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INFINITE TOPOLOGICALLY RANDOM CHANNEL NETWORKS1

RONALD L. SHREVE
University of California, Los Angeles

ABSTRACT
Individual channel networks ordinarily are portions of far larger, essentially infinite, networks.'

all network is by definition at infinite topologically random network if the populations of subnetworks i
it are topologically random. From such a network, the probability of randomly drawing a link, a subnel
or a basin with Strahler order « is 1/2"*; and that of randomly drawing a stream of order _< is 3/4'''. Thef
bility of drawing a link of magnitude n, that is, one having n sources ultimately tributary to it, is equal I
probability of a first passage through the origin at step 2/t — 1 in a symmetric random walk, a fact^
suggests a useful mathematical analogy between random walks and infinite topologically random net
Assuming uniform link length equal to the constant of channel maintenance, which in turn is the recipr
drainage density, the probability distributions for links and streams of various orders may be interpn
crude geomorphological "laws" analogous to Horton's laws of drainage composition. These distril
predict geometric-series "laws" in which, using Strahler orders, the bifurcation ratio is J, the link-mj
ratio is -_, the length ratio is 2, the cumulative-length ratio is 4, and the basin-area ratio is 4, all ii
agreement with the observed ratios. They also predict values of $ and §, respectively, for the dimensi
ratios of total number of Strahler streams to network magnitude and of Strahler stream frequency-(
square of the drainage density, in agreement with the values of 1.34 and 0.694 found empirically.

INTRODUCTION
Individual channel networks in nature do

not ordinarily exist independently, but are
portions of far larger networks that for prac
tical purposes are essentially infinite. The
hypothesis that in the absence of geologic
controls natural networks will be topologi
cally random (Shreve, 1966, p. 27) thus im
plicitly contains the corollary that in the
over-all infinite network, which will be
termed an infinite topologically random chan
nel network, all topologically distinct sub
networks with the same number of sources
occur with equal frequency. The purposes of
this paper are to deduce some of the geo-
morphologically significant probability dis
tributions associated with these infinite
topologically random networks, to demon
strate the close connection of such networks
with random walks, and to derive theoreti
cally several of the well-known empirical
"laws" of geomorphology.

DEFINITIONS
Most of the specialized terms used in this

paper—such as link, fork, source, lopologi-
1 Manuscript received April 8, 1966; revised

August 9, 1966. Publication No. 494, Institute of
Geophysics and Planetary Physics, University of
California, Los Angeles, California 90024.

catty identical, topologically distinct,
topologically random—have been define
previous publication (Shreve, 1966, p.]
27). Strahler stream orders (1952, p. 1JJ
Shreve, 1966, p. 21-22) will be used ej
sively. The terms channel network or,
convenience, simply network will refer to1]
idealized concept of channel nett
(Shreve, 1966, p. 27) in which one, and
one, path exists between any two points j
in which at its upstream end each link 1
connects to two other links or tenninat
a source. Stated negatively, and somei
less precisely, no lakes with multiple ii
no islands of major extent, and no coi
ences of more than two channels at a sii
place are permissible in the idealized chs
networks considered in this paper,
terms exterior link and interior link wiUJ
nify links terminating at their upst
ends in sources and forks, respective!)
these terms, Melton's relationships (1951
345; Shreve, 1966, p. 27) state that e\
idealized network with /1 sources will
2/x — 1 links, of which y. are exterior
and u — 1 are interior links.

The phrase link drawn at random'
nify a link selected in such a way thalj
links in the specified target populat
which may be either real or hypothet
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nee, simply network will refer to the

concept of channel network
1966, p. 27) in which one, and only
i exists between any two points and
at its upstream end each link either
to two other links or terminates in
Stated negatively, and somewhat

sely, no lakes with multiple inlets,
Is of major extent, and no conllu-
more than two channels at a single
permissible in the idealized channel

; considered in this paper. The
'erior link and interior link will si.'-
:s terminating at their upstream
sources and forks, respectively. In
ms, Melton's relationships (1959. p.
eve, 1966, p. 27) state that ever;.
network with y. sources will have

inks, of which n are exterior links
1 are interior links.

hrase link drawn at random will sig-
lk selected in such a way that all
the specified target population,

ay be either real or hypothetic.:.

arc equally likely to be drawn (see Mood and
Craybill, 1963, p. 141-142). It is com
pletely equivalent to the phrases network
frown at random or basin drawn at random,
because each link of given magnitude or or
der or both in a population of networks is
the outlet of a single subnetwork of the same
magnitude or order or both. Actually draw
ing links or networks at random from natu
ral populations is not easily accomplished;
nevertheless, for meaningful statislical anal
ysis it is an absolute necessity.

