R .

BHResra N ey

' ;
$

coled (9 G
T'% mq{‘m? P-CD;'DDS

INFINITE TOPOLOGICALLY RANDOM CHANNEL NETWORKS!

RONALD L. SHREVE
University of California, Los Angeles

ABSTRACT

Individual channel networks ordinarily are portions of far larger, essentially infinite, networks. T
all network is by definition at infinite topologically random network if the populations of subnetwo:
it are topologically random. From such a network, the probability of randomly drawing a link, a su
or a basin with Strahler order w is 1/2; and that of randomly drawing a stream of order w is 3 /4%.
bility of drawing a link of magnitude g, that is, one having u sources ultimately tributary to it, iseg
probability of a first passage through the origin at step 2u — 1 in a symmetric random walk, a fi
suggests a useful mathematical analogy between random walks and infinite topologically random net
Assuming uniform link length equal to the constant of channel maintenance, which in turn is the recipn
drainage density, the probability distributions for links and streams of various orders may be interpre
crude geomorphological “laws” analogous to Horton’s laws of drainage composition. These distrib
predict geometric-series “laws” in which, using Strahler orders, the bifurcation ratio is %, the link-ng
ratio is 3, the length ratio is 2, the cumulative-length ratio is 4, and the basin-area ratio is 4, all i
agreement with the observed ratios. They also predict values of § and #, respectively, for the dimensi
ratios of total number of Strahler streams to network magnitude and of Strahler stream frequency

square of the drainage density, in agreement with the values of 1.34 and 0.694 found empirically.

INTRODUCTION

Individual channel networks in nature do
not ordinarily exist independently, but arz
portions of far larger networks that for prac-
tical purposes are essentially infinite. The
hypothesis that in the absence of geologic
controls natural networks will be topologi-
cally random (Shreve, 1966, p. 27) thus im-
plicitly contains the corollary that in the
over-all infinite network, which will be
termed an infinite lopologically random chan-
nel network, all topologically distinct sub-
networks with the same number of sources
occur with equal frequency. The purposes of
this paper are to deduce some of the geo-
morphologically significant probability dis-
tributions associated with these infinite
topologically random networks, to demon-

strate the close connection of such networks

with random walks, and to derive theoreti-
cally several of the well-known empirical
“laws” of geomorphology.

DEFINITIONS

Most of the specialized terms used in this
paper—such as link, fork, source, lopologi-

! Manuscript received April 8, 1966; revised
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cally identical, lopologically distinct,
topologically random—have been defined
previous publication (Shreve, 1966, p.
27). Strahler stream orders (1952, p. 112(
Shreve, 1966, p. 21-22) will be used ex
sively. The terms channel network or,
convenience, simply nefwork will refer to
idealized concept of channel netw
(Shreve, 1966, p. 27) in which one, and
one, path exists between any two points
in which at its upstream end each link
connects to two other links or term
a source. Stated negatively, and son
less precisely, no lakes with multiple in
no islands of major extent, and no corn
ences of more than two channels at a si
place are permissible in the idealized chas
networks considered in this paper.
terms exlerior link and interior link will
nify links terminating at their upst
ends in sources and forks, respectivel
these terms, Melton’s relationships (195
345; Shreve, 1966, p. 27) state that e
idealized network with g sources will
2p — 1 links, of which u are exterior I
and g — 1 are interior links.

The phrase link drawn at random will
nify a link selected in such a way that
links in the specified target populat
which may be either real or hypotheti
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areequally likely to be drawn (see Mood and
Graybill, 1963, p. 141-142), It is com-
pletely equivalent to the phrases nefwork
drawn al random or basin drawn af random,
because each link of given magnitude or or-
Jder or both in a population of networks is
the outlet of a single subnetwork of the same
magnitude or order or both. Actually draw-
5.-1ghlinks or networks at random from natu-
xal populations is not easily accomplished;
nevertheless, for meaningful statistical anal-
vsis it is an absolute necessity.

