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High precision canonical Monte Carlo determination of the growth constant of square lattice trees
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The number of lattice bond trees in the square latto@inted modulo translationg,, is a basic quantity
in lattice statistical mechanical models of branched polymers. This number is believed to have asymptotic
behavior given byt,~AN"n"? where A is an amplitude\ is the growth constant, ané the entropic
exponent. In this paper, we show thatnd # can be determined to high accuracy by using a canonical Monte
Carlo algorithm; we find that =5.1439+ 0.0025, 6= 1.014+ 0.022, where the error bars are a combined 95%
statistical confidence interval and an estimated systematic error due to uncertainties in modeling corrections to
scaling. If one assumes the “exact valueé=1 and then determines, then the above estimate improves to
A=5.14339-0.000 72. In addition, we also determine the longest path expgnantl the metric exponemnt
from our datap=0.74000= 0.00062,»=0.6437=0.0035, with error bars similarly a combined 95% statistical
confidence interval and an estimate of the systematic error.
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[. INTRODUCTION fluent correctionCn ™! is ananalytic correctionto the “pure
scaling formula”’An~ A", Rooted treesre lattice trees with
Lattice trees are connected and acyclic subgraphs of ane vertex rooted at the origin. It is apparent that a tree of
lattice (see Fig. 1 These objects have been studied as modsizen hasn+ 1 possible roots, so that the number of lattice
els of branched polymefd —4] and they remain an interest- trees rooted at the origin i§,= (n+ 1)t . Thus, the asymp-
ing, though intractible, model in lattice statistical mechanicstotics of T, is similar to that oft,,:
The most basic quantity in this model tig, which is the
number of distinct lattice trees of sizeedges counted up to To=An'"A"(1+Bn 4+Cn 1+ ..). (2
equivalence classes under translations in the square léttice .
other words, these lattice trees are not roptdthe number The exponents) and A are supplemented by two addi-

of edges in a tree is called its size, so that trees counteg by tional crlt!cal exponentsy and p. Th_e metric exponent
have sizen. The number of vertices in a tree is its order, andcharacterizes the scaling of lengths; for example, the mean

trees counted by, have ordem-+1. Very little is known square radius of gyration is believed to scale as a power law

(exactly about the properties df, ; the most important gen- with n,
eral theoretical accomplishment is an asymptotic expression (R2)~n2" &)
for t,, in high dimensions due to Hara and Sldé&é n '
A field theoretic description of branched polymers was,, o1 «_» indicates (im ; 2\ ;
. X . ~ precisely that (R7) is asymptotic
introduced by Lubensky and Isaacson in Héfl. This de- to n?” to the leading order. The second exponent describes

}[/_el_oprlnent rEad_e I poss;blef to_study Iz:\jttlce :Lezs frfom a tf]tathe scaling of substructures in lattice trees, such as the long-
IStical-mechanics point of view, and metnods 1rom thegq path or the size of a branttee Fig. 1 For example, the

theory of phase transitions were used to obtain informatior;nean longest patfP,) or the mean branch siZ®,) should
aboutt,. A number of conjectures were made as a resultscale withn as n n

most notably with respect to the scaling properties and the

critical exponents in this model; obtained by using arguments (P)~(b,)~n?, (4)
relying on mean field theory and dimensional reduc{izh

in low dimensions. These conjectures have been tested nwherep is the longest pathor branch exponent9]. Natu-
merically in a variety of numerical studi¢g—10], and they  rally, there are corrections to scaling in the above asymptotic
motivate the development of Monte Carlo algorithms toexpressions fofR2), and(P,). To leading order, these cor-
sample lattice trees effectively from a given ensemble. Adyections include a confluent term with exponent and an

ditional algorithms for numerical studies also include the ex-analytic correction[as suggested by Ed2)]. Thus, one
act enumeration of lattice tre¢$1]. might guess that

The asymptotics of,, is generally accepted to be
(RH=Cn?"(1+B,n *+D,n"1+...),
t,=An A"(1+Bn A+Cn 1+...), )
(Py~(b)=Cyn?(1+Bpn 2+Dpn 14 ..),
where A, B, andC are constantgsometimes referred to as
“amplitudes”) [7], \ is thegrowth constanbf lattice trees, and analyze data from numerical simulations assuming these
and 0 is the entropic exponentThe exponeni\ is thecon-  asymptotic expressions to obtain statistical estimatesvfor
fluent (correction) exponenwhile the termBn~2 is acon-  andp.
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FIG. 1. A square lattice tree. The longest path in this tree is highlighted in the center. If an edge is deleted, then the tree splits into two
subtrees on the right; the smaller of whitthe top lef} is called a branch. This tree has sieimber of edges24 and ordenumber of
verticeg 25.

