
Using AS/400 Database Monitor
To Identify and Tune SQL Queries

by
Rick Peterson

Dale Weber
Richard Odell
Greg Leibfried

AS/400 System Performance
IBM Rochester Lab

May 2000

Page 1

Table of Contents

Page 31DB Monitor Query #1 — Identify the specific job(s) to analyze.
Page 31DB Monitor Query Examples #1 — #13 .

Page 30Altering Insert with Subselect Data in Monitor File .
Page 29For Faster Analysis .
Page 29Creating Indexes .
Page 28Identifying and Tuning Problem Areas .
Page 28Problems that are generally avoidable .
Page 27Database performance problems that are not easily avoidable
Page 27Database Performance Analysis .

Page 273014 Records .
Page 26Other DB Monitor Records .

Page 263006 Record — Access Plan Rebuild .
Page 263004 Record — Temporary Results File .
Page 253004 Record — Temporary File .
Page 243003 Record — Query Sort .
Page 233001 Record with Index Advisor .
Page 223001 Record Data .
Page 213001 Record — Using Existing Index .
Page 21Index Advisor for Previous 3000 Records .
Page 203000 Record Data .
Page 193000 Record — Arrival Sequence (Table Scan) .
Page 18Index Create for Ordering and Selection .
Page 173002 Record — Index Create for Join .
Page 153002 Record — Index Create .
Page 143002 Record — Index Create .
Page 143007 Record — Index Optimization and Selection .
Page 123010 Record Data .
Page 111000 Record - SQL Statement Summary .
Page 113010 Record — Host Variable and ODP Implementation .
Page 11Reported DB Monitor Record Types .

Page 10QQUCNT/QQI5 — Reusable ODP Mode .
Page 9Linking Query Instances in Monitor Data .
Page 8Query Data Organization in Monitor Data .
Page 7Optimization records in the DB monitor .
Page 7

Collecting Optimization Data in the DB
Monitor .

Page 7Query Optimization Records .
Page 6Global DB Monitor Data Fields .

Page 5DB Monitor Record Types .
Page 5End Database Monitor (ENDDBMON) Parameters .
Page 5Start Database Monitor (STRDBMON) Parameters .
Page 4Collecting DB Monitor Data .
Page 4What is the Database Monitor for AS/400 tool?

Page 4Introduction .

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 2

Page 35Additional Information and Author Contacts

Page 35Summary .

Page 35Tools That Can Help .

Page 34End User Query Tools .

Page 34
DB Monitor Query #13 — Which queries involve use of a query
sort? .

Page 34
DB Monitor Query #12 — Which queries involve arrival
sequence? .

Page 34
DB Monitor Query #11 — Which full opens are not avoidable due
to temporary table results? .

Page 33
DB Monitor Query #10 — Which index builds are done the most
often? .

Page 33
DB Monitor Query #9 — List all queries with full opens that
contain a temporary index build. .

Page 32
DB Monitor Query #8 — List all queries (sorted by text) that are
doing full opens. .

Page 32
DB Monitor Query #7 — Which queries are significantly affected
by full opens? .

Page 32
DB Monitor Query #6 — How do I determine how an individual
query was run? .

Page 32
DB Monitor Query #5 — Which queries account for the most run
time (using QQUCNT and text)? .

Page 31
DB Monitor Query #4 — Which queries account for the most run
time (list by QQUCNT)? .

Page 31
DB Monitor Query #3 — Which SQL operations account for the
most run time (list by text)? .

Page 31
DB Monitor Query #2 — Which type of SQL operations account
for the most run time? .

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 3

IntroductionIntroduction

The purpose of this white paper is to assist the reader in understanding the basics of how to
identify and tune the performance of Structured Query Language (SQL) statements accessing
DB2® Universal Database for AS/400 (DB2 UDB for AS/400). Database Monitor for AS/400
(DB Monitor) is a tool that can be used to analyze database performance problems after SQL
requests have been run. The tuning tips and examples may be used to demonstrate how to
get the most out of both DB2 UDB for AS/400 and query optimizer when using SQL. The
reader should be aware that usage of DB Monitor is technically demanding and IBM offers
Learning Services courses on database tools and analysis.

The DB monitor tool has been part of OS/400® since Version 3 Release 6. An AS/400
performance analyst will use the DB monitor to gather database and performance data
generated when SQL queries are executed. Then, using customized SQL programs or
examples included in this paper, the analyst will be able to view, analyze and conclude the
most appropriate actions to be taken in order to generate the most efficient SQL queries
possible for their application.

What is the Database Monitor for AS/400 tool?What is the Database Monitor for AS/400 tool?

The Database Monitor for AS/400 tool is an AS/400 based tool used to gather performance
related statistics for SQL queries run on AS/400. Data collected by the DB monitor is stored in
an AS/400 database file where it can be queried to help identify and tune performance
problem areas. Results from the DB monitor can be useful for batch jobs and online
transactions; also, the results can be used to look at SQL queries from a global system level
for a specific job or a specific query. DB monitor data is most useful if the user has a basic
knowledge of AS/400 query optimization techniques.

Collecting DB Monitor Data

Use STRDBMON command or STRPFRMON with STRDBMON(*YES) command to start the
DB monitor. The DB monitor will collect information on previously started jobs or new jobs
started after the monitor collection has begun. Because of the volume of data collected, try to
gather data for a specific job only. This makes analysis easier and keeps the DB monitor file
smaller. If this is not possible, collect data on all of the jobs and use queries to select the
specific jobs of interest.

It should also be noted that when the DB monitor is gathering data, a significant amount of
CPU utilization (20 - 30 percent) and disk usage may be temporarily required.

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 4

Start Database Monitor (STRDBMON) Parameters

The following are STRDBMON parameters and how they are used:

OUTFILE
The file name for the results file is required, but the library name is optional. The file will be
created if it does not exist; it will be reused if it exists.

OUTMBR
This parameter defaults to the first member in the file. Specify the “ADD” or “REPLACE” option
(the default is “REPLACE”). The “ADD” option will cause the new results to be appended to the
end of the file.

JOB
This parameter defaults to the job issuing the STRDBMON command. The user can specify
one job or *ALL jobs — no subsetting allowed. Two DB monitors can collect data on the same
job.

