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PREFACE

The Fourth International Symposium on Modelling and Performance Evaluation of
Computer Systems organized in Europe by the IFIP Working Group 7.3 was held in
Vienna under the auspices of the Technical University and the International
Institute for Applied Systems Analysis. This series of conferences has been
placed under the auspices, successively, of the following major European research
organizations: IRIA, France (1974), EURATOM (1976) and GMD, Federal Republic of
Germany (1977). Since 1978, IFIP WG 7.3 has decided to hold these meetings
alternately in North America and in Europe approximately every eighteen months.

These proceedings are a collection of contributions to computer system performance,
selected by the usual refereeing process from papers submitted to the symposium,
as well as a few invited papers representing significant novel contributions made
during the last year. They represent the thrust and vitality of the subject as
well as its capacity to identify important basic problems and major application
areas. The main methodological problems appear in the underlying queueing
theoretic aspects, in the deterministic analysis of waiting time phenomena, in
workload characterization and representation, in the algorithmic aspects of model
processing, and in the analysis of measurement data. Major areas for applications
are computer architectures, data bases, computer networks, and capacity planning.

The international importance of the area of computer system performance was well
reflected at the symposium by the presence of participants from nineteen countries.
The mixture of participants was also evident in the institutions which they
represented: 35% from universities, 25% from governmental research organizations,
but also 30% from industry and 10% from non-research government bodies. This
proves that the area is reaching a stage of maturity where it can contribute
directly to progress in practical problems.

The Editors.
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A Systematical Approach to the

Performance Modelling of Computer Systems

M. G. Kienzle
Thomas J. Watson Research Center
Yorktown Heights. New York, USA

K. C. Sevcik
Computer Systems Research Group,

University of Toronto. Toronto

Abstract

This paper proposes a modeling procedure that relates the different aspects of modeling:
model design. system measurement, parameter estimation. model analysis, model valida­
tion, performance prediction. The modeling procedure is organized in several steps that
isolate the different abstraction steps to provide a better understanding of the modeling
process. The proposed procedure is applied to a case study.

1. INTRODUCTION

With the increasing complexity and cost of computer systems, the need for efficient
management tools for them is growing as well. In particular, tools for performance
analysis and prediction are needed for installation planning, system development. and
system tuning.

Since the behaviour of actual computer systems is too complex to be comprehended or
predicted merely by inspection, models are used for their analysis. These models are
abstractions of the systems, representing only those aspects of the systems that are
relevant for the particular analyses. The models must not only represent the important
system components, but also characterize quantitatively the relationships and interactions
of these components.

One class of models that is suitable for these analyses and that has received much
attention recently are queueing network models. They represent the components of a
computer system, such as the CPU, I/O channels and devices. as servers with queues.
These servers are connected by paths to form a network. The programs being executed
in the system are represented in the model by tokens that circulate through the network.

There are three major methods by which queueing network models can be analyzed. In
analytic queueing network models, the system components and their interactions are
represented mathematically, and the models are evaluated using mathematical algorithms.

3



4 M.G. KIENZLE and K.C. SEVCIK

In simulation models, the operation of the system is simulated by a computer program.
Hybrid models combine these two approaches.

Quite a number of case studies using queueing network models have appeared, e. g.,
[ROSE75, GIAM76a, BAR077, KGT77, SU78, BUZE78]. However, most of these
papers have concentrated on the mathematical aspects of the models, and perhaps some
practical problem. They all show the absence of a general modeling methodology, a
modeling approach that would relate all the aspects of modeling: model design, system
measurement, parameter estimation, model analysis, model validation, performance
prediction.

In this paper, we propose such a modeling methodology. We develop a modeling process
that includes all the above aspects of modeling. By isolating these aspects and by making
all modeling decisions apparent, a better understanding of the modeling process is
attained. The usefulness of this approach is demonstrated by applying it to an analytic
queueing network model. It could also be applied to simulation or hybrid models.

In section 2, the series of abstraction steps involved in modeling and an overall modeling
procedure are outlined briefly. They are more extensively described in the following
sections using a modeling case study of an actual computer system as an example.
Sections 3 to 6 are each divided into two parts: in the first part, concepts are developed,
and in the second part, these concepts are applied to the case study. In section 3, the
preliminary phase of designing the models is described. In section 4, the model used for
the measurement experiments is developed. In section 5, a general model for parameter
estimation is introduced. In section 6, the computational model used for the the mathe­
matical analysis is defined, and some results are shown. Finally, in section 7, some
conclusions are drawn.

2. MODELING PROCESS

2.1 Abstraction Steps

The process of modeling can be viewed as a series of abstraction steps leading from the
actual computer system to the computational model that yields the desired performance
measures. In the proposed modeling procedure, these steps are isolated, and intermedi­
ate models are defined in order to form a systematic approach to the modeling process.
This stepwise approach reveals the decisions made in applying the abstractions and
associated underlying assumptions.

There are three major models involved in the abstraction process from the actual
computer system to the final computational model. These models and the abstraction
steps are shown in figure l.

The measurement model provides the basis for a measurement experiment. The variables
it includes are measureable system variables, that is, variables that can be recorded by
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computer system
I
I measurement
I
V

measurement model
I
I parameter estimation
I
V

system model
I
I parameter representation
I
V

computational model
I
I computational solution
I
V

performance measure values

Figure 1. Abstraction steps.

hardware or software monitors. For each measurement experiment, a specific measure­
ment model should be used.

Parameter estimation [DB78] is the step from the measurement data to the logical system
model. In the parameter estimation, data from several experiments as wel1 as general
information on the system such as the service rates of devices or access times to memory
are used to build the system model.

In the system model, al1 essential parts and functions of the system are represented from
a logical point of view. They are looked upon as service facilities for user programs.
The system model is introduced to describe separately the major components that
influence a system's performance. It should give insight into the operation of the
computer system and aid the interpretation of the model results. Most computational
models are too restricted to serve these purposes.

The parameter representation is the mapping of the detailed functional system model
parameters into the usual1y less detailed input parameters of the computational queueing
network model as required by the solution algorithm.

The parameter requirements of the computational queueing network model [DB78] are
determined by its type and by the solution algorithm selected. The parameters do not
necessarily reflect the operation of the system explicitly.

5



6 M.G. KIENZLE and K.C. SEVCIK

In the computational solution. the desired performance measure values are calculated
from the parameters of the queueing network models by the solution algorithm chosen.

The performance measure values, finally, are the goal of this abstraction process. The
performance measures of interest are determined by the aims of the study.

2.2 Overall Modeling Procedure

Queueing network models are mainly used to predict the performance of a system under
changes in its configuration, its software, or its workload. When modeling for perform­
ance prediction, three phases in the modeling procedure can be distinguished.

In the design phase, the three models used in the abstraction process are defined. Based
on the objective of the modeling study, the abstraction steps are planned, considering in
particular the compatibility of the three models involved.

In the validation phase. the abstraction steps are applied to the computer system. The
results of the computational model must be validated against observed performance. If
the agreement is poor, the decisions taken in the design phase must be reexamined.

In the prediction phase, the system changes that are to be investigated are applied to the
system model. New input parameters for the computational model are calculated. and
the solution of the computational model yields the predicted performance measure values
for the changed system.

3. DESIGN PHASE

3.1 Concepts

At the beginning of a modeling study, the goals of the study and the desired performance
measures must be defined as precisely as possible. It is necessary to have a comprehen­
sive description of the system including the following topics: the system configuration,
the operating system logic, the workload of the system, the monitoring facilities. and the
operating aspects of the system. Based on this information, the three models can be
designed in a way that each model supplies all the information required in the next
abstraction step. From the desired performance measures, a computational model
capable of producing these measures is determined. From its input parameter require·
ments, and based on the objective of the modeling experiment, the system model is
defined. Finally, one or several measurement models are defined to supply the data for
the system model. Care must be taken that the level of detail in each of the models
involved is consistent. If, for example, the computational model requires not only the
means but also the second moments of the service time distributions, the measurement
models become more complex, and the measurement experiments may become prohibi-
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tively expensive. As a consequence, for each system model the minimal input require­
ments should be stated to make the modeling experiment as simple as possible. For a
survey of the types of analytic queueing network models and the parameter specifications
for them see [KIEN77].

In this design phase, the model types, the parameter requirements, and the levels of
detail are determined. The models cannot be defined in detail, and the design is not
finalized since many decisions are dependent on quantitative aspects determined in the
validation phase.

3.2 Case Study

In order to gain experience with the modeling procedure, a case study was carried out.
The system oriented performance measures under consideration were the utilizations of
the major hardware components of the system along with their mean queue lengths, and
the job throughput, all by job class. As user oriented performance measures, the mean
response time for interactive jobs and the mean residence time for batch jobs (excluding
the time in the spooling system) will be computed by the model.

The system to be modeled is an IBM S/370-165 II of the University of Toronto Comput­
er Centre (UTCC) running under the OS/VS2(MVS) operating system. It supplies
batch and time sharing services (JES2, TSO). The configuration of the system is shown
in figure 2.

--------------- unit record devices
I main memory I CH 0
14M bytes I I interactive terminals
--------------- I

high speed I I
cache 1------------

16 k bytes I CH 1 -- 8 disks (3330)

CPU

CH 2 -- 12 disks (3330)

Figure 2. System configuration.

The System Resources Manager (SRM) of the operating system tries to keep the overall
load balanced by initiating or swapping jobs as required. At the same time, it attempts
to distribute the resources of the system among the jobs according to a predetermined
pattern specified by the installation. Three time intervals defined in the operating system
are important from a modeling point of view. The residence time of a task is the time it

7



8 M.G. KIENZLE and K.C. SEVCIK

belongs to the active mulitprogramming mix. The elapsed time of a task is the time from
its initiation until its termination. The time-in-system of a task is the time from when it
is read into the system until its termination. The memory management is based on a
global, variable partition strategy, which means that the partition sizes and the number of
active partitions are variable. The workload of the system consists mainly of three types
of jobs:

1) compute oriented batch jobs (General Purpose Job Stream, GPJSj

2) small, students' jobs (High Speed Job Stream, HSJSj

3) interactive TSO jobs (TSOj

The system is measured under a benchmark that has one jobstream for each type of job.
The TSO jobstream is generated by a simulator that uses a TSO command script.
Several monitoring tools were activated during the execution of the benchmark. The
software monitor RMF [IBM76b] is a sampling monitor that records the usage of the
system's resources. The software monitor SMF [IBM77] reports the service requests by
the jobs to the system. The hardware monitor TORMON [CM73] records data on the
CPU and the channels to verify and to extend the data collected by RMF.

The computational model used is a hierarchical model. On the level of the dispatcher, a
multiple class queueing network model in local balance is used to represent the CPU, the
channels, and the disks. In this model, only the resident jobs will be represented. The
three job classes GPJS, HSJS, and TSO are distinguished in the model. For the TSO
interactions, an additional birth-death model is built on top of the queueing network
model. The server of this model represents the entire computer system, and the service
rates for TSO interactions are determined by the queueing network model. This way,
the queueing of the interactive jobs before entering the set of resident tasks can be
modeled.

Local balance models [BCMP75] do not require any information on the dynamic
behaviour such as the burst lengths or the branching probabilities of the jobs in the
system [KR75, GIAM76b]. Thus, accumulated values like total CPU time per job class
and total number of I/O operations to a device are sufficient to determine the values of
the input parameters to the computational models.

For this case study, no event trace monitoring is needed, since the system model does not
require information on the dynamic behaviour of tasks. Only accumulative data on the
job's service requests and on the usage of the system's resources are required. These
data can be obtained by the monitors listed above.
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4. MEASUREMENT MODEL

4.1 Concepts

The measurement model provides a framework for the actual measurement experiments.
It consists of a set of measureable system state variables. The domains of these variables
must be precisely defined. Consider, for example, a state variable called CPU state. It
could have different domains such as (idle, busy), or (idle, system state, problem state),
or (idle, system state, user-task- I, user-task-2, ... , user-task-n). A value change in a
state variable is a state change event. Based on such a state model of the system, the
quantities recorded by the monitors can be defined precisely. They may be defined, for
example, as numbers of transitions between two states, numbers of times a state was
entered, or total time a state was occupied. Event trace monitors record the state
transition events and their state contexts. Sampling monitors observe the states of the
system at time intervals independent of the system's operation. It may not always be
necessary to define the state model explicitly in order to define the measurement
requirements. However, care must be taken to insure that all the recorded variables and
events are specified.

Often, the system variables that are easily recordable are not the variables that are
required by the system model. In this case the recorded data must be aggregated,
correlated, or deaggregated to obtain the desired parameters of the system model. If no
directly related variables are measurable for some system model paramters, some
indirectly related variables must be measured, so that the system model parameters can
be estimated.

4.2 Case Study

The quantities measured for the case study and the values resulting from a measurement
experiment on a benchmark are shown in table I. Also, the monitors by which the data
are collected are indicated.

5. SYSTEM MODEL

5.1 Concepts

The system model represents the computer system from a logical point of view. It is
limited neither by the available monitors (as are the measurement models), nor by the
solution algorithm (as is the computational model). It can be based on data from several
measurement experiments, and it can be used for different types of computational
models.

9
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Table 1. Measurement data.

General Parameters

measurement interval

M.G. KIENZLE and K.C. SEVCIK

2108 sees (RMF)

GPJS TSO HSJS Source

jobs completed ............ 56 950 308 (SMF)
total resident time (sees). 4564 4252 1268 (SMF)
job stream elapsed time
(sees) .................... 2108 1734 1268 (SMF)
average number of
ready tasks ••••••••••• 0 ••• 4.84 8.18 1.00 (RMF)
accounted CPU time
under TC8s (sees) ........ 784.9 214.4 306.2 (SMF)

other CPU Parameters:

bUsy time .
problem state time .
system state time .
total instructions .
high speed cache accesses ..
high speed cache hit ratio .
utilization ..

1728 sees
774 sees
954 sees

3.58*lOE9
5.04*10E9

.9555

.8143

(TORMON)
(TaRMaN)
(TaRMaN)
(TaRMaN)
(TORMON)
(TORMON)
(RMF)

Memory and Load Management Parameters:

GPJS TSO HSJS source

swaps .............. 93 1361 (SMF)
pages transferred
for swaps .......... 5184 37666 61 (SMF)
pages transferred
for address space
page faults ........ 2390 10279 825 (SMF)
pages transferred
for conmon area
page fau 1ts ........ 1781 90 2 (SMF)
VIO EXCPs .......... 12836 150 83 (SMF)

VIO SIOs (total): 5869 (RMF)
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Table 1 contd.

I/O Parameters:

address SIOs EXCPs utilization
(RMF) (SMF) (RMF)

GPJS TSO HSJS
---------------------------------------------------------
channel 1 47927 8261 .2686*
channel 2 72387 17649 1324 1666 .3461*
disk 11 10236 .1586
disk 12 2355 .0482
di sk 13 702 .0208
di sk 14 12594 8261 .2285
disk 15 17982 .3503
disk 16 3634 .0935
disk 17 424 .0113
disk 21 2285 .0444
disk 22 749 .0104
disk 23 434 .0094
disk 24 8689 .2266
disk 25 9682 12685 .1709
disk 26 3447 .0463
disk 27 5846 86 .0973
disk 28 31053 907 .4117
disk 29 10098 4874 1325 759 .1161

Spooling Parameters:

cards read
lines printed

GPJS

15352
184517

TSO

925
2300

HSJS source

32545 (SMF)
53780 (SMF)

* values obtained by TORMON



12 M.G. KIENZLE and K.C. SEVCIK

The system model covers all the details represented explicitly in the intended computa­
tional model, as well details represented only implicitly in the computational model. For
example, I/O channels and devices should be represented separately in the system
model, but in the computational model they are often represented as aggregate servers.
Beyond the details required for the computational model, the system model should at
least capture all the details that are necessary to represent explicitely the system features
that are being analyzed. In most cases, the system model is not a solvable queueing
network model since it may contain aspects of the real system such as priority service
disciplines that cannot currently be represented in an efficiently solvable computational
model.

The system model consists of several parts, each representing one aspect of the computer
system. The program behaviour model characterizes the behaviour and the service
requirements of the user programs. The interference pattern captures all interference
among user tasks and the operating system. The multiprogramming mix specifies the job
mix under which the model is to be evaluated. The workload model specifies the
workload for the modeled hardware resources. It is derived from the program behaviour
model and the interference pattern. The resource attributes describe the properties of the
modeled service facilities and the manner in which they process the service requests of
the user tasks. The structure of the system model is shown in figure 3.

sys tem mode1

workload model

I program I
I behaviour I

I interference I
I pattern I I resource I

I attributes I

multiprogramming mix

Figure 3. System model.

Program Behaviour Model

The program behaviour model captures the total service demand user tasks place on each
of the system's resources. In addition, it captures the dynamic behaviour of user
programs in the computer by specifying the patterns of their service demand on the
system's resources like CPU burst time distributions, the probabilities of transitions of
programs from one server to another, etc. To achieve hardware independence. the
service demand is specified in numbers of operations rather than in service times or total
times spent at devices.
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In order to obtain the desired isolation of the user programs from the operating system,
only service requests made directly by the user programs should be included. All
interference from the operating system or from other user tasks, such as swaps, page
faults, or I/O interrupts, should be omitted from the program behaviour model. Where
this is not possible, a certain isolation can be achieved by specifying the operating system
activities as functions of the user program behaviour, as is done in the interference
pattern.

In local balance computational models, the program behaviour model can ignore all
dynamic aspects of a task's behaviour. It need only contain the mean number of service
requests per task and device, broken down by class. This information can be displayed
in the system model using a service request matrix that contains an entry for each
resource and job class pair. It has as its elements the average number of service requests
to a certain device by a task of a certain class.

Interference Pattern

User programs do not see the hardware directly. They see an abstract machine that
consists of the operating system and the hardware. Queueing network models, however,
usually represent only the hardware components of a system. The gap between the
service requests of the user programs and the hardware is bridged by the interference
pattern. The interference among user tasks and the operating system has two major
aspects. The dynamic interference reflects the impact on the dynamic behaviour of the
tasks. The static interference maps the number of logical service requests into the
number of physical operations, and it distributes the operating system overhead among
the user tasks.

In order to specify the static interference pattern in detail, the amount of operating
system activity related to the various system services must be determined. Cause and
effect relationships must be established. It is most important to find the "correct"
independent variables of the functions. The mapping of user EXCPs into SIOs, for
example, may be a constant ratio, whereas CPU overhead is probably dependent on the
multiprogramming mix, the number of page faults, and similar parameters. These
dependencies should be established according to the operating system logic, and, where
this is not possible, by making educated assumptions about their nature. They must be
quantified by measurements taken under various load situations of the system, and they
should be verified by modeling experiments using measurement data different from those
used for establishing the interference functions.

Another important aspect is how the overhead is represented in the queueing network
model. In this case study, the overhead resource usage is distributed among the jobs that
cause it. A different approach is to represent it as a separate task, or a separate class of
tasks [KGT77].

Multiprogramming Mix

The multiprogramming mix is a vector that indicates, for each class, the number of active
jobs. For a single class, it is called the multiprogramming level. Because the multipro­
gramming level of various classes may change over time, the average multiprogramming
level may involve nonintegral quantities.

13
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HVork/oad Afode/

M.G. KIENZLE and K.C. SEVCIK

From the program behaviour model and the interference pattern the workload matrix is
established. This is a matrix similar to the service request matrix. However, instead of
service requests per task and resource for each class it contains the total workload a task
of a certain class places on a hardware device, broken down by class. The workload
model is hardware independent in that the service demand placed on hardware compo­
nents is given in numbers of physical operations.

Resource Attributes

The resource attributes capture the resource related aspects of the system model. They
contain the service disciplines of all modeled resources. For hardware components, they
also cover the service rates, specified in numbers of operations per unit time. For
software resources a mapping into the number of operations on hardware devices is
required. Load dependent service rates of service facilities like disk drives or entire I/O
subsystems are described by a set of service rate values, one for each possible loading
situation.

5.2 Case Study

For the two computational models used, the queueing network model and the birth-death
model, two separate system models are defined.

5.2./ System Afode/ of the Afu/tic/ass Queueing Network Afode/

Program Behaviour Afode/

The service request matrix is calculated from the accounted service requests. Because
the service demands of jobs belonging to the same class are, at least to a certain degree,
homogeneous, these "average" jobs can be viewed as prototype jobs for their class, and
their performance measures also have meaning to the users. The service requests of the
three average jobs are listed in table 2.

Interference Pattern

Because the chosen computational model is based on an assumption of local balance, no
dynamic interference need be considered. If no changes to the operating system are to
be modeled, it is not crucial to distinguish between the operating system and user
program usage of the physical resources accurately as long as the operating system
overhead is attributed to the class that causes it. However, it is essential that the
unaccounted resource usage be credited to the classes in the correct proportions. Due to
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Table 2. Program behaviour for the multiple
class queueing network model (request matrix).
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GPJS TSO HSJS

total number
of tasks ........ 56 950 308
CPU * .......... . 29.06 .468 1.186
channel 1 147.51
channel 2 ....... 315.16 1.394 5.409
disk 14 ......... 146.51
disk 25 ......... 222.52
disk 27 ......... 1.57
disk 28 ......... 2.945
disk 29 ......... 87.04 1.395 2.464
pages trans ferred

for VIO ...... 229.21 0.158 0.269
cards read ..... 274.0 1.0 106.0
lines printed 3735.0 92.0 174.0

* in millions of instructions

limited time available for monitoring in this case study, no special measurements could be
made to establish cause and effect relationships. and to distribute the unaccounted
resource usage depending on measureable system variables. An accurate breakdown of
usage by job class is not available for any physical resource. Instead, estimates of the
actual breakdown are made based on related data. For instance, the start I/Os (SIOs)
to the spooling disk can be distributed among the classes according to the accounted
numbers of cards read and lines printed, and the SIOs to the page data sets can be
distributed according to the numbers of pages transferred. For cases where no related
data can be measured the overhead is distributed according to the following ratios:

GPJS: .276
TSO: .600
HSJS: .124

These numbers were determined by giving equal consideration to the number of job step
intiations per class and the total number of I/O operations.

Multiprogramming Mix

For the TSO class, we do not need to specify a particular multiprogramming level.
Several multiprogramming levels are evaluated, and the performance measures are
weighted by the results of the birth-death model for the TSO transactions. For GPJS,
the average multiprogramming level is calculated from the sum of the resident times:
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Lresident times

measurement interval

The HSJS can have a multiprogramming level of at most one. So its average mUltipro­
gramming level can be calculated as the class elapsed time divided by the measurement
interval. The resulting average multiprogramming mix is:

GPJS: 2.1
HSJS: 0.6

(For TSO, we will investigate multiprogramming levels between 0 and 3.) Using the
mean multiprogramming levels ignores the large variation in the multiprogramming levels.
It also ignores the heavy interaction between the multiprogramming levels due to the load
balancing efforts of the SRM and the different job class elapsed times. However,
considering the information available, this is the best approximation we can make.

Workload Madel

The workload model must be specified in such a way that the parameters of the solution
algorithm can be derived easily. Algorithms assuming local balance have as their major
input parameters relative utilizations. The relative utilizations are guaranteed to be in
the same ratio as the total busy times of the servers. There are several equivalent ways
of specifying a consistent set of relative utilizations using data of different levels of
detail.

a) total load during T: X(i,r) = L(i,r) / CO)

b) load per partition: X(i,r) = L(i,r) / (MPL(r) • C(i))

c) load per job: X(i,r) = L(i,r) / (jobs(r) • C(i))

d) load per cycle: X(i,r) = L(i,r) /(cycles(r) • C(i))

T: measurement period
X(i,r): relative utilization of server i due to tasks of class r
L(i,r): number of operations executed by server i for tasks of class r
C(i): service rate of server i, assumed to class independent
MPL(r): mean multiprogramming level of class r
Jobs(r): number of class r jobs completed
Cycles(r): total number of cycles of class r jobs through the network

It can be shown easily that these definitions are mathematically equivalent
[KR75,GIAM77J, and that they require the same measurement data. Since the relative
utilization will be determined from the program behaviour model, we chose the job
oriented definition, c) that directly gives the elements of the workload matrix. The
workload matrix is shown in table 3.
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Table 3. Model workload (workload matrix).

address GPJS TSO HSJS
-------------------------------------
CPU * 33.33 1.02 2.41
channel 1 488.7 16.4 16.3
channel 2 404.0 48.1 13.0
disk 11 126.0 0.12 9.91
disk 12 11.6 1.48 0.95
disk 13 3.5 0.44 0.28
disk 14 224.9 0.0 0.0
disk 15 112.7 10.7 5.0
disk 16 7.8 3.4 0.0
disk 17 2.1 0.27 0.17
disk 21 11.3 1.4 0.93
disk 22 3.7 0.47 0.30
disk 23 1.8 0.34 0.06
disk 24 66.1 4.9 1.3
disk 25 172.9 0.0 0.0
disk 26 17.0 2.2 1.4
disk 27 28.8 3.7 2.4
disk 28 0.0 31. 7 2.9
disk 29 281.1 3.4 3.7

* in millions of instructions

Resource Attributes

The hardware resources represented in the system model are the CPU, the channels 1
and 2, and the disks connected to these channels. Only disks that are used in the
benchmark are included in the model. The paging process, the swapping process, and
the VIO facility are represented explicitly as software resources in the system model, but
not in the queueing network model. Thus their resource attributes need not be deter­
mined.

The service discipline for the CPU is complicated [IBM76a] and will not be described
here. It will be represented as a processor shared discipline in the computational model.
The service disciplines for the channels and the I/O devices are first-come-first-served.

For each hardware component of the model, the service rate must be derived from the
measurement data. This can be done according the following formula:

opt i)
C(;) = -------­

T( il

C(i): service rate of device i (operations per unit time)
Op(i): number of operations device i performed in the measurement interval
T(i): busy time of device i during the measurement interval
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Since the overlap of disk and channel activity cannot be modeled directly in the compu­
tational model, the service rates of the disks are adjusted to represent only the non­
overlapped part of the disk operations. To do this, the mean times of disk and channel
operations are calculated individually. Then, the mean channel operation times are
subtracted from the mean disk operation times. The inverse of these shortened disk
operation times are used as service rates for the disks in the model. The inverse of the
channel service times are used as the service rates of the channels.

To determine the CPU service rate, we also consider the high speed cache hit ratio, Le.,
the proportion of the memory access requests that can be satisfied out of the high speed
cache. This ratio can influence the CPU service rate considerably. The formula for
determining the mean memory access time is:

la = Na • (Ic + 1m • (l - P»

Ia: mean memory access time per instruction
Na: mean number of memory accesses per instruction
Ie: access time to the high speed cache
1m: access time to main memory
P: high speed cache hit ratio

The mean execution time of an entire instruction can be calculated from the number of
instructions executed and the CPU busy time. Then this time can be broken down into
memory access time and actual execution time. The service rates are assumed to be
class independent. This assumption may not hold in reality, as, for example, there is
evidence that the high speed cache hit ratio is class dependent. The service rates used in
the queueing network model are shown in table 4.

Table 4. Service rates of the hardware resources
in operations per second.

CPU 2.07*10E6 disk 21 32.20
channel 1 84.65 disk 22 51.56
channel 2 99.22 disk 23 27.80
disk 11 47.58 disk 24 21. 78
disk 12 31. 74 disk 25 36.60
disk 13 18.80 disk 26 54.45
disk 14 37.56 disk 27 39.76
disk 15 33.96 disk 28 55.53
disk 16 23.43 disk 29 70.11
disk 17 16.07
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5.2.2 System Model of the Birth-Death Model

Program Behaviour Model

The program behaviour model for the birth-death model is very simple. The tasks
circulate between the terminals and the computer system. The mean think time is the
only parameter that must be specified. The terminal simulator of the benchmark has a
mean think time of 12 seconds. The service demand is one interaction per cycle.

Interference Pattern

The swapping of temporarily inactive tasks and the load balancing could be modeled as
dynamic interference. However, to keep the model simple enough to be solved analyti­
cally, this will not be done. All overhead is covered by the network model on the
dispatcher level, so no interference pattern has to be specified for the birth-death model.

Workload Model

Since no interference is considered, the workload model is identical with the service
requests by the users described in the program behaviour model.

Multiprogramming Mix

The parameter that corresponds to the multiprogramming mix in the birth-death model is
the mean number of active terminals. Another related parameter is the maximum
multiprogramming level, which restricts the number of TSO interactions resident at one
time. The maximum number of active terminals in the benchmark is 25. Due to end
effects within the TSO stream of the benchmark, the mean number of active terminals is
23. The maximum multiprogramming level for TSO interactions cannot be determined
since it is dependent on the activity of the other job classes. Considering the large
backlog of TSO interactions that is indicated by the large average number of ready TSO
transactions in the measurement data, the average multiprogramming level must be close
to the maximum multiprogramming level. The average multiprogramming level during
the TSO class elapsed time is calculated from the resident times to be 2.45. The
assumption of constant average multiprogramming levels for the other classes does not
hold in practice because the SRM balances the overall load in the system, so that the
multiprogramming levels of all classes are highly interdependent. However, we do not
have any information about this relationship, so we assume constant multiprogramming
levels. If a joint probability distribution of the multiprogramming mix could be sampled,
we could circumvent this approximation.

Resource Attributes

The server of the birth-death model represents the entire computer system. The SRM
admits jobs into the multiprogramming mix according to an algorithm that is designed to
balance the overall load of the system. However, in the benchmark all TSO tasks have
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the same characteristics, so the FCFS discipline is a good approximation. The service
rates of the birth-death model are the load dependent throughput rates that are deter­
mined by the queueing network model. The TSO throughput rates of the queueing
network model are weighted to obtain the service rates for TSO interactions, the
birth-death model assuming multiprogramming levels of 2.1 for GPJS and 0.73 for HSJS.

6. COMPUTATIONAL MODELS

6.1 Concepts

Analytic queueing network models are too complex a subject to be discussed in detail
here. For an overview see, for example, the September 1978 issue of ACM Computing
Surveys or [KIEN77]. In the following only a very brief overview is given.

An important distinction among queueing network models is whether or not the so-called
"local balance" assumptions are satisfied [BCMP75]. Models in local balance can be
solved by relatively inexpensive convolution algorithms [RK76], and, as mentioned
earlier, they require only summary statistics as input. However, they impose some severe
restrictions on the models: at servers with FCFS service discipline, all service time
distributions must be assumed to be exponential with the same mean for all classes, and
priority service disciplines cannot be represented.

Models not assuming local balance avoid these restrictions but they require much more
detailed measurement data (e.g., interevent time distributions), and the systems of linear
equations that must be inverted for their solution reach easily 100000 equations with
100000 unknowns. Thus, this method is too expensive in most realistic cases.

A number of approximation methods have been developed that, at least partially,
overcome the problems of local balance models and whose cost is in the range of the
cost for local balance methods. There is an iterative approach that facilitates the
modeling of preemptive priority disciplines [SEVC77]. For the modeling of non­
exponential service time distributions with FCFS service disciplines several approximation
methods are available [CHW75, SLTZ77]. Finally, the diffusion approximation method
[KOBA74a, KOBA74b, GP77] offers an approach using a set of differential equations
similar to the diffusion equations in physics. This approach can handle FCFS service
disciplines, arbitrary service time distributions, and several classes of customers.

6.2 Computational Multiple Class Queueing Network Model

For the queueing network model, a multiple class model in local balance is chosen, so the
convolution algorithm can be applied. Only hardware resources will be represented
explicitly in the queueing network model. The software service facilities like paging and
swapping will be represented only implicitly as service demands on the hardware re­
sources. Since the processor-shared discipline is used for the CPU, class dependent CPU
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service time distributions can be assumed (although, they need not be specified). For
the I/O subsystem, servers for the channels I and 2 and the disks are modeled, assuming
FCFS disciplines and class independent exponential service time distributions. The
spooling devices and channel 0 are not represented in the model since the spooling
activity is asynchronous to the rest of the system's operation. The spooling overhead,
however, is included in the workload matrix. The usage of the CPU, the disk channels,
and the disks for the spooling system, however, are captured in the model. The structure
of the model is shown in figure 4.

~~
Channel 1 ~

CPU

Disks

Figure 4. Queueing network model.

Table 5. Utilizations and throughputs of the
multiple class queueing model.

utilizations

CPU CH 2 CH 3

throughpu t
(jobs per second)
GPJS TSO HSJS

-------------------------------------------------------
model

resu Its .849 .281 .369 57.3 1042 303
measurement

data .820 .269 .346 56 950 308
relative

error (%) +3.6 +4.4 +6.7 +2.4 +9.7 -1.6
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The input parameters required are the multiprogramming mix and the workload matrix
with each entry divided by the service rate specified the corresponding device.

In order to obtain the performance measures for the average multiprogramming mix, the
model is evaluated under the neighbouring integral multiprogramming mixes, and the
results are linearly interpolated. The sequence in which the classes are chosen for
interpolation does not affect the results.

The results of the model together with the corresponding measurement data and the
relative errors where applicable are shown in tables 5 and 6. The disk performance
measures are not listed. They are not very meaningful due to the special calculation of
the disk service rates. Note that the mean queue lengths shown do not add up to the
average multiprogramming levels of their respective classes because the mean queue
length at the disks must be included in such a sum. The mean resident times can be
calculated as the inverse of the throughput times the multiprogramming level of the
respective class.

GPJS 81.5 secs
HSJS 3.4 secs

The response time of the TSO interactions will be determined by the birth-death model.

Table 6. Mean queue lengths of the multiple
class queueing network model.

mean queue lengths
GPJS TSO HSJS total

CPU
Channel 2
Channe1 3

1.055
0.202
0.163

0.653
0.126
0.322

0.417
0.038
0.029

2.125
0.366
0.514

These results seem to indicate that the overall resource usage is represented more or less
accurately, but that too much of the overhead is attributed te> HSJS and too little to
TSO. The general breakdown ratio is a critical parameter for this model. A small
experiment whose results are shown in table 7 can prove this. The first ratio is derived
by distributing the unaccounted resource usage only according to the I/O related data.
Apparently, too much overhead is attributed to GPJS, and not enough to TSO and HSJS.
A shift of 10% of the unaccounted overhead in the ratio from GPJS to TSO improves
the results for GPJS and TSO, the error for HSJS becoming even larger. The third ratio,
derived by the rationale described in the section on the interference pattern, results
mainly in a shift of overhead from GPJS to HSJS. The TSO error is only slightly
changed. As a consequence of this experiment, we know that the distribution of unac­
counted resource usage must be performed with great care. The ideal case would
certainly be if all resource usage were accounted to user tasks by the monitors. Where
this is not possible, the breakdown ratio can be adjusted until the the utilization and the
throughput values of the model match the measured values as well as possible. This
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calibration must then be validated by a model based on a new set of measurement data
collected under a different workload.

Table 7. Error calculations for different breakdown ratios.
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breakdown ratio
GPJS TSO HSJS

relative throughput error (%)
GPJS TSO HSJS

.465

.365

.276

.508

.608

.600

.027

.027

.124

-12.7
-6.9
+2.4

+23.5
+9.5
+9.7

+21.9
+23.0

-1.6

6.3 Computational Birth-Death Model

The parameters of the system model can be used directly as input to the solution
algorithm, so that no transformation need be performed for the parameter representation.
For the structure of the model see figure 5.

Computer
System

Terminals

Figure 5. Birth-death model.

To obtain the service rates for the birth-death model, the queueing network model is
evaluated for TSO multiprogramming levels of 0 to 3 and all the multiprogramming
levels of the other classes required for the interpolations to obtain the TSO throughput
values with average mutliprogramming levels of 2.1 for GPJS and 0.73 for HSJS. The
birth-death model then is evaluated for the maximum multiprogramming levels of 2 and
3. The results, the average number of transactions in the system and the throughput of
transactions, are again linearly interpolated to obtain the values for the fractional average
multiprogramming level of TSO, 2.45. The results of the birth-death model are shown in
table 8.
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Table 8. Results of the birth-death model.

MPL E[n] throughput
model rel.error

(per sec) (X)

response time
model rel.error
(sec) (X)

2.4 15.92
2.5 16.12
2.6 16.33

.556

.573

.590

+1.4
+4.6
+7.7

28.64
28.14
27.67

-5.9
-7.6
-9.1

In order to compare the model results with the measurement data, the mean response
time is calculated from the measurement data (following some operational considerations
[BUZE76]) to be 30.45 seconds. Considering this response time and a mean think time
of 12 seconds, the benchmark certainly does not represent a very realistic TSO load.
This was discovered only during the modeling study. Dividing the number of interactions
by the TSO class elapsed time, we obtain a mean throughput value of 0.548 interactions
per second.

There are several reasons for the errors in the model results. Because the TSO through­
put in the queueing network model is too high, the throughput of the birth-death model
must also be too high. The maximum multiprogramming level in the system is not fixed
as it is in the model. The state probabilities of the birth-death model show that for all
cases evaluated the probability that the multiprogramming level is at its maximum is
greater than 0.99. This finding is consistent with the observation of the large backlog of
TSO tasks in the system. So the multiprogramming level for TSO tasks in the system
follows the multiprogramming level as specified by the SRM, and is not determined by
the arrival stream and the service rate of the server as is asssumed by the birth-death
model. Considering this observation, it is questionable whether the birth death model is
needed at all.

7. CONCLUSIONS

The proposed modeling procedure is intended to provide a better understanding of the
system and the modeling process. By stating the intermediate models explicitly, the
procedure allows a more formal parameter transformation from the measurement data to
the input parameters of the queueing network models. The isolation of the workload and
the system's components in the system model makes the modeling decisions more explicit
and exposes the influence of the different parts of the system on its performance.

To benefit fully from this procedure, a modeling study should be based on a large set of
experiments under a wide range of workload conditions. Using detailed measurement
data, sophisticated system models can be developed to serve as a basis for detailed
modeling studies.

Four points that deserve more attention are: I) Based on measurement experiments
varying the load, interference functions could be established that implicitly reflect cause
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and effect relationships of the operating system's overhead and thus put the interference
pattern on a sound basis. 2) The load and class dependency of the CPU and I/O service
rates could be determined. 3) With several sets of measurement data from actual
operation of the system, a broadly based workload model could be developed that would
reflect an average load situation of the system much better than the benchmark. 4) An
independent set of measurement data would allow the validation of the modeling
decisions.

A CKNOWLEGDEMENTS

The research for this paper greatly benefitted from discussions with Scott Graham, Ed
Lazowska, Allan Levy, Satish Tripathi, and John Zahorjan, all of Project SAM 1976 ­
77. John Sutherland of the UTCC was helpful in providing the measurement data.
Good comments on the presentation were provided by Vicente Aragon, Tony Chu, Lenny
Freilich, and Ben Welleschuk, members of Project SAM 1977 - 78. This study was
financially supported by the Deutscher Akademischer Austauschdienst and the Depart­
ment of Computer Science of the University of Toronto.

References

[BARD77]
Y. Bard. The Modeling of Some Scheduling Strategies for an Interactive Computer
System. International Symposium on Compter Performance Modeling, Measure­
ment, and Evaluation, Yorktown Heights, 1977.

[BCMP75]
F. Baskett, K. M. Chandy, R. Muntz, F. Palacios. Open, Closed, and Mixed
Networks of Queues with Different Classes of Customers. Journal of the ACM, 22,
April 1975.

[BUZE76]
J. P. Buzen. Fundamenal Laws of Computer Performance. International Symposi­
um on Computer Performance Modelling, Measurement, and Evaluation, Cam­
bridge, March 1976.

[BUZE78]
J. P. Buzen. A Queueing Network Model of MVS. Computing Surveys, September
1978.

[CHW75]
K. M. Chandy, U. Herzog, L. Woo. Approximate Analysis of Queueing Networks.
IBM Journal of Research and Development, January 1975.

25



26 M.G. KIENZLE and K.C. SEVCIK

[CM73]
R. Cavanagh, G. Milandre. Hardware Monitoring at the University of Toronto
Computing Centre. Internal UTCC document, May 1973.

[DB78]
P. Denning, J. P. Buzen. The Operational Analysis of Queueing Network Models.
Computing Surveys, September I 978.

[GIAM76a]
T. Giammo. Validation of a Computer Performance Model of the Exponential
Queueing Network Family. International Symposium on Computer Performance
Modeling, Measurement, and Evaluation, Cambridge, 1976.

[GIAM76b]
T. Giammo. Extensions to Exponential Queueing Network Theory For Use in a
Planning Environment. Proceedings of Compcon '76 Conference, IEEE, September
1976.

[GP77]
E. Gelenbe, G. Pujolle. A Diffusion Model for Multiple Class Queueing Networks.
Rapport de Recherche No 242, Laboratoire de Recherche en Informatique et
Automatique, 1977.

[IBM76a]
OS/VS2 System Programming Library, Initialization and Tuning Guide, IBM Form
No. GC28-0755

[IBM76b]
OS/VS2 MVS Resource Measurement Facility (RMF), Reference and User's
Guide, IBM Form No. SC28-0740

[IBM77]
OS/VS2 MVS System Programming Library, System Management Facilities (SMF),
IBM Form No. GC28-0706

[KGT77]
A. Krzesinski, S. Gerber, P. Teunissen. A Multiclass Network Model of a Multi­
programming Timesharing Computer System. Proceedings IFIP congress '77,
Toronto, 1977.

[KIEN77]
M. Kienzle. Measurements of Computer Systems for Queueing Network Models.
M.Sc. Thesis, University of Toronto, Technical Report CSRG-86, Computer
Systems Research Group, University of Toronto, 1977.

[KOBA74aj
H. Kobayashi. Application of the Diffusion Approximation to Queueing Networks,
I: Equilibrium Queue Distributions. Journal of the ACM, 2 I, 1974.



PERFORMANCE MODELLING OF COMPUTER SYSTEMS

[KOBA74b]
H. Kobayashi. Application of the Diffusion Approximation to Queueing Networks,
II: Non-Equilibrium Distributions and Applications to Computer Modelling. Journal
of the ACM, 21,1974.

27

[KR75]
H. Kobayashi, M. Reiser.
Queueing Network Model.

On Generalization of Job Routing Behaviour in a
Research Report RC 5252, Yorktown Heights, 1975.

[RK76]
M. Reiser, H. Kobayashi. On the Convolution Algorithm for Separable Queueing
Networks. International Symposium on Computer Performance Modelling, Meas­
urement, and Evaluation, Cambridge, March 1976.

[ROSE76]
C. Rose. Validation of a Queueing Network Model with Classes of Customers.
1nternational Symposium on Computer Performance Modelling, Measurement, and
Evaluation, Cambridge, 1976.

[SEVC77]
K. C. Sevcik. Priority Scheduling Disciplines in Queueing Network Models of
Computer Systems. Proceedings IPIP Congress '77, Toronto, 1977.

[SLTZ77]
K. C. Sevcik, A. Levy, S. Tripathi, J. Zahorjan. Improving Approximations of
Aggregated Queueing Network Subsystems. International Symposium on Computer
Performance Modelling, Measurement, and Evaluation, Yorktown Heights, 1977.

[SU78]
K. C. Sevcik, D. Unruh. A Case Study in Predicting TSO Response Times. Submit­
ted for Publication.





Performance of Computer Sys tems
M. Arato, A. Butrimenko, E. Gelenbe (eds.)
©IIASA, North-Holland Publishin9 Company, 1979
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The evolution of technology provides the opportunity of
connecting inexpensive processors to build medium or large
scale computer systems. However, operating such systems, serious
coordination problems (synchronization, data and code sharing,
etc.) may occur.

Characteristic performance values, such as throughput, mean
response time, and distribution functions are derived directly
for fundamental computer structures and operating modes. More
complex systems are investigated by a hierarchical modeling
technique.

INTRODUCTI ON

Multiprocessor computer systems with two or three processing units have been
built since many years. Due to inexpensive hardware-components and minicomputers
there is an increasing interest in building systems with some ten or even hundreds
of processors [5-7].

Rather than running independent tasks on different processors one also tries to
take advantage of the parallelism inherent in many problems, i. e. application
programs are decomposed into sets of parallel cooperatinq subtasks and processed
in parallel, when possible [11,15]. So we may increase not only the throughput of
a system: run-times (and therefore response-times) for individual application
programs may be reduced significantly, too. Then, however, difficult coordination
problems (synchronization between tasks, data and code sharing, etc.) may occur
[2,5-7,11,15,21].

In this paper we investigate synchronization problems and their influence on per­
formance by a new class of queuing models.

We first describe in outline the architecture of hierarchically organized multi­
processor computer systems with centralized control (our modeling technique may
be applied, at least partially, also for systems without centralized control
since we may find there master-slave relations, too).

The timely sequence of events is determined not only by the structure and opera­
ting mode of a multiprocessor system. It is heavily influenced also by the inter­
nal structure of the application programs to be run on the system.

29
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We therefore classify application programs in section 3, think about their imple­
mentation on hierarchical systems, and develop the corresponding queuing models.

Section 4 deals with the analysis of two level hierarchies under Markovian and
Non-Markovian assumptions.

Section 5 summarizes the results for a three level multiprocessor system on which
a traveling salesman algorithm runs as application program.

We then conclude, section 6, with some remarks on ongoing and future research for
multiprocessor computer systems.

ARCHITECTURE OF HIERARCHICALLY ORGANIZED COMPUTER SYSTEMS

1. General remarks

Hierarchical structures have been applied successfully in many organizations, in­
dustries and technical systems. It therefore seems to be reasonable to use this
type of organization for multiprocessor systems, too. Hierarchical structures are
transparent since we may distinguish clearly between organizational and applica­
tion work and it is possible to concentrate coordination problems while distribu­
ting independent user tasks.

Typical examples are the EGPA-project [6], the multiprocessor system at the SUNY
[7J, the Siemens-system SMS [17], MOPPS [20], X-TREE [4] and others.

Because our investigations were initiated and influenced by the EGPA-project, we
outline next the EGPA-architecture.

2. The EGPA-pyramid [6]

The EGPA (Erlangen General Purpose Array) consists of a rectangular array of pro­
cessors (A-processors) connected via multiport memories. Each processor may access
its

r------..----.----
lcrOlde-l (lllSHH)

Fig. 1: Erlangen General
Purpose Array (EGPA)
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------... connection in Drle direction only

-- connections in both directiof1s

Fig. 2: Cellular structure of EGPA

"own" memory, and the memori es of its four nei ghbours in the north, wes t, south
and east direction (figure 1). The edges of the rectangle are connected to form
a toroid. In addition to the array-processors, there are processors dedicated to
the transfer of data between the array-processors and the peripherals.
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At present, each of these processors, called boundary (B)-processors, is allocated
to a 2 x 2 square of the array. In addition there is a single processor, called
control (C)-processor, which has a supervisory function. The pyramid structure is
shown in figure 2. A pilot-pyramid is being implemented now.*

PARALLELISM, SYNCHRONIZATION PROBLEMS AND MODELING

1. General remarks

The flow of information in a multiprocessor computer system depends on the hard­
ware-components, the interconnection scheme and the operating system. It is, how­
ever, heavily influenced also by the internal structure of the algorithms imple­
mented in the application programs.

Following the work of Adams [IJ and others, we describe a program by means of a
directed graph, the nodes representing subtasks (well defined functions or sets
of functions), the edges showing interdependencies and representing data buffers
(unlimited FIFO-queues). Nodes (subtasks) are performed if and only if each input
edge to this node contains at least one data. We classify several types of paral­
lel algorithms and develop equivalent queuing models for hierarchical multipro­
cessor computer systems.

2. Type-I-program structure

The program consists of a loop which may be passed several times, cf. figure 3.
Within that loop n independent subtasks can be distinguished (there may exist some
pre- and postprocessing). A new loop-cycle may be started iff** all n independent
subtasks are completed.

* The EGPA-Project is supported by the BMFT, the German Ministry of Research and
Technology.

** iff ; if and only if
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Fig. 3: Type-I-program structure
(si-subtasks, cf. 3.2)

Fig. 4: Execution of a type-I­
program on a two-level
hi erarchy.

Problems are often of this type: algorithms for the solution of linear-algebraic
or partial differential equation systems, optimization procedures, simulations in­
cluding subruns for the purpose of estimating confidence intervals, problems of
picture process i ng, etc." etc.

Such algorithms may be implemented very efficiently on a hierarchically organized
multiprocessor system with two levels (cf. figure 4):

- At first the source program is translated, loaded and then started by the B-pro­
cessor (abbreviations, see section 2).

- The B-processor then initiates the execution of n independent subtasks by the
A-processors.

- Having completed its subtask, each A-processor has to inform the B-processor.
- Postprocessing and preparation of a new loop-cycle by the B-processor is only

possible when all subtasks are completed.
Queuing models which allow to describe and analyze the traffic flow including the
above synchronization problem are shown in figures 5 to 9 (synchronization is
shown symbolically by lying brackets) .

• Multiprogramming

We first assume multiprogramming for both B- and A-processors (cf. figure 5):

Newly arriving demands (source programs) are processed by the B-server (B-pro­
cessor), then it generates n independent sub-demands and distributes them simul­
taneously among all n A-servers (more sophisticated transfers, cf. section 6).

Sub-demands may have to wait since A-servers may be busy at that time. After com­
pletion each sub-demand is buffered in the corresponding input queue of the B­
server.
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Fig. 5: Open model
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Fig. 6: Closed model
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Fig. 8: Closed model for

monoprogrammi ng

Iff all n sub-demands, belonging to a specific demand, are buffered, and the B­
server is empty, they are removed simultaneously (symbolized by L-j) from the n
parallel input queues and processed in one step. After completion there are two
poss i bi 1iti es

- the (complete) demand leaves the system, or
- n new sub-demands are generated simultaneously and a new cycle is started.

Figure 6 shows the corresponding closed queuing model. It allows to model sYstems
with a constant degree of multiprogramming. As we shall see in section 4, closed
queuing models are the basic models because open models may be analyzed via these
models .

• Monoprogramming

Multiprogramming allows to increase system throughput. However, for reason of sim­
plicity and transparency of the operating system there is a trend to introduce
monoprogramming, again [14,21,22,24].

I;1·-~~i:l=T-f--'
'I IJ.:Lt:L~ ~_l~~~ J l:J

I ~'~":F~J
! ,'\. f L-i>~

l[~IP -i';-1 I
I I. _::TJ. .~T I

-_._--_...._--~_.~~-~-----,... <

Fig. 7: Open model for
monoprogramming



34 U, HERZOG and W. HOFFMANN

The corresponding open and closed queuing models may be derived readily according
to the above section and are shown in figures 7 and 8, respectively: no queues
build up in front of the A-servers!

Obviously the utilization of the 8-server is rather poor. There are, however, two
possibilities to avoid this lack:

1) The B-server services also subtasks,
2) A mixed multi- and monoprogramming mode is introduced.

Since the analysis of solution 1 is very similar to that of monoprogramming we now
discuss the second possibility .

• Mixed multi- and monoprogramming

Multiprogramming for the B-processor and monoprogramming for the A-processors seem
to be a reasonable solution for many applications. Figure 9 shows the corresponding
(closed) queuing model and is rather self-explanatory:

Fig. 9: Closed queuing model for mixed mode

Be given a number m of independent demands (t ... , t .... ,t ) to be served
sequentially (!) by the B-server. After completion eac~ task m t. (i = I, ... , m)
generates n· independent subtasks to be processed by the reserved A-processors A' 1to A... Tas~ t. may be started again if and only if all subtasks have been com- 1

plet~81 by the lA-processors. If the B-server is bUsy, complete demands wait in
front of the server and are served in the order of arrival (FIFO).

Note, synchronization is only necessary between sUb-demands belonging together, an
important fact for analysis.
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3. Type-2-program structure
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"

Fig. 10: Type-2-program structure

Here, the program also consists of a
loop. However, the n subtasks in­
fluence each other in some way (fi­
gure 10 shows one possibility) rather
than being completely independent.

So, in addition to the overall syn­
chronization, a "local" synchroni­
zation of subtasks is also necessary.

The execution of a type-2-program
structure may be performed on a hier­
archical multiprocessor system as
follows:

As before, the source program is
translated, loaded and started by
the B-processor. Again, the B-pro­
cessor distributes n subtasks to the
A-processors. However, after some
process i ng low 1eve 1 (1 oca 1) synchro­
nization between several A-processors
is necessary.

Processing continues and more low
level synchronizations may occur
until an overall synchronization by
the B-processor is necessary.

Closed queuing models for monopro­
gramming are shown in figure 12, mo­
dels for multiprogramming and mixed
mode may be obtained accordingly
(for reasons of simplicity we pro­
pose to use the simplified model
rather than the detailed model which
also shows the low level synchroni­
zation buffers).

B

-=

Ilocal ~lob,}l I
1- . . .1

Fig. 11: Timing diagram with local and global synchronization
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I
I
I

I1. . ..•

Fig. 12: Detailed (left) and simplified queuing models for systems with
both global and local synchronization

4. Type-3-program structure

There are two reasons why the degree of parallelism (and therefore the number of
necessary A-processors) may vary:

1) The changing number of independent subtasks is characteristic for many applica­
tions (inherent in the algorithm, cf. fig. 13)

2) The degree of parallelism of the algorithm is larger than - and not an integral
multiple of - the number of A-processors available at the moment.

Figure 14 demonstrates the basic idea of modeling that type of problems: the B-pro­
cessor always generates (!) n independent sub-demands. The A-servers are by-passed,
however, with (different) probabilities (1 - q.), i = 1, ... ,n. In other words: we
always generate a constant number of sub-deman~s. For some of them (dependent on
the task to be processed) there is zero processing time necessary at the A-proces­
sor.

It is possible to investigate such models under various assumptions [13J. And it
is not too difficult to realize that models of this type allow to "simulate" exactly
models where the B-processor generates i sub-demands according to an arbitrarily
chosen probability distribution Pi (i = 1, ... n).

( Figures 13 and 14 see next page)

5. Type-4-pro~ram structure

Completely independent tasks (fig. 15) may be run, of course, on a hierarchical
system, too: each source program is translated and loaded individually by the B­
processor and then processed by an A-processor.
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Fig. 14: Closed model for type-3-pro­
grams

Fig. 13: Structure of an ALGOL program
which generates a symmetric
matrix [19].

Fig. 15: Type-4-program
structure (inde­
pendent tasks).
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Figures 16 and 17 show the corresponding open and closed queuing models (queuing
may be or may not be allowed in front of the A-processors, dependent on the opera­
ting mode.)

l§j

m
EJ EJ EJ

...~

Fig. 16: Open model for
type-4-programs

Fig. 17: Closed model for
type-4-programs

It is interesting to note that the closed model presented in fig. 17 plays an im­
portant role when analyzing mixed models according to figure 9 (cf. section 4.2).

6. Mixture of program structures

Program structures presented above may occur in "pure form" only in some special
purpose multicomputer systems. In the general case, however, programs of different
structures have to be processed, and within one program the structure may also
vary.

Then, the corresponding queuing model is a mixture of several pure models, in case
of closed models mainly a combination of figures 9, 12 and 14.

Although we have not investigated yet such a model, its analysis seems to be
straight forward. From our point of view it seems to be more difficult to find a
characteristic workload and to choose the model parameters accordingly (cf. sec­
tion 6).

PERFORMANCE ANALYSIS FOR TWO LEVEL HIERARCHIES

1. General remarks

All closed models presented above (and some open, too) have been investigated un­
der various assumptions [8,9,12,131:

- Exponentially distributed service times for both B- and A-servers, the mean
value may vary for different A-servers,

- General service time distributions, mostly of Erlangian and hyperexponential
type, respectively.
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B-server:
A-server:

In analyzing the performance we usually assumed stationarity, determined then sta­
te probabilities and characteristic performance values such as

- system throughput
- server util ization individual for each server
- mean numbers of A-servers working simultaneously

mean numbers of demands and/or sub-demands waiting in front of servers (queue
1ength )

- mean synchronization time, i.e. mean time between the moment when all related
sub-demands start and the last one is completed

- mean cycle time for complete demands, the sum of synchronization time and pro­
cessing time at the B-server

- distribution functions for both the synchronization and cycle time.

Some results for the most important mean cycle time have been summarized in table
1, more detailed information on three closed models may be found in section 4.2.

Open models can be analyzed efficiently by a hierarchical modeling technique [10,
I6J, the results of which are often accurate approximations, sometimes exact [9J.

Finally, we would like to point out that our investigations are strongly related
to the problem of CPU-I/O-overlap 13,18,23]. So the multiple CPU-I/O-problem may
be solved now, too.

2. The closed model for type-I-program structure and mixed multi- and monoprogram­
mingo

Be given a model structure according to figure 9, the service discipline of which
being described in section 3.2. Service times for both B- and A-servers are assu­
med to be exponentially distributed with

~ service rate for the B-server

A;j service rate for the Aij-server, i E {l,2, ... ,m} j E {l,2, ... , ni }

m number of complete demands Di (competing for the B-server), i.e. degree

of multiprogramming.

ni number of parallel sub-demands belonging to demand Di .

Analysis is performed under equilibrium conditions, i.e. stationarity is assumed .

• Decomposition: Recall, again, that synchronization is only necessary between
sub-demands S.. , j E {l,2, ... n.} belonging together. So, if we are able to
analyze all lJ individual sync~ronization processes, the overall behaviour is
described exactly by the following mode, known from figure 17:

service times exponentially with rates ~ as in the complete model.
service times generally distributed with different service rates A~ ac­
cording to the d.f. of the synchronization times F.(t) and its mea~
Ei[TS], i E {l,2, ... m}, No queues in front of th~ A-servers.

We therefore attack at first the (individual) synchronization problem also being
the solution for the monoprogramming model shown in figure 8. Then, in a second
step, we briefly outline the solution for the multiprogramming model presented in
figure 17, a general ization of the G/M/l/m-model.
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Type·l-program

Toode 15
(mono program­

min9)

n = Z
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a) ex.puoentic11ly distributed service times in the A-processors
, 3

t. = r + 2.')

b) Erlang - k - distributed service times in the A-p,roces50rs

t - ~ .. ..!.. + _1_ '5~ l~-i.)·Ti;,~,li+k-~)
.. -}'- ;I 2K') 1;0' i.! :2.~+i.-1

c) HZ - distributed service times in the A-processors (mean serv1~~ ~ime: '* +

2 ')')l +3(<1.. IIll+cA l 'i\;)+-(~2o(' r'i\1""t)('i\,o(,,,~~)

1 ~1 ')2(')' +'A1.)

a) exponentially distributed ser'w';ce times in the A-processors
.rbitrary A ~"~

t~ = - + T L -;-r '01 <-.-.--------------_. ---.--- .---.-~(~;- -----------.,-----f:M:~~-f;~; ~,;,;,:r:d~.~LJ i----------..------------.---..--.
~::~~-pro9ram .rbi:rary 1 = E,[Ts

] + 'i"r'""+L..;,,",.j. dm,ilj») ~.
(mixed multi- ] 1'" 1
and monopro- d l') .., If _A_ ~. [T'!t - - , -

.. 'J =L '. EJ'r~ i ' -;I' L ;:j
gr."",ing) , <-" ...,(j-'_",1, ... ,,,,\-[LI lI..l" ...,'J"' L JO'

i.... twO'S ctiltcit\oLt

(cf. section 4.2)

Type-2-program

models arbitrary

Type-3-program

""'dels .rbi trary

Type-4-program
mode1s arbitrary

(cf, section 4.2)

in the case of exponentially distributed service times ( )i • )tj for 16 jJrt\~)

a) exponentially distributed service times in the A-processors

dependent on the specific local synchronization mode

(5: number of local synchronizations)

a) exponentially distributed service times in the A-processors

~ -II "I:.
i4J ... )\.j.<4 f:{",2" .. I~j·tt~ ".'4J"'Jij-.c

jrj fwo$ diff-tt'~K~

Table 1: Mean cycle time t z for different models (lJ: rate for B·server. ,\: rate for A-server5,Ql: branching

probabilities (cf. fig. 14)).
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• Synchronization: Let D. be the complete
has to be determined. Processing of all
starts at the same instant. Suppose all
tributed with uniform service rates Ail
tes. cf. [8,13]).

demand the synchronization time of which
sub-demands S.. , j E {l,2, .... n.},
processing ti~~s are exponentially dis­
= A. = A. (solution for different ra-

1nil

Now, obviously, the interval TS between the initiation of all sub-processes and
the termination of the first I sub-process is distributed exponentially:

(I) p. (TS :> t) = I - e
1 I

- n.
1

the interval TS between the first and second termination according to
2

(2 )
- (ni-I) . Ait

I - e

etc.etc.

Therefore, the total synchronization time is (cf. fig. 18)
ni

(3) TS==TS.'
j =1 J

and its distribution function is obtained by the n.-fold convolution of exponential
distributions with different mean values: 1

F.(t) = P.(TS :> t) = P.(TS :> t) * P.(TS :> t) * .... * PitTS :> t) •
1 1 1 I 1 2 n.

1

Applying Laplace transformation the following closed form solution may be obtained

ni . I ( n.) -j . A. t
(4) Fi(t) = L (_I)J-. .' . (I - e 1 )

j=1 J

with mean and variance

(5)

(6)
I

VARi[Ts] - >:z
1

n.
1

L
j=1

n,
1

L
j=1
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Fig. 18: Interpretation of the synchronization process and the way
of analytic solution .

• Overall behaviour: Slnce the synchronization problem is now solved the overall
behaviour is completely determined by the parallel-processing model presented in
fig. 17. Recall, there is no queuing in front of the A-servers and the service
rate of these m A-servers is

(7) A~ - --­
1

E (1,2, ... , m}.

We first analyzed this model under Markovian assumptions: system states were de­
scribed by a (m + I)-dimensional vector, stationarity was assumed and the explicit
solution derived for the state-probabilities, a generalization of the well known
M/M/I/m-solution.

Secondly, we proofed the solution also being valid in case of general service time
distributions for the A-servers. The detailed analysis may be found in [I3J, some
characteristic performance values are:

Utilization of the B-processor YB

m

[
-L,J ... )ij ~l~"""JmJ

f m-J 1T Ail)
l.. i.~)""./'J



HIERARCHICALLY ORGANIZED MULTIPROCESSOR COMPUTER SYSTEMS

Utilization of each A-processor YA

43

m-1

YA
1 (IfI ~

m -J m-J

L- IT t- + r ), )
~ m t.

j,=1
1..1).<- }JE:-{1 r '.lrn ! i. :: 1.1)"') lj

Mean cycle time t z for a task with mean service time in the A-processor

1
~I

~

with

m

~ = rrY1+Lfm
-
j
~

j.~ 1 . i.~)' ..;i.
j
' Eo { 1) ... ,m)

3. Numerical results

Figure 19 shows the mean cycle time for (complete demands) as a function of:

1) The program (and therefore model) structure: we may have one, two or four de­
mands with four, two or one sub-demands respectively, and

2) The mean service rate u of the B-server.

Furthermore, it is assumed that the service rate A is uniform for all sub-demands.
In order to compare the results for the same load per cycle of the B-server we
introduced different scales. Note, however, that we compare various types of pro­
grams running on a given configuration!

PERFORMANCE ANALYSIS FOR A THREE LEVEL HIERARCHY

Figure 20 shows a three level multiprocessor computer system and the flow of infor­
mation if we run an algorithm for the famous traveling salesman problem as applica­
tion program on such a configuration (solution via 3 - optimal tours).

Rather than describing the details of the algorithm and its implementation [13J we
focus our attention on the problem of modelirg:
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4 demo 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 1

"
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Fig. 19: Examples for the mean cycle time (cf. text) .
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Fig. 20: Three level multiprocessor computer structure
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Fig. 21: Execution time t for the traveling salesman algorithm on a
three level hierarchical multiprocessor computer system.
Comparison between results from a step-by-step simulation
of the algorithm (simulations x, mean value I) and three
approximate solutions (proc. 1 0----0, proc. 2~,
proc. 30---0). Results are shown for n = 10, 16, 33 and
42 citi es (cf. text).
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It is rather unwise and probably unsuccessful to describe and analyze the compli­
cated flow of information and all interdependencies by a single global queuing
model. However, lt was possible to describe the interactions between each level­
2~processor and its 1eve l-3-proces sors by a para 11 el-proces sing mode 1, shown in
flgure 17 and analyzed in section 4.2. On the other hand, interactions between the
level-I-processor and all level-2-processors may be described accurately by the
synchronization model, presented in figure 8.

So, a~plying.the hierarchical modeling and analysis technique [IO,I6J we developed
three approxlmate procedures. Some results are shown in figure 21 and compared
wlth a step-by-step slmulation of the complete 3-optimal-tour-algorithm (since the
algorlthm starts from a randomly chosen initial tour, the execution time varies
even for the same number n of cities: we therefore performed the algorithm ten
times for each problem).

Comparisons show that the (very simple) procedure I tends to overestimate the
execution time. Procedure 2 yields, for a small number of cities, results which
are somewhat too optimistic. Finally, the most sophisticated procedure 3 yields
always accurate results.

CONCLUDING REMARKS

Introducing multiprocessor computer systems serious coordination problems (synchro­
nization, data transfer, data- and load-sharing, etc. etc.) may occur.

In this paper we described and analyzed the effect of synchronization on system
performance. In particular, taking into consideration the internal structure of
programs, we developed specific models and analyzed them under Markovian and Non­
Markovian assumptions as well.

Several directions for further work are apparent. Some of our models have only
been investigated under Markovian assumptions, now we try to solve these problems
more generally. More sophisticated models may be obtained if signalling overhead
is introduced. Priorities are another interesting and important subject. It also
seems to be possible to take into consideration the influence of data transfers
on system performance. And, as mentioned above, the multiple CPU-I/O-overlap prob­
lem may be solved now, too.

Most significant is also the following task: we have to investigate the structure
of various algorithms and programs in order to find a characteristic workload for
parallel processing systems and their corresponding models.

In short, considering the evolution of technology and trends in hardware/soft­
ware-development, there are still many important and challenging problems in the
area of performance modeling and evaluation for multiprocessor computer systems.
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Mean value analysis of queueing networks is extended to
obtain approximate formulas for several previously unsolved
problems. Both finite population and large population
asymptotic results are obtained. Among the cases treated are
first-come-first-serve queues with different exponential
service times for different user classes, dispatching
priorities based on resource consumption, overlaps among
different queues, blocking by constrained resources, and
decomposable networks.

1. Introduction

Reiser and Lavenberg [lJ have shown that queueing network problems can be solved
very simply by means of relations involving only mean values of queue lengths,
service times, and queueing times. The results are the same as those derived from
product form solutions whenever the latter exist. Though the amount of
computation required is the same, the mean value analysis is much simpler to
derive and explain, and is numerically less troublesome since it does not require
computation of very large normalizing constants. The new approach also leads to
very simple derivations of previously known asymptotic formulas [2J, and is
capable of operational (in the sense of Buzen [3]) interpretation.

One of the main benefits of the mean value analysis is that it may be applied in
a straightforward way to networks which do not have a product form solution.
The results are generally correct only in the asymptotic case, but may provide
good approximations in the finite case. Following a brief exposition of the
method, we shall illustrate several such extensions.

~' Mean Value Analysis of Queueing Networks

We shall treat closed queueing networks with M user classes (chains) and K
queues. We shall assume that the workload of each class i user is composed of a
homogeneous set of work units, referred to as "transactions." Following
Kobayashi and Reiser [4] we shall ignore (except where noted otherwise) the
topology of the network, and assert that only the following quantities need be
specified:

number of users in class i
average total service time required by a class i transaction at queue
j.

Let N Eni be the total user population. We shall be interested in estimating
the following quantities:

Ai class i transaction throughput.
Nij = Average number of class i users in queue j. We denote by ~ the matrix
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whose elements are Nij.
Tij = Average time spent by a class i transaction in queue j.

Once these are known. all the usual performance measures (response times.
throughputs. utilizations) can be readily determined.

The mean value analysis uses three fundamental equations:

(1) Little's formula

Nij = Ai Tij (i=1.2 .....M; j=1.2 ..... K)

(2) Population balance

K
ni = E NiJ'

j=l

(3) Queueing discipline
(ij)

Tij = f ij (~ ) (i=1.2 .....M; j=1.2 ..... K)

(1)

(2)

(3)

where N(ij) is the average conditional queue population at the time that a
class' user arrives at queue j. and fij is a function whose form depends on
the queueing discipline. Equation (3) expresses. in the most general form.
any possible relation between queue populations and queueing times.

By summing (1) over j and substituting in (2) we find:

A. = n./ E T'k11
k

1

so that. from (1):

Nij = niTij/ ~ Tik

(4)

(5)

We now distinguish two cases:

(1) Finite E.Qj:lu1ation
It is reasonable to suppose that a class i user arrlvlng at a queue would
find there. on the average. the population that would have existed had the
i-th user class contained ni-1 (rather than nil users. Indeed. Sevcik and
Mitrani [13J have proved that this is exactly so in many cases. Thus

(i j) _
Nij (n1.· .••ni •...• nM) - Nij(n1 ••..• ni-1 •...• nM) (6)

Clearly. Nij(O.O .....0) = O. Hence. starting at ni= 0 (i=1.2 ....M). we can
apply equatlons (3) and (5) alternately with ever lncreasing values of the
ni' until the required population size is reached.

(2) ~arge populations (asymTtotic case) ( )
If t e ni are suffi.c1entlyarge. t'li"'e"distinction between Nand N ij may be
ignored. and (3) may be replaced with:

Tij = fij(li) (7)

Equations (5) and (7) may now be solved simultaneously for ~ and I by means
of the following iterative algorithm:
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(1) Assign positive initial values to the Nij .
(2) Compute the Ti ·, using (7).
(3) Recompute the Mjj, using (5).
(4) Return to step \2).
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The iterations are terminated when there is no significant change in the Nij from
one iteration to the next. An analogous scheme can be applied to the Tij, using
(5) first and then (7).

Let T~j and N~j be the solutions to (5) and (7). These are generally
asymptotically valid, in the sense that if Tij and Nij are the true mean values,
then lim(T1j/N - Tij/N)=O and 1im(N~j/N - Nij/N)=O, provided all ni increase in
constant proportions.

The iterations used in solving the asymptotic case require much less storage and
CPU time than the recursions used in the finite case. However, simple heuristic
corrections can be applied to the asymptotic formulas to generate very good
approximations to the finite case [1,11,12].

(~) Processor sharing

With a processor sharing (PS) discipline, queueing time is obtained by
multiplying service time by queue length. Hence, equation (3) takes the form

(i j)
Tij =(l+N j )t ij (8)

where Nj = EiNij is the total average queue j population. Reiser and Lavenberg
[1] show that using (6) and (8) recursively for finite populations yields exact
results identical to those obtained from the product form solution.

In the asymptotic case, equation (7) becomes:

Tij = Njtij = t ij ~ Nkj

Substituting (9) in (5) we obtain:

Nij = nitijNjl ~ tikN k

Summing over i:

(9)

(10)

Dividing both sides by N and substituting Xj = Nj/N and ai = ni/N, we obtain:

x· = x· E (a ·t··1 E xkt'k) (12)
J J i 1 lJ k 1

Note that Xj and ai are the fractions of the total population in queue j and
chain it respectively. Equation (12) represents an iterative scheme for
computing the Xj, starting out with any set of nonzero initial guesses. This
scheme was derived and proven to converge by Pitte1 [2], and used by Bard [5,6]
in a model of the VM/370 system. Modifications to equations (8)-(12) for
queue-dependent service rates are straightforward.

With a little bit of algebra it is easily shown that (12) is equivalent to
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Xj = xj uj (12a)

where Uj is the utilization of the j-th queue, as given byequation (42).
Equation (12a) can be interpreted as follows: Either the j-th queue is saturated
with Uj = 1, in which case Xj can be positive. Or, the queue is not saturated,
i.e. Uj <1, in which case Xj =0, i.e. the queue holds, on the average, a
negligible fraction of the total population. See Section 9 for further
discussion.

4.FCFS

The product form solution applies to queues with the first-come-first-serve
(FCFS) discipline only if all user classes have exponential service time
distributions with identical means. Mean value analysis permits relaxation of
the latter restriction.

Let mij be the number of sojourns to queue j required by a class i transaction,
and let Qij be the average service time per sojourn. we have, then:

tij = mijQij (i=l,2, ... ,M; j=l,2, ... ,K) (13)

When a class i user enters queue j, he finds there on t~'j;verage N~}j) users of
class k (k=l,2, .. ,M), with a tot~l service time of LkNk' Qk" The duration of
each sojourn will be Qi'+ LkN~}JIQkj' for a total queuein~ tim~ per transaction:

1ij)
Tij = mij(Qij+ ~ Nkj Qkj) (14)

This formula has been suggested by Reiser and Lavenberg [1]. Note that in the
special case where Qij is the same for all user classes, equation (14) reduces to
(8), showing that the solutions for PS and FCFS with equal exponential service
times are identical.

In the asymptotic case, we SUbstitute Nkj for N~}j) and neglect Qij in comparison
with LkNkjQkj' so that

Tij = mij ~ NkjQ kj (15)

Substituting in (5) we obtain:

Nij nimijAj / ~ mikA k (16 )

(17)

Where Aj = LiNijQij. Equation (16) constitutes an iterative scheme for computing
the Nij. The amount of work can be reduced by multiplying by Qij and summing
over i, which yields

A· = A· L (n·t ../ L m"kAk)
J J i "J k

Equation (17) may be used to solve iteratively for the Aj, which may then be
substituted in (16) to compute the Nij' In analogy to (12a), equation (17) is
equivalent to:

Aj = Aj Uj

Example: Consider a network with two classes and three queues. Let

(17a)
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so that

! = );26 100 20J

lBB 104 45

A comparison between model and simulation results is presented in Table 1. It
will be seen that the FCFS model gives acceptable results in both the finite and
asymptotic cases, although convergence to the latter is fairly slow. In this
problem, queues j=1,2 are saturated, whereas j=3 is not (see section 9).

5. Priorities

Mean value analysis does not lend itself easily to the treatment of ordinary
priorities in FCFS queues. In mean value analysis, average queue lengths are
substituted for the entire queue length distribution. Hence, it may (and in the
asymptotic case it certainly will) appear as though the highest priority queue is
never empty, so that lower priority users never receive service. Various
standard tricks may be used: in case of preemptive priorities, for instance, the
network may be solved as though only the highest priority user class is present.
All servers are then assumed slowed down by a factor proportional to that class's
utilization, the process is repeated for the second highest priority class, and
so on. When priorities are not preemptive, it has been suggested by Schweitzer
[11] that a term reflecting the expected remaining service time of the in-service
user be added to the f ij function in (3).

A type of priority scheduling that is particularly suitable for treatment by
mean value analysis is based on service received. The rate of service received
by a user in class i is to be proportional to his priority bi. The rate of
service is defined as some function (e.g. linear combination) of the service
received at the various queues per unit of clock time.

Since each class i user completes Ailni transactions per time
rate may be expressed as:

R. = (A/n i ) J~ cJ.t iJ· = ( 1: c .too)1 1: T..
1 j J lJ j lJ

unit, his service

(lB)

where the Cj are weights assigned to the various queues. For instance, in the
VM/370 CPU-fair-share scheduler [7], cj=l for the CPU queue, and 0 for all
others. In MVS, installations may specify arbitrary Cj for various resources [B].

It is required, then, that

Ri = biR (i=1,2, ... ,M) (19 )

where R is some unknown constant. Note, however, that (19) may not be
satisfiable for user classes whose service demands are sufficiently small (e.g.
I/O-bound users in a CPU-fair-share scheduler).
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Assuming PS queues. we can control overall user service rates by assigning larger
or smaller portions of a queue's service power to various users. Suppose. for
example. that the j=l queue can be controlled in this way. Let ri be the
fraction of processing power assigned to a class i user at that queue. Then we
must have

r i > 0 (i=l.2 .....M)

and, since the total processing power is unity:

(20)

(21)

Furthermore. since at no time can more than full processing power be given to a
single user. we must have:

(i=l .2 .....M) (22)

Note that (22) is not implied by (21). since we may have Nil < 1 for some i.

We shall restrict ourselves to the asymptotic case. Equation (9) holds for all
servers except j=l, where

Til = til/r i
Hence. EjTij = til/ri+j~l tijNj . Using (18) and (19)

til/r i + j~l tijNj = Ri/ j cjt ij = biR/ j cjtij

and

we find:

(23)

(24)

r
1
• = min [1. t.l/(d.R - E t ..N.)] (25)

1 1 j~l lJ J

whe~e.di = bi/ EjCj~ij . Only values of R which make the denominator in (25)
posltlve are admlsslble. From (21) we have:

~ Nilmin [1. til/(diR - j~l tijN j )] = 1 (26)

The following algorithm applies:

(1) Assign positive values to the Nij'
(2) Find R so that (26) is satified.
(3) Compute the ri from (25).
(4) Use (9) and (23) to compute the Tij.
(5) Use (5) to recompute the Nij.
(6) Return to step (2).

Note: If EiNil < 1. Then ignore steps (2) and (3) and simply set all ri = 1.

In the VM/370 model [5.6]. CPU-fair-share scheduling with priorities was modeled
via the admission policy to main storage. In cases where main storage was not a
bottleneck. the fair share policy could not be modeled. The above algorithm can
be used to overcome this difficulty.
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(28)

£.. Overlap

Classical queueing network analysis techniques require that no user be present in
more than one queue at a time. In practice, however, many computer applications
can overlap their own CPU and I/O activity. Such cases can be handled by means
of mean value analysis.

For simplicity, assume that there are two queues whose services may be partly
overlapped. Let tij be the non-overlappable service time, and tl~ the
overlappable part (J-l,2), and let similar notation apply to Nij and TiJ' We
shall treat the asymptotic case with PS service. To equation (1) we must a~join

Njj = AiTjj (27)

Since users who are in the overlappable phase must be counted only once, equation
(2) is replaced with:

n. = z N.. + max N~.
1 j lJ j 1J

The approximation implied by (28) is that of using m!x E(Njj ) as an estimate for
E(mr Nj j ).

The total number of users in queue j is Nj+Nj. Hence, equation (9) takes the form

and,

Tjj = tjj (Nj + Nj)

Trivial calculations result in:

Ai = n1·/( Z T' k + max T~k)
k 1 k 1

so that

(29)

(30)

(31 )

Ni J' = n. T.. / ( z T. k + max H k) (32)
1 1J k 1 k 1

with an analogous equation for Njj . Now, the total population in queue j is

Nj + N! = (Ni j + Nrj) =

z [ni (Tij + Tjj )/ ( z T' k + max T\)]
i k 1 k 1

so that (29) and (30) reduce to:

Tij t ij [ni(Tij + Tjj )/( z T. k + max T\)]
k 1 k 1

Tjj tij z [n.(T .. + T'I'.)/( Z T' k + max T\)]
i 1 1J 1J k 1 k 1

(33)

(34)

Equations (34) define an iterative scheme for determining the Tij and Tjj , and
(32) can be used to compute Nij and Nfj'
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Examples:

1. Consider a case with two queues and two chains. The nonoverlappable
service times are:

t l~:J
and the overlappable service times are:

The chain populations are n = (100,50). Computed- and simulated response
times are compared in Table-2. This is a case where only queue j = 1 is
saturated.

2. When

t ~ ~

~ ~ ~
both queues are saturated. The results for this case are shown in table 3.
In both cases, model predictions are in good agreement with simulation
results.

The above approach can be extended to overlaps among multiple queues, although
the formulas can get quite complicated. A similar method can be used to model
parallel processes with synchronization points, splitting and fusing processes,
and other cases which arise in real operating systems.

7. Blocking

Blocking occurs when the progress of some transactions is impeded because of
unavailability of resources held by other transactions.

Suppose the total amount of some resource (e.g. main storage) is S, and suppose
Si units are held by a class i transaction while, say, in queue j=2. Let j=l
refer to the queue of transactions waiting to be allocated resource before being
admitted to queue j=2. No processing takes place while a transaction is in
queue j=l. Again, we treat the asymptotic case with PS. Equations (1) and (2)
hold as before, and so does (g) for all j>l. There are no explicit equations for
Til . Instead, there is the resource constraint

(35)

In addition, the sequence of admissions from queue j=l to j=2 must be taken into
account. If a user-class-independent admission policy (such as FCFS) is used,
all waits to enter queue j=2 should be about the same, so that we can write



(j=Z.3 •..•• K)
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Til = TlmiZ (i=l,Z .... ,M)

where Tl is an unknown constant. Equation (5) takes the form:

N"J' = n.T .. /(Tlm· Z + E T· k)
, 'J , kFl '

and (10) becomes:

N"J' = n.t .. N./(Tlm· Z + E t·kNk), 'J J , kFl '

so that (35) may be rewritten as:
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(36)

(37)

(38)

(39)[n.t'zNZS./(Tlm· Z + E t·kN k)] S S
" , , kFl '

The following algorithm may be applied:

1. Assign positive values to the Nij (i=l.Z •...•M; j=Z.3 ... ,K).

Z. Evaluate S* = E.n.t·zNzS./(E k/lt'kNk) . If S* $ S the resource is not
saturated and T~=O.' Ot~erwise, },nd Tl (necessarily positive) to
satisfy (39) with equality sign.

3. Recalculate the Nij using (38).

4. Return to step (Z).

This algorithm has been used successfully to model the schedulins policy of
VM/370, with main storage as the constraining resource [5.6J. Trivial
modifications of the algorithm can be used if the resource is held only during a
specified fraction of a transaction's stay in queue j=Z. or during stays in
several different queues, or if there are several constrained resources. In
using this algorithm, one implicitely makes the assumption that if the resource
is not saturated on the average (i.e. its utilization is less than 1). then the
average waiting time is negligible.

Let u~ = S*/S be the utilization of the blocked resource. Step Z of the above
algor,thm ensures that either Us = 1 or Tl = O. Shweitzer [11] has suggested
that. in analogy to equation (12a). we may omit step Z, and instead use the
formula Tl = Tlu s to update Tl at each iteration.

~. Decomposable networks

Each queue in the network may itself have a complex internal structure. In
particular, it may constitute a queueing network in its own right. In this case,
the function fij(~) is the average response time of the j-th subnetwork to a
class i transaction. given that the population is Nij' Evaluation of this
function may itself require iterative procedures of the same kind as presented
here for the overall network.

This approach is particularly useful when transitions within the subnetworks are
much more freguent than between subnetworks, i.e. when the overall network is
decomposable L9]. This method is used in the VM/370 model [5.6], where the
overall network consists of an infinite-server terminal queue. a main storage
queue (see Section 7 above). and a multi programmed-set queue. The latter. in
turn. is a network of CPU and I/O queues. Solution proceeds by alternate
iterations through the two levels of the network.
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~. Response time calculation

Response time is defined as the time it takes a transaction to complete its
service at all queues. Thus, when there is no overlap, we have

r T..
j 1J

(40)

where 'i is the average class i transaction response time. If there is overlap
between services at different queues, then:

'i = r T.. + max Tl". (41 )
j 1J j 1J

In the finite population case, these formulas present no problems. In the
asymptotic case, however, there are frequently queues for which the predicted
populations Ntj and queueing times Tij are zero. The reason is that strictly
speaking, it 1S the fraction Xj of the total population in queue j that is being
predicted, as in equation (12). As the total network population increases beyond
bounds, it happens that some queues saturate: Their utilizations approach 100
percent, and their queue lengths grow beyond bound. Such queues have non-zero
values of Xj' The remaining queues remain finite in length, thus accounting for
a negligib1~ portion of the total population. Hence, they have Xj = 0, and their
utilization is below 100 percent.

When the network population is large, the terms corresponding to saturated queues
dominate in (40), and the relative error in (40) or (41) is small even if Tij=O
is used for the unsaturated queues. The true values of Tij for unsaturated
queues can, however, be estimated as follows: The saturated queues act as
infinite Poisson sources for the unsaturated queues, so that the
Pollaczek-Khinchine formula applies to the latter. Suppose queue j is an
unsaturated single server queue with PS or FCFS with identical exponential
service times for all classes. The utiliztion of that queue is

where the Xi are calculated from (4), or from (1) appl ied to a saturated queue.
We have, then:

(43)

Other service distributions or disciplines, including preemptive or nonpreemptive
priorities, can be handled by using the appropriate version of the
Pollaczek-Khinchine formula (see, e.g. [10]).

lQ.. Conclusion

Mean-value analysis, particularly in its asymptotic form, has been shown to be a
versatile tool in the analysis of queueing networks. The method permits easy
formulation and solution of many problems which do not have product form
solutions. This is due, primarily, to the generality of the function fij
appearing in equation (3), which makes it possible, for instance, to have the
queueing time in one queue depend on conditions at other queues. The range of
problems that can be treated is limited only by the ingenuity of the modeler.
Most of the techniques given above already have direct practical applications
within the VM/370 Model [5,6], and should help in expanding the range of systems
for which good approximate analytical models can be constructed. Further work is
required to establish error bounds on the approximate models, convergence rates
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to the asymptotic formulas, and convergence proofs for some of the iterative
algorithms.
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Transaction reSDonse times
Chain :haln 1 Chain 2

populations lofoael Slmulation Model Simulation

5,5 (1) 1154 1140 1208 1156
50,50 (1) 12022 12267 9316 9070

I
100,100 (2) 26920 26120 16599 17136
150,150 (2) 40370 40740 24876 24627

Notes: (1) finite model
(2) asymptotic model

Table 1. Validation of FCFS model.

Transaction reSDonse times
Chain Morle "lmu atlon

1 1052
I

1013
2 604 638

Table 2. Validation of overlap model, example 1

Transaction reSDonse times
Chain Morle Slmulatlon

1 860 I 864
2 1075 1059

Table 3. Validation of overlap model, example 2
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MEAN VALUE ANALYSIS OF QUEUING NETWORKS,

A NEW LOOK AT AN OLD PROBLEM

M. Reiser
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Yorktown Heights, New York 10598

ABSTRACT

A new solution to queuing networks with product-form solution is given

entirely in terms of mean queue size, mean waiting time and throughput. No need

for normalization constants arises. The new analysis leads to simpler algorithms

which have better numerical behavior than previous ones. It also is the basis for a

heuristic method which for the first time allows solution of queuing systems with

very many closed chains (> 100). Such large systems arise in the context of

communication system modeling.
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!.:. INTRODUCTION

M, REISER

Queuing network theory has rapidly progressed since the fifties. The first thrust was by researchers in

the field of Operations Research and culminated in 1. R. lackson's paper [I]. The work was picked up by

Computer Scientists in the late sixties. More general classes of networks turned out to have product-form.

The generalizations included multiple customer classes, queuing disciplines other than FIFO and generalized

service time distributions. The most general class of such product-form networks is found in the important

summary paper by F. Baskett, K. M. Chandy, R. R. Muntz and F. G. Palacios [2]. The technique used by

all these researchers is to formulate the balance equations for a given class of networks, guess their solution

(product-form) and verify its correctness by insertion into the equations. Chandy's local balance rule [3]

served as a guide in guessing correctly.

Little attention, however, was paid to a strange property of the product-form solution, namely the fact

that from the many parameters, necessary to specify a network much fewer entered into its solution. Take

a closed exponential queuing network of the I ackson class, for example. Let P denote its N x N routing

matrix (N is the number of queues). Instead of N2 quantities Pij' only N quantities 8 j given by the system

of linear equations

8 = 8 P (I)

enter into the solution. Note that 8j measures the mean number of visits a job makes to queue i between

successive visits to a arbitrarily chosen queue i', for which 8
i
, = I (note that (I) determines 8 only up to a

constant factor). Similarly, all the parameters of general phase-type distributions (when admissible)

disappear from the product-forms of the queue-size distribution. All that matters is the mean service time.

It was argued by H. Kobayashi and M. Reiser [4] that the crucial quantity in the product-form solution is

the mean work demand brought into the system by jobs of a given class. How this work is divided into

individual visits (as determined by the routing) was shown to be irrelevant. Statisticians call a system

robust if only the mean enters into the solution. We find queuing networks with product-form solution

remarkably robust with respect to routing and service-time distributions.

Such robustness asks for a simple physical explanation. We think that this paper gives such an

explanation. Approaches 10 the queuing network problem different from the traditional algebraic method

have indeed been tried rCL'('ntl~/ The operational method of P. Denning and J. Buzen is one example 15J.
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We shall describe the solution of queuing networks with product-form in terms of two intuitively appealing

principles, namely

(l) Upon arrival, a customer sees the same closed system with himself removed (one less customer in

the closed system) in long-term equilibrium;

(2) Little's law applied [0 the entire system and to each queue individually.

We feel that these two principles explain the fundamental mechanism governing such queuing systems.

They lead to a much simpler evaluation procedure (than the previous convolution algorithms) and motivate

heuristic methods for problems not solveable with current methods.

Before we give a detail~d account of the mean value analysis, let us briefly comment on numerical

methods. The product-form solution gives the joint queue-size distribution up to a normalization constant.

This constant has a simple analytic expression in the case of an open queuing network but is a sum of

product-terms in the case of closed systems. Because of the combinatorially growing state space, a naive

summation is out of the question but for trivially small networks. J. P. Buzen published the first computa­

tionally efficient algorithm [6]. M. Reiser and H. Kobayashi independently discovered the same algorithm

which they generalized to the multichain case [7]. In [8], they gave an interpretation of the algorithm in

terms of convolutions. Their argument is that a closed system is equivalent to an associated open system

conditioned to population size K. Then the normalization constant is simply the probablity that the open

system contains exactly K customers, viz.

Normalization-constant =

Pr{population = K}

Pr{k] +kz+ ... +kN = K}

at point K

Where k j is the queue size of queue i, Pr{k j I is the queue size probability of queue i separated from the

network and subjected to Poisson arrivals whose rate is 8; as given by (1) and the asterisk denotes

convolutions. M. Reiser {91 gives various efficient ways to calculate the convolutions and to evaluate
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statistics such as mean queue size, throughputs and utilization factors. However, these convolutions are all

time consuming and intermediate results may easily exceed the floating-point range of most computers even

though final results are all reasonable in magnitude. The floating point range problem makes indeed

infeasible the solution of perfectly well posed modeling problems (a large population of slow terminals, for

example). The mean value analysis will not have any of these drawbacks.

2. CLOSED CYCLIC SYSTEM- ------------

The ideas behind the mean value analysis are easiest to describe for the example of a single closed

chain as shown in Fig. I. We denote by S(K) the queuing system with K customers. For the moment, we

consider a single class system only. Let

K: Number of customers

N: Number of queues

'Tj: Mean service time of queue i,

tj: Mean waiting time of queue i (including service),

OJ: Mean queue size of queue i (including customer in service),

A: Throughput of the chain.

We will use arguments if we want to emphasize that quantities are for the system with population size K,

viz. nj(K), ti(K) and A(K) are mean queue size, mean waiting time and throughput of S(K). For a

memoryless system with FIFO queues we can straightforwardly write the equations

ti(K) = Ti + Tj X {mean number of customers seen upon arrival},

N
A(K) = K / L t;(K),

i=1

(2)

(3)

(4)

Equation (3) states that an arriving customer in average has to wait for its own service time plus the

backlog of work seen upon arrival. Equations (4) and (5) are simply Little's formula applied to the entire

chain and to each queue respectively. Note that the average number of customers is of course K. If we

had an expression for the bracketed term in (3) we could solve for all unknown quantities. Such an

expression is found by means of
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In a closed queuing network with product-form solution, the probability to see state k upon

customer arrival in S(K) is the same as the long term equilibrium probability of k in S(K-I).

The proof of this theorem is found in [10]. However, equation (5) which result from the theorem can be

proved more simply without the upon-arrival interpretation [II]. However, the physical significance of the

theorem is more apparent in the given form.

From the theorem immediately follows the equation

tJK) = 'j + 'i nj (K-I). (5)

Note that (5) is not restricted to FIFO but applies for all rules consistent with product-form. Equation (5)

together with (3) and (4) can be solved easily in a recursive manner, namely

tJK) = 'i [1+nJK-I)],

A(K) = K / ~j tj(K).

ni(K) = A(K) ti(K).

K>O, i=I.2,...•N.

(6)

(7)

(8)

(9)

~ GENERALIZATION TO THE FULL CLASS OF CLOSED PRODUCT-FORM SOLUTION

NETWORKS

The recursion (6) to (9) generalizes easily to a network with general routing matrix P. Let i' denote

an arbitrarily chosen queue. Then. as mentioned before. the quantity 9j uniquely defined by

9., = I.
I

(10)

(II)

measures the average number of visits a customer makes to queue i between successive visits to the marked

queue i'. Since number of visits and throughput are proportional. 9j also measures the throughput at queue

i, Aj' in units of Arll' the throughput of queue j*, viz.
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(12)

If t j measures the queuing time across queue i then obviously. the average time a customer needs between

two successive departures from queue i' is given by the sum of the products [average number of vis-

its) x [mean waiting time). namely

N
. ~ 8j tj .
1=1

For simplicity of notation. define A' = \" Now equations (7) to (9) translate into

tj(K) = "j [1 +nj(K-O).

A'(K) = K I ~j 8i ti(K).

Define t; = 8j tj .and as usual traffic intensities Pi = 8j "j' then we find

<(K) = Pj[I + nj(K - OJ.

(13)

(14)

(15)

(16)

(17)

A'(K) (18)

nj(K) = A'(K) tj(K). (19)

Equations (6) and (17) to (19) constitute the recursion to evaluate all quantities of S(K) with general

routing. They are of the same form as (7) to (9).

Next we shall discuss the multi-chain case. We assume that there are R disjoint closed routing chains.

We will use superscripts r (r= 1.2....R) to denote that a given quantity belongs to chain r. We do not

consider the case where customers change class membership within chains. Note however. that as shown in

[7) this is only a trivial reduction of generality. Also we shall drop the asterisks used in (17) to (19). As

before, we assume constant service rates. We introduce the notation

K = (KI.K2.....KR): population vector

K-e, = (KI,K2.....K'-I.K'-I, ....KR): population vector with one less customer in chain r,
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Set of chains visiting queue i,

Set of queues in chain r,

Throughput of marked queue in chain r,

Mean service time of a chain r customer in queue i,

Mean time a chain r customer spends at queue i between successive visits

to the marked queue of chain r,

69

nr: Mean number of chain r customer at queue i,

p~ = (J~ 'T~:
I I I

Mean queue size of queue i,

Traffic intensity of chain r at queue i,

8~: Mean number of visits a chain r customer makes to queue i between successive

visits to an arbitrarily marked queue in chain r.

Theorem I generalizes to the multiple chain case. In this case, the state upon arrivals of chain r customers

has the same probability as the same state in a system with one less customer in chain r. However, it is

much simpler to derive the following equations directly from the product-form solution as was done in [II].

We find

(I) The queuing discipline of queue i is processor sharing (PS) or preemptive-resume last-come,

first-served (LCFS PRJ. The service time distribution may be general and have a different form for

each chain. Then

t[(K) = p[ [I + n[ (K-e,)]. (20)

Note that our definition of traffic intensity measures the mean time a customer spends at queue i

between visits to the marked queue if there were no interference from other customers

(congestion). The bracketed term in (20) is the expansion [actor due to congestion, which we find

simply related to the mean queue size.

(2) The queueing discipline is pure time delay, also called "infinite servers" (D). In this case, there is

no expansion factor (by definition) and hence (20) becomes

t[(K) = pl. (21)
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(3) The queuing discipline is first-come, first served (FCFS). The service-time distribution is

exponential and does not depend upon customer's chain membership. The waiting-time equation is

the same as (20). However, it LS more instructive to write it in the form

t[(K) = p[ + O[ :1:, 7; ni (K-e,). (22)

The first term in (22) is the customer's own service demand, the sum measures the backlog of work

he encounters upon arrival.

The recursion now follows analogous to (6) to (9) or (17) to (19) as follows

pi [1 + n; (K-e,)] cases I and 3

pi case 2,

,V(K) = Kr / :I: tr ,
i€ Q(r) I

:I: ,\i(K) d(K)
j€R(i) I

(23)

(24)

(25)

where as usual i= 1,2,... N, r= 1,2,... R, K~O and n[(O) = O. Equation (23) to (25) allow for an easy

recursive evaluation of the unknown quantities. Note that we do have to store all the intermediate values

and that the loops over K should run in increasing order.

Finally, let us comment on the case of queue-dependent service rates which also lead to product-form

solutions. Theorem I still holds but the mean waiting-time equations are more complicated than (20) to

(22). They do involve terms of the marginal queue-size distribution of the queues with queue-dependent

rates. The formulas as well as a very efficient way of calculating the marginal probabilities are given in

[11]. We do not repeat them here for the sake of brefity.

i.: NETWORKS WITH MANY CLOSED CHAINS

Closed chains find important applications in the modeling practice. Examples are

(I) To model job classes in a central server model [12],

(2) To represent application subsystems in a computing center model, and

(3) To represent flow controlled sessions in a communication network model [13].
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In cases (I) and (2) the number of chains needed is often in the order of 10-25. In case (3) even more

chains are required in a model of realistic size, e.g. 50-200.

The complexity of the recursion (23) to (25) for both storage and operation is of the order

R
II Kr.

r=l
(26)

Even on large computers. it will be impossible to solve for more than a small number of chains (less than

10 in most cases). Subsequently. we shall give a heuristic method derived from the mean value analysis.

which will overcome the complexity barrier of (26) and which will allow analysis of problems with many

chain (> 100 chains).

We note that the recursion is the source of the product in (26). It is our goal to replace this recursion

by an iteration which is performed at the point K only.

Define quantities Ei as follows

(27)

Thus 'i measures how the customer added to S(K-e r) is distributed over the individual queues. We have

and also

~;.[ = I.
;=1

(28)

(29)

Suppose now that we had a function which would yield ,[ in terms of quantities of the system S(K),

for example

'i = f (i. r. [,\j, j=I.2•...•R}) (30)

where we omitted the arguments denoting the chain population. We may now rewrite (23) to (25). again

dropping the arguments (K). as follows

,[ = f (i. r. {,\j}), (31 )
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A' = K' / L t',
if Q(r) I

(32)

(33)

(34)

We have now obtained a nonlinear system of equations which is independent of K, the source of the high

operation count (26). We could solve (31) to (34) by a simple iteration method, starting with initial values

for nj and A' (i= 1,2,... N, r=I,2, ...R) and then iterating through (31) to (34) in a cyclic fashion until

convergence is observed (or divergence established).

In its exact form, the function (30) is no less complex than the original problem. Clearly nothing is

gained. It is our goal, hence. to obtain an efficient heuristic for (30). Our proposed heuristic will coalesce

the R chains into a single chain which can be solved efficiently by the recursion (17) to (19). If a

customer is removed from a chain, then all the values n~ i=I,2, ... N; r=I,2, ...R are affected. However,
I

since

L nj (K) - nj (K-e ) = 0 for j"r
if Q(j) I I'

(35)

(Where r is the chain with one less customer) we may assume that 'i is affected mostly by chain r.

