

Developing Software
for Symbian OS
An Introduction to Creating Smartphone
Applications in C++

Steve Babin

With
Richard Harrison

Head of Symbian Press

Phil Northam

Managing Editor

William Carnegie

Developing Software for Symbian OS

TITLES PUBLISHED BY SYMBIAN PRESS

� Wireless Java for Symbian Devices
Jonathan Allin
0471 486841 512pp 2001 Paperback

� Symbian OS Communications Programming
Michael J Jipping
0470 844302 418pp 2002 Paperback

� Programming for the Series 60 Platform and Symbian OS
Digia
0470 849487 550pp 2002 Paperback

� Symbian OS C++ for Mobile Phones, Volume 1
Richard Harrison
0470 856114 826pp 2003 Paperback

� Programming Java 2 Micro Edition on Symbian OS
Martin de Jode
0470 092238 498pp 2004 Paperback

� Symbian OS C++ for Mobile Phones, Volume 2
Richard Harrison
0470 871083 448pp 2004 Paperback

� Symbian OS Explained
Jo Stichbury
0470 021306 448pp 2004 Paperback

� Programming PC Connectivity Applications for Symbian OS
Ian McDowall
0470 090537 480pp 2004 Paperback

� Rapid Mobile Enterprise Development for Symbian OS
Ewan Spence
0470 014857 324pp 2005 Paperback

� Symbian for Software Leaders
David Wood
0470 016833 328pp 2005 Hardback

Developing Software
for Symbian OS
An Introduction to Creating Smartphone
Applications in C++

Steve Babin

With
Richard Harrison

Head of Symbian Press

Phil Northam

Managing Editor

William Carnegie

Copyright 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except under the terms of the Copyright, Designs and
Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency
Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of
the Publisher. Requests to the Publisher should be addressed to the Permissions
Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex
PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold on the understanding that the Publisher is not engaged
in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore
129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

Babin, Steve.
Developing Software for Symbian OS : an introduction to creating

smartphone applications in C++ / Steve Babin with Richard Harrison.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-0-470-01845-3 (pbk. : alk. paper)
ISBN-10: 0-470-01845-3 (pbk. : alk. paper)
1. Mobile communication systems--Computer programs. 2. Operating systems
(Computers) 3. C++ (Computer program language) I. Harrison, Richard. II.
Title.
TK6570.M6B33 2005
621.3845’6 – dc22

2005021401

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13: 978-0-470018-45-3
ISBN-10: 0-470018-45-3

Typeset in 10/12pt Optima by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Bell & Bain, Glasgow
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

Contents

Foreword ix

Author Biography xi

Author Acknowledgements xiii

Symbian Press Acknowledgements xv

1 Smartphones and Symbian OS 1
1.1 Smartphone Concept 2
1.2 Smartphone Features 2
1.3 Smartphone Messaging 6
1.4 Web Browsing 7
1.5 Local Device Communication Features 8
1.6 The Mobile OS 9
1.7 Symbian – A Little History 10
1.8 Symbian OS Smartphones 13
1.9 Other Smartphone Operating Systems 16

2 Symbian OS Quick Start 19
2.1 What Do You Need to Get Started? 19
2.2 Firing Up the Development Tools 24
2.3 Simple Example Application 31
2.4 Building and Executing on the Emulator 50
2.5 Building for the Smartphone 51

vi CONTENTS

3 Symbian OS Architecture 55
3.1 Components in Symbian OS 55
3.2 Multitasking in Symbian OS 56
3.3 Dynamic Link Libraries 57
3.4 Client/Server Model 59
3.5 Memory in Symbian OS 60
3.6 The Kernel 66
3.7 Active Objects and Asynchronous Functions 69
3.8 What Is a Polymorphic DLL? 70
3.9 GUI Architecture 72
3.10 High Performance Graphics 75
3.11 The Communication Architecture 75
3.12 Application Engines, Services and Protocols 79

4 Symbian OS Programming Basics 81
4.1 Use of C++ in Symbian OS 81
4.2 Nonstandard C++ Characteristics 82
4.3 Basic Data Types 82
4.4 Symbian OS Classes 83
4.5 Exception Error Handling and Cleanup 88
4.6 Libraries 103
4.7 Executable Files 108
4.8 Naming Conventions 110
4.9 Summary 112

5 Symbian OS Build Environment 115
5.1 SDK Directory Structure 115
5.2 Build System Overview 117
5.3 Build Targets 118
5.4 Basic Build Flow 119
5.5 What Is a UID? 123
5.6 The Emulator 124
5.7 Building DLLs 128
5.8 DLL Interface Freezing 131
5.9 Installing Applications on the Smartphone 136
5.10 Switching Between SDKs 147

6 Strings, Buffers and Data Collections 151
6.1 Introducing the Text Console 151
6.2 Descriptors for Strings and Binary Data 154
6.3 The Descriptor Classes 158
6.4 Descriptor Methods 172
6.5 Converting Between 8-bit and 16-bit Descriptors 186

CONTENTS vii

6.6 Dynamic Buffers 186
6.7 Arrays 191
6.8 Other Data Collection Classes 200

7 Processes, Threads
and Synchronization 203
7.1 Processes 203
7.2 Using Threads 213
7.3 Sharing Memory Between Processes 220
7.4 Memory Chunks 223
7.5 Thread Synchronization 228

8 Asynchronous Functions and Active Objects 235
8.1 Asynchronous Functions 235
8.2 Introducing Active Objects 237
8.3 The Active Scheduler 241
8.4 Active Scheduler Error Handling 246
8.5 Active Object Priorities 247
8.6 Canceling Outstanding Requests 247
8.7 Removing an Active Object 248
8.8 Active Object Example 249
8.9 Active Object Issues 256
8.10 Using Active Objects as Threads 258

9 Client/Server Framework 267
9.1 Client/Server Overview 268
9.2 A Look at the Client/Server Classes 268
9.3 Client/Server Example 270
9.4 Subsessions of the Server 287

10 Symbian OS TCP/IP Network Programming 293
10.1 Introduction to TCP/IP 294
10.2 Network Programming Using Sockets 296
10.3 Symbian OS Socket API 304
10.4 Example: Retrieving Weather Information 315
10.5 Making a Network Connection 322

11 GUI Application Programming 325
11.1 Symbian OS User Interfaces 325
11.2 Anatomy of a GUI Application 332
11.3 Application Classes 333
11.4 Resource Files 340
11.5 Dialogs 348
11.6 Symbian OS Controls 372

viii CONTENTS

11.7 View Architecture 387
11.8 Application Icon and Caption 391

Appendix 1 Specifications of Symbian OS Phones 395

Appendix 2 Security in Symbian OS v9 425

Index 431

Foreword

By the end of March 2005, shipments of Symbian OS phones exceeded
an average of two million per month, and cumulative shipments since
Symbian’s formation reached 32 million phones. Also at that time, there
were more than 4500 commercially available, third-party applications for
Symbian OS phones. Year on year, phone shipments have been virtually
doubling – and that trend appears likely to continue, or even increase,
for the foreseeable future.

These figures would suggest that Symbian OS is approaching maturity
as the preferred operating system for high- and mid-range mobile phones,
and that it offers an ideal platform to developers, on which they can
create new and imaginative applications.

Symbian OS is a powerful, open operating system, which means that
anyone with the right knowledge, skills and tools can create exciting
new applications which will run on any Symbian OS phone. However,
precisely because of that power and openness, the task of acquiring
the necessary knowledge and skills can be a daunting prospect for a
newcomer. Symbian Press aims to ease that task by providing a series
of informative texts, covering a wide range of Symbian OS topics, at a
variety of levels.

This book represents two milestones for Symbian Press: it is our first
book to be written specifically for beginners in Symbian OS development,
and it is the first Symbian OS C++ text in the series to have been written
by an author who has not spent at least part of his working life as a
developer at Symbian Ltd.

These two facts are not entirely unrelated; Steve’s background means
that he is ideally positioned to understand the problems facing a developer
who is approaching Symbian OS for the first time. In consequence, this
book provides valuable and practical answers at all stages, from obtaining
and setting up a development system to the production of an installable
multilingual application.

x FOREWORD

This book, however, is not just a beginner’s guide. In addition
to explaining the basic principles, it also describes the underlying
mechanisms of a wide range of Symbian OS features, and covers a
selection of these topics to a much greater depth than would be expected
in an introductory text. As a result, this is a book that will be of continuing
value to any Symbian OS application developer.

Richard Harrison

Author Biography

Steve Babin works at IBM developing embedded enterprise software
for smartphones based on Symbian OS. He has a BSEE from Louisiana
State University and over 19 years’ software leadership and development
experience on a variety of products – including medical devices, Java
accelerators, avionics, Internet appliances, and system-on-chip silicon
devices – using numerous embedded operating systems. Steve is married
to Sharon and has a daughter named Hillary. They live in Austin, Texas.

Author Acknowledgements

It’s surprising how much work a book is to write, and this one would
not have been possible without the help of some very talented people.
Working with Symbian Press and Wiley has been a great experience
for me – their enthusiasm for the book and their timely and thorough
responses have been exceptional. Many thanks to William Carnegie,
Freddie Gjertsen and Philip Northam at Symbian Press and Sally Tickner
at Wiley for their hard work, and thanks to all others who have contributed
to the book.

I especially want to thank Richard Harrison at Symbian Press for his
invaluable contribution. It’s been a pleasure working with someone who
is not only very knowledgeable on Symbian OS programming but is an
excellent writer as well. His help in pointing out technical problems and
making a complex subject more readable has greatly improved the book.

I also want to thank Brian Jepson whose excitement and enthusiasm
for smartphones, as well as his fresh perspective on Symbian OS, helped
me greatly with the earlier chapters. Also, thanks to Nick Tait for his
technical review of some of the earlier chapters.

Last but definitely not least, I want to thank my wife Sharon and
daughter Hillary for putting up with me while writing this book on early
mornings, late nights and weekends. They have been very supportive, but
have been looking forward to its completion so I can spend more time
with them. I’ll make up for it!

Symbian Acknowledgements

Symbian Press would like to thank Steve Babin for tenaciously toiling in
Texas, on this taxing tome. We also extend our warmest thanks to Richard
Harrison, a veritable pioneer of the development frontier, who skilfully
wrangled some of the more recalcitrant chapters into shape. The lasso
of gratitude must also fall on the shoulders of Phil N, Phil S and Freddie
G, for their effervescent and, indeed, incoherent banter, depending on
which round it was.

1
Smartphones and Symbian OS

Symbian OS is a full-featured mobile operating system that resides in
most of today’s smartphones. The demand for smartphone software is
growing as these devices become more powerful and more widely used.

While Symbian OS-based smartphones are shipped with a variety of
useful applications built in, an exciting aspect of these phones is that
they are ‘open’. This means that users can download, install and uninstall
applications written by third-party developers (or by the users themselves).
No special carrier service or device manufacturer’s agreement is needed
to distribute new smartphone applications – they can be downloaded by
the user from a PC to the smartphone through a link such as USB or
using Bluetooth technology (limited by the smartphone’s storage space,
of course).

Symbian OS provides a great opportunity for software developers
since smartphone users are always looking for good applications for
their devices. There is a growing list of Symbian OS software titles
available as freeware or as paid downloads on numerous Internet sites
(www.handango.com and www.epocware.com are good examples).
Available smartphone applications range from productivity, entertain-
ment, multimedia and communications software to programs that can
count fast food calories, improve your golf swing, keep diaries and cal-
culate foreign currency exchange. And – business opportunities aside –
sometimes it’s just plain fun writing your own code to run on your own
smartphone.

The purpose of this book is to help software developers create good
software for Symbian OS-based smartphones. But, before launching into
programming for Symbian OS, this chapter introduces the smartphone
itself and gives an overview of its features and associated technologies.
Understanding the smartphone’s range of features helps the programmer
to exploit them to their full potential.

I’ll also discuss the company Symbian Ltd, give an introduction to
Symbian OS and discuss how Symbian OS and other operating systems
fit into the marketplace.

2 SMARTPHONES AND SYMBIAN OS

1.1 Smartphone Concept

A mobile phone that fits in your pocket and lets you communicate
from and to anywhere in the world is an amazing invention. Like most
inventions, mobile phones are built on a chain of prior technological
advancements. Without advancements such as integrated circuits, micro-
processors, semiconductor miniaturization, battery technology and, of
course, the invention of telephone and radio, the modern mobile phone
would not be possible.

Smartphones combine the mobile phone with another stream of tech-
nology: the computer, which adds the ‘smart’ in smartphone. Computers
have progressed from centralized mainframes to personal computers with
user-downloadable applications and graphical user interfaces. With the
introduction of the Internet and email, the PC is a part of everyday life as
a productivity, entertainment, and communication device. Laptops were
introduced to allow PCs to be portable. Then came the mobile computing
device known as the PDA – a true handheld computer.

Since the PDA and the mobile phone are both mobile devices, it’s only
natural that we would want to combine them into one device. After all,
you only have so much pocket or purse space! This is the basic idea of a
smartphone – but a smartphone is more than just the sum of two devices.

1.2 Smartphone Features

Like PDAs, smartphones can run applications such as organizers, games,
and communications programs (e.g. email, browser). They can, of course,
also make telephone calls. The smartphone’s goal, however, is not just to
limit the number of devices you carry, but also to combine mobile phone
and computing technologies in a synergistic way. A simple example
is the ability to pull up a person’s contact information or even their
picture, hit a button and automatically dial the person’s phone number.
Other examples include taking a picture, adding some text, and sending
it instantly to a PC or another smartphone user. There are many more
examples of this – and certainly many that have not even been thought
of yet.

1.2.1 How Smartphones Communicate

Smartphones, like traditional mobile phones, use radio to communicate
with base towers, which in turn act as gateways into landline-based
communication infrastructures. While traditional mobile phone systems
are based mainly on relaying voice communication between the wireless
handset and the wired telephone infrastructure, smartphones provide
more features that rely on network data transfer. After all, the basic concept

SMARTPHONE FEATURES 3

of the smartphone is to combine a mobile phone with a networked PDA.
Improved data transfer is the current challenge for next generation mobile
communications; unlike voice transfer which, requires a fixed bandwidth,
the rule for data transfer is the faster the better.

1.2.2 Generations of Mobile Communication

With faster data speeds come better services. For example, when the
bandwidth reaches a certain threshold, applications and services that
transfer real-time audio and video become possible. The industry goals
in wireless data communications have been categorized into genera-
tions – each generation includes a target data bandwidth as well as a set
of data services available for it:

• First Generation (1G): Original analog mobile phone technology

• Second Generation (2G): Voice-centric digital systems with increased
coverage and capacity and messaging

• Third Generation Transitional (2.5G): Stepping stone to 3G with
always-on network connections and bandwidths up to 170 Kbps
allowing better Internet browsing, email, and some audio and video;
GPRS has been the dominant technology

• Third Generation (3G)/Fourth Generation (4G): Bandwidths up to
2 Mbps and 200 Mbps respectively for high-end services such as
video teleconferencing.

The topic of wireless communication protocols is vast and could easily
take up another book. But let’s briefly cover some of the key communi-
cation technologies that apply to smartphones.

1.2.3 GSM

GSM, short for Global System for Mobile Communication, is a digital
cell-based communication service that started in Europe, and has quickly
spread throughout most of the world. A notable exception is the US, where
CDMA is the dominant standard; however, GSM is gaining popularity
there. GSM is the most supported protocol in smartphones.

GSM was designed for circuit-switched voice communication. Circuit-
switched means that fixed bandwidth is reserved for each direction of
a phone call for the entire duration of the voice call, whether you are
talking or not.

Although originally designed for voice, GSM now has a variety of
higher bandwidth data services (e.g. GPRS and EDGE) available, running
on top of the base GSM protocol. This allows for faster data transfer, as
we will see shortly.

4 SMARTPHONES AND SYMBIAN OS

The following types of GSM exist, each using its own band in the
frequency spectrum: GSM 850, GSM 900, GSM 1800 and GSM 1900.
The number indicates the frequency band, in MHz, that the protocol
uses. Mobile phones supporting GSM 900 and GSM 1800 will ensure
coverage in Europe and many other areas outside of the US, while GSM
850 and GSM 1900 are used in the US (mostly GSM 1900).

Fortunately, smartphones support multiple bands to ensure as wide a
coverage as possible. It’s common to have tri-band phones that support
GSM 900, GSM 1800 and GSM 1900 to ensure maximum international
coverage – although some still offer separate US models to reduce costs.

A GSM phone uses a Subscriber Identification Module (SIM) to gain
access to the GSM network. A SIM contains all the pertinent information
regarding a user’s account including the services allowed. It is used to
identify the user to the GSM network for billing purposes. The user can
switch their SIM from one GSM phone to another, provided that the
phone is not locked either to a specific carrier or to the carrier that the
SIM is associated with.

1.2.4 CDMA

CDMA, which stands for Code Division Multiple Access, is a mobile
phone standard that competes with GSM. CDMA currently dominates
in the US and Korea, while GSM dominates virtually everywhere else.
CDMA supports a high speed data mode called CDMA2000 1xRTT,
which tends to hover around 50–70 Kbps, bursting up to 144 Kbps. The
forthcoming CDMA2000 1xEV-DO supports rates up to 2.4 Mbps, but
initial reports on the Verizon Wireless network in two test markets (San
Diego and Washington, DC) made in 2003 show probable speeds of
500–800 Kbps, with peak data rates of 1.2 Mbps.

There are some smartphones based on CDMA, such as the Palm Treo
600 (both GSM and CDMA models are available). At the time of writing,
however, there are no CDMA Symbian OS-based smartphones, although
several do support W-CDMA (see Section 1.2.9).

1.2.5 CSD

CSD, short for Circuit Switched Data, is the most basic mode of transfer-
ring data over a circuit-switched connection like GSM. The connection
is established by dialing the number of an ISP, in the same manner that a
dial-up connection is started on a land-based telephone line using a PC
modem. With CSD you do not need an extra data plan to send data, as
you do for GPRS, which costs more (see Section 1.2.6). You can use your
existing voice minutes.

There are two major disadvantages to using CSD, however. First, it
takes a long time to connect since it involves dialing a number and

SMARTPHONE FEATURES 5

waiting for the server to answer the call. Second, it’s slow – data transfer
speed is only about 9.6 Kbps.

In GSM-based smartphones, this mode is referred to as ‘Dial’ or simply
as GSM data. Earlier smartphones such as the Nokia 9290 rely entirely
on this mode of data communication.

1.2.6 GPRS

GPRS, short for General Packet Radio Service, is a wireless technology
that allows the smartphone user to quickly connect to the network and
obtain good data rates. Connection time is fast since GPRS does not
require any dialing (unlike CSD), and the smartphone feels as if it is
always connected.

GPRS runs on top of the GSM protocol. While GSM alone is circuit-
switched, GPRS is based on packet-switching technology. This means
that the radio bandwidth is used only when data is actually transferred,
even though you are constantly connected (circuit-switching keeps the
full bandwidth reserved throughout a connection).

GPRS, in theory, supports bandwidths up to 170 Kbps. In practice,
however, you’ll get between 20 and 60 Kbps depending on network
conditions – but this is still significantly faster than the GSM dialup data
rate! The best way to think of the speed of GPRS is that it matches
approximately with a PC connected to the network via a wired telephone
modem. However, GPRS can feel better than dialup since it connects
almost instantly to the network without the lengthy delay involved in
dialing a number and establishing a call.

GPRS is a highly usable communication feature and a good preview
of future wireless data communication technologies. Since it is a stepping
stone to 3G technology, it is categorized as 2.5G technology. GPRS is
available on most newer smartphones.

1.2.7 HSCSD

HSCSD is the high speed version of CSD. HSCSD is another 2.5G
standard that supplies a comparable speed to that of GPRS (although
on the lower side in many cases), but with a significant difference – the
bandwidth is reserved to the smartphone throughout the connection. This
is because HSCSD, like CSD and GSM, is a circuit-switched technology.
This makes HSCSD better suited for applications that require a constant
bit rate, although the practical bandwidth is rather low for good real-time
multimedia transfers – which benefit the most from constant bit rates.

HSCSD is not widely used due to the high costs of implementation.
The Nokia 6600 and the Motorola A920 are examples of smartphones
that support HSCSD.

6 SMARTPHONES AND SYMBIAN OS

1.2.8 EDGE
EDGE, short for Enhanced Data Rates for GSM Evolution, is a GSM-based
protocol that provides theoretical speeds up to 384 Kbps. It is a 2.5G
technology that is sometimes referred to as 3G because of its higher
speed. It is not yet as widely used as GPRS, but is gaining support. For
example, AT&T has deployed EDGE on its GSM networks in the USA,
reaching speeds of around 90 Kbps in practice. Smartphones such as the
Nokia 9300 and Nokia 6620 support EDGE.

1.2.9 UMTS
UMTS, short for Universal Mobile Telecommunication Services, is a high
speed data transfer protocol which supports bandwidths up 2 Mbps. This
protocol is the basis of third generation mobile communications that
make many media-rich services a possibility. This is where smartphones
will really shine! UMTS is not based on GSM technology – it uses a
technology called W-CDMA. However, the UMTS platform is designed
to work with GSM systems to ease its deployment.

Although it seems slow in coming, once this communication platform
becomes widely implemented, it will revolutionize the way people use
smartphone devices.

1.3 Smartphone Messaging

Text messaging, such as email and instant messaging, is widely used
on PCs connected to the Internet. It makes sense to use similar modes
of communication in mobile devices. Below are the messaging features
supported by smartphones.

1.3.1 SMS
SMS stands for Short Messaging Service. SMS allows mobile phone users
to send and receive short text messages up to 160 characters. These
messages are sent between phones with only a small delay and can occur
even while a voice call is in progress. SMS is well suited to many types of
communication exchange and is less intrusive than making a voice call.
SMS is part of the GSM communication platform and is used by mobile
phones all over the world. SMS is not yet widely used in the United
States, but is slowly growing in popularity. SMS is a standard feature on
today’s smartphones.

1.3.2 MMS
MMS, short for Multimedia Messaging Service, is an extension of SMS
that provides the ability to send media data such as pictures, audio and

WEB BROWSING 7

video along with your text message. MMS is a natural complement to
smartphones due to their audio and video capabilities. For example, a
smartphone user could snap a picture of a landmark, record a quick voice
comment on it and send it instantly to another mobile phone user.

MMS messages can even be sent to people who have only SMS
capability by sending a text link to a browser URL containing the MMS
message. You can also send and receive MMS messages between a
smartphone and an email account used from a PC.

1.3.3 Email

Having the ability to keep up with your email while on the road is a
standard feature found in smartphones. With high resolution scrollable
displays and alphanumeric entry methods, it does not feel much different
from email on a PC. Smartphones allow the user to set up multiple POP3
and IMAP email accounts.

1.3.4 Fax

Many smartphones include the ability to send and receive faxes, or can
be customized to do so with fax software.

1.4 Web Browsing

Internet browsing is a standard feature for smartphones. There are many
different browsers available, and they fall into two main types: WAP
and HTML.

1.4.1 WAP

WAP, which stands for Wireless Application Protocol, was specifi-
cally designed for Internet browsing on resource-constrained devices.
It includes lightweight markup languages designed to minimize the pro-
cessing power and memory needed by the mobile device to render the
web page. WAP also ensures that the page is usable on a small screen.
Markup languages include WML and xHTML (mobile profile).

In many cases, proxy servers are used, which will automatically
translate traditional HTML web sites to the WAP markup language before
transferring to the mobile device. This is known as transcoding.

1.4.2 HTML

Although WAP was very important for earlier mobile devices, smart-
phones today have better memory, processing power and displays.

8 SMARTPHONES AND SYMBIAN OS

Because of this, it is feasible to include traditional HTML browsers
that directly load web sites in their native format similar to a browser on
a PC. Many smartphones have HTML browsers and these usually include
WAP capability – sometimes combined in one browser.

1.5 Local Device Communication Features

Smartphones have a variety of communication features in addition to
basic access to the cellular network. These features allow a smartphone
to directly link with other devices, including PCs, PDAs, wireless headsets
and other smartphones, to undertake a wide variety of data transfer
functions. Below are the popular device-to-device communication means,
along with some of their uses.

1.5.1 USB/Serial Cable Connection

Smartphones can be connected to a PC via either a USB or a serial
cable (varies from phone to phone). This high speed link is normally
used for downloading new applications to the smartphone as well as
synchronizing user data, such as calendar and contact entries. A user
can also access the PC’s high speed network connection directly from
the smartphone for much faster network access than can be achieved
through the cellular network. Many products provide a cradle into which
the smartphone can be plugged, both for PC connectivity and for charging
the phone’s battery.

1.5.2 Infrared (IR)

The smartphone provides the capability to communicate through an
infrared port to a PC or other device such as a PDA. You can do all the
things that can be done with the USB/Serial cable, but without plugging
in any wires. IR requires a line-of-sight connection between the devices
in the same way that a TV remote control does.

1.5.3 Bluetooth

Bluetooth is a short-range radio technology that enables devices to find
and connect to each other. While technologies like GSM replace long
lengths of wire, Bluetooth replaces the rat’s nest of short wires connecting
various pieces of equipment. Unlike infrared, Bluetooth does not require
line of sight and will even communicate through walls.

With Bluetooth technology you can connect more conveniently to
PCs and PDAs to download applications and synchronize user data
than you can with cable or IR. In addition to providing basic PC to

THE MOBILE OS 9

smartphone linkage, Bluetooth technology makes more device-to-device
communication scenarios possible. For instance, you can snap a picture
on your smartphone and send it to a nearby printer for printing. Another
use in a smartphone is in a wireless headset for hands-free operation.

Some smartphones allow themselves to be used as a modem with
access to the cellular network. In this case, a device such as a PC
connects to the smartphone via Bluetooth technology to provide the PC
with Internet connectivity.

As more devices become available, expect many new possibilities for
Bluetooth-enabled smartphones.

1.6 The Mobile OS

In the past, portable devices such as mobile phones did not require
sophisticated operating systems. These earlier devices used simple, and
usually proprietary, system software. In many cases they used no operating
system at all and all software remained fixed in the device’s Read Only
Memory (ROM). Now that mobile devices such as PDAs and smartphones
have greater hardware power and implement sophisticated, media-rich
(downloadable) applications, it’s apparent that a sophisticated operating
system is needed.

1.6.1 What Makes a Good Smartphone OS?

Smartphone devices have certain characteristics that are different from tra-
ditional desktop computers and that must be addressed by a smartphone
operating system:

• Resource-limited hardware Smartphones should be small, have
a long battery life and cost as little as possible. To meet these
requirements, smartphones, like other mobile devices, have limited
memory and processing power as compared to desktop PCs and
laptops. The operating system must be frugal in using hardware
resources – especially memory. Not only must the OS itself use mem-
ory carefully, but the architecture should also provide support to help
OS applications limit their use of memory, as well as allowing them
to handle low-memory situations gracefully.

• Robustness A user expects a mobile phone to be stable and will not
tolerate the device locking up. This is a challenge for any full-featured
operating system due to the complexity of the system software itself;
however, it is especially challenging for resource-limited devices such
as smartphones that also allow third-party applications – which may
be of questionable quality – to be downloaded.

10 SMARTPHONES AND SYMBIAN OS

Not only must the OS itself be designed to avoid crashing, it must
also provide support functions and policies for applications to follow,
allowing the device to handle application errors and (as alluded to before)
out-of-memory situations, without locking up the phone.

• User interface for limited user hardware The OS should implement
a user interface environment that is efficient and intuitive to use,
despite the smaller screen and limited user input capabilities of a
smartphone. Also, screen sizes and input capabilities vary between
different models of smartphones, so the UI architecture should be
flexible, so that it can be customized for the varying form factors.

• Library support Smartphone operating systems should contain mid-
dleware libraries and frameworks with APIs that implement and
abstract the functionality of the features of the smartphone. The
purpose is to provide functional consistency and to ease software
development. Examples of smartphone middleware include libraries
and frameworks for email, SMS, MMS, Bluetooth, cryptography, multi-
media, UI features, and GSM/GPRS – the more support for smartphone
features the better.

• Application development support Smartphone buyers want to know
that there are many good applications available for their device, and
that they can expect more and better software for it in the future.
In order for this to be a reality, the OS must have good software
development tools, support, training and documentation. The more
productive the developers, the more powerful, easy to use and bug-free
applications will appear for the smartphone.

1.7 Symbian – A Little History

The creation of Symbian OS can be traced back to a talented team of
software developers at a company called Psion, an early pioneer in the
handheld computer market. After successive generations of software for
Psion’s handheld devices, the team created an object-oriented operating
system called EPOC, which was designed specifically for the unique
requirements of mobile computing devices.

Psion realized that there was a need for a mobile OS that could be
licensed to other manufacturers for use in their mobile products, and that
their EPOC operating system was well suited for this. At the time, the
mobile phone industry was looking for a general operating system suitable
for mobile phones and was interested in using EPOC. In June 1998, the
software team stepped out on their own with the EPOC operating system
and Symbian was born. Symbian was formed as a joint venture owned
by other major mobile phone manufacturers as well as Psion, with the
primary goal of licensing the EPOC operating system and improving it.

SYMBIAN – A LITTLE HISTORY 11

Fast forward to today, and we find that Symbian’s operating sys-
tem – now known as Symbian OS – is a major player in the smartphone
marketplace, residing in the majority of today’s smartphone devices. Sym-
bian is jointly owned by Nokia, Panasonic, Psion, Samsung, Siemens and
Sony Ericsson which, together, represent a major portion of the mobile
phone industry.

1.7.1 Symbian OS Overview

Symbian OS was designed from the ground up for mobile commu-
nications devices. While some competing operating systems (such as
Microsoft’s Smartphone OS) evolved from operating systems written for
larger, more resource-laden systems, Symbian OS approached it from the
other direction. Symbian’s earlier versions (known as EPOC) would run
on devices with as little as 2 MB of memory.

Symbian OS is a multitasking operating system with features that
include a file system, a graphical user interface framework, multimedia
support, a TCP/IP stack and libraries for all the communication features
found on smartphones.

Symbian OS has software development kits available for third-party
application development. Also, the hardware layers of the operating
system are abstracted, so that phone manufacturers can port the OS to
the specific requirements of their phone.

1.7.2 One OS, Various Flavors

It is challenging to create an operating system that provides common
core capabilities and a consistent programming environment across all
smartphones – yet at the same time allow for manufacturers to differenti-
ate their products. Smartphones come in many different shapes and sizes
with varying screen sizes and user input capabilities; the user interface
software needs to vary to fit these differences.

Symbian OS has a flexible architecture that allows for different user
interfaces to exist on top of the core operating system functionality. Of
course, it is not wise to be too flexible for two reasons: having too many
different user interfaces inhibits code reuse among different devices and
too much work is required by the OEM to create a GUI from scratch for
their smartphone.

So, to give the phone makers a starting point, Symbian created a few
reference platforms, each packaging the Symbian OS core functionality
along with a user interface that matched one of the basic smartphone
form factors (screen size and input capability). This was important in
the beginning; the idea was for smartphone manufacturers to choose
the reference platform that most closely matched their phone’s hardware
characteristics, and use that as a starting point for their own customized

12 SMARTPHONES AND SYMBIAN OS

UI layer. This indeed is what happened, and these reference platforms
were the origin of the main flavors of Symbian OS you see today – Series
60, UIQ and Series 80.

Symbian OS no longer supports the original user interface reference
platforms and the smartphone programmer has no contact with them at
all. Instead, the developer uses the software development kit (SDK) for the
platform supported by the phone. Also, there is no generic Symbian OS
SDK for the developer – all core functionality is included in the particular
platform SDK. A typical platform contains about 80% common Symbian
code and 20% platform-specific code.

Here are the major platforms for Symbian OS:

• Nokia Series 60 This user interface is designed for smartphones
that have small displays (176×208 pixel) and where user input is
performed with the basic phone keys. Nokia based Series 60 on the
Symbian reference design known as Pearl, although Nokia did make
significant modifications to it. Series 60 is a popular Symbian user
interface for lower cost smartphones and resides in the majority of
Symbian OS phones shipped. Phones that use the Series 60 user
interface include the Nokia 6600, 7650, 3650. Nokia also licenses
the Series 60 user interface to other manufacturers – the Sendo X is
an example of a non-Nokia phone that uses Series 60.

• Nokia Series 80 Nokia based the Series 80 on a Symbian reference
design known as Crystal. Series 80 is designed for phones with a
half-VGA screen, a keyboard and hard buttons along the right side of
the screen that have dynamic functions as defined by the application.
The Nokia 9210/9290 and 9300/9500 communicator devices use the
Series 80 user interface.

• UIQ This operating system originated from a Symbian reference
design known as Quartz. UIQ is owned, developed, maintained
and licensed by UIQ Technology AB – a wholly-owned subsidiary
of Symbian Ltd. UIQ is designed for pen-based (i.e. touch screen)
smartphones with quarter-VGA display and no keyboard. A virtual
screen keyboard and handwriting recognition is provided for user
input. The Sony Ericsson P800/P900 and Motorola A920 smartphones
are examples of phones that use UIQ.

Symbian OS no longer supports or maintains the original Pearl, Crystal
and Quartz reference platforms; however, they do maintain an internal
platform known as Techview. This UI is used and maintained internally
by Symbian to validate development, and is the basis of Symbian’s
Training SDKs. Unlike the other UIs, the Training SDK does not support
building for any target phone hardware.

SYMBIAN OS SMARTPHONES 13

1.7.3 Applications

One of the exciting things about smartphones is that you can down-
load and install your own software applications – just like you can
on a PC and PDA. The number and type of Symbian OS applica-
tions are growing rapidly. Current smartphone applications range from
productivity and organizer software, to foreign language translators, mul-
timedia players and editors, games, instant messaging clients, third-party
web browsers and many specialized applications that are useful for
mobile users.

1.8 Symbian OS Smartphones

This section introduces three Symbian OS-based smartphones: the Sony
Ericsson P900, Nokia 6600, and Nokia 9500 Communicator. These
phones each correspond to a different UI series, as described in the last
section, and provide a good sample of the type of smartphones found in
the marketplace. All three phones allow you to download Java and C++
software applications and come with basic organizer and game software.

1.8.1 Sony Ericsson P900

The Sony Ericsson P900 (shown in Figure 1.1) is a pen-based smartphone
that uses the UIQ user interface. It has a 65K color, 280×320 pixel display
with touch screen, virtual keyboard and handwriting recognition, along

Figure 1.1. The Sony Ericsson P900

14 SMARTPHONES AND SYMBIAN OS

with many prepackaged organizer and game applications. The device
plugs into a cradle that is connected to a PC via USB for downloading
applications and synchronizing user data. IR and Bluetooth are also sup-
ported. The P900 has an integrated camera that can both take still pictures
and record video using MPEG-4. It contains a combination WAP/HTML
browser, audio and video playback, email (with attachments), SMS and
MMS. The device contains 16 MB of memory for user storage and supports
an external memory card to expand this.

For communication the P900 supports GSM 800, 1800 and 1900,
GPRS and GSM dialup communication.

1.8.2 Nokia 6600

The Nokia 6600 (shown in Figure 1.2) is a Series 60-based phone with
a 176×208 pixel, 65K color screen. Following on from the Series 60
model, this device has no touch screen and all input is via the numeric
keys as well as two labeled soft-keys.

Like the P900, the device has a camera capable of taking both still
pictures and video. The device has Nokia VPN software as well as digital
rights management functions, so you can buy and play music that uses
this protection. The device has 6 MB of user memory and it is expandable
by a MMC card. In addition, the built-in software includes a WAP browser
and a media player, and it supports email, SMS and MMS. Connectivity
to other devices is supported via Bluetooth technology and IR, as well as
PC connection via USB.

For communication the 6600 supports GSM 800, 1800 and 1900,
GPRS and HSCSD.

Figure 1.2 Nokia 6600

SYMBIAN OS SMARTPHONES 15

Figure 1.3 Nokia 9500

1.8.3 Nokia 9500 Communicator

The Nokia 9500 is the latest smartphone in Nokia’s high-end series of
phones, known as communicators. Communicators look like traditional
mobile phones (although they are a bit heavier), except that the case
opens up into an easy to read landscape display and a QWERTY keyboard.
Communicators use the Series 80 Symbian OS user interface. They have
a 640×200 pixel screen with 4K colors (not a touch screen). The devices
include a WAP and HTML browser as well as email and SMS support.
User input is via the keyboard (this is the easiest smartphone for entering
text) and soft labeled keys along the right side of the display.

The original communicators were Nokia’s 9200 series devices. The
Nokia 9290 supports GSM 1900 for the USA, the Nokia 9210 supports
GSM 900 and 1800.

The 9200 series communicators, while being the easiest to use of
the smartphones due to the large keyboard and screen, have two main
drawbacks: their size (they are referred to affectionately as ‘bricks’) and
their lack of high-speed data transfer (they only support CSD-style dialup).
This however has changed with the recently introduced Nokia 9500 and
9300 communicators.

The Nokia 9500 communicator is smaller and lighter than the 9200
series, and has support for the faster EDGE and GPRS data transfer
mechanisms. Also, impressively, it supports WiFi capability as well as
Bluetooth technology for local communication. The Nokia 9500 is based
on a later version of Symbian OS than the 9200 series phones (v7.0s
rather than v6.0), and includes support for multi-homing – the ability
to be connected to two connections at the same time (e.g. WiFi and
EDGE) – so you may be browsing using EDGE but downloading email
at the same time on WiFi, for example. The Nokia 9500 has 80 MB
of internal memory as well as supporting a MultiMediaCard (MMC). A
camera is also included with this phone.

16 SMARTPHONES AND SYMBIAN OS

Even smaller than the Nokia 9500 communicator is the Nokia 9300.
This phone is the same as a Nokia 9500, except it has no camera and
no WiFi communication. However, this communicator is significantly
smaller and is aimed at users who are attracted to the usability of a com-
municator yet turned off by the size and weight of the previous devices.

1.9 Other Smartphone Operating Systems

The smartphone market is competitive and so, not surprisingly, there are
other choices of smartphone operating system besides Symbian OS. At
the time of writing, Symbian OS enjoys a wide lead in this market, but
competition is expected to become fierce as smartphones become more
popular and manufacturers release more phones not based on Symbian
OS. There are many factors that will determine who will ultimately win
this market (and sadly not all based on who make the best smartphones),
but that’s not the subject of this book.

This section gives a brief overview of three operating systems that
compete with Symbian OS for the smartphone market: Palm OS, Microsoft
Smartphone OS and Linux.

1.9.1 Palm OS
Palm OS is a major player in the PDA market and has probably done
more for creating the mobile handset market than any other company.
The Palm PDA products, which started with the Palm Pilot, are known for
being simple to use. Palm OS, like Symbian OS, was designed specifically
for lower-resource portable devices.

Since Palm is such a major force in the PDA market, and with wireless
communication introduced as early as the Palm VII devices, it’s only
natural that Palm OS would be a good fit for the smartphone market. One
of the biggest advantages is the large number of Palm PDA applications
that exist that also can run on their smartphones. There is also a significant
base of Palm OS application developers and documentation.

The Handspring Treo 600 is an example of a smartphone based on
Palm OS. It supports both GSM and CDMA (via different models). The
Treo 600 has all the standard smartphone features, such as SMS, MMS,
web browsing and email, as well as the ability to connect to a PC via
USB. It has a 160×160 pixel color display, a built-in thumb keyboard
and integrated digital camera.

1.9.2 Microsoft Smartphone OS
There is little doubt that Windows is the dominant operating system
for the PC, but Microsoft is also gaining a presence in mobile com-
puting devices – including smartphones. This started with the creation

OTHER SMARTPHONE OPERATING SYSTEMS 17

of Windows CE for low-resource handheld devices (or other ‘embed-
ded’ devices).

Windows CE uses many of the same APIs and architecture as desktop-
based Windows and includes a subset of the Windows user interface
suitable for handheld devices. They released the Pocket PC as a PDA,
which ran the Windows CE-based OS called Pocket PC OS. Although
not as widely used as Palm devices, Pocket PCs are quite significant in
the PDA market. As of 2003, the Windows CE and Pocket PC operating
systems merged into the Windows Mobile family.

Microsoft also aims to be a dominant player in the smartphone market,
and has released another variation of Windows Mobile called Windows
Mobile Software for Smartphone. As with Palm OS, an advantage of
Windows Mobile is the availability of Pocket PC applications that can
be run on Microsoft-based smartphones. In addition to this, it supports
miniature versions of many of the applications that are dominant in the
desktop PC market – Microsoft Word and Excel, for example.

Other advantages are the large Windows developer base, the abun-
dant programming documentation/knowledge base, and the availability
of powerful development tools that have been tailored from desktop
Windows to work with mobile operating systems.

An example of a smartphone that uses Windows Mobile is the Motorola
MPx200, which has some of the functionality of a Pocket PC, along with
a mobile phone’s voice and messaging capability. This smartphone has a
176×220 pixel 65K color screen and supports GSM and GPRS. Another
example is the Orange SPV.

1.9.3 Linux

Smartphones based on the open-source Linux operating system have
been appearing on the market. There are many advantages to using an
open-source operating system like Linux. No cost and the opportunity
to tap into the Linux open source community is appealing. This has
made Linux grow, not only for the server and PC market space, but also
in the embedded device area including handheld computers. Sharp, for
example, has released Linux-based PDAs. Linux is not likely to dominate
the smartphone market any time soon, but there are smartphones being
released for it and it is likely to be popular in some geographical areas,
such as Asia. Motorola is a notable supporter of Linux and has released
the A760 smartphone based on this OS.

2
Symbian OS Quick Start

This chapter provides a quick start guide for setting up your Symbian
OS development environment, as well as walking through, building and
running an example program.

If you already have your environment set up and have built Symbian
OS software before, then you may be able to skip this chapter. Or, if you
want to delay actual hands-on programming until you get more theory
under your belt, you can return to this chapter later.

2.1 What Do You Need to Get Started?

The following are needed for developing Symbian OS smartphone soft-
ware:

• A PC running Windows XP, 2000 or NT (400+ MHz is recommended).

• The Symbian SDK for your smartphone model.

• A Windows development package (Win32 development tools with an
Integrated Development Environment (IDE)) supported by the SDK.

• A Symbian OS smartphone.

• The PC suite used for communication between the PC and the
smartphone.

2.1.1 Build Tools Overview
Figure 2.1 shows the basic development pieces. Symbian OS software is
developed and built on a host PC. You can build your software to run on
the Symbian OS PC-based emulator that comes with the SDK, or you can
build for the smartphone itself and load your program to the phone via
the PC suite through USB, IR, or Bluetooth.

Once your application is completed, it’s deployed to users as an installation
file, known as a sis file. The user can download this sis file from a PC

20 SYMBIAN OS QUICK START

Symbian OS core and platform-specific API libraries
(target and emulator)

Smartphone target tools
(ARM)

Smartphone Emulator

Symbian generic build system

DebuggerWIN32 build
tools

Windows Development Tools

IDE: Editors, project tools

Symbian OS SDK

Smartphone
Connection

Suite

Smartphone

Development System Host PC

Figure 2.1 Development Tools

to a smartphone using their PC connection suite. Alternatively, they can
retrieve it to the smartphone itself by downloading it from a WAP site or a
website, or receiving it as an email attachment.

2.1.2 What Is the Symbian OS Emulator?

The emulator is a Windows application that implements a smartphone
entirely in software – complete with simulated buttons and display. This
allows you to run and debug Symbian OS software on your PC as opposed
to running on a real device. Why do this?

• You avoid having to download your code to the smartphone for each
code/compile/debug iteration.

• You can take advantage of the debugging support the emulator has,
including single stepping and watch points.

The emulator simulates the actual smartphone fairly well, with some
differences that I will discuss in more detail in Chapter 5. Each SDK has
its own emulator to mimic the smartphone type that it is targeted for.

Figure 2.2 shows a sample emulator screen for the Series 60 platform.

WHAT DO YOU NEED TO GET STARTED? 21

Figure 2.2 Series 60 Emulator

2.1.3 Getting the Symbian OS SDK

Your first priority should be locating the proper SDK for your smart-
phone. Getting it is straightforward – they can be downloaded freely from
the web on the phone manufacturer’s website or the Symbian website
(www.symbian.com/developer/sdks.asp). Normally you need to register
and then click through a license agreement before you can download
the SDK. Make sure you follow all instructions. You may also need to
download versions of Perl and Java runtime software. For example, the
Series 60 platform 2.0 SDK requires ActivePerl 518 and Java Runtime
Environment 1.3.1 to be installed.

2.1.4 Getting the Windows Development Package

The Symbian OS SDK contains all that’s needed for building software
for a smartphone device. It also contains the PC-based emulator; how-
ever, in order to build and debug software for the emulator, you need
a supported Windows development system. The Windows development
package contains the Win32 development tool needed to produce emu-
lator executables. The IDEs for these development systems also provide
project management features, editors and GUI-based build tools. So with
the SDK alone, you will only be able to build and load straight to your
smartphone, but will have very limited debug support (normally via log
files). In addition, some IDEs (e.g. Metrowerks) provide the ability to
debug directly on the phone.

22 SYMBIAN OS QUICK START

The following Windows development systems are currently supported
by Symbian OS SDKs (although not all SDKs support all of these):

• Microsoft Visual C++ 6.0 and .Net

• Metrowerks Code Warrior

• Borland C++ BuilderX or Builder 6.0

I will not advise you which IDE to select, but selecting the IDE comes
down to three main questions:

• Does the Symbian SDK for your smartphone model support the
particular Windows development system?

• What development/IDE features appeal to you the most?

• What are you willing to pay for the development system?

The first one is most important – you need to make sure the SDK for your
phone supports the tool set you buy. As an example, the 9200 Series SDK
will not support Borland Builder 6 or Metrowerks Code Warrior tools.

If you already have Microsoft Visual C++ on your system (and you are
developing for a smartphone whose SDK supports it), you can just stick
with that until you gain enough experience to determine if you want to
buy another one. Another option is to download a free trial IDE such as
the Borland Mobile IDE (make sure this works on your SDK) until you
decide you need something else.

If you have to buy an IDE, it’s a good idea to consider what smartphones
you may develop for in the future, and make sure the SDKs for those
phone models also support your chosen IDE.

To save money, you could use the SDK without any Windows develop-
ment tool. In this case, however, you would not be able to build, run and
debug on the Symbian OS emulator. This can slow down development.

2.1.5 Some Example SDKs
This section describes some example Symbian OS SDKs. They represent
the three main Symbian vendor software platforms that exist: Series 60,
UIQ and Series 80.

• Series 60 Platform Edition 1 supports Nokia N-Gage, 3660, 3650,
3620 and 3600 as well as Siemens SX1 and Sendo X smartphones,
which are based on Symbian OS v6.1. It is available as a download
from the Nokia site. The basic SDK version supports Microsoft Visual
C++ 6.0 and Borland C++ BuilderX development tools. Separate
SDK downloads exist that support Borland Builder 6 and Metrowerks
CodeWarrior.

WHAT DO YOU NEED TO GET STARTED? 23

• Series 60 Platform Edition 2 has a basic version that supports the
Nokia 6600 smartphone, which is based on Symbian OS v7.0s. As
with Edition 1, the standard download of the SDK supports Microsoft
Visual C++ 6.0/.Net and Borland C++ BuilderX, while separate down-
loads are provided that support Borland Builder 6 and Metrowerks
CodeWarrior.

Enhanced versions of this SDK are available, containing additional
‘Feature Packs’ to support phones based on Symbian OS versions later
than v7.0s. At the time of writing, three such versions are available:

• Feature Pack 1 adds support for Symbian OS v7.0s enhanced, used,
for example, on the Nokia 3230, 6670 and 6260, and Panasonic
X700 and X800 smartphones.

• Feature Pack 2 provides support for Symbian OS v8.0, used on the
Nokia 6630 and 6680/1/2, and Lenovo P930 smartphones.

• Feature Pack 3 supports the Nokia N70 and N90 smartphones,
which are based on Symbian OS v8.1.

• UIQ comes in two versions: 2.0 and 2.1. Both run on smartphones
based on Symbian OS v7.0. The Sony Ericsson P900 is based on UIQ
2.1 while the Sony Ericsson P800, Motorola A920 and BenQ P30 are
based on UIQ 2.0. Although separate SDKs exist for the two versions
of UIQ, UIQ 2.1 SDK will also support UIQ 2.0 smartphones (as long
as you stay away from UIQ 2.1 specific APIs) and thus is the best one
to use. Also UIQ 2.1 provides more development tool support than
2.0 (UIQ 2.0 supports Metrowerks tools only).

UIQ 2.1 SDK supports Borland MobileX and Metrowerks CodeWarrior
(via two separate downloads). Although no Microsoft tool support is
claimed, Microsoft Visual C++ 6.0 or .Net can be used on the Borland
MobileX version of the SDK (available in UIQ 2.1 SDK only) for basic
emulator building and debugging. Both UIQ 2.0 and 2.1 SDKs can be
downloaded from the Symbian site.

• 9200 Communicator SDK (Series 80) supports Nokia 9200 Commu-
nicator series smartphones, which are based on Symbian OS v6.0.
Download from the Nokia site. This SDK supports only the Microsoft
Visual C++ 6.0 and Borland MobileX development tools.

• Series 80 Platform 2.0 supports the Symbian OS v7.0s-based Nokia
9500 Communicator. It is available as a download from the Nokia
site. Versions of the SDK are available that support Borland BuilderX
and Microsoft Visual C++ .Net, as well as Metrowerks CodeWarrior.

2.1.6 Is Windows the Only Development System Operating System
Supported?

At the time of writing, the only official support for Symbian OS develop-
ment is on a PC running Microsoft Windows. However, there are efforts

24 SYMBIAN OS QUICK START

to change this, and GNUPoc is a good example. The site www.gnuPoc.
sourceforge.net provides patch downloads so you can update various
Symbian SDKs for use on Linux. The tools required to build for the
smartphone device run natively on Linux; however, Windows emulation
(via WINE) is required when building for and running the Symbian OS
emulator.

Providing native Symbian OS emulator support to other operating
systems (without needing Windows emulation) will require an effort by
Symbian since the source code for the Symbian OS emulator is not open
to the public.

2.2 Firing Up the Development Tools

At this point, you should have your SDK and compatible windows
development tool set installed. Now it’s time to test your setup and
compile some example code.

Here’s a tip if you have multiple SDKs installed and the SDK you are
using is based on Symbian OS v7.0 or later. At the command prompt, type:

devices

to list your installed SDKs. Locate the SDK you want to use and ensure it
has ‘default’ displayed next to it. If it does not, then enter:

devices –setdefault @<sdk name>

where the SDK name is exactly as it appears on the devices line (e.g.
UIQ_21:com.UIQ is the SDK for UIQ 2.1).

2.2.1 Quick Test Emulator

Type epoc from a command prompt. This should bring up the Symbian
OS emulator for the supported smartphone type. It displays a smartphone
desktop where you can select and run various built-in programs and
setup utilities. If it does not start, or locks at some point, then you have a
problem with your installation.

An example of such a problem is provided by the earlier Series 60
SDKs, which had a problem when you installed the SDK in a location
other than the default. The default installation path was hard-coded in the
epoc.ini emulator configuration file and caused the emulator not to
run if your SDK was located in a different directory. To fix this problem,
you would need to manually edit the path contained in epoc.ini.

FIRING UP THE DEVELOPMENT TOOLS 25

2.2.2 Quick Test Windows Development Package
It’s a good idea to do a quick test on your Windows Development System
platform to ensure it is installed correctly. For example, if you are using
Visual C++, type cl from the command line (or nmake) and make sure
you do not get a ‘command not found’ error. If you do, then you need to
make sure your environment variables are set up correctly for Visual C++
(e.g. running the MS VC++ vcvars32.bat program if needed).

2.2.3 Build Some Examples
The SDKs include example projects with source code to help you get
familiar with Symbian OS. It’s a good idea to build and run some of these
to test out, and get familiar with, the SDK.

In the next few pages, I’ll run through compiling and executing
examples, platform by platform. I’ll then provide some steps for building
within the Metrowerks, Microsoft and Borland IDEs.

Building a Series 60 Example

The directory structure varies slightly depending on whether you are
using the Series 60 v1.2 SDK or the v2.0 SDK (e.g. for Nokia 6600). Go to
the Series 60 example directory from a command prompt. This directory
is located at Symbian_Base\Series60Ex, where Symbian_Base
is your SDK installation directory. I’ll assume you have installed the
SDK in the default location (c:\Symbian\6.1\Series60 for v1.2, or
c:\Symbian\7.0s\Series60_v2.0 for v2.0).

For v1.2:

C:\>cd \Symbian\6.1\Series60\Series60Ex

or for v2.0:

C:\>cd \Symbian\7.0s\Series60_v2.0\Series60Ex

Type dir and you will see a list of folders containing examples. Change
directory to HelloWorld\group to build the Hello World program (it’s
called HelloWorldBasic in Series 60 v2.0):

C:\Symbian\...\Series60Ex>cd helloworld\group

Type the following at the command prompt:

C:\...\HelloWorld\group>bldmake BLDFILES
C:\...\HelloWorld\group>abld build wins

26 SYMBIAN OS QUICK START

This will build the example and place the output such that it will run in
the Windows emulator.

Note, if you are using the Borland or Metrowerks tools then you
need to specify a target of winsb or winscw instead of wins when
running the abld command from the command line. wins, winsb and
winscw indicate emulator builds for Microsoft, Borland and Metrowerks
development tools respectively.

However, it is worth pointing out that Borland Mobile X can use
wins, if configured in Microsoft binary mode. Mobile X also supports
Metrowerks builds, provided you have a Metrowerks license.

To see the program executed on the emulator, at the command
prompt, type:

C:\...\HelloWorld\group>epoc

You should see the Series 60 emulator come up. Find your HelloWorld
icon (on the main desktop or in a folder labeled Other) and select it.

Building a UIQ Example

Go to the UIQ example directory from a command prompt. This directory
is located at Symbian_Base\UIQExamples, where Symbian_Base is
your SDK installation directory (e.g. c:\Symbian\UIQ_21):

C:\>cd \Symbian\UIQ_21\UIQExamples

Type dir and you will see a list of folders containing examples. Change
directory to HelloWorld to build the Hello World program:

C:\Symbian\UIQ_21\UIQExamples>cd HelloWorld

C:\Symbian\UIQ_21\UIQExamples\HelloWorld>

To compile the sample, type the following at the command prompt:

C:\Symbian\UIQ_21\UIQExamples\HelloWorld>bldmake BLDFILE
C:\Symbian\UIQ_21\UIQExamples\HelloWorld>abld build wins

After the compilation completes, type epoc to start the emulator and run
the application.

This will build the UIQ example for Microsoft Visual Studio or
Borland C++ BuilderX (use winscw instead of wins for Metrowerks
CodeWarrior).

FIRING UP THE DEVELOPMENT TOOLS 27

Building a Series 80 Communicator Example – Nokia 9500/9300

Go to the Series 80 example directory from a command prompt. On the
Series 80 v2.0 SDK (for the 9500/9300 communicators) this directory
is located at Symbian_Base\Series80Ex, where Symbian_Base is
your SDK installation directory (e.g. c:\Symbian\7.0s\S80_DP2_0_
SDK\):

C:\>cd \Symbian\7.0s\S80_DP2_0_SDK\Series80Ex\

Type dir and you will see a list of folders containing examples.
Change to the helloworldbasic\groupdirectory to build the basic

hello world program:

C:\Symbian\7.0s\S80_DP2_0_SDK\Series80Ex\>cd helloworldbasic\group

To compile the sample, type the following bldmake and abld commands
at the command prompt:

C:\Symbian\...\helloworldbasic\group>bldmake BLDFILE
C:\Symbian\...\helloworldbasic\group>abld build wins

After the compilation completes, type epoc to start the emulator. Once
the emulator is up, select the helloworldbasic icon from the desktop
to run the application.

If you are using the SDK for the older Nokia 9200 series communica-
tors, Hello World is located at \Symbian\6.0\NokiaCPP\Epoc32Ex\
CrystalUI\HelloWorld.

In the preceding sections, I mention that the last argument of the abld
command depends on the Windows-based tool kit you are using. Why is
there a different target platform indicator (i.e., wins, winscw, winsb) for
each tool set? The reason is that abld generates and invokes makefiles that
in turn build your program. So abld needs to know the target platform
to determine what tool set to use. For example, when you specify wins
in the abld command, abld creates a Microsoft nmake style makefile
that contains calls to Microsoft tools (such as cl for the compiler). The
target platform also specifies what set of libraries to link to since there is a
separate set of binary system libraries for each target platform. This will be
discussed further in Chapter 5.

Building Using an IDE

The previous sections described how to build the examples from the
command line. You can also build from your tool set’s IDE if you want,

28 SYMBIAN OS QUICK START

however, the steps to do this vary depending on your tool set. Here
are some basic steps for building using the Metrowerks, Visual C++ and
Borland IDEs.

Metrowerks

To build the examples from the Metrowerks Code Warrior IDE:

1. Start Code Warrior IDE.

2. Select File, Import Project From .mmp File.

3. Select your SDK version and then click on Next.

4. You will be prompted for your mmp file and the build platform. Browse
to and select the example’s mmp file (e.g. helloworld.mmp) and
enter winscw as the software platform. Select Next.

5. You should see the project come up with its source files and library
folders.

6. Click the green Run icon. The emulator will start.

7. Your program should appear as an item on the emulator’s desktop.
Select it to run it.

Microsoft Visual C++

To build using the Microsoft Visual C++ Studio 6.0 IDE, you first use the
command line tools to create a Microsoft Visual C++ project workspace
file. Once you create the project file, you can then load it from the IDE
and build, execute and debug with it.

To generate the Visual C++ 6.0 workspace file, enter the following
at the command prompt (substitute the correct directory where the
example’s mmp file resides):

C:\...\HelloWorld\group>bldmake BLDFILES
C:\...\HelloWorld\group>abld makefile vc6

The vc6 is a special type of target that tells the abld command to
generate a Microsoft VC++ 6.0 project workspace file as opposed to
actual executable output. The workspace file generated by this example
is named helloworld.dsw and is put in the example’s subdirectory
under the SDK’s epoc32\build directory. For example, the Series
60 v1.2 Hello World example’s workspace file would be placed in the
<SDK_ROOT>\epoc32\build\symbian\6.1\series60\Series-
60ex\HelloWorld\group\HelloWorld\wins directory.

FIRING UP THE DEVELOPMENT TOOLS 29

Next, launch the Visual C++ IDE and perform the following steps:

1. Select File, Open Workspace and select the DSW workspace file
for your example (e.g. helloworld.dsw).

2. Build and run the project by running the execute command (via the
build menu, toolbar or by depressing Ctrl,F5). You’ll be prompted
for an executable the first time you run the project. Enter the full
pathname for the emulator executable epoc.exe, which is located
at epoc32\wins\udeb\epoc.exe relative to your SDK directory.

3. Once the emulator starts, run and debug your application using
features such as break points and single stepping.

Borland C++ BuilderX Mobile

To build using Borland’s C++ Builder X Mobile’s IDE, perform the
following steps:

1. Select File, New to bring up the Object Gallery dialog. Click on
the Mobile C++ tab.

2. Select Import Symbian C++ Project and click OK, to start the
Import Symbian C++ Project Wizard.

3. Browse to select the example’s bld.inf file and, if necessary, select
the appropriate SDK, platform (e.g. WINSB) and Build (e.g. UDEB).
Click on Next.

4. Next type in a suitable project name and click Finish.

5. Select Run, Run Project to build and run the emulator version
(provided you selected WINSB above).

6. Select your application’s icon in the emulator.

Library Freezing

Sometimes, you may get errors compiling examples that use libraries. If
you get an error indicating that a library is missing, it’s normally because
the library could not be built due to it not being frozen. Library freezing
will be explained in detail in Chapter 5, but for now if you get that error,
type abld freeze wins (or whatever platform you are using), then
reissue the abld build command. Or it could be that the library has
not yet been built at all – some SDKs require you to go to the individual
library directories and build them before building the main program.

2.2.4 Resolving Problems
Did everything work? Sometimes you can run into problems. Due to
the numerous versions of the SDK and tool sets (not to mention PC

30 SYMBIAN OS QUICK START

configurations), it’s not realistic to provide all the information here to
ensure the development tools run correctly, but here are some tips and
traps to watch out for when working with the tools:

• Make sure you launch the right command prompt

You may need to launch the command prompt from a shortcut that
was created by your development tools in order to get all the tools
you need in your %PATH%. For example, Visual Studio .NET creates
a shortcut: Start, All Programs, Microsoft Visual Studio
.NET 2003,VisualStudio.NETTools,VisualStudio.NET
2003 Command Prompt.

• Install the SDK in the default directory

Although this situation is getting better, sometimes you can encounter
problems when you install your SDK to a location other than the
default installation directory. So, unless there is a good reason, stick
to this default.

• Watch out for %EPOCROOT%

The %EPOCROOT% environment variable controls a number of things,
such as where compiled applications are installed. On Symbian
SDKs based on Symbian OS versions before 7.0, %EPOCROOT%
needs to be set up in your command shell environment to point
to the directory that contains the epoc32 subdirectory (such as
\Symbian\6.1\Series60\ for the Series 60 SDK). However, if you
use an SDK that is based on Symbian OS 7.0 and higher, you need to
make sure the %EPOCROOT% variable is not set in your environment.
This is because 7.0 SDKs will set the %EPOCROOT% internally and if
you have it set externally, before the tools are invoked, it will override
the correct internal setting (you could end up using the tools of one
SDK, but linking to libraries and installing applications in another!).
Also, make sure, when using a 7.0 (or higher) SDK, that you do not
have tool directories of an earlier SDK still in your %PATH%.

• Make sure you correctly manage multiple SDKs.

Managing multiple SDKs on a single machine is straightforward if all
your SDKs involve Symbian OS v7.0 or later. It can, however, be a
headache if you have SDKs based on versions earlier than v7.0 (for
example, the Series 60 v1.0 or Series 80 v1.0). It is certainly possible,
once you know the issues involved, to cleanly switch between the
SDKs. Refer to the Switching Between SDKs section in Chapter 5 for
information on this.

If you are still having problems, your best bet is to review (and, if
needed, post a question on) the different Symbian OS news groups on the
Internet, such as www.forum.nokia.com or the various Symbian support

SIMPLE EXAMPLE APPLICATION 31

newsgroups. It’s quite likely that someone else will have run into the
issue you are having.

2.3 Simple Example Application
This section walks through a simple example of a Symbian OS GUI
application, from source code to execution. The example is presented for
Series 60, UIQ, and Series 80 smartphones. Much of the example code
is common between the platforms but, where there are differences, they
are given in separate, platform specific files.

Although you could download this example from the book’s website,
you may want to actually type in the code in order to get a good feel for
the core classes. To build the example, just enter the listings that apply
to your chosen target platform, as well as the common code listings. It
is instructive, however, to compare the platform-specific portions of the
code, to get an idea of variations between platforms.

This chapter will not examine the code in detail – that will be done
in later chapters. Some description is provided, but don’t worry if you
do not understand it all. It will be explained in due time. For now, the
main goal is to get a feel for developing a basic application by actually
building and running one.

2.3.1 Application Components
Here are the minimum classes required for a Symbian application. You
will be creating them for your example application:

• Application View: The root GUI control, this class implements the
main window and acts as a container for the other application controls.

• Application UI: This class instantiates the application view and han-
dles the commands sent from the application’s GUI controls.

• Application document: This class handles the non-GUI data aspects
of the application – the application data. It also instantiates the appli-
cation’s UI class.

• Application: The main application class starts the application by
instantiating and starting the document class. It also sets the appli-
cation’s UID (a unique identifier that is required for each applica-
tion – for more information, see Chapter 4).

2.3.2 Overview of SimpleEx
This section presents an example GUI application called SimpleEx.
When launched, the example displays the text ‘Simple Example’ in the
center of the window. It also has a menu item labeled ‘Start’ that displays
an alert dialog when selected (which displays ‘Start selected!’). The menu
is slightly different on each platform due to user interface differences. In

32 SYMBIAN OS QUICK START

the case of Series 80, a softkey is defined to display the dialog, in addition
to the menu item, to demonstrate the use of softkeys on that platform.

The example contains the following files organized in the directories
as shown:

\include
SimpleEx.h
SimpleEx.hrh

\src
SimpleEx.cpp
SimpleEx_app.cpp
SimpleEx_doc.cpp
SimpleEx_ui.cpp
SimpleEx_view.cpp

\group
bld.inf
SimpleEx.rss
SimpleEx.mmp
SimpleEx.pkg

To create the example you will perform the following steps:

1. Create the application header (h) file.

2. Create the resource (rss file) and resource command header (hrh)
files.

3. Create the source code for the application classes declared in the
header (cpp files).

4. Create project definition (mmp and bld.inf) files.

5. Build and run the example on the PC-based emulator.

6. Create the target package definition (pkg) file.

7. Generate the installation package (sis file) and install it on the
smartphone.

8. Execute the application on the smartphone.

2.3.3 Header File
This section describes the header files for our example, defined for Series
60, UIQ, and Series 80 platforms. Put the header file for your particular
platform in a file named SimpleEx.h and place it in the include
directory.

Example 2.1 shows the Series 60 header file.

Example 2.1. Sample Application header for Series 60

#ifndef __SIMP_H
#define __SIMP_H

SIMPLE EXAMPLE APPLICATION 33

/*==
Series 60 SimpleEx Header File

==*/

#include <eikenv.h>

#include <eikon.hrh>
#include "SimpleEx.hrh"

#include <akndoc.h>
#include <aknapp.h>
#include <aknappui.h>

// The Application Class

class CSimpleExApplication : public CAknApplication
{

private:
CApaDocument* CreateDocumentL();
TUid AppDllUid() const;

};

// The Application View Class

class CSimpleExAppView : public CCoeControl
{

public:
static CSimpleExAppView* NewL(const TRect& aRect);
static CSimpleExAppView* CSimpleExAppView::NewLC(const TRect& aRect);
void ConstructL(const TRect& aRect);

private:
void Draw(const TRect&) const;
};

// The UI Class

class CSimpleExAppUi : public CAknAppUi
{

public:
void ConstructL();
∼CSimpleExAppUi();

private:
void HandleCommandL(TInt aCommand);
CSimpleExAppView* iAppView;
};

// The Application Document Class

class CSimpleExDocument : public CAknDocument
{

public:
CSimpleExDocument(CEikApplication& aApp): CAknDocument(aApp) { }

private:
CEik AppUi* CreateAppUiL();
};

34 SYMBIAN OS QUICK START

#define SERIES_60

#endif

Example 2.2 shows the UIQ header file.

Example 2.2. Sample Application header for UIQ

/*==
UIQ SimpleEx Header File

==*/

#ifndef __SIMP_H
#define __SIMP_H

#include <eikenv.h>

#include <eikon.hrh>
#include "SimpleEx.hrh"

#include <qikdocument.h>
#include <qikapplication.h>
#include <qikappui.h>

// The Application Class

class CSimpleExApplication : public CQikApplication
{

private:
CApaDocument* CreateDocumentL();
TUid AppDllUid() const;
};

// The Application View Class

class CSimpleExAppView : public CCoeControl
{

public:
static CSimpleExAppView* NewL(const TRect& aRect);
static CSimpleExAppView* CSimpleExAppView::NewLC(const TRect& aRect);
void ConstructL(const TRect& aRect);

private:
void Draw(const TRect&) const;
};

// The UI Class

class CSimpleExAppUi : public CQikAppUi
{

public:
void ConstructL();
∼CSimpleExAppUi();

SIMPLE EXAMPLE APPLICATION 35

private:
void HandleCommandL(TInt aCommand);
CSimpleExAppView* iAppView;
};

// The Application Document Class

class CSimpleExDocument : public CQikDocument
{

public:
CSimpleExDocument(CEikApplication& aApp) : CQikDocument(aApp) { };

private:
CEikAppUi* CreateAppUiL();
};

#endif

Example 2.3 shows the Series 80 header file.

Example 2.3. Sample Application header for Series 80

/*==
Series 80 (Communicator Series) SimpleEx Header File

==*/

#ifndef __SIMP_H
#define __SIMP_H

#include <eikenv.h>

#include <eikon.hrh>
#include "SimpleEx.hrh"

#include <coeccntx.h>

#include <eikappui.h>
#include <eikapp.h>
#include <eikdoc.h>
#include <eikmenup.h>

// The Application Class

class CSimpleExApplication : public CEikApplication
{

private:
CApaDocument* CreateDocumentL();
TUid AppDllUid() const;
};

// The Application View Class

class CSimpleExAppView : public CCoeControl
{

public:
static CSimpleExAppView* NewL(const TRect& aRect);
static CSimpleExAppView* CSimpleExAppView::NewLC(const TRect& aRect);

36 SYMBIAN OS QUICK START

void ConstructL(const TRect& aRect);

private:
void Draw(const TRect&) const;
};

// The UI Class

class CSimpleExAppUi : public CEikAppUi
{

public:
void ConstructL();
∼CSimpleExAppUi();

private:
void HandleCommandL(TInt aCommand);
CSimpleExAppView* iAppView;
};

// The Application Document Class

class CSimpleExDocument : public CEikDocument
{

public:
CSimpleExDocument(CEikApplication& aApp): CEikDocument(aApp) { }

private:
CEikAppUi* CreateAppUiL();
};

#endif

Notice from the header files that the application, document, and UI
classes are derived from different base classes for each of the platforms
(the differences are shown in bold text). For example, the Application
UI class is derived from CAknAppUI, CQikAppUI, and CEikAppUI for
Series 60, UIQ, and Series 80 respectively.

Figures 2.3, 2.4 and 2.5 show the class hierarchy for SimpleEx, for
Series 60, UIQ, and Series 80 respectively.

Notice that the application classes for Series 60 and UIQ derive from
platform specific classes, which in turn derive from core application
classes. Series 80 applications, however, inherit directly from the core
CEIK classes as shown in Figure 2.5.

Fortunately, the application platform classes for the different platforms
are very similar from a development perspective due to their abstracted
interface. This will be apparent when you examine the implementation
code for SimpleEx.

The application view class for all three platforms is derived
directly from the basic control base class – CCoeControl – of the UI
Control Framework.

Although, for this example, I have put all the classes in one header file,
it is common to separate each class into its own header file.

SIMPLE EXAMPLE APPLICATION 37

CSimpleExDocument CSimpleExAppViewCSimpleExApplication CSimpleExAppUi

Series 60 SimpleEx

CAknApplication CAknAppUi CAknDocument

Series 60 platform layer

CEikApplication CEikAppUi CEikDocument CCoeControl

Symbian OS base application classes

Figure 2.3 SimpleEx class hierarchy for Series 60

CSimpleExDocument CSimpleExAppViewCSimpleExApplication CSimpleExAppUi

UIQ SimpleEx

UIQ platform layer

CEikApplication CEikAppUi CEikDocument CCoeControl

Symbian OS base application classes

CQikApplication CQikAppUi CQikDocument

Figure 2.4 SimpleEx class hierarchy for UIQ

38 SYMBIAN OS QUICK START

CEikApplication CEikAppUi CEikDocument CCoeControl

Symbian core application classes

CSimpleExApplication CSimpleExAppUi CSimpleExDocument CSimpleExAppView

Series 80 SimpleEx

Figure 2.5 SimpleEx class hierarchy for Series 80

At this point, you should have, in the include directory, the Sim-
pleEx.h that corresponds to your platform.

2.3.4 Resource File
Now, let’s create the resource file to define the UI elements – in this case
the menu/softkey item used to display the alert dialog.

Examples 2.4, 2.5, and 2.6 show the resource files for Series 60, UIQ,
and Series 80 – enter the one corresponding to your platform into a file
called SimpleEx.rss, and place it in the group directory.

Example 2.4 shows the resource file for Series 60.

Example 2.4. Series 60 Resource File

/*=====================================
Series 60 SimpleEx Resource File

=====================================*/

NAME SIMP

#include <eikon.rh>
#include <avkon.rh>
#include <avkon.rsg>

#include "SimpleEx.hrh"

RESOURCE RSS_SIGNATURE
{
}

RESOURCE TBUF r_default_document_name
{
buf="";
}

SIMPLE EXAMPLE APPLICATION 39

RESOURCE EIK_APP_INFO
{
menubar = r_SimpleEx_menubar;
cba = R_AVKON_SOFTKEYS_OPTIONS_EXIT;
}

RESOURCE MENU_BAR r_SimpleEx_menubar
{
titles =

{
MENU_TITLE
{
menu_pane = r_SimpleEx_menu;
}

};
}

RESOURCE MENU_PANE r_SimpleEx_menu
{
items =

{
MENU_ITEM
{
command = ESimpleExCommand;
txt = "Start";
}

};
}

Example 2.5 shows the resource file for UIQ.

Example 2.5. UIQ Resource File

/*=====================================
UIQ SimpleEx Resource File

=====================================*/

NAME SIMP

#include <eikon.rh>

#include "SimpleEx.hrh"

RESOURCE RSS_SIGNATURE
{
}

RESOURCE TBUF r_default_document_name
{
buf="";
}

RESOURCE EIK_APP_INFO
{
menubar = r_SimpleEx_menubar;
}

40 SYMBIAN OS QUICK START

RESOURCE MENU_BAR r_SimpleEx_menubar
{
titles =

{
MENU_TITLE
{
menu_pane = r_SimpleEx_menu; txt="Simple Menu";
}

};
}

RESOURCE MENU_PANE r_SimpleEx_menu
{
items =

{
MENU_ITEM
{
command = ESimpleExCommand;
txt = "Start";
}

};
}

Example 2.6 shows the resource file for Series 80.

Example 2.6. Series 80 Resource file

/*=====================================
Series 80 SimpleEx Resource File

=====================================*/

NAME SIMP

#include <eikon.rh>

#include "SimpleEx.hrh"

RESOURCE RSS_SIGNATURE
{
}

RESOURCE TBUF r_default_document_name
{
buf="";
}

RESOURCE EIK_APP_INFO
{
cba=r_simpleEx_cba;
menubar = r_SimpleEx_menubar;
}

RESOURCE CBA r_simpleEx_cba
{
breadth=80;
buttons=

SIMPLE EXAMPLE APPLICATION 41

{
CBA_BUTTON

{
id=ESimpleExCommand;
txt="Start";
bmpfile="";
bmpid=0xffff;
},

CBA_BUTTON
{
txt=" ";
bmpfile="";
bmpid=0xffff;
},

CBA_BUTTON
{
txt="";
bmpfile="";
bmpid=0xffff;
},

CBA_BUTTON
{
id=EEikCmdExit;
txt="Close";
bmpfile="";
bmpid=0xffff;
}

};
}

RESOURCE MENU_BAR r_SimpleEx_menubar
{
titles =

{
MENU_TITLE
{
menu_pane = r_SimpleEx_menu; txt="Simple Menu";
}

};
}

RESOURCE MENU_PANE r_SimpleEx_menu
{
items =

{
MENU_ITEM
{
command = ESimpleExCommand;
txt = "Start";
}

};
}

A resource file is a text file that defines the user interface elements of
an application. As in other operating systems (e.g. Microsoft Windows),
the developer can use explicit programming techniques to create GUI

42 SYMBIAN OS QUICK START

controls; however, the resource file provides a more manageable alterna-
tive. In Symbian OS, the resource file must be text; at the time of writing
there are no tools to create resource files in a graphical way (as can be
done in developer tools such as Visual Studio).

Let’s skim through the highlights of the resource file to help under-
stand the SimpleEx example. Resource files contain a set of RESOURCE
structures to define the program’s GUI elements. The EIK_APP_INFO
resource defines general application attributes such as the application’s
default menu, softkey settings, tool bars, status panes and hotkey defini-
tions. I define two things in the EIK_APP_INFO resource for SimpleEx:
the default menu and default softkey definitions. Note that UIQ has no
softkeys, so only the default menu is supplied.

The menubar attribute of EIK_APP_INFO is assigned a resource of
type MENU_BAR which specifies the application’s default menu. Menu
bar resources have one or more menu titles (type MENU_TITLE), and
each menu title points to a menu pane (type MENU_PANE). The menu bar
in the example, r_simplex_menubar, has a single menu title and this
points to menu pane r_simplex_menu.

Menu panes define the actual menu items (type MENU_ITEM) which the
user selects to invoke some operation in the application. r_simplex_
menu defines a menu item labeled ‘Start’ that sends the command
ESimpleExCommand to the GUI command handler code when the user
selects it (so the code can display the example’s dialog).

For Series 80 and UIQ, I specify the label ‘Simple Menu’ (txt attribute)
for the menu title. This is because both Series 80 and UIQ display
text for each menu title in the same way as Microsoft Windows – the
corresponding menu pane pulls down menus underneath these titles (e.g.
like the menu item File, Open in Windows applications, in this case
‘File’ is the title). Series 60 menus, however, do not have these first level
menu titles displayed across the top. Selecting the menu softkey displays
all the menu items. This is why Series 60 defines no text for its menu title.

Note that Series 80 and UIQ can have multiple menu panes (with
titles), but Series 60 should only have one; adding more will show all the
items from all the menu panes together, as if you had defined them all in
one pane.

The cba attribute in the EIK_APP_INFO resource defines the appli-
cation’s softkeys (as default, they can be changed dynamically). As
mentioned, softkeys apply to Series 60 and Series 80 only – UIQ has
no softkeys. Symbian refers to a set of softkeys as a Command Button
Array (CBA).

In Series 60, there are two softkeys at the bottom of the screen. In the
Series 60 example resource file, I set the attribute cba=R_AVKON_SOFT-
KEYS_OPTIONS_EXIT. This is a predefined system value which specifies
that the left softkey brings up the menu and the right one exits the
application.

SIMPLE EXAMPLE APPLICATION 43

Series 80 has four softkeys along the right side of the screen. In the
Series 80 example, I define the softkey structure r_simpleEx_cba. This
structure defines the four softkeys from top to bottom. I labeled the top
key ‘Start’ and set it to send ESimpleExCommand as the Start menu item
does. The last softkey is labeled ‘Close’ and is set to exit the application.
The other two softkeys are set to perform no operation.

The file SimpleEx.hrh, shown in Example 2.7, is the same for all
platforms. This file contains the command values that the controls send
(specified in the resource file) for the application code to handle. In this
case we have only one, used when Start is selected. The .hrh file is an
include file that is used by both the resource file and the C++ code which
handles the events.

Example 2.7. SimpleEx.hrh

#ifndef __SIMPLEEX_HRH__
#define __SIMPLEEX_HRH__

/** SimpleEx enumerate command codes */
enum TSimpleExIds
{
ESimpleExCommand = 1
};

#endif // __SIMPLEEX_HRH__

2.3.5 Source Files
Examples 2.8 through 2.12 show the application source files. They are
written to be common across all platforms. This is a good general practice
since it makes for more portable code. It also illustrates the similarities
of the application structures between the various Symbian OS platforms.
Type the code as shown into their respective files and place them in the
src directory.

SimpleEx.cpp

This file contains the entry point of the application. E32DLL is required
for all DLLs (the application is, in fact, a DLL). It must return a suc-
cessful status (KErrNone) although it does not do anything else. The
NewApplication() method is called by the Symbian OS application
framework to create and return a pointer to the application object that is
defined in SimpleEx_app.cpp.

Example 2.8. SimpleEx.cpp

#include "SimpleEx.h"

GLDEF_C TInt E32Dll(TDllReason)

44 SYMBIAN OS QUICK START

{
return KErrNone;
}

EXPORT_C CApaApplication* NewApplication()
{
return (new CSimpleExApplication);
}

SimpleEx App.cpp

This file contains the application class implementation. These methods
are called by the GUI framework when starting the application. It defines
and returns the application’s UID and creates and returns the application
document object.

Example 2.9. SimpleEx App.cpp

#include "SimpleEx.h"

const TUid KUidSimpleExApp = {0x10005B94};

CApaDocument* CSimpleExApplication::CreateDocumentL()
{
return new(ELeave) CSimpleExDocument(*this);
}

TUid CSimpleExApplication::AppDllUid() const
{
return KUidSimpleExApp;
}

SimpleEx Doc.cpp

This file contains the application document object. This example has no
actual persistent data, but even so, the example overrides the Create-
AppUiL() method of the document class since the framework calls this
method to create and pass a pointer to the application UI class.

Example 2.10. SimpleEx Doc.cpp

#include "SimpleEx.h"

CEikAppUi* CSimpleExDocument::CreateAppUiL()
{
return new (ELeave) CSimpleExAppUi;
}

SimpleEx UI.cpp

Example 2.11 shows simplex_UI.cpp, which contains the example
application’s UI class. The UI class in a GUI application is where the
action is, since it is where the application handles user events. All user

SIMPLE EXAMPLE APPLICATION 45

events (except alphanumeric keyboard input and low level touch screen
events) come through the UI class method HandleCommandL().

When the menu item ‘Start’ is selected, the GUI framework invokes
the HandleCommandL()method, passing it the command ESimpleEx-
Command (the command specified in the menu resource in the SimpleEx
resource file). HandleCommandL() responds to this command by pop-
ping up an alert window with the message ‘Start Selected!’.

I used the iEikonEnv->AlertWin() function for the pop-up since
this is a core Uikon method available to all platforms. This looks quite
good on UIQ, but fairly plain on the other platforms. In practice, you
should follow the UI guidelines for the software platform you are using.
This may involve using platform-specific classes for controls or message
displays instead of core Uikon controls.

As an example, in Series 60 you can use the Series 60 specific UI
control class CAknInformationNote to pop up a message. This would
look better for the Series 60 UI than the core Uikon alternative.

The UI class ConstructL() method creates the application view.
ConstructL() is called by the framework after getting a pointer to the
UI object from the document. You will see later how it is common for
Symbian C++ objects to be constructed in two steps: instantiating the
C++ class then invoking its ConstructL() method.

Also note that, in the HandleCommandL()method, command EAkn-
SoftkeyExit should be in the Series 60 application only. It handles
the Series 60 Exit softkey that is put up at application start, as specified
by the R_AVKON_SOFTKEYS_OPTIONS_EXIT option in the Series 60
resource file.

Example 2.11. SimpleEx UI.cpp

#include "SimpleEx.h"

void CSimpleExAppUi::ConstructL()

{
BaseConstructL();

iAppView = CSimpleExAppView::NewL(ClientRect());
}

CSimpleExAppUi::∼CSimpleExAppUi()
{
delete iAppView;
}

void CSimpleExAppUi::HandleCommandL(TInt aCommand)
{
switch(aCommand)

{
case EEikCmdExit:

#ifdef SERIES_60

46 SYMBIAN OS QUICK START

case EAknSoftkeyExit:
#endif
Exit();
break;

case ESimpleExCommand:
{
_LIT(message,"Start Selected!");
iEikonEnv->AlertWin(message);
break;
}

}
}

SimpleEx View.cpp

This file contains the application view class. The ConstructL()method
of the view class is called by the UI framework after the view class is
instantiated, and it’s this method that creates the main application window
and activates it for display.
Draw() is a method called by the framework for every control in

order to draw it to the screen. The application view is a control, and,
for this example, I implement the Draw() function to output the text
‘Simple Example’ in the center of the window. The drawing is performed
by opening a graphics context (GC), getting a font, and calling the
context’s DrawText() function. Cleanup is performed on the font upon
completion.

Example 2.12. SimpleEx View.cpp

#include "eikenv.h"
#include <coemain.h>

#include "SimpleEx.h"

CSimpleExAppView* CSimpleExAppView::NewL(const TRect& aRect)
{
CSimpleExAppView* self = CSimpleExAppView::NewLC(aRect);
CleanupStack::Pop(self);
return self;
}

CSimpleExAppView* CSimpleExAppView::NewLC(const TRect& aRect)
{
CSimpleExAppView* self = new (ELeave) CSimpleExAppView;
CleanupStack::PushL(self);
self->ConstructL(aRect);
return self;
}

void CSimpleExAppView::ConstructL(const TRect& aRect)
{
CreateWindowL();

SIMPLE EXAMPLE APPLICATION 47

SetRect(aRect);
ActivateL();
}

void CSimpleExAppView::Draw(const TRect&) const
{
CWindowGc& gc = SystemGc();
const CFont* font;
TRect drawRect = Rect();

gc.Clear();

font = iEikonEnv->TitleFont();
gc.UseFont(font);
TInt baselineOffset=(drawRect.Height() -

font->HeightInPixels())/2;
gc.DrawText(_L("Simple Example"),drawRect,baselineOffset,

CGraphicsContext::ECenter, 0);

gc.DiscardFont();
}

At this point you should have all the source files in the src directory.

2.3.6 Project Build Files

Now, let’s create the project build files: SimpleEx.mmp and bld.inf.

Creating the SimpleEx.mmp Project Definition File

This section shows the project definition files for the example for all three
software platforms. Use the file corresponding to your platform. Name
the file SimpleEx.mmp and place it in the group directory.

Example 2.13 is the Series 60 project file.

Example 2.13. Series 60 project file

TARGET SimpleEx.app
TARGETTYPE app
UID 0x100039CE 0x10005B94

TARGETPATH \system\apps\SimpleEx

SOURCEPATH ..\src
SOURCE SimpleEx.cpp
SOURCE SimpleEx_app.cpp
SOURCE SimpleEx_view.cpp
SOURCE SimpleEx_ui.cpp
SOURCE SimpleEx_doc.cpp

SOURCEPATH ..\group
RESOURCE SimpleEx.rss

48 SYMBIAN OS QUICK START

SYSTEMINCLUDE \epoc32\include
USERINCLUDE ..\include

LIBRARY euser.lib apparc.lib cone.lib eikcore.lib
LIBRARY avkon.lib

Example 2.14 is the UIQ project file.

Example 2.14. UIQ project file

TARGET SimpleEx.app
TARGETTYPE app
UID 0x100039CE 0x10005B94

TARGETPATH \system\apps\SimpleEx

SOURCEPATH ..\src
SOURCE SimpleEx.cpp
SOURCE SimpleEx_app.cpp
SOURCE SimpleEx_view.cpp
SOURCE SimpleEx_ui.cpp
SOURCE SimpleEx_doc.cpp

SOURCEPATH ..\group
RESOURCE SimpleEx.rss

SYSTEMINCLUDE \epoc32\include
USERINCLUDE ..\include

LIBRARY euser.lib apparc.lib cone.lib eikcore.lib
LIBRARY qikctl.lib

Example 2.15 is the Series 80 project file.

Example 2.15. Series 80 project file

TARGET SimpleEx.app
TARGETTYPE app
UID 0x100039CE 0x10005B94

TARGETPATH \system\apps\SimpleEx

SOURCEPATH ..\src
SOURCE SimpleEx.cpp
SOURCE SimpleEx_app.cpp
SOURCE SimpleEx_view.cpp
SOURCE SimpleEx_ui.cpp
SOURCE SimpleEx_doc.cpp

SOURCEPATH ..\group
RESOURCE SimpleEx.rss

SYSTEMINCLUDE \epoc32\include

SIMPLE EXAMPLE APPLICATION 49

USERINCLUDE ..\include

LIBRARY euser.lib apparc.lib cone.lib eikcore.lib

The project definition file is a Symbian OS specific text file that ends
in .mmp and defines how to build the application. Symbian OS does not
use a makefile because:

• The system supports many types of build tools (including make pro-
grams) and so needs a generic solution with platform independence.

• A custom build system can define information specific to Symbian
such as the program UIDs.

• IDE tools such as Metrowerks and Borland have the ability to import
mmp files to create Symbian application projects.

As you will see later, Symbian build tools generate makefiles based on
this mmp file.

The Symbian build system will be discussed in Chapter 5, but for this
example the main thing to note is that it defines what source and resource
files should be compiled and what libraries should be used for linking.
Include and source paths are also defined.
TARGET_TYPE should always be APP and the first number under

UID should always be 0x100039CE for GUI applications. The second
number under UID identifies the application specifically and should
always match the one returned by AppDllUid in the application object
(in file SimpleEx_app.cpp in this example).

The only difference between the platforms in the mmp file is the GUI
specific library for that platform. Series 60 uses avkon.lib and UIQ
uses qikctl.lib. In contrast, Series 80 does not use a unique GUI
library since it uses the core Uikon classes directly.

Creating the bld.inf File

Example 2.16 shows a file called bld.inf which points to the mmp file.
This is required for the build tools to use the example’s mmp file. Type
this into a file and name it bld.inf in the Group directory.

Example 2.16. bld.inf

PRJ_MMPFILES

SimpleEx.mmp

50 SYMBIAN OS QUICK START

2.4 Building and Executing on the Emulator

To build the application with the Visual Studio command-line tools,
change directory to the group subdirectory and execute these commands:

c:\...\group\>bldmake bldfiles
c:\...\group\>abld build wins

Figure 2.6 Series 60 Example

Figure 2.7 UIQ Example

BUILDING FOR THE SMARTPHONE 51

Figure 2.8 Series 80 Example

Use winsb or winscw instead of wins if you are using Borland or
Metrowerks development tools.

