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Abstract: Cardiorenal syndrome (CRS) is described as primary dysfunction in the heart culminat-
ing in renal injury or vice versa. CRS can be classified into five groups, and uremic toxin (UT)
accumulation is observed in all types of CRS. Protein-bound uremic toxin (PBUT) accumulation is
responsible for permanent damage to the renal tissue, and mainly occurs in CRS types 3 and 4, thus
compromising renal function directly leading to a reduction in the glomerular filtration rate (GFR)
and/or subsequent proteinuria. With this decrease in GFR, patients may need renal replacement
therapy (RRT), such as peritoneal dialysis (PD). PD is a high-quality and home-based dialysis therapy
for patients with end-stage renal disease (ESRD) and is based on the semi-permeable characteristics
of the peritoneum. These patients are exposed to factors which may cause several modifications
on the peritoneal membrane. The presence of UT may harm the peritoneum membrane, which in
turn can lead to the formation of extracellular vesicles (EVs). EVs are released by almost all cell
types and contain lipids, nucleic acids, metabolites, membrane proteins, and cytosolic components
from their cell origin. Our research group previously demonstrated that the EVs can be related to
endothelial dysfunction and are formed when UTs are in contact with the endothelial monolayer. In
this scenario, this review explores the mechanisms of EV formation in CRS, uremia, the peritoneum,
and as potential biomarkers in peritoneal dialysis.

Keywords: extracellular vesicles; cardiorenal syndrome; peritoneal dialysis

Key Contribution: Extracellular vesicles (EVs) have been widely investigated for their role in
intercellular communication and as potential biomarkers; and could be a promising tool to improve
the quality of care in kidney disease patients. Thus, this review addresses the relationship between
these vesicles, cardiorenal syndrome, uremia and peritoneal dialysis.

1. Introduction

Extracellular vesicles (EVs) have been widely investigated for their role in intercellular
communication and as potential biomarkers, particularly in inflammatory pathological
conditions. Cardiorenal syndrome results from interrelated heart and kidney injuries,
which leads to an accumulation of uremic toxins in the body, especially with the progression
of chronic kidney disease (CKD) [1–3]. However, the participation of EVs in CRS has not
been fully elucidated. Clinical and in vitro studies have shown that uremic toxins induce
the formation of EVs [4–8]. In this review, we address the role of EVs in CRS, especially
their relationship with uremic toxins and kidney dysfunction. In addition, EVs from
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the peritoneal membrane in ESRD patients undergoing peritoneal dialysis are potential
biomarkers. We also discuss the classification of EVs and the main methods for isolating and
characterizing EVs, including electron microscopy, proteomics, lipidomics, transcriptome
and metabolomics analyses, Fourier transform infrared (FTIR), and Raman spectroscopies,
as well as possible use of EVs as biomarkers of cell injury and the therapeutic strategies to
avoid their formation.

2. Cardiorenal Syndrome: Role of Uremic Toxins (UTs) in Peritoneal Dialysis

CRS is a set of diseases with clinical and metabolic consequences triggered by acute
and/or chronic heart failure (CRS I and II) or acute and/or chronic kidney disease (CRS
III and IV) resulting in injury to the other organs (Table 1). Failure of both organs can also
occur simultaneously as a consequence of a systemic disease (CRS V). Despite the current
categorization of the CRS into these five groups, substantial overlap is observed between
the different types [9].

Table 1. Classification of cardio-renal syndrome.

Denomination Description

Type I Heart failure causing acute kidney injury

Type II Chronic heart failure causing chronic kidney disease

Type III Acute kidney injury causing acute heart disease

Type IV Chronic kidney disease causing chronic heart failure

Type V Systemic condition causing heart and kidney disease
Adapted from Ronco et al., 2018 [10].

Type 1 CRS is defined as acute cardiorenal syndrome, in which an acute cardiac insult
contributes to developing an acute kidney injury (AKI). Acute decompensated heart failure
(ADHF) is the most common cause of type I CRS with hemodynamic mechanisms playing
a major role in causing AKI [1]. Nevertheless, non-hemodynamic mechanisms have been
proposed as contributors to type I CRS, namely chronic inflammation and overproduction
of reactive oxygen species [11,12]. In addition, sodium uptake and water retention occurs
as a compensatory mechanism, but also contributes to renal congestion [1]. Its treatment
is based on drugs to restore the cardiac function, alleviate congestion and normalize the
excess reabsorbed sodium [13]. Kidney function in CRS type 1 is normally restored when
normal hemodynamics are recovered [14].

Type 2 CRS is characterized by chronic heart failure causing chronic kidney disease
(CKD). The underlying mechanisms involve chronic kidney hypoperfusion, increased
renal vascular resistance, overactivation of the SNS and RAAS, increased venous pressure,
volume overload, endothelial dysfunction and inflammation [12]. This subtype of CRS is
very common and has been described in up to 63% of patients with CRS in some reports [15].
The most common mechanisms believed to be involved in the development of type 2 CRS
are neurohormonal activation, renal hypoperfusion, venous congestion, inflammation and
oxidative stress [12].

Type 3 CRS is defined when an AKI event causes or contributes to developing acute
heart injury, such as an event involving renal ischemia and reperfusion injury (IRI) [16].
Ischemia and reperfusion injury (IRI) commonly follow the acute renal event. However,
the pathophysiology of the type CRS 3 is also complex and not completely understood, but
it is known for certain that it is multifactorial and associated with inflammatory processes,
oxidative stress, neurohormone secretion, hyperactivity of the SNS and RAAS, volume
overload, metabolic acidosis and electrolyte disturbances [12]. Similar to CRS type 1, type 3
has adaptive hemodynamic mechanisms to circumvent the systemic injury which can also
cause sodium retention and volume overload which contributes to heart disease [14].