Therefore, we estimate ,[ from a single chain problem with redefined parameters. The capacity of queue i's

server devoted to chains j= 1,2,...R, j"r is given by

(36)

where the sum is over j= 1,2,...R but j"r. Taking the point of view of the fluid dynamic approximation of

queuing systems, we may agree that a chain r customer "sees" a server with a reduced rate given by (36).

Thus his mean service times are not T[ but adjusted values

(37)

Suppose that ~~(K) (i= 1,2,...N) are the mean queue sizes of a single chain queuing problem with population
I

K and with parameters given by (37). Then we set

A A
'i = ni(K') - n[(K'-I).

This completes our heuristic method.

(38)
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The computational complexity of one iteration step through (31) to (34) is now

R
:l: Kr

r=1 '

clearly an afordable effort even for large numbers of closed chains with seizable populations.

5. EXAMPLE AND ASYMPTOTIC PROPERTY- --

73

(39)

First we will give a numerical example of the heuristic method and compare it with exact results. We

do not attempt to give a comprehensive empirical validation but shall argue that the approximation method

is asymptotically valid as the population size increases.

The topology of our sample network is portrayed in Fig. 2. There are four chains (R=4) and eight

queues (N=8). Mean service times and population sizes are listed in table 1.

Table!.:. Parameters ~ the sample network

Mean service times Population

Queue

Chain 1

Chain 2

Chain 3

Chain 4

2

4

2

2

0.5

4

2

0.5

4

0.5

2

6

2

7 8

6

8

4

8

The example is chosen to resemble a communication network model. Queues 1 to 4 represent half-duplex

links whereas queues 5 to 8 model sources. Each chain is a virtual channel with a flow control window of

size Kr, r= 1,2, .. .4 (for a detailed description of the communication network model see [13 J). Results for

mean delay time and for throughput are listed in table 2. The mean delay is defined from leaving the

sources until arriving at the destination.
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Table 2; Results for the network ~ £!& !.:

Chain 2 4

28.99 5.72 47.20 7.65 exact
Mean delay 29.25 5.61 48.50 7.58 iterative

0.89 2.03 2.75 0.97 %error

0.188 0.491 0.0786 0.200 exact
Throughput 0.186 0.478 0.0765 0.198 iterative

1.08 2.72 2.75 1.01 %error

We find the errors quite small, clearly adequate for any practical purpose. Similar observation was made

for a central server model with four chains (errors are less than 5%).

T'J.e convergence of the iterative method was found to be uncritical and rapid. The difference between

successive iteration steps (measured in terms of a suitable norm) decrease exponentially (i.e. the scheme

has linear convergence property) as would be expected for a simple first order iteration. The initial

condition was found entirely uncritical.

We do not have currently proof that the scheme converges nor do we know error bounds. There is an

important limiting case, however, where convergence and accuracy was proved namely

K - '" such that K'/ ,K, = a' = const. (40)

where I K I = ~,K'. Define Vi = n;l IK ,,,r = tr/ IKI and K = 1K I· Then we may rewrite (32) to

(34) as follows

= pr Vi + O(l/K),

;\' = a'/ ~ ,,',
iE Q(r) I

(41)

(42)

(43)

B. Pittel [14] proved that the term O(l/K) in (41) can be neglected and that the resulting iteration

describes the limiting case (40). He also proved convergence of the iterative scheme (41) to (43). This

result gives us a very good reason to trust the heuristic scheme. Note that the iteration (41) to (43) is a
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means to locate the bOl/lenecks of the queuing system. Bottleneck queues are identified by vi= 1. Unlike in

the case of an open queuing problem or a closed single chain problem, the bottlenecks of a closed muJlichain

problem are not found by inspection of the parameters. Throughput values follow from the knowledge of

bottlenecks. From this discussion, we expect the iteration (31) to (34) to be the more accurate, the larger

the population and the more closed chains there are in the network. Also, throughputs are more trustwor­

thy than mean queue size and mean delays. These properties have in fact been observed from the examples

which we ran.

~ CONCLUSION

We have given an analysis of queuing networks solely based on theorem 1 (which gives the system

state upon customer arrival) and Little's formula. Both, theorem 1 and Little's formula have a simple,

physically meaningful interpretation. Our analysis involves only the most widely used statistics such as

mean queue size, mean delay, throughput and utilization. No joint distribution of product-form or

normalization constants are involved. The mean value analysis leads to simple recursive algorithms. Even

though the computational complexity is the same as for the convolution algorithm in its most efficient form,

the mean value analysis avoids problems of floating point overflow/underflow inherent in the earlier

algorithms. Also it is much simpler to program.

Our opinion that the mean value analysis reveals a deep property of the solution in physically

meaningful terms is substantiated by the fact, that it led us to a heuristic algorithm which overcomes the

complexity barrier of the exact recursion and allows the solution of problems with many closed chains

(> 100). Such problems arise in the context of communications networks and computer models with a large

number of application classes. In those case which we compared to exact results, the heuristic is accurate

to a few percents which is clearly adequate in practice. We have also shown that it is asymptotically valid

as the population size increases. The heuristic also leads us into the area of networks without product-form

solution. Generalizations for FCFS queues with class-dependent, non-exponential service time distributions

are found in [13].
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"j(K)
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Tj
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K: POPULATION..

A(K)

Fig. 1. A simple closed cyclic chain

to 6 to 8
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CHAIN 3

CHAIN 4

Fig. 2. Example of a closed multichain Network with four chains (R=4) and eight queues (N=8).
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A COMPUTATIONAL ALGORITHM FOR QUEUE
DISTRIBUTIONS VIA THE POLYA THEORY

OF ENUMERATION

Hisashi Kobayashi
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We present a new computational algorithm for evaluating the queue
distribution in a general Harkovian queuing network. based on the
Polya theory of counting. We formulate queue size vectors as
equivalence classes relative to a symmetric group. The normaliza­
tion constant of the queue-distribution then corresponds to the
pattern inventory in the Polya theory. A central server model is
discussed as an application example of this new algorithm.

I. INTRODUCTION

A "network of queues" representation provides a basic framework in dealing with
the performance analysis of multiple resource systems, in which different re­
sources process jobs asynchronously to each other. The class of models for which
we find a simple closed solution of the equilibrium queue distribution is the so­
called "Harkovian queuing network" [1-4]. For this class the equilibrium distri­
bution is given in llproduct" form. This expression, however, includes a normali­
zation constant, and determination of the normalization constant presents a compu­
tationally nontrivial task.

A number of authors have proposed various algorithms designed to evaluate effi­
ciently the normalization constant, and related performance measures - utiliza­
tion, throughput, moments of queue size, average response time, etc. In the pre­
sent paper we propose a new algorithm that is derived based on the Polya theory of
enumeration - a well-discussed subject in books on combinatorial mathematics [5-8].
The Polya theory of enumeration influenced the research in finding minimal cost
networks for the realization of switching functions, as treated by Slepian [9] and
Harrison [10]. The problem of evaluating the normalization factor of queue dis­
tribution is a bona fide combinatorial problem. thus it is quite natural to inves­
tigate possible applications of the Polya theory to queuing theory,

II. STATEMENTS OF THE PROBLEM

Consider a closed* queuing network which consists of M service stations arbi­
trarily connected to each other. Let us define the following set of nomenclature
concerning the analysis of such network:

M

N

{1,2,3 •••• ,M}: the set of service stations

the network population

(2.1)

(2.2)

*In the original paper [14] a more general class of queuing networks is discussed.

79
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F(N) = l~lni>O for all i€M

and L ni = N}:
i€M

the set of feasible queue
vectors (2.3)

Ci(n) = the processing rate of server i, when its local
queue size is n, i€M (2.4)

n 1
Si (n) = IT Ci(k) ,

k=l
i€M (2.5)

Wi = the expected total work (or service) a job demands from
server i during this job's entire life in the network. (2.6)

In order to obtain the equilibrium state distribution of the queue-size vector
pen), we make a set of fairly general assumptions (see [2,3,4] for details) con­
cerning (i) the routing behavior, (ii) service (or work) distribution,
(iii) service (or processing) rates, and (iv) queue disciplines. We can then
obtain the following product form solution:

0, if ~F(N) (2.7)

where the functions f
i

(n
i

) are themselves given in the following product form:

(2.8)

the scalar constant c of Equation (2.7) is the normalization factor referred to
in Section I and is given by

where

c = l!g(M,N) (2.9)

g (H,N) L
;:€F (N)

IT
i€M

(2.10)

thus the problem is reduced to that of evaluating g(M,N) for a given pair
(M,N) •

The convolutional algorithm of Buzen [11] and Reiser and Kobayashi [12,13] is
essentially the following recursive formula:

g (M,N)
N
L g(M-l,N-k)SM(k)W~, M~l, N~l

k=O
(2.11)

with the boundary conditions

and

g(M,O) = 1, for M~O, (2.l2a)
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g (O,N) I
I,

O.

for N=O,

for N2:l. (2.12b)

for a fixed value of M, the sequence {g(M.i); O$i$N} is the convolutional sum

of the sequence {~(i)~; O$i$N} and {g(M-l.i); O$i$N}. The computation of
. N(N+l)

{g(M.i); O$i$N} given the value of {g(M-l.i); OS1$N} requires ---2---

multiplications and additions. Thus. for a given value of the pair (M,N) the

evaluation of g(M.N) requires. in total. (M-l) I n'(n'+l) = (M-l)N(~+1)(N+2)
multiplications and additions, ---2-- n'=l

Under the special condition of constant service rates of the form for all iEM:

for n2:1

for n=O (2.13)

we find the following simple recurrence algorithms for the two-dimensional array
{g(M.N)} :

g(M,N) = g(M-l.N) + 'Mg(M.N-l). M2:1. N2:1 (2.14 )

with the boundary conditions (2.12).

service time given to a job by server
network, and is given by

The parameter 'i is the expected total

i during the job's lifetime within the

(2.15 )

The evaluation of g(M.N) requires. for this special case, (M-l)N multiplica­
tions and additions.

III. A NEW COMPUTATIONAl AlGORITHM

We now introduce a new algorithm for evaluating the normalization constant
g(M,N). This algorithm is restricted to a network with exponential servers all
of which have fixed service rates. i.e., the case where Equation (2.13) is true
for all iEM. Then certainly we could use the recursive formula (2.14) through­
out the entire steps, starting with the boundary condition (2.12). The evalua­
tion of {g(m,n); l$n$N, l$m$M} would require only (M-l)N multiplications
and additions. However. the computational formula to be discussed below is some­
times more convenient. especially when N is small.

The assumption of the constant service rates of (2.13) allows us to write g(M,N)
of (2.10) as

g (M.N) (3.1)

where 'i waS defined by (2.15). Let us define the set of stations

M = {1.2 .....M} (3.2)
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N {l,Z, ••• ,N} 0.3)

Consider then a set of functions that have Nand M as their domain and
range, respectively:

F Hlf:N -T M} 0.4)

A function f in the set F represents a way of placing N jobs into M
service stations. We write, for example,

f (j) = i, j EN, iEM 0.5)

which implies that job is placed in station i.

Consider a permutation
mutations defined over

'IT defined over
N:

N, and let SN be the set of all per-

0.6)

The elements of SN form a symmetric group of degree N. For a given function

f
l

E F and permutation 'IT E SN' we can define another function f Z by

(3.7)

Clearly the function f
Z

is also a member of F. However, such functions f
l

and f Z correspond to the same queue size vector ~

0.8)

since we do not distinguish the individual jobs. Therefore, we say that the
functions f

l
and f Z are equivalent relative to the permutation group SN.

Distinct values of n E F(N) correspond to distinct equivalence classes.

We interpret the parameter 'i of (Z.15) as the weight of element i in the
set M, and thus

0.9)

represents the inventory of the set M.
valence class n (3.8), then the weight

If a function f belongs to the equi­
W(f) of the function f is

W(f) IT
!EM

for all fEn 0.10)

which is called the weight of the equivalence class n.
tory of F - the sum of weights of distinct equivale;ce
the permutation group SN - is

L W(f)
~EF(N)

Then the pattern inven­
classes relative to

0.11)

which is nothing but g(M,N) of (3.l)! This observation immediately calls our
attention to the celebrated Polya theorem:
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Theorem (Polya): The pattern inventory g(M,N) of the set of the equivalence
classes of functions from the domain N to the range M is

83

(3.lZ)

where Zs (xl'xZ""'~) is the cyclic index polynomial of the permutation
N

group SN'

The cycle index polynomial of SN is given from Cauchy's formula

III Il Z IlN

Zs (xl'xZ""'~) I
Xl Xz ~

N Il Z
Il Z!

IlN
IlN!Ill! Z • '0 N

where the sum is taken over the set of distinct M tuples, <Il i ; i
such that

I illi N
iEM

Table 1 tabulates (3.13) for N lt 2 , ••• ,7.

(3.13)

1,Z, ••••M>

(3.14 )

Table 1

Cycle Index Polynomials of Symmetric Groups

N

1

Z

3

4

5

6

5l/lZO(x
l

+

61/7Z0(x
l

+ 90xZx
4

+ l44x
1
x

S + lZ0x6)

7 5 4 3 2 3 21/S040(xl + 21x1x2 + 70x
1

x
3 + lOSx1xZ + 21Ox1x4 + 42Ox1x2x

3

+ 3 2 2lOSx
l
x2 + 280x

l
x3 + 630xl x2x3 + S04x1xS + 84Ox

1
x

6

2+ 210x
2x3 + S04x2x

S + 42Ox3x
4

+ 72Ox
7

)
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Thus all that is required is to compute the set of values

x =k
k = 1,Z, ••• (3.15 )

and substitute them into the polynomial

Alternatively, we recursively compute g(m,n), l~n~N, l~m~.

following expression for the cycle index polynomials:
We can derive the

1
n

Zs (xl,xZ,···,Xn)
n

1, for n=l

which leads to the recurrence relation of the sequence g(M,n), n

0.16)

1, Z,3, •••

g (M,n) 1
n

1
n

n-l
L x _kg(M,k)

k=O n

n
L ~g(M,n-k)

k=l
0.17)

with the initial condition

g(M,O) 1, M2:l (3.18 )

Note that Equation (3.17) is also of a convolutional form: we can view the se­
quence {g(M,n): n = 1,Z, ••• } as an autoregressive sequence with varying re-

gressive coefficients {l x : k ~ 0. 1 • •••• n-l}.
n n-k

IV. AN APPLICATION EXAMPLE

The computational formulas presented above will be of practical interest when
there are many servers in the network. The cost of computing the parameters
{~, k = 1,Z, ••• } of (3.15) is insignificant in many cases of practical in-

terest. Consider, for example, a central server model in which the CPU station
is followed by a number of I/O devices (disks and drums) with a number of inde­
pendent access paths in parallel: if the traffic distribution to different
paths is uniform (which is often assumed in the absence of detailed measurement
data), then the model becomes a closed network with many independent servers, but
with the same parameter value of {T

i
}.

For example, a model of an interactive system with multiprogramming in virtual
storage can be decomposed into the outer model - a time-shared system model ­
and the inner model - a central server model [Z,3]. Figure 1 shows a typical
structure of the inner model with M=16: servers 1 through 10 represent magne­
tic drum sectors with independent access paths; servers 11 through 15 are magne­
tic disks with independent channels; and server 16 represents CPU. The multi­
programming level, N, varies as time changes. Usually the value N is con­
trolled through the job scheduler. We assume the following workload parameters
per interaction, where an interaction starts when an interactive user creates a
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DRUMS

Figure 1. A Closed Queuing Network
Model With M=16 Stations

B5

request (or job) and it ends when the job is processed by the system and its re­
sponser is received by the user.

Average CPU work per interaction:

Average number of drum accesses (reads)
per interaction:

Average number of disk accesses (reads)
per interaction:

Average latency and transfer time per
drum access:

Average seek, latency and transfer t~e

per disk access:

W16 2.0 sec.

20 msec.

100 msec.

In the absence of measurement data concerning how these drum reads and disk reads
are distributed among the separate access paths, we assume the uniform distribu­
tions:

Rdrm20 msec x 10 0.16 sec;

Rdsk••• = W15 = 100 msec x --5- = 0.40 sec.

Since the service (or work) is represented in time, the processing rate

should be set to unity.
{w):

Hence the parameters

{C.}
l

of (2.15) are the same as

0.16 sec;

0.40 sec;

T 16 2.0 sec.
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We first compute the parameters xi's of (3.15)

Xl 10 x 0.16 + 5 x 0.4 + 2.0 = 5.6 sec;

10 x 0.16 2 + 5 x 0.4 2 + 2.0
2 5.056 2

x 2
sec ;

10 x 0.163 + 5 x 0.4 3 + 2.03 8.361 3
x 3

sec ;

x
4 10 x 0.16 4 + 5 x 0.4 4 + 2.04 16.135 sec

4
,

etc. Then from Formula (3.12) and the polynomials of Table 1 (alternatively from
the recurrence formula (3.17», we obtain

g(16,0) 1

g(16,l) xl 5.6 sec;

g(16,2) = t(x~ + x2) = 18.2
2sec

g(16,3) 1 3 3xl x2 + 2x3) 46.2 3
= 6(xl + sec;

g (16,4) 1 4 2 2 8xl x
3

+ 6x4) 103.4 4
= "24(xl

+ 6xl x2 + 3x2 + sec ;

etc. Utilization Pi(N) of server i for the degree of multiprogramming N is

given (see e.g., [2]j by

g(N,N-l)
Wi g(N,N) (4.1)

We can predict, for example, CPU utilization under different values of multipro­
gramming level, N, as follows:

P16 (2) 2.0 x~= 0.62;18.2

P16 (3) 2.0
18.2

0.79;x 46.2 =

P16 (4) 2.0 x 46.2
0.89;103.4 =

An alternative formula for utilization PU(N) for the uth resource is given

from Equations (2.14) and (4.1) as

) 1 _ g(N-l,N)
PH(N = g(N,N) (4.2)

For the degree of multiprogramming N=4, for example, we need to calculate
g(15,4). For this purpose we compute the following parameters:

Yl 10 x 0.16 + 5 x 0.4 = 3.6 sec

Y2 10 x 0.16
2 + 5 x 0.4 2 = 1.056

2
sec
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Then

10 x 0.163 + 5 x 0.43 ~ 0.361

10 x 0.164 + 5 x 0.4 4 0.135

3sec

4
sec

Hence

(4) 1100 0 89
p16 = 1 - 103.4 = •

11.0.

which is, not surprisingly, the. same as the value obtained earlier.

The kth moment of the number of customers, is given [2] by

k 1
E[ni ] = g(M,N)

N k k nI g(M,N-n)[n -(n-l) ]T i
n=l

(4.3)

For instance, the average of CPU queue for the degree of multiprogramming N=4 is

4
L g(16,4-n)2.0n

n=l

1 (46.2 x 2.0 + 18.2 x 2.02 + 5.6 x 2.03 + 1 x 2.04
= 103.4

= 2.19

Similarly, we obtain the average queue sizes the the drums and disks:

E[nl ) = '" = E[nlO ) = 0.076

E[nll ] = ••• = E[n15 ] = 0.210

We check that these values add up to N=4:

2.19 + 0.76 x 10 + 0.210 x 5 = 4.0
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A DIRECT NUMERICAL METHOD FOR QUEUEING NETWORKS
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~

A direct numerical method for the solution of queueing networks is
presented. The problem of matrix "fill-in" usually associated with such
methods is discussed and a fixed bandwidth storage scheme recommended
as a viable means of surmounting this difficulty. It is suggested that
advantage may be gained by constructing the transition rate matrix row
by row and performing the reduction step on each row as soon as it is
generated. An example which has received considerable attention using
numerical iterative methods is analyzed using the proposed direct method
and the latter method is shown to be superior.

INTRODUCTI ON

The purpose of this paper is to demonstrate that contrary to the popularly
held belief, direct numerical methods for the solution of queueing networks can
sometimes be much superior to the more usually employed iterative methods. We
will present a direct numerical method, show how implementation problems may be
surmounted and finally make some comparisons on a model which has been subject to
considerable analysis by iterative techniques.

From the Chapmann-Kolmogoroff equations we may easily determine the follow­

ing matrix relation, (see for example, [lJ):

STP = 0 (1)
"''''

in which ~ is an (n x n) transition rate matrix whose elements

the rate of transition from state i to
state j if i ~ j.

eis the stationary probability vector whose component Pi denotes the long run
probability of the system being in state i and n is the total number of states
which the markovian process representing the system being modelled, may occupy.

89
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It is generally assumed that the matrix ~ is given or may be derived, and the
object is to obtain the stationary probability vector eby solving the system of
homogeneous linear equations (1). Alternatively, the problem may be posed as an
eigenvalue problem by writing (1) in the form:

WTp = p (2)
'V 'V 'V

where WT = (ST~t + I) and ~t is arbitrary.
'V 'V 'V

If ~t is chosen such that ~t ~ (m~xlsii 1)-1, then the matrix ~ is a stochas­
tic matrix and may be regarded as the transition probability matrix for the
discrete time Markov system in which transitions take place at intervals ~t. From
the method of construction of this matrix, it may be shown that there always
exists a unit eigenvalue and that no other eigenvalue exceeds this in modulus. The
required vector eis therefore the left eigenvector corresponding to the dominant
eigenvalue of the stochastic matrix ~.

Since Wallace and Rosenberg first presented their Recursive Queue Analyzer
(RQA1, [2]), over a decade ago, numerical techniques for the solution of queueing
networks have been exclusively iterative in nature. There are several important
reasons for the choice of an iterative approach as opposed to a direct approach.
Firstly, an examination of the iterative methods usually employed shows that the
only operation in which the matrix ~T and/or ~T are involved is a multiplication
with one or more vectors. This operation does not alter the form of the matrix
and thus compact storage schemes which minimize the amount of memory required to
store the matrix, and which in addition are well suited to matrix multiplication,
may be conveniently implemented. Since the matrices involved are usually large
and very sparse, the savings made by such schemes can be very considerable.

On the other hand, during the reduction phase of direct equation solving
methods, the elimination of one non-zero element of the matrix often results in
the creation of several non-zero elements in positions which previously contained
zero. This is called fill-in and not only does it make the organization of a
compact storage scheme more difficult since provision must be made for the delet­
ion and the inclusion of elements, but in addition, the amount of fill-in can
often be so extensive that available memory is quickly exhausted. Compact
storage schemes for direct methods, and the problem of fill-in are taken up in
section 3. A successful direct method must incorporate a means of overcoming
these difficulties.

Iterative methods have other advantages in that use may be made of good
initial approximations to the solution vector, and this is especially beneficial
when a series of related experiments is being conducted. Furthermore an iterative
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process may be halted once a certain prespecified tolerance criteria has been
satisfied. Finally, since the matrix is never altered, the build up of rounding
error is, to all intents and purposes, nonexistent.

For these reasons, iterative methods have traditionally been preferred to
direct methods. However, iterative methods have a major disadvantage in that
often they require a very long time to converge to the desired solution. More
advanced iterative techniques such as simultaneous iteration [3] have helped to
alleviate this problem but much research still remains to be done, particularly
in estimating a priori, the number of iterations, and hence the time, required for
convergence. Direct methods have the advantage that an upper bound on the time
required to obtain the solution may be determined before the calculation is
initiated. More important, for certain classes of problem, direct methods often
result in a much more accurate answer being obtained in less time. Since itera­
tive methods will in general require less memory than direct methods, these latter
can only be recommended if they obtain the solution in less time. Finally, when
choosing pivots during the reduction phase of a direct method, advantage can be
taken of the fact that the diagonal elements are defined to be the largest in any

n
row (recall that sii = -k~i sik)'

2. !2. Direct Solution Method.

For a non-trivial solution to the set of homogeneous linear equations

STp = 0
"''''

the matrix ~ must be singular and hence ill-conditioned as regards equation solv­
ing. However, in general the markovian model will be ergodic (i.e. the associated
stochastic matrix will be irreducible and consequently the matrix ~ will possess a
unique zero eigenvalue), so that it is sufficient to replace one of the rows of ST

'"wi th the vector :t (1, 1, ... ,1) of 1ength n, and to set the correspondi ng
element of the right-hand side also equal to unity. This is equivalent to norma­
lising the solution vector so that the sum of all of its elements equals 1. It is
usual to replace the last row of ~T in this fashion since this will not cause any
additional fill-in which would later require to be eliminated, and also because
the right-hand side may be ignored until the back substitution is initiated.

An alternative approach, and one which possesses some advantage over that
outlined above, is the method of inverse iteration, [4], which we shall now briefly
discuss. Consider an iterative scheme based on the relationship

~(k) = (~T _ ~{)-l~(k-l)

~(O) is arbitrary and may be written in the form
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(0) _ n
~ - i~lai~i

where the ~i are the right eigenvectors of the matrix ~T corresponding to eigen­

values Ai'

Then
~(k) (~T _ ~~)-k~(O)

n ( )-k
i~lai Ai - ~ ~i

(Ar - ~)-k {x~r + i~rai(Ar - ~)k(Ai - ~)-k~J
(3)

Consequently, if for all i ~ r, IAr - ~1«IAi - ~I convergence to the eigenvector
~r is rapid. If ~ = Ar , then the summation in equation (3) equals zero and the
vector ~r will be obtained to full machine precision in a single iteration.

It is usually recommended that instead of forming the inverse of the shifted
matrix and then postmultiplying it with the trial vector as indicated in the recur­
rence formula, inverse iteration be conducted by solving the set of linear equa-
tion

~(k-l)

If ~ = Ar , then it is simply sufficient to replace the zero pivot which arises due
to the singularity of the matrix by a small value E. This should be chosen to be
the smallest number for which 1 + E > 1 on the particular computer being used.

This results in a very inaccurate solution to the set of equations but a rigorous
error analysis, [4], will show that since the elements of the solution vector
possess errors in the same ratio, normalizing this vector will yield a very accu­
rate eigenvector.

This approach has an advantage over the first mentioned method in that an
estimation of the build-up of rounding error may be obtained. Theoretically, it
is known that we should obtain a zero pivot during the reduction of the final row.
However, due to rounding error, this will hardly ever be exactly zero; its non­
zero value will yield an indication of the rounding error build-up. This is
important when very large matrices are being handled on computers with a small word
size, for it is known that occasionally the rounding error becomes so large that it
swamps the correct solution vector.

Inverse iteration hds another advantage in that it requires less arithmetic
operations. Replacing the last row of ST by 1 requires that the first (n-l) ele-

~ ~

ments of this vector be eliminated, each elimination requiring a certain number of
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multiplications, additions and a division. The number of elements to be eliminat­
ed in the final row using inverse iteration will be substantially less than (n-l).
Further, the normalization requirement in inverse iteration requires only (n-l)
additions and usually a much smaller number of divisions. We will see in section
4 that the reduction of all (n-l) elements in the first method entails a further
disadvantage in that this elimination requires access to be available to the (n-l)
previous rows of the matrix.

3. Compact Storage Schemes for Di rect Methods.

The size of the matrices generated by problems of the type considered in this
paper are often too large to permit regular two-dimensional arrays to be used to
store the matrices in computer memory. Since these matrices are usually very
sparse. it is economical to use some sort of packing scheme whereby only the non­
zero elements and their position in the matrix are stored. However, when a direct
equation solving method is to be applied. provision must be made to include ele­
ments which become non-zero during the reduction and somewhat less important. to
delete elements which have been eliminated. If memory locations are not urgently
required, the easiest way of deleting an element is to set it to zero without try­
ing to recuperate the words which were used to store the element and its location
pointers. To include an element into the storage scheme. either some means of
appending this element to the end of the storage arrays must be provided, or else
sufficient space must be left throughout the arrays so that fill-in can be accom­
modated as and when it occurs. The first usually requires the use of link point­
ers and is most useful if the non-zero elements are randomly dispersed throughout
the matrix. while the second is more useful if the pattern of non-zero elements is
ra ther regul ar.

An exampl e of a (4 x 4) matrix stored in compact form using address 1inks is
given below:

l21
0.0 1.7

0·1A 0.8 -0.8 0.0 0.0
0.2 1.5 -1. 7 0.0
0.0 0.3 0.2 -0.5

Real array A: -2.1 -0.8 -1. 7 -0.5 1.7 0.4 0.8 0.2 1.5 0.3 0.2
Row array RA: 1 2 3 4 1 1 2 3 3 4 4
Column array CA: 1 2 3 4 3 4 1 1 2 2 3
Link array LA: 5 8 10 0 6 7 2 9 3 11 4

The non-zero elements of ~ are stored in any order in the real array A and
their row and column positions are stored respectively in the integer arrays RA
and CA. In this particular example the link has been constructed so that the
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non-zero elements can be accessed in a row-wise sense, i.e. the value denoted
in the integer link array of any non-zero element points to the position in
the real array Aat which the next non-zero element in the row may be found. The
last non-zero element in any row points to the first in the following row. Nor­
mally it is useful if the chain can be entered at several points; this is achieved
in this example by listing the diagonal elements first in the array. To see how
an element may be included, consider the elimination of the element in position
(2,1) which causes 0.442 to be added into position (2,3) which was previously emp­
ty. This is handled on this storage scheme by simply appending

A: 0.442
RA: 2

CA: 3
LA: 8

to the arrays. Note that the links must be updated so that the link which previ­
ously indicated 8 (i.e. the second element) now points to 12. This updating in
fact constitutes a major disadvantage of this type of storage scheme since it is
not'unusual for it to require more computation time than the actual operations
involved in the reduction. A second disadvantage is the fact that three integer
arrays are required in addition to the array which contains the non-zero elements.

Regular pattern storage schemes do not suffer from these drawbacks and may be
used if the non-zero elements of the matrix occur in a well defined manner; the
pattern of non-zero elements dictates the particular storage scheme to be used.
In queueing networks, the non-zero elements often lie relatively close to the diag­
onal so that a fixed bandwidth scheme may be used. As an example, we show below
how a (6 x 6) matrix may be stored using a fixed bandwidth scheme of size 3.

all al~' ,0, 0 0 0 0 all a12
, ~2l a22 0 ,

-Q 0 0 a2l a22 0
0",0 a33 0 ' ,0 0 ==> 0 a33 0

0'-'
,

0 ,a~3 a44 a45
,

.Q a43 a44 a45
0 0 o ' 0 aS5 a56 0 a55 a56,
0 0 0 0', ,a65 a66 a65 a66 0

Matrix operations in general and equation solving in particular, can be pro­
grammed with virtually the same ease using these regular pattern storage schemes
as they can be using standard matrix storage. It is easy to show that any fill-in
which occurs is restricted to this band. Furthermore, there is no storage require­
ment for secondary arrays and neither is there any computation time used in the
processing of such arrays. It is therefore advantageous to adopt these types of
storage where possible. Even where some of the elements within the regular pattern
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are zero, it may be more economical and convenient to use a regular pattern scheme
than a random or systemmatic scheme. Alternatively a somewhat similar technique,
called the variable bandwidth method may be employed. Further information on this
method may be found in Jennings, [5J, the fixed bandwidth scheme being sufficient
for our present purposes.

4. Simultaneous Row Generation and Reduction.

When applying direct equation solving methods such as Gaussian elimination,
it is usually assumed that the complete set of linear equations has already been
derived and that the entire coefficient matrix is stored somewhere in the computer
memory, albeit in a compact form. The reduction phase begins by using the first
equation to eliminate all non-zero elements in the first column of the coefficient
matrix from column position 2 through n. More generally, during the i-th reduction
step, the i-th equation is used to eliminate all non-zero elements in the i-th
column from positions (i+l) through n. (Naturally, it is assumed that the pivot
elements are always non-zero, otherwise the reduction breaks down).

However, since we are responsible for both the initial generation of the sys­
tem of equations and for its solution, it is possible to envisage an alternative
approach, and one which has several advantages over the traditional method outlin­
ed above. Assume, as is usually the case, that the coefficient matrix is derived
row by row. Then, immediately after the second row has been obtained, it is pos­
sible to eliminate its sub-diagonal element in position (2,1) by adding a multiple
of the first row to it. This process may be continued recursively so that when
the i-th row of the coefficient matrix is generated, rows 1 through (i-l) will al­
,-eady have been derived and reduced to upper triangular form. The first (i-l)
I"OWS may therefore be used to eliminate all non-zero elements in row i from column
positions (i, 1) through (i,i-l), thus putting it into the desired triangular form.

This method has a distinct advantage in that once a row has been generated in
this fashion, no more fill-in will occur into this row. It is suggested that a
separate storage area be reserved to hold temporarily a single initial (i.e. unre­
duced) ~ow, and the reduction may be performed here. Once completed, the reduced
row may be compacted into any convenient form and appended to the rows which have
already been reduced. In this way no storage space is wasted holding subdiagonal
elements which, due to elimination, have become zero, nor in reserving space for
the inclusion of additional elements. The storage scheme should be chosen bearing
in mind the fact that these rows will be used in the reduction of further rows and
also later in the algorithm during the backsubstitution phase. If the non-zero
elements of the coefficient matrix lie along lines which run parallel to the diag­
onal, (this often arises in queueing networks with two stations only), then it is
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probable that there will be considerable fill-in from the diagonal element to the
furthermost right-hand element and consequently a fixed bandwidth scheme is likely
to be most suitable. On the other hand, if it is known that fill-in will not be
extensive, a semi-systematic packing scheme such as is used in iterative methods,
[6J, may be profitably employed.

If the matrix is band shaped and very large, (e.g. a simple queueing network
with a large maximum number of customers), then this approach has a further advan­
tage. When available fast memory is exhausted, it is convenient to put a large
section of the reduced matrix onto backing store and this will need to be returned
to fast memory only once, i.e. for the final back substitution phase. Consider
the matrix shown below in figure 1 and assume that available fast memory can only
hold £ reduced lines. Let h denote the maximum number of non-zero elements to the
left of the diagonal element.

£-h
£+l-h

£+1

ZERO

ZERO

lines (£+2) through n
yet to be generated.

First £ lines generated
and reduced to upper
triangular form.

line (£+1) generated
but not yet reduced.

Figure 1. Shows that first (£-h) rows may
now be put on backing store.
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Then once the !-th row has been generated, reduced and appended to the rows al­
ready reduced there will remain no available fast memory locations for the reduced
form of lines (!+1) through n. However. since rows! through (i-h) are no longer
required for the reduction of rows below the i-tho they may be put onto backing
store and the memory thus made available may be used to store a further (i-h) re­
duced rows. Depending on the size of the matrix and available fast memory, this
process may have to be performed a number of times. Note that if the last row of
the matrix was defined to be l. its reduction implies that access must be avail­
able to all rows from 1 to (n-1) and consequently an additional access will have
to be made to rows which have been put on backing store.

Since we require the solution of ST p = O. generating the rows of ST is
~ ~ ~

equivalent to generating the columns of~. (Recall that the element ski of ~ is
defined to be the rate of transition from state k to state i). This is the oppo­
site to the procedure which is normally adopted; viz: from any state k it is usual
to determine the states which can be reached in a single time step from this state,
and thereby obtain row k of~. To obtain column k of ~ it is necessary to inverse
this procedure, and to determine from which states can state k be reached in a
single time step, and the corresponding rates of transition. However, computa­
tionally, the two procedures are identical.

5. Test Results.

As an example of the use of the direct method, we will consider the numerical
solution of the queue A(m)/K/r, i.e. a queue in which the arrival process is pois­
sonian with arrival rates A(m) which depend on the number of customers in the stat­
ion; the parameter K indicates a general service time distribution which has a rat­
ional Laplace transform, and the station itself contains r identical servers. It
is assumed that there exists an integer Msuch that A(m) > 0 for all m< Mand
A(m) = 0 for all m ~ M. This queue has been subject to considerable analysis using
numerical iterative methods, (Stewart and Marie, [6]) and it is therefore useful to
compare their results against those obtained in this paper.

It is shown in the reference quoted above that the transition rate matrix for
this queue, when each of the r servers is represented by a law of Cox, [7], has
the block structure presented in figure 2, the dimension of each block other than
the initia'i block being (r+~-l) x (r+~-~). The total number of states generated,
n (which is equal to the size of the matrix) is given by

n = f (i +k" -1\ +
i=O )

This block structure is well suited to a fixed or variable bandwidth storage~

scheme, the maximum bandwidth for an unreduced row being 3 xt+~-~and 2 x~+~-y
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once the row has been reduced. Under special circumstances, for example if the
servers are all Erlang, then it may be shown that the maximum bandwidth for reduc­
ed rows may be decreased even further. A variable bandwidth would permit a saving
of (M - r) {(r+~-~} 2 /2 memory locations over the standard fixed bandwidth but
is a little more complicated to organize. In the examples presented below, a fix­
ed bandwidth storage scheme was employed and since only Erlang servers were model­
led, the bandwidth for reduced rows was taken to be (~:~) which is less than
2 x (r+~-l) .

Number of cu s tamers in queu e.

<"r r r+ 1 r+2 r+3 r+4 r+5

r+l I
I

- - - - -;- - -- - - ;- - - - - -;- - - - - :---

I t I !

I I r I
I I ! I

1 I I t

I I I I

- - - _...J - - - - - f - - - - - i- - - - - -1- - --

I I I I
tIt f

I

I
I

I--------~------

I
I

I

~-----,I~---~---+---,-----~-----r-----~--

I~III j j
L--~~--__Ir_--__+---_, - - - - -I - - - - -, - - -

,------- , ~~II--+--I--+---------,: - --_: --
: ---,- -- -: ~ III

:--------[-----~------;~~I~---r--I---II r-----,

~- - - - - - - - - i - - - - - l-- - - - - 1- - - - _.,L..----4~---t_---+--

r

II
r+2 II

I - - - - -,
I

r+3 ,

r+4

~r

Figure 2. Block Tridiagonal form of transition rate matrix ST.
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The approximate total memory requirements for the direct approach is there­

fore given by (~:~) x n words for storing the matrix and 1.5K words for the actual
programming. The programming requirements for the iterative method are much
larger, (17.5K words) since the iterative program is much more complicated than
the method. However, the number of memory locations required to handle the arrays
is approximately equal to lln, if as is usually the case, five trial vectors are
employed in the simultaneous iteration method. In general then, the iterative
approach requires less memory than the direct. Note that it is assumed in both
cases that backing store is not used.

Figures 3 and 4 show the time required by both methods as the number of iden­

tical servers r in the queue is increased. The servers are taken to be Erlang-3
and Erlang-4 respectively.

Figures 5 and 6 show the time required by the two methods when the number of
servers is constant, (equal to two and three respectively,) and the parameter k of
the Erlang distribution law Erlang Ek is varied.

It will be observed that in all cases the direct approach requires consider­
ably less computation time than the iterative method. Furthermore its results
were obtained to full machine precision. Although no timing experiments were con­
ducted to compare the effect of increasing the maximum number of customers Min the
queue (this was taken to be ten in all the examples), it is very likely that the
direct method will prove to be superior to the iterative method. A moment's re­
flection will show that as Mincreases the computation time of the direct method
will increase only linearly. No such observation can be made for iterative meth­
ods and in fact experiment has shown that often this is not the case.

For the iterative method, initial approximations to the solution vector were
obtained by using an analytic technique to determine the probability distribution
of customers P{m), in the queue when the service distribution is exponential rather
than Erlang-k. An approximation to the stationary probability of any state which
has m customers is then given by P{m)/o , where 0 denotes the total number of
states having m customers.

As an aside we should note that the iterative solution to this queue was
developed for inclusion into an approximate method for the solution of networks of
queues in which the stations contain more than one general server, Marie and
Stewart, [8J. This approximate method embeds the numerical iterative technique in­
to a global iterative procedure, so that the results obtained from one global iter­
ation may be supplied as initial approximations for the numerical method during the
next global iteration. After one or two such iterations, it is found that the ini­
tial approximations to the solution are very good and therefore convergence is very
rapi d.
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6. Conclusions.

In this paper we presented a direct numerical technique for the solution of
queueing networks. We saw that the method of inverse iteration possessed some
advantages over the more usual direct methods in that it requires less numerical
computation and that it yields a measure of the rounding error involved in the
reduction phase of the algorithm. Some sparse storage techniques suitable for a
direct equation solving method were then examined and a fixed bandwidth scheme
recommended. It was also shown how an efficient method for generating a row of
the matrix and reducing it to upper trianglular form before generating the follow­
ing row could be implemented with advantage. Finally, the results obtained from
this method when applied to the A(m)/K/r queue were compared with those obtained
from an iterative method. It was observed that although the direct method requir­
ed more memory for storing arrays, it obtained much more accurate results in a
considerably shorter time period.

REFERENCES

1. W.J. STEWART. "A Comparison of Numerical Techniques in Markov Modelling".
Comm ACM. Vol. 21, No.2, pp 144 - 152, Feb. 1978.

2. V. L. WALLACE and R. S. ROSENBERG. "The Recursive Queue Analyzer". System
Engineering Dept. Technical Report No.2, University of Michigan, Ann Arbor,
1966.

3. A. JENNINGS and W. J. STEWART. "Simultaneous Iteration for Partial Eigenso­
lution of Real Matrices". J.I.M.A. Vol. 15, pp 351 - 361. 1975.

4. J. H. WILKINSON. "The Algebraic Eigenvalue Problem".
Clarendon Press, Oxford, 1965.

5. A. JENNINGS. "Matrix Computation for Engineers and Scientists".
Wiley Interscience Publication, London, 1977.

6. W. J. STEWART and R. MARIE. "A Numerical Solution for the A(n)/K/r
Queue". IRISA Publ ication Interne No. 79, Universite et INSA de
Rennes, 35031, France, 1977.

7. D. R. COX. "A Use of Complex Probabil ities in the Theory of Stochastic
Processes" . Proc. Camb. Phi 1. Soc., Vol. 51, pp 313 - 319, 1955.

8. R. MARIE and W.J. STEWART. "A Hybrid Iterative-Numerical Method for the
solution of a General Queueing Network". Third International Symposium on
Modeling and Performance Evaluation of Computer Systems. Bonn, W. Germany ,
October 1977.



APPLIED PERFORMANCE ANALYSIS





Performance of Computer Systems
M. ~rato. ~. Butrimenko. E. Gelenbe (eds.)
©II~S~. North-Holland Publishing Company, 1979

Performance Evaluation of the BASIS System

by

R.P. van de Riet
vakgroep informatica

Vrije Universiteit, Amsterdam

BASIS is an interactive system, based on PASCAL, for the
workshop of the introductory course in informatics. It has
built-in facilities for evaluating itself and the performance
of the students. The aim of the performance evaluation is to
have a tool by means of which the system and the course can be
gradually improved.

1. INTRODUCTION

The BASIS system is used in the introductory course in informatics as the primary
tool for the student's practical work. It is an interactive system for both pro­
gram composition and program testing. The language is a subset of PASCAL [1] (no
records, no sets, no sUbranges, no pointers, only one data file and no goto's).
The only way a student can make a program is by making procedures which can be
individually tested. In fact, for the student a program is just the collection of
variables and procedures he introduced. The emphasis is on structured programming
with short, well documented, procedures. Tne current BASIS version checks if the
procedure text conforms to a simple but adequate lay-out structure and also wheth­
er the text contains any form of comment. The editor is a large subset of the
UNiX editor [10].

In two preceding IFIP conferences we reported about the design criteria and plans
[5] and about the implementation of the system [6]. In this paper we want to dis­
cuss several measurements whicn have been carried out. These measurements concern
primarilY the functioning of the system in response to the student and vice versa.
A major objective which we want to realize witn the system is that of more or less
automatic upgrading. Not in the sense that bugs are removed (actually the current
version of the system is very stable), but in the sense that reactions of the sys­
tem to student behaviour are improved.

Tnere are several ways to measure the system-student responses in order to make
improvement possible. One method is to question the students about the system by
means of questionnaires. In an early stage of the development of the system this
nas been carried out by two psychology students on a group of alpha students (from
tne humanities). Very few problems were signalled in this way which were not al­
ready known by personal communication. In particular, the placement of the sem­
icolon and the use of the editor turned out to be troublesome. This way of
measuring the system was not pursued any longer; although it is not impossible to
redo such an investigation in the future if some psychologists show interest.
Another metnod, which will be extensively reported in this paper, is to automati­
cally analyze the conversation between system and student. In this way it turns
out to be possible to get a clear picture of what an average student does, how he
reacts upon errors, whicn errors ne makes, which constructs he uses, etc. and of
tne behaviour of tne system in terms of response time, error messages (Whether
tney are clumsy or not), etc.

105
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The structure of this paper is as follows. In section 2, we will demonstrate a
typical session of a student. In section 3, we will show how a so-called stat­
file is constructed from the system-student conversation. In section 4, we
analyze the global behaviour of the student and we compare several types of stu­
dents: informatics and mathematics, biology and geology, and students from the
humanities. In section 5, a detailed analysis of the errors will be given in terms
of reaction time, think time, frequency, adequacy of help information and repeti­
tion of errors. Several correlation coefficients will be given also for the dif­
ferent groups mentioned above. In section 6, we will outline how the errors are
distributed in time. In section 7, we will report about the analysis which has
been performed for each individual error and how this influenced a new version of
the system. In section 8, the use of the language constructs will be described.
This analysis reflects a little bit the analysis of Knuth [4] about use of FORTRAN
constructs and the analysis of Tanenbaum [9] concerning the use of PASCAL con­
structs. These investigations were designed for optimization purposes of compilers
and underlying machines.

Our goal is to know what the student is doing from a pedagogical standpoint so
that the course can be improved pedagogically. In this sense our investigations
are in the same area as the studies of Sime and Guest [8] where they measure the
use of certain language constructs as e.g. if-then-else versus goto's, or the
invesoigations of Gannon [2] who describes several controlled experiments where
programmers use (more or less) structured programming tools. In section 9, we
report the results of the measurements concerning the system responses, together
with a short overview of past measurements by M. Kersten [3] concerning the inter­
nal functioning of the system components. Here, we also give some numbers con­
cerning size and speed of the system and the hardware configuration. Finally, in
section 10 we describe some future plans.

2. AN EXAMPLE OF A BASIS SESSION

We suppose that the student is somewhere in the middle of the course so that he is
already familiar with the notion of variables, types, values, procedures, editing,
etc. He will work on a problem where the main procedures have been thought out and
written at home. (In fact the course assistants take care that the students do
their homework at home and not behind the terminal).
The problem is to calculate the n-th Fibonacci number fen], defined as frO] 0,
f[ 1] = 1, f[i] = f[i-1] + f[i-2], for i > 1.
This problem is identified as exercise1. A possible interaction is shown below.
BASIS normally ends its response with an arrow" -->" after which the student
gives a next command. If the student types in a procedure (or function), then the
BASIS reaction upon a new line is " ... ", so the student can easily see if he is
still typing in the procedure or that he has finished the procedure. In general,
BASIS responds wi th " ... " if the command is not finished.

When the student is editing a procedure, with the name "proc", by means of the
command "edit(proc)", BASIS responds with " .. >", if a new edit command is expect­
ed; if the edit command is not ready, as in the case of a(ppend). BASIS responds
with It ••• ".

If BASIS detects an error (syntactical or run-time) it responds with showing the
line last treated (Which can be the command typed in or a line of a procedure)
underlining the symbol last treated. Only if the student types in "help" will
BASIS respond with "..." followed by an error message. It is possible that the
student asks for more help by typing in "help" again. In that case BASIS responds
with some global information about the error such as a reference to the manual or
some examples. Note that by explicitly asking the student for "help" instead of
automatically providing him or her with the error message, we have given the sys­
tem a tool to measure the student's reaction upon errors. It is now possible to
measure the effect of an error message on the number of times the same error is
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repeated immediately, or on the time a student needs before he repairs the error
(i.e. think time). furthermore, it saves time for the student (and paper of the
terminal) since in quite a number of cases (in fact 70-80 %) he apparently did not
aSK for the error information.

In BASIS, comment is placed between "(." and ".)" and may be placed in commands or
in the text of a procedure. We will use it to explain what the student is doing.
Let us return now to the problem mentioned above. The student starts as follows
after logging in under UNIX [10J.

•••
-->

-->...
-->

-->...
-->
•••
•••
•••
•••
-->

-->

-->

-->
•••
•••

Basis-version 230178, see: 'Basis-handleiding dec 1977'
var fO,f1:integer;
type far=array[1 .. nJof integer;
type far=array[l ..nJof integer;

help
arraybound must be an integral number
type far=array[1 .. 10Jof integer;
const n=10;
f:far;
f:far;

help
"=" expected
help
ex. const month='augustus'
ex. const min=10; max=20;

maxint=32767
see manual 4.1 ( const-declaration
var f: far
fO:=Oif1: =1 ;f[2J :=fO+f1 ;fC3J:=f[2J+f1 ;write(f[3J);

2
f[4J:=f[3J+f[2J;f[SJ:=f[4J+f[3J;write(f[SJ);

S
procedure fibon(n:integer);
var i:integer;
oegin

while i <= n do
begin f[iJ:=f[i-1J+f[i-2J end;

wri te( f[nJ)
end
fibon(S);
remember: layout not correct, see: additions to the manual
remember: pr- or fu-declaration without comment

••• in: fibon
4 while i<=n do

n
i

S
<undef>

--> edi t (fibon)
.. > 1

procedure fibon(n:integer);
.. > a

(·computes and prints n-th fibonacci number.)

.. > Ibegin fl
begin f[iJ:= f[i-1J+f[i-2J end;

.. > s/end;l;i:=i+1/p
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.. > a
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begin f[iJ:= f[i-1J.f[i-2Ji i:= i.l

end:

· . > Iwri tel
write(f[nJ)

.. > s/wl w/p
write(f[nJ)

· . > 1,$p
procedure fibon(n:integer);
(·computes and prints n-th fibonacci number·)
var i:integer:
begin

while i <=n do
begin f[iJ:= f[i-1J.f[i-2J: i:= i.l
end:
write(f[nJ)

. end
.• > Q

--> (·We are out of the editor now.)
--> fibon(5):

... in: fibon
5 wnile i<=n do

n
i

5
<undef>

-->...
-->
· .>

· .>

•• >
-->

help
variable did not get a value
edit(fibon)
Ibeginl
begin
s/n/n i:=2: f[OJ:= fO;f[lJ:=fl:/p
begin i:= 2: f[OJ:= fO: f[1]:= fl:
Q
fibon(5)
... in: fibon
4 begin i: = 2: f[ 0 J : = fO: f[ 1] : = f 1;

n
i

--> list(type)
type far

--> type far
type far

5
2

array [1 .. 10J of integer:

array[O .. 10J of integer:
array[0 .. 10J of integer;

-->
•••
-->
-->

-->

-->

-->

help
new identifier expected
erase(far)
type far = array[O .. 10]of integer;
var f:far:
fibon(5)

5
fibon(71

13
fibon( 10)

55
fibon( 15)
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••• in: fibon
6 begin f[i]:= f[i-1]+f[i-2]j i:= i+1

109

n
i

15
11

--> help
••• index of array bound too large

Here we skip over the session until the student has made a procedure which pro­
duces the fibonacci numbers as real numbers instead of integers.

fibon( 10)
55.0

--> fibon (20)
6765.0

--> fibon(40)
1.0233e8

--> fibon(100)
3.5423e20

--> (.this computation needed 130 real seconds.)
--> save;
--> stop

cptime: 28.42 sec.
••• end of basissession

3. THE STAT-fILE

from the conversation, as shown in the preceding section, a file is constructed
provided with some extra information consisting of real time and cpu-time used,
which is called stat-file and which is used for gathering the statistics. Obvious­
ly, it is not necessary to put on the stat-file most of the system responses as
"-->", full error messages and resul ts of computations. Instead, only the error
numbers are shown. furthermore, in order ,to simplify the analysis of the stat­
file the beginning of a procedure declaration is signalled by a "p" and the begin­
ning of an edit session by an "e". The two numbers with which most of the lines
start are real time, measured in seconds and cpu-time measured in 20 milliseconds.
These numbers are produced at the moment that the line on which they occur is sent
from the BASIS system to UNIX to be put on the file. for an input line this is
the moment that all the characters are put in a buffer just prior to processing
the line. for an output line it is the moment that all processing is done and the
line is shown on the terminal.
The stat-file of the preceding section has the following form.

00060
00061 help
00066 help
00070 var f:far
00071 fO:=Ojf1:=ljf[2]:=fO+f1;f[3]:=f[2]+f1;write(f[3])j

00050
00051
00054
00059
00060

login
var fO,f1:integerj
type far=array[1 .. n]of integerj

03966 26029
00032 00046
00072 00049
1/2103
00072
00076
00103
00123
00214
1/2003
00214
00218
00225
00276
00347

help
type far=array[1 .. 10]of
const n=10j
f:farj

integerj
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00398 00078 f[4]:=f[3]+f[2]jf[5]:=f[4]+f[3]jwrite(f[5])j
00418 00086 procedure fibon(n:integer)j
p
00427 00090 var i:integerj
00432 00092 begin
00445 00093 while i <= n do
00490 00095 begin f[i]:=f[i-1]+f[i-2] endj
00499 00099 write(f[n])
00503 00101 end

00518 00101 fibon(5)j
114204
00518 00111
00554 00114 edit(fibon)
e
00558 00116
00563 00117 a
00595 00117 (.computes and prints n-th fibonacci number·)
00601 00121
00612 00121 /begin f/
00630 00130 s/endj/j i:= i+l/p
00640 00144 a
00652 00144 endj
00653 00145
00660 00145 /write/
00695 00149 s/w/ w/p
00707 00154 1,$p
00723 00164 q
!
00750 00165 (·We are out of the editor now.)
00764 00168 fibon(5)j
114204
00764 00174
00777 00179 help
00793 00190 edit (fi bon)
e
00799 00193 /begin/
00818 00200 s/n/n i:=2j f[O]:= fOjf[1]:=f1j/p
00824 00204 q

01098 00298 fibon(5)
114002
01098 00305
01127 00310 list(type)
01159 00313 type far = array[0 .. 10] of integerj
112107
01159 00314
01163 00314 help
01190 00320 erase(far)
01209 00321 type far = array[O .. 10]of integerj
01216 00323 var f: far j
01327 00364 fibon(5)
01339 00385 fibon(7)
01357 00408 fibon( 10)
01365 00440 fibon(15)
114003
01371 00466
01379 00472 help
02766 00964 fibon( 10)
02775 00987 fibon(20)
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02783 01038 fibon(40)
02803 01143 fibon(100)
02971 01400 (Ithis computation needed 130 real seconds l )

02980 01403 save;
02986 01418 stop
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Next follows a list of the Keywords and their frequencies as used by the student
in procedures. Note that the reproduction of the session here is not complete.

02986 01419 integer2
02986 01419 end2
02986 01420 begin2
02986 01420 var1
02986 01420 while1
02986 01421 do 1
!

4. GLOBAL BEHAVIOUR OF THE STUDENTS

For tnree courses, one for biology students (bioI), one for mathematics students
(math) (which includes informatics students) and one for humanities students
(human), with 22, 51 and 12 participants, respectively, we analyzed the stat-files
from which the following global conclusions can be drawn as depicted in table 1.
The table gives numbers for the average student of the three different groups.

One can make the following conclusions from table 1:
1. Mathematics students seem to work most intensively.
2. There is almost no time spent for problem solving; the time is spent for pro­

gram development, as it should be.
3. AsKing one time for "help" seems to help really as the number of repeated

errors is smaller with than without "help".
4. This cannot be said for "help-help".
5. A mathematics student spends about 0.023 cpu hours per real hour, which means

that, as far as the cpu is concerned, 30 students can simultaneously be con­
nected without problems.

6. The number of errors made per hour seems to be constant: 15.
7. The number of errors made per command seems to be constant: 0.3.

Comparing the humanities students with the biology and mathematics students is not
fair for the simple reason that the contents, the exercises and the size of the
humanities course differed considerably from the biology and mathematics course.
One can get an idea of the amount of work done in the workshop by considering that
the biology students had to do 3 a-, 4 b- and 2 c- exercises while the mathematics
students did 4 b- and 4 to 5 c-exercises. An a-exercise is very simple such as a
procedure which prints the truth table of the operators "and" and "or". A b­
exercise is more difficult, for example, a procedure computing a frequency table
of letters occurring on an input file. A c-exercise is rather complicated as e.g.
tic-tac-toe, simulation of Conway's game of life. The exercises for the humanities
students were specially chosen from linguistics, such as text manipulation, e.g.,
counting letters, justifying text, coding and decoding text and generating text by
means of syntactic rules.
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BioI Math Human

- Total time connected with BASIS (in hours)

- Time spent while editing (in %)

- Time spent while typing procedures (in %)

- Time spent while typing commands (in %)
(this includes procedure calls)

- Time spent while thinking about an error (in %)

- Time spent for chatting, coffee drinking etc.
(in %)

31 22.5

24 28

11 17

33 30

23 21

9 4

12

13

13

29

3

42

- Usage of cpu (in hours) 0.74 0.58 0.06

- Number of commands including procedure calls 1404 994 476

- Number of edit calls 186 165 46

- Average number of lines per edit call 9 8 7

- Number of procedures declared 64 36 40

- Average number of lines per procedure 7 12 6

- Number of errors made 447 290 178

- Average time needed before reacting after 59 58 66
an error was made (in sec)

- Number of times the same error was immediate- 28 25 25
ly made again without asking for help (in %)

- Number of times "help" was called after an 23 20 29
error was made (in %)

- Average time that elapsed after an error was 36 14 28
made and before "help" was called (in sec)

- Number of times the same error was immediately 18 12 18
made again after asking for "help"

- Number of times "help" was called two times after 3 6 5
an error was made (in %)

- Average time that elapsed after an error was made 107 153 124
and before "help" was called for the second time
(in sec)

- Number of times the same error was immediately 16
repeated after asking two times for "help" (in %)

table 1. Global behaviour of students

16 19
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5. ANALYSIS OF THE ERRORS
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w/h;
ww/hhj

For each error, the attributes, as listed in table 2a, were measured for the
three courses mentioned:

- n: frequency;
h: the number of times "help" was called;
w: the total time elapsed after the error occurred and until a "help" was

called; it is called "1- help" wait time;
hh: the number of times "help" was called twice in succession;
ww: the total time elapsed after the error occurred and until the second

"help" was called; it is called "2- help" wait time;
e: the number of times the same error was immediately made again aIled;

after one "help" was called;
ee: the number of times the same error was immediately made again after

two "helps"s were called;
r: the number of times the same error was immediately made again while

neither "help" nor "help help" were calledj
t: the total time elapsed after the error occurred and until any reaction

other than "help" or "list" was typed inj this time is called the think
time.

table 2a. The total attributes.

From the above attributes concerning total/absolute quantities, we derived the
following attributes describing relative quantities:

- mt: mean think time = tin;
- mh: mean number of "help"s = h/n;
- mhh: mean number of "help - help" per one "help" = hh/h;
- me: mean number of repeated errors after "help" = e/h;
- mee: mean number of repeated errors after "help - help" = ee/hh;

mr: mean number of repeated errors after neither "help" nor "help - help";
mr = r/(n-h-hh)j

- mw: mean "1-help" wait time
- mww: mean "2-help" wait time

table 2b. The relative attributes.

The errors were sorted according to the above attributes, so that we obtained 17
lists of error numbers. It takes too much space to reproduce these lists here
since eacn list contains 170 error numbers. We first give a few interesting exam­
ples and tnen we will describe the results after comparing these lists.

5.1. ~ examples

In order of frequency, n, the 10 most frequently occurring errors were almost the
same for the three courses: biology, mathematics and humanities; we therefore list
the results of the bi~logy course:

identifier not declared (typing error)
syntax error
erroneous symbol (typing error)
command expected (typing error)
error in editor witn text replacement
existing identifier expected (typing error)

(as e.g. in list or edit)
variable did not get a value
editor reaches end of text too early
after editcommand no new line
error in string matching in editor

Tnese 10 errors were responsible for 56% of all errors; four of them probably are
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typing errors, four are errors in the editor (which means that working with
editor is still not simple although we changed from an own-invented (clumsy)
tor to the very handy UNIX editor) and two are more fundamental errors: one
cerning syntax and one concerning semantics.

the
edi­
con-

Errors which need the most time to think before a repalrlng action are the most
important ones. They need considerable attention from the person who gives the
lectures as well as from the makers of the system.
In the ordering of total think time, t, the first 10 errors for the biology stu­
dents were:

variable did not get a value
identifier not declared
syntax error
command expected
identifier not declared
",II or lI)lt expected after expression
too much cpu-time used
existing identifier expected
erroneous symbol
insufficient room left for array declaration

The mathematics students showed a somewhat similar behaviour; only three of the
errors differed. The humanities students showed a more different behaviour, with
four errors differing.

The reason that "identifier not declared" is showing up in the above lists is that
it occurs so frequently, but it is, of course, a very cornmon error. The most
interesting errors are those which need the most mean think time, mt. The attri­
bute mean think time is of interest as it says something about "difficulty".
The ten most "difficult" errors, then, for the biologists were:

insufficient room for array declaration
too much cpu-time used
division by zero
array identifier expected
"(" or identifier expected (in a command of the form "a:= ..• ", where a is an

array variable and " ... " can be something like "(1,2,3)" or "b")
type identifier expected

(in "var a: ... ")
index of one-dimensional array too small
erroneous use of standard procedure identifier

(as in "procedure sin(x,y:real)"
overflow of real capacity
first index of two-dimensional array too small

The frequencies of these errors range from 3 to 57, which on a total of about
10000 errors is of course very small. The think times range from 6 to 2.6
minutes.

According to the mathematics students the following ten errors were most "diffi­
cult":

too much cpu-time used
index of one-dimensional array too small
insufficient room for local array declaration
too much nested procedure calls (max = 50)

(problems with recursive procedures)
array identifier of same type expected
array-oound must be an integer

("type ar = array [l .. n] of real" is not allowed)
second index of array is too large
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array index must be an integer expression
type of function must be standard
not implemented (probably an error of the kind: "a[l]:: b[l]" occurring in a

procedure where a and b are two-dimensional array variables. This construc­
tion is allowed as a command, but as it is non-PASCAL, we have forbidden it
in a procedure)

It is remarkable that 7 of these errors concern arrays. They were not made often;
tneir frequencies range from 134 to 9 (which is not much compared with the total
number of about 15000 errors) and their mean think times range from 10 to 2.3
minutes. With respect to the humanities students we remark that their ten most
"difficult" errors differed completely from the above two lists, which is not
surprising.

5.2. Some correlations

It is tempting to compare all the sorted lists of errors; the question is, howev­
er, how can they be compared? Heuristically, the most direct way is the way we
suggested in the preceding section. Compare the first N items of two sorted
lists. If the intersection consists of d elements, then diN is a measure for
correspondence. This number is called the correspondence number c(N) and is obvi­
ously dependent on N. If N is chosen to be 1, then c(N) is either a or 0.5; if N
is chosen equal to the number of different errors (170 in our case), then c(N) :
1. We have computed c(N) for N : 10 and N : 20.
for the mathematics students we found the following correspondence numbers in the
form of pairs c(10), c(20): (for obvious reasons we donot compare total attributes
and relative attributes with each other).

n

n

I

1, 1 h

h .3, .4 1, 1 w

w .5, .6 .6, .7 1, 1 hh

hh .3, .5 .7, .6 .5, .7 1, 1 ww

ww .4, .6 .5, .5 .6, .7 .4, .7 1, 1 e

e .3, .3 .8, .7 .6, .5 .7, .5 .5, .5 1,
11

ee

ee .4, .3 .6, .6 .4, .4 .5, .6 .5, .5 .5, .6 1, 1 r

r .8, .9 .3, .4 .6, .6 .3, .5 .4, .6 .3, .4 .4, .4 1, 1

t .6, .7 .7, .7 .7, .8 .6, .6 .5, .7 .7, .5 .5, .5 .5, .7

table 3. Correspondence numbers for total attributes.

The conclusion from table 3 might be that there is in general a rather high
correspondence between all the total attributes, but in particular between nand
r, wand h, hh and h, e and h, t and w. This conclusion is reinforced by a compu­
tation of Pearson's correlation coefficients. (not reproduced here).
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The correspondence numbers for the relative attributes are given in table 4.

mt
mt 1, mh

mh 0, .2 ·1. mw

mw .2, .2 0, a 1, mww

mWW .3, .2 0, a .5, .6 1. mhh

mhh .2, .4 .2, .5 0, .1 0, . 1 1, me

me .3, .3 .1, .1 .1, .1 .1, .1 0, .2 1, mee

mee 0, .1 0, .1 .1, .2 .1, .1 0, .2 .1, .1 1,
1 Imr

mr 0, a 0, a .2, .2 .1, .2 • 1 .1 .1, .1 .1, .1 1,

table 4. Correspondence numbers for relative attributes.

The conclusion from this table is that not so much can be said: there seems to be
a low correspondence between all of the relative attributes. The high correspon­
dence among the total attributes is probably due to the fact that frequencies of
the first errors of these lists are very high, whereas the frequencies of the
first errors of the relative attribute lists are an order of magnitude smaller, so
tnat stochastic effects on the order is much stronger. The only correspondences
which can be noted are between mww and mw, which is not very surprising, and
between mhh and mho
The faint correspondence between mt on the one hand side and mww, mhh and me is
notified.

Comparing two lists of 170 errors by counting how many errors appear to be common
to tne first N (N = 10 and N = 20 above) is of course very arbitrary. We could
have taken the last N errors of the lists equally well.
Therefore, we also have worked out the following experiment. Compare the two
lists by looking whether the i-th element of the first list occurs on one of the
places i-d, i-d+1, ... ,i+d-1, i+d in the second list. Such an element is called
an OK element. A correspondence number can then be defined as the quotient of the
number of OK elements over the total number of elements.
For d = 10 we give here a list of 10 pairs of attributes which have the highest
correspondence number:

mee-ee (70%) tt-h (51%)
hh- ww (58%) tt-w (51%)
tt- n (57%) me-e (51%)
h - w (56%) r -e (50%)
mww-ww (56%) ee-e (49%)

well with any other
By means of Pearson's
relative attributes

The lowest correspondence numbers are between mee and mt (11%) and between mee
mh (13%). The highest correspondence numbers between relative attributes are
mhh and mww (40%) and mee and me (41%).
It is noteworthy that mt as attribute does not correspond
relative attribute except maybe with mh (30%) and mW (23%).
correlation coefficients, another correspondence between the
has been computed and the results are shown in table 5.

and
for
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mt
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mt

mh

mh

.3 mw

mw .4 o mww

mww .1 -0.2 .3 mhh

mhh -0.1 o .1 o me

me o . 1 -0. 1 -0. 1 -0. 1 mee

mee -0.1

mr -0.1

.1 -0.2 -0.2 -0.3

.1 0 -0.1 0.1

.2

o

1 I mr

0.3 'I 1

table 5. Pearson's correlation coefficients for relative attributes.

The positive correspondence between the mean think time (mt) on the one hand and
mean number of "help" calls (mh) and mean "1-help" wait time (mw) on the other
hand is interesting, altnough it is not evident that these attributes are really
correlated. The observation that mee and mhh seem to be negatively correlated
leads to tne interesting conclusion that the more one does "help-help", the less
one makes the same error again. That this conclusion, which certainly is a conclu­
sion with which we would be very happy, should not be drawn too hastily, follows
from the fact that a similar conclusion can not be drawn with respect to "help"
(the correlation between me and mh even seems to be positive). The same correla­
tion coefficient for the biology course, which was held earlier than the mathemat­
ics course, had the value +0.2. After this course was held the error messages for
"help-help" were changed, this can be the reason of the negative correlation coef­
ficient, discussed here.
The positive correlation coefficient between mr (mean number of repeated errors
wi thout "help") and mee (mean number of repeated errors after "help-help") is
notified.

6. THE DISTR1BUTION Of THE ERRORS IN TIME

from Kersten's [3J analysis we give a small account of the analysis of how the
errors were distributed in time. Table 6 shows the percentages for six very fre­
quently occurring errors during the three weeks of the course.

week 1 week 2 week 3

identifier not declared
syntax error
command expected
existing identifier expected
variable did not get a value
error in editor

15.5
7.6
4.7
4.4
1.7
2.9

11. 5
9.2
7.5
3.8
4.3
3.6

10.2
7.9
4.2
5.2
7.6
5.3

table 6. Time distribution of most frequent errors.

One can see that simple errors as "identifier not declared" are made less and com­
plicated errors as "variable did not get a value" are made more as the course is
going on.

7. ANALYSIS Of EACH INDIVIDUAL ERROR
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with tne error frequencies of the biology course we have analyzed each error indi­
vidually with respect to: adequacy of error message and clarity of the location
when the error occurred, and this with the relative importance of the error in
mind. for about 20 errors this resulted in a better message and for three errors
this resulted in reprogramming the pertinent piece of the system. Noteworthy is
tne error: "type of operands unequal" which occurs for example in "if i< 10 and
l<i", where "10 and 1" is wrongly treated as a term; the reason for this was that
we had a large table for all the operators and a three- dimensional "jump" such
that Knowing the types of the operands and the operator immediately led to the
table entry where the definition of the operation was defined. We now have
dropped this very clever scheme in favour of working out all cases with if-then­
else and case-statements with the effect that errors can be better localizedj as a
side-effect it turned out that the new scheme was faster and needed fewer bytes.

lt nas been investigated also Why about 30 errors did not show up in the statis­
tics, although the system could produce them (by the way, there were 14 errors
which occurred just once of the total number of 14800). The conclusion was that
in principle they all can (and hence will) occur some time. Some constructs which
are possible in BASIS are used very seldom, such as giving through procedure
identifiers or call-by- reference parameters to other procedures. There is also a
double syntax check: one is rather crude and concerns bracket structure, the other
is precise. for example, the first check does not signal an error in "if O<x< 1
then ... ", it sees that "then" has a preceding "if". The second check reads "O<x"
as an expression and the next symbol to be treated is "<" so that an error is sig­
nalled saying that "then" is expected.

8. fREQUENCIES OF KEYWORDS

In order to observe what the students are doing and which constructs they are
using we have counted their use of keywords as "begin", "if", etc., using the stat
file. This has been performed, for several exercises, with the hope that per
exercise tne behaviour of the students is a little bit uniform. for the whole
course it is very difficult to draw any conclusion about the usage of keywords.
Martin Kersten has performed such an analysis and could only draw conclusions
liKe:

- "and" and "or" are used much more frequently than that boolean variables are
being declared;

- Ilthen il is used about twice as often as I'else";
the use of "for", "repeat" and "while" is proportional to 9:1:1.

This topic will be dealt with more extensively in a future paper.

9. THE INTERNAL FUNCT10NING OF THE SYSTEM

9.1. The internal structure and representation

In order to get an idea of the functioning of the system and thereby on the kind
of measurements which have been carried out, we give the following global picture
of the system and the internal representation.

The system is completely written in PASCAL.
Tne text of each BASIS procedure (i.e. typed in by the student) is kept in memory
as a linear list of text cells. Each text cell contains a syntactic unit, such as
an identifier or a keyword in which case a pointer in the text cell points to the
character string constituting the identifier or keyword in the symbol table, or a
number, in which case a pointer points to a record in the number table, containing
tne character string (for edi to rial reasons "123.456" is different from
"l.23456e2") and the value, or the text cell contains a character like "j" or "="
or an end- of-line symbol, in which case baCkward and forward pointers simplify
the process of stepping line-by-line through a text.
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There is also an information store in which the information (type and for vari­
ables: value and for procedures: text pointer) about all identifiers is stored.
There are pointers from the symbol table to this information store in order to
find the appropriate information corresponding to an identifier occurring in the
text.
By a careful analysis of the frequencies of the records we were able to redesign
the internal representation in such a way that the amount of memory needed for a
certain program was diminished by a factor of about 2.5. Which means that a pro­
gram can now have a size of some eight pages in the available space, which is more
than enough for a basic course. For example, a text cell consisted in the previous
system of 10 to 12 bytes, in the current system it consists of 4 (normal) to 10
(only for end-of-line cells) bytes. In the previous system we encountered the
problem that the PASCAL system maintains 6 free lists of records which may be
reused. The new system is provided with one record type: cell with 35 (nested)
variants and the BASIS system itself maintains lists of free cells structured on
size.

Another redesign concerned the symbol table. In the previous system it was organ­
ized as a binary tree upon initialization prefilled with the keywords. It turned
out that on the average 6 comparisons were necessary to insert or look after an
identifier or key word. The storage structure of the current system is that of a
hash table of moderate size of 248 bytes. The average number of comparisons now is
1.1.

The system code amounts to 155 PASCAL procedures totaling 3300 lines, having been
thoroughly analyzed and judiciously rewritten based on an analysis using counters
and timing statistics of Martin Kersten [3]. The result was that the current sys­
tem is about a factor 1.5 faster than the old one. We plan to describe the inter­
nal functioning of the system and the changes we made in more detail in another
paper.

9.2. The hard- and software configuration

The hardware configuration consists of:
PDP 11/45 with 124 K words
cache memory (speed improvement about 40%)
floating-point processor
2 RK05 disKS (2*2.5 M bytes)
1 fixed head disK (0.5 M bytes)
2 Ampex disKS (2*67 M bytes)
Lineprinter + paper tape reader/punch
2 DEC Tape Units
30 Terminals
1 fast multiplexor for connection to a remote Cyber 73.

As software, tne UNIX operating system [10] is in use; tnis is a time-sharing sys­
tem allowing processes to share common files. The PASCAL compiler used for the
BASIS system is home-made. It produces code in a very compact form, which is exe­
cuted by interpretation loosing about a factor eight in speed as compared to as­
sembly code. The code for the BASIS system takes 26 K bytes and there are 18.5 K
bytes necessary for library, tables and buffers. The system is itself also inter­
preting, so executing a procedure in BASIS is a time- consuming process. For exam­
ple, an empty for statement of 100 repetitions taKes 0.17 cpu sec and a while­
statement 1.8 cpu sec. From the measurements in the next section we will see that
executing procedures is done in only 9% of the total time, so the slowness is cer­
tainly not prohibitive. It is rather awkward, however, to see a student waiting
for a long time while the system is executing his procedure, in particular at the
end of the course. Therefore, a new system is under development, which combines
the existing UNIX editor and PASCAL compiler to realize a more rapid BASIS system.
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Witn regard to the PASCAL system we remark that a new system is almost ready in
which the compiler itself takes 14 K bytes only. This system can be used to pro­
duce optimized short code or optimized assembly code. The ratios for speed and
storage space of short code versus assembly code are roughly the same: four. The
BASIS system compiled to assembly-code needs about 50 K bytes and runs two to
three times faster than the current system. This BASIS system will be used during
the next course so that actual measurements can detect improvements.

9.3. The response time Q[ .t.!lli.~

Using the stat files it is possible to measure some interesting response times. In
a typical conversation there are certain times which are of interest. They are
shown in fig. 1.

tl t2 t3 t4=t 11 t12 t13 t 14= ...
---+--+--+---+----+---+---+---

fig. 1 Events during a conversation.

The times are defined as follows:
tl, t11: student starts typing a line of text;
t2, t12: student sends line to the system;
t3, t13: BASIS has seen the line and sends the line, provided with current real

time and current cpu-time, to the stat file;
t4=tl1, t14: the computation as specified by the line is performed and the reac­

tion of BASIS is sent to the terminal, whereupon the student can start
thinking and/or typing a new line thereby repeating the cycle. If the
system reports an error this is put, together with the current times,
on the stat file.

Evidently, tne time t4-t2 is the response time which we want to measure as a func­
tion of the number of other simultaneous users of the system.
Tne following experiments have been carried out.
first, we aSKed n BASIS users to edit only, typing a line now and then. for n run­
ning from 0 to 18 this had no effect on the response time of the (n+l)-st user.
Second, we asked n BASIS users to use the system heavily by executing an infinite
loop, again for n=O, .,. ,18. The effect on the response time of the (n+l)-st user
was measured as follows. The (n+l)-st user was executing a procedure which used
about 1 cpu second. The real time was measured this procedure needed to get ready.
This was done by computing t13-t3 and neglecting t12-tl1 (using the UNIX facility
to type one line ahead). The results can reasonably accurately be described by
the formula:

r = 1.7 (n+ 1) ,
where r is the ratio of real time and cpu time.
Tne ideal formula would have been r = n+1; the factor 1.7 is caused by swapping
overhead.
The response time for just typing in a new line could not be measured by means of
the stat file, since in t3-t2 an unregistered amount of time elapsed before BASIS
turns attention to the user. This time, delta, could be measured by simply using
a stopwatch. It is given in the following formula:

delta = 0.2 (n+l) sec.
It is of course also interesting to see from the stat files how long a student
really waited in the course for the execution of procedures. Therefore, we com­
puted t4-t2 from t4-t2 = (t13-t3) - (t12-tl1) assuming that t13-t12=t2-t2.
The time t12-tl1, i.e. thinK time plus type time, was estimated using cases were
the procedure call lead to a syntax error.
The following conclusions could be drawn; they are given in table 8.
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week1 week2 week3 total

121

total real time waiting for
computation (in min)

percentage of real time waiting
for computation compared to
total time connected (in %)

8 15

5

129

14

152

9

total cpu time for procedure
computation (in min)

percentage of cpu time needed for
procedure calls compared to total
cpu time used (in %)

ratio of real time waiting for
computation and the cpu time used
for it

1.7 2.6

50 55

4.7 5.8

15 19.3

63 62

8.6 7.9

table 8. Response- and waiting times for procedure calls.

The conclusion from table 8 is that during the third week of the course on the
average 2.25 students of the 15 simultaneous students were using the system heavi­
ly. This would result in a ratio of 3.8 for real time over cpu time a procedure
call needs. The actual observed ratio was 8.9. An explanation for the difference
is that firstly the students which are editing are using the system more heavily
than in the experiment above. Secondly, while the course was going on an unknown
number of other people were using UNIX. So the actual ratio of 8.9 is quite rea­
sonable.

10. fUTURE PLANS

As has been said already in section 9.2, a new BASIS system which is built around
the eXisting editor and existing compiler is under development.
Another plan is to direct the measurements on the individual behaviour of the stu­
dent: is he making too much errors so that he needs help, is he using strange con­
structs. This is, however, quite complicated since it is then necessary to know
the behaviour of a "normal" student. At the moment we only save his last ten
errors in order to be able to give him a message when he maKes the same error more
tnan two times in a certain time period.
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The work* reported in this paper is a performance evaluation of
;·12, a heterogenous multi-mini processor, currently being develop­
ped and built at Ecole Superieure d'Electricite, France. The pur­
pose of this study is to evaluate the main performance bootlenecks
of this system, which is meant to replace an existing time-sharing
system. JY12 is composed of a set of small computers, each operating
in mono-programming mode, communicating throu~~ a common bus with
a master control machine and a file processing machine. Job steps
are allocated to a given small machine by the master which carries
out allocation decisions and the exchange of messages between the
terminals and the job steps. We start from a measurement study of
the currently available workload to obtain a projection of the
workload that the new system is supposed to support. This infor­
mation allows us to predict the input traffic to the bUS, the fre­
quency of I/O commands to the file processor, and the job step
characteristics. A hierarchical model is then developped Which
allows us to determine the order in which these various ressources
saturate, as well as the performance of each individual component
and of the system as a whole.

SYSTE}1 DESCRIPTION

This paper presents a model of an experimental computing system in current develop­
ment at Ecole Superieure d'Electricite, aif/Yvette (France).

This computing system, called M2 for: Multi(plp)l":ini(computers) is a closed net­
work of mini-computers, and is designed to be used mostly for interactive proces­
sing [ 7 J.
Its main features are :

- Transparency : a user at his terminal will see the system M2 as a large llild power­
ful single computer.

- Modularity : from 1 up to 11j independent mini-computers can be enclosed in the
network, to attain a desired level of computing power (expected goal : 100 active
terminals in an educational environment). As these mini-computers will execute all
of the user's tasks, they will be called Executors.

- Heterogeneity: all Executors can be of different types. Thus system M2 can be up
graded, step by step, as technology improves, or when the workload justifies it.

The common res sources (see Fig. 1), shared by all Executors are :

123
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•
~ 1 ...Tm : Terminals

EX 1 EX n : Executors

F.P.

M.P.

File-Processor

Master-Processor

Figure 1 : Multi-Minis (M2)

- a high speed bus, able to transfer data at a 1 M byte/s rate. The transfer unit
is a packet whose maximum length is ~K bytes. A transfer cannot be interrupted
after it is started (packet switching mode).

- a mini-computer dedicated to file processing (PDP 11/40) - This File-Processor
is in charge of all operations on disks and tapes.

- a master-mini-computer which controls all exchanges with the outside world (ter­
minals, printers, etc ... ). The Master-Processor is responsible for the assignment
of job-steps (see-below) to Executors. Usually, this is done in order to equalize
the workload between the Executors.

In such a system, the performance of cornmon ressources is of prime importance since
it determines the maximum nw:lber of Executors which can be connected to the bus.

The current M2 configuration is as follows (see Fig. 1) :

Master-Processor CII-MITRA 15/35, 64Kb, local disk
File-Processor DEC-PDP 11/~0, 64Kb, driving two disk modules of 88 Mb

each
4 Executors 2 * cn-MITRA 15/35, 6~Kb, local disk

2 * SEMS-MITRA 125, 128Kb, local disk

Since Executors my be of different types, there is no ccmnon machine language for
M2. It would have been possible to emulate a cornmon Executor on each partiCUlar
Executor but this solution has not been selected because of its very low efficien­
cy. The solution adopted is the following: each job-step is run on one of the
Executors, and it will stay on this same Executor till full completion. It is, the­
refore, necessary to translate the input program code (whatever it is), into the 10­
calExecutor code,and to do this only once, when a new job-step begins (see Fig. 2).
Thus translation overhead will be small enough not to impair system eff~ciency.
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L.O.C. (Cornmon Object Language)

LOAD&oo:LExk Executable Code,
for Executor : k

Exk : LResults

Source

1 Updated Source

LFORTRAN :
Exj

EDI'IQR
Exi

Figure 2 Code routing, from Source stage to Rm stage.

Each Executor is designed so as to support up to 32 active processes. At a given
instant, there is only one task in main memory, all ressources of the Executor
being then available to this task (mono-programming). The remaining processes assi­
gned to this Executor are stored on a local disk which is used to swap processes in
and out of main memory.

PERFORMANCE ANALYSIS OF M2

The following model was developed for performance prediction during design. Later
on, it can also be used by the schedUling algorithm to :iJnprove the dynamic beha­
viour of M2 in the presence of t:iJne-varying workloads.

We shall first briefly mention the results of a study concerning the bus ;
the details will not be given since our results showed that the bus does
not constitute a bottleneck or a critical ressource. The main effort of our analysis
is turned towards the evaluation of global system performance.

The Bus

To begin with, the max:iJnum workload of M2 was estimated through a detailed analysis
of the current measured workload of the existing system (CII 10070, 25 terminals
connected) which M2 is supposed to replace. No assumptions were made on the inter­
nal structure of M2, except that it should satisfy 4 t:iJnes more users (i.e. 100
terminals), 4 t:iJnes faster than the existing system.

Using these measurements, the projected traffic on the bus was estimated, and a
max:iJnum utilisation factor of 25% was obtained for the bus. This detailed measure­
ment and modeling study will not be presented here ; it can be found in [5] . This
is an importar~ result, since it was then possible to assume a mean response t:iJne
of the bus comparable to its service or data transfer t:iJne.
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The File-Processor

The current file-processor is a PDP 11/40, connected via a single crannel to 2
removable disk-pack modules, much like the IBM 3330, of 88 Mbytes each.

- Requests to the File-Processor originate from the Master-Processor and/or the
Executors, via the bus. A request can be a high level access function, such as
open-file, read-using-a-key, delete-file, etc .... All requests are serviced at
the same priority level. Depending on its type, a request may generate any num­
ber of physical accesses to tape or disk. Requests deal only with complete blocs
of data; logical articles are unknow11 to the File-Processor. Since tape opera­
tions will not be allowed to non-privileged users, and should represent a very
small part of the load, only disk-files will be considered here. To optimize
file accesses, special care is taken to ensure a well performing organization
on the disk. Files can be keyed or sequential ; in both cases, blocs inside a
file are linked together. When a new file is created, it is assigned to a cylin­
der ; as long as possible, all sectors of this file will be allocated on this
same cylinder. Rotationnal latency is also being minimized : sequentially lin­
ked blocs will have successive addresses. The minimal distance between two suc­
cessive blocs will be such that the File-Processor CPU has enough tirr£ to handle
intermediate computing. The purpose of this organization is to ensure that, in
most cases, a single request will be serviced inside a single cylinder and as
fast as possible. Further details are available in l81.

It is shown on Fig. 3. It is modelled as a closed network of queues, which can
be solved usir~ Gordon &Newell's method ([4] ).

In the model, all service times are represented by exponential distributions, while
service policies are supposed to be FIFO. In fact, this is untrue, because armmove­
ments, on each disk-module, are optimized through a Look ([ 9J ) policy, while the
channel is allocated on a SLTF basis (Shortest Latency Time First). But as long as
we are only interested in throughput, a FIFD approximation will lead to the same
results as LeOK, provided that service rates are computed using the true policy.
When using a LOOK policy, the arm sweeps across cylinders in one direction, then
in the reverse direction when there are no more request to service ahead of it.

when L » 1

when L 0< 1

E [TseekJ ~ Sm +

~1- Sm
E [TseekJ < Sm + 71--'.5';-("L"-:+"'1')

Sr1- Sm
1. 72 x L

and

Asslnning that requests are independent and uniformly distributed over all cylinders
and approximating linearly the arm transfer function, it can be shown ([11], [ 5])
that :

wi th - L nwnlJer of requests waiting for the arm (including the one which is being
serviced)

-Sm seek time to skip one cylinder

-~ seek time to skip all cylinders

The service stations in the queueing network model are (see Fig. 3)

- Station 1,2 Arm servers of modules 1 and 2
- Station 3 Channel, commm to both modules
- Station 4 CPU of File-Processor ; represents only the part of CPU treatment

Which is serial with channel transfer.
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l-p

p= 1
n

Model parameters are

Figure 3 File Processor model

- n : average number

3m +

of physical accesses/request
Sr-CSm .

1.5(k.+l) ; 1=1,2
1

average upperbound for ann service time at module i conditioned on t.he fact
that ki requests are waiting for the arm

expected channel service for one access (i.e. expected latency time between
two successive blocs~~lus t~ansfer time for one bloc, plus T/2n where T is
the rotatlon perlod 01- the dlSks)
expected serial CPU service time/access

total number of requests being serviced in the file processor.

We can solve the model using [~] which enables us to obtain the throughput. Toe
response time of the File-Processor to a request can then be obtained using Little's
formula. Fig. ~ shows several response time curves, for different values of n, ~3

and ~4'

Q!s~~ss!2~_2f_~b~_~2g~1_2~~gtg~!2~s

The actual value of n will depend on the distribution of requests among different
types: most requests should be read, write sequential (n=1,2) or read, write keyed
(n=3,~,5). So we may expect that the mean value of n should be between 3 and 4.

An estimation of File-Processor workload, which has to be coherent with our previ­
ous estimate for bus-traffic, yields a maximum request input rate no greater than
~O req/sec (( 5]). So, from Fig. 4, we see that the File-Processor should never be­
come satured, most requests being serviced in 50-lOOms or so.
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The Master's functions are:

- interfacing between Executors and terminals (via the bus)

- interfacing between line printers, card readers, etc, and the File-Processor
(via the bUs)

- allocation of job-steps to Executors
- high level system supervision
Current development of M2 is such that the real complexity of these goals cannot be,

even roughly, estimated. So, in the global model proposed below, the Master­
Processor does not appear explicity. Instead, we assume only that delays induced
through it for terminals and other peripherals are negligible when compared to
their own response time. Also, we assume that job-steps will be distributed
among Executors in a way such that the workload will be equal for each Executor
[ 10].

The Executor

System programs and user's tasJ.s are run on Executors. When a new program (job-step)
is activated, it will go through the following steps (see Fig. 2) :

- The Master assigns this program to one of the Executors

- Then the operating system of the Executor will follow one of two paths :

- if the program is a standard system program, it will be present on the local
disk, in its locally executable version, and no further translation is needed

- otherwise, if it is a user program, the operating system will call its interme­
diate form in LOC (LOC : Common Object langclage) from the File-Processor. Then
it will translate it into its own machine langclage, using its own translator,
present on local disk.

- From this point on, the program becomes executable and ready to gain control of
the CPU.
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At any time, there is only one process in main memory. This process is called the
active process, and has control over all ressources belonging to the Executor
CPU, local disk, memory, and also access to the File-Processor. While active, a
process can :

- use the CPU to do computations

- send a request to the File-Processor (via the bus), and then wait for a~ acknow-
ledgment

- do 1/0 operations on the local disk

- send a message to a terminal (via the bus and the Master).

Executor time is shared through the use of a quantum of maximum resident time
(I/O time included), inside main memory: an active process is allowed to stay in
main memory for a finite length of time, starting from the end of swap-in and en­
ding at the beginning of the following swap - out. As explained before, a Local
Disk will be used, on each Executor, to swap-in and out the content of main ~emory.

A process will leave the main memory, either when its quantum is exhausted, or
when it initiates a new interaction on its associated terminal (or more generally,
when a long I/O operation, such as a tape operation, begins). Normal I/O operations
on File-Processor disks are supposed to be fast enough so that the CPU of Executor
will idle until completion.

On M2, there will be several values of the quantum, depending on the frequency of
interactions between process and terminals. Small values of the quantum will be
associated with higher priorities, so that short tasks have a faster response time.

As the scheduling algorithm is not yet determined, the model in its current state
deals with a single constant quantum, all tasks being serviced according to a FIFD
policy.

There is no need to distinguiSh batch processes from interactive processes : simply
the first ones will make no contribution to terminal activity. The typical workload
will result from both types, with a large majority of interactive processes.

It is described on Fig. 5. When a process departs from a terminal, it becomes rea­
dy for CPU election. As soon as the CPU is cleared, a new process (if available) is
selected, and first, its core image is loaded from the Local Disk (L.D.). Then, the
process can either remain active (i.e. let CPU occupied) or leave CPU because of
the completion of its quantum, or because of an interaction with a terminal. Execu­
tors being monoprogrammed, the process remains active (inside dotted lines of Fig.5)
even when waitin~ an acknowledgment from L.D. or F.P.
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Figure 5 : Executor Model

end of
uantum

The previous analysis gave us a low utilisation factor for the bus. This enables
us to dismiss the bus waiting time in our model, while including bus service time
into other service times, since we can consider that the bus queueing time is negli­
gible. As usual, all service times are approximated by exponential distributions.
All processes are supposed to be independent. During a given period of time, a
total of Z processes will be present at each Executor, either in think state at
one of the terminals, or in system state at the Executor (i.e. in its main memory,
or waiting for execution on the local disk).

Model parameters are :

- Z number of processes waiting at the Executor, including the one in execution

- R expected thirM time at any terminal (including delays at the Bus and Master)

- F=F(i) : expected response time of the File-Processor (including bus delay), when
it is processing a given number, i, of requests.

- Q maximum resident time in main memory, including I/O time, for a task during
any one passage. It is also the maximum time between the end of swap-in and
the beginning of SW?P-out and acts as a "quantum" of executor time allocation

- C expected CPU time consumption, for any process, between two successive termi­
nal interactions

- I expected CPU time between two successive requests to the File-Processor

- E expected CPU time between two successive accesses to the Local Disk.

- S expected total swap time (swap-in + swap-out)

- D expected service time for a local disk access.
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L.D (Local Disk) appears twice in the previous model (see Fig. 5). This is uncom­
mon, but not a problem because there can be only one process active inside the dot­
ted lines on Fig. 5, thus no conflict occurs at the L.D. Using this artificial de­
composition, it is then possible to have two different service times, S and D, de­
pending on the current state of the process (the same result could have been achie­
ved usir~ two different classes for customers). S represents the service time of
the L.D for a swap, while D is used for a local I/O operation during process execu­
tion.

Remark 2

Executors are mono-programmed. Therefore any request addressed to the File-Proces­
sor or L.D access will leave the CPU idle until completion. Consequently, if X Exe­
cutors are connected to the bus, at any time, no more than X requests will be at
the File-Processor, waiting for service.

Remark 3

Swap-in and swap-out time are summed into S because usually the first one is much
greater than the second. Therefore, the distinction between the two would not en­
hance very much the accuracy of the model, althrough introducing greater complexi­
ty into it.

The following approach is similar to one which has been used for virtual memory
analysis in [ 1 ][ 3 I. The ll1cqin differences are that a resident time quantum exists
instead of a CPU time quantum and that the model represents mono-programming ins­
tead of multi-programming.

The successive solution steps are presented on Fig. 6 (see next page)
needed to solve the Executor model which was presented on Fig. 5.

they are

To begin with, we need to relate elapsed time in main memory to CPU time and I/O
response time. Then the quantum will be introduced. Starting at the CPU level, we
first examine what is going on inside the dotted lines of Fig. 5, when there is an
active process. We assume that all CPU interrupts are of null duration and that the
quantum is infinite ; thus we obtain a "virtual" CPU service rate (Fig. 6a), which
is the sum of all independent CPU interrupt rates :

111
a=E+C+r

Branching probabilities at the output of CPU should be so that departure rates to­
wards L.D, terminals and F.P are respected. (Also, as the probabilities are cons­
tants, all service rates should be exponentially distributed for the following re­
solution method to stand). If a is the departure rate (interrupt rate) from CPU,
and alis the static probability to go to L.D when leaving CPU, al.a is therefore
the I/O request rate for L.D. But this rate is assumed to be equal to l/E, which
is an intrinsic characteristic of the program. Thus a l ,a2, a

3
must be so that:

1
aI

As Executors are mono-programmed, the CPU will run idle while an I/O operation is
done on L.D or F.P. Knowing that, we obtain the real service time at the CPU, con­
ditioned on the fact that is a~ active process in main memory, and only one:

_-1 -1
a = a + a l D + a3 F



t/R

number of processes in think
state

t
with swapd)

132 J.-J. GUILLEMAUD

end of
quantum

OQ a3 Ai

CPU
a2

a al A26 y
=>

00

T

oc 00 .00

a) cpu-time b) real time c) with quantUIJI

A Executor Ai
1

S-l y
A

2 \
A2

=>
Terminals

e) : Executor a~d its asso­
ciated terminals

Figure 6 : Resolution steps for Executor Model

At this point, we will use Courtois reduction method [2]. This implies some res­
trictions on the parameters : their values should be such that interactions bet­
ween submodels which are being reduced using decomposition occur much less frequen­
tly than interactions within the sUbmodels. AssUIJling it is so, we aggregate F.P
CPU and L.D (Fig. 6a) into a single equivalent server of service rate (Fig. 6b) :

S = a2 .1i

Up to this point, the quantUIJI was supposed to be infinite. If it is not so, assu­
ming that 6 is exponentially distributed, we can deduce the probability of needing
more than one quantlLIJI between two terminal interactions. It is :

6 being exponentially distributed, Ai is also the probability of needing n+l quan­
turns, or more, knowing that we used n before.
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Thus Al is also the probability for a process to leave main memory because of quan­
tum end interrupts.
Owing to quantum interruptions, the service rate at main memory becomes (Fig. 6c) :

y _ B
- i-A

l

This is so because, when distributions are exponential, the quantum has no effect
on throughput (as long as no overhead is implied).

Reintroducing swap service time, we finally obtain the service rate of an equiva­
lent Executor (Fig. 6e) :

As this value was obtained for a given value of F, i.e. F(i), it is conditionned
on i requests being present inside the F.P.

The Global Model

By merging the F.F mcdel and the Executor model into a unique global model, w=
will obtain global results, such as mean response time of M2.
To do this, we need to take into account all interactions between the F.P and the
Executors. These interactions are in fact exchanges of requests between Executors
which produce them, and the F.P which services them.

As Executors are mono-programmed and so idle until completion of requests, the ma­
minn.un number of requests at the F.P is equal to the effective number of Executors
connected to the Bus ; this is true because most programs will not use simultanei­
ty for I/O operations on F.P, and because, as response time of F.P is Short, most
requests sent to F.P by a program will return before the program is swapped out at
the end of its quantum. Thus, we will use a specific model for request circulation
(Fig. 7a), with a fixed number of customers (requests) cirCUlating through it. This
model will give us the probability P(i) of finding i requests in service at F.P.
Here again we use implicity Courtois' reduction method [2] since F. P and Executors
are supposed to be stationary between two interactions.

Figure 7 : File-Processor requests model

a) b)

number of requests at File-Processor

number of Executors non-w~itiDb for request

total number of Executors
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The equivalent model 7b is solved, using [4], with

X number of Executors connected to the bus

- Kfp number of Executors idling; also the number of requests at F.P

Kex X- Kfp

- n?(Kfp) = Service rate at File-Processor, conditioned on the fact that Kfp re-
- quests are present ; computed from File-Processor model alone (Fig. 5)

- n
1

(K ) = departure rate of ~equests from active (non idling) Executors, when
ex K of them are active.

ex a
K (~/(l-~F)) with ~ = 6pA

2
a 3 computed for F = F(Kfp) = F(X-Kex )

ex 2

where p is the utilisation factor of an Executor, as obtained when solving
Executor model alone (Fig. 6e).
Here we assume that, although all Executors may be different, they will
have similar workloads, and contribute for equal parts to F.P workload. This
hypothesis reflects only present situation, and could be released without
too much difficulty.

Solution for model 7b gives us the true distribution of requests among File-Proces­
sor and Executors :

P(i) = Probability [number of requests at F.P = iJ

Knowing P(i), we can obtain, for instance, system M2 global response time. In order
to do so, we first compute all values of response time, associated with all possi­
ble values of KfP ; usir~ Executor model alone (Fig. 6c), we obtain

Trep(i), i = 0 to X

(Response time is the time spent in system state between two successive interac­
tions at a terminal).
Then, we solve the requests model (7b) and find P(i).
Finally, we obtain:

X
Trep = L Trep(i) P(i)

i=o

Trep is the expectation of global response time, and does not depend any more on
the state of the F.P (see. Fig. 8).

Validation of the model

This model is intended to represent a real computing system. So validation will be
done using measurements on the real system. Unfortunately, M2 will only be fully
operational at the end of 1979. Comparisons with a simulation model can be found
in [6].
Although not yet validated, the present model can be very helpful to evaluate dif­
ferent design options such ~s the number of tasks per Executor, or the quantum
size, and to determine at what level of load the common ressources of the system
will be satured.

