Performance
of Computer
Systems

Edited by
M.ARATO
A.BUTRIMENKO
E.GELENBE

PERFORMANCE OF COMPUTER SYSTEMS

Sponsored by

IRIA

IFIP Working Group 7.3
SZAMKI

ITASA

Technische Universitit Wien
GMD

EURATOM

PERFORMANCE OF
COMPUTER SYSTEMS

Proceedings of the 4th International Symposium on
Modelling and Performance Evaluation of Computer Systems,
Vienna, Austria, February 6-8, 1979

Organized by the
International Institute for Applied Systems Analysis

Edited by

M. ARATO
SZAMKI, Budapest, Hungary

A. BUTRIMENKO
1IASA, Laxenburg, Austria

E. GELENBE
IRIA-LABORIA, Rocquencourt, France

NORTH-HOLLAND PUBLISHING COMPANY
AMSTERDAM « NEW YORK « OXFORD

© 1979 by International Institute for Applied Analysis.

All rights reserved. No part of this publication may be reproduced, stored in aretrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owner.

ISBN: 0 444 85332 4

Publishers:
NORTH-HOLLAND PUBLISHING COMPANY
AMSTERDAM - NEW YORK : OXFORD

Sole distributors for the U.S.A. and Canada:
ELSEVIER NORTH-HOLLAND, INC.
52 VANDERBILT AVENUE,

NEW YORK, N.Y. 10017

Library of Congress Cataloging in Publication Data

International Symposium on Modelling &nd Performance
Evaluation of Computer Systems, Lkth, Vienna, 1979.
Performance of computer systems.

Includes index.
1. Electronic dlgital computers--Evaluation--Con-

gresses. I. Aratd, MBtyds, 1931- II. Butrimenko,
Alexandre. III. Gelenbe, E., 1945- IV. Inter-
pational Institute for Applied Systems Analysis.

V. Title.

QATE.9.E9LIS58 1979 OCL.6'kh'ok 79-14176
ISEN O-LliL-85332-4

Printed in The Netherlands

PREFACE

The Fourth International Symposium on Modelling and Performance Evaluation of
Computer Systems organized in Europe by the IFIP Working Group 7.3 was held in
Vienna under the auspices of the Technical University and the International
Institute for Applied Systems Analysis. This series of conferences has been
placed under the auspices, successively, of the following major European research
organizations: IRIA, France (1974), EURATOM (1976) and GMD, Federal Republic of
Germany (1977). Since 1978, IFIP WG 7.3 has decided to hold these meetings
alternately in North America and in Europe approximately every eighteen months.

These proceedings are a collection of contributions to computer system performance,
selected by the usual refereeing process from papers submitted to the symposium,

as well as a few invited papers representing significant novel contributions made
during the last year. They represent the thrust and vitality of the subject as
well as its capacity to identify important basic problems and major application
areas. The main methodological problems appear in the underlying queueing
theoretic aspects, in the deterministic analysis of waiting time phenomena, in
workload characterization and representation, in the algorithmic aspects of model
processing, and in the analysis of measurement data. Major areas for applications
are computer architectures, data bases, computer networks, and capacity planning.

The international importance of the area of computer system performance was well
reflected at the symposium by the presence of participants from nineteen countries.
The mixture of participants was also evident in the institutions which they
represented: 35% from universities, 25% from governmental research organizations,
but also 30% from industry and 10% from non-research government bodies. This
proves that the area is reaching a stage of maturity where it can contribute
directly to progress in practical problems.

The Editors.

LIST OF CONTENTS

PREFACE v

METHODOLOGY

A systematical approach to the performance modelling of computer
systems
M.G. KIENZLE and K.C. SEVCIK 3

Synchronization problems in hierarchically organized multiprocessor
computer systems
U. HERZOG and W. HOFFMANN 29

COMPUTATIONAL METHODS FOR QUEUEING NETWORKS
Some extensions to multiclass queueing network analysis

Y. BARD 51
Mean value analysis of queuing networks - A new look at an old problem
M. REISER 63

A computational algorithm for queue distributions via the Pdlya theory
of enumeration

H. KOBAYASHI 79
A direct numerical method for queueing networks
W.J, STEWART 89

APPLIED PERFORMANCE ANALYSIS

Performance evaluation of the BASIS system
R.P. VAN DE RIET 105

A model of a heterogeneous multiple-minicomputer: System M2
- Performance evaluation during developments

J.=J. GUILLEMAUD 123
Regime process analysis of a virtual machine operating system

W.-T.K. LIN 137
A hybrid simulation/analytical model of a batch computer system

D, ASZTALOS 149
An approach to the construction of workload models

W. MATERNA 161

vii

viii LIST OF CONTENTS

SCHEDULING TECHNIQUES

Scheduling under resource constraints - Achievements and prospects
J. BEAZEWICZ and J. WEGLARZ 181

Analysis of a class of schedules for computer systems with real time
applications

A.A. FREDERICKS 201
A load-sensitive scheduler for interactive systems

M. RUSCHITZKA 217
Priority batch processing for upper bounded response times

U. DE CARLINI, A. MAZZEO, and C, SAVY 229
Waiting-time distributions for deadline-oriented serving

B, WALKE and W. ROSENBOHM 241

INFORMATION SYSTEMS
An example for an adaptive control method providing data base

integrity .

A. BENCZUR and A. KRAMLI 263
A predictive performance evaluation technique for information

systems

F.W. ALLEN 277

QUEUEING THEORY

Solutions of functional equations arising in the analysis of two
server queueing models

G. FAYOLLE and R. IASNOGORODSKI 289
Analytic methods for multiprocessor system modelling
A. KURINCKX and G. PUJOLLE 305

The distribution of queueing network states at input and output
instants
K.C. SEVCIK and I. MITRANI 319

APPROXIMATE METHODS
Multiclass operational analysis of queueing networks

J.D. ROODE 339
Homogeneous approximations of general queueing networks
G. BALBO and P.J. DENNING 353

A study of flows in queueing networks and an approximate method
for solution
G. PUJOLLE and C. SOULA 375

SPECIAL TOPICS

On the working set size for the Markov chain model of program
behaviour

M. HOFRI and P, TZELNIC 393
Selecting parameter values for servers of the phase type
E.D. LAZOWSKA and C.A. ADDISON 407

Interleaved memory systems with Markovian requests
T.L. TOROK 421

LIST OF CONTENTS

PERFORMANCE CONTROL

Performance evaluation of a cache memory for a mini-computer
M, BADEL and J. LEROUDIER

Performance improvement by feedback control of the operating system
A, GECK

A queueing model of a timesliced priority driven task dispatching
algorithm
P.S. KRITZINGER, A.E. KRZESINSKI, and P, TEUNISSEN

A study of a mechanism for controlling multiprogrammed memory in an
interactive system
A. BRANDWAJN and J.A, HERNANDEZ

COMMUNICATION NETWORK MODELLING I

Modelling of local computer networks
0. SPANIOL

A communication protocol and a problem of coupled queues
L. BOGUSLAVSKII and E. GELENBE

Virtual circuits versus Datagram - Usage of communication resources
A. BUTRIMENKO and U, SICHRA

COMMUNICATION NETWORK MODELLING II

Failsafe distributed 1oop-free routing in communication networks
A. SEGALL

Sizing a message store subject to blocking criteria
E. ARTHURS and J.S. KAUFMAN

AUTHOR INDEX

431

459

473

487

503

517

525

541

547

565

METHODOLOGY

Performance of Computer Systems
M. Arato, A, Butrimenko, E. Gelenbe (eds.)
©IIASA, North-Holland Publishing Company, 1979

A Systematical Approach to the

Performance Modelling of Computer Systems

M. G. Kienzle
Thomas J. Watson Research Center
Yorktown Heights, New York, USA

K. C. Sevcik
Computer Systems Research Group,
University of Toronto, Toronto

Abstract

This paper proposes a modeling procedure that relates the different aspects of modeling:
model design, system measurement, parameter estimation, model analysis, model valida-
tion, performance prediction. The modeling procedure is organized in several steps that
isolate the different abstraction steps to provide a better understanding of the modeling
process. The proposed procedure is applied to a case study.

1. INTRODUCTION

With the increasing complexity and cost of computer systems, the need for efficient
management tools for them is growing as well. In particular, tools for performance
analysis and prediction are needed for installation planning, system development, and
system tuning.

Since the behaviour of actual computer systems is too complex to be comprehended or
predicted merely by inspection, models are used for their analysis. These models are
abstractions of the systems, representing only those aspects of the systems that are
relevant for the particular analyses. The models must not only represent the important
system components, but also characterize quantitatively the relationships and interactions
of these components.

One class of models that is suitable for these analyses and that has received much
attention recently are queueing network models. They represent the components of a
computer system, such as the CPU, 1I/O channels and devices, as servers with queues.
These servers are connected by paths to form a network. The programs being executed
in the system are represented in the model by tokens that circulate through the network.

There are three major methods by which queueing network models can be analyzed. In
analytic queueing network models, the system components and their interactions are
represented mathematically, and the models are evaluated using mathematical algorithms.

4 M.G. KIENZLE and K,C. SEVCIK

In simulation models, the operation of the system is simulated by a computer program.
Hybrid models combine these two approaches.

Quite a number of case studies using queueing network models have appeared, e. g.,
[ROSE75, GIAM76a, BARD77, KGT77, SU78, BUZE78]. However, most of these
papers have concentrated on the mathematical aspects of the models, and perhaps some
practical problem. They all show the absence of a general modeling methodology, a
modeling approach that would relate all the aspects of modeling: model design, system
measurement, parameter estimation, model analysis, model validation, performance
prediction.

In this paper, we propose such a modeling methodology. We develop a modeling process
that includes all the above aspects of modeling. By isolating these aspects and by making
all modeling decisions apparent, a better understanding of the modeling process is
attained. The usefulness of this approach is demonstrated by applying it to an analytic
queueing network model. It could also be applied to simulation or hybrid models.

In section 2, the series of abstraction steps involved in modeling and an overall modeling
procedure are outlined briefly. They are more extensively described in the following
sections using a modeling case study of an actual computer system as an example.
Sections 3 to 6 are each divided into two parts: in the first part, concepts are developed,
and in the second part, these concepts are applied to the case study. In section 3, the
preliminary phase of designing the models is described. In section 4, the model used for
the measurement experiments is developed. In section 5, a general model for parameter
estimation is introduced. In section 6, the computational model used for the the mathe-
matical analysis is defined, and some results are shown. Finally, in section 7, some
conclusions are drawn.

2. MODELING PROCESS

2.1 Abstraction Steps

The process of modeling can be viewed as a series of abstraction steps leading from the
actual computer system to the computational model that yields the desired performance
measures. In the proposed modeling procedure, these steps are isolated, and intermedi-
ate models are defined in order to form a systematic approach to the modeling process.
This stepwise approach reveals the decisions made in applying the abstractions and
associated underlying assumptions.

There are three major models involved in the abstraction process from the actual
computer system to the final computational model. These models and the abstraction
steps are shown in figure 1.

The measurement model provides the basis for a measurement experiment. The variables
it includes are measureable system variables, that is, variables that can be recorded by

PERFORMANCE MODELLING OF COMPUTER SYSTEMS

computer system

|

| measurement

I

\'%

measurement model

I

| parameter estimation
I

\'%

system model

I
| parameter representation
I

\'%
computational model
I
| computational solution
I
\'%
performance measure values

Figure 1. Abstraction steps.

hardware or software monitors. For each measurement experiment, a specific measure-
ment model should be used.

Parameter estimation [DB78] is the step from the measurement data to the logical system
model. In the parameter estimation, data from several experiments as well as general
information on the system such as the service rates of devices or access times to memory
are used to build the system model.

In the system model, all essential parts and functions of the system are represented from
a logical point of view. They are looked upon as service facilities for user programs.
The system model is introduced to describe separately the major components that
influence a system’s performance. It should give insight into the operation of the
computer system and aid the interpretation of the model results. Most computational
models are too restricted to serve these purposes.

The parameter representation is the mapping of the detailed functional system model
parameters into the usually less detailed input parameters of the computational queueing
network model as required by the solution algorithm.

The parameter requirements of the computational queueing network model [DB78] are
determined by its type and by the solution algorithm selected. The parameters do not
necessarily reflect the operation of the system explicitly.

6 M.G, KIENZLE and K.C, SEVCIK

In the computational solution, the desired performance measure values are calculated
from the parameters of the queueing network models by the solution algorithm chosen.

The performance measure values, finally, are the goal of this abstraction process. The
performance measures of interest are determined by the aims of the study.

2.2 Overall Modeling Procedure

Queueing network models are mainly used to predict the performance of a system under
changes in its configuration, its software, or its workload. When modeling for perform-
ance prediction, three phases in the modeling procedure can be distinguished.

In the design phase, the three models used in the abstraction process are defined. Based
on the objective of the modeling study, the abstraction steps are planned, considering in
particular the compatibility of the three models involved.

In the validation phase, the abstraction steps are applied to the computer system. The
results of the computational model must be validated against observed performance. If
the agreement is poor, the decisions taken in the design phase must be reexamined.

In the prediction phase, the system changes that are to be investigated are applied to the
system model. New input parameters for the computational model are calculated, and
the solution of the computational model yields the predicted performance measure values
for the changed system.

3. DESIGN PHASE

3.1 Concepts

At the beginning of a modeling study, the goals of the study and the desired performance
measures must be defined as precisely as possible. Ii is necessary to have a comprehen-
sive description of the system including the following topics: the system configuration,
the operating system logic, the workload of the system, the monitoring facilities, and the
operating aspects of the system. Based on this information, the three models can be
designed in a way that each model supplies all the information required in the next
abstraction step. From the desired performance measures, a computational model
capable of producing these measures is determined. From its input parameter require-
ments, and based on the objective of the modeling experiment, the system model is
defined. Finally, one or several measurement models are defined to supply the data for
the system model. Care must be taken that the level of detail in each of the models
involved is consistent. If, for example, the computational model requires not only the
means but also the second moments of the service time distributions, the measurement
models become more complex, and the measurement experiments may become prohibi-

PERFORMANCE MODELLING OF COMPUTER SYSTEMS

tively expensive. As a consequence, for each system model the minimal input require-
ments should be stated to make the modeling experiment as simple as possible. For a
survey of the types of analytic queueing network models and the parameter specifications
for them see [KIEN77].

In this design phase, the model types, the parameter requirements, and the levels of
detail are determined. The models cannot be defined in detail, and the design is not
finalized since many decisions are dependent on quantitative aspects determined in the
validation phase.

3.2 Case Study

In order to gain experience with the modeling procedure, a case study was carried out.
The system oriented performance measures under consideration were the utilizations of
the major hardware components of the system along with their mean queue lengths, and
the job throughput, all by job class. As user criented performance measures, the mean
response time for interactive jobs and the mean residence time for batch jobs (excluding
the time in the spooling system) will be computed by the model.

The system to be modeled is an IBM S/370-165 II of the University of Toronto Comput-
er Centre (UTCC) running under the OS/VS2(MVS) operating system. It supplies
batch and time sharing services (JES2, TSO). The configuration of the system is shown
in figure 2.

............... | unit record devices

| main memory | --CH O --

| 4 M bytes | ! | interactive terminals
_______________ | _——————

| high speed | |

| cache Jmmemmmmme e

| 16 k bytes | -- CH 1 -- 8 disks (3330)
_______________ I ——————

| CPU | |

Figure 2. System configuration.

The System Resources Manager (SRM) of the operating system tries to keep the overall
load balanced by initiating or swapping jobs as required. At the same time, it attempts
to distribute the resources of the system among the jobs according to a predetermined
pattern specified by the installation. Three time intervals defined in the operating system
are important from a modeling point of view. The residence time of a task is the time it

8 M.G. KIENZLE and K.C, SEVCIK

belongs to the active mulitprogramming mix. The elapsed time of a task is the time from
its initiation until its termination. The time-in-system of a task is the time from when it
is read into the system until its termination. The memory management is based on a
global, variable partition strategy, which means that the partition sizes and the number of
active partitions are variable. The workload of the system consists mainly of three types
of jobs:

1) compute oriented batch jobs (General Purpose Job Stream, GPJS)
2) small, students’ jobs (High Speed Job Stream, HSJS)
3) interactive TSO jobs (TSO)

The system is measured under a benchmark that has one jobstream for each type of job.
The TSO jobstream is generated by a simulator that uses a TSO command script.
Several monitoring tools were activated during the execution of the benchmark, The
software monitor RMF [IBM76b] is a sampling monitor that records the usage of the
system’s resources. The software monitor SMF [IBM77] reports the service requests by
the jobs to the system. The hardware monitor TORMON [CM73] records data on the
CPU and the channels to verify and to extend the data collected by RMF.

The computational model used is a hierarchical model. On the level of the dispatcher, a
multiple class queueing network model in local balance is used to represent the CPU, the
channels, and the disks. In this model, only the resident jobs will be represented. The
three job classes GPJS, HSJS, and TSO are distinguished in the model. For the TSO
interactions, an additional birth-death model is built on top of the queueing network
model. The server of this model represents the entire computer system, and the service
rates for TSO interactions are determined by the queueing network model. This way,
the queueing of the interactive jobs before entering the set of resident tasks can be
modeled.

Local balance models [BCMP75] do not require any information on the dynamic
behaviour such as the burst lengths or the branching probabilities of the jobs in the
system [KR75, GIAM76b]. Thus, accumulated values like total CPU time per job class
and total number of 1/O operations to a device are sufficient to determine the values of
the input parameters to the computational models.

For this case study, no event trace monitoring is needed, since the system model does not
require information on the dynamic behaviour of tasks. Only accumulative data on the
job’s service requests and on the usage of the system’s resources are required. These
data can be obtained by the monitors listed above.

PERFORMANCE MODELLING OF COMPUTER SYSTEMS

4. MEASUREMENT MODEL

4.1 Concepts

The measurement model provides a framework for the actual measurement experiments.
It consists of a set of measureable system state variables. The domains of these variables
must be precisely defined. Consider, for example, a state variable called CPU state. It
could have different domains such as (idle, busy), or (idle, system state, problem state),
or (idle, system state, user-task-1, user-task-2, ..., user-task-n). A value change in a
state variable is a state change event. Based on such a state model of the system, the
quantities recorded by the monitors can be defined precisely. They may be defined, for
example, as numbers of transitions between two states, numbers of times a state was
entered, or total time a state was occupied. Event trace monitors record the state
transition events and their state contexts. Sampling monitors observe the states of the
system at time intervals independent of the system’s operation. It may not always be
necessary to define the state model explicitly in order to define the measurement
requirements. However, care must be taken to insure that all the recorded variables and
events are specified.

Often, the system variables that are easily recordable are not the variables that are
required by the system model. In this case the recorded data must be aggregated,
correlated, or deaggregated to obtain the desired parameters of the system model. If no
directly related variables are measurable for some system model paramters, some
indirectly related variables must be measured, so that the system model parameters can
be estimated.

4.2 Case Study

The quantities measured for the case study and the values resulting from a measurement
experiment on a benchmark are shown in table 1. Also, the monitors by which the data
are collected are indicated.

5. SYSTEM MODEL

5.1 Concepts

The system model represents the computer system from a logical point of view. It is
limited neither by the available monitors (as are the measurement models), nor by the
solution algorithm (as is the computational model). It can be based on data from several
measurement experiments, and it can be used for different types of computational
models.

10 M.G, KIENZLE and K.C., SEVCIK

Table 1. Measurement data.

General Parameters
measurement interval 2108 secs (RMF)

GPJS TS0 HSJS Source

jobs completed 56 950 308 (SMF)
total resident time (secs). 4564 4252 1268 (SMF)
job stream elapsed time

(SECS) vvvvveveririnnnnnnn. 2108 1734 1268 (SMF)
average number of
ready tasks 4.84 8.18 1.00 (RMF)
accounted CPU time
under TCBs (secs) 784.9 214.4 306.2 (SMF)

other CPU Parameters:

busy time 1728 secs (TORMON)
problem state time 774 secs (TORMON)
system state time 954 secs (TORMON)
total instructions 3.58*10E9 (TORMON)
high speed cache accesses .. 5.04*10E9 (TORMON)
high speed cache hit ratio . .9555 (TORMON)
utilization8143 (RMF)

Memory and Load Management Parameters:

GPJS TSO HSJS source
SWAPS ..vnriiiiiann 93 1361 1 (SMF)
pages transferred
for swaps 5184 37666 61 (SMF)

pages transferred

for address space

page faults 2390 10279 825 (SMF)
pages transferred

for common area

page faults 1781 90 2 (SMF)
VIO EXCPS 12836 150 83 (SMF)

VIO SI0s (total): 5869 (RMF)

PERFORMANCE MODELLING OF COMPUTER SYSTEMS

Table 1 contd.

I/0 Parameters:

address SI0s EXCPs utilization
(RMF) (SMF) (RMF)
GPJS TS0 HSJS
channel 1 47927 8261 - - .2686*
channel 2 72387 17649 1324 1666 .3461%
disk 11 10236 - - - .1586
disk 12 2355 - - - .0482
disk 13 702 - - - .0208
disk 14 12594 8261 - - .2285
disk 15 17982 - - - .3503
disk 16 3634 - - - .0935
disk 17 424 - - - .0113
disk 21 2285 - - - .0444
disk 22 749 - - - .0104
disk 23 434 - - - .0094
disk 24 8689 - - - .2266
disk 25 9682 12685 - - .1709
disk 26 3447 - - - .0463
disk 27 5846 86 - - .0973
disk 28 31053 - - 907 .4117
disk 29 10098 4874 1325 759 .1161

Spooling Parameters:

GPJS TS0 HSJS source
cards read 15352 925 32545 (SMF)
lines printed 184517 2300 53780 (SMF)

* values obtained by TORMON

12 M.G. KIENZLE and K.C. SEVCIK

The system model covers all the details represented explicitly in the intended computa-
tional model, as well details represented only implicitly in the computational model. For
example, I/O channels and devices should be represented separately in the system
model, but in the computational mode| they are often represented as aggregate servers.
Beyond the details required for the computational model, the system model should at
least capture all the details that are necessary to represent explicitely the system features
that are being analyzed. In most cases, the system model is not a solvable queueing
network model since it may contain aspects of the real system such as priority service
disciplines that cannot currently be represented in an efficiently solvable computational
model.

