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High precision canonical Monte Carlo determination of the growth constant of square lattice trees
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The number of lattice bond trees in the square lattice~counted modulo translations!, tn , is a basic quantity
in lattice statistical mechanical models of branched polymers. This number is believed to have asymptotic
behavior given bytn;Alnn2u, where A is an amplitude,l is the growth constant, andu the entropic
exponent. In this paper, we show thatl andu can be determined to high accuracy by using a canonical Monte
Carlo algorithm; we find thatl55.143960.0025,u51.01460.022, where the error bars are a combined 95%
statistical confidence interval and an estimated systematic error due to uncertainties in modeling corrections to
scaling. If one assumes the ‘‘exact value’’u51 and then determinesl, then the above estimate improves to
l55.143 3960.000 72. In addition, we also determine the longest path exponentr and the metric exponentn
from our data:r50.7400060.00062,n50.643760.0035, with error bars similarly a combined 95% statistical
confidence interval and an estimate of the systematic error.

DOI: 10.1103/PhysRevE.67.036116 PACS number~s!: 64.60.Fr, 64.90.1b, 02.50.Ng, 05.10.Ln
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I. INTRODUCTION

Lattice trees are connected and acyclic subgraphs
lattice ~see Fig. 1!. These objects have been studied as m
els of branched polymers@1–4# and they remain an interes
ing, though intractible, model in lattice statistical mechani
The most basic quantity in this model istn , which is the
number of distinct lattice trees of size-n edges counted up to
equivalence classes under translations in the square lattic~in
other words, these lattice trees are not rooted!. The number
of edges in a tree is called its size, so that trees counted btn
have sizen. The number of vertices in a tree is its order, a
trees counted bytn have ordern11. Very little is known
~exactly! about the properties oftn ; the most important gen
eral theoretical accomplishment is an asymptotic expres
for tn in high dimensions due to Hara and Slade@5#.

A field theoretic description of branched polymers w
introduced by Lubensky and Isaacson in Ref.@6#. This de-
velopment made it possible to study lattice trees from a
tistical mechanics point of view, and methods from t
theory of phase transitions were used to obtain informa
about tn . A number of conjectures were made as a res
most notably with respect to the scaling properties and
critical exponents in this model; obtained by using argume
relying on mean field theory and dimensional reduction@7#
in low dimensions. These conjectures have been tested
merically in a variety of numerical studies@7–10#, and they
motivate the development of Monte Carlo algorithms
sample lattice trees effectively from a given ensemble. A
ditional algorithms for numerical studies also include the
act enumeration of lattice trees@11#.

The asymptotics oftn is generally accepted to be

tn5An2uln~11Bn2D1Cn211••• !, ~1!

whereA, B, and C are constants~sometimes referred to a
‘‘amplitudes’’! @7#, l is thegrowth constantof lattice trees,
andu is theentropic exponent. The exponentD is thecon-
fluent (correction) exponent, while the termBn2D is a con-
1063-651X/2003/67~3!/036116~9!/$20.00 67 0361
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fluent correction. Cn21 is ananalytic correctionto the ‘‘pure
scaling formula’’An2uln. Rooted treesare lattice trees with
one vertex rooted at the origin. It is apparent that a tree
sizen hasn11 possible roots, so that the number of latti
trees rooted at the origin isTn5(n11)tn . Thus, the asymp-
totics of Tn is similar to that oftn :

Tn5An12uln~11Bn2D1Cn211••• !. ~2!

The exponentsu and D are supplemented by two add
tional critical exponents,n and r. The metric exponentn
characterizes the scaling of lengths; for example, the m
square radius of gyration is believed to scale as a power
with n,

^Rn
2&;n2n, ~3!

where ‘‘; ’’ indicates ~imprecisely! that ^Rn
2& is asymptotic

to n2n to the leading order. The second exponent descri
the scaling of substructures in lattice trees, such as the lo
est path or the size of a branch~see Fig. 1!. For example, the
mean longest patĥPn& or the mean branch size^bn& should
scale withn as

^Pn&;^bn&;nr, ~4!

wherer is the longest pathor branch exponent@9#. Natu-
rally, there are corrections to scaling in the above asympt
expressions for̂Rn

2&, and^Pn&. To leading order, these cor
rections include a confluent term with exponentD, and an
analytic correction@as suggested by Eq.~2!#. Thus, one
might guess that