Global Results - Conclusions

Values for expected response time of M2 are given on Fig. 8, for several kinds of
program behaviour (parameter C) and different values of Z (number of active proces­
ses on each Executor).
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We see that, if our curves are typical enough of real workload, to achieve a mean
response time of 1s or so, a maximum of 6 to 15 tasks can be allocated to each Exe­
cutor.
Consequently, the L.D being very slow, the overhead ratio will be very high: typi­
cally 50% or more.

On Fig. 9, we find mean response time of the File-Processor model alone: satura­
tion at the File-Processor will never occur in the present configuration.
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Figure 8 : Global response time of M2.

Parameters same as on Figure 8.

C "mean (rns)

20
40
80

140
220
320
440

54.81
5~.81

54.80
54.77
54.74
5~.69

54.63
)

for 60 active terminals (6 times
10), bus delay included (6.ms)

Figure 9 Values of F ,Global Loadmean
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REGIME PROCESS ANALYSIS
OF A VIRTUAL MACHINE OPERATING SYSTEM

,Ien-Te K. Lin*
Sperry Research Center
Sudbury, Mass. 01776

A new method of data analysis - stochastic regime process - is
applied to a set of data collected from a virtual machine oper­
ating system. Some interesting behavior of the system .'hich is
independent of the regime-behavior of the system is observed.
Although the method is applied to an operating system, it can be
used for other softy'are trace data to discover some intrinsic non­
obvious characteristics of the system, and validate statistical
assumption of stationarity .'hich .'e often need in doing statis­
tical model ing.

INTRODUCT ION

Is it possible to model some activities of an operating system by a stochastic
process or by other statistical methods? The ans.'er depends heavily on .'hether
these activities possess the property of independence or stationarity, because
many of the available statistical methods require these assumptions. Very often
a system analyst simply makes these assumptions .'ithout investigating .'hether they
are valid or not. Therefore the results can be either unsatisfactory or mis­
leading. This paper discusses the data collected from CP/E7 operating system,
and investigates some activities of the operating system to see .'hether they
exhibit characteristics of a stationary or regime process and ho~ these activ­
ities correlate to each other. Although there are a fe.' other papers .'hich
analyze the same system [lJ [2J [3J, this paper takes an entirely ~ifferent

approach from a regime process point of vie~ [4J [5J [EJ [7J.

SYSTEM LOAD AND ITS REGIME-LIKE BEHAVIOR

The system, from which ~e collect the data, is CP/E7 running ~ith batch MVT and
more than 40 CMS terminal users in a university environment. CP/E7 runs in either
CP-mode (supervisor-mode), problem-mode (program-mode), or idle-mode. Fifteen
minutes of data .'as collected .'hich recorded the times .'hen the system .'ent into
or out of each of these three modes. It consists of several hundred thousand
items. The data were divided into 180 units of 5 seconds each.

Let Pi, Ii be the lengths of time CP-E7 spends in problem-mode and idle-mode,
respectively, in the ith interval. Let us consider the Pi's and Ii's, for
i=l ,2, ... 180, as tifTIe series. These ty'o time series are plotted against tir"e
as in figures 1 and 2 for i from 1 to lOn.

From figures 1 and 2 we can see intuitively that they are more likely to be
regime processes than stationary processes [7J. Tbe first ten points constitute
a regime, the next 40 points another. The third reaime is from the 51st to tbe
61st point, the last regime from the E2nd to the last point. ,Ie can see that tbe
first and the third reqimes have similar averaqes and variances, as do the second
and the fourth. Since: in some sense, problem~time represents the load of tee
system, ,Ie can say the load of the system varies 1ike a 'regime process' .'ith

*This paper is part of the Ph.D. thesis of the author done at Brown University,
Providence, R.I. under supervision of Professor Ulf Grenander.

This work .'as supported by the Information Systems Program of the Office of ~iaval

Research under Contract N00014-75-C-0461 with Brown University.
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each regime consisting of independent, identically distributed random variables.
This claim is made intuitively ~ithout any mathematical support, but one can
formulate a regime model for such data and analyze it accordingly [4J [5J.

CP-TIME AND PROBLEM-TIME EMPIRICAL FREQUENCY FUNCTIONS

Even though the system load looks like a regime process, the behavior of other
parts of the system looks more like that of a stationary process and does not
seem to be influenced by the load at all.

Let Xl be a random variable I"hich is the duration CP/F7 stays in CP-mode \oIithout
being interrupted by problem-mode or idle-mode.

Let X2 be a random variable which is the duration of time the system stays in
problem-mode I',ithout being interrupted by CP-mode or idle-mode.

Let X3 be a random variable which is the duration of time the system spends in
idle-mode I"ithout being interrupted by CP-mode or problem-mode.

Now let us take the samples of Xl, X2, X3 from the first minute portion of the
data, and plot their empirical frequency functions. as sho\oln in fiQure 3.
figure 5. and figure 7; similarly for the second ~inute rortion of" the data as
sho~n in figure 4. figure F and figure 8.

From figure 3 and figure 4 I"e can see that the CP-time empirical freouency func­
tion does not change much even though loads of these t~o one-minute intervals are
so different as discussed in the last section. From figure 5 and figure F we can
see also that the problem-time empirical freouency function is not affected by
the load change. From our knO\o'ledge of CP/F7 the first observation may be a
characteristic of the system, and the second observation is probably the result
of the fact that the system is a time-sharing system I"ith an interrupt mechanism.
For example. the second property may not appear in the CDC-FFno system because
the system does not use interrupts to handle I/O channels. As for figure 7 and
figure 8, it is understandable that they look so different because X3 (idle-time)
certainly is dependent on the load of the system. The usual Chi-souare test fails
to confirm that figures 3, 4 and figures 5, 6 come from the same frequency distri­
bution. The test is very sensitive to small values; I',hen these small values are
eliminated. the pairs of empirical frequency functions are found to be not
significantly different at 10% level.

In Tables Tl. T2. 13 I"e tabulate the empirical means and variance for Xl. X2,
and X3 for seven consecutive t~o-minute data sets, and we can see that there is
not much change in either the mean or variance in these seven different data sets.
even though they correspond to periods of different system loads as can be seen
from fiqure 1 and fiqure 2.

1 2 3 4 5 6 7

MEAN 0.79 0.73 0.68 0.F3 0.78 D.81 0.78

S.D. 1.00 0.84 D.8D 0.70 0.85 0.89 0.93

NO. OF
OBSERVATIONS 15432 19823 41443 1°102 21903 1F712 19734

LENGTH OF
OBSERVATION
TIME (i n mi nutes) 2 2 2 2 2 2 2

TABLE Tl
CP-time empirical freouencv distrihution table

(f1ean and S.D. in 'units of mill isecond)
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2 3 a 5 6 7

MEAN 4.54 5.28 5.11 5.53 4.60 4.58 3.99

S.D. 10.53 10.21 10.32 11 .63 8.67 8.75 8.67

NO. OF
OBSERVAT IONS 13058 19442 38367 18994 21340 14642 17148

lENGTH OF
OBSERVATION
TIME (in minutes) 2 2 2 2 2 2 2

TABLE T2
Problem-time empirical freouency distribution table

(Mean and S.D. in units of millisecond)

2 3 6 7

MEAN 20.44 7.76 8.91 9.0f 8.28 19.33 13.98

S.D. 61.04 5.53 8.03 6.64 6.35 42.22 25.45

NO. OF
OBSERVAT IONS 2374 381 3076 308 563 2070 2586

lENGTH OF
OBSERVATION
TIME (in minutes) 2 2 2 2 2 2 2

TABLE 13
Idle-time empirical freouency distribution table

(Mean and S.D. in units Qf millisecond)

A STATI ST ICAl INFERENCE METHOD FOR DETECTING MARKOV REGI~ES

By a Markov regime process, we mean a stochastic process which exhibits stationary
Markov property within certain time intervals, ~ut changes its characteristics
between different time intervals. For a more vigorous definition of re9ime
process, see [7]. A statistical inference method has been developed by the author
which can be used to detect the transition points betl-'een regimes [6]. After
these transition points have been found, data ~ithin each regime can be con­
sidered as observations from a stationary Markov process, and can be analyzed
accordingly. This inference method I"ill be described in this section I"ithout
proof.

Assume there are t~o samples from a discrete time Markov regime process ~ith n
states, each of the sample has T and S observations respectively. let N=(n ij )

and M=(mij) be the corresponding transition matrices, i.e. nij is the number of
observations in the first sample I"hich transit from state i to state j. let t,
s. and d be vectors defined as follo~s:

t (n ll , ... ,n ln , n21 , ,n 2n •·· .,nnl' ... ,nnn)

s = (m 11 •· .. ,m ln , m21 ,m2~' ... ,mnl •... mnn)

d =/T (tiT - siS).
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Al so let C be a n2 by n2 matrix defined as follws:

C Covariance (d, dt )

Where dT is the transpose of vector d, and entry c.· of C is eoual to the
lJ T

convariance of the ith element of d and jth element of d .

The following theorem will be stated ~ithout proof.

Theorem: If the two Markov chain samples are uncorrelated, and come from the same
regime of the Markov chain, and if matrix C is positive definite, then

Q ~ dC -1 dT

has a chi-square distribution ~ith n2 depree of freedom.

MARKOVIAN REGIME BEHAVIOR OF THE SYSTEM

Here we will examine the system at a more detailed level from a ~arkov regime
process point of vie~.

CP/67 is comoosed of more than 70 modules. each of which handles a specific
function. We grouped these 70 modules into 12 larger modules, and collected
data which recorded the times .'hen the system transited from one module to the
other. The data are 18 minutes long, and consist of several million items. The
statistical inference method mentioned above .'as then used to analyze the data.
It confirmed that the system behaved as a Markov regime process rather than a
homogeous stationary Markov process in those 18 minutes. It consists of several
reqimes each ranqinq from 1 second to 15 seconds in lenqth. The first two
regimes were then picked for further examination.

Let Tij be the length of time CP/67 spends in the ith module before going to the

jth module, and let Ti be the length of time CP/67 spends in the ith module before

going to any other module. Then some of the histograms (empirical frequency
di stributions) for T.. ' sand T.' s are plotted in graphs from fiqure 9 to

lJ 1 .

figure 15.

From figure 9 and figure 10, .'e can see that there are more long idle periods in
the first regime than in the second regime, therefore the load in the second
regime is heavier than in the first regime. From figure 11 and fipure 12, .'e can
see that the second regime has t~ice as much paging activity as the first regime
(the scale of Y axis in figure 12 is t~ice as large as in figure 11). From
figure 13 and figure 14, .'e can see that the first reqime has h'ice as many
privileged operations as the second regime. Hence ~e can safely conclude that
these t~o regimes are very different in their operational characteristics; the
second regime is more I/O bound than the first one. Nonetheless, the shapes of
all the graphs for Tij's and Ti's in these t.'o different regimes look strikinply
similar. Based on these observations, we believe that the invariance of the
distributions of Tij's and Ti's in these two different regimes may be a
characteristic property of CP/67.

This study demonstrates the usefulness of regime process analysis technioue in
analyzing program behavior. It exposes the underlying regime process behavior
of a stochastic process. By doing so, it enables us to use more conventional
statistical tools within each regime.
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By applyin~ this technique to the data collected from CP/F7, .'e have shwn that
the operatlng system CP/67 behaves as a Markov regime process. The character­
istics of some CP/67 system parameters are shown to vary between regimes, .'hile
others are shown to be invariant bet.'een different regimes.

141

Therefore before we make any statistical assumptions about a system ~hen we do
system modeling, it is useful that .'e collect data from the system, if possible.
and do a regime process analysis. Then .'e .'ill more 1ikely be able to avoid
building a model that cannot be validated.
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Figure 4.

Let Xl be a random
variable which is the
duration of time the
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or Idle-mode (the unit
is in timer unit), then
this graph is the
empirical frequency
distribution of Xl for
the second minute
portion of the CP/67
data.

Figure 5.
Let X2 be a random
variable which is the
duration of time the
system stays in Problem­
mode without being inter­
rupted by CP-mode or
Idle-mode (the unit is
in timer unit), then
this graph is the
empirical frequency
distribution of X2 for
the first minute portion
of the CP/67 data.
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Let X3 be a random variable which is the duration of time the system
stays in Idle-mode without being interrupted by CP-mode or problem­
mode (the unit is in timer unit), then this graph is the empirical
frequency distribution of X3 for the first minute portion of the
CP/67 data.
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Let X3 be a random variable which is the duration of time the system
stays in Idle-mode without being interrupted by CP-mode or Problem­
mode (the unite is in timer unit), then this graph is the empirical
frequency distribution of X3 for the second minute portion of the
CP/67 data.
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Let Ti be the length of time CP/67 spends in ith module before going
to any other module. Then this graph is the empirical frequency
distribution for Ti in the first regime with the ith module being
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Let Ti be the length of time CP/f7 spends in ith module before qoinq
to any other module. Then this graph is the empirical frequency .
distribution for Ti in the first regime ~ith the ith module being
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Let Ti be the length of time CP/f7 s~ends in ith module before qoino
to any other module. Then this graph is the empirical frequency
distribution for Ti in the second regime ~ith the ith module beinq
the Paging-module.
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Let Ti be the length of time CP/67 spends in ith module before qoinq
to any other module. Then this graph is the empirical freauency dis­
tribution for Ti in the first reaime ~ith the ith module being the
Privileged-operation-module.
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Let Ti be the length of time CP/67 spends in ith module before going
to any other module. Then this graph is the empirical frequency
distribution for Ti in the second regime ~ith the ith module being
the Privileged-operation-module.
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A HYBRID

SIMULATION /ANALYTICAL MODEL OF A BATCH COMPUTER SYSTEM

D. ASZTALOS

Computer Center of Hungarian Planning Office. Budapest,Hungary

The presented model consists of two parts: a trace-driven simulation

part realizing the dynamic control of CPU priority allocation, and

a simple closed queueing network model with two servers /CPU and

I/O device/. The service discipline at the CPU is a priority driven

preemptiv-resume one, while the I/O device is of infinite capacity.

The model is calibrated and validated using the method presented

in [SJ .

INTRODUCTION

The rapid evolution of modelling techniques makes possible to const­

ruct rather complex models of computer systems. The most powerful

tools developed in the recent years are the multi-class local

balance queueing network model and its solution techniques[3,4,lO];

the decomposition technique 6, well formalized simulation techni­

ques [12J. The statistical methods for calibration and validation

of the models are developed in less extent; there are very few

papers considering this aspect of the modelling practice LS,S].

Our aim was to develop a simple model of a batch computer system

which has a stronger structural relationship with the real system

than that presented in (SJ. We hoped that this model will provide

more accurate estimates of the elapsed time, and the method of

calibration and validation of (SJ was used to prove that our

assumption is true.

The modelled system is presented in Section 1. The model and the

practical considerations which led to select this model are discus­

sed in Section 2. The calibration and validation of the model are

given in Section 3.
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1. THE MODELLED SYSTEM

The modelled system is a medium size ICL System 4/70 configuration

operated in batch environment. It consists of a central processor

unit, a disc subsystem with ten disc drives on three channels /of­

line seek and dual channel options are provided/, twelve magnetic

tape units, usual slow peripherals and 704 Kbytes of core store.

The functional diagram of the modelled batch system is shown on

Fig.l. The main parts of the system are the job queue, the scheduler,

the allocator of permanent resources and the execution cycle. The

jobs arrive from the central card reader. Each job arriving into

the system enters the job queue and activates the scheduler which

checks whether the permanent resource requests of the job can be

satisfied or not.If all of the requested resources are available

then they are allocated to the job till its departure from the

system. In other cases the job remains in the job queue. Each job

leaving the execution cycle activates the scheduler and the per­

manent resources of the job are deallocated.

I
Vi

Allocator of
I Job Scheduler ~ permanent

Job arrival Queue resources

"I Termination

I signal

I Execution

cycle
Job termination

Arrival signal
I-~- -------,

Figure 1. Functional diagram of the modelled system.

In this case the scheduler tries to find one ore more jobs in the

queue whose requests for permanent resouerces can be satisfied. The

events involving the activation of the scheduler /job arrival and

job departure/ are the so called scheduling events. In our system
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there are two types of permanent resources: core store and tape

units. The handling of the core store is static, i.e. to each job

is allocated one continuous part of the core store, the size of

which is defined by the job request. There are no swapping and

garbage collection options.
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Any job may require one or more tapes to be mounted before entering

the execution cycle.

The execution cycle contains the following hardware resources: CPU,

channels and peripherals. Usually there are more than one job running

in the execution cycle in multiprogramming mode, sO there are

special data constructs contained in the core store: the CPU-,

channel-, and device-queues. The execution of any job is the service

of its cycling CPU and I/O requests, however there are jobs whose

computing and transfer activities partially may be overlaped. The

service disciplines /dispatching algorithms/ applied to the CPU-,

and device-queues are based on dynamic priority rules. In the CPU­

queue the job which has used the most CPU time for the last ~t time

interval has the lowest priority during the next ~t time interval.

A preemptive-resume priority rule is applied at the CPU queue. The

disc dispatching algorithm has a head movement optimization feature

keeping the movement of the head in one direction as long as possible.

Some aspects of the above computer system have been measured and

evaluated in the recent years using a software monitor[1,2]. Some

assumptions of the model described in the next section are based

on these measurement results.

THE MODEL AND RELATED CONCEPTS

The model has been created as a trace-driven simulator. During normal

batch operations, data describing certain job characteristics

/such as arrival time and resource requirements/ are collected in

the System Journal which is later processed to form the so-called

trace, the main input for the simulator. The collection of trace

data is accompanied by the collection of data about the performance

of the real world. These real-world data are used during calibration

as the desired simulator output with which the actual simulator

output should provide a good match. We should mention that our first

aim was to find out with which level of accuracy can be modelled

execution cycle of our system using a relatively simple analytic



152 D. ASZTALDS

model.This is the reason why the job queue and tape mount handling

were excluded from the model. The simulation of these parts of the

system will be included in the next phase of the research.

The job characteristics used in the model and giving one record

of trace data are the following:

1. CPU time in problem state
2. numer of transfers

3. arrival time of the next job relative to the
start of the current one

4. measured elapsed time of the job.

The job elapsed time is the time from when a job enters the

execution cycle to the time the job leaves it. The job execution

time is the minimum elapsed time i.e. when the job experiences no

competition from other jobs in the execution cycle.

In modelling a system session, the model divides the session up

into a series of time intervals. For each time interval the

number of jobs /i.e. the level of multiprogramming/ is constant.

A time interval is terminated by one of three possible events: job

arrival, job termination, or expiration of At interval of dynamic

CPU priority allocation. The time of the next job arrival t a /rela­

tive to the start of the actual time interval/ is calculated as

the difference of arrival time of'the next job in the trace data

record of the job arrived most recently and the time elapsed from

this arrival. The time a job leaves the system is predicted by the

analytical model of the execution cycle. At the start of each time

interval the analytical model defines the throughput lor execution

speed/ vp of each job in the execution cycle. The throughput is the

number of CPU-I/O cycles executed in unit time for a given job.

Also, at the start of each time interval, each job in the execution

cycle has a remaining execution time t p , which is given as a real

number of remaining CPU-I/O cycles. The job with the minimum

t /v is the job that will terminate first assuming that the CPU
p P

priorities are unchanged. The length of the next time interval t i
is given by

We assume, if there are no jobs in the execution cycle,

min t /v =t Given t" the number of executed CPU-I/O cycles forp p a 1

this interval may be computed for each job and it is subtracted
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from the value of the remaining number of CPU-I/O cycles tp.ti is

added to the value of the elapsed time so far for each job except

the one with arrival time tao This procedure continues until t p is

reduced to zero for a particular job. This represents the time at

which the model predicts the job will terminate. The accumulated

elapsed time at the simulated time of job termination is then the

predicted elapsed time for that job.

The analytical model of the execution cycle used in this experiment

is described and solved intll]. We should note that this model is a

particular case of a more general model treated in [9J . The model

is a closed queueing network with two servers, the CPU and the I/O

subsystem. The service at the CPU is based on a preemptive-resume

priority rule. The I/O subsystem is of infinite capacity. Let the

number of jobs be n and designate them by the integers 1,2, ..• ,n.

We assume that job i CPU service time is exponentially distributed

with parameter o(iand each job has the same exponentially distri­

buted I/O service time with parameter A. Consider now the case when

for every i the i-th job has priority over jobs of index higher

than i. Denote ~(\) the CPU busy period leng~h if the number of jobs
;<, -50'»

executed simultaneously is 1. Put ~'((s)·Ee .We shall give a

recurrence relation for ~i{£') 0 For this consider a job, say job A,
with computation time distributed as 6(;-4) and I/O time parameter

h'li-4 =(i- i)· A. Let B be the i-th job, and suppose that it is

executed with job A in a fashion that A has priority over B. Now

the CPU bUSy period resulting from these two jobs is stochastically
r(i) ,

eqUivalent to 0 • Thus we obta~n

cPi (5):0~ EeSOP, + ~ Ee-se5"p.
Mi M"

=~[(P;./s+~) +o<..[4l,'.• (s) - ~l_.(.s+))] ]
m, o(,-tS+ 1't'I;_\ (-1-~i_.(S))

), O£,:+ - -.----=-:---:::--"7""";"T
\'VI'; o(;t5-tm;_.U-~l_c(S))
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This formula is a particular case of IV.7.25. in [9J for Ni=l,

i=l, ••• ,n.

The steady-state probatility of empty CPU queue when the number

of jobs executed simultaneously is i given by

ei =L~+ m; E~(;)J-i.

The probability that job i is found at I/O sUbsystem is

r i can be interpreted as the average time spent by the job i in

I/O state in each time unit. Thus, the throughput of job i can be

calculated as

which is interpreted as the average number of CPU-I/O cycles

executed for job i in unit time.

Now we shortly discuss those practical considerations which led

to the use of the above model.

a/ Infinite capacity of the I/O subsystem is an assumption accepted

on the base of measurement rusults (2] • It has been shown that

the average channel wait time is less than I % of the average time

of a transfer request. On the other hand, less than 8 % of the

arrivals form a device queue with two or more requsts including

the one being serviced. It means that the I/O load is well balanced

in the system. Thus, no large error was introduced using the infi­

nite capacity server as the model of the I/O SUbsystem.

b/ We were forced to use the exponential service time distribution

assuption by analytical and numerical limitations. Our formulas

contain the Laplace transform of the busy period, which cannot be

calculated for general distributions. There is no practical evidence

indicating the use of any other types of distributions.

c/ It was very important to include the priority driven CPU service

into the model. Using previously the processor sharing service

discipline the average absolute error of the estimated elapsed time
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was 22 % in the best case.

d/ It is assumed in the model that there is no overlap of the CPU

and transfer activities within one job.

155

In the model, like the reality, each job belongs to separate

priority class. They differ only in the value of average CPU service

time «;1 , which is calculated as the ratio of the job's CPU

time and the number of transfers, plus an overhead constant. The

overhead constant is the same for all jobs and represents the CPU

time required by the system to service a transfer /initiation and

termination/.

The analytical model has two parameteres /the calibration parame­

ters/ which are set to their final values in the calibration and

validation process. They are the overhead constant and the average

I/O service rate A.

The integration of different methods of analysis /simulation, queue­

ing theory/ is possible because the model is decomposed into two

parts which communicate through only one type of variables: the

execution speed of a job t6J Further advantages of the hybrid

method are discussed in [7] .

3. CALIBRATION AND VALIDATION

Calibration and validation are two stages in the development of a

performance model of a computer system during which the degree of

confidence in the model is established.

The calibration of the model was an iterative procedure whose

objective was to reduce the difference in behaviour between the

model and the real system by adjusting the calibration parameters

of the model. Calibration was carried out by applying a given trace

/Trace 1/ to the model. One method of comparing the difference

between the real system and the model is to compare the real job

elapsed time with the predicted job elapsed time. The difference

between these values is the residual. The absolute value of the

residual is used as the 'figure of merit' necessary for deciding

wether one version of a model is significantly closer in its

predictions to the real word, than another. The nonparametric
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Wilcoxon Matched-Pairs Signed-Ranks test was used for this purpose.

At the same time, the Method of Good Balance was used to indicate

wether the residuals were correlated with any of the job characteris­

tics, e.g. CPU time, number of transfers. The model is well balanced

if the error in such a model does not depend significantly on any
job characteristics, but instead is randomly distributed amongst

all types of jobs. A linear regression analysis was carried out with

the residual in job elapsed time as the dependent variable and

measures of job characteristics as the independent variables. The

objective of the exercise was to develop gradually a regression

equation in which none of the regression coefficients are signifi­

cant. The initial values of the calibration parameters were set

using the measurement results of [1, 21 . A selection of the model

runs carried out in the calibration phase using Tracel are displayed

in Table I.

Table 1. Calibration of the model using Tracel

Run Oh }.-4 Ir! p MGB

1 2.5 30 42.36 NWB
2 3.0 35 35:64 0.0829 NWE
3 3.5 40 33.04 0.1379 NWB
4 4.0 36 28.68 0.0239 NWB
5 4.2 36 25.08 0.0712 WE
6 4.4 36 24.76 0.1477 - WE

Mean measured elapsed time t e 251.84 seconds

Key: Ii: I mean of absolute va lue of residuals

P probability that there is no difference between Runi

and Run i-I

MGB Method of Good Balance

WE Well Balanced model

NWB Not Well Balanced model

Oh overhead constant in milliseconds

A- 4 avarage I/O service time in milliseconds

The objective of the validation process is to find a set of parame­

ter values, determined during calibration, with which the model

predictions are not significatly different for other traces.

The model parameters were set to values obtained in the calibra­

tion of the model with the Tracel. The model was then run with the
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Trace2 and Trace3 respectively. A nonparamentric test, the Mann­

Whitney U-test, was then carried out to determine if there was any

significant difference in the model predictions. The criterion for

comparison was the absolute value of residuals. The null hypothesis,

that two independent groups of observations have been drawn from

the same population, was tested.The independent groups were the

sets of residuals obtained by running the model with a given set

of parameters, using different input traces. Since there were three

traces, the test was carried out in a pairwise manner, comparing two

sets of absolute residuals at a time, making three tests in all

I see Table II I.

Table II. Pairwise comparison of model predictions

Using Mann-Whitney U-test

Session A

Trace I
Trace 1
Trace 2

Session B

Trace 2
Trace 3
Trace 3

P

0.3811
0.2257
0.5637

P, probability of the null hypothesis

Table III. Comparison of modelled sessions

Session Actual t e Predicted t e \r\ IF! " t e

(s) (s) (s )

Trace 1 251. 84 246.44 24.76 9.83
Trace 2 316.26 294.72 32 .28 10.20
Trace 3 286.55 271. 31 30.12 10.51

Key: t e mean job elapsed time

\rl mean of absolute residuals

The Mann-Whithey test indicates the probability of the null

hypothesis, that the two sets of absolute residuals have been

drawn from the same distribution, being true. Table II. shows that

the null hypothesis cannot be rejected at the 10 per cent level.

Hence the model has been successfully validated for the three traces

under consideration. Table III compares the predictions of the

validated model for the three sessions modelled.
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We note that our estimations are significantly more accurate than

those presented in [8J. We could achieve this greater accuracy

because we used a model which has relatively strong structural

relationship with the real system, and those job characteristics in

the trace-data which have the greatest influance on the elapsed

time of a given job.

4. CONCLUSIONS

A simple hybrid simulation/analytical model of a batch computer

system was presented. We claim that the hybrid models have a wide

range of applicability. They are the only tools by which, for

example, the sophisticated schedulers of complex computer systems

can be modelled and evaluated. Another important aspect of our

method is that the relevant measurement data should be used as

input trace to achieve accurate predictions.
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This paper presents methods for constructing representative workload models based
on statistical analysis and modelling techniques. The real workload is characteri­
zed by the magnitude of the demands for various system resources and times at
which these demands occur. Work demands and occurence times are described by a
non-homogeneous Poisson-process and by a multivariate mixture of densities, re­
spectively. Methods for estimating the different model parameters are presented
or developed. The proposed scheme for modelling workloads is exercised on seve­
ral samples from a timesharing system, which had been collected by a software
monitor.

1. Introduction

The evaluation of computer performance requires the specification of the system
load on account of the causal relationship between performance and underlying
workload. In spite of the high level of different system modelling techniques ana­
lysis and modelling of the workload are poorly developed. This work presents a
step in the direction of better understanding and handl ing the load analysis and
modelling problem.
Workload is defined as the collection of all jobs (or other load objects) that are
processed by a computer system during a specified period of time. The load charac­
terization used here is based on the magnitude of demands for various system re­
sources, like CPU-time- and core requirements, and the occurence times of demands,
especially the arrival times of jobs.
Several load models have been devolped, and it appears suitable to classify them
according to the evaluation technique they applied:

(i) load models (benchmarks, synthetic programs, traces, ... ) for experiments on
the object system,

(ii) load models (traces, unidimensional empirical or theoretical distributions,.)
for simulation experiments,

(iii) load models (unidimensional theoretical distributions) for mathematical
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syst61l models.

Load models must be valid, that means the load model must produce the same syst61l
behaviour as the real workload for a class of object syst61lS with a specified
deviation.
The val idity of load model s has often be questioned

- the canparison between different load models is difficult or impossible (bench­
marks, ... ),

- the proof of the validity is difficult, and therefore often neglected,
- the models usually postulate the independence of job demands, like execution

time, m61lory requirements, etc. (unidimensional distribution models), which is
not true in reality,

- usually there is no description of the arrival process (benchmarks, synthetic
programs) ,

- the models are systen dependent.

The real workload is considered as a multidimensional stochastic process

(Tj,Xj)jEJ'~~' with the variable T characterizing the arrival time of jobs (or

other load objects) and a vector of variables Xfor the job demands. Following this
interpretation the model includes the occurence times and work d61lands generated
by a user community, and therefore avoids most of the disadvantages 1isted above.
Comparison of load models is possible due to the statistical nature of the pro­
cesses.
The modelling techniques developed is based on an extensive system measurement and
data analysis. Thus, the practicability of the method can be proven. The experi­
mental data were obtained from a software monitoring systen on a DEC-System 1050.
22 samples were recorded, one sample per day, between gam. - 7p.m., each with a
sample size of about 2000 - 4000 jobs.
Only a few approaches in the literature can be compared to the proposed modelling
scheme: Clustering models for job demands, e.g. /ARTIS 78/, /AGRAWALA 76/,
/FANGMEYER 76/, /LANDAU 76/, and Sreenivasan's and Kleinman's discrete, multivari­
ate distribution model for job demands /SREENIVASAN 74/ (Compare also /MATERNA 78).

2. Arrival Process Analysis and Modelling

The following arrival process analysis and modelling assume the stoch~st~c in­
dependence of the time variable T and the vector of demands Y. Thus, lt 1S

possible to describe the process (Tj,t)jEJ,J~IN, by a univariate arrival process
~

model (Tj)jEJ and a multivariate demand model (Xj)jEJ' The selection of this time

variable seems suitable for systems without control of job arrivals; and different
statistical methods, like autocorrelation and trend analys~s, can be,used in an
easy way. Furthermore, we get a seperation of variables Wh1Ch exclus1vely de-

scribe job properties eX) and system orenvironment properties (T). Different time
variables are capable of describing the arrival process. F1gure 1 shows some of
them. In this approach we will use the arrival time T or the 1nterarnval t1me

I ( I j , I j =Tj -Tj -1 )j EJ ), J0 = J\ [OJ.
o
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Figure 1:

U-model with S-model or
TH*=f(TH,U)-model
T-model / I-model.
description of the arrival process

There are different job sources (terminals, card readers, ... ) at a computer
system, each forming a seperate process. In order to simplify the modelling
approach all source processes are superposed, so only one process description is
needed. i~ow we get a simpler formal treatment, and the sample size for parameter
estimation can be reduced. The analysis of the arrival processe is based on seve­
ral time series.
There are roughly two situations which arise in the analysis of time series:

(i) Analysis in which specific models are to be tested whereas parameters are
to be estimated.

(ii) Analysis in which no particular model is being appeared and the gross
features of the data are being examined.

In our situation (ii) the exploratory analysis must be used in order to suggest
a pertinent model.
Three steps are particularly important:

(i) descriptive statistical analysis,
(ii) trend analysis,
(iii) autocorrelation analysis.

The first step of descriptive statistical analysis is often underestimated. Howev­
er, a graphical analysis together with the calculations of moments provide a good
insight into the data.

In order to treat the time series or the stochastic process as a stationary one,
we have to test the data on any apparent trends. If no trends are found in the
data, then it is assumed that the time series is stationary, which implies that
the marginal distributions of the I .'s are identical. Since the underlying distri­
bution function is unknown, we applf Spearman's rank correlation coefficient test
/SACHS 73/ and Mann's test /HOLLANDER 73/.
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Most of the 22 samples analysed have a trend, which indicates an instationary
process description. Spearman's test leads to hi~her values of the statistic in
the proved examples (see for example figure 2). A comparison of the power of
these tests is unknown.

Figure 2: Test of Trends

sample sample Spearman Mann test statics
no. size -statistic -statistics 5%-level resu 1t

1
2
3

4000
2850
2849

2.06
4.65
0.65

1. 98
4.53
0.61

1. 96
1. 96
1. 96

trend
trend
no trend

The next step in the exploratory analysis is generally to see whether there exists
a serial correlation between successive I/s. If no positive indications are ob-
tained, then one can assume that the I .'s are identical distributed, with unknown
distribution function. The analysis ca~ only be applied to stationary series, so
we first analyse the series without trends and then the remainder must be detren­
ded (see below: modell ing of the arrival process). The 22 samples are examined
with Wald's non-parametric product-moment-statistics /SIEGEL 56/, and all time
series are autocorrelated. See e.g. figure 3.

Figure 3: Test of Autocorrelation

sample sample
no. size

1 4000
2 2850
3 2849

non-parametric
statistics

9,20
11,13
6,40

test statics
5%-level

1,96
1,96
1,96

result

autocorrelated
autocorrelated
autocorrelated

3. Arrival Process Modelling

The result of the preceding analysis is a non-stationary autocorrelated stoch­
astic process. The reason for these properties can be explained by the unsteady
filling of the system at different daytimes.

An adequate model for the process discovered is a non-homogeneous Poisson­
process NPP. The NPP is a generalization of the homogeneous Poisson process HPP.
The main difference is the time dependent rate function A(t) of the NPP. Different
books and papers discuss NPP's, for example /CINLAR 75/, /COX 66/. The main
advantages of the NPP are:

- quality of models can be tested with efficient methods (see below)
- comparison between HPP-modelling and NPP-modelling is simply performed, as

a result, the consequence of using simplified models, like HPP, can be
evaluated

- random generation of arrivals in simulation experiments or object system
experiments are simply executed.

Generally the functional relationship A(t) is unknown and an approximative function
is assumed. Estimation of parameters in these models is done in an ad hoc manner.
Another but equivalent description of the arrival process
(Ij)jEJ' IE:lR+,Js~o' is the point process notation
(Nt\EJ' NE:N

O
' J~ll\. Nt is the number of arrivals until t.
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The expected value of Nt is
t

E(Nt ) = a(t) = J ~(v)dv.
o

Under the assumption that a(t) is a continuous non-decreasing function, it can
be shown (see /CINLAR 75/), that the NPP can be transformed into a HPP with
~ = ~(t) = 1. This property will be used for testing the quality of parameter
estimation and for generating arrival times with pseudo-randan mechanisms.
Several models for the time dependent rate function for the NPP have been sug­
gested, but due to mathematical intractabilities only special cases with a few
parameters have been treated. We will follow Cox and Lewis /COX 66/ in the use of
exponential polynomials

m .
~ (t) = ~ (c:, t) = ex p ( 1: a .t J ) , (2. 1)

j=o J

since these functions can approximate any continuous rate arbitrarily closely and
always have rate values greater or equal to zero.

The density of arrival times with equation (2.1) is now:

m . sti m.
fT(t.lt._1, .... t1) = exp( 1: aJ.t~)·exp(- exp( 1: a.vJ)dv). (2.2)

1 1 '-0 1 t '-0 JJ- i-1 J-

The maximum likelihood principle will be used for estimating the parameters.
aj , j=o, ...•m. since this method provides asymptotically consistent estimations.

Denoting t 1,t2, ... ,t k arrival times. the likelihood function for (O.tk) is

with

k t 1 t k
L I! ~(ti)exp(- J ~(V)dV) ... eXP(-J ~(v)dv)

i=1 0 t k_1

k jtk
IT ~ ( t . ) ex p( - ~ (v)dv) .

i =1 1 0

The natural logarithm of (2.3) with equation (2.1) is:
t

m f k m 1ln L = 1: a.y. - exp( 1: alv)dv
j=C J J 0 1=0

yj = t j + t~ + ... + t~ , j = O, ...•m.

Differentiation of equation (2.4) yields:

(2.3 )

(2.4)

(2.5)

1\
• ~ f\ f\ -..1toThe Solutlon vector a = (ao.... ,am) is the maximum 1ikel ihood estimator of Cl.

An appropriate degree m of the polynomial can be obtained by comparing the least
square value~ of the empirical and approximative rate functions:

*. ~ 2 k -" *2*mE{m Imln (1: r~(t')-~(a,t.,l)J) 1: [A(t.)-~(a,t .•m)J ;m E{1.2, ... ,k-1)).
1 i =1 1 , i =1 1 1



166 W. MATERNA

The above procedures were implemented on a DEC-System 1050 in ALGOL 60 and FORTRAN.
They work correctly for polynomials up to degree 12 (at least, higher degree have
not been tested).

Model Qual ity

The qual ity of the approximation can be shown for the transformed HPP. The
distribution of the transformed interarrival times is a negativ exponential
function with rate A = 1. It is proven with Kolmogorov-Smirnov's goodness-of-fit
test.

(2.6)= O.

function can be obtained:
t

m Jk. m 1 2
l: (y.- vJexp( l: CtlV )dv)

j =0 J 0 1=0
g(a',t): =

Different time series can sufficiently be approximated. Time series which don't
show the statistical properties needed can be approximated piece by piece with
the same exponential rate function.

Relation (2.5) is a nonlinear system of equations and cannot be solved expl icitly.
Approximation techniques, like nonlinear optimization methods without restric­
tions, must be used.

An adequate minimization

Since gradient methods generally yield better convergence, we evaluate the
derivation of equation (2.6):

r = O, ... ,m.

In order to g!t the minimum of the objective function g(~,t), with unknown para­
meter vector Ct, we need a starting vector close to the solution of the optimi­
zation, i.e. in the convex neighbourhood to ensure the convergence to the local
minimum.

McLean /McLEAN 74/ proposed a two step method for determining a starting vector

r? His procedure consists of finding an ordinary polynomial representation of
the same degree as A(t) whi ch has the observed sums of powers {y} for its
moments.

The polynomial constitutes a pseudo-rate function which can be approximated by
an exponential polynomial, after taking logarithms, again by fitting moments.
The procedure proposed yields a good starting point for the following minimi­
zation.

Different unconstrained optimization techniques are known; however, HimmelblaJ
/HIMMELBLAU 72/ shows that a stringent relationship between the type of the
objective function and the optimization method exists. In this context, the
best convergence can be obtained by the Davidon-Fletcher-Powell method compared
to "projected-Newton-Raphson" or "Marquardt's procedures" (see /HH1MELBLAU 72/).
The unidimensional search within this algorithm is done by Fibonacci's method.
Figures4,5,6 show different approximation steps of a time series with sample
size k = 4000. Figure 4 with an exponential polynomial with degree 1 (A= const),
figure 5 with 12 degrees and figure 6 with 6 intervals and a maximum of 6 degrees.
The last approximation is close to the rate function measured but put out of
sight the typical trends of day. In figure 7 some values of the statistical
analysis for the transformed process are demonstrated:
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Figure 4: Ratefunction

exponential polynanial approximation, 1 degree
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Figure 5: Ratefunction

exponential polynomial approximation, 12 degrees
1\

G = measured rates, 5 = estimated rates, + = G 5
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Figure 6: Ratefunction

exponential polynomial approximation, 6 intervals, max. 6 degrees

G = measured rates, S = estimated rates, + ~ G 5
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Figure 7:

W. MATERNA

Arrival Process Analysis (k ~ 4000)

approximation interval
with 12 degrees approximation

1/1.

tes t of trend

test of autocorrelation

1.004

no trend

autocorrelation

1.005

no trend

no autocorrelation

The methods proposed in the preceding parts are suitable techniques to construct
valid arrival process models for predefined intervals. The overall execution
time for a time series with sample size k~4000 is about 1,5 hours (executed
at a DEC System 1050), one hour for the statistical analysis (the time consuming
part is the evaluation of the autocorrelation coefficients up to lag 50) and
about 30 minutes evaluating a starting vector and the follovling minimization.

3. Work Demand Analysis and Modelling

In addition to the description of the arrival process a statistical ~nalysis and
modelling of job demands CX.}. J' JclN, t.E!R+P, is needed.

J JE - J
The stochastic independence of jobs is assumed according to the low relationships
between different job demands (k = number of jobs):

f(x\ ,X2,.·. ,Xk) = f(X1) .f(x2)· .. · 'f(xk).

Analogously to the preceding part we start with a statistical analysis of the
work demands:

- descriptive statistical analysis,
- independence and correlat~on analysis.

In this work the following characteristics were collected for each job:

Xl: execution time [s]
X2: core requirements [kwords]
X3: magnitude of disk input [blocks] (lblock=128words)

X4: magnitude of disk output [blocks]
X5: magnitude of TTY input [characters]

X6: magnitude of TTY output [characters]

The graphs of the unidimensional density functions of the random variables
X1""X6 indicate multimodal properties for a few variables (X2,X3 ,X5,X 6).

The demand description can be simplified if the job variables X1, ... Xp are

mutually independent, i.e.

f(x 1, ... ,x p) = f(x 1)·f(x 2)·····f(x p).

In order to test the independence hypothesis we apply a generalization of the usual
two-dimensional contingency table method /VICTOR 70/. The analyis of all samples
results in a dependence between all variables Xl'" .X6. Since rJe are interested
in the degree of association a correlation analysis follows by using the multiple
correlation coefficient /MORRISON 67/. The different samples indicate strong rela­
tionshps between all variables (see example in figure 8).
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As a result of the statistical analysis of job demands a multivariate distribu­
tion function is needed which allows different modes.
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Correlation Analysis (sample size 4000)
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Work Demand Modelling

In order to take into account the properties of the work demands, as demonstrated
in the foregoing section, a mixture of density functions is proposed. A distri­
bution or density mixture arises when a population is made up of component
populations mixed together in fixed proportions. The problem is to decompose the
mixture by estimating any unknown parameters of the component densities, the
mixing proportions, and the number of components (under the assumption of a
known density family of the components), given a sample of observations from
the mixed populations.

Let m be the number of components, let f.(x,>:.) denote the density function of
.....}" 1 1 ~ ~

the i-th component of random vector X with parameter vector Ai' and let Pi(Ai»O
be the proportion of the i-th component in the mixture. The mixed density
function can be written as

--lo. m ~ ~-----. m .....}"
ft(x):= f(X) := l: p.(A.)·f.(x,A.), l: p.(A.) = 1.

i=1 1 1 1 1 i=1 1 1

The estimation of the mixture may be interpreted as a problem of "unsupervised
estimation" or "learning without a teacher". These kinds of problems are fre­
quently found in the area of pattern recognition, thus, an extensive literature
can be found there (compare /DUDA 13/). However, there is still no reliable,
general-purpose estimation procedure available. The difficulty of the estimation
problem depends on the number of components, the extent to which they overlap,
and the particular combination of parameters to be estimated. Only in simplified
cases under additional assumptions (e.g. known number of components or propor­
tions) satisfactory algorithms are known.

The proposed two step estimation method attempts to overcome most of the listed
difficulties. It works satisfactorily for the underlying modelling of job
demands. - It is assumed that the component distributions are multivariate and
normal functions with unknown parameters. Firstly, a mixture of multivariate
normal distributions is identifiable, i.e. there is only one solution to fit
the data /YAKOWITZ 70/. Secondly, a simple pseudo-random mechanism to generate
random vectors with dependent variables is available. Under the assumption of
identifiability, other component distributions can be used.

The first step of the algorithm guides in selecting an initial estimation of
the number of components and the remaining parameters. In the second step the
initial estimation is improved using a maximum likelihood criterion. Since the
costs of the numerical calculations are very high for large samples a particular
form fo the mixture model is applied. It can be proven that a conditional mixture
model working with memory significantly reduces the cost /MATERNA 78/. Thus,
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each demand vector Xis extended by a membership vector t, which denotes the
relationship between the vector Xand its underlying component.

Initial State Estimation
Starting the algorithm we are looking for points Xj with local object concen­
tration in the multidimensional space. Assuming normally distributed components
the density can be written:

m ~ ~ 0-

f (-;) = 2: p.' f . (x.).I .• 2: . ) ,
i =1 1 1 1 1

).Ii mean vector of component i.

Ei = covari ance matri x of component i.

with the distance

by shifting each point t1 in the direction of
is removed to its nearest mode.

is continued until f(X1(n+l))-f(X1(n))SO failes.

with 5 as the direction of steepest ascend:

5:= '1f(x'I(n))/" Vf(x1(n))II .IIVfIl >0,

and the step size 6. The value 6~a/2 is an empirically determined reasonable step
size. As a consequencMthe whole sample S can be decomposed into mutually exclusive
sample sets S. : S = uS .. This is done using the euclidian distance measure:

1 i =1 1

d1h = II x'1 - x'h II •

since all points were removed into the 26 surroundings of the different modes.
Each oEject is associated with one set Si' thus. we can evaluate the parameters
Pi .11i .2: i • i=I •... ,m.

Final Parameter Estimation
The maximum likelihood principle is used to improve the initial estimates because
as~ptotically consistent estimations can be obtained. The 1ike1 ihood functions
of an object t£s is

L(P.x') = f(t.P) = f(t). P = {i71.'tl'.··.~.1'm.Pl' ...• Pm)·



AN APPROACH TO THE CONSTRUCTION OF WORKLOAD MODELS 173

The following function is obtained for a sample S = Sk with size k:

k k..... k m --' --» L>

L(P,S ) = IT f(x .• P) = IT [p.·f.(x ·,11,,[,), (3.1)
j=l J j=l i=l 1 1 J 1 1

The usual procedure (differentation of equation (3.1)) used in maximum 1ikel ihood
estimation is intractable. Therefore, a step by step maximization is proposed.

The association between Xi and Si is known and after taking the logarithm/equation

(3.1) can written as:

k m
1n L(S) = [ 1n [ p/ i ex'j'i:i'i ,ri )

j=l i=l

k m
[ 1n [ qjiex'j,Pi,i:i'):i) , whereby

j=l i=l

m m
[ [ ln [ qji

r=l XjESr i=l

m m
[ 1 , whereby 1r E 1n E qJ"i"

r=l r Xjc \ i=l

The value of 1i is the likelihood of the ccrnponent i. The li's are used to

agglomerate non-significant ccrnponents. An agglomeration Sa = Si U Sj of two

components is performed if the likelihood ln L(P,Sk) can be maximized (compare
figure 9).

Figure 9: Agglomeration of two ccrnponents i ,j

f(x)

>----.L- ~~::...:::,..::::.L__---'__ x
condition la~li+lj insteadA numerical simpl ification is obtained if we use the

of equation (3.1)

Furthermore, we will reorganize single objects to maximize the likelihood. This is
supported on the following membership function:

hi(xj):=exp [- ~ (x/0'/'t'i-
1

ex'/i:q, i = 1.....m, O<hiSl,

which measures the membership of the object X. to a component i.
--..l ~ -:.oJ.....::.

hi = 1 if xj = l1i' and hi is nearly zero if xj is far away from l1 i . Now the

membership condition can be written as:

XjESi:hiex'j) = max {h 1(xj ), ... ,hmCx'j)}, i = 1, ... ,m j = 1, ... ,k.

In order to increase the likelihood, the agglomeration and reorganization are
repeated iteratively. - As an example one hour execution time of a DEC-System 1050
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is needed to approximate a sample with size k = 1000 and 5 dimensions.

Figure 10a,b display some results for an artificial sample with known parameters.
Another example is provided in figure 11. It is a two-dimensional vector of job
demands based on.

(i) generation under the assumption of independent demands,
(ii) generation with a multivariate normal distribution,
(iii) generation with a mixed distribution.

In order to demonstrate the results more clearly we use a discrete distribution
with 25 two-dimensional intervals and compute the sum of the squared differences A
between measured and generated objects for each cell.

4. Conclusion

Different statistical methods are proposed which allow a valid description of the
real workload based on the modell ing of the job arrival process and a multi­
variate mixed distribution model of job demands. In both cases a random gene­
ration of arrivals and demands is possible and can be applied for simulation
experiments and for calibrating synthetic jobs. Since we obtain a valid des­
cription of the workload the cost of the numerical calculations are acceptable.
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Figure lOa: Approximation of a two-dimensional artificial sample with three
components
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Figure 11: Comparison of measured and generated demands

(Xl = CPU-time, X2 = core requirements)

measured generated demands
demands independence mul tivari ate mixed

assumption normal distr. distri bution

1 1 1 126 31 291 143
2 1 2 371 227 265 368
3 1 3 204 149 211 226
4 1 4 3 23 120 7
5 1 5 11 63 49 14
6 2 1 11 36 14 29
7 2 2 311 327 21 346
8 2 3 343 260 23 341
9 2 4 12 60 15 14

10 2 5 14 97 9 4
11 3 1 1 17 26 3
12 3 2 271 231 33 241
13 3 3 91 198 40 76
14 3 4 83 28 30 91
15 3 5 114 69 11 103
16 4 1 2 16 68 0
17 4 2 50 166 110 44
18 4 3 89 126 120 49
19 4 4 43 23 85 39
20 4 5 51 47 63 42
21 5 1 4 10 80 9
22 5 2 54 93 123 52
23 5 3 34 76 211 58
24 5 4 43 12 218 33
25 5 5 77 28 177 81

sum of
quares

A = 93 328 406 789 6 236
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1. INTRODUCTION

In designing computer operating systems an important factor is
the choice of the appropriate echeduling algorithm used to deter ­
mine the order in which tasks are to be executed. One approach to
the analysis of scheduling algorithms consists in developing an
abstract model of a computing system and then in the formal analy ­
sis of the algorithms operating in the model framework. We will be
concerned with a deterministic model of a computing system, i.e.
one in which no random variable appears. In particular, task execu­
tion times are known a priori. An interpretation of this assumption
as well as results obtained under it are given, for example, in
[ 11 ]. In most cases ,also the number of tasks and task ready times
are assumed to be known a priori, however. even if this is not the
case, they are not described in a probabilistic way.

Until now, most of the results obtained in deterministic compu­
ter scheduling theory have concerned scheduling on processore with­
out additional resources, and there eXist several papers and books
which survey these results [11,22.34,39 ]. In this paper we would
liks to survey and extend results concerning the problems of sche­
duling taska on processors under resource constraints which have
been intensively studied recsntly. Our attention will be devoted
mainly to the model in which the number of tasks. task ready and
execution times and resource requirements are known a priori. More­
over, we will assume that tasks are nonpreemptable, and in the case
when preemptions are allowed - that all resourcea are preemptible,
i.e. they are released at the momsnt of the preemption. The last
assumption implies that deadlock cannot occur. Of course. it may
easily be noticed that the above assumptions are rather seldom
fulfilled strictly in real situations. The analysis of such a model
has, however, an important theoretical and practical significance.
Generally speaking, from the theoretical point of view it allows
for the marking out of the "border" between "easy" and "hard", i.e.
NP-complete problems. On the other hand, in practice optimal stra­
tegies obtained under strong assumptions suggest philoeophiee for
heuristic procedures under weaker assumptions.

Mention will also be made of other models, the complete discus­
sion of which would reqUire separate surveys, which could in any
case be vsry difficult to make at present. Consequently, our com ­
ments about these models should be treated as indicating directions
for further research. .

The basic model of a computing system which we are concernsd

181
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with will be described in Section 2. Then. we preeent a complexity
enalyeie of scheduling problems for this model. This involvee
either giving a polynomial-in-time optimization algorithm which
alwaye finds an optimal echedule or proving this problem to be
NP-complete. thus unlikely to admit of such an algorithm (we refer
the reader to [1.21.43 ] for an introduction to the theory of
NP-completeneee). Such an analyeis is carried out in Section 3,
for three main performance measuree: schedule length. mean flow
time and maximum lateness. It is obvious that in practice mainly
non-enumerative algorithms can be directly used in operating sys­
tems. Thue, complexity analysis justifies the use of polynomial-in­
time approximation algorithms whosa woret caee behavior is known
for solving NP-complete probleme. Examples of such algorithms ar~
preeented in Section 4. Laetly, in Section 5 we preeent enumerative
optimization methods which may be useful in evaluating approxima­
tion algorithms or in syeteme which allow for the utilization of
off-line computational reeults.

Other modele of computing systems are considered in Section 6.
Theee models include : echeduling in systems where each processor
has its own primary memory rather than accees to a common one, the
simultaneoue liquidation of eystem performance failures and mini­
mization of mean weighted flow time, and echeduling with memory
allocation in a certain claes of multiproceesing systems.

2. BASIC MODEL AND SOME DEFINITIONS.

Our basic model is concerned with a computing eystem consisting
of parallel processors and some other reeources such ae: main and
mass storage. line printers, card readers and punchers. teletypes.
etc. Such a system may be described by three components: a set of
n tasks £T1.T2 •••••Tn~ , which are. to be processed on m paral-
lel and identical processore fP1'P2 "",Pm), utilising additional
rssources {R

1
.R2 ..... Rs ) • For each resource R1 • 1.1.2, •••• s.

there exists a bound ml which gives the total amount of thet re­
source available at any given time. For every tesk Tj , j~1.2, ••• ,n

there ers given: execution time Pj' ready time r j • deadline d j
end e vector R(T j ) conteining resource requirements (the l-th
element of this vector Rl(T j ) ~ ml • denotes the number of units
of R

l
required by task Tj ). A pertiel order ..( , specifying

precedence constraints is defined on the tesk set: Ti -< Tj meens

thet T cennot begin processing until Ti is finished.
j . dSome other definitions will be useful in the following iscus-

sion. Tesks are celled indehendent if there is no pertiel order
imposed on the tesk set. ot erwise they ere celled dependent. By
preempteble we meen tesks that mey be preempted et eny moment end
resterted leter (meybe on enother processor) with no time losses.
Tesks thet cannot be preempted ere celled nonpreempteble. A schedule
is e specificetion of ths essignment of processors end additionel
resourcss to the tesks. end this essignment must setisfy ths follow­
ing conditions:
_ ell tesks ere processed to completion thet is they ere essigned

ell required resourcee during the time they ere being processed,
end thsee resources ere releesed either et the end of the process­
ing or et the moment of the preemption.

- for eech Ti -< T
j

• T
j

is bsgun after Ti is completed.
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- at most m tasks ar~ processed at a time.
- for each time t, L Rl(Tj)~ ml , where A(t) is the set of

Tj€A(t)
tasks which are being processed at time t.

For every task Tj in the schedule we denote its completion

time by Cj • To evaluate schedules we will use three performaRce

measures: schedule length C "max (Cjl , mean flow time F= 2: Cj/n,
max j l J j=l

and maximum lateness Lmax = mjx {Cj-d jJ • The schedule will be

called optimal if the value of the respective measure is minimal
for it. A scheduling algorithm is a step by step procedure that
produces a schedule for every given set of taeks. By optimization
scheduling algorithm we mean an algorithm which always finds an
optimal schedule, and by aparoximation scheduling algorithm - ons
which, while not always fin ing optimal schedules, tends to find
schedules that are close to optimal. preem1tive and nonbreemptive
scheduling algorithms are those for schedu Ing preempta Ie and
nonpreemptable tasks respectively.

In this paper, we consider several scheduling subproblems which
differ from each other by their task,processor and scheduling
characteristics. To distinguish these subproblems we use eome ele­
ments of the notation 0< I P, Ii{ [22.35 ], where (jIl denotes the
empty symbol):

d:. =0<.10( 2 : describes the processor environmsnt;
~l=P identical parallel processors;

o.2=m : number of processors is equal to m.
oI. 2=jI! : number of processors is assumed to be variable.

~ .. ~1' ~2' ~3' ~4' ~5: describes task characteristics;
1?l"pmtn : tasks are preemptable,

~l=jIl : no preemption is allowed;
~2=res.::\ G) characterizes resource requirements;

A,I), ~ =1 denotes respectively: one resource type,
unit resource bounds for each resource type.
D or 1 resource requirements of all the tasks,

A,~,~ = .: denotes respectively: several resource types
arbitrary resource bounds, arbitrary resource
requi rements;

~3=prec : arbitrary precedence constraints ,
~3=tree: precedence constraints between the tasks such that

the associated precedence graph is a tree,
no precedence constraints are specified;

there are specified ready times that may differ be­
tween tasks,

])4"jIl for all j, rj=D ;
~5=Pj=1 each task has unit execution time,

~5=jIl : arbitrary execution times
denotes the optimality criterion. i.e.
Cmax : schedule length,
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mean flow time,
maximum lateness.

3. COMPLEXITY RESULTS AND SIMPLE OPTIMIZATION ALGORITHMS.

In this Sectiun we present results concerning the complexity
of scheduling problems connected with the presented basic model. We
will try to establish a sharp berderline betwenn easy problems sol­
vable in polynomial time, and more difficult, NP-complete, ones.
Since we are interested in the application of scheduling algorithms
in operating systems such a borderline will inform us for what
problems we can use simple optimization algorithms and for what
problems we should search for simple approximation ones. We start
with the schedule length criterion.

For the problem Plres1'l,Pjz1lC one can use the following
algorithm. ffiax

Algorithm 1

1. Set t:=O, k:=O.
2. At moment t assign a task for which R (T )=1 to the next free

processor and set k:ak+1. Repeat this1st~p until k=m1 or there
is no such task.

3. Assign to all free processors at moment t tasks for which
R1 (T i )=0. Set t:=t+1 and k:=O, and repeat step 2.

P2Ires···.p ...11
J

2 [17 ].

The optimality od the above algorithm is obvious, since it
at every moment to use the most resources possible. It may
implemented in O(n) time.

Let us now turn our attention to the problem

Cmax Which can be solved by the use of Algorithm

tends
be easily

Algorithm 2

1. Construct an n-node graph G (undirected) • haVing each node la­
beled as a distinct task, with an edge joining T

i
to T

j
if

and only if Rl(Ti)+Rl(T j ) .. ml ' 1..1.2 ..... s.
2. Find a maximal cardinality set E of edges from G such that

no two edges share a common endpoint and put the minimal value
of schedule length Cmlfax " n-JEJ.

3. Process in parallel the tasks which are joined by the edges com­
pr~s~ng the set E. Process other tasks individually.

Since to obtain set E Kariv and Even's [30 ] maximal matc2igg
algorithm can oe used. the complex~ty of Algorithm 1 is O(n • ).
Most of the other problems of schedul~ng~min~m1ze schedule length
are NP-complete as is shown in the following theorem.

Theorem 1

The following problems are NP-complete:
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1. P2Iresl •• ,tree,Pj-1JCmax
2. P2Iresll1.prec.Pj-lICmax
3. P3Iresl"'Pj-lICmax
4. Plres'll'Pj-lICmax
5. P2 I re s111 ICmax

17 ]

43 ]

[ 17 ]

[ 7 ]

[ 36 ]

It follows that the complexity of some problems remains an open
question. This is especially true for the case of preemptable
tasks. However, analysing proofs of cases 1.2 and 3 of Theorem 1.
one may see that there is no advantage in preemption. eo probleme
P2Ipmtn,resl··.treeICmax ' P2lpmtn,resl11.preclCmax and P3lpmtn.
reel"ICmax are also NP-complete.

Let us now consider the pJoblem of mean flow time minimization.
The problem Plresl'l.PjmlJ~Cj can be solved by Algorithm 1. and
problem P21 ree." 'Pj-l1 2: Cj by the follOWing algorithm [ 3 ].

Algorithm 3.

1. Find the schedule with the minimal length.
2. Reorder processing in the obtained schedule so that all pairs

of tasks are processed first, and after them single tasks.

Since to construct a schedule with minimum length Algorithm 2 can
be used, the complexity of the above algorithm is 0(n 2 •5 ). No
other optimization algorithm is known. Some of the remaining
probleme mey be proved to be NP-complete.

Theorem 2

The follOWing problems are NP-complete:
1, p2Iresl°o,tree,pj"'ll L. C

j
[ 3 ],

2. P2Iresl11.prec. Pj -ll L Cj [3 ]

3. P3lresl oo ,pj"'11 L Cj [ 3 ]

4. P I res ·11 •Pj -11 L Cj [ 7 ]

We now turn our attention to the problems of minimizing
maximum lateness. which are of valua for computer control eystems.
Firstly. we show how the problem PJresl·l,r. ,p.-lIL can be

J J max
solved. More clearly. we describe algorithms for determining,
for the same input data. whethsr or not tasks can be scheduled
before their deadlines (thie problem will be denoted by Plresl'l
r j ,Pj=l,d j l- ). Thie can be done since first problsm may be poly-'
nomially transformed to the second one. Namely. given an instance
of the problem Plresl'l.r j ,Pj=lIL with deed lines d' j-12max j , ., .
•••• n and a threshold value L for which re)ask the question of
the existence of a schedule with Lmax "; L • , we can construct
1.)

It may be proved [1 ]. that in analysing the compleXity of an
optimization problem. we can represent it by a decision problem
for which an answer may be "yes" or "no",
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an instance of Plres1·1,r j •Pj =1.d j J- by taking all the parameters
the same as in the first problem, except the deadlines for which
we have d{:-d'+ L, j=1,2 ••••• n. Obviously, the answar ie ·yes·
for tha fi~st ~roblem, if and only if the same answer is for the
second one. Thus. it is sufficient to solve the second problem
in polynomial time and the first one may be solved as wall. To
solve ths problem Plres1.1,r 1 ,Pj=1,d j l- it is necessary to cal­
culate first modified deadlines dj~ by the use of Algorithm 4
[6]. Then, thesa modified deadlinas are used in Algorithm 5 [GJ
which constructs a scheduls with no task late, whenever such a
schedule exists. Further. we call task Tj~ (at moment t)

if r j , t, and we define set At to be At = fTj:(dj*=t)/\ (R1 (T j )=
=1)}. The two algorithms may be described as follows [6 ] •

Algorithm 4

1. Order tasks in the nondecreasing order of their original daad­
lines. Initially assign d j * :sd j for all tasks. Set t:=max{d jJ •

j
2. If IAtl':; m1 then go to step 3. From the set At take IA t l-m1

tasks with the earliest ready times and calculate their modified
deadlines according to the formula:

d *'=d*-1j . j •
3. Set t:=t-1. If IAtJ=O repeat this step until either IAtl >0

or t=O. In the former case go to step 2, in the latter end the
algorithm (if IAOI!O then no optimal schedule eXists).

Algorithm 5

1. Draw up a list of uncompleted tasks (including also those which
have yet to arrive) in nondecreasing order of d

j
1C- • Renumber

tasks according to this order. Set t:=O and k:=O.
2. Assign the first nonassigned active task (say Ti ) from the list

to the next processor. If R1 (T i )=l, set k:=k+l. Repeat this
step until either k=m1 or all processors are busy. If ks m1 then

go to step 3 else go to step 4.
3. Assign to free processors the nonassigned active tasks with the

earliest deadlines. for which R1 (T i )=O. Go to step 5.
4. Remove a task. say T

j
, which, from among all assigned tasks with

R1 (T i )=O has the latest deadline, from the processor to which

it was assigned. Assign to this processor the first nonassigned
active task on the list, say Tl , with resource requirement

R1 (T1)=1. if for every nonassigned Ti (including T
j
). i < 1. the

following condition is fulfilled t + 1 + flS i 11m1 ~ dt 1)

where B. denotes the set of nonassigned tasks with modified
deadlineg " d" •
If this condi~ion is not fulfilled for some i, do not change

1) rxl denotes the least integer not less than x.
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the assignment and go to step 5. Set k ;-k+1. If k < m1 then

repeat step 4.
5. Remove the sssigned tasks from the list and eet t:-t+1 and

k;=O. If there are any active taske on the list then go to
step 2. If there are only nonactive tasks on the list then set
t:-min Irk~ ,where N denotes the sst of indices of these

kENJ
tasks and go to step 2.

The complexity of the above algorithms is dominated by that of
Algorithm 4, which is 0(n2 ), Let us note that the problem Pires
1'1'Pj-1,d j l- may be solved without assigning modified deadlines,
thus, one need only to use Algorithm 5 to solve it [5 ].
Taking into account the polynomial transformation PI ~ ICmax ce· pi
1\) JL [ 36 ], and Theorem 1, one may easily prove the follow-max
ing theorem [4 ].

Theorem 3

The following problems are NP-complete

1. P2Irssl",tree,Pj-1JLmax '
2, P2lres111,preC,Pj=1lLmax '

3. P3Ires1",Pj=1ILmax '
4. Plres'11,Pj=1JLmax '
5. P2lres111JLmax '

The complexity of other problems still remains an open question.

4. APPROXIMATION ALGORITHMS.

It follows from Section 3 that simple optimization algorithms
exist only for a relatively very small group of problems. Since
we are concerned with applications of scheduling algorithms in
operating systems, we are mainly interested in non~enumerative

algorithms which ara unlikely to exist for most scheduling problems.
Thus, we are justified in such cases in using approximation al­
gorithms. In this Section wa describe several hauristics. All of
them concern tha schedule langth criterion, since until now there
has bean no effort made to produce and estimate approximation al­
gorithms for other performance meaauraa.

Given any heuristic algorithm a nstural question concerns the
extent to which the schedules produced by it differ from tha opti­
mum. Thare are three methods of evaluating such an algorithm [ 15 ].
Firstly, one can run it on selected sample problems. However, no
one can prove that these problems really represent instances which
may be found in practica and for which the algorithm behaves poorly.
The second method consists in, using probabilistic techniquas, to
compare the expected valuas of a schadula performance measure
respectively for an optimal schedule and one obtained by an appro­
ximation algorithm. It is, however, very difficult to determine a
probability distribution which can be dealt with mathematically and
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Li is
algorithm.

which also reflects the problem instances that arise in practice.
Lastly. one can prove the bound on the worst case behevior of the
algorithm, that is prove that the values of the echedule perfor­
mance measure obtained after using the algorithm never differ from
the optimal by more than some constant percentage of the optimum
value. Moreover. it is worthwhile giving examples for which the
approximation algorithm behaves as poorly as the bound. Such a
bound is then called the best possible one [15.18 ].

It is last method we will be concerned with. since it provides
ue with a useful and precisely defined quantity using which one
can compare different approximation algorithms. Moreover. when we
prove a good worst-caea bound for some algorithm. we know that
this bound alweys holds for every problem instance thet can exist.
We will nowdescribe several heuristics for minimizing schedule
length snd give bounds on their woret csse behavior. In this Sec­
tion. for brevity we will use C to denote the schedule length.

Let us consider first the case of unit length task•• For the
independent tasks case the problem can also be thought of as multi­
dimensional bin packing. where ths number of items per bin cannot
exceed the value m • Assuming m~ n • we obtain a pure bin pack­
ing problem. Three main heuristics have been considered to date.
They are called the first fit (FF). first fit decreasing (FFD)
and level (FFL) algorithms respectively. All of them are kinds of
list-acneduling algorithm. that is tasks are arrangad in some
order on a list and at the beginning of svery tima slica the list
ia scanned from left to right and tasks which do not violate ra­
eourca and pracedence constraints are assignsd to processors. The
list scheduling algorithm is describsd in a more detailed way in
Algorithm 6 [16 ].

Algorithm 6.

1. Let L be the initial list. Set i:-l. Ll:~L.

2. Set Li: ..Li- fTi:T i has predecessors in Li ). Let Li -<Til'

Ti2·····Tini> • Assign Til to the first processor and set

k:"l and 1:=1.
3. If T

il
+

1
may be assigned to a processor at moment i without

violating resource constraints as~ign it to the next free proces­
sor and set k:-k+l and 1:-1+1, otherwise set 1: .. 1+1. Repeat
this step until either k=m or I-n i

4. Set i:-i+l. Li: .. L- [Ti:Ti is already assigned 3. If
a non-empty list then go to step 2. otherwise end the

The three heuristics mentioned above differ from each other by
the menner in which tasks are ordered on the initial list L. In the
first fit algorithm tasks are arranged on the list in any order.

The first fit decreasing algorithm orders tasks in tha nonin ­
cressing order of their maximal resource requirements. More clearly.
for each Ti € L one can define

Rmax(T i ) .. max {(Rl(Ti)/ml : 1 ~l, sy.

Then, tasks are ordered in such a way: L=<T i ,Ti ..... Ti >
1 2 n
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The level algorithm reorders tasks according ro precedence le­
vel. To describe it we need some definitions [16 ] • A chain of
tasks in L is a sequence of tasks Ti ,Ti •••••Ti wnere---­

12k
• and the length of this chain is k. TheTi.<..Ti<· .. -<.Ti

12k
~ of a task Ti (level (T i » is the length of the longest
chain which begins with Ti • The level algorithm orders tasks in

such a way that if L.. < Ti .T i ••••• Ti > then level (T i ) >
1 2 n 1

level(Ti ) > ... ~ level(Ti ).
2 n

Thus, to obtain a schedule one should form a list ueing one of
the above elgorithms and then apply Algoritm 6. Balow we report
soma woret case beheviors of the heuristics deecribed. C* denotee
the minimal schedule length, while CFF ' CFFD and CFFL denote

lengths of schedules obtained after using respectivsly the first
fit, first fit dscreasing and level algorithme.

Theorem 4 (16 ] •

For the esse of independent tesks and an unbounded number of pro·
cessors (i.e. m ? n) we have:

CFF
1. 11m --- ~ s + 7/10.

C'!...,"', C ~

C
2. 11m~ ~ s + 1/3.

c4"" clf"

The first bound is the best possible one. while the lower bound
for the second case is s + «s-l)/s(s+l»,

It follows that the use of the FFD elgorithm improves the worst
case behavior of a schedule about 40% in terms of optimal schedule
length. Let us note, that the FFL algorithm is equivalent to the
FF one. since in the independent tasks case all tasks have levels
equal to 1.

When the number of processors is limited • the following theorem
is valid for the one resource case.

Theo rem 5 (32

27/10 - 24/10m ,

C
2. 11m~ ~ 2 - 2/m •

Ct..>Ct' C"

Moreover. the sscond bound is the best possible one,
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Some weaker bounds also exist for the case s >1 -[ 48 ].

Let us now consider the case of dependent tasks. The following
theorem holds.

Theorem 6 [ 16 ].

an unbounded number of proceesors, the followingFor the case of
bounds exist:

CFF
1. 11m --- ~

C'!.;,C(.1 C~
(S/2)C If + s/2 + 1 ,

2. 11m
C~a~

,; (17/10) s + 1.

FF algorithm
independent
significantly

CFFL3. 11m ~ (17/10)s + 1 •
C~CO C*

Moreover, the first and toe third bounds are the best possible
ones; the lower bound for the second case being (1.69)s + 1.

It follows that the worst case behavior for the
ia now considerably worse than that for the case of
tasks. However, both the FFD and FFL algorithms
improve the worst case bounds.

When we limit the number of processors the only interesting
bound is as follows.

Theorem 7 [16].

For marsC* ,where r € [0,1], we have

lim
C'4a::>

~ (r - r 2 /2) sCII'-+ r(s/2) + r ,

and thia bound is the beat possible one.

Next, we turn our attention to the case of arbitrary length tasks.
Here the same heuristics may be used to produce schedules as for
the unit execution times case, however, one should slightly modify
Algorithm 6, bec~use changes in assignment may only occur when a
task finishes. While scheduling nonpreemprable tasks we then check
whether enough resources are available to proceas an other task.
When scheduling preemptable tasks it may be worthwhile preempting
some unfinished task and assigning another, e.g. for FFD algorithm.

The following theorem holds for the case of indepenEient and non­
preemptable tasks.

Theorem 8 [14].

1. For an unbounded number of processors (i.e. m>n), we have
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CFFlim ~ s + 1 •
CIt:_>co C If

191

2. For a limited number of processors, the following bound exists

CFF { m+1 2s+1 )lim ----- ~ min ---2-- • s+2- ------
C L;>oc1 C ~ m

Moreover, these bounds are the best possible.

When scheduling independent and preemptab1e tasks the following
theorem may be proved for the case s=l.

Theorem 9 32]

1. lim
CFF

~ 3 - 3
C£.>cc C II m

2. lim
CFFD 3 - 3

C~o:> C 1C
::; m

These bounds are also the best possible.

When comparing the last two theorems it is quite sup rising that
preemption is not worthwi1e in two and three ~rocessor cases. Even
more sup rising is the fact that applying the FFD algorithm in the
preempt able tasks case we may get a better schedule than that
produced by the FF one.

The last theorem concerns dependent tasks.

Theo rem 10 [ 14 ]

For s=l and nonpreemptab1e tasks we have

lim
CFF

~ m
C ~c..() C"

and this bound is the best possible.

There exist several other heuristics for scheduling tasks under
resource constraints (for a survey we refer to [12,41 ]), however
their worst case behaviors are not yet known.

It is also worth noting that there are approximate versions of
NP-complete problems (not necessarily from scheduling theory),
which theirse1ves are NP-complete [19,40 ]. thus. unlikely to
admit even approximation algorithms of a given quality.

5. ENUMERATIVE METHODS.

From the preceding Sections it follows that only a few po1yno-
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Minimize

mial in time optimization or guaranteed accuracy approximation al­
gorithms exist for scheduling under resource constraints problems.
Thus. one is rather forced to use heuristics whose worst case be­
havior is unknown. However, there exists the computational possibi­
lity of estimating their behavior. In order to do this one should
find optinlal schedules using enumerative optimization methods. and
then, comparing them with those produced by heuristics draw conclu­
sions about possible improvements in these heuristics. This approach
as was mentioned in Section 4. has its drawbacke, but sometimes it
is the only method for estimating the efficiency of approximation
algorithms. Moreover, it is possible to use enumerative methods to
construct optimal schedules in some applications of computer systems
especially when some task patterns are repeated and an optimal sche­
dule may be constructed prior to its usage. It is also possible to
use these methods to construct near optimal schedules, by stopping
computations when a given amount of time or storage has just been
exceeded.

When scheduling nonpreemptable tasks one ca" use either branch­
-and-bound or dynamic programming methods. We do not want to de­
scribe them in detail here. since both of them involve rather long
expositions which aleo depend on the applications in which they are
used. There also exist a number of articles and books dealing with
these methods, for example [31 J. However, one general remark may
be made. Given a dynamic programming algorithm for solving any
scheduling problem, an equivalent branch-and-bound algorithm can
also be found.

Below we describe briefly the method for scheduling preemptable
and independent tasks under arbitrary resource constraints to mini­
mize schedule length [46 J. Given the set of tasks and their re­
source requirements, let us number from 1 to N the resource fea­
sible sets. i.e. those subsets of the set T ,T ••••• T for which
the resource requirements (including proces~or~) do Rot exceed
any resource bound. Let Q denote the set of all numbers of re­
source feasible sets in which task T may be processed, and let
t. denote the duration of resource fe~sible set i. Then, one can
fOrmulate the linear programming problem:

N

k t i

Subject to It ... p.,
i.Q]. J

j

or in matrix notation,

At.. p •

j=1,2, •.• ,n,

where A is the ma t r ix

t~
of coefficients

if i € Q
j

otherwise
Of course, columns of matrix A correspond to resource feasible
sets.

When applying the simplex method directly to this problem, the
necessity 0< storage of matrix A (the largest one in the problem)
greatly constrains the size of the problems which.can be solved.
In [46 ] a method was proposed, which taking advant.3ge of the
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special structure of the proble~. automatically generates the
consecutive columns of matrix A. Thus. at every moment only one
resource feasible set (which is actually checked in the simplex
procedure) is stored. and thus. storage requirements are reduced
to the minimum. Moreover the generation procedure is constructed
in such a way. that the numi.Jer of resource constraintchecks is
minimal.

The approach may also be applied for sets of dependent tasks.
To this end. precedenca constraints are presented in the form of
task-on-arc graph. in which nodes (i.e. time events) are ordered
in such a way that the occunence of node i is not earlier than
the occurrence of node j if i < j • Then. sets of tasks are found
which may bs processed in time intervals between the occurrence of
consecutive nodes of the graph. and resource feasible sets are
generated from all of these sets.

6. OTHER MODELS.

In this Section we describe other problems of schoduling under
resource constraints in which other assumptions concerning the
model of a computing system or goals to be achieved, are made.
That is we will be concerned with scheduling in systems where each
processor has its own primary memory of a given size, with the
simultaneous avoidance of deAdlocks and optimization of mean
weighted flow time and finally with different assumptions made
about the processing model.

6.1. Scheduling on processors with independent memoriss.

In this Paragraph ~e consider the mudel of a computer system
which consists of several identical processors Pl,P 2 , ••• ,Pm each
of which has its own memory [ 27.28.47 ]. The sizes of the memories
are not identical Clnd we denote them by J Pi) .1 P2 J , ••• , J Pmi. Each

task Tj • j=1.2 ••••• m. is characterized by its execution time Pj

and memory reyuirement R(T.). Moreover. let F .• i=1.2 .... ,m, de-
J 1

note the set of all taeks which because of their memory require.­
ments. can only be schedullic on P1 .P2 •••• ,Pi' assuming that

IP1 1 ~IP2l1: ... >IPml. and t i denotes the sum of all the task
execution times in F

i
•

For such a model several heuristics ""lich tend to minimize
schedule length wpre proposed for scheduling nonp,eemptable tasks,
and their worst case oehaviors were examined in [28 ]. Most of
them are varieties of list scheduling algorithms which differ from
each other by the ordering of the initial list. So. to produce
schedules. we can use Algorithm 6. taking into ac~ount the fact
t~at tasks have arbitrary processing times and another resource
bound is associated with each processor. The following rules were
used to order tasks (abbreviations are given in parantheses)

1. smallest time first (STF).
2. smallest memory first, i.e. first fit increasing (FFI).
3. la rge s t time fi rs t (LTF) .
4. largest memory first, i.e. first fit decreasing (FFD).

The following theorems are valid [28 ] (the subscript of C
denotes the scheduling algorithm producing schedules).
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1. For arb~trary precedence constraints, we havE

C
11m --!f- ~ m.

CIi-7C(' Cit-

2. For independent tasks, we have

lim
C~o:J

i
~ k + 1 + ;K ~ 1 + 1092( m) •

where k and i "re chosen so that m =2 k+i and i < 2n • Moreover,
these bounds are the best possible.

Theorem 12

For the case of independent tasks the following bounds exist.

1.
CSTF CFFI i

lim ----- = lim ---~-- ~ k + 1 + -:K ~ 1 + 10g2(m)
C!-"co C Ii C!:..>aJ C 2

where k and i are the same as in Theorem 11.

2. max i ~~TF }~ln(m).

3.
CFFO11m ::; 2 - l/m.

C ......'" C""

Bounds for cases 1 and 3 are the best possible.

It follows f~om the above theorems that for all of these heu­
ristics, except the first fit decreasing one, their worst case
behaviors are not much better than that of the arbitrary list
scheduling algorithm. However, the first fit decreasing algorithm
has quite a well-behaved bound which cannot be much improved by
other heuristics involving more computations [28 ].

We turn our attention now to the case of preemptable tasks. In
the case of independent tasks an optimization algorithm exists
which may be described as follows [28 ] .

Algorithm 7

1. Order the task list on a first fit decreasing basis.
2. Compute the values of F. and t i • for 1 {i!:; m • Set Cx

=m~x{ti/iJ Pmax=mjxfPj~ and Cm~x=max{cx,PlllaxJ' Set j=l.

3. (a) If all tasks have been scheduled. then stop. Otherwise.
select the next task, Tk , from the task list and proceed to

step 3 (b).
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(b) If the assignment of Tk to Pj does not cause the comple-
-IE-tion time of the task to exceed Cmax ' then schedule Tk

on Pj and return to step 3(a). If c.f is exceeded. pro-
ceed to step 3(c). max

(c) Suppose the assignment of Tk to Pj causes Pa (of Tks total
processing time , Pk) to occur before Cmax and Pb after

C:ax • Schedule Pa of Tk on Pj and Pb on Pj +1 at the be­
ginning of the sch'edule, Increment j by 1 and return to
step 3( a) •

6.2. The simultaneous liquidation of system performance failuree
and the minimization mean weighted flow time.

In the previous Sections it was assumed that task ready times
were known a priori and that while being executed each task holds
all claimed resources and releases all of them either after its
completion or after being preempted. Now, let us consider the more
realistic situation in which tasks from an infinite stream achieve
ready status at a priori unknown momsnts and tasks may release
soms resources while holding others, then require another amounts
of resources and so on.We do not assume, however. that amounts of
requested and released resources as well as moments at which
resource requests and releases occur are known a priori. We only
assume a priori knowledge of task execution times and resource
claims, i.e. maximum amounts of particular resources utilized
during execution of particular tasks. Moreover. we take into ac­
count the fact that some of the resources cannot be preempted
(e.g. line printers) even when the task using them is suspended.
Thus, deadlock may occur, in which tasks are stuck in a circular
wait, each waiting for another to release its claim on certain
resources. Also. because we consider an infinite stream of tasks.
certain tasks may be permanently blocked ; their resource requests
may be permanently ignored. In the described situation the problem
is to find scheduling And resource allocation strategies which en­
sure the solution of system performance failure (i.e. deadlock and
permanent blocking) problems and which tend to maXimize system
throughput or minimize mean weightsd flow time.

In majority of papers concerning the subject attention has
rather been paid to the first of the aspects mentioned above.
Recently, Cellary [ 8 ), [ 9) has presented an approach taking
into account both of these aspects. He analyses a uniprocessor
system with an arbitrary number of units of one nonpreemptible
resource (an extension to the case of many nonpreemptible resourcee
is given in [10 ]). In [ 8 ) an infinite stream of independent
tasks is considered, while [9] concerns a stream of independent
jobs composed of sets of dependent tasks. In the second case mean
flow time of jobs instead of tasks is the system performance mea­
sure. In this approach, a deadlock avoidance method has been ap­
plied, in which safety and admission tests described by Habermann
[ 23 ) have been improved by radically reducing the overhead in­

volved. All situations which need specific servi ing, from the
resource allocation point of view, have been considered and
corresponding allocation algorithms have been developed for them.
These algorithms utilize in a special way the SPT rule, which leads
to mean flow time reduction.

The permanent blocking problem is solved by detecting permanent­
ly blocked tasks and applying of a special resource allocation
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strategy which consists in the reservation of part of the resources
available in the system. In opposition to Holt's solution described
in [24 ] • this strategy does not reject in advance the possibili­
ty of granting the resource requests of tasks which do no: hold
any resources (in p?rticular. resource requests of tasks Just enter­
ing the system). In this way mean flow time is also reduced.

6.3. Scheduling with memory allocation.

Let us now consi~er a paged-virtual memory multiprocessing
system (like PRIME [ 2 ]) which consists of m identical. time-
- shared uniprogrammed CPU's. each having a dedicated paging device.
with a common primary memory of N pages and a Control Processor
carrying out resource allocation. In such a system the problem
occurs of scheduling tasks and allotting numbers of primary memory
pages to tasks processed simultaneously in certain time intervals.
System workload is based on the analytical apprOXimation of the
lifetime curve of task Ti • ei(si)' where e i is the mean time

between succesive page faults. si is the number of pages ellotted

to task Ti • i=1.2 ••••• n. Knowing ei(si)' the mean progress rate

may be determined for Ti : fi(si)=ei(si)/[ei(si)+t p]' where t p
is the pege transport time.

In [13 ]. Ferrari has proposed a memory allocation stratsgy
following from the maximization of the total progress rate in every
stClted time quantum. In [45 ] the static case is considered. when
for every task Ti fror.l the set of n ~ m independent tasks apart
from e.(s~). the size Vi is known. ~.e. the number of standard
instruc io s which havs to be processed in order to complete Ti •

It may be noted that the last assumption corresponds to the assump­
tion of knowledge of task execution time in the classical determi­
nistic scheduling problem. Then. introducing the concept of the
state of a task at moment t • Xi(t). which denotes the number of
standard instructions processed up to moment t (xi(O)=O), the

function fi(si) may be represented by fi[si(t)J = dxi(t)/dt and
the performance condition for Ti by ~i f i [si(t)]dt=vi • where Ci

o
is the finishing time of T • Such a formulation allows for a
thorough analysis of the p~operties of optimal solutions for a
chosen system performance measure es well as for developing
the most effective algorithms for finding these solutions. The
analysis for schedule length minimization was performed in [45
for the case of independent tasks and generalized in [44 ] for
sets of dependent tasks. In general. finding optimal memory alloca­
tion needs the solution of a constrained nonlinear programming
problem. In certain cases, howevsr. analytical results can be ob­
tained. Also. simple apprOXimation algorithm can be developed pro­
ducing solutions not far from the optimum. While the suggested
approach may seem rather sophisticated. it contains certain metho­
dological innovations which can be utilized in more practical si­
tuations, for example when e i depends not only on si and even

for infinite streams of tasks. Also the consideration of other
system performance measures and the interpretation in a probabi­
listic way of the obtained results seem to be possible. Indepen­
dently of this, ;he ac,ove approach m'ly be utilized for the evalua­
tion of apnroximation memory allocation nlgorithms developed under
weaker assumptions.
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7. FINAL REMARKS.
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In conclusion we should stress that this poper has of course
not exhausted all the problems concerned with deterministic problems
of computer resource allocation. In particular we have not consi­
dered issues linked with the allocation of concrete resources of
one kind, like operating or mass storage. We have only examined
more general problems including more types of resources, always
irocluding processors. In the basic model we have been considering
it was assumed that the computing systsm consists of several iden­
tical processors, additional resources and a set of tasks to be
processed. It was shown that the problsm under consideration is
tiifficult, so that only a few simple, optimi~ation algorithms may
be given. Thus, in practical applicatio~s one sho~ld ra~her tend
to develop fast heuristics than to search for opt1m1~at10n algo­
rithms.

Further investigation in this areD should lead to the examina­
tion of the co~plexity of the existing open problems and to the
development of new heuristics , especially for criteria other than
schedule length. It is also of value to introduce new concepts
concerning the processing capability of processors. For example,
one can consider processors which have ~ifferent speeds [42 ],
which is sometimes assumed in papers concerning scheduling problems
without additional resources [ 25,26,29,33,37,38 ]. Moreover, it ia
also possible to consider processors wllich differ from each other
in their functions, e.g. front end and central processors. This
leads to scheduling under resource constraints in job-shop-like
systems.

We have also noted other models of computing systems, further
study of which seems to be purposeful. It is worth drawing atten­
tion to the model in which tasks from an infinite stream are
scheduled taking into account the nonpreemptibility of resources.
This model is a good example of the utili~ation of the datermi­
nistic aplJroach for describing and ~olving scheduling problems
under quite reasonable assumptions. In a certain sense, it throws
light on the "border" between probabilistic (i.e. rather dynamic)
and deterministic (i.e. rather static) model~. The interdigitation

of probabilistic and deterministic assumptions and methods includ­
ing interpretation and implementation is a general postulate for
future research.
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ANALYSIS OF A CLASS OF SCHEDULES FOR COMPUTER
SYSTEMS WITH REAL TIME APPLICATIONS

A. A. Fredericks
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Holmdel, New Jersey

In this report we consider the performance analysis of a class
of schedules for computer systems for which all, or part, of
the resources are dedicated to real time applications. Appro­
priate queueing models are developed for each of the priority
classes of tasks considered. The natural framework for the
analysis is a multi class priority queueing system where each
class has Its own (deterministic) arrival rate and (general)
service time. However, it is shown that this problem can be
recast as a sequence of single input (no priority) G/G/I
queueing systems. Approximate solutions are discussed, with
specific results given for the case of heavy traffic.

INTRODUCTION

In this report we consider the performance analysis of a class of sched­

ules for computer systems for which all or part of the resources are dedicated

to real time applications. That is, we are concerned with systems that must

respond to stimuli and perform certain tasks within specified time intervals. In

addi tion to these "timed functions", part of the system I s resources may be used

to perform less critical functions.

Figure I shows a simplified version of such a system. The central pro­

cessing unit (CPU) must scan (poll) a group of sources at a (specified) periodic

rate to detect requests to transmit data. On recognizing a request, the neces­

sary resources must be allocated (e.g., software registers, start signal hardware)

and a signal sent to the source informing it to begin data transmission. The

data sent by the sources must be accurately received and stored in the registers

for future use. If, while performing the above "real time" functions at the de­

sired rate, there is free CPU time, then this will be devoted to appropriate

"fill" work.

For example, in a stored program control (SPC) telephone switching

system, the above function might represent digit reception from a distant switch­

ing system. The "fill" work in this case might be to perform routine maintenance

tasks and audits, and to respond to (teletype) requests from personnel monitoring

system performance. Another example could be a computer which is responsible for

data collection from other computers in a network. The "fill" work in this case

might be support of a time-sharing system.

Figure 2 shows a typical "clocked" schedule for the tasks associated

with our simple example system. Time is divided into slots of duration 6t. The
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schedule consists of specifying which tasks are to be executed in each interval.

The shaded area indicates that fill work is to be done in these slots when (and

if) the scheduled tasks are finished. To complete specifications of this sched­

ule, we must establish rules to be followed in the event that 6t elapses prior to

the completion of the scheduled tasks. If task A is in progress, we will com­

plete its execution (overrunning the clock) since it is very critical that all

active sources be scanned for data transmission in the specified interval. Tasks

which are treated in this manner (interrupts inhibited) are termed high priority

(HP) tasks. The other scheduled tasks we label low priority (LP). Although we

would like to perform these tasks at the scheduled rates, both to minimize the

holding time of our resources and to provide adequate response time to new re­

quests, it is not crucial if these desired execution times are stretched. Hence,

if 6t elapses while a low priority task is executing, it will be preempted sO

that the more critical function of accurate data collection can be performed.

The preempted task (as well as all other scheduled but unexecuted tasks in this

time slot) is rescheduled in the next slot at an appropriate priority. We have

indicated these priorities by the alphabetical labeling; i.e., if task D
l

is

interrupted in the second slot of Figure 2, the (ordered) schedule for the next

slot will be A, B, D
l

.

With this introduction, we turn our attention to performance analysis

questions for a general schedule of this type.

PROBLEM FORMULATION AND B~SIC ASSUMPTIONS

A Seneral Clocked Schedule

figure 3 shows the general class of schedules we shall be concerned

with. Time is divided into slots of length 6t. In each slot, there is a se­

quence of high priority tasks {Hi} and low priority tasks (Li ) scheduled. These

are indicated on the figure by a (1) in the row corresponding to the indicated

tasks. High priority tasks are distinguished from low priority tasks in that

they run with the 6t interrupt inhibited.

If a low priority task in say the jth slot is interrupted, it and all

other remaining low priority work in the jth slot are added to the j + 1
st

slots

schedule, i.e., the remaining jth work is "anded" to the .1 + 1st slot. Thus, the

low priority tasks are treated with a strict preempt-resume service discipline.

If all scheduled work is completed prior to the interrupt, the processor is

devoted to "fill" work.

In general, clocked schedules of this type have a period for high and

low priority tasks. We denote these by
"h = Nh6t and 1 t = N

t
6t, respectively.

The overall period of the schedule is thus 1 N 6t where N is the least common
s s s

multiple of (Nh ,Nt)' We will also have need to refer to the period of an
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individual low priority task, L
i

. This will be denoted by t~i

Performance Issues and Modeling Questions

There are many performance-related issues associated with the class of

clocked schedules considered here. Some are concerned with short-term variability

in work loads. For example, for high priority tasks we are concerned with the

frequency and extent of overruns of the 6t time slot - both of these are generally

required to be quite small. One is also concerned with the probability of the

total scheduled work exceeding a 6t time slot. This information is needed during

the synthesis of the schedule so that the work loads in the various slots can be

reasonably balanced.

These and other questions related to short-term variability generally

require a detailed description of the work load in each slot. However, while

this may result in difficult computations, the modeling question is clear. One

needs to compute quantities associated with a known (albeit complicated distri­

bution) .

Here we are principally concerned with performance issues related to

longer term variability, or more specifically, with the tails of the distributions

for the delays in processing tasks. In this case, one can often make simplifying

assumptions which make the analysis tractable. We next consider some of the

longer term variability performance issues and construct approximate models for

obtaining the relevant quantities.

High Priority Work

Let h
k

be the work load for the i
th

high priority task in the k
th

slot,
i

and let

where I
k

is the set of indices for scheduled high priority work in the k
th

slot

and N
h

6t = t
h

is the period for high priority work. Denoting the distribution

function for w
k

by F
k

, we see that the short-term variability referred to above

can be obtained directly from the F
k

. In most cases, one can assume that the wk '

w
k

+
Nh

' w
k
+

2Nh
' ... are identically distributed. In what follows, we will assume

that these conditions hold.

*For example, for the schedule of Figure 2, t s 6t, t B
26t, etc.
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Although small, the probability of long-term delays in completing high

priority work is often also of interest both for monitoring system integrity and

for detecting traffic overloads. For this purpose, we see that the execution of

high priority work can be modeled as a single server queueing system with deter­

ministic interarrival times and service times taken from the (ordered) sequence

of distributions

By using an "average" F
k

we can approximate this system by a D/G/l

queueing system. The approximation methods discussed in the next section

(and the Appendix) apply to such a system.

Low Priority Work

While occasional long delays in processing low priority work are

generally tolerable, it is important to determine the extent of these delays.

Hence, a relevant question here is to obtain the distribution function for the

time from when a specific task is scheduled until it is finally completed. These

delays are important not only to determine if performance objectives will be

met, but also, as noted above, for monitoring machine sanity and providing

direction for overload strategies.

While the delays incurred by a specific low priority task could (in

principle) be obtained from a multiclass priority queueing system, the (different)

deterministic interarrival times for these classes and the typical forms for the

service times* generally makes this problem intractable analytically. We will

show, however, that this problem can be reformulated as a standard (no priority)

G/G/l queueing system. In the next section we will apply the results of the

Appendix to obtain an approximate solution.

Let j* be the priority level of the task to be analyzed and let

T* = N*6t be its scheduled period. We denote the processor time needed for the

k
th

scheduling of this task by sk and the time required to do all higher priority

work scheduled in the nth N*6t time period by r~. That is,

r*
n I h.

i£I* 1
n

+ I£.·
j£J* J

n
j <j *

* These distributions are often discrete, taking the form hjk
j

when h
j

is the

work time required to process one job entry in task j and k
j

is the (random)

number of entries found.
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where I~, J~ are the collection of indices corresponding to the high and low

priority tasks scheduled in the nth ,* interval. The delays encountered by the

j th task are completely determined by the sequence {(s* ,r*)). (See Figure 4a).
n n

In fact, if we define t~ to be the time available in the nth interval to j*

work, i.e.,

t~ max[O,N*6t-r~-v~_1]

At first sight it might seem that we have lost the information

where v~_l is the leftover work from the n_l
st

interval of higher priority than

j*, then there is a complete analogy between our clocked schedule (Figure 4a)

time of the nth

n+1
st

request.

and a single server queueing system where s~ is the service

request and t* is the interarrival time between the nth and
n

(See Figure 4b).

regarding the actual elapsed time of the process, however, this information can

be readily obtained. In the "equivalent" queueing system of Figure 4b, each

"arrival" corresponds to an elapsed time interval of 'T*=N*t:.t units. Hence, if a

request is delayed by w time units in the "equivalent" system,

pt{actual delay> W}
r

W
Pr{no. of arrivals during w > T* (1)

1'his is the delay until processing starts, the delay until completion is

given by

P (c>S)
c

Pr{actual delay until completion> S}

S
Pr{no. of arrivals during w+s > T*

where s is the (random) service time.

F'ill Hork

Here we are interested in the distribution of the elapsed time for the

execution of certain fill work tasks. F'or example, although routine maintenance

is deferable, it is important to perform a certain amount of maintenance in

a given time interval. For simplicity we assume that the fill work consists of

repeatedly performing a single routine task (e.g., do all maintenance tasks

and audits) that takes T
f

time ur,its to complete once. Thus, if t
i

is thea

t "r clenotes probability.
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(random) amount of time available in tbe i
th

period of length

interested in N
f

given by

n
min{n: I t~ > Tf } ,

i~l

then we are

i.e., we have a stopping time problem.

Since, by our assumptions the t
i

are independent, identically distri­
a

buted (nonnegative) random variables, we have

P{delay in accumulating Tf real time for fill work> T}

T
P{no. of renewals during Tf > T

S

The tails of this distribution can be readily estimated by using the asymptotic

normality of N(T
f

) - we will make further use of this property shortly.

APPROXI~~TE ANALYSES

Our primary interest is to develop reasonably simple analytic tools for

studying the performance of clocked schedules, particularly under heavy loads.

That is, we are interested in estimating the tails of the delay distribution.

More specifically, if a ~ask is scheduled every T* time units we are interested

in the probability of execution delays exceeding n T*, n > 1. To this end we will

make extensive use of the following asymptotic approximations.

P-l). If Tl , " 2 "" is a renewal process, and if N(t) is the number of

renewals that occur in a time period t, then we will assume that

where N(.,.) is a Gaussian distribution,

N

and

T ~ EiT } 2
(}

T
Varh. !

1

Property 1 is, of course, aSYMptotically true for all renewal processes

(e.g., See [11).
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P-2). If FC(t) is the complementary waiting time distribution for a

GIGII queueing system, i.e., FC(t) = P {waiting time> t}, then
r

207

F (t)
c

-at
c e

It can be shown (see [1]) that, under rather weak conditions, this property is

asymptotically true. Various methods for determining approximate values for c

and a are given in [2], together with extensions -to a more general class of

approximation. One simple method is outlined in the Appendix. The result given

there is

cia

J: xclK(x)
(4)

where K(x) is the distribution function for ~ = s* - t*, and s*, t* are the

service and interarrival time for the GIGII queueing system. The constant a is

preferably determined via

1

since this yields the correct value for a in the asymptotic property, P-2

(See [1]). However, since we are primarily concerned with system behavior at

loads near capacity, we can use the "heavy" traffic approximation, t (e. g. see [3])

a = _ 2~
o
~

Note, that under the heavy traffic assumptions,[3] we also have

(6)

-;-Note that we are only using heavy traffic results to estimate the exponent a.
Equation 4 generally results in c < 1 and hence, we are not using a heavy
traffic approximation.
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Using (6) and (,) in (4) yields

+ ~ l-Erf~
2 /2 0

~.£"' -I. ....L

a

Erf~

/20
~

"here Erf(x) is the error function defined by

=~ I: 2
Erf(x) -ve dr

;;

Note that

2
.£ 0

a
~..O 2~

(8)

i.e., the mean delay is consistent "ith the heavy traffic approximation made.

