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ABSTRACT
Since consuming gutter oil does great harm to people’s health, the Food Safety
Administration has always been seeking for a more effective and timely supervision. As
laboratory tests consume much time, and existing field tests have excessive limitations,
a more comprehensive method is in great need. This is the first time a study proposes
machine learning algorithms for real-time gutter oil detection under multiple feature
dimensions. Moreover, it is deployed on FPGA to be low-power and portable for actual
use. Firstly, a variety of oil samples are generated by simulating the real detection
environment. Next, based on previous studies, sensors are used to collect significant
features that help distinguish gutter oil. Then, the acquired features are filtered and
compared using a variety of classifiers. The best classification result is obtained by k-NN
with an accuracy of 97.18%, and the algorithm is deployed to FPGA with no significant
loss of accuracy. Power consumption is further reducedwith the approximatemultiplier
we designed. Finally, the experimental results show that compared with all other
platforms, the whole FPGA-based classification process consumes 4.77 µs and the
power consumption is 65.62 mW. The dataset, source code and the 3D modeling file
are all open-sourced.

Subjects Data Mining and Machine Learning, Embedded Computing, Real-Time and Embedded
Systems
Keywords Gutter oil detection, Machine learning, FPGA, K-NN, Approximate multiplier

INTRODUCTION
Gutter oil is usually obtained by mixing and refining illegally reused cooking oil, waste
animal oil from slaughterhouses, and waste vegetable oil (Lu &Wu, 2014). It is reported to
bring prominent health issues like diarrhea and vomiting, or even cause long-term diseases
like fatty liver, hyperlipidemia and cancer (Wong, 2020). Now, not only commercial
restaurants (Li, Cui & Liu, 2016) but also some education-related outsourcing providers,
like university canteens, use gutter oil for cooking to reduce operation costs (China Daily,
2017). According to recent news articles, this problem even affects the whole world, and
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becomes even more severe in the period of COVID-19 (Star, 2020; TheSmartLocal, 2020).
Due to its noteworthy adverse impacts, Food Safety Administration, for example, has
always been working on effective distinguishment and follow-up supervision of gutter
oil (China Daily, 2019). However, past detection methods are mainly based on chemical
analysis in the lab (Geng, Liu & Beachy, 2015), and qualitative analysis on the spot (Liu,
Liu & Lei, 2020). Lab analysis requires field sampling and purification before detection,
which is relatively costly and time-consuming, greatly delaying the enforcement process.
A more practical way to achieve detection for law enforcement is field qualitative analysis
with sensors. Although the detection time is shortened and the devices are more portable,
the performance of it is not quite desirable since they are mostly threshold-based and with
only one indicator. The problem is, given the fact that different cooking conditions will
affect the physical and chemical properties of different types of oil in a very complex and
unpredictable way, selecting a one-size-fits-all threshold in actual detection seems arbitrary
and absolute. Moreover, illegal businesses may exploit loopholes of single indicator, using
chemicals to adjust single indicator used in past detection methods (such as pH value and
peroxide value) into the range of normal cooking oil to avoid legal punishment (Li, Cui
& Liu, 2016). Hence, there is an urgent need for a more comprehensive and well-rounded
portable detector that could take different properties into account and make judgement
based on machine learning approaches, instead of threshold-based approaches.

The most common methods to classify oil varieties or to distinguish gutter oil in the
laboratory are spectroscopic and chromatographic methods. Liquid chromatography is
one example (Wang et al., 2017). After the oil sample undergoes dissolution in isopropanol
and extraction, the linear range of the corresponding long-chain aldehydes is detected
in different fluorescence ranges to further perform classification. A similar recognition
method is adopted: injecting the oil sample into quartz tube, burning optical fiber into
a channel using femtosecond laser so that the oil sample can flow through, and finally
observe and record its dynamic optofluidic refractive index to complete detection (Lin et
al., 2018). Raman spectroscopy (SERS), as the most representative method of chemical
analysis, is widely used in the field of liquid component analysis (Gojani et al., 2019; Guo et
al., 2020; Hu et al., 2019). It is difficult to filter the capsaicin component in gutter oil, but
this component will have an obvious peak value in SERS test, which can be used to quickly
identify (Tian et al., 2018) of gutter oil. Detecting gutter oil is inherently chemical analysis.
Traditional experimental methods are more accurate and reliable than computer-aided
design (Wong, 2020). However, its disadvantage is that the oil samples to be tested need to
be brought back to the laboratory for a complete experimental process before the final result
can be obtained, which will lead to poor timeliness of testing, professional requirements
for testing personnel, and increased costs. Moreover, although there are discriminatory
data like capsaicin (Tian et al., 2018) and conductivity (Hu et al., 2019), these laboratory
methods have high experimental requirements (Lu &Wu, 2014) and are only applicable
for chemically treated (purified) gutter oil. It means that it is not practical enough to be
used in field tests, where oils are adulterated.

The most common way for detection with sensors is to electrize the test oil
and measure relevant parameters to detect harmful components in gutter oil
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BA
Figure 1 The design of low-power offline device for gutter oil detection. (A) 3D model; (B) 3D printed
real product. The STL file for the 3D printed real product is open-sourced.

Full-size DOI: 10.7717/peerjcs.774/fig-1

(Baranowska et al., 2008). In literature (Wang, 2020), also based on capsaicin component,
differential pulse voltammetry was used to analyze the linear response signal of the
oil sample. If the signal is within a specific range, the sample will then be classified
as gutter oil. Similarly, the test of gutter oil can also be completed by measuring the
conductivity of oil samples after water bath heating (Hu Xueyao, 2013). Since this method
only detects parameters of a single dimension, the accuracy of test results will be affected
by temperature, impurities of the sample to be tested and other factors. At the same time,
relevant instruments using such methods usually use microprocessor level development
platform to complete the corresponding data processing, such as STM32, ESP32, MSP 430,
etc. (Ge et al., 2019), which are limited by power consumption and performance.

Aiming at the problems of poor real-time performance, high cost and large error in
previous methods, this paper designed a portable low-power real-time detection system
for gutter oil based on FPGA, as shown in Fig. 1. In view of the discrimination error caused
by a single feature in previous portable detection, we added multiple data dimensions.
A machine learning algorithm is introduced to enhance the accuracy of discriminant
classification in the case of multi-dimensional data. In addition, all processing operations
are completed locally, and the final discriminant classification results are output directly,
rather than sending pre-processed data to the high-performance processor to complete the
operation. Considering the cost and limited hardware resources of the low-power platform,
we further explored the k-Nearest Neighbor accelerator using approximate multiplier to
realize the classification and detection of gutter oil. The above functions are realized by
FPGA and are compared with other embedded platforms (such as Raspberry Pi). Our main
contributions are as follows:
1. A flexible detection system for gutter oil is proposed for the first time based on

multi-dimensional features and machine learning.
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2. A series of classifiers based onmachine learning algorithms are used to comprehensively
analyze the multi-dimensional features of gutter oil.

