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Lysine acetylation of cytoskeletal proteins:
Emergence of an actin code
Mu A, Casey J. Latario, Laura E. Pickrell, and Henry N. Higgs

Reversible lysine acetylation of nuclear proteins such as histones is a long-established important regulatory mechanism for
chromatin remodeling and transcription. In the cytoplasm, acetylation of a number of cytoskeletal proteins, including tubulin,
cortactin, and the formin mDia2, regulates both cytoskeletal assembly and stability. More recently, acetylation of actin itself
was revealed to regulate cytoplasmic actin polymerization through the formin INF2, with downstream effects on ER-to-
mitochondrial calcium transfer, mitochondrial fission, and vesicle transport. This finding raises the possibility that actin
acetylation, along with other post-translational modifications to actin, might constitute an “actin code,” similar to the
“histone code” or “tubulin code,” controlling functional shifts to these central cellular proteins. Given the multiple roles of
actin in nuclear functions, its modifications might also have important roles in gene expression.

Introduction
Covalent posttranslational modifications (PTMs) of proteins are
integral to cellular regulation.While some of thesemodifications
are essentially irreversible, reversible PTMs can rapidly regulate
cellular functions in response to stimuli. Phosphorylation is
easily the most well-studied reversible PTM. However, a growing
number of other reversible PTMs have been described, including
acetylation, other types of acylation (malonoylation, succinylation,
butyrylation, crotonylation, and palmitoylation), methylation,
ubiquitination, and SUMOylation (Ringel et al., 2018; Sabari et al.,
2017; Barnes et al., 2019).

Protein acetylation occurs on primary amines and can be
divided into two types: N-terminal (Nt) acetylation and lysine
acetylation (Drazic et al., 2016). For both types, acetyl–coenzyme
A (CoA) is the acetyl donor (Fig. 1 A). Nt-acetylation occurs on
over 80% of human proteins and is typically considered irre-
versible. Much of this acetylation is mediated by a family of
N-acetyltransferases (NATs) and is largely cotranslational in the
cytosol, but can occur post-translationally.

Lysine acetylation, which is the focus of this review, is
widespread in cells (Narita et al., 2019). As an energetically fa-
vorable reaction, acetylation can occur nonenzymatically, and
clearly does so in the mitochondrial matrix, where the high
acetyl-CoA level and elevated pH are favorable (Wagner and
Payne, 2013). However, a great deal of regulated lysine acety-
lation takes place in other compartments through enzymes
known as lysine acetyltransferases (KATs), while deacetylation

is mediated through lysine deacetylases (KDACs; Narita et al.,
2019; Fig. 1 A). It should be kept in mind that acetylation is only
one form of acylation, and there is rapidly expanding knowledge
of other acylations, which are competitive with acetylation, on
histones and other proteins (Narita et al., 2019; Barnes et al.,
2019; Ringel et al., 2018).

Lysine acetylation has three clearly identifiable biochemical
effects (Fig. 1 A). First, acetylation neutralizes the positively
charged lysine residue, which can induce changes in enzymatic
activity, interactions with other proteins, and/or conformation
within the protein. Second, acetylation blocks other lysine
modifications, such as methylation or ubiquitination. Given that
acetylation and methylation produce different chemical effects
on lysines (eliminating versus preserving positive charge, re-
spectively), these two modifications can have opposing func-
tional effects (Rice and Allis, 2001). Third, acetylation provides a
binding site for bromodomain-containing proteins (Fujisawa
and Filippakopoulos, 2017).

Acetylation occurs in several cellular compartments, but the
most well-studied events are nuclear. Histone acetylation was
discovered >50 yr ago (Allfrey et al., 1964; Verdin and Ott, 2015),
and there is an extensive literature of acetylation effects on
chromatin structure. Many of the nonhistone acetylation sites
identified by proteomics are on transcription factors or other
nuclear proteins (Narita et al., 2019). This situation is not sur-
prising, considering that the majority of KATs and KDACs are
heavily enriched in the nucleus, and that bromodomain-containing
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proteins appear to be almost entirely nuclear (Fujisawa and
Filippakopoulos, 2017).

Extensive lysine acetylation occurs in the mitochondrial
matrix; however, this acetylation appears to be mainly nonen-
zymatic (Wagner and Payne, 2013; Wagner and Hirschey, 2014;
Weinert et al., 2015; Davies et al., 2016; James et al., 2017). While
enzymatic acetylation has been reported in mitochondria, there
is no currently identified mitochondrial KAT (Scott et al., 2012;
Fan et al., 2014). Therefore, the roles of the three mitochondrial
KDACs might be to reverse detrimental nonenzymatic lysine
acetylation.

This review focuses on lysine acetylation in the cytoplasm,
specifically on the actin and microtubule cytoskeletons. For a
recent review of noncytoskeletal lysine acetylation in the cyto-
plasm, please see Narita et al., 2019. While comparatively less
studied than the other compartments, examples of functionally
relevant cytoplasmic lysine acetylation are increasingly fre-
quent. In addition, the function of actin in both the cytoplasm
and the nucleus (Plessner and Grosse, 2019; Percipalle and
Vartiainen, 2019), as well as the acetylation-based regulation
of an actin polymerization factor (INF2) that is now known to
polymerize actin in both compartments (A et al., 2019a; Wang
et al., 2019), make actin acetylation an intriguing mechanism for
nuclear/cytoplasmic communication.

Cytosolic KATs and KDACs
The identity of KATs and KDACs in the cytoplasm remains an
issue that is not fully resolved. Thus far, at least 21 human KATs
have been identified, and a number of other proteins might
possess KAT activity (Narita et al., 2019; Table S1). The 20 cur-
rently identified human KDACs fall into two broad groups: the
NAD+-dependent sirtuins and the zinc-dependent KDACs (Table
S2). It should be noted that several KATs and KDACs, while
having homology to their respective groups, have no apparent
enzymatic activity or are more suited to addition/removal of
other acyl groups (Narita et al., 2019).

While most KATs and KDACs are considered to be exclusively
nuclear, for some there is evidence for a cytoplasmic pool,
though there are conflicts between studies. Possible explanations

for the conflicts could include cell type–specific localization, cell
state–specific localization, and use of overexpressed constructs
that may or may not mimic endogenous localization. We have
summarized our interpretation of the literature, classifying
KATs and KDACs as “yes,” “probable,” “possible,” or “no” for the
presence of at least a portion of the protein in the cytosol (Table
S1 and Table S2). Some of the firmer conclusions are as follows.
For KATs, some of the major nuclear enzymes display at least a
subpopulation in the cytosol, including p300, CBP, PCAF, and
Tip60. In addition, α-tubulin acetyltransferase (αTAT1) is cyto-
plasmic and is thought to be dedicated to tubulin (Shida et al.,
2010; Akella et al., 2010), although extensive testing for other
substrates has not been performed. KDACs that clearly have both
a cytosolic population and bona fide KDAC activity are HDAC6
and Sirt2. In addition, there is some evidence that HDAC6 and
Sirt2 can interact directly (North et al., 2003; Nahhas et al.,
2007).

Cytoskeletal targets of lysine acetylation
An increasing number of cytosolic proteins have been shown to
be regulated by acetylation, including chaperones such as
HSP90, autophagy factors, and proteins involved in signal
transduction (Narita et al., 2019). For cytoskeletal proteins, tu-
bulin acetylation is by far the best characterized (Janke and
Magiera, 2020), but actin itself as well as two actin-binding
proteins have been shown to be functionally acetylated (Zhang
et al., 2007; Li et al., 2017; A et al., 2019a).

Acetylation and the tubulin cytoskeleton
The fundamental unit of eukaryotic microtubules is the heter-
odimer of α- and β-tubulin, which polymerize end to end to form
an unstable linear protofilament. Protofilaments then assemble
laterally into a more stable microtubule, typically consisting of
13 protofilaments with a diameter of ∼25 nm (Brouhard and
Rice, 2018; Manka and Moores, 2018). In all microtubules, pro-
tofilaments are in the same orientation, with β-tubulin at the
“plus” end and α-tubulin at the “minus” end (Fig. 2 A). Both
tubulins bind GTP, but only β-tubulin is capable of GTP hy-
drolysis and exchange. GTP hydrolysis changes the protofilament

Figure 1. Lysine acetylation. Enzymatic lysine acetylation occurs through KATs, with the acetyl group donated by acetyl-CoA. KDACs remove the modifi-
cation. Acetylation has three general effects: neutralizing lysine’s positive charge, blocking other modifications to the lysine, and creating a binding site for
bromodomain-containing proteins. BD, bromodomain.
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conformation, resulting in instability and rapid disassembly at the
plus end in a process called catastrophe (Brouhard and Rice, 2018;
Manka and Moores, 2018). Microtubules are nucleated by the
γ-TURC complex, which is enriched at centrosomes but is also
found at additional locations (Petry and Vale, 2015). While many
microtubules are highly dynamic, alternating between growth and
catastrophe (Brouhard and Rice, 2018; Manka and Moores, 2018),
some are relatively stable, for example, ciliary microtubules as
well as microtubule subsets in neuronal axons and dendrites (Baas
and Black, 1990; Baas et al., 2016) and many cultured mammalian
cells (Webster et al., 1987; Gundersen and Bulinski, 1988).

Tubulin acetylation. The best-studied tubulin lysine acetyla-
tion event is of K40 on α-tubulin, first identified in Chlamydo-
monas reinhardtii (L’Hernault and Rosenbaum, 1985; Piperno
et al., 1987), where most acetylation is in cilia but a subset
of cytoplasmic microtubules is also acetylated (LeDizet and
Piperno, 1986). Most cultured mammalian cells have a similar
subset of cytoplasmic Ac-K40–containing microtubules (Piperno
et al., 1987), and acetylated tubulins are enriched in the long
microtubules of mammalian neuronal axons and dendrites
(Hammond et al., 2010). Two interesting features of the K40
acetylation site are that 1) it is not universally conserved in
eukaryotes, since yeasts lack the site, and 2) the residue is not on
all α-tubulin genes within a species; for example, K40 is present
in seven of the eight human α-tubulins. Other acetylation sites
have been identified on α- and β-tubulin (Chu et al., 2011; Sadoul
and Khochbin, 2016), but several lines of evidence suggest that
K40 appears to be the manor site (LeDizet and Piperno, 1987;
Akella et al., 2010; Shida et al., 2010).

The KAT catalyzing tubulin acetylation is αTAT1 (also called
MEC-17), and displays a strong preference for microtubules over
tubulin dimers (Akella et al., 2010; Shida et al., 2010). Plausible
αTAT1 sequences are found in all ciliated organisms but not in
yeasts (Shida et al., 2010). While Chlamydomonas expresses an
αTAT, plants do not have a clear homologue, despite evidence
for K40 acetylation (Aström, 1992; Smertenko et al., 1997). Some
acetylated tubulin is still detectable in certain tissues from
αTAT1 knockout (KO) mice (Kim et al., 2013) and αTAT1 KO
zebrafish (Akella et al., 2010), perhaps through a different KAT,
ESCO2 (Lu et al., 2018). For KDACs, two enzymes have been
identified in mammals, HDAC6 and Sirt2 (Hubbert et al., 2002;
North et al., 2003), but the contexts in which one or the other is
dominant have not been fully elucidated. HDAC6 and Sirt2
might interact (North et al., 2003), and the SIRT2-HDAC6
complex might be the entity that binds microtubules (Nahhas
et al., 2007).

K40 faces the microtubule lumen, as opposed to tubulin
C-terminal tail PTMs, which are on the tubule exterior (Fig. 2 B).
This location raises the issue of access for both αTAT1 and
KDACs. For αTAT1, entry from either microtubule end has been
shown (Szyk et al., 2014). An alternative mechanism is through
“holes” along the microtubule created by mechanical stress or
microtubule severing (Schaedel et al., 2015; Vemu et al., 2018),
although whether KATs or KDACs could access these holes be-
fore they are rapidly repaired is unclear.

The biochemical and cellular effects of K40 acetylation
in the microtubule lumen are still being elucidated. Stable

microtubules tend to be more acetylated in several cellular
contexts, including (1) ciliary microtubules, with HDAC6 re-
quired for ciliary resorption (Pugacheva et al., 2007); (2) cul-
tured cells (LeDizet and Piperno, 1986); and (3) neuronal axons
and dendrites (Tas et al., 2017). Some biochemical results are at
odds with these cellular results, since acetylated microtubules
depolymerize faster and make weaker inter-protofilament in-
teractions (Portran et al., 2017; Eshun-Wilson et al., 2019). In-
terestingly, these altered interactions also make acetylated
microtubles more flexible, and more able to resist mechanical
breakage (Portran et al., 2017). In cells, this property may make
acetylated microtubules more resistant to stresses (Xu et al.,
2017), which damage microtubules (Schaedel et al., 2015).
However, it is unclear whether the association between micro-
tubule acetylation and cellular microtubule stability is causative
or fortuitous (the more stable microtubules having a greater
opportunity to get acetylated). A second reported consequence of
K40 tubulin acetylation is preferential kinesin-1 based transport
in cells (Reed et al., 2006; Cai et al., 2009; Tas et al., 2017).
However, biochemical assays could not recapitulate a similar
kinesin-1 preference for acetylated microtubules (Walter et al.,
2012; Kaul et al., 2014). It may be that cellular microtubules are
also subject to other modifications that favor kinesin-1 interac-
tion, or that the biochemical assays lack a cofactor, such as a
microtubule-associated protein, that facilitates kinesin-1 recog-
nition of acetylated microtubules. A third consequence of K40
tubulin acetylation may be to provide direct binding sites for
mitochondrial inner proteins (Ichikawa and Bui, 2018), which
reside in the mitochondrial lumen, as suggested by recent cryo-
EM data (Ma et al., 2019). The microtubule lumen is a relatively
unexplored world, but with an almost 20-nm diameter (ap-
proaching that of an ER tubule), it has the potential to act as a
unique microenvironment. Indeed, actin filaments have been
observed in the microtubule lumen (Paul et al., 2020).

Physiologically, tubulin acetylation is not essential for life,
since KOs of αTAT1 in mice and worms, or the K40R mutant of
the sole acetylatable α-tubulin in worms, result in almost com-
plete loss of detectable acetylated tubulin yet lead to no major
developmental or structural abnormalities (Akella et al., 2010;
Shida et al., 2010; Kalebic et al., 2013a; Kim et al., 2013). In ad-
dition, Tetrahymenamutants for αTAT1 still produce cilia (Akella
et al., 2010), as do mammalian cultured cells (Shida et al., 2010).
However, lack of tubulin acetylation causes a number of clear
specific effects, including loss of touch sensation in Caeno-
rhabditis elegans and mice (Akella et al., 2010; Shida et al., 2010;
Morley et al., 2016), dentate gyrus abnormalities in mice (Kim
et al., 2013), and sperm structural and motility defects in mice
(Kim et al., 2013; Kalebic et al., 2013b). Interestingly, αTAT1 is
necessary for assembly of special microtubules containing 15
protofilaments in C. elegans touch receptor neurons (Cueva et al.,
2012; Topalidou et al., 2012). One imagines that additional spe-
cific defects will be revealed in time.

Acetylation and the actin cytoskeleton
Actin is a 43-kDmonomer that can assemble into a two-stranded
right-handed helical polymer in eukaryotes (Fig. 2, D–F; Pollard
et al., 2001; Blanchoin et al., 2014). Actin filaments have a
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diameter of∼7 nm, with all monomers facing the same direction,
creating a polar filament in which a “barbed” end is more dy-
namic than the “pointed” end. Actin is an ATPase, and mono-
mers hydrolyze bound ATP after addition to the filament, with
subsequent phosphate release favoring filament disassembly.
Many mammalian nonmuscle cells contain >10 million actin
molecules, or 100–200 µM cytoplasmic actin (Hatch et al., 2016;
A et al., 2019b).

Mammals contain six actin genes (Perrin and Ervasti, 2010),
four of which are found predominantly/exclusively in muscle.
The two nonmuscle actins, β- and γ-actin, differ in only four
amino acids at the N terminus. Mouse models show that β-actin
is more important for overall viability, but γ-actin–deficient
mice have multiple developmental abnormalities (Perrin and
Ervasti, 2010). Non-muscle actin has an essential role in a
large number of diverse cellular processes. Major actin-based

Figure 2. Tubulin and actin acetylation. (A) Tubulin dimer of α- and β-tubulin. K40 of α-tubulin is the predominant acetylation site. Also shown are the C
termini of α- and β-tubulin, which are subject to multiple PTMs. Molecular structure model from PDB accession no. 4U3J. (B) Themicrotubule, with C termini to
the exterior and K40 in the lumen. (C) Acetylated microtubules engage in less inter-protofilament contacts, making them more flexible than nonacetylated
microtubules, resulting in more resistance to mechanical compression because they bend instead of breaking, perhaps explaining why stable cellular mi-
crotubules are highly acetylated. (D) Ribbon model of actin monomer, with bound ATP (cyan). Zoom is the D-loop of subdomain 2, showing residues subject to
PTMs: K50 and K61 (acetylation), M44 and M47 (oxidation), and Y53 (phosphorylation). Molecular structure model from PDB accession no. 4PKG. (E)Model of
actin filament of four subunits (ADP-bound), showing the D-loop oriented to exterior. Molecular structure model from PDB accession no. 6DJN. (F) Cartoon of
actin polymerization, showing unfavorable dimerization and trimerization steps, with subsequent elongation more favorable. Actin monomers add to the
barbed end almost exclusively in cells.
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structures include lamellipodia, filopodia, stress fibers, and the
cytokinetic ring. In these structures, individual actin filaments
turn over in minutes (stress fibers; Amato and Taylor, 1986) or
seconds (lamellipodia; Theriot and Mitchison, 1991). There are
also multiple additional populations of short, highly dynamic
filaments that assemble and disassemble transiently for specific
functions, including during endocytosis (Kaksonen and Roux,
2018), endocytic recycling (Simonetti and Cullen, 2019), Golgi
dynamics (Fucini et al., 2000; Colón-Franco et al., 2011;
Ramabhadran et al., 2011; Kage et al., 2017), mitochondrial
damage (De Vos et al., 2005; Li et al., 2015; Kruppa et al., 2018;
Fung et al., 2019), autophagy (Coutts and La Thangue, 2015; Kast
et al., 2015; Mi et al., 2015; Hu and Mullins, 2019), response to
increased cytoplasmic calcium (Shao et al., 2015; Ji et al., 2015;
Wales et al., 2016), and phagocytosis (May andMachesky, 2001).
In almost all of these processes, the role of actin is to move
membranes, which it can do either through the force of its own
polymerization or by being a track for myosin motors (Pollard
et al., 2001; Blanchoin et al., 2014).

Assembly of actin is controlled by several families of actin
assembly factors, including two important to this review: the
Arp2/3 complex and formin proteins (Chesarone and Goode,
2009; Dominguez, 2016). Assembly factor regulation is crucial
to specify when and where individual actin filament pools occur.
As discussed below, an Arp2/3 complex activator, cortactin, is
regulated by acetylation. Two of the 15 mammalian formins,
INF2 and mDia2, are also regulated by acetylation, with mDia2
getting directly acetylated, whereas INF2 regulation occurs
through acetylation of actin itself. We will address acetylation of
actin first, followed by cortactin and then mDia2.

Acetylation of actin. Mammalian actins contain 19 lysines,
which are generally conserved throughout eukaryotic actins.
High-throughput proteomic studies reveal acetylation of at least
seven lysines, with K50, K61, and K328 being the most fre-
quently cited (Table S3). One difficulty with these analyses is
that they cannot distinguish between the six mammalian actins
as all lysines are in completely conserved regions.

Until 2019, there was only one report of functional impor-
tance for lysine acetylation: K326/K328 acetylation affecting
Drosophila flight muscle (Viswanathan et al., 2015). In this study,
acetyl-mimetic mutants of K326 and K328 of the cardiac actin
protein were overexpressed in Drosophila flight muscle. While
WT cardiac actin had no effect, the K326Q/K328Q mutant re-
sulted in muscle degeneration and decreased flight ability. The
conclusion was that K326/K328 acetylation might alter both
tropomyosin and myosin II binding, resulting in sarcomere
contraction defects.

Intriguingly, acetylation of a low percentage of actin can
inhibit specific actin polymerization pathways, those involving
INF2 (A et al., 2019a). In view of INF2’s important roles in cells
and its role in two diseases, its regulation mechanism is of high
significance. INF2 stimulates rapid and transient assembly of
actin filaments throughout the cytosol, stimulated by increased
cytoplasmic calcium (Shao et al., 2015; Ji et al., 2015; Wales et al.,
2016; Chakrabarti et al., 2018). Downstream effects of this cy-
toplasmic actin polymerization include mitochondrial fission
(Korobova et al., 2013; Chakrabarti et al., 2018) and altered

transport vesicle dynamics (Andrés-Delgado et al., 2010; Madrid
et al., 2010), mediated by two splice variants: endoplasmic
reticulum–bound INF2-CAAX and cytosolic INF2-nonCAAX, re-
spectively. An important general role for INF2 might be immo-
bilization of cytoplasmic components, which might facilitate
specific interactions (Korobova et al., 2013; Bayraktar et al.,
2020). Curiously, INF2 also affects microtubule acetylation in
an indirect manner, through transcriptional control of αTAT1
via the myocardin-related transcription factor (MRTF)–serum
response factor (SRF) pathway (Fernández-Barrera et al., 2018).
Exciting recent work shows a role for INF2-CAAX in the nucleus,
polymerizing actin filaments that elongate into the nucleoplasm,
and that appear to be involved in chromatin remodeling (Wang
et al., 2019). Physiologically, INF2 has been shown to have wide-
ranging roles (Labat-de-Hoz and Alonso, 2020). INF2 mutations
link to two human diseases, focal segmental glomerulosclerosis
(Brown et al., 2010) and Charcot-Marie-Tooth disease (Boyer
et al., 2011), and INF2 plays roles in placental development
(Lamm et al., 2018) and ischemia-reperfusion pathogenesis
(Zhang and Yu, 2018).

Acetylated actin (Ac-actin) inhibits INF2 through an in-
triguing mechanism (A et al., 2019a, 2019b). A complex between
Ac-actin and cyclase-associated protein (CAP) inhibits INF2, by
binding two regulatory regions in INF2, the diaphanous inhib-
itory domain (DID) and the diaphanous autoregulatory domain
(DAD; Fig. 3 A). In other formins, the DID and DAD bind tightly
in an auto-inhibitory interaction (Lammers et al., 2005; Wallar
et al., 2006), but INF2’s DID/DAD interaction is weak and in-
sufficient for inhibition of the purified protein (Ramabhadran
et al., 2013). However, both DID and DAD are required for cel-
lular INF2 regulation, suggesting the existence of an additional
inhibitory molecule, which turns out to be CAP/Ac-actin. The
KAT responsible for actin acetylation in this context is unclear,
but HDAC6 appears to be the relevant deacetylase. HDAC6 in-
hibition reduces INF2-mediated actin polymerization in cells
(A et al., 2019a). Two lysines in subdomain 2 of actin, K50 and
K61 (Fig. 2 D), appear relevant for INF2 regulation (A et al.,
2019b). In biochemical assays, K-to-Q “acetyl-mimetic” muta-
tions of these positions are potent INF2 inhibitors, only when
complexed with CAP. In cellular assays, expression of either
K50Q- or K61Q-actin blocks calcium-stimulated actin assembly.
Interestingly, CAP/Ac-actin appears to bridge the DID and DAD
to affect inhibition, instead of bolstering a direct auto-inhibitory
interaction between DID and DAD (A et al., 2019b).

These studies suggest that INF2 activation in cells is through
HDAC6-mediated actin deacetylation, releasing INF2 from the
inhibitory CAP/Ac-actin complex (Fig. 3 A). The role of Ac-actin
in regulation of INF2 has a number of exciting cellular im-
plications. First, since INF2-CAAX plays roles in mitochondrial
calcium uptake and mitochondrial fission (Korobova et al., 2013;
Ji et al., 2015; Chakrabarti et al., 2018), this system may act as a
metabolic sensor, through the level of the KAT substrate acetyl-
CoA (Su et al., 2016; Sivanand et al., 2018), to modulate mito-
chondrial function. Second, since INF2 influences nuclear actin
and downstream nuclear functions (Wang et al., 2019), regula-
tion through actin acetylation might extend to the nucleus.
Third, disease-linked INF2 mutations (Brown et al., 2010; Boyer
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et al., 2011) are poorly regulated by CAP/Ac-actin (A et al., 2019a;
Bayraktar et al., 2020), suggesting an effect on this interaction.
Fourth, the concept that a low percentage of Ac-actin can affect
overall actin polymerization through binding to regulatory
proteins might be more general; low amounts of actin acetylated
on specific lysines could even serve to regulate processes not
related to actin polymerization.

Acetylation of cortactin. Cortactin is a 62-kD protein con-
taining an N-terminal Arp2/3 complex binding sequence, an
actin filament–binding domain (ABD), a proline-rich region, and
a C-terminal SH3 domain (Fig. 3 B). Most metazoans have a
cortactin gene, but not yeasts or plants (Scherer et al., 2018).
Cortactin enhances the activity of Arp2/3 complex, which as-
sembles new actin filaments by binding to the side of an existing

filament (the “mother filament”) to generate branched filament
networks (Fig. 3 B; Schnoor et al., 2018). Arp2/3 complex acti-
vation generally requires mother filament binding and binding
to a nucleation-promoting factor (Siton-Mendelson and Bernheim-
Groswasser, 2017). Cortactin synergizes with other nucleation-
promoting factors to enhance Arp2/3 complex nucleation
activity (Helgeson and Nolen, 2013), and can stabilize branches by
binding both Arp2/3 complex and the mother filament (Fig. 3 B;
Weaver et al., 2001).

Cortactin plays roles in many Arp2/3 complex-mediated
processes, including lamellipodial assembly (Zhao et al., 2013),
invadopodia assembly (Bowden et al., 1999; Oser et al., 2009),
dendritic spine dynamics (Hering and Sheng, 2003; Catarino
et al., 2013; Lin et al., 2013), and secretory processes (Sung

Figure 3. Acetylation-based regulation of actin dynamics through INF2 and cortactin. (A) INF2 regulation. Top: Bar diagram of INF2, with the FH1 and
FH2 domains being involved in actin polymerization, and the DID and DAD domains being regulatory. Bottom: INF2 dimer inhibition by complex between CAP
and Ac-actin, with CAP/Ac-actin serving as a bridge between DID and DAD domains. Deacetylation of actin by HDAC6 releases this bridge, allowing the FH2
domain to interact with actin. For simplicity, CAP/actin is shown as a dimer, although evidence suggests that CAP is hexameric. Also, shown here is interaction
between CAP/Ac-actin and only one of the two INF2 subunits in the INF2 dimer, again for simplicity. (B) Cortactin regulation. Top: Bar diagram of cortactin,
with the NTA interacting with Arp2/3 complex, the ABD consisting of 6.5 repeat regions and interacting with actin filaments, and a C-terminal SH3 domain that
interacts with multiple proteins. Each repeat of the ABD is subject to acetylation. Bottom: Speculative model for acetylation-based cortactin regulation.
Cortactin bound to both Arp2/3 complex and the mother filament at an Arp2/3 complex–mediated branch. Cortactin acetylation lowers the affinity of the ABD
for actin filaments, which could enhance branch disassembly. NTA, N-terminal acidic region.
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et al., 2011; Sinha et al., 2016). There may also be Arp2/3
complex–independent cortactin functions (Schnoor et al., 2018).