^Rn
2&5Crn

2n~11Brn
2D1Drn

211••• !,

^Pn&;^bn&5Cbnr~11Bbn2D1Dbn211••• !,

and analyze data from numerical simulations assuming th
asymptotic expressions to obtain statistical estimates fon
andr.
©2003 The American Physical Society16-1



into two

E. J. JANSE van RENSBURG AND A. RECHNITZER PHYSICAL REVIEW E67, 036116 ~2003!
FIG. 1. A square lattice tree. The longest path in this tree is highlighted in the center. If an edge is deleted, then the tree splits
subtrees on the right; the smaller of which~the top left! is called a branch. This tree has size~number of edges! 24 and order~number of
vertices! 25.
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The most accurate determinations ofl and u in two di-
mensions were obtained by exact series enumeration oTn
for small values ofn. The series is analyzed using differenti
approximants, and the best estimates ofl and u are ex-
tracted. The best value obtained so far is

l55.14060.002, ~5!

obtained from series analysis@12#. The estimate

n50.641 1560.000 05 ~6!

for the metric exponent for branched polymers is also du
series analysis of lattice trees~but in this case forsite trees!
@13#.

Grand canonical Monte Carlo simulations of square
tice trees in two dimensions@7# predicted values consisten
with those obtained in the exact enumeration studies, nam

l55.143160.001760.005755.143160.0074, ~7!

u50.99460.02960.05450.99460.083, ~8!

n50.640260.004060.004450.640260.0084. ~9!

The error bars in these estimates are as follows:best value
6 95% statistical confidence interval6 estimated system
atic error @14#. We add the two error terms to find a sing
combined error bar in the final estimates; these error bars
03611
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therefore explicitly comparable to the estimates from t
paper given in the abstract above.

Canonical Monte Carlo simulations have also been u
to determinen, r, and the confluent exponentD @15#. These
estimates are

n50.64260.010, ~10!

r50.73860.010, ~11!

D50.6560.20, ~12!

with error bars as a combined 95% statistical confidence
terval and an estimated systematic error. The large un
tainty in the value ofD is notable; it is generally difficult to
determine amplitudes and exponents associated with co
tions to scaling.

In this paper, we use canonical Monte Carlo simulatio
to estimaten, r, and D. In the following section, we de-
scribe a labeling of trees that allows us to define a stati
that we call theatmosphereof a tree. This statistic allows u
to estimatem andu. In Sec. II, we first consider the atmo
sphere of trees and show how they may be used to determ
the growth constantl in a canonical Monte Carlo simula
tion. In Sec. III, we present our numerical data. We gi
estimates forr, n, u, andl, and discuss the numerical con
fidence in our results. We conclude the paper with some s
comments in Sec. IV.
FIG. 2. A rooted tree~left!, labeled to depth one~center! and its legal labeling~right!.
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FIG. 3. If a lexicographic breadth-first labeling is put on these trees from the roots denoted byd, then the atmospheres composed of t
dotted edges are obtained. The left-hand tree~a! has no atmosphere, the center tree~b! has an atmosphere of size 3, while the right-hand t
~c! has an atmosphere of size 21.
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II. TREES AND THE ATMOSPHERES

Let T be a tree with root vertex labeled 0 located at t
origin of the square lattice. Thelevelof a vertexv in T is the
length of the shortest path from the root tov. Thus, the root
has level zero and the immediate children of the root ver
all have level one. Vertices in a rooted unlabeled tree may
systematically labeled, from the root, using two widely us
schemes: breadth-first and depth-first labelings~see, for ex-
ample, Ref.@16#!.

The atmosphere of a lattice tree is an intuitive noti
~which we shall make precise! of adjacent lattice space int
which a tree can grow. The atmosphere is not a unique p
erty of any given tree, but depends on the choice of root
labeling scheme which we use to construct it. On the ot
hand, we shall collect statistical evidence that the size of
atmosphere of a tree is intrinsic in the sense that some t
will tend to have large atmospheres, and some trees will t
to have small atmospheres, irrespective of the choice of r

In this paper, we use a breadth-first labeling scheme
define the atmospheres. Such a labeling is not unique an
03611
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cannot be used immediately to find a unique atmosphere
any tree. We shall change the labeling scheme so that e
lattice tree will be uniquely labeled, in which case we m
find a unique atmosphere for each root that we select.
breadth-first labeling is made unique by ordering vertic
lexicographically by their coordinates~first in thex direction,
then in they direction!, and then labeling the lexicographi
least vertex with the next unused label.

Lexicographic breadth-first labeling.This is given as fol-
lows.

~1! Label the root of the tree by 0, and let this be t
current vertex~in level 0!

~2! Assume that the current vertexv in level r has labelk.
Search for the children ofv in level r 11 and label them in
lexicographic increasing order with the next unused lab
saym,m11,m12, . . . .

~3! When all the children ofv ~with label k) are labeled,
then select the vertex with labelk11 as the current vertex
~i.e., incrementk to find the next vertex and continue th
labeling algorithm from there!.
FIG. 4. If the trees in this sequence are labeled by a lexicographic breadth-first labeling from the root denoted byd, then the
atmospheres grow along the sequence in size as 8k14, while the size of the trees grow asn52k(k11), with k50,1,2, . . . . Inother words,
the size of the atmosphere grows proportional ton1/2.
6-3
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E. J. JANSE van RENSBURG AND A. RECHNITZER PHYSICAL REVIEW E67, 036116 ~2003!
~4! Repeat steps~2! and ~3! until all the vertices inT are
labeled.

This algorithm assigns a unique labeling to each roo
lattice tree. Such a labeling will be calledlegal ~see Fig. 2!
and all other labelings will be calledillegal.

A tree T of order n vertices with a legal labeling ma
grow to a tree of ordern11 vertices by adding an edge toT
only if the resulting tree also has a legal labeling; the n
vertex will have labeln and will reside in the deepest level o
the tree and will be the last vertex to be labeled using
above algorithm.

The set of edges that can be appended to a legally lab
tree of ordern, T, to produce a new legally labeled tree
ordern11, T8, is called theatmosphereof T. T8 is a suc-
cessorof T andT is thepredecessorof T8. The predecesso
of a legally labeled tree can be obtained simply by delet
the vertex with the highest label. The number of sucessor
a treeT is equal to the size of its atmosphere, and we den
this number bya(T).

There are trees with no atmospheres, and some seque
of trees with atmospheres that increase without bound an
→`. In Fig. 3~a!, an example of a tree with an empty atm
sphere is given, while a tree with a small atmosphere an
tree with a larger atmosphere are illustrated in Figs. 3~b! and
3~c!. A sequence of trees of ordern and with atmosphere
that increase asO(An) is given in Fig. 4.

Assume thatTn(a) is the number of rooted trees of siz
n edges and with atmospheres of size-a edges. IfT is a tree
counted byTn(a), then there area trees of sizen11 which
are descendents ofT. Thus, the total number of descenden
of trees counted byTn(a) is aTn(a), and these are all dis
tinct, since they are labeled uniquely by the lexicograp
breadth-first labeling. Since every tree counted byTn11 is a
descendent of a tree inTn(a), for some value ofa, it follows
that

Tn115(
a

aTn~a!. ~13!

Thus, the expected size of the atmosphere is given by

^a&5

(
a

aTn~a!

Tn
5

Tn11

Tn
. ~14!

It is a theorem thatTn11 /Tn→l in high dimensions@5#, but
this is not known to be the case in dimensionsd<8. How-
ever, all numerical evidences suggest that this is indeed
case, and it will be an assumption in this paper.

III. NUMERICAL RESULTS

In this section, we examine numerical data for the me
branch size, mean longest path, mean square radius of g
tion, and the mean atmosphere of lattice trees in two dim
sions. Lattice trees of sizen were sampled from the uniform
distribution along a Markov chain using the Metropolis a
gorithm @17# implemented via a cut-and-paste algorithm f
lattice trees@9#. Simulations were performed for values ofn
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starting atn54, and incrementingn in larger leaps to a
maximumn52048.1 At each value ofn, a total of 109 at-
tempted iterations of the algorithm was performed, with t
exception of n54 (83107 attempted iterations! and n
51448 (1.53109 iterations!, and n52048 (1.83109 itera-
tions! ~see Fig. 5!. The resulting time series was analyzed f
autocorrelations to find sample averages with proper stat
cal confidence intervals~see, for example, Ref.@18# for an
extensive discussion of the techniques for analyzing d
from Metropolis Monte Carlo simulations!.

A. The mean branch size of trees

Select an edge uniformly in a lattice tree and delete
Since it is a cut edge, this cuts the tree into two subtrees,
smaller of which is called abranch @9#, see Fig. 1.2 Let the
size of the branch bebn , and the mean branch size measur
uniformly over all the branches in all trees,^bn&, is believed
to scale withn as described by Eq.~4!. Sample averages o
bn over data collected in a Monte Carlo simulation give e
timates of^bn&, and a suitable scaling ansatz for the me
branch size can be obtained by taking logarithms of Eq.~4!
and then expanding the resulting expression~after including
confluent and analytic corrections! to obtain

ln^bn&5 ln Cb1r ln n1Bbn2D1Dbn211•••. ~15!

1~The sizesn of the trees were first incremented in steps of 2 fro
4 to 22, thereafter in the sequence$26,32,38,46,54,64,78,90,106
128,180,256,362,512,724,1024,1448,2048%.!

2In some cases, two subtrees of the same size may be obtain~if
n is odd!. In those cases, a random choice is made to identify on
a branch and the other as the remainder of the tree.

FIG. 5. A lattice tree of size 2048 edges generated by the Mo
Carlo routine. The end points of the longest path are indica
by d.
6-4
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TABLE I. Linear regressions for̂bn& to determiner.

Type of fit nmin xd
2 Acceptable level r

Two parameter linear 390 5.70~4 df! 78% 0.7376860.00067
Analytic correction 106 9.11~7 df! 76% 0.7390960.00068
Confluent correction 16 27.94~19 df! 92% 0.7400060.00016
Both corrections 16 21.45~18 df! 75% 0.7395460.00042
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Estimates of the exponentr can then be made by a weighte
least squares fit of a two-parameter linear model ln^bn&
5ln Cb1r ln n to the data~in which case we ignore the cor
rections to scaling!. The results of this fit are displayed in th
first row in Table I. The estimate for the exponent isr
50.737 6860.000 67, where the error bar is a 95% statisti
confidence interval. Corrections to scaling may have a po
tially important impact on this estimate; since these are m
important at small values ofn, we discard data at values o
n,nmin , wherenmin is increased systematically until a st
tistically acceptable fit is obtained.3

The model improves marginally when an analytic corre
tion is included. In this case, a three-parameter model is
tained, and a fit withnmin5106 with seven degrees of free
dom is acceptable at the 95% level. We notice that
estimate forr moves outside its 95% statistical confiden
intervals when compared to the estimate previously obtai
for the two-parameter fit. However, since this least square
has seven degrees of freedom, we accept it as superior t
two-parameter fit that had only four degrees of freedom. T
situation is further improved by including a confluent corre
tion instead. Unfortunately, this analysis is nonlinear, a
generally may be numerically unstable. Thus, we fixD and
perform three-parameter linear fits to determine best e
mates. The least squares error can be tracked as a functi
D, and best values forr can be chosen at that value ofD
where the error is minimized. This procedure would on
give an effective value forD, since all other corrections ar
ignored and probably do contribute to the least square e
For a more careful analysis ofD, see Ref.@15#. The results
of these fits are in Table II; data from values ofn less than
nmin516 were excluded since no statistically acceptable
could be found if those are included. Only the two fits w
D50.75 andD50.80 are statistically acceptable, and w
take those to give the best results forr . Combining them by
taking their average gives a single estimate that we lis
Table I.

Yet another model is obtained when the analytic corr
tion is added to the last model, while the confluent expon
is fixed at its effective value. A fit withD50.75 givesr
50.739 5460.000 42 (x18

2 521.45 acceptable at the 75%

3The least squares errorSd
2 in a weighted least squares fit is di

tributed as ax2 statistic ond degrees of freedom, whered is equal
to the number of data points minus the number of parameters in
model. We deem the results of a least squares fit to the data s
tically acceptable ifSd

2 is acceptable at the 95% level. The mo
succesful model will be taken as the model that maximizes
degrees of freedom while being acceptable at the 95% level.
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level!, while r50.739 3260.000 40 if D50.80 (x18
2

523.23 acceptable at the 82% level!. The fit at D50.75
is more acceptable, and we take it as our best estimat
Table I.

Comparing our results in Table I suggests that the mod
with a confluent correction, and with both a confluent c
rection and an analytic correction, should be accepted as
most successful in modeling the data. The difference in
best estimates could be viewed as a systematic error. T
taking the value ofr obtained in the model with only a
confluent correction as the best estimate, we find

r50.740 0060.000 1660.000 46, ~16!

where the error bars are first a 95% confidence interval
lowed by an estimated systematic error. Previous estim
include r50.73660.013 @9# and r50.73860.010 @15#
~where the error bars are a 95% confidence interval adde
an esimated systematic error!.

B. The mean longest path of trees

For trees of sizen edges, the mean longest path^Pn& is
believed to scale as in Eq.~4!, with the same exponentr as
the mean branch size@9#. This power law is also corrected b
corrections to scaling, and to the leading order one sho
expect a confluent correction followed by an analytic corr
tion. Thus, a reasonable scaling ansatz for^Pn& is

ln^Pn&5 ln Cp1r ln n1Bpn2D1Dpn211•••. ~17!

The situation is now similar to that of the preceding sectio
While the constantsCp , Bp , andDp are presumably differ-
ent from their values in Eq.~15!, the exponentsr andD are
expected to be universal.

he
tis-

e

TABLE II. Linear regressions for̂bn& with a confluent correc-
tion.

D x19
2 Level r

0.30 2865.20 .99% 0.7665760.00032
0.40 1716.42 .99% 0.7556960.00026
0.50 893.35 .99% 0.7490960.00021
060 360.32 .99% 0.7446360.00019
0.65 191.68 .99% 0.7428960.00017
0.70 82.71 .99% 0.7413960.00017
0.75 29.49 94% 0.7400860.00016
0.80 27.94 92% 0.7389260.00015
0.85 74.67 .99% 0.7378960.00015
0.90 166.12 .99% 0.7369660.00014
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TABLE III. Linear regressions for̂pn& to determiner.

Type of fit nmin xd
2 Acceptable level n

Two parameter linear 256 9.19~5 df! 90% 0.7391560.00046
Analytic correction 106 9.20~7 df! 76% 0.7395160.00064
Confluent correction 106 8.66~7 df! 73% 0.7398060.00080
Both correctionsD50.65 10 29.78~21 df! 91% 0.7402460.00030
Both correctionsD50.85 12 27.30~20 df! 88% 0.7394860.00029
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A two-parameter least squares fit that ignores the cor
tions to scaling can be done when only those data witn
,nmin5256 are excluded; the result is in Table III. In th
fit, the number of degrees of freedom is five, which we
not consider to be satisfactory. Including an analytic corr
tion improves the situation somewhat; there are seven
grees of freedom withnmin5106. A confluent correction
does not improve matters, and we could not find any acc
able model with only a confluent correction and with mo
than seven degrees of freedom. Assuming, for example,
D50.75 gives an acceptable fit whennmin5106, as seen in
Table III. One may also plot lnpn /ln n against 1/lnn in Fig.
6, and extrapolate the data to see thatr'0.74, consistent
with the results obtained by examining the mean branch
in the preceding section.

As before, we should ideally attempt to perform a nonl
ear fit that includes the confluent exponentD as a parameter
Tracking the least squares error as a function ofD is also
not successful: a fit withD50.75 gives a statistically accep
able fit when nmin512, with Bp50.41260.013 and
Dp520.84760.018. These amplitudes are opposite in s
and tend to cancel one another in the range ofn. This can-
cellation has negative effects on the behavior of the le
square analysis. A fit withD50.9 gives insteadBp51.261
60.040 andDp521.73860.046, whileD50.99 givesBp
514.5760.46 andDp5215.0860.47. In other words, with
increasingD,1, bothBp and Dp increase in absolute val
ues, but with opposite signs. Thus, the confluent and ana
terms tend to cancel one another over a wide range ofn in
this case. The fits were all statistically acceptable, but
estimates ofr depend on the value ofD, so that no consis-
tent best value forr could be found. We therefore proceed

FIG. 6. A plot of lnPn /ln n against 1/lnn. Extrapolating the data
to n→` suggests thatr'0.74.
03611
c-

-
e-

t-

at

e

-

n

st

tic

e

by assuming thatD50.65 or 0.85, two values ofD suggested
in Refs.@15,11#, respectively, and then compared the resu
The results of these fits are reported in Table III. IfD
50.65, then a fit withnmin510 is acceptable at the 91%
level, and if D50.85, then the fit is acceptable withnmin
512 at the 88% level.

Comparing these results shows that they are consis
with those in Table I. The two-parameter fit had only fiv
degrees of freedom, and if only one correction to scal
term is included, it had seven degrees of freedom. Th
models compare poorly to the last two models with bo
corrections included and with 20 and 21 degrees of freed
respectively. We, therefore, take the last two models as
best, and their average as the best value forr is

r50.739 8660.000 3060.000 46. ~18!

This result is within the error bars of the best value forr
obtained by considering the mean branch size in Eq.~16!.

C. The mean square radius of gyration

It follows from Eq. ~3! that a suitable scaling ansat
which includes a confluent and an analytic term, for t
mean square radius of gyration is

ln^Rn
2&5 ln Cr12n ln n1Brn

2D1Drn
211•••, ~19!

whereCr , Br , andDr are constants~amplitudes! and n is
the metric exponent of lattice trees. Least squares fits ca
used to estimaten from estimates of̂ r n

2&, but again correc-
tions to scaling must be considered. The analysis her
similar to that in the preceding section: Two-parameter s
tistically acceptable fits could only be done when data w
n,nmin5512 are excluded. The estimate for the metric e
ponent in this case isn50.640 1460.000 64, with a 95%
confidence interval and least squares errorx4

258.0515 with
two degrees of freedom acceptable at the 91% level. O
may choose to include only a confluent or an analytic c
rection to scaling in an attempt to improve the analysis.
those cases, the results are given in Table IV. We fixedD at
0.75, its effective value, and obtained an acceptable fit w
nmin538 and with 12 degrees of freedom

The best fit~acceptable at the 95% level with the large
number of degrees of freedom! includes both an analytic an
a confluent correction. The two-parameter fit has only t
degrees of freedom, and so we ignore it here, although
result is not inconsistent with the numerical values ofn de-
termined by the other fits. Comparison of the best fit to
6-6
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TABLE IV. Linear regressions for̂Rn
2& to determinen.

Type of fit nmin xd
2 Acceptable level n

Two parameter linear 512 8.06~2 df! 91% 0.6401460.00064
Analytic correction 90 11.85~10 df! 85% 0.6408160.00054
Confluent correction 38 14.14~12 df! 71% 0.6410360.00028
Both corrections 18 23.66~17 df! 88% 0.6437460.00042
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remaining fits~including only an analytic or a confluent co
rection! allows us to determine a systematic error of s
0.0028, so that we state our best estimate forn as

n50.643760.000560.0028, ~20!

where we note that we give ample allowance to a poss
systematic error. Comparison with earlier estimates on
shows that confidence intervals in this estimate ofn is still
orders of magnitude larger than the best series estimat
n50.641 1560.000 05@13#, but is better than Monte Carlo
estimates previously obtained@7,15#. The best estimates o
lattice tree parameters are listed in Table V.

D. The mean atmosphere of trees

The atmosphere of a lattice tree was defined in Sec
and we noted that the mean atmosphere of lattice tree
given by Eq.~14!. The asymptotics ofTn is given in Eq.~2!,
and by substituting this into Eq.~14!, we can develop an
asymptotic expression for̂an&. Keeping only the dominan
terms gives

^an&5l1
l~12u!

n
1

C8

n2D
1

C9

n11D
1•••. ~21!

Thus, we can find bothl andu from our data, and moreove
the slowest~and thus dominant! correction term to the con
stant terml is of the order 1/n.

Atmospheres were calculated twice for each tree. The
was rooted at a randomly chosen vertex, and labeled to
termine an atmosphere of sizean

(1) . This process was re
peated to compute a second atmospherean

(2) , starting again
from a randomly selected root. Thus, for each tree, we fo
two atmospheres, and it follows that

^an
(1)&5^an

(2)&5^~an
(1)1an

(2)!/2&. ~22!

In addition, one may compute the covariance

Cn
aa5^an

(1)an
(2)&2^an

(1)&^an
(2)& , ~23!

TABLE V. Best estimates of parameters for lattice trees.

Parameter Best value

l 5.143960.0025
u 1.01460.082
r 0.7400060.00062
n 0.643760.0035
03611
le

of

I,
is

e
e-

d

and whenan
(1) andan

(2) are independent, this should decay
zero. However, it seems intuitive that the size of the atm
sphere of a lattice tree may be an intrinsic property, and
related to the degree of branching in the tree, in which c
Cn

aa→C`
aa.0 asn→`.

The first term in Eq.~21! is of the orderO(1/n) and is
followed by corrections of the ordersO(1/n2D) and
O(1/n11D). Since all evidence we have suggest thatD is in
the range 0.65–0.85@15#, it would be imprudent to include
only theO(1/n) term, while ignoring the potentially compa
rable corrections of the ordersO(1/n2D) and O(1/n11D).
Thus, we attempted linear fits with values ofD varying from
0.65 to 0.85 and with the further approximation that 11D
52, so that the scaling ansatz is

^an&5l1
l~12u!

n
1

C8

n2D
1

C9

n2
. ~24!

This ansatz did, in fact, model the data very effectively, w
an acceptable fit withnmin56, and, moreover, the param
eters turned out to be insensitive to~even substantial!
changes inD. These fits gave best estimates forl andu with
the 95% statistical confidence intervals as follows:

l55.143 9360.000 93 ~25!

and

u51.01460.022, ~26!

when it is assumed thatD50.75, with nmin56 and x23
2

521.41 which is acceptable at the 45% level with 23 d
grees of freedom. ChangingD from 0.65 to 0.85 still gives
an acceptable fit atnmin56 and does not change the valu
of eitheru or l outside the 95% confidence intervals stat
above. In other words, this is a very successful choice for
model which robustly fits the data and producesl to at least
two decimal places with an uncertainty of atmost 1 in t
third decimal place. We attempt to find a systematic erro
these results by fittinĝan&5l(12u)/n instead in a two
parameter fit. In this case, we obtainl55.145 41
60.000 30 and 12u520.045460.0020, in a fit withnmin

520, with x18
2 528.62 acceptable at the 95% level. Com

parison with Eqs.~25! and~26! then gives our best estimate
with the 95% statistical confidence intervals and an e
mated systematic error as follows:

l55.143 9360.000 9360.001 4855.143960.0025,
~27!
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u51.01460.02260.06051.01460.082. ~28!

Adding the statistical and systematic confidence interv
gives the results claimed in the abstract.

We now turn our attention to the covarianceCn
aa

5^an
(1)an

(2)&2^an
(1)&^an

(2)&. The scaling ansatz in Eq.~24!
suggests that

Cn
aa5C`

aa1
a

n
1O~1/n2!, ~29!

where C`
aa and a are constants. The constantC`

aa should
vanish whenan

(1) andan
(2) becomes uncorrelated quantities

n→` for trees of sizen. A plot of Cn
aa against 1/n is in Fig.

7. Extrapolating the plot ton5` by a least squares fit ofCn
aa

against 1/n gives an acceptablenmin512, andx21
2 527.04

acceptable at the 83% level; in which case

C`
aa53.05660.018, ~30!

where the error bar is a 95% confidence interval.
There is strong evidence in Fig. 7 thatCn

aa approaches a
constant asn→`. The atmosphere of a lattice tree is depe

FIG. 7. A plot ofCn
aa against 1/n. This covariance of the atmo

spheres does not vanish ifn→`, suggesting that the size of th
atmosphere is an intrinsic property of a lattice tree.
. A

er

03611
ls

-

dent on the choice of root to start the labeling—choosing t
roots uniformly in a lattice tree nevertheless gives atm
spheres with positively correlated sizes; in other words
seems that some lattice trees have the intrinsic propert
having a large atmosphere, while other lattice trees hav
small atmosphere, regardless of the choice of root.

IV. DISCUSSION

The critical exponents of lattice trees are thought to
universal quantities associated with models of branc
polymers in a good solvent. Dimensional reduction
branched polymers ind12 dimensions to an Ising model i
d dimensions in an imaginary magnetic field relates the
ponents of branched polymers to the exponentsd ~of the
Ising model! via the relations

nd125~sd11!/d, ~31!

ud125sd12, ~32!

wheres is the exponent that controls the magnetization
the Ising model near the edge singularity@19–21,7#. The
Ising model can be solved exactly ind50 andd51 dimen-
sions, in which cases0521 ands1521/2. Thus, the ‘‘ex-
act value’’ of u in two dimensions isu51. This result sug-
gests strongly thatl should be computed by assuming th
u51 in Eq.~24!. If this is done, then the best estimate forl
is

l55.143 3960.000 72, ~33!

with an error that combines a 95% statistical confidence
terval with a systematic error due to uncertainties in
value ofD ~we took fits with 0.65<D<0.85). This error bar
is roughly a factor of 3 smaller than the error bar obtained
the preceding section. This estimate is also consistent w
our previous results, and provides strong evidence that
third decimal digit ofl is a 3.
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