)$
$2449600+$					
19.2499	.105	-.834	-	.662	.385
20.2326	.764	-.750	.766	.696	.392
21.1950	.409	-.625	.825	.794	.444
21.2284	.432	-.622	.869	.771	.422
21.2957	.477	-.581	.867	.760	.453
22.1124	.025	-.919	.788	.630	.387
23.0957	.684	-.633	.842	.721	.419
23.1813	.742	-.708	.789	.709	.394
23.2006	.755	-.730	.776	.686	.398
23.2104	.761	-.735	.782	.678	.392
23.2494	.787	-.791	.777	.669	.375
23.2899	.815	-.832	.787	.661	.386
24.0972	.356	-.654	.857	.755	.434
24.1408	.385	-.615	.833	.753	.445
24.1635	.401	-.618	.847	.763	.421
24.1994	.425	-.605	.848	.763	.432
24.2186	.438	-.608	.871	.763	.430
24.2469	.457	-.585	.858	.757	.431
24.2745	.475	-.583	.845	.758	.445
24.2877	.484	-.590	.852	.764	.427

2					
JD hel	Phase	$\Delta \mathrm{V}$	$\Delta(\mathrm{U}-\mathrm{B})$	$\Delta(\mathrm{B}-\mathrm{V})$	$\Delta\left(\mathrm{V}-\mathrm{R}_{c}\right)$
$2449600+$					
24.3259	.510	-.593	.869	.760	.428
25.0985	.028	-.909	.790	.617	.363
25.1573	.067	-.879	.820	.637	.366
25.1784	.081	-.856	.799	.661	.378
25.1968	.094	-.857	.797	.651	.374
25.2386	.122	-.815	.834	.656	.397
25.2608	.137	-.813	.787	.680	.385
25.2842	.152	-.780	.814	.675	.393
25.3057	.167	-.800	.811	.684	.404
25.3219	.178	-.783	.812	.701	.393
26.2075	.772	-.757	.758	.686	.394
26.2260	.784	-.771	-	.641	.389
26.2394	.793	-.801	.755	.658	.389
26.2612	.808	-.808	.761	.661	.381
31.0968	.051	-.893	.799	.643	.365
31.1650	.097	-.839	.807	.656	.373
31.1809	.108	-.822	.815	.669	.382
31.2086	.126	-.822	.821	.671	.384
31.2515	.155	-.790	.823	.677	.394
31.2900	.181	-.775	.821	.692	.399
32.1085	.730	-.678	.784	.699	.404
32.1550	.761	-.731	.793	.689	.396
32.1803	.778	-.766	.763	.665	.382
32.1968	.789	-.792	.764	.665	.376
32.2295	.811	-.830	.751	.645	.380
32.2611	.832	-.866	.774	.632	.349
32.3033	.861	-.913	.786	.636	.317
33.0987	.394	-.632	.841	.767	.433
33.1553	.432	-.605	.836	.782	.429
33.1807	.449	-.604	.818	.787	.439
33.2117	.470	-.600	.849	.770	.423
33.2333	.484	-.589	.831	.781	.439
33.2799	.516	-.578	.866	.772	.445
33.3015	.530	-.604	.849	.782	.426
34.1015	.067	-.882	.798	.666	.371
34.1330	.088	-.875	.816	.644	.373
34.1801	.119	-.824	.814	.672	.376
34.2060	.137	-.824	.778	.700	.373
34.2470	.164	-.793	.813	.703	.392
34.2698	.180	-.780	.848	.704	.407
34.2933	.195	-.770	.851	.691	.386
35.3079	.876	-.930	-	.598	.360

Figure 1
L.N. BERDNIKOV
O.V. VOZIAKOVA

Sternberg Astronomical Institute
13, Universitetskij prosp.
Moscow 119899, Russia

Reference:
Berdnikov L.N., 1992, Pis'ma Astron. Zh., 1, 654

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4146

Konkoly Observatory
Budapest
13 January 1995
HU ISSN 0374-0676

OBSERVATIONS OF SN 1993ad

Supernova (SN) 1993ad in IC 1501 was discovered by Pollas (1993) on November 7, 1993. Pollas also reported the brightness estimate $B=18^{m}$ at discovery date and the offsets from the nucleus of the parent galaxy $13^{\prime \prime}$ east and $22^{\prime \prime} .7$ south.

Spectrogram of SN 1993 ad was obtained on Nov. 10 by Cappellaro and Della Valle (1993). It showed that SN was of type II at a very early stage. Narrow emission lines of the Balmer series from H_{α} to H_{ε} superimposed on a very blue continuum were observed.

It was also noted that spectrum of SN 1983 K , obtained ten days before maximum, was similar to that of SN 1993ad. Preliminary photometry gave $B=16.3, B-V=-0.3$, $V-R=0.0$ on Nov. 10.1 UT.

Four plates of SN 1993 ad were obtained with the $40-\mathrm{cm}$ astrograph at Sternberg Astronomical Institute Crimean Station. The brightness estimates are reported in Table I.

Table I.

Date	J.D. $2440000+$	B
Nov 14.74	9306.24	16.24
Nov 15.76	9307.26	16.26
Nov 17.75	9309.25	16.45
Nov 18.83	9310.33	16.37

The light curve is shown in Figure 1. We can estimate the date and magnitude of maximum brightness: $B_{\max }=16.1$ on JD 2449303 (November 11).

According to the RC3 the parent galaxy type is Sbc , the radial velocity $v=5165 \mathrm{~km} \mathrm{~s}^{-1}$, and galactic absorption $A_{b}=0.12$. As the SN was very blue near maximum, the absorption in the parent galaxy should be negligible and we can estimate the absolute magnitude at maximum $M_{B}=-18.2$ (with $H_{0}=75 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$). This means that SN 1993ad was fainter than SN 1979C and 1983K ($M_{B}=-19.6$), but significantly brighter than average type II SNe.

The work was partly supported by Russian Foundation for Fundamental Research grants No. 93-02-17108, 93-02-17114 and by grant No. MPP000 from the International Science Foundation.

Figure 1. Light curve of SN 1993ad. Dots - our data, circles - data from the literature.

D. YU. TSVETKOV N. N. PAVLYUK
Sternberg Astronomical Institute of Moscow University
13, Universitetskij Prosp.
Moscow 119899, Russia
E-mail:
tsvetkov@sai.msu.su
pavlyuk@sai.msu.su

References:

Cappellaro, E., Della Valle, M., 1993, IA U Circ., No. 5887.
Pollas, C., 1993, IAU Circ., No. 5887.

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4147

Konkoly Observatory
Budapest
16 January 1995
HU ISSN 0374-0676

HD 121276: AN ECLIPSING MAGNETIC Ap STAR AT LAST?

Magnetic Ap stars have a peculiar distribution of orbital periods when they belong to binary systems: no magnetic Ap star is known for sure in systems with periods shorter than 3 days (Gerbaldi et al. 1985; see, however, the possible exception found by North 1994a). This is probably why it is so difficult to find a single eclipsing binary among them: indeed, in spite of some early claims (North 1984; Renson \& Mathys 1984; Renson 1984, 1990), a close examination tends to make these alleged eclipsing Ap stars normal (North 1994a, b; Ziznovsky 1994).

We present here a new possible candidate: the southern star HD $121276=\mathrm{CP}-51^{\circ} 6430$ was classified $\mathrm{Ap} \operatorname{SiCr}(\mathrm{pec})$ by Houk (1978) with a quality 1, i.e. the best. Interestingly, Houk gives a remark saying "He 4026 is fairly strong, with Ca K being even stronger (yld. A1). Magnesium may also be strong; $4471=4481 "$. Since Ap stars are helium-poor, the strength of He 4026 appears rather strange and implies that this star is unusual, even among the Ap stars.

The large amplitude photometric variability was noticed in mid-1993 by one of us (CR) during the reduction of early data. These were gathered at the European Southern Observatory, La Silla, Chile, with the double-beam "P7" photometer attached to the 0.7 m Swiss telescope in 1989, 1991, 1993 and systematic monitoring took place in June 1993 and July 1994. The resulting lightcurves are shown in Figure 1, for the [U], [B], $[V]$ magnitudes and $[U-B],[B-V]$ colour indices of the Geneva photometric system, according to the ephemeris

$$
\text { HJD }(\text { Min. } I)=2449343.774+6.514628 \times \mathrm{E}
$$

There is a deep primary minimum, while the secondary minimum is very shallow and a bit ill-defined. In V, there is a large variation (0.08 mag .) outside the eclipses, which is also present in the [B] band but is less definite in the [U] band. This out-of-eclipse variation resembles the effect due to the non-sphericity of a component nearly filling its Roche lobe, but such an effect is not expected to be so wavelength dependent. Moreover, the period is rather long and the primary minimum is short (about 12.5 hours), suggesting that the system is well-detached. Therefore, one is tempted to attribute the out-of-eclipse variations to the intrinsic variability of the primary, which is indeed expected to vary according to its Ap SiCr classification. But the large scatter in the [U] band is much larger than that expected from the measurement errors alone (0.009 mag .) and suggests that some irregular phenomena occur in this system.

Figure 1. Geneva [U], [B] and V lightcurves of the eclipsing binary HD 121276, phased according to our ephemeris. Notice the large scatter in the[U] passband. The $[U-B]$ and $[B-V]$ indices are shown as well.

Figure 2. High-resolution spectrum of HD 121276 taken at orbital phase 0.249 , i.e. at quadrature, and showing the star as a double-lined system. Notice the asymmetry of the H_{α} line of the primary and the emission on its blue side, showing the presence of circumstellar gas.
This is confirmed by the $[U-B]$ and $[B-V]$ indices. Both minima are clearly visible, showing the secondary to be redder in $[B-V]$. The behaviour of $[U-B]$ in the primary minimum is quite unexpected in that the system is becoming bluer as the eclipse proceeds, while one would expect the reverse from the secondary eclipse where the system is at minimum [U-B]. Since the mean values of the reddening-free X and Y parameters (Cramer \& Maeder 1979) are 1.07 and 0.01 respectively, we probably have a system composed of a mid-B primary and of a late B or early A secondary. The mean value of the reddening-free peculiarity parameter, Z, is -0.020 , which suggests that one or both component(s) may have the Si peculiarity type, since this parameter is negative for Bp and Ap stars and null for normal B and A stars. However, the mean value of the $\Delta(V 1-G)$ index, which is also a peculiarity parameter (see e.g. Hauck \& North 1982), is only about 0.001 , indicating a very marginal peculiarity at most.

One of us (PN) has taken a spectrum of this system with the 1.4 m CAT telescope of the European Southern Observatory, equipped with the CES spectrograph, the Long Camera and the FA 2048 CCD detector (ESO CCD \# 30). The resolving power was $\mathrm{R}=$ 60000. The spectrum was taken in the H_{α} region on the night of May 15-16, 1994 at HJD $=2449488.715$, i.e. at phase $\phi=0.249$ according to our ephemeris. Since this is exactly at quadrature, we can estimate the total mass of the system from the relative velocity at that phase. The spectrum displayed in Figure 2 shows, however, a very peculiar profile of the primary's H_{α} line: the profile is not only asymmetric, but also shows a blue emission component. Circumstellar gas is therefore certainly present in this system, which may explain the unusual features of the lightcurves.

To estimate the relative velocity, we first fit a gaussian to the core of the H_{α} line of each component. For the primary, a large uncertainty results from the asymmetry of the H_{α} line, but some confidence interval can be guessed by fitting a gaussian to the whole profile on the one hand, and to the very core and red side only on the other hand.In the first case we have $\lambda_{p 1}=6562.297 \AA$, in the second case $\lambda_{p 2}=6562.594 \AA$. The secondary's line is much more symmetrical, and two fits with a slightly different fitting range give $\lambda_{s 1}=6567.277 \AA$ and $\lambda_{s 2}=6567.288 \AA$. The range in wavelength difference is thus $\Delta \lambda=4.683$ to $4.991 \AA$, corresponding to a relative velocity $\Delta V_{r}=213.9$ to $228.0 \mathrm{~km} \mathrm{~s}^{-1}$.

Since the eclipses are separated by half a period, the assumption of a circular orbit appears realistic, and we obtain then a semi-major axis in the range (the inclination i of the orbital plane being close to 90°, $\sin i$ is approximated by 1):

$$
a=0.128-0.137 \mathrm{AU}
$$

This implies the following range for the total mass:

$$
M_{p}+M_{s}=6.6-8.1 M_{\odot}
$$

which is consistent with the spectral types estimated above for each component on the basis of the reddening-free X and Y parameters.

This system might well be yet another case of spurious classification due to the peculiar appearance of an unrecognized composite spectrum. The plate used by Houk for her classification of HD 121276 was taken in the night of May 18-19, 1968, i.e. around JD 2439995.6 , which corresponds to $\phi \approx 0.049$, just after the primary minimum. But in view of the uncertainty of the period, which is about 0.0002 days at most, the plate could have been taken right in the middle of the primary eclipse, and the apparent spectrum would have been more similar to the intrinsic spectrum of the secondary.

A complete spectroscopic and photometric study would be needed to clarify the true nature of this binary.

Acknowledgements: This work was supported in part by the Fonds National de la Recherche Scientifique. Drs. N. Cramer and M. Burnet (Geneva) and Mr. E. Paunzen (Vienna) contributed to the photometric observations.

P. NORTH
Institut d'Astronomie de l'Université de Lausanne
CH-1290 Chavannes-des-Bois, Switzerland
C. RICHARD
Observatoire de Genève
CH-1290 Sauverny, Switzerland

References:

Cramer, N., Maeder, A., 1979, A\&A 78, 305
Gerbaldi, M., Floquet, M., Hauck, B., 1985, AधA 146, 341
Hauck, B., North, P., 1982, A\&A 114, 23
Houk, N., 1978, Michigan Catalogue of two-dimensional spectral Types for the HD Stars, Vol. 2
North, P., 1984, A\&AS 55, 259
North, P., 1994a, in: The 25th Workshop and Meeting of European Working Group on CP Stars, I. Jankovics \& I.J. Vincze (eds.), p. 3
North, P., 1994b, IBVS, No. 4124
Renson, P., 1984, IBVS, No. 2559
Renson, P., 1990, IBVS, No. 3452
Renson, P., Mathys, G., 1984, IBVS, No. 2522
Ziznovsky, J., 1994, in: Chemically Peculiar \& Magnetic Stars, J. Zverko \& J. Ziznovsky (eds.), p. 155

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4148

Konkoly Observatory
Budapest
23 January 1995
HU ISSN 0374-0676

A DATABASE OF GALACTIC CLASSICAL CEPHEIDS

We have compiled an electronic database of 505 classical Cepheids in the Galaxy contained in four files.

The first, POS_DATA (27.7 KB), contains the 1950 equatorial and galactic coordinates of each star taken from the 4th edition of the General Catalogue of Variable Stars, as well as the HD and SAO catalogue numbers of each star where available.

The second file, EB-V (55.6 KB), is a compilation of major colour excess determinations published since 1975.

The third, PHYSDATA (49.3 KB), lists period, intensity-mean V magnitude, $\langle\mathrm{B}\rangle_{i}-\langle\mathrm{V}\rangle_{i}$, an adopted $\mathrm{E}(\mathrm{B}-\mathrm{V})$, the V amplitude, $\left\langle\mathrm{M}_{\nu}\right\rangle$, distance in parsecs, the height from the galactic plane in parsecs, mean radial velocity, radius from a Baade-Wesselink analysis, an indication of binarity, and notes relating to double-mode behaviour, cluster/association membership, etc.

The fourth, AMP_MEAN (34.7 KB), gives the V amplitude, B amplitude, ($\mathrm{B}-\mathrm{V}$) amplitude, $\langle\mathrm{V}\rangle_{\text {mag }},\langle\mathrm{V}\rangle_{\text {int }},\langle\mathrm{B}\rangle_{\text {mag }},\langle\mathrm{B}\rangle_{\text {int }},\left\langle(\mathrm{B}-\mathrm{V})_{\text {mag }}\right\rangle$, and $\langle\mathrm{B}\rangle_{i}-\langle\mathrm{V}\rangle_{i}$.

A fifth file, having the title of this Bulletin, provides background and additional information on these files. This fifth file is an ascii file, the other four are provided both as ascii files and as dBASE IV binary files.

This material is available on the World Wide Web at the URL
http://ddo.astro.utoronto.ca/cepheids.html
and by anonymous ftp at

> perseus.astro.utoronto.ca
in the directory pub/cepheids.
We would appreciate acknowledgment of your use of these data by reference to this IBVS announcement. Please contact fernie@astro.utoronto.ca in the event of queries, suggestions, or difficulties.

J.D. FERNIE
David Dunlap Observatory
University of Toronto
Richmond Hill ON, Canada
L4C 4Y6
Nancy Remage EVANS
Physics \& Astronomy Dept.
York University
North York ON, Canada
M3J 1P3

Brian BEATTIE
David Dunlap Observatory
University of Toronto
Richmond Hill ON, Canada
L4C 4Y6
S. SEAGER

Harvard-Smithsonian CfA
60 Garden Street
Cambridge, MA 02138
USA

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4149

Konkoly Observatory
Budapest
23 January 1995

HU ISSN 0374-0676

SHORT TIME-SCALE VARIATION OF ε Aur H α BLUE WING EMISSION

ϵ Aur is a peculiar spectroscopic binary system with a long period of 27.1 years. Its primary is an F0Ib star around which there is a slowly moving ring-like (or disk-like) HII radiation cloud accompanying with the rotation of the F star, and this makes $\mathrm{H} \alpha$ wing produce two emission lines with rotating structure. The secondary is a disk-like multiring gaseous cloud (Ferluga, 1990). In 1982-84 eclipse, Ferluga and Mangiacapra (1991) observed the shell spectra of the secondary and obtained its multi-ring model.

Our observations on ϵ Aur $\mathrm{H} \alpha$ line outside eclipse were carried out by using the thick CCD system on Coude spectograph of the 1-meter telescope at Yunnan Observatory. The dispersion of the spectrograph $(\mathrm{f}=1900)$ is $4.16 \AA / \mathrm{mm}$, and spectral resolution $\lambda / \Delta \lambda=455000$. Read-out noise of the CCD system is 12.3 electrons/sec, the resolution of image cell $0.048 \AA$ / pixel, wavelength range for a single exposure about $37 \AA$, and the signal-to-noise ratio $150-250$. A line of sight velocity standard star, α Lep, and a spectrophotometric standard star, ζ Leo were observed to confirm the $\mathrm{H} \alpha$ blue wing emission profile. The measurement errors of the equivalent width values in the $H \alpha$ lines are $\pm 30 \mathrm{~m} \AA$ for the absorption and $\pm 6 \mathrm{~m} \AA$ for the blue wing emission.

In Figure 1a and b, the $\mathrm{H} \alpha$ observational profiles are given. No. 1 to No. 15 are out-of-eclipse $\mathrm{H} \alpha$ lines of ϵ Aur and No. 16 is that of the sight line velocity standard star, α Lep. Two significant variations appear at the blue emission peaks on No. 4 and 6 lines; the emission intensity decreases at the line center, and the equivalent widths for these two lines are $+193 \mathrm{~m} \AA$ and $+199 \mathrm{~m} \AA$ (see Table 1), respectively; comparing with Nos. 3 , 5 and 7 , the equivalent width decreases by about $100 \mathrm{~m} \AA$ in less than 40 minutes. In the time interval of 2.5 hr , the intensity variation from No. 7 to 10 is very small, within $\pm 10 \mathrm{~m} \AA$; and on both No. 11 and 14 lines only a small fluctuation appears in 2 hr period. The variations of the equivalent widths for the blue wing emission and absorption in the interval of 7 hr on Oct. 30 are drawn in Figure 2. It is shown from the above description that short time-scale variations from 20 minutes to several hours exist in the blue wing emission; while the red wing and absorption profiles are similar to previously observed profiles, almost no variation can be found (see Figure 1a and b). The average equivalent width of the absorption lines is $-545 \mathrm{~m} \AA$, only a seventh or eighth of that eclipse; the standard deviation $\sigma_{x}=11$, and the maximum variation is within $\pm 18 \mathrm{~m} \AA$, smaller than the error of the measurement.

From the H α observations in 1955-57 (Wright, 1957) and 1982-84 (Tan, 1985) eclipses, in ingress the secondary first would absorb the $\mathrm{H} \alpha$ red wing emission; and from our model (Cha et al., 1994) the blue wing emission source should be region C, therefore, in the region possibly exists an HII cloud with a short time-scale variation. If our observational $\mathrm{H} \alpha$ continuum is taken as a reference, in the emission over the continuum in 20 minutes

Figure 1a
Figure 1. Short-time variation of ϵ Aur $\mathrm{H} \alpha$ blue wing emission

Fig. 1 b

Figure 1b
Figure 1. Short-time variation of ϵ Aur $\mathrm{H} \alpha$ blue wing emission

Figure 2. Variation of equivalent widths.
interval appear two fast variations, and the intensity ratio is $2: 3$ (in No. 4 and 6 to No. 3 and 5), with the intensity decrease by one third. The strong blue wing emission center is close to the $\mathrm{H} \alpha$ absorption profile, and active emission may probably locate in the region slowly appearing from the back of the F0 supergiant. A continuous monitoring on ϵ Aur is of importance to obtain more information about the matter in $\mathrm{H} \alpha$ rotating ring for analysing its motion features, physical characteristics annd emission mechanism.

CHA GUANGWEI
LI YONGSHENG
XU JUN
United Laboratory for Optical
Astronomy,
Chinese Academy of Sciences
Yunnan Observatory
P.O. Box 110

Kunming 650011
People's Republic of China

References:

Cha Guangwei, Tan Huisong, Xu Jun, and Li Yongsheng, 1994, A\&A, 284, 874
Ferluga, S, 1990, A\&A, 238, 270
Ferluga, S., and Mangiacapra, D., 1991, $A \& A, 243,230$
Tan Huisong, 1985, Acta Astrophysica Sinica, 5, No. 3, 180
Wright, K. O., and Kushwaha, R. S., 1957, Contribution from the Dominion Astrophysical Observatory, No. 57, 421

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4150

Konkoly Observatory
Budapest
26 January 1995
HU ISSN 0374-0676

IS TX DELPHINI A POPULATION I (CLASSICAL) CEPHEID?

The pulsating variable TX Del (SAO 16272, $\mathrm{BD}+3^{\circ} 4437$) is a well-known, relatively bright ($\langle\mathrm{V}\rangle=9.2 \mathrm{mag}$) Cepheid classified as Type II according to the catalogue of Harris (1985). The classification is based on its large distance from the galactic plane: [z] $=450$ pc if we assume d $=1.1 \mathrm{kpc}$ distance from the Sun derived from the period-luminosity relation of Type II Cepheids (Harris, 1985). The assumption that TX Del is a classical Cepheid would result in $[z]=1.2 \mathrm{kpc}$ (Harris \& Welch, 1989). This latter [z] distance is much larger than the scale height of classical Cepheids (70 pc, Fernie, 1968; Harris, 1985), therefore Harris \& Welch (1989) concluded that TX Del is very probably a Type II Cepheid.

There are some other criteria of the classification of Cepheid variables, e.g. metallicity, galactic kinematics, light curve shape, etc. (see Harris, 1985 and the references therein). The classification, however, has large difficulties known for a long time. Up to now the separation based on the $[z]$ distances seems to be the most useful and reliable. It is interesting that none of these criteria support the Type II status of TX Del, because it is a metal-rich star among Type II Cepheids ($[\mathrm{Fe} / \mathrm{H}]>0.5$ according to Meakes et al., 1991) and its light curve is very similar to those of classical Cepheids (e.g. Szabados, 1980). Recently TX Del has been discovered to be a member in a spectroscopic binary. Harris \& Welch (1989) separated the pulsational and orbital radial velocities and determined the orbital parameters of the system.

A project of computing physical parameters of metal-rich Type II Cepheids via various Baade-Wesselink techniques has been started by the authors. Unfortunately, the number of stars is quite low due to the lack of precise radial velocity measurements but TX Del is one of the best observed objects in this sample. There are many light curves available and the precise pulsational velocity curve determined by Harris \& Welch (1989) enabled us to compute the mean radius with acceptable accuracy. The used data are plotted against phase in Figure 1.

We applied two kinds of techniques deriving the radius: the "classical" Baade-Wesselink method based on equal levels of the colour index $(B-V)(m e t h o d ~ \# 1) ~ a n d ~ t h e ~ s u r f a c e-~$ brightness method based on the Barnes-Evans relation and the (V-R) index (method $\# 2$). Both methods have lead to very similar results. Figure 2 shows the result of velocity curve integration and the computed radii at certain phases (using method \#1). The physical parameters obtained are tabulated in Table I. $\mathrm{E}(\mathrm{B}-\mathrm{V})=0.1$ was adopted from Meakes et al. (1991).

TX DELPHINI

Figure 1 : Light-, color- and radial velocity curve of TX Del

Figure 2: Radius variation of TX Del during a pulsational cycle. The solid curve is the result of velocity curve integration, the filled circles are the radii obtained from the Baade-Wesselink solution.

Table I
Baade-Wesselink parameters and inferred parameters of TX Del

$\mathrm{R} / \mathrm{R}_{\odot}$	$(\mathrm{B}-\mathrm{V})_{0}$	$\mathrm{~T}_{e f f}(\mathrm{~K})$	$\mathrm{L} / \mathrm{L}_{\odot}$	$\mathrm{M} / \mathrm{M}_{\odot}$	$\mathrm{d}(\mathrm{pc})$	$\mathrm{z}(\mathrm{pc})$
48 ± 2	0.67	5500 ± 200	1940 ± 300	6 ± 0.3	3000	1200

The obtained radius of TX $\operatorname{Del}\left(\mathrm{R} / \mathrm{R}_{\odot}=48\right)$ shows that this star is too large to be a Type II Cepheid. The "normal" radius of an object of this type should be about $16 \mathrm{R}_{\odot}$ which is considerably smaller. Moreover, the inferred radius is in very good agreement with the period-radius relation for classical Cepheids (Gieren, Barnes \& Moffett, 1989). Thus it is probable that TX Del is a Population I (classical) Cepheid. Using this assumption we can estimate the luminosity and the mass of TX Del as well as its distance from the Sun and the galactic plane respectively. These derived parameters are also summarized in Table I.

Since TX Del is a member of a binary system (the orbital period is quite short, $\mathrm{P}_{\text {orb }}=$ 133 days) it is important to compare its radius with respect to the radius of the Rochelobe. The mass function of the system is $0.04 \mathrm{M}_{\odot}$ therefore the minimum mass of the companion is $1.1 \mathrm{M}_{\odot}$. The Roche-lobe radius thus becomes about $110 \mathrm{R}_{\odot}$, so the ratio of radii $\mathrm{R}_{\text {star }} / \mathrm{R}_{\text {Roche }} \approx 0.44$. This value increases up to 0.5 if the companion is assumed to be as massive as TX Del.

This work was supported by the Hungarian OTKA Grant \#F007318.

Z. BALOG and J. VINKÓ
Dept. of Optics
JATE University
Szeged, Dóm tér 9
H-6720 Hungary

References:

Fernie, J.D., 1968, AJ, 73, 995
Gieren, W.P., Barnes, T.G., Moffett, T.J., 1989, ApJ, 342, 467
Harris, H.C., 1985, AJ, 86, 719
Harris, H.C., Welch, D.L., 1989, AJ, 98, 981
Meakes, M., Wallerstein, G., Opalko, J.F., 1991 AJ, 101, 1795
Szabados, L., 1980, Mitt. Sternw. Ung. Akad. Wiss. Budapest, No. 76

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4151

Konkoly Observatory
Budapest
27 January 1995
HU ISSN 0374-0676

DETECTION OF VARIABILITY IN HD 191850

We obtained two nights of differential photometry of HD 191850 (22/23 and 25/26 July 1994). The observations were done at the ESO 50 cm telescope at La Silla. The observer was E. Paunzen. The measurements are in the Strömgren photometric system and the integration time was 40 seconds. Two comparison stars were observed (C1: HD 191542, $m_{V}=9.6$, A5V and C2: HD 191760, $m_{V}=8.9$, G3IV/V). Both comparison stars proved to be constant within an upper limit of 0.01 mag in Strömgren b.

The spectral type of HD 191850 is A3 II/III. The following calibrations have been adopted by the Strömgren indices (Moon \& Dworetsky, 1985):

$$
T_{e f f}=7400 \mathrm{~K}, \log g=3.7, \delta m_{0}=0.057
$$

Because of the decreased metallicity and the classification as luminosity-class II/III star, HD 191850 is a candidate for the λ Bootis group (Gray, 1991) which contains metal weak A type stars with broad and shallow hydrogen lines (the properties of this group are described by Weiss et al., 1994). Further observations have to prove the membership in the λ Bootis group.

Two theories exist concerning the evolutionary status of this group. In one case diffusion would be the determining mechanism and the stars are at the end of the ZAMS phase. In the other hypothesis accretion and/or mass-loss would be responsible for the low metallicity and the stars are just arriving at the ZAMS.

The tools of asteroseismology should make it possible to determine the position of stars within the HR-diagram. We started therefore a survey for periodic variability among λ Bootis stars. Up to now we found 8 new pulsating stars. For HD 191850 the maximum peak in the frequency spectrum appears at $\mathrm{f}=13.53 \mathrm{c} / \mathrm{d}(\mathrm{P}=106$ minutes) with a semiamplitude of 0.034 mag in Strömgren b (see Figure 2). This period is consistent with an expected period of an A type star at the ZAMS (Stellingwerf, 1979). Figure 1 shows the light curve for the first night for all three measured stars. All light curves are in instrumental magnitudes with an offset.

This amplitude spectrum gives some evidence for the presence of more than one pulsation frequency. In spite of the rather poor quality of both nights, the variability of HD 191850 seems to be well established. Further observations have to improve the reported results.

Figure 1. The light curve for HD 191850 (upper panel), C1 (middle panel) and C2 (lower panel) for the first night in Strömgren b

Figure 2. Amplitude spectrum for the differential data of HD 191850 and HD 191542

Figure 3. Spectral window for the differential data of HD 191850 and HD 191542

Acknowledgement: This research was supported by the Hochschuljubiläumsstiftung der Stadt Wien.

E. PAUNZEN
U. HEITER
W.W. WEISS
Institut für Astronomie
Türkenschanzstr. 17
A-1180 Wien, Austria
E-mail: PAUNZEN@ASTRO.AST.UNIVIE.AC.AT

References:

Gray R. O., 1991, Precision Photometry, ed. A. G. Davis Philip, A. R. Upgren, K. A. Janes; L. Davis Press, Schenectady, N.Y., p. 309
Moon T.T., Dworetsky M.M., 1985, MNRAS, 217, 305
Stellingwerf R., 1979, ApJ, 227, 935
Weiss W.W., Paunzen E., Kuschnig R., Schneider H., A\&A, 281, 797

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4152

Konkoly Observatory
Budapest
27 January 1995
HU ISSN 0374-0676

OBSERVATIONS OF SUPERHUMPS IN V1251 Cyg DURING THE 1991 SUPEROUTBURST

Variability V1251 Cyg was discovered by Weber (1966), who reported an outburst occurred in 1963. Rather rapid decline resembles that of a fast nova, but the nature and the identification in quiescent state has remained uncertain for a long time. Systematic visual monitoring of this variable star by amateur astronomers started in the 1980's. After a long series of negative observations, the star was finally caught in its second historical outburst by M. Moriyama on 1991 Oct. 25.54 UT at $\mathrm{m}_{v}=12.4$ and by P. Schmeer on 1991 Oct. 26.833 UT at $\mathrm{m}_{v}=12.7$ (Moriyama and Schmeer 1991, Korth 1991). The outburst was subsequently confirmed by CCD observation by the author on Oct. 28. The object was first observed in $B V I$ bands. Its conspicuous blue color made the dwarf nova classification most likely.

Following this confirmation, the author obtained a time-resolved V-band CCD photometry of this object on eight nights between Oct. 28 and Nov. 15. The observations were carried out using a 60 cm reflector and a Thomson TH7882 chip (576×384 pixels) at Ouda Station, Department of Astronomy, Kyoto University (for a description of the instruments see Ohtani et al. 1992). The exposure time was between 20 and 120 s depending upon the brightness of the variable. The frames were first corrected for standard de-biasing and flat fielding, and were then processed by a microcomputer-based automatic-aperture photometry package developed by the author. The differential magnitudes of the variables were determined using a local standard star $\left(21^{\mathrm{h}} 40^{\mathrm{m}} 58^{\mathrm{s}} .59+48^{\circ} 41^{\prime} 23^{\prime \prime} 1\right.$ (J2000.0), $V=10.1$; the position and the magnitude from the Guide Star Catalog), whose constancy was confirmed using several check stars in the same field. The estimated error of single observation is 0.01 mag under favorable condition.

The overall light curve for the outburst is given in Figure 1, which shows a smooth slow decline followed by a rapid return to quiescence. From the time-resolved photometry, clear superhumps with a mean amplitude of 0.24 mag were detected on Nov. 3 (see Figure 2); this observation revealed the SU UMa-type nature of this object (Kato 1991). Twelve superhump maxima were observed between Nov. 3 and 6, and by linear regression of the superhump times, we could obtain a superhump period of 0.0759 day. A period analysis using the phase dispersion minimization (PDM) method (Stellingwerf 1978) after removing the steady decline yielded the best estimate of the superhump period of 0.07604 ± 0.00010 day. An examination of a rather fragmentary light curve on Oct. 28 could reveal only 0.05 mag variation (Figure 3), which could not fit the above superhump period. An examination of an image on Nov. 2 taken at the expected superhump maximum again failed to show a large amplitude ($\geq 0.1 \mathrm{mag}$) variation against the rest of the images taken on the same night. From these findings we concluded that the full development of the superhumps in this object took $4-7$ days from the outburst maximum. This value is much longer than $2-3$ days in typical SU UMa stars.

Figure. 1. General V-band light curve of V1251 Cyg. The zero point of the relative magnitudes corresponds to $V=10.1$.

Figure. 2. Light curve for nights from Nov. 3 through Nov. 6. The magnitude is offset by 0.5 mag for each night. Superhumps are clearly seen.

Figure. 3. Light curve on 1991 Oct. 28. Only a small amplitude ($\sim 0.05 \mathrm{mag}$) variation was present. The large scatter is due to the unfavorable sky condition.

The star has been monitored since, and was recorded again in superoutburst on 1994 Dec. 30 (Schmeer et al. 1995). Apparent absence of normal outbursts between these two superoutbursts, rarity of outbursts from a search in archival plates (Wenzel 1991), the long interval (≥ 3 years) between the two successive superoutburst, a large outburst amplitude ($\sim 6.5 \mathrm{mag}$), and the slow development of superhumps all make V1251 Cyg a close relative of WZ Sge stars (Bailey 1979; Downes 1990) or TOADs (Tremendous Outburst Amplitude Dwarf Novae; Howell 1993). All the characteristics of V1251 Cyg most resemble those of SW UMa, despite the fact that V1251 Cyg has a much longer superhump period.

The author would like to point out one more peculiar feature in the light curve. Although one should be careful in comparing the visual and CCD magnitudes, the available material shows that this dwarf nova showed a rapid initial decline from $\mathrm{m}_{v}=12.4$ (Oct. 25) to 13.3 (Oct. 28, this study). The similar feature can be also found in the light curve by Weber (1966). This feature would be explained, in the scheme of disk instability model, by the extra mass accumulated in the accretion disk during quiescence in the absence of normal outbursts (Osaki 1994), and would be a clue to understanding the peculiar outburst pattern of WZ Sge stars. A search for normal outbursts and detailed observations of V1251 Cyg both during outburst and quiescence are therefore highly encouraged.

The authors are grateful to M. Moriyama (VSOLJ) and P. Schmeer for promptly notifying us of the outburst, and providing the visual estimates. Part of this work is supported by a Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists.

Taichi KATO
Dept. of Astron., Faculty of Sci.
Kyoto University
Sakyo-ku, Kyoto 606-01 Japan

References:

Bailey J., 1979, MNRAS, 189, 41P
Downes R. A., 1990, AJ, 99, 339
Howell S. B., 1993, in Cataclysmic Variables and Related Physics, ed O. Regev, G. Shaviv, Annals of the Israel Physical Society, Vol. 10, p. 67
Kato T., 1991, IAU Circ., No. 5379
Korth, S., Moriyama, M., Schmeer, P., 1991, IAU Circ., No. 5380
Moriyama, M. and Schmeer, P., 1991, IAU Circ., No. 5377
Ohtani H., Uesugi A., Tomita Y., Yoshida M., Kosugi G., Noumaru J., Araya S., Ohta K. et al., 1992, Memoirs of the Faculty of Science, Kyoto University, Series A of Physics, Astrophysics, Geophysics and Chemistry, 38, 167
Osaki Y., 1994, in "Theory of Accretion Disks - 2", ed W. J. Dusch1, J. Frank, F. Meyer, E. Meyer-Hofmeister, W. M. Tscharnuter (Kluwer Academic Publishers, Dordrecht)

Schmeer P., Szentasko L., and Manning B., 1995, IAU Circ., No. 6123
Stellingwerf, R. F., 1978, ApJ, 224, 953
Weber, R., 1966, IBVS, No. 123
Wenzel W., 1991, IBVS, No. 3689

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4153

Konkoly Observatory
Budapest
31 January 1995
HU ISSN 0374-0676

PHOTOELECTRIC OBSERVATIONS OF THE ECLIPSING VARIABLE DO Cas

During the 1992 observational season we turned our attention to the eclipsing variable star DO Cas (SAO 12388), in order to check the correctness of the ephemeris reported in the literature and to obtain the entire light curve.

