$$
P N-A B X-676
$$

USE OF WATER HARVESTIG T ENHANCE CROP PRODUCTION IN ARID AND SEMI-

TRADITIONAL WATER HARVESTING PRACTICES

Water harvesting practices have been carried out in Pakistan for centuries in both upland and low land Balochistan, and parts of NWFP, Punjab and Sind provinces.
The annual averdge rainfall of 150 to 350 mm in the barani winter wheat areas of Balochistan is not sufficient to reliably produce a good crop of wheat. Traditional farming practices have apparently adapted to the environment and attempt to increase the water supply to the crop by a number of means:

1. Ridging

Ridging is accomplished with the help of "desi plough" which form a ridge-furrow system with ridges 8 to 15 cm high. The desi plough enables the farmers to place the seed in the moist soil by planting 4 to 6 cm below the bottom of the furrow.
2. Ephemeral stream diversion

A common practice in upland Balochistan is to terrace stony land along side ephemeral streams, at the top of the valleys near the mountains, and divert some of the stream flow into the fields by dams extending into the stream beds. However, this form of water harvesting is dependent on the summer monsoon rains, which are unreliable in upland Balochistan.
3. Bunding

Large areas of land in the valley bottoms do not receive any water from the streams, but do have gentle slopes. Field ownership is demarcated by bunds which have the additional purpose of trapping runoff water. These bunds range from 0.5 to 3 m in height, depending upon the topography of the land. On the heavier soils of the valley bottoms infiltration rates are low, and runoff frequently occurs during the gentler winter rains from surrounding fallow areas and from the top of the fields themselves, to be trapped by the bunds and so is available to the crops in only part of the fields near the bunds.

CATCHMENT BASIN WATER HARVESTING AS A MEANS OF IMPROVING THE PRODUCTIVITY OF RAINFED LAND IN UPLAND BALOCHISTAN.

Small catchment basins of different size were prepared within bunded fielis on gentle slope on silty valley bottom soils in upland Balochistan. The ratios of catchment areas to cropped area were $1: 1$ or $2: 1$. Seasonal rainfall were 282,102 and 239 mm in the $1985 / 86,1986 / 87$ and $1988 / 89$ seasons, respectively.

Increased water storage in the cropped areas of 55% and 43% of the rain falling on the catchments were observed in the water $1: 1$ and 1:2 treatmints. Yields were considerably increased on a cropped area basis by the water harvesting treatments, but not always sufficiently to compensate for the loss of cropped land. The $2: 1$

INTRODUCTION

Situated in the desert belt between 25 N and 32 N Balochistan has an arid or semi-arid climate, with annual precipitation varying from 50 mm in the west to 400 mm in the East. Physically it consist of extensive plateau of rough terrain divided into basins by ranges of sufficient height and ruggedness to pose obstacles to air movement, Rain fall generally occurs in two seasons: winter (November to March /April) and summer (July to September /October). Most of the Balochistan is on the fringes of the monsoon area, and so dose not receive large or reliable amount of summer rainfall. The proportion of annual rainfall received as summer rains varies from less than 10% to over 60\%, increasing in a North-South and West-East direction.

Balochistan has been divided into two major ecological zones by Rafique (1976). Based principally on location of the mountain ranges, the Northern areas, and a large "extrusion of high elevation area into the hot subtropical desert zone (Kalat and most of Khuzdar districts), have been classified as continental semiarid mediterranean, where rain fall varies from 200 to 350 mm and principal land usage is range land grazing, irrigated cropping and barani (or dry land) cropping. The Arid zone Research Institute (AZRI) is currently focussing its efforts in Balochistan on this continental semi-arid mediterranean zone.

The higher elevation areas are also more northerly and receive most of the rain during the winter months, whilst Khuzdar receives mainly summer rainfall. The normal cropping pattern for winter wheat in the higher elevation areas is: (1) plough the soil following July/August monsoon rains, and then level the soil to reduce evaporative losses; (2) plant in September; (3) cut the green wheat for fodder in November / December if the good growth has occurred; (4) crop dormancy from December to February; (5) renewed crop growth from mid- February; (6) harvest the crop in June. In Kalat the lower temperatures can delay the harvest until July, whilst in Khuzdar the higher temperatures result in a shorter crop season and a limited dormancy period(if any), with planting in October and harvesting in May.

It is clear from the above that attempting to grow wheat for grain in this environment is a high risk, low return exercise. However, the practice of growing wheat as a dual purpose crop, providing both fodder for animals, and if conditions are favorable, grain for human consumption increases the chances of getting some return from this enterprise. The need for farming practices that make the most efficient use of the scanty rainfall resource in upland Balochistan is apparent.
treatments suffered from water logging damage, even in the low rainfall year.

The cost of catchment set-up was low compared to the reduced seed and ploughing costs in water harvesting treatments, resulting in 21 and 34% reduction in overall cost for the $1: 1$ and $1: 2$ treatments. Net benefits were 33% higher than the control for the $1: 1$ treatment overall, but 27% lower for the $2: 1$ treatment. Labour inputs were less for the water harvesting treatments, with the result that overall, returns to labour were more than doubled by water harvesting.

Within-field water harvesting with a $1: 1$ crop:catchment ratio thus reduced risk by reducing investments in seed, animal draft and labour, whilst maintaining yields, suggesting that it could be of considerable benefit to farmers in an environment with a high risk of crop failure. The potential for forming catchments on adjacent unused land, and further research aimed at reducing water-logging damage, could both lead to further improvements in farmer circumstances in upland Balochistan.

ECONOMICS OF WATER HARVESTING TRIALS WITH CEREAL CROPS IN HIGH LAND BALOCHISTAN

Economics of applying WH was studied based on budgeting costs and benefits. Since part of the land is not cultivated but used as catchment area economist divided the yield obtained from the cultivated area by that of both cultivated plus catchment for the purpose of the analysis. Results showed little or no advantage of practicing WH for wheat in terms of not benefits under present conditions. Similar results were obtained from barley. However, an improvement in wheat yield stability over the years of the study ranged from 4% to 23%.

Result from wheat trials showed that the $1: 1$ treatment has 22% higher benefits (Rs. $422 /$ ha) than the control (Rs. $345 /$ ha) with a 22 percent reduction in the coefficient of variation. The $2: 1$ treatment had 33% lower benefits (Rs. $230 /$ ha) than the control and reduce the variation by 10 percent. In contrast, barley trials showed that the $1: 1$ treatment yielded 18 percent lower net benefits (Rs. $291 /$ ha) than the control (Rs. $421 /$ ha) but increased by 6 percent the variation in net benefits. Treatment $2: 1$ had 14 percent lower net benefits (Rs. $251 /$ ha) than the control and 19 percent more variation. Even though gross revenues of wheat straw and grain under the $1: 1$ treatment were lower than the control, the reduction in total costs under the $1: 1$ treatment resulted in higher net benefits than the control.

Under conditions where land suitable for cultivation is limited, the increases in yields of both straw and grain in the cropped area from water-harvesting has to be offset by the opportunity cost of catchment area. Moreover, less than proportional decreases in total costs of the water-harvesting treatments as the catchment to crop area changes can limit the economic performance of the technique.

The data available for the analysis dose not represent the entire spectrum of weather condition in high land Balochistan; therefore it is desirable to incorporate the probabilities of different quantities of rainfall into the economic analysis. Simulation techniques are suggested to generate probabilities distributions of net benefits of these cereal crops grown under water-harvesting. The assessment of the adoption notential of these technologies will be facilitated by these simulations in conjunction with the quantification of farmer's perception of the benefits associated with water-harvesting practices.

The reasons for low production are not limited to water supply but also include soil which is problematic. Soil texture, structure and fertility are not favorable for high production. The rate of yield increase may become high only if WH is associated with improving soil, farming practices and varieties.

References:

1. ICARDA/AZRI Research Reports Nos. $6,40,48$ and 78 .
2. Tour reports submitted by Dr. T. Oweis i.e;
i) Visit to Quetta, $17-20$ Dec. 1991
ii) Visit to Quetta, 15-19 Dec. 1992.

1. Background

Pakistan is an agricultural country situated between longitudes $60^{\circ}-76^{\circ}$ east and latitudes $34 \cdots 37$ north with 117 million population living in an area of $834,000 \mathrm{Sq} . \mathrm{Km}$ (Government of Pal:istan, 1992). It consists of four provinces Punjab, Sindh, North West Frontio1 and Balochistan. Balochistan is the largest province by size (347,190 $\mathrm{S}_{\text {g. }} \mathrm{Km}$) and the smallest in number of inhabitants which is 9 million (Gil and Baig. 1992). It lies to west of the Indus valley and south and east of Afghanistan border (Figure 1.1). The majority of the population in the province are subsistence farmers, The major stress limiting crop production in Balochistan is inadequate and poorly distributed rainfall, Amnual rainfall varies from 100 to 400 mm . Highland Balochistan is located in the north central part of the Balochistan province (Figure 1.2) and has a continental Mediterranean climate with hot summer and cold winter. Altitudes tenerally exceed 1000 m and crop production is affected by both low rainfall and seasonal extremes of temperature. In winter, when most of the rainfall oncuts and crops have usually been sown, minimum temperatures fall below freezing and this prevent crops from exploiting the available moisture.

In order to protect from freezing temperature farmer living in extreme cool areas of highland Balochistan, migrate during winter to warm areas of the province and even to Sindh province. They return to their premises during spring. These farmors praction dry sowing farming. These "opportunistic" farmers, before migrating to hotter places, start sowing their crop without waiting the rain. The yield is lowar but highly dependent upon the rainfall.

These extreme climatic conditions restrict non-irrigated crop production to sites totally dependent on rainfall (kushkaba) or areas where the run-off water from uncultivable land can be collected to supplement rainfall (sailaba). It has been noted that the full area of 'kushkaba' land is rarely, if ever, completely planted in upland Balochistan. Even in 1986/87, a mood year, only about $50-70 \%$ was planted, almost exclusively to wheat (ICARDA, 1989).

In an earlier survey conducted in the summer of 1986 in Kalat and Khuzdar areas (Rees et al., 1797) reported that 60 to 80 percent of the total cropped land is planted to wheat, 20 to 40 percent is planted to barley and from 0 to 20 percent is planted to lentil. A "good" agricultural year is expected $2-3$ years out of ten, and hoth "normal" and "poor" years are expected 3-5 years out of ten. The distributions of agricultural years in different areas of highland Balochistan determine the farmers, source of income. In a "good" year 10 to 15 percent of the farmers had an off-farm income, in a "normal" year 18 to 34 percent of the farmers had an off-farm income and in a "had" year 33 to 65 percent had an off-farm income. Thus, weather variability determines not only the duel-purpose cereal production in highland Balochistan but the
employment pattern of the rural population.
Under kushkaba conditions wheat grain yields in a "good" year ranged from 400 to $500 \mathrm{~kg} / \mathrm{ha}$, in a "normal" year were $300 \mathrm{~kg} / \mathrm{ha}$ and in a "poor" year ranged from 100 to $200 \mathrm{~kg} / \mathrm{ha}$. Similarly, barley grain yields were $300 \mathrm{~kg} / \mathrm{ha}$ in a "good" year and ranged from 200 to 300 in a "normal" year. All respondents mentioned that in a "ponr" ypar no barley is sown. Under sailaba conditions wheat grain yields ranged from 800 $900 \mathrm{~kg} / \mathrm{ha}$ in a "good" year, from 600 to $700 \mathrm{~kg} / \mathrm{ha}$ in a "normal" year, and 300 to 400

Cocation of Balochation.

Ka/ha in a "bad" year. Likewise, harley grain yields in "good" year were 500 to 600 kq/ha. $400 \mathrm{~kg} / \mathrm{ha}$ in a "normal" year, and $200 \mathrm{~kg} / \mathrm{ha}$ in a "bad" year (Rees et al., 198\%.

The minimum water requirement for wheat grain production is about 300 mm and the probability of receiving more than this amount varies from 10 to 50% (Roes of al., 1989a). Where as, the minimum requirements for barley are 225 mm , which has a higher water use efficiency than wheat (Roes et al., 1989h) but it is not a major crop. Wheat is the staple crop of the region. It is very clear that rainfed barley yield was less variable (risky) than rainfed wheat production. Thus farmer's reasons for growing less barley than wheat may have to do more with growing wheat for food security and with the present small uncertain barley market than with the production problems (Rues et al., 1989).

The demand for increased crop production in West Asia and North Africa is expected to lead to increase cropping on marginal lands. There is a need to harness the limited available water resources and maximize the benefit from the uncertain and skewed distribution of rainfall. Water harvesting seems to be an attractive practice as it reduces the risk of crop failure. Farmers have long practiced water harvesting by constructing bund. This water supplements actual rainfall to produce the sailaba system of crop production. The growing demand for food and feed crops from both an expanding human and animal population in Balochistan necessitates the more complete use of the estimated 0.8 million ha of cultivable land (Khan, 1990).

1.1. Water Harvesting Research at Arid Zone Research Institute

The Arid Zone Research Institute (AZRI) is one of the federal agricultural research organization which forms part of Pakistan Agricultural Research Council's national notwork of agricultural support agencies. AZRI's mandate is to conduct agricultural research in order to generate appropriate technologies for improving agricultural production in the arid and semi-arid zones where the potential for irrigation is either undeveloped or nonexistent, Forty million ha or about half of Pakistan's area is nominally serviced from the Institute.

As an attempt to demonstrate improved utilization of rain water, AZRI has been growing cereals, lentils and forage legumes with catchment basin water harvesting (CRWH) techniques (trials) in highland Balochistan since 1986. Accordingly a practice that concentrated the water from one part of field to another, to permit better crop growth should be acceptable in the local farming systems in many areas. Attention has been focused on kushkaba systems because it was considered that the farmers who practice agriculture in the valley bottoms have most need for technological improvement.

The CBWH trials consist of preparing catchment areas at the top of gentle sloping fields ($0.5-1 \%$ slope) to encourage incident rainfall to run off onto the bund, cropped areas. The preparation of small catchment basins on rainfed valley bottom soils represents a low-cost method of generating run-off and increasing crop yields within the cropped areas (Rees et al., 1990). Catchment areas preparation consist simply of tractor-ploughing to remove weeds and then pulverizing the soil with a heavy wooden plank dragged behind the tractor, so that it should form a solid "capped" layer following on the experimental plots sprinkling of water, the impact of
drops sealing the soil surface in to a crust. These catchments will last indefinitely if undisturbed, and should in fact become more solid and impervious with time and repeated wetting. Occasional weeding is required (ICARDA, 1989).

The proportions of water catchment area and crop area investigated by A $\angle R I$ scientist are as follows: for the control treatment the entire area is occupied by the crop; in the $1: 1$ treatment one half of the area is used for water catchment and one half for planting, lastly, in the 2:1 treatment, two thirds of the area is used for water catchment and one third for planting. The observed run-off efficiencies of 55\% for the $1: 1$ treatment and 43% for the $2: 1$ treatment are not particularly high for the silty clay loam soils (Khan, 1990). Higher efficiencies could be induced by compaction and/or surface treatment with water repollant chemicals (Jut, 1981; Fink and Fhrlor, 1981). However, the need for better management of the water on the cropped area, to reduce water-logging damage, is clearly of much higher priority (Reins et al., 1991).

Turing 1990-91 AZRI Agronomy Section made some modification : in CBWH trials (Figure 1.3). An additional treatment of 3:1 (Catchment-to-crop area) has been addedto try and capture moke water in very dry seasons. To get over tho waterlogging mohlom on the $2: 1$ and $3: 1$ treatments, on additional "buffer" plat 1 as been add below the cropped plot. Excessive water on the cropped plot will he drained on to the buffer plot where fourwing saltbush will he planted. This drought-1 assistant fora ie -lirnh will utilize any surplus water drained off from above plot. The buffer plot is intended to overcome the reluctance of local farmers to drain off

Figu:-1. 3
EXPHRIMENTAL LAMOT OF CBWA

(iropperl Aroa

Catchment Aren

111:
ercessive water which stands on the lowar parts of cropped fields and reduces yields (AZRI/TCARDA, 1991).

Contour strip cropping seems to hold promise and in 1992-93 replicated trial has hem laid out at three sites. The technology is used in many countries with semiarid rimates and requires sloping land. The ratio $1: 1$ and $1.5: 1$ catchment to cropped lund. has been investigated in the experiment. However, natural slnpes are en small that the slope of the catchment strips has to be increased mechanically. A new trial "widn row sparing tormurs ompetition for moisture in the renting zone" (Figure r.) was also initiated riming 1992-93 (Khan of al., 1992).

1.2. Objective of the Study

Tho nvarall nbjective of the presont case study is to enhance the supply of focrlant feed rrops in highland Ealochistan of Pakistan using the sustainalife water haresting techniques that increase the frequency of economic crop yield.

Specifically, the stury has the frillowing onjortives:

1. Tocompare water harvesting ter hniques with the existing farming practices.
\therefore To determine to what extent conp pinduction is increased and prountinn risks are derreased.
2. To work out the economic implirations of the praclices, and
3. To assess the adoption potential of water harvesting techniques hy farmers in highland Ralochistan.

1.3 Organization of the Study

Proceeding from the objective, this study is organized this way: second part, which follows, results of the trials (Agronomic analysis), yields on cropent aren basis is there is no shortage of kushkaba land, and yields on total area basis i.e there is an opportunity rost of using land for catchment basin. Section 3 and 4 presents the wonmir analysis of the trials, where gross benefits, costs and net benefits are di:smssed. In section 4, rainfall variability is incorporated into the oconomic analysis using historical rainfall data in simulation of yjelds and net henefits over a 50 year pwrim. Section 5 reports the methodology and results of the farmers' perception ahout rRWH, their practices about land cultivation, etc. This section will alsn include tho phllems with interpreting agronomictrials data. The last sectinn fonchidos the stuly. In this section, results are summarized and recommentations for future resemphactivity pointed out which should improve the incom of subsiatonese fanmers in highland Balochistan, Pakistan.

2. Analysis of CBWII Trials

The field trials were conducted at 3 sites arourd Quetta hy the Agronomy Cioctin of AZRI since 1986 i.e Dasht, Mastung and Kovar valleys. Fach trial consisted rif thros replicates, with the four water-harvesting treatment as the main plats. The soils in these hroad flat valleys are alluvial yormosols, light to modium in texture, high in lime percentage and pH, low to modinm in available phosphate content and low to vory low in niganic matter and nitrogen (AZRI/ICAPDA, 199?).

Rail water content to 1 m depth, sampled gravimetrically at three different fositions within earh piot (near to the hund, in the center of the cropped aroa, and at the ond of the cropped area) of Dash water harvesting field 1 on 21 March 1988 , after 7 ? mm rain in five showers had fallen. In each positinn soil water content was incroased significantly $(\mathrm{P}<0.1 \%)$ hy the water harvesting treatments. The data indirato that overall the $1: 1$ treatment ossulted in an adrlitional 41 mm hoing stored in the ropped area, and an additional 7 mm in the $2: 1$ treatment ([CAPDA, 1989).

Allhough a number of crops i.e wheat, harley, lentil and woolly pod vetch were grown in the CBWH field trials, Agronomy Section also introduced one more treatment $\therefore 1$ in CBWH triais since $1990-91$ but for simplicity only wheat results and $1: 1$ and $2: 1$ treatmenis are presented. Local wheat land race was planted during the first two seasons, Pak-81 was planted in the next two following seasons, Punjab-85 was used in the fifth season and Pak- 81 was used again in the last season.

2.1 Yields on Crop Area Basis

These results based on premise that kushkaba land is rarely ever completely mantal i.e there is not a shortage of kushkaba land and that catchment hasins can he comstructed on ad jacent unutilized land. Table 2.1 shows the wheat and straw yields: (kg/ha), grown with rlifferent treatments of water-harvesting in highland Ralorhistan. Rainfall for each location/trial is also presented. This table showed that then r afe significantly botter increass in yield in $1: 1$ and $2: 1$ treat ments in all the six seasons, only except during 1989-9n trials at Mastung there was a decrease in yielf in 2:1 treatmerit. During these seasons the rain came late and then was heavy enoligh to cause some waterlogging, especially in the $2: 1$ treatment. This apparently affertorl grain and straw product ion in the wheat (A7RI/ICARDA, 1990). Table 2.1 also indicated that treatment $2: 1$ produce the bast results. The increase in yield was the highost in this treatment during the season of 1987-88 at Dash 2 and Mastung lncal ions. It is worth mentioning that there was very poor rainfall (102 mm and 96 mm) diring this season.

Table 2.1. Average wheat and straw yields ($\mathrm{kg} / \mathrm{ha}$), grown with different treatments of water-harvesting in highland Balochistan. Rainfall for each location/trial is also presented.

S0730		86/87	87/88	88/89	89/90	90/91	91/92
ratuent		$D / 1{ }^{1}$	0/1 0/2 8/3	D/1 $\mathrm{D} / 2 \mathrm{~L} / \mathrm{l} / 3 \mathrm{3} / 4$	8/1	$8 / 1$	W/1: $7 / 2$ D/1 $0 / 2$
	Grain	562	$35 \quad 12 \quad 8$	$\begin{array}{lllll}195 & 130 & 156 & 159\end{array}$	303	88	
	Strax	151.	105 is 108	$392 \quad 192 \quad 124 \quad 188$	1404	1124	631552454278
$1: 1$	$\begin{aligned} & \text { Grain } \\ & \text { Stra* } \end{aligned}$	${ }_{2}^{1216}$	$\begin{array}{rrrr}36 & 22 & 10 \\ 280 & 145 & 140\end{array}$	224 238 584 319 248 260 980 676	$\begin{array}{r} 522 \\ 2132 \end{array}$	$\begin{array}{r} 210 \\ 1598 \end{array}$	$\begin{array}{lllll}108 & 96 & 132 & 170 \\ 692 & 812 & 372 & 454\end{array}$
$2: 1$	Grain	1191	$90 \quad 45 \quad 24$	$\begin{array}{lllll}318 & 346 & 378 & 240\end{array}$	276	141	$\begin{array}{lllll}228 & 116 & 342 & 267\end{array}$
	Straw	2712	$351 \quad 270 \quad 261$	7836271218615	2709	918	7748401155485

$\begin{array}{lllllllllllllll}\text { Painfall } & (\mathrm{at}) & 282 & 102 & 102 & 96 & 239 & 239 & 167 & 227 & 224 & 240 & 281 & 281 & 278 \\ 278\end{array}$

Source: Rees et al. (1991), A2RI/ICARDA (1991) and A2RI Agronony Section.
Supnary of wheat grain and strak yields (kg/ha of cropped area) average over years and location is presented in Table 2.1. This table revealed that in treatnent 2:1 there kere an increased of 1954 in grain and 1814 in strak production as of control. The over all increased in both grain and strax vas 1848 as of control, and also hive tho lovest co-afficient of variation (C.V) in this treatment. These results indicated that treatrant $2: 1$ is porforning better in production and also there was less possibilities of risk.

These trials revealed that if we calculate yield on crop area basis assuning that availability of land is no proilen in kushkaba land, the results are very proxising. Treataent $2: 1$ produce higher fields of grain, straw and a is both togather as of control (Table 2.2). Further sore this treatrent was found better off because tha C. V value was also lower as of $1: 1$ and control indicating that it has less risk.

Thie 2.2 Syenary of what grain and straw yields (kg/ha of cropped area) avarage neer yoars and location.

$$
\begin{array}{llll}
\text { Grain \&of strax \& if } & \text { Fotal \&of } \\
& \text { control } & \text { anteal control }
\end{array}
$$

1.2. Yields on Total Area Basis (cropped + catchrent basin)

In this section c30K trials were analyzed on prenise that kushkaba land is conpletely planted i.e, that there is shortage of kushitha lani and that catchaent basins can not be constructed on adjacent innd or sirply the hypothesis that land is scared. Thare is an opportunity cost of using land for catchnent bisin - foregone pronuction i.e., yialds nay be considerably increased on a cropped area basis but not alxays sufficiently to rocpensated for loss of cropped land in catchnent basin. To be econoxically feasible the crop gains due to aditional soil roisture nust be larger than the cost of not planting in the catchnent area, Wheat grain and straw Hields (h/hai), adjusted to total area grown vith different treatzents of vater-harvesting in highland Balochistan are presented in Table 2.3, Rainfall for each location is also presented.

Only during 1986-87, 1987-88 and 1990-91 the adjusted yield was increased in treatoent 1:1 at vashi, Dash1 ani Kastungi respectively (Table 2.3). It was also increased in $1: 1$ and $2: 1$ during 1987-88 in both grain and straw at Dash1 but $2: 1$ adjusted gield were lover as 1:1. Dash2 location during the sase season thowed increased yields of both grain and straw as control. This nay be contributed due to the low rainfali ducing - his season. There was also increased straw yield during $1988-89$ in both $1: 1$ and $2: 1$ treatent as of control. hil Wher tratmants indicated lower yields.
in general if we calculate wheat qields adjustad to total area basis the results were poor. There was no increased in grain, strax and both grain and straw as of control (Table 2.4). Only the C.V was found lower in 2:1reatrant as of $1: 1$ and control.

It is worth rentioning that in the above analysis we have not considered different costs and benefits which rara incurred in different water harvesting trials. There was a need to consider variable and fixcir costs which ware incurred in construction of catchrent area and there were also benefits as less inputs were required in reatnont. ieaping all these in sind, for better under standing the tria picture of catchnont hasin wator haryesiing wa need to do econonic analysis for neasuring gross benefits, costs and net benefit. Next section will foal with the econoric analysis.
 harvasting in highland Balochistan. Bainfall for ach location is also presanted.

Table 2.4. Sunnary of wheat grain and straw fields (kg/ha of total area) average over years and location.

	Arain	$\begin{aligned} & \text { \& of } \\ & \text { cortrol } \end{aligned}$	Strak	\} of control	Total	\& of control
Control						
Yean	146	100	541	100	686	100
4.2	,	111	11.	'	:11.	M
2:1						
Yean	95	65	326	60	421	62
CV	95		78		17	

3. Economic Analysis of CBWH Trials

Run-off from the catchment basins increased water storage in the cropped aroas. Thus, increasing the plant growth potential. However, to be ernnomically foasible the crop gains due to the additional soil moisture must he larger than the enst of not planting in the catchment area. Partial budgets wero developed foll nach trial to calculate the benefits and cost associated to the treatments. In calculating the benefits and cost data were used from a survey conducted by the Eennomins and Farming Systems Section of AZRT through out the highland palochistan during 1992.

The labor requirement and costs of wheat production are summarized in Appendix Table 1 and 2 for total area (crop + catchment) and Eropped area basis. Majority of the farmers in highland Balochistan are preparing their land with tractors and planting is done by animal (camel or bullocks).

Labor and tractor time for plowing one hectare of land was 1.5 hours. For animal planting $18.00 \mathrm{hr} / \mathrm{ha}$ was used and for the maintenance of catchment areas the labor time was Rs $20.00 / \mathrm{ha}$.

In order to calculate the catchment set-up cost, $3.0 \mathrm{hr} / \mathrm{ha}$ for tractor and $12.00 \mathrm{hr} / \mathrm{ha}$ for man were used and amortized over 10 years at 12% annual interest rate. This structure can stand more than ten years if there is an appropriate care bit for average basis a ten year period looks more appropriate. Labor cost and trictor costs were $5.6 \mathrm{Rs} / \mathrm{hr}$ ($45.00 \mathrm{Rs} /$ divy) and Rs $90.00 \mathrm{Rs} / \mathrm{hr}$. Where as camel rost was Rs $6.25 \mathrm{Rs} / \mathrm{hr}$ ($50 \mathrm{Rs} /$ day). This cost was Rs 64.00 in $1: 1$ treatment and Rs 96.00 in case of $2: 1$ treatment. Harvesting cost was calculated at the rate of 10 percent of total grain and straw value. Where as threshing cost was calculated at the rate of 15% of total grain production. Seed and grain prices wore kept same ($3.75 \mathrm{Rs} / \mathrm{kg}$) for convenient.

Gross benefit were calculated as the value of crop products on both totai and cropped area basis, and net benefits as the difference between gross benefits aud cost of inputs (Table 3.1 and 3.2).

