(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization
International Bureau
(43) International Publication Date 26 May 2017 (26.05.2017)
||
(10) International Publication Number WO 2017/087710 A3
(51) International Patent Classification: C07C 6/02 (2006.01)

C07C 6/04 (2006.01)
(21) International Application Number:

PCT/US2016/062595
(22) International Filing Date:

17 November 2016 (17.11.2016)
(25) Filing Language:

English
(26) Publication Language:

English
(30) Priority Data:

62/257,148 18 November 2015 (18.11.2015)
(71) Applicant: PROVIVI, INC. [US/US]; 1701 Colorado Avenue, Santa Monica, California 90404 (US).
(72) Inventors; and
(71) Applicants : ONDI, Levente [$\mathrm{HU} / \mathrm{CH}]$; c/o XiMo AG, Altsagenstrasse 3, CH-6048 Horw (CH). MEHDI, Hasan [HU/CH]; c/o XiMo AG, Altsagenstrasse 3, CH-6048 Horw (CH).
(72) Inventors: WAMPLER, Keith M.; c/o Provivi, Inc., 1701 Colorado Avenue, Santa Monica, California 90404 (US). MEINHOLD, Peter; c/o Provivi, Inc., 1701 Colorado Avenue, Santa Monica, California 90404 (US). COELHO, Pedro; c/o Provivi, Inc., 1701 Colorado Avenue, Santa Monica, California 90404 (US). BUI, Vu; c/o Provivi, Inc., 1701 Colorado Avenue, Santa Monica, California 90404 (US)
(74) Agents: PRESLEY, Andrew D. et al.; Kilpatrick Townsend and Stockton LLP, Two Embarcadero Center, Suite 1900, San Francisco, California 94111 (US).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, $\mathrm{AO}, \mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BH}, \mathrm{BN}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}$, $\mathrm{BZ}, \mathrm{CA}, \mathrm{CH}, \mathrm{CL}, \mathrm{CN}, \mathrm{CO}, \mathrm{CR}, \mathrm{CU}, \mathrm{CZ}, \mathrm{DE}, \mathrm{DJ}, \mathrm{DK}, \mathrm{DM}$, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
(88) Date of publication of the international search report:

17 August 2017 cludes: a) contacting an unsaturated olefin with an unsaturated fatty acid ester in the presence of a metathesis catalyst under condi tions sufficient to form a metathesis product and b) converting the metathesis product to the fatty olefin derivative. In certain embod iments, the metathesis catalyst is a tungsten catalyst or a molybdenum catalyst. In various embodiments, the fatty olefin derivative is an insect pheromone. Pheromone compositions and methods of using them are also described.

PRODUCTION OF FATTY OLEEIN DERIVATIVES VA OLERIN METATHESIS

CROSS-REFERENCES TO RELATED APPLICATIONS
[0001] The present application claims priority to U.S. Provisional Pat. Appl. No. $62 / 257,148$, filed on Nov. 18, 2015, which application is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

[0002] Insect infestation is a primary cause of crop loss throughout the United States. A wide variety of chemical pesticides has been relied upon in the past to control insect pests. However, environmental concerns as well as consumer safety concems have led to the deregistration of many pesticides and a reluctance to use ohers on agricultural products which are ultimately consumed as food. As a consequence, there is a desire for the development of alternative biological control agents.
[0003] Pheromones are chemicals which are secreted outside the body of insects can be classified according to the type of behavioral reaction they induce. Pheromone classes include aggregation pheromones, sexual pheromones, trail pheromones, and alarm pheromones. Sex pheromones, for example, are typically secreted by insects to attract partners for mating.
[0004] When pheromones are dispersed on leaves of a crop plant, or in an orchard environment in small quantities over a continuous period of time, pheromone levels reach thresholds that can modify insect behavior. Maintenance of pheromone levels at or above such thresholds can impact insect reproductive processes and reduce mating. Use of pheromones in conjunction with conventional insecticides can therefore reduce the quantity of insecticide required for effective control and can specifically target pest insects while preserving beneficial insect populations. These advantages can reduce risks to humans and the environment and lower overall insect control costs.
[000s] Despite these advantages, pheromones are not widely used today because of the high cost of active ingredient (A). Even though thousands of insect pheromones have been identified, less than about twenty insect pests wonldwide are currently controlled using
pheromone strategies, and only 0.05% of global agricultural land employs pheromones. Lepidopteran pheromones, which are naturally occuring compounds, or identical or substantially similar synthetic compounds, are designated by an unbranched aliphatic chain (between 9 and 18 carbons) ending in an alcohol, aldehyde, or acetate functional group and containing up to 3 double bonds in the aliphatic backbone. Improved methods for preparing lepidopteran insect pheromones and structurally related compounds are needed. The present invention meets this and other needs.

BRIEF SUMMARY OF THE INVENTION

[0006] In a first aspect, the invention provides a method for synthesizing a fatty olefin derivative. The method includes:
a) contacting an olefin according to Formula I

(I),
with a metathesis reaction partner according to Formula II

$$
\mathrm{R}_{\text {man }}^{1}=\lim _{\mathrm{R}^{2}} \text { (II), }
$$

in the presence of a metathesis catalyst under conditions sufficient to form a metathesis product; and
b) optionally converting the metathesis product to the fatty olefin derivative;
wherein:
R^{\prime} is selected from $\mathrm{H}, \mathrm{C}_{1-18}$ alkyl, and C_{2-18} alkenyl;
R^{2} is selected from $-\left(\mathrm{CH}_{2}\right)_{\mathrm{x}} \mathrm{OR}^{2 a}$ and $-\left(\mathrm{CH}_{2}\right)_{\mathrm{y}} \mathrm{COOR}^{2 b}$, wherein $\mathrm{R}^{2 a}$ is an alcobol protecting group and $\mathrm{R}^{2 b}$ is C_{1-8} allyl;
subscript x is an integer ranging from 1 to 18 ;
subscript y is an integer ranging from 0 to 17 ; and
subscript z is an integer ranging from 0 to 17 .
[0007] In some embodiments, the metahesis catalyst is a tungsten metahesis calalyst, a molybdenum metathesis catalyst, or a ruthenium metathesis catalyst. In certain embodiments, the metahesis catalyst is a tungsten catalyst or a molybdenum catalyst.
[0008] In some embodiments, the metathesis reaction partner is a protected alcohol according to Formula IIa:
wherein $R^{2 a}$ is an alcohol protecting group,
and wherein the metathesis product is a compound according to Formula Ha:

[0009] In some embodiments, converting the metathesis product to the fatty olefin derivative includes removing $\mathrm{R}^{2 a}$ from the compound of Formula Ma to form an alkenol according to Formula Va:

[0010] In some embodiments, the alkenol of Formula Va is the pheromone. In some embodiments, converting the metathesis product to the fatty olefin derivative further includes acylating the alkenol of Formula Va, thereby forming a fatty olefin derivative according to Formula VIa

(VIa),
wherein $\mathrm{R}^{2 c}$ is C_{1-6} acyl.
[0011] In some embodiments, converting the metathesis product to the faty olenn derivative further includes oxidizing the alkenol of Formula Va, thereby forming a fatty olefin derivative according to Formula VIIa:

(VIIa).
[6012] In some embodiments, the metathesis reaction partner is an ester according to Formula IIb:
and subscript z is an integer ranging from 1 to 18 ; and wherein the metathesis product is a compound according to Formula IIb :

(IIIb).
[0013] In some embodiments, converting the metathesis product to the fatty olefin derivative includes reducing the metathesis product of Formula Imb to form an alkenol according to Formula Vb :

(Vb).
[0014] In some embodiments, the metathesis reaction partner is a protected alcohol according to Formula Ila or Formula IIb and the metathesis product is a compound according to Formula IV:

[0015] In some embodiments, R^{1} in the compound of Formula lV is C_{2-18} alkenyl.
[0016] A number of pheromones and pheromone precursors, including unsaturated fatty alcohols, unsaturated fatty alcohol acetates, unsaturated fatty aldehydes, unsaturated fatty acid esters, and polyenes, can be synthesized using the methods of the invention.

DETAILED DESCRIPTION OF THE INVENTION

I. INTRODUCTION

[0017] The present invention provides methods for the synthesis of fatty olefin derivatives (such as straight-chain lepidopteran pheromones; SCLPs) through the cross-metahesis of protected fatty alcohols or fatty acid esters with olefins (e.g, α-olefins). Through the use of a variety of fatty alcohols, fatty acid alkyl esters and α-olefin feedstocks in concert with olefin metathesis catalysts (including Group VI Z-selective catalysts), a wide variety of protected unsaturated fatty alcohol precursors with high Z-olefin content can be obtained. These precursor compounds can be converted to pheromones (e.g., long chain Z-alcohols, Z aldehydes, Z-acetates, and Z-nitrates) and other useful fatty olefin derivatives as described in detail below. Alternatively, non-selective olefin metathesis catalysts (including Group VI non-selective catalysts) can be used to generate cistrans mixtures of protected long chain fatty alcohols. Such mixtures can be refined to provide pure E-pheromone precursors and other fatty E-olefin derivatives via Z-selective ethenolysis. The methods provide access to valuable products, including $\mathrm{SCLPS}_{\mathrm{s}}$ containing 7-, 9 -, or 10 -monounsaturation.

II. DEFINTTIONS

[0018] The following definitions and abbreviations are to be used for the interpretation of the invention. The term "invention" or "present invention" as used herein is a non-limiting
term and is not intended to refer to any single embodiment but encompasses all possible embodiments.
[0019] As used herein, the terms "comprises," "comprising," "includes," "including," "has," "having, "contains," "containing," or any other variation thereof, are intended to cover a non-exclusive inclusion. A composition, mixture, process, method, article, or apparatus that comprises a list of elements is not necessarity limited to only those elements but may include other elements not expressly listed or inherent to such composition, mixture, process, method, article, or apparatus. Further, unless expressly stated to the contrary, "or" refers to an inclusive "or" and not to an exclusive "or."
[0020] The terms "about" and "around," as used herein to modify a numerical value, indicate a close range surrounding that explicit value. If " X " were the value, "about X " or "around X " would indicate a value from 0.9 X to 1.1 X , and in certain instances, a value from 0.95 X to 1.05 X or from 0.98 X to 1.02 X . Any reference to "about X " or "around X " specifically indicates at least the values $\mathrm{X}, 0.95 \mathrm{X}, 0.96 \mathrm{X}, 0.97 \mathrm{X}, 0.98 \mathrm{X}, 0.99 \mathrm{X}, 1.01 \mathrm{X}$, $1.02 \mathrm{X}, 1.03 \mathrm{X}, 1.04 \mathrm{X}$, and 1.05 X . Thus, "about X " and "around X " are intended to teach and provide written description support for a claim limitation of, e.g., "0.99X."
[0021] As used herein, the term "pheromone" refers to a substance, or characteristic mixture of substances, that is secreted and released by an organism and detected by a second organism of the same species or a closely related species. Typically, detection of the pheromone by the second organism promotes a specific reaction, such as a definite behavioral reaction or a developmental process. Insect pheromones, for example, can influence behaviors such as mating and aggregation. Examples of pheromones include, but are not limited to, compounds produced by Lepidoptera (i.e, moths and butterflies belonging to the Geometridae, Noctuidae, Arctiddae, and Lymantridae families) such as $\mathrm{C}_{10}-\mathrm{C}_{88}$ acetates, $\mathrm{C}_{10}-$ C_{18} alcohols, $\mathrm{C}_{10}-\mathrm{C}_{18}$ aldehydes, and $\mathrm{C}_{17}-\mathrm{C}_{23}$ polyenes. An "unsaturated pheromone" refers to any pheromone having at least one carbon-carbon double bond.
[0022] As used herein, the term "contacting" refers to the process of bringing into contact at least two distinct species such that they can react. It should be appreciated, however, that the resulting reaction product can be produced directly from a reaction between the added reagents or from an intermediate from one or more of the added reagents that can be produced in the reaction mixture.
[0023] As used herein, the term "olefin" refers to a straight-chain or branched hydrocarbon compound containing at least one carbon-carbon double bond and derivatives thereof. The olefin can be unsubstituted or substituted with one or more functional groups including alcohol groups, protected alcohol groups, carboxylate groups, and carboxylic acid ester groups. As used herein, the term "olefin" encompasses hydrocarbons having more than one carbon-carbon double bond (e.g., di-olefins, tri-olefins, etc.). Hydrocarbons having more than one carbon-carbon double bond and derivatives thereof are also referred to as "polyenes." The term "fatty olefin" refers to an olefin having at least four carbon atoms; faty olefins can have, for example, $4,6,8,10,12,14,16,18,20,22,24$, or 28 carbon atoms. A "fatty olefin derivative" refers to a compound obtained from an olefin starting material or a fatty olefin starting material. Examples of fatty olefin derivatives include, but are not limited to, msaturated fatty alcohols, unsaturated fatty alcohol acetates, unsaturated fatty aldehydes, unsaturated fatty acids, unsaturated faty acid esters, and polyenes. In certain embodiments, fatty olefins derivatives synthesized according to the methods of the invention have from 8 to 28 carbon atoms.
[0024] A Δ^{9}-unsaturated olefin refers to an olefin wherein the ninth bond from the end of olefin is a double bond. A Δ^{9}-unsaturated fatty acid refers to an olefinic carboxylic acid wherein the ninth bond from the carboxylic acid group is a double bond. Examples of $\Delta^{\prime \prime}$ unsaturated fatty acids inchude, but are not limited to, 9-decenoic acid, oleic acid (i.e., (Z)-octadec-9-enoic acid), and elaidic acid (i.e., (E)-octadec-9-enoic acid).
[6025] As used hercin, the term "metathesis reaction" refers to a catalytic reaction which involves the interchange of alkylidene units (i.e., $\mathrm{R}_{2} \mathrm{C}=$ units) among compounds containing one or more carbon-carbon double bonds (e.g. olefinic compounds) via the formation and cleavage of the carbon-carbon double bonds. Metathesis can occur between two molecules having the same structure (often referred to as self-metathesis) and/or between two molecules having different structures (often referred to as cross-metathesis). The term "metathesis reaction partner" refers to a compound having a carbon-carbon double bond that can react with an olefin in a metathesis reaction to form a new carbon-carbon double bond.
[6026] As used herein, the term "metathesis catalyst" refers to any catalyst or catalyst system that catalyzes a metathesis reaction. One of skill in the ant will appreciate that a metathesis catalyst can participate in a metathesis reaction so as to increase the rate of the reaction, but is iself not consumed in the reaction. A "Ungsten catalyst" refers to a
metathesis catalyst having one or more tungsten atoms. A "molybdenum catalyst" refers to a metathesis catalyst having one or more moly bdenum atoms.
[0027] As used herein, the term "metathesis product" refers to an olefn containing at least one double bond, the bond being formed via a metathesis reaction.
[0028] As used herein, the term "converting" refers to reacting a starting material with at least one reagent to form an intermediate species or a product. The converting can also include reacting an intermediate with at least one reagent to form a further intermediate species or a product.
[0029] As used herein, the term "oxidizing" refers to the transfer of electron density from a substrate compound to an oxidizing agent. The electron density transfer typically occurs via a process including addition of oxygen to the substrate compound or removal of hydrogen from the substrate compound. The term "oxidizing agent" refers to a reagent which can accept electron density from the substate compound. Examples of oxidizing agents include, but are not limited to, pyridinum chlorochromate, o-iodoxybenzoic acid, and 2,2,6,6tetramethylpiperidine 1 -oxyl.
[0030] As used berein, the term "reducing" refers to the transfer of electron density from a reducing agent to a substrate compound. The electron density transfer typically occurs via a process including additon of bydrogen to the substate compoud. The term "reducing agent" refers to a reagent which can donate electron density to the substrate compomd. Examples of reducing agents include, but are not limited to, sodium borohydride and sodium triacetoxy borohy dride.
[0031] As used herein, the term "acylating" refers to converting a alcohol group (-OH), to an ester group (-OC(O)R), where R is an alkyl group as described below.
[0032] The term "aliphatic" or "aliphatic group," as used herein, means a straight-chain (i.e, unbranched) or branched, substituted or unsubstituted hydrocarbon chain that is completely saturated or that contains one or more units of unsaturation, or a monocyclic hydrocarbon, bicyclic hydrocarbon, or tricyclic hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic (also referred to herein as "carbocycle" or "cycloaliphatic"), that has a single point of attachment to the rest of the molecule. Unless otherwise specified, aliphatic groups contain 1-30 aliphatic carbon atoms. In some embodiments, aliphatic groups contain 1-20 aliphatic carbon atoms. In other
embodiments, aliphatic groups contain 1-10 aliphatic carbon atoms. In still other embodiments, aliphatic groups contain 1-5 aliphatic carbon atoms, and in yet other embodiments, aliphatic groups contain 1, 2, 3, or 4 aliphatic carbon atoms. In some embodiments, "cycloaliphatic" (or "carbocycle") refers to a monocyclic $\mathrm{C}_{3}-\mathrm{C}_{6}$ hydrocarbon, or a $\mathrm{C}_{8}-\mathrm{C}_{10}$ bicyclic hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic, that has a single point of attachment to the rest of the molecule. Suitable aliphatic groups include, but are not limited to, linear or branched, substituted or unsubstituted alky, alkenyl, alkynyl groups and hybrids thereof such as (cycloalkyl)alkyl, (cycloalkenyl)alkyl, or (cycloalkyl)alkenyl. The term "heteroaliphiatic" refers to an aliphatic group wherein at least one carbon atom of the aliphatic group is replaced with a heteroatom (i.e., nitrogen, oxygen, or sulfur, including any oxidized form of nitrogen or sulfur, and any quaternized form of a basic nitrogen).
[0033] As used herein, the term "alkyl" is given its ordinary meaning in the ant and includes straight-chain alkyl groups and branched-chain alkyl groups having the number of carbons indicated. In certain embodiments, a straight chain or branched chain alkyl has about $1-30$ carbon atoms in its backbone ($e . g, \mathrm{C}_{1}-\mathrm{C}_{30}$ for straight chain, $\mathrm{C}_{3}-\mathrm{C}_{30}$ for branched chain), and alternatively, about $1-20$. In some embodiments, an alkyl group may be a lower alkyl group, wherein a lower alkyl group comprises 1-4 carbon atoms (e.g. $\mathrm{C}_{1}-\mathrm{C}_{4}$ for straight chain lower alkyis)
[0034] The term "heteroalkyl" is given its ordinary meaning in the art and refers to alkyl groups as described herein in which one or more carbon atoms is replaced with a heteroatom (e.g, oxygen, nitrogen, sulfur, and the like). Examples of heteroalkyl groups include, but are not limited to, alkoxy, poly(ethylene glycol)-, allyl-substituted amino, and the like.
[0035] As used herein, the term "acyl" refers to the functional group -C(O)R), wherein R is an alkyl group as described above.
[0036] As used herein, the term "alkoxy" refers to a moiety -OR wherein R is an alkyl group as defined above. The term "silylalkyl" refers to an alkyl group as defined herein wherein as least one carbon atom is replaced with a silicon atom. The term "silyloxy" refers to a moiety $-\mathrm{OSiR}_{3}$, wherein each R is independently selected from the group consisting of H, alkyl, substituted alkyl, aryl, and substituted aryl as described herein.
[0037] As used herein, the term "cycloalkyl" refers to a saturated, monocyclic hydrocarbon, bicyclic hydrocarbon, or tricyclic hydrocarbon group that has a single point of
attachment to the rest of the molecule. Cycloalkyl groups include alkyl substituted cycloakyl groups and cycloalkyl substituted alkyl groups. In some embodiments, cycloalky rings have from about $3-10$ carbon atoms in their ring structure where such rings are monocyclic or bicyclic, and alternatively about 5,6 or 7 carbons in the ring structure.
[0038] As used herein, the term "alkeny" refers to an alkyl group, as defined herein, having one or more double bonds. The term "heteroalkenyl" refers to an alkenyl group wherein one or more carbon atoms is replaced with a heteroatom (i.e, nitrogen, oxygen, or sulfur, including any oxidized form of nitrogen or sulfur, and any quaternized form of a basic nitrogen).
[6039] As used herein, the term "alkenol" refers to a compound having a formula R-OR' wherein R is an alkenyl group and R^{\prime} is hydrogen or an alcohol protecting group.
[0040] As used herein, the term "alkynyl" refers to an alkyl group, as defined herein, having one or more triple bonds.
[0041] The term "aryl" used alone or as part of a larger moiety as in "aralkyl," "aralkoxy," or "aryloxyalkyl," refers to monocyclic or bicyclic ring systems having a total of five to foutteen ring members, wherein at least one ring in the system is aromatic and wherein each ring in the system contains 3 to 7 ring members. The term "ary" may be used interchangeably with the term "aryl ring." In certain embodiments of the present invention, "ary" refers to an aromatic ring system which includes, but is not limited to, phenyl, biphenyl, naphthyl, anthracyl and the like, which may bear one or more substituents. Also included within the scope of the term "aryl," as it is used herein, is a group in which an aromatic ring is fused to one or more non-aromatic rings, such as indanyl, phthalimidyl, naphthimidyl, phenanthridinyl, or tetrahydronaphthyl, and the like. The term "aryloxy" refers to a moiety -OR, wherein R is an aryl group as defined above
[0042] The terms "heteroaryl" and "heteroar-," used alone or as part of a larger moiety, e.g., "heteroaralkyl," or "heteroaralkoxy," refer to groups having 5 to 10 ring atoms (i.e, monocyclic or bicyclic), in some embodiments $5,6,9$, or 10 ring atoms. In some embodiments, such rings have 6,10 , or 14 pi electrons shared in a cyclic arrangement; and having, in addition to carbon atoms, from one to five heteroatoms. The term "heteroatom" refers to nitrogen, oxygen, or sulfur, and includes any oxidized form of nitrogen or sulfur, and any quaternized form of a basic nitrogen. Heteroaryl groups include, without limitation,
thienyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazoly], thiazolyl, isothazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolizinyl, purinyl, naphthyridinyl, and pteridinyl. The terms "heteroaryl" and "heteroar-"" as used herein, also include groups in which a heteroaromatic ring is fused to one or more aryl, cycloaliphatic, or heterocyclyl rings, where the radical or point of attachment is on the heteroaromatic ring. Nonlimiting examples include indolyl, isoindolyl, benzothienyl, benzofuranyl, dibenzofuranyl, indazolyl, benzimidazolyl, benzthazolyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, 4H-quinolizinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, and pyrido[2,3-b]-1,4-oxazin-3(4H)-one. A heteroaryl group may be mono- or bicyclic. The term "heteroaryl" may be used interchangeably with the terms "heteroaryl ring," "heteroaryl group," or "heteroaromatic," any of which terms include rings that are optionally substituted. The term "heteroaralky"" refers to an alkyl group substituted by a heteroaryl, wherein the alkyl and heteroaryl portions independently are optionally substituted.
[0043] Examples of aryl and heteroaryl groups include, but are not limited to, phenyl, pyrrolyl, furanyl, thiophenyl, imidazolyl, oxazolyl, thiazolyl, triazolyl, pyrazolyl, pyridinyl, pyrazinyl, pyridazinyl and pyrimidnyl, and the like. It should be understood that, when aryl and heteroaryl groups are used as ligands coordinating a metal center, the aryl and heteroaryl groups may have sufficient ionic character to coordinate the metal center. For example, when a heteroaryl group such as pyrole is used as a nitrogen-containing ligand, as described herein, it should be understood that the pyrrole group has sufficient ionic character (e.g., is sufficiently deprotonated to define a pyrrolyl) to coordinate the metal center. In some cases, the aryl or heteroaryl group may comprise at least one functional group that has sufficient ionic character to coordinate the metal center, such as a biphenolate group, for example.
[0044] As used herein, the terms "heterocycle," "heterocyclyl," "heterocyclic radical," and "heterocyclic ring" are used interchangeably and refer to a stable 5- to 7 -membered monocyclic or 7-10-membered bicyclic heterocyclic moiety that is either saturated or partially unsaturated, and having, in addition to carbon atoms, one or more heteroatoms (e.g., one to four heteroatoms), as defined above. When used in reference to a ring atom of a heterocycle, the term "nitrogen" includes a substituted nitrogen. As an example, in a saturated or partially unsaturated ring having 1-3 heteroatoms selected from oxygen, sulfur or nitrogen,
the nitrogen may be N (as in 3,4-dihydro-2H-pyrroly), NH (as in pyrrolidiny), or ${ }^{+} \mathrm{NR}$ (as in N -substituted pyrrolidinyl).
[0045] A heterocyclic ring can be attached to its pendant group at any heteroatom or carbon atom that results in a stable structure and any of the ring atoms can be optionally substituted. Examples of such saturated or partially unsaturated heterocyclic radicals include, without limitation, tetrahydrofuranyl, tetrahydrothiophenyl, pyrolidinyl, piperidinyl, pyrrolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, oxazolidinyl, piperazinyl, dioxanyl, dioxolanyl, diazepinyl, oxazepinyl, thazepinyl, morpholinyl, and quinuclidinyl. The terms "heterocycle," "heterocyclyl," "heterocyclyl ring," "heterocyclic group," "heterocyclic moiety," and "heterocyclic radical," are used interchangeably herein, and also include groups in which a heterocyclyl-ring is fused to one or more aryl, heteroaryl, or cycloaliphatic rings, such as indolinyl, 3 H -indolyl, chromanyl, phenanthridinyl, or tetrahydroquinolinyl. A heterocyclyl group may be mono- or bicyclic. The term "heterocyclylalkyl" refers to an alkyl group substituted by a heterocyclyl, wherein the alkyl and heterocyclyl portions independently are optionally substituted.
[0046] The terms "halogen" and "halo" are used interchangeably to refer to $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, or I.
[0047] As used herein, the term "protecting group" refers to a chemical moiety that renders a functional group unreactive, but is also removable so as to restore the functional group. Examples of "alcohol protecting groups" include, but are not limited to, benzyl; tert-butyl; trityl; tert-butyldimethylsilyl (TBDMS; TBS); 4,5-dimethoxy-2-nitrobenzyloxycarbonyl (Dmnb); propargyloxycarbonyl (Poc), and the like. Examples of "amine protecting groups" include, but are not limited to, benzyloxycarbonyl; 9-fluorenylmethyloxycarbonyl (Fmoc); tert-butyloxycarbonyl (Boc); allyloxycarbonyl (Alloc); p-toluene sulfonyl (Tos); 2,2,5,7,8-pentamethylchroman-6-sulfonyl (Pmc); 2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5sulfonyl (Pbof; mesity]-2-sulfonyl (Mis); 4-methoxy-2,3,6-trimethylphenylsulfonyl (Mir); acetamido; phthalimido; and the like. Other alcohol protecting groups and amine protecting groups are known to those of skill in the art including, for example, those described by Green and Wuts (Protective Groups in Organic Synthesis, $4^{\text {ih }} \mathrm{Ed}$. 2007, Wiley-Interscience, New York).
[0048] As described herein, compounds of the invention may contain "optionally substituted" moieties. In general, the term "substituted," whether preceded by the term "optionally" or not, means that one or more hydrogens of the designated moiety are replaced
with a suitable substituent. Unless otherwise indicated, an "optionally substituted" group may have a sutable substituent at each substitutable position of the group, and when more than one position in any given structure may be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at every position. Combinations of substituents envisioned by this invention are generally those that result in the formation of stable or chemically feasible compounds. The term "stable," as used heren, refers to compounds that are not substantially altered when subjected to conditions to allow for their production, detection, and, in certain embodiments, their recovery, purification, and use for one or more of the purposes disclosed herein
[0049] Suitable monovalent substituents on a substitutable carbon atom of an "optionally substituted" group are independently halogen; - $\left(\mathrm{CH}_{2}\right)_{0.4} \mathrm{R}^{\mathrm{f}} ;-\left(\mathrm{CH}_{2}\right)_{0.4} \mathrm{OR}^{\mathrm{d}} ;-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{R}^{\mathrm{s}}$, $-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{C}(\mathrm{O}) \mathrm{OR}^{\mathrm{c}} ; \quad-\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{CH}\left(\mathrm{OR}^{\alpha}\right)_{2} ;-\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{SR}^{\alpha} ;-\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{Ph}$, which may be substituted with $\mathrm{R}^{\mathrm{x}} ;-\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{0-1} \mathrm{Ph}$ which may be substituted with $\mathrm{R}^{\mathrm{oj}} ;-\mathrm{CH}=\mathrm{CHPh}$, which may be substituted with $\mathrm{R}^{\mathrm{N}},-\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{0-1}$-pyridyl which may be substituted with $\mathrm{R}^{\alpha} ; \quad-\mathrm{NO}_{2} ; \quad-\mathrm{CN} ; \quad-\mathrm{N}_{3} ; \quad-\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{~N}\left(\mathrm{R}^{\alpha}\right)_{2} ; \quad-\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{~N}^{\left(\mathrm{R}^{\alpha}\right) \mathrm{C}(\mathrm{O}) \mathrm{R}^{\alpha} ; \quad-\mathrm{N}\left(\mathrm{R}^{\circ}\right) \mathrm{C}(\mathrm{S}) \mathrm{R}^{\alpha} ;}$ $-\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{~N}\left(\mathrm{R}^{\alpha}\right) \mathrm{C}(\mathrm{O}) \mathrm{NR}_{2}^{\alpha} ; ~-\mathrm{N}\left(\mathrm{R}^{\alpha}\right) \mathrm{C}(\mathrm{S}) \mathrm{NR}_{2}^{\alpha} ;-\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{~N}\left(\mathrm{R}^{\alpha}\right) \mathrm{C}(\mathrm{O}) \mathrm{OR}^{\alpha} ;-\mathrm{N}\left(\mathrm{R}^{\alpha}\right) \mathrm{N}\left(\mathrm{R}^{\alpha}\right) \mathrm{C}(\mathrm{O}) \mathrm{R}^{\alpha}$; $-\mathrm{N}\left(\mathrm{R}^{\circ}\right) \mathrm{N}\left(\mathrm{R}^{\prime \prime}\right) \mathrm{C}(\mathrm{O}) \mathrm{NR}^{\alpha}{ }_{2} ; \quad-\mathrm{N}\left(\mathrm{R}^{0}\right) \mathrm{N}\left(\mathrm{R}^{\circ}\right) \mathrm{C}(\mathrm{O}) \mathrm{OR} \mathrm{R}^{\prime \prime} ; \quad-\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{C}(\mathrm{O}) \mathrm{R}^{\mathrm{a}} ; \quad-\mathrm{C}(\mathrm{S}) \mathrm{R}^{\mathrm{a}} ;$ $-\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{Cl}(\mathrm{O}) \mathrm{OR}^{\alpha} ; \quad-\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{C}(\mathrm{O}) \mathrm{SR}^{6 .} ; \quad-\left(\mathrm{CH}_{2}\right)_{0.4} \mathrm{C}(\mathrm{O}) \mathrm{OSiR}_{3}^{\alpha} ; \quad-\left(\mathrm{CH}_{2}\right)_{0.4} \mathrm{OC}(\mathrm{O}) \mathrm{R}^{\alpha}$; $-\mathrm{OC}(\mathrm{O})\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{SR}-\mathrm{SC}(\mathrm{S}) \mathrm{SR}^{\alpha} ; \quad-\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{SC}(\mathrm{O}) \mathrm{R}^{\alpha} ; \quad-\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{C}(\mathrm{O}) \mathrm{NR}_{2}^{\alpha} ; \quad-\mathrm{C}(\mathrm{S}) \mathrm{NR}_{2}^{\alpha}$, $-\mathrm{C}(\mathrm{S}) \mathrm{SR}^{\alpha} ; \quad-\mathrm{SC}(\mathrm{S}) \mathrm{SR}^{\alpha,}, \quad-\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{OC}(\mathrm{O}) \mathrm{NR}_{2}^{\alpha} ; \quad-\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{OR} \mathrm{R}^{\alpha}\right) \mathrm{R}^{\alpha} ; \quad-\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{O}) \mathrm{R}^{\alpha} ;$
 $-\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{OS}(\mathrm{O})_{2} \mathrm{R}^{\alpha,} ; \quad-\mathrm{S}(\mathrm{O})_{2} \mathrm{NR}^{\alpha} ; \quad-\left(\mathrm{CH}_{2}\right)_{0-4} \mathrm{~S}(\mathrm{O}) \mathrm{R}^{\alpha} ; \quad-\mathrm{N}\left(\mathrm{R}^{\alpha}\right) \mathrm{S}(\mathrm{O})_{2} \mathrm{NR}^{\alpha} ; \quad-\mathrm{N}\left(\mathrm{R}^{\alpha}\right) \mathrm{S}(\mathrm{O})_{2} \mathrm{R}^{\alpha} ;$ $-\mathrm{N}\left(\mathrm{OR}^{\alpha}\right) \mathrm{R}^{\alpha} ; \quad-\mathrm{C}(\mathrm{NH}) \mathrm{NR}_{2}^{\alpha} ; \quad-\mathrm{P}(\mathrm{O})_{2} \mathrm{R}^{\alpha} ; \quad-\mathrm{P}(\mathrm{O}) \mathrm{R}_{2}^{\alpha} ; \quad-\mathrm{OP}(\mathrm{O}) \mathrm{R}_{2}^{\alpha} ; \quad-\mathrm{OP}(\mathrm{O})\left(\mathrm{OR}^{\alpha}\right)_{2} ; \quad \mathrm{SR}^{\alpha} ;$ $-\left(\mathrm{C}_{1-4}\right.$ straight or branched)alkylene $) \mathrm{O}-\mathrm{N}\left(\mathrm{R}^{*}\right)_{2}$; or $-\left(\mathrm{C}_{14}\right.$ straight or branched)alkylene) $\mathrm{C}(\mathrm{O}) \mathrm{O}-\mathrm{N}\left(\mathrm{R}^{\alpha}\right)_{2}$, wherein each $\mathrm{R}^{\mathrm{\sigma}}$ may be substituted as defined below and is independently bydrogen, C_{1-5} aliphatic, $\left.-\mathrm{CH}_{2} \mathrm{Ph},-\mathrm{O}_{\left(\mathrm{CH}_{2}\right)}\right)_{0-1} \mathrm{Ph},-\mathrm{CH}_{2}-(5-6$ membered heteroaryl ring), or a 5 - 6 -membered saturated, partially unsaturated, or aromatic ring having $0-4$ heteroatoms independently selected from nitrogen, oxygen, and sulfur, or, notwithstanding the definition above, two independent occurrences of R^{α}, taken together with their intervening atom(s), form a 3-12-membered saturated, partially unsaturated, or aromatic mono- or bi-cyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, which may be substituted as defined below.
[0050] Suitable monovalent substituents on $R^{6 \prime}$ (or the ring formed by taking two independent occurrences of R^{α} together with their intervening atoms), are independently halogen, $\left.\quad-\left(\mathrm{CH}_{2}\right)_{0.2} \mathrm{R}^{\beta} ; \quad-\left(\mathrm{haloR}^{\beta}\right) ; \quad-\left(\mathrm{CH}_{2}\right)_{0.2} \mathrm{OH} ; \quad-\left(\mathrm{CH}_{2}\right)_{0.2} \mathrm{OR}^{\beta} ; \quad-\left(\mathrm{CH}_{2}\right)_{0.2} \mathrm{CH}_{(\mathrm{OR}}{ }^{\beta}\right)_{2} ;$ $-\mathrm{O}\left(\right.$ haloR $\left.\left.{ }^{\beta}\right) ;-\mathrm{CN} ;-\mathrm{N}_{3} ;-\left(\mathrm{CH}_{2}\right)_{0-2} \mathrm{C}(\mathrm{O}) \mathrm{R}^{\beta} ;-\left(\mathrm{CH}_{2}\right)_{02} \mathrm{C}(\mathrm{O}) \mathrm{OH} ;-\left(\mathrm{CH}_{2}\right)_{0-2} \mathrm{ClO}\right) \mathrm{OR}^{\beta} ;-\left(\mathrm{CH}_{2}\right)_{0-2} \mathrm{SR}^{\beta}$; $-\left(\mathrm{CH}_{2}\right)_{0-2} \mathrm{SH} ; \quad-\left(\mathrm{CH}_{2}\right)_{-2} \mathrm{NH}_{2} ; \quad-\left(\mathrm{CH}_{2}\right)_{0-2} \mathrm{NHR}^{\mathrm{B}}, \quad-\left(\mathrm{CH}_{2}\right)_{0-2} \mathrm{NR}_{2}^{\beta} ; \quad-\mathrm{NO}_{2} ;$ $\mathrm{SiR}^{\beta} ;-\mathrm{OSiR}^{\beta} ;-\mathrm{C}(O) \mathrm{SR}^{\beta} ;-\left(\mathrm{C}_{1-4}\right.$ straight or branched alkylene $) \mathrm{C}(O) \mathrm{OR}^{\beta}$; or $-\mathrm{SSR}^{\beta}$; wherein each R^{β} is unsubstituted or where preceded by "halo" is substituted only with one or more halogens, and is independently selected from C_{1-4} aliphatic, $-\mathrm{CH}_{2} \mathrm{Ph},-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{0-1} \mathrm{Ph}$, or a $5-6-$ membered saturated, partially unsaturated, or aromatic ring having $0-4$ heteroatoms independently selected from nitrogen, oxygen, and sulfur. Suitable divalent substituents on a saturated carbon atom of R^{6} include $=\mathrm{O}$ and S .
[0051] Suitable divalent substituents on a saturated carbon atom of an "optionally substituted" group include the following: $=\mathrm{O} ;=\mathrm{S} ;=\mathrm{NNR}_{2}^{\gamma} ;-\mathrm{NNHC}(\mathrm{O}) \mathrm{R}^{\gamma} ;=\mathrm{NNHC}(\mathrm{O}) \mathrm{OR}^{\gamma}$; $=\mathrm{NNHS}(\mathrm{O})_{2} \mathrm{R}^{\gamma} ;=\mathrm{NR}^{\gamma} ;=\mathrm{NOR}^{\gamma} ;-\mathrm{O}\left(\mathrm{C}\left(\mathrm{R}_{2}^{\gamma}\right)_{2} \cdot 3-;\right.$ or $-\mathrm{S}\left(\mathrm{C}\left(\mathrm{R}_{2}^{\gamma}\right)_{2-3} \mathrm{~S}-\right.$; wherein each independent occurrence of R^{γ} is selected from hydrogen, C_{1-6} aliphatic which may be substituted as defined below, or an unsubstituted $5-6$-membered saturated, partially unsaturated, or aromatic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur. Suitable divalent substituents that are bound to vicinal substitutable carbons of an "optionally substituted" group include: $-\mathrm{O}\left(\mathrm{CR}^{\beta}\right)_{2,3} \mathrm{O}$-, wherein each independent occurrence of R^{β} is selected from hydrogen, C_{1-6} aliphatic which may be substituted as defned below, or an unsubstituted 5 - 6 -membered saturated, partially unsaturated, or aromatic ring having $0-4$ heteroatoms independently selected from nitrogen, oxygen, and sulfur.
[0052] Suitable substituents on the aliphatic group of R^{γ} include halogen, $-\mathrm{R}^{\bar{\delta}},-\left(\right.$ halo $\left.\mathrm{R}^{\delta}\right),-\mathrm{OH},-\mathrm{OR}^{\delta},-\mathrm{O}\left(\mathrm{haloR}^{\delta}\right),-\mathrm{CN},-\mathrm{C}(\mathrm{O}) \mathrm{OH},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\delta},-\mathrm{NH}_{2},-\mathrm{NHR}^{\delta},-\mathrm{N}$ R_{2}^{δ}, or $-\mathrm{NO}_{2}$, wherein each R^{δ} is unsubstituted or where preceded by "halo" is substituted only with one or more halogens, and is independently C_{1-4} aliphatic, $-\mathrm{CH}_{2} \mathrm{Ph},-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{0-1} \mathrm{Ph}$, or a 5 - 6 -membered saturated, partially unsaturated, or aromatic ring having $0-4$ heteroatoms independently selected from nitrogen, oxygen, and sulfur.
[0053] Suitable substituents on a substitutable nitrogen of an "optionally substituted" group include $-\mathrm{R}^{\varepsilon},-\mathrm{NR}_{2}^{\varepsilon},-\mathrm{C}(\mathrm{O}) \mathrm{R}^{\varepsilon},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\varepsilon},-\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{O}) \mathrm{R}^{\varepsilon},-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{R}^{\varepsilon},-\mathrm{S}(\mathrm{O})_{2} \mathrm{R}^{\varepsilon}$, $-\mathrm{S}(\mathrm{O})_{2} \mathrm{NR}^{\varepsilon}{ }_{2},-\mathrm{C}(\mathrm{S}) \mathrm{NR}^{\varepsilon},-\mathrm{C}(\mathrm{NH}) \mathrm{NR}^{\varepsilon}{ }_{2}$, or $-\mathrm{N}\left(\mathrm{R}^{\varepsilon}\right) \mathrm{S}(\mathrm{O}) \mathrm{R}^{\varepsilon}$, wherein each R^{ε} is independently hydrogen, C_{1-6} aliphatic which may be substituted as defined below, unsubstituted $-\mathrm{OPh}^{2}$, or
an unsubstituted 5-6-membered saturated, partially unsaturated, or aromatic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or, notwithstanding the definition above, two independent occurrences of R^{s}, taken together with their intervening atom(s) form an unsubstituted 3-12-membered saturated, partially unsaturated, or aromatic mono- or bicy clic ring having $0-4$ heteroatoms independently selected from nitrogen, oxygen, and sulfur
[0054] Suitable substituents on the aliphatic group of R^{E} are independently halogen, $-\mathrm{R}^{\delta},-\left(\mathrm{haloR} \mathrm{R}^{i}\right),-\mathrm{OH},-\mathrm{OR}^{\hat{i}},-\mathrm{CN},-\mathrm{C}(\mathrm{O}) \mathrm{OH},-\mathrm{C}(\mathrm{O}) \mathrm{OR}^{\delta},-\mathrm{NH}_{2},-\mathrm{NHR}^{\delta},-\mathrm{NR}^{\delta}{ }_{2}$, or $-\mathrm{NO}_{2}$, wherein each R^{δ} is unsubstituted or where preceded by "halo" is substituted only with one or more halogens, and is independently C_{1-4} aliphatic, ${ }^{-} \mathrm{CH}_{2} \mathrm{Ph},-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{0-1} \mathrm{Ph}$, or a $5-$ 6 -membered saturated, partially unsaurated, or aromtic ring having $0-4$ heteroatoms independently selected from nitrogen, oxygen, and sulfur.
[0055] In some embodiments, the term "substituted" is contemplated to include all permissible substituents of organic compounds, "permissible" being in the context of the chemical rules of valence known to those of ordinary skill in the art. In some cases, "substituted" may generally refer to replacement of a hydrogen atom with a substituent as described herein. However, "substituted," as used herein, does not encompass replacement and/or alteration of a key functional group by which a molecule is identified, e.g, such that the "substituted" functional group becomes, through substitution, a different functional group. For example, a "substituted phenyl" group must still comprise the phenyl moiety and cannot be modified by substitution, in this definition, to become, e.g., a cyclohexyl group. In a broad aspect, permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic substituents of organic compounds. Mlustrative substituents include, for example, those described herein. Permissible substituents can be one or more and the same or different for appropriate organic compounds. For example, a substituted alkyl group may be CF_{3}. For purposes of this invention, the heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valencies of the heteroatoms. This invention is not intended to be limited in any manner by the permissible substituents of organic compounds.
[0056] Examples of substituents include, but are not limited to, alkyl, aryl, arylalkyl, cyclic alky, heterocycloalkyl, hydroxy, alkoxy, aryloxy, perhaloalkoxy, arylalkoxy, heteroaryl,
heteroaryloxy, heteroarylalkyl, heteroarylakoxy, azido, amino, halogen, allylthio, oxo, acylalkyl, carboxy esters, carboxyl, carboxamido, nitro, acyloxy, aminoalkyl, alkylaminoaryl, alkylaryl, alkylaminoalkyl, alkoxyaryl, arylamino, arylakylamino, alkylsulfonyl, carboxamidoalkylaryl, carboxamidoaryl, hydroxyalkyl, haloalkyl, alkylaminoalkylcarboxy, aminocarboxamidoalkyl, cyano, alkoxyalkyl, perhaloalkyl, arylalkyloxyalkyl, and the like.
[0057] As used berein, the term "natural oil" refers to an oil derived from a plant or animal source. The term "natural oil" includes natural oil derivatives, unless otherwise indicated The plant or animal sources can be modified plant or animal sources (e.g., genetically modified plant or animal sources), unless indicated otherwise. Examples of natural oils include, but are not limited to, vegetable oils, algae oils, fish oils, animal fats, tall oils, derivatives of these oils, combinations of any of these oils, and the like. Representative nonlimiting examples of vegetable oils include canola oil, rapeseed oil, coconut oil, com oil, cottonseed oil, olive oil, palm oil, peanut oil, saffower oil, sesame oil, soybean oil, sunflower oil, linseed oil, palm kemel oil, tung oil, jatropha oil, mustard oil, pennycress oil, camelina oil, and castor oil. Representative non-limiting examples of animal fats include lard, tallow, poultry fat, yellow grease, and fish oil. Tall oils are by-products of wood pulp manufacture.
[0058] "Natural of derivatives" refer to compounds (or mixtures of compounds) derived from natural oils using any one or combination of methods known in the art. Such methods include but are not limited to saponification, fat splitting, transesterification, esterification, hydrogenation (partial or full), isomerization, oxidation, reduction, and metathesis. Representative non-limiting examples of natural oil derivatives include gums, phospholipids, soapstock, acidulated soapstock, distillate or distillate sludge, fatty acids, and fatty acid alkyl esters (e.g., non-limiting examples such as 2-ethythexyl ester), and hydroxy substituted variations thereof. For example, the natural oil derivative may be a fatty acid methyl ester ("FAME") derived from the glyceride of the natural oil.
[0059] The term "contaminant" refers broadly and without limitation to any impurity, regardless of the amount in which it is present, admixed with a substrate to be used in olefin metathesis. A "catalyst poisoning contaminant" refers to a contaminant having the potential to adversely affect the performance of a metathesis catalyst. Examples of catalyst poisoning contaminants include, but are not limited to, water, peroxides, and hydroperoxides.
[0060] As used herein, the term "metal alkyl compound" refers to a compound having the formula MR_{m} wherein, M is a metal (e.g., a Group II metal or a Group IIA metal), each R is
independently an allyy radical of 1 to about 20 carbon atoms, and subscript m corresponds to the valence of M . Examples of metal alkyl compounds include $\mathrm{Mg}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{Zn}\left(\mathrm{CH}_{3}\right)_{2}$, $\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}$, and the like. Metal alkyl compounds also include substances having one or more halogen or hydride groups, such as Grignard reagents, disobutylaluminum hydride, and the like.