COXCEPT OF MAGNITUDE
The magnitude of a link in a channel net

work is herein defined by the following two
rules. (1) Each exterior link has magnitude
1. (2) If links or magnitude /__ and t>2 join,
then the resultant link downstream has
magnitude m + f>2. The application of these
rules to a typical channel network is illus
trated in figure 1. By induction, the magni
tude of a link is equal to the total number of
sources ultimately tributary to it. Magni
tude is thus a purely topological concept, for
it involves only the interconnections and not
the lengths, shapes, or orientations of the
links comprising the network. Like the sys
tems of stream ordering of Horton (1945, p.
.'81), Strahler (1952, p. 1120 n.), and, more
recently, Scheidegger (1965, p. B188), the
concept of magnitude assumes the existence
of sources, that is, of objectively describable
points that in fact or by definition are the
points farthest upstream in a channel net
work.

In analogy with basin order, the magni
tude of a channel network or drainage basin
isequal to the magnitude of its highest mag
nitude link. Thus, if two networks are tribu
tary to the same link, the resultant network
has magnitude equal to the sum of the mag
nitudes of the two tributary networks. Net
works with equal magnitudes have equal
•■■umbers of links, forks, sources, Horton- 'earns, and first-order Strahler streams,
and are therefore comparable in topological
complexity (Shreve, 1966, p. 27). A reasonable conjecture is that they are comparable
•n other ways as well.

Despite its apparent complexity, the sys
tem of stream ordering proposed by
Scheidegger (1965) is simply related to the
concept of magnitude. If the Scheidegger
order and the magnitude of a link (or net
work) are denoted by X and u, respectively,
then

X = l o g 2 2 fi , ( 1 )
in which log2 signifies the logarithm to base

According to Scheidegger (1965, p. B188-
B189), if the second-order streams as classi
fied by his system "are treated as first-order

Fig. I.—Link magnitudes for a typical channel
network.

streams, then all orders are simply reduced
by one." Equation (1) makes it easy to see,
however, that this statement is incorrect,
unless the previous first-order streams are
treated as zero-order streams that contrib
ute to the order of the higher-order streams
even^ though, as Scheidegger himself states
(1965, p. B188), they are in fact non-existent
in nature. Thus, one of the main advantages
of the Horton and Strahler systems (Shreve,
1966, p. 22-23) is lost in the Scheidegger
system.

PROBABILITY DISTRIBUTIONS
The probability p(u, u) that a link

drawn at random from an infinite topologi.
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cally random network will have specified can be derived either in the same dire
magnitude y and Strahler order oj can be fashion or by summation using (2). Proce
computed from the recursive relationship ing directly,

_>(m,«) = _____.[_>(*» «-i)

X p ( y - a , c o - 1 )

tt(c-)

= .[«(a)-i)2+2M(c-)_£;«(̂ )], (;
0-1

u._-_.

+ 2^(a,o))^_>(M-a,i8)]>
(S= l

_»(l,l)-*_, P(m,1) = 0,
_>(_,«) = 0, /z,a,= 2,3,....

( 2 ) and
w(l) = _, o> = 2,3,...,

M - l

' (m) =*2_S '(a)f (/x-o),
o = l

*( !) = _, m = 2,3,. . . .
TABLE 1

Infinite Topologically Random Channel Networks

)>(Mi<v)

a.= 2 _-.» _ = 4 _ = 5 _ = 6 _ = 7 _ = 8
»(*.) 1

1
2 6.12500

.06250

.03125

.01562

.007S1

.00391

.00195

.00098

.00049

.00000

.00000

.00000

.00000

.00000
0.00000

3
4 0.00781

.01172

.01270

.01221

.01111

.00983

.00856

.00181

.00002

.00000
.00000
.00000

0.00000

039043 027346 02051/ 0161.8 0.00003
.00011
.00022
.00141
.00070
.00010
.00000
.00000

