Archives for posts with tag: Cyberdemocracy

Pierre Levy-photo 1

Originally published by the CCCTLab as an interview with Sandra Alvaro.

Pierre Lévy is a philosopher and a pioneer in the study of the impact of the Internet on human knowledge and culture. In Collective Intelligence. Mankind’s Emerging World in Cyberspace, published in French in 1994 (English translation in 1999), he describes a kind of collective intelligence that extends everywhere and is constantly evaluated and coordinated in real time, a collective human intelligence, augmented by new information technologies and the Internet. Since then, he has been working on a major undertaking: the creation of IEML (Information Economy Meta Language), a tool for the augmentation of collective intelligence by means of the algorithmic medium. IEML, which already has its own grammar, is a metalanguage that includes the semantic dimension, making it computable. This in turn allows a reflexive representation of collective intelligence processes.

In the book Semantic Sphere I. Computation, Cognition, and Information Economy, Pierre Lévy describes IEML as a new tool that works with the ocean of data of participatory digital memory, which is common to all humanity, and systematically turns it into knowledge. A system for encoding meaning that adds transparency, interoperability and computability to the operations that take place in digital memory.

By formalising meaning, this metalanguage adds a human dimension to the analysis and exploitation of the data deluge that is the backdrop of our lives in the digital society. And it also offers a new standard for the human sciences with the potential to accommodate maximum diversity and interoperability.

In “The Technologies of Intelligence” and “Collective Intelligence”, you argue that the Internet and related media are new intelligence technologies that augment the intellectual processes of human beings. And that they create a new space of collaboratively produced, dynamic, quantitative knowledge. What are the characteristics of this augmented collective intelligence?

The first thing to understand is that collective intelligence already exists. It is not something that has to be built. Collective intelligence exists at the level of animal societies: it exists in all animal societies, especially insect societies and mammal societies, and of course the human species is a marvellous example of collective intelligence. In addition to the means of communication used by animals, human beings also use language, technology, complex social institutions and so on, which, taken together, create culture. Bees have collective intelligence but without this cultural dimension. In addition, human beings have personal reflexive intelligence that augments the capacity of global collective intelligence. This is not true for animals but only for humans.

Now the point is to augment human collective intelligence. The main way to achieve this is by means of media and symbolic systems. Human collective intelligence is based on language and technology and we can act on these in order to augment it. The first leap forward in the augmentation of human collective intelligence was the invention of writing. Then we invented more complex, subtle and efficient media like paper, the alphabet and positional systems to represent numbers using ten numerals including zero. All of these things led to a considerable increase in collective intelligence. Then there was the invention of the printing press and electronic media. Now we are in a new stage of the augmentation of human collective intelligence: the digital or – as I call it – algorithmic stage. Our new technical structure has given us ubiquitous communication, interconnection of information, and – most importantly – automata that are able to transform symbols. With these three elements we have an extraordinary opportunity to augment human collective intelligence.

You have suggested that there are three stages in the progress of the algorithmic medium prior to the semantic sphere: the addressing of information in the memory of computers (operating systems), the addressing of computers on the Internet, and finally the Web – the addressing of all data within a global network, where all information can be considered to be part of an interconnected whole–. This externalisation of the collective human memory and intellectual processes has increased individual autonomy and the self-organisation of human communities. How has this led to a global, hypermediated public sphere and to the democratisation of knowledge?

This democratisation of knowledge is already happening. If you have ubiquitous communication, it means that you have access to any kind of information almost for free: the best example is Wikipedia. We can also speak about blogs, social media, and the growing open data movement. When you have access to all this information, when you can participate in social networks that support collaborative learning, and when you have algorithms at your fingertips that can help you to do a lot of things, there is a genuine augmentation of collective human intelligence, an augmentation that implies the democratisation of knowledge.

What role do cultural institutions play in this democratisation of knowledge?

Cultural Institutions are publishing data in an open way; they are participating in broad conversations on social media, taking advantage of the possibilities of crowdsourcing, and so on. They also have the opportunity to grow an open, bottom-up knowledge management strategy.

dialect_human_development

A Model of Collective Intelligence in the Service of Human Development (Pierre Lévy, en The Semantic Sphere, 2011) S = sign, B = being, T = thing.

We are now in the midst of what the media have branded the ‘big data’ phenomenon. Our species is producing and storing data in volumes that surpass our powers of perception and analysis. How is this phenomenon connected to the algorithmic medium?