Ho"ever, the approximation technique used here generally yields considerably

better results than the heavy traffic approximation. Some accuracy comparisons

are included in the Appendix, but a more detailed investigation is given in [2].

High Priority Work

The above representation readily provides an approximation for the de­

lays for a D/G/l system and hence applies to the high priority "ork discussed.

Note that the deterministic structure of the input stream can be used to obtain a

via (5). This "ill result in mean delays "hich are accurate, even in the 10"

load region (e.g., see the Appendix).

Lo" Priority Work

Using property 1 "e have that

P(N(,,»n)

"n-=
t

2
L
2

dy
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where N(w) is the number of renewals (arrivals) that occur during (a fixed) w,
2and t, at are the mean and variance of the equivalent interarrival time, as

defined in APPROXIMATE ANALYSIS, and

t -3/2 - -1/2_t__
c

l 120
c2 12 a

t t
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Using the approximation FC(w) ce-aw for the waiting time we get,

Pd(d>D) =rP[N(W) > TD*]ace-awdw

o

which yields

__c_a_

2Jc~ + a

exp - 2cl -: [/0 -c2]

Ic; + a - C2

(ll)

i.e., we again have an exponential delay. This simple form allows us to continue

this approximation approach to estimate Pc(c>S) P{delays in completing a

task> S}. We assume at this point that the work loads for the j*th task are

given by

*where b * is the (fixed) work time for job entry in task j , and k * is the ran-

dom num~er of entries found with distribution j

It is then easy to show (by conditioning on the number of job entries) that the

desired distribution take the ~orm

(12)
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where

~*
j
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Ak * (s,t,;,at,as,Erf('»)

j

i.e., the A
k

* depend only on the parameters indicated, and involve expressions

j
no more complicated than the error function.

While using means and variances to characterize the work of priority

*higher than j is often adequate (since we are usually combining many tasks), it

is sometimes necessary to have a better characterization of the service times

*for j .

Fill Work

Here we wish to compute

where T and T
s

are fixed. Thus, Equation 10 with the suitable parameters

appli es, i. e. ,

1/2 (13)

where now
t -3/2 t -1/2 T

f
c;

_a__
c2

a
n

12 at /2 T
at s

a a

Often, the fill work consists of scanning a table for requests and reacting to

these by loading work entries in the various scheduled tasks. In this case we

are interested in the response time to a request loaded at an arbitrary point in

the table, i.e., the forward recurrence time of the table scan delays. This is

readily computed to be
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rOO
dT

P(r>R)
JR

Pf(f>T) m

2 (- ]
-1!2 [Ra-tt]

1 r e-t !2dt I t-R +
ate

l& l m n&
R-t
at

where
T 2

= TfT s 2
fat

2
t

a
andat T

t t 3 s
a a

where m, the mean time to complete once pass of fill work is given by

211

(14)

m =
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APPENDIX

In [2] we consider a class of approximations to the delay distribution

We outline below the nature of

approximations apply to delay distributions
-a.x

1
cie

These

which admit the expansion W(x) = L
i=O

these approximations for the simplest case.

for a G/G/l queueing system.

We wish to obtain an approximate solution for the waiting time distri­

bution W(x) for a G/G/l queueing system. That is, we have a single server queue

where the interarrival times, t, between customers are independent and identi­

cally distributed, taken from a general distribution, A(t). The service times,

s, are independently drawn from an arbitrary distribution B(s). A first in­

first out discipline is assumed. If we let u = s-t and denote its distribution

by K(u), then W(x) satisfies the well known Lindley integral equation

W(x) J
x

w(x-y) dK(y)
-~

A-l

We wish to approximate W(x) by an exponential distribution, i.e.,

W(x) 1 -
-ax

ce A-2

where c, a are suitable chosen.

Now if W(x) were exponential, then A-l implies

-axl-ce J x [1 -a(x-y ))
_~ -ce dK(y) K(x) - J

x-ax
ce

-~

A-3

While, in general, this equation cannot be valid for all x, unless W(x) is

exponential, we note that if we require equality to hold in the limit as x

we obtain the requirement

1 A-4

This is a well known relationship which, if satisfied for some nonzero a,

implies that (see [1])

1 - H(x)
x--

-axce A-5
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Thus, if an exponential form is to be chosen, this is a logical choice for the

213

exponent, a.

To determine c, we match the first moment of the integral Equation A-l

for the desired exponential form. That is, for the exact W(x) we should have

from A-l that

A-6

Substituting W(x) 1 - ce- ax into A-6·yields the relation (after some algebra)

c
a

J: xdK(x)

J_ : eazK(O) - _ dK(z)

A-7

Using A-2 with a given by A-4 and c given by A-7 is one of a class of

approximations for delay distributions for GIGII systems considered in [2]. Al­

ternate methods for obtaining a (and c), suitable for given circumstances, and

for increasing the order of the approximation, are given there. One simple choice

for a in complex situations is just the heavy traffic approximation value

a = -2u
2
a

u

A-8

To compare the accuracy of theRe approximations, we consider the spec­

ial case of an MIDll system. For this case, A-7 reduces to

c
a

d(p-(l-e-P))(p+aa)
-Ppe ad

A-9

where d is the (constant) service time and p = d/t.
The following table shows the excellent agreement that is obtained

using A-9 with a given by A-4, as well as the loss in accuracy that accompanies

simpler approximation.



214 A.A. FREDERICKS

Accuracy of Approximations

Mean Delays

True Al A2
A

3
A4

.01 .00505 .00504 .0051 12.5 50.5

.1 .0556 .0554 .083 1. 54 5.55

.5 .500 .495 .704 1.03 2.00

.9 4.50 4.50 5.03 4.90 5.56

·99 49.5 49.5 50.1 50.4 50.5

Al - Using A-9, a given by A-4

A2 - Using A-9, a given by A-8

A
3

- Using A-7, and K Gaussian (Eq. (8) of Text)
0 2

A4 - "Heavy- Traffi c" mean, i. e., U

2u
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START SIGNAL HARDWARE SOFTWARE REGISTERS

I I
•
•••

O· ··0 · · · · · · 0
SOURCES

•••

FIGURE1 EXAMPLE SYSTEM

TASK

SCAN ACTIVE SOURCES FOR DATA

ASSIGN REGISTER TO NEW REQUEST

SEND START SIGNAL

SCAN FIRST HALF OF SOURCES FOR REOUESTS

SCAN SECOND HALF OF SOURCES FOR REOUESTS

FILL WORK

PRIORITY

A
B

C

01
02

~

0 61 261 36l 46l

I A A A
A

C
B C

1
B

FI GURE 2 CLOCKED SCHEDULE
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ASK 0 6t 26t 36t 4 l TIM

Hi 1 0 1 0

Hn 1 0 0 1

Li 0 1 0 1

Lm 0 0 1 0

FILL 1 1 1 1

T E

FIGURE3 GENERAL CLOCKED SCHEDULE

o 6t 26t 36t 46t TIME

a. CLOCKED SCHEDULE

-r- ~IS"'--~1 S:T~' r::::
* * * f- t 1-- t2 -++- t3 - ARRIVALS

2 3 4

b. EQUIVALENT QUEUE

FIGURE4 CLOCKED SCHEDULE AND EQUIVALENT QUEUE
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Brinch Hansen defined the highest response-ratio next discipline r1]
to implement the policy of equitable sharin~ in batch processing
environments. We present a novel scheduling scheme, the processor­
sharing common service-ratio (CSR) algorithm, which achieves this
policy in-lnteracflve'systems. The priority of a job under this
scheme is defined by the ratio between the time it spent in the sys­
tem and its attained service. The analysis of this algorithm for
arbitrary service time distributions and Poisson arrivals shows that
the average response time of a job conditioned on its service re­
quirement equals that of a job under the round-robin scheme. How­
ever, under heavy load, the CSR algorithm resembles the feedback
scheme with respect to the favorable treatment of short jobs versus
long jobs. It thus strikes a balance between the round-robin and
the feedback scheme as a function of the current system load. In
view of these characteristics and the simplicity of its specification,
the CSR algorithm offers itself as an attractive alternative to these
two standard interactive scheduling algorithms.

In a multiprogramming system, an individual user views the processing rate of
a job as the ratio between the service requirement and the response time. This
externally observable rate, sometimes called the ,'{,i...':..~l!..~.J.. P,L~~~~i...~.Il. !_i!..~~, is the
time average of the instantaneous processing rates which the job experiences dur­
ing its lifetime in the system. The instantaneous processing rates are, of
course, a function of the scheduling algorithm and the system load. It has been
argued that all jobs should be scheduled in such a way as to keep their average
virtual processing rates the same; this policy has been called ~~l!..i...t~l~ ,~~~_i...~

[1]. It is well known that both the processor-sharing round-robin \RRT and the
preemptive last-come first-serve (LCrS) algorithms achieve equitable sharing [4].
For batch processing systems, Brinch Hansen defined the nonpreemptive highest
response-ratio next (HRN) algorithm [1] which attempts to satisfy this policy by
striking a balance between the shortest-job-first (SJF) and the first-come first­
serve (FCFS) algorithms. Under HRN, the priority of a job is defined by the ratio
between the time it has spent in the system and its service requirement. The
author has analyzed this algorithm for arbitrary service time distributions and
Poisson job arrivals [lOJ. There are two reasons why the HRN scheme is not
suitable for interactive environments: the algorithm is nonpreemptive and re­
quires knowledge about the service requirement of a job at the time of its arrival.
In this paper, we present a novel algorithm, the processor-sharing common service­
ratio (CSR) algorithm, which is related to the HRN scheme, but overcomes,fs-----­
drmibacks regarding interactive systems.

According to the classification scheme of Ruschitzka and Fabry [9J, a
scheduling algorithm is specified in terms of a priority function of an arbitrary
number of job and system parameters, a decision mode, and an arbitration rule.

217
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The decision mode specifies at what instants in time the priority function is to
be evaluated for all resident jobs and the server is to be allocated to the
job(s) with the highest priority (the arbitration rule resolves conflicts). The
priority function of the CSR scheme is defined as

P(r,a) = ria (1)

where the job parameters r and a are the (real) time a job has spent in the sys­
tem and its attained service respectively. Since a<r, we have P(r,a»l. The
decision mode is processor-sharing, i.e. scheduling'-decisions are made continuous­
iY-:--Tfhis--mode may be viewed as the 1imiti ng case of a quantum-ori ented mode with
the quantum size approaching zero.) The arbitration rule is sharing, i.e. all
jobs with the same highest priority are servlced-slmuTtaneously, generally at
.c!lff~r:.~~!. ra tes .

To illustrate the internal behavior of the CSR algorithm, assume that there
is only one job in the system and that it has attained A seconds of service during
R seconds in the system. By definition, its priority is R/A>l. Assume also that
a new arrival occurs. Initially, its priority will be zero divided by zero and,
thus, undefined. If it does not get serviced immediately, however, its priority
will jump to infinity since it will have been in the system for a finite amount
of time without having obtained any service. Thus, the scheduler will immediate­
ly service the new arrival until its priority equals that of the original job.
This is achieved within an infinitesimal interval of time of which the new
arrival attains the fraction AIR in service. Thereafter, both jobs have the
same (highest) priority in the system and will be serviced simultaneously. As
the name implies, the CSR scheme always assures that a single priori~y value
(ratio of time in system to attained service) is common to all resident jobs.
Figure 1 illustrates this characteristic in terms of a real-time/service-time
diagram. In such a diagram, a job is represented by a point. Upon arrival, it
appears in the origin and proceeds to move simultaneously upward at unit rate and
to the right at its service rate. At any instant in time, its priority is given
by the tangent of the radial on which it resides. Since the CSR scheme maintains

real time

, P

~

sys tem pri ori ty

P = tan"
o resident jobs

servi ce time

Figure 1. Resident jobs are positioned on a single' radial.
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equal priorities for all resident jobs, all jobs reside on a single, common
radial. This radial moves upward and downward as a function of the current
system load. Its tangent at any instant in time will be called the ~JLst~~ 2!ior~

_"!..!l P.

We now relate the instantaneous processing rates of the resident jobs to the
system priority P. Let r k, ak, and Pk denote the time spent in the system, the

attained service, and the priority of a job with index k respectively at some
instant in time. Assume that there are m jobs in the system, i.e. l<k<m. After
an infinitesimal interval dt, the system priority will have increased by dP=dPk,

the attained service of job k by da k, and its time in the system by dt. Thus, the

priority of job k will equal

(2)

(5 )

(6)

Expressing P by rk/a k, multiplying the equation by ak(ak+dak)/dt, and taking the
limit dt->O yield an expression for the processing rates dak/dt=ak,

ak = (1 - P'ak)/P, (3)

where P'=dP/dt. Clearly, the sum of all processing rates must equal one. Thus,
summing over k and multiplying by P yields an expression for the derivative of
the system priority:

m
P'=(m-P)/Iak. (4)

k=l
Note that the system priority will stay constant for P=m. Otherwise, it converges
toward m. Substituting equation (4) in equation (3) yields

m
ak = [1 - (m - P)ak/ I ak]/P.

k=l
This equation for the processing rates demonstrates one of the most desirable
characteristics of the CSR algorithm. When the system load increases due to the
arrival of new jobs (m>P), the service rate of a job is monotonic decreasing with
its attained service. A job with a very large amount of attained service will
therefore receive almost no service. In other words, the algori thm favors the
potentially short jobs when the load increases. Conversely, when the load
diminishes due to departures (m<P), the service rate of a job increases monotoni­
cally with its attained service. Thus, the algorithm favors the long background
jobs when the load goes down and satisfactory service for short jobs is a priori
assured. This load-sensitive behavior of the CSR algorithm is its main advantage
over the RR algorithm which services all resident jobs at the same rate indepen­
dent of their attained service.

To characterize the fluctuations of the system priority P, it is advanta­
geous to introduce a fictitious job, called the center job c, which represents an
average of the resident jobs. The attained servl-ceil~ of-the center job is de-
fined as the average of the attained services of the m resident jobs:

m
ac = I ak/m.

k=l

Its residence time is defined to equal the system priority multiplied by its
attained service. This definition assures that the center job will always share
the same radial with the resident jobs in the real-time/service-time diagram. It
follows from equation (5) that the center job is serviced at rate lim. Between
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arrival and departure epochs, i.e. when m is fixed, the center job therefore pro­
vides a simple means for determining the movement of the system radial. Figure
2 illustrates the system behavior under increasing system load (P<m~2). During
intervals of length 1, the center job attains l/m seconds of service, thus fixing
the new position of the system radial. The positions of the resident jobs are
then determined by this radial. Note the preferential treatment of the job with
less attained service. Figure 3 depicts the case of decreasing system load

real time

ores i dent jobs

A center job

m ~ 2

P < m

service time

Figure 2. Service rates under increasing system load.

real time

P;---.....

o resident jobs

A center job

m ~ 2

P > m

service time

Figure 3. Service rates under decreasing system load.
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(P>m=2) and the preferential treatment of long jobs. Equation (5) indicates that
the discrimination between short and long jobs is more pronounced when the
difference between their attained services is large. This characteristic holds
under both increasing and decreasing system loads. We now proceed with the
analytical derivation of the response characteristics of the CSR algorithm.

THE MODEL-------

We shall use the !_~~~~~~ f~~~~~~, the average time a job spends in the
system conditioned on its service requirement, to describe the behavior of a
system under the CSR algorithm in equilibrium. The system is modeled by an
MIGll queuing system, i.e. a system with Poisson job arrivals, a general (arbi­
trary) distribution of job service times which are mutually independent, and one
server. In addition to the processor-sharing mode, we assume that the system
is ~~k~~~~~~~~, i.e. that preemption and resumption of a job will not require
additional service time. In sum, we model a time-sharing computer facility as
a work-conserving, processor-sharing MIGll queuing system. When a job arrives at
this system, it adds its service time to the ~~~~~~~~ ~~_~ [4], the work (in
units of service time) which the system has yet to perform on resident jobs.
Periods during which the unfinished work is positive are called ~~~ p_~~~~~.

We begin to observe the system at the beginning of an arbitrary busy period
at time zero and we number jobs in the order of their arrival with index j
(j=0,1,2, ... ). Their arrival epochs and service time requirements will be
denoted by random variables Tj and Sj respectively (To=O). Ij stands for the
time between the arrivals of jobs j-l and j, i.e. I.=T.-T. 1(j=1,2, ... ). We

J J J-
express delays and other random variables of interest for a particular (but
arbitrary) job n, and refer to this job as the test job. Introducing special
symbols for its arrival epoch t=Tn and its servl-ce-requirement x=Sn' we denote

its residence time in the system (the time between arrival and departure) by
R(t,x). This residence time consists of the test job's service time x and its
waiting time W(t,x):

R(t,x) = W(t,x) + x.

It is advantageous to relate the waiting time of a job to the amount of service
(work) performed on other jobs. Using this approach [4,10,11J, we
distinguish between two groups of jobs: the ea~~ _~J_~~_l~ (j<n) which arrive
before the test job and the late arrivals (j>n)which arrive after it. We de­
fine the ~~~ ~~k Vl (t,x) -C~f~~~~~-V;(t,x)) as the total service performed
on all early nateT arrivals during the test job's residence time. Clearly, an
early arrival which departed prior to the test job's arrival at time t cannot
benefit from the early work. Similarly, a job arriving after the test job's
departure cannot contribute to the late work. With these definitions, equation
(7) may be rewritten as

R(t,x) = Vl (t,x) + V2 (t,x) + x.

(7)

(8)

Note that the residence time, the early work, and the late work are stochastic
processes defined for any job n (n=0,1,2, ) arriving at time t=Tn. Equilibri-

um values are obtained by letting n (and, thus, t) approach infinity.

The response function R(x) can now be expressed as the time average of the
residence time in equation (8). With the definition of the time average O(x) of
a stochastic process O(t,x) with a constant parameter x,
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we obtain
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T
O(x) lim (lIT) J E[O(t,x)] dt,

T- 0

R(x) = Vl (x) + V2(x) + x.

(9)

(10)

(11 )

A will denote the job arrival rate. The random variable S and the functions
G and g stand for the service time requirement of a job, the service time
distribution function and its probability density function respectively. GC

denotes the complement of G: GC(x)=l-G(x). The truncated service time is de­

fined by S<x=min[S,x]. Its m-th moment ES~x equals

ES~x = f smg(s)ds + xmGc(x) = f msm-1Gc(s)ds
o 0

where the first expression can be derived from the last one via an integration by
parts. By definition, ES l =ES and ESm approaches ESm for X->oo.<x <x <x

The early work is the amount of service which early arrivals (jobs j<n)
attain during the test job's residence. Equivalently, it may be defined as the
service which early arrivals attain prior to the test job's departure minus the
service they attain prior to its arrival. There are two types of early arrivals:
those which are serviced to completion and exit before the test job departs, and
those which are still resident at the test job's departure epoch. We consider
the latter type first.

As noted earlier, the priorities of all jobs are equal. In particular, the
priority of a resident early arrival and that of the test job are equal at the
departure epoch of the test job. Thus, with aj denoting the attained service of a
resident job j, and using L=R(t,x) for the residence time of the test job, we have

Note that Tj<t=Tn since j<n. Solving for aj' we obtain

aj = x(t-Tj + L)/L. (12)

Equation (12) specifies the attained service aj of a resident early arrival

at the test job's departure epoch. Early arrivals of the other type will already
have departed after receiving their service requirement Sj' However, had the

service requirement Sj of such a departed early arrival been larger than aj , this

job would still be resident with exactly aj seconds of attained service. There­

fore, ?_~ early arrival will have attained the minimum of Sj and aj respectively
when the test job departs. The total amount of the early work which is to be
performed during the test job's residence time can now be expressed as the sum of
the individual minima minus the service performed prior to the test job's arrival
at epoch t, or t-H, where H denotes the sum of the durations of all idle
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periods preceding t. Thus, we have

n-1
V1 (t,x) = I min[S"x(t-TJ,+L)/L] - (t-H).

j=O J
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(13 )

By expressing t and Tj as sums of interarrival times and subtracting Sj from the

minima we get

n-l n-l
V1(t,x) = .I min[O,x(t- TJ.+L)/L-S J,] + I (SJ.-I

J
·+1) + H.

J=O j=O
(14)

The last two terms of equation (14) represent an expression for the unfinished
work U(t). Using the identity min[O,e]=-max[O,-e], we rewrite the first term,
which we name -Z(t,x), so that

n-1
Z(t,x) = .I max[O,SJ.-x(t-TJ.+L)/L].

J=O

Thus, equation (14) for the early work becomes

Vl(t,x) = U(t) - Z(t,x).

We now form the time average of the early work as the difference of the time
averages for U(t) and Z(t,x), i.e. V1{x)=U-Z{x). Substituting the well-known

expression for U [4], we have

(15)

(16 )

V1{x) = AES 2/2(1-p) - Z{x) (17)

where p = AES denotes the system load. It remains to determine Z{x).

The time average Z{x) is defined by equation (9):

T
Z{x) = lim (1/Tl f EZ{t,x) dt.

T- 0

( 18)

As indicated by equation (15), the process Z{t,x) is a sum of contributions
from all jobs preceding the test job. Figure 4 illustrates such a contribution
from a job j<n (which arrives at time ~=Tj) as a function of t, the arrival time
of the test job. For Poisson arrivals, the contributions of the various arrivals
to EZ{t,x) are equal to the integral of the expected contribution of a job arriv­
ing at epoch ~ times the probability Ad~ of the occurrence of such an arrival.
From the definition of Z{t,x) in equation (15) we get

t
EZ{t,x) = f f [s-x{t-~+L)/L] g{s) ds Ad~.

o x{t-~+L)/L

Substituting y=x{t-~+L)/L and evaluating the inner integral yield

x+xt/L
EZ{t,x) = A{L/x) f (ES-ES<y) dy.

x
(19 )
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Figure 4. The contribution of job to the process Z(t,x).

With this expression, the time average Z(x) from equation (18) becomes

T
Z(x) = lim (AITx) f L

T-- 0

x+xt/L
f (ES-ES<y) dy dt.
x

Note that L=R(t,x) is a function of t. Denoting the inverse of xt/L by f(y,t,x)
and exchanging the order of integration yield

x+T T
Z(x) = lim (A/x) f (ES-ES) f (LIT) dt dy.

T-- x <y f(y,t,x)

The inverse function f(y,t,xl may have multiple values, but under the limit, the
lower integration boundary of the inner integral may be replaced by any finite
value, e.g. zero. More importantly, the limit of the inner integral constitutes
the Cesaro mean of the test job's residence time which we may denote by R(x).
Thus, after taking the limit we obtain

Z(x) = (A/x)R(x) f (ES-ES ) dy
x <y

and an integration by parts results in the final expression

(20)

for the time average Z(x).

The late work is the amount of service which jobs arriving after the test
job will attain during the test job's residence time. Together with the early
work, it represents the delay encountered by the test job. Similar to the
approach used to determine the early work, we shall relate job priorities at the
departure epoch of the test job in order to determine the late work. Assuming
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again that the test job n remains in the system for L seconds and that its
service requirement is x=Sn' we observe a job j>n which arrives i seconds after
the test job (i<L) and attains A seconds of service by the time the test job
departs. Equating the priorities of the test job and a resident late arrival.

P(L,x) " L/x = (L-i )/A " P(L-i ,A),

we obtain the amount of attained service as
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A = x(l - ill). (21 )

Departures of late arrivals are handled like those of early arrivals. If a
late arrival departs before the test job, its service requirement S must have
been less than the value of A in equation (21). Thus, any late arrival will
contribute min[S,A] to the late work, provided it arrives during the test job's
lifetime L. Making use of Poisson arrivals, the expectation of the sum of the
contributions of the late arrivals may again be replaced by an integral. The
time average for the late work, conditioned on x and L, therefore amounts to

L
V2(x,L) = f E[min[S,x(l-i/L)]] A di.

o

Expressing the expectation of the minimum in terms of the expectation of the
truncated service time, we have

Substituting y for x(l-i/L) and integrating by parts yield

After unconditioning with respect to L and using R(x) for the time average of L,
we obtai n

(22)

for the final expression for the time average of the late work.

With the time averages for the early and the late work established, we re­
write equation (10) by substituting equations (17), (20), and (22):

R(x) A ES2/2(1-p) - A R(x)[ES 2/2x - ES] + x.

Solving for R(x) and using the symbol P=A ES for the system load, we now obtain
the appealingly simple expression for the response function:

R(x) = x/(l-p). (23)

This result is valid for work-conserving, processor-sharing M/G/l systems under
the CSR algorithm, i.e. under a priority function P(r,a)=r/a. Unconditioning
with respect to the service requirement x yields the overall average residence
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time R;ES/(l-p), and Little's theorem [5J provides the average number N of
jobs in the system: N;p/(l-p). The form of the CSR response function is quite
familiar; it equals those of the processor-sharing RR and the preemptive LCFS
a1gori thms .

Kleinrock [4J has summarized four appealing properties of such a linear
response function with R(O);O. First, the linearity assures a fair allotment of
the processor to the competing jobs, thus avoiding job discrimination. On the
average, the ti me a job spends in the sys tem is proporti ona1 to its servi ce
requirement. Second, the average response time is independent of the shape of
the service time distribution; it depends only on the first moment of the service
time distribution and the arrival rate. Thus, concerns about higher moments,
like under FCFS where the average delay is proportional to the second moment,
need not be dealt with. Third, the fairness of the algorithm removes the
motivation for users to "beat" the system via countermeasures [3J like splitting
jobs to reduce response time. Such countermeasures tend to increase overhead and,
thus, cause a deterioration of the overall system behavior. Fourth, in compari­
son with the response function U+x for FCFS, short jobs are serviced more
rapidly than long ones. In an interactive system, this preference is crucial
from a psychological point of view [6J.

While the averages of the observed virtual processing rates are identical
under the RR and the CSR scheme, the CSR scheme differs from the RR scheme in its
load-sensitive determination of the instantaneous processing rates. It has been
shown that jobs with large amounts of attained service are treated like back­
ground jobs when the system load increases and are favored when the load goes
down. The opposite is true for short jobs. Equation (5) shows that the service
rates of all jobs will only be equal when the system priority equals the number
of resident jobs; in this case the CSR scheme acts like the RR scheme. In
comparison with the feedback algorithm [4J which is most discriminating with res­
pect to treating long jobs as background jobs, the CSR algorithm is superior in
the sense that long jobs are never completely denied service for any length of
time. Such denial of service is particularly disturbing in an interactive
setting where users will eventually abort the job, thus throwing away the attained
service [8J. In view of these properties, the CSR algorithm represents an
attractive compromise between the RR and feedback algorithms.

CONCLUSION
----------

A variety of scheduling algorithms implements the policy of equitable shar­
ing, including the nonpreemptive highest response-ratio next (HRN) [l,lOJ,
the preemptive last-come first-serve (LCFS) [4J, and the processor-sharing round­
robin (RR) [4J algorithms. We defined a novel equitable-sharing algorithm, the
processor-sharing common service-ratio (CSR) algorithm, in which the priority of
a job is defined by the ratio of the time it spent in the system and its attained
service. The internal, load-sensitive behavior of this algorithm was discussed
and two expressions for the instantaneous rates at which jobs are serviced were
derived. We then analyzed the CSR algorithm for arbitrary service time distribu­
tions under the assumption of Poisson job arrivals. Our main result, equation
(23), establishes the linearity of the response function, the equilibrium average
of a job's response time conditioned on its service requirement, for the CSR al­
gorithm. Thus, the first moments of the response are shown to be identical to
those of the RR and the LCFS algorithms. However, the internal behavior of the
CSR scheduler shows that the service rates of individual jobs vary with their
attained service as well as with the system load. In particular, long jobs are
discriminated against when the system load increases, but favored when the system
is unloaded. Such a discrimination is typical of the feedback algorithm, but the
CSR scheme avoids its drawback with respect to the denial of service to long jobs
under a heavy load. Thus, the CSR algorithm strikes a balance between the RR and
the feedback algorithms. While achieving the same average response times as the
RR scheme, its load sensitivity allows for a preferential treatment of short jobs
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under increasing loads.
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It is known that under certain circumstances the distribution of the state
(e.g. the number of jobs) in a computer network can be expressed as the product
of the state distributions of the individual nodes. In particular, this is
true if job service times have a rational Laplace transform and if the nodes
are scheduled via the RR of LCFS algorithms [7J. Since the CSR algorithm dis­
plays the same response average as those two algorithms, and since it satisfies
the immediate service criterion [2J, its network behavior should be analyzed.
The validity of the product form for the CSR algorithm would broaden the scope
of applicability for many network results. In any event, the load sensitivity of
the CSR algorithm, its simple specification, and its linear response characteris­
tics establish it as an attractive scheduling scheme for interactive systems.
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The case when a set of job classes for which time service di­
stributions are provided is herewith investigated with refe­
rence to a nonpreenptive priority (HOl) batch scheduling.
Server is single and the job allocation discipline into prio­
rity queues depends on the class and the expected service ti­
me. A requested extreme response time is given to each class
depending on the service time and a criterion is provided to
choose the number of priority queues to service so that the
number of unsatisfied requests may drop to a minimum.

INTRODUCT! ON

It is well known that batch is the most common among job processing techniques
employed by data computing systems. Among several others, such technique is wi­
dely used being quite simple to perform and, compared to other procedures, it
may provide a better system throughput. This method may be implemented either on
mono-or multi-programmed systems. A limitation to traditional batch processing
comes from it keeping absolutely in no account users' request of reasonably short
response times compared to the time the job takes and/or to the charged tariffs.
Therefore priority job scheduling was introduced into batch processing. Schedul­
ing algorithms, at times even quite sophisticated, often allow for an arrangement
of jobs into classes and, within each class, take in consideration their expected
processing time I,ll. A static initial allocation is often followed by a dynamic
one which consideres the age and/or the accumulated service time of the job 121.

Several are the scopes to meet with a priority job scheduling. Among these, the
most common ones are 131:
l)to advantage some of the jobs according to their nature or to the applied ta­

riff 141;
2)to minimize the system's mean response time;
3)to satisfy as many users possible within reasonable response times, eventually

charging diversified tariffs.

Priority scheduling assumes that submitted jobs be distributed along queues. The
number of queues and the criteria for which jobs are assigned to them are strictly
connected to the pursuing objectives. With reference, for instance, to case (1)
where jobs are divided into classes according to their nature, the number of prio­
rity queues is assumed to be the same as that of the job classes to serve. In case
(2) instead, a single job class exists and there are many queues along which di­
stribute jobs according to the required processing time. It is known indeed from
queue theory that mean response time tends to a minimum if jobs are divided among

229
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a number of queues tending to infinity, with queue priority growing as the reque­
sted service time decreases (SJF discipline, 151). If a queueing discipline is to
be studied, to meet case (3) scopes, unlike the former ones it is non-obvious as
several parameters need be defined and accounted for. Parameters depend from requi­
red response times as much as from the computer's workload and utilization factor.

Having defined the requested response times for each job class as a function of
the required service time, it is the scope of this paper to show that satisfactory
requested response times on one hand depend on the system's workload and utiliza­
tion factor and, on the other, on the jobs' allocation along queues. Dependency
is well noted by means of a schematic model of a computing system. Although being
simple, the model produces useful results either when analysing or dimensioning a
computing system.

During analysis, assuming jobs have been distibuted among classes and that reque­
sted response times and the system's workload and utilization coefficient have
been defined, the model makes it possible to analyse various queueing disciplines
and see if there is one which meets all required specifications. If none exists,
the model gives informations on what part of the load may be processed within spe­
cification limits.

With reference to the dimensioning phase, once workload characteristics and
queueing discipline have been given, the model tells what capacity should the sy­
stem have if jobs are to be serviced within requested response times.

THE PROPOSED MODEL

The computing system is regarded by the model (Fig.l) as a single server which ser­
ves nZ queues (nz ~ 1) into which jobs, to be priority and non preemptively served,
are distributed 161. Jobs are divided into nc classes. Each job is characterized

Job classes queues service

x

Fi g. 1 - ~~ode1 of The Comput i ng Sys tem
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by a specific required service time s and by a requested maximum response time

t d(s,k) which depends both on the required service time and on the class k
(f.~ k ~ n ) the job belongs to. We assume that a job is satisfactoriZy processed

iF jobs wit~ service time S belonging to class k show a mean response time t (s,k)
no greater than trd(s,k). Mean response time tq(s,k) depends on: q
1) the division of jobs into classes and on the distribution of arrivals to each

one of them;
2) the number of queues nZ and on the rule of allocation to each queue;
3) all jobs' service times distribution and on the service times distribution of

jobs belonging to each queue.

With reference to (1), we assume that each job is submitted to the system at ran­
dom so that the probability of a particular job being submitted in a given time
period is very low and constant. It is therefore possible to employ, for each class
k, Poisson's rk-rate arrivals distribution. Distribution of all classes arrivals
is still Poissonian, its rate A is given by:

n Z
A = L r

k
k= 1

With reference to (2), we assume that VjE1 ,nZ a particular job is given to queue
j because of the class it belongs to and of the service time it requires. Once
the time function t(k,j) has been defined for each job class k and for each queue
j, all jobs requiring a service time s, for which

t(k,j-1) $ s $ t(k,j) V k E 1,n
c

will arrive at queue j. It is so possible to assign jobs with even very different
service times to the same queue: service priority is thus defined as a function
not only of the required time but also of the class the job belongs to.

Supposing each job's expected service time is independent from the arrival time
and calling Qk(s) class k's expected service times cumulative distribution, it
may be shown that queue j's arrivals distribution is still Poissonian with rate

nc
A. = L rk{Qk(t(k,j)) - Qk(t(k,j-1))}

J k=l

and obviously
n

A = t A
j=l J

Therefore, being:

- s all jobs' mean actual service time,
- p the system's utilization factor,

and with reference to queue j:

- s. mean actua 1 servi ce ti me of all enteri ng jobs,
J

- t . mean waiting time in the queue,
WJ

the following relations may be written 171:



232

p ; AS

t .
wJ

U. DE CARLINI, A. MAZZEO, and C. SAVY

2
pS

J-I J
2s (1 - LA. s .) (1 - L A.5.)

i;1 '1- '1- i;1 '1- '1-

(1 )

As far as point (3) is concerned, the model assumes that the job's actual service
time is the same as the required service time. Therefore once the required service
times cumulative distribution Q (s) and the time function t(k,j) are known, actual
service times cumulative distri~utions G(s) and G.(s), respectively related to all
jobs and to those entering each queue, may be evaJluated. Parameters 5 and 5.

J

lJ j E l,n
l

are thus known as well as each queue's mean waiting time t . and each
job's mean response time w,)

t (k ,s)
q

t . + s
wJ

Expressing t . as a function of k, s, p, n
l

, only, we may write
wJ

t (k,s)
q

It is therefore possible to evaluate, as a function of the four parameters k, s,
p, n

l
, those values of s for which the equation

(2)

is satisfied. Plotting such values into the space s, s, p, n , k we have boundary
surfaces which separate regions where jobs are processed satrsfactorily by the
system (g > 0) from those where they are not (g < 0). Obviously, if three of the
four parameters are given it is possible to study how the limit between satisfact­
ory responses varies with respect to the fourth.

If, for instance, we suppose p as the fourth parameter, plotting equation (2) onto
the plane p, s, we have a diagram as the one shown in Fig.2 which shows how the
boundary between satisfactory and unsatisfactory responses varies with respect to
p. Referring to the figure, considering for instance p;p', on the s axis we get
the two values sl' s2' Satisfied jobs are therefore those, belonging to the class
the diagram is referred to, whose response times are included between sl and s2'
while jobs whose service times are either smaller than sl or greater than s2 wlll
not be satisfied by the system.

USE OF THE MODEL

A few illustration are given hereafter to show how the model may be used either
during a system's analysis stage or its dimensioning. Assumption is made that in
each example requested response times vary linearly with required service times
according to coefficients depending from the class k the job belongs to:

Coefficient C
k

makes due allowance for that part of the response time which may
at any rate be considered as being independent from the service time and propor-
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o

satisfactory

service

region

g>o

p'

unsatisfactory

service

reg ion

g<o

p

Fig. 2 - Satisfactory Service Region as Function of
Utilization Factor

tional to the system's mean service time s. The requested response time is then
given by the relation:

( 3)

Obviously other dependence laws, as the exponential one for instance, may be stat­
ed between requested response time and service time. At any rate, choice of the
best functional relation depends on several elements whose analysis goes beyond
the scope of this paper.

As first illustration, let there be a batch processing system operating at an
University site. Scientific, administrative and students' jobs are submitted to
the system. Obviously, there will be no firmly defined limits imposed on submitted
jobs response times, but we may logically suppose that students and other users
who present scientific jobs expect response times being reasonable, or, at any
rate, proportional to their jobs' service time. We may therefore suppose that the
only class the system schedules on a priority base according to the required
computing time is made of scientific and students' jobs only. Requested response
time is supposed given by (3). Administrative jobs will instead be serviced as
background work.
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Supposing we are analysing the system's performances, that the cumulative distribu­
tion of submitted jobs' service times is known and that parameters A and B of (3)
are given, we wish to see, for different queue allocation rules, how requested
response times compliance depends on the system's utilization factor, as computed
for scientific and students' jobs. This investigation makes it possible either to
find the most appropriate queueing rule or to evaluate the maximum scientific and
students' workload serviceable within response times' restraints.

As this illustration makes reference to no particular computing centre, we shall
distinguish between two different theoretical service time distributions: uniform
and exponential. With reference to the queueing rules to be examined, time t(j)

is given to each queue j, while queue n
l

is glven the maximum service time accord­
ing to the examined distribution. Jobs whose service times are given by

t(j-l) S s S t(j) (4)

will be allocated to queue j while those whose service times are greater than
t(nl-l) well be allocated to queue n

l
.

Case-A: uniform distribution

Under such assumptions service times are included in the range 0 $ s $ 2s, their
cumulative distribution being

G(s) = s/2s

therefore

2
s

2
(4/3) ·s

Queue j's mean arrival rate A. and the mean service time s. of all jobs entering
it are given by J J

A
j

\ln
l

Sj (j-~) '2s/n
l

Replacing these values into (1), we get queue j's mean waiting time

(4/3)sp (5 )

It is now possible to write (2) as

As + s(B-l) - t = 0
z,);f

(6 )

being t . given by (5) and j fixed so that ~ s E 0,2s relation (4) is be satisfied.
EquatloWJ(5) stands for a finite number of queues. In order that the queueing rule
may be examined as n grows, we shall consider the case where an infinite number

l
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of queues exist. A strictly prioritary discipline may be employed and shorter jobs
will be given a higher priority (SJF). Under such assumption, jobs whose service
times are within the range s, s+ds arrive at the queue associated to service time
s. We may write for a generic queue:

~ s~/2s
s

2 -
s s ~/ 45
s

- -2 ~

tUJS~ s /3(l-~s)

The plot of the equation (6) on the P, s plane when n
l

1 and n
l

00, supposing
5 ~ 60 sec, A ~ 1 and 8 ~ 2,is given in Fig.3.

p.
3

2sr1}-------'~-------_!f'--------....,

unsatiSfactory

0.7 P 0.8 0.8 1.0

Fig.3 - Case A: Plot of Equation (6) on the p,s plane (nl~l ,00)

Quite general considerations may be made on jobs' priority processing using these
diagrams. We may particularly notice that in FIFO (nl~l) servicing there is a
limit utilization factor value 0 (p ~ 0.6 in Fig.3) corrisponding to which any
job's mean response time are low~r t~an the given limit. For values of p in the
range p , Po (p ~ 0.8 in Fig.3) shorter service time jobs will not be processed
within the requtred response times while satisfactory service will be given to
jobs with greater service time. Finally, if p>p the FIFO discipl ine cannot pro­
cess jobs within requested mean response times. 2
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On the other hand, a strictly priority service discipline (SJF), promotes shorter
service time jobs. It may in fact be seen from Fig.3 that if p>p (p" 0.6) this
discipline will not process jobs which require a higher service time"whithin mean
requested response times.

Comparing both cases, we notice that there is a part of the p, s plane where both
disciplines may be satisfactorily employed, another where neither may be employed
with satisfaction, and other still where one of the two only is satisfactory.
Actually, the SJF discipline was considered only as an extreme case of reference,
as use of a discipline with priority strictly bound to service times is not prac-
tical since service times cannot be exactly defined in advance. Analysis will
thus have to be restricted to a relatively small number of queues: Fig.4 shows
cases for which n

Z
= 2, 4, 6, 8.

2'E\-rlJ-------,-,----,----------;
/
/

0.5 0.6 0.7 P 0.8 0.9 1.0

Fig.4 - Case A: Plot of Equation (6) on the p,s plane
(n z= 2, 4, 6, 8)

We may particularly notice that, within the four given values, when n
Z

= 4 the
region of unsatisfactory service is already sufficiently reduced with respect to
nZ= 1 and close to the SJF case.

Examining the diagrams, it may be noticed that with high values of p and with
growing n

Z
the region of unsatisfactory service is referred to jobs arriving at

the last queue and progressively extends to those arriving at immediately higher
priority queues. Consequently, if p is high, the number of satisfactory service
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G( s) = 1

queues may ~ot be generally defined as the choice depends upon p's value. Fixing
p, the choice could be made employing such a number n of queues that only jobs
assigned to the lowest priority queue will be unsatisractorily serviced, while
those assigned to the immediately higher priority queue will be at the limit of
satisfactory service. Being for instance p=0.8, n

l
= 6 could be chosen.

All plotted diagrams, repeated at different values of s, have shown to be prac­
tically independent from such parameter and will therefore hold whatever the sys­
tem's mean service time.

Case B: exponential distribution

In such case, servicet'iines fall within the range 0 :s s <00 their cumulative
distribution being given by

-sis
- e

from wh i ch

.-2
2s

By operating as in the previous case, it is possible to solve equation (2) and
evaluate each queue's_mean waiting time. Equation (2) is plotted on the p,s plane
(Fig.5), still being s=60 sec, A=l, B=2, n

l
= 1, 2, 4, 6 within the range Osssz"s

as in the case of uniform distribution. It may be noted that these diagrams are
qualitatively similar to the previous case ones, with a slight increase of the
unsatisfactory service area. It may also be noticed that the smallest boundary p,
for which jobs arriving at the lowest priority line receive satisfactory service,
d~pends on the arrival at that queue of jobs whose service times are greater than
2s. This jobs are of course not present if a uniform time service distribution is
assumed. Considerations made in the case of uniform distribution, will still hold.
All given diagrams, plotted also for other values of 5, have shown to be practical­
ly independent from such parameter and will hold whatever the system's mean serv­
ice time.

Case C: privileged jobs

The assumption nc= 1 (all jobs placed into a single class) is often unrealistic
when priority baich servicing, because highly urgent jobs are present. Namely,
these jobs are those directly presented by the head of the centre because of man­
agement purposes, and those eventually charged differently. Therefore, submitted
jobs quite often have to be divided into two classes at least, the privileged one
being serviced with maximum priority, independently from the required service time.

It may be interesting to examine a job queueing rule for which jobs belonging to
the privileged class (c1) will enter the maximum priority queue, while jobs belong­
ing to the other class (c 2) will enter the other queues according to the previous­
ly described queueing rule. It is therefore possible to evaluate within which
range may the privileged workload vary without the remaining workload's response
times degrading untolerably. Such policy was examined assuming same mean value S
uniform service times distributions for both classes, and arrival rates
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r] (l-p)A

for classes c
1

and c
2

respectively.

2s-rlf------------..,,~---------...,

0.5 0.6 0.7 P 0.8 O.S 1.0

Fig.S - Case B: Plot of Equation (2) on the p,s plane
(n z= 1, 2, 4, 6)

Equation (2) is plotted on the p, s plane for class c
2

(Fig.6), when p 0.8,
S = 60 sec, A = 1, B = 2, nZ= 1, 2, 4, 6.

CONCLUSION

A model is proposed in this paper for the investigation of priority schedul ing
techniques applicable to batch processing systems. Having chosen a set of possible
scheduling rules and defined the function requested response time/required service
time the model shows which rule is the most appropriate, suggesting how to share
jobs among priority queues.

The model is a simplified one, as it characterizes the computing system and its
workload simply by:
- the system's utilization factor,
- the time service distribution of jobs for which an exponential arrival distribu=

tion is assumed,
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- the mean service time.
All these parameters may be experimentally evaluated from a real system.

2§r-lJ------__.--------r--r--------...,

____ _'1=_6 _

......n,=.'7 ...

r­,
I

/
/

I /

L. nl=~-'._...f.... _
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0.5 0.6 0.7 P O.B 0.9 1.0

Fig.6 - Case C: Plot of Equation (2) on the p, s plane
(n

l
; 1, 2. 4, 6)

Considering the theorical service time distributions, the uniform and exponential
ones, it was shown that the model's behaviour is qualitatively independent from
the chosen distribution and that results are practically independent from the
adopted mean service time. Within our model's limits, quite generally sound results
were found and given in a practically adimensional format.

With reference to monoprogrammed systems, the model matches the real system quite
closely and will provide reliable results. On the other hand, in case of multi­
programmed systems, our modei shows obvious limitations, among which the following
should be mentioned:
- actual service times supposed independent from the system's state and depending

on the job on ly,
strictly ~equential job servicing,

- static scheduling rule.

While stating the model's limitations, we wish to add that a wider definition of
the same reCfuires that many parameters, not always readily evaluated in practice,
be introduced. On the other hand, results from using the model with multiprog­
rammed systems are more meaningful if correction factors are taken into account.
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Namely, when defining the system's utilization factor, a gain should be considered
to come from multiprogramming, which should quantify how faster the workload is
processed with such service. Furthermore, as the service time given by the system
to each job is conventional, it will not represent the actual time between beginn­
ing and ending of service anymore: therefore when evaluating the mean response
time, we should replace the service time with a different time which should rough­
ly be proportional to the service time according to a parameter which depends on
the system and its workload.

Application of the model to a particular multiprogrammed system is presently being
studied 181. The arrival and service distributions are taken from the system's log
as well as each job's response time, service time and conventional service time.
Scope of this investigation is to find a particular queueing rule for a practical
problem, so that the number of jobs over the required service time is minimized.
A further analysis will be made on privileged jobs' effects on response times.
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WAITING-TIME DISTRIBUTIDNS
FDR DEADLINE-ORIENTED SERVING *

B. Walke, W. Rosenbohm
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West Germany

An infinite queue single server model is considered where re­
quests of type i, 1 < i < N arrive from independent Poisson
streams and demand serVlce according to arbitrary d.f. 's which
may be different for different types of requests. Associated
with each type-i request is an urgency number Vi which, together
with the request's time of arrival, defines a deadl ine for be­
ginning its service. Preemption of a request in service is not
permitted. This relative urgency (RU) discipline has at its
two limiting cases the FCFS and head of the line (HOl) disci­
plines. In [1 J the mean waiting time is computed approximately
and close bounds are derived there. Here we derive close ap­
proximations for the tails of the waiting time d.f. 's and com­
pare them to those of the HOl and FCFS disciplines. Moreover,
some properties of the preemptive version of the RU discipline
are presented.

1. INTRODUCTION AND DEFINITION OF MODEL

In real-time computer-control systems it is important that incoming service re­
quests from a running process be completed in time, i.e. within a given time limit.
In this paper we will consider the case of requests arriving at random (not pre­
dictable) times. Given this randomness it is impossible to guarantee that all
finite deadlines for beginning or ending these requested services can be met. The
best that can be done is to guarantee a high probability for meeting such dead­
lines.

let us consider a computer model with unlimited waiting space for incoming re­
quests which may possess various properties (to be denoted in the following as
"types"). Further suppose these type-i requests (12. i 2. N) arri ve at a rate Ai from
a Poisson process, have an arbitrary service-time bi according to a distribution
function Fi(t) = Pi(bi < t) with a finite second moment, and that each request has a
deadline ti for beginnlng based on its arrival time Ti and its urgency Vi' Without
any loss of generality we order the types i of requests such that

02.Vl <V2 < ... <Vi < ... <VN (1.1)

where N is the total number of types and Vi is the urgency of a type-i request.
The smaller the value of Vi, the higher the urgency.

Figure shows a model of our system. We will be concerned almost exclusively with
the case of requests which, once servicing has begun, may not be interrupted (non­
preemptive priority). After a request has been serviced, the request among those
waiting to be processed which has the highest dynamic priority qi(t) is chosen for
servicing. The dynamic priority at time t is given by

qi(t)=Vi-t+T i , (1.2)

where Ti is the arrival time and Vi the urgency. If we define the waiting time
--~-

* This work was partly supported by the 2nd EDP Program of the Federal Government
of West Germany.
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(1.3)

(1. 4)

time. As usual small values of
qi(t) indicate a high priority.
It is interesting to note that
in this model the priorities of
all outstanding requests, re­
gardless of type, grow uninfor­
mally. This is illustrated in
[ 1 ] with an example. Requests
of the same type are processed
in the order they arrived (first
come first serve FCFS). Since
requests are serviced according
to individual urgencies and ar­
rival times, we speak of a rela­
tive-urgency (RU) discipline.

Ai

FCFS
_A---,--'_.=rnrrD---o

.~ fC1,-p_roet_sso_r

nonprrrmptivr
_A--'.'-----_.~ priorit,

wi(t) at time t as

wi(t)=t-T i
then the current priority is

qi(t)= Vi-wi(t)

and depends linearly only on the current waiting

arrival quruu , to N
procmr$ In addition to the non-preemp-

Fig. 1: Model of a real-time computer-control tive discipline (RU-NONPRE) we
s t I. - 'v 1 t will consider a few examples of
ys em i - arrl a ra e. a preemptive RU discipl ine

(RU-PRE). In the RU-PRE discipline a type-i request may be lnterrupted (preempted)
by a type-j request if wi <Vi and Wj =Vj' The priority qi(t) of a request remains
unchanged once its servicing has begun. But if a preemptlon occurs, the priority
of the interrupted request again follows Eq.(1.4) with Wi(t) being the total time
such a request remains in the system without being serviced. The urgency Vi repre­
sents the time wi a request is willing to wait from its arrival Ti to its deadline
ti' For both the non-preemptive and preemptive versions of the RU discipline a re­
quest's deadline may be defined to be reached if wi(t) equals Vi' If the actual
waiting time wi of a type-i request is less than its voluntary waiting time Vi,
while another type-j request has already waited its voluntary time V', then the
type-j request preempts the type-i request. The case i = j is impossibie. Requests,
whose servicing just barely began on time or which missed their deadlines may not
be interrupted. Summarizing, it can be said that in the RU-PRE discipline only re­
quests whose servicing began ahead of schedule may be interrupted and only by re­
quests whose deadline has been reached.

The following abbreviations are used throughout:

Random variables: waiting and service time of a type-i
request

d.f., d.f. 's, w.t.d.f. distribution function, d. functions, waiting time d.f.

w.t.d.f. of a type-i request

r-th moment of Wi(t)

total arrival rate of all requests together

common w. t. d. f.
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Fi(t) = P(b i .::. t)

B(r), 13(1) =13.
1 1 1

Pi="i Bi

N
P<N =.L: Pj
- J=1

-1 N
F<N(t) ="<N ,L: "i Fi (t)
- - 1=1

N
B(r) = ,,-1 L: ". B(r)
<N ~N i =1 1 1

C2 = 13 (2 ) / 13 (2) - 1
~N ~ ~N

_ -1 N
Y=P<N L: p.y.

i =1 1 1

N p.
Var(Y) = L: _1 y 2 -V 2

i = 1 P<N

service time d.f.

r-th moment of service time d.f.

offered traffic of type-i requests

total offered traffic

common service time d.f.

r-th moment of F~N(t)

squared coefficient of variance of F<N(t)

mean weighted urgencies

variance of the urgency numbers.

The RU discipline uses dynamic priorities based on waiting times. The problem de­
scribed at the beginning of this paper nowadays is usually treated with a service
discipline which recognizes only static priorities. Arriving requests are assigned
a static priority i according to their type i. Among the waiting requests the one
with the highest priority (lowest i) which has waited the longest of all requests
of the same type i (FCFS) is processed first. Here, too, the model in Figure 1
applies, except that there is no urgency Vi'

If one is interested in the probability of missing deadlines, then one should know
the waiting time d.f. (distribution function) Wi (t) = P(Wi ~ t). From this the pro­
bability that the waiting time Wi is not greater than t can be obtained. The pro­
perties of static and dynamic priorities with regard to the divergence of the re­
sulting waiting times can be discussed by comparing their waiting time d.f. 'so
Such a comparison shows how much the probabilities for meeting given deadlines
t =Yi differ between static and dynamic priorities. Since this comparison depends
on the type of request considered, the sum of the difference [Wistat(Yi) - Widyn(Yi)]
between static and dynamic priorities weighted by the probability of occurance
"i/"-<N of type-i requests (which is independent of discipl ine) is useful. In this
manner o~~btains a formal figure of comparison V:

-1 N
V="~N i~l "i [Wistat(Yi) - Widyn(Yi)] (1.5)

From this we see that:

if V< 0, then a relativ urgency discipl ine is better, and
if V> 0, then a discipl ine with static priorities is better.

From the def in it ion of V we ha ve -1 ~ V~ 1.

(1. 6)

We will consider the model in Figure 1 only in a state of equilibrium, which occurs
only when the total offered traffic P~N < 1.

In disciplines with static priorities, a stationary equilibrium is achieved for re­
quests with high priorities, sometimes even when P<N> 1. However, we will not con­
sider this case here.
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2. WAITING TIME D.F. 's FOR VARIOUS DISCIPLINES, EXAMPLES

Let us assume N different types of requests, each with its arrival rate Ai' urgen­
cy V., and service time d.f. F.(t). Since the waiting time d.f. cannot be calcu­
lated, we will consider four e~amples where were simulated.

N= 4,

C.:s. N=0.81,

Example 2: Modell M/D/l,

Pi=P<N/N, S<N=2.386,
V =30, Var(V)-= 125.

All requests have a constant service
time.

2 3 4
-_._~-

Si 1 3 5 7

Vi 15 25 35 45

2 3 4

357

15 25 35

1

5

Exampl e 1: Modell M/M/l, N=4,

Pi=P<N/N, S<N=2.386, C<N=1.52,
V =20, Var(vf= 125.

All requests have a negative exponen­
tial distributed service time with
mean Si'

1

Example 3: Modell M/G/l, N= 4,

Pi=P<N/N, S<N=1.86, C<N=2.96,
V =20.5, Var(V) =94.25.

Service time d.f. 's of type-l and
type-4 requests are hyperexponential
of order 2. Requests of type 2 and 3
have constant and negative exponen­
tial distributed service times, resp.

Example 4: Corresponds to example 2

but with inverse order of the mean

service time Si with regard to the
type-i.

1 2 3 4 1 2 3 4

Si 2.45 1 3 2.45 Si 7 5 3 1

d. f. H2 D M H2 Vi 15 25 35 45

Vi 9 14 25 34

The examples 9iven here differ in part markedly in the service time d.f. 's assumed
for the individual types of requests and in the coefficients of variance C_<N of the
common service time d.f.

From an earlier investigation (d. [1 J and [4 J) it is known that the smaller the
variance of the urgency numbers is, the less toe mean waiting times Wi of the Ru­
NONPRE discipline differ from tne mean waiting time

(2)
WFCFS=I/2\'NS.:sN /(I-P~N) (2.1)

in the first r.ome first serve discipline. (For A~N, S~) see the list of abbrevia­
tions). On the other hand if the variance Var(V) is very large, the RU-NONPRE dis­
cipline produces mean waiting times approximating those of the discipline with
static n?n-preemptive priorities

(2)
A.:s.N S<N

2.1. Wa it i ng time d. f. 's of the RU-NONPRE d j scJ2l0~

Let us start with the results obtained: The simulation shows that thp waiting time
d.f. 's when plotted semilogarithmically, asymptotically approach p"rallel straight
lines re£ardless of the example and the individual oarameters. Let P(wi) be the
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equilibrium probability that a type-i request must wait no longer than wi units of
time for service. For O~f:s.1, define

(2.3)

(This is the waiting time corresponding to fractile f in the cummulative waiting­
time d.f. of type-i requests. Q.(f) usually is called the f-quantile.)
Then the results of the simulatlon of all four examples seem to indicate that for
every M/G/1/RU-NONPRE model we have

LIM[Q.(f)-Q.(f)]=V.-V. (2.4)
f~1' J , J
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As the probability f approaches 1, the distance between the w.t.d.f. 's for type-i
and type-j requests asymptotically approaches the difference in their urgencies V.
and Vj within the accliracy obtainable by simulation. For f < 1, this distance is 1

smaller than the difference Vi -Vj' Figures 2 through 5 show the results of simu-
lation for
example 1
through 4. In
each case the
tota1 offered
traffic is a
parameter.
For the re­
sults shown
1.2 mill ion
requests were
processed by
the simulation
model. This
1arge number
of requests
was necessary
in order to
insure enough
samples of
rare large
waiting times
for reasonably
reliable re-

96 -I sults.

Fig. 2: Waiting-time d.f. 's of the model M/M/1/RU-NONPRE, cf. example 1.
The type i and total offered traffic P<N are parameters.
The solid and dashed curves result from the FCFS and RU dis­
ciplines, respectively.

Nevertheless, the results shown in Figures 2 through 5 had to be corrected in the
tail of the waiting time d.f. (i.e. for large t) by extrapolation. Because of the
great rarity of extremely large waiting times in one time-limited simulation ex­
periment where the stationary state could not be completely reached, these large
waiting times are underrepresented. Figure 6 shows the true results of example 2
(cf. Fig. 3). The "turning up" of the curves in this figure for large waiting times
t is due to the limited number of samples. Experimentally it can be shown that as
the number of requests processed per simulation increases, this "turning up" moves
to ever greater waiting times. For a given waiting time t, the deviation from the
straight line constructed by extrapolation from smaller waiting times becomes less
and less.

By comparing the results of the four examples, it can be seen that the waiting time
d.L's run parallel from about f = wi(t) =0.98 on when plotted semilogarithmically.
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Fig. 3: Waiting-time d.f. 's of the model M/D/l/RU-NONPRE, cf. example 2.
The type i and total offered traffic P<N are parameters. The
solid and dashed curves result from the FCFS and RU disciplines,
respectively.
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Fig. 4: Waiting-time d.f. 's of the model M/D/l/RU-NONPRE, cf. example 4.
The type i and total offered traffic P<N are parameters. The solid
and dashed curves result from the FCFS- and RU disciplines,
respectively.
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Fig. 5: Waiting-time d.f. 's of the model f1/G/l/RU-NONPRE. d. example 3.
The type i and total offered traffic P<N are parameters. The solid
and dashed curves result from the FCFS-and RU discipl ines. respec­
tively.
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Fig. 6: Extrapolated results and true simulation results for the example 2,
cf. Fig. 3.
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Very large waiting times of different type requests differ by the difference in
their urgencies. Smaller waiting times differ by less. The property formulated in
Eq.(2.4) implies that the probability P(Wi < t) of meeting deadlines with very
large waiting times wi is practically independent of the type of request, i.e. all
requests are handled with equal fairness. If the condition

m~n(Vi)>>m.ax(l3i)' (l.s.i.s.N), (2.5)
1 1

is full filled, then the probabil ities of meeting the deadl ines P(wi .s.Vi) are about
the same, regardless of type. Only example 1 (c.f. Fig. 2) does not satisfy this
condition. Here VI < 134 and hence on the average all type-l requests miss their
deadline if they arrive while a type-4 request is being processed. The probability
that a type-4 request is being processed is p~~ / N and indeed the results of the
simulation show that the difference in probabllity of meeting their respective
deadl ines P(W1.s.Vt) - P(W4.s. V4) 2:P< N/ 4. This example shows that there is not sense
in assigning dead ines without ta~ng the condition in Eq. (2.5) into account. Such
cases can be handled better by the RU-PRE discipline to be discussed later.

2.1.1. Previ~usly known results
Back in 1962 Jackson l2 ] considered a model with discrete time and a non-preemp­
tive RU discipline. The service times of all requests was taken from one geometric
distribution, and the requests themselves were taken from a Bernoulli arrival pro­
cess. The individual urgency Vi is computed for every arriving request according
to a given distribution. Model Ml, which corresponds to this discrete-time model
but is time continuous, would have a Poisson arrival process and negative exponen­
tially distributed service times which all originate from a common d.f. Model Ml
differs from this model in that different-type requests may have different and ar­
bitrary service-time d.f. 's. Therefore, our model is more general.

In l2 ] two relations are derived for the discrete time model

and

LIM[Q.(f)-Q.(f)] =V·-V·
f~1 1 J 1 J

-,
LIMlQi(f)-Q(f)J=Vi-V.

(cf. Eq. (2.4))

(2.6)

(2.7)

V' is defined by an_expression which for model Ml may be approximated by the mean
weighted urgencies V, cf. 1ist of abbreviations. In Eq. (2.6) Q(f) is the f-quantile
of the waiting-time d.f. of a single-queue FCF5 model, cf. Eq.(2.3). In Jackson's
model and in the corresponding model Ml, not only is Eq.(2.4) fulfilled, but also
the f-quantiles of type-i requests in the RU-discipline differ from the f-quantile
of the FCFS model by the difference Vi - V' .

2.1.2. ~aiting time d.f. 's of models in the RU and FCFS disc~~
Our simulation results of a FCFS model, which can easily be constructed from a
model simulating the RU discipline by setting Vi = r, (r2:0' real) support the sus­
picion that Eq.(2.6) seems to be generally applicable, regardless of_the service
time ~.f. 's assumed. From Fig}s 2 through 5 it can be observed that V' deviates
from V by no more than 9 %. These deviations are considerably larger than those
observed by Jackson for his model. This is due to the fact that unlike Jackson's
model the mean service times 13i in our examples are not equal, but different.

The difference (V-V') is, depending on the example, greater or smaller than zero.
The reason for this can be plausibly explained as follows:

We assume the model in Fig. 1 with non-preemptive static priorities and argue
using the results for the common mean waiting time (c.m.w.t)

-1 N
W<N = A<.N .L

1
Ai WiNONPRE

1=
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The c.m.w.t. results from weighting and summing over the individual mean waiting
times of priority levels i. The c.m.w.t. W<N equals the m.w.t. WFCFS' cf. Eq.(Z.l),
only if all mean service times Gi are equai. This is not the case in example 1
through 4.

From [ 3 ] it is known that W<N can be minimized in a static priority model by sat-
isfying the condition -

G1-S.GZ-S.· .. -S.Gi-S. ... :'GN (Z.8)

where 1 is the highest priority. The kind of service time d.f. 's themselves do not
matter; only Eq. (2.8) must be satisfied. Since W.$!j and WFCrS are the means of the
corresponding waiting time d.f.'s P(w~:, t) and P(WFCFS-S. t), respectively, then for
the case of unequal G.'s, if Eq.(2.8) is satisfied, the w.t.d.f. P(w,;:.N.s. t) must be
better in some sense than P(wFCFS.s. t).

The opposite should be expected if the worst possible priority assignment is chosen.
namely Gi"'-Gj+1' The w.t.d.f. P(W~N.s.t) is simply a weighted combinatiol; of the
w.t.d.f. s PlwiNONPRE.s.t) of the static priority model using

-1 N
w<N = \N i~l Ai wiNDNPRE

It follows that depending on how well or badly the relation in Eq.(2.8) is observed,
the w.t.d.f. P(WFCFS<t) - which is independent of priority assignment - has a
bader or better positlon in the set of curves P(wiNONPRES. t), resulting.

The assignment of urgency numbers to customers with different mean service times
Gi has the same effect as the assignment of static priorities: small urgencies cor­
respond to small priority numbers (high priorities) while large urgencies corres­
pond to large priority numbers. Assigning small urgency numbers to customers with
small mean service times Gi and large Vi's to customers with large Gi'S in the
model of Fig. 1 results in a bad position of P(wFCFSS. t) compared to P(w..<:.N < t) or
compared to the set of curves P(wi.s. t). Just this urgency number assignmentmini­
mizes the common m2an w.t. WS.N and optimizes the c.m.w.t.d.f P(~NSt). An inverse
urgency number assignment results in the 1east favor~ble set of curves P(wi S. t)
compared ~o P(WFCFSS. t). Now it is quite clear that V' in Eq.(Z.5) cannot be iden­
tical to V which is approximately the case for equal Gi's.

The optimal urgency number assignment just introduced is used in the example 2 cf.
Fig.3. It can be seen that P(WFCFS < t) is less favorable compared to the set of
curves P(Wi < t) because their common·w.t.d.f. P(W<N < t) is favorable compared to
P(WFCFS < t) :-The opposite is true for the example-4;- cf. Fig. 4: There the smaller
Bi is, The larger the urgency Vi. In Fig. 4 the w.t.d.f. P(WFCFS < t) is situated
favorable in the set of curves P(wi S. t). -

Note that the load to the RU model is the same in both examples 2 and 4. Only the
assignment of urgencies differ. Hence the w.t.d.f. P(WFCFS.s.t) is the same for
both examples which is not the case for the curves P(wi.s. t) and P(W<N:5. t). Only
the assignment of the urgency numbers is different, which preciselY-is the reason
why V' differs from \j. Our observation is that E =V-V' for all the examples
studied was always very small (a few percent of 'ii). Therefore we decide to accept
Eq.(2.6) with V' substituted by'ii as an approximation which leads to

LIM [Q.(f) - Q(f) ] = V. -V (2.9)
f-l 1 1

2.Z. Approx.!_i!1ate computation_.~~~~L_-.!Cll:- the FCFS ~RU-NDNPRE....iisciJ2.l~nes

The w.t.d.f. in the FCFS discipline may be computed by inversion of their Laplace
transform which can be a very difficult task. For the examples introduced in this
paper it can be shown that the w. t.d.f. 's P(WFCFSS. t) found by simulation espe-
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cially in the tail, can be approximated very well by a degenerated exponential d.f.
(DM-d. f.) -"t

P(.:::t)=l-(l-p)e (2.10)

(2.11 )

where

By setting the first and second moments of P(wFCFS < t) equal to the corresponding
moments of Eq.(2.10), the parameters fl and p can beshown to be

C2 - 1 2
P= C2 +1 and fJ. =W;"CFS (~2)

is the squared coefficient of variance and
(3)

(2) _ 2 "~N f)Q<
WFCFS-2WFCFS+ 3(1-p<N) (2.13)

WFCFS and w~~~s are the first and second moments in the FCFS discipline, respec­
tively. From tnis we have the approximation
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-fltP(wFCFS .':. t) :::; (P::t) = 1- (1- p) e . (2.14)

We are now going to study the quality of Eq.(2.14) as an approximation for (2)the
w.t.d.f. P(wFCFS.':.t). Instead of computing the first two moments WFCFS and WFCFS
we will use the corresponding values found by simulation which somewhat compensates
possible inaccuracies of our simulation results. In Fig. 7 through 9 the simulation
resul ts for the w. t. d. f. P(WFCFS < t) are shown usi ng the pa rameters of the four
examples in section 2. From this~igures, in which the total offered traffic is a
parameter, it can be seen that simulation (+) and approximation (straight line)
fit together very well. This is especially true for the tails of the w.t.d.f.

Our goa 1 is
to aoproxi­
mate the tails
of the
w.t.d.f. I s in
the RU disci­
pline using
Eq. (2.9). As
a start i ng
point we need
a good approx­
imation of the
ta i 1 of the
w.t.d.f. in
the FCFS di s­
cipl ine. This
prerequi sHe
seems to be
fulfilled.

0.99911

+
Will
0.999

16 21 12 II \6 61 12 10 II 96 --I

Fig. 7: Waiting time d.f. 's of the model M/D/1/FCFS, cf. examples 2 and 4.
Approximations by means of Eq.(2.10) (lines) and simulation results
(+) are shown.
Parameter is the total offered traffic.
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Fig. 8: Waiting time d.f. 's of the model M/M/l/FCFS, cf. example 1.
Approximations by means of Eq.(2.10) (lines) and simulation results
(+) are shown. The total offered traffic is a parameter.
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Fig. 9: Waiting time d.f. 's of the model M/G/l/FCFS, cf. example 3.
Approximations by means of Eq.(2.10) (lines) and simulation results
(+) are shown. The total offered traffic is a parameter.
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(2.17)

(2.16 )

2.2.1. Approximation of the tail of the w.t.d.f. in the RU-discipline
Using Eq.(2.9) it is possible to compute an expression P'(wi>t)=I-P'(WiS.t)
which approximates the probability in the RU-NONPRE discipllne of a waiting time
Wi exceeding a large value of t

P'(wi>t):::: P(wFCFS>t+ V-Vi) . (2.15)

From experience gained with simulation of the four examples one may call waiting
times "large" if the relation P(Wi > t) <0.05 is fulfilled. For medium and small
sized waiting times it can be observed that, if

V-Vi<O then P(wi>t)<P'(wi>t)

V-Vi>O then P(wi>t»P'(wi>t)

Using Eqs.(2.9). (2.14) and (2.15) we get as an approximation

LIM[P(w.<t)] "'1- (l-p) e-~(V-Vi) e-~t .
t~ 1-

Eq.(2.17) defines the tails of the w.t.d.f. in the RU-NONPRE discipline. Being ad­
equate to parameter p in Eq.(2.14) we introduce a parameter Pi for type-i requests
in the RU discipline and compute. by setting equal the right hand sides of both
Eqs.(2.14) and (2.17),

-~(V-V.)
Pi=I-(I-p)e 1

By insertion in Eqs.(2.17) we get

LIM [P(wi,St)]:::: 1- (1- Pi) e-~t
t+~

Note that p and Pi are the probabil ities which arise for t =O.
From Simulation experiments we know that Eq.(2.17) is a good approximation. if
either the total offered traffic is large. P<N> 0.6, or the urgency numbers have a
small variance. or both. Otherwise, the w.t:"Cl.f. 's in the RU discipline appear to
be similar to those of the static priority discipline which is always the case for
small waiting times t. The reason for this is that without the conditions mention­
ed. there is only a very small probability of missing deadlines for any type of
reques t.
Figures 10 through 13 show both the simulation results (+ •• ) and approximate
w.t.d.f.'s computed from Eq.(2.17) which appear as straight lines for the examples
defined in section 2. It can be seen that for large waiting times. simulation and
approximation agree very well. Deviations are typically below the 10 %range.

In Fig. 11 we can once again study the results of a different assignment of a set
of ur~ency numbers Vi to a set of mean service times ~i as defined by examples 2
and 4. The approximate w.t.d.f. 's are derived from the w.t.d.f. of the FCFS dis­
cipline and therefore are the same for both examples 2 and 3. As a consequence of
the optimal urgency number assignment as defined in section 2.1.2 which is realized
in the example 2. the real w.t.d.f.'s (.) compare favorably to the computed ones
(lines). On the other hand the w.t.d.f. 's (x) of example 4. in which the Vi are
especially poorly assigned to the ~i. are less favorable than the computed ones.
Similar results can be observed from Fig. 10 and 12 where the urgency numbers are
assigned optimal. Note that the approximation by Eq.(2.1) does not take into ac­
count the urgency-number assignment. This should be the reason for the deviation
between simulated and computed w.t.d.f. 's observed.

'nn~nv;m,t;nn nf thp w.t.d.f. in the RU di~line for small waiting times
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Fig. 10:

Waiting time
d.f.'s of the
model M/D/l/
RU-NONPRE, cf.
example 2,
approx imated
by means of
Eq. (2.17)
(lines) and
simulation
results (+).
Additionally
the FCFS ap­
proximation is
shown. The
total offered
traffic is
P<N = 0.85.
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Fig. 11: Waiting time d.f.'s of the
model M/D/l/RU-NONPRE, cf. examples 2
and 4, approximated by means of Eq.
(2.17) (1 ines) and simulation results
(+, .). Additionally the FCFS approxi­
mation is shown. The total offered
traffic is P<N =0.75.
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pline to compute the corresponding mean waiting time Wi of type-i requests

-P<N t /W i
P(wi>t)=P<N e - (2.18)

This simple approximation depends only on the total offered traffic P<N and Wi'
Figures 14 through 16 show this approximation (lines) compared to simUlation
results (x) for examples I, 2, and 3. The most unsatisfactory approximation ap­
pears to be for type-l requests which was not needed in II ]. It can be seen that
Eq.(2.18) in general cannot be called a good approximation. Even for small waiting
times the approximated w.t.d.f. deviates from the simulated w.t.d.f. by up to 20%.
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Fig. 12: Waiting time d.f. 's of the model M/M/l/RU-NONPRE, cf. example 1,
approximated by me~ns of Eq.(2.17) (lines) a~d simulation results
(+). Additionally the FCFS approximation is shown. The total
offered traffic is P<N = 0.75.
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Fig. 13: Waiting time d.f. 's of the model M/G/1/RU-NONPRE, cf. example 3
of section 2, approximated by means of Eq.(2.17) and simulation
results (+). Additionally the FCFS approximation is shown. The
total offered traffic is a parameter.
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Fiq. 14:
Waiting time d.f. 's of the model
M/D/l/RU-NONPRE, cf. example 2, ap­
proximated by means of Eq.(2.18)
(lines) and simulation results (x).
The total offered traffic is
P<N=0.85.'I j, 'I
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Fi g. 15:
Waiting time d.f. 's of the model
M/M/l/RU-NONPRE, cf. example I, ap­
proximated by means of Eq.(2.18)
(lines) and simulation results (x).
The total offered traffic is
P<N =0.6.
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Nevertheless, the error produced by this approximation has a negligible effect on
the computation of Wi, for simulation results agree well with the computed values
of Wi, cf. [ 1 J •

2.3. Mean waiting time of reguests which have missed their deadlines
From Eq.(2.17) the approximate probability of a type-i request missing its dead­
line (at t=Vi), presuming a sufficiently large t, can be computed

->J.VP(wi>Vi)""O-p) e . (2.19)

The w.t.d.f. of requests missing their deadlines is approximately given by
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Waiting time d.f. 's of the model
M/G/1/RU-NONPRE, cf. example 3,
approximated by means of Eq.(2.18)
(lines) and simulation results (x).
The total offered traffic is a
pa rameter.
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P(wi~t)- P(wi,S,Vi )
P(wi,S,t I t>Vi ) =

1-P(wi ,S,Vi )

P(w i ,S, tit >Vi ) = 1 - e"Vi e-I-Lt

Apparently a DM-d.f. arises whose mean

(2.20)

(2.21 )

only depends on " and V.. Note that I-L can be computed from Eq.(2.11). The approxi­
mate mean waitinq times'Wj of requests havinq missed their deadlines differ ap­
proximately in the factor eVi

3. COMPARISON OF W.T.D.F. 's OF THE RU-NONPRE ANO STATIC PRIORITY OICIPLINES

The RU-NONPRE discipline may be thought of as an alternative to the static priority
discipl ine. From [ 1 ] and [2] it is known that the greater the variance of the
urgency numbers is the more the mean waiting time Wi in the RU discipline differs
from the m.w.t. WFCFS and the more the m.w.t.'s in the static priority discipline
WiNONPRE are approximated. Now, depending on the set of Vi'S, the question arises
how the w.t.d.f. 's in the RU and static priority disciplines will differ. Moreover,
it is interesting to know which of those discipl ines better observes a given set of
deadlines defined by the urgency numbers Vi'
In order to make such an investigation let us define a figure of comparison

. -1 N
O=\N ;:: A.P(W.>V.). (3.1)

i =l' 1 ,

By computing the value of 0 for different disciplines and a given set of Vi's and
i.i'S, we are only able to compare the total probabilities of missing the deadlines
given by the Vi's for all type-i requests together.
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Recalling that the probabilities needed to compute °are available only from an ap­
proximation, Eq.(2.17), we decided to use simulation to clarify this question. For
the four examples mentioned, we found regardless of the total offered traffic P~N

that neither of the two disciplines is basically superior to the other. Depending
on the case, either discipline can produce a lower probability 0.

Generally speaking it seems that using static priorities and applying a priority
assignment according to Eq. (2.8) the common probabil ity 0= 0stat for missing the
set of deadlines given by theVi'S is smaller than O=Odyn using the RU-discipline.
The opposite is true if one deviates substantially from the optimal priority as­
signment, i.e. 0dyn <0stat arises.

Recalling from section 1 that

Wi sta t (Vi) = P(w is ta t ~ Vi) = 1 - P(w is ta t > Vi )
it is possible to transform the figure of comparison introduced in Eq.(1.5) to

-1 ~
V= A~N i~l Ai [P (w idyn > Vi) - P (wistat > Vi) J

V=Odyn-Ostat (3.2)

The relations defined by Eq.(1.6) still remain valid.
Simulation results in the static priority discipline of the examples 2 (broken
lines) and 4 (solid lines) are shown in Fig. 17. For each example 1 million requests
were processed in the simulation model. In example 2 the static priorities are op-

Fig 17:
Simulated waiting time d.f. 's of the
model M/D/1 in the non-preemptive
static priority discipline for the
example 2 (dashed lines) and 4 (solid
lines). The total offered traffic is
P~N=0.75.
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timally assigned while the opposite is true in example 4. The corresponding
w.t.d.f. 's in the RU discipline are already known from Fig.11. For example 2 using
the corresponding set of urgency numbers one computes 0stat <= 0.025 ~ Odyn / 3 which
yields V <=0.05. For example 4 we find 0stat"'0.5z30dyn which yields V"-0.034.
Apparently, neither of the two disciplines can claim to always guarantee the mini­
mum total probability 0 of missing the deadlines given by the set of the urgency
numbers, independent of the parameter set applied.

This observation was also made with other values of P<N and other examples: example
1 with a total offered traffic P~N=0.6 yields 0dyn=tJ.l72, 0stat=O.147, and
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v=0.025, i.e. the static priority discipl ine is superior.

For the example 3 we found for P~ =0.6 total probabil ities 0dyn =0.215, 0stat =
= 0.172; and from this V= 0.043 Which indicates that here too the static prlority
discipline is superior.

In the examples cons i dered, V has been observed to appea r in the range of + 5 % to
-3.4 %. Recall ing that V expresses mean values of probabil ities of missing dead­
lines for all requests together we have substantial differences between the two
disciplines compared. From our observations one can conclude that a priority as­
signment according to Eq.(2.8) results in V>O, cf. Eq.(l.7).
One substantial difference between the static-priority and the RU-discipline is
not taken into account by our comparison using V. This difference can be seen by
comparing the individual probabilities of type-i requests in the same discipline:
While the RU-discipline meets all deadlines of different requests given by the set
of the Vi's with nearly the same probability, this probability may differ by fac­
tors in the static priority discipline, presuming the same set of the Vi'S. In the
RU-discipline all requests are handled on an equal basis while the opposite is
true for the static priority discipline.

4. SOME TYPICAL PROPERTIES OF THE W.T.D.F. IN THE PREEMPTIVE RU-DISCIPLINE

The main differences between the preemptive and non-preemptive versions of the RU­
discipline were already presented in the paragraph of section 1 preceding the ab­
breviations. Preemption all~ws a request being serviced ahead of time to be inter­
rupted by a request whose deadline would otherwise be missed. Interruptions are
allowed for this reason only.
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Fig. 18:
Simulated waiting time d.f.'s of the
model M/D/l/RU-PRE for the examples 2
(solid lines) and 4 (dashed lines).
The total offered traffi cis P<N = 0.75.
The jumps appear at t = Vi'

16 2\ 32 \0 \B 5& --I

The waiting-time d.f. 's in the RU-PRE discipline presuming the data of the examples
2 and 4 shown in Fig. 18 and example 3 in Fig. 19 were determined by simulation.
Comparable results using the RU-NONPRE discipline are shown in Fig. 's 11 and 13. It
can be seen that for the same total offered load, distinct differences in the
waiting times of both disciplines arise. Especially worth noting is the jump at
t =Vi which resul ts from interrupting prematurely started servicing for such re­
quests which would otherwise miss their deadlines. The size of the jump exactly
defines the probability for interrupting other types of requests. It can be ob­
served that the w.t.d.t.'s in the tail in semilogarithmic scalin~ are parallel, as
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Fi g. 19:
Simulated
waiting time
d. f. 's of the
mode1 M/G/1/
RU-PRE, cf.
example 3. The
total offered
traffic is
P<N =0.6. The
jumps appear
att=Vi ·
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was the case for the RU-NONPRE discipline (cf. [6 J). Not for all examples consid­
ered the slope of these tails in the RU-PRE and RU-NONPRE disciplines was found to
be the same (the same offered traffic P<N presumed).

It appears that interruptions are useful for increasing the probabilities of
meeting deadlines if the coefficients of variance of the service time d.f.'s are
large, i.e. Ci>1 (cf. Fig.'s 13 and 19). For small Ci's our simulation supports
the conjecture that interruptions of service time in favour of others having a
larger expected service time is disadvantageous for meeting deadlines (cf. Fig. 's
11 and 18). The deadlines of some types of service requests are then met better
with the RU-NONPRE discipline than with the RU-PRE discipline.

The common probability 0 for missing deadlines with either static priorities or
the RU-PRE discipline was determined by simulation. With respect to 0 it can be
seen that neither discipline is generally superior to the other, as was the case
with non-preemptive priorities. Depending on the example presumed for such a com­
parison one of both disciplines appears to be superior.

Fig. 20:
Simulated
waiting time
d. f. 's of the
model MIMII
in both pre­
emptive dis-
ci pl i nes:
static priori­
ties (dashed
1ines) and RU
(so 1id 1i nes ) ,
cf. example 1.
The total
offered
traffic is
P<N =0.6. The
jumps appear
at t = Vi'
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In the example shown in Fig.20 both sets of w.t.d.f. 's in the RU and static pri­
ority discipline can be compared. According to Eq.(l.7) we have V=0.03l. Upon
comparing both versions of the RU-discipline, it was found that in the preemptive
version the deadlines are always met somewhat better than in the non-preemptive
version (cf. Fig.21). The probabil ity of all types of request meeting their dead­
lines is, as was the case in the RU-NONPRE discipline, approximately the same.

Fig. 21:
Simulated
waiting time
d.f. 's of the
model M/M/l
in the pre­
emptive (sol id
1i nes) and
non-preemptive
(dashed 1ines)
versions of
the RU dis­
cipl ine, cf.
examp1e l.
The total
offered
traffic is
P<N = 0.8.
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AN EXAMPLE FOR AN ADAPTIVE CONTROL METHOD
PROVIDING DATA BASE INTEGRITY
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An adaptive version of system recovery is investigated
under the condition that the failure process is an
inhomogeneous Poisson process of simple structure.
The admissible class of strategies is characterized
by 3 parameters. An explicite formula is given for
the average cost which depends on the parameters.

INTRODUCTION

The reliability of complicated software systems providing
interactive real time access has more and more importance when the
size of them increases. Among the numerous aspects of reliability
(see e.g. (51)the large data base systems being in the centre of
applications cause the most specific problems. The methods of
providing the integrity of data base systems (recovery procedures)
has recently been developed (see e.g. rSJ )therefore the dynamical
investigations, the probabilistic analysis of the cost of these
procedures has also become necessary. The authors' first step in
this direction was done on the basis of the experiences gathered
from the realization of a concrete data base management system [3].

In this paper there is given a model of the data base management
system in terms of notions similar to those in the theory of
automata. This model is appropriate for describing the problems of
integrity because the range of effect of the random failures is
restricted. This work shows the possibility of the application of
central limit theorem for determining the probability distribution
of the extra run time caused by failures. A. BenczUr's Ph. D.
thesis [2] extends the limit theorem method. In addition, it
contains comparisons of the stochastic investigations in the
literature; first of all the results of K.M. Chandy and E.Gelenbe

263
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( 6] I ('13 1 t ~] ,t ~OJ .

Here we do not repeat the descriptive models treated in [2J since
the great part of the dynamical investigations is concerned with
the method of generation of control points according to Davies'
paper [8J this being the basic method of system recovery •

The main goal of the present talk is to give an explicite formula
for the average cost of a simple adaptive recovery procedure. The
stochastic model applied here was suggested by a result of E.
Gelenbe [loJ , and a problem stating lecture of M. Arata [11.

TEE BASIC MODEL

The system has the following 4 possible states:

I., normal processing;
II., generating a control point (dump);
III. regenerating a control point after a failure (load);
IV., repetition of the tasks processed since the nearest

control point to a failure (recovery).

Let us denote by J't ()It) the failure less run time necessary
for a dump (load) which begins at the moment t. (}At and Vt are
determined by the past of the system. Further on, let ~ (l:,t. 4)

(~(t,t4)) denote the run time consumed in the failureless time
interval (t,t') while the system is staying in state I (in state
IV) for the normal processing (recovery) on this time interval.
(Notice that in these cases a time shared computer system deals
with other task too, moreover during the normal processing it can
wait for a new task or transaction.)

If a failure occurs when the system is in one of the states I and
IV the corresponding control point must be loaded (state III)

and the processed tasks must be repeated. Let us assume that a
failure occured at to.j. t ,the last control point was generated
at to' and the system was in state I between to and to tt in the
disjoint time intervals

where

So the run time required

( -t 0 It.O +t) is equal

for normal processing on the interval
n I )

to L'_ l}(t.«:-4,t[-4tti .
L- 4 II t

If the system begins the recovery at t: >t o+ then the run time
required satisfies the condition
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assuming that failures do not occur on (th
, ~\T) }where H is a

given function. Naturally during the recovery failures may occur
and control points can be generated. The fundamental problem is to
minimize the time spent in states II, III and IV (or the total cost
of the corresponding procedures) relative to the time spent in
state I. This may be done by choosing appropriately the moments

T4 , T
1

}'.' of dumps depending on the stochastic behaviour of
the failure process, and on the intensity function ~ (t, id
K.M. Chandy and his coauthors [6J, [7] investigate deterministic
dump strategies. They assume that the states II, III, and IV are
points in time, and they often calculate with costs proportional to
their expected times.
They analyse the following cases:
a) - The failure process is a homogeneous Poisson process,

HCx):::f7x J ~(i,t4)==Q.(i4-t)

- the cost of dumps and loads is constant,
failures may occur only during the normal processing.
The optimal equidistant dump strategy is determined.

b) - As a) but failures may occur during the dumps and loads too.
A numerically solvable equation is given for the optimal
equidistant dump strategy.

c) - The failure process is an inhomogeneous Poisson process with a
periodic intensity function ~ft.))

- ~ (i., t. 4)::' 5:1 ~ (x) d. X I

- the functions ~ (.) and ~ l-) has the same period d.
A recursive system of equation is given for the optimal
arrangement of the control points on the interval d.

In the investigations proceeded by E. Gelenbe [~]J[iO] the time is
dominant. The failure process is a homogeneous Poisson process. The

run times fit required by the dumps form a sequence {fcJ of
independent identically distributed random variables, i (t,i 4)::t.-t
~ (t: J t 1 ) =. t c t and H(x) is an increasing function. The

distances between the control points measured on the time scale of
the normal processing form a sequence {fti) of independent
identically distributed random variables. The failure process, the

processes i f i 1 and [.I1i} are independent of each other. The
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stationary probabilities of being in states I-IV. are determined.
The stationary probability of being in the state I is maximal if
and only if the distribution function of Lli is concentrated to a
constant. If the system is considered as a queueing system then
there is given the necessary and sufficient condition of ergodicity.
The earlier results of the authors of this talk refer to the case,
when the failure process and [All are general renewal processes
under the following conditions

Ii = 0)

~(t,t.)=

~ Cl,t..) :: t.-t
H ()C) :: )l. •

In papers DJ and (2) the limit distribution of the extra run time
caused by the failures is determined when the time of normal pro­
cessing tends to the infinity. These results enable us to determine
the average cost of a recovery procedure even if the cost is a
nonlinear function of the extra run time.

The validity of the central limit theorem is proved in the follow~

ing cases

- the distances between the control points are constant,
- the time is discrete, the distances between the control points

are bounded, there exist some higher moments of the distribution
of the intervals between the failures,

- the time is continuous and the intervals between the failures
have r -distribution.

In the present talk we use Chandy's approximation, assuming that
fl and Vt are points and we calculate only with their costs.
This assumption is reasonable from practical point of view, because
during the relatively fast dumps and loads we use much more facil­
ities of the computer system than during the normal processing. The
optimal control point generation strategy is connected with the
classical disorder problem. M. Arata stated the question [tl,whether
the results on tbe disorder problem would have applications in
computer sciences. Naturally we do not solve the general problem;
we are seeking the optimal strategy in a class of admissible strat­
egies described by 3 parameters. An explicite formula is given for
the relative cost of the strategy as a function of these parameters.



AN ADAPTIVE CONTROL METHOD PROVIDING DATA BASE INTEGRITY 267

THE AVERAGE COST OF AN ADAPTIVE CONTROL POINT GENERATION STRATEGY

Let {tt" j denote the failure process: 1:"4 is equal to the
time interval until the first failure, while ~h is equal to the
time interval between the n-~st end l'1-ih. failure. Let
{V~lJ be a sequence of independent geometrically distributed

random variables (i.e. P()J(iJ::kl= pq.k-~i k::1J2, ... iq..:~-P).

In the course of this talk we suppose that {tt11} eatiefies the
following conditions:

(i) ["l;'{ )...) 1 y (4)} r }I (4) +2. ) ... ) t ),1(4) +- ..•+V (Ic) +lc+ t )' " J
forms a sequence of independent

exponentially distributed random variables with parameter ri~

forms

are

a sequence of independent exponentially distributed random
variables with parameter ,\ 1 .(, ~~

the sequences {VllJj J {'t 1 ) ... ) 1: v(.fl j 'l'Y(4)flf"}

and {'t V(4)-t-1)'''j 'tV(.t)t ... tV(k)+k. J
independent of each other. (see Figure 1.)

~~""'_--"""V- --,I---",--",

't'Y(4) 'tvEl) +1 'tV(4)-tl

Figure 1.

Remark: The sequence of time intervals

k lJ (4) tv(Ie)L t +... 'to
6k = j::k'-tV(f)-t ... t-))lk- 4) ~

forms a sequence of independent exponentially distributed random

variables with parameter p ~1 •

The integrity of the date base is provided according to our model

analysed in paper [3] :
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~ ( t., {~) := ~ (t. It 1) :: 1:. - t.-I

f-IClc):=X

fA t :: K1 Vt '" K.z..

,,
5
I )

!r 6
I I )

2 3
I I

'1 ~ Q
I )l I I

Z 3 4
I • I I

A
I

Failures may be occured during the repetition of tasks too. (See

Figure 2.) ~xtra run time,
,~
, I

4 : S
I IN)

Figure 2.
Was say that the system is in state h (heavy) at the moment i iff-/.
belongs to one of the intervals Gk (otherwise it is in state ~) •
Because of the conditions (i)- (iii) the time T passed since the
last failure contains the only information about the state of the
system. Therefore it is reasonable to consider only the following
class of admissible decision strategies described by J parameters:
if T >d then the system generates control points by equidistant
steps t~ and after a failure it generates control points by steps

t 1 <:. t.:L • More precisely, we say that the decision oW:.) takes
two values Hand H : after every failure rI. (i.) =H and after
every failureless interval of length ol o(1) ::. H . The set
{ C : r:J.. (t) ... H} consists of inter.vals begi=ing with failure.

The recovery procedure after such a failure repeats the tasks from
the last control point, but generates control points by step t l

independently of the former density of the control points. Let us
suppose that dCtl changes it's value to H at a moment t. The
last control point was made at the moment t - d.. t [tJt 1
so the system generates the next control point at i _ ~ t

[d../t~]t1 ttJ. if the interval Ct } t-d+ [CUt.1]t. 1 +t1]

is failureless. (see Figure J.j
Ad A

r ,~

:t I I I I I /l

Figure J.
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Generally the optimal strategy does not belong to the class
described above. However it has special interest because an explic­
it e formula can be derived for the average cost C(t, ) t.z. I oj )

For this purpose let us introduce the following stochastic process:

if the system is in the state

"
"
"

and
and
and
and

o((-l)=H

d (I;) =H
ot.(t) = 1-\
o«t):: R

Lemma 1. The process ~ (t) is semi-markovian, and the embedded
Markov chain r-z 11 has the following transition probabilities r

random

and

~ ,1:: t1 - q. ( ,,- e -:-, d)

P, 3 :: ~ - P4,.2.,
Pt 11 = t1 - P )

P t1 - >'2 GC
1, ~ = - e I

P/.j,,oj = ~

Q = 0 for every other transition L ~ j
I Lri

The semi-markov property is a straightforward consequence of
conditions (i) - (iii) and the definition of Cll(t). Among the tran-
sition probabilities only p and p 3 are to be explained:

4,2. 4,

PCf: V)
PC)4))))

P~/2. =
PA I ~ =

where f and )J are independent geometrically distributed
variables with parameters e - A4 ri and p respectively.

By technical reasons we consider the trajectories of
continuous from left.

rrztt) to be

Let 6,. I ft ... J tr" and CI'I denote the sojourn time, the
number of failures, the extra run time caused by failures and the
number of dumps and loads respectively on the (open from left and

closed from right) time interval {t.: (' (i) :: (~ J
Lemma 2.
The discrete time parameter stochastic processes [ 6\,}

form a
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sequence of independent random vectors under the condition that the
traj ectory of [ "l11 J is fixed. Naturally its components depend on
each other. Moreover their conditional distribution depends only
on rz 11-1

and (V)c:.., •

Proof. The statement of the lemma is an obvious consequence of
conditions (~- ~i~ • the lemma 1 and the definition of processes

{dllJ {fll} [+111 and {ellJ
Set

probabilities of

1.", = i )
rtzt'l = ! )

rtt n =} )

OZI'l
:. j )

of the recovery
the following formula:

2.. n~4 (( K ~ - K2) ,..., + 1"'11 t 1<4 C I'l )

=
2.-.N (eln - 1"" J

n~~

4 r, E(r) E(t/"l (elL' p,. p.., L(K~-I<2.'.l iii + Lll' + K~ [., ]
::: __L....:./J!..J_"_4__l----'-l.....J ....:.',....1__

... 4 (0 tV') )
L.L,j=4 p( fL.I' EL1j - [~i

(3)

be the stationary

chain ~n •

Theorem 1. The average cost C ( t. i1 t l / d. )
procedure can be calculated by

E(6~
= E ( dn I "1 n- ~ =

L/ J
E(~) ::: E ( fn I 7n-4 =

III

1Et~, = E ( ,f'n I( n-~ =
Lll

E ( en I rt'ln-4E(C) , -= =
LII

and let p~ } Po. ) p) , PI./
the ergodic aperiodic Markov

Proof. Theorem 1 is a straightforward consequence of the strong
law of large numbers and the ergodic theorem for Markov chains. In
the sequel we give explicite formulas for the conditional
expectations [,<~) t ' . (rJ E." (t) a d E ~cJ

l'l I (, J J ',J n 'IJ
First we introduce some general notations.

n t. ~ X <:.. (1'1-+4) t. /Set L'f
~i ex) :: x- nt

Let F
l
,' Cx) be the conditional distribution function of the time
I)

intervals between the failures occured in the time interval

[ t : 1. (i)::: "2 k} under the condition that "k-4 =L and '1 k"'" j .
If the system begins its work after a the n-th failure from a
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control point, and it generates control points by step t then the

expected extra run time [[',1 caused by the \'1 +ht. failure has the

form

ci
If h: [1:]

00

E/i,i = ~ hi. (x) ~ ~'IJ' (1I) ,

In our case F~',l (Jr.) has two types I

(I) F~I!) =5 ~=:~:: for X =d
(II) l i for)( > r1

(i1) F(x) :: ~ _ e-~)(

do " -~')<",e rJ.
= ) hi. (x) ,., _ e-~1 X

o
i:e->.t(4-e-l\nt) _ (1.. td- ntie-;\oI)

,., _ e-X-t ;..E (~) :: ('1- e-~o( r 1 ( 4
t.jet

Observe that

e FL,)'
t of dumps,

Notice that the

1
~ -::.

In a similar way we determine the expected number

and loads between the n-lh and I'H- ~ st failure.

Ylt1 ~t failure causes a load I

e Ft'f _ 2
k

OO
~ Do d~, . (x) .

t - :::0 kt. L'l

In our special cases (I) and (II);

- >,(I'1+~H ~ Ii. )
(~) (1_ e- il d.)-1 ( -1 - e _ (n+1)e-e :: 'I ,., _ e - ~t
t.lei

::.
1

Now we give the explicite formulas for every possible transitionl

E (6) _ E (f-).[(~~) + d
~,2. - 4,2 0<, rJ.

E~ 2. (,A.\) = (q, ( 4 - e- >.~ a')) ( 1 _ q. (4 - e- >.~ a')) - 4
I
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(Notice that the number of failures f during the transition from
the state 1 to the state 2 is geometrically distributed:

P(r ;:: k ) =( -1 - 9- (A - e - ~4 01 )) ~k ( ..j - e- ~ 4d) Ie ) k:: 0, 1)", )

Similarly we get

E (6') = Etel:: i
l,~ 2,'3 ~1

f.r) _ E{f) = 1
E2. 4 - 2,3 (~ )

I ~ A E f +
fA") E (t/"l ::. e - 4 t.. 00E~ :: 1'3 2,
l,~ I ( -~~A "(E(~4) +d - nt. 1 )+ -1 - e J LI,A ,

where • (see Figure 3. )
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E (f) (A l )

= Ed d.3, A I

E (fo.) .::: ~
3, ~

[ (~) - E(~1)
3,A - t.,j.