CONCEPT OF MAGNITUDE

The magnitude of a link in a channel net-
work is herein defined by the following two
rules. (1) Each exterior link has magnitude
1. (2) If links or magnitude g; and u, join,
then the resultant link downstream has
magnitude uy + uo. The application of these
rules to a typical channel network is illus-
trated in figure 1. By induction, the magni-
tude of a link is equal to the total number of
sources ultimately tributary to it. Magni-
tude is thus a purely topological concept, for
itinvolves only the interconnections and not
the lengths, shapes, or orientations of the
links comprising the network. Like the sys-
tems of stream ordering of Horton (1945, p.
281), Strahler (1952, p. 1120 n.), and, more
recently, Scheidegger (1965, p. B188), the
concept of magnitude assumes the existence
of sources, that is, of objectively describable
points that in fact or by definition are the
points farthest upstream in a channel net-
work,

In analogy with basin order, the magni-
tude of a channel network or drainage basin
isequal to the magnitude of its highest mag-
nitude link. Thus, if two networks are tribu-
ary to the same link, the resultant network
has magnitude equal to the sum of the mag-
nitudes of the two tributary networks, Net-
works with equal magnitudes have equal
numbers of links, forks, sources, Horton
streams, and first-order Strahler streams,
tnd are therefore comparable in topological
‘omplexity (Shreve, 1966, p. 27). A reason-
fzIJIe conjecture is that they are comparable
M other ways as well.

Despite its apparent complexity, the sys-
tem of stream ordering proposed by
Scheidegger (1965) is simply related to the
concept of magnitude. If the Scheidegger
order and the magnitude of a link (or net-

work) are denoted by X and , respectively,
then

X=1log:2pu, (1)
in which log, signifies the logarithm to base
2.

According to Scheidegger (1965, p- B188-
B189), if the second-order streams as classi-
fied by his system “are treated as first-order

Fic. 1.—Link magnitudes for a typical channel
network. :

streams, then all orders are simply reduced
by one.” Equation (1) makes it easy to see,
however, that this statement is incorrect,
unless the previous first-order streams are
treated as zero-order streams that contrib-
ute to the order of the higher-order streams
even though, as Scheidegger himself states
(1965, p. B188), they are in fact non-existent
in nature. Thus, one of the main advantages
of the Horton and Strahler systems (Shreve,
1966, p. 22-23) is lost in the Scheidegger
system.

PROBABILITY DISTRIBUTIONS

The probability p(u, ) that a link
drawn at random from an infinite topologi-
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cally random network will have specified
magnitude g and Strahler order w can be
computed from the recursive relationship

G, o = 5 63 1) #ied = 1
Sk e = t[wte—1+2u(0) 2y u(8) ],
Xp(u—a,0—1) =
B (2) u(1l) =3, w=2,3,..,';.
+2p(a,0) 3 plu—a,§)1, = 2nd - '
= v
pLY) =3, p1) =0, A PR
p(lsw)=0: #:w=2s3:"" ‘D(l)z%, ,u=2,3,....
TABLE 1

INFINITE TOPOLOGICALLY RANDOM CHANNEL NETWORKS

can be derived either in the same dire
fashion or by summation using (2). Procee
ing directly, ‘

Plu,w)
“
w=2 w=3 w=4 w=5 w=6 w=17

Lioiiiifinomseiom meloems unisms o] sosions srierse usnne amdif et | SR A b P | LSRR | It B RS

2 0123001 v v o e sl e | ST e | e i

3 B | e [ o et Do o] s b e 22 (R SE 00 T

4 .03125 [+ ) I O O R o (e Bl o oy o [ i
Sm e .01562 00 (RN Bty e L T
6 .00781 1270 [ vcves v Boas o iR o | R SR
f .00391 1) b O | P oo o o sl e e e
8. 00195 01111 000003 = srmrre i e e e e
9 00098 .00983 11, 1) B B ERPCTRRe T P S B
10 cin 00049 00856 L00022 |isqs o abelidmmatetuas s isaiige
20,50 00000 .00181 .00141 0. 00000 21 s e e e e
50..... 00000 00002 .00070 00009 | 0.00000 |..........
100, .. .. 00000 00000 .00010 00018 0.00000
200.. ... 00000 00000 .00000 00009 00001 00000
500 00000 00000 .00000 00000 00002 00000
1000.. ... 0.00000 | 0.00000 | 0.00000 | 0.00000 [ 0.00001 | 0.00000
w(w). . ... 0.25000 | 0.12500 | 0.06250 | 0.03125| 0.01562 | 0.00781

The factor 3 is the probability of drawing an
interior link; and the sum on a accounts for
the various ways that pairs of smaller net-
works can be tributary to this link to give it
the specified p and w. Recursive relation-
ships for the marginal probabilities

ulo)m hln)

and

2 (4) = D pk, @)

w=1

As before, the factor § is the probability |
drawing an interior link; and the remaini
factor accounts for the various ways thi
pairs of smaller networks can be tributary|
this link to give it the specified g or w.