Cortactin is acetylated on multiple lysines in the ABD (Zhang
et al., 2007). Analysis of Cos-7 cells suggests that single lysines in
each of the seven ABD repeats are targets, with ABD-7 (K309)
being the most avidly targeted (Zhang et al., 2007). The enzymes
that acetylate and deacetylate cortactin are still not entirely
clear. Possible KATs include PCAF in HeLa cells (Zhang et al.,
2007), CBP in COS-7 cells (Ito et al., 2015), and p300 in
HEK293T cells (Zhang et al., 2009). KDACs include HDAC6 and
Sirt2 in HeLa cells (Zhang et al., 2007), Sirt1 in HEK293T and
H549 cells (Zhang et al., 2009; Ito et al., 2015; Motonishi et al.,
2015), and HDAC8 in smooth muscle cells (Li et al., 2014).

Biochemically, cortactin acetylation appears to decrease actin
filament binding, with acetylation of at least four sites in the
ABD needed for significant effects (Zhang et al., 2007). The ef-
fect of cortactin acetylation on Arp2/3 complex activity has not
been studied, but one speculation would be that it causes weaker
mother filament binding, in turn causing weaker nucleation
and/or branch stability (Fig. 3 B). In cells, cortactin acetylation
inhibits cell migration (Zhang et al., 2007, 2009; Ito et al., 2015)
and has effects on post-synaptic density organization in neurons
(Catarino et al., 2013). Acetylated cortactin is highly enriched in
the nucleus, and cortactin deacetylation appears to promote
translocation to the cytosol (Ito et al., 2015; Motonishi et al.,
2015). It is unclear whether cortactin has a specific nuclear
function, or whether nuclear translocation of acetylated cor-
tactin serves to down-regulate its cytoplasmic functions. Finally,
decreased cortactin acetylation has recently been associated
with actin-dependent mitochondrial fragmentation (Lovy et al.,
2020).

Acetylation of mDia2. The three mammalian Dia formin
family members (mDia1–3) are related to the Drosophila protein
Diaphanous, which assembles a number of actin-based struc-
tures, including the cytokinetic ring (Castrillon andWasserman,
1994; Homem and Peifer, 2008; Nowotarski et al., 2014). mDia2
plays several cellular roles and is the likely formin necessary for
mammalian cytokinetic ring assembly (Watanabe et al., 2008).
All mDias mediate both actin nucleation and elongation, with
mDia2 also having actin filament bundling activity (Harris et al.,
2006).

Acetylation of K970 on mDia2 has been reported (Li et al.,
2017). This residue is in the actin-interacting FH2 domain of
mDia2, and the crystal structure of another formin FH2 do-
main complexed with actin suggests that the analogous resi-
due points toward the actin but does not make direct contact
(Thompson et al., 2013). While it is unclear whether K970
acetylation directly influences mDia2 interactions with actin,
the acetyl-mimetic mutant blocks cytokinetic ring assembly
and enucleation of erythrocyte precursors (Li et al., 2017).
HDAC6 appears to be the deacetylase for mDia2, and its in-
hibition also blocks these cellular processes (Li et al., 2017).
This lysine is conserved in mDia1 as well as in Drosophila Di-
aphanous and in the C. elegans cytokinetic formin, but not in
mDia3. It will be interesting to see whether acetylation of FH2
residues constitutes a common regulatory mechanism for
other formins.

Acetylation in the context of other actin PTMs: “The actin
code”
Both histones and tubulin are subject to a variety of PTMs that
regulate their functions, collectively known as the “histone
code” and “tubulin code” (Gardner et al., 2011; Verhey and
Gaertig, 2007; Park and Roll-Mecak, 2018; Janke and Magiera,
2020). Actin is also subject to a number of PTMs other than
acetylation (Table S3). Many of these modifications have not
been studied functionally and, because actin is abundant, some
modifications could represent off-target enzymatic reactions or
low levels of nonenzymatic activity. Excellent reviews have
covered the breadth of actin PTMs in general (Terman and
Kashina, 2013; Varland et al., 2019). Here, we focus on several
select modifications that have been studied biochemically and in
cells (Fig. 2 D).

One well-studied actin modification is methionine oxidation
of M44 and M47 by molecules interacting with CasL protein
1 (MICALs), a family of NADPH-dependent oxido-reductases in
vertebrates (Alto and Terman, 2018). MICAL preferentially ox-
idizes polymerized actin over actin monomers, and actin oxi-
dation leads to rapid depolymerization, both by inherent
instability of the oxidized filament and through increased sev-
ering by cofilin (Hung et al., 2011; Grintsevich et al., 2016, 2017).
Actin is the only known MICAL substrate. Methionine sulfoxide
reductases catalyze the reverse reaction (Alto and Terman,
2018). MICAL-mediated actin oxidation is important in actin
disassembly during processes such as axonal guidance and cy-
tokinesis (Hung et al., 2010; Frémont et al., 2017).

A second actin modification found routinely in high-
throughput proteomics is tyrosine phosphorylation, with 13
of the 15 actin tyrosines identified as phosphorylation sites
in multiple studies (Table S3; Hornbeck et al., 2015). Only
one site, tyrosine 53 (Y53), has been studied functionally. Y53-
phosphorylated actin from Dictyostelium has deficiencies in
both nucleation and elongation (Liu et al., 2006). In mammalian
neurons, the level of Y53-phosphorylated actin is altered by cell
stimulation, and might be relevant to neuronal maturation and
synaptic plasticity (Bertling et al., 2016).