The system model consists of several parts, each representing one aspect of the computer
system. The program behaviour model characterizes the behaviour and the service
requirements of the user programs. The interference pattern captures all interference
among user tasks and the operating system. The multiprogramming mix specifies the job
mix under which the model is to be evaluated. The workload model specifies the
workload for the modeled hardware resources. It is derived from the program behaviour
model and the interference pattern. The resource attributes describe the properties of the
modeled service facilities and the manner in which they process the service requests of
the user tasks. The structure of the system model is shown in figure 3.

|

|

I | | program | | interferencel | =----=====cou-- |
| 1 | behaviour | | pattern | | [resource | |
| | ===mmmemmmems meeemceeeooeooo I | attributes | |
|
|
|

Figure 3. System model.

Program Behaviour Model

The program behaviour model captures the total service demand user tasks place on each
of the system’s resources. In addition, it captures the dynamic behaviour of user
programs in the computer by specifying the patterns of their service demand on the
system’s resources like CPU burst time distributions, the probabilities of transitions of
programs from one server to another, etc. To achieve hardware independence, the
service demand is specified in numbers of operations rather than in service times or total
times spent at devices.

PERFORMANCE MODELLING OF COMPUTER SYSTEMS

In order to obtain the desired isolation of the user programs from the operating system,
only service requests made directly by the user programs should be included. All
interference from the operating system or from other user tasks, such as swaps, page
faults, or I/O interrupts, should be omitted from the program behaviour model. Where
this is not possible, a certain isolation can be achieved by specifying the operating system
activities as functions of the user program behaviour, as is done in the interference
pattern.

In local balance computational models, the program behaviour model can ignore all
dynamic aspects of a task’s behaviour. It need only contain the mean number of service
requests per task and device, broken down by class. This information can be displayed
in the system model using a service request matrix that contains an entry for each
resource and job class pair. It has as its elements the average number of service requests
to a certain device by a task of a certain class.

Interference Pattern

User programs do not see the hardware directly. They see an abstract machine that
consists of the operating system and the hardware. Queueing network models, however,
usually represent only the hardware components of a system. The gap between the
service requests of the user programs and the hardware is bridged by the interference
pattern. The interference among user tasks and the operating system has two major
aspects. The dynamic interference reflects the impact on the dynamic behaviour of the
tasks. The static interference maps the number of logical service requests into the
number of physical operations, and it distributes the operating system overhead among
the user tasks.

In order to specify the static interference pattern in detail, the amount of operating
system activity related to the various system services must be determined. Cause and
effect relationships must be established. It is most important to find the "correct"
independent variables of the functions. The mapping of user EXCPs into SIOs, for
example, may be a constant ratio, whereas CPU overhead is probably dependent on the
multiprogramming mix, the number of page faults, and similar parameters. These
dependencies should be established according to the operating system logic, and, where
this is not possible, by making educated assumptions about their nature. They must be
quantified by measurements taken under various load situations of the system, and they
should be verified by modeling experiments using measurement data different from those
used for establishing the interference functions.

Another important aspect is how the overhead is represented in the queueing network
model. In this case study, the overhead resource usage is distributed among the jobs that
cause it. A different approach is to represent it as a separate task, or a separate class of
tasks [KGT77].

Multiprogramming Mix

The multiprogramming mix is a vector that indicates, for each class, the number of active
jobs. For a single class, it is called the multiprogramming level. Because the multipro-
gramming level of various classes may change over time, the average multiprogramming
level may involve nonintegral quantities.

13

14 M.G. KIENZLE and K.C. SEVCIK

Workload Model

From the program behaviour model and the interference pattern the workload matrix is
established. This is a matrix similar to the service request matrix. However, instead of
service requests per task and resource for each class it contains the total workload a task
of a certain class places on a hardware device, broken down by class. The workload
model is hardware independent in thai the service demand placed on hardware compo-
nents is given in numbers of physical operations.

Resource Attributes

The resource attributes capture the resource related aspects of the system model. They
contain the service disciplines of all modeled resources. For hardware components, they
also cover the service rates, specified in numbers of operations per unit time. For
software resources a mapping into the number of operations on hardware devices is
required. Load dependent service rates of service facilities like disk drives or entire [/O
subsystems are described by a set of service rate values, one for each possible loading
situation.

5.2 Case Study

For the two computational models used, the queueing network model and the birth-death
model, two separate system models are defined.

5.2.1 System Model of the Multiclass Queueing Network Model

Program Behaviour Model

The service request matrix is calculated from the accounted service requests. Because
the service demands of jobs belonging to the same class are, at least to a certain degree,
homogeneous, these "average' jobs can be viewed as prototype jobs for their class, and
their performance measures also have meaning to the users. The service requests of the
three average jobs are listed in table 2.

Interference Pattern

Because the chosen computational model is based on an assumption of local balance, no
dynamic interference need be considered. If no changes to the operating system are to
be modeled, it is not crucial to distinguish between the operating system and user
program usage of the physical resources accurately as long as the operating system
overhead is attributed to the class that causes it. However, it is essential that the
unaccounted resource usage be credited to the classes in the correct proportions. Due to

PERFORMANCE MODELLING OF COMPUTER SYSTEMS 15

Table 2. Program behaviour for the multiple
class queueing network model (request matrix}.

total number

of tasks 56 950 308
CPU* ... 29.06 .468 1.186
channel 1 147.51 - -
channel 2 315.16 1.394 5.409
disk 14 146.51 - -
disk 25 222.52 - -
disk 27 1.57 -
disk 28 - - 2.945
disk 29 87.04 1.395 2.464
pages transferred

for VIO 229.21 0.158 0.269
cards read 274.0 1.0 106.0
1ine§ printed .. 3735.0 92.0 174.0

* in millions of instructions

limited time available for monitoring in this case study, no special measurements could be
made to establish cause and effect relationships, and to distribute the unaccounted
resource usage depending on measureable system variables. An accurate breakdown of
usage by job class is not available for any physical resource. Instead, estimates of the
actual breakdown are made based on related data. For instance, the start I/Os (SIOs)
to the spooling disk can be distributed among the classes according to the accounted
numbers of cards read and lines printed, and the SIOs to the page data sets can be
distributed according to the numbers of pages transferred. For cases where no related
data can be measured the overhead is distributed according to the following ratios:

GPJS: .276
TSO: .600
HSJS: .124

These numbers were determined by giving equal consideration to the number of job step
intiations per class and the total number of I/O operations.

Multiprogramming Mix

For the TSO class, we do not need to specify a particular multiprogramming level.
Several multiprogramming levels are evaluated, and the performance measures are
weighted by the results of the birth-death model for the TSO transactions. For GPIJS,
the average multiprogramming level is calculated from the sum of the resident times:

16 M.G, KIENZLE and K.C. SEVCIK

Z resident times

measurement interval

The HSJS can have a multiprogramming level of at most one. So its average multipro-
gramming level can be calculated as the class elapsed time divided by the measurement
interval. The resulting average multiprogramming mix is:

GPJS: 2.1
HSJS: 0.6

(For TSO, we will investigate multiprogramming levels between O and 3.) Using the
mean multiprogramming levels ignores the large variation in the multiprogramming levels.
It also ignores the heavy interaction between the multiprogramming levels due to the load
balancing efforts of the SRM and the different job class elapsed times. However,
considering the information available, this is the best approximation we can make.

Workload Model

The workload model must be specified in such a way that the parameters of the solution
algorithm can be derived easily. Algorithms assuming local balance have as their major
input parameters relative utilizations. The relative utilizations are guaranteed to be in
the same ratio as the total busy times of the servers. There are several equivalent ways
of specifying a consistent set of relative utilizations using data of different levels of
detail.

a) total load during T: X(i,r) = L(i,r) / C(i)

b) load per partition: X(i,r) = L(i,r) / (MPL(r) * C(i))
c) load per job: X(i,r) = L(i,r) / (jobs(r) * C(i))

d) load per cycle: X(i,r) = L(i,r) /(cycles(r) * C())

T: measurement period

X(i,r): relative utilization of server i due to tasks of class r

L(i,r): number of operations executed by server i for tasks of class r
C(i): service rate of server i, assumed to class independent

MPL(r): mean multiprogramming level of class r

Jobs(r): number of class r jobs completed

Cycles(r): total number of cycles of class r jobs through the network

It can be shown easily that these definitions are mathematically equivalent
[KR75,GIAM77}, and that they require the same measurement data. Since the relative
utilization will be determined from the program behaviour model, we chose the job
oriented definition, ¢) that directly gives the elements of the workload matrix. The
workload matrix is shown in table 3.

PERFORMANCE MODELLING OF COMPUTER SYSTEMS

Table 3. Model workload (workload matrix).

address GPJS TS0 HSJS
CPU * 33.33 1.02 2.41
channel 1 488.7 16.4 16.3
channel 2 404.0 48.1 13.0
disk 11 126.0 0.12 9.91
disk 12 11.6 1.48 0.95
disk 13 3.5 0.44 0.28
disk 14 224 .9 0.0 0.0
disk 15 112.7 10.7 5.0
disk 16 7.8 3.4 0.0
disk 17 2.1 0.27 0.17
disk 21 11.3 1.4 0.93
disk 22 3.7 0.47 0.30
disk 23 1.8 0.34 0.06
disk 24 . 66.1 4.9 1.3
disk 25 172.9 0.0 0.0
disk 26 17.0 2.2 1.4
disk 27 28.8 3.7 2.4
disk 28 0.0 31.7 2.9
disk 29 281.1 3.4 3.7

* in millions of instructions

Resource Attributes

The hardware resources represented in the system model are the CPU, the channels 1
and 2, and the disks connected to these channels. Only disks that are used in the
benchmark are included in the model. The paging process, the swapping process, and
the VIO facility are represented explicitly as software resources in the system model, but
not in the queueing network model. Thus their resource attributes need not be deter-
mined.

The service discipline for the CPU is complicated [IBM76a] and will not be described
here. It will be represented as a processor shared discipline in the computational model.
The service disciplines for the channels and the I/O devices are first-come-first-served.

For each hardware component of the model, the service rate must be derived from the
measurement data. This can be done according the following formula:

op(i)
C(i)= ====--==
T(i)

C(i): service rate of device i (operations per unit time)
Op(i): number of operations device i performed in the measurement interval
T(i): busy time of device i during the measurement interval

17

18 M.G. KIENZLE and K.C. SEVCIK

Since the overlap of disk and channel activity cannot be modeled directly in the compu-
tational model, the service rates of the disks are adjusted to represent only the non-
overlapped part of the disk operations. To do this, the mean times of disk and channel
operations are calculated individually. Then, the mean channel operation times are
subtracted from the mean disk operation times. The inverse of these shortened disk
operation times are used as service rates for the disks in the model. The inverse of the
channel service times are used as the service rates of the channels.

To determine the CPU service rate, we also consider the high speed cache hit ratio, i.e.,
the proportion of the memory access requests that can be satisfied out of the high speed
cache. This ratio can influence the CPU service rate considerably. The formula for
determining the mean memory access time is:

la=Na*({c+Im*(1-P))

la: mean memory access time per instruction

Na: mean number of memory accesses per instruction
Ic: access time to the high speed cache

Im: access time to main memory

P: high speed cache hit ratio

The mean execution time of an entire instruction can be calculated from the number of
instructions executed and the CPU busy time. Then this time can be broken down into
memory access time and actual execution time. The service rates are assumed to be
class independent. This assumption may not hold in reality, as, for example, there is
evidence that the high speed cache hit ratio is class dependent. The service rates used in
the queueing network model are shown in table 4.

Table 4. Service rates of the hardware resources
in operations per second.

cPy 2.07*10E6 disk 21 32.20
channel 1 84.65 disk 22 51.56
channel 2 99.22 disk 23 27.80
disk 11 47.58 disk 24 21.78
disk 12 31.74 disk 25 36.60
disk 13 18.80 disk 26 54.45
disk 14 37.56 disk 27 39.76
disk 15 33.96 disk 28 55.53
disk 16 23.43 disk 29 70.11

disk 17 16.07

PERFORMANCE MODELLING OF COMPUTER SYSTEMS

5.2.2 System Model of the Birth-Death Model

Program Behaviour Model

The program behaviour model for the birth-death model is very simple. The tasks
circulate between the terminals and the computer system. The mean think time is the
only parameter that must be specified. The terminal simulator of the benchmark has a
mean think time of 12 seconds. The service demand is one interaction per cycle.

Interference Pattern

The swapping of temporarily inactive tasks and the load balancing could be modeled as
dynamic interference. However, to keep the model simple enough to be solved analyti-
cally, this will not be done. All overhead is covered by the network model] on the
dispatcher level, so no interference pattern has to be specified for the birth-death model.

Workload Model

Since no interference is considered, the workload model is identical with the service
requests by the users described in the program behaviour model.

Multiprogramming Mix

The parameter that corresponds to the multiprogramming mix in the birth-death model is
the mean number of active terminals. Another related parameter is the maximum
multiprogramming level, which restricts the number of TSO interactions resident at one
time. The maximum number of active terminals in the benchmark is 25. Due to end
effects within the TSO stream of the benchmark, the mean number of active terminals is
23. The maximum multiprogramming level for TSO interactions cannot be determined
since it is dependent on the activity of the other job classes. Considering the large
backlog of TSO interactions that is indicated by the large average number of ready TSO
transactions in the measurement data, the average multiprogramming level must be close
to the maximum multiprogramming level. The average multiprogramming level during
the TSO class elapsed time is calculated from the resident times to be 2.45. The
assumption of constant average multiprogramming levels for the other classes does not
hold in practice because the SRM balances the overall load in the system, so that the
multiprogramming levels of all classes are highly interdependent. However, we do not
have any information about this relationship, so we assume constant multiprogramming
levels. If a joint probability distribution of the multiprogramming mix could be sampled,
we could circumvent this approximation.

Resource Attributes
The server of the birth-death model represents the entire computer system. The SRM

admits jobs into the multiprogramming mix according to an algorithm that is designed to
balance the overall load of the system. However, in the benchmark all TSO tasks have

19

20 M.G. KIENZLE and K.C. SEVCIK

the same characteristics, so the FCFS discipline is a good approximation. The service
rates of the birth-death model are the load dependent throughput rates that are deter-
mined by the queueing network model. The TSO throughput rates of the queueing
network model are weighted to obtain the service rates for TSO interactions, the
birth-death model assuming multiprogramming levels of 2.1 for GPJS and 0.73 for HSJS.

6. COMPUTATIONAL MODELS

6.1 Concepts

Analytic queueing network models are too complex a subject to be discussed in detail
here. For an overview see, for example, the September 1978 issue of ACM Computing
Surveys or [KIEN77]. In the following only a very brief overview is given.

An important distinction among queueing network models is whether or not the so-called
"local balance" assumptions are satisfied [BCMP75]. Models in local balance can be
solved by relatively inexpensive convolution algorithms [RK76], and, as mentioned
earlier, they require only summary statistics as input. However, they impose some severe
restrictions on the models: at servers with FCFS service discipline, all service time
distributions must be assumed to be exponential with the same mean for all classes, and
priority service disciplines cannot be represented.

Models not assuming local balance avoid these restrictions but they require much more
detailed measurement data (e.g., interevent time distributions), and the systems of linear
equations that must be inverted for their solution reach easily 100000 equations with
100000 unknowns. Thus, this method is too expensive in most realistic cases.

A number of approximation methods have been developed that, at least partially,
overcome the problems of local balance models and whose cost is in the range of the
cost for local balance methods. There is an iterative approach that facilitates the
modeling of preemptive priority disciplines [SEVC77]. For the modeling of non-
exponential service time distributions with FCFS service disciplines several approximation
methods are available [CHW75, SLTZ77]. Finally, the diffusion approximation method
[KOBA74a, KOBA74b, GP77] offers an approach using a set of differential equations
similar to the diffusion equations in physics. This approach can handle FCFS service
disciplines, arbitrary service time distributions, and several classes of customers.

6.2 Computational Multiple Class Queueing Network Model

For the queueing network model, a multiple class model in local balance is chosen, so the
convolution algorithm can be applied. Only hardware resources will be represented
explicitly in the queueing network model. The software service facilities like paging and
swapping will be represented only implicitly as service demands on the hardware re-
sources. Since the processor-shared discipline is used for the CPU, class dependent CPU

PERFORMANCE MODELLING OF COMPUTER SYSTEMS

service time distributions can be assumed (although, they need not be specified). For
the 1/O subsystem, servers for the channels 1 and 2 and the disks are modeled, assuming
FCFS disciplines and class independent exponential service time distributions. The
spooling devices and channel O are not represented in the model since the spooling
activity is asynchronous to the rest of the system’s operation. The spooling overhead,
however, is included in the workload matrix. The usage of the CPU, the disk channels,
and the disks for the spooling system, however, are captured in the model. The structure
of the model is shown in figure 4.

D

]

annel 1

[

CPU

l____j_o———

Channel 2

29
Disks
Figure 4. Queueing network model.
Table 5. Utilizations and throughputs of the
multiple class queueing model.
utilizations throughput
(jobs per second)
CPU CH2 CH3 GPJS TSO HSJS
model
results .849 .281 .369 57.3 1042 303
measurement
data .820 .269 .346 56 950 308
relative

error (%) +3.6 +4.4 +6.7 +2.4 +9.7 -1.6

21

22 M.G. KIENZLE and K.C. SEVCIK

The input parameters required are the multiprogramming mix and the workload matrix
with each entry divided by the service rate specified the corresponding device.

In order to obtain the performance measures for the average multiprogramming mix, the
model is evaluated under the neighbouring integral multiprogramming mixes, and the
results are linearly interpolated. The sequence in which the classes are chosen for
interpolation does not affect the results.

The results of the model together with the corresponding measurement data and the
relative errors where applicable are shown in tables 5 and 6. The disk performance
measures are not listed. They are not very meaningful due to the special calculation of
the disk service rates. Note that the mean queue lengths shown do not add up to the
average multiprogramming levels of their respective classes because the mean queue
length at the disks must be included in such a sum. The mean resident times can be
calculated as the inverse of the throughput times the multiprogramming level of the
respective class.

GPJS 81.5 secs
HSJS 3.4 secs

The response time of the TSO interactions will be determined by the birth-death model.

Table 6. Mean queue lengths of the multiple
class queueing network model.

mean queue lengths
GPJS TSO HSJS total
CpPU 1.055 0.653 0.417 2.125
Channel 2 0.202 0.126 0.038 0.366
Channel 3 0.163 0.322 0.029 0.514

These results seem to indicate that the overall resource usage is represented more or less
accurately, but that too much of the overhead is attributed to HSJS and too little to
TSO. The general breakdown ratio is a critical parameter for this model. A small
experiment whose results are shown in table 7 can prove this. The first ratio is derived
by distributing the unaccounted resource usage only according to the I/O related data.
Apparently, too much overhead is attributed to GPJS, and not enough to TSO and HSJS.
A shift of 10% of the unaccounted overhead in the ratio from GPJS to TSO improves
the results for GPJS and TSO, the error for HSJS becoming even larger. The third ratio,
derived by the rationale described in the section on the interference pattern, resuits
mainly in a shift of overhead from GPIJS to HSJS. The TSO error is only slightly
changed. As a consequence of this experiment, we know that the distribution of unac-
counted resource usage must be performed with great care. The ideal case would
certainly be if all resource usage were accounted to user tasks by the monitors. Where
this is not possible, the breakdown ratio can be adjusted until the the utilization and the
throughput values of the model match the measured values as well as possible. This

PERFORMANCE MODELLING OF COMPUTER SYSTEMS 23

calibration must then be validated by a model based on a new set of measurement data
collected under a different workload.

Table 7. Error calculations for different breakdown ratios.

breakdown ratio relative throughput error (%)
GPJS TS0 HSJS GPJS TS0 HSJS
.465 .508 .027 -12.7 +23.5 +21.9
.365 .608 .027 -6.9 +9.5 +23.0
.276 .600 124 +2.4 +9.7 -1.6

6.3 Computational Birth-Death Model

The parameters of the system model can be used directly as input to the solution
algorithm, so that no transformation need be performed for the parameter representation.
For the structure of the model see figure 5.

Computer
System

Terminals

Figure 5. Birth-death model.

To obtain the service rates for the birth-death model, the queueing network model is
evaluated for TSO multiprogramming levels of 0 to 3 and all the multiprogramming
levels of the other classes required for the interpolations to obtain the TSO throughput
values with average mutliprogramming levels of 2.1 for GPJS and 0.73 for HSJS. The
birth-death model then is evaluated for the maximum multiprogramming levels of 2 and
3. The results, the average number of transactions in the system and the throughput of
transactions, are again linearly interpolated to obtain the values for the fractional average
multiprogramming level of TSO, 2.45. The results of the birth-death model are shown in
table 8.

24 M.G, KIENZLE and K.C. SEVCIK

Table 8. Results of the birth-death model.

MPL Eln] throughput response time
model rel.error mode] rel.error

(per sec) (%) (sec) (%)

2.4 15.92 .556 +1.4 28.64 -5.9

2.5 16.12 .573 +4.6 28.14 -7.6

2.6 16.33 .590 +7.7 27.67 -9.1

In order to compare the model results with the measurement data, the mean response
time is calculated from the measurement data (following some operational considerations
[BUZE76]) to be 30.45 seconds. Considering this response time and a mean think time
of 12 seconds, the benchmark certainly does not represent a very realistic TSO load.
This was discovered only during the modeling study. Dividing the number of interactions
by the TSO class elapsed time, we obtain a mean throughput value of 0.548 interactions
per second.

There are several reasons for the errors in the model results. Because the TSO through-
put in the queueing network model is too high, the throughput of the birth-death model
must also be too high. The maximum multiprogramming level in the system is not fixed
as it is in the model. The state probabilities of the birth-death model show that for all
cases evaluated the probability that the multiprogramming level is at its maximum is
greater than 0.99. This finding is consistent with the observation of the large backlog of
TSO tasks in the system. So the multiprogramming level for TSO tasks in the system
follows the multiprogramming level as specified by the SRM, and is not determined by
the arrival stream and the service rate of the server as is asssumed by the birth-death
model. Considering this observation, it is questionable whether the birth death model is
needed at all.

7. CONCLUSIONS

The proposed modeling procedure is intended to provide a better understanding of the
system and the modeling process. By stating the intermediate models explicitly, the
procedure allows a more formal parameter transformation from the measurement data to
the input parameters of the queueing network models. The isolation of the workload and
the system’s components in the system model makes the modeling decisions more explicit
and exposes the influence of the different parts of the system on its performance.

To benefit fully from this procedure, a modeling study should be based on a large set of
experiments under a wide range of workload conditions. Using detailed measurement
data, sophisticated system models can be developed to serve as a basis for detailed
modeling studies.