III. DESCRIPTION OF THE EMBODIMENTS

[0061] In one aspect, the invention provides a method for synthesizing a fatty olefin derivative. The method includes:
a) contacting an olefin according to Formula 1

(I),
with a metathesis reaction parther according to Formula II

$$
R_{m_{2}}^{1}=m_{n} R^{2}(\mathrm{I}),
$$

in the presence of a metathesis catalyst under conditions sufficient to form a metathesis product, and
b) optionally converting the metathesis product to the fatty olefin derivative;
wherein:
R^{1} is selected from $\mathrm{H}, \mathrm{C}_{1-18}$ alkyl, and C_{2-18} alkenyl;
R^{2} is selected from $-\left(\mathrm{CH}_{2}\right)_{\mathrm{x}} \mathrm{OR}^{2 a}$ and $-\left(\mathrm{CH}_{2}\right)_{\mathrm{y}} \mathrm{COOR}^{2 b}$, wherein $\mathrm{R}^{2 a}$ is an alcohol protecting group and $R^{2 b}$ is C_{i-8} alkyl;
subscript x is an integer ranging from 1 to 18 ,
subscript y is an integer ranging from 0 to 17; and
subscript z is an integer ranging from 0 to 17 .
[0062] In some embodiments, the invention provides a method for synthesizing a fatty olefin derivative including:
a) contacting an olefin according to Formula I

with a metathesis reaction partner according to Formula 1 II

in the presence of a metathesis catalyst under conditions sufficient to form a metathesis product, and
b) optionally converting the metathesis product to the fatty olefin derivative; wherein
R^{1} is selected from $\mathrm{H}, \mathrm{C}_{1-18}$ alkyl, and C_{2-18} alkenyl; R^{2} is selected from $-\left(\mathrm{CH}_{2}\right)_{\%} O R^{2 a}$ and $-\left(\mathrm{CH}_{2}\right)_{y} \mathrm{COOR}^{2 b}$, wherein $R^{2 a}$ is an alcohol protecting group and $\mathrm{R}^{2 b}$ is C_{1-8} alkyl;
subscript x is an integer ranging from 1 to 18 ; subscript y is an integer ranging from 0 to 17 ; and subscript z is an integer ranging from 0 to 17; wherein the metathesis catalyst is a tungsten catalyst or a molybdenum catalyst.
[0063] In the methods of the invention, olefins can be reacted with a variety of metathesis reaction partners to obtain pheromones, pheromone precursors, and other useful fatty olefin derivatives

Metathesis of Fatty Alcohols

[0064] Certain embodiments of the method are summarized in Scheme 1. A fatty alcohol containing an appropriate protecting group is reacted with an α-olefin in the presence of a group VI olefin metathesis catalyst (e.g., a Z-selective Group VI metathesis catalyst) to produce a statistical mixture of the desired cross-metathesis product and the self-metathesis co-products. The ratio of the feedstocks can be adjusted to vary the ratio of products. For example, feeding the reactants in a $1.5: 1$ molar ratio of α-olefin to protected fatty alcohol can result in a $3: 2.25: 1$ ratio of the internal olefin, metathesis product, and protected diol products. This process condition results in the efficient utilization of the more costly protected fatty alcohol.

Scheme 1

[0065] Products obtained from metathesis of protected fatty alcohols can be converted to a number of pheromones, as set forth in Table 1.

Table 1. Pheromones accessible from fativ alcohol metathesis products.

Olefin	Metathesis Reaction Partnes	Metathesis Product	Exemplary Pheromone	Pheromone CAS \#
propylene	deyl alcohol	protected (Z)-9undecenol	(Z) - 9 -undeceml acetate	85576-13-2
1-butene	oleylalcohol	protected (Z)-9. dodecenol	(Z)-9-dodecenal	56219-03-5
1-butene	oleyl alcohol	protected (2)-9dodecenol	(Z)-9-dodecemyl acetate	16974-11-1
1-pentene	oleylalcohol	protected (Z)-9. tridecenol	(Z) 9 -tridecenyl acetate	35835-78-0
1-hexene	oleyl alcohol	protected (Z)-9tetradecenol	(Z) -9-tetradecenal	53939-27-8
1-hexene	oleylatconol	protected (Z)-9. tetradecenol	(Z)-9- tetradecenyl acetate	16725-53-4
1-hexene	oleyl alcohol	protected (Z)-9tetradecenol	(Z)-9-tetradecenyl formate	56776-10-4
1-hexene	oleyl alcohol	protected (Z)-9tetradecenol	(Z)-9-tetradecenyl nitrate	143816-21-1
1-heptene	oleyl alcohol	protected (Z)-9pentadecenol	(Z)-9-pentadecenyl acetate	64437-41-8
1-octene	deylalcohol	protected (Z)-9hexadecenol	(2)-9-bexadecenal	56219-04-6
1-octene	oleyl alcohol	protected (Z)-9hexadecenol	(Z)-9-hexadeceny) acetate	34010-20-3
propylene	9 -decen-1-01	protected (Z)-9undecenol	(Z)-9-undecenyl acetate	85576-13-2
1-butene	9-decen-1-ol	protected (Z)-9dodecenol	(Z)-9-dodecenal	56219-03-5
1-butene	9 -decen-1-01	protected (Z)-9dodecenol	(Z)-9-dodeceny] acetate	16974-11-1
1-pentene	$9-$ decen-1-01	protected (Z)-9tridecenol	(Z)-9-tridecenyl acetate	35835-78-0
1-hexene	9 -decen-1-ol	protected (Z)-9tetradecenol	(Z)-9-tetradecenal	53939-27-8
1-hexene	$9-d e c e n-1-01$	protected (Z)-9tetradecenol	(Z)-9-tetradecenyl acetate	16725-53-4
1-hexene	9 decen-1-01	protected (Z)-9- tetradecenol	(Z)-9-tetradecenyl formate	56776-10-4
1-hexene	9 -decen-1-ol	protected (Z)-9tetradecenol	(Z)-9-tetradecenyl mutrate	143816-21-1
1-heptene	9-decen-1-01	protected (Z)-9pentadecenol	(Z)-9-pentadecenyl acetate	64437-41-8
1-octene	9 -decen-1-01	protected (Z)-9- hexadecenol	(Z)-9-hexadecenal	56219-04-6
1-octene	9-decen-1-ol	protected (Z)-9bexadecenol	(Z)-9-hexadecenyl acetate	34010-20-3
propylene	10-undecen-1-01	protected $(Z)-10-$ dodecenol	(Z)-10-dodecenyl acetate	35148-20-0
1-butene	10-mindecen-1-0	protected (Z)-10tridecenol	(Z)-10-tridecenyl acetate	64437-24-7
1 -pentene	10-undecen-1-ol	protected (Z)-10tetradecenol	(Z)-10-tetradecenyl acetate	35153-16-3
1-hexene	10-mindecen-1-0l	protected (Z)-10pentadecenol	(Z)-10-pentadecenal	60671-80-9
1-hexene	10-undecen-1-01	protected (Z)-10- pentadecenol	(Z)-10-pentadecenyl acetate	64437-43-0

Olefin	Metathesis Reaction Partmer	Metathesis Protuct	Exemplary Pheromone	Pberomone CAS\#
1-heptene	10-undecen-1-ol	protected $(Z)-10$ hexadecenol	(Z)-10-hexadecemy acetate	56218-71-4
1-butene	8-octen-1-01	protected (Z)-7decenol	(Z)-7-decenyl acetate	13857-03-9
1-pentene	8-octen-1-01	protected (Z)-7undecenol	(Z)-7-madecenyl acetate	-
1-hexene	8-octen-1-0l	protected (2)-7dodecenol	(E)-7-dodecenal	60671-75-2
1-hexene	8-octen-1-ol	protected (Z)-7dodecenol	(Z)-7-dodecenyl acetate	14959-86-5
1-octene	8-octen-1-0l	protected (Z)-7tetradecenol	(Z)-7-tetradecenal	65128-96-3
1-octene	8-octen-1-01	protected (Z)-7tetradecenol	(() -7-tetradecenyl acetate	16974-10-0
1-decene	8-octen-1-01	protected (Z)-7hexadecenol	(Z)-7-hexadecenal	$5679740-1$
1-decene	8-octen-1-ol	protected (Z)-7- hexadecenol	(Z)-7-hexadeceny! acetate	23192-42-9

[0060] Accordingly, some embodiments of the invention provide a method wherein the metathesis reaction partner is a protected alcohol according to Formula IIa:

(Ha),
wherein $R^{2 a}$ is an alcohol protecting group,
and wherein the metathesis product is a compound according to Formula IIf:

[0067] Any protecting group R^{22} that is stable under the metathesis reaction conditions can be used in the methods of the invention. Examples of suitable protecting groups include, but are not limited to, silyl, tert-butyl, benzyl, and acetyl. In some embodiments, $\mathrm{R}^{2 \mathrm{a}}$ is acetyl.
[0068] In some embodiments, converting the metahesis product to the fatty olefin derivative includes removing $\mathrm{R}^{2 a}$ from the compound of Formula ma to form an alkenol according to Formula Va:

(Va).
[0069] In some embodiments, the metathesis reaction partner is a protected alcohol according to Formula IIa:

(Ia),
wherein $R^{2 a}$ is an alcohol protecting group,
and the metathesis product is a compound according to Formula IMc:

[0070] In some embodiments, the metathesis reaction partner is a protected alcohol according to Formula Ifc:

(IIC),
wherein $R^{2 a}$ is an alcohol protecting group,
and the metathesis product is a compound according to Formula IIc:

(III).
[0071] Metathesis products of Formula IIc can be prepared using Z-selective metathesis catalysts.
[0072] In some embodiments, converting the metathesis product to the fatty olefin derivative includes removing $\mathrm{R}^{2 a}$ from the compound of Formula IMc to form an alkenol according to Formula Vc:

(Vc).

Conversion of Fatty Alcohol Metathesis Products to Fatty Olefin Derivatives

[0073] In some embodiments, the alkenol is the fatty olefin derivative. In some embodiments, an alkenol is converted to a desired fatty olefin derivative product via one or more chemical or biochemical transformations. In some such embodiments, the fatty olefin derivative is a pheromone.
[0074] In some embodiments, converting the metathesis product to the fatty olefin derivative further includes acylating the alkenol of Formula Va , thereby forming a fatty olefin derivative according to Formula VIa:

(VIa),
wherein $\mathrm{R}^{2 \mathrm{c}}$ is C_{1-6} acyl.
[0075] In some embodiments, converting the metathesis product to the fatty olefin derivative further includes acylating the alkenol of Formula Vc , thereby forming a fatty olefin derivative according to Formula VIc:

(VIc),
wherein $\mathrm{R}^{2 c}$ is C_{1-6} acyl.
[0076] Any acylating agent suitable for forming the fatty olefin derivative of Formula Vla or Formula VIc can be used in the method of the invention. Examples of suitable acylating agents include acid anhydrides (e.g., acetic anhydride), acid chlorides (e.g., acetyl chloride), activated esters (e.g, pentafluorophenyl esters of carboxylic acids), and carboxylic acids used with coupling agents such as dicyclohexylcarbodimide or carbonyl diimidazole. Typically, 1-10 molar equivalents of the acylating agent with respect to the alkenol will be used. For example, 1-5 molar equivalents of the acylating agent or 1-2 molar equivalents of the acylating agent can be used. In some embodiments, around 1.0, 1.1, 1.2, 1.3, 1.4, or 1.5 molar equivalents of the acylating agent (e.g, acetic anhydride) with respect to the alkenol is used to form the fatty olefin derivative of Formula VIa or Formula VIc.
[9077] A base can be used to promote acylation of the alkenol by the acylating agent. Examples of suitable bases include potassium carbonate, sodium carbonate, sodium acetate, Huenig's base (i.e, N, N-disopropylethylamine), lutidines including 2 ,6-lutidine (i.e., 2,6dimethylpyridine), triethylamine, tributylamine, pyridine, 2,6-di-tert-butylpyridine, 1,8-diazabicycloundec-7-ene (DBU), quinuclidine, and the collidines. Combinations of two or more bases can be used. Typically, less than one molar equivalent of base with respect to the alkenol will be employed in the methods of the invention. For example, $0.05-0.9$ molar equivalents or 0.1-0.5 molar equivalents of the base can be used. In some embodiments, around $0.05,0.1,0.15$, or 0.2 molar equivalents of the base (e.g., sodium acetate) with respect to the alkenol is used in conjuction with the acylating agent (e,g, acetic anhydride) to form the fatty olefin derivative of Formula VIa or Formula VIc.
[0078] Any suitable solvent can be used for acylating the alkenol. Suitable solvents include, but are not limited to, toluene, methylene chloride, ethyl acetate, acetonitrile, tetrahydrofuran, benzene, chloroform, diethyl ether, dimethyl formamide, dimethyl sulfoxide, petroleum ether, and mixtures thereof. Altematively, an alkenol such as 7 -octen-1-ol can be combined with an acylating agent such as acetic anhydride and a base such as sodium acetate without an additional solvent. The acylation reaction is typically conducted at temperatures
ranging from around $25^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$ for a period of time sufficient to form the fatty olefin derivative of Formula Vla or Formula Vle. The reaction can be conducted for a period of time ranging from a few minutes to several hours or longer, depending on the particular alkenol and acylating agent used in the reaction. For example, the reaction can be conducted for around 10 minutes, or around 30 minutes, or around 1 hour, or around 2 hours, or around 4 hours, or around 8 hours, or around 12 hours at around $40^{\circ} \mathrm{C}$, or around $50^{\circ} \mathrm{C}$, or around $60^{\circ} \mathrm{C}$, or around $70^{\circ} \mathrm{C}$, or around $80^{\circ} \mathrm{C}$.
[0079] In some embodiments, converting the metathesis product to the fatty olefin derivative further includes oxidizing the alkenol of Formula Va, thereby forming a fatty olefin derivative according to Formula VIIa:

(VIIa).
[0080] Many insect pheromones are fatty aldehydes or comprise a fatty aldehyde component. As such, synthesis of certain pheromones includes the conversion of alkenols prepared according to the methods of the invention to fatty aldebydes. In some embodiments, converting the metathesis product to the fatty olefin derivative further includes oxidizing the alkenol of Formula Vc , thereby forming a fatty olefin derivative according to Formula VIIc:

(VIIc).
[0081] Any oxidizing agent suitable for converting the alkenol Formula Va to the fatty olefin derivative of Formula VIla or Formula VIIc can be used in the methods of the invention. Examples of suitable oxidizing agents include, but are not limited to, chromiumbased reagents (e.g., chromic acid; Jones reagent-chromium trioxide in aqueous sulfuric acid; Collins reagent-chromium trioxide pyridine complex; pyridiniun dichromate; pyridinium chlorochromate and the like), dimethyl sulfoxide (DMSO)-based reagents (e.g., DMSO/oxalyl chloride; DMSO/diycyclohexyl-carbodimide; DMSO/acetic anhydride; DMSO/phosphorous pentoxide; DMSO/trifuoroacetic anhydride; and the like), hypervalent iodine compounds (e.g., Dess-Martin periodinane; o-iodoxybenzoic acid; and the like); ruthenium-based reagents (e.g. ruthenium tetroxide; tetra-h-propylammonium perruthenate; and the like); and nitroxyl-based reagents (e.g. TEMPO-2,2,6,6-tetramethylpiperidine 1-oxyl-employed with sodium hy pochlorite, bromine, or the like)
[0032] Oxidation of fatiy alcohols is often achieved, for example, via selective oxidation via pyridinum chlorochromate (PCC) (Scheme 2).

Scheme 2

(Z)-hexadec-11-enal
[0083] Alternatively, TEMPO (TEMPO=2,2,6,6-tetramethylpiperidinyl- N -oxyl) and related catalyst systems can be used to selectively oxidize alcohols to aldehydes. These methods are described in Ryland and Stahl (2014), herein incorporated by reference in its entirety.

Bio-oxidation of Terminal Alcohols

[0084] The conversion of a fatty alcohol to a fatty aldehyde is known to be catalyzed by alcohol dehydrogenases (ADH) and alcohol oxidases (AOX). Additionally, the conversion of a length C_{n} fatty acid to a $\mathrm{C}_{\mathrm{n}-1}$ fatty aldehyde is catalyzed by plant α-dioxygenases (α - DOX) (Scheme 3).

Scheme 3

[0085] In some embodiments, an alcohol oxidase (AOX) is used to catalyze the conversion of a fatty alcohol to a fatty aldehyde. Alcohol oxidases catalyze the conversion of alcohols into corresponding aldehydes (or ketones) with electron transfer via the use of molecular oxygen to form hydrogen peroxide as a by-product. AOX enzymes utilize flavin adenine dinucleotide (FAD) as an essential cofactor and regenerate with the help of oxygen in the reaction medium. Catalase enzymes may be coupled with the AOX to avoid accumulation of the hydrogen peroxide via catalytic conversion into water and oxygen.
[0086] Based on the substrate specificities, AOXs may be categonized into four groups: (a) short chain alcohol oxidase, (b) long chain alcohol oxidase, (c) aromatic alcohol oxidase, and (d) secondary alcohol oxidase (Goswami et al. 2013). Depending on the chain length of the desired substrate, some member of these four groups are better suited for use in the methods of the invention than others.
[0087] Short chain alcohol oxidases (including but not limited to those currently classified as EC 1.1.3.13, Table 2) catalyze the oxidation of lower chain length alcohol substrates in the range of $\mathrm{Cl}-\mathrm{C} 8$ carbons (van der Klei et al. 1991) (Ozimek et al. 2005). Aliphatic alcohol oxidases from methylotrophic yeasts such as Candida boidinii and Komagataella pastoris (formerly Pichia pastoris) catalyze the oxidation of primary alkanols to the corresponding aldehydes with a preference for unbranched short-chain aliphatic alcohols. The most broad substrate specificity is found for alcohol oxidase from the Pichia pastoris including propargyl alcohol, 2-chloroethanol, 2-cyanoethanol (Dienys et al. 2003). The major challenge encountered in alcohol oxidation is the high reactivity of the aldehyde product. Utilization of a two liquid phase system (water/solvent) can provide in-situ removal of the aldehyde product from the reaction phase before it is further converted to the acid. For example, hexanal production from hexanol using Pichia pastoris alcohol oxidase coupled with bovine liver catalase was achieved in a bi-phasic system by taking advantage of the presence of a stable alcohol oxidase in aqueous phase (Karra-Chaabouni et al. 2003). For example, alcohol oxidase from Pichia pastoris was able to oxidize aliphatic alcohols of C 6 to C 11 when used biphasic organic reaction system (Murray and Duff 1990). Methods for using alcohol oxidases in a biphasic system according to (Karra-Chaabouni et al. 2003) and (Murray and Duff 1990) are incorporated by reference in their entirety.
[0088] Long chain alcohol oxidases (including but not limited to those currently classified as EC 1.1.320, Table 3) include faty alcohol oxidases, long chain fatty acid oxidases, and
long chain fatty alcohol oxidases that oxidize alcohol substrates with carbon chain length of greater than six (Goswami et al. 2013). Banthorpe et al. reported a long chain alcohol oxidase purified from the leaves of Tanacetum vilgare that was able to oxidize saturated and unsaturated long chain alcohol substrates including hex-trans-2-en-1-ol and octan-1-ol (Banthorpe 1976) (Cardemil 1978). Other plant species, including Simmondsia chinensis (Moreau, R.A., Huang 1979), Arabidopsis thaliana (Cheng et al. 2004), and Lotus japonicas (Zhao et al. 2008) have also been reported as sources of long chain alcohol oxidases. Fatty alcohol oxidases are mostly reported from yeast species (Hommel and Ratledge 1990) (Vanhanen et al. 2000) (Hommel et al. 1994) (Kemp et al. 1990) and these enzymes play an important role in long chain fatty acid metabolism (Cheng et al. 2005). Fatty alcohol oxidases from yeast species that degrade and grow on long chain alkanes and fatty acid catalyze the oxidation of fatty alcohols. Fatty alcohol oxidase from Candida tropicalis has been isolated as microsomal cell fractions and characterized for a range of substrates (Eirich et al. 2004) (Kemp et al. 1988) (Kemp et al. 1991) (Mauersberger et al. 1992). Significant activity is observed for primary alcohols of length C_{8} to C_{16} with reported K_{M} in the $10-50$ $\mu \mathrm{M}$ range (Eirich et al. 2004). Alcohol oxidases described may be used for the conversion of medium chain aliphatic alcohols to aldehydes as described, for example, for whole-cells Candida boidinit (Gabelman and Luzio 1997). and Pichia pastoris (Duff and Murray 1988) (Murray and Duff 1990). Long chain alcohol oxidases from filamentous fungi were produced during growth on hydrocarbon substrates (Kumar and Goswami 2006) (Savitha and Ratledge 1991). The long chain fatty alcohol oxidase (LiFAO1) from Lotus japonicas has been heterologously expressed in E. coll and exhibited broad substrate specificity for alcohol oxidation including 1-dodecanol and 1 -hexadecanol (Zhao et al. 2008).

Table 2 Alcohol oxidase enzumes capable of oxidizing short chain alcohols (EC 1.1313).

Organism	Gene names	Accession No.
Komagataella pastoris (strain ATCC 76273 /CBS 7435 / CECT $11047 /$ NRRL Y-11430/Wegner $21-1$) (Yeast) (Pichia pastoris)	AOX1 PP7435 Chr 40130	F2QY27
Komagataella pastoris (strain GS115 / ATCC 20864) (Yeaste) (Pichia pastoris)	AOX1PAS_Chr _0821	P04842
Komagataella pastoris (strain ATCC 76273 / CBS 7435 / CECT 11047 / NRRL Y-11430/Wegner 21-1) (Yeast) (Pichia pastoris)	AOX2 PP7435_Chr 4 -0863	F2R038

Organism	Gene names	Accession No.
Komagataella pastons (strain GSI 5 / ATCC 20864) (Yeast) (Pichia pastoris)	AOX2 PAS chat 0152	C4R702
Candida boidinii (Yeast)	AOD1	Q00922
Picha angusta (Yeast) (Hansemula polymorpha)	MOX	P04841
Thanatephorus cucumeris (strain AGl-IB / isolate 7/3/14) (Lettuce botom rot fungus) (Rhzoctonia solani)	AOD1 BN14_10802	M5CC52
Thanatephons cucumeris (strain AGI-IB / isolate 7/3/14) (Lettuce bottom rot fungus) (Rhizoctonia solani)	MOX BN14 12214	M5CF32
Thanatephoms cucumeris (strain AG1-IB/isolate 7/3/14) (Lettuce bottom rot fungus) (Rhizoctona solani)	AOD1 BN14 10691	M5CAVI
Thanatephorus cucumeris (strain AGI-IB / isolate 7/3/14) (Letuce bottom rot fuggus) (Rhizoctonia solani)	AODI BN14 09479	$\mathrm{MSC7F4}$
Thanatephorus cucomeris (strain AGI -IB / isolate 7/3/14) (Lettuce bottom rot fungus) (Rhizoctonia solani)	AOD1 BN14_10803	M5CB66
Thanatephons cucumeris (strain AGI-IB / isolate 7/3/14) (Letuce bottom rot fugus) (Rhizoctonia solani)	AOD1 BN14_09900	M5C9N9
Thanatephorus cucumeris (strain AGI-IB / isolate 7/3/14) (Letuce bottom not fungus) (Rhizoctonia solani)	AOD1 BN14 08302	M5C2L 8
Thanatephorus cucmmeris (strain $\mathrm{AGI}-\mathrm{IB}$ / isolate 7/3/14) (Lettuce botom rof fungus) (Rheroctonia solami)	MOX EN14 09408	M5C784
Thanatephons cucumeris (strain AGI-IB / isolate 7/3/14) (Letruce bottom sot fungus) (Rbizoctonia solani)	MOX 3 N14 09478	M5C8F8
Thanatephoms cacumeris (strain AGI-IB / isolate 7/3/14) (Letuce bottom rot fungus) (Rhizoctonia solani)	AODI BNI4_11356	$\mathrm{M5CH} 40$
Ogataca henricii	AODI	A5LGF0
Candida methanosorbosa	AOD1	A5LGE5
Candida methanolovescens	AOD 1	AsLGE4
Candida succiphila	AOD1	A5LGE6
Aspergillus niger (strain CBS 513.38 / FGSC A1513)	Anl5g02200	A2R501
Aspergillus niger (strain CBS 513.88/FGSC A1513)	An18g05480	A2RB46
Moniliophthora perniciosa (Witches'-broom disease fingus) (Marasmius perniciosus)		97CMK2
Candida cariosilignicola	AOD 1	A5LGE3

Organimm	Gene names	Accessiom No.
Candida pigmaliae	AOD1	A5LGE1
Candida pignaliac	AOD2	A5LGE2
Candida sonorensis	AOD1	A5LGD9
Candida sonorensis	AOO 2	A5LGE0
Picha naganishii	AOD 1	A5LGF2
Ogataea minuta	AOD1	A5LGF1
Ogataea philodendri	AODI	A5LGF3
Ogataea wickerhamii	AODI	A5LGE8
Kurasha capsulata	AODI	A5LGE7
Talaromyces stipitatus (strain ATCC $10500 / \mathrm{CBS}$ 375.48/ QM 6759 / NRRL 1006) (Penicillum stipitatum)	TSTA 021940	B8MHF8
Talaromyces stipitatus (strain ATCC $10500 / \mathrm{CBS}$ 375.48/QM6759/NRRL 1006) (Penicilimm stipitatum)	TSTA_065150	B8LTH7
Talaromyces stipitatus (strain ATCC $10500 / \mathrm{CBS}$ $375.48 /$ QM 6759 / NRRL 1006) (Pencillimm stipitatum)	TSTA 065150	B8LTH8
Talaromyces stipitatus (strain ATCC $10500 / \mathrm{CBS}$ 375.48/ QM 6759 / NRRL 1006) (Penicillium stipitatum)	TSTA 000410	B8MSBl
Ogatuea ghicozyma	AODl	ASLGE9
Ogataea parapolymorpha (strain DL-1/ ATCC 26012 / NRRL Y-7560) (Yeast) (Hansenula polynorpha)	HPODL_03886	W1QCJ3
Gloeophy llum trabeum (Brown rot fungus)	AOX	A8DPS4
Pichia angusta (Yeast) (Hansemula polymorpha)	moxl	A6PZG8
Pichia trehalophila	AODl	A5LGF4
Pichia angusta (Yeast) (Hansemia polymorpha)	moxl	Abpzg9
Picha angusta (Yeast) (Hansemula polymorpha)	mox	A6PZG7
Ixodes scapularis (Black-leged tick) (Deer tick)	IscW_ISCW077898	87PIZ7

Table 3. Alcohol oxidase enzymes capable of oxidizing long chain alcobols including fatty alcohols (EC 1.13.20).

Organism	Gene names	Accessiob No.
Lotus japonicus (Lotus cormiculatus var. japonicus)	FAO1	B5WWZ8
Arabidopsis thaliana (Mouse-ear cress)	FAOL At1g03990 F21M11.7	Q9ZWB9
Lous japoncus (Lotus corniculatus var. japonicus)	FAO2	B5WWZ9
Arabidopsis thaliana (Mouse-car cress)	FAO3 Abg23410 M1.M24.14 MLM24.23	Q9LW56

Organism	Gene names	Accession No.
Arabidopsis thaliana (Mouse-ear cress)	FAO4A At4g 93880 T5K 18.160	065709
Arabidopsis thaliana (Mouse-ear cress)	FAO4B Al4g28570 T5F17.20	Q94BP3
Microbotryum violaceum (strain plAl Lamole) (Anther smut fugns) (Ustilago violacea)	MVLG_06864	U5HLL 4
Ajellomyces dermatitidis ATCC 26199	PDFG 03507	TSBNQO
Gibberella zeas (strain PH-1/ ATCC MYA-4620 / FGSC $9075 /$ NRRL 31084) (Wheat head blight fungus) (Fucarium gramineanm)	FG06918.1 FGSG 06918	IIRSI4
Pichia sortitophila (strain ATCC MYA-4447/ BCRC 22081 / CBS 7064 / NBRC $10061 / \mathrm{NRRL}$ Y-12695) (Hybrid yeast)	Piso0 004410 GNLVRS01 PISOOK16268g GNLVRSOI PISOOL. 16269 g	G8Y5El
Emericella midulans (stram FGSC A4/ATCC 38163 /CBS 112.46/NRRL 194/M139) (Aspergillus nidulans)	AN0623.2 ANIA 00623	QSBFQ7
Pyrenoplora tritici-repentis (strain Pt-1C-BFP) (Wheat tan spot fingus) (Drechslera tritici-repentis)	PTRG_10154	B2WJW5
Paracoccidioides hazii (strain ATCC MYA-826/ Pb01) (Paracoccidioides brasihensis)	PAAG_09117	ClHEC6
Candida parapsilosis (strain CDC 317 / ATCC MYA-4646) (Yeasi) (Monilia parapsilosis)	CPAR2_204420	G8BG15
Psendozyma brasiliensis (strain GHG001) (Yeast)	PSEURRA SCAF2g03010	V5GPS6
Candida parapsilosis (strain CDC $317 /$ ATCC MYA-4646) (Yeast) (Monilia patapsilosis)	CPAR2_204430	G8BG16
Sclerotima borealis F-4157	SBOR 5750	W9CDE2
Sordacia macrospora (strain ATCC MYA-333 i DSM $997 / \mathrm{K}(\mathrm{L} 3346) / \mathrm{K}$-hell $)$	SMAC_06361	F7W6K4
Sordaria macrospora (strain ATCC MYA-333/ DSM 997/K(L3346)/K-hel)	SMAC_01933	F7VSA1
Meyerozyma guiliermondii (strain ATCC 6260 / CBS 566/DSM 6381/JCM 1539 / NBRC 10279 / NRRL $Y-324$) (Yeast) (Candida guilliemondii)	PGUG_03467	A5DJ6
Trichophyton rubrum CBS 202.83	H107 00669	A0A023ATC5
Arthrobotrys oligospora (strain ATCC 24927 / CBS 115.81 / DSM 1491) (Nematode-trapping fingus) (Didy mozoophaga oligospora)	AOL_s00097g 516	GIXJI9
Scheffersomyces stipitis (strain ATCC $58785 / \mathrm{CBS}$ 6054 / NBRC 10063 / NRRL Y-11545) (Yeast) (Pichia stipitis)	FAOI PICST 90828	A3LYX 9

Organism	Gene names	Accessiob No.
Scheffersomyces stipitis (strain ATCC $58785 / \mathrm{CBS}$ 6054 / NBRC 10063 / NRRL X-11545) (Yeast) (Pichia stipitis)	FAO2 PICST 32359	A3LW61
Aspergilhs oryzae (strain 3.042) (Yellow koji mold)	A03042 09114	18TL25
Fusarium oxy sporum (struin Fo5176) (Fusanum vascular wilf)	FOXB 17532	F9GFU8
Rhizopus delemar (strain RA $99-880$ / ATCC MYA4621 / FGSC 9543 / NRRL 43880) (Mucormycosis agent) (Rhizopus arrhizus var. delemar)	RO3G 08271	$11 \mathrm{C536}$
Rhizopus delemar (strain RA 99-880 / ATCC MYA$4621 /$ FGSC 9543 / NRRL 43880) (Mucommycosis agent) (Rhzopus armizus var. delenar)	RO3G 00154	IBG6X0
Fusarium oxysporum (stran Fo5176) (Fusarium vascular wilt)	FOXB 07532	F9FMA2
Penicillimm roquefort	PROQFM164 S02g001772	W60PY1
Aspergillus clavatus (strain ATCC $1007 / \mathrm{CBS}$ $513.65 / \mathrm{DSM} 816 / \mathrm{NCTC} 3887 / \mathrm{NRRL}$ 1)	ACLA 018400	AlCNB5
Arthroderma otae (strain ATCC MYA-4605/CBS 113480) (Microsporum canis)	MCYG 08732	C5G1B0
Trichophyton tonsurans (strain CBS 112818) (Scalp ringworm fungus)	TESG 07214	F2S812
Colletotrichum higginsiamum (strain IM1 349063) (Crucifer anthracnose fungus)	CH063 13441	HIVUE?
Ajellomyces capsulatus (strain H143) (Daning's disease fungus) (Histoplasma capsulatum)	HCDG_07658	C6HN7?
Trichophyton rubrum (strain ATCC MYA-4607i CBS 118892) (Athiete's foot fingus)	TERG 08235	F2T096
Cochliobolus heterostrophus (strain C5/ATCC 48332 / mace O) (Southem com leaf blight fungus) (Bipolaris maydis)	COCHEDRAFTY 1201414	M2UMT9
Candida orthopsilosis (strain 90-125) (Yeast)	CORT OD04510	H8X643
Candida orthopsilosis (strain 90-125) (Yeast)	COET OD04520	H8×644
Candida orthopsilosis (stran 90-125) (Yeast)	CORT 0D04530	H8X645
Pseudozyma aphidis DSM 70725	PaG_03027	W3VP49
Coccidiodes posadasin (strain C735) (Valley fever fungus)	CPC735 000380	C5P005
Magnaporthe oryzae (strain P131) (Rice blast fungus) (Pyricularia oryzae)	OOW Pl31scaffoldol214g5	L71292
Nemospora tetmsperma (strain FGSC 2508 / ATCC MYA-4615 / P0657)	NEUTEIDRAFT 82541	F8MKD1
Hypocrea virens (strain Gv29-8 / FGSC 10586) (Gliocladium virens) (Trichodema virens)	TRIVIDRAFT_54537	G9MMY7

Organism	Gene names	Accession No.
Hypocrea virens (strain Gv29-8 / FGSC 10586) (Ghocladium virens) (Tichodema virens)	TRIVIDRAFT_53801	G9MT89
Aspergilus niger (strain CBS $513.88 / \mathrm{FGSC}$ A1513)	An01g09620	A209Z3
Verticillum dahiae (strain VdLs. 17 / ATCC MYA4575/FGSC 10137) (Verticillum wile)	VDAG_05780	G2X618
Ustilago maydis (strain $521 /$ FGSC 9021) (Com smat fungus)	UM02023.1	Q4PCZ0
Fusarimm oxysponum f. sp. lycopersici MN25	FOWG 13006	W9LN9
Fusatum oxysporumf. sp. lycopersici MN25	FOWG 02542	W9n9Z
Candida topicalis (Yeast)	FAOl	Q60IR6
Magnaporthe oryzae (strain 70-15/ATCC MYA4637 / FGSC 8958) (Rice blast fungus) (Pyncularia oryzae)	MGG_11317	G4MVK1
Candida tropicalis (Yeast)	faot	Q9P8D9
Candida tropicalis (Yeast)	FAO2a	Q6QIR 5
Phaeosphaeria nodorum (strain SNI5 / ATCC MYA-4574 / FGSC 10173) (Glume bloch fungus) (Septoria nodorum)	SNOG 02371	Q0v003
Candida tropicalis (Yeas)	FAO2b	Q60IR4
Pestalotiopsis fici W $106-1$	PFICI 11209	W3W004
Magnaporthe oryzae (strain Y34) (Rice blast fungus) (Pyncularia oryzae)	OOU Y34scaffold00240g57	L7FT5
Psendogymnoascus destructans (strain ATCC MYA-4855/20631-21) (Bat white-nose syndrome fungus) (Geomyces destructans)	GMDG 01756	L8G0G6
Pseudogymnoascus destructans (strain ATCC MYA-4855 / 20631-21) (Bat white-nose syndrome fungus) (Geonyces destroctans)	GMDG 04950	L8GCY2
Mycosphaerella fijiensis (stain CIR AD86) (Black leaf streal disease fingus) (Psendocercospora fijensis)	MYCFORAFT 52380	M22831
Bipolaris oryzae ATCC 44560	COCMIDRAFT 84580	W7A0]8
Cladophalophora psammophila CBS 110553	Al05 08147	W9WTM9
Fusarium oxysporum f. sp. melonis 26406	FOMG 05173	X0AEE6
Fusarium oxyspormmf. sp. melonis 26406	FOMG 17829	W9ZEB7
Cyphellophora europaea CBS 101466	HMPREF1541 02174	W2S2S5
Aspergilhus kawachin (strain NBRC 4308) (White koji mold) (Aspergillus awamoni var, kawachi)	AKAW_00147	G7X626
Aspergilus terreas (strain NIH 2624 /FGSC A1156)	ATEG 05086	Q0CMU8
Coccidioides immitis (stmin RS) (Valley fever fungus)	CMG 02987	J3KAI8