1 )

E (c.) :: e(~)
3,1 t. 4 )ol

E (6') = d
~/Y

- (.f) E~)
t..'3,4 = 31'1 = 0

E3X) :: [~]
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The following tables illustrate the behaviour of the function

C(-t.1) t 1 )ti) if '11 4 =1} ~2.::0.~ } P=O.~ and

d=3

~ 0.9 1.0 1.1 1.2t 2

2.0 1.874 1.858 1.853 1.857

2.5 1.866 1.847 1.849 1.850

3.0 1.872 1.852 1.860 1.860

3.5 1.887 1.864 1.880 1.877

d=4

~ 0.9 1.0 1.1 1.2t 2

2.0 1.885 1.868 1.853 1.857

2.5 1.873 1.855 1.841 1.844

3.0 1.876 1.856 1.844 1.846

3.5 1.885 1.865 1.855 1.857

d=5

~ 0.9 1.0 1.1 1.2t 2

2.0 1.899 1.881 1.862 1.866

2.5 1.887 1.868 1.849 1.852

3.0 1.888 1.868 1.850 1.852

3.5 1.896 1.875 1.858 1.860
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=

Let
when

C (t j J t. 2 ) denote the average cost of the recovery

the state of the system is known. If K ~ = k ~

( ["'1) + eCA1 ) ) +E(~2) t e(>'2)
P tlltl {flOO t1,tz t 11 0\>

P( .1 _ E C~l) ) i- .i - E('\1)
~l -ttli1 ,l\-z t2, t

l

procedure
then

As a comparison the following table illustrates the behaviour of

~ 0.9 1 1.1 1.2t 2
2.0 1.457 1.423 1.398 1.381

2.5 1.434 1. 399 1.374 1.357

3.0 1.428 1.392 1.367 1. 350

3.5 1.431 1.396 1.371 1.393

Notice that the average cost in the uncontrolled case has the
minimum:
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A PREDICTIVE PERFORMANCE EVALUATION TECHNIQUE
FOR INFORMATION SYSTEMS

Frank W. Allen
Management Information Systems Department

University of Arizona
Tucson, Arizona

The complexity and uniqueness of information systems restrict
the number of qualitative performance prediction techniques
available. This work isolates the file organization as a
submodule of the information storage and retrieval system. A
mode 1 for a general fil e organi zati on is descri bed by a flow
graph. Algorithms are derived and applied to the flow graph
to define an analytical model. The linear equation derived
results in comparative response time values through a variance
of parameters for prediction analyses. The analysis of the
model is also shown to be applicable to larger systems.

INTRODUCTI ON

A model represents an organization of information about a system. Modeling of
the system includes (1) defining the entities, attributes, and activities of the
system, and (2) defining the relationships involved in the activities. The
purpose of a system study dictates the nature of the model. Investigation of the
functional relationships within the system provides a range of alternatives from
which to choose attribute values. These relationships are derived approximations
from queing theory, empirical studies, or estimation (Svobodava (1976)).
Prediction of future system response is deduced based on analyses of the model's
behavior.

Models used in system studies can be classified into physical models (analog) or
mathematical models. Simulation is a common technique for modeling physical
systems. Analytical methods are often used to construct mathematical models.
Simulation provides excellent results of specific event-driven systems, but the
cost of constructing the simulation may be restrictive. Validation of the simul­
ation may also prove problematic. An analytical model is especially useful for
scaling performance to provide comparative performance statistics. The varying
of parameters is easily performed to establish first order approximations.

Following the classification guidelines set by Lucas (1971), performance evalu­
ation is conducted for three general purposes: selection evaluation, performance
evaluation, and performance monitoring. Selection evaluation utilizes an existing
prototype of a proposed system to decide between system configurations. Bench­
markin9 is the classic example of selection evaluation. However, the complexity
and uniqueness of information systems has reduced the importance of benchmarking.
Performance monitoring examines an operational system for purposes of optimization
or decidinq whether to upgrade. The goal of performance projection is the estim­
ation of the performance of a system which does not yet exist. Simulation or
analytical models are performance projection techniques.
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Drummond (1969) types perfoy'mance evaluation into classification, time evaluation,
or comparison. System expectations are qualitatively defined by comparison.
Presented are algorithms for measuring the discrete capabilities of a system with
respect to time. The derived values provide measures of goodness through relative
performance. The performance of the model is described by an analytical model in
which the dependent variable is the expected response time. A Management Inform­
ation System (MIS) is composed of a number of independent functional modules which
collectively describe the performance. This paper isolates the file organization
of an information storage and retrieval system as the MIS module to be investi­
gated. Analytical models of the physical database structure have previously been
forwarded by Cardenas (1973), Yao (1977) and Ghosh and Tue1 (1976) to estimate the
performance of proposed database management systems.

A functional module is defined by a hierarchy of levels identifying discrete
tasks. A file organization is a two-level hierarchy functionally divided byalgo­
rithms to create and search a primary memory directory and a secondary storage
data structure. Parameters are defined for the discrete capabilities of a general
file organization in terms of probability distributions and discrete time inter­
vals. The flow of information is presented as a flow diagram. This flow graph is
the basis of the model for further investigation. The probabilities of transition
between nodes of the graph and determination of time intervals for alternate
logical paths of data flow lead to a Markov chain analysis.

The reduction of the information flow graph produces a linear equation in the
regular expression algebra by means of simple algorithms. A Z-transform on the
time intervals identifies time delays in the equation and results in a first order
differential equation. The first moment of this equation provides the expected
time delay of the model. Varying the parameters of this equation within realistic
ranges results in comparative statistics for performance projections. Interpret­
ation of the results benefits the management decision-making capability. This is
supported by viewing the general analytical model.

Analysis of the model is also shown to be applicable to larger systems and amen­
able to further mathematical scrutiny.

_PR_O_GR_A_M ~FL_O_W _GR_A_P_H '-CAN",-A=L-,-,YS,-"I-=-S

A system model can be represented by a flow chart or directed graph. The chart
exhibits tasks as nodes and connecting arcs as the possible flow of control
(decisions) between tasks or work unit modules. The transition between these
nodes is a function of the probability of branching from one task to another.
These transition probabilities are assured to be fixed and statistically indepen­
dent. This leads to an analysis of a discrete Markov process. Ramamoorthy (1965)
analyzed computer programs in this manner. The average execution time of each
task is the product of the number of task iterations and the time to execute the
task once.

Brzozowski and McCluskey (1963) applied signal flow graph techniques to the prob­
lem of characterizing sequential circuits. K1eir and Ramamoorthy (1971) used a
program graph representation during translation in an optimizing microprogram
compiler. Beizer (1970) measured the running time of programs using the Markov
model with transition times measured by the number of instructions in a procedure.

In a file organization, all data base management functions consist of a search of
the directory, a block search of the secondary storage data structure (if cond­
itions warrant), and some action (retrieval, update). A macro-scopic view of the
model in directed graph form is represented by Figure 1.
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A

Figure
Flow Graph of General File Organization

The transitions between hierarchical levels (1 and 2) are represented by letters
where A is the directory search iteration, B indicates a successful directory
search, C implies a false drop has occurred and D is followed when the desired
record is found. Levell is the directory search and level 2 is the secondary
storage structure search.

Since the flow graph models a random process in which each transition is indepen­
dent of the previous states and their probabilities, the flow graph is said to
have the Markovian property. This is seen in Figure 2.

- Ps

Figure 2
Markov Model of General File Organization
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The Markov chain contains the variables

Ps - the probability of finding a match to the
desired query in the directory,

Pg - the probability of finding the desired
record in the file if the directory search
is successful,

to - time to search a secondary storage block,

tl - time to retrieve a secondary storage block,

t g - time lost in a false drop search attempt,

ts - time to search a directory location.

The Markov model assumes the probabilities to be fixed and
statistically independent. Therefore, the execution time

for each level transition in the graph is

A = (1 - Ps ) t s
B Ps to
C (1 - Pg) t g

D Pg tl·

REDUCTION TO ~ LINEAR EQUATION

Brzozowski and McCluskey (1963) proved that flow graphs can be reduced by simple
algorithms to linear equations in the regular expression algebra. Basic equiva­
lences are used to reduce flow graphs to regular expressions:

-~
Thus, any state diagram can be reduced to a linear equation if a decision prob­
ability for transition between processes and the process execution times are
known. Heistand (1964) defined the executive control program of an operating
system monitor by reduction of a finite-state automaton. The regular expression
algebra is defined by Kleene (1956).

The regular expression for the flow graph model of the general file organization
in Fi gu re 1 is

G = A * [ 8 + (BC) * 1 D

*where the operator, * , on a variable a is defined by a 1 / ( 1 - a ). This
expression leads to

G (B + 1/ (1 - BC)) D / (1 - A)
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Expanding,

G = (B-B2C+l) D / (l-A-BC+ABC)

281

Generating functions used for algorithm analysis can be fr

The Z-TRANSFORM

in Knuth (1973).

A Z-transform serves as a discretized time delay operator. The application of
the Z-transform represents a fixed time delay in making the transition from one
event to another. The Z-transform is given by

Z {f(t)} L f(t)zt

t=O

The Z-transform is introduced for the purpose of calculating the expected time
delay (response time) for the entire model. Further explanations of Z-transforms
and formalisms may be found in Gupta (1955) and Jury (1954). With the time delay
operator, Z, the transitions became

A = (1 - Ps )
t sZ

B = Psz
to

t
C = (1 - P9) Z g

D = Pg
ztl

DETERMINATION OF EXPECTED RESPONSE
--~-

If the generating function, G, (Z) represents the reduced and transformed expres­
sion, the expected response time of the model is

Substituting,

~Id Z Z = 1.

G (Z)

and,

t t
A gp Z 1

~
_ P ) Z 0) +

g

t t t
(1 - P

s
) Z sP Z 0(1 - P )Z 9

s 9

t + t 1 _ P p2 (1 _
2tO + t l + t t

P P Z 0 Pg) Z 9 + P Z 1
s 9 9 s g

G (Z)
\ to + t t +t +t

1 - (1 - Ps) Z - P (1 - Pg) Z 9 + P (1 - P )(1 _ P )Z 0 s 9
s ssg
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Differentiating by parts,

dG(Z) vdu - udv
'dZ

Z=l v2

with
-1

u Ps Pg
-1

V Ps + (1 - Ps + PSPg)

and

dv

du

-2
(1 - P + P P ) (t P t P P + toP P )s s 9 9 s 9 s 9 s 9

-1 -2
t P P + t P P
s 9 s s 9 s

This ultimately reduces to

-1
(1 - P - P )

s 9
t l

2
+ P P )

s 9

P ) (to + t )
9 9

{( 1 - P
s

P9 [ {to + t 1 + (1

+ (1 _ P-2 _ P ) t } /
s 9 s

d G (Z)
~-d-Z-

Z

P P )} ]s g

which is the expected time to answer a simple query (referred to hereafter as E).

A cursory examination of E shows that E is directly proportional to Pgl the prob­
ability of finding th1desired record in the file after a successful search of the
directory. Also, Ps- and ps-2 are significant for a small Ps .

Figure 3 shows the relationship between E, Ps, and Pg for constant to, tl, and t g.
ts is not significant because ts < < to, tl, and t g. E is at a maximum at Pg =1.0
and P = .05. This is because the full retrieval cycle will be followed. Thus,
more work is done as the probability of finding a successful directory match
decreases (i .e. when Ps approaches 0) and the probability of a false drop decreas­
es (when Pg -> 1) .

Figure 4 illustrates the dependency of the response time on hardware parameters.
It is seen that E is directly proportional to to 0 tl = t g. If the hardware
configuration is altered to incur a timewise saving, the response time increases
proportionately.

A cost/performance analysis for sensitivity can also be performed upon the expect­
ed response equation. An example can be found in Allen (1976).
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The mean response times are inadequate measures of performance if the variance of
response times is great. To insure validation of the model presented, the second
moment can be calculated by

VAR (G) = G" (1) + G' (1) - G' (1)2.

APPLICATION TO LARGER SYSTEMS--------
If two functional modules of an information system are expressed as functions of
G1 and G2, the mean response time of the combined modules is

The increasing complexity of large systems can be subdivided by task and described
analytically through individual treatments. Then the components can be combined
to model the entire system.

The parameters of the macro-systems can be varied over realistic ranges to provide
the first-order approximations. The interpretation of the comparative statistics
can aid management in decision-making processes. These decisions include system
procurement alternatives, performance/cost resolution and functional objective
levels.

CONCLUSION

The purpose of the throughput analysis is to enable the designer to determine
approximately the parameters needed to achieve a given level of system performance
relative to other alternatives. Algorithms were given for the design and analysis
of systems which are applicable to MIS performance projection.

The analytical model derived was based upon known functional relationships. These
relationships may not be clearly defined for some models. However, a model proto­
type describing the functional objectives of a proposed system should of necessity
already exist or the planning operation is deficient.

Model complexity can create tedious mathematical computations during the expect­
ation calculation. The effort is certainly no greater than programming synthetic
programs for simulation. In addition, the parameters are more easily altered for
analysis in an analytical model.
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Readers familiar with queueing theory know that many
problems in this field are related to functional equa­
tions of special type. Broadly speaking, the unknown
functions are the generating functions for a station­
ary distribution of the studied process. Our objective
in this paper is to provide a method of solving such
equations in the case of two dimensional random walks.
Two particular problems are adressed but the procedu­
res used are general.
1 - Problem A.
Two F.I.F.O parallel MIMll queues coupled according
the following stategy : service times of the top-jobs
in each queue have instantaneous service rates depend­
ing on the system state (see section A).
This problem is reduced to a Riemann-Hilbert problem and
closed formulas are obtained for the generating function
F(x,y) (associated to the number of jobs in each queue)
in terms of elliptic functions of third kind.
2 - Problem B.
We present here a solution to the problem of "joining
the shorter of two unbounded F.I.F.O - MIMll queues".
A job upon, arrival, is assigned to the shorter queue. If
the queues have equal length, an arriving job joins queue
i with probability IT·, i=1,2.
This problem has bee~ studied only in the symmetric case
(i.e. IT1=IT2= ~ and equal servicing rates) :
- formerly by Kingman [10J.
- recently by L. Flatto and MacKean [ 2J who improved
Kingman's results and obtained the stationary probabili­
ties.
The non symmetric case is more complex, because it requires
a priori four unknown functions. We reduce it oy computing a
function satisfying a singular integral equation with a
Noetherian operator.

PROBLEM A

AI. - Problem formulation and assumptions

Let us consider two parallel MIMll queues with infinite capacities under the follow­
ing assumptions.
a) The arrivals form two independent Poisson processes with parameters AI' A2•
b) The service times are distributed exponentially with instantaneous service rates

Sl and S2 depending on tAe system state in the following manner:
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i) 51 = wI

52 w2
if both queues are busy

i i ) 51 * if queue 2 is emptyul

iii) 52 * if queue is emptyu2

c) The service discipline is FIFO (first in - first out) in each queue.

Let Pt(m,n) be the probability that, at time t, there are m jobs in queue 1 and n
jobs ln queue 2.

Note For sake of brevi ty all proofs are omi tted in the paper.

p(m,n) = lim Pt(m,n) will be referred to as the stationary probability of the state
t-+=

(m,n). We study the behaviour of the system at the steady state by means of the ge­
nerating function F(x,y) (see below).

From now on the terms "stability" or "ergodicity" will be used to mean "there exists
a stationary distribution".

Using the Kolmogorov's forward equations for the p(m,n) and the generating function:

F(x,y) = l: l: p(m,n) xmyn
m=O n=1)

which is analytic with respect to x and y whenever lxi, Iyl < 1, a straightforward
but tedious computation yields:

(1.1) T(x,y) F(x,y) = F(o,y) a(x,y) + F(x,o) b(x,y) + F(o,o) c(x,y)

where def
a(x,y) = ul(1 - ~) + q(1 - 1)

def 1 r
b(x,y) = u2(1 - y) + p(1 - x)

def 1 1
c(x,y) = p(- - 1) + q(- - 1)

def x y
T(x,y) = Al(l-x) + ul(1 - ~)

*p u1 - ul

*q u2 - u2

Lemma 1.1. The existence of F(x,y) satisfying the functional equation (1.1) with

l: Ip(m,n)1 < '" (space Ll ) is equivalent to stability. 110reover if F(x,y) exists,
m,n=O
it is unique up to a constant multiplier which can be suitable chosen so that all
coefficients in the power series expansion are positive and sum to 1. In that case
F(x,y) is the generating function for a stationnary distribution.

Proof see Malyshev [5J.

A glance at relation (1.1) does not give many information concerning F(x,y).
However, a further investigation shows that the right side member vanishes whenever
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T(x.y) = 0, provided lxi, IYI" 1.

The obtain additional relations between F(x,O) and F(O,y), it is necessary to exami­
ne carefully the algebraic curve C defined by :

(1.2) R(x,y) = xy.T(x,y) a

in the whole complex plane, what is done in the next section.

n. - R(x.y) = a
R(x,y) is a polynomial of third degree w.r. t . x and y and of second degree w.r.t.
each variable x or y.

The curve C has genus 1 and can be identified with the Riemann surface C over either
of the extended x or y planes (more precisely, the algebraic extension of the field
of rational functions of x, as defined by R(x,y) 0).

These assertions are well known (see for example Fuchs [3J) and will not be discussed
further.

y(x)

For curves of genus I, the introduction of a uniformizing parameter requires ellip­
tic functions and reduces the tractability of the computation if we try to construct
the analytic continuation of the functions F(x,O) and F(O,y) (for an example concer­
ning a curve of genus 0, see Flatto - MacKean [2J).

Solving R(x,y) = a for y, we have:

I- 2+A 2+A(x) ± ~r(-I-2-+-U2-+-A-(x-)-)"'2---41--
2
-11-2

21- 2

(2.1 )

where

(2.2)

We obtain two distinct branches which give a two sheeted covering over the x plane.

i.e. there exists k(y) such that

Lemma 2.1. The algebraic function y(x) defined by R(x,y) has four real branch points
Xl' x2' x3 ' x4 with a < Xl < x2 < 1 < x3 < x4•

The lemma 2.1 is obviously valid for the branch points Yl' Y2' Y3' Y4 of the func­
tion x(yl.

Lemma 2.2. The equation R(x,y) = a has one root y(x) h(x) which is an analytic al­
gebralc function of x in the whole complex plane cut along the two segments [Xlx2J
and [x3x4J.

Moreover Ih(x)l" if Ixl 1:

Ih(x)1 "K V x.

Similar propositions apply to x(y)

(k(y) ,y) = a
Ik(y)1 " 1 if Iyl = 1

Ik(y)1 ,,~ V y.
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Lemma 2.3.
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x if IxI ,; nAl
k( h( x))

)Jl
if 'x I > r;rAl x Al

(2.3)

y if Iyl ,; ~1.2
h(k(y) )

)J2
if Iy[ > ~9 1.2

A3. - The analytic continuation of F(x,O) and F(O,y)
Convention: To avoid repetitions, we introduce the notations

C(R) = {zlmodulus (z) = R}
B(R) = {zlmodulus (z) < R}

B[RT = {zlmodulus (R) > R}

In section II, we have defined two curves

H = {h(z)/Izl l}

K = (k(z)/izi 11,

which are simple, closed and lie inside C(I). Similarly,

obtained from Hand K under the mappings (automorphisms)
pectively, i.e.

let H' and K' be the curves
)J2 )Jl

z ~ --- and z ~ --- res-
A2 z Al z

introduced in II.

K') iff ~ < 1
2

H' and K' are also simple, closed and lie outside C(I).
(The point z=1 on the positive real axis belongs to H' (resp.

(resp. ~ < 1) as shown in section II).

We shall use throughout this paper the functions h(x) and k(y)

Theorem 3.1 : 1) F(x,O) (resp. F(O,y)) can be continued as a meromorphic function
to the whole complex plane cut along the real axis from x3 to x4 (resp. from Y3 to
Y4) •

2) The poles of F(x,O) (resp. F(O,y)) are the zeros (if any) of
1 1 1 1.)J2(1 - nTX)) + p(1 - x) (resp. )Jl(1 - kTYT + q(1 - y)) outslde C(I).

To prove theorem 3.1 we need the:
Lemma 3.1. All the couples (x,y) which are solutions of the system
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R(x,y) = 0
(3.1) Ixl,; 1

Iyl ,; 1

have the form (x,h(x)) or (k(y),y) where x E Rx and y E Ry'

Applying the notation of section AI., system (3.1) entails:

(3.2) F(O,y) a(x,y) + F(x,O) b(x,y) + F(o,o) c(x,y) = 0

A4. - A simplification of the relation (3.3)
We try to reduce (3.3) to an homogeneous equation (i.e. without right member).
An elementary computation shows that when:

pq - ~1~2 F 0, the transformation (translation).

F(O ) = P(q-~2) F(O 0) + H( )
,y pq-~1~2' Y

(4.0)

yields the system:

{
R(x,y) = 0, lxi, Iyl,; 1

(4.1)
H(y) a(x,y) + G(x) b(x,y) = O.

293

Moreover,

(4.2)
H(O)

G(O)

~2~iF(O,O)

~1~2-pq

~1~;F(O,O)

~1~2-pq

Section A3. gives the analytic continuations of G(x) and H(y).
When pq=~1~2' the preceding transformation is not valid. However, remembering that

p = ~1-~i and q = ~2-~;'

pq - ~1~2 = 0 can be rewritten as

~1 ~2
-+-=1,
~i ~;

or

(4.3) 0,; ~,; I, provided that ~i, ~; F 0

If ~i = ~; = 0, (4.1) yields the system:
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{
R(X'y) 0, lxi, Iyl,; I
F(O,x) + F(y,O) = F(O,O), (x,y) t- (1.1) ,

which clearly has no admissible solution due to the fact that F(x,O)+F(O,y) > F(O,O).

Using (4.3), (4.1) takes the following form;

(4.4)

\

R(X,y) = 0, Ixl,; I, Iyl,; I

* I * I
[~I(I x) - ~2(1 - y)J[~ F(O,y)-(I-~)F(x,O)J

* I * I
[~I(x - I)(I-~) + ~2(y - I)~J F(O,O).

AS. - The roots of bl(x) = p(1 - ~) + ~2(1 - ~) = 0 inside C(~)

Following the remark in section A3., it will be assumed from now on ~I > AI'
Section III reveals that a stepping stone towards the solutions of the original
problem is the study of the r00rn,0f the equation bl(x)=O. More precisely, we re-

quire only the roots inside C(~~) for reasons given in sections VI and VII. It
seems convenient to introduce thelfollowing notations (valid until the end of the
paper).

(5.1 )

I I I
b (x) = p(1 - K) + ~2(1 - h[X))
I I I

a (x) = q(1 - hTX)) + ~I(I - x)
2 I Ib (y) = p(1 - KTYJ) + ~2(1 - y)
2 I Ia (y) = q(1 - y) + ~I(I - KTYJ)

U~ to change of the pa rameters, the conc 1us ions drawn for bI (x) =0 wi 11 ho 1d for
a (y)=O.
The term "root" or "zero" will always design a number different from 1.

Lemma 5.1. Excluding the trivial root x=l, bl(x)=O has at most tl<'O roots inside
C(~~i). ~~oreover, these roots (if any) are real, positive and belong to the set

[O'XI~ u [X2'~)~

for Ixl

A6. - The case pq=~1~2 ; determination of F(x,O) and F(O,y) by solving a Dirichlet

problem for a circle.

From now on, let"j (z) and Je(z) denote respectively the imaginary and the real
part of the comple~ number z.
From section I, we know that~ F(O,y) = 0 for y E [YlY2J, since the power series
expansion of F(o,y) has positi~e coefficients.
Hence, by using system (4.4) and section III, it follows

* I"'1 ~2(fiIX} - I) F(O,O)
Jm(I-~)F(x,O) =Jm * 1 * 1

-~I(I - x) + ~2(1 - h\x)

I * I * IHere, b (x) -~I(I - x) + ~2(l - hTX)),

(6.1 )
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- if bI(x) has no zero in B(~) we reduce the proble~to that of finding a

function F(x,o) analytic in Bt~) continuous on C(~~) and satisfying the
bo~ndary condition (6.1). This isla particular case of

1
a Dirichlet problem

for a circle.

- if b1(x) has a zero in B(~) say xO ' we have still a Dirichlet problem for
the function (x-xo) F(x,o).

Provided that b1(x) has no root in B(~), F(x,O) is determined from (6.1), in

B~), up to a constant, by Schwarz's f5rmula t1uskhelishvi1i [6J Section 41,

~1 i fIT eip+z
(6.2) F( TZ'O) : 2rr u(p) --,p dp + D, Izi < 1

1 -IT e-z

With x :~ eiP .

where 0 is a

and

real constant
* 11 ~ ~2(l - fi"[X}) F(O,O)

u(p) ---~ ----
1-~ m ~~(1 - ~)-~2(1 - fifxY)

-AI sin p H(p)

Note that H(p) is real. From (6.3), we deduce easily that u(p) is an odd function
of p. This implies:

(6.4) F( Y1z,O) fIT
o

z s~n p u(p)dp + F(O,O) Iz I < 1
" ~. IT l+z -2z cos p

The of F( ~z,O) in terms of ellirtic functions of the third kind ean
be derived. [Appendix lomittedJ

A similar formula holds for F(O,~Z) provided that the system is ergodic which is

equivalent to a2(y) f 0 ln C(l) (wh~tever the position of ~ w.r.t. 1 may be) or
2

(6.5) [1 - P~ - p; > 0 r

A7. - The case pq f ~1~2 : determination of F(x,o) and F(o,y) by solving an homo­
geneous Riemann-Hilbert problem for a circle.

In that section we use intensively the procedure given in Muskhelishvili [6J,
chapter 5, sections 39-40.
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Theorem 7.1. Our problem is a particular case of a famous general problem due to
R1emann and first studied by Hilbert.
This problem is a follows

Let S+ be a finite or infinite region, bounded by a single simple contour L. It is
required: to find a function ~(z) = u+iv, holomorphic in S+ and continuous in
S+ + L, satisfying the boundary condition:

(7.1) ~e[U(z) . ~(z)J = V(z) on L,

where U(z), V(z) are continuous functions given on L. The homogeneous problem is
obtained by putting: V(z) = Q in (7.1).

Demonstration.

Lemma 7.1.

(7.2)
[z-k(a2)J i 1 [Z-k(S2)J i2 G(z)

G(z) = 1
[z-Y1J 3

where i j , j=l,2,3 takes the values 0 or 1 and:

Izl < ~

i) Y1 is the eventual zero of b1(x) in [1,~]

ii) a2, S2 are the eventual zeros of a2(y) in [O'Y1J u [Y2,lJ;

iii) G(z) is analytic in B(~).
Upon setting

(7.3) U(z)

iIi2
[z-k(a2)J [z-k(SZ)J

(z-Y1) 13

(7.5 )

It follows

(7.4) .Re[i U(z) G(z) J= 0 for' zl =~

From [6J formula (40-10) - g 40, G(z) is given by

f( ) < 05_1G(z) = D e z f or Ix, "5:J:
where D is a constant, non zero, and:

(7.6 ) f(z) ,;, I ;,; 10g[t-XJ(t)Jdt
t-z

C( -)
Al

where
i Uf tlJ(t) = 1U t and :

1 ~X = M log [ t J or :

(7.7)

ment of z".

X = - ! [arg U(t)J (1;1' denoting byarg (z) the function "argu-
~ C( r-)

1
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(7.8)

of the argument of~ along
a (x)

(denoting by sgn(x) the function "sign of x" with sgn(O)=O) where

* Np is the number of zeros of a2(y) on [l,~ ]

Nz is the number of of
1 2

[ x2,lJ* zeros b (x) on [O,xlJ u

* arg [~J~ is the variation
a (x) xl x2

the "contour~ ,x2J, starti ng from xl above [x l x2J,
and coming back to xl below [x lx2J.

Lemma 7.3.

goi ng to x2

(7.9) 1
TT arg

Lemma 7.4.
1) For X 5 -2, the homogeneous Riemann-Hilbert probem has no solutions diffe­

rent from zero.

2) For XeD, the homogeneous Riemann-Hilbert problem has exactly X+l linearly
independent solutions; the general solution is given by :

where cn' cl ' ••• , c are constants subject to Cx = c
X

- k' k=a,l, .•• ,X but other-
wise ar~itrary. X

Demonstration.

Theorem 7.2.

(7.10)

See Muskhelivshvili [6J S 40-p. 100.

1) the homogeneous Hilbert problem satisfying the boundary condi­
tion (7.4) has, at most, one solution. In other words, X 5 O.

2) The system is ergodic iff X = 0, which is equivalent to :

~ * ~2\1-~1\2
dx IX=l < 0 <=> ~l > ~2-\?

~ < 0 <=> ~*2 > ~1\2-~2~1 if ~2 ~ \2
dy \y=l ~l-Xl

( 7.11)

Theorem 7.3.

(7.12 )
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* G(z) is derived from (7.2) and (7.3) using

= k f t;r l'I(~~~t and l'I(t) = arg [-~mJ
C( -1)

Al

A8. - Application to general two dimensional random walks [t.d.r.wJ

The method used in section A6 and A7 can be applied ina more general context. Let
us assume that a t,d.r.w. has a stationary distribution with a generating function
F(x,y) = L p.. x1yJ satisfying LI 1 < 00 (space L1) and the following function-

i,j lJ Pij
equation T(x,y).F(x,y) = A(x,y).F(x,O) + B(x,y).F(O,y) + C(x,y) where A(x,y), B(x,y)
and C(x,y) are known and continuous. Then the determination of F(x,y) reduces to
the solution of a Riemann-Hilbert problem whenever the following four conditions
are met (the notation is the same as before) :

1) The continuous function k(y) (resp. h(x)) is such that 1k(y) I,;; 1 (resp.
I h(x) I ,;; 1) if Iy 1 = 1 (re sp. I x I = 1.

2) k(y) (resp. h(x)) has two branch points i.nside C(I), Yl and Y2 (resp. xl
and x2) which are the endsof a "cut" [Yl'Y2J(resp. [x1)(2J).

3) The cut [YlY2J (resp. [X 1x2J) is mapped onto a simple closed curve Ck
{resp. Ch) under the mapping y. k(y) (resp. x. h(x)).

4) Moreover, the regions inside C(I) and Ck(resp. Ch) must have a non-empty
intetisection Dk(resp. Dh) such that I k(y) I ,;; 1 (resp. I h(x) 1 ,;; 1) for
y € Dk (resp. x € Dh).

Up to a conformal transformation, condition 3) says that it is possible to reduce
the general case to that of a circular region. Specifically, the four preceding
conditions hold in the problem of t.d.r.w. studied by Malyshev [5J. It is worth­
while to note the possibility of solving the Hilbert problem for arcs by using the
arc [x3x4J and the analytic continuation of F(x,O) to the whole complex plan (see
Section III).

Wben the genus of R(x,y) is greater than 1, some of the conditions 1 to 4 may be
not satisfied. Then, the method is still valid, (an example will be given in a fu­
ture paper) but the computations are more complex.

PROBLEM B "JOINING THE SHORTER QUEUE"

Bl. - Problem Formulation and Assumptions

Let us consider two parallel MIMII queyes with infinite capacities and exponential
service time distributions with means for queue 1 and § for queue 2 under the
following assumptions. a

a) the arrivals form a Poisson stream with mean A.
b) a customer, upon arrival, is assigned to the shorter queue.

c) if the queues nave equal length, the arriving customer joins queue witn pro­
bability TIi' i=I,2 and TI 1+TI2=1.
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To study the behaviour of this system at the steady state, we need the following
functions: (analytic w.r.t x and y whenever lxi, Iyl < 1)

(1.1)

F1(x,y) L p(i ,i+j)xiyj
i ,j=O

F2(x,y) ~ p(i+j,i)xiyjw

i ,j=O

P1(x) L p(i -1'1,1 ) xi A1(x) (a+~x) P2(x) + BF(O,O)
i =0

P2(x) = ~ p(i,i+1) xi A2(x) = (B+~x) P1(x) + aF(O,O)w

i=O

L p( i ,i) xi
i=O

T1(x,y) = ~(1 - ~) + a(l - 1) + B(l - 1)y x y

T2(x,y) = ~(1 -~) + B(l _1) + a(l - 1)
y x y

S = ~ + a + B

The Komogorov r s forward equations for the p(m,n) yield

~TI i-h-B
F1(x,y) T1(x,y) = a( 1 - 1) G (y) + ( 2 y ) Q( x) + Al (x)x 1

2
(1.2) F2(x,y) T2(x,y) = B(1 - ;) G2(y) +

~TI1Y -~x-a

+ A2(x)( y ) Q(x)

Lemma 1.1. The existence of F1(x,y) and F2(x,y) with L Ip(m,n) I < 00 (space L
1

)
m,n=O

is equivalent to stability. ~1oreover, if both F1(x,y) and F?(x,y) exist, they are"
unique up to a constant multiplier. ~

System (1.2) gives the minimum number (four) of unknown functions of one complex
variable sufficient to describe the steady state. This number can be reduced at
once, using the fact that, whenever Ti(x,y)=O, i=l,2 provided lxi, Iyl < I, the
corresponding right side members 1n (1,2) vanish.
It remains nevertheless two unknown functions, for instance Gi(y), i=l,2.

As in problem A, it is necessary to examine the algebraic curves e, defined by

( 1. 3 ) Ri (x ,y) = xy. Ti (x ,y), i =1,2

B2. - R1(x,y) = 0

R1(x,y) is a Qolyn6mial of second degree w.r.t (x,y) and w.r.t. each variable x or
y. The curve't'l has genus 0 and can be identified with the Riemann surface'€l over
either of the extended x or y planes.

Solving R1(x,y)=0 for y, we have
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(Z•I ) y(x) = sx ~ yx[x~~2
- 4aA) - 4aS]

Lemma 2.1. The algebraic function y(x) defined by (2.1) has two real branch points
D, x", wlth x*< I.

Lemma 2.2. R,(x,y)=O has one root YI(x) which is analytic in the whole complex
plane cut alOng the segment [O,x*~

~~oreover IY1(x)1 $ 1 lf Ixl = 1.

The other root wi 11 be denoted by Y2(x).
Similar propositions apply to x(y). (The two branch points are then denoted by

Yi' y; with 0 < yi < y; < I.

From now on,
the ell i ~ses

Lemma 2.3.

~
~u
<jle] will betoken the regions inside crespo outside]E i, <jl i [res p. Ee ,

E ,<jl. X
* __1_>

E-[O,X] Y
I<--

is the ellipse

<jl is the ellipse

i i )

i)

iii) The following relations hold:

YI (X 2(Z)) = Z

Y2(X1(Z))1; ~

YI(X1(z))j= z
IF z

y z

if Z E

if Z E

if Z E

if Z E

e
E U E

i
E

Exchanging y. and Xi on the one hand, E and <jl on the other hand, 4 additional re­
1atlons could be wrltten

- Obviously, all conclusions drawn for R1(x,y)=0 are valid for R?(x,y)=O up
to an exchange of the parameters a and S • We need now additional notations to dis­
tinguish which equation Ri(x,y)=O will be taken into account in such or such proof.
For this reason, we will just add the subscript (or superscript at own convenience).
"(a,S)" Crespo "(Sa)"l , with or without brackets, in the quantlties relating to
R1(x,y) Crespo RZ(x,y)] .

83. The analytic continuation of the functions Q(z), Gi(Z), Ai(z), i=I,2.
Theorem 3.1. All the functions of system (1.2) can be continued as meromorphlc func­
tlons to the whole complex plane.
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We just give here the sketch of the proof :

Upon definin~ recursivelyjtrn ~ inf[(X2(Y2))aS(~_I),(X2(Y2))Sa(~_I)J with

jYo~ ~~ {z/, Izl~IJ (the unit disk), one can show:

i) :i1'n+l::> $;." ¥ n

ii) Q(x) is meromorphic in~, ¥ n

iii) lim~ covers the whole complex plane
n-

Q(x)(3.1)

The proof of ii) needs the following equation, which can be obtained from system
( 1 .2)

with

(3.2)

This last quantity 6(x), plays an important role. More precisely it is a "genera­
tor" for the poles of the various functions which occur in the problem.

84. - A functional equation for GI(Y)'

1

WaS(x)
Q(x)(4.1)

From the preceding section, it is easy to prove the validity of the following equa­
tion in the complex plane :

where

(4.2) [\1T
2

+ ~J
x '

A similar equation can be obtained for

Upon combining these two equations and
G2(y) must be continuous (then it will

Al (x) •
* * Sausing the fact that, on the cut [y
l

,y2J ,
be analytic) [as in problem AJ , we get

Y E

(4.3) o ~ J m -,-_--y-....;~"':'anS-(X~s':':a-(-y-))
X~a(y) 1

* * Sa
[YI'Y2 J

where

i) [I -

i= 1,2

1, l' ) ( )" , d f U b h . ya
2

S ( .) d as ( )Vi Y 1S slmply obta1ne -rom i y exc ang1ng an Y1 •

Setting X~a(y) ~ z and z ~ "conjugate of z", (4.3) can be rewritten as
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(4.5)

asK(z) G1(Y
2

(z)) -

asL(z) G, (Y
1

(z))

- as -K(z) G1(Y2 (z))

- as -- L(z) G
1

(Y, (z)

where

(4.6)

K(z)

y~S(z)
(I - -z-)ll(z)

y~a(z)
(I - __) WaS(z)

z

L(z) is obtained by exchanging y~S(.) and y~S(.) in K(z).

Equation (4.5) describes a Carleman-Hilbert problem (which is of general type,
because the contour is not a circle).

Lemma 4.', Equation (4.5) has a solution iff

(4.7) dll(x) >
dx Ix=1

o

which is equivalent to

(4.8) A < a + S

Sketch of the proof. There are three steps:

I) we consider first the "dominant part" of (4.5)

(4.9) as - as -K(z) .G1(Y
2

(z)) - K(z) .G
1

(Y
2

(z)) o ,

2) We compute the index of (4.9) [6J which - in the present case - must vanish

3) Using the solution of (4.9), we obtain, with the right hand side member of
(4,5) an integral equation which, again, has a solution,because it is equi­
valent to

(4.10) (I - e)G(z) H(z) where e is an operator such that I lei I < I.

The solution of (4.10) is

G(z) = L ei.H(Z)
i=o

[Formulas are omitted hereJ.

The method of solution proposed by the authors applies to general types of func­
tional equations arising in queueing theory. The reader can imagine, nevertheless,
the high difficulty of the computations involved when contours are not circles,
since conformal mappings into circular domains [according to Riemann's theorem] are
needed. (Even for an ellipse the explicit formula is complicated).
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ANALYTIC METHODS FOR MULTIPROCESSOR SYSTEM MODELLING

A, Kurinckx and G. Pujolle
I RI A-LABORIA

78150 Le Chesnay
France

We review some mathematical results on parallel queue­
ing systems and on many servers queues. We develop an
approximate general method to solve such systems with
global state dependent routing probabilities and ser­
vice rates. We also build a mathematical model to study
the effects of scheduling policies on system performan­
ce as mean response times or queue length distributions.

INTRODUCTION

In a recent classification by Fuller and Sieviorek [IJ, multiprocessors systems
have been distributed in three classes: the tightly coupled processors systems
(multiprocessors as Illiac IV, Staran" •• ), the loosely coupled processors systems
(computer networks) and intermediate systems. Extensive works have been realised
for the first two categories but there are only few studies devoted to intermedia­
te multiprocessors systems.

The aim of this paper is to develop a method to solve models arising in this type
of systems. In particular, we are interested in scheduling policies for jobs on
the processors,

In the first section we are going to review some mathematical results obtained in
the litterature on queueing systems composed of queues in parallel or of one mul­
tiserver queue (Figure I). Moreover we give some extensions of these results and
in particular we find conditions for the existence of product form solutions in
systems of parallel queues.

In the rest of the paper, we develop a queueing model of a more realistic multi­
processor system. None of the available methods are applicable to the solution of
that model; this is because the routing probabilities and the service rates depend
on the global system state. For instance the general "join the shortest queue" po­
licy cannot be studied by any exact mathematical method.

For this reason we introduce an approximate method to solve rather general systems
with parallel queues. The method yields approximate values for the marginal proba­
bility distributions of queue lengths,the mean numbers of customers, and the mean
response times.

The ana 1ys is of the model proceed sin two stages : fi rs t. us i ng de compos iti on, the
general system is replaced by one consisting of parallel queues where the service
rate are function of the number of busy processors; these queues are then analysed
by the iterative method to study the effect of scheduling policies on the perfor­
mance of the system.

Finally we give numerical results for the response times as a function of jobs and
system parameters. Several scheduling policies, such as "random access" or "join
the shortest queue", are thus investigated and their performance is compared.

305
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MATHEMATICAL MODELS OF MANY-SERVERS QUEUES

We shall decompose the available models in two categories (Figure 1) : those of
category A includes just one queue and several parallel servers, those of category
B which are composed of several queues in parallel, each with one server.

Category A Figure 1 Category B

In both categories many policies are available to allocate servers to arriving
customers. We are going to study the cases where this allocation is dependant on
the state of the systems. Other considerations can be added: state dependant ser­
vice times, possibility to jump from one queue to another one (jockeying). Some
studies are devoted to this class of problems, we are going to summerize them, and,
in the same time we shall examine some extensions.

We assume that service times and interarrival times are independant and exponential­
ly distributed.

Let A be the total arrival rate, lli be the service rate at station i, i=l, ... ,~~,

and let us denote
M

Pi = Aill i and P = A/( L llj)
j=1

For the sake of simplicity we describe only the two servers cases; extensions to M
servers are straighforward.

Models of category A

Case 1 When a customer arrives then:
a) if both servers are busy then, it waits in a single queue managed by

FIFO discipline. The customer at the head of the queue occupies the
server that becomes idle first.

b) if only one server is free: it occupies the free channel.

c) if both channels are free: it chooses server 1 with probability IT 1and server 2 with probability IT 2=1-IT 1•

This case is well known and named "~~a;tre d'Hotel" if IT =IT =1 and "~~aitre d'Hotel
with preference" otherwise. The case IT 1=IT =~ has been siud~e§ by Gumbel [3J in the
general case of Mservers. The general ca~e has been studied by Krishnamoorthi [4J
with 2 servers. Moreover Krishnamoorthi has shown that the average waiting time is
minimized when IT i =l if i is the faster channel.

Case 2 : Let us assume II $ \1 2, namely the server is slower than server 2. When
a-cusromer arrives then f

a) if both servers are busy, it waits in a single queue in order-of-arri­
val sequence. If server 2 becomes vacant the customer at the head of
the queue occupies this server. If server 1 becomes vacant the customer
at the head of the queue occupies this server if and only if the total
number of customers awaiting service is less than a given value m.
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b) if server Z is free, it occupies it.
if server 1 is free, it joins the queue and the customer at the head
of the queue occupies this server if and only if the total number of
units awaiting service is less than m.

c) if both channels are free, it chooses server Z. The exact analysis of
this system is quite difficult and a solution is proposed by krishna­
moorthi [4J when the number of servers is Z. This solution uses a com­
plex algorithm. The value of m which minimized the average waiting time
is an open problem. Krishnamoorthi proposes the greater integer less
than IJZ!J.lI'

Case 3 : This system is identical to the previous one except in the following point:
wnerI1he number of customers decreases from m+l to m, server 1 stops and the custo­
mer in service goes to the head of the waiting queue. We provide now a solution
(believed to be novel) to this case.

Let n be the number of customers in the waiting room. If n s m the service rate is
IJI and if n > m the service rate is 1J1+IJZ' (we must have m ~ 1).

Let PI ~ and P =~, we have
'~1 u1+IJZ

ifOsnsm

p(n)

In normalizing, we obtain:

m
PI p(o)

P~ p
n-m p(o) if n > m

can be written as follows

m(m+l-mp )Pl

(l_o)Z

The mean number of customers in the system
m+l

1-(m+l-mP l)Pl
E = 2 +

( I-PI)
o p(o)

The stability condition of this system is obtained writting p(o) > 0 [5J, namely
A < 1J1+IJZ' This value does not depend on m,

A special case has to be noted: m=l. When there is only one customer in the system,
then it occupies server 1; if there is more then one customer, both servers are busy.
This system can model a system with two processors which cooperate when only one
customer is in the system and which work independently otherwise. The solution of
this model can be easily extended to more than two parallel servers.

~1odel s of category B

We recall that a waiting room is associated with each server. In a first step, we shall
examine only two queues in parallel. Let A be the external arrival rate and qi'
i=I,Z the routing probabilities. We denote A1=qlA, AZ=qZA, 01=A 1/1J I' PZ=AZ/IJZ and
o=V( IJ I+IJ Z) .

Case 0 : The
l.Ie have E1
queue i.

two queues are independant (a Bernoulli switch routes the customers).

J:.L EZ = I~Zo and E=E 1+E Z' if E
1
, is the mean number of customers in

1-° 1' Z
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Case I a) In this system, arriving customers join queue with a fixed probabi­
lity qi (ql+qZ=I)

b) If both channels are free: it chooses server with probability TIl
and server Z with probability TIZ=I-TI I

c) If, at any time, the difference in queue lengths exceeds k, the last
customer in the longest queue jokeys to the end of the shortest line.
Jokeying is instantaneous.

Such a system has been studied by Koenigsberg [61 when k=l and is named "Tellers'
Windows with Jockeying" (with preference if TIl' 2)' Koenigsberg shows that the to­
tal mean number in the system is identical to thTs of case I of category A.

Case Z: In this paragraph we study the system where customers join a queue by a
~ state dependent switch. Once in the assigned queue, jockeying is forbidden

First, we are going to examine condition for the solution to be in product form for
the general case of ~1 parallel processors. Let 1i = (nl,n?, ... ,n t1 ) be the state vec­
tor where n· is the number of customers in queue and ser'ier i. Let qi (n) oe the rout­
ing probability for an incoming customer to enter queue i when the state of the sys­
tem is ii. Let us note ii+li=(nl'nZ, .•.• ni+I' ... ,nM). Local balance equations write
as follows:

ll· p(n+l.) = A p(n) q.(n)
J J J

This equation have a solution verifying global b~lance equation if the lollowing
conditions ~re verified: starting from a state n+l.+l. to enter state n, the same
value of p(n) must be found by going either through'st~te n+l. or through state
n+lj,.' This 'lecess~ry and ?ufficient condition can be written ~
q·(n+l.)q.(n)=q.(n+l.)q.(n), lJ i, lJ j, lJ n. If routing probabilities verify these
c3ndtitio~s, we'obtain ~ product form solution:

M A nj + +
p(nl, ... ,n,,) = C TI (-) q.(n-l.) ... q.(n-n.l.)

,', j=1 llj J J J J J

If M=Z the condition is

ql(n 1,nZ)

ql (nl'nZ+1)

qZ(n 1,nZ)

qZ(n 1+l,n Z)

Some interesting cases can n~w be treated: if routing probabilities verify
-+ n· -+ 5i-ni

q.(n) = ......:..:.L with Ilnll = l: n,' or (see also [7]); q,(n) = --- with
, Ilnll i=1 ' lis-nil

N
I Is-nl I = l: (s.-n.), etc ..•

i = I ' ,
we obtain a product form solution.

Extensions to a service time dependant on the state of its queue and an arrival
rate dependent on the total number of customers in the system is possible.

Unfortunately, only the solution of few cases is in product form. For example, the
simple scheme consisting in joining the shortest queue has neither a product form
nor a closed solution. (A study in truncating the state graph is performed by Chow
and Kohler [8J and a diffusion approximation by Foschini and Salz [9J).

Now, if service times are dependant on the state of the entire system, no method
is known. Nevertheless, as we shall shOli it, accurate models of many processors
systems need a service time dependant on the total state of the system. It is the
reason why we are going to develop a new algorithm yielding a solution of a very
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large class of multi servers systems.

Comparisons of the many servers models

309

Before to conclude this section, we are going to give an idea of the performance
obtained by the models described previously. We have chosen as a criterion of per­
formance, the mean number of customers in the system. The results of eight models
are shown in table 1. The 7 first results are exact results, the last one is obtain­
ed by the algorithm that we shall develop in the next section. It corresponds to
the "shortest queue" policy with equal probabilities when queue lenghts are identical.
The common model has just 2 servers, the second one with a fixed exponentially ser­
vice rate W2=1, the other with an exponentially service rate varying from 2 to 10
by step 1. The cases of column 6 and 7 correspond to product form solutions where
the routing probabilities are defined by

10-ni
Case 6 q/n) i=l,2

I 'lO-nl I
-r _5-ni

Case 7 qi(n) = i=1,2
lis-nil

the waiting rooms are limited to 10 and 5 respectively in these two cases.

We can note on these compari sons the important di fference between the B cases.
These models are however too rough to approximate correctly a multi-processors sys­
tem and it is for this reason that we are going ro develop a new algorithm to take
into account more possibilities as global state dependant service times.

mean number in the system

1 I 2 I 3 4 5 6 7
2 ;ndepand- Maitre d'Hotel Maitre d'Hotel with Queue 1 product
ant queues I or ,preference preempt; ve form

Tellers'Windows Teller's Windows with resume solutions
with Jockeying I Jockeying and with m=l

, preference

B.O Al

I
Al Bl A3 62

I61 IT l =l ITl=O IIT2=0 IT2=1
I

~1 = 2 2. 1. 227 1.191 1. 256 0.8
1
2

.
391 1. 9961

~Il = 3 1. 43 0.727 0.667 0.769 0.571

1

2

.

061 1. 663 !
'1 = 4 1. 33 0.563 0.484 0.613 o.379 1. 930 1. 525 I
"1 = 5 1.25 0.482 0.389 0.537 0.281 1. 860 1. 4491

"1 = 6 1.2 0.434 0.329 0.492 0.223 1. 817 1. 403 •

"1 = 7 1. 157 0.402 0.288 0.463 0.184 1. 787 1. 371

"1 = S 1.143 0.380 0.257 0.443 0.156 1. 766 1. 348

"1 = 9 1.125 0.363 0.233 0.428 0.136 1. 750 1.330
I

"1 = 10 1.111 0.350 0.214 0.417 0.12 1. 737 1.317

I

B :
Join tho I
shortes t I
queue I

I
1. 378 I
1. 046 II

0.890 I
0.797 I
0.736

I
0.69< I
0.659

0.634

0.614

Table 1
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AN APPROXIMATE GENERAL METHOD

In this section we present a general method to solve the queueing systems of cate­
gory 8 we have described in the previous sections, The method leads to approximate
values of the marginal probability distributions of queue lengths, of mean number
of customers and of mean response times for systems which verify the following as­
sumptions :

i )

i i )

customers arrive into the system according to a Poisson process of parameter A

the probabi 1ity that an arri vi ng customer joi nts queue i (1 5 i 5 ~~) is qi (n),
an arbitrary function of the number-in-queue state vector -" = (nl'""ni',.,nM).
Notice that these functions must verify

M
L q.(n) =1

i =1 1

V n in the state space

iii) service times of queue i server are independant and identically exponentially
distributed with mean WiI(n).

The method we propose consists in computing for each queue a fictive arrival rate
and a fictive service rate only depending on the number of customers in the queue

(1 ) Ai (n i ) L A qi (ii) p. (n . Iii)
5

1 1- ni =0, 1" ••

(2) wi (n i ) L wi (ii) p. (n . In)
5

1 1-

1,2, ".(3)

where
- 5 is the set of states with a fixed number of customers ni in queue i.

- ~ is a vector of dimension ~-I identical to ii after removing its ith component.

- p.(n·ln) is the conditional probability to have ni customers in queue i if there
ate ~j-customers in queue j, j=I ,r~, Hi.

From the fictive arrival and service rates, it is possible to evaluate the marginal
queue length distributions. For queue i :

ni Ai(i-I)
Pi (n i ) = Pi (0) i~I "'iij'Tl'J

Pi(o) is given by the normalizing equation

(4 ) L Pi (n i ) = 1
ni=O

Notice that to write equation (3), it is necessary to assume that the arrival Pois­
son flow splits up in M Poisson flows so that each queue behaves like a WM/1 queue.
In the following we assume this property approximately verified although it is
true only in particular cases (for example qi state lndependant for each i).

The main difficulty is to express the value of p.(n-In). In order to be able to com­
pute A.(n.) and w·(ni) we substitute in (1), (2)lp.(n-:-ln) by Pi(n i ), namely in the
compudti~m of fittive arrival and service rates w~ ahume the conditional probabi­
lity to be equal to the marginal one. This simplification is the most important ap­
proximation of our method .. Although the equality of the two probabilities is true
only for systems having a product form solution (see section 2), we shall see later
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that our method gives good results in almost all the cases.

With this approximation we have to solve the system composed by equations (1). (2).
(3) and (4) by the mean of an iterative scheme. In order to have a finite state
space we limit the capacity of each queue i to a value mi chosen such that the
errors due to truncating the distributions are not too important. The algorithm we
propose is the following:

begin give an initial value to Pi(n.) {i=:0·····r1
1 ni - , ... ,m ir. (n. )=011M

while ~ sup Ipi(ni)-ri(ni)1 > E do
1=1 ni=O....mi

begin ri(ni):=Pi(n i ) i=l ..... M ni=O .....mi ;

for i~ 1 to Mdo

begin compute Ai(n i ) and )1i(n i ). ni=O ••••• mi

from eq. (1) (2);

compute Pi(n i ) ni=O .....mi from eq. (3). (4);

end.

each margi na1 s ta te probabil ityRema rks - E is the accepted error on
- as initial value we adopt