Four points that deserve more attention are: 1) Based on measurement experiments
varying the load, interference functions could be established that implicitly reflect cause

PERFORMANCE MODELLING OF COMPUTER SYSTEMS

and effect relationships of the operating system’s overhead and thus put the interference
pattern on a sound basis. 2) The load and class dependency of the CPU and 1/0 service
rates could be determined. 3) With several sets of measurement data from actual
operation of the system, a broadly based workload model could be developed that would
reflect an average load situation of the system much better than the benchmark. 4) An
independent set of measurement data would allow the validation of the modeling
decisions.

ACKNOWLEGDEMENTS

The research for this paper greatly benefitted from discussions with Scott Graham, Ed
Lazowska, Allan Levy, Satish Tripathi, and John Zahorjan, all of Project SAM 1976 -
77. John Sutherland of the UTCC was helpful in providing the measurement data.
Good comments on the presentation were provided by Vicente Aragon, Tony Chu, Lenny
Freilich, and Ben Welleschuk, members of Project SAM 1977 - 78. This study was
financially supported by the Deutscher Akademischer Austauschdienst and the Depart-
ment of Computer Science of the University of Toronto.

References

[BARD77]
Y. Bard. The Modeling of Some Scheduling Strategies for an Interactive Computer
System. International Symposium on Compter Performance Modeling, Measure-
ment, and Evaluation, Yorktown Heights, 1977.

[BCMP75]
F. Baskett, K. M. Chandy, R. Muntz, F. Palacios. Open, Closed, and Mixed
Networks of Queues with Different Classes of Customers. Journal of the ACM, 22,
April 1975.

[BUZE76]
J. P. Buzen. Fundamenal Laws of Computer Performance. International Symposi-
um on Computer Performance Modelling, Measurement, and Evaluation, Cam-
bridge, March 1976.

[BUZE78]
J. P. Buzen. A Queueing Network Model of MVS. Computing Surveys, September
1978.

[CHW75]
K. M. Chandy, U. Herzog, L. Woo. Approximate Analysis of Queueing Networks.
IBM Journal of Research and Development, January 1975.

25

26 M.G. KIENZLE and K.C. SEVCIK

[CM73]
R. Cavanagh, G. Milandre. Hardware Monitoring at the University of Toronto
Computing Centre. Internal UTCC document, May 1973.

[DB78]
P. Denning, J. P. Buzen. The Operational Analysis of Queueing Network Models.
Computing Surveys, September1978.

[GIAM76a]
T. Giammo. Validation of a Computer Performance Model of the Exponential
Queueing Network Family. International Symposium on Computer Performance
Modeling, Measurement, and Evaluation, Cambridge, 1976.

[GIAMT76b]
T. Giammo. Extensions to Exponential Queueing Network Theory For Use in a
Planning Environment. Proceedings of Compcon '76 Conference, IEEE, September
1976.

[GP77]
E. Gelenbe, G. Pujolle. A Diffusion Model for Multiple Class Queueing Networks.
Rapport de Recherche No 242, Laboratoire de Recherche en Informatique et
Automatique, 1977.

[IBM76a]
OS/VS2 System Programming Library, Initialization and Tuning Guide, IBM Form
No. GC28-0755

[IBM76b]
0S/VS2 MVS Resource Measurement Facility (RMF), Reference and User’s
Guide, IBM Form No. SC28-0740

[IBM77]
OS/VS2 MVS System Programming Library, System Management Facilities (SMF),
IBM Form No. GC28-0706

[KGT77]
A. Krzesinski, S. Gerber, P. Teunissen. A Multiclass Network Model of a Multi-
programming Timesharing Computer System. Proceedings IFIP congress ’77,
Toronto, 1977.

[KIEN77]
M. Kienzle. Measurements of Computer Systems for Queueing Network Models.
M.Sc. Thesis, University of Toronto, Technical Report CSRG-86, Computer
Systems Research Group, University of Toronto, 1977.

[KOBA74a]
H. Kobayashi. Application of the Diffusion Approximation to Queueing Networks,
I: Equilibrium Queue Distributions. Journal of the ACM, 21, 1974.

PERFORMANCE MODELLING OF COMPUTER SYSTEMS 27

[KOBA74b]
H. Kobayashi. Application of the Diffusion Approximation to Queueing Networks,
II: Non-Equilibrium Distributions and Applications to Computer Modelling. Journal
of the ACM, 21, 1974,

[KR75]
H. Kobayashi, M. Reiser. On Generalization of Job Routing Behaviour in a
Queueing Network Model. Research Report RC 5252, Yorktown Heights, 1975.

[RK76]
M. Reiser, H. Kobayashi. On the Convolution Algorithm for Separable Queueing
Networks. International Symposium on Computer Performance Modelling, Meas-
urement, and Evaluation, Cambridge, March 1976.

[ROSE76]
C. Rose. Validation of a Queueing Network Model with Classes of Customers.
International Symposium on Computer Performance Modelling, Measurement, and
Evaluation, Cambridge, 1976.

[SEVC77]
K. C. Sevcik. Priority Scheduling Disciplines in Queueing Network Models of
Computer Systems. Proceedings IFIP Congress *77, Toronto, 1977.

[SLTZ77]
K. C. Sevcik, A. Levy, S. Tripathi, J. Zahorjan. Improving Approximations of
Aggregated Queueing Network Subsystems. International Symposium on Computer
Performance Modelling, Measurement, and Evaluation, Yorktown Heights, 1977.

[su78}
K. C. Sevcik, D. Unruh. A Case Study in Predicting TSO Response Times. Submit-
ted for Publication.

Performance of Computer Systems
M. Arato, A, Butrimenko, E. Gelenbe (eds.)
©IIASA, North-Holland Publishing Company, 1979

Synchronization Problems in Hierarchically
Organized Multiprocessor Computer Systems

U. Herzog, W. Hoffmann

Institute of Mathematical Machines and
Data Processing (III)

University of Erlangen-Nirnberg, Germany

The evolution of technology provides the opportunity of
connecting inexpensive processors to build medium or large

scale computer systems. However, operating such systems, serious
coordination problems (synchronization, data and code sharing,
etc.) may occur.

Characteristic performance values, such as throughput, mean
response time, and distribution functions are derived directly
for fundamental computer structures and operating modes. More
complex systems are investigated by a hierarchical modeling
technique.

INTRODUCTION

Multiprocessor computer systems with two or three processing units have been

built since many years. Due to inexpensive hardware-components and minicomputers
there is an increasing interest in building systems with some ten or even hundreds
of processors [5-7].

Rather than running independent tasks on different processors one also tries to
take advantage of the parallelism inherent in many problems, i. e. application
programs are decomposed into sets of parallel cooperating subtasks and processed
in parallel, when possible [11,15]. So we may increase not only the throughput of
a system: run-times (and therefore response-times) for individual application
programs may be reduced significantly, too. Then, however, difficult coordination
problems (synchronization between tasks, data and code sharing, etc.) may occur
[2,5-7,11,15,21].

In this paper we investigate synchronization problems and their influence on per-
formance by a new class of queuing models.

We first describe in outline the architecture of hierarchically organized multi-
processor computer systems with centralized control (our modeling technique may
be applied, at least partially, also for systems without centralized control
since we may find there master-slave relations, too).

The timely sequence of events is determined not only by the structure and opera-

ting mode of a multiprocessor system. It is heavily influenced also by the inter-
nal structure of the application programs to be run on the system.

29

30 U. HERZOG and W, HOFFMANN

We therefore classify application programs in section 3, think about their imple-
mentation on hierarchical systems, and develop the corresponding queuing models.

Section 4 deals with the analysis of two level hierarchies under Markovian and
Non-Markovian assumptions.

Section 5 summarizes the results for a three level multiprocessor system on which
a traveling salesman algorithm runs as application program.

We then conclude, section 6, with some remarks on ongoing and future research for
multiprocessor computer systems.

ARCHITECTURE OF HIERARCHICALLY ORGANIZED COMPUTER SYSTEMS

1. General remarks

Hierarchical structures have been applied successfully in many organizations, in-
dustries and technical systems. It therefore seems to be reasonable to use this
type of organization for multiprocessor systems, too. Hierarchical structures are
transparent since we may distinguish clearly between organizational and applica-
tion work and it is possible to concentrate coordination problems while distribu-
ting independent user tasks.

Typical examples are the EGPA-project [6], the multiprocessor system at the SUNY
[7], the Siemens-system SMS [17], MOPPS [20], X-TREE [4] and others.

Because our investigations were initiated and influenced by the EGPA-project, we
outline next the EGPA-architecture.

2. The EGPA-pyramid [6]
The EGPA (Erlangen General Purpose Array) consists of a rectangular array of pro-

cessors (A-processors) connected via multiport memories. Each processor may access
its

Torovdel closing

-
¢~#‘ Processer 1_"0:%—?.0;7»017 block

Fig. 1: Erlangen General
Purpose Array (EGPA)

HIERARCHICALLY ORGANIZED MULTIPROCESSOR COMPUTER SYSTEMS 31

C (Control)

Bl{1;;7/Xi\\\\\\\\\\\\;%§éliiiity)

A1

—~———= connection in one direction only

connections in both directions

Fig. 2: Cellular structure of EGPA

"own" memory, and the memories of its four neighbours in the north, west, south
and east direction (figure 1). The edges of the rectangle are connected to form
a toroid. In addition to the array-processors, there are processors dedicated to
the transfer of data between the array-processors and the peripherals.

At present, each of these processors, called boundary (B)-processors, is allocated
to a 2 x 2 square of the array. In addition there is a single processor, called
control (C)-processor, which has a supervisory function. The pyramid structure is
shown in figure 2. A pilot-pyramid is being implemented now.®

PARALLELISM, SYNCHRONIZATION PROBLEMS AND MODELING

1. General remarks

The flow of information in a multiprocessor computer system depends on the hard-
ware-components, the interconnection scheme and the operating system. It is, how-
ever, heavily influenced also by the internal structure of the algorithms imple-
mented in the application programs.

Following the work of Adams [1] and others, we describe a program by means of a
directed graph, the nodes representing subtasks (well defined functions or sets
of functions), the edges showing interdependencies and representing data buffers
(unlimited FIFO-queues). Nodes (subtasks) are performed if and only if each input
edge to this node contains at least one data. We classify several types of paral-
lel algorithms and develop equivalent queuing models for hierarchical multipro-
cessor computer systems.

2. Type-l-program structure

The program consists of a loop which may be passed several times, cf. figure 3.
Within that loop n independent subtasks can be distinguished {there may exist some
pre- and postprocessing). A new loop-cycle may be started iff** all n independent
subtasks are completed.

#
The EGPA-Project is supported by the BMFT, the German Ministry of Research and
Technology.

3%

iff = if and only if

32 . U. HERZOG and W. HOFFMANN

1

Fig. 3: Type-l-program structure Fig. 4: Execution of a type-1-
(si—subtasks, cf. 3.2) program on a two-level
hierarchy.

Problems are often of this type: algorithms for the solution of linear-algebraic
or partial differential equation systems, optimization procedures, simulations in-
cluding subruns for the purpose of estimating confidence intervals, problems of
picture processing, etc. etc.

Such algorithms may be implemented very efficiently on a hierarchically organized
multiprocessor system with two levels (cf. figure 4):

- At first the source program is translated, loaded and then started by the B-pro-
cessor (abbreviations, see section 2).

- The B-processor then initiates the execution of n independent subtasks by the
A-processors.,

- Having completed its subtask, each A-processor has to inform the B-processor.

- Postprocessing and preparation of a new loop-cycle by the B-processor is only
possible when all subtasks are completed.

Queuing models which allow to describe and analyze the traffic flow including the
above synchronization problem are shown in figures 5 to 9 (synchronization is
shown symbolically by lying brackets).

e Multiprogramming
We first assume multiprogramming for both B- and A-processors {cf. figure 5):
Newly arriving demands (source programs) are processed by the B-server (B-pro-

cessor), then it generates n independent sub~demands and distributes them simul-
taneously among all n A-servers (more sophisticated transfers, cf. section 6).

Sub-demands may have to wait since A-servers may be busy at that time. After com-
pletion each sub-demand is buffered in the corresponding input queue of the B-
server,

HIERARCHICALLY ORGANIZED MULTIPROCESSOR COMPUTER SYSTEMS

33

2 - @J

Hewly

arriving
d"mand§

B - server

[
'
[J

_"I

o
F

L
corpleted
demands

11

-

HE -G

77\

/
1]

L.

=l

L____

Fig. 5: Open model

Iff all n sub-demands, belonging to a specific demand, are buffered, and the B-
server is empty, they are removed simultaneously (symbolized by |__j) from the n
paraliel input queues and processed in one step. After completion there are two

possibilities

Fig. 6: Closed model

- the (complete) demand leaves the system, or

- n new sub-demands are generated simultaneously and a new cycle is started.

Figure 6 shows the corresponding closed queuing model.
with a constant degree of multiprogramming. As we shall see in section 4, closed

It allows to model systems

queuing models are the basic models because open models may be analyzed via these

models.

® Monoprogramming

Multiprogramming allows to increase system throughput. However, for reason of sim-

plicity and transparency of the operating system there is a trend to introduce

monoprogramming, again [14,21,22,24].

Sl

B - server

\

A A;—I C e tﬁk;_
._i:;_J_,

L. —J]

1

Fig. 7: Open model for
monoprogramming

Fig. 8: Closed model for
monoprogramming

34 U, HERZOG and W. HOFFMANN

The corresponding open and closed queuing models may be derived readily according
to the above section and are shown in figures 7 and 8, respectively: no queues
build up in front of the A-servers!

Obviously the utilization of the B-server is rather poor. There are, however, two
possibilities to avoid this lack:

1) The B-server services also subtasks,
2) A mixed multi- and monoprogramming mode is introduced.

Since the analysis of solution 1 is very similar to that of monoprogramming we now
discuss the second possibility.
® Mixed multi- and monoprogramming

Multiprogramming for the B-processor and monoprogramming for the A-processors seem
to be a reasonable solution for many applications. Figure 9 shows the corresponding
(closed) queuing model and is rather self-explanatory:

- ®

10} ol

LEJ"'[EJJ. . .|tf}"' tih e \tj "'LEI

B - server
5 ! y Y \'d ;
Al]. ves Alnl A]l ves A]n1 Aml ...Amnm
L T

Fig. 9: Closed queuing model for mixed mode

Be given a number m of independent demands (t; ..., t. ...,t) to be served
sequentially (!) by the B-server. After comp]e%ion each task M t. (i=1, ..., m
generates n. independent subtasks to be processed by the reserved A-processors Ail
to A, _.TasQ t. may be started again if and only if all subtasks have been com-
plet &i by the1A-processors. If the B-server is busy, complete demands wait in
front of the server and are served in the order of arrival (FIFO).

Note, synchronization is only necessary between sub-demands belonging together, an
important fact for analysis.

HIERARCHICALLY ORGANIZED MULTIPROCESSOR COMPUTER SYSTEMS 35

3. Type-2-program structure

Here, the program also consists of a

loop. However, the n subtasks in-
fluence each other in some way (fi-
gure 10 shows one possibility) rather
than being completely independent.

So, in addition to the overall syn-
chronization, a "local” synchroni-
zation of subtasks is also necessary.

The execution of a type-2-program
structure may be performed on a hier-
archical multiprocessor system as
follows:

As before, the source program is
translated, loaded and started by

the B-processor. Again, the B-pro-
cessor distributes n subtasks to the
' | | A-processors. However, after some
processing low level (local) synchro-
nization between several A-processors
is necessary.

Processing continues and more Tow
level synchronizations may occur

until an overall synchronization by
the B-processor is necessary.

Closed queuing models for monopro-
gramming are shown in figure 12, mo-

Fig. 10: Type-2-program structure

dels for multiprogramming and mixed
mode may be obtained accordingly
(for reasons of simplicity we pro-
pose to use the simplified model
rather than the detailed model which
also shows the low level synchroni-
zation buffers).

B —
—] oy
1 ' '
r ! L
Ay == F::%:::j : A I
1 ! \ !
A, 1 — : : h ol
! i
Aq ——— oot sovt— \ T
D !
t
M e i
AA AR A
Tocal qlobal
Fig. 11: Timing diagram with local and global synchronization

36 U, HERZOG and W. HOFFMANN

TR TR

-:"_L:'_.;__.__‘_‘L EIEEERS

§ 3

—
[‘”/) 45‘ W
b\ EE, (e, ! 1
{ Ay \k Ay e A _J:§1 | Ay [o=l
S W Wy I [_J _}H[L_J
R |

Fig. 12: Detailed (left) and simplified queuing models for systems with
both global and local synchronization

4, Type-3-program structure

There are two reasons why the degree of parallelism (and therefore the number of
necessary A-processors) may vary:

1) The changing number of independent subtasks is characteristic for many applica-
tions (inherent in the algorithm, cf. fig. 13)

2) The degree of parallelism of the algorithm is larger than - and not an integral
muttiple of - the number of A-processors available at the moment.

Figure 14 demonstrates the basic idea of modeling that type of problems: the B-pro-
cessor always generates (!) n independent sub- demands The A-servers are by-passed,
however, with (different) probabilities (1 - q.), i = 1, ...,n. In other words: we
always generate a constant number of sub- deman&s For some of them (dependent on
the task to be processed) there is zero processing time necessary at the A-proces-
sor.

It is possible to investigate such models under various assumptions [13]. And it

is not too difficult to realize that models of this type allow to "simulate" exactly
models where the B-processor generates i sub-demands according to an arbitrarily
chosen probability distribution P (i =1, ... n).

(Figures 13 and 14 see next page)

5. Type-4-program structure

Completely independent tasks (fig. 15) may be run, of course, on a hierarchical
system, too: each source program is translated and loaded individually by the B-
processor and then processed by an A-processor.

HIERARCHICALLY ORGANIZED MULTIPROCESSOR COMPUTER SYSTEMS

Fig. 13: Structure of an ALGOL program
which generates a symmetric
matrix [19].

grams

Fig. 15: Type-4-program
structure (inde-
pendent tasks}).

37

Fig. 14: Closed model for type-3-pro-

38 U. HERZOG and W. HOFFMANN

Figures 16 and 17 show the corresponding open and closed queuing models (queuing
may be or may not be allowed in front of the A-processors, dependent on the opera-
ting mode.)

[~
[

1

[T
[T

Aq Ayl o v s An A Ap el A,
] ! —
Fig. 16: Open model for Fig. 17: Closed model for
type-4-programs type-4-programs

It is interesting to note that the closed model presented in fig. 17 plays an im-
portant role when analyzing mixed models according to figure 9 (cf. section 4.2).

6. Mixture of program structures

Program structures presented above may occur in "pure form" only in some special
purpose multicomputer systems. In the general case, however, programs of different
structures have to be processed, and within one program the structure may also
vary.

Then, the corresponding queuing model is a mixture of several pure models, in case
of closed models mainly a combination of figures 9, 12 and 14.

Although we have not investigated yet such a model, its analysis seems to be
straight forward. From our point of view it seems to be more difficult to find a
characteristic workload and to choose the model parameters accordingly (cf. sec-
tion 6).

PERFORMANCE ANALYSIS FOR TWO LEVEL HIERARCHIES

1. General remarks

A11 closed models presented above (and some open, too) have been investigated un-
der various assumptions [8,9,12,13]:

- Exponentially distributed service times for both B- and A-servers, the mean
value may vary for different A-servers,

- General service time distributions, mostly of Erlangian and hyperexponential
type, respectively.

HIERARCHICALLY ORGANIZED MULTIPROCESSOR COMPUTER SYSTEMS 39

In analyzing the performance we usually assumed stationarity, determined then sta-
te probabilities and characteristic performance values such as

- system throughput

- server utilization individual for each server

- mean numbers of A-servers working simultaneously

- mean numbers of demands and/or sub-demands waiting in front of servers (queue
length)

- mean synchronization time, i.e. mean time between the moment when all related
sub-demands start and the Tlast one is completed

- mean cycle time for complete demands, the sum of synchronization time and pro-
cessing time at the B-server

- distribution functions for both the synchronization and cycle time.

Some results for the most important mean cycle time have been summarized in table
1, more detailed information on three closed models may be found in section 4.2.

Open models can be analyzed efficiently by a hierarchical modeling technique [10,
16], the results of which are often accurate approximations, sometimes exact [9].

Finally, we would like to point out that our investigations are strongly related
to the problem of CPU-I/0-overlap [3,18,23]. So the multiple CPU-I/0-problem may
be solved now, too.

2. The closed model for type-1l-program structure and mixed multi- and monoprogram-
ming.

Be given a model structure according to figure 9, the service discipline of which
being described in section 3.2. Service times for both B- and A-servers are assu-
med to be exponentially distributed with

service rate for the B-server

Aij service rate for the Aij—server, ief{l,2,...,m Je{l,2,..., m}

m ¢ number of complete demands 0, (competing for the B-server), i.e. degree
of multiprogramming.

i : number of parallel sub-demands belonging to demand Di'

Analysis is performed under equilibrium conditions, i.e. stationarity is assumed.

e Decomposition: Recall, again, that synchronization is only necessary between
sub-~demands Si" je{l,2, ... ni} belonging together. So, if we are able to
analyze all individual synchronization processes, the overall behaviour is
described exactly by the following mode, known from figure 17:

B-server: service times exponentially with rates u as in the complete model.

A-server: service times generally distributed with different service rates A ac-
cording to the d.f. of the synchronization times F.(t) and its mea
Ei[TS]’ ie{1,2, ... m}. No queues in front of thé A-servers.

We therefore attack at first the (individual) synchronization problem also being
the solution for the monoprogramming model shown in figure 8. Then, in a second
step, we briefly outline the solution for the multiprogramming model presented in
figure 17, a generalization of the G/M/1/m-model.