A third characterized actin modification is methylation of
histidine 73 (Johnson et al., 1967; Elzinga, 1971; Wilkinson et al.,
2019). This modification occurs on the majority of actin mole-
cules from both muscle and nonmuscle cells, and actin appears
to be the sole substrate of the methyltransferase SETD3
(Wilkinson et al., 2019). Methylation somewhat destabilizes the
folding of actin monomers but also modestly increases the po-
lymerization rate (Yao et al., 1999; Nyman et al., 2002; Wilkinson
et al., 2019). The methyl-H73 residue also occupies a key position
in the nucleotide “sensor” loop of actin, whose orientation changes
significantly between ADP- and ATP-actin (Graceffa and
Dominguez, 2003). SETD3 KO mice display a number of phe-
notypes associated with dysfunctional smooth muscle contrac-
tion (Wilkinson et al., 2019).

An interesting feature of most of these modifications, in-
cluding the acetylation of K50 and K61 described earlier, is that
they are in a particular region of actin, at or near the “D-loop” of
subdomain 2. The D-loop is the least structured region of actin,
and is oriented to the outer surface of the filament (Fig. 2 E).

A et al. Journal of Cell Biology 7 of 16

Cytoskeletal regulation by acetylation https://doi.org/10.1083/jcb.202006151

https://doi.org/10.1083/jcb.202006151


Because it is at the pointed end of the monomer, the D-loop does
not interact with barbed end–binding proteins like profilin,
WH2 motifs, or formins, but does interact with tropomodulin
and DNase 1 (Dominguez and Holmes, 2011; Rao et al., 2014) as
well as myosin (von der Ecken et al., 2016). The D-loop and
surrounding subdomain 2 residues also undergo significant
changes between ADP- and ATP-bound actin (Graceffa and
Dominguez, 2003). Given the importance of nucleotide turno-
ver in cellular actin dynamics (Blanchoin et al., 2014; Pollard
et al., 2001), alterations in this region could have profound
effects.

One question is whether these D-loop modifications have any
of the following effects: (1) direct effects on actin polymeriza-
tion; (2) indirect effects on actin polymerization, by altering
interactions with one or more actin-binding proteins; or (3)
regulatory effects on other proteins. Despite the fact that the
D-loop makes important intersubunit contacts in filaments
(Chou and Pollard, 2019), modifications of residues in this region
have variable effects on actin polymerization or filament sta-
bility. Methionine oxidation clearly destabilizes actin filaments
and enhances cofilin action, resulting in rapid depolymerization
(Hung et al., 2011; Grintsevich et al., 2016, 2017). Conversely,
mutations of K50 or K61 do not change the polymerization
properties of actin itself, but affect INF2 regulation (A et al.,
2019b). Y53 phosphorylation inhibits but does not prevent po-
lymerization (Liu et al., 2006). Interestingly, an R62D mutant is
used experimentally to act as a nonpolymerizable variant, and
this mutant cannot incorporate into cellular filaments (Posern
et al., 2002). Therefore, despite the growing knowledge of actin
filament structure (Rao et al., 2014; Chou and Pollard, 2019),
actin modifications should be tested individually for polymeri-
zation effects.

Considering the high concentration of actin (100–200 µM) in
many mammalian cell types (Hatch et al., 2016; A et al., 2019b),
modification of sufficient actin to have a significant effect on
overall cellular polymerization may be difficult. However, the
modified actin might rather serve to “poison” specific actin po-
lymerization pathways, as was elegantly shown for host cell
actin modified by a Vibrio cholerae toxin, actin crosslinking do-
main (Heisler et al., 2015). In the case of actin oxidation, the
effect on actin disassembly may be local, due to subcellular lo-
calization of MICAL, its acute activation by stimuli such as nerve
growth factor, and the fact that cofilin-mediated severing un-
leashes a number of additional mechanisms for actin turnover
(Alto and Terman, 2018).

Rather than affecting actin polymerization itself, modified
actin could be used as a regulatory mechanism, an example
being the regulatory role of K50 and K61 acetylation on INF2
activity (A et al., 2019a, 2019b). This regulatory function could
also explain the low stoichiometry of some modifications. Given
the high cytoplasmic actin concentration, modification of a small
percentage may be sufficient for effective regulation of lower-
abundance proteins.

Finally, the close proximity of the modifications described
here, in and around the D-loop of actin, could suggest their
combinatorial effects. In other words, one modification might
favor a second modification, or doubly modified actin might

have enhanced or specific functional effects. No information on
this possibility is currently available.

Roles for actin in the nucleus
Nowhere has acetylation been more studied than in the nucleus.
Interestingly, actin is known to play important roles in the nu-
cleus as well. Actin is at significantly lower concentrations in the
nucleus compared with cytosol, but flux between the two
compartments is high, with 33% of nuclear actin turned over per
minute (Dopie et al., 2012). Actin is imported in a cofilin-bound
form through the importin Ipo9, and exported in a profilin-
bound form through exportin 6 (Stüven et al., 2003; Dopie
et al., 2012). Some of actin’s nuclear roles may be played right
on the chromatin. Chromatin immunoprecipitation suggests
that actin is present near transcription start sites of numerous
genes when weakly transcribed, but on highly transcribed genes
can also be found on gene bodies (Sokolova et al., 2018).

Actin is involved in a broad spectrum of nuclear functions
and appears to act in three forms in the nucleus: (1) as a stable
subunit of large, multiprotein complexes; (2) as actinmonomers;
and (3) as actin filaments (Fig. 4).