Representative values of p(u, w), u(a
and v(u) are presented in table 1. For ar
particular magnitude the distribution
probabilities with order has a relative
sharp peak, whereas for any particular ord
the distribution with magnitude has a rels
tively broad peak; hence, in a topologicall
random population magnitude more pré

......
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w—1

u—1)2+2u(w)2u(ﬁ)]. (3)
f=1

(1) =13, “’=2:3:'--,

p—1
) =% v(a)v(p—a),

a=1

(4)
Bl p=agr—

NEL NETWORKS

olu)

| [ ——— [ SenS Vit 0. 50000
5 12500
06230
. 03906
02734
.................... 02051
b R R 01611

01309
01001
00927
.00322
. 00080
.00028
.00010
. 00002
0.00001

00 s mee o] sovomnnn e
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01 . 00000
02 . 00000
01 | 0.00000

62 | 0.00781
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cisely characterizes a network than does
ordel'.

A closed expression for #(w) can readily
be derived from (3). Summation of the first
@ — 1 terms of u(w) gives, using (3),

w—l w—1

IR DI
3=1

B=1
—u(w—1)241.

(5a)

Completing the square, taking the square
root, and substituting into (3) leads to the
relationship

(5b)
“(1)=%s w—zl z! ]
from which
wlw) =1/, w=1,2,..., (5¢)

follows by mathematical induction.

A closed expression for #(x) can be de-
rived from (4) by means of the generating
function R(r), where

o

R(r)= Ez‘(p)r“.

p=1

(6a)

Squaring both sides of (6a) and collecting
the coefficients of like powers of r gives

R2=ir*‘i v(a)v(p—a); (6b)
p=2 a=1

hence, using (4),

*=2R—r, (6c)
R=1—(1—r)e, c
from which
2—w=1 £, — 1
t{ L
i) 2n—1< 7 )’
(6d)
u=1,2,...,

follows by the binomial expansion. The
minus sign is chosen in the quadratic formu-
la because the power-series expansion in
(62) represents the branch of the curve of R
versus 7 that passes through the origin.

The distribution 2(u) can also be derived

T

from the probability w(u; M) of drawing a
link of magnitude  at random from a topo-
logically random population of networks of
magnitude M. This probability is

w(p; M)

_ (M=p+1)N(M—p+1)N(p)
5 (ZM—1)N(M) :

(7a)

where N(u) is the number of topologically
distinct networks of magnitude u. The de-
nominator is equal to the total number of
links of all magnitudes in the population of
N(M) networks of magnitude M; and the
numerator is therefore the number of links
of magnitude g in this population, which in
turn is the number of ways that the N(x)
networks of magnitude u can be attached to
the M — u + 1 sources of each of the
NM — u+1) networks of magnitude
M — u + 1 to form networks of magnitude
M.

Substitution of Cayley’s closed expression
for N(u),

N(w) =g (371 ()

1
(Shreve, 1966, p. 29), gives
w(p; M)

(7¢)

e (Zp)(Z(M—y.})/(ZM)

2u—1\ g M—u M/’
from which (6d) follows by taking the limit
as M approaches infinity.

Representative values of w(u; M) are
presented in table 2,

For any network magnitude M the great-
est (or modal) probability is that of drawing
a link of magnitude 1, inasmuch as

w(; M) =M/CM—1)>3. (8)

At the other end of the distribution, how-
ever, for M > 3 the probability of drawing
a link of magnitude M is greater than that of
drawing one of magnitude M — 1. This is
because networks of magnitude M always
have one link of that magnitude, whereas
they very often have no links of the next
smaller magnitude and very rarely have
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two, which is the maximum possible. Setting
the ratio of two successive terms equal to
1 and solving for u shows that the mini-
mum in the distribution is located approxi-
mately at g = 3(M 4+ 1)/4.

