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Abstract: Epithelial to mesenchymal transition (EMT) is a process that allows epithelial cells to
progressively acquire a reversible mesenchymal phenotype. Here, we recount the main events in the
history of EMT. EMT was first studied during embryonic development. Nowadays, it is an important
field in cancer research, studied all around the world by more and more scientists, because it was
shown that EMT is involved in cancer aggressiveness in many different ways. The main features of
EMT’s involvement in embryonic development, fibrosis and cancers are briefly reviewed here.

Keywords: EMT; development; cancer

1. Introduction

Epithelial to mesenchymal transition (EMT) is a complicated cellular phenomenon
that consists in the acquisition, for a cell, of mesenchymal features in place of epithelial ones.
EMT can take place in various physiological and pathological contexts. EMT can be deter-
mined by numerous molecular mechanisms. EMT can refer to different phenomena with
the following common traits: the loss of epithelial features, such as cell–cell interactions
and apico-basal polarity, and the gain of mesenchymal ones such as cytosolic expansions,
rear-front polarity, and increased migration/invasion capacity. Due to the heterogeneity of
the phenomenon called EMT, it would be more correct to use the term “an EMT” rather
than “the EMT”.

EMT is involved in many physiological (embryonic development, wound-healing)
and pathological (fibrosis, cancers) processes, and is generally classified according to
the extracellular context rather than the molecular mechanisms. Type I EMT concerns
embryologic development, type II EMT occurs during wound-healing and fibrosis, and
type III EMT is found in cancers.

EMT was first described as epithelial to mesenchymal transformation [1], signifying
that the switch from epithelial to mesenchymal status was definitive and that only two
cellular states are possible: epithelial or mesenchymal. Nowadays, evidence shows that
EMT describes a spectrum of intermediate states between an epithelial and a mesenchymal
phenotype [2,3], and that cells can switch amongst these intermediate states following
extracellular stimuli in a progressive and reversible manner. Here, we will discuss the
history of EMT as a research field, explaining how the definitions of this term have been
modified over time and highlighting the main discoveries in the domain. This review will
help us to better understand actual studies on EMT by considering its history. Then, we
will briefly describe the molecular aspect of EMT and the role of EMT during embryonic
development and pathologies, highlighting its roles in cancers.
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2. The First Steps of Research on EMT
2.1. The First Phenotypical Observations of an EMT

Elizabeth Dexter “Betty” Hay (1927–2007, Harvard Medical School) was probably the
first to describe EMT and later to use this term. This American cellular and developmental
biologist worked first on amphibian limb regeneration, from 1958 [4]. She especially
described the dedifferentiation of cartilage cells of embryonic salamander’s limbs, which
can participate in new limb formation by re-differentiating. This process resembles a kind
of EMT. This work led her to study epithelial cells and embryonic development.

She then started to study the role of the extracellular matrix (ECM) in epithelial
cell differentiation, showing that ECM composition (for example, collagen concentration)
impacts cornea epithelial cells’ differentiation and the secretion of ECM proteins, such as
collagen and glycosaminoglycans (GAG) [5].

Elizabeth D. Hay then worked on embryonic development, using chick embryo mod-
els. Thanks to the very accurate descriptions of optical and electronic microscopy images
obtained from embryonic tissues, she identified and listed different cellular phenotypes
during their development. In 1968, she attended the 18th Hahnemann symposium in
Baltimore about epithelial–mesenchymal interactions. During her speech, she described
how mesenchymal tissues issued from epithelial cells during the migration of neural crest
cells in neural tube formation [6]. Indeed, she was describing EMT before we had named it
as such. We can probably consider the 18th Hahnemann symposium as the birthplace of
EMT research.

Interestingly, in the 1970s, other teams (the team of Prof. Dr. H.-E. Stegner, University
of Hamburg, Germany, and the team of Masao Sekiya, Department of Pathology, Nagaoka
Red Cross Hospital, Japan) also reported that epithelial and mesenchymal cells coexist
in mixed tumors of the uterus [7,8]. Then, there was a debate to determine if these cells
come from the same cancer stem cell, or if mesenchymal cells can be derived directly from
epithelial cells. At this time, two teams concluded on a common cancer stem cell origin,
thinking it was not possible for epithelial cells to acquire a mesenchymal shape or vice
versa. Moreover, they found similarities between cancer cells and stroma endometrial cells,
the second of which originate the first, according to them [7,8].