Run the emulator on the PC (for example, by typing epoc at the
command prompt) and select the application labeled SimpleEx from
the desktop (or Other or Extras folder depending on the platform).

Figures 2.6, 2.7, and 2.8 show how the example looks on the different
software platforms.

2.5 Building for the Smartphone

To build for a smartphone target, you’ll need to specify a different build
target; ARM (armi) in release (urel) mode:

c:\...\group\>abld build armi urel

This will build an ARM executable suitable for running on your phone.
After you’ve built the binary, you need to create an installation file (sis

file) for installing and running the application on the phone. Symbian OS
provides a utility called makesis to create the sis file. You’ll need to
create a package definition file (pkg file); this defines what goes into the
sis file. The package file specifies various attributes of the installation
file and includes a list of files that belong in the installation. This file list
includes where each program file is found on the host PC (so makesis
can locate them to copy them to the sis file) and where each of these
files should be placed on the phone when the sis is installed.

Let’s look at the package definition files (pkg files) for Series 60, UIQ,
and Series 80. Type in the one corresponding to your platform, save it
as SimpleEx.pkg, and save it in the group directory. The text in bold
should correspond to your EPOCROOT.

Example 2.17 shows the Series 60 package file. The path in bold
represents the default location of the Series 60 v1.2 SDK and should be
changed for Series 60 v2.0 or if you installed your SDK in a non-default
place.

52 SYMBIAN OS QUICK START

Example 2.17. Series 60 Package File

; SimpleEx.pkg – Series 60
;

; standard SIS file header
#{"SimpleEx"},(0x10005B94),1,0,0

;Supports Series 60 (all versions)
(0x101F6F88), 0, 0, 0, {"Series60ProductID"}

;
"c:\Symbian\6.1\Series60\epoc32\release\armi\urel\SimpleEx.APP"-

"!:\system\apps\SimpleEx\SimpleEx.app"
"c:\Symbian\6.1\Series60\Epoc32\Release\armi\urel\SimpleEx.rsc"-

"!:\system\apps\SimpleEx\SimpleEx.rsc"

Example 2.18 shows the UIQ package file.

Example 2.18. UIQ Package File

; SimpleEx.pkg -- UIQ
;
; standard SIS file header
#{"SimpleEx"},(0x10005B94),1,0,0

;Supports UIQ version 2.0 and 2.1
(0x101F617B), 0, 0, 0, {"UIQ20ProductID"}

;
"c:\symbian\uiq_21\epoc32\release\armi\urel\SimpleEx.APP"-

"!:\system\apps\SimpleEx\SimpleEx.app"
"c:\Symbian\uiq_21\epoc32\release\armi\urel\SimpleEx.rsc"-

"!:\system\apps\SimpleEx\SimpleEx.rsc"

Example 2.19 shows the Series 80 package file for the 9200 Series SDK.
For Series 80 SDK v2.0 (for Nokia 9500/9300), the portion of the directo-
ries shown in bold will be different (e.g.c:\Symbian\7.0s\Series80_
DP2_0_SDK) depending on where you installed the SDK.

Example 2.19. Series 80 Package file

; SimpleEx.pkg – Series 80
;

; standard SIS file header
#{"SimpleEx"},(0x10005B94),1,0,0

;
"c:\symbian\6.0\nokiacpp\epoc32\release\armi\urel\SimpleEx.APP"-

"!:\system\apps\SimpleEx\SimpleEx.app"
"c:\symbian\6.0\nokiacpp\epoc32\release\armi\urel\SimpleEx.rsc"-

"!:\system\apps\SimpleEx\SimpleEx.rsc"

BUILDING FOR THE SMARTPHONE 53

The last few lines of the package file specify the individual files to copy
to the phone – the first filename specifying where to find the file on the
PC and the second where to place it on the phone.

Next, run the following command at the command prompt:

c:\...\group\>makesis SimpleEx.pkg

Once SimpleEx.sis is created, install this to your smartphone through
your PC suite (or any method your smartphone has of installing an
application sis file). The sis file is the standard file for installing
Symbian applications and installing the application using this file should
be well documented in the smartphone’s user manual.

Because this application is unsigned, you will get some messages
indicating that the application is from an unknown source – ignore these.

Once you load the program on the smartphone you can run it as
you did from the emulator. Congratulations on your first Symbian OS
program!

3
Symbian OS Architecture

This chapter gives an overview of the architecture of Symbian OS – its
main components and its underlying functionality.

Much of the functionality described in this chapter is transparent
from a typical Symbian OS application programming view; however,
understanding the architectural details of an operating system can be
useful in developing software for it – especially for programming on
highly reliable, limited-resource devices such as smartphones.

You can skim this chapter on a first read if you want, since an
understanding of many of the subjects here is not absolutely essential
to developing applications. But if you are like me and prefer to dig into
the details in order to gain deeper knowledge, then you should find this
chapter useful.

3.1 Components in Symbian OS

There are usually many ways to slice a system up into pieces – the
following breakdown of the major parts of Symbian OS is suitable for the
detail covered in this chapter:

• Kernel
The kernel is the central manager and arbiter of Symbian OS. It
manages the system memory and schedules programs for execution. It
also allocates shared system resources and handles any functionality
that requires privileged access to the CPU. The kernel can be extended
via Dynamic Link Libraries (DLLs) and device drivers.

• Base libraries
The base libraries contain APIs that provide functionality such as
string manipulation, linked lists, file I/O, database management, error
handling and timers. The base libraries also provide access to kernel
functions (e.g. thread control and client server communications).
This library is used not only by applications, but also by the OS
components.

56 SYMBIAN OS ARCHITECTURE

• Application services, engines and protocols
Application services, engines and protocols provide access for pro-
grams to core application data, features and services. An example is
an engine to directly manipulate the data of built-in applications that
manage contacts, the calendar and to-do lists. Other examples include
setting and handling alarms, and access to high-level communication
features such as SyncML and HTTP.

• Application framework
The application framework implements the base functionality of the
smartphone’s graphical user interface applications. This includes a
framework for handling the GUI itself and an architecture framework
for handling non-GUI related application functionality.

• Communications architecture
The communications architecture consists of the APIs and framework
that implement data communications. This includes TCP/IP over
cellular radio as well as local communication protocols such as
Bluetooth, IR, and USB. Also included is the messaging framework for
support that includes SMS, MMS and email messaging.

• Middleware feature libraries
This is a catch-all category for the rest of the APIs and frameworks not
covered in the previous items. It includes APIs such as multimedia,
animation, and security.

3.2 Multitasking in Symbian OS

Symbian OS is a multitasking operating system – it can run multiple
programs at once. Although a smartphone’s screen is too small to display
more than one application at a time (as you can in Windows, for
example), you can switch between running applications as needed. Also,
as with operating systems such as Linux and Windows (though not
Palm OS), Symbian OS provides true multithreaded behavior in that it
allows multiple execution threads to execute in parallel, even in a single
application.

Here I’ll briefly introduce threads and processes in Symbian OS – these
form the basis of the multitasking capability in Symbian OS. Chapter 7
covers threads and processes and inter-thread communication in more
detail.

3.2.1 Threads
Threads are streams of code that run in parallel with each other, based
on their priorities. The Symbian OS kernel supports pre-emptive multi-
threading, which means that not only can threads run in parallel, but the

DYNAMIC LINK LIBRARIES 57

kernel can switch execution from one thread to another without needing
any code in the running thread to explicitly relinquish control. Also, a
single Symbian OS program can have multiple threads

While a single Symbian OS application can have multiple threads, you’ll
see later that it’s best to avoid using them in your program directly, and
instead use the asynchronous framework. This framework provides an
event-driven cooperative multitasking model for your application, which
will be introduced later in this chapter (and detailed in Chapter 8).

3.2.2 Processes
A process is a running instance of a program that has its own independent
data space as well as one or more threads. The code for a process is
contained in a file whose name ends in .exe. The kernel creates and starts
a separate process for each invocation of an EXE file. Multiple processes
can run at a time, and the kernel switches to a process whenever one of
the threads in that process becomes active.

A process always contains a main thread, and can contain additional
threads if needed. All threads within a process share its data space, and,
therefore, can directly access its static data.

For protection, Symbian OS does not allow a process to directly
access memory in another process. There are ways of providing shared
memory access between processes, however, and these will be discussed
in Chapter 7.

3.3 Dynamic Link Libraries

A Dynamic Link Library (DLL) is a library that’s loaded into memory when
needed and its functions are available to all running programs. Only a
single copy of each loaded DLL exists in memory at a time. This is more
efficient than the traditional static library, where each executable that
uses the library’s functions links to a separate copy of its code.

DLLs are used extensively in Symbian OS, and there are well over
100 of them on a typical phone. In fact, prior to Symbian OS v9, GUI
applications are actually DLLs themselves, although each GUI application
runs as a separate process (each GUI application DLL is run from an
instance of apprun.exe). From Symbian OS v9 onwards, applications
are implemented as fully independent executable processes.

3.3.1 Types of DLL
There are two types of DLL, static interface DLLs and polymorphic DLLs.

Static interface DLLs are the traditional style of libraries, containing
a collection of classes and functions that are made available to calling

58 SYMBIAN OS ARCHITECTURE

programs. The base operating system libraries, which provide functions
for things such as string manipulations, are examples of static interface
DLLs. Static interface DLLs typically end in .dll.

Polymorphic DLLs are used as plug-ins (e.g. a device driver is actually a
polymorphic DLL), as opposed to simply providing classes and functions
as in static interface DLLs. They provide a concrete implementation
for some abstracted interface. The concept of this type of DLL is more
difficult, and will be discussed in more detail later in this chapter.

3.3.2 Static Data in DLLs

DLLs written using Symbian OS versions earlier than v9.0 cannot contain
writable static data. This means you cannot declare global nonconstant
variables externally in functions (automatic variables are fine since they
are on the stack), or have nonconstant static variables declared within a
function or class. This can be limiting, but Symbian made this choice to
conserve memory due to the large number of DLLs that can be loaded at
a time.

This example will not work in a DLL:

int myGlbVar;
void myfunc
{
}

Nor will the following:

void myFunc
{
static TInt myVar;
...
}

However, constant data is permissible – this will work fine:

const int myData=4;
void myFunc()
{
int myVar;
...
}

When a thread invokes a function within a DLL, that function runs within
the context of the calling thread (and the corresponding process) and thus
is able to directly access the data space of the calling process.

CLIENT/SERVER MODEL 59

From Symbian OS v9.0 onwards, this restriction is removed, and DLLs
may contain writable static data. While this can greatly simplify the task
of importing code from other operating systems, the practice of using
writable static data can have a significant impact on memory usage, and
is strongly discouraged.

3.4 Client/Server Model

Symbian OS software relies on a client/server architecture to implement
much of its functionality. A server in Symbian OS has no user interface
and acts mainly as an engine to manage some resource or functionality
on behalf of some other program, known as a client. Servers receive
commands from one or more clients and execute these commands, one
by one. A server always resides in a separate thread from its clients and
in many cases is also contained in its own process.

An example of a server in Symbian OS is the file system server. This
server runs as a process (it’s an EXE file) and receives and executes
commands to manage the creation, reading and writing of files on the
device’s memory drives. The API classes that applications use to manage
files (e.g. RFile) are actually client-side classes that send commands to
the file server (transparently to the API user) which then executes the
functionality.

The basic execution flow of a server is:

1. Wait for a command to be received from the client (data may also be
sent with this command).

2. When the command is received, execute it.

3. Return the status (and any data) to the client.

4. Go to step 1.

Not only are many applications written using this model, but much of
the OS itself is implemented using it. In most cases the details of the
communication between the client and the server are hidden in user
API calls.

Figure 3.1 shows multiple clients communicating with servers. As
mentioned, servers are always in separate threads from their clients
(although multiple servers can exist in a single thread). Data is transferred
between the client and the server using inter-thread communication
functionality within Symbian OS.

Symbian OS provides a client/server framework that handles the details
of the communications between the client and server. Chapter 9 describes
this framework in detail, and shows how to use it to write your own server
and the client-side class that interfaces with it.

60 SYMBIAN OS ARCHITECTURE

Client App 1

Client App 2

Client App 3

Server Engine 1

Server Engine 2

thread
boundary

Figure 3.1 Client/Server Interaction

3.5 Memory in Symbian OS

Let’s look at the different types of memory that exist on a smartphone
based on Symbian OS:

• Random Access Memory (RAM)

RAM is the volatile execution and data memory used by running
programs. Applications vary in how much RAM they use, and this
also depends on what the application is doing at the time. For
example, a browser application loading a web page needs to allocate
more RAM for the web page data as it’s loaded. Also, the more RAM
space you have, the more programs you can run on your smartphone
at once. Typically, mobile phones have between 7 and 30 MB of RAM
available for applications to use.

• Read Only Memory (ROM)

The ROM is where the Symbian OS software itself resides. It includes
all the startup code to boot the device, as well as all device drivers
and other hardware-specific code. This area cannot be written to by
a user, although some of it can be seen by the file system as drive z:.
Viewing the z: drive will show all the built-in applications of the OS,
as well as the system DLLs, device drivers and system configuration
files. For added efficiency, code in ROM is executed in place – i.e. it
is not loaded into RAM before executing.

Typically a phone has between 16 and 32 MB of ROM.

MEMORY IN SYMBIAN OS 61

• Internal Flash Disk

The internal flash acts like a disk drive and allows for reading and
writing files to it via the Symbian OS file system. The file system
is fully featured and supports a hierarchical directory structure, with
very similar features to those you would find on high-end operating
systems. The internal flash drive is represented as the c: drive to
the file system. This memory contains user-loaded applications, as
well as data such as documents, pictures, video, bookmarks, calendar
entries, etc.

The size of the internal flash disk varies with the phone, but it can be
quite generous. For example, the Nokia 9500 has 80 MB of internal
flash space available to the user. On many phones, however, available
internal user space is significantly less. The Nokia 6600, for example,
has 6 MB of flash space available to the user.

• Removable memory cards

Memory cards act as removable disk drives and allow you to expand
the storage provided internally. You can also read from and write
to a memory card just as to the internal disk – including operations
such as saving user data, and even installing applications. This card is
treated as another disk volume by the file system and is represented
by a drive letter such as d: or e: (this varies between phones).

The memory card formats (MMC and SD are examples) and available
sizes vary by phone. Memory card sizes can vary from 16 MB (or even
less) to 1 GB.

In this section, I’ll describe how Symbian OS organizes its memory
map and how processes use it. This information is not strictly needed to
develop typical Symbian OS applications since this functionality occurs
behind the scenes. However, it can help when dealing with some difficult
issues (or, perhaps, for tweaking performance) or even for providing a
deeper understanding of some of the system APIs.

3.5.1 How Memory Is Addressed

At the time of writing, Symbian OS smartphones exclusively use ARM
microprocessors. ARMs use 32-bit memory addresses and thus are
capable of addressing 4 GB of memory – much more memory than a
smartphone will ever need (well, maybe not ever).

There are two types of memory addresses: virtual and physical. Virtual
addresses are the addresses that software deals with. When you set
or examine a C or C++ pointer, or even look at an address at the
assembly level, you are dealing with a virtual address. Physical addresses
are the unchanging hardware addresses of the memory hardware (they

62 SYMBIAN OS ARCHITECTURE

reflect how the hardware address lines are hooked to the memory
components).

In older CPUs, there was no concept of virtual and physical addresses
since the software simply always used the memory’s fixed physical
address. However, most modern processors, including the ARM proces-
sor, have a Memory Management Unit (MMU) that allows the system
software to flexibly map and remap virtual addresses to represent different
physical addresses. With the MMU, the operating system can organize
and manage its own memory map by setting up a memory translation
table in the MMU. Memory blocks can be moved almost instantaneously
without any copying, only remapping, of addresses (e.g. when switching
process data in and out).

In addition to providing address translation, the MMU also provides the
capability of protecting memory regions from being accessed by software
not running at a specified privilege level or higher.

3.5.2 Chunks in Symbian OS

Symbian OS uses chunks to represent contiguous regions of virtual
memory. The size of a chunk is variable. The kernel uses the MMU to
map physical memory to the virtual address range of the chunk, and to
remap it quickly to different areas of virtual memory as needed (mainly
for context switches, as you’ll soon see).

While chunks reserve a range of virtual memory addresses, the entire
range need not have actual physical memory behind it. The kernel can
add more physical memory behind the chunk as needed. Remember:
virtual addresses are plentiful (4 GB!), real physical memory is much
more scarce.

Symbian OS provides a public API so that you can use chunks directly
(RChunk class, described in Chapter 7). It’s not very common for the typical
application to use them (although they can come in handy if you need
system-wide global data). Symbian OS itself, however, makes extensive
use of chunks to manage your programs and its data behind the scenes, as
described in the next section.

3.5.3 A Process in Memory

When a process is created, Symbian OS creates the following chunks for
it (at a minimum):

Stack and Heap Chunk

This chunk is where the stack and heap resides for the main thread
of the process (it’s possible that additional threads in the process can
have their own stack and heap, and thus separate chunks).

MEMORY IN SYMBIAN OS 63

Static data chunk

Where all the static variables are kept for the process.

Code Chunk

The code chunk contains a copy of the code. There is only one copy
of a code chunk in memory, shared by all running instances of that
process executable. Note that if the executable is on the phone’s Read
Only Memory (ROM), then the code is run in place, without copying
it to a code chunk.

3.5.4 Virtual Memory Map in Symbian OS
The basic map of virtual memory usage in Symbian OS is shown in
Figure 3.2.

In Figure 3.2, the two memory areas of interest are the home area and
the run area. The home area is where the data chunks for a process are kept
when the process has been launched but is not the currently active process.
The home area is a protected region of memory – only kernel-level code
can read and write it. When a process is scheduled to execute, its data
chunks are moved (remapped via the MMU) from the home area of virtual
memory to the area known as the run area, and process execution starts.

You can think of the run area as a sort of stage for processes, and the
home area as the backstage area. When a process is ready to perform, it
goes on stage – i.e. its data chunks are moved to the run area, and the
process executes.

Why aren’t the process data chunks simply left in the home area when
the process executes? The reason is that the process code always expects
its data to reside in the same place. This is because the linker places data

ROM, MMU Page Table, Hardware

CPU Use

Home Area

Run Area

0xffffffff

0x80000000

0x3fffffff

0x00400000

0x00000000

Figure 3.2 Virtual Memory Map

64 SYMBIAN OS ARCHITECTURE

address references (when code references a static variable, for example)
in the code image at build time. Thus, the process code expects its data
in the single place specified by the linker (i.e. the run area) – no matter
what instance of the program is running.

Note, however, that code chunks are never moved to the run area.
This is because, unlike data chunks, you do not have separate copies of
code for each process instance and the code can be run from its location
in the home area.

Re-mapping the data of a running process to a common virtual address
area is not unique to Symbian OS. Many other multi-tasking operating
systems do this as well – although the memory map and switching details
are different.

3.5.5 Switching Processes – Detailed Example
Figure 3.3 illustrates process switching, as described in the last section,
in more detail.

Program A and Program B represent executables contained in exe
files. The ‘ xx’ represents a process instance of that executable.

As mentioned, every code image assumes its data is in the run area,
and the kernel handles moving the data into the run area when the code
is run.

Below is a sample scenario:

1. Program A is invoked for the first time and the kernel loads the code
from flash disk to RAM and creates a process (programA 01). The
kernel then allocates data chunks for that process in the home area.

2. Another instance of Program A is invoked and the kernel creates a
new process (programA 02). It associates it with the same code area
from Step 1 and creates new data chunks for that process in the
home area.

3. The kernel schedules programA 01 for execution.

4. The MMU page table is changed to remap all physical memory pages
associated with programA 01’s data from its home area location to
the common run area.

5. The code image associated with Program A executes.

6. The kernel switches context from programA 01 to programA 02.

7. The MMU page table is changed to remap the data chunks of
programA 01 from the run area to its original home area location.

8. The data chunks of programA 02 are then mapped to the run area
and control is passed back to the Program A code region, but at the
appropriate instruction, with respect to the thread context.

MEMORY IN SYMBIAN OS 65

Home Area

Program A code

Program B code

ProgramA_01 process data

ProgramA_02 process data

ProgramB_01 process data

ROM, Hardware, Page tables, etc.

Run Area

Running process data

CPU Data Area

Re-map
current to
data area

Figure 3.3 Structure of the virtual machine

3.5.6 Protecting Processes from Each Other
Another feature of memory handling in Symbian OS is protection. Only
the run area can be accessed by user mode programs; the rest of memory
can only be accessed in the CPU’s privileged mode (and therefore only
by the kernel, device drivers, and other selected OEM components). This
means that a user process does not have direct access to the data of other
processes. Also, a user process cannot access hardware devices or CPU
data structures such as the MMU page table.

The run area is sometimes referred to as a sandbox since it provides
an isolated world for the process to run in.

3.5.7 Performance in Switching Processes
Although using the MMU to relocate data in the virtual memory map
is much faster than copying the actual data, there is still a performance
penalty. If the cache is virtually tagged (i.e. the cache is indexed by virtual

66 SYMBIAN OS ARCHITECTURE

addresses instead of physical addresses – the most likely case on Symbian
OS devices), then a cache flush must be performed when the MMU page
tables are changed, thus causing a significant performance hit. That is
why switching between threads in the same process is considered fast,
since no memory areas need to be remapped. However, process switches
are more expensive due to the remap.

3.5.8 Fixed Processes
Some OS-level processes are switched to so often that the performance
impact of remapping their process data areas (via the MMU) between the
home and run areas is not acceptable. Examples are the kernel server
itself and the file system process. To get around this, Symbian OS has
the concept of a fixed process, where the process data stays in the home
area, even when executing.

Fixed processes are faster to switch to since the MMU tables are not
modified. However, the cost of doing this is that there can be only one
instance of the process running at a time and that, since the code image
points to the data directly, the data location must be reserved and fixed
in the system.

Only Symbian OS components (or OEM-specific customizations) can
be fixed processes – this capability is not available to the application
developer.

3.6 The Kernel

The Symbian OS kernel consists of a set of executables and data files
which runs in the CPU’s privileged mode and provides basic system
management and control. The kernel handles the creation and scheduling
of threads and processes. It also manages communication between threads
and processes with objects such as mutexes and semaphores, as well as
with functions for inter-process data transfers. In addition, the kernel
manages all the system memory, and acts as a gateway that provides
access to device hardware.

Figure 3.4 shows the kernel architecture. The kernel, hardware abstrac-
tion layer (HAL), device drivers, and kernel extensions run in privileged
mode and therefore have access to all memory and hardware resources.

3.6.1 Abstracting the Hardware
Kernel functionality depends on the underlying hardware on a device.
For example, timers are needed for task scheduling and timer services.
Another example is the control of the MMU and flushing the cache. The
methods of controlling these features vary with the hardware and CPU.

The kernel is divided in such a way that the bulk of the kernel code
is abstracted from the hardware (i.e. it is written so that the detailed

THE KERNEL 67

User.dll

Kernel ExecutiveKernel Server

Device DriversKernel Extensions

Hardware
Abstraction
Layer

Smartphone Hardware

privileged code

Figure 3.4 Kernel

specifics of the hardware do not matter). This is done through the
hardware abstraction layer (HAL).

The HAL provides a generic hardware-independent API to the kernel
for accessing the required hardware features. The HAL is customized to
the OEM hardware and is used to make hardware implementation details
transparent to the kernel.

While the HAL is used for adapting the kernel to the underlying
hardware, device drivers provide a more flexible abstraction of hardware
devices. User-mode software – including applications – can load and
use device drivers. Device drivers primarily control specific hardware
peripherals such as communications ports, radio modems, or external
storage devices. The kernel implements the functions for user programs
to load, and communicate with, device drivers.

Kernel extensions are hardware-specific modules written by the OEM.
They are more tightly integrated with the kernel than device drivers. Kernel
extensions are implemented as DLLs and are detected and initialized at
boot time. They are primarily used for user input hardware, such as
buttons and keyboards.

3.6.2 User Library

The user library is a DLL that provides user-mode access to kernel
functionality. Since the kernel runs in privileged mode, the functions in

68 SYMBIAN OS ARCHITECTURE

user.dll will switch the processor from user mode to kernel mode,
then invoke the appropriate kernel function. Upon return, the mode is
switched back to user mode.

The user library actually contains more than just kernel functions – it
also contains basic functions to do things such as string and array
manipulation.

3.6.3 Kernel Executive and Server

The kernel consists of two main components: an executive and a
server.

The executive consists of a set of software interrupt handlers, which,
when invoked, will switch the CPU from user mode to privileged mode
(if it is not in privileged mode already). When a kernel function is
called from an application (via user.dll), a software interrupt (the SWI
instruction on ARM) occurs that invokes the appropriate function handler
in the kernel executive. The kernel server is the kernel’s own independent
process that has its own data space.

There are two types of kernel function which differ by the component
of the kernel that the function is executed in. Kernel executive functions
are executed completely from within the software interrupt handler of the
kernel executive component, without invoking the kernel server. They
execute quickly since the kernel function runs in the same context as
the calling application, without a context switch. There are two types of
executive kernel calls: fast and slow. Fast calls disable interrupts, and thus
context switches, while the kernel call is being executed. By contrast,
slow calls allow interrupts to occur.

Kernel server functions start in the kernel executive, but the kernel
executive software interrupt handler does not actually execute the kernel
function. Instead, the interrupt handler sends one or more commands
to the kernel server for it to execute. Kernel server function calls are
more expensive than kernel executive calls, since the OS must switch
from the application process to the kernel server process to execute.
The advantage, however, is that these functions have full access to the
data space of the kernel process which stores various global kernel data
including the list of all the system’s running processes and the list of all
chunks and semaphores. Kernel executive functions, on the other hand,
have no way to access these structures.

The kernel server is a fixed process, so it minimizes some of the
overhead normally associated with server calls.

Since applications use user.dll to call kernel services, it is transpar-
ent to the programmer how the actual kernel code is invoked. However,
it is useful to know how the call is handled when considering application
performance.

ACTIVE OBJECTS AND ASYNCHRONOUS FUNCTIONS 69

3.7 Active Objects and Asynchronous Functions

Although Symbian OS has support for multiple threads within a process,
this capability is not much used. In fact it is discouraged. One reason
is performance – lots of threads can bog down a system due to context
switches. Other reasons result from the way Symbian OS is designed. For
example, when a system object is created it can usually be accessed only
by the thread that created it. The correct way to handle threaded behav-
ior – without actually having a separate thread – is through active objects.

To understand active objects, consider how threads are normally used
in an application. Usually, code is put in a separate thread when it needs
to wait for an event and then process the event when it occurs – perhaps
even in a continuous fashion. It is put in its own thread so that the whole
program does not block waiting for that event, and other productive
things can occur during the wait.

Active objects simulate multiple threads in a single process, but in fact
are executed in a single thread. The thread consists of what is known
as an active scheduler, which contains two main elements: an event
dispatcher and a list of attached active objects. The active scheduler loop
waits for an event (at a semaphore) and then invokes the event handler
of the active object that is expecting the event. The active scheduler then
waits for the next event.

The events received by the active scheduler are generated from
asynchronous functions which, unlike traditional functions, return imme-
diately after being called and run in parallel with the calling thread,
sending the event when complete. You invoke an asynchronous function
from a method of an active object (a C++ class derived from CActive);
when the active scheduler receives the asynchronous function’s comple-
tion event, it invokes the active object’s command handler. Your single
program thread can have multiple asynchronous functions in progress at
one time. So although, obviously, the asynchronous functions themselves
execute in their own thread, the combination of asynchronous functions
and active objects allows you to process multiple operations in parallel
without actually implementing threads in your program. But how do you
handle the situation when a function you call blocks from within an
active object? Won’t it still block the entire program?

Yes, if a function blocks within an active object, the entire program (and
its other active objects) stops, which is clearly not desirable. Asynchronous
functions execute without blocking the program and you should use
them. Most of the Symbian OS APIs that involve any sort of waiting are
implemented as asynchronous functions.

It’s very important to have a solid understanding of active objects and
asynchronous functions when programming in Symbian OS, since they
are used extensively. I provide more information on them in Chapter 8
and show you how to develop and use them.

70 SYMBIAN OS ARCHITECTURE

3.8 What Is a Polymorphic DLL?
Before discussing the GUI and communications architecture, now is a
good time to introduce polymorphic DLLs since they are used heavily in
these architectures (as well as in many other areas of the operating system).
Polymorphic DLLs, in a similar fashion to static interface DLLs, are loaded
when needed and linked to at runtime. Unlike a static DLL though, a
polymorphic DLL acts as a plug-in that implements an abstract interface.
In other words it implements a concrete C++ class that’s inherited from a
known abstract base class. The first (and usually only) exported function
of the polymorphic DLL just instantiates its concrete class and returns a
pointer to it.

With polymorphic DLLs, you can implement custom plug-ins that
present consistent interfaces to applications. Polymorphic DLLs are used
heavily by Symbian OS for this purpose. Polymorphic DLLs normally do
not end in .dll, but in an extension that is more descriptive of the type
of plug-in they are implementing (e.g. .prn, .prt and .app).

Polymorphism is built into C++ – and is one of its best features. To
implement polymorphism in C++, you have a base class with one or
more methods declared as virtual (and in many cases it’s pure virtual,
meaning there is no code for it in the base class at all). This base class
then acts as an abstract interface to classes derived from the base class.

The methods themselves are implemented in concrete classes derived
from the base class. However, to implement polymorphic behavior, you
access the objects through a base class pointer, relying on C++ to automat-
ically call the overridden method in whatever concrete class is assigned
to that base pointer. In this way you have common code that behaves the
same, no matter which concrete class is assigned to that base pointer.

Consider the following example of an abstract printer base class named
GenericPrinter:

class GenericPrinter
{
...
virtual TInt PrintDocument(TDesC& aDocName)=0;
}

Now consider two different class implementations of concrete classes
derived from GenericPrinter.

class PrinterX : public GenericPrinter
{
...
TInt PrintDocument(TDesC& aDocName);
};
TInt PrinterX::PrintDocument(TDesC& aDocName)
{
// specific code to format and print for printerX

WHAT IS A POLYMORPHIC DLL? 71

...
};
TInt PrinterX::PrintDocument(TDesC& aDocName)
{

// PrinterX specific way of printing a document
}
class PrinterY : public GenericPrinter
{
...
TInt PrintDocument(TDesC& aDocName);
};
TInt PrinterY::PrintDocument(TDesC& aDocName)
{
// specific code to format and print for printerY
...
};

TInt PrinterY::PrintDocument(TDesC& aDocName)
{

// PrinterY specific way of printing a document
}

Then, with printer declared as a pointer to GenericPrinter, you
can call:

printer->PrintDocument(MyDocument);

This line calls PrintDocument ()of whatever concrete class is assigned
to base class pointer printer. For example, if you assigned the
base pointer via printer=newPrinterX;, then PrinterX::Print-
Document()would be called. The only requirement is that the methods
called using the base class pointer must be declared as virtual.

Polymorphic DLLs use this exact concept, except now the concrete
classes are contained in their own separate DLL which can be thought of
as a plug-in to a base class interface. In our example, classes PrinterX
and PrinterY would each reside in separate polymorphic DLLs.

As previously mentioned, a polymorphic DLL also always contains a
function (it must be the first exported function) that instantiates the DLL’s
class and returns a pointer to it. This is how you assign your base class
pointer so you can use the plug-in.

Also, the polymorphic DLL is given a type and this type identifies the
base class (and thus, the interface) that the DLL’s contained concrete class
is derived from.

To give you an idea of how this works, here is some code to load a
polymorphic DLL and call a method:

RLibrary library;
library.Load(_L(“printerX.apr”)); // load our plugin
TLibraryFunction entry=library.Lookup(1)

72 SYMBIAN OS ARCHITECTURE

GenericPrinter *printer = (GenericPrinter *) entry();

// ...
// common abstracted code:
printer->PrintDocument(MyDoc);
// ...

Don’t worry if you do not understand the details in this code (and it’s not
really complete: it does not verify the DLL type or have error checking).
The intent is not to teach you how to write a polymorphic DLL, just to
show the general concept.

This code snippet uses the class, RLibrary, to load the polymorphic
DLL containing the PrinterX concrete class (I just used extension .apr,
standing for ‘‘a printer’’). The code then calls the first exported function
in the DLL (Lookup(1)returns a pointer to this first function) – this will
instantiate the PrinterX class and return a pointer to it. This pointer is
then assigned to the printer base class pointer for controlling the printer
through the abstracted base class interface.

3.9 GUI Architecture

Symbian OS has a powerful and flexible GUI architecture. This section
presents an overview of its features.

3.9.1 Customizing the UI

In Chapter 1, I discussed the importance of product differentiation in
marketing smartphone devices, and how Symbian addresses this by
providing a flexible user interface architecture. I also introduced the
major UI customizations including those found in UIQ, Series 60 and
Series 80 software platforms.

To understand the architecture rationale further, consider the two
extremes an OEM can choose in selecting software for their smartphone.
At one extreme, the OEM can create its own OS for maximum differenti-
ation. However, this results in extensive up-front development costs and
having little to no third party application support. At the other extreme, the
OEM can choose an OS with a complete, built-in GUI. The advantages of
this include the low development cost in implementing the phone, and
having more applications that run on it. The disadvantage is that there is
little product differentiation since it will be very similar to other phones
using that OS.

The GUI architecture in Symbian OS is a good balance between
these extremes, and is well suited for the smartphone market. This is
accomplished by having a powerful, common GUI core that is customized
for a specific smartphone product (or product series) via vendor GUI

GUI ARCHITECTURE 73

layers. Although some customization work is required by the OEM, they
get a full-featured OS (they do not have to implement their own) and
have flexibility in differentiating their product.

While it is true that Symbian applications written for one UI cus-
tomization will not directly run on another, it is fairly easy to port
between UIs – for example UIQ to Series 60 – since the main complexity
is in the common UI framework code.

3.9.2 Introducing the GUI Framework

The main components of the GUI architecture and their relation to each
other are shown in Figure 3.5.

Applications

Vendor GUI
(UIQ, Series 60, etc.)

UIKONLAF

Application
Architecture

UI Control framework (CONE)

Window Server

User Input Screen

Server
ClientThread

Boundary

Figure 3.5 GUI architecture

74 SYMBIAN OS ARCHITECTURE

Near the bottom of the diagram, we see the window server which
provides centralized access to the screen and user input devices across
all applications. As the name implies, the window server is a server
process – applications (using libraries) act as clients to this server. The
window server handles the details of drawing window and control objects
to the screen, as well as keeping track of which windows belong to which
applications. The window server will also ensure that events such as
key presses, pointer events and redraw events are routed to the correct
application for handling.

The window server does not enforce any particular UI policy since its
commands are low level – the GUI look is handled by the upper GUI
layers.

Above the window server is the UI control framework, which is
sometimes referred to as CONE (control environment). This is a library of
C++ abstract classes which communicate directly with the window server
via the client/server IPC channel. The UI control framework provides
higher-level functionality than the window server and is more suitable
for application use. The library contains no concrete controls – upper
GUI layers use these base classes to derive their own specific controls.
The derived classes need not worry about the details of the client/server
communication with the window server since the base classes of the UI
control framework handle this.

UIKON is the core Symbian OS application framework library. While
the UI control framework contains mainly abstract classes, UIKON pro-
vides a set of concrete controls and event handler classes. These classes
are derived from UI control framework base classes. UIKON also imple-
ments classes derived from the application architecture library, which
will handle the basic application framework itself and non-display-
related application behavior such as managing application documents
and handling the command line.

LAF (Look and Feel) is a library that allows the appearance (e.g. size
and color) of UIKON controls to be changed by a vendor without actually
modifying any UIKON code. The purpose of LAF is to allow minor look
and feel modifications to occur without needing to derive new controls.

While having UIKON plus LAF allows customization to a certain
extent, a vendor GUI layer also exists for maximum UI flexibility. This
vendor layer consists of C++ classes, which derive from UIKON classes as
well as directly from the UI control framework. The vendor can therefore
supply its own custom controls or extend the functionality of existing
UIKON controls. It can also customize application architecture-oriented
behavior.

Applications use classes in the vendor GUI layer as well as from UIKON
directly to implement the user interface. As mentioned in Chapter 1, a
vendor’s software platform will have its own SDK with guidelines; appli-
cations should follow these guidelines when determining what classes to

THE COMMUNICATION ARCHITECTURE 75

call. In addition to using vendor and UIKON classes, applications can
create their own custom controls by deriving directly from the UI Control
Framework. Also, there is nothing to prevent user programs from directly
calling the window server when more screen control is desired.

An application is a polymorphic DLL (with a .app file suffix) and
thus cannot have static data – however, each application runs as an
independent process. How is this possible? This is accomplished by
invoking a process named apprun.exe and having it call the application
DLL. So a separate process instance of apprun.exe exists for every open
application and each application process has its own client session with
the window server (through the other GUI layers).

3.10 High Performance Graphics

While the GUI framework presented in the last section is fast enough
for standard GUI applications, some applications use graphics more
heavily and require quicker screen response. Obviously, games fall into
this category, and support for good games is always important for any
computing product, including the smartphones.

Symbian OS provides two mechanisms for providing high performance
graphics: animation plug-ins and APIs for direct screen access.

Animation plug-ins are polymorphic DLLs which are developed by the
application programmer, and plugged directly into the window server.
Once the animation is started, the animation plug-in executes in the
context of the window server – drawing frames to the desired screen areas
at the specified animation rate. This avoids having messages sent from
the application to the window server for drawing each animation frame.
The client-side animation API provides applications with the capability
to install animation plug-ins as well as send commands to them.

In addition to animation plug-ins, Symbian OS provides APIs for draw-
ing on the screen directly. In this manner, low-level drawing primitives
(such as drawing a rectangle) can be performed by bypassing the window
server and, again, avoiding client/server IPC messages (although some
initial ones are required to coordinate with the window server).

3.11 The Communication Architecture

Communications is key to smartphones, and Symbian OS contains
an extensive and flexible communication architecture to support it.
This section looks at the Symbian OS communications architecture.
Chapter 10 will discuss communications in more detail as you learn
to develop communication applications. This section (and Chapter 10)
assumes some basic knowledge of network communications.

76 SYMBIAN OS ARCHITECTURE

Applications

Communication-specific
(e.g., Bluetooth) DLLs

Socket Library DLL (esock.dll)

Socket Server (esock.exe)

TCP/IP Protocol
(tcpip6.prt)

Bluetooth Protocol
(bt.prt)

Other
.prt
Modules

Network Interface PPP

Serial Communications Server

CSY CSY

Device Drivers/Hardware

ETEL Server

TSY TSY

Nifman

Connection Agent

Communication
Database

Data
Transfer

Connection
Control

server
clientThread

boundary

Figure 3.6 Communication architecture

Figure 3.6 shows the main components of the Symbian OS communi-
cation structure.

The communication architecture is a good example of how software is
constructed in Symbian OS. The architecture consists of application-level
DLLs, multiple servers and subsystem DLLs, which link to the servers
and server plug-in modules (which are polymorphic DLLs) to support

THE COMMUNICATION ARCHITECTURE 77

different protocols and devices. The overall goal is to provide maximum
power and flexibility for communications support, while at the same time
providing a common interface, not only to the application but throughout
the various lower system levels.

The following list describes the components of the Symbian commu-
nication architecture:

• Applications and DLLs

Applications use networking API classes in DLLs to access communi-
cations features. As with other application-level DLLs, the communi-
cation DLLs hide the details of the underlying architecture. Symbian
OS provides a socket-based API that operates in a similar way to the
BSD socket API. I will discuss sockets in much more detail (and use
them in programs) in Chapter 10.

• Communication-Specific Functionality

In addition to the socket API, there are also APIs specific to certain
types of communication, such as Bluetooth. A Bluetooth program
would call functions from the Bluetooth DLL for device discov-
ery, for example, then use the socket API for the bulk of the data
communications.

• Socket Server

The socket server is a process that implements and manages com-
munication sockets. Applications act as clients to this server through
the application-level communication DLLs. As with the GUI DLLs,
these functions hide the actual client/server communications from the
socket server.

• Protocol Modules

The socket server uses protocol modules for handling the network
data protocols. These are polymorphic DLLs (prt files) that implement
different communication protocols, while providing a consistent inter-
face to the socket server. Examples of protocol modules are TCP/IP,
Bluetooth and IR. New protocol modules can be created and used.

Protocol modules are independent of the data-link layer – bringing up
the connection and exchanging data with the device is done through
an abstracted interface. This interface is accomplished with two other
plug-in modules that attach to the socket server: a network interface
(which is usually the PPP module) and a connection agent.

• Network Interface Manager (Nifman)

The socket server with protocol modules use Nifman (network inter-
face manager) to establish the connection and set up the data path to
the data link level. In order to start a particular physical connection,
Nifman will load a connection agent.

78 SYMBIAN OS ARCHITECTURE

• Connection Agent

A connection agent is a polymorphic DLL that is responsible for
starting and stopping the communication connection. Not only is
it responsible for establishing the connection itself (e.g. dialing a
number for GSM or starting GPRS), but it provides information to set
up the data communication path between the physical device and the
network protocol module. The connection agent will normally use
ETEL (described further down) to start the connection.

• Communication Database

A connection agent will consult the communication database to
determine how to establish the network connection. This database
contains all the settings applicable to communication connections.
Depending on database settings, the connection agent can choose
to start a preferred connection or it may prompt the user to select a
connection. Once the connection is chosen, the agent will extract all
the applicable connection parameters from the database to start the
connection.

A connection to a network on a Symbian OS smartphone is known as
an Internet Access Point (IAP). An example is a GSM CSD connection
using a specific ISP phone number and login information – all stored
in the communication database entries for that IAP.

• ETEL Server
ETEL is a low-level server used to establish a connection with a
communication device. It provides an abstracted telephony API to its
clients, with functions for tasks such as establishing the connection,
terminating the connection, and retrieving line status and device
capabilities. Modules, called TSY modules, are installed to contain
the implementation for the target device. An ETEL client will load
the appropriate TSY, then use the ETEL-abstracted API to control the
device. Symbian OS has many built-in TSYs for devices such as GPRS
and GSM (files end in .tsy).

In addition to loading a Connection Agent, Nifman will load a network
interface module (DLLs suffixed with .nif). This is usually PPP.nif
which implements the PPP data link protocol. This module uses the
abstracted API of the Communications Server to transfer data to the
device.

• Serial Communications Server

The Serial Communications Server provides an abstraction for serial
communication across multiple devices. Reading and writing serial
data and managing data flow control are example functions of this
abstracted API. The details of the low-level protocols for handling a
specific device are implemented in DLL CSY modules (suffixed by
.csy). Example CSY modules include IR, GPRS and UART.

APPLICATION ENGINES, SERVICES AND PROTOCOLS 79

• CSY Modules

CSY modules communicate with the hardware through device drivers.
The device drivers handle the actual control of the communications
hardware.

Symbian OS v7.0 and previous versions could have only one active
IAP connection at a time. Symbian OS v7.0s introduced a multi-homing
capability: the ability to have multiple IAP connections – each with its
own IP address – active at once. This is useful, for example, if you want
multiple functions active that use different GPRS contexts (such as MMS
and web browsing). Another example is having interfaces such as WLAN
and GPRS up at the same time.

This feature opens up many possibilities for devices that support
multiple ways of accessing the Internet and will become more important
for future smartphones.

3.12 Application Engines, Services and Protocols

This section briefly covers application engines, services and proto-
cols. The SDK documentation can be referenced for more detailed
information.

Symbian OS provides application engines to access and manipulate
data from core Symbian applications, such as agenda and contacts. This
is useful in creating companion applications that work in conjunction
with these core applications. API classes are provided to read and write
calendar entries, to-do lists and contact entries.

Application services provide high-level utility functions for applica-
tions to use and consist of several client-side APIs and servers. For
example, there is a World Server that provides central access to informa-
tion about different cities (area code, time zone, country, map position,
etc.). Other examples are the alarm and log servers, which handle setting
and initiating alarms and logging various types of system information,
respectively.

There are three framework APIs which currently make up a library
group known as application protocols:

• ECOM is a software framework used for implementing plug-ins – it
has custom functionality for different entities of a particular type, while
maintaining a consistent, abstract interface to them. Isn’t that what
polymorphic DLLs do? Yes, but ECOM is a more extensive framework
for this. While polymorphic DLLs allow for abstracted interfaces,
the method of finding and loading the available DLLs falls on each
application. ECOM provides for a generic framework for handling this
higher level plug-in functionality.

80 SYMBIAN OS ARCHITECTURE

• The HTTP library provides an API for handling the Web-based HTTP
protocol.

• SyncML is a standard for synchronizing user data between devices,
and a set of APIs is provided for applications that wish to use it.

4
Symbian OS Programming Basics

This chapter focuses on the fundamentals of Symbian OS programming.
So far, I’ve described smartphones in general, presented some steps to get
started with the SDK, walked through some example code, and described
the general architecture of the operating system. This chapter, however,
marks the real beginning of your Symbian OS programming training as
we get down to the basics.

You will not find any references to Series 60, Series 80 or UIQ in
this chapter. The information presented here is generic for all Symbian
reference platforms.

I begin the chapter with an overview of the use of C++ in Symbian
OS, followed by a look at the basic data types and the key types of
classes you’ll use and create. Then, I show how to program using the
error-handling mechanism in Symbian OS, using leaves and traps, and
how to use the cleanup stack. Next, I cover libraries in Symbian OS – both
statically linked and DLLs.

Finally, I outline the key naming conventions used when developing
Symbian OS code and provide a summary of key points to remember
when writing Symbian OS software.

4.1 Use of C++ in Symbian OS

C++ is the primary language for software development on Symbian OS
since it provides the most efficient and natural interface to the system-
level frameworks and APIs which themselves are written in C++. In fact,
Symbian OS itself is written almost entirely in C++. When developing
Symbian software, you’ll be using many of the standard C++ language
features, including inheritance, encapsulation, virtual functions, function
overloading, and templates.

These language features are not only used for implementing your
application logic, but also in using the system APIs. For example, some
APIs are abstract classes that your application classes can inherit from
and extend their functionality as needed. Other APIs are classes that

82 SYMBIAN OS PROGRAMMING BASICS

are instantiated and used directly. Still others are simple function calls
implemented as static class methods that can be called directly in the
same manner as C-based APIs – no class instantiation is required (the
static API class User is a good example of this).

4.2 Nonstandard C++ Characteristics

Although Symbian OS uses many of the object-oriented features of C++,
some of its functionality is implemented in nonstandard ways. This
can require an adjustment, even for experienced C++ programmers.
For example, Symbian implements its own exception-based mechanism
for handling errors such as low memory conditions in place of the
C++ throw/catch exception feature. Also, Symbian OS does not use the
Standard Template Library (STL) and instead has Symbian OS-specific
implementation classes for functions such as string manipulation and
complex collection types. Symbian decided on this course for a variety of
reasons including making the implementation more efficient for resource-
constrained devices.

To begin the discussion of Symbian OS basics, let’s start with the basic
data types.

4.3 Basic Data Types

To provide machine and compiler independence, Symbian OS provides
a set of data types that should be used in place of the standard C++ types,
such as int, long and char:

• TInt, TUint: An integer whose size is the natural machine word
length (at least 32 bits). These are mapped to int and unsigned
int.

• TInt8, TInt16, TInt32: Signed integers of 8, 16 and 32 bits
respectively.

• TUint8, TUint16, TUint32: Unsigned integers of 8, 16 and 32
bits respectively.

• TInt64: A 64-bit integer, implemented in two unsigned 32-bit inte-
gers. The class implements operator methods (such as, +, *, and =)
and thus can be used like a normal data type. Some nonoperator
methods such as Low()and High() (to get the lower and upper 32
bits of the data) are also provided.

• TText8, TText16, TText: Simple character data. TText8 and
TText16 are mapped to unsigned char and unsigned short
respectively. However, TText is the best one to use, since it will

SYMBIAN OS CLASSES 83

be defined as either 8- or 16-bit, depending on whether or not your
application is configured for a Unicode build.

• TChar: A class (as opposed to the simple typedefs used for the
TText types) that represents a character. It contains various character
detection and manipulation methods, such as converting between
upper and lower case, and checking whether it’s a control character.
TText should be used if possible, since it has less overhead cost.
TChar forms the basic building block for the string functionality in
Symbian OS.

• TBool: A Boolean type, whose value is either ETrue or EFalse.
This type is mapped to int.

• TReal32, TReal64, TReal: Floating point numbers. TReal64
and TReal both represent double precision 64-bit real numbers
and are mapped to the double data type. TReal32 represents a
32-bit floating point value. This smaller precision can be limiting;
however, it’s useful in cases where performance is more important
than precision. The smaller data size results in faster floating point
operations.

• TAny: Mapped to the standard void data type in C and C++. Symbian
uses TAny because it is more descriptive than voidwhen representing
a ‘pointer to anything’. Functions that return no value still use void,
since in that case void is accurately descriptive.

See Example 4.1 for some sample declarations for the basic data types.

Example 4.1. Basic data types

TInt foo(TInt aParm1, TText aParm2, TAny *aPtr)
// returns an int
// takes an int, a character, and a void pointer

{

TInt var1;
TChar dummyC;
dummyC = ‘A’;
for (TInt i=0;i<10;i++)

{ /* some stuff */ }

dummyC.lowerCase(); // converts the ‘A’ to ‘a’

}

4.4 Symbian OS Classes
There are four main categories of C++ class in Symbian OS. To improve
code readability, Symbian OS has a convention of prefixing class names
with a letter to identify the class type. This convention should be followed

84 SYMBIAN OS PROGRAMMING BASICS

when creating your own classes that fall into these categories:

• T – Data type classes

• C – Heap allocated classes derived from CBase

• R – Resource classes

• M – Interface classes

4.4.1 Data Type Classes
Data type classes encapsulate a value of a specific type. These classes have
optional methods for manipulating, comparing, and otherwise controlling
the object’s contained value. The TChar class described in the previous
section is a good example of this: each instantiation of TChar holds
a character value. The TChar class methods can be used to perform
operations on that value.

Data type classes start with T, but this convention is not limited to
classes. As we have seen in the previous section, a T is prefixed to any
declaration that represents a data type. This includes typedefs and enums.

4.4.2 Heap Classes
Heap classes inherit from Symbian’s CBase class, which is why the C
prefix is used. As the name suggests, they are instantiated on the heap
(i.e., with new) as opposed to on the stack as automatic variables or as
class members. Heap classes are referenced by pointers.

Deriving a class from CBase ensures that:

• The destructor of the derived class is called when the object is deleted
through a base class pointer. (CBase declares a virtual destructor.)

• All data members in the class are initialized to zero when instantiated.
This prevents problems such as uninitialized pointers.

Heap classes should not be allocated on the stack. Since the zero
initialization is done by CBase as a result of the new operator, and
since new is not performed in the case of stack instantiation – then the
member variables will contain undefined data when instantiated (as is
normal with non-CBase derived classes). This can cause a problem if
the class (or class user) is written to assume that the data is initialized to
zero – an assumption that is valid for correctly instantiated Symbian OS
heap classes.

4.4.3 Resource Classes
Resource classes are used to control objects that are implemented and
owned somewhere else. For example, client classes in a client/server

SYMBIAN OS CLASSES 85

structure are implemented as resource classes since the actual resource
is controlled by the server. Also, the Symbian OS API provides numerous
resource classes that allow user programs to control objects that are
owned and implemented by the kernel (threads, processes, mutexes and
memory chunks are examples of this).

Resource classes begin with R, which stands for resource (you can
also think of the R as standing for remote). These classes are normally
allocated on the stack or as class member variables – although they can
also be created on the heap.

Since an R class instance is a handle to a resource, deleting it does not
delete the actual resource itself. This is different from the behavior of T
classes where deleting a T class instance also deletes the data the T class
instance represents (since the data is just a member of the class).

The Symbian RFile API class is a good example of a resource class.
Files are opened by instantiating an RFile object and calling its Open()
method. The object then acts as a handle to read and write the file (using
the Read()and Write()methods of RFile). Deleting the RFile object
does not delete the file associated with it.

Another example is RThread, as illustrated in Example 4.2. (The class
RThread will be covered in more detail in Chapter 7.)

Example 4.2. Resource Class Example

void func1()
{
RThread thread;

// opens reference to thread with id ThreadXId
thread.Open(ThreadXId);

// Raise priority one notch above the default priority
thread.SetPriority(EPriorityMore)

thread.Close();
}

The code in this example will raise the priority of the thread whose
thread ID is ThreadXId. Although RThread’s Close() method is
called – and the RThread object itself is destroyed when the function
exits – the actual thread is not deleted, since RThread is simply a handle
to it. Note that, for simplicity, no error checking is done in this example.
RSocket, RProcess and RSemaphore are other examples of re-

source classes.
Resource classes follow certain patterns. They usually use an Open()

method (and sometimes Connect()) to create a handle to the resource,
and a Close()to close the handle to the resource. Creating and closing
a resource handle results in a reference count being incremented and
decremented respectively, and the Symbian OS kernel will not allow the

86 SYMBIAN OS PROGRAMMING BASICS

actual resource to be deleted if there are any open handles to it. For some
resources, the resource is deleted automatically by the system when the
last handle to it is closed.

4.4.4 Interface Classes

Interface classes, which are prefixed with M for Mixin, are abstract
classes whose purpose is to define an interface (sometimes known as a
protocol) for other classes to use, as opposed to implementing function-
ality themselves. Interface classes have no member variables and in most
cases contain only pure virtual functions. Typically, you derive a class
from one or more interface classes using multiple inheritance, and then
override and implement the interface’s functions as appropriate for your
class, for example:

class MInterface1
{
virtual void DoThis()=0;
};

class MInterface2
{
virtual void Callback()=0;
};

class AClass: public ABaseClass, MInterface1, MInterface2
{
virtual void DoThis(); // override method from MInterface1
virtual void Callback(); // override method from MInterface2
}

void AClass::DoThis()
{
//implementation here
}

void AClass::Callback()
{
// implementation here
}

This example shows two interface classes, MInterface1 and
MInterface2, each consisting of a single abstract function. Class
AClass uses multiple inheritance to inherit from a normal base class,
ABaseClass, and from the two interface classes. AClass then imple-
ments the actual functionality behind the interfaces by overriding the
interface functions.

Having separate classes for interfaces is more manageable than simply
adding all the interface methods directly to your class (or in one of your
base classes). Also, inheriting from interface classes allows you to use
an interface class pointer when operating on an object and not care

SYMBIAN OS CLASSES 87

what the actual derived class type of the object is (this is a typical C++
polymorphism). For example:

void CallMeBack(MInterface2 *aObj)
{
aObj->Callback();
}

An object of any class type that inherits from MInterface2 can be
passed to CallMeBack()and the appropriate Callback()implemen-
tation of the passed object is called.

Deriving from interface classes is the only situation in Symbian OS
where multiple inheritance is used. You will run into problems if you
attempt to use other forms of multiple inheritance, since the standard
base classes were not designed to support them.

Figure 4.1 provides an example interface class relationship.
In Figure 4.1 Class2 implements two interface classes, MProtocol1

and MProtocol2.Class1 implements MProtocol1 only. Both classes,
as is typical, also inherit from a normal, non-interface class in addition to
the interfaces they implement (shown as Class1Base and Class2Base
in the figure).
Function1(MProtocol1aProt1)will accept an argument of type

Class1 or Class2 since both of these classes are derived from MPro-
tocol1. The argument is cast down to an MProtocol1 type and

Function 1(MProtocol1aprot1)
{
/* Manipulate object through
protocol 1 methods */
}

MProtocol1

protocol 1 pure
 virtual methods

MProtocol 2

protocol 2 pure
virtual methods

Function
2(MProtocol1aprot2)
{
/* Manipulate object through
protocol 2 methods */
}

Class 1 Class 2

MProtocol1 methods implementation MProtocol1 methods implementation

MProtocol2 methods implementation

Class1Base Class2Base

Figure 4.1 Interface Classes Example

88 SYMBIAN OS PROGRAMMING BASICS

Function1()will then manipulate the object as needed through the
MProtocol1 interface methods.
Function2(Mprotocol2 aProt2) will accept objects of type

Class2 since Class2 inherits from MProtocol2. Passing Class1
to this function will generate a compiler error since Class1 does not
inherit from class MProtocol2 (in other words, Class1 does not support
the MProtocol2 protocol).

From an object-oriented point of view, there are many benefits of
using interface classes for the purpose of managing objects using specific
protocols. While I did not go into the theory in much detail here, hopefully
this gives you a better idea of what interface classes are and how they are
used.

If you are a Java programmer, you may recognize the M class concept as
being a C++ implementation of the Java interface keyword.

4.5 Exception Error Handling and Cleanup

Good error handling and recovery are essential for limited resource
devices such as smartphones. For example, if an application runs out of
memory, the user should not lose any data and the smartphone should
not crash.

Symbian OS provides an extensive error handling and recovery mech-
anism that is used heavily in Symbian OS software. You’ll need to
understand this functionality since it will comprise a significant portion
of your Symbian OS software design and development effort. This section
describes how to use this functionality.

4.5.1 Error Handling via Return Codes

Traditionally, functions are written to return status codes that indicate
either success or some particular failure. Symbian OS uses this method
for many of its APIs – a function returns KErrNone on success, and a
particular error code (e.g. KErrNotFound, KErrNoMemory) on failure,
as defined in e32std.h. A simple if after the function call can test for
and handle an error.

But providing return statuses alone is not enough for a robust user
experience. Why? Two reasons: firstly, not all return codes are tested by
the programmer when invoking functions or creating objects. Secondly,
the calling function may not know how to handle particular errors, which
can result in inconsistent behavior for ‘core’ error conditions, such as
running out of memory.

EXCEPTION ERROR HANDLING AND CLEANUP 89

4.5.2 The Leave/Trap Mechanism

To solve the problems just mentioned, Symbian OS provides an exception-
based error handling and recovery mechanism based on leaves and traps.
When an error occurs, the software invokes a leave, which causes the
function to exit immediately. Control returns to the calling function,
which, if no trap exists, will also exit at that point. This process continues
up the calling chain until a trap is encountered, at which time the error is
handled. Figure 4.2 illustrates this exiting process up an example nested
calling chain to where a trap is defined.

As you can see, the leave is a more proactive way of indicating an
error. Unlike simple return codes, a leave cannot be ignored.

When a function is interrupted and exited due to a leave (as Func2(),
Func3()and Func4()are in Figure 4.2), it will act as if a return occurred
at that point: all automatic variables will go out of scope and thus will

Funct0()
{

 Func1()

}

Func1()
{

}

Func2()
{

 Func3()

}

Func4()
{

 Leave(code);

}

TRAP(code,Func2())
if (code)
{

//handle trap

}

Func3()
{

 Func4()

}

Trap defined

Leave initiated

Figure 4.2 Leave/Trap

90 SYMBIAN OS PROGRAMMING BASICS

be deallocated. However, any cleanup that requires explicit code (e.g.
delete statements) will be skipped (if they occur after the leave). This is
an issue that must be accounted for and the correct way to handle this is
discussed in Section 4.5.6.

Since this leave/trap method is similar to C++’s built-in throw/catch
exception handling, you may wonder why Symbian did not use that
instead of inventing its own method. The reason is that this mechanism
was not a part of C++ at the time Symbian OS was written. Also, the
leave/trap method in Symbian OS is more lightweight and efficient than
the C++ throw/catch method.

Example 4.3 shows example code of leave/trap usage. The macro
TRAP is used to invoke the function and trap any leave code that occurs.
The function User::Leave()is used to execute a leave in the case of
an error.

Example 4.3. Leave/Trap Example

void fooBarL ()

{
TInt rc;

rc = SomeFunction();
if (rc)

{
User::Leave(KAnError); // leave invoked
}
// The code here is not executed if Leave above occurred.

}

void MyFunctionL()

{

....
fooBarL();
// The code from here on will not be executed
// if Leave was called in FooBarL()

...

}

void StartHere()

{
TInt LeaveError;

// invoke MyFunctionL(), with a trap to catch leaves

TRAP(LeaveError,MyFunctionL());
if (LeaveError)

EXCEPTION ERROR HANDLING AND CLEANUP 91

{
// MyFunctionL() Leave occurred, handle here

}

// code is always executed here - leave or not
}

In Example 4.3, execution starts at StartHere(). StartHere()
invokes MyFunctionL()through the TRAPmacro andMyFunctionL()
invokes fooBarL() (without a TRAP). If rc is set in fooBarL() (due
to a SomeFunction() failure), then the system static API function
User::Leave()is called. This will cause fooBarL()to stop executing
at that point and return to MyFunctionL(). Since MyFunctionL()
did not define a trap handler when calling fooBarL() (i.e. the TRAP
macro was not used) then MyFunctionL()will exit, immediately after
the call to FooBarL(), propagating the exception to its calling function,
StartHere().

Since we invoked MyFunctionL()using the TRAP macro in Start-
Here(), then StartHere() will not automatically exit. Instead, the
leave code (KAnError) is written to the first argument of the TRAP
macro (LeaveError) and execution continues normally. If a leave did
not occur, LeaveError is set to KErrNone (0).

Execution always continues normally after the TRAP macro, whether
or not a leave event occurred. A simple if after the TRAP handles
LeaveError.

4.5.3 The TRAP and TRAPD Macros

Let’s look at the TRAP macro in more detail. TRAP takes two arguments.
The first is a TInt variable in which the leave code is placed. The second
is the function you want to invoke and trap the leave codes from.

Here is an example TRAP call:

TRAP(LeaveCode,functionL())

This statement invokes functionL() and if functionL() returns
due to a leave (in it or on down the calling chain), then LeaveCode
is set to the value passed to the User::Leave() function call, and
execution is continued normally. If a leave did not occur (the normal
case), Leavecode is set to KErrNone (0) and execution also proceeds.
Note that the first argument can be any variable name and that variable
must have been declared previously (as a TInt) or the compiler will
complain.

92 SYMBIAN OS PROGRAMMING BASICS

A variation on TRAP is TRAPD (the D is for declare). TRAPD is the
same as TRAP except the TRAPD macro will declare the first argument
(the leave code variable) so you do not have to. For example:

TRAPD(LeaveError,MyFunctionL());

is equivalent to:

TInt LeaveError;
TRAP(LeaveError,MyFunctionL());

In Example 4.3, if TRAPD was used in place of TRAP (in the Start-
Here()function), then the TIntLeaveCode; line would not be needed.
In fact, the compiler would generate a multiple declaration error if you
left that line in since using the TRAPD in this case results in the compiler
seeing two TInt LeaveCode declarations. The same error would occur
if you have multiple TRAPD calls using the same leave code variable as
the first argument. To avoid multiple declaration errors in that case, you
could use TRAPD first and TRAP thereafter.

You can also use TRAP(LeaveCode,ret= functionL()) to assign
a return value. Keep in mind that the return value will only be valid in
the case of LeaveCode being set to KerrNone (indicating that no leave
occurred).

What if you do not use TRAP or TRAPD in your code and a leave
occurs? In this case, the operating system code will handle it depending
on the error. In many cases, the thread is killed.

4.5.4 Leave Functions

Symbian OS has a set of static API functions grouped in a class called
User. This is where the leave functions reside.

Here are the different variations of the leave function:

User::Leave(code); // simple leave, passing leave code
User::LeaveNoMemory(); // equivalent to User::Leave(KErrNoMemory)

User::LeaveIfError(error); // if error is negative, do a leave using
// error as the reason. Just return
// ’error’ if not negative.

User::LeaveIfNull(TAny *ptr); // if ptr is NULL, do a leave with
// reason as KErrNoMemory

In most cases, your experience will be in trapping (and handling leave
cleanup issues) from system APIs that have the potential to leave. If you
look at the SDK API reference, you will see the possible return codes for

EXCEPTION ERROR HANDLING AND CLEANUP 93

the function and possible leave codes (if any). Functions that may leave
have a suffix of L (or LC) as discussed next.

4.5.5 What Do the ‘L’ Suffixes Mean?
The Symbian OS convention is to add an L to the name of all functions
that may leave. Why is this needed? The first reason is that it gives you
a clue that you may want to trap some of the leave codes that could
occur. The next reason (which is the most important) is that you need to
know that the function may actually exit at that point and not execute the
lines further down. You need to look at your code and think about this
carefully. Make sure the code will cleanup properly if a leave occurs.

Example 4.4 shows some code with a cleanup problem.

Example 4.4. An accident waiting to happen

MyFunction()
{
TInt *buff;
buff = new CThisObject;

...
funcL();
...
delete buff;
}

If a leave occurs in funcL(), the delete buff line would never be
called and you would be left with allocated memory on the heap. Since
buff is an automatic variable, it will go out of scope upon exit and
you are left with orphaned memory with no reference to it (a textbook
example of a memory leak).

To avoid this situation, you could structure your code such that deletes
are never needed after functions that may leave, but this is an awkward,
if not impossible, solution. Another option is to always use class member
variables instead of automatic variables when allocating heap memory,
and perform the deletes in the class destructor. This could work for
classes allocated on stack, since they will go out of scope on leaves, but
it can be limiting. But what else is left? Well, you can TRAP the function
and have the TRAP handler call the delete, and then just reissue the
User::Leave()so that the real TRAP can handle further up. Clever, but
still awkward to do for every call of an L function in your program. So
what is the solution? Thankfully, Symbian provides a method of handling
this situation – the cleanup stack.

4.5.6 Cleanup Stack
Automatic pointer variables can be pushed onto a cleanup stack during
a function’s execution. If a leave occurs in the function (either directly

94 SYMBIAN OS PROGRAMMING BASICS

via the User::Leave()function call, or from an L function that leaves),
each pointer that was pushed on the cleanup stack is popped and freed
before the function is exited. This will prevent the problem described in
the last section.

Items that were pushed onto the cleanup stack must be manually
popped off when there is no more danger of a leave occurring before the
deletion. As with all stacks, items are popped from the cleanup stack on
a last-in–first-out basis and the stack must be kept balanced in order to
perform as expected.

Symbian OS provides a static API class called CleanupStack for
accessing the cleanup stack. The basic functions in this class are:
CleanupStack::PushL()and CleanupStack::Pop(). These func-
tions push items to and pop items from the cleanup stack respectively.

Example 4.5 shows the cleanup stack in use.

Example 4.5. Using the cleanup stack

Func1L()

{

CMyObject *myObj = new CMyObject;
CleanupStack::PushL(myObj);
TInt *buff = new TInt[1000];
CleanupStack::PushL(buff)
DoSomethingL();
CleanupStack::Pop(2); // Pop last two items off cleanup stack

delete myObj;
delete buff;

}

Both myObj and buff are pushed onto the cleanup stack with
CleanupStack::PushL(). If function DoSomethingL()leaves, exe-
cution stops at that point; however, before control is returned to the
calling function, each pointer on the cleanup stack (myObj and buff in
this case) is freed.

If DoSomethingL() does not leave (normal case), the items are
popped off the cleanup stack manually via CleanupStack::Pop(2).
The argument ‘2’ means to remove the last two items pushed.

A variation of the Pop function is CleanupStack::PopAndDes-
troy(). This function removes the item from the cleanup stack and
deallocates it. The item is cleaned up in the same way it would be if
a leave had occurred. Since popping and deallocating are often done
at one time, this function is convenient. In Example 4.5, Cleanup-
Stack::PopAndDestroy(2) could replace CleanupStack::
Pop(2) and the two delete statements.

EXCEPTION ERROR HANDLING AND CLEANUP 95

Before the cleanup stack can be used, it must be created for the thread
that uses it. You will not have to worry about this for GUI applications and
servers since the cleanup stack is created automatically in these cases.
However, in other types of programs (or in user-created threads within a
GUI program, for example), you will have to do this yourself by adding
CTrapCleanup *trap = CTrapCleanup::New() to your code and
calling delete trap when finished.

4.5.7 Object Types and the Cleanup Stack

The following are the CleanupStack::PushL()methods:

• PushL(CBase *)

• PushL(TAny *)

If a CBase-derived object is pushed on the stack, upon cleanup (per-
formed as a result of a leave or a CleanupStack::PopAndDestroy()
call) a delete will be performed on that object, causing the object’s
destructor to be called. Since the CBase destructor is virtual, the destruc-
tor of the derived class is called. This is the ideal cleanup case.

If a non-CBase object is pushed on the cleanup stack (causing the
PushL(TAny *) version of the function to be called), then the cor-
responding PopAndDestroy() function does not call delete on the
pushed pointer, but instead calls User::Free(). This simply frees the
memory allocated to the object, without calling the destructor.

The reason PopAndDestroy()does not call delete in this case
is because PushL(Tany *) cannot be sure that the passed class has a
virtual constructor (which it knows CBase has). Since the pointer could
be to a base class, it will not know if the correct destructor of the concrete
class would be called. So, if you push an object on the cleanup stack
that is not of type CBase, only partial cleanup may take place when
PopAndDestroy()is called, or a leave occurs. (To resolve this issue see
Section 4.5.9.)

Therefore, a good rule is only to use CleanupStack::PushL()on
objects derived from CBase. But you can also safely use it for objects
(such as simple memory allocations) which have no destructor code.

Note that PushL()can itself leave due to an error. However, it will
only leave after the item is pushed on the cleanup stack, so you can be
sure that the item will be cleaned up even when PushL()fails.

4.5.8 More Complex Cleanup

In some cases, deleting memory that is referenced by automatic pointers
is not the only type of cleanup that is needed if a leave occurs. You may
have application-specific cleanup (e.g. tidying up a state machine in a

96 SYMBIAN OS PROGRAMMING BASICS

file), or may need to call specific methods in automatic objects before
they go out of scope (e.g. Close()).

To handle the just mentioned requirement, Symbian OS provides
another CleanupStack::PushL()overloaded function:

PushL(TCleanupItem userCleanup)

Using this form of PushL(), you push a reference to your own cleanup
handling function on to the cleanup stack. Upon cleanup (via a leave
or PopAndDestroy()call), your function is invoked when this item is
retrieved from the cleanup stack. TCleanupItem is a wrapper class for
a simple function call that returns void and takes one TAny* argument.
A code example should clarify this – see Example 4.6.

Example 4.6. Using a user cleanup function

void myCleanupFunc(TAny *arg)
{

// Will execute on leave or PopAndDestroy. Do special cleanup here.
}

void foo()
{

CleanupStack::PushL(TCleanupItem(myCleanupFunc,&data));

// ...

Func_1L();

// ...

CleanupStack:: PopAndDestroy();

}

If Func 1L()leaves, myCleanupFunc()will execute with the argu-
ment set to data.

4.5.9 Other Cleanup Functions

There are three more cleanup stack functions that are useful: Cleanup-
ClosePushL(), CleanupReleasePushL(), and CleanupDelete-
PushL(). These are static API functions that do not belong to any
class. These functions use a combination of C++ templates and the
TCleanupItem form of CleanupStack::PushL(), just described, to
implement their functionality.

EXCEPTION ERROR HANDLING AND CLEANUP 97

CleanupClosePushL<class T>(T& obj)

This function will push obj on the cleanup stack. When cleanup occurs
(via leave or PopAndDestroy()),obj.Close()is called. This is perfect
for resource classes (‘R’) that are allocated on the stack and require the
Close()method to be called to cleanup.

Example 4.7 shows this function in action.

Example 4.7. CleanupClosePushL() Example

void FooL()
{

RFile f;

...

f.Open(...);

...
CleanupClosePushL(f);
func1L(); // may leave, if so f.Close() called

...
CleanupStack::PopAndDestroy(); // f.Close() called
}

You do not need to add the template declaration after CleanupClose-
PushL()(or any of the three functions of this section) since the compiler
can unambiguously determine the class type for the template from the
function argument.

CleanupReleasePushL <class T> (T&obj)

CleanupReleasePushL acts the same as CleanupClosePushL
except that method Release()is called on cleanup. Calling Release()
is required to cleanup some interfaces.

CleanupDeletePushL <class T>(T *obj)

Pushing an object on the cleanup stack using this function will cause
a delete to be called on obj upon cleanup. How is this different
from CleanupStack::PushL() ? Since CleanupDeletePushL()
uses templates, the class type of the object is passed in addition to the
object itself. This enables the actual destructor of the passed object to
be called upon cleanup regardless of the object’s type. Contrast this with
CleanupStack::PushL(CBase*) where the passed class must be
derived from CBase.

Thus CleanupDeletePushL() should be used for all non-CBase
classes that have destructors defined. If a class is derived from CBase, use

98 SYMBIAN OS PROGRAMMING BASICS

CleanupStack::PushL(CBase*). As you will remember, Clean-
upStack::PushL(TAny*) can be used for simple classes without
destructors.

The object passed to CleanupDeletePushL()need not have a virtual
destructor since the object type is not cast down to a base pointer, as
it is in CleanupStack::PushL(CBase*). Whatever derived object
you pass to CleanupDeletePushL(), that same derived class’ destruc-
tor is called when cleaning up.

Example 4.8 shows this function in action.

Example 4.8. Using CleanupDeletePushL()

class myClass
{
public:

myClass();
∼myClass(){ // will be called on cleanup in this example }
};

func1L()

{

myClass *obj = new myClass();

// do stuff with obj

CleanupDeletePushL(obj);

FooL(); // if leave occurs, delete obj will be called

CleanupStack::PopAndDestroy(); // delete obj called

}

4.5.10 LC Functions

Functions that end in LC provide an added convenience – upon successful
completion the return value is pushed on the cleanup stack for you, as
shown in Example 4.9.

Example 4.9. Using an LC Function

void Func1L()
{
TInt *BuffPtr;

BuffPtr = User::AllocLC(1000); // system static API which allocates
// memory

EXCEPTION ERROR HANDLING AND CLEANUP 99

...
FooL();

CleanupStack::PopAndDestroy();
}

In Func1(), if User::AllocLC()allocates memory successfully, it
returns the buffer pointer to BuffPtr and pushes that pointer on the
cleanup stack. This saves you a statement, but don’t forget to pop the
pointers off the cleanup stack after calling LC functions!

4.5.11 Leaves when Creating Objects

When an object is constructed using the new operator, a memory allo-
cation occurs. Although a return value of NULL will indicate that the
memory allocation failed, many times you will want it to generate a leave
instead. How can you do this? Just insert an (ELeave) between the new
and the class name as in the example below:

CMyObject *obj = new (ELeave) CMyObject;

This may seem cryptic at first, but it’s valid C++ syntax for invoking an
overloaded new operator function.

For a traditional new statement (e.g. CMyObject obj = new CMy-
Object), the compiler invokes the built-in new function prototyped
as new(TInt) – the TInt argument being the size of the object.
However, if you add (ELeave) after the new keyword, the compiler
invokes the function prototyped as new(TInt, TLeave) instead, where
TInt is the object’s size and TLeave is the data type for the argument
ELeave. ELeave is just a dummy variable whose purpose is to cause
this overloaded new function to be invoked. Symbian OS implements
this overloaded new function (overriding C++’s built-in new function) to
leave on memory allocation failures.

Remember to take care in cleanup when constructing objects using
ELeave since there is the possibility that a leave can occur during
construction. For example, can you spot the error in Example 4.10?

Example 4.10. Spot the error

Func1L()
{

TInt *buff1 = new (ELeave) myBuff[1000];
CMyClass *obj = new (ELeave) CMyClass;

CleanupStack::PushL(buff1);

100 SYMBIAN OS PROGRAMMING BASICS

CleanupStack::PushL(obj);

Call1L();
Call2L();

CleanupStack::PopAndDestroy(2);

}

The problem is that if a leave occurs when constructing CMyClass,
then buff1 will not be destroyed. You must push buff1 before con-
structing CMyClass. Example 4.11 shows the corrected code.

Example 4.11. Corrected Code

Func1L()
{

TInt *buff1 = new (ELeave) myBuff[1000];
CleanupStack::PushL(buff1);
CMyClass *obj = new (ELeave) CMyClass;

CleanupStack::PushL(obj);
Call1L();
Call2L();
CleanupStack::PopAndDestroy(2);

}

The original code has an additional problem in that if the PushL()
of buff1 leaves, then the same issue of buff1 not being destroyed
occurs.

4.5.12 Leaves in Constructors

We have seen how adding ELeavewill cause a new to leave if a memory
allocation occurs, but what if a leave occurs in the class constructor itself?
This is a problem in Symbian OS, and thus is not allowed. Why? Because
the constructor is called immediately (and behind the scenes) after the
memory allocation in the new operator function, with no chance for the
programmer to push the pointer to the allocated memory to the cleanup
stack. So if a leave occurs during the constructor, you have an orphaned
pointer to the memory allocated for the class.

In other words, a constructor should never leave, so don’t call leave in
them, or call any functions that may leave (i.e. with L suffix) unless you
trap them. But isn’t that unrealistic? Surely you may want to do memory
allocations – or otherwise call functions that may leave – when an object
is constructed? This is why Symbian implements what is known as a
two-phase constructor.

EXCEPTION ERROR HANDLING AND CLEANUP 101

4.5.13 Two-Phase Constructors

The two-phase constructor concept is simple: a method is supplied in your
class named ConstructL()which completes the object construction.
A leave can occur in this method since it is just a normal function. See
Example 4.12.

Example 4.12. Implementing a two-phase constructor

void fooL()
{
CmyObj *obj = new (ELeave)CmyObj;

CleanupStack::PushL(obj);
Obj->ConstructL();

CleanupStack::PopAndDestroy();

...

}

Of course, if you can write your whole constructor without the possi-
bility of a leave occurring, then the two-phase method is not needed.

It is important to know whether an object has a ConstructL()before
using it. Not calling ConstructL()on an object that relies on two-phase
construction will result in fatal consequences.

Symbian OS classes are often implemented with a static NewL()
that will create the object correctly by performing both a new and the
ConstructL()call, as in Example 4.13.

Example 4.13. Implementing NewL()

CMyObj* MyObj::NewL()
{
CMyObj* self = new (ELeave) CMyObj;
CleanupStack::PushL(self);
self->ConstructL();
CleanupStack::Pop();
return self;
}

Or if you want to provide a NewLC()function, you could implement
both, as in Example 4.14.

Example 4.14. Implementing NewLC()

CMyObj* MyObj::NewL()
{
CmyObj* self = NewLC();

102 SYMBIAN OS PROGRAMMING BASICS

CleanupStack::Pop();
return self;
}

CMyObj* MyObj::NewLC() // the returned object pointer will be on cleanup
// stack on exit, to save user from pushing.

{
CMyObj* self = new (ELeave) CMyObj;
CleanupStack::PushL(self);
self->ConstructL();
return self;
}

4.5.14 Panics
A panic occurs on any error that is not recoverable, at which time
the thread exits immediately and the system displays a popup with
information regarding the error (the SDK documentation contains a list of
the system panics). In general, a panic occurs as a result of a programming
error of some kind. An example is if you use an API improperly. For
example, if you try to write to a file via the API class RFile, without first
calling Open(), a panic results.

A panic consists of a category name as well as a reason number – the
SDK documentation contains a list of these, with a description of what
they mean.

You can invoke a panic in your code in response to an error you detect
by calling:

User::Panic(const TDes& aCategory, TInt aReason);

TDes will be covered in Chapter 6, but for now you only need to
know that it represents a Symbian string. User::Panic()will cause the
thread to exit and an information box to appear indicating the thread
name, as well as the category name and reason code passed to the
panic function. Released code should never generate a panic condition
(although, unfortunately, some does).

On Series 60, when a panic occurs a box that simply says ‘Program Closed’
is displayed. To cause the full panic information to appear you need to
create a dummy file (which can be empty) in \system\bootdata\errd
on the target system’s C: drive. This works for both the emulator and the
smartphone.

Example 4.15 shows an example of calling panic.

Example 4.15. Calling Panic

_LIT(KFooProgram,"Foo program"); // Defines a string and assigns to
// KFooProgram

LIBRARIES 103

void foo(TInt aX, TAny *aBuff)
{

if (aBuff == NULL)
{
User::Panic(KFooProgram,3);
}

}

KFooProgram is a string constant indicating the category (do not
worry about this string syntax for now) and 3 is the reason code.

4.5.15 Assert Macros

Assert macros, __ASSERT_ALWAYS and __ASSERT_DEBUG, are usually
used in a situation such as in Example 4.15. The macro implements a
simple if statement, so you could replace:

if (aBuff == NULL)
{
User::Panic(KfooProgram,3);
}

with one of the following lines:

__ASSERT_ALWAYS(aBuff!=NULL,User::Panic(KfooProgram,3));

or

__ASSERT_DEBUG(aBuff!=NULL,User::Panic(KfooProgram,3));

__ASSERT_DEBUG will only throw the panic in debug builds.

4.6 Libraries

The two main types of library in Symbian OS are static libraries and
dynamic link libraries (DLLs). Static libraries are linked to a program at
build time – the library functions are extracted and included as part of
the calling program’s executable. DLLs, on the other hand, are loaded
and linked to at runtime. In other words, the complete DLL contents are
loaded into a shared memory region and programs call the functions in
that region directly as needed. DLLs are efficient since only a single copy
of each library function exists in memory, and these can be shared by
multiple programs.

104 SYMBIAN OS PROGRAMMING BASICS

Both static libraries and DLLs can contain C++ classes. The library
classes can be base classes, from which user programs derive their own
classes. Many Symbian OS API classes fall in this category. Libraries can
also contain derived, concrete classes which the user manipulates via
base class pointers (without knowledge of the details of the derived class).
This capability is used by polymorphic DLLs to implement plug-ins.

Of course, the library can also contain classes and functions that can
be instantiated and used directly (like RFile, RSocket or the static
User classes, for example).

4.6.1 Creating a Static Library
To create a static library, just enter your code in one or more source
and header files and create a project definition file like the one in
Example 4.16.

Example 4.16. Defining a Static Library MMP

TARGET Mystatic.lib
TARGETTYPE LIB
UID 0x1000008D 0x01000023

USERINCLUDE .
SYSTEMINCLUDE \epoc32\include

SOURCEPATH .

SOURCE MySource1.cpp MySource2.cpp

The line TARGETTYPE LIB indicates that the build is for a static
library.

As we saw in Chapter 2, the mmp file is used for building your program and
is used with the abld build wins or abld build armi commands. It
can also be imported to a supported Windows development IDE. Chapter 5
will discuss building in more detail.

Add the following to the mmp file for the programs that use this library:

STATICLIBRARY MyStatic.lib

When you build your program the functions required from My-
Static.lib are pulled out and included as part of your program’s
executable. No separate runtime module is required for it to run.

4.6.2 Creating a DLL
Building DLLs is a bit more complicated than building static libraries.
Chapter 5 discusses the various build issues encountered with DLLs

LIBRARIES 105

(including freezing exports and the def file inner-workings). This section
outlines a few programming points regarding DLLs as well as presenting
the basic DLL code structure.

These rules must be followed when writing a DLL:

• In the h files, add IMPORT_C before the declaration of each function
(class method or external function) that you want to be available to
DLL users.

• In the cpp files, add EXPORT_C before the implementation of each
function you want available to DLL users.

• Include the entry point function E32DLL(). It can be a stub, but is
needed for all DLLs.

While in static libraries, the functions are linked to as if you had included
the source files directly in your build – DLLs are handled a little differently.
Functions within the DLL can access other DLL functions in a normal
fashion (using standard C++ scoping rules), but in order for a function to
be available for outside use, it must be exported via the IMPORT_C and
EXPORT_C macros above.
IMPORT_C and EXPORT_C are mapped to compiler-specific keywords

for indicating access to DLLs. Some development tools may be more
lenient (such as the Microsoft compiler, which lets you get away with just
adding the IMPORT_Cs in the header) but, for portability, you should use
both IMPORT_C and EXPORT_C as specified.

See Example 4.17 for an example of a skeleton DLL.

Example 4.17. Implementing a DLL skeleton

//MyDLL.h

class DLLClass

{

IMPORT_C DLLClass();
IMPORT_C void Func1();
IMPORT_C void Func2();
void Func3();
virtual void Func4();

};

//MyDll.cpp

EXPORT_C void Func1()
{
// do stuff
}

EXPORT_C void Func2()

106 SYMBIAN OS PROGRAMMING BASICS

{
// do stuff
}

void Func3()
{
// do stuff
}

void Func4()
{
// do stuff
}

TInt E32Dll(TDllReason /*aReason*/)
{
return(KErrNone);
}

In Example 4.17, the constructor, Func1(), and Func2()are exported
and available for use by other programs when the DLL is loaded (indicated
by IMPORT_C/EXPORT_C declarations). Func3() is not exported and
thus is not available – a program will get an error if it tries to call it.
Func4()is available for outside use. How is that, since EXPORT_C and
IMPORT_C are not used? The reason is that it is virtual. All virtual functions
are exported (although it does not hurt to add IMPORT_C/EXPORT_C).

Example 4.18 shows the DLL mmp file. TARGETTYPE dll is what
determines whether a DLL is built.

Example 4.18. mmp file for DLL skeleton

//MMP

TARGET mydll.dll
TARGETTYPE dll
UID 0x10004262 0x10004264

SOURCEPATH ..\src
SOURCE mydll.cpp

USERINCLUDE .
USERINCLUDE ..\include
SYSTEMINCLUDE \Epoc32\include

EXPORTUNFROZEN

4.6.3 Import Libraries
When you build a DLL, you actually build two files: a dll and a lib.
The lib is a static library known as an import library. Programs that use
a DLL will statically link to its import library. Import libraries contain
function wrappers for each DLL function that, when run, will locate and
execute the real function’s code in the appropriate runtime-loaded DLL.

LIBRARIES 107

The import library also handles the details of loading the appropriate
DLL, if it is not already loaded.

For your program to use a DLL, you link at build time to the DLL import
library by adding it to your LIBRARY line in your mmp. Then, as long as
the DLL exists on your target, your program can invoke the exported DLL
classes and functions as needed.

The system APIs are implemented as DLLs. The SDK will indicate
what include file to use as well as what import library to include in the
LIBRARY line of your project’s mmp file.

4.6.4 RLibrary API

You do not have to link to the DLL import library to use a DLL (although
in most cases it’s more convenient). You can use the RLibrary API
to manually load the DLL into memory and invoke its DLL functions.
The functions are invoked by ordinal number, and you have to know
what functions correspond to what ordinal. DLL ordinal numbers and
RLibrary are described in detail in Chapter 5.

4.6.5 Polymorphic DLLs

A polymorphic DLL is just a normal DLL, but with only one exported
function – a static function that creates an instance of an object and
returns it. See Example 4.19.

Example 4.19. Polymorphic DLL

//H file

IMPORT_C CmyPolyDll *NewMyPolyL();

class CmyDerivedPolyPlugin : public CmyPoly
{
// ...
};

// CPP file

EXPORT_C CmyPolyDll *NewMyPolyL()
{
return new (Eleave) CMyDerivedPolyPlugin;
}

// Implement rest of class member functions here

As covered in Chapter 3, polymorphic DLLs implement virtual func-
tions. You can create multiple DLLs that all implement this NewMyPoly()
function, but returning different CMyPolyDll-derived class implemen-
tations. The program then chooses which of these DLLs to load, and
loads it with the RLibrary load command. Then, the program executes

108 SYMBIAN OS PROGRAMMING BASICS

common code that uses the DLL class through the common base pointer
(i.e. CMyPolyDll). This common code does not care which CMyPoly
plug-in DLL you have loaded.

4.6.6 Static Data in DLLs
As I mentioned in Chapter 3, writable static data is not allowed in a DLL.
This is a Symbian design choice for efficiency. Tacking on a data memory
region for DLLs is costly considering the large amount of DLLs available.
Whatever the reasons, you will have to live with this, and it can be a
challenge sometimes. This is especially true when porting existing code.
Note that you can have global variables – but they must be read-only and
of type const.

Be aware that the emulator will allow you to put static data in your
DLLs, but the target system will not. This can surprise you if you have
been doing the bulk of your development on the emulator and then do
your initial build using the smartphone target ARM tools and get errors
that look something like this one:

PETRAN - PE file preprocessor V01.00 (Build 175)
Copyright (c) 1996-2000 Symbian Ltd.
ERROR: Dll 'XXXApp[appUid].APP' has uninitialized data.
NMAKE :fatal error U1077: 'petran' : return code '0xfffffffe'
Stop.

This indicates that you need to hunt down those writable static variables
and either put const in front of them (if they are used as read only)
or devise another method for keeping global data. This subject will be
discussed further in Chapter 12.

4.7 Executable Files

The exe file is the basic executable image file for Symbian OS and
all programs reside in one. For example, as we have already seen, in
Symbian OS releases before v9, a GUI application is actually a DLL
launched transparently from a process instance of apprun.exe.

You will need to implement your own exe files for non-GUI related
processes such as when you implement a server.

Example 4.20 shows a simple EXE.

Example 4.20. Implementing a simple exe

TInt ExtGlobal=0; // ok to use here in EXE

GLDEF_C TInt E32Main()

EXECUTABLE FILES 109

{

for (;;)

{

User::After(10000000); // wait 10 seconds

User::InfoPrint(_L(“Ping Message”));

ExtGlobal++; // not used, just to illustrate that you can use
// writable globals in exe files

}

}

Example 4.21 shows the corresponding mmp file for building the source
of this EXE.