3. An approximate multiplier is proposed based on Intel FPGA platform to save the
hardware multiplier and LUT resource consumption in the design process.

4. The classification model k-NN is deployed flexibly on FPGA platform to realize the
local classification of oil as well as the detection of gutter oil.

5. The dataset, 3D modeling file for the detector, and the related source code have been
made public to help spark progress in the field of food safety testing, and it can also be
transferrable to the design of other multi-disciplinary embedded systems.
The rest of the paper is organized as follows: ‘Related work’ reviews relevant literature.

‘Methods’ introduces our research methods in a detailed manner, including our research
object, feature acquisition, feature selection and the comparisons between differentmachine
learning classifiers. ‘Hardware implementation of the system’ gives a detailed description
of the proposed approximate multiplier. How we implemented the classifier on FPGA
and how the system works are explained in ‘The design of approximate multiplier and the
deployment results’. In ‘Results and discussion’, we analyzed and evaluated the system in
the aspects of performance, resource, and power consumption. Finally, in ‘Conclusions’,
we conclude the paper.

RELATED WORK
Just as mentioned in the ‘Introduction’, existing gutter oil detection methods are based
on single feature dimension. However, in actual gutter oil detection environments, the
mixing of different kinds of oil (Ng et al., 2015), the addition of cooking seasonings
(Tokiko Nakayama, 1998) and other external factors make the process even harder. Similar
problems exist in the identification of adulterants in edible oils. Instead of single-feature
dimension, the researchers proposed multi-feature detection and greatly improved the
results.

Giacomelli, Mattea & Ceballos (2006) tested the ability of four principal components,
including FA composition, tocopherol levels, CIF (Commission Internationale de
l’Eclairage) parameters, and photometric color index in the analysis of edible oils. Data
processing algorithm is then implemented on the four-feature original datamatrix to classify
different vegetable oils. Zhang et al. (2014) proposed a highly effective approach to identify
oil authenticity by analyzing the proportions of various fatty acids components, such as
caprylic acid, capric acid, lauric acid, and 25 other fatty acids. They further proposed the
one-class partial least squares classifier (Zhang et al., 2015) for the identification of peanut
oils and the high-precision detection of edible oil adulteration with adulterants even less
than 4%.

Thus, based on existing relevant literature, our design draws on both multi-feature
detection and their subsequent evaluation process, to the detection of gutter oil.
Furthermore, there is hidden correlation under multiple features, so machine learning
algorithm can achieve high performance with less feature extraction requirements (Wang
et al., 2020b). This is also the reason why machine learning algorithms have been widely
used to solve multi-feature problems in various fields.
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Liakos et al. (2018) reviewed and concluded that the farming efficiency can be improved
by machine learning methods based on multi-sensor’s data. And the works analyzed were
categorized in crop management, livestock management, water management, and soil
management. The framework is able to produce fast and precise results for simple and
compound sentences. Lim et al., (2020) presented a machine learning method to uncover
fatty acid patterns discriminative for ten different plant oil types and intra-variability.
Moreover, they present a supervised end-to-end learning method that can be generalized
to oil composition of any given mixtures. These methods got 50th percentile absolute error
between 1.4–1.8% and a 90th percentile error of 4–5.4% for any 3 kinds of oil mix up.

According to the application of the abovemachine learning algorithms, it can be deduced
that the machine learning algorithm brings better results to the problems of multiple data
dimension. However, the more features, the more the system needs to compute. Hence
most of the tasks are completed in the cloud by general-purpose processors and GPUs with
high computing power. It requires a large amount of communication time for the IoT edge
terminals (Gubbi et al., 2013), and evidently not suitable for our application scenario. In
order to detect gutter oils on the spot and in real time, machine learning algorithms should
be deployed to an edge device becomes the central problem to be addressed.

One kind of typical IoT end-point device is the microcontroller unit (MCU). Sakr et
al. (2020) investigated machine learning on mainstream microcontrollers and then tested
the ability of serial STM MCUs to run machine learning algorithms. Four algorithms
were tested, artificial neural network (ANN), decision tree (DT), k-Nearest Neighbors
(k-NN), and support vector machine (SVM), with an accuracy above 80% and low power
consumption. Ge et al. (2019) implemented a convolutional neural network on FPGA with
a Cortex-M3 IP core for image processing. In order to reduce latency, accelerators are
designed to be parallel, which further improves its comprehensive performance.

Based on current social context and past research experiences, we first propose a
multi-feature machine learning algorithm in the field of gutter oil identification. And then
we deployed it to an edge device for on-site detection. Hope it sets the foundation and
provides valuable references for future works.

METHODS
This section mainly explains our research object, feature acquisition, feature selection and
the chosen machine learning algorithm.

Research object
The quality of data greatly affects the accuracy results of machine learning algorithms (Xie
et al., 2018), so we carefully chose our research object and conducted the following data
acquisition (will be explained in detail in ‘Feature acquisition and preliminary analysis’).
The research object of this paper is a variety of oils, including gutter oil, chili oil, soybean
oil, rapeseed oil, peanut oil and olive oil. With the purpose of simulating real detection
environment and different cooking methods, we mixed different types of oils and added
different reasoning, adding to the richness of our research object. These oil samples are
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Figure 2 Mixing methods of different oils. (A) Group 1 oils; (B) Group 2 oils; (C) Group 3 oils; (D)
Group 4 oils.

Full-size DOI: 10.7717/peerjcs.774/fig-2

used for subsequent feature acquisition to form the dataset used in the machine learning
algorithm.

The two gutter oil samples are legally acquired from the Food Safety Administration in
Fujian Province and FuzhouMarket Supervisory Authority, and they are reported to be the
most representative and generalizable ones. Apart frommixing different oils, we also added
seasoning that are commonly used in Chinese food, with the quantity they are normally
used. They are 5 g sugar, 3 g salt, 2 g monosodium glutamate, 2 g chicken essence, 5 g soy
sauce and 10 g vinegar. (Sethi, Chauhan & Anurag, 2017; Wang et al., 2020a; China Daily,
2012; China Daily, 2014; China Daily, 2021) Our study involved in total 3,600 different oils
and was made up of 4 groups. There are 15 oils in Group 1, 210 oils in Group 2, 225 oils
in Group 3, and 3,150 oils in Group 4. We respectively refer to them as pure oil, pure oil
with seasoning, mixed oil, and mixed oil with seasoning, as illustrated in Fig. 2.