Type 4 CRS is defined as a chronic reno-cardiac disease characterized by cardiovascular
impairment in CKD patients. CKD contributes to many cardiovascular diseases (CVD),
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being considered one of the most important risk factors [17]. There are a multitude of
interconnected factors within the mechanisms behind type 4 CRS. They include an essential
role of inflammation and oxidative stress, as well as the effects caused by the presence
of uremic toxins (UT) [18]. Other well described factors involved in the process are:
hyperphosphatemia, high parathyroid hormone (PTH) serum levels, vitamin D deficiency,
elevated fibroblast growth factor 23 (FGF23) plasma levels, in addition to the presence of
adenosylhomocysteine, hypervolemia, and anemia, among others. As CKD progresses,
this accumulation of phosphate increases FGF23, which is a direct mechanism in promoting
hypertrophy, remodeling, and contractile alterations in the heart [19–24].

Finally, type 5 CRS occurs as a consequence of a systemic disease as cardiac and renal
injuries occur simultaneously. Sepsis, diabetes, hepato-renal syndrome, immune disorders,
cancer, and more recently COVID-19, are examples of these conditions which can lead to
type 5 CRS [14,25]. Many of these alterations happen as an immediate response to systemic
damage stimuli which the body tries to combat [26]. Given the heterogeneity in the etiology
of the underlying systemic diseases associated to type 5 CRS, the mechanisms involved
in this CRS subtype are complex to summarize. The role of UT accumulation needs to be
elucidated in type 5 CRS, since it can be involved as a cause or can be caused by CKD [12].

UTs are compounds that accumulate in CKD plasma patients, leading to different
injuries in the organs compromising several biological functions, such as renal and cardio-
vascular function [27–29]. These compounds are divided into three main groups: water-
soluble, small and medium sized molecules, and protein-bound uremic toxins (PBUT).
Water-soluble (<500 Da) and medium (>500 Da) components do not bind to proteins [30];
while PBUTs are low molecular weight molecules which utilize proteins such as albumin
for transportation, and as a result of their size cannot be removed by the dialysis [2].

UT accumulation can be observed in all types of CRS [3,12,31,32]. Following renal
injury, the structural damage in the kidney compromises renal function resulting in a
reduction in GFR and/or subsequent increased proteinuria [2], this can cause an increase
in UT accumulation in the blood further compounding the functional and structural
deterioration of the kidneys and other organs [3]. Although it has been pointed out that
this accumulation of toxins causes a primary injury to the kidney, some studies have
suggest (i.e., Di Lullo et al.) that it could be considered a type 5 CRS since the uremic
compounds can also directly cause damage to the cardiac tissue, featuring a systemic
disease [3,12].

In addition, some studies have pointed out the role of creatinine, uric acid, inorganic
phosphate, and FGF23 regarding water-soluble and medium compounds and CRS. Cre-
atinine is a renal disease biomarker and uric acid accumulation is also associated with
the development of atrial fibrillation, heart failure, and hypertension, as well as RAAS
activation [31,32]. These compounds (creatinine and uric acid) are already being used as
biomarkers of CRS in the medical field, and their association with RAAS blockers is quite
important. Inorganic phosphate (Pi) accumulation is also connected to a high incidence
of CVD mortality observed in CKD patients [33,34]. This occurs as dialysis patients show
positive correlations of serum Pi x vascular calcification [35]. This calcification effect is
observed as some osteogenic genes are increased in smooth muscle cells after Pi stimula-
tion [36]. In addition to calcification, Pi also increases the risk of heart failure and systolic
dysfunction [33]. Neves et al. demonstrated that myocardial hypertrophy is followed by
hyperphosphatemia in a model of renal failure [37].

The accumulation of medium-sized UT also contributes to renal structural damage,
reducing the GFR and cardiac function [18]. Patients with advanced CKD present with low
GFR and 1000-fold elevated FGF23 levels [38]. This has adverse effects on the heart via an in-
dependent mechanism, promoting cardiac hypertrophy and contractile dysfunction [39,40].
The Pi and FGF23 levels appear to be inter-related by their mechanisms. The Pi levels
increase as soon as the renal function decreases, and plasma FGF23 concentration increases
due to significant changes in phosphate or serum PTH concentration. One study considered
FGF23 a secondary UT, since it only increases after phosphate accumulation [41]. There
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are relevant findings regarding Pi and medium-sized UT inducing hypertrophy of the
myocardium, hyperplasia of cardiomyocytes, and interstitial fibrosis and vessels [2].

The most damaging UTs in the blood of CKD patients are bound to serum albumin
(PBUT), evidenced by impaired dialytic function in these patients. Due to its difficult
removal by the dialysis membrane, these compounds can cause structural damage in
heart and kidney tissues as they accumulate. Their damage is mainly associated with
the loss of renal function and CKD progression [27,42]. Increased circulating levels of the
PBUT indoxyl sulfate (IS) and p-cresyl sulfate (PCS) are observed in patients with CKD.
In vitro, it was demonstrated that IS enhanced pro-inflammatory cytokine gene expression,
such as TNF-α, IL-6, and IL-1β, in a monocytic cell line [43]. Glomerular injury induced
by IS administration was studied to examine the interaction of podocyte injury. After
treatment with IS, Iichi et al. found that mouse podocytes exhibited a pro-inflammatory
phenotype, perturbed actin cytoskeleton, decreased expression of podocyte-specific genes,
and decreased cell viability, contributing to progressive glomerular injury [44] and to the
advancement of CRS type 4, for example. PBUT generally lead to arrhythmias, fibrosis,
hypertrophy and reduced anti-oxidative protein expression in cardiomyocytes [43,45,46].
The main examples of PBUTs are PCS and IS. The concentration of PCS in the blood of
healthy individuals is low but is increased in patients with ESKD. PCS accumulation has
been associated with compromised vascular injury, mortality, and activation of leukocyte
free radical production [47]. Increased levels of IS have been related to the progression
of CKD and development of CVD [48,49], along with the increased expression of adhe-
sion molecules in endothelial cells and oxidative stress that eventually leads to endothelial
damage [50–52]. Besides, Nakano et al. (2019) suggests that IS is able to induce immune dys-
function through activation of pro-inflammatory macrophages [53]. In addition, Kim et al.
(2019) demonstrated the interaction between the aryl hydrocarbon receptor (AhR), nuclear
factor kappa-light-chain enhancer of activated B cells (NF-κB) and the suppressor cytokine
signaling (SOCS) 2, which is important for the production of TNF-α in human macrophages
stimulated by IS [54].