Example 4.21. Build file for the exe

// exe mmp file
TARGET myexe.exe
TARGETTYPE exe
SOURCEPATH ..\src
SOURCE myexe.cpp

USERINCLUDE .
USERINCLUDE ..\include
SYSTEMINCLUDE \Epoc32\include

The executable in Example 4.21 loops forever and displays a message
to the screen every 10 seconds. InfoPrint()function displays a mes-
sage for a short period of time before it disappears (until invoked again
after the next User::After()).

As you can see, the basic structure of an exe is simple. The exe only
requires the entry point E32Main()and your code takes it from there.
TARGETTYPE exe indicates that the output is an exe file.
Note that you can use writable static data in exe files since a process

has its own data area.
An application can start an exe file by calling EikDll::Start-

Exe(_L("c:\programs\myexe.exe")) – assuming that the execu-
table resides in that directory. As currently written, the StartExe() in
the code in Example 4.21 will only work on the smartphone and not on
the emulator. This is because the emulator does not let you run separate
processes within it, and the exe must be compiled as a Windows DLL.
The emulator does a fairly good job of simulating exe files with DLLs,
but some ifdefs for the emulator are required. Chapter 5 discusses this
in more detail.

110 SYMBIAN OS PROGRAMMING BASICS

4.8 Naming Conventions

Symbian OS has a set of naming conventions that should be used when
developing Symbian OS software. The operating system itself uses these
for its APIs and data.

Naming conventions make code easier to understand and aid correct
usage of classes and variables. For example, code such as the following
(which appears to be pushing member data to the cleanup stack, since
the ‘i’ prefix indicates a member variable) should be regarded with
suspicion:

CleanupStack::PushL(iMyData)

This is because you should never push a class member variable on the
cleanup stack.

Another suspicious line would be:

CSomeClass sc;

A class based on CBase (indicated by the prefix C) should never
be statically instantiated or instantiated on the stack – new (or a static
NewL()/NewLC()) should be used instead.

Yet another example is that if you see a class that begins with an R
(a resource class) and no Close() function called on it – that should
encourage you to look at it more closely.

Class Names

We looked at the conventions for class names at the beginning of the
chapter. To recap: T is prefixed to structures and class names that
represent data types, C is prefixed to the names of heap classes derived
from CBase, R is prefixed to resource class names and M is prefixed to
interface class names.

Variable Names

Class member variables should begin with ‘i’. Function arguments should
begin with ‘a’. For example:

class TMyClass
{
...
TInt iMyValue;
void MyAddFunc(TInt aArg1, TInt aArg2);
};

void TMyClass::MyAddFunc(TInt aArg1, TInt aArg2)

NAMING CONVENTIONS 111

{
iMyValue = aArg1+aArg2;

}

Global variables (although their use is discouraged) should begin with
an uppercase character.

Constants

Prefix constants with K. For example:

const int KMyConstant;

or

_LIT(KMyConstantString,“string”);)

Enumerations

Enumeration types begin with T (since they are types). The actual enum
members should begin with E. For example:

enum TColors
{
ERed,
EGreen,
EBlue,
EPurple,

...
};

Macros

Macros should be all uppercase. For example:

#define MY_HARDCODED_VALUE 25

Function Names

Function names should be descriptive and, in most cases, are verbs.
Function names have suffixes to indicate if they could leave on an error,
and/or if they push anything on the cleanup stack. We’ve looked at these
suffixes already when discussing error handling, but here is a recap:

• L – Functions in which a leave may occur end in L (e.g. myFuncL().)

• LC – Functions that may leave, having previously pushed their results
to the cleanup stack, end in LC.

112 SYMBIAN OS PROGRAMMING BASICS

A function suffix not previously discussed is D. A class method ending
in D means that the function takes responsibility for the object the method
is called from – i.e. it will delete the object when it is finished with
it. Thus, the calling program should not delete it (your software will
crash if you do!). An example function of this type is the dialog function
CEikDialog::ExecuteLD(), which will launch the dialog and destroy
the dialog object itself once the dialog is dismissed by the user (note the
L before the D, which indicates it may also leave).

4.9 Summary

This section recaps some key points to remember when developing
Symbian OS software. Some of these have already been discussed and
are included here again for convenience.

• When calling functions that may leave, consider what happens if
the program exits at that point and use the cleanup API functions as
needed.

• Any function that has a possibility of leaving should end in L (e.g.
fooL()).

• Use (ELeave) for instantiating objects (e.g. CClass = new
(ELeave) CClass). However, remember that the code could leave
at that point.

• Always declare a heap class (indicated by the C prefix) as a pointer
only, and create it via new (or NewL()/NewLC()); never declare or
instantiate it directly as an automatic variable.

• If you call a function that ends in LC, you need to pop the pointer
returned by that function from the cleanup stack (at a suitable place)
or your program will crash when the calling function exits.

• Only use CleanupStack::PushL() for CBase objects, and for
simple buffers and objects that have no destructors.

• When writing a DLL, place IMPORT_C in the h file before the decla-
ration of each function that you want accessible to the DLL user (e.g.
IMPORT_C void method1(TInt aArg1)) and place EXPORT_C in
the cpp file before each function implementation (e.g. EXPORT_C
void MyClass::method1(TInt aArg1) ...).

• Do not use global writable data in your DLLs (which includes GUI
applications). Any external, global variables must be of type const.
The emulator build will let you get away with this (this can trick you),
but it will complain when you build for the phone.

• You can use writable global data in exe files.

SUMMARY 113

• Follow the naming standards for member variables, arguments, enums,
constants and macros.

• When creating an object that will be instantiated on the heap, derive
it from CBase (or a class already derived from it) and prefix a C to
your class name (e.g. CMyClass).

• When using a Symbian OS API, include the header file and import
library specified in the SDK documentation.

5
Symbian OS Build Environment

This chapter examines the Symbian OS Software Development Kit (SDK),
the overall build process and tools, and how to create the various build
configuration files required to successfully build and install your program.
This chapter also covers other key topics, such as using the emulator, and
building and freezing DLLs.

I’ll mainly use the command line in this chapter – even if you’re using
an IDE, it’s helpful to have a basic understanding of what goes on in the
background.

5.1 SDK Directory Structure

The SDK is placed, by default, in a directory called symbian. Nokia
SDKs are placed in subdirectories of \symbian, using subdirectories
that specify the Symbian OS version number and the product name.
For example, the Series 60 v1.2 SDK is installed at /symbian/6.1/

series60_v1.2, while the Series 60 v2.0 SDK is installed at /symbian/

7.0s/series60_2.1.
Let’s look at some of the key directories in the SDK.

5.1.1 The epoc32 Directory

This directory is common to all Symbian OS SDKs (although the ear-
lier Nokia SDKs separate this into two epoc32 directories in the
SDK – Shared and NokiaCPP). Let’s look at the epoc32 subdirectories.

epoc32/include

This directory contains the system include files needed for your software.
The file e32std.h is a good one to skim through. It contains common
system API class declarations (although most of the API declarations are
distributed between numerous include files) as well as error codes that
may be encountered.

116 SYMBIAN OS BUILD ENVIRONMENT

You’ll also notice a stdlib directory, which contains C headers for
the standard C library implemented by Symbian OS.

epoc32/build

This directory is where the build tools place their intermediate files.
As builds occur, you will see directories being created in /epoc32/

build that mirror your project’s location where you executed the build.
For example, a build performed at c:\myProject\group will cre-
ate an epoc32/build/myProject/group directory. There is also a
subdirectory for each component in the build – and under that are sub-
directories for every platform you have built, each containing the object
files generated for that platform.

If you are curious, you can explore this directory and examine the
makefiles generated for each platform – but you’ll find that normally you
do not need to worry about this directory.

epoc32/tools

This directory contains the Windows-based tools used in the SDK. You’ll
see a mixture of batch files, Perl scripts, Windows and DOS executables
and Java executables.

epoc32/gcc

This directory contains the ARM cross-compiler toolchain, used for build-
ing software to run on smartphone devices. When you are building for
the emulator target, the Windows development tools are used.

epoc32/release

The /epoc32/release directory contains the executables for all sup-
ported target platforms. This is where the final executables (e.g. exe,
dll, app files, etc.) are placed when you build your software. Directory
/epoc32/release has subdirectories for each platform supported by
the SDK (e.g. WINS, ARMI, WINSCW). These platforms – known as build
targets – in turn contain UDEB and UREL directories. These directories
contain the actual executables – UDEB contains versions of the executa-
bles built with debug symbols, while UREL has no debug symbols and is
suitable for release.

On emulator build targets (e.g. WINS, WINSCW), under both UDEB
and UREL, there is a directory called Z that contains (together with the
contents of /epoc32/data/z) the contents of the simulated ROM (Z)
drive for the emulator.

For smartphone build targets (e.g. ARMI, ARM4, THUMB), the release
directory is used mainly for storing executables before they are packaged

BUILD SYSTEM OVERVIEW 117

to an install file for installation to the smartphone. However, the emulator
build targets contain the emulator executable itself, all the Symbian OS
system components built for the emulator, and the executables produced
by your program builds.

epoc32/data/z

The files in this directory are combined with the build target’s Z directory
to make up the simulated Z drive of the emulated smartphone.

epoc32/wins

This is the default location for other emulator memory drives.

5.1.2 Example Directories
Each SDK has a set of standard Symbian OS examples that are common
between all platforms. These examples cover a variety of different areas
of Symbian OS.

In addition to the generic Symbian examples, the SDKs contain
examples specific to the platform. The directories for these vary, and
you’ll need to locate them. For example, Series 60 SDK’s examples are
in a directory named Series60Ex; UIQ SDKs have a directory called
UIQExamples.

If you are compiling GUI application examples, use the ones in
your platform-specific examples directory instead of the generic Symbian
examples. This is because the common examples do not use the vendor-
specific API classes and sometimes do not work properly.

5.1.3 Documentation Directories
The SDKs contain documentation that provides a reference for the system
APIs and the build tools, as well as other general information, examples,
and tutorials for building. Each SDK has the documentation organized
differently. For example, the UIQ SDK documentation is entirely in HTML,
while the Nokia ones tend to use Windows help and PDF files.

5.2 Build System Overview

The Symbian OS build system is platform-independent; therefore, make-
files are not used directly. After all, different development systems have
different make, compiler, and linker tools and these are invoked differ-
ently. For example, the compiler is invoked as cl for Microsoft compiler
and gcc for the smartphone. Also there are different makefile formats
(i.e. nmake and make). You would not want to keep track of separate
makefiles when compiling your software application for both the emulator
and smartphone device.

118 SYMBIAN OS BUILD ENVIRONMENT

If you don’t write makefiles, how do you define your build? Symbian
OS has its own build file format that you must use to specify how your
program is built. It contains information similar to that in a makefile, but
it is platform-independent – it contains no specific platform or develop-
ment tool commands. The build command takes the target platform as
an argument, generates the necessary makefiles for that platform, and
executes them.

I describe how to create the build files, and discuss the build command,
shortly, but first let’s look at the platforms Symbian OS supports and the
concept of a build target.

5.3 Build Targets

Build targets represent the various binary formats (and thus the target
platform) which could be used for a build. The ones supported by
Symbian OS are listed below.

Smartphone devices:

• ARM4 – 32-bit ARM instruction set

• THUMB – 16-bit ARM instruction set

• ARMI – ARM interchange format

Emulators:

• WINS – Microsoft

• WINSCW – Code Warrior

• WINSB – Borland

When you specify one of these build targets in your build command, the
build generates and executes a makefile that invokes the development
tools needed to produce the appropriate binary output. The executables
are then placed in the /epoc/release directory under the appropriate
build target’s name as described previously.

The smartphone build targets use the GNU tools to produce code for
the ARM processor – all current Symbian OS smartphones are based on
ARM. But why are there multiple ARM build targets, and which one
do you use? ARM4, THUMB and ARMI are known as Application Binary
Interfaces (ABI) and represent different ARM binary outputs. The ARM
processor has two instruction sets: a 32-bit set (ARM4) and a 16-bit set
(THUMB). The first is fast, but uses more memory, the latter is compact,
but slower. ARMI is the 32-bit instruction set with extra logic to allow it
to call THUMB code in addition to other 32-bit code. ARMI is known as
ARM interchange format.

BASIC BUILD FLOW 119

So which one should you use? The most commonly used device
build target is ARMI – use this one when in doubt. It is the safest for
third-party developers since it will interface with code compiled as
ARM4, THUMB and other ARMI code, and will work on any available
Symbian OS smartphone. If memory size is a significant concern you
can use THUMB. Since THUMB uses 16-bit instructions, the executables
are somewhat smaller than ARMI, but ARMI is faster. Many popular
smartphones support THUMB.

Do not use ARM4 unless you are writing system-level code such as
device drivers and board support software. ARM4 is used by phone
manufacturers and is not usually supported on the smartphone for user-
level programs.
WINS, WINSCW, and WINSB are emulator targets for Microsoft, Code

Warrior, and Borland Windows development tools respectively. The
emulator targets generate x86-based Windows binaries; however, you
need to use the build target that corresponds to the Windows toolset you
have on your PC. This ensures that your Windows development tools
are invoked when building. In addition to invoking the correct tools,
each emulator build target has its own emulator executable (actually two:
a UDEB version and a UREL version). It’s required that the emulator,
system code, and user programs are compiled with the same Windows
compiler – this is needed so that they can link together correctly.

While all SDKs will support the three smartphone device build targets, the
emulator build target support varies with the SDK.

5.4 Basic Build Flow
To build a Symbian OS program, you need two build files:

• Component description file (always named bld.inf)

• The Project definition file (suffixed by .mmp)

The component description file is a text file that, in its simplest form,
lists the project definition files to be included in an overall build. In most
cases, bld.inf will only list a single component. An example bld.inf
is shown below:

PRJ_MMPFILES
simpleEx.mmp

The project definition file (known as an mmp file) specifies the information
needed to build a specific program. This includes a list of the program’s
source files, the paths to the program’s include files, and the libraries your
program needs to link to. This is the key definition file for the build and
its format will be discussed in more detail shortly.

120 SYMBIAN OS BUILD ENVIRONMENT

Bld.inf

<project>.mmp

Intermediate files in /epoc32/build

Binary output in
epoc32/release/build_target/build_variant

Commands

Bldmake bldfiles
(Generate abld.bat)

abld build <build_target> <build_type>

Invokes development tool makefile, tools
for make target.

Files

Figure 5.1 Build Flow

As shown in Chapter 2, once these two files are created, you use
the commands bldmake and abld to perform a build based on the
bld.inf and mmp files. For example, you would type:

bldmake bldfiles
abld build wins udeb

to perform a wins debug emulator build. bldmake actually generates the
abld.bat file (it’s a batch file that ends up calling a Perl program). You
only need to invoke it when you build your project for the first time, or if
you modify bld.inf or move your project directory to another location.
From then on you can build by just using the abld command.

Figure 5.1 shows the basic flow of the build.

5.4.1 A Closer Look at abld.bat
abld can be invoked with other arguments besides build. The more
detailed syntax of abld is:

abld [test] command [options] build_target build_type

As you can see, build is just one of the commands you can use
with abld. See the SDK documentation for a complete list. For the most

BASIC BUILD FLOW 121

part there are only two commands besides build that you are likely
to need: clean and freeze. The abld clean command performs the
equivalent of a make clean, where all binary files are removed so the
software can be completely rebuilt (e.g. abld clean armi urel).

The freeze command is used to freeze the interfaces to DLLs and
will be discussed in detail later in this chapter.

Normally, the options are left blank, but sometimes it’s useful to
add -v. This generates verbose output so you can see the development
system tool commands as they are invoked.

5.4.2 The MMP File
An mmp file (sometimes referred to as the project definition file) is a text
file used to define a build in a platform-independent way. Each statement
in the file begins with a keyword. Statements can span multiple lines by
using a forward slash at the end of the line to be continued.

Example 5.1 shows the project definition file for a Series 60 example
program.

Example 5.1. Series 60 mmp file

TARGET SimpleEx.app
TARGETTYPE app
UID 0x100039CE 0x10005B94

TARGETPATH \system\apps\simpleEx

SOURCEPATH ..\src
SOURCE simpleEx.cpp
SOURCE simpleEx_app.cpp
SOURCE simpleEx_view.cpp
SOURCE simpleEx_ui.cpp
SOURCE simpleEx_doc.cpp

SOURCEPATH ..\group
RESOURCE simpleEx.rss

SYSTEMINCLUDE \epoc32\include
USERINCLUDE ..\include

LIBRARY euser.lib apparc.lib cone.lib eikcore.lib
LIBRARY avkon.lib

This section describes some of the main mmp file statements. See
the SDK documentation for the complete list and description of mmp
statements.

• TARGET program_name specifies your program’s executable file
name, for example:

TARGET myprocess.exe
TARGET myfuncs.dll

122 SYMBIAN OS BUILD ENVIRONMENT

• TARGETPATH target_path specifies the location where the final
executables for emulator builds are to be placed, relative to \epoc32\
release\build target\build type\z (the emulated Z drive of the smart-
phone), for example:

TARGETPATH \system\programs

will put your final executable, for a WINS debug build, in a \system\
programs subdirectory of <sdk_dir_root>\epoc32\release\
wins\udeb\z.

If the build is for the smartphone instead of the emulator (or the
TARGETPATH is not specified), then the executables are placed in
\epoc32\release\build_target\build_type (e.g. \epoc32\
release\armi\urel).

• TARGETTYPE type specifies the type of executable that is to be
created. Here are some of the key types that can be specified in this
statement:

• app – GUI application

• dll – Dynamic Link Library (DLL)

• exe – Process executable

• lib – Static library

• epocexe – Process executable that can run on both the emulator
and the target device (explained later in this chapter).

• UID uid2 uid3 – specifies the second and third UIDs for your com-
ponent. Refer to the next section for information on UIDs in Symbian
OS, for example:

UID 0x100039CE 0x10005B94

indicates a GUI application (0x100039CE) with a unique UID of
0x10005B94.

• SOURCEPATH path specifies the directories to search through to find
the source files listed in the SOURCE statements.
path is either relative to the mmp file location or can be a fully
qualified path.
Only one source path is in effect at a time, and it is active until
changed by the next SOURCEPATH statement.

• SOURCE source_file_1 source_file_2 . . . specifies the source
files that make up your project. Multiple statements can be used and
more than one file can be included in each statement.

WHAT IS A UID? 123

SOURCEPATH and SOURCE are used together to specify your project’s
source files, as in the following example:

SOURCEPATH ../myclass
SOURCE classx.cpp classy.cpp
SOURCE classz.cpp
SOURCEPATH ../myfuncs
SOURCE func1.cpp func2.cpp

These statements specify that the build includes classx.cpp,
classy.cpp and classz.cpp from the ../myclass directory, and
func1.cpp and func2.cpp from the ../myfuncs directory.

• RESOURCE resource_file_1 resource_file_2 . . . specifies
the application resource files to be compiled. A SOURCEPATH state-
ment can be used with this statement to specify where the resource
files are located. The build will compile these resources once for every
language that appears in the LANG statement. This will be discussed
further in Chapter 11, when we discuss language translations.

• SYSTEMINCLUDEinclude_path_1include_path2 . . . contains
a list of paths that will be searched for system include files (e.g.
#include <estlib.h>).

• USERINCLUDE include_path_1 include_path 2 . . . contains a
list of paths that will be searched for nonsystem include files (e.g.
#include “myinc.h”).

• MACRO macro-1 macro-2 . . . defines each macro in the list to have
the value ‘1’ (as in the compiler –D option). For example, if a project
has the following line in its mmp:

MACRO TEST_FLAG

and a source file in that project implements:

#ifdef TEST_FLAG

the #ifdef evaluates to true.

5.5 What Is a UID?

Symbian OS uses unique identifiers (UID) extensively for identifying
components. Each component is identified by three 32-bit UID inte-
gers – UID1, UID2 and UID3.

124 SYMBIAN OS BUILD ENVIRONMENT

UID1 is the most general identifier. Examples of UID1s are KExe-
cutableImageUid (0x1000007a), to specify an EXE, and KDynam-
icLibraryUid (0x10000079), to specify a DLL. You need not worry
about specifying UID1 in your mmp file, the build command can determine
this UID from your mmp file’s TARGETTYPE statement.
UID2 specifies further what type of component it is. For example, in

Symbian OS releases before v9, a GUI application is a DLL, so its UID1
is KDynamicLibraryUid (0x10000079) and its UID2 is KUidApp
(0x100039CE) to indicate that the DLL is a GUI application. UID2 is
used extensively for polymorphic DLLs (where UID1 is KDynamicLi-
braryUid and UID2 indicates the specific polymorphic ‘plug-in’ type).
An API can use this UID as a sanity check, to make sure it is loading the
correct type of DLL.
UID3 is the most specific identifier for the component. It must be

unique – no two executables in the system can have the same UID3, or
undefined behavior can result.

How do you obtain a unique UID3 for your program? You can reserve
a block of unique UIDs (they are assigned in groups of ten) from Symbian
by sending an email to UID@symbiandevnet.com. In the email, include
your name or your program’s name, your email address, and how many
UIDs you need (be reasonable).

Alternatively, during development, you can use UIDs in the range of
0x01000000 to 0x0fffffff and be assured that no released program
will conflict with them (although you should make sure you do not have
multiple programs yourself with the same UID).
UID2 and UID3 are specified in the UID statement of your mmp file.

Note that exe files do not need a UID2 or UID3 so the UID statement is
usually set to 0 (i.e. UID 0) if targettype is set to EXE.

5.6 The Emulator

The Symbian OS emulator is a Windows application that simulates the
smartphone on your host PC. You’ll find it a very helpful aid while
developing your Symbian OS software. With the emulator, the change,
build, run cycle occurs more quickly since you can run your program
without loading it onto the device. More importantly, since the emulator
is a Windows application, you can perform advanced debugging (e.g.
single stepping, break points, variable examination) of your Symbian OS
applications using your Windows development IDE.

Although all SDK emulators are based on a common core, each SDK
has its own emulator variation that looks and acts like the SDK’s tar-
get smartphone. This includes supporting the device screen size, input
devices and graphical user interface. Using your application on the emu-
lator is very similar to using it on the target phone – not only functionally,
but aesthetically as well.

THE EMULATOR 125

Compiling and running on the emulator is straightforward. First, build
your software for one of the supported emulator build targets (e.g. abld
buildwinsudeb), then launch the emulator via theepoc command and
run it. The emulator emulates the entire smartphone environment – you
select and run your program as you would on the actual device.

Although the emulator is fairly similar to the target device there are
some differences that will be discussed in Section 5.6.3. First, let’s look
at how the emulator is configured.

5.6.1 Running the Emulator

There is a different emulator executable for each emulator target platform
and target type. Just typing epoc will run the version corresponding to
the SDK’s principal target platform, with a UDEB build type. Alterna-
tively, type

epoc –urel

to run the non-debug version of the emulator. You can also specify the
build target. For example, entering

epoc –wins –urel

will run the WINS UREL version of the emulator (with its associated
executables).

5.6.2 Emulator Configuration

The emulator is configured through a file called epoc.ini. This file
is located in the %EPOCROOT%/epoc32/data/ directory of your SDK.
You’ll normally not need to touch it, but it can be used to customize
emulator behavior.

Virtual Drives

The emulator simulates the ROM and flash drives on the smartphone by
mapping the Z and C drives as directories on the PC.

The combined files in SDK directories epoc32\release\emula-
tor_build, target\build_type\z (e.g. epoc32\wins\udeb\z)
and epoc32\data\zmake up the simulated Z drive. Files are combined
on a directory basis. For example, the simulated smartphone directory
z:\system\lib directory for a Microsoft WINS UDEB build target will
contain the combined files of the epoc32\release\wins\udeb\z\
system\lib and epoc32\data\z\system\lib directories.

126 SYMBIAN OS BUILD ENVIRONMENT

By default, the simulated C drive of the smartphone is mapped to the
SDK’s epoc32\wins\c directory.

Customizing Virtual Drives

The virtual drives can be customized via the EPOC_DRIVE_?location
statements in epoc.ini. For example, you can add a D drive to point
to a specific PC directory. For example, you could add the following to
epoc.ini:

EPOC_DRIVE_D c:\myMMCCard

This results in the simulated phone’s D drive being mapped to
c:\myMMCCard on the PC.

You can also change the C and Z drives to map to where you
want, but note that for the Z drive the specified PC directory must be
named z.

Memory Capacity

The default maximum heap size for your software running in the emulator
is determined by the following statement in the epoc.ini file:

MegabytesOfFreeMemory size_in_MB

If this statement is not there the emulator uses 64 MB. Check your
SDK’s epoc.ini to see what size is being used. You can change it as
needed to simulate the limited memory conditions of the device. Some
SDKs set it to realistic settings already. Series 60 v2.0, for example, sets
this at 16 MB although you can set it lower to stress test low-memory
handling functionality.

The emulator always claims 1 MB to account for general system usage,
so to simulate an 8 MB device, use MegabytesOfFreeMemory 7.

Other Emulator Configurations

There are a variety of other settings in epoc.ini that you can use to
customize emulator behavior. For example, you can define the text in the
emulator title bar via the WindowTitle statement. You can also define
virtual buttons and hot keys for the emulator, mapping them to key code
events via the VirtualKey and KeyMap statements. The individual
SDKs use these settings to simulate specific phones, so normally you
would not modify them – however you may want to customize them in
developing specific tests or demos.

THE EMULATOR 127

Here is an excerpt from Series 60 epoc.ini:

Series 60 in emulator title bar.

WindowTitle Series 60

button at defined rect pixel area simulates 0 on keyboard.

VirtualKey 0 rect 126,568 64,28

Following causes left Alt-1 to send EstdKeyDevice0

keycode (keycodes in e32keys.h).

KeyMap LeftAlt 1 EStdKeyDevice0

See the SDK documentation for more details of these configurations.

5.6.3 Emulator versus Device Functionality
The emulator behaves very similarly to a real device. The entire Symbian
OS code is compiled for both the target device and emulator build targets
using the same source code – with some required deviations (e.g. if you
have any assembly language functions, you must obviously provide both
x86 and ARM versions). So, not only can the emulator be used for GUI
applications, but you can use it to develop system-level code.

Will everything that works on the smartphone, also work on the
emulator? Not everything – no emulator is that good. But for the most
part it is equivalent. Here are the main differences between the emulator
and the device:

• Hardware

The most obvious difference is that the underlying hardware of the
emulator is different from that of the device. The PC processor instruc-
tion sets are different – the PC uses x86 and the device uses ARM – but
this is easily hidden via the C/C++ language. More importantly, how-
ever, the peripheral hardware is different, so you cannot use the same
device driver and hardware abstraction layer code on both. On the
emulator, hardware accesses are mapped to appropriate Windows
API calls.

• Pixels and fonts

Although in most cases, the display of a GUI application will be very
similar on the emulator and on the device, there are likely to be slight
differences in pixel sizing between the two. For instance, it is possible
for text to be truncated on the emulator and not on the real device, or
vice versa. This can be an issue, if you rely on the emulator alone to
perform language translation testing, for example.

128 SYMBIAN OS BUILD ENVIRONMENT

• Static variables in DLLs

Static variables are allowed in the emulator, but not in the real device.
Be careful of this if you are doing most of your development on the
emulator – you’ll want to avoid having massive global variable search
and destroy missions late in the project.

• Single process versus multiple processes

The emulator runs as a single process, while the device supports
the multiprocessing capabilities of Symbian OS. In Symbian OS v8
and above, this difference is hidden and the APIs that start and
control processes are emulated. However, in Symbian OS versions
before that, you need to have special logic (enclosed by #ifdef
__WINS__) that uses threads to emulate the processes. Thankfully,
there is not much code needed to implement this. Chapter 9 shows an
example of transforming your process to run on a pre-v8.0 emulator.

5.7 Building DLLs

In this section, I show how to build DLLs and the issues involved.
Some aspects of building a DLL can be confusing at first, but once you
understand how it works, and the issues have been addressed, you’ll find
it straightforward to use.

5.7.1 mmp File for DLL
To build a DLL, set targettype to dll in your DLL’s mmp file. Also
set the first number in the UID statement to indicate the type of DLL to
build. The static interface DLL is the most popular and basic DLL, and
is what we’ll cover in this section. For this DLL type, set the UID to
0x1000008d. Example 5.2 shows a sample DLL mmp file (from Chapter 4,
Example 4.19):

Example 5.2. DLL mmp File

//MMP

TARGET mydll.dll
TARGETTYPE dll
UID 0x1000008d 0x10004264

SOURCEPATH ..\src
SOURCE mydll.cpp

USERINCLUDE .
USERINCLUDE ..\include
SYSTEMINCLUDE \Epoc32\include

EXPORTUNFROZEN

BUILDING DLLs 129

Once you create the mmp, run the bldmake bldfiles and abld
build build_target build_type commands as you would with
other projects. At some point, you will also need to use the abld
freeze command to freeze the interface to your DLL for release. I
discuss this in more detail in Section 5.8. During development however,
you should add EXPORTUNFROZEN to your mmp file (as indicated in
Example 5.2) to disable interface freezing. The abld freeze command
is not required when this option is set.

Building a DLL produces two outputs: the DLL itself and the import
library (this is a LIB file). Both outputs are placed in the build platform’s
release directory (e.g. epoc32\release\armi\urel). The emulator
can load and use the DLL directly from that directory. On the target
phone, DLLs should be placed in the /system/lib directory.

Programs that use the DLL need to statically link to the import library.
Adding the DLL’s import library name to the LIBRARY statement in the
program’s mmp file will allow this. The program will then access the DLL
functions through this import library.

Figure 5.2 shows the relationship between the import library and the
DLL.

The DLL’s import functions (simple wrappers whose only job is to
invoke the actual code contained in the DLL) reside in the DLL user’s
executable since the import library is statically linked. To illustrate this,

Import
Library
Functions
(From
mydll.lib)

Import
Library
Functions
(From
mydll.lib)

Prog1 Executable

Prog2 Executable

Mydll.dll

DLL Library

Figure 5.2 Import and DLL Libraries

130 SYMBIAN OS BUILD ENVIRONMENT

executing a library function called myDllFunc1()first invokes it in the
import library, which then locates and invokes it in the DLL. The import
library will also load the DLL if necessary.

Note that, on the smartphone device, when a DLL is loaded, it is
searched for in the /system/lib directory starting at the highest drive
letter before Z, then moving down until it reaches the lowest drive letter,
finally checking the system ROM Z drive. Therefore, you can copy a dll
in the /system/lib drive on C and have it override the one on ROM
(I would not suggest this). Or you can put it on a memory card (e.g. D
drive) and it will override the ones on C and Z.

5.7.2 Referencing Functions by Ordinal

To understand the discussions that follow, you need to understand how
functions within an import library invoke their DLL function counter-
parts.

As you saw in Chapter 4, EXPORT_C and IMPORT_C are used to
indicate which functions in a DLL are exported (i.e. available for outside
use). When the DLL is built each exported function is assigned a unique
integer value known as an ordinal. DLL functions are invoked at runtime
using these ordinal values. To illustrate this, suppose that myDllFunc1()
is assigned an ordinal of 5 when the DLL is built. The import library’s
myDllFunc1()will invoke the corresponding myDllFunc1()function
in the DLL by looking up function number 5 in that DLL (by using
RLibrary class’s Lookup()method described in the next section) and
executing it.

The import library and the DLL ordinal numbers must line up. Imagine
the trouble you will have if you update your DLL, and rebuild it such
that myDllFunc1()has a different ordinal value. If applications linked
with the older import library are run – and the myDllFunc1() import
function is called – the wrong function in the DLL will be invoked (i.e.
whatever function is now at ordinal 5). This situation is exactly what
the interface-freezing feature of Symbian OS is meant to prevent, as you
will see.

5.7.3 RLibrary API Class

Symbian OS provides an API class called RLibrary to load and invoke
DLL functions at runtime. The import library uses this API to access the
DLL and so it’s instructive to have a quick look at this class, even though
the import library shields you from needing to use it.

The key methods of RLibrary are Load() and Lookup(). The
Load()method is used to load a specific DLL and associate it with the
class. The Lookup()method will look up the DLL function with the
ordinal value passed to it.

DLL INTERFACE FREEZING 131

The following is a simple example of using RLibrary. It loads a DLL
called MyDll.dll and calls the DLL function whose ordinal value is 1:

RLibrary lib;

lib.Load(_L("MyDll.dll"));
TLibraryFunction MyFirstFunc=library.Lookup(1);

MyFirstFunc();

lib.Close();

In addition to its use by system code to access import libraries, an
application can make explicit use of the RLibrary class. Explicit use
is necessary when using DLLs that act as plug-ins, such as polymorphic
DLLs. See Chapter 4 for more information.

5.8 DLL Interface Freezing
DLL freezing is a mechanism to ensure that newly released DLLs will
remain backward compatible with previously released versions of the
DLL’s import libraries. It works by ensuring that the function ordinals
currently available in a released import library correspond with the
ordinals used by future versions of the DLL, even when new functions are
added.

Why Is DLL freezing important?

Imagine that you are developing a DLL that will be released for widespread
use. On initial shipment, you release the DLL itself and a corresponding
import library. Now imagine that several companies use your DLL, by
linking their application with your import library. Now imagine that you
want to update your DLL and rerelease it. If you modify the DLL such that
the function ordinals change, then that DLL is no longer compatible with
the applications that use your DLL, since the import library they link to
uses the previous function ordinals.

Of course, you could release a new import library so that all the
applications can be relinked, but this is not very realistic. The end-user
will not want to load and install new revisions of all the applications that
use the DLL in order for them to continue working (not to mention that if
they forget to upgrade one, it will be likely to crash, or to do other harm).

To solve this issue, you freeze the DLL interface before your initial
release. From then on, as you make changes to your DLL, the build tools
will keep the DLL ordinal numbers assigned to the same function names,
as specified in the frozen interface. If you add new functions they are
assigned new ordinal numbers, with values above the existing ones in the
frozen interface.

132 SYMBIAN OS BUILD ENVIRONMENT

The old import library will, of course, not provide access to the new
functions, but an application can still find the older ones that it uses, in
the same place as before.

If you were to delete a function in your DLL the order would be
lost – but the good news is that this is considered a violation of the frozen
interface and will generate a build error until you refreeze the interface.

Disabling Interface Freezing

Interface freezing should be disabled in early development. Add EXPOR-
TUNFROZEN to your DLL’s mmp file to do this. Building in this mode
is straightforward – you run bldmake bldfiles and abld build
build_target build_type and it generates an updated DLL and
import library. However, since the interface is not frozen, all applications
that use your DLL must be relinked to the updated import library because
the previous import library’s backward compatibility is not guaranteed.
This is because the ordinals assigned to exported functions are free
to change with each build, so only using the import library and DLL
produced from the same build is safe.

However, having the DLL’s ordinals change during early development
is not an issue since you have control over the applications that use the
DLL. Many times you will build both the DLL and the applications that
use it together at this stage, and the new import library will be picked up
automatically.

Enabling Interface Freezing

In the later stages of DLL development, you’ll want to enable interface
freezing in your builds and freeze the DLL’s exports each time you
release. This will ensure that updates to your DLL will remain backward
compatible with previously released import libraries.

How do you do this? Remove the EXPORTUNFROZEN statement in
your mmp file. With this statement removed, the build will require that
the DLL interface (i.e. exported function ordinals) be frozen. Then you
perform an interface freeze with the abld freeze command each time
you release a new DLL and import library.

What Does the abld freeze Command Do?

It creates a def file that records the current exported interface of the DLL.
The def file defines the frozen interface by listing each exported function
name along with its ordinal number.

How Is the DEF File Used?

With freezing enabled, each DLL project is associated with a def file (see
the note at the end of this section for how it is associated) that defines

DLL INTERFACE FREEZING 133

where the abld freeze writes to. The build then uses this def file in
the following situations:

• Linking the DLL

When the DLL is built, the project’s frozen def file is consulted.
The linker will ensure that all functions specified in the def file
will remain at the same specified ordinal position ensuring backward
compatibility with the import library produced after the last freeze.
New functions in the DLL will receive new, higher-numbered ordinals
(which will be added to the def on the next freeze).

• Generating the import library

With interface freezing enabled, the import library is directly generated
using the DLL interface defined in the project’s def file. While
interface freezing is disabled, the import library is always generated
using the interface from the just-generated DLL.

This is why the first build of a DLL will fail to generate an import
library if an abld freeze command was not done – no def file yet
exists.

• Associating a def file with your project

The name of the def file associated with your project defaults to
<your_projectname>U.DEF and is located in your project’s BARM
(for ARM build targets) or BWINS (for emulator build targets) directory.
U stands for Unicode build in your BARM directory. You can specify
a new name and location for this file by using the DEFNAME statement
in the DLL’s mmp file. Also, nostrictdef can be added to the mmp
file to cause the U not to be added to the def file name.

There is an additional def file that is generated on each DLL build, and
this should not be confused with the def file discussed above. This file
is an intermediate file, located in the project’s epoc32/build directory,
and always reflects the current interface of the DLL. When interface
freezing is disabled (EXPORTUNFROZEN in your mmp) the import library
is generated from this intermediate def file.

First Build of a DLL

A typical first set of commands to build a DLL without the EXPORTUN-
FROZEN statement is as follows:

cd <your dll build directory>
bldmake bldfiles
abld build wins
abld freeze wins
abld build wins

134 SYMBIAN OS BUILD ENVIRONMENT

Doesn’t it seem strange to run abld build wins twice? Actually, what is
happening is that the first abld build command will successfully build
the DLL, but will not build an import library since the interface is not
frozen. Executing the abld freeze command will examine the interface
of the DLL just built and freeze it (by recording the interface in a def
file, as we will see). The next abld build command will successfully
generate the import library corresponding to the DLL.

You could substitute abld library wins in place of the last abld build
wins command. This command builds the import library from the def file
just created by the abld freeze wins command. abld build does this,
but it also does a complete DLL build.

Now the DLL can be updated as needed and rebuilt. This DLL will be
backward compatible with the last frozen interface and thus will work
with those older frozen import libraries.

Sample DEF File

Example 5.3 shows the source code for a sample DLL.

Example 5.3. Source code for the sample DLL

#include <e32base.h>

class CMyClass : public CBase
{

public:
IMPORT_C CMyClass(void);
IMPORT_C void FuncA();
IMPORT_C void FuncB();
IMPORT_C void FuncC();
IMPORT_C void FuncD();
IMPORT_C void FuncE();
};

#include "Mydll.h"

EXPORT_C TInt MyTest()
{
return 0;
}

GLDEF_C TInt E32Dll(TDllReason /*aReason*/)
{
return(KErrNone);
}

EXPORT_C CMyClass* NewL()
{
return new (ELeave) CMyClass;
}

DLL INTERFACE FREEZING 135

EXPORT_C void CMyClass::FuncA()
{
/* FuncA code */

}
EXPORT_C void CMyClass::FuncB()
{
/* FuncB code */

}
EXPORT_C void CMyClass::FuncC()
{
/* FuncC code */

}
EXPORT_C void CMyClass::FuncD()
{
/* FuncD code */

}
EXPORT_C void CMyClass::FuncE()
{
/* FuncE code */

}
EXPORT_C CMyClass::CMyClass()
{
}

Example 5.4 shows a sample def file generated (by abld freeze)
for the sample DLL. The MyClass constructor is assigned ordinal 1, and
functions FuncA()through FuncE()are assigned ordinals 2 through 6.
The function MyTest()was assigned ordinal 7 and the NewL()function
of MyClass was assigned ordinal 8.

Example 5.4. def File

EXPORTS
??0CMyClass@@QAE@XZ @ 1 NONAME ; public: __thiscall

CMyClass::CMyClass(void)
?FuncA@CMyClass@@QAEXXZ @ 2 NONAME ; public: void __thiscall

CMyClass::FuncA(void)
?FuncB@CMyClass@@QAEXXZ @ 3 NONAME ; public: void __thiscall

CMyClass::FuncB(void)
?FuncC@CMyClass@@QAEXXZ @ 4 NONAME ; public: void __thiscall

CMyClass::FuncC(void)
?FuncD@CMyClass@@QAEXXZ @ 5 NONAME ; public: void __thiscall

CMyClass::FuncD(void)
?FuncE@CMyClass@@QAEXXZ @ 6 NONAME ; public: void __thiscall

CMyClass::FuncE(void)
?MyTest@@YAHXZ @ 7 NONAME ; int __cdecl MyTest(void)
?NewL@@YAPAVCMyClass@@XZ @ 8 NONAME ; class CMyClass * __cdecl

NewL(void)

Inserting a New Function

In the example just discussed, suppose you insert a new class method,
say FuncC_1(),after FuncC(). If freezing were disabled, the ordinals
could change in the next build; however, since the DLL is frozen, you can
be assured that the ordinals will remain the same and FuncC_1()will

136 SYMBIAN OS BUILD ENVIRONMENT

receive the next higher ordinal (9). Note that the frozen import libraries
will not have access to this new function yet (you need to refreeze and
release a new import library to use it), but at least the other functions will
still work correctly.

Interface Violation

Let’s consider what would happen if you froze the example DLL, and
then you removed one of the methods (FuncA(), for example). The next
time you built the DLL, you’d see an error such as the following:

MAKEDEF ERROR: 1 Frozen Export(s) missing from object files:
\SYM_PR\∼1\STAGE\SERIES60\SIMPLEEX\BWINS\MYDLL.DEF(3) :

?FuncA@CMyClass@@QAEXXZ @2
NMAKE : fatal error U1077: 'perl' : return code '0xff'
Stop.

The reason is that backward compatibility would be broken since existing
applications may depend on the function you deleted.

Unfreezing a DLL

In some cases you will have frozen the DLL (without releasing it) and then
want to rearrange things, by either renaming methods or deleting them.
You will not be able to build, however, since it will violate the interfaces
and you will get errors such as the one just discussed. To reset, unfreeze
your interface by deleting your project’s def file. Then run abld build,
abld freeze, abld build. This will create a new def with the new
interface.

5.9 Installing Applications on the Smartphone

An application is installed on a smartphone via an installation file that has
a sis suffix. This installation file, which is referred to as a sis file, contains
all the executables and data files for the application. In addition it contains
installation information, such as where to put each executable/data file
on the target device’s flash memory.

You can install a sis file in several ways:

• Using PC suite on the PC.

• On UIQ-powered smartphones, you can simply click on the sis file
in File Explorer and it will install itself on the smartphone.

• Download sis files from the web or via email onto the smartphone
itself and install them.

• Beam the sis file to the phone using infrared or Bluetooth technology.

INSTALLING APPLICATIONS ON THE SMARTPHONE 137

Installation sis file

Smartphone

Project executables and data files

makesis commandpkg file

Figure 5.3 makesis Flow

The smartphone keeps track of all installed programs, and allows the user
to uninstall them. The information from the sis file is used to determine
which files to delete.

To create a sis file for your program, Symbian provides a tool called
makesis. makesis uses a package definition file (a text file) as input,
which specifies what files are included in the package (and their location
on the PC) and where these files go on the smartphone. The package
definition file has a suffix of pkg. Running makesis with the argument
set to the name of the pkg file will generate the sis file – ready for
installation.

Figure 5.3 shows the operation of makesis.

5.9.1 Where Do I Put My Files?
Let’s look at the key directories on the smartphone device. The directory
structures differ somewhat between phones, but the ones listed here are
consistent across all devices.

• /system/apps

This is where applications reside. Each application has its own subdi-
rectory. The application’s executable and resource files are placed in
this directory.

• /system/data

This is where configuration files are normally put.

• /system/libs

All DLLs go in this directory.

138 SYMBIAN OS BUILD ENVIRONMENT

5.9.2 Format of the PKG File

The real work in creating a sis file is in creating the pkg file for your
project. First I will discuss the basic statements in the pkg file using
a simple illustrative example. Then I will talk about some of the more
advanced features.

A minimum pkg file has two lines describing the application and the
target smartphone device. These lines are followed by one or more lines
that specify what files on the development PC go in the package file, and
where those files should be placed on the target device when the sis
file is installed. Example 5.5 shows the pkg file from Chapter 2.

Example 5.5. Series 60 Example Package File

; SimpleEx.pkg – Series 60
;

; standard SIS file header
#{"SimpleEx"},(0x10005B94),1,0,0

;Supports Series 60 (all versions)
(0x101F6F88), 0, 0, 0, {"Series60ProductID"}

;
"c:\Symbian\6.1\Series60\epoc32\release\armi\urel\simpleEx.APP"-

"!:\system\apps\simpleEx\simpleEx.app"
"c:\Symbian\6.1\Series60\...epoc32\data\z\system\apps

\simpleEx\SimpleEx.rsc"-"!:\system\apps\simpleEx\SimpleEx.rsc"

Let’s look at the format of these lines in more detail.

Package File Comments

Lines that begin in a semi-colon and blank lines are ignored by makesis.

Package Header

The package header contains information about the program that you are
installing. The format is as follows:

#{“ program name”},{ProgramUID},Major_Version_#,Minor_Version_#,
Build_#[,package options] [,Type=Package Type]

In Example 5.5, the package header is:

#{"SimpleEx"},(0x10005B94),1,0,0

INSTALLING APPLICATIONS ON THE SMARTPHONE 139

This indicates that the program’s name is SimpleEx, the UID is
0x10005B94, and the version is 1.0.0. The program’s name and ver-
sion are displayed while installing (or uninstalling) the software. The
name and version are also used to identify the program for reference by
other package file commands (see Section 5.9.3).

All sis files must have a UID. In the example I used the one assigned to
the application contained in the sis file, but, even if you are installing
components that do not have a UID, one is needed here.

Package Options

There are two package options that can be specified in the package
header: SHUTDOWNAPPS (SH)and NOCOMPRESS (NC). The options can
be spelled out in full, or the two-letter abbreviation can be used. The
SHUTDOWNAPPS option will cause all applications to be closed on the
smartphone before the installation starts. NOCOMPRESSwill cause the files
to be put in the sis file in an uncompressed format. Generally this should
not be used.

The operation of these options may vary between phones, and they
are not normally used. Our example does not define any package
options.

Package Type

Package type should be set to indicate what kind of component is being
installed. It is used for presenting this information to the user and applying
certain characteristics or restrictions for installing or uninstalling.

The default package type is SISAPP, which indicates a standard
stand-alone application.

The complete list of package types is:

• SISAPP indicates that this is an application (the default).

• SISOPTION indicates an optional component.

• SISSYSTEM indicates a shared component, such as a DLL, which
may be used by multiple applications (it will not be removed until the
last user is uninstalled).

• SISCONFIG configures an existing application. It does not appear in
the list to uninstall.

• SISPATCH patches an existing component. The user may remove it.

• SISUPGRADE upgrades an existing component. Like SISCONFIG,
this is not available for uninstall.

140 SYMBIAN OS BUILD ENVIRONMENT

Product Target

The line after the package header indicates the target platform for the
installation. Consider the product target line from Example 5.5:

(0x101F6F88), 0, 0, 0, {"Series60ProductID"}

The first number is the platform’s UID, the last string is the name of the
platform. This line indicates that the target is Series 60 version 0.9 (which
will work on all Series 60 platforms).

Here are some common platform UIDs, along with product names:

Series 60 v0.9 0x101F6F88 Series60ProductID
Series 60 v1.0 0x101F795F Series60ProductID
Series 60 v1.1 0x101F8201 Series60ProductID
Series 60 v1.2 0x101F8202 Series60ProductID
Series 60 v2.0 0x101F7960 Series60ProductID
UIQ v2.0 0x101F617B UIQ20ProductID
UIQ v2.1 0x101F61CE UIQ21ProductID

Select the lowest version of a target platform that your software works
on. As an example, if you write a Series 60 application that works
with any Series 60 platform, then you should use the v0.9 platform
UID (0x101F6F88) so that the sis file will be able to be installed on
smartphones with all versions of Series 60. Make sure it will work on the
lower versions however. If, for example, you use Series 60 v1.2 APIs that
work on v1.2 and v2.0, then use v1.2 (0x101F8202). If you use a lower
one, problems will result if installed on pre-v1.2 phones.

On 9200 Series communicator, Series 80 platforms, no target platform
line is needed.

Specifying Files to Install

To specify the files that will be installed, enter lines of the following
format:

"source"-"destination"

where source specifies the file to include in the sis file, and destination
indicates the name and location of the file when it is installed. For
example, in Example 5.5, the line:

"c:\Symbian\6.1\Series60\epoc32\release\armi\urel\simpleEx.APP"-
"!:\system\apps\simpleEx\simpleEx.app"

INSTALLING APPLICATIONS ON THE SMARTPHONE 141

copies, into the sis file, a file named simpleEx.app from the
c:\symbian\6.1\series60\epoc32\release\armi\urel\ direc-
tory on the PC. Then, on installation, this file is copied to the smartphone
at \system\apps\simpleEx. In this example, the installed file has the
same name, but you can, if necessary, change the destination name.

But what about the target drive – what is drive ‘!:’? When installing a
sis file, the user is prompted to select which drive to install the software
on. The ‘!:’ just means to use the drive that is specified in response
to this prompt. So, if the user selects C, then SimpleEx.app is placed
in c:\system\apps\simpleEx. You can hardcode the drive too. For
example, if you specify ‘c:’ instead of ‘!:’ as the target path, then the
file is always copied to C, irrespective of which drive the user selects.

Relative paths can also be specified for the source file in these state-
ments. Such paths are relative to the location from which you run
makesis. You can also use the makesis –d option to specify the
directory you want relative file paths to be based on. For example, if you
run the command:

makesis –d c:\Symbian\6.1\Series60

a file specified as ‘\epoc32\release\armi\urel\simpleEx.APP’
will be interpreted as being relative to the Series 60 SDK path specified
in the –d option. This can be useful if the software is built on different
systems and you do not want to hardcode SDK paths in the pkg file.

5.9.3 Advanced PKG File Options
For most programs, the pkg file is simple, and similar to the minimum
example described above. But there are some more powerful features of
the installation tool that can be taken advantage of. I will not go through
all of them here – see the SDK documentation for that – but I will go over
a few useful and interesting ones.

Text Notices

You can specify a text file to be displayed to the user during the
installation process. The file itself is not copied to the target. This is useful
for displaying basic readme information or license agreements. To do
this, add the line below to the pkg file:

"license.txt" - " ", FILETEXT, TEXTCONTINUE

FILETEXT indicates to display the file during install. TEXTCONTINUE
will provide a continue button that will dismiss the text file and continue
the installation.

142 SYMBIAN OS BUILD ENVIRONMENT

Instead of TEXTCONTINUE, you can specify one of the following:

• TEXTSKIP displays a Yes/No option. If Yes is selected, installa-
tion continues. If No is selected, the next statement is skipped, but
installation continues normally afterwards.

• TEXTEXIT displays a Yes/No option. If Yes is selected, installation
continues. If No is selected, the installation stops and any files that
have already been installed are removed.

• TEXTABORT displays a Yes/No option, but when No is selected, the
installation just stops, without removing any installed files.

Removing Runtime-Generated Files

When you uninstall a program via its sis file, the uninstaller will remove
all the files that were copied to the phone by the installer as specified in
the file specification lines of the pkg file. But what if a file is generated at
runtime? Since the file is not copied to the target during the installation,
it is not listed for removal when the program is uninstalled. You can
specify that you want such files to be removed by using the FILENULL
specification as follows:

""-"C\system\data\my_runtime_generated_file",FILENULL

This indicates that no file is to be installed at the target location, but that
the specified file is to be removed during the uninstall process.

Note that such a file is removed only during a true uninstallation, and
not on update installations, where an old version of the program is first
removed, then replaced by a later version. The assumption is that you
will want to keep your existing runtime-generated files when installing a
new version of your program.

Embedding sis Files

You can include another sis file within your sis file with the following
line:

@”sis file name”,{UID}

For example: @”prog1.sis”,{0x12341234} installs prog1.sis, with
UID 0x12341234, at the point where this line is encountered.

Note that, on uninstallation, this embedded sis file will not be
uninstalled until the system determines that no other currently installed
components use it (i.e. there is no other installed component that also
includes that sis file in its pkg file).

INSTALLING APPLICATIONS ON THE SMARTPHONE 143

Running Executables on Install or Uninstall

You can specify that an executable be run during an installation by
adding FILERUN (FR)and RUNINSTALL (RI)keywords at the end of
the executable’s file specification line. For example:

"\Symbian\6.1\Series60\Epoc32\release\armi\urel\myprogram.exe"-
"!:system\programs\myprogram.exe",FR,RI

will install myprogram.exe and execute it during the installation.
The RUNINSTALL keyword can be replaced by either of the following

alternatives:

• RUNREMOVE (RR)causes execution to occur only during uninstalla-
tion.

• RUNBOTH (RB)causes the executable to be run on both installation
and uninstallation.

Any of these three options may be further qualified by use of the
RUNWAITEND (RW) keyword, which causes the installation to wait for
the executable to complete before continuing. If not specified, then
installation continues immediately after the executable is launched.

Requisite Lines

You can use a requisite line to specify that a particular component must
already be installed in order for the current installation to continue. It has
the following format:

{UID}, Major_Version_#,Minor_Version_#,Build_#,{“Product Name”}

This means that the component with the specified UID and Product
Name, with a version number not earlier than the one specified, must
exist for the installation to continue.

For example:

{0x10000123},1,0,0,{"MyDll"}

indicates that a component named MyDll, with UID 0x10000123 and a
version number of at least 1.0.0 must exist already before installation can
proceed.

The requisite line should look familiar – it is how the target platform
line is implemented. The example target platform line:

(0x101F6F88), 0, 0, 0, {"Series60ProductID"}

144 SYMBIAN OS BUILD ENVIRONMENT

is a requisite statement that the ‘component’ named Series60ProductID,
with a UID of 0x101F6F88, and version number 0.0.0 or higher, must
exist in order for the installation to continue.

5.9.4 Language Support

Multiple translated versions of an application can exist within a single
sis file. When a user installs a sis file, they are prompted to select
which language they would like installed.

To specify the language variants that you want to be included, add
a language line at the top of your pkg file. The language line begins
with ‘&’ and contains a list of comma-separated language codes from the
following list.

AM – US English

AS – Austrian German

AU – Australian English

BF – Belgian French

BL – Belgian Flemish

CS – Czech

DA – Danish

DU – Dutch

EN – UK English

FI – Finnish

FR – French

GE – German

HK – Hong Kong Chinese

HU – Hungarian

IC – Icelandic

IF – International French

IT – Italian

JA – Japanese

NO – Norwegian

NZ – New Zealand

INSTALLING APPLICATIONS ON THE SMARTPHONE 145

PL – Polish

PO – Portuguese

RU – Russian

SF – Swiss French

SG – Swiss German

SK – Slovak

SL – Slovenian

SP – Spanish

SW – Swedish

TC – Taiwan Chinese

TH – Thai

TU – Turkish

ZH – Prc Chinese

An example language line is:

&EN, FR, FI

which specifies that the sis file contains English, French and Finnish
language variants.

If a language line is not included, &EN is assumed.

How Does makesis Use the Language Information?

So far, we have used only language-independent statements in the pkg
file. Example 5.5 will install exactly the same regardless of an added
language line, or a language selection by the user.

In order to use the language information, you must use language-
dependent versions of the applicable pkg statements.

Language-Dependent Files

The first rule in internationalizing an application is to keep the language-
dependent parts of your application separate (i.e. in different files) from
the language-independent parts. For example, Symbian OS uses resource
files to contain text strings, and a separate resource file would exist for
each language. When the user selects a particular language to install, you
want to install the appropriate resource file for that language.

146 SYMBIAN OS BUILD ENVIRONMENT

As an example, the following pkg line specifies the installation of a
resource file based on the language:

&EN, FR, FI
...
{"c:\Symbian\6.1\Series60\...epoc32\data\z\system\apps

\simpleEx\SimpleEx.en",
"c:\Symbian\6.1\Series60\...epoc32\data\z\system\apps\simpleEx\SimpleEx.fr",
"c:\Symbian\6.1\Series60\...epoc32\data\z\system\apps\simpleEx\SimpleEx.fi",
}
-"!:\system\apps\simpleEx\SimpleEx.rsc"

In this example, makesis includes all three resource files in the sis file.
However, the language chosen during the installation determines which
file is actually copied to smartphone file \system\apps\simpleEx\
SimpleEx.rsc. The order in which the source files are listed must
agree with the order of the languages in the language statement – so that
UK English chooses SimpleEx.en, French chooses SimpleEx.fr and
Finnish chooses SimpleEx.fi.

Note that, if you use this language-dependent version of a file specifi-
cation line, you must include a source file for each of the languages listed
in the language line.

As another example, you could also have language-dependent versions
of a text notice, such as:

{"license.en.txt",”license.fr.txt”,”license.fi.txt”} - " ", FILETEXT,
TEXTCONTINUE

Other Language-Dependent Statements

When specifying multiple languages you will need to ensure that your
product header provides a component name for each language, and that
your target platform lines (as well as other requisite lines) provide product
id strings for each language. Although it is common for the component
name to be in English for each language variant, there still needs to be
a string entered for each language, otherwise an error will occur when
makesis runs.

Example 5.6 shows the pkg file of Example 5.5, after being modified
to support multiple languages.

Example 5.6. pkg file supporting multiple languages

; SimpleEx.pkg – Series 60
;
&EN,FR,FI
; standard SIS file header

SWITCHING BETWEEN SDKs 147

#{"SimpleEx",”SimpleEx”,”SimpleEx”},(0x10005B94),1,0,0

;Supports Series 60 (all versions)
(0x101F6F88), 0, 0, 0,
{"Series60ProductID",”Series60ProductID”,”Series60ProductID”}
"c:\Symbian\6.1\Series60\epoc32\release\armi\urel\simpleEx.APP"-
"!:\system\apps\simpleEx\simpleEx.app"

{"c:\Symbian\6.1\Series60\...epoc32\data\z\system\apps\
simpleEx\SimpleEx.en",

"c:\Symbian\6.1\Series60\...epoc32\data\z\system\apps\
simpleEx\SimpleEx.fr",

"c:\Symbian\6.1\Series60\...epoc32\data\z\system\apps\
simpleEx\SimpleEx.fi",

} -"!:\system\apps\simpleEx\SimpleEx.rsc"

5.10 Switching Between SDKs

At some point, you may want to develop software for multiple smartphone
models, and thus need to run multiple Symbian OS SDKs on the same
PC. Here are some methods to switch between these SDKs.

Two main things must be set up in your environment in order to
run an SDK. First, the environment must point to the proper SDK’s tool
directories so that the correct build commands can be invoked. Second,
an indicator must be set so that the build tools themselves know the
base directory of the SDK for finding include files, using the active SDK’s
build and release directories, etc. With SDKs that predate Symbian
OS version 7.0, this is done by:

• setting your PATH environment variable to point to the SDK tool
directories

• setting an environment variable called EPOCROOT to the location of
the active SDK.

SDKs based on Symbian OS v7.0 and later, however, provide a command
called devices that makes it easier to switch between SDKs. This works
especially well if you use Symbian OS v7 or later SDKs. As you install
these SDKs, the installer registers the SDK as an SDK ‘device’ and gives it
a name. You can run devices on the command line to see the names of
all your installed SDKs.

The following is a sample of the output of devices:

Series60_v20:com.nokia.series60 – default
UIQ_70:com.symbian.UIQ

148 SYMBIAN OS BUILD ENVIRONMENT

This shows that you have both the Series 60 v2.0 and UIQ SDKs installed
on your machine. The ‘default’ indicates that the Series60 v2.0 is currently
active.

To switch to an SDK, execute devices – setdefault @<SDK
name>. From then on, Symbian OS builds will be done using that
SDK. As an alternative to setting the SDK as default, you can specify the
@<SDK_name> after each build command – but that is very awkward and
using setdefault is more straightforward. In the preceding example,
executing

devices –setdefault @UIQ_70:com.symbian.UIQ

switches your environment so that UIQ is the active project.

5.10.1 What if Some SDKs Predate Symbian OS v7.0?

If at least one of your installed SDKs is based on Symbian OS v7.0 or
higher, then the devices command can be used to switch between all
your SDKs. However, installing a pre-v7.0 SDK will not automatically
add the SDK name for the devices command to use. You have to add
the SDK manually by using the following option:

devices –add <location of epoc32\release directory> <location of
epoc32\tools directory> @<SDK_NAME>

For example, the following statement adds a device that represents a
Symbian OS v6.0 Series 80 (Nokia Communicator) SDK.

devices –add c:\symbian\6.0\NokiaCPP c:\symbian\6.0\Shared
@Series80_9200:com.nokia.series80

5.10.2 How Does the devices Command Work?

When an SDK is added – either by installing a Symbian OS version 7.0
or greater SDK, or by executing the devices –add command – an
entry is added to a file called devices.xml, located in \Program
Files\Common Files\Symbian. This file contains a list of all installed
SDKs, including their names and where they are installed. The directory
\Program Files\Common Files\Symbian\Tools contains a small
stub for each Symbian OS tool. When a tool stub is called, it refers to
the devices.xml file in order to set EPOCROOT to point to the active
SDK’s location and get the location of the active SDK’s tools directory
and invoke the actual tool.

SWITCHING BETWEEN SDKs 149

Therefore, when using devices, your PATH no longer points directly
at your SDK tool directories, but at \Program Files\Common Files\
Symbian\Tools – for all SDKs. The tools stubs will ensure that the
correct SDK tools are called. Make sure that this directory is first in
your path – other directories in your path that point directly to your SDK
(perhaps left over from an installation of a pre-v7.0 SDK) will prevent the
devices command from switching SDKs.

For backward compatibility, setting EPOCROOTmanually before invok-
ing the build tools will override the settings in devices.xml. A common
problem encountered after installing a Symbian OS v7 SDK is that your
environment may still have EPOCROOT set, from a previous pre-v7.0
SDK installation. Since this EPOCROOT setting overrides the settings in
devices.xml, your new SDK will not work properly when you switch
to it with the devices command (the devices command is, in effect,
ignored). To solve this, make sure that your command line environment
does not initialize EPOCROOT.

5.10.3 What If All SDKs Predate Symbian OS v7.0?

In this case, it’s best to create a batch file to switch between them. The
batch file should update the PC’s path to point to the SDK’s tool directories
(<SDK_PATH>\epoc32\tools;<SDK_PATH>\epoc32\gcc\bin) and
set EPOCROOT to point to the SDK’s location.

For example, to set up a Series 80 v6.0 SDK:

set EPOCROOT=\symbian\6.0\NokiaCpp\
set PATH=c:\symbian\6.0\Shared\epoc32\tools;

c:\symbian\6.0\Shared\epoc32\tools\gcc\bin;%PATH%

6
Strings, Buffers and Data Collections

This chapter covers the basic string and data buffer APIs, as well as
other common data organization classes. These classes are part of what
is known in Symbian OS as the base APIs, and they reside in user.dll.

This chapter covers the following types of data classes:

• Descriptors for handling strings and binary data

• Dynamic buffers for buffers that grow at runtime

• Array classes

• Other data organization classes like linked lists and circular queues.

The chapter includes numerous examples, and the complete source of
the examples can be downloaded from the book’s website. The examples
output their results via a printf()style function, to what is known as a
text console.

Before diving into string and buffer management, let’s take a look at
how a text console program works. This provides an easy way to compile
the examples in this chapter and do experiments of your own without
writing a full GUI program.

6.1 Introducing the Text Console

Symbian OS provides a text console API class called CConsoleBase
that allows you to output formatted text to the screen, without the
overhead of using the GUI framework. The class also accepts keyboard
input. While the text console is not very useful for product software, it’s
excellent for learning and experimenting with non-GUI related Symbian
OS functionality.

Below is a very minimal console cpp file that outputs ‘Hello’ to the
text console so you can get the general idea:

#include <e32base.h>
#include <e32cons.h>

152 STRINGS, BUFFERS AND DATA COLLECTIONS

CConsoleBase* console;

TInt E32Main()
{
_LIT(KName,"Tests");
_LIT(KAnyKey,"[Press any key]");

console=Console::NewL(KName,TSize(KConsFullScreen,KConsFullScreen));

console->Printf(_L("Hello\n"));

console->Printf(KAnyKey);
console->Getch();

delete console;
return(0);
}

Symbian OS uses _LIT and _L to define string literals. We will discuss
them in Section 6.2.3.
CConsoleBase::Printf()works in much the same way that a

standard C printf() function works – it accepts a format string, and
a variable number of arguments to output using the specified formatted
string. The above example shows the simplest possible form, with no
format elements or arguments beyond the text string itself. The format
string has the same syntax as the C printf()format string, but has some
extra, Symbian OS-specific format identifiers. For example, %S is used to
print the contents of a string descriptor – you will use that one frequently.

The method CConsoleBase::Getch() is used to wait for and
retrieve a key from the keyboard, although the return value is discarded.

Example 6.1 shows an expanded version of a console program that
provides a general framework for running experiments, including the
examples in this chapter.

Example 6.1. Expanded Console Framework (tests.cpp)

#include <e32base.h>
#include <e32cons.h>
CConsoleBase* console;

void RunExampleL()
{
console->Printf(_L("Example Code\n"));

// Add example code here

}

void RunConsoleL()
{
_LIT(KName,"Tests");
_LIT(KAnyKey,"[Press any key]\n");

INTRODUCING THE TEXT CONSOLE 153

console=Console::NewL(KName,TSize(KConsFullScreen,KConsFullScreen));
CleanupStack::PushL(console);
RunExampleL();
console->Printf(KAnyKey);
console->Getch();
CleanupStack::PopAndDestroy(console);
}

TInt E32Main()
{
__UHEAP_MARK;
CTrapCleanup* cleanupStack = CTrapCleanup::New();
TRAPD(error,RunConsoleL());
__ASSERT_ALWAYS(!error,User::Panic(_L("Example"),error));
delete cleanupStack;
__UHEAP_MARKEND;
return(0);
}

Example 6.1 creates a cleanup stack for your test code to use if needed.
It also traps leaves that occur in your test code.
__UHEAP_MARK and __UHEAP_MARKEND are useful macros that

detect memory leaks on the heap. When __UHEAP_MARK is called,
the heap level is internally recorded. Then when __UHEAP_MARKEND is
called, if the current heap level does not match (i.e. there are allocations
on the heap that were not there when __UHEAP_MARK was called), then
an ALLOC panic is generated. We used them in the above code so that
you can see if any of the test code you entered did not properly free up
allocated memory. Note that these macros are only used in debug builds
and are ignored otherwise. They are useful in catching memory leaks.

The mmp file for the console project is shown in Example 6.2.

Example 6.2. Console mmp file

TARGET tests.exe
TARGETTYPE exe
UID 0

SOURCEPATH .
SOURCE tests.cpp

USERINCLUDE .
SYSTEMINCLUDE \Epoc32\include

LIBRARY euser.lib

To compile this console program, use the following commands (you
only need to issue the bldmake command once to set up the makefiles):

bldmake BLDFILES
abld build wins udeb

154 STRINGS, BUFFERS AND DATA COLLECTIONS

Figure 6.1 Console output

Substitute your particular build target for wins (e.g. winscw if you are
using Code Warrior), if required.

This creates a windows executable called tests.exe in the
%EPOCROOT%\epoc32\release\wins\udeb directory. If you run this
executable, it brings up the emulator and immediately runs your console
app. Figure 6.1 shows the output for tests.exe from Example 6.2. To
simplify running, you can create a batch file in the same directory as the
source file, which executes the exe in the release directory (so you do
not have to change to that directory).

Now, let’s get on with our discussion of strings and buffer manage-
ment, starting with the most commonly used Symbian OS data classes:
descriptors.

6.2 Descriptors for Strings and Binary Data

Descriptors are classes that represent data buffers and allow you to
safely access them. Symbian OS uses descriptors to store and manipulate
strings (as opposed to NULL-terminated C strings), as well as to manage
binary data. Descriptor classes, although containing many features, are
optimized for minimal overhead, since they are designed to run on
memory-constrained devices.

DESCRIPTORS FOR STRINGS AND BINARY DATA 155

You’ll need to thoroughly understand descriptors in order to develop
Symbian OS code, since they are so widely used. In fact, you’ll need
to use them just to call many of the Symbian OS API functions, since
descriptors are often passed to them as arguments. Descriptors are pow-
erful, but since their use is so unique when compared to other operating
systems, they can be a source of confusion to programmers starting out
in Symbian OS.

A descriptor class encapsulates a data buffer as well as the buffer’s
size – the size being used to prevent buffer overruns. There are multiple
descriptor classes you will need to be familiar with – these classes differ
in how the data buffer is stored and referenced, as well as the width of the
buffer’s data and whether the buffer is modifiable or not. Also, descriptor
classes contain numerous methods that allow you to read and write the
buffers as well as transform the data, using an interface consistent across
the different descriptor types.

6.2.1 Strings Versus Binary Data

Both strings and binary data buffers are treated as data buffers of a
specific length. Of course, if your descriptor contains binary data,
then the string manipulation methods of the descriptor (e.g. Low-
erCase()) are not applicable. Another difference is that strings are
usually stored in 16-bit descriptors while binary data is stored in 8-bit
descriptors. This is because Symbian OS uses Unicode and thus deals
with 16-bit characters. For binary data, however, 8-bit descriptors are
normally used, since the binary data is treated as simply a buffer of
bytes.

6.2.2 Preventing Memory Overruns

A memory overrun occurs when your software writes past the end of an
allocated buffer. The worst thing about a memory overrun is that it will
often go unnoticed at first and then manifest itself later as an intermittent
crash – often in functions far removed from where the overrun occurred.
As a result, a memory overrun can be extremely hard to debug and they
always seem to occur close to – or after – product release.

A big advantage of a descriptor is that it can prevent data from being
written outside of the allocated buffer. When an access is attempted
beyond the buffer limit, the descriptor generates an exception when the
actual overrun occurs, making it significantly easier to find and fix the
problem. However, nothing will prevent a memory-overrun attempt, so
you need to avoid such attempts and test vigorously to avoid having these
exceptions occur in your product.

156 STRINGS, BUFFERS AND DATA COLLECTIONS

6.2.3 Simple Descriptor Example
Before describing the descriptor classes in detail, let’s look at a simple
string example – comparing its implementation both in C and in Symbian
OS using descriptors.

The example implements a function called makeName()which con-
catenates the string passed as its argument to the string literal ’Name: ‘,
and prints the results.

First, let’s look at the example, written using C strings:

char *namePrefix=”Name:“;
void makeName(char *name)
{
char str[80];
strcpy(str,namePrefix);
strcat(str,name);
printf(“str= %s ”,str);
}

void MainFunc()
{
makeName(“Sharon”);
}

In C, strings are represented as a set of characters terminated by a NULL.
The literal namePrefix is declared as a char * and assigned the string
‘Name: ‘ – a literal stored in the code image. makeName() accepts its
string argument as a char *. It declares a temporary string buffer as
a char array (str) and then uses strcpy() and strcat() to copy
the name prefix and append the name passed to the function into the
temporary string. When the code invokes makeName(), it passes its string
argument as a quoted string.

Now let’s look at the same example rewritten to use descriptors:

_LIT(KNamePrefix,"Name:");

void makeName(const TDesC& aName)
{
TBuf<80> str;
str.Copy(KNamePrefix);
str.Append(aName);
console->Printf(_L("str = %S\n"),&str);
}

void MainFunc()
{
makeName(_L("Sharon"));
}

The first thing to note is how string literals are declared. In Symbian OS,
string literals are declared as descriptors using either the _LIT macro or
the _L macro.

DESCRIPTORS FOR STRINGS AND BINARY DATA 157

The prefix string literal is declared as:

_LIT(KNamePrefix,”Name:“);

The _LIT macro is called to take the string “Name:” and stores both the
string (no NULL) and the string’s size in the descriptor literal KNamePre-
fix.

Also notice that the example invokes makeName()as follows:

makeName(_L(“Sharon”));

The _L macro is like _LIT except that this one does not assign an
intermediate constant as _LIT does. I discuss other differences between
these macros in Section 6.3.2.
makeName()accepts its string argument as a descriptor instead of a

char *:

void makeName(TDesC &aName)

There are several different types of descriptor classes (see Section 6.3), and
TDesC is the base class of all descriptors – thus declaring the argument
in this way ensures that the function will accept any type of descriptor.

In the C example, the temporary string in makeName()was declared
as an array of 80 characters as follows:

char str[80];

In Symbian OS, str is declared as a descriptor instead:

TBuf<80> str;

TBuf is a 16-bit modifiable descriptor class with a maximum size
(specified as the template parameter) of 80 characters. Like an array,
TBuf stores the string buffer on the stack.

The example then builds the final string into the temporary descriptor
by copying the name prefix into the temporary descriptor and appending
the passed name as follows:

str.Copy(KNamePrefix);
str.Append(aName);

The Copy()and Append()descriptor methods are the counterparts to C’s
strcpy()and strcat() functions. Copy()here copies the specified

158 STRINGS, BUFFERS AND DATA COLLECTIONS

descriptor data KNamePrefix to str’s descriptor buffer, replacing any-
thing that’s there. Append()appends the descriptor string data in aName
to str’s buffer.

If the name passed into makeName()was large enough such that
str exceeded 80 characters, the C version of the code would overrun
its buffer. However, the descriptor version will immediately panic if the
string exceeds 80 characters, since the Copy()and Append()methods
know that the size allocated to the descriptor is 80 characters.

6.3 The Descriptor Classes

In this section, we look closely at all of the descriptor classes.
There are 10 descriptor classes available for the programmer to use.

These are divided into three types: buffer, pointer and heap. Buffer
descriptors contain their data buffers in the descriptor classes themselves;
their class names begin with TBuf. Pointer descriptors contain a pointer
to a data buffer located outside the descriptor; their names begin with
TPtr. Heap descriptors are used for managing descriptors on the heap.
Heap descriptor names begin with HBuf.

A descriptor can be modifiable or non-modifiable. A C (for constant)
is appended to the class names mentioned above to indicate that the
descriptor is non-modifiable.

Also, a descriptor buffer can contain 8-bit or 16-bit data. Adding 8 or
16 at the end of the class name indicates this. So, for example, TBufC16
is a 16-bit non-modifiable buffer descriptor.

Listed here are all the descriptor classes that can be instantiated. These
classes are directly instantiated without inheritance and they are defined
in e32des8.h and e32des16.h in the %EPOCROOT%\epoc\include
directory.

• TBuf8<n>: modifiable, 8-bit buffer descriptor, n is the buffer size

• TBuf16<n>: modifiable 16-bit buffer descriptor, n is the buffer size

• TBufC8<n>: non-modifiable 8-bit buffer descriptor, n is the buffer
size

• TBufC16<n>: non-modifiable 16-bit buffer descriptor, n is the buffer
size

• TPtr8: modifiable 8-bit pointer descriptor

• TPtr16: modifiable 16-bit pointer descriptor

• TPtrC8: non-modifiable 8-bit pointer descriptor

• TPtrC16: non-modifiable, 16-bit pointer descriptor

THE DESCRIPTOR CLASSES 159

• HBufC8: non-modifiable, 8-bit heap descriptor

• HBufC16: non-modifiable, 16-bit heap descriptor

16-bit Default for Unicode

Most times you will see strings represented with descriptor classes with no
data width appended to the class name (e.g. just TBuf). If you leave the
data width off the class name, it defaults to a 16-bit descriptor. Actually
the default depends on whether the build is using a 16-bit Unicode
character set or not (remember descriptors are used mainly for strings).
But since all current Symbian OS platforms use Unicode, then the default
is always 16-bit. Examine the include file e32std.h if you are interested
in how this default mapping to the descriptor classes is accomplished.

Since 8- and 16-bit descriptors behave identically in almost all respects,
I will use the default 16-bit descriptors (by leaving the number off) for
simplicity for most of this chapter. Unless stated otherwise, you can
assume that the code for 16-bit descriptors applies also to 8-bit descriptors.

Descriptor Class Hierarchy

Figure 6.2 shows a class diagram of the descriptor classes. As indicated
above, the diagram shows 16-bit classes only – there is a separate, but

TBuf<H> TPtr TPtrC TBufC<n> HBufC

TDesC
-iLength
-read-only descriptor methods

TRes
-iMax Length
-methods that
modify data

TBufCBase

TBufBase

Figure 6.2 Descriptor Class Diagram

160 STRINGS, BUFFERS AND DATA COLLECTIONS

equivalent hierarchy for 8-bit descriptors that start with TDesC8 (just tack
an 8 on every class name, and you’ll have it).

6.3.1 Descriptor Base Classes

TDes and TDesC are the base classes for descriptors, and they contain
methods for operating on the descriptor’s buffer. As you can see, TDes
inherits from TDesC. All modifiable classes inherit from TDes, while
the non-modifiable ones inherit directly from TDesC. Why is this? The
answer is simple: TDesC provides all the methods that involve only
reading descriptor data. Since all descriptors allow reading, then it serves
as a base for all descriptors. TDes extends TDesC by adding the methods
that involve writing descriptor data, which is why only the modifiable
descriptors inherit from it.

Remember that when you see a reference to a TDesC object, it does
not mean it represents only non-modifiable descriptors – modifiable ones
can also be referenced through pointers or references of this type, but no
writing will be done on them. However, TDes pointers and references
can only be used with modifiable descriptors.

The TBufCBase and TBufBase classes shown in the class diagram are
for implementation only and have no public methods or members and thus
will not be discussed.

Earlier we discussed that, unlike traditional C style arrays, descriptors
contain the size of their data buffer so that it can be safely accessed. The
descriptor size is stored as a member variable in TDesC. TDesC provides
two methods to access this size: Size()and Length(). Size()returns
the buffer size in bytes. Length()returns the buffer size in either 8- or
16-bit units depending on whether it is an 8- or 16-bit descriptor. For
example, if a 10-character Unicode string is stored in a 16-bit descriptor,
Length()will return 10 and Size()will return 20.

Class TDes (which inherits from TDesC) adds an additional length
value that specifies the maximum limit of the descriptor buffer. This
is used for modifiable descriptors to ensure that write operations do not
occur past the end of the allocated buffer. Therefore modifiable descriptors
have two lengths associated with them – the size of the data currently in
the buffer (from TDesC) and the maximum size of the data (from TDes).
TDes and TDesC cannot be directly instantiated; however, you will

see and use these types frequently in function prototypes. Using base class
references like this allows you to use descriptors without needing to know
what kind of descriptor it is. However, as previously mentioned, while
TDesC can represent all descriptors – TDes can only represent modifiable
descriptors (e.g. TBuf). Also, TDes and TDesC can only represent 16-bit
descriptors and TDes8 and TDesC8 can only represent 8-bit descriptors.

THE DESCRIPTOR CLASSES 161

In the following example:

_LIT(KSuffix,".suffix");
void AddSuffix(TDes& string)

{
string.Append(KSuffix);
}

the function AddSuffix()will add the string “.suffix” to the end of
any modifiable descriptor type passed.

6.3.2 String Literals
We’ve already seen string literals defined in some of the examples using
_LIT and _L, but before moving onto describing the different descriptor
types in detail, let’s look more closely at how string literals are handled
in Symbian OS.

String literals are used to store and reference strings in the code image
itself. In C, you simply specify a quoted string (or one with an L prefix
for 16-bit strings) and the compiler stores it – along with a terminating
NULL – in the code image, and then substitutes a pointer to that location.
This is simple and efficient for C since a pointer to a NULL-terminated
string is how C uses strings. An example of a C string declaration is:

const char *str="Hello";

_LIT and _L both take a quoted string as an argument and produce
a literal that appears, for all practical purposes, like a descriptor. Both
macros are used often, but _LIT is preferred because it is implemented
in a very efficient way, such that no runtime class construction occurs.
_L, on the other hand just instantiates a TPtrC descriptor at runtime,
which is not as efficient.

Here is an example of using _LIT:

_LIT(KMyString,”My String”);

This defines the literal KMyString, used to reference the string “My
String”. You can use KMyString as if it were a non-modifiable
descriptor – you can pass it to functions that accept TDesC arguments
(but not TDes!), you can assign it to TDesC pointers, and you can
even call descriptor methods directly if you use the () operator (e.g.
MyString().Length()).

The _LIT macro creates a special descriptor class called TLitC for
string literals.

162 STRINGS, BUFFERS AND DATA COLLECTIONS

Let’s look at how the _LIT macro is implemented.

_LIT(KMyString,”My String”)

expands to:

const static TLitC<10> KMyString={9, L”My String” }

The buffer data and its calculated size are initialized to data members of
a TLitC class.

The class TLitC does not inherit from TDesC – but it appears in
memory like TBufC (see Section 6.3.3). This makes it possible for the
compiler to statically initialize the data since it is all in one class. This,
along with some operators that cast its type to TDesC, provides an
effective trick to allow you to store a TDesC type descriptor in the code
image without a constructor being called at runtime.

Like _LIT, the _L macro also defines a literal that can be treated as a
TDesC (actually it is one in this case).
_L(“Hello”) expands to TPtrC((const TText *) L”Hello”)
When an _L is encountered, a temporary TPtrC object is constructed

and allocated. This is why _L is not as efficient as _LIT, (remember
that _LIT involves no runtime initialization). _L, however, is sometimes
more convenient since you do not need a separate line to define the
literal (e.g. User::PrintInfo(L(“Hello”))).
_L is officially deprecated, and is recommended for use only in cases

(such as in test code) where source clarity is more important than runtime
efficiency. That being said, support is likely to continue for the foreseeable
future.

6.3.3 Buffer Descriptors

TBuf and TBufC are buffer descriptors, i.e. they contain their data buffers
within their classes. The buffer’s size is specified by an integer passed as
a template argument during the class declaration.

For example, TBuf<10> Buf; creates a 16-bit descriptor object that
contains a buffer big enough for ten 16-bit values (20 bytes). For 8-bit
descriptors, the value specifies the number of 8-bit values allocated, so
TBuf8<10> would allocate 10 bytes rather than 20.
TBuf and TBufC are commonly used for small buffers and are often

declared on the stack as automatic variables. You can think of them as
arrays – in fact, these classes implement their data buffers as member
arrays, whose size is determined from the template argument.
TBuf is modifiable – it inherits from both TDesC and TDes and thus

has both the read-only (TDesC) methods and the read/write (TDes)

THE DESCRIPTOR CLASSES 163

Max Length BufferType

4 bits

32 bits
(From TDesC)

32 bits
(From TDes)

Max Length
(FromTBuf)

Length

Figure 6.3 TBuf Memory Layout

descriptor methods available to it. TBufC, however, inherits only from
TDesC, and therefore has only the read-only TDesC methods available
to it.

Figure 6.3 shows how a TBuf descriptor appears in memory.
The fields labeled type and length make up a 32-bit value declared

as part of TDesC. type is a 4-bit value that specifies the type of
descriptor that this memory region represents. The value of type is 3 for
TBuf descriptors.

Length is a 28-bit value that indicates the length of the data currently
in the data buffer. This is the value returned by the Length()(in units of
data width) and Size()(in bytes) methods. Max Length is a 32-bit value
that comes from class TDes and contains the actual size of the allocated
buffer. It is used to prevent the buffer from being accessed beyond the
buffer’s boundary. buffer is the actual allocated data buffer array and it
is declared in the TBuf class itself.

You may wonder why type is stored with the descriptor in TDesC.
If the descriptor methods in TDes and TDesC are declared virtual and
the derived classes override the functions as needed, then this type of
information should not be needed. That would be correct – except that
virtual functions are not used in descriptors. Descriptors were written to
be space efficient, and virtual functions are more of an overhead than just
storing the 4-bit type value. The descriptor methods in TDes and TDesC
use a switch statement on the type value to perform the operation
correctly for the specified descriptor.

Let’s step through some TBuf operations and show how memory is
handled.

When you declare the TBuf as:

TBuf<10> buf;

the descriptor in memory appears as shown in Figure 6.4.
The type value is set to indicate a TBuf (3), the length is zero, since

no data is yet in the buffer and the maximum length is equal to the

164 STRINGS, BUFFERS AND DATA COLLECTIONS

10 xxxxxxxxxx3 0

Figure 6.4 Initial state of TBuf<10>

allocated buffer size of 10. The buffer data is shown as a row of Xs which
indicate uninitialized memory.

To copy some data to it, you can pass a value to the TBuf constructor
when declared as in the following lines:

_LIT(KString,”Test”);
TBuf<10> buf(KString);

or use the Copy()method as follows:

_LIT(KString,”Test”);
TBuf<10> buf;
buf.Copy(KString);

Both will result in the descriptor appearing in memory as shown in
Figure 6.5.

Now let’s append some data by adding the following:

_LIT(KString1,”!!!”);
buf.Append(KString1);

Append()will append the data to the descriptor buffer starting at the
current length. The length is updated appropriately. The descriptor will
now look as in Figure 6.6.

3 4 Test xxxxxx10

Figure 6.5 Copying data to TBuf

THE DESCRIPTOR CLASSES 165

3 7 Test ! ! ! xxx10

Figure 6.6 Appending to TBuf

If you then add the following:

_LIT(KString2,”1234”);
buf.Append(KString2);

what happens? An exception occurs, since this would write past the end
of the allocated buffer.

A TBufC descriptor is declared in the same way as a TBuf descriptor.
A TBufC descriptor, however, is not modifiable with the following
exception – data can be completely replaced in the buffer by using the =
operator.

Figure 6.7 shows how TBufC is stored in memory.
Note that TBufC has only one length value (from TDesC) stored in

memory instead of two as in TBuf. A type value of 0 indicates TBufC.
If you declare a TBufC as follows:

_LIT(KString1,”Sam”);
TBufC<10> cBuf(KString1);

the memory layout will be as shown in Figure 6.8.
You cannot add to the buffer with a non-modifiable descriptor; how-

ever – as mentioned – you can replace it.
For example, you can add the following to the previous code to reassign

the buffer data from KString1 (“Sam”) to KString2 (“Merry”):

_LIT(KString2,”Merry”);
cBuf=KString2;

BufferType

4 bits

32 bits
(From TDesC)

Allocated Length
(From TBufC)

Length

Figure 6.7 TBufC Memory Layout

166 STRINGS, BUFFERS AND DATA COLLECTIONS

0 3 Sam xxxxxxx

Figure 6.8 TBufC containing “Sam”

0 5 Merry xxxxx

Figure 6.9 TBufC containing ‘‘Merry’’

The descriptor memory will then appear as in Figure 6.9.
What if you try to replace a TBufC string with one that is too big

for the buffer? Since no maximum size is stored with the descriptor, will
it allow you to overwrite the buffer? The answer is no, it will throw an
exception, as it would on a TBuf. The = operator uses the maximum
value that is supplied at compile time via the template argument – no
storage required – to see if the buffer would be overwritten.

You may then wonder why modifiable descriptors need to store the
maximum size value. It’s because, most times, modifiable descriptors are
operated on from base class pointers (TDes) and thus will not know the
template size passed over and must rely on a member variable to know
the allocated buffer size, to protect against overruns.

6.3.4 Pointer Descriptors

Pointer descriptors behave like buffer descriptors except that they contain
a pointer to an external data buffer instead of the data buffer itself. TPtr
and TPtrC are pointer descriptors.
TPtr is a modifiable pointer descriptor and is stored in memory as

shown in Figure 6.10.
You can see that the TPtr descriptor memory looks similar to TBuf

except that the buffer resides outside the descriptor. The type field is set
to 2 for TPtr.

Figure 6.11 shows how TPtrC is stored in memory.
Like its buffer descriptor counterpart TBufC, TPtrC does not store the

buffer’s maximum length (since it does not inherit from TDes). Also, like
TBufC, the buffer data cannot be modified via this descriptor except by
direct replacement of the data.

How do you initially set your TPtr or TPtrC buffer pointer to point
to a memory region? The buffer pointer can be set when the pointer

THE DESCRIPTOR CLASSES 167

Max
Length

Buffer
Pointer

External Memory Buffer

Type Length

4 bits

32 bits
(from TDesC)

32 bits
(from TDes)

32 bits
(from TPtr)

Figure 6.10 TPtr Memory Layout

Buffer
Pointer

External Memory Buffer

Type Length

4 bits

32 bits
(from TDesC)

32 bits
(from TPtrC)

Figure 6.11 TPtrC Memory Layout

descriptor is constructed. For example:

_LIT(KSting1,”some data”);
TBufC<10> someDes(KString1);
TPtrC myDes(someDes);

creates a non-modifiable pointer descriptor to the descriptor someDes.
Another example:

TInt bufArray[100];
TPtr myDes(bufArray,sizeof(bufArray));
// constructor arguments: buffer pointer and buffer size.

168 STRINGS, BUFFERS AND DATA COLLECTIONS

This will create a modifiable pointer descriptor called myDes that points
to the buffer’s allocated memory. For a TPtr such as in this example,
the size of myDes will be zero (indicating it’s empty so far), and the
maximum size is the size of the array passed as the second argument.