First let’s say that what is happening now, the availability of big flows of data, is just an actualisation of the Internet’s potential. It was always there. It is just that we now have more data and more people are able to get this data and analyse it. There has been a huge increase in the amount of information generated in the period from the second half of the twentieth century to the beginning of the twenty-first century. At the beginning only a few people used the Internet and now almost the half of human population is connected.

At first the Internet was a way to send and receive messages. We were happy because we could send messages to the whole planet and receive messages from the entire planet. But the biggest potential of the algorithmic medium is not the transmission of information: it is the automatic transformation of data (through software).

We could say that the big data available on the Internet is currently analysed, transformed and exploited by big governments, big scientific laboratories and big corporations. That’s what we call big data today. In the future there will be a democratisation of the processing of big data. It will be a new revolution. If you think about the situation of computers in the early days, only big companies, big governments and big laboratories had access to computing power. But nowadays we have the revolution of social computing and decentralized communication by means of the Internet. I look forward to the same kind of revolution regarding the processing and analysis of big data.

Communications giants like Google and Facebook are promoting the use of artificial intelligence to exploit and analyse data. This means that logic and computing tend to prevail in the way we understand reality. IEML, however, incorporates the semantic dimension. How will this new model be able to describe they way we create and transform meaning, and make it computable?

Today we have something called the “semantic web”, but it is not semantic at all! It is based on logical links between data and on algebraic models of logic. There is no model of semantics there. So in fact there is currently no model that sets out to automate the creation of semantic links in a general and universal way. IEML will enable the simulation of ecosystems of ideas based on people’s activities, and it will reflect collective intelligence. This will completely change the meaning of “big data” because we will be able to transform this data into knowledge.

We have very powerful tools at our disposal, we have enormous, almost unlimited computing power, and we have a medium were the communication is ubiquitous. You can communicate everywhere, all the time, and all documents are interconnected. Now the question is: how will we use all these tools in a meaningful way to augment human collective intelligence?

This is why I have invented a language that automatically computes internal semantic relations. When you write a sentence in IEML it automatically creates the semantic network between the words in the sentence, and shows the semantic networks between the words in the dictionary. When you write a text in IEML, it creates the semantic relations between the different sentences that make up the text. Moreover, when you select a text, IEML automatically creates the semantic relations between this text and the other texts in a library. So you have a kind of automatic semantic hypertextualisation. The IEML code programs semantic networks and it can easily be manipulated by algorithms (it is a “regular language”). Plus, IEML self-translates automatically into natural languages, so that users will not be obliged to learn this code.

The most important thing is that if you categorize data in IEML it will automatically create a network of semantic relations between the data. You can have automatically-generated semantic relations inside any kind of data set. This is the point that connects IEML and Big Data.

So IEML provides a system of computable metadata that makes it possible to automate semantic relationships. Do you think it could become a new common language for human sciences and contribute to their renewal and future development?

Everyone will be able to categorise data however they want. Any discipline, any culture, any theory will be able to categorise data in its own way, to allow diversity, using a single metalanguage, to ensure interoperability. This will automatically generate ecosystems of ideas that will be navigable with all their semantic relations. You will be able to compare different ecosystems of ideas according to their data and the different ways of categorising them. You will be able to chose different perspectives and approaches. For example, the same people interpreting different sets of data, or different people interpreting the same set of data. IEML ensures the interoperability of all ecosystem of ideas. On one hand you have the greatest possibility of diversity, and on the other you have computability and semantic interoperability. I think that it will be a big improvement for the human sciences because today the human sciences can use statistics, but it is a purely quantitative method. They can also use automatic reasoning, but it is a purely logical method. But with IEML we can compute using semantic relations, and it is only through semantics (in conjunction with logic and statistics) that we can understand what is happening in the human realm. We will be able to analyse and manipulate meaning, and there lies the essence of the human sciences.

Let’s talk about the current stage of development of IEML: I know it’s early days, but can you outline some of the applications or tools that may be developed with this metalanguage?

Is still too early; perhaps the first application may be a kind of collective intelligence game in which people will work together to build the best ecosystem of ideas for their own goals.

I published The Semantic Sphere in 2011. And I finished the grammar that has all the mathematical and algorithmic dimensions six months ago. I am writing a second book entitled Algorithmic Intelligence, where I explain all these things about reflexivity and intelligence. The IEML dictionary will be published (online) in the coming months. It will be the first kernel, because the dictionary has to be augmented progressively, and not just by me. I hope other people will contribute.