The photoelectric observations were carried out at the station of Capanne di Cosola (AL, Italy) for six nights spanning from August 26 to September 4, collecting a total of 573 points in the instrumental V filter. The adopted photometric device was an OPTEC SSP5 photoelectric photometer (spectral sensitivity S-5) attached to a 200 mm Schmidt-Cassegrain f15 telescope. The integration time was fixed to ten seconds per count. The adopted comparison star was HIC 1228 (SAO 23474), the check one was HD 15963 (SAO 23451). The data of the involved stars are listed in the Table 1.

We obtained 4 heliocentric times of minimum, two primary and two secondary ones, listed in Table 2. These moments of minimum have been obtained processing the data by the Minimum Entropy SOP procedure (MEMSOP, Gaspani, 1993). Table 2 shows the residuals computed with respect to the following ephemeris:

$$
\text { Min.I }=\text { J.D.(hel) } 2433926.4573+0.6846661 \times \mathrm{E}
$$

listed by the General Catalogue of Variable Stars (Kholopov et al., 1985). The values of the residuals suggest that the ephemeris listed above is still valid, the phase curve obtained using this ephemeris is shown in Figure 1.

In order to recover a convenient estimate of the true signal from the noisy phased data we processed them by a signal recovery technique based on an artificial neural network implementing a multilayer perceptron according to Haykin (1994), Masters (1994) and others. The restored signal is graphed as a solid line, across the original data points, in Figure 1. The flat secondary minimum is well evident. A further analysis of our observations in view to solving the light curve and determining the orbital parameters of the binary system is in progress.

Table 1. Data of the involved stars

	RA (2000)	Decl. (2000)	V	B-V	Sp.
$\begin{aligned} & \text { DO Cas (HIC } 12543=\mathrm{BD}+59^{\circ} 529 \\ & =\text { HD } 16506=\mathrm{SAO} 12388) \end{aligned}$	$02^{\mathrm{h}} 41^{\mathrm{m}} 24^{\text {s }}$	$+60^{\circ} 33^{\prime} 11^{\prime \prime}$	8.39-9.01	0.11	A4V
HIC 1228 (BD $+59^{\circ} 521=$ HD 16088=SAO 23474)	$02^{\mathrm{h}} 37^{\mathrm{m}} 26^{\text {s }}$	$+60^{\circ} 05^{\prime} 18^{\prime \prime}$	$\begin{array}{r} 7.407 \\ \pm 0.031 \end{array}$	$\begin{array}{r} 1.129 \\ \pm 0.015 \end{array}$	F0III
HD 15963 (SAO 23451)	$02^{\mathrm{h}} 36^{\mathrm{m}} 12^{\text {s }}$	$+58^{\circ} 04^{\prime} 32^{\prime \prime}$	8.03	0.06	A2Ib

Figure 1. Photoelectric observations of DO Cas (open squares). The solid line is the signal restored by neurocomputing techniques.

Table 2. Observed times of minimum

Date	Epoch E	Times of minimum Heliocentric J.D.	Residual O-C	Type
27 Aug. 1992	21815	2448862.450 ± 0.014	+0.002	I
1 Sep. 1992	21822.5	2448867.572 ± 0.020	-0.011	II
2 Sep. 1992	21824	2448868.620 ± 0.003	+0.010	I
3 Sep. 1992	21825.5	2448869.628 ± 0.003	-0.009	II

Marco ALUIGI
GEOS - 3, Promenade Venezia, F- 78000 Versailles (France)

Gianni GALLI
GEOS - 3, Promenade Venezia, F- 78000 Versailles (France)

Adriano GASPANI

Osservatorio Astronomico di Brera
Via Brera 28, Milano (Italy)
and
GEOS - 3, Promenade Venezia, F-78000 Versailles (France)
e-mail: gaspani@bach.mi.astro.it

References:

Kholopov et al., 1985, "General Catalogue of Variable Stars" (GCVS), Moscow Gaspani A., 1993: "The algorithms useful in finding the extrema of the light curves". Final Report of the Second GEOS Workshop on the Eclipsing Variable Stars and their Data Processing", S.Pellegrino Terme (Italy), 1993, 21-22 May
Haykin S., 1994: "Neural Networks, A Comprehensive Foundation", Macmillan College Publishing Company Inc., p. 498
Masters T., 1994, "Signal and Image Processing with Neural Networks", J. Wiley, New York

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4154

Konkoly Observatory
Budapest
31 January 1995
HU ISSN 0374-0676

PHOTOELECTRIC UBVR OBSERVATIONS OF THE PECULIAR CEPHEID RU Cam

It is well known that RU Cam is a Cepheid with irregularly variable amplitude (Kolláth and Szeidl, 1993).

We observed RU Cam at the Mt. Maidanak observatory in September - October 1994. The $60-\mathrm{cm}$ reflector was used and $16 \mathrm{UBVR}_{c}$ measurements were obtained (Table 1); the accuracy of the individual data is near 0.02 mag in all filters. According to our data the amplitude of light curve (Fig.1) is near 0.03 mag .

The phases are calculated with the elements:

$$
\text { MaxJDhel }=2400000+22 \times E .
$$

This study was partially supported by the Russian Foundation for Fundamental Research through grants No. 94-02-04344 and No. 94-02-04347.

Table 1

Table 1					
JD hel	Phase	V	$\mathrm{U}-\mathrm{B}$	$\mathrm{B}-\mathrm{V}$	$\mathrm{V}-\mathrm{R}_{c}$
$2440000+$					
9617.3410	.334	8.288	-	1.099	.465
9620.3961	.473	8.434	1.059	1.145	.474
9621.3942	.518	8.505	.992	1.138	.498
9622.4469	.566	8.537	1.046	1.139	.515
9623.4003	.609	8.519	1.006	1.158	.475
9624.3486	.652	8.565	1.151	1.147	.496
9624.4256	.656	8.578	1.039	1.121	.505
9625.3688	.699	8.581	1.170	1.144	.497
9631.3586	.971	8.553	-	1.135	.488
9632.3634	.017	8.525	.993	1.118	.502
9632.4487	.020	8.542	.969	1.115	.496
9633.3309	.060	8.477	1.011	1.122	.505
9633.4283	.065	8.521	1.009	1.103	.479
9634.3447	.107	8.483	1.087	1.127	.500
9635.3970	.154	8.480	-	1.101	.497
9635.4695	.158	8.484	-	1.090	.491

Figure 1
L.N. BERDNIKOV
O.V. VOZIAKOVA

Sternberg Astronomical Institute
13, Universitetskij prosp.
Moscow 119899, Russia

Reference:
Kolláth Z., Szeidl B., 1993, Astron. Astrophys., 277, 62

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4155

Konkoly Observatory
Budapest
2 February 1995
HU ISSN 0374-0676

DISCOVERY OF THE SECOND PG 0943+521-TYPE DWARF NOVA V1159 Ori

This star was discovered to be variable by Wolf and Wolf (1906), called 36.1906, and then suggested by Kippenhahn (1953) to be a possible member of U Gem stars. In the New Catalogue of Suspected Variable Stars (Kukarkin et al. 1982), it was designated as NSV 02011 with a brightness range of $\mathrm{m}_{p g}=13.3-14.2$. The subsequent photographic observation by Natsvlishvili (1984) revealed that its magnitude varied from 12.5 at maximum to 16.6 at maximum, and it was finally named V1159 Ori of INS: type in the $68^{\text {th }}$ namelist of variable stars (Kholopov et al. 1987).

Jablonsky and Cieslinski (1992) made spectroscopic and photometric observations and proposed its orbital period of 0.05890 ± 0.00001 days, which suggests that V1159 Ori is a good candidate for an SU UMa star. Their observations, however, could not reveal superoutbursts or superhumps expected for this class of CVs. The peculiar nature of V1159 Ori was already suggested by their estimate of short outburst cycle length of 4.35 days together with its small outburst amplitude. VSOLJ (Variable Star Observers League in Japan) started CCD and visual observations, part of which was published by Kiyota (1993). These observations indicated presence of bright (reaching $\mathrm{m}_{V} \sim 12.1$) outbursts, some of which bore the characteristics of superoutbursts.

The present outburst of V1159 Ori was first detected by the RoboScope, Indiana University Automated Photometric Telescope (Honeycutt and Turner 1992). It was independently discovered on Dec. 23 at $\mathrm{m}_{V}=12.9$ by M. Yamada (VSOLJ; private communication). We made photometric observations on 1994 Dec. 23 and 24 using CCD camera (Thomson, TH7882CDA, 576×384 pixels with $23 \mu \mathrm{~m}$ square pixel size) attached to the Cassegrain focus of $0.6-\mathrm{m}$ reflector with Johnson V-band filter at the Ouda Station, Kyoto University (Ohtani et al. 1992). The mode of 2×2 on-chip summation was employed. A total of 225 frames were taken between 23.154 and 23.270 UT under clear sky, and 57 frames between 24.144 and 24.264 UT interrupted for 82 minutes by clouds. The exposure time was 30 seconds on Dec. 23 and varied between 60 and 180 seconds on Dec. 24.

We reduced the data using the personal-computer-based aperture photometry package developed by one of the authors (T.K.). This package automatically subtracts bias-frames, applies flat fielding and enables us to estimate the instrumental magnitudes. The aperture size was $9 "$ in radius. The sky level was determined from pixels whose distance from the individual objects are between 24 " to 48 ".

Figure. 1. V-band light curve of V1159 Ori on 1994 Dec. 23.
The zero point of the relative magnitudes corresponds to $V=11.99$.

Figure. 2. The theta diagram by PDM on the data of V1159 Ori on 1994 Dec. 23 and 24.

Figure 1 shows the light curve of differential magnitude between V1159 Ori and a comparison star on Dec. 23. The comparison star is "c" in Jablonsky and Cieslinski (1992), whose V magnitude is given as 11.99 in thier Table 1. A decay of amplitude of humps is seen in the figure and the similar modulation was also observed in PG $0943+521$ (Nogami et al. 1995). We analysed the light curve, using phase dispersion minimization (PDM) method (Stellingwerf 1978) implemented in IRAF package (IRAF is distributed by National Optical Astronomy Observatories, U. S. A.). Figure 2 shows the Θ diagram, whose abscissa is frequency (day $^{-1}$). The lowest minimum point in Θ corresponds to 0.06764 days. Robertson et al. (1995) independently detected the same hump features and reported that they are repeated with a period of 0.067 ± 0.001 days.

The difference in the photometric and spectroscopic periods confirmed the superhump nature of these humps. The outburst observed by Jablonsky and Cieslinski (1992) did not show superhump-like modulation and corresponds to normal outburst of usual SU UMastars. Thus, V1159 Ori was unambiguously identified to be an SU UMa-type dwarf nova with a superhump period of 0.06764 ± 0.0001 days. The present discovery of superhumps in V1159 Ori, together with its extreme shortness of its outburst recurrence time, its long duty cycle (Jablonsky and Cieslinski 1992, Kiyota 1993), and its extremely short supercycle (recurrence time of superoutbursts) (Robertson et al. 1995), has established a new subgroup of peculiar dwarf novae whose prototype is PG $0943+521$ (Kato and Kunjaya 1995, Misselt and Shafter 1995, Osaki 1995).

The fact that the supercycle of V1159 Ori (44.5 days, Robertson et al. 1995) is almost equal to that of PG $0943+521$ (43 days) is possibly not accidental. According to Osaki (1995), the shortest supercycle predicted by disk-instability theory under a given strength of the tidal torques is about 40 days and the supercycle is insensitive to the mass transfer rate from the secondary around this minimum value. However, as first pointed out in the case of PG $0943+521$ by Kato and Kunjaya (1995) and later confirmed by numerical simulation by Osaki (1995), a dwarf nova with minimum supercycle length should have much (\sim ten times) larger mass transfer rate than those of usual SU UMa-type dwarf novae, near the borderline between nova-like stars and SU UMa-type dwarf novae. For a dwarf nova with an orbital period below the period gap, it is generally believed that its mass transfer is powered by the gravitational-wave radiation, that is, its rate is mainly dependent on the orbital period. The shortness of the orbital period of V1159 Ori (0.05890 days, Jablonsky and Cieslinski 1992) and the superhump period of PG 0943+521 (0.06549 days, Kato and Kunjaya 1995) implies small mass transfer rates in the present scheme of CVs, which are clearly in conflict with such large mass-transfer rate expected from their outburst behavior.

The present discovery of "another" PG $0943+521$ star suggests that this type of CVs may not considered to be unique but form a larger population in CVs than ever expected. In this case, the present picture of the mechanism of mass transfer and the evolution of CVs below the period gap would unavoidably be modified.

The authors are grateful to the VSOLJ (Variable Stars Observers League in Japan) members for supplying us of visual and CCD estimates, and especially M. Yamada for notifying us of the outburst. Thanks also to Y. Osaki, K. A. Misselt and R. K. Honeycutt for sending us their preprints. We acknowledge R. K. Honeycutt for opening the realtime light curve by RoboScope to public through the World-Wide Web. This research has been partly supported by Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists (T.K.).

Daisaku NOGAMI
Taichi KATO
Seiji MASUDA
Ryuko HIRATA
Dept. Astron., Faculty of Sci.
Kyoto University
Oiwake-cho, Kitashirakawa
Sakyo-ku, Kyto 606-01 Japan

References:

Honeycutt, R. K., and Turner, G. W., 1992, in Robotic Telescopes in the 1990's, ed. A. Filippenko, (San Francisco, ASP), 277
Jablonsky, F. J., and Cieslinski, D., 1992, Astron. Astrophys., 259, 198
Kato, T., and Kunjaya, K., 1995, Publ. Astron. Soc. Japan, in press
Kholopov, P. N., Samus, N. N., Kazarovets, E. V., and Kireeva, N. N., 1987, Inf. Bull. Var. Stars, No. 3058
Kippenhahn, R., 1953, Astron. Nachr., 281, H4, 153
Kiyota, S., 1993, in "Variable Stars" (in Japanese) Japan Variable Star Study Association, Vol. 23
Kukarkin, B. V. et al., 1982, in "New Catalogue of Suspected Variable Stars", ed. P. N. Kholopov (Nauka Publishing House, Moscow)
Misselt, K. A., and Shafter, A. W., 1995, Astron. J., in press
Natsvlishvili, R. Sh., 1984, Inf. Bull. Var. Stars, No. 2565
Nogami, D., Kato, T., Masuda, S., and Hirata, R., 1995, in preparation
Ohtani, H., Uesugi, A., Tomita, Y., Yoshida, M., Kosugi, G., Noumaru, J., Araya, S., Ohta, K., 1992, Memoirs of the Faculty of Science, Kyoto University, Series A of Physics, Astrophysics, Geophysics and Chemistry, 38, 167
Osaki, Y., 1995, Publ. Astron. Soc. in Japan, in press
Robertson, J. W., Honeycutt, R. K., and Turner, G. W., 1995, Publ. Astron. Soc. Pacific, submitted
Stellingwerf, R. F., 1978, Astrophys. J., 224, 953
Wolf, M., and Wolf, G., 1906, Astron. Nachr., 171, 77

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4156

Konkoly Observatory
Budapest
3 February 1995
HU ISSN 0374-0676

U-FILTER PHOTOMETRY OF AB DORADUS

AB Doradus (HD 36705) is a rapidly-rotating (0.515 day), late-type star (K0-2 IV-V) in the solar neighborhood, at a distance of about 25 pc . The rapid rotation is due to its youth, as indicated by the presence of strong lithium absorption (Rucinski 1985). The star apparently belongs to the Pleiades moving group (Innis et al. 1986). It is a very active star, one of the most active presently known. Several investigations of different aspects of its activity have been cited in papers by Vilhu et al. $(1987,1993)$ and by Lim et al. (1992)

The great importance of this star resulted in the award of a substantial amount of observing time of the Space Telescope for spectral monitoring of selected UV spectral regions with the Goddard High Resolution Spectrograph. The two adjacent HST programs, conducted on $14-15$ November 1994 were led by the Principal Investigators F. Walter and O. Vilhu. In addition, simultaneous optical spectroscopy was obtained from CTIO, as were simultaneous observations with the EUVE and ROSAT. The present note describes photometric support monitoring of AB Dor performed on two nights, $13 / 14$ and 14/15 November 1994 with the Helen Sawyer Hogg 61 cm telescope of the University of Toronto at Las Campanas. These observations were meant as a check of the star's flaring activity. Also, since X-ray and EUV satellites have relatively low spatial resolution, possible flares of the optical companion of AB Dor, Rst 137B, could contaminate the high-energy data. Our observations could be used to monitor and detect strong flares of Rst 137B.

The photometric monitoring was done with a CCD camera (Photometrics, 512×512 pixels, $0!45$ per pixel) and with a fixed U-band filter of the $U B V$ set. The exposures of the variable were 15 seconds long and they were done in as rapid succession as was practicable given the relatively long readout time. The effective sampling was thus typically one frame per minute. The UT time was recorded manually with an uncertainty of about $2-3$ seconds. Every 15 minutes the comparison star HD 37297 was observed. The photometric data have been extracted from the CCD images using simple aperture photometry. The final results are in instrumental magnitude differences Δu, in the sense AB Dor minus HD 37297. In addition to AB Dor, several observations of the second comparison, HD 35474, were obtained each night. They gave the mean differences Δu between the two comparison stars, HD 35474 - HD 37297, equal to 0.764 ± 0.012 and 0.783 ± 0.008 for each night, respectively.

The results for AB Dor are displayed in graphical form as a function of the heliocentric Universal Time (expressed in fraction of Julian Day) in the accompanying figure. The basic results are:

The U-filter differential light curves of AB Dor obtained on nights $13 / 14$ and $14 / 15$ November 1994 at Las Campanas.

1. A well defined spot modulation with $\Delta U \simeq 0.12$ was observed over basically the same rotation-phase window (about $3 / 4$ of full rotation) on both nights. The wave minima were located approximately at JD 2449670.72 and JD 2449 671.76.
2. The minima correspond to phase 0.5 of the ephemeris given by Innis et al. (1988): $\mathrm{JD}(\min)=2444296.575+0.51479 \times$ E. Minima placed at that phase could be explained by a feature designated Spot B by Innis et al.
3. Assuming that $U=7.22$ for HD 37297 (Cutispoto \& Rodonó 1988), and that our instrumental system U is the same as the standard one (which we cannot confirm), we observed variability of AB Dor between approximately $8.08<U<8.20$. Assuming further that AB Dor has typically $U-V \simeq 1.20$, the corresponding visual range was $6.88<V<7.00$. This would indicate that the star is still faint and that a brightening trend of the spot cycle, whose first signs were reported by Anders (1994), has not yet fully taken place.
4. No flare activity of any importance was noted. During the second night, low-level activity might have been present during the ascending branch of the spot wave.
5. The visual companion of AB Dor was not observed in any of the CCD images. Because our system had low sensitivity in U and exposures were short, the detection limit for Rst 137B was at relatively high brightness, about 5-6 magnitudes below that of AB Dor, i.e. at about $U \simeq 13-14$. Rst 137 B is a faint $(V \simeq 13) \mathrm{M} 2-4$ dwarf (Vilhu et al. 1989) with unknown, probably very low brightness in ultraviolet. Thus, we could detect only the largest flares from this star.

The tabular data with our observations of AB Dor is available from the authors at the following e-mail addresses: rucinski@astro.utoronto.ca or garrison@astro.utoronto.ca.

This research has been supported by the Natural Sciences and Engineering Research Council of Canada through operating grants to Garrison and Rucinski.

Slavek RUCINSKI
R. F. GARRISON

Boyd DUFFEE
David Dunlap Observatory
P.O.Box 360

Richmond Hill, Ontario
Canada L4C 4Y6

References:
Anders, G. J. 1994, IBVS, No 3985
Cutispoto, G. \& Rodonó, M. 1988, IBVS, No. 3232
Innis, J. L., Thompson, K. \& Coates, D. W. 1986, MNRAS, 223, 183
Innis, J. L., Thompson, K., Coates, D. W. \& Evans, T. L. 1988, MNRAS, 235, 1411
Lim, J., Nelson, G. J., Castro, C., Kilkenny, D. \& van Wyk, F. 1992, ApJ, 388, L27
Rucinski, S. M. 1985, MNRAS, 215, 591
Vilhu, O., Gustafsson, B. \& Edvardson, B. 1987, ApJ, 320, 850
Vilhu, O., Ambruster, C. W., Neff, J. E., Linsky, J. L., Brandenburg, A., Ilyinn, I. V. \& Shakhovskaya, N. I. 1989, A $\mathcal{B} A, \mathbf{2 2 2}, 179$
Vilhu, O., Tsuru, T., Collier Cameron, A., Budding, E., Banks, T., Slee, B. Ehrenfreund, P. \& Foing, B. H., 1993, A $8 A, \mathbf{2 7 8}, 467$

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4157

Konkoly Observatory
Budapest
8 February 1995
HU ISSN 0374-0676

PHOTOMETRIC OBSERVATIONS OF ECLIPSES IN THE SYMBIOTIC TRIPLE SYSTEM CH CYGNI

CH Cygni is probably the most peculiar object among all known symbiotic stars. The complex behaviour of the spectrophotometric parameters and the light curve observed during the outbursts (1963, 1967-1970, 1977-1986) led, at first, to a single star model (e.g. Faraggiana \& Hack 1971). The binary nature of CH Cyg was suggested by radial velocity measurements in the optical spectrum for both components (e.g. Yamashita \& Maehara 1979, Tomov \& Luud 1984) and by the eclipse of the hot component by the red giant observed during 1985 May - October (e.g. Mikołajewski et al. 1987). CH Cyg then was accepted as the symbiotic binary with the long 5700 -day period orbit. Recently Hinkle et al. (1993) analysing a 13-year time series of high-resolution $2 \mu \mathrm{~m}$ infrared spectra of CH Cyg, found a very regular variation in the red giant radial velocities with a 756 -day period. They suggested that CH Cyg is a triple system with the symbiotic pair being the short 756 -day period system, while the unseen G-K dwarf revolves around the symbiotic binary in the long 14.5 -year period orbit. However they state that CH Cyg cannot be an eclipsing system, and the orbital inclination must be $\sim 70^{\circ}$. The aim of this contribution is to present our new photometry showing that CH Cyg really is an eclipsing symbiotic triple system.

CH Cyg has been regularly monitored at the Skalnaté Pleso (1750 m above the sea level) and Stará Lesná (890, our down station near Tatranská Lomnica) observatories. The observations have been made in the standard UBV system using a one-channel photoelectric photometer installed in the Cassegrain focus of the $0.6 / 7.5 \mathrm{~m}$ reflectors. The stars HD $182691(\mathrm{~V}=6.525, \mathrm{~B}-\mathrm{V}=-0.078, \mathrm{U}-\mathrm{B}=-0.24)$ and $\mathrm{SAO} 048428\left(\mathrm{~m}_{\mathrm{v}}=8.0, \mathrm{~m}_{\mathrm{pg}}=8.6\right.$, spectrum F8) were used as the comparison and the check stars, respectively.

In Figure 1 we show the historical U-light curve as this represents best behaviour in the blue continuum of CH Cyg during outbursts, quiescence as well as eclipses. Our new data observed up to 1995 January 31 are displayed in more detail in Figure 2 together with those published by Panov \& Ivanova (1992) and Leedjärv (1993). It covers the period of the current outburst which began at the beginning of 1992 (Skopal et al., 1992). During this active phase photometric observations indicate the two deep minima of about 2 and 3 mag in the U band, respectively, and times of their centres at JD 2448922 and JD 2449685 ± 5. Other such minima occurred during the 1967-1970 active phase at \approx JD 2439810 and JD 2440543 . Positions of these four minima agree well with times of the spectroscopic conjunction of the symbiotic pair (cool component in front) in the triple-star model of CH Cyg - $T_{\text {conj }}=\mathrm{JD} 2445888, P_{\text {orb }}=756 \pm 4$ day, circular orbit derived by Hinkle et al. (1993). Thus we can conclude that these minima are caused by the eclipse of the active component by the cool component in the short-period symbiotic pair.

Figure 1. Historical U-light curve for CH Cyg. Eclipses in both the long- and short-period orbit are marked.

Figure 2. The UBV light curves of CH Cyg covering the current outburst. The minima correspond to the eclipses of the active component by the cool component in the 756 -day period symbiotic pair.

During the 1970-1977 and 1986-1991 quiescent periods, due to a very low level of the blue continuum, the eclipses could not be detected. Nor were they present in the light curve during the last, 1977-1986, active phase. Due to a very high level of activity during that period, the circumstellar matter in the symbiotic pair was probably located within the common potentials of the binary, and that way, instead of deep and relatively narrow minima, we observed a rather complex wave-like variation in the light curve (cf. Figure 1).

On the other hand the periodic ~ 756-day variation in the $\mathrm{U}, \mathrm{B}, \mathrm{V}$ light curves (cf. Skopal 1989) at a level of about 1.5 mag and with minima at the spectroscopic conjunction observed during the quiescent periods, resembles that present in light curves of the other classical symbiotic stars (e.g. AG Peg, V443 Her, AG Dra, EG And).

In addition, the historical light curve exhibits two more minima in the U-band at \sim JD 2441130 and JD 2446275 ± 75. Their positions agree perfectly with times of the spectroscopic conjunction in the long-period orbit $-T_{\text {conj }}=$ JD $2446346 \pm 340, P_{\text {orb }}=5298$ ± 98 days, $e=0.067, \omega=207^{\circ}$ (Hinkle et al. 1993). Bearing in mind the very large separation of the components in the long-period orbit, approximately of $1700 R_{\odot}$, and the radius of the giant to be of 180 to $200 R_{\odot}$, the orbit inclination must be very high to produce the observed shape of the minima - mainly that in 1985. A rough estimation gives $i>83^{\circ}$.

The agreement between the positions of the minima observed in the U-light curve and times of the spectroscopic conjunctions for both orbits allow us to conclude that CH Cyg is an eclipsing symbiotic triple system.

A. SKOPAL

Astronomical Institute,
Slovak Academy of Sciences, 05960 Tatranská Lomnica
Slovakia

References:

Faraggiana R., Hack M., 1971, $A 8 A, \mathbf{1 5}, 55$
Hinkle K.H., Fekel F.C., Johnson D.S., Scharlach W.W.G., 1993, AJ, 105, 1074
Leedjärv L., 1993, IB VS, No. 3951
Mikołajewski M., Tomov T., Mikołajewska J., 1987, Ap\&SS, 131, 733
Panov K.P., Ivanova M.S., 1992, IBVS, No. 3817
Skopal A., Hric L., Komžík R., 1992, IAU Circ., 5504
Skopal A., 1989, Contrib. Astron. Obs. Skalnaté Pleso, 18, 31
Tomov T., Luud L., 1984, Afz, 20, 99
Yamashita Y., Maehara H., 1979, PASJ, 31, 307

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4158

Konkoly Observatory
Budapest
10 February 1995
HU ISSN 0374-0676

THE DISCOVERY OF H α EMISSION IN V373 Cas

The eclipsing binary star V373 Cas (HD 224151; V $=5.9, \Delta \mathrm{~V}=0.1$; $\mathrm{P}=13.41921$; B0.5II + B4III) is a relatively poorly investigated object. Hill and Fisher (1987) studied the orbit and physical parameters of V373 Cas. They used their high S/N ratio spectroscopic observations in the blue spectral region and incomplete light curve showing large distortion obtained by Lynds (1959). We included V373 Cas in our program of the double B stars with purpose to determine its evolutionary status, atmospheric parameters, helium abundance and matter flows. The results of these complex investigations will be published later and now we report the discovery of emission in $\mathrm{H} \alpha$ and HeI $\lambda 6678$ lines and its variability during the orbital period.

Our spectral, photometric and polarimetric observations were carried out during 1994. The spectral data were obtained using coudé spectrograph with GEC CCD of the 2.6 m telescope of Crimean Astrophysical Observatory. The spectral resolution were 25000 and 30000 for $\mathrm{H} \alpha$ and HeI, respectively. The S/N ratio was $100-200$. The photometric and polarimetric data were obtained at the 1.25 m telescope with the UBVRI five channel photometer-polarimeter.

Figures 1 and 2 illustrate some of typical profiles of HeI and $\mathrm{H} \alpha$ lines for the different orbital phases. The phases φ have been calculated according to the ephemeris of Hill and Fisher (1987). From Fig. 1 one can see that the primary (the more massive starA) and the secondary (the less massive star-B) HeI components were observed near the elongations ($\varphi=0.07$ and $\varphi=0.35$). One should pay attention to the weak red emission component in HeI profile at the phase 0.07 (Fig. 1). From Fig. 2 one can see that the $\mathrm{H} \alpha$ profile has a more composite structure; there are absorption and emission components and they are variable during the orbital period. The $\mathrm{H} \beta$ profile has been observed by us and by Hill and Fisher (1987), but no emission was found in this line. The presence of the emission may be considered as an evidence of the mass exchange between the components, and it is more probably that the matter outflows from the primary. Our considerations are similar to those of Hill and Fisher (1987), namely, the primary component is close to, or at, the Roche lobe at periastron, and there is non-synchronism for both components.

Our photometric observations have shown the low amplitude variability (0.10) in all five passbands. We also found the unexpectedly large (0.5%) phase-locked polarimetric variability which may be considered as an additional evidence for the existence of the circumstellar gas.

We hope that our complex observations of V373 Cas together with the earlier results of the other authors will allow us to understand better the nature of the binaries which are on the short duration stage of the mass loss from more massive primary.

Figure 1. HeI $\lambda 6678$ line profiles.

Figure 2. $\mathrm{H} \alpha$ line profiles. The sharp absorptions are the telluric $\mathrm{H}_{2} \mathrm{O}$ lines.
This research was made possible in part by grant U1C000 from the International Science Foundation.
A.V. BERDYUGIN
T.M. RACHKOVSKAJA
S.I. ROSTOPCHIN
A.E. TARASOV

Crimean Astrophysical Observatory 334413 p.Nauchny, Crimea, Ukraine e-mail: rtm@crao.crimea.ua

References:
Hill, G., Fisher, W.A., 1987, Astron. Astrophys., 171, 123
Lynds, C.R., 1959, Astrophys. J., 130, 599

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4159

Konkoly Observatory
Budapest
15 February 1995
HU ISSN 0374-0676

A POSSIBLE VARIABLE STAR RECLASSIFICATION FOR TX PISCIUM

From 1990 through 1995 the Lb (Kholopov, 1985) carbon star TX Piscium has been observed via photoelectric photometry as part of the AAVSO Small Amplitude Red Variable (SARV) program. The objective was to discover periodicity, if any, and refine existing measured amplitudes. Wasatonic (1993) reported the first evidence of semi-regularity in visual light with well defined amplitudes. This paper presents observations taken since 1992 to show further evidence of semi-regularity, which is used as the basis for variable star reclassification; no existing light curves have been found to back up the Lb classification.

A SIMBAD database search yielded 234 references of this highly observed star, most of them describing spectroscopic work. Various spectral types have been published: C6,2 (Judge and Stencel, 1991), N0 C7,2 (Barnbaum, 1992), or C5 II (Hoffleit, 1982) and (Richer, 1971). In general, carbon stars are peculiar red giants; their spectra are characterized by bands of carbon-containing molecules in contrast to normal K and M spectra, where oxides predominate (Faulkner et al., 1988). A more thorough discussion of carbon star spectral characteristics is beyond the scope of this paper and will not be addressed further.

All observations were made with a 8 -inch $\mathrm{f} / 10$ Schmidt-Cassegrain and a silicon PIN photodiode SSP-3 photoelectric photometer using a Schott visual filter. Standard photometric observations and data reduction techniques were used, as described in the earlier paper by the author. The observations were made on 118 separate nights from JD 2448180 to JD 2449726. The maximum internal standard error calculated for each night was 15 millimags; the internal standard average error over all 118 nights was only 4.4 millimags.

It is proposed that the variable star classification for TX Piscium be changed from its current Lb type to that of a semi-regular variable of type SRa or SRb. The scientific justification of this reclassification is as follows:

- From SiO and H 2 O maser observations it is speculated that the circumstellar envelope surrounding the star is clumpy in nature, and is not confined to a region close to the star (Heske et al., 1989). This theory is supported to some degree by Judge and Stencel (1991) in which they state that TX Piscium, as an optically visible carbon star, is thought to be in a post-Mira evolutionary phase; in this phase there exists a circumstellar shell which has become "detached" from the star. Heske also states that since the detached circumstellar shell is irregular (clumpy), mass loss is asymmetric, which can be caused by pulsational properties of SR variables. Heske also states that TX Piscium is classified as an SR variable by referencing Kukarkin et al. (1969).

- Alksne et al. (1991) classify the spectrum as C7,2; according to this data distribution TX Piscium would be an Lb variable. However, most literature references classify the spectrum as either C6,2 or C5 II. This would indicate an SR type variability according to Alksne's data distribution, and again matches the proposed reclassification type.
- An examination of the light curve itself reveals semiregularity (see Figure 1). Table I lists the observed times of minima and the intervals between them. The last three intervals are actually times separated by two non-consecutive minima, as the missing minima are due to seasonal gaps. Hence the average time between all minima is about 222 ± 46 days.

Table I: TX Piscium Minima Data

Times of Minima	Intervals Between Minima (Days)
JD 2448190	290
JD 2448480	430
JD 2448910	390
JD 2449300	380
JD 2449680	

Table II: TX Piscium Maxima Data

Times of Maxima	Intervals Between Maxima (Days)
JD 2448580	260
JD 2448840	390
JD 2449230	410
JD 2449640	

Table III: TX Piscium Visual Light Curve Data

JD 244+	MAG						
8180.547	5.17	8531.616	5.04	8909.564	5.06	9300.487	5.26
8184.536	5.19	8536.586	5.02	8913.558	5.06	9313.464	5.22
8189.514	5.18	8538.590	5.00	8918.529	5.04	9322.472	5.17
8191.563	5.18	8543.565	4.97	8921.525	5.05	9330.456	5.16
8193.550	5.18	8558.583	4.90	8930.521	5.00	9338.479	5.13
8197.539	5.17	8560.516	4.90	8940.484	4.95	9358.460	4.98
8202.495	5.15	8566.527	4.89	8943.484	4.96	9362.465	4.95
8211.506	5.08	8581.552	4.87	8957.483	4.93	9571.725	5.12
8213.533	5.06	8585.505	4.86	8975.528	4.85	9598.678	5.00
8222.473	4.98	8598.464	4.91	8981.478	4.83	9601.671	5.00
8234.461	4.91	8608.463	4.97	8990.482	4.85	9606.640	4.98
8235.471	4.90	8613.464	4.98	9185.840	4.99	9625.621	4.93
8240.475	4.88	8622.469	5.03	9189.496	4.96	9633.612	4.91
8434.860	5.12	8628.480	5.03	9196.756	4.94	9641.542	4.94
8435.817	5.05	8641.471	5.06	9199.824	4.96	9647.548	5.00
8449.816	5.12	8795.851	4.96	9202.740	4.94	9654.513	5.04
8452.810	5.15	8801.817	4.94	9221.830	4.92	9659.572	5.08
8454.813	5.15	8808.820	4.87	9222.759	4.90	9667.568	5.15
8469.804	5.18	8819.836	4.83	9226.708	4.89	9676.480	5.19
8471.756	5.18	8832.752	4.72	9229.664	4.91	9681.478	5.21
8479.750	5.14	8836.749	4.71	9236.641	4.94	9683.473	5.19
8481.806	5.15	8842.723	4.71	9242.627	4.99	9689.472	5.18
8485.724	5.10	8855.696	4.81	9245.628	4.96	9698.476	5.15
8490.733	5.14	8859.706	4.80	9250.636	5.03	9705.460	5.12
8501.683	5.13	8865.664	4.89	9261.620	5.15	9713.463	5.13
8503.690	5.13	8875.642	4.91	9264.604	5.14	9716.464	5.11
8508.667	5.10	8880.624	4.98	9265.598	5.14	9719.466	5.09
8512.641	5.10	8889.665	5.02	9271.566	5.17	9726.463	5.08
8526.595	5.08	8895.590	5.04	9285.625	5.22		
8527.611	5.07	8901.595	5.05	9295.595	5.26		

Table II lists the observed time of maxima and the intervals between them. Again, the last two intervals are actually times between two non-consecutive maxima, missing again due to seasonal gaps. Hence the average time between all maxima is about 220 ± 35 days, which nearly matches the minima interval. Therefore, one can deduce a semi-regular period averaging 221 ± 40 days.
Since SRa variables have relatively constant periods, smaller amplitudes than Miras ($<2.5 \mathrm{mag}$), and strong cycle-to-cycle amplitude variations (Querci and Querci, 1988), it is apparent that the published light curve fits these characteristics to some degree. Hence these features lend credence to re-classifying TX Piscium as an SRa variable star.

- A distribution of semi-regular periods was done by Petit (1982), and for SRb stars of spectral type C and S there is a modal value at periods between 200 and 250 days; the apparent 221 day period falls within this range. Additionally the light curve asymmetry is 0.46 , typical for SRa stars with possible extensions to SRb stars.

Hence, these features support a SRb classification.

- One can also see the superposition of a cycle on top of the 221 day principle cycle by noting the gradual rise and decline of each seasonal variation, with the peak occurring from JD 2448750 to JD 2449000 . This second cycle is a characteristic feature of SRb stars (Petit, 1982). A preliminary cycle of 1490 days can be measured from the minimum at JD 2448190 to the minimum at JD 2449680. This is about 6.7 times the principle cycle but still less than the normal modulation of 8 to 15 years for SRb stars. Further observations are required to characterize this phenomenon.