0.00000

.0130a
9 0109110 00922

20 0.00000
.00009
.00018
.00009
.00000

0.00000

0032J
50 0.00000

.00000

.00001

.00002
0.00001

100 0.00000
.00000
.00000

0.00000

200
500

1000
0.00000

.00000
0.00000

.OOOlfl

ÔOOOOl'

«(w) 0.25000 0.12500 0.06250 0.03125 0.01562 0.00781 0.00391

The factor § is the probability of drawing an
interior link; and the sum on a accounts for
the various ways that pairs of smaller net
works can be tributary to this link to give it
the specified y and o>. Recursive relation
ships for the marginal probabilities

«(w) = ^p(y, w)
* i = i

and

v(p) = 2)^(/», w)

As before, the factor _ is the probability
drawing an interior link; and the remainii
factor accounts for the various ways
pairs of smaller networks can be tributary
this link to give it the specified y or _>.

Representative values of p(y, co), u(t
and v(y) are presented in table 1. For ai
particular magnitude the distribution
probabilities with order has a relative
sharp peak, whereas for any particular ord^
the distribution with magnitude has a rel
tively broad peak; hence, in a topologies
random population magnitude more pr
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>y summation using (2). Proceed-

*-l)=+2«(«)2>(0)l, (3,
( 1 ) = _ , . 0 = 2 , 3 , . . . ,

M - l

) = ^ v ( a ) v ( y - a ) ,

) = - _ , m - 2 , 3 , . . . .

nel Networks

_ = 7 _=8
Vi/l)

0 50000
12500

.02734
02051

.01611

.01309

.01091

.00927

.00322
00 .00080
00 0.00000

.00000
.00000

0.00000

.00028
01
02
01

0.00000
.00000

0.00000

.00010

.00002
0.00001

6? 0.00781 0.00391

the factor _ is the probability oi
n interior link; and the remaining
ounts for the various ways that
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magnitude the distribution oi
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cisely characterizes a network than does
order.

A closed expression for «(_>) can readily
be derived from (3). Summation of the first
_ - 1 terms of u(u) gives, using (3),

from the probability w(y; M) of drawing a
link of magnitude y at random from a topo
logically random population of networks of
magnitude M. This probability is
w(y; M)

2£«W=[]>>(/3)1
0 - 1 L 0 - 1 J0-1

-«(«-l)2-f-l .
( 5 a ) _ ( M - y + l ) N ( M - y 4 - l ) N ( y )

( 2 M - l ) i V ( M )
(7a)

Completing the square, taking the square
root, and substituting into (3) leads to the
relationship

2«(oj) = „•(_> — 1) ,

" ( D = J , . - 2 , 3 , . . . , ( 5 b )

from which

u ( u ) = 1 / 2 " , w = 1 , 2 , . . . , ( 5 c )

follows by mathematical induction.
A closed expression for v(y) can be de

rived from (4) by means of the generating
function R(r), where

R(r) = V»(M) r" . ( 6 a )

where N(y) is the number of topologically
distinct networks of magnitude y. The de
nominator is equal to the total number of
links of all magnitudes in the population of
Ar(M) networks of magnitude M; and the
numerator is therefore the number of links
of magnitude y in this population, which in
turn is the number of ways that the N(y)
networks of magnitude y can be attached to
the M — y -f- 1 sources of each of the
AT(M — y -f- 1) networks of magnitude
M — y -f-1 to form networks of magnitude
M.

Substitution of Cayley's closed expression
for N(y),

m
l ) ( 7 b )

i ' i

Squaring both sides of (6a) and collecting
the coefficients of like powers of r gives

(Shreve, 1966, p. 29), gives

w(y; M)

™ ^ n F A _ 1 / 2 / A / 2 ( M - f Q N / / 2 M \
(7c )

hence, using (4),
R- = 2R - r ,

R = i _ ( 1 _ r ) . / s

from which

2-(2m-d fly- 1
V-

(6c )

M) =
2u- 1

M - l , 2 , . . . ,
( 6 d )

follows by the binomial expansion. The
minus sign is chosen in the quadratic formu-
« because the power-series expansion in
(6a) represents the branch of the curve of R
versus r that passes through the origin.

The distribution v(y) can also be derived

from which (6d) follows by taking the limit
as M approaches infinity.