This IEML interlinguistic dictionary ensures that semantic networks can be translated from one natural language to another. Could you explain how it works, and how it incorporates the complexity and pragmatics of natural languages?

The basis of IEML is a simple commutative algebra (a regular language) that makes it computable. A special coding of the algebra (called Script) allows for recursivity, self-referential processes and the programming of rhizomatic graphs. The algorithmic grammar transforms the code into fractally complex networks that represent the semantic structure of texts. The dictionary, made up of terms organized according to symmetric systems of relations (paradigms), gives content to the rhizomatic graphs and creates a kind of common coordinate system of ideas. Working together, the Script, the algorithmic grammar and the dictionary create a symmetric correspondence between individual algebraic operations and different semantic networks (expressed in natural languages). The semantic sphere brings together all possible texts in the language, translated into natural languages, including the semantic relations between all the texts. On the playing field of the semantic sphere, dialogue, intersubjectivity and pragmatic complexity arise, and open games allow free regulation of the categorisation and the evaluation of data. Ultimately, all kinds of ecosystems of ideas – representing collective cognitive processes – will be cultivated in an interoperable environment.

start-ieml

Schema from the START – IEML / English Dictionary by Prof. Pierre Lévy FRSC CRC University of Ottawa 25th August 2010 (Copyright Pierre Lévy 2010 (license Apache 2.0)

Since IEML automatically creates very complex graphs of semantic relations, one of the development tasks that is still pending is to transform these complex graphs into visualisations that make them usable and navigable.

How do you envisage these big graphs? Can you give us an idea of what the visualisation could look like?

The idea is to project these very complex graphs onto a 3D interactive structure. These could be spheres, for example, so you will be able to go inside the sphere corresponding to one particular idea and you will have all the other ideas of its ecosystem around you, arranged according to the different semantic relations. You will be also able to manipulate the spheres from the outside and look at them as if they were on a geographical map. And you will be able to zoom in and zoom out of fractal levels of complexity. Ecosystems of ideas will be displayed as interactive holograms in virtual reality on the Web (through tablets) and as augmented reality experienced in the 3D physical world (through Google glasses, for example).

I’m also curious about your thoughts on the social alarm generated by the Internet’s enormous capacity to retrieve data, and the potential exploitation of this data. There are social concerns about possible abuses and privacy infringement. Some big companies are starting to consider drafting codes of ethics to regulate and prevent the abuse of data. Do you think a fixed set of rules can effectively regulate the changing environment of the algorithmic medium? How can IEML contribute to improving the transparency and regulation of this medium?

IEML does not only allow transparency, it allows symmetrical transparency. Everybody participating in the semantic sphere will be transparent to others, but all the others will also be transparent to him or her. The problem with hyper-surveillance is that transparency is currently not symmetrical. What I mean is that ordinary people are transparent to big governments and big companies, but these big companies and big governments are not transparent to ordinary people. There is no symmetry. Power differences between big governments and little governments or between big companies and individuals will probably continue to exist. But we can create a new public space where this asymmetry is suspended, and where powerful players are treated exactly like ordinary players.

And to finish up, last month the CCCB Lab held began a series of workshops related to the Internet Universe project, which explore the issue of education in the digital environment. As you have published numerous works on this subject, could you summarise a few key points in regard to educating ‘digital natives’ about responsibility and participation in the algorithmic medium?

People have to accept their personal and collective responsibility. Because every time we create a link, every time we “like” something, every time we create a hashtag, every time we buy a book on Amazon, and so on, we transform the relational structure of the common memory. So we have a great deal of responsibility for what happens online. Whatever is happening is the result of what all the people are doing together; the Internet is an expression of human collective intelligence.

Therefore, we also have to develop critical thinking. Everything that you find on the Internet is the expression of particular points of view, that are neither neutral nor objective, but an expression of active subjectivities. Where does the money come from? Where do the ideas come from? What is the author’s pragmatic context? And so on. The more we know the answers to these questions, the greater the transparency of the source… and the more it can be trusted. This notion of making the source of information transparent is very close to the scientific mindset. Because scientific knowledge has to be able to answer questions such as: Where did the data come from? Where does the theory come from? Where do the grants come from? Transparency is the new objectivity.