In researching published amplitude ranges, Drake et al. (1991) and Judge and Stencel (1991) reported an amplitude range of 0.8 mag , somewhat more than the maximum observed amplitude of 0.55 mag. Mitton and MacRobert (1989) also reported a total amplitude of 0.50 mag . Because the total amplitude for the seasonal cycles averaged 0.33 mag , perhaps the Mitton and MacRobert amplitude is a feature of the superposition cycle. It now appears that the reported 0.8 mag amplitude is erroneous, and could be due mainly to scattered results.

Concluding, based on the visual light curve and supporting arguments, the classification of TX Piscium should be changed from an irregular Lb giant to an SRa or SRb giant. Due to the nature of red giants more observations could reveal a presumed resumption of irregularity; for this reason and to further define the superposition cycle observations will continue indefinitely. Nevertheless, in visual light TX Piscium is now pulsating with characteristics of a semi-regular star, and thus its classification should be made accordingly so.

Rick WASATONIC
Computer Sciences Corporation
IUE Observatory
10,000-A Aerospace Road
Lanham-Seabrook,
Maryland 20706 USA

References:

Alksne, Z.K., Alksnis, A.K., Dzervitis, U.K. 1991, Properties of Galactic Carbon Stars, Orbit Book Company, Inc.
Barnbaum, C., 1992, AJ, 104, 1585
Drake, S.A. et al., 1991, AJ, 101, 230
Faulkner, D.R., Honeycutt, R.K., Johnson, H.R., 1988, ApJ, 324, 490
Heske, A., Te Lintel Hekkert, P., Maloney, P.R., 1989, A\&A, 218L, 5
Hoffleit, D., 1982, Yale Bright Star Catalog, 4th Edition, Yale University Observatory
Judge, P.G., Stencel, R.E., 1991, ApJ, 371, 357
Kholopov, P.N., 1985, GCVS, 4th Edition, Moscow
Kukarkin, B.V. et al., 1969, GCVS, 3rd Edition, Moscow
Mitton, J., MacRobert, A., 1989, Sky and Telescope, 77, 180
Petit, M., 1982, Variable Stars, Wiley and Sons, Ltd.
Querci, M., Querci F. 1988 in Evolution of Peculiar Red Giant Stars, eds. Johnson, H.R. and Zuckerman, B., pg. 259
Richer, H.B., 1971, ApJ, 167, 521
Wasatonic, R., 1993, Inf. Bull. Var. Stars, No. 3912

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4160

Konkoly Observatory
Budapest
15 February 1995
HU ISSN 0374-0676

SOLAR MAGNETIC FIELD MODULATION OF THE NEUTRINO FLUX

Soon after the first neutrino observations had been published it became clear that the solar neutrino flux was not only much smaller than expected from the solar standard model (the first neutrino problem). It also proved to be variable in time (the second neutrino problem), which implied that the Sun was a variable neutrino star. (For more detail see Bahcall (1993), Rivin (1993) and references therein).

Time fluctuations of the solar neutrino are not quite understood. Some authors believe them associated with solar activity whose growth results in a decreased neutrino flux ν $\left({ }^{37} A r\right.$ measurements at South Dakota), i.e. a negative correlation with the solar activity indices is supposed (Voloshin et al., 1986, Rivin, 1993) According to this hypothesis, the neutrino flux passing through a strong magnetic field is modulated, as part of the left-hand neutrino are transformed into the right-hand neutrino. The modulation mainly depends on two factors: the magnetic moment of the neutrino and the absolute value of the transverse magnetic field component. This modulation is difficult to obtain in laboratory. However there is evidence indicating that it occurs in the Sun, as the high-energy neutrino flux from the core passes through the magnetic field in the solar convection zone.

To verify this hypothesis, it is essential to choose an index that would characterize most adequately the magnetic field in the solar interior along the neutrino propagation line. Such indices used in early work are the Wolf number or the mean photospheric field. However both of them are dissatisfactory, as they are global indices. We have used magnetic field measured every day from the Zeeman effect at intersection of the "solar center - Earth" line with the photosphere. The data were obtained at the John Wilcox Observatory of the Stanford University (WSO). These observations started in May 1976 (Carrington rotation 1641) and the data are available up to 1992 inclusive (Hoeksema and Scherrer, 1986; Hoeksema, 1991). The earlier period since 1970 is covered by the data obtained at the Mount Wilson Observatory (MWO) by Robert Howard's group and kindly placed at our disposal by J. Stenflo. Both data series are used in our analysis in spite of some nonuniformity.

These measurements based on potential approximation can be used to calculate the daily and, then, the annual mean values of the three magnetic field components (B_{r}, B_{θ}, and B_{φ} - the radial, meridional and azimuthal components, respectively). The error is shown to be no more than $\sim 10 \%$. Since the neutrino flux propagates radially from the solar interior to the Earth, the absolute values of the two latter components must play a decisive role in its modulation.

The high-energy boron neutrino flux ($E \simeq 0.1 \mathrm{MeV}$) from the solar core has been measured at South Dakota (USA) since 1970. The data of several observation runs with their errors are given in (Bahcall, 1993). As the runs are different in length, the scale of data is nonuniform. We have applied linear interpolation to obtain a uniform scale as a
series of monthly mean values covering the whole observation interval. These have been used in turn to yield the annual mean values, as well as the mean square root error.

The data from individual runs have been analyzed to give an average signal-to-noise ratio equal to $\simeq 0.5$. This ratio however grows to $\simeq 2-2.5$ when the annual mean values are considered.

These facts allow us to compare the neutrino flux variations and the absolute values of the magnetic field components along the flux propagation line over a time interval of 22 years. The correlation coefficient between the neutrino flux and $<\left|B_{\theta}\right|>,<\left|B_{\varphi}\right|>$, and $<\left|R_{r}\right|>$ was found to be $-0.66,-059$, and -0.62 , respectively. Note that correlation coefficient with the Wolf number is as small as -0.37 . On the other hand, the correlation coefficient reaches -0.84 if only the uniform data series from Stanford is used.

The high correlation coefficient indicates a possible relationship between both phenomena. As should be expected, it is most pronounced when direct physical parameters of magnetic fields are considered. Relationship between the neutrino flux and the average field components ($\left\langle B_{\theta}\right\rangle,\left\langle B_{\varphi}\right\rangle,\left\langle B_{r}\right\rangle$) is practically absent (correlation coefficient from -0.35 to -0.15).

Besides South Dakota, neutrino measurements (though much shorter series) were also obtained with the Japanese neutrino detector Kamiokande-II. The annual mean values of the neutrino flux from both detectors show a good agreement over the time interval of 1988-1991. It should be noted that neutrino flux variations over this interval are relatively small compared to the Wolf numbers, so that dependence on the solar cycle may not exist. This inconsistency can be avoided by using direct physical parameters. In fact, the heights of the solar maxima in Wolf numbers in 1979 and 1989 are practically equal, whereas the amplitude of magnetic field components in 1989 are much lower than in 1979.

Besides the 11-year cycle, the ${ }^{37}$ Ar curve displays a significant quasi-biennial fluctuation (Sakurai, 1979; Rivin, 1993). In time variations of the absolute magnetic field values, this fluctuation is absent. Therefore it should be suppressed to obtain adequate correlation coefficients.

Suppression has been realized by smoothing the original data series over 3-year intervals. For the smoothed data, the correlation coefficients of the neutrino flux with $<\left|B_{\theta}\right|>$, $<\left|B_{\varphi}\right|>$, and $<\left|B_{r}\right|>$ increases to make $-0.79,-0.79$, and -0.85 , respectively. The correlation coefficient with the Wolf number also increases (-0.60), but it still remains lower than correlation between ${ }^{37} A r$ and the field components. And finally, comparison of the smoothed neutrino data with a uniform series of magnetic field data from WSO yields a correlation coefficient as high as -0.90 .

Our conclusions are as follows:

1. The fact that linear correlation between the neutrino flux and the solar magnetic field increases significantly when absolute values of the magnetic field components along the "solar center - Earth" line are considered, as well as high correlation coefficients themselves suggest that solar magnetic fields are responsible for variations of the highenergy neutrino flux from the solar interior detected at South Dakota.
2. As the absolute values of the magnetic field components display mainly an 11-year variation, the neutrino flux is modulated by the fields in the convection (or maybe even radiative) zones in the Sun. These are the fields that determine the basic solar activity cycle with a period of $\simeq 22$ years.
3. The fact that magnetic field curves do not display significant quasi-biennial fluctuation that is present in the curve of the neutrino flux shows that generation of quasi-biennial fluctuations has nothing to do with the fields of the basic solar cycle, but is rather due to the thermal processes in the solar core, as suggested by Sakurai (1979).

Acknowlegment. The authors are grateful to J.T. Hoeksema and J.O. Stenflo for observation data that were kindly placed at our disposal prior to publication. The work was sponsored by the Russian Foundation for Fundamental Research (grant N 93-0202886).

V.N. OBRIDKO
Yu.R. RIVIN
Institute of Terrestrial Magnetism, Ionosphere and Radio Wave
Propagation
of Russian Academy of Sciences
Troitsk
Moscow Region 142092
Russia

References:
Bahcall, J.N., 1993, Neutrino Astrophysics, M., Mir, 623 p.
Hoeksema, J.T., 1991, Report CSSA-ASTRO-91-01, USA
Hoeksema, J.T., Scherrer, P.H., 1986, WDCA, UAG Report 94, Boulder, USA
Rivin, Yu.R., 1993, AZh., 70, 392
Sakurai, K., 1979, Nature, 278, 146
Voloshin, M.B., Vysotsky, M.I., Okun, L.B., 1986, ZhETF, 91, 754

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4161

Konkoly Observatory
Budapest
15 February 1995
HU ISSN 0374-0676

POSSIBLE LOW AMPLITUDE LIGHT VARIATIONS OF DI Her

The eccentric eclipsing binary DI Herculis (B4V and B5 V; P $=10.55$; e $=0.49$) is an important test case of general relativity for stars composed of non-degenerate matter because it is expected to have a large relativistic contribution to its apsidal motion (Rudjkøbing, 1959; Guinan and Maloney, 1985). DI Her has well determined orbital and physical properties and an accurately measured apsidal motion rate of $\dot{\omega}_{o b s}=1.04 / 100 \mathrm{yr}$ $\pm 0.15 / 100 \mathrm{yr}$ determined from the recent analysis of numerous times of primary and secondary eclipses (Guinan et al., 1994). The most remarkable feature of DI Her is that its observed apsidal motion rate is significantly smaller than that predicted by general relativity and classical effects. The total predicted rate of apsidal motion is $\dot{\omega}_{g r+c l}=4.27 / 100 \mathrm{yr}$ $\pm 0.30 / 100 \mathrm{yr}$ where the general relativistic term is the major contribution.

We are currently carrying out an intensive study of DI Her to search for the reason(s) for the large discrepancy between the observed and predicted apsidal motion rates. In a previous paper, we have refined the value of the apsidal motion rate and have also searched for evidence of variations in the $\mathrm{O}-\mathrm{C}$'s of the photoelectric eclipse timings, obtained over the last 30 years, that could arise from the light time effects of a possible third body (Guinan et al., 1994). No evidence of the presence of a third body was uncovered from this analysis.

Another possible solution for the smaller than expected apsidal motion rate is tidal dissipation of the system's angular momentum arising from induced pulsations in the stars as they move in their eccentric orbit (see Papaloizou and Pringle, 1980; Savoniji and Papaloizou, 1983). In this case the discrepancy in apparent apsidal motion is produced by a decrease in the orbital eccentricity as the orbit circularizes. However, as discussed by Guinan and Maloney (1985) the rate of change of the eccentricity needed to explain the observed discrepancy is large ($\dot{e} \simeq-0^{\circ} 01 / 100 \mathrm{yr}$) and the induced pulsations in the stars, if present, must be significant and should be observable. With this in mind, we carried out intensive UBV photoelectric photometry of DI Her using the Fairborn-Villanova 0.8m Automatic Photoelectric Telescope (APT) on Mt. Hopkins, Arizona.

Many eclipse timings have been obtained for DI Her, but there have been few attempts to observe the system for a significant amount of time outside of eclipses. During the springs of 1993 and 1994, DI Her was observed continuously (with comparison and check stars) for up to $4-5$ hours on several nights outside of eclipses. A description of the equipment, filters, comparison and check stars, and reduction technique is found in Guinan et al. (1994). In Figure 1 we present the U and V light curves obtained during 1993/94. From this figure it is apparent that there are small light variations outside the eclipses on time scales significantly shorter than the 10.55 day orbital period. The variations are largest in the U bandpass and barely noticeable in the V bandpass. In Figure 2 we plot two long runs on an expanded magnitude and time scale to show examples of the light variations in the U bandpass. To search for possible periodicities, all of the data were

Figure 1. The U and V band light curves of DI Her obtained in 1993/94 are plotted.
The magnitudes are differential measured relative to a nearby comparison star HD 174932 . Note the small light variations in the U observations outside the eclipses.

Figure 2. The delta U mags of DI Her for the nights of 21 and 22 June 1993 are shown. Small systematic variations are noticeable on time scales of several hours.

Figure 3. The results of period searches of the U observations outside of eclpises using the Lomb-Scargle method are shown. The two most prominent periods found are 0.4885 days and 0.9558 days and are indicated along with several other possible periods.
analyzed using the Lomb-Scargle algorithm (Press and Teukolsky, 1988).
We narrowed down the possible range of periods to 0.4 to 2.0 days by trial and error and then analyzed the data in this restricted period range. The results are difficult to interpret because there is no single highly prominent peak in the periodogram. This is in most part caused by the low amplitude nature of the light variations ($0.01-0.02 \mathrm{mag}$) and gaps in the data set. Our analysis reveals two prominent periods of 0.4885 day and 0.9558 day having relative powers of 201.0 and 197.6 on the periodogram. However, there are other possible periods including 1.2165 days with a lower relative power of 155 ; it is possible that the 0.4885 day and 0.9558 day periods are aliases of each other. It may also be possible, however, to have multiple periods. In Figure 3, we plot the U light curves computed with the 0.4885 day and 0.9558 day periods, respectively. As shown in the figure, both periods result in a low amplitude sinusoidal light curve. It is difficult to discern which one of the two periods is better. The amplitudes of the U, B, V light variations are $0.020 \mathrm{mag}, 0.013 \mathrm{mag}$, and 0.010 mag , respectively.

We are confident that the light variations discussed above are real. However, there is an uncertainty in the source of the variability because all measurements were made with respect to a nearby comparison star (HD 174932; B9; V $=+8.9$) which itself could be the source of the observed light variations. Although this is unlikely, we cannot be certain that the comparison is constant in light because the check star (HD 343238; A2; $\mathrm{V}=+9.7$) observations show considerable scatter. The scatter in the check star data is probably due to centering problems with the APT acquiring this faint star (the limiting magnitude for acquisition is $+9.6-+9.7 \mathrm{mag}$); it is also possible that the check star may be intrinsically variable. We plan further observations next season to resolve this dilemma using additional comparison stars.

The characteristics of the light variations reported here (whether from DI Her or the comparison star HD 174932) are very similar to those found by Waelkens and Rufener
(1985) and Waelkens $(1987,1991)$ for a proposed new class of stars called slowly pulsating B stars (SPB stars). These stars generally have spectral types ranging from B3 to B8 (with luminosity classes of IV - V) and have light amplitudes of a few thousandths or hundredths of a magnitude that increase with decreasing wavelength; multiple periods are typically seen in the range of about $1.0-3.0$ days. All the SPB stars seem to show the same dependence of the amplitude on wavelength, with amplitudes in the U bands about twice as large as in the V bands. Furthermore, North and Paltani (1994) have found that the ratio of the amplitude in the ($U-B$) index and V magnitude is very well correlated with the effective temperatures of the SPB stars. Waelkens (1991) explains the light variations from the SPB stars as arising from non-radial oscillations in the g modes with large radial wave numbers k and low orders l. The ratio of the amplitude of the ($\mathrm{U}-\mathrm{B}$) to the amplitude in V for our differential magnitude measures of DI Her is $A_{(U-B)} / A_{V}=0.70$. This ratio is similar to that found for SPB stars with spectral types of B4-B6 which is close the spectral type of the components of DI Her. On the other hand, the comparison star has a spectral type of B9 which is near the observed upper limit for SPB stars. Furthermore, B8 - B9 SPB stars have an amplitude ratio of $A_{(U-B)} / A_{V}=0.9-1.1$ which is not consistent with our observed value. This evidence lends some support to the hypothesis that the light variations are coming from one or both of DI Her's components and not the comparison star. Observations planned for the future should resolve this issue.

If future photometry confirms that the light arise from DI Her rather than the comparison star, these low amplitude non-radial pulsations would not be sufficient to explain the discrepancy in DI Her's apsidal motion rate from tidal dissipation. It would appear more likely that the light variations may be quite common for stars of their spectral class and is not related to them being members of an eccentric binary system. It is possible that many more B-type stars will show low amplitude light variations and have not yet been discovered because they have not been adequately sampled.

This research was in part supported from NSF grants AST-9315365 and AST-8616362 which we gratefully acknowledge.

James J. MARSHALL	Department of Astronomy
Edward F. GUINAN	and Astrophysics
George P. McCOOK	Villanova University
	Villanova, PA 19085

References:
Guinan, E.F., Marshall, J.J., Maloney, F.P., 1994, I.B.V.S., No. 4101
Guinan, E.F. and Maloney, F.P., 1985, Astrophys. J., 90, 1519
North, P. and Paltani, S., 1994, Ast. and Astrophys., 288, 155
Papaloizou, J. and Pringle, J.E., 1980, M.N.R.A.S., 193, 603
Press, W.H. and Teukolsky, S.A., 1988, Comput. Phys., 2, No. 6, 77
Rudkjøbing, M., 1959, Ann. Astrophys., 22, 111
Savoniji, G.J. and Papaloizou, J.C.B., 1983, M.N.R.A.S., 203, 581
Waelkens, C., 1987, in: Stellar Pulsations. A Memorial to J.P. Cox, A.N. Cox, W.M. Sparks and S.G. Starrfield (eds.), Lecture Notes in Physics, Springer, p. 75.
Waelkens, C., 1991, Ast. and Astrophys., 246, 453
Waelkens, C. and Rufener, F., 1985, Ast. and Astrophys., 152, 6

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4162

Konkoly Observatory
Budapest
16 February 1995
HU ISSN 0374-0676

ON THE AGE OF FLARE STAR FS2 AND THE CLUSTER OF α PERSEI

As has been shown earlier, there is a correlation between the maximum flare energy (amplitude) which is likely to be emitted by star of particular magnitude (mass) and its age (Parsamian, 1976, 1995). This relationship depends upon the evolutionary stage of the flare stars, and of the clusters in which they have been observed. It follows therefore, that the age of any flare star may be estimated if large flare - sufficiently intense to be regarded as maximal - is observed.

During flare star searches in the α Persei cluster, a large flare of amplitude $\Delta \mathrm{U} \approx 9^{\mathrm{m}}$ was observed for the star FS2 (Semkov et al., 1993). According to these authors, the (V, V-I) photometry of FS2 makes it acceptable for membership in the cluster. Flares of such large amplitudes occur very seldom; it is therefore likely that the energy emitted in this particular event is close to the upper limit described above. If star FS2 is a member of the α Persei cluster, we can then estimate the age of the star and of the cluster in which it resides.

According to Semkov et al., FS2 is a faint star of magnitude $\mathrm{U} \approx 21.7$ and of spectral class \geq M5. Given a distance of $\mathrm{r}=166 \mathrm{pc}$ for the α Persei cluster, the absolute magnitude of FS 2 is then $\mathrm{M}(\mathrm{U})=15.6$, and the absolute magnitude of the flare is $\mathrm{M}_{f}=6.6$. According to Table 3 in Parsamian (1995) the age of the star would then be $3 \times 10^{7} \mathrm{yr}$, and the age of the cluster at least as large. For comparison, other independent estimates of the age of this cluster vary from 5×10^{7} yr to 8×10^{7} yr (Mermilliod, 1981, Prosser, 1992). On the other hand if FS2 is a field star, then $\mathrm{M}(\mathrm{U})=15.1$ (Mampaso, 1991), $\mathrm{M}_{f}=6.1$ and the age would be $\sim 2 \times 10^{7}$ yr.

Elma S. PARSAMIAN
INAOE, Mexico, E-mail: parsam@tonali.inaoep.mx
Byurakan Astrophysical
Observatory, Armenia

References:

Mampaso A., 1991, PhD Thesis, Univ. Laguna, Spain
Mermilliod, J. C., 1981, Astron. \& Astrophys., 97, 235
Parsamian, E. S., 1976, Astrofizika, 12, 235
Parsamian, E. S., 1995, Astrofizika, in press
Prosser, Ch. F., 1992, Astron.J., 103, 488
Semkov, E. H., Tsvetkova, K. P., Tsvetkov, M. K., Prosser, Ch. F., 1993 IBVS, No. 3917

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4163

Konkoly Observatory
Budapest
22 February 1995
HU ISSN 0374-0676

OBSERVATIONS OF A NEWLY DISCOVERED SU UMa-TYPE STAR HV AURIGAE

HV Aurigae was discovered to be a dwarf nova by Hoffmeister (1964) in Dec. 1963. He also found two outbursts on the Palomar charts occurred in March 1940 and March 1941 on the Palomar charts. After the discovery, the object has been little studied except the additional observations of two outbursts and a finding chart given by Bruch et al. (1987). The quiescent identification was made by Downes and Shara (1993).

Many of the outbursts of HV Aur have probably been overlooked because of its faintness, because the maximum visual magnitude in outburst is only about 15 . However, an outburst was recently noticed by M. Iida (Variable Star Observers League in Japan) on Nov. 8, 1994, and announced a brightness variation which was regarded to be superhumps (M. Iida 1995, in preparation).

In order to confirm the superhumps and to determine the superhump period, we made observations on Nov. 11 and 13, 1994 using a CCD camera (Thomson, TH 7882CDA, 576×384 pixels with $23 \mu \mathrm{~m}$ square pixel size) attached to the Cassegrain focus of $0.6-\mathrm{m}$ reflector (focal length $=4.8 \mathrm{~m}$) at Ouda Station, Kyoto University (Ohtani et al.,1992). An interference filter was used which had been designed to reproduce the Johnson V band. The mode of 2×2 on-chip summation was employed. The observation lasted about six and eight hours on Nov. 11 and 13, respectively, occasionally interrupted by clouds. The exposure time was 120 sec with a read-out and saving dead time of 13 sec throughout observations.

We reduced the data using the personal-computer-based aperture photometry package developed by one of the authors (T.K.). This package automatically subtracts bias-flames, applies flat fielding and enables us to estimate the instrumental magnitudes. The aperture size was $8^{\prime \prime}$ in radius. The sky level was determined from pixels whose distance from the individual objects are between $16^{\prime \prime}$ to $30^{\prime \prime}$.

Figures 1 and 2 show short-term light curves of differential magnitude between HV Aur and a comparison star (Table 1). The zero point of the ordinate of figures corresponds to $V=13.6$. The abscissa is Julian Day minus 2449660 .

Table 1. The coordinates and magnitudes of the comparison and check stars taken from Guide Star Catalog (GSC).

	R. A.(J2000)	Dec.(J2000)	m_{V}
comparison	$04^{\mathrm{h}} 53^{\mathrm{m}} 02^{\mathrm{s} .97}$	$+38^{\circ} 18^{\prime} 10^{\prime \prime} 0$	13.6
check 1	$04^{\mathrm{h}} 53^{\mathrm{m}} 00^{5} 06$	$+38^{\circ} 14^{\prime} 22^{\prime \prime} 0$	13.4
check 2	$04^{\mathrm{h}} 53^{\mathrm{m}} 06^{5} .31$	$+38^{\circ} 13^{\prime} 50^{\prime \prime} 9$	14.3
check 3	$04^{\mathrm{h}} 53^{\mathrm{m}} 13.20$	$+38^{\circ} 18^{\prime} 20^{\prime \prime} 9$	14.5

Figure 1: The short term light curve of HV Aur on Nov. 111994

Figure 2: The short term light curve of HV Aur on Nov. 131994

Figure 3: Theta diagram by PDM; the minimum point corresponds to 0.0855 day
Using three nearby check stars selected from GSC, we confirmed the constancy of the comparison star (Table 1) within 0.02 , and the r.m.s. error for a single measurement of the differential magnitude is $0 \cdot{ }^{\mathrm{m}} 02$. Although the error is a little bit large because of clouds, the hump-like feature is considered to be real because its amplitude is about 0.2 mag, being much larger than the estimated error.

By analyzing the light curve using PDM (Stellingwerf 1978) program within IRAF package (IRAF is distributed by the National Optical Astronomy Observatories, U.S.A.), after removing the trend of linear decline, we obtained 0.0855 ± 0.0001 day as the best estimate of the period. Figure 3 shows the Θ diagram, whose abscissa is frequency (day ${ }^{-1}$). We regarded the feature as superhumps, because the shape of the modulation, rather rapid rise and following gradual decline, is characteristic of a superhump of SU UMa-stars in superoutburst and only a superhump can explain such large amplitude modulation in a dwarf nova in outburst. We thus confirmed Iida's identification of HV Aur as a new member of SU UMa-type dwarf novae, and obtained a superhump period of 0.0855 day.

The decline rate is 0.035 mag day $^{-1}$, which is about one fourth of those typically observed in slow decline phase of usual SU UMa stars. More observation is necessary to reveal the nature of this peculiarity.

The authors are grateful to M. Iida for notifying us of the outburst and calling our attention to this interesting dwarf nova. This research has been partly supported by Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists (T.K.).

Daisaku NOGAMI
Taichi KATO
Seiji MASUDA
Ryuko HIRATA

Department of Astronomy, Faculty of Science, Kyoto University Sakyo-ku, Kyoto 606-01, Japan
e-mail address:
nogami@kusastro.kyoto-u.ac.jp
tkato@kusastro.kyoto-u.ac.jp
masuda@kusastro.kyoto-u.ac.jp

References:

Bruch, A., Fischer, F. J., and Wilmsen, U., 1987, Astron. Astrophys. Suppl., 70, 481
Downes, R. A., and Shara, M. M., 1993, Publ. Astron. Soc. Pacific, 105, 127
Hoffmeister, C., 1964, Astron. Nachr., 288, 49
Ohtani, H., Uesugi, A., Tomita, Y., Yoshida, M., Kosugi, G., Noumaru, J., Araya, S., and Ohta, K., 1992, Mem. Fac. of Sci., Kyoto Univ., Series A of Physics, Astrophysics, Geophysics and Chemistry, 38, 167
Stellingwerf, R. F., 1978, Astrophys. J., 224, 953

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4164

Konkoly Observatory
Budapest
28 February 1995
HU ISSN 0374-0676

MORE CLARIFICATION NEEDED FOR NSV 11271 AND VY LYRAE

VY Lyrae and NSV 11271 are two stars needing further detailed observations. The slow variability of NSV 11271 has not been confirmed but the star is also a spectroscopic binary with a period of 2905 days (Batten et al., 1989). VY Lyrae has been classified as a W UMa type eclipsing variable by some observers whereas others have reported it as not variable.

In the NSV Catalogue (Kholopov, 1982) NSV 11271 is recorded as 8.0 pg K5 and is identified with $\mathrm{BD}+39^{\circ} 3505$ and HR 7041. The Bright Star Catalogue gives photometric data $V=6.45, B-V=1.57$ K5III, and the Washington Catalogue of Double Stars (Worley, 1986) indicates a 10.3 v companion at $60^{\prime \prime} 2$, P.A. 192°. The companion is optical (Griffin, 1987) and too faint to affect estimates of the variability of the primary. Variability had been discovered by Soloview (1922) who reported that the star gradually increased in brightness from May 6 to June 4, 1922. Then poor observing conditions precluded further observations until August when Soloview and Selivanov found the star to have begun to fade. The amplitude was reported as about one magnitude, probably only about 0.7 v (Samus, 1994). Long period variation was suspected. It would be of interest to ascertain whether or not there is a correlation between the spectroscopic and the light variations.

The variability of VY Lyr was also discovered in 1922 by Soloview, and confirmed by J. Kazansky. It was reported to have varied from 10.8 to 11.2 v , with W UMa type curve in a period of $3^{\mathrm{h}} 45^{\mathrm{m}}$ or 0.156 (Seliwanow, 1923). Some later observers (see Prager, 1936; Schneller, 1957) failed to detect any variation: Guthnick and Prager (1928) from 10 observations, Zverev (1934 and 1937) from 41. Since 1935 it has been listed in the GCVS as cst: even though Sandig (1950) did report rapid variations among 17 observations between 1929 and 1939; and again among 10 in the fall of 1948 amounting to an amplitude of 0.6 ; but only marginal variation in 32 observations in the fall of 1949.

A finder chart (reproduced here as the left diagram of Figure 1) as well as a summary of new observations, whose amplitudes do not exceed the observational errors, is given by Zverev and Makarenko (1979). The star circled is identified as VY Lyrae. But that star is $\mathrm{BD}+39^{\circ} 3507$ at $18^{\mathrm{h}} 38^{\mathrm{m}} 45^{\mathrm{s}}+39^{\circ} 2.3$ (1855) whereas Prager (1936) clearly states that VY Lyr is not a BD star. The position given by Prager and in all GCVS catalogues since $1927,18^{\mathrm{h}} 38^{\mathrm{m}} 57^{\mathrm{s}}+39^{\circ} 5.8$ (1855) agrees with the position given by Seliwanow in his announcement of the Soloview discovery. This star is labelled as comparison star x. Hence it appears that x and VY may have been interchanged on the original chart. The stars marked b, c, p, and x are the comparison stars cited by Zverev and Makarenko for brightness determinations. Step values for c, x and p are $0.0,2.1$ and 6.0 respectively, while the magnitudes assigned to b and c are 11.57 and 12.09 pg . It is not clear whether the published magnitudes correspond to star x or $\mathrm{BD}+39^{\circ} 3507$. Moreover, it does not seem a forgone conclusion that all the observers who found no variation were all examining the same star.

Figure 1. Left figure, from Russian Variable Stars, Supplement 3, 440, 1979, photographic magnitudes. Figure at the right from visual BD, with relevant BD numbers indicated. The open circle for VY Lyr is inserted at the position of star x in the left figure. For both charts North is at the top and East to the left.

Table 1. Positions of Critical Stars.

Star	RA (1855)	D (1855)	Mag	Remark
NSV 11271	$18^{\mathrm{h}} 38^{\mathrm{m}} 27^{\mathrm{s}}$	$+39^{\circ} 09.2$	8.0 p K5	
$+39^{\circ} 3504$	183826.0	+3908.5	9.5 v	Optical companion of $+39^{\circ} 3505$
$+39^{\circ} 3505$	183827.0	+3909.5	6.5 v	SB 2905d
VY Lyr	183857	+3905.8	$10.5-10.9$	Period $0^{\mathrm{d}} 156,0^{\mathrm{d}} 31$, or cst.
$+39^{\circ} 3507$	183845	+3902.3	9.5 v	
JBAA 33,291	$1837^{\star} 57$	+3905.8	$10.5-10.9$	Period $3^{\mathrm{h}} 45^{\mathrm{m}}$

*Probably 38^{m} intended
VY Lyrae is in close proximity to NSV 11271 (BD $+39^{\circ} 3505$). The right hand diagram of Figure 1 is a copy of a portion of the BD chart including the area of the variables. Several BD stars in the $+39^{\circ}$ zone are identified. The stars marked x, b, and c in the left figure are not BD stars, while p is $\mathrm{BD}+38^{\circ} 3270$, mag. 9.4 v . The approximate position of star x is circled in the right figure. It is about 4^{\prime} north following $\mathrm{BD}+39^{\circ} 3507$. An examination of the Carte du Ciel chart for plate center $18^{\mathrm{h}} 45^{\mathrm{m}}+39^{\circ}$, reaching 14 pg does show a faint star in the approximate position of star x. It may well be VY Lyrae. Indeed Chikinz and Kasitzyne (1923) of the Russian Society of Amateurs of the Universe's Knowledge, who either confirmed or quoted the $3^{\mathrm{h}} 45^{\mathrm{m}}$ period, indicated the position of the variable as $18^{\mathrm{h}} 37^{\mathrm{m}} 57^{\mathrm{s}}+39^{\circ} 05^{\prime} 49^{\prime \prime}$ (1855). If for 37^{m} we read 38^{m}, then this position does agree with the location of star x (see Table 1).

The positions given for VY Lyrae in all the general catalogues of variable stars from 1926 through 1985 are consistent with the position of star x , not the one circled as VY on the Zverev-Makarenko chart. Aside from the questioned chart identification, no reference to VY Lyr indicates any relation to $\mathrm{BD}+39^{\circ} 3507$. The question remains whether Zverev and Makarenko merely interchanged the labels of x and VY Lyr on their chart; or do their observations of non-variability correspond to $\mathrm{BD}+39^{\circ} 3507$, a star not listed as variable in either the GCVS or the NSV catalogue?

As the amplitudes of both NSV 11271 and VY Lyrae are small, extensive photoelectric observations are needed to ascertain dependable light curves.

Acknowledgements. Dr. Imants Platais kindly translated passages from the Russian and contacted N. Samus for a Russian publication not available in the Yale Library. Samus sent us translation of the relevant reference to NSV 11271 together with his own comments.

Dorrit HOFFLEIT
Department of Astronomy
Yale University
New Haven, CT 06520-8101

References:

Batten, A. H., Fletcher, J. M., and MacCarthy, D. G., 1989, Pub. Dominion Astrophysical Obs., 17, 96, 255
Chikinz, A., and Kasitzyne, W., 1923, J.B.A.A., 33, 291
Griffin, R. F., 1987, Observatory, 107, 58
Guthnick, P., and Prager, R., 1928, VJS, 63, 118
Kholopov, P. N., Ed. in Chief 1982, New Catalogue of Suspected Variable Stars, Moscow
Kholopov, P. N., Ed. in Chief 1985, General Catalogue of Variable Stars, 2, Moscow
Prager, R., 1936, Geschichte und Literatur des Lichtwechsels, 2, 233
Samus, N., 1994, Translation and commentary on Soloview, 1922, Private communication
to I. Platais
Sandig, H. U., 1950, A.N., 279, 93
Schneller, H., 1957, Geschichte und Literatur des Lichtwechsels, (2), 4, 369
Seliwanow, S., 1923, A.N., 219, 350
Soloview, A. W., 1922, St. Petersburg Pub, 11, 96
Worley, C., 1986, unpublished, courtesy of author
Zverev, M., 1934, Russian Variable Stars, 4, 354
Zverev, M., 1937, Russian Variable Stars, 5, 107
Zverev, M. S., and Makarenko, E. N., 1979, Russian Variable Stars, Suppl., 3, pp. 431, 440, 491, and 511

Konkoly Observatory
Budapest
28 February 1995
HU ISSN 0374-0676

NEW PERIOD DETERMINATION FOR EY Cyg

EY Cyg is a U Gem-type dwarf nova. The brightness during outburst and minimum are respectively 11.4 mag. and 15.5 mag . (Ritter, 1990). The interval between two subsequent outbursts is about 240 days and the duration of the outburst is typically around 30 days. More details about the spectroscopic observations are given by Smith, Sarna \& Jones (1995). The first orbital period determination was made by Hacke \& Andronov (1988) from photographic observations. They found:

Min. JD=244 6595.323+0.181228×E
This is the period quoted in the catalogue by Ritter (1990), but in our opinion this determination is very uncertain because of the poor quality of the data.

We obtained CCD photometry in V, R, I of EY Cyg during two nights in 1993 (August 17 and October 13), using the $60-\mathrm{cm}$ Cassegrain telescope located at the Warsaw University Observatory at Ostrowik. Exposure times of 60 and 120 sec were used for different colours and nights. We used the standard reduction procedure available in Warsaw, which is based on the IRAF reduction package.

Figure 1

Figure 2

Figure 3

The R and I observations are presented in Figures 1 and 2 respectively. We show only relative magnitudes in both colours, because the majority of bright stars in our field of view are variable. We detected a very smooth light curve modulation with an amplitude of about 0.05 mag . The formal error of observations is $\pm 0.01 \mathrm{mag}$.

The power spectrum periodogram is presented in Figure 3. Two peaks are seen at frequencies: $\mathrm{f}_{1}=3.800 \pm 0.004$ day $^{-1}$ and $\mathrm{f}_{2}=4.576 \pm 0.004$ day $^{-1}$. These give orbital periods: $\mathrm{P}_{1}=0.2630 \pm 0.0005$ and $\mathrm{P}_{2}=0.2185 \pm 0.0005$ day, respectively. The second period has a higher statistical weight; further, there are evolutionary and spectroscopic arguments to support this value (see discussion below).

From the spectra of EY Cyg (Smith, Sarna \& Jones, 1994) we can classify the red dwarf spectral type as dM2-dM3. From the calibration by Popper (1980) we found that the mass of the red dwarf component lies in the range $0.5-0.4 \mathrm{M}_{\odot}$. Next from Echevarría's (1983) mass-radius relationship, and assuming that the red dwarf main-sequence star fills its Roche lobe, we determined a possible range for the orbital period: 0.22-0.182 day. From the results of the period analysis only the second value

$$
\mathrm{P}=0.2185 \pm 0.0005 \text { day }
$$

is consistent with this constraint.
Acknowledgements. This work was supported in part by the Polish National Committee for Scientific Research under grant 2-2115-92-03 and in part by the SERC PATT under rolling grant GR/G 51473.