The probability s(w) of drawing a Strah-
ler stream of order w at random from the
streams (not links) comprising an infinite
topologically random network can be de-
rived from (5c) and (6d) by noting that, be-
cause in any network the links whose tribu-
taries are both of order w — 1 are in one-to-

TABLE 2
POPULATIONS OF FINITE TOPOLOGICALLY RANDOM CHANNEL NETWORKS

could readily be tested against natural popu
lations of channel networks by means of th
goodness-of-fit test (see, e.g., Siegel, 1956, §
42-52, 59-60, and Mood and Graybill, '|~
p. 308-309).

CONNECTION WITH RANDOM WALKS

A symbolic representation of any chann
network can be constructed as follow
Start at the outlet and traverse the networ
always turning left at forks and revers
direction at sources, until the outlet is

w(u;M)
M
p=1 n=12 =3 p=4
1..... L00000 |.ovnowans fommmminic o it ) i et
2o 0 06007 | 0.33333 1. .| v momant e ]
Bivaran .20000 | 0.20000 |..........
. T 0.57143 .17143 .11429 | 0.14286
L — 0.55556 .15873 09524 .07936 | 0.11111
e 0.54545 .15152 .08658 .06494 .06061 LA L R o el L
Woars 0.53846 . 14685 .08158 .05828 . 04895 .04805 | 0.07692 |........
 — 0.53333 . 14359 .07832 .05439 .04351 .03916 .04103 | 0.06667
0 0.52941 .14118 .07602 .05183 .04031 .03455 .03258 .03529
10..... 0.52632 .13932 .07430 .05001 03819 .03183 .02858 0278
20, w54 0.51282 .13167 06772 .04360 03151 .02445 01992 0168
S0:ss s 0.50505 .12756 .06445 .04072 02882 .02185 01737 | .
100. .. .. 0.50251 .12627 .06346 .03987 02805 | -~ .02115 .01671 .01365
200..... 0.50125 .12563 06297 03946 02769 .02082 .01640 .01
500..... 0.50050 .12525 06269 03922 02748 .02063 .01623 i
1000.. . .. 0.50025 12512 .06259 03914 02741 .02057 .01617 .0
....... 0.50000 | 0.12500 | 0.06250 | 0.03906 | 0.02734 | 0.02051 0.01611 | 0.0

one correspondence with the streams of
order w,

$(2)/s(1) = v(2)/o(1) =1 (9a)

and

s(w 4 1)/s(w) =

0
4

bu(w)/Ju(o — 1

’ w=23

(9b)

y .

These equations define a geometric series
with ratio 1, from which

sw) =3/1, w=1,2..., (90

follows by mathematical induction.
The distributions (5¢c), (6d), and (9c)

reached. During the traverse, generate a se
quence of I’s and E’s by recordmg an 7 th
first time a given interior link is travers
and an £ the first time a given exterior ink
is traversed. Each link will be traverse
twice but recorded only once. ;

If a right turn instead of a left turn i
made at each fork, a different sequence w
result, which is the sequence for the mirror
image network. The new sequence will nol
be the reverse of the original, however; and,
in general, symmetry in the petwork will nol
be evident in the sequence, and vice versa
The reverse sequence is generated by turn4
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=6 u=1 p=8
i 0.09091 |

51 .04805 | 0.07602 |. .0
SU|.03916 | 04103 | 0.06667
30003435 1 .03258 .03520
19 .03183 | 02858 .02786
51 02445 | .01992 .01683
20 .02185 | 01737 .01428
30 02115 | L0167t .01363
9 02082 | .01640 01336
5 | 02063 | .01623 | .01320
H | .02057 ‘ 01617 01314
i0.02051 | 0.01611 | 0.0130

uring the traverse, generate a se-
"s and E’s by recording an I the
v given interior link is traversed
he first time a given exterior link
d. Each link will be traversed
‘ecorded onlyv once.