Organism	Gene names	Accession No.
Ajellonyces dermatitidis (strain ER-3 / ATCC MYA-2586) (Blastomyces dermatitids)	BDCG_04701	C5GLS5
Fusanum oxysporum f. sp. cubense (strain race 1) (Panama disease fungus)	FOCl g10013865	N4U732
Rhodotorula glutimis (strain ATCC 204091 / IIP 30 / MTCC 1151) (Yeast)	RTG_00643	G0SVU3
Aspergillus niger (strain ATCC $1015 /$ CBS 113.46 / FGSC A1144/LSHB ACd / NCTC 3858a/NRRL $328 /$ USDA 3528.7)	ASPNIDRAFT_35778	G3XTM6
Candida cloacae	faol	Q9P8D8
Candida cloacae	fao2	Q9PSD7
Fusarium oxy sporum f. sp. cubense (strain race 1) (Panama disease fungus)	FOCl g 10006358	N4TUH3
Candida albicans (strain SC5314/ATCC MYA2876 (Yeast)	FAOI CaO19.13562 orfl9. 13562	QS9RS8
Candida albicans (strain SC5314/ATCCMYA2876 (Yeast)	FAOI CaO19.6143 orf 9.6143	QS9RP0
Chaetomium thernophilum (strain DSM 1495 / CBS 144.50/TMI 039719)	CTHT 0018560	G0S2U9
Mucor circinelloides f. circinelloides strain 1006 PhL) (Mucomycosis agent) (Calyptromyces circinelloides)	HMPREF1544 05296	S23DN0
Mucor circinelloides f. circinelloides (strain 1006 PhL) (Mucormycosis agent) (Calyptromyces circinelloides)	HMPREF1544_05295	S2JYP5
Mucor circinelloides f. circinelloides (strain 1006 PhL) (Mucormycosis agem) (Calyptromyces circinelloides)	HMPREFL544_06348	S2IVK9
Botryotinia fuckeliana (strain BCDW1) Noble rot fungus) (Botryis cinerea)	BCDWl_6807	M7UD26
Podospora anserina (strain S / ATCC MYA-4624/ DSM 980 /FGSC 10383) (Pleurage anserina)	PODANS_5_13040	B2AFD8
Neosartorya fumigata (strain ATCC MYA-4609/ Af293 / CBS 101355 / FGSC All00) (Aspergillus fumigatus)	AFUA_1G17110	Q4WR91
Fusarium oxy sporum f. sp. vasinfectum 25433	FOTG 00686	XOMEE6
Fusanium oxysporum f. sp. vasinfectum 25433	FOTG 12485	X0LE98
Trichophyton interdigitale 46	H101 06625	A0A022U717
Beauveria bassiana (strain ARSEF 2860) (White muscardine disease fungus) (Tritrachum shotae)	BEA_04100	J4UNY3
Fusanum oxy sporum f. sp. radicis-ly copersici 26381	FOCG 00843	X0G062

Organism	Gene names	Accession No.
Fusarium oxy sporum f. sp. radicis-lycopersici 26381	FOCG_15170	XOF 4 Tl
Nemospora tetrasperma (strain FGSC 2509 / P0656)	NEUTE2DRAFT 88670	Guunn6
Psendozyma hubeiensis (strain SY62) (Yeast)	PHSX 000086	R9NVU1
Lodderomyces elongispons (strain ATCC 11503 CBS 2605 / JCM 1781 / NRRC 1676 / NRRL YB. 4239) (Yeast) (Sacchatomyces elongispoms)	LELG 03289	ASE102
Malassezia globosa (strain ATCC MYA-4612/CBS 7966) (Dandruff-associated fungus)	MGL 3855	A8QAY8
Byssochlamys spectabilis (strain No. 5 / NBRC 109023) (Paecilomyces variotii)	PVAR5 7014	V5GBL6
Ajellomyces capsulatus (strain H88) (Dating's disease fungus) (Histoplasma capsulatum)	HCEG 03274	FOUF47
Trichosporon asabii var asahii (strain ATCC 90039 /CBS 2479 / JCM 2466 / KCTC 7840 / NCYC 2677 / UAMH 7654) (Yeast)	AlQ1 03669	J6FBP4
Penicillium oxalicum (strain 114-2 / CGMCC 5302) (Penicillium decmubens)	PDE_00027	S728U8
Fusanum oxysporum f. sp. conghtinans race 2 54008	FOPG 02304	XOLBE3
Fusarium oxysporum f. sp. conghtinans race 2 54008	FOPG 13066	X0H540
Fusarium oxy sporum f. sp. raphani 54005	FOQG 00704	X0DIG8
Fusarimm oxy sponum \& sp. nphani 54005	FOQG 10402	X0C482
Metarhizimm acridum (strain CQMa 102)	MAC 03115	E9DZR?
Arthroderma benhamiae (strain ATCC MYA-4681/ CBS 112371) (Trichophyton mentagrophytes)	ARB_02250	D 4 BlCl
Fusarim oxysponm f sp. cubense tropical mace 4 54006	FOIG_12161	X0JFI6
Fusarim oxysponm f. sp. cubense tropical race 4 54006	FOIG_12751	X0IDU5
Cochliobolus heterostrophus (strain C4 / ATCC 48331 / race T) (Southern com leaf blight fungus) (Bipolanis maydis)	COCCADRAFT 52836	N4WZZ0
Trichospoton asahin var asahi (strain CBS 8904) (Yeast)	A1Q2 0063 !	KlVZWl
Mycosphaerella graminicola (strain CBS 15943 / IPO323) (Speckled leafbloth fungus) (Septoria tritici)	MYCGRDRAFT 37086	F9x375
Botryotinia fuckeliana (strain T4) (Noble rot fungus) (Potrytis cinerea)	BofuT4_P072020.1	G2XQ18
Metarhizium anisopliae (strain ARSEF 23 / ATCC MYA-3075)	MAA 05783	E9FOM 4

Organism	Gene names	Accessiob No.
Chadophialophora carrionii CBS 160.54	G647_05801	V9DAR1
Coccidioides posadasin (strain RMSCC 757 / Silveira) (Valley fever fungus)	CPSG 09174	E9DH75
Rhodosporidum tombides (stain NPII) (Yeast) (Rhodotorda gracilis)	RHTO 06879	M7X159
Puccinia graminis f. sp, tritici (strain CRL 75-36-$700-3$ / tace SCCL) (Black stem rust fungus)	PGTG_10521	E3KIL8
Trichophyton mbrum CBS 288.86	H103 00624	A0A022WG28
Colletotrichum fromiae PJ7	CFIOO1 08202	AOAOLORKZ4
Trichophyton rubrum CBS 289.86	H104_006 11	A0A022XB46
Cladophialophora yegresii CBS 114405	A107 02579	W9WC55
Colletotrichmo orbiculare (strain 104-T / ATCC 96160 / CBS 514.97 / LARS 414 / MAFF 240422) (Cucumber anthracnose fungus) (Colletotricham lagenarium)	Cob 10151	N4VFP3
Drechslerella stenobrocha 248	DRE 03459	W7TDL6
Neosantorya fumigata (strain CEA10/CBS $144.89 /$ FGSC All63) (Aspergillus fumigatus)	AFUB 016500	B0XP90
Thielavia terresivis (sirain ATCC 38088 / NRRL 8126) (Acremonum alabamense)	THITE_2117674	G2R8H9
Gbberella fuikuroi (strain CBS 195.34 / IMI 58289 / NRRL A-6831) (Bakanae and foot rot disease fungus) (Fusarium fuikuroi)	FFUJ 02948	S0DZP7
Gibberella fuikuroi (stran CBS 195.34 / TMI 58289 / NRRL A-6831) (Bakanae and foot rot disease fuggus) (Fusarium fuikuroi)	FFUS_12030	SOEMC6
Aspergilhs flavus (strain ATCC 200026 / FGSC Al120/NRRL $3357 / \mathrm{JCM} 12722$ / SRRC 167)	AFLA_109870	B8N941
Tognma minma (stram UCR-PA7) (Esca disease fungus) (Phaeoacremonium aleophilum)	UCRPA7_1719	R8BTLG
Ajellomyces dermatitidis (strain ATCC 18188 / CBS 674.68) (Blastomyces dematitidis)	BDDG 09783	F2TUC0
Macrophomina phaseolina (strain MSo) (Charcoal rot funges)	MPH 10582	K2RHA5
Neurospora crassa (strain ATCC 24693 / 74-OR231A/CBS 708.71/DSM 1257/FGSC 987)	NCU08977	0752Z2
Neosatona fischeri (sirain ATCC $1020 / \mathrm{DSM}$ 3700 /FGSC A1164/NRRL 181) (Aspergillus fischeriamus)	NFIA_008260	A1D156
Fusarim psendogranineamm (stran CS3096) (Wheat and barley crown-rot fungus)	FPSE 11742	K3U9J5
Spathaspora passalidarum (strain NRRL. Y-27907/ (1-Y1)	SPAPADRAFT_54193	G3AJP0

Organism	Gene names	Accession No.
Spathaspora passalidamm (strain NRRL Y-27907/ 1 $1-\mathrm{Y} 1$)	SPAPADRAFT_67198	G3ANX7
Trichophyton vermeosmm (strain HKI 0517)	TRV 07960	D4DL86
Arthroderma gypseum (strain ATCC MYA-4604 / CBS 118893) (Microsporum gypseum)	MGYG_07264	E4V230
Hypocrea jecorina (strain QMóa) (Tnichoderma reesei)	TRIREDRAFT_43893	G0R7P3
Trichophyton nubrum MR1448	H110 00629	A0A02221G4
Aspergilus ruber CBS 135680	EURHEDRAFT_512125	A0A017SPRO
Glarea lozoyensis (strain ATCC 20868/ MF5171)	GLAREA 04397	S3D6Cl
Setosphaeria turcica (strain 28A) (Northern leaf blight fungus) (Exserohilum tarcicum)	SETTUDRAFT 20639	R0K6H8
Paracoccidioides brasiliensis (straim Pb 18)	PADG_06552	ClGH16
Fusarium oxysporum Fo47	FOZG 13577	W9JPG9
Fusarium oxysponm Fo47	FOZG 05344	W9KPH3
Trichoply ton rubrum MR1459	H113 00628	A0A022ZY09
Penicillimm mameffei (stman ATCC $18224 / \mathrm{CBS}$ 334.59/OM 7333)	PMAA 075740	B6QBY3
Sphaerulina musiva (strain SO2202) (Poplar stem canker fungus) (Septoria musiva)	SEPMUDRAFT_154026	M3DAK6
Gibberella moniliformis (strain M3125/FGSC 7600) (Maize car and stalk rot fungus) (Fusarium verticillioides)	FVEG_-10526	W7N4P8
Cibberella moniffomis (strain M3125/FGSC 7600) (Maize ear and stalk rot fungus) (Fusanum verticilioides)	FVEG_08281	W7MVR9
Psendozyma antarctica (strain T-34) (Yeast) (Candida antarctica)	PANT 22d00298	M9MGF2
Paracoccidioides brasiliensis (strain Pb03)	PABG 07795	C0Sm 4
Rhizophagus irregularis (strain DAOM 181602) DAOM 197108 / MUCL 43194) (Abuscular mycomizal fungus) (Glomus intraradices)	GLOINDRAFT 82554	U9TF6
Penicillium chry sogenum (strain ATCC 28089 / DSM 1075 / Wisconsin 54-1255) (Penicillium notatum)	Pc2lg23700 PCH_Pc2lg23700	B6HJ58
Baudoinia compniacensis (stran UAMH 10762) (Angels' share fungus)	BAUCODRAFT 274597	M2M6Z5
Hypocrea atroviridis (strain ATCC 20476 / IMI 206040) (Trichoderma atrovinde)	TRIATDRAFT_280929	G9NJ32
Colletotrichum gloeosporioides (strain $\mathrm{Cg}-14$) (Anthmonose fongus) (Clomerella cingulata)	CGLO 06642	TOLPHO
Cordyceps militaris (stran CM01) (Caterpillar fungus)	CCM 02665	G3JB34

Organism	Gene names	Accession No.
Pyronema omphalodes (strain CBS 100304) (Pyronema confluens)	PCON_13062	U4LKE9
Colletotrichum graminicola (strain M1.001/ M2 FGSC 10212) (Maize anthracnose fungus) (Glomerella graminicola)	GLRG 08499	E3QR67
Glarea lozoyensis (strain ATCC 74030 / MF5533)	M71 2117	HOEHX 4
Fusarium oxysporum f. sp. cubense (strain race 4) (Panama disease fungus)	FOC4 g10002493	N1S969
Fusarium oxysporum f. sp. cubense (strain race 4) (Panama disease fungus)	FOC4 g10011461	NIRT80
Cochliobolus sativus (strain ND90fx / ATCC 201652) (Common root rot and spot blotch fingus) (Bipolaris sorokiniana)	COCSADRAFT_295770	M2TBE4
Mixia osmundae (strain CBS 9802 / IAM $14324 /$ JCM 22182/KY 12970)	M005571 E5Q 05571	G7E7S3
Mycosphaerella pini (strain NZE10/CBS 128990) (Red band needle bligh fungus) (Dothistroma septosporam)	DOTSEDRAFT 69651	NIPXR0
Grosmamia clavigera (stran kw 1407 / UAMH 11150) (Blue stain fungus) (Graphiochadiella clavigera)	CMQ 1113	F0XC64
Fusarium oxysporum FOSC 3-a	FOYG 03004	W9IUE5
Fusarium oxy sporum FOSC 3-a	FOYG 16040	W9HNP0
Fusarium oxy sporum FOSC 3-a	FOYG 17058	W9HB31
Nectria baematococca (strain 77-13-4 / ATCC MYA-4622 / FGSC $9596 / \mathrm{MPVI}$) (Fusarium solani subsp. pisi)	NECHADRAFT 37686	C7YQL
Nectria haematococca (strain 77-13-4./ ATCC MYA-4622 / FGSC 9596/MPVI) (Fusarime solani subsp. pisi)	NECHADRAFT 77262	C7Z110
Tuber melanosponm (strain Mel28) (Perigord black truffe)	GSTUM_00010376001	DSGLS0
Ajellomyces dermatitidis (strain SLH14081) (Plastomyces dermatitidis)	BDBG_07633	C5JM19
Chaetomum globosum (strain ATCC $6205 / \mathrm{CBS}$ 148.51 /DSM 1962 / NBRC 6347 / NRRL 1970) (Soll fungus)	CHGG 09885	Q2GQ69
Candida temus (strain ATCC 10573 /BCRC 21748 / CBS $615 / \mathrm{JCM} 9827 / \mathrm{NBRC} 10315 / \mathrm{NRRL} \mathrm{Y}$ 1498 / VKM Y-70) (Yeast)	CANTEDRAFT 108652	638921
Trichophyton mbrum CBS 100081	H102 00622	A0A022VKY4
Pyrenophora teres f. teres (strain 0-1) (Batley net blotch fungus) (Drechslera teres I. teres)	PTT_09421	E3RLZ3

Organism	Gene names	Accession No.
Colletotrichum gloeosporioides (strain Nara ges) (Anthracnose fongus) (Clomerella cingulata)	CGGC5 4608	L2GB29
Gibberella zeae (Wheat head blight fungus) (Fusanium graminearom)	FG05_06918	A0A016PCS4
Trichophyton soudanense CPS 452.61	H105 00612	A0A022Y6A6
Sclerotima sclerotionm (strain ATCC 18683/1980 / Ss-1) (White mold) (Whetzelinia sclerotionm)	SS1G_07437	A7EQ37
Fusarinm oxysponum f. sp. pisi HDV247	FOVG 14401	W9NWU8
Fusarium oxy sporum f. sp. pisi HDV247	FOVG 02874	W9Q5V3
Ustilago hordei (strain Uh4875-4) (Banley covered smat fungus)	UHOR_03009	I2G124
Sporisonum reiliaxum (strain SRZ2) (Maize head smut fungus)	sr12985	E6ZYF7
Bipolans zeicola 26 -R-13	COCCADRAFT 81154	W6YPP
Melampsora larici-populina (strain 98AG31/ pathotype 3-4-7) (Poplar leaf nust fungus)	MELLADRAFT 78490	F4RUZ8
Fusanum oxysporum f. sp. Fycopersici (strain 4287 / CBS $123668 /$ FGSC $9935 /$ NRRL 34936$)$ (Fusarium vascular witt of tomato)	FOXG 01901	J9M695
Fusarium oxy sporum f. sp. ycopersici (strain 4287 / CBS 123668 /FGSC $9935 /$ NRRL 34936) (Fusanum vascular wilt of tomato)	FOXG_11941	J9N9S4
Bipolaris victonae FI3	COCVIDRAFT_39053	W7EMI8
Debaryomyces hanseni (strain ATCC $36239 / \mathrm{CBS}$ 767 / JCM $1990 /$ NBRC 0083 / IGC 2968) (Yeast) (Torulaspora hansenil)	DEHA2E04268g	Q6BQL4
Clavispora hastaniae (strain ATCC 42720) (Yeast) (Candida lusitaniae)	CLUG 01505	C4XZX3
Candida albicans (strain WO-1) (Yeas)	CAWG 02023	C4yME4
Trichophyton rubrum MR850	H100_00625	A0A022U0Q2
Candida dubliniensis (stran CD36/ATCC MYA$646 /$ CBS 7987 / NCPF 3949 / NRRL Y-17841) (Yeast)	CD36 32890	B9WMC7
Starmerella bombicola	AOXI	A0A024FB95
Thielavia heterohalica (strain ATCC 42464 BCRC 31852 /DSM 1799) (Myceliophthon thermophila)	MYCTH 103590	G2QJ7 7
Claviceps purpurea (strain 20.1) (Ergot fungus) (Sphacelia segetum)	CPUR_07614	M1WFI4
Aspergillus oryzae (strain ATCC 42149 / RBB 40) (Yellow koyi mold)	AO090023000571	Q2UH61
Dictyostchum discoideum (Slime mold)	DDB 0184181 DDB G0292042	Q54DT6
Triticum urrm (Red wild einkorm) (Crithodium urartu)	TRIUR3_22733	M7YME5

Organism	Gene names	Accession No.
Solanum tuberosum (Potato)	PGSC0003DMG400017211	M1B607
Oryza sativa subsp. japonica (Rice)	OSINB60044B195 LOC Os 10 g 33540	Q8W5P8
Oryza sativa subsp. japonica (Rice)	O11234_B11.20 Os02g0621800	Q6K9N5
Oryza sativa subsp. japonica (Rice)	OSJNBa0001K 12.5 LOC Os 10 g 33520	Q8W5P3
Zea may s Maize)	ZEAMMB73 809149	C0P3]6
Citrus clementina	CICLE v1001111mg	V4S9P4
Citus clementina	CICLE_v10018992mg	V4U4C9
Citrus clementina	CICLE v10004405mg	V4S9D3
Citrus clementina	CICLE v10004403mg	V4R2Z6
Mons notabilis	L484 011703	W9RIK0
Morns notabilis	L484 005930	W9RET7
Medicago trucatula (Barrel medic) (Medicago tribuloides)	MTR_19075650	G714U3
Arabidopsis thaliana (Mouse-ear cress)		Q8LDP0
Medicago truncatula (Bamel medic) (Medicago tribuloides)	MTR 4g081080	G7JF07
Simmondsia chinensis (Jojoba) (Buxus chinensis)		L7VFV2
Prums persica (Peach) (Amygdahus persica)	PRUPE ppa018458mg	M5VXL1
Aphmomyces astaci	H25707411	W4GI89
Aphanomyces astaci	H257..07412	W4GI44
Aphanomyces astaci	H257-07411	W4GKE3
Aphanomyces astaci	H257_07411	W4GK29
Aphanomyces astaci	H257-07411	W4G779
Aphanomyces astaci	H257 07411	W4GI38
Phaeodacty hum tricomutum (strain CCAP 1055/1)	PHATEDRAFT 48204	$\mathrm{B7} 96 \mathrm{Cl}$
Hordeum vulgare var. distichmm (Two-rowed barley)		F2E4R4
Hordeum vulgare var. distichum (Two-rowed barley)		F20ZGl
Hordeum vulgare var. distichum (Two-rowed barley)		MOYPG7
Hordeum vulgare var. distichmm (Two-rowed barley)		MOYPG6
Hordeum vulgare var. distichum (Two-rowed barley)		F2CUY4
Ricinus communis (Castor bean)	RCOM 0867830	B98153
Brassica rapa subsp. pekinensis (Chinese cabbage) (Brassica pekinensis)	BRA014947	MODEM
Ricinus communis (Castor bean)	RCOM 0258730	B9SV13

Organism	Gene names	Accessiob No.
Brassica rapa subsp. pekinensis (Chinese cabbage) (Brassica pekinensis)	BRA001912	M4CCL2
Brassica rapa subsp. pekinensis (Chinese cabbage) (Brassica pekinensis)	BRA012548	M4D7T3
Brassica rapa subsp. pekinensis (Chinese cabbage) (Brassica pekinensis)	BRA024190	M4E5Y6
Brassica rapa subsp. pekinensis (Chinese cabbage) (Brassica pekinensis)	BRA015283	M4DFL0
Ricinus commmis (Castor bean)	RCOM 1168730	B9SS54
Zea mays (Maize)		C4J691
Oryza glaberima (African rice)		InP287
Zea mays (Maze)		B65XM3
Zea mays (Maize)		COHFU4
Aegilops tauschii (Tausch's goatgrass) (Aegilops squarrosa)	F775 19577	R7W43
Solanm habrochates (Wild tomato) (Lycopersicon hirsutum)		R9R6T0
Physcomitrella patens subsp. patens (Moss)	PHYPADRAFT_124285	A9S535
Physcomitrella patens subsp. patens (Moss)	PHYPADRAFT 113581	A9RG13
Pbyscomitrella patens subsp. patens (Moss)	PHYPADRAFT 182504	A9S9A5
Solanum pemellii (Tomato) (Lycopersicon pemellii)		R9R6QI
Vitis vinifera (Grape)	VIT 02s0087g00630	F6HI27
Vitis vimiera (Grape)	VIT 07s0005g03780	F6HZM3
Vitis vinifera (Grape)	VIT 05s0049g01400	F6H8T4
Vitis vinifera (Grape)	VITISV 019349	A5AH38
Capsella mbella	CARUB v10013046mg	ROHIT3
Capsella mbella	CARUB v 10004212 mg	R0GUX4
Capsella rubella	CARUB v10004208mg	R0F3X6
Capsella rubella	CARUB v1002453mg	ROLDO
Capsella rubella	CARUB V10004208mg	R0GUX1
Eutrema salsugineum (Saltwater cress) (Sisymbrium salsuginenm)	EUTSA v10024496mg	V4MDS 4
Eutrema salsugineum (Sallwater cress) (Sisymbrum salsugineum)	EUTSA v10020141mg	V4NM59
Eutrema salsugineum (Sallwater cress) (Sisymbrum salsugineum)	EUTSA_v 10024496 mg	V4LUR9
Eutrema salsugineum (Saltwater cress) (Sisymbrium salsugineum)	EUTSA_v 10024528 mg	V4P767
Eutrema salsugineum (Saltwater cress) (Sisymbrium salsugineum)	EUTSA_v 10006882 mg	V4L2P6
Selaginella moellendorfix (Spikemoss)	SELMODRAFT 87684	D8R626
Selaginella moellendorffi (Spikenoss)	SELMODRAFT 87621	D8R625

Organism	Gene names	Accession No.
Selaginella moellendorfii (Spikemoss)	SELMODRAFT 74601	D8QN8
Selaginella moellendorfin (Spikemoss)	SELMODRAFT_73531	D8QN82
Sorghm bicolor (Sorghum) (Sorghum vulgare)	Sb04g026390 SORBIDRAFT 04g026390	C5XXS4
Sorghm bicolor (Sorgham) (Sorghmm vulgare)	Sb04g026370 SORBIDRAFT 04 g 026370	C5XXS
Sorghm bicolor (Sorghum) (Sorghum vulgare)	Sb01g019470 SORBIDRAFT 01g019470	C5WYH6
Sorghm bicolor (Sorghum) (Sorghmm vulgare)	Sb01g019480 SORBDRRAFT 0lg019480	C5WYH7
Sorghm bicolor (Sorghum) (Sorghum vulgare)	Sb01g019460 SORBIDRAFT Olg019460	C5WYH5
Solamm pimpinellifolium (Currant tomato) (Lycopersicon pimpinellifolium)		R9R692
Phaseolus vulgaris (Kidney bean) (French bean)	PHAVU 007G124200g	V7BGM7
Phaseolus vulgaris (Kidney beam) (French bean)	PHAVU 011 Gl 36600 g	V7A135
Phaseolus vulgaris (Kidney bean) (French bean)	PHAVU 001G162800g	V7D063
Solanum tuberosum (Potato)	PGSC0003DMG400024294	M1C923
Solanum tuberosum (Potato)	PGSC0003DMG400018458	MIBKV4
Solanum tuberosum (Potato)	PGSC00030MG400018458	M1BKV3
Olycine max (Soybean) (Glycine hispida)		K7LK61
Glycine max (Goybean) (Glycine hispida)		K7KXQ9
Populus trichocarpa (Westem balsam poplar) (Populus balsamifera subsp. trichocarpa)	POPTR 0008s 16920 g	B9HKS3
Picea sitchensis (Sitka spruce) (Pimus sitchensis)		B8LQ84
Populus trichocarpa (Western balsam poplar) (Populus balsamifera subsp. trichocarpa)	POPTR 0004s24310g	U5GKQ5
Populus trichocarpa (Western balsam poplar) (Populus balsamifera subsp. trichocarpa)	POPTR 0010507980g	B9HSG9
Glycine max (Soybean) (Glycine hispida)		InN9S7
Glycine max (Soybean) (Glycine hispida)		ILLSK5
Setaria italica (Foxtail millet) (Panicum italicum)	51034362 mg	K4A658
Solanmm lycopersicum (Tonato) (Lycopersicon esculentum)	Solycosg072610.2	K4CUT7
Setaria italica (Foxtail millet) (Panicum italicum)	Si016380m.g	K3YQ38
Solanum lycopersicum (Tomato) (Lycopersicon esculentum)		R9R619
Solanum lycopersicum (Tomato) (Lycopersicon esculentum)	Solyc09g090350.2	K4CW61
Solanmm lycopersicum (Tomato) (Lycopersicon esculentum)	Solyc08g005630.2	K4Cl54
Solanum lycopersicum (Tomato) (Lycopersicon esculentum)	Solvc08g075240.2	K4CMP1

Organism	Gene names	Accession No.
Setana italica (Foxtail millet) (Pancum italicum)	5034359 mg g	K4A655
Setaria italica (Foxtail millet) (Panicum italicum)	Si034354m.g	K4A650
Mimulus gutatus (Spotted monkey flower) (Yellow monkey flower)	MIMCU mgv la001896mg	A0A022PU07
Mimulus gutatus (Spotted monkey hower) (Yellow monkey flower)	MTMGU mgy 19022390 mg	A0A022RAV4
Mimulus guttatus (Spotted monkey hower) (Yellow monkey flower)	MMMGU mgv la001868mg	A0A02252E6
Mimulus guttatus (Spotted monkey flower) (Yellow monkey flower)	MMMGU mgy la001883mg	A04022S275
Mimulus guttatus (Spotted monkey flower) (Yellow monkey flower)	MMMGU_mgy 14001761 mg	A0A022QNF0
Musa acuminata subsp. malaccensis (Wild banana) (Musa malaccensis)		M0SNA8
Musa ncuminata subsp. malaccensis (Wild banana) (Musa malaccensis)		MORUT 7
Musa ncuminata subsp. malaccensis (Wild banana) (Musa malaccensis)		MORUK 3
Saprolegnia diclina VS20	SDRG 10901	T0RG889
Brachypodium distachyon (Puple false brome) (Trachyna distachya)	BRADI3G49085	IMBP7
Brachypodium distachyon (Puple false brome) (Traclynia distachya)	BRADI3G28677	MM4N2
Brachypodium distachyon (Puple false brome) (Trachynia distachya)	BRADI3G2865?	IMANO
Oryza sativa subsp. indica (Rice)	OsI 34012	B8BHG0
Oryza sativa subsp. indica (Rice)	Osi 08118	B8AFT8
Oryza sativa subsp. indica (Rice)	Ost 34008	A27841
Orya sativa subsp. indica (Rice)	OsI 34014	B8BHGI
Oryza sativa subsp. japonica (Rice)	LOC Os 10 g 33460	Q7XDG 3
Oryza sativa subsp. japonica (Rice)	Os10g0474800	Q01812
Oryza sativa subsp. japonica (Rice)	Os10g0474966	C7J7R1
Oryza sativa subsp. japonica (Rice)	OSJNBa0001K 12.13	Q8W5N7
Oryza sativa subsp japonica (Rice)	Os5 31873	B9G683
Oryza sativa subsp. japonica (Rice)	O5 31875	B9G684
Oryza sativa subsp. japonica (Rice)	OSJNBa0001K12.3	Q8W5P5
Arabidopsis lyrata subsp. ly rata (Lyre-leaved rockcress)	ARALYDRAFT 470376	D7KDA3
Arabidopsis ly yata subsp. ly rata (Lyre-leaved rockcress)	ARALYDRAFT 479855	074386
Arabidopsis ly yata subsp. ly rata (Lyre-leaved rockcress)	ARALYDRAFT 491906	D7MDA9

Organism	Gene names	Accession No.
Arabidopsis lyrata subsp. byata (lyre-leaved rock- Cress)	ARALYDRAFT_914728	D7MGS9

[0089] In some embodiments, an alcohol dehydrogenase (ADH, Table 4) is used to catalyze the conversion of a fatty alcohol to a fatty aldehyde. A number of ADHs identified from alkanotrophic organisms, Pseudomonas fluorescens NRRL B-1244 (Hou et al. 1983), Pseudomonas butanovora ATCC 43655 (Vangnai and Arp 2001), and Acinetobacter sp. strain M-1 (Tani et al. 2000), have shown to be active on short to medium-chain alkyl alcohols (C_{2} to C_{44}). Additionally, commercially available ADHs from Sigma, Horse liver ADH and Baker's yeast ADH have detectable activity for substrates with length C_{10} and greater. The reported activities for the longer fatty alcohols may be impacted by the difficulties in solubilizing the substrates. For the yeast ADH from Sigma, little to no activity is observed for C_{12} to C_{14} aldehydes by (Tani et al. 2000), however, activity for C_{12} and C_{16} hydroxy- 0 -fatty acids has been observed (Lu et al. 2010). Recently, two ADHs were characterized from Geobacillus thermodenitrificans NG80-2, an organism that degrades C_{15} to C_{36} alkanes using the LadA hydroxylase. Activity was detected from methanol to 1 triacontanol (C_{30}) for both ADH , with 1-octanol being the preferred substrate for ADH 2 and ethanol for ADH1 (Liu et al. 2009).
[0090] The use of ADHs in whole-cell bioconversions has been mostly focused on the production of chiral alcohols from ketones (Emst et al. 2005) (Schroer et al. 2007). Using the ADH from Lactobacillus brevis and coupled cofactor regeneration with isopropanol, Schroer et al. reported the production of 797 g of (R)-methyl-3 hydroxybutanoate from methyl acetoacetate, with a space time yield of $29 \mathrm{~g} / \mathrm{L} / \mathrm{h}$ (Schroer et al. 2007). Examples of aliphatic alcohol oxidation in whole-cell transformations have been reported with commercially obtained S. cerevisiae for the conversion of hexanol to hexanal (Presecki et al. 2012) and 2-heptanol to 2-heptanone (Cappaert and Larroche 2004).

Table 4. Exemplary alcohol dehydrogenase enzumes.

Organism	Gene Name	Accession No.
Bactrocera oleac (Olive fruit fly) (Dacus oleae)	ADH	Q9NAR7
Cupriavidus necator (Alcaligenes cutrophas) (Ralstonia entopha)	adh	Pl4940
Drosophila adiastola (Fruif fly) (Idiomyia adiastola)	Adh	Qoo669

Organism	Gene Name	Aceession No.
Drosophila affimidisjuncta (Fruit fly) (Idiomyia affinidisjuncta)	Adh	P21518
Drosophila ambigua (Fruit fy)	Adh	P25139
Drosophila borealis (Fruit fly)	Adh	P48584
Drosophila differens (Fruit fly)	Adh	P22245
Drosophila equinoxialis (Fruit fly)	Adh	Q9NG42
Drosophila flavomontana (Frnit fly)	Adh	P48585
Drosophila guanche (Fruit fly)	Adh	Q09009
Drosophila hawaiiensis (Fruit fly)	Adh	P51549
Drosophila heteroneura (Frut fly)	Adh	P21898
Drosophila immigrans (Fruit fly)	Adh	Q07588
Drosophila misularis (Froit fly)	Adh	Q9NG40
Drosophila lebanonensis (Fruit ny) (Scaptodrosophila lebanonensis)	Adh	P10807
Drosophila mauritiana (Fruit fly)	Adh	P07162
Drosophila madeirensis (Fruit fly)	Adh	Q09010
Drosophila mimica (Fruit fly) (diomy ia mimica)	Adh	Q00671
Drosophila mgra (Froit fly) (diomyia nigra)	Adh	000672
Drosophila orena (Fruit ny)	Adh	P07159
Drosophila pseudoobscura bogotama (Fruit fly)	Adh	P84328
Drosophila picticomis (Frmit fly) (Idiomy ia picticomis)	Adh	P23361
Drosophila planitioia (Fruit fly)	Adh	P23277
Drosophila paulistorum (Fruit fy)	Adh	Q94859
Drosophila sivestris (Fruit fly)	Adh	P23278
Drosophila subobscura (Fruit fly)	Adh	003384
Drosophila teissieri (Fruit fly)	Adh	P28484
Drosophila tsacasi (Fruif fly)	Adh	P51550
Fragaria ananassa (Strawberry)	ADH	P17648
Malus domestica (Apple) (Pyrus malus)	ADH	P48977
Scaptonyza albovittata (Fruit fly)	Adh	P25988
Scaptomyza crassifemur (Fruit fly) (Drosophila crassifemur)	Adh	Q00670
Sulfolobus 5p. (strain RC3)	adh	P50381
Zaprionus tuberculatus (Vinegar fly)	Adh	P51552
Geobacillus stearothermophilus (Bacillus stearothermophilus)	adh	P42327
Drosophila may aguana (Fruit fly)	Adh, Adll 2	P25721
Drosophila melanogaster (Fruit fy)	Adh, CG3481	P00334
Drosophila psexdoobscura pseudoobscura (Fruit fly)	Adh, GA17214	Q6LCE4
Drosophila simulans (Fruit fy)	Adh, GD23968	Q24641
Drosophila yakuba (Fmit fy)	Adh, GE19037	P26719

Organism	Gene Name	Aceession No.
Drosophila ananassae (Frmit fy)	Adh, GF14883	Q50L96
Drosophila erecta (Fruit fly)	Adh, GG25120	P28483
Drosophila grimshawi (Fruit fly) (Idiomyia grimshawi)	Adh, GH13025	P51551
Drosophila willistom (Fruit fy)	Adh, GK 18290	005114
Drosophia persimilis (Fruit ny)	Adh, GL25993	P37473
Drosophila sechellia (Fruit fly)	Adh. GM15656	Q9GN94
Cupriavidus necator (strain ATCC 17699 /H16 / DSM 428 / Stanier 337) (Ralstonia cutropha)	adh, H16 A0757	OOKDL6
Mycobacterum tuberculosis (stram CDC 1551/Oshkosh)	adh, MT1581	P9WQC2
Staphylococcus aureus (strain MW2)	adh, MW0568	Q8NXU1
Mycobacterum tuberculosis (strain ATCC 25618 / H37Rv)	adh, Rv1530	P9WQC3
Staphylococcus aureus (strain N315)	adh, SA0562	Q7A742
Staphylococcus aureus (strain bovine RF122 / ET3-1)	adh, SAB055?	Q2YSX0
Sulfolobus acidocaldarius (strain ATCC 33909 /DSM 639 / JCM 8929 / NBRC 15157 / NCIMB 11770)	adh, Saci 2057	Q4,781
Staphylococcus aureus (strain COL)	adh, SACOL0660	Q5H163
Staphylococcus aureus (strain NCTC 8325)	adh, SAOUASC 00608	Q2G0GI
Staplylococcus aureus (strain MRSA252)	adh, SAR0613	Q6GJ63
Staphylococcus aureus (strain MSSA476)	adh, SAS0573	Q6GBM4
Staplylococcus aureus (strain USA300)	adh, SAUSA300 0594	Q2FJ31
Staphylococcus aureus (strain Mu50 / ATCC 700699)	adh, SA V0605	Q99W07
Staphylococcus epidermidis (strain ATCC 12228)	adh, SE 0375	Q8CQ56
Staphylococcus cpidemmidis (strain ATCC $35984 / \mathrm{RP6} 2 \mathrm{~A}$)	adh, SERP0257	Q5HRD6
Snlfolobus solfataricus (strain ATCC 35092 /DSM $1637 /$ (CM11322/P2)	adh, SSO2536	P39462
Sulfolobus tokodaii (strain DSM 16993 / JCM 10545 / NBRC $100140 / 7$)	adh, STK 25770	Q96xE0
Anas platyrynchos (Domestic duck) (Anas boschas)	$\mathrm{ADH1}$	P30350
Aptery australis (Brown Kiwi)	ADHI	P49645
Ceratits capitata (Mediterranean fruit fly) (Tephritis capitata)	ADH	P48814
Ceratitis cosym (Mango fruit fly) (Trypeta cosyra)	ADH1	Q70un9
Gallus gallus (Chicken)	ADHI	P23991
Columba hivia (Domestic pigeon)	ADHI	P86883
Cotmonix coturnix japonica (Japanese quai) (Cotumix japonica)	ADH	P19631

Organism	Gene Name	Aceession No.
Drosophila hydei (Froit fly)	Adn 1	P23236
Drosophila montana (Fruit fly)	Adh:	P48586
Drosophila metteri (Fruit fly)	Adh	P22246
Drosophila mulleri (Fruit fy)	Adh1	P07161
Drosophila navojoa (Frait fly)	Adh1	P12854
Geomys atwateri (Atwater's pocket gopher) (Geomys bursarius attwateri)	ADHI	Q9Z2M2
Geomys bursarius (Plains pocket gopher)	ADH1	Q64413
Geomys knoxjonesi (Knox Jones's pocket gopher)	$\mathrm{ADH1}$	Q64415
Hordeum vulgare (Barley)	ADH1	P05336
Kluyveromy ces marxiams (Yeast) (Candida kefyr)	ADHI	007288
Zea mays (Maize)	ADHI	P00333
Mesocricetus auratus (Golden hamster)	ADHI	P86885
Pennisetum americamm (Pearl millet) (Penmisetam glatum)	ADH	P14219
Petmia hybrida (Petumia)	ADHI	P25141
Onyctolagus cuniculus (Rabbit)	ADHI	003505
Solamm tuberosum (Potato)	ADH1	P14673
Stratho camelus (Ostrich)	ADH1	P80338
Trifolum repens (Creeping white clover)	ADH1	P13603
Zea luxurians (Guatenalan teosinte) (Euchlaena luxurians)	ADH,	007264
Saccharomyces cerevisiae (strain ATCC 204508/S288c) (Baker's yeast)	ADHI, ADCl , YOLO86C, O0947	P00330
Ambidopsis thaliana (Mouse-ear cress)	$\begin{aligned} & \mathrm{ADHI}, \mathrm{ADH}, \\ & \mathrm{~A} 1 \mathrm{~g} 7120, \\ & \mathrm{~F} 2 \mathrm{~K} 20.19 \end{aligned}$	P06525
Schizosaccharomyces pombe (strain 972 / ATCC 24843) (Fission yeast)	adhl, adh, SPCC13B11.01	P00332
Drosophila lacicola (Fruit fly)	Adh1, Adh-1	Q27404
Mus musculus (Mouse)	Adn1, Adh-1	P00329
Peromyscus maniculatus (North American deer mouse)	ADHI, ADH-1	P41680
Ratus norvegicas (Rat)	Adhl, Adh-1	P06757
Drosophila virilis (Fmit fyy)	$\begin{aligned} & \text { Adh1, Adh-1, } \\ & \text { GI18208 } \end{aligned}$	B4M8Y0
Scheffersomyces stipitis (strain ATCC $58785 /$ CBS $6054 /$ NBRC 10063 / NRRL Y-11545) (Yeast) (Pichia stipitis)	ADH1, ADH2. PICST 68558	000097
Aspergillus flavus (strain ATCC 200026/FGSC Al120/ NRRL 3357 / JCM 12722 / SRRC 167)	adh, AFLA 048690	P41747
Nemospora crassa (strain ATCC $24698 / 74-\mathrm{OR} 23-1 \mathrm{~A} / \mathrm{CBS}$ 708.71 / DSM 1257 /FGSC 987)	$\begin{aligned} & \text { adh-1, } 817 \mathrm{Cl} 10.210, \\ & \text { NCU01754 } \end{aligned}$	Q9P6C8
Candida albicans (Yeast)	ADHI, CAD	P43067
Oryza sativa subsp. japonica (Rice)	ADH1, DUPR 11.3,	Q2R875