Marek J. SARNA ${ }^{1,3}$
W. PYCH^{2}
Robert Connon SMITH ${ }^{3}$

${ }^{1}$ N. Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland
${ }^{2}$ Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warsaw, Poland
${ }^{3}$ Astronomy Center, Division of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, UK

References:

Echevarría, J., 1983, Rev. Mexicana Astr. Af., 8, 109
Hacke, G. \& Andronov, I. L., 1988, Mitt. Veränderl. Sterne, 11, 74
Popper, D., 1980, ARA\&A, 18, 115
Ritter, H., 1990, A\&AS, 85, 1179
Smith, R. C., Sarna, M. J. \& Jones, D. H. P., 1995, MNRAS, (in preparation)

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4166

Konkoly Observatory
Budapest
2 March 1995
HU ISSN 0374-0676

HAS THE DELTA SCUTI STAR BE Lyn A COMPANION?

The high amplitude δ Scuti-type variation (V=8.6-9.0 mag, A3) of BE Lyn (= HD 79889 $=$ HIC 45649) was discovered by Oja (1986, 1987). The period change was discussed in some papers (Rodríguez et al., 1990a, Liu et al., 1991, Tang et al., 1992, Wunder et al., 1992, Liu and Jiang 1994, Rodríguez et al., 1995). Earlier the O-C diagram was fitted with a negative parabola, later with a positive parabola. The aim of our measurement was to obtain new points on the $\mathrm{O}-\mathrm{C}$ diagram in order to determine the recent period variation.

We carried out photoelectric photometry (through Johnson UBV filters) of BE Lyncis on three nights: 31 Jan, 5 and 13 Feb 1995 with the 40 cm Cassegrain telescope and SSP5A photometer of Szeged Observatory, Hungary. The comparison star was HIC 45515 ($\mathrm{V}=9.30 \mathrm{mag}, \mathrm{F} 8$). The phase diagram of the light curve is plotted in Figure 1. The period was determined with the Phase Dispersion Method.

The new times of maxima are listed in Table 1, where the $\mathrm{O}-\mathrm{C}$ residuals have been obtained from the ephemeris:

$$
\text { Hel.JD } \max =2449018.2684+0.09586953 \times E
$$

The $\mathrm{O}-\mathrm{C}$ diagram $(\mathrm{N}=65)$ can be seen in Figure 2. Instead of parabola we fitted a light-time effect curve supposing a cyclic period variation due to orbital motion in binary system. The parameters of the fit and their estimated errors are given in Table 2.

Accepting $M_{1}=1.7 \pm 0.1 M_{\odot}$ mass for the pulsating component (Claret et al. 1990, Rodríguez et al., 1990b), we can calculate the semi-major axis of the orbit of the secondary and its mass with iteration (Table 3). The errors are due to the uncertainty of the P and M_{1}. The results suggest a red or brown dwarf companion which is probably not detectable in the spectrum of BE Lyn due to its low brightness. The calculated orbital radial velocity amplitude (K) of the delta Scuti star is very small, therefore the spectroscopic measurements cannot help to confirm the binary nature.

There is an interesting possibility to determine the pulsation constant (Jørgensen and Grønbech, 1978). Combining Kepler's third law and the pulsation constant formula

$$
\begin{equation*}
\frac{a^{3}}{P_{o r b}^{2}}=\frac{G}{4 \pi^{2}}\left(M_{1}+M_{2}\right), \quad \text { and } \quad Q=P_{p u l}\left(\frac{M_{1}}{R_{1}^{3}}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
Q=0.1159 \frac{P_{p u l}}{P_{o r b}}\left(\frac{R_{1}}{a}\right)^{-3 / 2}\left(1+\frac{M_{2}}{M_{1}}\right)^{-1 / 2} \tag{2}
\end{equation*}
$$

Figure 1. Phase diagram of BE Lyn $\left(\mathrm{P}=0.0958784\right.$ day, $\left.T_{0}=2449018.2684\right)$

Figure 2. O-C diagram of BE Lyn with the fitted light-time curve ($\mathrm{P}=2350$ day $)$

Table 1. Times of maximum light in early 1995

No.	Hel.JD	O-C (day)
1	2449749.4642	-0.00111
2	2449749.5612	+0.00003
3	2449749.6564	-0.00064
4	2449754.3533	-0.00135

Table 2. Parameters of the light-time curve

$$
\begin{gathered}
\hline P_{\text {orb }}=2350 \pm 100 \mathrm{day} \\
a_{1} \sin i=18 \pm 2 \times 10^{6} \mathrm{~km} \\
e=0.30 \pm 0.05 \\
\omega=140^{\circ} \pm 5^{\circ} \\
\tau=2447050 \pm 50 \\
t_{0}(O-C=0)=2448700 \pm 50 \\
K=0.58 \pm 0.10 \mathrm{~km} / \mathrm{s} \\
f\left(M_{2}\right)=(4 \pm 1) \times 10^{-5} \\
A_{O-C}=(6.8 \pm 1.0) \times 10^{-4} \mathrm{day} \\
\hline
\end{gathered}
$$

Table 3. Inclination, semi-major axis of the orbit and mass of the companion

$i(d e g)$	$a(A U)$ ± 0.08	$M_{2}\left(M_{\odot}\right)$ ± 0.012
10	4.35	0.313
30	4.19	0.101
50	4.17	0.065
70	4.16	0.053
90	4.15	0.049

Adopting $P_{p u l}=0.09587$ days, $P_{\text {orb }}=2350 \pm 50$ days, $R_{1}=2.43 \pm 0.10 R_{\odot}, a=4.2 \pm 0.1$ AU, $M_{1}=1.7 \pm 0.1 M_{\odot}$ and $M_{2}=0.05-0.3 M_{\odot}$ we calculated $Q=0.033 \pm 0.004$. This value corresponds to the radial fundamental mode (eg. Petersen and Jorgensen 1972). Rodríguez et al. (1990b) and Garrido et al. (1990) also concluded that this mode is excited.

On the other hand accepting M_{1} and R_{1} (Rodríguez et al., 1990b) the $m 16 e 07-08-09$ and $m 18 e 07-08-09$ models of Milligan and Carson (1992) give for the linear adiabatic periods $P=0.086-0.107$ days with an average of $P=0.094$ days which is very close to the observed $P_{\text {pul }}$. The pulsation constant from these models $Q=0.0326 \pm 0.0001$ which is similar to the value calculated above.

This means that the physical parameters of the star, the radial pulsation in the fundamental mode and the binary orbit determined from the $\mathrm{O}-\mathrm{C}$ diagram are in agreement.

We conclude that BE Lyn may have a low mass companion. Of course, the binary hypothesis can be confirmed only a few years later.

We used the SIMBAD database, operated at CDS, Strasbourg, France. This work was supported by Hungarian OTKA Grant No. T4330. We would like to express our thanks to J. Vinkó and J. Gál for discussion.

L.L. KISS, K. SZATMÁRY
Astronomical Observatory and Dept. of Experimental Physics
JATE University
Szeged, Dóm tér 9.
H-6720 Hungary
Internet: L.Kiss@physx.u-szeged.hu

References:

Claret, A., Rodríguez, E., García, J.M., 1990, Rev. Mexicana Astron. Astrof., 21, 389
Garrido, R., García-Lobo, E., Rodríguez, E., 1990, Astron. Astrophys., 234, 262
Jørgensen, H.E., Grønbech, B., 1978, Astron. Astrophys., 66, 377
Liu, Y.Y., Jiang, S.Y., Cao, M., 1991, Inf. Bull. Var. Stars, No. 3607
Liu, Z., Jiang, S.Y., 1994, Inf. Bull. Var. Stars, No. 4077
Milligan, H., Carson, T.R., 1992, Astrophys. Space Sci., 189, 181
Oja, T., 1986, Astron. Astrophys. Suppl. Ser., 65, 405
Oja, T., 1987, Astron. Astrophys., 184, 215
Petersen, J.O., Jørgensen, H.E., 1972, Astron. Astrophys., 17, 367
Rodríguez, E., López de Coca, P., Rolland, A., Garrido, R., 1990a, Rev. Mexicana Astron. Astrof., 20, 37
Rodríguez, E., Rolland, A., López de Coca, P., 1990b, Astrophys. Space Sci., 169, 113
Rodríguez, E., López de Coca, P., Costa, V., Martín, S., 1995, Proc. IA U Coll. 155, Cape Town, preprint
Tang, Q.Q., Yang, D.W., Jiang, S.Y., 1992, Inf. Bull. Var. Stars, No. 3771
Wunder, E., Wieck, M., Garzarolli, M., 1992, Inf. Bull. Var. Stars, No. 3791

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4167

Konkoly Observatory
Budapest
8 March 1995
HU ISSN 0374-0676

PRECISION B,V LIGHT CURVES OF EK COMAE BERENICES

EK Comae Berenices was discovered by Kinman et al. (1966) in a study of fields near the north galactic pole. He identified it as a W UMa variable. The paper includes accurate positions, a finder chart, and a list of photographic magnitudes giving a range of 12.7 to 13.4 mag. This binary was brought to our attention by A AVSO observer Borovicka (1990), who conducted a thorough visual investigation determining the preliminary light elements to be:

$$
\begin{array}{r}
\text { JD Hel Min. } \mathrm{I}=2447609.405+0.2666874 \times \mathrm{E} . \tag{1}\\
\pm .007 \pm .0000001
\end{array}
$$

making it among the shortest period non-degenerate systems known.
Our present observations were made on 11, 12 and 14 February and 9, 12 May, 1994 at Lowell Observatory, Flagstaff, Arizona. A thermoelectrically cooled EMI 6256S (S-13 cathode) PMT was used in conjunction with the 0.78 m National Undergraduate Research Observatory reflector. Approximate coordinates of the variable, comparison and the check star are given in Table 1 and are designated as star 33, d, and c, respectively, on the charts by Kinman et al. (1966). About 250 observations were taken in each passband.

Table 1

Star	R.A. (2000)	Dec. (2000)
EK Com	$12^{\mathrm{h}} 51^{\mathrm{m}} 200^{5} 2$	$27^{\circ} 12^{\prime} 57^{\prime \prime}$
Comparison	$12^{\mathrm{h}} 51^{\mathrm{m}} 55^{\mathrm{s} .7}$	$27^{\circ} 16^{\prime} 17^{\prime \prime}$
Check	$12^{\mathrm{h}} 50^{\mathrm{m}} 59.2$	$27^{\circ} 15^{\prime} 30^{\prime \prime}$

Five mean epochs of minimum light were determined from the observations made during two secondary and three primary eclipses. The bisection of chords technique was utilized in their determination. These minima are given in Table 2 accompanied by their probable errors in parentheses. The five precision epochs, along with eight times of low light from Kinman et al. (1966), the epoch by Borovicka (1990) and the visual timing by Locher (1986) were introduced into a weighted least squares solution to obtain a linear ephemeris. A quadratic ephemeris was also determined. In both of these calculations, visual timings and photographic timings given a weight of 0.1 . While photoelectric observations were given a weight of 1.0 with the exception of our last timing which was given a lower weight of 0.5 . The improved ephemerides are:

$$
\begin{gather*}
\text { JD Hel Min. } \mathrm{I}=2449399.0022+0 \mathrm{~d} 26668726 \times \mathrm{E} \text { and, } \tag{2}\\
\pm .0019 \pm .00000011
\end{gather*}
$$

$$
\begin{gather*}
\text { JD Hel Min. } \mathrm{I}=2449399.0018+0.26668637 \times \mathrm{E}-2.05 \times 10^{-11} \times \mathrm{E}^{2} \tag{3}\\
\pm .0018 \pm .00000036 \pm .80
\end{gather*}
$$

Figure 1. Photoelectric light curves of EK Com as defined by the individual observations.

Figure 2. Period behavior of EK Com as calculated from Equation 2.

Table 2

JD HEL.				
$2400000+$	Minimum	Cycles	$(\mathrm{O}-\mathrm{C})_{1}$	$(\mathrm{O}-\mathrm{C})_{2}$
$49397.0006(3)$	II	-7.5	-0.0015	-0.0011
$49399.0022(5)$	I	0.0	0.0000	0.0004
$49482.7440(1)$	I	314.0	-0.0020	0.0027
$49482.8740(7)$	II	314.5	-0.0013	-0.0007
$49485.6710(13)$	I	325.0	-0.0002	-0.0038

Equation 2 was used to calculate the $(\mathrm{O}-\mathrm{C})_{1}$ residuals in Table 2 and the phases of the present observations. Equation 3 was used to calculate the $(\mathrm{O}-\mathrm{C})_{2}$ residuals. The quadratic term in the second ephemeris is marginally significant and negative. Because of its small magnitude and doubtful significance, we cannot regard this as proof that the present period behavior of EK Com is dominated by magnetic breaking. More timings of minimum light are needed, both from photographic archives and future observations.

The B,V light curves of EK Com as defined by their individual observations are shown in Figure 1 as differential magnitude (variable-comparison) versus phase. The period behavior of the system as calculated from the linear ephemeris, equation (1), is shown as Figure 2. Our preliminary unspotted solution yields a mass ratio of 0.32 and a fill-out of 13% for this W-type W UMa system. The analysis of the observations is underway.

Ronald G. SAMEC*, Brian CARRIGAN* and
Eric E. PADGEN*
Millikin University
Decatur, IL 62522 USA

*Visiting Astronomer, Lowell Observatory, Flagstaff, Arizona, USA

References:

Borovicka, J., 1990, J. AAVSO, 19, 8
Kinman, T.D., Wirtanen, C.A. and Janes, K. A., 1966, ApJSS, 119, 379
Locher, K., 1986, BBSAG, No 79

Konkoly Observatory
Budapest
9 March 1995
HU ISSN 0374-0676

PERIOD CORRECTION FOR THE NEW ECLIPSING BINARY DHK 41

Recently, Kaiser (1994) announced that the 9th magnitude G0 star HD $284195=$ SAO 76494 is a detached eclipsing binary, which he designated DHK 41 in his discovery list. He reported a preliminary period of 3.176 days. However, JG and BH soon observed the non-occurrence of an eclipse predicted by this period.

Continued visual monitoring by MEB and CS revealed that this eclipsing binary has an eccentric orbit with secondary minimum occurring at phase 0.3 . The reported period, 3.176 days, is actually the interval from secondary minimum to the following primary minimum in a true period of 4.5 days.

Table 1 contains heliocentric times of minima obtained to date. DHK, DT, JG, and BH have observed photoelectrically, MEB and CS have monitored the star visually. The photoelectric timings were reduced with a program based on the Kwee-Van Woerden (1956) method, and the mean errors are given. These errors are large for photoelectric data, due mostly to poor observing conditions.

The period was determined by least squares using the minima from Table 1. The data were weighted as follows, discovery photograph 1, visual 3 and photoelectric 10 . The $\mathrm{O}-\mathrm{C}$ residuals in the table were calculated according to the following light elements:

Figure 1

Table 1

HJD 2400000+	Min.		$\mathrm{O}-\mathrm{C}$	Observer
49602.846	I	ptg *	+0.008	Kaiser
49653.632	II	vis	-0.004	Baldwin
49680.597	II	vis	-0.003	Baldwin
49701.7061	I	pep	0.000	Terrell
± 0.0013				
49707.5649	II	pep	0.001	Kaiser
± 0.0018				
49755.6355	I	pep	0.001	Kaiser
± 0.0020				

* - Discovery photograph

Figure 1 has DHK's V data and DT's delta V data merged into one graph to show phase coverage. The two eclipses are nearly equal in depth, about 0.44 V . At this time, our choice of primary eclipse is nominal, the slightly greater apparent depth of Min. I being similar to the scatter in the observations.

In a poster paper presented at the January 1995 meeting of the American Astronomical Society (Terrell and Kaiser, 1994), DT and DHK estimated the orbital eccentricity to be near 0.3 and noted that the star may be a distant member of the Hyades cluster. Photoelectric and radial velocity observations of this interesting binary system are continuing, and a full analysis will be published when these observations have been completed.

Daniel H. KAISER
2631 Washington Street
Columbus, IN 47201, U.S.A.
Marvin E. BALDWIN
8655 N. Co. Rd. 775 E.
Butlerville, IN 47223 , U.S.A.
Jerry GUNN
606 Skyview Drive
East Peoria, IL 61611, U.S.A.

Dirk TERRELL
Department of Physics \&
Astronomy
University of Calgary
Calgary, Alberta T2N 1N4
Canada
Chris STEPHAN
219 Andretti Avenue
Sebring, FL 33870, U.S.A.
Brian HAKES
7059 N. Fox Point Drive
Peoria, IL 61615, U.S.A.

References:

Kaiser, D. H., 1994, IBVS, No. 4119
Kwee, K. K., and Van Woerden, H., 1956, BAN, 12, No. 464, 327
Terrell, D., and Kaiser, D. H., 1994, BAAS, 26, No. 4, 1461 (abstract)

Konkoly Observatory
Budapest
9 March 1995
HU ISSN 0374-0676

FAINT COMPANIONS TO UX ANTLIAE

Recently, UBV photometry was provided for stars in the fields of the R CrB type stars UX Ant and UW Cen (Milone, 1994); later, identifications in several catalogues ("Guide Star Catalogue" (GSC), Henry Draper Catalogue, Cordoba Durchmusterung and Cape Photographic Durchmusterung) of the photometrically observed stars were also published in these Bulletins (Skiff, 1994). Precisely, it was said (Milone et al., 1990, Note 1; Milone, 1994, Note 2) that the variable star UX Ant has "a faint near-by companion" but, unfortunately, there is an erroneous identification of the close companion in Note 2. In fact, the reason for the large discrepancy in the B magnitude of the near-by star as indicated in Notes 1 and 2 is, that we are referring to different stars (see Figure 1): it was star 1 for which we measured $B=16.5$ (Note 1), whereas for star 2 it was found, $\mathrm{V}=14.55, \mathrm{~B}-\mathrm{V}=0.41$ (Note 2). This is the point we want to emphasize here, as (faint) stars of known brightness neighboring a variable star can be useful in several respects.

It is worth mentioning that there are several examples of close companions among the variable stars of the R CrB type. The following cases were noted (indicated distances in arc seconds from the variable are only approximate): UX Ant, component 1:
$\mathrm{B}=16.5, \rho=15$ " to the NW, component $2: \mathrm{B}=14.96, \rho=45$ " to the NE;
UW Cen, $\mathrm{B}=14.19, \rho=20$ " to the NNW;
Y Mus, $\mathrm{B}=16.0, \rho=15$ " to the W ;
RZ Nor, $\mathrm{B}=13.7, \rho=8$ " to the NE;
RY Sgr, $\mathrm{B}=16.48, \rho=12^{"}$, (Andrews et al., 1967; Feast, 1968).

Figure 1.
Details of the region around UX Ant
Star F: V=11.78, B-V=0.45
(see IBVS No. 4002.
According to Skiff (1994),
UX Ant=GSC 7212-0077;
star $\mathrm{F}=\mathrm{GSC} 7212-0258$
$=\mathrm{CoD}-36^{\circ} 6812$).

Very probably these are not physical pairs, but the point rather is that the variable being studied can be misidentified when it weakens.

L. A. MILONE
Observatorio Astronómico
Universidad Nacional de Córdoba
Córdoba, Argentina

References:

Andrews, P. J., Catchpole, R. M., Feast, M. W., Jones, D. H. P., Lloyd Evans, T., and Walker, E. N., 1967, IBVS, No. 235
Feast, M. W., 1968, "Non-periodic phenomena in variable stars", IAU Colloquium, Budapest, p. 253
Milone, L. A., 1994, IBVS, No. 4002
Milone, L. A., Minniti, E. R., and Paolantonio, S., 1990, IBVS, No. 3526
Skiff, B. A., 1994, IBVS, No. 4030

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4170

Konkoly Observatory
Budapest
13 March 1995
HU ISSN 0374-0676

A LONG PERIOD EARLY F-TYPE VARIABLE: HR 8799

In summer 1987 the early F-type variable star HR 8799 (=HD 218396) was observed on 5 nights with the 0.75 m reflector at Observatorio de Sierra Nevada by means of a Strömgren-Crawford six-channel simultaneous photometer.

The purpose of the campaign was to investigate its possible SX Phe nature, proposed by Shuster and Nissen (1986) who noticed its slightly low metallicity and a high dispersion in V and c_{1} light curves. They proposed a variability on unknown time-scale and amplitude ranging between $0 .{ }^{\mathrm{m}} 05$ and $0^{\mathrm{m}} 1$ in both colours.

During the 1987 observations, HD 217715, HD 218574 and HD 217510 were used as comparison stars. In this campaign 168 differential measurements were collected with respect to HD 217715 in uvby - β colors, unfortunately with large gaps between different observing nights. The differential time-series between HD 217715 and HD 218574 provided evidence of constancy within $0^{\mathrm{m}} 0047(u), 0^{\mathrm{m}} 0047(v), 0^{\mathrm{m}} 0032(b), 00^{\mathrm{m}} 0038(V)$ assumed as mean external errors. Similarly the differential time-series between HD 217715 and the third comparison star HD 217510 provided $0^{\mathrm{m}} 0054,0^{\mathrm{m}} 0042,0^{\mathrm{m}} 0034$ and $0^{\mathrm{m}} 0036$ in the four colours respectively. A comparison of the above results with the dispersions computed for HR 8799 versus HD 217715 , i.e. $0^{\mathrm{m}} 0093(u), 0^{\mathrm{m}} 0145(v), 0^{\mathrm{m}} 0129(b), 0^{\mathrm{m}} 0107(V)$ confirms what reported by Shuster and Nissen.

Furthermore during each night we found variations in the colour indices $b-y, c_{1}$, and β in the same sense and approximately phased with the V light curve. This can be seen in Figure 1 where the observed light and colour index curves are shown for the night of September 17 as an example. Variations in the m_{1} color index can be forecasted but due to its intrinsically low amplitude in the scanty data of this campaign they cannot be revealed.

In spite of the large gaps in the data set spectral analysis, performed on these points by means of Vanicek's (1969) least squares technique, provided evidence of a principal frequency of $1.961 d^{-1}$ (period 0.510) and the absolute absence of signals in the 5-30 d^{-1} region where δ Sct and SX Phe pulsational frequencies are generally found. However such a periodicity fails to explain the whole signal contained in the time-series: further frequencies must be present even if their determination is beyond the possibility of such a small amount of measurements.

In a pulsational scenario the period found should be related to a non-radial g-mode pulsation never reported in the lower part of the instability strip at the time when the observations were collected. Nevertheless in the last decade a number of objects in this region of the HR-diagram showing variability on longer time-scales with respect to typical δ Sct or SX Phe pulsations and with amplitudes below $00^{\mathrm{m}} 1$, were reported by various authors and gathered into a group of about ten objects believed to undergo the same phenomenon (Mantegazza et al., 1993). The physical nature of their behaviour its still

Differential light and colour index curves of HR 8799 with respect to HD 217715 versus Heliocentric Julian Day in the night September 17, 1987.

Figure 2. Position of the new variables in HR diagram. Main Sequence track is taken from Philip and Egret (1980) while hot and cool border of the instability strip from Rodríguez et al. (1994).

Table 1. Comparison between HR 8799 and other stars in the group of new early F-type variables. Data are taken from the corresponding references quoted in the text. HR 8799 Strömgren's colours are taken from Shuster and Nissen (1986) while its radial velocity from Uesugi and Fukuda (1982). $\nu_{p h}$ means photometric frequency.

Name	$(b-y)$	m_{1}	c_{1}	β	$v \sin i$	$\nu_{p h}$
HD 224638	0.192	0.147	0.719	2.743	24	$0.68,0.81$
HD 224945	0.198	0.154	0.690	2.726	60	$0.70,0.93$
HD 164615	0.228	0.179	0.624	2.716	60	1.23
γ Dor	0.200	0.175	0.660	2.739	50	1.34
9 Aur	0.217	0.152	0.642	2.723	14	$0.80,0.32$
HR 8799	0.188	0.137	0.689	2.742	45	1.95

a matter of discussion and beside non-radial g-mode pulsation also models taking into account spots and binarity have been proposed and developed. Some of the stars in the sample have been studied more thoroughly: HD 164615 (Abt et al., 1983), HD 224638 and HD 224945 (Mantegazza et al., 1994), 9 Aur (Krisciunas et al., 1993), γ Dor (Balona et al., 1994). The principal characteristics of these stars, to be compared with HR 8799 results, are briefly summarized in Table 1.

In order to locate HR 8799 in the Hertzsprung-Russell diagram we computed its absolute visual magnitude by means of Philip and Egret (1980) calibrations obtaining a value $M_{V}=2.7$. As can be seen in Figure 2 our star lies in the same region where all of the new variables were found. Similar position in HR diagram and similar photometric behaviour make HR 8799 a possible candidate belonging to this type of variables.

A number of tools are at present being studied (Zerbi and Garrido, 1995) in order to achieve a better understanding of the behaviour of the whole sample and to select the most suitable between the proposed models. Such tools are based on comparison between colour and radial velocity curves that should present a different behaviour in the case of spots, binarity or pulsation. In addition frequencies close to an integer multiple of $1 d^{-1}$, as that found in HR 8799 as well as in many other variables in the sample, suggest to avoid night/day cycle through a multisite campaign.

Any further observations should therefore be planned within a coordinated multisite campaign devoted to multicolor photometric observations and possibly with associated high resolution spectroscopy.

[^4]References:
Abt, H.A., Bollinger, G., Burke, E.W., 1983, ApJ, 272, 196
Balona, L.A., Hearnshaw, J.B., Koen, C., et al. , 1994, MNRAS, 267, 103
Krisciunas, K., Aspin, C., Geballe, et al. , 1993, MNRAS, 263, 781
Mantegazza, L., Poretti, E., Antonello, E., Zerbi, F.M., 1993, APS Conf. Series, 40, 651
Mantegazza, L., Poretti, E., Zerbi, F.M., 1994, MNRAS, 270, 439
Philip, A.G., Egret, D., 1980, A\&AS, 40, 199
Rodríguez, E., López de Coca, P., Rolland, A., Garrido, R., Costa, V., 1994, A\&AS, 106, 21

Shuster, W.J., Nissen, P.E., 1986, IBVS 2943.
Uesugi, A., Fukuda, I., 1982, Revised Catalogue of Stellar Rotational Velocities, Kyoto University, Japan
Vanicek, P., 1969, ApSS, 4, 387
Zerbi, F.M., Garrido, F.M., 1995, in preparation

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4171

Konkoly Observatory
Budapest
13 March 1995
HU ISSN 0374-0676

ONSET OF PULSATION OF V99 IN M15?

The variable V99 in the globular cluster M15 was discovered by Mannino on plates obtained in the years 1954-1955 in Asiago Observatory. From about 200 plates a period of 0.27995 day has been determined and light curve constructed. It is interesting to note that this newly discovered RRc variable had been chosen as comparison star by Bailey in his previous study (Bailey, 1919).

Notni and Oleak (1958) measured the brightness of this star on plates taken by Guthnick and Prager previously to Mannino's observations, in the years 1925 and 1933, in Potsdam-Babelsberg Observatory. On these plates light variation could not be detected.

Brightness measurements were carried out on the plate material of the Konkoly Observatory (1937-1991). The light curves folded on Mannino's period, including the Babelsberg material, show clear light variation only in the years 1956, 1957 and 1963.

As the plates were originally obtained to study period changes the temporal distribution of the data is inconvenient and a high level of noise inherent in the photographic method is present. Still existence of any definite periodic variation can be determined. A larger amount of plates were obtained in the years 1938, 1951 and 1990-91. Fourier analysis of the data for these years was performed.

In the Figures the light curves of the years 1937, 1954 (Mannino's data), 1956 and 1963 can be seen folded on Mannino's period and the amplitude spectra with their spectral windows from the years 1938, 1951, 1954 (Mannino) and 1990-91.

The Fourier analysis of the data of 1925 and 1937 does not show any frequency but noise. We reanalysed Mannino's (1956) observations and we could confirm that the period of the star in 1954 and 1955 given by Mannino was correct.

In 1938 a period of 0.28747 day and 0.1 magn amplitude was found. The period differs from the one given by Mannino by about 0.007 day. This would be far beyond the rate of period change typical for RRc stars. So it can be concluded that the deviating period and the small amplitude of the light curve might show the presence of a non radial pulsational component. In the year 1951 the spectrum shows noise with increased amplitude which would indicate scatter of the data exceeding observational error.

The light curve of 0.40 magn amplitude from 1954 and 1955 defined by Mannino is that of a typical RRc variable of radial mode pulsation. The same holds for the Budapest material from the years 1956 and 1963. From the seventies the limited number of the data shows only scatter slightly exceeding the photographic error. At any rate it suggests diminishing amplitude of any of the periods.

Figure 1. Light curves from Budapest observations in the years 1937, 1956 and 1963 folded on Mannino's period. The light curve from 1954 is based on Mannino's observations.

Figure 2. Amplitude spectra with their spectral windows from the years 1938, 1951, 1954 (from Mannino's data) and 1990-91.

In the years 1990 and 1991 the structure of the spectra in spite of the very low amplitude might indicate some oscillation inside the star.

Time and more accurate photometry can only solve the problem of this unique cluster member. It is suggested that the starting of pulsation has been caught.

This study was partly supported by Hungarian OTKA grant I-3-829.

K. BARLAI and
B. SZEIDL
Konkoly Observatory, Budapest Hungary

References:

Bailey, S.I., 1919, Harv. Ann., 78, Part 3
Mannino, G., 1956, Memorie Soc. Astr. Ital., 27, 263
Notni, P., Oleak, H., 1958, Astron. Nachr., 284, 49

NEW MINIMA TIMES AND PERIOD BEHAVIOUR FOR THE ECLIPSING VARIABLES RT ANDROMEDAE, 44i BOOTIS AND GO CYGNI

In the present report new photoelectric minima times of RT And, 44i Boo and GO Cyg are given as they were derived from our observations made either in Greece or in Romania.

The photoelectric observations of RT And and 44i Boo were made during 1989 and 1994, respectively with the two-beam, multi-mode, nebular-stellar photometer of the National Observatory of Athens, attached to the 48-inch Cassegrain reflector at the Kryonerion Astronomical Station. While those of GO Cyg were made during 1994 with an EMI 9502 B type photocell, attached to the 50 cm Cassegrain telescope of the Bucharest Observatory. The filters used in both cases are in close accordance with the standard UBV and the reduction of the observations has been made in the usual way (Hardie, 1962).

RT Andromedae

The short period variable RT And (BD $+52^{\circ} 3383 \mathrm{~A}$, HD 218915) is a very interesting eclipsing binary with many peculiarities in its light curve. It is classified as an RS CVntype system with both components to be main-sequence stars in contrast to the main group, which contains active sub-giant stars (Budding and Zeilik, 1987).

From our observations made during 1989, 5 new minima times were derived and given in Table I. The O-C diagram of the system based on all minima times found in the literature (614 points) is presented in Figure 1; a quadratic least squares fitting applied to all of them, improves Williamon's (1974) ephemeris formula to:

$$
\text { Min } I=2441141.6401+0.62893928 \times E-1.16 \times 10^{-10} \times E^{2}
$$

showing that its orbital period is decreasing.
A detailed analysis of the period variations of RT And has been recently made (RovithisLivaniou et al., 1994). Moreover our new 5 minima times together with the last photoelectric ones yield the following linear ephemeris:

$$
\begin{gather*}
\text { Min } I=2447756.3385+0 \mathrm{~d} 628929355 \times \mathrm{E} \tag{1}\\
\pm .0003 \pm \quad .000000010
\end{gather*}
$$

which is proposed for the future observations of RT Andromedae.

Table I. Photoelectric Minima Times of RT And			
Hel. JD $(\mathrm{O}-\mathrm{C})_{I}$ $(\mathrm{O}-\mathrm{C})_{I I}$ $(\mathrm{O}-\mathrm{C})_{I I I}$ $2440000+$ days days days 7756.3385 -.0056 -.0022 .0000 7758.5390 -.0062 -.0029 +.0008 7759.4832 -.0054 -.0021 +.0001 7760.4256 -.0064 -.0031 -.0009 7763.5711 -.0052 -.0023 -.0001			

Figure 1. The O-C diagram of RT And based on 44 photographic (squares) and 84 photoelectric (diamonds) minima times. The C values have been calculated using Williamon's (1974) linear ephemeris.

In Table I the residuals $(\mathrm{O}-\mathrm{C})_{I},(\mathrm{O}-\mathrm{C})_{I I}$ and $(\mathrm{O}-\mathrm{C})_{I I I}$ have been calculated according to Williamon's (1974) ephemeris formula:

$$
\operatorname{Min} I=2441141.8888+0.62892984 \times E
$$

Kholopov's (1985):

$$
\text { Min } I=2241141.88902+0.628929513 \times E
$$

and our new one, given by equation (1), respectively. They are the mean values of our B and V observations and have been computed using Kwee \& Van Woerden's (1956) method.

44i Bootis

The eclipsing binary 44 i Boo is the fainter companion $(\mathrm{B}+\mathrm{C})$ of the close visual binary ADS 9494. It is one of the mostly observed systems, since its light curves exhibit "active" and "quiet" periods and its period is variable (e.g. Bergeat et al., 1972; Rovithis et al., 1990; Oprescu et al., $1989 \& 1991$; Gherega et al., 1994).

From our recent photoelectric observations of 44 i Boo, two new minima times have been found and given in Table II.

Table II. Photoelectric Minima Times of 44i Boo

Hel. JD $2440000+$	Min	Fil.	$(\mathrm{O}-\mathrm{C})_{I}$ days	$(\mathrm{O}-\mathrm{C})_{I I}$ days	$(\mathrm{O}-\mathrm{C})_{I I I}$ days
9489.3479	I	V	0.0393	0.0028	-0.0173
9489.3490	I	B	0.0414	0.0039	-0.0162
9489.4832	II	V	0.0407	0.0042	-0.0159
9489.4825	II	B	0.0400	0.0035	-0.0166

In Table II the residuals $(\mathrm{O}-\mathrm{C})_{I},(\mathrm{O}-\mathrm{C})_{I I}$ and $(\mathrm{O}-\mathrm{C})_{I I I}$ have been calculated using Kwee \& Van Woerden's method (1956) and according to the following ephemeris formulae:

$$
\text { Min } I=2439852.4903+0.2678159 \times E
$$

(Duerbeck, 1975)

$$
\text { Min } \mathrm{I}=2439852.4644+0 \mathrm{~d} 2678176 \times \mathrm{E}
$$

(Rovithis et al., 1990)
and

$$
\operatorname{Min} I=2443604.5880+0.26781856 \times E
$$

(Oprescu et al., 1991)
They fit pretty well the last ($\mathrm{O}-\mathrm{C}$) diagram for 44i Bootis (Gherega et al., 1994) - based on Oprescu's et al. (1991) ephemeris formula - showing that the period of the system continues to increase.

GO Cygni

The eclipsing binary GO Cyg (BD $+34^{\circ} 4095$) has been observed photoelectrically many times after its discovery and many minima times can been found in the literature from which its period was found to be variable (e.g. Purgathofer and Prochazka, 1967; Sezer et al. 1985, Hall and Louth, 1990).

From our recent observations of GO Cyg three new minima times were derived and are presented in Table III.

Table III. Photoelectric Minima Times of GO Cyg

Hel. JD $2440000+$	Min	Fil.	$(\mathrm{O}-\mathrm{C})_{I}$ days	$(\mathrm{O}-\mathrm{C})_{I I}$ days	$(\mathrm{O}-\mathrm{C})_{I I I}$ days
9605.34526	II	B	0.0546	0.0143	0.0377
9605.34585	II	V	0.0552	0.0149	0.0383
9623.29007	II	V	0.0555	0.0149	0.0386

In Table III the residuals $(\mathrm{O}-\mathrm{C})_{I},(\mathrm{O}-\mathrm{C})_{I I}$ and $(\mathrm{O}-\mathrm{C})_{I I I}$ have been calculated using Kwee \& Van Woerden's method (1956) and according to formulae:

$$
\begin{aligned}
& \text { Min } I= 2433930.40561+0^{\mathrm{d}} 71776382 \times \mathrm{E} \\
&\quad \text { (Kholopov, } 1985) \\
& \text { Min } \mathrm{I}=2445865.4056+0.71776707 \times \mathrm{E}
\end{aligned}
$$

(Sezer et al., 1985)
and

$$
\operatorname{Min} \mathrm{I}=2446351.328+0.7177632 \times \mathrm{E}
$$

(SAC, 1989)
The newly observed minima times are in accordance with the $\mathrm{O}-\mathrm{C}$ diagram of GO Cyg (Sezer et al., 1985) showing that the period of the system continues increasing. A detailed analysis of the period variations of GO Cyg - based on the new method developed by Kalimeris et al., (1994) - will be done later.

Acknowledgement: This work was partly supported by NATO, grant No. 921208/1993.