Hay and her team used the term “epithelial to mesenchymal transformation” for
the first time in 1982, in a publication describing for the first time adult cells undergoing
an EMT. They showed that a culture of chick lens epithelial cells (adult or embryonic)
suspended in collagen gels can lead to cytosolic expansion, such as in pseudopods [1].
These cells are then able to move individually in the collagen matrix, and they look like
mesenchymal cells [1]. In 1981, R. Dulbecco et al. published an article in Cell Biology de-
scribing a “cuboid-to-fusiform transition” [9]. They observed that the cuboid epithelial cells
of rat mammary tumors (induced by a single intravenous injection of N-nitrosomethylurea)
can lead to fusiform cells looking like fibroblasts when cultured. This observation was
made of many clones obtained from different rats, and also of cells similarly extracted by
another group [10]. In 1982, Swiss and German researchers (team of Karl Illmensee, Uni-
versity of Geneva, Switzerland) showed that the first mesenchymal cells appearing during
mice embryogenesis, which come from epithelial cells, lose desmosome and cytokeratin
expressions and start to express vimentin [11]. They did not use the EMT term, but instead
“rapid change from epithelial to mesenchymal character”.

Hay’s team continued to the work on EMT, starting with morphological studies
(cytoskeleton description during EMT) using microscopy alone (optical and electronic).
Since 1986, this group has been studying the molecular aspect of EMT, using the Western
blotting (WB) technique. She managed to show that chicken lens epithelial cells lose type IV
collagen expression (basal lamina specific) and γ-crystallin while expressing type I collagen
(connective tissues) [12]. After that, this lab studied EMT in thyroid epithelial cells, which
present large cytoskeleton remodeling, including a gain of vimentin expression. Moreover,
Hay’s team also observed a loss of thyroglobulin expression, which is a precursor of the
thyroid hormone, and highlighted cell dedifferentiation [13]. During the following years,
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Hay’s lab worked on embryonic development and proposed the “fixed cortex theory” to
explain neural crest cells’ migration [14,15]. In a publication in 1990, Hay discussed the
importance of cell–matrix interactions for mesenchymal cell migration [16].

Hay’s team next revealed that EMT is involved in another process occurring during
embryo development: palatal fusion. Epithelial cells from the medial edge of the embryonic
palatal epithelium migrate from each side to allow palatal fusion [17].

2.2. The First Mechanistical and Molecular Descriptions of EMT

Since 1990, a few teams have shown the great importance of TGF (transforming growth
factor) family proteins (TGF-α; TGF-β1–3) during EMT. Indeed TGF-α expression was
reported to lead to a mesenchymal and invasive phenotype in rat prostate cancer cells [18].
In 1991, Potts et al. showed the importance of TGF-β3 in embryonic heart endothelial
cells EMT [19], and in 1994, they showed that mammary epithelial cells can undergo EMT
following TGF-β treatment [20]. In the following years, thanks to the rapid evolution of
the relevant techniques, studies about EMT have become more and more mechanistic.
Hay’s team showed the involvement of TGF-β3 during EMT in chick embryonic palatal
fusion [21]. Later, they detailed the importance of TGF-β family proteins during EMT in
chicken embryonic palatal growth, especially during palatal fusion, which is mediated by
EMT, itself governed by TGF-β3, and the involvement of SMAD (mothers against decapen-
taplegic homolog) proteins during TGF-β-induced EMT [22,23]. In 1999, the lab of Peter Ten
Dijke (Ludwig Institute for Cancer Research, Uppsala, Sweden) showed for the first time
the involvement of SMAD proteins in EMT induction after TGF-β receptor activation [24].
Finally, Hay’s team worked in 2008 on cancer cell lines, showing that the SNAIL family of
EMT-ATFs (epithelial to mesenchymal activated transcription factors) can induce TGF-β3
expression [25]. Concurrently, other teams described EMT during the development or use
of cancer cell lines, just as Hay’s team did, but using other models. Thanks to the evolution
of the techniques, especially the development of immunolabeling (immunofluorescence,
Western blotting), EMT studies then became focused on the biochemical mechanisms in-
volved in this phenomenon. TGF-β was then the first molecule identified to induce EMT in
the early 1990s. The main events in EMT’s history are summarized in Figure 1.
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Research on EMT has become more popular since 2000. Hits when searching “epithe-
lial to mesenchymal transition” in the PubMed database increased from 30 in 2000 to 182
in 2005, and then to 942 in 2010 and 4975 in 2020 (Figure 2).
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PubMed database (National Center for Biotechnology Information, Bethesda, MD, USA), stopped on
27 January 2021.

