Issue 21, 2022

Switchable inhibitory behavior of divalent magnesium ion in DNA hybridization-based gene quantification

Abstract

Contrary to the understanding that divalent cations only result in under-estimation of gene quantification via DNA hybridization-based assays, we have discovered that Mg2+ could cause either under or over-estimation at different concentrations. Its switchable inhibitory behavior is likely due to its rigid first solvation (hydrated) shell and hence it is inclined to form non-direct binding with DNA. At low concentrations, it caused under-estimation by occupying the hybridization sites. At high concentrations, it caused probe, signaling and target DNA to aggregate non-specifically via Coulomb forces. By quantifying target DNAs at a range of Mg2+ concentrations using a gene quantification assay (NanoGene assay), a Mg2+ inflection concentration of ∼10−3 M was observed for both target ssDNA and dsDNA. Field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), and Fourier transform infrared spectroscopy (FT-IR) were employed to observe Mg2+-induced non-specific binding in the complexes that mimicked the presence of target DNA. Together with two other divalent cations Ca2+ and Cu2+, they were further examined via zeta potential measurements as well as NanoGene assay. This study revealed the importance of Mg2+ in achieving accurate gene quantification. Through a better mechanistic understanding of this phenomenon, it will be possible to develop strategies to mitigate the impact of Mg2+ on DNA hybridization-based gene quantification.

Graphical abstract: Switchable inhibitory behavior of divalent magnesium ion in DNA hybridization-based gene quantification

Supplementary files

Article information

Article type
Paper
Submitted
19 Jul 2022
Accepted
15 Sep 2022
First published
18 Sep 2022

Analyst, 2022,147, 4845-4856

Switchable inhibitory behavior of divalent magnesium ion in DNA hybridization-based gene quantification

H. Jin, H. J. Lim, M. R. Liles, B. Chua and A. Son, Analyst, 2022, 147, 4845 DOI: 10.1039/D2AN01164F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements