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Abstract

Succinate is a precursor of multiple commodity chemicals and bio-based succinate produc-

tion is an active area of industrial bioengineering research. One of the most important

microbial strains for bio-based production of succinate is the capnophilic gram-negative bac-

terium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fer-

mentative pathway. To engineer A. succinogenes to improve succinate yields during mixed

acid fermentation, it is important to have a detailed understanding of the metabolic flux distri-

bution in A. succinogenes when grown in suitable media. To this end, we have developed a

detailed stoichiometric model of the A. succinogenes central metabolism that includes the

biosynthetic pathways for the main components of biomass—namely glycogen, amino

acids, DNA, RNA, lipids and UDP-N-Acetyl-α-D-glucosamine. We have validated our model

by comparing model predictions generated via flux balance analysis with experimental

results on mixed acid fermentation. Moreover, we have used the model to predict single and

double reaction knockouts to maximize succinate production while maintaining growth via-

bility. According to our model, succinate production can be maximized by knocking out

either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl

kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carbox-

ykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succi-

nate production.

Introduction

Succinate is an important bio-based platform chemical and intermediate that can be con-

verted to multiple commodity chemicals: namely 1,4-butanediol, tetrahydrofuran and γ-

butyrolactone [1]. Succinate is used to produce the biodegradable plastic polybutylene succi-

nate by heteropolymerization with 1,4-butanediol [2]. It can also be utilized to synthesize

useful chemicals like ethylenediamine disuccinate, a biodegradable chelating agent, and
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diethyl succinate that can be utilized as a green solvent in lieu of methylene chloride [3]. Suc-

cinate also exhibits similarity in chemical structure to maleic anhydride, and therefore has

the prospect of replacing this compound’s traditional petrochemical market [2]. Besides

being based on renewable resources, bio-based succinate production has the advantage of

being environmentally friendly since it utilizes CO2, a greenhouse gas, as a substrate [1, 4].

All bio-based succinate production involves fermentation by a variety of both wild and genet-

ically modified bacterial strains.

The most prominent wild type bacterial strain for succinate production is the capnophilic

and facultatively anaerobic, gram-negative bacterium Actinobacillus succinogenes [5], which

naturally produces succinate by a fermentative pathway [3, 4]. This bacterial strain was first

isolated from the bovine rumen as part of a search for succinogenic bacteria [6, 7]. This organ-

ism is capable of growth on most naturally occurring sugars [2, 6]. In addition to producing

some of the highest reported succinate concentrations, this strain also yields significant

amounts of formate and acetate [8]. The distribution of the carbon flux between succinate and

other alternate fermentation products is influenced by experimental and environmental condi-

tions [6]. Thus, increasing the available CO2 concentration is conducive to a higher succinate

yield. Supplying a reductant e.g. H2 or utilization of carbon sources more reduced than glucose

can also lead to higher amounts of succinate produced [6, 9]. One active research area in

microbial succinate production is to produce succinate as the sole product of fermentation.

McKinlay et al. have noted that optimizing the environmental conditions cannot suffice for

homosuccinate fermentation [6]. Thus, genetic engineering of wild type A. succinogenes is nec-

essary to produce succinate as the major product of mixed acid fermentation. It is of utmost

importance to understand the metabolic flux distribution in A. succinogenes in order to effec-

tively engineer the organism to enhance the succinate yield. One of the most useful tools to

understand the metabolic flux distribution in any organism is computational modeling of the

metabolic network [10–13] in the organism and constraint-based analysis of the metabolic net-

work model [14, 15]. A. succinogenes has been widely studied experimentally, however, few

metabolic models for A. succinogenes have been published.

Here, we describe the development of a metabolic model for A. succinogenes comprising

375 reactions. This model is intermediate in scale between a central carbon metabolism and a

genome-scale metabolic model. While the model of Rafieenia [16] and other existing models

proposed by McKinlay et al. [3, 4, 6, 8] focus on the central carbon metabolism, our model

includes pathways for the major biomass components including amino acids, RNA, DNA, gly-

cogen and lipids. Thus, our model can be termed as a comprehensive carbon metabolism

model and not a genome scale model, since we do not explicitly include all the known meta-

bolic pathways in A. succinogenes. Although a genome-scale model is more comprehensive

than a central carbon metabolic model and is likely to have more predictive power, it is also

associated with higher complexity and hence, requires significantly higher computational

power [17]. On the other hand, most of the useful bio-chemicals and biofuel precursors that

are of industrial importance are produced by the central carbon metabolism [18] and hence,

from a synthetic biology/bioengineering perspective, it is sufficient to focus on the central

carbon metabolism, rather than the genome-scale metabolism. We validate our model by com-

parison of the model predictions with extensively documented experimental results on A. suc-
cinogenes [3, 4, 6, 8]. We then use the model to make possible reaction knockout predictions to

maximize succinate production. Based on the model predictions for the in silico wild type and

mutant strains, we gain considerable insight into the carbon flow in the A. succinogenes meta-

bolic network.

Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes

PLOS ONE | https://doi.org/10.1371/journal.pone.0189144 January 30, 2018 2 / 16

https://doi.org/10.1371/journal.pone.0189144


Materials and methods

Metabolic modeling

There are several computational methods that involve the use of a metabolic network and the

assumption of a pseudo-steady state. These methods collectively constitute a framework com-

monly referred to as stoichiometric modeling [19]. This framework involves the estimation of

the metabolic flux distribution using constraint-based analyses. Stoichiometric modeling

bypasses the difficulties that arise in the development of kinetic models due to the lack of intra-

cellular experimental measurements. Thus, the stoichiometric modeling framework enables

the utilization of the knowledge of the structure and topology of the cell metabolic network,

without having to depend on the largely incomplete knowledge of intracellular kinetics. Stoi-

chiometric models have been used to estimate the cellular metabolic flux distribution under

given circumstances, at a given time (metabolic flux analysis [20–23]), to predict the cellular

metabolic flux distribution on the basis of some optimality hypothesis (flux balance analysis

[24, 25]) and as tools for the structural analysis of metabolism to garner information about cel-

lular systemic characteristics (network-based pathway analysis [26]). All these different meth-

ods require a metabolic network model. We have used both COBRApy [27] and the MATLAB

COBRA Toolbox version 2.0.6 for the analyses described in this article [28].

Model development and validation. An automatically generated COBRA-compliant

SBML model for Actinobacillus succinogenes (strain ATCC 55618/130Z) metabolism was

downloaded from the BioModels database (http://www.ebi.ac.uk/biomodels-main/

iID000000140364). However, this model was uncurated and could not yield finite biomass

production when subjected to flux balance analysis (FBA). The KEGG database has curated A.

succinogenes pathways and an uncurated (Tier 3) Pathway Genome Database for A. succino-
genes can be accessed through the BioCyc database. We utilized these two resources, along

with the above-mentioned genome-scale SBML model, and a wide body of experimental litera-

ture on A. succinogenes to develop and curate a working comprehensive carbon metabolic

model of A. succinogenes. The biomass components that we considered in our model are i) the

amino acids, ii) RNA, iii) DNA, iv) glycogen, v) lipids and vi) UDP- N-Acetyl-α-D-glucos-

amine (UDP-GlcNAc), which is an essential precursor of peptidoglycan and

lipopolysaccharide.

We ensured that known mechanisms of uptake and excretion of various metabolites that

have been experimentally reported were accurately encoded in the model. Notable among

these mechanisms were PTS or ATP mediated uptake of sugars (6). For those metabolites for

which the uptake/secretion mechanism was unknown we used the same mechanism as in

Escherichia coli unless contradicted by published literature.

Experimental findings by McKinlay et al. [6] indicate that A. succinogenes is auxotrophic

with respect to L-cysteine, L-glutamate and L-methionine. Hence, uptake reactions for these

metabolites were incorporated into the model. A. succinogenes has an incomplete TCA cycle

with the isocitrate dehydrogenase genes missing from its genome sequence. Hence, α-ketoglu-

tarate, which is a L-glutamate precursor, cannot be synthesized from glucose via the TCA

cycle, resulting in L-glutamate auxotrophy. We ascertained that the TCA cycle in our model

was incomplete and that our model did not include a glyoxylate shunt in accordance with the

experimental findings of McKinlay et al. [6, 8]. We also ensured that gene-protein-reactions

associations in the model are consistent with KEGG and BioCyc databases on A. succinogenes.
We ensured our model was in a valid SBML format using http://sbml.org/validator/. We

then checked whether the reactions in our model satisfied mass and charge balance using the

checkMassCharge balance program from the COBRA Toolbox and balanced the unbalanced

reactions, mostly by adding H2O or H+ as a reactant or product.

Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes
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Results and discussion

Model statistics

We use two variants of our model: one for the minimal AM3 medium, and the other for the

rich medium A. The first variant of our model corresponding to the minimal medium AM3

[3] includes finite uptake flux boundaries for only three amino acids (L-glutamate, L-cysteine

and L-methionine) for which A. succinogenes is auxotrophic as determined experimentally by

McKinlay et al. [6]. The other amino acid flux values are reduced to zero by accordingly adjust-

ing the flux boundaries. The second variant of our model, corresponding to a rich medium

(Medium A) containing yeast extract [3], includes finite uptake fluxes for all the amino acids

present in the yeast extract. SBML versions of the models presented in this paper are included

in the Supplementary Information, as described in Table A in S1 File.

The details of our model variants have been tabulated in Table B in S1 File. However, the

most important features of our model can be summarized in the following schematic diagram

(Fig 1).

Determination of stoichiometry in the biomass objective function. The objective

function for our flux balance analysis is the flux through the pseudo-reaction for biomass

synthesis (growth). The stoichiometry of the reactants and products of this pseudo reaction

were estimated based mostly on experimentally determined values for A. succinogenes meta-

bolic intermediate and cofactor requirements for biomass production (growth), as described

below:

Amino Acids: The stoichiometries of the amino acids are estimated using the information on

A. succinogenes metabolic intermediate and cofactor requirements for biosynthesis in

Table 1 of McKinlay et al. [8].

RNA and DNA: We estimated the stoichiometric coefficients for RNA and DNA from Table 1

of McKinlay et al. [8]. However, the pseudo-reactions for the formation of RNA and DNA

were taken from Table 1 of Knoop et al. [29] on the biomass objective function of Synecho-
cystis sp. PCC 6803.

Glycogen: The glycogen metabolite in our model is actually the repeating monomeric unit

(C6H10O5) in the linear glycogen polymer and has a molecular weight of 162.1406. This

assumption, along with the percentage of dry cell weight of glycogen in Table 1 of McKinlay

et al. [8] enabled us to calculate the stoichiometry of glycogen in the biomass formation

reaction.

Lipid: In accordance with McKinlay et al. [8], the lipid composition is assumed to be 25%

phosphatidylglycerol and 75% phosphatidylethanolamine. The A. succinogenes fatty acid

composition (in percent of total lipid mass) has been measured by McKinlay et al. [8] as

14:0, 11%; 3-OH-14:0, 3%; 16:0, 35%; 16:1, 37%; C18:0,1%; C18:1, 3% and C18:2,10%. How-

ever, for the sake of simplicity, we included the biosynthesis of only palmitic acid (C16:0) in

our model so that the only phosphatidylglycerol and phosphatidylethanolamine species in

the model system are dipalmitoyl phosphatidylglycerol and dipalmitoyl-L-1-phosphatidyl-

ethanolamine respectively.

UDP-GlcNAc: UDP-N-Acetyl-α-D-glucosamine (UDP-GlcNAc) is an essential precursor of

peptidoglycan (PG) and lipopolysaccharide (LPS). A close observation of Table 1 in [8]

indicates that PG makes up 3.5% and LPS 4.7% of the dry cell weight respectively, so that

PG and LPS collectively constitute 8.2% of the dry cell weight. We did not include the for-

mation of polyamines in our central carbon metabolism model. Thus, if we add the

Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes
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contributions of all the biomass components, up to LPS, in the % of dry cell weight column

of Table 1 in [8], we get 99.1% of the dry cell weight. To account for the remaining 0.9%, we

attribute it to UDP-GlcNAc. Thus, attributing the 0.9% of the dry cell weight is a book

keeping assumption that enables us to account for 100% of the dry cell weight. This

assumption formed the basis for the estimation of the stoichiometry of UDP-GlcNAc in the

biomass formation reaction.

Fig 1. Schematic representation of the important pathways in model A. succinogenes metabolic network. NTP

represents nucleotide triphosphate, where N = A, U, G, C. Part (a) shows the Glycolysis and the Oxidative Pentose

Phosphate pathways, whereas part (b) shows the mixed acid fermentation pathway. The enzyme names are represented

in red, whereas the pathway names are represented in blue.

https://doi.org/10.1371/journal.pone.0189144.g001
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Biomass objective function. The formation of biomass from these above-mentioned

components was modeled as the following pseudo-reaction:

1.01663 Gly + 0.0857984 Tyr + 0.243293 Asp + 0.304278 Lys + 0.286834 Thr + 0.273954 Ile +

0.433024 Leu + 0.433769 Val + 0.160066 Arg + 0.245393 Asn + 0.232353 Glu + 0.234139

Gln + 0.236832 Pro + 0.0802104 His + 0.844144 Ala + 0.252649 Ser + 0.0872576 Cys +

0.083844 Met + 0.156278 Phe + 0.0322217 Trp + 0.438282 RNA + 0.142561 DNA +

0.407054 Glycogen + 0.0953814 dipalmitoyl-L-1-phosphatidylethanolamine + 0.030475

dipalmitoyl phosphatidylglycerol + 0.150329 UDP-GlcNAc + 46.93 ATP + 46.92 H2O->

46. 93 ADP + 46. 93 Pi + 46.93 H+ + 1g biomass [gDCW-1],

where the stoichiometries of all the reactant/product species except biomass are in mmol. The

flux through this pseudo-reaction constitutes the biomass objective function that is optimized

for most of the constraint-based analyses discussed in the Results and Discussion section.

Effect of varying bicarbonate uptake flux on A. succinogenesmixed acid

fermentation

McKinlay et al. have undertaken 13C labeling experiments to investigate the fermentative

metabolism in A. succinogenes grown in a chemically defined minimal medium AM3 with the

medium NaHCO3 concentration varying from 5 to 150 mM. However, the fluxes for the cellu-

lar uptake of NaHCO3 and L-glutamate and the non-growth associated ATP requirement

(NGAM) for A. succinogenes have not been estimated as part of the above-mentioned studies.

We assumed a Michaelis-Menten relation between the medium bicarbonate concentration

and the bicarbonate uptake flux into the cell. We thereby estimated the values of the maximal

rate (Vmax) and the Michaelis-Menten constant (KM) for bicarbonate uptake, and the L-gluta-

mate and non-growth associated ATP requirement for A. succinogenes in the AM3 medium by

fitting model predictions to experimentally determined ratios of fermentation product secre-

tion to glucose uptake fluxes. More precisely, this fitting is achieved by solving the following

optimization problem: minimizing the objective function F, given by

F ¼
X

i
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where i 2 [succinate, formate, acetate, ethanol, growth]. In the above expression, xf ;min
i and

xf ;max
i respectively denote the upper and lower bounds of the secretion flux of fermentation

product i consistent with a fraction f of optimal growth, xf ;min
glc and xf ;max

glc represent the upper

and lower bounds of the glucose uptake flux, and ei and eglc represent the experimentally esti-

mated secretion flux of i and glucose uptake respectively. The flux values xf ;min
i , xf ;max

i , xf ;min
glc and

xf ;max
glc , which are determined using the flux variability analysis (FVA) functionality of COBR-

Apy, are functions of the Michaelis-Menten parameters for bicarbonate uptake, the L-gluta-

mate uptake flux and the NGAM for A. succinogenes and the objective function F is minimized

with respect to these model parameters. For the fitting the glucose uptake into the cell was

restricted between 5.9 and 6.2 mmol gDCW-1 hr-1, where the limits are obtained by averaging

the lower and upper bounds of the experimentally estimated values of the glucose uptake

flux. The value of the fraction f of the optimal growth that we have used to determine the flux

ranges for the fitting is 96.5% since the flux ranges for fermentation product secretion corre-

sponding to 96.5% of the maximum growth are the narrowest ones that completely contain
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the experimentally determined values of the fermentation product secretion fluxes. The values

of the model parameters for A. succinogenes fermentative metabolism in AM3 medium are tab-

ulated in Table C in S1 File.

The comparison of the experimental results and the model predictions corresponding to

the best fit of the model parameters are presented in Fig 2. It is evident from Fig 2 that the suc-

cinate secretion flux increases with the bicarbonate uptake flux, whereas the formate and etha-

nol excretion fluxes reduce with increasing bicarbonate uptake flux, consistent with what has

been observed in experimental studies on A. succinogenes.
Detailed experimental investigation by McKinlay et al. [4] indicate that the PEPCK flux was

not affected by the NaHCO3 concentrations in the medium. Increasing the NaHCO3 concen-

tration in the medium, and hence the CO2 uptake rate, causes the reverse flux through the

reaction catalyzed by malic enzyme to preserve mass balance. As a result, the net flux through

the malic enzyme reaction decreases. On the basis of their experimental results, McKinlay

et al. postulated that decreasing malate decarboxylating flux and constant flux through the

PEPCK reaction with increasing medium bicarbonate concentration resulted in increased flux

through the C4 pathway and hence increased succinate production [4].

We have used parsimonious flux balance analysis (pFBA) [30] and flux variability analysis

(FVA) [31] to predict parsimonious solutions and flux ranges respectively for several reactions

in the A. succinogenes fermentation pathway with increasing medium bicarbonate concentra-

tion. Since bicarbonate uptake follows Michaelis-Menten kinetics, increasing medium bicar-

bonate concentration translates to increasing bicarbonate uptake flux. The model predictions

for the reactions PEPCK (phosphoenolpyruvate carboxykinase), MDH (Malate dehydroge-

nase), ME (Malic Enzyme), FUM (Fumarase), FR (fumarate reductase), THD2 (transhydro-

genase) and ALCD (alcohol dehydrogenase), shown schematically in Fig 1, are presented in

Fig 2. It is evident from Fig 3, that according to our model, the carbon flux in the forward

direction of ME decreases with increasing medium bicarbonate concentration. On the other

hand the carbon flux from phosphoenolpyruvate to L-malate via the PEPCK and MDH reac-

tions, shown in Fig 1b, remains unchanged as predicted by McKinlay et al. [4]. Hence, as evi-

dent from the schematic in Fig 1b, in order to maintain mass balance, the carbon flux from

malate to succinate, via fumarate, has to increase.

Fig 2. Comparison of experimentally derived fermentation product fluxes, normalized by glucose uptake with

model predicted normalized fluxes for best-fit model parameters. The blue filled circles with error bars represent

the experimental data points and the solid red line represents the midpoint of the FVA range, whereas the shaded

regions represent the predicted FVA ranges corresponding to 96.5% of optimal growth.

https://doi.org/10.1371/journal.pone.0189144.g002
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The gradual decrease of the reaction flux in the forward direction of ME with increasing

bicarbonate uptake can be interpreted as increasing flux in the reverse direction of the ME (see

Fig 1b). This change leads to increased demand for NADPH, which is achieved by increasing

the flux through the THD2 reaction (Fig 1b), which in turn requires NADH. The increasing

demand for NADH is satisfied by gradual reduction of flux through the ALCD reaction, which

utilizes NADH (Fig 1b). A careful observation of Fig 3 indicates that the increases in flux

Fig 3. Model predicted optimized fluxes (from pFBA) and flux ranges (from FVA) for relevant fluxes in the A.

succinogenes mixed acid fermentation pathway. (a) PEPCK (phosphoenolpyruvate carboxykinase), (b) MDH (malate

dehydrogenase), (c) ME (malic enzyme), (d) FUM (fumarase), (e) FR (fumarate reductase), (f) THD2

(transhydrogenase), and (g) ALCD (alcohol dehydrogenase).

https://doi.org/10.1371/journal.pone.0189144.g003
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between successive medium bicarbonate concentrations for FUM, FR and THD2 roughly

equal the decreases in flux between successive medium bicarbonate concentrations for ME

and ALCD. Thus, our model provides an explanation, at least on a qualitative level, about the

variation trends of several vital fermentation pathway fluxes with increasing bicarbonate

uptake as postulated on the basis on experimental results.

Comparison of A. succinogenes growth and mixed acid fermentation in

minimal and rich growth media

In addition to experiments in the AM3 medium, McKinlay also undertook an experimental

investigation to compare the growth trends and fermentation balances of A. succinogenes in

minimal medium AM3 and a rich medium known as Medium A [3]. For this study the

NaHCO3 concentration in both AM3 and Medium A was taken to be 150 mM. In medium A,

the vitamins, minerals, amino acids, NaCl, and NH4Cl in AM3 are substituted by 5g/liter of

yeast extract. We found a detailed account of the molecular composition of yeast extract from

Smith et al. [32].

Assuming that the parameters in Table C in S1 File will not vary between the minimal

medium AM3 and the rich medium Medium A, we have predicted the ranges of fermentation

product excretion fluxes corresponding to 96.5% of the optimal growth for A. succinogenes
grown in the rich Medium A. The predictions are made for a glucose uptake rate of 8.65 mmol

gDCW-1 hr-1 and a medium carbonate concentration of 150 mM in agreement with the experi-

mentally derived fluxes for the rich medium A.

In Fig 4, we have compared the predictions of the model for the minimal AM3 medium as

well as for the rich medium A, with the corresponding experimental results. It is clearly evident

from Fig 4a and 4b that the model-predicted flux ranges for the fermentation products contain

the experimentally estimated values and the predicted growth shows qualitative agreement

with the experimentally derived growth as well. A comparison of the two parts of Fig 4 indi-

cates that our model correctly predicts that the succinate production flux is similar in the two

media, whereas the formate, acetate and ethanol production and the growth fluxes are higher

in the rich medium A compared to the minimal medium AM3.

We also assessed the effect of deletion of each gene and each reaction in the models for both

the minimal (AM3) and rich (medium A) media, for a medium bicarbonate concentration of

150 mM. Both FBA and minimization of metabolic adjustment (MOMA) methods were used

for these simulations but the results were identical for both the methods as evident from the

Table 1.

Fig 4. Comparison of model-based predictions of growth and flux ranges to experimental results for A.

succinogenes grown in (a) rich medium A and (b) minimal AM3. Shaded regions correspond to flux ranges predicted

for 96.5% of optimal growth. Circles and corresponding error bars represent experimentally derived fermentation

product fluxes. Both predicted ranges and experimental fluxes are normalized by glucose uptake, with a NaHCO3

concentration 150 mM in both media.

https://doi.org/10.1371/journal.pone.0189144.g004
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Both the numbers of lethal gene and reaction deletions were lower in the rich medium com-

pared to the minimal media. The rich medium (Medium A) contains yeast extract, so it already

contains most of the amino acids [32]. Hence, several reactions in the amino acid biosynthetic

metabolism and related genes that are essential for AM3 are no loner essential for Medium A.

This causes lower number of lethal reactions and genes for Medium A compared to AM3. The

lists of the lethal reactions for both the minimal and the rich media are provided in MS Excel

files referred to in Table D in S1 File.

Growth of A. succinogenes on L-glutamate and various L-glutamate

precursors

McKinlay et al. have experimentally examined whether glutamate precursors support growth

of A. succinogenes in the AM3 medium [3]. Using the parameters in Table C in S1 File, we

determined if our model could be used to make similar predictions about growth on these dif-

ferent glutamate precursors. The uptake flux of L-glutamate or its precursor (L-glutamine, α-

ketoglutarate, aspartate) was set to the fitted value for L-glutamate uptake flux in Table C in S1

File. Table 2 shows that predictions from our model agree with experimental predictions on

the growth capability of A. succinogenes on various precursors of L-glutamate.

Effect of varying both bicarbonate and hydrogen uptake fluxes on

fermentative metabolism

McKinlay et al. [4] also explored the fermentative metabolism of A. succinogenes at different

NaHCO3 and H2 concentrations using 13C metabolic flux analysis. For this investigation, they

used a variant of the AM3 medium in which the Cys–HCl, Met, and monosodium glutamate

concentrations were changed relative to the minimal AM3 medium [4]. McKinlay and co-

workers used two different concentrations of NaHCO3 in this growth medium, 25 mM and

100 mM, both in the presence and absence of H2. For medium NaHCO3 concentrations of 25

and 100 mM, the H2 oxidation rate were measured as 2.8 mmol gDCW-1 hr-1 and 4.7mmol

Table 1. Lethality of single gene and reaction deletions.

Medium A (Rich) AM3 (Minimal)

FBA MOMA FBA MOMA

Number of lethal reactions 48 48 118 118

Number of lethal genes 40 40 97 97

https://doi.org/10.1371/journal.pone.0189144.t001

Table 2. Metabolic model based prediction of L-glutamate precursors to support growth of A. succinogenes in

AM3 medium.

Glutamate precursor Observed Growtha Predicted Growthb

NH4
+ - 0

NH4
+ + Glu + 0.268

NH4
+ + α-ketoglutarate + 0.27

Gln + 0.215

Asp - 0

Asp + α-ketoglutarate + 0.195

a Experimentally observed growth from McKinlay et al. [3];
b Model-predicted growth flux (gDCW hr-1) from FVA

https://doi.org/10.1371/journal.pone.0189144.t002
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gDCW-1 hr-1 respectively. The experimentally estimated glucose uptake rate varied between 9

and 10 mmol gDCW-1 hr-1 for the above-mentioned medium. In our model, we have assumed

that the H2 input fluxes equal the H2 oxidation rates in McKinlay et al. [4]. Using the parame-

ters in Table C in S1 File, we predicted the growth and fermentation product fluxes for 4 differ-

ent cases: low and high bicarbonate concentration, and low and high H2 concentration. Since

the energy and redox cofactor yield of different fermentation product pathways are similar, the

ranges of predicted product fluxes are large in comparison with the experimental error. These

ranges therefore represent all stoichiometrically feasible growth modes capable of yielding a

similar biomass growth rate.

As shown in Fig 5, the model predicts that growing A. succinogenes in the presence of H2

results in higher succinate excretion and this effect is accentuated at higher bicarbonate uptake

Fig 5. Flux predictions for different hydrogen and bicarbonate media conditions. Prediction of fermentation end

product secretion, growth and fumarate reductase (FR) fluxes for two different medium bicarbonate concentrations

(25 mM and 100 mM) and with/without H2. Shaded regions correspond to flux ranges predicted for 96.5% of optimal

growth by FVA (flux variability analysis). Circles and corresponding error bars represent experimentally derived

fermentation product fluxes.

https://doi.org/10.1371/journal.pone.0189144.g005
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fluxes, which agrees qualitatively with the experimentally derived results [4]. McKinlay et al.

[4] have suggested that the flux through the FR reaction (Fig 1b) is limited by the availability of

reductants in the absence of additional electron sources. When H2 is available as an electron

source, additional reducing equivalents are available so that the flux through the FR reaction

increases, resulting in higher succinate formation. It is evident from Fig 5e that our model cor-

rectly predicts the increase in the FR flux in the presence of H2. Not only that, in accordance

with the experimental results [4], our model also predicts that the increase in FR flux in the

presence of H2 is more pronounced at the higher bicarbonate concentration than that at the

lower bicarbonate concentration. It should be noted that though our model consistently over-

estimates the ethanol formation fluxes at various medium bicarbonate concentrations and

with/without hydrogen uptake, it qualitatively reproduces the trend for ethanol formation as a

function of these media conditions. Experimental papers on A. succinogenes metabolism [3, 4,

6, 8] seem to indicate that the overall formation of ethanol from acetyl-CoA is irreversible and

this is what we have assumed in our model as well. However, the pathway-genome databases

for A. succinogenes in KEGG and MetaCyc seem to indicate a degree of reversibility of the reac-

tion from acetaldehyde to ethanol in Fig 1. According to the pathway-genome database for A.

succinogenes in MetaCyc, ethanol can be degraded to acetate via acetaldehyde. The presence of

such a degradation pathway in vivo, which we do not consider in silico, might be the cause

behind the overestimation of the ethanol production flux by our model.

Prediction of reaction knockouts to maximize succinate production

We used the OptKnock algorithm to predict both single and double reaction knockouts for

maximizing succinate production in the minimal AM3 medium while restraining the growth

to be at least 0.1 gDCW hr-1 and the non-growth associated ATP maintenance flux to be at

1.082 mmol gDCW-1 hr-1. A subset of model reactions was selected for knocking out that

excluded the ATP synthase, NGAM, and the uptake and excretion reactions.

Depending on whether we predicted single or double reaction knockouts, we compared the

OptKnock results with results from flux variability analysis, after knocking out one or a pair of

reactions from the above-mentioned subset. However, in the case of in silico double mutants,

instead of running the FVA for all possible pairs of reactions from the set selected for knock-

outs, we created a set of reactions corresponding to the top FVA predictions for single reaction

deletions. We then chose all possible reactions pairs from this latter set and ran the FVA after

in silico deletion of each possible reaction pair.

For the minimal AM3 medium, our estimate for the L-glutamate flux was about 0.439

mmol gDCW-1 hr-1. However, the L-glutamate flux for knockout strains might vary over a

range and we chose the range of L-glutamate fluxes from the robustness analysis of A. succino-
genes growth with respect to L-glutamate uptake flux. Hence, the extended range of L-gluta-

mate uptake fluxes that we considered based on robustness analyses was 0–0.5 mmol gDCW-1

hr-1. Similarly, the range of bicarbonate fluxes chosen for the reaction knockout study was

chosen as 0–5.0 mmol gDCW-1 hr-1. The single knockouts that are most effective in maximiz-

ing succinate production involve knocking out the reactions catalyzed by the PTA (Phosphate

acetyltransferase) and ACK (Acetyl kinase) enzymes. The double knockouts that are most

effective in increasing succinate production are the (PEPCK, PTA) and (PEPCK, ACK)

knockouts.

Knocking out the reaction catalyzed by PTA or ACK reduces the carbon flux from pyruvate

to acetyl-CoA since the conversion of acetyl-CoA to acetate is favored over the conversion of

acetyl-CoA to ethanol, as the latter route requires more reducing equivalents (Fig 1b). For the

PTA or ACK knockout strain, it is predicted by our model that the lower flux from pyruvate to
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acetyl-CoA is compensated for by a net flux in the reverse direction of the malic enzyme cata-

lyzed reaction, resulting in higher succinate excretion via higher FUM and FR fluxes (Fig 1b).

However, it should be noted that additional reducing equivalents (NADPH) are required for

the reverse direction of the malic enzyme reaction. Our model predicts that for the wild type

strain there is practically no flux through the oxidative branch of the pentose-phosphate path-

way and that carbon flow from glucose -6-phosphate (G6P) occurs almost exclusively to fruc-

tose-6-phosphate (F6P) via the PGI (glucose-6-phosphate isomerase) reaction (Fig 1a). On the

contrary, for the PTA or ACK knockout strain, the reaction flux from glucose-6-phosphate

through the oxidative pentose phosphate pathway roughly equals the reaction flux from G6P

to F6P. The carbon flux through the oxidative pentose phosphate pathway yields additional

NADPH via the G6PDH (glucose-6-phosphate dehydrogenase) and 6PGD (6-phosphogluco-

nate dehydrogenase) reactions, as shown in Fig 1a. This additional NADPH enables a net

positive reaction flux in the reverse direction of the malic enzyme reaction from pyruvate to

malate.

For the predicted double mutants (PEPCK, PTA) and (PEPCK, ACK), the reaction flux in

the PEPCK reaction from phosphoenolpyruvate to oxaloacetate in the wild type and single

knockout mutants is diverted to the PK (pyruvate kinase) reaction (Fig 1a). There is no flux

from pyruvate to acetyl-CoA via the PFL (pyruvate formate lyase) and PDH (pyruvate dehy-

drogenase) reactions. Instead, there is a net flux from pyruvate to malate via the reverse direc-

tion of the ME (Fig 1b). This flux is larger than the corresponding flux in the in silico single

reaction knockouts. Additional NADPH required for the increased flux in the reverse direc-

tion of the malic enzyme reaction is made available by splitting the flux from β-glucose-

6-phosphate to both the oxidative branch of the pentose phosphate pathway and to β-glucose-

6-phosphate via the PGI reaction (Fig 1b), with a greater fraction of the flux being directed

towards the oxidative pentose phosphate pathway. Also, there is no net flux in the forward

direction of the MDH reaction, which utilizes NADH (Fig 1b). Instead there a small flux from

malate to oxaloacetate via the reverse direction of the MDH reaction, which is required to gen-

erate the essential amino acid L-aspartate from oxaloacetate. The reverse direction of the

MDH reaction, instead of consuming NADH, yields NADH. This additional NADH is con-

verted to NADPH via the THD2 reaction.

It should be noted that both the single and double reaction knockouts cause increase in suc-

cinate flux without stalling the biomass production or growth flux. Thus, for the single ACK or

PTA knockouts, the model predicted growth flux is reduced to about 84.5% of the predicted

growth flux for the in silico WT strain, whereas for the double knockouts (ACK, PEPCK/PTA,

PEPCK) the predicted growth flux is 74.9% of the predicted growth flux for the in silico WT

strain. This observation is indicative of the robustness of our model system.

Conclusions

We have developed a detailed metabolic model for the gram-negative succinogenic bacterium,

A. succinogenes. This model contains most of the pathways relevant to the biosynthesis of

the main components of biomass, namely glycogen, proteins, lipids, DNA and RNA and

UDP-GlcNAc. We have validated this model by comparing the model predictions with results

and postulations from published reports on experimental investigation of the mixed acid fer-

mentation in A. succinogenes. We then use variants of this model corresponding to different

growth media to make predictions about single and double reaction knockouts to optimize

succinate production.

On the modeling and computational front, future work using this model would involve

extending the model to the genome scale and examine if the model extension causes model
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predictions to vary. In a different direction, it would be worthwhile to work towards experi-

mentally executing the knockouts predicted by the model. In an ideal situation, these two

directions would go hand in hand and form different steps of a combined and iterative compu-

tational and experimental workflow where the model helps to predict knockouts and the

experimental validation or invalidation of the predicted knockouts helps to refine or extend

the model.
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