Elizabeth Hay and her team wrote in 1995 a review named “An Overviewed of
Epithelio–Mesenchymal Transformation”, in which they discussed the molecular mecha-
nisms of EMT induction, the genes regulated by or regulating EMT, and the involvement
of EMT in pathologies, especially metastases. Interestingly, they mentioned the possibil-
ity that EMT is reversible and its potential implication in therapeutics [26]. In another
review article published the same year, they used for the first time the term “epithelial
to mesenchymal transition”, they described some genes involved in EMT or the inverse
phenomenon, mesenchymal to epithelial transition (MET) [27] (Table 1).

Table 1. Genes that promote EMT or Mesenchymal to epithelial transition (MET), adapted from [27].

Genes That Promote

EMT MET

Cell surface programs α5β1 integrin
L-CAM; E-cadherin; α6

integrin; Syndecan 1;
Laminin/nidogen

Oncogenes v-src; c-fos; v-ras; v-mos c-met
Growth factors TGF-β1-3; MIF; TGF-α; aFGF HGF/SF

Other genes wnt-1; wnt-4; pax 2; E1a

3. Main Molecular Aspects of EMT

The growing number of studies focused on EMT that have been described previously
contributes to a view of the molecular mechanisms governing EMT. Theses mechanisms
have been fully reviewed in the last decade [28–31]. Here, we will give a short summary of
the state-of-the-art knowledge on molecular induction pathways, transcription factors, and
RNA interference regulation in EMT.

3.1. Molecular Pathways Leading to EMT

EMT can be induced by multiple molecular pathways. Here, we will summarize these
pathways and briefly describe the most important, which is mediated by TGF-β.

TGF-β pathways were the first to be described in EMT induction. Nowadays, they are
still the most documented [32]. TGF-β receptor can activate several intracellular pathways,
such as the canonical SMAD pathway, leading to the expression of EMT-ATFs [33]. Other
pathways, such as Rho-GTPase [34,35], PI3K/AKT [36] and MAPK [37,38], are activated
by the TGF-β receptor, and can also induce EMT. All these pathways are redundant and
can act together or separately, which explains the plurality of EMT phenotypes.

Other pathways, independently of TGF-β, can lead to EMT induction. The TNF-α-
mediated NFκB pathway or EGF (epidermal growth factor) pathway may act synergistically
with the TGF-β pathways [39,40], and other growth factors such as FGF (fibroblast growth
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factor) [41], HGF (hepatocyte growth factor) [42], IGF1 (insulin-like growth factor 1) [43],
PDGF (platelet-derived growth factor) [44] and VEGF (vascular endothelial growth fac-
tor) [45] may act through the activation of PI3K/AKT and MAPK signalization. The
Wnt [46], Hedgehog [47] and Notch [48,49] pathways have also been described as EMT
inducers in many models.

Finally, in the cancer microenvironment, hypoxia and interleukins (mainly IL-6 and
IL-8) also lead to cancer cell EMT (Figure 3).
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1α (HIF1α).

3.2. Transcriptional Regulation of EMT

We have previously described that EMT can be induced by various molecular path-
ways. These pathways often lead to the activation of the expression of EMT-ATFs. The first
EMT-ATFs described were Snail and Slug (later called Snail1 and Snail2) [50,51]. These
transcription factors can repress or activate gene transcription in response to EMT induc-
tion. It was shown in vivo for the first time by Nieto et al. in 1994 [52] that the blockade of
Snail or Slug expression can inhibit EMT. Since then, many studies have reported these
observations [53,54].

There are two other main families of EMT-ATFs. The ZEB (Zinc finger E-box-binding
homeobox) family was described in 2001 [55], and it includes two members, ZEB1 and
ZEB2, which are both activators or repressors of transcription. The Twist family (Twist1
and Twist2) of transcription factors was described in 2004 [56].
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All of these transcription factors can directly repress E-cadherin expression during
EMT [55–58]. The loss of E-cadherin expression is a central event in this phenomenon, and it
was one of the first molecular events that allowed us to associate EMT with cancers [59–61].

3.3. Non-Coding RNA Regulation of EMT

EMT is largely regulated by non-coding RNA. Here, we will cite two regulation loops
mediated by non-coding RNA that are essential during EMT regulation. First, miR-200
can induce ZEB1/2 and Snail1/2 mRNA degradation, and thus a decrease in their protein
levels in cells. Actually, the forced expression of miR-200 is sufficient to blockade TGF-
β-induced EMT [62–65]. Moreover, ZEB and Snail family members are able to repress
miR-200 expression, forming a regulatory loop [66].

In the same way, miR-34 can also target Snail family mRNA and Snail1/2, directly
decreasing the expression of miR-34 and thus constituting a similar regulatory loop [28].

4. EMT during Embryonic Development

EMT was first observed during embryonic development. Here, we report the main
steps of development by which an EMT takes place.

4.1. Gastrulation

At the beginning of the third week of the development, the embryo consists of an
embryonic disk including two layers: the hypoblast (primitive endoderm) and the epiblast
(primitive ectoderm) (Figure 4A). Some epiblast cells undergo an EMT and move between
the two layers to form a third one: the mesoderm [67–69]. This step of the development is
called gastrulation (Figure 4B). This third layer extends entirely between the two other lay-
ers of the embryonic disk, except in two points: the cloacal membrane and the pharyngeal
membrane, which are the first indication of future caudal extremity, and the first indication
of the cranial extremity of the alimentary tract, respectively.
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Figure 4. Simplified diagram of a transversal cross-section of the embryonic disk at the third week of development showing
the gastrulation step. (A) At the beginning of the third week of development, the embryonic disk consists of two back-to-
back layers: the primitive ectoderm (or epiblast) and the definitive endoderm (or hypoblast). (B) During the third week
of embryonic development, some cells from the primitive streak of the primitive ectoderm undergo an EMT and move
between the ectoderm and the endoderm to create a third mesenchymal embryonic layer: the mesoderm.

4.2. Neural Tube Formation

At the end of the third week of embryonic development, the embryo consists of three em-
bryonic layers, as was previously described: the ectoderm, the mesoderm, and the endoderm.
The neural plate corresponds to a thick area of the endoderm where cells divide rapidly. The
edges of this plate grow to form the neural groove (Figure 5A). The neural crests are located
on both sides of the neural groove. The neural crest cells then move to the medial edge, which
allows the fusion of the neural crests (Figure 5B). During this fusion, the neural crest cells
undergo an EMT, and they scatter in the mesoderm [70,71] (Figure 5C). The neural tube then
splits from the ectoderm thanks to the scattering of the neural crest cells (Figure 5D).
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Figure 5. Simplified diagram of a transversal cross-section of the embryonic disk at the end of the third week of development
showing the closing of the neural tube. (A) At the end of the third week of embryonic development, the ectoderm forms
the neural groove, which creates neural crests. (B) Neural crest cells move to the medial edge to close the neural tube. (C)
During the neural crests’ fusion, epithelial cells from these crests undergo an EMT to scatter in the mesoderm. (D) The
neural tube splits from the ectoderm thanks to the scattering of the neural crest cells.