1t turn instead of a left turn is
ch fork, a different sequence will
*h is the sequence for the mirror-
vork. The new sequence will not
rse of the original, however; and,
symmetry in the network will not
in the sequence, and vice versa.
¢ sequence is generated by turn-

a¢ right and recording the I’s and E’s the
«cond time given links are traversed rather
.han the first time, The mirror-image and
.;.‘-erse sequences, although necessary for
ertain types of investigation, will not be
«d in this paper.
J Topologically identical networks will
suve identical sequences, and topologically
;:5_-u'nct networks will have different unique
«quences. Obviously, some possible se-
qences, such as all I's or all E’s, cannot
rrespond to channel networks, Sequences
rresponding to networks of more than one
ok, for instance, always begin with 7 and
d with two successive E’s. More generally,
«cause of the fact that in any network or
«bnetwork the number of interior links is
Jways exactly one less than the number of
«iterior links, only those sequences are pos-
<ble in which, as they are recorded, the
-umber of E’s never exceeds the number of
s except at the terminal E. Put another
way, if the I’s count +1 and the E’s count
-1, then the partial sums can never be
wezative, except for the last, which will be
-1. Thus, on a graph the curve of partial
«ms may fall to the level of the origin, but
~does not drop below it until the terminal

The steps from network to sequence lo
zaph are illustrated in figure 2.

Graphs like that of figure 2 occur widely
© the theory of random walks; and it is
rthwhile to compare their properties with

- se of topologically random networks,

S e NPT S A S A O
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s make a first passage of the origin at
D24 — 1. Following the analogy further,
“the graphs are generated by unbiased coin
/sing, counting heads as I and tails as E,
“en the probability that the graph will drop

Te graphs dropping below the axis for the
st time at step 2 — 1 correspond to the
“mologically distinct networks with 2u—1
uis; hence, the number of such graphs is
4l as shown directly by Feller (1957, p.
l:see Shreve, 1966, p. 29, for derivation in
“ms of networks)., In random-walk ter-
! ff’;ljl()g_\’ N(u) different one-dimensional

0w the axis, that is, that a first passage
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will occur, at step 2u — 1 is equal to o(u)
(Feller, 1957, p. 73-75). Thus, the probabil-
ity that a link drawn at random from an
infinite topologically random network will
have magnitude p, thereby defining a sub-
network with 2u — 1 links, is exactly the
same as the probability that in a symmetric
random walk the first passage of the origin

will occur at step 2p — 1 (Feller, 1957, p.
76).

S e R N T S NN T TN SO I AT 1 ey S

F16. 2.—Symbolic and graphical representations

of a typical channel network.

A symmetric random walk can be re-

garded as the outcome of a sequence of
Bernoulli trials with probability of “syc-
cess” equal to § (Feller, 1957, p. 135, 311);
hence, in the infinite sequence of I’s and
E’s corresponding to an infinite topologi-
cally random network, E appears at any
specified position with probability 4 regard-
less of the pattern anywhere else in the se-
quence. All possible subsequences are
equally likely to appear, corresponding to
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the definition of topologically random net-
works (for proof of the zero probability of
occurrence of “pathological” sequences,
such as all E’s, see Feller, 1957, p. 189-197).

In the sequence corresponding to an in-
finite network that is not topologically ran-
dom, on the other hand, although the two
letters appear in equal numbers as required
by Melton’s relationships, the probability
that E appeqrs at a specified position is not
necessarily 3. Instead, it depends upon the
preceding pattern of letters, corresponding
to the fact that certain network topologies,
hence certain letter sequences, are preferen-
tially developed.

As random walks and Bernoulli trials oc-
cur widely in fields ranging from nuclear
physics to gambling, their theory is highly
developed in many different guises (see,
e.g., Feller, 1957, chaps. iii, xi, xiii, xiv);
hence, the analogy with infinite topologi-
cally random channel networks makes avail-
able for application a vast body of theorems
and solutions.