TYPE
This parameter allows the user to specify the type of data to be collected — *SUMMARY,
which is the default option, or *DETAIL. For most cases, *SUMMARY provides all of the
necessary analysis data.

FRCRCD
This parameter allows the user to specify how often to force monitor records to the results file.
For most cases, the default of *CALC is acceptable. The user can specify a larger number to
reduce the overhead of the DB monitor; a smaller number will increase the overhead.

COMMENT
This parameter allows the user to provide a description of the collection. This comment is
included for the 3018 record ID (discussed later in this paper).

If the DB monitor is started using the Start Performance Monitor (STRPFRMON) command,
JOB(*ALL) will be used for the JOB option and data will be placed in the QAPMDBMON file in
the QPFRDATA library using the same member name as specified for the STRPFRMON
command. Note that the user needs to use the End Database Monitor command (ENDDBMON
*ALL) to end the DB monitor for all jobs.

End Database Monitor (ENDDBMON) Parameters

The following are End Database Monitor (ENDDBMON) parameters and their functions:

JOB
The user can specify a particular job name or end all jobs (*ALL). If a particular job name is
used, the DB monitor will only end the monitor that was started with that same job name. It is
possible to end one monitor on a job and still have another monitor collecting on that same job

COMMENT
This parameter allows the user to provide a description of the data collection. This comment is
included for the 3018 record ID (discussed later in this paper).

DB Monitor Record Types

Each record contained in the DB monitor file contains a record type field. The DB monitor uses
the QQRID field to describe the type of information gathered in the particular record.

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 5

Following are the DB monitor record types most often used for performance analysis:

Record types most often used (QQRID value)

1000 — SQL summary record

3000 — Arrival sequence

3001 — Using existing index

3002 — Index created

3003 — Query sort

3004 — Temporary results file

3006 — Access plan rebuilt

3007 — Index optimization data

3010 — Host variable and ODP implementation

DB Monitor Record Types — Other record types

3005 — Table locked

3008 — Subquery processing

3014 — Generic query information

3018 — STRDBMON and ENDDBMON data

3019 — Records retrieved detail (only with *DETAIL)

Global Global DBDB Monitor Data Fields Monitor Data Fields

Following are data fields that are common to all record types:

QQJOB — Job name

QQUSER — Job user name

QQJNUM — Job number

The job number is very useful when multiple jobs are collected in one DB monitor file.

QQTIME — Time that the record was created

The time record can be useful when trying to find out what queries were running in a
given time period.

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 6

Global Data Fields

Query Optimization Records

Record types 3000-3008 and 3014 occur during a full open and can be referred to as
optimization records. Optimization records are much like debug messages. These records are
necessary to determine the access plan for any given query in the DB monitor data. These
records use AS/400 10-character short names for all table, index, view and column names. It
may be necessary to run separate queries to determine the corresponding SQL long name.

The actual SQL statement in the DB monitor data uses SQL long names.

Collecting Optimization Data in the DB Monitor

Optimization records in the DB monitor

Optimization records/data will not appear for queries which are already in reusable ODP mode
when the monitor is started. To ensure the capture of this data for a batch job, start the DB
monitor before the batch job starts and collect it over the entire length of the job (or as much
as needed). For online transactions, start the monitor before connecting to the QZDASOINIT
server job to ensure optimization data is collected. The STRDBMON JOB(*ALL) command is
needed in both of these cases.

If optimization data was not collected for a given query, run the query using Start SQL
(STRSQL) command or other tools and collect debug messages or DB monitor data. Obtain

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 7

the query text from the DB monitor data or from the step mode trace. If the DB monitor is
ended while the query is in progress, optimization data is collected but other data for that
query (SQL text, etc.) is not.

Query Data Organization in Monitor Data

The first occurrence of a unique query within the job always results in full open. A "unique"
query is one that requires a new ODP — SQL has determined that there is no existing ODP
that can be used.

The presence of optimization records indicates a full open for an open, select into, update,
delete, or insert operation. Optimization records are immediately followed by SQL summary
records (QQRID=1000) for that operation.

Subsequent occurrences of this query within the same job either run in reusable ODP or
non-reusable ODP mode. Non-reusable mode is indicated by the presence of optimization
records each time a particular query is run (full open). Reusable ODP mode is indicated by
only 3010 and 1000 records each time the given query is run (no optimization records or full
open).

On the next page are two examples of what the Reusable ODP and Non-Reusable ODP
Modes look like.

Reusable ODP Mode

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 8

Non-Reusable ODP Mode

Linking Query Instances in Monitor Data

The data in the DB monitor file is arranged chronologically. This can make it difficult to find all
instances of a unique query. Use the QQUCNT and QQI5 fields to view specific query
instances.

� QQUCNT — Unique number given for each unique query within a job

QQUCNT links together all DB monitor records associated with all instances of a
unique query within a job, including optimization records and all 3010 and 1000 SQL
summary records. The QQUCNT value assigned at full open time stays constant for all
subsequent instances of that query. Non-ODP SQL operations (prepare, describe,
commit) have QQUCNT = 0 and thus can't be linked to a query. But, the QQ1000 field
in the prepare or describe 1000 record will contain the prepared SQL text.

� QQI5 — Refresh counter

The QQ15 record specifies the instance number for a unique query. It is used in
conjunction with the QQUCNT value to look at a specific instance of a query and is only
valid on 3010 and 1000 SQL summary records.

� Non-ODP 1000 records (commit, prepare, etc.) have QQI5 = 0.

� QQUCNT is not set for optimization records.

A full open occurs when the SQL operation is either an update, insert, delete or open and the
QQI5 record is 0.

See below for examples of the QQUCNT/QQ15 — Reusable ODP mode and QQUCNT/QQ15
— Non-Reusable ODP mode

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 9

QQUCNT/QQI5 — Reusable ODP Mode

QQUCNT/QQI5 — Non-Reusable ODP Mode

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 10

Reported DB Monitor Record Types

Each of the DB monitor record types provide a specific type of information gathered by the DB
monitor as it collects data during SQL performance runs. Let’s review the DB monitor record
types and their functions.