4.3. Embryonic Palatal Fusion

During the ninth week of embryonic development, the embryonic palatal shelves
(one each side) move to meet on the medial edge and fuse. First, the epithelia of both
shelves stick to each other to form the medial edge epithelium of the embryonic palate.
This epithelium then disappears when its epithelial cells undergo an EMT and scatter in the
neighboring mesenchyme [72]. Several researchers have described the apoptosis that may
be responsible for the disappearance of the medial edge epithelium of the palate [73,74];
however, others showed that the cells undergoing apoptosis were part of the superficial
layer of this epithelium. This superficial layer, by undergoing apoptosis, allows cells from
the basal layers to fuse and undergo an EMT [17,22]. Recently, it has been shown that these
cells do not scatter, but migrate together in the direction of the oral cavity. These cells may
undergo a partial EMT, leading to the maintenance of some cell–cell junctions. The most
mesenchymal among these cells can lead the migration of the group of cells [75] (Figure 6).
This phenomenon is also observed during the formation of metastasis by cancer cells.
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Figure 6. Simplified diagram of a frontal cross-section of the embryonic palatal fusion. (A) Medial edge epithelia of the
right and left palatal shelves migrate in the direction of the medial axis of the embryo, marking out the nasal and the oral
cavities. (B) The medial edge epithelia of the palatal shelves stick with each other to create the medial junction of the palatal
shelves, thanks to the apoptosis of the cells composing the superficial layer of these epithelia. (C) The cells of the medial
junction of the palatal shelves undergo an EMT and migrate together in the direction of the oral cavity, allowing for palatal
ECM continuity. ECM = extracellular matrix.
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Gastrulation, neural tube formation and embryonic palatal fusion are the main steps
of embryonic development in which an EMT is described, but EMT is also involved in
additional processes. Indeed, EMT and MET control somite formation [76–78] and heart
valve formation from the embryonic endocardium [19,79,80].

5. EMT in Fibrosis

One of the first description of EMT in fibrosis was made by the team of Eric Neilson
in 2002 (Nashville, TN, USA) [81]. Using a kidney fibrosis model, they showed that
fibroblast-like cells can appear locally as a result of EMT during fibrosis. Later, the team
of Raghu Kalluri (Harvard Medical School, Boston, MA, USA) provided evidence that
EMT (or endothelial to mesenchymal transition) also contributes to fibroblast-like cells’
appearance in liver or cardiac fibrosis, using lineage-tracing experiments [82,83]. More
recently, Kalluri’s lab suggested that myofibroblasts do not derive from epithelial renal
cells during renal fibrosis [84]. However, other works from Kalluri’s team, and Angela
Nieto’s lab especially (Instituto de Neurociencias, Sant Joan d’Alacant, Spain), provided
new data explaining that renal epithelial cells undergo a partial EMT, which is necessary for
the recruitment of bone marrow-derived mesenchymal cells and myofibroblasts involved
in fibrosis [85–87]. The main fibrosis treatment strategies thus target EMT [28].

EMT involvement during fibrosis has been recently reviewed [28,88,89].

6. EMT in Cancers

EMT’s involvement in cancers has been controversial, but there is growing evidence
that its role is central in cancer aggressiveness, more so than in tumor development.
Aggressiveness is exhibited by many cancer cell properties, such as treatment resistance,
immune escape, cancer stem cell formation and metastasis. Indeed, tumor aggressiveness
is an important factor in mortality for cancer patients, and that is why EMT is currently an
important topic in anticancer treatment research. The involvement of EMT in cancers has
been well reviewed [90,91].

For example, the analysis of circulating tumor cells (CTCs) is a good way to assess the
importance of EMT in cancers—breast cancer CTCs express both epithelial and mesenchy-
mal genes, showing they undergo EMT at multiple levels [92].

6.1. EMT Induction Factors of Cancer Cells

Many extra-cellular factors that can induce EMT are present in the tumor microenvi-
ronment. They have two main sources of origin: hypoxia [93] and inflammation [94].

Inflammation at the tumor site is characterized by the presence of immune cells, such
as MDSCs (myeloid-derived suppressor cells) and macrophages, which secrete growth
factors (TGF-β, HGF [94]) and cytokines (TNF-α (tumor necrosis factor α), IL (Interleukin)-
1, IL-6, and IL-8) able to induce an EMT in cancer cells [95–97]. Moreover, since the SNAIL1
EMT-ATF can also induce pro-inflammatory cytokine expressions (IL-1, IL-6, and IL-8), this
promotes a positive regulation loop [98]. Interestingly, it has been shown in spontaneous
skin tumor mouse models that immune infiltration is associated with advanced EMT areas
in the tumor [3].

When a tumor is growing, some cancer cells exist transiently in a hypoxia state. It
has been shown that the transcription factor linked to hypoxia HIF1-α (hypoxia-inducible
factor 1-α) can directly induce the expression of SNAIL1 EMT-ATF [99]. EMT induction
due to hypoxia in tumors is also linked to TGF-β pathways [100].

6.2. EMT and Anticancer Therapy Resistance

Various teams have shown that EMT can induce resistance to classical anticancer
treatments. For example, breast cancer patients resistant to chemotherapies have more
CTCs and more mesenchymal cells than women with a good response to treatment [101].
A similar resistance to treatment has been associated with EMT in breast and pancreas
cancers [102,103].
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At a molecular level, EMT-ATFs can induce the expression of genes involved in DDR
(DNA damage response) systems, which could counterbalance the effects of chemo- and
radiotherapies [104,105]. SNAIL1 and TWIST EMT-ATFs also lead to an overexpression
of ABC (adenosine triphosphate-binding cassette) transporters, which are responsible for
multiple chemotherapy resistances. In the breast cancer cell line MCF7, TWIST directly
binds to ABCC4 and ABCC5 promoters [106]. Finally, in HER2 (human EGF receptor
2)-positive breast cancers, the overexpression of miR-21 leads to resistance to chemotherapy
and immunotherapy targeting HER2 in an EMT-inducing manner [107].

6.3. Immune Escape

Immune escape linked to EMT has recently been reviewed by Terry et al. [108].
SNAIL1-expressing mouse melanoma cells, when co-cultured with spleen cells, can induce
the proliferation of immunosuppressive Treg (regulatory T cells) cells via TGF-β secretion.
The silencing of SNAIL1 in these cells reduces Treg proliferation and invasion of melanoma
cells [109].

EMT can also lead to a reduced expression of MHC class 1 (major histocompatibility
complex) in cancer cells, and so to a diminution of the formation of immune synapses
with cytotoxic T cells or NK (natural killer) cells decreasing cancer cell destruction by the
immune system [110,111].

Moreover, EMT can induce an overexpression of PD-L1 (programmed death ligand
1), allowing cancer cells to inactivate immune cells harboring the associated receptor PD1
(programmed death 1). EMT induction in lung cancer cells leads to PD-L1 overexpression,
and allows the inactivation of cytotoxic T cells and immune escape [112]. The EMT-ATF
ZEB1 is involved in PD-L1 expression in MCF7 cells and a mouse lung adenocarcinoma
model [113,114].

6.4. Metastasis Formation

Various studies showed the involvement of EMT during metastasis, based on tumor
cell xenografts in immunodeficient mice and/or the overexpression of EMT-ATFs [115].
SNAIL1/2 is overexpressed in mouse spontaneous mammary tumors, but not in bone
marrow metastasis. These proteins are important for local tissue invasion, but not in
metastatic colonization. Inhibiting SNAIL1/2 expression in this model prevents metastasis
formation [54,116].

Some pioneers’ studies have shown the importance of cell plasticity during the
metastatic cascade, describing that a fine regulation of EMT is required to allow can-
cer cells to metastasize. In other words, cells need “a good” epithelial or mesenchymal
shape at each step of this process to metastasize efficiently [117–119]. In a model of sponta-
neous mammary mouse tumors, a few cells undergo EMT, invade neighboring tissues then
blood vessels, and then establish in other organs (lung, liver, and lymph nodes). In the
secondary organ, cells can undergo an MET to develop a metastasis [120]. However, the
involvement of EMT during metastasis formation is still a controversial field. Two main
studies suggest that EMT is not essential for this phenomenon, showing that metastatic
cells from mouse breast cancer never express vimentin, and that blocking EMT by the over-
expression of miR-200 does not reduce metastatic formation in this model [102]. However,
this work showed that there is an enrichment of mesenchymal cells in CTCs, suggesting
that these cells could be essential for intravasation and could facilitate the intravasation of
epithelial tumor cells by collective migration [3,28]. This could explain why metastasis are
only formed by epithelial cells in this model. Then, it was demonstrated that the loss of
expression of SNAIL1 or TWIST1 does not prevent metastasis formation in mice pancreatic
ductal adenocarcinoma [103]. However, other EMT-ATFs could induce EMT instead of
SNAIL1 and TWIST1 in these cancers [28]. Moreover, these two papers highlighted that the
authors did not achieve the complete blockade of EMT or track all forms of EMT programs.
This confirms that these works are not sufficient to prove that EMT is not required in the
metastasis process in these models [121,122].
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In a model of spontaneous mammary mice tumors, a partial EMT gives cells with both
epithelial and mesenchymal features. This seems to facilitate metastasis development, and
promotes the collective migration of cells, while full mesenchymal cells migrate alone [2,3].
In this way, the co-expression of epithelial and mesenchymal markers could indicate a poor
prognosis in various cancers (breast, liver, and brain) [123–125].

6.5. Cancer Stem Cells

CSCs (cancer stem cells) are cancer cells with stem characteristics and high clonogenic
potential [2]. CSCs are defined as the source of tumor development and/or being capable of
being so. They have been described to express a high level of CD44 and a low level of CD24,
or to highly express ALDH1 (aldehyde dehydrogenase 1). These features are generated
during EMT in breast cancer cells [115,116,126]. The specific stem cell transcription factors
OCT4 and NANOG are also frequently expressed during EMT. Both phenotypes are
mechanistically linked [127]. In pancreas cancers, EMT is linked to stem cell properties
because ZEB1 represses the expression of miRNAs that normally inhibit the stem cell
phenotype [128]. SNAIL1 is also responsible for the symmetric division of colorectal CSCs,
increasing their pool [129].

However, in oral squamous cell carcinomas, three categories of CSC have been identi-
fied according to the expression of CD44, ESA (epidermal surface antigen) and ALDH1
(aldehyde dehydrogenase 1). The CD44high/ESAlow cells are identified as mesenchy-
mal CSCs while the CD44high/ESAhigh are epithelial. Moreover, the same team have
shown that all epithelial CSCs can reconstitute tumor heterogeneity (epithelial and mes-
enchymal cells), while only a few mesenchymal CSCs can do the same. This hetero-
geneity in mesenchymal CSC population is characterized by ALDH1 expression. Indeed,
CD44high/ESAlow/ALDH1high cells are mesenchymal CSCs able to restore tumor hetero-
geneity, while CD44high/ESAlow/ALDH1low cells cannot [130]. This could explain why
very mesenchymal cells could not systematically metastasize more than strongly epithelial
cells. Finally, in a model of mice spontaneous skin tumors, tumor cells with a mixed
epithelial/mesenchymal phenotype can give rise to all the different tumor cell phenotypes
when they are injected subcutaneously into other animals, while the more epithelial or
mesenchymal cells failed [3].

6.6. Anticancer Treatments Targeting EMT

EMT can be promoted by multiple molecular pathways at the same time, and these
pathways can be made redundant by finally converging in the same pathway. The therapeu-
tic targeting of this phenomenon should affect different levels. The targeting of extracellular
stimuli, EMT-ATFs and mesenchymal effectors seems to be a good strategy [131].

Concerning extracellular stimuli, some clinical trials are testing TGF-βRI (TGF-βReceptor
I) (LY2157299) inhibitor molecule efficacy in pancreas cancers, hepatocarcinoma, glioma and
glioblastoma [131–134], and anti-TGF-β antibody (Fresolimumab) efficacy in combination
with radiotherapy in breast metastatic cancers [135]. Moreover, an inhibitor of the EGF
receptor (erlotinib) has been approved for advanced lung cancer treatment [136]. EMT
induction by hypoxia has also been targeted, at the preclinical level for now. An indirect
inhibitor of HIF1α activity was shown to decrease metastasis formation in a mouse model of
tumor dissemination [137].