In Group 1, as shown in Table 1, there are in total 15 pure oils, 2 gutter oil samples
and 13 oil samples chosen from 5 types of cooking oils (chili oil, soybean oil, rapeseed oil,
peanut oil and olive oil). 4 common brands of chili oil are selected as our sample because
this type of oil contains a large amount of capsaicin, which is also an important indicator
of gutter oil detection (Tian et al., 2018). Hence taking into account more chili oil will
effectively improve the generalization ability of the whole system. The other oils (soybean
oil, rapeseed oil, peanut oil, olive oil) are themost common edible oils used in daily cooking
(Shen et al., 2018). The 15 kinds of pure oils are labeled into 6 kinds accordingly.

Group 2 is derived from Group 1 pure oils and there are in total 225 samples as listed in
Table 2. We take 25 g of each Group 1 pure oils and respectively add seasonings to them.
Based on Chinese cooking habits (Pu et al., 2019), four seasonings are selected from the
total of six: 5 g sugar, 3 g salt, 2 g monosodium glutamate, 2 g chicken essence, 5 g soy
sauce and 10 g vinegar. Therefore, there are 15 combinations of seasonings to be added to
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Table 1 Group 1 oils.

Oil type Label Size Total number

gutter oil 2
capsicol 4
soybean oil 2
colza oil 2
peanut oil 3

pure
oil

olive oil 2

15

Table 2 Group 2 oils.

Oil type Label Size Total number

gutter oil 30
capsicol 60
soybean oil 30
colza oil 30
peanut oil 45

pure
oil
with
seasoning

olive oil 30

225

pure oils each time as shown in Formula Eq. (1).

C4
6 =

6!
4!(6−4)!

= 15 (1)

For each oil in Group 1 (15 oils), there will be 15 different combinations of seasonings,
so a total of 225 oils (15 × 15) are obtained. And they are labeled in six types just as in
Group 1 oils. The reason why we mix seasoning with pure oils is that in field tests, the
testing oils are normally used cooking oils collected from food scraps. In this way, various
cooking ingredients should be present in testing samples.

Group 3 contains 210 oils, they are obtained bymixing two pure oils (15× 14), as shown
in Table 3. The reason why these mixed oils are taken into the research object is that law
enforcement officials reported that some businesses mix edible oils and gutter oils in actual
tests to get away with a single-feature detection (Wong, 2020). We set the mixing ratio at
80%:20%, because according to past experiences of authorities, gutter oil is usually mixed
with edible oils with more than 30 percent to reduce cost and to avoid detection. In our
system, we decided to raise the detection to a higher standard, detecting adulterated oils
even when gutter oil is less than 20%. The oil will be labeled as gutter oil as long as gutter
oil is mixed into the sample. The other samples are labeled according to the 80% part of it
(for example, a mixture of 80% chili oil and 20% soybean oil is labeled as chili oil).

Group 4 oils are mixed oils with seasoning, and it consists of 3,150 samples as shown in
Table 4. It is obtained by adding seasoning just as introduced in Group 2 oils. The same
15 combinations of seasonings are added by the same amount to each 25 g Group 3 mixed
oil. Therefore, there are in total 210×15= 3150 different oils. And this group of oils is the
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Table 3 Group 3 oils.

Oil type Label Size Total number

gutter oil 54
capsicol 48
soybean oil 24
colza oil 24
peanut oil 36

mixed
oil

olive oil 24

210

Table 4 Group 4 oils.

Oil type Label Size Total number

gutter oil 810
capsicol 720
soybean oil 360
colza oil 360
peanut oil 540

mixed
oil
with
seasoning

olive oil 360

3,150

closest to the actual detection samples among all four groups, as different oils are usually
mixed together with different seasonings.

Feature acquisition and preliminary analysis
The features should be significant enough to reflect the differences between various types
of oil. As our ultimate goal is to design a low power consumption, low-cost and portable
gutter oil system, the process of feature acquisition should be simple and convenient. For
this reason, we consulted a large number of literatures, and based on the portable sensors
available in the market, we chose PH0-14 (Hussin, Othman & Tahar, 2019), DJS-1C (Cai
et al., 2006), DOM-24 (https://www.atago.net/product/?l=en&f=products-dom-top.php),
P3-101 (https://i-item.jd.com/10021382704123.html) to collect pH value, peroxide value,
electrical conductivity value and refractive index. Considering that data collection in these
previous studies was completed under pure oil samples (Turrini, Zunin & Boggia, 2021),
we test the usability of the above sensors and conduct preliminary feature analysis with the
above four types of feature data on the Group1 research object (Pure Oil).

pH values
Gutter oil is usually found in a high percentage of animal fats and bleach, which usually
lowers the pH value (Kuuluvainen et al., 2015). PH value sensors (pH 0–14) were used to
detect the pH value of 15 pure oil samples selected from 6 different oil types at 25. The pH
values of the two gutter oil samples are 3.93 and 8.85, not in the range of normal cooking
oils (6.58–7.17). The former one, 3.93, is consistent with the results of previous studies
that gutter oil normal has lower pH value. However, the latter 8.85, is obtained by adding
excessive alkaline additives. This is probably because illegal traders wanted to lift the pH
value but tried too hard (Lu &Wu, 2014).
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Table 5 pH Value of different oils at different temperature.

Oil type 25 ◦C 60 ◦C

Gutter oil 1 3.93 3.38
Gutter oil 2 8.85 9.21
Capsicol 1 5.77 5.80
Capsicol 2 6.12 6.16
Capsicol 3 5.98 5.97
Capsicol 4 6.17 6.24
Soybean oil 1 5.94 5.90
Soybean oil 2 5.10 5.12
Colza oil 1 6.99 7.00
Colza oil 2 7.02 7.14
Peanut oil 1 4.98 4.88
Peanut oil 2 4.55 4.50
Peanut oil 3 4.70 4.67
Olive oil 1 5.71 5.73
Olive oil 2 5.51 5.55

In addition, temperature has an impact on the pH value of cooking oil (Yang, Qin &
Li, 2002), so we need to take it into account. In most previous studies, the upper limit
temperature of the test was set at 55 ◦C 65 ◦C (Ariaeenejad et al., 2018; Fu et al., 2010). In
this paper, instead of acquiring pH value at 25 ◦C, we took the average and set the upper
measuring temperature after heating at 60 ◦C. According to the data in Table 5, it can be
found that the pH value of cooking oil does not change significantly with the increase in
temperature, while the change of gutter oil is relatively large as the impurities in it are more
sensitive to changes in temperature.

Conductivity
Fifteen pure oil samples fromGroup 1were heated in a water bath. N-hexane andDeionized
water were added to the oil samples at different bath temperatures, and the mixture was
continuously oscillated to ensure mixing (Ortega et al., 2019). Then the aqueous phase
can be separated and separated through communicators. Conductivity sensor(DJS-1C)
was used to measure the conductivity value of its aqueous phase. The average value of oil
samples of the same kind was taken, as shown in Fig. 3. It can be found from the data in
Fig. 3 that the increase of temperature can effectively reflect the difference between oils
through the conductivity value. Therefore, electrical conductivity can be regarded as one of
the distinguishing features of gutter oil. Compared with other oil samples, the conductivity
value and change rate of gutter oil are generally higher, and the difference increases with
the rise of temperature. But after reaching a certain temperature, the change slows down,
because the impurities or ions in the oil are limited. On the other hand, according to the
latest research (Wang et al., 2019; Okafor & Nwoguh, 2019), there is a hidden relationship
between the variation of conductivity at different temperatures and the quality of oil.
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Figure 3 The conductivity of various kinds of oil at different temperature.
Full-size DOI: 10.7717/peerjcs.774/fig-3

Therefore, the difference of conductivity at different temperatures can also be used as a
distinguishing feature.

Considering that the water bath heating will consume a lot of time and the change
will slow down after the temperature rises, we set the upper limit of the water bath
temperature at 60 ◦C just the same as the temperature we set for the pH data collection.
Finally, conductivity value at 25 ◦C conductivity value at 60 ◦C and the conductivity value
difference between 25 ◦C and 60 ◦C are selected to be candidate features.

Peroxide value
A large amount of peroxide will be produced in cooking oil after heating, so the peroxide
value can be used as a distinguishing feature of oil detection (Oishi et al., 1992; ISO
27107:2008, 2008). DOM-24, a special sensor for peroxide value measurement, was used in
the experiment. The peroxide value of different types of oils at 25 ◦C and 60 ◦C are shown
in Fig. 4. It can be seen from the figure that the peroxide value of gutter oil is relatively high,
even at 25. The reason is that gutter oil is used repeatedly, the content of decomposable
oxides in gutter oil is less than that in cooking oil under same temperature.

And after water bath, the peroxide value of all oil samples increases. While the peroxide
value of normal cooking oil shows great differences before and after the heating, gutter oil
has no great value changes. Due to this experimental results and the previous conductivity
value difference, we proposed to introduce the peroxide value difference between 25 ◦C
and 60 ◦C.

Finally, Peroxide Value at 25 ◦C, the peroxide value at 60 ◦C and the difference between
the peroxide value at 25 ◦C and 60 ◦C are selected to be the candidate features.

Refractive index
Refractive Index is a simplified parameter in the spectrum method and can also be applied
to measure the quality of cooking oil (Balestrini et al., 2018). Using P3-101 type refractive
index sensor, the refractive index value of oil samples to be tested can be obtained directly.
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Figure 4 Comparison chart of peroxide value of different oil samples. The blue bar represents the per-
oxide value at room temperature (25 ◦C), and the orange bar represents the peroxide value when heated to
60 ◦C by water bath.

Full-size DOI: 10.7717/peerjcs.774/fig-4

Table 6 The candidate features.

Feature types Specific features

pH value pH value at 25 ◦C pH value at 60 ◦C
Conductivity value conductivity value at 25 ◦C conductivity value at 60 ◦C,

conductivity value difference Between 25 ◦C and 60 ◦C
Peroxide value peroxide value at 25 ◦C peroxide value at 60 ◦C, peroxide

value difference between 25 ◦C and 60 ◦C
Refractive index refractive index at 25 ◦C

At 25, it was found that the values of 15 pure oil samples to be tested were all between
1.4713 and 1.4768. The value of gutter oil is below 1.4730.

The value of refractive index shows no significant changes with the increase in
temperature (Winkler, Proietti & Knoche, 2018), so only the refractive index at 25 ◦C is
considered to be one of the candidate features.

The selection of specific features
Based on the data obtained by the above mentioned sensors and the preliminary analysis,
we listed nine specific candidate features out of four main feature types as shown in Table 6.
The data of these nine features obtained as well as their corresponding labels from the
dataset of our experiment.

Through the above operation and preliminary analysis, we finally selected the pH value
at 25 ◦C, the peroxide value at 25 ◦C, conductivity value at 25 ◦C, the conductivity value
at 60 ◦C, the difference between 60 ◦C and 25 ◦C, the peroxide value between 60 ◦C and
25 ◦C, and the refractive index at 25 ◦C as the candidate features as shown in Table 6. In
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Figure 5 The parallel coordinates plot of the feature dataset. ‘‘25ph’’ refers to the pH value at 25 ◦C,
‘‘60conduc’’ refers to the conductivity value at 60 ◦C, ‘‘dvconduc’’ refers to conductivity value difference
between 25 ◦C and 60 ◦C, ‘‘25ox’’ refers to the peroxide value at 25 ◦C, ‘‘dvox’’ refers to the peroxide value
difference between 25 ◦C and 60 ◦C, and ‘‘reindex’’ refers to the refractive index at 25 ◦C.

Full-size DOI: 10.7717/peerjcs.774/fig-5

particular, the peroxide value difference between 25 ◦C and 60 ◦C is a feature inspired by
conductivity value difference.

The nine-feature data is visualized through a Parallel Coordinates Plot (Inselberg, 1985)
as shown in Fig. 5. A parallel Coordinates plot can be used to represent the independent
effect of each feature on target prediction. The specific analysis is based on two principles:
1. Whether the broken lines of the same color are concentrated. If the broken lines of
the same color are concentrated in a certain feature and there is a certain space between
different colors, it indicates that this feature is of great help to predict the label category. 2.
If lines are disordered and colors are mixed on a feature dimension, it is more likely that
this attribute is of no value for tag category determination.

Since our ultimate goal is to make a low power and low-cost gutter oil detection system,
the algorithm should not be too complicated. Therefore, five groups of popular and simple
supervised classifiers, including ANN, DT, k-NN, RF and SVM are selected to further
evaluate each feature of 3600 oil samples. On the PC side, based on Python, each feature
is respectively trained by five classifiers with the scikitlearn machine learning library.
Algorithm-specific Configuration Parameters are set by default. For the dataset, we divided
the training set and testing set by the ratio of 6:4. And k-fold cross validation was performed
with the default cv value (3).

Figure 6 shows the accuracy results of each feature under different classifiers. The
red line indicates the level of average accuracy of the nine candidate features. Although
machine learning algorithm cannot achieve satisfactory results, the classification accuracy
of all features is less than 70% . Therefore, the multi-dimensional feature is put forward
as the input for the classification and discrimination of gutter oil. Considering that the
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Figure 6 Comparison chart of accuracy of different classifiers. ‘‘25 ph’’ refer to the pH value at 25 ◦C, ‘‘60 pH’’ refer to the pH value at 60 ◦C,
‘‘60conduc’’ refer to the conductivity value at 60 ◦C, ‘‘dvconduc’’ refer to the conductivity value difference between 25 ◦C and 60 ◦C, ‘‘25 ox’’ refer
to the peroxide value at 25 ◦C, ‘‘60 ox’’ refer to the peroxide value at 60 ◦C, ‘‘dvox’’ to the refer peroxide value difference between 25 ◦C and 60 ◦C,
and ‘‘reindex’’ refer to the refractive index.

Full-size DOI: 10.7717/peerjcs.774/fig-6

Table 7 The accuracy results of different sets of features on different models.

Feature ANN DT k-NN RF SVM AVE

dvcon+ 60ox 0.8275 0.7806 0.8331 0.8267 0.8418 08219
dvcon+ 60ox+ 25ox 0.9483 0.9587 0.9571 0.9626 0.9571 0.9568
dvcon+ 60ox+ 25ox+ 60con 0.9420 0.9750 0.9729 0.9674 0.9634 0.9641
dvcon+ 60ox+ 25ox+ 60con+ dvox 0.9515 0.9777 0.9849 0.9682 0.9658 0.9696
dvcon+ 60ox+ 25ox+ 60con+ dvox+ 25conduc 0.9404 0.9769 0.9809 0.9682 0.9674 0.9668
dvcon+ 60ox+ 25ox+ 60con+ dvox+ 25con+ reindex 0.9531 0.9777 0.9817 0.9682 0.9658 0.9693
dvcon+ 60ox+ 25ox+ 60con+ dvox+ 25con+ reindex+
25pH

0.9369 0.9777 0.9905 0.9690 0.9626 0.9673

dvcon+ 60ox+ 25ox+ 60con+ dvox+ 25con+ reindex+
25pH+ 60pH

0.9348 0.9769 0.9928 0.9706 0.9603 0.9671

25pH+ 25con+ 25ox+ reindex 0.8839 0.8943 0.9205 0.8649 0.8482 0.8824

ultimate goal is a low-power and low-cost gutter oil detection system, limiting the number
of input features can reduce the system’s computational burden, thus achieving the savings
of operation time and power consumption.

In order to seek a balance between accuracy and input dimensions, we gradually
increased the number of input features in the classifier and tested the performance of the
eight sets of features. The features are added to the classifier based on their accuracy under
single feature dimension, and we recorded each accuracy result obtained in the operation.
The results are shown in Table 7 from row 1 to row 8. According to the data in the table,
it can be found that when the feature dimension increases, the classification accuracy
increases accordingly. And it’s noteworthy that when there are four input features (row 3),
dvconduc+60ox+25ox+60conduc, adding new features no longer has an edge in increasing
accuracy.

In addition, considering that the heating process takes time in real detection
environment, we additionally conducted a multi-feature input classification training
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A B C D

HGFE
Figure 7 T-Distributed Stochastic Neighbor Embedding (T-SNE) for different sets of features. (A) Single-feature test, (B) two-feature test, (C)
three-feature test, (D) four-feature test, (E) five-feature test, (F) six-feature test, (G) seven-feature test, (H) eight-feature test.

Full-size DOI: 10.7717/peerjcs.774/fig-7

for all the features under 25 ◦C (25pH, 25conduc, 25ox, reindex), to see if the model can
achieve a satisfactory result even without heating. However, as shown in Table 7 row 9,
the four features obtained at room temperature is not good enough. Its accuracy is 5.24%
lower than that of another four-feature input dvconduc+60ox+25ox+60conduc (row 3).

We further used T-Distributed Stochastic Neighbor Embedding (T-SNE) to measure the
clustering result of different sets of features as in Fig. 7. T-SNE is a nonlinear technology
that preserves the neighborhood relationship between data (Maaten, 2014), it reduces the
dimension of the multi-dimensional features and can better visualize the results. It can
be proven that when the feature dimension is 4 or more, the clustering result is already
considerable. Further increasing the feature dimension will not bring significantly better
results. Therefore, we finally choose to adopt dvconduc+60ox+25ox+60conduc, and we
believe that they are more than sufficient to ensure the correctness of the classification and
will not put too much pressure on the resource and power consumption.

Our goal is to design a low-power and portable device, therefore we need to make the
most use of power and area by adopting the most effective features. Moreover, to save
data acquisition and processing time, we finally chose four features out of the nine specific
features as the input of our classifier, including conductivity value difference between 25 ◦C
and 60 ◦C, peroxide value at 25 ◦C, peroxide value at 60 ◦C, and peroxide value difference
between 25 ◦C and 60 ◦C.

Model selection
This paper proposes a multi-feature input machine algorithm to classify gutter oil based
on four features: conductivity difference between 60 ◦C and 25 ◦C, peroxide value at
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Table 8 Relevant parameters of confusionmatrix.

Type Gutter oil Capsicol Soybeanoil Colzaoil Peanutoil Oliveoil

TP TP1 TP2 TP3 TP4 TP5 TP6

FN FN1 FN2 FN3 FN4 FN5 FN6

FP FP1 FP2 FP3 FP4 FP5 FP6

25 ◦C, peroxide value at 60 ◦C, peroxide value difference between 25 ◦C and 60 ◦C. This
section explores the performance between classifier ANN, DT, k-NN, RF, and SVM to
determine the final deployed classifier. Accuracy is usually an important index to evaluate
the classification performance, but there will be some deviations when dealing with
unbalanced data sets (Le, 2019). In this paper, other evaluation indexes are also introduced
to jointly serve as the evaluation of classifiers. Table 8 shows relevant parameters used to
evaluate measures based on confusion matrix statistics.

For the calculation of three basic evaluation parameters, including Precision, Recall
and F1-score (Le et al., 2021), we introduced the weight parameter w according to the
proportion of samples to reduce the operation error of the unbalanced dataset. The
corresponding operation is as shown in Eqs. (2)–(4).

Precision =
6∑

i=1

(
wi×

TPi
TPi+FPi

)
(2)

Recall =
6∑

i=1

(
wi×

TPi
TPi+FNi

)
(3)

F1Score =
2× Precision × Recall
Precision + Recall

(4)

Kappa is an important metric, especially in terms of unbalanced data sets (Ul Haq Tahir
et al., 2019). It measures the result of the classifier from the numerical value. Theoretically,
its value range is [−1,1], and the paper rescale to [0,1]. The greater the Kappa value,
the better the classification performance of the model. We assume that all the predicted
numbers are N , then Kappa Definition is given in Eq. (5):

Kappa =
P0−Pe
1−Pe

(5)

where

P0=
∑6

i=1TPi
N

(6)

Pe =
∑6

i=1[(TPi+FPi)×(TPi+FNi)]
N ×N

(7)
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Table 9 Difference classifiers performance.

Evaluationmetrics ANN DT k-NN RF SVM

Accuracy 0.9420 0.9750 0.9729 0.9674 0.9634
Precision 0.8695 0.9713 0.9741 0.9706 0.9669
Recall 0.8657 0.9706 0.9730 0.9674 0.9634
F1-score 0.8664 0.9708 0.9731 0.9678 0.9639
Kappa 0.8349 0.9638 0.9668 0.9600 0.9551
Hamming Loss 0.1343 0.0294 0.0270 0.0326 0.0366

Hamming Loss can also be used to evaluate the performance of multi-classification
models, and its value represents the proportion of misclassification tags (Park & Read,
2019). This is a loss function, so the optimal value is zero. The number of predicted
samples is denoting N , and the number of labels is denoting M (6 in this paper), then
hamming-loss definition is given in Eq. (8)

Hammingloss (y,ŷ)=
1

N ×M

N∑
i=1

M∑
j=1

XOR
(
yi,j,ŷl,j

)
(8)

y and ŷ are respectively actual class label and predicted class label.
In the case of 3,600 oil samples, the training set and testing set are divided by a ratio

of 6:4, and 5 different classifiers are tested based on the above evaluation indicators. The
numerical results of relevant indicators on the final statistical test set are shown in Table 9.
Although RF has the highest accuracy rate, k-NN has a better performance in unbalanced
data when combined with other assessment indicators. Therefore, k-NN is used as the
classification model for final deployment.

In addition, in order to better evaluate the performance of the following classifiers,
the Receiver Operating Characteristics (ROC) and Area Under Curve (AUC) are used as
another two indexes, as shown in Fig. 8 (Le et al., 2020). As k-NN, again, demonstrated its
strength, it is selected to be the classifier model for the final deployment.

HARDWARE IMPLEMENTATION OF THE SYSTEM
Hardware Deployment for Overall Functionality
After the selection of features and the comparison of models, specific functional design can
be carried out based on relevant results. The whole system completes the data acquisition
and classification operation based on the device shown in Fig. 1. The specific process is
shown in Fig. 9. Before the operation of the system, the high temperature resistant container
1 shall be filled with pure water to provide a water bath environment, and the oil sample
to be tested shall be added to the reaction tube 4. After that, the system shall be started.
Firstly, the water bath is heated by electric heating bar 5, while the temperature sensor
6 monitors the water bath temperature in real time. When the water bath temperature
reaches 25 ◦C, relevant sensor 7 (the specific model is described in ‘Feature acquisition
and preliminary analysis’) is used to complete the collection and cache of the peroxide
value, and electrical conductivity value under 25 ◦C into THE RAM of FPGA. After that,
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Figure 8 Receiver operating characteristic curve for different machine learning classifiers.
Full-size DOI: 10.7717/peerjcs.774/fig-8

the water bath was heated to 60 ◦C. At this point, the peroxide value under 60 ◦C was
collected through sensor 7, and the difference between the peroxide values before and after
was calculated into THE RAM of FPGA. At the same temperature, after the peroxide value
was collected and calculated, N-hexane and deionized water were added to reaction tube
4. As described in ‘Feature acquisition and preliminary analysis’, the container needs to be
oscillated to achieve full mixing. Here, the whole container is oscillated by means of the
stepper motor 9 and the corresponding transmission mechanical structure 10, 11. After the
oscillation, open the pressure valve 2 and complete the acquisition of water phase through
communicator 3. The 60 ◦C conductivity was measured using the conductivity sensor, and
the difference between the front and rear conductivity was calculated. The peroxide value
at 25 ◦C, peroxide value difference, the conductivity value at 60 ◦C, and the conductivity
difference are fed into the k-NN module for oil classification.

The above process of hardware control, data acquisition and data calculation are all
completed in FPGA. Hardware control can be realized by outputting corresponding signals
through IO pins, while sensor data acquisition is all realized by ADC. The implementation
of the core machine learning algorithm is described in detail here.

FPGA Deployment of k-NN
In order to realize the low power k-NN classifier, we made a balance between parallel
extensibility and pipeline to reduce the complex operation process as much as possible.
Data is allocated and scheduled through Finite State Machine (FSM) to maximize the reuse
of computingmodules (Attaran et al., 2018). As shown in Fig. 10, the FPGA implementation
is explained in detail as follows.
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Figure 9 Flowchart of the detection process.
Full-size DOI: 10.7717/peerjcs.774/fig-9

Euclidean distance is selected as the distance function:

d =
4∑

i=1

(
xi−yi

)2 (9)

There are 600 training samples and labels in the ROM block. As shown in Fig. 10B, it
scheduled up to four parallel multipliers. Hence, there were two clock cycles to calculate
the Euclidian distance (di) that from input features and training samples. Next, the di
was inputted into the sort network and label finder module (SNLF) that was showed in
Fig. 10C. The mux, comparator, and cache registers constitute the SNLF. The mux was
used to control di transmit in different clock cycles. The comparator was used to compare
with new di and storing dis in cache registers. There were 14 cache registers (Ox and Ex)
used for storing di. Specifically, Ox registers were used to store the 7 smallest dis in ‘odd’
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Full-size DOI: 10.7717/peerjcs.774/fig-10

clock cycles. Ex registers were used to store the 7 smallest dis in ‘even’ clock cycles. The
ping-pong cache was used to rank the di in different clock cycles for the SNLF, as shown in
Fig. 9A. From those dis, 7 could be identified to be the smallest. Initially we set the register’s
value to the maximum. The di value compared with each Ox’s value when clock cycle
was jth (j = 3,5,7,...) period. It would be dropped, if di value was bigger than ever Ox’s
values in next period. Otherwise, di value was inserted into Ox and the biggest value in 7
Ox’s would be dropped. Similarly, Ex’s values were updated in (j+1)th (j+1= 4,6,8...)
period. The cycles were repeated until all of 600 training samples had been calculated with
input features. Finally, comparing all the 14 registers and getting the smallest 7 value from
them. The result was voted from the smallest 7 value of registers.