40 U. HERZOG and W. HOFFMANN

Type~-1-program ne2 a} expunentinlly distributed service times in the A-processors
3
mdels = =
rogram- N 22
(rf;onnp gram b) Erlang - k - distributed service times in the A-processors
wing) . u L2 (b-1)-T,Y JTR-1)
T+
2Tk 2K’) = il 24=+1.-4

c) Hy - distributed service Hmes in the A-processors {mean service time: T_ + ;‘L)

4 2% +3(d4 21 LY V% a41)0'(27_a(41’a4dz)(2(d +2ﬂz)

t! = +
I 2)4)1(')!“")1)
n a) exponentially distributed service times in the A-processors
arbitrary 1 4 4
ta = + P
/u T i1=4 A
M-l m . m-j :
; +> 1 +Jdmitd)
Type-1-program m {L;(.‘) = Ei[Ts]’* ?J’zj)l' - mild
models arbitrary /“-(/" +Z .‘,}‘- i dm L(J))
(mixed multi-] 1 ni 4
and monopro- 0 Z _ﬂ_ [= Z —_
gramming) MLJ‘-!,.. St 4y my Ly ety S 4E,&Tv] ’ A 3 :

in twos difevent

cf. section 4.2 o
() in the case of exponentially distributed service times (dj = aij for 14 jeni)

Type-2-program n a) exponentially distributed service times in the A-processors
madels arbitrary

tléi‘*s**z—

r it

dependent on the specific Yocal synchronization mode
(s: number of local synchronizations)

Type-3-program n a) exponentially distributed service times in the A-processors
odels arbitrary
n n _—.
A A _ 4
t1=—+—[ll ‘(Z*+ 2 -)]
/‘ 2 gt qJ Y 2 e k‘ 1m4 J.,. ,1.&{4,—"‘ "4 q‘c
Jacdace i
n- ‘J

Type-4-program n {U') - N N jLL +Z_\-13 l}l- dl’k'-(-l)
models arbitrary 2 A

/C(-""Z ,/“'.J dn,z.(i))

fcf. section 4.2) ik d"‘|i(j) = Z “ LIy
i""')‘l‘“ 6{1.2,.-4,05'{15 &-\'.,..‘)ii_‘
in twos different

Table 1: Mean cycle time tZ for different models (u: rate for B-server, A: rate for A-servers,qi: branching
probabilities (cf. fig. 14)).

HIERARCHICALLY ORGANIZED MULTIPROCESSOR COMPUTER SYSTEMS 41

Synchronization: Let D, be the complete demand the synchronization time of which

has to be determined. ﬁrocessing of all sub-demands Si" Jje{ly2,...,n:},

starts at the same instant. Suppose all processing times are exponentia]?y dis-

tributed with uniform service rates Ail = Ain = Ai (solution for different ra-
i

tes, cf. [8,13]).

Now, obviously, the interval T. between the initiation of all sub-processes and
the termination of the first ~1 sub-process is distributed exponentially:

st)=1-¢ T, tzo0
the interval TS between the first and second termination according to
2

- (ny-1) - gt

etc.etc.

Therefore, the total synchronization time is (cf. fig. 18)

j=1

and its distribution function is obtained by the ni—f01d convolution of exponential
distributions with different mean values:

. st) = Pi(TSZ st)y# ..., 0% Pi(TS s t)

Applying Laplace transformation the following closed form solution may be obtained

n. .) St
(@) Fn =S ()it <n1> Cee T
i=1 ’

with mean and variance

(6) VAR;(Tsl = — 5 - -

42 U. HERZOG and W. HOFFMANN

Initiation of all sub-processes

Ai3

Aini

F—Tsl—*TS{“——Tsy—" e . h—Tsn-i—’-!
e Ts -

Fig. 18: Interpretation of the synchronization process and the way
of analytic solution.

® Overall behaviour: Since the synchronization problem is now solved the overall
behaviour is completely determined by the parallel-processing model presented in
fig. 17. Recall, there is no queuing in front of the A-servers and the service
rate of these m A-servers is

(7) Al = ie{1,2, ..., m}.

We first analyzed this model under Markovian assumptions: system states were de-
scribed by a (m + 1)-dimensional vector, stationarity was assumed and the explicit
solution derived for the state-probabilities, a generalization of the well known
M/M/1/m-solution.

Secondly, we proofed the solution also being valid in case of general service time
distributions for the A-servers. The detailed analysis may be found in [13], some
characteristic performance values are:

Utilization of the B-processor YB

HIERARCHICALLY ORGANIZED MULTIPROCESSOR COMPUTER SYSTEMS 43

Utilization of each A-processor YA

it

m-1 .
1] = .m-J
WeR e T
J=1 i‘y‘_. n11 j

T M
30
r‘«—

Mean cycle time tz for a task with mean service time lT' in the A-processor

A

3
-
+
ANk
=

) N i
Loy \
tl(i.) = i. +/u. J=2 /u- tay 1‘442- m} {‘} b= :L—‘l:l_:i‘jJ *
2{_ m ‘
S
/u /P v ~L'“wi34 ei‘““imix{i} =y, b

in twos diffecent

with f =/~L'"+;;-/Lm'j Z T A¢

_"16{1 j 11“ J

3. Numerical results
Figure 19 shows the mean cycle time for (complete demands) as a function of:

1)} The program (and therefore model) structure: we may have one, two or four de-
mands with four, two or one sub-demands respectively, and
2) The mean service rate u of the B-server.

Furthermore, it is assumed that the service rate A is uniform for all sub-demands.
In order to compare the results for the same load per cycle of the B-server we
introduced different scales. Note, however, that we compare various types of pro-
grams running on a given configuration!

PERFORMANCE ANALYSIS FOR A THREE LEVEL HIERARCHY

Figure 20 shows a three level multiprocessor computer system and the flow of infor-
mation if we run an algorithm for the famous traveling salesman problem as applica-
tion program on such a configuration {(solution via 3 - optimal tours).

Rather than describing the details of the algorithm and its implementation [13] we
focus our attention on the problem of modelirg:

U. HERZOG and W. HOFFMANN

44

—i=
A
o — o o
- o o ‘© ©
| = Z : 5
P ’|V|J.” M.IJ.HLy ! s — =
AN _Huﬁ -
I 1Al CF R . - T T T T T T — e e e ey j
i I ! = = | m m e m e =y f\\\\!
a0 ! > [11 -]
[T wu ! «n o - J\;ﬂsim\»(\\\x -
I T I E . - -
| [= -3 o Vo5 [™ o I ST]
_ muJ zgu: w _ 5 = 2 | ¥ -
! et] ﬁ | t o
j | ;! - @ I
! _ & =] - “ “
W) H o w
X = P [- - -)
2 | o o — [
- m \ ! MJ 1.
[
= Y c [
S o b T T T b
S A 4 o o o 5] Pt
— / ! ./) L I
= —_——
ey ——
w [20] (') ~ _.. r
" Iy ° = | 1
o o o [res |
%) !
[1 '
= !
— o s € |
Lo < g i
c o o B | |
Pl
w0 o | !
S o |
o o o o | j
s g = ! [
. 2 & 3 R R I ISy N -
N - N Lol lhﬁ

Three level multiprocessor computer structure

Fig. 20:

HIERARCHICALLY ORGANIZED MULTIPROCESSOR COMPUTER SYSTEMS

t t t t
o—-0
1000 @0 4C0 30F &—° 8 I .
x
x
X
o—> 7 F
Y o '
- . : :
x 300{ x 6+ %
ok ot .
x —ye 201 .
o——a g
x S 5k
- .
x
" x
500 200F 15+ 4 -

100 2 r

100

Fig. 21: Execution time t for the traveling salesman algorithm on a
three Tevel hierarchical multiprocessor computer system.
Comparison between results from a step-by-step simuiation
of the algorithm (simulations x, mean value &) and three
approximate solutions (proc. 1 o—0, proc. 2 &—hN,
proc. 3 (3—1). Results are shown for n = 10, 16, 33 and
42 cities (cf. text).

45

46 U. HERZOG and W. HOFFMANN

It is rather unwise and probably unsuccessful to describe and analyze the compli-
cated flow of information and all interdependencies by a single global queuing
model. However, it was possible to describe the interactions between each level-
throcessor and its level-3-processors by a parallel-processing model, shown in
figure 17 and analyzed in section 4.2, On the other hand, interactions between the
level-1-processor and all Tevel-Z-processors may be described accurately by the
synchronization model, presented in figure 8.

So, applying_the hierarchical modeling and analysis technique [10,16] we developed
three approximate procedures. Some results are shown in figure 21 and compared
with a step-by-step simulation of the complete 3-optimal-tour-algorithm (since the
algorithm starts from a randomly chosen initial tour, the execution time varies

even for the same number n of cities: we therefore performed the algorithm ten
times for each problem).

Comparjsons_show that the (very simple) procedure 1 tends to overestimate the
execution time. Procedure 2 yields, for a small number of cities, results which

are somewhat too optimistic. Finally, the most sophisticated procedure 3 yields
always accurate results.

CONCLUDING REMARKS

Introducing multiprocessor computer systems serious coordination problems (synchro-
nization, data transfer, data- and load-sharing, etc. etc.) may occur.

In this paper we described and analyzed the effect of synchronization on system
performance. In particular, taking into consideration the internal structure of
programs, we developed specific models and analyzed them under Markovian and Non-
Markovian assumptions as well.

Several directions for further work are apparent. Some of our models have only
been investigated under Markovian assumptions, now we try to solve these problems
more generally. More sophisticated models may be obtained if signalling overhead
is introduced. Priorities are another interesting and important subject. It also
seems to be possible to take into consideration the influence of data transfers

on system performance. And, as mentioned above, the multiple CPU-[/0-overlap prob-
lem may be solved now, too.

Most significant is also the following task: we have to investigate the structure
of various algorithms and programs in order to find a characteristic workload for
parallel processing systems and their corresponding models.

In short, considering the evolution of technology and trends in hardware/soft-
ware-deveiopment, there are still many important and challenging problems in the
area of performance modeling and evaluation for multiprocessor computer systems.

REFERENCES
[1} ADAMS, D. A.:
A Model for parallel computations.
In: Parallel Processor Systems,Technologies, and Applications, Hobbs et
al. (eds.), Spartan Books, New York, Washington (1970)
[2] BACHLE, A.:
Private communications on performance evaluation 1876/1377
[3] COTTON, L. W.; ABD - ALLA, A. M.:

Processing times for segmented jobs with I/0 Computer overlap.
JACM 21, No. 1 (1974) pp. 18-30

(10]

(11]

f12]

15]

HIERARCHICALLY ORGANIZED MULTIPROCESSOR COMPUTER SYSTEMS 47

DESPAIN, A. M.; PATTERSON, D.:

X-Tree, A Tree Structured Multi-Processor Computer Architecture.
SIGARCH Newsletter, Vol. 6, No. 7 {1978) Computer Architecture News,
pp. 144-151

FULLER, S. et al.:
Multi-Microprocessors: An Overview and Working Example.
Proc. TEEE Vol, 66, No. 2 (1978) pp. 216-228

HANDLER, W.; HOFMANN, F.; SCHNEIDER, H.J.:

A General Purpose Array with a Broad Spectrum of Applications.

In: Computer Architecture (Handler ed.), Informatik-Fachberichte 4,
Springer-Verlag (1975) pp. 311-335

HARRIS, J. A.; SMITH, D. R.:
Hierarchical Multiprocessor Organisations.
Computer Architecture News, Vol. 5, No. 7 (1977) pp. 41-48

HERZOG, U.:

Verteilungsfunktion der Zykluszeit fiir das Synchronisationsmodell mit
beliebiger Zahl von A-Prozessoren und einem Gesamtauftrag.

University of Erlangen-Nirnberg, unpublished memo, April 1978

HERZOG, U.:

Synchronisations- und Zykluszeit fiir Typ-2-Programmstrukturen bei Mono-
programmierung, offene und geschlossene Warteschlangenmodelle.
University of Erlangen-Nirnberg, unpublished memo, July 1978

HERZOG, U.:

Modeling of Data Networks.

Invited Paper at ITC (Intern. Teletraffic Congress) - Seminar on
"Modeling of Stored Program Controlled Exchanges and Data Networks",
Delft University of Technology, October 1977, to be published by North
Holland

HIBBARD, P.; HISGEN, A.; RODEHEFFER, T.:

A Language Implementation Design for a Multiprocessor Computer System.
SIGARCH Newsletter Vol. 6, No. 7 (1978) Computer Architecture News,
pp. 66-72

HOFFMANN, W.:

Queuing models for parallel processing and their application to a hier-
archically organized multiprocessing system.

Paper accepted for First European Conference on Parallel and Distribu-
ted Processing, February 14-16, 1979, Toulouse, France

HOFFMANN, W.:
Warteschlangenmodelle fur die Parallelverarbeitung.
PH-D.-Thesis, University of Erlangen-Nirnberg 1978

HOFMANN, F.; WENDLER, K.:

EGPA, Uberlegungen zu Koordinierungsproblemen in Polyprozessoren mit
begrenzten Nachbarschaften.

Presentation at the University of Erlangen-Nurnberg, July, 17, 1978

JONES, A. K, et al.:
Programming Issues Raised by a Multiprocessor.
Proc. IEEE Vol. 66, No. 2 (1978) pp. 229-237

48

[16]

[18]

(19]

(20]

[21]

U, HERZOG and W. HOFFMANN

KOBAYASHI, H.:

Modeling and analysis, an introduction to system performance evaluation
methodology.

Addison-Wesley, 1978

KOPP, H.:

Numerical Weather Forecast with the Multi-Microprocessor System SMS 201.
In: Parallel Computers - Parallel Mathematics, Feilmeier (ed.), IMACS,
North Holland Publishing Company (1977) pp. 265-268

MAEKAWA, M,; BOYD, D. L.:

Two models of task overlap within Jjobs of multiprocessing multipro-
gramming systems.

Proc, 1976 Int. Conf. on Parallel Processing, Wayne-State University
and IEEE, pp. 83-91

NETT, E.:

On further applications of the HU-algorithm to scheduling problems.
Proc. 1976 Int. Conf. on Parallel Processing, Enslow (ed.), Wayne-State-
University, IEEE-ACM (1976) pp. 317-325

SHIMOR, A.; WALLACH, Y.:
A Multibus-Oriented Parallel Processor System.
IEEE Trans., Vol. IECI - 25 (1978) pp. 137-141

SIEWIOREK, D. P.:

Process Cocrdination in Multimicroprocessor Systems.

In: Microarchitecture of Computer Systems, Hartenstein and Zaks (eds.),
Euromicro, North Holland Publishing Company (1975) pp. 1-8

SIEGERT, H. J.:

Betriebsprogramme fiir dezentrale Rechensysteme.
NTG-Fachberichte, Bd. 62 (1978) pp. 207-213, VDE-Verlag, Berlin

TOWSLEY, D. F.:
The effects of CPU: I/0 overlap on computer system configurations.
SIGARCH Newsletter, Vol. 6, No. 7 (1978)

WENDLER, K.:

Betriebssystemaspekte in hierarchisch modularen Polyprozessorsystemen -
Modellierungsansatze und Koordinierungsmechanismen.

PH-D.-Thesis, University of Erlangen-Niirnberg (1978)

COMPUTATIONAL METHODS FOR QUEUEING NETWORKS

Performance of Computer Systems
M. Arato, A, Butrimenko, E. Gelenbe (eds.)
©]IASA, North-Holland Publishing Company, 1979

SOME EXTENSIONS TO MULTICLASS QUEUEING NETWORK ANALYSIS

Yonathan Bard
IBM Cambridge Scientific Center
Cambridge, Mass.

Mean value analysis of queueing networks is extended to
obtain approximate formulas for several previously unsolved
problems. Both finite population and Tlarge population
asymptotic results are obtained. Among the cases treated are
first-come-first-serve queues with different exponential
service times for different user classes, dispatching
priorities based on resource consumption, overlaps among
different queues, blocking by constrained resources, and
decomposable networks.

1. Introduction

Reiser and Lavenberg [1] have shown that queueing network problems can be solved
very simply by means of relations involving only mean values of queue lengths,
service times, and queueing times. The results are the same as those derived from
product form solutions whenever the Tatter exist. Though the amount of
computation required 1is the same, the mean value analysis s much simpler to
derive and explain, and is numerically less troublesome since it does not require
computation of very large normalizing constants. The new approach also leads to
very simple derivations of previously known asymptotic formulas [2], and is
capable of operational (in the sense of Buzen [3]) interpretation.

One of the main benefits of the mean value analysis is that it may be applied in
a straightforward way to networks which do not have a product form solution.
The results are generally correct only in the asymptotic case, but may provide
good approximations in the finite case. Following a brief exposition of the
method, we shall illustrate several such extensions.

2. Mean Value Analysis of Queueing Networks

We shall treat closed queueing networks with M user classes {chains) and K
queues. We shall assume that the workload of each class i user is composed of a
homogeneous set of work units, referred to as '"transactions." Following
Kobayashi and Reiser [4] we shall ignore (except where noted otherwise) the
topology of the network, and assert that only the following quantities need be
specified:

= number of users in class i
= average total service time required by a class i transaction at queue

J.

n.
1
tij

Let N = =zn; be the total user population. We shall be interested in estimating
the following quantities:

»j = class i transaction throughput. .
Nijj = Average number of class i users in queue j. We denote by N the matrix

51

52

Y. BARD

whose elements are Njj.
Tij = Average time spent by a class i transaction in queue j.

Once these are known, all the usual performance measures (response times,
throughputs, utilizations) can be readily determined.

The mean value analysis uses three fundamental equations:

(1) Little's formula
Nij = Ap Tyj (1=1,2,...,M; §=1,2,...,K) (1)

(2) Population balance

K

ns = Ngs (2)
i 31 1j
(3) Queueing discipline
ij : A
Tij = fij W9y ez m 59,2,00000 (3)
where N(1J) is the average conditional queue population at the time that a

class T user arrives at queue j, and fyj is a function whose form depends on
the queueing discipline. Equation (3) expresses, in the most general form,
any possible relation between queue populations and queueing times.

By summing (1) over j and substituting in (2) we find:

A= g/ ﬁ Tik (4)

so that, from (1):

Nig = Mg/ 2 Tak (8)

We now distinguish two cases:

(1) Finite EoEulation
It is reasonabTe to suppose that a class i user arriving at a queue would
find there, on the average, the population that would have existed had the
i-th user class contained nj-1 (rather than nj) users. Indeed, Sevcik and
Mitrani [13] have proved that this is exactly so in many cases. Thus

(15)]
Nij (Nyyevenisenisny) = Nij("l""’"i']""’"M) (6)
Clearly, Nij(o,o,...,O) = 0. Hence, starting at ny= 0 (i=1,2...,M), we can
apply equations (3) and (5) alternately with ever increasing values of the
Ny until the required population size is reached.

(2) Large populations (asymptotic case) L.

If the ny are sufficiently large, the distinction between N and ﬂ(13) may be
ignored, and (3) may be replaced with:

T'ij = f]J(ﬂ) (7)

Equations (5) and (7) may now be solved simultaneously for N and T by means
of the following iterative algorithm:

SOME EXTENSIONS TO MULTICLASS QUEUEING NETWORK ANALYSIS 53

(1) Assign positive initial values to the Nij'
22) Compute the T;:, using (7).

3) Recompute the ﬂ~-, using (5).

(a) 2.

The iterations are terminated when there is no significant change in the Nij from
one iteration to the next. An analogous scheme can be applied to the Tij, using
(5) first and then (7).

Return to step

Let T3; and N¥; be the solutions to (5) and (7). These are generally
asympto%ica11y vaqid, in the sense that if T{j and Nij are the true mean values,
then 1im(T§3/N - Ti5/N)=0 and 1im(N}j/N - Nij/N)=0, provided all nj increase in
constant proportions,

The iterations used in solving the asymptotic case require much less storage and
CPU time than the recursions used in the finite case. However, simple heuristic
corrections can be applied to the asymptotic formulas to generate very good
approximations to the finite case [1,11,12].

(3) Processor sharing

With a processor sharing (PS) discipline, queueing time s obtained by
multiplying service time by queue length. Hence, equation (3) takes the form

Tij =(1+Nj
where Ny = IiNjj is the total average queue J population. Reiser and Lavenberg
[1]1 show that uSing (6) and (8) recursively for finite populations yields exact
results identical to those obtained from the product form solution.

In the asymptotic case, equation (7) becomes:

.o = Nut,. = t,. L :
T1J NJt1J t1J ; NkJ (9)
Substituting (9) in (5) we obtain:

Summing over i:

Nj = Nj ? (nitij/ E thik) (11)
Dividing both sides by N and substituting Xy = Nj/N and ay = n1/N, we obtain:

Xj = XJ' f (a‘it'ij/ i xkt'ik) (12)

Note that xj and a; are the fractions of the total population in queue j and
chain i, respectively. Equation (12) represents an iterative scheme for
computing the xj, starting out with any set of nonzero initial guesses. This
scheme was derived and proven to converge by Pittel [2], and used by Bard [5,6]

in a model of the VM/370 system. Modifications to equations (8)-(12) for
queue-dependent service rates are straightforward.

With a Tittle bit of algebra it is easily shown that (12) is equivalent to

54 Y. BARD

Xj = X5 U (12a)
where wuj is_the utilization of the j-th queue, as given by equation (42).
Equation (12a) can be interpreted as follows: Either the j-th queue is saturated
w1th uj = 1, in which case xj can be positive. Or, the queue is not saturated,

<1, in which case'xj =0, i.e. the queue holds, on the average, a
neg11g1g1e fraction of the tota1 population. See Section 9 for further
discussion.

4.FCFS

The product form solution applies to queues with the first-come-first-serve
(FCFS§ discipline only if all user classes have exponential service time
distributions with identical means. Mean value analysis permits relaxation of
the latter restriction.

Let m;; be the number of sojourns to queue J requ1red by a class i transaction,
and 1e% 01J be the average service time per sojourn. we have, then:

tij = mij®ij (i=1,2,....,M; j=1,2,...,K) (13)
When a class i user enters queue j, he finds there on t?? jverage (J) users of

class k (k=1,2, , with a Eot31 service time of Iy Ng The durat1on of
each sojourn w111 be 0 -+ sz , for a total queue1n& t1mg per transaction:

. i3)
Tig = miz045+ z Nkj Ok) (14)

This formula has been suggested by Reiser and Lavenberg [1]. Note that in the
special case where 84j is_the same for all user classes, equation (14) reduces to
(8), showing that the solutions for PS and FCFS with equal exponential service
times are identical.

In the asymptotic case, we substitute NkJ for NéJ 3) and neglect gij in comparison
with Zka Ok , SO that

Tij =My i NkJOkJ (15)

Substituting in (5) we obtain:

Nij = nymy A/zm A (16)

Where Aj = £iNjj04ij. Equation (16)constitutes an iterative scheme for computing
the Njj. The amount of work can be reduced by multiplying by 0 and summing
over 1, which yields

A A z (n1t1J/ z m1kAk) (17)

Equation (17) may be used to solve iteratively for the Aj;, which may then be
substituted in {16) to compute the Njj. In analogy to (1ﬂa equation (17) is
equivalent to:

AJ' =Aj uj (17a)

Example: Consider a network with two classes and three queues. Let

SOME EXTENSIONS TO MULTICLASS QUEUEING NETWORK ANALYSIS 55

7 20 2
g =
18 3
and
(18 5 10
m:
| 8 13 15
so that

126 100 20
t =
- 88 104 45
A comparison between model and simulation results is presented in Table 1. It
will be seen that the FCFS model gives acceptable results in both the finite and

asymptotic cases, although convergence to the latter is fairly slow. In this
problem, queues j=1,2 are saturated, whereas j=3 is not (see section 9).