Representative values of w(y; M) are
presented in table 2.

For any network magnitude M the great
est (or modal) probability is that of drawing
a link of magnitude 1, inasmuch as

z t v ( l ; M ) = M / ( 2 M - l ) > _ . ( 8 )

At the other end of the distribution, how
ever, for M > 3 the probability of drawing
a link of magnitude M is greater than that of
drawing one of magnitude M — 1. This is
because networks of magnitude M always
have one link of that magnitude, whereas
they very often have no links of the next
smaller magnitude and very rarely have
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two, which is the maximum possible. Setting
the ratio of two successive terms equal to
1 and solving for y shows that the mini
mum in the distribution is located approxi
mately at n - 3(M + l)/4.

The probability s(o)) of drawing a Strah
ler stream of order o> at random from the
streams (not links) comprising an infinite
topologically random network can be de
rived from (5c) and (6d) by noting that, be
cause in any network the links whose tribu
taries are both of order _> — 1 are in one-to-

could readily be tested against natural popi
lations of channel networks by means of tl
goodness-of-fit test (see, e.g., Siegel, 1956,
42-52, 59-60, and Mood and Graybill, 1<
p. 308-309).

CONNECTION with random walks
A symbolic representation of any char

network can be constructed as follow
Start at the outlet and traverse the netwoi
always turning left at forks and reversii
direction at sources, until the outlet is aga

TABLE 2
Populations of Finite Topologically Random Channel Networks

vfcM)

/ I = l a.= 2 l«-3 P = 4 P = 5 M=6 a<=7 M-8 1
1 1.00000

0.66667
0.60000
0.57143
0.55556
0.54545
0.53846
0.53333
0.52941
0.52632
0.51282
0.50505
0.50251
0.50125
0.50050
0.50025
0.50000

i

3 .20000
.17143
.15873
.15152
.14685
.14359
.14118
.13932
.13167
.12756
.12627
. 12563
.12525
.12512

0.12500

6.20000
.11429
.09524
.08658
.08158
.07832
.07602
.07430
.06772
.06445
.06346
.06297
.06269
.06259

0.06250

4 0.14286
.07936
.06494
.05828
.05439
.05183
.05001
.04360
.04072
.03987
.03946
.03922
.03914

0.03906

.1 0.11111
.06061
.04895
.04351
.04031
.03819
.03151
.02882
.02805
.02769
.02748
.02741

0.02734

6 0.09091
.04895/ 0.076928

9,
10
20
50

100
200
500

1000
CO

.03916

.03455
.03183
.02445
.02185
.02115
.02082
.02063
.02057

0.02051

.04103

.03258

.02858

.01992

.01737
.01671
.01640
.01623
.01617

0.01611

0.06667
.03529
.02786
.01683
.01428
.013651
.01336
.01320'
.01314

0.013011

one correspondence with the streams of
order oj,

s(2)/s(l) = v(2)/v(l) m I (9a)
and

s(u + !)/.(«) = _tt(«)V_*(c_. - iy-
= 1, co = 2, 3, ... . (9b)

These equations define a geometric series
with ratio J, from which

_■(«_,) = 3/4% co = 1, 2, ... , (9c)
follows by mathematical induction.

The distributions (5c), (6d), and (9c)

reached. During the traverse, generate a se\
quence of Fs and E's by recording an / th(
first time a given interior link is traverser,
and an E the first time a given exterior lit
is traversed. Each link will be traverse
twice but recorded only once.

If a right turn instead of a left turn \
made at each fork, a different sequence wif
result, which is the sequence for the mirroi
image network. The new sequence will no
be the reverse of the original, however; aric
in general, symmetry in the network will n<
be evident in the sequence, and vice versa!
The reverse sequence is generated by turn-
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ily be tested against natural popu-
rhannel networks by means of t|1(:
.f-fit test (see, e.g., Siegel, 1956, p.
60, and Mood and Graybill, 1953