Blog of Collective Intelligence (since 2003)

pierre_levy

Pierre Lévy is a philosopher and a pioneer in the study of the impact of the Internet on human knowledge and culture. In Collective Intelligence. Mankind’s Emerging World in Cyberspace, published in French in 1994 (English translation in 1999), he describes a kind of collective intelligence that extends everywhere and is constantly evaluated and coordinated in real time, a collective human intelligence, augmented by new information technologies and the Internet. Since then, he has been working on a major undertaking: the creation of IEML (Information Economy Meta Language), a tool for the augmentation of collective intelligence by means of the algorithmic medium. IEML, which already has its own grammar, is a metalanguage that includes the semantic dimension, making it computable. This in turn allows a reflexive representation of collective intelligence processes.

In the book Semantic Sphere I. Computation, Cognition, and Information Economy, Pierre Lévy describes IEML as…

View original post 2,744 more words

Rothko

Interview with Nelesi Rodriguez, published in spanish in the academic journal Comunicacion , Estudios venezolanos de comunicación • 2º trimestre 2014, n. 166

Collective intelligence in the digital age: A revolution just at its beginning

Pierre Lévy (P.L.) is a renowned theorist and media scholar. His ideas on collective intelligence have been essential for the comprehension of some phenomena of contemporary communication, and his research on Information Economy Meta Language (IEML) is today one of the biggest promises of data processing and of knowledge management. In this interview conducted by the team of the Comunicación(C.M.) magazine, he explained to us some of the basic points of his theory, and gave us an interesting reading on current topics related to communication and digital media. Nelesi Rodríguez, April 2014.

APPROACH TO THE SUBJECT MATTER

C.M: Collective intelligence can be defined as shared knowledge that exists everywhere, that is constantly measured, coordinated in real time, and that drives the effective mobilization of several skills. In this regard, it is understood that collective intelligence is not a quality exclusive to human beings. In what way is human collective intelligence different from other species’ collective intelligence?

P.L: You are totally right when you say that collective intelligence is not exclusive to human race. We know that the ants, the bees, and in general all social animals have got collective intelligence. They solve problems together, and –as social animals-, they are not able to survive alone and this is also the case with human species; we are not able to survive alone and we solve problems together.

But there is a big difference that is related to the use of language: Animals are able to communicate, but they do not have language, I mean, they cannot ask questions, they cannot tell stories, they cannot have dialogues, they cannot communicate about their emotions, their fears, and so on.

So there is the language, that is specific to the human kind, and with the language you have of course better communication and an enhanced collective intelligence; and you have also all that comes with this linguistic ability, that is the technology, the complexity of social institutions –like law, religion, ethics, economy… All these things that animals don`t have. This ability to play with symbolic systems, to play with tools and to build complex social institutions, creates a much more powerful collective intelligence for the humans.

Also, I would say that there are two important features that come from the human culture: The first is that human collective intelligence can improve during history, because each new generation can improve the symbolic systems, the technology, and the social institutions; so there is an evolution of human collective intelligence and, of course, we are talking about a cultural evolution, not a biological evolution. And then, finally, and maybe the most important feature of human collective intelligence, is that each unit of the human collectivity has an ability to reflect, to think by itself. We have individual consciousness, unfortunately for them, the ants don`t; so the fact that the humans have individual consciousness creates at the level of the social cognition something that it is very powerful. That is the main difference between human and animal collective intelligence.

C.M: Do the writing and digital technologies also contribute to this difference?

P.L: In the oral culture, there was certain kind of transmission of knowledge, but of course, when we invented the writing systems we were able to accumulate much more knowledge to transmit to the next generations. With the invention of the diverse writing systems, and then their improvements -like the invention of the alphabet, the invention of the paper, the printing press, and then the electronic media- human collective intelligence expanded. So, for example, the ability to build libraries, to build scientific coordination and collaboration, the communication supported by the telephone, the radio, the television makes human collective intelligence more powerful, and I think that it will be the main challenge our generation and the next will have to face: to take advantage of the digital tools; the computer, the internet, the smartphones, et caetera; to discover new ways to improve our cognitive abilities, our memory, our communication, our problem solving abilities, our abilities to coordinate and collaborate, and so on.

C.M: In an interview conducted by Howard Rheingold, you mentioned that every device and technology that have the purpose of enhancing language also enhance collective intelligence and, at the same time, have an impact on cognitive skills such as memory, collaboration and the ability to connect with one another. Taking this into account:

  • It is said that today, the enhancement of cognitive abilities manifests in different ways: from fandoms and wikis, to crowdsourcing projects that are created with the intent of finding effective treatments for serious illnesses. Do you consider that every one of these manifestations contribute in the same way towards the expansion of our collective intelligence?