Data can then be copied and appended to the buffer using TPtr as it
would be with a TBuf descriptor.

_LIT(KString1,”Test”);
_LIT(KString2,”!!!”);
myDes.Copy(KString1);
myDes.Append(KString2);

This will result in the memory appearing as in Figure 6.12.
In some cases, especially if you are interfacing with ported C code,

you may have a buffer that already contains data, and you want to assign
it to a descriptor. In that case, you will want the pointer descriptor to
be initialized with the length of the data in the buffer, in addition to the
maximum length.

This can be done with the following TPtr constructor:

TPtr myDes(TInt *buff, TInt Length, TInt max_length);

Where Length is the length of the data already in the buffer and
max_length is the allocated buffer size.

Or you can construct the TPtr/TPtrC, and then afterwards set the
buffer with the Set(buff,length,max_length) (only in the case of
TPtr) or Set(buff,max_length)where length would default to zero.

Buffer
Pointer

Test ! ! !

2 7 100

Figure 6.12 TPtr After Append

THE DESCRIPTOR CLASSES 169

There are other ways of pointing TPtr and TPtrC to memory regions.
You can reference the SDK documentation for the various overloaded
constructors and Set()methods for this.

6.3.5 Heap Descriptors
HBufC is a descriptor that is allocated on the heap and referenced as a
pointer. Only a non-modifiable form of the heap descriptor is supplied,
but there is a way to modify it, as you will see.

In memory, an HBufC looks just like a TBufC (see Figure 6.13).
The type field for HBufC is set to 0 as for TBufC, since it appears like

TBufC in memory.
HBufC provides a static New()method for instantiating a HBufC. The

following line shows how to create one:

HBufC* myDes=HBufC::New(100);

This line will allocate a 16-bit descriptor on the heap with a buffer length
of 100 (200 bytes).
NewL()and NewLC()methods are also available but leave on error.

NewLC()pushes the created pointer on the cleanup stack.
You may wonder why you cannot just use a pointer to a TBufC instead

of having another class – like the following:

TBufC<100>* myDes = new TBufC<100>;

This also works, but HBufC should be used. The reason is that HBufC pro-
vides some extra methods for dealing with the heap. For example, HBufC
has a method called ReAlloc(). ReAlloc(TInt new_length) cre-
ates a new descriptor on the heap, of size new_length, copies the
descriptor data to it and deletes the old one.

Modifying a Heap Descriptor’s Data

Although there is no modifiable HBuf version of a heap descriptor, you
can modify the data in an HBufC buffer by using the Des()method.
Des()returns a TPtr whose buffer pointer is initialized to point to the

HBufC* BufferType Length

Heap

HBufC

Figure 6.13 HBufC Memory Layout

170 STRINGS, BUFFERS AND DATA COLLECTIONS

heap-based buffer in the HBufC descriptor. Since the returned TPtr
descriptor is a modifiable descriptor, you can use it to write the heap
descriptor’s data buffer. An interesting feature is that as you change the
HBufC data via this TPtr, the buffer size in the TPtr descriptor and the
HBufC whose data it is pointing to, are both updated.

See Figure 6.14 for how the TPtr returned by Des() is related to
HBufC. The max length of TPtr is set to the length of the allocated
HBufC buffer passed in the New() function. As data is changed, both
lengths in HBufC and TPtr are updated together.

Let’s look at the HBufC example shown in Example 6.3.

HBufC* BufferType/Length

Heap

HBufC

Type/Length
Buffer
Pointer

Max
Length

TPtr returned from HBufC::Des()

Figure 6.14 HBufC’s Des() method

Example 6.3. HBufC Example

void heapDesExampleL()
{
_LIT(KString1,"Test");
_LIT(KString2,"My Heap String");

HBufC* myHeapDes = HBufC::NewL(KString1().Length());

CleanupStack::PushL(myHeapDes);
*myHeapDes = KString1;

_LIT(KFormat1,"myHeapDes = \"%S\"length = %d\n");
console->Printf(KFormat1,myHeapDes,myHeapDes->Length());

myHeapDes->ReAllocL(KString2().Length()); // if you do not do this,
// next line would panic

THE DESCRIPTOR CLASSES 171

/* Replace entire string in the HBufC */

*myHeapDes = KString2;

console->Printf(KFormat1,myHeapDes,myHeapDes->Length());

/* Get a modifiable pointer to the HBufC’s data buffer */

TPtr myPtr = myHeapDes->Des();

_LIT(KString3,"Hello");
_LIT(KString4,"!!!");

/* Modify the HBufC buffer area through the TPtr, using Copy()
* and Append()

*/

myPtr.Copy(KString3);
myPtr.Append(KString4);

_LIT(KFormat2,"myHeapDes = \"%S\"length = %d myPtr = \" %S\ "length =
%d\n");

console->Printf(KFormat2,myHeapDes,myHeapDes->Length(),
&myPtr,myPtr.Length());

CleanupStack::PopAndDestroy(myHeapDes);
}

The output for Example 6.3 is as follows:

myHeapDes = “Test” length = 4
myHeapDes = “My Heap String” length = 14
myHeapDes = “Hello!!!” length = 8 myPtr = “Hello!!!” length = 8

The example code first allocates an HBufC with a buffer big enough to
fit the string “Test”. It is then assigned that string. Then the buffer is
reallocated using the ReAlloc()method and set to a bigger string. The
example then shows how to modify the buffer using a modifiable TPtr
returned from the HBufC::Des()method. Notice in the last output lines
that the lengths of both the TPtr and the HBufC descriptors are updated
and that they do indeed both point to the same, changed data.

Creating a Heap Descriptor from Another Descriptor

TDesC provides a method called Alloc()which will create a heap
descriptor and initialize it with the data of the descriptor on which
Alloc()was called. For example:

TBuf<80> myStr(_L(“Some string data”));
HBufC* myHeapDes;
myHeapDes=myStr.Alloc();

172 STRINGS, BUFFERS AND DATA COLLECTIONS

The above code creates a heap descriptor initialized with the contents of
myStr (“Some string data”), and assigns it to myHeapDes. You can
also call Alloc()on a literal. For example, the following code creates a
heap descriptor and initializes it with the contents of KMyString:

_LIT(KMyString,”My string”);
HBufC* myHeapDes;
myHeapDes = KMyString().Alloc();

AllocL()and AllocLC()versions of the Alloc() function also exist
which will leave on allocation failures and, in the case of AllocLC(),
push the allocated heap descriptor on the cleanup stack. Alloc()will
return NULL if the memory allocation fails.

6.4 Descriptor Methods

This section describes the key methods of descriptors and gives examples
of how to use them.

I have divided the methods into two parts – those methods that involve
reading descriptor data only (the TDesC methods) and those that involve
setting and otherwise modifying the descriptor’s buffer (the TDes meth-
ods). You will see that the overwhelming majority of functions are for
operating on strings.

See the SDK API reference for the complete list of descriptor methods as
well as the detailed function prototypes and return status descriptions for
each descriptor method.

6.4.1 Non-Modifying Methods
This section describes the key descriptor methods that involve no writing
to the descriptor data buffer. These methods are implemented in TDesC
and thus can be used by all descriptors.

Comparing Descriptor Data

To compare the contents of one descriptor to the contents of another, use
one of the Compare()methods.

For example:

des1.Compare(des2);

compares the data in descriptor des1 with the data in descriptor des2
and returns 0 if the data is the same, or a negative or positive number

DESCRIPTOR METHODS 173

if the des2 data is less than or greater than des1 (in alphabetic order)
respectively. Compare()behaves like strcmp()does in C.

In addition to Compare(), you can also use CompareF()and Com-
pareC(). These methods are the same as Compare()except that they
compare the data in a normalized form for more tolerant comparisons.
CompareF()compares the data normalized via folding. Folding is a sim-
ple locale-independent normalization method where case and accents
are ignored. CompareC()performs the compare with a more powerful,
locale-dependent normalization known as collation. While folding only
does simple one-to-one mappings (e.g. lower to upper case) for compar-
isons, collation uses a dictionary-like ordering where it can make more
complex decisions about string differences that can be safely ignored,
and these rules are dependent on the locale.

Example 6.4 shows an example of using the compare functions.

Example 6.4. Compare Example

void CompareExample()
{
_LIT(KString1,"My String");
_LIT(KString2,"MY STRING");
_LIT(KString3,"Another string");

TBuf<20> str1(KString1);
TBuf<20> str2(KString2);

TInt res;
/* Compare shows a match since str1 is initialized to KString1 */

res = str1.Compare(KString1);
_LIT(KFormatCompare1,"Compare() string 1 and string 1 = %d\n");
console->Printf(KFormatCompare1, res);

/* Compare shows a no match since str1 and str2 contents do
* not exactly match
*/

res = str1.Compare(str2);
_LIT(KFormatCompare2,"Compare() string 1 and string 2 = %d\n");
console->Printf(KFormatCompare2, res);

/* Compare shows a match since a folded compare is case insensitive */

res = str1.CompareF(str2);
_LIT(KFormatCompare3,"CompareF() string 1 and string 2 = %d\n”);
console->Printf(KFormatCompare3, res);

/* Compare shows a mismatch since string 1 and 3 are different */

res = str1.Compare(KString3);
_LIT(KFormatCompare4,"Compare() string 1 and string 3 = %d\n");

console->Printf(KFormatCompare4, res);
}

174 STRINGS, BUFFERS AND DATA COLLECTIONS

The output of Example 6.4 is:

Compare() string 1 and string 1 = 0
Compare() string 1 and string 2 = 32
CompareF() string 1 and string 2 = 0
Compare() string 1 and string 3 = 12

Finding Sub-Strings Within a Descriptor

To locate a sub-string within a descriptor, you can use Find(). Find()
looks for the first occurrence of a sub-string within a descriptor and
returns its start position, if it is found.

For example:

des1.Find(KSomeSubString);

returns KErrNotFound (−1) if the sub-string KSomeSubString is not
found in des1, or the starting position of the sub-string in des1 if the
sub-string is found.
FindF()and FindC()are the same as Find()except they use the

tolerant fold and collation comparisons (respectively) to search for the
string.

Example 6.5 shows an example of the find functions.

Example 6.5. Find Example

void FindExample()
{
_LIT(KString1,"This is a test string");
_LIT(KString2,"test");
_LIT(KString3,"car");
_LIT(KString4,"TEST");

TBuf<40> buf(KString1);
TInt res;

/* Find returns position of "test" in KString1 */

res = buf.Find(KString2);
_LIT(KFormat1,"Find of string 2 in string 1 res = %d\n");
console->Printf(KFormat1,res);

/* "car" does not occur in KString1, so KErrNotFound reported */

res = buf.Find(KString3);
_LIT(KFormat2,"Find of string 3 in string 1 res = %d\n");
console->Printf(KFormat2,res);

/* Since FindF does a fold compare, "TEST" is found and position
* is returned
*/

DESCRIPTOR METHODS 175

res = buf.FindF(KString4);

_LIT(KFormat3,"Find of string 4 in string 1 res = %d\n");
console->Printf(KFormat3,res);
}

The output of Example 6.5 is:

Find of string 2 in string 1 res = 10
Find of string 3 in string 1 res = -1
Find of string 4 in string 1 res = 10

For more powerful searching of sub-strings within descriptors, you can
use Match() instead of Find(). Match()behaves like Find()except
you can supply wildcard characters when searching for a string match.
‘*’ represents a sequence of any characters; ‘?’ represents an occurrence
of any single character.

Example 6.6 shows an example.

Example 6.6. Match Example

void MatchExample()
{
_LIT(KString1,"This is test string A");
_LIT(KString2,"This is test string ?");
_LIT(KString3,"*is test string ?");
_LIT(KString4,"*");
_LIT(KString5,"*B");

TBuf<40> buf(KString1);
TInt res;

/* A match since ? indicates any single character */

res = buf.Match(KString2);
_LIT(KFormat1,"Match: string 2 and string 1 res = %d\n");
console->Printf(KFormat1,res);

/* A match using '*' and '?' in string */
res = buf.Match(KString3);
_LIT(KFormat2,"Match: string 3 and string 1 res = %d\n");
console->Printf(KFormat2,res);

/* '*' matches any string */

res = buf.Match(KString4);
_LIT(KFormat3,"Match: string 4 and string 1 res = %d\n");
console->Printf(KFormat3,res);

/* no match since KString1 does not end in 'B' */
res = buf.Match(KString5);
_LIT(KFormat4,"Match: string 5 and string 1 res = %d\n");
console->Printf(KFormat4,res);
}

176 STRINGS, BUFFERS AND DATA COLLECTIONS

The output of Example 6.6 is as follows:

Match: string 2 and string 1 res = 0
Match: string 3 and string 1 res = 5
Match: string 4 amd string 1 res = 0
Match: string 5 and string 1 res = -1

Extracting Sub-Strings from Descriptors

To extract specific portions of a descriptor string, use the methods:
Left(), Right()or Mid().

These methods return a TPtrC descriptor that points to a specified
sub-string within the descriptor the methods are invoked on.
Left()defines a sub-string starting at the beginning of the descriptor

and of a specified length. Right() defines a sub-string that starts a
specified length before the end of the descriptor. Mid() specifies a
sub-string that starts from a specified position and is of a specified
length.

Example 6.7 shows an example of using all three sub-string extraction
functions.

Example 6.7. Sub-string Example

void SubstringExample()
{
_LIT(KString1,"This is my string");

TBufC<40> buff(KString1);

TPtrC SubStr= buff.Left(4);

/* Get left 4 characters of string */

_LIT(KFormat1,"Left(4): SubStr = \"%S\"\n");
console->Printf(KFormat1,&SubStr);

/* Get right 3 characters of string */

SubStr.Set(buff.Right(3));

_LIT(KFormat2,"Right(3): SubStr = \"%S\"\n");
console->Printf(KFormat2,&SubStr);

/* get 6 characters in middle, starting at position 8 */

SubStr.Set(buff.Mid(8,6));

_LIT(KFormat3,"Mid(8,6): SubStr = \"%S\ "\n");
console->Printf(KFormat3,&SubStr);
}

DESCRIPTOR METHODS 177

The output of Example 6.7 is as follows:

Left(4): SubStr = “This”
Right(3): SubStr = “ing”
Mid(8,6): SubStr = “my str”

6.4.2 Methods that Write Descriptor Data
This section describes some key TDes class methods which are available
to all modifiable descriptors.

Copying Data to a Descriptor

We have already looked at using Copy()to write data into a descriptor.
To recap, Copy()will copy data into the descriptor’s buffer, replacing
any data that exists, and update the descriptor size to match the size of
the data copied. The data to be copied can be specified as an 8- or 16-bit
descriptor, a NULL-terminated string or a buffer specified with a pointer
and size.

In addition to Copy(), you can use CopyC(), CopyF(), CopyCP(),
CopyLC()or CopyUC(). These variations are equivalent to Copy()
except that each will perform a specific transformation on the data
before the copy. CopyC()and CopyF()will collate and fold the data
respectively, before the copy. These can be used to normalize strings for
tolerant sorts and compares.
CopyCP(), CopyLC(), CopyUC()will perform case conversions –

capitalization, lower case and upper case, respectively – before copying
(these are performed depending on locale).

Example 6.8 shows an example of the copy functions.

Example 6.8. Copy Example

void CopyExample()
{
TUint8 binData[6] = {0xB0,0xB1,0xB2,0xB3,0xB4,0xB5};

/* Copy standard C array into binary descriptor */

TBuf8<sizeof(binData)> binDes;

binDes.Copy(binData,sizeof(binData));

_LIT(KFormat1,"binDes[0]=%x binDes[1]=%x\n");
console->Printf(KFormat1,binDes[0],binDes[1]);

/* Copy binary descriptor to another 8 bit binary descriptor */

TBuf8<20> buf8;

178 STRINGS, BUFFERS AND DATA COLLECTIONS

buf8.Copy(binDes);

_LIT(KFormat2,"buf8[0]=%x buf8[1]=%x\n");
console->Printf(KFormat2,buf8[0],buf8[1]);

/* Copy literal into descriptor */

_LIT(KString1,"My string");

TBuf<20> buf16;
buf16.Copy(KString1);

_LIT(KFormat3,"buf16 = %S\n");
console->Printf(KFormat3,&buf16);

/* Copy C style 8-bit string into descriptor (first 8-bit then 16-bit)*/

TUint8 *C_str=(TUint8 *) "Hello there."; /* NULL-terminated
8-bit string */

buf8.Copy(C_str);
buf16.Copy(buf8);
console->Printf(KFormat3,&buf16); /* Printf just prints 16-bit

descriptor strings */

/* Copy, converting to upper case */

TBuf<20> newBuf;
newBuf.CopyUC(buf16);
_LIT(KFormat4,"CopyUC(): newBuf = %S\n");
console->Printf(KFormat4,&newBuf);

/* Copy, converting to lower case */
newBuf.CopyLC(buf16);
_LIT(KFormat5,"CopyLC(): newBuf = %S\n");
console->Printf(KFormat5,&newBuf);

/* Copy, capitalize */

newBuf.CopyCP(buf16);
_LIT(KFormat6,"CopyCP(): newBuf = %S\n");
console->Printf(KFormat6,&newBuf);
}

The output from Example 6.8 is as follows:

binDes[0]=b0 binDes[1]=b1
buf8[0]=b0 buf8[1]=b1
buf16 = My string
buf16 = Hello there.
CopyIC(): newBuf = HELLO THERE.
CopyUC(): newBuf = hello there.
CopyCP(): newBuf = Hello there.

In addition to copying data to a descriptor you can fill the descriptor
with repeating data using Fill(). Fill()will fill the data buffer with
the specified character (TChar), for the specified number of characters,

DESCRIPTOR METHODS 179

starting from the beginning. If length is not specified, the data is filled up
to the current length. FillZ()works the same way, except that the fill
character is always 0.

Example 6.9 shows the fill function.

Example 6.9. Fill Example

void FillExample()
{
TBuf<40> buf;
buf.Fill('*',10);
_LIT(KFormat1,"buf = \"%S\"\n");
console->Printf(KFormat1,&buf);
buf.Fill('-');
console->Printf(KFormat1,&buf);
}

The output for Example 6.9 is as follows:

buf = “**********”
buf = “----------“

Appending Data to a Descriptor

We have also discussed Append()previously – it behaves like Copy()
except that it concatenates the specified data to the descriptor instead
of replacing it. The data specified to Append()can be an 8- or 16-bit
descriptor, a NULL-terminated string, a buffer pointer with length, or a
TChar.

Here are a few other functions that append data to a descriptor.
AppendFill()appends a specified number of repeats of a specified

character (a TChar) to the descriptor. AppendJustify()will justify a
specified string (left, center or right) and append it to the descriptor.
AppendNum()will convert an integer to a string and append it to

the descriptor. You can also specify a radix which can be binary, octal,
hexadecimal or decimal. AppendNumFixedWidth()will result in a
fixed-width number string being added, with leading zeros if needed.
The methods with UC at the end will result in upper case letters being
appended for hexadecimal numbers.

Example 6.10 shows the append functions in action.

Example 6.10. Append Example

void AppendExample()
{
_LIT(KMyString1,"String:");
_LIT(KMyString2,"num vals are");

180 STRINGS, BUFFERS AND DATA COLLECTIONS

_LIT(KMyString3,"Justify");

TInt num=0x0b4a;

TBuf<40> str(KMyString1);
/* Simple Append of a literal */
str.Append(KMyString2);

/* Append num in various forms */

str.AppendNum(num);
str.Append(' ');
str.AppendNum(num,EHex);
str.Append(' ');
str.AppendNumUC(num,EHex);
str.Append(' ');
str.AppendNumFixedWidthUC(num,EHex,5);

_LIT(KFormat1,"str = %S\n");
console->Printf(KFormat1,&str);

TBuf<40> just;

/* Justify a string */

just.AppendJustify(KMyString3,12,ERight,' ');
/* can replace “ “ with any fill character */

_LIT(KFormat2,"%S\n");
console->Printf(KFormat2,&just);

/* Add repeated character */

just.AppendFill('!',5);
console->Printf(KFormat2,&just);
}

The output for Example 6.10 is as follows:

str = String: num vals are 2890 b4a B4A 00B4A
Justify
Justify!!!!!

Formatting Descriptor Data

It’s handy to be able to format a string in the same way as in C’s
sprintf()and printf()functions. The descriptor method Format()
does this.

The format string supplied to Format() is very similar to the format
string in C, supporting %d, %s, %f, etc. There are also some Symbian OS
specific formats, however. For example, the format indicator %S takes a
descriptor and outputs the descriptor’s string contents.

DESCRIPTOR METHODS 181

Format(), like Copy()replaces any existing descriptor data. Alterna-
tively, you can use AppendFormat()to append the formatted string to
the descriptor.

Example 6.11 shows the format functions in action.

Example 6.11. Format Example

void FormatExample()
{
_LIT(KString1,"My string");

TInt value=10,value1=20;
_LIT(KMyDesFormat,"Descriptor = %S, value = %d");

TBuf<100> buf;
buf.Format(KMyDesFormat,&KString1,value);

_LIT(KMyDesFormat1,"--also value1 = %d");
buf.AppendFormat(KMyDesFormat1,value1);

_LIT(KFormat1,"%S\n");
console->Printf(KFormat1,&buf);
}

The output of Example 6.11 is as follows:

Descriptor = My string, value = 10--also value1 = 20

Changing the Case of a Descriptor String

Use Capitalize()to capitalize a descriptor string (performed as defined
by the phone’s locale). Use LowerCase()and UpperCase()to convert
all characters in the descriptor to lower and upper case respectively.

Example 6.12 shows an example of the case switching functions.

Example 6.12. Case Conversions

void CaseExample()
{
_LIT(KString1,"hillary");
TBuf<7> name(KString1);

name.UpperCase();
_LIT(KFormat1,"name=%S\n");
console->Printf(KFormat1,&name);

name.LowerCase();
console->Printf(KFormat1,&name);

name.Capitalize();
console->Printf(KFormat1,&name);
}

182 STRINGS, BUFFERS AND DATA COLLECTIONS

The output of Example 6.12 is as follows:

name=HILLARY
name=hillary
name=Hillary

Deleting Data from a Descriptor

Use Delete()to remove a selected portion of a descriptor buffer.
For example:

des1.Delete(2,3);

deletes the data in des1 starting at position two, for a length of three. So
if des1 contained ‘abcdedf’ before this line, it would contain ‘abdf’ after,
and the length of des1 would be changed from seven to four.

Descriptors also have methods for removing unwanted spaces in
strings. TrimLeft()and TrimRight()will delete leading and trailing
spaces respectively. TrimAll()will delete leading and trailing spaces,
as well as trimming any consecutive spaces in the data to one space.

Example 6.13 shows the deletion functions.

Example 6.13. Deletion functions

void DeletionExample()
{
_LIT(KString1,"Heeeello");
_LIT(KString2,"This is a test ");

TBuf<20> buf1(KString1);
TBuf<40> buf2(KString2);

_LIT(KFormat1,"buf1=\"%S\"buf1 length = %d\n");
console->Printf(KFormat1,&buf1,buf1.Length());

/* delete characters starting at position 1, length
* 3 – will reduce descriptor size appropriately
*/

buf1.Delete(1,3);
console->Printf(KFormat1,&buf1,buf1.Length());

_LIT(KFormat2,"buf2=\"%S\"buf2 length = %d\n");
console->Printf(KFormat2,&buf2,buf2.Length());

/* TrimLeft deletes leading spaces */
buf2.TrimLeft();
_LIT(KFormat3,"TrimLeft(): buf2=\"%S\"buf2 length = %d\n");
console->Printf(KFormat3,&buf2,buf2.Length());

DESCRIPTOR METHODS 183

/* reset string to KString2 */
buf2.Copy(KString2);

/* Trim right deletes trailing spaces */
buf2.TrimRight();
_LIT(KFormat4,"TrimRight(): buf2=\"%S\"buf2 length = %d\n");
console->Printf(KFormat4,&buf2,buf2.Length());

/* reset string to KString2 */
buf2.Copy(KString2);

/* Trim deletes leading and trailing spaces */
buf2.Trim();
_LIT(KFormat5,"Trim(): buf2=\"%S\"buf2 length = %d\n");
console->Printf(KFormat5,&buf2,buf2.Length());

/* reset string to KString2 */
buf2.Copy(KString2);

/* Trimall deletes leading and trailing spaces, and extra
* spaces in middle
*/
buf2.TrimAll();
_LIT(KFormat6,"TrimAll(): buf2=\"%S\"buf2 length = %d\n");
console->Printf(KFormat6,&buf2,buf2.Length());
}

The output of Example 6.13 is as follows:

buf1=”Heeeello” buf1 length = 8
buf1=”Hello” buf1 length = 5
buf2="This is a test " buf2 length = 24
TrimLeft(): buf2= “This is a test" buf2 length = 21
TrimRight(): buf2="This is a test” buf2 length = 22
Trim(): buf2=”This is a test” buf2 length = 19
TrimAll(): buf2=”This is a test” buf2 length = 14

Converting to NULL-terminated Strings

Sometimes its useful to convert a descriptor string to a C-style NULL-
terminated string – especially in cases where you are working with ported
C code in the Symbian OS environment. Descriptors provide a few
methods to help with this.
ZeroTerminate() adds a NULL to the end of the descriptor data.

The descriptor length is not updated. This is used for translating the
string to a C-style NULL-terminated string, as you will see in the
example.
PtrZ() is the same as ZeroTerminate()except that it returns a

pointer to the NULL-terminated descriptor data. It is equivalent to calling
ZeroTerminate()and then Ptr().

Example 6.14 shows an example.

184 STRINGS, BUFFERS AND DATA COLLECTIONS

Example 6.14. Zero Termination

void ZeroTerminationExample()
{
_LIT(KMyString,"My string");
TBuf<20> buf(KMyString);
const TText *str;
str = buf.PtrZ();

/* str now points to a 16 bit NULL terminated string */
_LIT(KFormat1,"str=%s\n");
console->Printf(KFormat1,str);

const unsigned char *nStr;
TBuf8<20> buf8;
buf8.Copy(buf); /* copy 16 bit string into 8-bit

descriptor (converts to 8-bit chars)*/
nStr = buf8.PtrZ();

/* nStr points to a standard C style narrow string (can’t
* print out directly with console->Printf)
*/
}

The output of Example 6.14 is:

str=My string

Setting the Descriptor Size

You can manually change the length of a modifiable descriptor using
SetLength()and SetMax(). Note that both of these only modify the
length stored in TDes, and not the maximum length stored in TDesC (the
name SetMax()is misleading).
SetLength() changes the current length of the descriptor data. If

you lower the length, for example, you effectively chop off data from the
end of the buffer. Zero()is equivalent to SetLength(0). The current
length also determines where data will be appended.
SetMax()will set the current buffer length value (the one stored in

TDesC) to equal the maximum buffer size (also stored in TDes). Why
do this? Typically, you use SetMax()when assigning an external buffer
(e.g. char * buffer) to a pointer descriptor.

For example, assume you have a char * buffer called externalBuf,
and its size is buffSize. You can assign this buffer to a descriptor as
follows:

TPtr myDes(externalBuf,buffSize);

This will cause myDes to point to externalBuf correctly and the
maximum buffer size stored in TDesC is also correct. However, the

DESCRIPTOR METHODS 185

actual size of the descriptor as specified in TDes (the size returned by
Size()and Length()and where append operations would start) is 0
after this line. So if you pass this descriptor to a function, or otherwise
operate on it, it will treat this descriptor like an empty one.

To solve this, call:

myDes.SetMax()

after the declaration. This will set the descriptor size to the maximum size
(to buffSize in the example).

6.4.3 Using a Descriptor as an Array

You can use the descriptor’s [] operator to access your descriptor data
in the same way you would do with a C array.

Example 6.15 shows an example using a binary buffer (of course,
strings can also be used).

Example 6.15. [] Operator

void ArrayIndexExample()
{
_LIT(KString1,"This is my string");

TChar c;

TBuf<20> str(KString1);

/* character access using [] */

_LIT(KFormat1,"str[0]=%c str[3]=%c\n");
console->Printf(KFormat1,str[0],str[3]);

/* Binary buffer access using [] */

TUint8 binData[6] = {0xB0,0xB1,0xB2,0xB3,0xB4,0xB5};

TBuf8<sizeof(binData)> binDes;
binDes.Copy(binData,sizeof(binData));

_LIT(KFormat2,"binDes[0]=%x binDes[1]=%x binDes[5]=%x\n");
console->Printf(KFormat2,binDes[0],binDes[1],binDes[5]);
}

The output of Example 6.15 is:

str[0] = T str[3] = s
binDes[0] = b0 binDes[1] = b1 binDes[5] = b5

186 STRINGS, BUFFERS AND DATA COLLECTIONS

As you can see from the example, the [] operator can be used to read
descriptor data as if it were a standard C-style array. You may wonder
why a binary buffer would be put into a descriptor like this, since it was
an array already. The reason is that having it as a descriptor provides safe
access and will throw an exception immediately if you go over the end
of the array. Try it and see.

You can also write descriptor data (if it’s a modifiable descriptor) using
the [] operator.

6.5 Converting Between 8-bit and 16-bit Descriptors

You may have 8-bit strings that need to be in the form of a 16-bit descrip-
tor. You can convert the 8-bit descriptor to a 16-bit descriptor by calling
the Copy(TDesC8&) method of the 16-bit descriptor – this will expand
each 8-bit data value to 16 bits, setting the high-order bytes to zero.

This is straightforward and may be suitable for simply getting a narrow
string in the correct format – however, if the 8-bit string is coded in
UTF-8, this simple 8-bit to 16-bit conversion will not work correctly. This
is because the multi-byte sequences of the string will just be copied as is,
resulting in a corrupted 16-bit string.

The API class CnvUtfConverter is used to translate between UTF-8
and Unicode. The class contains two methods to do this:

CnvUtfConverter::ConvertToUnicodeFromUtf8(src8,dest16)

where src8 is an 8-bit descriptor containing the UTF-8 string and
dest16 is the 16-bit descriptor where the converted Unicode string will
be put.

CnvUtfConverter::ConvertFromUnicodeToUtf8(dest8,src16)

where src16 is the 16-bit descriptor that contains the Unicode string
and dest8 is the 8-bit descriptor where the UTF-8 string is placed.

Make sure you include utf.h in your source file and charconv.lib
in the LIBRARY statement of the mmp file when using these functions.

6.6 Dynamic Buffers

CBufBase, CBufSeg and CBufFlat are API classes used for managing
expandable buffers known as dynamic buffers. While a descriptor has
a fixed-size buffer allocated to it, a dynamic buffer can be resized as
needed at runtime – and in some cases this resizing is automatic as you
add more data.

DYNAMIC BUFFERS 187

CBufBase
Read() Delete() Resize() Size()
Write() Expand() Ptr() Reset()
Inset() Compress() BackPtr()

CBufFlat
NewL() Ptr()
BackPtr() Capacity()
Compress() Delete()
SetReserveL()

CBufSeg
NewL() Ptr()
BackPtr() Delete()
Compress()

Figure 6.15 Dynamic Buffer Class Diagram

Figure 6.15 shows the class hierarchy for dynamic buffers along with
their methods.

6.6.1 When Should I Use Dynamic Buffers?

Use dynamic buffers when you do not know what the maximum size of
the buffer will be. Use descriptors if you do know the size, or can specify
a maximum size big enough that you can be sure it will not be exceeded
at runtime (although this can waste memory, or cause an exception if you
guess wrongly).

Dynamic buffers are not used much directly, but are used by other
APIs, including collection classes such as the array API classes (see
Section 6.7).

6.6.2 Flat and Segmented Buffers

CBufFlat and CBufSeg represent the two types of dynamic buffers: flat
and segmented. From an API perspective, these buffers act virtually the
same – they implement the abstracted dynamic buffer interface provided
by CBufBase. It’s instructive to understand them though, so that you can
choose the most efficient dynamic buffer type for your situation.

Flat buffers are allocated as a single memory region on the heap. As
more space in the buffer is needed, the single cell is reallocated to a
bigger size.

To create a flat buffer, call CBufFlat::NewL(granularity),where
granularity is the number of bytes by which the buffer size is increased (or
decreased) at one time. For example, if your granularity is 512, then 512
bytes are initially allocated on the heap before the first data is written. An
allocation of 512 more bytes occurs when you write past the 512th byte.
The buffer is increased again by another 512 bytes when you write past
the 1024th byte and so on.

188 STRINGS, BUFFERS AND DATA COLLECTIONS

The advantage of flat buffers is that the memory is always contiguous,
and thus is more straightforward and efficient to access. However, buffer
expansions are expensive, since they involve a reallocation – which
requires the data to be copied to a new heap cell.

Therefore, use flat buffers for buffers that need to be expanded at
runtime, but where expansions are rare.

Unlike a flat buffer, a segmented dynamic buffer allocates a new
memory region on the heap when more buffer space is needed, as opposed
to performing an allocation of a single heap region. Thus, segmented
buffers are more efficient when expanding. In addition, segmented buffers
are more efficient when inserting and deleting data since the shuffling of
data can be minimized.

To create a segmented buffer, call CBufSeg::NewL(granularity),
where granularity is the number of bytes in a segment.

While a segmented buffer can be expanded much more efficiently than
a flat buffer, the disadvantage is that the region is not contiguous and thus
may be more difficult to access, depending on how you use the buffer.

Note that, although the buffer is not contiguous, this fact is hidden
when accessing the buffer through the dynamic buffer class methods.
CBufFlat and CBufSeg map the position value to the memory address
transparently. Only when you manipulate the memory buffer directly (i.e.
by using a pointer returned by the Ptr()method) will you need to be
concerned about the buffer being segmented.

6.6.3 Dynamic Buffer Methods
Let’s briefly look at the key methods that are available to both segmented
and flat buffers through the abstract interface of CBufBase. Consult the
SDK documentation for more details of how these functions are called.

Reading and Writing a Dynamic Buffer

The methods Read()and Write()allow you to read from and write to
a dynamic buffer starting at a specified position. The data is read into or
written from an 8-bit descriptor, or a raw memory region specified by a
pointer and the data size.

Example 6.16 shows this in action.

Example 6.16. Dynamic Buffer

void DynamicBufferExampleL()
{
TUint8 dataAry1[100];
TUint8 dataAry2[100];

TUint8 outAry[120];

DYNAMIC BUFFERS 189

// initialize dataAry1 and dataAry2 with some stuff
TUint8 j=100;
for (TUint8 i=0; i<100; i++)
{
dataAry1[i]=i;
dataAry2[i]= j--;
}

TPtrC8 desAry1(dataAry1,100); // create descriptor for dataAry1

CBufFlat* dynBuf = CBufFlat::NewL(20);
CleanupStack::PushL(dynBuf);

dynBuf->ResizeL(100); // allocate memory to buffer, none to start

dynBuf->Write(0,desAry1); // write desAry1 to
// dynBuf starting at position 0.

dynBuf->Write(3,dataAry2,50); // write first 50 bytes of dataAry2 to
// dynBuf at position 3

dynBuf->Read(0,outAry,50); // reads 50 bytes starting at
// position 0, putting data into buffer
// to outAry

_LIT(KFormat1,"dynbuf pos=%d : %d %d %d %d %d\n");
console->Printf(KFormat1,0,

outAry[0],outAry[1],outAry[2],outAry[3],outAry[4]);

dynBuf->ResizeL(120); // add some room to the buffer

dynBuf->Write(90,dataAry1,30);

dynBuf->Read(100,outAry,20);
console->Printf(KFormat1,100,
outAry[0],outAry[1],outAry[2],outAry[3],outAry[4]);

CleanupStack::PopAndDestroy();
}

Output:

dynbuf pos=0 : 0 1 2 100 99
dynbuf pos=100 : 10 11 12 13 14

Example 6.16 should be self-explanatory. One thing to note is that
since Write() does not expand the buffer automatically, the method
ResizeL()is used to allocate memory to the buffer.

Inserting and Deleting Data

You can insert data into, and delete data from, a dynamic buffer by using
the InsertL() and Delete()methods for the dynamic buffer class.
InsertL()acts the same as a Write()except that the data currently in
the buffer at the insertion point is shifted up in position. Also, unlike with
Write(), InsertL()will expand the buffer, if necessary, to make room
for the new data.

190 STRINGS, BUFFERS AND DATA COLLECTIONS

So in Example 6.17, if the line:

dynBuf->Write(90,dataAry1,30);

was replaced by

dynBuf->InsertL(90,dataAry1,30),

then the ResizeL()would not be needed since InsertL()would see
that more room is needed in the buffer and resize accordingly. Also, if
you insert data anywhere in the buffer, then, since all data is shifted up,
a memory allocation may occur too.

Use Delete() to delete a specified number of bytes at the speci-
fied dynamic buffer position. Upon deletion, the data is shifted down
appropriately (as is also done in the Delete()descriptor method).

Manually Changing the Size of a Dynamic Buffer

Even though InsertL()will expand the buffer size automatically as
needed, you may still want to manually change the size of your buffer.
There are two reasons for this:

1. So that you will know immediately if you have enough memory for
the particular sequence of data writes you are performing,

2. So that the allocation is done at once, for efficiency, instead of many
allocations taking place as you insert new data.

ResizeL()and ExpandL()will manually reserve space in the dynamic
buffer. These functions are similar in that they force a reallocation of the
buffer.
ResizeL()we’ve seen in the example – it simply causes the dynamic

buffer to be reallocated (or initially allocated) to a new size, with the
buffer space increasing or decreasing as appropriate.
ExpandL() inserts an uninitialized data region at a given buffer

position, thus forcing the buffer size to increase by that amount. In other
words, it sets aside some space in the buffer for future use.

For example:

dynbuf->ExpandL(5,200);

would insert an uninitialized data region at position 5 to 200, pushing
the rest of the data up (and doing a memory allocation if needed). This
carves out a space in the buffer so that you can now use Write() to
write to that region, knowing that the memory is preallocated.

ARRAYS 191

Getting a Pointer to an Area in a Dynamic Buffer

Ptr() returns a TPtr8 which points to the address of the specified
position in the dynamic buffer. Ptr(4), for example, returns a TPtr8
referencing the region starting at the byte at position 4 in the buffer up to
either the buffer end or – in the case of a segment buffer – the end of the
current segment.
BackPtr()returns a TPtr8 that points to the memory region, starting

at the beginning of the contiguous memory region containing the byte,
and ending at the position specified when calling BackPtr(). For a flat
buffer, the beginning will always be the first byte of the buffer. For a
segmented buffer, it will be the first byte of the segment containing the
byte.

6.7 Arrays

Symbian provides a large assortment of API classes for implementing data
arrays. See the SDK documentation for the complete list of these classes
as well as their method descriptions. I will cover the key array classes
here and provide some examples.

6.7.1 Fixed Arrays
TFixedArray is a thin API class that uses templates to define an array of
data items of user-defined type. The class overrides the [] operator and
thus acts like a traditional array, but with an important difference – range
checking is performed on indexes to prevent out of bound accesses.

A fixed array is declared as follows:

TFixedArray<type,size> myArray

This line will allocate a fixed array called myArraywhere type represents
the data type of the data in the array and size indicates the maximum
number of MyObjs the array is allocated for.

This declaration is effectively the same as type myArray[size].
Example 6.17 shows an example of using fixed arrays.

Example 6.17. Fixed Array Example

/* Initialize a simple fixed array of integers */

TFixedArray<Tint,10> Array;

for (j=0;j<10;j++)
Array[j] = j;

Array[10] = 10; // Generates exception, outside of array boundary

192 STRINGS, BUFFERS AND DATA COLLECTIONS

Fixed arrays are a lightweight and efficient way of implementing the
array while providing access range checking. Like traditional arrays, the
number of items in the array is preallocated at compile time.

6.7.2 Descriptor Arrays

Descriptor array classes implement arrays of TDesC-based buffer descrip-
tors. The purpose of these classes, in most cases, is to implement an array
of strings. For example, a list box keeps its list of selection item strings in
a descriptor array.

Descriptor arrays use dynamic buffers to store their data. Therefore,
the array size does not need to be preallocated, as it is for a fixed array.
The array is expanded as needed when new data items are added to it.

Descriptor arrays can be flat or segmented, contain 8- or 16-bit
descriptors and contain either copies of the descriptors (in HBufCs) or
pointers to descriptors (in TPtrs).

Here are the instantiable descriptor array classes:

• CDesC16ArrayFlat: An array of 16-bit descriptors stored in a flat
dynamic buffer

• CDesC16ArraySeg: Same as CDesC16ArrayFlat, but data is
stored in a segmented dynamic buffer

• CDesC8ArrayFlat: An array of 8-bit descriptors stored in a flat
dynamic buffer

• CDesC8ArraySeg: Same as CDesC8ArrayFlat, but data is stored
in a segmented dynamic buffer

• CDesCArrayFlat: Same as CDesC16ArrayFlat for the standard
Unicode build

• CDesCArraySeg: Same as CDesC16ArraySeg for the standard
Unicode build

• CPtrC16Array: Array of TPtrC objects that point to the descriptor
data elements

• CPtrC8Array: Same as CPtrC16Array, but stores 8-bit descriptors

• CPtrCArray: Equivalent to CPtrC16Array for the standard Uni-
code build

Descriptor array classes that end in Flat and Seg indicate the flat and
segmented type of dynamic buffer used to store the array’s data. Refer to
the previous section on dynamic buffers for more information. Use a flat
array if the array is not expanded very often, otherwise, use a segmented
array.

ARRAYS 193

Note that the classes that begin in CPtrC use flat buffers only – no
segmented versions of these classes are supplied.

Descriptor array classes that begin with CDesC are implemented as
an array of HBufC pointers. When a descriptor is added to a CDesC
array, the array class will allocate a new HBufC, copy the data from the
descriptor to this HBufC, and, finally, write the HBufC’s pointer to the
appropriate position in the array.

Consider Example 6.18.

Example 6.18. CDesC Array Class

_LIT(KString1,”My String”);
_LIT(KString2,”Test One Two”);

TBufC<20> MyDes(KString1);
TBuf<20> MyDes1(KString2);

CDesCArrayFlat myArray = new (ELeave) CDesCArrayFlat(5);
CleanupStack::PushL(myArray); // in case the appends leave

myArray->AppendL(MyDes);
myArray->AppendL(MyDes1);

/* ... */

CleanupStack::PopAndDestroy();

Figure 6.16 shows how CDesCArray is stored, when MyDes and
MyDes1 are appended.

To use the descriptor arrays, you need to include file badesca.h and link
to library bafl.lib.

Since copies of the descriptors are made and referenced in the array,
it does not matter if the user deletes the objects after they are added to

My String

Test One Two

Copies Data

CDesCArrayFlat

HBufC* HBufC*

My String

HBufC

HBufC

Test One Two

Figure 6.16 CDesCArrayFlat

194 STRINGS, BUFFERS AND DATA COLLECTIONS

the array. Of course, the disadvantage of using this type of array is that
you have overheads in both performance (doing the copy) and memory
(duplicating descriptor data in memory).

An array class that begins with CPtrC contains descriptor pointers
(TPtrC s) as its elements.

If the descriptor array were of type CPtrCArray instead of CDesCAr-
rayFlat in Example 6.18, it would be stored as shown in Figure 6.17.

Unlike the CDesC array classes, CPtrC classes do not have to copy
or store the data in the descriptors that are added to the array, since they
simply point to the descriptor data. However, you need to make sure that
you do not add any descriptors to the array that may go out of scope or
be otherwise deleted since the array would contain a TPtrC pointing to
an undefined area.

6.7.3 Dynamic Arrays

Symbian provides a set of classes for implementing dynamic arrays.
Like descriptor arrays, dynamic arrays are based on dynamic buffers, and
are thus expandable. However, unlike descriptor arrays, templates are
used so that the array can contain items of any data type, as defined by
the user.

A wide assortment of dynamic array classes exists. Here is a sample of
them:

• CArrayFixFlat<class T>: Holds fixed length objects of type T
and uses a flat dynamic buffer

• CArrayFixSeg<class T>: Holds fixed length objects of type T
and uses a segmented dynamic buffer

• CArrayPtrFlat<class T>: Holds pointers to type T objects using
a flat dynamic buffer

• CArrayPtrSeg<class T>: Holds pointers to type T objects using
a segmented dynamic buffer

My String

Test One Two

CPtrCArray

TPtrC TPtrC

Figure 6.17 CPtrCArray

ARRAYS 195

• RArray<class T>: A full-featured, efficient array class for fixed
length data of type T, using a flat buffer

• RPointerArray<class T>: Same as RArray, but uses pointers to
type T objects

Although the classes that begin with CArray provide more data represen-
tations, for the most part RArray and RPointerArray have practically
everything you need and are the most efficient, so I will cover these in
more detail.

RArray

An example declaration of an RArray is as follows:

RArray<MyObj> myArray;

This will define a dynamic array myArray that contains objects of type
MyObjs. Note that this is similar to TArrayFixed except an array
size is not specified with the template. This is because the size is not
preallocated as it is for TArrayFixed.

The R at the beginning of RArray indicates that this class can be
declared as an automatic variable; doing so will result in class data being
stored on the stack. Unlike other R classes, this one also has heap storage
associated with it – in fact, the dynamic buffer that holds the data itself
resides on the heap. Therefore, you always need to call the Close()
method of RArray to free the heap data storage when finished with the
array.

In addition to these default declarations, the following constructors are
also provided:

RArray(TInt granularity)

This specifies how the array is to be expanded in the background.
RArray<MyObj> myArray(10) for example will cause the memory for
myArray to be expanded in units of ten items. The default is eight.

RArray(Tint granularity, TInt key_offset)

In addition to granularity, this version of the constructor specifies the
class offset of an integer that acts as a key for the list. A key is a data
member of the array element class that is used as a reference value when
searching, inserting, and sorting the objects in the array. For example, if
you sort the array, the objects in the array are ordered based on comparing
the array element’s data members that are defined as the key.

196 STRINGS, BUFFERS AND DATA COLLECTIONS

The _FOFF(class,membername)macro is used to specify this key
value location in the array data members.

This example creates an array of TAccount elements using TAc-
count::account_number as the array’s key:

class TAccount

{
public:

TAccount();

TInt account_number;

};

RArray<TAccount> myAccounts(10,_FOFF(TAccount,account_number));

Inserting and Appending Array Data

Methods: Insert(), InsertInSignedKeyOrder(), InsertInUn-
signedKeyOrder(), InsertInOrder(), InsertInOrderAllow
Repeats()
Insert() and Append()methods are provided to add data to the

array. Insert() inserts the data at the specified position and shuffles
everything up. Append()adds data to the object at the end of the array.
If the number of data items exceeds the memory allocated by the array,
the array memory is automatically expanded by the number of data items
specified as the granularity.

You can also insert items in the list in key order using InsertIn-
SignedKeyOrder(const&T aItem) and InsertInUnsignedKey-
Order(const &T aItem) functions. These functions insert aItem
ordered by the value in the data object’s key value whose location
was given in the RArray constructor (assuming the correct overridden
constructor was used). InsertInSignedKeyOrder()treats the key as
a signed value; InsertInUnsignedKeyOrder() treats the key as an
unsigned value.

To provide maximum flexibility, RArray also allows you to create
your own callback function that will compare two array members (sup-
plied as arguments to your callback) and determine their relation. The
function returns a negative value if the first is less than the second, posi-
tive if it is more and 0 if equal. This callback is wrapped in a class called
TLinearOrder. The function InsertInOrder(const &T aEntry,
TLinearOrder<T>aOrder) is then used to insert the item in the order
determined by the callback function of TLinearOrder.
TLinearOrder can also be supplied to the RArray sort methods so

that the array can be sorted in a flexible way.

ARRAYS 197

Finding Data in an Array

Methods: Find(), FindInOrder(), FindInSignedKeyOrder(),
FindInUnsignedKeyOrder()

Use the find methods to locate an element within the array. These
functions will return the index of the array element that matches specified
data, or KErrNotFound, if the data was not found in the array.
Find(const &T aObject) does a linear search for an array element

whose integer key matches the key value of aObject (T is the type
specified in the template argument supplied when creating the array).
You can also implement a callback function to do the element compares
yourself (returns 1 if a match, 0 otherwise). Then wrap this callback in
the class TIdentityRelation, and use Find(const &T aObject,
TIdentityRelation) to find the object using your callback function
for comparing elements.

The find functions that end in Order()assume that your array is in
order so that a more efficient binary search can be done to find a match.
FindInOrder() does a binary search assuming that your array is

already ordered by an ordering callback, supplied as a TLinearOrder
type. FindInSignedKeyOrder(const &T aObject) and FindIn-
UnsignedKeyOrder(const &T aObject) will do a binary search of
the object assuming the list is currently ordered by key value (treating key
value as signed and unsigned respectively).

Sorting an Array

Methods: Sort(), SortSigned(), SortUnsigned()
Sort(TLinearOrder<T>anOrder) sorts the array using the TLin-

earOrder callback.
SortSigned() and SortUnsigned() orders all the objects in

the array by the integer key value assigned in the RArray construc-
tor – treating the key as signed and unsigned respectively.

Miscellaneous Array Functions

To remove an element, call Remove(TInt aIndex). The element at
that position is removed and the list is shuffled down.

Call Reset()or Close()before destroying the array – these will free
all the memory allocated on the heap. Reset() frees all heap memory
and prepares the array for reuse.

An Example using RArray

Example 6.19 shows an example using RArray.

198 STRINGS, BUFFERS AND DATA COLLECTIONS

Example 6.19. RArray Example

class TTenant // T class representing a tenant
{

public:

TTenant(const TDesC& aName,TInt aNum) { iName.Copy(aName),
iApartmentNum=aNum; }

TBuf<40> iName;
TInt iApartmentNum;
};

void TestArrayL()
{

/* Define array of tenants, use the apartment number as the array’s key */

RArray<TTenant> renters(10,_FOFF(TTenant,iApartmentNum));

/* Add some tenants to the array, random apartment order */

TTenant renter1(_L("Sue"),520);
TTenant renter2(_L("Bob"),132);
TTenant renter3(_L("Sally"),1004);

User::LeaveIfError(renters.Append(renter1));// if append fails, leave
User::LeaveIfError(renters.Append(renter2));
User::LeaveIfError(renters.Append(renter3));

/* Sort array to be in order of apartment numbers (the key) */

renters.SortUnsigned();

/* Insert new tenant, in apartment number order */

TTenant newRenter(_L("Pippin"),755);

User::LeaveIfError(renters.InsertInUnsignedKeyOrder(newRenter));

/* Print list of tenants, will be in order of apartment now */

_LIT(KFormat1,"Name=%S, Unit=%d\n");

for (TInt i=0;i<renters.Count();i++)
{

console->Printf(KFormat1,
&renters[i].iName,renters[i].iApartmentNum);

}
/* See who is at apartment 520 */

TTenant findT(KNullDesC,520);
TInt index;

index = renters.FindInUnsignedKeyOrder(findT);

if (index != KErrNotFound)

ARRAYS 199

{
_LIT(KFormat2,"Who’s at apartment 520? %S!");
console->Printf(KFormat2,&renters[index].iName);
}

renters.Close(); /* must be done to free the RArray heap memory */
}

The example in Example 6.19 outputs as follows:

Name=Bob, Unit=132
Name=Sue, Unit=520
Name=Pippin, Unit=755
Name=Sally, Unit=1004
Who’s at apartment 520? Sue!

Example 6.19 illustrates how to set and use a key for the array, including
insert data in key order, and finding data in the array using the key.

RPointerArray

RPointerArray is like RArray except that pointers to the objects are
held in the array instead of copies of the objects. When using these,
ensure that you do not delete the objects after they are added to the array
(and before deleting the array) since this could result in an exception
accessing allocated data.
RPointerArray is declared as follows:

RPointerArray<MyObj> myArray;

This is like RArray, except that in this case an array of pointers to type
MyObj is stored. The granularity of the array can also be specified, but
note that keys are not supported for this type of array.

Items can be added to the array via Append(const T* anEn-
try) and Insert(const T* anEntry, TInt pos) where T is the
type passed in the template when declaring the pointer array. You
can also insert objects in order of pointer addresses with InsertIn-
AddressOrder(const T* anEntry) and InsertInAddressOr-
derAllowingRepeats(const T* anEntry).

These functions return KErrNone if successful, otherwise they return
a system error code.

Although integer keys are not supported as they are in RArray, you
can specify your own function wrapped in TLinearOrder to perform
sorting and to perform binary searches. See the SDK documentation for
more detail on this.

200 STRINGS, BUFFERS AND DATA COLLECTIONS

6.8 Other Data Collection Classes

Symbian OS provides a wide assortment of data collection structures.
They are too numerous to cover them all, but here is a useful subset.

6.8.1 Linked Lists
Class TDblQue<class T> can be used to create a doubly-linked list of
objects of type T. The class that the array contains must have a member
variable of type TDblQueLink (contains the forward and backward
linked list pointers). Then when you construct the TDblQue, you specify
the offset of the TDblQueLink member variable in the constructor.

Here is an example declaration

class CMyObj : public CBase
{
...
TDblQueLink iLink;
...
};

...

/* construct list, supply offset of link member
* variable in class
*/

TbdlQue<CMyObj> linkList(_FOFF(CMyObj,iLink));

Objects are added to the linked list with AddFirst()and AddLast()
to add to the beginning and end of the list respectively. First()and
Last()will return pointers to the first and last elements of the list. To
insert and delete items from a point in the middle of the list, use the cur-
rent object’s TdblQueLink::Enque()andTdblQueLink::Deque()
methods respectively – these will insert and delete at that point in the list.

You can create an iterator to the list as follows:

TDblQueIter<MyObj> iter(linkList);

Use the iterator’s ++ and -- operators to traverse the list and return
pointers to list items.

A singly-linked list is available via the TSglQue<classT>, TSglQue
Link and TSglQueIter<class T> classes.

6.8.2 Circular Buffers
Use CCirBuf<class T> to create a circular buffer of objects of type
T. Use the TInt Add(const T* aPtr) to copy the data from the class

OTHER DATA COLLECTION CLASSES 201

pointed to by aPtr to the buffer. Items are removed using the TInt
Remove(T* aPtr) which will copy the data at the current retrieve
position in the buffer to the area pointed to by aPtr. The data is extracted
in a first in, first out fashion

Before adding anything to the circular buffer, method SetLengthL()
must be called to set the maximum length of the buffer. If the buffer fills
up due to the data not being removed fast enough (via Remove()), then
the next Add() method will return 0 indicating that the data cannot be
added.

7
Processes, Threads

and Synchronization

In Chapter 3, I gave an overview of the multitasking capability of Symbian
OS, and introduced how processes and threads are used. This chapter
continues that discussion by showing you specifically how to create and
manage your own processes and threads using the Symbian OS API. I’ll
also describe how to synchronize, and otherwise communicate between
threads, using inter-thread data transfers and shared memory regions as
well as using semaphores, mutexes and critical sections.

Understanding the material in this chapter is not absolutely necessary
for basic Symbian OS programming, since processes and threads are
handled by the system for the most part. However, at some point you will
find that you need to create your own processes or threads. For example,
you may want to create a server that runs as a separate process, launched
by your program when needed. Or you may want to create your own
threads if you are porting code from an environment that relies heavily
on them (however, in general implementing threads in your program is
discouraged (see Section 7.2)).

Also, understanding the details of how processes and threads func-
tion and communicate will provide you with a deeper understanding
of how the various frameworks, such as active object and client/server
frameworks, operate (these frameworks are covered in Chapters 8
and 9).

7.1 Processes

A Symbian OS process is an executable that has its own data space, stack
and heap. A process is contained in a file that ends in exe. Multiple
processes can be active in memory at one time, including multiple
instances of the same exe file.

By default, a process contains a single execution thread – its main
thread – but additional threads can run in the process as well. A

204 PROCESSES, THREADS

process is switched to whenever one of the threads in that process
becomes active.

Threads that run in the same process have access to the data space
of that process and this makes exchanging data between these threads
straightforward. However, exchanging data between threads in different
processes is more involved. This is because a process cannot directly
access memory that belongs to another process without causing a fatal
exception.

7.1.1 An Example Process

Example 7.1 shows an example process that displays an information
message every two seconds once it’s started.

Example 7.1. Simple process

#include <e32base.h>

TInt E32Main()
{
LIT(KMsgTxt,”Process”);
for (Tint i=0;i<100;i++)

{
User::InfoPrint(KMsgTxt);
User::After(2000000);
}

return(0);
}

All processes contain the function E32Main(), which is where exe-
cution begins. When E32Main()exits, the process terminates.

Example 7.2 shows the mmp file which builds the process in an exe-
cutable called MyProc.exe.

Example 7.2. Build file for MyProc.exe

// exe mmp file
TARGET MyProc.exe
TARGETTYPE exe
SOURCEPATH ..\src
SOURCE MyProc.cpp

USERINCLUDE .
USERINCLUDE ..\include
SYSTEMINCLUDE \Epoc32\include

LIBRARY euser.lib

PROCESSES 205

7.1.2 Launching a Process

The following code loads and runs an instance of MyProc.exe:

void LaunchProcessL()
{
_LIT(KMyExeFile,"c:\\system\\programs\\MyProc.exe");

RProcess proc;

/* This will launch the MyProc.exe, passing the specified command line
data to it */

User::LeaveIfError(proc.Create(KMyExeFile,KNullDesC));
proc.Resume(); // start the process running

/* ... */

proc.Close();
}

RProcess is the core API class for representing and controlling a process.
RProcess acts as a handle to a process (it’s an R class) and allows you
not only to launch new processes, but also to open a handle to an already
running process. This means you can perform operations on that process,
such as changing its priority, terminating it and retrieving information
(e.g. memory usage) from it.

The code instantiates an RProcess object and then invokes its Cre-
ate()method to load the exe file specified as the first argument for
the new process. After calling Create(), the process is created, but
suspended. To start the process you call the Resume()method, as in
the example.

Note that Create() can fail (for example, if the exe is not found)
and thus the error should be handled. In this case, the process leaves if
Create()returns an error (using User::LeaveIfError()).

When you are finished with the process handle, you call Close()–
this closes the process handle only, it does not stop the actual pro-
cess itself.

Let’s look more closely at the Create() function. There are a few
overloaded versions of the Create() function (refer to the SDK API
document for details), and the one used in the example is prototyped
as follows:

TInt RProcess::Create(const TDesC& aExecutableFile,
const TDesC& aCommand,TOwnerType aType=EOwnerProcess)

206 PROCESSES, THREADS

aExecutableFile contains the path to the process executable file.
aCommand is a descriptor containing a command line argument that
specifies data to be passed to the process when launching. aType
specifies handle ownership and has a default value of EOwnerProcess
to indicate that this RProcess handle can be used by any thread in
the creating process. If aType is set to EOwnerThread, then only the
creating thread can access the process via this handle.

In some code, you may see a process launched with Eik-
Dll::StartExeL(), as the following example shows:

#include<EikDll.h>
/* ... */
LIT(KMyProcName,"c:\\system\\programs\\MyProc.exe");
EikDll::StartExeL(KMyProcName);

However, although this is used sometimes, it’s not officially supported by
Symbian OS (marked as ‘for internal use’) and, in fact, is deprecated from
Symbian OS v8.0. You should use RProcess instead.

7.1.3 Setting and Retrieving Process Arguments

As mentioned in the previous section, you can pass a command line argu-
ment to your process via the second argument of RProcess Create().
For example:

void LaunchProcessWithArgL()
{
_LIT(KMyExeFile,"c:\\system\\programs\\MyProc.exe");
_LIT(KMyExeFileCmd,"-x 20 -y 30");

RProcess proc;

/* This will launch the MyProc.exe, passing the specified command line
data to it */

User::LeaveIfError(proc.Create(KMyExeFile,KMyExeFileCmd));
proc.Resume(); // start the process running
}

This will pass the argument string “-x 20 -y 30” to the process created,
which can then retrieve this argument by calling RProcess Command-
Line()on an RProcess handle opened to itself, as the following shows:

TBuf<200> cmdLine;

RProcess me;
me.CommandLine(cmdLine);

PROCESSES 207

By default, theRProcess class constructor opens a handle to the currently
running process. I could have skipped declaringmealtogether and replaced
the last two lines with the line:RProcess().CommandLine().This calls
both the constructor and the CommandLine()method (this is a common
practice).

When CommandLine() is called, it sets the passed descriptor, cmd-
Line, to contain the command line string (“-x 20 -y 30” if it was
launched from our previous example).

7.1.4 Communicating with Other Processes

You can open an RProcess handle to some other, already running,
process by calling the Open()method for RProcess. Once opened,
the RProcess object acts as a handle to that process and you can
then use other RProcess methods to operate on the referenced process.
You can open the process by either its numeric process ID or its ASCII
name.

The following code opens a handle to a process by its process ID:

RProcess myProcess;
myProcess.Open(AProcId);
if (rc != KErrNone)
{
/* open failed, handle error */
}

/* ... */
myProcess.Close(); // close handle when finished

AProcId is the ID (type TProcessId) of the process you want to open.
Process IDs are represented by the TProcessId class, which is a simple
wrapper class for an integer.

To get the numeric ID of a process, use the RProcess Id()method.
For example, the line:

RProcess().Id();

will get the ID of the currently executing process.
Again, make sure you close the RProcess handle when you are

finished, by using Close()– and as mentioned before, closing the handle
does not terminate the actual process it represents.
RProcess Open() returns KErrNone if successful, otherwise it

returns a system error. For example, if it cannot find the process ID
supplied in the Open()argument, then it returns KErrNotFound.

208 PROCESSES, THREADS

7.1.5 Process Names

Each process has an ASCII name associated with it. The default name for
a process is the name of the exe file that contains it, minus the directory
path and the exe extension. You can rename a process (from the process
itself, or from another process) using the RProcess Rename()method
if desired.

You can open a handle to a process by its name using Open(TDesC&
aName) in RProcess. Note, however, that the system automatically
appends a UID and instance number to the name of the process, and you
must supply this full name to Open(TDesC& aName) for it to succeed.
This can make opening a process by name using Open(TDesC& aName)
awkward.

A better way to open a process by name is to use the Open(TFind-
Process& aFind) version of Open(). This call allows you to use a
wildcard match of the process name, as in the following example:

RProcess proc;
_LIT(KMatchName,"MyProc*");
TFindProcess procName(KMatchName);
TInt rc = proc.Open(procName);
if (rc != KErrNone)
{
/* open failed, handle error */
}

This code will open the first process it finds that starts with ’MyProc’,
which our myproc.exe example would match. The actual process name
will look something like:

“MyProc[00000000]0001”

which is the name followed by a program UID (set by the RPro-
cess::SetType() method) and an instance number – the kernel
appends the latter two items to the base process name automatically.
TFindProcess is a class inherited from TFindHandleBase, which

is a generic class for searching through kernel objects of a specific type
and returning matches based on supplied match strings. TFindProcess
specifically looks for running processes whose names match the supplied
string.

7.1.6 Querying the Phone’s Running Processes

You can also use TFindProcess directly to traverse the list of pro-
cesses in the system. It has a method called Next()that you can use to

PROCESSES 209

step through the filtered list (filtered by the match pattern) one at a time,
and get each process’s full name.

The following example shows how you can use TFindProcess to
query a list of running processes on the phone:

TFindProcess fp;
TFullName procName;
while(fp.Next(procName)==KErrNone)
{
console->Printf(_L(“process: %S\n”),&procName);
}

The default match string of TFindProcess is ‘*’, so this example simply
traverses the list of all processes in the system.

Let’s extend the example a bit and print some information about each
process using the RProcess GetMemoryInfo()method. This is shown
in Example 7.3.

Example 7.3. Listing Running Processes

void ListProcessesL()
{
TFindProcess fp;
TFullName procName;
TProcessMemoryInfo memInfo;
RProcess process;
while(fp.Next(procName)==KErrNone)

{
User::LeaveIfError(process.Open(procName));
process.GetMemoryInfo(memInfo);
console->Printf(_L("process: %S\n"),&procName);
console->Printf(_L(" code base=%x\n"),memInfo.iCodeBase);
console->Printf(_L(" code size =%x\n"),memInfo.iCodeSize);
console->Printf(_L(" const data

size=%x\n"),memInfo.iConstDataSize);
console->Printf(_L(" initialized data size=%x\n"),

memInfo.iInitialisedDataSize);
console->Printf(_L(" uninitialized data size=%x\n"),

memInfo.iUninitialisedDataSize);
process.Close();
}

}

A sample portion of output from Example 7.3 follows:

Process: EKern[100000b9]
code base = 5000d000
code size = 172480
const data size = 2584
uninitialized data size = 7380

210 PROCESSES, THREADS

initialized data size = 0
Process: EFile[100000bb]

code base = 5016e8e4
code size = 92896
const data size = 296
uninitialized data size = 3752
initialized data size = 16

Process: Emon[00000000]0001
code base = 50bac814
code size = 10268
const data size = 4
uninitialized data size = 0
initialized data size = 0

Process: EInfoServer[00000000]0001
code base = 5020f954
code size = 9692
const data size = 0
uninitialized data size = 0
initialized data size = 0

Process: EwSrv[10003b20]
code base = 502fc6a4
code size = 158948
const data size = 4
uninitialized data size = 17764
initialized data size = 260

The RProcess GetMemoryInfo()method is only supported by Sym-
bian OS v7.0 and later. But, if you are using a pre-7.0 version, you can
still use TFindProcess to list all the process names.

7.1.7 Process Priority
Each process is assigned a priority value. The kernel uses process priorities
to decide which process to switch to when more than one process is
ready for execution at a time.

Use SetPriority() in RProcess to set the priority for a process.
The priority can be one of the following (from the TProcessPriority
enum):

• EPriorityLow (150)

• EPriorityBackground (250)

• EPriorityForeground (350)

• EPriorityHigh (450)

As an example, the following line changes the priority of the current
process to the highest priority:

RProcess().SetPriority(EPriorityHigh);

PROCESSES 211

You can also set the priority of a process from another process. The
following example creates a process and then sets its priority:

RProcess proc;
User::LeaveIfError(proc.Create(KMyProc)); // create new process

// (or you could open it if
// you want to change already
// running process’s priority).

proc.SetPriority(EPriorityLow); // change priority
proc.Resume(); // start process running

Alternatively, you can set the process priority at build time, and not
use RProcess at all. To do this, add the epocprocesspriority
keyword to your exe program’s mmp file. Set the keyword to low,
background, foreground or high (e.g. epocprocessprior-
ity=foreground).

To read the priority of a process, use the RProcess Priority()
method – this will return the current priority of a process.

7.1.8 Terminating a Process

Typically, a process ends after running its course (i.e. returning from its
E32Main()function). However, you can terminate a process before then
by calling RProcess Kill(). Kill(TInt aReason)takes one integer
argument – a code to indicate the reason the process was terminated. A
process can kill itself, or any other process it has a handle to.
RProcess Panic(const TDesC& aCategory,TInt aReason)

also terminates a process. Panic() indicates that some unrecover-
able error was detected. aCategory is a string indicating the type of the
panic; aReason gives a more specific error number.

7.1.9 Checking the Status of a Process

To check if a process is still running and, if not, how and why it
was terminated, use the RProcess ExitType()and ExitReason()
methods.
ExitType() returns EExitKill if the process has ended – either

normally, via a return from E32Main(), or forcibly, via an RPro-
cess::Kill()call. ExitType()returns EExitPanic to indicate that
the process has been terminated by a call to the RProcess Panic()
method. If ExitType() returns EExitPending, this means that the
process is still running.

If ExitType() indicates that the process is no longer running (by
returning EExitKill or EExitPanic), then you can call ExitRea-
son() to get more information about the termination. ExitReason()

212 PROCESSES, THREADS

returns the value returned by the E32Main() function of the process
for a normal exit, the reason code passed to the Kill()method where
Kill()was called, or, if the process has ended due to a Panic(), then
ExitReason()will return the panic code.

Why is a normal process exit reported in the same way as a forced
process Kill()? The reason is that whenever a process returns from
E32Main(), the system automatically calls Kill() on that process,
passing E32Main()’s return value as the parameter to the Kill()
function.

7.1.10 Signaling when a Process Ends
The RProcess::Logon()method can be used to wait for a process to
complete as shown in Example 7.4.

Example 7.4. RProcess Logon

void StartProcessWaitEndL()
{
RProcess proc;

User::LeaveIfError(proc.Create(MyExeFile));

TRequestStatus istat;
proc.Logon(istat);
proc.Resume();

// Thread is executing. Can add code here to run in parallel...

User::WaitForRequest(istat); // blocks here while process is running

// Process is ended, you can use proc.ExitType()
// proc.ExitReason() and proc.ExitCategory()
// to get information on how the process ended.
}

RProcess::Logon() is an asynchronous function as indicated by
its TRequestStatus argument. Asynchronous functions are covered
in detail in Chapter 8 along with active objects, but for now it is
sufficient to say that they always return immediately, but will send
an event at a later time, when the function actually completes. The
TRequestStatus variable will contain the status of the comple-
tion.

To realize the full power of asynchronous functions, you use an
active object to set up a call-back to be run when the function com-
pletes. But you can also simply wait for completion of the function
via User::WaitForRequest(), as we do in Example 7.4. Don’t
worry if you do not understand how asynchronous functions work

USING THREADS 213

at this point. My purpose here was just to introduce the Logon()
method.

Although the example code actually created the process in which
Logon()was called, you can also use Logon() on processes which
are already running, opened via RProcess::Open(). In fact, multiple
programs can have process handles open to the same process, and all
these programs could use Logon()– and so be notified when that single
process ends.

7.1.11 Protecting a Process
You may want to prevent other processes from changing the priority of, or
terminating, a particular process. Use the RProcess SetProtected()
method for this – either on a RProcess handle opened on the process,
or by calling RProcess().SetProtected() to protect the currently
running process.

7.1.12 Other Process Facts
The following are other facts concerning processes:

• Switching between threads in different processes (and thus requiring a
process switch) is expensive compared to switching between threads
within the same process. The reason is that a process switch requires
that the data areas of the two processes be remapped by the Memory
Management Unit (MMU). Switching between threads in the same
process involves no such memory mapping changes.

• Unlike in DLLs, you can have writable static data in a process
executable (exe file).

• Although GUI applications are DLLs, they launch as separate pro-
cesses. A process called apprun.exe is called behind the scenes that,
in turn, launches the application framework, and your application.

• The emulator does not support multiple processes since it executes
completely as a single process. Although Symbian OS version 8.0 will
make the emulator behave more like the real device in this regard,
in pre-v8 versions, you will have to simulate your process by using
threads. Normally, this is done by creating a DLL (in place of the exe)
and starting the DLL’s main function as a thread.

7.2 Using Threads

Threads form the basis for multitasking and allow for multiple sequences
of code to execute at once. You can create multiple threads in your

214 PROCESSES, THREADS

program for parallel execution. However, in many cases the better way
to go is to use asynchronous functions and active objects, so consider
your use of threads carefully.

While Symbian OS relies on threads to implement its multitasking
capabilities, you’ll find that using multiple threads in your own pro-
gram can sometimes be a problem. One reason is that some Symbian
OS objects can only be used in the thread in which they are created.
A common example is that only the main thread in a GUI program
can draw to the screen – other threads can require a complex hand-
shaking scheme to coordinate with the main GUI thread for screen
updates.

So while operating systems such as Linux and Windows rely heavily
on creating separate threads for applications, in Symbian OS it’s best to
avoid using real threads and instead use active objects (see Chapter 8).
This is because active objects can simulate multithreaded behavior, while
actually running in a single thread – thus avoiding threading problems
such as the ones I mentioned.

However, you may find that creating your own threads is the best
solution in some situations. Also, having an understanding of the way they
work helps with understanding Symbian OS and its various frameworks
better.

Symbian OS provides the RThread API class for creating and manag-
ing threads. Like RProcess, RThread is a handle class and the actual
thread object is owned by the kernel. Also like RProcess, RThread is
instantiated directly, and usually on the stack.

Example 7.5 shows an example of creating and starting a thread using
RThread.

Example 7.5. Starting a thread

TInt threadFunc(TAny *)
{
for (TInt i=0;i<10;i++)

{
User::InfoPrint(_L("Thread"));
User::After(4000000);
}

return(0);
}

void StartThreadL()
{

RThread thd;
User::LeaveIfError(thd.Create(_L("MyThread"),

threadFunc,KDefaultStackSize,NULL,NULL));
thd.Resume();

}

In Example 7.5, function StartThreadL() will create a thread
at function threadFunc(). A thread is created in the suspended

USING THREADS 215

state, so, to start the thread, you need to call the Resume()method.
Once thd.Resume() is executed, a separate thread starts at thread-
Func()while the creating thread continues and returns from Start-
ThreadL(). The created thread will display an information message
(a message which stays up for a couple of seconds then disappears)
ten times, at intervals of four seconds, and the function will then exit,
thus ending the thread. So after StartThreadL() returns (after the
thd.Resume()), you have two threads of execution within the pro-
cess.

Note that the thread runs in the same process as StartThreadL(),
so it has access to any public variables within the process – but, as
mentioned, some Symbian objects created in one thread cannot be used
in another without an exception being generated.

7.2.1 Creating a Thread

The Rthread::Create() method is used to create a new thread.
Threads are not contained in separate executable files as processes
are – they execute code in their parent process executable – however,
each thread executes as an independent execution stream. A thread is
associated with a particular function in the process, and that function’s
name is specified as an argument to the Create()method. The exe-
cution stream starts at that function call and ends when the function
returns.

Let’s look at the RThread::Create()method in more detail. There
are a few overridden variations of this function, but they vary by only
minor differences.

TInt Create(const TDesC& aName, TThreadFunction aFunction, TInt
aStackSize,

RHeap* aHeap, TAny* aPtr, TOwnerType aType=EOwnerProcess)

• aName defines the name of the thread. This name can be used when
opening up a handle (via another RThread) to this thread from
another thread. Also, this name will appear in the exception pop-up
boxes if a system exception occurs within the thread.

• aFunction specifies the function where thread execution starts.
TThreadFunction is defined as:

typedef TInt (*TThreadFunction)(TAny *aPtr);

• Upon return from this function, the thread automatically ends.
RThread::ExitReason()can then be used to obtain the function’s
return value.

216 PROCESSES, THREADS

• aStackSize defines the size of the stack used by the process in
bytes. The constant KDefaultStackSize can be used to indicate a
default stack size.

• aHeap passes a heap via an RHeap object pointer. If the value is
NULL, the heap of the creating thread is used. Note that there are
other forms of Create() that allow a separate heap to be created
automatically and function arguments are supplied for the minimum
and maximum sizes of this heap.

• aPtr specifies the argument passed to the thread function defined in
aFunction. NULL can be used if no argument is used.

• aType is EOwnerProcess by default. This indicates that this
RThread handle can be used by any thread within the current
process. aType can also be set to EOwnerThread to indicate
that this RThread instance can only be used by the thread it was
created in.

Like RProcess::Create(), RThread::Create() returns KErr-
None if successful and a system error code otherwise.

7.2.2 Opening an Existing Thread

As in the case of a process, a handle to an existing thread can be opened
by either name or ID using the RThread::Open()method.

Example 7.6 will open the thread created from Example 7.5 and (just
to create interest), if it is still running, will suspend it. At this point the
thread will be suspended until a Resume()is performed.

Example 7.6. Opening, Suspending and Resuming a Thread

RThread thd;
TInt rc=thd.Open(_L(“MyThread”));
if (rc != KErrNone)
{
/* handle open error */
}

if (thd.ExitType() == EExitPending)
thd.Suspend();

...
thd.Resume(); // continue thread execution

Since the system does not append any numbers to the end of thread
names (unlike with processes) you do not normally need to use the
partial name matching version of the RThread::Open() method.

USING THREADS 217

However, a TFindThread class is supplied that works in the same
manner as the TFindProcess discussed earlier, in that it can use
a pattern to match the thread name. A TFindThread object can
be passed to RThread::Open() instead of the thread’s full name, if
desired.

You can also open a thread by its integer ID, which is represented
by the type-safe class TThreadId. Like RProcess, RThread has
an Id()method that returns the thread’s ID. Also, as in the case of
processes, you need a way of supplying, at runtime, this ID to the
process and thread that need to open your thread. This is because
thread IDs vary on each program run, unlike thread names which are
constant.

7.2.3 Thread Priorities

A thread’s priority can be set relative to the priority of its owning process
or to an absolute priority, independent of the priority of its owning
process. Thread priorities are set by the SetPriority()method.

Symbian OS defines the following process-relative priorities:

• EPriorityNull (−30),

• EPriorityMuchLess (−20)

• EPriorityLess (−10)

• EPriorityNormal (0)

• EPriorityMore (+10)

• EPriorityMuchMore (+20)

• EPriorityRealTime (+30)

The default thread priority is EPriorityNormal, which means that the
thread’s priority is the same as that of the owning process. The other
values indicate a thread’s priority in relation to the priority of its owning
process. The numbers in parentheses indicate the values that are added
to the priority of the process to form the thread’s absolute priority. As the
priority of the process is changed, the relative priorities of all its threads
are automatically adjusted.

Figure 7.1 shows the relative thread priorities when, for example, the
process priority is EPriorityForeground.

If you do not want your thread’s priority to be set relative to the process
priority, you can use an absolute priority instead. Absolute priorities stay
fixed, regardless of the process’s priority. Figure 7.2 shows the absolute

218 PROCESSES, THREADS

Relative Thread Priorities Process Priorities

EPriorityLow (150)

EpriorityBackground (250)

EPriorityNull (−30)

EPriorityMuchLess (−20)

EPriorityLess (0−10)

EPriorityNormal (+0) EPriorityForeground (350)

EPriorityMore (+10)

EPriorityMuchMore (+20)

EPriorityRealTime (+30)

EPriorityAbsoluteForeground (400)

EPriorityHigh (450)

Figure 7.1 Relative Thread and Process Priorities

thread values that can be used, and how they relate to process priority
values.

You use the same SetPriority()method to set both relative and
absolute priorities. The function automatically determines if the priority
is relative or absolute by the argument’s enum value.

7.2.4 Terminating a Thread

You can use RThread::Kill(TInt aReason) to terminate a thread,
either remotely or from within the thread itself. Also, as in RProcess,
RThread provides the following methods for determining why a process
has ended: ExitType()and ExitReason().
ExitType()returns one of the following values:

• EExitKill means that the thread function returned or that the
Kill()method was explicitly called.

USING THREADS 219

Absolute Thread Priorities Process Priorities

EPriorityAbsoluteVeryLow (100)

EPriorityAbsoluteLow (200)

EPriorityAbsoluteBackground (300)

EPriorityAbsoluteForeground (400)

EPriorityAbsoluteHigh (500)

EPriorityLow (150)

EPriorityBackground (250)

EPriorityForeground (350)

EPriorityHigh (450)

Figure 7.2 Absolute Thread and Process Priorities

• EExitPanic means the thread ended due to a panic.

• EExitPending means that the thread is still running.

ExitReason()returns one of the following values:

• the return code if the thread function returns normally.

• the termination reason code if the thread ends via a Kill()call.

• the panic reason code if the thread exits due to a panic.

• zero if the thread is still running.

7.2.5 Waiting for a Thread to End

Similarly to RProcess, RThread has a Logon()method (RThread::
Logon(TRequestStatusaStat)) that can be used to wait for a thread
to end. You can wait for the signal via the User::WaitForRequest
(iStat)call or use an active object such that the active object’s RunL()
method is called when the thread completes.

220 PROCESSES, THREADS

7.3 Sharing Memory Between Processes

Processes cannot directly access each other’s memory space. For example,
if you obtain a pointer to a memory buffer that resides in some other
process, and then try to directly read from or write to that buffer using the
pointer, you will raise an exception. In fact, the memory pointed to by
that pointer no longer even points to the intended data since the memory
space of a process is moved to a different area when it is not active.

Let’s look at an example, where we assume that process A has a data
buffer defined as a descriptor:

//process A
TBuf8<300> processAData;

Suppose you want to write to this buffer from process B which has
obtained a pointer to it, called processADataPtr. (A common way to
pass a pointer like this is via a client/server message, as you will see in
Chapter 9.)

You might consider trying the following in process B:

(*processADataPtr).Copy(someData);

This would work if processADataPtr pointed to a descriptor in the
same process, but it does not work on a pointer from another process,
since the memory space of that process is swapped out and now resides
somewhere else.

The correct way to do this is with the RThread WriteL()method, as
the following example shows:

//process B
RThread thd;
User::LeaveIfError(thd.Open(processAThreadId));
thd.WriteL(processADataPtr,_L(“data”));
thd.Close();

This code opens an RThread handle to a thread in process A, then calls
WriteL()to write the data “data” into the process A descriptor.

Note that process B needs the thread ID (or name) of process A’s main
thread (or, in fact, of any thread in process A) in addition to a pointer to
the descriptor buffer to write to.

If process B wants to read the process A buffer, it uses ReadL()in the
following way:

TBuf<200> myBuffer;
thd.ReadL(processADataPtr,myBuffer);

SHARING MEMORY BETWEEN PROCESSES 221

7.3.1 ReadL()and WriteL()

ReadL()and WriteL()are RThread functions rather than RProcess
functions, which would seem to make more sense. This can be confusing,
since it’s entirely possible to directly access memory between threads
in the same process without using ReadL()and WriteL(), since they
all share the memory space of their parent process. Threads in the same
process can exchange pointers or even directly access the global static
data of their process. It’s only across different processes that you must use
the ReadL()and WriteL()functions.

However, it does not hurt to use ReadL() and WriteL()between
threads in the same process – in that case it will just transfer the data by
direct use of the pointer. So it’s always safe to use these functions when
transferring data between threads.

The prototype of ReadL()is:

void ReadL(const TAny* aSrcPtr,TDes &aDes,TInt aOffset)

• aSrcPtr specifies the buffer to read from, in the memory space of
the other thread. This should be a pointer to a descriptor (TDesC) in
the other thread’s data space. Although aSrcPtr is of type TAny*,
the method performs a sanity check to ensure that it is pointing to an
actual descriptor, and a fatal exception will occur if does not.

• aDes is the destination descriptor in the current thread to which the
data from the other thread is copied.

• aOffset is the byte offset from the start of the source descriptor
where the copy should begin.

The syntax of WriteL()is:

void WriteL(const TAny* aDestPtr,const TDesC& aSrc,TInt aOffset)

• aDestPtr specifies the destination data region for the transfer. This
should be a pointer to a descriptor (TDes) in the other thread’s data
space. As in the case of the source buffer in ReadL(), a sanity check
is made to ensure that the pointer is pointing to an actual descriptor.

• aSrc specifies a descriptor in the current thread where the data is
copied from. The size of this source descriptor determines the transfer
size.

• aOffset specifies the offset in the destination descriptor for the copy
to start. The resulting length of the destination descriptor will be the
length of the source descriptor plus this offset.

222 PROCESSES, THREADS

Both ReadL()and WriteL()have versions that transfer data using 8-bit
descriptors, in addition to 16-bit descriptor versions.

Note that these functions always require the buffers to be specified as
descriptors, so if you have a buffer that is not a descriptor (e.g. a static
char array), then you will need to wrap it in a descriptor, such as a TPtr,
before using these functions.

7.3.2 Inter-Thread Memory Access – Background Information
Some of you may be interested in what’s going on in the background
when transferring data between processes. This section can be skipped
unless you are interested in more of the architecture behind inter-process
memory handling.

As discussed in Chapter 3, the data area of all process instances resides
in an area of memory known as the Home area. When a process becomes
active (only one is active at a time) then its data memory is mapped by
the processor MMU from the Home area, to an area of memory known
as the Run area – which is a sandbox for the use of the current process
(refer to Figure 7.3).

The left side shows how memory looks when process A is running.
Process A’s data has been mapped to the Run area, and process B, since
it is not active, remains in the Home area.

Now imagine that process A creates a pointer to myArray and sends
this pointer to process B. This pointer, since it was assigned while process
A was active, points to the myArray’s location in the Run area. When
process B becomes active, however (see right side of figure), the pointer
will no longer point to myArray since:

• myArray[] is no longer at the run address the pointer was set to – it’s
now in process A’s Home area.

• Process A’s Home area is protected and an exception would result if
it were accessed.

Process B Process A
TInt myArray [40];

Process A
TInt myArray [40];

Process B

Home Area

Run Area

Home Area

Run Area

Figure 7.3 Process Pointers

MEMORY CHUNKS 223

This is where the inter-thread transfer methods ReadL()and WriteL()in
the RThread class come in. These functions will convert the myArray
pointer from its process A Run area address to the process A Home
area – where the array resides now that process A is not running. Also,
since the Home area is protected memory, the functions will get the
needed CPU privilege required to access this Home area so they can read
it or write the data to it.

Note that if you call ReadL()or WriteL() to transfer data between
threads in the same process, no conversion between Run area and Home
area is required. This is because the same shared parent process is active
in the Run area for both threads and thus the data remains in the same
Run area spot. In that case, ReadL()and WriteL()simply transfer the
data using the passed buffer pointers with no address conversion.

7.4 Memory Chunks

In addition to the inter-thread access functions (ReadL()and WriteL()),
Symbian OS also provides support for shared memory regions that can be
directly accessed across multiple processes. These shared memory regions
are known as global memory chunks. You can create your own memory
chunks or access existing memory chunks by using the RChunk API class.

Let’s look at a simple example of creating and using a global memory
chunk.

//Process A
RChunk chk;
_LIT(KChunkName,’’My Global Chunk’’);
TInt rc=chk.CreateGlobal(KChunkName,0x1000,0x1000);
if (rc != KErrNone)
{
/* error occurred creating chunk, handle here */
}

TInt *ptr=(TInt *)chk.Base();
//write some data into chunk using *ptr

This code creates a global memory chunk named “My Global
Chunk”, and initializes it with some data.

Any other program in the system can read and write this memory
chunk if it knows the chunk’s name, as shown in the following:

//Process B
RChunk chk;
_LIT(KChunkName,”My Global Chunk”);
TInt rc=chk.OpenGlobal(KChunkName,0);
if (rc != KErrNone)

224 PROCESSES, THREADS

{
/* error occurred, handle here (e.g. KErrNotFound is
returned if it cannot open the chunk. */
}

TInt *ptr=(TInt *)chk.Base();
//read from or write some data into chunk using *ptr

Global chunks are created via the RChunk CreateGlobal()method.
The first argument is the name of the chunk. The next two arguments
specify the physical RAM assigned to the chunk (known as committed
memory) and the amount of virtual memory to reserve for the chunk.

To understand this, let’s briefly review the concepts of virtual memory
and physical memory.

All addresses used by software are virtual memory addresses. There
are 4 GB of virtual memory in the system. Virtual memory is only usable
by software when it is mapped to physical memory – i.e. actual RAM
that resides on the smartphone. Virtual memory is mapped to physical
memory by the CPU’s Memory Management Unit (MMU), in units of
the memory page size (usually 4 KB). When virtual memory has physical
memory mapped to it, it is considered as committed. Virtual memory
addresses are very plentiful, while physical memory is a scarce resource.
Refer to Chapter 3 for more details of memory usage in Symbian OS.

Figure 7.4 shows the chunk memory layout.
The committed size (the second argument of CreateGlobal()) spec-

ifies the size of the memory in the chunk that you can actually read and

Home Area

Run Area

Process A

myArray [40]

myArray [40] (when proc A
was running)

myArray_home_address

ProcessA_home_base

myArray_run_address

run_addr_base

Figure 7.4 Layout of the Memory Chunk

MEMORY CHUNKS 225

write. You can reserve a larger block of virtual memory (via the third
argument) when creating the chunk so that you can expand the chunk’s
committed memory, while keeping it contiguous.

To expand the chunk’s committed memory size, use the RChunk::
Adjust(TInt newSize)method, where newSize specifies the new
size of the committed physical memory to the chunk (starting from its base
address). The committed memory can be expanded up to the reserved
maximum size specified in the third argument of CreateGlobal().

For example, say you create a chunk that has 0x1000 bytes of RAM
committed to it, with a maximum size of 0x5000:

chk.CreateGlobal(KChunkName,0x1000,0x5000);

At this point you only have 0x1000 bytes of physical RAM assigned to
your chunk to read and write. But you can expand the chunk later, for
example by another 0x2000 bytes:

chk.Adjust(0x3000)

Now your chunk has 0x3000 bytes of memory assigned, and since you
had reserved 0x5000 bytes of virtual memory, the chunk memory stays
contiguous up to that maximum.
RChunk Base()is used to get a pointer to the chunk’s memory area.

This pointer can be used to write and read the chunk directly as needed
(note however that it is the programmer’s responsibility not to go out of
bounds).
RChunk OpenGlobal() is used to open an already created global

chunk for access. The first argument to OpenGlobal()is the full chunk
name. The second argument is used to indicate if the chunk is read
only (1) or writable (0). An Open() method also exists that uses the
TFindChunk matching class to open the chunk by a partial name.
TFindChunk operates similarly to TFindProcess and TFindThread
(in fact you could easily convert Example 7.3 to output all the global
chunk names in the system using TFindChunk).