GEOMORPHOLOGICAL “LAWS”

The law of large numbers (Feller, 1957, p.
141-142, 189-191) in conjunction with (9c)
implies that, in random samples from an
infinite topologically random network, the
average number of Strahler streams of suc-
cessive orders will, as the number of
samples increases, tend toward a geometric
series with ratio 1. Similarly, in conjunction
with (3c), it implies that the average number
of links of successive orders will tend toward
a geometric series with ratio 3. In analogy
with Horton’s laws of drainage composition,
these relationships might be termed the
“law of stream numbers” and the “law of
link numbers,” respectively, although, like
Horton’s laws, they are not true statistical
laws in the sense proposed in my paper on
the law of stream numbers (Shreve, 1966, p.
17). Combining these two “laws” leads to
the further relationship that the average
number of links per stream increases with
order as a geometric series with ratio 2.

Derivation of a “law of stream lengths”

RONALD L. SHREVE

s
in which the dimensionless coefficient « 1is

requires a hypothesis concerning the length
of individual links. The simplest, and oz
that does not appear to be too far from #
truth, is that all of the links have the sa
length. In this case, the “law of stre
lengths” corresponding to the prev
crude “laws” would state that the a:
length of streams increases with order
geometric series with ratio 2. In like m
the average total length of streams in ba
of given order would increase with sui
orders approximately as a geometric
with ratio 4, in good agreement with obsg
vation (e.g., Schumm, 1956, p. 604-605).

Suggestive as these geomorphologic
“laws” are, they are based upon avera
over an infinite population and so, like H
ton’s laws (Shreve, 1966, p. 17), do not sup
ply the complete distributions needed
statistical analysis of observations made @
natural populations. Moreover, the hypo!
esis of constant link length amounts to usin
the average link length. A better hypothesis
for example, might be that the hnk length
have a log-normal distributionANI. A. Me
ton, unpublished analysis; Schumm 1956, 1
607-608) with mean inversely propo -._'_
to drainage density, or perhaps with e
links having one mean and mtenor
another. Surprisingly, the statistics of
ral link lengths, or even of stream length
has niot received much investigation beyon
the work of Schumm (1956, p. 607-608) or
the badlands at Perth Amboy. :

The total length L of channels in a bas
of magnitude p is

= l(zﬂ = 1) ’

(10a}
where [ is the link length, which is assume

constant. Similarly, the area 4 of the basi
may be written

A= it (DIt (10b)

constant if, as will be assumed, the drainag
density
@ L/A=1/(d) (100
\q y
=
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ple, might be that the link lengths
ig-normal distribution (M. A. Mel-
1blished analysis; Schumm 1936, p
with mean inversely proportional
e density, or perhaps with' e:\'tc:riq:
ving one mean and inFenor links
Surprisingly, the statistics of natu-
engths, or even of stream length:}.
eceived much investigation beyond
_of Schumm (1956, p. 607-608) on
inds at Perth Amboy. '
stal length L of channels in a basin
tude p is

L=12s—1), (102)

s the link length, which is assume?
. Similarly, the area A of the basin
written

A=x2Qu—1), (10b
the dimensionless coefficient x s a
if, as will be assumed, the drainaz

(10¢

D= L/4 = 1/(«)

1

is uniform, as would be the case in mature
wpography develo in a homogeneous en-

limination of ! between (10a)
gives « in terms of commonly
measured network parameters,

k= (2u— 1)/LD. (10d)

For the 11 networks tabulated by Melton
which are definitely free of geologic controls
(1957, Table 2, facing p. 88; Chinle Bad-
lands N and S, Finley and Adams Canyon I
and II, Sycamore Canyon I and II, Whipple
Basin, Mesa Gulch, Dory Hill Basin, Peters
Dome Basin, and Cerro Pavo Basin), the
mean value of x is 0.96. Thus, from (10b) the
average basin area drained by each link is
approximately that of a square of side /; and
from (10c) the constant of channel main-
tenance (Schumm, 1936, p. 607) is approxi-
mately equal to the mean link length. As-
suming k = 1, u>> 1, and noting from (9¢)
that the bifurcation ratio is approximately
(. so that (Shreve, 1966, p. 21)

pimsded, (10e)
where u and w are the basin magnitude and
order, respectively, and =~ denotes approxi-
mate equality, leads to a “law of basin
areas,”’ ree!
A= /Dy | ¥
=~ (2 p (10f)
. L (. Re=Ry
The basin-area ratio is thus 4, again in good
areement With observation (e.g., Schumm,
1936, p. 604-605). w
Because from (9¢) the bifurcation ratio is
#pproximately %, a simple summation for
> 1 shows that the total number Ss of
Strahler streams in networks of magnitude
«will on the average be close to 4u/3; hence,
for all networks of sufficient size, the average
ratio Ss/u will be approximately 4, in agree-
ment with the mean observed ratio of 1.34
for the 11 networks free of geologic controls
tubulated by Melton, whose magnitudes
range from 19 to 111,
~ Once more assuming x = 1, x> 1, de-
ining Fg = S¢/4, and using (10b) and
l0c), leads to the approximate relationship