P.L: Maybe the most important sector where we should put particular effort is scientific research and learning, because we are talking about knowledge, so the most important part is the creation of knowledge, the dissemination of knowledge or, generally, the collective and individual learning.

Today there is a transformation of communication in the scientific community; more and more journals are open and online, people are doing virtual teams, they communicate by internet, people are using big amounts of digital data, and they are processing this data with computer power; so we are already witnessing this augmentation, but we are just at the beginning of this new approach.

In the case of learning I think it is very important that we recognize the emergence of new ways of learning online collaboratively, where people who want to learn are helping each other, are communicating, are accumulating common memories from where they can take what is interesting for them. This collective learning is not limited to schools; it happens in all kinds of social environments. We could call this “knowledge management”, and there is an individual or personal aspect of this knowledge management that some people call “personal knowledge management”: choosing the right sources on the internet, featuring the sources, categorizing information, doing synthesis, sharing these synthesis on social media, looking for a feedback, initiating a conversation, and so on. We have to realize that learning is and always has been an individual process at is core. Someone has to learn; you cannot learn for someone else. Help other people to learn, this is teaching; but the learner is doing the real work. Then, if the learners are helping each other, you have a process of collective learning. Of course, it works better if these people are interested in the same topics or if they are engaged in the same activities.

Collective learning augmentation is something that is very general and that has increased with the online communication. It also happens at the political level; there is an augmented deliberation, because people can discuss easily on the internet and also there is an enhanced coordination (for public demonstrations and similar things).

  • M: With the passage of time, collective intelligence becomes less a human quality and more one akin to machines; this affair worries more than one individual. What is your stance in the wake of this reality?

P.L: There is a process of artificialization of cognition in general that is very old; it began with the writing, with books; it is already a kind of externalization or objectification of memory. I mean, a library, for instance, is something that is completely material, completely technical, and without libraries we would be much less intelligent.

We cannot be against libraries because instead of being pure brain they are just paper, and ink, and buildings, and index cards. Similarly, it makes no sense that we “revolt” against computer and against the internet. It is the same kind of reasoning than with the libraries, it is just another technology, more powerful, but it is the same idea. It is an augmentation of our cognitive ability -individual and collective-, so it is absurd to be afraid of it.

But we have to distinguish very clearly the material support and the texts. The texts come from our mind, but the text that is in my mind can be projected on paper as well as in a computer network. What it is really important here is the text.

IEML AND THE FUTURE OF COLLECTIVE INTELLIGENCE

C.M: You’ve mentioned before that what we define today as the “semantic web”, more than being based on semantic principles, is based on logical principles. According to your ideas, this represents a roadblock in making the most out of the possibilities offered by digital media. As an alternative, you proposed the IEML (Information Economy Meta Language).

  • Could you elaborate on the basic differences between the semantic web and the IEML?

P.L: The so called “semantic web” –in fact, people call it now “web of data”, and it is a better term for it– is based on very well known principles of artificial intelligence that were developed in the 70s, the 80s, and that were adapted to the web.

Basically, you have a well-organized database, and you have rules to compute the relations between different parts of the database, and these rules are mainly logical rules. IEML works in a completely different manner: you have as many data as you want, and you categorize this data in IEML.

IEML is a language, not a computer language, but an artificial human language. So you can say “the sea”, “this person”, or anything… There are words in IEML, there are no words in the semantic web formats, it doesn’t work like this.

In this artificial language that is IEML, each word is in semantic relations with the other words in the dictionary. So, all the words are intertwined by semantic relations, and are perfectly defined. When you use these words, create sentences, or create texts; you create new relationships between the words, grammatical relationships.

And from texts written in IEML you have algorithms that make automatic relations inside those sentences, from one sentence to the other, and so on. So you have a whole semantic network inside the text that is automatically computed, and even more, you can automatically compute the semantic relations between any text and any library of texts.

An IEML text automatically creates its own semantic relations with all the other texts, and these texts in IEML can automatically translate themselves into natural languages; Spanish, English, Portuguese or Chinese… So, when you use IEML to categorize data, you create automatically semantic links between the data; with all the openness, the subtleness, and the ability to say exactly what you want that language can offer you.