5. Priorities

Mean value analysis does not lend itself easily to the treatment of ordinary
priorities in FCFS queues. In mean value analysis, average queue lengths are
substituted for the entire queue length distribution. Hence, it may (and in the
asymptotic case it certainly will) appear as though the highest priority queue is
never empty, so that Tlower priority users never receive service. Various
standard tricks may be used: in case of preemptive priorities, for instance, the
network may be solved as though only the highest priority user class is present.
A11 servers are then assumed slowed down by a factor proportional to that class's
utilization, the process is repeated for the second highest priority class, and
so on. When priorities are not preemptive, it has been suggested by Schweitzer
[11] that a term reflecting the expected remaining service time of the in-service
user be added to the fij function in (3).

A type of priority scheduling that is particularly suitable for treatment by
mean value analysis is based on service received. The rate of service received
by a user in class i is to be proportional to his priority bj. The rate of
service is defined as some function (e.g. linear combination) of the service
received at the various queues per unit of clock time.

Since each class i user completes xj/nj transactions per time unit, his service
rate may be expressed as:

Ri = (xi/ni) § cjtij = § Cjtij)/ :T,. (18)

where the cj are weights assigned to the various queues. For instance, in the
VM/370 CPU-fair-share scheduler [7], cj=1 for the CPU queue, and 0 for all
others. In MVS, installations may specify arbitrary ¢y for various resources [8].

It is required, then, that
R'I = b'IR (1=],2,...,M) (]9)
where R 1is some unknown constant. Note, however, that (19) may not be

satisfiable for user classes whose service demands are sufficiently small (e.g.
1/0-bound users in a CPU-fair-share scheduler).

56 Y. BARD

Assuming PS queues, we can control overall user service rates by assigning larger
or smaller portions of a queue's service power to various users. Suppose, for
example, that the j=1 queue can be controlled in this way. Let rj be the
fraction of processing power assigned to a class i user at that queue. Then we
must have

ry > 0 (i=1,2,...,M) (20)

and, since the total processing power is unity:

p riN =1 (21)

i il

Furthermore, since at no time can more than full processing power be given to a
single user, we must have:

rys 1 (1=1,2,...,) (22)
Note that (22) is not implied by (21), since we may have N1.1 < 1 for some i.

We shall restrict ourselves to the asymptotic case. Equation (9) holds for all
servers except j=1, where

Ti] = t1.-|/|",i (23)
Hence, EjTij = t11/r1+.z1t1ij ., Using (18) and (19) we find:
t,./r.+ L t..N.=R.,/zc,t,,=b,R/zc,t,. (24)
il i jh W3 LR AR R LI id
and
ry = min [1, t.,/(dR - J_;;”t”.NJ.)] (25)

where dj = bj/ zjcitij . Only values of R which make the denominator in (25)
positive are adm1ssibie. From (21) we have:

: Nyqmin [1, t49/(dsR - j§1tiij)] =1 (26)

The following algorithm applies:

) Assign positive values to the Nij-

) Find R so that (26) is satified.

} Compute the ri from (25).

) Use (9) and (23) to compute the Tij.
) Use (5} to recompute the Njij.

(
(
(
E
(6) Return to step (2).

1
2
3
4
5
6

Note: If zjNj1 < 1, Then ignore steps (2) and (3) and simply set all rj = 1.

In the VM/370 model [5,6], CPU-fair-share scheduling with priorities was modeled
via the admission policy to main storage. In cases where main storage was not a
bottleneck, the fair share policy could not be modeled. The above algorithm can
be used to overcome this difficulty.

SOME EXTENSIONS TO MULTICLASS QUEUEING NETWORK ANALYSIS 57

6. Overiap

Classical queueing network analysis techniques require that no user be present in
more than one queue at a time. In practice, however, many computer applications
can overlap their own CPU and I/0 activity. Such cases can be handled by means
of mean value analysis.

For simplicity, assume that there are two queues whose services may be partly
overlapped. Let tii be the non-overlappable service time, and t¥; the
overlappable part (3=1,2), and let similar notation apply to Njj and Ti3. We
shall treat the asymptotic case with PS service. To equation (1) we must aajoin

NE, = 5, T* (27)

ij iij
Since users who are in the overlappable phase must be counted only once, equation
(2) is replaced with:

n, = £ N,, + max N*, (28)

i PN i o
The approximation implied by (28) is that of using max E(Ng.) as an estimate for
E(max N). i J

J

The total number of users in queue j is Nj+N3. Hence, equation (9) takes the form

T .+ N*
'T.iJ 't:,IJ (NJ NJ) (29)
and,

*, = ¥, .+ N%

T1J t1J (NJ NJ) (30)
Trivial calculations result in:

Ay = ni/(E Toe ¥ max T?k) (31}
so that

N,, = "iTij/(2 To t mix ™)

1] K

with an analogous equation for N?j' Now, the total population in queue j is

Nj + N} = ? (N.ij + N’.fj) =
= *
? ["i(Tij + Tij)/(i Tik + mix T?k)] (33)

so that (29) and (30) reduce to:

= *
Tes tij ? [ni(Tij + T;j)/(i Tik + mix Tik)]

LN
* * (34)
= * *
Tij tij ? [ni(Tij + Tij)/(i T_ik + mix Tik]]

Equations (34) define an iterative scheme for determining the Tij and T*., and
(32) can be used to compute Ny; and Nf;. W

58 Y. BARD

Examples:

1. Consider a case with two queues and two chains. The nonoverlappable
service times are:

E =

and the overlappable service times are:

2 3

t* =

3 2

The chain populations are n = (100,50). Computed and simulated response
times are compared in Table 2. This is a case where only queue j =1 is

saturated.
2. When
5 3
E =
1 5]
2 2
t* =
- 3 4

both queues are saturated. The results for this case are shown in table 3.
In both cases, model predictions are in good agreement with simulation
results. :

The above approach can be extended to overlaps among multiple queues, although
the formulas can get quite complicated. A similar method can be used to model
parallel processes with synchronization points, splitting and fusing processes,
and other cases which arise in real operating systems.

7. Blocking

Blocking occurs when the progress of some transactions is impeded because of
unavailability of resources held by other transactions.

Suppose the total amount of some resource (e.g. main storage) 1is S, and suppose
Sj units are held by a class i transaction while, say, in queue j=2. Let j=1
refer to the queue of transactions waiting to be allocated resource before being
admitted to queue j=2., No processing takes place while a transaction ds in
queue j=1. Again, we treat the asymptotic case with PS. Equations (1) and (2)
hold as before, and so does (9) for all j>1. There are no explicit equations for
Ti1 . Instead, there is the resource constraint

In addition, the sequence of admissions from queue j=1 to j=2 must be taken into

account. If a user-class-independent admission policy (such as FCFS) is used,
all waits to enter queue j=2 should be about the same, so that we can write

SOME EXTENSIONS TO MULTICLASS QUEUEING NETWORK ANALYSIS 59

To= Ty, (121,2,...,M) (36)
where T, is an unknown constant. Equation (5) takes the form:
N'ij = n'iT'ij/(T'Im'iZ + E_I T'ik) (37)
and (10) becomes:
Nij = n1t1JNJ/(T1m12 +k§1 tika) (3=2,3,...,K) (38)
so that (35) may be rewritten as:
FIngtighgSi/ (Mg * 2ty] s 8 (39)

The following algorithm may be applied:
1. Assign positive values to the N.j (i=1,2,...,M; j=2,3...,K).

2. Evaluate S* = Iinst;oN K41tk . If S* < § the resource is not
saturated and T] 6 atherw1se, }1n (necessarily positive) to
satisfy (39) with equality sign.

3. Recalculate the N;j using (38).
4, Return to step (2).

This algorithm has been used successfully to model the scheduling policy of
VM/370, with main storage as the constraining resource [5.6?. Trivial
modifications of the algorithm can be used if the resource is held only during a
specified fraction of a transaction's stay 1in queue j=2, or during stays in
several different queues, or if there are several constrained resources. In
using this algorithm, one implicitely makes the assumption that if the resource
is not saturated on the average (i.e. its utilization is less than 1), then the
average waiting time is negligible.

Let ug = 5*/S be the utilization of the blocked resource. Step 2 of the above
algorithm ensures that either 1 or Ty =0, Shweitzer [11] has suggested
that, in analogy to equation (1§a we may omit step 2, and instead use the
formula Ty = Tqug to update T; at each jteration.

8. Decomposable networks

Each queue in the network may itself have a comp]ex internal structure. In
particular, it may constitute a queueing network in its own right. In this case,
the function fjj (N) is the average response time of the j-th subnetwork to a
class 1 transaction, given that the population is Njj. Evaluation of this
function may 1itself require iterative procedures of the same kind as presented
here for the overall network.

This approach is particularly useful when transitions within the subnetworks are
much more freguent than between subnetworks, i.e. when the overall network is
decomposable ?9]. This method is used in the VM/370 model [5,6], where the
overall network consists of an infinite-server terminal queue, a main storage
queue (see Section 7 above), and a multiprogrammed-set queue. The TJatter, in
turn, is a network of CPU and I/0 queues. Solution proceeds by alternate
iterations through the two levels of the network.

60 Y. BARD

9. Response time calculation

Response time is defined as the time it takes a transaction to complete its
service at all queues. Thus, when there is no overlap, we have

=L Tij (40)
J

where T; is the average class i transaction response time. If there is overlap
between services at different queues, then:

Ty L Tyy ot max T (41)
J J

In the finite population case, these formulas present no problems. In the
asymptotic case, however, there are frequently queues for which the predicted
populations Nij and queueing times Tij are zero. The reason is that strictly
speaking, it 15 the fraction x; of the ~total population in queue j that is being
predicted, as in equation (12). As the total network population increases beyond
bounds, it happens that some queues saturate: Their utilizations approach 100
percent, and their queue lengths grow beyond bound. Such queues have non-zero
values of x;. The remaining queues remain finite in length, thus accounting for
a neg]igib1% portion of the total population. Hence, they have xj = 0, and their
utilization is below 100 percent.

When the network population is large, the terms corresponding to saturated queues
dominate in (40), and the relative error in (40) or (41) is small even if T;3=0
is used for the unsaturated queues. The true values of T;j; for unsaturated
queues can, however, be estimated as follows: The saturated queues act as
infinite Poisson sources for the unsaturated queues, so that the
Pollaczek-Khinchine formula applies to the latter. Suppose queue j is an
unsaturated single server queue with PS or FCFS with identical exponential
service times for all classes. The utiliztion of that queue is

where the) are calculated from (4), or from (1) applied to a saturated queue.
We have, then:

T .) (43)

ij J
Other service distributions or disciplines, including preemptive or nonpreemptive
priorities, can be handled by using the appropriate version of the
Pollaczek-Khinchine formula (see, e.g. [10]).

= tij/(] -u

10. Conclusion

Mean-value analysis, particularly in its asymptotic form, has been shown to be a
versatile tool in the analysis of queueing networks. The method permits easy
formulation and solution of many problems which do not have product form
solutions. This is due, primarily, to the generality of the function fij
appearing in equation (3), which makes it possible, for instance, to have the
queueing time in one queue depend on conditions at other queues. The range of
problems that can be treated is limited only by the ingenuity of the modeler.
Most of the techniques given above already have direct practical applications
within the VM/370 Model [5,6], and should help in expanding the range of systems
for which good approximate analytical models can be constructed. Further work is
required to establish error bounds on the approximate models, convergence rates

SOME EXTENSIONS TO MULTICLASS QUEUEING NETWORK ANALYSIS 61

to the asymptotic formulas, and convergence proofs for some of the iterative
algorithms.

References

(1) M. Reiser and S. Lavenberg, Mean Value Analysis of Closed Multiclass
%ueue;ng Networks, IBM Research Report RC7023, Yorktown Helights, N.Y.
1978).

(2) B. Pittel, Closed Exponential Networks of Queues with Blocking, the Jackson
Type Stationary Distribution and 1ts Asymptotic Analysis, IBM Research
Report RC6174, Yorktown Heights, N.Y. (1976).

(3) J. P, Buzen, Fundamental Laws of Computer System Performance, Proceedings of
the International Symposium on Computer Performance Modeling, Measurement,
and Evaluation, Cambridge, Mass. (1976), pp. 200-210.

(4) H. Kobayashi and M, Reiser, On Generalization of Job Routing Behaviour in a
Queueing Network Model, Research Report RC-5679, IBM T.J. Watson Research
Laboratory, Yorktown Heights, N.Y. (1975).

(5) Y. Bard, the Modeling of some Scheduling Strategies for an Interactive
Computer System, in Computer Performance, K.M. Chandy and M. Reiser (eds.),
North Holland, Amsterdam (1977), pp. 113-138.

(6) Y. Bard, an Analytic Model of the VM/370 System, IBM J. Research and
Development 22 (1978).

(7) IBM Virtual Machine Facility/370 System Extensions, General Information
Tanua;, Form No. GC20-1827, 1IBM Data Processing Divison, white Plains, N.Y.
1977).

(8) H. W. Lynch and J.B. Page, the 0S/VS2 Release 2 System Resources Manager,
IBM Systems J. 13, 274-291 (1973).

(9) P. J. Courtois, 'Decomposability', Academic Press, N.Y. (1977).

(10) T. W. Gay and P.H, Seaman, Composite Priority Queue, IBM J. Research and
Development 19, 78-81 (1975).

(11) P. Schweitzer, personal communication (1978).

(12) M. Reiser, Mean Value Analysis of Queuing Networks, a New Look at an Q1d
Problem, IBM Research Report RC7228, Yorktown Heights, N.Y. (1978).

(13) K. C. Sevcik and I, Mitrani, The Distribution of Queueing Network States at
%nput) and Output Instants, Research Report No. 307, IRIA, Rocquencourt
1978).

62 Y. BARD

Transaction response times
Chain Chain 1 Chain 2 |
populations ModeT [SimuTation | Model |Simulation |
5,5 (1) 1154 1140 1208 1156
50,50 (1) 12022 | 12267 9316 9070
100,100 (2) 26920 | 26120 16599 17136
150,150 (2) 40370 | 40740 24876 24627

Notes: (1) finite model
(2) asymptotic model

Table 1. Validation of FCFS model.

Transaction response times

Chain ModeT SimuTation
1052 1013
2 604 638

Table 2. Validation of overlap model, example 1

Transaction response times

Chain ModeT SimuTation
1 860 864
2 1075 1059

Table 3. Validation of overlap model, example 2

Performance of Computer Systems
M. Arato, A. Butrimenko, E. Gelenbe (eds.)
©I1ASA, North-Holland Publishing Company, 1979

MEAN VALUE ANALYSIS OF QUEUING NETWORKS,

A NEW LOOK AT AN OLD PROBLEM

M. Reiser

IBM T. J. Watson Research Center

Yorktown Heights, New York 10598

ABSTRACT

A new solution to queuing networks with product-form solution is given
entirely in terms of mean queue size, mean waiting time and throughput. No need
for normalization constants arises. The new analysis leads to simpler algorithms
which have better numerical behavior than previous ones. It also is the basis for a
heuristic method which for the first time allows solution of queuing systems with
very many closed chains (>100). Such large systems arise in the context of

communication system modeling.

63

64 M. REISER

1. INTRODUCTION

Queuing network theory has rapidly progressed since the fifties. The first thrust was by researchers in
the field of Operations Research and culminated in J. R. Jackson’s paper [1]. The work was picked up by
Computer Scientists in the late sixties. More general classes of networks turned out to have product-form.
The generalizations included multiple customer classes, queuing disciplines other than FIFO and generalized
service time distributions. The most general class of such product-form networks is found in the important
summary paper by F. Baskett, K. M. Chandy, R. R. Muntz and F. G. Palacios [2]. The technique used by
all these researchers is to formulate the balance equations for a given class of networks, guess their solution
(product-form) and verify its correctness by insertion into the equations. Chandy’s local balance rule [3]

served as a guide in guessing correctly.

Little attention, however, was paid to a strange property of the product-form solution, namely the fact
that from the many parameters, necessary to specify a network much fewer entered into its solution. Take
a closed exponential queuing network of the Jackson class, for example. Let P denote its NxN routing
matrix (N is the number of queues). Instead of N2 quantities Pij» only N quantities §; given by the system

of linear equations
6=0P (1

enter into the solution. Note that 8; measures the mean number of visits a job makes to queue i between
successive visits to a arbitrarily chosen queue i*, for which Oi. = 1 (note that (1) determines 8 only up to a
constant factor). Similarly, all the parameters of general phase-type distributions (when admissible)
disappear from the product-forms of the queue-size distribution. All that matters is the mean service time.
It was argued by H. Kobayashi and M. Reiser [4] that the crucial quantity in the product-form solution is
the mean work demand brought into the system by jobs of a given class. How this work is divided into
individual visits (as determined by the routing) was shown to be irrelevant. Statisticians call a system
robust if only the mean enters into the solution. We find queuing networks with product-form solution

remarkably robust with respect to routing and service-time distributions.

Such robustness asks for a simple physical explanation. We think that this paper gives such an
explanation. Approaches to the queuing network problem different from the traditional algebraic method

have indeed been tried recently. The operational method of P. Denning and J. Buzen is one example 15].

MEAN VALUE ANALYSIS OF QUEUING NETWORKS 65

We shall describe the solution of queuing networks with product-form in terms of two intuitively appealing

principles, namely

1) Upon arrival, a customer sees the same closed system with himself removed (one less customer in
the closed system) in long-term equilibrium;

(2) Little’s law applied to the entire system and to each queue individually.

We feel that these two principles explain the fundamental mechanism governing such queuing systems.
They lead to a much simpler evaluation procedure (than the previous convolution algorithms) and motivate

heuristic methods for problems not solveable with current methods.

Before we give a detailed account of the mean value analysis, let us briefly comment on numerical
methods. The product-form solution gives the joint queue-size distribution up to a normalization constant.
This constant has a simple analytic expression in the case of an open queuing network but is a sum of
product-terms in the case of closed systems. Because of the combinatorially growing state space, a naive
summation is out of the question but for trivially small networks. J. P. Buzen published the first computa-
tionally efficient algorithm [6]. M. Reiser and H. Kobayashi independently discovered the same algorithm
which they generalized to the multichain case [7]. In [8], they gave an interpretation of the algorithm in
terms of convolutions. Their argument is that a closed system is equivalent to an associated open system
conditioned to population size K. Then the normalization constant is simply the probablity that the open

system contains exactly K customers, viz.

Normalization-constant =
Pri{population = K} =

Prik;+k,+..+ky = K} =

P,{k }*Prik,}*. . *Priky}, |

at point K

Where k; is the queue size of queue i, Pr{k;} is the queue size probability of queue i separated from the
network and subjected to Poisson arrivals whose rate is 8; as given by (1) and the asterisk denotes

convolutions. M. Reiser [9] gives various efficient ways to calculate the convolutions and to evaluate

66 M. REISER

statistics such as mean queue size, throughputs and utilization factors. However, these convolutions are all
time consuming and intermediate results may easily exceed the floating-point range of most computers even
though final resuits are all reasonable in magnitude. The floating point range problem makes indeed
infeasible the solution of perfectly well posed modeling problems (a large population of slow terminals, for

example). The mean value analysis will not have any of these drawbacks.

2. CLOSED CYCLIC SYSTEM

The ideas behind the mean value analysis are easiest to describe for the example of a single closed
chain as shown in Fig. 1. We denote by S(K) the queuing system with K customers. For the moment, we

consider a single class system only. Let

K: Number of customers
N: Number of queues
T Mean service time of queue i,

Mean waiting time of queue i (including service),
Mean queue size of queue i (including customer in service),

Al Throughput of the chain.

We will use arguments if we want to emphasize that quantities are for the system with population size K,
viz. n;(K), t;(K) and A(K) are mean queue size, mean waiting time and throughput of S(K). For a

memoryless system with FIFO queues we can straightforwardly write the equations

t;(K) = 7; + 7;x{mean number of customers seen upon arrival}, (2)
N

AMK) =K/, 21 5(K), 3)
1=

n;(K) = A(K) ;(K) . (4)

Equation (3) states that an arriving customer in average has to wait for its own service time plus the
backlog of work seen upon arrival. Equations (4) and (5) are simply Little’s formula applied to the entire
chain and to each queue respectively. Note that the average number of customers is of course K. If we
had an expression for the bracketed term in (3) we could solve for all unknown quantities. Such an

expression is found by means of

MEAN VALUE ANALYSIS OF QUEUING NETWORKS 67

Theorem 1
In a closed queuing network with product-form solution, the probability to see state k upon

customer arrival in S(K) is the same as the long term equilibrium probability of k in S(K-1).

The proof of this theorem is found in [10]. However, equation (5) which result from the theorem can be
proved more simply without the upon-arrival interpretation [11]. However, the physical significance of the

theorem is more apparent in the given form.

From the theorem immediately follows the equation

t(K) = 1, + 7; n; (K-1). 5

Note that (5) is not restricted to FIFO but applies for all rules consistent with product-form. Equation (5)

together with (3) and (4) can be solved easily in a recursive manner, namely

n;(0) = 0, (6)
(K) = 7, [1+n;(K-1)], 6
AMK) =K / %, (K), K>0, i=1,2,.N, (8)
n(K) = A(K) (K). 6

3. GENERALIZATION TO THE FULL CLASS OF CLOSED PRODUCT-FORM SOLUTION

NETWORKS

The recursion (6) to (9) generalizes easily to a network with general routing matrix P. Let i* denote

an arbitrarily chosen queue. Then, as mentioned before, the quantity 8; uniquely defined by

0. =1, (10)

g=0P (11)

measures the average number of visits a customer makes to queue i between successive visits to the marked
queue i*. Since number of visits and throughput are proportional, 0; also measures the throughput at queue

i, A;, in units of }‘i" the throughput of queue i*, viz.

68 M. REISER

Aj=8 A, i=12,.N (12)

If t; measures the queuing time across queue i then obviously, the average time a customer needs between
two successive departures from queue i* is given by the sum of the products [average number of vis-

its]x[mean waiting time], namely

z ot (13)
i=1
For simplicity of notation, define A* =)‘i" Now equations (7) to (9) translate into
4(K) = 7; [1+n;(K-1)], (14)
A*(K) = K/ Z; 8; 4(K), (15)
n(K) = A*(K) 6; t;(K) . (16)
Define t = §; t; and as usual traffic intensities p; = §; ;, then we find
L]
t; (K) = p;[1 + ny(K = 1)], 17)
L] L]
A (K) = K/Zt;(K), (18)
n;(K) = A"(K) t{(K). (19)

Equations (6) and (17) to (19) constitute the recursion to evaluate all quantities of S(K) with general

routing. They are of the same form as (7) to (9).