TR
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(11a)

This may be compared with the empirical
equation

Fs/D? ~

CH{E]

Fg/D® =~ 0.694 (11b)
obtained by Melton (1938, p. 36-37) by
analysis of data from 156 drainage basins.
For the 11 networks previously considered,
the mean value of Fg/D?is 0.71.

In terms of links rather than Strahler
streams, the relationship is exactly

F/Dt= i, (12)

where F is the average number of links per
unit area. This equation is tautological, inas-
much as it follows directly from the defini-
tions of F, D, and «; it does not depend upon
constant link lengths, uniform drainage den-
sity, or topologically random networks.
Similarly, the ratio Fg/D? investigated by
Melton (1958, p. 37) is exactly equal to x
divided by the number of links per Strahler
stream. Part of the scatter in his diagram of
Fs versus D is therefore due to variations in
network topology, as he recognized (Mel-
ton, 1958, p. 37, 38, 43—46); and the remain-
der is due to fluctuations in «. Use of the
channel link (a theoretical concept unrecog-
nized at the time) rather than the Strahler
stream as the basic channel unit would have
eliminated the scatter due to topological
variations and reduced the problem to in-
vestigation of the behavior of the concep-
tually simple quantity «.

ACKNOWLEDGMENTS.—Especiaﬂy appreci-
ated are the free use of computing time and
other facilities generously furnished by the De-
partment of Geological Sciences at Harvard
University, where I was Honorary Research
Fellow in Geology when this paper was written.
Also appreciated are the careful reading and
useful suggestions made by M. A. Melton, who
reviewed the manuscript for publication. The
numerical computations were carried out on the
IBM 7094 and associated equipment of the
Harvard Computing Center, Earlier financial
support from the University of California is
also gratefully acknowledged.




i
!

< Y

186 RONALD L. SHREVE

REFERENCES CITED

FELLER, W., 1957, An introduction to probability
theory and its applications: New York, John
Wiley & Sons, v. 1, 461 p.

Hortox, R. E., 1945, Erosional development of
streams and their drainage basins; hydrophysical
approach to quantitative morphology: Geol.
Soc. America Bull., v. 56, p. 275-370.

MEeLToN, M. A., 1957, An analysis of the relations
among elements of climate, surface properties,
and geomorphology: New York, Columbia Uni-
versity, Dept. Geol., Office of Naval Res. Project
NR 389.012, Tech. Report No. 11, 102 p.

1958, Geometric properties of mature drain-

age systems and their representation in an E

phase space: Jour. Geology, v. 66, p. 35-56.

1959, A derivation of Strahler’s channel-
ordering system: Ibid., v. 67, p. 345-346.

Moop, A. M., and GraysiLr, F. A., 1963, Intro-

| e e

duction to the theory of statistics (2d ed.): '
York, McGraw-Hill Book Co., 443 p. :
ScHEIDEGGER, A. E., 1965, The algebra of strea
order numbers: U.S. Geol. Survey Prof. P
525-B, p. B187-B189. :
ScauMM, S. A., 1956, Evolution of drainage s
and slopes in badlands at Perth Amboy,
Jersey: Geol. Soc. America Bull., v. 67, p
646. :
SHREVE, R. L., 1966, Statistical law ofsu'en.m
bers: Jour. Geology, v. 74, p. 17-37. :
SIEGEL, S., 1956, Nonparametric statistics f
behavmral sciences: New York, McGra v-
“Book Co., 312 p.
er.un.r;n, A N., 1952, Hypsometric (area altx
analysis of erosional topography: Geol.
America Bull., v. 63, p. 1117-1142.