Organism	Gene Name	Aceession No.
	Oslig0210300, LOC Os 1 Hg 10480 , Os5 032001	
Drosophila mojavensis (Fruit fly)	Adhe, GI17644	P09370
Kluyveromyces lactis (strain ATCC 8585 /CBS 2359 /DSM 70799 / NBRC $1267 /$ NRRL Y-1140/WM37) (Yeast) (Candida sphaerica)	ADHI , KLLAOF21010g	P20369
Oryza sativa subsp. indica (Rice)	ADH1, OsI 034290	Q752X4
Pongo abelii (Sumatran orangutan) (Pongo pygmaeus abelii)	ADHIA	Q5RBP7
Homo sapiens (Human)	ADHIA, ADHI	P07327
Macaca mulata (Rhesus macaque)	ADHIA, ADH1	P28469
Pan troglodytes (Chimpanzee)	ADHIB	Q5RIW2
Papio hamadryas (Hamadryas baboon)	ADHIB	P14139
Homo sapiens (Human)	ADHIE, ADH2	P00325
Homo sapiens (Hmman)	ADHIC, ADH3	P00326
Papio hamadryas (Hamadryas baboon)	ADHIC, ADH3	097959
Ceratitis capitata (Mediterranean fruit fly) (Tephritis capitata)	ADH2	P48815
Ceratitis cosyra (Mango fruit fy) (Trypeta cosyra)	ADH2	Q70UP5
Ceratitis rosa (Natal fruit fly) (Pterandrus rosa)	ADH2	Q70UP6
Drosophila arizonae (Fruit fly)	Adh2	P27581
Drosophila buzzatii (Frait fly)	Adh2	P25720
Drosopinla hydei (Fruit ny)	Adh2	P23237
Drosophila montana (Froit fly)	Adh2	P48587
Drosophila malleri (Fruit fly)	Adh2	P07160
Drosophila wheeleri (Fruit fly)	Adh2	P24267
Entamoeba histolytica	ADH2	Q24803
Hordeum vulgare (Barley)	ADH2	P10847
Kluy veromyces maxiamus (Yeast) (Candida kefyr)	ADH2	Q9P4C2
Zea mays (Maize)	ADH2	P04707
Ory za saliva subsp. indica (Rice)	ADH2	Q4RIE8
Solamum lycopersicum (Tomato) (Lycopersicon esculentum)	ADH2	P28032
Solamm tuberosum (Potato)	ADH2	P14674
Scheffersomyces stipitis (strain ATCC 58785 /CBS 6054 / NBRC 10063 / NRRL Y-11545) (Yeast) (Pichia stipitis)	$\mathrm{ADH} 2, \mathrm{ADHI}$. PICST 27980	013309
Ambidopsis thaliana (Mouse-ear cress)	ADH2, ADHIII, FDH1, At5g43940, MRH1O. 4	Q96533
Saccharomyces cerevisiae (strain ATCC $204508 /$ S288c) (Baker's yeast)	ADH2, ADR2, YMR303C. YM9952.050	P00331
Candida albicans (strain SC5314/ATCC MYA-2876) (Yeast)	ADH2, Ca4lCl0.04, CaO19.12579.	094038

Organism	Gene Name	Aceession No.
	CaO19.5113	
Oryza sativa subsp. japonica (Rice)	ADH2, DUPR11.1, Os11g0210500, LOC OSIlg10510	Q0MTW7
Drosophila mojavensis (Fruit fly)	Adl2, GIl7643	P09369
Kluyveromyces lactis (strain ATCC 8585/CBS 2359 /DSM 70799 / NBRC $1267 /$ NRRL Y-1140/WM37) (Yeast) (Candida sphaerica)	ADH2, KLLA0F18260g	P49383
Oryctolagus cunculus (Rabbit)	ADH2-1	046649
Oryctolagus cuniculus (Rabbit)	ADH2-2	045650
Hordeum vulgare (Barley)	ADH3	P10848
Solanom tuberosum (Potato)	ADH3	P14675
Khuveronyces lactis (strain ATCC 8585/CB5 2359/DSM 70799 / NBRC 1267 / NRRL Y-1140/WM37) (Yeast) (Candida sphaerica)	ADH3, KLLA0B09064g	P49384
Saccharonyces cerevisiae (strain ATCC $204508 / \mathrm{S} 288 \mathrm{c}$) (Baker's yeast)	ADH3, YMR083W, YM9582.08	P07246
Homo sapiens (Human)	ADH4	P08319
Mus musculus (Mouse)	Adh 4	Q90YY9
Ratus norvegicus (Rat)	Adlu 4	Q64563
Struthio camelus (Ostrich)	ADH4	P30468
Kluyeromyces lactis (strain ATCC $8585 /$ CBS 2359 /DSM 70799 / NBRC 1267 / NRRL Y-1140/WM37) (Yeast) (Candida sphaerica)	ADH4, KLLAOF 13530 g	P49385
Schizosaccharonyces pombe (strain 972 / ATCC 24843) (Fission yeast)	adh4, SPAC5H10.06c	Q09669
Saccharomyces cerevisiae (strain YJM789) (Baker's yeast)	ADH4, ZRG5. SCY 1818	A6ZTT5
Saccharomyces cerevisiae (strain ATCC 204508/S288c) (Baker's yeast)	ADH4, ZRG5. YGL256W, NRC465	P10127
Saccharomyces pastonimus (Lager yeast) (Saccharomyces cerevisiae x Saccharomyces enbayanus)	ADH5	Q6XQ67
Bos taums (Bovine)	ADH5	Q32C42
Equas caballus (Horse)	ADHS	P19854
Mas musculus (Mouse)	Adh5, Adh-2, Adh2	P28474
Ratus norvegicus (Rat)	Adh5, Adh-2, Adh2	P12711
Oryctolagus cunicnlus (Rabbit)	ADH5, ADH3	019053
Homo sapiens (Human)	ADH5, ADHX, FDH	P11766
Dictyostelium discoideum (Slime mold)	$\begin{aligned} & \text { adbs, } \\ & \text { DDB G0281865 } \end{aligned}$	Q54TC2
Saccharomyces cerevisiae (strain ATCC 204508/S288c) (Baker's yeast)	ADH5, YBR145W, YBR1122	P38113
Homo sapiens (Human)	ADH6	P28332

Organism	Gene Name	Aceession No.
Peronyscus mamiculatus (North American deer mouse)	ADH6	P41681
Pongo abelij (Sumatran onangutan) (Pongo pygmaeus abelii)	ADH6	OSR728
Ratus norvegicus (Rat)	Adh6	Q5X195
Homo sapicns (Human)	ADH7	P40394
Ratus norvegicus (Rat)	Adm?	P 41682
Mas musculus (Mouse)	Adh7, Adh-3, Adh3	Q64437
Mycobacterium tuberculosis (strain CDC 1551/Oshkosh)	adhA, MT1911	P9WQC0
Rhizobium meliboti (strain 1021) (Ensifer melloti) (Sinorhzobium meliloti)	adbA, RA0704. SMa1296	031186
Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv)	adhA, Rv1862	powQCl
Zymomonas mobilis subsp. mobilis (stram ATCC 31821/ ZM4 / CP4)	$\operatorname{adhA}, 2 \mathrm{MOL236}$	P20368
Mycobacterium bovis (strain ATCC BAA-935/AF2122/97)	adhB, Mb0784c	Q7uns9
Mycobacterium tuberculosis (strain CDC 1551/ Oshkosh)	adhe, MT0786	P9WQC6
Mycobacterium tuberculosis (strain ATCC 25618/H37Rv)	adhe, Rv0761c, MTCY369.06c	P9WQC7
Zymomonas mobilis subsp mobilis (strain ATCC 31821/ ZM4 / CP4)	adhB, ZMO1596	PODIA2
Zymomonas mobilis subsp. mobilis (strain ATCC 10988 / DSM 424 /LMG 404 / NCIMB 8938 / NRRL B-806/ZMD	adhB, Zmob 1541	FSDVL8
Mycobacterium tuberculosis (strain CDC 1551/ Oshkosh)	adhD, MT3171	P9WQB8
Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv)	adhD, Rv3086	p9WQB9
Clostridimm acetobutylicum (strain ATCC 824/DSM 792; JCM 1419 /LMG 5710/VKMB-1787)	adhe, and, CA P0162	P33744
Escherichia coli (strain K12)	$\begin{aligned} & \text { adhe, ana, b1241, } \\ & \text { JW } 228 \end{aligned}$	P0A907
Eschencha coli O157:H7	$\begin{aligned} & \text { adhe, } Z 2016, \\ & \operatorname{ECs} 1741 \end{aligned}$	P0A9Q8
Rhodobacter spheroides (strain ATCC 17023 /2.4.1/NCIB 8253 / DSM 158)	adhi, RHOS4_1650, RSP 2576	P72324
Oryza sativa subsp. indica (Rice)	ADHIII, OSI 009236	A2XAZ3
Eschericha coli (strain K12)	adhP, yddN, b1478, JW1474	P39451
Geobacillus stearothermophilus (Bacilus stearothermophius)	adhr	P 12311

Organism	Gene Name	Aceession No.
Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS $112.46 /$ NRRL $194 / \mathrm{M} 139$) (Aspergillus ndulans)	alcA, AN8979	P08843
Emericella nidulaus (strain FGSC A4/ATCC 38163 / CBS 112.46 / NRRL 194 / M139) (Aspergillus nidulans)	alc, AN3741	P54202
Emericella ndmans (strain FGSC A4/ATCC 38163 / CBS 112.46 / NRRL 194 / M139) (Aspergillus nidulans)	alcC, adh3, AN2286	P07754
Arabidopsis thaliana (Mouse-ear cress)	Atlg22430, Fl2K8. 22	Q9SK86
Arabidopsis thaliana (Mouse-car cress)	Atlg22440, F12K8. 21	Q9SK87
Ambidopsis thaliana (Monse-earcress)	Atlg32780, F6N18.16	Allay 2
Arabidopsis thaliana (Monse-ear cress)	Allg64710, F13011.3	Q8VZ49
Arabidopsis thaliana (Monse-ear cress)	$\begin{aligned} & \text { At4g22110, } \\ & \text { FNN20.210 } \end{aligned}$	90V7W6
Arabidopsis thaliana (Mouse-ear cress)	$\begin{aligned} & \text { A5s } 24760, \\ & \mathrm{~T} 4 \mathrm{C} 1230 \end{aligned}$	Q8LEB2
Arabidopsis thaliana (Mouse-ear cress)	A55g42250, K51145	Q9FH04
Zea mays (Maize)	FDH	P93629
Drosophila melanogaster (Fruit fly)	$\begin{aligned} & \mathrm{Fdh}, \mathrm{gfd}, \mathrm{ODH}, \\ & \mathrm{CG} 6598 \end{aligned}$	P46415
Bacilus subtilis (strain 168)	gbsB, BSU31050	P71017
Caenorlabdius elegans	H24K24.3	Q17335
Oryza sativa subsp. japonica (Rice)	Os02g0815500, LOC $0 s 02 g 57040$, Osy 008550, P0643P09.4	Q0DWH1
Mycobacterium tuberculosis (strain ATCC 25618/H37Rv)	Rv1895	007737
Caenorhabditis elegans	sodh-1, K12G11.3	Q17334
Caenorhabditis elegans	sodh-2, K12G11.4	045687
Pseudomonas sp.	terPD	P33010
Escherichia coli (strain K12)	yiaY, b3589, JW5648	P37686
Moraxella sp. (strain TAE123)		P31786
Alligator mississippiensis (American alligator)		P80222
Caharamhus rosens (Madagascar periwinkle) (Vinca rosea)		P85440
Gadus morlua subsp. callarias (Balic cod) (Gadus callanas)		P26325
Naja naja (trdian cobra)		P80512
Pisum sativum (Garden pea)		P12886
Peloplylax perezi (Perez's frog) (Rana perezi)		P22797
Saara hardwickij (Indian spiny-tailed lizard) (Uromastyx bardwickio)		P25405
Saara hardwickii (Indian spiny-tailed lizard) (Uronastyx hardwickii)		P25406

Ormanism	Gene Name	Aceession No.
Equus caballus (Horse)		P00327
Equus cabalhs (Horse)		P00328
Geobacillus starothermophilus (Bacilhus stearothermophilus)		P42328
Gadus morhua (Atlantic cod)		PS 1600
Gadus morhaa (Allantic cod)		P81601
Myxine glutinosa (Atluntic hagish)		P80360
Octopus vulgaris (Common octopus)		P81431
Pisum sativum (Garden pea)		P80572
Saara hardwickii (Indian spiny-tailed lizard) (Uromastyx hardwickii)		P80467
Scyliorhimus canicula (Small-spoted catshark) (Squalus canicula)		P86884
Sparus aurata (Gilthead sea bream)		P79896

[0091] In some embodiments, an α-dioxygenase is used to catalyze the conversion of a fatty acid to a fatty aldehyde (Hamberg et al. 2005). Alpha-dioxygenases catalyze the conversion of a C_{n} fatty acid to a $\mathrm{C}_{\mathrm{n}-1}$ aldehyde and may serve as an altemative to both AOH and AOX for faty aldehyde production if a faty acid is used as a biotransformation substrate. Due to the chain shortening of the dioxygenase reaction, this route requires a different synthesis pathway compared to the ADH and AOX routes. Biotransformations of E. coli cells expressing a rice α-dioxygenase exhibited conversion of $\mathrm{C} 10, \mathrm{C12}, \mathrm{C14}$ and C 16 fatty acids to the corresponding $\mathrm{C}_{\mathrm{n}-1}$ aldehydes. With the addition of the detergent Triton X 100 , 3.7 mM of pentadecanal (0.8 g L) was obtained after 3 hours from hexadecanoic acid with 74% conversion (Kaehne et al. 2011). Exemplary α-dioxygenases are shown in Table 5.

Table 5. Exemplary alpha-dioxygenases.

Entry	Drgamism	Gene names
Q9SGH6	Arabidopsis thaliana (Mouse-ear cress)	DOXI DIOX1 PADOX- 1 PIOX At3g01420 T13015.6
Q9C903	Arabidopsis thaliana (Mouse-ear cress)	DOX2 DIOX2 Allg73680 F25P22.10
P14550	Homo sapiens (Human)	AKRIAI ALDRI ALR
Q69E29	Solanum lycopersicum (Tomato) (Lycopersicon escalenum)	LOC543896
Q5WM33	Solanum lycopersicum (Tomato) (Lycopersicon esculentum)	alpha-DOX2
Q69F00	Solanum lycopersicum (Tomato) (Lycopersicon esculentum)	
D7LAG3	Arabidopsis lyrata subsp. lyrata (Lyre-leaved rock-cress)	ALPHA-DOXI ARALYDRAFT 317048

Entry	Organism	Gene names
D8Lת3	Ectocarpus siliculosus (Brown alga)	D0x Esi 0026 0091
E3U9P5	Nicotiana attemata (Coyote tobacco)	adox2

Synthesis of Polvenes via Metathesis Reactions

[6092] In some embodiments, the metathesis reaction partner is a protected alcohol according to Formula lla:

(Ha),
wherein $R^{2 a}$ is an alcohol protecting group,
and the metathesis product is a compound according to Formula IV:

(IV).
[0093] In some embodments, R^{1} is C_{2-18} alkenyl. Such embodiments can provide polyene pheromones as described in more detail below.
[@94] In some embodiments, the metathesis reaction partner is a protected alcohol according to Formula IIa:

wherein $\mathrm{R}^{2 a}$ is an alcohol protecting group, and the metathesis product is a compound according to Formula IVc:

(IVc).
$[0095]$ In some embodiments, the metathesis reaction partner is a protected alcohol according to Formula IIc:

(IIC),
wherein $R^{2 a}$ is an alcohol protecting group,
and the metathesis product is a compound according to Formula IVc:

Metathesis of Fatty Acid Esters

[0096] Faty acid alkyl esters (FAAE) can be reduced to either aldehydes or alcohols by the use of well-defined homogenous and heterogeneous methodologies. Therefore, in some cases it can be useful to produce fatty olefin derivatives via Z-selective cross-metathesis of a

Scheme 4

cat.

$$
\frac{-R \leqslant}{+R \text { As }}
$$

or

$$
\begin{align*}
R & =H, C_{8} H_{17} \\
R^{\prime} & =M e, E t
\end{align*}
$$

1
0.5

Pheromone

[6097] Products obtained from metathesis of protected fatty acid alky $]$ esters can be converted to a number of pheromones, as set forth in Table 6.

Table 6. Pheromones accessible from fatty acid alkyl ester metathesis products.

Olefin	Metathesis Reaction Partner	Metatbesis Profluct	Exemplay Pheromone derived from Metathesis Product	Pherumone CAS \#
propylene	oleate	(Z)-9-undecenoate	(Z)-9-undecenyl acetate	85576-13-2
1-butene	oleate	(Z)-9-dodecenoate	(2)-9-dodecenal	56219-03-5
]-butene	oleate	(Z)-9-dodecenoate	(Z)-9-dodecenyl acetate	16974-11-1
1-pentene	oleate	(Z)-9-tridecenoate	(L)-9-tridecenyl acetate	35835-78-0
I-hexene	oleate	(7)-tetradec-9-enoate	(Z)-9-tetradecemal	$53939-27-8$
1-hexene	oleate	(Z)-tetradec-9-enoate	(Z)-9-tetridecenyl acetate	16725-53-4
I-hexene	oleate	(2)-tetradec-9-enoate	(Z)-9-tetradecenyl formate	$56776-10-4$
l-hexene	oleate	(Z)-teradec-9-enoate	(Z)-9-tetradecenyl mitrate	$143816-21-1$
1-heptene	oleate	(2)-9-pentadecenoate	$\begin{gathered} (Z)-9 \text {-pentadecenyl } \\ \text { acetate } \end{gathered}$	$64437-41.8$
1-actene	oleate	(Z)-9-hexadecenoate	(Z)-9-hexadecenal	56219-04-6
1-octene	oleate	(2)-9-hexadecenoate	(Z)-9-hexadecenyl acetate	34010-20-3
propylene	9-decenoate	(Z)-9-undecenoate	(Z)-9-undecenyl acetate	85576-13-2
l-butene	9-dccenoate	(Z)-9-dodecenoate	(Z)-9-dodecenal	56219-03-5
l-butene	9-decenoate	(Z)-9-dodecenoate	(Z)-9-dodeceny acetate	16974-11-1
1-pentene	9 -decenoate	(Z)-9-tridecenoate	(Z)-9-tridecenyl acemte	35835-78-0
l-hexene	9-decenoate	(Z)-teradec-9-enoate	(Z)-9-reiradecenal	53939-27-8

Olefin	Metathesis Reaction Partner	Metathesis Product	Exemplary Pheromone derived from Metathesis Produet	Pheromme CAS \#
1-hexene	9-decenoate	(2)-tetradec-9-enoate	(Z)-9-tetradecenyl stetate	16725-53-4
1-hexene	9 decenoate	(2 -tetradec-9-enoate	(Z)-9-tetradecenyl formate	56776-10-4
l-hexene	9 -decenoate	(Z)-tetradec-9-enoate	(Z)---tetradecenyl mitrate	143816-21-1
1-heptene	9 -decenoate	(Z) -9-pentadecenoate	(Z)-9-pentadecenyl acetate	64437-41-8
1-actene	9 -decenoate	(Z)-9-hexadecenoate	(Z)-9-hexadecenal	56219-04-6
1-octene	9-decenoate	(Z)-9-hexadecenoate	(Z)-9-hexadecemyl wetate	34010-20-3
propylene	10-urdecenoate	(Z)-10-dodecenoate	(Z)-10-dodecenyl acetate	35148-20-0
1 -butene	10-mudecenoate	(Z)-10-tridecernate	(Z)-10-tridecenyl acetate	64437-24-7
1-pentene	10-undecenoate	(Z)-10-tetradecenoate	(Z)-10-tetradecenyl acetate	35153-16-3
1-hexene	10-momecenoate	(Z)-10-pentadecenoate	(Z)-10-pentadecenal	60671-80-9
Hexene	10-modecenoate	(Z)-10-pentadecenoate	(Z)-10-pentadecenyl acctate	64437-43-0
1-heptene	10-modecenoate	(Z)-10-hexadecenoate	(Z)-10-hexadecenyl acetate	$56218-71-4$

[6098] Accordingly, some embodiments of the invention provide methods wherein the metathesis reaction partner is an ester according to Formula IIb:

(IIb),
and wherein $R^{2 b}$ is C_{1-8} alkyl and subscript y is an integer ranging from 0 to 17 ;
wherein the metathesis product is a compound according to Formula IIIb:

(13 B).
[0099] In some embodiments, the metathesis reaction partner is an ester according to Formula Ib:

wherein $R^{2 b}$ is C_{1-s} alkyl and subscript y is an integer ranging from 0 to 17 ;
and
the metathesis product is a compound according to Formula IIC:

(IIC)
[0100] In some embodiments, the metathesis reaction partner is an ester according to Formula Ilc:
 wherein $\mathbb{R}^{2 b}$ is C_{1-s} allyl and subscript y is an integer ranging from 0 to 17 ;
and
the metathesis product is a compound according to Formula IIc:

[0101] Metathesis products according to Fommala IIc can be prepared using a number of Z-selective catalysts as described below.
[9102] In some embodiments, the methods can be used to prepare products according to Formula IIb or IHc wherem y is 0 and z is 4 ; or y is 1 and 2 is 3 , or y is 3 and z is 1 ; or y is 4 and z is 0 , or y is 0 and z is 5 ; or y is 1 and z is 4 ; or y is 2 and z is 3 , or y is 3 and z is 2 ; or y is 4 and z is 1 ; or y is 5 and z is 0 ; or y is 0 and z is 6 ; or y is 1 and z is 5 ; or y is 2 and z is 4 ; or y is 4 and z is 2 ; or y is 5 and z is 1 , or y is 6 and z is 0 ; or y is 0 and z is 7 , or y is 1 and z is 6 , or y is 2 and z is 5 ; or y is 3 and z is 4 ; or y is 4 and z is 3 ; or y is 5 and z is 2 ; or y is 6 and z is 1 , or y is 7 and z is 0 ; or y is 0 and z is 8 ; or y is 1 and z is 7 ; or y is 2 and z is 6 , or y is 3 and z is 5 ; or y is 5 and z is 3 ; or y is 6 and z is 2 ; or y is 7 and z is 1 ; or y is 8 and z is 0 ; or y is 0 and z is 9 , or y is 1 and z is 8 ; or y is 2 and z is 7 ; or y is 3 and z is 6 , or y is 4 and z is 5 ; or y is 5 and z is 4 , or y is 6 and z is 3 ; or y is 7 and z is 2 ; or y is 8 and z is 1 ; or y is 9 and z is 0 , or y is 0 and z is 10 , or y is 1 and z is 9 ; or y is 2 and z is 8 , or y is 3 and z is 7 , or y is 4 and z is 6 ; or y is 6 and z is 4 , or y is 7 and z is 3 ; or y is 8 and z is 2 ; or y is 9 and z is 1 ; or y is 10 and z is 0 , or y is 0 and z is 11 ; or y is 1 and z is 10 , or y is 2 and z is 9 , or y is 3 and z is 8 , or y is 4 and z is 7 ; or y is 5 and z is 6 ; or y is 6 and z is 5 ; or y is 7 and z is 4 ; or y is 8 and z is 3 , or y is 9 and z is 2 ; or y is 10 and z is 1 ; or y is 11 and z is 0 ; or y is 0 and z is 12; or y is 1 and z is 11 ; or y is 2 and z is 10 ; or y is 3 and z is 9 , or y is 4 and z is 8 , or y is 5 and z is 7 ; or y is 7 and z is 5 ; or y is 8 and z is 4 ; or y is 9 and z is 3 , or y is 10 and z is 2 , or
y is 11 and z is 1 ; or y is 12 and z is 0 ; or y is 0 and z is 13 ; or y is 1 and z is 12 ; or y is 2 and z is 11 ; or y is 3 and z is 10 , or y is 4 and z is 9 , or y is 5 and z is 8 ; or y is 6 and z is 7 ; or y is 7 and z is 6 , or y is 8 and z is 5 ; or y is 9 and z is 4 ; or y is 10 and z is 3 ; or y is 11 and z is 2 ; or y is 12 and z is 1 ; or y is 13 and z is 0 ; or y is 0 and z is 14 ; or y is 1 and z is 13 ; or y is 2 and z is 12 ; or y is 3 and z is 11 ; or y is 4 and z is 10 ; or y is 5 and z is 9 , or y is 6 and z is 8 ; or y is 8 and z is 6 ; or y is 9 and z is 5 ; or y is 10 and z is 4 ; or y is 11 and z is 3 , or y is 12 and z is 2 ; or y is 13 and z is 1 ; or y is 14 and z is 0 ; or y is 0 and z is 15 ; or y is 1 and z is 14 ; or y is 2 and z is 13 ; or y is 3 and z is 12 , or y is 4 and z is 11 ; or y is 5 and z is 10 ; or y is 6 and z is 9 , or y is 7 and z is 8 , or y is 8 and z is 7 ; or y is 9 and z is 6 ; or y is 10 and z is 5 ; or y is 11 and z is 4 ; or y is 12 and z is 3 , or y is 13 and z is 2 , or y is 14 and z is 1 , or y is 15 and z is 0 ; or y is 0 and z is 16 ; or y is 1 and z is 15 ; or y is 2 and z is 14 ; or y is 3 and z is 13 ; or y is 4 and z is 12 ; or y is 5 and z is 11 ; or y is 6 and z is 10 ; or y is 7 and z is 9 , or y is 9 and z is 7 ; or y is 10 and z is 6 ; or y is 11 and 2 is 5 ; or y is 12 and z is 4 , or y is 13 and z is 3 ; or y is 14 and z is 2 ; or y is 15 and z is 1 ; or y is 16 and z is 0 , or y is 1 and z is 16 ; or y is 2 and z is 15 ; or y is 3 and z is 14 ; or y is 4 and z is 13 ; or y is 5 and z is 12 ; or y is 6 and z is 11; or y is 7 and z is 10 , or y is 8 and z is 9 ; or y is 9 and z is 8 ; or y is 10 and z is 7 ; or y is 11 and z is 6 ; or y is 12 and z is 5 ; or y is 13 and z is 4 ; or y is 14 and z is 3 ; or y is 15 and z is 2 ; or y is 16 and z is 1 ; or y is 17 and z is 0 ; or y is 0 and z is 17 ; or y is 1 and z is 17 ; or y is 2 and z is 16 ; or y is 3 and z is 15 ; or y is 4 and z is 14 ; or y is 5 and z is 13 , or y is 6 and z is 12 , or y is 7 and z is 11 ; or y is 8 and z is 10 , or y is 10 and z is 8 ; or y is 11 and z is 7 , or y is 12 and z is 6 ; or y is 13 and z is 5 ; or y is 14 and z is 4 ; or y is 15 and z is 3 ; or y is 16 and z is 2 ; or y is 17 and z is 1 . In some embodiments, both y and z are $0,1,2,3,4,5,6,7,8,9$, $10,11,12,13,14,15,16$, or 17

Conversion of Fatty Acid Ester Metathesis Produrot to Fatty Ohefin Derivatives

[0103] In some embodiments, converting the metathesis product to the fatty olefin derivative includes reducing the metathesis product of Formula Ilb to form an alkenol according to Formula Vb :

(Vb).
[0104] In some embodiments, converting the metathesis product to the fatty olefin derivative includes reducing the metathesis product of Formula LIc to form an alkenol according to Formula Vc .

(Vc).
[0105] Any suitable conditions for converting the product of Formula Ilb to the alkenol of Formula Vb can be used in conjunction with the method of the invention. Homogenous or heterogenous conditions can be used. Examples of homogenous conditions include, but are not limited to: hydrogenolysis using ligated precious metal catalysts (Tan, et al. Org. Lett. 2015, 17 (3), 454; Spasyuk, D. et al. J. Am. Chem. Soe. 2015, 137, 3743; WO 2014/139030), metal bydride-catalyzed reduction using silane reagents (Mimoun, H. J. Org. Chem. 1999, 64, 2582.; U.S. Pat. No. $6,533,960$), and reduction using aluminum reagents such as lithium aluminum hydride, sodium bis(2-methoxyethoxy)aluminumbdride (also known by the tradename RED-AL), or disobutyl aluminum hydride (CN 103319704; Chandrasekhar, et al. Tetrahedron Lett. 1998, 39, 909). Unsaturated fatty alcohols can also be prepared via hydrogenolysis with heterogeneous catalysts, such as ZnO or $\mathrm{CuO} / \mathrm{ZnO}$ supported on chromite, alumina, or other material. Typically, 1-2 molar equivalents of the reducing agent with respect to the fatty acid ester metathesis product will be used. In some embodiments, around $1.0,1.1,1.2,1.3,1.4$, or 1.5 molar equivalents of the reducing agent with respect to the fatty acid ester is used to form the corresponding alkenol.
[0106] Any suitable solvent can be used for reducing the fatty acid ester metathesis product. Suitable solvents include, but are not limited to, toluene, methylene chloride, ethyl acetate, acetonitrile, tetrahydrofuran, benzene, chloroform, diethyl ether, dimethyl formamide, dimethyl sulfoxide, petroleum ether, and mixtures thereof. The reduction reaction is typically conducted at temperatures ranging from around $-78^{\circ} \mathrm{C}$ to about $25^{\circ} \mathrm{C}$ for a period of time sufficient to form the alkenol. The reaction can be conducted for a period of time ranging from a few minutes to several hours or longer, depending on the particular fatty acid ester and reducing agent used in the reaction. For example, the reduction of a methyl (Z)-tetradec-9-enoate with an aluminum reagent (e.g., sodium bis(2-methoxyethoxy)aluminumhydride) can be conducted for $1-2$ hours at a temperature ranging from around $0^{\circ} \mathrm{C}$ to around $20^{\circ} \mathrm{C}$.
[0107] In some embodiments, the alkenol is the fatty olefin derivative. In some embodiments, the alkenol is a pheromone.
[0108] In some embodiments, converting the metathesis product to the fatty olefin derivative further includes acylating the alkenol of Formula Vb , thereby forming a fatty olefin derivative according to Formula VIb:
 wherein $\mathrm{R}^{2 c}$ is C_{1-6} acyl. The acylation step can be conducted as described above.
[0109] In some embodiments, converting the metathesis product to the fatty olefn derivative further includes acylating the alkenol of Formula Vc , thereby forming a fatty olefin derivative according to Formula VIc:

(VIc),
wherein $\mathrm{R}^{2 \mathrm{c}}$ is C_{1-6} acyl. The acylation step can be conducted as described above.
[0110] In some embodiments, converting the metathesis product to the fatty olefin derivative further includes oxidizing the alkenol of Formula Vb , thereby forming a fatty olefin derivative according to Formula VIIb:

(VIIb)
[9111] In some embodiments, converting the metathesis product to the fatty olefin derivative further includes oxidizing the alkenol of Formula Vo, thereby forming a fatty olefin derivative according to Formula vilc:

(VIIc).
[0112] In some embodiments, the metathesis reaction partner is an ester according to Formula Ib or Formula IIc as described above, and the metathesis product is a compound according to Formula IV:

(IV).
[0113] In some embodiments, the metathesis reaction partner is an ester according to Formula IIb or Formula IIc as described above, and the metathesis product is a compound according to Formula IVc:

(IVc).
[0114] In some embodiments, R^{1} in Formula V or Formula IVc is C_{2-18} alkeny].
[0115] In another embodiment, the invention provides a method for synthesizing a fatty olefin derivative, the method comprising:
a) contacting an olefin according to Formula l

(I),
with a metathesis reaction partner according to Formula IIb

in the presence of a metathesis catalyst under conditions sufficient to form a metahesis product according to Formula Ib :

b) converting the metathesis product to the fatty olefin derivative;
wherein
each R^{1} is independently selected from the group consisting of $\mathrm{H}, \mathrm{C}_{1-18}$ alkyl, and $\mathrm{C}_{2 \text {-is }}$ alkenyl;
$\mathrm{R}^{2 \mathrm{~b}}$ is $\mathrm{C}_{1-\mathrm{s}}$ alkyl;
subscript y is an integer ranging from 0 to 17 , and
subscript z is an integer ranging from 0 to 17 .
[0116] In some embodiments where the metathesis reaction partner according to Formula $I I b$ is employed, converting the metathesis product to the fatty olefin derivative comprises reducing the metahesis product to form an akenol according to Formula Vb :

[0117] In some embodiments where the metathesis reaction partner according to Formula IIb is employed, the alkenol is the fatty olefin derivative.
[0118] In some embodiments where the metathesis reaction partner according to Formula IIb is employed, converting the metathesis product to the fatty olefin derivative further
comprises acylating the alkenol, thereby forming a faty olefin derivative according to Formula VIb:

wherein $\mathrm{R}^{2 c}$ is C_{1-6} acyl.
[0119] In some embodiments where the metathesis reaction partner according to Formula IIb is employed, R^{1} is $H, \mathrm{R}^{2 b}$ is methyl, subscript y is 7 , and subscript z is 3 . In some such embodiments, R^{1} is $H, R^{2 b}$ is methyl, subscript y is 7 , subscript z is 3 , and $R^{2 c}$ is acetyl.
[0120] In some embodiments where the metathesis reaction partner according to Formula IIb is employed, converting the metathesis product to the fatty olefin derivative further comprises oxidizing the alkenol, thereby forming a fatty olefin derivative according to Formula VIb

(VIb)
[0121] In some embodiments where the metathesis reaction partner according to Formula mb is employed, converting the metathesis product to the fatty olefin derivative further comprises reducing the metathesis product, thereby forming a fatty olefin dervative according to Formula VIIb

(VIIb).
[0122] In some embodiments, R^{1} is $H, R^{2 b}$ is methy], subscript y is 7 , and subscript z is 3 in the fatty olefin derivative according to Formula VIIb.
$[0123]$ In some embodiments where the metathesis reaction partner according to Formula IIb is employed, the olefin has a structure according to Formula la:

(la).
[0124] In some embodiments, subscript z is 3 in the olefin according to Formula la
[0125] In some embodiments where the metathesis reaction partner according to Formula IIb is employed, the metathesis product comprises a Z olefin. In some embodiments, at least about 90% of the olefin is a Z olefin. In some embodiments, the metathesis catalyst is a Z -
selective molybdenum catalyst or a Z-selective tungsten catalyst as described below. In some embodiments, the metathesis catalyst has a structure according to Formula 2 as described below. In some embodiments, the metathesis catalyst has a structure according to Formula 2 a as described below.
[0126] In another embodiment, the invention provides a method for synthesizing a fatty olefn derivative as described above wherein the olefn accoring to Formula I is a linear $\mathrm{C}_{3}-\mathrm{C}_{12}$ alpha olefin, the metathesis reaction parmer according to Formula Ib is a Δ^{9} unsaturated fatty acid alkyl ester, the metathesis catalyst is a Z-selective metathesis catalyst, and the metathesis product according to Formula IIb is a $\mathrm{C}_{11}-\mathrm{C}_{20}(Z)$-9-mnsaturated fatty acid alkyl ester. In some such embodiments, converting the metathesis product to the fatty olefin derivative comprises contacting the $\mathrm{C}_{11}-\mathrm{C}_{20}(Z)$-9-unsaturated fatty acid alkyl ester with a reducing agent under conditions sufficient to form a $\mathrm{C}_{11}-\mathrm{C}_{20}(Z)$-9-fatty alcohol. In some such embodiments, the reducing agent is sodium bis(2-methoxyethoxy) aluminum hy dride.
[0127] In some embodiments, converting the metathesis product to the faty olefin derivative further comprises contacting the $\mathrm{C}_{11}-\mathrm{C}_{20}$ (Z)-9-fatty alcohol with an acylating agent in the presence of a base under conditions sufficient to form an acetate ester of the $\mathrm{C}_{11}-\mathrm{C}_{20}(Z)$-9-fatty alcohol. In some such embodiments, the acylating agent is acetic anhydride
[0128] In some embodiments, converting the metathesis product to the fatty olefin derivative further comprises oxidizing the $\mathrm{C}_{11}-\mathrm{C}_{20}(Z)$-9-faty alcohol to form a $\mathrm{C}_{11}-\mathrm{C}_{20}(Z)$-9alkenal.
[0129] In some embodiments, converting the metathesis product to the fatty olefin derivative comprises contacting the $\mathrm{C}_{11}-\mathrm{C}_{20}(Z)$-9-fatty acid alkyl ester with a reducing agent under conditions sufficient to form a $\mathrm{C}_{11}-\mathrm{C}_{20}(Z)$-9-alkenal. In some such embodiments, the reducing agent is amine-modified sodium bis(2-methoxyethoxy)aluminumbydride. The amine-modified sodium bis(2-methoxyethoxy)aluminumhydride can be generated in sith via reaction of the sodium bis(2-methoxyethoxy)aluminumhydride with either a primary amine or secondary amine (as described, for example, by Shin, et al. Bull. Korean Chem. Soc. 2014, 35,2169 , which is incorporated herein by reference). In some such embodiments, the metathesis catalyst has a structure according to Formula 2 a as described below.
[0130] In another embodiment, the invention provides a method for synthesizing a fatty olefin derivative as described above wherein: the fatty acid derivative is (Z)-tetradec-9-en-1-
yl acetate; the olefin according to Formula $[$ is hex-1-ene, the metathesis reaction parmer according to Formula Ib is a Δ^{9}-unsaturated fatty acid alkyl ester, the metathesis catalyst is a Z-selective metathesis catalyst, and the metathesis product according to Formula Imb is an alkyl ester of (Z)-9-tetradec-9-enoate; and wherein converting the metathesis product to the fatty olefin derivative comprises: contacting the alkyl ester of (Z)-9-tetradec-9-enoate with a reducing agent under conditions sufficient to form (Z)-tetradec-9-en-1-ol, and acylating the (Z)-tetradec-9-en-1-ol to form the (Z)-tetradec-9-en-1-yl acetate.
[0131] In some such embodiments, the metathesis reaction partner according to Formula IIb is methyl 9 -decenoate and the metathesis product is methyl (Z)-tetradec-9-enoate. In some such embodiments, the reducing agent is sodium bis(2-methoxyethoxy)aluminumhydride. In some such embodiments, acylating the (Z)-tetradec-9-en-1-ol comprises contacting the (Z)-tetradec-9-en-1-0l with an acylating agent in the presence of a base under conditions sufficient to form (Z)-tetradec-9-en-1-yl acetate. In some such embodiments, the acylating agent is acetic anhydride. In some such embodiments, the metathesis catalyst has a structure according to Formula 2 a as described below.
[0132] In another embodiment, the invention provides a method for synthesizing a fatty olefin derivative as described above, wherein the fatty acid derivative is (Z)-tetradec-9-enal, the olefin according to Fomula I is hex-1-ene, the metathesis reaction partner according to Formula Ib is a $\Delta^{\prime \prime}$-unsaturated faty acid alkyl ester, the metathesis catalyst is a Z-selective metathesis catalyst, and the metathesis product according to Formula IIb is an alkyl ester of (Z)-9-tetradec-9-enoate; andwherein converting the metathesis product to the fatty olefin derivative comprises contacting the alkyl ester of (Z)-9-tetradec-9-enoate with a reducing agent under conditions sufficient to form the (Z)-tetradec- 9 -enal. In some such embodiments, the reducing agent is amine-modified sodium bis(2-methoxyethoxy) aluminumhydride. The amine-modified sodium bis(2-methoxyethoxy) aluminumhydride can be generated as described above. In some such embodiments, the Δ^{9}-unsaturated fatty acid alkyl ester according to Formula IIg is methyl 9 -decenoate and the metathesis product is methyl (Z)-tetradec-9-enoaie. In some such embodiments, the metahesis catalyst has a structure according to Formula 2a as described below.
[0133] In another embodiment, the invention provides a method for synthesizing a fatty olefin derivative as described above wherein the fatty acid derivative is (Z)-tetradec-9-enal, the olefin according to Formula I is hex-1-ene, the metathesis reaction partner according to

Formula $I b$ is a Δ^{y}-unsaturated fatty acid alkyl ester, the metathesis catalyst is a Z-selective metathesis catalyst, and the metathesis product according to Formula Im is an alkyl ester of (Z)-tetradec-9-enoate; and wherein converting the metathesis product to the fatty olefin derivative comprises contacting the alkyl ester of (Z)-tetradec-9-enoate with a reducing agent under conditions sufficient to form (Z)-tetradec-9-en-1-0, and oxidizing the (Z)-tetradec-9-en-1-ol to form the (Z)-tetradec-9-enal. In some such embodiments, the reducing agent is sodium bis(2-methoxyethoxy)aluminumhydride. In some such embodiments, the Δ^{9} unsaturated fatty acid alkyl ester according to Formula Ig is methyl 9-decenoate and the metathesis product is methyl (Z)-tetradec-9-enoate. In some such embodiments, the metathesis catalyst has a structure according to Formula 2 a as described below.
[0134] In another embodiment, the invention provides a method for synthesizing a fatty olefin derivative according to Formula VIb:

the method comprising:
i) reducing an alkyl ester according to Formula Ilb

to form an alkenol according to Formula VIII

(VIm)
ii) acylating the alkenol to form an acylated alkenol according to Formula XX

iii) contacting the acylated akenol with an olefin according to Formula I

(I),
in the presence of a metathesis catalyst under conditions sufficient to form the fatty olefin derivative; wherein:
R^{\prime} is selected from the group consisting of H, C_{1-18} alkyl, and C_{2-18} alkenyl;
$\mathrm{R}^{2 \mathrm{~b}}$ is $\mathrm{C}_{1-\mathrm{s}}$ alkyl,
$\mathrm{R}^{2 c}$ is C_{1-6} acyl,
subscript y is an integer ranging from 0 to 17 ;

Subscript z is an integer ranging from 0 to 17 , and
the metathesis catalyst is a tungsten catalyst or a molybdenum catalyst.
[0135] In some embodments, R^{1} is H, R^{26} is methyl, $R^{2 c}$ is acetyl, subscript y is 7 , and subscript z is 3 in the method for synthesizing a fatty olefin derivative according to Formula Vib. In some embodiments, the metathesis product comprises an E olefin. In some embodiments, the metathesis product comprises a Z-olefin. In some embodiments, the metathesis catalyst is a Z-selective molybdenum catalyst or a Z-selective tungsten catalyst. In some embodiments, the metathesis catalyst has a structure according to Formula 2 as described below. In some embodiments, the metathesis catalyst has a structure according to Formula 2 a as described below.