H. ROVITHIS-LIVANIOU
P. ROVITHIS
Section of Astrophysics
Astronomy \& Mechanics
Dept. of Physics
Athens University
15784 Zografos
Greece

G. OPRESCU

A. DUMITRESCU

Astronomical Institute
Academia Romana
Street Cutitul d'Argint 5
75212 Bucharest 28
Romania

References:

Bergeat J., Lunel M., Sibile F. \& Van’t Veer F.: 1972, A\&A, 17, 215
Budding E. \& Zeilik M.: 1987, ApJ, 319, 827
Duerbeck H. W.: 1975, IBVS, No. 1023
Gherega O., Farkas L. and Horvath A.: 1994, IBVS, No. 4045
Hall D. and Louth H.: 1990, J. A\&A, 11, 271
Hardie R. H.: 1962, in W.A. Hiltner (Ed.) Stars and Stellar Systems Vol. II, Astronomical Techniques, The University of Chicago Press, Chicago
Kalimeris A., Rovithis-Livaniou H. \& Rovithis P.: 1994, A\&A, 82, 775
Kholopov P.N.: 1985, General Cataloque of Variable Stars, Moscow
Kwee K.K. \& Van Woerden H.: 1956, Bull. A. I. Neth., 12, 327
Oprescu G., Suran M.D. \& Popescu N.: 1989, IBVS, No. 3368
Oprescu G., Suran M.D. \& Popescu N.: 1991, IBVS, No. 3560
Purgathofer A. \& Prochazka F.: 1967, Mitt. Un. Stern Wien, 13, 151
Rovithis P. \& Rovithis-Livaniou, H.: 1990, A\&ASS, 86, 523
Rovithis-Livaniou H., Rovithis P., Kalimeris A., Oprescu G., Dumitrescu A. \& Suran M.D.: 1994, Rom. Astron. J. (in press)

SAC 1989: Rocznik Astronomiczny Observatorium Krakowskiego, No. 60
Sezer C., Gülmen O. \& Güdür N.: 1985, IBVS, No. 2743
Williamon R.M.: 1974, PASP, 86, 924

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4173

Konkoly Observatory
Budapest
20 March 1995
HU ISSN 0374-0676

OPTICAL MONITORING OF TWO X-RAY TRANSIENT SOURCES

1. The X-ray transient pulsar GRO 1008-57

The hard x-ray transient pulsar was detected in 1993 at the 1950.0 position RA $=$ $10^{\mathrm{h}} 08^{\mathrm{m}} 02^{\mathrm{s}} .43$ and $\delta=-58^{\circ} 02^{\prime} 45^{\prime \prime} 2$ (Stollberg et al., 1993, Tanaka 1993).

To analyse its long-time behaviour and/or possible low energy emission, we have investigated the position of GRO 1008-57 on archival patrol plates from the collections of the Sonneberg and Bamberg Observatories. Altogether 218 Sonneberg patrol plates reaching the limiting magnitudes of 12-13 and taken in the years 1935-1953 as well as 125 Bamberg patrol plates reaching limiting magnitudes 13-15 and taken during the time interval 19641976 , i.e. total of 343 plates representing $\sim 310 \mathrm{hrs}$ of exposure have been analysed. No optical activity has been detected from the position of the X-ray pulsar with the above mentioned threshold.

We conclude that the optical emission of the transient pulsar is either an infrequent phenomenon and/or does not reach the limiting magnitudes on corresponding plates.

2. The X-ray Nova GRS 1716-249 = GROJ 1719-24

The X-ray nova in Ophiuchus was detected in 1993 (Ballet et al., 1993) with a radio and optical counterpart exhibiting brightening from 21 to 17.1 mag . (Mirabel et al., 1993). The position of the radio and optical counterpart has been measured as follows (Mirabel et al., 1993) : $\mathrm{RA}=17^{\mathrm{h}} 16^{\mathrm{m}} 32^{\mathrm{s}} 52, \delta=-24^{\circ} 58^{\prime} 01^{\prime \prime} 1$ (1950.0).

We have analysed this position on archival plates from the collections of the Leiden, Sonneberg and Bamberg Observatories in order to see whether or not this is a repeating phenomenon. We have analysed 552 archival patrol plates from the Sonneberg collection (reaching typical limiting magnitudes of 11 to 13), taken during the time period from 1929 to 1964, 226 Franklin Adams archival plates from the Leiden Observatory collection with typical limiting magnitudes 15.5-16.0 taken during the time period 1930-1950 and 146 archival plates taken at the southern stations of the Bamberg Observatory with typical limiting magnitudes of 13 to 15 taken in the years 1963 to 1969 , i.e. total of 924 plates representing $\sim 720 \mathrm{hrs}$ of exposure. We have not found any sign of optical activity from this position exceeding the corresponding magnitude limit. We conclude that either the object was optically inactive in the time intervals covered by the plates or that the possible brightenings were below the plate threshold.

Acknowledgements. We acknowledge the support by the Sonneberg, Leiden and Bamberg Observatories in providing their archival plates and also the support by the grant No. 303103 of the Academy of Sciences of the Czech Republic.

R. HUDEC
Astronomical Institute
Academy of Sciences of the Czech Rep.
CZ-251 65 Ondřejov Czech Republic

References:
Ballet, J., Denis M., Gilfanov, M. and Sunyaev, R.: 1993, IAUC, No. 5874
Mirabel, I. F., Rodriguez, L. F. and Cordier, B.: 1993, IAUC, No. 5876
Stollberg, M. T., Finger, M. H., Wilson, R. B., Harmon, B. A., Rubin, B. C., Zhang N.
S. and Fishman G. J.: 1993, IAUC, No. 5836

Tanaka, Y.: 1993, IAUC, No. 5877

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4174

Konkoly Observatory
Budapest
22 March 1995
HU ISSN 0374-0676

OBSERVATION OF A $V=R$ TRANSITION IN THE Be STAR 66 Oph 1

As part of our long-term high resolution spectroscopic monitoring programme of Be stars, we have repeatedly observed the interesting equatorial Be star $66 \mathrm{Oph}=\mathrm{HR} 6712$ (B2 IV-Ve, $v \sin i=240 \mathrm{~km} \mathrm{~s}^{-1}$). During the past two decades, its $\mathrm{H} \alpha$ emission strength has been observed to steadily increase from $F_{\alpha}=3 F_{\mathrm{c}}$ in 1973 (Gray \& Marlborough 1974) to $8-10 F_{\mathrm{c}}$ in 1992-1994 (see Table 1). This latter value corresponds to equivalent width $W_{\alpha} \approx 50-60 \AA$, thus presently making 66 Oph one of the brightest Be stars at $\mathrm{H} \alpha$.

We have mainly investigated the $\mathrm{H} \alpha$ and the Fe II $\lambda 5317$ emission lines. Our data cover the epoch 1989-1994 and have been measured at ESO 1.4 m Coudé Auxiliary Telescope (observers: Hanuschik, Hummel), at the 2.2 m telescope at the German-Spanish Observatory DSAZ on Calar Alto/Spain (observers: Hummel, Vrancken), and at the 2.0 m Ondřejov telescope (observer: Steff). Resolution $R=\lambda / \Delta \lambda$ has been around 50000 , except for the Ondřejov data (15000). The signal-to-noise ratio is usually several hundred except for some of the Fe II profiles shown here. Profile parameters are collected in Table 1.

Our profile survey in Fig. 1 demonstrates that in 1989-April 1993, and since June 1994 again, 66 Oph has shown asymmetric single or double-peak profiles at $\mathrm{H} \alpha$, and extremely asymmetric, so-called steeple profiles in Fe II. Especially striking is the inversion of asymmetry from $V>R$ (in 1989) to $R>V$ (1992) back to $V>R$ (1994).

The steeple-type Fe II profile shape and the cyclic V / R asymmetry are two connected phenomena, both being produced by a large-scale density inhomogeneity. This structure is likely to be a global density wave, slowly precessing under the influence of the centrifugally flattened B star (Hanuschik et al. 1995).

In 1988, 66 Oph showed a sudden onset of cyclic V / R variability, after at least 15 years of symmetric double-peak structure ($V \approx R$). Its present full V / R cycle time is only 5 years, rather short if compared to other such Be stars which have typical cycle duration of about 10 years. With this cycle time, the first $V=R$ transition must have occurred in early-1991, but escaped detection. In 1993, we have been fortunate enough to observe the second $V=R$ transition, both in $\mathrm{H} \alpha$ and Fe II (see Fig. 2). This transition occurred in November 1993 and appears to have lasted only a few months, as a comparison of our data from September 1993 ($\mathrm{H} \alpha: R>V$), November 1993 ($R=V$), and June 1994 ($V>R$) clearly shows.

The transition appears quite smooth, with a gradual decrease in asymmetry in 1993 from April over September to November, and a new increase, with opposite sign, to 1994 August. The overall time of observed $V=R$ shape is only a few months, a small fraction of the full cycle time. Such temporal behaviour agrees well with the expectation that the slope of the V / R evolution is sinusoidal, with much longer periods of V / R asymmetry than with $V=R$.

[^5]

Figure 1. $\mathrm{H} \alpha$ and Fe II emission line profiles in 66 Oph (left), both on a common heliocentric velocity scale. The flux scale of the Fe it lines is expanded by a factor of 20.

Figure 2: Comparison of the 1993 and 1994 profiles of 66 Oph, demonstrating the $V<R \rightarrow V>R$ transition in November 1993.

Table 1. Line parameters for $\mathrm{H} \alpha$ and Fe II

Date a	$\mathrm{H} \alpha$												Fe II $\lambda 5317$
		W_{λ} / \AA	V / R^{b}	$F_{\mathrm{p}} / F_{\mathrm{c}}^{c}$		$W_{\lambda} / \mathrm{m} \AA$	V / R	$F_{\mathrm{p}} / F_{\mathrm{c}}$					
891001	45.9	>1	7.78		680	3.78	1.189						
920324	46.6	0.911	7.95		391	0.241	1.174						
930418	59.7	0.852	9.80										
930909	59.1	0.944	9.47		227	1.59	1.063						
931106	44.6	1.00	7.16		$500:$	≈ 1	$1.09:$						
940624^{d}	50.5	1.10	7.82										
940706	49.8	1.11	7.73										
940803^{e}	48.7	1.14	7.76										
940815	49.5	1.14	7.64										
940829	49.9	1.15	7.66										

${ }^{a} 891001=1989$ October 1
${ }^{b} V / R=\left[F(V)-F_{\mathrm{c}}\right] /\left[F(R)-F_{\mathrm{c}}\right]$
${ }^{c}$ average intensity if two peaks exist
${ }^{d}$ averaged from 7 measurements on June 23,24 , and 25
${ }^{e}$ averaged from 3 measurements

An interesting observation is that shortly before the $V=R$ transition, $\mathrm{H} \alpha$ and Fe II profiles showed slightly opposite V / R behaviour: in September $1993, V<R$ in $\mathrm{H} \alpha, V>R$ in Fe II. This may be partly due to the fact that in a certain critical parameter range, the superposition of different line broadening mechanisms (causing the winebottle-type inflections and the profile peaks) causes slightly inverse V / R ratios in $\mathrm{H} \alpha$ and the Fe it line. Alternatively, this may be indicative of a certain time lag between the $V=R$ transition in both lines due to very different optical depth and therefore different contributing disk regions. Thus these measurements contain valuable information for the modelling of the density wave.

A very pronounced decrease in equivalent width occurred in November 1993 (by 25%), after the star had shown a stable value of $59 \AA$ for almost half a year before. Half a year later, W_{α} was again observed at higher values, remaining constant thereafter for at least two months. Such rather strong variability seems to be uncommon in this star. However, we are not fully sure that the sudden decrease is not a mere chance coincidence. If it is physically related to the $V=R$ transition, then this observation may be interpreted as result of the relatively small velocity gradient (averaged across the whole emitting disk) at the moment of symmetry ($V=R$), as compared to the situation shortly before and after the transition when the velocity gradient becomes larger again.

We strongly encourage other observers to continue to monitor this interesting Be star at high spectral resolution, in order to follow up its V / R behaviour and to furthermore document its emission strength variability pattern.

> R.W. HANUSCHIK ${ }^{1}$, S. ŠTEFL ${ }^{2}$, W. HUMMEL ${ }^{\text {W }}$, M. VRANCKEN
${ }^{1}$ Astronomisches Institut, Ruhr-Universität, Postfach 1021 48, D-44780 Bochum, Germany
${ }^{2}$ Astronomical Institute, Czech Acad. of Sciences, CZ-251 65 Ondřejov, Czech Republic
${ }^{3}$ Astrofysisch Instituut, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium

References:

Gray, D.F., Marlborough, J.M., 1974, ApJS, 27, 121
Hanuschik, R.W., Hummel, W., Dietle, O., Sutorius, E., 1995, A \mathcal{A} (in press)

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4175

Konkoly Observatory
Budapest
23 March 1995
HU ISSN 0374-0676

PHOTOMETRIC EXAMINATION OF CP2-PECULIARITY FOR HD 200405, HR 44, HR 7752 and HR 9092

In the course of a programme aimed at checking spectroscopic peculiarity assignments of chemically peculiar stars on the upper main sequence belonging to group CP2 (in older terms: the α^{2} CVn variables) we have chosen the above stars for 3 runs at the L. Figl Observatory (Univ. of Vienna) on the summit of Schöpfl using its 60 cm photometric telescope equipped with a classical one-channel photoelectric photometer (photomultiplier: EMI 9844A, Peltier-cooled). Observer was AS.

The filter system employed is that of Δa (Maitzen, 1976) which has been shown to identify CP2 stars as effectively as classification spectroscopy (Maitzen and Vogt, 1983). Details on the filters $g 1$ and $g 2$ were given in Maitzen and Floquet (1981), the third filter is a conventional Ströemgren system filter y.

Measurements for this programme were obtained on August 5/6, August 9/10 and October $15 / 16,1994.10$ stars were chosen to define the normality line of the index $a(=g 2-(g 1+y) / 2)$ versus the colour index $b-y$, the deviation of which has been defined as Δa-value. A measurement series for a programme star consisted of $8-12$ repeats of the sequence $g 1, g 2$, y each covering 15 seconds of integration. The resulting mean error for the HR-stars was $2-3$ millimags in a, and 3-4 millimags in $g 1-y$. Only for the relatively faint HD 200405 the error was $3-4$ millimags in a and $4-5$ millimags in $g 1-y$.

We have taken the $b-y$-values from Hauck and Mermilliod (1990), but no such value seems to have been published for the peculiarity candidate HD 200405. Since a very good correlation between $b-y$ and the colour difference $g 1-y$ had been found on previous occasions, we made use of it also in the present case. Fig. 1 shows this correlation with a slope of 0.51 .

Figure 1. Correlation between $g 1-y$ and $b-y$ (both in mmags). Candidates for peculiarity are represented by open circles.

Figure 2. Peculiarity index a vs. $b-y$ (both in mmags). Open circles are for measurements of CP2 candidates. Full line is the locus of normal stars.

From this correlation a value $b-y=0.013$ can be inferred for HD 200405. Even considering an error of 0.020 mag of this value, this will only very marginally influence the resulting Δa-value. The relationship a vs. $b-y$ is displayed in Fig. 2. A regression curve yields

$$
a=-144+0.12(b-y)-0.0002(b-y)^{2}
$$

with a scatter of only 2.28 millimags for the normal stars. Table 1 gives the results of our Δa-system measurements individually for the 3 nights, expressed in millimags.

RESULTS AND DISCUSSION:

1. HD $200405=$ Renson (1991) Catalogue ($=$ RE) 55830.

North (1994) has shown that this binary has the shortest orbital period (1.63 days) known among those which host a CP2 star. Although he reports a $\Delta(V 1-G)=0.021$ indicating a CP2 star photometrically, North (private communication) asked for an independent confirmation of this result. Without any doubt we can give this confirmation based on our photometry:
our Δa-values ($36,43,34$ millimags, obtained on JD 2449/570.513,574.553,641.374, resp.) classify the pertaining component as medium strong peculiar star with a slight indication that it may be variable. Variability should not be very pronounced according to the orbital analysis of North (1994) since the star seems to be seen nearly pole-on. Future observations may help to get more insight into this very special example of a binary containing a CP2-star whose characteristics are obviously preserved despite the important tidal forces exerted by the nearby companion (North, 1994).

2. HR $44=$ RE 150

Cowley et al. (1969) have classified this star A1V Si:. This prompted Floquet (1975) to reobserve this object and she derived A0III for this star. Our Δa-result (obtained on JD 2449641.434) is in agreement with a non-peculiar star.

3. $\mathrm{HR} 7752=$ RE 53850

Osawa (1959) classified this star B9.5Vp with the remark that the K-line is as strong as in A1 and that He I 4026 is visible. Floquet (1970), however, classifies this object as normal A0V star which is in agreement with our completely normal Δa-values (obtained on JD 2449/570.398 and 574.395).

Table 1. Δa-photometry

Object	$b-y$	a			Δa			$g 1-y$		
HD 200405	13	-107	-100	-110	36	43	34	-3	-5	
HR 44	-3			-148			-4			
HR 7752	-4	-145	-145		-1	-1		-19	-15	
HR 9092	98			-134			0			
HR 68	26			-141			0		46	
HR 70	-33			-151			-3			
HR 114	169			-129			0			
HR 7253	176		-130			-1			89	
HR 7453	146	-133	-132		-2	-1		70	65	
HR 7756	281	-127	-129		-1	-3		129	138	
HR 7769	13	-144	-143		-2	-1		-6	-5	
HR 7792	-17	-142	-147	-144	4	-1	2	-9	-12	
HR 7826	31		-139			2				
HR 8463	76	-133	-132	-133	3	4	3	37	89	

4. HR $9092=$ HD 224995

Contrary to the preceding three stars this object is not contained in the Renson catalogue of Ap and Amstars. It has been included in our programme because Δa-photometry of Vogt et al. (1995) exhibited a marginally peculiar value (0.015 mags).

Except for the observation of Hauck (1986) that HR 9092 is one of 22 stars classified as dwarfs in the Bright Star Catalogue, but which have the same Geneva colours as giants, this star does not show a peculiar behaviour, and lacks CP2 characteristics. Our photometric value has been obtained on JD 2449641.418.

As a summary we arrive at the conclusion that only HD 200405 is photometrically a CP2-star. Because of its special nature as member of a close binary system it deserves further observations. The other three stars are normal in our photometry.

This research has made use of the Simbad database, operated at CDS, Strasbourg, France.
A. SCHNELL
H. M. MAITZEN

Institut für Astronomie
Universität Wien
Türkenschanzstr. 17, A-1180 Wien maitzen@astro.ast.univie.ac.at

References:

Cowley, A.P., Cowley, C.R., Jaschek, M., Jaschek,C.: 1969, AJ, 74, 375
Floquet, M.: 1970, $A \& A S, \mathbf{1}, 1$
Floquet, M.: 1975, A\&AS, 21, 25
Hauck, B.: 1986, A\&A, 155, 371
Hauck, B., Mermilliod, J.C.: 1990, A\&AS, 86, 107
Maitzen, H.M.: 1976, $A \xi A, \mathbf{5 2}, 223$

Maitzen, H.M., Floquet, M.: 1981, $A \& A, 100,3$
Maitzen, H.M., Vogt, N.: 1983, A\&A, 123, 48
North, P.: 1994, in: The 25th Workshop and Meeting of European Working Group on CP Stars, eds.: I. Jankovics, I.J. Vincze, ELTE Gothard Astrophysical Observatory, Szombathely, p. 3
Osawa, K.: 1959, ApJ, 130, 159
Renson, P.: 1991, Catalogue Général des Etoiles Ap et Am, Institut d' Astrophysique, Université de Liège
Vogt, N., Kerschbaum, F., Maitzen, H.M.: 1995, A ξA submitted

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4176

Konkoly Observatory
Budapest
23 March 1995
HU ISSN 0374-0676

PHOTOMETRIC VARIABILITY OF THE ELLIPSOIDAL STAR AND SPECTROSCOPIC BINARY 7 CAMELOPARDALIS

For several years we have used 7 Cam ($=$ BS 1568, HD 31278, ADS 3536; Sp = A1V, but see below; $V=4.47$) as our principal check star for differential photometry of 9 Aurigae, with BS 1561 ($\mathrm{Sp}=\mathrm{A} 2 \mathrm{~V} ; \mathrm{V}=5.78$) as the comparison star. Recently, over the course of a seven-night photometric run at Mauna Kea we noticed that the nightly means of 7 Cam vs. BS 1561 were the same only every other night. So we added a second check star, BS 1668 ($\mathrm{Sp}=\mathrm{F} 5 \mathrm{~V}, \mathrm{~V}=5.68$), to the observing sequence. Photometry of the second check star, with respect to BS 1561, showed it to be constant to within the observational errors. A power spectrum of the recent 7 Cam vs. BS 1561 data indicated a period just under two days, but we suspected that it was just an alias of data taken primarily at a single site. However, a footnote in the Bright Star Catalogue indicated that 7 Cam is a known spectroscopic binary with a period of 3.88 days. It occurred to us that 7 Cam could be an ellipsoidal variable star with a photometric period equal to half the orbital period.

A Simbad search pointed us to a paper in which Lucy and Sweeney (1971) recomputed, under the assumption that the orbit is exactly circular, the orbit determined by Harper (1911) on the basis of Ottawa and Lick radial velocities. It is not clear from their paper whether Lucy and Sweeney took into account the additional velocities measured at the Dominion Astrophysical Observatory and used by Harper (1934) to refine the orbital period. The exact period, and its uncertainty (which Lucy and Sweeney did not give), are of particular interest to us, as they enable us to extrapolate to the present day the spectroscopic phase of the system for comparison with the photometric phase. We therefore recomputed the orbit ourselves from the Lick, Ottawa, and Dominion Astrophysical Observatory radial velocities. We know of no others of comparable precision. An empirical adjustment was made to the zero-point of the Lick data, and the three sources were weighted so as to equalize the variances of their residuals. The solution is:

$$
\begin{aligned}
& \mathrm{P}=3.884505 \pm 0.000033 \text { days } \\
& \mathrm{T}_{0}=\mathrm{JD} 2418636.210 \pm 0.011 \\
& \mathrm{~V}_{0}=-9.2 \pm 0.5 \mathrm{~km} \mathrm{sec}^{-1}(\gamma \text { velocity }) \\
& \mathrm{K}=35.4 \pm 0.7 \mathrm{~km} \mathrm{sec}^{-1} \\
& \mathrm{e}=0 \\
& a_{1} \sin i=1.89 \pm 0.04 \times 10^{9} \mathrm{~m} \\
& \mathrm{f}(\mathrm{~m})=0.0179 \pm 0.010 \mathrm{M}_{\odot}
\end{aligned}
$$

Here T_{0} is the epoch of maximum velocity (when the component we see is receding from us). $a_{1} \sin i$ is the true radius of the orbit of the primary about the center of mass, projected in the line of sight. $f(m)$ is the mass function.

Figure 1 - Differential photometry of 7 Cam (BS 1568) vs. BS 1561. The three points with error bars are nightly means of data by Luedeke. The rest are individual differential magnitudes obtained at Mauna Kea.

Figure 2 - Power Spectrum of data obtained by Guinan and McCook in 1989/90. The frequency $f=0.51487$ and its one-day alias are indicated.

In Figure 1 we give the data recently obtained, also showing the least-squares sinusoid fit to the data obtained at Mauna Kea, with a period equal to half of the spectroscopic period. The derived photometric amplitude is $5.9 \pm 0.9 \mathrm{mmag}$. If we adopt an epoch of HJD 2449000, the derived phase of minimum light is $-.2238 \pm 0.0263$, where the negative phase means that the photometric minimum occurs slightly after the given epoch. The goodness of fit is $\pm 3.8 \mathrm{mmag}$ for a single observation.

Do previous data confirm the variability? The best set to use was obtained over a 136 -day period in 1989/90 by Guinan and McCook with the Phoenix-10 APT at Mt. Hopkins, Arizona. These data can be obtained from Archives of IAU Commission 27 as file 218 of unpublished photometry (see Krisciunas and Guinan 1990). In Figure 2 we show the power spectrum of the V-band data from five years ago. The least-squares phase of the

Figure 3 - Data by Guinan and McCook from 1989/90, phased with ephemeris derived from the $1994 / 5$ data. The mean value of $\Delta V=-1.3145 \pm 0.0010$ is slightly brighter than the mean value obtained from the more recent photometry obtained at Mauna Kea, $\Delta V=-1.3078 \pm 0.0006$.

1989/90 data, from an epoch of 2449000 , is $-.2010 \pm 0.0204$, within the errors equal to the phase of the 1994/5 data. In Figure 3 we show the 1989/90 data phased with the ephemeris derived from the most recent data, but folded with the full orbital period, just in case one side of the primary appears differently than the other. One can see graphically that the ephemeris has not changed. The photometric amplitude derived from the $1989 / 90 \mathrm{~V}$-band data is $7.8 \pm 1.0 \mathrm{mmag}$, with a goodness of fit of $\pm 5.6 \mathrm{mmag}$ for a single observation. B-band and U-band data taken in 1989/90 yield amplitudes of 6.6 ± 1.3 and $7.6 \pm 1.2 \mathrm{mmag}$, respectively.

A tentative piece of confirming evidence, that we are seeing the larger projected area of an ellipsoidal star every half orbit, comes from the orbital determination. We should see the minimum light, when either of the visible star's smaller sides is facing us, when the orbital phase is .25 or .75 . Between the spectroscopically derived epoch of maximum velocity, and an epoch of minimum light of HJD 2449000.4347, the difference in time divided by Griffin's orbital period gives 7816.755 ± 0.068 orbits. Since the fractional part of this number is close to .75 , it is entirely consistent with the notion that the visible component of 7 Cam is tidally distorted by a less massive, unseen component. This could be greatly reinforced by a new spectroscopic determination of the orbital phase.

It is likely that the published luminosity class of 7 Cam is wrong. It may be a subgiant, not a main sequence star. Given the mass function, an assumed mass of $2.2 \mathrm{M}_{\odot}$ for the primary and a range of masses for the secondary, we attempted to model the ellipsoidal nature of the primary and found that there is no solution if the primary is the size of a main sequence early A-type star ($R \approx 1.8 R_{\odot}$). However, if the primary has $R>3.0 R_{\odot}$, a photometric range of $\pm 6-7 \mathrm{mmag}$ can be obtained. Given the primary's projected rotational rate of $45 \mathrm{~km} \mathrm{sec}^{-1}$, if $R>3.45 R_{\odot}$ the rotational period could equal the orbital period. This tidal locking is not unexpected. If $\sin i \approx 1$ (expected for a photometrically variable ellipsoidal star), the mass of the secondary is $\approx 0.5 \mathrm{M}_{\odot}$.

Roman (1949) includes 7 Cam in her list of probable members of the Ursa Major stream. There is a problem with this. The age of the UMa cluster is about $2-3 \times 10^{8}$ years (Wielen 1978; Soderblom 1990). A $2.2 \mathrm{M}_{\odot}$ star such as 7 Cam would have a main
sequence lifetime an order of magnitude longer than this. If 7 Cam is indeed a subgiant, it is much too old to be a member of the UMa stream.

We note that the secondary we have been discussing is not the $m_{v}=7.9$ companion discovered by Dembowski, listed by Aitken (1932), and more recently observed at $\rho=$ $0!483$ by McAlister et al. (1989) via speckle observations. 7 Cam also has an $m_{v}=11.3$ companion at $\rho=26^{\prime \prime}$.

The HIPPARCOS parallax, when it becomes available, will allow many of parameters of this system to be more accurately determined.

Acknowledgments. We thank the University of Hawaii, Institute for Astronomy, for telescope time on the $0.6-\mathrm{m}$ telescope at Mauna Kea. Some information was obtained from the SIMBAD data retrieval system, a data base of the Astronomical Data Centre in Strasbourg, France. D. Osterbrock provided some other useful information and comments. KK and PP thank the Joint Astronomy Centre for observing support. MR's observing expenses were paid for by a University of Hawaii at Hilo fund endowed by William Albrecht.
K. KRISCIUNAS
Joint Astronomy Centre,
660 N. A'ohōkū Place,
University Park, Hilo,
Hawaii 96720 , USA
[kevin@jach.hawaii.edu]
E. F. GUINAN
G. P. McCOOK
Villanova University,
Department of Astronomy,
Villanova, Pennsylvania 19085, USA
R. F. GRIFFIN
The Observatories, Madingley Road,
Cambridge CB3 0HA, UK
R. A. CROWE
M. ROBERTS

Department of Physics
and Astronomy,
University of Hawaii at Hilo,
200 West Kawili Street, Hilo,
Hawaii 96720, USA
K. D. LUEDEKE

9624 Giddings Avenue NE,
Albuquerque, New Mexico 87109, USA
P. POBOCIK
P. O. Box 1189, Keaau, Hawaii 96749, USA

References:
Aitken, R. G., 1932, New General Catalogue of Double Stars within 120° of the North Pole, Washington, D. C., Carnegie Institution
Harper, W. E., 1911, J. R. Astr. Soc. Canada, 5, 115
Harper, W. E., 1934, Publ. Dom. Astrophys. Obs., 6, 207
Krisciunas, K., and Guinan, E., 1990, IBVS, No. 3511
Lucy, L. B., and Sweeney, M. A., 1971, Astronomical Journal, 76, 544
McAlister, H. A., Hartkopf, W. I., Sowell, J. R., and Dombrowski, E. D., 1989, Astronomical Journal, 97, 510
Roman, N. G., 1949, Astrophys. J., 110, 205
Soderblom, D., 1990, Astronomical Journal, 100, 204
Wielen, R., 1978, Mitteilungen der Astr. Gesellschaft, No. 43, 261

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4177

Konkoly Observatory
Budapest
23 March 1995
HU ISSN 0374 - 0676

COMPLETE CCD U,B,V,R,I LIGHT CURVES OF THE SHORT PERIOD ECLIPSING BINARY: V361 LYRAE

The 14th magnitude variable, V361 Lyrae, was discovered by Hoffmeister (1966) who classified it as an RR Lyrae-type star but gave no period. No further work was done for almost two decades until Galkina and Shugarov (1985) conducted a photographic study which indicated that V361 Lyr is actually a Beta Lyrae type eclipsing binary with an orbital period of about 7.5 hours. Andronov and Richter (1987) confirmed this conclusion while also noting an unusual difference between the heights of the maxima. They suggested that V361 Lyr is a semi-detached system undergoing vigorous mass transfer as evidenced by a hot spot on the mass accreting component. Kaluzny (1990) presented 1988 V, I photoelectric light curves and gave U,B,V standard magnitudes for some particular phases. He listed three times of minimum light and estimated the components to be of early K spectral type. Later, he (Kaluzny, 1991) published 1989 photoelectric V, I light curves as well as one primary epoch of minimum light. Shugarov et al. (1990) presented photoelectric U,B,V light curves accumulated over four observing seasons (1986-1989) listing standard magnitudes at key phases. They suggested that the secondary is accreting matter and give estimates of K1 V and K 4 V for the primary and secondary components, respectively. Nations et al. (1994) indicated that they have B, V, R, I light curves and some preliminary models.
w

Figure 1

Figure 2

Table 1

Star	RA(2000)	DEC(2000)
V361 Lyrae	$19^{\mathrm{h}} \mathrm{h} 2^{\mathrm{m}} 27^{\mathrm{s}}$	$46^{\circ} 58^{\circ} 59^{\prime \prime}$
Comparison	$19^{\mathrm{h}} 02^{\mathrm{m}} 16^{\mathrm{s}}$	$46^{\circ} 57^{\prime} 43^{\prime \prime}$
Check	$19^{\mathrm{h}} 02^{\mathrm{m}} 15^{\mathrm{s}}$	$46^{\circ} 58^{\prime} 30^{\prime \prime}$

Table 2

JD Hel. $2400000+$	Cycles	$(\mathrm{O}-\mathrm{C})_{1}$	$(\mathrm{O}-\mathrm{C})_{2}$
$49163.8090(1)$	0.0	0.0002	0.0001
$49164.7381(3)$	3.0	0.0000	-0.0001
$49165.9762(6)$	7.0	-0.0003	-0.0002
$49168.7630(2)$	16.0	0.0000	0.0001

Our present U, B, V, R, I CCD light curves of V361 Lyrae were obtained as part of our ongoing study of compact solar-type eclipsing binaries. The observations were made on 1993, June 23-25, inclusive, and 29-30 at Kitt Peak National Observatory (KPNO), Arizona. A Tektronix Te2K chip and CCD camera system was used in conjunction with the $0.9-\mathrm{m}$ reflector. Between 225 and 250 observations were made in each passband.

A CCD image of the field is shown in Figure 1. The variable, comparison, and check stars are designated as v, c, and k , respectively with coordinates of each given in Table 1.

Four new precise epochs of minimum light were determined from the observations made during primary eclipses. Several secondary were also calculated but were later removed from our period analysis due to severe distortions in the light curve around the secondary eclipse (0.5 phase). The bisection of chords technique was used to determine all epochs of minimum light. These new primary minima are listed in Table 2. In Table 2 and throughout the paper, values are accompanied by their probable errors in parentheses.

The recent epochs of photoelectric and CCD minima were introduced into a least squares solution to obtain a new linear ephemeris which best represents the present observations:

$$
\begin{array}{r}
\text { JD Hel Min. }=2449163.8092+0 \mathrm{~d} 30961404 \times \mathrm{E} \tag{1}\\
\pm 3
\end{array}
$$

The $\mathrm{O}-\mathrm{C}$ residuals calculated from equation 1 are listed as $(\mathrm{O}-\mathrm{C})_{1}$ in Table II. We then calculated a quadratic ephemeris by introducing all available times of minimum light and times of lowlight from Galkina and Shugarov (1985) and Andronov and Richter (1987) into a least squares quadratic solution:

$$
\begin{array}{r}
\text { JD Hel Min. }=2449163.8091+0.30961373 \times \mathrm{E}-3 \mathrm{~d} 6 \times 10^{-11} \times \mathrm{E}^{2} \tag{2}\\
\pm 4
\end{array}
$$

The quadratic term is statistically significant at greater than the 10 sigma level. This negative term would indicate that the secondary (less massive) component is the accretor. The residuals calculated from equation 2 are listed in Table 2 as $(\mathrm{O}-\mathrm{C})_{2}$.

The standardized B, $, \mathrm{R}_{c}, \mathrm{I}_{c}$ light curves of V361 Lyrae as defined by their individual observations are shown in Figure 2 as differential magnitudes (variable-comparison) versus phase. The analysis of the observations is in progress.

Jamison D. GRAY
Ronald G. SAMEC*
Brian J. CARRIGAN
Department of Physics and
Astronomy
Millikin University
Decatur, Illinois 62522, USA

* Visiting Astronomer, Kitt Peak National Observatory, National Optical Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.

References:

Andronov, I.L., and Richter, G.A., 1987, AN, 308, 235
Galkina, M.P. and Shugarov, S.Yu., 1985, Variable Stars, 22(2), 225
Hoffmeister, C., 1966, AN, 289, 139
Kaluzny, J., 1990, AJ, 99, 1207
Kaluzny, J., 1991, AA, 41, 17
Nations, H.L., Bradstreet, D.H., Guinan, E.F., and Laurenzano, J., 1994, BAAS, 27, 793
Shugarov, S.Yu., Goranskij, V.P., Galkina, M.P., and Lipunova, N.A., 1990, IBVS, No. 3472

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4178

Konkoly Observatory
Budapest
28 March 1995
HU ISSN 0374-0676

CCD PHOTOMETRY OF SIX FAINT CATACLYSMIC VARIABLES

Photometric observations of several CV candidates were obtained using the CCD camera on the Danish 1.5 m telescope at the European Southern Observatory in June/July 1988 (Table 1). Differential instrumental magnitudes were then derived relative to nearby comparison stars on the same CCD image. The major goals were to confirm or reject the CV nature of the targets and to search for orbital variability and eclipses. Detailed analysis of interesting systems is published separately. This notice presents results for six objects.

PG 1403-111
This object was classified as a CV showing a composite spectrum (Green et al., 1986). Recent spectrophotometric observations (Zwitter and Munari, 1994) revealed no emission lines or hot continuum. It may be that this object is a misidentification as a CV because the photometry also showed no evidence of any variability.

PG $1522+122$
This object was also classified as a CV by Green et al. (1986). The photometry showed no indication of a typical CV light curve. There was only a small decline in brightness of about 0.04 mag within three hours. The small scatter of about 0.02 mag rules out flickering activity. The object is probably not a CV.

NSV 09208
Eggen (1969) lists this object (BPM 24960) as a probable variable white dwarf suspect. A possible CV nature is assigned in the NSV catalogue. The 1.5 -hour light curve shows a slight increase in brightness by about 0.15 mag with superimposed flickering of about 0.1 mag. There is no indication for a periodic modulation. Nevertheless, the object is likely to be a CV.

NSV 14152
Haro and Luyten (1960) suggest this blue object (Var 7) to be an eruptive variable. It is listed as a possible CV in the NSV catalogue. The 0.8 -and 4 -hour runs show typical flickering activity with an amplitude of about 0.2 mag . Whereas during the first night the system remained nearly constant it brightened during the second steadily by about 0.25 mag . The mean magnitudes on the two nights differ by about 0.35 mag . A periodic variation longer than 4 hours is therefore expected.

CF Gru (2138-453)
Hawkins and Veron (1987) detected the variability of this blue object and classified it spectroscopically as a CV. CCD photometry by Howell et al. (1991) revealed hot-spot modulations with a period of $93 \pm 11 \mathrm{~min}$ and the presence of large flickering. The present data set shows generally the same behaviour, but can be better fitted with a period of $100 \pm 11 \mathrm{~min}$ (Figure 1).

Figure 1: Differential light curve of CF Gru in integral light. The measurements taken on 1988 June 28 are folded with a period of 100 min (phase arbitrary). This period represents the present observation better than the 93 min given by Howell et al. (1991).

Figure 2: Differential photometry of Hawkins V6 obtained in integral light on 1988 July

1. A repeatable modulation with a period of 80 min is present. At 6:30 UT the integration time of 60 s was changed to 120 s .

Table 1: Observing log. Start is the time for the midpoint of the first exposure. The observation interval also includes gaps due to any interruption of the exposure series. Magnitudes are in B except for the NSV objects where the values from the NSV catalogue are given. Observations were performed in integral light except for NSV 09208 where a Johnson B filter was used.