The most accurate determinations)ofand 6 in two di-  therefore explicitly comparable to the estimates from this
mensions were obtained by exact series enumeratioh,of paper given in the abstract above.
for small values oh. The series is analyzed using differential ~ Canonical Monte Carlo simulations have also been used
approximants, and the best estimateshofind § are ex- to determinev, p, and the confluent exponent[15]. These

tracted. The best value obtained so far is estimates are
\=5.140+0.002, (5) »=0.642+0.010, (10)
obtained from series analydi&2]. The estimate p=0.738+0.010, (11)
r=0.64115¢-0.000 05 (6)

A=0.65*0.20, (12)

for the metric exponent for branched polymers is also due ®Quith error bars as a combined 95% statistical confidence in-
series analysis of lattice tre@sut in this case fosite tree$ terval and an estimated systematic error. The large uncer-
[13]. tainty in the value ofA is notable; it is generally difficult to

Grand canonical Monte Carlo simulations of square lat; determine amplitudes and exponents associated with correc-
tice trees in two dimension¥] predicted values consistent tions to scaling.

with those obtained in the exact enumeration studies, namely, In this paper, we use canonical Monte Carlo simulations

A=5.1431+0.0017-0.0057=5.1431-0.0074, (7) to _estlmatev, P andA. In the following secthn, we de_— .
scribe a labeling of trees that allows us to define a statistic

6=0.994+ 0.029+ 0.054=0.994+ 0.083, (8)  thatwe call theatmospheref a tree. This statistic allows us
to estimatew and 6. In Sec. I, we first consider the atmo-
v=0.6402+0.0040+ 0.0044= 0.6402+0.0084.  (9) sphere of trees and show how they may be used to determine
the growth constank in a canonical Monte Carlo simula-
The error bars in these estimates are as folldvest value tion. In Sec. lll, we present our numerical data. We give
+ 95% statistical confidence intervat estimated system- estimates fop, v, 6, and\, and discuss the numerical con-
atic error [14]. We add the two error terms to find a single fidence in our results. We conclude the paper with some short
combined error bar in the final estimates; these error bars a@mmments in Sec. IV.

O—0 O—0 QAI

FIG. 2. Arooted tredleft), labeled to depth on&entej and its legal labelingright).
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FIG. 3. If a lexicographic breadth-first labeling is put on these trees from the roots deno@dtbgn the atmospheres composed of the
dotted edges are obtained. The left-hand (e¢das no atmosphere, the center tfieehas an atmosphere of size 3, while the right-hand tree
(c) has an atmosphere of size 21.

Il. TREES AND THE ATMOSPHERES cannot be used immediately to find a unique atmosphere for
any tree. We shall change the labeling scheme so that each
lattice tree will be uniquely labeled, in which case we may

length of the shortest path from the rootito Thus, the root find a unique atm_osphere for eac_h root that we select._The
has level zero and the immediate children of the root verte'€adth-first labeling is made unique by ordering vertices
all have level one. Vertices in a rooted unlabeled tree may bi§Xicographically by their coordinaterst in thex direction, -
systematically labeled, from the root, using two widely usedN€n in they direction, and then labeling the lexicographic
schemes: breadth-first and depth-first labelitege, for ex- €ast vertex with the next unused label.
ample, Ref[16]). Lexicographic breadth-first labelind-his is given as fol-
The atmosphere of a lattice tree is an intuitive notionlows.
(which we shall make precis®f adjacent lattice space into (1) Label the root of the tree by 0, and let this be the
which a tree can grow. The atmosphere is not a unique progsurrent vertexin level 0
erty of any given tree, but depends on the choice of root and (2) Assume that the current vertexin levelr has labek.
labeling scheme which we use to construct it. On the otheBSearch for the children af in levelr+1 and label them in
hand, we shall collect statistical evidence that the size of théexicographic increasing order with the next unused labels,
atmosphere of a tree is intrinsic in the sense that some tresslym,m+1m+2,....
will tend to have large atmospheres, and some trees will tend (3) When all the children o (with labelk) are labeled,
to have small atmospheres, irrespective of the choice of roothen select the vertex with labkHk1 as the current vertex
In this paper, we use a breadth-first labeling scheme tdi.e., incrementk to find the next vertex and continue the
define the atmospheres. Such a labeling is not unique and $abeling algorithm from thene

Let T be a tree with root vertex labeled O located at the
origin of the square lattice. THevelof a vertexv in T is the

FIG. 4. If the trees in this sequence are labeled by a lexicographic breadth-first labeling from the root den@edhey the
atmospheres grow along the sequence in size&kas48 while the size of the trees grow as- 2k(k+1), withk=0,1,2 . . .. Inother words,
the size of the atmosphere grows proportionahi6.
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(4) Repeat step&) and(3) until all the vertices inT are
labeled.

This algorithm assigns a unique labeling to each rooted
lattice tree. Such a labeling will be calléelgal (see Fig. 2
and all other labelings will be calleitiegal.

A tree T of order n vertices with a legal labeling may
grow to a tree of orden+ 1 vertices by adding an edge To
only if the resulting tree also has a legal labeling; the new
vertex will have labeh and will reside in the deepest level of
the tree and will be the last vertex to be labeled using the
above algorithm.

The set of edges that can be appended to a legally labelec
tree of ordem, T, to produce a new legally labeled tree of
ordern+1, T', is called theatmosphereof T. T’ is a suc-
cessorof T andT is thepredecessoof T'. The predecessor
of a legally labeled tree can be obtained simply by deleting
the vertex with the highest label. The number of sucessors of
a treeT is equal to the size of its atmosphere, and we denote
this number bya(T).

There are trees with no atmospheres, and some sequence
of trees with atmospheres that increase without bound as
—. In Fig. 3(a), an example of a tree with an empty atmo-  F|G. 5. A lattice tree of size 2048 edges generated by the Monte

sphere is given, while a tree with a small atmosphere and 8arlo routine. The end points of the longest path are indicated
tree with a larger atmosphere are illustrated in Figb) and by @.

3(c). A sequence of trees of ordarand with atmospheres
that increase a®(\/n) is given in Fig. 4.

Assume thafl,(a) is the number of rooted trees of size-
n edges and with atmospheres of szedges. IfT is a tree
counted byT,(a), then there ara trees of sizen+1 which
are descendents @t Thus, the total number of descendents:1448 (1.5¢1° iterations, andn=2048 (1.8<10° itera-

of trees counted by ,(a) is aT,(a), and these are all dis- .. . T i
tinct, since they are labeled uniquely by the Iexicographictlons) (see Fig. 3. The resulting time series was analyzed for

breadth-first labeling. Since every tree countedThy is a autocorrelations to find sample averages with proper statisti-

descendent of a tree ihy(a), for some value o4, it follows cal conflden_ce mtgrvalé:eﬁ, for (;xgmple,fRe[lS] Ifor. an
that extensive discussion of the techniques for analyzing data

from Metropolis Monte Carlo simulations

starting atn=4, and incrementingn in larger leaps to a
maximumn=20481 At each value ofn, a total of 18 at-
tempted iterations of the algorithm was performed, with the
exception ofn=4 (8x10’ attempted iterationsand n

Th+1= é aTn(a). 13 A. The mean branch size of trees

Select an edge uniformly in a lattice tree and delete it.
Since it is a cut edge, this cuts the tree into two subtrees, the
smaller of which is called &ranch[9], see Fig. ¥ Let the

Thus, the expected size of the atmosphere is given by

2 aT,(a) size of the branch blg,,, and the mean branch size measured
(a)= a __n+1 (14) uniformly over all the branches in all tred4,,), is believed
Ty T, to scale withn as described by Edq4). Sample averages of

) o ) ) b, over data collected in a Monte Carlo simulation give es-
Itis a theorem thall ., /T,—\ in high dimension$5], but  timates of(b,,), and a suitable scaling ansatz for the mean
this is not known to be the case in dimensiahs8. How-  pranch size can be obtained by taking logarithms of @j.
ever, all numerical evidences suggest that this is indeed thgnd then expanding the resulting expresdafter including
case, and it will be an assumption in this paper. confluent and analytic correction® obtain

IIl. NUMERICAL RESULTS In(b,)=INCp+pInn+Byn 2+Dyn "+ (15

In this section, we examine numerical data for the mean————

branch size, mean longest path, mean square radius of gyra(the sizes of the trees were first incremented in steps of 2 from

tion, and the mean atmosphere of lattice trees in two dimen to 22, thereafter in the sequen{26,32,38,46,54,64,78,90,106,
sions. Lattice trees of sizéwere sampled from the uniform 128 180,256,362,512,724,1024,1448,2048

distribution along a Markov chain using the Metropolis al- 2in some cases, two subtrees of the same size may be obtifined
gorithm [17] implemented via a cut-and-paste algorithm for nis odd. In those cases, a random choice is made to identify one as
lattice treed9]. Simulations were performed for valuesmf a branch and the other as the remainder of the tree.
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TABLE I. Linear regressions fotb,) to determinep.

Type of fit Nimin Xa Acceptable level p
Two parameter linear 390 5.71@ df) 78% 0.73768:0.00067
Analytic correction 106 9.117 df) 76% 0.73909-0.00068
Confluent correction 16 27.949 df) 92% 0.74006-0.00016
Both corrections 16 21.48.8 df) 75% 0.73954:0.00042

Estimates of the exponeptcan then be made by a weighted level), while p=0.73932-0.00040 if A=0.80 (x5
least squares fit of a two-parameter linear moddbin =23.23 acceptable at the 82% leneThe fit at A=0.75
=InCy+plInn to the datain which case we ignore the cor- is more acceptable, and we take it as our best estimate in
rections to scaling The results of this fit are displayed in the Table I.

first row in Table I. The estimate for the exponentds Comparing our results in Table | suggests that the models
=0.73768-0.000 67, where the error bar is a 95% statisticalwith a confluent correction, and with both a confluent cor-
confidence interval. Corrections to scaling may have a poterrection and an analytic correction, should be accepted as the
tially important impact on this estimate; since these are mostnost successful in modeling the data. The difference in the
important at small values af, we discard data at values of best estimates could be viewed as a systematic error. Thus,
N<npin, Wheren, is increased systematically until a sta- taking the value ofp obtained in the model with only a

tistically acceptable fit is obtained. confluent correction as the best estimate, we find
The model improves marginally when an analytic correc-
tion is included. In this case, a three-parameter model is ob- p=0.740 00 0.000 16-0.000 46, (16)

tained, and a fit withy,,= 106 with seven degrees of free- where the error bars are first a 95% confidence interval fol-

: 0 .
dor_n is acceptable at thg 95/0 level. We _notlce t_hat thEfowed by an estimated systematic error. Previous estimates
estimate forp moves outside its 95% statistical confidence; | o p=0.736-0.013 [9] and p=0.738+0.010 [15]

intervals when compargd o the est|mate p_rewously obtaine where the error bars are a 95% confidence interval added to
for the two-parameter fit. However, since this least squares fi

. . n esimated systematic eryor
has seven degrees of freedom, we accept it as superior to the Y )

two-parameter fit that had only four degrees of freedom. The
situation is further improved by including a confluent correc-
tion instead. Unfortunately, this analysis is nonlinear, and For trees of sizen edges, the mean longest pdt®,) is
generally may be numerically unstable. Thus, weAiband  believed to scale as in E¢4), with the same exponemt as
perform three-parameter linear fits to determine best estithe mean branch siZ8]. This power law is also corrected by
mates. The least squares error can be tracked as a functiona@drrections to scaling, and to the leading order one should
A, and best values fop can be chosen at that value &f  expect a confluent correction followed by an analytic correc-
where the error is minimized. This procedure would onlytion. Thus, a reasonable scaling ansatz{fe) is

give an effective value foA, since all other corrections are N 4

ignored and probably do contribute to the least square error.  IN(Pp)=INCp+pInn+Byn~24+Dpn™ ... (17)

For a more careful analysis df, see Ref[15]. The results
of these fits are in Table II; data from valuesrofess than
nmin=16 were excluded since no statistically acceptable fit
could be found if those are included. Only the two fits with
A=0.75 andA=0.80 are statistically acceptable, and we

B. The mean longest path of trees

The situation is now similar to that of the preceding section.
While the constant€,, B,, andD, are presumably differ-
%nt from their values in Eq15), the exponentp andA are
expected to be universal.

take those to give the best results for Combining them by TABLE II. Linear regressions fotb,) with a confluent correc-

taking their average gives a single estimate that we list inion.

Table I.

Yet another model is obtained when the analytic correc- A X2 Level p

tion is added to the last model, while the confluent exponent

is fixed at its effective value. A fit withA=0.75 givesp 0.30 2865.20 >992A’ 0.76657.0.00032

—0.73954-0.00042 %,—21.45 acceptable at the 75% 40 lrie4z — =99%  0.7556%:0.00026
0.50 893.35 >99% 0.749050.00021
060 360.32 >99% 0.744630.00019

3The least squares err@?j in a weighted least squares fit is dis- 0.65 191.68 >99% 0.7428¢-0.00017

tributed as gy? statistic ond degrees of freedom, whetkis equal 0.70 82.71 >99% 0.74139:0.00017

to the number of data points minus the number of parameters in the 0-75 29.49 94% 0.740@80.00016

model. We deem the results of a least squares fit to the data statis- 0.80 27.94 92% 0.738920.00015

tically acceptable ifSﬁ is acceptable at the 95% level. The most  0.85 74.67 >99% 0.7378%0.00015

succesful model will be taken as the model that maximizes the 0.90 166.12 >99% 0.73696:0.00014

degrees of freedom while being acceptable at the 95% level.
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TABLE lIl. Linear regressions fo{p,) to determinep.

Type of fit Nimin Xa Acceptable level v
Two parameter linear 256 9.19 df) 90% 0.73915:-0.00046
Analytic correction 106 9.207 df) 76% 0.7395% 0.00064
Confluent correction 106 8.6@ df) 73% 0.73986-0.00080
Both correctionsA =0.65 10 29.7821 df) 91% 0.74024:0.00030
Both correctionsA =0.85 12 27.3020 df) 88% 0.73948 0.00029

A two-parameter least squares fit that ignores the corredsy assuming thah =0.65 or 0.85, two values df suggested
tions to scaling can be done when only those data with in Refs.[15,11], respectively, and then compared the results.
<nmin=256 are excluded; the result is in Table Ill. In this The results of these fits are reported in Table IlI. Af
fit, the number of degrees of freedom is five, which we do=0.65, then a fit withn,,;,=10 is acceptable at the 91%
not consider to be satisfactory. Including an analytic correclevel, and if A=0.85, then the fit is acceptable with,;,
tion improves the situation somewhat; there are seven de=12 at the 88% level.
grees of freedom withh,;,=106. A confluent correction Comparing these results shows that they are consistent
does not improve matters, and we could not find any accepiwith those in Table I. The two-parameter fit had only five
able model with only a confluent correction and with moredegrees of freedom, and if only one correction to scaling
than seven degrees of freedom. Assuming, for example, thagérm is included, it had seven degrees of freedom. These
A=0.75 gives an acceptable fit whep,;,=106, as seen in models compare poorly to the last two models with both

Table 1ll. One may also plot Ip,/Inn against 1/Im in Fig.
6, and extrapolate the data to see that0.74, consistent

corrections included and with 20 and 21 degrees of freedom,
respectively. We, therefore, take the last two models as our

with the results obtained by examining the mean branch sizbest, and their average as the best valuefds

in the preceding section.

As before, we should ideally attempt to perform a nonlin-

ear fit that includes the confluent exponénas a parameter.
Tracking the least squares error as a functiomofs also
not successful: a fit withh = 0.75 gives a statistically accept-
able fit when ny,=12, with B,=0.412£0.013 and
D
P
and tend to cancel one another in the range.ofhis can-

cellation has negative effects on the behavior of the least

square analysis. A fit witlh =0.9 gives instead,=1.261
*=0.040 andD,= —1.738+0.046, whileA=0.99 givesB,
=14.57+0.46 andD ,= —15.08+ 0.47. In other words, with
increasingA <1, bothB, and D, increase in absolute val-

—0.847+0.018. These amplitudes are opposite in sign

p=0.739 86-0.000 3G=0.000 46. (18

This result is within the error bars of the best value for
obtained by considering the mean branch size in(E&6).

C. The mean square radius of gyration

It follows from Eq. (3) that a suitable scaling ansatz,
which includes a confluent and an analytic term, for the
mean square radius of gyration is

IN(R3)=InC,+2»Inn+Bn"4+Dn"1+..., (19

ues, but with opposite signs. Thus, the confluent and a”alytiﬁ/herecr . B,, andD, are constantéamplitudes and v is

terms tend to cancel one another over a wide range iof

this case. The fits were all statistically acceptable, but the o (g estimate from estimates ofr

estimates op depend on the value &, so that no consis-
tent best value fop could be found. We therefore proceeded

1.000

0.940
0.880
InP,/Inn
0.820

0.760 4

0.700 T T T T T T T
0.000 0.094 0.188 0.282 0.376 0.470 0.564 0.658

1/lnn

FIG. 6. A plot of InP,/In n against 1/Im. Extrapolating the data
to n—oo suggests thgb~0.74.

the metric exponent of lattice trees. Least squares fits can be
2y but again correc-
tions to scaling must be considered. The analysis here is
similar to that in the preceding section: Two-parameter sta-
tistically acceptable fits could only be done when data with
Nn<ngi,=512 are excluded. The estimate for the metric ex-
ponent in this case iz=0.640 14-0.000 64, with a 95%
confidence interval and least squares eyg+8.0515 with
two degrees of freedom acceptable at the 91% level. One
may choose to include only a confluent or an analytic cor-
rection to scaling in an attempt to improve the analysis. In
those cases, the results are given in Table IV. We fixeat
0.75, its effective value, and obtained an acceptable fit with
Nmin=38 and with 12 degrees of freedom

The best fit(acceptable at the 95% level with the largest
number of degrees of freedgnmcludes both an analytic and
a confluent correction. The two-parameter fit has only two
degrees of freedom, and so we ignore it here, although its
result is not inconsistent with the numerical valuesvade-
termined by the other fits. Comparison of the best fit to the
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TABLE IV. Linear regressions fofR2) to determiney.

Type of fit Nimin Xﬁ Acceptable level v
Two parameter linear 512 8.0@ df) 91% 0.64014:0.00064
Analytic correction 90 11.8510 df) 85% 0.640810.00054
Confluent correction 38 14.142 df) 71% 0.64103:0.00028
Both corrections 18 23.66L7 df) 88% 0.64374:0.00042

remaining fits(including only an analytic or a confluent cor- and whera'" anda‘? are independent, this should decay to
rection allows us to determine a systematic error of Sizezero. However, it seems intuitive that the size of the atmo-
0.0028, so that we state our best estimaterfas sphere of a lattice tree may be an intrinsic property, and is
related to the degree of branching in the tree, in which case
C3%—C2*>0 asn—x.

The first term in Eq.(21) is of the orderO(1/n) and is
lowed by corrections of the order©(1/n?*) and

r=0.6437-0.0005-0.0028, (20

where we note that we give ample allowance to a possibl¢1=;OI

systematic error. Comparison with earlier estimatesvof THAY o ; g
shows that confidence intervals in this estimateraé stil ~ O(+/1 ). Since all evidence we have suggest thas in

orders of magnitude larger than the best series estimate (T)tpe range 0'65_0'8&5]'.“ ".VOUld_ be impruden_t to include
»=0.641 15+ 0.000 05[13], but is better than Monte Carlo Y theO(1/n) term, while ignoring the potentially compa-

H 2A 1+A
estimates previously obtaindd,15]. The best estimates of rable corrections of .the or.del@.(lln ) and O(l./ n=").
lattice tree parameters are listed in Table V. Thus, we attempted linear fits with valuesfdfvarying from

0.65 to 0.85 and with the further approximation that A

D. The mean atmosphere of trees =2, so that the scaling ansatz is

The atmosphere of a lattice tree was defined in Sec. Il, A1-6) C' C”
and we noted that the mean atmosphere of lattice trees is (an) =N+ -
given by Eq.(14). The asymptotics of , is given in Eq.(2),
and by substituting this into Eq14), we can develop an
asymptotic expression fd@a,). Keeping only the dominant

Tt (24
This ansatz did, in fact, model the data very effectively, with
an acceptable fit witm.,;,=6, and, moreover, the param-

terms gives eters turned out to be insensitive {@ven substantial
\N1-6) C’ c” changes in\. These fits gave best estimates Xoand 6 with
(ap) =N+ Tttt (21)  the 95% statistical confidence intervals as follows:
n n
A=5.14393-0.000 93 (25

Thus, we can find both and # from our data, and moreover,
the slowestand thus dominantcorrection term to the con- gng
stant term\ is of the order 1.