According to the World Health Organization (WHO), CVD is the main cause of
death worldwide [55]. Almost 45% of these deaths have been observed in renal failure
patients. It is undeniable that the CRS studies have attracted curiosity and investment by
the pharmaceutical industry which increasingly seeks to maintain the quality of life of
CVD patients. Investment in new technologies has received much praise and increased
interest in recent years. Understanding the heart–kidney axis is fundamental to continue
discoveries in the medical field. Studying uremic toxins’ cellular and molecular effects may
elucidate new biomarkers and therapeutic targets in CKD.

Due to UT accumulation and CKD progression, end-stage patients require renal
replacement therapy (RRT) which includes renal transplantation, hemodialysis (HD), or
peritoneal dialysis (PD). HD and PD work by removing solutes, toxins, and water, restoring
electrolyte balance, and correcting acidosis. However, while HD is based on blood passing
through an extracorporeal circuit through vascular access, PD involves an exchange of
solutes and water between blood from the peritoneal capillaries and a solution instilled
into the peritoneal cavity through a catheter using the peritoneal membrane as the dialysis
surface [56].

PD is a high-quality and home-based dialysis therapy for patients with end-stage renal
disease (ESRD) and is based on the semi-permeable characteristics of the peritoneum [57].
PD has the advantage of ensuring greater freedom and independence to the patient [56].
As a continuous therapy, PD constantly removes solutes and water, allowing for a less
restricted diet compared to their counterparts on hemodialysis, and provides great preser-
vation of residual renal function, which is critical to the well-being and survival of the
patients [58]. However, long-term exposition to bioincompatible PD solutions, along with
the uremic state common to ESRD, results in dysfunction of the peritoneum, characterized
by chronic inflammation, fibrosis, and loss of dialysis and ultrafiltration capacity. Uremic
patients have an increase in the average thickness of the peritoneum and altered expression
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of proteins even before PD treatment, including transforming growth factor (TGF)-β and
vascular endothelial growth factor (VEGF), which is involved in structural changes in
the kidneys and peritoneum [59–61]. This suggests that uremic toxins themselves impact
the peritoneal membrane, and their effects are exacerbated by the chronic exposure to
bioimcompatible PD fluids along with recurrent cases of PD related infections. It has
additionally been shown that mesothelial cells show a progressive loss of the epithelial
phenotype as soon as PD starts and acquire myofibroblastic characteristics through an
epithelial–mesenchymal transition (EMT) [62]. Mesothelial cells that go through the EMT
process acquire a high migratory and invasive capacity, allowing them to invade subme-
sothelial stromal cells, which in turn contribute to peritoneal fibrosis, angiogenesis and
eventually technique failure (Figure 1) [63].
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Figure 1. Effects of uremic toxins (UT), dialysate, and peritonitis on mesothelial cells. Mesothelial cells show a progressive
loss of the epithelial phenotype as soon as peritoneal dialysis (PD) starts, and acquire myofibroblastic characteristics through
an epithelial–mesenchymal transition (EMT) and gain a high migratory and invasive capacity, contributing to fibrosis,
angiogenesis and subsequent peritoneum failure. Stressed or activated mesothelial cells can shed extracellular vesicles
which can be potentially used as biomarkers of damage and even dialysis efficiency.

The functional capacity of the peritoneal membrane is evaluated through the peri-
toneal equilibration test (PET). PET was developed by Twardowski [64] and characterizes
the transport rates of the patient’s peritoneum, enabling prescription adaptations for dial-
ysis treatment based on the characteristics of each patient as they eventually show signs
of damage to the peritoneum [57,65]. Changes in the PET reveal membrane deterioration
with consequent failure in ultrafiltration, but the information displayed by the test is in-
adequate and often late [65]. Morphological alterations can also be evaluated through
peritoneal biopsies, but this procedure is cumbersome, invasive, may not be representative
of the entire peritoneal membrane, and is consequently rarely performed for diagnosis [59].
Thus, it is necessary to search and standardize other methods for diagnosing peritoneal
membrane dysfunction.

Peritoneal tissue in contact with hypertonic dialysis solutions and uremic toxins
secrete extracellular substances and vesicles which can be analyzed from the dialysate.
These substances and vesicles are potential biomarkers of PM integrity [66].
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3. The Importance of Extracellular Vesicles in Heart/Kidney Axis and
Peritoneal Dialysis

Robert Bright discovered communication between the heart and kidneys in 1836
when he observed cardiac events in patients with renal disease and albuminuria [67],
thereafter many mechanisms have been shown to participate in this axis. The main mech-
anisms are related to hemodynamic homeostasis, such as activation of RAAS and SNS,
as mentioned previously. One crucial mechanism recently studied is the contribution of
extracellular vesicles (EVs). They are known as facilitators of communication in diverse
cellular processes [68] (Figure 2).

Toxins 2021, 13, x FOR PEER REVIEW 6 of 24 
 

 

of the entire peritoneal membrane, and is consequently rarely performed for diagnosis 
[59]. Thus, it is necessary to search and standardize other methods for diagnosing perito-
neal membrane dysfunction. 

Peritoneal tissue in contact with hypertonic dialysis solutions and uremic toxins se-
crete extracellular substances and vesicles which can be analyzed from the dialysate. 
These substances and vesicles are potential biomarkers of PM integrity [66]. 

3. The Importance of Extracellular Vesicles in Heart/Kidney Axis and Peritoneal Dial-
ysis 

Robert Bright discovered communication between the heart and kidneys in 1836 
when he observed cardiac events in patients with renal disease and albuminuria [67], 
thereafter many mechanisms have been shown to participate in this axis. The main mech-
anisms are related to hemodynamic homeostasis, such as activation of RAAS and SNS, as 
mentioned previously. One crucial mechanism recently studied is the contribution of ex-
tracellular vesicles (EVs). They are known as facilitators of communication in diverse cel-
lular processes [68] (Figure 2). 

 
Figure 2. Multi-factorial mechanisms implicated in the pathogenesis of cardiorenal syndromes. 
Some factors modulate the heart–kidney axis, including hemodynamic parameters, uremic toxins, 
gene reprogramming, and extracellular vesicles. 

The EVs are vesicular nano-sized membrane-enclosed structures composed of a lipid 
bilayer (such as the cell plasmatic membrane) which transport body cargo such as DNA, 
RNA, and proteins from their cell of origin and have the ability to physiologically and 
pathologically influence their cell of origin and other cells [68–70]. They can be detected 
in plasma, urine, and other body fluids of healthy people [71], and their levels are in-
creased in various diseases, mainly reflecting the injury suffered in these tissues [72]. As 
their composition depends on the pathophysiological and functional state of their cell of 
origin, they have been studied as potential biomarkers in several diseases, especially car-
diovascular [73–75], immune [76–79], cancer [80–84], viral infection, including COVID-19 
[85,86], CKD [4,87–90], and recently in peritoneal dialysis [57,65,66,91,92]. 

According to the International Society of Extracellular Vesicles (ISEV), EVs are all 
vesicles released from a cell which can be classified based on their mechanism of for-
mation, mode of release from the cells and size [93,94]. Studies have broadly divided EVs 
into three main groups: microvesicles (MVs) (also called microparticles), exosomes, and 
apoptotic bodies. 

Figure 2. Multi-factorial mechanisms implicated in the pathogenesis of cardiorenal syndromes. Some
factors modulate the heart–kidney axis, including hemodynamic parameters, uremic toxins, gene
reprogramming, and extracellular vesicles.

The EVs are vesicular nano-sized membrane-enclosed structures composed of a lipid
bilayer (such as the cell plasmatic membrane) which transport body cargo such as DNA,
RNA, and proteins from their cell of origin and have the ability to physiologically and
pathologically influence their cell of origin and other cells [68–70]. They can be detected in
plasma, urine, and other body fluids of healthy people [71], and their levels are increased
in various diseases, mainly reflecting the injury suffered in these tissues [72]. As their
composition depends on the pathophysiological and functional state of their cell of origin,
they have been studied as potential biomarkers in several diseases, especially cardiovascu-
lar [73–75], immune [76–79], cancer [80–84], viral infection, including COVID-19 [85,86],
CKD [4,87–90], and recently in peritoneal dialysis [57,65,66,91,92].

According to the International Society of Extracellular Vesicles (ISEV), EVs are all
vesicles released from a cell which can be classified based on their mechanism of forma-
tion, mode of release from the cells and size [93,94]. Studies have broadly divided EVs
into three main groups: microvesicles (MVs) (also called microparticles), exosomes, and
apoptotic bodies.

MVs are 100–1000 nm sized vesicles generated from plasma membrane remodeling
induced by activation, stress, or cell death [95,96]. MVs contain cargo from the cytoplasm
such as proteins and nucleic acids (mRNA, miRNA, and other non-coding RNAs) with
membrane-specific antigens [97]. Thus, MVs are considered ideal biomarkers of cell and
tissue damage because of these properties and because they retain their cell of origin
characteristics [71,98,99]. Therefore, an assessment of MVs in biological samples can be
used to identify early tissue damage [72]. Many studies have also demonstrated the
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ability of MVs to serve as intercellular signalers and capable of inducing pro-inflammatory,
pro-apoptotic, and pro-fibrotic responses in target cells [88,100–102]

Exosomes are vesicles sized 40–120 nm which are formed from the fusion of multivesic-
ular bodies and plasma membranes in a process called “reverse endocytosis” characterized
by Johnstone et al. in 1987 [103]. The biogenesis of exosomes is controlled by several factors,
including activating specific receptors and signaling pathways [94]. Exosomes contain
functional microRNAs (miRNAs) and small RNAs which can transfer between circulating
cells. Exosomes can interact with recipient cells through endocytic uptake, a direct fusion
of the vesicles to the cell membrane, or by adhesion to the cell surface—mediated by the
interaction of a lipid–ligand receptor when they are released into the extracellular envi-
ronment [104,105]. The apoptotic bodies are at least 50–2000 nm sized vesicles released by
dying cells. As the cells die, they generate many membrane-bound vesicles with organelles
or nuclear content [70].

The presence of exosomes has particularly been described in many body fluids such
as plasma, urine, semen, breast milk, and amniotic fluids; and is evolutionarily conserved
in several groups of eukaryotes (especially mammals) [106]. Exosomes in renal tissue are
mostly released by the epithelium or podocytes, transmitting acute and CKD messages,
and structural and molecular biomarkers (Figure 3) [107,108]. It is also unknown if nephron
loss in CKD results in the formation of urine EVs (uEVs). These exosomes are sensitive to
renal damage and can be mainly released by the thick ascending limb of the loop of Henle
(salt and water downstream nephron segments). uEVs from this nephron segment may be
more likely to be entrapped, once they are collected by the collecting duct appearing in
urine [109].
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In kidney diseases, proximal tubular cell proteins have been found in vesicles from the
collecting ducts, clarifying the local transmission connection [68]. Aquaporin-2 and Fetuin-
A found in exosomes obtained from the collecting duct have a physiological role reflected
in cellular expression in the kidney [110,111]. Fetuin-A was increased in uEVs in a cisplatin-
induced AKI rat model [110]. Fetuin-A was detectable after 2 days of increasing creatinine
levels. After establishing the biomarker, it was tested in an ischemia and reperfusion (IR)
model and AKI patients [110]. The water channel aquaporin-1 was found to decrease in
uEVs in animals after renal IR and in patients undergoing kidney transplantation, being
detectable from 6 h after IR [112].

The presence of some proteins (i.e., histone-lysine N-methyltransferase (MLL3), α-
microglobulin/bikunin precursor (AMBP), and voltage-dependent anion-selective channel
protein 1 (VDAC1)) in uEVs were observed in samples from diabetic nephropathy pa-
tients [113]. We were able to find several changes concerning EVs during AKI. Alvarez et al.
observed the presence of NGAL (an AKI biomarker) in urinary exosomes from patient
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samples, also reinforcing the high sensitivity of the uEVs appearing in renal disease [114].
Jeon et al. observed the contribution of the miRNAs in EVs derived from injured podocytes
on tubular apoptosis and dysfunction using HK2 cells, identifying miRNA-424 and -149 as
having a role in this process [115].

The role of the UTs in the release of EVs, have mostly been studied in the setting of
endothelial dysfunction leading to a release of endothelial-derived microvesicles (EMVs).
In vitro and clinical studies observed that PCS was able to induce spreading of EMVs in
cell culture as well as increase the levels of EMVs in hemodialysis patients [116]. EMVs
also have an important role in patients with ESRD, mainly modulating vasorelaxation, and
decreasing endothelial nitric oxide (eNO) release [99]. Favretto et al. observed the formation
of different-sized EVs from endothelial cells generated by PCS, IS, and Pi treatments in vitro.
In addition, it stimulated cell adhesion markers in PCS and Pi-induced EVs and VCAM-1
expression in PCS and IS-induced EVs [4].

When exposed to an increased hemodynamic load due to physiological stress such
as CRS, the heart responds adapting to new operating conditions; however, prior to
this adaptation, it responds with a particular communication using EVs to mediate the
various cell populations [117,118]. This interaction was previously described by Walden-
ström et al. when internalization of cardiomyocyte exosomes was observed in fibroblasts
and endothelial cells [119]. This study showed the presence of genetic material of car-
diomyocytes inside the cytoplasm of other cells types, promoting modification of gene
expression. In this context, the EV interaction between cardiomyocytes and fibroblasts was
important in the progression of chronic heart failure and is given by the transport of the
miR-217 from cardiomyocytes to fibroblasts promoting its proliferation and consequent
fibrosis [120]. Cardiomyocytes have also been show to release exosomes internalized
by endothelial cells containing miRNAs in order to increase angiogenesis after stress
(miR-17,19a,19b,20a,30c,126) [121].

Fibroblasts are also involved in cell to cell exosome communication in the heart.
Cosme et al. demonstrated that cardiomyocyte viability was increased if fibroblast ex-
osomes were added to healthy cardiomyocytes before hypoxia, otherwise it was re-
duced [122]. This suggests the contribution of fibroblast exosomes. Fibroblast EVs also
transport significant miRNAs to cardiomyocytes, such as miR-21 involved in cardiomy-
ocyte hypertrophy [123]. In addition, the role of fibroblast exosomes containing miRNA-27a,
miRNA-28a, and miRNA-34a are also involved in cardiomyocyte hypertrophy, promoting
the expression of hypertrophic markers (ANP and β-MHC) after MI [124].

Cardiac exosomes can release important signaling components during stress. An-
giotensin II type 1 receptors (AT1R) are transferred by the myocardium into the exosome
after pressure overload in mice [74]. Functional EVs carrying these receptors were found
in the circulation of these animals, providing evidence that this trafficking occurs during
stress. In addition, coronary serum exosomes from patients with MI demonstrated lower
miR-939-5p levels when compared to control patients [125]. This miRNA expressed in
cardiomyocytes exosomes is responsible for endothelial angiogenesis through nitric oxide
(NO) pathways.

Limited studies have demonstrated the role of EVs in CRS. Levin-Schwartz et al.
showed the interactions between urinary exosomal miRNAs (exo-miRs) as emerging
biomarkers of renal health and cardiorenal outcomes in early childhood, in which a rela-
tionship between blood pressure, GFR, sodium/potassium levels, and 20 exo-miRs was
found [126].

Santelli et al. also observed cardiorenal connection with EVs. As hypertension and
renovascular hypertension lead to renal injury, these authors studied EVs from urine and
plasma of patients, and analyzed specific markers including p16 (renal senescence marker),
calyxin (from podocytes), and others. They identified a high quantity of p16-EVs in the
urine of hypertensive patients [127]. In addition, some podocyte-specific proteins such as
nephrin, podocin, cytokeratin 8, claudin-1, pax-2, and UCH-L1 reflected in podocyte-uEVs
were associated with an increase in nephrinuria during preeclampsia [128]. Further-
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more, the levels of nephrinuria were positively correlated with proteinuria, indications
of podocyte injury reflecting secondary kidney damage, and potential involvement in
CRS types 1 and 2. [128]. Erdbrügger et al. consider endothelial microparticles (EMPs) of
renal origin a predictor of cardiovascular mortality from studying 81 dialysis patients and
observing cardiovascular parameters [98,99].

Endothelial damage is already marked in the early stages of CKD, directly leading to
cardiovascular risk from atherosclerosis and arterial stiffness [17]. Dursun et al. showed
that CD144-EMP was positively correlated to blood pressure and PTH concentration in
CKD patients and negatively correlated to GFR and albumin, which suggests endothelial
dysfunction in these patients [129]. Amabile et al. showed a close correlation between
EMPs and vascular dysfunction in vivo, suggesting a role of EMPs in disease progression
and as potential risk factor in the occurrence of cardiovascular events in patients with
ESRD [89]. A pilot study by the same group in 2012 demonstrated that EMP plasma levels
in patients with ESRD are an independent predictor of all-cause and CV mortality [98].
Buendía et al. showed that damage to endothelial cells results in EMPs with a high
content of calcium and bone morphogenetic protein-2 capable of inducing calcification and
osteogenic differentiation in vascular smooth muscle cells [88].

The contribution of EVs in the kidney–heart axis is largely unexplored. Thus, under-
standing the role of EVs in the heart–kidney connection should not only focus on their role
as a biomarker, but also as a therapeutic target (Figure 4). Unfortunately, the isolation of
EVs in clinical practice is still in its infancy, making more specific studies and immediate
approaches difficult. The advancement and management of CRS are challenging due to
the diversity and complexity of the pathophysiological interactions between these two
organs. Further studies related to EVs and genetic mechanisms are needed to improve
clinical outcomes in patients with cardiac and renal diseases.
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bidirectional crosstalk. The EVs could be released from the kidney and target the heart. It may be
possible to observe a connection between organs and an intra-organ connection at the same time.
The EVs are presented in different sizes and biochemical compositions, depending on the molecules
delivered to target organs.
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Recent studies have begun to explore the use of EVs in PD (Table 2); however, more
studies with a higher number of patients are needed. Using EVs obtained from patient PD
fluid exchange provides an easy and convenient non-invasive method to assess biomarkers
and evaluate early changes in the peritoneal membrane function.

Table 2. Studies using extracellular vesicles in peritoneal dialysis.

Reference n EVs Type Methodology

[72] 8 Microvesicles Electron microscopy, nanoparticle tracking analysis (NTA), flow cytometry,
procoagulant activity, and Western blot.

[92] 13 Multiple
extracellular vesicles

Isolation by differential centrifugation and size exclusion chromatography.
Vesicle analysis by electron microscopy, NTA, dynamic lighting scattering

(DLS), and tandem mass spectrometry.

[57,65] 11 Multiple
extracellular vesicles

Extracellular vesicles were isolated by size exclusion chromatography, and
proteomics was analyzed by mass spectrometry (LC-MS/MS)

[66] 30 Exosomes containing
Aquaporin 1 (AQP1)

Exosomes were isolated by differential centrifugation and identified by
Western Blot. Expression of AQP1 in mesothelial cells was done by

immunofluorescence. The quantification of AQP1 in the dialysate was
performed using a commercial enzyme-linked immunosorbent assay

(ELISA) kit.

Carreras-Planella et al. isolated EVs from the peritoneal dialysate through size exclu-
sion chromatography and performed a protein analysis by mass spectrometry. Interestingly,
the protein profile of these vesicles showed notable differences between patients who had
started dialysis recently and patients who had been undergoing treatment for a longer
time, demonstrating that in addition to the vesicles per se, proteomic analysis of these
vesicles can be an important tool for identifying the extent of damage and ultrafiltration
failure [57].

The same group in 2019 published a longitudinal study in which they collected
dialysate from patients every 6 months for 2 years. Patients were divided into two groups
according to PET results: stable (n = 7) or unstable (n = 4). EVs were isolated by size
exclusion chromatography, and their protein content was analyzed by mass spectrometry
combined with bioinformatics analysis. Their results demonstrated that changes in the
protein content of vesicles occurred before PET could identify them, demonstrating the
powerful potential of these vesicles as early biomarkers for detecting changes in PM
function in these patients [65].

Pearson et al. demonstrated the importance of correct isolation of these EVs for protein
analysis. In their study, isolation by differential centrifugation helped to identify more than
2000 proteins, usually masked by other abundant proteins in the dialysate. Furthermore,
isolation by size exclusion chromatography further improved the identification of low-
abundance proteins [92].

EVs can also be used as a marker of dialysis efficiency. Corciulo et al. analyzed the
expression of the water channel Aquaporin 1 (AQP1) in mesothelial cells. In addition
to confirming the expression, they demonstrated that AQP1 is released in the dialysate
through exosomes where they found a strong positive correlation between the abundant
presence of AQP1 in the dialysate and the fluid and solute transport parameters used to
describe the efficiency of PD [66].

Akbari et al. demonstrated the presence of MVs derived from mesothelium in the
effluent of patients on peritoneal dialysis for the first time. The mesothelial origin of these
MVs was confirmed by Western blot, and they identified that the MV levels progressively
increased during the 4 h dialysis cycle, suggesting that the exposure of the peritoneal
membrane to the dialysis solution induces this process of MV formation [72]. The ability of
these MVs to generate a response in the host remains a hypothesis to be tested.
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EVs have extraordinary potential as biomarkers, especially in the context of peritoneal
dialysis, where early identification of damage or failure of the peritoneal membrane can
be crucial for continuing treatment. Collection of EVs from the dialysate is a painless
procedure for the patient, and when combined with proteomic analysis could accurately
indicate functional or metabolic alterations in the PM. Furthermore, they might be used as
efficiency markers in peritoneal dialysis, therefore being useful tools in clinical practice.
However, more studies are needed to confirm and expand their role in PD.

4. Isolation and Characterization of Extracellular Vesicles (EVs)

Isolation of EVs aims to separate EVs or a subtype of EVs (i.e., exosomes, MVs) from
other non-vesicular components, enabling their specific study. The characterization is
carried out to better understand the isolated EVs in order to elucidate the physicochem-
ical properties and their composition (proteins, lipids, nucleic acids) according to what
is intended to be studied. Several experimental approaches and methods have already
been reported to achieve these goals. ISEV elaborated the Minimal Information for Studies
of EVs 2018 (MISEV2018) which proposes the primary methods for isolating and charac-
terizing EVs [93]. Here, we describe some methodological approaches to consider when
endeavoring to isolate and characterize EVs, and the challenges that these approaches pose.

4.1. Isolating EVs

EVs are isolated from various types of medium such as in vitro cell culture media,
tissues, and biological fluids [130]. For example, EVs released by mesothelial cells can
be obtained from dialysate in peritoneal dialysis [57,65]. Notably, the isolation method
used influences the yield and purity of the EVs or their subtype to be studied and this
may affect downstream analysis [131,132]. Also, the separation of EVs can use more than
one method, especially if greater specificity is required [93,133]. However, using two or
more isolation methods can reduce the yield of EVs while decreasing contaminants such as
soluble proteins and lipoproteins [131,134].

One of the most used methods for isolating EVs is differential ultracentrifugation
(DUC), in which the solution containing the EVs is subjected to several centrifugation steps
with increasing speed to pellet the EVs. The isolation of EVs by DUC usually consists
of a step with low-speed centrifugation (1000 RCF) to remove cells and larger particles,
followed by another intermediate speed spin (20,000 RCF) to collect larger EVs, and finally
high-speed ultracentrifugation (100,000 RCF) to isolate smaller EVs [135]. However, it is
worth noting that several parameters can affect the type, purity, and yield of EVs, such
as rotor type, g-force, centrifugation time, sedimentation rotor angle, and viscosity of
the sample [136–139]. Considering these parameters, possible adaptations to the centrifu-
gation protocol, such as changing the centrifugation time, can improve the separation
of the required EVs [137]. For instance, viscous samples need more time and greater
ultracentrifugation speed [137].

Another method based on centrifuging samples is density gradient ultracentrifugation
(DGUC). In this method, EVs are separated by a density gradient using sucrose, iohexol, or
iodixanol under centrifugal force. The density gradient can be continuous or discontinuous
(in layers), with a progressive increase in density from the top to the bottom of the tube
in both [140]. Data from the literature indicate that the density of EVs varies between 1.1
and 1.19 g/mL [105,131,133,134].An improvement in yields and purity of EVs obtained
with DGUC compared to ultracentrifugation was reported [141,142]. DGUC is also used to
separate mitochondria and other cell organelles [143]. However, the disadvantages of this
method are the long centrifugation time and sample loss.

EVs can be obtained by size exclusion chromatography (SEC), in which the solution
(mobile phase) passes through a porous resin (stationary phase) in a column, and the EVs
are separated based on size. In SEC, the smaller molecules enter the pores of the resin
and their elution is delayed, while the larger molecules do not enter the pores and are
eluted earlier [144]. This allows EVs and proteins to have distinct retention times, which
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reduces protein contamination of isolated EVs. Indeed, studies indicate that SEC applied
to isolated exosomes from blood plasma contained low contamination, especially with
albumin [145–147].

Ultrafiltration also separates EVs in which the sample is filtered through a nanopore
membrane with molecular weight cut-off values, which can be separated by pressure,
centrifugation, or vacuum [148,149]. The filtration allows the smaller particles to pass
while the larger ones are retained in the membrane [149]. However, structural changes in
the vesicles and membrane clogging may occur [136,150,151]. Ultrafiltration also can be
used along with ultracentrifugation, particularly to separate EVs according to size [152].

4.2. Characterizing EVs

Characterizing EVs is essential to assess and relate possible biological effects and
identify biomarkers, especially in pathological conditions. The characterization should use
multiple methods considering the analysis objectives and the limitations of each approach
to better understand the properties and composition of EVs [93].

4.2.1. Electron Microscopy

Electron microscopy methods are frequently used to individually visualize the EVs
and characterize their morphology and size. The ultrastructure of the EVs is observed
using transmission electron microscopy (TEM) analyzers. This method consists of an
electron beam which passes through an ultra-thin sample, and the scattered electrons are
detected by the analyzers forming an image of the EVs. [153,154]. Compounds such as
osmium tetroxide can be used to improve the contrast in TEM [155]. Another method
is scanning electron microscopy (SEM), in which the surface topography of the EVs is
analyzed also providing information about their chemical composition. In this method
electron beams interact with the matter present on the surface of the sample, generating
signals captured by a detector, in which secondary and backscatter electrons contribute
to image formation [153,154]. However, it is interesting to point out that EVs may be
altered by the processing steps of the samples for electron microscopy, which includes
fixation, vacuum, and dehydration procedures [153]. Thus, cryo-electron microscopy (cryo-
EM) evaluates samples which are vitrified at very low temperatures to minimize these
interferences, without the need for chemical fixation or dehydration [153,156]. Cryo-EM
also demonstrates the morphology and size of EVs, but has the advantage of preserving
the hydrated native state of EVs [148,153,154].

4.2.2. Nanoparticle Tracking Analysis

Nanoparticle tracking analysis (NTA) is widely used to describe the size distribution
and concentration of EVs. In this method, a laser is applied under the sample, and the
Brownian motion of the EVs makes it possible to detect its size and the concentration in the
solution [157]. The NTA has a camera attached to track and record the displacement of each
particle [157]. Nanoparticle tracking analysis (NTA) enables characterizing particles around
30 nm visualized by laser light scattering. The Stokes–Einstein equation can calculate the
mean particle size based on Brownian motion. The equation evaluates that the size of a
particle is in inverse proportion to its diffusion [158].

4.2.3. Dynamic Light Scattering

Like NTA, dynamic light scattering (DLS) also evaluates the size distribution of EVs.
DLS uses a laser which penetrates the sample, and the light scattering caused by the EVs in
the solution due to the Brownian motion is captured by a detector, thereby ascertaining the
hydrodynamic radius of the particles present in the sample [157]. However, unlike NTA,
DLS measures bulk scattering [159,160].
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4.2.4. Flow Cytometry

Flow cytometry can also analyze EVs detected by light scattering and fluorescent
labeling [152]. Even though it is a standardized and robust method for analyzing cells at a
rate of 1000 cells per minute, flow cytometry in EVs is a great challenge. EVs scatter light
at intensity 10 times less than polystyrene beads typically used for calibration due to their
small size and low refractive index difference with the solution [161]. Thus, EVs smaller
than 500 nm are detected in clusters, increasing the sensitivity above the defined detection
limit, resulting in single-particle detections of EVs with sizes above 500 nm as well as warm
detections, resulting in inaccurate measurements of results. Some solutions have been
described to overcome this problem, such as promoting serial dilutions to achieve a linear
correlation between the degree of dilution and the measured concentration [162] and the
bead-based EVs assay. In this method, EVs are captured by the granules, immunostained,
and subjected to analysis by flow cytometry [155,156]. Another method for analyzing EVs
is utilizing an imaging flow cytometer, which uses flow cytometry and fluorescent labeling
detected by charge-coupled device cameras with better performance than conventional
flow cytometers [154,157,163]. In addition, high-sensitivity flow cytometers have been
developed to analyze nanoscale particles [134,154,158–160].

4.2.5. Proteomic, Transcriptome, Lipidomic and Metabolomic Approaches

Protein content is widely used in characterizing EVs as well as examining biomarkers.
Cell-type specific proteins can be used to confirm the cellular origin of EVs. MISEV2018
recommends analyzing transmembrane or GPI-anchored proteins and cytosolic proteins
to indicate the presence of lipid bilayer structures that encompass cytosolic material [93].
Another recommendation of MISEV2018 is to analyze the presence of contaminating
proteins in the sample (i.e., albumin and apolipoproteins A1/2 and B), indicating the purity
of the EVs [93]. Therefore, antibody-based techniques such as western blot, enzyme-linked
immunosorbent assay (ELISA), and flow cytometry are often used to assess target-protein
content [93]. These methods are based on the interaction of labeled antibodies with target
proteins. The single EV analysis (SEA) method was developed to individually analyze
protein biomarkers present in EVs. In this method, EVs are immobilized on a microfluidic
chip, and then the target proteins are labeled with fluorescent antibodies, which enables
labeling multiple targets at the same time [164].

Mass spectrometry techniques are extensively used in order to determine the pro-
teomic profile of EVs. In summary, EVs are lysed and the proteins are subjected to en-
zymatic digestion with subsequent separation of the peptides in the mass spectrome-
ter [159,165,166]. The proteomic study of EVs has an important role in the research of
biomarkers in EVs that would normally be masked by abundant soluble proteins [65,167].

EVs also carry various RNAs such as mRNAs, miRNAs, and long RNAs
molecules [168,169]. It is suggested that these RNAs have a regulatory effect on EVs recip-
ient cells and may be potential biomarkers [135,159,170]. However, the number of RNA
molecules per EV may be low, as previously reported [171–173]. RNA extraction from EVs
can be performed using phenol-chloroform and column-based techniques [174,175]. The
RNA content of EVs is obtained by RNA sequencing (RNA-seq) analyses [169,176]. In turn,
quantitative reverse transcription-polymerase chain reaction (RT-PCR) and droplet digital
PCR techniques (ddPCR) are often used to analyze specific RNA sequences [177–180].

The lipid content of EVs also plays a vital role as their composition differs under
physiological and pathological conditions [151,181,182]. Importantly, EVs have bioactive
lipids in their composition, such as ceramide, which may induce responses in recipient
cells [183,184]. Thus, EVs lipidomics can contribute to understanding the biological mech-
anisms of EVs and identify potential biomarkers [151,185]. Mass spectrometry-based
platforms and thin-layer chromatography (TLC) methods are used to study EVs lipidome
profiling [186–188].

More recently, the metabolomic study of the content of EVs has gained ground [189].
Some studies have identified significant metabolites in EVs in pathological conditions, such
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as cancer [190,191]. However, it is necessary to use metabolite extraction protocols and de-
fine the analytical platform to study the metabolome of EVs using ultra-performance liquid
chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography-
mass spectrometry (GC-MS) [163,190,192].

4.2.6. Fourier Transform Infrared (FTIR) and Raman Spectroscopies as Diagnostic Tools

Given the potential to provide essential information on the composition and structural
conformation of specific molecular species, vibrational spectroscopy techniques such as
FTIR and Raman spectroscopies have become valuable tools in the past two decades [193].
Likewise, there is potential for their spectra to be translated into clinical research, establish-
ing diagnoses and forensic techniques when combined with data analysis [194].

The basis of vibrational spectroscopy is defined by the interaction of radiation from a
light source with the chemical bonds of a sample generating a unique signature designed
into a spectrum, providing information for performing in qualitative and quantitative
analyses of any compound [193]. The principal regions of biological interest in the infrared
spectra are generally the amide I/II peaks and the fingerprint region at 900–1900 cm−1 [194].
Furthermore, according to Balan et al., the Raman technique presents special benefits
including speed in data acquisition, being capable of providing information at the molecular
level, being non-destructive and analyzing samples in aqueous solutions since water
produces a weak Raman scattering, and it is important to study biological samples where
researchers can investigate the ionization behavior, pH change, or amino acid shape. Thus,
changes in normal biological systems reflect different vibrational spectral regions [193].
Consequently, within the field of biomedical analysis, the spectra obtained are tissue-
specific spectroscopic signatures, characteristic of the histological state of the sample [195]
or fluid composition [196]. However, biological samples are essentially complex since they
are composed of different lipids, nucleic acids, proteins, and carbohydrates, where the
spectra are the consequence of the absorption or diffusion characteristic of the bands of
each of these. Therefore, vibrational spectroscopy techniques have become an important
strategy in biomedical analysis, considering their experimental accessibility and for being
a non-invasive method. Also, they require minimal sample preparation, high molecular
sensitivity, speed and low cost [193].

FT-Raman spectroscopy has been explored in several diagnostic experiments [194],
including cancer diagnosis (breast, cervical tumors, prostate, gastrointestinal and skin),
neurological problems, diabetes, atherosclerosis, red blood cells infected with malaria, and
monitoring osteoarthritis and rheumatoid arthritis in different experimental models, and
also in renocardiac syndrome induced by renal ischemia and reperfusion [197]. These
vibrational procedures are less invasive than traditional biopsies, have higher specificity,
and are capable of detecting deviations in protein content at different stages of the disease
progression [193].

Studies carried out by Nepomuceno et al. demonstrated that monitoring the Tyrosine
and Tryptophan bands at 1558, 1616, and 1625 cm−1 is a viable and advantageous way to
predict fatality in CRS both in vivo or in vitro using real-time multiplexing. Both amino
acids are precursor molecules for the formation of uremic toxins such as PCS and IS, mark-
ers of kidney injury, whose increase is strongly correlated to cardiovascular mortality [197].

Recent studies have also shown that the IR spectroscopy–based protein quantification
can be successfully adapted to experimental practice to analyze EVs. In contrast, vibrational
spectroscopy presents a reagent-free alternative to traditional colorimetric protein determi-
nation assays and demands no special sample preparation to explore EVs [198]. According
to results obtained by Paolini et al., FTIR also has the potential to promptly characterize EV
subpopulations [199], suggesting it as an attractive complement or alternative method for
understanding EVs in healthy and pathological situations.
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5. Conclusions and Future Perspectives

The burden of kidney disease compromises the well being of around 10% of all adults
in the world. Despite its high prevalence, we still have important gaps to fill in terms of
the underlying mechanisms of the disease, diagnosis and treatment. EVs are a promising
tool to improve the quality of care in kidney disease patients. EV have been consistently
and successfully extracted from blood, urine, and more recently from peritoneal dialysate.
We have a great opportunity with EV to identify new biomarkers capable of reducing
CKD progression in the early stages of the disease, as well as the associated cardiovascular
complications, and furthermore identify PD patients at greater risk of peritoneal membrane
failure and the development of encapsulating peritoneal sclerosis. For this, more studies
are needed focusing on the impact and opportunities of EVs in the CKD and CRS setting,
and their contribution to heart–kidney interactions. The presence of kidney damage and
the release of EVs are important factors that have been observed leading to dysfunction of
several cell types, being closely related to inflammation, thrombosis, vasoconstriction, and
atherosclerosis. The isolation of EVs from a patient’s body fluids is simple and painless,
providing a promising tool for early diagnosis of these pathologies.
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