•ction with random walks
ilic representation of any channel
an be constructed as follows
e outlet and traverse the network,
ning left at forks and reversing
t sources, until the outlet is again

iM Channel Networks

" = ' ) | i ^ 7 M _ { t

I t
il 0.09091

.04895)5 0.07692
i l .03916 .04103 0.06667
.1 .03455 .03258 .03520
19 .03183 .02858 .02786
■1 .02445 .01992 .01683
<2 .02185 01737 .01428
15 .02115 .01671 .01365
i9 .02082 .01640 .01336
18 .02063 .01623 .01320
11 .02057 .01617 .0131-1
14 0.02051 0.01611 0.01309

tiring the traverse, generate a se-
f's and E's by recording an / the
i given interior link is traversed
he first time a given exterior link
d. Each link will be traversed
.corded only once.
H turn instead of a left turn is
ch fork, a different sequence will
:h is the sequence for the mirror-
•/ork. The new sequence will not
rse of the original, however; and,
symmetry in the network will not
in the sequence, and vice versa.

e sequence is generated by turn-
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;ng right and recording the /'s and E's the
second time given links are traversed rather
[j,:_n the first time. The mirror-image and
averse sequences, although necessary for
certain types of investigation, will not be
_sed in this paper.

Topologically identical networks will
-,ive identical sequences, and topologioallv
jistinct networks will have different unique
..qiiences. Obviously, some possible sc
iences, such as all I's or all E's, cannot
.rrespond to channel networks. Sequences
r̂esponding to networks of more than one

ink, for instance, alway s begin with / and
snd with two successive E's. More generally,
■ cause of the fact that in any network or
■ubnetwork the number of interior links is
feys exactly one less than the number of
vterior links, only those sequences are pos

sible in which, as they are recorded, the
•:mber of E's never exceeds the number of

!'i except at the terminal E. Put another
*ay, if the I's count +1 and the E's count
-1. then the partial sums can never be
-native, except for the last, which will be
-1. Thus, on a graph the curve of partial
cms may fall to the level of the origin, but• does not drop below it until the terminal

The steps from network to sequence to
:-.iph are illustrated in figure 2.

Graphs like that of figure 2 occur widely
the theory of random walks; and it is

^■rthwhile to compare their properties with
*e of topologically random networks

Hie graphs dropping below the axis for the
-■*t time at step 2y - 1 correspond to the
pologically distinct networks with 2y - 1
-S hence, the number of such graphs is

; m). as shown directly bv Feller (1957 p'.see Shreve, 1966, p. 29, for derivation in
wns of networks). In random-walk ter

minology ffGO different one-dimensionalWhs make a first passage of the origin at
"P-M - 1. Following the analogy further,
•-'e graphs are generated bv unbiased coin
•^g, counting heads as / and tails as E
':1 lhe probability that the graph will drop

How the axis, that is, that a first passage

183
will occur, at step 2/x - 1 is equal to v(y)
(Feller, 1957, p. 73-75). Thus, the probabil
ity that a link drawn at random from an
infinite topologically random network will
have magnitude y, thereby defining a sub
network with 2y - 1 links, is exactly the
same as the probability that in a symmetric
random walk the first passage of the origin
will occur at step 2y - 1 (Feller, 1957, p
76).

I IEHIEEIE I I IEEEEEI I IEEEL

Fig. 2.—Symbolic and graphical representations
ot a typical channel network.

A symmetric random walk can be re
garded as the outcome of a sequence of
Bernoulli trials with probability of "suc
cess" equal to _ (Feller, 1957, p. 135, 311);
hence, in the infinite sequence of I's and
E's corresponding to an infinite topologi
cally random network, E appears at any
specified position with probability a regard
less of the pattern anywhere else in the se
quence. All possible subsequences are
equally likely to appear, corresponding to
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the definition of topologically random net
works (for proof of the zero probability of
occurrence of "pathological" sequences,
such as all E's, see Feller, 1957, p. 189-197).

In the sequence corresponding to an in
finite network that is not topologically ran
dom, on the other hand, although the two
letters appear in equal numbers as required
by Melton's relationships, the probability
that E appears at a specified position is not
necessarily §. Instead, it depends upon the
preceding pattern of letters, corresponding
to the fact that certain network topologies,
hence certain letter sequences, are preferen
tially developed.

As random walks and Bernoulli trials oc
cur widely in fields ranging from nuclear
physics to gambling, their theory is highly
developed in many different guises (see,
e.g., Feller, 1957, chaps, iii, xi, xiii, xiv);
hence, the analogy with infinite topologi
cally random channel networks makes avail
able for application a vast body of theorems
and solutions.