1
Pi(n i ) = m:+T

1

if m·=m for each i. stora~e

~~~~~~aiop~~~;~~~;~~. )1i ( )

requirements of this algorithm is propor­
and qi(h) being implemented as internal or

The problem of the convergence of the algorithm has not been tackled in a pure ma­
thematical way (one should show that the iterative function is of Lipschitz). but
it is easy to see that the iterative function is monotoneous; this property suggests
the convergence of our algorithm. Be that as it may. all the experiences we perfor~

med show that the solution is obtained after few iterations.

The problem of stability of parallel queues systems with global state dependant ser­
vice rates is still an open problem. Nevertheless, in some particular cases it is
possible to give a sufficient condition of stability. If the stability condition is
not satisfied. our algorithm provides the following solution

i=l .....M

We are now going to give some details about the accuracy of the method. First notice
that exact results are obtained in cases where a product form solution exists.

We performed a great number of experiences in order to compare results obtained by
our method with simulation results. These experiences show good agreement: the dif­
ference is of the same order of magnitude as the looseness of simulation results.
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As an example (Table 1) we give one of the most unfavourable case we met: "join
the shortest queue" with equal routing probabil ity when queues are of the same
length. We note an accuracy of about 10 %on the mean numbers in the stations

p( 0) p(1) p(2) p(3) p(4) mean number mean number
in station 1 in station 2

Algorithm 0.5 .375 .117 .008 .000 .633 .633
Simulation 0.5 .341 .114 .028 .007 .698 .703

Table 1

A SPECIFIC APPLICATION TO MODELLING OF A MULTIPROCESSOR COMPUTER SYSTEM

In this section, we examine the behaviour of a computer system including n distri~

buted processors. The architecture of such a system can be modeled by the idealized
queueing network shown in figure 2.

gl oba1
memory

I/O

processor

Figure 2

Jobs, which enter the system with rate A are directed to a processor according to
some scheduling policy (for example one of the policies described in the previous
sections). The aim of this section is to compare the global mean response times of
a job with several policies. In a first step we are going to describe the behaviour
of the system.

Jobs are queued behind a processor and are served according to the FIFO discipline
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When running a job, a processor can access to informations (instructions and data)
contained in its private memory. If the information needed is not present a request
is made to a global memory shared among all processors. During its execution, a job
can ask for an I/O operation in which case it joins a specialized processor. After
completion of a request (I/O or global memory) the execution restarts.

Rema rks - only one job is loaded in the private memory of a processor

- a job stays in the private memory unitl it has finished its execution
when a job is queued or served in the I/O or in the global memory de­
vi ce, its processor is b1oded.

Firstly, we want to know the time a job spends in a processor before completing, as
a function of system parameters (such that: number of processors, size of the me­
mories ••• ) and program behaviour parameters.

Secondly, we want to know the time a job spends in the system from its arrival ins­
tant into the queue of a processor to its exit of the system. This time depends on
the scheduling policies we use to route the arriving jobs.

To compute the residence time in a processor, we use a decomposition scheme: the
idea of the decomposition is to form, with state variables of a complex system, a
small number of groups such that:

- interactions of variables, inside a grouP! can be studied as if external
interaction does not exist.

- interactions of groups can be studied without the necessity to take
into account interactions between variables inside each group.

In a queueing network, decomposition consists in substituting a subsystem by a sim­
pler entity. The parameters of this entity are computed in the replaced subsystem
with a fixed number of customers circulating in it. Systems before and after repla­
cement are equivalent if at steady state:

- probability distributions of the total number of customers in both
systems are identical

- probability distributions of state variables which do not belong to
the replaced subsystem are identical.

Only few systems have the so-called decomposition property but often it can be shown
that the studied system is "near decomposable". The iteractions between the subnet­
work to be replaced and other parts of the network. It is the case when internal
time constants are at least an order of magnitude smaller than the external one.

Our model shows three

- level 1
- level 2
- level 3

levels of decomposability

user 1eve 1
proces sor 1eve 1
instruction level.

in the terminology of Courtois [2J.

The constants of times of these three levels satisfies for the decomposability con­
ditions.

We are going to study these three levels step by step.

Level 3. We need to know the real busy time of a processor, namely the time during
~he processor is either executing, or awaiting for an instruction of its pri­
vate memory. This level is shown in figure 3 following two points of view (see also
[10J) •
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private memory

access
begin

processor ready
to make a new
request.

access
begin

mac m rt

D

r

idt pet
memory memory

memory

processor
processor

mac memory access time
mrt memory restore time
idt instruction decode time
pet processor execution time

Assumption idt+pet ~ mrt

Figure 3

Let t be the total execution time required by a job; the time t during which the
job otcupies the processor at the level 3 is t plus the access times plus the deco­
ding times. We assume that one decoding time plus one executing time is greater than
one rewriting time. Let s be the mean time between two memory accesses and D be the
time of one memory access plus the time to decode t:-,e instruction. If we assume D
fixed, we have

t = t (Q + 1)res
Notice that this time does not include I/O operations and accesses to the global me­
mory.

Level 2. The model of the level 2 is shown in figure 4

xf---------, P3

~-'-.. -_ Station a
.....

1---------4 P2
H++-==!

FIgure 4
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We have to study this closed network with a fixed number (l=l •.•• ,n) of jobs. When
a job completes (with probability p ), it is instantaneously replaced by an other
one statistically equivalent. Statidn 0 is composed by a number of servers equal to
number of jobs. By an argument of decomposition the mean response time of a job will
be used in level 1 as the mean occupation time of a processor if there are 1 busy
processors. The mean service time of such station 0 has been studied at the level 3.
Let a1 be the number of instructions executed between two I/O requests and a? the
number of instructions executed between two memory faults (request made to tne pri­
vate memory but insatisfied or direct request to the global memory) and a3 the to­
ta1 number of ins tructi ons of a job.

We assume that aI' a?, a~ are exponentially distributed with parameters VI' v? v3respectively. ancr let a Oe the number of instructions executed by the processOr
without interruption (except those of its private memory). We have a = min(a1,a2,a3)'
This variable is exponentially distributed with parameter Vo = v1 + v2 + v3•

Branching probabilities are easily found: P1 = ~, P2 = ~. P3 = ~. Let r be the
000

mean time to execute one instruction, and f be the distribution of the uninterrupt-
ed execution time.

From level 3 and from the exponential distribution of a. f is the exponential dis­

tribution with mean service time : ~~1 = ar(~+l).

Let us assume that ~ and ~ are the rates at which are satisfied I/O requests and
global memory requests. The ~tate of the system shown in figure 5 is given by the
vector e = (1 0,11,12) (li is the number of customers in station i. 10+11+12=.1,) and
we denote by p(lo.ll,lZ) the probability of state e.

From Baskett, Chandy, Muntz, Palacios theorem [llJ we have
1 1 1

p(10,ll'1 2) = C A (L) 0 (!:l) 1 (~) 2
o' Uo u1 ~2

where C is a normalizing constant.

Let W, WI and W be the mean response times of stations 0, 1, 2 respectively. They
can bg obtained 6sing BCMP formula. The response time of a job before completion is
now :

This value will be used at level 1 as the occupation time of a processor when there
are 1 busy processors. So before studying level 1. we have to evaluate W(R,) for
1=1 .... ,n.

Levell. Ry the equivalent scheme we substitute the level 2 network by a server of
mean-service time W(l) that we assume exponentially distributed. The model at level
1 (the user level) is a parallel queueing system of category B, we have studied in
section 2. From level 2 we have seen that the service time depends only on t. the
number of busy servers when the characteristics of the system are fixed. We find a
model which cannot be studied by an exact mathematical technique; so we use the al­
gorithmic approach. Moreover, we shall use scheduling policies. as "join the short­
est queue", which require for themselves the algorithmic solution.

We have compared three scheduling policies:

1 - equal routi ng probabi 1ity (" random acces s")
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2 - a job entering the system occupies one of the idle processors with
equa 1 probabil i ty. Ifall the processors are busy, it j oi ns one of
the queues with probability l/n.

3 - "join the shortest queue" with equal routing probabilities to join
one of the shortest queues if more than one.

We assume in our example 5 processors in parallel. If the unit of time is the second
we take ~ =u =100. The other parameters of the system are r=10-6, s=10-5, 0=10- 6 ,
v1=1.5. 1C8 ~nstructions. Now we have treated the example for three values of vI
and v2':

1 - vI 106 instructions, v2 = 5.105 instructions
2 - vI 0.6 106 instructions, v2 = 105 instructions
3 - vI 0.2 106 instructions, v2 = 5.104 instructions

These values correspond to 15s of total execution time and:

1 - 10 I/O requests by second,
2 - 30 I/O
3-501/0

20 memory faults by second

100
200

Figure 5a, 5b, and 5c display the mean response time of a job as a function of the
input rate (A). We also draw in each case a vertical line corresponding to a suffi­
cient (and not necessary) condition of stability:

* -1A = nW (n)

When the I/O and global memory requests rates are law (figure 5a), we see that po­
licy number 3 leads always to best performance and response times of second and
third policies are very closed. If the input rate is greater than A*, the perfor­
mance of the "join the shortest queue" policy degrades itself more quickly than
first policy performance. From this remark one can say that real stability condi­
tion of third policy is reached more quickly than with the "random access" policy.

Figure 5b exhibits the same phenomena but brought out more strongly. In particular,
beyond A* the "join the shortest queue" policy becomes the worst one. When the in­
put rate still increases, the best policy is the first one. Notice that, in this
case, the real stability condition of the third policy is very close to sufficient
condition A*.

Figure 5c leads to the same conclusions. With "bad" jobs (high I/O and global memo­
ry request rates), it may be dangerous to use the third policy because response
times are very large just beyond A*.

The phenomena we have just emphasized are easily explanable. Analysis of level 2
brings out a "thrashing" : performance degrades itself (i .e. the occupation time
of a processors increases with "bad" characteristics of jobs (it is due to the con­
gestion of I/O and global memory units). Due to this thrashing it is preferable, in
some cases, to let some processors idle. This explains why the "join the shortest
queue" policy which shares out very well the load, becomes the worst one with high
input rate and "bad" jobs.

To summarize it is surely useful to schedule jobs according to the "join the short­
est queue" or the second policy prCJvided that the inputs are controled as soon as
the input rate reaches A*. An other reason to use this scheduling policy is that
the yielded queue length distribution decreases more rapidly than the distribution
obtained with the "random access" policy. Figure 6 provides an example of such a
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situation. Potential advantage is the reduction of response times dispersion which
is highly desirable property in computer systems.

CONCLUSION

After reviewing some mathematical models of parallel queues systems we remarked the
bad adequacy of these models to evaluate multiprocessors systems performance. So we
developed a rather general algorithmic method to solve parallel queues systems with
global state dependant routing probabilities and service rates. This method is sam­
ple and yields to accurate results. It can be implemented as a computer program with
limited storage requirements.

In the sequel of the paper we described a multiprocessors system with private and
global memories and one I/O device. We built a mathematical model and we solved it
in two steps. Firstly using the decomposition method we simplified the model to ob­
tain a parallel queueing system. Secondly, we used our algorihtmic method to study
the effect on the performance of the scheduling policy for various job behaviours.
The main conclusion is the absolutely necessity to implement a dynamic control to
take into account the fluctuation of the load. This control will operate on the
scheduling policy in order to keep active all the processors when jobs have "good"
characteristics and to limit the number of busy processors otherwise.

sec.
sec.

100 r-------------,!"1"""-"1
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80

60

40

20

aI-----'----::-'-:---~-L...::-L.
0.1 0.2

rate

500

400

200

L __-_---_-_...-_= _ - -

a"----::-0.-=Ol:-----::O~.0::-:2:---'----='0.'-:::0-:-13

rate

Mean response time as a function ef the input rate A

policy 1

--- policy 2

------ policy 3



318 A. KURINCKX and G. PUJOLLE

sec.

3000 r----------..."....---,--,

prob.abil Hies
0.6 r-----------,

2000

FlOO

0','-----'--0-.0~0-4-~-0-.0~0-8-'-'-----O---l.012

rate

Fi gure 5c

0.4

0.2

o

Figure 6

6

queue length

Mean'response time vs. the input rate A

REFERENCES

Distribution of the queue
policy
policy 3

length

1J Fuller S.H., Siewioreck D., "Some observations on semi conductor technology
and the architecture of large digital modules", Computer 6, 10, 14-21, 1973.

2J Courtois P.J., "Decomposability - queueing and computer system applications,
ACM Monograph series, Academic press, New York, 1977.

3J Gumbel H., "Waiting lines with heterogeneous servers", Operations Research 8,
504-511, 1960.

4J Krishnamoorthi B,,"On a Poisson queue with two heterogeneous servers", Opera­
tions Research 11, 321-330, 1963.

5J Pujolle G., "Appl ications of some Markov chains resul ts to computer systems
modelling", IRIA/LABORIA Research Report 289, 1978.

6J Koenigsberg E., "On jockeying in queues", ~~anagement Science, 12, 5, 412-436,
1966.

7J Glorennec P.Y., Pellaumail J., "Sur une extension de la formule de Jackson,
donnant les probabilitfis stationnaires d'un rfiseau de files d'attente", IRISA
Research Report 23, 1975.

[ 8J Chow Y.C., Kohler W.H., "Dynamic load balancing in homogeneous two-processor
distributed systems", Pore. of the International Symposium on Computer Perfor­
mance.

[ 9J Foschini G.J., Salz J., "A basic dynamic routing problem and diffusion", IEEE
Trans. on Communications 26, 3, 320-328, 1978.

[10J Bhandarkar D.P" "Analytic models for memory interference in multiprocessor
computer systems", Research Report, Carnegie t~ellon University, 1973.

[l1J Baskett F.. Chandy ~1., Muntz R., Palacios J., "Open, closed and mixed networks
of queues with different classes of customers", JACM 22, 2, 1975.



Performance of Computer Systems
M. Arato, A. Butrimenko, E. Gelenbe (eds.)
©I1ASA, North-Holland Publishing Company, 1979

THE DISTRIBUTION OF QUEUEING NETWORK STATES

AT INPUT AND OUTPUT INSTANTS
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Queueing networks are studied at selected ~oints in
the steady-state, namely the moments when Jobs of a
given cl ass arrive into a given node (ei ther from the
outside or from other nodes), and the moments when
jobs of a qiven class leave a given node (either for
the outside or for other nodes). The processes de­
fined by these points are known to be, in general,
non-Poisson, interdependent and serially correlated;
therefore the relation between the distribution of
the system state embedded at those moments, and the
steady-state (or random point) distribution, is not
obvious a priori. For a large class of networks
having product form equilibrium distributions we
show that (a) if the given job class belongs to an
open subchain, the state distributions at input
points, output points and random points are iden­
tical and (b) if the job class belongs to a closed
subchain. the distribution at input points is the
same as the steady-state distribution of a network
with one less job in that subchain.

O. INTRODUCTI ON

Ever since the discovery (J.R. Jackson, [Ill) that in some cases,
the steady-state distribution of a network of queues can be factored into

a product of the marginal distributions of the states of individual nodes.

there has been some uncertainty as to the exact meaning of this result.

If a node has c parallel exponential servers, to what extent can it be

treated as an isolated MIMic queue? In particular, can the distribution

of the sojourn times at that node (and not just the mean sojourn time) be

obtained by such a treatment? The answer to this last question depends on

Whether customers arriving into the node see the steady-state distribution

of the node state and that, in turn, has prompted several investigations

of the properties of input streams.
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Burke [3J has shown, by examining the simplest non-trivial network
(a single MIMll node with Bernoulli feedbacks), that the input process
composed of the external arrivals and the fed-back customers is not Poisson
in general. Disney and McNickle [9J have strengthened tnis result by showing
that the input process is not even renewal. On the basis of this and other
evidence of the complexity and interdependence of the flow processes in a
queueing network, these two authors express a strong doubt about the possi­
bility of decomposing the network and treating individual nodes in isolation.

Yet in the one-node example which Burke considered, it emerged that
although the input customers do not form a Poisson stream, they still see
the steady-state distribution of the queue size (with the proviso that fed­
back customers do not include themselves in the queue that they see). Input
instant and steady-state distributions were shown to be closely related also
in three finite-state models. These are: an MIMll queue with a finite cus­
tomer population (Cooper [6J), an MIMll queue with finite waiting room
(Cooper [·61) and a two-node closed network with a feed-back loop around one
of the nodes (Mitrani [18J). The first two models can be viewed as two-node
closed networks in which the service rate at the second node is, respectively,
proportional to the number of customers there or constant. In all three cases
the following result holds:

i P~(n)
PK(n) ~ ------- ~ peK_I(n), n~O,I, .•• ,K-I

I-P~(K)

where p~(n) and P~(n) are the input instant and the equilibrium probabili­
ties of n customers at node 1 given that there are K customers in the net­
work.

We shall demonstrate that these results generalise to a large class
of networks, open, closed or mixed, with many customer classes, where schedul­
ing disciplines and service requirement distributions are of certain types.
The probability that a class r customer joining node m sees network state S,
~(S), depends on whether the network is open or closed with respect to class
r. If open, then ~(S) is equal to the probability that a class r customer
arriving from the outside into node m sees state S (which is equal to the
steady-state probability of S if the external arrivals are state-independent).
If closed, then ~(S) is equal to the steady-state probability of S in a net­
work with one less class r customer. Similar results hold for the state left
behind by a class r customer leaving node m.

The above probabilities will be derived as the ratio of two rates
the rate at which class r custome~s join node m and find net,'ork state S,
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divided by the total rate at which class r customers join node m. In section

1 we give the justification for this approach. Section 2 contains our main

result: a theorem establishing a sufficient condition for a network to

have input and output iHstant state distributions related as described to

the steady-state distribution. In section 3 we show that a large class of

queueing networks. including those defined by Jackson [121. Gordon and Newell

! 10 I, Baskett. Chandy. Muntz and Palacios 12J. satisfy the sufficient condi­

tion. Finally. in section 4 we discuss the possibility of extending the re­

SI1lt.S to i\ still broader class of networks.

T. GENERAL ARGUMENT.

Let (On ,r n), n;O.I •..• be a Markov renewal process: a Markov chain

j"o"'I, .. f embedded at moments to; O. t 1, t 2• ...• where t n+1 ; tn+Tn
(n;O,1 .... ). so that the joint distribution of 0 n+1 and 'n depends only on

on (and not on 0 0 ••••• on_l' 'o' ..•• 'n-l). The moments to' t 1, .•. will be
refererl to as "event points".

Suppose that the Markov chain {on} is irreducible and aperiodic and

that the equilibrium probabilities

TI i lim P(on;i)
n->«>

exist for all states i=O.I ••••• Consider the Markov renewal process on a

large time interval of length T; denote by nIT) the total number of event

poi nts duri ng that i nterva 1. by ni (T) the number of event poi nts at whi ch

(on} is in state i and by nij the number of event points between the j-l'st

and the j'th point at which {on} is in state i (j=I.2 •••• ). Since the conse­

cutive occurences of state i (or of any other state) are regeneration points

for the Markov renewal process. the numbers nil' ni2 ... are independent and

identically distributed. Their expected value is therefore equal to
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( 1) . E[n T J

T
11m E[n, T ]'

->«> 1

On the other hand. the expected number of points between consecutive

occurences of state i (i .e. the expected recurrence time for state i in the

Markov ch.ain (on}) is. under our assumptions. equal to l/TIi. Dividing the
numerator and the denominator in the right-hand side of (1) by T and denot-

ing E[nIT'J E[ni(T)J
( = lim~ Yi lim

T-o T T-" T

we can rewrite (1) as

(2 )
Vi
y
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In what follows, we shall use (2) to determine the equilibrium distri­

bution ~(S) of a queueing network state S embedded at the moments when customers

of a given class join (or leave) a given node (those will be the event points).

We shall write TI(S) = y(S)/y, where y is the average number of event points per

unit time and y(S) is the average number of event points at which the network
is in state S, per unit time.

2. GENERAL RESULT.

Consider an arbitrary topology queueing network with Mnodes and R

customer classes. Customers may change class as they move from node to node.

Specifically, a customer of class r, when completing service at node i. ~oes

to node j as a customer of class s with probability p. .s; that job leaves

the network with probability p. = 1 - ~ p.. (~:j=1.2,....Mi r.s=1.2.
lr,O J,S lr.JS

•••• R). To simplify notation, we shall reclassify the customers. using the

pair (i .r) as the new class index. Thus, from now on, "class r" will specify

both the current affiliation and the current location of a customer

(r=1.2 •.•• ,M R). The transition probabilities become Prs (the probability

that a class r customer completing service turns into d class s customer)

and Pro (the probability that he leaves the network).

The set of customer classes is split by the transition probability

matrix into one or more non-intersecting suusets. or "suDchains". in the

following way: two customer classes belong to the same subcnain iff there

is a non-zero probability that a customer will enter both classes during

his 1ife in the network. Denote these subchains by E1' E2..... El) (for

example, if in the original notation we had Pir,js = 0 for r#s, there would
now be at least R subchains).

It may be that some subchains are closed, having a constant number

of customers in them at all times. while others are open. with external ar­

rivals and departures. Moreover, the external arrival processes may be state

dependent. in a restricted way. Let 5 be the network state. No(5) be the

total number of customers in the open subchains and c2(5) be the number of

customers in slJhchain E£ when the network is in state S. The external arri­
vals may be generated in either. bllt not both, of the following two vlays :

a) By a single non-homogeneous Poisson process whose instantaneous

rate. ,(No(S)), depends on the system state via the total number of custo­

mel"S in the open subchains. A new arrival joins class r with probability Por'

(~ Por = 1)
r

b) By separate state-dependent Poisson processes. one for each open

subchain. The instantaneous rate of the .1 ' th process. ,£(c1(S)). depends on
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S via the number of customers in the subchain E2" A new arrival in the 2' th
stream joins class r with prohability p (2: p - 1 if E is open).

or E or 2r€ 2

The flow of customers around the network is described by D systems
of linear equations

(3) 2=1,2, ... ,D.

If Por~O for some r £ E2 then the subchain E2 is open; the corresponding
system (3) has a unique solution {er} which ca~ be interpreted as the aver­
age number of times a customer joins class r during his life in the network.
If Por=O for all r € E2 then E2 is closed; the system (3) has infinitely
many solutions (differing from each other by a multiplicative constant) Which
can be interpreted as the relative frequency with which jobs join class r.
The number of customers circulating in a closed subchain is constant.

We shall use the following notation:

Jr is the network configuration; it includes the nodes, the customer classes,
the subchains and the number of customers in each closed subchain

2r is the index of the subchain to which class r belongs

mr is the index of the node to which class r belongs;

.f.. r is a network confi gurati on whi ch is i denti ca1 to c¥' if E2 is open, and
di ffers from J' by havi ng one 1ess cus tomer in E2 if E2 r is closed.

r r

S is a netwnrk state; it describes the customer configuration at each node
nijmbers, classes, stages of service reached (a precise definition will be
given later);

S+r is the set of all network states which differ from S by having one more
customer of class r (the elements of S+r may differ from each other only
by the stage of service reached by the extra class r customer and by his
position in the queue);

vr(a,s) is the instantaneous rate at which class r customers complete service
in state a and leave behind state S;

1 if [2 is closed
r

1\2 (S) A(No(S)) if E2 is open and the external arrivals are
r r of type (a)

1.2 (c2 ) if E2 is open and the external arrivals are
r r r of type (p);
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PJlS) is the steady-state probability of state S in network configuration

d(; the steady-state distribution is assumed to exist;

n;(S) is the equilibrium probability that. in network configuration Jr, a

customer joining class r finds state S. Note that. since the customer does

not include himself in the state that he sees, S is not a state of Jr but a

state of J'_r (the two differ when Et is closed);
r

~.tS) is the equilibrium probability that. in network configuration cr, a
customer completing service in class r. leaves behind state S (similar re­

mark to the above applies).

Our general result can now be stated

Theorem.

(4)

If. for each class r in network configuration Jr.

where C is a constant independent of S. C=I if r belongs to an open subchain

and ierl. r=I.2 ••••• MR is any solution of (3). then

(5 )

Proof. The average number of customers who join class r and find state S

[Jer unit time. in the steady-state. is equal to

(5)

(5) as

The first term in (5) counts the customers arr1vlng from outside the network

who find state S and join class r (that term is zero if E~ is closed); the

second term includes all service com[Jletions in E~ after ~hich a customer

is directed to class r and sees state S. SUbsitutihg (4) into (5) and re­

memberi ng that if E~ is open then C=I and eX' COl nci des with X_ r • we rewrite
r

(7)

where we have used (3). The total average number of customers who join

class r per unit time. in the steady-state. is obtained by summing (7) over

all possible states S. Dividing the former average by the latter and cancel-
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ing the common factor Cer' we obtain equation (5) for ~(S). To demonstrate
the equation for 1f(S) we note that the average number of class r customers
who complete service and leave behind state S. per unit time. in the steady­
state. is equal to

which. according to (4). is equal to (7). From this point. the argument is
the same as for rrr(S), 0

Let us examine separately the cases when E~ is open (J(r-.r) and
when it is closed (A~ =1). The theorem states that.rin networks which satis­

r

(i) All input (output) customers in open subchains see (leave behind) the
same distribution of the network state as the customers arriving in
those subchains fr.om outside the network. In particular. if the exter­
nal arrivals into a subchain EKare state-independent then they all
see (leave behind) the steady-state distribution:

(8) rr} (S) = ~X (S) = P.r (S)

for all r € E
i

• even though the external arrivals into other subchaini

may be state-d~pendent.

(ii) All input (output) customers in closed iubchains see (leave behind)
the steady-state distribution of a network with one lesi customer

in those subchains :

rr_r",(S) = ~:. (S) = PV' (S). r € Ei (E i closed).
u ~ ~-r r r

Moreover. since the configurations J'~r and cJ:rl are identical if

rand r' belong to the same subchain. the index r in the right-hand iide
of the last equation may be replaced by any index r' from the same subchain
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(9) rr:; (S) = ~;r(S) = IJ'-r l (S) • r. r' € Ei (E~ closed)
r r

Thus. both in open and in closed subchains. the distribution of the
sys tem state seen by a cus tomer is i,ndependent of whi ch node he is enteri ng
(leaving) or what his current class is.

Going back to the original model formulation. with nodes (1.2 ••••• M)
and classes (1.2 ••••• R). the network state distribution seen by a class r
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input into node m depends on whether the pair (m,r) belongs to an open or a

closed subchain. Different inputs to the same node may fall under category

(i) or (ii), depending on their affiliation. A similar remark applies to

outputs.

Note also that, if (5) is true in terms of a detailed network state
5, it will obviously be true in terms of various aggregated states; in par­

ticular, (i) and (ii) apply to the marginal distributions of individual node

states seen (left behind) by input (output) customers. Thus, for example, the
distribution of sojourn times at a node in an open Jackson network can be

obtained by isolating that node and treating it as an independent MIMll or

MIMic queue with the appropriate parameters.

A few words about the meaning of the sufficient condition (4) are in

order. If r is in an open subchain. a and S are states of the same network;

in that case (4) appears to equate the instantaneous rate at which state 5

is entered due to class r service completions, with the instantaneous rate

at which S is left due to class r inputs. However, this is only an intuitive
interpretation because the input process may not be Poisson. In the extreme­

ly special case of a network consisting of one open node without feedback,

equations (4) are the local balance equations. In the case of closed subchains

the situation is similar. but less intuitive because a and 5 are states in

different networks.

3. NETWORKS WHICH SATISFY THE SUFFICIENT CONDITION.

In this section we show that equation (4) holds for the large class

of queueing networks with product form stiady-state distributions defined

by Baskett. Chandy. Muntz and Palacios [2J.

The nodes of a BCMP network can be of four types, depending on the

number of servers and the scheduling strategy employed. These are (1) single

server FCFS (first-come-first-served). (2) single server PS (processor-sharing).

(3) IS (infinitely many servers, or as many servers as there are customers)

and (4) single server LCFSPR (last-come-first-served-preemptive-resume). The

required service times at node types 2, 3 and 4 may have arbitrary Coxian

distributions (distributions with rational Laplace transforms), with diffe-

rent parameters for,the different customer classes; those at type 1 nodes

must be exponentially distributed with the same parameter for all classes.

As before. we use a single index to denote the joint (node, class)

status of a customer and we call it a class index. If a Coxian distribution

is allowed for the required service times of class r customers, its para-
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meters are Qr (number of stages). Arj • j=I.2 ••••• Qr (the probability of

reaching stage j; A 1=1). b ". j=I.2 ••••• Q (the probability of exitingr rJ r
after stage j; brQ =1) and 1/~rj' j=I.2 ••••• Qr (the mean of stage j); other-
wise the mean of the exponential distribution is 1/~r (and it is the same

for al I r whose node components are the same).

327

The network state is defined as the vector 5=(51.52•.•.• 5 MR) whose
r'th element describes the state of the class' r customers and depends on

the type of node mr : if that type is 2 or 3 then 5r is the vector

(krl.kr2 ••••• krQ ). where krj is the number of class r customers in the
j'th stage of th&ir service (kr=krl+ ••• +krQ is the total number of class

r customers); if the node type is 1 then 5r
r is the set of integers {h1.h2••.• hk }

indicating the position of each class r customer in the corresponding FCF5 r

queue; if the node type is 4 then 5r is the set of pairs {(h 1.jl).(h2.j2) •..••

(hk .jk )} indicating. for each class r customer. his position in the LCF5

queGe ahd his stage of service.
Baskett et alia have shown that the stationary distribution (when

it exists) of state 5 in network configuration or is given by (we have

reorganised the expression to conform with present notation)

(10) P}5) = ~ d(5) 0 qm(nm) 0 [e~r f r (5r )J Ii 5 feasible in J'

where GJf is a normalisation constant chosen so that (10) is a distribution;

nm is the number of customers at node m ;

if there are no external arrivals

~I " _ I A~(i) if there are external arrivals of
i=O type(b).

~I . _ I A(i) if there are external arrival of typeta)
i=Od(5)

Do
\ i!

if node m is of type 2.

otherwi se ;

if node mr is of type 4.
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( 11)

The network configuration is reflected in (10) only through the set of feasible
states and hence through the normalisation constant Gor.

If follows from (10) that if a state a differs from the state 5 by
the presence of an additional class r customer, then the relation between

Per (a) and 'J'.r (5) is, depending on the type of node mr ,

GJ"
Pel (a) = r PJ: (5) fl9., (5) er g(r)

J -r r

where

I/ IJ r. if type I,

[(n +l)/(k .+I)J(A ./\!..) if type 2,
g(r) mr rJ rJ rJ

(Ar /\!.rj)/(k rj +l) if type 3,

(Arj/IJrj) if type 4.

and where j is the stage of service reached by the extra customer. The rate
of class r service completion in state a such that state 5 remains behind,
vr(a,S), may depend on the -type of node mr , on the stage of service j reach­
ed by the extra class r customer and on his position h in the corresponding
queue :

1
IJ if h=1

type I, vr(cr,S) = r
o otherwi se

( 12)
type 3, vr(a,S) = IJrj brj (k rj +l)

lIJr}r j if h=1
type 4, vr(cr ,5) =

o otherwi se

Combining (11) and (12), and b~aring in mind that, for all r,

Qr
L A . b . = 1 ,
j=1 rJ rJ

we fi nd
G

L: J(a) vr(a,S)
:tor

If ( 5) .-G- fl9., (5) er
a£S+r ,f' r -r
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This completes the verification of (4) for these networks, since

Gy_/GX is independent of Sand is equa 1 to 1 if E9.~ is open.

Although there is a certain freedom in choosing the values of er
in closed subchains, the quantity er GJC /Gor is independent of that choice.

That quantity is, in fact, equal to the ~ctual throughput for class r in

configuration ~r(provided that arrivals into open chains of the same net­

work are state-independent).

The definition of BCMP networks includes also the possibility of

state-dependent service rates at either individual nodes or subsets of
nodes. The rate of service for class r customers may depend on kr (except

at type 1 nodes) and/or on nm and/or on Lnm over a certain subset of nodes

(but if there is a dependency on nm or on Lnm, it applies to all other
classes at that node or nodes). These dependencies are reflected in the

product form .(10) as factor terms (see r21). It is a routine task to show

that (4) continues to hold.

Thus the theorem of section 2 applies to all BCMP networks.

For closed subchains, the theorem expresses the input and output

instant probabilities 1T~(S) and :;;(S) in terms of the steady-state distri­

bution of network configuration JC r . It may be desirable to have also an

expression in terms of the distl'ibution of network Jf. Such an expression

is provided by the sufficient conditior (4). Substituting (4) into (g) gives,

for closed subchains,
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( 13) [ L: P",(a) v ,(a,s)J /(Ce ,)
S (I r r

aE +r'

where r' is any customer class in the same subchain as r; Ce r , is the through­

put for class r'. If r' happens to have exponentially distributed required

service times (with mean I/~r') and if the service rate for r' is state-inde­

pendent, we can simplify (13) :

(14 ) r r *" ..(S) = i; (S) = Pit' (S )/p ,
~ ~ ~ r

where S* is the single element of the set S+r' in which the extra class r'

customer is being served, and Pr , = Cer,/).lr' is the utilisation of class r'.

The right-hand side of (14) is the conditional probability of the state S*,

given that an r' customer is in service. Equation (14) is a generalisation

of the results mentioned in the introduction.
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Similar results can be obtained for the state distributions just
after input instants or just before output instants. For example, the
probability that the network is in state S just after a customer joins
class r, for a node with state independent service rate and exponential
service times for class r, is equal to 'd"S)/Pr •

4, EXTENSION TO OTHER NETWORKS.

The class of networks known to have product form has been expanded
recently with respect to permissible service disciplines and service requi­
rement distributions. The mathematical (but not practical) limitation that
service time distributions must have rational Laplace transforms can be
relaxed to allow general absolutely continuous distributions with finite
means [l,4,5J. A parameterized family of servicing disciplines can be de­
fined, which includes the four disciplines listed in the last section as
special cases [4,5,13J.

Our sufficient condition of section 2 is also satisfied by these
move general networks. Both Chandy, et al. and Kelly view each queue as
having "stations". In general, customers arrive into, receive service in
and depart from any station in the queue, A queueing discipline is defined
in,terms of how an arriving customer selects a station (forcing other cus­
tomers to move back one position) and what proportion of the server's atten­
tion is devoted to each station in each state of the queue. Let Rm(nm) be
the total rate at which service is provided at node m when there are nm
customers there. Then the queue discipline is "exponential local balancing"

if there is function qm(') such that Rm(nm) = g~~(~~t}, Further, an exponen­
tial local balancing discipline is "station balancing" if the probability
that an arriving customer picks a particular station is equal to the pro­
portion of the server's attention devoted to that station in each possible
state of the queue. (The disciplines LCFSPR, PS and IS are station balanc­
ing, while FCFS is not),

The system state is defined by the class and remaining service time
of the customer at each station of each queue. Whenever all service discipli­
nes are exponential local balancing and, at all nodes, either the discipline
is station balancing, or the service requirements for all classes are

distributed exponentially with the same mean, the equilibrium state pro­
bability density function is given by :

(15) ~(S) = ~t m~l q",(nm) ] [r~l e~r
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where A is total (load-independent) arrival rate,
Fr (.) is the distribution function for class r's service requirement,

and Wir is the remaining service time of the i th class r job.

The probability density function of state a (which has one more
class r customer about to complete service) is related to that of state S
as follows
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(16)

Since the extra class r customer could be in any position of the

queue, and since Jr(a) is the same for all a £ S+r' we have

where 5* is any state in S+r'

which is the sufficient condition of section 2.

Thus, if TTJ(S) and ~(S) are interpreted as probability density .
functions rather than probabilities, equations (B) and (9) continue to
hold. We make this statement without claiming to have proved it rigorously,
since the counting argument of section 1 needs to be generalised in order

to cover the case when the quantities involved are infinitesimal.

The product form of the equilibrium state probabilities is retained
in certain cases where the routing of customers is not represented as simple
transition matrix. Kelly [14J considers the case in which each customer has
a specific route which he follows through the network. Kobayashi and Reiser
[15J allow the transitions among service centers to be governed by a Markov
process of arbitrary (finite) order. The technique used in both cases is to
introduce additional "artificial" classes (typically a lot of them) in order
to retain more information about the past or futur2 path of the customer.
Then, in terms of the enlarged set of classes, all transitions among ser­
vice centers and non-artificial classes can be represented by"a simple
transition matrix (or first order Markov process). The theorems of section
2 apply to the detailed states involving the artificial classes, so we only
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have to aggregate states by eliminating the distinctions among the artifi­

cial classes that correspond to an actual class in order to see that the

theorems of section 2 apply also to models with these more general routing

patterns.

The product form of the equilibrium probability distribution is also

retained when constraints on the customer populations in various subchains

is more general than having each chain contain either a constant (closed)

or an unlimited (open) number of customers. Lam [16J studies "loss" and

"trigger" functions for each customer class based on the number of custo-

mers currently in each chain. His work is a generalization of the ideas used

by Jackson to unify open and closed networks [12J, and by Reiser and Kobayashi

to create "semi-closed" subchains, in which the number of customers is allow­

ed to vary between minimum and maximum values, but independently of the popu­

lations in other suochains [19J.

Lam proves a sufficient condition for the equilibrium state probabili­

ties to retain the same product form as for the networks described by Baskett

et al. [2J. Let T1(a) be the "trigger" function whose value is zero if the

departure of a chain 1 customer in state a triggers the arrival of a new chain 1
customer, and is one otherwise. Similarly, let L1(S) be the "loss· function whose

value is zero if chain 1 arrivals in state S are lost and is one otherwise.

Then Lam's sufficient condition is

for all rand E .:) +r

Thus, an arrival is triggered to stop a change in subchain population

if and only if arrivals that would cause the reverse change are lost. Because

systems with loss and trigger functions satisfying the above equation have

the same product form solution discussed in section 4, they satisfy the suffi­

cient condition of the theorem in section 2. However, the expression (6) indi­

cating the rate with which class r customers find state S must be modified to

include the trigger functions:

When L1 (S)=I, T1 (6)=1 because rand r' are in the sam., subchain and the
r r'

expresslon reduces directly to that examined in the prvof in section 2. When

L1 (S) = T1 (~)=O the expression above again reduces to
~ r
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after some algebraic manipulation and use of the identity
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= 1

Thus if the loss and trigger functions satisfy Lam's sufficient condition for a
product form solution to exist, then the theorem of section2 remains applicable
(although its proof must be generalised as above).

5. CONCLUS IONS.

We have considered queueing networks with multiple customer classes,
Markov routing chains of arbitrary order, state dependent arrival and service
rates, general service time distributions at service centers with station
balancing disciplines, and general constraints on the populations of the
routing chains. The presence of even a single feedback loop is such networks
causes the input processes at nodes to be non-Poisson and, in general, non­
renewal. Yet we have found that these networks with product form equilibrium
state distributions have input and output instant distributions related simply

to the equilibrium distribution of the same network but with the population
constraints (if any) on one chain decreased by one customer. Thus, with ne­
gligible additional computation, existing algorithms for calculating the
equilibrium state probabilities can also calculate the distribution at ins­
tants just before inputs or arrivals or just after outputs or departures.

Among networks with equilibrium distributions that do not have pro­
duct form, the simple relationships between input instant and equilibrium
distributions seem to be retained on1y in very special cases. The M/Er-2/l
FCFS queue with feedback is perhaps the simplest network without product
form equilibrium probabilities. In this case, the input instant and the
steady-state distributions are not the same because fed-back customers never
see the second service stage busy, while the equilibrium uti1isations of the
two stages are equal. However, if we consider aggregate states, n, defined
as the number of customers at the service center, then for an FCFS M/G/l
queue with feedback, the distributions of n at input instants and in equi­
librium are the same. This can be shown by modifying the approach in [9J

so that fed-back customers do not see themselves.

However, in a two node closed network where the service requirement
distribution is.high1y skewed, the distribution of n at input instants is
not the same as the equilibrium distribution of n in the same closed network
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with one less customer. We conjecture that (8) and (9) fail to hold in any

network where a FCFS non-exponential node contributes to the input of another
node.
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MULTICLASS OPERATIONAL ANALYSIS OF QUEUEING NETWORKS
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A multiclass queueing network model is presented as an exten­
sion of the work of Denning and Buzen on queueing networks.
The model is developed using operational analysis and only
the three basic operational principles are invoked. No
stochastic assumptions are made and only readily available
operational data are used as input to the model. The network
balance equations are derived and the product form of solution
presented. Finally, algorithms are developed to calculate all
performance quantities of interest.

1. INTRODUCTION

In a recent paper, Denn i ng and Buzen [DENN77J s howed hO~1 operati ona 1 ana lys is,
developed by Buzen [BUZE76j, can be extended to apply to queueing networks ­
specifically in the context of the study of the performance of multiple-resource
computer systems. Using only a few basic assumptions they showed that the usual
balance equations for the state of the network can be derived, permitting the
well-known product form of solution. When applied to a specific network, their
analysis leads essentially to the Gordon-Newell [GORD67] results. In this paper
we extend the work of Denning and Buzen to take into account different classes
of customers in networks. The model is compared with stochastic multiclass
models [BASK75] in section 5.

One of the main benefits arising from the use of operational analysis is that
only precisely measurable quantities are used while no assumptions are made which
the analyst cannot validate. As a result, the analyst can concentrate his
thoughts on the operational level. Thus the concept of distinct customer classes
in the operational analysis of queueing networks should be tailored to the actual
use the analyst would make of such classes.

Consider a typical computer system supporting batch and timesharing tasks, running
under a virtual storage operating system. In such an environment the natural
approach for an analyst using a multiclass model would be to consider the diffe­
rent classes of jobs or tasks which would run on the system, e.g. batch jobs,
input spooling requests, output spooling requests and timesharing requests. Asso­
ciated with each job class is a number of system tasks; if for example, the class
of batch jobs is considered, the following associated system tasks can be distin­
guished: paging, pre-emption, channel program building, completion interrupt
handling, etc.

'This work was done while the author was on sabbatical leave at the National
Research Institute for Mathematical Sciences of the CSIR, POBox 395, Pretoria
0001, South Africa.
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centres) .
The
job

Instead of regarding each different job class and its associated system tasks
as an ergodic subchain of a two-dimensional Markov chain, a more natural approach
is to introduce the concept of class groups and develop the model in such a way
that the analyst is required to specify the different class groups - each
consisting of a main job class and its related or associated system job classes.
As will become clear in the subsequent treatment of the model, the concept of
class changes and the associated transition probabilities enter into the develop­
ment of the model only on the conceptual level. These probabilities need not
therefore be specified - instead, only the request throughput rate (or visit
ratios) of each centre for each customer class is needed.

The presentation in the following sections is organized as follows. In Section
2 we present a generalization of the work by Denning and Buzen to derive the
local balance equations for multiclass queueing networks. The discussion is
limited to networks with only one class group - a restriction which is easily
relaxed. In Section 3 we address the problem of calculating the normalizing
constant G, and derive an algorithm to calculate G recursively. Various descrip­
tive measures of the network are discussed in Section 4 and computational aspects
treated - in particular, algorithms are derived for calculating the utilization
of each centre and the average queue length there. Multiclass operational net­
work models are compared with their stochastic counterparts in Section 5.

2. OPERATIONAL QUANTITIES AND BALANCE EQUATIONS IN MULTI CLASS NETWORKS

In this section we follow to a large extent the notation used by Denning and
Buzen [DENN77]. Although the material presented is a fairly straightforward
generalization of their treatment of queueing networks, we present full details
in order to keep this presentation self-contained.

Consider a computer system consisting of Mdevices (processors, service
Jobs in the system may belong to anyone of a finite number of classes.
collection of classes constitutes a class group which consists of a main
class and a number of associated system job classes. Let the classes be
numbered 1,2, ... ,R.

Let nir be the number of jobs (customers) of class r present at centre i. Then

R
ni L n.

r=1 lr

M
Wr L niri =1

M
N L nii=1

is the total number of customers present at centre i, and

is the total number of class r customers in the system.

is the tota 1 number of cus tomers in the sys tem. If i~ is fi xed,

the system is closed, and if 0 ~ N~ 00 holds, the system is open. During an

observation period [O,T], suppose the following data are collected:

Air(n)

C1~(n)

number of arrivals of class r customers at centre i, when nir = n

number of times a customer of class r requests service at centre

j as a class s customer immediately after completing a service

request at centre i, when nir = n
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Ti r( n) total time during which nir = n

Bir total busy time of device i for class r customers.

If we treat the outside world as centre 0, then

number of customers of class r whose first service request is for

centre i when Wr = n (no class changes occur on entry to the system)

number of class r customers whose last service request is for centre

i, when nir = n (no class changes occur on exit from the system)

The number of completions of class r jobs at centre i when nir = n, is computed

as

M R js
L L Cir(n).

j=o s=1

The number of arrivals of class r customers at the system when Wr = n, is

2.1 OPERATIONAL QUANTITIES

Define the following operational quantities:

Xir(n) , request completion rate for class r customers at centre when

Ci r( n)
n. = n : X. (n) = --
, r , r T. ( )

, r n

341

proportion of time when nir

Sir(n) the service function for class r customers at centre when

n
T;~(n'

S. (n) =~
, r C

i r( n)

It should be noted that the service function for class r customers may include

time devoted by the i-th device to other classes of customers.

The total number of completions for class r customers at centre is

C. = L C. (n)
, r n>o ' r

and the overall request completion rate for class r customers at centre

i is X. =, r
T

It readily follows from the definitions that
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~

n>o

by class r customers isand the utilization of centre

The mean service time over all class r completions at device i is now given by
B.lr

U.lr T

R
is ~

r=l

Let J i r

Independent of class, the utilization of centre

denote the total job-seconds accumulated at centre i by class r customers,

i.e.
J. ~ nTir(n)lr n>o

class r at centre i.

Then nir ~ Pi r( n)·n
n>o

and let nir be the average number of customers of

If Rir denotes the average response time to

a request by class r customers at centre i, we have

Hence (Operational Little's Formula)

Now consider the routing of customers through the network.

Defi ne

where qjs is the fraction of completions of class r jobs at centre i whichlr

are followed immediately by requests, as class s customers, for service at centre
j.

2.2 PRINCIPLE OF JOB FLOW BALANCE

The Principle of Job Flow Balance [DENN781 implies the following. For each

centre i, Xir is the same as the total input rate of class r customers to centre

i. Therefore, if job flow is balanced, we refer to Xir as centre throughputs.

M R
Cjs C~s Cjs (n)Therefore Cjs = A. ~ ~ ~

JS i=o r=l lr 1 r n>o lr

Since js Cir
C~sqir lr

I~ R js
it follows that Cjs ~ ~ Cir qir .

i=o r=l

Dividing by T, we obtain the following.
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2.3 JOB FLOW BALANCE EQUATIONS

343

M
L

i=o

R js
L X, q,'r.

r=1 ,r
= 0,1, ,~~

s = l,2, ,R

and Vir is the mean number of completions in class r at centre

If the network is open, Xos for each s will have a value determined by the
exogenous environment, and these equations can then be solved for Xir . For a
closed system, Xos is unknown and the equations have no unique solution:
Consider

R M M R ~1 R jsL L X. L L Xir ( L L qir
s=1 j=l JS i=o r=l j=l s=l

M R X;r ~1 R
d sL L ( L L

i =0 r=l Cir j=l s=l ,r

M R Xir R
C?SL L (C ir - L

i=o r=1 Cir s=1 ' r

M R t1 R R
X osL L Xir L L L

i=o r=l i=o r=1 s=1
i r qi r

R R t1 R M R
so that L Xos L L L

os L L X or= Xir qir i rqi r
s=l s=1 i=o r=l i=o r=1

Now defi ne V,
Vir

which is the flow of customers in class throughr,r Xor
centre relative to the system throughput for class r customers. Then

Cir

Cor

i for each completion in class r at the system. This means that Vir is the
average number of service requests (or visits) per customer in class r at
centre i. Following Denning and Buzen, Vir is called the visit ratio of class
r customers at centre i. The visit ratio equations now follow directly from the
job flow balance equations:

Vor r = 1, ... ,R

R js M R js 0, 1,. ,.,MVjS L qor + L L Vir qi r
r=l i=l r=1 s I,. , ...•R
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2.4 STATE OCCUPANCIES AND STATE TRANSITION BALANCE

The state of the system is described by the vector

n = (!1.1' ,~)

where.!!m (nm1 , nm2 ,······, nmR )

Let T(!1.) be the total time during which the network is in state !1. during the
interval [O,T]. The time proportion for n is

and ~ p(!1.) = 1, where the summation is over all possible
n

n. Let ~ , .!! and ~ denote di stinct sys tern states, and 1et Q(!1.'~) be the number
of one-step (i .e. without passing through any intermediate state) transitions
observed from state !1. to state ~, with Q(!1.,.!!) = O. The Principle of Job Flow
Balance now implies the Principle of State Transition Balance:

The number of entries to every state is the same as the number of exits from
that state during the observation period:

~ Q(k,n) = ~ Q(!1.'~)
k --' m all !1.

Define the transition rate from n to m as follows:

Then the state transition balance equations can be written as

~ T(k) H (~,!1.)
k -

so that

~ p(k) H(k,n) = p(.!!) ~ H(!1.'~)
k - - - m

for all n for which each H(!1.,') is defined. Adding the normalizing condition
~ p(!1.) = 1 and noting that p(!1.) = 0 for those n not included in the above
n

balance equations, a unique set of p(!1.) will satisfy the equations.

Before attempting to solve the balance equations, we introduce the following
simplifying assumption about so-called 'one step behaviour': The only observable
state changes result from single customers either entering the system, or
exiting from the system, or moving between pairs of centres in the system with
accompanying class changes. This assumption implies that the 'neighbour'
states of state n are
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orn.-lr

njr
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(nIl'· ,n i r+1, ,mMR )
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i ,j
r,s

Then for all ~

p(n~s) H(n~s ,n) + !: p(n?r) H(n?r,n) + !: p(-onjrr ) H(--onjrr,~)
-1 r -1 r - i ,r -1 r -1 r - j , r

The first terms on the left and on the right correspond to customers making
(i ,r), (j,s) transitions; the second terms on the left and on the right
correspond to customers exiting the system from centre i; the third terms
on the left and on the right correspond to jobs entering the system at centre
j. Sums over i and j extend over 1, ... ,M; sums over rand 2xtend over 1, ... ,R.
For a closed system, the second and third terms on the left and on the right

are dropped, and q~~ is increased by q~~ . q~~ .

In order to solve the balance equations we now have to express the state transi­
tion rates in terms of measurable parameters. Consider, for example, the rate

H(n~s, n). This is approximated as follows:-lr -

H(n~s, n)-lr -

js
Q(~ir' ~)

T(d~)

Two major assumptions are made in this approximation. We shall comment on
that in Section 5. Following Denning and Buzen, we call these approximated
transition rates homogeneous rates and obtain the following.

Customer Transition

(i ,r) -+ (j,s)

(i,r)-+o

State Trans i ti on Homogeneous Rate

n~s -+ n H(n~s ,n) q~S Ijs/S;r(nir+I)-lr -lr - 1r
ir ir js

Ii/Sir(nir)n -+ njs H(.':!'.':!js) qir

n?r -+ n H(n?r,n) or
1r - -lr - qi/Sir(nir+I)

n -+ nir H(.':!,~~)
or

-or qir Iir/Sir(nir)
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n -;. n~r
-Jr

where Ii r
= [~ if n; r > 0

; f n; r = o.

Customer Trans;t;on

o -;. (j ,r)

State Trans; t; on Homogeneous Rate

H(~~,!!) X jr
Ijror qor

H(n,n~r) X jr
- -Jr or qor

The homogenized balance equations are now

L
; ,j
r,s

js I
q; r js

S;r(n;r+1)
+ L

i ,r
+ L

j,r
( jr)X jrI.

P!!or orqor J r

q~S I; r or I
L X jr 1pI!!) [i:i lr + L

q; r ; r
+

. or qor 1S;r(n;r) i , r s; r(n; r) J,r
r,s all n.

Consider the right-hand side:

js I or I M M R R q~S I; r
L

q; r ; r
+ L

q; r ; r
L L L L lr

; ,j S;r(n;r) ; ,r S;r(n;r) ;=1 j=o r=l s=l S;r(n;r)
r,s

M R I;r M R jsL L L L q;r
;=1 r=l S;r(n;r) j=o s=l

M R I.
L L lr

;=1 r=l S;r(n;r)

and M
LX L
r or j=l

LX
r or

The balance equations therefore reduce to

js I or
L p(n~s)

q; r js
+ L p(n~r)

q;r
L

jr X jr I.+ p(!!or) or qor; ,j -lr
S;r(n;r+1)

. -lr
S; r( n; r+1) j,r Jrl,r

r,s

all n.
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2.5 SOLVING THE BALANCE EQUATIONS

The solution of the balance equations is

347

p(.'!)

where

G is a normalizing constant, given by

M R
G L IT IT F. (n. ) , where the summation extends over all possible.'!.

n i=1 r=1 lr lr

Noting that

X. Sir(nir+l)lr p(.'!)
Xjs Sjs(njs )

Xir Sir(nir+l) . p(.'!)

1 p(.'!)
Xjr Sjr(n jr )

the above solution is readily verified provided that the Xir satisfy the job flow

balance equations. For closed systems, as we have seen, these equations do not

allow a unique solution. The analyst can, however, obtain a unique set of visit

ratio data and derive the Xir by means of an arbitrary normalization. Note

that the routing frequencies q~~ enter purely on the conceptual level and need

not be specified: properly measured visit ratios will automatically satisfy the

visit ratio equations.

For the purpose of general exposition, we have worked with stratified data and

obtained the general solution of the homogenized balance equations. In the

remainder of this paper we consider only load-independent service times and shall

assume that the network is closed, i.e. the total number of customers is fixed.

The load independent service functions are denoted by Sir which is the notation

used in Section 2.1 for the mean service time. In practice the analyst might
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have available only the mean service time parameters and will use them instead
of the load independent service functions. We discuss this aspect further in
Section 5. In the next section we

develop an algorithm to calculate the normalizing constant G;
discuss the calculation of network- and queue-descriptive measures and develop
appropriate algorithms.

3. CALCULATION OF THE NORMALIZING CONSTANT

The normalizing constant is defined as
M R n..

G(N,M,R) = ~ IT IT (X ij Sij) lJ
~ E S(N,M,R) i=1 j=1

where S(N,M,·R) {~= (nn,n I2 , .. · ,n 1R ,n21 ,· .. ,n2R ,· .. ,mMR)1

M R
~ ~ nij = N & nij ;;. 0 'd i ,j} .

i=1 j=1

Generalizing the approach followed by Buzen [BUZE731, we consider the following
function

g(n,m,r) ~

~ E S(n,m,r)

Then, for m > 1 it follows that

g(n,m,r)

where S(p,r)

n r v.
~ ~ IT (XmJ. SmJ') J g(n-p,m-l,r)

p=o ~ E S(p,r) j=1

r
{v = (v1,v2' ... ,v ) I ~ v

J
' =p,v

J
, ;;. O'd j},

- r j=1

Let h(m)(p,r) =
r

~ IT
~ E S(p,r) j=1

v.
(X . S .) J

mJ mJ

Then it follows (see [BUZE73]) that

h(m) (p,r)

with h(m)(p,l) p = 0,1, ... ,N; 'dm

Thus g(n ,m, r)

1 for r = 1,2, ... ,R; 'dm; h(m)(O,O) = 1, h(m)(p,O) = 0, p;;' 1.

n
~ h(m)(p,r) g(n-p,m-l,r)

p=o
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and the iterati ve calculation of G(N.M.R) is completed if we observe that
q v.

g( n, 1,q) = L [] (X lj SIj) J for any q ;;. 1
:y.. E S(n .q) j=I

so that g(n.I,q) g(n,I,q-I) + (X lq SIq)g(n-I.I.q)

with 9(n .1.1) (XlI
n n = 1,2 .....NS11) •

g(O.I,q) 1 \/q

In fact. this last calculation is unnecessary since

349

g(n,I.q) = h(I)(n,q) • q 1,2, ...• R
n = I.2 •...• N

Note that in order to calculate the normalizing constant G(N.M.R) we need only
calculate h(m)(p.r). m = 1•... ,M; r = I •...• R and p = I •...•N; g(n.m,R).
n = 1, ...• N; m = 2.....M; with g(n.I.R) = h(I)(n.R). n = O.I .... ,N .

Having calculated the normalizing constant. let us now consider the calculation
of various network-descriptive measures.

4. NETWORK-DESCRIPTIVE MEASURES

4.1 UTILIZATION

The utilization of centre i o by customers of class jo is defined as follows:

n. .
U. . L p(.!!). 'oJ o
'oJ o .!! E S(N,M,R) nio

& n. . ;;. 1
'oJ o

If we let io = M. jo R, it follows that

1 M R n.. nMRUMR L ( [] [] (X ij Sij) , J)
G(N.M,R) n E S(N.M.R) i=1 j=I nM

&nMR ;;. 1

1 N M R n.. 1L m L ( [] [] (Xij
S.. ) , J)

G(N,M,R) m=I n E S( N,M.R) i=I j=I 'J nM

&nMR=m
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1 N N-m 1 R-1 v.
1: m 1: ( 1: II (XM" sM" 1 J 1

G(N,M,R) m=l
m(XMR SMR)

p=o p+m
"!... E S(p,R-1) j=l J J

M-1 R n..
.( 1: II II lJ

~ E S(N-m-p,M-1,R) i=l j=l
(X ij Sij) 1

G(N,M,R)

N m N-m 1 ()
1: m(X S) 1: h M (p,R-1) g(N-m-p,M-1,R) .

m=l MR MR p=o p+m

4.2 AVERAGE QUEUE LENGTHS

The average number of customers of class jo at centre io is defined by

1: p(~) n..
~ E S(N,M,R) 10J O

& n. . ;;;. 1
10J O

and it follows that, for io M, jo = R,

G(N,M,R)

N m N-m (M)
1: m(XMR SMRl 1: h (p,R-1) g(N-m-p,M-1,R) .

m=l p=o

4.3 AVERAGE REQUEST THROUGHPUT RATE AT CENTRE M

Using the operational relation Uir = Xir Sir it follows that, having calculated
UMR , XMR = UMR/SMR ' the request throughput rate for class R customers at centre
M.

4.4 AVERAGE RESPONSE TIME AT CENTRE M

By Little's Operational Formula (see Section 2.1)

so that

4.5 CALCULATION OF DESCRIPTIVE MEASURES FOR REMAINING CLASSES AND CENTRES

So far we have calculated the main descriptive measures, viz. utilization and
average queue length, only at centre Mand for class R customers.
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The calculations for class r customers at centre Mfollow directly the lines set
out above, after classes have been renumbered to interchange classes Rand R-s,
s=I,2, ... ,R-I successively. Upon completion of the calculations for centre M,
the descriptive measures for centres M-I, ... ,1 are calculated by renumbering
the centres to interchange centres Mand M-p, p=I, ... ,M-I successively and
repeating the calculations described above for centre Mand class R, R-I, ... ,I.

5. COMPARISON WITH STOCHASTIC NETWORK MODELS

In [DENN77], Denning and Buzen gave an excellent discussion of the 1imitations
of operation analysis. Comparing the multi class model presented in this paper
with the traditional stochastic multiclass models, the following conclusions can
be drawn.

a. In operational network models no stochastic assumptions are needed - assump­
tions which normally cannot be validated or even substantiated. Only measura­
ble operational data are used and the assumptions made are intuitively appea­
ling. The model is conceptually simpler than traditional multiclass models:
the concept of customer class groups is used to describe main job classes and
its associated system job classes, in place of the usual concept of ergodic
subchains of a Markov chain.

Although interclass branching probabilities are used in deriving the balance
equations, only average service times and request throughputs (or visit
ratios) are needed on a per centre, per class basis. In order to use the
model, the analyst therefore has to extract only these quantities from the
workload/monitor data.

b. No assumption has been or need be made about the distribution of service times
at any centre.

c. No explicit assumptions are made concerning the type of service centre that
each device represents. In multiclass stochastic models, the analyst has the
choice of specifying the type of each centre and can choose between first­
come-first-served, processor sharing, infinite server and pre-emptive-resume
last-come-first-served service diciplines. We have, however, made serious
approximations in expressing the state transition rates in terms of measurable
quantities. In expressing the state transition rate

(and similarly for other state transitions) we

made two assumptions.
First. that

js
QC~.i r ,.!:.)

T(.!:.Js)
i r

i.e., that the rate of state transitions from .!:.~~ to.!:. equals the rate at
which device i throughputs class r customers, when the number of class r

customers equals nir+l, which immediately go to device j as class s customers

irrespective of the number of class s customers already at device j. This

is analogous to the assumption of 'device homogeneity' of Denning and Buzen

[DENN7~ . Second, that
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C~~ (n ir+1) equals q~~Cir(nir+1). By definition, q~~ nfo Cir(n) = nfo c~~(n)

and we are assuming that q~~ Cir(n) = c~~(n) for all n, i.e., the routing
frequencies are independent of the state of the system (but may depend on the
total load N). This is analogous to the assumption of 'routing homogeneity'

[ DENN781 .

d. In Section 2.5 we noted that the analyst would often replace the load dependent

service functions Sir(n) by Sir' the overall mean service time for class r
customers at device i. When this approximation is used in the calculation
formulae we are implicitly assuming that the request completion rate for
class r customers at centre i is not influenced by customers of other classes
at centre i. In effect, device i behaves as if it consisted of R parallel
virtual servers, one for each customer class.

6. CONCLUSION

An operational treatment of multiclass networks was presented and computational
algorithms derived for obtaining network descriptive measures. The discussion
was limited to networks with one class group. The inclusion of more than one
class group presents no problems and results for this more general case can be
readily obtained. Computational experience with the model seems to indicate
that compared with BCMP results, utilizations are predicted with an absolute
error of 2-5% and queue lengths within 5-20%.
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1. INTRODUCTION

Queueing network models in which the solution for state
occupancies p(n) [the proportion of time the system spends in state
n] are of the product form lead to very fast algorithms for
computing performance metrics [BALE77 , BUZE73, DENN78, RETS75,
REIS78]. Stochastic queueing network models satisfying the BCMP
theorem [BASK75] are of this kind. So are homogeneous operational
queueing networks, in which the on-line behavior of every device is
the same as its off-line behavior [DENN77, DENN78]. The fast
algorithms make product-form queueing network models very useful
even when all the assumptions are not eKact.

EKact solutions for p(n) in nonhomogeneous systems are
computationally slow. In principle. one can use COK'S method to
approximate each device, with arbitrary precision. as a group of
"stages". One can then write a set of balance equations among
quantities like p(n,m), where n is an apportionment of the jobs
among the devices-and m is a vector specifying the stage of service
currently in progress at each device. Gauss-Seidel elimination, one
"f the most efficient solution techniques known for such equations.
often runs for a considerable time before converging on a solution,
especially if the coefficient of variation between departures for
some device is high.

To avail themselves of fast solution techniques, analysts
prefer to work with a product-form model that approKimates the real
system. A number of successful approKimations have been discovered,
but little is known in general about their errors.

The first result of this paper is that there exists a product­
form queueing network model in which the marginal queueing
distribution of each device is identical to that of a given
arbitrary general queueing network. We call this the homogeneous
equivalent model (HEM) of the given general queueing network. This
result suggests that the product-form model is not the fundamental
limitation of approKimations; parameter estimation is the limit.
The paper also describes a numerical study comparing three methods
of approKimating the equivalent model: load independent devices,
load dependent devices whose service functions are the ones measured
on-line in the real system, and the eKtended product form (EPF).

The experimental part of this investigation complements and
eKtends prior work by other authors -- e.g., CHAN75, CHAN78, GELE75,
GELE76, SAUE75, SEVC77, and SHUM76. We omitted the diffusion
approKimation [GELE75, GELE76, KOBA74] because it is outside the
conteKt of product-form queueing network models. We omitted
approKimations based on the Chandy-Herzog-Woo theorem, which already
have been well studied elsewhere [CHAN75, CHAN78, SAUE75]. We also
omitted Kuhn's method of accounting for noneKponential devices
because it too is not based on product-form queueing networks
[KUHN76]. The contributions of this eKperimental study are a) a
comparison of the effects of the coefficient of variation (CV) on
various approKimations for utilizations and mean queue lengths; b)
an evaluation of the relative importance of backlogs caused by
bottlenecks or by high CVs; and c) a study of on-line and off-line
behavior of devices.



HOMOGENEOUS APPROXIMATIONS OF GENERAL QUEUEING NETWORKS

2. FORMAL PROBLEM STATEMENT
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A product-form closed queueing network with N jobs and M
devices has states n = (n"n2' ... ,nM) where N = n,+n2+"'+nM' The
proportion of time-state ~ is occupied is given by the product form

where G is a normalization constant and F I is a "device factor":

where VI.the visit ratio, is the mean number of visits to device i
per job, and SI(n). the service function of device i, is the mean
time between completions conditioned on the queue length being n.'
If device i is load independent with mean time between completions
SI' its device factor is FI(n) = (VISI)n. The queueing distribution
at device i is defined as

Pi (n) =
~' ni=n

The question of primary interest here is: Does there exist a
choice of service functions {SI(')} for which the PI(n) calculated
in the model are identical to the Pi(n) observed in the real system?
Such service functions define the equivalent homogeneous devices
corresponding to the real devices. We will exhibit a fast,
iterative method for computing these equivalent functions. We will
then compare approximations in terms of the {Si(')} they generate.

q,o=O.l q'2=O.7 I/O

2

CPU 8 2=40ms.

8,=28ms. I/O

q,.=O.2 3

S.=280ms.

Figure 1- Example network

, The service function of device i is defined operationally as the
ratio 8 1(n) = T1(n)/C1(n), where Ti(n) is the total time during
which device i is observed to have a queue of length nand C1(n) is
the total number of service completions observed when the queue
length is n. Note that l/S I (n) is the device's output rate observed
relative to time intervals in which queue length is n. Note also
that SI(n) need not be constant even if the device contains a
single. load independent server [DENN78].
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To illustrate the homogeneous equivalent service functions and
their approximations, we used a simulator of a central server
network (Figure 1, with one CPU and two I/O devices) to generate
behavior sequences. These sequences were interpreted as
observations of a real system. The network is closed with N jobs in
it for N=6. (No significant changes in the results were observed
for N>6.) Except when we note explicitly otherwise, the simulations
used exponential service distributions (CV=1) at the two I/O devices
and either hyperexponential service (CV>1) or Erlangian service
(CV<1) at the CPU. All three devices were single servers.

Busy times and completion counts for each device at each queue
length (0 ~ nl ~ N) were measured from the observed behavior
sequence and used to calculate the visit ratios {VI}, the queue
length distributions (Pl(n)}, the on-line service functions {SI(n)},
the utilizations {U i }, and the mean queue lengths {fil}' These
measurements were repeated for a variety of combinations of the CVs
of the three devices. This allowed us to study the effect of
several high CVs on the errors arising from various approximations
to the homogeneous equivalent service functions.

The box below summarizes the three product form approximations
which will be compared later in the paper.

CODE

HEM

HLI

HLD

EPF

DESCRIPTION

Homogeneous model equivalent to real system.

Homogeneous Load Independent Model; the mean
service times of devices match those
measured on the real system.

Homogeneous Load Dependent Model; the
service functions match the on-line service
functions observed in the real system.

Extended Product Form model for a network of
load independent servers; the mean and CV of
the service distributions match those
measured on the real system.

4. CAUSES OF NONHOMOGENEOUS BEHAVIOR

The coefficient of variation (CV) of a random variable is the
ratio of its standard deviation to its mean. A large amount of
variation in the times between service completions at a device will
cause the device's on-line service function to differ from its off­
line service function.

Consider a single-server device (i) with high CV in its
distribution of service requests. When observed off-line under any
fixed, nonzero queue length (n). the mean time observed between
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completions (SI(n» will always be the mean (SI) of the request
distribution. But when device i is on-line. there will be long
requests that block large numbers of short ones. causing long
departure times to be correlated with long queue lengths i.e ••
SI(n) will tend to increase in n. 2

Figure 2 depicts the on-line service function SI(n) of the CPU
in the network of Figure 1, for various values of the CV of the CPU
burst distribution.

This figure confirms the above intuition: the higher the CV the
stronger the tendency for SI(n) to increase with the queue size n.
The high CV can, like a bottleneck. generate a backlog at a device.
The line corresponding to CV = 1 is close to the off-line service
function, which is constant at 28 msec.

For small CV (requests nearly all of the same size) there is
only a weak tendency for a long queue to build and, hence, the
service function will decrease as queue length increases. Figure 2
shows that this decrease is nowhere near as severe as the increase
wrought by high CV. Indeed, our experiments (described later) show
that very small CVs do not cause much error in the approximations
made by product-form models.

Figure 3 shows the on-line service functions of the two
(exponential) I/O devices of Figure 1. The presence of the high CV
at the CPU has a marginal influence of no consistent pattern on the
service functions of these other devices. This is not surprising
since exponential servers are homogeneous.

The high CV in a device's output process causes the on-line
service function to differ from the off-line because long request
will block large numbers of short requests. It follows that a
device .with a high degree of internal parallelism can mitigate this
effect by providing alternate paths on which short requests can
bypass a long one. Three examples of such devices are the infinite
server, the processor-sharing server, and the last-come-first-served
server of the BCMP Theorem [BASK75]; these kinds of devices exhibit
the same service functions on-line as they do off line and, hence,
they are homogeneous.

An arbitrary subsystem can be approximately homogeneous
relative to its environment if it allows a high level of concurrency
among jobs inside it. In this case, long jobs cannot effectively
block groups of subsequently arriving short ones and, consequently,
the on-line and the off-line behaviors will be similar. A study of
the Purdue MACE System confirms this; it revealed that the CV of
time between completions of jobs in the same time sharing workload

An extreme case will illustrate this intuition. Suppose that the
N jobs of a closed system have CV=N-2 at device i. It can be shown
that one job must require at least (N-1)S\ sec. at device i and the
others collectively require less than SI sec. there. If. at time t,
the long job leaves behind in the queue of device i the N-1 short
jobs, then all N jobs will leave device i in the interval [t,t+S\]:
if the response time of the rest of the network is not too large,
then all the short jobs will re~urn to join the queue behind the
long one. In this case the high CV at device i forces the frequent
recurrence of the state in which all jobs are present at device i.
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was 1.06, whereas the CV in the total CPU requirement wa~ 2.15.

It is tempting to conjecture that using the actual on-line
service functions as parameters to the product form solution would
cause the product form to be exact. It will be evident from our
numerical studies that this is not so. (Thus, the homogeneous
equivalent service functions differ from the on-line service
functions.)

5. EQUIVALENT HOMOGENEOUS NETWORK OF QUEUES

The objective is to calculate service functions {SI(n)} which,
when used in the product form solution, lead to the same values of
{Pi(n)} as observed in the real system. Each resulting S,(n) is
interpreted as the service function of a homogeneous device
equivalent to device i in the real system.

The idea of replacing homogeneous subnetworks with equivalent
devices is not new; it is the basis of equivalence and decomposition
approaches used by Brandwajn [BRAN74, BRAN77] and by Chandy, Herzog
and Woo [CHAN75]. The new aspect of our result is that a
homogeneous equivalent for an arbitrary queueing network exists.
This result demonstrates that homogeneity is not the inherent
limitation of product-form queueing network models. The errors
arise in parameter estimation, particularly the queue-dependent
service functions of devices.

The definition of the normalizing constant G in the product
form expression for p(~) is

G g(N,M) E
~eS(N,M)

where S(N,M) is the set of all M-component vectors whose nonnegative
elements sum to N, and F1(nl) is the factor for device i. The
proportion of time during which ny=n can be written as

py(n) E p(~)
neS(N.M)

ny=n

Fy(n) M-l
E n F1(nl)

g(N,M) ~eS(N-n,M-l) i=l

g(N-n,M-l)
Fy(n)

g(N.M)

Because Fy(n) = VyS y (n)Fy (n-l), this reduces to an expression for
the homogeneous equivalent service function of device M:

g(N-n+l,M-l)

g(N-n,M-l)
n=l •... ,N ,

This expression can be written in the form of a balance equation
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PN(n-1}~(n-1}, where

g(N-n.M-1}

g(N-n+1,M-1}

is the arrival rate to device M generated by the remainder of the
network.

Figure 4 shows the algorithm for calculating the homogeneous
equivalent service function. It iteratively improves trial
functions until the error between trials functions becomes small. A
component of the algorithm is a queueing network evaluation routine.

for which {V t } are the visit ratios. (St(n)} are the trial service
functions. and j is a "distinguished device" (1 ~ j ~ M). QN
reindexes the devices so that j corresponds to the last column of
the matrix g(','} and then executes the standard algorithm [BUZE73]
until the M-1st column of the matrix g('.'} is filled. QN returns
an array G[O •...• N] such that G[r] ~ g(r,M-1) • r=O, ... ,N.

Steps 3 and 4 in the algorithm iterate until there is no
significant further change in the trial {St (n}}. (In the cases we
studied. two iterations of Step 3 the model yielded estimates of the
metrics of the real system to one significant digit of accuracy; ten
iterations of step 3 gave three digits of accuracy.) Step 5 ensures
that the throughputs of the equivalent network match those of the
real system.

The algorithm works for the following reasons. First, there is
a unique set of {St(n}} whose throughputs match the real system and
which generate the original {Pl(n}}. The existence of these {Si(n}}
is guaranteed by the equation used in Step 3.2.1. An examination of
the product form solution for pen} shows that changing any proper
subset of the values (Sl(n): all i and n} would change the speed of
some part of the system relative to others; this would cause
relative changes in queueing and hence in the (Pl(n)}. contradicting
the supposition that {Sl(n}} are the equivalent functions. Second.
the equivalent network has the same topology as the original system.
Therefore. its throughputs {Xl} obey to the throughput equations of
the real system. This means that the throughputs of the model after
Step 4 are correct to within a constant. Step 5 scales all the
service functions to cause the model's {Xi} to match those of the
real system. (Scaling all the (Sl(n)} by the same factor does not
change the (Pl(n}}.) Thi~ convergence is assured because, in
closed networks. the global effect of changing a parameter is less
than the change itself [WILL76].

Figure 5 compares the homogeneous equivalent service functions
with the actual on-line service functions of the CPU in the network
of Figure 1. Notice that the homogeneous equivalents are relatively
flat for O'~ n ~ N-1 with a sharp rise for n=N; the service-time at
n=N is higher for larger CVs. Figure 6 shows the homogeneous
equivalents for the two I/O devices in Figure 1; even though they
are exponential. their equivalent functions depend on the load.
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INPUT;

OUTPUT:

N. M. T. fe(i'l, IV(i'I, (p,(.'} } i=l •...• M

n=l •...• N

ALGORITHM;

1. As an initial trial service function for each i. use
the overall mean time between completions (T is the
total observation time):

n=l •...• N.

2. Initialize error measure: E:= O.

3. For j=l •... M do: (for each device)

3.1. Calculate G;= QN({Vd.(Sj(n)}.j)

3.2. For n=l •.... N do: (for each queue length)

3.2.1. Calculate new trial service
function value

y
P J (n) G[N-n+l]

G[N-nl

3.2.2. Aggregate the squared error

E := E +

3.2.3. Update the service function

Sj(n) := Y

4. If' E > desired e. repeat from Step 3.

5. (Ensure throughput constraint.)
1 N

Let a = E Pl(n)!Sl(n). where X(l) = C(l)!T.
X(1) n=l

Scale by replacing each Sj(n) with Sj(n)!a.

Figure 4.
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6. EXPERIMENTAL STUDIES

Because there is no known direct measurement of the real system
that will yield the homogeneous equivalent service functions, we
conducted a series of experiments to see how well models based on
easily measured quantities approximate the equivalent service
functions. The easiest approximation replaces each function SI(n)
with the overall mean service time, (T-TI(O»/C I : we called this the
homo eneouS load inde endent (HLI) model A second approximation
puts each S, n) equal to the actual on-line service function; we
called this the homo eneOus load de endent (HLD) model. We also
studied the extended product form EPF) of Shum and Buzen. which has
given good results elsewhere [SHUM76, SHUM77l: the EPF incorporates
explicitly the CV of each device's service distribution. The three
approximations were evaluated by comparing calculated utilizations
and mean queue lengths of devices with the corresponding values
measured in the behavior sequences of the simulated system.

6.1. HLI Approximation

In this series of experiments we used the simulator to generate
behavior sequences for values of the CPU's CV ranging from 0 to 10.
For each sequence and for each device we measured the overall mean
times between completions {SI} and the visit ratios (VI}, which we
then used as the parameters for the product-form load-independent
queueing network evaluator.

Figure 7 compares the actual utilization of the CPU with the
values obtained from the HLI model, and displays the relative error
between the HLI estimate and the actual value. Since the the same
{VI} and {Sil were used in all the behavior sequences. the
utilization ratios are independent of the CV [DENN78l:

Therefore the utilizations of the I/O devices are scaled versions of
the CPU utilization: the relative error between the HLI
approximation and actual utilization is the same for all devices.

The HLI model consistently overestimates the utilizations when
the CPU's CV > 1. This is because, first, the utilizations are
constrained to be in fixed ratios. and, second. the high CV caUses
jobs to backlog at the CPU which in turn lowers the utilization of
the I/O devices.

For utilizations, the HLI model has very small error when 0 ~

CV ~ 2, but its errors may exceed 10% as soon as CV ~ 6. A separate
series of experiments with all the CV = 0 also showed that the
model's estimates of utilizations are correct within 3%.

Figure 8 compares the means of the queue lengths estimated by
the HLI model with the actual means. The errors are zero when CV =
1 because, in the simulations used to generate behavior sequences,
the CPU's service distribution was exponential (and therefore
homogeneous) when CV = 1. The HLI model is much less robust in
estimating queue lengths than it is in estimating utilizations: in
this case, for example, its estimates of n, are accurate to within
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10~ only for 0.5 ~ CV ~ 1.8.

As noted in Section 4, the high CV can generate a backlog at a
device. But the only kind of backlog representable in a load­
independent model is the standard bottleneck. such as device 3 in
our example. The high CV transfers some of the backlog from device
3 (I/O) to device 1 (CPU). This explains why the HLI model
overestimates the queue at device 3 and underestimates it at device
1. (Since device 2 causes no backlogs. the HLI model estimated its
queue length well.)

To study how CV-induced backlogs can compete with or reinforce
bottleneck-induced backlogs, we ran a series of experiments using
progressively higher values of mean CPU time (51) with the CPU's CV
held fixed at 5.0. The results are shown in Figures 9 and 10.

Figure 9 shows, as in Figure 7, that the HLI model consistently
overestimates utilizations no matter what device is the bottleneck.
Figure 10 shows, as was noted above, that the HLI model model
consistently overestimates the queue length at the bottleneck, even
if the bottleneck is also a device of high CV. In our example, SI =
56 msec causes balance between the CPU and the I/O device; at this
point U1 = Us and the two devices are of equal importance as
bottlenecks. For 51 < 56 msec, device 3 (I/O) is the bottleneck
while for SI > 56 msec device 1 is the bottleneck.

Of special interest in Figure 10 is that the HLI model is
nearly exact at the point where the two dominant devices of the
system are balanced (U 1 = Us). This is consistent with a suggestion
by Courtois [COUR77, pp 83 ffl, who argued that balanced devices
tend to be more decomposable than unbalanced ones -- thus conforming
more closely to the homogeneity assumption. s However, the HLI model
gives about 15~ overestimate in the CPU utilization at the balance
point. The relations among bottlenecks, decomposability, and the
accuracy of the HLI model are, evidently, interesting subjects of
further research.

6.2. HLD model Approximation

Figure 5 showed large difference between the CPU's homogeneous
equivalent service function and the actual service function measured
on-line. Our experimental study revealed that these differences
cause significant errors in estimating utilizations and mean queue
lengths by the load-dependent model (LDM).

Because a high CV at the CPU can caUse a backlog there, we
expect that system states

account for progressively larger proportions of state occupancy when
the CPU CV increases. We found that, indeed, p(N,O,O) grows with
the CV, but that the HLD model seriously overestimates p(N,O,O).
Figure 11 confirms the tendency of the HLD model to overestimate the

It is also interesting that the M/M/1 formula for mean queue
length, fi = U/(l-U), is nearly exact at the balance point, where U
is the actual utilization of the device.
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backlog at the device of high CV. The states are ordered according
to decreasing likelihood of being observed in the system with N = 6
and CV = 5. The state actually occupied the largest portion of time
is (0,0,6) -- reflecting that device 3 is the bottleneck. The state
(6.0.0) is actually occupied only about 1/3 as often as (0.0,6)
showing that the bottleneck is more important than the backlog
caused by high CV. In contrast, the HLD model also estimates that
states (5,0,1) and (5,1,0), corresponding also to CV-induced
backlogs. are more likely than in actuality.

The conclusion is that the HLD model, which uses the on-line
service functions attaches far too much importance to backlogs
induced by high CV. Backlogs caused by bottlenecks are more
important. Because the on-line service function has a shape similar
to the homogeneous equivalent service function (See Figure 5), it is
possible that a scaling transformation could construct a good
approximation to the homogeneous equivalent starting from the on­
line function. However we have not investigated this possibility.

Other experiments showed that the HLD model estimated
utilizations with almost no error as long as 0 ~ CV ~ 2. However
the utilization errors rapidly multiplied for larger CVs. reaching
10~ at CV=3 and 40% at CV=10. The HLD model estimated CPU mean
queue length to within 10% only for 0 ~ CV ~ 1.5. Only when the CPU
was the bottleneck did the HLD model give accurate results. The
overall conclusion is that the HLD model is less robust than the
simpler, HLI model.

6.3. EPF Approximatio~

In 1976 Shum and Buzen reported an approximation called the
extended product form (EPF) [SHUM76, SHUM77]. They noted that the
device-factors {Fi(n)} in the product form expression for p(n) are
proportional to the queue length distributions {Pi(n)} in an M7M/l/N
queueing system. This insight suggested instead substituting for
the (Fi(n)} the solution of an M/G/l/N queueing system. By thus
incorporating the CVs of the service distributions of the devices
into the calculations, this would increase the accuracy of the
approximations. A few trial cases suggested that the EPF
approximation could estimate actual utilizations and mean queue
lengths to within 5~ even for CY = 10.

We constructed a version of the EPF algorithm, It is possible
to derive service functions (SI(n)} as they would be in an M/G/l/N
queueing system, thereby viewing the EPF approximation as another
method of estimating the homogeneous equivalent service functions.
However, it being more convenient to adopt Shum and Buzen's method
intact, we did not explicitly calculate (SI(n)} for the EPF.

As specified by Shum and Buzen, the EPF approximation is
computationally difficult to use. The reason is that the {SI(n)}
corresponding to the M/G/l/N queueing system depend on the absolute
values of the arrival rates {Ail at the devices. Since, in a closed
network, the {Ai} are not known initially. it is necessary to search
the space of all {Ai} satisfying the throughput equations of the
system until a set {AI} is found for which the completion rate of
each device i is also AI'

We found instances of the network of Figure 1 in which all the
devices had high CYs, and the EPF algorithm could not find a
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solution. We have since discovered a
convex error function, which converges
test cases. (It is the subject of
approximation estimates utilizations
lengths to within 10~ for all CVs.

modified EPF. based on a
rapidly to a solution in all
another paper.) The EPF

to within 5~ and mean queue

Figure 12 illustrates the CPU's utilization (U 1 ). as estimated
by EPF and in actuality, for 0.6 ~ CV ~ 10. The maximum error is
5~. Similar behaviors were observed for U2 and Ua , with EPF
underestimating consistently and within 5~.

Figure 13 illustrates the mean queue lengths, as estimated by
EPF and in actuality, for 0.6 ~ CV ~ 10. The max.imum error in any
queue length is 10~, and the error lessens for very high CVs.

The conclusion is that EPF is indeed a robust approximation.
but slightly less so than one might expect from reading SHUM76 or
SHUM77. The major present limitation is that the published versions
of the EPF algorithm may not converge if all devices have high CVs.

7. CONCLUSIONS

We have shown that there exists a product-form queueing network
whose marginal queueing distributions are identical to those of a
given arbitrary queueing network. A straightforward algorithm
rapidly computes the service functions of the equivalent devices
when the queueing distributions {Pi(n)} are given. This result
suggests that the fundamental limitation of queueing network models
is not the homogeneity assumption, but rather the inability to
estimate the service functions accurately.

The homogeneity assumption asserts that a device's service
function measured on-line will be the same as when the service
function is measured off-line under constant load. By causing a
backlog at a device, a high coefficient of variation (CV) can
destroy the homogeneity assumption for that device, producing an
error between the product-form model's estimates of utilizations or
mean queue lengths and the true values.

Possibly the simplest approximation results from the
homogeneous load independent (HLI) model, which sets each Si(n) to
the overall mean service time (Si) for each value n of the queue
length. Our experimental study showed that this model's estimates
of utilizations were consistently h1gh and accurate to within 15~

for a range on the CPU's CV from 0 to 10. However, this model's
estimates of the mean queue length can be significantly in error
(e.g. 40%) when the CPU's CV is high. In our study the HLI model
was a good estimator « 10%) of utilization when 0 ~ CV ~ 6 and for
mean queue length when 0.5 ~ CV ~ 1.8.

The location of the system bottleneck -- at device of high CV
or elsewhere -- does not significantly affect the HLI model's
(over)estimate of utilization. However, if the devices likely to
generate backlogs -- either because of bottlenecks or high CVs
are in balance (approximately equal utilizations), the HLI model
seems to estimate mean queue lengths with very low error. This
seems to be consistent with Courtois's argument that balanced
systems are more decomposable (~nd hence more homogeneous) than
unbalanced ones. The relations among balance, backlogs, and HLI
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model accuracy are worthy of further investigation.

371

An approximation suggested directly by the definition of
homogeneity is the homogeneous load dependent (HLD) model, whose
service functions are the ones observed on-line in the real system.
This approximation gives much poorer results than the on-line = off­
line intuition leads one to expect. The reason is that this model
attaches far too much importance to backlogs caused by high CV, and
too little importance to backlogs caused by bottlenecks. In
reality. "bottleneck backlogs" appear more influential than "CV
backlogs". The similarity of shape between the on-line and the
homogeneous equivalent service functions suggests that there may
exist simple scaling transformations that estimate the latter from
the former.

The extended product form (EPF) approximation (in effect)
constructs estimates of service functions by using the solution of
the M/G/l/N queueing system. This permits both the mean and CV of a
device's interdeparture times to be used in the calculation. The
drawback of published implementations of the EPF approximation is
their searching the space of solutions to the system's throughput
equations; this search is slow and may not converge if too many
devices have high CVs. When the EPF algorithm does locate a
solution, it usually estimates utilizations to within 5% and mean
queue lengths to within 10%. Its minimum error occurs for small CVs
(0.6 ~ CV ~ 2) or very large CVs.

Figures 14 and 15 compare these approximations for the example
studied in this paper.

There remains the question of how important the more
sophisticated approximations are in practice. In the Purdue Time
Sharing Subsystem, for example we observed the CVs shown in Table 1.

Table 1

RANDOM VARIABLE

Times between job submission
from all terminals

Times between job completions
by central computing subsystem

Total CPU requirement per job

CV

1.16

1.06

2.15

These CVs are sufficiently low that the HLI model can be
sufficient accuracy. Many subsystems contain sufficient
as to rule out the possibility of observing a high CV in
between their job-completions.

used with
parallelism

the times
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A STUDY OF FLOWS IN QUEUEING NETWORKS AND

AN APPROXIMATE METHOD FOR SOLUTION

G. Pujolle and C. Soula
IRIA-LABDRIA

78150 Le Chesnay
France

A new approximate approach to study open single
or many server queueing networks is introduced
here. The method is based on a theoretical study
of the nature of flows to be Poisson or not, in
a Jackson network.

I NTRODUCTI ON

The performance of computer systems and data networks are often studied using
queueing networks. Unfortunately as soon as the network in somewhat complex, the
exact methods no longer exist and we need for accurate approximate methods. Present­
ly, we have three types of such methods: iterative techniques [lJ [2J, diffusion
techniques [3J [4J [5J, isolation techniques [6J [7J. Our purpose here is to propo­
se a new approach to study open complex queueing networks with single or many ser­
vers queues of the type G/G/s.
As we shall show it in the first section, queueing networks are very complicated to
study when a customer can go through a station more than one time. This fact implies
that even as in a so simple network as Jackson queueing systems, only some flows
possess the Poisson property.
In particular we derive the characteristics of the input, output, feedback and de­
parture processes of exponential queues in series, with a Poisson external arrival
process and a global feedback. We show that input process and output process are
identically distributed and different of a Poisson process. If n queues are in tan­
dem a recursive formula is given to obtain these distributions.
By a decomposition technique we can predict the property to be Poisson or not of
flows in a Jackson network.
As the main approximation in studying queueing networks comes from customers which
can go through a station more than one time, we propose a new approach, in avoiding
fedback customers. For this, we decompose the network in sub systems characterized
by the fact that queues i and j belong to the same sub system if it is possible to
go to i from j and to j from i. The only streams which do not possess fedback custo­
mers are inter sub network flows.
Then, each station of a sub network is studied in isolation considering that a cus­
tomer entering the sub network goes through each station at most one time. We obtain
mean number in station and response time for each queue, using an appropriate formu­
la obtained by comparisons of available GI/G/l expressions. The method is extended
to take into account stations with many servers. The accuracy of the new method is
shown using comparisons with results of simulations on some queueing systems.
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- S( t)

- R( t)

MIMII QUEUE WITH BERNOULLI FEEDBACK

The model and notations

. l ~ p=l-q
-L..L.:----,II'T"II....I~

Figure 1

The problem to be studied is illustrated in figure 1.

The arrival process is Poisson with parameter \. The queueing discipline is FCFS
(first come, first served) and the service process is also Poisson with parameter
U. Upon completion of a service, the customer engages a Bernoulli switch: with
fixed probability q, he leaves definitively the system, and with probability p=l-q,
he rejoins the queue. The feedback is assumed instantaneous. We denote the traffic
intensity by p = ~.uq
Service completions will be called "outputs". Exits from the system will be called
"departures". Similarly, "inputs" and "arrivals" will be the moments when customers
join the queue and enter from outside respectively.

In this paper, we adopt the following notations:

- A(t) : distribution function of the interinput times. Let us introduce the
L.S.T (Laplace Stieltjes Transform)

a(s) = Joo e-st dA(t)
o

distribution function of the inter departure times

distribution function of the interfeedback times with

. Joo -str(s) = 0 e dR(t)

- B(t) = 1 - e-ut and 5(s) = .u­u+s

The input process

This problem has been studied by P.J. Burke [8J.

The distribution function of interarrival times is 1 - e-\t. Let t be the time of
any input, and let G(t) be the probability for the only customer t8 arrive between
times to and to+t to be a fedback customer.

Then we can write

(1) 1 - A(t) = e-\t[I-G(t)J

and if we use the L.S.T; (1) can be transformed to

(2) a(s) = \:s [1 - 9(\+S)J + 9(\+S)

if we denote g(\+s) roo e-(\+s)t dG(t)
o
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Now, we have to compute g(s).

Let n(i) the equilibrium probability of state i, just before to.

It can be showed (see Burke [8J, Disney [9J), that n(i) = pi(l_o).

Let us denote n(~ i) = ~ n(j) = pi.
j=;

Using the fact that there is no arrival before the next feedback and using the
value of n(~ i), we get:

9(S) L n(~ i) pqi [b(s)J i+1
i =0 .

Therefore

(3 )

and we find

from (3) we obtain:

g(A+s) = lli.ll+S

Substituting the expression of g(A+S) into (2) yields

or

(4) ~ ( s) = I!.!!... L + ll...9.:2; .1­
ll-A ll+S ll-A A+S

note that the input process is not Poisson.

(5)

We have to

then, if we take the inverse transformation

IA(t) = 1 - lli. e- llt _~ e- At I
. ll-A ll-A .

Disney and McNickle [9J show this process is not even a renewal process

The departure process

We analyse the departure process by the following substitution: a customer service
time is replaced by the addition of the service times of all his successive returns.

Let B*(t) the p.d.f (probability distribution function) of the equivalent service
time. L. Takacs [10J shows the result

B*(t) = 1 - e-llqt

therefore, the p.d.f of the interdeparture times is :

S(t) = n*(o) r
t

(1 - e-A(t-x)) dS*(x) + (1 - n*(o))S*(t)
·0
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when 1I*(i) is the stationnary probability of state i, in the equivalent system, but
we know (see [8J, [9J) that the distribution of the queue size is the same for both
systems, then : 1I(i) = 1I*(i), Finally we get:

]S(t) = 1 - e- H [

As the departure process is renewal [25J, it is a Poisson process.

The output process

Let us now, examine the distribution F(t) of the times between two completeness of
service, Such an interval is equal to a service time except when the queue becomes
empty, •
We denote by f(s) the L.~.T of the interoutput times.
Therefore, the function f(s) is

f(S) = 11'(0) \~S (s) + (1 - 1I'(0))b(s)

where, 11'(0) is the probability for the queue to be empty just after an output. And
Disney 01 J proves the result 11' (0) = 1I(0)q q[1_...lJ then we getuq

!f(S) - ~ ~ +~ ~I
SO, we see that the interinput times and the interoutput times have exactly the
same distribution (an hyperexponential distribution). This result was pointed out
by R.L. Disney and D.G. McNickle [llJ. Moreover, it is shown by Foley [28J this
process also fails to be a renewal process.

The feedback process

A complementary result is the L.S.T of the interfeedback times. We know that just
after a feedback time the queue is in state i with the stationnary probability
1I(i-1) ([8J ). Then, conditionning upon the number of customers in queue we can
write

r(s) = L 1I(i-1)a(i)
i =1

where a(i) is the L.S.T of interfeeback times knowing that the queue is in state i.
We use an iterative technique to compute the function a(i). The time of the first
event after the feedback is the lower of the first arrival and the first output. So

the L.S.T of this time is \~~¥s' With a probability \~u (resp. ~) this event is
an arrival (resp : a departure) and now the queue is in state i+1 (resp : i-1), and

wit~ a probability X£u this is a feedback. Then we have

a(i) =~ [~a(i+1) +~ a(i-1) + ~J > 0\+u+s \+u \+u \+u

\
a(o) = \+s a(l)

This can be seen as an application of the strong Markov property,
We write these equations as follows:

(6)

(7 )

(\+u+s)a(i) = \a(i+1) + uqa(i-1) + uP

(\+s)a(o) \a(l)

i > 0

Using 1I(i) 01l(i-1) and (7), the summation of (6) for i=l to. 00 after multiplica-



A STUDY OF FLOWS IN QUEUEING NETWORKS

tion by n(i-l) yields:

(8) (~p+s)r(s) = ~p - ~ s n(o)a(o)

Now. we have to compute a(O) :

Setting a(i) = S(i) +~ in (6), we get the following equation

(\+~+s)S(i) = \6(i+l) + ~qS(i-l) i ~ 1

and a solution of this last equation is

379

(9) 6(i)=ap~

where PI' is the lower root of the equation

\x2 - (\+~+s)x + ~q = 0

(for more details see [27J).

Now, using (7) and (9), we deduce the system

a(o) = a + ...l!IL
~p+s

\+s () ...l!IL-r- a 0 = aPl + ~p+s

So. the L.S.T ~(s) is entirely determined. We have

(10)

Thus the feedback process is not a Poisson process. This is a new result. However it
is not known. if the feedback process is a renewal process.

RESULTS FOR TWO QUEUES IN SERIES

The two tandem queues system with feedback is illustrated on figure 2

.L ~P'l-q

\~_--LL".......II r-Dr--==TIIIITIIIr-o---J4-
~1 ~2 II

Figure 2

The service time~ of the first server are distributed exponentially with parameter
~1 and L.S.T is b1(s); those of the second server are exponential with paramete ~2

and L.S.T is b?(s). A(t) is again the interinput distribution (mark I. on figure 2)
and F(t) is th~ interoutput distribution (mark II. on figure 2), the equality (1) :
1 - A(t) = e-H

[1 - G(t)J. is still true. whatever the number of tandem queues. In
the same way, since the departure process is still a Poisson process with parameter
\, we have symmetrically:

1 - F(t) = e-\t[1 - H(t)J
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Using the L.S.T we obtain
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(11 )
• A • -
f(s) = A+S [1 - h(A+s)J + h(A+s)

where h(A+S) = J: e-(A+S)t dH(t)

And from (11) we get: •

h(s) = sf(s-A)-A
S-A

Now, we shall see (in part III) that the L.S.T f(s) can be easily found for n
tandem queues. For n=2. we have

A'· •• •
f(s) = (I-Pl)(I-P2)qA+sbl(s)b2(s)+(I-P2)bl(s)b2(s)(P+qPl)+P2b2(s)

setting p. = ...l., (i=I,2)., IJjq

After some algebra, we find

• P[ IJ IIJ2Q+A(s-A)J
(12) h(s) - ~~~~~~- Q[IJI+s-AJCIJ2+s-AJ

Let us now compute the function 9(5). Conditionning upon the states and j of the
queue 1 and 2 we can write:

(13)

tions

where a(i,j) is the L.S.T of interval of time before the next arrival knowing that
the queue 1 is in state i with the stationnary probability IT 1(i-l) and queue 2 is
in state j with the stationnary probability IT2(j). Let to be the time of any input
in queue 1. The first event after to is first of both possible service completion,
which L.S.T is ~. Such as for a(i) in 1.5 we get the following recurrent equa­

1J1+1J2+s

(14)

(15)

(16)

> D, j > D

> 0

> 1

And of course we have

( 17)

Let y(j) be defined as : y(j) = 1: IT1(i-l)a(i,j)
i=1

Then the summation of (14) and (15) after multiplication by ITl(i-l) yields

I(1J1+1J2+s)y(j) = 1J1[1TI~o)a(o,j+l) + Ply(j+l)J + lJiiy(j-I) + 1J2P
(18)

(1J1+s)Y(o),= IJI[IT1(o)a(o.l) + Ply(I)J

j > 0



A STUDY OF FLOWS IN QUEUEING NETWORKS 381

then, summing (18) upon j, to obtain r IT 2(j)y(s) = 9(S) we get after reduction
j=O

Now, we need to compute the time r IT 2(j)a(o,j+I). From the equation (16) valid
j=l

for j ~ 2 we get by summation and after reduction and using (17)

(~2+S-A) .r IT 2(j)a(o,j+1)
J=l

So, after simplification we finally get

• P[~1~2q+A(s-A)]

g(s) = q[~I+s-A][~2+s-A]

It is interesting (in view of generalization) to note that the last expression that
we obtained for g(s) can be written as :

• b2(S) bI (s)52(s)
g(s) = p(I-IT2(0)) • + PIT2(0) ------~---~---~---

1-qP2b2(s) [1-QP1b1(s)][1-qP2b2(s)]

The main conclusion is that the feedback process is not Poisson.

GENERALIZATION TO n TANDm QUEUES

Such a system is illustrated on figure 3

~1 112
Figure 3

IIn-1 lin

. Ioo
-st -~·tLet bi(s) = e ~.e' dt

o '
It is convenient to note f(s) = fn(S), where n indicate the number of tandem queues.

So we have :
n . n

(19) fn(s) A r (I-oi)b;(s) + (D+QP1)bI (s) r (l-Pi)bi (s)= Q \+s ;=1 ;==2
n-1 . n .

+ r Pkbk(s) r (l-p. lb. (s) + Pnbn(s)
k=2 i=k+I "

From (19), we deduce the recurrent equation
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(20)

Since h (s)
verify?
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· .
fn(s) = fn_1(s)(l-Pn)bn(s)+Pnbn(s) n=2.3 •.••

sfn(s-\)-\
s-\ for all n=1.2 •.••• We show that the functions hn(s) also

· .
(21) hn(s) hn_1(s)(l-Pn)bn(s-\) + PPnbn(s-\)

• bn(s) ~n
By setting Bn(s) =. . we have Bn(s) = bn(s-\).

1-qpnbn(s) ~n+s-\

Therefore (21) is equivalent to

(22) Ihn(S) = hn_1(S)(l-Pn)B n(S) + PPnBn(S)l

Moreover. from the two queues case. we deduce

(23)
· . ~ .
gn(s) = PPnBn(s) + gn_1(s)(l-Pn)Bn(S)

In parts 1•• 11. we ~howed that gn(s) = h (s) for n=1.2. The equations (22). (23)
prove that gn(s) = h (s) for any n. Thatnis to say that. whatever the number of
tandem queues. the iRput distribution and the output distribution are identically
distributed.

Moreover. we show in a second paper [27J that these distributions fails to be Pois­
son. Indeed we prove in this second paper that the distribution of interinput and
interoutput intervals are identically distributed. Therefore. it is obvious from
this result that the flow between two any queues is not a Poisson process.

We easily verify that. when n tends to infinity. the interinput (or interoutput)
times are exponentially distributed with parameter \q- •

ON A PROPERTY OF JACKSON NETWORKS AND A DECOMPOSITION OF A GENERAL NETWORK

We have shown that the only streams which possesses the property to be a Poisson
process in a feedback tandem queueing system. are the external arrival process and
the departure process. Now let R be a general network and on this network. let it-+j
be the following relation of equivalence: from i it is possible to go to j and
from j it is possible to go to i. The classes of equivalence of this relation are
subnetworks such that when a customer leaves a subnetwork he never returns it. We
name them irreducible subnetwork. The global network can now be decomposed in these
irreducible subnetworks as shown in figure 4.
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O Figure 4

represents an irreducible sub network

When a customer goes out of an irreducible network he never returns.

For a given irreducible network we are going to examine the distribution of depar­
ture processes. From Kelly [25] we know that the customers leaving the system form
a Poisson stream. Now from feedback property we have shown in the previous sections,
that all the other flows are not Poisson processes. (Due to the irreducibility of the
network, for each station we can DUilCrilt least one tandem queueing system includ­
ing this station, among the paths of the network).
This proves that all the flows eRcept external arrival and departure streams are
not Poisson.

If we come back to our global Jackson network we can conclude that the streams bet­
ween two any stations of a same irreducible subnetwork are not Poisson but that ex­
ternal arrival and departure processes of each individual subnetwork are Poisson.
The only Poisson processes in a Jackson network, are inter irreducible subnetwork
streams. Indeed they are even the only renewal process as we show it in a further
paper.

GENERAL QUEUEING NETWORK : A NEW APPR8ACH

We have shown that in a Jackson network only few streams have the property to be
Poisson processes. Moreover, we have shown that input and output processes fail to
be renewal, as soon as fedback customers are allowed. Now if we are interested by
general queueing networks even streams without fedback customers are no longer renew­
al processes, but the dependances come only from the service time distributions~

pendance by fedback customers are abolished). So, we propose the following new tech­
nique to study a general queueing networks :

1 - the network is decomposed into its irreducible sub systems;
2 - for each separate subnetwork, we compute the mean number of passage at

each station;
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3 - each station of each sub system is studied in isolation considering that
the customers go through it one time and only one time.

We deal now with the last point in a more detailed manner; the decomposition has
been studied in the previous section and the computation of the mean number of pas­
sage at each station for each sub system is obvious.

Study of each station. After to have decomposed our global network. we study each
subsystem lndependently. For a given irreducible subnetwork. let A be the arrival
rate entering this subsystem and e = (e .e? ••••e ) be the solution of e=q+eQ
where q=(q01.qoZ .....qn )qn' is the pr~ba5ility ~o enter this sub-system by station
i : Q = {q, '. I ,; i ,; n:n1 ~lj ,; n} is the matrix of transition probabilities where
n is the n~~ber of stations in the irreducible SUbnetwork. The quantity ek. k=l ••.• n
gives the mean number of passages in the station k. (*)

Our new approach consists to assume that the customers go through the station only
one time (there is no longer fedback customers). see figure 5. So we are going to
define an equivalent service time and a new input process. The new service time of
a station is the total time spent by a customer in its server. For station k.
k=l •.••• n. the new service time distribution (see figure 5) is defined by its rate
Pk=~k/ek and its squared coefficient of variation (SCV) ~k=Pk+Ksk(l-Pk) with
Pk = max(e k- 1•0) (if ek is less than 1. namely the mean number of passage is less

ek .....
than 1. then Pk=O and Ks=K s)'

Fi gure 5

(*) Let A' and ek be the total arrival rate in the general network and the mean
number of passage computed on the general network. Generally ek is different of ek.
but A'ek=Aek. ek is the mean number of passage through station k knowing the custo­
mer enters the subnetwork we consider.
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The equivalent arrival process is then defined assuming that all the customers en­
tering the subnetwork gQ..through each station one time and only one time. The equi­
valent arrival rate is Xi:=A, k=l .... ,n. Before to compute the SCV of the new arri­
val process we need to know the SCV of the initial arrival process. This one can
be computed from several manners: Kobayashi [3J, Gelenbe and Pujolle [5J or Sevcik
et al [2J. We shall adopt a simplification of the second one (see Gelenbe and
I~itrani [12J)

where c. is the SCV
ximatedJvalue is :

1 n
- 1:
Ak j=O

of the inter departure times at station j and whose an appro-

+ 1, j=l •••• ,n.

Co is the SCV of the inter arrival times of external customers.
N

Now. the SCV of the arrival process at statlon k. k=l •••• ,n is Kak=Pk+Kak(l-Pk)'

Now, we have characterized each station by their two first moments of service and
input processes, we have only to choose an adequate formula giving the response
time and the mean number in station.

Firstly we have examined the case of a single server queue Gl/G/1. A certain num­
ber of approximated formulae can be used. We have compared them one another using
the mean number in station. They are the following ones:

- ~1 - Kingman [13J n = p[l + ---zrr=p)J

- formula obtained by diffusion approximations

2a - [ 3J ii

ii2b - [14J [1 + pKa+KjJp 2(1-p

3 - Page [15J ii p+KaKSiitVrVl+Ka(1-Ks)iirVO/l+Ks(1-Ka)iiO/M/1
where iiG/ G/ 1 is the mean number in the station G/G/1 (for ii O/ M/ 1 we have
used Kingman's fomula);

gwith

4 - Kramer and Langenback - Selz [16J:

n = p[l + p(Ka+Ks) x gJ
2(1-p)

2
exp[- 2(1-p)(l-Ka) J if Ka <

3p ( Ka+Ks)

exp[- (1-pliKa-1l]
Ka+ ks if Ka ~ 1.

Other formulae have been examined as Marchal [17J and Kingman [18J ones, but they
are bounds and not very accurate approximations.

Among the previous expressions 1, 3 and 4 have the advantage to give the exact
Khintchine - Pollaczek formula for ~~/G/l queueing system.
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We shall say that a formula is correct if the result has an accuracy of the same
order as a simulation (10 %at the maximum). Diffusion formulae are correct only on
smal I intervals, Page is almost always correct when Ka and Ks are less than 1;
Kingman when Ka and Ks are close to 1. Finally formula 4 is very satisfying: for
practically all the cases examined (0 ~ Ka ~ 3 and 0 ~ Ks ~ 3) the accuracy is very
good. 50 we have adopted. thi s express i on for the computa ti on of the mean number in
station in our approach of queueing systems.

Now, if many server queues exist, our approach is the following: for the aim to de­
termine only the departure process, the servers are replaced by just one server
whose distribution function G.(t) is chosen to satisfy G( t) = F(st) where s is the
number of servers and F(t) the distribution function for the service time of any
server of the many server queue. The accuracy of this approximation about the de­
parture process is evaluated by Arjas [19J. With this intermediate approximation
we can now calculate the equivalent arrival and service processes.

About the mean number in station some formulae can be used. We have compared their
results :

1 - Kingman [20J n Sp + Krl
2Kj: ( .p
~

2 - 5akasegawa [21J n sp + (Ka+Ks
tlZ .p)

3 - Pujolle [22J (obtained by diffusion)

n = L n p(n)
n=1

if n ~ s

if n ~ s

pin) [1~p(o)J c p(l)p(2)

p(n) [1-p(o)J c p(I);(2)

~(n)

p(s_l)p(s)n-s+l

p(o) [1+p(I)+p(l)p(2) + ••• + P(lt:~ls\S-I)J-l

and

wi th

00 -1...
c = [L p(i)J = [p(I)+p(1)p(2)

i=1

• 2V-n\J) () Ap(n) = exp[A a+n~KsJ , p n - iW

. .
+ ••• + p(1).:.p(s-1)J- 1

l-p(s)

We have also compared the results obtained by 5toyan [23J and Brumelle [24J which
worked on bounds.

Results of these comparisons show the good accuracy of 5akasagawa's formula when
Ka ~ 1.2 and Ks ~ 1.2, that we shall adopt in these limits. Finally formula 3 is
taken in the other cases. It remains correct when Ka and Ks are not too large:
Ka and Ks 1ess than 2.

Accuracy of the meth.od and conclusion. Firstly we have to note that for a Jackson
network the exact result 1S found again by our new approach. Then, we have compared
the solution of our new approach with simulation results on different queueing sys­
tems. Mainly, we have used the central server model (with the main queue represent­
ing the CPU and the feedback queues, the swapping devices) and tandem queueing sys­
tems. These .two types of systems can be considered as extreme cases: the former is
an irreducible subnetwork by itself.

On table 2 we have compared the results obta1ned by our new approach to previous
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methods: KUhn [6J, and diffusion approximations: Reiser and Kobayashi [26 J ,
Gelenbe and Pujolle [4J. The model we have adopted is shown in figure 6 and the
values of the parameters in table 1. The results of a simulation conducted by KUhn
are given in table 2, and also the relative differences referred to simulation re­
sults of KUhn.

1-82=0.5

\.12
KS 2

Figure 6

A
-1 KS 1

-1 KS Zcase \.11 \.12

1 0.5 0.9 0.5 0.84 0

2 0.5 0.95 0.5 0.89 0

3 0.5 0.9 1 0.84 1

4 0.5 0.95 1 0.89 1

Table 1

Simulation Kuhn Theory Theory Theory Theory

105 events Kuhn Rei ser Ge1enbe Pujolle
Kobayashi Pujolle Soula

Case - - - is - -, - is
_. -n1 n2 n1 n1 n2 n1 n1 n2

1 7.360.45 4.16 0.14 6.12 3,64 6.76 2."1i 6 .65 2.95 7.53 4.04
16.8% 12.5% 8,1% 35% 9,6% 29% 2.3% 2.8%

2 13.69 1.32 5.84 0.35 12.47 5.42 14.30 4.52 12.62 4.39 14.61 5.72
8.9% 7.2% 4.4% 22.6% 7.8% 24.8% 7.1% 2%

3 9 5.25 9.0i)7 5.26 9.46 5.30 9 5.25
eXilct exact

4 B 3.09 19.0048.10 19.53 8.65 19 8.09
ex~ct eXQct
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Witn single server queues and SCV of service times less than 3, the results of all
the tests we have made are in the confidence interval given by the simulation. With
many server queues the results we obtained are of the same accuracy when the SCV of
service times are between 1.5 and 0.5 and is not very far of the confidence interval
when SCV of service times are less tnan 0.5 or between 1.5 and 2.

Finally, with our new approach we can predict with a good accuracy (better than with
diffusion or iterative techniques) the behavior of a general single queueing system.

Another advantage is the possibility to study also many server queueing systems. In
this last domain improvements are possible, especially by an accurate formula giving
the mean number in the stations GI/G/s when SCV are either close to 0 or greater
than 2.
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AJSTRACT

The history of modelling of the address sequences generated by computer

programs (often termed program behaviour) follows a familiar pattern: the better

a hypothetical model fits experimental evidence, the less amenable it is for

calculation. In this paper programs that generate successive page references

which can be described by a first order general Markov chain are considered.

,Je produce usable expressions for the distribution and moments of the steady

state size of their Working Set of pages. T:1ese expressions are also specialized

for the IRM and the Easton model. Only standard Markov Chain Theory is utilized.

Key ~~ords: Program Behaviour; Paging Algorithms; Markov Chain Reference Model;

~Jorking set; r1iss-rate function; Reverse Chain; Taboo Probabilities.

1. INTRODUCTION

It is well known that the performance of all virtual memory management

policies depends significantly on the sequences of addresses generated by the

active programs [1]. T\IO of the concepts that stand out in the attempts to

understand the underlying processes are the Independent Reference Model (IRM)

and the Working Set (WS) [1].

~ T:1e fi rst suggests a simple manner for the generation of page references by

a program: Let N = {l ,2, ... ,n} be the set of all pages of a program. T:,e IRM

stipulates that successive page references are independent, and that the page

referenced at time t, X(t), is (i E ,~) with probability Pi; {Pi} is a

probability mass function (pmf) concentrated on N.

1.2 The second concept defines a set W(t,T), comprising, at time t, all the

distinct pages referenced through the course of the last T references. It then

suggests W(t,T) as a good estimator of the 'locality of reference' at time t

* T:,;s paper is largely based on the work done by P. Tzelnic towards his Ph.D.
d2gr2e.
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and t:le 'near future'. I:ere T - t:le WS 'window' is a parameter of the
model, and its choice determines the goodness of the estimation. W2 denote the
size of W(t,T) bj W(t,T). The WS policy is implemented by keeping in
memory only the W(t,T) pages of the Working Set.

T:le first moment of W(t,T), tie [;lean size of the working set, (or rather,
its 1imit as t-, VI( T)), lias computed under vari ous hypotheses on program

behaviour. The simplest and best known of these results is the formula due to
Denning and Schwartz [1], for the IRM.

~ In this paper we show how similar results and extensions can be obtained
for a natural generalization of the IRM, i.e. the Markov Chain Model (MCM).

According to the MCM, X(t) is a 11arkov chain satisfying certain mild
regularity assumptions. T:lis model is expected to describe 'real life' better
than the IRM, ~ven if for no other reason than the removal of the unnatural
assumption of independence between successive page references (note that the IRM
is a special case of the MCM). See [2J for an articulate justification of the
MCM.

1.4 In S2ction 2 we present an analysis of the working set characteristics, in
tl2 frame of the MCM. 'Je obtain the pmf of the WS size, anu calculate its
first two moments at steady state. As a direct consequence, the miss-rate
function for a system employing the WS policy in its page replacement altorithm

is evaluated.

In Section 3 we show that Denning and Schwartz's formula is indeed a
special case of our results. ~ie also use our results for Easton's special

MCM [3].

2. WORKING SET DISTRIBUTION

2.1 Let the page reference generator be a fi rst order, time-homogeneous, Markov
cdain over the set of states N = {1 , ... ,n}. Further, assume it is ergodic (in
particular - irreducible and aperiodic). Let its transition matrix be P.
We identify the state of the chain at time t, X(t), with the page referenced
at time t. Conditioned on the page reference generated at time t, the probabil­
ity of the next - (t+l)st - page reference is then given by

Pr[X(t+1) = j!X(t) i] = p..
lJ

(2.1)

Let ; be the steady state distribution of this chain (;P = ;). Let

D(;) denote the di agona1 matri x whose elements are 1T i' i = 1, ... ,n ; and 1et

P denote the matrix transpose of P.
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~ Following Kemeny and Snell [4J. we define the process which is the reverse
of X(t) as that process which corresponds to the evolution in reverse order of
the original chain. It is further assumed that the process X(t) has as initial
distribution (at t = 0) its stationary distribution. TI,is last assumption makes
([4J) the reverse process thus defined a Markov chain. with the transition matrix:

A

(or term wise. Pij ~jPji/~i)'

(2.2)

Furthermore. the matrix
the direct chain.

A +
P possesses the same steady state distribution. ~. as

From the matrix P we produce n matrices Pj . Such a matrix is the zero

matrix. with the exception of column j. which is column j of P. We also

find use for the n matrices ~j' defined by

j EN. (2.3)

i.e. identical to P with the exception of a zero column j.

The reverse chain is a natural tool to use when the dynamics of the WS of
the program is considered. since given X(t). it is P that governs its
characteristics directly.

2.3 In the following propositions we assume that the initial memory state
(= the set of program pages that is in main memory) is of no import - or.
alternatively. that t is "large enough".

The WS at time t. W(t.T). is defined in terms of the process
w(t.d = {iii E {X(t-T+1). X(t-T+2) •...•X(t-l). X(t)}}. and W(t.T)
number of members of this set.

{X(t)} as
is the

(2.4)

Proposition 1: The conditional probability that the Working Set size at time t
is k. given that page i is referenced at time t+l. is:

k k_~ [n _~] n A A T
Pr[w(t.T)=kIX(t+1}=iJ = }: (-1) k-~ }: }: (P. +... +p. )i'

~=1 l,;;j 1<... <j ~,;;n j =1 J 1 J ~ J

(See the note below on the perhaps peculiar conditioning.)

Proof. Sketchily presented, the argument runs along the following lines:

1. Given the state of the memory reference process at time t+l. T transitions
governed by P determine W(t.T).

2. It is convenient to interpret the event {W(t.T) k} as "the program
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avoid the set of pages

avoids precisely n-k pag2s during t-T+1 to tn.

3. Denote by A
lli

the event: {X(t-T+l), ... ,X(t)l

given that X(t+l = i.

4. Let Srli denote the sum of probabilities LPr[AlliJ the summation being

carried over all sets s.t. II I = r. I

5. Then by 2. above and the inclusion - exclusion principle [5J follows

Pr[w(t,T) = ~:liJ = ~ (_l)v [n-::+vJ S ..
v=J v n-k+vll

I ,

6. T:1e probaLJility, that starting from i, the next (under P) T references

are all within a set of ~ pages J~, is given by:

n , 'T
~ (P. +... + P.). ,

r=l J 1 J ~ 1 r

7. Using 4: and 6., we obtain for the value of Sr conditioned on X(t+l) i:

n
L L

J
rl

_r j=l
Jn-r

(2. S)

the summation being on all sets of size n-r.

8. Substituting the last result into 5., and putting k-v ~,yields

Equation (2.4) (when we note that Sn = 0). 0

Using Proposition 1, we obtain by removing the conditioning on X(t+1):

Corollary 1; T:le steady state pnlf of the working set size is:

k k- ~ [n -~J n" TPr[w(T) = kJ= ~ (-1) k ~ L TI.(P. +... +P. ) ...
~=1 -~ (Lj 1<" .<j~:5n) i ,j=l 1 J 1 J~ lJ

Note. It is ~erhaps useful to remark that Proposition 1 was stated using an

"unnatural" conditioning - normally W(t,T) is of interest at time t, vilen

X(t+1) is not known. Indeed, Pr[w(t,T) = k I ;((t) = i J call b2 evaluated as well,

and one readily obtains

k k [ J [" ,) I i ~J n, ,Pr[w(t,T)=kIX(t)=iJ= L (-1) -~ ~=~ ~ ~ ~ 2: (P. +... +P. )~.
~=1 "J~ n-~ j=l J 1 J~ lJ

\Inere If-. is 1 wilen A holds and 0 otherwise.

This however is a considerably more complex expression; specifically, a de­

composition similar to (2.7) below cannot be affected on it. ;iov/2ver, our main

interest lies with the unconditional distribution Pr[w(t) = kJ; 1/2 olJviously have
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n

Pr[w(t,T) kJ .~ Pr[w(t,T) =:(jX(t) =i]Pr[X(t) = i]
1 =1
n
~ Pr[w(t,T) =kIX(t+l) =j]Pr[X(t+l) = j],

j=1
and further, in the limit t~ both randomizations use the same pmf ;; h2nce
Corollary 1 is indeed the result we need, the 'detour' noted here notwith­
standi ng.

~ Using Eq. (2.5) the moments of the steady state WS size can now be
computed: Denote the mean by S(T):

S(T) = E[w(T)] = ~ k Pr[w(T) k].
k

Proposition 2.

n
n - ~

!:=1
(2.6)

Proof:

where

n
~ :( Pr[vl(T)

k=l
k] (2.7)

(P.
J 1

+.•• +

3y changing the order of summation over k and ~ in (2.7), and summing
over u = k-~, from zero to n, \'Ie obtain:

n n-~

(-l)t~~)sh) ~ \ ~ (u+~)

~=1 ~=O

The sum over u can be split into two componen ts :

n-~

(_l)u[n-~l n- ~ ()
~ ~ = £6 ~,n ; ~ (-1)u u n- ~ =-6 (2.8)

~=O u J u=O u ~,n-l

Therefore:

SeT} = nSn - Sn_1 =

n nAn
=n ~ •. ~ (P)!. - ~.. ~ (P. +... +P. )~,

i=I' j=1 'J i,j=I' l~jl<... <jn_l~n J 1 I n _l 'J

n n A

= n - ~ .,' ~ (P,Y.
i .J=1 k=1 -" 'J

(See paragraph 2.8 concerning the evaluation of these quantities). 0
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In an entirely analogous manner we also obtain

2 2 n n.
n S - (2n-l)S 1+ lS 2=n -(2n-l) L w. L (Pk)~' +

n n- n- i ,j=1 \= 1 - 1 J

+... + (2.9)

whence the variance is immediate.

2.S A related interesting result is the expression for the miss-rate at
equilibrium, [·1(T) , ill t:le present model, under the WS policy. M(T) is then
defined as lim Pr[X(t) ( W(t-l'T)]. This is derived by observing that the

t--
present model satisfies the assumptions of [1]1 by virtue of which the following
relation was shown to hold:

n(T) = S(T+l) - SIT) . (2.10)

Corollary 2:

(2.11 )Il( T)
n n
L L wi[(Pk)T(I-Pk)]..

k=1 i,j=l - - lJ

2.0 We nOW present alternative expressions for S( T) and M(T). T:1e:;e perhaps
are not as intuitive in derivation as the preceding ones, but are computationally
superior.

Proposition 3:

S(T) (2.12)

Il( T)
n •
L wk(E I )I

T
•

k,j=l (,J
(l.13)

Proof: (Directly from Proposition 2):
n

S(T) = n - L U'k(T)
k,j=l J

(2.14)

n •
~w,(Pk)~"

i =1 1 - 1J

A recursive evaluation for these U(T) follows:
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n n A A 1
~ 11· ~ (Pk) 'h(Pk),T~

i =1 ' ;1= 1 - , - ,1J

399

11
~

h=1 jn ,
~ 1I.P.,

i = 1 ' , ,1

(2.15)

T;\is difference equation for U(T) should satisfy the initial condition:

and thus yields

T-1 A s
UJ"k(T) = 11. - " k ~ (Ec)k'

J s=o n J

Substituting in (2.14) we outain

11 n T-1 A s
S(T) = n - ~ 11. + ~ " k ~ (Ek)k'

k,j=1 k,j=1 s=O J

(2.16)

(2.17)

~l(T) = S(T+1) - SiT) D

?:..:.l. Ref.larks

1. The last relations suggest the following calculation scheme:

(a) S(1) = 1,

\ i:» 11( T) as gi ven in (2.13),

(c) S(T+1) = S(T) + M(T).

2. Using a familiar representation of the mean WS size [1],

T-1 n
SiT) ~ (1- ~lIkFk(s)),

s=O k=1
(2..18)
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where Fk(·) is the distribution function for the interreference interval for
page k, lie 9~t, oy comparison with (2. 2):

n • _
F" (s) = ~ (P) ,

- j= 1 -k kj
(2.19)

(This is actually a compact way to represent summation over all suitable
realizations of sample paths.)

~ Co~plexity of Calculations It is of some interest to evaluate the number
of operations involved in the various expressions obtained for S(T), M(T), 2tC.
(essentially additions and multiplications of elements of P and; - no account
is taken of loop control variables, the calculation of ; itself and various
'bookkeeping' c:l0res). Equation (2.4) requires, for each k and ;,

k
n T k ~(~), and for the complete (conditioned) pmf, for every i, n2T(n+1)2n-2

~=1

operations. Covering all i adds a factor of 2n. Astraightforward calculation
of Equation (2.0) requir2s n2(n-l )2T operations (an initial study indicates that
this figure can be rather simply reduced by a factor of n at least, by
using ; = ;P. The calculation is more complex to control, :lOllever).
Equation (2.12), using the procedure of 2.7.1, can be done in n3T operations
(approximately the same as the elaborate calculation of (2.6)).

3. SPECIAL CASES

As an illustration let us evaluate the above expressions for two simple
models of program behaviour.

~ Indetendent Reference Model

results for the IRM follow:

n
Given that P"J' pEp.

j' j= 1 J
t:H~ fo 11 ow; ng

Pij=Pij=Pj

(P.):. = (1-Pk)T-l(1-8 'k)~'
-" 'J J J

for i ,j = 1, ... ,n, T;;' 1.

iience:

(3.1)
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n n ,
n - ~ ~ 1T. (p, ):- .

~=1 i ,j=1 ' -,( 'J

( 3.2)

401

consistently with the results in [1].

3.~ caston's r10del (3] This mod2l makes usc of a I~arkov chain of special

structure. It is claimed to be a good description of interactive Data Base

reference strings [3]. Ti,e transition probabilities are given by:

Pii = exi l-r + o. i

Pi j = aj = rAj' f j ,

n
where 0 < r ~ 1, ~ A. = 1 and Ai > J for

i =1 '

For this model, we can easily verify that:

1Ti = Ai

i ,j 1, ... ,n
P.. = P..

, J , J

1, ... ,n.

(3.3)

(3.4)

In order to compute S(T) for Easton's model, we use the fol1owing relation,

which is proved below:

,J it:, t:, i s it fo 11 ows :

(3.5)
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which is identical with Easton's result.

To prove the relation (3.5), one may use a probabilistic approach as
• m

follows: ~(Pk)" is actually the taboo probability of not entering state k,
j - lJ

following an exit from state i, through m successive steps (along any sample
path of the reverse Markov chain, X(t)).

Two cases here have to be considered, corresponding to irk or i = k
in the initial state. Due to the simple structure of the Markov chain, the
above probability is (l-a k)m, in the first case, and (1-a k)m-1 (l-a k), in the
second one.

We also present a computational proof, which has the side benefit of
yielding an explicit representation of the powers of ~k' This proceeds along
the following lines:

1. We show inductively that:

aj

(l-a
k

)m - (l_r)m
j r k, j r i , r kr - ak

(Pk)~ .
(l-a k)m - (l_r)m

(l_r)m,ai + i , r k (3.7)
- 1J r - ak

aj
(l-a )m-t r k, kk

o , j = k

For m = 1, the above expressions are easily verified. Assuming they hold for m,
we establ ish that they huld for m + 1 as well. (Note that the case j = k is
obvious.)
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(a) tk,jti.k.

(P' )m.'+.l n m ( ) , )m
-k 'J L (P,.l·h PI_" = L \P I· ., P .

h= 1 -,,' -, "J ;ltk -" n ,IJ

403

(b) ,; k. j = i.

'm+l n m m m
(P k)·· = L (Pk) .. P,,' = (Pk),·,·P,." + L (Pk).,P.

- I I htk - ,,] ,1 - ,ltk. i - , " .11

(l-ak)m_(l-r)m

r - ak

+ (l_r)m+l
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(c) k, j ~ k.

(P' )m+l = '<' (P)r.l P
-k kj h;k -k kh hj

2. Summing over j in the various expressions in
the stated result.

(3.7), we immediately obtain
o

Note. 30th examples above happen to possess self-dual transition matrices (i .e.,
P = pI,. T:1is is neither a requirement of any of the procedures developed here,
nor does it help in the calculation.

4. CONCLUSION

In this paper it was shown how quantities related to the WS of a program
can be handled, wilen the program obeys the Markov Chain Model. Specifically, we
produced expressions for the mean and variance of the WS size at equilibrium,

Although the calculations are inherently of the path counting type, closed
expressions were obtained for two special popular models of program behaviour.

Further activity, using this approach, is aimed at deriving results for
programs which display special structure (but not as degenerate as the above two
cases) .
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One source of error in queueing network models of computer
systems is the insufficiently accurate representation of service
time distributions. When unacceptable error results from charac­
terizing a service time distribution by its mean alone, the modeller
will usually turn to a first-come-first-served service discipline and
a phase-type server capturing additional characteristics of the ob­
served service time distribution. Until recently, though, effective
use of the method of phases has been inhibited by the absence of an
efficient, soundly-based algorithm for parameter value selection.

In this paper, we approach the parameter selection problem by ex­
ploiting a recent result: in a wide class of queueing network
models, performance measures are fully determined by the Laplace
transforms of the various service time distributions evaluated
at certain specific points. By selecting the parameter values of the
observed service time distribution, rather than the moments of this
distribution, increased accuracy in predicting performance measures
can be achieved. We present a computationally efficient parameter
selection procedure, and discuss experimental results.

INTRODUCTION

Considering their inherent limitations, simple queueing network models using

exponential servers have demonstrated a remarkable ability to predict computer

system performance accurately [Graham 19781. It is an unfortunate fact of life,

though, that significant errors sometimes arise in using them to model even

seemingly straight-forward computer systems. An insufficiently accurate charac­

terization of one or more service time distributions is often a major cause of

this error.

The traditional approach to reducing this error involves representing the

offending service center by a first-come-first-served service discipline and a

phase-type server with parameter values selected so that its mean and variance

equal the corresponding characteristics of the observed service time distribution.

While queueing networks with one or more such service centers are not amenable

to analysis by efficient exact solution techniques [Baskett et al. 19751, recent

advances in approximate solution techniques, such as the Chandy-Herzog-Woo

407
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theorem [Chandy et al. 1975], allow them to be analyzed in a computationally

efficient manner.

In selecting parameter values for a phase-type server, a variety of charac­

teristics of the observed service time distribution could be used. The decision

to match its first two moments is an arbitrary one that stems from several

practical considerations. First, the mean performance measures for M/G/l queueing

systems are fully determined by the first two moments of the service time distri­
bution; the informal application of this result to queueing networks has great
intuitive appeal. Second, until recently no algorithms existed to select

parameter values based on more complex criteria.

The "two moment" approach to parameter value selection has a number of draw­
backs, however. Consider the simple phase-type server illustrated in Figure 1,

a two-stage hyperexponential. By appropriate assignment to parameters ~l' ~2'

and p (where the ~'s are service rates), this server can be made to match any

mean and any coefficient of variation greater than one. (The coefficient of vari­

ation is equal to the standard deviation divided by the mean.) For this reason,
the two-stage hyperexponential is commonly used to represent the CPU in queueing

network models of computer systems. Because there are three parameters but only

two constraints, selecting parameter values on this basis fails to exploit fully

the flexibility of the server. In and of itself this would not be serious, but

several authors (Price [1976], Lazowska [1977J) have recently noted that when

used to represent the CPU in a queueing network model, various two-stage hyper­

exponential servers with identical means and coefficients of variation can

result in dramatically different predictions for certain performance measures.
Table 1 is excerpted from [Lazowska 1977]. It shows the CPU utilization pre­

dicted by a queueing network model of the University of Toronto Computer Centre's

IBM System/370-165 when various servers are used to represent the CPU. Included

Figure 1

server

exponential

two-stage hyper.

high extreme

ba 1anced load

match skewness

low extreme

Table 1

predicted
util i zati on

83%

79~0

69%
64%

56%
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are an exponential server matching the observed mean service .Ime, and four two­

stage hyperexponential servers, each of which matches both the observed mean and
the observed coefficient of variation. Subject to these constraints, parameter

values for the two-stage hyperexponentials were selected respectively to obtain
the highest predicted CPU utilization, to balance the load on the two stages

(the most common approach, in practice [Sauer &Chandy 1975]), to match the third

moment of the observed service time distribution (note that this is not always

possible with this server), and to obtain the lowest predicted CPU utilization.

(The observed CPU utilization was 74%, which is within the range obtainable by

the model.)

We reproduce this table in order to emphasize that selecting parameter

values for a phase-type server based on the first two moments of the observed

service time distribution is not necessarily adequate. And, as mentioned earlier,

the classical general approach to selecting parameter values based upon additional

characteristics of distributions, namely Prony's method [Cox 1955], suffers from
a number of severe disadvantages [Bux &Herzog 1977a]. In response, several

authors have recently devised new parameter selection methodologies.

In a series of papers ([Leroudier &Schroeder 1974], [Leroudier &Schroeder

1975], [Schroeder 1977]), Leroudier and Schroeder discuss a maximum likelihood

approach to parameter selection, and demonstrate its use by matching the proba­

bility density functions of several distributions arising in an IBM CPjCMS system
at the University of Grenoble. They do not describe modelling experiments that

make use of the resulting servers.

More recently, Bux and Herzog [1977b] have described a technique that selects

parameter values based upon the mean, the second moment, and an arbitrary number

of points on the cumulative distribution function of an observed service time

distribution. In essence, they apply a non-linear optimization procedure,

increasing the number of stages in the server until a prescribed tolerance is

reached. Again, they do not discuss the use of the resulting servers in queueing

network models.

These two approaches to parameter selection represent a substantial advance,

but still suffer from a potentially significant limitation: complexity. No

guidance is given concerning the number of points of the observed distribution
function that should be matched, the optimal location of those points, or the

tolerance that should be prescribed. Matching a large number of points to a

small tolerance may require a large number of stages in the server, a proportion­
ately large investment of time in parameter value selection, and a proportionately

large computational effort in analyzing the queueing network model in which the

server is employed.

Here, we present a new approach to parameter value selection for servers of

the phase type. Inspired by Bux and Herzog, we use a non-linear optimization
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L*[O] ~ 1

procedure. Instead of attempting to match a number of points of the observed

cumulative distribution function, though, we match the value of the Laplace

transform of the observed service time distribution at certain specific points.

The impetus for this approach is provided by a recent result of Lazowska's [1977]:

in a wide class of queueing network models, performance measures are fully deter­

mined by the Laplace transforms of the various service time distributions evalua­

ted at certain specific points. In selecting parameter values according to this

criterion, then, we are capturing exactly those properties of the observed distri­

bution that are essential in the context of a queueing network model. This means

that the flexibility of a specific server is exploited to the maximum possible

extent. Further, the error in predicting performance measures will be propor­

tional to the error in matching the Laplace transform values of interest.

In the section that follows, we briefly review the Laplace transform result

mentioned above. In subsequent sections we describe our parameter selection pro­

cedure, mention some experimental results, and conclude with some implications
and open questions.

LAPLACE TRANSFORMS AND PERFORMANCE MEASURES

It is natural to seek an explanation for the phenomenon illustrated by

Table 1: two-stage hyperexponential servers with the same means and coefficients

of variation can yield dramatically different performance predictions when used

in queueing network models. The key lies in a derivation due to Jaiswal [1968],

which is discussed by Price [1976].

Jaiswal derives an expression for server utilization in the M/G/l queueing

system with a fixed number of customers, N. This queueing system is of relevance

here because it is equivalent to a closed queueing network with N customers in
which the central server has a general service time distribution with FCFS

scheduling, and the N I/O service centers have identical exponential service

time distributions with no queueing delays. This equivalent network is illustra­

ted in Fi gure 2.

Jaiswal shows that server utilization in this system is a decreasing function

of the Laplace transform of the CPU service time distribution, evaluated at the

points nA , 0 ~ n ~ N-l , where A is the common service rate of the I/O service

centers. The Laplace transform of a service time distribution is the integral
of the product of its probability density function and the negative exponential

function:

J
oo -sx

L*[s] ~ e f(x) dx ,
o

While Jaiswal 's result is formally applicable to an extremely restricted class of

queueing networks, the data in Table 1 hints at a much broader applicability.

The four two-stage hyperexponential distributions considered there have consider-
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8
},~G 8 pG .J0J

N customers

0N customers

Figure 2 Figure 3

ably different probability density functions, and thus considerably different

Laplace transform values, although their means and coefficients of variation are

identical. But the queueing network model consists of a central server and a

small number of dissimilar I/O service centers at which queueing may occur.

In extending the applicability of Jaiswal 's result to other queueing network

configurations, Lazowska [1977] considers the M/G/l queueing system with finite

waiting room. This queueing system is equivalent to a closed queueing network

having N customers, a central server with a general service time distribution

and FCFS scheduling, and a single, exponential I/O service center for which all

customers must compete. This system, illustrated in Figure 3, represents the

opposite end of the central server queueing network spectrum from that considered

by Jaiswal and Price. Lazowska shows that server utilization is a decreasing

function of the Laplace transform of the CPU service time distribution evaluated
at the single point A , the service rate of the I/O service center.

Based Ulon these two proofs and a number of examples, Lazowska argues the ap­

plicability of the result throughout the central server queueing network spectrum:

CPU utilization, and thus all utilizations, are inversely proportional to the

Laplace transform of the CPU service time distribution evaluated at points corre­

sponding to the load dependent throughput rates of the I/O subsystem (equivalent­

ly, the load-dependent arrival rates of the CPU). Indeed, the intuitive explana­

tion for this behavior, a "limited damage" argument involving residual lifetimes

[Buzen & Shum 19771, applies to closed queueing networks of arbitrary topology.

The implication of these results for the problem considered in this paper is

that the parameters of a phase-type server should be selected so that the Laplace

transf~rm of the server, evaluated at the load-dependent arrival rates of the

service center, equal the corresponding values of the observed service time
distribution.
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L*loJ = 1

L*lOJ=l.

MATCHING THE LAPLACE TRANSFORM

Our matching technique consists of two principal aspects: determining the

necessary Laplace transform values of the observed service time distribution,

and matching these values by varying the parameters of the phase-type server.

As input data, we require a sequence of pairs {xi ,F(x i )} which specify the cumu­

lative distribution function of the observed service time distribution. The

x-values may be chosen for convenience in measurement. We also require an indi­

cation of the range of load-dependent arrival rates that must be considered. As

output, we provide parameter values for a phase-type server. We shall make use

of three numerical procedures: a cubic spline interpolation to provide specific

cumulative distribution function values from the arbitrary ones furnished as

input, a Gaussian integration to evaluate the transform of the observed service

time distribution at appropriate values, and a non-linear least squares optimiza­

tion to select parameter values for the phase-type server. We now describe the

two apsects in more detail:

• Evaluating the Laplace transform of the observed distribution

We assume that our data has been obtained by monitoring the service center

of interest over some period of time. Suppose that k customers passed through

the service center during that period. Then we have the service times for each of

these customers, xl'" xk . From this information, we must determine the
value of the Laplace transform of the distribution at certain specific points.

Reca 11 tha t the Lap 1ace trans form is defi ned by:
00

L*lsl = J e-sxf(x) dx ,
o

where fix) is a probability density function. Two difficulties arise in evalua­

ting this integral. First, we must contend with the fact that the data from which

we obtain our information concerning the underlying probability distribution is

discrete. Moreover, obtaining approximations to f(x) for specific x using

data conveniently obtained from measurements may be somewhat tricky. Second, we

must cope with an indefinite integral.

It is possible to rewrite the above expression in terms of F(x) , the ob­

served cumulative distribution function, by taking advantage of the fact that if

L*[sJ is the Laplace transform of some function G(x) , then sL*lsJ is the La-
place transform of its first derivative, G' (x) We obtain:

00

L*lsl = s J e-sxF(x) dx ,
o

Working in terms of F(x) has many advantages: the function is continuous

and monotonically increasing, it ranges in value from zero to one, and from our

data, we have a good idea of when F(x) first becomes non-zero and when it first



SELECTING PARAMETER VALUES FOR SERVERS OF THE PHASE TYPE 413

becomes one. These properties enable us to obtain a good approximation to F(x)

for any value of x, using the following procedure:

Find the largest, xmax ' and the smallest, xmin ' observed service times.

Obtain a small number (15 is sufficient) of data points between xmin and
xmax .

Fit a piecewise cubic spline to these data points. This provides an inter­
polating function which is twice continuously differentiable, so that we
have a reasonably smooth fit to the data.

Given any x, calculating the estimate to F(x) involves finding the sub­
interval in which x lies, then evaluating the corresponding cubic polynomial.

Now that we have a procedure to approximate F(x) , we can concentrate on the

integration itself. The first step is to eliminate the indefinite integral. We

know that for x ~ xmax ' F(x) = 1 Thus we have:

xmax
e-sxF(x) se-sxL*[sl= s I dx + xl dx

0 max

xmax
e-sxF(x) e-SXmaxs I dx +

0

Since we now have a definite integral and since the integrand is smooth, a general

numerical integration procedure can be used to perform the integration. However,

we can obtain a substantial savings in execution time if we tailor the procedure

to the specific function. For example, the measurement and interpolation error in

our values of F(x) limits the accuracy of our values of L*[sl , so we only

require a modest degree of accuracy in the integration. We also know that e- sx

decreases rapidly as x increases. This means that beyond a certain point, x ,
the integration need not be performed, since its contribution to the value of the

integral is insignificant relative to the error already present.

To make the integration as efficient as possible, we break the range of

integration into sub-intervals, with the interval size increasing as x increases.

We use three-point Gaussian quadrature to evaluate the integral on each sub­

interval to within a specified tolerance, and this value is added to the overall

sum. This approach allows us to halt when either the contribution of the sub­

intervals becomes sufficiently small or xmax is reached.

We are now able to numerically evaluate the Laplace transform of an observed

service time distribution for arbitrary values of the parameter s , given

measured points on the cumulative distribution function. These points may be

selected for convenience in measurement. It remains to select parameter values

for the phase-type server to match the Laplace transform values of interest.

• Selecting parameter values for the phase-type server

Here, we use the procedure described in the previous subsection to provide
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specific values of L*[s] . Given a phase-type server, we then choose parameter

values so that its Laplace transform values match those of the observed distri­

bution.

In this paper we shall deal with the three-stage, four-parameter server

illustrated in Figure 4. (The ~'s represent service rates, not times.) In a

sense, this is more restrictive than the work of Bux and Herzog or Leroudier and

Schroeder, who dynamically alter the number of stages used. Experience in

modelling using this server, which we shall describe in a subsequent section, has

led us to believe that it possesses the proper balance of simplicity and suf­
ficiency. The general form of its probability density function is illustrated

in Figure 5. By appropriate choice of parameter values, its characteristics

can range from those of the hypoexponential to those of the hyperexponential.

Additionally, it is not difficult to extend our method to more general server

structures.

The Laplace transform of the server illustrated in Figure 4 is:

C*[s] = _~_1_ {~ + (l-P)~3 )
s+~1 s+uZ s+u3

Given a set of pairs (Si,L*[si]) we wish to find values for ul' ~Z' ~3' and
p , such that the difference between L*[sl and C*[s] is minimized over the

si . As noted, the crucial points are the load-dependent arrival rates of the

service center in question. We choose, however, to match a large number (roughly

50) of points spread uniformly between the smallest and largest arrival rates.

We do this to minimize the effect of the error inherent in the values of L*[sl

This error is essentially random, with a mean of zero. By working with a large

number of points, we can obtain results that are minimally influenced by this

error. Finally, we constrain the parameter values so that the mean of the

x

Figure 4 Figure 5
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observed service time distribution is matched.

subsequent section.) We do this by introducing

s = 0.0001, with a value selected such that the

(This will be discussed in a

artificial data points at

slope of the transform between
zero and 0.0001 is equal to the measured mean.

The actual fitting is done by a non-linear least squares procedure from the

Harwell subroutine package [Fletcher 1971].

The following is a summary of the matching procedure, which has been incor­

porated into a package with a simple interface:

Obtain values of F(x) at several data points.

Interpolate these data points using piecewise cubic splines.

Evaluate L*[s] , using three-point Gaussian integration on sub-intervals,
on a set of points spanning the range of interest. Introduce artificial
data points to constrain the mean of the phase-type server.

Perform the least-squares fit.

The running time of the algorithm, and the goodneos of fit obtained, both

increase with the number of points si that are employed. In our experiments

with this methodology, some of which are reported in the next section, running

times of under ten seconds on a 1 MIP machine have been experienced.

EXPERIMENTAL RESULTS

The parameter selection technique just described has been used successfully

in several modelling studies. We describe a few of our experiences here.

It Characterizing service time distributions

Figure 6 roughly illustrates the probability density function for the CPU

service time distribution of the University of Toronto Computer Centre system.

In the model of this system discussed earlier, the load-dependent arrival rates

to this service center were in the range between 0.2 and 0.9. Table 2 displays

certain characteristics of the service time distribution.

The parameter selection technique just described results in a server whose

Laplace transform values are within 1% of those shown in Table 2. The mean of

the server is 8.7, and its coefficient of variation is 3.0. When this server

is used in the model, predicted CPU utilization is 74%, precisely the observed

value. In other words, the errors manifested in Table 1 are due entirely to the

insufficiently accurate characterization of the CPU service time distribution,

and are eliminated by our parameter selection technique.

In this same model, we have used our technique to select parameter values

for a two-stage hyperexponential server. Because of the restricted flexibility

of this server, its Laplace transform values are in error by as much as 10%.
When used in the model, predict~d CPU utilization is 75%, an error of under 2%.

As a matter of interest, Table 3 displays Laplace transform values for the
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mean
C.V.
L*[. 0]
L*[.2]
L*[ .4]
L* [.6]
L*[ .8J
L* [1. J

observed
distribution

8.7
12.7
1.000

.463

.276

.184

.130

.096

x

Figure 6 Table 2

two-stage hyperexponentia1 servers at the low utilization and high utilization

extremes in Table 1. It is interesting to note the wide discrepancy in Laplace

transform values, since the servers are of the same form and have identical

means and coefficients of variation.

• Characterizing response time distributions

Although the motivation for our parameter selection technique arose from

the importance of the Laplace transform in characterizing service time distri­

butions in queueing network models, the technique has been applied successfully

in more general contexts.

Lazowska and Sevcik [1978J have shown that in a large class of queueing

network models, the distribution of response times can be closely approximated

by considering only "high-level" aspects of system behavior: the mean response
time, and the distribution of the number of cycles through the network required

by a customer. "Low-level" aspects of system behavior (service time distributions,

scheduling disciplines, the presence of multiple customer classes, network

topology and transition probabilities) influence the distribution of response

low high
extreme extreme

mean 8.7 8.7
C.V. 12.7 12.7
C* r.0] 1.000 1.000
C*[.2] .900 .454
C* [.4] .824 .294
C* [.6] .761 .217
C*[ .8] .706 .172
C*[ 1. ] .659 .143

Table 3
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times only to the extent that they influence the mean response time of the

customer class of interest. Their approximation technique proceeds as follows:

Measure the system to obtain the parameters required by a queueing network
model. In addition, obtain information about the distribution of the
number of cycles through the system required by the customer class of
interest. (Note that the queueing network model requires only the mean
number of cycles as a parameter.)

417

Analyze the queueing network model to obtain the mean response time of the
customer class of interest. Divide this value by the mean number of cycles
required by that customer class to obtain the mean duration of a single
cycle.

In parallel with the previous step, approximate the observed distribution
of the number of cycles through the system using a phase-type server.
Of course, the observed distribution will be discrete rather than continuous,
but the difference is unimportant here.

Each stage of the phase-type server obtained in
some mean number of cycles through the system.
the mean response time of a customer requiring
The result is a phase-type server representing
times for the customer class of interest.

the previous step represents
At each stage, substitute

that mean number of cycles.
the distribution of response

At the heart of this approximation technique is the phase-type characteri­

zation of the distribution of the number of cycles through the network required

by a customer. It is here that the technique described in this paper is employed.

As a case study, Lazowska and Sevcik consider IBM's Time Sharing Option as

implemented at the University of Toronto Computer Centre. Measurement data,

including the distribution of the number of passages through the OS/MVT dispatcher

per interaction,was gathered. Since a customer passes through the dispatcher

after each I/O operation, this constitutes a natural definition of a cycle for

this system. Figure 7 illustrates the observed probability density function of

the number of cycles required per interaction. Using the methodology described

x

Figure
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in this paper to select parameter values for the phase-type server illustrated

in Figure 4 yields the following results:

p: 0.225 ~1: 1/(3.16 cycles) ~2: 1/(213 cycles) ~3: 1/(2.58 cycles)

To obtain an approximation to the distribution of response times for this

system, the mean response time (2.33 seconds) is divided by the mean number of

cycles per interaction (53 cycles) to obtain the mean duration of a single cycle

(0.044 seconds). (In practice, the mean response time would be provided by a

queueing network model. For the purposes of this validation, however, it was
obtained from measurement data.) Next, the substitutions described above are

performed, resulting in the following phase-type approximation to the distribution

of response times:

p: 0.225 ~1: 1/(0.139 seconds) ~2: 1/(9.370 seconds) ~3: 1/ (0.113 seconds)

Lazowska and Sevcik report good agreement between this approximation and the

observed distribution of response times.

CONCLUSIONS

We have presented a new technique to select parameter values for phase-type

servers based on the characteristics of observed distributions. In basing our

algorithm on the Laplace transform evaluated at certain specific points, we have

exploited a recent result in queueing network theory. As a consequence, we

obtain good accuracy in performance prediction with a minimal investment in

server complexity and modelling difficulty. Two specific applications are de­
scribed; we believe that the technique will prove useful in many modelling contexts.

A number of questions are raised by the Laplace transform result itself. We

are also investigating several issues more closely related to the subject of the
present paper. In particular, we are attempting to study more closely the rela­

tionship between error in matching the Laplace transform and error in performance

prediction. This work leads to the more general topic of error analysis in

hierarchical queueing network models, which we are also investigating. There

seem to be interesting relationships to the Chandy-Herzog-Woo theorem and to

decomposabil ity res ults in genera 1.
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Abstract: A storage system model consisting of N identical
modules is studied. The stream of subsequent requests forms
a homogeneous Markov chain of finite state space, i,e. the
probability of a certain request occurring depends solely on
the type of the previous one. During a memory cycle each mo­
dule can serve a single corresponding element of the reference
list the order of which is invariable. The list is therefore
disjoined into stages containing different elements. The length
of these stages/memory bandwidth/ is investigated in equilibrium.
Apart from the distribution and expectation of the length, ap­
proximations are also obtained. Certain specific transition
probability matrices are given special consideration.

Introduction

One of the most important factor of program behaviour is an algorithm handling
the memory. To choose an optimal algorithm means on large scale to choose an ade­
quate model. For general purposes the interleaved memory seems to be an effective
mean.

Several authors have investigated computer models with interleaved memory
[1], [2], [3], [4], [6] /. Chang considered the two key questions as

Dependence within the access sequence
Queueing mechanism for accesseS.

Present paper attempts to generalize previous results with respect to the dependence.
[1], [3], [6].

I. The Model

Consider an interleaved memory system with N identical modules. The reference
string / the sequence of requests for the modules / is assumed to be infinite.
During a cycle time each module can serve a single request thus the number of busy

421
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modules during a cycle I memory bandwidth denoted by B I characterizes the speed
of the system. We have two extreme cases when the reference string consists of
identical elements IB = II and of 1,2, .. ,N,1, .. ,N,1,2, .. /B = N/, respectively.
This illustrates that B depends on the form of the reference string. In general,
the requests are stochastically generated. The independent uniform case was in­
vestigated by [2], [3J, [6]. As a generalization let the reference string form a
homogeneous Markov chain ~ with state space {1,2, .. ,N} and transition probability
matrix P./i.e. the probabiYity that a request for module i is followed by a request
for module j is Pij;i,j = 1, . .. ,N/. In this case, the memory bandwidth becomes a
period of the sample function of ~n without repeating any states.

The investigation of Markov chains mostly comes to an end after having deter­
mined the stationary I equilibrium I distribution. This describes the asymptotic
behaviour in concrete, individual moments independent of each other but fails to
answer the questions of subsequent instants. It is obvious that

(1)

In the following, an attempt is made to investigate a more global characteristic
in equilibrium.

II. The Basic Problem

Let ~n be a Markov chain of finite state space {1,2, ... ,N} with the transition
probability matrix P = [Pij]' Let us define the sequence of random variables

T = 0
o

(2)

that is, the event {T 1 = k} means that all the variables ~ , ~ , ... , ~
n+ Tn Tn+l Tn+k-l

take different values but ~k = ~~ for some £,Tn ~ ~ < k. Thus the sample functions

of ~n are divided into periods without repetition IVn = Tn+l - Tn I. The length of

these periods will be investigated in the following:

Examples: 1. Recurrent events

_rqo Po 0 0 o. . .J
P - ql 0 PI 0 0 ..

q2 0 0 P2 0 .

Zero is the single state capable of being repeated.
vn are independent, identically distributed and

Assuming ~ 0 = 0 the variables

k-I

2. Random walk

o} q •
k

1T

i=o p. (3)
1

Pi,i-l = q , Pi,i+l

in this case only the periods

p , p + q O,±1,±2, ...

i, i+ 1

i, i-I

i+2

i-2

, i+k-l, i+k

, i-k+l, i-k

(,i+k-l) and

(,i-k+l)
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are of length k+l. The corrresponding probabilities are p ~q and q~p, respectively.
The variables vn are independent, identically distributed and

if k> 1 (4)

In general, the variables V fail to behave as simply as the above examples.
Introducing the sequence nn = S n we have

Tn

Theorem 1. The sequences (n ,V ) and n both form homogeneous Markov chains
and the probabi Ii ties n n n

p{Vn = k Inn- l
i}

depend only on i.

Proof.

P{n in,vn k nrn n

P{su i n' S = i n' Srn t

ir,vr kr; r < n} (1-0. ) x I I'1 n i
n

_
l t=un-l s.

J

s r; u
n-l < r < u r + t , Su i An-I} +n' n-I'n-l

O. i * P{su
nn-l I = i Sr s u < < un I Su An-I}1 n' r' n-l r in s. n-I'

J n-l

n
An- l n-l

where u I k. , U A and A is the Borel field corresponding ton i=o J m m
m=o

I' * sequential summing, respectivelySm and I mean k -2 and k -1 for all
n n

,Su +2
n-l

Su -1
n

in' exceptwith the restriction s. I s. if j < i, and neither si
the prescribed case S£'= inJin the first term.

The homogeneous Markov property of S c~!tS forth the idea that the above
conditional probabilities do not depend oR A nor on n:

i} (1-0 .. h
1J

k-l
.x I

t=l

+ 0 ..
1J

I ... p. I
slTJ JS l s2+-j, sl (6)

Note. 1. (nn'Vn)' or more exactly (nn,Tn), is a Markov renewal process of

discrete time. We have the renewal time ~i of type i:

(7)

In the examples, we obtained simple renewal processes on the one hand because
nn = 0, and on the other P{~i = k} does not depend on i.
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2. (n ,T ) is a special Markov reneval process, namely the corresponding
semi-Markovnprgcess ~ is a Markov chain. This is reflected when generating the
transition probabilit~es /6/.

The theory of Markov renewal processes [5] establishes the equilibrium length
of the periods v

n
' Let

Q.. = 1: Q.. (k) and h. (k)
lJ k=l lJ 1

L Q.. (k) = p{lJ.
j lJ 1

If .!T (f
l

, ... ,f
N

) is the fixed point of the stochastic matrix Q = [Qij] and

N

ih
f. / tha t is, fT is the stationary distribution of the imbedded Markov

1

chain n then
n

P{B = k} lim P {v k}
nn-+=

N

lim ih p{ lJ in-+=

N

ih f i -hi (k) (8)

III. Some Computing Difficulties, Approximations and Special Cases

The calculation of the station~ry distribution f from the matrix Q takes O(N')
elementary operations and needs O(N 2) memory places.- It is much more difficult to
determine the probabilities Qij(k). For instance if N=2 then

Q(l) [Pll 0 ]

o P22

If N > 3 then we have two possibilities:
duce all of the possible trajectories of

[

P12 P21 P12P22]
Q(2) ~

P21 Pll P2;P12

either to store O(NN+l) data
periods. Their number is

or to pro-

SeN)
N

l:
£=1

N

N: - L
£=1

£
(N-IYT> 2'N'N:

Sl'nce S(N+l) > NIh .
~ + t e computing time increases very quickly.

If P..
lJ

1
N then

Q.. (k)
lJ

(k-1) (N-2) (N-3) '" (N-k+l)

Nk

(N-l) (N-2) (N-k+l) (9)

because the numerator shows the number of terms in /6/ and Nk is the value of a
single term. If P.. f.!:. then /9/ can be regarded as an approximation which is not

lJ N
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too bad for large k.

An upper bound for E(B) is to be yielded in the following way.
~(P) where ~(A) = A-diag A and let us form the sequence

Let P
o

425

I,

(10)

where MIN is meant element-wise t.
is an upper bound for P{~i>n} where
are equal to 1. Thus

The i-th element p. (n) of the row vector P 1
is a column vect6r all components of whigh

E(B) <
N

max L
l<i<N k=o

(k)
p.

l
(11)

This bound can only be improved at the considerable expense of losing sight
of its "side" lupper or lower/. The number of terms contained by P{~/k} is

i~l (N-i) and this number in Pi (k) is (N-l) (N_2)k-l. Taking this into considera-

tion
k
i~3 (N-i)

(N_2)k 2

p (k)
(12)

can be a closer approximation than 1111 but, as indicated above, its side cannot
be determined in general.

Our larger problem emerges when determining matrix Q since small changes in
the matrix can cause large deviations in the fixed point f. There exist special
cases when! can be given without difficulty.

1. Cyclic random walk.

P has the following form:

if j-i = k mod N

In this case one can easily verify that ~T

N
T and E(B) < L (k)

f k=o Pi

In general, if P is double stochastic or a Toeplitz matrix then Q fails to
inherit the corresponding feature.

2.
is zero,

P has the form p .. = 0 if o<j<i in which case the single repeating state
i.e. fT = (l.O •. ~~O) and B ~ ~ .

o

3. From the Kolmogorov cycle conditions and from 161 it easily follows that
if sn is a reversible Markov chain* then so is nn and f = ~

In general. there
distributions f and n.

P{B(n) =k} =

seems
Let
N
L ~.

i=l l

to be no explixit relation between the stationary

p{ u. k}
l

t That is: C = MIN (A.B) if c
ij

= (a
ij

, b
ij

), i,j = 1,2 •...•N.

*S is reversible if ~.p .. = n·p .. where P .. and ~. are the transition and station-
aPy probabilities, re~p~~tiveIy~l Jl l
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If N 2 it is easy to verify that

P{B>l} > P{B(n»l}

T.L. TOROK

and thu s

E(B) .:. E(B(n))

However, for N> 3 it is extremely tedious to prove something similar but so far
no example haslOeen produced to refute the validity of 114/.

Finally it is worthwhile to mention that no numerical example seems to
contradict the fact that

N (n)
P{B>k}< L niPi

i~l

IV. Applications and further Generalizations

It is nOe surprising that the distribution of the memory bandwidth IBI is in­
dependent of the state starting from:

P{B ~ k} ~ L f. ·h.(k)
l l

The value of E(B) plays a fundamental part in most of the known models which
are involved in Case 1 of the previous section. They are of simple structure be­
cause the sequence of the requests forms a cyclic random walk with

1 1 1
NN N

1 1 1
P NN N

1 1 1
NN N

Ct B Ct a.

a. a. B Ct

P

a. a. a. B

B a. Ct a.

respectively.

To generalize the queueing mechanism of the requests meets some difficulties.
If we use a buffer of size Q for requests whose modules are busy then the study
becomes extraordinarily difficult. IWe have to deal with cycles containing, at
most, Q identical elements. I For approximation purposes Hellerman's model is
investigated admitting a buffer of size Q. It is not too difficult to ascertain
that

P{B(N,Q) ~ k} k'k:'S(Q+k,k) .(N)
Nk+Q+l k

(18)

where B(N,Q) is the memory bandwidth with N modules and buffer of G, and S(n,k) are
the Stirling numbers of the second kind/[7]/. If Q ~ a then we obtain Hellerman's
formula 1[3]1

P{B

Figure 1 shows E(B) versus N for different values of Q.

(19)
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PERFORMANCE EVALUATION OF A CACHE MEMORY
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In this paper, We study the performance of a cache
memory for a mini computer, namely a MITRA 125 manufactured
by SEMS, France. The performance is evaluated in terms of
hit ratios and speeding-ups of the target machine, via a
simulator fed with address traces picked up during exe­
cutions of real programs. Since such a performance strongly
depends upon the behaviour of the programs analyzed, the
impact of program behaviour on performance is carefully
studied.

I - INTRODUCTION

A cache memory [I, 2J is a buffer between the CPU of a computer and its main memory
aiming at increasing the speed of the memory accesses. Usually in a computer, the
CPU cycle is noticeably smaller than the read/write memory cycle, thus CPU is
slowed down by memory. In this context, a cache represents a trade-off permitting
to get better performance without using a fast but expensive technology for the
entire memory of a computer [2, 3J.

In our case, we study the gain, in terms of speeding-ups of the target machine,
which can be expected by providing a mini-computer, namely a MITRA 125 [4J, with
a cache memory. FormerlyBELL and CASENT [5J have evaluated the improvement brought
to a PDP/8 by a cache the structure of which was very close to ours. But they
mainly emphasized the implementation, ignoring the influence of programs'behaviour
on performance. This paper thoroughly analyzes the performance obtained with a ca­
che and attempts to relate it to the behaviour of the programs running on the ma­
chine.

In a first section, we describe the mechanism of the cache under study for our
purposes and we also define the performance criteria to be considered. In the se­
cond section we describe the tool used to pick up measurements and we analyze the
characteristics of the collected measurements, that is mainly the programs 'behaviour.
The third section is devoted to performance analysis via an address trace driven
simulator. This performance is evaluated both in a steady and a non-steady state
context.
2 - THE CACHE

2.1 - The mechanism

The structure of the cache we study is presented in Figure I. This structure does

" This work has been suppor ted by SEliS (Societe Europeenne de Mini -Informa tique
et de Systemes) under the contract IRIA/SEMS 02/78.
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not make any assumption on the addressing mechanism of the target machine. In par­
ticular, the use of base registers by the MITRA 125 [4J is completely transparent.
The accesses to the cache are made through the absolute address of the information
in main memory.
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Figure I : Cache architecture

The absolute address is a 19-bit number used to reference a 16-bit word in memory.
This address is divided into two parts : the right-most part is composed of the k
low order bits of the address and the left-most part of the (19-k) other bits (high
order bits). For clarity, let us assume that the address to be interpreted has a
right-most part which is the number i and a left-most part which is the number j
(see figure I).

The cache is divided into n segments (n being a power of 2) of 2k entries each, if
k is the number of bits of the address low-order part. Thus the total cache size,

as far as the information part is concerned, is of 2
k

x n 16-bit words (2k x n dou­
ble words with a prefetching mechanism). The n segments are accessed in parallel
through the k low-order bits of the address. More precisely, all the i-th entries
of each segment are accessed in parallel (see figure I). Each cache entry consists
of three parts (see figure I) :

- a tag part of (19-k) bits which contains the high order bits of
the address,
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2 - a service part which contains validity and parity bits and also
bits used by the replacement algorithm,

3 - an information part of 16 or 32 bits which contains the informa­
tion itself (the content of the referenced word or double word
according to the existence or not of prefetching).

The n i-th entries of each segment are scanned in order to find the tag equal to
the number j (see figure I). If such an entry exists, the referenced word is within
the cache and the information part of the entry is transferred to CPU. If such an
entry does not exist, the referenced work is not within the cache and it must be
transferred to it from memory. If an i-th entry·of a segment is still free, the
referenced word is stored in it, otherwise the replacement algorithm has to free
one of the n i-th entries.

It is noteworthy that the proposed architecture aims at exploiting a certain program
"locality" [6J : the words having addresses the high-order parts of which are equal
and the low-order parts successive (memory vicinity) will be loaded together into
the cache.

2.2 - The performance criteria

To evaluate the improvement brought by the cache, we need to define some performan­
ce criterion. The level we consider is not detailed enough to take into account pro­
blems such as data or addresses interleaving, data path width, pipelinning, and so
on, all related to parallel accesses. We shall consider some "speeding-up" of the
machine.

Let us consider the mean time for a word (or a double word) to be available for
CPU. Let m and M be such mean times according to whether the word is within the
cache or not. Let p be the probability of finding a referenced word within the
cache (p is also called the hit ratio of the cache). Then the mean time for a
word to be available is :

( I ) T = pm + (l-p)M

Thus the CPU throughputs with and without cache, in terms of data words available
to be processed by CPU, are respectively

( 2)

(3)

pm + (I p)M

D = J.
M M

Therefore we can measure some increase of the speed of the machine by the ratio

(4 )
M

pm + (l-p)M
I-p (I - ~)

It must be noticed that the improvement we measure is not the total resultant spee­
ding-up of the machine since we do not consider parameters as possible parallel
accesses, mean time per instruction processing and average number of accesses per
instruction. It must be clear that the throughputs we consider are not instruction
throughputs, but we think that equation (4) permits to roughly evaluate an order
of magnitude of the speeding-up visible by a user.

It is evident from the equation (4) that in order to maximize A, we have to mini­

mize the expression: I-p(l - ~), that is :

- p has to be as large as possible
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- ~ as small as possible.

The ratio His an architecture parameter which expresses the usefulness of the ca-

( ..) . . b I (m 1) dche m and M must be not1ceably d1fferent • In our case, 1t 1S a out 4 M' 4 an

we shall consider it as fixed. The hit ratio p depends on the cache structure and
the programs'behaviour. From the equation (4) we give some "speeding-ups" we can
expect for different values of p.

p

A

0.0 I 0.5 I 0.6

I. I 1.60 I 1.82

0.7 I 0.8 0.85

2.10 I 2.50 2.76

0.9 0.95

3.08 3.48

1.0

4.0

data or instruction

Thus, roughly speaking, we can see that to double the s~eed of the machine we must
assure a hit ratio of 0.7 and to triple the speed a hit ratio of 0.9.

Therefore we shall study, in this paper, a structure of cache aiming at maximizing
the hit ratio p.

3 - THE COLLECTED MEASUREMENTS

3.1 - The measurement characteristics

The optimization of the hit ratio p cannot be undertaken independently of the pro­
grams'behaviour, which is, in our case, the way the programs address words in main
memory.

For that purpose, hardware probes were plugged into a MITRA 125 CPU and connected
to another SEMS mini-computer (a SOLAR~). Periodically the SOLAR copies on a magne­
tic tape the measurements it has picked up. Because of the way the measurements
are collected, there exist "holes" on the tape which correspond to the measurements
missed during copying (from 100 to 500 milliseconds). Thus measurements on the tape
are gathered in blocks of 32K words of 32 bits separated from each other by "holes".

An elementary measurements (a referenced address) is coded on 32 bits and provides
information on

- the address referenced (19 bits)

- the nature of the access

- the base registers used

- the direction of the transfer between the CPU and the memory (write
or read operation)

- the possible conflicts with i/o channels.

About thirty programs were run on the MITRA 125 and spied. We report, in this paper,
the results concerning eight of them which are described in the following table :

~ all this part of work has been done by the SEMS Center at Echirolles (France)
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I Identification Description
I

Program A Fortran Program

Program B Test of the MMT2 Monitor

Program C MAS2 Assembler

Program D Benchmark (coded in FORTRAN)

Program E ~~S Assembler with standard environment

Program F First phase of MAS Assembler

Program G Sorting program

Program H Grammar Generator

We studied the behaviour of these different programs according to

435

- the uses of the different base registers,
- the respective access rates to instructions or data,
- the respective read or write access rates,
- the conflict rates with i/o transfers,
- the behaviour within memory, that is with respect to the referenced

addresses,

Since the program behaviour within memory is much more complex than the behaviour
related to other parameters such as'base register uses or different access rates,
we shall emphasize this point by devoting it a complete section in the sequel of
the paper.

We give in figure 2 some characteristics of program behaviour. Some of them are
rather stable and repeated through all the programs

- the read access rates are high and stable (always betwenn 83 % and
90 %). To explain this fact, notice that all the instruction acces­
ses are read accesses.

- the instruction access rates are not very much stable, since they
vary from 41 % to 68 % and the confidence interval widths can reach
4 %. But, however, they indicate a relative balance (around 50 %)
between instructions and data.

- the conflicts with i/o transfers are either non-existent or very
rare, except possibly for the programs E aRd F where they can reach
2 % and 3 % of all the references.

On the contrary, some other figures of merit heavily vary from one program to
another :

- the base register G is relatively used, from a minimum of 13 %with
program B (test of monitor) to a maximum around 70 %with programs
F and H.
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- the base register S (used by the only monitor) is very fluctuating.
Its use is minimum for programs A (Fortran program) and D (Fortran
benchmark), and maximum for programs C (assembler) and G (Sorting
program). Notice that the use of base register S permits to roughly
evaluate the overhead associated with each program.

- the base register Q (the base register of the shared sub-programs)
is seldom used except by programs A, Band D. This base register
seems to be associated with FORTRAN.

- the base register Z (the base register of the shared data) is not
very used. This should change in the future, in the case of inter­
active systems (conversational systems, data bases, and so on).

- the base register H permits to evaluate the frequence of instructions
moving bytes strings in memory_
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Figure 2
It must be noticed that the program G significantly differs from the other ones,
mainly because of numerous references issued by the i/o channels. In particular,
this phenomenon affects the read access and instruction access rates.

We way wonder aoout the validity of our results, for the number oi references ana­
lyzed varies from 325,445 to 1,295,419, which represents the execution of 100,000
to 600,000 instructions. This number can seem very low, but one should remember the
technique which was used to collect the measurements. The referenced addresses were
sampled per blocks of 32,768 consecutive addresses, each block being separated from
the next one by a "hole" in time of about 100 to 500 milliseconds. Therefore the
analysis we performed concerns relatively long program executions (about 10 minutes)
and we can guess its validity.

These results lead to some first conclusions:

- the structure of the cache must not depend on the uses of the diffe­
rent base registers, for these uses vary too mueh from one program
to another and, possibly, in the future.
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- on the contrary, the structure of the cache may perhaps depend on
the distribution between instructions and data by dividing the ca­
che into two parts according to the measured distribution (roughly
50 % for each part).

3.2 - Program behaviour with respect of memory

In a first step, We visualized the behaviour of the different programs in me­
mory. The figures in Annexe I display raw information that we dispose on each pro­
gram.

The X-axes represent the execution time given in numbers of references and the
numbers of the references pages (blocks of consecutive words in memory) are plotted
on the Y-axes. A dash on the graph indicates the pages referenced by the program
at a given instant of time.

Notice that, due to the scales used to plot the figures, several addresses seem to
be referenced simultaneously. This is only an artefact. The scales which have been
used are as follows :

- X-axes
- Y-axes

the time unit is of 1024 references
the memory address unit is of 1000 words.

Because of the technique used to collect measurements, magnetic tapes contains blocks
of 32K consecutives references. We have visualized this fact in Annexe I by drawing
on each figure vertical lines to separate the different blocks. It is noteworthy
that, on each tape (thus for each program), blocks look very similar. This fact
confirms that the data can be considered as relatively representative.

From these results we can deduce that :

- program A is "quiet" and stationary, except possibly on the block
16 where we notice the influence of printer i/o operations.

- program B is more "exc ited", perhaps representative of a heavy and
varied workload. This program will be preferably considered to eva­
luate the cache performance in order to avoid performance overesti­
mation.

liS tripes" of continuous ly referenced addresses can be noticed in
the different programs.

- program H shows the influence of
- addresses referenced by i/o transfers (block 17)
- wait loops when the machine is idle (blocks 18, 19, 20,

21, 22).

In order to quantify this memory behaviour we studied some measure of program
"locality" [6J.

If some "locality" phenomenon exists the probability for an address to be referen­
ced roughly decreases as its rank in the LRU stack increases. Therefore we simula­
ted the LRU (Least Recently Used) algorithm [7J with the address references recor­
ded on the magnetic tapes previously described. We have considered two kinds of
stacks :

- in the first one, the information to be addressed consists of
128 words blocks (pages of 128 words). The block size has been chosen
because of the MITRA 125 addressing mechanism with which only
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We give in figures 3 some typical results we obtained. We have plotted the proba­
bility for a rank of the LRU stack to be referenced as a function of the rank.

As far as the 128 words stacks are concerned, we observe a global decrease (see
figure 3.1) which can be locally contradicted on a few ranks (see figure 3.2). This
fact comes from sudden cyclic locality changes. Despite that point, we may conclu­
de there exists some locality phenomenon.

We may notice that such a behaviour is very close to the ones met on large compu­
ters which use other addressing mechanisms and more sophisticated instructions.

As for the double word stacks, the decrease is not so obvious because of the in­
fluence of program loops (see figures 3.3 and 3.4). This influence is particularly
noticeable for programs A and C (we give in figure 3.4 the results for program C)
where some ranks the order of which is greater than 10 or 40 have almost the same
probability as the first rank to be referenced. It is noteworthy that some of these
peaks can be interpreted to give an order of magnitude of program loop sizes. Note
also that the high probability for the first rank to be referenced indicates that
the prefecting mechanism described in section 2.1 will increase the hit ratio of
the cache, since after having referenced a double word, there is a high probabili­
ty for referencing it again.

The results we have just presented do not allow to size up the cache and do not
give a detailed behaviour of programs with respect of memory. Therefore we have
studied the working-sets [8J of the different programs. In fact, instead of the
working-set itself, we have studied its size. Because of the MITRA 125 addressing
mechanism (see § 3.2.1) we considered again 128 words pages.

We give in figures 4 two kinds of results. Both are related to program locality,
but the second one can be used to roughly estimate the global size of the cache.

a - program locality

We have plotted the mean size of the working-sets as a function of their window
T( W( T) ). The s lower the increases of these curves, the more "loca I" the programs.
Let us notice that these curves are unit slope straight lines for a program not
1I1ocal" at all which accesses a new page at each reference. From figure 4.1, we
can conclude that the notion of locality exists (on the figure, since the scales
are quite different, a unit slope straight line is very "close" to vertical),

b - global size of the cache

The cache will be all the more efficient as its size will be large enough to load
working-sets of programs. We give in figure 4.2 the working-set according to the
time for a relatively "excited" program (program B). The working-ects under study
have a window of 2048 references. Their sizes are counted in number of 128 words
pages and the time is counted in steps of 512 references.

From this kind of figures of merit, we may deduce that

- a waiting loop has a working-set of roughly 5 pages,

- the "quiet" programs have working-sets of 20 to 30 pages and
"exci ted" ones of 40 to 50 pages,

- no program has a working-set which contains more than 80 pages.

We can conclude that the order of magnitude of the cache size is possibly about
10K words. This will be corroboraced by the results presented in section 4.
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3.3 - Program behaviour with respect of the low order bits of the
referenced addresses

Because of the cache structure (see § 2. J, figure J), the low order bits of a refe­
renced address take a prominent part in the cache performance, from the standpoints
of both hit ratio and segment space utilization. In particular, a good segment
space utilization needs a uniform probability distribution of the low order part of
the referenced addresses, since, in this case, all the segment entries have the
same probability to be accessed. (Notice the conflict with the "locality" asswnp­
tion).
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In this context, we have estimated histograms of the low order part addresses gene­
rated by programs. We have considered low order parts coded on 1, 2, .•. ,10 bits.
That is we have estimated the entry access probabilities of segments of

2, 22, ... ,2 10 words.

The results we obtained (see figure 5) shous that these probabilities are not equal
(non uniform distribution) for large segments (many entries). If the segments are
small, the accesses are more balanced, but they can fluctuate according to the
programs (see programs B and C). Therefore if the segments are too large, bad
segment space utilizations have to be expected. This is corroborated by the results
presented in section 4.

We give in figure 5 some results we obtained for segments of 2, 4, 8 and 16 entries.
Notice that the probabilities to access odd or even addresses are relatively equal
but the ones for the even addresses are always slightly greater.

3.4 - Conclusion

Up to now the results we have presented deal with the only program behaviour, but
they permit to have Some strong conclusions on the cache architecture :

- the idea of a cache memory is quite justified since the concept of
"locality" exists both at a fine level (the 16 bits words) and at
a more global one (the 128 words page).

- the cache will be large enough, about 10K words (the maximum working­
set size).

- the segments will not be too large so that they are filled enough,
but not too small in order to allow the loading of a "locali ty".

- a prefetching mechanism will increase the hit ratio of the cache
(see § 3.2. I) .

4 - THE PERFORMANCE EVALUATION

4.1 - The simulator

Precise cache performance has been evaluated by simulation. A simulator of the
cache structure as described in section 2.1 was built in such a way that it permits
to study the impact of :

- the cache size,
- the number of segments,
- the replacement algorithm (three algorithms were considered: FIFO,

LRU and RANDOM),
- the policies concerning write accesses originated either from CPU

or from i/o channels.

The inputs of the simulator consists of addresses'traces and the outputs provide
information on hit ratios, space utilizations (global and for each segment), sta­
tionary or non-stationary behaviour of the cache (in case of stationarity, condi­
dence intervals are built on the different figures of merit).

The results we seek for are of three kinds

- to evaluate the minimum performance to be expected for the cache
(which can be reached in the worst case).
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.. to study transient behaviour of the cache in order to find out
reasonable performance (which can be expected, in average, on a
long run).

- to evaluate the influence of the write accesses (generated from
either CPU or i/o channels) on performance.

4.2·- The minimum performance

We have considered the worst operation conditions, that is :

- the cache is started empty. Our purpose is to take into account a
sudden context change large enough so that information contained in
the cache is no longer relevant.

- the length of the addresses'trace feeding a simulation run is limited
to one block of 32K consecutive referenced addresses (see § 3.1).

- the blocks selected for the simulation runs are particularly "exci­
ted" in order to get pessimistic performance.

The approach we present aims at determining performance reachable at any time. In
other respects, building confidence intervals in such conditions has the following
meaning: all the conditions during the experiments are stationary. That is, in­
tuitively speaking, the references are always rather not "local" and "complete"
cache "renewals" regular and re la tively frequent (in the average, every 32K refe­
rences).

We give in figure 6 the characteristics of the "excited" blocks selected according
to the program behaviour studies we have presented in section 3.

Numbers ot: Min. Numbers of Max. Numbers 0 f
Selected block references references references

Programs numbers different within different for different for
(see Annexe I) the block the whole the whole

program program

A 16 3335 495 3335

B 21 5687 1848 7762

C 3 2544 74 4718

D 18 3550 1668 3639

E 17 4632 3176 81'41

F 19 5874 3012 8134

G 17 9278 57 11019

H 8 3077 1350 8125 ,

Figure 6

We present some results we obtained in figures 7. The figure of merit we consider
is the hit ratio.
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We can summarize these results as follows

the replacement algorithm has a slight influence on hit ratios.
In general, the confidence intervals obtained are overlapped.

the LRU algorithm is often the best and FIFO is very close to
LRU. RANDOM is the worst.

the influence of the replacement algorithm becomes noticeable
when the cache is small and has many segments. That is normal.

the hit ratios increase with the number of segments.

this parameter has a strong influence, if the cache is small.

the hit ratios increase with the cache size.

this increase depends on the programs.

beyond 8K or 10K. this parameter has a small influence on
performance.

this parameter has a strong influence on performance.

prefetching seems to be essential in order to get satisfactory
performance.

All the results we present have confidence intervals the widths of which vary from
+ 0.05 for the small caches (512 words) to + 0.03 for the large ones (8K words).

4.3 - Transient behaviour of the cache

The hit ratio we are interested in derives from time intervals between cache faults
counted in numbers of references. Therefore we will consider these time intervals
in order to get some results on the cache stationarity. Let T be the period during
which we observed the cache and t], t

2
•... • t n ~ T ~ t

n
+ 1 the n instants at which

n cache faults occurEed. If we assume stationarity, we get (see [9J) :

(5) lim U =lim
n

n-t<Xl n-/,·Cl)

n
L t.

i=! 1 _ 1. T
n 2

T~
N(O. I)

That is Un converges towards a Gaussian distribution. Notice that the test we con­

sider is optimal [9J, if the stochastic process is Poisson with an arrival rate
given by



( 6) A(t) =
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In that case, we get:

B a <=> stationarity

B # a <=> non-stationarity

We computed the Un's for the programs A, B, and C for large n's by considering the

whole traces without taking into-account the "holes" (see section 3.1). This
approach seems reasonable if we consider the figures given in Annexe I where the
"holes" do not disturb the sampling. The results we got shows that the Un's abso-

lute values are very much greater than 1.96, that is (see a table of Gaussian dis~

tribution) the stationarity is rejected with a 95 % confidence. Therefore statio­
narity does not exist for programs A, Band C as far as we consider them globally.

We repeated computations of Un's for different n's (hence for different periods T)

in order to find out some piecewise stationarity. This assumption has been rejected
for the programs Band C where the stationary regions were very "small". On the
contrary, for program A we found out "large" stationary regions (from 10,000 to
100,000 references) interrupted by "small" non stationary ones (from 1,000 to
5,000 references). Thus, strictly speaking, there does not exist a stationary state
performance. Therefore we undertook a more precise study in order to formalize this
notion.

For that purpose t we defined a new measure intermediate between traces given in
Annexe I and working-sets, more appropriate to take into account working-set varia­
tions. The main memory is divided into 128 words pages and its "occupancy II is re­
presented by a boolean vector where 0'5 or 1's indicate whether the corresponding
pages were referenced or not during the considered time window. The measure we
consider is the distance between two such consecutive memory "occupancies". That
is :

(7)
n

"
:1 xi $ Yi where x and yare two memory "occupanciesll and

xi' Yi' their respective components.

It is obvious that the distance we just defined is the number of the components of
vec tors x and y which differ. So the larger the dis tances, the more "excited" the
programs.

We give in figures 8 the results we obtained for programs A', B' and C' which are
very similar to programsA, Band C reported through this paper. The time windows
we considered are of 1024 references. The Y-axes represent both the distances
(between two consecutive memory "occupancies") and the numbers of cache faults (on
a time window), whereas the X-axes represent the time counted in windows of 1024
references. The dotted lines are distances and the continuous lines are numbers of
cache faults for caches of :

- 2 segments of 4K with prefetching

2 - segment of 8K without prefetching

3 - 2 segments of 4K with prefetching

4 - segment of 8K without prefetching.
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~~en the curves are separated from each other, they always are in the order indi­
cated above (I, 2, 3,4). From figures 8, we can notice that the cache (in fact,
its performance) immediately reacts to program behaviour: a mediocre performance
corresponds to an "excited" behaviour (concordance of peaks) and a good one to a
"quiet" behaviour (concordance of troughs). From this strong evidence, we tried to
model the cache by a simple transfer function between distances representing pro­
gram behaviour and cache fault rates representing the figures of merit under consi­
deration. Unfortunately we were unable to find out such a function.