3010 Record — Host Variable and ODP Implementation

The 3010 record shows substitution values for host variables or parameter markers in the
query text (refer to QQ1000 field in the 1000 record). This record appears just prior to each
instance of an open, update, delete or insert with subselect. This record does not appear for
insert with values. Data may not match up exactly for updates with parameter markers in the
SET clause.

Values (separated by commas) correspond left to right with host variables/parameter markers
in the corresponding SQL statement. All values show up as characters; no quotes or other
indicators denote the value type. All floating point values show up as *F.

Most commonly used fields:

QQ1000 — Host variable or parameter marker values

QQI5 — Refresh count

QQC11 — ODP implementation (reusable or non-reusable)

1000 Record - SQL Statement Summary

The 1000 record is the basic record type for any SQL query analysis. One record exists for
each SQL operation (open,update,close,commit, etc.).

Most commonly used fields:

QQ1000 — Prepared text of SQL statement

Literals in the original SQL text may be replaced by parameter markers in prepared text
if SQL was able to convert them during prepare (desired). For original SQL text, use
literal values from matching 3010 record in the place of parameter markers or obtain
the text from the step mode file using the QQSTIM timestamp from this record.

QQC21 — Type of SQL operation (OP, FE, CL, UP, IN, DL, ...)

'MT' in this field indicates a continuation record for SQL statements that exceed 1000
characters. FE (fetch) records are summary records — one per open.

QQI2 — Number of rows updated/inserted/deleted

QQI3 — Number of rows fetched (only on FE records)

The QQI3 field shows the actual number of rows fetched, not the number of fetch
attempts.

QQI5 — Refresh counter (use in conjuction with QQUCNT)

A full open occurs when QQI5=0 and QQC21 is UP, DL, IN or OP.

QQI4 — Elapsed time for this operation in milliseconds.

QQI6 — Elapsed time for this operation in microseconds.

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 11

QQSTIM — Timestamp for start of SQL operation (microsecond granularity).

QQETIM — Timestamp for end of SQL operation (microsecond granularity).

QQETIM-QQSTIM shows elapsed time for operation in seconds down to microsecond
granularity.

For FE records, use QQI6 or QQI4; QQETIM-QQSTIM is not valid.

Other commonly used fields include:

QQC22 — Access plan rebuild and reason code

QQC103 and QQC104 — Package name and package library name

QQC181 — Cursor name
Here are some examples of a few of these fields:

3010 Record Data

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 12

1000 Record Data

1000 Records with Extended SQL Text

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 13

3007 Record — Index Optimization and Selection

The 3007 record shows all indexes evaluated for a given file, including: which one, if any, was
selected for use in this query, which were not selected, and why. Reason codes are listed next
to each index. A reason code of 0 indicates that the index was selected. Other codes are the
same as those in the second level text of CPI432C and CPI432D messages.

This record indicates whether the optimizer timed out while evaluating the indexes. Indexes are
evaluated in order from newest to oldest — in the same order as shown by DSPDBR for the
file, excluding views. To ensure an index is evaluated, delete and recreate it — then it will be
first on the list. The record will not appear if the indexes do not exist or if only one index exists
and it was selected (see 3001 record for this file).

Most commonly used fields:

QQPTFN — File name

QQPTLN — File library name

QQC11 — Optimizer timed out (Y or N)

QQ1000 — Contains library qualified index names, each with a reason code

An index from index build may still occur for the index that was selected (look for the 3002
record). If a timeout occurred, only those indexes that were evaluated will be listed.

See the example on the next page for what the 3007 Record Data looks like.

3007 Record Data

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 14

3002 Record — Index Create

 The 3002 record shows instances in which the database optimizer decided that existing
indexes are too costly or do not have the right key order for join, group by, or order by clauses.
Refer to the 3007 record (discussed earlier) for this file to see why existing indexes were not
selected. The newly created indexes are temporary and are not usable by other ODPs.

A temporary index build does not mean that the ODP is non-reusable. The database optimizer
tries to reuse the temporary index for each execution of the specific query but, in some cases,
cannot. For example, if the selection built into the temporary index changes with each run of
the query, the temporary index may not be reused.

If the temporary index build is done during the full open for this query but the query goes into
reusable ODP mode, then the temporary index is reusable.

If a particular query is run multiple times and a temporary index is built each time, a permanent
index must be created to avoid the index build and to make the ODP reusable.

Indexes are never built for selection alone; they always involve a join or a group by or order by
clause. No name is given to the temporary index. *TEMP is used in subsequent monitor
records.

Most commonly used fields:

QQPTFN — Table name for which the index is built

A table name of *N indicates the temporary results table (3004 record) — an index build
is unavoidable.

QQPTLN — Table library name

This field is blank if the file name is *N.

QQIFNM — Name of the index

This field is blank if the index is built over the entire table. It will contain the index name
if a index from an index build occurred.

QQILNM — Index library name

This field is blank if the index is built over the entire table.

QQRCOD — Reason the index build was done

I2 — ordering or grouping

I3 — selection and ordering/grouping

I4 — nested loop join

I1 is listed in the DB monitor guide, but will not show up for temporary index builds

QQTOTR — Number of rows in table

QQRIDX — Number of entries in temporary index

QQSTIM — Timestamp for start of index build

QQETIM — Timestamp for end of index build

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 15

QQETIM-QQSTIM shows the elapsed time for the index build. Long running builds or
builds that are repeated many times and result in a fair number of full opens are prime
candidates for being replaced with permanent indexes.

QQ1000 — Contains join, order by, or group by keys used in index build

This field indicates whether the key is ASC or DESC — this is important for permanent
indexes. It does not include additional selection that may have been used to build the
index. If *MAP is one of the keys listed, the index build cannot be avoided but this does
not necessarily mean that the ODP is non-reusable.

If QQTOTR=QQRIDX, then the selection is probably not built in and the permanent
index can generally be built using only the keys from the QQ1000 field.

If QQTOTR>QQRIDX, then the selection was built in. If so, it is necessary to use a
combination of selection keys and the keys listed in the QQ1000 field to build a
permanent index. It may be necessary to look in the query text for keys in ANDed
equals predicates and other selective comparisons.

