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Abstract: The Cactaceae family is an important source of triterpenes and sterols. The wide uses
of those plants include food, gathering, medicinal, and live fences. Several studies have led to
the isolation and characterization of many bioactive compounds. This review is focused on the
chemistry and biological properties of sterols and triterpenes isolated mainly from some species with
columnar and arborescent growth forms of Mexican Cactaceae. Regarding the biological properties
of those compounds, apart from a few cases, their molecular mechanisms displayed are not still
fully understand. To contribute to the above, computational chemistry tools have given a boost to
traditional methods used in natural products research, allowing a more comprehensive exploration
of chemistry and biological activities of isolated compounds and extracts. From this information an
in silico bioprospection was carried out. The results suggest that sterols and triterpenoids present in
Cactaceae have interesting substitution patterns that allow them to interact with some bio targets
related to inflammation, metabolic diseases, and neurodegenerative processes. Thus, they should
be considered as attractive leads for the development of drugs for the management of chronic
degenerative diseases.

Keywords: Cactaceae; bioprospection; sterol; triterpene; bioactivity; in silico screening;
inflammation; diabetes

1. Introduction

The word Cactaceae derived from the Greek, “káctos”, used in antiquity to name a species of
thorny thistle, possibly the cardo Cynara cardunculus (Asteraceae), being used as a generic name by
Carlos Linneo in 1753, for several plants of diverse sorts of the Cactaceae family [1]. This family,
originally from America, groups about 1500 species. It is estimated that about 700 species grouped in
68 genera are present in Mexico, although there is considerable variability in these data [2–4].

The most apparent characteristic of cacti is the presence of the areola, considered as buds
homologous to the axillary buds of the other dicotyledons. One main characteristic of buds or areolas
is its capacity to form reduced leaves, flowers, new stems, thorns, glands, bristles, and hairs, even
sometimes adventitious roots [2]. The ethnobotanical importance of cacti has been described extensively
in the literature, including their use as food, medicine, among others. Some species of the family
Cactaceae have been used as natural remedies for many centuries in Mexican traditional medicine.
For example, peyote (Lophophora williamsii) has been used not only as a means of communication of
man to the spiritual world but also as an analgesic and antirheumatic. On the other hand, Ariocarpus
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kotschoubeyanus has been used as an analgesic for bruises, the stems of Pachycereus pecten-aboriginum
have been used to cure gastric ulcers, and as dressings to calm rheumatic pains and inflammatory
processes, the latex of Mammillaria heyderi has been used by the Tarahumara’s community for earache
and deafness. Parts of Stenocereus thurberi have been used to relieve pain in general [5].

Despite the widespread use of these species, in general, the literature concerning the chemistry,
biological activities, or toxicity of these plant resources is scarce. This situation evidences the lack of
studies, except for the so-called “nopales” and their fruits called tunas (Opuntia spp.), among other
plants with minor importance. For example, some species of the genus Opuntia have been used as
the food of high nutritional importance [6–10]. Anticancer, antioxidant, anti-inflammatory, antiviral,
antidiabetic, among other bioactivities, have been reported, from both stem and fruit extracts of these
species, which demonstrated good effectiveness in different in vitro and in vivo models (reviewed
in [11]).

Of the Mexican cacti, columnar species have also occupied an essential place in ethnobotany,
and some of them have been used for various purposes, including medicinal, among others [2,3,12].
Compounds have been isolated from some cacti species that were active in models of inflammation
induced by chemical agents such as 12-O-tetradecanoylphorbol 13-acetate (TPA), as well as inhibitors
of the proliferation of tumor cells in cultures in vitro [13], concisely reviewed by Harlev et al. in
2013 [14]. Although the biological effects of compounds isolated from Cactaceae have been reported,
their mechanisms and molecular targets are not always discussed. Many of the molecules, like sterols
or triterpenes, display a wide range of biological activities, but it is necessary to explore how they act
in biological systems. Our group has decided to explore the molecular mechanisms of natural product
bioactivities through an in silico bioprospection approach.

Computational chemistry tools have boosted traditional natural product research. Among the
strategies that have been used, Docking-Based Virtual Screening (DBVS) [15,16] has given relevant
results. Though it has some critical limitations, DBVS has demonstrated to be a useful strategy
to suggest the action mechanism or for proposing new biological activities of known products or
extracts [17–25]. The selection of the bio targets to be analyzed is not always an easy feature as could
be biased by the research group. Then, it is essential to carry out a profound review of the chemistry
and experimentally demonstrated bioactivities of extracts and isolated compounds, and from this
information, choose the most relevant bio targets for the in silico study.

Our group has dedicated for the last fifteen years, to perform systematic studies about the
chemistry and biological activities of cacti [26–33]. Thus, this work presents a review of the chemistry
and bioactivities of sterols and triterpenes found in Mexican Columnar Cactaceae, and in the last
section, from the collected information about the chemistry and biological activities displayed from
those, we selected some bioactivities and their molecular targets to be explored in the DBVS, intending
to perform the in silico bioprospection of compounds found in Mexican Columnar cacti.

2. Chemistry of Cactaceae

The chemistry of the Cactaceae Family has been described intensively over the years. The first
report about the biological effects and chemistry of a cactus was made early in the second part of
eighteen century [34], which describes the use of Cereus grandiflorus (Linnaeus) Mill (nowadays the
species is classified as Selenicereus grandiflorus (Linnaeus) Britton & Rose, [3,35,36]), for the treatment
of certain heart diseases. The above report was described in one of the first reviews of Cactaceae
chemistry [37]. Although the alkaloids and polyphenols have already been described in several species,
their biological activities have been studied extensively, and a recent report has been published [12].
However, the systematic revision of the chemistry of sterols and triterpenes from cacti and their
biological activities is pending. Due to the length of the topic, this review covers only aspects
related to the chemistry and biological activities of sterols and triterpenes that have been isolated
from Mexican species of the subfamily Cactoideae, tribe Phyllocacteae, mainly from the subtribe
Pachycereeae [3,4], also named Echinocereinae [38], which is recognized as a largely North and Central
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American taxon. Some exceptions are made for sterols and triterpenes isolated from species belonging
to other tribes or subfamilies, the unique characteristics of which are worth mentioning. The chemistry
and biological activities of other chemical groups like alkaloids or betalain-pigments are not reviewed
in this opportunity.

2.1. Sterols from Mexican Columnar Cactaceae

There is not enough data to generalize the type of the preferred sterol skeleton, the substitution
pattern, and the quantities of sterols present in the different species, genera, clade or subfamily of
Cactaceae. With an exception of some Sonoran Desert species (Carnegiea gigantea, Pachycereus pringlei,
Machaerocereus gummosus, Lemaireocereus thurberi, among others) whose chemistry has been described
exhaustively because of its ecological implications in the Cactus-Microorganism-Drosophila Model
System of the Sonoran Desert [39–41]. The structures of sterols isolated from Mexican Cactaceae are
presented in Table 1.

Cactaceae is a rich source of sterols, many of them with some special features (e.g., the presence
of extra methyl groups at C4 or C14, or the positions of double bonds in cholesterol skeleton). The
isolation of the sterols from Cactaceae began early with lophenol, schottenol, 24-methylene-lophenol,
lathosterol, 5α-campest-7-en-3β-ol, spinasterol, together with locereol, and 5α-cholesta-8, 14-dien-3β-ol,
which were isolated from aerial parts of Lophocereus schotii [42,43]. In a subsequent study, isolation
of viperidinone and viperidone was reported, and deoxiviperidone from Wilcoxia viperina [44,45],
species now called Peniocereus viperinus [46].

In other studies, from roots of Peniocereus fosterianus and P. macdougallii were isolated two 3β,
6α-dihydroxysterol: peniocerol and macdougallin respectively, together with small amounts of
lophenol and campesterol [45,47,48]. Special mention is made for macdougallin, which is a very
particular 14α-methylcholesterol that will be discussed later.

Besides, from the root of P. greggii was performed an investigation to find other
14α-methylcholesterols similar to macdougallin, but the authors were not successful [49]. However,
from this species, they isolated deoxiviperidone, peniocerol, viperidone, viperidinone, together with a
new molecule in the form of its acetylated derivative, which presented the unusual cis-fusion between
rings A and B of the cholesterol skeleton, which they called 5β-desoxyviperidone.

On the other hand, small amounts of cholesterol were isolated from Stenocereus thurberi, some
common sterols like campesterol and β-sitosterol [50], together with peniocerol, macdougallin, and
three new 3β,6α-dihydroxysterols, named cyclostenol, stenocereol, and thurberol, the last two with
the characteristic double bond in C-8 like peniocerol [51].

In another study, Jiang et al. isolated a new sterol from the aerial parts of Opuntia dillenii,
which they called opuntisterol. Although the genera Opuntia does not belong to columnar Cactaceae,
opuntisterol and other compounds present in Opuntia spp. were included in the present review because
of the special feature of the configuration 5β in a sterol configuration, an infrequent feature in cacti
sterols [52], but common in ecdysteroids and related phytoecdysteroids [53,54].

Finally, from the pollen of Carnegiea gigantea, was found 24-methylene-cholesterol,
while 24-dehydropollinastanol, fucosterol, among other sterols, were found in O. phaeacantha and
O. versicolor.

With these data together with that previously reported [55], it can be inferred that the sterols
found most frequently in the Cactaceae family are the typical C29 and C28 compounds, with the
common ∆5 unsaturations such as β-sitosterol, campesterol or stigmasterol. However, a distinctive
feature of some species is the presence of C27 sterols, with ∆8 unsaturations, with an extra 6α-hydroxyl
group as peniocerol. Another one distinctive feature of some species is the presence of compounds
considered intermediaries in the “normal” biosynthetic pathways as lophenol or macdougallin, which
strongly suggests that these plants possess modified metabolic pathways [43,45,56]. On the other hand,
the presence of some sterols with unusual cis fusion in the joint of rings A/B like 5β-desoxyviperidone
and opuntisterol, which presents the same configuration like ecdysone (the molting hormone in
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arthropods) could be relevant to the chemical defensive mechanisms in Cactaceae, as was previously
hypothesized [27]. The species and the isolated sterols, together with the bioactivities of those
compounds, are showed in Tables 2 and 3, respectively.

Table 1. Chemical structures of sterols isolated from Cactaceae.
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Sterol Name R1 R2 R3 R4 R5 R6 R7 R8 4
1

Cholesterol β-OH H - - H H H H 5

Lophenol β-OH CH3 H H - H H H 7

Schottenol β-OH H H H - H H β-CH2CH3 7

24-methylenelophenol β-OH CH3 H H - H H =CH2 7

Lathosterol β-OH H H H - H H H 7

5α-campest-7-en-3 β-ol β-OH H H H - H H β-CH3 7

Spinasterol β-OH H H H - H H β-CH2CH3 7

Locereol β-OH CH3 H H - - - H 8, 14

5α-cholesta-8,14-dien-3β-ol β-OH H H H - - - H 8, 14

Viperidinone β-OH H H =O - α-OH OH H 7

Viperidone β-OH H H =O - α-OH H H 7

Deoxiviperidone β-OH H H =O - H H H 7

Peniocerol β-OH H H α-OH - - H H 8

Macdougallin β-OH H H α-OH - - CH3 H 8

5β-deoxiviperidone β-OH H β-H * =O - H H H 7

Cyclostenol ** β-OH H H α-OH H - CH3 H -

Stenocereol β-OH H H α-OH - - CH3 H 8,24(25)

Thurberol β-OH H H α-OH - - - H 8, 14

Opuntisterol *** H H β-H * β-OH H - H β-CH2CH3 9

24-methylenecholesterol β-OH H - - H H H =CH2 5,24(28)

24-dehydropollinasterol ** β-OH H H H H - CH3 H 24(25)

Fucosterol β-OH H - - H H H =CH-CH3 5,24(28)

β-Sitosterol β-OH H - - H H H β-CH2CH3 5

* Both sterols, 5β-deoxiviperidone and opuntisterol present the cis configuration in rings A–B fusion. ** Cyclostenol
and 24-dehydropollinasterol presents a β-cyclopropane moiety at C19–C9. *** Opuntisterol special feature is the
presence of a 12α-OH. 1 The specific position of the double bond of each compound is defined by the absence of the
respective atom or atoms in carbon positions, and the position of the double bond designed in the column with the
symbol ∆.
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Table 2. List of species and the isolated sterols.

Genus Specie Compound Isoltated from 1 Reference

Lophocereus

L. schotti (Engelm.)
Britton & Rose

Lophenol AP

[42,43]

Schottenol
24-methylenelophenol

Lathosterol
5α-campest-7-ene-3β-ol

Spinasterol
Locereol

5α-cholesta-7,14-dien-3β-ol

Leptocereus L. quadricostatus (Bello)
Britton & Rose Viperidone AP [57]

Peniocereus P. viperinus (F.A.C.
Weber) Buxb.

Viperidinone R
[44]Viperidone

Deoxiviperidone

P. fosterianus (Cutak) Lodé Peniocerol R [47]

P. macdugalli Cutak

Lophenol R

[45]Peniocerol
Macdougallin

5β-desoxyviperidone

P. greggi (Engelm.)
Britton & Rose 5β-desoxyviperidone R [49]

Myrtillocactus M. geometrizans (Mart. ex
Pfeiff.) Console

Peniocerol R [26,33]
Macdougallin

Stenocereus
S. thurberi (Engelm.) Buxb.

Cyclostenol AP
[51]Stenocereol

Thurberol

S. stellatus (Pfeiff.) Riccob. β-sitosterol AP [32]

Opuntia * O. dillenii (Ker Gawl.) Haw. Opuntisterol AP [52]

O. phaeacantha Engelm. 24-methylenecholesterol P

[58]O. versicolor ** Pollinastanol P
24-methylenecholesterol

Fucosterol

Carnegiea C. gigantea (Engelm.)
Britton & Rose

24-methylenecholesterol
24-dehydropollinastanol P [59,60]

Pachycereus P. pringlei (Watson)
Britton & Rose 24-methylenecholesterol P [58]

* Although Opuntia is not in the Pachycereeae tribe (Opuntieae, Opuntioideae, Cactaceae), because of the diversity
and special conformation in one of their sterols, we decide to include it in this review. ** O. versicolor is a synonimus
of Cylindropuntia versicolor (Engelm. ex J.M.Coulter) F.M.Knuth. 1 AP: aerial parts; R: roots; P: pollen.

Table 3. Bioactivities of selected Cactaceae sterols.

Compound Activity Description Reference

Lophenol AD, CT

AD = Agonist of PPARα and PPARγ, changing the expression of
genes involved in fatty acid transport, binding and oxidation in

mouse liver.
CT = Moderate cytotoxic effect against the L5178Y-R cell line.