~~~~~_:_~~_~ii_~S~-2~_~_f~£si9~_~f_Ei~~

From the previous results we have presented, we cannot consider a limiting quantity
such as :

(8) p lim p( t)
t-+<O

where pet) is an estimation of the hit ratio compu­
ted between the instants 0 and t.

since there does not exist a steady state. Therefore we studied hit ratios as Eunc­
tions of time. We give in figure 9 some results We obtained. In order to get
reasonable sizes for the different figures we used a logarithmic scale for the
X-axes where the time is counted in references. For all the experiments, all the
32K references blocks of a program trace (see section 3.1) were considered as con­
secutive and devoid oE "holes" (see also 4.3. I).

1.0 /tl' '."0 -

0·5

0·8

O· 7

0·(,
10'

Figure 9
10' 10s

Hit ratios as functions of time

fel.,."., ••

From all the results We got, it seems there exists, except perhaps for programs B
and G, an asymptote (a limiting hit ratio) located a bit beyond 0.9. This would
lead to conclude that the limiting quantity in (8) exists. In fact we have to be
areEul because pet) is an cumulative quantity and therefore not much sensitive to

fluctuations. However that may be we give these limiting quantities for some caches
in figures 10. To understand the behaviour of the cache as the time is running we
give in figures JJ the space utilization of the cache as a function of time. Except
for program B, which is very scattered in memory (see Annexe I), we notice that
the space utilizations are very 1m,. \'e must not deduce from this that the cache
is badly used : it is the price we have to pay in order to get satisfactory perfor­
mance.
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LRU LRU
Programs without with

prefe tching prefetching

A 0.977 0.979

B 0.910 0.954

C 0.972 0.984

D 0.984 0.991

E 0.900 0.949

F 0.903 0.946
-- I

G 0.877 0.922 i
i

I.I
H 0.936 0.960

Figure 10.1

Hit ratios of caches of two segments of 4K
(confidence intervals less than 0.01)

Cache
LRU

without
prefetching

LRU
with

prefe tching

I x 8K 0.889 0.942

2 x 4K 0.910 0.954

4 x 2K 0.926 0.959 I

+----+------+-----1
8 x IK 0.934 0.961

I x 4K 0.835 0.920

0.934 I
0.8582 x 2K

~: ::;-1 :-:-:-:-~------+---:-: :-~-:---I
Figure 10.2

Hit ratios of different caches for program B
(confidence intervals less than 0.01)



A CACHE MEMORY FOR A MI I-COMPUTER

PROGRAM A

451

0",

0.5

0,4

Q,3

0.2­

0.1

~IIfU

Figure I I. I

PROGRAM B

Figure I 1.2

04

o.~

0-1

0.1

PROGRAM C

Figure 11.3



452 M. BADEL and J. LEROUDIER

~~d~d_:_!~~_~~!l~~~~~!_E~~_~~~E~~!_~E~E~

The results given in section 4.2 are surely pessimistic but the ones given just
above are perhaps optimistic. Therefore we studied the influence of the initial
state of the cache on the performance. In this view we give in figures 12 some
results we obtained. \,e have drawn hit ratios as functions of time, on the one hand
the simulation experiments were started \,ith the cache empty of information and on
the other hand the cache was initialized with the 32K references blocks preceding
the selected one (see section 4,2).

From these experiments we may conclude that the average cache performance on a long
run will be probably a lot better than the results reported in figures 7 and perhaps
not so far from the ones given in figures 10 .
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Fif;ure 12. I Figure 12.2

4.4 - The influence of the write accesses

A word in the cache can be read or written either by the CPU or by the i/o channels.
Several policies can be implemented as far as the write accesses (modification of
information) are concerned. Until now, the policy we have followed in all the
experiments consists in :

I - inva lida ting the da ta wi thin the cache which are modified by
i/o channe Is.

2 - not loading the data outside the cache which are modified either
by the CPU or by the i/o channels (write accesses).
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I
I

I I
I

UlU LRU Total Numberl Total Number Number of

Programs Cache without with of analyzed of write i/o

prefetching prefetching references i/o accesses accesses

I x 4K 0.978 0.991

~~
A 2 x 4K 0.996 0.998 1,245,184

1 x 8K 0.978 0.995

1 x 4K 0.868 0.953

~~B 2 x 4K 0.947 0.988 1,295,419

1 x 8K 0.925 0.977

1 x 4K 0.944 0.984

~~
C 2 x 4K 0.982 0.993 1,306,624

1 x 8K 0.977 0.988

1 x 4K 0.967 0.988

~~D 2 x 4K 0.993 0.998 980,507

1 x 8K 0.984 0.995

1 x 4K 0.817 0.913
I

E 2 x 4K 0.944 0.978 1,132,956 25,033 13,924

1 x 8K 0.865 0.949

1 x 4K 0.852 0.941

F 2 x 4K 0.937 0.977 682,308 7,637 5,820

1 x 8K 0.904 0.966 ,
1 x 4K 0.815 0.935

G 2 x 4K 0.925 0.976 672,005 19,780 16,123

1 x 8K 0.892 0.958

1 x 4K 0.899 0.954
i

H 2 x 4K 0.953 0.976 325,445 2,720
I

2,235
I
I

I1 x 8K 0.923 0.966 I

Figure 13

(Confidence intervals less than 0.01)
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We will compare this policy with the new one that we consider now:

1 - the data within the cache which are modified by i/o channels are
upda ted,

2 - the data outside the cache which are modified by the CPU (and not
by the i/o channels (write accesses)) are loaded into the cache.

We give some interesting results weobtained in such conditions in figure 13. More
d~tails a:e presented concerning the i/o transfers of the programs E, F, G and H,
S1nce the1r percentages are higher than the others (see figures 2, section 3.1).

By comparing these results with the ones given in figures 10, we notice an increase
of the hit ratios not negligible if we consider the speeding up of the target ma­
chine (see equation (4) and table in section 2.2).

5 - CONCLUSION

We have presented in this paper the performance improvement which can be expected
by providing a mini-computer with a cache memory. The major criterion we have con­
sidered is the hit ratio from which we deduce a speeding up of the target machine.
Our results show that in order to get satisfactory and stable performance a relati­
vely large cache is needed, the size of which is of the order of 10K words. These
results also show that when high performance is achieved, the improvements brought
by implementing a prefetching mechanism or by increasing the number of segments
are of the same order, but that in bad operating conditions a prefetching solution
is always better. Therefore we may conclude that, in our case, we can easily triple
the speed of the target machine with a reasonable trade-off.

In other respects, we carefully studied the behaviour of the program run on the
machine and we showed the strong influence of the locality phenomenon on the
performance.

ACKNOWLEDGEMENTS

We would like to thank Ph. LEBLANC and M. LEGOUX who participated in this work. In
other respects we are indebted to SEMS for having entrusted us with this study
and made it possible by supporting it and by providing us with basic data. In this
regard, we would like to thank MM. MICHEL, BASTIE, DR LAMOTTE, GAULENE, GAUDEY,
from SEMS.

REFERENCES

[IJ LIPTAY J.S. - "Structural Aspects of the system/360 Model 85, II the Cache" ­
Iffi1 Systems Journal, Vol. 7, n° I, 1968.

[2J MEADE R.M. - "Design Approaches for Cache Memory Control" - Computer Design,
Vol. 10, January 1971.

[3J KAPLAN K.R., WINDER R.O. - "Cache-based Computer Systems" - Computer, March
1973.

[4J SEMS - "MITRA 125 - Manuel de reference" - Brochures n° 4648 UI FR and
n° 4649 UI FR edited by SEMS (Societe Europeenne de Mini-Informatique et de
Systemes), 1978.

[5J BELL C.G., CASASENT D. - "Implementation of a Buffer Memory in Mini-Computers"­
Computer Design, Vol. 10, November 1971.

[6J BURGEVIN P., LEROUDIER J. - "Characteristics and Models of Program Behaviour"­
National Conference ACM 76 - Houston (Texas) - October 1976.



A CACHE MEMORY FOR A MINI-COMPUTER 455

[7] MATTSON R.L., GECSEI J., SLUTZ D.R., TRAIGER 1.L. - "Evaluation techniques for
storage hierarchies" - IBM System Journal nO 2, 1968.

[8 J DENNING P. J. - "The Working Set Mode 1 for Program Behavior" - Communication of
the ACM, Vol. 11, nO 5, May 1968.

[9J COX D.R., LEWIS P.A.W. - "The Statistical Analysis of Series of Events" ­
Methuen - 1966.

ANNEXE I

Program A

Program B
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Earlier tuning and optimization of the system (B6700)
suggested that both the degree of multiprogramming and
the intensity of memory usage should be dynamically
adapted to configuration and load. A pragmatic approach
was taken to do this by a controller integrated in the
operating system and using feedback information. The
controller was constructed using an intuitive model,
implemented on the real system and tuned to maximize
throughput. Synthetic mixes were used to measure
performance and system behaviour under the original and
the controlled system.

INTRODUCTI ON

The operating system of the B6700 offers the operator several system parameters
to control the degree of multiprogramming and memory usage. In an earlier project
/9,11/ the influence of these parameters on system behaviour were tested with
various main memory sizes. It turned out that for a given load the set of optimal
parameters depended on memory size. Tests also verified that for a given memory
size the optimal values of parameters were depending on load characteristics as
memory needs or CPU intensity. More precise analysis of the measurements of both
experiments showed that the relationship between load demands for resources and
resource capacities was most relevant.

At the B6700 installation in Karlsruhe, upgrading and temporary failure of single
components had led to configuration changes. Measurements of the daily load had
shown a great variance in CPU-, 10- and memory demands by users. To set the op­
timal values of pcrameters an operator many times a day might have adapted them
to the actual load. The idea of this project was to enable the operating system
to do this job.

THE REAL SYSTEM AT THE BEGINNING

The B6700 was the heart of a computer center managed by the University Karlsruhe
Informatik Rechnerabteilung and therefore dedicated to teaching and research in
Computer Science. There were up to sixty terminals connected to the system for
interactive sessions. Batch jobs could be started by a terminal user or via a
ca rd reader.

The system had a eval processor,262 KW main memory, two disks and six packs. The
operating system was a modified version of Burroughs Corporation Master Control
Programm release II. 8.

Special characteristics of the operating system were:

459
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- a virtual memory with segments of variable length,

- regulation of the degree of multiprogramming by a system parameter AVAILMIN re­
presenting a lower limit of available core which the system should not exceed,

- control of memory usage intensity by another system parameter OLAYGOAL defining
the amount of overlayable memory to be overlayed to background per minute.

A SIMPLE MODEL FOR THE SYSTEM AND CONTROLLER

To understand system behaviour and to help construct the controller a system
model was intuitively developed. This model made the following assumptions;

AI: The system has three main resources: CPU, 10 and memory

A2: Each task demands service from each main resource. The amount of
service asked for and the relationship between demands for different
resources varies widely in time, and from task to task. The average
arrival rate of tasks and the average distribution of demands among
resources are not constant.

A3: For each resource there exists a lower and an upper bound to the
load (user and system), which should not be exceeded to achieve
optimal system performance.

A4: Load may be transferred from one resource to another (within certain
limits) by changing system parameters and strategies. Load should
be dynamically balanced in this way to achieve optimal system per­
formance.

For the given real system, assumption one was apparently true. For other systems
it may be necessary to include a special software resource, such as for example
a data base system, or to divide 10 into different resources for paging and user
10. It may also be useful not to include the CPU resource, if it is never a
bottleneck.

Assumption two is surely valid for every envir.onment with interactive users and
therefore also for the modelled system. There are many reasons for load changes
within more or less short periods of time in other environments.

In assumption three the existence of a lower bound is equivalent to the fact that
each system resource should be kept busy to achieve good throughput. The existence
of an upper bound for memory load is justified by the Qverhead required to manage
a heavily loaded memory. An overloaded CPU with many waiting tasks causes no im­
mediate overhead. But all these tasks need memory. Even if memory is not yet over­
loaded, memory ~anagement causes overhead, which normally increases with the
amount of memory used. Therefore, if the CPU is heavily loaded, the probability
of improving throughput by a larger load is low and limited, but savings in memory
management overhead by limiting load are quite certain. That's why the model does
not regard the highest possible load as the best load.

Load limiting is also necessary if optimum performance requires low or limited
response times. The exact values of the bounds in assumption three may depend on
system structure and the relative weighting factor for throughput and response
times in the performance criterion. A high weight for throughput corresponds to
higher values, a high weight for response times to lower values.

Assumption four establishes the possibility of partially transforming demands for
service on one resource into demands for service on other resources. With a vir­
tual memory system. it is easily seen how memory demands are transformed into CPU­
and 10-demands, thus enlarging the virtual memory capacity. Load may be balanced
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in such a system by controlling the degree to which such transformation takes
place. For the B6700, this could be done by using the parameter OLAYGOAL; for
other systems it may be done by controlling the frequency with which the useful­
ness of pages is tested, or by controlling the timelimits defining the working
set of a task. Transformation of load is not only possible between memory and
the resources CPU and 10. Many operating systems use complicated optimizations in
10-handling. This is a partial transformation of 10-demands into CPU-demands.

Assumption four requires load balancing by means of transferring load from the
actual performance limiting bottleneck to other resources. Load balancing by se­
lecting tasks during scheduling is not proposed, because task demands may be un­
balanced over longer periods of time. In addition there may be not enough tasks
waiting for selection or the ~eed for short response times may prohibit task se­
lection. Selecting tasks for load balancing, implies adapting the load to the sy­
stem configuration, whereas changing parameters or strategies for load balancing,
implies adapting system management to the load.

IMPLEMENTATION OF THE CONTROLLER IN THE REAL SYSTEM

The degree of multiprogramming was chosen to control overall load. Load may be in­
creased by admitting new tasks to the system or by reactivation of suspended tasks.
Load may be decreased by suspension of some task (the task loses all overlayable
memory and must wait for reactivation).

Changing the OLAYGOAL parameter was used for load balancing. With this method load
may only be transferred to or from memory. Memory management was that part of the
system which had been well studied in earlier projects and apparently had a great
influence on load distribution and performance. Other feasible methods of load
transfer between resources were not included because of limitations in time and
manpower.

The B6700 operating system realizes some sort of look ahead paging out: every
three seconds a special task is activated that overlays segments chosen by a ran­
dom strategy out of core. OLAYGOAL defines the percentage of overlayable core to
be overlayed in advance within one minute. This strategy ensures a constant level
of memory usage intensity: segments not referenced over a longer period of time
are eventually overlayed.

A higher value for OLAYGOAL, shifts load from memory to CPU and 10 (or more p~e­
cisely, to CPU and paging devices and channels, which, under the B6700 operatlng
system, are not physically separated from file devices and channels). A lower
value shifts load in the opposite direction.

Figure 2 shows in principle, in which directions,load is shifted by the different
activities. By combining several activities, a wlde range of posslble load changes
becomes available.
Based on these assumptions a model controller was developed. Is was,assumed.t~at
a measure for the load of each main resource exists. A scale for thlS was dlvlded
into three regions by bounds corresponding to those defined in assumption three.

underload

Fi gure

lower

I

~ediumload

upper bound
I
I
I
I

'over load region

measure of
load
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Figure 2;

Decreasing OLAYGOAL

Admitting new or suspended
tasks
Suspending tasks

..

~ Increasing OLAYGOAL

CPU & 10 load

Overall load was controlled by the following rules;

Load is increased whenever ~ resources are underloaded,
- load is decreased whenever one resource is overloaded.

load of resource 1

load of
resource 2

load of
resource 3

Figure 3:
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In figure 3 the space of overall system load - like that of one resource - is dj­
vided into the three regions of underload, medium load and overload. The underload
region equals the smallest cube, the medium load region equals the medium sized
cube minus the smallest cube, and the overload region equals the largest cube mi­
nus the medium sized one.

The load balance was controlled by an additional rule:

- Load is transferred from the most heavily loaded resource to other resources.

load of
resource

Min

Figure 4:

load of
resource 2

load of
-==-------------"'----------_ resou rce 3

In figure 4 the line crossing the cube from Min, the point at which all resources
are unloaded, to Max, the point at which all resources are fully loaded, repre­
sents the region of balanced load. The three pyramids around it with their top in
Min and their base equal to the upper, rear or right surface of the cube represent
the regions within which load has to be transferred from resource one, two or
three respectively to other resources.

To determine the memory, CPU and 10 load eight terms measured by the operating
system were used:

- AVAILABLE CORE, CC-OVERLAYS and PRESENCEBITS to define memory load,

- PROCESSTIME, ALIVE TASKS and ALIVE TASKS/MIXCOUNT to define CPU load,

- IOQUEUES of PACKS and IOQUEUES OF DISKS to define 10 load.

AVAILABLE CORE is the amount of free memory, CC-OVERLAYS is the number of core to
core overlays per second (performed if the operating system tries to overlay small
segments in order to find space for large segments) and proved to be most sensible
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to thrashing. PRESENCEBITS denotes the number of segments loaded after presence
bit interrupts per second. PROCESSTIME is the percent3ge of time processors 3re
busy, ALIVETASKS is the number of tasks waiting for a CPU or at a CPU, MIXCOUNT is
tne total number of tasks.

To compute a measure for memory, CPU and 10 load respectively, the scale for all
terms was divided into three regions. The scale for AVAILABLE CORE was further di­
vided into six subregions. The resulting 64 different memory-, 27 CPU- and 9 10­
situations were mapped via tables into an underload, medium load and overload re­
gion for memory, CPU and 10 respectively. Memory load regions were composed
of ten subregions. A subregion reflected the relationship between the amount of
memory used and the intensity of memory usage. Memory load definition was more
complicated, because it had to be taken into account, whether intensity of memory
usage could really be further increased or decreased by change of OLAYGOAL.

Using the rules established for the model controller, mapping of the actually
measured memory, CPU and 10 load into the possible activities was performed as
follows:

M : If memory, CPU and 10 were underloaded, new tasks were admitted or
reactivated,

D if either memory, CPU or 10 was overloaded, one task was suspended,

o if memory load was very low (most probably CPU and/or 10 are then more
heavily loaded), OLAYGOAL was set to zero,

if memory load was low or medium and memory usage intensity relatively
high, OLAYGOAL was decreased.

+ if memory load was medium or high, memory usage intensity relatively
low, and CPU and 10 were underloaded, OLAYGOAL was increased.

The exact values of the bounds of each measured term were controller parameters
that could be dynamically changed. They were tuned to maximize throughput, as were
parameters of the controller defining the range of possible values of OLAYGOAL and

'how fast OLAYGOAL was increased or decreased.

The controller was implemented as an operating system subroutine activated once a
second. This was easily done. because the operating system of the B6700 was writ­
ten in a high level language, ESPOL.

memory load

CC-Overlays Low Medium High

PRESENCEBITS L M H L M H L M H

1 H-IO H-IO H-IO H-IO H-IO H-IO H-IO H-IO H-IO

L 2 M-9 M-9 M-8 M-9 M-9 M-8 H-IO H-IO H-IO

w 3 M-9 M-9 M-6 M-9 M-8 M-6 M-8 M-8 M-6~
0
u
w 4 L-4 L-3 M-6 L-3 L-3 M-6 M-7 M-7 M-6
~

ro
~ M 5 L-2 L-2 M-6 L-2 L-2 M-6 M-6 M-6 M-6~

~
> H 6 L-l L-l M-5 L-l L-l M-5 M-5 M-5 M-5~
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ALIVE TASKS Low Medium High

ALIVE TASKS / L M H L M H L M H
MIXCOUNT

LLJ Low L L L L L L L L L~
t-
V> Medium L L L L L M M M MV>
LLJ
U
a High M M M M M H H H H""0..

IO load

IOQUEUES PACKS Low Medium High

IOQUEUES DISKS L M H L M H L M H

L M H M M H H H H

Activities

CPU load Low Medium High

IO load L M H L M H L r·~ H

1 M,0 0 D,0 0 0 D,0 D,0 D,0 D,0

L 2 M,- - D,- - - D,- D,- D,- D,-

3 M D D D D D

4 M,+ D D D D D

5 0 0 D,0 0 0 D,0 D,0 D,0 D,0
"0

'"0 6 - - D,- - - D,- D,- D,- D,-~ M
to 7 D D D D D0
E
QJ
E 8 D D D D D

9 + D D D D D

H 10 D D D D D D D D D
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The interface to other operating system parts was established by variables and mi­
nor changes in other modules. To improve the influence of the OLAYGOAL parameter,
it was necessary to change computation of the OS overlayable core to be overlayed
in advance.

To avoid instability of the controlled system, activities were performed with cau­
tion. For example not more than one task was suspended every three activations of
the controller. The controller was slowed down, thus enabling the operating sy­
stem to react between two activations of the controller, and measured terms were
smoothed.

As measurements showed, the demands of the controller itself were low. Within
elapsedtime of 100 seconds the controller used less than 3 seconds 10 time and 4
seconds CPU time, including times for the overlay of segments to background con­
trolled by OLAYGOAL.

RESULTS

To measure performance changes caused by implementation of the controller, four
synthetic mixes with different characteristics were run twice under the original
and twice under the controlled system. The mixes consisted of batch tasks only and
were based on the real load of some day. Performance was measured as throughput:

Performance = Number of tasks I (Finishtime of last - starttime of first)

Performance improvements by the controller varied between 8 %and 18 %for a sing­
le run. In the following table the average performance improvement for each mix is
shown.

MIX Finish of last- Performance(tasks/min) Performance
starttime of first improvement

(sec)

original controlled original controlled
OS OS OS OS

CPU- 1775 1588 6.73 7.52 12 %
bound

10- 1789 1613 6.73 7.40 11 %
bound

slightly 1985 1820 6.02 6.56 9 %
memory-
bound

memory- 2268 1983 5.26 6.02 14 %
bound

The original system with a constant value of 3 %for OLAYGOAL was best adapted to
a slightly memorybound load, that is why performance improvement is smallest in
that case. It was not well adapted either to CPU- or 10-bound loads, for which a
lower value of OLAYGOAL is suitable, or to memory-bound loads, for which a higher
value of OLAYGOAL is necessary. With all mixes the load limiting feature of the
controlled system avoided unnecessary overhead.
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The following diagrams show in more detail the differences in system behaviour un­
der both operating systems. In figure 5 MIXCOUNT and ALIVE TASKS are outlined. The
figure shows lower values for both MIXCOUNT and ALIVE TASKS under the controlled
system thus demonstrating the load limiting feature of the controlled system.
ALIVE TASKS values up to 8 under the uncontrolled system indicate CPU overloading
(the system has 2 CPU s).

Figure 6 shows SCHEDULED TASKS, the number of tasks waiting to enter the Mix.
Higher SCHEDULED TASKS values of the controlled system prove again the load limi­
ting feature.
Figure 7 compares AVAILABLE CORE distributions. Under the original system the dis­
tribution has two peaks, one for a dangerously low value, caused by memory over­
loading, and one for a relatively high value, caused by unnecessary advance over­
lays by a constant DLAYGOAL value. Under the controlled system overloading is
avoided and OLAYGOAL is adapted to memory situation thus producing a distribution
with one peak for a low, but not dangerously low value.
In figure 8 finally the correlation of PROCESSTIME to ALIVE TASKS is plotted. Un­
der the uncontrolled system quite a lot of measured points are found in the CPU
overload region. Under the controlled system points have been shifted out of the
overload region to a high load region.
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ABSTRACT. The paper presents a queueing analysis of a
pre-emptive, priority driven, timesliced dispatcher algorithm,

typical of those found in many timesharing systems. A
distinctive feature of the system being modelled is that a pre­
empted task, when re-admitted to the dispatcher, is re-allocated
a full timeslice rather than the residual. The combination of

pre-emption, timeslice renewal and class dependent arrival and
service rates, places the analysis beyond that of the well-known
FB Nalgorithms. The model is used to predict the behaviour of
the dispatcher algorithm under various workloads.

1. INTRODUCTION

The Reference-Model Parameter Adaptive (R-MPA) control system [2] is a control
system currently being developed to optimise the performance of a UNIVAC 1110

computer. The overall goal of the R-MPA system is to monitor workload processing
and to adjust the operating system to respond optimally to any significant change
in workload composition. The R-MPA system consists of three hierarchically inter­
dependent models of the UNIVAC 1110 computer, namely a multiclass network model

describing overall system performance and two detailed analytical models des­
cribing CPU dispatching and memory allocation respectively. 1I1is paper describes

the dispatcher model, outlines its mathematical structure and presents an evalua­
tion of dispatcher performance, namely average response times, queueing delays,
queue lengths and CPU utilisation for each of the batch, timesharing and systems
overhead fractions of the workload, as a function of workload composition, work­

load level and timeslice length.

473
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2. THE DISPATCHER

The function of a dispatcher algorithm is to allocate CPU processing time so as
to achieve maximum throughput for higher priority tasks while ensuring that lower

priority tasks receive an adequate fraction of the CPU processing capacity.

The UNIVAC 1100 Executive (EXEC-8) classifies the workload into several distinct

workload types, each type having a distinct priority. The dispatcher itself is

based upon a pre-empti ve, pri ori ty dri ven, times 1iced mu lti -1 eve1 feedback

queueing system and is typical of multitask dispatchers in general. The feed­

back queueing system consists of 7 distinct First-Come-First-Served (FCFS)

queues. Each queue serves tasks of a distinct priority level, level 1 being of

the highest priority. Operating system activities arrive to the level 1 queue

and ar~ not timesliced, but run to completion. Timesharing and batch tasks arrive

to the level 2 queue. Levels 2 through 7 are timesliced. The task selection rule

is as follows: a task in the level n queue may only go into service if the level

1 through n-I queues are empty (2 ~ n ~ 7).

For purposes of illustration, the workload types in this analysis are restricted

to operating system activities, timesharing and batch jobs. The EXEC dispatcher

however further classifies operating system activities into several distinct

priority types and the user workload may also contain real time, transaction

processing and deadline batch programs, all of which run at higher priority than

timesharing and batch programs. These additional workload types can straight­
forwardly be incorporated into the analysis.

Consider a level n task that is currently in service and is receiving a time­

slice of length qn' This task may leave the CPU for one of the following reasons:

1) the task terminates. 2) the task issues a synchronous I/O request. When the
I/O is completed, this task wi 11 be returned to the end of the 1eve1 2 queue.

3) the timeslice expires, in which case the task is returned to the end of the

level (n+l) queue, 2 ~ n < 7. Tasks in the level 7 queue are returned to the end
of the level 7 queue. 4) the task is pre-empted by an arrival to the level 1

queue (2 ~ n ~ 7) or by an arrival to the level 2 queue (3 ~ n ~ 7). The pre­
empted task is returned to the head of the level n queue.

A distinctive feature of the EXEC-8 dispatcher is that when pre-empted tasks are

re-admitted to the CPU, the task is re-allocated an entire timeslice of length qn

rather than the residual of qn' This re-allocation of entire timeslices is

referred to as timeslice renewal.
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Note that the combination of pre-emption, timeslice renewal and class dependent

arrival and service rates places the analysis of the EXEC-B dispatcher beyond the

reach of the well-known Feed Back N-level (F~) algorithms and their variants

[1,3] .

3. THE DISPATCHER MODEL

The dispatcher is modelled as a queueing system consisting of a single server,

m queues and n customer classes. In our case, m=7 (queue 1 being of highest

priority) and n=3, where class 1 'represents programs with long CPU processing

intervals, class 2 represents programs with short CPU processing intervals and

class 3 represents system tasks. Note that class 1 and class 2 might typically

represent timesharing and batch programs, though the EXEC dispatcher itself does

not make any explicit distinction between these two workload types.

The model assumes that customers arrive to the system according to n independent

Poisson processes. Each customer class is further assumed to have an exponential

distribution of service times. The routing of the customers is as described in

Section 2 and the priority queue is illustrated in Figure 1.

•
•
•

Figure 1. Dispatcher model

3.J Analysis of the priority queue

A detailed analysis of the priority queueing system illustrated in Figure 1 can

be found in van den Heever [4]. We do not intend to repeat the analysis. We

shall rather describe the input parameters required by the model, give a brief
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summary of the analysis method and then detail why this model is not sufficient
for our purposes. The following section 3.2 then outlines how this priority
queue can be generalised to give an adequate description of the dispatcher
algorithm.

Briefly. the analysis method is based upon the concert of virtual workload V(t)
which is defined as the total remaining amount of work (measured in time units)
at time t. The distribution of V(t) for an MIGII queue is known [5]. It can be
shown that the actual amount of work found in the system uron the arrival of a
customer of any class is identical to V(t). The analysis then traces the progress
of a class j customer as it threads its way according to its priority routing
through the several queues illustrated in Figure 1.

The processing of a class j customer is formally described in terms of the
following parameters:

Aj mean arrival rate of class customers to the system.

(i 1.... i k, .. ,i) l~ik~m
Pj

the route that ~ class j customer follows through the m priority
queues. The integer Pj is the number of passes through the processor
required to complete a class j customer. The integer i k identifies
the queue that a class j customer joins on his k th pass through the
processor.

ejk probability that a class j customer comoletes service and leaves the
system on its k th pass through the processor.

k-l
IT

i=1

the arrival rate of class j customers to the k th queue.

Sjk a random variable denoting the amount of service that a class j
customer receives on its th pass through the processor.

The analysis rroceeds to build a set of linear equations exnressing the expected
queueing delays experienced by a class j customer on its k th pass through the
processor as a function of the variables described above. These equations are
then solved. yielding the expected queueing delays. queue lengths and processor
utilisations for jobs from each of the customer classes.
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However, in order to solve for the expected queueing delays, we must first
determine the first and second moments E(Sjk) and E(S2jk ) of the service requests
Sjk of class j customers on their k th pass through the processor. These moments
can easily be calculated once the distribution of Sjk is "known. The kernel of
the matter is that, for the dispatcher algorithm under consideration, these dis­
tributions are not straightforward, since they depend not only upon the timeslice
lengths and the times between successive I/O operations, but because of the time­
slice renewal scheme, they also depend upon the rate of arrival of higher priority
jobs. The following section reports how the service time moments can be cal­
culated for timeslice renewal schemes.

3.2 Service time distribution for a customer at level j
Consider a customer of class j on its k th pass through the processor (for
notational convenience, the subscripts j and k are omitted from the subsequent
ana lys is) . Defi ne the fo 11 owi ng terms:

q preset length of the timeslice for this queue.
A total arrival rate of customers that may pre-empt the customer

in service. This arrival process is Poisson.

t,; t,;jk
total service time requested by class j customer on pass k.

/:; Sjk
effective timeslice length as extended by timeslice renewals caused
by pre-emptions. Note that only two events can terminate /:;, namely
1) an I/O request 2) a preset timeslice expiry.

o processing time excluding the final processing interval, where the
final processing interval is terminated either by an I/O request
or by a timeslice expiry.

Note that /:; =min (t,;, 0 + q)

Defi ne:
F. (t) Pr k.t)

f.(t) Pr (t ~ . ~ t + ot)

where f.(t) = dFd~t) if and only if F.(t) is continuous. Define the

Laplace-Stieltjes transform F.(s) of F.(t) as
'"

F~(s) _ ",f e-stdF.(t)
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Note that the general form of the transform has been used where t E (-00,00) since

we do not preclude F.(t) having discontinuities at t = O. If F.(t) is continuous,

F~(s) = f~(s) where f~(s) is the Laplace transform of f.(t)

F~ (s) J e -st f.(t) dt

a

The function form of the probability density f6(t) is straightforward:

Pr(!; = t and the customer acquires ~ t - q from

timeslice renewal)

+ Pr(!; > t and the customer acquires exactly t - q

from timeslice renewal) t > q

................... (1)

The calculation of f6(t) is simplified by defining an auxiliary variable xi where

xi denotes the elapsed time between the (i - 1) th and the i th pre-emptions. The

roles of xi ,0,t and q for the case t > q are illustrated in Figure 2.

I'
o

""

q

·1

••••• t

'/

Figure 2a. ~ = t and customer acquires 0 ~ t-q from timeslice renewal
(customer completes during final processing interval)
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,I

Figure 2b. E, > t and customer acquires e = t-q from timeslice renewal
(customer does not complete during final processing interval)

Equation (1) can be written

fE,(t) 00 0 ~ t ~ q

fE,(t) ~ fe(u) du + {1 - FE,(t)} fe(t-q) t>q
t-q

and

Assuming the service request E, to be exponentially distributed with mean 1/~

then it can be shown

f:(S) (~ + s)-l { w + se-(~+s)q F~(~+s)} (2)

The next step is to calculate F~(S)

o

Pr (no renewal)

Pr (1 renewal) Pr(e ~ t , 1 renewal occurs)

+ Pr (2 renewals) Pr(e ~ t I 2 renewals occur)

t < 0

t = 0

+ t > 0
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Where
Pr(e ~ tin renewals occur)

Pr(timeslice renewed)

Pr(n renewals occur)

Thus

Pr(x1 + x2 + .. + xn ~ t)

Pr(1 or more arrivals during q)

1 - e - Aq

Pr(timeslice renewed)n Pr(timeslice not
renewed)

(1 - e-Aq)n e- Aq

1

0

Fe(t) = e- Aq + (1 - e-Aq)e- Aq Pr(x 1 ~ t)

-Aq 2 -Aq+ (1 - e ) e Pr(x 1 + x2 ~ t) + .

whereupon it can be shown

t < 0

t ;; 0

The next step is to calculate F;(s). We make use of the fact that the times
between successive arriva1s that renew the timeslice are exponentially distributed
and cannot exceed q. Therefore

_(il - e- At )/(1 _ e- Aq )
Fx(t)

whereupon it can be shown that

F;(S) ~ e-st dFx(t)
o

-(A+S)q -AqA {l - e }/((A+s)(1 - e)} (4)

Substituting (3) and (4) into (2):

f~(s) ~/(~ + s) + {S(A + ~ + s)e-(A + ~ + s)q}/

{(~ + s)(~ + s + Ae-(A + ~ + s)q)}
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Note tha t:

(a) lim fZ(s)
q-+O

(b) lim fZ(s)
q-l<X>

(c) lim fZ(s)
>'-+0

1. Thus when q+O, the only value of t that can be realised
is t=O, that is the customers can achieve no service at
all.

= lJ/(lJ + s). Thus, as the timeslice lengths increase, each
customer consumes his entire service request (in a
single pass) which is exponentially distributed.

(lJ + se-(lJ + s)q)/(lJ + s). As the arrival rate decreases,

timeslice renewal decreases and the queue reduces to a
time sliced FCFS exponential server.

= lJ/(lJ + s). When timeslices are renewed infinitely fast,
each customer is guaranteed to complete and consume his
entire service request which is exponentially dis-
tri buted.

The required moments E(~) and E(~2) can now be calculated

E(~) -1 im d fZ(s)
s+O as

l/lJ - {(>. + lJ)e-(>' + lJ)q}/{lJ(lJ + >.e-(>' + lJ)q)} ,. ,(5)

Simi larly

1im
s+O

(>. + lJ)(l - >.qe-(>'

lJ + >.e-(>' + lJ)q

It only remains to calculate ejk where

ejk Pr(class j customer departs from the system after completing
service on its k th pass through the processor)
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Recall that ~jk is the total service time requested by a class j customer on its
k th pass through the processor. Consider a class j customer who achieves exactly

e + q = y seconds on its k th pass. The probability that this customer does not

complete, given e + q = y, is foodF ~jk (t). Therefore

y

Pr (customer does complete I e + q =y)

Removing the conditioning on (e + q),

~ (1 - e -uy) dFe+q (y)
o

00

f dF ~jk (t)

Y

From equations (3) and (5), the above reduces to

4. DISPATCHER PERFORMANCE PREDICTION

Figures 3 through 7 summarise the model's predictions of dispatcher performance as

a function of the total arrival rate A where A = >1 + A2 + A3. The mean service
requests of the various job classes were chosen to be l/u1 = 7 msecs for short

jobs, l/ u2 = 60 msecs for long jobs and l/u3 = 700 microsecs for system tasks.

Workload composition was maintained by keeping the ratio Al : A2 : A3 constant.

One measure of dispatcher performance is its response time, defined as the

average time elapsed between a job joining the dispatcher queue and leaving the

dispatcher, either to do synchronous I/O or because it has terminated. Figure

3 illustrates the dispatcher response time as a function of the total arrival

rate A. Notice that short jobs maintain a better response at higher pre-emption
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rates than longer jobs, thus complying to the fundamental requirement of any dis­
patcher algorithm. The response of long jobs on the other hand rapidly degrades

with increasing ~.

The main purpose of the dispatcher model is to continually furnish the R-MPA

control system with optimal values for the preset timeslice lengths. Figure 4

reveals the model's ability to identify the preset value of the first timeslice

which minimises response for short jobs. Note that the optimum value of this

timeslice does not depend upon the arrival rates and service requirements of the

long jobs present in the workload.

Figure 5 illustrates the extent to which timeslice lengths are extended by

renewals; preset values for these results were q2 = 2 msecs and q3 = 16 msecs.
Due to the extension of timeslice lengths, few jobs enter the lower priority

queues 4 through until high arrival rates saturate the system. Figure 6 con­

firms that for ~ < 70 arrivals per second, about 80 percent of the jobs are dis­

patched from queues 2 and 3.

Figure 7 reveals the distribution of queue lengths for short and long jobs for
two different arrival rates, ~ = 30 sec -I and ~ = 90 sec -1. (Pre-empted jobs

which have already received some service are not considered to be in the waiting

line). Note that the results presented in figure 7 cast some doubt on the wisdom

of the timeslice renewal policy. The goal of this policy is to prevent long jobs

from migrating to the very low priority queues where they will remain without

service while jobs on higher levels are being served. This goal is indeed

achieved. However, this positive effect is counterbalanced by the fact that,

under heavy load conditions, all jobs receive longer timeslices. Therefore, under

heavy load conditions, the order of arrival of tasks to the dispatcher becomes an

important factor in determining dispatcher response.
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This paper deals with the following mechanism for controlling the
multiprogramming set in a demand paging system: processes are
dynamically divided into several categories according to the number of
page faults generated during their residence in main memory. A process
is admitted into the multiprogramming set only if there is enough
space free in the main memory to contain the number of pages
corresponding to the current category of the process. Using a queueing
network model of an interactive system with such a control mechanism
we study the effectiveness of the control considered, and, more
particularly, its ability to partition the memory space according to
the locality of processes.

1. Introduction

Since the experimental studies of the dynamic program behaviour (l), and the
introduction of the notion of locality and of the working set model (2), a number
of system designers have attempted to include these results in their memory
management algorithms (e.g. (3». An interesting attempt to dynamically partition
the memory space according to the observed behaviour of processes was implemented
in the interactive virtual memory system ESoPE (4).
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TER'IINALS

new cornrn2.nd I
I category transgl"cssiun r

'-+--;It'--uJJIJ--X~~~ !
FiFO ~~ ~ ~

cOffiI'land cOI:lpletion

adJTIi£sion queue mul tiprop,rt::mrning
se t

FiBure 1: fram0\.;rork [c;r algcritbrn considen~d

487



488 A. BRANDWAJN and J.A. HERNANDEZ

The algorithm, apparently inspired from the EMAS system (5), is as follows (see
Fig. 1): processes are divided into categories, and a process is admItted into
the multiprogramming set (i.e. allowed to share real memory and to compete for
other system resources) only if there is enough space free in main memory to
contain the number of pages corresponding to the current category of the process.
This number of pages are reserved for the process, but the actual fetch takes
place on a page on-demand basis. The process category is adjusted, basically, in
two instances:

i) upon command completion: the category is reduced by one (if possible), if the
number of pages fetched (i.e. of pages faults generated) is smaller than the
corresponding limit for the immediately preceding (i.e. lower) category;

ii) upon category transgression: if a process attempts to access more pages than
reserved for it according to its current category, the process is ejected from
the multiprogramming set. The memory pages that have been allocated to it are
freed, and its category is increased by one (if possible). The process is then
placed at the end of the admission queue.

A new process entering the system is assigned a category on an arbitrary basis.

The intuitive motivation behind this algorithm seems to be the following. The
current category of a process is used as an estimate of its working set size. In
order to prevent thrashing (6), processes are admitted into main memory only if
the latter can contain their estimated "working sets". Note that this algorithm
not only controls the partitioning of the memory space (and thus the
multiprogramming level) but also automatically ensures replacement of pages (when
a process leaves the multiprogramming set). Note also that it reacts to
instantaneous changes in program behaviour, and thus introduces a strong coupling
between the system execution and control functions. This hinders the system I s
decomposability (7).

In summary, the algorithm controls the multiprogramming set via dynamic memory
partitioning. The latter depends on an on...:line process classification based on
the virtual time paging behaviour of a process. The number and limits of the
categor ies are the parameters of the algor i thm. Therefore, it is important to
study the system throughput (or, equivalently, the mean response time) as a
function of the category assignment, and its dependence on system and program
behaviour parameters. It is also important to study the effectiveness of the
virtual time on-line classification of processes. (The latter point is suggested
by the obvious result of recent modelling studies (see e.g. (8) ) which indicates
that the number of pages needed by a process "to be executed efficiently" (9) is
not an absolute process characteristic but depends strongly on e.g. the average
service time of the secondary memory device). These questions are addressed in
this paper.

The problem of multiprogrammed memory management, and, more particularly, that of
controllinq the level of multiprogramming has received a considerable attention
in the litterature, e.g.(10-19) are but a few recent references. The work by
Schoute (17) seems the closest to this paper. Our work differs from (17) in that
we explicitly take into account the effect of program loading (20, 21) on the
performance of the admission meChanism, i.e. on the current category of
processes. This allows us to study the influence of program behaviour on system
performance, and, in particular to consider the case where the processes belong
to different classes as regards their locality ::Ild total compute time.

Let us now define the scope of our paper. We shall restrict our attention to a
situation where only interactive processes are present in the system (no
background batch jobs) and where the number of logged-in (active) terminals is
constant Over periods of time long enough fpr a stationary analysis to be valid.
The arbitrary initial category assignment will thus be neglected and only the
long-run behaviour of the algorithm under consideration will be studied. It may
be noted that in the algorithm as implemented in the ESQPE system, processes are
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ejected from the multiprogramming set if their residence time in real memory
exceeds a given limit. We concentrate on the paging behaviour of processes and,
therefore, neglect this mechanism.

To start with, we shall assume that all the users are statistically identical and
independent. Their paging behaviour will be modelled by the life-time function
(1) which relates the average process execution time between two successive page
faults, e(m), to the amount of memory m, allocated to the process. We shall use
the two-parameters fit proposed in (9)

e(m) = 2b/(1+(d/m)~), (1.1)
which accounts for the saturation effect at larger m. Figure 2 shows examples of
the life-time function for several sets of parameters band d.

e(m)

(ms)

30

20

10

b=20 d=60

20 40 60 80 100 m memory space (paRes)

Figure 2: examples of life-time curves

I/O activity other than caused by paging, and most overheads will be neglected.

The next section is devoted to the description of a queueing model of the system
under study. In Section 3 the numerical results obtained with a single class of
processes are discussed. Section 4 is devoted to the numerical results with
several classes of processes.

2. A gueueing network model

The queueing network model we shall use to study the properties of the algorithm
under consideration is represented in Figure 3. The behaviour of a user is
modelled by a sequence of think times followed by a generation of a command after
which the user remains inactive until the system response (22). (A somewhat more
elaborate model of user interaction has been proposed recently in (23) ). The
user think time is assumed to be an exponentially distributed random variable
with mean l/~; the set of terminals is thus represented by an exponential server
with service rate n,A, n. being the current number of active terminals. We assume
that there are q categories in the system, and we denote by mj the page number
limit for category j, j= 1, ••• ,0, where m1 < mL< •.• m,_i < m,. A command generated
by a user (a process) enters a FIFO admission queue (AD). According to the
admission mechanism described, if the process at the front of AD is of category
j, it will be admitted only if there are at least mj memory pages available
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n A
c

n
c

new command

TERMINALS

category transgression cOlilmantl
completion

AQ CPU
page fetth request

SH

Figure 3: a queueing network mode-l

The multiprogramming set is represented by a CPU and a secondary memory (SM)
device with their queues of processes. We denote by v~(m) the page fault rate of
a process which has m pages present in real memory, and we let

{

l/elmJ , m=l, ... ,mj ;
vi. (m)=

l/w , m=O ;
(2.1)

(2.2)

where e (m) is given by 0.1), and W is the average system overhead time per
process admission into the multiprogramming set. A process having requested a
page is either placed in the 9~ queue if m< mj, or ejected if m=mj. The mean
service time of the SM is l/u~, and it is assumed to account for a possible
preliminary saving of a written-onto memory page before the actual fetch of the
page requested. We assume that the SM service time is an exponentially
distributed random variable, and that the SM queueing discipline is FCFS.

In the caSe of ejection, the memory pages belonging to the process are freed, and
the process category is adjusted (j:=j+l, if j< q). The process is then placed in
An, and, once admitted, will have to reacquire one by one its pages.

The service discipline at the CPU is assumed to be Processor Sharing. The CPU
service time for a procesS is assumed to be an exponentially distributed random
variable with rate

{

Vi (0) , if m=O
v(m)=

Vi (m)+vo , m=I, .•. ,mJ ,

for a process of category j with m pages in memory. Vo denotes the rate of
command completions. We let

Vo = llc (2.3)
where c is the mean total CPU time per command.

If a process of category j has no more than mj_1. pages in memory at the moment
of completion its category is adjusted (j:=j-l, if j>l).
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At this point, we shall use the mean system response time, W. as a measure of
overall system performance and of the utilization of the CPU system resource
(using the Little's formula (24), one can easily show that W=cN!B - l!A, where N
is the total number of terminals and B denotes user mode CPU utilization).

Note that despite a number of assumptions aimed at the tractability of the model
its solution is far from obvious. A direct brute-force attack of the model
balance equations would be difficult in practice because a very detailed state
description is needed. The latter seems particularly inadequate with respect to
the performance measures defined.

We summarize below the four main steps of "the approximate hybrid solution method
we have used. The interested reader may refer to (32) for details.
~ We analyze the behaviour of a user in its virtual (i.e. execution) time

so as to obtain, for an active process of category j, j=l, •.• ,q:
-~ , the rate of page faults;
-~ , the rate of category transgressions;
-Zj' the rate of command completions;
-Sj, the probability that process category will decrease upon command

completion. This is similar to the approach used in (20, 21), and yields a simple
analytical solution.

lli2......1. We use the average page fault rates fJ in a simple model of the
multiprogramming set (see Figure 4) to compute AJ (0), the CPU utilizations for
processes of each category under a constant load of o=(n i , •••• n 9 ), where nj is
the number of category j processes in the multiprogramming set.

page loaded CPU
page fault

8M

Figure 4: multiprogramming set submodel

Due to the assumptions on service time distribution and on queueing disciplines,
the analytical solution of this model may be easily obtained (25).
~ We use the Aj (~), wJ ' zJ and sJ in a queueing model of the

multiprogramming set control. The model (see Figure 5) reflects only events
pertaining to the operation of the admission control, and is studied under
constant load of ~ processes in order to obtain u( e ), the rate of command
completions with a total of e processes (waiting and admitted).

category transgression

AQ multiprllgramning
set

command
completion

£, processes

Figure 5: !nultiprogramming control. model
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The multiprogramming sel is represenled by an exponential queue. Ils currenl
slale is described by Q=(nL, .•. , n9 ), lhe veclor of lhe numbers of processes of
each calegory currenlly in lhe mulliprogramming sel. The rales of deparlures from
lhe laller are sel lo be lhe producls of Aj(Q) by lhe corresponding rale oblained
in Slep 1, e.g. lhe rale of calegory lransgressions for processes of calegory j
is AJ (Q) Wj. The slale of lhe admission queue is described by ~, lhe vector of
process calegories in FIFO order.

The model can be solved using discrele evenl simulation (26). A confidence
inlerval for lhe result may be derived applying lhe regenerative simulation
mel hod (27), so lhal we oblain lwo numbers u'(e) and u"(£) which are lhe bounds
of lhe confidence inlerval for lhe rale of command complelions wilh a lolal of e
processes.
~ We analyze the syslem behaviour al a highly aggregale level via lhe

oueueing model of Figure 6.

r. A n = N-£
c c

TER1llNALS

£

SYSTEM

Figure 6: aggregate system model

The lerminals and lhe syslem are represenled by exponenlial servers wilh service
rates ncA and u( e), respectively (nc+e =N, lhe lolal number of lerminals). The
analylical solulion of lhis model is well known and allows an easy compulalion of
lhe average number of processes in lhe syslem, and, hence, via lhe Liltle's
formula (24), of lhe mean syslem response time. In our case, since u( l) is given
in lhe form of an inlerval, inlerval arilhmelic has lo be used lo finally oblain
W' and W", lhe lwo bounds of lhe confidence inlerval for lhe mean syslem response
lime. Nole lhal we have used a decomposi lion lechnique whereby one compules
approximale values for condilional probabilities by analyzing subnelworks under
conslanl (full) load conditions (28, 29). As a whole, our approach is similar lo
lhal discussed in (0), in lhal al each slep in lhe solution of lhe decomposed
problem, the solulion mel hod which seems lhe mosl appropriale (analylical,
discrele-evenl simulalion, ••. ) is used.
The nexl seclion is devoled lo numerical resulls oblained from our model.

3. Numerical resulls wilh a single class of processes.

Since lhe syslem under consideration is quile complex, and bolh lhe model
elaborated and ils solulion involve a number of simplificalions and
approximations, it is imporlanl to gain some conf idence in lhe accuracy of lhe
results before using lhem lo draw conclusions. Therefore, we have lesled our
model using results of measuremenls of lhe ESOPE syslem under simulaled load
(31). A few modificalions had lo be inlroduced in our model lo reflecl lhe aclual
operalion of lhe ESOPE svslem, and lo be able lo use measuremenl resulls. Mainly,
in rSOP[ nol all paqe faulls resull in a page felch. Some of the pages
deallocaled al lhe momenl of process ejeclion, and reQuesled again during
subsequenl residence periods, may slill be presenl in main memory. Such pages are
simply "recovered" by lable updale. The number of pages aclually felched has been
measured. The ralio of lhe laller number lo lhe lolal number of pages faulls will
be denoled by I-f, so lhal @ is lhe relalive frequency of pages recoveries.
Hence, lhe aclual page felch rale becomes fj =(l-@) fj' and lhis value has lo be
used in Slep 2 lo compule lhe CPU ulilizalion.
We also lel
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{

"OO"
v(m)=

V-i. +VO

, m=O,

, m=l, ••• ,mJ ,
(4.1)

where v~ is the average page fault rate (i.e. total number of page faults divided
by total CPU time), Vo is the rate of command completions (i.e. total number of
interactions divided by total CPU time).
Table 1 shows the results of model tests. A 90% confidence interval will be used
throughout this paper.

Table 1
~es of model parameters:

cateqory limits in number of pages (q=lO):
m.=4; mt=8; m3=16; m.=24; ms =32; m,=48;
m~=64; mr =80; m,=112; m~=148;

category reduction:
mj=mj.' -1 , j=2, 3, ... , 10;
total memory available for paging: M=184 pages;

0.70 s
, 0.85 s)CO.77 s

; ~=0.69; l/u~ =38 ms ; 1/,), =10.8 s;
0.89 s

model: (0.93 s ,1.04 s)

;~=0.47; l/u~ =41.1 ms; llA =1l.8 s;
: 1.44 s

model: (1.37 s ,1.56 s)

N=5 (number of active terminals)
vo =1/c=1/464 ms Vi =0.04 ms ; {3 =0.76;
l/u~ =37 ms (mean service time per page fetch);
l/A =10.4 s (mean user think time);
response time Wmeasured

obtained from model
II N=5
VO =1/458 ms ;v~ =0.058 ms
response time Wmeasured

obtained from
II I N=12
VO =1/490 ms ;v~ =0.038 ms
response time Wmeasured

obtained from

Clearly, the model may be used with reasonable confidence.

We now first use it to study the influence of system and program behaviour
parameters on the choice of category limits. To start with, we consider the case
where the number of categories is equal to one (q=l). The category mechanism then
results in a fixed maximum degree of multiprogramming. For a given main memory
size (available for paging), only a few discrete values of category limit m~ have
to be studied, viz. those for which m~ is maximum with a given resulting degree
of multiprogramming. All other values of m. may only cause the page fault rate f~

to increase with no compensation by the multiprogramming effect, since the
multiprogramming degree will not increase. Thus for a memory of M=128 pages, the
values of m~ to consider are 128, 64, 42 pages, etc. Note that with one category
the solution Step 3 may be easily carried out analytically.

We have represented in Figure 7 the average relative system response time
i.e. the ratio Wlc, versus the number of terminals, N, for a set of model
parameters with the mean service time of the secondary memory device, l/ui' set
to 20 ms. Figure 8 shows the results obtained with l/u~ set to 5 ms, the other
parameters remaining unchanged. We observe the important effect of the mean
service time of the secondary memory device on system performance, and, in
particular on optimum (i.e. which minimizes mean system response time) category
assignment. The latter changes from 64 pages for the set of parameters used in
Figure 7, to 42 pages in Figure 8.

(In Figures 7 through 14 the following values of model parameters are used:
M=128 pages, llw =0. OJ ms).
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The effect of orogram behaviour may be seen in Figures 8 and 9 in which the
values of life-time function parameters used are b=15 ms, d=3o pages, and b=20
ms, d=6o pages, respectively. Again, we observe that the optimum category
assignment changes. Similar observation may be made as regards the influence of
the average total CPU time per command, c, in Figures 8 and 10, c being set to
500 ms and 250 ms respectively. As a whole, the figures obtained clearly indicate
that the optimum limit assignment for one category may be sensitive to both
system and program behaviour parameters. In particular, an important and
undesirable effect to be noted is that the optimum category assignment may depend
on the number of logged-on terminals. This may be seen in Figure 8 where the
category limit of 64 pages yields better results than the 42 pages limit up to
N=12 terminals. The curves of Figure 10 exhibit a similar effect.

As a next step in the study of the category mechanism we consider the case where
the number of categories is sufficiently large so that two successive category
limits differ only by a small number of pages. E.g. for a total memory space of
128 pages and q=32 with equidistant category limits, two adjacent categories
differ only by 4 pages. A high number of categories results in excessive
computational difficulties, especially in Step 2 of our solution procedure. It
may be noted, however, that the probability distribution of the current category
of an active process (denoted p(j) ) is highly non uniform. As a consequence, if
we use only the few most probable categories in Steps 2 and 3, the error
introduced in the final result should not be important (this reduction of the
number of categories has been actually used in the model validation for N=12
terminals). Figure 11 shows a few examples of the above probability distribution.
We have represented there p( j) versus j, the category number, in the case of
equidistant categories with q=16 and 32, for two different life-time functions.
We observe that p(j) is non negligible only for some five to six values of j out
of 16 or 32.

p(j)
a) q=16

p(j)
b) q=32

0.3 0.3

0.2 0.2

O. J .J O. I

III,I. j (pages) ., .11 ..... j (pages)

b=15; d=30; c=500 IDS;

p(j)
c) q=16 p(j)

d) q=32

.1 j (pages)

b=20; d=60; 0=500 illS;

Figure I I

I
.11 ~ (pages)
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In Figure 12 we have plotted the results obtained (using the five most probable
equidistant categories out of 32) for the values of model parameters used in
Figures 7 and B.

w/c

5.0

,

l/u .. 20 ms
: I

- .' b"15; d-30; c~500 ms;

Figure 12

5 10 15 N

A comparison of the curves indicates that a large number of categories, in the
case studied, does not improve the system response time. The effect may even be
adverse, as illustrated by the curves for 1/u~=20 ms. It is not difficult to
understand why this is so. While with only one category the latter may be
adjusted to match best the speed of the paging device, in the case of a large
number of categories there is not much adjustment possible. The category
mechanism "clsssifies" the processes according to their virtual time page fault
rates. There is, in general, no reason for this classification to correspond to
the optimum multiprogramming level, since the latter may be very sensitive to the
speed of the paging device. So far we have considered only a single class of
processes. It is interesting and important to determine whether our observations
carryover to the case where the processes form several classes as regards their
paging characteristics and total CPU requirements. The next section is devoted to
this subject.

4. Several classes of processes

We now aasume thst there are Sclasses of processes present in the system. We
denote by c" (i=l •• ; j '5 ) the average total CPU time for a class i command, and
bye, (m) the meah cprl time between successive page faults for a class i process
with m pages in main memory. Using obvious notational generalizations we have

(5. I)

(5.2)

(5.3)
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,if m=D ,

,if m=l, .. •mj ,{

V1-i. (D)
v c (m) =

v", (m)+vo,
for i=l, .•• , 5".

We denote by Pc, (t. p, =1)
class L ",,"

(5.4)

the probability that a newly generated command is of

The analysis presented in Section 2 may be easily extended to include several
classes of processes. In fact, it suffices to modify the solution Step 1
(Le. the analysis of process behaviour in its virtual time), the other steps
remaining unchanged. The detail of the modification is given in (32). It is worth
noting that we obtain a well-decomposed, easy to evaluate recurrent solution for
Step 1. Hence, our model has no difficulty in coping with many classes of
processes.

We now discuss the numerical results obtained from our model with classes of
processes. We have studied the case when there are two classes of processes,
equall y probable (p~ =P.. =0.5), with different memory locality as represented by
the life-time function parameters b, and de. In Figure 13a we have plotted the
relative average response time versus the number of terminals for a set of model
parameters with 32 equidistant categories and two different values of the mean
total compute time per command: c,=lDDD ms, i=1,2, and cc=25D ms, i=1,2. The
dotted curves correspond to the optimum category assignment with only one
category.

r-
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We observe that not only a large number of categories does not result in an
improvement over the optimum with one category, but may yield significantly worse
results. This is in particular the case for c,=250 ms, i=1,2. We hence conclude
that an effective control of the multiprogramming set cannot be based only on the
virtual time behaviour of processes, like the "classification" performed by the
cateqory mechanisms. Parameters such as e.g. the speed of the paging device must
be included in the control mechanism. We have represented in Fig. 13 band c the
virtual time probability that a process belongs to category j, prj), for
c=lOOO ms and c=250 ms, respectively. We observe the important effect of the
average total compute time on the process classification.

Since the category mechanism with many categories fails to control efficiently
the multiprogramming set, and since its primary motivation is to provide
estimates of the "working-set" sizes for different processes, Le. to classify
processes according to their locality, it is interesting to study its performance
with respect to this objective. We have therefore computed the stationary
(virtual time) conditional probability that a process is classed in category j
(j=l, •.. ,q) given that it is of class i (i=1, •.• ,5), p(jli). The results obtained
are represented in Figure 14. They clearly indicate that this probability
strongly depends on the total compute times c~ (which we have already observed),
and on the relative frequencies of different classes of commands, PL' In
particular, increasing the total compute time, cL , results in a classification in
a higher category. A possible explanation for this effect is that with larger c~

more pages are referenced, and the category mechanism is such that when new pages
are to be loaded the category must, quite often, be increased. Therefore, the
most probable category for a given class of processes does not, in general,
correspond to a "good" point on the life-time curve of the process.
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We have presented a study of the category mechanism for multiprogrammed memory
management. This study has been performed in the context of a demand-paged
interactive system. A queueing network model of such a system has been built, and
a hybrid (analytical-discrete event simulation) decomposed solution has been
obtained for classes of processes. The model neglects I/O activity other than
paging, and overheads other than that incurred when a process is admit ted into
the multiprogramming set. (Numerical results, not reported in this paper, show
that the latter overhead has little influence on the performance of the admission
mechanism). These features can be relatively easily incorpDrated in our model,
and require that only Step 2 (i.e. the analysis Df the CPU utilizations) of our
solution procedure be modified.

The numerical results Dbtained indicate that the system performance (as measured
by the relative average response time) with several categories is, in general,
worse than the optimum oerformance with a single categDry. This seems to be true
bDth for cases when there is a single class and when there are several classes of
processes with distinct paging behaviour characteristics. MoreDver, the categDry
which is the most probable in the virtual time of a prDcess of a given class dDes
not seem to reflect in any clear way the paging characteristics of the prDcess,
as represented by its life-time curve.

Hence, we must conclude that -for the type of life-time curves considered- the
category mechanism fails both in Dptimizing the level of multiprogramming and in
classifying the processes accDrding to their paging characteristics i.e. in
dynamically partitioning real memory. We interpret the former failure as
indicating that an effective control of multiprogramming, in general, cannDt be
based solely on virtual time behaviour of processes. Although algorithms
including the speed Df the paging device have been proposed (e.g. (II) ), the
problem of optimal mul tiprDgramming seems to require further study. Indeed, a
(near) optimal policy should also incorporate features such as various I/O's and
overheads (including that of the policy itself) since these may be shown to
importantly affect the optimal multiprogramming level.

An interesting point for further investigation is to determine to what extent our
findings cDuld be affected by the shape Df the life-time curve. In particular, it
will be important to study the multicategory versus the monDcategDry perfDrmance
in the case where the life-time curveS of processes possess distinct sharp
"knees ll

•

References
1. Belady,L., Kuehner,C.J. : Dynamic space sharing in computer systems. Comm.