Object	Date (1988)	Start (UT)	Interval (h)	Int. Time (s)	Frames	Mag
PG 1403-111	Jun 29	$01: 27: 59$	2.05	45	94	16.0
PG 1522+122	Jul 01	$00: 21: 36$	3.00	120	73	16.1
NSV 09208	Jun 30	$03: 48: 23$	1.56	180	28	15.8
NSV 14152	Jun 29	$10: 02: 04$	0.84	120	21	20.2
	Jun 30	$06: 39: 19$	4.06	120	96	
CF Gru	Jun 28	$07: 42: 06$	3.08	180	53	20.4
Hawkins V6	Jul 01	$05: 17: 48$	3.47	$60 / 120$	98	$18: 5$

Hawkins V6
Based on its outburst behaviour Hawkins $(1981,1983)$ classified this object as a CV. The 3.5 -hour photometric run shows evidence for a periodic modulation masked by strong flickering activity (Figure 2). A periodogram analysis yielded a possible period of 807 min. Further, the light curve shows a steady decrease of about 0.4 mag over the entire run thus indicating that the system was probably observed during a decline from outburst.

R. HAEFNER
Universitäts-Sternwarte
Scheinerstr. 1
81679 München
Germany

References:

Eggen, O.J.: 1969, ApJ, 157, 287
Green, R.F., Schmidt, M., Liebert, J.: 1986, ApJS, 61, 305
Haro, G., Luyten, W.J.: 1960, TTB, No. 19, 17
Hawkins, M.R.S.: 1981, Nature, 293, 116
Hawkins, M.R.S.: 1983, Nature, 301, 688
Hawkins, M.R.S., Veron, P.: 1987, A\&A, 182, 271
Howell, S.B., Szkody, P., Kreidl, T.J., Dobrzycka, D.: 1991, PASP, 103, 300
Zwitter, T., Munari, U.: 1994, $A \& A S, 107,503$

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4179
Konkoly Observatory
Budapest
31 March 1995
HU ISSN 0374-0676

THE FIRST PERIOD CHANGE DISCOVERED IN THE BRIGHT ALGOL SYSTEM UV LEONIS

(BAV Mitteilungen No. 77)

The UV Leo system consists of two detached main sequence stars of solar type and nearly equal properties ($\mathrm{m}_{1}=0.99, \mathrm{~m}_{2}=0.92, \mathrm{R}_{1}=1.00, \mathrm{R}_{2}=1.11$ solar masses and radii, according to Giuricin et al. [11]). Hoffmeister [14] discovered the variability and the system has soon classified as an eclipsing binary by Jensch [16]. The depth of the primary and the secondary minima is nearly equal, nevertheless some small night-to-night fluctuation in the light curve has been observed [3], probably due to intrinsic variability of one or both of the components. The magnitude outside eclipse is given as $\mathrm{V}=8.91$ by Popper [33], so the system is fairly bright.

The correct period very near to 0.600 days was first derived by Schneller [35]. McCluskey [22] demonstrated that the period of UV Leo had been constant since at least 1933. This finding can also be extended back to 1897 on base of data from sky-patrol plates given by Gaposchkin [10]. The period change claimed by Ahnert [1] around the year 1952 could not be confirmed. Elements published by Rafert [34] - also cited in the 4th edition of the GCVS - describe the light variations well from 1897 up to the early eighties:

$$
\begin{equation*}
\text { Hel.Min. I }=\text { J.D. } 2438440.72633+0 \text { d } 60008478 \times \mathrm{E} \tag{1}
\end{equation*}
$$

At Nürnberg Observatory UV Leonis has been observed photoelectrically since 1964 ([9, $17,18,26-32]$). We continued monitoring the system using a 0.34 m Cassegrain telescope, equipped with a 1P21 phototube, and V filter. Five new times of minima, determined from the light curves, are included in Table 1, which lists all available times of minima from the literature and their $\mathrm{O}-\mathrm{C}$ residuals, computed against elements (1). The data given by Soliman et al. [36] was not included, since it seems to suffer from systematic error.

Figure 1.

Table 1

$\begin{aligned} & \hline \text { Hel. JD } \\ & 2400000+ \end{aligned}$	$\begin{array}{r} (\mathrm{O}-\mathrm{C})_{1} \\ \text { days } \end{array}$	$\begin{aligned} & \hline \text { E } \\ & \text { cycle } \end{aligned}$	Observer and Ref. No.	$\begin{aligned} & \hline \text { Hel. JD } \\ & 24400000+ \end{aligned}$	$\begin{array}{r} (\mathrm{O}-\mathrm{C})_{1} \\ \text { days } \end{array}$	$\begin{aligned} & \hline \mathrm{E} \\ & \text { cycle } \\ & \hline \end{aligned}$	Observer and Ref. No.
32951.4513	0.0005	-9147.5	Perek [24]	35905.370	0.002	-4225	Szczepan. [37]
32981.4535	-0.0015	-9097.5	Perek [24]	35934.4708	-0.0014	-4176.5	Broglia [4]
32995.5559	-0.0011	-9074	Perek [24]	35935.373	0.001	-4175	Szczepan. [37]
32997.3561	-0.0012	-9071	Perek [24]	37017.324	-0.001	-2372	Herczeg [8]
32999.4559	-0.0017	-9067.5	Perek [24]	37758.7310	0.0010	-1136.5	McCluskey [22]
33000.3565	-0.0012	-9066	Perek [24]	37764.7313	0.0005	-1126.5	McCluskey [22]
33006.3571	-0.0014	-9056	Perek [24]	37765.6316	0.0007	-1125	McCluskey [22]
33021.3615	0.0008	-9031	Perek [24]	38111.5809	0.0011	-548.5	McCluskey [22]
33024.3602	-0.0009	-9026	Perek [24]	38416.7243	0.0014	-40	McCluskey [22]
33027.3627	0.0012	-9021	Perek [24]	38440.7275	0.0012	0	McCluskey [22]
33030.361	-0.001	-9016	Piotrowski [25]	38470.7315	0.0010	50	McCluskey [22]
33030.3619	0.0000	-9016	Perek [24]	38474.6325	0.0014	56.5	McCluskey [22]
33033.3618	-0.0005	-9011	Perek [24]	38495.6353	0.0012	91.5	McCluskey [22]
33039.360	-0.003	-9001	Piotrowski [25]	38512.438	0.002	119.5	Müller [28]
33039.3639	0.0007	-9001	Perek [24]	38852.384	0.000	686	Krausser [28]
33349.3052	-0.0018	-8484.5	Wallenquist [24]	38882.388	-0.001	736	Pohl [28]
33354.4025	-0.0052	-8476.5	Wallenquist [24]	39940.339	0.001	2499	Bickel [29]
33386.811	-0.001	-8422	Nason [23]	39978.445	0.001	2562.5	Kurutac [29]
33390.713	0.000	-8415.5	Nason [23]	40291.388	0.000	3084	Ibanoglu [29]
34454.363	0.000	-6643	Szczepan. [37]	41060.395	-0.001	4365.5	Hölzl [17]
34456.462	-0.001	-6639.5	Wellmann [38]	41390.441	-0.002	4915.5	Grampp [18]
34457.362	-0.001	-6638	Wellmann [38]	41466.3544	0.0006	5042	Akinci [18]
34475.366	0.000	-6608	Wellmann [38]	41766.3971	0.0009	5542	Ebersberger [18]
34477.464	-0.002	-6604.5	Wellmann [38]	42147.4502	0.0002	6177	Ebersberger [30]
34479.565	-0.002	-6601	Wellmann [38]	42453.4937	0.0004	6687	Besold [31]
34481.366	-0.001	-6598	Wellmann [38]	42838.4473	-0.0003	7328.5	Ebersberger [32]
34487.364	-0.004	-6588	Wellmann [38]	43266.3065	-0.0016	8041.5	Ertan [9]
34488.565	-0.003	-6586	Wellmann [38]	43608.3540	-0.0024	8611.5	Chwastek [27]
34489.468	0.000	-6584.5	Wellmann [38]	44292.4549	0.0019	9751.5	Bode [26]
34493.365	-0.004	-6578	Wellmann [38]	44404.3702	0.0014	9938	Elias [19]
34496.365	-0.004	-6573	Wellmann [38]	44716.412	-0.001	10458	Diethelm [20]
34501.468	-0.002	-6564.5	Wellmann [38]	45061.4657	0.0040	11033	Fernandes [2]
34803.611	-0.001	-6061	Fracastoro [3]	46521.4739	0.0060	13466	Ells [15]
34808.4108	-0.0023	-6053	Fracastoro [3]	46903.4273	0.0054	14102.5	Diethelm [21]
34827.315	-0.001	-6021.5	Fracastoro [3]	47270.3801	0.0063	14714	Diethelm [5]
34844.416	-0.002	-5993	Fracastoro [3]	47615.4315	0.0090	15289	Wunder [39]
35846.558	-0.002	-4323	Broglia [4]	47616.3325	0.0099	15290.5	Wieck/Wund. [39]
35850.758	-0.002	-4316	Broglia [4]	47945.479	0.001	15839	Hudecek [12]
35867.5619	-0.0008	-4288	Broglia [4]	48332.535	0.011	16484	Paschke [6]
35871.4616	-0.0017	-4281.5	Broglia [4]	48358.3399	0.0124	16527	Blättler [6]
35873.5622	-0.0014	-4278	Broglia [4]	48700.3886	0.0128	17097	Diethelm [29]
35895.4654	-0.0013	-4241.5	Broglia [4]	48757.3963	0.0125	17192	Wunder [39]
35897.5661	-0.0009	-4238	Broglia [4]	49475.3986	0.0133	18388.5	Diethelm [30]
35901.467	-0.001	-4231.5	Broglia [4]	49775.4436	0.0160	18888.5	Wunder [39]
35904.469	0.001	-4226.5	Szczepan. [37]	49776.3439	0.0161	18890	Wund./Traub [39]

From the O-C diagram in Figure 1 it is obvious that the period of UV Leonis increased at around JD 2444000 . This is the first reliable period change in the system discovered yet. Calculating new elements for the time since JD 2444000, the least squares method yields:

$$
\begin{array}{r}
\text { Hel.Min. } \mathrm{I}=\text { J.D. } 2447615.43178+0 \mathrm{~d} 60086414 \times \mathrm{E} \tag{2}\\
\pm 31
\end{array}
$$

E. WUNDER
Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV) Nürnberg Observatory
Regiomontanusweg 1
90317 Nürnberg
Germany

References:

[1] Ahnert, P., 1973: Mitt. Veränd. Sterne Sonneberg, 6, Heft 5, 100
[2] Braune, W., Mundry, E., 1982: BAV-Mitteilungen, No. 34
[3] Broglia, P., 1961: Mem. Soc. Astr. Ital., 32, 43
[4] Broglia, P., 1965: Journal des Observateurs, 48, 125
[5] Diethelm, R., 1988: BBSAG-Bull., No. 88
[6] Diethelm, R., 1991: BBSAG-Bull., No. 97
[7] Diethelm, R., 1992: BBSAG-Bull., No. 100
[8] Diethelm, R., 1994: BBSAG-Bull., No. 106
[9] Ebersberger, J., Pohl, E., Kizilirmak, A., 1978: Inf. Bull. Var. Stars, No. 1449
[10] Gaposchkin, S., 1946: Astrophys. Journal, 104, 370
[11] Giuricin, G., Mardirossian, F., Mezzetti, M., 1983: Astron. Nachrichten, 304, 37
[12] Hanzl, D., 1991: Inf. Bull. Var Stars, No. 3615
[13] Herczeg, T., 1962: Veröff. der Univ.-Sternw. Bonn, No. 63, 5
[14] Hoffmeister, C., 1934: Astron. Nachrichten, 253, 195
[15] Isles, J.E., 1988: Brit. Astr. Assoc. Var. Star Section Circ., No. 67, 7
[16] Jensch, A., 1935: Astron. Nachrichten, 257, 140
[17] Kizilirmak, A., Pohl, E., 1972: Inf. Bull. Var. Stars, No. 647
[18] Kizilirmak, A., Pohl, E., 1974: Inf. Bull. Var. Stars, No. 937
[19] Locher, K., 1980: BBSAG-Bull., No. 48
[20] Locher, K., 1981: BBSAG-Bull., No. 54
[21] Locher, K., 1987: BBSAG-Bull., No. 83
[22] McCluskey, G.E., 1966: Astron. Journal, 71, 536
[23] Nason, M.E., Moore, R.C., 1951: Astron. Journal, 56, 182
[24] Perek, L., 1952: Contr. Astr. Inst. Brno, No. 1, 1
[25] Piotrowski, S.L., Strzalkowski, A., 1951: Acta Astron., Ser. C., 4, 129
[26] Pohl, E., Evren, S., Tümer, O., Sezer, C., 1982: Inf. Bull. Var. Stars, No. 2189
[27] Pohl, E., Gülmen, Ö., 1981: Inf. Bull. Var. Stars, No. 1924
[28] Pohl, E., Kizilirmak, A., 1966: Astron. Nachrichten, 289, 191
[29] Pohl, E., Kizilirmak, A., 1970: Inf. Bull. Var. Stars, No. 456
[30] Pohl, E., Kizilirmak, A., 1975: Inf. Bull. Var. Stars, No. 1053
[31] Poh1, E., Kizilirmak, A., 1976: Inf. Bull. Var. Stars, No. 1163
[32] Poh1, E., Kizilirmak, A., 1977: Inf. Bull. Var. Stars, No. 1358
[33] Popper, D.M., 1965: Astrophys. Journal, 141, 126
[34] Rafert, J.B., 1982: Publ. Astron. Soc. Pacific, 94, 485
[35] Schneller, H., 1936: Astron. Nachrichten, 260, 404
[36] Soliman, M.A., Hamdy, M.A., Mahdy, H.A., 1985: Inf. Bull. Var. Stars, No. 2809
[37] Szczepanowska, A., 1962: Acta Astron., 12, 200
[38] Wellmann, P., 1954: Zeitschrift für Astrophysik, 34, 99
[39] this paper

Konkoly Observatory
Budapest
31 March 1995
HU ISSN 0374-0676

HD 6474: AN UU Her SPECTRUM VARIABLE?

The star HD 6474 (=V 487 Cas) is a yellow semiregular variable of small amplitude observed recently by Zsoldos (1993) who showed that it belongs to the small group of UU Her type variables, which comprises UU Her, V 487 Cas and perhaps BL Tel.

The star has been classified as G0 Iab (Bidelman, 1951), G0 Ia (Nassau and Morgan, 1952), and G4 Ia (Keenan and McNeil, 1976). The latter classification is based upon plates taken in 1972 (August 16 and December 22) and 1973 (July 24). The 1973 spectrum is reproduced on plate N. 4 of Keenan-McNeil Atlas.

Figure 1. The spectrum of HD 6474 or a rapid orientation the Paschen lines from P12 to
P20 are marked with black triangles and the Paschen lines blended with Ca II are marked with triangles. For fixing the spectral type, the figure should be compared with those contained in "An Atlas of the infrared spectral region" by Y. Andrillat, C. Jaschek, M. Jaschek, accepted for publication in AA Suppl.

A CCD spectrum of this object was obtained at the Observatoire de Haute Provence in September 1991 in the infrared region for the purpose of establishing an Atlas in the $8400-8800 \AA$ region. The dispersion of the spectogram is $33 \AA / \mathrm{mm}$. By comparison with other MK standards it turns out that the spectrum is now definitely earlier than G0 - we have classified it as F9 Ia. It seems thus very likely that the star is a spectrum variable and further observations of this star and of the group members are highly desirable.

> M. JASCHEK*
> C. JASCHEK
> P. KEENAN** *
> N. GINESTET***
> J. M. CARQUILLAT

* Observatoire de Strasbourg, France
** Ohio State Observatory, US
*** Observatoire Midi-Pyrénées, France

References:

Bidelman, W. P., 1951, Ap.J., 113, 304
Keenan, P. C., and McNeil, R. C., 1976, "An Atlas of the spectra of the cooler stars", Ohio State University Press
Nassau, J. J. and Morgan, W. W., 1952, Ap.J., 115, 475
Zsoldos, E., 1993, AA, 280, 177

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4181

Konkoly Observatory
Budapest
3 April 1995
HU ISSN 0374-0676

NEW TIMES OF MINIMA OF ECLIPSING BINARIES VW Cep, U Cep AND RZ Cas

VW Cephei (HD $197433=\mathrm{BD}+75^{\circ} 752=\mathrm{SAO} 9828$) is a well observed active W UMa type binary. Its regular photometry was begun in 1992 at Szeged Observatory. The aim of this long term project is twofold. First, the light curve of the system shows temporal variation on short timescales (24 hours; Kreiner \& Winiarski, 1981) as well as long timescales (6-8 years; Bradstreet \& Guinan, 1988; 44 years; Karimie, 1983). Second, VW Cep is a member of a triple system (Hershey, 1975), its period is modulated by the light time effect, but the period variation of the system is quite complex. A detailed analysis of the period variation has been presented recently by Lloyd, Watson \& Pickard (1992) and Vinkó et al. (1993).

Differential photoelectric photometry of VW Cephei was carried out on 3 nights in September, 1994 with a 40 cm Cassegrain telescope and an Optec SSP-5A photoelectric photometer. The light curve in Johnson V and B bands was obtained and it is presented in Figure 1. The comparison star was HD 199476 which was used previously by many observers.

Table 1 contains the heliocentric times of minima calculated from parabolic leastsquares fit to the bottom of the minima. The $\mathrm{O}-\mathrm{C}$ values were derived from the ephemeris given in the 4th edition of GCVS. The $\mathrm{O}-\mathrm{C}$ of secondary minimum was calculated so that the time of the secondary minimum was expected at the 0.5 phase.

Our minimum times show that the period decrease of the system continues, in agreement with the conclusion of previous analyses by Lloyd, Watson \& Pickard (1992) and Vinkó et al. (1993). The asymmetry of the light curve does not exceed 0.02 mag , which suggests that the next activity maximum proposed by Bradstreet \& Guinan (1988) has not occurred yet.

The Algol type eclipsing binaries RZ Cas and U Cep were measured with an unfiltered ST4 CCD camera attached to a Telemator refractor. Only one minimum was observed in both cases. The comparison star of U Cep was HD 6006, while in the case of RZ Cas a nearby star (GSC 4317.1578; V ~10.6) was used as comparison.

The heliocentric times of minima of U Cep and RZ Cas are listed in Table 2. The O-C values are computed from the ephemeris given in the GCVS.

In the case of U Cep simultaneous BV photoelectric and CCD photometry was made. The comparison of data strongly suggests that the unfiltered CCD measurements are useful for detection of light minima of eclipsing binaries. Since the duration of the totality was longer than 0.075 day, the observed eclipse was an undisturbed one according to the definition of Crawford \& Olson (1979). Figure 2 shows a part of the O-C diagram of U Cep computed using our new time of minimum and some recent measurements (Olson et al. 1985; Sato \& Nishimura 1987; Surkova 1990; Burnett, Etzel \& Olson 1993). From the slope of the fitted line the following ephemeris has been derived:

$$
\begin{array}{r}
\text { Hel.JDMinI }=2449602.5601+2.4930614 \times E \\
\pm .0010 \pm .0000004
\end{array}
$$

Figure 1. Differential B and V light curve of VW Cephei

Figure 2. $\mathrm{O}-\mathrm{C}$ diagram of U Cephei

Table 1. Minimum times of VW Cephei

Min (Hel.JD)	Type	O-C (days)
2449603.3761	I	-0.0971
2449608.3848	I	-0.0981
2449609.3603	II	-0.0967
2449609.4978	I	-0.0984

Table 2

Star	Min (Hel.JD)	type	O-C (days)
U Cep	2449602.5601	I	0.0706
RZ Cas	2449653.465	I	0.0201

Using the period values given in the GCVS and in this paper the rate of the period increase during the last 5000 days was also calculated, it is $d P / P=6.849 \times 10^{-9}$ day $/$ day .

A detailed analysis of period variation of RZ Cas has been presented recently by Hegedüs, Szatmáry \& Vinkó (1991). They showed that the period variation contains four periodic components. However, it seems that our new time of minimum does not agree with the prediction of their $\mathrm{O}-\mathrm{C}$ curve fitting.

The list of individual observations is available via e-mail from l.kiss@physx.u-szeged.hu (Internet).

The fruitful discussions with Drs. K. Szatmáry and J. Vinkó are gratefully acknowledged. This work was partly supported by OTKA Grants No. T4330, T7522 and F7318 and Szeged Observatory Foundation.

L.L. KISS,
J. GÁL
Astronomical Observatory and
Dept. of Experimental Physics
JATE University
Szeged, Dóm tér 9
H-6720 Hungary
Internet: L.Kiss@physx.u-szeged.hu

G. KASZÁS
Dept. of Optics
JATE University
Szeged, Dóm tér 9.
H-6720 Hungary

References:
Bradstreet, D.H., Guinan, E.F., 1988, in A Decade of UV Astronomy with IUE; ESA SP-281, Vol.1. p. 303
Burnett, B.J., Etzel, P.B., Olson, E.C., 1993, Astron. J., 106, 1627
Crawford, R.C., Olson, E.C., 1979, Publ. Astron. Soc. Pacific, 91, 111
Hegedüs, T., Szatmáry, K., Vinkó, J., 1992, Astrophys. \& Sp. Sci., 187, 57
Hershey, J.L., 1975, Astron. J., 80, 662
Karimie, M.T., 1983, Astrophys. \& Sp. Sci., 92, 53
Kreiner, J.M., Winiarski, M., 1981, Acta Astr., 31, 351
Lloyd, C., Watson, J., Pickard, R.D., 1992, IB VS, No. 3704
Olson, E.C., Hickey, J.P., Humes, L., Paylor, V., 1985, IBVS, No. 2707
Sato, F., Nishimura, A., 1987, IBVS, No. 3040
Surkova, L.P., 1990, IBVS, No. 3435
Vinkó, J., Gál, J., Szatmáry, K., Kiss, L., 1993, IBVS, No. 3965

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4182

Konkoly Observatory
Budapest
13 April 1995
HU ISSN 0374-0676

THE ORBITAL PERIOD OF THE ROSAT CATACLYSMIC VARIABLE S 10932 COMAE BERENICES

S 10932 Com, the optical counterpart of the ROSAT X-ray source RX J1239.5 + 2108, was - by observations on Sonneberg photographic plates - not only found to have high $\left(17^{m}\right)$ and low $\left(18^{m}\right)$ brightness states like magnetic cataclysmics; there could be noticed also an eruption (13.5) similar to that of a dwarf nova (Richter and Greiner, 1995). The only star hitherto known to show a similar behaviour is V426 Oph (Wenzel and Splittgerber, 1990). May be that S 10932 is related to this object, whose exact physical nature is, however, still poorly known.

Additionally, large fluctuations in the above mentioned states of high minimum light and apparently also in the rare low states were observed. We therefore decided to carry out time-resolved differential photometry of S 10932 at the Sonneberg 60/180 cm reflector by means of a CCD camera of Wright Instruments Ltd, type EEV 02-06-1-206. Three night series of "repeated exposures" in the R band led to the detection of an eclipsing variability. The elements of brightness variations are:

$$
\begin{aligned}
\text { Min.(hel.) }=\text { J.D. } 2449486.4821 & +0.08703 \times \mathrm{E} \\
& \pm 0.00002
\end{aligned}
$$

Figure 1 shows the greater part of our series of 1994 May 15/16; $\Delta \mathrm{m}$ means the magnitude difference against one of the our comparison stars. The R band amplitude of the eclipses is about 1.5 mag and their duration approximately 10 min . In the following table the five minima observed in the three nights of 1994 and the deviations from the ephemeris are listed:

HJD 2440000+	E	$\mathrm{O}-\mathrm{C}$
9484.3934	-24	0 d 0000
9484.4807	-23	+0.0003
9486.4816	0	-0.0005
9488.3969	22	+0.0001
9488.4841	23	+0.0002

Figure 2 gives all eclipse observations, folded by the above elements.
Interestingly, the period length is just at the lower boundary of the well-known period gap of cataclysmic variables (0 d $088 \ldots . .0 .118$).

Most objects with period lengths similar to that of S 10932 are either SU Ursae Maioris or AM Herculis stars. S 10932, however, is an outstanding object and deserves further attention.

Figure 1. Geocentric observing time (s after beginning of the current Julian Day)

Figure 2
Acknowledgements. We are most grateful to J. Greiner (Max-Planck-Institut für Extraterrestrische Physik, Garching) for stimulating the search for optical variability of ROSAT sources. Our work was partly supported by funds of German Bundesministerium für Forschung und Technologie under contract nos. 05-2A052A (W.W.) and 05-2S0524 (G.A.R.).
W. WENZEL
G. A. RICHTER
R. LUTHARDT

Sternwarte
D-96515 Sonneberg
Germany

R. SCHWARTZ

Gleimstrasse 21
D-10437 Berlin
Germany

References:

Richter, G. A., and Greiner, J., 1995, Proc. of the Padova-Abano Conference on Cataclysmic Variables, in the press
Wenzel, W., and Splittgerber, E., 1990, Inf. Bull. Var. Stars, No. 3532

Konkoly Observatory
Budapest
13 April 1995
HU ISSN 0374-0676

A NEW SEMIREGULAR VARIABLE S 10934 IN CORONA BOREALIS

When searching for an optical counterpart of the BATSE gamma-ray burst source 920525 B ($0^{\mathrm{h}} 411^{\mathrm{m}} 8 \mathrm{UT}$) at the improved position (Greiner, 1994) on a Sonneberg Sky Patrol plate taken by B. Fuhrmann 1.7 hours before eruption, I discovered a new semiregular variable at the following position (1950.0) within the error box of the gamma source:

$$
\alpha=15^{\mathrm{h}} 49^{\mathrm{m}} 0, \quad \delta+31^{\circ} 38^{\prime} .
$$

The object is easily localized by its brightness and red colour on the POSS sheets no. 121.

On a sample of 120 patrol plates taken between 1962 and 1965 by H. Huth I found an average cycle length of 60 days and amplitude of 1.7 mag in the photographic band (10 m . 9 $12^{\mathrm{m}} 6$; Mt. Wilson system of Selected Area 35). The light-curve is partly sine shaped, partly characterized by sharper minima, and partly more irregular. On a Sonneberg $50 / 70 / 172 \mathrm{~cm}$ Schmidt camera objective prism plate taken 1962 April 12.0 UT by W. Götz the spectral type can be determined as M8.

There is at present no hint that either this variable or one of the variables formerly detected in the region of the error box (e.g. X CrB, RT Boo, Z CrB) can be physically related with the gamma-ray burst source.

This work has been supported by funds of the German Bundesministerium für Forschung und Technologie under contract no. 05-2SO52A.
W. WENZEL

Sternwarte
D-96515 Sonneberg
Germany
Reference:
Greiner, J., 1994, unpublished

ERRATUM

In the No. 4134 issue of the IBVS all ephemerides of VW CVn refer to normal maxima and not Min I (as stated erroneously in the text). The authors of that note and editors of the IBVS are grateful to Dr. N. Samus for calling their attention to this inconsistency.

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4184

Konkoly Observatory
Budapest
14 April 1995
HU ISSN 0374-0676

THE ELLIPSOIDAL VARIABILITY OF HR 4646

The Eighth Catalogue of the Orbital Elements of Spectroscopic Binary Systems (Batten et al., 1988) lists the star HR $4646\left(\alpha(2000)=3^{\mathrm{h}} 57^{\mathrm{m}} 3.8, \delta(2000)=+77^{\circ} 36{ }^{\circ} 58^{\prime \prime}, \mathrm{V}=5^{\mathrm{m}} 1\right)$ as a single-lined spectroscopic binary with a period of 1 d 2709334 . This is based on spectroscopy due to Abt (1961).

HR 4646 was included in a recent campaign of potential ellipsoidal variables. Observations have been made with the Devon Astronomical Observatory 0.5 m telescope using a recently installed CCD imaging system. Photometry was carried out on HR 4646 over the 6 nights, January 21-24 and February 10-13 1995. The data consist of ~ 1500 V filter observations. Integrations were $0.35-0.70$ seconds at approximately 2 minute intervals (~ 0.001 in phase).

The star SAO 7521 ($\mathrm{V}=6 .{ }^{\mathrm{m}} 6$) was used as a comparison with SAO 7519 ($\mathrm{V}=8 \mathrm{~m} 9$) serving as a check star. The data were phased with the 1.2709334 period given by Abt (1961) and computed from his epoch of maximum radial velocity $T_{0}=$ JD 2436758.245 . The results were averaged in 100 equal phase bins. The data, as presented have not been transformed from the local to the standard UBV system.

A Fourier series of the form

$$
l=A_{0}+\sum\left(A_{i} \cos \theta_{i}+B_{i} \sin \theta_{i}\right)
$$

where l is flux and θ is the orbital phase measured from the time of maximum velocity was fitted to the data. Linear regression analysis was used to perform a Fourier least-squares fit for the first 4 terms. The coefficients along with standard errors are presented in Table 1. The residual error in the fit is roughly 0.010 in flux which is typical of scatter in the observations. The Fourier series is plotted in Figure 1 along with the data. The dominance of the $\cos 2 \theta$ term supports the suggestion that HR 4646 is an ellipsoidal binary system and the phase relationship between the photometric and spectroscopic data is consistent with that interpretation.

A complete discussion of this system which includes analysis of the spectroscopic data will be published as part of the M.Sc. thesis of E.S..

Table 1
Fourier Coefficents

A_{0}	A_{1}	A_{2}	B_{1}	B_{2}
0.963	0.002	0.017	-0.006	-0.001
standard error of coefficients $= \pm 0.001$				

Figure 1 - V filter flux observations of HR 4646 phased in bins of width 0.01. Phasing is with respect to a period of 1.2709334 and from epoch date $T_{0}=$ JD 2436758.245. The solid line represents a least-squares, fourth-order Fourier fit to the data.

E. STEINBRING
(steinb@stellar.phys.ualberta.ca)
D. P. HUBE
Department of Physics
University of Alberta
Edmonton, Alberta
Canada, T6G 2J1
B. E. MARTIN
The King's University College
9125-50th Street
Edmonton, Alberta
Canada, T6B 2H3

References:
Abt, H. J., 1961, Astr. J. Suppl. Ser., 6, 37
Batten, A.H., Fletcher, J. M., and MacCarthy, D. G., 1988, Eighth Catalogue of the Orbital Elements of Spectroscopic Binary Systems (Publ. of the Dom. Astr. Obs., Victoria)

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4185

Konkoly Observatory
Budapest
19 April 1995
HU ISSN 0374-0676

NARROWING THE MAIN SEQUENCE MASS GAP

Andersen's (1991) compilation of stellar masses contains 3 stars with masses between 1.10 solar masses and the long-known masses of the M1 dwarf, YY Gem, $0.59 \mathrm{~m}_{\odot}$, namely the secondary of FL Lyr (G8, $0.96 \mathrm{~m}_{\odot}$) and the components of HS Aur (G8, 0.90 ; K0, 0.88). The discussion of visual binaries by Henry and McCarthy (1993) contains only one star with a mass in this range with comparable accuracy, Alpha Cen B (K0V, 0.90).

In recent years a program has been undertaken at the Lick Observatory with the primary aim of helping to obtain masses of additional main-sequence stars in the mass range 1.0 to $0.6 \mathrm{~m}_{\odot}$. The observations consist of spectra of eclipsing binaries which, on the basis of existing information, may contain at least one detached main-sequence component of spectral type G or K. To date, spectra have been obtained of approximately 60 eclipsing binaries, and the most promising ones are given high priority on the observing program. A progress report giving preliminary results as of about $21 / 2$ years ago has been published (Popper 1993), as have definitive analyses of two of the systems, RT And and CG Cyg (Popper 1994). These two papers discuss the nature of the program in some detail.

An up-dated progress report is given in Table 1. It contains results based on limited material for those systems for which a provisional value of $m \times \sin ^{3} \mathrm{i}$ of at least one component is equal to or less than 1.10 solar masses. Alpha CrB and V818 Tau (see Popper 1993) are binaries containing a star having less than one solar mass not observed in this program. The table includes five systems (ZZ UMa, HP Aur, 1E1919+0427, HD 197010 , and BH Vir) for which this is the first announcement of new mass determinations. The very provisional nature of the results is to be emphasized. The systems are listed in order of decreasing period. Several of the provisional results in Table 1 are for systems (UV Psc, BH Vir, CG Cyg, RT And, UV Leo) that have been previously observed with much lower resolution than that employed in this program. References are in Batten et al. (1989).

The spectral types listed in Table 1 are rough values based on the strengths of the NaD lines, which are sensitive to temperature. The types are mean values weighted according to the luminosities of the components and to the intrinsic strengths of the D lines. The apparent magnitudes, presumably in the V band, are from a variety of sources. References to binaries not having constellation names are as follows: HD 192825, Kissling et al. 1993; HD 197010, Marschall et al. 1991; 1E1919+0427, Summers et al. 1992. The ephemerides of these recently discovered eclipsing binaries are not firmly established. I have found it necessary to subtract 0.05 from phases of HD 197010 computed with the ephemeris given in IBVS 3633. The ephemeris given in IBVS 3708 for 1E1919+0427 does not fit my velocities. An improved ephemeris is $\mathrm{JD}(\min)=2449260.644+0.873713 \mathrm{E}$.

Table 1. Detached eclipsing binaries with provisional values of $m \times \sin ^{-3} \mathrm{i}$
1.10 solar masses or less.

Binary	Period (d)	$\mathrm{V}(\mathrm{mag})$	Type^{\star}	$\mathrm{m}_{1} \times \sin ^{3} \mathrm{i}$	$\mathrm{m}_{2} \times \sin ^{3} \mathrm{i}$
ZZ UMa	2.30	10.0	G2	1.18	0.96
HP Aur	1.42	11.3	G4	0.90	0.75
DU Leo	1.37	9.5	F8	0.97	0.95
HD 192825	1.18	8.9	G0	$1.08:$	$1.06:$
1E1919+0427	0.87	10	K1	0.94	0.85
UV Psc	0.86	9.4	G8-K0	0.99	0.76
CV Boo	0.85	10.2	G2	1.00	0.94
BH Vir	0.82	9.6	F8	1.13	1.01
HD 197010	0.71	8.9	F9	1.08	0.69
CG Cyg	0.63	9.7	K1	0.92	0.79
RT And	0.63	9.0	F9	1.24	0.91
UV Leo	0.60	8.9	G0	1.10	1.07

* Types are means weighted according to the relative luminosities of the components and to the intrinsic strengths of their Na D lines.

The spectroscopic material on which the preliminary results summarized in Table 1 have been based is obtained with the Hamilton echelle-CCD spectrometer on the 3 m Shane telescope of the Lick Observatory (Vogt 1987). This instrument is proving to be ideal for the purpose: resolution approximately 60,000 , scale $3 \AA \mathrm{~mm}^{-1}$ in the visual region, S / N in the continuum of roughly 100 per resolution element for an exposure of about 20 minutes on a star of 10th magnitude. Details of the cross-correlation procedure employed for the velocities (IRAF program) are given in Popper (1994) and Popper and Jeong (1994).

The principal purpose of presenting these preliminary results at this time is to direct the attention of photometric observers to these important systems. Without reliable photometric observations and analysis, the spectroscopic results will have limited value. The short periods of most of these detached systems are noteworthy-the shorter the period, the greater the likelihood that eclipses will occur. This effect also permits coverage of the light curve in a relatively short interval of time, a favorable situation for observers. On the other hand, short periods are associated with larger rotational velocities, which, in turn, favor intrinsic variations associated with star spots and perhaps other manifestation of stellar activity. For this reason, it is essential that a complete light curve be observed in a relatively short interval and that the coverage be repeated several times over a period of a few years. RT And (Zeilik et al. 1989) and CG Cyg (Zeilik et al. 1994) are examples of systems for which repeated photometric coverage by a variety of observers has led to consistent basic solutions of the light curve (as well as to evaluations of star-spot parameters). While such numerous observations as in the cases of RT And and CG Cyg are ideal, considerably less frequent coverage of the light curves of the systems of Table 1 should lead to results of adequate reliability.

Photometry should be carried out in a photometric system carefully tied to a standard system. The Strömgren intermediate-band v,b,y system has the advantage of giving information on metallicity, which is of considerable importance in interpreting the stellar properties in terms of evolutionary models, as discussed by Andersen (1991), for example.

It is not possible to evaluate metallicity directly from spectra of rapidly rotating stars. None of the binaries is particularly faint, and a number of them can be observed with adequate precision (not worse than 0.01 mag) with modest equipment.

Pending more nearly definitive spectroscopic orbits and photometric solutions for most of the systems of Table 1, it appears that we may indeed be able to narrow the gap in the masses of detached main-sequence stars to the as yet unfilled interval 0.7 to 0.59 solar masses. One may hope that further discoveries-some of those represented in Table 1 are quite recent-will add significantly to our store of stellar masses in this mass range. Concentrated photometry on any or all of these binaries would provide a major contribution to this endeavor.