When a process is finished with the chunk, the RChunk Close() is
called. When the last reference to the global chunk is called, the global
chunk itself is automatically deleted.

7.4.1 Local Memory Chunks

In addition to global memory chunks, Symbian OS also provides local
memory chunks. Local chunks are similar to global chunks except that
they can only be accessed by the process that created them. Therefore,
local chunks are not useful for sharing data between processes.

226 PROCESSES, THREADS

To create a local chunk, you use the CreateLocal(TInt aSize,
TInt maxSize) function of RChunk, where the sizes represent the
committed memory and reserved memory of the chunk. Note that, in this
case, there is no name associated with the chunk, and you just access the
chunk via the RChunk handle that was used to create it.

You will rarely, if ever, need to use a local chunk yourself. However,
Symbian OS does make extensive use of them internally, as will be
discussed further in the next section.

7.4.2 Chunks – Background Information
This section includes some detailed information for those interested in
the inner workings of how the kernel handles memory chunks.

In addition to any memory chunks that you create yourself, memory
chunks are also used internally by Symbian OS to manage process
memory. In fact, chunks are the basic atoms of memory management
used by the kernel for representing the various data areas belonging to
processes and threads – including stacks, heaps and other writable data
areas. (Actually, by default a stack and a heap are combined in a single
chunk.)

Chunk Memory Region

Committed Memory (Physical RAM)

RChunk

- Home Address Base
- Run Address Base
- Reserved Size
- Committed Size

Reserved Memory
(Virtual Addresses)

Figure 7.5 Global Chunk

MEMORY CHUNKS 227

Upon creation, the kernel assigns a memory chunk two addresses: a
unique base address in the home section of memory – where the chunk
resides when no one is using it, and an address in the Run area – where
the chunk is mapped to when a running process needs to access it. So
when you call the Base()method, you get the Run area address, since
the chunk is always mapped to the Run area when a process with an
open handle to the chunk becomes active.

If a process has handles to one or more global chunks (via RChunk
OpenGlobal(), Open(), or the original CreateGlobal()methods),
the kernel will remap these chunks to the run area, along with the rest
of the data for that process, when it is switched to. Otherwise, global
chunks remain in their Home areas of memory (see Figure 7.5).

Local chunks are associated with one only process. The kernel creates
local chunks for a process’s static data and for its stack/heap. As mentioned
earlier, you can also create your own local chunks.

When a local chunk is created by a process, the system will add it to
the list of chunks that the process owns. As shown in Figure 7.6, all the
chunks owned by a process are moved as a group to their individual Run
area addresses whenever that process becomes active.

Home Area

Run Area

Process a Static Data Chunk

Process a Stack/Heap Chunk

Process a User-created Local Chunk

All Process A chunks remapped here when
process A runs

Figure 7.6 Local Memory Chunk

228 PROCESSES, THREADS

7.4.3 Code Chunks

Although not shown in Figure 7.6, a process also has a code chunk that
contains the actual executable code of the process. Unlike with data
chunks, a process executable only ever appears in a single code chunk,
shared by all running instances of a process. This is because code is
read-only, and thus we do not need a copy for each instance, unlike data
chunks where each instance will have different data. Also unlike data
chunks, a code chunk is not mapped to the Run area when the process
is active.

7.5 Thread Synchronization

Being able to execute code in parallel, using threads, is a powerful
feature, but it would not be very useful if there was no way to synchronize
between them. After all, running in parallel is efficient – but without any
coordination between the parallel strands of execution, chaos would
result.

Symbian OS provides several API classes for synchronization of
threads. In this section I will briefly cover three basic thread synchroniza-
tion functions: semaphores, mutexes and critical sections.

7.5.1 Using Semaphores

You can use a semaphore either for sending a signal from one thread
to another, or for protecting a shared resource from being accessed by
multiple threads at one time.

A semaphore is created and accessed with a handle class called
RSemaphore. You can create a global semaphore which can be opened
and used by any process in the system, or you can create a local one that
can only be used by the threads in your process.

The following is a simple example of using a semaphore. Assume you
have two threads: Thread A and Thread B. Assume that Thread A needs
to wait for a signal from Thread B before it can process some data. This
can be accomplished with the following:

_LIT(KMySymName,”My Semaphore”);

// Thread A:
/* ... */

RSemaphore sem;
TInt rc=sem.CreateGlobal(KMySymName,0);
if (rc != KErrNone)
{

THREAD SYNCHRONIZATION 229

/* error occurred creating semaphore, handle it */
}

//have to wait for semaphore signal from ThreadB

sem.Wait();

/*... signal received, ok to process data */

Thread B signals Thread A when ready by:

//ThreadB:

RSemaphore sem;

TInt rc = sem.OpenGlobal(KMySymName);
if (rc != KErrNone)
{
/* error occurred opening semaphore, handle it */
}

// do some stuff
// now send a signal to thread A so it knows it can continue

sem.Signal();

CreateGlobal() indicates that a global semaphore is created. Since
the semaphore was created using this function, Threads A and B in
the example need not be in the same process. The first argument of
CreateGlobal() is the name of the semaphore (like chunks, global
semaphores have names, local ones do not). Once the global semaphore
is created, it can be opened using the OpenGlobal()method as Thread
B does.

The second argument to CreateGlobal() is a token count. Sema-
phores handle tokens as follows: a semaphore is created with an initial
number of tokens. Signal()increments the semaphore’s token count by
one. Wait()decrements it by one. If Wait()finds that the decremented
token count has become negative (i.e. there are no more tokens), then
Wait()blocks, not returning until the token count is incremented by a
Signal()call.

Since the initial token count in our example is 0, then if the Wait()
in thread A happens before the Signal()in thread B, then Wait()will
not return until the Signal()in thread B is called. If the Signal() in
thread B occurs first, then the Wait()in thread A will return immediately
since the token count was 1 before the call.

The preceding example used the semaphore as a straight signal – thread
B sends a signal to thread A. You can also use a semaphore to protect a
shared resource, as the following example shows:

230 PROCESSES, THREADS

Example 7.7. Semaphore used to Protect a Shared Resource

//ThreadA

RSemaphore sem;
TInt rc=sem.CreateGlobal(KMySymName,1);
if (rc != KErrNone)
{
/* error occurred creating semaphore, handle it */
}

...

sem.Wait();
// access shared resource A

sem.Signal(); // signal that access is finished

//ThreadB
RSemaphore sem;
TInt rc=sem.OpenGlobal(KMySymName);
if (rc != KErrNone)
{
/* error occurred opening semaphore, handle it */
}

sem.Wait();
// access shared resource A

sem.Signal();

..

For this example, assume that the two threads should never access
resource A at the same time. To guard against this the example uses a
semaphore. Thread A creates a semaphore and takes the single semaphore
token (note the second argument of the CreateGlobal() call in Thread
A) by calling the Wait() method before accessing resource A. If thread
B gets to the code that accesses Resource A, it will block at the Wait()
function until thread A replaces the semaphore token with the Sig-
nal() function, at which time the Wait() call in Thread B will take
the token and return, allowing access to resource A.

In the preceding example, only one token exists in the semaphore
so only one access to the shared resource is allowed. In some cases,
however, you may want to allow multiple accesses of a resource up
to a limit. In that case you would initialize the token count to the
maximum number of parallel accesses you want to permit. For example,
if a semaphore was initialized with a token count of five, then areas
protected by the semaphore can be entered up to five times without
waiting for one to exit. A sixth one however will block at Wait()until
one of the other five leaves the area (indicated by calling Signal()).

When you are finished with anRSemaphorehandle, call theClose()
method.

THREAD SYNCHRONIZATION 231

7.5.2 Creating and Opening Semaphores

The syntax for creating a global semaphore is:

TInt RSemphore::CreateGlobal(const TDesC& aName,TInt aCount, TOwnerType
aType=EOwnerProcess)

• aName specifies the name of the global semaphore.

• aCount is the initial token count for the semaphore.

• aType specifies the ownership of this handle and can be EOwner-
Process (the default) or EOwnerThread. EOwnerProcess indi-
cates that this semaphore handle can be accessed anywhere in the
process, whereas EOwnerThread indicates that it can be accessed
only by the creating thread.

A global semaphore can be opened by name from any process or thread
in the system using either:

RSemaphore::OpenGlobal(const TDesC& aName,TOwnerType aType=EOwnerProcess)

or:

RSemaphore::Open(const TFindSemaphore& aFind,TOwnerType
aType=EOwnerProcess)

The first function will open the semaphore by its full name. The second
will open it by a partial name, containing wildcard characters, using the
TFindSemaphore class.
TFindSemaphore should look familiar to you – it works like TFind-

Process, TFindThread and TFindChunk.
You can also create a local semaphore by using:

TInt CreateLocal(Tint aTokenCount, TOwnerType aType=EOwnerProcess)

In this case, the semaphore has no name and so cannot be opened by
another process. Thus, you do not open a local semaphore – you simply
access it via the RSemaphore handle that was used to create it.

Furthermore, if you specify aType as EOwnerThread, but want to use
the semaphore in another thread, you must use the Duplicate()method
to create a copy of the handle for that thread (for further information, refer
to the SDK documentation for RHandleBase::Duplicate()).

232 PROCESSES, THREADS

7.5.3 Symbian OS Usage of Semaphores
Symbian OS automatically creates a semaphore, known as a request
semaphore, for each thread on creation. This request semaphore is the
basis of the Symbian asynchronous request functionality used by the active
object framework which is in turn used in the client/server framework.
When an asynchronous function is launched, the calling program’s
request semaphore is used to signal to the calling program that the
function (which is running in a separate process/thread) has completed.
The function User::WaitForRequest() includes the execution of a
Wait()on this request semaphore.

It is not, therefore, very common to have to use semaphores directly in
your programs. But you will, almost certainly, use semaphores indirectly,
through asynchronous functions and active objects. Chapter 8 discusses
these asynchronous functions in more detail and describes how the
request semaphore is used.

7.5.4 Mutexes
A mutex is used to protect a shared resource that can only be accessed
by one thread at a time. It acts like a semaphore that’s been initialized
with a token count of one.

A mutex is represented by the handle class RMutex. Aside from the
fact that you can’t specify a specific token count upon creation of a
mutex, the RMutex class is otherwise equivalent to RSemaphore.

7.5.5 Critical Sections
Critical sections are regions of code in a process that should not be entered
simultaneously by multiple threads. An example is a code region that
manipulates static data, since it can obviously cause problems if multiple
threads are accessing the static data simultaneously. Symbian provides
the RCriticalSection class for this purpose. RCriticalSection
is very similar to RMutex except that it is always local to the process. A
critical section is created and used as shown in the following lines:

RCriticalSection crit;
crit.Wait();

// non reentrant code section.

crit.Signal();

In this example, the non-reentrant code section will only be able to be
accessed by one thread at a time. A second thread that attempts to execute
this same code region will block at the Wait()call until the first thread
has finished executing the region and calls the Signal()method.

THREAD SYNCHRONIZATION 233

Incrementing and decrementing global integer variables is a common
situation in which critical sections are needed. Since it is awkward to
create and surround these simple operations with critical section calls,
Symbian provides some static functions in the User API class as a
convenience. The functions are:

User::LockedInc(TInt& aValue)

User::LockedDec(TInt& aValue)

These functions will respectively increment and decrement the static
value whose reference is passed in aValue in a safe way – without
requiring you to explicitly use an instance of RCriticalSection.

8
Asynchronous Functions and Active

Objects

Although Symbian OS allows you to create preemptively scheduled
threads via RThread, you’ll find that in most programs you write you
rarely need to (or should) create threads yourself – even where you would
normally create a thread in another operating system (e.g. Unix or Linux).
Instead, the preferred option is to have your program run as a single,
event-driven thread using asynchronous functions and active objects.

Most functions are considered synchronous in that they return only
after they complete. Asynchronous functions, on the other hand, are
functions that return immediately and execute in parallel with the calling
program (they run in separate threads in the background), sending an
event to your calling program when execution is complete. Many of
the Symbian OS API functions are asynchronous functions, and using
them provides you with parallel operation in your program, since you
can have multiple asynchronous functions executing at the same time.
Active objects are classes used to invoke an asynchronous function, and
to handle the completion of the asynchronous function via a callback.

Asynchronous functions and active objects are the foundation of
the event-driven operation of Symbian OS, and mastering their use is
essential to becoming a good Symbian programmer. This chapter looks
at asynchronous programming in Symbian OS and describes how to use
and implement its asynchronous functions and active objects.

8.1 Asynchronous Functions

You can identify an asynchronous function in Symbian OS by its inclusion
of an argument of type TRequestStatus. TRequestStatus is a type
class (mapped as a simple integer) that represents the status of the
asynchronous function – that is, whether the function is in progress or
has finished and, if it has finished, what its final status is. Many of the
Symbian OS API functions come in both synchronous and asynchronous
versions.

236 ASYNCHRONOUS FUNCTIONS AND ACTIVE OBJECTS

As an example, consider a traditional synchronous function called
MyFunc():

TInt MyFunc(TAny *someArg);

This function returns after it is completely finished and the return value
indicates the status of the function.

An asynchronous version of MyFunc()would look like:

void MyFunc(TAny *someArg, TRequestStatus& aStatus);

This function may perform the same functionality as the synchronous
version, but instead of returning when it is completed, the function returns
immediately with aStatus set to KRequestPending to indicate that
MyFunc() is executing in parallel with the calling thread. When the
asynchronous function completes, aStatus changes to the function’s
final status (KErrNone if successful).

At some point you will need to know when the asynchronous function
has completed. You could wait for the function to complete as follows:

TRequestStatus status;
MyFunc(anArg, status);
// Code may be here which executes in parallel to MyFunc()
while (status == KRequestPending) ;

But polling the TRequestStatus variable like this is clearly wasteful. A
more efficient option is to use User::WaitForRequest(TRequest-
Status&aStatus), which will block your calling thread until the asyn-
chronous function has completed (the name WaitForRequest means
that it is waiting for the asynchronous request to complete) but your
thread will yield control to other threads while it is waiting.

For example:

MyFunc is complete, status now contains the function status

How is this blocking possible? User::WaitForRequest()waits at a
special semaphore owned by the calling thread, known as the request
semaphore. Each thread has a request semaphore associated with it
that is created automatically for you by the operating system. When
an asynchronous function has completed processing, it first sets the
TRequestStatus variable which was passed to the function to its
final state, and then signals the calling thread’s request semaphore.
User::WaitForRequest(status)returns when the calling thread’s

INTRODUCING ACTIVE OBJECTS 237

request semaphore is signaled, and status has a value other than
KRequestPending.
User::WaitForRequest()is sometimes the most convenient way

to wait for an asynchronous function to complete. For example, you
may want to call a function in a synchronous way, yet only an
asynchronous version of the function exists. However, in most cases,
User::WaitForRequest() should not be used since it causes your
thread to stop executing until the called function is completed, and thus
defeats the whole purpose of using an asynchronous function.

The best way of using asynchronous functions (and what they were
really designed for) is through active objects.

8.2 Introducing Active Objects

Active objects are classes derived from CActive. You use an active
object to invoke an asynchronous function (via a method implemented
in the CActive derived class). Then, when the asynchronous function
completes, a system component known as an active scheduler invokes
the RunL()method of the active object. RunL() is a virtual method in
CActive that is implemented in the derived active object. You can have
more than one active object active at a time, processing asynchronous
completion events as they occur.

Figure 8.1 shows a high level view of the functionality of active objects.
A thread using active objects consists of one or more active objects and

an active scheduler. The active scheduler is an instance of a class called
CActiveScheduler. Active objects are added to the active scheduler
using CActiveScheduler::Add().

The active scheduler implements an event loop that waits on the
thread’s request semaphore and, when an event is received, invokes the
RunL()method of the active object that the event belongs to. RunL()
handles the asynchronous function’s completion event and could, in turn,
invoke further asynchronous functions. The active scheduler then waits
on the request semaphore for the next event. The event loop is invoked
by the CActiveScheduler::Start()method and, once it is running,
everything in the thread is executed through the RunL()functions of the
active objects.

8.2.1 The Non-Preemptive Multitasking Model

The active scheduler’s event loop, along with its active object’s RunL()
invocations, all occur in the same thread, implementing what is known
as non-preemptive multitasking. This means that, unlike with threads,
one active object cannot start running while another one’s RunL()is in
progress, since they are executed as part of a loop in a single thread. The

238 ASYNCHRONOUS FUNCTIONS AND ACTIVE OBJECTS

Active Object N(CActive)

Calling
 Thread

Request
Semaphore

Active Scheduler
(CActiveScheduler)
EventLoop

Events

Invoke asynchronous function
RunL()

Active Object 2(CActive)
Invoke asynchronous function
RunL()

Active Object 1(CActive)

Invoke asynchronous function
RunL()

Other threads running the
asynchronous functions

Figure 8.1 Active Object High-Level View

RunL()of the currently running active object must completely finish and
return before the active scheduler can check for another event and call
another active object’s RunL()method.

The important thing to remember from the model just described is that
you should not spend much time inside your active object’s RunL()
function, since it prevents all other active objects in your thread from
running. For example, if you called User::After() in one of your
active objects, no other active object would be able to run until that one
had completed.

8.2.2 Creating an Active Object Class
To create an active object, declare a class and derive it from CActive,
as in the following example:

class CMyActive : public CActive
{
public:
static CMyActive* NewL();

INTRODUCING ACTIVE OBJECTS 239

CMyActive();
∼CMyActive();

void ConstructL();

void InvokeAsyncFunc(); // Some method to invoke the active object’s
// associated asynchronous function.

// Overriden from CActive

virtual void RunL(); // handles asynchronous function completion
virtual void DoCancel(); // Cancels an outstanding

// asynchronous function call
virtual TInt RunError(TInt err); // overriden if desired

// to handle a leave that
// occurs in RunL()

}

Then, implement your active object class using the following steps:

1. Implement functions to construct your active object (i.e. the class
constructor, static NewL(), and ConstructL()).

2. Register the active object with your thread’s active scheduler (usually
done as part of Step 1).

3. Implement one or more requestor functions, each of which invokes
an asynchronous function.

4. Override CActive’sRunL()to handle each asynchronous function’s
completion event.

5. Override CActive’s DoCancel()function to cancel an outstanding
asynchronous function call.

6. Optionally override CActive’s RunError() method to handle
errors that occur in your RunL()event handler.

7. Create your active object’s destructor, which should include calling
the CActive Cancel()method.

The next sections look at these steps in more detail.

Constructing an Active Object

In the constructor for your active object, you must call the base constructor
CActive::CActive(TInt aPriority), passing it the active object’s
priority value (see Section 8.5). This is normally done in the initialization
list, as the following example shows:

CMyActive::CMyActive()
: CActive(CActive::EPriorityStandard)

{

}

240 ASYNCHRONOUS FUNCTIONS AND ACTIVE OBJECTS

Normally you also create a static NewL()function for your active object
and a ConstructL()second stage constructor function.

Adding an Active Object to the Active Scheduler

In order for the active scheduler to know about your active object, as
a potential source of events from the thread’s request semaphore and
to distribute events to it, your active object needs to be added to the
thread’s active scheduler. This is done via a call to the static function
CActiveScheduler::Add(CActive *ao), where ao is a pointer to
your active object. In many cases this is done in ConstructL() as
follows:

CMyActive::ConstructL()
{
/* ... */
CActiveScheduler::Add(this);
}

Alternatively CActiveScheduler::Add()could be done in the active
object constructor (since it does not leave), in a static NewL()class for
your active object, or anywhere where you can pass a pointer to your
active object. In general though, it should be in your class so that the user
of the active object does not need to be concerned with adding it to the
active scheduler.

Implementing Requestor Functions

You need to implement at least one method in your active object that starts
an asynchronous function. When you call the asynchronous function, you
pass the active object’s TRequestStatus member, iStatus, to the
asynchronous function. After that, you call CActive’s SetActive()
method to indicate that the active object has an asynchronous function
call outstanding.

As an example, if the asynchronous call associated with the active
object is AnAsyncCall(TAny*Arg1, TRequestStatus&aStatus),
then your active object’s invocation method could look as follows:

void CMyCActive::InvokeAsyncFunc(TAny *aArg)
{
/* ... */
AnAsyncCall(aArg,iStatus);
SetActive();
}

Implementing RunL()

You must override CActive’s RunL()method to handle the comple-
tion of the asynchronous function. The iStatus member (which was

THE ACTIVE SCHEDULER 241

passed to the asynchronous function call) can be checked in RunL()to
determine the function’s status. The active object can then, if desired,
issue another asynchronous function request in the RunL() (from the
current, or another, active object).

The following is an example RunL()method:

void CMyActive::RunL()
{
if (iStatus == KErrNone)

{
// add code to handle the event
}

else
{
// add error handling code
}

}

Implementing a DoCancel()Function

DoCancel()is a pure virtual method of CActive and you must imple-
ment this in your derived class to cancel your asynchronous function.
DoCancel() is never called directly, but is called through the CAc-
tive::Cancel()method. Cancel()only calls DoCancel() if your
active object is waiting for its asynchronous function to complete (it calls
CActive::IsActive() to check if this is the case) – so don’t worry
about your DoCancel()canceling a function that is not in progress.

Overriding the RunError()Method

You can optionally override RunError(TInt aErr) to handle leaves
that occur when the active scheduler invokes your RunL() func-
tion – aErr is the leave code. You should return KErrNone once the
error is handled to prevent the active scheduler from attempting to handle
it. The default implementation of RunError() returns the leave code,
passing the responsibility for handling the error to the active scheduler
(see Section 8.4).

8.3 The Active Scheduler

As described in Section 8.2, the active scheduler is the event handler
for the thread. It receives an event at the request semaphore, deter-
mines which active object it belongs to, and invokes that active object’s
RunL() function. To use active objects in a thread there must be an
active scheduler – a class of type CActiveScheduler – installed in
your thread.

242 ASYNCHRONOUS FUNCTIONS AND ACTIVE OBJECTS

Often the thread you want to use active objects in will already have
an active scheduler installed, and, in that case, you do not need to install
your own. GUI applications already have an active scheduler installed
and running, because the GUI framework itself uses active objects to
process GUI events. You can add your own active objects and they will
become part of the existing pool of active objects.

8.3.1 Installing and Starting an Active Scheduler
An active scheduler will need to be created, installed and started for
threads that you create yourself, if you want to use active objects in
them. This applies to threads created directly by RThread or as a result
of creating your own exe executable which has no active scheduler
installed by default.

Setting up an active scheduler is straightforward, as shown in the
following example:

CActiveScheduler *mySched=new (ELeave) CActiveScheduler;
// install it
CActiveScheduler::Install(mySched);
// Add at least one active object here and invoke a request
CActiveScheduler::Start();

First you create the scheduler object itself, CActiveScheduler. Then
you call the static CActiveScheduler::Install()function to install
your scheduler as the active scheduler of the thread – making it respon-
sible for waiting on, and distributing events from, the thread’s request
semaphore. If the thread already has an active scheduler installed, then
you will get an exception (E32USER-CBase 43).

Although your active scheduler is now installed, it does not begin pro-
cessing events until you call CActiveScheduler::Start(). Once
you call CActiveScheduler::Start(), the scheduler is in its event
loop – waiting at the request semaphore, invoking the appropriate active
object’s RunL()when an event is received, and then waiting for the next
event.

So CActiveScheduler::Start()will, in effect, block your thread
at the point it was called, and all code execution will now occur inside
the RunL()functions of the active objects, since everything is now exe-
cuting in response to events. CActiveScheduler::Start() returns
only after you stop the scheduler using CActiveScheduler::Stop()
(which will have to be called in an active object’s RunL()method).
Once the scheduler’s stop method is called, the event loop is exited,
and code execution will resume immediately after the CActiveSched-
uler::Start()function (usually to clean up and exit the thread).

Before you start the scheduler, thus putting it in the event handling
loop, you need to have at least one active object added to the scheduler,

THE ACTIVE SCHEDULER 243

and have an outstanding asynchronous function active. If you don’t, when
you call CActiveScheduler::Start(), you will be stuck forever,
waiting for an event that will never occur!

8.3.2 Background Information

There will be times when you’ll find it useful to understand the details of
how the active scheduler works, in order to really understand how your
program behaves when using active objects. Let’s look at the event loop
implemented in CActiveScheduler::Start()in more detail.

The first thing CActiveScheduler::Start() does is to block
at the thread’s request semaphore. When a signal is received from
the request semaphore, it determines which active object the signal
belongs to by looking for an active object that has both its iActive
variable (the TBool member of CActive that is set when you call
SetActive()) set to ETrue and its iStatus set to some value other
than KRequestPending.

Once an active object that meets this condition is found, the active
scheduler invokes that active object’s RunL()method, after which it goes
back to waiting for the next signal at the request semaphore. This event
loop repeats until the ActiveScheduler::Stop()function is invoked
(in some active object’s RunL()function) at which time the event loop is
exited and ActiveScheduler::Start()returns.

Pseudo-code for the active scheduler event loop (CActiveSched-
uler::Start()) is shown in Example 8.1.

Example 8.1. Pseudo-code for Active Scheduler Event Loop

DO
{
WaitForAnyRequest(); // block at the thread’s request semaphore,

// return when one is received
// signal received
FOR (I=0;I<NUMBER_OF_ACTIVE_OBJECTS;I++)

{
IF (ACTIVE_OBJECT[I].iActive &&

(ACTIVE_OBJECT[I].iStatus != KRequestPending))
{
ACTIVE_OBJECT[I].RunL(); // invoke the target

// active object’s RunL()
break;
}

}
IF (I==NUMBER_OF_ACTIVE_OBJECTS) // If it did not find an active

// object signal belonged to
{
GENERATE_STRAY_SIGNAL_EXCEPTION();
}

} WHILE (ActiveScheduler::Stop() not called)

244 ASYNCHRONOUS FUNCTIONS AND ACTIVE OBJECTS

NUMBER_OF_ACTIVE_OBJECTS represents the number of active
objects added to the active scheduler, and ACTIVE_OBJECT[] rep-
resents the list of those active objects.

Remember (see Section 8.1) that when an asynchronous function
starts, it sets the TRequestStatus argument (in the case of an active
object, the iStatus member variable) to KRequestPending. When
the asynchronous function completes, it writes the completion status into
the TRequestStatus value and then signals the calling thread’s request
semaphore.

As you can see from the pseudo-code, when the active scheduler gets
a semaphore event, it scans through its list of active objects, and invokes
the RunL()method if an active object’s iActive is set, and iStatus
is a value other than KRequestPending. If the active scheduler does
not find an active object that meets these conditions then a stray signal
exception occurs for the thread.

The pseudo-code shown in Example 8.1 is simplified – for example,
the event loop does not show the priority handling that takes place when
multiple active object asynchronous events occur (instead, it just runs
the first active object that is found to be ready to run), nor does it show
RunL()error handling – but it should give you a basic idea of how the
event loop works.

8.3.3 CActiveScheduler Methods
Many of the methods of CActiveScheduler are static, and operate
on the currently installed active scheduler for the thread (or are used to
install the scheduler itself).

The static methods of CActiveScheduler are:

• void Add(CActive* aActiveObject) adds aActiveObject
to the currently installed scheduler, to register for receiving events.
An active object usually adds itself to the active scheduler during its
construction (by invoking it as CActiveScheduler::Add(this)).

• void Install(CActiveScheduler* aActiveScheduler)
installs the specified CActiveScheduler object as the current
thread’s active scheduler. An exception is generated if one is already
installed.

• void Replace(CActiveScheduler*aActiveScheduler) is
similar to Install(), except that if an active scheduler is already
installed, then the specified active scheduler object will be installed
in place of the currently installed one (as opposed to generating an
exception, as Install()would).

• void Start() contains the active scheduler’s event loop. Once
you call Start()the active scheduler will continually process events

THE ACTIVE SCHEDULER 245

from the thread’s request semaphore and invoke the appropriate active
object’s RunL()method in response to them. Start()will return
when an active object calls the active scheduler Stop()method.
Make sure you have an event that will occur (i.e. at least one active
object added to it, and with an event pending) or Start()will hang
indefinitely. (See Section 8.3.1.)

• void Stop() causes the current active scheduler’s event loop to
exit.

• CActiveScheduler*Current() returns a pointer to the thread’s
currently installed active scheduler.

8.3.4 Customizing the Active Scheduler
CActiveScheduler is a concrete class and is normally created and
used directly, without derivation. However, in some cases you may want
to derive your own active scheduler so that you can customize the event
loop or its start and stop functionality, and provide customized error
handling for the scheduler.

The following virtual methods are used when deriving your own active
scheduler from CActiveScheduler:

• virtual void OnStarting() is called from the Start()meth-
od of the CActiveScheduler base class before the event loop is
started. The default implementation of OnStarting()does nothing,
but your derived class can implement customized code that you want
to execute before starting the event loop.

• virtual void OnStopping() is called from the Stop()method
of the CActiveSchedulerbase class. The default implementation of
OnStopping()does nothing, but your derived class can implement
customized code you want executed upon stopping the active object’s
event loop.

• virtual void Error(TInt aErr) is invoked by the active
scheduler when a leave occurs within an active object’s RunL()
function, and the active object itself did not handle the error in its
own RunError()method. The argument to Error()contains the
leave code. Your derived scheduler object can override this function
to handle leaves that occur in a RunL()and are not handled by the
active object itself (see Section 8.4). The default implementation of
Error()is to invoke an E32USER-CBase 47 exception.

• virtual void WaitForAnyRequest() is called in the active
scheduler’s event loop (i.e. it is initiated from the Start()method)
and is used when waiting for an asynchronous function to com-
plete. See the pseudo-code in Example 8.1. The default imple-
mentation of this function is to call User::WaitForRequest(),

246 ASYNCHRONOUS FUNCTIONS AND ACTIVE OBJECTS

which blocks and waits at the current thread’s request semaphore.
A derived CActiveScheduler can override this by implement-
ing its own WaitForAnyRequest(). Normally this still involves
calling User::WaitForRequest(), but customized pre- or post-
processing of the event can be implemented here. Of course, you
could also handle events via a method other than the thread’s request
semaphore (such as from a communication port, or as a network
message). However, this would also require the attached active
objects to use a set of customized asynchronous functions which
were compatible with the customized event-handling method.

8.4 Active Scheduler Error Handling

A leave can occur in your active object’s RunL()method (as indicated
by the L suffix) to indicate an error. By default, a leave in RunL()
will generate an exception, but you can change this behavior for your
active object by overriding CActive::RunError(). Additionally, you
can override the default error handling of all active objects belonging
to the active scheduler by customizing the active scheduler Error()
method – however, this is not often done.
CActive::RunError()is prototyped as:

TInt RunError(TInt aErr)

where aErr contains the leave code. The default base class implemen-
tation of RunError()returns the leave code passed to it.

A customized RunError()should return KErrNone to indicate it has
handled the error. If RunError()returns a value other than KErrNone
the active scheduler assumes that the error has not been handled, and
invokes its own error-handling method, Error().
Error()is an customizable method of CActiveScheduler, proto-

typed as:

void Error(Tint aErr)

where aErr is the value returned from the active object’s RunError()
method.

The following pseudo-code illustrates how the active scheduler handles
RunL()leaves:

// invoke RunL() for target active object and handle error
TRAPD(LeaveCode,target_active_object->RunL());
if (LeaveCode != KErrNone)
{

CANCELING OUTSTANDING REQUESTS 247

TInt rc = target_active_object->RunError(LeaveCode);
if (rc !=KErrNone)

{
Error(rc); // active object did not handle the

// error, so call the active
// scheduler’s own Error() function

}
}

The default implementation of CActiveScheduler::Error() is to
generate an E32USER-CBase 47 exception. Since the default imple-
mentation of CActive::RunError() is to return the RunL() leave
code, then E32USER-CBase 47 is what you will get on a leave if you
do not override any of the error-handling functions.

8.5 Active Object Priorities
When an active object is constructed, a priority value is passed to
CActive’s constructor. The possible priority values (lowest to high-
est) are: EPriorityIdle, EPriorityLow, EPriorityStandard,
EPriorityUserInput, EPriorityHigh. The priority value is nor-
mally specified in your derived active object’s constructor as follows:

CDerivedActiveObject::CDerivedActiveObject()
: CActive(CActive::EPriorityStandard)
{
}

If multiple active objects have outstanding asynchronous functions in
progress, and two or more of these functions complete at the same time,
then the scheduler will see multiple active objects with iActive set to
ETrue and iStatus not equal to KRequestPending upon the next
semaphore event. In this case, the RunL() for the higher-priority active
object is invoked. The scheduler then checks the request semaphore, sees
the next event and executes the RunL()of the next-highest priority active
object that is still active, and so on.

As an example, if three asynchronous functions produce events at the
same time – one high, one medium, and one low priority – then three
tokens are added to the calling thread’s request semaphore. The scheduler
processes these three events, one at a time, invoking first the high-priority
active object’s RunL(), then the medium-priority one, and finally the
low-priority one. It does not really matter which semaphore signal (token)
originally corresponded to which active object – they are all handled.

8.6 Canceling Outstanding Requests
Each asynchronous function has a cancel function associated with it.
This cancel function causes its corresponding asynchronous function to

248 ASYNCHRONOUS FUNCTIONS AND ACTIVE OBJECTS

abort its operation and complete right away, with its TRequestStatus
variable set to KErrCancel.

For example, the API class RTimer provides the asynchronous function
method RTimer::After(TRequestStatus&aStatus, TTimeIn-
tervalMicroseconds32aWait). After the specified time has elapsed,
this function will change aStatus to KErrNone and send the com-
pletion event (aStatus will be KRequestPending during the time
interval). RTimer::Cancel() cancels the timer. Calling RTimer::
Cancel() while the time interval is in progress, causes RTimer::
After() to complete right away, with its TRequestStatus variable
set to KErrCancel.

As mentioned previously (see Section 8.2.7), your derived active object
class must override DoCancel() to cancel any pending asynchronous
requests, and DoCancel()is never called directly, but is called through
CActive’s Cancel() function. Cancel() checks if the active object
has an outstanding request, and if it does, it will invoke your overridden
DoCancel() method. After DoCancel() exits, Cancel() will do a
User::WaitForRequest() to consume the KErrCancel message.
Therefore, do not wait for the message in DoCancel() itself (or expect
RunL()to be invoked in response to it).
Cancel()should always be called in your active object’s destructor.

If it is not, and you delete your object with an asynchronous request in
progress, you will get a stray signal panic.

A common error, when canceling an asynchronous function, is to call
User::WaitRequestForRequest()from the DoCancel(), in order
to consume the KErrCancel event directly. If you do this, you will see
Cancel()(and thus your destructor) hang, since CActive::Cancel()
does its own User::WaitForRequest()to consume the cancel event.

Figure 8.2 shows how Cancel()and DoCancel()work.
For example, if your active object uses the RTimer functions for its

asynchronous events, the DoCancel()could look as follows:

void CDerivedActiveObject::DoCancel()
{

// Cancel the timer
iTimer.Cancel();
}

8.7 Removing an Active Object

The base class destructor removes the active object from the active
scheduler’s list. However, the base destructor requires that no asyn-
chronous event should still be pending – if there is, it generates an
E32USER-CBase 40 exception. Therefore the destructor in your derived

ACTIVE OBJECT EXAMPLE 249

CActive::Cancel()
{
 if (isActive()) {
 DoCancel();

 User::WaitForRequest(iStatus);
 }
}

DoCancel() (in derived class)
==Cancel Async Function

KErrCancel

Calling Thread

Asynchronous function in
progress...

Function cancels, sends
cancel event

Figure 8.2 Cancel()and DoCancel()Operation

class should call the Cancel()method (as well as any other cleaning up
it needs to do).

If you want to remove an active object from the active scheduler, but
not destroy it, call CActive::Deque(). This will call the active object’s
Cancel()method to cancel any outstanding requests, and then remove
the active object from the active scheduler.

8.8 Active Object Example

To illustrate active objects, I’ll present an example based on the Sim-
pleEx program presented in Section 2.3.2. The original SimpleEx
displays ‘Simple Example’ in the middle of the screen. When you select
a menu item called ‘Start’ it displays an alert dialog indicating that Start
was selected.

The example will be expanded here to include an active object. The
Start menu item is changed so that, when selected, it starts a countdown of
10 seconds – displaying the progress of the countdown on the screen – at
the end of which it pops up the alert dialog. Also, a Stop item is added to
the menu and, when Stop is selected, it will stop a countdown, if one is in
progress. (Since active objects are used, the GUI stays responsive during
the countdown.) The next time Start is selected, it starts the countdown
from the beginning.

250 ASYNCHRONOUS FUNCTIONS AND ACTIVE OBJECTS

8.8.1 CCountdown Active Object
Let’s begin by showing the active object that was added to SimpleEx
to implement the countdown. Example 8.2 shows the declaration of our
active object class, called CCountdown.

Example 8.2. CCountdown Active Object Class

class CCountdown : public CActive
{

public:
static CCountdown* NewL(CSimpleExAppView* aAppView);
CCountdown();
∼CCountdown();
void ConstructL(CSimpleExAppView* aAppView);

void StartCountdown();

void Stop();
void RunL();

void DoCancel();

private:
TInt iCount;
RTimer iTimer;
TInt iInterval;
CSimpleExAppView* iAppView;
};

Example 8.3 shows the implementation of the CCountdown active
object.

Example 8.3. CCountdown Implementation

CCountdown* CCountdown::NewL(CSimpleExAppView *aAppView)
{
CCountdown* self = new(ELeave) CCountdown;
CleanupStack::PushL(self);
self->ConstructL(aAppView);
CleanupStack::Pop(self);
return self;
}

CCountdown::CCountdown()
: CActive(CActive::EPriorityUserInput)

// Construct high-priority active object
{
}

void CCountdown::ConstructL(CSimpleExAppView* aAppView)
{
iCount=0;
iAppView = aAppView;
User::LeaveIfError(iTimer.CreateLocal());

ACTIVE OBJECT EXAMPLE 251

iInterval = 1000000; // 1 second interval
// Add to active scheduler
CActiveScheduler::Add(this);
}

void CCountdown::StartCountdown()
{

// This method is invoked when user selects the start menu item to start
// the countdown.
if (iCount == 0)

{
iCount=10;
iTimer.After(iStatus,iInterval);
SetActive();
}

}

CCountdown::∼CCountdown()
{
// Make sure we're cancelled
Cancel();
iTimer.Close();
}

void CCountdown::RunL()
{
TBuf<50> buff;
buff.Format(_L("-%d-"),iCount);
iAppView->UpdateScreenText(buff);

if (iCount)
{
iTimer.After(iStatus,iInterval);
SetActive();
iCount--;
} else
{
iAppView->UpdateScreenText(KSimpleExText);
CEikonEnv::Static()->AlertWin(_L("Start Selected!"));
}

}

void CCountdown::Stop()
{
iCount=0;
iAppView->UpdateScreenText(KSimpleExText);
Cancel();
}

void CCountdown::DoCancel()
{
iTimer.Cancel();
}

Let’s step through the methods. CCountdown::NewL(CSimpleEx-
AppView *aAppView) is the static NewL() method that constructs
the active object and calls the secondary constructor for it. A pointer
to the CSimpleExAppView is passed to the active object so that it

252 ASYNCHRONOUS FUNCTIONS AND ACTIVE OBJECTS

can draw the countdown text to the application screen area, via the
screen update method UpdateScreenText() that was added to the
application view class.

The CCountdown constructor does nothing except set the active
object’s priority to EPriorityStandard (which is suitable for most
active objects you will write). The secondary constructor, ConstructL()
sets up a countdown interval of one second, and initializes the timer via
the RTimer class. ConstructL() then adds the active object to the
active scheduler. Note that, since this is a GUI application, the active
scheduler is already installed.
CCountdown::StartCountdown() starts the actual countdown

process, and is called when the user selects the Start menu item. Start-
Countdown() calls RTimer::After()with the one-second interval,
passing it the active object’s TRequestStatus iStatus member vari-
able. It then calls SetActive() so that the active scheduler knows
that the object is waiting for an asynchronous event. Note that if
(iCount==0) is there to prevent the countdown from being started
when it is already in progress.

When the one-second timer has expired, the timer function sets the
iStatus variable to KErrNone and signals the calling thread’s request
semaphore. This causes the active scheduler to invoke the CCount-
down’s RunL()method. CCountdown::RunL() calls a new method,
implemented in the application view class, called UpdateScreen-
Text() to display the current count on the screen (see Section 8.8.2).
If zero has not yet been reached, the count is decremented by one and
RTimer::After()is reissued along with the SetActive(). This will
cause RunL()to be reentered after one second. If the count has reached
zero, the timer function is not reissued, and the Alert Box that reads ‘Start
Selected’ is displayed.

Note that RunL() does not check the value of iStatus. This is
because the RTimer::After() function is very simple and no error
conditions exist. However, for most other asynchronous functions, you’ll
want to check iStatus for the status of the asynchronous call.

The destructor for CCountdown simply calls Cancel(), which in turn
calls DoCancel()if an outstanding request exists, which could happen
if you exit the application while the count is in progress.

When modifying SimpleEx for this example, I put the active object class
declaration directly in SimpleEx.h and its source in SimpleEx_ui.cpp,
but you can create separate files for these.

8.8.2 Modifications to SimpleEx
Now, I’ll show the modifications to the existing SimpleEx GUI classes.
To simplify, I present the Series 60 program only. However, active objects
are platform independent, so the same modifications can be made to UIQ
and Series 80 programs.

ACTIVE OBJECT EXAMPLE 253

In the SimpleEx header file, I modified the declarations of CSim-
pleExAppUi and CSimpleExAppView.

In CSimpleExAppUi, I added a pointer to the active object as follows:

class CSimpleExAppUi : public CAknAppUi
{

public:
void ConstructL();
∼CSimpleExAppUi();

private:
void HandleCommandL(TInt aCommand);

public:

private:
CSimpleExAppView* iAppView;
CCountdown *iCountdown;

};

In CSimpleExAppView, I added the method UpdateScreenText()
which is used by the active object to write its countdown to the screen.
This method takes a descriptor string as an argument, and writes that
string to the center of the screen.

Here is the modified application view class declaration:

// The Application View Class

class CSimpleExAppView : public CCoeControl
{

public:
static CSimpleExAppView* NewL(const TRect& aRect);
static CSimpleExAppView* CSimpleExAppView::NewLC(const TRect& aRect);
void ConstructL(const TRect& aRect);
void UpdateScreenText(const TDesC16& aText);

private:
TBuf<100> iScreenText;
void Draw(const TRect&) const;
};

The rest of the SimpleEx classes remain the same.
Example 8.4 shows the modified resource file, which adds the Stop

item to the menu.

Example 8.4. SimpleEx Modified Resource File

RESOURCE TBUF r_default_document_name
{
buf="";
}

254 ASYNCHRONOUS FUNCTIONS AND ACTIVE OBJECTS

RESOURCE EIK_APP_INFO
{
menubar = r_SimpleEx_menubar;
cba = R_AVKON_SOFTKEYS_OPTIONS_EXIT;
}

RESOURCE MENU_BAR r_SimpleEx_menubar
{
titles =

{
MENU_TITLE
{
menu_pane = r_SimpleEx_menu;
}

};
}

RESOURCE MENU_PANE r_SimpleEx_menu
{
items =

{
MENU_ITEM
{
command = ESimpleExCommand;
txt = "Start";
},

MENU_ITEM
{
command = ESimpleExStop;
txt = "Stop";
}

};
}

The ESimpleExStop command is added to the command enum in
SimpleEx.hrh as follows:

#ifndef __SimpleEx_HRH__
#define __SimpleEx_HRH__

// SimpleEx enumerate command codes
enum
{
ESimpleExCommand = 1, // start value must not be 0
ESimpleExStop
};

#endif // __SimpleEx_HRH__

Two existing SimpleEx source files are changed – simpleEx_view.
cpp and simpleEx_ui.cpp. Example 8.5 shows the modified CSim-
pleExAppView in simpleEx_view.cpp.

ACTIVE OBJECT EXAMPLE 255

Example 8.5. Modified simpleEx view.cpp

#include "eikenv.h"
#include <coemain.h>

#include "SimpleEx.h"

CSimpleExAppView* CSimpleExAppView::NewL(const TRect& aRect)
{
CSimpleExAppView* self = CSimpleExAppView::NewLC(aRect);
CleanupStack::Pop(self);
return self;
}

CSimpleExAppView* CSimpleExAppView::NewLC(const TRect& aRect)
{
CSimpleExAppView* self = new (ELeave) CSimpleExAppView;
CleanupStack::PushL(self);
self->ConstructL(aRect);
return self;
}

void CSimpleExAppView::ConstructL(const TRect& aRect)
{

CreateWindowL();
SetRect(aRect);
ActivateL();
}

void CSimpleExAppView::UpdateScreenText(const TDesC16& msg)
{
iScreenText.Copy(msg);
DrawNow();
}

void CSimpleExAppView::Draw(const TRect&) const
{
CWindowGc& gc = SystemGc();
const CFont* font;
TRect drawRect = Rect();

gc.Clear();

font = iEikonEnv->TitleFont();
gc.UseFont(font);
TInt baselineOffset=(drawRect.Height() - font->HeightInPixels())/2;
gc.DrawText(iScreenText,drawRect,baselineOffset,

CGraphicsContext::ECenter, 0);

gc.DiscardFont();
}

The changes to CSimpleExAppView were to add the Update-
ScreenText() method as well as modify Draw() to support it.
UpdateScreenText() simply writes the text passed to it to the
iScreenText descriptor and forces a screen draw. Draw()will call

256 ASYNCHRONOUS FUNCTIONS AND ACTIVE OBJECTS

gc.DrawText() to write whatever is in this descriptor to the center of
the screen.

Example 8.6 shows the modified CSimpleExAppUi (in simple-
Ex_ui.cpp).

Example 8.6. Modified CSimpleExAppUi

void CSimpleExAppUi::ConstructL()
{
BaseConstructL();

iAppView = CSimpleExAppView::NewL(ClientRect());
iCountdown = CCountdown::NewL(iAppView);
iAppView->UpdateScreenText(KSimpleExText);
}

CSimpleExAppUi::∼CSimpleExAppUi()
{
delete iAppView;
iAppView = NULL;
delete iCountdown;
}

void CSimpleExAppUi::HandleCommandL(TInt aCommand)
{
switch(aCommand)

{
case EEikCmdExit:
case EAknSoftkeyExit:
Exit();
break;

case ESimpleExCommand:
iCountdown->StartCountdown();
break;

case ESimpleExStop:
iCountdown->Stop();
break;

}
}

The main change here was to invoke the active object’s methods to
start and stop the countdown in response to the Start and Stop menu item
commands. Also in the header file, I defined KSimpleExText as:

_LIT(KSimpleExText,"Simple Example AO");

ConstructL() sets this text to the screen (and the active object
restores it when the countdown is terminated).

8.9 Active Object Issues
Using active objects is the best way to handle events from multiple asyn-
chronous functions and to implement multiple (though non-preemptive)
threads in Symbian OS. However, there are issues that can occur, and

ACTIVE OBJECT ISSUES 257

many programmers struggle with active objects at first. Having a good
understanding of how they work helps avoid problems.

8.9.1 Do Not Block in an Active Object
Once the active scheduler is started, the only safe blocking that can occur
in the thread is when the active scheduler event loop waits at the thread’s
request semaphore for an event. However, if you do an operation that
blocks inside an event handler (i.e. in your RunL() function), such as
waiting for a semaphore, or calling a lengthy blocking function (such as
User::After()) then not only do you block your RunL(), but you also
block the entire thread, including the active scheduler and all the rest
of the thread’s active objects. That’s not to say that you cannot block at
all – sometimes a very small thread-blocking operation is needed – but
you have to keep in mind that, during that block, no other asynchronous
function events are being handled.

This is why you should not block in GUI programs. The GUI event
handler, HandleCommandL(), is actually invoked from a RunL() of
an active object the application UI class inherits from. So if you delay
for some reason when handling a GUI event, your GUI will become
nonresponsive during this delay since the GUI program’s active scheduler
cannot process further events.

It is possible to block in an active object, yet still have events processed
using nested CActiveScheduler::Start()and Stop()calls. Nest-
ing active scheduler calls can be very complex to implement correctly
though, and its use is beyond the scope of this book.

8.9.2 Avoid Stray-Signal Exceptions
Any Symbian programmer who has developed active objects will prob-
ably have encountered the exception: E32USER-CBase 46. This is the
stray-signal exception and it is invoked by the active scheduler’s event
loop when it receives a signal at the thread’s request semaphore, but
cannot find an active object that it belongs to (i.e. no active objects with
iActive==ETrue AND iStatus!=KRequestPending). There are
many situations that can cause this. Here are just a few:

• Not adding your active object to the scheduler (via CActive-
Scheduler::Add())

If you invoke the asynchronous function in your active object, yet it
is not added to the scheduler, then a stray-signal exception will occur
when the function completes, since the scheduler does not know
about your active object.

• Not calling SetActive()

If youdonot callSetActive()inyouractiveobjectwhen invoking the
asynchronous function, then, when the signal comes in, the scheduler
does not see your active object’s iActive flag set, and therefore does

258 ASYNCHRONOUS FUNCTIONS AND ACTIVE OBJECTS

not consider it a target for the event. It finds that the event belongs to
no active object and generates the stray-signal exception.

• Not calling User::WaitForRequest()on an asynchronous func-
tion not associated with an active object

In some cases, you may want to use User::WaitForRequest()to
wait for an asynchronous function that is not associated with an active
object to complete (although remember that this also blocks your
active object’s event loop). If you call such an asynchronous function,
but forget to consume its event via User::WaitForRequest(),
then the active scheduler will eventually get the event and, since it
will not find the active object the event belongs to, the scheduler will
generate the stray-signal.

A common cause of a stray-signal exception is when you cancel
an asynchronous function that is not associated with an active object.
Remember that a cancel also generates an event (it’s a common error that
this is not considered) and a stray-signal results.

8.9.3 Have One Outstanding Event at a Time
On the surface it may seem that you can call as many asynchronous
functions as you like in an active object (calling SetActive() after
each) and assume that your RunL() is invoked as each asynchronous
function completes. However, this is not true. An active object can only
have one outstanding request at a time, and if you try to have more, a
stray signal will result.

When you think about how the scheduler works, you will see why
this is so. The only thing that SetActive()does is to set your active
object’s iActive flag to ETrue. So when you invoke the first asyn-
chronous function and call SetActive(), you have iActive==ETrue
and iStatus==KRequestPending. If you then invoke a second asyn-
chronous function from your active object, and call SetActive(),
iActive is already set from the previous request (it just sets it again).
The first asynchronous function that completes generates a signal at the
request semaphore and the active scheduler calls the active object’s
RunL() function. However, after that RunL()completes, the iActive
flag is cleared by CActive – but there is still an outstanding function
call since you invoked multiple asynchronous function calls. So when
the second asynchronous function completes, the active scheduler sees
your iActive flag set to zero, and, finding no other active object for it
to belong to, generates the stray-signal exception.

8.10 Using Active Objects as Threads
Thus far we have discussed active objects as being simply a way to start
asynchronous functions and handle their completion, but you can also

USING ACTIVE OBJECTS AS THREADS 259

use them to perform background processing as you can with threads.
This example illustrates that concept. It also illustrates other concepts
mentioned earlier, such as creating, starting and stopping the active
scheduler.

The example creates two active objects whose RunL() functions are
invoked at specified intervals. This example uses the console and is built
as an exe executable that can be run on the emulator (see Section 6.1
for how to create a console program).

8.10.1 CTimer

Instead of deriving our active objects straight from CActive, this example
derives them from an API class called CTimerwhich is itself derived from
CActive. CTimer uses RTimer to generate events after a user-defined
period of time. Using CTimer is more convenient than implementing
RTimer within our own active object.
CTimer implements the following method, which I will use in the

example:

void After(TTineIntervalMicroSeconds32, aInterval)

CTimer::After() simply invokes its associated RTimer’s After()
method and calls CActive::SetActive(). RunL() (implemented in
CTimer’s derived class) is called when the timer expires.

Example 8.7 shows the header file.

Example 8.7. Example Header for CTimer

#ifndef _ACTIVEH
#define _ACTIVEH

#include <e32base.h>
#include <e32cons.h>

CConsoleBase* console;

class CPrimaryTask : public CTimer
{

public:
static CPrimaryTask* NewLC();
void StartRunning(TInt aRepeat, TInt aInterval);

void RunL();
CPrimaryTask() : CTimer(EPriorityStandard){ }

private:
TInt iInterval;
TInt iRepeatCnt;
};

260 ASYNCHRONOUS FUNCTIONS AND ACTIVE OBJECTS

class CBackground : public CTimer
{

public:
static CBackground* NewLC();
void StartBackground(TInt aInterval);

void RunL();
CBackground() : CTimer(EPriorityStandard){ }

private:
TInt iInterval;
};

_LIT(KActiveExName,"Active Object Example");

void activeExampleL();

#endif

There are two active objects in this example – a primary task and a
background task. Example 8.8 shows their implementation, and the main
program.

Example 8.8. Active Object Example Implementation

#include <e32base.h>
#include <e32cons.h>
#include "active.h"
#include "f32file.h"
#include "flogger.h"

RFileLogger iLog;

/*---
Active Object: CPrimaryTask

--*/

CPrimaryTask* CPrimaryTask::NewLC()
{
CPrimaryTask* self=new (ELeave) CPrimaryTask;
CleanupStack::PushL(self);
self->ConstructL();
CActiveScheduler::Add(self);
return self;
}

void CPrimaryTask::StartRunning(TInt aRepeat, TInt aInterval)
{
iInterval=aInterval;
iRepeatCnt=aRepeat;
CTimer::After(iInterval);
}

void CPrimaryTask::RunL()
{
if (iRepeatCnt--)

USING ACTIVE OBJECTS AS THREADS 261

{
LIT(KFirstActiveWaiting,"CPrimaryTask: RunL");
console->Printf(_L("%S\n"),&KFirstActiveWaiting);
iLog.Write(KFirstActiveWaiting);

// do task processing...here
// ...

After(iInterval); // reissue request
} else
CActiveScheduler::Stop(); // repeat count expired, end event

// loop to exit program
}

/*---
Active Object: CBackground

--*/

void CBackground::StartBackground(TInt aInterval)
{
iInterval=aInterval;
CTimer::After(iInterval);
}

CBackground* CBackground::NewLC()
{
CBackground* self=new (ELeave) CBackground;
CleanupStack::PushL(self);
self->ConstructL();
CActiveScheduler::Add(self);
return self;
}

void CBackground::RunL()
{
_LIT(KBackgroundTaskMsg,"CBackground RunL");
console->Printf(_L("%S\n"),&KBackgroundTaskMsg);
iLog.Write(KBackgroundTaskMsg);

// do task processing...here
// ...

After(iInterval);
}

/*---
E32Main() Entry point

--*/

TInt E32Main()
{
CTrapCleanup* cleanStack=CTrapCleanup::New(); // create a clean-up stack
TRAPD(leaveCode,activeExampleL()); // more initialization, then do

// example
if (leaveCode != KErrNone)

User::Panic(KActiveExName,leaveCode);
delete cleanStack; // cleanup cleanup stack

262 ASYNCHRONOUS FUNCTIONS AND ACTIVE OBJECTS

return 0; // and return
}

/*--
Active Object Example main function

--*/

void activeExampleL()
{
/*--

Create a full screen console
--*/

console=Console::NewL(_L("Console"),TSize(KConsFullScreen,
KConsFullScreen));
CleanupStack::PushL(console);

console->Printf(_L("Active Object Example"));
console->Printf(_L("Press Key to Begin"));
console->Getch();

/*---
Initialize file logging, need to create dir on phones
c:\Logs\ActiveLogging for log to be created

---*/

iLog.Connect();
iLog.CreateLog(_L("ActiveLogging"),_L("ActiveLog.txt"),

EFileLoggingModeOverwrite);

/*--
Create and install Active Scheduler

--*/

CActiveScheduler* mySched = new (ELeave) CActiveScheduler;
CleanupStack::PushL(mySched);

CActiveScheduler::Install(mySched);

/*--
Start active objects

---*/

CPrimaryTask *firstAct = CPrimaryTask::NewLC();

CBackground *backAct = CBackground::NewLC();

backAct->StartBackground(4000000); // Run every 4 seconds

firstAct->StartRunning(20,1000000); // Run for 20 times, 1 sec interval

/*--
Start the active scheduler event loop.

--*/

CActiveScheduler::Start();

USING ACTIVE OBJECTS AS THREADS 263

/*--
Event loop exited, cleanup

--*/

CleanupStack::PopAndDestroy(3); // two active objects and scheduler

_LIT(KActiveComplete,"Scheduler exited, cleanup");
console->Printf(_L("%S\n"),&KActiveComplete);
iLog.Write(KActiveComplete);
iLog.Close();

console->Printf(_L("[Press any key] to exit"));
console->Getch();

CleanupStack::PopAndDestroy(console);
}

This example starts two repeating tasks, implemented via active object
classes CPrimaryTask and CBackground. Each task simply prints a
message every time its RunL()runs and then restarts the timer. CPrima-
ryTask’s method StartRunning()begins the task. The first argument
is a count that specifies how many times RunL() is invoked before the
exe will exit. The second argument is the time interval (in microseconds)
after which the task’s RunL() is invoked. CBackground is similar to
CPrimaryTask except you start it via a method called StartBack-
ground(), specifying only the task interval (it does not control when the
exe exits).

When CPrimaryTask::RunL() has executed for the number of
times specified in the StartRunning()method, it calls CActive-
Scheduler::Stop(). This causes the active scheduler to exit, and
control returns to ActiveExampleL() past the CActiveSche-
duler::Start() statement. In other words, CActiveScheduler::
Start()returns since the event loop is finished.

Here is the mmp file for the example:

TARGET active.exe
TARGETTYPE exe
UID 0

SOURCEPATH .
SOURCE active.cpp

USERINCLUDE.
SYSTEMINCLUDE \Epoc32\include

LIBRARY euser.lib efsrv.lib flogger.lib

8.10.2 RFileLogger
This example uses a class called RFileLogger to write the program
output and attach a timestamp. RLogger is a useful class for debugging,
and can be used both on the emulator and on the phone itself.

264 ASYNCHRONOUS FUNCTIONS AND ACTIVE OBJECTS

To use RFileLogger you need to include flogger.h and link
to flogger.lib. To use the logging, you need to initialize it as the
example shows (iLog is the RFileLogger instance):

iLog.Connect();
iLog.CreateLog(_L("ActiveLogging"),_L("ActiveLog.txt"),

EFileLoggingModeOverwrite);

The first argument to CreateLog() is the directory to contain the log
file, relative to c:\Logs. The second argument is the name of the log
file. EFileLoggingModeOverwritemeans that the log is replaced on
every run, as opposed to appending data to an existing file.

The RFileLogger::Write()method is then used to write to the log.
Write()prints a nicely formatted timestamp to indicate the time each
log is output. Refer to the SDK documentation for other RFileLogger
methods to write to the log file (methods exist for formatted output and
even hexadecimal dumps).

Note that the log is only written if the directory specified in
CreateLog() exists. This provides a way to turn logging on and off
(by having the directory there, or not).

In this example, before running on the emulator for the first time, you
need to create an epoc32\wins\c\Logs\ActiveLoggingdirectory in
your SDK directory (on the phone itself it would be c:\Logs\Active-
Logging). Then, after the program is run, the log file, activelog.txt,
is in this directory.

An example of the log file (activelogging.txt) output from this
example is shown below:

10/04/2005 9:03:31CPrimaryTask: RunL
10/04/2005 9:03:32CPrimaryTask: RunL
10/04/2005 9:03:33CPrimaryTask: RunL
10/04/2005 9:03:34CBackground RunL
10/04/2005 9:03:34CPrimaryTask: RunL
10/04/2005 9:03:35CPrimaryTask: RunL
10/04/2005 9:03:36CPrimaryTask: RunL
10/04/2005 9:03:37CPrimaryTask: RunL
10/04/2005 9:03:38CBackground RunL
10/04/2005 9:03:38CPrimaryTask: RunL
10/04/2005 9:03:40CPrimaryTask: RunL
10/04/2005 9:03:41CPrimaryTask: RunL
10/04/2005 9:03:42CBackground RunL
10/04/2005 9:03:42CPrimaryTask: RunL
10/04/2005 9:03:43CPrimaryTask: RunL
10/04/2005 9:03:44CPrimaryTask: RunL
10/04/2005 9:03:45CPrimaryTask: RunL
10/04/2005 9:03:46CBackground RunL
10/04/2005 9:03:46CPrimaryTask: RunL
10/04/2005 9:03:47CPrimaryTask: RunL
10/04/2005 9:03:49CPrimaryTask: RunL

USING ACTIVE OBJECTS AS THREADS 265

10/04/2005 9:03:50CPrimaryTask: RunL
10/04/2005 9:03:50CBackground RunL
10/04/2005 9:03:51CPrimaryTask: RunL
10/04/2005 9:03:52CPrimaryTask: RunL
10/04/2005 9:03:53Scheduler exited, cleanup

9
Client/Server Framework

Symbian OS uses servers to centrally manage resources on behalf of one
or more clients. A server does not normally have a graphical user interface
(GUI), and, in many cases, runs its own process to provide protection and
modularity. Fundamentally, a server is simply a command-processing
engine – it waits for a command from a client, executes the service that
corresponds to the command, returns the results to the client, and then
waits for the next command. (Servers and clients are always in different
threads, although you can have multiple servers in the same process, or
even in the same thread.)

A client program uses a server through a client class. The client class
handles the details of establishing a session with its associated server, as
well as sending commands to the server and receiving responses from
it – the programmer invokes the functions of the server through methods
in the client class. Each method sends the appropriate command to the
server and gets the command results back to return to the caller.

Symbian uses servers to implement much of its functionality. In fact,
many of the Symbian OS API classes are client classes for servers. Also,
many asynchronous functions are implemented within a server since the
server runs within a separate thread from the client.

Here are just a few examples of servers in Symbian OS:

• The window server provides centralized access to the phone’s screen,
as well as user input devices such as the keyboard and pointer
device. GUI applications are clients of this server, which allows
them to concentrate on their own implementation, and let the server
coordinate display usage between the various applications that are
running, and ensure that input events are routed to the appropriate
application.

• The file server handles all aspects of managing the files on the phone’s
storage devices on behalf of client programs. This includes creating
directories and files, reading and writing files, file access control
and copying and renaming. Clients interface to the server through
client-side API classes such as RFs and RFile.

268 CLIENT/SERVER FRAMEWORK

• The socket server manages the creation of network sockets, as well as
sending and receiving data through them. The socket API classes (e.g.
RSocket) act as clients to this server.

• The font and bitmap server provides central control over fonts and
bitmaps and allows them to be efficiently accessed (for example, by
only loading one copy of a ROM-based bitmap in to memory and
providing shared access to all the clients that need it).

Symbian OS provides a client/server framework so that you can implement
your own servers, along with client-side classes. This chapter describes
this client/server framework in Symbian OS as well as describing all
the applicable classes, using two example servers. Even if you do not
implement your own server, understanding this information will help
when writing software that uses servers.

9.1 Client/Server Overview
Servers process messages one at a time – i.e. further messages are not
processed until the currently-executing command is completed. This is
because a server is actually implemented as an active object and the server
command handler is called from the server’s RunL()method. So, as is the
case for active objects in general, executing a server command ties up the
entire thread – including any other active objects in that thread – while
that command is executing. In consequence, server commands should
be short and not block the thread for a long time.

For each server, there is a corresponding client-side class, derived
from RSessionBase, that client programs use to invoke the server’s
functions. The client-side class handles the details of starting the server,
and sending messages to and receiving messages from the server.

In order for a client to use a server, the client first establishes a
communication context – known as a session – with the server. The client
then sends commands to the server through this session. On the server
side, a session is represented by an instance of a session class (derived from
CSharableSession), and this allows context, such as state information,
to be saved for that client while commands are being processed.

9.2 A Look at the Client/Server Classes
First, let’s look at the key framework classes you need to use for developing
both a server and its corresponding client class.

Figure 9.1 shows the basic classes used in the client/server framework.
On the client side, RSessionBase is the class from which you derive

your server’s client-side class. It represents a session with the server.
RSessionBase methods exist to establish a session with the server and
send commands to it. Key methods of RSessionBase are:

A LOOK AT THE CLIENT/SERVER CLASSES 269

Client Interface
class

CActive

CServer

Server class

RMessage

CSharableSession

CSession

Session class

RSessionBase

Client Side Server Side

Figure 9.1 Key Client/Server Classes

• CreateSession()

Your derived class calls this protected function to create a session
with the server.

• SendReceive()and Send()

Use these methods in your derived class to send messages to the
server through the created session.

On the server side, you need to create classes derived from CServer. This
is the main server class that initially receives all server messages, estab-
lishes new sessions, and routes received commands to the appropriate
session. CServer is derived from CActive. There is just one instance
of your CServer-derived class for each server. The key methods of
CServer are:

• NewSessionL()

Your CServer-derived class should implement this virtual function
to create a new session (i.e. to instantiate and return an instance
of your CSession-derived class). NewSessionL() is called when
a client requests a session with the server (via the client method
CreateSession()).

• StartL()

This CServer method should be called when creating the server
(usually from within a static NewL() function in a derived class).
StartL()registers your server with the active scheduler and assigns
it a name.

270 CLIENT/SERVER FRAMEWORK

• CSharableSession

This is the base class for a session object and is, itself, derived from
CSession. An instance of a CSharableSession-derived class is
created for each client session (by CServer’s NewSessionL()). The
session class handles the commands sent from the client. You override
CSharableSession’s virtual ServiceL()method to handle the
commands.

• RMessage

This is a concrete server-side class that represents the message from
the client, with methods to access it. The message consists of a
command code and four 32-bit arguments.

9.3 Client/Server Example

The simplest way to explain the client/server framework is by walking
through an example. This section steps through a basic client/server
example called TextBuffServ.
TextBuffServ maintains a text buffer for each client session and

allows the client to append text to the session buffer, retrieve the text
buffer, clear the buffer and backspace from its current position. In this
case, the server is created as an independent process.

The example consists of the following components:

• a client-side interface class

• a process TextBuffServ.exe that contains the server.

Note that the purpose of this example is purely to illustrate client/server
concepts – clearly, there are better ways to implement the example’s func-
tionality without using a server (such as the direct use of descriptors within
your application’s code).

9.3.1 Client-side Class

First let’s look at the client-side class declaration (I put this in an include
file named textbuffclient.h which all client applications would
include):

class RTextBuff : public RSessionBase
{

public:
RTextBuff() { };
TInt Connect();
TInt AddText(const TDesC& aText);
void GetText(TDes& aText);

CLIENT/SERVER EXAMPLE 271

void Reset();
void BackSpace(TInt anumChars);

TVersion Version() const;

private:
TInt StartServerProcess();
};

The client class is derived from RSessionBase, which inherits from
RHandleBase.

Starting the Server

The Connect()method starts the server, if it’s not already started, and
creates a session with the server. Applications always call this method first.
When the application is finished with the session, it calls the Close()
method, which RTextBuff inherits from RHandleBase.

Example 9.1 shows the Connect()method for our example.

Example 9.1. Connect()Function

_LIT(KTextBuffServerProcess,”c:\\system\\\programs\\textbuffserver.exe”);

TInt RTextBuff::Connect()
{
TInt res;

res=CreateSession(KTextBuffServerName,Version());
if (res == KErrNotFound)

{
res = StartServerProcess();

if (res==KErrNone)
{

// Server coming up, try up to 10 times to create a session
TInt retries=10;
do

{
User::After(1000);
res=CreateSession(KTextBuffServerName, Version());
} while ((res==KErrNotFound) && (retries--));

}
}

return(res);
}

TInt RTextBuff::StartServerProcess()
{
RProcess proc;
TInt res = proc.Create(KTextBuffServerProcess,KNullDesC);

272 CLIENT/SERVER FRAMEWORK

if (res == KErrNone)
{
proc.Resume(); // start the process running
proc.Close(); // finished with the handle
}

return(res);
}

We create our client session by calling:

res=CreateSession(KTextBuffServerName,Version());

where the first argument is a name (defined in our client header file)
that we have assigned to the server, and the second argument is the
return value of Version(). Version()returns a TVersion object that
contains a major version number, a minor version number and a build
version number that are defined in our header.

Our implementation of Version()for the example is as follows:

TVersion RTextBuff::Version(void) const
{
return(TVersion(KTextBuffMajorVersionNumber,

KTextBuffMinorVersionNumber, KTextBuffBuildVersionNumber));

And the version definitions in our header file are as follows:

const TUint KTextBuffMajorVersionNumber=0;
const TUint KTextBuffMinorVersionNumber=1;
const TUint KTextBuffBuildVersionNumber=1;

(See Example 9.3 in Section 9.3.2 for the complete header.)
What is the version argument used for when creating a session? In

brief, it indicates the earliest version of the server that the client will
work with. So if you change your client code so that it will no longer
work with older versions of the server, then you would increase the
version number – for example, by incrementing the minor number – in
the header file. Then, if this new version of the client is used with an
older, incompatible version of the server, the version number that the
client passes in the CreateSession()call is higher than the version
number built into the server, causing the server to return an error.

As you will see in the server-side example code, the version num-
ber from CreateSession()is passed to the NewSessionL()function
of your CServer class, which is where the actual version comparison
is made, using a call to User::QueryVersionSupported(). If the
comparison fails, NewSessionL()leaves with the error KErrNotSup-
ported (causing CreateSession()– and thus the client Connect()
method – to return KErrNotSupported).

CLIENT/SERVER EXAMPLE 273

If CreateSession()returns KErrNotFound, then the system could
not find a server with the specified server name, indicating that our server
had not been started yet, and that we need to load and start it. We do
this by calling StartServer() for our class, which uses RProcess
to launch the server process. After a small delay, CreateSession()
is again called. CreateSession(), and hence Connect(), will either
return KErrNone once the server is up and running, or it will return
an error.

Another version of CreateSession()exists that has the form:

TInt CreateSession(TDesC& aName,TVersion aVer, TInt aNumSlots)

aNumSlots determines how many messages can be queued from the
client to the server at one time (a space for one message being a slot). The
advantage of using this version is that the slots are pre-allocated when
you create the session and thus memory use is more controlled.

If this version of CreateSession() is used without this last aNum-
Slots argument (as in the example), then memory on the kernel heap
is allocated for each message as it is queued up. This will allow for a
large queue, but it sacrifices some control over memory allocation, since
kernel memory could become exhausted if the queue of messages builds
up for too long.

Repeatedly calling CreateSession() after starting the process, as
in the example’s Connect()method, may appear a bit inefficient at
first glance, but this is the simplest approach and is reasonably robust.
In any case, it is likely that the server will be up by the time the first
CreateSession() is called, provided that your server initialization
process is short.

I presented the example this way for simplicity, but there are other more
efficient ways to do it. For example, you can create a semaphore that the
server would signal once fully initialized, and have your Connect()
function wait at this semaphore before calling CreateSession().
Although this would work in most cases, a major disadvantage is that
if the process does not initialize correctly due to an error, then your
Connect() function could hang forever on the semaphore Wait()
(semaphores have no timeouts you can use while waiting).

A more correct approach would be to pass a TRequestStatus
variable along with your thread identifier to the server as an argument
and have your server signal the client when the server is initialized
(using the RThread:RequestComplete() function). Then, in your
Connect() function, you can call the RProcess::Logon() function
and wait for either the process to die or the server to be initialized using
User::WaitForRequest().

This chapter will not go into detail on these methods, but concentrates
on the client/server framework itself. The simple Connect()I presented
should be adequate for most servers you are likely to need.

274 CLIENT/SERVER FRAMEWORK

Invoking the Server’s Services

The following four methods of RTextBuff invoke the server’s services:

• AddText()appends the specified text to the session’s text buffer

• GetText()retrieves the text from the session’s text buffer

• Reset()clears the session’s text buffer

• BackSpace()decrements the text buffer position by the indicated
number of characters.

When the application is finished with the session, it calls Close().
Example 9.2 shows the code for the AddText(), GetText(), Back-

Space()and Reset()functions.

Example 9.2. Client Methods for invoking TextBuffServ services

TInt RTextBuff::AddText(const TDesC& aText)
{
TInt rc;
TAny *p[KMaxMessageArguments];
p[0]= (TAny*) &aText;
rc = SendReceive(ETextBuffAddText,&p[0]);
return rc;
}

void RTextBuff::GetText(TDes& aText)
{
TAny *p[KMaxMessageArguments];
p[0]= (TAny*) &aText;
SendReceive(ETextBuffGetText,&p[0]);
}

void RTextBuff::Reset()
{
TAny *p[KMaxMessageArguments];
SendReceive(ETextBuffReset,&p[0]);
}

void RTextBuff::BackSpace(TInt aNumChars)
{
TAny *p[KMaxMessageArguments];
p[0]= (TAny*) aNumChars;
SendReceive(ETextBuffBackSpace,&p[0]);
}

The methods in Example 9.2 are simple wrappers that send com-
mands (along with command arguments) to the server, using the Send-
Receive()method of RSessionBase, leaving the server to do the
actual work. SendReceive()is a protected function of RSessionBase
and is defined as follows:

void SendReceive(TInt aCommand, TAny *args)

aCommand indicates the command that the server session is to process.

CLIENT/SERVER EXAMPLE 275

args is an array of four 32-bit arguments, sent to the server along with
the command. The 32-bit arguments must be cast to type TAny*, from
either of two forms:

• A 32-bit integer (Backspace()uses the first argument in this way).

• A pointer to a descriptor (used by AddText()and GetText()in the
example).

After sending the command, SendReceive()will wait for the server
to complete the command’s execution before returning. However, there
is also an asynchronous version of SendReceive() that is defined as
follows:

void SendReceive(TInt aCommand, TAny *args, TRequestStatus &aStat)

This version of SendReceive()does not block execution of the calling
thread, but instead signals an asynchronous event to the calling thread
when the server has completed execution of the command. You can use
this version to create asynchronous client functions. For example, an asyn-
chronous version of function DoSomeFunction()can be implemented
as follows:

void RMyClient::DoSomeFunction(TInt arg, TRequestStatus& aStat)
{
TAny *p[KMaxMessageArguments];
p[0]=(TAny *) arg;
SendReceive(ESomeFunction,&p[0],aStat);
}

The client program can then invoke DoSomeFunction()from an active
object followed by a call to the active object’s SetActive(). The active
object’s RunL()function is invoked when the server actually completes
the command.
RSessionBase also provides a Send() method. Unlike Send-

Receive(), this function does not indicate when the server completes
the command, but simply returns once the message is sent.

The commands sent to the server are defined in an include file
that needs to be included by both the server and client (I named it
textbuff.h). It contains the server name, the client/server commands
and the version information for the server, and is defined as follows:

#include <e32base.h>

_LIT(KTextBuffServerName,"TextBuffServer");

//The server version. A version must be specified when creating a session
with the server.

276 CLIENT/SERVER FRAMEWORK

const TUint KTextBuffMajorVersionNumber=0;
const TUint KTextBuffMinorVersionNumber=1;
const TUint KTextBuffBuildVersionNumber=1;

enum TTextBuffSrvCmds
{
ETextBuffReset,
ETextBuffAddText,
ETextBuffGetText,
ETextBuffBackSpace,
ETextBuffCloseSession // Used later in this chapter.
};

9.3.2 Server Implementation
Example 9.3 shows the server’s include file (tbuffserver.h), which
contains the server and session class definitions.

Example 9.3. Server and Session Classes for TextBuffServ

#include "textbuff.h"

enum TTextBuffPanic
{
EInvalidCommand,
EInvalidDescriptor,
EServerInitError
};

#define MAX_BUFFER_SIZE 4096

class CTextBuffServer : public CServer
{

public:
static CTextBuffServer* NewL();
CTextBuffServer();
CSharableSession* NewSessionL(const TVersion &aVersion) const;
};

class CTextBuffSession : public CSharableSession
{

public:
static CTextBuffSession* NewL(CTextBuffServer* aServer);
CTextBuffSession() {};
∼CTextBuffSession();
void ConstructL(CTextBuffServer* aServer);
void ServiceL(const RMessage& aMessage);
void DispatchMessageL(const RMessage& aMessage);

TInt AddText(TDesC& txt);
void BackSpace(TInt chars);
TPtrC GetText();
void Reset();

void ClientPanic(TInt aPanicCode) const;

private:

CLIENT/SERVER EXAMPLE 277

HBufC* iTextBuff;
};

First, note that I have included the common client/server header file
textbuff.h, since the server also needs the server name, version
numbers, and the client/server commands.

The server class is derived from CServer, and there is only one
instance of this when the server is running. The session class is derived
from CSharableSession, and an instance of this class is created for
each session a client opens.

The server is created and started by calling the static NewL() func-
tion of our CTextBuffServ class. CTextBuffServ::NewL()and the
CTextBuffServ constructor are shown below:

CTextBuffServer* CTextBuffServer::NewL()
{
CTextBuffServer* self=new (ELeave) CTextBuffServer;
self->StartL(KTextBuffServerName);
return self;
}

CTextBuffServer::CTextBuffServer()
: CServer(EPriorityStandard,ESharableSessions)
{
}

The constructor passes the server’s priority to the CServer base class
as the first argument. This becomes the priority of the underlying server’s
active object. The second argument means that the session is sharable
between multiple threads in the same process.

Note that the server priority does not necessarily define the priority of
the server in relation to other servers, but defines its priority in relation
to all active objects (which could include other servers) connected to the
thread’s active scheduler.
CTextBuffServ::NewL()calls the base class method, CServer::

StartL() to register the server and assign it a name. StartL()adds
the server to the active scheduler and registers it with the name passed to
it (KTextBuffServerName in this case). This name is referenced from
a client when the client requests a connection to the server. StartL()
does not begin the server’s message processing – this occurs after the
thread’s active scheduler is started.

Example 9.4 shows the startup code for the textbuffserv process.

Example 9.4. Server Process Startup

static void StartServerL()
{

// create and install an active scheduler

278 CLIENT/SERVER FRAMEWORK

CActiveScheduler *pA=new (ELeave) CActiveScheduler;
CActiveScheduler::Install(pA);
CleanupStack::PushL(pA);

// create server and install
CTextBuffServer *serv;
serv = CTextBuffServer::NewL();

CActiveScheduler::Start();

delete serv;
CleanupStack::PopAndDestroy(); // delete pA
}

static TInt StartServer()
{
CTrapCleanup* cleanup=CTrapCleanup::New();

// create a cleanup stack

TRAPD(res,StartServerL());
if (res)

{
_LIT(KTxtBuffServer,"TextBuffServer");
User::Panic(KTxtBuffServer,EServerInitError);
}

delete cleanup;
return(res);
}

GLDEF_C TInt E32Main()
{
TInt res = StartServer();
return(res);
}

When the server process is started, control goes to E32Main(). Upon
entry, the program calls StartServer()which creates a cleanup stack
and calls StartServerL(). StartServerL() creates and installs
the thread’s active scheduler and creates the server class by calling
CTextBuffServ::NewL(). The active scheduler is then started with
CActiveScheduler::Start(). The server is now waiting for a client
to request a session with the server, and we signal the semaphore we
have created to indicate this to the client.

When the server receives a command to create a session (via a client
calling RSessionBase::CreateSession()), CServer invokes its
virtual NewSessionL(). This function is implemented in the CServer-
derived class and its purpose is to create, and return a pointer to, an
instance of the server’s session class.

The following code shows TextBuffServ’s implementation of New-
SessionL():

CLIENT/SERVER EXAMPLE 279

CSharableSession* CTextBuffServer::NewSessionL(const TVersion &aVersion)
const

{
// check version is ok
TVersion v(KTextBuffMajorVersionNumber,KTextBuffMinorVersionNumber,

KTextBuffBuildVersionNumber);
if (!User::QueryVersionSupported(v,aVersion))

User::Leave(KErrNotSupported);

return CTextBuffSession::NewL((CTextBuffServer*)this);
}

It calls CTextBuffSession::NewL() to create the CSession-based
object (in turn based on CSharableSession, a class that allows mul-
tiple threads in the same process to access a single client session).
Thereafter all client messages, through the session that created this
session class instance, will go to this instance.

Also NewSessionL()checks the version number passed to the func-
tion and, if the version required by the client is higher than that of the
server, it will leave with the error KErrNotSupported, causing the
CreateSession()call on the client-side to return this error.

Below is the CTextBuffSession::NewL()function, along with the
secondary constructor and destructor for the class:

CTextBuffSession* CTextBuffSession::NewL(CTextBuffServer* aServer)
{
CTextBuffSession* self=new (ELeave) CTextBuffSession();
CleanupStack::PushL(self);
self->ConstructL(aServer);
CleanupStack::Pop();
return self;
}

// second-phase C++ constructor
void CTextBuffSession::ConstructL(CTextBuffServer* aServer)
{

// second-phase construct base class
CSharableSession::CreateL(*aServer);
iTextBuff = HBufC::NewL(MAX_BUFFER_SIZE);
}

CTextBuffSession::∼CTextBuffSession()
{
delete iTextBuff;
}

CTextBuffSession::NewL()calls the secondary constructor (Con-
structL()) and uses the cleanup stack to safely handle any leave that
may occur. The CSession::CreateL() function must be called to
complete the session creation. Its default operation is to store the pointer
to the server that created this session, passed to it as an argument.

280 CLIENT/SERVER FRAMEWORK

For this example server, a text buffer is associated with each session,
and the ConstructL() function creates the buffer as a heap-allocated
HBufC descriptor.

Processing Messages from the Client

When a server receives a message from a client, the server creates an
instance of a class called RMessage to hold the message contents. Then
the server invokes the ServiceL()method of the appropriate session
object – supplying the RMessage object as its argument.

Example 9.5 shows the session command handler for the textbuff-
serv example.

Example 9.5. Handling the Server Commands

void CTextBuffSession::ServiceL(const RMessage& aMessage)
{
TRAPD(err,DispatchMessageL(aMessage));
aMessage.Complete(err);
}

void CTextBuffSession::DispatchMessageL(const RMessage& aMessage)
{

// check for session-relative requests
switch (aMessage.Function())

{
case ETextBuffAddText:
{
const TAny* pD=aMessage.Ptr0();
TBuf<200> tmp;
TRAPD(res,aMessage.ReadL(pD,tmp));
if (res!=KErrNone)

ClientPanic(EInvalidDescriptor);
User::LeaveIfError(AddText(tmp));
break;
}

case ETextBuffGetText:
{
TPtrC buff = GetText();
TRAPD(res,aMessage.WriteL(aMessage.Ptr0(),buff));
if (res!=KErrNone)

{
ClientPanic(EInvalidDescriptor);
return;
}
break;

}
case ETextBuffReset:
Reset();
break;

case ETextBuffBackSpace:
BackSpace(aMessage.Int0());
break;

case ETextBuffCloseSession:

CLIENT/SERVER EXAMPLE 281

CActiveScheduler::Stop();
break;

default:
ClientPanic(EInvalidCommand);
break;

}
}

void CTextBuffSession::Reset()
{
iTextBuff->Des().Zero();
}

TInt CTextBuffSession::AddText(TDesC& aText)
{
TInt rc=0;
if ((aText.Length() + iTextBuff->Des().Length()) >

iTextBuff->Des().MaxLength())
return KErrTooBig;

else
iTextBuff->Des().Append(aText);

return(rc);
}

void CTextBuffSession::BackSpace(TInt chars)
{
if (chars <= iTextBuff->Des().Length())

{
TInt newLength = iTextBuff->Des().Length() - chars;
iTextBuff->Des().SetLength(newLength);
}

}

TPtrC CTextBuffSession::GetText()
{
return *iTextBuff;
}

ServiceL() invokes another method, DispatchMessageL(), to
handle the message. RMessage has the following methods for accessing
the command code and arguments of the message sent:

• Function() returns the command code that was specified via
the first argument of the client object’s SendReceive()/Send()
function.

• Int0(), Int1(), Int2() and Int3() return, as integers, the four
32-bit values passed in the second argument of the SendReceive()
and Send()function.

• Ptr0(), Ptr1(), Ptr2() and Ptr3() return, as TAny * point-
ers, the four 32-bit values passed in the second argument of the
SendReceive()and Send() functions. Although these values are
typed as TAny *, the server expects them to be pointers to descriptors.
This is because client memory is accessed only through inter-thread

282 CLIENT/SERVER FRAMEWORK

function calls, which take descriptors as arguments. Client pointers
are never accessed directly by the server, since the client will usually
reside in a separate process.

• Panic(TDesC& aCategory,TInt aCode) panics the client-side
thread that sent the message to this session. This is usually done when
the server detects coding errors in the client.

• Complete(TInt status)is called by the server when it has com-
pleted processing of the message. The passed value is the status
returned by the SendReceive() method that sent the message.
ClientPanic() is implemented as follows:

void CTextBuffSession::ClientPanic(TInt aPanic) const
{
_LIT(KTextBuffServSess,"CTextBuffSession");
Message().Panic(KTextBuffServSess,aPanic);
}

• Message() is a session base class method that returns the current
RMessage being handled by the session, as a convenient alterna-
tive to passing the RMessage to other session functions. Calling its
Panic() function causes a panic on the client thread that sent the
message, as described earlier.

Using Pointers to Transfer Data Between the Client and Server

In many cases, a client specifies a buffer in the client memory space as
an argument to the command that it sends to the server. This could be a
buffer for the server to either read input from (AddText uses this in our
example), or write output to (as our GetText command does). Since the
client and server reside in different threads and, more importantly, could
also reside in different processes, the server must use inter-thread data
accesses rather than direct access through the client pointers.

We saw in Chapter 7 that, from the current thread, you can open
a handle to another thread with RThread, and then use RThread’s
ReadL() and WriteL()methods to read and write data to that other
thread’s address space. For convenience, RMessage provides its own
ReadL()and WriteL()functions so you can access the address space
of the client thread that sent the message. This is possible because
RMessage contains an RThread handle to the sending client. (In fact
you can call RMessage’s Client()method to return a handle to the
client thread if you need to operate on the thread directly.)

Also, note that inter-thread read and write functions always use pointers
to descriptors in the target thread’s address space, and these descriptors,
in turn, describe the target thread’s memory buffer. Thus a pointer passed
from a client to a server must always point to a valid descriptor in the

CLIENT/SERVER EXAMPLE 283

client address space, and never directly to the client buffer itself (see
Chapter 7).

Returning to the example server, DispatchMessageL()calls RMes-
sage::Function() to determine which command code was sent by
the client, and then handles the command appropriately.

For the command ETextBuffAddText, the first argument of the mes-
sage is a pointer to the client descriptor that contains the text to be added
to the session’s text buffer. The text is read using RMessage::ReadL().
This is an inter-thread read and thus will work properly when reading
from a client address space in either the same or (as in this case) a differ-
ent process. RMessage can do this because it has a handle to the client
thread that sent the message – internally it just calls the client thread’s
RThread::ReadL()method.

If the pointer in the message does not point to a valid descriptor, an
error will occur in the ReadL()function. The error is handled by a utility
function which concludes by calling CSession::Panic()to panic the
client thread.

Once the text has been read, AddText()is called to append the text
to the text buffer associated with that session.

In the case of ETextBuffGetText, the first argument is a pointer to
the client-side descriptor to which the text is to be written. The text is
written using the inter-thread RMessage::WriteL()method.
ETextBuffBackSpace is an example of a case where the first

argument is an integer rather than a pointer. This integer, read by the
RMessage::Int0() method, indicates the number of characters to
backspace in the text buffer.

9.3.3 Example Use of TextBuffSrv
Here is an example of how a client program might use TextBuffSrv:

LOCAL_C void ClientProgL()
{
RTextBuff textbuff;

TBuf<100> t;
TInt ret=textbuff.Connect();
User::LeaveIfError(ret);

textbuff.Reset();
textbuff.AddText(_L("Hello"));
textbuff.GetText(t);

console->Printf(_L("GetText text=%S\n"),&t);

textbuff.AddText(_L("Again"));
textbuff.GetText(t);

console->Printf(_L("GetText text=%S\n"),&t);

284 CLIENT/SERVER FRAMEWORK

textbuff.BackSpace(3);
textbuff.AddText(_L("xxxx"));
t.Zero();
textbuff.GetText(t);

console->Printf(_L("GetText text=%S\n"),&t);

textbuff.Reset();
textbuff.AddText(_L("Start"));
textbuff.GetText(t);
console->Printf(_L("GetText text=%S\n"),&t);

textbuff.Close();
}

The output of this would be:

GetText text=Hello
GetText text=HelloAgain
GetText text=HelloAgxxxx
GetText text=Start

9.3.4 Shutting down the Server

In our example the server is never shut down, and many system servers
in Symbian OS behave in this way. However, for applications, it is more
common for the servers to be transient – i.e. they are shut down when
they are not being used. This saves on system resources.