ACM 12, 282-2B8 (1969).
2. Denning,P.J. : The working set mDdel for program behavior. Comm. ACM 11,

323-333 (1968).
3. Morris,J.B. : Demand paging through utilization of working sets on the MANIAC

II. Comm. ACM 15, 867-872 (1972).
4. Betourne,C.,Kaiser,C.,KrakDwiak,S.,Mossiere,J. :PrDcess management and re­

source sharing in the multiaccess system ESOPE. Comm. ACM 13,727-733 (1970)
5. Whilfield,H., Wight,A.S. : EMAS - the Edinburgh Multi-Acces System. Computer

Journal 16, 331-346 (1973).
6. Denning,P.J. Trashing: its causes and prevention. In AFIPS Conference

PrDceedings, FJCC 33.
7. Courtois,P. DecDmposability, instabilities and saturation in

multiprogramming systems. Comm. ACM 18, 371-377 (1975)
8. Brandwajn,A., Buzen,J., Gelenbe,E., Potier,D. : A model of performance for

virtual memory systems. Proc. ACM SIGMETRICS Symp. 9 (October 1974).
9. Chamberlin,D., Fuller,S., Liu,L. : An analysis of page allDcation strategies

for multiprogramming systems with virtual memory. IBM J. Res. and Develop. 17
404-412 (1973).



500 A. BRANDWAJN and J.A. HERNANDEZ

10. Brandwajn,A. A model of a time-sharing system with two classes of
processes. Gesellschaft fuer Informatik 5 Jahrestagung, Dortmund, Springer
Verlag, 547-566 (Oct. 1975).

11. Denning,P.J., Kahn,K.C., Leroudier,J., Potier,D. Optimal multi-
programming. Acta Informatica 7, 197-216 (1976).

12. Neilson,J.E. : An analytic model of a multiprogrammed batch time -shared
computer. In Proc. Int. Symp. on Computer Performance, Measurement and
Evaluation, Harvard Univ., Cambridge,Mas., 59-70 (March 1976).

13. Landwehr,C.E. : An endogenous priority model for load control in combined
batch-interactive computer systems. In Proc. Int. Symp. on Camp. Perf. Meas.
and Eval., Harvard Univ., Cambridge, Mas., 282-295,(March 1976).

14. Reiser,M., Konheim,A.G. : Queuing model of a multiprogrammed computer system
with a jobqueue and a fixed number of initiators. In Modelling and Performance
Evaluation of Computer Systems, Ispra, Italy, 319-334 (Oct. 1976).

15. Hine,J.M., Mitrani,I., Tsur,S. : The use of memory allocation to control
response times in paged computer systems with different job classes. In Model.
and Perf. Eval. of Camp. Syst. Ispra, Italy 201-216 (Oct. 1976).

16. Coffman,E.G., Ryan,T.A. A study of storage partitioning using a
mathematical model of locality. Comm. ACM 15, 185-190 (1972).

17. Schoute,A.L. : Comparison of global memory management strategies in virtual
memory systems with two classes of processes. In Model. and Perf. Eval. of
Camp. Syst., Ispra, Italy, 389-414 (Oct. 1976).

18. Bard, Y. : The modeling of some scheduling strategies for an interactive
system. In Int. Symp. on Computer Perf. Model., Measurement, and Eval.,
Yorktown Heights, N.Y., 113-137 (Aug. 1977).

19. Graham,G.S., Denning,P.J. On the relative controllability of memory
policies. In Int. Symp. on Camp. Perf. Model., Meas., and Eval., Yorktown
Heights, N.Y., 411-428 (Aug. 1977).

20. Parent,M., Potier,O. : A note on the influence of program loading on the
page fault rate. In Model. and Perf. Eval. of Camp. Syst., Ispra, Italy, (Oct.
1976) •

21. Brandwajn,A., Mouneix,B. : A study of a page-an-demand system. Information
Processing Letters, 6, 125-132 (1977).

22. Scherr,A.L. : An analysis of time-shared computer systems. Cambridge (Mass.)
: MIT Press 1967.

23. Abell,V.A., Rosen,S. : Performance of an ECS-based time-sharing subsystem.
In Int. Symp. on Camp. Perf. Mod., Meas., and Eval., Yorktown Heights, N.Y.,
249-261 (Aug. 1977).

24. Little,J.O. : A proof of the queueing formula L= >.W. Operations Research 9,
383-387 (1961).

25. Baskett,F., Chandy,K.M., Muntz,R.R., Palacios,F.G. : Open,closed and mixed
networks of queues with different classes of customers. J. ACM 22, 248-260
(1975).

26. Leroudier,J., Parent,M., : Duelques aspects de la modelisation des systemes
informatiques par simulation a evenements discrets. R.A. I. R.O. Informatique
10, 5-26 (1976).

27. Fishman,G.S. : Statistical analysis for queueing simulations. Management
Science 20, 363-369 (1973).

28. Chandy,K.M., Herzog,U., Woo,L. : Approximate analysis of queueing network
models. lAM Research Report, RC 4931, Yorktown Heights, N.Y., July 1974.

29. Denning P.J., Buzen,J. : Operational analysis of queueing networks. In 3rd
Int. Symp. on Model. and Perf. Eval. of Camp. Syst., Bonn, Germany, Oct. 1977.

30. Schwetman,H.O. : Hybrid simulation models : a speed-up technique combining
analytic and discrete-event modeling. In Madelle fuer Rechensysteme, Workshop
der GI, Bonn, Germany, Springer Verlag 9, 226-237 (April 1977).

31. Brandwajn,A. Simulation de la charge d'un systeme conversationnel.
R.A.I.R.O. Informatique 10, 25-40 (1976).

32. 8randwajn, A., Hernandez, J. A. A study of a mechanism for cantrall ing
multiprogrammed memory in an interactive system. Research Report ENST-O-78008
Ecole Nationale Superieure des Telecommunications, Paris, May 1978.



COMMUNICATION NETWORK MODELLING I





Performance Of Computer Systems
M. Arato, A. Butrimenko, E. Gelenbe (eds.)
©IIASA, North-Holland Publishing Comrany, 1979

MODELLING OF LOCAL COMPUTER NETWORKS

O. Spaniol
Institut fUr Informatik

Universitat Bonn
D - 5300 BONN (Germany)

This paper presents a new concept for local computer networks.
Main features of the new model are: automatic reservations for
colliding packets (thus avoiding repeated collisions); near
optimum throughput; finite maximum waiting times even for prio­
rity scheduling policies.
The performance of the system is analyzed by means of a Semi­
Markov-process. Numerical results have been obtained for the
most interesting parameters. A comparison with reservation
techniques which have been proposed for other computer networks
is given in the final section of the paper.

I. INTRODUCTION

Various multiplexing schemes (ALOHA, CSMA, Reservation schemes, Polling, ... ) for
packet switching networks have been investigated in the recent past (see [Scl).
Some of these methods have been designed for remote networks, but others are par­
ticularly effective for local computer networks which may be characterized by the
fact that the propagation delay of the signal is small compared to the packet
transmission time.

In 1976, a prototype of a new concept for local computer networks has been presen­
ted by Metcalfe and Boggs [MBJ; this technique (called ETHERNET) is particularly
attractive by reason of its structural simplicity. ETHERNET combines any number of
stations by means of a logically passive medium for the propagation of packets. By
reason of the limited distan(e between the users (les5 than 1 km) in the ETHERNET
prototype a coaxial cable has been chaos en as the propagation medium but other
media could be used as well; for example, the extremely rapid development of fiber
optics (see [LiJ) suggests to choose fiber optics instead of coaxial cables.
A system of this type (called FIBERNET) is actually in investigation (see [Rr~J).

Since the transmission principles of FIBERNET are basically very similar to those
used in ETHERNET we will restrict ourselves on ETHERNET in the following.
The structure of ETHERNET may be modelled as an unrooted tree; a new user joins
the system simply by tapping into the propagation medium at any convenient point.

(---- propagation
medium

~ users

Packets in ETHERNET are of variable length; they include a source and a destination
field in the header. Packet transmission is similar to the 'Carrier Sense Multiple
Access' (CSMA) technique, i.e. most of the possible interferences are avoided by
listening to the carrier. Thus a collision Will occur only if the channel is erro­
neously sensed idle during the beginning of another packet transmission. Due to the
limited distance between the users, a packet interference wi 11 be detected within
a small fraction of a packet transmission time; the conflicting packets will be
truncated, thus wasting only a small amount of channel time.

The transmission of collided packets has to be rescheduled. It is well known that
uncontrolled systems will be overloaded sooner or later by an increasing number of
interferences and retransmissions; for this reason, ETHERNET uses a heuristic
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retransmission control policy which is based only on local information. The stra­
tegy attempts to relieve a temporarily overloaded system of a part of its load by
introducing higher delays for packets which have been colliding more than once.
The mean retransmission delay is determined by the degree of overloading which is
estimated by the number of interferences of the packet in question.
Formally: a packet belongs to class i if it has already had i interferences. Then
the probability f i that a class i packet will retransmit is choosen as follows:

o < f i < 1 f i +1 < f i ~ im f i = 0 (s ee [Ba], [BG l) .
1->00

It has been shown by simulations that ETHERNET may be controlled both by a polyno­
mial increase of mean retransmission delay (f. = p/c+i) or by an exponential in­
crease of delay (fi = q/itE) if the parameterS p,c,q and E are suitably choosen.

In addition to the necessity of controlling the retransmissions (uncontrolled sys­
tems are unstable!) the ETHERNET concept has several other structural shortcomings:
a. There is no upper bound for the maximum number of interferences of a packet.
b. Collided packets are discriminated by increasing delays (unfairness!).
c. High variations of waiting times due to this unfairness effect.
In this paper a modification of ETHERNET will be presented which tries to overcome
these disadvantages by introducing a slotted local computer network (SLOTTED ETHER­
NET). This approach will maintain the principal advantages of ETHERNET but it will
be impossible that a particular packet will collide more than once. This will be
effected by reservations which are to be made in a 'Time Division Multiple Access'
mode by the conflicting users immediately after seeing a collision. The retrans­
mission of the packets will be automatically scheduled according to any priority
scheme which has been agreed by the users. In this retransmission period it will
be guaranteed by a special transmission protocol that no unauthorized packet trans­
mission will take place; thus repeated collisions of a packet will be avoided.
This concept implies a finite maximum waiting time until success for any priority
scheme; the maximum is proportional to the total number of users.
For exponentially distributed packet generating times the behaviour of SLOTTED
ETHERNET may be interpreted as a Semi-Markov process. An evaluation of the through­
put and the waiting times of the system will be given in sections III and IV. In
the final section of the paper SLOTTED ETHERNET will be compared with other models.
The price to be paid for the advantages of the new concept is that variable packets
are not allowed and that the system can only accept a finite total number of users
which depends on the slot (i .e. packet) length and the maximum signal propagation
delay. The first of these drawbacks may be overcome by introducing multipacket
transmissions (see 11.3) or by a BUSY TONE ETHERNET model (see Appendix). An in­
crease of the number of users is possible either by extending the slot length or
by introducing additional reservation slots, but these solutions would reduce the
throughput and increase the overhead as well as the waiting times of the system.

II. THE SLOTTED ETHERNET CONCEPT
In this and the following sections we restrict on a slotted version of ETHERNET
(i.e. fixed maximum length of a single packet); the problems arising with variable
packet sizes will be discussed in the appendix.
11.1. DESCRIPTION OF THE MODEL

Due to the small amount of propagation delay in local networks, a collision will
be detected very quickly; thus only a small amount of a slot will by wasted by a
conflict. If a collision occurs in SLOTTED ETHERNET, then we assume that all users
which are involved in this collision will notify its actual priority in a TOnA
mode during the rest of this slot; each of these users listens to the channel dur­
ing this "reservation slot" and schedules its retransmission slot according to a
prearranged priority rule (see below). It wi 11 be assumed that the system consists
of d fixed number, N, of users Uo' ... , UN- 1 . A user is not necessari ly active.
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Each slot begins with a group R of bits announcing whether a retransmission is
scheduled for this slot (R ~ 1) or not (R ~ 0). R ~ 1 will be given by the (pre­
viously collided) station whose retransmission will take place in this given slot.

A slot ends with an ACK part which confirms a successful transmission in the pre­
vious slot. Acknowledgments will not be considered in the model analysis because
they are not susceptible to collisions.

There are the following four types of slots which have to be distinguished:

a. IIFree ll
:

I I
R~O o o

I I
(--- ACK~

b. "Immediate success":
I I I I I
R~O No ColI.

(

c. "Reservation slot":
I I I I

Packet transmission ---------7)<-- ACK~

t I I I
PR N- Z PRN_i ACK~

actual waiting time)

PR
Z

PR 3
Ui ; for example: priori ty

R~O Coil. PRo PR 1
(PR i :~ priority of user

d. "Retransmission slot";
I I I I
R~1 ~( Packet retransmission ~)~ ACK~

Remarks:
~combination of ETHERNET and TDMA principles in SLOTTED ETHERNET removes all

of the collisions before admitting new packet transmissions. Thus, no packet
can collide more than once; this leads to a finite maximum waiting time until
success since the total number of users is limited.

b. The maximum number, N, of users which can be tolerated by the system depends on
the packet size (slot length); this number will be further reduced by the safe
guards which are necessary between any two consecutive slot sections. If the
number of users grows bigger and bigger, we could either increase the slot
length or introduce additional reservation slots; both solutions will reduce
the throughput of the system.

c. As a priority rule for user Ui we could choose for example:

PR i :~ ai·z + bi (where ai ,b i :> 0 and z:~ actual waiting time in
full slots).

values, the strategy "higher number

PR .. ­
1

and "higher numbered

ACK

I I
o

tr
Uo ------> ACK 0 C 0 1 1 0 0 0 ACK

g 3' I I I I • 'J' • I IIt. g

ugo
tr A tr ACUo ~ CK 0- U4 ~ K 0

I I 1 I 1

ugo
tr

1- U1 ~ACK 0 C 1 0 00 3 Z ACK 1oE'---Utr ----,>I, t 11".,111 1 I' 4

ug
4

~

1
I

(--- utr~ ACK _
1 5 1I It' I I

Pi!Jure 1: Transmissions in SLOTTED ETlfEF!.NET wi tfJ D users U0' ••• U5.

tr II [/9. II [T t '(Vi = Vi transm.its successfully i 1 = i genera 2S a new r)dC'l'~t"t)
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11.2. THE INTERPRETATION OF SLOTTED ETHERNET AS A SEMI-MARKOV PROCESS

The behaviour of SLOTTED
PERIODS (RTP) Xo' ... ,
where Xi := RTPj d~f j

ETHERNET may be described as a sequence of RETRANSMISSION
\ ' Xi + l ' .....
<~> the i-th retransmission period consists of users

<=> j packets have been generated during Xi _l
The duration (in slots) of a retransmission period is given by

d(X i ) = { ~i+l ;;~:: ~} Xi + sign(!Xi-ll)

since no reservation will be necessary if only one packet will be generated in a
retransmission period ("immediate success" in the next nonreserved slot). A free
slot may be considered as a retransmission period which contains no users. Finally,
if two or more users generate a new packet in a period, a reservation slot has to
be added to the next retransmission period.
If the packet generating time of user U. (i=O, .. ,N-l) is exponentially distributed
with parameter A. then the stochastic ptocess {X , n=O,l,2, } is an aperiodic
and irreducible 1 Markow chain with finite state n space {O,l, ,N}.

and rRo I ) .
i-l

T. = L d(X)
1 r=O r

(see rCi]

1T+l-TI l

stochastic process Yt spends in state
~ i 'd( i)

that the
~i 'd(i)

N

r~oTIr'd(r)

N
L r'~ = expected number of users in a RTP.

r=O r

lim Pr(Yt=i)
t->=

TI :=

TI i := lim Pr(Xn=i) is given by the solution of the system of equations:
[~ . P = TI TI • T= 1]

P := (Pi,j) and Pi,j := Pr(Xn+l=jlXn=i)where

Thus

where

If [T i ,T i+l ) is the time interval which belongs to Xi (i .e.

then the continuous time stochastic process {Y t , t ~ O}

defined by Yt .- Xn if t E [Tn,Tn+l )
is a SEMI-MARKOW PROCESS with sojourn time d(r) in state r (r = 0, ... ,N).
Sojourn times depend on the actual state, but are independent of the next state
which will be visited.

It can be shown (see [Cil) that

Pi .- proportion of time

Remark: In general, the formula given for P. holds only for Semi-Markov-processes
which are not lattice, but due to the simple1structure of the process in SLOTTED
ETHERNET (sojourn times in state r are fixed and independent of the next state to
be visited) it can be shown that the formula can also be applied for our model.

The retransmission periods of figure 1 are demonstrated in figure 2.

2 3

2

3

4

3

4

5 6

o
1

~ reservation slot

Figure 2: Retransmission periods in SLOTTED ETHERNET
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11.3. MULTI PACKET TRANSMISSION

SLOTTED ETHERNET can also be used for multipacket reservation and transmission.
In this case, each packet in a retransmission period has to begin with R = a
(instead of R = 1) where a ~ 1 is the number of packets which have not yet
been transmitted by the actual user; this holds also for the packets of an immedia­
tely successful transmission (except for the first packet). Thus, the actual user
will finish his multipacket transmission after the following a slots; then the
next user will be scheduled exactly as in SLOTTED ETHERNET for single packets.
With multipacket transmission facilities, the throughput of SLOTTED ETHERNET will
be increased as well as the maximum waiting time for a particular user. The size
of a multipacket should be limited in order that no user will eventually monopolize
the system.
The throughput and waiting time considerations of sections III and IV are based on
SLOTTED ETHERNET systems which are designed for single packet transmissions.

III. THROUGHPUT OF SLOTTED ETHERNET SYSTEMS

111.1. GENERAL THROUGHPUT FORMULA. LOWER AND UPPER BOUNDS

I ifLet IT i := lim Pr(Xn=i) and d(i):= li+I if
n->=

if

if

2
12(1-110)+1

1-110 (i.e. zero or two arrivals per RTP).

= {I 1
1 - -11-

1
/"""(""'1-=--11-

1
--')-+--""'N

- -IT 11 11 -
- 1 - - -11 + 11 1 11 + 11 1

denotes the mean length of a retransmission period.

- 11
11 - ----=--­

11 1 + N' (1-11 1)

2· (1-110)

2(1-110) + 1
and only if 112

S

with equality if

B. UPPER BOUND:

S < Smax

be the probability and the length of a retransmission period consisting of i users.

Then the throughput S of the system is given by:

N
L i·IT.

i =0 1

N
L d( i)·11.

i =0 1

N
where IT .- L i ·IT.

i=O 1

The following lower and upper bounds for the throughput are easily obtained:
A. LOWER BOUND:

with equality if and only if 11 N_1 = 1-111 (i .e. one

The following extremes of S may be considered:
(1) max

1. Smax = 1 if 11 1 = 1 (i .e. exactly one

or N-l arrivals per RTP).

arrival per slot, perfect
scheduling)

S(2)
max2. 11 - N if 11N_1=1 (overloaded system, all but the the last user

generate a new packet during the RTP).

These bounds hold independently of the distributions of packet generating times.

Remark: If k reservation slots are used (due to an excessive number of users) then:
2 2'110 S = 1 _ 11 0+k.(I-110-11 1) 1 _ k·(I-11 1)

M - (2+k)'((2+k)'(1-110)+110) ~ :;j" +110+k-(I-11
0

-11
1
) ~ (N+k-l).(1-11 1)+111
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111.2. CALCULATION OF ~. FOR EXPONENTIALLY DISTRIBUTED PACKET GENERATING TIMES
1

We assume that the system is composed of N independent users and that the packet
generating time for each user is exponentially distributed with mean 1/~ , i.e.

Pr(U i generates a packet during It,t+h) I Ui active at time t) = 1 - e- A·h.

0, ... ,N) •

(j = O, ... ,N).

(j

(N-1)
P O,j

Pr( j packets are generated in a free slot)

(N).(I _ e-A)j.(e-A)N-j
J

B. i 1:

p~N) = Pr( j of the N-1 active users generate in RTP 1)
,J

=(N~I) '(1_e-})j.(e-A)N-1-j
J

~ 2 :

As already mentioned in section II, the sequence of retransmission periods is in
this case an aperiodic and irreducible Markov chain with unique positive statio­
nary state probabilities TT i (i=O, ... ,N).

In order to find the solution of the system of equations which determines these
probabilities we have to calculate the transition probabilities p.. given by:

(N) 1 ,J
Pi,j := Pi,j := Pr(X n+1=j I Xn=i) =

= Pr(j of the N users generate a new packet during a RTP of i users).

are obtained as follows:These va 1ues

A. i = 0 :
(N)

PO,j

C.
The retransmission period consists of one reservation slot followed by i trans­
mission slots.
Since the transition probabilities are not influenced by the numbering uf the
users, we assume that the RTP consists of the users U (r=O, ... ,i-1) and that
the transmissions will be scheduled according to the fequence U. l'U, 2""'Uo'

1- l-

It will be assumed that a blocked user wil I become active again (i .e. he starts
a new packet generation time) immediately after the transmission of his packet.
Thus the production period of user Ur in RTP i consists of

i+1 slots if r = i ,i+l, ,N-1
r if r=0,1, ,i-1

(N)p..
1 ,J

Let G(r,i) .- Pr( Ur doesnot generate a new packet during RTP j ).

__ {e- A'(i+1) if r ~ i
Then: G(r,i)

e-}'r if r < i

If U1 denotes the event that U produces a new packet, and if UO is the
eventrthat no new packet will berproduced by Ur then: r

Pr(u
Er

) = { 1- G(r,i) if r = 11 = 'r - (2'E
r
-1)'G(r,i)

r G(r,l) else J
The transition probabilities p(N) are now given by:

1 ,J

L N
{(cO,···,cN_1)C'B
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~~~ ~~~~~; ~~l~~~~t~~~ss~~~~~o~e~:~~~~~so~~~ ~~a~~~n~~~a~;~;~sPr~b:~~li~ies TI i is

Figure 3 shows the trade-off between throughput S and the distribution parameter
A for severa1 va 1ues of N.
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Figure 3: Troughput of SLOTTED ETHERNET systems (exponentially distributed packet
generating times; parameter ~)

111.3. ASYMPTOTIC BEHAVIOUR OF THROUGHPUT

The throughput of SLOTTED ETHERNET systems may be asymptotically calculated for
very small and for very large packet generating rates:
Theorem: a. S~ S(2) 1 - 1.
--- A->= max N

b. If packet gener. times are expon. distr. with parameter A then:

S N'A ,;; N'A---') TIl -+ WA-+o
Proof:

S(2)a:If A->= then TI
N
_

l
-+ Thus S -+ (see II!.l).max

b. If A-+o then D.. -+ 0 for i>l or j> 1; thus from 111.2 we obtain:
1 ,J

-A·N
e p(N) -+ 1 _ e-A' N , (N) -A(N-l) (N) 1 -A(N-l)

0,1 pl,o-+e ,Pl,l-+ -e .

ThUS, disregarding terms of order A2 or higher, the system of equations for the
stationary probabilities reduces to:

TID TIo'Po,o + Tf 1'P1,0 TID + TIl 1

1 - Po,o 1 - (HN) f. . NThus S TIl l-Po,o+Pl,o
---+ (HN) (H(N-l)) 1+f.A-+o +
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is the waiting time in the generation period RTP i :

is the waiting time which is caused by an eventual reservation slot
in RTP (which will be necessary if and only if at least one of the
other J users did produce a packet in the same period RTP i ).

Th " ( j ) {1 if j ~ 2} . (. 1)us w 2 = 0 if j = 1 = slgn J-

is the waiting time in RTPj (until the beginning of the packet
transmission). 0 ~ w(~) ~ j-l.

IV. WAITING TIr1E ANALYSIS

IV.1. UPPER BOUNOS

A main advantage of SLOTTED ETHERNET is the maximum waiting time until success;
furthermore, the waiting time is upper bounded for any priority scheme:

Theorem: a. FIFO-scheduling: Wmax N+1 slots

b. Arbitrary priority scheme: Wmax 2·N-1 slots.

Proof:
~ a FIFO sequencing rule, a customer will be delayed by at most the trans­

mission of all other users and by a reservation slot; an additional slot of
waiting time will be encountered if the packet has been generated immediately
after the beginning of a slot. Thus: Wmax = N-1 +1 +1 = N+1 slots.

b. In the worst case, a user will generate his packet at the beginning of the
reservation slot of a RTP which consists of all the other users. If the next
RTP also contains N-1 users and if (due to a very discriminating priority rule)
the transmi ssian of our part i cu 1ar us er wi 11 be schedu 1ed after a11 these othE r
packet transmissions, then: Wmax = 1 + N-1 + 1 + N-2 2'N-l slots.

IV.2. MEAN WAITING TIMES

In this section, mean waiting times for any priority scheme will be calculated. It
will be assumed that packet generating times are exponent1ally distributed with
parameter \.

The actual waiting time W(i ,j) of a user whose packet is generated in RTP. (i;::OI
and whose packet transmission will take place in RTP. (j>l) is composed of 1
three parts: J

\I(i ,j) W(i) + W(j) + W(j)
123

where W(i)
1

W(j)
2

Mean waiting times are obtained as follows:

In the mean, the (re-)transmission of a user will be scheduled after (j-1)j2 trans­
missions of his competitors.

-rIT '-1
Thus: W\~I = ~ (this holds for any priority scheme).

WTTT depends on the packet generating time distribution. For an exponential distri­

bution, the mean can easily be calculated:

Lem"la: If packet generating times are exponentially distributed with mean 1/\ then:

;raJ ;:;rI)w1 _ 1 1 1a. 1 1 - 1-):'+-\- E [2: 1].
e -1

r (N-i) 'f(i+l) +

b. i ~ 2

WflT1

where f(h) ._h- 1 ·(1I

i-1
I f( h) ]

h;l

-\'h- e )

j ( N-1 - (N_i)'e-\'(i+1) _ iZ\-\·h
h=l
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Proof:
Assume that Ur generates a packet in RTP i which is assumed to be composed of the

users Ui _I , ... ,UO (in this order).

Let wl:~.- expected waiting time of Ur in RTP i .
E(r,i) .- expected packet production instant relative to the beginning of

{

Iif i ~ I RTP i .
M(r,i).- r ifi?2andr<i

i+I if i? 2 and r 2 i

Thus "WT1Jl
i M(r,i) - E(r,i) for i ~ O, ... ,N (see 111.2).,r

E(r,i) is calculated as follows:

a. i ~ I :
RTP i consists of exactly one slot. If Zr is the production instant of Ur , then:

Pr(Z ~ h I U produces in RTPO or in RTP I ) Pr(Zr ~ h I Zr ~ I)
Pr(Z~ ~ h) r I _ e-\·h
Pr(Zr ~ I) I _ e-\ (h ~ I).

I x.\.e-\·x I I I
Thus: E(r,O) ~ E(r,l) f _\ dx ~ "' - -,- E [0:"2"]

o I - e "e"-I
b. i ? 2

The activity period of Ur in RTP i has a duration of M(r,i) slots. Thus: -\.h
I - e

Pr(Zr ~ h I Ur produces in RTP i ) = Pr(Zr ~ h I Zr ~ M(r,i)) I _ e-\.M(r,l)

Hence: E(r,i) M(~,i) x·\·e-\·x dx ~ l _ M~r,il
o l_e-\·M(r,1) \ eA· (r,l)_1

If Q(r,i) is the probability that a customer producing in RTP i is Ur ' then:
N-I N-I

Q(r,i) (I - G(r,i))/ L (I-G(h,i)) = (I - G(r,i))/ L (I-G(h,i))
h=O h=1

where

Thus:

G( r, i)

"WT1JI

is the probability that Ur produces a new packet in RTP i (see 111.2).

N-I N-I
= L Q(r,i).wl1~ L Q(r,i)·(M(r,i) - E(r,i))

r=O ' r= I

Q.E. D.

which after insertion of the formulae reduces to the expression given in the lemma.

The mean waiting time W of an arbitrary packet is now obtained as follows:

Theorem: W = -21 + I p.·r"WT1J + l.( I j.p(N! - p~N))/(l_p(N))J
i~O 1 I 2 j~2 1,J 1,1 1,0

where the values WTIT are obtained from the previous lemma (for exponen­
tially distributed packet generating times).

Proof:
SLOTTED ETHERNET may be modelled as a Semi-Markow-process (see 11.2).
Thus an arbitrary packet will be produced in RTP i with probability

Pi = Tf(d(i)/ (11+1-"1)·
The packet transmission will be scheduled in RTP j (j? I) with probability

p .. p(N!/(I_P(N)) . Thus ~ is given by:
1 1,J N 1 'ON .

W L L (~+ sign(j-I) + j;;l) .P i .p;~J / (l-p;~6)·
i~O j=1
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Figure 4: Mean waiting times of SLOTTED ETHERNET systems (exponentially distributed
packet generating times; parameter A)

IV.3. BOUNDS AND ASYMPTOTIC BEHAVIOUR OF MEAN WAITING TIMES IN SLOTTED ETHERNET

(exponential distribution)

(any distribution of
packet generating times)

respectively.

»

«

and

(N-l) .)

(N-l) . A

if

if

with A. The mean waiting time is bounded by:

N+ __1__ = W(A=OO)
N-l

Ware obtained:

1
"2" = "W(A=O)

following approximations of

1 3
W - 2" + 4'(N-l)'A

W _ N+_1 l
N-l A

Both approximations become exact if A+O

b. The

The following relations for Ware obtained for a given number, N, of users of
the SLOTTED ETHERNET system:

Theorem:

a. W is monotoni ca lly i ncreas i ng

> 1.forP.
1

Proof:
~-rhe mean waiting time is monotonically increasing with A since an increase of

the packet generation rate will result in more and in earlier packet productions.
Thus the waiting time in the production period RTP. will increase as well as the
waiting time in the retransmission period RTP. 1 furthermore, the probability
of a collision wi 11 be increasing. J

To show that W~ [i : N + N:l] it will be sufficient to verify the approxima­

tions given in part b. of the theorem.

b. Small A; exponential distribution:

It is easily verified that:

Po = 1 - N'A + 0()2) PI = N·) + 0(\2)
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2·pO,2- PO,1

1- PO, 0

I 3 2"2 + 4(N-I)A + O(A ).

+

+

232+ O(A) = Z-(N-I)'A - I + O(A )

I P.· [WTT! + 1.. (2_p(N) -
i=Ol 12 1,2

I 2'Pi,2- Pi,1
+ Z· L P. -'I--'-:'-'=--~

i=O 1 -Pi ,0

2- (~) 'A 2 - NA(I-(N-I)A)

NA - (~) _A 2

N-I(2-(N-I)·A-I)(1 + -2-A)

= l(N-2)-A - 1+ 0(A 2) _

I
Z +

2'PI,2- PI,1
i-PI,O

- I 3
W = I + Z-[(Z· (N-I)A-I) (I-NA)

Now:

and:

Thus:

Thus:

Large A; arbitrary distribution:
. (N) ~ ;:;n;r:TT N-2If A+oo then. PN- I ~ I , PN-I,N-I ~ I ,W 2 ~ I ,W 3 ~ --2--

(all retransmission periods consist of N-I users; each RTP will contain a reser­
vation slot; the actual user will be scheduled after (N-2)/2 of his competitors).

- .~ N-2 ~ NThus W~ PN- I (W I + I + -2-) ~ W I + Z .

IE(r,N-I) ~ I
Furthermore:

Q(r,N-I) ~ {6/(N-I) ~~ ~: ~

~ N-I
Hence: W I = L Q(r,N-I)·(M(r,N-I)-E(r,N-I))

r= I
N I I

= "2 + N-1 - I

The calculation of~ for overloaded systems ( (N-I)A»I ) is illustrated in
figure 5.

the production period RTP
N

_
1

(overloaded systems)

waiting
times
in RTP N_I

- - .. - - - -- UI
Res. slot

I" 1 I
UN_~ UN-1 UN- 3

:- --) 1-1i--l1t---------i-,.-.-o>-H-_;---+-:----'---------,.",------11 )

A :_ •• ~ f---I

:--~H : I

;:;n:r-IT I N-I I '- -~1---1-
W 1 = N~I '(1+ L r) - -

r= I A
Figure 5: Mean waiting times in

V. COMPARISON OF SLOTTED ETHERNET WITH OTHER SLOTTED NETWORKS
V.I_ THE ALOHA RESERVATION SYSTEM PROPOSED BY ROBERTS

As in the ALOHA reservation scheme (cf. [Rbl) SLOTTED ETHERNET alternates between
a RESERVATION state and a RESERVED state_ The throughput of both models is conside­
rably higher than the throughput of systems without reservation (d_ [Abl, [Ba],
[To]). It should be pointed out that Roberts reservation scheme suffers from the
same instability problems as slotted ALOHA systems without reservations; thus a
retransmission control policy will be necessary.
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The main differences of Roberts system and SLOTTED ETHERNET are:

RESERVATION SCHEME

Designed for remote networks:
Propagation delay is much higher
than packet transmission time

System turns to the RESERVED state
after seeing a successful reservation

The number of RESERVED slots between
two RESERVATION slots is a constant

The throughput will be reduced by
the RESERVATION slots

No upper bound for the maximum number
of collisions of a given packet

Any number of users is allowed to be
in the system simultaneously

SLOTTED ETHERNET

Designed for local networks:
Propagation delay is very small compared
to the packet transmission time

The RESERVED state is preceded by a
collision (reservation slot)

Number of RESERVED slots is given by
the number of colliding users

The throughput is not necessarily reduced
by reservation slots (see III.l)

A packet can collide at most once.

The maximum number of admissible users
depends on the slot length; it can be
increased by introducing additional
reservation slots

V.2. COMPARISON WITH TDMA AND FDMA SCHEMES

SLOTTED ETHERNET systems are more flexible than 'Time Division' or 'Frequency
Division' schemes since the channel will never be idle if there are packet trans­
missions to be scheduled (except for the waiting time between the generation time
and the beginning of the next slot). In contrast to TDMA and FDMA systems, SLOTTED
ETHERNET is particularly suitable for bursty users.

V.3. THE IMPLICIT RESERVATION SCHEME

This reservation method for ALOHA type systems has been introduced by Banh, Gelenbe
and Labetoulle ([Ba], [BG], IBL]). Its main characteristics are as follows:

After generating a multipacket, a user will first enter a waiting state where the
system will be observed for L successive slots (L = window size). Some of these
slots will be eventually free of a successful transmission (i .e. nonreserved) and
the user will try to transmit the first packet of his multipacket in one of these
supposedly free slots in the next cycle (modulo L). If the packet enters in a col­
lision, then the next attempt to transmit will take place after a random retrans­
mission delay in a nonreserved slot. On the contrary, if the packet has been
successful, then beginning with this slot every L-th slot will be implicitly
reserved for the remaining packets of this user. Thus the first successful trans­
mission will seize one particular slot of the window for this user.

Using similar assumptions and arguments as with slotted ALOHA systems it can be
shown that the throughput of the Implicit Reservation scheme is approximately given

by: S ~ a 1 ( a := expectation of the multipacket size,
e + a - i.e. number of single packets per multi-

packet).
The throughput of the Implicit Reservation Scheme approaches unity if the mean
size of a multipacket tends to infinity. But in this case the system will be mono­
polized by at most L users whose transmissions will never be stopped. This effect
leads necessarily to a large variation of waiting times in heavily loaded systems
since perhaps some of the users will be immediately successful whereas the others
have to wait many slots until the first successful transmission.

It should be noted that the Implicit Reservation scheme has to be stabilized by a
retransmission control strategy.

Implicit reservation schemes and SLOTTED ETHERNET are contrary to each other in
many respects. Some of the main differences are illustrated in the following table:
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IMPLICIT RESERVATION

Substantial amount of propagation delay
(but propagation delay :-; window size L)

Implicit reservations after the first
successful transmission

Before the first transmission, the chan­
nel is observed for L consecutive slots

'Time Division' after the first success

Any number of users may be active simul­
taneously

No upper bound for the maximum number of
collisions, but no more collisions after
the first successful transmission

Large variation of waiting time in
heavily loaded systems

SLOTTED ETHERNET

Designed for local computer networks:
very small propagation delay

(Implicit) reservation for single
packets after a collision; can be
extended on multipackets; see II.].

The (first) packet will be transmitted
in the first slot which follows the
actual retransmission period

Priority scheduling after collisions

The maximum number of users depends
on the slot length

At most one collision per (multi-)
packet; the maximum waiting time is
upper bounded for any priority scheme

Very small variation of waiting times
even for heavily loaded systems

VI. CONCLUSION

The rapid development of new transmission technologies (see [Li]) during the past
few years has considerably increased the interest in the study of local computer
networks. In this paper a new model for such networks has been presented which is
based on the ETHERNET and on the FIBERNET concept. In contrast to these networks,
the performance of SLOTTED ETHERNET has been evaluated by mathematical methods.
Some other important features (finite maximum waiting times, priority scheduling
policies, .... ) indicate that SLOTTED ETHERNET is really an extension of ETHERNET.

The model can be extended to include multipacket transmissions or packets of vari­
able length (see Appendix). These and various other model extensions are actually
in investigation.

APPENDIX

If we want to generalize SLOTTED ETHERNET to include packets of variable length
we are immediately confronted with the following problem:

Idle times in a reservation slot (i .e. time slices reserved for users which do not
participate in a collision) and safety guards separating two packet (re-)trans­
missions could be sensed idle and erroneously be interpreted as unused.

Two proposals for a solution of this problem can be discussed:
I. The channel is sensed for a considerably longer time period (at least for a

whole 'reservation slot'). A new packet is started if the channel is sensed
idle during the whole carrier sense period.

This solution leaves the equipment cost unchanged but results in some reduction
of channel occupancy as well as in an increase of waiting times (especially for
lowly loaded systems).

I!. BUSY TONE ETHERNET:
Transmitting users send a 'Busy Tone' (BT) over an additional channel during
their transmission or reservation as well as during the following signal propa­
gation delay. A new packet is started if the BT-channel is sensed idle.

This method is an application of the Busy-Tone solution for 'Carrier Sense
r~ultiple Access' (CSMA) techniques proposed by Tobagi (see [Toj).

In both cases, retransmissions are to be scheduled exactly as in SLOTTED ETHERNET
systems; thus the advantages of SLOTTED ETHERNET over ETHERNET are preserved.
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The scheduled retransmission starts when the transmission channel is sensed idle.

Remarks:
~eservation indication is needed (this information is replaced by the longer

period of carrier sensing and by the 'Busy-Tonecchannel respectively).
b. A main disadvantage of variable packets (compared to packet transmissions in

SLOTTED ETHERNET) is that collided users have to be in a 'Busy Waiting' state
of unknown duration until their retransmission begins. A remedy for this problem
would consist in the indication of the priority as well as the duration of the
planned packet transmission; these informations would have to be given by each
user who participates in a collision.
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We consider a two-way communication protocol used on a full­
duplex link to transmit variable packets (or messages) between
two communicating nodes or centers. Node 1 can transmit up to
W, packets before obtaining an acknowledgement packet from
NOde 2 ; the corresponding quantity for Node 2 is W2. When both
nvdss have attained this maximum transmission capacity (or
window), they exchange acknowledgements before the transmission
routine begins once again. If a node has no packet to transmit
it sends a packet signalling its idle state to the other node
in order to avoid unnecessary waiting times for the acknowledge­
ment. This protocol is a generalization of the usual Send-and­
Wait procedure and constitutes an alternative to protocols deri­
ved from the HDLC procedure. After introducing the protocol, we
evaluate its throughput using a mathematical model for which an
exact solution is provided. The problem we examine is equivalent
to that of two finite capacity queues whose service is trigerred
simultaneously when both queues attain their maximum capacity.

Nous etudions une procedure de communication entre deux noeuds
permettant l'ecrenge simultane de paquets ou de messages de
longueur variable. Le Noeud 1 transmet Wi paquets avant de s'ar­
reter pour attendre un acquittement du Noeud 2, qui peut envoyer
W2 paquets avant d'avoir besoin de recevoir un acquittement pro­
venant de son partenaire. II est convenu qu'un noeud n'ayant pas
de paquets a transmettre Ie signale a l'autre noeud par un pa­
quet special qui permet d'eviter une attente inutile avant l'e­
change d'acquittements. Cet echange a lieu quand les deux noeuds
ont atteint Ie nombre maximum de paquets qu'ils peuvent envoyer.
Cette procedure de liaison (ou protocole) est une alternative a
des procedlwes obtenues a partir de HDLC. Nous presentons une
evaluation de cette procedure en utilisant un modele mathemati­
que qui nous permet de calculer de fa90n explicite son debit ma­
ximum. Nous montrons que Ie probleme etudie est equivaler~ a
celui de deux files dont Ie service s'effectue simultanement
quand les deux files ont atteint lelw capacite de stockage ma­
ximum : la solution de notre probleme permet donc de resoudre
egalement un nouveau probleme de files d'attente couplees.
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Protocols are procedures designed to guarantee that two or more processes exchan­
ging messages or packets of data, can be informed of the proper receipt of the pac­
kets they send, or of transmission errors or failures. They are introduced at all
significant levels of communicatir~ systems and their structure has been defined
in certain cases so as to obey international standards. A well-known example is
the High- Level - Data - Link - Control (HOLC) procedure [6].

These procedures have an important effect on the performance of data communication
systems: it has been shown [1,4] that the choice of protocol parameters conditions
the throughput achievable by a data transmission link.

TI1e purpose of this paper is to introduce a direct generalization of the Send -
and - Wait (SW) protocol, which we shall call SW (Wi ,W2). SW governs the exchange
of packets between two communicating nodes (N1 and N2) as follows. Consider a
fUll-duplex link between N1 and N2 so that each node can send a packet to the other
node independently of transmissions in the reverse direction. SW requires each node
to stop its transmission, and to wait until the packet it has sent is acknowledged
by a special packet (which we shall call the ACK), before it may transmit its next
packet. The behaviour of the two communicating nodes controlled by SW can be repre­
sented by the state transition diagram shown on Figure 1. In state PP both nodes
are transmitting a packet. States PW or WP indicate that one node is still trans­
mitting a packet while the other has finished its transmission and is waiting for
an ACK. In the state AA the two nodes exchanges ACKs.

In the SW(Wi ,W2) protocol, N1 can send up to Wi packets to N2 before having to
stop to wait for an ACK. The reception of the ACK will signify that all Wi packets
have been correctly received by N2, and the behaviour of N2 is symmetrical except
that it can send up to W2 packets before having to stop to wait for an ACK.

In Section 2 we will analyze this protocol. A mathematical model of its saturated
performance will be presented and an explicit- expression for the throughput in each
direction will be obtained. We will then show that the problem considered is analo­
gous to one of two coupled queues with finite capacity W1 and W2, and provide an
analytical solution to this problem yielding the stationary joint queue length dis­
tribution. This model and result are new in the queueing theory context.

The performance of protocols has received considerable attention recently. In [1],
simulation studies showing the incidence of protocols on the behaviour of computer
network nodes are presented. A study of SW, using both analytical modelling and
measurements, is presented in [41. The choice of the optimum value of the time-out
in host-to-host protocols is discussed in [2]. An analysis of HDLC [6] with and
without packet losses is given in [5].

A MODEL OF THE S\,(Wi ,W2) PRCYrOCOL

The behaviour of the SW(Wi ,W2) procedure will be represented, as was the case with
SW, by a state transition diagram. We shall assume saturated behaviour: both Nl and
N2 have an unlimited queue of packets to send to their partner. Thus our analysis
will allow us to determine the maximum capacity of the ~'(Wi,W2) protocol, since
it has been shown 11 ] that the throughput of a saturated queueing system is identi­
cal to the maximum arrival rate it can support before saturation.

The state of the protocol will be represented by an integer pair (i,j), OsisWi ,
OsjsW2, where this state indicates that :

- if i <H1 and j <1;12, N1(N2) has completed the transmission of i(j) packets
and is currently transmitting the i+1 th(j+1 th),
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- if i=W1 and j <W2 (or i <W1 and j=W2), N1 (or N2) has completed its trans­
mission of W1 (or W2) packets and is waiting for an ACK ,

- if i=W1 and j=W2, Nl(N2) has received W1(W2) packets is sending an ACK to
N2 (Nl). When both Nl and N2 have received an ACK, the state will return to
(0,0) and the packet transmission procedure will begin once again.

The transitions between these states are shown on Fi~Jre 2. When both Nl and N2
have transmitted the maximum number of packets which they are allowed, they enter
state (W1,W2) in which they exchanges ACKs.

Related queueing problem

The protocol model we have presented above is closely related to the following
queueing problem.

Consider two queues Ql, Q2 of finite capacity W1 a~d W2 , respectively. Let i,j de­
note the length of Ql and Q2, respectively. Assume that when i=W1 all arrivals to
Ql are lost, the same being true for Q2 when j=W2. The queueing system is such that
no service is rendered as long as either i<W1 or j<W2. However, as soon as i=W j and
j=W2 the queues are emptied in a time S (which can be a function of W1 and W2)' w­
ring the service time arrivals to both queues are lost : equivalently we may assume
that both queues are iTllitantaneously emptied at the end of the service epoch.

Notice that the state transition behaviour of the two queues will be identical to
that of the protocol in all respects. The end of a packet transmission will corres­
pond to an arrival to a queue. The exchange of ACKs in state (W1 ,W2) of the proto­
col corresponds to the service in state (W1,W2) in the coupled queueing system. The
coupling of the queues only takes place when both queues are full ; the queues beha­
ve independently at other instants. These two queues may be visualized as two reser­
voirs of finite capacity which are emptied as soon as both are completely full.

ANALYSIS OF THE SW(W1 ,1-I2) PROTOCOL AND OF THE COUPLED QUEUES

We shall state the assumptions concerning the SW(W1,W2) protocol, and for the sys­
tem of finite capacity coupled queues, separately even though the mathematical pro­
blem to be solved is identical for both systems. Then the main result, yielding the
stationary probability distribution of the state of the protocol, as well as the
j oint probability distribution for the queue lengths; will be stated and proved.
M2asures of interest, such as the throughput of the queueing system will then be
derived.

Assumptions for the SW(W j ,W2) model

We shall suppose that the time necessary to transmit a packet from Nl to N2 is exp::r
nentially distributed of average value Ai' ; the corresponding quantity in the re­
verse direction is A:;'. The transmission time is measured from the instant at which
the sender begins its transmission to the instant at which the receiver has recei­
ved the whole packet and thus includes the transmission delay (if any). During the
transmission time only one packet travels in any given direction. Furthermore, the
time necessary for the excha0ge of aknowledgements (in state (1-11,1-12)) will also be
exponentially distributed of average value a-I. This last assumption is not really
necessary : the results we will prove hold even though this time has an arbitrary
distribution with average a-I .

Assun~tions for the coupled queue model

The arrivals to Ql constitue a Poisson stream of rate A1; customer arrivals to Q2
are Poisson of rate A2" When the queue length of Ql attains W1' arrivals are lost
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or rejected ; equivalently we may assume that the arrivals are stopped at that
time. The same assumption is made when the length of Q2 attains W2' When both Ql
and Q2 attain their maximum capacity, a service epoch of average duration a-I
takes place; all customers are served (batch service) and both queues become
empty at the end of the service epoch. No arrivals occur during the service time.
Though we shall assume that this service time is exponentially distributed, the
results will hold in the case of an arbitrary distribution.

The transition equations for the statiorBry probability distributions and their
solution

We denote by p(i,j) the probability that the protocol is in (i,j) in steady state,
or that the length of Ql is i and Q2 is j. The p(i,j), O~i~Wl' 0~j~W2' satisfY the
following equations :

(1)

(2)

For Od<W1

(4 )

with the usual convention that a term p(x,y) is zero if x or y is negative. FirBlly

and the normalizing condition is

(6) Wl W2
[ [p(i,j)

i=O j =0

Theorem 1. The unique solution to the system (1)-(6), yielding the stationary pro­
bability-distribution for the SW(W1,W2) protocol states, and to the coupled queue
problem, is given by

For O~i<Wl' O~j <W 2 :

(i~j)(7) p(i,j) i xj p(O,O)Xl 2

For O~i<Wl

A2 W2-l ) (W!k-J(8) p(i,W2) k= - x Xl p(O,O)A2 2 k=O k

For 0~j<W2

A1 W1-1 j ("':-j k(9) p(\'\ ,j ) = X- Xl [ x2 p(O,O)
2 k=O

(10) P(W 1,W 2)
A1+A 2= -a- p(O,O)



where xl

(11)
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+ W-1 + l: (i~j) x~ x{ ]-1
Ws i<!tl1
W,;j <W

2

Proof: To verify (7) to (10), it suffices to show that they satisfy (1) to (5).
That-(10) satisfies (1) is obvious, and it is easy to see that (7) satisfies (2).
Let us show that (8) satisfies (3) : it suffices to show that p(i,W2-1), which is
given by (7), is equal to

A1 A2 i W2-1 tW2+i-)~
(12) _0 - x x p(O,O)

A2 \ 1 2 i

But from (7) we have

(13)

which establishes

(W 2+i-1)
p(i,W2-1) = \ i }

the result.

p(O,O)

Remark. The model for which we have provided the solution is not a sDecial of the
kno\~-finite capacity queueinG models. Thus the solution does not ha~e the usual
"product form" [ 31.

The maximum thrOUghput achievable by the protocol in each direction can be compu­
ted directly from the above result. Let T1 and T2 denote the throughput, in packets
transmitted per unit time, from N1 to N2 and from N2 to N1 respectively,

Notice that N1 transmits packets in all states (i,j) of the protocol, except those
with i=W1 , Since a packet requires All units of time to be transmitted from N1 to
N2, we obtain

(14 )

(15)

and similarly
Wl

T2 = A2[1 - l: p(i,W2)]
i=O

These expressions for throughput are a useful measure allowing us to compare this
protocol to others, in particular to HDLC.

First consider the case where A = A2 (symmetric traffic) and W1 = W2 = W, Assume
that the length of the aCknOWle6gement packet is negligible compared to that of
information packets (A«a) ; thrOUghput in anyone direction versus Wis given in
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Table 1. On the same table we give the throughput of HOLC, derived in [5], under
the s~£ conditions.

Table!

W 1 2 3 4

~(W,W) 0.667 0.728 0.763 0.785

HOLC 0.5 0.75 0.875 0.9375

ThJtoughpu.t VVl.6M whtdow w-<-cUh nOlL SW!W,W) and HOLe undeJl <lymmetJUc .:tJtanMc.

We see that HOLC is clearly superior even for small values of window size under
symmetric traffic and when the length of ACKs is very small.

When the ACK bits in an HOLC packet are an important part of each packet the trade­
off between SW(Wi,W2) and HOLe becomes more complex to evaluate. For SW(Wi,W2), the
ACK traffic in anyone direction is limited to A/W.a of the throughput while for
HOLe it will be W. times larger. On the other hand~ the effective waiting time for
an ACK will be gr§ater with SW(Wi,W2), since with HOLC an ACK is transmitted with
each packet.

For large values of W one can argue that SW(W,'vI) will be superior because the rela­
tive llnportance of the waiting time for an ACK will become negligible. The argument
is as follows. Let A be the total time for transmitting Wpackets from Nl to N2,
and let B be the corresponding quantity in the reverse direction. As Wbecomes
large, by the central limit theorem A \,ill become nor-mally distributed of mean WIA
and coefficient of variation tending to zero ; a similar statement can be made
about B. Therefore, of the system is under symmetric traffic, the probability that
A> B, or that B> A will tend to zero since A and B will both tend towards constants
of the same value. Thus the throughput e in either direction will have the form

(16) T ~ A/(1 + 2-)',Ia

The corresponding quantity for HOLC is [5]

(17)

and we see that for large W

(18) T/THOLC ~ W(~::A)

for symmetric traffic. Thus we can expect that SW(W,W) will be superior to HOLC for
large values of window size whenever the ACK packets (or bits) carnot be neglected.

In the case of non-symmetric traffic and different window widths Wi 'W2' a similar
analysis can be carried out. By virtue of the central limit theorem, the tL~e ne­
cessary for Ni to transmit Wi packets will be approximately gaussian of expected
value Wi /A 1 ; if of is the variance of packet length, the variance of this time will
be approximately W1oi

2 so that its coefficient of variation will be Al0l/1W1' The
same analysis being valid for N2, we see that if (say) W1/Al>W2/A2, we obtain

_ W/A 1(19) Tl~ A
1

-W-- = \/(1+A/aW1 )

---.2:.+ l
A1 a



and
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(20) T '"2 -

because N2 will remain idle for, approximately, a time of length (W j /A1)-(W2/A2)
after havlng transmitted its W2 packets.

For HDLC we

(21)

(22)

so that

(23)

and

(24)

shall have [5] :
- A1Tl ~ A/(1+ a-)

A
T~ '" A/(1 + a.

2
)

(25)

Let us define
W1 W2

k = - /­
A

j
A2

By assumption, and without loss of generality k>l. Then, by equation (24) we can
see that T2>T2' whenever W2-1

a.(k-l) < A
2

(---w- )
2

or whenever the (approximate) inequality

k-1 1
-- <­
A2 a.

holds. 'Thus we see that for large Wj ,W2 and asymmetric traffic, SW(W1 ,W2) yields
a higher throughput from N1 to N2 in all cases (see equation (23», and also a
higher throughput from N2 to N1 whenever (25) holds.

Acknowledgments

The authors are grateful to r1rs M.Th. BOUVIER for her efficient preparation of the
manuscript.

References

[1] A. Dantine, E. Eschenauer (1976) : Influence on packet node behavior of the
internode protocol. IEEE Trans. on Communications, vol. 24, nO 6, 606-614.

[2] G. Fayolle, E. Gelenbe, G. Pujolle (1978) : N1 analytic evaluation of the per­
formance of the "send and wait" protocol. IEEE Trans. on Communications,
vol. 26, nO 3, 313-319.

[3J E. Gelenbe, R. Muntz (1976) : Probabilistic models of computer systems.
Acta Informatica, vol. 7, nO 1, 35-60.

[~] E. Gelenbe, J.L. Grar~e, P. Mussard (1977) : Performance limits of the ~1
protocol; modelling and measurement. Submitted to Computer Networks and
IRIA-LABORIA Research Report 230.



524

[5 ]

[ 6]
[7 J

L. BOGUSLAVSKII and E. GELENBE

E. Gelenbe, J. Labetoulle, G. Pujolle (1978) : Perfo~ance evaluation of the
protocol HDLC, International Conference on Computer Network Protocols, Liege,
to appear in Computer Networks.
International Organlzatlon for Standardization Document ISOIDIS 4335.
S. Lavenberg : Throughput and maximum arrival rate of queueing systems",
IBM Res. Rept. 1976, to appear in RAIRO-Informatigue.

Figure 1
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Abstract: Acceptance of X.25 international standards
requires a virtual call procedure, which imposes some
restriction on the usage of communication resources,
namely a fixed route for the whole duration of the
session. In an example of network simulation, data­
gram and virtual call methods are being compared,
with the result that the datagram shows a better
performance with respect to delivery time. The
difference between both methods increases with load,
number of packets per message and the size of the
network.

One and probably the most significant breakthrough in computer communications
has been achieved, as it is well known, due to the application of the so-called
store-and-forward technique. This technique relies explicitly on the possibility
of treating the pieces of a message as separate entities, which could be delivered
in arbitrary order and within different time intervals. This allows a more effec­
tive usage of communication resources. In particular, increased efficiency is
achieved in the following three ways:

(a) By queueing the packets at every channel through the way,
instead of only having one queue at the source by circuit
connection.

(b) By using the capacity of a trunk as a single high speed
channel versus multiplexing it to a number of slow speed
channels.

(c) By using various routes for every piece of information,
depending on the actual loading of the system, and by
assembling the whole message at the destination only.

525



526 A. BUTRIMENKO and U. SICHRA

The recently accepted international standard X.25 [1], based on the store­
and-forward technique, requires a specific procedure, the virtual call, which pro­
vides a logical channel between source and destination for the duration of the
whole session.

If the first two points (a) and (b) are applicable for any type of store­
and-forwarding technique, i.e., either pure datagram service or virtual call,
then the third point cannot be used for the virtual call, because the route is
fixed for the whole duration of the session and will not be adapted to the chang­
ing loading situation of the network.

Table 1 represents some differences between datagram and virtual call tech­
niques with respect to the use of communication resources. There are obviously
some other significant differences that lead to the acceptance of the X.25 stan­
dard in general, but these problems are not considered here. We concentrate only
on the usage of communication resources. We wish to estimate the price to be paid
for a permanent route by virtual call, in terms of a possible decline in the ef­
ficient usage of communication resources.

From now on, however, we consider all packets both in the virtual call and the
datagram to be equal in length, and concentrate only on differences which are
caused by a fixed route for the whole session Lor the virtual call procedure and
by free routing for every packet in the datagram procedure. A comparison of two
methods has been done by simulation.

Let us describe in more detail some characteristics of the load generation
process and measurements. The main performance characteristic of such a network
is not the delivery of a single packet or packets, but the duration of the whole
session when the complete generated message is delivered. The message generator
is a Poisson process and the distribution of sources and destinations is even, ac­
cording to a given matrix. As soon as a message is generated, the first packet
of the message appears; the countdown of the message delivery time starts from
this point.

Packets in one message are generated with exponentially distributed inter­
arrival times and every message has the same standard number of packets to be
generated. Therefore the actual load of the whole system depends on the number
of simultaneously existing message generators in the system or on the number of
sessions established by the virtual call simulation. Each one of these processes
is finished after the required number of packets has arrived at its destination.
However, it should be noted that the message delivery time is not equivalent to
the duration of the corresponding generation process, because the packets require
some transmission time after they have been generated. We must stress that the
moment of generation of the next packet is counted from the creation moment of
the previous packet. Therefore, if the interarrival intervals are shorter than
the length of the packet, the packets of the same message could overlap in the
time*. So the delivery time of the message will be the time period starting with
the generation of the first packet of the message until ~ll packets of the same
message are delivered to their destination. For the datagram technique, a special
ordering at the destination will be required, but this is not considered here.
The routing technique used is based on a so-called "relief method" described
earlier [2 and 3].

We'do not intend to give special attention at this stage to routing prob­
lems, but only wish to emphasize that the same mechanism is used both to route
datagrams and to define the route of a virtual call. As this method does not

*This possible source of delay, due to congestion at the origin node, will be
accounted for later.
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guarantee the complete absence of loops, any packet can start circulating in the
network. To avoid endless loops, it is assumed that every packet has a counter,
which is increased by one with every transit. As soon as this counter achieves
a maximum number, which for this simulation has been set equal to eight, the packet
is removed from the system. It is also assumed that the source becomes informed
about the dropping of a particular packet and will re-generate it again. The time
interval of the generation is the same as for the normal process of creating pack­
ets and is counted from the moment the packet has been dropped. The process of
informing the source at which node the packet was removed has not been simulated.

To establish connections for the virtual call, we could use two different
methods:

(a) The first packet of the message has a special calling
function. Before this packet is delivered to its de­
stination, no other packet of the message will be
generated and put into the network. If the first
packet is dropped, the message will merely require
another attempt to establish a virtual call connec­
tion. In the simulation model, only one reason for
dropping packets was considered, namely too high a
number of transits. This means that as soon as the
virtual call is established, no packets of that mes­
sage will be dropped. Therefore, in this case, the
loss of the first packet leads only to a delay in
establishing a connection and in such a way as to
increase the whole delivery time of a message.

(b) The second interpretation is that the generation pro­
cess is not influenced by the establishing or non­
establishing of a call. All subsequent packets just
follow the routes of the first packet. If the first
packet is dropped the generation process will be
stopped and the call is considered to be lost. The
rest of the packets will also be dropped - at the
same point as the first one. All later results of
simulating a virtual call are based on this inter­
pretation of the virtual call setup.

Two networks (Figures 1 and 2) of different size have been simulated. Actual
measurements have been made for the delivery of each packet and message. Depend­
ing on the minimum distance between source and destination, all messages (and
packets) have been divided into classes. For example, in Figure 2, a message to
be delivered from 1 to 4 belongs to the first class and a message to be delivered
from 2 to 12 belongs to the second class, independent of the actual number of t
transits that it will pass in the network.

The first set of simulation runs has been carried out in order to compare the
delivery time of both methods with respect to the length of the messages and the
number of packets per message. Table 2 shows that not only the delivery time for
the virtual call is higher than the one for datagrams, but also that the delivery
time for each packet of a virtual call is greater and increases with the length of
the message. The load of the network was chosen in such a way that it remains con­
stant, independent of the number of packets per call. Thus, Table 2 represents
the ·results achieved by constant load, equal in this case to 6.6 packets per time
unit in the network.

The simulation was carried out until the main measured values lay within a
0,2 interval with a probability of 95%. This accuracy has been kept for all other
runs.
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Similar tables have been made for a set of loads, varying between 4.3 and 10
packets per time unit with an approximate step size of one packet per time unit.

The most general results of the simulations are represented by two figures.
Figure 3 shows the dependence of the delivery time for both datagram and virtual
calIon the load for three particular lengths of messages, 3, 5, and 9 packets
each. It is evident that not only is the datagram faster but also that the dif­
ference of delay between the datagram and virtual call increases with the load.

For all simulated loadings and lengths of messages it is clear that the de­
livery time for a virtual call increases with its length, and the difference of
delay between these two methods also increases with the length of the message.

Figure 4 depicts the delivery time measured in time units depending on the
message length, for both virtual call and datagram. The results of simulations
with two different loadings are shown, and one can see that the relationship is
more or less linear, although the rate of increase changes with loading as well
as with virtual call handling as compared to datagram handling.

These two figures demonstrate clearly that a datagram performs better in terms
of the most important characteristics - delivery time, and even more, this is even
true for all lengths and loadings.

Let us make a more detailed analysis of the simulation results. The delivery
time of every message consists of three components:

(a) Time length of the message, i.e., number of packets and
time intervals between their creation points;

(b) Distance to be passed in the network;

(c) Delay caused by queueing every packet, routing it,
eventually dropping a packet, and rejecting it, plus
regeneration of some packets when the network is loaded.

If we subtract from the delivery time of a message the time required to trans­
mit it to the destination under ideal - unloaded n~twork - conditions, we will get
the delay caused by actions in point (c).

The ideal delivery time for virtual calls is characterized solely by the mini­
mum distance between source and destination, and its length. The estimation of the
delivery time is

del
vc

pack
vc

+ cl - 1

because in the chosen vc creation process the packets overlap. packvc is the num­
ber of packets per message, and cl is the class (distance) to which the call be­
longs.

The overall ideal delivery time then depends on the ratio of possible connec­
tions and on the ratio of messages generation for the different classes.

In the datagram delivery system the ideal delay is dependent on the topology.
A "rough" calculation of the ideal delivery time, biased towards the least number
of outgoing channels of the net in Figure 1, has been taken to draw the simulation
results of Figure 5. The number of packets per message is plotted on the x-axis,
the difference between actual and ideal delivery time is shown on the y-axis.
Each pair of curves is for a specific class (lor 2) and a fixed loading.

In class 1, virtual calls suffer less delay caused by the actions of point (c),
i.e., routing, queueing, etc. than datagrams, but the delivery time is'still better
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for datagrams than for virtual calls. In class 2, the difference of real and
ideal delay is greater in virtual calls than in datagrams and increases when the
net is more loaded.

As pointed out previously, the routing of the first packet of a virtual call
and of all packets of a datagram is performed in the same way. Each node exchanges
information with its neighbouring nodes about the situation of its queues. There­
fore all nodes in the net have complete, though delayed information about the over­
all situation. When messages are treated as virtual calls, less information is
exchanged between nodes than in the datagram treatment (see Table 3). This means
that greater overload is created in the datagram connections. In our simulation,
this overload has no influence on the delivery time as the "update packets ll are
assumed to be transmitted along channels different from those of messages.

A short analysis of some simulation runs for the net in Figure 2 shows re­
suI ts similar to those for the small net (see Figure 1).

In Figure 6 one can see that the delivery time of messages increases with
the load and is higher in virtual calls than in datagrams. As the number of links
to be passed increases, the delivery time tS also raised and in class 4 (minimal
distance is 4 links) the difference becomes rather large.

In a few simple examples it has been shown that a datagram is better than a
virtual call and the differences increase with the load, length of message, and
size of tIle network. This exercise was not done to prove that the virtual call
is an inefficient way of communication, but rather to draw attention to the price
to be paid for the advantages offered by the virtual call method.

As mentioned earlier the Poisson creation process does not ensure that the
interarrival times of packets are longer than the packet length; thus packets of
the same message could overlap in time at the creation node. Therefore a set of
simulation runs has been carried out with a slightly changed timing of packet
creation.

The argument that virtual calls behaviour is worse than that of datagrams in
terms o[ delivery time no longer holds, because of overlapping packets. As can
be seen from Figure 7 the datagram method is better than the virtual call method
in terms of delivery time for different loadings of the network, and in terms of
looking at different classes of packets. To actually compare the performance of
the network the generation time should be deducted from the delivery time (genera­
tion time meaning average creation rate of messages + 1; in the nonoverlapping case
the 11idle time ll is also included).

Figure 8 shows the behaviour of datagram and virtual call methods taking into
account both generation procedures, the nonoverlapping and the overlapping. On
the x-axis the packets created per time unit are represented. The y-axis repre­
sents tl1e actual delay o[ a message in relation to its delivery time. The as­
sumption underlying these figures is the simple idea that a message cannot arrive
morc quickly than the time needed to generate it. In this case the distance is
not accounted for, but it still provides an upper limit for the maximal delay
caused by qllelleing and routing in each simulation example.
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TABLE I

COMPARISON OF THE DATAGRAM AND VIRTUAL CALL IN RESPECT TO THE

USAGE OF COMMUNICATION RESOURCES

DATAGRAM VIRTUAL CALL

Setting up of delayed until the session is
the se S8 ion

none established risk of misusedor
resources if the first packet
is lost or looped.

Channel usage queueing, high queueing, high speed channels,
due to speed trunks, routing only for setting of a

routing for call
every packet

Address full address in full address only in the first
each packet - packet - shorter packets
longer packets
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FAILSAFE DISTRIBUTED LOOP - FREE ROUTING
IN COMMUNICATION NETWORKS

Adrian Segall
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Technion - Israel Institute of Technology
Haifa, Israel

We present several algorithms for routing of information in
communication networks. All protocols are characterized by
distributed computation, loop-freedom in the routing tables
for each destination in the network, adaptability to changes
in flow requirements and immunity in face of arbitrary number,
location and timing of topological changes. Two algorithms
converge to the minimum delay routing in message and 1ine­
switched networks respectively. A third, somewhat simpler
algorithm, maintains at any given time only one route between
each pair of nodes in the network and converges to the
shortest paths between each source and each destination in
terms of arbitrary weights on the links.

INTRODUCTION

Reliability and the ability to recover from topological changes are properties of
major importance in the design of communication networks. In today's networks it
happens occasionally because of technical malfunctions or, in military networks
because of war actions, that nodes and links fail and then possibly recover; also
new nodes or links become operational and have to be smoothly added to an already
operating network. The reliability of a communication network depends on its
ability to cope with these changes, meaning that no breakdown of large portions of
it will be caused by such changes and that in finite - and hopefully short - time
after their occurrence, the remaining portions of the network will be able to
operate normally.

The present paper gives an overview of several algorithms for routing in communi­
cation networks. In order to fix ideas, we shall call them ALGORITHM A, Band C,
respectively. All algorithms have the following features and properties:

a) Distirbuted computation.
b) Loop-freedom for each destination at all times.
c) Adaptability to load changes.
d) Recoverabi1ity from arbitrary number, timing and location of

topological changes.

In addition, each algorithm brings the network in steady-state to some type of
optimal condition:

e) If topological changes stop after a certain instant for long enough time and
during this time the requirements are stationary, ALGORITHMS A and B bring the
network to minimal average delay routing for message and (virtual) 1ine­
switched disciplines, respectively. If the links are assigned arbitrary

This work was supported by the Advanced Research Projects Agency of the U.S.
Department of Defense, under Contract N00014-75-C-1183.

541



542 A. SEGALL

weights that are time-invariant for long enough time, and during this time
topological changes do not occur, then the third algorithm (ALGORITHM C) pro­
vides in steady-state the shortest route between all node pairs in the network.

In the following sections we shall describe the algorithms and discuss in some de­
tail their features. Algorithms A and B for networks with no topological changes
were introduced in 111,131, respectively; in the same references, proofs of their
properties b), c), e) are given. The extension of these algorithms to take into
account topological changes and complete proofs of recoverability appear in 161,151.
Proofs of the properties of Algorithm C are given in 14[,121. In Sections 2 and 3
we shall describe the algorithms for networks without topological changes and in
Section 4 we introduce their extension to cover the possibility of such changes.

UPDATING AND REROUTING

Loop-freedom of routing is a desirable property in communication networks, because
it saves network resources and message delays. As said in the Introduction, our
algorithms indeed maintain loop-free routing tables at all times for each destina­
tion, but in our case, this property has an additional important purpose. Loop­
freedom defines a per-destination partial ordering of the nodes in the network,
which is used by the protocols for the propagation of updating information and of
rerouting commands. To understand this propagation, it will be useful to look at
a specific network example and at several possible partial orderings for-a given
destination (Figs. la,b). Also, since the loop-freedom property and the corre­
sponding partial ordering hold on a per-destination basis, and since the algorithms
work independently from destination to destination, it will be useful to look from
now on at the algorithm for a given destination, which we denote by SINK. Observe
that in Fig. la each node has one and only one path to the destination, and there­
fore the partial ordering defines a tree, whereas in Fig. lb nodes may have sever­
al paths to the SINK. This is the main feature distinguishing ALGORITHM C from
ALGORITHMS A and B, and will be discussed in more detail later. We may mention
here that ALGORITHM C, which maintains only one route to the destination, does not
provide the policy for actual splitting of the traffic. For example, in a line­
switched network, this route can be used tb establish new connections, while the
already established connections are not rerouted. On the other hand, ALGORITHMS A
and B provide policies for actual routing of information, so that minimum average
delay is reached in steady state. As such the latter give better performance, but
ALGORITHM C is much simpler.

8

(a)

6

8

7

1-~--~6

( b)

~~ - Examples of networks and of routing partial orderings.
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As a matter of definition, if node k is on a path from node to the SINK, we
say that k is downstream from i and that node i is upstream from node k.
Since the routing is loop-free, no node can be both upstream and downstream from
any other node (for a given destination). Also, if node k is the next node
after i on a path from i to the SINK, we say that k is a son of i and
is a father of k. For example, in Fig. 1b nodes 5,6 are sons or-7, and nodes
7,8 are fathers of 5.

As said before, the partial ordering defined by the loop-free routing sustains the
propagation of updating control messages and of the timing of rerouting. An up­
date cycle is started by the SINK by sending control messages to all its neigh­
bors. A cycle consists of, first, propagation of update control messages over the
partial ordering from the SINK upstream and second, propagation of rerouting com­
mands downstream towards the SINK. The interesting fact here is that this pro­
cedure allows the SINK to be informed of the termination of a cycle, so that no
new cycle will be started before the previous one has been completed. In addition,
if the link delays for transmitting control messages are finite and no topological
chan~es occur, then each cycle will be completed in finite time (for proofs, see
131,1 2 1) .

Next, we describe the node algorithms allowing the two waves of a cycle to propa­
gate. As said before, a cycle is started by the SINK when it sends control mes­
sages to all its neighbors and during a cycle exactly one control message is sent
over each link in each direction (for each destination).

A node can be in one of two states: normally it is in state Sl, whenever it re­
ceives control messages from all its sons, it goes to state S2, and by the time it
receives control messages from all neighbors the node returns to state Sl. In ad­
dition to the list of its sons, each node i also maintains an estimated distance
di to the destination where this distance is measured in terms of some link
weights that are possibly time-varying, but always strictly positive. In the
transition from state Sl to S2, a node, i say, takes the following actions:
decide upon the new di using the control messages corresponding to the current
cycle received up to now and send a control message of format (SINK, di) to all
neighbors except the sons. The exact policy for calculating the new di is dif­
ferent from algorithm to algorithm and is not very important at this stage. One
can see that the transition from Sl to S2 is exactly the updating part of a cycle
and propagates from the SINK upstream. Next consider the second part of a cycle,
namely the propagation downstream from the network towards the SINK. A node i
will perform the transition from S2 back to Sl only after receiving control mes­
sages from all its neighbors. During this transition, node i takes the actions
of first sending a control message (of format (SINK,di)) to all its sons and then
rerouting, while possibly choosing new sons and cancelling old ones. Again, the
exact strategy of rerouting is not important at this stage, except that one needs
to be careful not to close loops when choosing new sons. Strategies to insure
this appear in Section 3.

Returning to the propagation of signals in the network, one can easily see that
with the above algorithm no node can perform the transition from S2 to Sl before
all its fathers do. Therefore, the first to perform this transition will be nodes
without fathers, and the return to Sl will propagate downstream. The last node
to return to Sl will be the SINK, and this provides signal to the SINK that the
cycle has been completed, namely all nodes have returned to Sl. The SINK can
start a new cycle at any time afterwards.

LOOP-FREEDOM

Observe that nodes can form loops only when choosing a new son. It is at this
stage that care must be used to prevent such a loop from forming.

Consider first ALGORITHM C, where only one route is maintained from each node to
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the destination. One of the main theorems regarding this algorithm (see !21)
states:

Theorem 1

At all times the pattern defined by the son - father relationship is a tree rooted
at SINK with the following properties:

a) if one defines S2 > Sl, then the states are nondecreasing when moving down­
stream.

b) for all nodes in Sl, the estimated distance di to the SINK, is strictly in­
creasing.

The full proof of the Theorem appears in 121, but roughly speaking, it proceeds by
induction as follows: Suppose the properties hold up to time t-. Since a node,
i say, can change his son only during the transition from S2 to Sl, it is easy to
see that it will not close a loop if we insure that the newly chosen son, k say,
has distance dk strictly less than di . This is because all nodes upstream from
i are already in Sl (from part a) of the Theorem) and they all have distances
strictly larger than di , which implies that k cannot be upstream from i. The
policy for calculating di and choosing the new son assures that dk < di . When­
ever node i received a control message (SINK,d) from neighbor i, it calculates
d+di,C where dii is the weight of the link (i,i) and stores this in memory
as Di(i). The estimated distance di is calculated at the time of transition
from Sl to S2 as the minimum of all Di(i) over all neighbors l from which
has already received control messages during the current cycle. On the other hand,
the new son k is chosen by i at the time of transition from S2 to Sl as the
neighbor with minimum Di(l), where the minimum is taken over ~ neighbors. With
this policy, it is clear that dk < di .

The procedure to prevent loops in ALGORITHMS A and B is somewhat more complicated.
This is because these algorithms maintain more than one route to the destination,
and more than that, because reaching optimum delay requires a certain step-size
for the amount of rerouting allowed during each cycle. As such, it is possible in
these algorithms that a node, i say, will have a son, k say, with estimated
distance dk > di . In this situation loops are prevented as follows: if a node
i has a son k with dk > di and node i is not sure that it can cancel all
traffic through k during the present cycle, then node i declares itself
blocked for the present cycle at the time of transition from Sl to S2. This block­
ing information is sent as an extra-flag together with all control messages of the
present cycle. Any node heJring that a son of his is blocked, declares itself
blocked too and sends an extra-flag attached to all control messages. In this
way, node i and all nodes upstream from it become blocked for the present cycle.
The protocol then requires that no blocked node can become a new son of any node
during the present cycle. The full proof that blocking prevents loops for
ALGORITHMS A and B appears in 111,131.

TOPOLOGICAL CHANGES

For networks with topological changes it is necessary to use counter numbers m
for the updating-rerouting cycles. It is possible that when topological changes
occur, a previously started cycle cannot be completed, and if the SINK decides to
start a new cycle before completion of the previous one, it will increase the
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cycle number m. If a cycle has been completed, then the SINK may use the same
cycle counter number for the next cycle. Exact procedures to trigger the start of
a new cycle by the SINK even if the previous one has not been completed (because
of a topological change) will be described presently. Nodes will also have
counter numbers ni corresponding to the cycle counter number, and all control
messages will now have the format (SINK,m,d) where - if node i is the sender ­

then m = ni and d = di . The counter number nSINK is exactly the counter
number of the last cycle started by the SINK. Also, a node i receiving a
message (SINK,m,d) from a neighbor k, stores m in a cell N.(k) in addition
to storing d +dik in Di (k). 1

For ALGORITHM C. a failure in the network may happen on a tree-link or on links
that are not on the tree (failures of nodes are considered as failures of all
links adjacent to the node, so that they need no special attention). In either
case, the SINK must be informed (by a distributed protocol to be presently indica­
ted) not to wait for the completion of the present cycle, because this completion
may never occur, and to start a new cycle with a higher counter number. In addi­
tion, if the failure occurs on a tree-link. all nodes upstream of the failure
must be informed that their route to the destination has been disconnected and
therefore not to wait for updating control messages over the tree. For example
in Fig. la, if link (2,3) fails, then nodes 1,5,8 lose their route to the destina­
tion.

We next describe the propagation of failure information upstream and the actions
taken by the nodes receiving such information. A node whose link to its son fails.
enters a state 53 and sends a message (SINK.m.d = 00) to all its remaining neigh­
bors. A node receiving such a message from its son. also enters state 53 and
sends a similar message to all neighbors except its son. In this way, all nodes
upstream from a tree-link failure eventually enter state 53. A node i entering
53 looks at its tables Ni(k) for messages with counter numbers higher than its
own node counter number, and if none are present, waits for such messages to come.
In the former case, it picks the neighbor with smallest Di(k) as the new son, in
the latter, it picks the neighbor from which it first recelves such a message as
the new son. At the time this happens, the node transits to state 52, chooses the
corresponding Di(k) as its new estimated distance di to the SINK, sends control
message (SINK,m,d) to all neighbors except the new son, and from now on proceeds
as usual.

Bringing a link up is done by a similar protocol. If a link between two nodes
and k becomes operational, the two nodes compare their counter numbers via a
local protocol and choose the maximum of those as the number to use for bringing
the link up. Node i actually brings link (i ,k) up whenever it receives a
message with counter number strictly higher than this maximum, either from its
best link or from k. A similar algorithm holds for k.

Finally, we describe the (distributed) protocol for informing the SINK that be­
cause of a topological change. the present cycle might not be completed, so that
the SINK will know to immediately start a new cycle with a higher counter number.
A node. i say. discovering a failure or a link (i ,k) becoming operational
sends a special control message REQ(m) to its son (if i is not in 53), where
m = ni in the case of failure, or m equals max(ni.nk) for links becoming
operational. A node i receiving a message REQ(m) forwards it to its son if i
is not in 53 or destroys it if i is in 53. Clearly, a REQ-message may encounter
another failure or a node in 53, namely with no routing path to the SINK, in which
case it gets destroyed. However. one of the main theorems of 121 states that if a
message REQ(m) is generated, then some message REQ(m) will positively arrive
at the SINK in finite time. The protocol requires that if the SINK receives
REQ(m), then it will immediately start a new cycle with counter number (m+l),
provided such a cycle was not started before (because of a REQ(m) message previ-
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ously received). It is proved in 121 that with this protocol the network will
recover in finite time. in the sen~e that all nodes physically connected to the
SINK will have a routing path to it.

The extension of ALGORITHMS A and B to take into account topological changes is
similar in principle to the one for ALGORITHM C, except that one has to separately
consider situations when a node has only one or more than one son. The full pro­
cedure is described in 151.
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SIZING A EFSSAGE STORE
SUBJECT TO BLOCKING CRITERIA

E. Arthurs and J. S. Kaufman
Bell Telephone Laboratories

A common theme in computer applications is that of a number of
users contending for a shared resource. One example of a
shared resource is storage (primary or secondary), which often
must be shared by a large number of messages having varying
size and residency requirements. In this paper we analyze the
blocking that messages with different storage requirements incur,
in contending for a common message store. Examples are pre­
sented which indicate the effect that various traffic para­
meters have on blocking and which also illustrate trade-offs
inherent in a message storage environment. These results are
applicable to sizing message stores in a variety of applica­
tions such as store and forward networks, call answering
systems and disk storage systems.

INTRODUCTION

In recent years, considerable attention has focused on computing the

blocking that different data streams incur, in contending for a common multiplexed

data channel [1-8]. The basic queuing model studied in these papers (from a data

multiplexing viewpoint) turns out to be appropriate in studying the blocking that

different size messages incur, in contending for a common message store. This

latter problem arises naturally in sizing message stores subject to blocking cri­

teria [9]. Message stores can be found in an increasing number of applications

such as store and forward networks, call answering systems and disk storage system&

In this paper, in addition to our new application of the above mentioned

model, we present new results on both the theoretical and computational aspects of

the queuing model. These results include

i) Replacing the previously assumed exponential service time distributions

[1-8] by general service time distributions.

ii) Eliminating a problem encountered by previous authors in dealing with

a huge state space - which effectively prevented numerical computations

[7,8J. This problem was solved by developing a Buzen type recursion [lC].

All quantities of interest are formulated and efficiently computed in

terms of a recursively computed partition function.

iii) Developing a number of easily computable and quite accurate approxima­

tions, which are appropriate for back-of-the-envelope type calculations.

One of these approximations uses a very effective but relatively little

known "peaked traffic" characterization [11,12].

547
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The paper is organized as follows: in Section 2 we define the model and

briefly discuss previous relevant work. The Markovian state equations and the

known product form solution are briefly reviewed in Section 3 to set notation.

The key to using this solution in problems with a large state space (-10
6

states

are common in message store problems) lies in being able to efficiently compute a

normalizing constant (the partition function). In Sections 4 and 5 we show how to

compute this partition function via a Buzen-like recursion and we obtain explicit

expressions for various quantities of interest. Several approximations to the

message blocking, which only rely on readily available Erlang B tables, are pre­

sented in Section 6. In Section 7 we study a variety of examples which illustrate

the sensitivity of message blocking to various parameters. The paper concludes in

Section 8 with a discussion of several useful extension;; of the model.

THE MODEL

Figure 1 shows the problem under consideration in general terms. The

message store has a finite capacity of c units, messages arrive at a mean rate A

and a message carri~s with it two requirements:

a) a spatial requirement - b units of storage

b) a temporal requirement - storage for T units of time

The specific assumptions we make are

i) the message arrival process is a stationary Poisson process with

mean rate A.

ii) the message size b is an arbitrary discrete random variable

(P{b=bi ) = qi ' i = l, ... ,k).

iii) a message with size b
i

has a residency (storage) time T which is
-1

drawn from an arbitrary distribution with mean ~i

iv) the system is in equilibrium.

v) a message requiring b
i

units of storage is blocked if and only if

fewer than b
i

units of storage is available.

vi) blocked messages depart without further effecting the system.

Although assumption v) implies complete sharing of storage by all messages, we

will see that considerably greater generality is possible (e.g., portions of

storage may be dedicated to specific message sizes, etc.). Also, although assump­

tions i) and ii) imply that messages of size b
i

arrive according to a Poisson

process with mean rate A
1

= Aqi' the theory actually allows for finite source

and/or Poisson message arrival processes.

The salient difference between the assumptions made earlier [1-8], and

those made here is the generality of the storage time assumption. On the other

hand, but in consonance with the classical Erlang B loss model [12,13], the

detailed structure of the storage time distribution doesn't effect the equilibrium

blocking phenomena - only the mean storage time [1J~1] entc>r~, the picture. Thus,
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the earlier results [1-8] are considerably more general than was realized. These

comments apply only to the basic loss model studied in Reference 1-8. Several of

these papers generalize the basic model in other directions, loss-delay [1], pre­

emptive [3] and limited availability configurations [4,6]. These generalizations

were studied, for the most part, via analytic approximation and simulation tech­

niques - and the generalization to nonexponential storage time distributions does

not hold for any of these generalizations.

To set notation, but also to make this paper self-contained, we briefly

review the Markovian balance equations and the product form state distribution.

This has been studied with varying degrees of completeness in References 1-8.

THE STATE DISTRIBUTION

If each of the c units of storage is thought of as a "server", a message

of size b will require exactly b servers. Unlike blocking systems with batched

Poisson arrivals [14J however, all b servers must be relinquished simultaneously.

To capture this effect it is appropriate to define the system state

~ by ~ = (nl ,.·. ,nk ) where ni = number of type i messages in storage
k

the storage occupied when the system is in state ~ is simply nob = I
i=l

this section we assume that the distribution of storage time F
i
(.) for

messages is exponential:

F. (xl
1

1 -
-~.xe 1 x > 0 (1)

and study the resulting Markovian population process. In Appendix I we briefly

sketch the basic results which hold for general storage time distributions. The

proofs have been omitted due to space limitations but are the subject of a forth­

coming paper [15].

We begin with the case of most interest to us - namely, that where the

total message store of capacity c is completely shared. Assume that the message

sizes are ordered:

and define the disjoint sets:

R.
J

1,. " ,k-l
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Note that for all states nER
j

, l, ... ,k the j message sizes bk_(j_l)'" .,bk
are blocked. And clearly, the set of all states ~ = {no 0 ~ ~.~ ~ c} is par­

titioned by the sets Ro '" .,~.

The global Markovian balance eQuations in ~ can be written down by

inspection. Thus, for nE~ we have

where

k

+ I
i=l

Ii. (n)
1 -

(TIl'··· ,TI i _1 ,ni+l,n i +1 ,··· ,nk)

r1 if n -: E ~i -1

lO otherwise

I: n. > 0
1

n. 0
1

and

The global balance eQuation (2) has the product form solution [4,6,7,8]:

p(n)
k
n

i=l

n.
1

a.
1

n. !
1

(3)

where G-
1

is a normalization constant defined by

n.
k

1
a.

G(c ,k) L n 1

n. !nEil i=l 1

(4)
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~nd a
i

= Ai~i is the offered load of type i messages. Of course, the product form

solution (3) is a conseQuence of the fact that local balance [16] prevails. That

is, for i = l, ... ,k we have:

all ndl

If we let P
b

. denote the probability that a message of size i is blocked*, then
1

) : R. )

lj=k-d-l)

P{n n·b>c-b.}
1

(6)

where P{A} is the probability of event Ac~ with respect to the distribution defined

by (3).

EQuation 3 is a generalization of the classical Erlang B distribution

[12]. The following interpretation of our model may make this relationship

clearer: Consider k infinite trunk groups, with group i trunks having mean

holding time u~l A fraction Q
i

of the ~alls are offered to group i only, and a

type i call is accepted if and only if I n.b. < c - b. where n. is the number
i=l 1 1 - 1 1

of calls "up" on group i. If b
i

is regarded as the cost of keeping a type i call

up, then a call is blocked if and only if putting it up would exceed the available

budget c.

Figure 2 is a sketch of the two dimensional state space (k=2) for the

case of complete sharing of storage. As mentioned earlier, the model extends to

partial sharing as well. That is, the product form solution holds if the set of

allowable states ~ is defined by:

and

o < n.b. < c. + C
- 1 1 - 1 0

i 1, ... ,k

k

iII nib i < Co + Cl + ... + Ck

Thus, type i messages have dedicated storage of capacity c
i

' and all messages con­

tend for (share) a common portion of storage co. It is clear that the normaliza­

tion constant G in eQuation (3) depends on ~.

We conclude this section by pointing out that the product form solution

holds for a large class of storage policies which includes the complete and partial

-*---
At an arbitrary point in time or at a type i arrival epoch - these are identical
for Poisson arrival processes [12].
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sharing policies already discussed as very special (but important) cases. Thus

consider a storage policy to be any set of states·n satisfying

i) ni > 0 i = l, ... ,k

ii) if n £ nand n
i

> 0 then ~ £ n for i = 1, ... ,k (7)

Such sets were termed "coordinate convex" by Aein in [7,8] who apparently first

recognized that the product form solution holds for such sets. The interpretation

of such a storage policy is that a message of size bi is accepted for storage when

the system is in state ~ if and only if n: £ n.
1

Inspection of the global balance equation (2) will reveal that it applies,

as is, to any set n satisfying i) and ii) above. Hence, the proof that the pro­

duct form solution equation (3) applies to any coordinate convex set is immediate.

THE COMPUTATIONAL ALGORITHM

Direct use of the product form distribution eq. (3) is difficult in all

but the most trivial message storage problems, because of problems associated

with computing G(c,k) directly. These problems stem from the cardinality of the

state space, n, which for typical message storage problems is very large.

In this section we show how G(c,k) can be computed easily and efficient~

via a recursive algorithm. We limit ourselves to the case of complete sharing of

storage, but the results are easily applied to the partial sharing case described

earlier*. It is appropriate to comment here that the difficulties associated with

computing G(c,k) directly were recognized in [7,8] and the need for a Buzen like

[10] recursive algorithm was discussed, but its synthesis proved elusive.

In the following development we use [x] in a standard way:

[x] = largest integer ~ x. Our basic result is

G(j ,i)

lemma 1: G(c,k) is computed recursively by using

[jib.] a~
I 1

£~ G{j-£b.,i-l)
£=0' 1

where

i 2, ,k

0,1, . (8)

G(j ,1) 0,1, ...

Proof: The idea is similar to that used by Buzen [10]. Define

i
o < I

m=l
n b < j)mm-

-*---
Each message type has dedicated storage, and all message types share a common
"overfloll" store.
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for

G(j,i)

n
i am

1I~
m=l nm!

(9)

i 1,2, ... ,k and 0,1, ... ,c

Note that n
m

varies over the values O,l, ... ,[j/b
m

] and focus attention on n
i

.

Thus we can rewrite G(j,i) as:

G(j,i)

n. = £
1

£
n

[j lb.] i-I m
a. a

p 1 I IT m

Jl=O Jl!
nES (j-Jlb

i
, i-I) m=l

n
mI

[j lb.] a~
11

Jl~ GU-Jlb., i-I)
Jl=O' 1

which completes the proof.

Note that one can simply compute the entries of a c X k matrix, sequen­

tially within each column, where G(j,i) is the (j,i)th entry. The normalization

constant is the last computed entry. Fortunately, all quantities of interest can

be computed from this matrix without resort to the underlying distribution. In

particular we have

lemma 2: The blocking that a message of size

Pb .' is given by*
1

experiences, denoted by

-*--
Eq. (10) shows that b. > b implies Pb. > Pb .. ' since G(x,k) is monotone increas-
ing in x. 1 j 1
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Proof:

P
b.

1

G(c-bi,k)

1 - G(c,k) i 1, ... ,k (10)

Pb. P{~ ~.~ > c-bi }
1

1 - P{~ O<n·b<c-b.}
- - - - 1

G(c-b
i

, k)

1 - G(c,k)

[

n Ik am
TT...E!.-

k) m=l nm!,

Thus we find that the kth column of the matrix referred to above contains all the

entries needed to compute the message blocking probabilities. The partition

function G (.,.) also contains informacion about. the discribution of messages

in storage. As an example, we have:

Lemma 3:

P(n.=x)
1

aX G(c-xb., k-l)
1 1

~ G(c,k) x = 0, ... , [ c Ib i ] (11)

where the partition function in the numerator G(c-xb
i

,

respect cO the k - 1 offered loads {a j} j;<i . The proof

to that of lemma 2 and is omitted.

k-l) is computed wich

of lemma 3 is similar

We close chis section by noting that the mean message store utilization

L 1. E{n.b}C --

can be obtained directly from the blocking probabil"ties. Thus, using Littles

Law [12], we have

E(n. )
1
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L
1 (12)

Note that if )1i "\1, i 1, ... , k and if Pb. < < 1, i
1

l, ... ,k then

where

and

L
ab
c

k

b = I qi \
i=l

is the average message size.

5. Scaling the Recursion

For sufficiently small c (c < 10
2

), the recursion defined by Eq. (8)

presents no numerical difficulties. Typical values of c, however, may easily

exceed 106 in message storage problems. For such values of c the recursion

defined by Equation (8) is useless. Thus, for example, the corresponding values
a~

of a
i

are such that the weights ;! in the recursion may easily overflow the

computer's word size. Fortunately this problem is easily addressed by approp­

riately scaling the recursion. Thus, define G( .,.) by:

and

0, 1, ... , C

G( j,i) e
-a.

1
i 2, ... k (14)
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Comparing Equations 8 and 14, it is easy to see that

-(a + ... +a.)
e 1 'G(j,i)

and therefore it is obvious (see Eq. 10) that

P
b.

1

1 -
G(c-b. ,k)

1

G(c,k)
i 1, ... ,k (16 )

The weight functions in this scaled recursion, denoted by P
a

. (.J, i = 1, ... ,k
1

P (~)
a.

1

.~
-a. a.

e l--l:..­
~!

is of course the Poisson distribution* yith mean and variance equal to a
i

.

Therefore, for relatively small kO' essentially all the "mass" is distributed in

the interval [max( O,a
i
-kO~)' a

i
+ kofiiJ. Hence the range indicated in the

recursion is dramatically reduced, weight "overflow" is prevented and the error

induced by this truncation is easily bounded. This scaled recursion is easily

programmed and has been used to obtain the numerical results presented below

in Sect ion 'T.

6. Blocking Probability Approximations

The blocking probabilities P
b
.' i = 1, ... ,k can be accurately and

efficiently computed using the recursiv~ algorithm described in the last section.

For quick, "back-of-the-envelope" type calculations however, the approximations

presented in this section have proved to be quite useful. Both approximations

approximate the average blocking probability P
b

, defined by

* Note that, as a consequence, G(j,i)c[O,l] 0, . .. ,c

1, ... ,k
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and simply reQuire access to Erlang B blocking tables which are readily

available* [12]. Approximation II is typically the better of the two approxima­

tions (as examples in Section 7 will illustrate) because it incorporates message

size variance as well as mean information.

Approximation I: If all message types have the same mean storage time

(Wi=~' i=l, ... ,k), consider a new model in which all

message arrivals have the same size, equal to the mean

message size b:

k

b = L Qib i
i=l

(18)

in our original model. The average blocking seen by message arrivals in the new

model is clearly

B(N ,a), N = clb, a = A/~
eq eQ

where B(Neq,a) denotes the Erlang B blocking for a group of NeQ**servers and

offered load a [12]. The above idea is easily generalized to arbitrary mean

storage times. Thus let r
i

= Wi/~l i = l, ... ,k in what follows. We obtain:

Approx. I: ~ B(N
eq

, a ) (19)
eq

where

N clb
eQ

k
b L qibi

i=l

* The Erlang B formula is also easily implemented on any programmable calculator.

**N need not be integer. When Erlang B tables are used, interpolation is
r§auired [17].
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/
a

eq

Approximation II: This approximation characterizes the message arrival process

in terms of its mean and peakedness [12J parameters, and

employs Hayward's approximation [11] to estimate the average

blocking probability.

Consider offering our message arrival process (k independent Poisson

message arrival processes ~ith parameters Ai = qi A, ~i = ri~l) to an infinite

message store. Let m and z denote the mean and variance-to-mean ratio

(peakedness [12J) respectively of the number of units of storage occupied in

this infinite store. It is easy to sho~ that

m
k

a" I (q/r)b i
i=l

(20)

k
(q. Jr. )b

2I
i=l

1 l l

Z k

I (qi/ri )b i
i=l

Using Hayward's approximation [llJ, ~e obtain

Approx. II: P
b

B(N
eq

, a )
eq

N c/ z
eq

a m/z
eq

(21)

(22)
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7. Illuscrative Examples

Each example presenced in this section represents a class of examples

since an example with paramecers (b
i

, b 2 ), c is identical to the class of

examples (ib
i

, ib
2

), ic i = 1,2, ... (the state space is invariant to changes in

scale) .

In Figures 3-7 we view the message blocking probabilicy as a function

of the size of the message store wich the mean store occupancy held conscant.

In Figures 3 and 4 the mean message sizes are identical, but in Figure 4 the

variance of the message size distribution has increased with a resulcing in­

creased spread in the message blocking probabilities. In Figure 5, the two

message sizes are identical to those in Figure 4, but the message size dis­

tribution has been chosen to maximize the coefficient of variation. The mean

storage times of the two message types in Figures 3-5 are identical.

In Figures 6 and 7 we hold all parameters - excepc for the mean

*storage times - identical to those in Figure 4. In Figure 6 the smaller

message has a mean scorage time twice that of the larger message and in

Figure 7 this is reversed.

Among the several features evident in Figures 3-7 we emphasize:

i) message blocking decreases approximately exponentially with increasing

message storage size.

Hence chis= b2/bl then Fb .
1

approximation

ii) the mean blocking F
b

is approximated very well by approximation II.

iii) the ratio F
b

IFb is approximately eQual cO b 2 /bl .
2 1

We note in passing that if F
b

IFb
last observation suggests that th~

1, ... ,k

(where P
b

is given by expression 22) may often be useful.

In Figure 8 we hold the storage size and mean store utilizacion

constant and vary che fraction of size b
2

messages (Q2) from 0 to 1. The solid

and dashed line curves correspond to c = 160 and c = 161 respectively. At first

glance, one might expecc che difference in blocking levels for the two store

sizes cO be uniformly small. Although this is indeed the case for size b
2

* For each c, th~ ratio A/~l is idencical in Figures 4, 6 and 7. Obviously, che

offered loads a
l

= A/rl~l and a 2 = A/r2~1 differ and conseQuently so does the

store utilizacion.



560 E. ARTHURS and J.S. KAUFMAN

messages, note the dramacic difference in blocking for the smaller size b
l

messages. This difference is due to the fact that for c = 161, size b2 messages

always leave at least one unit of storage available to size bl messages.

8. Concluding Remarks

The model discussed in this paper has been studied recently from two

new and interesting points of view. In [18], the following optimization question

is raised: of all coordinate convex storage policies, which policY is optimal

in terms of a given cost criterion (for example, maximizing throughpuc)?

Interesting results are proved for the 2 and 3 dimensional (k=2,3) models.

In [19J, the traffic overflowing the message store is studied in a manner

parallel to the classical Kosten [12J analysis. Results obtained generalize

the Kosten results and may find use in engineering "overflow" message stores.
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Appendix I

Basic Results Obtained for General Storage

Time Distributions

Let I
k

be the set of k dimensional vectors with nonnegative integer

components, and let ~ be any coordinate convex subset of I k . We denote the

state of the message store at time t by ~(t) and assume

i) same as page 3

ii) same

iii) same

iv) ~JO) E ~

v) a message arriving at time t and

blocked if and only if ~(t)

requiring b. units of storage is
+ 1

nand "-i ¢ R.

vi) same as page 3

Let ai(t) denote the number of storage requests of type i arriving

in (O,t] and 8i (t) the number of blocked requests of type i in (O,t]. Our

basic results are:

Theorem 1: lim p(~(t)

t-+«>
exists with p(,,-) > 0 and

£) = p(,,-)

I p(,,-)
nER

1,

n E ~

where
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n.
1

n a.
G(il) y TT 1

ll:"TnEil i=l 1

and a i = Ai/~i is the offered load of type i messages.

Theorem 2: The probability of blocking of type messages Pb .' defined by
1

13. (t)
. 1

P
b

= 11m C1ltT l, ... ,k
i t-+oo i

exists and is constant with probability one. It's almost certain value is

Pb . I P(£)nEV.
1 - 1

where Vi

The proofs are omitted due to space limitations but will appear in a forth­

coming paper [15].
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