Daniel M. POPPER
Department of Astronomy
University of California
Los Angeles, CA 90095-1562 U.S.A. internet:
popper@bonnie.astro.ucla.edu

References:

Andersen, J., 1991, Astron. Astrophys. Rev., 3, 91
Batten, A. H., Fletcher, J. M., and MacCarthy, D. G., 1989, Publ. Dom. Astrophys. Obs., 17, 1
Henry, T. J., and McCarthy, D. W., 1993, Astron. J., 106, 773
Kissling, W. M., Blow, G. L., and Gilmore, A. C., 1993, IB VS, No. 3872
Marschall, L. A., Gauthier, C. P., Nations, H. L., Taylor, B. W., and Huard, T. L., 1991, IBVS, No. 3633
Popper, D. M., 1993, Astrophys. J. Lett., 404, L67
Popper, D. M., 1994, Astron. J., 108, 1091
Popper, D. M., and Jeong, Y.-C., 1994, Publ. Astron. Soc. Pacific, 106, 109
Summers, D. L., Zeilik, M., Jaderlund, E., Hoeppe, G., and Collins, A., 1992, IBVS, No. 3708
Vogt, S. S., 1987, Publ. Astron. Soc. Pacific, 99, 1214
Zeilik, M., Cox, D. A., DeBlasi, C., Rhodes, M., and Budding, E., 1989, Astrophys. J., 345, 991
Zeilik, M., Gordon, S., Jaderlund, E., Ladlow, M., Summers, D. L., Heckert, P. A., Budding, E., and Banks, T. S., 1994, Astrophys. J., 421, 303

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4186

Konkoly Observatory
Budapest
2 May 1995
HU ISSN 0374-0676

UBV LIGHT CURVES OF THE NEAR-CONTACT BINARY AK CANIS MINORIS

In our study of the eccentric eclipsing binary (EEB) candidates of Hegedüs (1988), we obtained UBV photoelectric light curves of AK Canis Minoris [R.A. $(2000)=07^{\mathrm{h}} 40^{\mathrm{m}} 15.5$, D. $\left.(2000)=03^{\circ} 57^{\prime} 09^{\prime \prime}\right]$. AK CMi (BD $+04^{\circ} 1778$, AN310.1934, P3052, SVS 1102) was discovered by Hoffmeister (1934). Notni (1955) published a photographic light curve, and determined a period of $\sim 0.57 \mathrm{~d}$. He states that the shallow secondary eclipse (we measure 0.16 mag in B) occurred at phase 0.55 . Given the high scatter and the sparse coverage of his light curve, this result is highly questionable. Strohmeier et al. (1957) includes a finder chart in his study. Robb and Moffat (1987) give two precision epochs of primary minima and one of a secondary minimum. We find that their secondary eclipse occurs at phase 0.46. Shaw (1994) includes AK CMi in his list of near-contact binaries. In all, some 200 timings of minimum light are found in the literature or in the BAV data base.

The present observations were taken on 1994, February 10-15, inclusive, at Lowell Observatory, Flagstaff, Arizona with the National Undergraduate Research Observatory 0.78 -m reflector. A thermoelectric cooled PMT was used with Johnson UBV filters. Two nearby stars were used as comparison [R.A. $(2000)=07^{\mathrm{h}} 41^{\mathrm{m}} 5.9$, D. $(2000)=03^{\circ} 50^{\prime} 08^{\prime \prime}$] and check [R.A. $(2000)=07^{\mathrm{h}} 40^{\mathrm{m}} 18^{\circ} 0$, D. $\left.(2000)=03^{\circ} 52^{\prime} 19^{\prime \prime}\right]$. The comparison star was an excellent color match to the variable with the $\Delta(B-V)$ and the $\Delta(U-B)$ averaging ~ 0.1 and ~ 0.0, respectively.

Figure 1. Period behavior of AK CMi as shown by the calculated from the quadratic ephemeris.

Figure 2. Light curves of AK CMi as defined by the individual observations.

Two mean epochs of minimum light were calculated from one secondary and one primary eclipse. The bisection-of-chords method was used. Our epochs were JD Hel. Min. I = $2449396.70325(\pm .00046)$ and JD Hel. Min. II $=2449395.8546(\pm .0003)$. From the densely packed data of the past 23 years, we determined the following improved epemeris:

$$
\begin{array}{r}
\text { JD Hel. Min } \mathrm{I}=2449396.7075+0 \mathrm{~d} 5658968 \times \mathrm{E} \tag{1}\\
\pm .0018 \quad \pm .0000002
\end{array}
$$

The $\mathrm{O}-\mathrm{C}$'s calculated from this ephemeris suggest that AK CMi is undergoing a continuous period decrease. Because of this we calculated the quadratic ephemeris:

$$
\begin{array}{r}
\text { JD Hel. Min } \mathrm{I}=2449396.7050+0.5658956 \times \mathrm{E}-0.00000000010 \times \mathrm{E}^{2} \tag{2}\\
\pm .0008 \quad \pm .0000002 \\
\hline .00000000002
\end{array}
$$

The $\mathrm{O}-\mathrm{C}$'s generated from the first two terms of this equation are shown in Figure 1 overlain by a curve generated by the quadratic term. In these calculations, we weighted the precision epochs as 1.0 and the photographic and visual timings as 0.1 . We used equation (1) to phase our observations. These equations indicate that our Min II occurred at phase 0.5 to within the errors. We believe that AK CMi is not an EEB. The appearance of the light curves about the secondary eclipse supports this conclusion.

The light curves of AK CMi defined by the individual observations are shown in Figure 2 as Δ mag vs. phase. Our preliminary light curve solution indicates that the components are in a near contact semi-detached configuration with the fillout of the primary component being $\sim 80 \%$ and a component temperature difference of $\sim 4100 \mathrm{~K}$. The complete analysis of the observations are underway and will appear elsewhere.

RONALD G. SAMEC ${ }^{\star}$
RICHARD J. McDERMITH
BRIAN J. CARRIGAN
Dept. of Physics and Astronomy
Millikin University
Decatur, Il 62522-2084
USA

* Visiting Astronomer, Lowell Observatory, Flagstaff, Arizona

References:

Hegedüs, T., 1988, CDS Bulletin, 35, 15
Hoffmeister, C., 1934, AN, 253, 197
Notni, P., 1955, MVS, 177, 242
Robb, R.M. \& Moffat, J.D., 1987, BAAS, 19, 709
Shaw, J.S., 1994, Mem. Soc. Astron. Ital., 65, 95
Strohmeier, W., Kippenhahn, R., and Geyer, E., 1957, Bamberg Kl. Veröff., No. 18, 1

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4187

Konkoly Observatory
Budapest
3 May 1995
HU ISSN 0374-0676

ECLIPSE OBSERVATIONS OF EQ Tau

EQ Tau (G1, V $=11.9,03^{\mathrm{h}} 48^{\mathrm{m}} 12^{s} .9,+22^{\circ} 18^{\prime} 49^{\prime \prime}$, J2000) is a poorly studied W UMa eclipsing binary with a period of 0.34 days. This system is on the A AVSO list of eclipsing binaries (Baldwin and Samolyk 1993) but to our knowledge has had no previously published light curve or ephemeris. The AAVSO reference reports eclipse minima observations (chiefly by G. Samolyk) during the period JD 2442832 (1976) to 2448694 (1992). An O-C plot using the AAVSO observations indicates that the published period of 0.34134848 days (Brancewicz and Dworak, 1980) was slightly long, but it was not clear whether the period was constant or whether there was a small period derivative.

The present note describes CCD photometry of EQ Tau done using the University of Iowa Automated Telescope Facility located in Iowa City, IA. The system consists of an 18 cm refractor, a Spectrasource HPC-1 CCD camera (format 512×512 binned pixels, $3^{\prime \prime} .00$ per pixel) and a Johnson R-band filter. We used the nearby GSC stars at $03^{\mathrm{h}} 48^{\mathrm{m}} 31$ s 3 , $+22^{\circ} 12^{\prime} 43^{\prime \prime}$, and $03^{\mathrm{h}} 48^{\mathrm{m}} 16^{\mathrm{s}} .2,+22^{\circ} 17^{\prime} 28^{\prime \prime}$, J2000) as check and comparison stars respectively. Each observation consisted of 45 second exposures of a field containing EQ Tau as well as the check and comparison star. This cycle was repeated every 5 minutes for several hours each night. The differential aperture photometry was performed by an automated procedure after aligning all images to a common stellar reference. No air mass or color corrections were applied. The system was observed during three epochs (1 Dec 1994, 8 Feb 1995,25 Feb 1995). By combining all three epochs, we obtained the nearly complete light curve as shown in Figure 1. The minimum at phase 0.5 occurred at heliocentric Julian date $2,449,687.607 \pm 0.007$. Note the ~ 0.05 magnitude depression present between phase $0.7-0.85$ in both February epochs only. We believe this is not an artifact and may have been due to an active region on the stellar surface which developed since the December 1994 observations.

The O-C measurements available from the AAVSO compilation clearly showed that the previously available ephemeris:

$$
J D_{\min }=2,440,203.325+0.34134848 \times E
$$

was slightly in error, although it was unclear whether the deviation could be better fit with a linear or a quadratic dependence. The present observations are in better agreement with a linear fit and new ephemeris given by

$$
J D_{\min }=2,440,203.342+0.34134750(\pm 0.00000015) \times E
$$

where the period uncertainty represents the 90% confidence bounds. A plot of the AAVSO observations, along with the minimum reported in this note, is shown in Figure 2.

Interesting parties can obtain the raw photometry data from the authors at the following e-mail addresses: rlm@astro.physics.uiowa.edu or uwb@astro.physics.uiowa.edu.

Figure 1. Light curve of EQ Tau. The depression evident near phase 0.7-0.8 seen during February 1995 may have been caused by a starspot.

Figure 2. O-C plot for EQ Tau using JD=2,440,213.325+0.34134848.N, where N is the cycle number. A least-squares linear and quadratic fit is also shown. The linear fit represents the new ephemeris $2,440,203.342+0.34134750 \cdot \mathrm{~N}$.

This research has been supported by the Iowa Space Grant Consortium and the National Science Foundation. We have also made use of the Simbad database, operated at CDS, Strasbourg, France.

W. R. BENBOW
R. L. MUTEL
Van Allen Observatory
Dept. Physics and Astronomy
University of Iowa
Iowa City IA 52242

References:

Baldwin, M. and Samolyk, G. 1993, AAVSO Observed Minima Timings of Eclipsing Binaries No. 1.
Brancewicz, H. and Dworak, T., 1980, Acta Astron., 30, 501

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4188

Konkoly Observatory
Budapest
4 May 1995
HU ISSN 0374-0676

HD 147491 IS VARIABLE, BUT IT IS NOT A DELTA SCUTI STAR

Short-period variability of HD $147491\left(\alpha(2000.0)=16^{\mathrm{m}} 23^{\mathrm{m}} 23^{\mathrm{s}}, \delta(2000.0)=-26^{\circ} 22\right.$, 16 ", a few arcminutes north of the globular cluster M4) was claimed by Yao \& Tong (1989, here after YT89) on the basis of 3 nights of photometry. Their observations implied a period of about 25 minutes. YT89 also gave arguments that this star has mid-A spectral type, using an estimate of the interstellar reddening of field stars in the direction of M4 and published UBV photometry. They concluded that HD 147491 is a new δ Scuti variable. Even earlier, Clementini (1979) suggested that this star is "likely to be variable", because her BVRI photometry disagreed with previously published results.

However, the data of YT89 were acquired at Beijing Observatory, located at a latitude of $+40^{\circ}$, so that YT89 could never observe the star at air mass values lower than 2.5. Moreover, they neglected the spectral classification of HD 147491 from the Michigan Spectral Catalogue (Houk 1982), giving a spectral type of G0 V as well as the star's H β index of 2.598 measured by Eggen (1983). Such a $H \beta$ value is not typical of a δ Scuti star. Finally, YT89 find their estimated $(U-B)_{0}$ to be "too blue". If they dereddened the $\left(V-R_{c}\right.$) and ($V-I_{c}$) colors of Clementini (1979) in the same way like the UBV photometry, they would have found further inconsistencies. On the other hand, assuming that HD 147491 is a G dwarf suggests that it is a foreground star relative to the objects adopted for the determination of interstellar reddening, and hence it could have lower reddening.

All this casts considerable doubt on the claim of YT89 that HD 147491 is a δ Scuti star. Therefore, it was decided to re-observe it in order to shed more light on its nature.

Observations and reductions: In March and April, 1995, HD 147491 was observed with the Modular photometer attached to the 50 cm telescope at the South African Astronomical Observatory, a dedicated instrument for high-precision photoelectric photometry. Keeping in mind the short period claimed for the star, the choice of the observing technique must be considered carefully.

In order to detect periods shorter than one hour, high-speed photometric observations can give excellent results (e. g. Handler et al., 1995), but this technique is not very useful in the presence of sky transparency variations (see Breger \& Handler 1993). Therefore, it was decided to acquire differential photometry with two close comparison stars: this allows to compensate for transparency variations as well as to examine the data for possible variability of the comparison stars (the comparison star adopted by YT89 was HD 147592, for which the Michigan catalogue gives a spectral type of A0 V). Furthermore, by using close comparison stars the telescope can very quickly be moved from star to star.

For these purposes, HD 147592 (C1) and HD 147649 (C2, A5 III) were selected. Both objects are within less than 20 arcminutes distance from the program star HD 147491 (P). For each star, a 50 second integration in the V filter as well as a 10 second integration for sky background were made. The stars were observed in the order: $\mathrm{C} 1-\mathrm{P}-\mathrm{C} 2-\mathrm{C} 1-\mathrm{P}-\mathrm{C} 2-\ldots$

Figure 1: Differential time-series photometry of HD 147491 (filled circles), HD 147592 (crosses) and HD 147649 (diamonds)

Figure 2: Amplitude spectra and spectral window of the data of Figure 1. The panels (from top to bottom) show the spectral window of the data, the amplitude spectrum of the program star data, as well as the amplitude spectra of the comparison star data.

Table 1. UBVR I_{c} photometry of the program and comparison stars

Star	V	$B-V$	$U-B$	$V-R_{c}$	$V-I_{c}$
HD 147491	9.587	0.613	0.066	0.365	0.740
HD 147592	8.936	0.298	0.200	0.177	0.388
HD 147649	9.648	0.442	0.271	0.277	0.575

Thus, consecutive measurements of HD 147491 could be obtained about every 245 seconds (corresponding to a Nyquist frequency of 176 cycles per day), which is more than sufficient to detect a conjectured periodicity of 25 minutes. During the time-series photometric observations, the air mass never exceeded 1.07. As a further check of data quality, the E-region standards E690 (A2V) and E629 (G5V) were measured at the beginning of each run.

All data were corrected for dead-time losses as well as for sky background and mean extinction. Mean zeropoints (of all nights of observation considered together) of P, C1 and C2 were calculated relative to each other and subtracted from the time-series data. The zero-point subtracted data are plotted in Figure 1, where the variability of the program star is evident. It is also clear, however, that the light modulation occurs on a time scale much longer than 25 minutes. Moreover, Figure 1 shows that only very small transparency variations occurred during our measurements.

It should also be mentioned that the standard deviation of the zeropoints between the comparison stars and the E-region stars were comparable to the rms error of a single measurement of the standard stars. The rms errors of a single measurement of the data displayed in Figure 1 are 1.9 mmag for HD 147592, 2.1 mmag for HD 147649, but 6.0 mmag for HD 147491.
$\mathrm{UBVR}_{\mathrm{c}} \mathrm{I}_{\mathrm{c}}$ photometry was also acquired for these three stars (Table 1); the transformation into the standard system was secured by measuring several E-region standards. We conservatively estimate the rms errors with 0.020 mag in $V, 0.010 \mathrm{mag}$ in $B-V$ and $V-R_{c}$ as well as 0.015 mag in $U-B$ and $V-I_{c}$. Note that HD 147491 is variable and therefore the results for this star must be treated with caution.

Analysis and discussion: Since the photometric conditions were very stable during our observations, amplitude spectra can be calculated for each star separately, i.e. we do not consider differential data between the stars. These amplitude spectra are shown in Figure 2. Inspection of Figure 2 again suggests that the time scale of the variability of HD 147491 is longer than 25 minutes; it is at least several hours. However, the spectral window is far too complicated and the data are too sparse to make a more definite statement about the real time scale. In order to examine the possibility that the low-frequency variability could "mask" shorter-period variations, we have also calculated an amplitude spectrum for the HD 147491 data after removing the nightly zeropoint variations; once again there is no hint for a 25 -minute periodicity.

What kind of variable can HD 147491 be? Considering the UBVR I_{c} photometry in Table 1 as well as uvby β data for the star (Handler 1995), we find that it is unreddened. Hence, it is far too cool to be a δ Scuti star.

Applying the calibration of Crawford (1975), we find an absolute magnitude of $M_{V}=$ 4.0. Thus, our results are perfectly consistent with Houk's (1982) spectral classification of HD 147491 (G0 V) as well as with colors measured by Lee (1977), and Clementini (1979).

Due to the small amount of data we obtained, we cannot pinpoint the cause of the light variability of HD 147491. However, we wish to emphasize that the star might be interesting for researchers studying variability of solar-type objects caused by starspots. If HD 147491 would be a related object, then its amplitude is rather high (note that Eggen (1983) found the star to be fainter than HD 147649) and it would be one of the most active solar-type stars. The photometric behavior of HD 147491 clearly requires a more thorough study. A spectrogram of the star with sufficient resolution to examine it for chromospheric emission or for a possible secondary spectrum would also be useful.

Summary and conclusions: We showed that HD 147491 is an early G-type main sequence star which exhibits light modulation on a time scale of at least several hours. Contrary to a previous claim, we demonstrated that it cannot be a δ Scuti star; it is far too cool.

It is suggested that authors reporting low-amplitude variability of certain objects critically check if the quality of their data is sufficient to assure that their claims are not a result of spurious effects, e. g. caused by the usage of a non-optimal observing technique. Quantitative statements about data quality (such as the rms scatter of comparison star measurements) are imperative.

Acknowledgements: This research was partially supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung under grant S-7304.

G. HANDLER
Institut für Astronomie
Türkenschanzstraße 17
A-1180 Wien, Austria
E-mail: HANDLER@ASTRO.AST.UNIVIE.AC.AT

References:

Breger, M., Handler, G., 1993, Baltic Astronomy, 2, 468
Clementini, G., 1979, PASP, 99, 637
Crawford, D. L., 1975, AJ, 80, 955
Eggen, O. J., 1983, MNRAS, 204, 377
Handler, G., 1995, The Observatory, submitted
Handler, G., Breger, M., Sullivan, D. J., et al., 1995, A \mathcal{A}, submitted
Houk, N., 1982, Michigan Spectral Catalogue, vol. 3, Department of Astronomy, Univer-
sity of Michigan, Ann Arbor
Lee, S.-W., 1977, A\&AS, 27, 367
Yao, B.-A., Tong, J.-H., 1989, IBVS, No. 3334 (YT89)

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4189

Konkoly Observatory
Budapest
5 May 1995
HU ISSN 0374 - 0676

X PERSEI

The Be/X-ray binary X Persei is the optical counterpart of X-ray pulsar 4U 0352+30. Possible orbital period of the system is the 580 day periodicity detected in the radial velocities of the Balmer lines (Hutchings, 1977), in spite of existence of some doubts (Penrod \& Vogt, 1985). The star is a known optical variable on time scales from minutes to years. The most comprehensive optical light curve over the past decades is presented by Roche et al. (1993).

X Per has been observed with 60 cm telescope and photon counting photometer of the National Astronomical Observatory Rozhen. HR 1197 ($\mathrm{V}=6.25$, $\mathrm{B}-\mathrm{V}=0.20, \mathrm{U}-\mathrm{B}=0.14$) served as the comparison star. The APR software (Kirov et al., 1993) was used during the data reduction.

Our data are summarized in Table 1. Figure 1 presents the V band light curve over the period 1986-1995. Our observations showed the optical low state that began in the mid-1990 finished in the spring of 1993. Since this time the star has been in optical high state. A clear similarity between the light maximum in 1987-1988 and that in 1993-1994 is visible. The displacement is about 2400 days, i.e. 4 times larger than the supposed orbital period.

The last observations indicate that the optical high state is almost over and X Per is going to a new low state now. May be the star will lose its circumstellar disk again as it was observed in 1990 (Norton et al., 1991; Roche et al., 1993).

Figure 1. V band light curve of X Per. Circles indicate our data. The light curve before JD 2448500 is taken from Roche et al. (1993).

Table 1

JD $2440000+$	V	$\mathrm{B}-\mathrm{V}$	$\mathrm{U}-\mathrm{B}$	$\mathrm{JD} 2440000+$	V	$\mathrm{B}-\mathrm{V}$	$\mathrm{U}-\mathrm{B}$
8545.57	6.81	0.09	-0.68	9341.27	6.47	0.18	-0.78
8620.52	6.76	0.08	-0.64	9343.42	6.47	0.19	-0.78
8712.29	6.78	0.11	-0.73	9357.43	6.44	0.20	-0.78
8734.26	6.76	0.05	-0.68	9366.46	6.44	0.19	-0.78
8841.52	6.75	0.13	-0.66	9572.51	6.34	0.26	-0.73
8842.56	6.76	0.11	-0.67	9573.52	6.33	0.26	-0.73
8905.56	6.78	0.09	-0.70	9597.50	6.26	0.26	-0.73
8916.42	6.78	0.09	-0.70	9598.48	6.27	0.24	-0.73
9028.22	6.78	0.05	-0.66	9715.32	6.38	0.21	-0.75
9046.26	6.76	0.06	-0.66	9748.23	6.45	0.21	-0.81
9195.55	6.45	0.21	-0.75	9772.23	6.48	0.21	-0.83
9197.54	6.42	0.21	-0.76				
9340.28	6.47	0.18	-0.79				

We gratefully acknowledge Dr. N. A. Tomov for help in observations. This work was partly supported by NSF (F-466/94).
R. K. ZAMANOV

NAO Rozhen, POB 136,
4700 Smoljan, Bulgaria
V. I. ZAMANOVA

Planetarium, POB 132, 4700 Smoljan, Bulgaria

References:

Hutchings, J. B., 1977, MNRAS, 181, 619
Kirov, N., Antov, A., Genkov, V., 1993, Compt. Rend. Acad. Bulg. Sci., 44, No. 11, 5 Northon, A. J., Coe, M. J., Estela, A. et al., 1991, MNRAS, 253, 579
Penrod, G., Vogt, S., 1985, ApJ, 299, 653
Roche, P., Coe, M. J., Fabregat, J., McHardy, I. M., Norton, A. J., Percy, J. R., Reglero, V., Reynolds, A., Unger, S. J., 1993, A\& A, 270, 122

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4190

Konkoly Observatory
Budapest
8 May 1995
HU ISSN 0374-0676

PHOTOELECTRIC OBSERVATIONS OF THE ECLIPSING VARIABLE ER VULPECULAE

The eclipsing binary system ER Vul with the period of 0.6980960 days (Northcott and Bakos, 1967) was observed during four nights, 29 July-1 August, 1994, with the 51 centimeter Cassegrain telescope of Birouni Observatory (Iran, Shiraz, latitude $=29^{\circ} 36^{\prime} \mathrm{N}$, longitude $=52^{\circ} 31^{\prime} 48^{\prime \prime}$ E) using a photoelectric photometer equipped with an unrefrigerated RCA 4509 photomultiplier tube. The observations were made through UBV filters which are approximately in the standard system. The probable errors of a single observation were estimated to be about ± 0.01 in the three colours, i.e., corresponding to a measure of the observational scatter at a particular phase. The variable was observed differentially with respect to the comparison star HD 200270. The star HD 200425 was observed as check star.

Figures 1,2 and 3 show the UBV light curves for ER Vul, respectively.
The following light elements given by Ibanoglu et al. (1985) were used in computing the phases of the individual observations:

$$
\text { Min. I=J.D. Hel. } 2440182.2621+0 \text { d } 69809409 \times \text { E. }
$$

Table 1 indicates the photoelectric minimum times of ER Vul, in the three different filters.

Table 1

J.D. Hel. $2449000+$	Filter	Min.
563.26074	U	II
563.25953	B	II
563.24449	V	II
564.29480	U	I
564.31173	B	I
564.28007	V	I

Table 2

Date	Phase
29 July 1994	$0.9448-0.1319$
30 July 1994	$0.3403-0.5707$
31 July 1994	$0.7729-0.9826$
1 August 1994	$0.2146-0.4309$

Figure 1

Figure 2

Figure 3
Our observations indicate the existence of asymmetry, especially in the beginning of the ascending part of the secondary minimum. These phenomena can be explained as a result of the presence of a gaseous stream flowing from the secondary to the primary component, starting off roughly in the inner Lagrangian point and falling behind the primary as that star moves round on its orbit (Struve, 1947). Also we see in our observations a shift for primary and secondary minima from phases zero and 0.5 .

Table 2 lists the dates of observations and phases covered. The data has been folded so that both primary and secondary minima are clearly visible. These observations do indicate proximity effects, wave-like distortions, mutual eclipses and short-term light fluctuations (see Northcott and Bakos (1967)).

F. ZEINALI
M.T. EDALATI
Physics Dept.,
School of Sciences
University of Ferdowsi, Mashad, Iran
M.T. MIRTORABI
Birouni Observatory
University of Shiraz,
Shiraz, Iran

References:

Ibanoglu, C., Akan, M. C., Evren, S., and Tunca, Z., 1985, Inf. Bull. Var. Stars, No. 2782 Northcott, R. J. and Bakos, G. A., 1967, Astronomical J., 72, 89
Struve, O., 1947, Astrophys. J., 106, 255

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4191

Konkoly Observatory
Budapest
10 May 1995
HU ISSN 0374-0676

CONFIRMATION OF VARIABILITY IN THE λ BOOTIS STARS HD 142994 AND HD 142703

For the λ Bootis star HD 142994 two nights of differential photometry were obtained in the Strömgren photometric system. The observations were done by E. Paunzen with the ESO 50 cm telescope at La Silla during the nights of $25 / 26$ and $27 / 28$ July 1994. An integration time of 15 seconds was chosen. HD $143181\left(m_{V}=7.4\right.$, B9V) and HD 143232 ($m_{V}=6.8, \mathrm{~F} 0$) were used as comparison stars. The second comparison star was detected as a new δ Scuti star, which will be presented in a forthcoming IBVS-note (Paunzen et al., unpublished).

The variability of HD 142994 has been investigated by Weiss et al. (1994), where a semi-amplitude of 0.03 mag in Strömgren b with a period of about 4 hours had been derived. This photometry was not differential because at that time we were mainly interested in roAp-type variability. Hence we had to rely in our analysis on a constant sky transparency. Furthermore, the data sets obtained during the three nights were rather short, on the order of 2.5 hours each.

As part of our survey of pulsation among λ Bootis stars we decided to reobserve HD 142994 in two colors with the classical technique using two comparison stars (Fig. 1). Our new observations confirm the semi-amplitude of 0.031 mag in Strömgren b and of 0.037 in Strömgren v. However, the maximum amplitude in the frequency spectrum is found at a shorter period of about 3 hours ($7.9 \mathrm{c} / \mathrm{d}$, Fig. 2). This difference may be caused by the fact that our earlier data sets have an extremely poor duty cycle as well as a short time base, which did not allow us to resolve multiperiodicity and hence may have led us to a different period. HD 142994 obviously pulsates in more than one frequency, because amplitude modulation is evident already in our rather limited data set.

The periods of pulsating λ Bootis stars usually are in the range of 0.8 to 2.1 hours. These values satisfy the PLC-relation of Stellingwerf (1979) for early A-type stars at the ZAMS. Effective temperature and gravity of HD 142994 indeed are typical for an early A-type star. But this λ Bootis star pulsates with a period which is too long for a star at the ZAMS. This evidence may indicate that HD 142994 is evolved. An extensive observing campaign is required to investigate the evolutionary status of this star.

Two additional nights of differential photometry in the Strömgren system were obtained by the same observer for the λ Bootis star HD 142703 with the ESO 50 cm telescope ($23 / 24$ and $24 / 25$ July 1994). The integration time was 15 seconds. HD $142640\left(m_{V}=6.4, \mathrm{~F} 6 \mathrm{~V}\right)$ and HD $143333\left(m_{V}=5.5\right.$, F7V) were used as comparison stars (Fig. 3).

HD 142703 was previously observed in 1993 (Paunzen and Weiss, 1994) and found to be variable. The amplitude was much smaller (5 mmag) than in the case of HD 142994 and in addition the photometric quality of the nights was not excellent. To corroborate the variability of HD 142703, we reobserved this star in 1994.

Figure 1. Light curves for Strömgren b of HD 142994 (top) and HD 143181 (bottom) for the night of $25 / 26$ July 1994

Figure 2. Amplitude spectrum of the differential data (HD 142994 - HD 143181) for both nights and for Strömgren b

Figure 3. Light curves for Strömgren b of HD 142703 (top), HD 142640 (center) and HD 143333 (bottom) for the night of 23/24, July 1994

Figure 4. Amplitude spectrum of the differential data (HD 142703 - HD 142640) for both nights and for Strömgren b

Our new observations result in a frequency of about $16.5 \mathrm{c} / \mathrm{d}$ ($\mathrm{P}=87$ minutes) for b and a semi-amplitude of slightly more than 3 mmag for b and v, which is less than what we found in 1993. The derived period happens to be about twice the period found in 1993 ($\mathrm{P}=46 \mathrm{~min}$) which again may be caused by inadequate data sets aggravated by multiperiodicity. Presently, we can only state that there is no doubt about the photometric variability of HD 142703. A full analysis of this variable star can only be based on improved data, preferably obtained within a multi-site observing campaign.

Acknowledgement: This research was done within the working group Asteroseismology$A M S$ and was supported by the Hochschuljubiläumsstiftung der Stadt Wien and the International Office of the University of Vienna.

E. PAUNZEN
U. HEITER
W.W. WEISS
Institut für Astronomie
Türkenschanzstr. 17
A-1180 Wien, Austria
E-mail: PAUNZEN@ASTRO.AST.UNIVIE.AC.AT

References:

Paunzen, E., Weiss, W.W., 1994, IBVS, No. 3986
Stellingwerf, R.F., 1979, ApJ, 227, 935
Weiss, W.W., Paunzen, E., Kuschnig, R., Schneider, H.,1994, A\&A, 281, 797

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4192

Konkoly Observatory
Budapest
15 May 1995
HU ISSN 0374-0676

THE ACTIVE STAR RE0041+342

The sky was surveyed in the extreme ultraviolet by the satellites ROSAT (Pounds et al. 1993) and EUVE (McDonald et al., 1994) and from the catalogues of these sources I have been looking for brightness variations in the F, G, and K spectral type stars. This is a report about one of these stars namely RE0041+342=BD+33 94 .

The automated $0.5-\mathrm{m}$. telescope, R filter and CCD camera of the Climenhaga Observatory of the University of Victoria was used to make these photometric observations (Robb et al., 1992).

The frames had the bias subtracted and were flat-fielded in the usual manner using IRAF. The magnitudes were found from aperture photometry using the PHOT package of DAOPHOT (Stetson 1987). The coordinates of each star for photometry were found from inspection of a few frames taken at the beginning, middle and end of the night. These positions were used as initial positions for the Gaussian centering option which precisely centered the 6 arc second aperture on each star for each frame.

The mean and standard deviation of the comparison $=B D+33^{\circ} 95$ minus check star R magnitude differences are 3.437 ± 0.017 ensuring the constancy of both stars at this level. Due to the small field of view first order extinction effects were negligible and no corrections have been made for them. No corrections have been made for the colour difference between the stars to transform it to a standard system.

A spectrum of RE0041+342 was obtained using the Dominion Astrophysical Observatory's $1.8-\mathrm{m}$. telescope and 2131B spectrograph on the 6 January 1994 UT, with a dispersion of 1.5 Angstroms per pixel. It is shown in Figure 1 with a spectrum of HR 1099, a well known RS CVn star of spectral type K0V, and a spectrum of Beta Cancri, classified as K4III (Yamashita et al. 1978). Pounds et al. (1993) report a spectral type of Ge. RE0041+342 has obvious emission in the CaH and K lines indicating an active chromosphere. This emission would tend to make one cautious about using the hydrogen lines to make a classification, since such an active star often has some hydrogen emission as well. Inspection of the G-Band and the Fe I 4272 and Cr I 4290 lines lead me to classify the star as a K3Ve.

Photometric observations of RE0041+342 were begun on Julian Date 2449315 and are plotted in Figure 2. It is obvious that there was a large brightening of the star at 4 hours UT. This star was monitored on 23 nights and at no time was a similar brightening observed. The cause of the brightening then must be a large flare. UV Ceti type flare stars have a spectral type of late K or M and flares generally of a few minutes duration but small amplitudes in the red region of the spectrum.

Very energetic flares have been seen on the close binary star V711 Tau $=$ HR 1099, by Zhang et al. (1990) reporting an amplitude of 0.18 in V and a duration of 4.5 hours and by Henry and Hall (1991) reporting an amplitude of 0.424 in V and a duration of 6 or 7

Figure 1. Spectra of RE0041+342, HR1099, and Beta Cancri

Figure 2. Differential R magnitude as a function of Universal Time for RE0041+342 on 24 Nov 1993

Figure 3. Periodogram of the August 1994 data

Figure 4. Differential R magnitude phased on a period of 1.536 days for August 1994
hours. An even larger flare may have been the one seen on FK Comae (G2III) reported by Morris and Milone (1983). The R band amplitude of the flare on RE0041+342 was 0.39 magnitudes and its duration was about 3 hours. Thus the flare observed on RE0041+342 was exceptionally large but not unique.

During the winter of 1993-1994 variations of brightness from night to night were obvious and the few long nights showed that the period of the variation must be more than a few hours. However periodograms of this data were inadequate to reveal a believable period. Observations were made on eight more nights in the summer of 1994 and a sine curve fit to this data reveals a minimum chi squared at a period of 1.536 ± 0.025 days as seen in Figure 3.

A plot of the differential R magnitudes for the summer 1994 data phased at this period is shown in Figure 4. In spite of six of the nights being observed in one week, there is some variation in the mean brightness from night to night. The winter data phased on this period show a similar light curve with a slightly different shape. Three more nights were observed in September 1994 and showed no detectable variation and a mean difference in R magnitude of -0.14 . So the variations are probably caused by starspots and differential rotation or spot evolution cause the brightness variations to change on a monthly time scale. Since the brightness variations are not strictly periodic, the period found is only approximately that of the rotation of the star.

RE0041+342 is a rapidly rotating K4V star with active regions on its surface causing brightness variations, EUV emission, Ca H and K emission, and flares. The author wishes to thank David Balam for assistance in obtaining the spectra at the DAO.

R. M. ROBB
Visiting Astronomer at the
Dominion Astrophysical Observatory
and the
Climenhaga Observatory
of the Dept. of Physics and Astronomy
University of Victoria
Victoria, BC, CANADA, V8W 3P6
Internet: robb@uvphys.phys.uvic.ca

References:

Henry, G. W., and Hall, D. S., 1991, ApJ, 373, L9
McDonald, K., Craig, N., Sirk, M. M., Drake, J. J., Fruscione, A., Vallerga, J. V., and Malina, R. F., 1994, AJ, 108, 1843
Morris, S. L., and Milone, E. F., 1983, PASP, 95, 376
Pounds, K. A., et al. 1993, MNRAS, 260, 77
Robb, R. M. and Honkanen, N. N., 1992, in A.S.P. Conf. Ser. 38, Automated Telescopes for Photometry and Imaging, ed. Adelman, Dukes and Adelman, 105
Stetson, P. B., 1987, PASP, 99, 191
Yamashita Y., Nariai K., and Norimoto Y., An Atlas of Representative Stellar Spectra, 1978, A Halsted Press Book John Wiley \& Sons, New York and Toronto
Zhang, R., Zhai D., Zhang, X., Zhang, J., Li, Q., 1990, IBVS, No. 3456

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4193

Konkoly Observatory
Budapest
16 May 1995
HU ISSN 0374 - 0676

HS VIRGINIS - A DWARF NOVA WITH 8-DAY OUTBURST CYCLE LENGTH

HS Vir was discovered as an ultraviolet excess object PG 1341-079 and was subsequently confirmed by spectroscopy to be a cataclysmic variable by Green et al. (1982, 1986). They reported two magnitude variability, but its nature remained little revealed. Some authors have classified this object as a nova-like star, others as a dwarf nova with a small amplitude.

Photographic photometry was undertaken by Osminkin (1985), who showed existence of relatively frequent short, faint outbursts, and presence of a bright ($\sim 12.8 \mathrm{mag}$) outburst. Unfortunately Osminkin's observations were so sparsely done that the materials were not enough to determine the outburst parameters or the dwarf nova subtype. Howell et al. (1990) tried to get the orbital period of this system by photometry made during quiescence, but the result remained inconclusive.

Another important observation was carried out by Ringwald (1993). He obtained a number of radial velocity mesurements, and derived the best estimate of the orbital period of 0.0836 day (with possible aliasing problems), which is just below the lower edge of the period gap. This suggests that HS Vir may be a candidate of SU UMa-type dwarf nova (for a review, see Warner 1985). One problem of this suggestion is that HS Vir has much smaller outburst amplitude (mostly 1 mag) which makes a clear contrast to usual SU UMa-type dwarf novae. However, recent discovery of a new subgroup of low outburst-amplitude SU UMa-type dwarf novae, named ER UMa stars or RZ LMi stars (Kato and Kunjaya 1995; Nogami et al., 1995; Robertson et al., 1995; Misselt and Shafter 1995; hereafter ER UMa stars) has called our attention to HS Vir with a similar outburst amplitude.

Observations were carried out using a CCD camera (Thomson TH 7882, 576 $\times 384$ pixels) attached to the Cassegrain focus of the 60 cm reflector (focal length $=4.8 \mathrm{~m}$) at Ouda Station, Kyoto University (Ohtani et al., 1992). To reduce the readout noise and dead time, an on-chip summation of 2×2 pixels to one pixel was adopted. An interference filter was used which had been designed to reproduce the Johnson V band. The exposure time was between 30 and 120 s . The frames were first corrected for standard de-biasing and flat fielding, and were then processed by a microcomputer-based automatic-aperture photometry package developed by one of the authors (T.K.). The differential magnitudes of the variable were determined using a local standard star [$\mathrm{C}_{1}: 13^{\mathrm{h}} 43^{\mathrm{m}} 24^{\mathrm{s}} .84-08^{\circ} 1^{\prime} 25^{\prime \prime \prime} .2$ (J2000.0), $V=12.2$: The position and magnitude were taken from the Guide Star Catalog]. The constancy of this comparison was checked against several stars in the same field (C_{2} and C_{3}; see Figure 1).