At one end of the spectrum is the use of actin and/or actin-
related proteins (Arps) as components of chromatin-remodeling
complexes (Clapier et al., 2017; Klages-Mundt et al., 2018). These
mega-dalton ATP-using molecular machines are extremely in-
tricate in their catalytic mechanisms (Clapier et al., 2017;
Willhoft and Wigley, 2020). Actin itself is a fundamental com-
ponent of INO80 chromatin remodeling complexes from yeast to
humans, in which it forms a subcomplex with two Arps, Arp4
and Arp8 (Fig. 4; Willhoft and Wigley, 2020), using binding
interfaces that do not resemble those in actin filaments (Knoll
et al., 2018). In addition, actin and Arp4 also form part of a
module in the NuA4/Tip60 complex, which is predominately a
nuclear KAT (Ikura et al., 2000; Wang et al., 2018). In both
INO80 and NuA4/Tip60, it is an actin monomer, rather than a
filament, which is part of the complex. Actin appears to be ATP-
bound in these complexes (Knoll et al., 2018), but it is not clear
whether it serves as an ATPase as part of the catalytic mecha-
nism. In addition, actin monomers themselves probably do not
dynamically exchange into/out of the complexes.

In the middle of the spectrum is regulation of nuclear pro-
cesses by more loosely bound actin monomers. One process is
throughMRTF (also called MAL). MRTF is a coactivator of SRF, a
transcription factor that is activated by many cellular stimuli. A
role for cytoplasmic actin in MRTF/SRF activity had long been
known, with actin monomers sequestering MRTF in the cyto-
plasm, and cytoplasmic actin polymerization causing MRTF
translocation to the nucleus (Posern and Treisman, 2006). In
addition, it was found that nuclear actin monomers could bind
MRTF, promoting its export (Vartiainen et al., 2007). Similar to
the cytoplasmic situation, polymerization of nuclear actin de-
creases nuclear actin monomers, allowing MAL to bind SRF and
activate transcription (Fig. 4; Baarlink et al., 2013; Plessner et al.,
2015). Another nuclear complex that appears to contain mono-
meric actin as an exchangeable subunit is the histone-modifying
complex ATAC (Viita et al., 2019). Interestingly, ATAC con-
tains two histone acetyltransferases with different substrate
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specificities, KAT14 and GCN5 (Suganuma et al., 2008). Actin
binding reduces acetyltransferase activity of KAT14 (Viita et al.,
2019).

At the far end of the spectrum, there is an expanding list of
roles of actin filaments in the nucleus (Caridi et al., 2019;
Percipalle and Vartiainen, 2019; Plessner and Grosse, 2019;
Kyheröinen and Vartiainen, 2020; Baarlink et al., 2017; Wei
et al., 2020) verified by well-characterized nuclear-targeted
actin probes (Belin et al., 2013; Baarlink et al., 2013; Plessner
et al., 2015). There is evidence for multiple distinct processes
involving nuclear actin polymerization, through Arp2/3 com-
plex (Fig. 4; Caridi et al., 2018; Schrank et al., 2018; Tsopoulidis
et al., 2019; Wei et al., 2020) and three formins: mDia1, Fmn2,
and INF2 (Baarlink et al., 2013; Belin et al., 2015; Parisis et al.,
2017; Liu et al., 2018; Wang et al., 2019). Deconvolving these
processes mechanistically could be challenging. In addition, the
bifunctional actin polymerization factor JMY can translocate to
the nucleus upon DNA damage (Zuchero et al., 2012; Adighibe
and Pezzella, 2018), but it is unclear whether nuclear functions
of JMY involve actin (Hu and Mullins, 2019).

Regarding actin PTMs and actin’s nuclear function, there are
several points of interest. (1) As mentioned above, actin appears
to interact with a number of nuclear KATs and KDACs. In the
cases of KAT14 and HDAC1/2, actin appears to inhibit enzymatic
activity directly (Viita et al., 2019; Serebryannyy et al., 2016).
These associations raise the possibility that acetylation of actin
itself might serve modulatory roles on acetylation dynamics. (2)
Another interesting possibility is that acetylation or other PTMs
of the stably bound actin in complexes like Ino80 might serve
regulatory roles for these complexes. (3) Since the formin INF2
has recently been shown to mediate nuclear actin polymeriza-
tion (Wang et al., 2019), actin acetylation might actually play a
role in its own nuclear polymerization. (4) An additional pos-
sibility is that actin acetylation or other PTMs could alter the

cytoplasmic/nuclear flux of actin monomers, especially if any of
these acetylations affect cofilin or profilin binding.

Conclusions and future directions
Our knowledge of actin acetylation is nowhere near that of
histones or tubulin. Nonetheless, the emerging data suggest that
actin acetylation might be an important cytoskeletal regulatory
mechanism and imply that its roles go beyond just regulating
actin dynamics. Regulation of the acetylation process itself will
be important in this respect, and may depend partly on the cell’s
metabolic state, through changes in acetyl-CoA levels needed for
KAT activity (Su et al., 2016; Sivanand et al., 2018). Knowledge of
these pathways could link the cytoskeleton with other cellular
processes in novel ways.

Online supplemental material
Table S1 shows evidence for a cytoplasmic KAT population.
Table S2 shows evidence for a cytoplasmic KDAC population.
Table S3 shows actin PTMs from proteomic studies.
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translational modifications and multiple tubulin isoforms in Nicotiana
tabacum L. cells. Planta. 201:349–358. https://doi.org/10.1007/
s004250050077

Sokolova,M., H.M.Moore, B. Prajapati, J. Dopie, L.Meriläinen,M. Honkanen,
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Supplemental material

Tables S1–S3 are provided online. Table S1 shows evidence for a cytoplasmic KAT population. Table S2 shows evidence for a
cytoplasmic KDAC population. Table S3 shows actin PTMs from proteomic studies.
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