If our server always has just one client, and we want the server to
be shut down once the client has finished with it, we can override the
RSessionBase Close()method in our client class as follows:

void RTextBuff::Close()
{
TAny *p[KMaxMessageArguments];
SendReceive(ETextBuffCloseSession,&p[0]);
RHandleBase::Close();
}

Then in the server, you can include an additional case in ServiceL()
to handle this close command:

case ETextBuffCloseSession:
CActiveScheduler::Stop();
break;

Stopping the active scheduler would cause CActiveScheduler::
Start()to return (in StartServer()) and shut down the server, and
additionally clean up and exit the process.

CLIENT/SERVER EXAMPLE 285

Why would we ever want a server that just has one client associated
with it? This is commonly done when you want to break up an application
into an engine (which is the server) as a separate exe and a GUI
application. One reason to put the bulk of your functionality in a server
exe, is that you can have writable global variables in the exe, and this
simplifies the porting of code from other systems that use writable global
variables.

Using this GUI/engine model, the server is really just a component
of your application, and only your GUI application will connect to it.
Therefore, the close functionality just presented will work fine, with the
server being shut down immediately. An application may shut down this
type of server at any time, but would normally do so just before the
application exits.

However, if you are servicing multiple clients (which is what servers
are really meant for anyway), then you do not want to implement the
Close()in this way, since you do not want one client to be able to close
the server.

A good way to implement the shutdown in this case is to keep a
reference count that tells you how many clients currently have open
sessions with the server (you can increment/decrement a reference count
variable in your server class as sessions are created and deleted). When
the reference count reaches zero, start a shutdown timer, using a CTimer
class. When the timer expires, close the server by stopping the active
scheduler. If another session is opened while the timeout is in progress,
cancel the timeout.

9.3.5 Running the Server on the Emulator

As discussed in Chapters 5 and 7, the emulator does not support multiple
processes, and on Symbian OS versions before v8.0, RProcess is not
supported at all (RProcessCreate() returns KErrNotSupported). In
pre-v8.0 versions of Symbian OS, to run your server on the emulator, you
must build your exe as a DLL, and use RThread instead of RProcess.
Versions 8.0 and later, while still not supporting processes, do provide
emulation, through RProcess, to mimic the device more closely.

On the client side, to be able to run the example on pre-v8.0 emu-
lators, you need to replace the implementation of the StartServer-
Process()function, as in the following example (which includes both
versions):

#ifdef __WINS__

_LIT(KTextBuffServerProcessDll,"textbuffserver.dll");

286 CLIENT/SERVER FRAMEWORK

TInt RTextBuff::StartServerProcess()
{
RLibrary lib;
TInt res;

res = lib.Load(KTextBuffServerProcessDll);
if (res == KErrNone)

{
TLibraryFunction func1=lib.Lookup(1);
TThreadFunction threadFunc =

reinterpret_cast<TThreadFunction>(func1());

TName name(KTextBuffServerName);
RThread thd;

// Create thread.

res = thd.Create(KTextBuffServerName,threadFunc,
KDefaultStackSize,NULL,NULL);

if (res == KErrNone)
thd.Resume();
}

return(res);
}

#else

TInt RTextBuff::StartServerProcess()
{
RProcess proc;
TInt res = proc.Create(KTextBuffServerProcess,KNullDesC);
if (res == KErrNone)

{
proc.Resume(); // start the process running
proc.Close(); // finished with the handle
}

return(res);
}

#endif

And on the server side:

#ifdef __WINS__

static TInt ServerThreadFunction()
{
TInt res = StartServer();
return(res);
}

EXPORT_C TInt WinsMain()
{

SUBSESSIONS OF THE SERVER 287

return reinterpret_cast<TInt>(&ServerThreadFunction);
}

// DLL entry point
TInt E32Dll(TDllReason /*aReason*/)
{
return(KErrNone);
}

#else
GLDEF_C TInt E32Main()
{
TInt res = StartServer();
return(res);
}

#endif

On the server side, in the case of compiling for the emulator, Wins-
Main() is the first exported function instead of E32Main(). Wins-
Main() returns a function pointer to ServerThreadFunction()
which in turn runs the server. On the client side, StartProcess()
uses RLibrary to load your server DLL. It then looks up and calls the
first exported function, WinsMain(). StartProcess() then creates a
thread, using RThread, and specifies the function pointer returned by
WinsMain() as the thread entry point. Once the Resume() function
is called on the thread, the thread starts executing at ServerThread-
Function() and runs the server.

In your server mmp file, you should use TARGETTYPE EPOCEXE. This
causes your process code to be built as a DLL for the emulator and an
exe for target phone builds.

9.4 Subsessions of the Server

The client/server framework provides the ability to have subsessions
within existing sessions, and this is an efficient solution for functionality
that requires many client sessions. This section gives only a general
overview of subsessions, and you should refer to the SDK documentation
for more details of creating subsession-based servers.

Subsessions have fewer overheads than full sessions – but they are
more complex to implement on the server side, since CServer and
CSharableSession provide no base class functionality for subsessions.

Subsessions are represented on the client-side by a class derived
from RSubSessionBase. A subsession class must be associated with
a parent client session, and thus there are a minimum of two client-
side classes for a server that supports subsessions – a session class,
derived from RSessionBase, and a subsession class, derived from
RSubSessionBase.

288 CLIENT/SERVER FRAMEWORK

9.4.1 Example of an API Based on Subsessions

Many of the Symbian OS APIs use servers that support subsessions. A
good example is the file server.

For example, look at the following code, which writes data to
a file:

void FileWriteExL()
{
RFs fsSession; // File server session
fsSession.Connect();
CleanupClosePushL(fsSession); // this will close the session in case

// we leave

RFile f1; // Represents a file, a subsession class

_LIT(KFileName,"c:\\test.txt");

TInt err=f1.Open(fsSession,KFileName,EFileWrite);
if (err==KErrNotFound) // file does not exist - create it

{
err=f1.Create(fsSession,KFileName,EFileWrite);
}

User::LeaveIfError(err);

_LIT8(KDataToWrite,"Test data to write");

f1.Write(KDataToWrite);
f1.Close();

CleanupStack::PopAndDestroy(&fsSession);
}

This example opens a file (first creating it if it does not already exist),
and writes some data to it. RFs is a client session class (derived from
RSessionBase), to represent a session to the file server. RFile is
a subsession class, and you pass the parent session class as the first
argument to the Open() and Create() functions to associate it with the
parent session. You can open as many files as you like using this parent
session class, although we open only one here.

The approach of implementing the file system API using subsessions
in Symbian OS is much more efficient than the alternative of using a full
session (and thus a CSharableSession instance on the server side) for
each file you open.

You must include file f32file.h and library efsrv.lib to use the file
system API.

Another example of an API that supports subsessions is the network
socket API (see Chapter 10).

SUBSESSIONS OF THE SERVER 289

9.4.2 How Subsessions Work

While each session has its own CSharableSession instance on the
server side, subsessions do not. Subsession commands go to the parent
session and it is this session’s responsibility to determine (by means of a
handle sent with the command) the subsession to which the command
belongs, and execute accordingly. Although not strictly necessary, sub-
sessions are most often represented by instances of classes derived from
the reference counting CObject class.

As mentioned earlier, all subsession commands, including the com-
mand to create a subsession itself, are routed to the ServiceL()
method of the parent session’s CSharableSession-based object. It
is the responsibility of the session’s ServiceL()implementation to cre-
ate a subsession object, return a unique handle for it, then forward further
subsession commands to the correct subsession object, based on the
handle.

Most servers use CObject as the base class to implement subsession
classes. A key reason for this is the ability to identify an instance of a COb-
ject by means of its unique integer handle. All subsession commands
will supply this handle, and it is up to the ServiceL()to use the handle
to locate the correct CObject and invoke the subsession command on
it. Refer to Figure 9.2 for this flow.

From Figure 9.2, you can see that the ServiceL()method of the
session receives the commands for both the session itself and the subses-
sions belonging to that session. In the case of subsession commands, the
handle (accessed by RMessage::Int3()of the command) is used to
locate the correct instance of the subsession class and pass the message
to it.

RSubSessionBase

RSubSessionBase

Subsession object
(CObject)

RSessionBase
CSession

ServiceL()
{

Subsession object
(CObject)

SendReceive()/Send()

Client Server

}

Figure 9.2 Session and Subsession Command Flow

290 CLIENT/SERVER FRAMEWORK

9.4.3 Creating a Subsession

Subsessions on the Client Side

On the client side, RSubSessionBase is similar to RSessionBase in
that RSubSessionBase provides methods to create a subsession and to
send commands to the server. As with RSessionBase, these methods
are protected, and thus the user of the subsession class does not directly
call them. They are used for implementing the richer subsession interface
methods in the RSubSession-derived class.

The following method creates a subsession within the specified server
session, and associates this subsession with the class:

TInt CreateSubSession(RSessionBase& aSession,TInt aFunction, TAny *aArgs)

aSession is a reference to an already connected client session class.
aFunction is the command that is sent to the server’s session to create
a subsession. On the server side, the ServiceL() for the ses-
sion class should handle this command by creating the subsession,
as described in the following section. aArgs is an array of four 32-bit
values. Only the first three can be used.

The arguments in aArgs are passed to the server session along with
aFunction, and are available for access through the RMessage object
passed to ServiceL(). The following methods send commands to the
server’s subsession.

void SendReceive(TInt aCommand, TAny *args)
void SendReceive(TInt aCommand, TAny *args, TRequestStatus &aStat)
void Send(TInt aCommand, TAny *args)

Their formats are identical to the equivalent functions provided in
RSessionBase (except you can only use three arguments in args
since the fourth is always the handle). The commands are routed to
the ServiceL()method of the server’s CSession-based object that is
associated with the subsession’s session.

Subsessions on the Server Side

When the client subsession calls RSubSessionBase::CreateSub-
Session(), this function sends the command code for creation of the
subsession to the server. The server, in turn, calls the ServiceL()
function in the parent session’s CSession-based object, to create a
subsession object. The handle of this subsession is written to the client,

SUBSESSIONS OF THE SERVER 291

RSubsessionBase

CreateSubsession (
 session,
 subsession create function
 args
)

 private int: subsession handle

Function

Arg0

Arg1

Arg2

Arg3 (Pointer to handle)

CSession::ServiceL(RMessage &
msg)

{
if subsess create demand {
 1. Create the subsession object
 2. Write object's handle through
 to client through msg Ptr3()
}

...

}

Associate
Handle and
return it

Subsession class
(CObject derived)

Figure 9.3 Creating a Subsession

through the pointer sent in the fourth argument of the server message.
The flow of this process is illustrated in Figure 9.3.

Once the subsession has been created, commands are sent from
your subsession client class via RSubSessionBase’s Send() and
SendReceive() functions. Remember that only three arguments can
be supplied to SendReceive() and Send() when using subsessions
since RSubSessionBase transparently supplies the subsession’s handle
(set during the CreateSubSession()) as the fourth argument of the
command. The ServiceL()of the parent session looks up the subsession
class instance that corresponds to that handle, and invokes the function
using that instance.

9.4.4 Using CObject as your Subsession Base Class
Just as each session is represented by a separate CSession-based
class instance, every subsession is also represented by a class instance.
But, while session classes are derived from CSharableSession, the
client/server framework does not specify the derivation of a subsession
class (since your session’s ServiceL()completely determines subses-
sion implementation).

When creating a subsession object, your session must return a unique
subsession handle to the client class. Subsequent commands to this
subsession will supply this handle, which is used to route the command
to the correct subsession instance. This means that the CObject class,
with its associated unique identifier, is ideally suited to representing a
subsession, and subsession classes are normally derived from CObject.

292 CLIENT/SERVER FRAMEWORK

Unfortunately, you can’t just instantiate a CObject-derived class and
retrieve its handle – you need to deal with a few other associated classes:

• CObjectCon is a CObject container, which must be used to create
CObject instances.

• CObjectConIx is a class that needs to be used to create CObject
containers.

• CObjectIx is an index to CObject instances, which may themselves
be held in one or more containers.

The details of the CObject class and of CObject containers and indexes
are beyond the scope of this chapter. However, the SDK provides good
information on these topics.

10
Symbian OS TCP/IP Network

Programming

The ability to communicate data is a feature that differentiates smart-
phones from traditional voice-only mobile phones. Smartphones can
connect to a network through cellular technologies such as GPRS and
EDGE and perform a variety of tasks normally associated with net-
worked PCs. Some phones also have WiFi capability (e.g. the Nokia 9500
Communicator) allowing them to connect to a Wireless LAN.

Here are just some of the smartphone applications made possible by
data communication:

• browsing (HTML, WAP)

• email

• instant messaging

• streaming media (mobile video services, etc)

• multiplayer network-connected games.

The TCP/IP protocol suite is used for most networked services including
the examples just given. In fact, TCP/IP is the de facto standard for
communicating on the Internet (it’s almost synonymous with the Internet
itself), and is used in most private data networks as well.

Symbian OS provides full TCP/IP networking support as well as a socket-
based API to allow developers to write their own communication software.
This chapter introduces TCP/IP on a Symbian OS device and shows how
to use the socket API to write your own TCP/IP networking applications.
The most popular network API for programming in TCP/IP is the Berkley
Unix (or BSD) C-based socket API and it is presented in this chapter for
comparison (Symbian supports a version of it). The Symbian OS native
C++ socket API is then presented, and compared to the BSD socket API.

We begin with a generic introduction to TCP/IP programming for
those new to network programming. If you are already familiar with the
general principles of TCP/IP and socket programming you can skip the
preliminary TCP/IP and BSD sections, and go directly to Section 10.2.

294 SYMBIAN OS TCP/IP NETWORK PROGRAMMING

At the end of the chapter is a comprehensive example that enables you
to expand SimpleEx to retrieve the current temperature from a weather
network server and display it on the screen.

10.1 Introduction to TCP/IP

TCP/IP refers to a suite of protocols as opposed to a single protocol
(i.e. TCP over IP). This protocol suite, sometimes referred to as the
Internet Protocol Suite, serves as the foundation for communication on
the Internet, as well as most local networks. TCP/IP, like any other
communication protocol suite, insulates network applications from the
underlying hardware and low-level software so that they can concentrate
on sending and receiving application data over the network.

Let’s look at the main protocols that are included in the TCP/IP
suite – TCP, UDP and IP. These protocols are the most important ones for
the network application programmer and are the ones that are covered in
this chapter.

• TCP – Transmission Control Protocol

TCP is a transport-level, connection-oriented protocol and provides
built-in flow control for reliable transfer of data between network
nodes. TCP is packaged and sent over the network layer IP protocol.

TCP is the protocol most used by network applications including the
World Wide Web.

• UDP – User Datagram Protocol.

UDP, like TCP, is a transport-level protocol; however, UDP is con-
nectionless and thus more lightweight than TCP. UDP is basically
a ‘fire-and-forget’ protocol in that it does not provide any built-in
confirmation that the packet has arrived at its destination, nor does
it perform any retransmissions on errors, or handshaking of any kind.
UDP is used where speed is most important and it doesn’t matter if a
few packets are lost.

UDP is not as commonly used as TCP, except for programs (e.g.
games) where speed is more important than reliability. UDP is also
used for some network services, such as DNS (Domain Name Service)
which resolves a host name into an IP address.

• IP – Internet Protocol

IP is the network-level protocol over which both TCP and UDP (as
well as other Internet suite protocols) are layered. TCP and UDP
packets reside within the data area of an IP packet – like an envelope
within an envelope. When a destination node receives an IP packet,
it looks at a protocol field in the header to determine the protocol of
the data it contains.

INTRODUCTION TO TCP/IP 295

IP is connectionless and data is transferred via packets that flow
from a source to a destination. IP defines how these packets are
routed and delivered from the source to the destination by the various
routers and switches, using a quad byte address – known as the IP
address – assigned to each communication point on the network. IP
also handles functions such as fragmenting large packets into multiple
smaller packets, and limiting the lifetime of a packet in the event of
a router setup problem (to avoid having a packet roaming around the
Internet forever).

At the application level there is seldom a need to deal with IP directly,
applications use TCP and UDP instead.

Figure 10.1 shows a simple diagram of TCP and UDP layered on top
of IP.

After reading the descriptions of UDP and IP, you may wonder what
advantages UDP provides over IP, since both are connectionless with no
flow control built in. The answer is: not a lot. However, UDP adds a port
address (as TCP does) to supplement the IP address and it includes a data
integrity checksum (IP only checksums the IP header).

10.1.1 IP Addresses and Ports
In both TCP and UDP, data is transferred between two endpoints of
a network. An endpoint is uniquely identified by the combination of
an IP address and a port address. The IP address (which has the form
xx.xx.xx.xx – e.g. 10.1.2.3) identifies a particular machine, and the port
address – which specifies one of 65,536 possible ports – identifies a
particular endpoint on that machine.

In the case of TCP, a virtual connection is first established between the
two endpoints (via a special handshake), and data is then sent through
this virtual connection. In UDP, no virtual connection is established and
packets are simply sent from one endpoint to another.

Physical network

IP

TCP UDP

Figure 10.1 TCP, UDP, IP layering

296 SYMBIAN OS TCP/IP NETWORK PROGRAMMING

10.1.2 Client/Server Network Model
Both TCP and UDP use a client/server model for network communica-
tions. A server provides a service, and makes it available to multiple
clients (and this can be a very large number of clients), by creating a
network endpoint with a well-known port address, and waiting at that
endpoint for a client request to use the service. In the case of TCP, these
requests are connection requests to establish a virtual connection where
the server and client can exchange data. In the case of UDP, it will simply
receive packets from the client and process them on its behalf.

10.1.3 Well Known Server-side Port Addresses
Since clients initiate network connections, they must not only know the
IP address of the server, but also the port number of the service on that
server. To make this possible, services are assigned fixed port addresses,
which are well known, so that a client always knows where to find a
service on a server.

Below are some examples of network services, along with the port
numbers they use:

Service Port
Echo 7
FTP 21
Telnet 23
HTTP/World Wide Web 80
POP3 Email 110
IMAP Email 143
Streaming Media 537
Doom 666
MSN Instant Messenger 1863

Figure 10.2 illustrates an example of client/server network communica-
tions and shows the relation of IP and port addresses.

10.1.4 Client-side Port Addresses
Although the server-side port addresses must be known so that the client
can find the service, the port address on the client side does not need to
be generally known. This is because the server simply sends its responses
back to the IP address/port that sent it the data. Therefore, in most
cases a client endpoint is assigned a random unused port address by the
operating system.

10.2 Network Programming Using Sockets
The goal of a good networking API is to hide the underlying details of
the network and allow you to connect to a remote host and transfer data

NETWORK PROGRAMMING USING SOCKETS 297

Client

Client

Client

Client

Emailport 110

port 537

port 110

port 23

Email

Streaming media

Telnet

Server 2 (xx.xx.xx.xx)

port 80

Server 1 (xx.xx.xx.xx)

Web server
software

Network

Figure 10.2 Client and Server Communications

easily. This section introduces the concepts of network sockets and how
to program using them.

The socket programming interface originated from BSD Unix as a
generic API for Inter-Process Communications. Since then it has become
the standard for network programming. Virtually all operating systems
that support TCP/IP have some sort of socket API, including Symbian OS.

A socket represents an endpoint of a communication path in a network.
The endpoints are identified by a machine’s IP address in combination
with a port address and the communication between them represents a
channel. So a session between two nodes on a network consists of a
socket pair – one socket for each end of the communication pipe.

The socket API functions provide a generic interface for transferring
data between the two endpoint sockets, independent (for the most part)
of the underlying protocols. The programmer creates a socket, establishes
a connection with the remote endpoint, and then transfers data over the
socket using read and write commands.

10.2.1 Client/Server Socket Flow

The flow of creating and using a socket depends on whether you are on
the client or the server side, and whether you are using TCP or UDP.
Here are the basic steps for creating and using a socket on the client and
server sides.

298 SYMBIAN OS TCP/IP NETWORK PROGRAMMING

Client-side Code

1. Create the client-side socket and get a handle to it.

2. Connect the client socket to a destination endpoint.

The socket must be connected to a destination endpoint for TCP but
it is optional for UDP.

A TCP connection is established between the endpoints by exchang-
ing a set of packets to establish a virtual connection.

Since UDP is connectionless, there is no handshaking between the
endpoints to establish a connection. An explicit connection need
not even be made since the destination endpoint can be defined,
packet by packet, when data is sent (unlike for TCP, where all
socket transfers occur between the endpoints of the established
connection).

3. Transfer data between client and server.

The client can now read and write data to the communication path
using the socket.

4. Close the socket.

When the communication session is completed, the socket is closed.

Note that, in the case of a client, the programmer need not explicitly
assign a port number. The client address is automatically assigned a
random port number during the connect phase (for TCP) or send (for
UDP). This automatic assignment works since the specific client port
number does not really matter; the server simply returns data to the
source port it is communicating with.

Server-side Code

1. Create the server-side socket.

2. Bind an endpoint address to the server socket.

Unlike in the case of a client, the programmer must make an explicit
call to a bind()function to assign the endpoint address. The socket
is assigned to the known port number for the particular service offered
and, of course, the IP address must be one that is assigned to that
machine.

3. Process client connections.

For TCP, the server-side socket will get connection requests from
clients. For each client connection request, a new socket handle is
created to represent that particular client connection. The originally
opened socket is still maintained though, to continue looking for new

NETWORK PROGRAMMING USING SOCKETS 299

client connections. Usually the server software will create a separate
thread for each client connection it receives, and that thread uses
the newly created connection socket handle to communicate with
the client.

For UDP, unlike with TCP, there is no automatic connection capa-
bility for sockets, so UDP server programming is more involved.
The server receives all raw UDP packets that clients send to that IP
address/port. It is up to the server program to set up data structures
and logic to filter the data and create connections, as well as doing
anything else that is required for that service.

4. Transfer data with the client.

The server transfers data to and from the client via the socket’s send
and receive functions.

5. Close the socket.

When the connection is complete, the socket is closed.

10.2.2 BSD C Socket API
BSD Unix defines a set of C socket functions for creating and using
sockets. Many operating systems use this API for network communi-
cation, and it has practically become a de facto standard for network
programming.

Before looking at the Symbian OS socket API, let’s look at a simple
example using the BSD C API and then go through some of the functions. I
will then refer to this when describing the Symbian OS C++ native socket
API, which is similar to the BSD API in many ways. I will concentrate
on client-side software only, since not many servers are implemented on
a smartphone!

Note that Symbian OS also supports the BSD C-based socket API as
part of its standard C library support. This can be convenient for porting
network code from other operating systems to Symbian OS; however,
in most cases you’ll want to use the native Symbian C++ socket API
described in the next section.

10.2.3 BSD C API Socket Client Example
Example 10.1 shows a simple program to fetch a web page using TCP on a
server’s port 80 (web server port) and to print the HTTP data to the screen.

Example 10.1. Getting a Web Page

int OutputWebPage(char *servName, char* urlDoc)
{
int sock;

300 SYMBIAN OS TCP/IP NETWORK PROGRAMMING

struct sockaddr_in server;
struct hostent *hp;
char buffer[1024];

/* create socket */
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock < 0)

{
fprintf(stderr,"Error opening stream socket\n");
return -1;
}

/* connect socket using name specified by command line */

server.sin_len = sizeof(server);
server.sin_family = AF_INET;
hp = gethostbyname(servName);
if (hp == 0)

{
fprintf(stderr, "%s: unknown host\n", argv[1]);
return(-1);
}

memcpy((char *)&server.sin_addr, (char *)hp->h_addr, hp->h_length);
server.sin_port = hton(80); // set to well-known HTTP server port 80

if (connect(sock, (struct sockaddr *)&server, sizeof(server)) < 0)
{
fprintf(stderr,"Error connecting stream socket");
return(-1);
}

// send a HTTP GET to web server

sprintf(buffer, "GET %s\n", urlDoc);
nRet = send(sock, buffer, strlen(buffer), 0);
if (nRet <= 0)

{
printf(stderr,"Error on send().\n");
close(Socket);
return -1;
}

// Receive the file contents and print to stdout

while(1)
{
// Wait to receive, nRet = NumberOfBytesReceived
nRet = recv(sock, buffer, sizeof(buffer), 0);
if (nRet <= 0)
break;

puts(buffer);
}

close(sock);
return 0;
}

In this example, the function OutputWebPage()retrieves a web page
from the server specified in the first argument, accessing the source with

NETWORK PROGRAMMING USING SOCKETS 301

the specified URL document name (blank just gets the home page). An
example invocation is:

OutputWebPage(www.yahoo.com,” ”);

which retrieves and prints the HTML source of Yahoo’s home page.

Creating the Socket

First, the client socket is created by the line:

sock = socket(AF_INET, SOCK_STREAM, 0);

This creates a TCP socket to be used in communicating with the web
server. The function socket()is prototyped as follows:

int socket(int domain, int type, int protocol)

where domain is AF_INET for TCP/IP, type is SOCK_STREAM for TCP
or SOCK_DATAGRAM for UDP, and protocol indicates the specific
protocol for the type. In this case, protocol can be set to zero, since
TCP and UDP are the only protocols in AF_INET for those types.
socket()returns an integer handle for the socket which is used as a

reference in subsequent socket function calls.

Converting Domain Names to IP Addresses

Next, the server name is converted to an IP address as follows:

server.sin_len = sizeof(server);
server.sin_family = AF_INET;
hp = gethostbyname(servName);
if (hp == 0)
{
fprintf(stderr, "%s: unknown host\n", argv[1]);
return(-1);
}

memcpy((char *)&server.sin_addr, (char *)hp->h_addr, hp->h_length);
server.sin_port = hton(80); // set to well-known HTTP server port 80

IP addresses are hard for people to remember, so ASCII names – known
as domain names – are used instead. It’s much easier to remember
www.yahoo.com for example than it is to remember 216.109.118.77.

The BSD function gethostbyname()converts the server name to an
IP address using what is known as the Domain Name System (DNS). DNS
is a service used in TCP/IP networks which translates human-readable

302 SYMBIAN OS TCP/IP NETWORK PROGRAMMING

domain names to IP addresses. DNS is a complex system due to the
billions of IP addresses in use, which change everyday – but fortunately
as a network programmer, it is easy to use.

The port address (server.sin_port) is set to 80, which is the port
number for HTTP web pages.

Connecting the Socket

Now that the software has the IP address and port, it performs a TCP
connection to the server’s HTTP endpoint as follows:

if (connect(sock, (struct sockaddr *)&server, sizeof(server)) < 0)
{
fprintf(stderr,"Error connecting stream socket");
return (-1);
}

The function connect()connects a socket whose handle is specified as
the first argument, to a destination endpoint whose address is specified
in the second argument (with the address structure’s size specified in
argument three). For TCP this consists of a packet exchange between the
endpoints to establish a virtual connection.

In the case of UDP, this connect() just associates the socket with
the destination address so that the programmer need not supply the
address on each send. In this example, we are establishing a TCP
connection, however.

The hardest part about using connect()is setting up the data struc-
tures to specify the endpoint address to connect to. I will not go into the
data structure in detail here, but the form of address setup shown in the
example is fairly typical.

Sending Data

Next, the HTTP GET request is sent to the server through the connected
socket as follows:

sprintf(buffer, "GET %s\n", urlDoc);
nRet = send(socket, buffer, strlen(buffer), 0);

send() is used to send a buffer to the remote endpoint through the
socket whose handle is passed as the first argument. It has the form

int send(int socket, const void *buff, size_t len, int flags);

send() returns the number of bytes sent. If it is a negative number, then
an error occurred.

NETWORK PROGRAMMING USING SOCKETS 303

For UDP sockets, you can use sendto() for sending UDP packets. It
is the same as send() except you specify the address of the endpoint to
send the data to. It is defined as:

int sendto(int s, const void *msg, size_t len, int flags,
const struct sockaddr *to, socklen_t tolen);

Receiving Data

When the server gets the HTTP GET request, it will start sending the web
page to the client. The example retrieves this data and prints it to the
screen, using the following lines of code:

while(1)
{
// Wait to receive, nRet = NumberOfBytesReceived
nRet = recv(sock, buffer, sizeof(buffer), 0);
if (nRet <= 0)

break;

puts(buffer);
}

recv() is used for TCP sockets (or UDP sockets in which connect()
was called) to receive data. The data is then placed in a supplied buffer.
recv() returns the number of bytes received (if this is zero it means the
connection was terminated, if negative an error occurred). It has the form:

int recv(int socket, void *buffer, size_t length, int flags);

In the case of UDP sockets, you usually use recvfrom(). It’s the same as
recv() except it returns the address of the endpoint that sent the packet.
It has the form

int recvfrom(int s, void *buf, size_t len, int flags,
struct sockaddr *from, socklen_t *fromlen);

Cleaning Up the Connection

Once the web page retrieval is complete, the socket is cleaned up as
follows:

close(sock);

close(int socket) closes the socket and shuts down the connection.
A function called shutdown(), prototyped as int shutdown(int s,

304 SYMBIAN OS TCP/IP NETWORK PROGRAMMING

int how), also exists to shut down a specific direction of the session.
The parameter how has three possible values: SHUT_RD disallows fur-
ther reception, SHUT_WR disallows further transmission and SHUT_RDWR
disallows both reception and transmission.

10.3 Symbian OS Socket API

Symbian OS provides a C++ socket API which, as previously mentioned,
is in many ways similar to the BSD C-based socket API. In addition to
allowing TCP/IP communication, the Symbian OS socket API allows for
other types of communication as well, including Bluetooth, USB and IR
(although I will be covering only TCP/IP in this chapter). Underlying layers
in the communication architecture handle these communication differ-
ences, and the socket API can be used in a transport-independent way.

10.3.1 Socket API Classes
First, let’s briefly look at the key classes of the Symbian C++ Socket API
that you’ll use for TCP/IP communication:

• RSocketServ is the client-side class for the socket server and must
be created and connected in order for your program to establish a
session with the socket server. There is no equivalent to this class in
the BSD socket API.

• RSocket represents a single socket in much the same way as does
the handle returned by the socket() function in the BSD API. The
other methods of RSocket correspond, for the most part, with the
BSD network API functions.

• RHostResolver provides methods for both getting an IP address
from a given domain name, and getting a domain name from
a given IP address. DNS (Domain Name Service) is used in the
case of TCP/IP. RHostResolver methods GetByName()and Get-
ByAddr() provide the same functionality as the C API socket
functions gethostbyname() and gethostbyaddr() respectively.

RSocketServ is a client session class to the socket server and is
derived from RSessionBase. RSocket and RHostResolver are sub-
sessions to an established RSocketServ session and are derived from
RSubSessionBase.

10.3.2 HTTP Example Using Symbian OS Socket API
Now let’s look at the OutputWebPage()program from Example 10.1,
rewritten to use the Symbian OS socket API. The code is shown in
Example 10.2.

SYMBIAN OS SOCKET API 305

Example 10.2. HTTP Example Using Symbian OS API

#include <in_sock.h>

TInt OutputWebPage(const TDesC& aServerName, const TDesC& aDoc)
{
RSocketServ sockSrv;
sockSrv.Connect();

RSocket sock;

TInt res = sock.Open(sockSrv,KAfInet,KSockStream, KProtocolInetTcp);
if (res != KErrNone)

{
sockSrv.Close();
_LIT(KSockOpenFail,"Socket open failed");
PrintError(KSockOpenFail);
return res;
}

TNameEntry nameEntry;
RHostResolver resolver;
res = resolver.Open(sockSrv, KAfInet, KProtocolInetTcp);
if (res != KErrNone)

{
sockSrv.Close();
_LIT(KResvOpenFail,"host resolver open failed");
PrintError(KResvOpenFail);
return res;
}

TRequestStatus status;
resolver.GetByName(aServerName, nameEntry, status);
User::WaitForRequest(status);
resolver.Close();

if (status != KErrNone)
{
_LIT(KDnsFail,"DNS lookup failed");
PrintError(KDnsFail);
sockSrv.Close();
return res;
}

TInetAddr destAddr;
destAddr = nameEntry().iAddr; // set address to DNS returned IP

// address
destAddr.SetPort(80); // Set to well-known HTTP port

// Connect to the remote host
sock.Connect(destAddr,status);
User::WaitForRequest(status);
if (status != KErrNone)

{
_LIT(KSocketConnectFail,"Failed to connect to server");
PrintError(KSocketConnectFail);

sockSrv.Close();
return res;

306 SYMBIAN OS TCP/IP NETWORK PROGRAMMING

}

// Assemble HTTP GET command

TBuf8<300> getBuff;
getBuff.Copy(_L8("GET"));
getBuff.Append(aDoc);
getBuff.Append(_L("\xD\xA"));

// Send HTTP GET

sock.Send(getBuff,0,status);
User::WaitForRequest(status);

TBuf8<200> buff;
do

{
TSockXfrLength len;
sock.RecvOneOrMore(buff,0,status,len);
User::WaitForRequest(status);
PrintOutput(buff); // some generic 8-bit output-to screen or file
} while (status == KErrNone);

sock.Close();
sockSrv.Close();
return (KErrNone);
}

The first thing to note is that many of the socket functions are asyn-
chronous functions, and I use User::WaitForRequest() to wait for
them to complete. This is for simplicity in showing the API; however, these
functions are most effectively used in active objects (see Section 10.3.3).

Connecting to the Socket Server

Before using the socket API, you must first establish a session with the
socket server. This is done by instantiating and connecting RSocketServ
and calling its Connect() function, as shown below:

RSocketSrv sockSrv;
sockSrv.Connect();

Socket handling, like many other functions in Symbian OS, is best
performed by means of a server process, along with client-side interface
classes to access the server’s services. The client-side classes for the
socket server comprise the socket API.

The socket server handles all the details of creating sockets, connecting
them to the client and server, and communicating through sockets in a
transparent fashion. At this level of network programming, you don’t
need to know the details of the Symbian OS network communication

SYMBIAN OS SOCKET API 307

architecture but, if you are interested, they are covered in greater depth
in Chapter 3 (see Section 3.11).

Creating the Socket

To create and open a socket, you instantiate an RSocket class and call
its Open()method. This is done in the example as:

TInt res = sock.Open(sockSrv,KAfInet,KSockStream, KProtocolInetTcp);

Open() has the following form:

TInt Open(RSocketServ& aServ,TUint addrFamily, TUint socketType, TUint
protocol).

The first argument is the connected RSocketServ class – this is needed
because each RSocket is a subsession of the client socket server session
established by RSocketServ.

The last three arguments are similar to those for the C socket() call.
KAfInet specifies the TCP/IP version 4 protocol suite. socketType is
set to KSockStream for TCP, or KSockDatagram for UDP.
protocol should be:

• KProtocolInetTcp for TCP

• KProtocolInetUdp for UDP

Unlike in the BSD socket API, protocol cannot be zero.

Setting the Destination Address

The class TInetAddr represents an endpoint’s IP address and port, which
can be set up using SetAddress() and SetPort(), respectively. For
example, the following code sets up a TInetAddr to represent IP address
10.1.2.3, port 80

TInetAddr addr;
addr.SetAddress(INET_ADDR(10,1,2,3));
addr.SetPort(80);

INET_ADDR is a macro that writes the quad address into a 32-bit value
that contains the four address bytes.

In our HTTP example, we are passed the web server name, so we
need to use the RHostResolver class to contact DNS and look up
the IP address associated with that name. To use the RHostResolver,
you open it for the appropriate protocol (in this case TCP) and then call
RHostResolver’s GetByName()method to look up the corresponding
IP address.

308 SYMBIAN OS TCP/IP NETWORK PROGRAMMING

In the example, this is accomplished by:

TNameEntry nameEntry;
RHostResolver resolver;
res = resolver.Open(sockSrv, KAfInet, KProtocolInetTcp);
if (res != KErrNone)
{
sockSrv.Close();
_LIT(KResvOpenFail,"host resolver open failed");
PrintError(KResvOpenFail);
return res;
}

TRequestStatus status;
resolver.GetByName(aServerName, nameEntry, status);
User::WaitForRequest(status);
resolver.Close();

if (status != KErrNone)
{
_LIT(KDnsFail,"DNS lookup failed");
PrintError(KDnsFail);
sockSrv.Close();
return res;
}

As previously mentioned (see Section 10.2.3, Converting Domain Names
to IP Addresses), GetByName() converts the server name in aServer-
Name to an IP address. The first argument of GetByName() is the
server name you want translated. The results of the lookup are put in
nameEntry upon return. When you assign nameEntry().iAddr to a
TInetAddr, you’ll set the IP address associated with the server name,
then you just need to set the port (port 80 in our case for HTTP).

You can now set up the destination address that you will use to connect
to the server:

TInetAddr destAddr;
destAddr = nameEntry().iAddr; // set address to DNS returned IP address
destAddr.SetPort(80); // Set to well-known HTTP port

Connection to the Remote Server

The RSocket Connect() is used to establish a connection with the
remote web server:

sock.Connect(destAddr,status);
User::WaitForRequest(status);
if (status != KErrNone)
{
_LIT(KSocketConnectFail,"Failed to connect to server");
PrintError(KSocketConnectFail);

SYMBIAN OS SOCKET API 309

sockSrv.Close();
return res;
}

Sending a Packet

Once the socket is created and connected, packets can be sent (remember,
a connection is not required in the case of UDP). RSocket provides the
Send() method to send data through the socket. Send() has the
following form:

void Send(const TDesC8& aBuffer, TUint aFlags, TRequestStatus& aStatus)

The buffer to send is specified as an 8-bit descriptor, and all bytes in the
descriptor are sent through the socket.

The HTTP GET command in our example is sent to the web server as
follows:

TBuf8<300> getBuff;
getBuff.Copy(_L8("GET "));
getBuff.Append(aDoc);
getBuff.Append(_L("\xD\xA"));

// Send HTTP GET

sock.Send(getBuff,0,status);
User::WaitForRequest(status);

RSocket also has a SendTo() method that is used to send UDP data.
This method has the same form as Send() except an extra argument
is added to specify the remote address that the packet should go to.
Example 10.3 shows a way of sending data via UDP using SendTo().

Example 10.3. Sending UDP Data

RSocket sock;
RSocketSrv sockSrv;

sockSrv.Connect();

sock.Open(socksvr,KafInet,KSockDatagram,0);

TInetAddr destAddr;
destAddr.SetAddr(INET_ADDR(10,1,2,3);
destAddr.SetPort(80);

TBuf8<300> buff;
buff.Copy (_L(“Some stuff to send over UDP”));

sock.SendTo(buff,destAddr,0,iStatus);
User::WaitForRequest(iStatus);

310 SYMBIAN OS TCP/IP NETWORK PROGRAMMING

You can use also use Send() to send UDP data, provided you first
call Connect(), to connect to the remote address. Connect() is a
convenience method for UDP, you call it so that the remote address need
not be specified every time you send a UDP packet.

Receiving Packets

The web page is retrieved in our HTTP example as follows:

TBuf8<200> buff;
do
{
TSockXfrLength len;
sock.RecvOneOrMore(buff,0,status,len);
User::WaitForRequest(status);
PrintOutput(buff); // some generic 8-bit output-to screen or file

} while (status == KErrNone);

The example uses theRSocket::RecvOneOrMore()method to retrieve
the data sent from the server. RecvOneOrMore()has the following form:

void RecvOneOrMore(TDes8& aDesc, TUint flags, TRequestStatus& aStatus,
TSockXfrLength& aLen)

RecvOneOrMore() acts like the BSD recv() socket call in that it
completes when any data is available from the connection. The receive
buffer (aDesc) is specified as an 8-bit descriptor and the received data is
added to this buffer. The size of the descriptor is updated to match the
number of bytes received (aLen also returns the number of bytes that
were received).

Another RSocket method to receive data exists, which is called
Recv(). You may be tempted to use Recv() instead of RecvOneOr-
More() due to the name matching the BSD recv() call. However,
there is a big difference between these receive calls when using TCP.
Unlike RecvOneOrMore(), which completes when any amount of data
is received, Recv() will not complete until the entire descriptor (speci-
fied by the maximum length of the receive descriptor) is filled with data.
So, unless you know exactly how many bytes you will receive from the
server, do not use Recv() for TCP.
Recv() is usually used for UDP. It behaves differently for UDP in

that Recv() returns the data from a received UDP datagram even if it
is below the maximum length of the descriptor (bear in mind that the
Recv()method can only be used for UDP if Connect() was called
first). So, Recv() acts the same for UDP as RecvOneOrMore() does
for TCP.
RSocket also provides a method called RecvFrom() for receiving

UDP data. This method is equivalent to the BSD recvfrom() function.

SYMBIAN OS SOCKET API 311

It receives a UDP packet and also the address of the host that sent it.
RecvFrom() has the following form:

void RecvFrom(TDes8& aDesc, TSockAddr& anAddr, TUint flags,
TRequestStatus& aStatus)

This function receives UDP data and supplies not only the data received
but also the address of the endpoint that sent the data. TSockAddr is
the base class for TInetAddr, so a TInetAddr can be passed here to
obtain the sending node’s address.

Closing the Socket and Socket Server

The example cleans up the socket and socket server connection with:

sock.Close();
sockSrv.Close();

10.3.3 Network Programming Using Active Objects
As you’ve seen, I used User::WaitForRequest() to wait for the
asynchronous socket functions to complete in the previous section.
However, the better way to call these socket functions is within active
objects, letting the active object’s RunL()method handle the socket
function’s completion. So the Connect() call, for example, would look
something like:

void CMyActiveObject::DoNetworkStuff()
{
iSock.Connect(destAddr,iStatus);
SetActive();
}

CMyActiveObject::RunL()
{
// Invoked when the asynchronous function Connect completes.
// iStatus contains the completion status
}

With active objects, you can have your program continue to process other,
nonnetwork, events while your network communication is taking place.
For example, if you invoke networking functionality in a GUI application
using an active object – say in response to some user selection – your GUI
program can continue to process other user events while the network
communication is in progress.

Normally you will want to have a sequence of networking calls
performed in the background, started by a single active object method

312 SYMBIAN OS TCP/IP NETWORK PROGRAMMING

(e.g. a connect, followed by a send, followed by one or more receives). To
do this, you create a simple state machine in an active object, including
a method that makes the first network call in the sequence (e.g., resolving
the host name). Then your RunL()method would invoke the rest of the
network calls, in response to completion events from previous network
activity.

For the example of loading a web page, an active object can be
declared as follows:

class CWebPage : public CActive
{

public:
static CWebPage* NewL();
CWebPage();
void ConstructL();

∼CWebPage();

TInt OutputWebPage(const TDesC& aServ, const TDesC& aDoc);

enum TLoadStates
{
EResolvingName,
EConnecting,
ESending,
EReceiving
};

void RunL();

void DoCancel();

private:
TInt iState;
TBuf8<100> iUrlDoc;
RSocketServ iSocketSrv;
RSocket iSocket;
TNameEntry iNameEntry;
RHostResolver iResolver;
TBuf8<20000> iWebBuff;
TSockXfrLength iLen;

};

The OutputWebPage()method would initialize the socket and start the
first asynchronous function in the sequence (resolving the host name) as
follows:

TInt CWebPage::OutputWebPage(const TDesC& aServerName, const TDesC& aDoc)
{
iSocketSrv.Connect();
iUrlDoc.Copy(aDoc);

/* Resolve name, rest handled by RunL() */

SYMBIAN OS SOCKET API 313

iState=EResolvingName;
TInt res =

iSocket.Open(iSocketSrv,KAfInet,KSockStream,KProtocolInetTcp);
if (res != KErrNone)

{
iSocketSrv.Close();
_LIT(KSockOpenFail,"Socket open failed");
PrintError(KSockOpenFail);
return res;
}

res = iResolver.Open(iSocketSrv, KAfInet, KProtocolInetTcp);
if (res != KErrNone)

{
iSocketSrv.Close();
_LIT(KResvOpenFail,"host resolver open failed");
PrintError(KResvOpenFail);
return res;
}

TRequestStatus status;
iResolver.GetByName(aServerName, iNameEntry, status);
SetActive();

// first asyncronous function started, RunL() takes over from here.
}

The active object RunL() can then be implemented to process the event
and start the next socket call in the sequence, based on the state value in
iState, as shown in Example 10.4.

Example 10.4. RunL()State Machine

void CWebPageActiveObject::RunL()
{
if ((iStatus != KErrNone) && (iStatus != KErrEof))

{
// error happened, abort sequence, no further RunL()s will be invoked
_LIT(KWebPageFail,"error loading web page");
PrintError(KWebPageFail);
iSocketServ.Close();
iSocket.Close();
iResolver.Close();
} else
{
// walk through state machine to load the web page.
switch(iState)
{
case EResolvingName:

{
TInetAddr destAddr;
destAddr=iNameEntry().iAddr;
destAddr.SetPort(80);

// Connect to the remote host

314 SYMBIAN OS TCP/IP NETWORK PROGRAMMING

iState=EConnecting;
iSocket.Connect(destAddr,iStatus);
SetActive();
break;
}

case EConnecting:
{
// Send GET packet
TBuf8<300> getBuff;
getBuff.Copy(_L8("GET "));
getBuff.Append(iUrlDoc);
getBuff.Append(_L("\xD\xA"));

iState=ESending;
iSocket.Send(getBuff,0,iStatus);
SetActive();
break;
}

case ESending:
{
// Start receiving web page now

iState=EReceiving;

iSocket.RecvOneOrMore(iWebBuff,0,iStatus,iLen);
SetActive();
break;
}

case EReceiving:
if (iStatus != KErrEof)
{
/* Web data received */
WriteTextOutput(iWebBuff); // write data to
// console or file, whatever.
iSocket.RecvOneOrMore(iWebBuff,0,iStatus,iLen);
SetActive();
} else
{
// End of file, page load complete
iSocket.Close();
iResolver.Close();
iSocketServ.Close();
}
break;

}
}

}

iState is aTInt that determines what the active object’sRunL() should
do next in response to a completion event. Our RunL() is first invoked
when the RHostResolver GetByName()method completes, at which
time RunL() calls the next call in the sequence – Connect() – based
on the iState value. When Connect() completes, RunL() calls the
socket’sSend()method to send the HTTPGET command. WhenSend()
completes, RunL() invokes the socket RecvOneOrMore() method, at
which time RunL() is invoked on each Recv() completion to reissue the

EXAMPLE: RETRIEVING WEATHER INFORMATION 315

RecvOneOrMore() and print the retrieved web output. When iStatus
returns KErrEof (the code assumes no other call besides RecvOneOr-
More() will return this status) the server has finished, so RunL() cleans
up and no further commands are reissued.

10.4 Example: Retrieving Weather Information

This section presents an example program using the Symbian OS socket
API to retrieve the current temperature from the weather server wun-
derground.com. The example consists of an active object which steps
through the various socket calls needed to collect the data from the server.
The active object provides a method called GetTemperatureL(const
TDesC& aCity) – where aCity is a descriptor that contains the airport
code for the US city whose temperature you want. When this function is
called, the data is collected from the weather server and parsed. Then an
info message is displayed on the screen that shows the information in the
form of Temperature=XX where XX is the last reported temperature for
the specified city.

10.4.1 wunderground.com

www.wunderground.com is a web site that provides weather informa-
tion. In addition to its HTTP web site, wunderground also provides
a telnet interface (through rainmaker.wunderground.com, port 3000).
Using the telnet interface, you can enter a three-letter US City code,
and retrieve the current and forecast weather conditions for that city in
a simple text format. Since this text is easier to parse than HTML, the
example here uses the telnet interface.

First, let’s run the telnet manually, so we can see what this server
outputs. Figure 10.3 shows the output when the following is typed at a
command prompt:
telnet rainmaker.wunderground.com 3000

and then AUS (for Austin, TX) is typed in answer to the city code prompt.
Notice that, in Figure 10.3, the current temperature follows the end

of the line filled with ‘=’ characters. I will use this fact to retrieve the
temperature in the example code.

Example 10.5 shows the active object class definition for the example.

Example 10.5. CWeatherInfo Class Definition

#include <in_sock.h> // needed to use socket API

class CWeatherInfo : public CActive

316 SYMBIAN OS TCP/IP NETWORK PROGRAMMING

Figure 10.3 Output of wunderground telnet session

{
public:
static CWeatherInfo* NewL();
CWeatherInfo();
∼CWeatherInfo();

void GetTemperatureL(const TDesC& aCity);
void RunL();

void DoCancel();

enum TLoadStates
{
EResolvingName,
EConnecting,
ESending,
EReceiving
};

private:
TInt iCommState;
RSocketServ iSocketSrv;
RSocket iSocket;
TNameEntry iNameEntry;

RHostResolver iResolver;

TBuf8<20000> iNetBuff;
TSockXfrLength iLen;

TBuf<16> iCityCode;
};

Example 10.6 shows the code for the NewL(), constructor, destructor
and DoCancel() functions.

EXAMPLE: RETRIEVING WEATHER INFORMATION 317

Example 10.6. Construction and destruction and cancel functions

CWeatherInfo* CWeatherInfo::NewL()
{
CWeatherInfo* self = new(ELeave) CWeatherInfo;
CActiveScheduler::Add(self);
return self;
}

CWeatherInfo::CWeatherInfo(): CActive(CActive::EPriorityStandard)
{
}

CWeatherInfo::∼CWeatherInfo()
{
// Make sure we’re cancelled
Cancel();
}

void CWeatherInfo::DoCancel()
{
iSocket.CancelAll();
}

NewL() is a static function that creates the CWeatherInfo active
object, adds it to the current active scheduler, and returns a pointer to
the created instance. The CWeatherInfo constructor passes the active
object priority to the base constructor. The destructor calls DoCancel(),
which cancels any asynchronous call in progress so that the active object
can safely be destroyed.

Example 10.7 shows the implementation of GetTemperatureL().
You call this function to start the process of collecting the weather
information from which the temperature will be extracted and displayed.

Example 10.7. GetTemperatureL() Method

void CWeatherInfo::GetTemperatureL(const TDesC& aCity)
{

// if we are already in the middle of getting the
// temperature, then return.
if (IsActive())

return;

iSocketSrv.Connect();
iCityCode.Copy(aCity);

TInt res =
iSocket.Open(iSocketSrv,KAfInet,KSockStream,KProtocolInetTcp);
User::LeaveIfError(res);

/* Resolve name, rest handled by RunL() */

318 SYMBIAN OS TCP/IP NETWORK PROGRAMMING

iCommState=EResolvingName;
res = iResolver.Open(iSocketSrv, KAfInet, KProtocolInetTcp);
User::LeaveIfError(res);

_LIT(KWeatherServerName,"rainmaker.wunderground.com");
iResolver.GetByName(KWeatherServerName, iNameEntry, iStatus);
SetActive();
}

GetTemperatureL() first checks if the active object is currently
active and exits if it is. This prevents a panic E32USER-CBase 42 (set-
ting an active object to the active state while it is already active) which
could happen if GetTemperatureL() was called while a tempera-
ture retrieval is already in progress. If the active object is not active,
GetTemperatureL() copies the city code, which has been passed
to it, to a member variable for later sending to the server, and then
opens a TCP socket. It creates an RHostResolver so that it can do
the first step in the sequence – getting the weather server’s IP address.
The active object maintains the sequence state in iCommState, and the
first state is EResolvingName. The RHostResolver’s GetByName()
is called to begin the DNS name lookup, and then SetActive() is
called. Recall that SetActive() is a method that returns immedi-
ately, but sets a flag indicating to the active scheduler that this active
object is now expecting a asynchronous function event. The result is that
the active object’s RunL() function will be called when the GetBy-
Name() function completes (either by getting the name, or following an
error).

The RHostResolver GetByName() lookup of rainmaker.
wunderground.com was done as an illustration. However, you could
have looked up the IP address for rainmaker.wunderground.com (it’s
66.28.69.161) manually up-front using a program like ping from a PC
command line – then hardcoded this address and passed it to the socket
Connect() method, thus skipping the DNS look up and making the
program faster.

The call to GetTemperatureL() returns after initiating GetBy-
Name(). The remaining sequence of socket calls used to retrieve the
weather information is performed in response to asynchronous events
handled in the active object’s RunL() – the first event being the Get-
ByName() completion event.

Example 10.8 shows the active object’s RunL() function.

Example 10.8. Example’s RunL() Function

void CWeatherInfo::RunL()
{
if (iStatus != KErrNone)

EXAMPLE: RETRIEVING WEATHER INFORMATION 319

{
iSocket.Close();
iSocketSrv.Close();
_LIT(KErrorMsg,"Error getting temperature");
User::InfoPrint(KErrorMsg);
}
else
{
switch(iCommState)
{
case EResolvingName:

{
TInetAddr destAddr;
destAddr=iNameEntry().iAddr;
destAddr.SetPort(3000);

// Connect to the remote host
iCommState=EConnecting;

iSocket.Connect(destAddr,iStatus);
SetActive();
break;
}

case EConnecting:
{
TBuf8<300> getBuff;
getBuff.Copy(_L("\xD\xA"));
getBuff.Append(iCityCode);
getBuff.Append(_L("\xD\xA"));

iCommState=ESending;
iSocket.Send(getBuff,0,iStatus);
SetActive();
break;
}

case ESending:
{
// Start receiving

iCommState=EReceiving;

iSocket.RecvOneOrMore(iNetBuff,0,iStatus,iLen);
SetActive();
break;
}

case EReceiving:
{

/*---
The rainmaker.wunderground.com line with the temperature starts
after a line filled with '=' s.

---*/
TInt pos = iNetBuff.FindF(_L8("=\xA"));
TBuf<100> temp;
if (pos != KErrNotFound)
{
temp.Copy(iNetBuff.Mid(pos+2,10));
temp.Trim();
temp.Insert(0,_L("Temperature = "));

320 SYMBIAN OS TCP/IP NETWORK PROGRAMMING

User::InfoPrint(temp);
iSocket.Close();
iSocketSrv.Close();
} else
{
iSocket.RecvOneOrMore(iNetBuff,0,iStatus,iLen);
SetActive();
}

break;
}

}
}

}

RunL() is invoked on completion of each socket call, and the
sequence of network operations needed to collect the temperature from
wunderground.com is accomplished through a state machine, illustrated
in Figure 10.4.

The first event processed by RunL() is the resolution of the host name
to an IP address. In response to this, the Connect() is performed on
the socket to hook it to the rainmaker.wunderground.com server at port
address 3000 and the state changes to EConnecting.

Upon the Connect() completion, RunL() is called again, invoking
the RSocket Send()method to send the city code. The state is changed
to ESending.

EResolvingName

Print temperature or
Error

RSocket::Connect()

RSocket::Send()

RSocket::RecvOneOrMore()

Continue
collecting data

EConnecting

ESending

EReceiving

RHostResolver::GetByName()

Figure 10.4 Weather Example State Machine

EXAMPLE: RETRIEVING WEATHER INFORMATION 321

Once the Send() completes, the RunL() calls RecvOneOrMore()
to start getting the weather data. The state changes to EReceiving and
remains in this state as long as the data keeps coming from the server
(although, in this case, you will probably get all the data on the first call).
RunL() looks for the end of the lines of ‘=’ characters (see Figure 10.3)
which immediately precede the temperature. Once the temperature is
found, it is printed as a message and the communication session is closed.

10.4.2 Adding this Code to SimpleEx

Chapter 2 contains an example called SimpleEx (see Section 2.3.2).
You can add the weather collection code to this program by doing the
following:

1. Add a new menu item called ‘Get temperature’ to the resource file,
changing the menu definition as follows:

RESOURCE MENU_PANE r_SimpleEx_menu
{
items =
{
MENU_ITEM

{
command = ESimpleExCommand;
txt = "Start";
},

MENU_ITEM
{
command = ESimpleExTemperatureCommand;
txt = "Get temperature";
}

};
}

2. Add the ESimpleExTemperatureCommand to the command enum
in the program’s simpleEx.hrh file.

3. Add a private member variable,CWeatherInfo *iWeather, to the
CSimpleExAppUI class.

4. Include the previously listed example source (either in separate files
or in the existing source and include files).

5. In the CSimpleExAppUi::ConstructL() function, add the state-
ment:

iWeather = CWeatherInfo::NewL(); to create the example’s
active object.

6. In the CSimpleExAppUi destructor add: delete iWeather;.

322 SYMBIAN OS TCP/IP NETWORK PROGRAMMING

7. In the CSimpleExAppUi::CommandHandlerL(), add a case for
the command ESimpleExTemperatureCommand. Mine looks as
follows:

case ESimpleExTemperatureCommand:

/* Display the temperature in Austin, TX */

iWeather->GetTemperatureL(_L("AUS"));
break;

8. In your mmp file, add insock.lib and esock.lib to the LIBRARY
line, to include the socket calls.

Once you have updated the program (which may be the UIQ, Series
60 or Series 80 version), build and run the updated SimpleEx program
on the phone (Chapter 2 shows how to use makesis to create a sis
file to enable you to install and run SimpleEx on the phone (see
Section 2.4)). When you select the Get Temperature menu option,
a network connection will be established. Once the communication is
complete, the temperature of the city you requested is displayed on
the screen.

Since the example uses an active object, you’ll note that the GUI is still
responsive while the communication is taking place. For example, the
Start menu item can be selected during the network communication
and it will still display its dialog boxes. So, in effect, the entire network
sequence to collect the weather information is running in the background.

10.5 Making a Network Connection

Up to this point, I have not discussed the network connection itself on a
Symbian OS smartphone – how it is selected and established. This section
gives a brief overview of this functionality.

Symbian OS smartphones have multiple ways of reaching the Internet,
depending on the particular phone you have, the wireless data services
available to you, and which services are included in your service plan.
The different means of communication for Symbian OS smartphones,
including GPRS, EDGE and CSD (as well as WiFi for some newer models)
are discussed in Chapter 1 (see Section 1.5).

10.5.1 Internet Access Points

On a Symbian OS smartphone, network connections are represented
by Internet Access Points (IAPs). IAPs can be created from the phone’s
control panel, usually during initial setup. The information in an IAP

MAKING A NETWORK CONNECTION 323

includes the physical connection type (such as GPRS or CSD), and the
specific attributes applicable to the selected connection type (such as
the phone number; user’s identifier and password for a dial-up server,
for CSD-type connections; or APN for a GPRS connection). You assign a
name to the IAP when creating it, and that name is used when establishing
the connection.

For example, you can create an IAP called T-Mobile GPRS to use the
APN provided by T-Mobile (e.g. Internet2.voicestream.com). Then, when
you are prompted for a connection by the phone, you select T-Mobile
GPRS to use the GPRS connection.

Note that IAP setup varies from phone to phone, and also depends on
the particular service you intend to access. In many cases the IAP creation
is done automatically for you (e.g. through a service SMS message).

10.5.2 Establishing a Connection for a Program

The example Symbian OS socket code, presented in Section 10.3, cre-
ated and used a socket as if the smartphone connection was already
established. In fact, this is often done in Symbian OS and is known as an
implicit connection. When a socket operation is performed that requires
data to be sent on the network – for example an RSocket Connect()
on a TCP socket, or sendto() for UDP – the operating system estab-
lishes the connection for you, if it is not already established. This involves
handling the details of starting up a connection on the phone (i.e. an
IAP), or finding one that is already connected, and then the socket will
communicate using that connection.

Alternatively, your program can connect to a specific IAP for the
socket to use – this is known as an explicit connection. The APIs to start
a specific IAP differ from phone to phone. This will not be discussed
here, but you need to be aware that it can be done. As an example, the
API class for Symbian 7.0s (used in the Nokia 6600 and Nokia 9500) to
explicitly start a specific IAP is RConnection. RGenericAgent is used
for earlier versions of Symbian OS. Refer to the SDK for more details on
these classes.

An example of a program that uses explicit connections is email. The
user can specify a particular IAP to use for an email account, through
the email application settings. When sending or retrieving email for that
account, an explicit connection to the configured IAP is performed.

10.5.3 Automatic Connection Selection

An implicit network connection leaves it to the operating system to select
the best connection to use. As mentioned in the last section, an implicit
connection occurs if you start using a socket when there is, as yet, no
established connection.

324 SYMBIAN OS TCP/IP NETWORK PROGRAMMING

How does the operating system determine the best connection? The
smartphone’s control panel provides a way for the user not only to create,
but also to prioritize the phone’s IAPs. When an implicit connection is
requested, the operating system tries the IAPs in the specified order until
a successful connection is established. In other words, the highest priority
IAP is tried first, and if that connection fails (e.g. you are out of range of
GPRS) it goes to the next priority IAP, and so on.

The exception to this automatic selection is when the connection
prompting option (selectable under connection control panel settings) is
enabled. In this case, the operating system will prompt the user to select
an IAP to use for the connection instead of automatically selecting one
based on its priority.

For example, when you run the weather example program with con-
nection prompting on, as soon as the user selects the Get Temperature
menu option, the operating system prompts the user to select an IAP
(caused by the first network operation that sends data, in this case
GetByName()). The prompting occurs only if a connection is not yet
established at the time the selection is performed.

For the most part, if an implicit connection is requested and a con-
nection is already established, then the socket will use that existing
connection. However, operating system versions from Symbian OS v7.0s
onwards support multi-homing so, for these operating systems, each pro-
gram can have its own connection to the network. For example, the
browser could be using a WiFi IAP, while the weather example you just
wrote is using GPRS.

The methods of creating, editing and prioritizing IAPs, as well as
specifying if connection prompting is on or off, differ between phones.
The concepts are the same, however.

11
GUI Application Programming

Smartphones are capable of running complex and powerful applications,
but due to the smartphone’s small size, it can be challenging to make
these applications intuitive and easy to use. Symbian OS addresses this
well by providing a full-featured graphical user interface (GUI) environ-
ment especially suited for the hardware characteristics of smartphone
devices.

To take full advantage of the GUI environment, your application’s
interface should be consistent with those of other applications, so that
the smartphone’s user does not get confused (follow the GUI guidelines
for the specific device type) – yet it should also creatively provide good
presentation and user control of the features unique to your application.
Your program’s GUI is its front to the world, and creating a good one can
greatly enhance, if not totally determine, the success of your smartphone
application.

This chapter covers Symbian OS GUI programming. First, there is a
discussion of the different Symbian GUIs specific to smartphone device
types – UIQ, Series 60 and Series 80. Then I describe the creation of GUI
applications – how to use the GUI framework to write your application,
and how to use the various components of the GUI such as dialog boxes,
menus, buttons, list boxes, etc. I also cover other GUI application aspects,
including icons and internationalization – everything needed to create a
complete and ready to use application.

11.1 Symbian OS User Interfaces

First, let’s take a quick tour of the UIQ, Series 60 and Series 80 user
interfaces from the user’s point of view. These interfaces differ in order
to provide the best user experience for specific smartphone form factors;
however, programming for these different GUI platforms is not all that
different, as you will see in the following sections.

326 GUI APPLICATION PROGRAMMING

11.1.1 UIQ Phones
UIQ was designed for smartphone devices with the following character-
istics:

• Quarter VGA (240x320) portrait screen

• Touch screen

• No hardware keyboard

• Hardware keys for up, down and confirm

Examples of UIQ phones include the Sony Ericsson P910 and Motorola
A920.

Figure 11.1 shows the calendar UIQ application as an example.
The screen is divided into the following areas:

• Application selector

This is the topmost row of tabs, used for easy access to commonly used
applications (these can be customized by the user). The rightmost tab
always represents the application launcher screen, which displays a
desktop with icons for all the applications on the smartphone, so that
any application can be launched.

• Menu bar

The next row, below the application selector, is the menu bar. Each
application has its own menu bar and the menu bar is always shown
(unlike in Series 60 and Series 80). UIQ menus behave a lot like
menus on a Microsoft Windows PC, in that the top-level menu items

Figure 11.1 UIQ Application Screen

SYMBIAN OS USER INTERFACES 327

are displayed in the bar and, once one is selected, submenu items can
be selected.

• View selector

UIQ applications typically have more than one application view. The
view selector is a pull-down list box at the far right end of the menu
bar. Views are different screen representations of an application’s
data. For example, an application that involves a grouping of items
could have a list view and a detailed view. Alternatively, the views
could represent filters that define what application data is displayed in
the view. For example, in the UIQ Agenda application you can have
views that display only business or personal calendar entries – the
default view being to display all calendar items.

• Application area

The large central area, below the menu bar, is the application area.
This is where the application-specific data and controls that make up
an application view are displayed.

• Button bar

Below the application area is an optional button bar. The button bar
is specific to the application and an application may or may not have
one. The button bar often contains convenient global controls that
select specific views, or perform some sort of global operation specific
to that application.

• Status bar

The status bar appears at the bottom of the screen and contains
various phone-specific statuses such as the battery power indica-
tion and connection status. This is customizable only by the phone
manufacturer.

User Input

UIQ phones have a touch screen and a keypad, but typically have no
QWERTY hardware keyboard (although the Sony Ericsson P910 UIQ
phone has a very small one on the inside of the flip). GUI controls are
selected on UIQ via the touch screen. ASCII input is accomplished either
via a virtual keyboard or by use of handwriting recognition. To use the
virtual keyboard, you click the virtual keyboard icon in the status bar
and a keyboard is displayed on the screen. You can then type text with
the touch screen, by selecting the appropriate keys. To use handwriting
recognition, draw the characters you want to enter on the touch screen,
and the software interprets the characters, and inputs them.

UIQ Paper Metaphor

When you start an application, it remains running and persistent. Appli-
cations normally do not provide an exit option; you just switch away

328 GUI APPLICATION PROGRAMMING

Figure 11.2 UIQ Dialog

from them when you want to use something else. Any data that you
have entered into the application remains intact and saved – when you
go back to your application, it looks as it did when you switched away.
UIQ exposes none of the content of a file system to the user and does all
storage of data behind the scenes.

UIQ Dialogs

As with all of the Symbian user interface platforms, much of a GUI
application’s functionality is performed in dialog boxes. Dialogs display
a title bar, a set of controls and a row of one or more buttons, which
are used to save, cancel, or perform some other application-specific
operation. One of the buttons can be set as the default, so that the
phone’s Confirm hardware key will activate it. UIQ supports simple,
single-page dialogs and multipage dialogs, in which each page can be
selected via a row of tabs. Figure 11.2 shows an example of a multipage
dialog (this is the browser’s Preferences dialog).

11.1.2 Series 60 Phones
The Series 60 user interface is made for smaller devices, with smaller
screens (176 × 208) and no touch screen. Unlike UIQ, the Series 60 UI
is specifically designed and optimized for one-handed operation.

SYMBIAN OS USER INTERFACES 329

Figure 11.3 Series 60 Application Screen

Figure 11.3 shows an example Series 60 application screen.
The entire screen is devoted to displaying information related to the

current application, and is divided into the following areas:

• Status pane
The status pane is at the top of the screen and displays the current
application’s title, and system status information, such as the signal
strength shown in Figure 11.3. As with UIQ, the layout and system
status content of this pane is determined by the phone manufacturer.

• Main pane
The main pane is situated below the status pane and occupies the
bulk of the screen. As with UIQ, it is dedicated to displaying the data
and controls that make up an application’s view.

• Control pane
The control pane occupies the bottom area of the screen. It contains
two softkey tabs, which are selected by depressing the hardware
buttons aligned below them. Unlike UIQ, an application menu bar
is not displayed on the screen. Instead, the control pane displays
an Options softkey which, when selected, presents the application’s
menu. Series 60 menus can be multilayered, with each menu item
optionally expanding to display a sub-menu.

User Input
Instead of selecting controls by a touch screen, a thumb device is used to
navigate between screen fields. Text input is accomplished through the
phone’s numeric pad, which, if you are not familiar with it, takes some
getting used to – but once learned is efficient.

330 GUI APPLICATION PROGRAMMING

Figure 11.4 Series 60 Dialog

Series 60 Dialogs
Like in UIQ, Series 60 dialogs are popup windows that overlay the
application’s view. Dialogs usually consist of a set of GUI controls, but
they can also be a simple message pop-up. Within a dialog, individual
controls are selected by using the hardware thumb pointer, as opposed to
tapping on a touch screen. Also, Series 60 dialogs do not contain a row
of GUI exit buttons, but use the two softkeys instead. Figure 11.4 shows
an example of a Series 60 dialog.

11.1.3 Series 80 Phones
Series 80 phones – also known as communicators – fold out to expose
a full keyboard and a large landscape display (640 × 200). As a result,
these phones are the easiest smartphones to control, at the expense of
size (although they are getting smaller) and cost. Examples of Series 80
phones are the Nokia 9200 series and the newer Nokia 9300 and 9500
communicators.

Series 80 phones do not have touch screens, and controls are traversed
by a rocker key on the keyboard.

Figure 11.5 shows an example application screen on a Series 80
phone.

The screen is divided into the following areas:

• Indicator area
The indicator area is on the left of the screen and is reserved for dis-
playing information about the currently-active application. Depending
on the application, it may show the application’s name and icon, the
date and time, and/or other status information. This area is normally

SYMBIAN OS USER INTERFACES 331

Figure 11.5 Series 80 Application Screen

92 pixels wide, but an application may reduce it to a width of 32
pixels if it needs additional space to display its data.

• Command button array
This is situated at the right-hand-side of the screen, and is used to
label the four adjacent hardware keys. An application will label these
keys as appropriate, depending on the context.

• Application area
The application area occupies the remaining central area of the screen
and is reserved for the application’s use. The application is entirely
responsible for the layout of this area.

The menu bar is not displayed on the screen unless it’s invoked by
depressing the menu key on the keyboard. The keyboard has a row of
keys at the top to directly invoke popular applications. The rightmost of
these keys can be customized by the user to go to an application of their
choosing.

Series 80 dialogs, like those in UIQ and Series 60, are pop-up windows
that overlay the main application screen. They usually consist of one or
more rows of controls that are navigated by means of the rocker key.
Dialogs can be either a single page or multipage, where the page is
selected by labeled tabs located on the upper portion of the dialog – or
they can be simple pop-ups that display a message or confirmation. As in
Series 60, dialogs do not include any exit buttons; Series 80 dialogs use
the command button array for this purpose, together with the Escape key
on the keyboard, which is used to cancel the dialog. Figure 11.6 shows
an example of a Series 80 dialog.

Figure 11.6 Series 80 Dialog

332 GUI APPLICATION PROGRAMMING

11.2 Anatomy of a GUI Application

In Chapter 2, I presented a basic example GUI application, and provided
steps to build it and load it to the phone (see Section 2.3). To recap, a
basic GUI application project consists of the following parts:

• The mmp and bld.inf files needed to build the application (or
appropriate IDE project file if using an IDE instead of the command
line)

• A resource file (rss file) to define the various GUI components,
dialogs and text strings your application uses

• The application source code

• A pkg file to build a sis file that can be stored on the phone.

In addition, an application will usually also have:

• A set of bitmaps to define the application’s icon (at various sizes, as
defined by the UI platform used)

.pkg

.rsc resource
binary

.aif file

Help binary

.app application

Help .rtf file

Icon bitmaps

Resource .rss file
for caption/icon

Resource .rss file

Project mmp file

.cpp program files

Resource .hrh header file

Application
installation .sis
file

Figure 11.7 Application Project Elements and Build Flow

APPLICATION CLASSES 333

• An application information resource file that defines the application’s
caption, number of icons and other information (this, together with
the icon bitmaps, is used to generate the aif file for download to the
phone along with the application)

• An online help file in Rich Text Format (RTF) to define the on-line
help available to the application user (generated into a hlp file using
the help compiler).

Figure 11.7 shows how all of these elements come together to build
an application.

11.3 Application Classes

In Chapter 2, I also gave a basic tour of the key functions and classes of
a GUI application, using the SimpleEx example (see Section 2.3). Let’s
look at this again, but go into more detail, as needed.

11.3.1 E32Dll() and NewApplication()

All Symbian OS GUI applications have to implement the two functions:
E32Dll() and NewApplication().
E32Dll() is the entry function required by all DLLs in Symbian OS

and is always implemented as follows:

GLDEF_C TInt E32Dll(TDllReason)
{
return KErrNone;
}

NewApplication() is the first exported function of the application
DLL. When a GUI application is started, apprun.exe runs, which in
turn brings up the application architecture (APPARC) component (i.e. the
GUI application framework) of Symbian OS. This framework, in turn,
loads your application DLL and calls its NewApplication() function
to create, and return a pointer to, your application’s instance of its
Application class.

Here is the implementation of the NewApplication() function from
Chapter 2’s SimpleEx example:

EXPORT_C CApaApplication* NewApplication()
{
return (new CSimpleExApplication);
}

334 GUI APPLICATION PROGRAMMING

The next section describes the basic classes used to implement your
application including this Application class.

11.3.2 Examining the GUI Application Classes
Here are the classes each application defines as a minimum:

1. Application class
As mentioned above, this is the first thing the GUI framework cre-
ates. This class is used to identify the application (by returning the
application’s UID) and to instantiate, and return a pointer to, your
application’s document class.

2. Document class
This class represents the application’s data model. It is also responsi-
ble for instantiating, and returning a pointer to, an instance of your
application’s UI class.

3. UI class
This class handles all UI events, and is responsible for creating the
application’s default view.

4. View class
The view class implements the application’s screen display, including
drawing the window and the creation of the initial screen controls.
An application can have multiple view classes.

These classes contain the basic functionality of your application, as
well as providing the interface needed for the GUI framework to start,
and drive, your application. The nice thing about the GUI framework
in Symbian OS is that you implement these application classes in the
same way across all the different Symbian OS GUI platforms. The only
difference is that (with the exception of the view class) they are derived
from different platform-specific classes (see Table 11.1).

Table 11.1 Platform-specific classes inherited from

Class UIQ Series 60 Series 80

Application CQikApplication CAknApplication CEikApplication
Document CQikDocument CAknDocument CEikDocument
Application UI CQikAppUi CAknAppUi CEikAppUi
View CCoeControl CCoeControl CCoeControl

Note that, in the simplest case, application views are pure controls,
which inherit directly from CCoeControl. However, there are more
powerful view classes (known simply as ‘views’) that allow you to switch
easily between multiple views. These are platform-specific and will be
discussed in more detail later (see Section 11.8).

APPLICATION CLASSES 335

The Application Class

The declaration for the UIQ version of SimpleEx’s application class is
as follows:

class CSimpleExApplication : public CQikApplication
{

private:
CApaDocument* CreateDocumentL();
TUid AppDllUid() const;
};

Series 60 and 80 declare it in the same way, except that the class is derived
from CAknApplication and CEikApplication respectively. Here is
the implementation of this class for SimpleEx:

const TUid KUidSimpleExApp = {0x10005B94};
TUid CSimpleExApplication::AppDllUid() const

{
return KUidSimpleExApp;
}

CApaDocument* CSimpleExApplication::CreateDocumentL()
{
return new(ELeave) CSimpleExDocument(*this);
}

After the framework has obtained a pointer to the application object,
via the call to NewApplication(), it calls that object’s AppDllUid()
method to get the application’s UID. It does this as a sanity check to make
sure that the UID matches the one it expects. Thus, you must ensure that
AppDllUid() returns the same UID as the one that you specify in the
application’s mmp file. Once the framework has verified the UID, it calls
the application object’s CreateDocumentL() method, which returns a
pointer to your application’s document class instance.

The Document Class

The document class has two purposes, the first of which is to represent
your application’s persistent data. The other is to create the Application UI
instance in which this data (if any) can be manipulated. For applications
that have no persistent data, and therefore are not file based, the document
class simply implements the CreateAppUiL() function to return the
application’s UI object, as the following code from SimpleEx shows:

class CSimpleExDocument : public CQikDocument
{

public:
CSimpleExDocument(CEikApplication& aApp) : CQikDocument(aApp) { };

336 GUI APPLICATION PROGRAMMING

private:
CEikAppUi* CreateAppUiL();
};

CEikAppUi* CSimpleExDocument::CreateAppUiL()
{

// Create the application user interface, and return a pointer to it;
// the framework takes ownership of this object

return new (ELeave) CSimpleExAppUi;
}

An application’s data is said to be persistent if it remains in existence
beyond the time when the application is closed down. This implies that
the data is stored externally to the application, and it would normally be
stored in a file.

An application that has data it wants to save when the application
closes, and reload when the application starts up again, can provide
implementations for the document class’s StoreL() and RestoreL()
functions, which are prototyped as:

void StoreL(CStreamStore& aStore, CStreamDictionary& aStreamDic) const;

and:

void RestoreL(const CStreamStore& aStore, const CStreamDictionary&
aStreamDic);

The application framework calls these functions as necessary to create,
save and reload the file.

To use these functions, you need to understand the concepts of streams
and stores. A Symbian OS stream is a sequence of data items that supplies
an external representation of a class instance. The external form is one that
is free of any peculiarities of the internal storage format, such as byte order
or data alignment. Symbian OS supports the conversion of data between
the two formats by means of internalization (>>) and externalization (<<)
operators, and a class’s implementation of the InternalizeL() and
ExternalizeL() functions. You should refer to the SDK documentation
for further information.

A Symbian OS store is a collection of streams, and is normally used
to implement persistent data. Such data is usually, but not always,
stored in a file, with the aid of either the CDirectFileStore or
CPermanentFileStore classes. You can use the CBufStore class
to store data in a memory buffer, but such storage will, of course, not
be persistent. Other classes of interest are CSecureStore, to store
encrypted data, and CEmbeddedStore which, as its name suggests,
allows you to create more complex stores, where one store may be

APPLICATION CLASSES 337

embedded within another. All these store classes inherit from an abstract
CStreamStorebase class (which is used as the type of the first parameter
for the StoreL() and RestoreL() functions), Each store contains
a root stream, which is the first stream to be read on opening the
store. The root stream contains an index (which is an instance of the
CStreamDictionary class) that provides access to the other streams
within the store. Refer to the SDK documentation for examples, and
further information about creating and using stores.

The persistence mechanism described above results in the whole
file being read on application startup and written when the application
closes. In consequence, it is not suited to applications that display and
manipulate one or more records from a (potentially large) database file.
Such an application should not implement the document’s StoreL()
and RestoreL() functions, but should provide its own mechanisms for
updating the database file as and when necessary.

Since most Series 60 applications fall into this category, the default
behavior of the Series 60 document class is to disable the automatic saving
and loading of persistent data. If necessary, you can re-enable it by sup-
plying the following implementation of your document’s OpenFileL()
function:

CFileStore* CMyDocument::OpenFileL(TBool aDoOpen, const TDesC& aFilename,
RFs& aFs)

{
return CEikDocument::OpenFileL(aDoOpen, aFilename, aFs);
}

The Application UI Class

Your application’s UI class supplies the logic that directs the action of your
application in response to user actions and other events, including the
command handler. It is also responsible, upon construction, for creating
the application’s default view.

The declaration for the UIQ version of SimpleEx’s application UI class
is as follows:

class CSimpleExAppUi : public CQikAppUi
{

public:
void ConstructL();
∼CSimpleExAppUi();

private:
void HandleCommandL(TInt aCommand);

private:
CCoeControl* iAppView;
};

The application framework calls the document’s CreateAppUiL()
function, to create the application’s instance of its application UI class,

338 GUI APPLICATION PROGRAMMING

and then invokes the application UI’s ConstructL() function. This
function must contain all the logic to initialize your GUI application,
including the creation of the application view. A pointer to this view
should be assigned to iAppView for future reference.

The following is the SimpleEx application UI class’s ConstructL()
and its destructor.

void CSimpleExAppUi::ConstructL()
{
BaseConstructL();

iAppView = CSimpleExAppView::NewL(ClientRect());
}

CSimpleExAppUi::\simCSimpleExAppUi()
{
delete iAppView;
}

In particular, the application UI’s ConstructL() must call BaseC-
onstructL(). This will invoke CEikAppUi’s BaseConstructL() func-
tion, which will open the application’s resource file and construct items
such as the application’s menu.

The application UI implements the HandleCommand() function, to
process the application’s menu command events. Below is SimpleEx’s
implementation of it.

void CSimpleExAppUi::HandleCommandL(TInt aCommand)
{
switch(aCommand)

{
case EEikCmdExit:
Exit();
break;

case ESimpleExCommand:
{
_LIT(KMessage,"Start Selected!");
iEikonEnv->AlertWin(KMessage);
}
break;

}
}

The events handled by HandleCommandL() are identified by 32-
bit integers that are defined (typically in an enum) in an include file
which is included in both your resource file and your source code.
Depending on the platform, these events may originate from a variety of
sources, including menu bars, keyboard hotkey combinations, tool bars
and command button arrays.

The Application View Class
The application view class handles the presentation of your application
on the smartphone’s screen, as well as allowing the user to interact

APPLICATION CLASSES 339

with your program. In Symbian OS all objects drawn to a screen are
controls – including the application view, which is a custom control.

As was mentioned earlier, in the simplest case, the application’s view is
implemented as a single control derived from the CCoeControl control
base class. For more complex applications, Symbian OS supplies a view
architecture that allows you to create multiple application views. Custom
controls and views will be discussed in more detail in Sections 11.7 and
11.8 respectively. For now let’s look at the SimpleEx application’s view
implementation and briefly discuss its key points.

The declaration for SimpleEx’s application view class is as follows:

class CSimpleExAppView : public CCoeControl
{

public:
static CSimpleExAppView* NewL(const TRect& aRect);
void ConstructL(const TRect& aRect);

private:
void Draw(const TRect&) const;
};

and the implementation of the view is:

CSimpleExAppView* CSimpleExAppView::NewL(const TRect& aRect)
{
CSimpleExAppView* self = new (ELeave) CSimpleExAppView;
CleanupStack::PushL(self);
self->ConstructL(aRect);
CleanupStack::Pop(self);
return self;
}

void CSimpleExAppView::ConstructL(const TRect& aRect)
{
CreateWindowL();
SetRect(aRect);
ActivateL();
}

void CSimpleExAppView::Draw(const TRect&) const
{
CWindowGc& gc = SystemGc();
const CFont* font;
TRect drawRect = Rect();

gc.Clear();

font = iEikonEnv->TitleFont();
gc.UseFont(font);
TInt baselineOffset=(drawRect.Height() - font->HeightInPixels())/2;
gc.DrawText(_L("Simple Example"),

drawRect,baselineOffset,CGraphicsContext::ECenter, 0);

gc.DiscardFont();
}

340 GUI APPLICATION PROGRAMMING

The view’s NewL() static constructor both instantiates the application
view class and calls its ConstructL() secondary constructor. The
application UI calls this NewL() function, passing the application’s client
area (which is supplied by the ClientRect()method in the application
UI’s base class). This area specifies the region that the application has
at its disposal to display its data and is, in turn, passed to the view’s
ConstructL() function.

In ConstructL(), CreateWindowL() is called to create the con-
trol’s associated window (a view is always what is known as a window-
owning control (see Section 11.7). SetRect() sets the area on the screen
that the control will occupy. ActivateL() is called to mark the control
as being ready to draw itself.

The application view, being a custom control, implements its own
Draw() function by overriding CCoeControl::Draw(). This function
is called whenever the application view has become invalid, either
because it needs to show new data, or because some other object which
overlaid the area has been dismissed.

Later, I will discuss more of the details of drawing, but by looking at
the SimpleEx view’s Draw() function, you should be able to see that it
is simply clearing the screen and drawing the text ‘SimpleEx’.

11.4 Resource Files
The application resource file defines a significant part of how your
application will appear and function. The resource file is a text file whose
name ends in rss, and is compiled into a binary form by the SDK’s
resource compiler. This compiled version of the resource file is loaded
onto the phone along with the application executable and is accessed
during application execution.

11.4.1 Resource File Format
A resource file consists of data constructs that begin with an uppercase
keyword. There are only a few keywords used in resource files. The main
ones are:

• NAME

NAME defines a name, of between one and four upper case characters,
that is used by the resource compiler to generate a 20-bit number that
it prefixes to resource identifiers to ensure they are distinguishable
from the identifiers of other resources used by the application. Note
that this means that the name need not be globally unique, it just needs
to be different from system resource file names – so avoid starting the
name with EIK, or using component names like CONE. Also, if your
application uses multiple resource files, define a unique name for
each.

RESOURCE FILES 341

In SimpleEx, the name is defined in the resource file as:

NAME SIMP

• CHARACTER_SET

CHARACTER_SET specifies if your resource file is to use either code
page 1250 or the UTF-8 character set. If CHARACTER_SET is not
specified, it defaults to code page 1250. To specify that your resource
file is in UTF-8 format, add the following line to your resource file:

CHARACTER_SET UTF8

• STRUCT

The STRUCT keyword is used to define a data structure that consists
of a sequence of items, with each item being specified by its name
and its data type.

You won’t often need to define your own STRUCTs, since there is a
wide variety of existing ones, for use by all the different GUI elements,
and defined in the system’s various resource header files (e.g. eikon.rh,
uikon.rh). However, it is helpful to see what a STRUCT looks like, in
order to better understand the resource file format.

• RESOURCE

The RESOURCE keyword is used to create an instance of a data
structure.

• ENUM

The ENUM keyword defines an enumeration with the same syntax as
in C/C++. This is used for constants such as control identifiers and
event codes.

The following is a simple STRUCT definition:

STRUCT MYDATA
{
WORD value=0;
LTEXT main_text;
LTEXT text_items[];
}

WORD and LTEXT are built-in data types that represent a 16-bit word
and a Unicode text string (with leading length byte) respectively. Other
common data types are:

BYTE 8-bit signed value
LONG 4-byte value
BUF Unicode string with no leading length byte
LLINK Link to a resource that contains a resource identifier
STRUCT Use a STRUCT within a STRUCT

342 GUI APPLICATION PROGRAMMING

Arrays can also be defined by appending [] to the attribute name. In the
MYDATA structure, text_items is defined as an array of text strings.

Also, attributes can be assigned default values within the STRUCT
definition. In the example above, value is assigned a default of 0. So,
if the programmer does not assign an explicit value to the attribute in a
RESOURCE definition, it is automatically assigned the default value.

You use the RESOURCE keyword to create an instance of a STRUCT,
as illustrated below for MYDATA:

RESOURCE MYDATA r_mydata_res
{
value=3;
main_text=“some text string”;
text_items={“text item1”, “some other item”,“other item”};
}

This resource creates an instance of the MYDATA structure with a resource
identifier of r_mydata_res (which actually represents a 32-bit integer).
You access the resource from within program code by using this identifier
in upper case: R_MYDATA_RES.

It’s worth pointing out that you can include STRUCT members within
STRUCTs since this is commonly used for predefined resources. I illustrate
this below, using an additional STRUCT called WIDGETDATA:

STRUCT WIDGETDATA
{
LTEXT widget_caption;
STRUCT main_data;
}

main_data is specified as a STRUCT but does not indicate the structure
type. It’s up to the programmer to know what type of structure to use.
In this case, WIDGETDATA expects it to be of our MYDATA type. It’s
initialized in the following way:

RESOURCE WIDGETDATA r_my_widget
{
widget_caption=“Widget Name”;
main_data=MYDATA {3,“main data”, { “item1”, “item2”} };
}

11.4.2 SimpleEx’s Resource File

Armed with the knowledge in the above section, let’s look at the resource
file again (originally presented in Chapter 2 (see Section 2.3.4)).

RESOURCE FILES 343

NAME SIMP

#include <eikon.rh>
#include "SimpleEx.hrh"

RESOURCE RSS_SIGNATURE
{
}

RESOURCE TBUF r_default_document_name
{
buf="";
}

RESOURCE EIK_APP_INFO
{
menubar = r_SimpleEx_menubar;
}

RESOURCE MENU_BAR r_SimpleEx_menubar
{
titles =

{
MENU_TITLE
{
menu_pane = r_SimpleEx_menu; txt="Simple Menu";
}

};
}

RESOURCE MENU_PANE r_SimpleEx_menu
{
items =

{
MENU_ITEM

{
command = ESimpleExCommand;
txt = "Start";
}

};
}

The RSS_SIGNATURE resource is used to validate the file and must
appear, exactly as shown above, as the first resource in every application
resource file.

The next resource:

RESOURCE TBUF r_default_document_name
{
buf="";
}

defines the file name of your application’s default document. A document
is not used in SimpleEx, so it is blank.

344 GUI APPLICATION PROGRAMMING

Note that TBUF is defined as:

STRUCT TBUF
{
BUF buf; // non-zero terminated string
}

in baded.rh, included from ukon.rh.

RESOURCE EIK_APP_INFO
{
menubar = r_SimpleEx_menubar;
}

The resource structure for EIK_APP_INFO is defined as:

STRUCT EIK_APP_INFO
{
LLINK hotkeys=0;
LLINK menubar=0;
LLINK toolbar=0;
LLINK toolband=0;
LLINK cba=0;
LLINK status_pane=0;
}

So, although we only specify the application’s menu bar (and the softkeys
via the cba attribute for the Series 80 example), you can see that this is
the place to associate other things with the application, such as hot keys,
the tool bar and the status pane.

Recall from the section on the resource file format that the LLINK type
indicates a link to another resource (see Section 11.4.1).