You can categorize any type of content; images, music, software, articles, websites, books, any kind of information. You can categorize these in IEML and at the same time you create links within the data because of the links that are internal to the language.

  • M: Can we consider metatags, hashtags, and Twitter lists as a precedent to the IEML?

P.L: Yes, exactly. I have been inspired by the fact that people are already categorizing data. They started doing this with social bookmarking sites, such as del.icio.us. The act of curation today goes with the act of categorization, of tagging. We do this very often on Twitter, and now we can do it on Facebook, on Google Plus, on Youtube, on Flickr, and so on. The thing is that these tags don`t have the ability to interconnect with other tags and to create a big and consistent semantic network. In addition, these tags are in different natural languages.

From the point of view of the user, it will be the same action, but tagging in IEML will just be more powerful.

  • M: What will the IEML’s initial array of applications be?

P.L: I hope the main applications will be in the creation of collective intelligence games; games of categorization and evaluation of data; a sort of collective curation that will help people to create a very useful memory for their collaborative learning. That, for me, would be the most interesting application, and of course, the creation of a inter-linguistic or trans-linguistic environment.

BIG DATA AND COLLECTIVE INTELLIGENCE

C.M: You’ve referred to big data as one of the phenomena that could take collective intelligence to a whole new level. You’ve mentioned as well that in fact this type of information can only be processed by powerful institutions (governments, corporations, etc.), and that only when the capacity to read big data is democratized, will there truly be a revolution.

Would you say that the IEML will have a key role in this process of democratization? If so, why?

P.L: I think that currently there are two important aspects of big data analytics: First, we have more and more data every day. We have to realize this. And, second, the main producer of this immense flow of data is ourselves. We, the users of the Internet are producing data. So currently lots of people are trying to make sense of this data and here you have two “avenues”:

First is the avenue that is more scientific. In natural sciences you have a lot of data –genetic data, data coming from physics or astronomy-, and also something that is relatively new; the data coming from human sciences. This is called “digital humanities”, and it takes data from spaces like social media and tries to make sense of it from a sociological point of view. Or you take data from libraries and you try to make sense of it from a literary or historical point of view. This is one application.

The second application is in business, in administration –private or public. You have many companies that are trying to sell services to companies and to governments.

I would say that there are two big problems with this landscape:

The first is related to the methodology; today we use mainly statistical methods and logical methods. It is very difficult to have a semantic analysis of the data, because we do not have a semantic code, and let’s remember that every thing we analyze is coded before we analyze it. So you can code quantitatively and you have statistical analysis, code logically and you have logical analysis. So you need a semantic code to have a semantic analysis. We do not have it yet, but I think that IEML will be that code.

The second problem is the fact that this analysis of data is currently in the hands of very powerful or rich players –big governments, big companies. It is expensive and it is not easy to do –you need to learn how to code, you need to learn how to read statistics…

I think that with IEML –because people will be able to code semantically the data– people will also be able to do semantic analysis with the help of the right user-interfaces. They will be able to manipulate this semantic code in natural language, it will be open to everybody.

This famous “revolution of big data” is just at its beginning. In the coming decades there will be much more data and many more powerful tools to analyze it. And it will be democratized; the tools will be open and free.

A BRIEF READING OF THE CURRENT SITUATION IN VENEZUELA

C.M: In the interview conducted by Howard Rheingold, you defined collective intelligence as a synergy between personal and collective knowledge; as an example, you mentioned the curation process that we, as users of social media, develop and that in most cases serves as resource material for others to use. Regarding this particular issue, I’d like to analyze with you this particular situation using collective intelligence:

During the last few months, Venezuela has suffered an important information blackout, product of the government’s monopolized grasp of the majority of the media outlets, the censorship efforts made by the State’s organisms, and the self-imposed censorship of the last independent media outlets of the country. As a response to this blockade, Venezuelans have taken upon themselves to stay informed by invading the digital space. In a relatively short period of time, various non-standard communication networks have been created, verified source lists have been consolidated, applications have been developed, and a sort of ethics code has been established in order to minimize the risk of spreading false information.

Based on your theory on collective intelligence, what reading could you give of this phenomenon?