The resulting general light curve is given in Figure 2. The light curve first clearly established the dwarf-nova nature of HS Vir, with a very stable outburst cycle length of

Figure 1. Field map of HS Vir. The field of view is about $6 \times 9 \mathrm{arcmin}$. The variable (HS), comparison $\left(\mathrm{C}_{1}\right)$ and check stars $\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{3}\right)$ are marked. The C_{2} and C_{3} were measured to be fainter than C_{1} by 2.72 ± 0.01 and $3.85 \pm 0.01 \mathrm{mag}$, respectively.

Figure 2. V-band light curve of HS Vir. The zero point of the relative magnitudes corresponds to $V=12.2$. Regular short outbursts spaced by 8 days are evident.

8 days. The observed amplitudes of outbursts were $1.1-1.8 \mathrm{mag}$, which are clearly smaller than those of usual dwarf novae. Other important points are the shortness of outbursts (one or two days), and the rapid decline up to $1.1 \mathrm{mag} \mathrm{d}^{-1}$ from the outburst peak. The shortness and the rapid decay of outbursts are very characteristic of normal outbursts of SU UMa-type dwarf novae. The shortest known recurrence time of normal outbursts in SU UMa stars had been 8 days in YZ Cnc, before the discovery of ER UMa stars. This value of HS Vir closely matches that of YZ Cnc, except outburst amplitudes, which are more similar to those of ER UMa stars. Although we have not yet detected superoutburst nor superhumps in this system, a search for these phenomena would surely bring the long confusing history of HS Vir to an end, and would prove the position of HS Vir among a group of low outburst-amplitude SU UMa-type dwarf novae, i.e. YZ Cnc, ER UMa stars and V503 Cyg (Harvey et al., 1995).

A record of the brightest outburst on JD 2443667 by Osminkin (1985), although severely undersampled, shows that this outburst lasted more than three days, and this outburst may be identified as a superoutburst. Confirmation of superoutbursts and superhumps, and determination of supercycle (recurrence time of superoutbursts) will be a next important step toward full understanding of this rather peculiar dwarf nova.

Part of this work is supported by a Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists (T.K).

Taichi KATO
Daisaku NOGAMI
Seiji MASUDA
Ryuko HIRATA
Dept. of Astron., Faculty of Sci.
Kyoto University
Sakyo-ku, Kyoto 606-01 Japan

References:

Green, R. F., Ferguson, D. H., Libert, J., Schmidt, M., 1982, PASP, 94, 560
Green, R. F., Schmidt, M., Liebert, J., 1986, ApJS, 61, 305
Harvey, D., Skillman, D. R., Patterson, J., Ringwald, F. A., 1995, PASP in press
Howell, S. B., Szkody, P., Kreidl, T. J., Mason, K. O., Puchnarewicz, E. M., 1990, PASP, 102, 758
Kato, T., Kunjaya, C., 1995, PASJ, 47, 163
Misselt, K. A., Shafter, A. W., 1995, AJ, 109, 1757
Nogami, D., Kato, T., Masuda, S., Hirata, R., 1995, IBVS, No. 4155
Ohtani, H., Uesugi, A., Tomita, Y., Yoshida, M., Kosugi, G., Noumaru, J., Araya, S., Ohta, K. et al., 1992, Memoirs of the Faculty of Science, Kyoto University, Series A of Physics, Astrophysics, Geophysics and Chemistry, 38, 167
Osminkin, E. Yu., 1985, Perem. Zvezdy, 22, 261
Ringwald, F. A., 1993, Ph. D. thesis, Dartmouth College
Robertson, J. W., Honeycutt, R. K., Turner, G. W., 1995, PASP in press
Warner, B., 1985, Interacting Binaries, ed P. P. Eggelton, J. E. Pringle (D. Reidel Publishing Company, Dordrecht) p367

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4194

Konkoly Observatory
Budapest
18 May 1995
HU ISSN 0374-0676

TIMES OF MINIMA OF EIGHT ECLIPSING BINARIES

We report times of minima of eccentric eclipsing binaries derived from photometric observations made at Ege University Observatory in Turkey and at Cerro Tololo Interamerican Observatory (CTIO) in Johnson B and V filters, and at the High Altitude Maidanak Observatory in Uzbekistan in Johnson U,B,V,R filters. Heliocentric times of minimum were estimated for each filter by using the method of Kwee and Van Woerden (1956) as adapted to a Macintosh computer. The adopted time of minimum was then the average over all filters. In all cases the times of minimum in different filters was concordant. Uncertainties in the times of minima were estimated from the values of standard error computed by the method and from the differences in times derived from the various filters used. Primary eclipses are designated as type 1 eclipses, and secondary eclipses as type 2.

We would like to acknowledge financial support of our work by the American Astronomical Society through the Edith J. Woodward Award and from the Margaret Cullinan Wray Charitable Lead Annuity Trust.

Claud H. SANDBERG LACY
Department of Physics
University of Arkansas
Fayetteville, Arkansas 72701
USA
Cafer IBANOGLU
Z. TUNCA
S. EVREN
C. AKAN
V. KESKIN

Ege University
Bornova-Izmir
Turkey

Mamnun ZAKIROV
G. ARZUMANYANTS
R. ISHANKULOV
V. KHARCHENKO

High Altitude Maidanak Observatory
Astronomical Institute
Tashkent 700052
Uzbekistan

Reference:
Kwee, K.K., and van Woerden, H., 1956, B.A.N., 12, 327

Star	JD of Min -2400000	Type	Observatory
IT Cas	49539.3517 ± 0.0008	1	Maidanak
	49578.3208 ± 0.0008	1	Maidanak
	49580.4645 ± 0.0007	2	Maidanak
	49582.2160 ± 0.0006	1	Maidanak
PV Cas	49185.4198 ± 0.0007	2	Ege
	49192.4169 ± 0.0010	2	Ege
	49199.4214 ± 0.0005	2	Ege
	49213.4274 ± 0.0005	2	Ege
	49214.3002 ± 0.0006	1	Ege
	49220.4276 ± 0.0008	2	Ege
	49249.3055 ± 0.0005	1	Ege
	49256.3077 ± 0.0002	1	Ege
	49277.3135 ± 0.0004	1	Ege
	49529.3793 ± 0.0006	1	Maidanak
	49570.5228 ± 0.0003	2	Ege
	49578.3945 ± 0.0004	1	Ege
	49592.3961 ± 0.0006	1	Maidanak
EK Cep	49195.5084 ± 0.0002	1	Ege
	49204.3642 ± 0.0001	1	Ege
	49255.4783 ± 0.0010	2	Ege
	49567.4431 ± 0.0003	1	Ege
	49607.2935 ± 0.0002	1	Ege
V541 Cyg	49560.2668 ± 0.0008	1	Maidanak
V364 Lac	49223.4042 ± 0.0005	2	Ege
	49278.4195 ± 0.0005	1	Ege
	49594.5363 ± 0.0006	1	Ege
FS Mon	49727.8277 ± 0.0003	2	CTIO
FT Ori	41575.5136 ± 0.0003	1	Ege
	41675.5043 ± 0.0005	2	Ege
	49721.5833 ± 0.0007	2	CTIO
	49724.7338 ± 0.0003	2	CTIO
	49725.6427 ± 0.0001	1	CTIO
GG Ori	48590.3086 ± 0.0007	1	Maidanak
	48911.4212 ± 0.0007	2	Maidanak
	48948.4090 ± 0.0012	1	Maidanak
	49366.1968 ± 0.0010	1	Maidanak
	49717.6624 ± 0.0002	1	CTIO

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4195

Konkoly Observatory
Budapest
24 May 1995
HU ISSN 0374-0676

A LIST OF VARIABLE STARS SIMILAR TO γ Dor

In this note we compile data on stars that appear to constitute a new class of variable stars. These stars typically have spectral types near F0 and luminosity classes of V or IV-V. They are variable up to 0.1 mag in V on a time scale of 0.5 to 3 days - an order of magnitude longer than the fundamental radial pulsation period for stars of this density. Some exhibit two or more frequencies. The evidence is that these stars are variable owing to non-radial g-mode pulsations. Given that γ Dor was the first one found to be variable (Cousins \& Warren 1963), it has been suggested that they be known as " γ Doradus stars". Our list is a consequence of the rapidly growing scientific interest in these stars. For instance, multi-longitude campaigns are planned for four of the stars during 1995; these are necessary to avoid aliasing of the frequencies of variation for stars with ≈ 1 day periods.

In Tables 1, 2, and 3, respectively, we give various data on the bona fide members of the group, on other candidates, and on one star formerly regarded as being of the γ Dor type. The coordinates are equinox 2000 . The photometric periods are given in days. The projected rotational velocities $v \sin i$ are in $\mathrm{km} \mathrm{s}^{-1}$. Table 1 is only for stars with a considerable amount of available data. Table 2 contains all objects we found in the literature which were reported to be related with the γ Dor phenomenon. In the tables we provide Strömgren photometry from Hauck \& Mermilliod (1990) supplemented by new observations of Handler (1995). In the references we include only published papers. We do note, however, that Zerbi (private communication) informs us there is a paper in preparation on NGC 2516 which provides evidence for additional four γ Dor candidates in that cluster.

Table 1. Bona Fide Members

Star	HD	$<V>$	$(b-y)$	m_{1}	c_{1}	β
RA	DEC	Sp	Period(s)	$v \sin i$	Remarks	References
	224945	6.9	0.192	0.147	0.719	2.743
00:02:02.4	$-02: 45: 59$	(F0)	$1.072,1.495$	55		$11,12,14$
γ Dor	27290	4.25	0.201	0.173	0.658	2.742
$04: 16: 01.0$	$-51: 29: 21$	F0 V	$0.733,0.757$	62		$2,3,21$
9 Aur	32537	5.00	0.217	0.152	0.642	2.723
05:06:40.7	$+51: 36: 01$	F0 V	$1.258,2.895$	18	1	$4,13,16$
2 Pup B	62683	6.89	0.201	0.165	0.634	2.727
$07: 45: 28.7$	$-14: 41: 09$	A8V	1.92 or 0.48			20
	164615	7.06	0.230	0.178	0.624	2.715
18:01:32.9	$+11: 17: 08$	F2 IV-V	0.815	60		9,10
	224638	7.2	0.198	0.157	0.680	2.726
$23: 59: 34.5$	$-01: 51: 02$	(F0)	$1.233,1.460$	24		$11,12,14$

Table 2. Other Candidates

Star	HD	$<V>$	$(b-y)$	m_{1}	c_{1}	β
RA	DEC	Sp	Period(s)	$v \sin i$	Remarks	References
	23375	8.58	0.228	0.172	0.719	2.765
03:45:34.4	$+24: 27: 50$	A9 V	>0.2	75		1
NGC 2516 C52		10.29	0.278	0.176	0.673	2.761
$7: 55: 52$	$-60: 24: 37$		$0.2-0.4$		2	5
NGC 2516 C69		11.21	0.282	0.117	0.739	2.761
$7: 56: 19$	$-60: 36: 59$		$0.2-0.4$			5
NGC 2516 C93		11.13	0.263	0.144	0.797	2.776
$7: 54: 25$	$-60: 30: 40$		$0.2-0.4$			5
NGC 2516 C96		11.23	0.257	0.151	0.720	2.766
$7: 54: 13$	$-60: 35: 09$		$0.2-0.4$			5
τ^{1} Hya	81997 A	4.60	0.296	0.164	0.448	2.661
$9: 29: 08.4$	$-02: 46: 07$	F6 V	$($ days	25		18
	106103	8.12	0.264	0.160	0.449	2.675
12:12:24.9	$+27: 22: 49$	F4 V	(0.83)	6	3	19
γ Vir	$110379 / 80$	3.48	0.242	0.152	0.522	2.708
12:41:41.4	$-01: 26: 58$	F0 V	$?$	28	4	23
	111829	9.46	0.228	0.100	1.000	2.806
12:53:41.3	$-74: 53: 46$	A1 IV-V	$1.8 ?$		5	8
	117777	9.25				
13:32:03.3	$+28: 35: 05$	F2 V	(1)			22
BS 8799	218396	5.99	0.181	0.142	0.678	2.745
$23: 07: 28.3$	$+21: 08: 05$	A5 V	0.510	45		17

Table 3. Star formerly on the list

Star	HD	$\langle V\rangle$	$(b-y)$	m_{1}	c_{1}	β
RA	DEC	Sp	Period(s)	$v \sin i$	Remarks	References
	96008	6.74	0.209	0.165	0.703	2.727
11:03:43.7	$-51: 21: 11$	F0 V	0.309873	85	6	$6,7,15$

References to Tables 1-3:

1. Breger M., 1972, ApJ, 176, 367
2. Cousins A. W. J., 1992, The Observatory, 112, 53
3. Balona L. A., et al., 1994, MNRAS 267, 103
4. Krisciunas K., et al., 1993, MNRAS, 263, 781
5. Antonello E., Mantegazza, L., 1986, A\&A, 164, 40
6. Lampens P., 1987, A\&A, 172, 173
7. Matthews J. M., 1990, A\&A, 229, 452
8. Mantegazza L., Poretti E., Antonello E., 1991, IBVS, No. 3612
9. Abt H. A., Bollinger G., Burke E. W., Jr., 1983, ApJ, 272, 196
10. Rucinski S. M., 1985, PASP, 97, 657
11. Mantegazza L., Poretti E., 1991, IBVS, No. 3690
12. Mantegazza L., et al., 1993, ASP Conf. Ser. 40, 651
13. Kazovarets E. V., Samus N. N., 1995, IBVS, No. 4140
14. Mantegazza L., Poretti E., Zerbi, F. M., 1994, MNRAS, 270, 439
15. Mantegazza L., Poretti E., 1995, A\&A, 294, 190. See also Delta Scuti Star Newsletter (Vienna), No. 8, 13
16. Krisciunas K., et al., 1995, MNRAS, 273, 662
17. Rodriguez E., Zerbi, F. M., 1995, IBVS, No. 4170
18. Lockwood G. W., Skiff B. A., Thompson D. T., 1993, IAU Colloq. 136, Stellar Photometry - Current Techniques and Future Developments, C. J. Butler \& I. Elliott (eds.), p. 99
19. Handler G., 1994, Delta Scuti Star Newsletter (Vienna), No. 7, 11
20. Vaz L. P. R., Andersen J., 1984, A\&A, 132, 219
21. Balona L. A., Krisciunas K., Cousins, A. W. J., 1994, MNRAS, 270,905
22. Hall D. S., 1995, Robotic Telescopes: Current Capabilities, Present Developments, and Future Prospects for Automated Astronomy, G. W. Henry \& J. A. Eaton (eds.), ASP Conf. Series, No. 79, p. 65
23. Hoffleit D., 1992, JAAVSO, 21, 55

Remarks to Tables 1-3:

1. 9 Aur was designated V398 Aur in the latest name-list of variable stars (Ref. 13 above).
2. Cluster membership doubtful (Ref. 5 above); Strömgren indices suggest high metallicity, thus the absolute magnitude of the star in Figure 1 could be too low
3. Period uncertain due to aliasing
4. The magnitudes and colors given are for the slightly brighter of the two nearly identical components.
5. Note correct HD number
6. Shown to be an ellipsoidal binary (Ref. 15 above)

Figure 1. Color-magnitude diagram of the stars similar to γ Dor. Circles: stars from Table 1. Triangles: NGC 2516 stars. Dots: other candidates from Table 2. The Zero Age Main Sequence is adopted from Crawford $(1975,1979)$, while the borders of the instability strip are taken from Breger (1979).

In Figure 1 we give a color-magnitude diagram of the bona fide members and the other candidates. For field stars and doubtful members of clusters, we calculated the unreddened colors and absolute magnitudes from the Strömgren photometry by applying the calibrations of Crawford $(1975,1979)$.

The authors would appreciate receiving from other observers further data and news of new candidates, since this list will be continuously updated.

Some information in the table was obtained from the SIMBAD data retrieval system, a data base of the Astronomical Data Centre, Strasbourg, France.

Acknowledgements: L. Mantegazza kindly supplied a program for calculating dereddened colors and absolute magnitudes from uvby β photometry.

K. KRISCIUNAS* G. HANDLER**

* Joint Astronomy Centre, 660 N. A'ohōkū Place, University Park, Hilo, Hawaii 96720, USA, e-mail: kevin@jach.hawaii.edu
** Institut für Astronomie, Türkenschanzstraße 17, A-1180 Wien, Austria e-mail: handler@astro.ast.univie.ac.at

References:

Breger, M., 1979, PASP, 91, 5
Cousins, A. W. J., Warren, P. R., 1963, MNASSA, 22, 65
Crawford, D. L., 1975, AJ, 80, 955
Crawford, D. L., 1979, AJ, 84, 1858
Handler, G., 1995, The Observatory, submitted
Hauck, B., Mermilliod, M., 1990, A\&AS, 86, 107

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4196

Konkoly Observatory
Budapest
24 May 1995
HU ISSN 0374-0676

PERIODS AND TYPES FOR SIX RED VARIABLES

Kaiser $(1991,1992)$ reported the photographic discovery of several new variable stars and the rediscovery of several variables listed in the New Catalogue of Suspected Variable Stars (Kholopov et al., 1982). I have examined these stars on Harvard patrol plates of the Damon blue series (IIa-O) from 1973-1989. This report presents the results for six DHK variables of late spectral type. Except when noted, magnitudes of comparison stars were estimated with an image scale calibrated to photoelectric B magnitudes in nearby fields of the Guide Star Photometric Catalogue (Lasker, Sturch et al., 1988). Equatorial coordinates and alternate identification in various catalogues can be found in the 71st and 72 nd Name Lists of Variable Stars, as cited.

DHK 18=TT Sextantis
Spectral type M4. Designated TT Sex in the 71st Name List (Kazarovets et al., 1993). Observed on 202 plates, using a comparison star sequence extended from the two comparison stars for BV 715=RU Sex cited by Strohmeier et al. (1965). Observed range 10.4-11.9 ptg. The light curve (Figure 1) gives a superficial impression of semiregular variations, but detailed plots of each season's data show that no two cycles are similar. DFT analysis found only a weak frequency peak near 700 days, but this period is expressed by only one cycle on the light curve (centered at JD 2446000). Altogether, these observations suggest that variations are of the slow irregular type.

DHK $24=$ V1060 Tauri
Spectral type C4II. Designated V1060 Tau (Kazarovets et al., 1993). Observed on 163 plates, range $10.3-11.8$ ptg. The discovery report (Kaiser, 1992) gave this variable an uncertain assigment to the slow irregular class (Lb:). DFT analysis found a strong frequency peak at $\mathrm{P}=1163$ days and a second, moderately strong peak at $\mathrm{P}=527$ days. Therefore, this star appears more likely to be SR type with long and perhaps multiple periods.

DHK $=$ V704 Cassiopeiae
Spectral type M1. First noted by Espin (1894). Recently designated V704 Cas in the 72nd Name List (Kazarovets and Samus, 1995). Observed on 175 plates, range 11.4-12.1 ptg. The light curve (Figure 1) shows distinct semiregular variations, with the amplitude of each cycle ranging from 0.2-0.7 magnitude. DFT analysis indicates a period of 379 days, which supersedes the estimate of 350: days in the discovery report.

TT SEX

Figure 1

DHK $26=$ BP Canum Venaticorum

Spectral type K5. Observed on 139 plates. Recently designated BP CVn (Kazarovets and Samus, 1995). Variability was first reported by Weber (1963), who found a range of 11.4-12.1 ptg. I adopted his comparison sequence but found it necessary to add two fainter stars to accommodate my observed range of 11.9-12.8 ptg. The light curve (Figure 1) shows semiregular variations generally characterized by steep minima and broad maxima. DFT analysis found a strong frequency peak at $\mathrm{P}=317$ days, which supersedes the preliminary estimate of 300: days in the discovery report.

DHK $27=$ V517 Persei
Spectral type M8. Recently designated V517 Per (Kazarovets and Samus, 1995). Observed on 113 Damon plates, using comparison star magnitudes interpolated from the HU Per sequence of Meshkova (1940) less than 1 degree east of this new variable. Observed range $10.5-11.4 \mathrm{ptg}$. DFT analysis found a strong frequency peak at $\mathrm{P}=860$ days, which is expressed by two prominent cycles on the light curve (Figure 1). However, additional observations from 125 RH series plates, 1931-1952, show only a weak frequency peak at 1067 days and no sign of a period near 860 days. This star is probably a slow irregular variable with characteristic cycles of 800-1100 days and minor variations of shorter durations.

DHK 28=LM Pegasi
Spectral type M2. Recently designated LM Peg (Kazarovets and Samus, 1995). Observed on 166 plates, range $10.6-11.3 \mathrm{ptg}$. DFT period search found a weak frequency peak equivalent to a period of 72 days, which supersedes the estimate of 150: days in the discovery report. A light curve is not included here; a forthcoming report will present photoelectric photometry that supports the new period. This star appears to be a typical small-amplitude, short period, red semiregular variable.

Some of the information in this report was obtained from SIMBAD, database of Strasbourg, France, Astronomical Data Center. I wish to thank Dr. Martha Hazen for the opportunity to use the Harvard College Observatory plate collection for this project.

David B. WILLIAMS
9270-A Racquetball Way
Indianapolis, IN 46260 USA

References:

Espin, T. E., 1894, Astron. Nach., 135, 265
Kaiser, D. H., 1991, Inform. Bull. Var. Stars, No. 3677
Kaiser, D. H., 1992, Inform. Bull. Var. Stars, No. 3814
Kazarovets, E. V., and Samus, N. N., 1995, Inform. Bull. Var. Stars, No. 4140
Kazarovets, E. V., Samus, N. N., and Goranskij, V. P., 1993, Inform. Bull. Var. Stars, No. 3840
Kholopov, P. N., editor, et al., 1982, New Catalogue of Suspected Variable Stars, Moscow Lasker, B., Sturch, C. et al., 1988, Astrophys. Journ. Suppl., 68, 1
Meshkova, T. S., 1940, Perem. Zvezdy, 5, 255
Strohmeier, W., Knigge, R., and Ott, H., 1965, Inform. Bull. Var. Stars, No. 115
Weber, R., 1963, Inform. Bull. Var. Stars, No. 21

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4197

Konkoly Observatory
Budapest
25 May 1995
HU ISSN 0374-0676

BH Cas IS AN ECLIPSING BINARY

The variability of BH Cas was discovered by Beljawsky (1931) and confirmed by Kukarkin (1938) who classified it as possibly W UMa-type with period ~ 0.5 days. Ahnert and Hoffmeister (1943) found no star in the region of BH Cas with the proposed variation. Metcalfe (1994) published observations supporting the variability of BH Cas.

In Figure 1, observations of BH Cas obtained in the V-band on the nights of 8 October 1994 (squares) and 19 February 1994 (triangles) are shown. The comparison star was GSC 0366500784 with a measured apparent visual magnitude of 13.61 ± 0.02.

The light curve confirms that BH Cas is an eclipsing binary of W UMa-type, counter to the conclusion of Ahnert and Hoffmeister. The period is $P \sim 0.39$ days, and the HJD epochs of primary and secondary minimum are $T_{1}=2449767.6661$ and $T_{2}=2449634.7378$ respectively. Observations in the $\mathrm{B}-$ and $\mathrm{R}-$ bands indicate that $(\mathrm{B}-\mathrm{V}) \approx 0.6$ and $(\mathrm{V}-\mathrm{R}) \approx 0.3$.

Figure 1

Future efforts at Steward Observatory will be concentrated on improving the V-band light curve and determining a more precise period. Collaboration is especially needed for reconstruction of the $\mathrm{B}-$ and R -band light curves. Observers at greatly different longitudes than Steward ($\mathrm{L}_{\mathrm{w}} \simeq 7^{\mathrm{h}} 23 . \mathrm{m}^{\mathrm{m}}$) would be most welcome. For finder charts or additional information, please contact the undersigned.

T.S. METCALFE
Steward Observatory
University of Arizona
Tucson, Arizona, USA
tmetcalf@astro.as.arizona.edu

References:
Ahnert, P. and Hoffmeister, C., 1943, KVBB, 28, 4
Beljawsky, S., 1931, AN, 243, 115
Kukarkin, B.W., 1938, NNVS, 5, 195
Metcalfe, T.S., 1994, IBVS, No. 4038

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4198

Konkoly Observatory
Budapest
25 May 1995
HU ISSN 0374-0676

NSV 7020 Boo $=$ BV $100:$ RR ab VARIABLE

Geier, Kippenhahn and Strohmeier (1955) discovered the variability of the star NSV 7020 Boo $=$ BV 100. They reported brightness variations on a short time scale. Filatov (1960) gave photographic observations of the star, stating 12 epochs of maximum light. Finally, Götz and Wenzel (1964) communicated the spectral type of the variable (F4). They also remarked that they found a pair of stars of similar brightness and spectral type at the given location. According to the bibliographical file on variable stars kept at Sonneberg Observatory, Germany, no other source of information on NSV 7020 Boo is known.

One of us (LM) observed NSV 7020 Boo photographically in 1985 with the 25 cm Ritchey-Chrétien reflector of the public observatory ("Sternwarte Eschenberg") in Winterthur, Switzerland. His 100 observations were secured on 10 nights over a timespan of 85 days. These observations have never been published. They showed convincingly that NSV 7020 Boo $=$ BV 100 is an RRab type variable. But unfortunately, the period of variation could not be determined, because only one-rather uncertain-time of maximum light $(\mathrm{JD}(\max , \mathrm{hel})=2446210.579 \pm 0.010)$ was observed.

In the course of an observational stay at the Rosemary Hill Observatory of the University of Florida, RD reobserved NSV 7020 Boo photoelectrically in 1993. The details of the instrumental setup were reported elsewhere (Diethelm, 1993). A total of 71 observations in V and 32 measurements in B were secured between JD 2449104 and JD 2449125. As reported by Götz and Wenzel(1964), NSV 7020 Boo is the following of a close pair of stars. We used the leading member of the pair as the comparison star. We found this star to be constant to within the accuracy of our photometry by occasional checks using the standard star HR 6092. From this differential photometry $\mathrm{B}=11.99 \pm 0.02$ and $\mathrm{V}=$ 11.61 ± 0.02 can be deduced for the primary comparison star.

The short time base of only 21 days prevents the determination of accurate elements of variation for the star from the photoelectric data. The period value of $\mathrm{P}=0.45845$ days yields the smoothest light curve in V, while the photographic data are best represented by a period of 0.45912 days. We have assumed that 6328 pulsations have taken place between the photographic maximum determined by LM and the photoelectric maximum observed by RD (JD $2449111.674 \pm 0.004)$ for the computation of the provisional elements

$$
\begin{equation*}
\mathrm{JD}(\text { hel }, \max)=2449111.675+0.458455 \times \mathrm{E} \tag{1}
\end{equation*}
$$

Figures 1 and 2 show the photoelectric V and $\mathrm{B}-\mathrm{V}$ light curve folded with the elements given in (1).

The photoelectric data yield the following basic parameters describing the light curve of NSV 7020 Boo:

$$
\Delta \mathrm{V}: 11.59-12.76 \mathrm{~V} ; \quad \Delta \mathrm{B}: 11.71-13.08 \mathrm{~B} ; \quad \mathrm{M}-\mathrm{m}=0 \mathrm{p} 15 .
$$

Figure 1. Photoelectric V light curve of NSV 7020 Boo

Figure 2. Photoelectric B-V colour curve of NSV 7020 Boo
Acknowledgements: RD would like to thank the staff of the Department of Astronomy of the University of Florida for the generous allocation of observing time and the continuous support during his stay at the Rosemary Hill Observatory. This investigation was supported in part by the "Emilia Guggenheim-Schnurr Foundation".

```
R. DIETHELM
BBSAG
Rennweg 1
CH-4118 Rodersdorf
Switzerland
e-mail: diethelm@astro.unibas.ch
```

L. MOSER

Stockhornstrasse 15
CH-3510 Konolfingen
Switzerland

References:
Diethelm, R., 1993, IBVS, No. 3903
Filatov, G.S., 1960, Sov. Astr. Circular, No. 215, 20
Geier, E., Kippenhahn, R., Strohmeier, W., 1955, KVB, No. 11
Götz, W., Wenzel, W., 1964, MVS, 2, 49

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4199

Konkoly Observatory
Budapest
26 May 1995
HU ISSN 0374-0676

ORBITAL PARAMETERS OF SIX SPECTROSCOPIC BINARY CEPHEIDS

Our observations of Cepheid radial velocities using a CORAVEL-type photoelectric correlational spectrometer (Tokovinin, 1987) started in 1987. The results for 1987-1991 were presented in the form of a catalog of Cepheid radial velocities (Gorynya et al., 1992a). This catalog contains about 1500 observations of nearly 80 galactic Cepheids. Our observations were continued, and in 1992-1994 we obtained more than 2100 radial velocity measurements for 87 Cepheids. Thus, our data base of original accurate (typical r.m.s. error about $0.5 \mathrm{~km} / \mathrm{s}$) radial velocity measurements contains more than 3600 observations for 107 Cepheids. We have also compiled a data base of all published radial velocity measurements for Cepheids; for Cepheids of our programme, this data base quotes a little more than 3800 observations. Our programme aims to gather good coverage of radial velocity curves, optimally for each year of observations of a star. As the result, these data are well suited for the search and study of spectroscopic binary Cepheids. It is well known that spectroscopic binarity is a common phenomenon among classical Cepheids (Szabados, 1995).

We were able to confirm a number of earlier known spectroscopic binaries. Moreover, we have discovered several new ones: MW Cyg (Gorynya et al., 1992b), VZ Cyg (Samus et al., 1993), BY Cas (Gorynya et al., 1995).

The present paper is devoted to new determinations of orbital elements for six Cepheids with long series of radial velocity measurements available. We used our measurements along with published data extracted from our data base.

In calculations of orbital elements the pulsational curve was approximated by trigonometrical series of the order from 1 to 5 , with light elements taken from our data base. The search for orbital periods used our standard software for analyzing periodicities of variable stars. The quality of approximation may be seen in the orbital and pulsational radial velocity curves presented in Figures 1a-b. We ascribed to each data point (both in the orbital and the pulsational curves) half of individual residual of radial velocity.

Table 1 presents the results of our computation of orbital elements. N and n are respectively the total number of velocity observations used and the number of our original velocity measurements for each star. We estimate the error of orbital periods as $\pm 3-5$ days, that of pericenter epochs, as ± 10 days, that of orbital eccentricities, as ± 0.02, that of V_{ν}, as $\pm 0.5 \mathrm{~km} / \mathrm{s}$.

Table 1
New Orbital Elements for 6 Cepheids

	FF Aql	BY Cas	VZ Cyg	MW Cyg	S Sge	V350 Sgr
T_{0}, JD 24...	45381	49384	49294	47997	48687	49103
$P_{\text {orb }}, \mathrm{d}$	1433	563	725	441	676	1467
e	0.09	0.22	0.05	0.04	0.18	0.31
ω, deg	327	288	332	91	202	292
$V_{\gamma}, \mathrm{km} / \mathrm{s}$	-16.0	-58.7	-15.1	-12.8	-9.6	+11.2
$K, \mathrm{~km} / \mathrm{s}$	+5.0	+9.1	+6.5	+5.8	+15.4	+10.3
$f(M)$	0.018	0.040	0.020	0.009	0.243	0.142
N	162	14	67	180	200	135
n	69	14	58	131	83	79

Figure 1a. FF Aql, VZ Cyg, MW Cyg - decomposition of the radial velocity data into orbital (left) and pulsational (right) components.

Figure 1b. BY Cas, S Sge, V350 Sgr - decomposition of the radial velocity data into orbital (left) and pulsational (right) components.

This study was partially supported by ISF (grant NDD000), RFFR (grants 94-02-0437, 95-02-05276), and "Astronomy" Program of Russian Federation (grants 2-192, 2-222).
N.A. GORYNYA
N.N. SAMUS

Institute of Astronomy
of Russian Academy of Sciences
48, Pyatnitskaya Str.
Moscow 109017, Russia
L.N. BERDNIKOV
A.S. RASTORGOUEV
M.E. SACHKOV

Sternberg Astronomical Institute
13, Universitetskij Prosp.,
Moscow 119899, Russia

References:
Gorynya, N.A., Irsmambetova, T.R., Rastorgouev, A.S., and Samus, N.N., 1992a, Sov. Astron. Lett., 18, No. 5
Gorynya, N.A., Samus, N.N., Irsmambetova, T.R., Kulagin, Yu.V., Rastorgouev, A.S., Smekhov, M.G., and Tokovinin, A.A., 1992b, Inf. Bull. Var. Stars, No. 3776
Gorynya, N.A., Samus, N.N., and Rastorgouev, A.S., 1995, Inf. Bull. Var. Stars, No. 4130
Samus, N.N., Gorynya, N.A., Kulagin, Yu.V., and Rastorgouev, A.S., 1993, Inf. Bull. Var. Stars, No. 3934
Szabados, L., 1995, Paper presented at the IAU Colloquium No. 155
Tokovinin, A.A., 1987, Soviet Astronomy, 31, 98

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4200

Konkoly Observatory
Budapest
31 May 1995
HU ISSN 0374-0676

PHOTOELECTRIC OBSERVATIONS OF THE T Tau TYPE VARIABLE BZ Sgr

BZ Sgr was included in our program of photoelectric observations of Cepheids because it was listed in GCVS-IV as a possible type II Cepheid. Recently it was found that this star was a T Tau type variable (Gregorio-Hetem et al., 1992).

Table 1

JD hel	V	$U-B$	$B-V$	$(V-R)_{c}$	$(R-I)_{c}$
$2400000+$					
					-
49521.9180	12.416	-	0.813	-	-
49522.8532	11.454	-	0.765	-	-
49522.8589	12.129	-	1.113	-	-
49534.8826	11.228	-	0.922	0.717	0.710
49536.7958	11.389	-0.214	0.978	0.576	0.704
49543.8489	11.415	-0.096	0.978	0.708	0.741
49545.7986	11.420	-0.325	0.946	0.729	0.694
49558.8643	11.433	-0.335	0.956	0.719	0.745
49559.8604	11.370	-	1.035	-	-
49561.8530	11.927	-	1.045	0.773	0.798
49564.8471	10.731	-	0.736	0.616	0.656
49624.1843	12.336	-	1.242	0.895	-
49625.1853	11.502	-	1.050	0.767	-
49631.1532	12.924	-	1.300	0.974	-
49632.1654	12.087	-	1.259	0.838	-
49633.1678	11.956	-	1.251	0.819	-
49634.1601	12.193	-	1.255	0.876	-
49809.8911	12.219	-	1.239	0.794	0.834
49810.8859	12.509	-	1.276	0.895	0.809
49811.8923	11.507	-	0.969	0.711	0.757
49813.8810	11.748	-	1.078	0.771	0.795
49814.8712	11.896	-	0.945	0.713	0.758
49817.8844	13.020	-	1.129	0.975	0.953
49818.8754	12.400	-	1.054	0.820	0.853
49821.8861	12.226	-	1.097	0.854	0.833
49822.8847	12.195	-	1.149	0.855	0.861
49823.8723	12.603	-	1.086	0.893	0.958
49825.8869	11.756	-	1.036	0.762	0.768

Our photoelectric $U B V(R I)_{c}$ measurements were carried out at CTIO. Las Campanas and Mt. Maidanak observatories from June 1994 to March 1995. Everywhere 60-cm reflectors were used, and 28 observations were obtained. These observations are listed in Table 1. The accuracy of the individual data is near 0.01 mag in all filters.

The research described in this publication was made possible in part by grants No. NDD 000 and No. NDD 300 from the International Science Foundation and Russian Government as well as by grant No. 95-02-05276 from the Russian Foundation of Basic Research to LNB and OVV, and by funds awarded through the Natural Sciences and Engineering Research Council of Canada (NSERC) to DGT.

L.N. BERDNIKOV
O.V. VOZIAKOVA
Sternberg Astronomical Institute
13, Universitetskij prosp.
Moscow 119899, Russia
D.G. TURNER
St. Mary's University
923 Robie st.
Halifax, NS B3H 3C3, Canada

Reference:
Gregorio-Hetem J., Lepine J.R.D., Quast G.R., Torres C.A.O., and de la Reza R., 1992, Astron. J., 103, 549

[^0]: ${ }^{1}$ Based on observations made with the ESA Hipparcos satellite

[^1]: ${ }^{1}$ BASED ON OBSERVATIONS CARRIED OUT AT THE ESO LA SILLA OBSERVATORY

[^2]: ${ }^{1}$ Paper dedicated to research assistant H. Dündar who died after ulcer operation on 25 of September 1994

[^3]: ${ }^{1}$ Visiting Observer, Lowell Observatory, Flagstaff, Arizona, USA. Also based in part on data collected at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatories, operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

[^4]: E. RODRIGUEZ ${ }^{1}$
 F.M. ZERBI ${ }^{1,2}$
 ${ }^{1}$ - Instituto de Astrofísica de Andalucia, Apto 3004 E-18080 Granada, España
 ${ }^{2}$ - Dipartimento di Fisica Nucleare e Teorica, Universitá di Pavia, Via Bassi 6, I-27100 Pavia, Italia

[^5]: ${ }^{1}$ Based on observations obtained at the European Southern Observatory, La Silla, Chile; at the German-Spanish Observatory DSAZ, Calar Alto, Spain; and at the Ondřejov Observatory, Czech Rep.