The menu is constructed using resource structures MENU_BAR,
MENU_TITLE, MENU_PANE, and MENU_ITEM, all of which are defined
in uikon.rh. Let’s look at MENU_BAR:

STRUCT MENU_BAR
{
STRUCT titles[]; // MENU_TITLEs
LLINK extension=0;
}

titles[] is expected to be an array of structures of type MENU_TITLE,
which is defined as follows:

STRUCT MENU_TITLE
{
LLINK menu_pane;

RESOURCE FILES 345

LTEXT txt;
LONG flags=0;
LTEXT bmpfile="";
WORD bmpid=0xffff;
WORD bmpmask=0xffff;
LLINK extension=0;
}

So let’s look again at the SimpleEx menu definition:

RESOURCE MENU_BAR r_SimpleEx_menubar
{
titles =

{
MENU_TITLE
{
menu_pane = r_SimpleEx_menu; txt="Simple Menu";
}

};
}

RESOURCE MENU_PANE r_SimpleEx_menu
{
items =

{
MENU_ITEM
{
command = ESimpleExCommand;
txt = "Start";
}

};
}

We can see that this instantiates a MENU_BAR structure, associating it
with resource identifier r_SimpleEx_menubar. It initializes its titles
attribute (which is an array of STRUCTs) to a single MENU_TITLE struc-
ture, which points to our menu pane resource.

11.4.3 Localizing a Resource File
While you can put text strings directly within the resource file as I have
done in the examples, this is not recommended if you need to support
different language translations. Symbian recommends that you put all
your strings into a rls file (a loc file for Series 60), and then include this
string file using \#include in your rss file. There should be a separate
rls file for each language you support.

Each string in the rls file is defined using the rls_string keyword.
For example:

rls_string STRING_r_example_start “Start”

Then in your rss file, you supply the keyword STRING_r_example
_start_selected, instead of putting in the string directly. For example:

346 GUI APPLICATION PROGRAMMING

RESOURCE MENU_PANE r_SimpleEx_menu
{
items =

{
MENU_ITEM
{
command = ESimpleExCommand;
txt = STRING_r_example_start_selected;
}

};
}

At the top of the rss file you need to include the proper language rls
file and this is normally none by using #ifdef s. Below is an example
of including rls files in your resource file for a program that supports
English, French and German:

#ifdef LANGUAGE_EN
#include "strings_en.rls"

#elif defined LANGUAGE_FR
#include "strings_fr.rls"

#elif defined LANGUAGE_DE
#include "strings_de.rls"

#endif

How are the language definitions set? Symbian OS provides support for
this in the project mmp file by means of the LANG keyword. Here are the
example lines in the mmp:

LANG EN FR DE
RESOURCE MyApp.rss

The build script will compile the resource file, defined on the RESOURCE
line, once for every language specified in the LANG line. During
each resource compilation, LANGUAGE_ <language> is defined, where
<language> is the current item on the LANG line. So it will compile Sim-
pleEx.rss once with LANGUAGE_EN defined (with the output going
to SimpleEx.ren), then with LANGUAGE_FR defined (with the out-
put going to SimpleEx.rfr), and, finally, with LANGUAGE_DE defined
(with the output going to SimpleEx.rde). During each compilation, the
correct language rls file is included in the resource as defined in the
#ifdef structure.

There are no rules for the format of the language identifiers on the
LANG line, each compilation stage simply #defines a variable with the
specified name, prefixed with LANGUAGE_. You can use letter codes as I
did, or numeric codes (e.g. 01, 02) to represent different languages.

You typically have all the supported languages of an application
contained in a single sis file. The user can then select the language they

RESOURCE FILES 347

need when they install that file to their phone (sometimes the system will
install the language that matches the one defined in the phone).

Here are the pkg files needed to support having these languages in a
single sis:

&EN,FR,GE
...
{
"c:\symbian\uiq_70\epoc32\data\z\system\apps\simpleEx\SimpleEx.ren"
"c:\symbian\uiq_70\epoc32\data\z\system\apps\simpleEx\SimpleEx.rfr"
"c:\symbian\uiq_70\epoc32\data\z\system\apps\simpleEx\SimpleEx.rde"
}-"!:\system\apps\simpleEx\SimpleEx.rsc"

The & line contains a list of language codes that determine which
language options are offered to the user during installation. Unlike the
LANG statement in the mmp file, you must use predefined two-letter
language codes that correspond to the languages you are supporting (see
Section 5.9.4).

The package line in the above example will cause the correct
resource file to be installed on the phone (as \system\apps\simpleEx\
SimpleEx.rsc) based on the language that the user selected. It is impor-
tant that the files to be installed should be listed in the same order as the
list of specified languages in the & line.

11.4.4 Reading Resource Strings From Code
You should try to avoid using strings directly in the code, since this makes
localizing your applications very difficult. For example, I hard-coded a
string in the SimpleEx example in the following lines:

_LIT(message,"Start Selected!");
iEikonEnv->AlertWin(_L("Start Selected!"));

The recommended way of doing this is to define a TBUF resource in your
resource file as follows:

RESOURCE TBUF r_start_selected {buf=“Start Selected!”;}

Better still, define an rls_string in your rls file (one for each
supported language):

rls_string STRING_start_selected “Start Selected!”

and use that in your rss file:

RESOURCE TBUF r_start_selected { STRING_start_selected;}

348 GUI APPLICATION PROGRAMMING

Then in the code, read the resource string in the following way:

TBuf<256> message;
iCoeEnv->ReadResource(message, R_START_SELECTED);

This will read the string defined in the TBUF resource whose resource
identifier is R_START_SELECTED into the descriptor message.

11.5 Dialogs

Much of your GUI application programming will be concerned with
creating and managing either dialogs or other forms of GUI controls. This
section discusses both and I’ll also present a simple dialog you can add
to SimpleEx to illustrate how to create and manage a dialog box and its
associated controls.

11.5.1 Creating a Basic Dialog

Dialogs exist on all Symbian OS platforms although some of the details
of their usage vary from platform to platform. For example, UIQ dialogs
contain dialog exit buttons, whereas Series 60 and Series 80 dialogs use
labeled hardware keys.

A dialog is a pop-up window that has a title, one or more buttons to
dismiss the dialog, and one or more lines containing controls that display
information and allow the user to set application-specific parameters.
Dialogs are almost always modal, meaning that the user can interact only
with the dialog, and not the rest of the application, until the dialog is
dismissed.

Creating a dialog typically consists of the following steps:

1. Create a DIALOG resource in your resource file to define the dialog’s
title and set of dialog lines, where each line contains a control and a
text prompt.

2. Create a class derived from CEikDialog that, at a minimum, initial-
izes the controls when the dialog is started up and processes/saves
the control values when the dialog is dismissed.

3. Implement code to launch the dialog by calling the dialog’s Exe-
cuteLD() (implemented in the CEikDialog base class) specifying
the resource identifier of your DIALOG resource.

To best explain the process, let’s look at an example of a simple dialog
box. This dialog is added to SimpleEx, and allows you to set the text
that’s displayed in the middle of the screen. For the Series 80 and UIQ

DIALOGS 349

versions, I have added an extra line with a choice list so that you can also
select the color of the displayed text.

The first line of the dialog has a text edit control to specify the display
text, and the second line is a choice list control, where you select the
color of the text to be one of black, red, green or blue. Figures 11.8 and
11.9 show this dialog for UIQ and Series 80 respectively. When the user
selects OK the text in the center of the screen is changed to reflect the
string and color that was specified in the dialog.

The choice list control is not supported in Series 60, and list boxes or
pop-up controls are normally used instead. Since using these controls in
Series 60 involves some extra considerations, let’s just use the control to
set the text for now. The Series 60 dialog is shown in Figure 11.10.

Figure 11.8 SimpleEx Dialog in UIQ

Figure 11.9 SimpleEx Dialog for Series 80

Defining the Dialog Resource

First let’s create the dialog resource structure for UIQ and Series 80, and
add it to the SimpleEx resource file:

350 GUI APPLICATION PROGRAMMING

Figure 11.10 SimpleEx Dialog for Series 60

RESOURCE DIALOG r_SimpleEx_dialog
{
title="SimpleEx Settings";
buttons=R_EIK_BUTTONS_CANCEL_OK;
flags=EEikDialogFlagWait;
items=

{
DLG_LINE
{
type=EEikCtEdwin;
prompt="Text";
id=ESimpleExText;
control=EDWIN {width=25; maxlength=256;};
},
DLG_LINE

{
// This dialog line is the choice list to pick the color.
// Note that this line will not work on Series 60 since
// choice lists are not supported there.

type=EEikCtChoiceList;
prompt="Text Color";
id=ESimpleExColor;
control=CHOICELIST
{
array_id=r_color_list;
}; // End of control.

}
};

}

And here is the Series 60 dialog structure, containing only the text box:

RESOURCE DIALOG r_SimpleEx_dialog
{
buttons = R_AVKON_SOFTKEYS_OK_CANCEL;

DIALOGS 351

flags = EGeneralQueryFlags;
items=

{
DLG_LINE
{
type=EEikCtLabel;
id=ESimpleExTextLabel;
control = LABEL

{
txt="Enter screen text";
};

},

DLG_LINE
{
type=EEikCtEdwin;
id=ESimpleExText;
control=EDWIN {width=10; maxlength=256;};
}

};
}

To simplify the example, I still define the strings directly in the resource
file. However, as discussed in the last section, the more correct way is to
define them in an rls file using the rls_string keyword.
DIALOG is a STRUCT defined in eikon.rh. In the example, I create

a DIALOG resource with identifier r_SimpleEx_dialog. title is
an LTEXT type attribute that specifies the caption on the title bar when
displaying the dialog. In this case the title is ‘SimpleEx Settings’.
buttons is of type LLINK, meaning it points to another resource.

In this case, it points to a DLG_BUTTONS resource that specifies the
set of buttons to appear on the dialog, such as OK and Cancel,
or any other button you want on the dialog. You can create your
own custom set of buttons by creating a DLG_BUTTONS resource
(which in turn contains one or more DLG_BUTTON resources) and
specifying it in the dialog’s buttons attribute. Or, as is commonly
done, you can use one of the predefined button resources from eik-
core.rsg – I used R_EIK_BUTTONS_CANCEL_OKwhich puts ‘Cancel’
and ‘OK’ buttons in the dialog. Other predefined dialog button attributes
include:

• R_EIK_BUTTONS_CONTINUE displays a single ‘Continue’ button.

• R_EIK_BUTTONS_CANCEL displays a single ‘Cancel’ Button

• R_EIK_BUTTONS_NO_YES displays ‘Yes’ and ‘No’ buttons.

Series 60 defines its own set of predefined softkey resources for the
buttons attribute, including:

• R_AVKON_SOFTKEYS_OK_EMPTY displays an ‘OK’ softkey and a
blank softkey.

352 GUI APPLICATION PROGRAMMING

• R_AVKON_DONE_CANCEL displays ‘Done’ and ‘Cancel’ softkeys.

• R_AVKON_YES_NO displays ‘Yes’ and ‘No’ softkeys.

• R_AVKON_OK_BACK displays ‘OK’ and ‘Back’ softkeys.

Refer to avkon.rsg for the complete list.
The dialog’s flags attribute (type LONG) defines various characteristics

of the dialog. These flags can vary with the platform.
In the example dialog, I only set the EEikDialogFlagWait flag.

This makes the dialog modal (meaning that the dialog’s ExecuteLD()
will not return until the user dismisses the dialog).

Some other flags are:

• EEikDialogFlagNoTitleBar – do not display the title bar.

• EEikDialogFlagDensePacking – minimize the spacing between
lines.

• EEikDialogFlagFillAppClientRect – expand the dialog to fill
the client rectangle.

Series 60 provides additional platform-specific flags (in avkon.hrh) that
are implemented as a combination of other flags to define a specific type
of dialog that conforms to the Series 60 GUI guidelines. For example, the
dialog flag value EAknDialogSelectionList specifies a combination
of flags appropriate for a dialog that presents a list of options in a choice
list. See avkon.hrh for the complete list of these Series 60 specific
flags.

UIQ and Series 80 typically use only the EEikDialogFlagWait flag
in their dialogs.

The items attribute of the DIALOG structure must be an array of
DLG_LINE structures, to specify what each line of a dialog contains. The
key attributes of a DLG_LINE are type, prompt, id, and control.
type specifies the type of control to be used for that dialog line.

This tells the UI’s control factory what control class to construct. The
first dialog line in the example specifies a text box, with type set to
EEikCtEdwin. This tells the control factory to construct the control
class CEikEdwin.
prompt specifies the text that is displayed before the control.
id specifies an identifier for the dialog line, and is used by your code

to access the line’s control. CEikDialog’s Control(aId) method is
used to convert the id to a pointer to the control.
control is an attribute of type STRUCT. It is expected to be a structure

appropriate to the type of control indicated by the type attribute,

DIALOGS 353

containing attributes that are specific to that control. In the first dialog
line of our example, the type is EEikCtEdwin, and this means that
control structure should be of type EDWIN.
EDWIN is defined in uikon.rh as:

STRUCT EDWIN
{
LONG flags=0;
WORD width=0;
WORD lines=1;
WORD maxlength=0;
}

In the example, I define the field width (width) as 25 and the maximum
length of the entered string (maxlength) as 255.

See the SDK documentation for lists of all the predefined control
resource structures, and descriptions of their attributes.

For Series 60, instead of using the prompt attribute of the DLG_LINE,
I included another dialog line containing a label control (control type
EEikCtLabel). A label is simply a read-only text line, whose text is
specified by the txt attribute of a LABEL structure. This displays the edit
box prompt above the edit control.

For the second line of the dialog, I have the choice list where the user
can select the color of the screen text. The control type for a choice list
is EEikCtChoiceList and the corresponding control structure type is
CHOICELIST.
CHOICELIST is defined in eikon.rh as:

STRUCT CHOICELIST
{
WORD flags=0;
WORD maxdisplaychar=0;
LLINK array_id=0;
}

The important attribute here is array_id, which points to an array
resource that contains the text for each choice in the choice list.
In the example, I assign array_id to r_color_list, and define
r_color_list in the resource file as follows:

RESOURCE ARRAY r_color_list
{
items=

{
LBUF { txt="Black"; },
LBUF { txt="Red"; },

354 GUI APPLICATION PROGRAMMING

LBUF { txt="Green"; },
LBUF { txt="Blue"; }
};

}

ARRAY is defined in badef.rh as:

STRUCT ARRAY
{
STRUCT items[];
}

Finally, LBUF is defined as:

STRUCT LBUF
{
LTEXT txt; // leading-byte counted text string
}

As you can see, for a given control, you have to know three things: the
type of control to assign to the DLG_LINE type attribute, the expected
control structure to assign to the control attribute of the DLG_LINE,
and the name of the control class to use in the source code. Refer to
Section 11.6, as well as the SDK, for the list of these identifiers for the
different controls.

The Dialog Class

Now let’s look at the dialog class in the source code:

class CSimpleExDialog : public CEikDialog

{
public:
CSimpleExDialog(TDes& aText,TRgb& aColor);

private:
// Inherited from CEikDialog
void PreLayoutDynInitL();
TBool OkToExitL(TInt aKeycode);

TDes& iText;
TRgb& iColor;
};

You derive dialog classes from CEikDialog. When the dialog is
launched, PreLayoutDynInitL() is called – you override this method
in your dialog class to set the initial values of the dialog controls. OkToEx-
itL()is called when the dialog is dismissed (an exception is that it is not

DIALOGS 355

called when Cancel or the Escape key is selected). In our case, it’s called
when the OK button is selected.

Now let’s look at the dialog class implementation for UIQ and Series
80:

CSimpleExDialog::CSimpleExDialog(TDes& aText, TRgb& aColor) :
iText(aText),iColor(aColor)

{
}

const TRgb colorList[4]={KRgbBlack,KRgbRed,KRgbGreen,KRgbBlue};

void CSimpleExDialog::PreLayoutDynInitL()
{
STATIC_CAST(CEikEdwin*,Control(ESimpleExText))->SetTextL(&iText);
TInt currColorIndex=0;
for (TInt i=0;i<4;i++)

{
if (iColor==colorList[i])
{
currColorIndex=i;
break;
}

}
STATIC_CAST(CEikChoiceList*,

Control(ESimpleExColor))->SetCurrentItem(currColorIndex);
}

TBool CSimpleExDialog::OkToExitL(TInt /*aKeycode*/)
{
TInt cIndex = STATIC_CAST(CEikChoiceList*,

Control(ESimpleExColor))->CurrentItem();
iColor = colorList[cIndex];

STATIC_CAST(CEikEdwin*,Control(ESimpleExText))->GetText(iText);

return ETrue;
}

Let’s start with the constructor – it is passed references to the text descrip-
tor that determines the text drawn on the main screen, and to the variable
that indicates the current text color. The text and text color are assigned
to the dialog’s iText and iColor member data items, respectively.

In PreLayoutDynInit(), I get a pointer to the text edit box and set
its initial text with:

STATIC_CAST(CEikEdwin*,Control(ESimpleExText))->SetTextL(&iText);

This calls CEikDialog’s Control() method, passing the identifier of
the dialog line to it that contains the control (specified in DLG_LINE’s id
attribute). In this case, it’s the line with the edit box, whose identifier is set
to ESimpleExText. I use STATIC_CAST() to cast this pointer to type

356 GUI APPLICATION PROGRAMMING

CEikEdwin, the edit window control class. The SDK documentation
describes all the methods available to the various control classes and,
of course, these can vary greatly between controls. In this case, I use
CEikEdwin::SetTextL() to set the initial text in the edit box to that
contained in iText.

Next, for the UIQ and Series 80 versions of the example, I want the
choice list to be initialized to the current text color, whose value is in
iColor. First I determine the choice list index of the current color (using
a lookup array I created called colorList). Then I set the initial index
value to the choice list with:

STATIC_CAST(CEikChoiceList*,
Control(ESimpleExColor))->SetCurrentItem(currColorIndex);

This retrieves the choice list control in the DLG_LINE, whose identifier is
ESimpleExColor, casts it to the choice list class CEikChoiceList,
then calls the SetCurrentItem()method to set the current list choice.

After PreLayoutDynInit(), the dialog is now displayed with the
initial values of the controls corresponding to the values of iText and
iColor. The user can change the control values as desired on the dialog
box. When satisfied, the user selects OK, and the dialog class method
OkToExitL() is invoked, and is passed the identifier of the button
selected by the user (we ignore it here, because it will always be the OK
button in our case).

In OkToExitL() I do the reverse of PreLayoutDynInit(), and get
the values of the text box and the color choice list and write these to
iText and iColor, respectively. I then return ETrue, so that the dialog
will actually be dismissed when the function exits. If you return EFalse,
the dialog remains displayed upon exit of OkToExitL(). This is useful
when you have multiple dialog buttons and you want to perform an
operation upon selection of a specific button (which you can determine
by checking the value of aKeycode), but do not want to dismiss the
dialog yet.

Also, remember that if the Cancel button is selected then the dialog
exits without calling OkToExitL().

For Series 60, since we have only the edit control, the dialog class is
simpler and defined as follows:

CSimpleExDialog::CSimpleExDialog(TDes& aText, TRgb& aColor) :
iText(aText),iColor(aColor)

{
}

void CSimpleExDialog::PreLayoutDynInitL()
{
STATIC_CAST(CEikEdwin*,Control(ESimpleExText))->SetTextL(&iText);
}

DIALOGS 357

TBool CSimpleExDialog::OkToExitL(TInt /*aKeycode*/)
{
STATIC_CAST(CEikEdwin*,Control(ESimpleExText))->GetText(iText);
return ETrue;
}

Launching the Dialog

To launch the dialog, I added a menu item called Settings to the main
menu in the resource file:

RESOURCE MENU_PANE r_SimpleEx_menu
{
items =

{
MENU_ITEM
{
command = ESimpleExCommand;
txt = "Start";
},
MENU_ITEM

{
command = ESimpleExDialog;
txt = "Settings";
}

};
}

I added the ESimpleExDialog command code, as well as the dialog
line identifiers, to SimpleEx.hrh:

enum
{
ESimpleExCommand = 1, // start value must not be 0
ESimpleExDialog,
ESimpleExText,
ESimpleExColor
};

I then added the following code to the CSimpleExAppUi::Handle-
CommandL() command switch statement, to handle the ESimpleEx-
Dialog command:

case ESimpleExDialog:
CEikDialog* dialog = new (ELeave) CSimpleExDialog

(iAppView->iDisplayText,iAppView->iTextColor);
dialog->ExecuteLD(R_SIMPLEEX_DIALOG);
break;

This code constructs the dialog class, passing the current display text
and display color to the constructor. The code then launches the dialog

358 GUI APPLICATION PROGRAMMING

by calling the dialog’s ExecuteLD() method – passing it the resource
identifier of the dialog. I do not check the return value here, since for this
example it’s not needed, but ExecuteLD() returns ETrue when OK is
selected, and EFalse if the dialog was canceled.

Although I have not done so here, it’s common for a dialog class to
implement a static RunDlgLD() method that will both construct the
dialog class instance and call the ExecuteLD() function.

Other Modifications to SimpleEx

Let’s look at the modifications made to the SimpleEx view class in order
to have the text displayed using the text and color variables manipulated
by the dialog.

In the class declaration, added members iDisplayText and iText-
Color to specify the text string and color:

class CSimpleExAppView : public CCoeControl
{

public:
static CSimpleExAppView* NewL(const TRect& aRect);
static CSimpleExAppView* CSimpleExAppView::NewLC(const TRect& aRect);
void ConstructL(const TRect& aRect);

TBuf<100> iDisplayText;
TRgb iTextColor;

private:
void Draw(const TRect&) const;
};

And I modified the view’s secondary constructor to initialize these vari-
ables to a default.

void CSimpleExAppView::ConstructL(const TRect& aRect)
{
CreateWindowL();
SetRect(aRect);
iTextColor=KRgbBlack;
iDisplayText.Copy(_L("Simple Example"));
ActivateL();
}

I then modified the Draw() function to use iDisplayText and
iTextColor when drawing the centered text on the view as follows:

void CSimpleExAppView::Draw(const TRect&) const
{
CWindowGc& gc = SystemGc();
const CFont* font;
TRect drawRect = Rect();

DIALOGS 359

gc.Clear();

font = iEikonEnv->TitleFont();
gc.UseFont(font);
TInt baselineOffset=(drawRect.Height() - font->HeightInPixels())/2;

gc.SetPenColor(iTextColor);
gc.DrawText(iDisplayText,drawRect,baselineOffset,

CGraphicsContext::ECenter, 0);

gc.DiscardFont();
}

Also, in your mmp file, you need to add the following:

LIBRARY eikdlg.lib eikctl.lib eikcoctl.lib

since these libraries are needed for the dialog class, and the controls it
uses.

11.5.2 Multipage Dialogs
A multipage dialog is a dialog that allows you to switch between multiple
dialog pages via tabs. Multipage dialogs are useful for dialogs which
contain a large number of related controls. All of the UI platforms support
multipage dialogs, although their appearance and navigation methods
can vary slightly.

To define a multipage dialog, instead of putting your DLG_LINEs
directly in the DIALOG resource structure, you set the pages attribute of
your DIALOG structure to point to an ARRAY resource, which specifies
a list of PAGE structures. In each PAGE structure, you define the text to
appear on the tab associated with the page (text attribute), an identifier
for the page (id attribute) and a pointer to an array (another ARRAY
resource) that contains the list of your DLG_LINEs that make up that
page. Here is an example resource definition of a three-page multipage
dialog:

RESOURCE DIALOG r_my_multi_page_dialog
{
title=“Multipage dialog;

pages=r_my_pages;
flags=EEikDialogFlagWait;
buttons= R_EIK_BUTTONS_CANCEL_OK;
}

RESOURCE ARRAY r_my_pages
{
items=

360 GUI APPLICATION PROGRAMMING

{
PAGE { text=“Page 1”; id=EMyPage1; lines=r_my_page_1; },
PAGE { text=“Page 2”; id=EMyPage2; lines=r_my_page_2; },
PAGE { text=“Page 3”; id=EMyPage3; lines=r_my_page_3; },
};

}

RESOURCE ARRAY r_my_page_1
{
items=

{
DLG_LINE { ... },
DLG_LINE { ... }
};

}

RESOURCE ARRAY r_my_page_2
{
items=

{
DLG_LINE { ... },
DLG_LINE { ... }
};

}

RESOURCE ARRAY r_my_page_3
{
items=

{
DLG_LINE { ... },
DLG_LINE { ... }
};

}

In your dialog class code, the control values are set and retrieved in the
same way as on a single-screen dialog. In other words, the division of
controls between pages on the dialog affects the resource file only, and
your code still retrieves controls by the Control() method in the same
way, regardless of what page it is on.

11.5.3 Series 60 Specifics

CAknDialog Class

Series 60 provides a class called CAknDialog that extends CEikDia-
log by allowing you to associate a menu with the dialog This allows
the dialog to have a variable number of ‘button’ options, instead of just
the OK and Exit softkeys that are the only ones available from CEik-
Dialog. You can pass the identifier of the required MENU resource to
CAknDialog::ConstructL(). In programming terms, apart from the

DIALOGS 361

addition of this optional menu, these dialogs behave in the same way as
those derived from CEikDialog.

Series 60 Forms

Series 60 provides another type of dialog, which is known as a form.
Forms derive from CAknForm, which itself extends CAknDialog. A form
is the preferred type of dialog to use in Series 60 applications it guarantees
that the dialog conforms to the Series 60 UI guidelines.

A form displays a set of data fields in the form of a list, with each
data field in the list consisting of a label and a control. The label can
be on the same line as the control, or it can be on a separate line,
with the control below it. In addition, a form dialog is automatically
associated with a standard menu that supplies the options: Add field,
Edit label, Delete field, Save and, optionally, Edit. Selecting
one of the first four of these options results in a call to the appropriate
one of the CAknForm functions: AddItemL(), EditCurrentLabel(),
DeleteCurrentItem()and SaveFormDataL().

A Series 60 form has two modes: in ‘view’ mode it acts as an application
view that displays a list of data items, and ‘edit’ mode can be used to
modify the data items displayed. By default, it starts up in ‘view’ mode
and you can switch to ‘edit’ mode by selecting the Edit menu option.
When you have finished editing the data, you press the right softkey
(temporarily labeled Done) to return to the ‘view’ mode.

A form is actually more powerful than a dialog. If, for example, the data
items it is displaying are the fields of a database record, you can implement
the commands described above to add, delete or modify entire records.

You can specify that the form should be edit-only (via a flag in the
FORM resource), so that the form is always in ‘edit’ mode, and in this
case, the Edit menu option does not appear. Also, you can override
its DynInitMenuPaneL() to disable some or all of the other menu
options.

You specify a form in the resource file by creating a FORM resource
and assigning it to the form attribute of a DIALOG resource (or a PAGE
resource for multipage dialogs). The FORM resource contains the list
of DLG_LINES that specify the label and control for each field in the
form’s list.

The above description of forms is, of necessity, brief. You should
refer to the SDK documentation for examples, and a more complete
explanation.

For now, let’s look at a form-based implementation of the SimpleEx
dialog that modifies both the displayed text and its color. This example
illustrates many of the features of a form, and displays the dialog shown
in Figure 11.11:

362 GUI APPLICATION PROGRAMMING

Figure 11.11 Form-based SimpleEx Dialog for Series 60

Here is the form’s definition in the resource file:

RESOURCE DIALOG r_SimpleEx_dialog
{
flags=EEikDialogFlagNoDrag|EEikDialogFlagFillAppClientRect|

EEikDialogFlagNoTitleBar|EEikDialogFlagWait|
EEikDialogFlagCbaButtons;

buttons=R_AVKON_SOFTKEYS_OPTIONS_BACK;
form=r_SimpleEx_form;
}

RESOURCE FORM r_SimpleEx_form
{
flags = EEikFormEditModeOnly | EEikFormUseDoubleSpacedFormat;
items=

{
DLG_LINE
{
type=EEikCtEdwin;
prompt="Text";
id=ESimpleExText;
control=EDWIN { width=10; maxlength=256;};
},

DLG_LINE
{
type=EAknCtPopupFieldText;
prompt="Color";
id=ESimpleExPopup;
itemflags=EikDlgItemTakesEnterKey|

EEikDlgItemOfferAllHotKeys;
control = POPUP_FIELD_TEXT

{
popupfield=POPUP_FIELD
{
width=10;

DIALOGS 363

};
textarray=r_color_list;
};

}
};

}

RESOURCE ARRAY r_color_list
{
items=

{
LBUF { txt="Black"; },
LBUF { txt="Red"; },
LBUF { txt="Green"; },
LBUF { txt="Blue"; }
};

}

As you can see, the DIALOG resource defines the flags and softkeys, as in
the earlier examples, and the form attribute points to a FORM resource.
This resource specifies the dialog’s content which, in this case, consists of
two dialog lines: the text edit box and a Series 60 specific control, known
as a pop-up field (type EAknCtPopupFieldText and control structure
POPUP_FIELD) which is used to select the text color. The FORM resource
has an additional flags attribute, which is used here to set each control
and its prompt to be displayed on separate lines, and to set the ‘edit only’
mode that was mentioned earlier.

Here is the dialog class definition:

class CSimpleExForm : public CAknForm
{

public:
static CSimpleExForm* NewL(TDes& aText,TRgb& aColor);

private:
CSimpleExForm(TDes& aText,TRgb& aColor);
// Inherited from CAknForm
void DynInitMenuPaneL(TInt aResourceId, CEikMenuPane* aMenuPane);
TBool SaveFormDataL();
void PreLayoutDynInitL();

private:
TDes& iText;
TRgb& iColor;
};

The corresponding implementation is:

#include "SimpleEx.h"
#include "SimpleEx.hrh"

364 GUI APPLICATION PROGRAMMING

#include "eikedwin.h"
#include <AknPopupFieldText.h> // CAknPopupFieldText
#include <avkon.rsg> // R_AVKON_FORM_MENUPANE
#include <eikmenup.h> // CEikMenuPane

const TRgb colorList[4] =
{
KRgbBlack, KRgbRed, KRgbGreen, KRgbBlue
};

CSimpleExForm* CSimpleExForm::NewL(TDes& aText,TRgb& aColor)
{
CSimpleExForm* self = new (ELeave) CSimpleExForm(aText, aColor);
CleanupStack::PushL(self);
self->ConstructL();
CleanupStack::Pop(self);
return self;
}

CSimpleExForm::CSimpleExForm(TDes& aText, TRgb& aColor) :
iText(aText),iColor(aColor)

{
}

void CSimpleExForm::PreLayoutDynInitL()
{
STATIC_CAST(CEikEdwin*,Control(ESimpleExText))->SetTextL(&iText);
TInt currColorIndex = 0;
for (TInt i = 0; i < 4; i++)

{
if (iColor == colorList[i])
{
currColorIndex = i;
break;
}

}
CAknPopupFieldText* popupFieldText = static_cast

<CAknPopupFieldText*>(ControlOrNull(ESimpleExPopup));
if (popupFieldText)

{
popupFieldText->SetCurrentValueIndex (currColorIndex);
}

}

void CSimpleExForm::DynInitMenuPaneL(TInt aResourceId, CEikMenuPane*
aMenuPane)

{
CAknForm::DynInitMenuPaneL(aResourceId,aMenuPane);

if (aResourceId == R_AVKON_FORM_MENUPANE)
{
aMenuPane->SetItemDimmed(EAknFormCmdLabel, ETrue);
aMenuPane->SetItemDimmed(EAknFormCmdAdd, ETrue);
aMenuPane->SetItemDimmed(EAknFormCmdDelete, ETrue);
}

}

TBool CSimpleExForm::SaveFormDataL()

DIALOGS 365

{
CEikEdwin* nameEditor = static_cast <CEikEdwin*>

(ControlOrNull(ESimpleExText));
if (nameEditor)

{
nameEditor->GetText(iText);
}

CAknPopupFieldText* popupFieldText = static_cast
<CAknPopupFieldText*>(ControlOrNull(ESimpleExPopup));

if (popupFieldText)
{
iColor = colorList[popupFieldText->CurrentValueIndex()];
}

return ETrue;
}

PreLayoutDynInit() is overridden, exactly as in our earlier dia-
log example, to set the initial values of the controls in the form. As
before, we use CEikEdwin for the text editor control. For the color
list, we use the CAknPopupFieldText class, which corresponds to the
EAknCtPopupFieldText control type that is specified in the resource
file.

In a form, you do not override OkToExitL() to have the settings take
effect. Instead, you override CAknForm’s SaveFormDataL() function
which is called when the user selects the Save option on the menu.
In this case, the code is similar to that used in the earlier example’s
OkToExitL(); it reads the control’s values and assigns them to the text
and color references passed to our form, thus enabling them to take effect.

Since we do not want the user to be able to add or delete data, or edit the
field labels for our simple example, we override DynInitMenuPaneL()
and disable the corresponding menu items as follows:

void CSimpleExForm::DynInitMenuPaneL(TInt aResourceId,
CEikMenuPane* aMenuPane)

{
CAknForm::DynInitMenuPaneL(aResourceId,aMenuPane);

if (aResourceId == R_AVKON_FORM_MENUPANE)
{
aMenuPane->SetItemDimmed(EAknFormCmdLabel, ETrue);
aMenuPane->SetItemDimmed(EAknFormCmdAdd, ETrue);
aMenuPane->SetItemDimmed(EAknFormCmdDelete, ETrue);
}

};

Calling SetItemDimmed() on these menu items has the effect of
removing them from the form’s menu. We don’t need to dim the Edit
menu item (which normally switches the form from ‘view’ mode to ‘edit’
mode) since it is automatically suppressed for an ‘edit only’ form.

366 GUI APPLICATION PROGRAMMING

In HandleCommand(), the form is launched in a similar way to
launching a standard dialog:

case ESimpleExDialog:
CSimpleExForm* form = CSimpleExForm::NewL(iAppView->iDisplayText,

iAppView->iTextColor);
form->ExecuteLD(R_SIMPLEEX_DIALOG);
break;

11.5.4 Additional Dialog Methods
Here are some additional methods of CEikDialog you can take advan-
tage of to create more advanced dialog boxes.

void MakeWholeLineVisible(TInt aControlId, TBool aVisible)

This method will make the dialog line with identifier aControlId
visible or invisible depending on whether aVisible is set to ETrue, or
EFalse respectively. For example:

MakeWholeLineVisible(ESimpleExColor,EFalse);

would make the dialog line containing our color choice list field in our
example dialog invisible.

Alternatively you can use MakeLineVisible(TInt aControlId,
TBool aVisible) which affects only the control’s visibility and not the
rest of the dialog line.

void SetDimmedNow(TInt aControlId, TBool aDimmed)

This method will dim or undim the dialog line with the specified
control identifier. Set aDimmed to ETrue to dim, or EFalse to undim.
Dimming a dialog line causes it to be read only.

void SetTitleL(TDesC& aTitle)

This method sets the dialog title to aTitle. There is also a version that
reads the title from a text resource, specified by its resource identifier.

void SetControlCaptionL(TInt aControlId, TDesC& aCaption)

You can use this to change the prompt displayed before the con-
trol in the dialog line, identified by aControlId to the text specified
in aCaption. Again, there is also a version that reads the text from
a resource.

void DeleteLine(TInt aControlId)

DIALOGS 367

This deletes the dialog line identified by aControlId.

void InsertLineL(TInt aIndex,TInt aResourceId,TInt aPageId=0)

This inserts a dialog line in your dialog box, at the line number
specified in aIndex. aResourceId is the resource identifier of a dialog
line resource (defined with RESOURCEDLG_LINE). In a multipage dialog,
aPageId specifies the page in which the insertion will be made (for single
page dialogs, it’s always 0).

11.5.5 Additional CEikDialog Methods to Override
In the example we overrode CEikDialog’s PreLayoutDynInitL()
and OkToExitL()methods to pre-initialize the dialog controls upon
display and to save/process the dialog settings on exit, respectively. Here
are some other CEikDialog methods you can override to make more
advanced dialog boxes:

virtual void HandleControlStateChangeL(TInt aControlId)

The framework calls this method when one of the dialog’s components
reports a change of state, which happens, for example, when there is a
change in the selected item in a choice list. The value of aControlId
identifies the control whose state has changed. You can override this
CEikDialog method, for example, if you want to make a line visible
or not (using, for example, MakeWholeLineVisible()) depending on
the state of another control. That way, as the control state changes, some
other dialog field can be made to appear or disappear, based on its
applicability.

virtual void LineChangedL(TInt aControlId)

This method is called when the dialog line focus changes. aCon-
trolId indicates which line has gained focus. Override this if you want
to do something special (such as put up special softkeys) when a particular
dialog line obtains focus.

virtual void PageChangedL(TInt aPageId)

This function is called when the user changes pages on a multipage
dialog. aPageId indicates the identifier of the page that was changed to
(as defined by the id attribute of the PAGE resource structure). You can
override this, for example, if you want to display a special set of softkeys
when the user switches to a particular dialog page.

368 GUI APPLICATION PROGRAMMING

11.5.6 Using Stock Dialogs

Symbian OS has some predefined dialogs that you can use for conve-
nience, and some of these vary from platform to platform. I will briefly
cover some of the main ones in this section.

Dialogs Common to All UI platforms

The following methods of CEikonEnv are a quick way to put up some
simple, commonly used dialogs without defining a class or creating a
resource. They are available to all UI platforms.

static void CEikonEnv::InfoWinL(const TDesC& aLine1, const TDesC& aLine2)

This is a static function that displays an information dialog with the
specified lines of text.

void CEikonEnv::AlertWin(const TDesC& aLine1, const TDesC& aLine2)

This displays an alert dialog with the specified lines of text.

TBool CEikonEnv::QueryWinL(TInt aFirstLineId, TInt aSecondLineId=0)

This displays a Yes/No query dialog with the specified lines of text,
supplied as resource identifiers. QueryWinL() returns ETrue if Yes was
selected, and EFalse if No.

UIQ Stock Dialogs

These dialogs are straightforward to use, in that no resources need be
defined. You just call the class’s static function RunDlgLD() (with the
appropriate arguments) and the dialog will be constructed and displayed.
RunDlgLD() will return when the dialog is dismissed, and the dialog
data will be returned in the appropriate parameters passed to the function.

For example, CEikTimeDialogSetTime displays a dialog allowing
the user to enter the time and date. Below is an example of the code to
display this (you need to include file eiktime.h):

TTime currentDateTime;
// Launch the dialog and get the date and time from the dialog.
// if(CEikTimeDialogSetTime::RunDlgLD(currentDateTime))
{
// currentDateTime now contains the date and time entered.
}

DIALOGS 369

The TTime class holds the time and date, as well as providing many
formatting functions for text display. It also supplies comparison functions
for calculating intervals between two TTime instances.

This date and time dialog for UIQ is shown in Figure 11.12.
Other UIQ stock dialog classes include:

• CEikSetPasswordDialog sets a password, providing both pass-
word and confirmation fields.

• CEikTimeDialogSetCity allows the user to set allocation, by
selecting a country and city.

• CEikEdwinFindDialog allows the user to find text.

• CQikZoomDialog allows the user to set the zoom level.

To use these dialogs, be sure to include the appropriate include file. Also,
in the LIBRARY section of your mmp file, you need to add eikcdlg.lib
to use dialogs that begin with CEik, and qikdlh.lib to use dialogs
that begin with CQik.

Series 80 Predefined Dialogs

Series 80 provides a set of predefined dialogs that begin with CCkn (part of
the Series 80 Ckon layer). To use them, include the appropriate include
file and add the ckndlg.lib library to your mmp file. No resource
definition is needed. There are many variations of these dialogs, with
options to supply icons, or to use other ways to customize them. Refer to
the Series 80 SDK documentation for the complete list of dialog classes,
as well as the various options that they have. Here are some of them:

• CCknConfirmationDialog – include cknconf.h

CCknConfirmationDialog::RunDlgWithDefaultIconLD(_L("Do you want to do
this?"), R_EIK_BUTTONS_NO_YES);

Figure 11.12 Date and Time Dialog for UIQ

370 GUI APPLICATION PROGRAMMING

Figure 11.13 Info dialog for Series 80

• CCknInfoDialog – include ckninfo.h

CCknInfoDialog::RunDlgLD(_L("My title"), _L("Some info"));

This displays the dialog shown in Figure 11.13.

• CCknOpenFileDialog – include ckndgopn.h.

_LIT(KPath,"\\");
TBuf<255> path = KPath;
CCknOpenFileDialog::RunDlgLD(path);

This displays a full-featured dialog to browse the directory structure,
to locate and select a file for opening. On exit from RunDlgLD(), path
contains the full path of the file the user selected.

• CCknNewFileDialog, CCknSaveAsDialog – include
ckndgsve.h

These display dialogs to create a new file and to save a file to a specific
path, respectively.

Series 60 Predefined Dialogs

Series 60 provides a set of standard query dialogs to obtain specific types of
data from the user. Each of these dialogs requires that a DIALOG resource
be created, with its flags attribute set to EGeneralQueryFlags, plus
a DLG_LINE with control type set to EAknCtQuery and id set to
EGeneralQuery. Here are a couple of examples.

Confirmation Query Dialog

A confirmation query dialog uses class CAknQuieryDialog. Below is
a resource defined for it:

RESOURCE DIALOG r_yes_no_dialog
{
flags = EGeneralQueryFlags;

DIALOGS 371

buttons = R_AVKON_SOFTKEYS_YES_NO;
items =

{
DLG_LINE
{
type = EAknCtQuery;
id = EGeneralQuery;
control = AVKON_CONFIRMATION_QUERY

{
layout = EConfirmationQueryLayout;
label = "";
};

}
};

}

And the code to invoke it is:

CAknQueryDialog* dlg = CAknQueryDialog::NewL(aQueryTxt, aSound ?
CAknQueryDialog::EConfirmationTone : CAknQueryDialog::ENoTone);

return dlg->ExecuteLD(R_YES_NO_DIALOG);

Although not used in this example, AVKON_CONFIRMATION_QUERY also
has bitmap and animation attributes.

Text Query

CAknTextQueryDialog is a class used to display a dialog that prompts
the user for a text entry. Below is an example resource definition for it:

RESOURCE DIALOG r_demo_data_query
{
flags = EGeneralQueryFlags;
buttons = R_AVKON_SOFTKEYS_OK_CANCEL;
items =

{
DLG_LINE
{
type = EAknCtQuery;
id = EGeneralQuery;
control = AVKON_DATA_QUERY

{
layout = EDataLayout;
label = ""; // prompt text
control = EDWIN
{
width = 5;
lines = 1;
maxlength = 15;
};

};
}

};
}

372 GUI APPLICATION PROGRAMMING

And the code to invoke it is:

TBuf<128> text; //where the user text will be placed
TBuf<128> prompt(_L("Enter text:"));

CAknTextQueryDialog* dlg =
new(ELeave) CAknTextQueryDialog(text, prompt);
// Prepares the dialog, constructing it from the specified resource
// Sets the maximum length of the text editor
dlg->SetMaxLength(20);
// Launch the dialog
if (dlg->ExecuteLD(R_DEMO_DATA_QUERY))
{
// ok pressed, text is the descriptor containing
// the entered text in the editor.
}

This displays a text edit box with the prompt ‘Enter text:’.
Other Series 60 query dialogs include:

• CAknNumberQueryDialog – Used for entering an integer.

• CAknTimeQueryDialog – Used for entering a date/time query.

• CAknListQueryDialog – Used for entering a query that requires a
selection from a list (setting DLG_LINE control attribute to
AVKON_LIST_QUERY for a single selection list, and AVKON_MULTI-
SELECTION_LIST_QUERY to allow multiple selections).

Below are classes that are referred to as wrappers in Series 60, since they
require no resource to be defined, and thus are simple to use.

• CAknConfirmationNote – Allows the user to confirm an action,
as in the following example.

TBuf<256> msg;
CCoeEnv::Static()->ReadResource(msg, R_MSG_DELETE_PENDING);
CAknConfirmationNote* note = new (ELeave) CAknConfirmationNote();
note->ExecuteLD(msg);

• CAknInformationNote – Used in a similar way to the above dia-
log, but displays an information note.

• CAknErrorNote – Displays an error message.

• CAknWaitDialog – Used to wait for a process to complete.

• CAknProgressDialog – Indicates the progress of a long-running
process.

11.6 Symbian OS Controls
Symbian OS has a large variety of GUI controls available. Many are
common to all platforms, and others are specific to the particular UI

SYMBIAN OS CONTROLS 373

platform you are using. As we saw in the dialog example, you need to
know the following to use a control:

• The RESOURCE structure to use for the control, and the appropriate
attributes to set. The resource structures of all the common controls
are in uikon.rh and eikon.rh. UIQ specific control structures are
in Qikon.rh, Series 60 specific controls are in avkon.rh and Series
80 specific controls are in cknctl.rh.

• The name of the control type identifier to use as the type attribute of
the DLG_LINE (e.g. type=EEikCtEdwin for a text edit control).

• The class of the control, and its class-specific methods, including
those to write data to and retrieve data from the control.

• The header file to include for using the control class, and the library
to link to.

Note that, although it is most common to implement controls using
resource definitions within a dialog resource’s DLG_LINE structure, there
are other options as well. For example, your control could have its
own, separate RESOURCE identifier, and you can use code to insert it
into a dialog, or directly into a view. Alternatively, you can incorporate
the control into your program without using a resource definition at
all, using control-specific methods to set the control’s attributes. This is
common, for example, when you implement a list box to be a part of
your main view.

11.6.1 Types of Control

This section gives a tour of some of the main control types. It is not
exhaustive, but the SDK documentation contains a complete list of
available controls.

Editor Controls

Edit controls allow the user to enter a piece of data of a specific type. A
wide variety of edit controls exist, including text editors, number editors,
calendar editors, date and time editors, duration editors, secret editors,
PIN editors, color editors, IP address editors, and more.

For example, we have seen the text editor, which uses resource struc-
ture EDWIN, control type identifier EEikCtEdwin, and class CEikEd-
win. Its key methods are SetText() to write initial text into the editor
and GetText() to retrieve the contents of the editor.

374 GUI APPLICATION PROGRAMMING

List Boxes

List boxes are very common in Symbian OS software, and a wide variety
of list box types exist. These include, amongst others, single and multiple
section boxes, list boxes with graphics, numbered list boxes, double list
boxes, and settings list boxes (where you can change the value of each
entry).

List boxes use the LISTBOX resource structure, which is defined as:

STRUCT LISTBOX
{
BYTE version=0;
WORD flags = 0;
WORD height = 5; // in items
WORD width = 10; // in chars
LLINK array_id = 0;
}

The flags attribute specifies the characteristics of the list (for example,
EEikListBoxMultipleSelection means that the user can select
multiple options in the list), and height and width specify the
list’s size. array_id points to an array resource of text items to dis-
play in the list. Alternatively, you can leave this array_id at 0 and
build your own array in code, using class methods (such as Model()
->SetTextItemArray()) to associate the array with the list box.

List box classes are ultimately derived from CEikListBox. The main
classes available are:

• CEikTextListBox (control type EEikCtListBox) – This is the
basic text list box.

• CEikColumnListBox (control type EEikCtColListBox) –
Displays cells that are grouped in columns.

• CEikHierarchicalListBox – Displays a hierarchical list, where
items can be expanded or collapsed.

In UIQ and Series 80, you usually use the above classes directly. In
these platforms, list boxes are rarely used in dialogs (choice lists are
used instead), and list boxes are most often added directly to your
application view.

In Series 60, you can use list box query dialogs as an alternative to
including a list box control in a dialog. Series 60 provides a number of
specific classes for the various types of list boxes. For example:

• CAknSingleStyleListBox (control type EAknCtSingleList-
Box) is a standard single-selection list box.

SYMBIAN OS CONTROLS 375

• CAknSingleGraphicsStyleListBox (control type EAknCtS-
ingleGraphicsListBox) allows you to include graphics in a
single-selection list box.

There are many more list box classes to choose from – refer to the SDK
documentation for the complete list.

Progress Bars

A progress bar control uses a PROGRESSINFO resource structure, together
with a control type of EEikCtProgInfo and class CEikProgress-
Info. You use this to provide user feedback on the progress of a
long-running process. The control gives a graphical representation of
progress, as well as text showing the percentage (or fraction) completed.
In Series 60, you usually display the progress bar using a dedicated dialog
(class CAknProgressDialog) known as the progress note dialog.

Option Buttons

Also known as radio buttons, option buttons allow you to select one
option from a small list of choices.

UIQ has a vertical option list (class CQikVertOptionButtonList,
resource structure QIK_VERTOPBUT, type EQikCtVertOptionBut-
tonList) and a horizontal option list (class CQikHorOptionButton-
List, resource structure QIK_HOROPBUT, type EQikCtHorOption-
ButtonList).

You can also use option buttons in menus. In this case, you need
to indicate the position of each button, relative to the other buttons
in the sequence, by specifying one of EEikMenuItemRadioStart,
EEikMenuItemRadioMiddle or EEikMenuItemRadioEnd in the
flags field of each button’s MENU_ITEM structure. Use CEikMenu-
Pane::SetItemButtonState() to set which button is selected.

Check Boxes

Check boxes allow you to select or deselect a particular item by checking
it or not. You can use these to allow multiple selections of options from
a list, or as a single enable/disable type field for a particular application
setting.

Check box controls use a control type of EikCtCheckBox and class
CEikCheckBox (methods SetState() and State() respectively set
and get the state of the checkbox). No resource structure is needed.

Choice List

A choice list allows you to select an item from a list of text options. The
control displays a single item at a time, and pops up the list only while

376 GUI APPLICATION PROGRAMMING

the user is changing the control value. Choice lists are supported in UIQ
and Series 80, but not in Series 60.

The choice list uses a control type of EEikCtChoiceList, class
CEikChoiceList, and resource structure CHOICELIST. As with list
boxes, a choice list allows you either to specify the array of choices
in the resource file or to attach a list programmatically, using CEik-
ChoiceList::SetArrayL().

Combo Box

A combo box is similar to a choice list, except that the user can also enter
text into the control field, as well as select an item from the list (hence
the name: the control is a combination text editor and choice list).

The combo box uses control type EEikCtComboBox, class CEik-
ComboBox and resource structure COMBOBOX.

As with choice lists and list boxes, you can set the array either in
the resource or via EEikComboBox::SetArrayL(). Use class methods
SetTextL() and GetTextL() to set text to and retrieve text from the
control.

11.6.2 What Is a Control?

When implementing dialogs or using stock controls, you do not need
to know the details of how the controls are implemented, or how they
work. However, this knowledge is needed if you write your own custom
controls and, since your application view is actually a custom control,
you always have at least one (it can be a very simple one, but more
complex ones are common) per application.

A control is a rectangular region on the screen that can receive user
input and, in many cases, encapsulates some kind of user-editable data
Every display region in an application is a control, including the main
application view window. A control is implemented by a class that
inherits from CCoeControl. The derived class overrides the methods of
CCoeControl to draw itself on the screen and to handle any user input
events that are destined for that control.

A control is considered a custom control if it is not one of the predefined
control classes that are supplied with Symbian OS but is, instead, created
by an application programmer by deriving from CCoeControl. The
application view is always a custom control – and, in most cases, the
only custom control in the application. The application view can be very
simple (as it is in SimpleExwhich simply displays a window with text in
it) or it can be complex, possibly containing one or more child controls.

In addition to the application view, you may also want to create custom
controls to allow the user to manipulate or display data in a way that
none of the Symbian OS predefined controls do. Although the predefined

SYMBIAN OS CONTROLS 377

controls provide most of the functionality you will need, in some cases a
custom control may be necessary.

11.6.3 Anatomy of a Control

A control has the following characteristics:

1. It inherits from CCoeControl.

All controls inherit, directly or indirectly, from CCoeControl.

2. It draws itself.

Controls are responsible for drawing themselves in response to redraw
events. This is done by overriding CCoeControl’s Draw() method.

3. It can handle key events.

A control may optionally handle user key events by implementing
the OfferKeyL() method.

4. It can handle pointer events.

Controls can optionally handle pointer events (like a touch on the
touch screen) by implementing the HandlePointerEvent() func-
tion.

5. It encapsulates and provides access to user data.

The control class usually (although not always) encapsulates some
user data which can be simply displayed, or may be modifiable by
the user via the control. The class derived from CCoeControl will
provide its own specific methods to set and retrieve this data

Although many controls share all of these characteristics, only the first
one is an essential requirement. For example, a simple application view,
as in SimpleEx, is a window with text displayed in it – and thus only
needs to implement the Draw()method to draw itself in response to
redraw events.

11.6.4 Window-Owning Versus Lodger Controls

In order for its content to be displayed, each control must be associated
with one of the windows that are managed by the window server. In the
most straightforward case, a control is directly associated with a window,
and is responsible for maintaining the whole of the window’s area. Such
a control is said to be a window-owning control. An application has at
least one window owning control – the application view.

In their ConstructL() function, window-owning controls call Cre-
ateWindowL(), which causes the window to be created and registered
with the window server. In addition, the control environment (CONE)

378 GUI APPLICATION PROGRAMMING

associates the window with the control whose call to CreateWindowL()
created it.

For example, the application view in SimpleEx (as with all application
views) is a window-owning control. The ConstructL() of SimpleEx’s
view is as follows:

void CSimpleExAppView::ConstructL(const TRect& aRect)
{
CreateWindowL();
SetRect(aRect);
ActivateL();
}

In addition to calling CreateWindowL(), ConstructL() calls Set-
Rect() to specify the size of the control – and thus the window – which,
in this case, ends up filling the entire application space. ActivateL()
must always be called to indicate that the control is ready to draw itself.

In many cases, a control occupies – and is responsible for draw-
ing – only a portion of a window, sharing the window’s area with one or
more other controls. Such controls are said to be non-window-owning,
or lodger, controls. Instead of calling CreateWindowL() in their Con-
structL(), lodger controls call SetContainerWindowL(), passing a
reference to their parent window (which must, in turn, be owned by a
window-owning control).

With the exception of application views, window-owning controls
should be avoided where possible. Your application should minimize the
number of windows it owns, since each window adds to the overhead of
client/server messages between the application and the window server.
Lodger controls are much more efficient in this regard, since only a single
redraw event needs to be sent from the window server to the parent
window. The control environment can then ensure that all controls that
share that window are called upon to draw themselves, without any
further client/server traffic.

11.6.5 Compound Versus Simple Controls

A compound control is a control that contains – and owns – other controls
(known as child, or component, controls) within its region. A simple
control contains no other controls.

A lodger control, by definition, is always a child of a compound
control. Since a lodger can itself be a compound control, it is possible
for a lodger’s immediate parent control to be a lodger, and so not own a
window. However, the ultimate parent of a compound control tree must
always be a window-owning control. Although most compound controls
contain only lodger controls, you can, if you have a good reason to do
so, use component controls that themselves own windows.

SYMBIAN OS CONTROLS 379

A compound control always overrides the following functions from
CCoeControl:

TInt CountComponentControls()

This function should return the number of controls that make up the
compound control. The default base class implementation is to return 0.

CCoeControl* ComponentControl(TInt index)

This function should return the child component that corresponds to
each index number passed to it.

The following shows an example implementation of these functions
for a compound control that contains two other controls – a list box and
an edit box:

TInt MyCompoundControl::CountComponentControl()
{
return 2;
}

CCoeControl *ComponentControl(TInt index)
{
switch(index)

{
case 0:
return iMyListbox;

case 1:
return iMyEditBox;

}
}

This code is seen most frequently in an application view, since the
application view is usually the only custom control in the application. It
is common for an application’s main view to contain at least one child
control (a list box in many cases) – which means that it is a compound
control and would therefore need to override the above functions.

11.6.6 Drawing Controls

All controls are responsible for drawing themselves, by overriding the
Draw()method of CCoeControl. For predefined Symbian OS controls,
Draw() is implemented for you, but custom controls need to provide
their own implementation.

Before looking at how to implement the Draw() function, let’s take
a brief look at how draws occur in the system, so that you can better
understand when and how the system invokes your Draw() method.

380 GUI APPLICATION PROGRAMMING

Flow of a Redraw Event

As mentioned earlier, every application has a control environment, often
referred to as a CONE, associated with it (it’s an instance of a class called
CCoeEnv that is created automatically for your application). One of a
CONE’s principal tasks is to interface with the window server. It is, for
example, responsible for receiving a window draw event that is directed
at your application, and ensuring that all the controls within the invalid
region of the window are redrawn.

The following steps occur when a window managed by the window
server needs to be redrawn:

1. The window server sends a redraw event.

When a window needs to be redrawn, either because it has just been
created, or because a region has become invalid, the window server
sends a redraw command to the window server client that owns
the window. In the case of an application, this client is the target
application’s control environment instance.

2. CONE calls the control’s HandleRedrawEvent()method.

On receipt of the redraw event from the window server, the CONE
will look up the window-owning control that is associated with
the window that needs to be redrawn (this will usually be a
view or a dialog box). It then invokes that control’s CCoeCon-
trol::HandleRedrawEvent()method, passing it the area of the
window that needs redrawing.

3. The window control and its lodgers are drawn.

HandleRedrawEvent() is implemented completely in the CCoe-
Control base class – the application programmer does not need to,
and should not, override it. HandleRedrawEvent() will first call
the control’s Draw()method (which is overridden in a concrete con-
trol) passing it the rectangle that needs redrawing. HandleRedraw-
Event() then calls the Draw()method of any non-window-owning
component controls (and their components, if they are compound
controls) whose areas overlap the region that needs redrawing. Han-
dleRedrawEvent() iterates through these component controls by
calling the parent control’s CountComponentControls() and
ComponentControl() functions.

Note that if a component control owns a window, it is not redrawn by
this mechanism. This is for efficiency since, if the window associated
with that control needs updating, the window server will send a separate
redraw event.

SYMBIAN OS CONTROLS 381

Application-Initiated Drawing

An application will often need to force the drawing of one or more of
its controls, for example, when the application knows that a control’s
content has changed. It should do this by calling the control’s DrawNow()
function, which invokes the control’s Draw()method, along with the
Draw() of all its component controls (in this case, including any window-
owning controls).

An application should never call a control’s Draw() method directly.
In complex cases, such as where the changes to a control’s content

come from more than one source, calling DrawNow() after each change
has occurred may result in the control being redrawn unnecessarily often.
In such a situation, you should consider calling the control’s DrawDe-
ferred() function, rather than DrawNow(). DrawDeferred()works
by getting the window server to mark the control’s window as needing to
be redrawn. The window server will then generate a redraw event, and
the control will be redrawn by the mechanism described in the previous
section. The advantage of this technique is that there is an opportunity
for multiple calls to DrawDeferred()to be handled in a single redraw
of the control (at the expense of some additional client/server messaging
overhead).

SimpleEx Draw()

Let’s look again at the Draw() function in SimpleEx’s view class, and
describe it in more detail:

void CSimpleExAppView::Draw(const TRect&) const
{
CWindowGc& gc = SystemGc();
const CFont* font;

gc.Clear();

font = iEikonEnv->TitleFont();
gc.UseFont(font);
TRect drawRect = Rect();

TInt baselineOffset=(drawRect.Height() - font->HeightInPixels())/2;
gc.DrawText(_L("Simple Example"),drawRect,

baselineOffset,CGraphicsContext::ECenter, 0);

gc.DiscardFont();
}

Draw() takes a single argument of type TRect& that specifies the
rectangular area of the screen that requires redrawing. In this case, I
ignore it and just redraw the entire control (i.e. the view window). Of

382 GUI APPLICATION PROGRAMMING

course, if there is a significant advantage in doing so, you can use the
passed rectangle to redraw only what is needed.

The first thing Draw() does in the example is to get a reference to the
window’s graphics context. The graphics context provides the necessary
functions both to initialize the context and to draw to the window. It is
discussed in more detail in the following section. The example’s Draw()
then clears the window, using the graphics context’s Clear() function.
It then creates a TRect data structure to represent the window’s area
(Rect() returns the region occupied by the control, in this case the entire
view window), and the text ‘Simple Example’ is displayed in the center of
that rectangle (the vertical justification being previously calculated and
assigned to baselineOffset). Afterwards, to prevent a memory leak,
the font is discarded.

Although this example is very simple, you can do much more complex
screen drawing using the CWindowGc graphics context class, such as
drawing points, lines, bitmaps and a variety of filled shapes. The next
section gives a very basic overview of the drawing you can perform with
the aid of the graphics context.

11.6.7 Drawing Using the Graphics Context
Like Windows, Symbian OS has the concept of a graphics context object
that is used when drawing graphics and/or text to a window. In Symbian
OS, this graphics context to write to a window is represented by the
CWindowGC class. The first thing any control’s Draw()method should do
is get a reference to this context, using the control’s SystemGc()method.

Coordinates and Areas Types

Before examining the context and drawing functions, let’s look at some
key classes that will be used extensively when drawing to the screen.

• A TPoint specifies an x and y location on the screen, via its iX
and iY members. Screen coordinates in a control are relative to the
top-left corner of the window that the control resides in.

• TSize is a simple class that contains integer members iHeight and
iWidth to specify a height and width.

• TRect specifies a rectangular region on the screen. It has public
members iTl and iBr, which are type TPoint, and define the top-
left and bottom-right corners of the rectangle. TRect also has a few
useful member functions that perform commonly needed operations
on the rectangle.

Some useful functions of TRect include:

• Move() – This adds specified delta x and delta y values to the top-left
and bottom-right coordinates.

SYMBIAN OS CONTROLS 383

• Grow() and Shrink() – Expand or contract the rectangle by speci-
fied amounts.

• Intersects() – This returns ETrue if the passed rectangle inter-
sects this rectangle, EFalse otherwise.

• Contains() – This returns ETrue if the specified point is contained
within the rectangle, EFalse otherwise.

Setting up to Draw

The graphics context provides methods to set up the characteristics of
what will be drawn. This includes defining a pen or a brush, to be used
when drawing points, lines and shapes. It also provides a method for
assigning a font for the text-drawing functions to use.

Pen

The pen defines the color, style and thickness used when drawing points,
lines, text and the outline of filled shapes. These pen characteristics are set
using the graphics context methods SetPenColor(), SetPenStyle()
and SetPenSize().

For example:

CWindowGc& gc=SystemGc();
gc.SetPenColor(KRgbRed); // set pen to red (predefined colors in gdi.h)
gc.SetPenStyle(ESolidPen); // sets the pen to solid lines (the default)
TSize penSize(3,3);
gc.SetPenSize(penSize); // set pen to be 3x3 pixels thick.

Brush

The brush defines the background color or pattern that is used to fill
areas on the screen. The color and style of the brush are set using
SetBrushColor() and SetBrushSyle(). If the brush style is set to
use a pattern – that is, by calling SetBrushStyle(TBrushStyle::
EPatternedBrush) – then a call to UseBrushPattern() will spec-
ify the bitmap to use as the fill pattern.

Font

A font is set using the UseFont() function, and from then on is used
when drawing text. After you are finished with the font, you must call
DiscardFont() to avoid a memory leak. Fonts are of type CFont.

Drawing

Drawing points and lines
You can draw points, lines and groups of lines using CWindowGC
functions, which include Plot(), DrawLine(), DrawLineTo() and

384 GUI APPLICATION PROGRAMMING

DrawPolyLine() functions. These functions draw the points and lines
using the context’s pen.

Setting Current Positions

MoveTo() is used for setting the current position. Some functions use
the current position as the starting point for their action. For example,
DrawLineTo() draws a line from the current position to a single
specified point, in contrast with DrawLine(), which takes both endpoints
of the line as its arguments.

Drawing Filled shapes

Functions to draw filled shapes include DrawRect(), DrawEllipse(),
DrawRoundRect(), DrawPolygon()and DrawPie(). A filled shape’s
outline is drawn using the characteristics of the pen, and filled using the
characteristics of the brush.

Drawing Text

To draw text on the screen you need to call UseFont() to set the font,
set the pen color/style needed to draw the text and call DrawText() to
output the text.

Two forms of DrawText() exist. One draws text justified within a
rectangular region. This is the one used in SimpleEx. The other draws
the text at a specific position on the screen, as the following example
shows:

font = iEikonEnv->TitleFont();
gc.UseFont(font);
TPoint position(10,10);
gc.DrawText(KSomeText,position);

This will draw the string in KSomeText, with its bottom-left corner at
position 10,10 in the window.

Drawing Bitmaps

You can draw bitmaps to the screen using the DrawBitmap() func-
tion. Also, as mentioned earlier, you can specify a bitmap to be used
as the fill pattern for shapes by setting the brush style to TBrush-
Style::EPatternedBrush and making a call to UseBrushPat-
tern().

11.6.8 How User Input Is Handled
A control can handle two types of user input: keyboard and pointer.
Keyboard events occur when a hardware key is pressed or, in the case of

SYMBIAN OS CONTROLS 385

UIQ, a key icon on the virtual keyboard is selected. Pointer events occur
when the touch screen is touched (this only applies to UIQ, since Series
60 and Series 80 devices have no touch screen).

The Control Stack for Key Handling

The control stack is a data structure within an application’s control
environment. It lists, in priority order, all controls within the application
that should be offered key events. An application adds controls to this
control stack using the AddToStackL()method of the CCoeAppUi
application UI base class, and removes them by calling CCoeAppUi’s
RemoveFromStackL() method.

The control stack lists everything that can receive user-key input for
your application – including your application’s views, dialog boxes and
menus (for hotkeys). However, you need only worry about adding and
removing your application view controls to the control stack, since the
framework automatically handles the addition and removal of the control
stack entries for dialogs and menus.

Handling Keys in a Control

When an application receives a key-press event, the control environment
invokes CoeControl’s virtual OfferKeyEventL()method in every
control on the control stack, in priority order, until the key is consumed.

A control should override OfferKeyEventL() to perform any
needed key handling. If the particular key passed to the method is
handled by that control, then the method should return EKeyConsumed.
Otherwise, it should return EKeyNotConsumed, so that another control
can be given the chance to handle the event.

In a view control, it is usual to add only the view control itself to the
control stack. The view’s OfferKeyEventL() should, in turn, invoke
the OfferKeyEventL() method of each relevant component control,
in order to distribute the handling of the key event in a manner that is
appropriate for the application.

Virtual Keyboard and Handwriting Input

UIQ phones, such as the Sony Ericsson P900, allow text input by means
of handwriting recognition, or via an optional on-screen keyboard. These
are handled by what are known as front end processors (FEPs). In order
for a custom control – including your application view – to receive input
from these FEPs, your control must override CCoeControl’s InputCa-
pabilities()method, to return the types of input it can handle. An
FEP may call this function to determine what types of event it can send to
the control. The default implementation of InputCapabilities(), in

386 GUI APPLICATION PROGRAMMING

CCoeControl, is to return TCoeInputCapabilities::ENone – so,
by default, your control will not receive input from such FEPs.

Refer to your SDK documentation for the various types of input you
can specify via the InputCapabilities() function. The following
example returns TCoeInputCapabilities::EAllText to request
all types of text input from both the virtual keyboard and the handwriting
recognition FEPs:

TCoeInputCapabilities CMyView::InputCapabilities() const
{
TCoeInputCapabilities
capabilities(TCoeInputCapabilities::EAllText);

return capabilities;
}

Pointer Events

To handle pointer events in your custom control, override Handle-
PointerEventL() in CoeControl This method is defined as:

virtual void HandlePointerEventL(const TPointerEvent& aPointerEvent)

where TPointerEvent is a class that contains the type and position
of the pointer event. For example, the following code will display the
message ‘Hit’ when the user selects a point within the (previously defined)
TRect named iTarget:

void CMyView::HandlePointerEventL(const TPointerEvent& aPointerEvent)
{
TInt dx=0, dy=0;

// aPointerEvent.iPosition is a TPoint class
// aPointerEvent.iPosition.iX contains x coordinate of pointer selection
// aPointerEvent.iPosition.iY contains x coordinate of pointer selection
// Assume iTarget is a TRect of some target square, the below will print
// an info message
// if you tap the touch screen.

if (iTarget.Contains(aPointerEvent.iPosition))
{
User::InfoPrint(_L("Hit"));
return;
}

}

In addition to the coordinates of the screen touch contained in TPoint-
erEvent’s iPosition member, member iType contains the type of
touch screen event that occurred. For example, iType will be equal to

VIEW ARCHITECTURE 387

EButton1Down when the pen makes contact, EButton1Up when the
pen breaks contact, and EDrag if the stylus is moved while in contact
with the screen.

11.7 View Architecture

Up to this point, I have described applications that have only a single,
CCoeControl-derived view, created and started by the application UI
class upon construction. Symbian OS, however, permits you to define
multiple views for a single application, and allows you to switch between
them. This means that you can, for example, present application data to
the user in various different ways. Each view is registered with its own
identifier, and then the application can switch between them in response
to user events. It is also possible for one application to switch to the view
of another.

In this section, I’ll briefly introduce the view architecture, showing
only the basic principles of how to create and use views. You should refer
to the SDK for further information and examples.

11.7.1 How to Create Views
For each application view, you still need a class derived from CCoeCon-
trol (i.e. a custom control) to display the data. To create views that
can be used with the view architecture, your view class needs to inherit
from an interface class called MCoeView. MCoeView provides virtual
functions that are called by the view architecture to register a view, get its
identifier and switch from one view to another. In most cases, you define
each view to inherit from both CCoeControl and MCoeView (although
you can, if necessary, derive a class from MCoeView only, and keep your
view control as a separate object).

Creating an application with multiple views will normally involve the
following steps:

• Create your view custom controls and additionally derive them from
MCoeView.

• In each of your view classes, override the MCoeView virtual func-
tions: ViewID(), ViewActivatedL(), ViewDeactivated() and
ViewConstructL().

• In your application, register all your views using the application UI
class’s RegisterViewL() method.

• Set a default view using UI class’s SetDefaultView() method.

• Switch between views as needed with the application UI class Acti-
vateViewL().

388 GUI APPLICATION PROGRAMMING

MCoeView Methods to Override

Let’s now look at each of the MCoeView virtual functions that you need
to override:

virtual TVwsViewId ViewId() const=0

Override this class to return the identifier assigned to your view. This
identifier is a combination of your application UID and a UID assigned
to the view itself. For example:

const TUid KUidMyApp = { 0x01001000 };
const TUid KUidMyAppView1 = { 0x0100A000 };

TVwsViewId CMyAppView1::ViewId() const
{
TVwsViewId KViewId {KUidMyApp,KUidMyAppView1 } ;
return KViewId;
}

virtual void ViewConstructL()=0

This function is called to construct your view. Normally this is where you
actually construct your view’s component controls, although you do not
yet make them visible.

virtual void ViewActivatedL(const TvsViewId& aPrevView, TUid aMessageId,
const TDesC8& aViewMessage)=0

This is called by the view architecture to display your view, passing
(in aPrevView) the identifier of the view just switched from, as well as
a possible message (for example, to specify a particular data record) that
the view can use to help it work out what to display.

In most cases, this method will make the control visible (by calling
CoeControl::MakeVisible()), add the view’s control to the control
stack, and draw the view.

virtual void ViewDeactivated()=0

Override this function to do what is necessary to deactivate your view,
before the view architecture switches to another view. Usually, you make
your control invisible here, as well as removing the view’s control from
the control stack.

Registering Your Views and Setting a Default

In the UI class (usually in ConstructL()), you register all your views
using CEikAppUi’s RegisterView(MCoeView&aView) method and

VIEW ARCHITECTURE 389

call SetDefault() to set one of your views as the default active view.
For example:

void CMyViewAppUi::ConstructL()
{
BaseConstructL();
...
iMyView1 = new (ELeave) CMyView1;
iMyView2 = new (ELeave) CMyView2;

RegisterViewL(*iMyView1);
RegisterViewL(*iMyView2);

SetDefaultViewL(*iMyView1);
}

RegisterViewL()will call your view’s ViewId()method and register
its identifier. It also calls your view’s ViewConstructL() method.

Switching Between Views
Use the ActivateViewL()method, in the application UI’s CCoeAppUI
base class, to switch to a view. This is normally done in response to a
user event, such as a menu selection or a button press.

There are two versions of ActivateViewL(), the first being proto-
typed as:

void CCoeAppUi::ActivateViewL(const TVwsViewId& aViewId)

The following example illustrates one of the more common ways it is
used:

const TVwsViewId KMyViewId1 {KUidMyApp,KUidMyAppView1 };
const TVwsViewId KMyViewId2 {KUidMyApp,KUidMyAppView2 };

void CMyAppUi::HandleCommandL(TInt aCommand)
{
switch(aCommand)

{
...
case EMyAppDisplayView1:
ActivateViewL(KMyViewId1);
break;

case EMyAppDisplayView2:
ActivateViewL(KMyViewId2);
break;

...
}

}

The second version of ActivateViewL() is prototyped as:

void CCoeAppUi::ActivateViewL(const TVwsViewId& aViewId, TUid aMessageId,
const TDesC8& aMessage)

390 GUI APPLICATION PROGRAMMING

and additionally passes the view a message, defined in the last two
arguments.

Both versions of ActivateViewL() call your view’s ViewActi-
vatedL()method.

Deregistering a View

Upon closing your application, you should deregister your views using
the application UI’s DeregisterView() method. For example:

CMyAppUi::∼CMyAppUi()
{
DeregisterView(*iMyView1);
DeregisterView(*iMyView2);
delete iMyView1;
delete iMyView2;
}

11.7.2 Series 60 Views
The previous sections discussed the Symbian OS generic view architec-
ture, and you can use this directly in UIQ and Series 80. However, Series
60 provides another layer of classes, in its Avkon UI layer, that you use
to implement views.

In Series 60, you should derive your application UI class from CAkn-
ViewAppUi when using views. Also, the views themselves are derived
from CAknView. I will not go into the details of implementing views on
Series 60, but the concepts are basically the same as those described
above. Also, a resource structure exists for views in Series 60, defined as
below in avkon.rh:

STRUCT AVKON_VIEW
{
LLINK hotkeys=0;
LLINK menubar=0;
LLINK cba=0;
}

As you can see, you can associate hotkeys, a menu bar and softkeys with
a view, and they will be enabled whenever the view becomes active.
You associate a particular view with an AVKON_VIEW resource by call-
ing CAknView’s BaseConstructL from your view’s ConstructL()
function. For example, if you have a view resource defined as:

// In resource file
// Assume the hot key, menu and cba resources
// are defined elsewhere in the file

RESOURCE AVKON_VIEW r_my_view1

APPLICATION ICON AND CAPTION 391

{
hotkeys=r_my_hot_keys_for_view1;
menubar=r_my_menu_for_view1;
cba=r_my_softkeys_for_view1;
}

then you can associate it with your CAknView-derived view by:

void CAknMyView1::ConstructL()
{
BaseConstructL(R_MY_VIEW1);
}

The Series 60 SDK has many examples that use this view architecture and
it is very instructive to review them.

11.8 Application Icon and Caption
Symbian OS associates an icon as well as a caption with your application.
You can supply an application caption and one or more icon bitmaps to
represent the application by including an application information (aif)
file in the target’s application directory, along with the app file. If an appli-
cation’s aif file does not exist, the system uses a default icon and caption.

This section provides only a brief introduction to using aif files to
supply your application with icons and captions. You should refer to the
SDK documentation for more detail, as well as examples.

To generate an aif file, you need to do the following:

• Create your icon bitmaps using an image editor.

• Write an aif resource file defining the caption, number of icons and
other information.

• Add an aif line to your mmp file to specify which aif resource file
and icon bitmaps should be used to generate the aif file.

11.8.1 Creating the Icon Bitmaps
To cope with the different situations in which application icons may be
displayed, each application needs to be supplied with icon bitmaps in
two or more sizes. The required number and sizes (in pixels) vary with
the UI platform, and are listed below.

• UIQ: 32 × 32, 20 × 16

• Series 60: 44 × 44, 42 × 29

• Series 80: 64 × 50, 50 × 50, 25 × 20

You can, in some cases, replace the multiple icons by a single icon
of intermediate size. If you do this, the system will dynamically scale the

392 GUI APPLICATION PROGRAMMING

icon to fit the different situations, but this is not recommended, since the
appearance of your application will suffer.

Icon bitmaps can be created with any paint program. Each icon image
in Symbian OS consists of two bmp files, one defining the image itself,
and the other defining a two-color mask for the bitmap. For every black
pixel in the mask bitmap, the corresponding pixel in the image bitmap is
displayed – the rest are not displayed, thus giving a transparent effect for
those pixels. So, for every icon size, you need both an image bitmap and
a mask bitmap.

11.8.2 Creating the AIF Resource File

An aif resource file is simply an rss file containing a single AIF_DATA
resource structure. It specifies the application’s caption (in one or more
languages), the UID and the number of icons, as well as a few other
settings. Here is an example:

#include <aiftool.rh>
RESOURCE AIF_DATA
{
app_uid = 0x01001000;
caption_list =

{
CAPTION
{
code = ELangEnglish;
caption = “My Application”;
}

};
num_icons = 2;
}

Note that caption_list is an array, so you can specify additional
CAPTION items, each containing the appropriate language code and
caption text for a different language.
AIF_DATA has a few more attributes – whether or not the application

can be embedded; whether it is to be launched in the foreground or not;
and you can associate your application with MIME types. You can find a
description of their use in the SDK documentation. The definition of the
AIF_DATA structure is in aiftool.rh.

11.8.3 Building the AIF file

Symbian OS provides an AIF build tool called aiftool which takes
the aif resource file and bitmaps as input and creates an aif file to be
downloaded to the phone, along with the application. Although you can
use this tool directly, it is better to add an AIF line to your mmp file, so
that the tool is invoked automatically, as part of the normal build process.

APPLICATION ICON AND CAPTION 393

Here is an example AIF line for Series 60:

AIF MyApp.aif ..\aif MyAppAif.rss c12 myapp_l.bmp myapp_lm.bmp \
myapp_s.bmp myapp_sm.bmp

The first argument specifies the name of the output aif file, the second,
the location of the source files and the third, the name of the aif resource
file. The value c12 indicates that the icon bitmaps use a color depth of 12
bits. Following that is a list of bitmap pairs (image and mask) for each of
the differently sized icons (the number of pairs should match the number
of icons specified by the num_icons attribute in the AIF resource file).

In your package file, make sure you copy the aif file to the phone’s
application directory, along with the app file.

Appendix 1
Specifications of Symbian OS Phones

This appendix contains notes on the UI, screen size, and other attributes
relevant to application developers of currently available, open Symbian
OS phones. Further technical information and an up-to-date list of phones
can be found at: www.symbian.com/phones.

Please note that this is a quick guide to Symbian OS phones, some of
which are not yet commercially available. The information contained
within this appendix was correct at the time of going to press. For full,
up-to-date information, refer to the manufacturer’s website.

396 SPECIFICATIONS OF SYMBIAN OS PHONES

Arima U300

OS Version Symbian OS v7.0
UI UIQ 2.1
Built-in memory available 32 MB
Storage media Mini SD/MMC

Screen 208×320 pixels
65,536 colors

Data input methods Keypad
Pointing device

Camera 1280×960 resolution
4x digital zoom

Network Protocol(s) GSM E900/1800/1900
HSCSD
GPRS

Connectivity Infrared
Bluetooth
USB

Browsing WAP 2.0
xHTML

BENQ P30 397

BenQ P30

OS Version Symbian OS v7.0
UI UIQ 2.1
Built-in memory available 32 MB
Storage media MMC and SD

Screen 208×320 pixels
65,536 colors

Data input methods Keypad
Pointing device

Camera 640×480 resolution

Network Protocol(s) GSM E900/1800/1900
HSCSD
GPRS (Class 10, B)

Connectivity Infrared
Bluetooth
USB

Browsing WAP 2.0
xHTML

398 SPECIFICATIONS OF SYMBIAN OS PHONES

Motorola A920/A925

OS Version Symbian OS v7.0
UI UIQ 1.0
Built-in memory available 8 MB
Storage media MMC and SD

Screen 208×320 pixels
65,536 colors

Data input methods Small number of keys
Pointing device

Camera 640×480 resolution

Network Protocol(s) GSM 900/1800/1900
HSCSD
GPRS (Class 4)
3G

Connectivity Infrared
Bluetooth (A920 No/A925 Yes)
USB
Serial

Browsing xHTML

MOTOROLA A1000 399

Motorola A1000

OS Version Symbian OS v7.0
UI UIQ 2.1
Built-in memory available 24 MB
Storage media Triflash-R

Screen 208×320 pixels
65,536 colors

Data input methods Small number of keys
Pointing device

Camera 1280×960 resolution
4x digital zoom

Network Protocol(s) GSM 900/1800/1900
WCDMA 2100
HSCSD
GPRS (Class 10, B)
EDGE
3G

Connectivity Bluetooth
USB

Browsing WAP
xHTML

400 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 3230

OS Version Symbian OS v7.0s
UI Series 60 v2
Built-in memory available 6 MB
Storage media RS-MMC

Screen 176×208 pixels
65,536 colors

Data input methods Keypad

Camera 1.3 megapixel resolution
3x digital zoom

Network Protocol(s) GSM 900/1800/1900
HSCSD
GPRS (Class 10)
EDGE

Connectivity Bluetooth
Infrared
USB

Browsing WAP 2.0
xHTML/HTML

NOKIA 3600/3650 401

Nokia 3600/3650

OS Version Symbian OS v6.1
UI Series 60 v1
Built-in memory available 3.4 MB
Storage media MMC

Screen 176×208 pixels
4096/65,536 colors

Data input methods Keypad

Camera 640×480 resolution

Network Protocol(s) 3600 GSM 850/1900
3650 GSM 900/1800/1900

HSCSD
GPRS (Class 8; B)

Connectivity Infrared
Bluetooth

Browsing WAP 1.2.1
xHTML

402 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 3620/3660

OS Version Symbian OS v6.1
UI Series 60 v1
Built-in memory available 4 MB
Storage media MMC

Screen 176×208 pixels
4096/65,536 colors

Data input methods Keypad

Camera 640×480 resolution

Network Protocol(s) 3620 GSM 850/1900
3660 GSM 900/1800/1900

HSCSD
GPRS (Class 8; B)

Connectivity Infrared
Bluetooth

Browsing WAP 1.2.1
xHTML

NOKIA 6260 403

Nokia 6260

OS Version Symbian OS v7.0s
UI Series 60 v2
Built-in memory available 3.5 MB
Storage media MMC

Screen 176×208 pixels
65,536 colors

Data input methods Keypad

Camera 640×480 resolution
4x digital zoom

Network Protocol(s) GSM 900/1800/1900
GSM 850/1800/1900
HSCSD
GPRS (Class 6, B)

Connectivity Infrared
Bluetooth
USB

Browsing HTML
xHTML
WAP 2.0

404 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 6600

OS Version Symbian OS v7.0s
UI Series 60 v2
Built-in memory available 6 MB
Storage media MMC

Screen 176×208 pixels
65,536 colors

Data input methods Keypad

Camera 640×480 resolution
2x digital zoom

Network Protocol(s) GSM 900/1800/1900
HSCSD
GPRS (Class 8; B and C)

Connectivity Infrared
Bluetooth

Browsing WAP 2.0
xHTML

NOKIA 6620 405

Nokia 6620

OS Version Symbian OS v7.0s
UI Series 60 v2
Built-in memory available 12 MB
Storage media MMC

Screen 176×220 pixels
65,536 colors

Data input methods Keypad

Camera 640×480 resolution

Network Protocol(s) GSM 850/1800/1900
GPRS (Class 8; B)
HSCSD
EDGE

Connectivity Infrared
Bluetooth
USB

Browsing WAP 2.0
xHTML

406 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 6630

OS Version Symbian OS v8.0
UI Series 60 v2.6
Built-in memory available 3.5 MB
Storage media MMC

Screen 176×208 pixels
65,536 colors

Data input methods Keypad

Camera 1280×960 resolution
6x digital zoom

Network Protocol(s) GSM 900/1800/1900
WCDMA 2000
GPRS (Class 10, B)
EDGE
3G

Connectivity Bluetooth
USB

Browsing WAP 2.0
HTML
xHTML

NOKIA 6670 407

Nokia 6670

OS Version Symbian OS v7.0s
UI Series 60
Built-in memory available 8 MB
Storage media RS-MMC

Screen 176×208 pixels
65,536 colors

Data input methods Keypad

Camera 1152×864 resolution
4x digital zoom

Network Protocol(s) GSM 850/900/1800/1900
GPRS (Class 6, B)
HSCSD

Connectivity Bluetooth
USB

Browsing WAP 2.0
HTML
xHTML

408 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 6680/6681/6682

OS Version Symbian OS v8.0
UI/Category Series 60 v2.6
Built-in memory available 10 MB
Storage media RS-MMC

Screen 176×208 pixels
262,144 colors

Data input methods Keypad

Camera Front
1280×960 resolution
6x digital zoom
Back
640×480 pixels
2x digital zoom

Network Protocol(s) GSM 900/1800/1900
WCDMA 2100
EDGE
GPRS (Class 10, B)

Connectivity Bluetooth
USB

Browsing WAP 2.0
xHTML/HTML

NOKIA 7610 409

Nokia 7610

OS Version Symbian OS v7.0s
UI/Category Series 60 v2.1
Built-in memory available 8 MB
Storage media RS-MMC

Screen 176×208 pixels
65,536 colors

Data input methods Keypad

Camera 1152×864 resolution
4x digital zoom

Network Protocol(s) GSM 850/900/1800/1900
GPRS (Class 10; B)

Connectivity Bluetooth
USB

Browsing WAP 2.0
xHTML

410 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 7710

OS Version Symbian OS v7.0s
UI Series 90
Built-in memory available 80 MB
Storage media MMC

Screen 640×320 pixels
65,536 colors

Data input methods Keypad
Pointing device

Camera 1152×864 resolution
2x digital zoom

Network Protocol(s) GSM 900/1800/1900
HSCSD
GPRS (Class 10)
EDGE

Connectivity Bluetooth
USB

Browsing HTML
xHTML

NOKIA 9300 411

Nokia 9300

OS Version Symbian OS v7.0s
UI Series 80
Built-in memory available 80 MB
Storage media MMC

Screen Two displays, both 65,536 colors
main screen: 200×640 pixels
secondary screen: 128×128 pixels

Data input methods Keypad
Full keyboard
Customizable buttons beside screen

Camera No

Network Protocol(s) GSM E900/800/1900
EDGE
GPRS (Class 10, B)
HSCSD

Connectivity Infrared
Bluetooth
USB

Browsing HTML 4.01
xHTML

412 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 9500

OS Version Symbian OS v7.0s
UI Series 80
Built-in memory available 80 MB
Storage media MMC

Screen Two displays, both 65,536 colors
main screen: 200×640 pixels
secondary screen: 128×128 pixels

Data input methods Keypad
Full keyboard
Customizable buttons beside screen

Camera 640×480 resolution

Network Protocol(s) GSM 850/900/1800/1900
HSCSD
GPRS (Class 10, B)
EDGE
WiFi

Connectivity Infrared
Bluetooth
USB

Browsing HTML 4.01
xHTML

NOKIA N-GAGE 413

Nokia N-Gage

OS Version Symbian OS v6.1
UI Series 60 v1
Built-in memory available 4 MB
Storage media MMC

Screen 176×208 pixels
4096 colors

Data input methods Keypad

Camera No

Network Protocol(s) GSM 900/1800/1900
HSCSD
GPRS (Class 6, B and C)

Connectivity Bluetooth
USB

Browsing WAP 1.2.1
xHTML

414 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia N-Gage QD

OS Version Symbian OS v6.1
UI Series 60 v1
Built-in memory available 3.4 MB
Storage media MMC

Screen 176×208 pixels
4,096 colors

Data input methods Keypad

Camera No

Network Protocol(s) GSM 850/900/1800/1900
HSCSD
GPRS (Class 6, B)

Connectivity Bluetooth

Browsing WAP 1.2.1
xHTML

NOKIA N70 415

Nokia N70

OS Version Symbian OS v8.1a
UI/Category Series 60 v2.8
Built-in memory available 31 MB
Storage media RS-MMC

Screen 176×208 pixels
262,144 colors

Data input methods Keypad

Camera Front
1600×1200 resolution
20x digital zoom
Back
640×480 pixels
2x digital zoom

Network Protocol(s) GSM 900/1800/1900
WCDMA 2100
EDGE
GPRS (Class 10, B)

Connectivity Bluetooth
USB

Browsing WAP 2.0
xHTML/HTML

416 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia N90

OS Version Symbian OS v8.1a
UI/Category Series 60 v2.8
Built-in memory available 30 MB
Storage media RS-MMC

Screen Internal
352×416 pixels
262,144 colors
Cover
128×128 pixels
65,536 colors

Data input methods Keypad

Camera 1600×1200 resolution
20x digital zoom

Network Protocol(s) GSM 900/1800/1900
WCDMA 2100
EDGE
GPRS (Class 10, B)

Connectivity Bluetooth
USB

Browsing WAP 2.0
xHTML/HTML

NOKIA N91 417

Nokia N91

OS Version Symbian OS v8.1a
UI/Category Series 60 v2.8
Built-in memory available 30 MB (and) 4 GB devoted to media

storage
Storage media RS-MMC

Screen 176×208 pixels
262,144 colors

Data input methods Keypad

Camera 1600×1200 resolution
20x digital zoom

Network Protocol(s) GSM 900/1800/1900
WCDMA 2100
EDGE
GPRS (Class 10, B)

Connectivity Bluetooth
USB

Browsing WAP 2.0
xHTML/HTML

418 SPECIFICATIONS OF SYMBIAN OS PHONES

Panasonic X700

OS Version Symbian OS v7.0s
UI/Category Series 60
Built-in memory available 4 MB
Storage media miniSD

Screen 176×280 pixels
65,536 colors

Data input methods Keypad

Camera 640×480 resolution

Network Protocol(s) GSM E900/1800/1900
GPRS (Class 10; B)

Connectivity Infrared
Bluetooth
USB

Browsing WAP 2.0
xHTML

PANASONIC X800 419

Panasonic X800

OS Version Symbian OS v7.0s
UI/Category Series 60 v2.0
Built-in memory available 8 MB
Storage media miniSD

Screen 176×280 pixels
65,536 colors

Data input methods Keypad

Camera 640×480 resolution

Network Protocol(s) GSM E900/1800/1900
GPRS (Class 10)

Connectivity Infrared
Bluetooth
USB

Browsing WAP 2.0
xHTML

420 SPECIFICATIONS OF SYMBIAN OS PHONES

Sendo X

OS Version Symbian OS v6.1
UI Series 60
Built-in memory available 12 MB
Storage media MMC and SD

Screen 176×220 pixels
65,536 colors

Data input methods Keypad

Camera 640×480 resolution

Network Protocol(s) GSM 900/1800/1900
GPRS (Class 8; B)

Connectivity Infrared
Bluetooth
USB
Serial

Browsing WAP 2.0
xHTML

SIEMENS SX1 421

Siemens SX1

OS Version Symbian OS v6.1
UI Series 60
Built-in memory available 3.5 MB
Storage media MMC

Screen 176×220 pixels
65,536 colors

Data input methods Keypad

Camera 640×480 resolution

Network Protocol(s) GSM 900/1800/1900
HSCSD
GPRS (Class 10; B)

Connectivity Infrared
Bluetooth
USB

Browsing WAP 2.0
xHTML

422 SPECIFICATIONS OF SYMBIAN OS PHONES

Sony Ericsson P800

OS Version Symbian OS v7.0
UI UIQ 2.0
Built-in memory available 12 MB
Storage media Sony MS Duo

Screen 208×320 pixels (Flip Open);
208×144 pixels (Flip Closed)
4,096 colors

Data input methods Flip keypad
Pointing device
Jog dial

Camera 640×480 resolution

Network Protocol(s) GSM 900/1800/1900
HSCSD
GPRS (Class 8, B)

Connectivity Infrared
Bluetooth
USB support

Browsing WAP 2.0
xHTML

SONY ERICSSON P900 423

Sony Ericsson P900

OS Version Symbian OS v7.0 (+ security updates
and MIDP2.0)

UI UIQ 2.1
Built-in memory available 16 MB
Storage media Sony MS Duo

Screen 208×320 pixels (Flip Open);
208×208 pixels (Flip Closed)
65,536 colors

Data input methods Flip keypad
Pointing device
Jog dial

Camera 640×480 resolution

Network Protocol(s) GSM 900/1800/1900
HSCSD
GPRS (Class 10; B)

Connectivity Infrared
Bluetooth
USB support

Browsing WAP 2.0
xHTML

424 SPECIFICATIONS OF SYMBIAN OS PHONES

Sony Ericsson P910

OS Version Symbian OS v7.0
UI UIQ 2.1
Built-in memory available 64 MB
Storage media Memory Stick Duo Pro

Screen 208×320 pixels
262,000 colors

Data input methods Flip keypad
Thumb keyboard
Pointing device
Jog dial

Camera 1152×864 resolution
4x digital zoom

Network Protocol(s) P910i GSM 900/1800/1900
P910c GSM 900/1800/1900
P910a GSM 850/1800/1900

Connectivity Bluetooth
Infrared
USB support

Browsing WAP 2.0
cHTML

Appendix 2
Security in Symbian OS v9

Version 9 of Symbian OS is a major progression, specifically geared to
target hundreds of millions of mid-range phones. To facilitate this, some
changes have been made to the very core of Symbian OS.