Next we shall discuss the multi-chain case. We assume that there are R disjoint closed routing chains.
We will use superscripts r (r=1,2,..R) to denote that a given quantity belongs to chain r. We do not
consider the case where customers change class membership within chains. Note however, that as shown in
[7] this is only a trivial reduction of generality. Also we shall drop the asterisks used in (17) to (19). As

before, we assume constant service rates. We introduce the notation

K = (K! K2,. KR): population vector

K-e, = (K' K2, KrlK'-1,.,KR): population vector with one less customer in chain r,

MEAN VALUE ANALYSIS OF QUEUING NETWORKS 69

R(1): Set of chains visiting queue i,

Q(n): Set of queues in chainr,

Al Throughput of marked queue in chain r,

rfi: Mean service time of a chain r customer in queue i,

th Mean time a chain r customer spends at queue i between successive visits

to the marked queue of chain r,

n!l': Mean number of chain r customer at queue i,

n; = Z ni: Mean queue size of queue i,

p{ = 9‘{ -r{: Traffic intensity of chain r at queue i,

6‘;: Mean number of visits a chain r customer makes to queue i between successive

visits to an arbitrarily marked queue in chain r.

Theorem 1 generalizes to the multiple chain case. In this case, the state upon arrivals of chain r customers

has the same probability as the same state in a system with one less customer in chain r. However, it is

much simpler to derive the following equations directly from the product-form solution as was done in [11].

We find

1)

(2)

The queuing discipline of queue i is processor sharing (PS) or preemptive-resume last-come,
first-served (LCFS PR). The service time distribution may be general and have a different form for

each chain. Then

t‘i'(K) = p‘; 1+ n‘; (K-e)]. (20)

Note that our definition of traffic intensity measures the mean time a customer spends at queue i
between visits to the marked queue if there were no interference from other customers
(congestion). The bracketed term in (20) is the expansion factor due to congestion, which we find
simply related to the mean queue size.

The queueing discipline is pure time delay, also called "infinite servers' (D). In this case, there is

no expansion factor (by definition) and hence (20) becomes

H(K) = 5 @n

70 M. REISER

(3) The queuing discipline is first-come, first served (FCFS). The service-time distribution is
exponential and does not depend upon customer’s chain membership. The waiting-time equation is

the same as (20). However, it is more instructive to write it in the form

tg(l() = pg + Bir Z, 8 ng (K-e,). (22)

The first term in (22) is the customer’s own service demand, the sum measures the backlog of work

he encounters upon arrival.

The recursion now follows analogous to (6) to (9) or (17) to (19) as follows

o5 [1 + n.(K-e,)] cases 1 and 3
(K) = ! ' 23
t‘() { p; case 2, 23)
A(K)=Kf/ E 1, (24)
ieQ(n'
n(K) = = A(K) ti(K) (25)
jeR(i) !

where as usual i=1,2,.N, r=1,2,..R, K>0 and nf(O) = 0. Equation (23) to (25) allow for an easy
recursive evaluation of the unknown quantities. Note that we do have to store all the intermediate values

and that the loops over K should run in increasing order.

Finally, let us comment on the case of queue-dependent service rates which also lead to product-form
solutions. Theorem 1 still holds but the mean waiting-time equations are more complicated than (20) to
(22). They do involve terms of the marginal queue-size distribution of the queues with queue-dependent
rates. The formulas as well as a very efficient way of calculating the marginal probabilities are given in

[11]. We do not repeat them here for the sake of brefity.

4. NETWORKS WITH MANY CLOSED CHAINS

Closed chains find important applications in the modeling practice. Examples are
(1) To model job classes in a central server model [12],
(2) To represent application subsystems in a computing center model, and

3) To represent flow controlled sessions in a communication network model [13].

MEAN VALUE ANALYSIS OF QUEUING NETWORKS 71

In cases (1) and (2) the number of chains needed is often in the order of 10-25. In case (3) even more

chains are required in a model of realistic size, e.g. 50-200.

The complexity of the recursion (23) to (25) for both storage and operation is of the order
I K. (26)

Even on large computers, it will be impossible to solve for more than a small number of chains (less than
10 in most cases). Subsequently, we shall give a heuristic method derived from the mean value analysis,
which will overcome the complexity barrier of (26) and which will allow analysis of problems with many

chain (> 100 chains).

We note that the recursion is the source of the product in (26). It is our goal to replace this recursion

by an iteration which is performed at the point K only.
Define quantities e‘.l' as follows
ef(K) = ni(K) - n;(K-e,). @n

Thus e‘i' measures how the customer added to S(K-e,) is distributed over the individual queues. We have

i e =1, (28)

and also
0<e g1, (29)

Suppose now that we had a function which would yield s‘i' in terms of quantities of the system S(K),

for example
e =f (i, A, j=1,2,.,R}) (30)

where we omitted the arguments denoting the chain population. We may now rewrite (23) to (25), again

dropping the arguments (K), as follows

e = f (i, r, {AD), 31)

72 M. REISER

t{ = plf [1+ n - eir], (32)
Af=Kr/ 3 (33)
ieQ(r)!
n= 3 AN, (34)
jeRG)

We have now obtained a nonlinear system of equations which is independent of K, the source of the high
operation count (26). We could solve (31) to (34) by a simple iteration method, starting with initial values
for n; and AT (i=1,2,...N, r=1,2,...R) and then iterating through (31) to (34) in a cyclic fashion until

convergence is observed (or divergence established).

In its exact form, the function (30) is no less complex than the original problem. Clearly nothing is
gained. It is our goal, hence, to obtain an efficient heuristic for (30). Our proposed heuristic will coalesce
the R chains into a single chain which can be solved efficiently by the recursion (17) to (19). If a
customer is removed from a chain, then all the values ng i=1,2,...N; r=1,2,...R are affected. However,

since

S nl (K) - ni (K-e,) = 0 for j#r (35)
ie@(! !

(Where r is the chain with one less customer) we may assume that e; is affected mostly by chain r.
Therefore, we estimate ei’ from a single chain problem with redefined parameters. The capacity of queue i’s

server devoted to chains j=1,2,...R, j#r is given by
1-Z M (36)

where the sum is over j=1,2,...R but j#r. Taking the point of view of the fluid dynamic approximation of
queuing systems, we may agree that a chain r customer "sees' a server with a reduced rate given by (36).
Thus his mean service times are not Tir but adjusted values
A -
=l /(14X 0= T A1) 37
i i i jE R() i
A
Suppose that n‘;(K) (i=1,2,...N) are the mean queue sizes of a single chain queuing problem with population

K and with parameters given by (37). Then we set
A A
ef = n{(K") - n{(K'-1). (38)

This completes our heuristic method.

MEAN VALUE ANALYSIS OF QUEUING NETWORKS 73

The computational complexity of one iteration step through (31) to (34) is now

Z K, (39)

clearly an afordable effort even for large numbers of closed chains with seizable populations.

5. EXAMPLE AND ASYMPTOTIC PROPERTY

First we will give a numerical example of the heuristic method and compare it with exact results. We
do not attempt to give a comprehensive empirical validation but shall argue that the approximation method

is asymptotically valid as the population size increases.

The topology of our sample network is portrayed in Fig. 2. There are four chains (R=4) and eight

queues (N=8). Mean service times and population sizes are listed in table 1.

Table 1: Parameters of the sample network

Mean service times Population
Queue 1 2 3 4 5 6 7 8
Chain 1 2 2 2 - 2 - - - 6
Chain 2 - 0.5 0.5 0.5 - 2 - - 8
Chain 3 4 4 - - - - 3 4
Chain 4 1 - - 1 - - - 5 8

The example is chosen to resemble a communication network model. Queues 1 to 4 represent half-duplex
links whereas queues 5 to 8 model sources. Each chain is a virtual channel with a flow control window of
size Kf, r=1,2,...4 (for a detailed description of the communication network model see [13]). Results for
mean delay time and for throughput are listed in table 2. The mean delay is defined from leaving the

sources until arriving at the destination.

74 M. REISER

Table 2: Results for the network of Fig. 1.

Chain 1 2 3 4
28.99 5.72 47.20 7.65 exact
Mean delay 29.25 5.61 48.50 7.58 iterative
0.89 2.03 2.75 0.97 Y%error
0.188 0.491 0.0786 0.200 exact
Throughput 0.186 0.478 0.0765 0.198 iterative
1.08 2.72 2.75 1.01 Y%error

We find the errors quite small, clearly adequate for any practical purpose. Similar observation was made

for a central server model with four chains (errors are less than 5%).

The convergence of the iterative method was found to be uncritical and rapid. The difference between
successive iteration steps (measured in terms of a suitable norm) decrease exponentially (i.e. the scheme
has linear convergence property) as would be expected for a simple first order iteration. The initial

condition was found entirely uncritical.

We do not have currently proof that the scheme converges nor do we know error bounds. There is an

important limiting case, however, where convergence and accuracy was proved namely
K - « such that K'/,K, = af = const. (40)

where |K| = 2 K. Define v, = n;/ IK,yir = tir/ |K| and K =| K |. Then we may rewrite (32) to

(34) as follows
[,;!l' = p‘i' [(l-e‘i')/K + ¥ (41)

= p{v; + O(1/K),

AM=a/ 3 g (42
i)

pi= 3 A, (43)
jeR@ !

B. Pittel [14] proved that the term O(1/K) in (41) can be neglected and that the resulting iteration
describes the limiting case (40). He also proved convergence of the iterative scheme (41) to (43). This

result gives us a very good reason to trust the heuristic scheme. Note that the iteration (41) to (43) is a

MEAN VALUE ANALYSIS OF QUEUING NETWORKS 75

means to locate the bottlenecks of the queuing system. Bottleneck queues are identified by »;=1. Unlike in
the case of an open queuing problem or a closed single chain problem, the bottlenecks of a closed multichain
problem are not found by inspection of the parameters. Throughput values follow from the knowledge of
bottlenecks. From this discussion, we expect the iteration (31) to (34) to be the more accurate, the larger
the population and the more closed chains there are in the network. Also, throughputs are more trustwor-
thy than mean queue size and mean delays. These properties have in fact been observed from the examples

which we ran.

6. CONCLUSION

We have given an analysis of queuing networks solely based on theorem 1 (which gives the system
state upon customer arrival) and Little’s formula. Both, theorem 1 and Little’s formula have a simple,
physically meaningful interpretation. Our analysis involves only the most widely used statistics such as
mean queue size, mean delay, throughput and utilization. No joint distribution of product-form or
normalization constants are involved. The mean value analysis leads to simple recursive algorithms. Even
though the computational conplexity is the same as for the convolution algorithm in its most efficient form,
the mean value analysis avoids problems of floating point overflow/underflow inherent in the earlier

algorithms. Also it is much simpler to program.

Qur opinion that the mean value analysis reveals a deep property of the solution in physically
meaningful terms is substantiated by the fact, that it led us to a heuristic algorithm which overcomes the
complexity barrier of the exact recursion and allows the solution of problems with many closed chains
(>100). Such problems arise in the context of communications networks and computer models with a large
number of application classes. In those case which we compared to exact results, the heuristic is accurate
to a few percents which is clearly adequate in practice. We have also shown that it is asymptotically valid
as the population size increases. The heuristic also leads us into the area of networks without product-form
solution. Generalizations for FCFS queues with class-dependent, non-exponential service time distributions

are found in [13].

76

(11
{21

(31

i4)

(5]
(6]

n

(8]

{9]

[10]

1]

[12]

[13]

[14]

M. REISER

REFERENCES

I. R. Jackson, "Jobshop-Like Queuing Systems,” Management Sci., 10, October 1963, pp. 131-142.
F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios, "Open, Closed, and Mixed Networks
of Queues with Different Classes of Customer," JACM, 22, April 1975, pp. 248-260.

K. M. Chandy, "The Analysis and Solution for General Queuing Networks', Proc. 7th Annual
Princeton Conference on Information Sciences and Systems, Princeton University, 1973, pp.
428-434.

H. Kobayashi and M. Reiser, "On Generalization of Job Routing Behavior in a Queuing Network
Model", IBM Research Report RC 5252, Yorktown Heights, 1975.

J. P. Buzen, "Operational Method".

J. P. Buzen, "Computational Algorithms for Closed Queuing Networks with Exponential Servers,"
CACM, 16, September 1973, pp. 527-531.

M. Reiser and H. Kobayashi, "Queuing Networks with Multiple Closed Chains: Theory and
Computational Algorithms," IBM J. Res. and Develop., 19, May 1975, pp. 283-294.

M. Reiser and H. Kobayashi, "On the Convolution Algorithm for Separable Queuing Networks',
Proc. Intl. Symp. Computer Performance Modeling, Measurement and Evolution, Cambridge
Massachusetts, March 29-31, 1976, pp. 109-117.

M. Reiser, "Numerical Methods in separable Queuing Networks,"

Studies in the Management
Sciences, vol. 7, 113-142 (1977).

S. S. Lavenberg and M. Reiser, "The State Seen by an Arriving Customer in Closed Multiple Chain
Queuing Networks," to appear.

M. Resier and S. S. Lavenberg, "Mean Value Analysis of Closed Multichain Queuing Networks,"
IBM Research Report RC 70 23, Yorktown Heights, N.Y., 1978.

Y. Bard, "The Modeling of Some Scheduling Strategies for an Interactive Computer System,” in
Computer Performance, K. M. Chandy and M. Reiser, Editors, North Holland Publishing Co.,
1977, pp. 113-137.

M. Reiser, "A Queuing Network Analysis of Computer Communication Networks with Window
Flow Control", 1BM Research Report RC 7218, Yorktown Heights, N-Y-, 1978.

B. Pittel, "Closed Exponential Networks of Queues, Asymptotic Analysis,” IBM Research Report

RC 6174, Yorktown Heights, N.Y., 1976.

MEAN VALUE ANALYSIS OF QUEUING NETWORKS

t; (K)

rmﬂ_.m@....-&g_. LTI

K:POPULATION
AK)

Fig. 1. A simple closed cyclic chain

CHAIN 3

CHAIN 4

Fig. 2. Example of a closed multichain Network with four chains (R=4) and eight queues (N=8).

77

Performance of Computer Systems
M, Arato, A. Butrimenko, E. Gelenbe (eds.)
©IIASA, North-Holland Publishing Company, 1979

A COMPUTATIONAL ALGORITHM FOR QUEUE
DISTRIBUTIONS VIA THE POLYA THEORY
OF ENUMERATION

Hisashi Kobayashi
Computer Sciences Department
IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

We present a new computational algorithm for evaluating the queue
distribution in a general Markovian queuing network, based on the
P5lya theory of counting., We formulate queue size vectors as
equivalence classes relative to a symmetric group. The normaliza-
tion constant of the queue-distribution then corresponds to the
pattern inventory in the Pélya theory. A central server model is
discussed as an application example of thls new algorithm.

I. INTRODUCTION

A "network of queues" representation provides a basic framework in dealing with
the performance analysis of multiple resource systems, in which different re-
sources process jobs asynchronously to each other. The class of models for which
we find a simple closed solution of the equilibrium queue distribution is the so-
called "Markovian queuing network" [1-4]. For this class the equilibrium distri-
bution is given in "product" form. This expression, however, includes a normali-
zation constant, and determination of the normalization constant presents a compu-—
tationally nontrivial task.

A number of authors have proposed various algorithms designed to evaluate effi—
ciently the normalization constant, and related performance measures — utiliza—
tion, throughput, moments of queue size, average response time, etc, In the pre~
sent paper we propose a new algorithm that is derived based on the PSlya theory of
enumeration - a well~discussed subject in books on combinatorial mathematics [5-8]
The P6lya theory of enumeration influenced the research in finding minimal cost
networks for the realization of switching functions, as treated by Slepian [9] and
Harrison {10]. The problem of evaluating the normalization factor of queue dis-
tribution is a bona fide combinatorial problem, thus 1t is quite natural to inves—
tigate possible applications of the Pélya theory to queuing theory,

IT. STATEMENTS OF THE PROBLEM

Consider a closed* queuing network which consists of M service stations arbi-
trarily connected to each other, Let us define the following set of nomenclature
concerning the analysis of such network:

M= {1,2,3,...,M}: the set of service stations (2.1)
N = iZM n,: the network population (2.2)

*In the original paper [14] a more general class of queuing networks is discussed.

79

80 H. KOBAYASHI

F(N) = {n|n,;>0 for all ieM

and)} n, = N}: the set of feasible queue
1M * vectors (2.3)

Ci(n) = the processing rate of server 1, when its local

queue size is n, 1eM (2.4)
n 1 2.5
B,(n) = T , 1eM 2.5
1 =1 G0
W, = the expected total work (or service) a job demands from
server 1 during this job's entire life in the network. (2.6)

In order to obtain the equilibrium state distribution of the queue-size vector
p(n), we make a set of fairly general assumptions (see [2,3,4] for details) con-~
cerning (1) the routing behavior, (i1) service (or work) distributionm,

(111) service (or processing) rates, and (iv) queue disciplines. We can then
obtain the following product form solution:

cll f,(m), 1f neF(W)
1M 1 i

p(m) =

0, 1f néF) (2.7)

where the functions fi(ni) are themselves given in the following product form:
By
fi(ni) = Bi(ni)wi , leM (2.8)

the scalar constant c¢ of Equation (2,7) 1is the normalization factor referred to
in Section I and is given by

c = 1/gM,N) 2.9)
where
. Ni
g(M,N) = ns%(N) igM Bi(ni)wi (2.10)

thus the problem is reduced to that of evaluating g(M,N) for a given pair
M,N).

The convolutional algorithm of Buzen [11] and Reiser and Kobayashi [12,13] is
essentlally the following recursive formula:
N K
gQL,N) =) g@~-1,N-k)B (K)W,, Mz1, N2l (2.11)
k=0
with the boundary conditions
gM,0) = 1, for M20, (2.12a)

and

A COMPUTATIONAL ALGORITHM FOR QUEUE DISTRIBUTIONS 81

1, for N=0,

g(0,N) =
0, for Nz1. (2.12b)

for a fixed value of M, the sequence {g(M,1); 0<i<N} is the convolutional sum
of the sequence {BM(i)W;; 0s1sN} and {g(M-1,1); O0<i<N}, The c033§ii§ion of
{g(®,1); 0si<N} given the value of {g(-1,1); O0<isN} requires —5—-
multiplications and additions. Thus, for a given value of the pair (M,N) the

N
M-1 (M=1)N (N+1) (N+2)
evaluation of g(M,N) requires, in total, -(T)— Z n'(n'+l) = —

multiplications and additions. n'=1
Under the special condition of constant service rates of the form for all ieM:

Ci for n21

¢, () =
0 for n=0 (2.13)
we find the following simple recurrence algorithms for the two~-dimensional array
{g(M,M)}:
g(M,N) = g(M-1,N) + TMg(M,N—l), M21, N21 (2.14)

with the boundary conditions (2.12), The parameter T 1s the expected total

service time given to a job by server 1 during the job's lifetime within the
network, and is given by

ieM (2.15)

The evaluation of g(M,N) requires, for this special case, (M-1)N multiplica-
tions and additionms,

III. A NEW COMPUTATIONAL ALGORITHM

We now introduce a new algorithm for evaluating the normalization constant
g(M,N). This algorithm is restricted to a network with exponential servers all
of which have fixed service rates, i.e., the case where Equation (2,13) 1s true
for all 1ieM. Then certainly we could use the recursive formula (2.14) through-
out the entire steps, starting with the boundary condition (2,12), The evalua-
tion of {g(m,n); 1snsN, l<mM} would require only (M-1)N multiplications

and additions, However, the computational formula to be discussed below is some—
times more convenient, especially when N 1is small,

The assumption of the constant service rates of (2,13) allows us to write gM,N)
of (2.10) as
"y
gM,N) =} noT, (3.1)
neF (N) 1eM
where T, was defined by (2.15). Let us define the set of stations

M={1,2,,..,M} (3.2)

82 H. KOBAYASHI

and the set of N jobs
N o= {1,2,...,N} 3.3

Consider then a set of functions that have N and M as their domain and
range, respectively:

F = {f|f:N > M} (3.4)

A function f in the set F represents a way of placing N Jjobs into M
service stations. We write, for example,

£(3) = 1, JeN, dieM (3.5
which implies that job j is placed in station 1.

Consider a permutation 7 defined over N, and let SN be the set of all per-
mutations defined over N:

Sy = {m|m:N > N} (3.6)
The elements of SN form a symmetric group of degree N. For a given function
fl ¢ F and permutation T ¢ SN’ we can define another function f2 by

£,03) = £,7(4)), 3N CI))
Clearly the function f2 1s also a member of F. However, such functions f1
and f2 correspond to the same queue size vector n

B = (ng,n,,ee.,0] (3.8)
since we do not distinguish the individual jobs. Therefore, we say that the
functions f1 and f2 are equivalent relative to the permutation group SN'

Distinct values of n ¢ F(N) correspond to distinct equivalence classes.

We interpret the parameter Ti of (2.15) as the weight of element i in the
set M, and thus

T, 3.9)
iZM .

represents the inventory of the set M, If a function f belongs to the equi-
valence class n (3,8), then the weight W(f) of the function f is

n
W(E) = T rii, for all fen (3.10)
ieM

which is called the weight of the equivalence class n. Then the pattern inven-

tory of F -~ the sum of weights of distinct equivalence classes relative to
the permutation group SN - is
L W) (3.11)
nef (N)

which is nothing but g(M,N) of (3.1)! This observation immediately calls our
attention to the celebrated PSlya theorem:

A COMPUTATIONAL ALGORITHM FOR QUEUE DISTRIBUTIONS 83

Theorem (Pélya): The pattern inventory g(M,N) of the set of the equivalence
classes of functions from the domain N to the range M is

2 N
gOLN) = Z, (] T,,] Tisessr L T3) (3.12)
S 1ZM o 1 ieM *

where ZS (xl,xz,...,xN) i1s the cyclic index polynomial of the permutation
N

group SN'

The cycle index polynomial of §,, is given from Cauchy's formula

N

ot xN“N
1 g ees
ZS (xl,xz,...,xN) = z m m
N ' 2 2 uot N N wt
Ul. gt e N

(3.13)

where the sum is taken over the set of distinct M tuples, <ui; 1 =1,2,.0..,M>
such that

I du =N (3.14)
1eM

Table 1 tabulates (3.13) for N = 1,2,.44,7.