The second class of EMT targets are the EMT-ATFs. The direct inhibition of these
transcription factors is not well documented. However, several molecules can inhibit EMT-
ATFs indirectly: CDK4/6 inhibitors or STAT3 inhibitors [131,138–140]. Immunotherapies
targeting EMT-ATFs are under development. An anti-TWIST1 vaccine is effective in
mice, helping to prevent tumor growth and metastasis formation in a 4T1 breast cancer
model [141]. Another vaccine, targeting the EMT-ATF Brachyury, is currently under phase
I and II clinical trials in different advanced cancers (NCT02383498) [142].

The third targets that could help blockade EMT are mesenchymal or epithelial effectors.
Various pre-clinical studies tried to re-express the epithelial protein E-Cadherin in tumor
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cells. This is a difficult strategy because E-Cadherin expression has also been linked
to tumor growth [131]. Re-expressing E-Cadherin can be achieved by targeting DNA
methylation and histone deacetylation at its promoter during EMT [131,143]. Epigenetic
mechanisms are a promising approach for cancer therapies targeting EMT. Indeed, not
only E-Cadherin but many EMT-related genes are regulated epigenetically. For example,
in breast, kidney or lung cancer cells, MMP9 (matrix metalloproteinase 9) and ADAM19
(Adam metallopeptidase 19) metalloproteinase expression during EMT are modulated
by changes in histone methylation marks [144]. Finally, the silencing of vimentin or N-
Cadherin expression could decrease the invasion and migration of tumor cell lines or
mice models. The activity of these mesenchymal effectors has been modulated by specific
antibodies or by chemical compounds. EMT targeting has been exhaustively reviewed by
Malek et al. [131].

An EMT blockade in cancer cells can sensitize them to immunotherapies. This is
why the association of these two strategies is promising and is being tested in various
clinical trials. TGF-βRI inhibitors and anti-TGF-β antibodies (including anti-PD-L1 and
anti-TGF-βRII fusion antibody) are currently being tested [145].

7. Conclusions

The increasing number of EMT studies is linked to the involvement of this phe-
nomenon in cancers. However, EMT was discovered through Elizabeth Hay’s team’s
work on chicken embryonic development. Nowadays, EMT is thought to be involved in
development, wound-healing, fibrosis, and cancers. It was first considered as a binary phe-
nomenon (called epithelial to mesenchymal transformation) transforming a full epithelial
cell into a full mesenchymal one. Then, the binary nature of EMT was challenged with
the identification of the inverse phenomenon: MET (mesenchymal to epithelial transition).
Now, it is considered that EMT can lead to a spectrum of intermediate states between a full
epithelial phenotype and a full mesenchymal one, mainly due to the work of Pastushenko
et al. [2,3]. The better comprehension of this phenomenon allows us to imagine more
effective cancer therapies targeting multiple features of EMT.
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ABC Adenosine triphosphate-binding cassette
ADAM19 Adam metallopeptidase 19
ALDH1 Aldehyde dehydrogenase 1
CTC Circulating tumor cells
DDR DNA damage response
ECM Extracellular matrix
EGF Epidermal growth factor
EMT Epithelial–mesenchymal transition
EMT-ATF Epithelial to mesenchymal transition-activated transcription factor
ESA Epidermal surface antigen
FGF Fibroblast growth factor
GAG Glycosaminoglycans
HER2 Human EGF receptor 2
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HGF Hepatocyte growth factor
HIF1-α Hypoxia inducible factor 1-α
IGF1 Insluin-like growth factor 1
IL Interleukin
MDSC Myeloid-derived suppressor cells
MET Mesenchymal to epithelial transition
MHC Major histocompatibility complex
MMP9 Matrix metalloproteinase 9
NK Natural killer
PD1 Programmed death 1
PD-L1 Programmed death ligand 1
PDGF Platelet-derived growth factor
SMAD Mothers against decapentaplegic homolog
TGF Tranforming growth gactor
TGF-βR TGF-β receptor
TNF Tumor necrosis factor
Treg Regulatory T cell
VEGF Vascular endothelial growth factor
WB Western blotting
ZA Zonula adherens
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