GEOMORPHOLOGICAL "LAWS"
The law of large numbers (Feller, 1957, p.

141-142, 189-191) in conjunction with (9c)
implies that, in random samples from an
infinite topologically random network, the
average number of Strahler streams of suc
cessive orders will, as the number of
samples increases, tend toward a geometric
series with ratio \. Similarly, in conjunction
with (5c), it implies that the average number
of links of successive orders will tend toward
a geometric series with ratio §. In analogy
with Horton's laws of drainage composition,
these relationships might be termed the
"law of stream numbers" and the "law of
link numbers," respectively, although, like
Horton's laws, they are not true statistical
laws in the sense proposed in my paper on
the law of stream numbers (Shreve, 1966, p.
17). Combining these two "laws" leads to
the further relationship that the average
number of links per stream increases with
order as a geometric series with ratio 2.

Derivation of a "law of stream lengths"

requires a hypothesis concerning the len;
of individual links. The simplest, and
that does not appear to be too far from
truth, is that all of the links have the
length. In this case, the "law of s
lengths" corresponding to the previ
crude "laws" would state that the ave:
length of streams increases with order as
geometric series with ratio 2. In like mann
the average total length of streams in b
of given order would increase with suco
orders approximately as a geometric se:
with ratio 4, in good agreement with ob
vation (e.g., Schumm, 1956, p. 604-605).

Suggestive as these geomorphologi
"laws" are, they are based upon aver
over an infinite population and so, like H
ton's laws (Shreve, 1966, p. 17), do not s
ply the complete distributions needed fi
statistical analysis of observations made
natural populations. Moreover, the hypo
esis of constant link length amounts to usi
the average link length. A better hypoth
for example, might be that the link lengt!
have a log-normal distribution '̂CTrA.'TVt
ton, unpuBUshed analysis; Schumm 1956,
607-608) with mean inversely proprrrtio'
to drainage density, or perhaps with exteri
links having one mean and interior
another. Surprisingly, the statistics of na
ral link lengths, or even of stream leng
has not received much investigation beyond
thrworEToT Schumm (T956, p. 607-608) oi
the badlands at Perth Amboy.

The total length L of channels in a b
of magnitude y is

L = l(2y - 1) , (lOal

where I is the link length, which is assume
constant. Similarly, the area A of the basil]
may be written

,1 = kP (2y - 1) , (lObl

in which the dimensionless coefficient k is
constant if, as will be assumed, the drainag^
density ' D > LI A = \/{d) (10c)j
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ge density, or perhaps with exterior
vine one mean and interior links
Surprisingly, the statistics of natu-
lengths, or even of stream lengths,
eceived much investigation beyond
of Schumm (1956, p. 607-608) or.

inds at Perth Amboy.
>tal length L of channels in a basin
tude y is

t
hi RANDOM CHANNEL NETWORKS

L = l{2y - 1) , (10a)

s the link length, which is assume!
. Similarly, the area A of the basin
.vritten

.1 = kp (2M - i; (10b

the dimensionless coefficient k is a
if, as will be assumed, the drainage

D = LI A = 11(d) (10c

is uniform, as would be the case in mature
topograph}'̂ }̂___lop_______aJiomogeneous en-_
vironrmmt/EHmination ofTbetween (10a)
and-(10c) gives k in terms of commonly
measured network parameters,

k = (2y - \)/LD .

Fs/D*
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( 11 a )

(10d)
For the 11 networks tabulated by Melton
which are definitely free of geologic controls
,1957, Table 2, facing p. 88; Chinle Bad
lands N and S, Finley and Adams Canyon I
and II, Sycamore Canyon I and II, Whipple
Basin, Mesa Gulch, Dory Hill Basin, Peters
Dome Basin, and Cerro Pavo Basin), the
mean value of k is 0.96. Thus, from (10b) the
average basin area drained_by each link is
approximately that of a square of side /; and
from (10c) the constant oTchannel main
tenance (Schumm, 1956, p. 607) is approxi
mately equal to the mean link length. As
suming k = 1, y » 1, and noting from (9c)
that the bifurcation ratio is approximately
;. so that (Shreve, 1966, p. 21)

M * _ < * - * , ( 1 0 e )
where y and oj are the basin magnitude and
order, respectively, and « denotes approxi
mate equality, leads to a "law of basin
areas,"

{A « (2/D*)4« J(10f)
'*#. fo.-PftI he basin-area ratio is thus 4, again in good

agreement mm observation (e.g., Schumm
1 9 5 6 , p . 6 0 4 - 6 0 5 ) . .