Table 1

Cycle Index Polynomials of Symmetric Groups

N Z
SN
1 X,
2 1/2(x2 + x.)
1 2
3
3 1/6(x1 + 3x1x2 + 2x3)
4 2
4 1/26(x] + 6x x 2
1 172 + 3x2 + 8x1x3 + 6x4)
5 3 2 2
5 1/120(xl + 10xlx2 + 15x1x2 + 20x1x3 + 20x2x3 + 30x1x4 + 24x5)
6 4 2.2 3 3 2 2
6 1/720(x1 + 15x1x2 + 45x1x2 + 15x2 + 40x1x3 + 120x1x2x3 + 40x3 + 90x1x4
+ 90x2x4 + 144xlx5 + 120x6)
7 5 4 3.2 3 2
7 1/5040(x1 + lelx2 + 70x1x3 + 105xlx2 + 210x1x4 + 420x1x2x3
+ 105% x> + 280x.x> + 630x,x,x, + 504x’x, + B4Ox,x
172 173 17273 175 176
2
+ Zloxzx3 + 504x2x5 + 420x3x4 + 720x7)

84 H. KOBAYASHI

Thus all that is required is to compute the set of values

x =] Ti, k=1,2,...

k 1eM

(3.15)
and substitute them into the polynomlal ZS .
N

Alternatively, we recursively compute g(m,n), 1<nsN, 1=m<N. We can derive the
following expression for the cycle index polynomials:

1 nil
= X Z. (Xi4X 5e00,%), for mn2l
n Ly Tak"s 12 *x
Zg (xl,xz,...,xn) =
n
1, for n=1 (3.16)

which leads to the recurrence relation of the sequence gM,n), n = 1,2,3,...

1 nil
g(,n) = = x__ 80,k)
noglo M k
L g) (3.17)
== gM,n-k .
n oL Tk

with the initial condition
gM,0) =1, M1 (3.18)

Note that Equation (3.17) is also of a convolutional form: we can view the se-
quence {gM,n): n = 1,2,...} as an autoregressive sequence with varying re-

gressive coefficlents {% x k=0, 1. euss n-1},

n-k?

IV, AN APPLICATION EXAMPLE

The computational formulas presented above will be of practical interest when
there are many servers in the network, The cost of computing the parameters
{xk, k =1,2,...} of (3.15) is insignificant in many cases of practical in-

terest. Consider, for example, a central server model in which the CPU station
is followed by a number of I/0 devices (disks and drums) with a number of inde-
pendent access paths in parallel: 1f the traffic distribution to different

paths is uniform (which is often assumed in the absence of detailed measurement
data), then the model becomes a closed network with many independent servers, but
with the same parameter value of {Ti}.

For example, a model of an interactive system with multiprogramming in virtual
storage can be decomposed into the outer model - a time-shared system model -
and the inner model - a central server model [2,3]. Figure 1 shows a typical
structure of the inner model with M=16: servers 1 through 10 represent magne-
tic drum sectors with independent access paths; servers 1l through 15 are magne—
tic disks with independent channels; and server 16 represents CPU, The multi~-
programming level, N, varies as time changes, Usually the value N is con-
trolled through the job scheduler. We assume the following workload parameters
per interaction, where an interaction starts when an interactive user creates a

A COMPUTATIONAL ALGORITHM FOR QUEUE DISTRIBUTIONS 85

DRUMS

cPu

(ie)

Figure 1. A Closed Queuing Network
Model With M=16 Stations

request (or job) and it ends when the job is processed by the system and its re-
sponser is received by the user,

In the absence of measurement data concerning how these drum reads and disk reads
are distributed among the separate access paths, we assume the uniform distribu-

tions:

Average CPU work per interaction: W16 = 2,0 sec.

Average number of drum accesses (reads)

per interaction: Rirm = 80 |
rm

Average number of disk accesses (reads)

per interaction: Rdsk =20

Average latency and transfer time per

drum access: 20 msec,

Average seek, latency and transfer time

per disk access: 100 msec.,

R

drm
Wy = ees = W o= 20 msec X 5- = 0.16 sec;
R
= = = dsk _
wll = see = w15 = 100 msec X T = 0,40 sec.

Since the service (or work) is represented in time, the processing rate {C,}
1

should be set to unity, Hence the parameters {Ti} of (2.15) are the same as

{Wi}:

Ty T eee = Tyg = 0,16 sec;
Ty = eer T T = 0.40 sec;
T, = 2.0 sec.

16

86 H. KOBAYASHI

We first compute the parameters xi's of (3.15)

10 x 0,16 + 5 x 0.4 + 2,0 = 5,6 sec;

x
[}

1

x, = 10 0.16% + 5 x 0.4% + 2.0% = 5.056 sec’;
Xy = 10 % 0.163 + 5 % 0.43 + 2.03 = 8,361 sec3;
x, = 10 x 0.16% + 5 x 0.4% + 2.0% = 16.135 sec”,

etc., Then from Formula (3.12) and the polynomials of Table 1 (alternatively from
the recurrence formula (3.17)), we obtain

g(16,0) = 1

g(16,1) = x = 5.6 sec;

£(16,2) = TG + x,) = 18.2 sec?;

g(16,3) = %(xi * dugx, + 2x,) = 46.2 sec’;

g(16,4) = %Z(xé + ﬁxixz + 3x§ + 8x1x3 + 6x4) = 103.4 secA;

etc. Utilization pi(N) of server i for the degree of multiprogramming N is

given (see e.g., [2]9 by

_y BOLN-L)
Py = ¥, Earwy .1)

We can predict, for example, CPU utilization under different values of multipro-
gramming level, N, as follows:

p1e(1) = 222 = 0.36;

P16(2) = 2.0 x ié?z = 0.62;

016(3) = 2.0 x 222 = 0.79;

016(8) = 2.0 x 2827 = 0,89,

An alternative formula for utilization pM(N) for the Mth resource is given

from Equations (2.14) and (4.1) as

g (M-1,N)

® =1-0m

Py (4.2)

For the degree of multiprogramming N=4, for example, we need to calculate
g(15,4). For this purpose we compute the following parameters:

10 x 0,16 + 5 X 0,4 = 3,6 sec

Y1

10 X 0.16% + 5 x 0,4% = 1.056 sec’

Y2

A COMPUTATIONAL ALGORITHM FOR QUEUE DISTRIBUTIONS 87

yy = 10 x 0,16 + 5 x 0.4 = 0.361 sec?

y, =10 x 0.16% + 5 x 0.4% = 0,135 sec’
Then
1.4 2 2 _
g(15,4) = 5Z(y1 + 6y1y2 + 3y2 + 8y1y3 + 6y4) = 11.0.
Hence

11.0
P64 =1 - 103.7 = 0%

which is, not surprisingly, the.same as the value obtained earlier.
th

The k moment of the number of customers, n, is given [2] by
E(n¥] = Lo I§ 04, ¥-n) [n*- (-1) K372 (6.3)
R R T L gt 1 .

For instance, the average of CPU queue for the degree of multiprogramming N=4 1is

4
1 : n
Eln (] = PR} ngl g(16,4-n)2.,0

341 x 2.0

1 2
1033 (46,2 x 2,0 + 18,2 x 2,0 + 5.6 x 2,0

= 2,19
Similarly, we obtain the average queue sizes the the drums and disks:
E[nl] = he. = E[nlO] = 0,076

E[nll] = ... = E[n15] = 0,210

We check that these values add up to N=4:

2,19 + 0.76 x 10 + 0,210 x 5 = 4.0

References

]1[L. Kleinrock (1975). Queueing Systems, Vol, I: Theory, John Wiley & Sons,
New York.

|2| H. Kobayashi (1978). Modeling and Analysis: An Introduction to System
Performance Evaluation Methodology, Addison-Wesley, Reading, Mass.

13| H. Kobayashi (1978). "System Design and Performance Analysis Using Analytic
Models" in Current Trends in Programming Methodology Vol. III: Software
Modelling, (Ed. M. Chandy and R.T. Yeh), pp. 72-114, Prentice-Hall Inc.,
Englewood Cliffs, N.Y.

|4] H. Kobayashi and A.G. Konheim (1977). "Queuing Models for Computer Com-
munications System Analysis' (Invited paper). IEEE Trans., on Communica-
tions , COM-25, No., 1, pp. 2-29.

|s] C.L. Liu (1968). Introduction to Combinatorial Mathematics, McGraw-Hill
Book Co., New York,

88

6]

[71

9}
|10]
|11

|12
[13]

|14]

H. KOBAYASHI

C. Berge (1971). Principle of Combinatorial Mathematics. Academic Press,
New York.

H.S. Stone (1973). Discrete Mathematical Structures and Their Applications,
Science Research Associate, Inc., Chicago.

F.P. Preparata and R.T. Yeh (1973). Introduction to Discrete Structures
for Computer Science and Engineering, Addison-Wesley, Reading, Mass,

D. Slepian (1953)., "On the Number of Symmetry Types of Boolean Functions
of n Variables", Can. J. Math., Vol. 5, No. 2, pp. 185-193.

M.H. Harrison (1965). Introduction to Switching and Automata Theory,
McGraw-Hill Book Co., New York.,

J.P, Buzen (1973). "Computational Algorithms for Closed Queuing Networks
with Exponential Servers', Comm. of ACM, Vol. 16, No. 9, pp. 527-531.

M. Reiser and H. Kobayashi (1973). "Recursive Algorithms for General
Queuing Networks with Exponential Servers", IBM Research Report, RC-4254,
IBM Research Center, Yorktown Heights, N.Y.

M. Reiser and H, Kobayashi (1975). '"Queuing Networks with Multiple Closed
Chains: Theory of Computational Algorithms', IBM J, of Res. and Develop.,
Vol. 19, No. 3, pp. 283-294,

H. Kobayashi (1976). "A Computational Algorithm for Queue Distribution via
P8lya Theory of Enumeration', IBM Research Report, RC-6154, IBM Research
Center, Yorktown Heights, N.Y.

rerTormance ot Lomputer Systems
M, Arato, A. Butrimenko, E. Gelenbe (eds,)
©IIASA, North-Holland Publishing Company, 1979

A DIRECT NUMERICAL METHOD FOR QUEUEING NETWORKS

William J. Stewart
Department of Computer Science
North Carolina State University
Raleigh, North Carolina 27650

U.S.A.

A direct numerical method for the solution of queueing networks is
presented. The problem of matrix "fill-in" usually associated with such
methods is discussed and a fixed bandwidth storage scheme recommended
as a viable means of surmounting this difficulty. It is suggested that
advantage may be gained by constructing the transition rate matrix row
by row and performing the reduction step on each row as soon as it is
generated. An example which has received considerable attention using
numerical iterative methods is analyzed using the proposed direct method
and the latter method is shown to be superior.

INTRODUCTION

The purpose of this paper is to demonstrate that contrary to the popularly
held belief, direct numerical methods for the solution of queueing networks can
sometimes be much superior to the more usually employed iterative methods. We
will present a direct numerical method, show how implementation problems may be
surmounted and finally make some comparisons on a model which has been subject to
considerable analysis by iterative techniques.

From the Chapmann-Kolmogoroff equations we may easily determine the follow-

ing matrix relation, (see for example, [1]):

T -
A)

in which § is an {n x n) transition rate matrix whose elements

Sy the rate of transition from state i to
R state j if 1 # J.

n . . 3
= 'kf%sik if i =3,
R is the stationary probability vector whose component P denotes the Tong run
probability of the system being in state i and n is the total number of states

which the markovian process representing the system being modelled, may occupy.

89

90 W.J. STEWART

It is generally assumed that the matrix § is given or may be derived, and the
object is to obtain the stationary probability vector E by solving the system of
homogeneous linear equations (1). Alternatively, the problem may be posed as an
eigenvalue problem by writing (1) in the form:

To -
e @
T _ T . .
where W' = (§ At + L) and At 1s arbitrary.

If At is chosen such that at 5_(qu|sii|)_], then the matrix W is a stochas-
tic matrix and may be regarded as the transition probability matrix for the
discrete time Markov system in which transitions take place at intervals At. From
the method of construction of this matrix, it may be shown that there always
exists a unit eigenvalue and that no other eigenvalue exceeds this in modulus. The
required vector 5 is therefore the left eigenvector corresponding to the dominant
eigenvalue of the stochastic matrix .

Since Wallace and Rosenberg first presented their Recursive Queue Analyzer
(RQAT, [2]), over a decade ago, numerical techniques for the solution of queueing
networks have been exclusively iterative in nature. There are several important
reasons for the choice of an iterative approach as opposed to a direct approach.
Firstly, an examination of the iterative methods usually employed shows that the
only operation in which the matrix §T and/or HT are involved is a multiplication
with one or more vectors. This operation does not alter the form of the matrix
and thus compact storage schemes which minimize the amount of memory required to
store the matrix, and which in addition are well suited to matrix multiplication,
may be conveniently implemented. Since the matrices involved are usually large
and very sparse, the savings made by such schemes can be very considerable.

On the other hand, during the reduction phase of direct equation solving
methods, the elimination of one non-zero element of the matrix often results in
the creation of several non-zero elements in positions which previously contained
zero. This is called fill-in and not only does it make the organization of a
compact storage scheme more difficult since provision must be made for the delet-
jon and the inclusion of elements, but in addition, the amount of fill-in can
often be so extensive that available memory is quickly exhausted. Compact
storage schemes for direct methods, and the problem of fill-in are taken up in
section 3. A successful direct method must incorporate a means of overcoming
these difficulties.

Iterative methods have other advantages in that use may be made of good
initial approximations to the solution vector, and this is especially beneficial
when a series of related experiments is being conducted. Furthermore an iterative

A DIRECT NUMERICAL METHOD FOR QUEUEING NETWORKS 91

process may be halted once a certain prespecified tolerance criteria has been
satisfied. Finally, since the matrix is never altered, the build up of rounding
error is, to all intents and purposes, nonexistent.

For these reasons, jterative methods have traditionally been preferred to
direct methods. However, iterative methods have a major disadvantage in that
often they require a very long time to converge to the desired solution. More
advanced iterative techniques such as simultaneous iteration [3] have helped to
alleviate this problem but much research still remains to be done, particularly
in estimating a priori, the number of iterations, and hence the time, required for
convergence. Direct methods have the advantage that an upper bound on the time
required to obtain the solution may be determined before the calculation is
initiated. More important, for certain classes of problem, direct methods often
result in a much more accurate answer being obtained in less time. Since itera-
tive methods will in general require less memory than direct methods, these latter
can only be recommended if they obtain the solution in less time. Finally, when
choosing pivots during the reduction phase of a direct method, advantage can be
taken of the fact that the diagonal elements are defined to be the largest in any

n
row (recall that s.. = - i Sik)'

2. A Direct Solution Method.

For a non-trivial solution to the set of homogeneous linear equations
T,

AR=0

the matrix é must be singular and hence i111-conditioned as regards equation solv-
ing. However, in general the markovian model will be ergodic (i.e. the associated
stochastic matrix will be irreducible and consequently the matrix S will possess a
unique zero eigenvalue), so that it is sufficient to replace one of the rows of S
with the vector l = (1,1, ... ,1) of length n, and to set the corresponding
element of the right-hand side also equal to unity. This is equivalent to norma-
lising the solution vector so that the sum of all of its elements equals 1. It is
usual to replace the last row of éT in this fashion since this will not cause any
additional fill-in which would later require to be eliminated, and also because
the right-hand side may be ignored until the back substitution is initiated.

An alternative approach, and one which possesses some advantage over that
outlined above, is the method of inverse iteration, [4], which we shall now briefly
discuss. Consider an iterative scheme based on the relationship

-1
) = (g7 - up Tt
(0)

p is arbitrary and may be written in the form

92 W.J. STEWART
(0) _
R0 7y
where the g; are the right eigenvectors of the matrix QT corresponding to eigen-
values Ai.

s

1%1%4

Then (k)

ORI IR

n -k
1£1°i(xi - WG

(A, -)7k {:rgr + 1;,‘“1‘(% - u)k(xi - u)'kgi}

(3)

Consequently, if for all i # r, |A. - u|<<|A; - u| convergence to the eigenvector
9 is rapid. If u = Ar’ then the summation in equation (3) equals zero and the
vector 9 will be obtained to full machine precision in a single iteration.

It is usually recommended that instead of forming the inverse of the shifted
matrix and then postmultiplying it with the trial vector as indicated in the recur-
rence formula, inverse iteration be conducted by solving the set of linear equa-

tion

T (k) o ,k-1)

R R

- ullp
If w= Ar’ then it is simply sufficient to replace the zero pivot which arises due
to the singularity of the matrix by a small value e. This should be chosen to be
the smallest number for which 1 + ¢ > 1 on the particular computer being used.
This results in a very inaccurate solution to the set of equations but a rigorous
error analysis, [4], will show that since the elements of the solution vector
possess errors in the same ratio, normalizing this vector will yield a very accu-
rate eigenvector.

This approach has an advantage over the first mentioned method in that an
estimation of the build-up of rounding error may be obtained. Theoretically, it
is known that we should obtain a zero pivot during the reduction of the final row.
However, due to rounding error, this will hardly ever be exactly zero; its non-
zero value will yield an indication of the rounding error build-up. This is
important when very large matrices are being handled on computers with a small word
size, for it is known that occasionally the rounding error becomes so large that it
swamps the correct solution vector.

Inverse iteration has another advantage in that it requires less arithmetic
operations. Replacing the last row of %T by l requires that the first (n-1) ele-
ments of this vector be eliminated, each elimination requiring a certain number of

A DIRECT NUMERICAL METHOD FOR QUEUEING NETWORKS 93

multiplications, additions and a division. The number of elements to be eliminat-
ed in the final row using inverse iteration will be substantially less than (n-1).
Further, the normalization requirement in inverse iteration requires only (n-1)
additions and usually a much smaller number of divisions. We will see in section
4 that the reduction of all (n-1) elements in the first method entails a further
disadvantage in that this elimination requires access to be available to the (n-1)
previous rows of the matrix.

3. Compact Storage Schemes for Direct Methods.

The size of the matrices generated by problems of the type considered in this
paper are often too large to permit regular two-dimensional arrays to be used to
store the matrices in computer memory. Since these matrices are usually very
sparse, it is economical to use some sort of packing scheme whereby only the non-
zero elements and their position in the matrix are stored. However, when a direct
equation solving method is to be applied, provision must be made to include ele~
ments which become non-zero during the reduction and somewhat less important, to
delete elements which have been eliminated. If memory locations are not urgently
required, the easiest way of deleting an element is to set it to zero without try-
ing to recuperate the words which were used to store the element and its location
pointers. To include an element into the storage scheme, either some means of
appending this element to the end of the storage arrays must be provided, or else
sufficient space must be left throughout the arrays so that fill-in can be accom-
modated as and when it occurs. The first usually requires the use of 1ink point-
ers and is most useful if the non-zero elements are randomly dispersed throughout
the matrix, while the second is more useful if the pattern of non-zero elements is
rather regular.

An example of a (4 x 4) matrix stored in compact form using address 1inks s
given below:
-2.1 0.0 1.7 0.4
0.8 -0.8 0.0 0.0
0.2 1.5 -1.7 0.0
0.0 0.3 0.2 -0.5

Real array A: -2.1 -0.8 -1.7 -0.5 1.7 0.4 0.8 0.2 1.5 0.3 0.2
Row array RA: 1 2 3 4 1 1 2 3 3 4
Column array CA: 1 2 3 4 3 4 1 1 2 2
Link array LA: 5 8 10 0 6 7 2 9 3N

The non-zero elements of Q are stored in any order in the real array A and
their row and column positions are stored respectively in the integer arrays RA
and CA. 1In this particular example the link has been constructed so that the

94 W.J. STEWART

non-zero elements can be accessed in a row-wise sense, i.e. the value denoted

in the fnteger 1ink array of any non-zero element points to the position in

the real array A at which the next non-zero element in the row may be found. The
last non-zero element in any row points to the first in the following row. Nor-
mally it is useful if the chain can be entered at several points; this is achieved
in this example by 1isting the diagonal elements first in the array. To see how
an element may be included, consider the elimination of the element in position
(2,1) which causes 0.442 to be added into position (2,3) which was previously emp-
ty. This is handled on this storage scheme by simply appending

A: 0.442
RA: 2
CA: 3
LA: 8

to the arrays. Note that the 1inks must be updated so that the link which previ-
ously indicated 8 (i.e. the second element} now points to 12. This updating in
fact constitutes a major disadvantage of this type of storage scheme since it is
not unusual for it to require more computation time than the actual operations
involved in the reduction. A second disadvantage is the fact that three integer
arrays are required in addition to the array which contains the non-zero elements.

Regular pattern storage schemes do not suffer from these drawbacks and may be
used if the non-zero elements of the matrix occur in a well defined manner; the
pattern of non-zero elements dictates the particular storage scheme to be used.

In queueing networks, the non-zero elements often 1ie relatively close to the diag-
onal so that a fixed bandwidth scheme may be used. As an example, we show below
how a (6 x 6} matrix may be stored using a fixed bandwidth scheme of size 3.

fayy apm0 0 0 o] P ay A
N1 3p 00 0 0 3 3% O
07500 ay 0700 0 | j0 ay 0

0 07~ a3 3y 3,5 Q0 3 By s
0 0 0.0 ag ag] 0 agg agg
0 0 0 0 ~ Qg5 a6§ _?65 age 0)

Matrix operations in general and equation solving in particular, can be pro-
grammed with virtually the same ease using these reqular pattern storage schemes
as they can be using standard matrix storage. It is easy to showthat any fill-in
which occurs is restricted to this band. Furthermore, there is no storage require-
ment for secondary arrays and neither is there any computation time used in the
processing of such arrays. It is therefore advantageous to adopt these types of
storage where possible. Even where some of the elements within the regular pattern

A DIRECT NUMERICAL METHOD FOR QUEUEING NETWORKS 95

are zero, it may be more economical and convenient to use a regular pattern scheme
than a random or systemmatic scheme. Alternatively a somewhat similar technique,

called the variable bandwidth method may be employed. Further information on this
method may be found in Jennings, [5], the fixed bandwidth scheme being sufficient

for our present purposes.