THE DESIGN OF APPROXIMATE MULTIPLIER AND THE
DEPLOYMENT RESULTS
Among all kinds of operations involved in the deployment of k-NN classifier to FPGA,
multiplication operation is the most core. Most FPGAs achieve multiplication by calling
IP core or DSP module (Perri et al., 2020). However, there are no related modules on some
low-power and low-cost FPGA (Ullah, Nguyen & Kumar, 2020). Therefore, combined
with the low power consumption and low-cost design requirements in this paper, an
approximate multiplier is proposed according to the device features of Intel FPGA. The
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Figure 11 4 × 4 approximate multiplier implementation. (A) The architecture of 4× 4 approximate
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Full-size DOI: 10.7717/peerjcs.774/fig-11

above classifier can be provided to complete the corresponding multiplication operation,
and at the same time, the resource consumption caused by EDA’s direct multiplication
Module Instance can be reduced. This section describes the design and deployment results
of this approximate multiplier.

The design of approximate multiplier
In this paper, the approximate multiplier is realized by recoding some results in the
operation process. During the multiplication operation, the multiplier can be split, and the
corresponding partial results can be divided into partial product and advance digit, and
then the whole multiplication operation process can be completed by adding (Ullah et al.,
2018). Because of the split of multiplier in the process of operation, some results can be
encoded to enumerate the corresponding results, which is very suitable for LUT (look-up
table) structure.

The specific introduction of this approximate multiplier design process is chosen 4×4
approximate multiplier as an example. The 4×4 approximate multiplier consists of 4-input
LUT, 5-input LUT, and 6-input LUT. The 4-input LUT is a preliminary resource of Intel
FPGA. The 5-input LUT is composed of two 4-input LUTs and the 6-input LUT consists
of four 4-input LUTs. As shown in Fig. 11A, the p0 was obtained by n1n0×m1m0, and
the p1 was obtained by n3n2×m3m2. The p1 from shifting 2 bits and p0 were added to
produce part of productions (PPs). PPs were summed up to yield the result. Specifically, p0i
(i= 0,...,5) from PPs of p0, p1j(j = 0,...,5) from PPs of p1, and ppk(k= 0,...,7) from PPs
of 4×4 approximate multiplier. All PPs were performed by LUT with enumeration of all
possible permutations (initial value), shown in Table 10. The pp0 and pp1 were immediately
given by p00 and pp1. The pp2 from initial value without carry. The remaining PPs were
performed by 4 bits carry-lookahead adder as shown in Fig. 11B. The ri and gi (i= 0,...,2)
from initial value.

An 8×8 approximate multiplier was obtained by four 4×4 approximate multipliers as
shown in Fig. 12. The PPs of 4 bits (0 to 3) from the first 4×4 approximate multiplier (P0)
immediately, and the PPs of 4 bits (12 to 15) from the fourth 4×4 approximate multiplier
(P3) immediately. The remaining PPs were performed by summing all 4×4 approximate
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Table 10 Initial value and configuration for 4×4 approximate multiplier based on LUT.

LUT Input I5 I4 I3 I2 I1 I0 Init value (HEX) Ouput

Lut40 χ χ 1 1 m0 n0 8000 P00

Lut41 χ χ m1 m0 n1 n0 6aco P01

Lut50 χ m1 m0 n2 n1 n0 b4ccf000 P02

Lut60 m2 m1 n3 n2 n1 n0 c738f0f0ff000000 P03

Lut61 m2 m1 n3 n2 n1 n0 07c0ff0000000000 P04

Lut62 m2 m1 n3 n2 n1 n0 f800000000000000 P05

Lut42 χ χ m3 m2 n1 n0 6aco P11

Lut51 χ m3 m2 n2 n1 n0 b4ccf000 P12

Lut63 m3 m2 n3 n2 n1 n0 c738f0f0ff000000 P13

Lut64 m3 m2 n3 n2 n1 n0 07c0ff0000000000 P14

Lut65 m3 m2 n3 n2 n1 n0 f800000000000000 P15

Lut52 χ P11 P03 m2 n0 P02 ffeaea00 g0
Lut53 χ P11 P03 m2 n0 P02 007f7f80 r0
Lut43 χ χ 1 1 P12 P04 8000 g1
Lut44 χ χ 1 1 P12 P04 6000 r1
Lut45 χ χ 1 1 P13 P05 8000 g2
Lut46 χ χ 1 1 P13 P05 6000 r2
Lut47 χ χ 1 P02 m2 n0 7800 pp2

Figure 12 8×8 approximate multiplier implementation.
Full-size DOI: 10.7717/peerjcs.774/fig-12

multipliers without carry. The addition operation implemented on LUT with initial value.
Finally, we implement the k-NN with 8×8 approximate multiplier.

The deployment result of approximate multiplier
UsingVerilog hardware description language andprimitive, an 8×8 approximatemultiplier
was deployed to the Intel FPGACyclone 10LP 10CL006ZU256I8G devices which is targeted
on Intel Evaluation Kit. The results of the deployment are compared with the relevant
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Table 11 Approximate multiplier performance.

Design LUTs Delay (ns) Power (mW) PDP (pJ)

Proposed 109 4.72 0.90 4.248
LE-based IP 154 3.70 1.40 5.180
Perri et al. (2020) 116 4.15 1.11 4.607
Venkatachalam & Ko (2017) 101 5.11 0.86 4.395
Griffith (2020) 120 5.00 / /

Figure 13 Proportion of error effects of approximate multiplier.
Full-size DOI: 10.7717/peerjcs.774/fig-13

studies, as shown in Table 11. The approximate multiplier proposed in this paper is a
design based on the balance of area, performance and power consumption. Therefore,
although it is not the optimal design in the single dimension of area, performance and
power consumption, the proposed approximate multiplier has the optimal performance
in the comprehensive index PDP.

Figure 13 shows the Proportion of Error effects that is a well-adopted quality metric
(Rehman et al., 2016) proposed. It can be found that the design of approximate multiplier
proposed in this paper controls the errors within the finite size range and frequency.

RESULTS AND DISCUSSION
Results and analysis
The Intel Evaluation Kit with Intel Cyclone 10LP FPGA as the core serves as a portable
platform for low-power gutter oil detection. A driver for external sensors and a k-NN
machine learning kernel for feature classification were developed using Verilog. The
whole design is based on the design idea of highly parallel and highly pipelined, and an
approximate multiplier is designed for devices to further reduce power consumption and
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Table 12 Resources used by gutter oil detection system.