If QQIDXA=Y, QQIDXD will contain good selection keys. However, it still may be
necessary to look at the query text if there are problems getting the database optimizer
to choose a created index. It is generally best to build a permanent index with good
selection keys first, followed by join, order by, or group by keys.

QQIDXA — Index advised (Y or N)

If 'N', QQI2 and QQIDXD will not contain data.

QQI2 — Number of primary keys in QQIDXD

The QQI2 field contains the number of keys over which key positioning can be used.

QQIDXD — Suggested primary and secondary keys for index (selection only)

The QQIDXD field can contain both primary and secondary keys. Starting from the left,
QQI2 tells how many keys are considered primary. Other keys are considered less
selective (secondary). This field will be blank if an existing index contains most or all of
the recommended selection.

If keys are listed, use the most selective ones combined with keys from the QQ1000
field. It is still important to include the most selective keys since the optimizer is
estimating. Even if an index is not advised, it may still be best to try to create an index
using the selection from the SQL statement, if it is a good selection.

Remember that building a permanent index that the optimizer will use is an iterative process,
but it often has significant paybacks.

Here are some examples for what these screens will resemble:

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 16

3002 Record with QQETIM-QQSTIM

3002 Record — Index Create for Join

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 17

Index Create for Ordering and Selection

Index Advisor for Previous Index Create

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 18

Index Build with Mapped Key

3000 Record — Arrival Sequence (Table Scan)

The 3000 record points out queries in which the entire table is scanned without using an index.
A table scan is generally acceptable in cases where a large portion of the file will be selected
or the selected file contains a very small number of records. Otherwise, using an index usually
provides better performance.

An insert with a subselect will have a 3000 record for the file being inserted into, but this is not
a performance problem on its own. This does not indicate that the ODP is non-reusable. The
record data may contain useful index advisor data. See the example on the next page.

Most commonly used fields:

QQPTFN — File name

QQPTLN — File library name

QQTOTR — Number of rows in table

Use QQTOTR to determine if the table scan was done for a significant number of rows.

QQRCOD — Reason code - why arrival sequence chosen

QQIDXA — Index advised (Y or N)

If the QQIDXA field is 'N', QQI2 and QQIDXD will not contain data.

QQI2 — Number of primary (key positioning) keys in QQIDXD field QQIDXD —
Suggested keys for index (selection only)

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 19

The QQIDXD field can contain both primary and secondary keys. Starting from the left,
QQI2 tells how many keys are considered primary. Other keys are considered less
selective (secondary). It is important to include the most selective keys since the
database optimizer is estimating. Even if an index is not advised, it is still best to
determine if a good index can be created for this table by looking at the selection in the
SQL text. This is especially important if the cumulative time for this query is significant
— this can be measured by the total of QQI6 or QQI4 values for the 1000 FE records
for this query.

3000 Record Data

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 20

Index Advisor for Previous 3000 Records

3001 Record — Using Existing Index

The 3001 record shows the index that will be used to access the file, and why it was chosen. If
the index was chosen for join, additional information is given to help determine how the file
"fits" in the join. The order of the 3001 records indicates the join order chosen by the optimizer.

Most commonly used fields:

QQPTFN — File name (*N indicates the temporary results table)

QQPTLN — File library name (blank if the file name is *N)

QQIFNM — Name of selected index (*TEMP if temporary index is used)

QQILNM — Index library name (blank if the index name is *TEMP)

QQRCOD - Reason the index was selected

I1 — selection only

I2 — ordering or grouping

I3 — selection and ordering/grouping

I4 — nested loop join

I5 — record selection using bitmap

Bitmap selection has a DB monitor record sequence of 3007, 3000 and 3001.

QQC21 — Join method (NL, MF, HJ)

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 21

QQC22 — Join type (IN, PO, EX)

QQC23 — Join operator (EQ, LT, GT, CP...)

QQTOTR — Number of rows in the table

QQAJN — Estimated number of joined rows from this table

The QQAJN field helps to determine if the join order looks correct, but the user may still
need to know how selective the join and selection criteria is on this table to be sure.

QQIDXA — Index advised (Y or N)

QQI2 — Number of primary (key positioning) keys in QQIDXD field

QQIDXD — Recommended primary and secondary keys for index on this table

Exercise caution: the keys listed can possibly be better than those in the selected index, but
not always. Generally, the selected index will be fairly good or the database optimizer has
chosen to build a temporary index that fits well. These keys are for selection only an the user
also needs to consider join/order by/group by clause criteria.

Here are some examples of the screen captures:

3001 Record Data

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 22

3001 Records with Join Data

3001 Record with Index Advisor

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 23

3003 Record — Query Sort

The 3003 record shows that the database optimizer has decided to put selected records into a
temporary space and sort them. This is either cheaper than alternative indexed methods or it is
forced to do so — for example: UNION or order by on fields from more than one file.

Indexes can still be used to select or join records before the sort occurs. This does NOT
indicate that the ODP is non-reusable.

The 1000 SQL summary record for the open may have a high elapsed time (QQI6 or QQI4).
Sort buffers are refilled and sorted at open time, even in reusable ODP mode. However, high
elapsed times may indicate a large answer set. In this case, the sort will outperform index
usage (This is the situation in most cases).

If sort seems slow and using an index might be better, try to influence the optimizer away from
the sort with better selection indexes. For example, if the answer set is small but the optimizer
does not have the right indexes available to know that, creating these indexes can help. This is
possible only if the optimizer is not forced to use the sort.

Most commonly used fields:

QQSTIM — Timestamp for start of refill and sort

QQETIM — Timestamp for end of refill and sort

QQRCOD — Reason for choosing query sort

The QQRCOD field helps to determine whether a sort was required or if it was “costed”
this way. Refer to the DB monitor guide for the reason codes.

QQRSS — Number of rows in sort space

The QQRSS field can be used, along with reason code, to determine if the indexed
approach is possible and possibly cheaper (for a small result set). Use the QQI3 value
from the corresponding 1000 FE record for this open to determine how many rows were
fetched from the sort space. If the QQRSS value is large but the actual number of rows
fetched is small, consider adding OPTIMIZE FOR n ROWS to the query to help the
optimizer.