One aspect of these changes is the Platform Security enhancements.
These represent an evolution of the existing perimeter security model of
Symbian OS, adding support for vital concepts such as data protection,
or ‘caging’, and restricting some API usage, thus helping to ensure the
integrity of the platform.

426 SECURITY IN SYMBIAN OS V9

Platform Security Concepts

The following sections explain concepts and terms that are central to an
understanding of platform security.

Capabilities
A capability is a unit of protection. An API within Symbian OS that
needs to be protected has a capability associated with it, to provide that
protection.

The capabilities that an application requires must be listed in its project
definition (mmp) file. This data is used by the Software Install (SWInstall)
component of Symbian OS, Symbian OS itself, and also certification pro-
grams such as Symbian Signed, to check what functionality an application
should be allowed to access.

For details of the various capabilities, and the functionality that they
protect, have a look at the Platform Security technical papers on the
Symbian developer web site (www.symbian.com/developer/index.html).

Permissions
Permissions are used to determine whether an application can access
a capability-protected API. Within Symbian OS, APIs divide into two
distinct groups:

• unprotected APIs, which do not require permission to install
applications that use them (some 60% of all APIs fall into this division)

• capability-protected APIs, which require permission in order to install
applications that use them.

Where required, permission is granted when the application is installed.
Two types of permission can be given to allow the application to use the
capability-protected API: blanket permission or single-shot permission.

• Blanket permission for a particular capability allows the installed
application to have unrestricted access to all APIs protected by that
capability. Blanket permission may be obtained either by a certifi-
cation program such as Symbian Signed or by user authorization at
install time, depending on the capabilities for which the permission is
required

• Single-shot permission to use a capability-protected API may be
granted to an application that doesn’t have blanket permission for
that capability. Single-shot permission is granted on a one-off basis,
permission being requested directly from the end-user each time that
action is performed. For example, this may be used when sending a
text message.

PLATFORM SECURITY CONCEPTS 427

Authorization

Authorization is the process of confirming that an application is trusted
enough to use the APIs protected by a particular capability. Authoriza-
tion is carried out by a certification process, normally Symbian Signed
(www.symbiansigned.com).

For some capability-protected APIs, Symbian OS will only grant
access permission to applications that are authorized. The remaining
capability-protected APIs (called ‘Unsigned Sandboxed’ APIs) do not
require authorization, but permission is still needed to access them. This
permission can be obtained in two ways:

• The application can be authorized anyway, in which case blanket
permission is granted to the application for the authorized capabilities.

• The user can be asked to give their authorization for blanket or
single-shot permission to access that capability at load time.

This is shown in the diagram below.

No Symbian OS requirement to authorize Symbian OS requires
authorization

Protected APIs
Granted permission by
authorization (i.e. via a
certification program
such as Symbian
Signed)

No authorization or granting of
permission is required to use these
APIs. Around 60% of all APIs fall
into this grouping.

Authorized,
so no user
prompting

If unauthorized,
user will be asked
for authorization

‘Unsigned Sandboxed’ APIsUnprotected APIs

Figure A2.1 Authorization and Permissions for Symbian OS APIs

Note that Symbian OS licensees may choose to implement single-shot
permissions for selected capabilities on their devices.

Secure Identifier

In a secure environment, a server needs to know which applications are
permitted to access its APIs. The capabilities model avoids the need for
specific identification of applications, so a server can generally control
access to its APIs without having to know who is calling them. However,

428 SECURITY IN SYMBIAN OS V9

there is sometimes a need to uniquely identify an application, for example
when data needs to be tied to a specific application. To achieve this, the
Secure Identifier (SID) has been defined, allowing Symbian OS to:

• enable data caging (see below)

• differentiate between signed and unsigned applications

• protect access to file system areas on the phone that are used when
upgrading content.

From Symbian OS v9, all executables must contain a Secure Identifier that
is guaranteed to be locally unique. By default, this matches the UID3 value
which has always been required, but it is possible to explicitly set a SID
for the application by specifying it in the application’s mmp file using the
keyword SECUREID. UIDs will be issued by www.symbiansigned.com.

Data Caging
Platform Security not only implements protection for APIs, but also
provides a facility for protecting private data. Coupled with the necessity
to separate code and data (preventing code in the data space being
executed), this has resulted in a reorganization of the file system to
implement data partitioning. By ‘caging’ processes into a specific part of
the filing system, privacy of data is ensured.
The filing system now has the following structure:

/sys/ Restricted system area, accessible only to applications
with Trusted Computing Base (TCB) capability, which
provides access to all the hardware and software on
the platform. It is granted only to the kernel, the file
server and SWInstall. Executables are placed in, and
can only be run from, /sys/bin/.

/private/ Contains the private data for all applications, held in
the directory /private/<SID>/. If the subdirectory
import/ already exists, SWInstall may write data into
this directory during installation of any application.

/resource/ Contains public data, but is read-only for applications
without TCB capability.

This structure is enforced by the software installer when new applications
are installed, or existing applications are updated. Since only the software
installer may change executables in /sys/bin/ on the internal drive,
executables cannot be tampered with by other software.

USING CAPABILITIES 429

Note that a signed application may still choose to place its related data
in the public area, to make it accessible to other applications.

Using Capabilities

As we’ve seen, capabilities ensure that only authorized applications
can access protected APIs, and the APIs that the application can
access are determined by which capabilities have been granted to
the application.

For example, an application with LocalServices and Messaging capa-
bilities would be able to request the messaging server to send data by
infrared, but (without the NetworkServices capability) would be prevented
from sending an SMS.

Capabilities are granted to applications (i.e. processes) only. Where an
application (an exe file) needs to load a library (a DLL file), the library is
loaded only if it has been authorized for (at least) the same capabilities
that the calling application has been granted. Once loaded, the DLL
inherits the capabilities of the calling executable.

The following example illustrates this.

The application P.EXE is linked to the library L1.DLL.

The library L1.DLL is linked to the library L0.DLL.

Case 1:

P.EXE holds Cap1 and Cap2

L1.DLL holds Cap1 and Cap3

L0.DLL holds Cap1 and Cap2.

The load fails because P.EXE cannot load L1.DLL (no Cap2).

Case 2:

P.EXE holds Cap1 and Cap2

L1.DLL holds Cap1, Cap2 and Cap3

L0.DLL holds Cap1, Cap2 and Cap3 and Cap4

The load succeeds and the new process is assigned Cap1 and Cap2.

Index

1G networks 3
2G networks 3–5
2.5G networks 3, 5–6
3G network protocol 398–406
3G networks 3, 5–6
4G networks 3
a (function arguments) prefixes,

concepts 110–11
abld 25–9, 50–1, 104, 120–5,

129–31, 132–6
abld freeze 121–3, 129–36
abstract classes, C++ concepts

81–2, 86
ActivateL 339–40, 358–9, 378
ActivateViewL 387–91
active objects
see also asynchronous

functions
active scheduler 69, 237–65
blocks 257, 268
CActive 69, 237–63
cancellations 239, 241, 247–9,

251–8
class creation 238–41, 250–6
complexity problems 256–8
concepts 69, 212–13, 214–19,

232, 237–65, 305–24
construction 239–40, 250–6
creation 238–41, 250–6
CTimer 259–60, 285
definition 237
examples 249–56, 305–24
high-level view 237–8
issues 256–8

network programming 305–24
non-preemptive multitasking

model 237–8, 256
outstanding requests 258
priorities 247
removal 248–9
requestor implementation

240–1, 250–6
servers 267–8, 275–6, 277–83
sockets 305–24
stray-signal exceptions 257–8
thread uses 258–65
tips 256–8
uses 237–8, 258–9

active scheduler
concepts 69, 237–65, 277–83,

305–24
customization 245–6
definition 237, 241–2
detailed workings 243–4
error handling 245, 246–7,

257–8
event-loop pseudo-code 243–4
examples 249–56, 277–83
GUI applications 242, 257,

311–12, 322
high-level view 238
installation 242–5, 277–83
leave/trap mechanism 246–7,

250–6, 257–8, 278–80
starting 242–5, 277–83

ActiveLogging 264
activelog.txt 264
ActivePerl 518 21

Add 200–1, 237–41, 244–5,
257–8

Add Field 361–6
AddFirst 200
AddItemL 361–6
AddLast 200
addresses

IP (Internet Protocol) 295–6,
301–4, 307–8, 318–20

memory 61–2, 223–8
MMU 62, 64–5, 224–5
physical/virtual memory

addresses 61–6, 224–8
AddText 274–87
AddToStack 385
Adjust 225
After 109, 214–15, 238, 257,

259–63
aif files 322–3, 391–3
AIF DATA 392
aiftool.rh 392
aknapp.h 33–8
aknappui.h 33–8
akndoc.h 33–8
alarms 79
AlertWin 45–9, 368
Alloc 171–2
AllocL 172
AllocLC 98–9, 172
animation plug-ins
see also graphics
concepts 75

APIs see application programming
interfaces

432 INDEX

app files 70, 75, 122–3, 322–93
apparc.lib 121–3, 333–40
AppDllUid 49, 335–40
Append 157–8, 161, 164–6,

168–9, 179–81, 196–9,
309–24

AppendFill 179–80
AppendFormat 181
appendices 395–429
AppendJustify 179–80
AppendNum 179–80
application engines, concepts

79–80
application framework
see also graphical user

interface framework
concepts 56, 72–5, 325–93

application programming interfaces
(APIs) 55–6, 66–7, 76–80,
92–5, 107, 130–1, 151–201,
288, 325–93, 426–9

base libraries 55–6
BSD socket API 77, 293–4,

297–304, 310–11
data organization classes

154–201
platform security 426–9
sockets 77, 293–4, 297–324
subsessions 288
TCP/IP 293–324
types 66–7, 79–80, 92–5, 426
User 82, 92–5, 104

application protocols, concepts
79–80

application
services/engines/protocols,
concepts 56, 79–80

application views 31–49,
326–32, 334–93

application-initiated drawing,
drawing controls 381–2

application-specific cleanups,
concepts 95–6

applications
see also executables;

processes; software
availability 1, 10, 13
captions 391–3
classes 31–49, 332–93

communications architecture
76–9

components 31–49, 332–93
concepts 1–2, 10, 13, 31–49,

72–5, 136–47, 332–93
downloads 1, 8–9, 13–16,

136–7
example applications 31–49,

332–93
GUI programming 31–49,

325–93
header files 32–49, 104,

119–23, 128–31, 138–47,
332–93

icons 391–3
installation 19–20, 32–49,

52–3, 136–47, 332–93
package definition files 32–49,

51–3, 137–47, 332–93
platform security 426–9
project build files 47–9,

104–7, 119–49, 332–93
resource files 38–49, 121–3,

128–31, 332–3, 340–93
SimpleEx 31–49, 250–6,

321–2, 332–93
source files 43–7, 121–3,

128–31, 332–93
TCP/IP applications 293–324
third-party suppliers 1, 11
types 1, 2–3, 10
UIDs 31–49, 104, 106, 109,

121–4, 139–47, 334–93
view architecture 387–91

apprun.exe 75, 108–9, 333–40
apr files 72
area types, graphics context (GC)

382–4
arguments, processes 205–7
Arima U300 396
ARM 20–2, 51–3, 61–2, 68,

108, 116, 119–20, 127
see also CPUs

ARM4 119
armi 51–3, 104, 116–17,

119–20, 138–47
ARRAY resource 353–6, 359–60
arrays

classes 191–9, 353–6

concepts 156–9, 162–3,
185–6, 191–9, 341–2,
353–6

data-finding method 197
descriptors 156–9, 162–3,

185–6, 192–4
dynamic arrays 194–9
fixed arrays 191–2
inserting/appending data 196
methods 196–9
RArray 195–9
sorting method 197
templates 191–2, 194–9

ASCII 207–8, 301–2, 327
assert macros, concepts 103
ASSERT ALWAYS 103
ASSERT DEBUG 103

asynchronous functions
see also active objects; Logon
cancellations 239, 241, 247–9,

251–8
concepts 69, 212–13, 214–19,

232, 235–65, 275–6,
305–24

definition 235
examples 249–56, 305–24
high-level view 238
request semaphores 232,

236–65
servers 267–8, 275–6,

277–83, 305–24
sockets 305–24
TRequestStatus 235–48,

305–24
AT&T 6
audio 3, 6–7
authorization process, platform

security 427
automatic network connections,

concepts 323–4
AVKON CONFIRMATION QUERY

371
avkon.lib 121–3
avkon.rh 38–49
avkon.rsg 38–49
AVKON VIEW 390–1

BackPtr 187–91
BackSpace 274–87

INDEX 433

badef.rh 344, 354
badesca.h 193
bafl.lib 193
bandwidth, concepts 2–9
BARN 133
Base 225, 227
base classes

polymorphic DLL pointers
70–2, 104

TDes... 157–61
base libraries
see also libraries
concepts 55–6

BaseConstructL 338–40,
389–91

basic data types, concepts 82–3,
110

batteries 9, 327–32
BenQ P30 23, 397
Berkley Unix see BSD
binary data
see also descriptors
concepts 154–8, 185–6
strings 155

bind 298–9
bitmaps 268, 332–3, 371, 384,

391–3
blanket permissions, platform

security 426
bld.inf 32–49, 119–23, 332–93
see also Component

Description File
bldmake 120–3, 129–31, 132–6,

153–4
blocks

active objects 257, 268
memory 62, 257

Bluetooth connectivity 1, 8–9,
10, 14, 15, 19, 56, 76–9,
136–7, 304, 396–424

bmp files 392–3
Borland C++ Builder 22–3,

25–6, 29, 49, 119
see also Integrated

Development Environments
browsing 2–3, 7–8, 13–16,

293–324
see also Internet
specifications 14–16, 396–424

brushes 383–4
BSD socket API 77, 293–4,

297–304, 310–11
see also sockets
concepts 293–4, 297–304,

310–11
examples 299–304

bt.prt 76
buffer descriptors
see also descriptors; TBuf...
concepts 158–60, 162–6, 220,

343–8
definition 158, 162

build targets 25–8, 29, 50–3,
104, 116–17, 121–3,
129–36, 140–7, 153–4

build tools 19–53, 115–49
buttons 325–72, 375
BWINS 133
BYTE 341–2, 374

C++ 13, 22, 25–9, 61–2, 69–72,
74–5, 81–113, 156–8, 293,
299, 304–24

basic data types 82–3
concepts 81–113, 156–8, 293,

299
features 81–2
nonstandard characteristics 82
overload features 81–2, 96,

99–100, 205–6
overview 81–2
sockets 293, 299, 304–24
STL 82
strings 156–8
Symbian OS 81–113, 156–8,

293, 299–324
templates 81–2, 96–7

c: drive 61, 125–8
see also internal flash disk

C (heap-allocated) classes,
concepts 84–8, 110

caches 65–6
CActive 69, 237–63, 269–91
see also active objects;

client/server...
CActiveScheduler 237–8,

240–63, 278–83, 284–5

see also active scheduler
concepts 237–8, 240–63
methods 237–41, 244–5, 257,

263, 278–83, 284–5
CActiveScheduler::Add

237–41
CActiveScheduler::Start

237–8, 257, 263, 278–83,
284–5

CAknApplication 33–49,
334–40

CAknAppUi 33–49, 253–6,
334–40

CAknConfirmationNote 372
CAknDialog 360–6
CAknDocument 33–49, 334–40
CAknErrorNote 372
CAknForm 361–6
CAknInformationNote 45–9,

372
CAknListQueryDialog 372
CAknNumberQueryDialog 372
CAknProgressDialog 372
CAknQueryDialog 370–2
CAknSingleGraphicStyle-

ListBox 375
CAknSingleStyleListBox

374–5
CAknTextQueryDialog 371–2
CAknTimeQueryDialog 372
CAknView 390–1
CAknViewAppUi 390–1
CAknWaitDialog 372
calendars 8, 79, 326–32
cameras 2, 14–16, 396–424
Cancel 239, 248–9, 251–6,

317–22
capabilities

example 429
platform security 426–7
TCB 428–9

Capacity 187–91
captions 391–3
see also aif files

CArrayFix... 194–9
CArrayPtr... 194–9
case conversions, descriptors

155, 177–9, 181–2
CBA BUTTON 41–9

434 INDEX

CBase 84–8, 95–9, 110, 257
CBufBase 186–91
CBufFlat 186–91
CBufSeq 186–91
CBufStore 336–40
CCirBuf 200–1
CCkn... 369–70
CCoeAppUi 385, 389–91
CCoeControl 36–49, 253–6,

334–40, 376–80, 385–6,
387–91

CConsoleBase 151–4
CConsoleBase::Getch 152–4
CConsoleBase::Printf 152–4
CCountdown 250–6
CDesC8Array... 192–4
CDesC16Array... 192–4
CDesCArray... 192–4
CDirectFileStore 336–40
CDMA network protocol 3–4, 16
CEikApplication 35–49,

334–40
CEikAppUi 36–49, 334–40,

388–91
CEikChoiceList 376
CEikColumnListBox 374
CEikComboBox 376
CEikDialog 112, 348–61, 366–8
CEikDocument 36–49, 334–40
CEikEdwin 349–66, 373
CEikHierarchicalListBox

374
CEikonEnv 368
CEikProgressInfo 375
CEikSetPasswordDialog 369
CEikTextListBox 374–5
CEikTimeDialogSetCity 369
CEikTimeDialogSetTime

368–9
CEmbeddedStore 336–40
CFileStore 337–40
CFont 383–4
char 82–3
CHARACTER SET keyword,

resource files 341–2
check boxes 375
choice lists 353–6, 374, 375–6
CHOICELIST 353–6, 376
chunks

see also RChunk
concepts 62–6, 85, 223–33
creation 62, 223–5
detailed workings 226–8
types 62–3, 85, 223–8

circuit-switched voice
communication 3–5

circular buffers, concepts 200–1
cknctl.rh 373
ckndlg.lib 369
classes
see also C...; M...; R...;

T...
active objects 238–41, 250–6
applications 31–49, 332–93
client/server model 267–76
concepts 83–8, 104, 110–11,

154–201, 333–40
controls 373
descriptors 157–72
dialogs 354–7
DLLs 104, 333–40
libraries 104
naming conventions 83–4,

110–11
programming basics 83–8
Series 60 (Nokia) 33–49,

334–93
Series 80 (Nokia) 35–49,

334–93
sockets 85–8, 104, 268,

304–24
Symbian OS 83–8, 110–11,

154–201, 333–40
types 83–8, 110–11, 154–201
UIQ 34–49, 334–93
variable names 110–11

clean 121–3
cleanup, exception handling

89–90, 93–103, 152–3
cleanup stack

complexities 95–6
concepts 93–103, 152–3,

189–93
object types 95–9

CleanupClosePushL 96–9, 288
CleanupDeletePushL 96–9
CleanupReleasePushL 96–9
CleanupStack 94–5

CleanupStack::Pop 94–102,
250–6, 279–83, 339–40

CleanupStack::PopAnd-
Destroy 94–102, 189–91,
263, 278–80, 288

CleanupStack::PushL
94–102, 110, 111–12,
193–4, 250–6, 262–3,
278–83, 339–40

Clear 381–2
client classes, concepts 267–92
client-side code, sockets

298–324
client/server model
see also CActive;

CServer;
CSharableSession;
RSessionBase

active objects 267–8, 275–6,
277–83

classes 267–76
concepts 59–60, 73–5, 220,

267–92, 296–324
definition 267
emulator 285–7
examples 270–87
implementation 276–83,

287–92
message-processing example

280–2
overview 268–9
pointers 280–3
service-invoking methods

274–6, 318–22
shutdown issues 284–5, 303–4
sockets 296–324
starting 271–4, 277–80,

285–7, 288
subsessions 287–92
TCP/IP 296–324
TextBuffServ example

270–87
transient servers 284–5

ClientRect 339–40
Close 85–8, 96–9, 110, 195–9,

205–6, 207–8, 220, 225, 230,
251–6, 271–6, 284–5,
305–24

CMyPolyDll 107–8

INDEX 435

CnvUtfConverter 186
CObject 289–92
see also subsessions

CObjectCon 292
CObjectConIx 292
CObjectIx 292
code 13, 22, 25–9, 56–7, 60–4,

69–72, 74–5, 81–113, 228,
293

see also threads
C++ 13, 22, 25–9, 61–2,

69–72, 74–5, 81–113, 293
chunks 63–4, 228
critical sections 232–3
naming conventions 58, 70,

83–4, 110–12
start-up code 60–1

collation method, descriptor
comparisons 173–6

colorList 356–7, 363–6
combo boxes 376
CommandLine 206–13
committed memory 224–8
communication database,

communications architecture
76, 78–9

communication methods,
smartphones 2–9

communications architecture
see also local device

communication features
components 76–9
concepts 2–6, 13–16, 56,

75–9, 293–324
overview 75–9

Communicators (Nokia) 6, 12,
15–16, 23, 27, 148, 293,
330–1, 412

see also Nokia
Compare 172–4
comparisons, descriptors 172–4
competitors, Symbian OS 11,

16–17
Complete 282
Component Description File

25–9, 32–49, 50–1, 104,
119–23

see also bld.inf
ComponentControl 379–80

compound/simple controls,
contrasts 378–9

Compress 187–91
computers 2, 6–9
see also PCs

CONE (control environment),
concepts 73–5, 340, 377–8,
380

cone.lib 121–3
configuration, emulator 24–5,

125–7
Connect 85–8, 271–4, 288,

305–24
connection agents,

communications architecture
76, 77–9

connectivity features 1, 8–9,
14–16, 56, 75–9, 136–7, 429

see also local device
communication features

concepts 8–9, 56, 75–9,
136–7

specifications 14–16, 396–424
const 108, 161
constants, naming conventions

111
ConstructL 45–9, 101–2,

239–40, 250–6, 276–83,
337–40, 358–66, 377–8,
390–1

constructors 45–9, 101–2,
166–9, 238–41, 250–6,
276–83, 317–22, 337–40,
377–8, 390–1

leaves 100–2
two-phase constructors 100–2

contact entries 8, 79
Contains 383–4
context switches 65–6, 68–9
Control 355–7
control stack, keys 385
controls

anatomy 377
characteristics 377
classes 373
compound/simple contrasts

378–9
concepts 73–5, 274–87, 340,

349–66, 372–87

definition 376
drawing controls 46–7, 358–9,

379–84
GUI controls 355–7, 372–87
handwriting recognition 385–6
header files 373
implementation options 373
keys 384–7
libraries 373
lodger controls 377–9
pointers 377, 384, 386–7
redrawn windows 380–1
requirements 373
types 373–7
user input 384–7
window-owning/lodger contrasts

377–9
conversions, descriptors 155,

177–9, 181–4, 186
coordinates, graphics context (GC)

382–4
Copy 157–8, 164–6, 168–9,

177–9, 181, 186, 220,
309–24

copying data, descriptors 157–8,
164–6, 168–9, 177–9

CountComponentControls
379–80

CPermanentFileStore 336–40
cpp files 151–4, 252–6,

332–93
CPtrC8Array 192–4
CPtrC16Array 192–4
CPtrCArray 192–9
CPUs 20–2, 51–3, 61–2, 66–8,

119, 127–8, 223–5
see also ARM...; x86...

CQikApplication 34–49,
334–40

CQikAppUi 34–49, 334–40
CQikDocument 35–49, 334–40
CQikZoomDialog 369
crashes 10, 155, 204
Create 205–6, 215–18, 288
CreateAppUiL 44–6, 335–40
CreateDocument 335–40
CreateGlobal 223–33
CreateLocal 226, 231

436 INDEX

CreateLog 262–3
CreateSession 269–92
CreateWindowL 339–40, 358–9,

377–8
critical sections, concepts 232–3
cryptography 10
Crystal 12
see also Series 80

CSD network protocol 4–5, 15,
322–4

see also HSCSD...
CServer

concepts 269–91
methods 269–70

CSession 269–91
CSharableSession 268–91
see also client/server...

CSimpleExApplication
37–49, 250–6, 321–2,
335–40

CSimpleExAppUi 37–49, 253–6,
321–2, 337–40, 357–8

CSimpleExAppView 37–49,
250–6, 339–40, 358–9, 378,
381–2

CSimpleExDialog 354–7
CSimpleExDocument 37–49,

335–40
CSimpleExForm 363–6
CStreamDictionary 337–40
CStreamStore 337–40
CSY modules, serial

communications server 76,
78–9

CTextBuffServ 277–83
CTimer 259–60, 285
CTrapCleanup::New 95
Ctrl + F5 keys 29
Current 245
current position, drawing controls

384
CWeatherInfo 315–24
CWindowGC 382–4

d: drive 61
see also removable memory

cards
D suffixes, concepts 112
data buffers

see also descriptors
concepts 155, 158–201, 220

data chunks
see also chunks
concepts 63–5, 228

data collection classes, concepts
200–1

data input methods 11–16, 67,
73–5, 124–8, 267–8,
326–93, 396–424

concepts 11–16, 67, 73–5,
124–8, 267–8, 326–72,
384–7

controls 384–7
platforms 11–16, 325–72,

384–7
specifications 13–16,

396–424
data organization classes, concepts

154–201
data transfers, concepts 2–9
data types

classes 84–8, 110, 154–201
concepts 82–3, 110

data-caging concepts, platform
security 428–9

debuggers 20–2, 103, 120, 124,
155, 263–5

assert macros 103
log files 21, 263–5
Windows development tools

20–2, 120, 124
def files 132–6
see also freezing

DEFNAME 133
Delete 182–3, 187–91
Delete Field 361–6
delete trap 95
DeleteCurrentItem 361–6
DeleteLine 366–8
Deque 249
DeregisterView 390–1
Des 169–71
descriptors
see also HBuf...;

TBuf...; TPtr...
8/16 bit conversions 186
advantages 155

appending methods 157–8,
161, 164–6, 168–9,
179–80

arrays 156–9, 162–3, 185–6,
192–4

binary data 154–8
buffer descriptors 158–60,

162–6, 220, 343–8
case conversions 155, 177–9,

181–2
class types 157–72
comparisons 172–4
concepts 154–201, 220, 270
conversions 155, 177–9,

181–4, 186
copying data 157–8, 164–6,

168–9, 177–9, 181
definitions 154–5, 158, 162,

166, 169
deletions 182–3
examples 156–8
exception handling 155
fill method 178–9
formatting data 180–1
heap descriptors 158–60,

169–72, 279–80
hierarchy 159–60
importance 155
lengths 158–85
memory layouts 163–72
memory overruns 155, 165
methods 172–86
modifiable/non-modifiable

descriptors 158–66,
169–71, 172–85

modifying methods 177–85
non-modifying methods 172–7
NULL-terminated string

conversions 183–4
pointer descriptors 158–60,

166–9, 282–3
size-setting method 184–5
sub-strings 174–7
types 158–201
wildcard searches 175–6

destructors 84–8, 95–6, 248–9,
316–22

development tools

INDEX 437

see also software development
kits; Windows development
tools

basic pieces 19–20
components 19–24, 115–49
concepts 19–30, 115–49
examples 19–53
firing up 24–30
needs 19–20
overview 19–20, 117–18
problems 29–30
quick start guide 19–53
tips and traps 30
tools 10, 11–12, 19–53,

115–49
device contrasts, emulator 127–8
device drivers

concepts 60–1, 66–8, 76–9,
127–8

definition 79
emulators 127–8
ROM 60–1, 125–8

devices 24–30, 147–9
dial-up connections, drawbacks

4–5
DIALOG resource 348–72
dialogs 325, 328–31, 348–72

classes 354–7
creation 348–59
launching 357–8
list boxes 374
multipage dialogs 359–60
resource definition 349–54
Series 60 (Nokia) 329–30,

348–66, 367–72
Series 80 (Nokia) 112, 331,

348–59, 368–72
stock dialogs 368–72
UIQ 328, 348–59, 368–72

dir 26–7
direct screen access, APIs 75
directories 25–30, 51–3,

115–17, 137–47, 267–8
DiscardFont 339–40, 381,

383–4
DispatchMessageL 280–3
DLG BUTTONS 351–9
DLG LINE 349–73

dll files 43–9, 57–9, 67, 76,
122–3, 129–31, 333–93, 429

DLLs see dynamic link libraries
DNS see Domain Name System
DoCancel 239, 241, 248–9,

251–6, 316–22
document classes, applications

31–49, 334–40
documentation

OS requirements 10
SDK directories 117

Domain Name System (DNS)
301–4, 318–20

domain names, IP addresses
301–4, 307–8, 318–20

Doom network service 296
downloaded applications 1, 8–9,

13–16, 136–7
Draw 46–7, 253–6, 339–40,

358–9, 377, 379–84
DrawBitmap 384
DrawDeferred 381
DrawEllipse 384
drawing controls

application-initiated drawing
381–2

concepts 46–7, 358–9,
379–84

graphics context (GC) 46–7,
382–4

points and lines 382–4
redrawn windows 380–1
SimpleEx Draw 381–2

DrawLine 383–4
DrawLineTo 383–4
DrawNow 381
DrawPie 384
DrawPolygon 384
DrawPolyLine 384
DrawRect 384
DrawRoundRect 384
DrawText 46–7, 339–40, 381–2,

384
drive letters 60–1
Duplicate 231
dynamic arrays
see also arrays
concepts 194–9

dynamic buffers

see also CBuf...
area pointers 191
class diagram 187
concepts 186–91
inserting/deleting data 189–90
methods 188–91
reading/writing methods 188–9
size changes 190
types 187–8
uses 187

dynamic link libraries (DLLs)
43–9, 55, 57–9, 67, 69–72,
76–9, 103–8, 128–36,
333–40, 429

classes 104, 333–40
concepts 57–9, 67, 69–72,

76–9, 103–8, 128–36,
333–40

creation 104–6, 128–31
definition 57, 103
emulator 108, 128, 285–7
extension names 58, 70
freezing mechanism 131–6
GUI applications 57–8,

108–9, 333–40
mmp files 128–36
multiple DLLs 107–8
ordinals 130–6
programming basics 103–8
RLibrary 71–2, 107–8,

130–1, 286–7
rules 105–6
types 57–8, 67, 69–72, 76–9,

103–8
DynInitMenuPanelL 361–6

e: drive 61
see also removable memory

cards
E (enumeration members) prefixes,

concepts 111
e32base.h 151–4
e32cons.h 151–4
e32des8.h 158–9
e32des16.h 158–9
E32Dll 43–9, 105–7, 333–40
E32Main 109, 204–13, 261–3,

278–83, 286–7
see also processes

438 INDEX

e32std.h 88, 115–16, 159
E32USER - CBase 42 318
E32USER - CBase 46 257
EAknSoftkeyExit 45–9
Echo network service 296
ECOM API, application protocols

79–80
EDGE network protocol 3–4, 6,

15, 293–4, 322–4, 399–400,
405–17

see also GSM...
Edit 361–6
Edit Label 361–6
EditCurrentLabel 361–6
editor controls
see also controls
concepts 274–87, 349–66,

373–4, 391–3
editors, Windows development

tools 20–2
EDWIN 349–66, 373
EIK APP INFO 39–49, 344–5
eikappui.h 35–49
eikcdlg.lib 369
eikcoct1.lib 359
eikcore.lib 121–3
eikct1.lib 359
eikdlg.lib 359
EikDll::StartExe 109, 206
eikdoc.h 35–49
eikmenup.h 35–49
eikon.rh 38–49, 341, 353, 373
ELeave 99–102, 107–8, 134–6
emails 2–3, 6–7, 10, 14–17, 56,

293
embedded sis files, installation

142–3
emulator
see also epoc
client/server model 285–7
concepts 20–2, 24–30, 50–1,

108–9, 116–17, 119–23,
124–8, 147–9, 213, 285–7

configuration 24–5, 125–7
device contrasts 127–8
DLLs 108, 128, 285–7
exe files 109
fonts 127–8
memory capacity 126

multiple processes 128, 213,
285

pixels 127–8
quick test 24–30
running 125
SDK 20–2, 24–8, 116–17,

119–23, 124–8, 147–9
Series 60 20–1, 24–8, 50–1,

126–8, 147–9
Series 80 (Nokia) 50–1, 148–9
static data in DLLs 108, 128
UIQ 50–1, 147–9
virtual drives 125–8

encapsulation features, C++ 81–2
enum 111, 338
ENUM keyword, resource files

341–2
enumerations, naming conventions

111
EPOC 10–11
epoc 24–30, 125–8
see also emulator

epoc32 30, 115–17, 120–3,
125–8

epoc32/build 116, 120–3,
125–8, 147

epoc32/data/z 116–17, 125–8,
138–47

epoc32/gcc 116–17, 149
epoc32/include 115–16,

121–3, 125–8, 158–9, 204
epoc32/release 116–17,

120–3, 125–8, 129–31,
138–47

epoc32/tools 116, 148–9
epoc32/wins 117
EPOC DRIVE D 126–8
epoc.exe 29
epoc.ini 24–5, 125–8
epocprocesspriority 211
EPOCROOT 51–3, 125, 147–9,

154, 158–9
EPriority... 217–18
Ericsson, Symbian ownership 11
Error 245–7
errors 10, 88–103, 155, 245,

246–7, 257–8
see also exception...

active scheduler 245, 246–7,
257–8

assert macros 103
concepts 88–103, 245, 246–7,

257–8
leave/trap mechanism 89–103,

111–12, 169, 198, 241,
245–7, 250–6, 278–83

panics 102–3, 158, 211–12,
277–83

return codes 88
Escape key 331
ESimpleExCommand 45–9
ESimpleExDialog 357–8
ESimpleEx.hrh 43
esock.dll 76
ETEL server, communications

architecture 76, 78–9
euser.lib 121–3, 204
event handlers 74–5, 237, 241
events, active objects 69,

212–13, 214–19, 232,
235–65

examples, quick start guide
19–53

Excel 17
exception handling 82, 88–103,

111–12, 155, 169, 198, 241,
245–7, 250–7

see also errors
assert macros 103
cleanup 89–90, 93–103,

152–3
concepts 88–103, 155
descriptors 155
leave/trap mechanism 89–103,

111–12, 169, 198, 241,
245–7, 250–6, 278–83

panics 102–3, 158, 211–12,
277–83

programming basics 88–103
return codes 88
stray-signal exceptions 257–8

exe files 29, 57, 59–60, 64–6,
75, 108–9, 122–3, 203–13,
429

see also executables;
processes

emulator 109

INDEX 439

programming basics 108–9
structure 108–9

executables 29, 57, 59–60,
64–8, 108–9, 116–17,
136–47, 203–13, 429

see also applications; exe
files; processes

concepts 108–9, 116–17,
203–13, 215

epoc32/release 116–17,
120–3, 125–8, 129–31,
138–47

platform security 429
programming basics 108–9
sis files 19–20, 32–49, 51–3,

136–47, 332–93
threads 215

executed-in-place code, concepts
60–6

ExecuteLD 112, 348–59
ExitReason 211–12, 215,

218–19
ExitType 211, 218
Expand 187–91
explicit network connections,

concepts 323–4
EXPORT C 105–7, 130–1, 134–6
exports, libraries 105–6, 128–36
EXPORTUNFROZEN 106, 128–31,

132–6
extensions, kernel 66–8
ExternalizeL 336

f32file.h 288
fast executive kernel calls, concepts

68
fax 7
features, smartphones 1–9
FEPs see Front End Processors
file server
see also RF...; servers
concepts 59–60, 267–8,

288–92
subsessions 288–92

file system 11, 59–61, 267–8,
288–92, 428–9

structure 428–9
FILENULL 142
FILERUN (FR) 143

FILETEXT 141–2, 146
Fill 178–9
filled shapes, drawing controls

384
FillZ 179
Find 174–6, 197
‘fire and forget’ protocols 294
First 200
fixed arrays
see also arrays
concepts 191–2

fixed processes, concepts 66, 68
flash memory see internal flash

disk
flat dynamic buffers, concepts

187–91, 192
flogger.h 264–5
flogger.lib 264–5
flushing costs, caches 66
FOFF 196

folding method, descriptor
comparisons 173–6

font and bitmap server
see also servers
concepts 268

fonts 127–8, 268, 339–40, 381,
383–4

foreign languages
installation support 144–7,

345–8
translators 13

FORM 361–6
Format 180–1
format, resource files 240–2
formatting data, descriptors

180–1
forms, Series 60 (Nokia) 361–6
freeware 1
freeze 121–3, 129–36
freezing

concepts 106, 128–36
def files 132–6
definition 131–2
disabling methods 106,

128–31, 132, 136
enabling methods 132
importance 131–2
libraries 29–30, 105–6,

121–3, 128–36

new-function inserts 135–6
violated interfaces 136

Front End Processors (FEPs)
385–6

FTP network service 296
Function 280–3
function arguments, naming

conventions 110–11
function names, conventions

110–12

games 13–16, 293
GC see graphics context
generations, mobile

communications 3–9
generic build system, SDK 20–2
GetByAddr 304–24
GetByName 304–24
Getch 152–4
gethostbyname 301–2, 304
GetMemoryInfo 209–10
GetTemperatureL 315–24
GetText 274–87, 373
GLDEF C 134–6
global memory chunks
see also chunks
concepts 223–33

global variables, restrictions 108,
111

GNUPoc 24
GPRS network protocol 3, 5, 10,

14–17, 78–9, 293–4, 322–4,
396–423

see also GSM...
graphical user interface framework

(GUI)
see also application

framework; Series...; UIQ...
active scheduler 242, 257,

311–12, 322
anatomy 31–49, 332–3
application classes 31–49,

332–93
application programming

31–49, 325–93
concepts 11–16, 21–2,

31–49, 56–8, 72–5,
108–9, 117, 124–5, 151–2,

440 INDEX

graphical user interface framework
(GUI) (continued)
214, 242, 257, 267–8, 285,
311–12, 322, 325–93

controls 73–5, 274–87, 340,
349–66, 372–87

dialogs 325, 328–31, 348–72
DLLs 57–8, 108–9, 333–40
examples 31–49, 325–93
icons and captions 391–3
overview 31–49, 73–5,

325–32
resource files 38–49, 340–93
servers 267, 285
Symbian OS 11, 21–2, 31–49,

56–8, 72–5, 108–9, 117,
151–2, 325–93

types 11–16, 325–32
view architecture 387–91
Windows development tools

21–2
graphics

animation plug-ins 75
direct screen access 75
drawing controls 382–4
high performance graphics

75
graphics context (GC) 46–7,

382–4
Grow 383–4
GSM network protocol (Global

System for Mobile
Communication) 3–4, 5–6,
8, 10, 14–17, 78, 293–324,
396–423

see also EDGE...; GPRS...
GUI see graphical user interface

framework

HAL see Hardware Abstraction
Layer

handle classes 85–8, 205–13,
214–19, 228–9, 232, 282–3

see also RMutex; RProcess;
RSemaphore; RThread

HandleCommandL 45–9, 253–7,
338–40, 357–8, 366, 389–91

HandleControlStateChangeL
367

HandlePointerEvent 377,
386–7

HandleRedrawEvent 380
handles, concepts 84–8
Handspring Treo 600 16–17
handwriting recognition 12–14,

385–6
Hardware Abstraction Layer (HAL),

concepts 66–8
HBufC 158–93, 279–80
see also heap descriptors
concepts 158–93, 279–80
memory layout 169–71
TBufC 169

header files
concepts 32–49, 104, 119–23,

128–31, 138–47, 332–93
controls 373

heap chunk, concepts 62–3
heap classes, concepts 84–8
heap descriptors
see also descriptors;

HBufC...
concepts 158–60, 169–72,

279–80
definition 158, 169
modifications 169–71
usage of other descriptors

171–2
help files 322–3
hierarchy, descriptor classes

159–60
high performance graphics

75
see also graphics

hlp files 332–3
home area, virtual memory map

63–6, 222–8
hot keys, emulator 126–8
hrh files 32–49, 332–93
HSCSD network protocol 5,

14–15, 396–423
see also CSD...

HTML 7–8, 14–16, 117, 293–4,
315–17, 403, 406–7,
410–12, 415–17

HTTP 56, 80, 296, 299–304,
308–10, 314–24

i (member variables) prefixes
110–11

IAPs see Internet Access Points
icons 391–3
see also aif files

IDEs see Integrated Development
Environments

IMAP accounts 7, 296
see also emails

implicit network connections,
concepts 323–4

import libraries
see also static libraries
concepts 105–7, 129–36

IMPORT C 105–7, 130–1, 134–6
include 345–6
InfoPrint 109, 386–7
InfoWinL 368
infrared connectivity (IR) 8–9, 14,

19, 56, 77–9, 136–7, 304,
396–424, 429

inheritance features
C++ 81–2, 86–7
interface classes 86–7

InputCapabilities 385–6
Insert 187–91, 196–9
Install 242–5, 278–83
installation 19–20, 32–49, 52–3,

136–47, 242–5, 277–83,
332–93

see also sis files
active scheduler 242–3,

277–83
advanced pkg options 141–4
concepts 31–49, 136–47,

332–93
directories 137
file-specification methods

140–1
language support 144–7,

345–8
pkg files 32–49, 138–47,

332–93
requisite lines 143–4
running executables 143
runtime-generated file removal

142
text notices 141–2

instant messaging 6–7, 293–4

INDEX 441

instantiated classes, concepts
82–4, 104, 110, 158–9, 214

int 82–3
Integrated Development

Environments (IDEs) 19–53,
104, 119, 124–8, 332–3

see also Borland...;
Metrowerks...; Microsoft...

concepts 19–22, 27–9, 49,
104, 119, 124–8, 332–3

providers 21–2, 25, 49
quick-start examples 19–22,

25, 27–9, 31–49, 332–3
selection criteria 22

inter-thread communications,
concepts 66–8, 207–8,
220–8, 282–3

interface classes
concepts 84, 86–8, 110
example 86–8
inheritance features 86–7

interface freezing see freezing
internal flash disk
see also c: drive; memory...
concepts 61, 125–8, 136–47

InternalizeL 336
Internet 2–3, 6–8, 293–324
see also browsing; TCP/IP...

Internet Access Points (IAPs) 15,
78–9, 322–4

Internet Protocol Suite see TCP/IP
interrupts

concepts 68
kernel executive 68

Intersects 383–4
IP (Internet Protocol) 294–324
see also TCP...
addresses 295–6, 301–4,

307–8, 318–20
concepts 294–324
domain names 301–4
layering diagram 295
port addresses 295–324

IR see infrared connectivity
ISPs 4–5

Java 13, 21, 88, 116
Java Runtime Environment

21

K (constants) prefixes, naming
conventions 111

KDynamicLibraryUid 124
kernel 55–80, 210, 214–19

architectural overview 66–7
concepts 55–6, 62–8,

210–11, 214–19
definition 55, 66
executive 67, 68
extensions 66–8
HAL 66–8
MMU 62, 64–5
process priorities 210–11
roles 55, 62, 64–5, 66–8
server 66–8
threads 214–19
user library 67–8

KerrCancel 248–9
KErrEof 314–15
KErrNoMemory 88, 92–3
KErrNone 43–9, 88, 91, 106,

134–6, 199, 207–8, 216,
223–4, 228–9, 236, 241, 248,
252–6, 261–3, 273–4, 287,
305–24

KErrNotFound 88, 174–6, 197,
207, 273

KErrNotSupported 272–4,
279–87

KExecutableImageUid 124
keys 12–16, 74, 126–8, 267–8,

326–93, 396–424
control stack 385
controls 384–7
emulator 126–8
platforms 326–32
virtual keyboards 12–14,

126–8, 385–6
Kill 211–12, 218–19
KRequestPending 236–7, 244,

248, 258
KUidApp 124

L 156–8, 161–2, 171–2
L suffixes, concepts 93–103, 110,

111–12
LAF see Look and Feel
LANG keyword, resource files

346–8

LANGUAGE keyword, resource files
346–8

language support
installation 144–7, 345–8
mmp files 345–8
resource files 345–8

laptops 2
Last 200
LBUF 353–6
LC functions, concepts 98–102,

111–12
Leave 90–103, 198–9, 205–6
leave/trap mechanism

active scheduler 246–7,
250–6, 257–8, 278–80

concepts 89–103, 111–12,
152–3, 169, 198, 241,
245–7, 250–6, 278–83

constructors 100–2
object creation 99–100

Left 176–7
Length 160–1
Lenovo P930 23
lib files 106–7, 121–3, 125–8
libraries 10–11, 20–2, 43–9,

55–6, 57, 67–8, 73–5,
103–8, 121–3, 128–36, 204,
263, 322, 359, 369, 429

see also dynamic link...;
middleware

application protocols 79–80
base libraries 55–6
classes 104
concepts 20–2, 55–7, 67–8,

73–5, 103–8, 128–36
CONE 74
controls 373
freezing 29–30, 105–6,

121–3, 128–36
OS requirements 10
programming basics 103–8
SDK 20–2, 128–36
types 57, 67–8, 73–5, 103–8
UIKON 73–5, 373
user library 67–8

LIBRARY 121–3, 129–31, 204,
263, 322, 359, 369

LineChangedL 367
lines, drawing controls 382–4

442 INDEX

linked lists
see also TDblQue
concepts 200

Linux 16, 17, 24, 56, 235
list boxes 325–32, 374–5
LISTBOX 374–5
LIT 156–8, 161–9, 173–86,

189–91, 199, 205–9, 223–4,
228–9, 260–3, 271–6, 285–8

LLINK 341–5, 351–4, 374
Load 130–1
loading methods, polymorphic

DLLs 71–2, 130–1
local device communication

features
see also connectivity features
concepts 8–9, 56, 77–9

local memory chunks
see also chunks
concepts 225–8

local semaphores
see also semaphores
concepts 231–2

localization, resource files 345–7
lodger/window-owning controls,

contrasts 377–9
log files 21, 263–5
log servers 79
Logon 212–13, 219–20, 273–4
see also asynchronous

functions
long 82–3, 341–2
Look and Feel (LAF), concepts

73–5
Lookup 130–1
LowerCase 155, 181–2
LTEXT, resource files 341–2

M (interface) classes, concepts 84,
86–8, 110

MACRO 123
macros

assert macros 103
naming conventions 111
string literals 156–8, 161–2

make 117
makefiles, build system overview

117–18

MakeLineVisible 366–8
makeName 156–8
makesis 51–3, 137–46
MakeVisible 388–91
MakeWholeLineVisible 366–8
manufacturers 10–12
see also individual

manufacturers
Match 175–6
MCoeView 387–91
MegabytesOfFreeMemory

126–8
member variables, naming

conventions 110–11
memory 9–10, 14–16, 55–6, 57,

60–6, 125–8, 136–47,
163–72, 223–8, 396–424

see also Random Access...;
Read Only...

addresses 61–2, 223–8
blocks 62, 257
capacity specifications 14–16,

60–1, 126, 396–424
chunks 62–6, 85, 223–8
committed memory 224–8
concepts 60–6, 125–8,

163–72, 223–8
descriptors 163–72
emulator configuration 125–8
frugal requirements 9–10
organization 61–6
orphaned memory 93
overrun problems 155, 165
physical/virtual memory

addresses 61–6, 224–8
processes 62–6, 220–8
shared memory 57, 103–8,

220–8
types 60–2

memory cards see removable
memory cards

memory leaks 93, 153, 383
Memory Management Unit (MMU)

concepts 62–6, 213, 222–5
page tables 63–5, 224–5
protection role 62, 65

memory maps, concepts 61–6,
213, 224–8

menu/softkey items, resource files
38–49, 344–72

MENU BAR 39–49, 344–5
MENU ITEM 39–49, 344–5, 375
menu pane 39–49
menus 38–49, 325, 326–93
MENU TITLE 39–49, 344–5
messages, client/server model

267–92
messaging, smartphones 6–7,

14–16, 56, 293–4, 323–4
Metrowerks 21–3, 25–6, 28, 49
see also Integrated

Development Environments
Microsoft 11, 16–17, 22–3,

25–6, 28–9, 50–1, 117–19
see also Integrated

Development Environments;
Windows

Smartphone OS 11, 16–17
Visual C++ 22–3, 25–6, 28–9,

50–1, 119
Mid 176–7
middleware
see also libraries
concepts 10, 56

Mixin 86–8
MMC storage media 14–15, 61,

396–421
see also removable memory

cards; storage media
mmp files 28, 32–49, 104, 106–7,

109, 119–24, 128–36,
153–4, 204–13, 263, 322,
332–93, 426

see also project...
concepts 32–49, 119–24,

128–36, 153–4, 204–13,
263, 322, 332–93

DLLs 128–36
language definitions 346–8
processes 204–13, 332–93

MMS see Multimedia Messaging
Service

MMU see Memory Management
Unit

mobile phones
see also smartphones
concepts 1–17, 325

INDEX 443

generations 3–9
hardware limitations 325
historical background 2–3, 9
network protocols 2–6, 8, 10,

14–17, 78, 293–324,
396–423

PDAs 2–3, 8–9, 16–17
platform security 425–9
specifications 13–16, 395–424

modem features 9
modifying methods, descriptors

177–85
Motorola
see also UIQ
A760 17
A920/A925 5, 12, 23, 326,

398
A1000 399
MPx200 17

Move 382–4
MPEG-4 video 14
MSN Instant Messenger 296
multi-homing features 15, 79
Multimedia Messaging Service

(MMS) 6–7, 10, 14–16, 56,
79

multimedia support, Symbian OS
11, 13, 293

multipage dialogs
see also dialogs
concepts 359–60

multiple DLLs, concepts 107–8
multiple inheritance features, C++

81–2, 86–7
multiple processes 128, 203–13,

285
see also processes

multiple threads 56–7, 69, 128,
203–4, 213–19

multitasking aspects, Symbian OS
11, 56–7, 128, 237–8

mutexes
see also synchronization
concepts 66–8, 85, 232–3

NAME keyword, resource files
340–2

naming conventions 58, 70,
83–4, 110–12

network connections, concepts
322–4

network interface manager
(NIFMAN), communications
architecture 76–9

network programming
see also sockets; TCP...
active objects 305–24
concepts 293–324

network protocols
concepts 2–6, 8, 10, 14–17,

76–9, 293–4, 322–4,
396–423

specifications 13–16, 396–424
network services, well-known

server-side port addresses
296

New 84, 99–100, 107–8, 110, 169
NewApplication 43–9, 333–40
NewL 101–2, 110, 135–6,

187–91, 238–40, 251–6,
269–70, 277–83, 316–22,
339–40

NewLC 101–2, 110, 169, 253–6,
260–3

NewSessionL 269–91
Next 208–10
nif files 78–9
NIFMAN see network interface

manager
nmake 117
NOCOMPRESS (NC) 139–47
Nokia 11–12, 22–3, 115–49
see also Series...
3230 23, 400
3600/3650 12, 22, 401
3620/3660 22, 402
6260 23, 403
6600 5, 12, 14, 23, 25, 61,

323, 404
6620 6, 405
6630 23, 406
6670 23, 407
6680/6681/6682 23, 408
7610 409
7650 12
7710 12, 410
9210 12, 15
9290 5, 12, 15

9300 Communicator 16, 27,
52, 330–1, 411

9500 Communicator 6, 12,
15–16, 23, 27, 52, 61, 293,
323, 330–1, 412

N-Gage 22, 413
N-Gage QD 414
N70 23, 415
N90 23, 416
N91 417
SDK 22–3, 25–8, 31–49,

115–49
Symbian ownership 11

non-modifying methods,
descriptors 172–7

non-preemptive multitasking
model, active objects 237–8,
256

nostrictdef 133
NULL 99–100, 156–7, 161,

177–9, 183–4, 216

object types, cleanup stack
95–100

object-oriented operating systems
10–11, 82

OEM hardware 11, 65, 67, 72–5
OfferKeyEventL 385
OfferKeyL 377
OkToExitL 354–7, 365–6,

367–8
OnStarting 245–6
OnStopping 245–6
Open 85–8, 102, 207–9, 213,

216–17, 231, 288, 307–24
‘open’ aspects, Symbian OS

phones 1
Open Workspace 29
OpenFileL 337–40
OpenGlobal 225–9, 231
operating systems 1, 9–13, 23–4
see also Symbian OS
competitors 11, 16–17
historical background 9–13
Linux 16, 17, 24, 56
Microsoft Smartphone OS 11,

16–17
Palm OS 16, 56
requirements 9–10

444 INDEX

operating systems (continued)
resource-limitations 9–10
robustness needs 9–10

option buttons 375
Orange SPV 17
Order 197
ordinal function references

130–6
orphaned memory, dangers 93
OSs see operating systems
out-of-memory situations 10, 82,

88
OutputWebPage 299–324
overload features, C++ 81–2, 96,

99–100, 205–6
overrun problems, memory 155,

165
owning manufacturers, Symbian

OS 11

package definition files 32–49,
51–3, 137–47, 332–93

see also pkg files
packets

concepts 5, 293–324
TCP/IP 293–324

PAGE structures 359–66, 367
page tables, MMU 63–5, 224–5
Palm OS 16, 56
Panasonic

Symbian ownership 11
X700 23, 418
X800 23, 419

Panic 102–3, 211, 277–83
panics

concepts 102–3, 158, 211–12,
277–83

examples 102–3, 277–83
SDK list 102

PCs 2, 6–9, 14, 20–2, 24–30,
50–1, 108–9, 116–17,
119–23, 124–8, 326–7

see also Windows
emulator 20–2, 24–30, 50–1,

108–9, 116–17, 119–23,
124–8, 147–9, 213, 285–7

installation 136–7
multiple SDKs 147–9

PDAs 1, 2–3, 8–9, 16–17
PDF files 117
PE files 108
Pearl design 12
see also Series 60

pens 12–14, 383–4, 396–9, 410,
422–4

see also touch screens
performance issues

context switches 65–6, 68–9
switched processes 65–6,

68–9
Perl scripts 116
permissions, platform security

426–7
PETRAN 108
physical memory addresses,

concepts 61–6, 224–8
pictures 2, 6–7, 9, 14–16
ping 318
pixels 127–8, 391–3
pkg files 32–49, 51–3, 137–47,

332–93
see also package definition

files
advanced pkg options 141–4
concepts 32–49, 51–3,

137–47, 332–93
installation 32–49, 138–47,

332–93
language support 144–7,

347–8
platform security

authorization process 427
capabilities 426–7
concepts 62, 65, 68, 425–9
data-caging concepts 428–9
MMU 62, 65
permissions 426–7
SID 427–8

platforms, Symbian OS 11–16,
140–7, 325–32

Plot 383–4
plug-in DLLs
see also dynamic link libraries
concepts 58–9, 70–2, 75, 79,

104, 107–8, 124
Pocket PC OS 17
pointer descriptors

see also descriptors; TPtr...
concepts 158–60, 166–9,

282–3
definition 158, 166

pointers, controls 377, 384,
386–7

points and lines, drawing controls
382–4

polymorphic DLLs
see also dynamic link libraries;

plug-in...
concepts 57–8, 70–72, 75–9,

104, 107–8, 124
examples 70–2
loading methods 71–2, 130–1
virtual declarations 70–2

Pop 94–102, 189–91, 250–6,
279–83, 339–40

pop-up fields 362–6
POP3 accounts 7, 296
see also emails

PopAndDestroy 94–102,
189–91, 263, 278–80, 288

port addresses
concepts 295–304
IP (Internet Protocol) 295–324
well-known server-side

addresses 296
PPP module 77
pre-emptive multithreading,

concepts 56–7, 235, 237–8
prefixes, naming conventions

83–4, 110–12
PreLayoutDynInitL 354–7,

363–6, 367–8
PrintDocument 70–2
printf 151–4, 173–4, 180–1
priorities

active objects 247
processes 210–11
threads 217–18

Priority 211
private data, data-caging concepts

428–9
private directory 428–9
prn files 70
processes
see also applications
arguments 205–7

INDEX 445

chunks 223–8
code chunks 63–4, 228
concepts 56–7, 62–8,

203–13, 220–8, 426–9
critical sections 232–3
definition 57, 203–4
E32Main 109, 204–13
end-signaling method 212–13
examples 204
fixed processes 66, 68
inter-process communications

66–8, 207–8, 220–8
launching method 205–6, 216
memory 62–6, 220–8
mmp files 204–13, 332–93
multiple processes 128,

203–13, 285
names 208–9
performance issues 65–6
platform security 62, 65,

426–9
priorities 210–11
processes-running queries

209–10
protection 62, 65, 213
RProcess 85–8, 205–13,

220–8, 273–4, 285
running 205–6, 216
shared memory 220–8
status checks 211–12
switched processes 63–6,

68–9, 213, 222–3
terminations 211
virtual memory map 63–6,

213, 222–8
wildcard searches 208

programming basics 81–113,
235–65, 293–324, 325–93

asynchronous functions
235–65

basic data types 82–3
C++ in Symbian OS 81–2,

90–1
descriptors 154–201, 220, 270
DLLs 103–8
exception handling 88–103
executables 108–9
GUI applications 31–49,

325–93

libraries 103–8
naming conventions 58, 70,

83–4, 110–12
Symbian OS classes 83–8
TCP/IP applications 293–324

progress bars 375
PROGRESSINFO 375
project build files, concepts

47–9, 104–7, 119–49
project definitions 47–9, 104–7,

109, 119–24, 128–36,
153–4, 204–13, 345–8,
426

see also mmp files
concepts 119–24, 128–36,

204–13
definition 119–20
DLLs 128–36

project management tools,
Windows development tools
20–2

protection
MMU role 62, 65
processes 62, 65, 213
semaphores 229–30

protocol 300–2
protocol modules
see also Bluetooth...;

infrared...; TCP/IP
communications architecture

76–9, 293–324
protocols, interface classes

86–8
proxy servers, WAP 7
prt files 70, 76–9
Psion 10–11
Ptr 183–4, 187–91
PtrZ 183–4
PushL 94–102, 110, 111–12,

193–4, 250–6, 262–3,
278–83, 339–40

qikapplication.h 34–8
qikappui.h 34–8
qikdlh.lib 369
qikdocument.h 34–8
Quartz 12
see also UIQ

QueryWinL 368

quick start guide, Symbian OS
development environment
19–53

QWERTY keyboards 327

R (resource) classes, concepts
84–8, 97, 110, 205

radio 2–9, 56
radio buttons 375
Random Access Memory (RAM)
see also memory...
capacity specifications 60
concepts 60–1, 64, 224–5

RArray 195–9
R AVKON DONE CANCEL 352–4
R AVKON FORM MENUPANE

365–6
R AVKON OK BACK 352–4
R AVKON SOFTKEYS OK EMPTY

352–4
R AVKON SOFTKEYS OPTIONS

EXIT 39–49
R AVKON SOFTKEYS YES NO

371–2
R AVKON YES NO 352–4
RChunk 62, 223–8
see also chunks

RConnection 323–4
RCriticalSection 232–3
Read 85–8, 187–91, 220–8
Read Only Memory (ROM) 9,

60–6, 116–17, 125–8
see also memory; z: drive
capacity specifications 60
concepts 60–6, 116–17,

125–6
executed-in-place code 60–6

ReadL 220–8, 282–3
ReAlloc 169, 171
RecvFrom 310–11, 314–15
RecvOneOrMore 310–11,

314–22
redrawn windows, controls

380–1
reference platforms, Symbian OS

11–12, 325–32
RegisterViewL 387–91
R EIK BUTTONS CANCEL 351–4

446 INDEX

R EIK BUTTONS CONTINUE
351–4

R EIK BUTTONS NO YES 351–4
relocated data, concepts 63–6,

222–3
removable memory cards
see also memory...
concepts 61
MMC storage media 14–15,

61, 396–421
Remove 197, 201, 385
RemoveFromStack 385
Rename 208
Replace 244–5
request semaphores, asynchronous

functions 232, 236–65
requisite lines, installation 143–4
Reset 187–91, 197, 274–87
Resize 187–91
resource classes

concepts 84–8, 110
example 85–6

resource directory 428–9
resource files
see also rss files
concepts 38–49, 121–3,

128–31, 332–3, 340–93
definition 41, 340
format 240–2
language support 345–8
localization 345–7
SimpleEx example 342–5
string-reading tips 347–8

RESOURCE keyword, resource files
341–2, 373

resource-limitations, smartphones
9–10

RestoreL 336–40
Resume 205–7, 215–17
return codes, errors 88
RFile 59–60, 85–8, 97–9, 102,

104, 267–8, 288
see also file server

RFileLogger 263–5
RFs 267–8, 288
see also file server

RGenericAgent 323
RHandleBase 231, 271–4
RHandleBase::Duplicate 231
RHostResolver 304–24

see also sockets
Rich Text Format (RTF) 333
Right 176–7
RLibrary 71–2, 107–8, 130–1,

286–7
see also dynamic link libraries

RLogger 263–5
rls files 345–8
RMessage 269–91
RMutex 232
robustness needs, smartphones

9–10
ROM see Read Only Memory
RPointerArray 195–9
RProcess 85–8, 205–13, 220–8,

273–4, 285
see also processes

RProcess::Create 205–6
RProcess::Logon 212–13,

273–4
RSemaphore 85–8, 228–33
RSessionBase 268–91, 304
see also client/server...
concepts 268–91, 304
methods 268–9, 284–5

r SimpleEx cba 40–9
r SimpleEx dialog 362–6
r SimpleEx form 362–6
r SimpleEx menu 39–49, 321
RSocket 85–8, 104, 268, 304–24
see also sockets

RSocketServ 304–24
see also sockets

rss files 32–49, 332–3, 340–93
see also resource files

RSS SIGNATURE resource
343–5

RSubSessionBase 287–92
RTextBuff 271–4
RTF see Rich Text Format
RThread 85–8, 214–19, 220–8,

235, 242, 273–4, 282–3,
285–7

see also threads
RThread::Create 215–18
RThread::Kill 218–19
RThread::Logon 219–20
RThread::Open 216–17

RThread::RequestComplete
273–4

RTimer 248, 250–6, 259–60
run area, virtual memory map

63–6, 213, 222–8
Run Project 29
RUNBOTH (RB) 143
RunDlgLD 358, 368–72
RunError 239, 241, 246–7
RUNINSTALL (RI) 143
RunL 69, 219, 237–65, 268,

275–6, 311–24
see also active scheduler
concepts 237–65, 268, 275–6,

311–24
implementation 240–1,

250–6, 316–22
RUNREMOVE (RR) 143
RUNWAITEND (RW) 143

Samsung, Symbian ownership
11

sandbox see run area
Save 361–6
SaveFormDataL 361–6
screens 11–16, 73–5, 124–5,

267–8, 325–93, 395–424
see also graphical user

interface framework
concepts 11–16, 73–5,

124–5, 267–8, 325–42
platforms 11–16, 325–32
Series 60 (Nokia) 328–30
Series 80 (Nokia) 330–1
specifications 13–16, 395–424
UIQ 326–8

SD memory cards 61
SDKs see software development

kits
Secure Identifier (SID), platform

security 427–8
security issues see platform

security
segmented dynamic buffers,

concepts 187–91, 192
semaphores
see also synchronization
asynchronous functions 232,

236–65

INDEX 447

concepts 66–8, 69, 85–8,
228–33, 236–7

creation 231
opening 231
protection uses 229–30
Symbian OS 232
uses 229–30, 232, 236–7

Send 269–92, 309–24
Sendo X 12, 22, 420
SendReceive 269–92
SendTo 309–10
serial cable connection 8
serial communications server,

communications architecture
76, 78–9

Series 60 (Nokia) 12–16, 24–8,
31–51, 72–5, 102–3, 126–8,
138–47, 325–93, 400–21

see also CAkn...
characteristics 328–30
classes 33–49, 334–93
control structures 373–87
data input 329–30, 348–59
dialogs 329–30, 348–66,

367–72
emulator 20–1, 24–8, 50–1,

126–8, 147–9
forms 361–6
GUI architecture 12–16,

31–49, 72–5, 325–93
header file 32–8, 138–47
icons and captions 391–3
package file 51–3, 138–47
panics 102
project build file 47–9, 121–3
quick-start development

examples 20–3, 25–8,
31–49

resource file 38–43, 45,
121–3, 348–72

screens 328–30
SDK 22–3, 25–8, 31–49,

115–49
stock dialogs 368–72
view architecture 390–1

Series 80 (Nokia) 12, 22–3, 27,
31–49, 72–5, 148–9, 252,
325–93, 411, 412

see also CEik...;
Communicator...

characteristics 330–1
classes 35–49, 334–93
control structures 373–87
data input 330–1, 348–59
dialogs 112, 331, 348–59,

368–72
emulator 50–1, 148–9
GUI architecture 12, 31–49,

72–5, 325–93
header file 35–8
icons and captions 391–3
package file 51–3
project build file 48–9
quick-start development

examples 22–3, 27,
31–49

resource file 38–43, 348–72
screens 330–1
SDK 22–3, 27, 31–49, 148–9
stock dialogs 368–72
view architecture 387–90

Series 90 (Nokia) 12, 410
Series60Ex 25–30, 117
Series80Ex 27–30
servers
see also file...; font and

bitmap...; socket...;
window...

active objects 267–8, 275–6,
277–83

asynchronous functions 267–8,
275–6, 277–83, 305–24

client/server model 59–60,
73–5, 220, 267–92, 296

concepts 59–60, 73–5, 220,
267–92

CSharableSession 268–91
definition 267
emulator 285–7
ETEL server 76, 78–9
examples 270–87
execution flow 59–60, 267–8
GUI 267, 285
implementation 276–83,

287–92
kernel server 66–8

message-processing example
280–2

pointers 280–3
serial communications server

76, 78–9
service-invoking methods

274–6, 318–22
shutdown issues 284–5, 303–4
sockets 76–9, 85–8, 104, 268,

293–4, 296–324
starting 271–4, 277–80,

285–7, 288
subsessions 287–92
TCP/IP 296–324
TextBuffServ example

270–87
transient servers 284–5
types 59, 66–8, 73–5, 267–8
window server 73–5, 267–8,

380
servers-side code, sockets

298–324
ServerThreadFunction 287
ServiceL 270–91
sessions

client/server model 268–92
subsessions 287–92

SetActive 240–4, 251–6,
257–63, 275–6, 318–22

SetAddress 307–24
SetArrayL 376
SetBrushColor 383–4
SetBrushStyle 383–4
SetContainerWindowL 378
SetControlCaptionL 366–8
setdefault 148
SetDefaultView 387–91
SetDimmedNow 366–8
SetItemDimmed 365–6
SetLength 184–5, 201
SetMax 184–5
SetPenColor 383–4
SetPenSize 383–4
SetPenStyle 383–4
SetPort 307–24
SetPriority 210–11, 217–18
SetProtected 213
SetRect 339–40, 358–9, 378
SetReserveL 187–91

448 INDEX

SetState 375
SetTextL 356–7, 373
SetTitleL 366–8
SetType 208–9
shapes, drawing controls 384
shared memory, concepts 57,

103–8, 220–8
Sharp 17
Short Messaging Service (SMS)

6–7, 10, 14–16, 56, 323, 429
Shrink 383–4
SHUTDOWNAPPS (SH) 139–47
SID see Secure Identifier
Siemens

SX1 22, 421
Symbian ownership 11

Signal 229–33
see also synchronization

SIM see Subscriber Identification
Module

simple/compound controls,
contrasts 378–9

SimpleEx 31–49, 138–47,
249–56, 321–2, 332–93

active objects example
249–56, 321–2

class-hierarchy diagrams 36–8
Draw 339–40, 358–9, 377,

379–84
overview 31–2

SimpleEx app.cpp 43–4, 49
SimpleEx.cpp 43–4
SimpleEx Doc.cpp 44–6
SimpleEx.mmp 47–9, 121–3,

346–8
SimpleEx.pkg 51–3, 347–8
SimpleEx.rss 38–49, 342–8
SimpleEx.sis 53, 347–8
SimpleEx UI.cpp 44–6, 252–6
SimpleEx View.cpp 46–7,

254–6, 339–40
single-shot permissions, platform

security 426
sis files 19–20, 32–49, 51–3,

136–47, 332–93
see also installation
concepts 19–20, 32–49,

51–3, 136–47, 332–93
creation 137

embedded sis files 142–3
language support 144–5,

347–8
SISAPP 139–47
Size 160–1, 187–91
slow executive kernel calls,

concepts 68
smartphones
see also mobile phones
benefits 2
browsing 2–3, 7–8, 13–16
communication methods 2–9
concepts 1–17, 325
connectivity features 1, 8–9,

14–16, 56, 75–9, 429
features 1–9
hardware limitations 325
historical background 2–3, 9
manufacturers 10–12
messaging 6–7, 14–16, 56,

293–4, 323
network protocols 2–6, 8, 10,

14–17, 78, 293–324,
396–423

operating systems 1, 9–13
PDAs 2–3, 8–9, 16–17
resource-limitations 9–10
robustness needs 9–10

SMS see Short Messaging Service
socket 300–2, 307
sockets
see also RSocket; servers;

TCP/IP
active objects 305–24
asynchronous functions

305–24
BSD socket 77, 293–4,

297–304
C++ 293, 299, 304–24
classes 85–8, 104, 268,

304–24
client-side code 298–304
communications architecture

76–9
concepts 76–9, 85–8, 104,

268, 293–4, 296–324
connection 302–4, 305–24
creation 297–304, 307–24
destination addresses 307–8

examples 299–324
network programming

296–324
receiving data 303, 310–11,

314–15, 321
remote web servers 308–9
sending data 302–3, 309–10,

313–22
servers-side code 298–304
shutdown issues 303–4
Symbian OS API 304–24
TCP/IP applications 293–324
weather-information example

315–24
softkey items, resource files

38–49, 344–72
software
see also applications;

development...
C++ 13, 22, 25–9, 61–2,

69–72, 74–5, 81–113,
156–8, 293, 299–324

developer prospects 1, 10
interrupts 68
Java 13
titles available 1, 10, 13

software development kits (SDKs)
11–12, 19–53, 79, 102–3,
115–49

see also development tools
build flow 32–49, 119–23
components 20–1, 115–49
concepts 11–12, 19–25,

115–49
directory structure 115–17
documentation directories 117
examples 22–3, 25–30,

31–49, 115–49
getting 21
problems 29–30
switched SDKs 147–9
tips and traps 30

Sony Ericsson
see also UIQ
P800 12, 23, 422
P900 12, 13–14, 23, 385, 423
P910 326, 327, 424
Symbian ownership 11

Sort 197

INDEX 449

SOURCE 104, 106, 109, 121–3,
128–31, 204, 263

source files, concepts 43–7,
121–3, 128–31, 332–93

SOURCEPATH 104, 106, 109,
121–3, 128–31, 204, 263

special handshakes, TCP 295
specifications, mobile phones

13–16, 395–424
sprintf 180–1
src directory 43–4, 47
stack and heap chunk, concepts

62–3
Standard Template Library (STL)

82
Start 237–8, 242–5, 257,

262–3, 278–87
start-up code, ROM 60–1
StartBackground 261–3
StartExe 109, 206
StartL 269–91
StartRunning 259–63
StartServer 273–4, 277–80,

285–7
StartThreadL 214–15
State 375
state machines, active objects

312–22
static data chunks, concepts 63–5
static interface DLLs
see also dynamic link libraries
concepts 57–9, 70, 75, 103–8

static libraries
see also import libraries
concepts 57–9, 75, 103–8
creation 104

STATIC CAST 355–7
status bars 326–32
status checks, processes 211–12
STL see Standard Template Library
stock dialogs
see also dialogs
concepts 368–72

Stop 242–5, 250–6, 257
storage media 14–16, 61,

396–424
see also MMC...; removable

memory cards
specifications 14–16, 396–424

StoreL 336–40
stray-signal exceptions, active

objects 257–8
strcmp 173
streaming media 293–4
Streaming Media network service

296
string literals, concepts 156–8,

161–2
strings
see also descriptors
binary data 155
concepts 154–8, 345–8

STRUCT keyword, resource files
341–54, 374

subsessions
see also CObject
client/server model 287–92
creation 290–1
example 288
file server 288–92
workings 289

sub-strings, descriptors 174–7
Subscriber Identification Module

(SIM) 4
suffixes, naming conventions

93–103, 111–12
SWI instruction 68
SWInstall 426, 428
switched processes, concepts

63–6, 68–9, 213, 222–3
symbian 115
Symbian Ltd 1, 10–12
see also UIQ Technology AB

Symbian OS
see also operating systems;

smartphones; sockets
application

engines/services/protocols
79–80

architecture 55–80, 387–91
basic data types 82–3
C++ concepts 81–113, 156–8,

293, 299–324
classes 83–8, 110–11,

154–201, 333–40
client/server model, concepts

59–60, 73–5, 220, 267–92

communications architecture
2–6, 13–16, 56, 75–9,
293–324

competitors 11, 16–17
components 55–6
concepts 1, 10–17, 19–24,

55–80
controls 355–7, 372–87
development tools 19–53,

115–49
DLLs 57–9, 67, 69–72, 76–9,

103–8, 128–31, 333–40
emulator 20–2, 24–30, 50–1,

108–9, 116–17, 119–23,
124–8, 147–9, 213, 285–7

flexible architecture 11–12
GUI architecture 11, 21–2,

31–49, 56–8, 72–5,
108–9, 117, 151–2, 267–8,
325–93

high performance graphics 75
historical background 10–13
kernel 55–6, 62–8
memory 60–6
multitasking aspects 11, 56–7,

128, 237–8
naming conventions 58, 70,

83–4, 110–12
network connections 322–4
‘open’ aspects 1
overview 11–13
owning manufacturers 11
phone specifications 13–16,

395–424
platform security 425–9
platforms 11–16, 140–7,

325–32
programming basics 81–113
quick start guide 19–53
reference platforms 11–12,

325–32
SDKs 11–12, 19–53, 115–49
semaphores 232
Socket API 304–24
TCP/IP 11, 56, 76–9, 293–324
text console 151–4, 259
v6.0 15, 23
v6.1 22, 413–14, 420–1

450 INDEX

Symbian OS (continued)
v7.0 15, 23, 24, 79, 147–9,

210, 323–4, 396–424
v8.1 23, 213, 285–7, 415–17
v9 57, 58–9, 108–9, 425–9

Symbian Base 25–30
synchronization
see also critical sections;

mutexes; semaphores
concepts 228–33
threads 228–33

synchronous functions, concepts
235–6

SyncML, application protocols
56, 80

sys directory 428–9
system/apps directory 137–46
system/data directory 137–46
SystemGc 382–4
SYSTEMINCLUDE 106, 109,

121–3, 128–31, 204, 263
system/lib directory 130,

137–46

T (data type) classes, concepts
84–8, 97–9, 110

T-Mobile 323
tabs 326–32, 359–72
TAny 83, 95–6
TARGET 49, 104, 106, 109, 121–4,

128–31, 204, 263
TARGETPATH 121–4, 204
TARGETTYPE 49, 104, 106,

121–4, 128–31, 204, 263
TArrayFixed 195–9
TBool 83, 243
TBuf 156–94, 220, 251–6,

305–24, 343–8
see also buffer descriptors
concepts 156–94, 220, 343–8
memory layout 163

TBufBase 159–60
TBufC 156–94
see also buffer descriptors
concepts 156–94
HBufC 169
memory layout 165–6

TBufCBase 159–60
tbuffserver.h 276

TCB see Trusted Computing Base
TChar 83, 84, 178–9
TCleanupItem 96–9
TCoeInputCapabilities 386
TCP (Transmission Control

Protocol) 293–324
TCP/IP
see also sockets
applications 293–324
client/server model 296–324
concepts 293–324
introduction 294–6
layering diagram 295
network connections 322–4
network programming

293–324
protocols 294–5
Symbian OS 11, 56, 76–9,

293–324
virtual connections 295–324

tcpip6.prt 76
TDblQue 200
see also linked lists

TDblQueLink 200
TDes base class 159–61, 166,

172–86, 221
TDesC base class 157–62,

165–6, 172–86
see also base classes;

descriptors
Techview 12
telephony server see ETEL server
Telnet network service 296,

315–17
templates

arrays 191–2, 194–9
C++ 81–2, 96–7

terminations
processes 211
threads 218–19

text 46–7
TEXT... 141–2
text 141–2
TEXT... 146
text 146, 339–40, 381–2, 384
text console, concepts 151–4,

259
text notices, installation 141–2
textbuffclient.h 270

textbuff.h 276–7
TextBuffServ 270–87
TFindChunk 225
TFindHandleBase 208–9
TFindProcess 208–10, 225
TFindSemaphore 231
TFindThread 217, 225
TFixedArray 191–2
third-party suppliers 1, 11, 13
threads
see also RThread
active objects 232, 237–65
cautionary uses 214
chunks 223–8
client/server model 267–92
concepts 56–7, 64–5, 66–9,

85, 203–4, 213–19, 220–8
creation 214–18
definition 56
end-signaling method 219–20
executables 215
inter-thread communications

66–8, 207–8, 220–8,
282–3

multiple threads 56–7, 69,
128, 203–4, 213–19

opening methods 216–17
pre-emptive multithreading

56–7, 235, 237–8
priorities 217–18
running 214–16
starting 214–16
synchronization 228–33
terminations 218–19

throw/catch exception C++ feature
82, 90

THUMB 116–17, 119
thumb pointers 330
TIdentifyRelation 197
timers, concepts 66–8
TInt types 82–3, 91–2,

99–100, 198–9, 200–1, 208,
223–4, 228–30, 260

TitleFont 339–40
TLeave 99–100
TLibraryFunction 71–2
TLinearOrder 196, 199
TLitC 161–2
tool bars 325–40

INDEX 451

touch screens 12–14, 326–32,
396–9, 410, 422–4

see also pens
TPoint 382–4
TPointerEvent 386–7
TProcessId 207–8
TProcessPriority

210–11
TPtr
see also pointer descriptors
concepts 158–94
memory layout 166–9

TPtrC
see also pointer descriptors
concepts 158–94
memory layout 166–9

training, OS requirements 10
transcoding features, WAP 7
TRAP 90–5
trap mechanism, concepts

89–103, 111–12, 152–3,
169, 198, 241, 245–7, 250–6,
278–83

TRAPD 91–5, 278–80
TReal types 83
TRect 381–4
TRequestStatus 212–13,

235–48, 273–4, 305–24
see also asynchronous

functions
TRes 159–60
TrimAll 182–3
TrimLeft 182–3
TrimRight 182–3
Trusted Computing Base (TCB)

428–9
TSize 382–4
TSocketAddr 311
tsy files 78
TSY modules, ETEL server 76,

78–9
TText types 82–3
TTime 368–9
TUint types 82–3, 177–9,

185–6, 188–9
TVersion 272–4
two-phase constructors, concepts

100–2
typedefs 83

UART 78
UDEB 29, 116–28
UDP (User Datagram Protocol)

294–324
see also sockets
client/server model 296
concepts 294–5
layering diagram 295
UHEAP MARK 153
UHEAP MARKEND 153

UI see user interfaces
UI classes, applications 31–49,

332–93
UI control framework see CONE
UID 104, 106, 109, 121–4,

128–31, 208, 263
UID@symbiandevnet.com 124
UID1 123–4, 128–31
UID2 123–4
UID3 123–4
UIDs see unique identifiers
UIKON, concepts 73–5, 373
uikon.rh 353, 373
UIQ 12–16, 22–3, 26, 31–49,

72–5, 136–7, 140–7, 252,
325–93, 396–424

see also CQik...; Motorola;
Sony Ericsson

characteristics 326–8
classes 34–49, 334–93
concepts 326–8
control structures 373–87
data input 327–8, 348–59
dialogs 328, 348–59, 368–72
emulator 50–1, 147–9
GUI architecture 12–16,

31–49, 72–5, 325–93
header file 34–8, 140–7
icons and captions 391–3
package file 51–3, 140–7
paper metaphor 327–8
project build file 48–9
quick-start development

examples 22–3, 26,
31–49

resource file 38–43, 348–72
screens 326–8
SDK 22–3, 26, 31–49, 117–49
stock dialogs 368–72

view architecture 387–90
UIQ Technology AB 12
see also Symbian Ltd

UIQExamples 26, 117
ukon.rh 344, 353
UMTS network protocol 6
Unicode 83, 155, 159, 186,

341–2
unique identifiers (UIDs) 31–49,

104, 106, 109, 121–4,
139–47, 334–93

concepts 31–49, 121–4,
139–47, 334–40, 388–91

identifiers 123–4
sis files 139–47

unit of protection, platform security
426

Unix 235
UpperCase 181–2
UREL 51–3, 116–25, 138–47
URLs 7
USB connectivity 1, 8, 14, 16, 19,

56, 304, 396–424
UseBrushPattern 383–4
UseFont 383–4
User 82, 92–5, 104
user interfaces (UI)
see also graphical...; Series...;

UIQ...
classes 31–49, 332–93
concepts 11–16, 31–49,

72–5, 124–5, 325–93
customization 72–5
OS requirements 10, 11–12,

72–5, 325–32
specifications 13–16, 395–424
types 11–16, 325–32

user library, concepts 67–8
User::After 109, 214–15, 238,

257, 259–63
User::AllocLC 98–9
user.dll 68, 151
USERINCLUDE 106, 109, 121–3,

128–31, 204, 263
User::InfoPrint 109, 214–15,

386–7
User::Leave 90–5, 198–9,

205–7, 215, 220, 250–6

452 INDEX

User::LeaveIfError 92–3,
198–9, 205–7, 215, 220,
250–6, 280–3

User::LeaveIfNull 92–3
User::LeaveNoMemory 92–3
User::Locked... 233
User::Panic 102–3, 277–83
User::PrintInfo 162
User::QueryVersionSup-

ported 272–4, 279–83
User::WaitForRequest 212,

219, 236–7, 245–6, 248, 258,
273–4, 305–24

UTF-8186, 341

variables
global variables 108, 111
naming conventions

110–11
vc6 28–9
Verizon Wireless network 4
Version 272–4
VGA screens 12–13, 326–8
video 3, 6–7, 14–16
video teleconferencing 3
view architecture

concepts 387–91
creation 387–90
Series 60 (Nokia) 390–1

view classes 31–49, 326–32,
334–93

ViewActivatedL 387–91
ViewConstructL 387–91
ViewDeactivated 387–91
ViewId 387–91
virtual buttons, emulator

126–8
virtual connections, TCP/IP

295–324
virtual declarations, polymorphic

DLLs 70–2
virtual drives, emulator

125–8
virtual functions 81–2, 86, 95,

107–8, 387–91
virtual keyboards 12–14, 126–8,

385–6
virtual memory addresses

concepts 61–6, 222–8

memory map 63–6, 213,
222–8

VirtualKey 126–8
voice transfers 2–3
void data type 83, 244–5

W-CDMA technology 6
Wait 229–33, 243–6, 248, 258
see also synchronization

WaitForRequest 213, 219,
236–7, 243–4, 245–6, 248,
258, 273–4, 305–24

WAP browsers 7–8, 14–16, 293,
396–424

WCDMA network protocol 399,
408

web browsing see browsing
WiFi network protocol 15, 293,

322–4
wildcard searches

descriptors 175–6
processes 208

Win32 development tools 19–53
window server
see also servers
animation plug-ins 75
concepts 73–5, 267–8, 380
CONE 380

window-owning/lodger controls,
contrasts 377–9

Windows 17, 19–53, 56, 104,
108–9, 116–17, 119–23,
124–8, 147–9, 213, 285–7

see also Microsoft
2000 19
CE 17
development package (Win32)

19–53
emulator 20–2, 24–30, 50–1,

108–9, 116–17, 119–23,
124–8, 147–9, 213, 285–7

Mobile family 17
NT 19
XP 19

Windows development tools
19–53, 124–8

see also development tools
components 20–2
concepts 20–2, 25–9, 124–8

debuggers 20–2, 120, 124
examples 25–30, 31–49,

332–3
getting 21–2
monopoly situation 23–4
problems 29–30
providers 22
quick test 25–9
tips and traps 30

WindowTitle 126–7
wins 25–8, 50–1, 104, 116–17,

119–28, 133–6, 154, 286–7
winsb 26–8, 29, 51, 116–17, 119
winscw 26–8, 51, 116–17, 119,

154
WinsMain 286–7
WLAN 79
WML 7
Word 17
WORD, resource files 341–2, 374
World Wide Web 294
see also browsing

wrapper classes 96–9, 106–7,
274–6, 372

Write 85–8, 187–91, 220, 264
WriteL 220–8, 282–3
www.epocware.com 1
www.forum.nokia.com 30
www.gnuPoc.sourceforge.net 24
www.handango.com 1
www.symbian.com/developer/

index.html 426
www.symbian.com/developer/

sdks.asp 21
www.symbian.com/phones 395
www.symbiansigned.com 427–8
www.wunderground.com

315–24

x86-based Windows binaries
119, 127

xHTML 7, 396–424

z: drive
see also Read Only Memory
concepts 60–1, 116–17,

125–8
Zero 184–5
ZeroTerminate 183–4