Metathesis catalysts

$[0136]$ The catalysts emploved in the present invention generally employ metals which can mediate a particular desired chemical reaction. In general, any transition metal (e.g., having d electrons) can be used to form the catalyst, e.g., a metal selected from one of Groups $3-12$ of the periodic table or from the lanthanide series. In some embodiments, the metal is selected from Groups 3-8, or, in some cases, from Groups 4.7. In some embodiments, the metal is selected from Group 6. The term "Group 6 " refers to the transition metal group comprising chromium, molybdenum, and tungsten. Additionally, the present invention may also include the formation of heterogeneous catalysts containing forms of these elements (e,g. by immobilizing a metal complex on an insoluble substrate, for example, silica).
[6137] The methods of the invention can be assessed in terms of the selectivity of the metathesis reaction-that is, the extent to which the reaction produces a particular olefin isomer, whether a Z olefin (i.e, a cis olefin) or an E olefin (i.e, a trans olefin)
[0138] In general, Z-selective catalysts provide metathesis products wherein greater than 15% (w/w) of the olefin is a Z olefm. For example, the metathesis product can contain the Z olefn in an amount ranging from about 20% to about 100%. The metathesis product can contain the Z olefin in an amount ranging from about 25% to about 95%, or from about 30% to about 90%, or from about 35% to about 85%, or from about 40% to about 80%, or from about 45% to about 75%, or from about 50% to about 70% or from about 55% to about 65%. The metathesis product can contain the Z olefin in an amount ranging from about 15% to about 20%, or from about 20% to about 25%, or from about 25% to about 30%, or from about 30% to about 35%, or from about 35% to about 40%, or from about 40% to about 45%,
or from about 45% to about 50%, or from about 50% to about 60%, or from about 60% to about 65%, or from about 65% to about 70%, or from about 70% to about 75%, or from about 75% to about 80%, or from about 80% to about 85%, or from about 85% to about 90%, or from about 90% to about 95%, or from about 95% to about 99%. The metathesis product can contain the Z olefin in an amount of about $55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 86 \%$, $87 \%, 88 \%, 89 \%, 90 \%, 91 \%, 92 \%, 93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%, 99 \%$, or $100 \%(\mathrm{w} / \mathrm{w})$.
[0139] In general, E-selective catalysts provide metathesis products at least about 85% (w/w) of the olefin is an E olefin. For example, the metathesis product can contain the E olefin in an amount ranging from about 86% to about 100%. The metathesis product can contain the E olefin in an amount ranging from about 86% to about 99%, or from about 88% to about 98%, or from about 90% to about 96%, or from about 92% to about 94%. The metathesis product can contain the E olefin in an amount ranging from about 86% to about 89% or from about 89% to about 92%, or from about 92% to about 95%, or from about 95% to about 98%. The metathesis product can contain the E olefin in an amount of about 86%, $87 \%, 88 \%, 89 \%, 90 \%, 91 \%, 92 \%, 93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%, 99 \%$, or $100 \%(\mathrm{w} / \mathrm{w})$.
[0140] In some embodiments, the metathesis catalyst has a structure according to Formula 1 :

(1),
wherem:
M is Mo or W;
R^{3} is selected from optionally substituted ary, optionally substituted heteroaryl, optionally substituted aliphatic, and optionally substituted heteroaliphatic;
each of R^{4} and R^{5} is independently selected from hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, and optionally substituted heteroaryl;
R^{6} is selected from -O-alkyl, -O-heteroalkyl, O-aryl, O-heteroaryl, $-N\left(R^{n}\right)$-alkyl, $-N\left(R^{n}\right)$-heteroalkyl, $-N\left(R^{1}\right)$-aryl, and $-N\left(R^{\mathrm{n}}\right)$-heteroaryl,
wherein each \mathbb{R}^{n} is independently selected from hydrogen, an amino protecting group, and optionally substituted alkyl,
and wherein R^{6} is optionally substituted, and
R^{7} is selected from aryl, heteroaryl, alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, -O-alkyl, -O-heteroalkyl, -O-aryl, and -O-heteroaryl, each of which is optionally substituted, or

$$
R^{7} \text { is halogen. }
$$

[0141] In some embodiments, the metathesis catalyst has a structure according to Formula 1 and the metathesis product comprises a Z olefin.
[0142] In some embodiments, R^{6} is an optionally substituted asymmetric- O -ary] group and R^{7} is an optionally substituted heteroaryl group.
[0143] In some cases, the metal complex includes one or more oxygen-containing ligands lacking a plane of symmetry or nitrogen-containing ligands lacking a plane of symmetry (i.e., asymmetric ligands). In some embodiments, such ligands can coordinate the metal atom via an oxygen atom (e.g, via a hydroxyl group), or other atom of the ligand. The oxygencontaining ligand can coordinate the metal atom via one site of the ligand, i.e, the ligand may be a monodentate ligand.
[0144] In some embodiments, a ligand can comprise two sites capable of binding the metal center, wherein a first site is bonded to a protecting group, or other group, that may reduce the ability of the first site to coordinate the metal, and the second site coordinates the metal center. For example, the ligand can be a $\left[1,1^{\prime}\right.$-binaphthalene]- $2,2^{\prime}$-diol (BINOL) derivative having two hydroxyl groups, wherein one hydroxyl group is bonded to a protecting group (e.g., a silyl protecting group) and another hydroxyl group coordinates the metal center.
[0145] In some embodiments, an asymmetric oxygen-containing ligand is of the following structure:

wherein:
R^{13} is an optionally substituted group selected from aryl, heteroaryl, alkyl, or heteroalkyl;
R^{14} is hydrogen, -OH , halogen, - OPG, or an optionally substituted group selected from aliphatic, heteroaliphatic, aryl, aryloxy, heteroary, heteroaryloxy, acyl, and acyloxy;
or, together \mathbb{R}^{13} and \mathbb{R}^{14} are joined to form an optionally substituted partially unsaturated or aryl ring;
R^{15} is -OH, -OPG, or an optionally substituted amino group;
R^{16} is hydrogen, halogen, an optionally substituted group selected from aliphatic, heteroaliphatic, aryl, heteroaryl, or acyl,
each of R^{17}, R^{18}, R^{19}, and R^{20} is independently aryl, heteroaryl, aliphatic, heteroaliphatic, or acyl, optionally substituted;
or, together R^{17} and R^{18} are joined to form an optionally substituted partially unsaturated or aryl ring;
or, together \mathbb{R}^{19} and R^{20} are joined to form an optionally substituted partially unsaturated or aryl ring; and
each PG is independently a hydroxyl protecting group.
$[0146]$ In some embodiments, R^{3} is an optionally substituted group selected from aryl and alphatic
[0147] In some embodiments, R^{3} is selected from

wherein each R^{8} is independenty hydrogen or a monovalent substituent.
[0148] In some embodiments, R^{7} is an optionally substituted group selected from

and

[0149] In some embodiments, R^{6} is an optionally substituted group selected from

 , and

[0150] In some embodiments, R^{6} is

which is optionally substituted.
[0151] In some embodiments, the metathesis catalyst is selected from

and

wherein M is Mo or W ;
each R^{8} is independently selected from halo and alkyl;
R^{9} is selected from the group of consisting of alkyl, aryl, alkenyl, and heteroary,
each R^{10} is independently selected from hydrogen, halo, alkyl, aryl, and
heteroary;
each R^{11} is independently selected from halo, alkyl, aryl, and heteroaryl; and
each R^{12} is independently an optionally substituted alkyl.
[0152] In some embodiments, the metathesis catalyst is selected from:

, and

$[0153]$ In some embodiments, the metathesis catalyst has a structure according to Formula 2 .

wherein:
M is Mo or W ;
$R^{3 a}$ is selected from optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkyl, optionally substituted heteroalkyl, optionally substituted cycloalkyl, and optionally substituted heterocycloalkyl, and
$\mathbb{R}^{4 a}$ and $\mathrm{R}^{5 a}$ are independently selected from hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted heteroalkyl, optionally substituted heteroalkenyl, optionally substituted aryl, and optionally substituted heteroaryl;
$\mathrm{R}^{7 a}$ is selected from optionally substituted alkyl, optionally substituted alkoxy, optionally substituted heteroalkyl, optionally substituted aryl, optionally substituted aryloxy, optionally substituted heteroaryl, optionally substituted silylalkyl, and optionally substituted silyloxy; and
$R^{6 a}$ is $R^{8 a}-X$-, wherein
X is O or S and R^{32} is optionally substituted aryl; or
X is O and $R^{\text {Sa }}$ is $\mathrm{SiR}^{9 a} \mathrm{R}^{10 a} \mathrm{R}^{11 a}$ or $\mathrm{CR}^{12 a} \mathrm{R}^{13 a} \mathrm{R}^{14 a}$, wherein $\mathbb{R}^{9 a}, \mathrm{R}^{10 a}, \mathrm{R}^{11 a}, \mathrm{R}^{12 a}$, $R^{13 a}$, and $R^{14 a}$ are independenty selected from optionally substituted alkyl and optionally substituted phenyl, or
$R^{6 a}$ and $\mathrm{R}^{7 a}$ are linked together and are bonded to M via oxygen.
[0154] In some embodiments, the metathesis catalyst has a structure according to Formula 2 and the metathesis product comprises a Z olefin.
[0155] In some embodiments, the catalyst is a compound of Formula 2 wherein:
$\mathrm{R}^{7 a}$ is selected from the group consisting of alkyl, alkoxy, heteroalkyl, aryl, aryloxy, and heteroaryl, each of which is optionally substituted; and
X is O or S and $R^{8 a}$ is optionally substituted aryl; or
X is O and $R^{8 a}$ is $C R^{12 a} R^{13 a} R^{14 a}$
[0156] In some embodiments, the catalyst is a compound of Formula 2 wherein:
$\mathrm{R}^{3 a}$ is selected from the group consisting of 2,6-dimethylphenyl; 2,6disopropylphenyl; 2,6 -dichlorophenyl; and adamant-1-yl;

$\mathrm{R}^{5 \mathrm{a}}$ is H ;
$\mathrm{R}^{7 \mathrm{a}}$ is selected from the group consisting of pyrrol-1-yl; 2,5-dimethyl-pyrrol-1yl; triphenylsilyloxy; triisopropylsilyloxy; 2-phenyl-1,1,1,3,3,3-hexafluoro-prop-2-yloxy; 2 -methyl-1,1,1,3,3,3-hexafluoro-prop-2-yloxy; 9-phenyl-fluorene-9-yloxy; 2,6-diphenylphenoxy; and t-butyloxy; and
$R^{6 a}$ is $R^{8 a}-\mathrm{X}$-, wherein
$X=O$ and
R^{82} is phenyl which bears two substituents in the ortho positions with respect to O, or which bears at least three substituents, from which two substituents are in the ortho positions with respect to O and one substituent is in the para position with respect to 0 , or
$R^{8 a}$ is selected from the group consisting of optionally substituted 8 -(naphthalene-1-yl)-naphthalene-1-yl; optionally substituted 8 -phenlynaphthalene- 1 -yl; optionally substituted quinoline-8-yl; triphenylsilyl; trisopropylsilyl; triphenylmethyl; tri(4-methylphenyl)methyl; $\quad 9$-phenyl-fluorene-9-yl; $\quad 2$-phenyl-1,1,1,3,3,3-hexafluoro-prop-2-yl; 2-methyl-1,1,1,3,3,3-hexafluoro-prop-2-yl; and t-butyl.
[0157] In some embodiments, the catalyst is a compound of Formula 2 wherein:
$\mathrm{R}^{7 \mathrm{a}}$ is selected from the group consisting of pyrrol-1-yl; 2,5-dimethyl-pyrrol-1$y l ;$ and
R^{89} is phenyl which bears two substituents in the ortho positions with respect to O, or which bears at least three substituents, from which two substituents are in the ortho positions with respect to O and one substituent is in the para position with respect to O , or
$R^{8 a}$ is selected from the group consisting of optionally substituted 8 -(naphthalene- $1-y l)$-naphthalene-1-y| and optionally substituted 8 -phenlynaphthalene- $1-y$.
[0158] In some embodiments, the catalyst is a compound of Formula 2 wherein R^{4} is selected from 4 -bromo-2,6-diphenylphenoxy; 4 -fluoro-2,6-diphenylphenoxy; 4 -methyl-2,6- diphenylphenoxy; 4-methoxy-2,6-diphenylphenoxy; 4-dimethylamino-2,6-diphenylphenoxy; 2,4,6-triphenylphenoxy; 4-fluoro-2,6-dimesitylphenoxy; 4-bromo-2,6-di-tert-butylphenoxy; 4-methoxy-2,6-di-tert-butylphenoxy; 4 -methyl-2,6-di-tert-butylphenoxy; 2,4,6-tri-tertbutylphenoxy; 4-bromo-2, 3,5,6-tetraphenylphenoxy; 4-bromo-2,6-di(4-bromophenyl)-3,5diphenylphenoxy; 2,6 -diphenylphenoxy; 2,3,5,6-tetraphenylphenoxy; $\quad 2,6$-di(tertbutyl)phenoxy; $\quad 2,6$-di(2,4,6-triisopropylphenyl)phenoxy; triphenylsilyloxy; triisopropylsilyloxy; triphenylmethyloxy; tri(4-methyphenyl)methyloxy; 2-phenyl-$1,1,1,3,3,3$-hexafuoro-prop-2-yloxy; 2-methyl-1,1,1,3,3,3-hexafluoro-prop-2-yloxy; 9-phenyl-fluorene-9-yloxy; t-butyloxy;

wherein TBS is t-butyldimethylsilyf; or

wherein Me $=$ methyl.
[0159] In some embodiments, the metathesis catalyst has a stucture according to Formula $2 \mathrm{a}:$

wherein:
$R^{3 a}$ is aryl, heteroaryl, alkyl, or cycloalkyl, each of which is optionally
substituted;
$\mathrm{R}^{7 \mathrm{a}}$ is pyrrolyl, imidazolyl, indolyl, pyrazolyl, azaindolyl, or indazolyl, each of which is optionally substituted;
$R^{8 a}$ is optionally substituted aryl;
$R^{\text {5a }}$ is a hydrogen atom, alkyl, or alkoxy;
$\mathrm{R}^{4 \mathrm{~b}}$ is a hydrogen atom, $-\mathrm{O}-\left(\mathrm{C}_{1-6}\right.$ alkyl $),-\mathrm{CH}_{2}-\mathrm{O}-\left(\mathrm{C}_{1-6}\right.$ alkyl $)$, heteroalkoxy, or $-\mathrm{N}\left(\mathrm{C}_{1-6} \text { alky }\right)_{2}$; and
$\mathrm{R}^{4 \mathrm{c}}$ and $\mathrm{R}^{4 \mathrm{~d}}$ are independently a hydrogen atom, C_{1-6} alkyl, C_{1-6} alkoxy, a halogen atom, $-\mathrm{NO}_{2}$, an amide, or a sulfonamide.
[0160] In some embodiments, the metathesis catalyst has a structure according to Formula $2 a$ and the metahesis product comprises a Z olefin
[0161] In some embodiments, $\mathrm{R}^{3 a}$ in the metathesis catalyst according to Formula 2 a is phenyl, 2,6-dichlorophenyl, 2,6-dimethylphenyl, 2,6-disopropylphenyl, 2 -trifluoromethylphenyl, pentafluorophenyl, tert-butyl, or 1-adamantyl.
[0162] In some embodiments, $\mathrm{R}^{8 \mathrm{a}}$ is

[0163] In some embodiments, $\mathrm{R}^{4 \mathrm{~b}}$ is methoxy, $\mathrm{R}^{4 \mathrm{c}}$ is hydrogen, and $\mathrm{R}^{4 \mathrm{~d}}$ is hydrogen.
[0164] In some embodiments, the metathesis catalyst is selected from the group consisting of

[0165] In some embodiments, the metathesis catalyst is

[0166] In some embodiments, the metathesis catalyst is

[0167] In some embodiments, the metathesis catalyst is selected from:

 Ph

Ph

$\mathrm{F}_{3} \mathrm{C} \uparrow_{-\mathrm{CF}_{3}}^{\mathrm{O}} \quad, \quad \mathrm{F}_{3} \mathrm{C} \uparrow_{-\mathrm{CF}_{3}}$

,
r

h

TESO

OH

wherein "Me" is methyl, " Ph " is phenyl, " $i \cdot \mathrm{Pr}$ " is isopropyl, "Mes" is mesityl (i.e., 2,4,6trimethylphenyl), and "TBS" is ter-butyldimethylsilyl .
[0168] In some embodiments, the metathesis catalyst is

[0169] In some embodiments, the catalyst is a compound of Formula 3:

wherein:
each of R^{31} and R^{32} is independently $\mathrm{R},-\mathrm{OR},-\mathrm{SR},-\mathrm{N}(\mathrm{R})_{2},-\mathrm{OC}(\mathrm{O}) \mathrm{R},-\mathrm{SOR}$, $-\mathrm{SO}_{2} \mathrm{R},-\mathrm{SO}_{2} \mathrm{~N}(\mathrm{R})_{2},-\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{NRC}(\mathrm{O}) \mathrm{R}$, or $-\mathrm{NRSO}_{2} \mathrm{R} ;$
each of R^{33} and R^{34} is independenty halogen, $R,-N(R)_{2},-N R C(O) R$, $-\mathrm{NRC}(\mathrm{O}) \mathrm{OR},-\mathrm{NRC}(\mathrm{O}) \mathrm{N}(\mathrm{R})_{2},-\mathrm{NRSO}_{2} \mathrm{R},-\mathrm{NRSO}_{2} \mathrm{~N}(\mathrm{R})_{2},-\mathrm{NROR}, \mathrm{NR}_{3},-\mathrm{OR}$, a phosphoruscontaining ligand, or an optionally substituted group selected from:
a 5-6 membered monocyclic heteroaryl ring having at least one nitrogen and 0-3 additional heteroatoms independently selected from nitrogen, oxygen, or sulfur,
a 4-7 membered saturated or partially unsaturated heterocyclic ring having at least one nitrogen and $0-2$ additional heteroatoms independently selected from nitrogen, oxygen, or sulfur,
a 7-10 membered bicyclic saturated or partially unsaturated heterocyclic ring having at least one nitrogen and $0-4$ additional heteroatoms independently selected from nitrogen, oxygen, or sulfur, and
an 8-10 membered bicyclic heteroaryl ring having at least one nitrogen and 0 4 additional heteroatoms independently selected from nitrogen, oxygen, or sulfur;
each R is independently hydrogen or an optionally substituted group selected from:
phenyl,
ferrocene,
C_{1-20} aliphatic,
C_{1-20} heteroaliphatic having $1-3$ heteroatoms independently selected from nitrogen, oxygen, or sulfur,
a3-7 membered saturated or partially unsaturated carbocyclic ring,
an 8-10 membered bicyclic saturated, partially unsaturated or aryl ring,
a $5-6$ membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur,
a 4-7 membered saturated or partially unsaurated heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur,
a 7-10 membered bicyclic saturated or partially unsaturated heterocyclic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur, and
an 8-10 membered bicyclic heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur;
or two or three R groups on the same nitrogen atom are taken together with the nitrogen to form an optionally substituted 3-12 membered saturated, partially unsaturated, or aryl ring having $0-5$ additional heteroatoms not including the same nitrogen atom independently selected from nitrogen, oxygen, or sulfur;
or two R groups on the same oxygen atom are taken together with the oxygen to form an optionally substituted 3-12 membered saturated, partially unsaturated, or aryl ring having 0-5 additional heteroatoms not including the same oxygen atom independently selected from nitrogen, oxygen, or sulfur;

$$
\mathrm{n} \text { is } 0,1 \text {, or } 2
$$

each R^{35} is independently a monodentate ligand, or two R^{35} are taken together with their intervening atoms to form an optionally substituted bidentate group; and
two or more of $R^{31}, R^{32}, R^{33}, R^{34}$ and R^{35} may be taken together with their intervening atoms to form an optionally substituted polydentate ligand.
[0170] In some embodiments, the metathesis catalyst has a structure according to Formula 3 and the metathesis product comprises a Z olefin.
[0171] In some embodiments, the catalyst is selected from:

$\mathrm{W}(\mathrm{O})(\mathrm{CH}-t-\mathrm{Bu})\left(\mathrm{Ph}_{2} \mathrm{Pyr}\right)(\mathrm{OHMT}) ; \quad \mathrm{W}(\mathrm{O})(\mathrm{CH}-t-\mathrm{Bu})\left(\mathrm{Ph} \mathrm{P}_{2} \mathrm{Pyr}\right)(\mathrm{OHIPT}) ; \quad \mathrm{W}(\mathrm{O})(\mathrm{CH}-t-\mathrm{Bu})$ $\left[\mathrm{N}\left(\mathrm{C}_{6} \mathrm{~F}_{3}\right)_{2}\right](\mathrm{OHMT})\left(\mathrm{PPhMe}_{2}\right) ; \quad \mathrm{W}(\mathrm{O})(\mathrm{CH}-t-\mathrm{Bu})\left(\mathrm{PMe}_{5}\right)_{2} \mathrm{Cl}_{2} ; \quad \mathrm{W}(\mathrm{O})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{O}-2,6-$ $\left.\mathrm{Ph}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{2}\left(\mathrm{PMe}_{3}\right) ; \quad \mathrm{W}(\mathrm{O})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{Cl})(\mathrm{OHIPT}) ; \quad \mathrm{W}(\mathrm{O})(\mathrm{CH}-t-\mathrm{Bu})\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2} \mathrm{Cl}_{2} ; \quad \mathrm{W}(\mathrm{O})\right.$ $\left(\mathrm{CHCMe}_{2} \mathrm{Ph}^{2} \mathrm{Cl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2} ; \mathrm{W}\left[\mathrm{OB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right](\mathrm{CH}-t-\mathrm{Bu})\left(\mathrm{Me}_{2} \mathrm{Pyr}\right)(\mathrm{OHMT}) ; \mathrm{W}(\mathrm{O})(\mathrm{CH}-1-\mathrm{Bu})[\mathrm{N}-\right.\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right](\mathrm{OHMT}) ; \quad \mathrm{W}(\mathrm{O})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{OHMT})_{2} ; \quad \mathrm{W}(\mathrm{O})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{OHIPT})_{2} ; \quad \mathrm{W}(\mathrm{O})(\mathrm{CH}-t-$ $\mathrm{Bu})\left(\mathrm{Me}_{2} \mathrm{Pyr}^{2}\right)(\mathrm{DFTO})\left(\mathrm{PPhMe}_{2}\right) ; \quad \mathrm{W}(\mathrm{O})(\mathrm{CH}-t-\mathrm{Bu})\left(\mathrm{Me}_{2} \mathrm{Pyr}^{2}\right)(\mathrm{DFTO}) ; \quad \mathrm{W}(\mathrm{O})\left(\mathrm{CHCMe}_{2} \mathrm{Ph}\right)$ $\left(\mathrm{Me}_{2} \mathrm{Pyr}\right)(\mathrm{DFTO})\left(\mathrm{PPhMe}_{2}\right) ; \quad \mathrm{W}(\mathrm{O})\left(\mathrm{CHCMe}_{2} \mathrm{Ph}\right)\left(\mathrm{Me}_{2} \mathrm{Pyr}\right)(\mathrm{DFTO}) ; \quad \mathrm{W}(\mathrm{O})(\mathrm{CH}-t-\mathrm{Bu})[\mathrm{N}-$ $\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right](\mathrm{DFTO})$; and $\mathrm{W}(\mathrm{O})(\mathrm{CH}-t-\mathrm{Bu})(\mathrm{DFTO})_{2}$; wherein OHMT is $\mathrm{O}-2,6-$ dimesitylphenoxide; OHPT is $0-2,6-(2,4,6 \text {-trisopropylpheny })_{2} \mathrm{C}_{6} \mathrm{H}_{3}$; DFTO is $2,6-$ pentafluorophenylphenoxide; $\mathrm{Ph}_{2} \mathrm{Pyr}$ is 2,5-diphenylpyrrol-1-yl; and $\mathrm{Me}_{2} \mathrm{Pyr}$ is 2,5-dimethylpyrxol- $1-\mathrm{yl}$.
[0172] Other metathesis catalysts can be used in the methods of the invention. In general, any metathesis catalyst stable under the reaction conditions and nonreactive with the functional groups present on the reactant shown in Schemes 3 through 8 may be used with the present invention. Such catalysts are, for example, those described by Grubbs (Grubbs, R.H., "Synthesis of large and small molecules using olefin metathesis catalysts." PMSE Prepr., 2012), herein incorporated by reference in its entirety. Depending on the desired isomer of the olefin, a cis-selective metathesis catalyst may be used, for example one of those described by Shahane et al. (Shahane, S., et al. ChemCatChem, 2013. 5(12): p. 3436-3459), herein incorporated by reference in its entirety. Specific catalysts $1-5$ exhibiting cis-selectivity are shown below (Scheme 5) and have been described previously (Khan, R.K., et al. J. Am. Chem. Soc., 2013. 135(28): p. 10258-61; Hartung, J. et al. J. Am. Chem. Soc., 2013. 135(28): p. 10183-5.; Rosebrugh, LE, et al. J. Am. Chem. Soc, 2013. 135(4): p. 1276-9.; Marx V. M., et al. J. Am. Chem. Soc., 2013. 135(1): p. 94-7.; Herbert, MB., et al. Angew. Chem. Int. Ed. Engl., 2013. 52(1): p. 310-4; Keitz, B.K., et al. J. Am. Chem. Soc., 2012. 134(4): p. 2040-3.;

Keitz, B.K., et al. J. Am. Chem. Soc., 2012. 134(1): p. 693-9.; Endo, K. et al. J. Am. Chem. Soc., 2011. 133(22): p. 8525-7).

Scheme 5

2

$\$$

*

$\$$
[0173] Additional Z-selective catalysts are described in (Cannon and Grubbs 2013; Bronner et al. 2014; Hartung et al. 2014; Pribisko et al. 2014; Quigley and Grubbs 2014) and are herein incorporated by reference in their entirety. Such metathesis catalysts include, but are not limited to, neutral ruthenium or osmium metal carbene complexes that possess metal centers that are formally in the +2 oxidation state, have an electron count of 16 , are pentacoordinated, and are of the general formula LL'AAM $=\mathrm{CRbRc}$ or $L L^{\prime} A A \mathrm{M}=(\mathrm{C}=\mathrm{nCRbRc}$ (Pederson and Grubbs 2002); wherein

M is ruthenium or osmium;
L and L^{\prime} are each independently any neutral electron donor ligand and preferably selected from phosphine, sulfonated phosphine, phosphite, phosphinite, phosphonite, arsine, stibnite, ether, amine, amide, imine, sulfoxide, carboxyl, nitrosyl, pyridine, thioether, or heterocy clic carbenes; and
A and A^{\prime} are anionic ligands independently selected from halogen, hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{20}$ alkyl, ary], $\mathrm{C}_{1}-\mathrm{C}_{20}$ alkoxide, aryloxide, $\mathrm{C}_{2}-\mathrm{C}_{20}$ alkoxycarbonyl, arylcarboxylate, $\mathrm{C}_{1}-$ C_{20} carboxylate, arylsulfonyl, $\mathrm{C}_{1}-\mathrm{C}_{20}$ alkylsulfonyl, $\mathrm{C}_{1}-\mathrm{C}_{20}$ alkylsulfinyl; each ligand optionally being substituted with $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, halogen, $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkoxy; or with a phenyl group that is optionally substituted with halogen, $\mathrm{C}_{1}-\mathrm{C}_{5}$ akyl, or $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkoxy; and A and A ' together may optionally comprise a bidentate ligand; and
R_{b} and R_{c} are independently selected from hydrogen, $C_{1}-C_{20}$ alkyl, aryl, $C_{1}-C_{20}$ carboxylate, $\mathrm{C}_{1}-\mathrm{C}_{20}$ alkoxy, aryloxy, $\mathrm{C}_{1}-\mathrm{C}_{20}$ alkoxy carbonyl, $\mathrm{C}_{1}-\mathrm{C}_{20}$ alkyltho, $\mathrm{C}_{1}-\mathrm{C}_{20}$ alkylsulfonyl and $\mathrm{C}_{1}-\mathrm{C}_{20}$ alkylsulfinyl, each of R_{b} and R_{c} optionally substituted with $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, halogen, $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkoxy or with a phenyl group that is optionally substituted with halogen, $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, or $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkoxy.
[0174] Other metathesis catalysts such as "well defined catalysts" can also be used. Such catalysts include, but are not limited to, Schrock's molybdenum metathesis catalyst, 2,6diisopropylphenylimido neophylidenemolybdenum (V1) bis(hexafluoro-t-butoxide), described by Grubbs et al. (Tetrahedron 1998, 54: 4413-4450) and Basset's tungsten metathesis catalyst described by Couturier, J. L. et al. (Angew. Chem. Int. Ed. Engl. 1992, 31: 628).
[0175] Catalysts useful in the methods of the invention also include those described by Peryshkov, et al. J. Am. Chem. Soc. 2011, 133: 20754-20757; Wang, et al. Angewandte Chemie, 2013, 52: 1939-1943; Yu, et al. J. Am. Chem. Soc., 2012, 134: 2788-2799; Halford. Chem. Eng. News, 2011, 89 (45): 11; Yu, et al. Nature, 2011, 479: 88-93; Lee. Nature, 2011, 471: 452-453; Meek, et al. Nature, 2011: 471, 461-466; Flook, et al. J. Am. Chem. Soc. 2011, 133: 1784-1786; Zhao, et al. Org Lett, 2011, 13(4): 784-787; Ondi, et al. "High activity, stabilized formulations, efficient synthesis and industrial use of Mo- and W-based metathesis catalysts" XiMo Technology Updates, 2015: http://www.ximo-inc.com/files/ximo/uploads/ download/Summary ...3.11.15.pdf, Schrock, et al. Macromolecules, 2010: 43, 7515-7522; Peryshkov, et al. Organometallics 2013: 32, 5256-5259; Gerber, et al. Organometallics 2013: 32, 5573-5580; Marinescu, et al. Organometallics 2012: 31, 6336-6343; Wang, et al. Angew. Chem. Int. Ed. 2013: 52, 1939--1943; Wang, et al. Chem. Eur. J. 2013: 19, 27262740, Townsend et al. J. Am. Chem. Soc. 2012: 134, 11334-11337; and Johns et al. Org. Lett. 2016: 18, 772-775.
[0176] Catalysts useful in the methods of the invention also include those described in International Pub. No. WO 2014/155185; Intemational Pub. No. WO 2014/172534; U.S. Pat. Appl. Pub. No. 2014/0330018; International Pub. No. WO 2015/003815; and Intemational Pub. No. WO 2015/003814.
[0177] Catalysts useful in the methods of the invention also include those described in U.S. Pat. No. 4,231,947; U.S. Pat. No. 4,245,131; U.S. Pat. No. 4,427,595; U.S. Pat No. 4,681,956; U.S. Pat. No. 4,727,215; International Pub. No. WO 1991/009825; U.S. Pat. No.
$5,0877,10$, U.S. Pat. No. 5,142,073; U.S. Pat. No. 5,146,033; International Pub. No. Wo $1992 / 019631$; U.S Pat. No. 6,121,473; U.S. Pat No. 6,346,652; U.S. Pat. No. 8,987,531; U.S. Pat. Appl. Pub. No 2008/0119678; दnternational Pub. No. WO 2008/066754; International Pub. No. WO 2009/094201; U.S. Pat. Appl. Pub. No. 2011/0015430; U.S. Pat. Appl. Pub. No. 2011/0065915; U.S. Pat. Appl. Pub. No. 2011/0077421, Intemational Pub. No. WO 2011/040963; International Pub. No. WO 2011/097642; U.S. Pat. Appl. Pub. No. 2011/0237815; U.S. Pat. Appl. Pub. No. 2012/0302710; Intemational Pub. No. WO 2012/167171; U.S Pat. Appl. Pub. No. 2012/0323000; U.S. Pat. Appl. Pub. No. 2013/0116434; Intemational Pub. No. WO 2013/070725; U.S. Pat. Appl. Pub. No. 2013/0274482; U.S. Pat. Appl. Pub. No. 2013/0281706; International Pub. No. WO 2014/139679; Intemational Pub. No. WO 2014/169014; U.S. Pat. Appl. Pub. No. 2014/0330018; and U.S. Pat. Appl. Pub. No. 2014/0378637.
[0178] Catalysts useful in the methods of the invention also include those described in International Pub. No. WO 2007/075427; U.S. Pat. Appl. Pub. No. 2007/0282148; Intemational Pub. No. WO 2009/126831; Intemational Pub. No. WO 2011/069134; U.S. Pat. Appl. Pub. No. 2012/0123133, U.S. Pat. Appl. Pub. No. 2013/0261312; U.S. Pat. Appl. Pub. No. 2013/0296511, International Pub. No. WO 2014/134333; and U.S. Pat. Appl. Pub. No. 2015/0018557.
[0179] Catalysts useful in the methods of the invention also include those set forth in the following table:

Structure	Name

Structure	Name
	dichloro[1,3-bis(2,6-isopropylphenyl)-2-imidazolidinylidenel(2- isopropoxyphenylmethylene)ruthenium(I)
	dichloro[1,3-Bis(2-methylphenyl)-2imidazolidiny lidene] (benzylidene)(tricyclohex ylphosphine)ruthenium(II)
	dichloro[1,3-bis(2-methylphenyl)-2- imidazolidinylidene](2- isopropoxyphenylmethylene)ruthenium(I)
	dichlorol 1,3 -bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene](benzylidene)bis(3bromopyridine)ruthenium(II)

Struchare	Name
	dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene](3-methyl-2butenylidene) (tricyclohexylphosphine) ruhenium(II)
	dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene][3-(2-pyridinyl) propylidene]ruhenium(i)
	dichlorol 1,3 -bis(2,4,6-trimethylpheny)-2imidazolidinylidene][(tricyclohexylphosphora nyl)methylidenelrothenium(II) tetrafluoroborate
	dichloro(3-methyl-2-butenylidene) bis(tricyclohexylphosphine)ruthenium(II)

(tract
(1,3-bis-(2,4,6-trimethylphenyl)-2-
[0180] In some embodiments, the metathesis product comprises an E olefin, and the metathesis catalyst is selected from the group consisting of:

[9181] In some embodiments, the metathesis product comprises an E olefin, and the metathesis catalyst is selected from the group consisting of:

[0182] In some embodiments, the metathesis product comprises an E olefin, and the metathesis catalyst is selected from the group consisting of:

, and

[0183] Catalysts useful in the methods of the invention also include those described in U.S. Pat. Appl. Pub. No. 2008/0009598; U.S. Pat. Appl. Pub. No. 2008/0207911; U.S. Pat. Appl.

Pub. No. 2008/0275247; U.S. Pat. Appl. Pub. No. 2011/0040099; U.S. Pat. Appl. Pub. No. 2011/0282068; and U.S. Pat. Appl. Pub No. 2015/0038723.
[0184] Catalysts useful in the methods of the invention include those described in International Pub. No. WO 2007/140954; U.S. Pat. Appl. Pub. No. 2008/0221345; International Pub. No. WO $2010 / 037550$; U.S. Pat. Appl. Pub. No. 2010/0087644; U.S. Pat. Appl. Pub. No. 2010/0113795; U.S. Pat. Appl. Pub. No. 2010/0174068; Intemational Pub. No. WO 2011/091980; International Pub. No. WO 2012/168183; U.S. Pat. Appl. Pub. No. $2013 / 0079515$; U.S. Pat. Appl. Pub. No. 2013/0144060; U.S. Pat. Appl. Pub. No. 2013/0211096; International Pub. No. WO 2013/135776; Intemational Pub. No. WO 2014/001291; International Pub. No. WO 2014/067767; U.S. Pat. Appl. Pub. No. 2014/0171607; and U.S. Pat. Appl. Pub. No. 2015/0045558.

Metathesis Reaction Conditions

[0185] The catalyst is typically provided in the reaction mixture in a sub-stoichiometric amount (e.g. catalytic amount). In certain embodiments, that amount is in the range of about 0.001 to about $50 \mathrm{~mol} \%$ with respect to the limiting reagent of the chemical reaction, depending upon which reagent is in stoichiometric excess. In some embodiments, the catalyst is present in less than or equal to about $40 \mathrm{~mol} \%$ relative to the limiting reagent. In some embodiments, the catalyst is present in less than or equal to about $30 \mathrm{~mol} \%$ relative to the limiting reagent. In some embodiments, the catalyst is present in less than about $20 \mathrm{~mol} \%$, less than about $10 \mathrm{~mol} \%$, less than about $5 \mathrm{~mol} \%$, less than about $2.5 \mathrm{~mol} \%$, less than about $1 \mathrm{~mol} \%$, less than about $0.5 \mathrm{~mol} \%$, less than about $0.1 \mathrm{~mol} \%$, less than about $0.015 \mathrm{~mol} \%$, less than about $0.01 \mathrm{~mol} \%$, less than about $0.0015 \mathrm{~mol} \%$, or less, relative to the limiting reagent. In some embodiments, the catalyst is present in the range of about $2.5 \mathrm{~mol} \%$ to about $5 \mathrm{~mol} \%$, relative to the limiting reagent. In some embodiments, the reaction mixture contains about $0.5 \mathrm{~mol} \%$ catalyst. In the case where the molecular formula of the catalyst complex includes more than one metal, the amount of the catalyst complex used in the reaction may be adjusted accordingly.
[0186] In some cases, the methods described herein can be performed in the absence of solvent (e.g, neat). In some cases, the methods can include the use of one or more solvents. Examples of solvents that may be suitable for use in the invention include, but are not limited to, benzene, p-cresol, toluene, xylene, diethyl ether, glycol, diethyl ether, petroleum ether, hexane, cyclohexane, pentane, methylene chloride, chloroform, carbon tetrachloride, dioxane,
tetrahydrofuran (THF), dimethyl sulfoxide, dimethylformamide, hexamethyl-phosphoric triamide, ethyl acetate, pyridine, triethylamine, picoline, and the like, as well as mixtures thereof. In some embodiments, the solvent is selected from benzene, toluene, pentane, methylene chloride, and THF. In certain embodiments, the solvent is benzene.
[0187] In some embodiments, the method is performed under reduced pressure. This may be advantageous in cases where a volatie byproduct, such as ethylene, may be produced during the course of the metathesis reaction. For example, removal of the ethylene byproduct from the reaction vessel may advantageously shift the equilibrium of the metathesis reaction towards formation of the desired product. In some embodiments, the method is performed at a pressure of about less than 760 torr. In some embodiments, the method is performed at a pressure of about less than 700 torr. In some embodiments, the method is performed at a pressure of about less than 650 torr. In some embodiments, the method is performed at a pressure of about less than 600 torr. In some embodiments, the method is perfomed at a pressure of about less than 550 torr. In some embodiments, the method is performed at a pressure of about less than 500 torr. In some embodiments, the method is performed at a pressure of about less than 450 torr. In some embodiments, the method is performed at a pressure of about less than 400 torr. In some embodiments, the method is performed at a pressure of about less than 350 torr. In some embodiments, the method is performed at a pressure of about less than 300 torr. In some embodiments, the method is performed at a pressure of about less than 250 torr. In some embodiments, the method is performed at a pressure of about less than 200 torr. In some embodiments, the method is performed at a pressure of about less than 150 torr. In some embodiments, the method is performed at a pressure of about less than 100 torr. In some embodiments, the method is performed at a pressure of about less than 90 torr. In some embodiments, the method is performed at a pressure of about less than 80 torr. In some embodiments, the method is performed at a pressure of about less than 70 torr. In some embodiments, the method is performed at a pressure of about less than 60 torr. In some embodiments, the method is performed at a pressure of about less than 50 torr. In some embodiments, the method is performed at a pressure of about less than 40 torr. In some embodiments, the method is performed at a pressure of about less than 30 torr. In some embodiments, the method is performed at a pressure of about less than 20 torr. In some embodiments, the method is performed at a pressure of about 20 torr.
[0188] In some embodiments, the method is performed at a pressure of about 19 torr. In some embodiments, the method is performed at a pressure of about 18 torr. In some embodiments, the method is performed at a pressure of about 17 torr. In some embodiments, the method is performed at a pressure of about 16 torr. In some embodiments, the method is performed at a pressure of about 15 tor. In some embodiments, the method is performed at a pressure of about 14 torr. In some embodiments, the method is performed at a pressure of about 13 torr. In some embodiments, the method is performed at a pressure of about 12 torr. In some embodiments, the method is performed at a pressure of about 11 torr. In some embodiments, the method is performed at a pressure of about 10 torr. In some embodiments, the method is performed at a pressure of about 10 torr. In some embodiments, the method is performed at a pressure of about 9 torr. In some embodiments, the method is performed at a pressure of about 8 torr. In some embodiments, the method is performed at a pressure of about 7 torr. In some embodiments, the method is performed at a pressure of about 6 tor. In some embodiments, the method is performed at a pressure of about 5 torr. In some embodiments, the method is performed at a pressure of about 4 torr. In some embodiments, the method is performed at a pressure of about 3 torr. In some embodiments, the method is performed at a pressure of about 2 torr. In some embodiments, the method is performed at a pressure of about 1 torr. In some embodiments, the method is performed at a pressure of less than about 1 torr.
[0189] In some embodiments, the two metabesis reactants are present in equimolar amounts. In some embodiments, the two metathesis reactants are not present in equimolar amounts. In certain embodiments, the two reactants are present in a molar ratio of about 20:1, $19: 1,18: 1,17: 1,16: 1,15: 1,14: 1,13: 1,12: 1,11: 1,10: 1,9: 1,8: 1,7: 1,6: 1,5: 1,4: 1,3: 1,2: 1$, $1: 1,1: 2,13,1: 4,1: 5,1: 6,1: 7,1: 8,1: 9,1: 10,1: 11,1: 12,1: 13,1: 14,1: 15,1: 16,1: 17,1: 18$, 1:19, or 1:20. In certain embodiments, the two reactants are present in a molar ratio of about 10:1. In certain embodiments, the two reactants are present in a molar ratio of about 7:1. In certain embodiments, the two reactants are present in a molar ratio of about 5:1. In certain embodiments, the two reactants are present in a molar ratio of about $2: 1$. In certain embodiments, the two reactants are present in a molar ratio of about 1:10. In certain embodiments, the two reactants are present in a molar ratio of about 1:7. In certain embodiments, the two reactants are present in a molar ratio of about 1.5 . In certain embodiments, the two reactants are present in a molar ratio of $1: 2$.
[0190] In some embodiments, one molar equivalent of the olefin is contacted with one molar equivalent of the metathesis reaction parmer. In some embodiments, about 1.5, 2, 2.5, or 3 molar equivalents of the olefin is contacted with one molar equivalent of the metathesis reaction partner. In some embodiments, about 1.5 molar equivalents of the olefin is contacted with one molar equivalent of the metathesis reaction partner.
[0191] In general, the reactions with many of the metathesis catalysts disclosed herein provide yields better than 15%, e.g, better than 50%, better than 75%, or better than 90%. In addution, the reactants and products are chosen to provide at least a $5^{\circ} \mathrm{C}$ difference, e.g., a greater than $20^{\circ} \mathrm{C}$ difference, or a greater than $40^{\circ} \mathrm{C}$ difference in boiling points. Additionally, the use of metahesis catalysts allows for much faster product formation than byproduct, and it can be desirable to run these reactions as quickly as practical. In particular, the reactions are performed in less than about 24 hours, e.g., less than 12 hours, or less than 8 hours, or less than 4 hours. Advantageously, the methods of the invention provide metathesis products on a scale ranging from a few milligrams to hundreds of kilograms or more. For example, the methods can be conducted using around 1-10 grams of the olefin according to Formula , or around $10-100$ grams of the olefin according to Formula I, or around 100-500 grams of the olefin according to Formula I, or around 500-1000 grams of the olefin according to Formula I. The methods can be conducted using at least $1,5,10,25,50,100$, or 1,000 kilograms of starting material. The metathesis reactions can be conducted using a metathesis reactor as described, for example, in WO 2011/046872, which reactor can be operated in conjuction with one or more downstream separation units for separating and/or recycling particular product or byproduct streams (e.g., an olefin stream, a $\mathrm{C}_{2}-\mathrm{C}_{3}$ compound stream, or a $\mathrm{C}_{3}-\mathrm{C}_{5}$ compound stream). The metathesis reactor and separation unit(s) can be operated in conjunction with one or more adsorbent beds to facilitate the separation of the metahesized products from the catalyst, as well as washing and drying units for purification of desired products. The metathesis, reduction, and acylation reactions can be conducted to provide products on the scale of metric tons.
[0192] One of skill in the art will appreciate that the time, temperature and solvent can depend on each other, and that changing one can require changing the others to prepare the metathesis products in the methods of the invention. The metathesis steps can proceed at a variety of temperatures and times. In general, reactions in the methods of the invention are conducted using reaction times of several minutes to several days. For example, reaction times of from about 12 hours to about 7 days can be used. In some embodiments, reaction
times of 1-5 days can be used. In some embodiments, reaction times of from about 10 minutes to about 10 hours can be used. In general, reactions in the methods of the invention are conducted at a temperature of from about $0^{\circ} \mathrm{C}$ to about $200^{\circ} \mathrm{C}$. For example, reactions can be conducted at $15-100^{\circ} \mathrm{C}$. In some embodiments, reaction can be conducted at $20-80$ ${ }^{\circ} \mathrm{C}$. In some embodiments, reactions can be conducted at $100-150^{\circ} \mathrm{C}$.
[0193] The olefins, fatty alcohols, fatty acid esters, and other materials used in the methods of the invention can be obtained from any suitable source. In some embodiments, the metathesis reaction partners used in the methods of the invention are obtained from a natural oil and/or a derivative thereof. Representative examples of natural oils for use in accordance with the present teachings include but are not limited to vegetable oils, algal oils, animal fats, tall oils (e.g. by-products of wood pulp manufacture), derivatives of these oils, and the like, and combinations thereof. Representative examples of vegetable oils for use in accordance with the present teachings include but are not limited to canola oil, rapeseed oil, coconut oil, com oil, cottonseed oil, olive oil, palm oil, peanut oil, safflower oil, sesame oil, soybean oil, sunflower oil, high oleic sunflower oil, linseed oil, palm kemel oil, tung oil, jatropha oil, jojoba oil, mustard oil, pemycress oil, camelina oil, hemp oil, castor oil, and the like, and combinations thereof. Representative examples of animal fats for use in accordance with the present teachings include but are not limited to lard, tallow, poultry fat, yellow grease, brown grease, fish oil, and the like, and combinations thereof. The natural oil can be refined, bleached, and/or deodorized.
[0194] Representative examples of natural oil derivatives for use in accordance with the method of the invention include, but are not limited to, gums, phospholipids, soapstock, acidulated soapstock, distillate or distillate sludge, fatty acids, fatiy acid esters (e.g., nonlimiting examples such as 2-ethythexyl ester, etc.), hydroxy-substituted variations thereof, and the like, and combinations thereof. In some embodiments, the natural oil derivative comprises an ester. In some embodiments, the derivative is selected from the group consisting of a monoacylglyceride (MAG), a diacylglyceride (DAG), a triacylglyceride (TAG), and combinations thereof. In some embodiments, the natural oil derivative comprises a fatty acid methyl ester (FAME) derived from the glyceride of the natural oil.
[0195] In some embodiments, a feedstock includes canola or soybean oil, e.g., refined, bleached, and/or deodorized soybean oil (i.e., RBD soybean oil). Soybean oil typically contains about 95% weight or greater (e.g. 99% weight or greater) triglycerides of fatty
acids. Major fatty acids in the polyol esters of soybean oil include saturated fatty acids, including palmitic acid (hexadecanoic acid) and stearic acid (octadecanoic acid), and unsaturated fatty acids, including oleic acid (9-octadecenoic acid), linoleic acid (9, 12octadecadienoic acid), and linolenic acid ($9,12,15$-octadecatrienoic acid).
[0196] In some embodiments, materials to be reacted in a metathesis reaction-including those derived from natural oils-will containg one or more contaminants with the potential to adversely affect the performance of a metathesis catalyst. Such contaminants can be referred to as "catalyst poisons" or "catalyst poisoning contaminants." The contaminant levels can be reduced according to the methods described herein. In some embodiments, the material comprises a plurality of contaminants and the method comprises reducing levels of two or more of the contaminants. In some embodiments, the material comprises a plurality of contaminants and the method comprises reducing levels of three or more of the contaminants. In some embodiments, the material comprises a pluality of contaminants and the method comprises reducing levels of four or more of the contaminants. In some embodiments, the material comprises a plurality of contaminants and the method comprises reducing levels of five or more of the contaminants.
[0197] Representative contaminants include but are not limited to water, peroxides, peroxide decomposition products, hydroperoxides, protic materials, polar materials, Lewis basic catalyst poisons, and the like, and combinations thereof. It is to be understood that some contaminants may properly be classified in multiple categories (e.g., an alcohol can be considered both a protic material and a polar material). It is to be further understood that different catalysts may have different susceptibilities to a particular contaminant, and that a contaminant that adversely affects the performance of one catalyst (e.g. a ruthenium-based catalyst) may or may not affect (to a similar extent or to any extent whatsoever) a different catalyst (e.g. a molybdenum-based catalyst)
[0198] Representative protic materials that may be found as contaminants in a substrate that is to be reacted in a metathesis reaction include but are not limited to materials having a hydrogen atom bonded to oxygen (e.g., carboxylic acids, alcohols, and the like) and/or a hydrogen atom bonded to nitrogen (e.g, primary amines, secondary amines, and the like). In some embodiments, particularly though not exclusively in natural oil substrates, a protic material contaminant may comprise a carboxylic acid functional group, a hydroxyl functional group, or a combination thereof. In some embodiments, the protic material is selected from
the group consisting of free fatty acids, hydroxyl-containing materials, MAGs, DAGs, and the like, and combinations thereof.
[0199] Representative polar materials that may be found as contaminants in a substrate that is to be reacted in a metathesis reaction include but are not limited to heteroatom-containing materials such as oxygenates. In some embodiments, the polar material is selected from the group consisting of alcohols, aldehydes, ethers, and the like, and combinations thereof.
[0200] Representative Lewis basic catalyst poisons that may be found as contaminants in a substrate that is to be reacted in a metathesis reaction include but are not limited to heteroatom-containing materials. In some embodiments, the Lewis basic catalyst poisons are selected from the group consisting of N-containing materials, P-containing materials, Scontaining materials, and the like, and combinations thereof.
[0201] Reaction materials containing contaminants can be treated with one or more conditioning agents that mitigate potentially adverse effects of one or more of the contaminants. Conditioning agents that can be used in the methods of the invention (individually, or in combination sequentially or simutaneously) include heat, molecular sieves, alumina (aluminum oxide), silica gel, montmorillonite clay, fuller's earth, bleaching clay, diatomaceous earth, zeolites, kaolin, acivated metals (e.g. Cu, Mg, and the like), acid anhydrides (e.g., acetic anhydride and the like), activated carbon (i.e., activated charcoal), soda ash, metal hydrides (e.g., alkaline earth metal hydrides such as CaH_{2} and the like), metal sulfates (e.g., alkaline earth metal sulfates such as calcium sulfate, magnesium sulfate, and the like; alkali metal sulfates such as potassium sulfate, sodium sulfate, and the like; and other metal sulfates such as aluminum sulfate, potassium magnesium sulfate, and the like), metal halides (e.g., alkali earth metal halides such as potassium chloride and the like), metal carbonates (e.g., calcium carbonate, sodium carbonate, and the like), metal silicates (e.g., magnesium silicate and the like), phosphorous pentoxide, metal aluminum hydrides (e.g., alkali metal aluminum hydrides such as $\mathrm{LiAlH}_{4}, \mathrm{NaAlH}_{4}$, and the like), alkyl aluminum hydrides (e.g., DIBALH), metal borohydrides (e.g., alkali metal borohydrides such as LiBH_{4}, NaBH_{4}, and the like), organometallic reagents (e.g., Grignard reagents; organolithium reagents such as n-butyl lithum, t-butyl lithium, sec-butyl hithum; trialkyl aluminums such as triethyl aluminum, tributyl aluminum, triisobutyl aluminum, triisopropyl aluminum, trioctyl aluminum, and the like, metal amides (e.g., lithium diisopropyl amide, metal
bis(trimethylsily Damides such as KHMDS , and the like), palladium on carbon (Pd / C) catalysts, and combinations thereof.
[0202] In some embodiments, the conditioning agent is a metal alkyl compound. In some embodiments, the metal, M, can be lithium, sodium, potassium, magnesium, calcium, zinc, cadmium, aluminum, or gallium. Examples of suitable alkyl radicals, R, include, but are not limited to, methyl, ethyl, buyl, hexyl, decyl, tetradecyl, and eicosyl. Examples of metal alkyl compounds include, but are not limited to, $\mathrm{Mg}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}, \mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)$, $\mathrm{Mg}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}, \mathrm{Mg}\left(\mathrm{C}_{6} \mathrm{H}_{13}\right)_{2}, \mathrm{Mg}\left(\mathrm{C}_{12} \mathrm{H}_{25}\right)_{2}, \mathrm{Zn}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}, \mathrm{Zn}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}, \mathrm{Zn}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)\left(\mathrm{C}_{8} \mathrm{H}_{7}\right)$, $\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{15}\right)_{2}, \quad \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)_{2}, \quad \mathrm{Al}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}, \quad \mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}, \quad \mathrm{Al}\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}, \quad \mathrm{Al}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)_{3}, \quad \mathrm{Al}\left(\mathrm{iso}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}$, $\mathrm{Al}\left(\mathrm{C}_{12} \mathrm{H}_{25}\right)_{3}$, and combinations thereof. Metal alky] compounds also include substances having one or more halogen or hydride groups, such as ethylaluminum dichloride, diethylaluminum chloride, diethylaluminum hy dride, Grignard reagents, diisobutylaluminum hydride, and the like.
[0203] In some embodiments, the treating of the metathesis reaction material (e.g., a natural oil or a natural oil derivative) can include contacting the reaction material with a metal alkyl compound and, either simultaneously or separately, contacting the reaction material with a bydride-containing compound. In some embodiments, where the reaction material is contacted simultaneously with the metal alkyl compound and the hydridecontaining compound, the hydride-containing compounds can be included in the metal alkyl compound. For example, in some instances, processes used to make certain metal alkyl compounds, such as trialkyl aluminum compounds, can lead to the formation of a certain concentration of hydride-containing compounds. In other embodiments, however, the metal alkyl compounds can be combined with one or more hydride-containing compounds. Or, in some embodiments, the metathesis reaction material can be treated by the bydride-containing compounds in a separate treatment step, which can be performed before, after, or both before and after, treatment of the reaction material with the metal alkyl compounds.
[0204] Any suitable hydride-containing compounds can be used. In some embodiments, the hydride-containing compounds are selected from the group consisting of metal aluminum hydrides (e.g, alkali metal aluminum hydrides such as $\mathrm{LiAlH}_{4}, \mathrm{NaAlH}_{4}$, and the like), alkyl aluminum hydrides (e.g., DIBALH), and combinations thereof. In some embodiments, the hydride-containing compound is an allyl aluminum hydride, such as DIBALH.
[0205] In some embodiments, contacting the metathesis reaction material with the hydridecontaining compound occurs in the same step as contacting the reaction material with the metal alkyl compound. In some embodiments, the weight-to-weight ratio of the metal alkyl compound to the hydride-containing compound in the treatment composition is from $2: 1$, or from $5: 1$, or from 10.1 , or from $15: 1$, or from $20: 1$ to $1000: 1$. In some embodiments, the weight-to-weight ratio of the metal alky compound to the hydride-containing compoumd in the treatment composition is at least $2: 1$, or at least $5: 1$, or at least 10.1 , or at least $15: 1$, or at least 20:1.
[0206] In certain instances, the efficacy of the metathesis catalyst can be improved (e.g., the turnover number can be increased or the overall catalyst loading may be decreased) through slow addition of the catalyst to a substrate. The overall catalyst loading can be decreased by at least 10%, at least 20%, or at least 30% when administered slowly to achieve the same humover number as a single, full batch loading. The slow addition of overall catalyst loading can include adding fractional catalyst loadings to the reaction materials at an average rate of approximately 10 ppm by weight of catalyst per hour (ppmwthr), $5 \mathrm{ppmwt} / \mathrm{hr}, 1$ ppmwthr, 0.5 ppnwthr, 0.1 ppmwthr, 0.05 ppmwthr, or 0.01 ppmwthr. In some embodiments, the catalyst is slowly added at a rate of between about 0.01-10 ppmwthr, 0.05 5 ppmwt hr, or 0.1-1 ppmwthr. The slow addition of the catalyst can be conducted in batch loadings at frequencies of every 5 minutes, 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 12 hours, or 1 day. In other embodiments, the slow addition is conducted in a continuous addition process.

Pheromone Products

[0207] As described above, a number of the fatty olefin derivatives obtained via the methods of the invention can be used as insect pheromones or pheromone precursor materials. The precursor materials and pheromone products include, for example, the compounds listed in Table 1 and Table 6 . The method can be used for synthesizing one or more of the pheromones listed in Table 7.

Table 7. Pheromone products.

Name	Name	Name
(E)-2-Decen-1-0l	(Z, Z)-5,9-Tridecadienyl acetate	(Z)-10-Hexadecenal
(E)-2-Decenyl acetate	$(Z, Z)-7,11$-Tridecadienyl acetate	(E)-11-Hexadecen-1-0l

Name	Name	Name
(E)-2-Decenal	($\mathrm{E}, \mathrm{Z}, Z$)-4,7,10- Tridecatrienyl acetate	(E)-11-Hexadecenyl acetate
(Z)-2-Decen-1-ol	(E)-3-Tetradecen-1-0l	(E)-11-Hexadecenal
(Z)-2-Decenyl acetate	(E)-3-Tetradecenyl acetate	(Z)-11-Hexadecen-1-ol
(Z)-2-Decenal	(Z)-3-Tetradecen-1-ol	(Z)-11-Hexadecenyl acetate
(E)-3-Decen-1-ol	(Z)-3-Tetradecenyl acetate	(Z)-11-Hexadecenal
(Z)-3-Decenyl acetate	(E)-5-Tetradecen-1-0]	(Z)-12-Hexadecenyl acetate
(Z)-3-Decen-1-ol	(E)-5-Tetradecenyl acetate	(Z)-12-Hexadecenal
(Z)-4-Decen-1-ol	(E)-5-Tetradecenal	(E)-14-Hexadecenal
(E)-4-Decenyl acetate	(Z)-5-Tetradecen-1-ol	(Z)-14-Hexadecenyl acetate
(Z) -4-Decenyl acetate	(Z)-5-Tetradecenyl acetate	(E,E)-1,3-Hexadecadien-1-01
(Z)-4-Decenal	(Z)-5-Tetradecenal	(E,Z)-4,6-Hexadecadien-1-ol
(E)-5-Decen-1-01	(E)-6-Tetradecenyl acetate	(E,Z)-4,6-Hexadecadienyl acetate
(E)-5-Decenyl acetate	(Z)-6-Tetradecenyl acetate	(E,Z)-4,6-Hexadecadienal
(Z)-5-Decen-1-ol	(E)-7-Tetradecen-1-01	(E,Z)-6,11-Hexadecadienyl acetate
(Z)-5-Decenyl acetate	(E)-7-Tetradecenyl acetate	(E,Z)-6,11-Hexadecadienal
(Z)-5-Decenal	(Z)-7-Tetradecen-1-ol	(Z,Z)-7,10-Hexadecadien-1ol
(E)-7-Decenyl acetate	(Z)-7-Tetradecenyl acetate	(Z,Z)-7,10-Hexadecadieny] acetate
(Z)-7-Decenyl acetate	(Z)-7-Tetradecenal	(Z,E)-7,11-Hexadecadien-1ol
(E)-8-Decen-1-ol	(E)-8-Tetradecenyl acetate	(Z,E)-7,11-Hexadecadieny] acetate
(E,E)-2,4-Decadienal	(Z)-8-Tetradecen-1-01	(Z,E)-7,11-Hexadecadienal
(E,Z)-2,4-Decadienal	(2)-8-Tetradecenyl acetate	(Z,Z)-7,11-Hexadecadien-1ol
(Z,Z)-2,4-Decadienal	(2)-8-Tetradecenal	(Z,Z)-7,11-Hexadecadienyl acetate
(E, E)-3,5-Decadieny] acetate	(E)-9-Tetradecen-1-01	(Z,Z)-7,11-Hexadecadienal
(Z,E)-3,5-Decadieny] acetate	(E)-9-Tetradecenyl acetate	(Z,Z)-8,10-Hexadecadienyl acetate
(Z, Z, -4,7-Decadien-1-ol	(Z)-9-Tetradecen-1-0]	(E,Z)-8,11-Hexadecadienal
(Z,Z)-4,7-Decadienyl acetate	(Z)-9-Tetradecenyl acetate	(E,E)-9,11-Hexadecadienal
(E)-2-Undecenyl acetate	(Z)-9-Tetradecenal	(E,Z)-9,11-Hexadecadienyl acetate
(E)-2-Undecenal	(E)-10-Tetradecenyl acetate	(E,Z)-9,11-Hexadecadienal
(Z)-5-Undecenyl acetate	(Z)-10-Tetradecenyl acetate	(Z, E)-9,11-Hexadecadienal

Name	Name	Name
(Z) -7-Undecenyl acetate	(E)-11-Tetradecen-1-ol	(Z,Z)-9,11-Hexadecadienal
(Z)-8-Undecenyl acetate	(E)-11-Tetradecenyl acetate	(E,E)-10,12-Hexadecadien-$1-\mathrm{ol}$
(Z)-9-Undecenyl acetate	(E)-11-Tetradecenal	(E,E)-10,12-Hexadecadienyl acetate
(E)-2-Dodecenal	(Z)-11-Tetradecen-1-0l	(E,E)-10,12-Hexadecadienal
(Z)-3-Dodecen-1-ol	(Z)-11-Tetradecenyl acetate	(E, Z)-10,12-Hexadecadien-1-ol
(E)-3-Dodecenyl acetate	(Z)-11-Tetradecenal	(E,Z)-10,12-Hexadecadieny] acetate
(Z)-3-Dodecenyl acetate	(E)-12-Tetradecenyl acetate	(E,Z)-10,12-Hexadecadienal
(E)-4-Dodecenyl acetate	(Z)-12-Tetradecenyl acetate	(Z,E)-10,12-Hexadecadieny] acetate
(E)-5-Dodecen-1-ol	(E, E)-2,4-Tetradecadienal	(Z,E)-10, 22 -Hexadecadienal
(E)-5-Dodecenyl acetate	(E,E)-3,5-Tetradecadienyl acetate	(Z,Z)-10,12-Hexadecadienal
(Z)-5-Dodecen-1-ol	(E,Z)-3,5-Tetradecadienyl aceate	(E,E)-11,13-Hexadecadien-1-0l
(Z)-5-Dodecenyl acetate	(Z,E)-3,5-Tetradecadienyl acetate	(E,E)-11,13-Hexadecadienyl acetate
(Z)-5-Dodecenal	(E,Z)-3,7-Tetradecadienyl acetate	(E,E)-11,13-Hexadecadienal
(E)-6-Dodecen-1-ol	(E,Z)-3,8-Tetradecadienyl acetate	(E,Z)-11,13-Hexadecadien-1-01
(Z)-6-Dodecenyl acetate	(E,Z)-4,9-Tetradecadienyl acetate	(E,Z)-11,13-Hexadecadienyl acetate
(E)-6-Dodecenal	(E,Z)-4,9-Tetradecadienal	(E,Z)-11,13-Hexadecadienal
(E)-7-Dodecen-1-ol	(E, Z)-4, 10-Tetradecadienyl acetate	(Z,E)-11,13-Hexadecadien-
(E)-7-Dodecenyl acetate	(E,E)-5,8-Tetradecadienal	(Z,E)-11,13-Hexadecadienyl acetate
(E)-7-Dodecenal	(Z, Z)-5,8-Tetradecadien-1ol	(Z,E)-11,13-Hexadecadienal
(Z)-7-Dodecen-1-ol	(Z,Z)-5,8-Tetradecadienyl acetate	(Z, Z)-11,13-Hexadecadien-1-0)
(Z)-7-Dodecenyl acetate	(Z,Z)-5,8-Tetradecadienal	(Z, Z)-11,13-Hexadecadienyl acetate
(Z)-7-Dodecenal	(E,E)-8,10-Tetradecadien-1-0	(Z, Z)-11,13-Hexadecadienal
(E)-8-Dodecen-1-ol	(E, E)-8, 10 -Tetradecadienyl acetate	(E,E)-10,14-Hexadecadienal
(E)-8-Dodecenyl acetate	(E,E)-8,10-Tetradecadienal	(Z,E)-11,14-Hexadecadienyl acetate
(E)-8-Dodecenal	(E,Z)-8,10-Tetradecadienyl acetate	(E, E, Z) -4,6,10- Hexadecatrien-1-01

Name	Name	Name
(Z)-8-Dodecen-1-ol	(E, Z)-8,10-Tetradecadienal	(E,E,Z)-4,6,10- Hexadecatrienyl acetate
(Z)-8-Dodecenyl acetate	$(Z, E)-8,10$-Tetradecadien-	
(E,Z,Z)-4,6,10-		
Hexadecatrien-1-ol		

Nambe	Name	Name
(Z,E)-5,7-Dodecadienal	$(Z, Z)-10,12$ Tetradecadienyl acetate	(E)-2-Octadecenal
(Z,Z)-5,7-Dodecadienyl acetate	(E, Z, Z)-3,8,] $]$ - Tetradecatrienyl acetate	(Z)-2-Octadecenyl acetate
(7,7)-5,7-Dodecadienal	(E)-8-Pentadecen-1-ol	(Z)-2-Octadecenal
(E,E)-7,9-Dodecadienyl acetate	(E)-8-Pentadecenyl acetate	(E)-9-Octadecen-1-ol
(E,Z)-7,9-Dodecadien-1-01	(2)-8-Pentadecen-1-ol	(E)-9-Octadecenyl acetate
(E,Z)-7,9-Dodecadienyl acctate	(Z)-8-Pentadecenyl acetate	(E)-9-Octadecenal
(E,Z)-7,9-Dodecadienal	(Z)-9-Pentadecenyl acetate	(Z)-9-Octadecen-1-ol
($Z, E)$-7,9-Dodecadien-1-ol	(E)-9-Pentadecenyl acetate	(Z)-9-Octadecenyl acetate
(Z,E)-7,9-Dodecadienyl acetate	(Z)-10-Pentadecenyl acetate	(2)-9-Octadecenal
($2, Z$)-7,9-Dodecadien-1-ol	(2)-10-Pentadecenal	(E)-11-Octadecen-1-ol
(Z, Z)-7,9-Dodecadienyl acetate	(E)-12-Pentadecenyl acetate	(E)-11-Octadecenal
(E,E)-8,10-Dodecadien-1ol	(2)-12-Pentadecenyl acetate	(Z)-11-Octadecen-1-o]
(E,E)-8,10-Dodecadienyl acetate	(Z,Z)-6,9-Pentadecadien-1ol	(Z)-11-Octadecenyl acetate
(E,E)-8, 10-Dodecadienal	($2, Z$)-6,9-Pentadecadienyl acetate	(2)-11-Octadecenal
$\begin{aligned} & (\mathrm{E}, 2)-8,10-\text { Dodecadien-1- } \\ & \text { ol } \end{aligned}$	($Z, Z, 7)$ 6,9-Pentadecadienal	(E)-13-Octadeceny] acetate
(E,2)-8,10-Dodecadienyl acetate	(E,E)-8,10- Pentadecadienyl acetate	(E)-13-Octadecenal
(E,Z)-8, 10-Dodecadienal	(E,Z)-8,10-Pentadecadien-[-0l	(2)-13-Octadecen-1-ol
(2,E)-8,10-Dodecadien-1- ol	(E, Z)-8,10- Pentadecadienyl acetate	(2)-13-Octadecenyl acetate
($2, E$)-8,10-Dodecadienyl acetate	$(2, E)-8,10-$ Pentadecadienyl acetate	(2)-13-Octadecenal
(Z,E)-8, 10-Dodecadienal	(2,2)-8,10 Pentadecadienyl acetate	(E)-14-Octadecenal
(2,2)-8,10-Dodecadien-1ol	(E,2)-9,11-Pentadecadienal	(E,Z)-2,13-Octadecadien-1ol
(Z,Z)-8,10-Dodecadienyl acetate	(2,2)-9,11-Pentadecadienal	(E,Z)-2,13-Octadecadienyl acetate
$\begin{aligned} & (2, E, E)-3,6,8 \text {-Dodecatrien- } \\ & 1-01 \end{aligned}$	(Z)-3-Hexadecenyl acetate	(E,Z)-2,13-Octadecadienal
($2,2, \mathrm{E}$)-3,6,8-Dodecatrien-1-ol	(E)-5-Hexadecen-1-0l	(Z,E)-2,13-Octadecadienyl acetate
(E)-2-Tridecenyl acetate	(E)-5-Hexadecenyl acetate	(Z,Z)-2,13-Octadecadien-1ol

Nambe	Name	Name
(Z)-2-Tridecenyl acetate	(Z)-5-Hexadecen-1-ol	(Z,Z)-2,13-Octadecadieny] acetate
(E)-3-Tridecenyl acetate	(Z)-5-Hexadecenyl acetate	(E,E)-3,13-Octadecadienyl acetate
(E)-4-Tridecenyl acetate	(E)-6-Hexadecenyl acetate	(E,Z)-3,13-Octadecadienyl acetate
(C) 4 -Tridecenyl acetate	(E)-7-Hexadecen-1-ol	(E,Z)-3,13-Octadecadienal
(Z)-4-Tridecenal	(E)-7-Hexadecenyl acetate	(Z,E)-3,13-Octadecadienyl acetate
(E)-6-Tridecenyl acetate	(E)-7-Hexadecenal	(Z,Z)-3,13-Octadecadienyl acetate
(Z)-7-Tridecenyl acetate	(Z)-7-Hexadecen-1-ol	(2,2)-3,13-Dctadecadienal
(E)-8-Tridecenyl acetate	(Z)-7-Hexadecenyl acetate	(E,E)-5,9-Octadecadien-1-ol
(2)-8-Tridecenyl acetate	(2)-7-Hexadecenal	(E,E)-5,9.Octadecadienyl acetate
(E)-9-Tridecenyl acetate	(E)-8-Hexadecenyl acetate	$\begin{aligned} & \text { (E, E)-9,12-Octadecadien-1- } \\ & \text { ol } \end{aligned}$
(2)-9-Tridecenyl acetate	(E)-9-Hexadecen-1-ol	(2,Z)-9,12-Octadecadienyl acetate
(Z)-10-Tridecenyl acetate	(E)-9-Hexadecenyl acetate	(Z,Z)-9,12-Octadecadienal
(E)-11-Tridecenyl acetate	(E)-9-Hexadecenal	($Z, Z)$-11,13-Octadecadienal
(Z)-11-Tridecenyl acetate	(Z)-9-Hexadecen-1-ol	(E,E)-11,14-Octadecadienal
(E,Z)-4,7-Tridecadienyl acetate	(Z)-9-Hexadecenyl acetate	(2,2)-13,15-Octadecadienal
(Z,Z)-4,7-Tridecadien-1-0l	(Z)-9.Hexadecenal	$(Z, Z, Z)-3,6,9-$ Octadecatrienyl acetate
(Z,Z)-4,7-Tridecadienyl acetate	(E)-10-Hexadecen-1-ol	(E,E,E)-9,12,15-Octadecatrien-1-ol
(E.Z)-5,9-Tridecadienyl acetate	(E)-10-Hexadecenal	$(Z, Z, Z)-9,12,15$ Octadecatrienyl acetate
(Z,E)-5,9-Tridecadienyl acetate	(Z)-10-Hexadecenyl acetate	(Z, Z, Z)-9,12,15Octadecatrienal

[0208] In certain embodiments, the invention provides a method for synthesizing a fatty olefin derivative as described above wherein the fatty olefin derivative is selected from (E)-7dodecenal; (Z)-10-dodecenyl acetate; (Z)-10-hexadecenyl acetate; (Z)-10-pentadecenal; (Z) 10-pentadecenyl acetate; (Z)-10-tetradecenyl acetate; (Z)-10-tridecenyl acetate; (Z)-7-decenyl acetate; (Z) 7-dodecenyl acetate; (Z) -7-hexadecenal; (Z)-7-hexadecenyl acetate; (Z)-7tetradecenal; (Z)-7-tetradecenyl acetate; (Z)-7-undecenyl acetate; (Z)-9-dodecenal; (Z)-9dodecenyl acetate; (Z)-9-hexadecenal; (Z)-9-hexadecenyl acetate; (Z)-9-pentadecenyl acetate; (Z)-9-ietradecenal; (Z)-9-tetradecenyl acetate; (Z)-9-tetradecenyl formate; (Z)-9-tetradecenyl
nitrate; (Z)-9-tridecenyl acetate; (Z)-9-undecenyl acetate; (E)-11-tetradecen-1-ol; (E)-11tetradecenyl acetate; (E)-5-decen-1-ol; (E)-5-decenyl acetate; (E)-8-dodecen-1-ol; (E)-8dodecenyl acetate; (Z)-11-hexadecen-1-ol; (Z)-11-hexadecenal; (Z)-11-hexadecenyl acetate; (Z)-11-tetraceden-1-ol; (Z)-11-tetracedenyl acetate; (Z)-13-octadecen-1-ol; (Z)-13- octadecenal; (Z)-3-hexanol; (Z)-3-nonen-1-0l; (Z)-5-decen-1-ol; (Z)-5-decenyl acetate; (Z) - 7 -dodecen-1-ol; (Z)-7-hexadecen-1-ol; (Z)-8-dodecen-1-ol; (Z)-8-dodecenyl acetate; (Z)-9-dodecen-1-ol; (Z)-9-hexadecen-1-ol; and (Z)-9-tetradecen-1-ol. In some such embodiments, the fatty olefin derivative is a pheromone.
[0209] In some embodiments, the fatty olefin derivative is selected from (E)-7-dodecenal; (Z)-10-dodecenyl acetate; (Z)-10-hexadecenyl acetate; (Z)-10-pentadecenal; (Z)-10pentadecenyl acetate; (Z)-10-tetradecenyl acetate; (Z)-10-tridecenyl acetate; (Z)-7-decenyl acetate; (Z)-7-dodecenyl acetate; (Z)-7-hexadecenal; (Z)-7-hexadecenyl acetate; (Z)-7tetradecenal; (Z)-7-tetradecenyl acetate; (Z)-7-undecenyl acetate; (7)-9-dodecenal; (Z)-9dodecenyl acetate; (Z)-9-hexadecenal; (Z)-9-hexadecenyl acetate; (Z)-9-pentadecenyl acetate; (Z)-9-tetradecenal; (Z)-9-tetradecenyl acetate; (Z)-9-tetradecenyl formate; (Z)-9-tetradecenyl nitrate; (Z)-9-indecenyl acetate; and (Z)-9-undecenyl acetate. In some such embodiments, the fatty olefin derivative is a pheromone.
[0210] In some embodiments, the fatty olefin derivative is selected from (E)-7-dodecenal; (Z)-10-dodecenyl acetate; (Z)-10-hexadecenyl acetate; (Z)-10-pentadecenal; (Z)-10pentadecenyl acetate; (Z)-10-tetradecenyl acetate; (Z)-10-Tridecenyl acetate; (Z)-7-decenyl acetate; (Z)-7-hexadecenyl acetate; (Z)-7-tetradecenal; (Z)-7-tetradecenyl acetate; (Z)-7undecenyl acetate; (Z)-9-dodecenal; (Z)-9-pentadecenyl acetate; (Z)-9-tetradecenal; (Z)-9tetradecenyl formate; (Z)-9-tetradecenyl nitrate; (Z) - 9 -tridecenyl acetate; and (Z)-9-undecenyl acetate. In some such embodiments, the fatty olefin derivative is a pheromone.
[0211] As described above, the methods of the invention can also be used for the synthesis of polyene derivatives, including polyene pheromones. See, for example, Scheme 6.

Scheme 6

[0212] Polyene derivatives include dienes, trienes, and tetraenes. The double bonds in the polyenes can be Z double bonds or E double bonds. Dienes that can be prepared using the methods of the invention include, but are not limited to, ($6 Z, 9 Z$)-heptadeca- 6,9 -diene; (6Z,9Z)-octadeca-6,9-diene; (6Z,9Z)-nonadeca-6,9-diene; (6Z,9Z)-eicosa-6,9-diene; (6Z,9Z)-henicosa-6,9-diene; (6Z,9Z)-docosa-6,9-diene; and (6Z,9Z)-tricosa-6,9-diene. The dienes can be used as pheromones.
[0213] Trienes that can be prepared using the methods of the invention include, but are not limited to, $(3 Z, 6 Z, 9 Z)$-heptadeca-3,6,9-triene; $(32,6 Z, 97)$-octadeca-3,6,9-triene; $(3 Z, 6 Z, 9 Z)$ -nonadeca-3,6,9-triene; (3Z,6Z,9Z)-eicosa-3,6,9-triene; (3Z,6Z,9Z)-henicosa-3,6,9-triene; $(3 Z, 6 Z, 9 Z)$-docosa-3,6,9-triene; ($3 Z, 6 Z, 9 Z$)-ricosa-3,6,9-triene; ($4 E, 6 Z, 9 Z$)-heptadeca-4,6,9triene; ($4 E, 6 Z, 9 Z$)-octadeca-4,6,9-triene; ($4 E, 6 Z, 9 Z$)-nonadeca-4,6,9-triene; ($4 E, 6 Z, 9 Z$)-eicosa-4,6,9-triene; (4E,6Z,9Z)-henicosa-4,6,9-triene; (4E,6Z,9Z)-docosa-4,6,9-triene; and ($4 E, 6 Z, 9 Z$)-tricosa-4,6,9-triene. The trienes can be used as pheromones.
[0214] Tetraenes that can be prepared using the methods of the invention include, but are not limited to, $(3 Z, 6 Z, 9 Z$)-heptadeca-1,3,6,9-tetraene; ($3 Z, 6 Z, 97$)-octadeca-1,3,6,9-tetraene; (3Z,6Z,9Z)-nonadeca-1,3,6,9-tetraene; $\quad(3 Z, 6 Z, 9 Z)$-sicosa-1,3,6,9-tetraene; $\quad(3 Z, 6 Z, 9 Z)$ -henicosa-1,3,6,9-tetraene; (3Z,6Z,9Z)-docosa-1,3,6,9-tetraene; (3Z,6Z,9Z)-tricosa-1,3,6,9tetraene, ($3 Z, 6 Z, 9 Z, 11 E Z$)-heptadeca-3,6,9,11-tetraene, (3Z,6Z,9Z,11EZ $)$-octadeca-3,6,9,11tetraene; ($3 Z, 6 Z, 9 Z, 11 E / Z$)-nonadeca-3,6,9,11-tetraene; $(3 Z, 6 Z, 9 Z, 11 E / Z)$-icosa-3,6,9,11tetraene; (3Z,6Z,9Z,11EZZ)-henicosa-3,6,9,11-tetraene; (3Z,6Z,9Z,11EZZ)-docosa-3,6,9,11tetraene; and ($3 Z, 6 Z, 9 Z, 11 E / Z$)-tricosa-3,6,9, 11-tetraene. The tetraenes can be used as pheromones.
[0215] Polyene derivatives include oxidized polyenes such as ketones and epoxides. Examples of ketone polyene derivatives include, but are not limited to: ($6 Z, 9 Z$)-heptadeca-6,9-dien-3-one; (6Z,9Z)-octadeca-6,9-dien-3-one; (6Z,9Z)-nonadeca-6,9-dien-3-one; (6Z,9Z)-eicosa-6,9-dien-3-one; (6Z,9Z)-henicosa-6,9-dien-3-one; (6Z,9Z)-docosa-6,9-dien-3-one; and ($6 \mathrm{E}, 9 \mathrm{E}$)-tricosa-6,9-dien-3-one. Examples of polyene epoxide derivatives include, but are not limited to $3 Z, 6 Z-9 R, 10 S$-epoxy-heneicosadiene, $3 Z, 6 Z-9 R, 10 S$-epoxy-docosadiene, and the like. The ketone polyene derivatives and the polyene epoxide derivatives can be used as pheromones. The structure, taxonomic distribution, mechanisms of action, and biosynthetic pathways of polyene pheromones (including polyene epoxides) are described by Millar (Annu. Rev. Entomol. 2000. 45:575-604).