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 24

3003 Record — Query Sort

3004 Record — Temporary File

The 3004 field show that the database optimizer is forced to store intermediate results/rows in
a temporary file due to the nature of the query. Examples are: group by on fields from >1 file or
materializing view results. This indicates ODP is non-reusable. This cannot be tuned —
consider altering the query.

Most commonly used fields:

QQSTIM — Timestamp for start of fill temporary results table

QQETIM — Timestamp for end of fill temporary results table

QQTMPR — Number of rows in temporary table

QQRCOD — Reason for building temporary

Refer to the DB monitor guide for the specific reason codes.

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 25

3004 Record — Temporary Results File

3006 Record — Access Plan Rebuild

The QQRCOD field lists the reason the rebuild of the plan is occurring. It is not present on
every full open. It only occurs in cases where the access plan already exists but for some
reason it must change. This field can help determine the reason for a full open if other DB
monitor records don't show why.

Other DB Monitor Records

The following records are not used as much for performance tuning, but can provide other
interesting data.

3014 record — Generic query information

The 3014 record appears with full open optimization records. In most cases, one 3014
record appears per full open. Multiple 3014 records can appear if the query consists of
multiple separately run queries. For example, subqueries with grouping functions or
views that need results materialized for use in outer query. Values in this field help
identify what type of query this record represents and how long it took to open the
cursor for this query. Refer to DB monitor for other field values. See the example on
the next page.

3005 record — Table locked

3008 record — Subquery processing

3018 record — STRDBMON/ENDDBMON information/option

3019 record — Records retrieved detail record (only occurs with TYPE(*DETAIL)

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 26

3014 Records

Database Performance Analysis

Database performance problems that are not easily avoidable

Problems that are generally not simple to rectify include the following:

Full opens due to repetitive query using new literal values each time it's invoked:

If the prepared statement text differs in any way from any previous SQL statement in that job,
a full open and new ODP will be needed. SQL will, in most cases, attempt to convert literals to
parameter markers to make the repetitive statement appear identical each time. However,
literals cannot be converted in the following cases:

� Parameter marker conversion turned off,

� Original SQL statement contains both parameter markers and literals,

� Statement uses special registers (CURRENT DATE, CURRENT TIME), or

� Expressions used in SET or SELECT clause of statement.

Non-reusable ODPs due to:

� Temporary results table created for ODP (3004 record appears in the full open) and/or

� Group by fields on more than one file or view with grouping (materialization).

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 27

Although the full opens listed here are not avoidable, they can still possibly be improved. For
example, an open might contain a 3004 record but might also contain a costly temporary index
build that can be avoided by building a new permanent index. Look at the opens to see what
can be done.

Time-consuming queries due to:

� Correlated subqueries run excessive number of times within a query,

� NOT EXISTS forcing poor join order,

� Updates or deletes with poor join performance because the file being changed is forced to
be first in join, and/or

� Long running index builds with mapped keys in the build (the 3002 record has *MAP in
QQ1000).

Problems that are generally avoidable

Problems that are relatively easy to resolve include the following:

Temporary indexes created for join/order by/group by:

� Individual long-running or repeated index creates (non-reusable ODPs) and/or

� A 3002 record exists in the full open (without *MAP in QQ1000 field).

Time-consuming queries due to:

� Table scans — single long-running or repetitious short-running

A 3000 record exists in the full open (unless the open is done for a file that is being
inserted into).

� Poor join order

Need to be familiar with what a better join order would be and how to influence the
optimizer.

� Temporary sort being done when index approach feasible and faster

A 3003 record exists in the full open and possibly longer opens in reusable ODP mode.

� Reusable ODPs with a good initial access plan that become worse due to table growth

Watch the QQI6 or the QQI4 value in the 1000 records to see if the value grows. Try to
influence the optimizer to an initial access plan that is not affected by table growth.

Identifying and Tuning Problem Areas

There are many different methods to identify problems and tune the troublesome database
statements. One of the most common methods is to identify the most dominating,
time-consuming queries and work on each of them individually. Another method is to leverage
global information and to use this information to look for indexes that are "begging" to be
created.

A set of queries have been included in a following section. These queries have been designed
to help produce useful results in most situations. Using these queries will help to understand

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 28

the data and to learn to construct other queries as well. Query analysis is iterative in nature so
try something, run job (with the DB monitor active) or individual query (STRSQL using debug
messages) to see if it worked — try again if it did not work.

When using the STRSQL command, ensure that the appropriate settings are used for the
“Data refresh” and “Allow copy data” options. These settings can be changed by using the
Change Session Attributes option in STRSQL. For example, JDBC uses *FORWARD for Data
refresh and *OPTIMIZE for Allow copy data. The defaults are *ALWAYS for Data refresh and
*YES for Allow copy data.

It is usually best to first concentrate on repetitious non-reusable ODPs, table scans, and long
index builds. Also, look for repetitious short-running queries that are not optimized well. Joins
and sorts can be more difficult to analyze. If joins and sorts are accounting for a significant
portion of run time, they need to be addressed as well. Fine tuning smaller problems should be
done after large problems have been addressed. Generally, indexes will be used to tune most
performance problem areas.

Creating Indexes

It is helpful to know how data in the table is populated and how selective certain key fields are.
This information can be used to help create indexes that will be used for a large number of
queries. It can also help to know why existing indexes were not used in some situations. For
example, if a query has WHERE A = ? AND B = ? AND C = ? and there is an index over A, B
and C but the database optimizer decides not to use it, it may be because these fields are not
very selective. Knowing the data can help to quickly detect this. If the selective of certain fields
are not known, the fields can be queried to find out:

SELECT A, B, C, COUNT(*)
FROM TABLEA GROUP BY A, B, C
ORDER BY 4 DESC

Try to create indexes that are used more globally. Use selective fields that are commonly used
in WHEREs, and where applicable, use them in combination with common join, order by, and
group by keys. Remember the tips discussed in the query optimization section on creating
these. If index is uniquely keyed, create the index as UNIQUE since this is useful to the
database optimizer.

Do not create a lot of permanent indexes trying to cover every combination. Create one or two
that are potentially good, run the job again, or run the STRSQL command for a single query
and see if they are used. If the indexes used and the run time is noticeably better, consider
deploying the indexes for permanent use. If the indexes are not used, delete them and try a
different combination. Do not create indexes just to solve a single instance of a full open or
query unless it accounts for a significant amount of time.

Each additional index created for a table will cause overhead when:

� Updates to the table include the index keys,

� Rows are inserted or deleted for the table, and/or

� Full opens occur for that file (index evaluation).

For Faster Analysis

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 29

 The DB monitor file often is large and contains information on many jobs; therefore, running
queries on the data can sometimes be slower than desired. Users can try to help this by
collecting only the job they want. However, sometimes this is not possible and, even if it is,
batch jobs can generate a lot of DB monitor output. Also, using interactive tools such as
STRSQL, can result in longer run times on server models. If the response time is slow during
the analysis, consider the following tips:
� Create a smaller DB monitor file with only the records you are interested in

w Build and run a query to pick out only those jobs you're interested in, then copy the
records for those job(s) into a separate DB monitor file.

w CRTDUPOBJ and INSERT w/subselect specifying the QQJNUM value(s)

� Create indexes on the DB monitor file over the common selection and grouping/order by
clauses.

w Examples of some key combinations to use:

§ QQJNUM,

§ QQRID,

§ QQUCNT,

§ QQRID & QQ1000, and

§ QQRID & QQC21.

w Try other combinations as needed. Remember to combine the selection and
grouping/order by clauses.

Altering Insert with Subselect Data in Monitor File

Within the DB monitor file, inserts with subselects actually contain two QQUCNTs. The first
one is listed for subselect optimization messages during full open; the second one is for the
actual insert statement and each instance of the reusable ODP after that.

This can be a problem when trying to look at the optimization messages for the subselect
using the QQUCNT record for the insert operation itself. There is not an easy way to view this.
The problem is being addressed, but for now use the following method to correct this problem.

In STRSQL, change the SELECT output value in the session attributes (use PF13, then select
option 1) to a value of 3 (“output to file”). For this example, let's choose the file name of FILE01
in QGPL.

Run the following query:

SELECT QQUCNT-1
FROM monitor-file-name
WHERE QQC21 = 'IN' AND QQ1000 NOT LIKE '%VALUES%'
AND QQI5 = 0 AND QQJNUM = job-nbr

Output from this query will go to FILE01 in QGPL. Now, change the session attribute back to
“display” and enter the following query:

UPDATE monitor-file-name
SET QQUCNT = QQUCNT + 1
WHERE QQUCNT IN(SELECT DISTINCT SEL0001 FROM QGPL/FILE01)
AND QQJNUM = job-nbr

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 30

DB Monitor Query Examples #1 — #13

DB Monitor Query #1 — Identify the specific job(s) to analyze.

SELECT SUM(QQI4), COUNT(*), QQJOB, QQUSER, QQJNUM
FROM DBMON/SQARUNS2

WHERE QQRID = 1000

GROUP BY QQJOB, QQUSER, QQJNUM ORDER BY 1 DESC

From this list, pick out jobs that use the most run time. Use the QQJNUM value as selection in
other analysis steps. If only one job is monitored or one job completely dominates the others,
QQJNUM is not needed. If the job cannot be identified from this information, then work with the
customer or use other tools, like WRKSYSACT, to determine the job.

DB Monitor Query #2 — Which type of SQL operations account for the most run time?

SELECT SUM(QQI4), COUNT(*), QQC21
FROM DBMON01
WHERE QQJNUM = '195030' AND QQRID = 1000
GROUP BY QQC21 ORDER BY 1 DESC

This query shows the number of SQL operations (OP, CL, FE, UP, CM...) used and how much
elapsed time is spent by each type of operation. The results from this query can help to know
what to concentrate on for the most potential payback (selects, updates, etc.). Total run time
for all SQL operations within the job can be obtained by running the above query, only
specifying SUM(QQI4) in the select list, and dropping the group by and order by clauses. This
value can be useful when trying to determine how much of the job's total run time a given
query or set of queries accounts for.

DB Monitor Query #3 — Which SQL operations account for the most run time (list by
text)?

SELECT SUM(QQI4), COUNT(*), QQ1000
FROM DBMON01
WHERE QQJNUM = '195030' AND QQRID = 1000
GROUP BY QQ1000 ORDER BY 1 DESC

This query shows the text of the SQL operations that account for the most run time, and how
many times they were run. Consider using QQC21 or QQUCNT <> 0 to remove the non-ODP
operations (prepares, describes, etc.). This query can help to become familiar with particular
queries that are using the most run time. Fetches and closes are not correlated to the opens.
Also, consider sorting by QQ1000 to group similar statements together. Another method would
be to add QQC21 to the select and group by clause and then order by QQC21, 1 DESC
(groups opens, inserts, etc. together and by cost).

DB Monitor Query #4 — Which queries account for the most run time (list by
QQUCNT)?

SELECT SUM(QQI4), COUNT(*), QQUCNT
FROM DBMON01
WHERE QQJNUM = '195030' AND QQRID = 1000
AND QQUCNT <> 0
GROUP BY QQUCNT ORDER BY 1 DESC

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 31

This query shows individual query instances and how much time they took, sorted by the run
time (largest to smallest) and includes fetch and close time for opens. It does not include
non-ODP SQL operations such as prepare or describe (QQUCNT=0). This provides a way to
quickly find a query that is taking a large amount of time without having to know the text or
anything else about that query. Consider limiting QQC21 values to look at certain query type. If
there is not a single dominating query or set of queries, and if DB Monitor Query #3 does not
provide the information that is needed, go to DB Monitor Query #5.

DB Monitor Query #5 — Which queries account for the most run time (using QQUCNT
and text)?

SELECT SUM(QQI4), COUNT(*), QQUCNT, QQ1000
FROM DBMON01
WHERE QQJNUM = '195030' AND QQRID = 1000 AND QQUCNT <> 0
GROUP BY QQ1000,QQUCNT ORDER BY QQUCNT, 1 DESC

The results of this query show all parts of a query grouped together and listed by QQUCNT.
Fetches and closes are listed together with their corresponding opens. It does not include
non-ODP operations (prepare, describe, commit, etc.). Scroll through the unique queries to
see the most expensive ones and use the QQUCNT record to further analyze them (see DB
Monitor Query #6 below). The query can be changed to sort by text and run time (4, 1 DESC)
to group similar queries together and see which are the most costly, or just by run time to see
the most costly overall. It may also be useful to add QQC21 values to select a certain query
type.

DB Monitor Query #6 — How do I determine how an individual query was run?

SELECT QQRID, QQPTFN, QQIFNM, QQC21, QQI4, QQ1000
FROM DBMON01
WHERE QQJNUM = '195030' AND QQUCNT = query-number

The fields used in this query are a good starting point, but there are other fields that can help
to determine what the query is doing and the access plan that was used. For example, to find
how long an index build within this query is taking, replace QQI4 with QQETIM-QQSTIM. If full
open data was collected, optimization records will appear first followed by the 1000 record(s),
then repeated instances of query if the ODP was reusable. The text of the query along with the
host variable values from the 3010 record can be used to reconstruct the query for debug
purposes.

DB Monitor Query #7 — Which queries are significantly affected by full opens?

SELECT SUM(QQI4), COUNT(*), QQ1000
FROM DBMON01
WHERE QQJNUM = '195030' AND QQRID = 1000 AND QQI5 = 0
AND QQC21 IN ('OP', 'DL', 'IN', 'UP')
GROUP BY QQ1000 ORDER BY 1 DESC

This query points out queries whose run time is noticeably affected by full opens. Add ORDER
BY QQ1000 to see if there are similar queries encountering full opens. Use DB Monitor Query
#8 below to find any individual queries that are doing full opens.

DB Monitor Query #8 — List all queries (sorted by text) that are doing full opens.

SELECT QQI4, QQUCNT, QQ1000
FROM DBMON/DBMON01

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 32

WHERE QQJNUM = '195030' AND QQRID = 1000 AND QQI5 = 0
AND QQC21 IN ('OP', 'DL', 'IN', 'UP')
ORDER BY 3, 1 DESC

This query groups together queries that are doing full opens. Scroll through the list to find
repetitive queries, pick QQUCNT from one of these, and use it to look at the query to
understand why it is doing a full open. Remember to look closely at the text. If it is a "new"
SQL statement, the open cannot be avoided since SQL must create an ODP the first time.
Look at certain query types by limiting the QQC21 list and sort by QQI4 to see the most costly
opens. Remember that the first full open for each unique query is unavoidable, although it may
be possible to improve them in some cases.

DB Monitor Query #9 — List all queries with full opens that contain a temporary index
build.

 SELECT QQI4, QQUCNT, QQ1000
FROM DBMON01
WHERE QQJNUM = '195030' AND QQRID = 1000 AND QQI5 = 0
AND QQC21 IN ('OP', 'DL', 'IN', 'UP')
AND QQUCNT IN(SELECT DISTINCT QQUCNT FROM DBMON01
WHERE QQJNUM = '195030' AND QQRID = 3002 AND QQ1000 NOT LIKE '%*MAP%')
ORDER BY 3, 1 DESC

This query helps to quickly locate queries that are doing temporary index builds. It provides the
QQUCNT values that can be used to look at the query optimization to find more information.
First, sort by QQI4 first to find the most expensive opens. This does not necessarily mean that
the open can be avoided. There may be other reasons the full open is occurring besides the
temporary index build.

DB Monitor Query #10 — Which index builds are done the most often?

SELECT QQUCNT, QQETIM-QQSTIM, QQPTFN, QQTOTR, QQRIDX,
QQRCOD, QQIDXA, SUBSTR(QQ1000, 1, 100),
SUBSTR(QQIDXD, 1, 100)

 FROM DBMON01 WHERE QQRID = 3002 ORDER BY 8

This query points out commonly occurring index creates and how to create permanent indexes
to avoid them. Look for repeated index builds or long index builds first. If an index build only
occurs once and is not costly, it may be best to let it occur. The SUBSTR for QQ1000 and
QQIDXD should cover most key lists, but it may be necessary to increase the respective
values if 100 bytes is not enough.

Use the following methods to determine what keys to use to build a permanent index:

� If QQTOTR = QQRIDX, the keys from QQ1000 for the index build will probably be
acceptable.

� If QQTOTR > QQRIDX, additional selection keys should be in the index along with the join,
order by, or group by keys from the QQ1000 field. The fields from QQIDXD can be used, if
available. However, it may be desirable to add QQI2 to the selection to know the number of
primary keys.

� If there is no data in QQIDXD or the keys from QQIDXD do not seem to work, get the most
selective keys from the query text itself — use QQUCNT to find the query text.

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 33

DB Monitor Query #11 — Which full opens are not avoidable due to temporary table
results?

SELECT QQUCNT, QQC21, QQI4, QQ1000
FROM DBMON/OM75DBMON
WHERE QQJNUM = '195030' AND QQRID = 1000 AND QQI5 = 0
AND QQC21 IN ('OP', 'IN', 'UP', 'DL') AND QQUCNT IN
SELECT DISTINCT QQUCNT FROM DBMON/OM75DBMON
WHERE QQJNUM = '195030' AND QQRID = 3004)
ORDER BY 4, 3 DESC

This query shows all full opens that are unavoidable due to temporary results table and groups
them by text and run time. Often it is useful to sum on QQI4 and group on QQ1000 to
determine the overall cost. It still may be possible to improve the cost of the open. Use
QQUCNT to see if the query can be optimized better or if other tunable items, such as index
build, exist.

DB Monitor Query #12 — Which queries involve arrival sequence?

SELECT SUM(QQI4), COUNT(*), QQUCNT, QQ1000
FROM DBMON01 WHERE QQJNUM = '195030' AND QQRID = 1000
AND QQUCNT IN (SELECT DISTINCT QQUCNT
FROM DBMON01 WHERE QQRID = 3000 AND QQJNUM = '195030')
GROUP BY QQUCNT,QQ1000 ORDER BY 1 DESC

This query lists the most expensive SQL operations that are using arrival sequence. The
presence of a 3000 record does not necessarily cause bad performance (inserts, bit maps,
and scans of small files). Use the QQUCNT record to look at the most expensive operations to
see how much the file using arrival sequence is affecting the query. Look for fetches that are
costly per fetch since this can suggest that a table scan is being done on a large file — prime
candidate for creating a new index. It may be useful to order by QQUCNT since this lists the
specific operations (e.g. fetch) with the corresponding open/close.

DB Monitor Query #13 — Which queries involve use of a query sort?
SELECT SUM(QQI4), COUNT(*), QQUCNT, QQ1000

FROM DBMON01 WHERE QQJNUM = '195030' AND QQRID = 1000
AND QQUCNT IN (SELECT DISTINCT QQUCNT FROM DBMON01
WHERE QQRID = 3003 AND QQJNUM = '195030')
GROUP BY QQUCNT,QQ1000 ORDER BY 1 DESC

This query lists the most expensive SQL queries that are using a query sort. The presence of a
3003 record does not necessarily indicate poor performance. Use QQUCNT to look at the
most expensive opens (selects). Look for opens (selects) that are costly per open. A sort may
be required — see the QQRCOD field in the 3003 record. If it is not required, determine if an
index would help improve this. It may be useful to order by QQUCNT since this lists the
specific operations (e.g. fetch) with the corresponding open/close.

End User Query Tools

Once a basic understanding of the queries that can be used to query the Database Monitor
output is gained, the next step is to become efficient at using the queries. A variety of query
tools exist that can help access the data from the Database Monitor:

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 34

� Operations Navigator: Run SQL Script

� Interactive SQL

� Query/400

� DB2 UDB for AS/400 Query Manager

Of the query tools listed above, DB2 UDB for AS/400 Query Manager (LLP 5769-ST1) is the
most flexible for composing, executing and managing reports from queries. The DB2 UDB for
AS/400 Query Manager allows user variables in queries so that items like the database
filename can be selected when the query is run, instead of when the query is written. DB2
UDB for AS/400 Query Manager Report Forms make formatting output of queries easier by
generating column headings, spacing, and field wrapping for more readable end-used reports.

The DB2 UDB for AS/400 Query Manager user guide (SC41-5212-01) can be found on the

web at: http://publib.boulder.ibm.com/pubs/html/as400/v4r4/ic2924/info/db2/rbao1mst.pdf

Tools That Can Help

Centerfield Technology has a product, Database Essentials, that can help you with both the
analysis and collection of database performance monitor data on AS/400. The advanced
toolset from Centerfield Technology features a visual explain toll, graphical formatting, and
pre-canned analytical reports that make the database performance monitor data easier to
understand and analyze. In addition, Database Essentials provides several easy-to-use
graphical wizards and advisors that automate several database performance tuning tasks such
as index tuning. For additional information on Centerfield Technology and their Database
Essentials product, see their Web site at: http://www.centerfieldtechnology.com

Summary

Tuning SQL and a database structure can be a very demanding exercise. Performance
analysis of database problems can be difficult and time-consuming. Performance tuning,
particularly when dealing with database operations, is an iterative process but the availability
and knowledge of powerful tools allow the performance analyst to narrow-in on a solution
much faster.

Knowledge and judicious usage of the OS/400 Database Monitor tool and the detailed queries
provided in this document allow the analyst to gain more information about how the application
SQL statements are performing and what can be done to correct the problem. The time it
takes for the performance analyst to understand the database problems and solve them can
be reduced significantly by using this tool.

Additional Information and Author ContactsAdditional Information and Author Contacts

Special thanks goes to Dale Weber for the usage of his SQL class foils used to develop this
white paper.

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 35

http://publib.boulder.ibm.com/pubs/html/as400/v4r4/ic2924/info/db2/rbao1mst.pdf
http://www.centerfieldtechnology.com

IBM Global Services in Rochester, MN, offer technical support for Performance Analysis &
Capacity Planning of AS/400 products. Their services are described at:
http://www.as400.ibm.com/service/igs/pss.htm

Additional information regarding AS/400 and DB2 UDB for AS/400 and the Database
Performance Monitor is available on the AS/400 home page beginning at:
http://www.as400.ibm.com/db2

Questions regarding the conclusion reached in this white paper should be addressed to Rick
Peterson, rickmp@us.ibm.com , or Richard Odell, rjodell@us.ibm.com .

Trademarks

The following terms are trademarks of the IBM Corporation in the United Stated or other
countries or both:

DB2 UDB for AS/400
400WebSphere
OS/400Operating System/400
IBMAS/400

This publication may have referred to products that are not available in your country.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc., in the United Stated, other countries, or both.

Microsoft, Windows, Windows NT, and Windows logos are trademarks of Microsoft
Corporation in the United Stated, other countries, or both.

Intel, Pentium, Xerox are trademarks of Intel Corporation in the United States, other countries,
or both.

IBM makes no commitment to make available any products referred to herein.

All other trademarks and registered trademarks are the properties of their respective
companies.

© Copyright International Business Machines, 2000. All Rights Reserved.

Using AS/400 Database Monitor
To Identify and Tune SQL Queries

Page 36

http://www.as400.ibm.com/service/igs/pss.htm
http://www.as400.ibm.com/db2

	AS/400 Database Monitor To Identify and Tune SQL Queries Title
	Table of Contents
	Introduction
	What is the Database What is the Database Monitor
	Global Global DB DB Monitor Monitor Data
	Collecting Optimization Data
	Reported DB Monitor Record Types
	Other DB Monitor Records
	Database Performance Analysis
	DB Monitor Query Examples #1 — #13
	#1-Identify the specific job(s) to analyze.
	#2 — Which type of SQL operations
	#3 — Which SQL operations account
	#4 — Which queries account for the most run time
	#5 — Which queries account for the most run time
	#6 — How do I determine how an individual query was run?
	#7 — Which queries are significantly affected by full opens?
	#8 — List all queries (sorted by text) that are doing full opens.
	#9 — List all queries with full opens
	#10 — Which index builds are done the most often?
	#11 — Which full opens are not avoidable
	#12 — Which queries involve arrival sequence?
	#13 — Which queries involve use of a query sort?

	End User Query Tools
	Tools That Can Help
	Summary
	Add'l Info and Author Contacts
	Trademarks and Copyright Stmt