P.L: You have already given a response to this; I have nothing else to say. Of course I am against any kind of censorship. We have already seen that many authoritarian regimes do not like the internet, because it represents an augmentation of freedom of expression. Not only in Venezuela but in fact in different countries, governments have tried to limit free expression and the people that are politically active and that are not pro-government have tried to organize themselves through the internet. I think that the new environment created by social media –Twitter, Facebook, Youtube, the blogs, and all the apps that help people find the information they need– helps to the coordination and the discussion inside all these opposition movements, and this is the current political aspect of collective intelligence.

The-Way-to-Go

WeAreASocialNetwork

Here is the link.

Pierre Lévy comenta os protestos no Brasil: ‘Uma consciência surgiu. Seus frutos virão a longo prazo’

RIO – A resposta ao pedido de entrevista é direta: “O único jeito é via Twitter”, disse o filósofo francês Pierre Lévy, uma das maiores autoridades do mundo nos estudos da cibercultura. E assim foi feito. Lévy conversou com O GLOBO na tarde de segunda, via Twitter, sobre os protestos que vêm ocorrendo no Brasil nas últimas semanas e que surgiram das redes sociais.

Nos últimos anos, muitos protestos emergiram da internet para as ruas. Como o senhor os compararia com manifestações do passado, como Maio de 1968?

Há uma nova geração de pessoas bem educadas, trabalhadores com conhecimento, usando a internet e que querem suas vozes ouvidas. A identificação com 68 está no fenômeno geracional e na revolução cultural. A diferença é que não são as mesmas ideologias.

Mas qual é a nova ideologia? No Brasil, críticos falam da dificuldade em identificar uma ideologia única nas ruas.

Uma comunicação sem fronteiras, não controlada pela mídia. Uma identidade em rede. Mais inteligência coletiva e transparência. Outro aspecto dessa nova ideologia é o “desenvolvimento humano”: educação, saúde, direitos humanos etc.

E qual seria a solução? Como os governos devem lidar com os protestos?

Lutar com mais força contra a corrupção, ser mais transparente, investir mais em saúde, educação e infraestrutura. Porém, a “solução” não está apenas nas mãos dos governos. Há uma mudança cultural e social “autônoma” em jogo.

No Brasil, um dos problemas é que não há líderes para dialogar. Qual seria a melhor forma de se comunicar com movimentos sem lideranças?

A falta de líderes é um sinal de uma nova maneira de coordenar, em rede. Talvez nós não necessitemos de um líder. Você não deve esperar resultados diretos e imediatos a partir dos protestos. Nem mudanças políticas importantes. O que é importante é uma nova consciência, um choque cultural que terá efeitos a longo prazo na sociedade brasileira.

E as instituições? Elas não são mais necessárias? É possível ter democracia sem instituições?

É claro que precisamos de instituições. A democracia é uma instituição. Mas talvez uma nova Constituição seja uma coisa boa. Porém, sua discussão deve ser ainda mais importante do que o resultado. A revolta brasileira está acima de qualquer evento emocional, social e cultural. É o experimento de uma nova forma de comunicação.

Então, o senhor vê os protestos como o início de um tipo de revolução?

Sim, é claro. Ultrapassou-se uma espécie de limite. Uma consciência surgiu. Mas seus frutos virão a longo prazo.

O que separa a democracia nas comunicações da anarquia? Pode-se desconfiar do que é publicado na mídia, mas o que aparece nas redes sociais é ainda menos confiável.

Você não confia na mídia em geral, você confia em pessoas ou em instituições organizadas. Comunicação autônoma significa que sou eu que decido em quem confiar, e ninguém mais. Eu consigo distinguir a honestidade da manipulação, a opacidade da transparência. Esse é o ponto da nova comunicação na mídia social.

O senhor teme que os governos tentem controlar as redes sociais por causa de protestos como os que ocorrem no Brasil e na Turquia?

Eu não temo nada. É normal que qualquer força social e política tente tirar vantagem da mídia social. Mas é impossível “controlar” a mídia social como se faz com a mídia tradicional. Você só pode “tentar” influenciar tendências de opiniões.

E e o risco de regimes ou ideias totalitaristas ganharem força por conta dos protestos, como já ocorreu no passado na América Latina?

Isso é pouco provável no Brasil, por conta de sua alta taxa de pessoas com educação. A chave é, como sempre, manter a liberdade de expressão, como ela é garantida pela lei. Não é preciso ter essa paranoia com o fascismo.

An interesting comment, in portuguese.

Some people ask why I say “alta taxa de pessoas com educação” about Brazil. My answer is: everything is relative. Brazilians are much more educated now than they were 30 years ago!