Pheromone Compositions and Uses Thereof

[0216] Pheromones prepared according to the methods of the invention can be formulated for use as insect control compositions. The pheromone compositions can include a carrier, and/or be contained in a dispenser. The carrier can be, but is not limited to, an inert liquid or solid.
[0217] Examples of solid carriers include but are not limited to fillers such as kaolin, bentonite, dolomite, calcium carbonate, talc, powdered magnesia, Fuller's earth, wax, gypsum, datomaceous earth, rubber, plastic, silica and China clay. Examples of liquid carriers include, but are not limited to, water; alcohols, such as ethanol, butanol or glycol, as well as their ethers or esters, such as methylglycol acetate; ketones, such as acetone, cyclohexanone, methylethyl ketone, methylisobutylketone, or isophorone; alkanes such as hexane, pentane, or heptanes; aromatic hydrocarbons, such as xylenes or alkyl naphthalenes; mineral or vegetable oils; aliphatic chlorinated hydrocarbons, such as trichloroethane or methylene chloride; aromatic chlornated hydrocarbons, such as chlorobenzenes; watersoluble or strongly polar solvents such as dimethylformamide, dimethyl sulfoxide, or N methylpyrrolidone; liquefied gases; and mixtures thereof. Baits or feeding stimulants can also be added to the carrier.
[0218] Pheromone compositions can be formulated so as to provide slow release into the atmosphere, and/or so as to be protected from degradation following release. For example, the pheromone compositions can be included in carriers such as microcapsules, biodegradable flakes and paraffin wax-based matrices.
[0219] Pheromone compositions can contain other pheromones or attractants provided that the other compounds do not substantially interfere with the activity of the composition. The pheromone compositions can also include insecticides. Examples of suitable insecticides include, but are not limited to, buprofezin, pyriproxyfen, flonicamid, acetamiprid, dinotefuran, clothianidin, acephate, malathion, quinolphos, chloropyriphos, profenophos, bendiocarb, bifenthrin, chlorpyrifos, cyfluthrin, diazinon, pyrethrum, fenpropathrin, kinoprene, insecticidal soap or oil, and mixtures thereof.
[0220] Pheromone compositions can be used in conjunction with a dispenser for release of the composition in a particular enviromment. Any suitable dispenser known in the art can be used. Examples of such dispensers include but are not limited to bubble caps comprising a reservoir with a permeable barrier through which pheromones are slowly released, pads, beads, tubes rods, spirals or balls composed of rubber, plastic, leather, cotton, cotton wool, wood or wood products that are impregnated with the pheromone composition. For example, polyvinyl chloride laminates, pellets, granules, ropes or spirals from which the pheromone composition evaporates, or rubber septa. One of skill in the art will be able to select suitable carriers and/or dispensers for the desired mode of application, storage, transport or handing.
[0221] A variety of pheromones, including those set forth in Table 1 can be prepared according to the methods of the invention and formulated as described above. For example, the methods of the invention can be used to prepare peach twig borer (PTB) sex pheromone, which is a mixture of (E)-dec-5-en-1-ol (17%) and (E)-dec-5-en-1-yl acetate (83%). The PTB sex pheromone can be used in conjunction with a sustaned pheromone release device having a polymer container containing a mixture of the PTB sex pheromone and a fatty acid ester (such as a sebacate, laurate, palmitate, stearate or arachidate ester) or a fatty alcohol (such as undecanol, dodecanol, tridecanol, tridecenol, tetradecanol, tetradecenol, tetradecadienol, pentadecanol, pentadecenol, hexadecanol, hexadecenol, hexadecadienol, octadecenol and octadecadienol). The polymer container can be a tube, an ampule, or a bag made of a polyolefin or an olefin component-containing copolymer. Sex pheromones of other pest insects such the cotton bollworm (Helicoverpa armigera), fall army worm (Spodoptera frugiperda), oriental fruit moth (Grapholita molesta) and leaf roller (Tortricidae) can be used in this type of sustained pheromone release device. The sex pheromones typically include one or more aliphatic acetate compounds having from 10 to 16 carbon atoms (e.g. decyl acetate, decenyl acetate, decadienyl acetate, undecyl acetate, undecenyl acetate, dodecyl acetate, dodecenyl acetate, dodecadienyl acetate, tridecyl acetate,
tridecenyl acetate, tridecadienyl acetate, tetradecyl acetate, tetradecenyl acetate, tetradecadienyl acetate, and the hke) and/or one of more aliphatic aldehyde compounds having from 10 to 16 carbon atoms (e.g., 7-hexadecenal, 11-hexadecenal, 13-octadecenal, and the like)
[6222] Pheromones prepared according to the methods of the invention, as well as compositions containing the pheromones, can be used to control the behavior and/or growth of insects in various environments. The pheromones can be used, for example, to attract or repel male or female insects to or from a particular target area. The pheromones can be used to attract insects away from vulnerable crop areas. The pheromones can also be used example to attract insects as part of a strategy for insect monitoring, mass trapping, lure/attract-and-kill or mating disruption.
$[0223]$ Mass trapping involves placing a high density of traps in a crop to be protected so that a high proportion of the insects are removed before the crop is damaged. Eure/attract-and-kill techniques are similar except once the insect is attracted to a lure, it is subjected to a killing agent. Where the killing agent is an insecticide, a dispenser can also contain a bait or feeding stimulant that will entice the insects to ingest an effective amount of the insecticide.
[0224] It will be appreciated by a person skilled in the art that a variety of different traps are possible. Suttable examples of such traps include water traps, sticky traps, and one-way traps. Sticky traps come in many varieties. One example of a sticky trap is of cardboard construction, triangular or wedge-shaped in cross-section, where the interior surfaces are coated with a non-drying sticky substance. The insects contact the sticky surface and are caught. Water traps include pans of water and detergent that are used to trap insects. The detergent destroys the surface tension of the water, causing insects that are attracted to the pan, to drown in the water. One-way traps allow an insect to enter the trap but prevent it from exiting. The traps of the invention can be colored brighty, to provide additional attraction for the insects.
[6225] The trap is positioned in an area infested (or potentially infested) with insects. Generally, the trap is placed on or close to a tree or large plant and the pheromone attracts the insects to the trap. The insects can then be caught, immobilized and/or killed within the trap, for example, by the killing agent present in the trap.
[0226] Pheromones prepared according to the methods of the invention can also be used to disrupt mating. Strategies of mating disruption include confusion, trail-masking and false-
trail following. Constant exposure of insects to a high concentration of a pheromone can prevent male insects from responding to normal levels of the pheromone released by female insects. Trail-masking uses a pheromone to destroy the trail of pheromones released by females. False-trail following is carried out by laying numerous spots of a pheromone in high concentration to present the male with many false trails to follow. When released in sufficiently high quantities, the male insects are unable to find the natural source of the sex pheromones (the female insects) so that mating cannot occur.
[0227] Insect populations can be surveyed or monitored by counting the number of insects in a target area (e.g., the number of insects caught in a trap). Inspection by a horticulturist can provide information about the life stage of a population. Knowing where insects are, how many of them there are, and their life stage enables informed decisions to be made as to where and when insecticides or other treatments are warranted. For example, a discovery of a high insect population can necessitate the use of methods for removal of the insect. Early waming of an infestation in a new habitat can allow action to be taken before the population becomes unmanageable. Conversely, a discovery of a low insect population can lead to a decision that it is sufficient to continue monitoring the population. Insect populations can be monitored regularly so that the insects are only controlled when they reach a certain threshold. This provides cost-effective control of the insects and reduces the environmental impact of the use of insecticides.
[0228] As will be apparent to one of skill in the art, the amount of a pheromone or pheromone composition used for a particular application can vary depending on several factors such as the type and level of infestation; the type of composition used; the concentration of the active components; how the composition is provided, for example, the type of dispenser used; the type of location to be treated; the length of time the method is to be used for; and environmental factors such as temperature, wind speed and direction, rainfall and humidity. Those of skill in the art will be able to determine an effective amount of a pheromone or pheromone composition for use in a given application.

IV. EXAMPLES

Example 1. Cross-metathesis of dec- 9 -en-l-yh acetate with hex-1-ene.

[0229] Prior to introduction of the metahesis catalyst, dec-9-en-1-yl acetate (CAS \# 50816-18-7) and hex-1-ene (CAS \# 592-41-6) are treated with either aluminum oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ or a trialkylaluminum as described in U.S. Pat. No. 9,388,097 to reduce moisture, peroxides, and
other potential catalyst poisons to a level suitable for conducting the metathesis reaction. In a nitrogen-flled glovebox, a 20 mL scintllation vial is charged with a magnetic stir bar, 1.00 g of pretreated dece-9-en-1-yl acetate and 1.27 g of pretreated hex-1-ene. The vial is closed with a perforated septum and placed in an aluminum heating block regulated at $40^{\circ} \mathrm{C}$ atop a hotplate/magnetic stirrer where the stirring rate is fixed at 500 rpm . A solution of $1-\left(\left\{3,3^{\prime}-\right.\right.$ dibromo-2'-[\{tert-butyldimethylsilyloxy]-5H,5H,6H,6H,7H,7H,8H, $8^{\prime} \mathrm{H}-\left[1,1^{\prime}-\right.$ binaphthalene) 2 -ylloxy $)-1$ (2,5-dimethylpyrrol-1-yl)-1-(2-methyl-2-phenylpropylidene) N phenyltungstenimine (CAS \# 1628041-76-8) catalyst in dry and degassed toluene is prepared by weighing 10 mg of the catalyst into a 1 mL volumetric flask and diluting to the calibration mark with solvent. Using a gas tight microliter syringe, $57 \mu \mathrm{~L}$ of the catalyst solution (0.57 $\mathrm{mg}, 0.025 \mathrm{wt} \%, 0.0025 \mathrm{~mol} \%$) is withdrawn from the volumetric flask and added to the reaction mixture. After four hours, the vial is removed from the glovebox and the reaction mixture is analyzed by GC-MS. The GC-MS data indicates that (Z)-tetradec-9-en-1-yl acetate is formed in high yield.

Example 2. Cross-metathesis of methyl dec-9-enoate with oct-1-ene.

[0230] Prior to introduction of the metathesis catalyst, methyl dec-9-enoate (CAS \#25601-$41-6)$ and oct-1-ene (CAS \# 111-66-0) are treated to reduce moisture, peroxides and other potential catalyst poisons to a level suitable for conducting the metathesis reaction as described in U.S. Pat. No. 9,388,097. In a nitrogen-filled glovebox, a 20 mL scintillation vial is charged with a magnetic stir bar, 1.00 g of pretreated methyl dec-9-enoate and 1.83 g of pretreated oct-1-ene. The vial is closed with a perforated septum and placed in an aluminum heating block regulated at $40^{\circ} \mathrm{C}$ atop a hotplate/magnetic stirrer where the stirring rate is
 $5 \mathrm{H}, 5 \mathrm{H}, 6 \mathrm{H}, 6 \mathrm{H}, 7 \mathrm{H}, 7 \mathrm{H}, 8 \mathrm{H}, 8 \mathrm{H}-[1,1$-binaphthalene $-2-y]\}$ oxy $)-1$-(2,5-dimethylpyrrol-1-yl)-1-(2-methyl-2-phenylpropylidene)- N -phenyltungstenimine (CAS \# 1628041-76-8) catalyst in dry and degassed toluene is prepared by weighing 10 mg of the catalyst into a 1 mL volumeric flask and diluting to the calibration mark with solvent. Using a gas tight microliter syringe, $71 \mu \mathrm{~L}$ of the catalyst solution (0.71 mg cat., $0.025 \mathrm{wt} \%, 0.0029 \mathrm{~mol} \%$) is withdrawn from the volumetric flask and added reaction mixture. After four hours the wial is removed from the glovebox and the reaction mixture is analyzed by GC-MS. The GC-MS data indicates that methyl (Z)-hexadec-9-enoate is formed in high yield

Example 3. Reduction of methy hexadec-9-enoate with sodium bis(2-methoxyethoxy) aluminumhydride.

[0231] In an oven-dried, nitrogen-flushed flask sealed with a nubber septum and containing a magnetic stir bar is added $0.47 \mathrm{~g} N$-methylpiperazine (CAS \# 109-01-3) and 10 mL of dry, degassed toluene. The flask is submerged in an ice bath and, with magnetic stiring, 1.48 g of a 70% solution of sodium bis(2-methoxyethoxy)aluminumbydride (CAS \# 22722-98-1) in toluene is added dropwise. In a separate oven dried, nitrogen-flushed flask sealed with a rubber septum is added 1.00 g of methyl hexadec-9-enoate, prepared through the process detailed in Example 2, and 20 mL of dry, degassed toluene. The flask is then submerged in an ice bath and stirrer via an extemal magnetic stirrer. After stiming for one hour, the N methylpiperazine/sodium bis(2-methoxyethoxy)aluminumhydride mixture is added dropwise via a cannula to the toluene solution of ester. The resulting mixture is stirred at ice-bath temperature for one hour and then brought to ambient temperature and stired for an additional hour. The reaction is quenched by addition of 20 mL of deionized water and then extracted with 20 mL of EtOAc. The organic layer is washed with 20 mL of deionized water, dried over sodium sulfated and then concentrated in vacuo. The product is analyzed by GCMS, indicating that (7)-hexadec-9-enal is formed in high yield.

Example 4. Preparation of Eicosa-3.6,9-triene, a polvene pheromone.

[0232] Prior to introduction of metathesis catalysts, linseed oil (CAS \# 8001-26-1) and dodec-1-ene (CAS \# 112-41-4) are treated to reduce moisture, peroxides and other potential catalyst poisons to the desired level. In a nitrogen-filled glovebox, a 20 mL scintillation vial is charged with a magnetic stir bar, 1.00 g of pretreated linseed oil and 0.481 g of pretreated dec-1-ene. The vial is closed with a perforated septum and placed in an aluminum heating block regulated at $40^{\circ} \mathrm{C}$ atop a hotplate/magnetic stirrer where the stiming rate is fixed at 500 rpm. A solution of $1-\left(\left\{3,3^{\prime}\right.\right.$-dibromo- 2^{\prime} [\{tert-butyldimethylsilyl)oxy]-5H,5 $\mathrm{H}, 6 \mathrm{H}, 6 \mathrm{H}$, 7H,7H,8H,8H-[1, 1 -binaph thalene $]-2-y]$, oxy $)-1-(2,5$-dimethylpyrrol-1-yl)-1-(2-methyl-2-phenylpropylidene)-N-phenyltungstenimine (CAS \# 1628041-76-8) in dry and degassed toluene is prepared by weighing 10 mg of the catalyst into a 1 mL volumetric flask and diluting to the calibration mark with solvent. Using a gas tight microliter syringe, $37 \mu \mathrm{~L}$ (0.37 mg cat., $0.025 \mathrm{wt}^{\%} / 0.0071 \mathrm{~mol} \%$) of the catalyst solution is withdrawn from the volumetric flask and added reaction mixture. After one hour the vial is removed from the glovebox. The reaction mixture is transesterified with methanol using sodium methoxide as a
catalyst prior to analysis by GC-MS. The transesterified reaction mixture contains the desired eicosa-3,6,9-triene product (CAS \#134370-60-8), as well as small amounts of 1,18dimethyl octadec-9-enedioate (CAS \# 13481-97-5), methyl eicos-9-enoate (CAS \# 10340-213), docos-11-ene (CAS \# 62978-77-2), and cyclohexa-1,4-diene (CAS \# 628-41-1).

Example 5. Metathesis catalyst screening for the Z-selective cross-metathesis of methyl dec-9-enoate and hex-l-ene.

[0233] In a nitrogen-filled glovebox, a 30 mL glass vial was charged a with a magnetic stir bar and 2.70 g of an equimolar mixture of methyl dec-9-enoate and hex-1-ene previously treated with activated basic alumina to reduce levels of moisture, peroxide and protic impurities in the method described in US $14 / 209,686$. To the olefin mixture was added $0.0025 \mathrm{~mol} \%$ of a molybdenum or tungsten metathesis catalysts as a toluene solution. The vial was then closed with a perforated cap and the reaction mixtures were stirred by means of a magnetic hotplate stirrer for a total of four hours after the addition of catalyst. Aliquots of the reaction mixture were taken at one and four hours after the addition of catalyst and analyzed to determine 9-DAME conversion (\%) and methyl (Z)-tetradec-9-enoate selectivity (\%) (Table 8) by GC-MS/FID after using the equations below in conjuction with external calibration curves obtained for the analytes of interest. GC chromatograms were recorded using a Shimadzu GC2010 Plus instrument equipped with an Agilent DB-23 capillary column with a length of 30 m , an inner diameter of 0.25 mm and a film thickness of $0.25 \mu \mathrm{~m}$. Nitrogen was used as the carrier gas and the total flow of gas through the column was 61.9 $\mathrm{mL} / \mathrm{min}$. Injections were split at a $1: 30$ ratio with the carrier gas and the injector of the instrument was maintained at a constant temperature of $240^{\circ} \mathrm{C}$. The oven temperature was held at $35^{\circ} \mathrm{C}$ during the injection and for the following five minutes, then raised to $100^{\circ} \mathrm{C}$ at a rate of $35^{\circ} \mathrm{C} / \mathrm{min}$, raised further to $130^{\circ} \mathrm{C}$ at a rate of $7^{\circ} \mathrm{C}$ min, raised again to $240^{\circ} \mathrm{C}$ at a rate of $35^{\circ} \mathrm{C} / \mathrm{min}$ and finally held at this terminal temperature for 3.71 minutes for a total run length of approx. 18 minutes.

$$
\begin{aligned}
& \text { Methyl Dec-9-enoate Conversion (\%) } \\
& \qquad=1-\left(\frac{\text { Final mol Methyl Dec }-9-\text { enoate }}{\text { Initial mol Methyl Dec }-9 \text {-enoate }}\right) \times 100
\end{aligned}
$$

Methyi (Z) - Tetradec-9-enoate Selectivity (\%)
$=\left(\frac{\text { mol Methyl }(Z)-\text { Tetradec }-9-\text { enoate }}{\text { molMethyl }(Z)-\text { Tetradec }-9-\text { enoate }+ \text { mol Methyl }(E)-\text { Tetradec }-9 \text {-enoate }}\right)$
$\times 100$

Table 8				
	4 Hour Reaction Length		24 Hour Reaction Length	
Catalyst	Methyl Bec-9enoate Conversion (\%)	Methyl (Z)-Tetradec9 -enoate Sclectivity (\%)	Methyl Dec-9enoate Conversion (\%)	Methy (Z)-Tetradec-9-enoate Sclectivity (\%)
1	40	91	73	90
2	56	94	70	93
3	67	95	68	95
4	51	16	52	16
5	21	95	28	94
6	47	94	54	94
7	<0.1	Not Determined	<0.1	Not Determined
8	<0.1	Not Determined	40.1	Not Determined
9	15	95	17	95
10	52	93	60	93
	Catalyst	Structure	Formula	

C 54 H 70 Br 2 MoN 2 O 2 Si
Catalyst Structure \quad Formula

2

C 50 H 62 Br 2 MoN 2 O 2 Si

C 52 H 68 Br 2 MoN 2 O 2 Si
3

4

C 22 H 68 Br 2 MoN 2 OSi
Catalyst Structure

5

C 50 H 59 FMoN 2 O

C 46 H 52 Br 2 Cl 2 N 2 O 3 SiW

C48H56NO2PW

C54H52NO2PW


```
\(\mathrm{Ph}_{\mathrm{h}}=\) phenyl, \(\mathrm{C} 6 \mathrm{H} 5 ; \mathrm{Mes}=2,4,6\)-trimethylphenyl, \(2,4,6-\mathrm{Me} 3 \mathrm{C} 6 \mathrm{H} 2 ; \mathrm{TBS}=\)
    tert-butyldimethylsity, SiMe2( \(t-B u)\)
```


Example 6. Synthesis and Isolation of Methvi (Z)-Tetradec-9-enoate via Crossmetathesis of methyl dec-9-enoate and hex-1-ene.

[0234] Into a glass vessel equipped with an agitator thermometer and reflux condenser, were charged 500 g of methyl dec-9-enoate (2.71 mol) and 480 g of hex-1-ene (5.70 mol). To the thoroughly homogenized feedstocks a solution of triethylabminum in toluene (3.82 g , $0.0335 \mathrm{~mol}, 0.389 \mathrm{~mol} \%$ was added in one portion. After agitating at 500 mpm for an hour at $23-25^{\circ} \mathrm{C}$, the temperature of the feedstock was raised to $40-41^{\circ} \mathrm{C} .0 .121 \mathrm{~g}(0.00128 \mathrm{~mol} \%$, 123 ppowt) of tungsten, [[R $)-3,3^{\circ}$-dibromo-2'-[[1, 1-dimethylethyl)dimethylsilyl]oxy]-5, 5^{\prime}, $6,6,7,7,8,8^{\prime}$-octahydro $[1,1$-binaphthalen $]$-2-olato-kO][2,6-dichlorobenzenaminato(2-)-kN](2, 5-dimethyl-1H-pyrrol-1-yl)[(2-methoxypheny)methylene]-, (T-4)-(CAS \# 1817807-15-0) was added in four portions to control the rate of ethylene generation and the reaction was allowed to proceed for three hours. After that time GC-FID analysis showed the reaction proceed in 57% Methyl Dec-9-enoate Conversion and 96% Methyl (Z)-tetradec-9-enoate Selectivity. To the cooled ($25-30^{\circ} \mathrm{C}$) reaction mixture was added 10 mL of methanol ($\mathrm{H}_{2} \mathrm{O}=$ $0.035-0.038 \mathrm{w} \%$. The mixture was stirred at ambient temperature for $15-20$ minutes. The
aliquot was then removed from the reactor and filtered through a plug comprising a lower 0.5 cm layer of diatomaceous earth and an upper 1.0 cm layer of silica gel. The filter cake was washed with $7 \times 100 \mathrm{~mL}$ MTBE. The volume of the colorless and clear filtrate was concentrated under reduced pressure in a $45^{\circ} \mathrm{C}$ water bath at a pressure of 40 mbar to obtain the crude product as a colorless liquid. The crude material was vacuum distilled ($0.2-1 \mathrm{mbar}$) using a short path distillation apparatus and $166 \mathrm{~g}(25 \%$ overall yield) of methyl (Z)-tetradec9 -enoate was collected at a head temperature of $95-97^{\circ} \mathrm{C}$ and pressure of 0.4 mbar.

Example 7. Reduction of methyl (Z)-tetradec-9-enoate to (Z)-tetradec-9-en-1-ol using sodium bis(2-methoxyethoxy) ahminmmydride.

[0235] In an oven dried, nitrogen-flushed nask sealed with a rubber septum and containing
 bis(2-methoxyethoxy)aluminumhydride (CAS \# 22722-98-1) in toluene. The flask is then submerged in an ice bath and stirred via an extemal magnetic stirrer and $166 \mathrm{~g}(0.691 \mathrm{~mol})$ of methyl (Z)-tetradec-9-enoate, prepared through the process detaled in Example 6, was slowly added. The resulting mixture is stired at ice-bath temperature for one hour and then brought to ambient temperature and stirred for an additional hour. The reaction mixture was then quenched with 10 mL deionized water and acidified with $15 \mathrm{w} / \mathrm{w} \%$ aqueous sulfuric acid until the pH of the aqueous layer was 4 . The obtained slury was filtered through diatomaceous earth and the filter cake was rinsed with $2 \times 150 \mathrm{~mL}$ of toluene. The two phases of the mother liquor were separated. The aqueous layer was washed with additional 300 mL of toluene. The combined organic phases were washed with 1500 mL deionized water. All volatile components were removed by in vacuo and the product dried via azeotropic distillation with additional toluene to yield $144 \mathrm{~g}(0.678 \mathrm{~mol}, 98 \%$ yield $)$.

Example 8. Synthesis of (Z)-tetradec-9-en-1-yl acetate through esterification of (Z) -

 tetradec 9 -en- $1-0$ to with acetic anhydride.[0236] In an oven dried, nitrogen-flushed flask sealed with a rubber septum and containing a magnetic stir bar was added $144 \mathrm{~g}(0.678 \mathrm{~mol})$ of (Z)-tetradec- 9 -en- 1 -ol, prepared through the method detailed in Example $7,75.9 \mathrm{~g}$ of acetic anhydride (0.743 mol) and 5.50 g of sodium acetate ($0.067 \mathrm{~mol}, 0.1 \mathrm{eq}$). The reaction mixture was then heated to $60^{\circ} \mathrm{C}$ for one hour, cooled and then washed consecutively with water and a sodium carbonate solution, yielding $160 \mathrm{~g}(0.629 \mathrm{~mol}, 92 \%$ yield $)$ of (2)-tetradec- $9-\mathrm{en}-1-\mathrm{yl}$ acetate as a colorless liquid.

Example 9. Acetvlation of 7-octen-1-ol with acetic anhydride.

[0237] 7 -octen-1-ol ($46.49 \mathrm{~g}, 363 \mathrm{mmol}$), first purified via vacuum distilation ($72{ }^{\circ} \mathrm{C} / 8$ mbar), was charged into a three-necked, round-bottomed flask equipped with a thermometer, a reflux condenser and a magnetic stirrer bar. The top of the condenser was connected to a Schlenk line and the whole apparatus was flushed with nitrogen. Acetic anhydride (44.29 g , 434 mmol) and anhydrous sodium acetate ($3.25 \mathrm{~g}, 39.7 \mathrm{mmol}$) were added to the flask The mixture was stired at $68^{\circ} \mathrm{C}$ for 4 hours. GC showed complete conversion. 200 mL of DCM was added to the reaction mixture and mixed with water (100 mL). $\mathrm{NaHCO}_{3}(25 \mathrm{~g})$ was carefully and portion-wise added to adjust the pH of the aqueous phase to 6 . The organic phase was separated and extracted with saturated solution of NaHCO_{3} ($\mathrm{pH} \sim 8-9$) then with 100 mL . of water ($\mathrm{pH} \sim 7$). The separated DCM fraction was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(60 \mathrm{~g}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(6 \mathrm{~g})$ for one night. Organic phase was collected filtered, solid was washed with DCM and hexane. Volatiles were removed on rotary evaporator and the crude product further dried at $60^{\circ} \mathrm{C} / 10 \mathrm{mbar}$ for 4 hours. The material was then vacuum distilled a ($79-80$ $\left.{ }^{\circ} \mathrm{C} / 10 \mathrm{mbar}\right)$ to yield $51.53 \mathrm{~g}(83 \%$ yield $)$ of a colonless liquid was obtained.

Example 10. Cross-metathesis of oct-7-en-1-yl acetate with hex-1-ene.

[0238] In a nitrogen-filled glovebox, a 20 mL scintillation vial was charged with a magnetic stir bar, 1.315 g of oct-7-en-1-yl acetate (CAS \# $5048-35-1$) and finally 0.685 g of hex-1-ene (1.05 equivalents). The vial was then closed with a perforated septum. The feedstock was treated with $69 \mu \mathrm{~L}$ of a $25 \mathrm{wt} \%$ solution of triethylaluminum in toluene (14.4 $\mathrm{mg} \mathrm{AlEt}{ }_{3}, 0.720 \mathrm{wt} \%, 0.803 \mathrm{~mol} \%$) and the mixture stirred via an external magnetic stirrer at room temperature for four hours. To the mixture was then added $0.002 \mathrm{~mol} \%(0.35 \mathrm{mg}$, $0.0177 \mathrm{wt} \%$) of tungsten [(R$)-3,3^{\prime}$-dibromo-2'-[I(1,1 -dimethylethyl)dimethylsilyl]oxy]-5,5', $6,6,7,7,8,8^{\prime}$-octahydro [1, 1-binaphthalen]-2-olato-kO[12,6-dichlorobenzenaminato(2-)-kN](2, 5-dimethyl-1H-pyrrol-1-yl) (2-methoxyphenyl)methylene\}-, (T-4)- (CAS \# 1817807-15-0) as a solution in benzene. At the time after the additional of catalyst specified in the table below, an aliquot of the reaction mixture was removed from the glovebox and analyzed by GCMS/FID. The results of the GC-MS/FID analysis of these samples is presented in the table below:

Time Aitcr Catalyst Addition (h)	Approximate Conversion of Qct-7-en-1-yl Acetate to Bodec-7-en-1-yl Acetate (\%)	Approximate (2)-Bodec-7-en-1-yl Acetate Content (\%)
1	34	97
4	37	97
6	38	97
24	38	97

Example 11. Cross-metathesis of oct-7-en-1-yl acetate with hex-1-ene.

[6239] Prior to conducting the procedure below, the oct-7-en-1-yl acetate was further purified through a second vacumm distilation to remove additional catalyst deactivating impurities. In a nitrogen-filed glovebox, a 20 mL scintillation vial was charged with a magnetic stir bar, 1.338 g of oct-7-en-1-yl acetate (CAS \# 5048-35-1) and finally 0.662 g of hex-l-ene. The vial was then closed with a perforated septum. The feedstock was treated with $7.4 \mu \mathrm{~L}$ of a $25 \mathrm{wt} \%$ solution of triethylaluminum in toluene $(1.54 \mathrm{mg}$ AlEt, 0.0769 $\mathrm{wt} \%, 0.0857 \mathrm{~mol} \%$) and the mixture stimed via an extemal magnetic stirrer at room temperature for four hours. To the mixture was then added $0.002 \mathrm{~mol} \%$ ($0.35 \mathrm{mg}, 0.0177$ wt\%) of tungsten [(IR)-3,3'-dibromo-2'-[[(1, 1-dimethylethyl)dimethylsilyl]oxy]-5,5',6,6,7,7', 8,8 -octahy dro [1, '-binaphthalen]-2-olato-kO][2,6-dichlorobenzenaminato(2-)-kN](2,5-dimethyl-1H-pyrrol-1-yl) (2-methoxyphenyl)methylenel-, (T-4)- (CAS \# 1817807-15-0) was added as a solution in benzene. At the time after the additional of catalyst specified in the table below, an aliquot of the reaction mixture was removed from the glovebox and analyzed by GC-MS/FID. The results of the GC-MS/FID analysis of these samples is presented in the table below

Time After Catalyst Addition (h)	Approximate Conversion of Oct-7-en-1-y Acetate to Bodec-7-en-1-yl Acetate (\%)	Approximate (Z)-Dodec-7-en-1-yl Acetate Content (\%)
1	47	97
2	62	97
4	72	96
8	80	96
72	83	96

Example 12. Reduction of methyl dec-9-enoate to dec-9-en-1-ol using sodium bis(2methoxyethoxy aluminumhydride.

[0240] In an oven dried, nitrogen-flushed flask sealed with a rubber septum and containing a magnetic stir bar was added 96.0 mL (353 mmol ' AlH_{2} ', 1.3 eq .) of a 70% solution of sodium bis(2-methoxyethoxy)aluminumhydride (CAS \#22722-98-1) in toluene. The flask is then submerged in an ice bath and stired via an extemal magnetic stirrer and 50 g (271 mmol) of methyl dec-9-enoate was slowly added so as to maintain the temperature of the reaction mixture below $15^{\circ} \mathrm{C}$. The resulting mixture is stirred at ice-bath temperature for one hour and then brought to ambient temperature and stired for an additional hour. The reaction mixture was then quenched with 10 mL deionized water and acidifed with $15 \mathrm{w} / \mathrm{w} \%$ aqueous sulfuric acid until the pH of the aqueous layer was 4 . The obtained slurry was filtered through diatomaceous earth and the filter cake was rinsed with $2 \times 50 \mathrm{~mL}$ of toluene. The two phases of the mother liquor were separated. The aqueous layer was washed with additional 100 mL of toluene. The combined organic phases were washed with 50 mL deionized water. All volatile components were removed by in vacuo and the product dried via azeotropic distillation with additional toluene to yield 42.9 g of a colorless oil. This oil was later determined to contain $96.0 \mathrm{wt} \%$ of dec-9-en-ol (97.1% yield) by GC-MS/FD analysis.

Example 13. Acetviation of 9-decen-1-ol.

[0241] 9-Decen-1-ol ($50.0 \mathrm{~g}, 320 \mathrm{mmol}$), prepared through the method of Example 13, was charged into a three-necked, round-botomed flask equipped with a thermometer, a reflux condenser and a magnetic stirrer bar. The top of the condenser was comected to a Schlenk line and the whole apparatus was flushed with nitrogen. Acetic anhydride ($33 \mathrm{~mL}, 352 \mathrm{mmol}$, 1.1 eq .) and anhydrous sodium acetate $2.6 \mathrm{~g}, 32 \mathrm{mmol}$) were added to the flask. The mixture was stirred at $68{ }^{\circ} \mathrm{C}$ for 4 hours. GC showed complete conversion. 100 mL of DCM was added to the reaction mixture and mixed with water (100 mL). $\mathrm{NaHCO}_{3}(25 \mathrm{~g})$ was carefully and portion-wise added to adjust the pH of the aqueous phase to 6 . The organic phase was separated and extracted with saturated solution of $\mathrm{NaHCO}_{3}(\mathrm{pH} \sim 8-9)$ then with 100 mL of water ($\mathrm{pH} \sim 7$). The separated DCM fraction was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(60 \mathrm{~g})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(6 \mathrm{~g})$ for one night. Organic phase was collected filtered, solid was washed with DCM and hexane. All volatile components were removed on rotary evaporator to yield 63.6 g of a colorless oil. This oil was later determined to contain $95.8 \mathrm{wt} \%$ of dec-9-en-ol $(95.6 \%$ yield).

Example 14. Cross-metathesis of dec-9-en-1-yl acetate with hex-1-ene.

[0242] In a nitrogen-filled glovebox, a 20 mL scintilation vial was charged with a magnetic stir bar, 1.404 g of dec-9-en-1-yl aceate prepared through the method of Example 14 and finally 0.596 g of hex-1-ene. The vial was then closed with a perforated septum. The feedstock was treated with $42.7 \mu \mathrm{~L}$ of a $25 \mathrm{wt} \%$ solution of triethylaluminum in toluene 0.9 mg AlEt $t_{3}, 0.444 \mathrm{wt} \%, 0.541 \mathrm{~mol} \%$) and the mixture stirred via an external magnetic stirrer at room temperature for four hours. To the mixture was then added $0.002 \mathrm{~mol} \%(0.32 \mathrm{mg}$, $0.0159 \mathrm{wt} \%$) of tungsten [(1R)-3,3'-dibromo-2'-[I(1,1-dimethylethyl)dimethylsilyl]oxy]-5,5', $6,6,7,7^{\prime}, 8,8^{\prime}$-octahydro 1,1 -binaphthalen]-2-olato- $\mathrm{kO}[2,6$-dichlorobenzenaminato($2-\mathrm{-kN}](2$, 5-dimethyl-1H-pyrrol-1-y)[(2-methoxyphenyl)methylene]-, (T-4)- (CAS \# 1817807-15-0) as a solution in benzene. At the time after the additional of catalyst specified in the table below, an aliquot of the reaction mixture was removed from the glovebox and analyzed by GCMS/FID. The GC-MS/FDD data indicated that 23.9% of the starting dec-9-en-1-yl acetate was converted to tetradec-9-en-1-yl acetate and in an E/Z ratio of 3/97.

Example 15. Effect of metathesis catalyst loading on the 2 -selective cross-metathesis of methyl dec-9-enoate and hex-1-ene.

[0243] In a nitrogen-filed glovebox, five 30 mL scintillation wial wer charged with a magnetic stir bar, 2.70 g of an equimolar mixture of methyl dec-9-enoate and hex-l-ene. The vial was then closed with a perforated septum. The feedstock was treated with $11 \mu \mathrm{~L}$ of a 25 $\mathrm{wt} \%$ solution of triethylaluminum in toluene ($2.3 \mathrm{mg} \mathrm{AlEt}_{3}, 0.085 \mathrm{wt} \%, 0.1 \mathrm{~mol} \%$) and the mixture stirred via an extemal magnetic stirrer at room temperature for 18 hours. To the mixture was added the amount of tungsten [(R)-3, 3^{3}-dibromo-2'-[I(1,1-dimethylethy)) dimethylsilyl]oxy]-5,5',6,6,7,7, 8, 8'-octahydro[1, 1^{\prime}-binaphthalen]-2-olato-k0][2,6-dichlorobenzenaminato(2-)-kN](2,5-dimethyl-1H-pyrrol-1-yl)[(2-methoxyphenyl)methylene] -, (T-4)- (CAS \# 1817807-15-0) listed in the table below as a solution in benzene. At the time after the addition of catalyst specified in the table below, an aliquot of the reaction mixture was removed from the glovebox and analyzed by GC-MS/FID to determine '9-DAME Conversion (\%) and 'Methyl (Z)-tetradec-9-enoate Selectivity (\%) as described in Example 5.

Catalyst Loadings ($\mathrm{mol} \%$)	Time (h)	Methyl Dec-9-enoate Conversion (\%)	Metbyl (Z)- Teradec-9emoate Selectivity (\%)
0.0005	1	31	99
	4	58	98
	8	59	97
0.001	1	38	98
	4	76	97
	8	76	96
0.0015	1	54	98
	4	72	95
	8	75	94
0.002	1	66	98
	4	82	93
	8	84	90
0.0025	1	72	97
	4	84	91
	8	88	88

Example 16. Cross-metathesis of oct-7-en-1-yl acetate with oct-1-ene.

[0244] Using the method of Example 1, an equimolar amount of oct-7-en- $1-y \mid$ acetate and oct-1-ene are charged into a 20 mL glass scintillation vial equipped with a magnetic stir bar inside of a nitrogen-filled glovebox. The mixture is then stirred by means of an extemal hotplate stirrer and is then treated with an alkyl aluminum reagent to reduce levels of moisture, peroxide and protic impurities as described in US 9,388,097. After sufficient time to ensure the removal of catalyst deactivating impurities to the desired level, the temperature of the substrate mixture is raised to the desired level and a sufficient quantity of a Z-selective group 6 metathesis catalyst to generate the desired level of 'Methyl Dec-9-enoate Conversion (\%)', as defined in Example 5, is added to the pretreated substrates. After the required amount of time, the vial is removed from the glovebox and the reaction mixture is analyzed by GC-MS. The GC-MS data indicates that (Z)-tetradec-7-en-1-yl acetate is formed in high yield.

Example 17. Cross-metathesis of oct-7-en-1-vl acetate with but-1-ene.

[0245] Using the method of Example 1, an equimolar amount of oct-7-en-1-yl acetate and but-1-ene are charged into a glass pressure vessel equipped with a magnetic stir bar. The mixture is then stirred by means of an external hotplate stirrer and treated with an alkyl
aluminum reagent to reduce levels of moisture, peroxide and protic impurities as described in US $9,388,097$. After sufficient time to ensure the removal of catalyst deactivating impurities to the desired level, the temperature of the substrate mixture is raised to the appropriate temperature and a sufficient quantity of a Z-selective group 6 metathesis catalyst to generate the desired level of 'Methyl Dec-9-enoate Conversion (\%)', as defined in Example 5, is added to the pretreated substrates. After the required amount of time, the vial is removed from the glovebor and the reaction mixture is analyzed by GC-MS. The GC-MS data indicates that (Z)-dec-7-en-1-yl acetate is formed in high yield.

Example 18. Cross-metathesis of dec-9-ern-1-ri acetate with oct-1-ene.

[0246] Using the method of Example 1, an equimolar amount of dec-9-en-1-yl acetate and oct-1-ene are charged into a 20 mL glass scintillation vial equipped with a magnetic stir bar inside of a nitrogen-filled glovebox. The mixture is then stirred by means of an external hotplate stirrer and is then treated with an alkyl aluminum reagent to reduce levels of moisture, peroxide and protic impurities as described in US 9,388,097. After sufficient time to ensure the removal of catalyst deactivating impurities to the desired level, the temperature of the substrate mixture is raised to the desired level and a sufficient quantity of a Z-selective group 6 metathesis catalyst to generate the desired level of 'Methyl Dec-9-enoate Conversion (\%)', as defined in Example 5, is added to the pretreated substrates. After the required amount of time, the vial is removed from the glovebox and the reaction mixture is analyzed by GC-MS. The GC-MS data indicates that (Z)-hexadec-9-en-1-yl acetate is formed in high yield.

Example 19. Cross-metathesis of dec-9-en-1-ylacetate with but-1-ene.

[0247] Using the method of Example 1, an equimolar amount of dec-9-en-1-yl acetate and but-1-ene are charged into a glass pressure vessel equipped with a magnetic stir bar. The mixture is then stirred by means of an external hotplate stirrer and treated with an alkyl aluminum reagent to reduce levels of moisture, peroxide and protic impurities as described in US $9,388,097$. After sufficient time to ensure the removal of catalyst deactivating impurities to the desired level, the temperature of the substrate mixture is raised to the desired level and a sufficient quantity of a Z-selective group 6 metathesis catalyst to generate the desired level of 'Methyl Dec-9-enoate Conversion (\%)', as defined in Example 5, is added to the pretreated substrates. After the required amount of time, the vial is removed from the glovebox and the
reaction mixture is analyzed by GC-MS. The GC-MS data indicates that (Z)-dodec-9-en-1-yl acetate is formed in high yield.