Atmospheres were calculated twice for each tree. The tree #=1.014+0.022, (26)
was rooted at a randomly chosen vertex, and labeled to de-
termine an atmosphere of sizaé,l). This process was re- when it is assumed thah=0.75, with n,;,=6 and X%a
peated to compute a second atmosplefe, starting again  =21.41 which is acceptable at the 45% level with 23 de-
from a randomly selected root. Thus, for each tree, we foungrees of freedom. Changing from 0.65 to 0.85 still gives

two atmospheres, and it follows that an acceptable fit at,,;,=6 and does not change the values
) 2 1. () of either # or \ outside the 95% confidence intervals stated
(ap”)=(ayy=((ay’'+ay")/2). (22 apove. In other words, this is a very successful choice for the

model which robustly fits the data and produge® at least
two decimal places with an uncertainty of atmost 1 in the
aa_ /(1) (2 1 2 third decimal place. We attempt to find a systematic error in
Cri=(aar?) —(a)(a), 23 these results by fittinda,)=A(1— 6)/n instead in a two
parameter fit. In this case, we obtaih=5.14541
+0.000 30 and + 6= —0.0454+0.0020, in a fit withn;,
=20, with x73=28.62 acceptable at the 95% level. Com-

In addition, one may compute the covariance

TABLE V. Best estimates of parameters for lattice trees.

Parameter Best value . . . ;
parison with Eqs(25) and(26) then gives our best estimates
A 5.1439+0.0025 with the 95% statistical confidence intervals and an esti-
0 1.014+0.082 mated systematic error as follows:
p 0.7400G- 0.00062
” 0.6437-0.0035 A=5.14393£0.00093-0.001 48=5.1439+ 0.0025,

(27)
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4.00 dent on the choice of root to start the labeling—choosing two
roots uniformly in a lattice tree nevertheless gives atmo-
3.20 & spheres with positively correlated sizes; in other words, it
seems that some lattice trees have the intrinsic property of
2404 having a large atmosphere, while other lattice trees have a
. o )
oo %@e small atmosphere, regardless of the choice of root.
1.60 ~ ® e
® IV. DISCUSSION
&
0.80 - The critical exponents of lattice trees are thought to be
universal quantities associated with models of branched
0.00 . ' . | i, . 1 . polymers in a goqd solvgnt. E_)imensional _ reduction_ of
0.000 0.031 0.062 0.093 0.124 0.155 0.186 0217 0.248 branched polymers id+2 dimensions to an Ising model in
1/n d dimensions in an imaginary magnetic field relates the ex-

ponents of branched polymers to the exponept(of the
FIG. 7. A plot of C3% against 1. This covariance of the atmo- Ising mode) via the relations
spheres does not vanish rif—, suggesting that the size of the
atmosphere is an intrinsic property of a lattice tree. Vo= (og+1)/d, (31)

§=1.014+0.022+0.060=1.014-0.082.  (28) O4+2=0at2, (32)

Adding the statistical and systematic confidence interval
gives the results claimed in the abstract.

We now turn our attention to the covariandgj?®
=(aWa®)—(aP)(a?). The scaling ansatz in Edq24)
suggests that

¥vherea is the exponent that controls the magnetization of
he Ising model near the edge singularii9—21,7. The
Ising model can be solved exactly ih=0 andd=1 dimen-
sions, in which case = —1 ando,=—1/2. Thus, the &x-
act valué of 0 in two dimensions i¥9=1. This result sug-
gests strongly thak should be computed by assuming that
#=1 in Eq.(24). If this is done, then the best estimate for
caacaay %+ o(1/n?), 29

an a N=5.1433%9-0.000 72, (33
where C22 and « are constants. The consta@f? should

vanish whera(") anda{?’ becomes uncorrelated quantities aswith an error that combines a 95% statistical confidence in-
n— oo for trees of sizen. A plot of C2? against It is in Fig. ~ terval with a systematic error due to uncertainties in the
7. Extrapolating the plot ta= by a least squares fit @32 yalue ofA (we took fits with 0.65<A=<0.85). This error_bar _
against I gives an acceptabla,,=12, andy3,=27.04 IS roughly a factor of 3 smaller than the error bar obtained in
acceptable at the 83% level; in which case the preceding section. This estimate is also consistent with
our previous results, and provides strong evidence that the
aa third decimal digit of\ is a 3.

C:"=3.056+0.018, (30

where the error bar is a 95% confidence interval. ACKNOWLEDGMENT
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