[61–63]

Schottenol MM LXR agonists modulating gene expression of LXRα and LXRβ
liven nuclear receptors. [64]

Lathosterol AM and CT
AM = Anti-mutagenic activity against MNNG and NQO. CT =
Moderate cytotoxic effect was shown by the compound against

MES-SA, MCF-7, and HK-2 cell lines.
[65,66]

Spinasterol AI, AN, CR, CT
and MM

AI = Inhibitory activity against COX-1 and COX-2 enzymes and
antagonistic effect on the TRPV1 receptor. AN = Inhibitory

activity against Helicobacter pyloriCR = Antidepressant-like effect
due to the regulation of the TRPV1 receptor. CT = Moderate

cytotoxic effect against HeLa, MCF-7, MDA-MB-231, and SKOV-3
cell lines by inducing G0/G1 arrest stimulating the expression of
p53 and Bax genes and lower expression of cdk4/6 genes. MM =

LXR agonists modulating gene expression of LXRα and LXRβ
liven nuclear receptors.

[64,67–73]
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Table 3. Cont.

Compound Activity Description Reference

Viperidone MM Strong inhibition binding to LXRα with an IC50 value of 0.10 µM. [57]

Peniocerol AI, CT and IN

AI = Potent edema inhibition in TPA induced edema assay. CT =
inhibition of breast and colon carcinoma MCF-7 and HCT-15 cell
lines proliferation through cell cycle arrest and apoptosis in both

cell lines. Also, peniocerol causes Mitochondrial permeability
transition (MPT) induction. IN = insect growth regulatory activity

against Spodoptera frugiperda and Tenebrio molitor.

[26,33,74,75]

Macdougallin AI, CT and IN

AI = moderate edema inhibition in TPA induced edema assay. CT
= inhibition of leukemia K-562 cell line proliferation. IN = insect

growth regulatory activity against Spodoptera frugiperda and
Tenebrio molitor.

24-dehydropollinastanol AD
Agonist of PPAR-α and PPAR-γ, changing the expression of genes

involved in fatty acid transport, binding and oxidation in
mouse liver.

[61,62]

24-methylenecholesterol AI, AN, and CT

AI = Low inhibition of key inflammatory enzymes like COX and
NF-κB1. AN = Inhibitory effect for Trypanosoma brucei brucei and

Mycobacterium marinum. CT = Potent inhibition of aromatase
which is a therapeutic target for breast cancer treatment and has a

cytotoxic effect on HS27 cell line.

[76–78]

Pollinastanol CT Inhibition of aromatase which is a therapeutic target for breast
cancer treatment. [77]

Fucosterol AD, AO, AN, CR,
AI, CT and HT

AD = Inhibition of sorbitol accumulation and diabetic key
enzymes like RLAR, HRAR, PTP1B, and α-glucosidase. It also has
a downregulation effect of PPAR-γ, C/EBPα, and SREBP1. AO =
Regulate transaminase activity (sGOT, sGPT) and enhances the
antioxidant activity of SOD and GSH-px. AN = High inhibitory
effect against the parasite P. falciparum. CR = Increases serotonin

and noradrenaline in the central nervous system, and it also
increases central BDNF levels. Also, it showed cholinesterase
inhibitory activity and neuroprotective effects.AI = Represses

iNOS, TNF-α, and IL-6 binding to NF-κB and inhibits COX-2. CT
= Induced HL-60 and HeLa cell line apoptosis through a
mitochondrial pathway. HT = Inhibits the synthesis of

glucocorticoid receptors involved in the regulation of ACE
decreasing its levels.

[79–85]

β-sitosterol AI, AD, AN, CT,
MM, and IM

AI = Inhibits TNF-α, and NF-κB AD = Decreases glycated
hemoglobin, serum glucose, and nitric oxide and increases insulin
levels slightly. All this is a result of its potent antioxidant activity
in the pancreas. AN = Growth inhibitory activity against bacteria

P. smartii and the parasite P. falciparum. CT = Strong cytotoxic
effect against A549 cell line by inducing apoptosis via

ROS-mediated mitochondrial dysregulation. MM = Mediates
cholesterol metabolism by increasing sterol excretion and

decreasing cholesterol absorption and synthesis. IM = Inhibits T
cell proliferation and blocks the secretion of Th2 and cytokines

IL-4 and IL-10.

[86–93]

AD = Antidiabetic, AM = Antimutagenic, AO = Antioxidant, AN = Anti-infective, CR = CNS Regulation, AI
= Anti-inflammatory, CT =Cytotoxic, MM = Modulation of Cholesterol metabolism, HT = Hypertension, IN =
insecticidal, IM = Immunosuppressive.

2.2. Triterpenes from Mexican Columnar Cactaceae

One of the best-studied chemical groups of cacti is the triterpenes since they constitute, in many
cases, the most abundant compounds found in Cactaceae. The triterpenes display a wide diversity of
structural features, with characteristic oxidation patterns, and a particular distribution in the species,
reasons why they are used for chemotaxonomic studies [94]. In addition to the above, many of
the triterpenes isolated from these plants present biological activities ranging from their ecological
effects [40], as well as effects on models of inflammation and anti-nociception [13,26,95], which makes
their research attractive. Information of structures with an emphasis on the origin of the skeleton of
each compound isolated from Cactaceae is presented in Tables 4–6. In Table 4, pentacyclic triterpenes
cycloartenol, 24-methylenecycloartenol and 25(27)-dehydrolanost-8-enol are described, while lupane-
and oleanane-type triterpenes are described in Tables 5 and 6 respectively.
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Table 4. Cycloartane terpenes isolated from Cactaceae.
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Table 6. Oleanane-type triterpenes isolated from Mexican columnar Cactaceae.
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Triterpene Name R1 R2 R3 R4 R5 R6 R7

β-amyrin H H H H CH3 CH3 CH3

Oleanolic acid H H H H COOH CH3 CH3

Oleanolic aldehyde H H H H COH CH3 CH3

Erytrodiol H H H H CH2OH CH3 CH3

Maniladiol H OH H H CH3 CH3 CH3

Longispinogenin H OH H H CH2OH CH3 CH3
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Treleasegenic acid H H β-OH H COOH CH3 CH2OH
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* Dumortierigenin and machaerogenin possess a lactone moiety at C-15, C-28, and C-21, C-28, respectively.

Although only Mexican columnar cacti were considered to the construction of the present review,
a special mention is necessary to describe the triterpene content of Trichocereus pachanoi, a cactus plant
from South America, which is an important source of some compounds named pachanols A-D (Table 7).
These compounds possess a particular type of triterpene skeleton, called pachanane, characterized by
the presence of five six-membered rings, and the position of the 27α-CH3 attached to C-15 [96,97].

Additionally, for the construction of the present review, only the aglycones of triterpenes were
considered. In the first reports regarding the isolation and elucidation of those compounds, the routine
procedure began with the hydrolysis of the organic extracts, isolating only the aglycones. The pattern
of glycosylation of the natural compounds, and the number and relative positions of sugar moieties
should be discussed in another review. Specific information about the content of triterpenes by species,
as well as their biological activities, are described in Tables 8 and 9, respectively.
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Table 7. Structures of some additional triterpenes isolated from Cactaceae.
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 Betulinic acid  
 Maniladiol  
 Erythrodiol  
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[42,43] 

Myrtillocactus M. cochal 
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Table 8. Triterpene content by species in Mexican columnar cacti.

Genus Specie Compound Isolated from 1 Reference

Carnegiea C. gigantea (Engelm.) Britton &
Rose

Cycloartenol,
24-methylenecycloartenol

25(27)-dehydrolanost-8-enol
Lupeol

P [60]

Escontria

E. chiotilla (Weber) Rose

Oleanolic acid AP

[98]

Betulin
Betulinic acid

Maniladiol
Erythrodiol

Longispinogenin

Isolatocereus I. dumortieri (Scheidweiler)
Backerberg

Dumortierigenin AP [99–101]
Pachanol D

Lophocereus L. schotti (Engelmann) Britton &
Rose

Lupeol AP [42,43]

Myrtillocactus

M. cochal (Ocutt) Britton & Rose

Longispinogenin AP

[102–106]

Cochalic acid
Myrtillogenic acid

Chichipegenin

M. geometrizans (Mart. ex Pfeiff.)
Console

Longispinogenin AP
Cochalic acid

Myrtillogenic acid
Chichipegenin

M. eichlamii Britton & Rose

Oleanolic acid AP
Maniladiol

Longispinogenin
Cochalic acid

Myrtillogenic acid
Chichipegenin

M. schenkii (Purpus) Britton &
Rose

Oleanolic acid AP
Stellatogenin

Pachycereus P. pringlei (Watson) Britton & Rose Lupeol P [58]
25(27)-dehydrolanost-8-enol

P. weberi (Coulter) Britton & Rose Cochalic acid AP [95]
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Table 8. Cont.

Genus Specie Compound Isolated from 1 Reference

Peniocereus P. fosterianus (Cutak) Lodé Chichipegenin R [47]

P. macdougalli Cutak β-amyrin R [45]

Polaskia
P. chende Gibson & Horak

Oleanolic acid AP
[107]Erythrodiol

Oleanolic aldehyde

P. chichipe (Gosselin) Backeberg

Oleanolic acid AP

[103,108]Longispinogenin
Chichipegenin

Olean-12-ene-3β,16β,22α-triol

Stenocereus S. alamosensis (Coulter) Gibson &
Horak[Rathbunia alamosensis]

Alamosogenin AP [109,110]
Gummosogenin

S. aragonii (Weber) Buxbaum β-amyrin AP [111]

S. benekei (Ehrenberg) Buxbaum

Lupeol AP

[112–114]
Oleanolic acid

β-amyrin
Lupeone

Queretaroic acid

S. eichlamii (Britton & Rose)
Buxbaum

Oleanolic acid AP
[115]Erythrodiol

Longispinogenin

S. euruca (Brandegee) Gibson &
Horak

Oleanolic acid AP

[111,116–118]

Betulinic acid
Stellatogenin
Turberogenin

Machaerogenin
Machaeric acid

21-ketobetulinic acid
16β-hydroxybetulinic acid
22β-hydroxistellatogenin

Morolic acid
Queretaroic acid

27-desoxyfillirigenin
Treleasegenic acid

S. fimbriatus (Lamark) Lourteig

Oleanolic acid AP

[119]Betulinic acid
Erythrodiol

Longispinogenin

S. griseus (Haworth) Buxbaum

Oleanolic acid AP

[98]
Betulin

Betulinic acid
Erythrodiol

Longispinogenin

S. gummosus (Brandegee) Gibson
& Horak

Gummosogenin AP
[109,111,120]Machaeric acid

Macherinic acid

S. pruinosus (Otto) Buxbaum

Oleanolic acid AP

[32,95,111]Erithrodiol
Longispinogenin

3β-hydroxi-11α,12α-epoxyolean-
28,13β-olide

S. queretaroensis (Weber) Buxbaum Oleanolic acid AP [114]
Queretaroic acid

S. quevedonis (Ortega) Bubaum
Oleanolic acid AP

[98]Betulinic acid
Longispinogenin
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Table 8. Cont.

Genus Specie Compound Isolated from 1 Reference

S. stellatus (Pfeiffer) Riccobono

Oleanolic acid AP

[98,116,121]

Betulinic acid
Stellatogenin
Turberogenin

Machaerogenin
Queretaroic acid

16β-hydroxistellatogenin

S. thurberi (Engelmann) Buxbaum

Lupeol AP

[50,111,113,114,
122–125]

Oleanolic acid
Betulin

Maniladiol
Erithrodiol

Longispinogenin
β-amyrin

Oleanolic aldehyde
Turberogenin

Queretaroic acid
Calenduladiol

Betulinic aldehyde

S. treleasei (Britton & Rose)
Backeberg

Oleanolic acid AP
[111,126]Longispinogenin

Treleasegenic acid
1 AP: aerial parts; R: roots; P: pollen.

It should be noted that of the following genera listed in Mexico: Acanthocereus, Bergerocactus,
Cephalocereus, Echinocereus, and Neobuxbaumia, have not been revised for their sterol nor triterpenoid
content, so the chemistry of those species will have to be explored, to generate knowledge about the
kind of natural products presents in each genus and their bioactivities.

From this review, it is evident that sterols and triterpenes from Cactaceae exhibit a myriad of
bioactivities, mainly anti-inflammatory, metabolic regulatory, and CNS protective activities standing
out. The lack of information about the molecular mechanism displayed of sterols and terpenoids
prompt us to perform an in silico bioprospection in some molecular targets. Among the targets that
have been commonly assayed against each biological process, only COX-1, COX-2, PTP1B, PPAR-α,
PPAR-γ, acetylcholinesterase (AChE), LXR-α and LXR-β were selected for the in silico study to explore
the theoretical molecular affinity of sterols and triterpenoids against each target. Then, the information
presented in the results section, do not represent a validation of the molecular mechanism in the case
of good molecular coupling between the ligands and the targets, nor do they represent the verification
of the null activity of the ligands in the molecular targets. The data from molecular docking only
represents a guide to future research designed to discover the specific molecular mechanisms that each
molecule presents in biological models.
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Table 9. Most representative biological activities of triterpenes isolated from Mexican columnar Cactaceae.

Compound Activity Description Reference

Lupeol AD, AO, AN, AI, CT, RN, HP

AD = moderate inhibition of α-Glucosidase and α-Amylase and selective
allosteric inhibition of PTP1B.

AO = decreases ROS and LPO generation.
AN = growth inhibitory activity against several bacteria as M. smegmatis,
M. aurum, and E. faecalis, the parasites P. falciparum and L. donovani, and the

virus HSV-1 and the reverse transcriptase of HIV-1.
AI = inhibition of IL-1β and NF-κB produced an inhibitory effect on the

carrageenan-induced edema assay.
CT = inhibits cell growth by several mechanisms: inhibition of the

phosphorylation of ECFR, Topoisomerase and WNT/β-catenin regulation,
induction of cell cycle arrest and mitochondria-mediated apoptosis.

IN = moderate larvicidal activity against A. aegypti.
RN = strong protective effect of cisplatin-induced nephrotoxicity by

upregulating the phosphorylation of MAPKs.
HP = alleviate liver injury by GalN/LPS through suppression of the

IRAK-mediated TLR4 signal pathway.

[13,87,127–144]

Oleanolic acid AD, AN, AI, CR, CT, IM, HP

AD = strong regulation of PPARγ and miR-98-5p/PGC-1b axis causing a
hypolipidemic effect.

AN = growth inhibitory activity against several bacteria as S. aureus, M.
smegmatis, E. faecalis, L. monocytogenes, B. cereus, and P. berghei and the

parasite Leishmania spp. and inhibitory activity against the reverse
transcriptase of HIV-1.

AI = inhibition of Lipoxygenase and phospholipase A2 activity.
CR = modulation of the BDNF-ERK1/2-CREB pathway through

TrkB activation.
CT = inhibition of cervical (HeLa), ovary (SK-OV-3), breast (MCF-7), colon

(DLD-1) cancer cell lines proliferation.
IM = reduce the synthesis of pro-inflammatory mediators, auto-antibody
production, suppression of endogenous leptin production, and inhibits

migration of leukocytes in the CNS.
OT = increase bone mineral density. Its effect is associated with effects on

Ca and vitamin D metabolism.
HP = showed moderate activity towards in vitro immunological liver

injury and low hepatotoxicity.

[13,136,145–155]
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Table 9. Cont.

Compound Activity Description Reference

Betulin AD, AN, CR, AI, CT

AD = selective allosteric inhibition of PTP1B, noncompetitive inhibitor of
α-amylase and inhibition of α-glucosidase.

AN = growth inhibitory activity against several bacteria as M. smegmatis
and M. aurum, the parasite P. falciparum, and the virus HSV-1 and the

reverse transcriptase of HIV-1.
CR = protective effect on cognition inhibiting the NF-κB pathway, by
regulation of the GABAA receptor, and by moderate cholinesterase

inhibition. It also reduced 6-hydroxydopamine-induced dopaminergic
neuron degeneration.

AI = decreases NO production, iNOS expression in vitro, and NF-κB
activity. It also decreases the levels of MPO, IL-1β, and TNF-α in

liver tissue.
CT = strong inhibitory effect on the proliferation of several cell lines

triggering apoptosis by mitochondrial pathway and NOXA induction.

[87,127,133,137–139,143,
156–166]

Betulinic acid AD, AN, IN, AI, CT, RN, HP

AD = selective allosteric inhibition of PTP1B, noncompetitive inhibitor of
α-amylase and inhibition of α-glucosidase. It also stimulates insulin

secretion by the mediation of potassium and chloride channels.
AN = growth inhibitory activity against several bacteria as M. smegmatis,
M. aurum, S. aureus, B subtilis, E. faecalis, and B. cereus, the parasites P.

falciparum and T. cruzi, and the virus HSV-1 and the reverse transcriptase
inhibitor of HIV-1.

IN = inhibitor of tyrosinase and could be used as an insecticidal agent.
CR = neuroprotective effect on cognition by moderate cholinesterase

inhibition. It also improves cAMP, cGMP and BDNF levels.
AI = decreases NO production and iNOS and IL-6 expression in vitro.

CT = inhibition of cervical (HeLa), ovary (SK-OV-3), breast (MCF-7), colon
(DLD-1) cancer cell lines proliferation. It has also shown to induce
apoptosis by DNA damage, G2/M cell cycle arrest, and Bcl-2/Bax

signaling regulation.
RN = strong protective effect of cisplatin-induced nephrotoxicity by

upregulating the phosphorylation of MAPKs.
HP = inhibition of liver oxidative stress in the iron/ascorbate system and
showed hepatoprotective effects against D-GalN/TNF-α induced cell dead.

[13,19,87,127,133,135–
138,143,147,160,161,163,

167–171]

Maniladiol AN, AI

AN = growth inhibitory activity against M. tuberculosis and the reverse
transcriptase inhibition of HIV-1.

AI = decreases the production of pro-inflammatory cytokines such as
TNF-α, IL-1, and IL-6 and inhibits NO production.

[164,172,173]
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Table 9. Cont.

Compound Activity Description Reference

Erythrodiol AN, CT, HT, IM, HP

AN = growth inhibitory activity against several bacteria as B. subtilis, E.
coli, and C. albicans and the reverse transcriptase inhibitor of HIV-1.

Inhibitor of tyrosinase and could be used as an insecticidal agent
AI = edema inhibition in the TPA-induced inflammation assay.

CT = potent anti-proliferative effect inducing apoptosis, cell cycle arrest,
and ROS generation.

HT = reduce cardiac remodeling by inhibiting angiotensin II-induced
proliferation via PPAR-γ.

IM = reduce the synthesis of pro-inflammatory mediators, auto-antibody
production, suppression of endogenous leptin production, and inhibits

migration of leukocytes in the CNS.
HP = high protection of human hepatoma cells against CCl4-induced

injury with ALT level decreased.

[13,153,164,167,174–
179]

Longispinogenin AN, AI, CT
AN = growth inhibitory activity against M. tuberculosis.

AI = edema inhibition in the TPA-induced inflammation assay.
CT = inhibition of cervical (HeLa) cancer cell line proliferation.

[173,180,181]

Pachanol D AC AC = strong inhibitory effect on the acetic acid-induced writhing test. [95]

Cochalic acid CT CT = potent inhibition of cervical (HeLa) cancer cell line proliferation. [180]

Chichipegenin AI, CT
AI = edema inhibition in the TPA-induced inflammation assay.

CT = inhibition of breast and colon carcinoma MCF-7 and HCT-15 cell
lines proliferation.

[26]

Stellatogenin AC AC = strong inhibitory effect on the acetic acid-induced writhing test. [95]

β-amyrin AD, AN, AI, CR, CT, HP

AD = moderate inhibition of α-Glucosidase and α-Amylase.
AN = growth inhibitory activity against several bacteria as B. subtilis, S.

aureus, and C. albicans, the parasite T. cruzi, and antiviral inhibitory
activity against the reverse transcriptase of HIV-1 and IAV.

AI = decreases the production of pro-inflammatory cytokines such as
TNF-α, IL-1, and IL-6 and inhibits NO production

CR = interaction with the GABAA receptor and produce sedative and
hypnotic, increasing noradrenergic activity. It also showed neuroprotective
activity reducing α-synuclein aggregation upregulating LGG-1 expression.
CT = inhibition of proliferation in the cervical (HeLa), ovary (SK-OV-3),

breast (MCF-7), colon (DLD-1), and other cancer cell lines.
HP = hepatoprotective effect against

acetaminophen-induced hepatotoxicity.

[143,147,164,171,172,
182–186]
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Table 9. Cont.

Compound Activity Description Reference

Oleanolic aldehyde AD, AN AD = dose-dependent enhancement of insulin secretion by INS-1 cells.
AN = growth inhibitory activity against S. mutans and P. gingivalis. [187,188]

Gummosogenin AC, CT AC = strong inhibitory effect on the acetic acid-induced writhing test.
CT = inhibition of cervical (HeLa) cancer cell line proliferation. [95,180]

Lupeone AN, AD, AI, RN

AN = reverse transcriptase inhibitor of HIV-1.
AD = moderate inhibition of α-Glucosidase and selective allosteric

inhibition of PTP1B.
AI = decreases the production of pro-inflammatory cytokines such as IL-12

and IL-6.
RN = strong protective effect of cisplatin-induced nephrotoxicity.

[128,133,135,164,183,
189]

Turberogenin AC, CT AC = strong inhibitory effect on the acetic acid-induced writhing test.
CT = low inhibition of cervical (HeLa) cancer cell line proliferation. [95,180]

Morolic acid AD, AI

AD = induced a significant reduction of blood glucose levels by inhibition
of 11β-HSD1.

AI = inhibition of the leukocyte dermal infiltration and inhibition of key
inflammatory enzymes as PLA2 and 5-LOX.

[190,191]

Queretaroic acid CT CT = inhibition of cervical (HeLa) cancer cell line proliferation. [180]

Calenduladiol CR, CT CR = inhibition of acetylcholinesterase and butyrylcholinesterase in vitro.
CT = inhibition of leukemia (NB4 and K562) cancer cell lines proliferation. [192,193]

Cycloartenol AD, AN, and CT

AD = Decrease glucose intestinal absorption that could be associated with
SGLT1 regulation as well as α-glucosidase inhibition. Downregulation of

fatty acid synthesis and interferes with the absorption of cholesterol.
AN = Inhibitory effect against bacteria E. coli and P. aeruginosa and low

inhibition of the parasite P. falciparum.
CT = Weak cytotoxic activity against HL60 cell line and

p38MAPK-mediated apoptosis in the U87 cell line.

[91,194–200]

Betulinic aldehyde AN, CT

AN = growth inhibitory activity against bacteria P. smartii, E. faecalis, S.
aureus, and E. coli and antiviral activity against Influenza virus

(KBNP-0028) and the reverse transcriptase of HIV-1.
CT = inhibition of cervical (HeLa), ovary (SK-OV-3), breast (MCF-7), colon

(HCT-116) and melanoma (SK-MEL-5) cancer cell lines proliferation.

[88,135,164,201]

AD = Antidiabetic, AM = Antimutagenic, AO = Antioxidant, AN = Anti-infective, CR = CNS Regulation, AI = Anti-inflammatory, CT = Citotoxic, MM = Modulation of Cholesterol
metabolism, HT = Hypertension, IN = insecticidal, IM = Immune modulation, RN = renoprotective, AC = Anti nociceptive, HP = Hepatoprotective.
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3. In Silico Bioprospection of Bioactive Compounds

All sterols and triterpenes described in this review were constructed as ligands using Chem
Sketch from Advanced Chemistry Development [202] and exported to Spartan ’10 as mol files. The
geometry of all molecules was optimized using MMFF//HF 6-31 G*, and final structures were included
in an SDF file. The docking studies were carried out using Molegro Virtual Docker v.6.0.1 [203]
based on the crystal structures of some bio targets that have been proposed for the biological
activities of Cactacaeae extracts or purified compounds derived from them: (a) anti-inflammatory
activity—cyclooxygenase-1 (COX-1, PDB code: 1Q4G [204]) and cyclooxygenase-2 (COX-2, PDB code:
3NT1 [205]); (b) metabolic activity—PPAR-α (PDB code: 2ZNN [206]), PPAR-γ (PDB code: 5Y2T [82])
and PTP1B (PDB code: 1C83 [207]); (c) neuroprotective activity—LXR-α (PDB code: 3IPU [208]) LXR-β
(PDB code: 1P8D [209]) and acetylcholinesterase (PDB code: 4EY6 [210]). All 3D protein structures
were retrieved from the Protein Data Bank [211]. Docking studies were carried out using a previously
reported methodology [17,18]. Briefly, all the solvent molecules and cocrystallized ligands were
removed from the downloaded structures. The active sites of each enzyme or the ligand-binding
domain (LBD) were chosen as the searching sites centered on the cocrystallized ligand, except for
PTP1B where the docking area was centered on allosteric site B as previously described [212], and
delimited with a 15 Å radius sphere. Standard software procedure was used using the MolOptimizer
algorithm. The assignments of charges on each protein were based on standard templates; no other
charges were necessary to be set. The Root Mean Square Deviation (RMSD) threshold for multiple
cluster poses was set to <2.00 Å. The docking algorithm was set to 5000 maximum iterations with a
simplex evolution population size of 50 and 25 runs for each ligand. After docking, MolDock Score was
calculated as the theoretical binding affinity, lower values of the score are related to better binding. For
each ligand, the pose with the lowest score was selected for further analysis. Cocrystallized ligands
were also docked to their respective receptors to verify the efficacy of this procedure, the top-ranking
score was recorded, and the RMSD of that pose from the PDB original structure was computed. In all
the cases, the RMSD values were lower than 2.5 Å.

3.1. Antiinflammatory Molecular Targets

Tables 10 and 11 show the results obtained for the docking study carried on COX-1 and COX-2.
In both tables, the top-10 compounds with higher affinity are displayed, but a complete table of all
the results is included as part of Supplementary information. Table 10 shows the data from sterol
derivatives, and Table 11 shows the data from triterpene derivatives that had lower MolDock scores.

Table 10. Top-10 ranked sterol compounds in the COX-1 and COX-2 docking study.

Ligand COX-1 COX-2

Thurberol −132.1 −144.1
Locereol −133.1 −141.1

Fucosterol −130.6 −141.7
5α-cholesta-8,14-dien-3 β-ol −130.4 −141.5

Spinasterol −130.6 −138.5
24-methylenecolesterol −127.3 −139.9

β-sitosterol −124.3 −136.9
Peniocerol −124.3 −134.1

24-Methylenelophenol −127.3 −130.7
Lophenol −123.7 −131.2
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Table 11. Top-10 ranked triterpene compounds in the COX-1 and COX-2 docking study.

Ligand COX-1 COX-2

Lupeone −104.0 −97.1
Thurberogenin −92.3 −93.6

Lupeol −97.7 −87.3
Betulinic aldehyde −94.9 −88.6

16β-hydroxybetulinic acid −82.9 −95.1
Calenduladiol −92.8 −85.1

16β-hydroxystellatogenin −93.8 −83.0
22β-hydroxystellatogenin −94.0 −79.3

21-ketobetulinic acid −81.6 −87.1
Machaerogenin −87.0 −79.4

The analysis of the binding mode of the sterols with higher affinity reveals some structural
features that improve ligand binding. In the first instance, among sterols, the oxidation pattern at
C3, C6, and C7 appears to be relevant for the interaction with residues Leu 384, Tyr 385, Trp 387 and
Met 522 in both COX enzymes. Notably, a hydrogen bond interaction to Met 522 is constant in all
6-OH substituted derivatives like peniocerol. Interestingly, a small hydrophobic pocket is located
between these residues (in yellow in Figure 1a) and is occupied by the methyl group in position 4 of
locereol, slightly increasing theoretical affinity. Other critical structural factors for enzyme binding
are the unsaturations in rings B and D. The unsaturation in ring B seems to be necessary for optimal
interaction of substituents in position 6 and potentially 7 with Met 522. Whereas, unsaturation in ring
D is needed for accommodation of the aliphatic chain in a hydrophobic pocket formed by Val 116,
Val 349, and Tyr 355 (for example, thurberol has better theoretical affinity than peniocerol). Additional
substituents in the aliphatic chain improve enzyme binding, as compounds with additional methylene
or ethylene groups have slightly more affinity than their analogs than do not bear these groups.
(i.e., 24-methylenelophenol has more affinity than lophenol).Molecules 2020, 25, x FOR PEER REVIEW 18 of 34 
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Figure 1. Docking poses of (a) peniocerol, a sterol, and (b) 22-hydroxystellatogenine, a triterpene
with COX-1.

On the other hand, the analysis of the interaction of triterpenes shows that they could similarly
bind to COX-1 and COX-2 as sterols. Interestingly, the first 9 compounds with better theoretical
affinities belong to the lupane skeleton. In general, the ring A of all compounds interacts with Leu 384,
Tyr 385, Trp 387, and Met 522 in the same fashion as sterols (in yellow in Figure 1a,b). The 4,4-dimethyl
group in ring A occupies the small hydrophobic group ubicated between these residues. However, it
seems to be too large to fit on this site, leading to a lower theoretical affinity. The most oxidized rings
(usually rings D and E) in 22β-hydroxystellatogenin interact with the same residues that the side chain
of sterol does. The interaction is through hydrogen bonding to residues Ser 353, Tyr 349, and Try 355 of
COX-1 or Tyr 348 and Try 385 in COX-2 (in green in Figure 1b). Although hydroxylation in rings D and
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E improves theoretical affinity, the number of hydroxy or keto groups is not correlated with theoretical
affinity, suggesting that hydrophobic interaction is more critical of ligand binding.

COX-2 is one of the preferred molecular targets of NSAIDs [17]. The literature is full of research
papers about the design, synthesis or isolation together with in silico, in vivo and ex vivo studies to
the development of new anti-inflammatory drugs. Although the clinical importance of selectivity
against COX-2 vs COX-1 was earlier discussed [213], many groups focus their research programs
to discover selective COX-2 drugs. The top ten sterols and triterpenes with the highest MolDock
scores cannot be considered selective against any COX enzyme if we consider the MolDock Score as a
measure of the theoretical affinity of the compound. From the top 10 ligands with better MolDock score,
fucosterol, spinasterol, 24-methylenecholesterol, β-sitosterol, and peniocerol in the sterols group and
lupeone and lupeol of triterpene group are well known anti-inflammatory molecules, with mechanisms
including COX-2 inhibitory activities. It is possible to focus the next survey to isolate and determine
the anti-inflammatory activities and their molecular mechanisms of compounds like thurberol, locereol
or lophenol, together with thurberogenine, betulinic aldehyde, 16β- and 22β-hydroxystellatogenin or
machaerogenine which anti-inflammatory activities or their inhibitory activities against COX enzymes
are still unknown.

3.2. Antidiabetic and Metabolic Activities

Several studies have positioned both sterols and triterpenes as hits for the development of drugs
for the treatment of metabolic diseases, including diabetes mellitus type 2 [214,215]. Table 12 shows
the top 10 sterol ligands, which exhibited the highest theoretical affinity for PTP1B, PPAR-α, and
PPAR-γ. Ligands showed in Table 12 exhibited the highest affinity for all the three bio targets and
could be considered as potential multitarget molecules for the management of complex metabolic
diseases like metabolic syndrome. However, other sterols not shown in this Table exhibited a good
affinity for two of the targets like lophenol, locereol, and 5a-cholesta-8,14-dien-3β-ol, which had
good theoretical affinity against PPAR-α and PPAR-γ, some synthetic ligands have been developed
as PPARα/γ dual agonists to achieve a broad spectrum of metabolic effects with actions against
dyslipidemia and hyperglycemia. Deoxyviperidone, 5β-deoxyviperidone, and lathosterol had good
scores against PTP1B and PPAR-γ, which could be a good combination of bio targets for the treatment
of diabetes mellitus type 2. Well known antidiabetic sterols like fucosterol, lophenol and β-sitosterol
have demonstrated in several studies their potential to regulate at different levels both PTP1B and/or
PPAR proteins [61,216,217]. Although lophenol does not belong to the top 10 molecules with higher
theoretical affinity, the Moldock score values for both PPAR-α and PPAR-γ proteins were -130.9 and
-129.7, suggesting that the methodology used correctly predicts the biological activity. Special attention
should be taken with sterols like schottenol, spinasterol, thurberol cyclostenol 24-methylenecholesterol,
peniocerol, among other sterols that were considered as good candidates to future antidiabetic research.

Table 12. Top-10 ranked sterol derivatives in the PTP1B, PPAR-α and PPAR-γ docking study.

LIGAND PTP1B PPAR-α PPAR-γ

Fucosterol −141.7 −135.7 −138.9
β-sitosterol −131.6 −141.0 −142.4
Schottenol −132.9 −139.0 −138.9
Spinasterol −133.1 −140.8 −131.2
Thurberol −135.4 −129.3 −140.4

Cyclostenol −140.4 −137.3 −126.4
24-Methylenecholesterol −132.7 −133.5 −136.0

Peniocerol −132.4 −127.9 −140.5
Opuntisterol −126.0 −141.5 −132.7
Steneocerol −133.0 −136.2 −126.2
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In the case of triterpenes (Table 13), the results strongly suggest that the hydroxylation pattern
in rings D and E seems important for enzyme binding. Notably, it is remarkable that many of the
triterpene derivatives bear a 17-carboxylic group.

Table 13. Top-10 ranked triterpene derivatives in the PTP1B, PPAR-α and PPAR-γ docking study.

LIGAND PTP1B PPAR-α PPAR-γ

16β-hydroxystellatogenin −98.5 −128.7 −119.5
Thurberogenin −104.8 −123.4 −114.8
Stellatogenin −99.4 −124.8 −116.9

Myrtillogenic acid −95.4 −123.8 −119.3
Alamosogenin −98.1 −120.5 −118.2

22β-hydroxystellatogenin −93.4 −130.0 −112.6
Oleanolic acid −101.6 −118.9 −114.2
Machaeric acid −105.2 −112.3 −115.6

Oleanolic aldehyde −100.4 −116.8 −115.6
Machaerinic acid −103.8 −114.0 −114.8

Analysis of the predicted complexes show that despite the searching area was centered on the
close allosteric site B, which is comprised by residues Arg 24, Arg 254, Glu 262, Tyr 46, Asp 48, Val
49, Ile 219, and Met 258 [218], both sterols and triterpenes can interact with this site but also with the
catalytic site, particularly with two of the most critical residues Cys 215 and Arg 221. This finding
could explain the non-competitive and mixed-inhibition properties of some compounds, which has
been experimentally demonstrated [212,219]. For example, fucosterol and β-sitosterol mainly occupy
allosteric site B, while 6-hydroxy substituted sterols bind to both the catalytic site (via the 3β-OH
group, the 6α-OH interacts through a hydrogen bond to Tyr 46 and Lys 120) and the allosteric site
(Figure 2a). In the case of triterpenes, some of the derivatives with better affinity have hydroxy or
carboxylic groups in rings D and E which can interact with amino acids located in site B like Arg 47
(for 17-COOH substituted derivatives) and Asp 48 (for lactone derivatives as shown in Figure 2b).
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Analysis of the predicted poses of the testes compounds to PPAR-α revealed three potential
binding modes (Figure 3): (a) sterols with no hydroxyl groups in ring B interact in a cavity distinct to
the one occupied by known synthetic partial agonists; (b) 6-hydroxy substituted sterols (like thurberol
and peniocerol) and lactone bearing triterpenes (like stellatogenin) bind to the same site of synthetic
agonists; and (c) acidic triterpenes occupy the same site as known partial agonists, with the carboxyl
group approximating to the same residues that interact with the carboxyl group present in the majority
of PPAR partial agonists. This mode of interaction could explain the demonstrated activity of oleanolic
acid as a PPAR-α activator [220]. For the PPAR-γ docking study, two different modes of binding were
found. The first one was common for most triterpenes, these compounds bounded in a different site
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than that of known synthetic agonists, away from the thiazolidinedione (TZD) binding site formed by
residues Ser 289, His 323, His 449 and Tyr 473. The second one was common for sterols; the tetracyclic
skeleton occupied an alternative pocket, and the lateral chain could locate either inside or outside of
the TZD binding site (Figure 3b). It would be expected that these alternative modes of binding in both
nuclear receptors lead to none or different levels of activation. Thus, additional studies should be
carried out.
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Figure 3. (a) Docking poses of selected sterols and triterpenes in the ligand-binding domain (LBD) of
PPAR-α, shown in yellow and red for the acid-binding site. Three different modes of potential binding
to PPAR-α were suggested in the docking study, as exemplified with peniocerol (in cyan), oleanolic
acid (in blue), and schottenol (in magenta); (b) A similar situation was found for PPAR-γ, with two
potential binding modes. The LBD site is shown in yellow and red for the thiazolidinedione binding
site. Peniocerol is shown in cyan, oleanolic acid in blue, and known agonist lobeglitazone in magenta is
included for comparison purposes.

Some triterpenes from Cactaceae like β-amyrin, oleanolic aid, oleanolic aldehyde, lupeol,
betulin, betulinic acid, lupeone and cycloartenol which are well known to regulate some molecular
targets of diabetes pathology, with a good prediction in this review. We need to explore the
antidiabetic activities, particularly the activity against molecular targets involved in metabolic
diseases, of some triterpenes like 16β-hydroxystellatogenin, thurberogenin, stellatogenin, myrtillogenic
acid, alamosogenin, 22β-hydroxystellatogenin, machaeric acid, and machaerinic acid, all of them
characteristic items of the Cactaceae chemistry, which display some specific oxidation patterns as was
discussed above.

3.3. Neuroprotective Activity

As life expectancy has increased, neurodegenerative diseases have become a growing concern, and
the need for efficient treatments has become an urgency. Acetylcholinesterase inhibitors have been used
for the management of Alzheimer’s disease, and some have suggested their neuroprotective potential.
Also, agonists of LXR-α and LXR-β have been studied for their potential use as neuroprotectors. Then,
the development of agonists of these receptors that could also act as AChE inhibitors could lead to
interesting treatments. Tables 14 and 15, respectively, show the sterols and triterpenes ligands with a
higher affinity to the previously mentioned targets.



Molecules 2020, 25, 1649 21 of 34

Table 14. Top-10 ranked sterol derivatives in the LXR-α, LXR-β and acetylcholinesterase (AChE)
docking study.

LIGAND LXR-α LXR-β AChE

Fucosterol −167.1 −167.7 −152.9
β-sitosterol −165.2 −164.3 −151.7

Methylenecolesterol −163.1 −157.8 −148.6
Thurberol −161.9 −158.7 −147.5

Spinasterol −157.0 −158.2 −152.6
Opuntisterol −155.9 −157.9 −152.1
Cyclostenol −155.4 −158.2 −147.7
Peniocerol −158.6 −155.8 −143.4
Schottenol −155.9 −153.6 −147.4

24-Methylenelophenol −155.7 −154.6 −146.3

Table 15. Top-10 ranked triterpene derivatives in the LXR-α, LXR-β and AChE docking study.

LIGAND LXR-α LXR-β AChE

Thurberogenin −153.915 −155.492 −143.2
16β-hydroxystellatogenin −149.154 −152.308 −134.8

Betulinic acid −141.254 −155.181 −137.3
Stellatogenin −142.879 −150.498 −139.4

16β-hydroxybetulinic acid −145.372 −156.064 −127.6
Calenduladiol −147.818 −152.858 −127.8

Betulin −141.428 −153.007 −133.0
Lupenone −145.652 −146.987 −134.2

Lupeol −146.667 −148.674 −129.8
Alamosogenin −141.635 −144.049 −138.3

For LXR-α, it was found that both sterols and triterpenes bind to the same site (Figure 4a) but
with different interaction patterns. Sterols bind through hydrogen bonding via the 3β-OH group
to Glu 267 and Asn 225 while the side alkyl chain interacts with residues Phe 257, Leu 260, Thr
302, and Phe 315. In general, oxidation of ring B improves ligand binding, and slight differences in
docking score can be attributed to the nature of the alkyl chain; theoretical affinity increased with
the incorporation of additional methylene groups, probably through new hydrophobic interactions.
Triterpene derivatives interact with residues Thr 302 and Arg 305 via hydrogen bonding to the lactone
or the 17-COOH group of rings D and E. The absence of hydroxy groups in these rings slightly
diminishes the theoretical affinity.
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Figure 4. Predicted poses for selected sterol (thurberol) and triterpene (thurberogenin) to
some bio targets related to neuroprotection. (a) Thurberol—LXR-α; (b) thurberogenine—LXR-α;
(c) thurberol—LXR-β; (d) thurberogenine—LXR-β; (e) thurberol—AChE; (f) thurberogenine—AChE.
Residues relevant for interactions through hydrogen bonding are labeled.

The docking score calculated for the predicted complexes of the analyzed sterols and triterpenes
is close to the score for the known LXR-β ligand 24(S),25-epoxycholesterol (MolDock score = 151.3).
The interaction of the 3β-OH group to Asn 239, Glu 281, and Arg 319 are constant in all derivatives
(Figure 4c). As it was the case of LXR-α docking study, oxidation in position 6 improves theoretical
affinity through interaction to Phe 243, and Phe 329 and additional differences in docking score among
sterols can be accredited to the nature of the alkyl chain side. Whereas triterpenes interact through
hydrogen bonding to residue Thr 316 via oxygen atoms of lactone ring or 17-COOH, this interaction
pattern was common in most of the derivatives analyzed. Interestingly, ring A lays close to residues His
435 and Trp 457, which interact with the epoxy group of 24(S),25-epoxycholesterol, and could interact
with hydroxyl groups of 22-hydroxycholesterol and 24-hydroxycholesterol, known endogenous ligands
of LXRs. It has been reported that oxidation at both C-22 and C-24 increases LXR activation [221].

According to the results, for the interaction of triterpenes with the enzyme acetylcholinesterase,
the substitution pattern in ring A is essential, since that ring A is the one that can approximate the
catalytic site. On the other hand, in the B ring, the presence of a hydroxyl group in the C6 helps due
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to the interaction of the oxygen in the hydroxyl moiety with the Trp 86 located in the protein gorge.
In the same set of interactions shown by these compounds, the side chain of cholesterol is stuck with
the outer part (mouth) of the enzyme. In triterpenes, the E ring is the one that interacts with the
catalytic site through interactions of C17-COOH or lactone moieties, with some residues in the active
site. The absence of these features diminishes slightly the affinity. On the other hand, the H atom of
3β-OH of the triterpenes interacts with Tyr 341. In this review is evident the potential that some sterols
and triterpenoids from Cactaceae, to the development of new neuroprotectors, via the inhibition of
acetylcholinesterase and LXR-α and LXR-β.

4. Conclusions

The oxidation pattern in sterols and triterpenes from Cactaceae is an extraordinary feature.
The oxidation at C6 to form a 6α-hydroxyl group in cholesterol moiety in sterols like peniocerol,
macdougallin, cyclostenol, stenocereol, and thurberol, as well as the C6 ketone in viperidinone,
viperidone, deoxyviperidone, and 5β-deoxyviperidone, appears to be essential to explaining the
possible molecular mechanisms behind the biological activities of those kinds of compounds,
as suggested by the available experimental bioactivities and the results of the present in silico
study. On the other hand, the oxidation pattern in E ring in oleanane and lupane triterpenes appears as
a pivotal factor in controlling the affinity of compounds. At least in the in vitro assays, the presence of
hydroxyl, ketone, carboxylic acid, or lactone groups (thurberogenin and 16β-hydroxystelltogenin) in
ring E appears to be important in the selectivity of the sterols and triterpenes with their preferred target.

The chemistry of sterols and triterpenoids of some species, from the subfamily Cactoideae,
tribe Phyllocacteae, mainly from the subtribe Echinocereinae, was reviewed, together with their
biological activities. The information generated about the sterols reveals the presence of the typical
4

5 sterols like sitosterol, among others, but interestingly the presence of a very unusual family of 48

sterols with a pattern of oxidation in a sterol moiety of 27 carbons. Two sterols are of biosynthetic
importance because it appears as unusual intermediaries in a truncated demethylation process. On the
other hand, triterpenes appear as common compounds with unique features, including the oxidation
pattern in rings C/D. The compounds found in Cactaceae have been extensively studied because of
their biological properties. In this paper, we focused only on three biological activities. At least at an
in silico level, it is possible to correlate the biological activities with the theoretical affinities showed
between the compounds and some of the specific receptors involved as molecular targets of chronic
diseases like inflammation, type 2 diabetes or neurodegenerative disorders. Regarding the in silico
bioprospection, this study reveals that the oxidation pattern in ring B of sterol skeleton and rings
D and E of triterpenes, together with the presence of lactones, contribute to the biological activities
of Cactaceae triterpenes. The above prompt us to continue with this methodological approach to
find highly bioactive hits from the sterols and triterpene of Cactaceae, useful for the development of
semisynthetic drugs for the management of chronic degenerative diseases with a multitarget approach.

Supplementary Materials: The following are available online, Table S1: Complete docking results from the in
silico bioprospection on compounds isolated from Mexican Columnar Cactaceae.
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