Because from (9c) the bifurcation ratio is
approximately J, a simple summation for
u »1 shows that the total number Ss of
Mrahler streams in networks of magnitude

j« will on the average be close to Ay/3; hence,•or all networks of sufficient size, the average
ratio Ss/y will be approximately $, in agree
ment with the mean observed ratio of 1.34
or the 11 networks free of geologic controls
tabulated by Melton, whose magnitudes
'•'•ngefrom 19 to 111.

Once more assuming K « 1, M» 1, de-

S?iParS«/A> and usinS (10b) andV, leads to the approximate relationship

This may be compared with the empirical
equation

F s / D * ~ 0 . 6 9 4 ( U b )

obtained by Melton (1958, p. 36-37) by
analysis of data from 156 drainage basins.
For the 11 networks previously considered,
the mean value of Fs/D2 is 0.71.

In terms of links rather than Strahler
streams, the relationship is exactly

F / D * - = k , ( 1 2 )

where F is the average number of links per
unit area. This equation is tautological, inas
much as it follows directly from the defini
tions of F, D, and k; it does not depend upon
constant link lengths, uniform drainage den
sity, or topologically random networks.
Similarly, the ratio Fs/& investigated by
Melton (1958, p. 37) is exactly equal to k
divided by the number of links per Strahler
stream. Part of the scatter in his diagram of
Fs versus D is therefore due to variations in
network topology, as he recognized (Mel
ton, 1958, p. 37, 38, 43-46); and the remain
der is due to fluctuations in k. Use of the
channel link (a theoretical concept unrecog
nized at the time) rather than the Strahler
stream as the basic channel unit would have
eliminated the scatter due to topological
variations and reduced the problem to in
vestigation of the behavior of the concep
tually simple quantity k.

Acknowledgments.—Especially appreciated are the free use of computing time and
other facilities generously furnished by the De
partment of Geological Sciences at Harvard
University, where I was Honorary Research
Fellow in Geology when this paper was written.
Also appreciated are the careful reading and
useful suggestions made by M. A. Melton, who
reviewed the manuscript for publication. The
numerical computations were carried out on the
IBM 7094 and associated equipment of the
Harvard Computing Center. Earlier financial
support from the University of California is
also gratefully acknowledged.



186 RONALD L. SHREVE

REFERENCES CITED

I

Feller, \V., 1957, An introduction to probability
theory and its applications: New York, John
Wiley & Sons, v. 1, 461 p.

Horton, R. E., 1945, Erosional development of
streams and their drainage basins; hydrophysical
approach to quantitative morphology: Geol.
Soc. America Bull., v. 56, p. 275-370.

Melton, M. A., 1957, An analysis of the relations
among elements of climate, surface properties,
and geomorphology: New York, Columbia Uni
versity, Dept. Geol, Office of Naval Res. Project
NR 389 042, Tech. Report No. 11, 102 p.

1958, Geometric properties of mature drain
age systems and their representation in an is«
phase space: Jour. Geology, v. 66, p. 35-56.

1959, A derivation of Strahler's channel-
ordering system: Ibid., v. 67, p. 345-346.

Mood, A. M., and Graybill, F. A., 1963, Intro

duction to the theory of statistics (2d ed.):
York, McGraw-Hill Book Co., 443 p.

Scheidegger, A. E., 1965, The algebra of stre
order numbers: U.S. Geol. Survey Prof.
525-B, p. B187-B189.

Schumm, S. A., 1956, Evolution of drainage syst
and slopes in badlands at Perth Amboy,
Jersey: Geol. Soc. America Bull., v. 67, p.
646.

Shreve, R. L., 1966, Statistical law of stream:
bers: Jour. Geology, v. 74, p. 17-37.

Siegel, S., 1956, Nonparametric statistics fo
, behavioral sciences: New York, McGraw-j
"Book Co., 312 p.

Strahler, A. N., 1952, Hypsometric (area-altit
analysis of erosional topography: Geol.
America Bull., v. 63, p. 1117-1142.

*