Resource & Performance Consumption

Approximate LE-based IP

LUTs 1,049 1,291
Registers 374 418
Memory (Kb) 19.20 19.20
DSP (Embedded Multiplier) 0 0
Max Freq (MHz) 200 220
Latency (µs) 4.775 3.982
Power (mW) 65.62 92.29

Table 13 Proposed gutter oil detection system performance.

Platform Processor Clock (MHz) Lantency (µs) Power (mW) PLP

STM32L496(baseline) Cortex-M4 80 4000 28.38 113520
Raspberry Pi 3B+ Cortex-A53 1200 8.971 1480 13277.08
Jetson Nano Cortex-A57 with Maxwell-based GPU 1430 0.342 2300 786.60
Rockchip RK3399 Pro Cortex-A72 with NPU 2000 0.362 2870 1038.94
Our Cyclone 10LP FPGA 200 4.775 65.62 313.34

resource consumption. Table 12 summarizes the results of the proposed gutter oil detection
system conducted by k-NN using an 8×8 approximate multiplier on Cyclone 10LP FPGA.
And for reference and comparison, a column of LE-based IP performance results is added.
While the accuracy of using the original LE-based IP is 97.29%, the classification accuracy
after deploying approximate multiplier is 97.18%. Moreover, the entire k-NN design saves
approximately 18.7% LUT and reduces 28.90% power consumption. It proves that the
design and introduction of approximate multiplier further strengthen the system to be
low-cost and low-power.

In order to further evaluate the performance of the proposed portable and low-power
waste oil detection system, several common embedded development platforms (Rockchip
RK3399 Pro, Jetson Nano, Raspberry Pi 3B+, STM32L496) were selected for comparison.
Rockchip RK3399 Pro uses Cortex-A72 as its processor core and 2.0 GHz as its main
frequency. It is packed with a special NPU module for machine learning. Jetson Nano is
cortex-A57 as the core, the main frequency is 1.43 ghz, with a 128-core NVIDIA Maxwell
based GPU. The raspberry comes with a 1.2 ghz Cortex-A53 core. STM32L496 is the
most common terminal of the Internet of Things, with Cortex-M4 as the core and 80MHz
working frequency. On Raspberry Pi and STM32L496, we used serial C language to perform
k-NN-based gutter oil detection (Hussin, Othman & Tahar, 2019). In order to perform
parallel processing on the GPU, we used PyCuda (Calabrese et al., 2020) on the Jetson
Nano platform to achieve parallel processing of k-NN (100 threads processing 600 training
data). On the Rockchip platform, the RK-NN-Toolkit tool is used to realize k-NN parallel
processing (Lan et al., 2020). Table 13 shows the comparison results for all platforms.
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Figure 14 Comparison of power latency production (PLP) for gutter oil detection.
Full-size DOI: 10.7717/peerjcs.774/fig-14

In terms of computing performance, Jetson Nano is the best among all platforms due to
the GPU’s high frequency multithreaded parallel processing capability. But in a portable
scenario, power and cost becomemore important: JetsonNano sells for $129, while Cyclone
10LP FPGA costs just $49. The power latency production (PLP) comparison between
all platforms is provided in Fig. 14, which can effectively evaluate the comprehensive
performance of the platform (A Kandhalu, 2010). It can be found that THE PLP of FPGA
implementation is greatly reduced compared with other platforms. To sum up, FPGA
solution, with the best PLP, provides programmability and low development cost, is the
best choice for portable and low-power gutter oil detection.

Discussion and further work
In this paper, a low-power portable detection system for gutter oil is proposed, which uses
multi-feature k-NN algorithm with an approximate multiplier deployment on FPGA. It
can complete oil classification much more accurately than traditional single dimension
detectors. In actual environment for oil detection, laboratory detection methods require
the oils to be purified beforehand, which makes the supervision work significantly lagged
behind and brings unnecessary economic costs.

Moreover, the multi-feature k-NN algorithm proposed in this paper can effectively
extract the hidden associations between different features and results, and the final
accuracy reaches 97.18%. Finally, the entire system is deployed on FPGA using approximate
multiplier, and it brings the best overall performance compared to other popular embedded
platform.

Although the proposed approach and deployment have excellent performance, there is
still room for further improvement. While the oil samples we used in this paper were mixed
and doped in order to simulate the real detection scene, increasing the samples of gutter oil
can help us further train the classifier. Apart from increasing test samples, doping gutter
oil with ratios lower than 20% would improve our exploration into the effectiveness of
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different features and may boost the detection results. However, due to many restrictions
beyond our control during the time when the study was conducted, we would add relevant
experiments and results in future works.

CONCLUSIONS
Gutter oil used in the catering industry has significant adverse impacts on people’s health
and even the society as a whole. Food Safety Administration achieves supervision by
sampling and testing oils used by local businesses. However, as gutter oil can be blended
with other complex chemicals, existing threshold-based single feature detection could not
satisfy the demanding actual detection environment where various interferences may be
brought in. In this paper, a portable and low-power gutter oil detection system is designed
using machine learning algorithms for the first time to our knowledge. And with our
original method that has multi features taken into account, it is much more comprehensive
and accurate than past portable detectors.

Based on relevant features including peroxide value and electrical conductivity that have
been experimentally proven to be effective, the machine learning classifiers are compared
and k-NN was selected for this task. Test results show that all the relevant evaluation
parameters perform well under complex detection environment, and the accuracy rate of
oil sample classification is up to 97.18%, much higher than previous studies.

Finally, relevant designs are deployed on FPGA, and the core k-NN design achieves
a balance between parallel scalability and pipeline to meet the demand of low power
consumption. An approximate multiplier is designed for the core multiplication operation,
which further reduces the power and resource consumption of the system. While the
accuracy of classification model is reduced by only 0.5%, the introduction of approximate
multiplier saves 18.7% of resource consumption and 28.9% power consumption. This
paper also compares and discusses various embedded IoT terminals to evaluate our design
in the aspects of power consumption and performance that offset each other. Experimental
results show that the performance of FPGA proposed in this paper is close to two times
of Cortex-A53, and PLP improves 2.5 times compared with embedded GPU platform.
Under this condition, the circuit resource consumption is only 1,049LUT, and precious
hardware multiplication resources are not used because of the introduction of approximate
multiplier, so it can fully meet the design requirements of low-power portable gutter oil
detection.
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