4. Simultaneous Row Generation and Reduction.

When applying direct equation solving methods such as Gaussian elimination,
it is usually assumed that the complete set of linear equations has already been
derived and that the entire coefficient matrix is stored somewhere in the computer
memory, albeit in a compact form. The reduction phase begins by using the first
equation to eliminate all non-zero elements in the first column of the coefficient
matrix from column position 2 through n. More generally, during the i-th reduction
step, the i-th equation is used to eliminate all non-zero elements in the i-th
column from positions (i+1) through n. (Naturally, it is assumed that the pivot
elements are always non-zero, otherwise the reduction breaks down).

However, since we are responsible for both the initial generation of the sys-
tem of equations and for its solution, it is possible to envisage an alternative
approach, and one which has several advantages over the traditional method outlin-
ed above. Assume, as is usually the case, that the coefficient matrix is derived
row by row. Then, immediately after the second row has been obtained, it is pos-
sible to eliminate its sub-diagonal element in position (2,1) by adding a multiple
of the first row to it. This process may be continued recursively so that when
the i-th row of the coefficient matrix is generated, rows 1 through (i-1) will al-
ready have been derived and reduced to upper triangular form. The first (i-1)
rows may therefore be used to eliminate all non-zero elements in row i from column
posjtions (i, 1) through (i,i-1), thus putting it into the desired triangular form.

This method has a distinct advantage in that once a row has been generated in
this fashion, no more fill-in will occur into this row. It is suggested that a
separatg storage area be reserved to hold temporarily a single initial (i.e. unre-
duced) qu, and the reduction may be performed here. Once completed, the reduced
row may be compacted into any convenient form and appended to the rows which have
already been reduced. In this way no storage space is wasted holding subdiagonal
elements which, due to elimination, have become zero, nor in reserving space for
the inclusion of additional elements. The storage scheme should be chosen bearing
in mind the fact that these rows will be used in the reduction of further rows and
also later in the algorithm during the backsubstitution phase. If the non-zero
elements of the coefficient matrix lie along lines which run parallel to the diag-
onal, (this often arises in queueing networks with two stations only), then it is

96 W.J. STEWART

probable that there will be considerable fil1-in from the diagonal element to the
furthermost right-hand element and consequently a fixed bandwidth scheme is likely
to be most suitable. On the other hand, if it is known that fil1l1-in will not be
extensive, a semi-systematic packing scheme such as is used in iterative methods,
[6], may be profitably employed.

If the matrix is band shaped and very large, (e.g. a simple queueing network
with a Targe maximum number of customers), then this approach has a further advan-
tage. When available fast memory is exhausted, it is convenient to put a large
section of the reduced matrix onto backing store and this will need to be returned
to fast memory only once, i.e. for the final back substitution phase. Consider
the matrix shown below in figure 1 and assume that available fast memory can only
hold £ reduced lines. Let h denote the maximum number of non-zero elements to the
left of the diagonal element.

ZERQ First £ lines generated
and reduced to upper
triangular form.

ZERO

2-h

F1ohl o o e e o e e e e — = = NC - -
S « line (2+1) generated
2+1 oD but not yet reduced.

lines (£+2) through n
yet to be generated.

Figure 1. Shows that first (£-h) rows may
now be put on backing store.

A DIRECT NUMERICAL METHOD FOR QUEUEING NETWORKS 97

Then once the £-th row has been generated, reduced and appended to the rows al-
ready veduced there will remain no available fast memory locations for the reduced
form of lines (£+1) through n. However, since rows £ through (2-h) are no longer
required for the reduction of rows below the £-th, they may be put onto backing
store and the memory thus made available may be used to store a further (£-h) re-
duced rows. Depending on the size of the matrix and available fast memory, this
process may have to be performed a number of times. Note that if the last row of
the matrix was defined to be l, its reduction implies that access must be avail-
able to all rows from 1 to (n-1) and consequently an additional access will have
to be made to rows which have been put on backing store.

Since we require the solution of éTR = 0, generating the rows of éT is

equivalent to generating the columns of 3. (Recall that the element Ske of 3 1s
defined to be the rate of transition from state k to state £). This is the oppo-
site to the procedure which is normally adopted; viz: from any state k it is usual
to determine the states which can be reached in a single time step from this state,
and thereby obtain row k of é. To obtain column k of é it is necessary to inverse
this procedure, and to determine from which states can state k be reached in a
single time step, and the corresponding rates of transition. However, computa-
tionally, the two procedures are identical.

5. Test Results.

As an example of the use of the direct method, we will consider the numerical
solution of the queue A(m)/K/r, i.e. a queue in which the arrival process is pois-
sonian with arrival rates A(m) which depend on the number of customers in the stat-
ion; the parameter K indicates a general service time distribution which has a rat-
ional Laplace transform, and the station itself contains r identical servers. It
is assumed that there exists an integer M such that r(m) > O for all m< M and
A(m) = 0 for all m > M. This queue has been subject to considerable analysis using
numerical iterative methods, (Stewart and Marie, [6]) and it is therefore useful to
compare their results against those obtained in this paper.

It is shown in the reference quoted above that the transition rate matrix for
this queue, when each of the r servers is represented by a law of Cox, [7], has
the block structure presented in figure 2, the dimension of each block other than
the initial block being(r+t'1) X (r+t'1) . The total number of states generated,
n {which is equal to the size of the matrix) is given by

_ itk r+k-1
no= 150 < i‘> o (M- (r ‘>

This block structure is well suited to a fixed or variable bandwidth st%fage
+ r+k-1

k-1
r and 2 x r

scheme, the maximum bandwidth for an unreduced row being 3 x r

98 W.J. STEWART

once the row has been reduced. Under special circumstances, for example if the
servers are all Erlang, then it may be shown that the maximum bandwidth for reduc-
ed rows may be decreased even further. A variable bandwidth would permit a saving
of (M-r) r+t-1 2 /2 memory locations over the standard fixed bandwidth but
is a little more complicated to organize. In the examples presented below, a fix-
ed bandwidth storage scheme was employed and since only Erlang servers were model-

led, the bandwidth for reduced rows was taken to be (::5) which is less than
2« r+k-1
r

Number of customers in queue.

<r r r+l r+2 r+3 r+4 r+5

! i
rel | —_— :
[- [

ENIERN

r+2

r+3

_____ -—_—— - === ==

‘ ! |

4

Figure 2. Block Tridiagonal form of transition rate matrix ST.

A DIRECT NUMERICAL METHOD FOR QUEUEING NETWORKS 99

The approximate total memory requirements for the direct approach is there-
fore given by ::¥
programming. The programming requirements for the iterative method are much
larger, (17.5K words) since the iterative program is much more complicated than
the method. However, the number of memory locations required to handle the arrays
is approximately equal to 11n, if as is usually the case, five trial vectors are
employed in the simultaneous iteration method. In general then, the iterative

approach requires less memory than the direct. Note that it is assumed in both

x n words for storing the matrix and 1.5K words for the actual

cases that backing store is not used.

Figures 3 and 4 show the time required by both methods as the number of iden-
tical servers r in the queue is increased. The servers are taken to be Erlang-3
and Erlang-4 respectively.

Figures 5 and 6 show the time required by the two methods when the number of
servers is constant, (equal to two and three respectively,) and the parameter k of
the Erlang distribution law Erlang Ek is varied.

It will be observed that in all cases the direct approach requires consider-
ably less computation time than the iterative method. Furthermore its results
were obtained to full machine precision. Although no timing experiments were con-
ducted to compare the effect of increasing the maximum number of customers M in the
queue (this was taken to be ten in all the examples), it is very likely that the
direct method will prove to be superior to the iterative method. A moment's re-
flection will show that as M increases the computation time of the direct method
will increase only linearly. No such observation can be made for iterative meth-
ods and in fact experiment has shown that often this is not the case.

For the iterative method, initial approximations to the solution vector were
obtained by using an analytic technique to determine the probability distribution
of customers 5(m), in the queue when the service distribution is exponential rather
than Erlang-k. An approximation to the stationary probability of any state which
has m customers is then given by P(m)/s , where § denotes the total number of
states having m customers.

As an aside we should note that the iterative solution to this queue was
developed for inclusion into an approximate method for the solution of networks of
queues in which the stations contain more than one general server, Marie and
Stewart, [8]. This approximate method embeds the numerical iterative technique in-
to a global iterative procedure, so that the results obtained from one global iter-
ation may be supplied as initial approximations for the numerical method during the
next global iteration. After one or two such iterations, it is found that the ini-

tial approximations to the solution are very good and therefore convergence is very
rapid.

W.J. STEWART

100

‘p-bue)ag ‘f danbLy cg-buefuy g aunbiry
9 ~ 9 q [£ Z
~ N~ — i 0
\\gm.
\\\ -
rd P
\ -~
\\ P .
/ - 4
’ -
/ -
7/ -
rd
”
/ e
, L7 9°
/
/
/]
g
*sanuLw *SajnuLw
133440 :Pumewu P20 — =FawE~u
9ALIEUIY] T T T T T T uo3e3nduoy dALjRUdl] T T T T T T :owumwzaswul<

101

A DIRECT NUMERICAL METHOD FOR QUEUEING NETWORKS

“SU3AUOS [BILJUIPL g Y}LM dnanh g dunbly

*SJ9AJIS |BILIUSPL € Y3LM ananh g aunbLg
¢ : : 4 : ¢ I S 7 £ 2
J_ \\\\.\‘ \\\\\ v_.‘l \\\\\\l‘|.l.
-
e - \\
\\ \\
/s \\
g Ve
7 Ve
/ T / 1
/ /
4 s
/ \\
/
/ \
/ /
/ 4 / |
/ /
/ /
! /
/
/
/ P ——— - \\ joouLg ————-
/ 9ALJRUIY] T T T o — / DALIRUI}] - - - — ~ —
/ /
/ /
! ‘sajnutw \ *S93NU L
_ o e ug eupy

uorjejnduo) V

uoLjejnduo) \

102 W.J. STEWART

6. Conclusions.

In this paper we presented a direct numerical technique for the solution of
queueing networks. We saw that the method of inverse iteration possessed some
advantages over the more usual direct methods in that it requires Tess numerical
computation and that it yields a measure of the rounding error involved in the
reduction phase of the algorithm. Some sparse storage techniques suitable for a
direct equation solving method were then examined and a fixed bandwidth scheme
recommended. It was also shown how an efficient method for generating a row of
the matrix and reducing it to upper trianglular form before generating the follow-
ing row could be implemented with advantage. Finally, the results obtained from
this method when applied to the A(m)/K/r queue were compared with those obtained
from an iterative method. It was observed that although the direct method requir-
ed more memory for storing arrays, it obtained much more accurate results in a
considerably shorter time period.

REFERENCES

1. W.J. STEWART. "A Comparison of Numerical Techniques in Markov Modelling".
Comm ACM. Vol. 21, No. 2, pp 144 - 152, Feb. 1978.

2. V. L. WALLACE and R. S. ROSENBERG. "The Recursive Queue Analyzer". System
Engineering Dept. Technical Report No. 2, University of Michigan, Ann Arbor,
1966.

3. A. JENNINGS and W. J. STEWART. "Simultaneous Iteration for Partial Eigenso-
lution of Real Matrices". J.I.M.A. Vol. 15, pp 351 - 361. 1975.

4, J. H. WILKINSON. "The Algebraic Eigenvalue Problem".
Clarendon Press, Oxford, 1965.

5. A. JENNINGS. "Matrix Computation for Engineers and Scientists".
Wiley Interscience Publication, London, 1977.

6. W. J. STEWART and R. MARIE. "A Numerical Solution for the A(n)/K/r
Queue". IRISA Publication Interne No. 79, Universite et INSA de
Rennes, 35031, France, 1977.

7. D. R. COX. "A Use of Complex Probabilities in the Theory of Stochastic
Processes". Proc. Camb. Phil. Soc., Vol. 51, pp 313 - 319, 1955.

8. R. MARIE and W.J. STEWART. "A Hybrid Iterative-Numerical Method for the
solution of a General Queueing Network". Third International Symposium on
Modeling and Performance Evaluation of Computer Systems. Bonn, W.Germany,
October 1977.

APPLLIED PERFORMANCE ANALYSIS

Performance of Computer Systems
M. Arato, A. Butrimenko, E. Gelenbe (eds.)
©]IIASA, North-Holland Publishing Company, 1979

Performance Evaluation of the BASIS System

by

R.P. van de Riet
vakgroep informatica
Vrije Universiteit, Amsterdam

BASIS is an interactive system, based on PASCAL, for the
workshop of the introductory course in informaties. It has
built-in facilities for evaluating itself and the performance
of the students. The aim of the performance evaluation is to
have a tool by means of which the system and the course can be
gradually improved.

1. INTRODUCTION

The BASIS system is used in the introductory course in informatics as the primary
tool for the student's practical work. It is an interactive system for both pro-
gram composition and program testing. The language is a subset of PASCAL [1] (no
records, no sets, no subranges, no pointers, only one data file and no goto's).
The only way a student can make a program is by making procedures which can be
individually tested. In fact, for the student a program is just the collection of
variables and procedures he introduced. The emphasis is on structured programming
with short, well documented, procedures. Tne current BASIS version checks if the
procedure text conforms to a simple but adequate lay-out structure and also wheth-
er the text contains any form of comment. The editor is a large subset of the
UNLX editor [10].

In two preceding IFIP conferences we reported about the design criteria and plans
[5] and about the implementation of the system [6]. In this paper we want to dis-
cuss several measurements which have been carried out. These measurements concern
primarily the functioning of the system in response to the student and vice versa.
A major objective which we want to realize with the system is that of more or less
automatic wupgrading. Not in the sense that bugs are removed (actually the current
version of the system is very stable), but in the sense that reactions of the sys-
tem to student behaviour are improved.

There are several ways to measure the system-student responses in order to make
improvement possible. One method is to question the students about the system by
means of questionnaires. Ih an early stage of the development of the system this
has been carried out by two psychology students on a group of alpha students (from
the humanities). Very few problems were signalled in this way which were not al-
ready known by personal communication. In particular, the placement of the sem-
icolon and the use of the editor turned out to be troublesome. This way of
measuring the system was not pursued any longer; although it is not impossible to
redo such an investigation in the future if some psychologists show interest.
Another method, which will be extensively reported in this paper, is to automati-
cally analyze the conversation between system and student. In this way it turns
out to be possible to get a clear picture of what an average student dces, how he
reacts upen errors, which errors ne makes, which constructs he uses, etc. and of
tne behaviour of the system in terms of response time, error messages (whether
tney are clumsy or not), etec.

105

106 R.P. VAN DE RIET

The structure of this paper is as follows. In section 2, we will demonstrate a
typical session of a student. In section 3, we will show how a so-called stat-
file 1is constructed from the system-student conversation. In section 4, we
analyze the global behaviour of the student and we compare several types of stu-
dents: informatics and mathematics, biology and geology, and students from the
humanities. In section 5, a detailed analysis of the errors will be given in terms
of reaction time, think time, frequency, adequacy of help information and repeti-
tion of errors. Several correlation coefficients will be given also for the dif-
ferent groups mentioned above. In section 6, we will outline how the errors are
distributed in time. In section 7, we will report about the analysis which has
been performed for each individual error and how this influenced a new version of
the system. In section 8, the use of the language constructs will be described.
This analysis reflects a little bit the analysis of Knuth [4] about use of FORTRAN
constructs and the analysis of Tanenbaum [9] concerning the use of PASCAL con-
structs. These investigations were designed for optimization purposes of compilers
and underlying machines.

Our goal 1is to know what the student is doing from a pedagogical standpoint so
that the course can be improved pedagogically. In this sense our investigations
are in the same area as the studies of Sime and Guest [8] where they measure the
use of certain language constructs as e.g. if-then-else versus goto's, or the
investigations of Gannon [2] who describes several controlled experiments where
programmers use (more or less) structured programming tools. In section 9, we
report the results of the measurements concerning the system responses, together
with a short overview of past measurements by M. Kersten [3] concerning the inter-
nal functioning of the system components. Here, we also give some numbers con-
cerning size and speed of the system and the hardware configuration. Ffinally, in
section 10 we describe some future plans.

2. AN EXAMPLE OFf A BASIS SESSION

We suppose that the student is somewhere in the middle of the course so that he is
already familiar with the notion of variables, types, values, procedures, editing,
etc. He will work on a problem where the main procedures have been thought out and
written at home. (In fact the course assistants take care that the students do
their homework at home and not behind the terminal).

The problem is to calculate the n-th Fibonacci number f[n], defined as f[0] = O,
fL1]1 = 1, f[i] = fli-1] + f[i-2], for i > 1.

This problem is identified as exercisel. A possible interaction 1is shown below.

BASIS normally ends 1its response with an arrow " -->" after which the student
gives a next command. If the student types in a procedure (or function), then the
BASIS reaction upon a new line is "...", so the student can easily see if he is
still typing in the procedure or that he has finished the procedure. In general,
BASIS responds with “..." if the command is not finished.

When the student is editing a procedure, with the name "proc", by means of the
command "edit(proc)", BASIS responds with "..>", if a new edit command is expect-

ed; if the edit command is not ready, as in the case of a(ppend). BASIS responds
with "...",

If BASIS detects an error (syntactical or run-time) it responds with showing the
line last treated (which can be the command typed in or a line of a procedure)
underlining the symbol last treated. Only if the student types in '"help" will
BASIS respond with "##*#w followed by an error message. It is possible that the
student asks for more help by typing in "help" again. In that case BASIS responds
with some global information about the error such as a reference to the manual or
some examples. Note that by explicitly asking the student for "help" instead of
automatically providing him or her with the error message, we have given the sys-
tem a tool to measure the student's reaction upon errors. It is now possible to
measure the effect of an error message on the number of times the same error is

PERFORMANCE EVALUATION OF THE BASIS SYSTEM 107

repeated immediately, or on the time a student needs before he repairs the error
(i.e. think time). Furthermore, it saves time for the student (and paper of the
terminal) since in quite a number of cases (in fact 70-80 %) he apparently did not
ask for the error information.

In BASIS, comment is placed between "(¥" and "¥)" and may be placed in commands or
in the text of a procedure. We will use it to explain what the student is doing.
Let us return now to the problem mentioned above. The student starts as follows
after logging in under UNIX [10].

¥¥¥% Basis-version 230178, see: 'Basis-handleiding dec 1977
--> var f0,f1:integer;
... type far=array[1..nJof integer;

type far=array[1..nlof integer;

--> help
#%¥ arraybound must be an integral number
--> type far=array[1..10]of integer;
... const n=10;

.. fifar;

f:far;

~=> help
k%% nov expected
--> hnelp
%% ex. const month='augustus'
%% ex. const min=10; max=20;
(1T maxint=32767
%%¥ sce manual 4.1 (const-declaration)
--> var f:far
co. F0:=0;£1:21;0[2):=F0+F1;£[3]):=F[2]+F 1;write(£I31);

2

-=> £{U1:=p[31+f[2];£[5]:=F[U]+f[3];write(f[51);
5

--> procedure fibon(n:integer);

... var i:integer;

... begin

. while i <= n do

‘e begin f{il:=f[i-1]+f[i-2] end;
.. write(f[n])

... end

~-=> fibon(5);

%% remember: layout not correct, see: additions to the manual
#%% remember: pr- or fu-declaration without comment

##% in: fibon

4 while i<=n do
n =5
i = <undef>

--> edit(fibon)
D00
procedure fibon(n:integer);
> a
(¥computes and prints n-th fibonacci number®)

.> /begin f/
begin f[i]:= f[i-1]+f[i-2] end;
.> s/end;/;i:=i+1/p

108

e
-=>
-->

-->
L L]

-

s
-=>

-=>

-=>
[11)
-=>
-=>

R.P. VAN DE RIET

begin f[il:= fli-1]+f[i-2]; i:= i+1
end;

/write/
write(f[(n])
s/w/ w/p
write(f[n])
1,$p
procedure fibon(n:integer);
(*computes and prints n-th fibonacci number¥)
var i:integer;
begin
while i<=n do
begin f[il]:= f[i-1)+f[i-2]; 1i:= i+1
end;
write(f[n])

. end

q
(*We are out of the editor now")
fibon(5);

##% in: fibon

5 while i<=n do

n
i

5
<undef>

help

variable did not get a value
edit(fibon)

/begin/

begin

s/n/n i:=2; £[0]):= £O;f[1]:=F1;/p
begin i:= 2; f[0]:= fO; f[1]):= f1;
qa

fibon(5)

#4% in; fibon

4 begin i:= 2; £[0):= f0; £[1]:= f1;

n =5
i =2
list(type)

type far = array [1..10] of integer;

type far = array(0..10] of integer;
type far = array[0..10] of integer;
help

new identifier expected
erase(far)
type far = array[0..10]of integer;

. var f:far;

fibon(5)
5
fibon(7)
13
fibon(10)
55
fipbon(15)

PERFORMANCE EVALUATION QF THE BASIS SYSTEM 109

#%% in: fibon

6 begin f{il:= fli-1]+f[i-27; i:= i+1
n = 15
i = 11

--> help

*%#% index of array bound too large

Here we skip over the session until the student has made a procedure which pro-
duces the fibonacei numbers as real numbers instead of integers.

... fibon(10)
55.0
~--> fibon(20)
6765.0
--> fibon(40)
1.0233e8
--> fibon{100)
3.5423e20
--> (%*this computation needed 130 real seconds¥)
-=> save;
--> stop
cptime: 28.42 sec.
%% ond of basissession

3. THE STAT-FILE

From the conversation, as shown in the preceding section, a file is constructed
provided with some extra information consisting of real time and cpu-time used,
which is called stat-file and which is used for gathering the statisties. Obvious-
ly, it 1is not necessary to put on the stat-file most of the system responses as
"—->", full error messages and results of computations. Instead, only the error
numbers are shown. Ffurthermore, in order to simplify the analysis of the stat-
file the beginning of a procedure declaration is signalled by a "p" and the begin-
ning of an edit session by an "e". The two numbers with which most of the lines
start are real time, measured in seconds and cpu-time measured in 20 milliseconds.
These numbers are produced at the moment that the line on which they occur is sent
from the BASIS system to UNIX to be put on the file. For an input 1line this 1is
the moment that all the characters are put in a buffer just prior to processing
the line. For an output line it is the moment that all processing is done and the
line is shown on the terminal.

The stat-file of the preceding section has the following form.

03966 26029 login

00032 00046 var fO,f1:integer;

00072 00049 type far=zarray[1..n]of integer;
#2103

00072 00050

00076 00051 help

00103 00054 type far=zarray(1..10]of integer;
00123 00059 const n=10;

00214 00060 f:far;

#2003

00214 00060

00218 00061 help

00225 00066 help

00276 00070 var f:far

00347 00071 £0:=0;F1:=1;£{2):=L0+f1;F[31:=F[2]+F1;urite(fI3]);

110

0C398
00418