Summary of gross benefits, costs and net benefits of wheat production with CRWH (Rs/ha of total area) averaged over years and locations are presented in Table 3.1. Appendix Table 1 shows average budgets over years and locations for wheat production (Total area basis). The 1:1 treatment showed higher net berefits over control and $2: 1$ treatment. There was 26% mor net benefit as of control in case of adopting $1: 1$ CBWH treatment. The net benefit decreased by 20% if we adopt $2: 1$ treatment as of control (Table 3.1). Higher gross benefit in control as of $1: 1$ and $2: 1$ treatments give an illusion of good performance but also the higher cost of inputs made it less beneficial as of $1: 1$ treatment. The risk in production was reduced as there was larger source of run-off as 27% and 26% less (.V values in $1: 1$ and $2: 1$ treatments (Table 3.1).

Table 3.2 shows the gross benefits, costs and net benefits of wheat

Table 3.1. Summary of net benefits (Rs/ina of total area) averaged over years and locations.

Table 3.2. Summary of net benefits (Rs/ha of cropped area) averaged over years and locations.

modurtion with CBWH (Rs/ha of cropped area) averaged over years and locations. Average budget over years and locations for control and treatments for wheat production (cropped area basis) are presented in Appendix Table 2. Both treatment

1:1 and $2: 1$ shows higher net benefits in wheat production as of contiol if wo calculate it on cropped area basis. The net benefits are positively increased "ith the increased in run-off or ratchment areas. There were $58 \% \%$ and 451% increased in net benefits in $2: 1$ and $1: 1$ treatments as of control (Table 3.2). Tall in risk was also coincided with the increased in catchment areas. C.V were 70% and 59% lowered in $2: 1$ and $1: 1$ treatments as of control.

Thare is an increased in net benefits by adopting CBWH techniquas hoth in was found maximum (588%) in treatment $2: 1$ as of control estimated on crop area $\therefore 1)$. If we est imato net benefits decreased from 345 (control) to 139 (treatment 57% higher and less variability in net benefit as of control.

It is clear that the data available for the analysis does not represent the entire spectrum of weather conditions in highland Baloch; stan. In situation where rainfall variability so closely governs crop performance, it is necessary to incorporate the prohabilities of different rainfall amount in the economic analysis. Thus, simulation techniques must be used to find probability distributions of net benefits of these cereal crops grown under water-harvesting techniques (AZRI/ICARDA, 1992). Next section had incorporated the rainfall variability into the economic analysis using historical rainfall data in simulation of yields and net benefits over 50 years period.

1 Simulation

4.1 CATCHMENT AREA PRODUCTIVITY EVALUATION (CAPE) : A Crop Simulation Model

In this section crop simulation model is developed. This model estimated the wheat yield and net benefits in Quetta, Palochistan.

1.1.1 Basic Description about CAPE

The catchment area productivity evaluation model estimates the crop yield of Wheat, Barley, and Lentil in the micro-catchment water harvesting systems using only the daily rainfall as an input parameter. Currently the model estimates yields when the cropped to catchment area ratios are $1: 1,2: 1$, and $3: 1$. But if the model proved useful it can be enhanced very easily for any kinds of catchment to cropped area ratios.

Initially, the experimental layout shown in Figure 1.3 is the base of this model, because the same experimental design is used for the research purposes by the Arid Zone Research Institute Quetta in Balochistan, Paristan for last seven years, from 1986-87 to 1992-93. When the experiment was started in 1986-87 it was observed that after a rain shover experiment was 50 mm the pounding of water occurs at the very rain shover of greater than infiltrated ($42 \mathrm{~mm} /$ day), cropped area of very down slope end in the low particularly in the $2: 1$ treatment. This pounded water harvesting treatments, the bottom end of the cropped area by sealing thed water damaged the cropped in the emergence of wheat plants. This is why the soil surface, whirh affected 0. This is why in later studies of 1991-192 to

By Including a buffer zone effect in the model it is assumed that no water stands on the surface of cropped area longer than two days in the water harvesting treatments and thus no crop damage eventuates due the pounding of wator in the cropped areas.

The model imitates the flow diagram shown in Figure 4.1. It has been tried that proper instructions should he laheled during the use of the CAPE model. The following are the components of the model:

1. The driving variable for the model is the daily rainfall from the historical records. This data can easily be stored in compact form on a file using any of the file editor available in different computer programs. This data must be in the units of INCHES.
2. Naily runoff can be estimated by using computer program CARE. (Catchment Area Runoff Evaluation), written by Dr. E.R. Perrier. This program calculates the runoff by using the CURVE NUMBER method, for different types of surface treatments, developed by the United States Department of Soil Conservation Department. A descriptive operating manual is Inailable from the ICARDA offjice in Aleppo, Syria or Arid Zone Research Institute in Quetta Pakistan.
3. The total water receipt (TWR), in the cropped area of the catchment treatments is the summation of the daily rainfall and the resulted daily runoff less the water transferred to the buffer zone (WTBZ).

$$
\text { TWR }=\text { Rainfall }+ \text { Runoff }- \text { WTBZ }
$$

4. The water infiltration rate at the experimental site is about $42 \mathrm{~mm} / \mathrm{da}$: for the silt clay loam soil (USSCS). Therefore, if th: s total water receipt is greater than 84 mm then that must transfer to the Buffer zone (BF), to avoid crop damage due to water pounding.

> Tf TWR $>84 \mathrm{~mm}$,
> Transfer to $\mathrm{BF}=$ TWR -84 mm
5. Yields were predicted using the relationships were developed between seasonal rainfall and the crop grain and straw yields. Table 1. in the Appendix A shows an example of the final outputs from the model, for the Quetta area in Pakistan.
6. The economic analysis used the input data collected from a farmer perception survey performed by Agric. Economics Section of AZRI in the highland areas of Balochistan, during 1992.

Figure 4.1. Different Steps of Model Development.

1.2. Model development

As described above the runoff is calculated using the already available compiter program CARE. Spreadsheet LOTUS 123 is used as the main carrier for the development of the model. The daily rainfall and the daily runoff resulted form the CARE is then imported in LOTUS 123 for different kinds of manipulation and choices. A portrait of the different steps involved in the development of the CAPE is shown in the form of a flow chart in Figure 4.2. The resulted Graphs of grain yields, straw yields, and the net benefit are shown in the Figures 4.3, 4.4, and 4.5 respectively.

The assessment of the adoption potential of this technology will be facilitated by these simulations in conjunction with the quantification of farmers' perceptions of the benefits associated with water-harvesting. In the next section farmers' perception and methods of water harvesting had been
discussed.

Figure 4.2. Flow Chart of Model Catchment Area Productivity Evaluation (CAPE).

Figure 4.3

Figure 4.4
Simulated Straw Yields (kg/ha)

Fugure 4.5
Net Benefit from Treatments
Normalisd over Fifty Years 1891-1940

5．Farmer＇s＇Perceptions About Water－harvesting

A survey was undertaken at evaluating farmers＇agricultural systems， perceptions and practices about water－harvesting technology and to assess the adontion potential of CBWH techniques in rainfed agricultural of highland Ralochistan．

5． 1 Methodology

In pursuit of these objectives，a comprehensive questionnaire was levoloped．This questionnaire compromised a number of sections relating to the qeneral socio－economics information of the farmer and his family，soil，water and land use，climate，adoption potential of CRWH ，crop and livestock production，etc．The questionnaire was pre－tested before proceeding to the survey．A multi－disciplinary team consisting of social scientists，chemist and agronomist interviewed one hundred and forty five farmers at their premises．A three stage stratified random sampling technique was used to get information from farmers．At the first stage，highland Balochistan and four regions viz loralai，Zhoh，Khuzdar and Kalat were selected．In the 2nd stage，sample villages from each region were selected with the consultation of local people and agricultural department for maximum representation．Whereas at the 3rd stage farmers were randomly selected from each villages according to their population size．

Regions selected for survey on an average have rainfall from 138 mm to 279 nm and altitude of 1238 meters to 1704 meters．There were $36,37,35$ and 37 respondents from Loralai，Zhob，Khuzdar and Kalat regions，respectively．The number of respondents，average rainfall and altitude are presented in and Table ヶ． 1.

Table 5．1．Sample regions with number of sample，average rainfall and height of the survey area of highland Balochistan．

Hegion	Respondent	Average Rain (mm)	Height (M)
	36	244	1433
Loralai	37	279	1385
Zhob	35	138	1238
Khuzdar	37	240	1704

＊Government of Balochistan，1991．Farmers Perception Survey， 1992.
fiource：Agri．Econ．Group of AZRI，Farmers Perception Survey， $10 \Omega 2$.

5．2．Characteristics of the Highland Balochistan Kushkaba Farmers

Majority of the farmer interviewed（72\％）were the head of the farm， 23% were son of the head and rest are brother or close relative．On an average farm were situated at a distance of 17 kr ．from metaled road．Khuzdar region farms were at the longest distance（ 28 km ）followed by Kalat region（ 17 km ）Zhob region（ 12 km ）and Ioralai region（ 11 km ）．The availability of head of the farm and road distance were highly co－related．Literacy rate was found very low，on an average

与.22. 11 ITand uttillization

Pn an average total lland hold ing amongst the simple farmers weire 19.5 hectar
 5 thedtames. In Zhob refion the thighest hamer land (Th hedtares) was notife

Thable 5.2 Sample regions, farmers age (years), Miteracy rate (\%), experie (years) and distance from mettled road (km).

Region	Farmer Age	Literacy Rate	Experience	Distance from Metaled Road
Lacalai	45	22		
Zhoh	46	- 30	29	12
Mhuadar	43	26	25	12 28
	41	27	26	$\begin{aligned} & 28 \\ & \frac{17}{} \end{aligned}$
Overal 1	44	28	27	17

Source: Agri. Econ. Group of AZRI, Farmers Perception Survey, 1992.
followed by Loralai (5 hectares), Khuzdar (4 hectares), and Kalat (3 hectares On an average respondents own 14.9 hectares of land while they have $2: 7 ; 0$ 0.9 and 0.1 hectares of share crop, rented in, communal and lease in la respectively. The maximum land holding of 23.4 hectares on an average $\hat{\omega}$ observed in Loralai region. It was the lowest in Khuzdar and Kalat region, whe the farmer on an average hold only 16.5 and 16.1 hectares: Only lease in $1 a$ was observed in Loralai region and Communal lands in Zhob and Khuzdar region The other land distributions in survey area are described in Table 5:3: On average cropping intensity was folund 38 percent and it was the fighest in. north-east part of the highland Baischistan i : E: Zhbin (57%) afd foralai (47% and the lowest in south parts i:e: kalat (zio) and khuzant (23\%) It is wor mentioning that cropping intensity and rainfall are highly co-reteited. croppi intensity calculated on the available Government data of 1985-86 of highla Balochistan, it was found very low i.e: 14% (AZRI/ICARDA; 1988).

5.2.2. Demographic

Average family member (heuse holds) were 10 in the sample area; with simil qender ratio. Highest family members is were observed in Zhọb region with high (53 g) female members. Zhob district was also reported having the highest hou: hold numbers by the population census (Government of Balochistan! 1992). Where the smallest family size of 14 members with equal proportional of gender we intired in lialat region. On an average 3 family member were full time worki at fiarm. Similar number were reported at Loralai and Zhob regions where as am anerage only 2 ? porsons wete full time engaged in farm activities at khuzde and Kalat vegtions (Thable 5.4).

Thable 5.3. Thand distribution and other related information amongst the sample farmers (hectares) of the survey area of highland Balochistan.

	Total	Own	Shar	Other	Ranger	Urder	land	Cropping
negion	Total		Crop	Lands	Land	Wheat	arcel	Intensity

				5	5.5	2	47	
Moralai	23.4	16.9	5.8	0.7	5	4.3	3	57
Ohob	21.9	16.9	0.5	4.5	7	4	23	
Whuzar	16.5	12.5	2.5	1.5	4	2.7	4	21
Kalat	16.1	13.5	2.3	0.3	3	2.0	6	3.6
Overall	19.5	14.9	2.7	1.9	5	4	38	

* Include communal, rented and lease in lands

Source: Agri. Econ. Group of AZRI, Farmers Perception Survey, 1992.

Table 5.4. Average family size of the population, income from agricultural, migration, dry sowing practices, per capita land holding and minimum land needed for their wheat consumption (ha) of the survey area of highland Balochistan.

Region	Family Size (No)	Income from Agric. (\%)	Migration (\%)	Dry Sowing (\%)	Per Capita Land (ha)	Minimum Land for Wheat Con (ha)
				-	1.4	15
incalai	16 19	76 72	7	-	1.2	16
7hob Thuzdar	17	70	14	22	1.0	13
lialat	14	63	22	22		
verall	16	70	13	6	1.3	14

-Con. $=$ consumption.
Source: Agri. Econ. Group of AZRI, Farmers Perception Survey, 1992.

5.2.3 Source of income

Majority of the farmers (70\%) source of income is from agricultural which consists of crop (mainly wheat) production, followed by sheep and goat rearing, farmers living nearby towns also earn from providing their services as labors. There was very close relation ship between annual rainfall and income, which looks obvious because all crop production depends on rains. In Kalat the farmers were getting 63\% of their income through agriculture farming it was highest (76\%) in Loralai region (Table 5.4). In order to understand farmer's economic/financial standing, one questionnaire was asked about the minimum land required for fulfilling their family wheat consumption. In response to this 14 hertares of wheat could supply enough wheat flour for consumption to an average family in the overall sample areas. It is worth mentioning that in general
farmer get only one crop in a year and they also rotate their land i.e the i cropping pattern w.r.t wheat is wheat fallow and fallow wheat. This was highes amongst the respondents of Z hob region. It is important to note that Z hob regio also have the highest household size. On an average only 3.6 hectares of wheat was grown in the sample area. This was found highest in Lozalai (5.5 hectares and hob (4.3 hectares) regions. Whereas it was the lowest in Kalat (2 . hort ares) and Khuzdar (2.7 hectares). So mostly the farmers purchase wheat for thrift home consumption (Table 5.3). Overall par capita land holding on ar average was 1.3 hectares. This was reported highest in Lomalai (1.4 hectares and the lowest (1.0 hectare) in Khuzdar region (Table 5.4).

「.2.4 Migration to Lower Areas During Winter

This is a practice found in extreme cold areas of highland Balochistan where number of farmers migrated to warmers areas mostly to Sibi, Ralochistan and Sind province to protect them from freezing temperature. On an average they start moving to lower areas in November when the temperature started belor freezing and returned to their houses during April. The migration to lower areas is not only due to the freezing temperature and non availability of heating arrangements but also the scarcity of shrubs and grasses to feed their animals, all these motivate them to move from cooler to warmer places. Sone farmers have their houses at both the places. Although migration trend was found in all the sample regions but the trend was highest (22\%) in Kalat region. Overall 13% farmers reported migration to lower areas.

5.2..5 Decisions to Plant on Kushkaba Land

The decisions to plant on kushkaba land mainly depends on the availability of 1 ain, some farmers showed that availability of tractor for land preparation also played significant role. They could bring more areas under cultivation with the help of tractor.

5.2.6 Good, Normal and or Poor Agricultural Years and Wheat Grain Yield in Ten

An important question about the intensity and average yield of wheat (grain) in "good", "normal" and "poor" agricultural years in ten years was asked to the respondents during the survey. On an average 2, 3 and 5 "good", "normal" and "poor" agricultural years are expected out of ten in kushkaba conditions of highland Balochistan, respectively. Under Kushkaba conditions wheat grain yields on an average in a "good" year was $551 \mathrm{~kg} / \mathrm{ha}$ and ranged from 101 to $1200 \mathrm{~kg} / \mathrm{ha}$, in a "normal" year it was $255 \mathrm{~kg} / \mathrm{ha}$ and ranged from 40 to $998 \mathrm{~kg} / \mathrm{ha}$, and in poor year it was $99 \mathrm{~kg} / \mathrm{ha}$ and ranged from 7 to $398 \mathrm{~kg} / \mathrm{ha}$ in highland Balochistar (Table 5.5)

Wheat grain yield was reported lowest in the Southern areas (Khuzdar and Kalat) of highland Balochistan where on an average in a "good" year it was 536 $\mathrm{kg} / \mathrm{ha}$ and ranged from 131 to $820 \mathrm{~kg} / \mathrm{ha}$, in a "normal" year it was $201 \mathrm{~kg} / \mathrm{ha}$ and ranged from 45 to $386 \mathrm{~kg} / \mathrm{ha}$, and in poor year it was only $63 \mathrm{~kg} / \mathrm{ha}$ and ranged from 12 to $45 \mathrm{~kg} / \mathrm{ha}$. It was highest in the Northern areas (Loralai and Zhob) of highland Balochistan where on an average in a "good" year it was $562 \mathrm{~kg} / \mathrm{ha}$ and ranged from 236 to $1200 \mathrm{~kg} / \mathrm{ha}$, in a "normal" year it was $351 \mathrm{~kg} / \mathrm{ha}$ and ranged from 149 to $898 \mathrm{~kg} / \mathrm{ha}$, and in poor year it was $134 \mathrm{~kg} / \mathrm{ha}$ and ranged from 24 to $349 \mathrm{~kg} / \mathrm{ha}$. This is understandable because in Northern areas the average rainfall is higher as of the Southern areas (Table 5.1).

The average wheat grain yield reported by Rees et.al., 1987 for Kushkaba was quite high. Present results are more realist and representative for highland Ralorhistan compared to Rees et. al., 1987 who surveyed only Southern parts of highland Balochistan.

Table 5.5. Intensity and average grain yield of wheat (kg/ha) in Good, Normal and Poor agricultural years in ten of highland Balochistan.

Ragina

Snim ce: Agri. Econ. Group of AZRI, Farmers Perception Survey, 1992.
5.3 Water Harvesting Practices in Highland Balochistan

Water harvesting practices were noticed amongst all the farmers. They have heen practicing this since very long time. There were a number of methods or practices used both in Kushkaba and Sailaba irrigation systems.

5.3.1 Kushkaba Irrigation Systems:

It is purely rainfed land on valley bottom: such fields are marked by small embankments which not only demarcate ownership but also catch any runoff within-field.
5.3.1.1 Dry Sowing: This is the practice concentrated only in very high altitude of highland Balochistan in Kalat region where due to the freezing temperature during winter period farmers migrated to lower areas and returned during spring. They plant their seed without waiting for the moistu ? and when ever the seeds got enough moisture started growing. There as no damage to the seed due to the prevailing cold temperature. This practice is not practical in warn areas because high temperature of soils damage the seed for germination. The yield heavily depends upon the rainfalls.
5.3.1.2 Availability of Moisture: This is very common practice of kushkaba farmers. farmers do not plant their whole fields. they plant in areas where moisture has accumulated (at bottom of field) and, presumably the crop receives some run-on from the rest of the field. i.e. note that the farmers practice is "opportunistic". They plant their wheat where ever they got good moisture for germination or they plant at their hest lands. All the rest areas remains without planting. This land is normally at the lower flevations.
5.3.1.3 CBWH Practice W/O Any Specifi- Ratio of Catchment Basin: This practice was alsn found amoncst most of the kushkaba farmers in hishland Balnchistan. Here farmers are adopting the CBFI techniques but without any specific ratin hotwon catchment and cropped areas. It may he of $1: 1,2: 1$ or even higher or lower catchment area. It was found mostly in those area of Dasht, Koval and other big valleys where the land scape is better and there is also natural slope. Farmers have not design nor maintaining the catchment areas, it is a natural land scape. Area planted varies with the availability of rainfall. But they were getting better yields them other farmers who does not have any water harvesting catchment areas.
5.3.1.4 Planting the Best Suitable Crop: This practice of crop production under kushkaba farming systems was mostly cbserved in the Northern part of highland Balochistan. Under this practice farmers maximize the utilization of the rainfalls. Crops and their planting decision heavily depends upon the availability of moisture and season of crop plantation. Their system is very flexible - they may replant, or plant further areas later if more rain received, and if rains are good they may plant a summer crop later on the previously not cropped part of the field. If the rains are available during wheat growing season they grow wheat, if it is late they try to cover more area under spring wheat (if seed available), if there is no spring wheat available then they will plant cumin or sorghum or even if the rains are further delayed scme farmers also grow water mellon to utiiize the available moisture and boost his subsistence income.

5.3.2 Sailaba Irrigation Systems:

Land receiving additional run-on water from adjacent hillsides and uncult ivated rocky areas or water diverted from ephemeral streams und rivers. Under sailaba system there are natural runoff, and located near the hill sides. There are also stream which are not perineal but depends only upon the rains. Rod Kohi sailaba systems is also practices on the extreme Southern parts where water is partially diverted from the ephemerai stream or riveis. In some areas small seasonal dam are also constructed under sailaba systems. They does not guaranty continue supply of water as dam under canal irrigated systems but at least increasing the supply of irrigation water for some days. Under each sailaba system there are a number of distribution s;'stems.

5.4 Adoption of CBWH

Fifty percent of the respondents were interesting to adopt modern water harvosting techniques (CBWFT's) which increased yields and have less product ion risks. A large number of 65% respondent showed positive resporise for arlnption of this technology in Zhob areas whereas it was reported only 40% in Kalat areas (Table 5.5).

Out of the respondents who did not adopt this technology, one third of nverall respondents did not believe it and it was the highest (46\%) amongst Khuzdar region followed by Zhob (44\%), Loralai (42\%) and it was the lowest (11\%) in Kalat region. Thirty one percent farmers said that they did not have resources for levelling or preparation of catchment area, financial constraint

Table 5.6. Sample population view about adoption of modern water harvesting technology (percentage) of the survey area of highland Ralochistan.

* Combi= combination 1 to 5 .

Source: Agri. Econ. Group of AZRI, Farmers Perception Survey, 1992.
was reported highest (51\%) in Kalat region while it was the lowest only 5\% in 7hoh region. Whereas 14% farmers gave other reasons for not adoption of the AZRT technology for water harvesting, due to the reasons of shortage of land, heavy rain or land near the foot of hill with large area as catchment, they have already invested heavily by constructed bunds, some farmer did not want to invest because if their would be no rain all investment will be wasted, some farmers were practicing dry sowing and during winter they migrate to low land areas, etc. Eleven percent overall farmers reported no reason, they were illiterate and helipe what is going on is their faith. This type of feeling wore the highest in Zhob and the lowest in Loralai regions. There were a numher of respondents who reported more them one reasons for not adoption of CBWHT's and even they did nut believe it. Only 5 \% respondent showed labor shortage as the problem, in Loralai and Kalat region no one reporter this as a cause for not adoption of CBWHT's. There were overall 6% respondents which save combination of previous reasons for not adoption of this technology and were only found in Kalat region (Table 5.5).

Although Table 5.6 revealed that 50% of the respondents accepted that they would try this technology (CBWH). But it didn't indicate their belief in the technology because they also indicated that in case of sufficient moisture availability they would even cultivate the catchment area so that they could hope to increase production probabilities against low precipitation.

It is important to relate farmers practices of water harvesting and adopt ion of CBWH technology developed by AZRI. Farmers are opportunistic and their practices are flexible. They do not plant their whole fields or any fixed ratio. They plant in areas where moisture has accumulated. Where as AZRI's CBWH technology trials has fixed ratio, and permanent nature of catchment area.

A number of overall farmers who did not believe on CBWH would believe (46%) if there would be demonstration plots, 34% gave no reply, this might be they either we were not able to explain them well or they were illiterate and have no interest, and 10% if neighbor farmers adopt it, the rest ten percent
showed combination of the previous reasons (Table 5.6). Demonstration plot wers the major factor motivating the majority (56\%) of Kalat region farmers followed by Loralai (44\%), Khuzdar (43%) and as the lowest (38\%) in Zho region (Table 5.6).

T'able 5.7. Sample population who don't believe on CBWHT's would adopt this if there would be demonstration plots of CBWHT's and or if neighbor farmer would adopt of the survey area of highland Ralochistan.

REGTON	Drmo. Plots	Neighbor Farmer's	Coinbination	No Reply
Loralai	44	3	3	
7hoh	38	11	16	35
Khuzdar	43	14	14	35 29
Kalat	56	14	8	29 2.2
Overall	46	10	10	34

Source: Agri. Fcon. Group of AZRI, Farmers Perception Survey, 1992

5.5 Limitation with the available agronomic data:

Local wheat landrace was planted during the first two seasons, Pak-81 was planted in the next two following seasons, Punjab-85 was used in the fifth season and Pak-81 was used again in the last season. So the affects of wheat variety in estimating the cost and net benefits of CBWH trials was assumed to he constant

Farmer's in dry land area are opportunistic. Farmers do, not plant their whole fields. They plant in areas where moisture has accumulated. But the control in the trial does not represent farmer's true practices. So we are not romparing the "improved" technology with what farmers are doing. So almost all observations give little bit higher weight to control as of treatments.

Farmers water harvesting system is flexible - they may replant, or plant further area later if more rain received, and if rain are good they may plant a summer crop later on the previously not cropped part of the field. This would not be possible given the fixed ratio, permanent nature of AZRI's CBWH technology trials

AZRI, CBWH trials mainly concentrated on wheat and barley plantation and there is a problem of non availability of spring wheat and barley varieties. If there were late (spring) rainfall no other choice except to plant winter wheat and harley variety. Winter varieties have less production as of spring varieties.

6. Summary, Conclusion and Recommendation

Highland Balochistan is located in the north central part of Balochistan Pakistan and has a continental semi-arid climate with hot summers and cold winters. The most limited factor for crop production in rain-fed areas of Ralochistan is the skewed distribution of rainfall in both time and space. Annual rainfall in highland Balochistan averages 200 mm in the southern parts and 300 mm in the northern parts. Crop production in non-irrigated areas is either totally dependent on rainfall (kushkaba) or dependent on run-off. water onllected from uncultivated land to supplement rainfall (sailaba).

Present study was initiated to enhance the supply of food and feed crops in highland Balochistan of Pakistan using the sustainable water harvesting lechniques that increase the frequency of economic crop yield. Catchment hasins water harvesting (CBWH) techniques increased run-off from catchment hasin and also increased water storage in the cropped areas.

As an attempt to demonstrate improved utilization of rain water, AZRI has been growing cereals, lentils and forage legumes with CBWH techniques (trials) in highland Balochistan since 1986. The CRWH trials consist of preparing catchment areas at the top of gentle sloping fields ($0.5-1 \%$ slope) to sllonuragn incident rainfall to run off onto the bund, cropped areas. The proportions of water catchment area and crop area investigated by AZRI scient ist ale as follow: for the control treatment the entire area is occupied hy the cron; in the $1: 1$ treatment one half of the area is used for water ratchment and one half for planting, lastly, in the $2: 1$ treatment, two thirds of the areas is used for water catchment and one third for planting.

In pursuit of the objectives of the study, results of the AZRI's CBWH trials were discussed and analyzed, probabilities of different rainfall amount in economic analysis was also incorporated by simulation techniques, farmers practices and adoption potential of CBWH technology was also addressed. Following are the summery and conclusions of the findings:

6. 1 Summaary and Conclusions

Following are the summary and conclusions of the study:

- The results of wheat grain and straw yields based on the premise that liushkaha land is rarely ever completely planted i.e, there is not a shortage of kushkaba land and catchment basins can be constructed on adjacent unutilized land revealer very promising. Treatment $2: 1$ produce 184\% higher yield as of control and less production risk.
- The conclusion hased on the assumption that there is an opportunity cost of using land for catchment basin- foregone production or lands are scare produced very poor results as of control. There was no increased in grain, straw and both grain and straw as of control.
- It is important to consider different costs and benefits which were incurred in different water harvesting trials. There is a need to consider variable and fixed costs which were incurred in construction of catchment area and there were also gain as less inputs were required as of treatment. Economic analysis is critical to understand the net benefits and losses from CBWH technology.

In ordor to calculate the henefits and cost basic data were used from a survey conducted by the Economic and Farming Systems Section of A7RT through nut the highland Palochistan during 1992.

There is an increase in net benefits by adopting CBWH techniques both in case of calculating it on the total or crop area hasis. This increased was found maximum (588°) in treatment $2: 1$ as of control, nstimated on crop area basis and variability in net benefits decreased from 343\% (control) to 139% (2:1). If we estimate totaI net benefits on total area basis treatment $1: 1$ shows 26% higher and 59% less variability in net benefit as of control.

- It is clear that the six years data available for the analysis does not represent the entire spectrum of weather conditions in highland Balochistan. In situation where rainfall variability so closely governs crop performance, it is necessary to incorporate the prohabilities of different rainfall amount in the economic analysis. Thus, simulation techniques must be used to find probabilitydistributions of net benefits of these cereal crops grown under waterharvesting techniques.
- Rainfall variability was incorporated into the economic analysis using historical rainfall data in simulation of yields and net berefits over 50 years period.
- In order to understand farmer's practices and adoption potential about CBWH technology, a survey was under taken by a multidiciplinary team in highland Balochistan during 1992. Three stage stratified random sampling technique was adopted to interviewed 145 respondents at their premises of four regions of highland Balochistan viz Loralai, Zhob, Khuzdar and Kalat.
- The farmers were mostly illiterate in the area. The literacy rate was 28% amongst the respondents which consists of only men. The literacy rate amongst women is very low. The farmers have combine family system and on an average family member (house holds) were 16 in the sample area with equal gender ratio. Only 3 family member are full time engaged with the farm activities. Majority of dry land farmers (70%) source of income is from agricultural which consists of wheat only.
- On an average total land holding amongst the sample farmers were 19.5 hectares. This also include land (5 hectares) which is not suitable for cultivation. Wheat is the major and dominant crop in highland Ralnchistan. Out of the total cropped land 95% land went under wheat plantation.
- The farmers in highland Balochistan are very poor. In order to understand farmer's economic/financial standing, one questionnaire was asked about the minimum land required for fulfilling their family wheat consumption. In response to this 14 hectares of wheat could supplif enough wheat flour for consumption to an average family in the overall sample areas.
- Cropping intensity of highland Balochistan calculated from 1992 surveyed data was only 38%. It was the highest in the northern part and

The lnwest in the southern parts of highland Balochistan. The low
 [......... $1 . \ldots$

In order to protect from freezing temperature and searcity of fodder for animals during the winter period, motivated the farmers to migrate to lower areas. The over all migration trend was 13% in the sample areas. This was observed the highest in southern cold and high elevation areas as of northern areas.

- On an average 2, 3 and 5 "good", "normal" and "poor" agricultural Balochise expected out of ten in kushkaba conditions of highland $\mathrm{kg} / \mathrm{ha}$, in a "normal" year it was $103 \mathrm{~kg} / \mathrm{ha}$ and ranged from 41 to 486 $\mathrm{kg} / \mathrm{ha}$, and in poor year it was $40 \mathrm{~kg} / \mathrm{ha}$ and ranged from 3 to $161 \mathrm{~kg} / \mathrm{ha}$ in nighland Balochistan.
- Dry sowing practice concentrated only in very high altitude of highland Balochistan in Kalat region (22\% farmers) where due to the freezing temperature during winter period farmers migrated to lower areas and returned during spring. They plant their seed without waiting for the moisture and when ever the seeds got enough moisture started growing.
- Fifty percent of the respondents were interesting to aropt modern less production tochniques (CBWIT's) which increased yields and have response for rion rion of this technology in zen ant showed positive reported only 40% in Kalat areas.
- Out of the respondents who did not adopt this technology, one third of overall respondents did not believe it and it was the highest (46%) amongst Khuzdar region followed by Zhob (44\%), Loralai (42\%) and it was the lowest (11\%) in Kalat region. Thirty one percent farmers said that they did not have resources for levelling or preparation of catchment area, financial constraint was reported highest (51\%) in Kalat region while it was the lowest only 5% in Zhob region. Whereas 14\% farmers gave other reasons for not adoption of the AZRI technology for water harvesting, due to the reasons of shortage of land, heavy rain or land near the foot of hill with large area as catchment, they have already invested heavily by constructed bunds, some farmer did not want to invest because if their would be no rain all investment will be wasted, some farmers were practicing dry sowing and during winter they migrate to low land areas, etc. Eleven percent overall farmers reported no reason, they were illiterate and believe what is going on is their faith. This type of feeling were the highest in Zhob and the lowest in Loralai regions. There were a number of respondents who reported more them one reasons for not adoption of CBWHT's and even they did not believe it. Only 5\% respondent showed labor shortage as the problem, in Loralai and Kalat region no one reported this as a cause for not adoption of CBWHT's. There were overall 6% respondents which gave combination of previous reasons for not adoption of this technology and were only found in Kalat region.

Although the survey revealed that 50% of the respondonts accepled that they would try this technology (CBWH). But it didn't indicate their belief in the technology because they also indicated that in case of sufficient moisture availability they would even cultivate the catchment area so that they could hope to increarn production probabilities against low precipitation.

- It is important to relate farmers practices of watro harvesting and adoption of CBWH technology developed by AZRI. Farmers are opportunistic and their practicer are flexible. They do not plant their whole fields or any fixed ratio. They plant in areas where moisture has arcumulated. Where as AZRI's CBWH technology trials has fixed ratio, and permanent nature of catchment area.
- A number of overall farmers who did not belipve on CBWH would believe (46%) if there would be demonstration plots, 34% gave no reply, this might be they either we were not able to explain them well or they were illiterate and have no interest, and 10% if neighbor formers adoptit, the rest ten percent shownd combination of the previcus reasons. Demonstration plots were the major factor motivating the majority (56%) of Kalat region farmers, follower by Loralai (44\%), Khuzdar (43\%) and as the lowest (38%) in Zhob region.

6. 2 Recommendation:

Catchment hasin water harvesting have treme tous seopn in highland Ralowhistan for kushkaha subsistonen parmers. It it t ouly inereased the probluction but also reduens risks of, mp failure. Althon th amber of farmers
 tochmolngy developed by AZRI. For its adoption pumposes following are the p.enomendat ion:

- There should the demonstration plots at farmers f. id where Parmers should be directly involved in all steps i.e. f.m land peparation to crop harvesting. Provincial Agricultural Ex nsion Department should cone forward for CBWI extension.
- Kuslikaba farmers are very poor and they have no money for investment, in order to promote CRWFil government institutes should step front to advance credit for CBWII on easily installments or ferm and conditions.
- The CBWH plots at farmers fichl should he monitored and evaluated with and without CBWII technolngs. Vields hoth on total and eropperi areas hases should be calculated.
- It is also recommended that chail technolngy be adjustathe to sporific farm and area conditions and should be flexible with regards In the eatchment crop ratio.
- Although farmers are not specific with wheat they also grow larley, cumin, water mellon etc. But still wheat is the noly staple crop of the region and farmer prefer to cultivate it. There is no spring wheat variety and the henefit of late rains can nol he well harvested even with CRWH technolngy. There is serious meed to have short season spring wheat variety for highland Ralochistan.
- Rarley is hetter crop as of low rajufall is considered. Rut still farmers reasons for growing less harley than wheat may have 10 do more with growing wheat for fond security and with the present small uncertain barley market than with the production problems. It is there fore recommended that in areas where there is very low rainfall and farmers are growing wheat, efforts should be made to shift wheat in harley production. In this connection better marketing system should to established. The shift from wheat to barley also increased the pfficiency of CRWH technolngy.

ATRT have cRNI trials sine 1986. A lot of information is eathered alout wheat and barley production on these trials. I. is very - Hear from these experiments and even with the inemperation of so yoars historical rainfall data for measuring the water runoff whirinotios and crop penduction. the CBWH increased moistwe in the rrop areas and also reduces the production risk. The following are the recommendat ion for new water harvesting research at AZRI:

Attention should be diverted from ching trials to other water hows ing crop product inn techniques.

- Contour strip and wide sow cropping seems to hold promising in many rombrios with semiarid climates and required sloping lam. This could also he suitable for highland Ralochistan, ATRT is almaty started working on these directions during 1092. Efforts should be continued with maximum involvement of farmers and better mangenent prions.
- Twenty two percent of Kalat region farmer are practicing dry sowing. There was no water harvesting research activity with regard to dry sowing. Needs some research activities to boost the production prosibilities and reducer the risk of crop failures under dry sowing patine.

Run off water efficiencies should be calculated from the experimental plots. Exertion for modeling work to calculate runoff efficiencies and yields based on historical rainfall data should be cont inured and all time series data on rainfall should be uprated.

RTIPIRENCES

AKRI (Arid Zone Resmarch Institute)/ICARDA (International Centor for Agricultural Research in the Dry Areas). 1988. Ammal report 1987. MART/A\%R Projert. ICARDA, Quetta.
AKRI (Arid Zone Research Institute)/ICARDA (International Center for Agricultural Resparch in the Dry Areas). 1990. Annual report 1989. MART/AZR Project, ICARDA. Quetta.
AZRT (Arid Zone Research Institute)/ICARDA (International Center for Agrioultural Research in the Dry Areas). 1991. Annual report 1990. MART/AZR Project, ICARDA, Quetta.
AZRT (Arid 7one Research Institute)/ICARDA (International Center for Agricultural Rescarch in the Dry Areas). 1992. Antual report 1991. MART/A/R Project. ICARDA. Qumtla.
Muzdar. N., Kpatinge, J.G. Nagy, Sahir, G.F., Keatinge, J.D.H. and Mahrinod, K. 1989. "Rainfed Agriculture in Iighland Balochistan: a Farming Systems Perspective". MART/AZR Project Research Report No.54, ICARDA, Quetta.
Dutt. G.R. 1981. Water Harvesting for diyland and flood water farning on the Navajo Indian Reservation. Rainfall Collection for agriculture in arid and semiarid rogions. 3-7. Slough: Cominon Wealth Agricultural Bureaux.
Tink. D.II. and Fhrler, W.L. 1981. Evaluation of materials for inlucing rmoff and use of those materials in runoff farming. Rainfall Collertion for agriculture in arid and semiarid regions, 17-22. Slough: Conmonwealth Agricultural Rureaus.
(iils Ilein van and M. Shabhir B. 1992. Fnvironmental Profile Balochistan, Pakistan. Land Resource and Urhan Sciences Department, International Institute for Aerospace Survey and Earth Sciences, Enschede, Netherlands.
(iovermment of Dalochistan. 1992. Development Statisties of Palmhistan M980-90). Bureau of Statistios Planning and Development Department. Quetta.
Govermment of Pakistan. 1992. Econmic Survey of Pakistan 1991-92., Ministry of finance, Government of Takistan, Islamabad.
ICARDA (International Center for Agricultural Research In the Dry Aroas) 1989. High-elevation research in Pakistan: the MARI/AZR Project Annual Report for 1988. ICARDA, Aleppo, Syria. ICARDA $138-\mathrm{Fin}$. Fage 38.
han. B, R. 1990. "Use of Water Harvesting to Enhance Crop Production in Arid and Seni-arid Areas of IIghland Ralochistan. "Pronosal Suhmitted for a ROSTID firant Application. Arid Zone Rescarch Institute, Quetta, Takistan, 19 pp. (October 28,1990).
Khan, B. R; Thomson, E. F.; Rodriguez, A. 1992. "AZRI Research Plans for 1992-93", MART/A\%R research report, ICARDA Quetta Pakistan.

Ridh. C.II.R. Rons, II.J.Keatinge, J.D.II, Rehman, F. .Samiullah. A. and Raza. S.II. 1988. Metcombogical lata analys is of Ralochistan. MART/AZ" mosomeh mport No. In ICANDA Guct ta Rakistam.

Nime. R. F. and Rohison, I..J. 1984. "Risk: Efficiency Models". In Fisk Management in Agviculture, ed. Rarry, P.J., Inwa State University Press, Amos, Iowa.

Porvire. F.P. 1990. "Catchment Area Runoff Fvaluation (CART)." In Highlight Proweding and Recommendations of the Water Marvestime and Soil Water Conservat inn Workshop at Quetta and Islamaharl, Decenher 3-8. 1988. Arid 7 one Rosmawh Institute (PAKC), Quetta, Pakistan.

Kom. I., T. . Nagy, J.G.. Raza, S.H. . Mahmond, K., Chowdry, R.A., and J.D.H. Keat inge. 1987. "The Dryland Arable Farning System of Mploni Raluchistan: a mase study". MART/AZR Project Research Report No. 5, ICADMA Ruetta.
 I). II: and Raza. S.II. 1989. "Rarlny Production urdor Suht opioal Conditions in Ipland Ralochistan: Agrononic and Social Feonomir Considerations". MART/AZR Project Research Report, ICARDA Quet ta.

Reess. D.J., Samiullah, A., Islam, M., Qureshi, \%. and Raza, S.1. 1089a "Rainferl Crop Production Systems of Upland Balochistan'. 1. What (Triticum aestivumi). MART/AZR Project Research Report No. 5I, ICARDA Suetta.

Rows. D.J., Islan, M., Rehman Fahima, Samiullah, A., and Raza, S.II. 1989h "Rainfed Crop Product ion Systems of Upland Balochistan". 1. Barley (Ilordeum vulgare). MART/A7R Project Research Report No. 52, ICARDA Quetta.

Rees, D.I, 1990. "Consultancy Report to the MART Project. "Wnpuhlished document. MAKI/AZR Project, ICARDA Quetta. (December 1990).

Rees. i...J., Qureshi, Z.A., Mehmood, S., and Raza, S.II. 1991. Catolment has in water harvesting as a means of improving the productivity of rainfed land in upland Ralochistan. I. Agric. Science, Cambridge, 116 . 95-103.

APTUNDIX I

F:Ah, 1. Takor hours and cost for control and each treatment low the produrt ion of wheat (total area hasis).

Treatments

| $1: 1$
 $\mathrm{hr} / \mathrm{ha}$ |
| :---: | :---: | :---: |

Tillage (tractor)
Flanting (animal) (man)
Catchment maintenance

Tillage, (tractor \& man) Plantine fanimal \& man) Harwsting
Thereshing
f:itchonent maintenance
S.1-up cost for catchment ${ }^{5}$ sured rost ${ }^{\prime}$

Total costs

Ciain yield (kg/ha)
Straw yiold (kg/ha)
fiross benefits ($\mathrm{Rs} / \mathrm{ha})^{7}$
Not bonefits (:s/ha)

1.5	0.8	0.5
1.5	0.8	0.6
18.0	9.0	6.1.
18.0	9.0	6.0
-	10.0	15.0

142.3	71.2	47.4
252.2	126.1	84.1
122.4	98.9	96.5
82.1	71.4	53.4
-	56.0	84.0
-	64.0	96.0
375.0	187.5	125.0
974.0	675.1	566.4

146.0	127.0	95.0
541.0	410.0	327.0
1223.8	988.6	765.0
249.8	313.5	198.6

Control=crop in entire area; $1: 1=\mathrm{crop}$ in half area; $2: 1=\mathrm{crop}$ in $1 / 3$
area.
lahor cost $=5.6 \mathrm{Rs} / \mathrm{hr}$ ($4.5 \mathrm{Rs} /$ day) and tractor $\cos t=90.0 \mathrm{Rs} / \mathrm{hr}$.
('amel cost $=6.25 \mathrm{Rs} / \mathrm{hr}$ ($50 \mathrm{Rs} /$ day)
flarvesting enst a 10% of grain and straw yields.
Threshing cost a 15% of grain yield.
Usine $3.0 \mathrm{hr} / \mathrm{ha}$ for tractor and $12.0 \mathrm{hr} / \mathrm{ha}$ for man for catchment set-up and mond ized neer 10 years at 12% annual interest rate.

- Seed rate $(100 / \mathrm{ha})$ * seed price ($3.75 \mathrm{Rs} / \mathrm{kg}$).

Givain yield (kg/ha) * grain price ($3.75 \mathrm{Rs} / \mathrm{kg}$) + straw yield (kg/ha) * straw price ($1.25 \mathrm{Rs} / \mathrm{kg}$).
Giross benefit - total costs.

Tahl.. 2. Lakn hours and cost for montrol and rach treat ment for the producti of wheat (rroped area hasis).
\qquad .

Treatmonts
control
1:1
\qquad hr/ha \qquad

Tillage (ractor) (nan)
Flanting (animal) (nan)
ratohment maintenanor

Tillage , (tractor \& man) Planting (animal \& man) llarvesting
Threshing
Catchment maintenance
Set-up cost for catchment ${ }^{5}$ Sped inst

Potal costs

1.5	0.8	0.5
1.5	0.8	0.5
18.0	9.0	6.0
18.0	9.0	6.0
-	10.0	15.0

$142.3 \quad 71.2 \quad 47.4$
$252.2 \quad 126.1 \quad 84.1$
$122.4 \quad 197.4 \quad 229.5$
$82.1 \quad 142.3 \quad 160.3$
$56.0 \quad 84.0$
$\begin{array}{lll}\text { - } & 56.0 & 84.0 \\ - & 64.0 & 96.0\end{array}$
$\begin{array}{lll}375.0 & 187.5 & 125.0\end{array}$
$974.0 \quad 844.5 \quad 826.3$

Gitaill yiolil (kg/ha)
Straw yiclil (kg/ha)
cross henefits (Rs/ha)
Not benefits (rs/ha)

146.0	253.0	285.0
541.0	820.0	981.0
1223.8	1973.8	2295.0
249.8	1129.3	1468.7

Control=crop in entire area; $1: 1=$ crop in half area; $2: 1=$ crop in $1 / 3$ area.

- lator cost $=5.6 \mathrm{Rs} / \mathrm{hr}(45 \mathrm{Rs} /$ day $)$ and t ractor $\cos t=90.0 \mathrm{Rs} / \mathrm{hr}$.
, Canel cost=6.25 Rs/hr (50 Rs/day)
thavesting cost an 10% of grain and straw yields.
Threshing cost of 15% of grain yield.
Hsing $3.0 \mathrm{hr} / \mathrm{ha}$ for tractor and $12.0 \mathrm{hr} /$ ha for man for catmment set-up amortized over in years at 12% anmal internst rate.
Sood rate ($100 / \mathrm{ha}$) * seed price ($3.75 \mathrm{Rs} / \mathrm{kg}$).
Grain yirld (kg/ha) * grain price ($3.75 \mathrm{Rs} / \mathrm{kg}$) + straw yicld ($\mathrm{kg} / \mathrm{ha}$) * straw pric ($1.25 \mathrm{ks} / \mathrm{kg}$).
fiross henefit - total costs.

LIST OF SCIENTISTS INVOLVED IN THE RESEARCH WORK DURING 1985-86 TO 1992-94

1. Sied Hassan Raza PSO
2. K. N. Babar PSO
3. Syed Sher Mahmood Shah SO
4. Ahmed Samiuilah So
5. Muhammad Islam SO
6. Zahid Ali

AAE/SO
7. Munammad Aclil Akbar AAE/SO
\therefore artitules.