V. EXEMPLARY EMBODIMENTS

[0248] Exemplary embodiments provided in accordance with the presently disclosed subject matter include, but are not limited to, the claims and the following embodiments:

1. A method for synthesizing a fatty olefin derivative, the method comprising:
a) contacting an olefin according to Formula

with a metathesis reaction partner according to Formula IIb

in the presence of a metathesis catalyst under conditions sufficient to form a metathesis product according to Formula Imb :

(IIb), and
b) converting the metathesis product to the fatty olefin derivative; wherein
each R^{1} is independently selected from the group consisting of $\mathrm{H}, \mathrm{C}_{1-18}$ alkyl,
and C_{2-18} alkenyl,
$\mathrm{R}^{2 b}$ is C_{1-8} alkyl;
subscript y is an integer ranging from 0 to 17 ; and
subscript z is an integer ranging from 0 to 17 .
2. The method of embodiment 1 , wherein converting the metathesis product to the fatty olefin derivative comprises reducing the metathesis product to form an alkenol according to Formula Vb:

(Vb).
3. The method of embodiment 2, wherein the alkenol is the fatty olefin derivative
4. The method of embodiment 2, wherein conventing the metathesis product to the fatty olefin derivative further comprises acylating the alkenol, thereby forming a fatty olefin derivative according to Formula VIb:

wherein $\mathrm{R}^{2 c}$ is $\mathrm{C}_{1-6} \mathrm{acyl}$.
5. The method of any one of embodiments $1-3$, wherein R^{1} is $H, R^{2 b}$ is methyl, subscript y is 7, and subscript z is 3 .
6. The method of embodiment 4, wherein R^{1} is H, R^{26} is methyl, subscript y is 7 , subscript z is 3 , and $R^{2 c}$ is acetyl.
7. The method of embodiment 2, wherein converting the metathesis product to the fatty olefin derivative further comprises oxidizing the alkenol, thereby forming a fatty olefin derivative according to Formula VIb:

(VIB).
8. The method of embodiment 1, wherein converting the metathesis product to the fatty olefin derivative further comprises reducing the metathesis product, thereby foming a fatty olefin derivative according to Fommula VIb:

(VIIb).
9. The method of embodiment 7 or embodiment 8 , wherein R^{1} is $\mathrm{H}, \mathrm{R}^{20}$ is methyl, subscript y is 7 , and subscript z is 3 .
10. The method of any one of embodiments 1-9, wherein the olefin bas a structure according to Formula la:

(Ia).
11. The method of embodiment 10 , wherein subscript z is 3 .
12. The method of any one of embodiments 1-11, wherein the metathesis product comprises a Z olefin.
13. The method of embodiment 12, wherein at least about 80% of the olefin is a Z olefn.
14. The method of embodiment 12 , wherein at least about 90% of the olefin is a Z olefin
15. The method of any one of embodiments $12-14$, wherein the metathesis catalyst is a Z-selective molybdenum catalyst or a Z-selective tungsten catalyst.
16. The method of embodiment 15 , wherein the metathesis catalyst has a structure according to Formula 2 :

(2),
wherein:
M is Mo or W;
$R^{3 a}$ is selected from the group consisting of aryl, heteroaryl, alkyl, heteroalkyl, cycloalkyl, and heterocycloalkyl, each of which is optionally substituted;
$R^{4 a}$ and $\mathrm{R}^{5 a}$ are independently selected from the group consisting of hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted heteroalkyl, optionally substituted heteroalkenyl, optionally substituted aryl, and optionally substituted heteroaryl;
$\mathrm{R}^{7 \mathrm{a}}$ is selected from the group consisting of alkyl, alkoxy, heteroalkyl, aryl, aryloxy, heteroary, silylalky, and silyloxy, each of which is optionally substituted; and
$R^{6 a}$ is $R^{8 a}-\mathrm{X}$-, wherein
X is O or S and $R^{3 a}$ is optionally substituted aryl; or
X is O and $\mathrm{R}^{\text {8a }}$ is $\mathrm{SiR}^{\text {Pa }} \mathrm{R}^{10 a} \mathrm{R}^{\text {12a }}$ or $\mathrm{CR}^{12 a} \mathrm{R}^{133} \mathrm{R}^{14 a}$, wherein $\mathrm{R}^{\text {9a }}, \mathrm{R}^{10 a}, \mathrm{R}^{11 a}, \mathrm{R}^{12 a}$, $R^{13 a}$, and $R^{14 a}$ are independently selected from the group consisting of optionally substituted alkyl and optionally substituted pheny; or
$\mathrm{R}^{6 a}$ and $\mathrm{R}^{7 / 2}$ are linked together and are bonded to M via oxygen.
17. The method of embodiment 16, wherein:
$R^{7 a}$ is selected from the group consisting of alkyl, alkoxy, heteroalky, aryl, aryloxy, and heteroaryl, each of which is optionally substituted; and
X is O or S and R^{82} is optionally substituted aryl; or

18. The method of embodiment 16 , wherein
R^{33} is selected from the group consisting of 2,6 -dimethylphenyl; 2,6diisopropylphenyl; 26 -dichlorophenyl; and adamant- $1-\mathrm{yl}$;
$\mathrm{R}^{4 \mathrm{a}}$ is selected from the group consisting of $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ and $\left.-\mathrm{CCH}_{3}\right)_{3}$,
$R^{5 \mathrm{a}}$ is H ;
$R^{7 a}$ is selected from the group consisting of pyrrol-1-yl 2,5 -dimethyl-pyrrol-1yl; triphenylsilyloxy; triisopropylsilyloxy; 2-phenyl-1,1,1,3,3,3-hexafluoro-prop-2-yloxy; 2 -methyl-1,1,1,3,3,3-hexafluoro-prop-2-yloxy; 9-phenyl-fluorene-9-yloxy; 2,6-diphenylphenoxy; and t-butyloxy; and
$\mathrm{R}^{6 \mathrm{a}}$ is $\mathrm{R}^{82}-\mathrm{X}$-, wherein
$\mathrm{X}=\mathrm{O}$ and
$R^{8 a}$ is phenyl which bears two substituents in the ortho positions with respect to O, or which bears at least three substituents, from which two substituents are in the ortho positions with respect to O and one substituent is in the para position with respect to O ; or
$R^{8 a}$ is selected from the group consisting of optionally substituted 8 -(naphthalene-1-yl)-naphthalene-l-yl; optionally substituted 8 -phenlynaphthalene- $1-\mathrm{yl}$; optionally substituted quinoline-8-y; triphenylsily; triisopropylsilyl; triphenylmethyl; tri(4-methylphenyl)methyl; 9-phenyl-fluorene-9-yl; 2-phenyl-1,1,1,3,3,3-hexafluoro-prop-2-y1; 2-methyl-1,1,1,3,3,3-hexafluoro-prop-2-y ; and t-butyl.
19. The method of embodiment 18, wherein:
$\mathrm{R}^{7 \mathrm{a}}$ is selected from the group consisting of pyrrol-1-yl; 2,5-dimethyl-pyrrol-1yl; and
$R^{8 a}$ is phenyl which bears two substituents in the ortho positions with respect to 0 , or which bears at least three substituents, from which two substituents are in the ortho positions with respect to O and one substituent is in the para position with respect to O , or
R^{sa} is selected from the group consisting of optionally substituted
8 -(naphthalene-1-yl)-naphthalene-1-yl and optionally substituted 8 -phenlynaphthalene-1-yl.
20. The method of embodiment 16 , wherein the metathesis catalyst has a structure according to Formula 2 a:

wherein
$\mathrm{R}^{3 \mathrm{a}}$ is aryl, heteroaryl, alkyl, or cycloalkyl, each of which is optionally substituted;
$\mathrm{R}^{7 a}$ is pyrrolyl, imidazolyl, indolyl, pyrazolyl, azaindolyl, or indazolyl, each of which is optionally substituted,
R^{sa} is optionally substituted aryl;
$R^{5 a}$ is a hydrogen atom, alky, or alkoxy;
$\mathrm{R}^{4 b}$ is a hydrogen atom, $-\mathrm{O}-\left(\mathrm{C}_{1-6}\right.$ alkyl), $-\mathrm{CH}_{2}-\mathrm{O}-\left(\mathrm{C}_{1-6}\right.$ alky $)$, heteroalkoxy, or $-\mathrm{N}\left(\mathrm{C}_{1-6} \text { alky }\right)_{2}$; and
R^{40} and $\mathrm{R}^{4 \mathrm{~d}}$ are independently a hydrogen atom, C_{16} alkyl, C_{1-6} alkoxy, a halogen atom, $-\mathrm{NO}_{2}$, an amide, or a sulfonamide.
21. The method of embodiment 20, wherein:
$\mathrm{R}^{7 / 2}$ is pyrrolyl, imidazolyl, pyrazolyl, azaindolyl, or indazolyl, each of which is optionally substituted; and
$R^{5 a}$ is a hydrogen atom.
22. The method of embodiment 20 , wherein $R^{3 a}$ is phenyl, 2,6dichlorophenyl, 2,6-dimethylphenyl, 2,6-disopropylphenyl, 2-frifuoromethylpheny, pentafluorophenyl, tert-butyl, or 1-adamantyl.
23. The method of embodiment 20 or embodiment 22 , wherem R^{83} is

24. The method of any one of embodiments $20-23$, wherein $R^{4 b}$ is methoxy, $R^{4 c}$ is hydrogen, and $R^{4 d}$ is hydrogen.
25. The method of embodiment 15, wherein the metathesis catalyst is selected from the group consisting of

26. The method of embodiment 25 , wherein the metathesis catalyst is

27. The method of embodiment 25 , wherein the metathesis catalyst is

28. The method of any one of embodiments 15-27, wherein the catalyst is present in an amount less than $0.01 \mathrm{~mol} \%$ with respect to the olefin or to the metathesis reaction partner.
29. The method of any one of embodiments 1-10, wherein the metathesis product comprises an E olefin.
30. The method of embodiment 29 , wherein greater than about 85% of the olefn is an E olefin.
31. The method of embodiment 29 , wherein at least about 90% of the olefin is an E olefin.
32. The method of any one of embodiments $29-31$, wherein the metathesis catalyst is an E-selective ruthenium catalyst.
33. The method of any one of embodiments 1-32, wherein the molar ratio of the olefin to the metathesis reaction parmer ranges from about 1:1 to about 5:1.
34. The method of any one of embodiments 33 , wherein the molar ratio of the olefin to the metathesis reaction partner ranges from about $2: 1$ to about $3: 1$
35. The method of any one of embodiments 1-34, wherein the metathesis reaction partner is derived from a natural oil.
36. The method of embodiment 35 , wherein the natural oll is selected from the group consisting of canola oil, rapeseed oil, coconut oil, com oil, cottonseed oil, olive oil,
palm oil, peanut oil, saffower oll, sesame oil, soybean oil, sumflower oil, linseed oil, palm kernel oil, tung oil, jatropha oil, jojoba oil, mustard oil, pennycress oil, camelina oil, castor oil, and combinations thereof.
37. The method of embodiment 35 or 36 , wherein the metathesis reaction partner comprises one or more catalyst-poisoning contaminants.
38. The method of embodiment 37, further comprising treating the metathesis reaction partner with a metal alkyl compound under conditions sufficient to reduce the concentration of at least one of the catalyst-poisoning contaminants, wherein the treating is conducted prior to contacting the olefin with the metathesis reaction partner.
39. The method of embodiment 1 , wherein
the olefin accoring to Formula I is a linear $\mathrm{C}_{3}-\mathrm{C}_{12}$ alpha olefin,
the metathesis reaction parmer according to Formula IIb is a Δ^{9}-unsaturated fatty acid alkyl ester,
the metathesis catalyst is a Z-selective metathesis catalyst, and
the metahesis product according to Formula IIb is a
$\mathrm{C}_{11}-\mathrm{C}_{20}(Z)$-9-unsaturated faty acid alkyl ester.
40. The method of embodiment 39, wherein converting the metathesis product to the fatty olefin derivative comprises contacting the $\mathrm{C}_{11}-\mathrm{C}_{20}(Z)$-9-unsaturated fatty acid alkyl ester with a reducing agent under conditions sufficient to form a $\mathrm{C}_{1}-\mathrm{C}_{2 n}$ (Z)-9-fatty alcohol.
41. The method of embodiment 40, wherein the reducing agent is sodium bis(2-methoxyethoxy)aluminum hydride.
42. The method of embodiment 40 , wherein converting the metathesis product to the fatty olefin derivative further comprises contacting the $\mathrm{C}_{11}-\mathrm{C}_{20}$ (Z)-9-faty alcohol with an acylating agent in the presence of a base under conditions sufficient to form an acetate ester of the $\mathrm{C}_{11}-\mathrm{C}_{20}(Z)-9$-faty alcohol.
43. The method of enbodiment 42, wherein the acylating agent is acetic anhy dride.
44. The method of embodiment 40, wherein converting the metathesis product to the fatty olefin derivative further comprises oxidizing the $\mathrm{C}_{11}-\mathrm{C}_{20}$ (7)-9-fatty alcohol to form a $\mathrm{C}_{11}-\mathrm{C}_{20}(Z)$-9-alkenal
45. The method of embodiment 39, wherein converting the metathesis product to the fatty olefin derivative comprises contacting the $\mathbb{C}_{11}-\mathbb{C}_{20}(Z)$-9-fatty acid alkyl ester with a reducing agent wder conditions sufficient to form a $\mathrm{C}_{11}-\mathrm{C}_{20}(Z)$-9-alkenal.
46. The method of embodiment 45 , wherein the reducing agent is aminemodified sodium bis(2-methoxyethoxy)aluminumhydride
47. The method of embodiment 1, wherein:
the fatty acid derivative is (2)-tetradec-9-en-1-yl acetate;
the olefin according to Formula Is hex-1-ene,
the metathesis reaction parimer according to Formula Ilb is a Δ^{9}-unsaturated fatty acid alkyl ester,
the metathesis catalyst is a Z-selective metathesis catalyst, and
the metahesis product according to Formula IWb is an allyl ester of (Z) 9 -tetradec-9-enoate; and
wherein converting the metathesis product to the fatty olefin derivative comprises:
contacting the alkyl ester of (Z)-9-tetradec-9-enoate with a reducing agent under conditions sufficient to form (2)-tetradec-9-en-1-ol, and
acylating the (Z)-tetradec-9-en-1-ol to form the (Z)-tetradec-9-en-1-yl acetate.
48. The method of embodiment 47, wherein the metathesis reaction partner according to Formula IIb is methyl 9-decenoate and the metathesis product is methyl (Z)-tetradec-9-enoate
49. The method of embodiment 47, wherein the reducing agent is sodium bis(2 -methoxyethoxy) aluminumhydride.
50. The method of embodiment 47, wherein acylating the (Z)-tetradec-9-en-l-ol comprises contacting the (Z)-tetradec-9-en-1-ol with an acylating agent in the presence of a base under conditions sufficient to form (Z)-tetradec-9-en-1-yl acetate
51. The method of embodiment 50, wherein the acylating agent is acetic anhydride
52. The method of any one of embodimenis $47-51$, wherein the metathesis reaction partner according to Formula $11 b$ is methyl 9 -decenoate and the metathesis product is methyl (Z)-tetradec-9-enoate.
53. The method of embodiment 1, wherein:
the fatty acid derivative is (Z)-tetradec-9-enal,
the olefin according to Formula $\{$ is hex-1-ene,
the metathesis reaction parmer according to Formula Ib is a Δ^{9}-unsaturated fatty acid alkyl ester,
the metathesis catalyst is a Z-selective metathesis catalyst, and
the metathesis product according to Formula Π Inb is an alkyl ester of $(Z)-9$ -tetradec-9-enoate; and
wherein converting the metathesis product to the fatty olefin derivative comprises contacting the alkyl ester of (Z)-9-tetradec-9-enoate with a reducing agent under conditions sufficient to form the (Z)-tetradec-9-enal
54. The method of embodiment 53 , wherein the reducing agent is aminemodified sodium bis(2-methoxyethoxy) aluminumhy dride.
55. The method of embodiment 53 or embodiment 54 , wherein the Δ^{9} unsaturated fatty acid alkyl ester according to Formula IIg is methyl 9-decenoate and the metathesis product is methyl (Z)-tetradec-9-enoate.
56. The method of embodiment 1, wherein:
the fatty acid derivative is (Z)-tetradec-9-enal,
the olefin according to Formula is hex-1-ene,
the metathesis reaction parner according to Formula 1 b is a Δ^{9}-unsaturated fatty acid alkyl ester,
the metathesis catalyst is a Z-selective metathesis catalyst, and
the metathesis product according to Formula 1 Inb is an alkyl ester of (Z)-9-
tetradec-9-enoate; and
wherein converting the metathesis product to the fatty olefin derivative comprises
contacting the allyl ester of (Z)-9-tetradec-9-enoate with a reducing agent under conditions sufficient to form (Z)-tetradec-9-en-1-ol, and
oxidizing the (Z)-tetradec- 9 -en-1-ol to form the (Z)-tetradec-9-enal.
57. The method of embodiment 56 , wherein the reducing agent is sodium bis(2-methoxyethoxy)aluminumhydride.
58. The method of embodiment 56 or embodiment 57 , wherein the Δ^{9} unsaturated fatty acid alkyl ester according to Formula IIg is methyl 9 -decenoate and the metathesis product is methyl (Z)-tetradec-9-enoate
59. The method of any one of embodiments $39-58$, wherein the metathesis catalyst has a structure according to Formula 2a:

wherein:
M is Mo or W;
$R^{3 a}$ is aryl, heteroaryl, alkyl, or cycloalkyl, each of which is optionally
substituted;
$\mathrm{R}^{7 a}$ is pyrolyl, imidazolyl, indolyl, pyrazolyl, azaindolyl, or indazolyl, each of which is optionally substituted;
$R^{8 a}$ is optionally substituted aryl;
$R^{5 a}$ is a hydrogen atom, alkyl, or alkoxy;
R^{45} is a hy drogen atom, $-\mathrm{O}-\left(\mathrm{C}_{1-5}\right.$ alkyl), $\mathrm{CH}_{2}-\mathrm{O}-\left(\mathrm{C}_{\mathrm{i}-5}\right.$ alky $)$, heteroalkoxy, or $-\mathrm{N}\left(\mathrm{C}_{1-6} \text { alkyl }\right)_{2}$; and
$\mathrm{R}^{4 c}$ and $\mathrm{R}^{4 \mathrm{~d}}$ are independently a hydrogen atom, C_{1-6} alkyl, C_{1-6} alkoxy, a halogen atom, $-\mathrm{NO}_{2}$, an amide, or a sulfonamide.
60. The method of embodiment 59 , wherein the metathesis catalyst is selected from the group consisting of

61. A fatty olefin derivative synthesized according to the method of any one of embodiments 1-60.
62. The fatty olefin derivative of embodiment 61 , which is an insect pheromone.
63. A method for synthesizing a fatty olefin derivative according to Formula VIb:

the method comprising:
i) reducing an alkyl ester according to Formula Hb

to form an alkenol according to Formula VII

(VIII);
ii) acylating the alkenol to form an acylated alkenol according to Formula IX

iii) contacting the acylated akenol with an olefin according to Formula I

(I),
in the presence of a metathesis catalyst under conditions sufficient to form the fatty olefin derivative; wherein:
R^{1} is selected from the group consisting of $H, C_{1-1 s}$ alkyl, and C_{2-18} alkenyl;
$\mathrm{R}^{2 \mathrm{~b}}$ is C_{1-8} alkyl,
$\mathrm{R}^{2 c}$ is C_{1-6} acyl,
subscript y is an integer ranging from 0 to 17 ;
subscript z is an integer ranging from 0 to 17; and
the metathesis catalyst is a tungsten catalyst or a molybdenum catalyst.
64. The method of embodiment 63 , wherein R^{1} is $H, R^{2 b}$ is methyl, $R^{2 c}$ is acetyl, subscript y is 7 , and subscript z is 3 .
65. The method of embodiment 63 or embodiment 64 , wherein the metathesis product comprises an E olefin.
66. The method of embodiment 63 or embodiment 64 , wherein the metathesis product comprises a Z olefin.
67. The method of embodiment 66 , wherein the metathesis catalyst is a Z selective molybdenum catalyst or a Z-selective tungsten catalyst.
68. The method of embodiment 67, wherein the metathesis catalyst has a structure according to Formula 2 :

(2),
wherein:
M is Mo or W ;
$\mathrm{R}^{3 a}$ is selected from the group consisting of aryl, heteroaryl, alkyl, heteroalkyl, cycloalkyl, and heterocycloalkyl, each of which is optionally substituted;
$\mathrm{R}^{4 \mathrm{a}}$ and $\mathrm{K}^{5 a}$ are independently selected from the group consisting of hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted heteroalkyl, optionally substituted heteroalkenyl, optionally substituted aryl, and optionally substituted heteroary;
$\mathrm{R}^{7 a}$ is selected from the group consisting of alkyl, alkoxy, heteroalkyl, aryl, aryloxy, heteroary, silylalkyl, and silyloxy, each of which is optionally substituted; and
$R^{6 a}$ is $R^{8 i}-X$-, wherein
X is O or S and R^{32} is optionally substututed aryl; or
X is O and R^{Sa} is $\mathrm{SiR}^{9 \mathrm{a}} \mathrm{R}^{102} \mathrm{R}^{11 a}$ or $\mathrm{CR}^{12 a} \mathrm{R}^{133} \mathrm{R}^{14 a}$, wherein $\mathrm{R}^{9 a}, \mathrm{R}^{10 a}, \mathrm{R}^{11 a}, \mathrm{R}^{123}$, $R^{13 a}$, and $R^{14 a}$ are independently selected from the group consisting of optionally substituted alkyl and optionally substituted pheny; or
$R^{6 a}$ and $R^{7 a}$ are linked together and are bonded to M via oxygen.
69. The method of embodiment 68, wherein the metathesis catalyst has a structure according to Formula 2 a :

wherein:
$R^{\text {3a }}$ is aryl, heteroaryl, alkyl, or cycloalkyl, each of which is optionally
substituted;
$\mathrm{R}^{7 a}$ is pyrrolyl, imidazolyl, indolyl, pyrazolyl, azaindolyl, or indazolyl, each of which is optionally substituted,
$\mathrm{R}^{8 \mathrm{a}}$ is optionally substituted aryl;
$R^{5 a}$ is a hydrogen atom, alkyl, or alkoxy;
$\mathrm{R}^{4 b}$ is a hydrogen atom, $-\mathrm{O}-\left(\mathrm{C}_{1-6}\right.$ alkyl $),-\mathrm{CH}_{2}-\mathrm{O}-\left(\mathrm{C}_{1-6}\right.$ alkyl), heteroalkoxy, or $-\mathrm{N}\left(\mathrm{C}_{1-6} \mathrm{alky}\right)_{2}$; and
$\mathrm{R}^{4 c}$ and $\mathrm{R}^{4 \mathrm{~d}}$ are independently a hydrogen atom, C_{1-6} alkyl, C_{1-6} alkoxy, a halogen atom, $-\mathrm{NO}_{2}$, an amide, or a sulfonamide.
70. The method of embodiment 68 or embodiment 69 , wherein the metathesis catalyst is selected from the group consisting of

[0249] Although the foregoing has been described in some detail by way of illustration and example for purposes of clarity and understanding, one of skill in the art will appreciate that certain changes and modfications can be practiced within the scope of the appended claims. All publications, patents, patent applications, and sequence accession numbers cited herein are hereby incorporated by reference in their entirety for all purposes.

WHATIS CLAIMEDIS:

1. A method for synthesizing a fatty olefin derivative, the method comprising
a) contacting an olefin according to Formula

(I),
with a metathesis reaction partuer according to Formula Ib
 (Ib),
in the presence of a metathesis catalyst under conditions sufficient to form a metathesis product according to Fommula IIb:

(IIIb) and
b) converting the metathesis product to the fatty olefin derivative;
wherein:
each R^{1} is independently selected from the group consisting of $\mathrm{H}, \mathrm{C}_{1-1 \mathrm{~s}}$ alkyl, and C_{2-18} alkenyl;
$\mathrm{R}^{2 b}$ is $\mathrm{C}_{1-\mathrm{g}}$ alkyl;
subscript y is an integer ranging from 0 to 17 ; and
subscript z is an integer ranging from 0 to 17.
2. The method of claim 1, wherein converting the metathesis product to the fatty olefin derivative comprises reducing the metathesis product to form an akenol according to Formula Vb :

(Vb)
3. The metbod of claim 2, wherein the alkenol is the fatty olefin derivative
4. The method of claim 2, wherein converting the metathesis product to the fatty olefin derivative futher comprises acylating the alkenol, thereby forming a fatty olefin derivative according to Formula VIb:
 (VIb),
wherein $\mathrm{R}^{2 c}$ is $\mathrm{C}_{1-6} \mathrm{acy}$.
5. The method of claim 1, wherein R^{1} is $\mathrm{H}, \mathrm{R}^{25}$ is methyl, subscript y is 7, and subscript z is 3 .
6. The method of claim 4, wherein R^{1} is $\mathrm{H}, \mathrm{R}^{2 b}$ is methyl, subscript y is 7 , subscript z is 3 , and $R^{2 c}$ is acetyl.
7. The method of claim 2 , wherein converting the metathesis product to the fatty olefin derivative further comprises oxidizing the alkenol, thereby forming a faty olefin derivative according to Formula VIIb:

(VIb)
8. The method of claim 1, wherein converting the metathesis product to the fatty olefin derivative further comprises reducing the metathesis product, thereby forming a fatty olefin derivative according to Formula VIIb:

(VIIb).
9. The method of claim 7, wherein R^{1} is $\mathrm{H}, \mathrm{R}^{25}$ is methyl, subscript y is 7 , and subscript z is 3 .
10. The method of claim 1, wherein the olefin has a structure according to Formula la:

(Ia).
11. The method of claim 10, wherein subscript z is 3 .
12. The method of claim 1, wherein the metathesis product comprises a Z olefin.
13. The method of claim 12 , wherein at least about 80% of the olefin is a Z olefn.
14. The method of claim 12, wherein at least about 90% of the olefin is a Z olefin.
15. The method of claim 12 , wherein the metathesis catalyst is a Z. selective moly bdenum catalyst or a Z-selective tungsten catalyst.
16. The method of claim 15 , wherein the metathesis catalyst has a structure according to Formula 2 :

(2),
wherein:
M is Mo or W ;
$\mathrm{R}^{3 a}$ is selected from the group consisting of aryl, heteroaryl, alkyl, heteroalkyl, cycloalkyl, and heterocycloakyl, each of which is optionally substituted;
$\mathrm{R}^{4 a}$ and $\mathrm{K}^{5 a}$ are independently selected from the group consisting of hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted heteroalkyl, optionally substituted heteroalkenyl, optionally substituted aryl, and optionally substituted heteroayl;
$\mathrm{R}^{7 a}$ is selected from the group consisting of alkyl, alkoxy, heteroalkyl, aryl, aryloxy, heteroaryl, silylalkyl, and silyloxy, each of which is optionally substituted, and
$R^{6 a}$ is $R^{8 a}-X$-, whercin
X is O or S and $R^{8 a}$ is optionally substituted aryl; or
X is O and $\mathrm{R}^{8 a}$ is $\mathrm{SiR}^{9 a} \mathrm{R}^{10 a} \mathrm{R}^{11 a}$ or $\mathrm{CR}^{12 a} \mathrm{R}^{13 a} \mathrm{R}^{14 a}$, wherein $\mathrm{R}^{9 \mathrm{a}}, \mathrm{R}^{10 a}, \mathrm{R}^{11 a}, \mathrm{R}^{12 a}$, $\mathrm{R}^{13 \mathrm{a}}$, and $\mathrm{R}^{14 \mathrm{a}}$ are independently selected from the group consisting of optionally substituted alkyl and optionally substituted phenyl; or
$R^{6 a}$ and $R^{7 a}$ are linked together and are bonded to M via oxygen.
17. The method of claim 16 , wherein:
$\mathrm{R}^{7 a}$ is selected from the group consisting of alkyl, alkoxy, heteroalkyl, aryl, aryloxy, and heteroaryl, each of which is optionally substituted; and

X is O or S and R^{Sa} is optionally substituted ary ; or
X is O and $\mathrm{R}^{8 a}$ is $\mathrm{CR}^{12 a} \mathrm{R}^{13 a} \mathrm{R}^{14 a}$.
18. The method of claim 16, wherein
$\mathrm{R}^{3 \mathrm{a}}$ is selected from the group consisting of 2,6-dimethylphenyl; 2,6disopropylphenyl; 2,6-dichlorophenyl; and adamant-l-yl;
$R^{4 \mathrm{a}}$ is selected from the group consisting of $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ and $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$;
$\mathrm{R}^{5 \mathrm{a}}$ is H ;
$\mathrm{R}^{7 \text { a }}$ is selected from the group consisting of pyrol-1-yl; 2,5-dimethyl-pyrrol-1yl; tiphenylsilyloxy; trisopropylsilyloxy; 2-phenyl-1,1,1,3,3,3-hexafluoro-prop-2-yloxy; 2-methyl-1,1,1,3,3,3-hexafluoro-prop-2-yloxy; 9-phenyl-fluorene-9-yloxy; 2,6-diphenylphenoxy; and t-butyloxy; and
$\mathrm{R}^{6 \mathrm{a}}$ is $\mathrm{R}^{8 \mathrm{a}}$ - X -, wherein
$X=O$ and
$\mathrm{R}^{8 \mathrm{a}}$ is phenyl which bears two substituents in the ortho positions with respect to O, or which bears at least three substituents, from which two substituents are in the ortho positions with respect to 0 and one substituent is in the para position with respect to 0 ; or
$R^{8 a}$ is selected from the group consisting of optionally substituted 8 -(naphthalene-1-yl)-naphthalene-1-y]; optionally substituted 8 -phenlynaphthalene-1-yl; optionally substituted quinoline-8-yl; triphenylsily; trisopropylsilyl; triphenylmethyl; tri(4-methylphenyl)methyl; 9-phenyl-fluorene-9-yl; 2-phenyl-1,1,1,3,3,3-hexaffuro-prop-2-yl; 2-methyl-1,1,1,3,3,3-hexafluoro-prop-2-yl; and t-butyl.
19. The method of claim 18 , wherein:
$\mathrm{R}^{7 \mathrm{a}}$ is selected from the group consisting of pyrrol-1-yl; 2,5-dimethyl-pyrol-1yl ; and
$R^{8 a}$ is phenyl which bears two substituents in the ortho positions with respect to O, or which bears at least three substituents, from which two substituents are in the ortho positions with respect to 0 and one substituent is in the para position with respect to 0 , or
$R^{8 a}$ is selected from the group consisting of optionally substituted
8-(naphthalene-1-yl)-naphthalene-1-yl and optionally substituted 8-phenlynaphthalene-1-yl.
20. The method of claim 16, wherein the metathesis catalyst has a structure according to Formula 2 a :

wherein:
$R^{3 a}$ is aryl, heteroaryl, alkyl, or cycloalkyl, each of which is optionally
substituted;
$\mathrm{R}^{7 a}$ is pyrrolyl, imidazolyl, indolyl, pyrazolyl, azaindolyl, or indazolyl, each of which is optionally substituted,
$\mathrm{R}^{8 \mathrm{a}}$ is optionally substituted aryl;
$R^{5 a}$ is a hydrogen atom, alkyl, or alkoxy;
$\mathrm{R}^{4 b}$ is a hydrogen atom, $-\mathrm{O}-\left(\mathrm{C}_{1-6}\right.$ alkyl), $\mathrm{CH}_{2}-\mathrm{O}-\left(\mathrm{C}_{1-5}\right.$ alkyl), heteroakoxy, or $-\mathrm{N}\left(\mathrm{C}_{1-6} \text { alky }\right)_{2}$, and
$\mathrm{R}^{4 c}$ and $\mathrm{R}^{4 \mathrm{~d}}$ are independently a hydrogen atom, C_{1-6} alkyl, C_{1-6} alkoxy, a halogen atom, $-\mathrm{NO}_{2}$, an amide, or a sulfonamide.
21. The method of claim 20, wherein:
$\mathbb{R}^{7 a}$ is pyrolyl, imidazolyl, pyrazoly, azaindolyl, or indazolyl, each of which is optionally substituted, and
$\mathrm{K}^{5 \mathrm{a}}$ is a hydrogen atom.
22. The method of claim 20 , wherein $\mathrm{R}^{3 \mathrm{a}}$ is phenyl, 2,6-dichlorophenyl, 2,6-dimethylphenyl, 2,6-disopropylphenyl, 2 -trifluoromethylphenyl, pentafluorophenyl, tertbutyl, or l-adamantyl.
23. The method of claim 20 or claim 22, wherein R^{32} is

$2 \mathrm{R}^{4 \mathrm{~d}}$ is hydrogen.

2 from the group consisting of
24. The method of claim 20, wherein $\mathrm{R}^{4 b}$ is methoxy, R^{40} is hydrogen, and

26. The method of claim 25 , wherein the metathesis catalyst is

27. The method of claim 25 , wherein the metathesis catalyst is

28. The method of claim 15 , wherein the catalyst is present in an amount less than $0.01 \mathrm{~mol} \%$ with respect to the olefin or to the metathesis reaction partner.
29. The method of claim l, wherein the metathesis product comprises an E olefin.
30. The method of clam 29 , wherein greater than about 85% of the olefin is an E olefin.
31. The method of claim 29 , wherein at least about 90% of the olefin is an E olefin.
32. The method of claim 29 , wherein the metathesis catalyst is an E selective ruthenium catalyst.
33. The method of claim 1, wherein the molar ratio of the olefin to the metathesis reaction partner ranges from about $1: 1$ to about $5: 1$.
34. The method of claim 33, wherein the molar ratio of the olefin to the metathesis reaction partner ranges from about $2: 1$ to about 3 :
35. The method of claim 1, wherein the metathesis reaction partner is derived from a natural oil.
36. The method of claim 35 , wherein the natural oil is selected from the group consisting of canola oil, rapeseed oil, coconut oil, com oil, cottonseed oll, olive oil,
palm oll, peanut oil, saflower oil, sesame oil, soybean oil, sumflower oil, linseed oil, palm kernel oil, tung oil, jatropha oil, jojoba oil, mustard oil, pennycress oil, camelina oil, castor oil, and combinations thereof.
37. The method of claim 35, wherein the metathesis reaction partner comprises one or more catalyst-poisoning contaminants.
38. The method of claim 37 , further comprising treating the metathesis reaction partner with a metal alkyl compound under conditions sufficient to reduce the concentration of at least one of the catalyst-poisoning contaminants, wherein the treating is conducted prior to contacting the olefin with the metathesis reaction parner.
39. The method of claim 1, wherein
the olefin accoring to Formula I is a linear $\mathrm{C}_{3}-\mathrm{C}_{12}$ alpha olefin, the metathesis reaction parmer according to Formula IIb is a Δ^{9}-unsaturated fatty acid alkyl ester,
the metathesis catalyst is a Z-selective metathesis catalyst, and
the metahesis product according to Formula IIb is a
$\mathrm{C}_{11}-\mathrm{C}_{20}(Z)$-9-unsaturated faty acid allyl ester.
40. The method of claim 39 , wherein converting the metathesis product to the fatty olefin derivative comprises contacting the $\mathrm{C}_{11}-\mathrm{C}_{20}(Z)-9$-unsaturated fatty acid alkyl ester with a reducing agent under conditions sufficient to form a $\mathrm{C}_{31}-\mathrm{C}_{20}$ (Z)-9-fatty alcohol.
41. The method of claim 40 , wherein the reducing agent is sodium bis(2methoxy ethoxy) aluminum hydride.
42. The method of claim 40, wherein converting the metathesis product to the fatty olefin derivative further comprises contacting the $\mathrm{C}_{1}-\mathrm{C}_{20}(Z)$-9-fatty alcohol with an acylating agent in the presence of a base under conditions sufficient to form an acetate ester of the $\mathrm{C}_{11}-\mathrm{C}_{20}$ (Z)-9-fatty alcohol.
43. The mothod of claim 42 , wherein the acylating agent is acetic anhydride.
44. The method of claim 40, wherein converting the metathesis product to the fatty olefin derivative further comprises oxidizing the $\mathrm{C}_{11}-\mathrm{C}_{20}(Z)$ - 9 -fatty alcohol to form a $\mathrm{C}_{11}-\mathrm{C}_{20}$ (Z)-9-alkenal.
45. The method of claim 39, wherein converting the metathesis product to the fatty olefin derivative comprises contacting the $\mathrm{C}_{11} \mathrm{C}_{20}(Z)-9$-fatty acid alkyl ester with a reducing agent under conditions sufficient to form a $\mathrm{C}_{31}-\mathrm{C}_{20}(2)$-9-alkenal.
46. The method of claim 45, wherein the reducing agent is amine-modified sodium bis(2-methoxyethoxy)aluminumbydride
47. The method of clam 1, wherein:
the fatty acid derivative is (Z)-tetradec-9-en-1-yl acetate;
the olefin according to Formula $\{$ is hex-1-ene,
the metathesis reaction parmer according to Formula Ib is a Δ^{9}-unsaturated fatty acid alkyl ester,
the metathesis catalyst is a Z-selective metathesis catalyst, and
the metathesis product according to Formula IIb is an allyl ester of (Z)-9-tetradec-9-enoate; and
wherein converting the metathesis product to the fatty olefin derivative comprises:
contacting the allyl ester of (Z)-9-tetradec-9-enoate with a reducing agent under conditions sufficient to form (Z)-tetradec-9-en-1-ol, and
acylating the (Z)-tetradec-9-en-1-ol to form the (Z)-tetradec-9-en- $1-y l$ acetate
48. The method of claim 47, wherein the metathesis reaction partner according to Formula 1 Ib is methyl 9 -decenoate and the metathesis product is methyl (Z)-tetradec-9-enoate
49. The method of claim 47, wherein the reducing agent is sodium bis(2methoxy ethoxy) aluminumhydride.
50. The method of claim 47, wherein acylating the (Z)-tetradec-9-en-1-ol comprises contacting the (Z)-tetradec-9-en-1-ol with an acylating agent in the presence of a base under conditions sufficient to form (Z)-tetradec- $9-2 n-1-y 1$ acetate.
51. The method of claim 50, wherein the acylating agent is acetic anhydride.
52. The method of claim 47, wherein the metathesis reaction partner according to Formula Ib is methyl 9 -decenoate and the metathesis product is methyl (Z)-tetradec-9-enoate.
53. The method of claim 1, wherein:
the fatty acid derivative is (Z)-tetradec-9-enal,
the olefin according to Formula is hex-1-ene,
the metathesis reaction parmer according to Formula lb is a Λ^{9}-unsaturated fatty acid alkyl ester,
the metathesis catalyst is a Z-selective metathesis catalyst, and
the metathesis product according to Formula IIb is an alkyl ester of (Z)-9-
tetradec-9-enoate; and
wherein converting the metathesis product to the fatty olefin derivative comprises contacting the alkyl ester of (7)-9-tetradec-9-enoate with a reducing agent under conditions sufficient to form the (Z)-tetradec-9-enal.
54. The method of claim 53 , wherein the reducing agent is amine-modified sodium bis(2-methoxyethoxy) aluminumhydride.
55. The method of claim 53 , wherein the Δ^{9}-unsaturated fatty acid alkyl ester according to Formula IIg is methyl 9 -decenoate and the metathesis product is methyl (7)-tetradec-9-enoate.
56. The method of clam 1, wherein:
the fatty acid derivative is (Z)-tetradec-9-enal,
the olefin according to Formula 1 is hex-1-ene,
the metathesis reaction partner according to Formula Ilb is a Δ^{9}-unsaturated fatty acid alkyl ester,
the metathesis catalyst is a Z-selective metathesis catalyst, and
the metathesis product according to Formula Ilb is an alkyl ester of $(Z)-9-$ tetradec-9-enoate; and
wherein converting the metathesis product to the fatty olefin derivative comprises
contacting the alkyl ester of (Z)-9-tetradec-9-enoate with a reducing agent under conditions sufficient to form (2)-tetradec-9-en-1-ol, and
oxidizing the (Z)-tetradec-9-en-1-ol to form the (Z)-tetradec-9-enal.
57. The method of claim 56, wherein the reducing agent is sodium bis(2methoxyethoxy)aluminumhydride.
58. The method of claim 56 , wherein the \wedge^{9}-unsaturated fatty acid alky] ester according to Formula lng is methyl 9 -decenoate and the metathesis product is methyl (Z)-tetradec-9-enoate.
59. The method of claim 39, wherein the metathesis catalyst has a structure according to Formula $2 a$:

wherein
M is Mo or W ;
$R^{3 a}$ is aryl, heteroaryl, alkyl, or cycloalkyl, each of which is optionally
substituted;
$\mathrm{R}^{7 \text { ia }}$ is pyrrolyl, imidazolyl, indolyl, pyrazolyl, azaindolyl, or indazolyl, each of which is optionally substituted;
$R^{8 a}$ is optionally substituted aryl;
$\mathrm{R}^{5 \mathrm{a}}$ is a hydrogen atom, alkyl, or alkoxy;
$\mathrm{R}^{4 b}$ is a hydrogen atom, $-\mathrm{O}-\left(\mathrm{C}_{1-6}\right.$ alkyl $),-\mathrm{CH}_{2}-\mathrm{O}-\left(\mathrm{C}_{1-6}\right.$ alkyl $)$, heteroalkoxy, or
$-\mathrm{N}\left(\mathrm{C}_{1-6} \text { alky }\right)_{2} ;$ and
$\mathrm{R}^{4 c}$ and $\mathrm{R}^{4 \mathrm{~d}}$ are independently a bydrogen atom, C_{1-6} alkyl, C_{1-6} alkoxy, a halogen atom, $-\mathrm{NO}_{2}$, an amide, or a sulfonamide.
60. The method of claim 59, wherein the metathesis catalyst is selected from the group consisting of:

61. A fatty olefin derivative synthesized according to the method of claim 1.
62. The faty olefin derivative of claim 61 , which is an insect pheromone.
63. A method for synthesizing a fatty olefin derivative according to

Formula VIb:
the method comprising:
i) reducing an alkyl ester according to Formula Ib

to form an alkenol according to Formula VII

(VII):
ii) acylating the alkenol to form an acylated alkenol according to Formula IX

iii) contacting the acylated alkenol with an olefin according to Formulal

(I),
in the presence of a metathesis catalyst under conditions sufficient to form the fatty olefin derivative; wherein:
R^{i} is selected from the group consisting of H, C_{1-18} alkyl, and $C_{2.18}$ alkenyl;
$\mathrm{R}^{2 b}$ is $\mathrm{C}_{1-\mathrm{s}}$ alkyl,
R^{20} is C_{1-6} acyl,
subscript y is an integer ranging from 0 to 17 ;
subscript z is an integer ranging from 0 to 17 ; and
the metathesis catalyst is a tungsten catalyst or a molybdenum catalyst.
64. The method of claim 63 , wherein R^{1} is $H, R^{2 b}$ is methyl, $R^{2 s}$ is acetyl, subscript y is 7 , and subscript z is 3 .
65. The method of claim 63, wherein the metathesis product comprises an E olefin.
66. The method of claim 63, wherein the metathesis product comprises a Z olefn.
67. The method of claim 66 , wherein the metathesis catalyst is a Z selective molybdenum catalyst or a Z-selective tungsten catalyst.
68. The method of claim 67, wherein the metathesis catalyst has a structure according to Formula 2 :

(2),
wherein:
M is Mo or W ;
$R^{3 a}$ is selected from the group consisting of aryl, heteroaryl, alkyl, heteroalkyl, cycloalkyl, and heterocycloakyl, each of which is optionally substituted;
$\mathrm{R}^{4 a}$ and $\mathrm{R}^{5 a}$ are independently selected from the group consisting of hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted heteroalkyl, optionally substituted heteroalkenyl, optionally substituted aryl, and optionally substituted heteroaryl;
$\mathrm{R}^{7 \text { a }}$ is selected from the group consisting of alkyl, alkoxy, heteroalkyl, aryl, aryloxy, heteroaryl, silylalkyl, and silyloxy, each of which is optionally substituted, and
$R^{6 a}$ is $\mathrm{K}^{8 a}-\mathrm{X}$-, wherein
X is O or S and $\mathrm{R}^{\text {8a }}$ is optionally substituted ary ; or
X is O and $\mathrm{R}^{8 a}$ is $\mathrm{SiR}^{9 a} \mathrm{R}^{10 a} \mathrm{R}^{11 a}$ or $\mathrm{CR}^{12 a} \mathrm{R}^{13 a} \mathrm{R}^{14 a}$, wherein $\mathrm{R}^{9 a}, \mathrm{R}^{10 a}, \mathrm{R}^{11 a}, R^{12 a}$, $R^{13 a}$, and $\mathrm{R}^{14 a}$ are independently selected from the group consisting of optionally substituted alkyl and optionally substituted phenyl; or
$R^{6 a}$ and $R^{7 a}$ are linked together and are bonded to M via oxygen.
69. The method of claim 68 , wherein the metathesis catalyst has a structure according to Formula 2 a :

wherein:
$R^{3 a}$ is aryl, heteroaryl, alkyl, or cycloalkyl, each of which is optionally substituted;
$\mathrm{R}^{7 a}$ is pyrrolyl, imidazoly, indolyl, pyrazolyl, azaindolyl, or indazolyl, each of which is optionally substituted:
$\mathrm{R}^{8 \mathrm{a}}$ is optionally substituted aryl;
$R^{\text {sa }}$ is a bydrogen atom, alky, or alkoxy;
$\mathrm{R}^{4 b}$ is a bydrogen atom, $-\mathrm{O}\left(\mathrm{C}_{1-6}\right.$ alkyl $),-\mathrm{CH}_{2}-\mathrm{O}-\left(\mathrm{C}_{1-6}\right.$ alkyl $)$, heteroalkoxy, or $-N\left(\mathrm{C}_{1-6} \text { alky }\right)_{2}$; and
R^{46} and $\mathrm{R}^{4 \mathrm{~d}}$ are independently a hydrogen atom, C_{1-6} alkyl, C_{1-6} alkoxy, a halogen atom, $-\mathrm{NO}_{2}$, an amide, or a sulfonamide.

1
2 from the group consisting of:

