(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

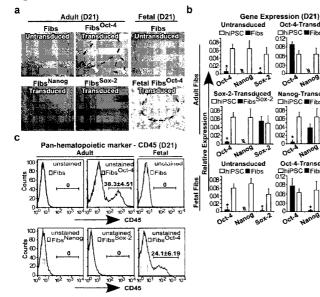
(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 5 May 2011 (05.05.2011)

- (51) International Patent Classification: C12N 5/071 (2010.01) C12Q 1/02 (2006.01) A61K 35/12 (2006.01) C12Q 1/68 (2006.01) C12N 15/00 (2006.01) C12N 15/867 (2006.01)
- (21) International Application Number: PCT/CA20 10/001708
- (22) International Filing Date: 29 October 2010 (29.10.2010)
- (25) Filing Language: English
- English (26) Publication Language:
- (30) Priority Data: 61/256,170 29 October 2009 (29.10.2009) US
- (71) Applicant (for all designated States except US): MC¬ MASTER UNIVERSITY [CA/CA]; McMaster Industry Liaison Office (MILO), McMaster Innovation Park, 175 Longwood Road South, Room 305, Hamilton, Ontario L8P 0A1 (CA).
- (72) Inventors; and
- (75) Inventors/ Applicants (for US only): BHATIA, Mickie [CA/CA]; Stem Cell and Cancer Research Institute, Mc-Master University, 1200 Main Street West, MDCL5029, Hamilton, Ontario L8N 3Z5 (CA). SZABO, Eva [CA/CA]; Stem Cell and Cancer Research Institute, Mc-

(10) International Publication Number WO 2011/050470 AI

Master University, 1200 Main Street West, MDCL 5029, Hamilton, Ontario L8N 3Z5 (CA). RAMPALLI-DESH-PANDE, Shravanti [IN/CA]; Stem Cell and Cancer Research Institute, McMaster University, 1200 Main Street West, MDCL5029, Hamilton, Ontario L8N 3Z5 (CA). MUNOZ RISUENO, Ruth [ES/CA]; Stem Cell and Cancer Research Institute, McMaster University, 1200 Main Street West, MDCL5029, Hamilton, Ontario L8N 3Z5 (CA). VIJAYARAGAVAN, Kausalia [CA/ES]; Stem Cell and Cancer Research Institute, McMaster University, 1200 Main Street West, MDCL5029, Hamilton, Ontario L8N 3Z5 (CA).


- (74) Agent: BERESKIN & PARR LLP/S.E.N.C.R.L., S.R.L.; 40 King Street West, 40th Floor, Toronto, Ontario M5H 3Y2 (CA).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

[Continued on next page]

(54) Title: GENERATING INDUCED PLURIPOTENT STEM CELLS AND PROGENITOR CELLS FROM FIBROBLASTS

Figure 1

WO 2011/050470 A1

(57) Abstract: The present disclosure provides a method of generating progenitor cells, such as hematopoietic or neural progenitor cells, from fibroblasts, such as dermal fibroblasts, comprising providing fibroblasts that express or are treated with a POU domain containing gene or protein and culturing the cells under conditions that allow production of progenitor cells, without traversing the pluripotent state. Also provided is a method of isolating a subpopulation of fibroblasts with reprogramming potential comprising providing fibroblasts that express an Oct-4-reporter and isolating cells that are positive for the reporter. Further provided is a method of generating reprogrammed fibroblastderived induced pluripotent stem cells. Also provided are uses and assays of the cells produced by the methods of the disclosure.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

 as to applicant's entitlement to apply for and be granted a patent (Rule 4.1 7(H)) f inventorship (Rule 4.17(iv))

Published:

_

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
 - with sequence listing part of description (Rule 5.2(a))

- 1 -

Title: GENERATING INDUCED PLURIPOTENT STEM CELLS AND PROGENITOR CELLS FROM FIBROBLASTS

Cross Reference to Related Applications

5 **[0001]** This application claims the benefit of priority of copending U.S. provisional application 61/256,170 filed on October 29, 2009, the contents of which are incorporated herein by reference in their entirety.

Field of the disclosure

[0002] The disclosure relates to reprogramming of fibroblasts. In
 10 particular, the disclosure relates to methods of generating progenitor cells and induced pluripotent stems cells derived from fibroblasts and the cells produced by the methods.

Background of the disclosure

- [0003] Several groups have demonstrated the ability to reprogram 15 human fibroblasts to induced pluripotent stem cells (iPSCs) following transduction with Oct-4 together with other factors (Takahashi et al., 2007; Takahashi and Yamanaka, 2006; Yu et al., 2007). For example, dermal fibroblasts can be reprogrammed to a pluripotent state by ectopic expression of a cocktail of pluripotent factors including Oct-4 (POU5F1), Sox-2, Klf-4, c-
- 20 Myc, Nanog, and Lin28 (Takahashi et al., 2007; Yu et al., 2007), With the exception of Oct4, further studies indicated that the majority of these factors could be eliminated by use of unique stem/progenitor cells (Heng et al.; Aasen et al. 2008; Eminli et al. 2008; Eminli et al. 2008; Eminli et al. 2009; Kim et al. 2009) or, alternatively, by addition of chemicals targeting the epigenome of dermal
- 25 fibroblast sources (Shi et al. 2008; Lyssiotis et al. 2009). These studies demonstrate there are several approaches and methods for generation of iPSCs, however, the cellular and molecular mechanisms underlying reprogramming to the pluripotent state remain largely unknown (Jaenisch and Young, 2008). Although iPSCs can be differentiated towards the blood fate,
- 30 the resulting hematopoietic cells preferentially generate primitive blood cells that utilize embryonic programs. Moreover, the methods remain inefficient, making it difficult to contemplate transplantation or modeling hematological

- 2 -

diseases (Lengerke and Daley, 2010). Characterization of these processes is further complicated by cellular intermediates that fail to establish a stable piuripotent state, potentially due to the inability to achieve the correct combination, stoichiometry, or expression levels of reprogramming factors

- 5 ideal for complete pluripotency induction (Chan et al., 2009; Kanawaty and Henderson, 2009; Lin et al., 2009; Mikkelsen et al., 2008). Consistent with this idea, intermediate cells derived from fibroblasts have been shown to coexpress genes associated with several differentiated lineages (neurons, epidermis, and mesoderm) (Kanawaty and Henderson, 2009; Mikkelsen et al.,
- 10 2008), nevertheless the exact identity and differentiation potential of these cell types remain elusive. This creates the possibility that under unique conditions the fibroblasts expressing a small subset of transcription factors can be induced to differentiate towards specified lineages without achieving pluripotency, as recently been demonstrated by converting fibroblasts into
- 15 specific cell types such as neurons, cardiomyocytes, and macrophage-like cells (Feng et al., 2008; leda et al., 2010; Vierbuchen et al., 2010). While these studies have examined fibroblast conversion in the murine model, this concept remains to be extrapolated for human applications.

[0004] Previous studies have shown that proteins containing POU
domains, such as Oct-4, along with Oct-2 (POU2F2) and Oct-1 (POU2F1) bind similar DNA target motifs (Kang et al., 2009). Whilst both Oct-2 and Oct-1 play a role in hematopoietic development (Brunner et al., 2003; Emslie et al., 2008; Pfisterer et al., 1996), Oct-4 is yet to be implicated in this process. Nonetheless, recent studies have predicted that Oct-4 possesses the capacity
to bind to the promoters of the hematopoietic genes Runxl and CD45, thus potentially regulating their expression (Kwon et al., 2006; Sridharan et al., 2009). Despite the similarities in binding and regulation, the exact functional role of individual Oct family members appears to be cell context specific (Kang et al., 2009; Pardo et al., 2010).

30 **[0005]** The ability to generate piuripotent stem cells from human dermal fibroblasts allows for generation of complex genetic disease models, and

- 3 -

provides an unprecedented source for autologous transplantation without concern of immune rejection (Takahashi and Yamanaka 2006; Hanna et al. 2007; Yu et al. 2007; Okita et al. 2008; Park et al. 2008; Park et al. 2008b; Soldner et al. 2009).

- 5 [0006] Although a variety of somatic cell types can be reprogrammed, the vast majority of studies aimed at characterizing the mechanisms that govern the reprogramming process utilize fibroblasts (Takahashi and Yamanaka 2006; Takahashi et al. 2007; Wernig et al. 2007; Yu et al. 2007; Aoi et al. 2008; Brambrink et al. 2008; Eminli et al. 2008; Hanna et al. 2008;
 10 Huangfu et al. 2008; Lowry et al. 2008; Stadtfeld et al. 2008; Zhou et al. 2008; Carey et al. 2009; Feng et al. 2009; Gonzalez et al. 2009; Guo et al. 2009; Kaji et al. 2009; Utikal et al. 2009; Woltjen et al. 2009; Yusa et al. 2009; Zhou et al. 2009). As such, the current understanding of the molecular mechanisms and cellular nature of reprogramming is nearly exclusively derived from 15 fibroblast-based reprogramming. Fibroblasts can be generated from multiple tiasus aites including dermal altin, however, little is known about the arigina.
- tissue sites including dermal skin, however, little is known about the origins and composition of fibroblasts used experimentally.

[0007] Cellular reprogramming to the pluripotent state was originally demonstrated using *in vitro* cultured mammalian fibroblasts (Takahashi and Yamanaka 2006). To date, iPSCs have been derived from a number of other tissue-derived cells including liver, pancreas, intestine, stomach, adipose, melanocytes, and hematopoietic sources (Aoi et al. 2008; Hanna et al. 2008; Zhou et al. 2008; Eminli et al. 2009; Sun et al. 2009; Utikal et al. 2009) using a variety of transcription factors including the oncogenes c-myc and klf4
25 (Takahashi and Yamanaka 2006; Takahashi et al. 2007; Aasen et al. 2008; Hanna et al. 2008; Park et al. 2008; Eminli et al. 2009; Hanna et al. 2009;

- Woltjen et al. 2009; Zhao et al. 2009). To date, the reprogramming process remains inefficient, but can be enhanced by utilization of initial cell types that already possess stem/progenitor proliferative capacity (Kim et al. 2009; Eminli
- 30 et al. 2008; Eminli et al. 2009), or by enhancing cell cycle state by knocking down inhibitors of cell cycle progression such as p53/p21 (Kawamura et al.

10

- 4 -

2009; Li et al. 2009; Utikal et al. 2009). However, altering cell cycle regulators or introduction of oncogenes increases the risk of uncontrolled growth and tumor formation and thus raises potential safety concerns for future human therapeutic applications (Lebofsky and Walter 2007; Okita et al. 2007; Nakagawa et al. 2008; Markoulaki et al. 2009).

Summary of the disclosure

[0008] The present inventors used human dermal fibroblasts to investigate direct conversion of the fibroblasts into hematopoietic cells (CD45+ cells) and to investigate reprogramming fibroblasts to induced pluripotent stem cells.

[0009] Accordingly, in one embodiment, the disclosure provides a method of generating progenitor cells from fibroblasts comprising:

a) providing fibroblasts that express or are treated with POU domain containing gene or protein; and

b) culturing the cells of step (a) under conditions to allow production of progenitor cells without traversing the pluripotent state.

[0010] In one embodiment, fibroblasts that express a gene or protein containing a POU domain include overexpression of an endogenous gene or protein containing a POU domain or ectopic expression of a gene or protein

20 containing a POU domain. In an embodiment, the fibroblasts do not additionally overexpress or ectopically express or are not treated with Nanog or Sox-2. In another embodiment, fibroblasts that express a POU domain containing gene or protein are produced by transfecting or transducing the fibroblasts with a vector comprising the POU domain. In an embodiment,

- 25 fibroblasts that express a gene or protein containing a POU domain are produced by lentiviral transduction. In an embodiment, the POU domain containing gene or protein is Oct-1, -2, -4 or -11. In another embodiment, the POU domain containing gene or protein is Oct-4. The POU domain containing gene or protein includes, without limitation, functional variants and
- 30 fragments thereof as well as small molecule mimetics.

[0011] Conditions that allow production of progenitor cells are known in the art and include, without limitation, colony forming assays for a culture period from 15-25 days, optionally 21 days. In another embodiment, the fibroblasts are dermal fibroblasts. In yet another embodiment, the progenitor cells are hematopoietic progenitor cells and the conditions are hematopoietic conditions. In a further embodiment, the progenitor cells are neural progenitor cells and the conditions are neural conditions.

[0012] In another embodiment, the method further comprises culturing the cells produced in step (b) in differentiation medium under conditions that 10 allow production of differentiated cells. Such conditions include culturing the cells in medium for a culture period from 10 to 21 days, optionally 16 days. In one embodiment, the differentiation medium is hematopoietic medium comprising a hematopoietic cytokine, such as, Flt3 ligand, SCF and/or EPO. In an embodiment, the differentiated hematopoietic cells are of the myeloblast

- 15 lineage, such as monocytes or granulocytes. In another embodiment, the differentiated hematopoietic cells are of the erythroid or megakaryocytic lineage. In another embodiment, the differentiation medium is neural medium comprising neural basal media supplemented with fibroblast growth factor and epidermal growth factor. In an embodiment, the differentiated neural cells are
- 20 neurons and/or glial cells including oligodendrocytes and or astrocytes.

[0013] Also provided herein are the isolated progenitor and differentiated cells generated by the methods described herein and uses of the cells for engraftment and transplantation. The hematopoietic progenitor cells are also useful as a source of blood, cellular and acellular blood components, blood products and hematopoietic cells.

- [0014] Further provided herein is a screening assay comprising
 - a) preparing a culture of progenitor cells or cells derived therefrom by the methods described herein;
 - b) treating the cells of a) with a test agent or agents; and

c) subjecting the treated progenitor cells or cells derived therefrom to analysis.

[0015] In one embodiment, the progenitor cells are differentiated prior to treating with the test agent.

- 5 **[0016]** In another aspect, there is provided a method of isolating a subpopulation of fibroblasts with increased reprogramming potential comprising
 - a) providing fibroblasts that express an Oct-4-reporter; and
 - b) isolating cells positive for the reporter.
- 10 [0017] In one embodiment, the reporter gene comprises a fluorescent protein (such as GFP) and the cells are isolated in step (b) by detection of the fluorescence. In another embodiment, the reporter gene encodes a gene conferring antibiotic resistance, such as to puromycin, and the cells are isolated by survival in the presence of the antibiotic. In an embodiment, the 15 fibroblasts that express an Oct-4- reporter gene are produced by lentiviral
- transduction. In an embodiment, the fibroblasts are dermal fibroblasts. In another embodiment the fibroblasts are foreskin fibroblasts.

[0018] The disclosure further provides a method of generating reprogrammed fibroblast-derived induced pluripotent stem (iPS) cells at 20 higher efficiency comprising

a) providing (i) a population of fibroblasts with increased expression of Oct-4 and (ii) a mixed population of fibroblasts or a population of Oct-4 negative fibroblasts;

b) treating the cells of a) with Oct-4, Nanog, Sox2 and Lin28;and

c) culturing the treated cells of b) under conditions that allow the production of iPS cells.

[0019] The method optionally further comprises analyzing and selecting cells that express a marker of undifferentiated stem cells, such as TRA-1-60,

30 SSEA-3, Sox2, Nanog, SSEA4, TRA-1-81, IGF1 receptor, connexin 43, E-

cadherin, Alkaline phosphatase, REX1, CRIPTO, CD24, CD90, CD29, CD9 and CD49f. In a particular embodiment cells are selected for expression of TRA-1-60 and/or SSEA-3.

- [0020] In one embodiment, the population of fibroblasts with increased 5 expression of Oct-4 are produced by the method of isolating a subpopulation of fibroblasts with reprogramming potential as described herein. In an embodiment, the ratio of the cells of i) to the cells of ii) in (a) is 50:50, 25:75 or 10:90. In an embodiment, the fibroblasts are dermal fibroblasts.
- [0021] Also provided herein are isolated induced pluripotent stem cells
 10 generated by the method described herein and cells differentiated therefrom and uses of the cells for engraftment, transplantation and as a source of induced pluripotent stem cells.
 - **[0022]** Further provided herein is a screening assay comprising
 - a) preparing a culture of induced pluripotent stem cells by the methods described herein or cells differentiated therefrom;
 - b) treating the cells with a test agent or agents; and
 - c) subjecting the treated cells to analysis.

[0023] Other features and advantages of the present disclosure will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples while indicating preferred embodiments of the disclosure are given by way of illustration only, since various changes and modifications within the spirit and scope of the disclosure will become apparent to those skilled in the art from this detailed description.

25 Brief description of the drawings

[0024] The disclosure will now be described in relation to the drawings in which:

[0025] Figure 1 shows Oct-4 transduced human adult dermal fibroblasts and fetal fibroblasts give rise to CD45^{+ve} colonies. a.

Representative bright field images of untransduced (Fibs) and Oct-4- (Fibs^{Oct-4}), Sox-2- (Fibs^{Sox-2}) or Nanog- (Fibs^{Nanog}) transduced Fibs, untransduced fetal fibroblasts (Fetal Fibs) and Oct-4 transduced fetal Fibs (Fetal Fibs^{0 ct-4}) at day 21 post-transduction (D21) (colonies- dashed lines and arrows) (n=6). b.
Relative gene expression of Sox-2, Nanog and Oct-4 in Fibs, Fetal Fibs, Fibs^{0 ct-4}, Fibs^{Sox-2} and Fibs^{Nanog}, Fetal Fibs^{0 ct-4} in comparison with the expression of these genes in established iPSCs (n=3, *p<0.001). c. Representative FACS plots of the CD45 levels in Fibs^{0 ct-4} and Fetal Fibs^{0 ct-4} compared with untransduced-Fibs or -Fetal Fibs, Fibs^{Sox-2} or Fibs^{Nanog} (n=6).

- 10 [0026] Figure 2 shows a. Global gene analysis based on fibroblasts specific marker expression over the course of CD45^{+v}_e cell emergence in Fibs and sorted CD45⁺ Fibs^Oc^{t-4}. b. Representative bright field images of Fibs, Fetal Fibs, and Fibs^Oc^{t-4} or Fetal Fibs⁰^{ct-4} plus/minus Flt3 and SCF at day 21 (D21) (n=6). c. Enumeration of colonies in Fibs, Fetal Fibs, and Fibs⁰^{ct-4} plus/minus SCF and Flt-3 at day 21 (D21) (colonies-white
- 15 Fetal Fibs^OC^{I-4} plus/minus SCF and Flt-3 at day 21 (D21) (colonies-white arrows; n=6; *p<0.001). d. Pluripotency gene signature of Fibs and sorted CD45⁺ Fibs^OC^{t-4}.

[0027] Figure 3 shows Oct-4 transduced human dermal fibroblasts bypass the pluripotency. a. Quantitative analysis of SSEA3 levels, and b. Tra 1-60 levels over the 31-day timeline of hiPSC derivation in Fibs and Fibs^Oct-4 plus/minus SCF and Flt-3 and Fibs transduced with Oct-4, Sox-2, Nanog and Lin-28 (n=3). c. Teratomas derived from hiPSCs showing mesoderm, endoderm and ectoderm and testicular sections representing the lack of teratomas from Fibs and Fibs^{Oct-4} plus/minus Flt3 and SCF (Control-saline injected).

[0028] Figure 4 shows *in vitro* reconstitution of the myeloid lineage by hematopoietic cytokine treated Oct-4 transduced CD45 positive Fibs. a. Schema presenting Oct-4 transduced CD45^{+ve} Fibs (CD45⁺Fibs^{Oct-4}) isolation and subsequent hematopoietic cytokine treatment, followed by *in vitro* and *in vivo* analysis. *In vitro* analysis includes colony forming unit (CFU) assay and FACS analysis; and the *in vivo* analysis is the hematopoietic reconstitution

assay using NOD/SCID IL2Ryc null (NSG) mice. b. FACS analysis of myeloid cells (CD45⁺CD13⁺ and CD13⁺CD33⁺ cells) derived from CD45⁺Fibs^{O_Ct-4} (n=6). c. Representative FACS plots of monocytes (CD45+CD14+ cells) and d. corresponding Giemsa-Wright images of monocytes with distinguishing nuclear morphology (white arrow) derived from CD45⁺Fibs^{0 ct-4} (n=6). e. 5 Representative FACS plots of FITC-labeled latex-bead uptake indicating the presence of macrophages in the CD45⁺Fibs^{Oc,4} population versus Fibs (no beads). Upper panel graph shows guantitative analysis of FITC-labeled latexbead uptake by CD45⁺Fibs^{0 ct-4} and Fibs (n=3). f. Representative Giemsa Wright stained image of a macrophage and immunofluorescence image of 10 FITC-beads (white arrow) taken up by macrophages. g. Representative FACS plot of granulocytes (CD45⁺CD15⁺ cells) derived from CD45⁺Fibs^{0 ct-4} (n=6). h. Giemsa Wright stained CD45⁺CD15⁺ granulocytes containing neutrophils, eosinophils and basophils (characteristic nuclear morphology-white arrows) (n=6). i. CD45⁺Fibs^{Oct-4} hematopoietic cytokine treated cells give rise to 15 hematopoietic progenitors (CD45⁺CD34⁺ cells) (n=9). j. Representative images of granulocytic (CFU-G), monocytic (CFU-M) colony forming units (CFU) derived from adult dermal or fetal foreskin CD45^{+ve} cells (20x). k. Quantitation of granulocytic (CFU-G), monocytic (CFU-M) and mixed 20 granulocytic and monocytic (CFU-GM) CFU formation from 1000 sorted CD45⁺CD34⁺ cells derived from adult dermal Fibs, fetal foreskin Fibs and

- umbilical cord blood (UCB) (n=3). I. CFU formation frequency in adult and fetal CD45⁺Fibs^{0 ct-4} cells and UCB derived hematopoietic progenitors (n=3; *p<0.001).
- 25 **[0029]** Figure 5 shows *in vivo* reconstitution capacity of CD45⁺Fibs^{0 ct-4} cells. a. Schematic representation of the xenograft models used for primary and secondary injection of CD45^{+ve} cells into adult NOD/SCID IL2Ryc null mice and subsequent analysis of the engrafted cells. b. Graph representing human chimerism at week 10 following intrafemoral injection of CD45⁺Fibs^{0 ct-4}
- 30 cells treated with cytokines (n=12). c. Representative FACS histograms of engrafted CD45⁺Fibs^{0 ct-4} cells (HLA A/B/C^{+ve} cells) showing the presence of

PCT/CA2010/001708

- 10 -

CD45^{+ve} and CD14^{+ve} population (n=12) in engrafted mice versus saline injected mice. d. Graph representing human chimerism at week 10 following intrafemoral injection of cord blood (UCB) derived progenitors and mobilized-peripheral blood (M-PB) cells (n=4). e. Representative FACS histograms of engrafted UCB and M-PB cells showing the presence of CD45^{+ve} and CD14^{+ve} population (n=4). f. Colony formation capacity per 1000 mouse cell depleted CD45^{+ve} cells derived from engrafted CD45^{+Fibs^Oct-4} cells versus UCB (n=3).

[0030] Figure 6 shows CD45+Fibs^{0 ct-4} cells are able to reconstitute the erythroid and megakaryocytic lineages following EPO treatment. a.
 10 Representative FACS histograms of erythroblast marker, CD71, levels in Fibs, CD45+Fibs^{0 ct-4} cells and CD45+Fibs^{0 ct-4} cells treated with EPO (n=3). b. Representative FACS histograms of Glycophorin A (red blood cell marker) levels in Fibs, CD45+Fibs^{0 ct-4} and CD45+Fibs^{0 ct-4} cells treated with EPO (n=3). c. Representative FACS histograms of adult globin, beta-globin, levels in Fibs,

- 15 CD45+Fibs^{0 ct-4} and CD45+Fibs^{0 ct-4} cells treated with EPO (upper panel is FACS analysis of differentiated human pluripotent stem cells (hPSCs)) (n=3). d. Relative mRNA expression of the embryonic globin (zeta), fetal-globin (epsilon) and adult globin (beta) in Fibs, CD45+Fibs^{0 ct-4} cells and CD45+Fibs^{0 ct-4} cells treated with EPO (n=3; *p<0.001). e. Giemsa Wright</p>
- 20 stained EPO treated CD45+Fibs^{0^{ct-4}} cells showing primitive (black arrow) and mature (white arrow) erythrocyte morphologies. f. Representative CFU images of EPO treated adult and fetal fibroblast derived CD45+Fibs^{0^{ct-4}} cells (20x; n=3). (Erythroid blast forming units- BFU-E; granulocyte colony forming units- CFU-G; monocyte colony forming units- CFU-M; Colony forming units
- 25 containing all lineages- CFU-Mix) g. Quantitative analysis of CFU formation in adult and fetal Fibs, CD45+Fibs^Oc^{t-4} and CD45+Fibs⁰c^{t-4} cells treated with or without EPO versus UCB (n=3). h. Representative megakaryocytic CFU (CFU-Mk) images (CD41+ve cells) (20x) derived from Fibs (left panel), CD45+Fibs⁰c^{t-4} cells treated with (right panel) or without EPO (left panel)
- 30 (n=3). i. Quantitative representation of megakaryocytic CFU formation (right panel, n=3; *p<0.001).

- 11 -

[0031] Figure 7 shows Oct-4 transduction results in hematopoietic program activation in human dermal fibroblasts. a. Proposed model for hematopoietic fate conversion following transduction of Fibs with Oct-4 alone over the time course of $CD45^{+Ve}$ cell emergence (day 0 (DO), 4 (D4), 21 (D21)

- 5 and 37 (D37)) versus hematopoietic differentiation from human iPSCs. Global gene culturing based on fibroblasts specific marker expression (b), pluripotency signature (c), hematopoietic cytokines (d) and hematopoietic transcription factors (e) over the course of CD45^{+Ve} cell emergence; i.e. in Fibs (DO), puromycin selected Day 4 Fibs⁰c^{t-4} (D4) and sorted CD45^{+Fibs⁰c^{t-4}}
- 10 (D21). f. Relative mRNA expression analysis of mesodermal genes (GATA2, Brachyury), hematopoietic specific genes (SCL, MixL1, Runxl, GATA1, PU.1 and C/EBPa) and pluripotency genes (Oct-4, Sox-2 and Nanog) in Fibs (DO) versus sorted CD45+Fibs^{0 ct-4} cells at D21 and hematopoietic cytokine treated sorted CD45+Fibs^{0 ct-4} cells at D37 (n=4, *p<0.001). g. Gene expression profile
- 15 of POU family of genes (including Oct-4 POU5F1) over the time course of CD45^{+ve} cell emergence; i.e. in Fibs (DO), puromycin selected Day 4 Fibs^{0 ct-4} (D4), sorted CD45⁺ Fibs^{0 ct-4} cells (D21) and hematopoietic cytokine treated sorted CD45⁺Fibs^{0 ct-4} cells (D37). h. Schematic representation of the known native (SEQ ID NO:1) and predicated octamer (SEQ ID NO:2) (POU domain)
- 20 binding sequences that Oct-4, Oct-1 and Oct-2 can occupy (N- can be any nucleotide (A, T, C or G); starred and underlined region represent the core conserved octamer binding region). i. Right panel Relative Oct-4 occupancy of hematopoietic specific gene SCL, Runxl , CD45, GATA1, PU.1, Oct-2 and C/EBPa promoter or enhancer regions over the course of CD45^{+ve} cell
- 25 emergence compared to hFib control (n=3; *p<0.001). j. Right panel Relative Oct-4 occupancy of non-hematopoietic gene Gadd45a, Pol2ra, Myf5 and Nkx2.5 over the course of CD45^{+ve} cell emergence compared to hFib control (n=3; *p<0.001). k. Right panel Relative Oct-4 occupancy of pluripotency gene Oct-4, Sox-2, Tbx3 and c-Myc promoter regions over the course of CD45^{+ve} cell emergence compared to hFib control (n=3; *p<0.001). i.k. Left panel proximity of primer designed at a resolution 500-1000 bp (arrows)

relative to the native or predicted octamer-binding region (Black box).

Pluripotent stem cells -hPSCs; Fibroblasts - Fibs (DO); Puromycin selected Day 4 Oct-4 transduced hFibs - Day 4 Fibs^{0 ct-4} (D4) and Oct-4 transduced CD45^{+ve} cells - CD45⁺ Fibs^{0 ct-4} (D21).

- [0032] Figure 8 shows characterization of the iPSC derived from 5 human dermal fibroblasts (Fibs) transduced with Oct-4, Nanog, Sox-2 and Lin-28. a. Representative images of iPSC colonies (dashed lines and arrows) derived from human Fibs transduced with Oct-4, Nanog, Sox-2 and Lin-28 (20x). b. Representative FACS plots of pluripotency markers, SSEA-3, Tra1-60, Oct-4 and SSEA-4, in iPSCs (n=4). c. Intratesticular injection of iPSCs into immunodeficient mice (NOD/SCID) resulted in teratoma formation containing 10 all 3 germ layers: ectoderm (skin), endoderm (lumen with goblet cells) and
 - mesoderm (cartilage) (20x; n=6).

Figure 9 shows intermediate colonies derived during iPSC [0033] derivation have a hematopoietic phenotype. a. Intermediate colonies (arrows) possessing a hematopoietic cellular morphology (rounded cells) were present

- in four different iPSC lines (1-4). b. Live staining for CD45 positive hematopoietic cells (green) and Tra-1-60 positive iPS colonies (red) showing that CD45 is exclusive to intermediate colonies, while Tra-1-60 is present only in iPSCs (20x; n=4). c. Representative FACS histogram of CD45 levels in four
- 20 independent iPSC lines (n=4). d. Relative Oct-4, Sox-2 and Nanog mRNA expression: 1, in sorted CD45^{+ve} cells derived from the 4 different iPSC lines; 2, in manually isolated iPS colonies and 3, Fibs (n=4; *p<0.001). Levels were normalized to human embryonic stem cells (hESCs). e. Lentiviral integration of Oct-4, Sox-2, Nanog and Lin-28 in Fibs (untransduced), iPSCs and sorted
- CD45^{+ve} iPSC (n=4). 25

15

30

[0034] Figure 10 shows a schematic representation of CD45 positive cell derivation from human dermal fibroblasts (Fibs). a. Human dermal Fibs were transduced with Oct-4 lentivirus on matrigel. On day 3-post transduction the cells were transferred onto matrigel coated dishes containing either 1. F12 medium supplemented with IGFII and bFGF or 2. F12 medium supplemented with IGFII, bFGF, Flt3 and SCF. Hematopoietic CD45 positive colonies were

WO 2011/050470

15

PCT/CA2010/001708

- 13 -

enumerated between days 14 and 21 post Oct-4 transduction. b. Representative blot showing integration of Oct-4 (Fibs⁰c^{t-4}), Sox-2 (Fibs^{Sox*2}) and Nanog (Fibs^{Nanog})-lentivectors; human iPSCs derived from dermal Fibs transduced with Oct-4, Sox-2, Lin-28 and Nanog were used as the positive control (lane 1) and untransduced Fibs or Fetal Fibs were used as a negative control (lane 2 and 6). (n=6). c. Global Oct-4 gene expression (POU5F1 probe sets) following Oct-4 transduction over the course of CD45^{+ve} cell emergence from Fibs (Day 0 - DO and Day 21 (D21) - CD45⁺ Fibs⁰c^{t-4}). POU5F1 (Oct-4) specific probe sets increase upon Oct-4 transduction over the time line of CD45^{+ve} cell emergence from hFlbs irrespective of the probe set used for detection.

[0035] Figure 11 shows CD45 positive colonies emerged from Oct-4 transduced cell between day 14-to-21 post transduction. a. Representative bright field images of human Fibs and hFibs^{Oct-4} plus/minus SCF and Flt3 over the time line of colony emergence (white arrows) (day 0-21) (n=6). Enlarged box represents live CD45 stained colonies at day 21.

[0036] Figure 12 shows Oct-4 transduced CD45 positive colonies do not acquire a pluripotent phenotype. a. Gene expression profile of Oct (POU) family members differentially regulated. Oct-4 (POU5F1) was the only POU

- family member differentially regulated over the time course of CD45^{+ve} cell emergence; i.e. in Fibs (DO), Day 4 Fibs⁰c^{t-4} (D4) and CD45⁺ Fibs⁰c^{t-4} (D21).
 b. Gene expression profile of POU family of genes that were not differentially regulated (excluding Oct-4) over the time course of CD45^{+ve} cell emergence; i.e. in Fibs (DO), Day 4 Fibs⁰c^{t-4} (D4) and CD45⁺ Fibs⁰c^{t-4} (D21).
- 25 Representative FACS histogram of SSEA3 positive population frequency in untransduced Fibs and Fibs^{Oct-4} plus/minus SCF and Flt3 and iPSC (n=6). d. Representative FACS histogram of Tra-1-60 positive population frequency in untransduced Fibs, Fibs^{0 ct-4} plus/minus SCF and Flt3 and iPSC (n=6). e. Live staining for Tra-1-60 positive colonies (arrows and dashed lines) in untransduced-Fibs, Fibs^{0 ct-4} plus SCF and Flt3 and iPSCs.

20

- 14 -

[0037] Figure 13 shows growth dynamics and c-Myc expression over the time course of CD45^{+ve} cell emergence. a. Growth/expansion dynamics of Fibs, CD45⁺ Fibs^{Oct-4} cells and human iPSCs (hiPSC) over 7 passages (n=9).
b. Gene expression profile of c-Myc over the time course of CD45^{+ve} cell emergence; i.e. in Fibs versus CD45⁺ Fibs^{Oct-4} (day 21 - D21).

[0038] Figure 14 shows global gene signatures cluster mononuclear cells with Oct4 positive CD45^{+Ve} cells and cord blood derived progenitors with day 4 Oct-4 transduced Fibs. a. Global gene cluster analysis of mononuclear cells (MNC), cord blood derived hematopoietic progenitors (UCB), Fibs, 10 osteoblasts, Day 4 Fibs^{0 ct-4} and CD45⁺ Fibs^{Oct-4}. b. Hematopoietic gene analysis of MNCs, UCB cells, Fibs, osteoblasts, Day 4 Fibs^{0 ct-4} and CD45⁺ Fibs^{Oct-4}. b. Hematopoietic gene analysis of MNCs, UCB cells, Fibs, osteoblasts, Day 4 Fibs^{Oct-4} and CD45⁺ Fibs^{Oct-4}. c. CD45⁺Fibs^{0 ct-4} treated with hematopoietic cytokines over an additional 16 days (day 37 - D37) had enhanced proliferation capacity versus CD45⁺Fibs^{0 ct-4} before cytokine treatment (day 21 - D21) and untreated 15 CD45⁺Fibs^{0 ct-4} at day 37 (D37) (n=6; *p<0.001). d. Cell viability of CD45⁺Fibs^{0 ct-4} cells with and without hematopoietic cytokine treatment at day

CD45⁺Fibs^{0 ct-4} cells with and without hematopoietic cytokine treatment at da 37 (D37) and CD45⁺Fibs^{0 ct-4} cells at day 21 (D21) (n=6).

[0039] Figure 15 shows *in vitro* reconstitution of the myeloid cells by hematopoietic cytokine treated Oct-4 transduced CD45 positive fetal foreskin derived Fibs at day 37. FACS analysis of myeloid cells (CD45⁺CD13⁺ and

CD1 3⁺CD33⁺ cells) derived from Fetal CD45⁺Fibs^{0 ct-4} at day 37 (D37) (n=3).

[0040] Figure 16 shows *in vitro* reconstitution of the monocyte lineage by hematopoietic cytokine treated Oct-4 transduced CD45 positive Fetal and adult Fibs at day 37. a. Representative FACS plots of monocytes at day 37

25 (D37) (CD45⁺CD14⁺ cells; n=3). b. FITC-labeled beads uptake by CD45⁺ Fibs^{0 ct-4} derived macrophages (40X) compared with untransduced Fibs (white arrows-cells containing beads).

[0041] Figure 17 shows *in vitro* reconstitution of the myeloid lineage by hematopoietic cytokine treated Oct-4 transduced CD45 positive Fibs at day 30
 37. a. Representative FACS analysis of CD45⁺ Fibs^{Oct-4} cells triple-stained with CD45, CD14 and CD15, showing lack of CD14 and CD15 co-expression

15

30

at day 37 (D37) (n=3). b. Representative FACS plot of granulocytes (CD45⁺CD15⁺ cells) derived from Fetal CD45⁺Fibs^{0 ct-4} at day 37 (D37) (n=3). c. Representative bulk images of Giemsa Wright stained CD45⁺ Fibs^{0 ct-4} cells treated with cytokines at day 37 (D37) (20X and 40X; n=6) (arrows-hematopoietic cells).

[0042] Figure 18 shows *in vitro* reconstitution of the myeloid lineage in the absence of hematopoietic cytokine treatment in Oct-4 transduced CD45 positive Fibs at day 37. a. FACS analysis of myeloid cells (CD45⁺CD1 3⁺ and CD13⁺CD33⁺ cells) in the absence of hematopoietic cytokine in CD45⁺Fibs^{0 ct-}⁴ at day 37 (D37) (n=6). b. Representative FACS plots of monocytes

10 ⁴ at day 37 (D37) (n=6). b. Representative FACS plots of monocytes (CD45⁺CD14⁺ cells) and granulocytes (CD45⁺CD15⁺ cells) in the absence of hematopoietic cytokine in CD45⁺Fibs^{Oct-4} at day 37 (D37) (n=6).

[0043] Figure 19 shows *in vitro* reconstitution of the myeloid lineage by hematopoietic cytokine treated Oct-4 transduced CD45 positive fetal foreskin derived Fibs. Hematopoietic cytokine treated Fetal CD45⁺Fibs^{0 ct-4} cells give rise to hematopoietic progenitors (CD45⁺CD34⁺ cells) at day 37 (D37) (n=3).

shows colony forming [0044] Figure 20 units derived from immunodeficient mice engrafted CD45+Fibs^{Oct-4} cells maintained CD45 expression. a. Bright field image of CFUs derived from engrafted CD45⁺Fibs^{0 ct-4} cells (n=3). b. Representative FACS histogram indicating 20 CD45 expression in CFUs derived from engrafted CD45+Fibs^{Oct-4} (n=3). c. Representative FACS plots indicating CD45 versus CD14 expression in CFUs derived from engrafted CD45⁺Fibs^{Oct-4} (n=3). d. Representative FACS plots indicating CD45 versus CD15 expression in CFUs derived from engrafted CD45⁺Fibs^{Oct-4} (n=3). 25

[0045] Figure 21 shows *in vivo* reconstitution of the Oct-4 transduced CD45 positive cells derived Fibs. a. Representative FACS plot showing engraftment of CD45⁺Fibs^{0 ct-4} (D37) cells in contralateral bone of injected immunodeficient (NSG) mice compared with saline injected counterparts (n=8; p<0.01) b. Primary and secondary reconstitution capacity of the engrafted CD45⁺Fibs^{0 ct-4} cells. Human chimerism in bone and spleen of

recipient NSG mice was analyzed via the presence of human chromosome 17. Positive control - mobilized peripheral blood (M-PB); Negative control-spleen and bones from saline injected mice; Control- no genomic DNA- no gDNA.

- 5 **[0046]** Figure 22 shows EPO treatment resulted in erythroid colony forming units formation. a. Quantification of colony forming units derived from Fibs, CD45+Fibs^{O_Ct-4} with or without EPO treatment (n=3; *p<0.001). b. Bar graph representing the frequency of colony (CFU) formation per 5,000 cells plated (n=3; *p<0.001). (monocytic CFU-M; granulocytic CFU-G, erythroid -
- 10 BFU-E; mixed colonies containing erythroid, granulocytic, monocytic- CFU-Mix).

[0047] Figure 23 shows Oct-4 induced changes over the time course of CD45^{+v}_e cell emergence. a. Fatigo analysis of molecular/functional pathways in adult dermal Fibs versus Fibs at day 4 post Oct-4 transduction (threshold 15 set at 2-fold; p<0.001). b. Gene expression profile of hematopoietic genes showing significant transcriptional regulation (p<0.001) and c. showing the absence of transcriptional regulation over the time course of CD45^{+ve} cell emergence; i.e. in Fibs (day 0 - DO), puromycin selected Day 4 Fibs^{0 ct-4} (day 4 - D4) and sorted CD45⁺ Fibs^{0 ct-4} (day 21 - D21).

- 20 [0048] Figure 24 shows hematopoietic gene expression during maturation of Oct4 transduced CD45+ve cells, a. Schematic representation of the hematopoietic genes shown to be involved in hematopoietic specification (Runxl, SCL) and maturation (PU.1, Runxl, C/EBPa and GATA1.b. Relative mRNA expression analysis of mesodermal genes (GATA2, Brachyury), 25 hematopoietic specific genes (SCL, MixL1, Runxl, GATA1, PU.1 and C/EBPa) and pluripotency genes (Oct-4, Sox-2 and Nanog) in CD45+ Fibs^{0 ct-4} with or without hematopoietic cytokine cocktail treatment (Flt-3, G-CSF, SCF, IL6, IL3, BMP-4) at day 37 (D37) (n=3, *p<0.001). c. Adult hemoglobin (beta, alpha and delta) expression at day 21 (D21) and day 37 (D37) following Oct-4 in CD45+Fibs^{Oct-4} cells. (HBB- β -hemoglobin; 30 transduction HBA- α
 - hemoglobin; HBD- δ -hemoglobin).

- 17 -

Figure 25 shows Oct enhancer driven GFP expression in unique [0049] subset of cells derived from fibroblast cultures. (a) Schematic representation of PGK-EGFP (positive control), promoter-less EGFP (negative control) vector, C3+EOS EGFP IRES Puro vector. (b) Representative phase and fluorescence microscopy images of hESC and human dermal adult fibroblasts 5 (hFibs) transduced with PGK-EGFP, negative control and C3+ EOS GFP IRES Puro vectors. GFP positive (GFP+ve) from C3+EOS vector are indicated with arrows. (c) Representative FACS plots of GFP^{+ve} cell frequency upon C3+EOS transduction in breast derived hFibs and positive control hESC. (d) 10 Representative phase and fluorescence microscopy images of foreskin and lung derived fibroblasts (hFibs) transduced with C3+ EOS GFP vector. GFP positive (GFP^{+ve}) from C3+EOS vector are indicated with arrows. (e) Frequency of GFP^{+ve} cells in Breast (n=5), foreskin (n=3) and lung derived

15 cytometry. (f) Schematic representation of the strategy used for sorting GFP^{+ve} and GFP^{-ve} hFibs from total hFibs transduced with C3+ EOS lentivirus and subsequent analysis of the sorted subfractions. (g) Representative provirus integration and GFP expression profile was studied in sorted cells. (h) Phase and fluorescence microscopy images of GFP^{-ve} fibroblast fraction

fibroblasts (n=3) upon C3+EOS transduction was studied using flow

20 that was transduced with pSIN Oct4 lentivirus. Arrows indicate GFP cells that are observed after Oct4 overexpression.

[0050] Figure 26 shows EOS^{+ve} fibroblasts cells express pluripotency genes. (a) Schematic representation of Oct4 locus and primers spanning various exons on the loci. (b and c) Expression of Oct4 isoforms in semi
 25 quantitative and quantitative PCR analysis. (d) Relative expression of key pluripotency genes Nanog, Sox2 and Brachyury (BrachT) in various subfractions of fibroblasts. (e) Expression of Oct4, Nanog, and Sox2 from GFP+^ve hFjbs was compared to hESCs by quantitative RT-PCR analysis. (f) Hierarchical clustering of total hFibs, NOS^{+exp} fibroblasts, NOS^{-exp} fibroblasts,

30 hESC, iPSC NOS^{+exp.} fibroblasts and iPS from public data sets (Fib-BJ1, iPS BJ1 ans iPS BJ2). Expression profiles are based on genes enriched in mouse ESCs (Takahashi et al. 2007), human ESCs and adult fibroblast markers (Yu

PCT/CA2010/001708

- 18 -

et al. 2007). (g) Representative images (10X) and enlarged images for immunostaining of Oct4 in control hESC and GFP^{+ve} cells using specific antibody. (h) Expression of Oct4, Nanog, and Sox2 in total hFibs, GFP^{+ve} hFibs, 293, 293 overexpressing Oct4 and control hESCs by western blotting. 5 (I) Occupancy of Oct4, Nanog, and Sox2 on Oct4 Enhancer (CR4) of C3+ EOS GFP IRES Puro vector was studied using ChIP assay. (j) Epigenetic state of Oct4, Nanog, and Sox2 loci in control hESC, NOS^{+exp}, NOS^{-exp} and total hFib cells was analyzed using ChIP to identify H3K4Me3 (black bars) and H3K27Me3 (white bars) marks.

- 10 [0051] Figure 27 shows NOS^{+exp} cells separated from total fibroblast cultures exhibit reduced reprogramming efficiency. (a) Schematic representation of protocol used for reprogramming human Fibs and its subfraction NOS^{+exp} on matrigel. (b) iPSC derivation from 10,000 total fibroblasts or NOS^{+exp} cells on matrigel. Reprogramming of total fibroblast was
- 15 performed 9 times and NOS^{+exp} for n=6, using three different viral titers. (c) Representative phase images of iPSC and non-iPSC like colonies derived total fibroblasts. Fluorescence microscopy images show live staining of Tra 1-60 in both the colonies. (d) Expression of pluripotency markers SSEA3, Tra 1-60 and Oct4 staining was verified in iPSC and non-iPSC like colonies by flow
- 20 cytometry. (e) Average number of Tra 1-60^{+ve} colonies derived from total hFibs. (f) Semiquantitative PCRs showing expression of key ES specific markers in iPSC and non-iPSC colonies obtained from total hFib reprogramming. (g) Hematoxylin and eosin staining of teratoma derived from iPS cells showing mesoderm, endoderm, and ectoderm differentiation. (h)
- NOS^{+exp} hFibs were mixed with total hFibs in the indicated ratio, Lentivirus encoding Oct4, Sox2, Nanog, and Lin28 were transduced 24hrs post plating. Graph represents quantification of number of colonies three-week post transduction. Data represented is from three biological replicates performed in duplicates using three different viral titers. (i) Representative phase and
- 30 fluorescence images 1K +9K mixtures (1:9), GFP^{+ve} colonies were contributed by NOS^{+ex^p} (EOS^{+ve}) cells which was further confirmed by EOS provirus integration. EOS^{-ve} colonies were contributed by total hFibs. To differentiate

- 19 -

between fully versus partially reprogrammed colonies Tra 1-60 live staining was performed. (j) Semi quantitative PCRs of pluripotency genes to study reactivation of ES specific genes in reprogrammed colonies from mixture experiments. (asterisks indicate these colonies were selected for further flow cytometry analysis). (k) Flow cytometry analysis for reprogrammed colonies derived from NOS^{+exp} and total hFibs in mixture experiments. (i) NOS^{+exp} hFib derived iPSC cells was injected into mouse testicle for teratoma formation. Hematoxylin and eosin staining of teratoma showing differentiation of all three germ layers (mesoderm, endoderm, and ectoderm).

- 10 [0052] Figure 28 shows NOS^{+exp} cells are predisposed for reprogramming. (a) hFibs were transduced with C3+ EOS GFP vector, NOS^{+exp} cells were sorted on matrigel and combined with total fibroblast in 1:9 ratio (1000 NOS^{+exp} cells plus 9000 total hFibs) or 10000 total fibroblasts cells and plated on matrigel. Lentivirus encoding Oct4, Sox2, Nanog, and Lin28
- 15 were transduced 24hrs post plating. Right panel represents quantification of colony number derived from 1K to 9K mixture experiments. Left panel represents colony contribution from EOS^{-ve} and EOS^{+ve} cells. (b) Tra 1-60 live staining was performed to study the complete reprogramming in colonies derived from NOS^{+exp} (EOS^{+ve} derived from 1K) or total hFibs (EOS^{-ve} derived
- 20 from 9K) in mixture experiment. (c) Frequency of complete reprogramming (Tra 1-60^{+ve} colonies) was studied in a mixture experiment by dividing number of Tra 1-60^{+ve} colonies from each compartment to its input cell count [no.of Tra 1-60^{+ve} (EOS^{-ve})/9000 or no.of Tra 1-60^{+ve} (EOS^{+ve})/1000].
- [0053] Figure 29 shows molecular state of NOS^{+exp} can be regulated by
 microenvironment for cellular reprogramming competency. (a) Ten thousand cells containing indicated densities of the NOS^{+exp} were seeded on matrigel coated plates. Lentivirus encoding Oct4, Sox2, Nanog, and Lin28 were transduced 24hrs post plating. Number of colonies were counted three weeks post transduction and average numbers of colonies are represented. (b-c)
 Total hFibs and de novo isolated NOS^{+exp} hFibs were analyzed by ChIP
- assays to assess the endogenous chromatin state followed by gene

- 20 -

expression analysis of key pluripotency genes. (d) Representative phase and fluorescence images of NOS^{+exp} hFibs cultured alone, or co-cultured with total hFibs and MEFs from left to right respectively. (e) ChIP assay performed in cultured NOS^{+exp} hFibs indicated bivalency at Oct4 loci while Nanog and Sox2 promoter loci were repressed. Quantitative PCR analysis indicated reduced

- expression of Oct4 in cultured NOS^{+ex^p} compared to de novo isolated cells. (f) NOS^{+e^{xp}} hFibs were cocultured with total hFibs or mouse embryonic fibroblasts in 50-50 ratios. Cocultured NOS^{+e^{xp}} (GFP^{+V}e) were isolated directly from co-cultures purified population analyzed for histone modifications and
 gene expression. ChIP assay from co-cultured NOS^{+exp} on total hFibs
- indicated active marks on endogenous pluripotency genes. Quantitative PCR of cocultured NOS^{+exp} analysis indicated regained expression of Nanog, Oct4 and Sox2 compared to that of cultured NOS^{+exp}. (g) Reprogramming potential of NOS^{+exp} and NOS^{-exp} cells was tested on MEFs. Left panel- Phase and
- 15 fluorescence images of NOS^{+e^{xp/-e^xp}} cells on MEFs or without MEFs (matrigel). Right panel- Phase and fluorescence images of three- five week post reprogramming. Induced pluripotent colonies were only observed when NOS^{+exp} cells were reprogrammed on MEFs. Observed colonies were GFP^{+Ve} and Tra 1-60^{+ve}.
- 20 Figure 30 shows unique NOS^{+exp} population identified in hFibs [0054] exhibits distinct molecular state and cell cycle properties. (a) Hierarchical clustering of total hFibs, NOS^{+exp} hFibs, NOS^{-exp} hFibs, Skin derived (SKPs), keratinocytes and bulge stem cells (BSC) gene precursors expression signature of fibroblasts and molecular markers specific to 25 individual skin stem/progenitor. (b) Global Cluster analysis of adult stem/progenitor cells. (c) Pie chart for the genes differentially upregulated in NOS^{+ex^p} over total population. Genes were filtered based on 3-fold cutoff and were 100% present across NOS+exp replicate samples. (d) Hierarchical clustering of gene expression profiles based on cell cycle pathway 30 (http://www.genome.ip/kegg/) expression in control hESC, Total hFibs, NOS^{+exp}, NOS^{-exp}, iPS NOS^{+exp} cells and public data set Fib BJ1, iPS BJ1.2.

Featured cell cycle genes are upregulated/downregulated in NOS+exp

- 21 -

fibroblasts/iPS cells compared to total hFibs are indicated. (e) HMMR (CD168) staining was performed in hFibs transduced with EOS vector. HMMR localization was observed in the nuclei of dividing NOS^{+exp} hFibs. (f) hFibs were transduced with EOS vector and growth of NOS^{+exp} and total fibroblasts cells were measured at every passage by flow cytometry.

[0055] Figure 31 shows a proposed model for the role of predisposed NOS^{+exp} hFibs towards pluripotent reprogramming.

[0056] Figure 32 shows GFP+ve cells are unique in total hFib cultures.
 (a) Total hFibs were transduced with pGK-EGFP and number of GFP+ve cells
 10 were estimated by flow cytometry analysis. (b) Transduction of C3+ EOS lentivirus in control hESC followed by flow cytometry demonstrated consistent increase in GFP^{+ve} cells. (c) Representative phase and immunofluorescence and 3D Z-stack images of hFibs transduced with EOS vector. Arrows indicate EOS transduced GFP^{+ve} cells in the different plane than total hFibs. (d-f) Total

- 15 hFibs were transduced with C3+ EOS lentivirus. Percentage of GFP^{+ve} cells and mean florescence intensities calculated by flow cytometry analysis indicated constant 3-4 % GFP^{+ve} cells upon EOS C3+ transduction irrespective of viral dilution suggesting these cells are not the artifact due to high copy viral integration. (g) To demonstrate the GFP^{+ve} cells are not the
- 20 artifacts of high copy viral integration GFP^{-ve} cells were sorted from total hFibs and secondary EOS C3+ transductions were performed. GFP^{-ve} cells from secondary infections were further sorted to perform tertiary infections. An increase in GFP^{+ve} cells was not observed with tertiary and quaternary infections due to the increasing viral copy number. (h) Emergence of green cells upon PGK-EGFP transduction in quaternary-infected cells suggested lack of GFP^{+ve} cells upon EOS C3+ transduction was not due to problems

[0057] Figure 33 shows unique cells in fibroblasts cultures express pluripotency gene Oct4. (a) Immunostaining of Oct4 in total hFib cultures, 293
 30 cells and 293 cells overexpressing Oct4 transgene. Arrows indicate Oct4 staining colocalizing with DAPI in the nucleus. (b) MeDIP ChIP was performed

associated with viral uptake.

- 22 -

in total hFib cultures, 293 cells, hESC, NOS^{+exp} (GFP ^{+ve}) cells. The graph shows specific enrichment of Oct4 promoter methylation in 293 and total fibroblasts compared to that hESC and NOS^{+exp} (GFP ^{+ve}) cells.

[0058] Figure 34 shows isotype staining for the reprogrammed colonies from total Fibroblast cells. (a) Flow cytometry analysis for surface isotype staining (control for SSEA3 surface staining) and internal isotype staining (control for Oct4 staining) in iPS like colony derived from total hFibs (b) Flow cytometry analysis for surface isotype staining (control for SSEA3 surface staining) and internal isotype staining (control for SSEA3 surface staining) and internal isotype staining (control for Oct4 staining) in non-iPSC 10 colony derived from total hFibs.

[0059] Figure 35 shows induced Pluripotent cells generated from NOS^{+exp} cells can be differentiated into various lineages. (a) *In vitro* EB differentiation of human ES and iPS cells derived from NOS^{+exp} Fibs towards the hematopoietic lineage as shown by CD45 pan hematopoietic factor staining. (b) Human ES cells and iPSC cells derived from NOS^{+exp} hFibs

[0060] Figure 36 shows NOS^{-exp} hFibs are slow growing and do not contribute to reprogramming. (a) Purified NOS^{-exp} hFibs were transduced with lentivirus containing Oct4, Nanog, Sox2, and Lin28. Cultures were monitored

differentiate towards the neuronal lineage as shown by A2B5 staining.

for 6 weeks, NOS^{-exp} hFibs did not generate iPSC colonies. (b) NOS^{-exp} were mixed with heterogeneous hFibs at a ratio indicated, and transduced with lentivirus containing Oct4, Nanog, Sox2, and Lin28. Between 2-6 weeks, only one colony was detected in any experiment. (c) Fifty thousand NOS^{-exp} were seeded and growth rate was monitored by cell counting over serial passages indicated.

[0061] Figure 37 shows hFibs were transduced with C3+ EOS Lentivirus and NOS ^{+exp} hFibs were sorted and maintained for indicated passages. At every passage GFP expression was measured by flow cytometry.

- 23 -

[0062] Figure 38 shows Oct-4 transduced human fibroblasts give rise to astrocytes, oligodendrocytes and neurons. a. Schema presenting neural lineage specification time line upon Oct-4 transduction. b. Representative bright field images of untransduced fibroblasts and Oct-4-transduced 5 fibroblast that gave rise to astrocytes, oligodendrocytes and neurons (n=3). c. Representative immunofluorescence image of astrocytes stained with GFAP (n=3). d. Representative FACS plot of GFAP levels in fibroblasts (Fibs) and Oct-4 transduced fibroblasts (Fibs^{0 ct-4}) (n=3; p<0.01). e. Representative immunofluorescence image of neurons stained with beta-Tubulin III (n=3). f. 10 Representative FACS plot of beta-Tubulin III levels in fibroblasts (Fibs) and Oct-4 transduced fibroblasts (Fibs^{Oct-4}) (n=3; p<0.01). g. Representative immunofluorescence image of oligodendrocytes stained with Olig-4 (n=3). h. Representative FACS plot of Olig-4 levels in fibroblasts (Fibs) and Oct-4 transduced fibroblasts (Fibs^{0ct~4}) (n=3; p<0.01). i. Frequency of GFAP, Olig-4

15 and beta-Tubulin III levels in Oct-4 transduced fibroblasts (n=3).

[0063] Figure 39 shows Oct-4 transduced human fibroblasts give rise to mature neurons with a dopaminergic phenotype. Schema presenting dopamenergic neuron derivation time line (right panel) and dopaminergic neural immunofluorescence staning beta-Tubulin III and Tyrosine Hydroxylase.

[0064] Figure 40 shows transduction of fibroblasts with Oct4 induces the expression of genes associated with neural progenitor development. Gene expression patterns obtained by affymetrix array hybridization of samples derived from fibroblasts and fibroblasts transduced with Oct4 after 4 days.

25 Gene expression patterns were compared in silico and are differences are depicted as fold change of fibroblasts+OCT4/fibroblasts. Statistical significance testing was performed using Student's t-test.

Detailed description of the disclosure

A. Direct Conversion of Fibroblasts to Progenitor and Differentiated 30 Cells

[0065] The present inventors have shown that Oct-4 transduced dermal fibroblasts give rise to hematopoietic and neural progenitor cells. The inventors further showed that the hematopoietic progenitor cells had the capacity to fully reconstitute the myeloid lineage.

5 **[0066]** Accordingly, the present disclosure provides a method of generating progenitor cells from fibroblasts comprising:

a) providing fibroblasts that express or are treated with the POU domain containing gene or protein; and

b) culturing the cells of step (a) under conditions to allow production of progenitor cells without traversing the pluripotent state.

[0067] The term "POU domain containing gene or protein" as used herein refers to a gene or protein containing a POU domain that binds to Octamer DNA binding sequences as shown in Figure 7 or SEQ ID NOs:1 or 2. In one embodiment, the POU domain containing gene or protein is an Oct 15 gene or protein, including without limitation, the Oct-1, -2, -4, or -11. In a

particular embodiment, the Oct gene or protein is Oct-4.

[0068] The term "progenitor cell" as used herein refers to a less specialized cell that has the ability to differentiate into a more specialized cell. Types of progenitor cells include, without limitation, cells that give rise to

20 neural and hematopoietic lineages. In one embodiment, the progenitor cell is a hematopoietic progenitor cell. In another embodiment, the progenitor cell is a neural progenitor cell.

[0069] The phrase "without traversing the pluripotent state" as used herein refers to the direct conversion of the fibroblast to the progenitor cell, for

example, the produced cells lack pluripotent stem cell properties, such as Tra-1-60 or SSEA3.

[0070] The term "hematopoietic progenitor cell" as used herein refers to a cell that gives rise to blood cells and includes, without limitation, CD45+ cells. Accordingly, in an embodiment, the cells of (b) are sorted to purify CD34

30 or CD45 positive cells.

- 25 -

[0071] The term "neural progenitor cell" as used herein refers to a cell that gives rise to cells of the neural lineage, including, without limitation, neurons and glial cells, for example, astrocytes and oligodendrocytes. Neural progenitor markers include, without limitation, A2B5, nestin, GFAP, betta tubulin III, oligo-4 and tyrosin Hydroxylase. In an optional embodiment, the neural cells are sorted using these markers.

[0072] The term "fibroblast" as used herein refers to a type of cell encountered in many tissues of the body including connective tissue and that can be derived using standard cell culture methods. For example, fibroblasts 10 can be generated from adult and fetal tissues including blood, bone marrow, cord blood and placenta. In one embodiment, the fibroblast is a dermal fibroblast. The term "dermal fibroblast" as used herein refers to fibroblasts isolated from skin of any animal, such as a human. In one embodiment, the animal is an adult. In another embodiment, the fibroblast has been cryopreserved. In an alternative embodiment, cells expressing POU domain containing genes other than fibroblasts can be used in step (a).

[0073] The term "Oct-4" as used herein refers to the gene product of the Oct-4 gene and includes Oct-4 from any species or source and includes analogs and fragments or portions of Oct-4 that retain enhancing activity. The

20 Oct-4 protein may have any of the known published sequences for Oct-4 which can be obtained from public sources such as Genbank. An example of such a sequence includes, but is not limited to, NM_002701. OCT-4 also referred to as POU5-F1 or MGC22487 or OCT3 or OCT4 or OTF3 or OTF4.

[0074] The term "Oct-1" as used herein refers to the gene product of the Oct-1 gene and includes Oct-1 from any species or source and includes analogs and fragments or portions of Oct-1 that retain enhancing activity. The Oct-1 protein may have any of the known published sequences for Oct-1 which can be obtained from public sources such as Genbank. An example of such a sequence includes, but is not limited to, NM_002697.2. Oct-1 also referred to as POU2-F1 or OCT1 or OTF1.

[0075] The term "Oct-2" as used herein refers to the gene product of the Oct-2 gene and includes Oct-2 from any species or source and includes analogs and fragments or portions of Oct-2 that retain enhancing activity. The Oct-2 protein may have any of the known published sequences for Oct-2 which can be obtained from public sources such as Genbank. An example of such a sequence includes, but is not limited to, NM_002698.2. Oct-2 is also referred to as POU2-F2 or OTF2.

[0076] The term "Oct-11" as used herein refers to the gene product of the Oct-11 gene and includes Oct-11 from any species or source and includes analogs and fragments or portions of Oct-11 that retain enhancing activity. The Oct-11 protein may have any of the known published sequences for Oct-11 which can be obtained from public sources such as Genbank. An example of such a sequence includes, but is not limited to, NM_014352.2. Oct-11 is also referred to as POU2F3.

15 [0077] In one embodiment, fibroblasts that express a POU domain containing gene or protein, such as Oct-1, -2, -4 or -11, include overexpression of the endogenous POU domain containing gene or ectopic expression of the POU domain containing gene or protein. In an embodiment, the fibroblasts do not additionally overexpress or ectopically express or are not treated with Nanog or Sox-2.

[0078] Fibroblasts that express a POU domain containing protein or gene, such as Oct-1, -2, -4 or -11, can be obtained by various methods known in the art, including, without limitation, by overexpressing endogenous POU domain containing gene, or by introducing a POU domain containing protein or gene into the cells to produce transformed, transfected or transduced cells. The terms "transformed", "transfected" or "transduced" are intended to encompass introduction of a nucleic acid (e.g. a vector) into a cell by one of many possible techniques known in the art. For example, nucleic acid can be introduced into mammalian cells via conventional techniques such as calcium phosphate or calcium chloride co-precipitation, DEAE-dextran mediated

transfection, lipofectamine, electroporation or microinjection or via viral

- 27 -

transduction or transfection. Suitable methods for transforming, transducing and transfecting cells can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual, 3rd Edition, Cold Spring Harbor Laboratory Press, 2001), and other laboratory textbooks. Suitable expression vectors for directing
expression in mammalian cells generally include a promoter (e.g., derived from viral material such as polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40), as well as other transcriptional and translational control sequences. Examples of mammalian expression vectors include pCDM8 (Seed, B., Nature 329:840 (1987)) and pMT2PC (Kaufman et al., EMBO J. 6:187-195 (1987)).

[0079] In one embodiment, fibroblasts that express a POL) domain containing gene or protein are produced by lentiviral transduction. In another embodiment, the fibroblasts that are treated with a POU domain containing gene or protein include addition of exogenous POU domain containing protein or functional variants or fragments thereof or peptide mimetics thereof. In another embodiment, the fibroblasts that are treated with a POU domain containing gene or protein include addition of a chemical replacer that can be used that induces a POU domain containing gene or protein expression.

The POU domain containing proteins may also contain or be [0800] 20 used to obtain or design "peptide mimetics". For example, a peptide mimetic may be made to mimic the function of a POU domain containing protein. "Peptide mimetics" are structures which serve as substitutes for peptides in interactions between molecules (See Morgan et al (1989), Ann. Reports Med. Chem. 24:243-252 for a review). Peptide mimetics include synthetic structures 25 which may or may not contain amino acids and/or peptide bonds but retain the structural and functional features. Peptide mimetics also include molecules incorporating peptides into larger molecules with other functional elements (e.g., as described in WO 99/25044). Peptide mimetics also include peptoids, oligopeptoids (Simon et al (1972) Proc. Natl. Acad, Sci USA 30 89:9367) and peptide libraries containing peptides of a designed length

representing all possible sequences of amino acids corresponding to a POU domain containing peptide.

[0081] Peptide mimetics may be designed based on information obtained by systematic replacement of L-amino acids by D-amino acids, replacement of side chains with groups having different electronic properties, 5 and by systematic replacement of peptide bonds with amide bond replacements. Local conformational constraints can also be introduced to determine conformational requirements for activity of a candidate peptide mimetic. The mimetics may include isosteric amide bonds, or D-amino acids 10 to stabilize or promote reverse turn conformations and to help stabilize the molecule. Cyclic amino acid analogues may be used to constrain amino acid residues to particular conformational states. The mimetics can also include mimics of the secondary structures of the proteins described herein. These structures can model the 3-dimensional orientation of amino acid residues into

15 the known secondary conformations of proteins. Peptoids may also be used which are oligomers of N-substituted amino acids and can be used as motifs for the generation of chemically diverse libraries of novel molecules.

[0082] The term "variant" as used herein includes modifications, substitutions, additions, derivatives, analogs, fragments or chemical equivalents of the POU domain containing proteins that perform substantially the same function in substantially the same way. For instance, the variants of the POU domain containing proteins would have the same function of being useful in binding the Octamer sequences shown in Figure 7.

[0083] Conditions that allow production of progenitor cells are readily known in the art. For example, colony formation is a standard method known in the art for culturing progenitor cells. The cell culture medium can be any medium that can support the growth of cells including, without limitation, a semi-solid medium. In one embodiment, the conditions comprise a culture period from 14-31 days, optionally 21 days.

30 **[0084]** In another embodiment, the cells are cultured in any medium that can support the growth of cells and then, for example, after at least 3

- 29 -

days, are placed in differentiation media, such as hematopoietic medium, or neural medium, under conditions to allow production of differentiated cells, such as hematopoietic and neural cells.

[0085] The term "differentiation" or "differentiated" as used herein refers 5 to the process by which a less specialized cell, such as a stem cell, becomes a more specialized cell type, such that it is committed to a specific lineage.

[0086] The term "hematopoietic medium" as used herein refers to cell culture media that supports growth and/or differentiation of hematopoietic cells. In one embodiment, the hematopoietic medium comprises at least one

- 10 hematopoietic cytokine, such as Flt3, SCF or EPO. In an embodiment, the cytokine is Flt3 or SCF. In one embodiment, the differentiated hematopoietic cell is of the myeloblast lineage, such as a monocyte or granulocyte. In another embodiment, the hematopoietic cytokine is EPO and the differentiated hematopoietic cell is of the erythroid or megakaryocytic lineage.
- 15 [0087] The term "neural medium" as used herein refers to cell culture media that supports growth and/or differentiation of neural cells. In one embodiment, the neural medium comprises neural basal media supplemented with fibroblast growth factor, epidermal growth factor or bone morphogenetic factor 4 (BMP-4), bFGF (IOng/mI), the N-terminal active fragment of human 20 SHH (200 ng/mI), FGF8 (100 ng/mI; R&D), GDNF (20 ng/mI), BDNF (20
- ng/ml) and/or fetal bovine serum. In an embodiment, the differentiated neural cell is a neuron or a glial cell such as an astrocyte, and/or oligodendrocyte.

[0088] In another aspect, the present disclosure provides isolated progenitor or differentiated cells generated by the methods described herein.

25 Such cells do not express a number of pluripotency markers, such as TRA-1-60 or SSEA-3. In addition, during development such cells lose the expression of the Oct-4 pluripotency marker and thus represent a new source of safe alternatives for progenitor cells.

[0089] In yet another aspect, the disclosure provides use of the cells 30 described herein for engraftment or cell replacement. In another embodiment,

- 30 -

the disclosure provides the cells described herein for use in engraftment or cell replacement. Further provided herein is use of the cells described herein in the manufacture of a medicament for engraftment or cell replacement. "Engraftment" as used herein refers to the transfer of the hematopoietic cells produced by the methods described herein to a subject in need thereof. The graft may be allogeneic, where the cells from one subject are transferred to another subject; xenogeneic, where the cells from a foreign species are transferred to a subject; syngeneic, where the cells are from a genetically identical donor or an autograft, where the cells are transferred from one site to

- 10 another site on the same subject. Accordingly, also provided herein is a method of engraftment or cell replacement comprising transferring the cells described herein to a subject in need thereof. The term "cell replacement" as used herein refers to replacing cells of a subject, such as red blood cells or platelets, or neurons or glial cells or hematopoietic progenitors. In yet another
- 15 embodiment, cells for engrafment or cell replacement may be modified genetically or otherwise for the correction of disease. Fibroblasts before or after transfection or transduction with a POU domain containing gene may be genetically modified to overexpress a gene of interest capable of correcting an abnormal phenotype, cells would be then selected and transplanted into a
- 20 subject. In another aspect, fibroblasts or POU domain containing geneexpressing fibroblasts overexpressing or lacking complete expression of a gene that is characteristic of a certain disease would produce progenitor or differentiated cells for disease modeling, for example drug screening.
- [0090] The term "subject" includes all members of the animal kingdom,
 including human. In one embodiment, the subject is an animal. In another embodiment, the subject is a human.

[0091] In one embodiment, the engraftment or cell replacement described herein is for autologous or non-autologous transplantation. The term "autologous transplantation" as used herein refers to providing
 30 fibroblasts from a subject, generating progenitor or differentiated cells from the isolated fibroblasts by the methods described herein and transferring the

- 31 -

generated progenitor or differentiated cells back into the same subject. The term "non-autologous transplantation" refers to providing fibroblasts from a subject, generating progenitor or differentiated cells from the isolated fibroblasts by the methods described herein and transferring the generated progenitor or differentiated cells back into a different subject.

[0092] In yet another aspect, the disclosure provides use of the cells described herein as a source of blood, cellular or acellular blood components, blood products, hematopoietic stem cells and neural cells. Such sources can be used for replacement, research and/or drug discovery.

- 10 [0093] The methods and cells described herein may be used for the study of the cellular and molecular biology of progenitor cell development, for the discovery of genes, growth factors, and differentiation factors that play a role in differentiation and for drug discovery. Accordingly, in another aspect, the disclosure provides a method of screening progenitor or differentiated 15 cells comprising
 - a) preparing a culture of progenitor or differentiated cells by the methods described herein;
 - b) treating the progenitor or differentiated cells with a test agent or agents; and
- 20 c) subjecting the treated progenitor or differentiated cells to analysis.

[0094] In one embodiment, the test agent is a chemical or other substance, such as a drug, being tested for its effect on the differentiation of the cells into specific cell types. In such an embodiment, the analysis may comprise detecting markers of differentiated cell types. For example: CD45, CD13, CD33, CD14, CD15, CD71, CD235a (Glycophorin A), CD133, CD38, CD127, CD41a, beta-globin, HLA-DR, HLA-A,B,C, CD34, A2B5, nestin, GFAP, beta tubulin III, oligo-4 and tyrosin Hydroxylase. In another embodiment, the test agent is a chemical or drug and the screening is used as a primary or secondary screen to assess the efficacy and safety of the

- 32 -

agent. Such analysis can include measuring cell proliferation or death or cellular specific features such as mast cell degranulation, phagocytosis, oxygen exchange, neural signaling, presence of action potential, secretion of certain proteins, activation of specific genes or proteins, activation or inhibition of certain signaling cascades.

B. Reprogramming Fibroblasts into Induced Pluripotent Stem Cells

[0095] Given the unknown origins of human fibroblasts that form the foundation for cellular reprogramming toward human iPSCs, the present inventors sought to characterize adult dermal fibroblasts in the context of the 10 cellular reprogramming process. The present inventors have identified and characterized a subpopulation of adult human dermal fibroblasts responsible for the generation of reprogrammed cells.

[0096] Accordingly, the present disclosure provides a method of isolating a subpopulation of fibroblasts with increased reprogramming
 15 potential comprising

a) providing fibroblasts that express an Oct-4-reporter; and

b) isolating cells positive for the reporter.

[0097] Definitions from part A that are relevant to this section apply to this section as well.

- 20 **[0098]** Fibroblasts that express an Oct-4-reporter can be produced by various methods known in the art, including, without limitation, introduction of a nucleic acid construct or vector by transformation, transfection or transduction as herein defined. In one embodiment, the Oct-4-reporter gene is introduced by lentiviral transduction.
- 25 **[0099]** The term "reprogramming potential" as used herein refers to the potential of the cells to regain progenitor or stem cell capacity or pluripotent state. The term "increased reprogramming potential" as used herein means that the reprogramming potential is greater than the potential for a mixed population of fibroblasts that have not been selected or isolated.

- 33 -

[00100] The term "Oct-4-reporter" as used herein refers to DNA sequences that are bound by Oct-4 upstream of a reporter that allow or enhance transcription of the downstream sequences of the reporter. Oct-4 reporters are known in the art. For example, an Oct-4 reporter is described in Hotta et al. 2009 and Okumura-Nakanishi et al. 2005 incorporated herein by reference in its entirety.

[00101] The term "reporter gene" and "reporter" as used herein refers to any gene that encodes a protein that is identifiable. Reporter genes and reporter products are readily identified by a skilled person. In an embodiment, 10 more than one reporter gene/reporter is used. In one embodiment, the reporter gene comprises a fluorescent protein (such as green fluorescent protein, GFP) and the cells are isolated in step (b) by detection of the fluorescent protein under fluorescence. In another embodiment, the reporter gene encodes a gene conferring antibiotic resistance, such as to puromycin,

- 15 and the cells are isolated by survival in the presence of the antibiotic. In one embodiment, the fibroblasts are dermal fibroblasts. The reporter gene could also encode a tag and the cells can be isolated based on immuno separation (<u>http://www.miltenvibiotec.com/en/PG 167 501 MACSelect Vectors and Ta q Vector Sets.aspx</u>).
- 20 [00102] The disclosure also provides a method of generating reprogrammed fibroblast-derived induced pluripotent stem (iPS) cells comprising

a) providing (i) a population of fibroblasts with increased expression of Oct-4 and (ii) a mixed population of fibroblasts or a population
 25 of Oct-4 negative fibroblasts;

b) treating the fibroblasts of a) with Oct-4, Sox-2, Nanog and Lin-28; and

c) culturing the cells of (b) under conditions that allow the production of iPS cells.

[00103] In one embodiment, the fibroblasts in b) are treated with Oct-4, Sox-2, Nanog and Lin-28 by introducing the respective genes by viral transduction, such as lentiviral transduction.

- [00104] The term "stem cell" as used herein refers to a cell that has the ability for self-renewal. In one embodiment, the stem cell is a pluripotent stem cell. The term "pluripotent" as used herein refers to an undifferentiated cell that maintains the ability to allow differentiation into various cell types. The term "induced pluripotent stem cell" refers to a pluripotent stem cell that has been artificially derived from a non-pluripotent stem cell.
- 10 **[00105]** The term "Sox-2" as used herein refers to the gene product of the Sox-2 gene and includes Sox-2 from any species or source and includes variants, analogs and fragments or portion of Sox-2 that retain activity. The Sox-2 protein may have any of the known published sequences for Sox-2, which can be obtained from public sources such as GenBank. An example of such a sequence includes, but is not limited to, NM_003106.

[00106] The term "Nanog" as used herein refers to the gene product of the Nanog gene and includes Nanog from any species or source and includes variants, analogs and fragments or portion of Nanog that retain activity. The Nanog protein may have any of the known published sequences for Nanog,

20 which can be obtained from public sources such as GenBank. An example of such a sequence includes, but is not limited to, NM_024865.

[00107] The term "Lin-28" as used herein refers to the gene product of the Lin-28 gene and includes Lin-28 from any species or source and includes variants, analogs and fragments or portions of Lin-28 that retain activity. The

25 Lin-28 protein may have any of the known published sequences for Lin 28, which can be obtained from public sources such as GenBank. An example of such a sequence includes, but is not limited to, BC028566.2. Lin-28 also called CSDD1 or ZCCHCI or Lin28A.

[00108] The term "mixed population" as used herein refers to a mixed 30 population of fibroblasts derived from an animal as opposed to a selected subpopulation. The term bulk population may also be used interchangeably in this disclosure. The mixed population contains cells that express varying levels of Oct-4, Sox-2 and/or Nanog.

- [00109] In another embodiment, the method further comprises analyzing and selecting cells that express a marker of undifferentiated stem cells, such as TRA-1-60, SSEA-3, Sox2, Nanog, SSEA4, TRA-1-81, IGF1 receptor, connexin 43, E-cadherin, Alkaline phosphatase, REX1, CRIPTO, CD24, CD90, CD29, CD9 and CD49f. In one embodiment, the cells are selected for expression of TRA-1-60 and/or SSEA-3.
- 10 **[00110]** The term "TRA-1-60" as used herein refers to the gene product of the TRA-1-60 gene and includes TRA-1-60 from any species or source and includes analogs and fragments or portion of TRA-1-60 that retain activity. The TRA-1-60 protein may have any of the known published sequences for TRA-1-60, which can be obtained from public sources such as GenBank.
- 15 Examples of such sequences include, but are not limited to, NM_0010181 11 and NM_005397.

[001 11] The term "SSEA-3" as used herein refers to the gene product of the SSEA-3 gene and includes SSEA-3 from any species or source and includes analogs and fragments or portion of SSEA-3 that retain activity. The

20 SSEA-3 protein may have any of the known published sequences for SSEA-3 which can be obtained from public sources such as GenBank. Examples of such sequences include, but are not limited to NM_001 122993.

[001 12] In an embodiment, the population of fibroblasts with increased expression of Oct-4 are produced by the method described herein for isolating

25 a subpopulation of fibroblasts with reprogramming potential. In an embodiment, the population of fibroblasts expressing Oct-4 comprise expression of Oct-4 or its isoform B1 but not its cytoplasmic isoform Oct4B.

[00113] In one embodiment, the fibroblasts are dermal fibroblasts. Dermal fibroblasts may be derived, for example, from the skin of an animal.

- 36 -

[00114] In one embodiment, the ratio of cells in step (a) (i) to cells in step (a) (ii) is 50:50 to 10:90. In an embodiment, the ratio of cells in step (a) (i) to cells in step (a) (ii) is 50:50. In another embodiment, the ratio of cells in step (a) (i) to cells in step (a) (ii) is 10:90. In yet another embodiment, the ratio of cells in step (a) (i) to cells in step (a) (ii) is 25:75.

[001 15] Conditions that allow the production of iPS cells are readily known in the art and include, without limitation, colony forming assays for a culture period from 2 to 3 weeks.

[001 16] The present disclosure further provides isolated induced10 pluripotent stem (iPS) cells generated by the method described herein and cells differentiated therefrom.

In yet another aspect, the disclosure provides use of the iPS [00117] cells described herein or cells differentiated therefrom for engraftment. The disclosure also provides the iPS cells described herein or cells differentiated 15 therefrom for use in engraftment. Further provided is the use of the iPS cells described herein in the preparation of a medicament for engraftment. "Engraftment" as used herein refers to the transfer of the cells produced by the methods described herein to a subject in need thereof. The graft may be allogeneic, where the cells from one subject are transferred to another 20 subject; xenogeneic, where the cells from a foreign species are transferred to a subject: syngeneic, where the cells are from a genetically identical donor or an autograft, where the cells are transferred from one site to another site on the same subject. Accordingly, also provided herein is a method of engraftment comprising transferring the iPS cells described herein or cells 25 differentiated therefrom to a subject in need thereof.

[00118] The term "subject" includes all members of the animal kingdom, including human. In one embodiment, the subject is an animal. In another embodiment, the subject is a human.

[00119] In one embodiment, the engraftment described herein is for 30 autologous or non-autologous transplantation. The term "autologous

- 37 -

transplantation" as used herein refers to providing fibroblasts from a subject, generating iPS cells from the isolated fibroblasts by the methods described herein and transferring the generated iPS cells or cells differentiated therefrom back into the same subject. The term "non-autologous transplantation" refers to providing fibroblasts from a subject, generating iPS 5 cells from the isolated fibroblasts by the methods described herein and transferring the generated iPS cells or cells differentiated therefrom back into a different subject. For cells differentiated from the iPS cells, the iPS cells are first differentiated in vitro and then transferred into the subject.

10 **[00120]** In yet another aspect, the disclosure provides use of the cells described herein as a source of iPS cells or differentiated cells therefrom.

[00121] The methods and cells described herein may be used for the study of the cellular and molecular biology of stem cell development, for the discovery of genes, growth factors, and differentiation factors that play a role in stem cell differentiation and for drug discovery. Accordingly, in another aspect, the disclosure provides a method of screening iPS cells or cells

differentiated therefrom comprising

- a) preparing a culture of iPS cells by the methods described herein or cells differentiated therefrom;
- b) treating the cells with a test agent or agents; and
 - c) subjecting the treated cells to analysis.

[00122] In one embodiment, the test agent is a chemical or other substance, such as a drug, being tested for its effect on the differentiation of the iPS cells into specific cell types. In such an embodiment, the analysis may comprise detecting markers of differentiated cell types. For example, CD45, CD13, CD33, CD14, CD15, CD71, CD235a (Glycophorin A), CD133, CD38, CD127, CD41a, beta-globin, HLA-DR, HLA-A,B,C, and CD34, A2B5, nestin, GFAP, beta tubulin III, oligo-4 and tyrosin Hydroxylase. In another embodiment, the test agent is a chemical or drug and the screening is used as a primary or secondary screen to assess the efficacy and safety of the

agent. In an embodiment, the analysis comprises analyzing cell proliferation or cell death or cell differentiation, or generation of progenitors or differentiated cells of interest.

- [00123] The above disclosure generally describes the present 5 disclosure. A more complete understanding can be obtained by reference to the following specific examples. These examples are described solely for the purpose of illustration and are not intended to limit the scope of the disclosure. Changes in form and substitution of equivalents are contemplated as circumstances might suggest or render expedient. Although specific terms
- 10 have been employed herein, such terms are intended in a descriptive sense and not for purposes of limitation.

[00124] The following non-limiting examples are illustrative of the present disclosure:

Examples

15 **EXAMPLE 1: Direct Conversion from Dermal Fibroblasts to Blood**

Results

Emergence of a CD45^{+ve} population from hFibs transduced with Oct-4

Reprogramming towards pluripotency requires a cascade of [00125] 20 events that encompasses generation of various intermediate cells among a rare subset of stable induced pluripotent stem cells (iPSCs) capable of teratoma formation (Takahashi et al., 2007; Takahashi and Yamanaka, 2006) (Figs. 8a-c). A portion of these intermediates form colonies that possess round cellular morphology resembling hematopoietic cells (Fig. 9a) and 25 express the human pan-hematopoietic marker CD45 (CD45^{+ve}), but lack coexpression of the pluripotency marker Tra-1-60 (Chan et al., 2009), indicative of iPSCs (Figs. 9b-c). These human fibroblast (hFib)-derived CD45^{+ve} cells could be isolated by FACS and shown to preferentially express ectopic Oct-4 whilst demonstrating low levels of Sox-2 and Nanog (Figs. 9d-e). These findings indicate that, unlike the fully reprogrammed iPSCs, hFib-derived 30

intermediates could acquire distinct lineage-specific phenotype, as exemplified by the acquisition of the human hematopoietic marker CD45.

[00126] Based on the acquisition of CD45, together with higher levels of Oct-4 vs Nanog or Sox-2, the role of Oct-4 during colony emergence from two independent sources of adult dermal and fetal (foreskin) hFibs was compared with that of Nanog or Sox-2 alone (Fig. 1a). Transduced and untransduced hFibs were examined for colony formation between 14-21 days posttransduction (illustrated in Fig. 10). Unlike untransduced, or hFibs transduced with Sox-2 (hFibs^{Sox-2}) or Nanog (hFibs^{Nanog}), hFibs expressing Oct-4 (hFib⁰^{ct-}

- ⁴) gave rise to colonies (Fig. 1a and Fig. 10b) and exhibited Oct-4 expression similar to the levels detected in established iPSCs (Fig. 1b). Only the hFibs^{0 ct-4}
 ⁴ gave rise to hematopoietic-like CD45^{+ve} cells (Fig. 1c; adult hFibs -38%; fetal hFibs -24%). Furthermore, CD45^{+ve} cells (CD45⁺hFibs^{Oct-4} (day 21)) showed an increase in Oct-4 expression using multiple probe sets (Fig. 9c)
- 15 with a concomitant decrease in the fibroblast specific gene expression (Yu et al., 2007) (Fig. 2a), demonstrating the acquisition of a distinct gene signature. Approximately 1000 genes were downregulated and an equal number upregulated by day 4 post-transduction resulting in the observed shift from a fibroblast phenotype towards a CD45^{+ve} phenotype (Table 3). Collectively,
- 20 these data indicate that Oct-4 is uniquely sufficient to initiate the CD45^{+v}e cell emergence from multiple sources of human dermal fibroblasts.

[00127] To better characterize emerging CD45^{+ve} hFibs, it was aimed to enhance CD45^{+ve} colony formation using Flt3 (FMS-like tyrosine kinase 3) ligand and SCF (stem cell factor), representing inductive growth factors essential for early hematopoiesis (Gabbianelli et al., 1995; Hassan and Zander, 1996; Lyman et al., 1993). Treatment with Flt3L and SCF increased the frequency of CD45^{+ve} colony emergence from both fetal and adult hFibs⁰c^{t-4} by 4- and 6-fold respectively, compared with untreated hFib⁰ct⁻⁴ counterparts (Figs. 2b-c), while no effect was detectable in the control hFibs
30 (Figs. 2b-c and Fig. 11). These results indicated that CD45^{+ve} cells derived

from Oct-4-transduced hFibs are responsive to early hematopoietic growth factors.

CD45^{+ve} cell derivation from hFibs does not traverse the pluripotent state

- 5 [00128] Ectopic expression of Oct-4 alone has been shown to result in pluripotent reprogramming of neural progenitors that endogenously express Sox-2 (Kim et al., 2009). Accordingly, the expression of a panel of genes known to be essential for induction and maintenance of pluripotency (Takahashi and Yamanaka, 2006) was examined during Oct-4-induced
 10 emergence of CD45^{+ve} hFibs. Apart from upregulation of Oct-4 (POU5F1)
- (Fig. 12a), Oct-4 transduction did not alter the pluripotency gene expression profile of the hFibs (Figs. 2d). Furthermore, related POU family members Oct-2 (POU2F2) and Oct-1 (POU2F1) remained unaffected (Fig. 12b). In addition, established markers of fully reprogrammed iPSCs such as SSEA3 and Tra-1-
- 15 60 levels were examined during Oct-4-induced CD45^{+ve} colony emergence vs iPSC derivation from hFibs transduced with complete set of reprogramming factors (Oct-4, Sox-2, Nanog, and Lin-28) (Yu et al., 2007). Upon ectopic expression of Oct-4 alone, neither SSEA3 nor Tra-1-60 was detectable between days 0 to 31 in hFibs^{0 ct-4}, whereas SSEA3 and Tra-1-60 levels
- 20 gradually increased during establishment of pluripotent iPSCs (Figs. 3a-b, Figs. 12c-e). Unlike the fully reprogrammed iPSCs that are able to give rise to endoderm, mesoderm, and ectoderm germ layers, injection of an equal number of Oct-4-transduced hFibs into immunodeficient mice failed to give rise to teratomas (Fig. 2c and Table 1). Unlike iPSCs, neither hFibs nor
- 25 CD45^{+ve}hFibs^Oc^{t-4} were immortalized, but could be maintained for approximately 7 passages (Fig. 13a), without elevation of oncogenic-transforming factor c-Myc (Lebofsky and Walter, 2007) (Fig. 13b). Accordingly, the results indicate that the hFib⁰c^{t-4} cells manifest a cell fate decision conducive to hematopoietic fate selection without the detectible 30 phenotype or functional properties of transformed or pluripotent cells.

CD45^{+ve}hFibs^{0 ct-4} possess *in vitro* and *in vivo* hematopoietic progenitor

- 41 -

capacity

[00129] expression analysis Global gene indicated that the CD45^{+ve}hFibs^{0^ct⁻⁴} cluster with mononuclear cells (MNCs) derived from mobilized peripheral blood (M-PB)- and umbilical cord blood (UCB)-derived hematopoietic progenitors (CD34+ve cells) (Figs. 14a-b). This suggests that 5 CD45^{+v}ehFibs^{0 ct-4} may possess functional hematopoietic potential of multiple blood cell types. To define functional human hematopoietic capacity, both adult and fetal CD45^{+ve}hFibs^{0 c^{t-4}} were physically isolated and subsequently cultured with a cytokine cocktail known to support human adult hematopoietic 10 progenitor development (Wang et al., 2005) (Fig. 4a), which allowed subsequent expansion of CD45^{+ve}hFibs^{Oc}t-4</sup> (Figs. 14c-d). The resulting progeny retained CD45 expression and acquired myeloid-specific markers CD33 and CD13 (Fig. 4b and Fig. 15). A subfraction of CD45+vehFibs^{0 ct-4} progeny included monocytes expressing CD14 (Figs. 4c-d and Fig. 16a) that could be further stimulated by responsiveness to M-CSF and IL-4 to 15 functionally mature into macrophages capable of phagocytosis (Silverstein et al., 1977). CD45^{+v}ehFibs^Oc^{t-4}-derived monocytes were able to engulf FITClabeled latex beads, as indicated by FACS (Fig. 4e) and immunofluorescence analysis (Fig. 4f and Fig. 16b), while untransduced cytokine treated hFibs 20 were devoid of this unique property (Fig. 4e). Hematopoietic cytokine-treated CD45^{+ve}hFibs^{0^{ct-4}} derived from multiple sources of hFibs (adult and fetal) could also give rise to granulocytic cell types distinct from the monocytic cells (Fig. 17a), as indicated by expression of granulocyte marker CD15 (Fig. 4g

25 are associated with granulocytic subtypes including neutrophils, eosinophils, and basophils (Fig. 4h and Fig. 17c). Without cytokines, CD45^{+ve}hFibs^{0 ct-4} cells retained CD45 expression, however, myeloid-specific markers were significantly reduced and monocytic and granulocytic lineages were absent (Figs. 18a-b). These results indicate that cytokine stimulation is necessary for 30 hematopoietic expansion and maturation from CD45^{+ve}hFibs^{0 ct-4}.

and Fig. 17b) and by characteristic cellular and polynuclear morphologies that

[00130] Approximately $\frac{1}{4}$ of the cytokine-stimulated CD45+^vehFibs^{0 ct-4} from either adult or fetal dermal sources co-expressed CD34 and CD45,

- 42 -

suggestive of hematopoietic progenitor potential (Fig. 4i and Fig. 19). Clonal proliferative and developmental potential to the granulocytic and monocytic hematopoietic lineages were measured by standard colony forming unit (CFU) assays (Figs. 4j-k). Similar to somatic UCB-derived hematopoietic progenitors, CD45^{+ve}hFibs^{0 c^{t-4}} were able to give rise to CFUs at relatively equal capacity (Figs. 4k-I). Collectively, the data indicates that the CD45^{+ve}hFibs^{Oct-4} have the ability to give rise to functional hematopoietic progenitor-like cells that are able to mature into human myeloid lineages *in vitro*.

- 10 [00131] Based on the primitive myeloid capacity detected *in vitro*, CD45^{+v}ehFibs^Oc^{t-4} progeny (day 37 post transduction) were transplanted into immunodeficient NOD/SCID IL2Ryc-null (NSG) mice by intrafemoral injection to characterize their *in vivo* reconstitution potential (Fig. 5a). CD45^{+v}ehFibs⁰^{ct-4} ⁴-derived cells engrafted all transplanted NSG recipients up to levels of 20%,
- 15 as indicated by presence of human cells (HLA-A/B/C^{+ve}) (Fig. 5b), while injection of adult hFibs or saline did not give rise to a graft in NSG mice (Fig. 5c). The levels of engraftment of CD45^{+ve}hFibs^Oct⁻⁴ were comparable to those observed for the engrafted UCB-derived progenitors and M-PB (Fig. 5d). The cells that primarily reconstituted the NSG recipients exhibited a predominantly
- 20 myeloid phenotype (-41 % CD45+CD14+) (Fig. 5c), compared with UCB- and M-PB-derived engrafted cells (Fig. 5e). After 10 weeks of *in vivo* hematopoietic engraftment (Fig. 5a), the human cells were isolated from recipients and analyzed for their ability to form CFUs *in vitro* as a measure of sustained progenitor capacity. A proportion of the engrafted cells retained
- 25 CFU initiation potential similar to hematopoietic engrafted cells derived from human UCB (Fig. 5f), which was verified by flow cytometry analysis (Figs. 20a-d). The ability to generate human hematopoietic progenitors after 10 weeks of engraftment and the presence of engraftment, albeit at low levels, in the contralateral bones of the primary NSG recipients (Fig. 21a) further
- 30 supports the *in vivo* functional capacity of CD45^{+ve}hFibs^{Oc,-4}-derived cells. Engrafted CD45^{+ve} cells possessed limited secondary grafts in recipient NSG

- 43 -

mice, (Fig. 21b) indicating they do not possess transformed leukemic stem cell properties (Hope et al., 2004), thus representing safer alternatives as hematopoietic transplantation products in comparison to hPSC-derived cells that retain tumor potential (Amariglio et al., 2009; Roy et al., 2006).

- 5 EPO induces erythroid and megakaryocyte capacity from CD45^{+ve} hFibs [00132] Despite the ability to derive all myeloid lineages from CD45^{+ve}hFibs^{0 ct-4}, erythroid cells were not detected. Erythropoietin (EPO) has been shown to induce early erythroid differentiation (Fried, 2009), thus it was chosen to induce erythroid cell derivation from CD45^{+ve}hFibs^{0 ct-4}. Upon Oct-4
 10 transduction, hFibs expressed the erythroblast marker CD71 at a frequency of nearly 40% (Fig. 6a), which increased 2-fold following EPO induction. In addition, expressions of Glycophorin-A (critical membrane protein required for erythrocyte function) (Fig. 6b), and expression of human adult β-globin protein (uniquely required for oxygen transport by red blood cells) (Fig. 6c), were also
- 15 induced upon EPO treatment. Untransduced hFibs (Fig. 6c) and hematopoietic cells derived from hPSCs (Fig. 6c inset) lacked β-globin protein levels. In the absence of EPO, only β-globin transcript was expressed in the CD45^{+ve}hFibs^{0 ct-4} (Fig. 5d), while β-globin protein was undetectable (Fig. 6c). In contrast, and unlike hematopoietic cells derived from hPSCs (Cerdan et al.,
- et al., 2001), 20 2004; Perlingeiro hematopoietic cells derived from CD45+^vehFibs^Oct-4</sup> lacked embryonic (zeta) globin expression and only expressed modest levels of fetal (epsilon) globin (Fig. 6d). EPO-treated CD45^{+ve}hFibs^{0 ct-4} exhibited both primitive and mature erythrocyte (enucleated) morphologies (Fig. 6e) and allowed for erythroid progenitor emergence, detected by colony formation (BFU-E) and CFU-Mixed colonies 25 (CFU-Mix; dual myeloid and erythroid capacity), similar to that observed for UCB, without reduction in monocytic or granulocytic progenitor capacity (Figs. 6f-g, Figs. 22a-b). Based on BFU-E potential and the presence of both adult β -globin protein and enucleated red cells, EPO-treated CD45^{+ve}hFibs^{Oct-4} may
- 30 utilize definitive (adult) and not primitive (embryonic) hematopoietic programs (Orkin and Zon, 2002) during conversion of hFibs to hematopoietic fate.

- 44 -

[00133] Studies have indicated that erythroid and megakaryocytic lineage commitment occurs together and potentially arises from a common precursor population (Debili et al., 1996; Klimchenko et al., 2009). Accordingly, the emergence of megakaryocytic lineage following EPO stimulation of CD45+^{ve}hFibs^{o ct-4} was tested using an *in vitro* assay available 5 for detection of Megakaryocytic (Mk)-CFUs that serves as a surrogate measure for predicting megakaryocytic recovery in patients (Strodtbeck et al., 2005). Treatment of the CD45^{+ve}hFibs^{Oct-4} with EPO resulted in the emergence of megakaryocytes (CFU-Mk), as indicated by the presence of 10 Mk-specific antigen GPIIb/Illa (CD41) positive colonies (Fig. 6h-right panel and Fig. 6i), while this hematopoietic progenitor type was absent (non-CFU-Mk devoid of GPIIb/Illa) in CD45+vehFibs^{0 ct-4} not stimulated with EPO (Fig. 6hmiddle panel, Fig. 6i) or control hFibs (Fig. 6h-left panel and Fig. 6i). These CD45^{+ve}hFibs^Oct⁻⁴ possess that data indicate both erythroid and 15 megakaryocytic potential. Based on the ability of EPO to reveal additional CD45^{+v}ehFibs^{Oct-4} capacities. hematopoietic lineage mav possess physiological competency and responsiveness to growth factors similar to hematopoietic progenitors derived from the human adult bone marrow compartment (Wojchowski et al., 2006).

20 Role of Oct-4 during hematopoietic program activation in hFibs

[00134] To develop a broader understanding of the role of POU domain containing protein Oct-4 during hematopoietic conversion of hFibs, gene expression profiles and Oct-4 promoter occupancy of hematopoietic, nonhematopoietic and pluripotency factors were examined over the time course of CD45^{+ve} cell emergence and maturation (Fig. 7a). Global gene expression 25 analysis indicated several changes in both transcriptional activation and repression. As early as day 4 post Oct-4 transduction, significant changes occur in numerous molecular pathways including metabolic and developmental processes (Fig. 23a). Furthermore, global gene expression of 30 the hFibs taken at three time points over the course of CD45+^{ve} cell emergence (hFibs (day 0), CD45^{+ve}hFibs^{0 ct-4} (day 4) and CD45^{+ve}hFibs^{0 ct-4} (day 21)) indicated a decrease in fibroblast-specific gene expression (Yu et

- 45 -

al., 2007) (Fig. 7b), without pluripotency gene induction, excluding the predictable increase in Oct-4 (POU5F1-specific probe sets) (Fig. 7c). Oct-4transduced hFibs immediately demonstrated an upregulation of a number of hematopoietic cytokine receptors required for responsiveness to cytokines, including Flt3 and c-kit receptors of FLT3L and SCF respectively (Fig. 7d). In addition, transcription factors associated with early human hematopoietic development were also upregulated (Fig. 7e and Figs. 23b-c). These data indicate that Oct-4 induces a cascade of molecular changes in hFibs that orchestrate the hematopoietic fate conversion.

- 10 **[00135]** Ground state bulk populations of hFibs possess nearly undetectable levels of genes associated with pluripotency, such as Nanog and Sox-2, or hematopoietic specification, such as SCL/Tal-1 (T-cell acute lymphocytic leukemia protein 1), Runxl (Runt-related transcription factor 1), C/EBPa (CCAAT/enhancer-binding protein alpha), GATA1 (GATA binding
- 15 factor 1) or PU.1/Spi-1 (Feng et al., 2008; Friedman, 2007; Ichikawa et al., 2004; Shivdasani et al., 1995) (Fig. 7f and Fig. 24a). However, transduction with Oct-4 was accompanied by a substantial increase of specific hematopoietic genes including SCL, C/EBPa, GATA1, and Runxl (Fig. 7f). Interestingly, hematopoietic-associated genes PU.1 and MixL1, which were
- 20 previously shown to regulate primitive blood development (Feng et al., 2008; Koschmieder et al., 2005; Ng et al., 2005), were not differentially regulated (Figs. 7e-f and Figs. 23 and 24b-c), suggesting these genes may not be essential for the conversion to blood fate from hFibs. Expression of genes associated with mesodermal transition from the pluripotent state, such as
- Brachyury and GATA2, were absent in both untransduced hFibs and CD45^{+ve}hFibs^{Oct-4} (Fig. 7f), indicating that hematopoietic specification from hFibs does not involve embryonic programs akin to mesodermal specification from hPSCs (Tsai et al., 1994; Vijayaragavan et al., 2009). Molecular analysis of CD45^{+ve}hFibs^{0 ct-4} following cytokine treatment (D37) that resulted in hematopoietic maturation also reduced Oct-4 levels, but maintained levels of Runxl, SCL, and C/EBPa (Fig. 24b), whereas expression of all adult globins

was induced, including hemoglobin-alpha, beta, and delta (Fig. 24c and Fig. 6d).

- [00136] Similar to Oct-4, POU domain containing proteins Oct-1 and -2 are also able to regulate hematopoietic-specific genes implicated in specification and maturation of blood cells (Table 2) (Boyer et al., 2005; Ghozi et al., 1996; Kistler et al., 1995; Rodda et al., 2005; Sridharan et al., 2009). Accordingly, gene expression profile of POU domain containing proteins was evaluated in emergence of CD45^{+Ve} hFibs. While the expression of Oct-4 (POU5F1) increased during CD45^{+Ve} cell emergence, followed by a significant reduction upon cytokine treatment, the expression levels of Oct-2 (POU2F2) and Oct-1 (POU2F1) remained unchanged (Fig. 7g), suggesting that Oct-4 does not target other Oct family members. Nevertheless, Oct-1, -2 and -4 have the potential to bind the same octamer (POU) binding sequences in a cell context specific manner, thereby raising the possibility that Oct-4 has the
- 15 capacity to bind and potentially regulate similar gene targets of Oct-1 and -2 (Boyer et al., 2005; Kistler et al., 1995; Rodda et al., 2005; Sridharan et al., 2009) (Fig. 7h and Table 2). Thus, to obtain more insight into the possible mechanism by which Oct-4 induces hematopoietic conversion, Oct-4 occupancy of hematopoietic, non-hematopoietic, and pluripotency genes that
- 20 contain shared Oct 1, 2 or 4 binding sequences in their putative promoters/enhancers was examined (Fig. 7h, Table 2). Consistent with changes in gene expression (Fig. 7f), Runxl , SCL, and GATA1 displayed substantial Oct-4 occupancy (Fig. 7i), a phenomenon previously reported in partially reprogrammed mouse iPSCs and in mouse fibroblasts expressing
- Oct-4 alone (Sridharan et al., 2009). In addition, the CD45^{+v}ehFibs^{Oct-4} also showed an increase in Oct-4 occupancy at the CD45 promoter (Fig. 7i). To assess the specificity of Oct-4 occupancy of hematopoietic targets during CD45^{+v}e cells emergence, non-hematopoietic associated promoters previously shown to bind Oct-1 or -2, thus possessing the capacity to bind Oct-4 were also examined. Consistent with global gene expression data (Fig. 14a), housekeeping genes Gadd45a and Pol2ra exhibited an increase in Oct-

4 occupancy at their respective promoters, while non-hematopoietic genes

- 47 -

Myf5 and Nkx2.5, associated with mesodermal development did not demonstrate significant Oct-4 occupancy in either Oct-4 transduced hFibs or CD45^{+v}_e cells (Fig. 7j). However, Oct-4 uniquely occupied a network of promoters in human pluripotent stem cells (hPSCs) such as Nanog, c-Myc, and Tbx3 (Fig. 7k), which were not bound by Oct-4 in the CD45^{+ve}hFibs⁰c^{t-4}, further supporting the idea that Oct-4 DNA occupancy is cell context-dependent. While Oct-4 binds its own promoter (Fig. 7k), it does not bind the

Oct-2 promoter (Fig. 7i), consistent with the gene expression profile of Oct-2

- (Figs. 12a-b). Despite these analyses, due to the conserved octamer binding
 sequences among Oct-1, -2 and -4 (Table 2), it remains plausible that ectopic expression of Oct-4 could act as a surrogate for Oct-1 or -2 during this process. Collectively, temporal gene expression analyses along with Oct-4 occupancy studies shown here demonstrate that ectopic Oct-4 expression results in induction of a hematopoietic program in hFibs that supports blood
- 15 fate conversion.

Discussion

[00137] The present Example demonstrates the ability of human adult dermal and fetal foreskin fibroblasts to be directly converted to multipotent hematopoietic cells of the myeloid, erythroid, and megakaryocytic blood fates via Oct-4-dependent cellular programming without traversing the pluripotent state or activation of mesodermal pathways (Tsai et al., 1994; Vijayaragavan et al., 2009). Furthermore, given that transition from primitive to definitive hematopoiesis is delineated by the shift from embryonic to adult hemoglobin expression (Orkin and Zon, 2002), it is demonstrated that CD45^{+ve} fibroblasts,

25 unlike hPSC-derived hematopoietic cells (Chang et al., 2006), acquire an exclusive adult-globin protein and hematopoietic gene profile which indicates that definitive hematopoietic programs were being recruited during this conversion process.

[00138] Although recent reports demonstrate conversion of mouse
30 fibroblasts to neural, cardiac, and macrophage-like cells from mouse
fibroblasts (Feng et al., 2008; leda et al., 2010; Vierbuchen et al., 2010), the

- 48 -

present Example uniquely demonstrates the ability to generate multipotent vs unipotent cell types from human fibroblasts, hence establishing a future clinical application for these multipotent blood cells. Clinical transplantation studies have estimated that a minimum of 1.5 x 10⁸ CD34^{+ve} blood cells (enriched for hematopoietic progenitors) are required to achieve rapid engraftment in an average 60kg patient for recovery of neutrophils, red blood cells, and megakaryocyte after myeloablative therapies (Bender et al., 1992; Feugier et al., 2003). Taking into account the yield, expansion capacity and clinical feasibility using this direct conversion approach to hematopoietic fate 10 (Table 4), the present method could provide a reasonable basis for

[00139] The present Example reveals a previously unknown role for Oct-4 that permitted the fibroblasts to acquire a hematopoietic phenotype via upregulation of hematopoiesis-specific cytokine receptors and transcription 15 factors. The acquisition of this phenotype is linked to the direct binding of Oct-4 to the regulatory loci of hematopoietic-specific genes (i.e. SCL, Runxl, CD45, and GATA1) (Boyer et al., 2005; Ghozi et al., 1996; Kwon et al., 2006; Sridharan et al., 2009). While Oct-1 and Oct-2 have been shown to play a role in adult lymphopoiesis (Brunner et al., 2003; Emslie et al., 2008; Pfisterer

autologous cell replacement therapies.

- 20 et al., 1996), Oct-4 has not been previously implicated in blood development. Given the high conservation between the native or predicted octamer binding sequences among Oct-1, -2 and -4, it is predicted that POU domains shared among Oct proteins have a redundant role in human fibroblast conversion to hematopoietic fate. However, while Oct-4 converts fibroblasts to myeloid and
- 25 erythroid progenitors, lymphoid hematopoietic fate was absent. Nonetheless, it is predicted that ectopic expression of Oct-4, -1 and -2, coupled with specific culture conditions that support B-cell and T-cell development, may support lymphoid conversion from fibroblasts.

[00140] Thus, the present inventors have demonstrated that adult
 30 human dermal fibroblasts can be directly converted into CD45+ hematopoietic cells by transduction with Oct-4 alone that have hematopoietic reconstitution

PCT/CA2010/001708

- 49 -

capacity. The CD45+ Oct-4 transduced cells under the right stimuli are able to give rise to hematopoietic progenitors as well as mature blood cells, such basophils, neutrophils, eosinophils, megakaryocytes macrophages. and erythroid cells, without traversing the pluripotent or mesodermal progenitor state. Furthermore, the presence of beta-globin in EPO treated CD45+ Oct-4 5 transduced cells provide the hallmark that the cells are utilizing definitive hematopoiesis versus primitive hematopoiesis that is observed for iPSCs and The present study uncovers a novel method for derivation of hESC. hematopoietic cells. Such cells can provide a quicker, cheaper and safer alternative for example, for autologous transplantation, due to both their in 10 vitro and in vivo competence.

Methods

[00141] Cell Culture - Primary human dermal adult fibroblasts were derived from breast dermal tissue and the fetal fibroblasts were derived form 15 foreskin tissue and were initially maintained in fibroblast medium (DMEM (Gibco) supplemented with 10% v/v FBS (Fetal Bovine Serum, HyClone), 1mM L-glutamine (Gibco), 1% v/v non essential amino acids (NEAA; Gibco) before transduction with Oct-4 lentivirus-vector. Human dermal fibroblasts 20 transduced with Oct-4 were maintained on matrigel-coated dishes in complete F12 media (F12 DMEM; Gibco) supplemented with 10% knockout serum replacement (Gibco), 1% nonessential amino acids (Gibco), 1 mM Lglutamine (Gibco), and 0.1 mM ß-mercaptoethanol) containing 16 ng/ml bFGF (BD Biosciences) and 30 ng/ml IGFII (Millipore) or complete F12 medium containing 16 ng/ml bFGF and 30 ng/ml IGFII and supplemented with 300 25 ng/ml Flt-3 (R&D Systems) and 300 ng/ml stem cell factor (SCF; R&D Systems) for 21 days. The arising CD45+^{ve} Oct-transduced cells were transferred onto low attachment 24-well plates in hematopoietic medium consisting of 80% knockout DMEM (KO-DMEM) (Gibco), 20% v/v non-heat 30 inactivated fetal calf serum (FCS) (HyClone), 1% v/v nonessential amino acids, 1 mM L-glutamine, and 0.1 mM β-mercaptoethanol (Sigma) for 16

10

days. Cultures were replaced with hematopoietic differentiation medium with cytokines (SCF, G-CSF, Flt3, IL-3, IL-6 and BMP-4; R&D Systems) or for erythroid/megakaryocytic differentiation the media was supplemented with hematopoietic cytokines plus 3 U/ml EPO and changed every 4 days, followed by collection for molecular and functional analysis.

[00142] Lentivirus Production - Lentiviral vectors (pSIN) containing cDNAs of Oct-4, Nanog, Sox-2 and Lin-28 were obtained from Addgene. These vectors were transfected with virapower in 293-FT packaging cells line. Viral supernatants were harvested 48h post transfection and ultracentrifuged to concentrate the virus. Equal amount of each virus was used for fibroblast transduction in presence of 8 µg/ml polybrene.

Lentivirus transduction - For generation of cells containing [00143] single transcription factors, human adult dermal fibroblasts (Fibs) (derived from breast skin; age between 30-40 yrs.) or fetal foreskin Fibs were seeded at the density of 10,000 cells/well on matrigel coated 12-well plates. Twenty-15 four hours post seeding, Fibs were infected with lentivirus expressing either Oct-4 or Nanog or Sox-2 (Nanog and Sox-2 transduction was only performed for adult dermal Fibs). Transduced fibroblasts were then grown in complete F12 medium media containing 16 ng/ml bFGF and 30 ng/ml IGFII 20 supplemented with 300 ng/ml Flt-3 and 300 ng/ml SCF or complete F12 media containing 16 ng/ml bFGF and 30 ng/ml IGFII alone for up to 21 days. Emerging CD45^{+ve} colonies were counted 14 to 21 days post infections. Colonies were picked manually and maintained on matrigel-coated wells. Molecular analysis was done on purified untransduced Fibs (DO), Oct-4

25 transduced Fibs at day 4 (D4), CD45^{+ve} Fibs at day 21 (D21) and hematopoietic cytokine treated or untreated CD45^{+ve} Fibs at day 37 (D37). Day 4 post Oct-4 transduction was chosen as the early event time point based on a number of criteria: a, optimal time for recovery following transduction; b, visible morphological changes within the culture; and c, resumption of normal 30 cell cycle kinetics. The day 4 Oct-4 transduced Fibs (D4) were isolated by

20

PCT/CA2010/001708

- 51 -

puromycin selection overnight (Oct-4 vector contains puromycin resistance cassette), purity of sample was validated by staining for Oct-4 followed by Oct-4 expression analysis using flow cytometry; samples used for molecular analysis exhibited 99% Oct-4 levels. The day 21 (D21) and day 37 (D37) CD45 +^veFibs^{0 ct-4} were isolated based on their CD45 expression. D21 and D37 cells were stained with CD45-APC antibody (BD Biosciences) and sorted using FACSAria II (Becton-Dickinson); samples used for molecular analysis exhibited 99% CD45 levels.

[00144] Induction of Reprogramming -For generation of 10 reprogrammed cells from fibroblasts; cells were seeded at the density of 10,000 cells/well on matrigel coated 12-well plates. Twenty-four hours post seeding, fibroblasts were transduced with lentivirus expressing Oct-(Yu et al. 2007). Transduced fibroblasts were then 4/Nanog/Sox-2/Lin-28 grown in F12 media supplemented with 30 ng/ml IGFII and 16 ng/ml bFGF. 15 iPSC colonies were counted four weeks post infections. Reprogrammed Colonies were picked manually and maintained on matrigel-coated wells.

[00145] Live Staining - For live staining sterile Tra-1-60 antibody (Millipore) was preconjugated with sterile Alexa Fluor-647 at room temperature. Reprogrammed colonies were washed once with F12 medium and incubated with Tra-1-60-Alexa 647 antibodies for 30 mins. at room temperature. Cultures were then washed twice to remove unbound antibody.

Cells were visualized by Olympus 1X81 fluorescence microscope.

[00146] Flow Cytometry - For pluripotency marker expression, cells were treated with collagenase IV, and then placed in cell dissociation buffer
 for 10 minutes at 37°C (Gibco). Cell suspensions were stained with SSEA3 antibody (1:100) (Developmental Studies Hybridoma Bank, mAB clone MC-631, University of Iowa, Iowa City, IA) or Tra-1 -60-PE (1:100) antibody (BD Biosciences). For SSEA3 staining Alexa Fluor-647 goat anti-rat IgM (1:100) (Molecular Probes, Invitrogen) was used as the secondary antibody. Live cells
 were identified by 7-Amino Actinomycin (7AAD) exclusion and then analyzed

for cell surface marker expression using the FACSCalibur (Becton-Dickinson). Collected events were analyzed using FlowJo 8.8.6 Software (Tree Star Inc.).

[00147] Cells from the hematopoietic differentiation medium were disassociated with TrypLE (Gibco) at day 16 and analyzed for expression of hematopoietic progenitor and mature hematopoietic markers. Hematopoietic 5 cells were identified by staining single cells with fluorochrome-conjugated monoclonal antibodies (mAb): CD34-FITC and APC- or FITC-labelled antihuman CD45 (BD Biosciences), FITC-anti-CD33 (BD Pharmingen), PE-anti-CD13 (BD Pharmingen), PE- or FITC-anti-CD71 (BD Pharmingen), FITC-anti-HLA-A/B/C (BD Pharmingen), PE-anti-CD15 (BD Pharmingen), PE-anti-CD1 5 10 (BD Pharmingen); PE anti-CD14 (BD Pharmingen), FITC- or PE-anti-GlyA (BD Pharmingen), and APC- or PE-anti-beta-globin (SantaCruz Biotech). The mAb and their corresponding isotypes were used at 1-2 mg/ml, optimal working dilutions were determined for individual antibodies. Frequencies of 15 cells possessing the hemogenic and hematopoietic phenotypes were determined on live cells by 7AAD (Immunotech) exclusion, using FACSCalibur (Beckman Coulter), and analysis was performed using the FlowJo 8.8.6 Software.

[00148] RT-PCRs and q-PCRs - Total RNA was isolated using Norgen 20 RNA isolation kit. RNA was then subjected to cDNA synthesis using superscript III (Invitrogen). Quantitative PCR (qPCR) was performed using Platinum SYBR Green-UDP mix (Invitrogen). For the analysis of the sample, the threshold was set to the detection of Gus-B (beta-glucuronidase) (Oschima et al. 1987) and then normalized to internal control GAPDH. The

25 base line for the experiment was set to the gene expression levels observed in fibroblasts. Given the expression of some of the genes within this starting population of fibroblasts, the gene expression pattern for these cells was included. Hence, the data is represented as delta cycle threshold (AC(t)) versus delta AC(t) (AAC(t)). (qPCR primer sequences are provided in Table

30 5).

[00149] Genomic DNA was isolated using ALL IN ONE isolation kit (Norgen). For integration studies 150 ng genomic DNA was used per PCR reaction. PCR reactions were performed using 2X PCR Master Mix (Fermentas).

5 [00150] Affymetrix Analysis - Total RNA was extracted from human dermal fibroblasts (2 replicates), puromycin selected day 4 Oct-4 transduced fibroblasts (2 replicates) and sorted CD45+ve cells (2 replicates) using the Total RNA Purification Kit (Norgen). RNA integrity was assessed using the Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Sample labeling 10 and hybridization to Human Gene 1.0 ST arrays (Affymetrix) were performed by the Ottawa Health Research Institute Microarray Core Facility (OHRI; Ottawa. Canada). Affymetrix data were extracted, normalized. and summarized with the robust multi-average (RMA) method implemented in the Affymetrix Expression Console. CEL files were imported into dChIP software 15 (Li and Wong 2001) for data normalization, extraction of signal intensities and probe-level analysis.

[00151] Chromatin Immunoprecipitation - ChIP was performed as described previously (Rampalli et al. 2007). Briefly, human pluripotent cells (H9 and iPSC1.2), human dermal fibroblast cells, puromycin selected day 4

- Oct-4 transduced cells, sorted day 21 CD45^{+ve} cells were cross-linked using 1% formaldehyde. Chromatin was digested in buffer containing 0.1 % SDS to obtain fragments of approximately of 1000 bp length. Sonicated DNA was subjected to immunoprecipitation using anti-Oct4 (ChIP quality antibody; Cell Signaling Technology) and anti rabbit IgG antibodies (Santacruz
 Biotechnology). Immunoprecipitated DNA was further reverse cross-linked,
- purified and subjected to qPCR analysis using UDG-Platinium Syber Green mix (Invitrogen). The promoter specific ChIP primers are listed in Table 6. To calculate the relative enrichment, signals observed in control antibody were subtracted from signals detected from the specific antibody; the resulting
 differences were divided by signals observed from 1/50th ChIP input material.

- 54 -

[00152] **Megakaryocyte assay** - To detect human megakaryocytes MegaCult[™]-C Complete Kit with Cytokines (Stem Cell Technologies) was used. The derivation of megakaryocytes was done according to instruction included with the kit. The kit includes pre-screened components for optimal 5 growth of megakaryocyte CFUs, such as thrombopoietin (TPO), Interleukin-3 (IL-3), IL-6, IL-11 and SCF, chamber slides for growth and antibodies for staining. In short 10,000 CD45 +^ve EPO subsequent immunocytochemical treated cells were plated in the MegaCult medium containing cocktail of growth factors stated above. The human CFU-Mks were detectable by day 10 10 to 15 and were subsequently fixed and stained according to protocol. Mkspecific antigen GPIIb/Illa (CD41) linked to a secondary biotinylated antibodyalkaline phosphatase avidin conjugated detection system was used, where Mk-CFUs were red/pink in colour.

[00153] Cytospin - 1000 CD45 ^{+ve} Oct-4 transduced cells were washed
15 twice in cold 2% FBS in PBS and dilute in 500 μI of cold 1% FBS in PBS. The samples were loaded into the appropriate wells of the Cytospin. The samples were spun at 500 rpm for 5 minutes to allow adherence to the slides. The slides were fixed with methanol for 1 min. and allowed to dry for 30 min. Then slides were stained with Giemsa-Wright stain for 3 min followed by 10 min. in
20 PBS and a quick wash in distilled water. The slides were allowed to dry overnight and mounted with mounting medium (Dako). Slides were viewed by Olympus 1X81 microscope.

[00154] Macrophage phagocytosis assay - Fluorescein (FITC) conjugated-latex beads (Sigma) were used as particle tracers to analyze phagocytosis by monocytes derived from CD45 +Fibs^{Oct-4} cells treated with IL-4 and M-CSF. To measure phagocytosis, 10 μI of packed beads suspended in 3% FBS in PBS was added to 10⁶ cells in Teflon tubes. After incubation for 90 min at either 37°C, cells were washed three times with cold PBS containing 3% FBS and 0.1% EDTA to remove free beads. The cells were then labeled to detect expression of CD45 (APC-conjugated CD45 mAb) together with

FITC-bead uptake, and analyzed by flow cytometry using FACSCalibur (BD)

specific

for

a-satellite

of

- 55 -

or visualized by cytospinning 1000 cells onto tissue culture quality slides (VWR) and viewed by Olympus 1X81 fluorescence microscope.

Methylcellulose colony-forming assay - Cells were plated at [00155] 1,000 FACSAria II sorted (Becton-Dickinson) CD45 + CD34 + cells or 5000 total cell (EPO treatment) in 1 ml Methocult GF H4434 (Stem Cell Technologies, 5 Vancouver, BC). Colonies were scored after 14 days of culture using standard morphological criteria and analyzed using the FACSCalibur (Becton-Dickinson) for hematopoietic surface markers. Collected events were analyzed using FlowJo 8.8.6 Software (Tree Star Inc.). For colony derivation from xenotransplant derived engrafted cells, the cells were first sorted based 10 on HLA-A/B/C (BD Biosciences) followed by CD45 expression using a human specific anti-CD45 (BD Biosciences). The HLA-A/B/C and CD45 double positive cells were then plated at a density of 1000 cell/ml in Methocult GF H4434. The colonies derived from engrafted cells were further analyzed for 15 hematopoietic surface markers using FACSAria II (Becton-Dickinson).

Collected events were analyzed using FlowJo 8.8.6 Software (Tree Star Inc.).

[00156] Xenotransplant assays - NOD/SCID IL2Ryc null adult mice (NSG) were sublethally irradiated with 325 rads 24 hours before transplantation. 5.0 x 10⁵ CD45 ^{+ve} Oct-transduced (D37) or human dermal 20 fibroblasts or human mobilized peripheral blood or human umbilical cord blood lineage depleted cells were transplanted by intrafemoral injection. After 10 weeks, animals were culled, and bone marrow (BM) from injected femur, contralateral bones and spleen were analyzed for the presence of human cells by flow cytometry (FACSCalibur, Becton-Dickinson), followed by data

25 analysis using FlowJo 8.8.6 Software (Tree Star Inc.). Cells positive for HLA-A/B/C and CD45 were analyzed for the expression of hematopoietic lineage specific markers such as CD14. For secondary transplants, total engrafted bone marrow cells were transplanted intravenously (IV injection) in adult irradiated NSG mice as described for primary transplants. Genomic DNA 30 from engrafted cells were then analyzed using conventional PCR by primers

human

chromosome

17:

forward-

5'-

GGGATAATTTCAGCTGACTAAACAG-3' (SEQ ID NO:3) and reverse- 5'-TTCCGTTTAGTTAGGTGCAGTTATC-3' (SEQ ID NO:4).

[00157] Teratoma Assay - The McMaster University Animal Care Council approved all procedures and protocols. Adult dermal fibroblasts, fetal dermal (foreskin) fibroblasts, CD45^{+ve} Oct-4 transduced adult dermal 5 fibroblasts, CD45^{+ve} Oct-4 transduced fetal fibroblasts and iPSC 1.1 to 1.4 were treated with collagenase IV for 5-10 min followed by collection and washing 2X with saline and resuspended in saline. 500,000 cells per sample were injected intratesticularly into male NOD-SCID mice. Mice were killed 10-10 12 weeks after initial injection. Teratomas were extracted, embedded in paraffin and sectioned in 5 µm intervals followed by deparafinization in xylene and processing through a graded series of alcohol concentrations. Samples were stained with Hematoxylin and eosin or Oct4 followed by dehydration and xylene treatment. Slides were mounted using Permount and imaged by 15 scanning slides using Aperio Scan Scope and images were captured using

- Image Scope v9.0.19.1516. software. Tissue was also collected from a variety of organs including lung, spleen, liver, brain and kidney to investigate the presence of metastatic cells. Tissue typing was performed based on stringent histological and morphological criteria specific for each germ layer subtype.
- 20 Mesoderm lineages, such as bone were identified using presence of osteocytes and bone spicules; cartilage was identified by the presence of chondrocytes and specific staining of the extra cellular matrix. Endoderm lineages, such as intestinal lumens were identified by the presence of goblet cells in the lumen epithelium. Ectoderm lineages, such as skin were identified 25 based on distinguishing cell layer morphologies (i.e. stratified); brain or neural
- tube was identified based on specific histological criteria. The presence of the germ layers and tissue typing was confirmed by McMaster Pathology.

[00158] Statistical analysis - All tests were performed using InStat Version 3.0a statistical software (GraphPad Software). Descriptive statistics
 30 including mean and s.e.m. along with one-way ANOVAs, independent sample

two-tailed f-tests were used to determine significant differences. p < 0.01 was considered significant.

EXAMPLE 2: Reprogramming Dermal Fibroblasts into Induced Pluripotent Stem Cells

5 Results

Human dermal fibroblasts contain a rare subpopulation

[00159] Transcription factors Oct4 and Sox2 share common DNA binding motifs, and regulate enhancer and promoter regions of genes implicated in the pluripotency network (Loh et al. 2006; Kim et al. 2008). 10 Human embryonic stem cells (hESCs) and human fibroblasts (hFibs) were transduced with a recently reported EOS lentiviral vector containing trimerized (C3+) Oct4 enhancer elements, (Fig 25a) (Hotta et al. 2009). Using positive control vector where GFP expression is controlled by the pGK promoter, GFP expressing (GFP^{+v}e) cells were readily detectable by microscopy (Fig 25b) 15 and had an overall lentiviral transduction efficiency into hFibs or hESCs of 50-60%, quantitated by flow cytometry (Fig 25c and Fig 32a). Using a negative control vector devoid of promoter elements, GFP expression was not detectable in either hFibs or hESCs using microscopy (Fig 25b) or flow cytometric analysis (Fig 25c). As expected, a high frequency of GFP+^ve 20 hESCs transduced with C3+EOS vector was observed (Fig 25b,c and Fig 32b). However, C3+EOS transduction into adult breast-derived hFibs revealed a rare population of dermal fibroblasts expressing GFP (Fig 25b,c). Confocal Z-stack imaging of hFib cultures transduced with C3+EOS indicated

25 residing in the culture (Fig 32c). Detection of this subpopulation of hFibs was not due to high copy integrations in individual cells, as transduction of hFibs using different concentrations of EOS lentivirus did not alter frequencies of GFP+^ve hFibs. individual GFP+^{ve} hFibs whereas expressed an indistinguishable level of GFP on a per cell basis irrespective of viral 30 concentration (Fig 32d-f). Given that the composition of in vitro cultured fibroblasts varies depending on the tissue from which they are derived, unique

rare GFP+ve hFibs are morphologically and spatially distinct from other hFibs

- 58 -

sources of human neonatal foreskin- and adult lung-derived fibroblasts, both devoid of hair follicles that contain tissue-specific dermal stem cell populations, were examined (Terunuma et al. 2008). Similar to adult breast-derived dermal hFibs, foreskin and lung fibroblasts transduced with C3+EOS vector contained GFP^{+ve} subsets at a frequency of 0.5-4%, indicating that the presence of the GFP^{+ve} subset is not dependent on human fibroblast source (Fig 25d,e).

[00160] To rule out the potential bias in viral uptake among hFibs, hFibs were serially infected with C3+EOS lentivirus starting with primary GFP^{-ve} hFib subfraction (Fig 32g). As a result of secondary EOS lentivirus transduction of 10 primary GFP^{-ve} hFibs, 1.34% GFP^{+ve} emerging was observed (Fig 32g), indicating a small frequency of these unique cells was not detected due to initial limits of 50% overall transduction efficiency (Fig 25c). FACS isolation of secondary GFP^{-ve} hFibs, followed by subsequent transduction with C3+EOS lentivirus, demonstrated a frequency of <0.1% GFP^{+ve} cells, whereas tertiary 15 and guaternary transductions with C3+EOS lentivirus were unable to show any increase in GFP Oct reporter expression (Fig 32g); indicating all hFibs competent for C3+EOS expression had been saturated. To ensure sequentially transduced GFP^{-ve} hFibs were not simply resistant to lentiviral 20 infection, quaternary GFP^{-ve} hFibs were transduced with positive control vector pGK-EGFP that gave rise to robust GFP^{+ve} hFibs, thus confirming these cells were competent for lentiviral infection (Fig 32h). These studies demonstrate that observed GFP^{+ve} subpopulation of hFibs was not due to high copy integrations in individual cells, or to differences in infection rate 25 between subpopulations.

[00161] To molecularly validate C3+EOS reporter expression and presence of integrated provirus, GFP^{+ve} and GFP^{-ve} hFibs transduced with EOS vector were prospectively isolated at 99.99% purity (Fig 25f). Using isolated populations, pro-virus was shown to be present in both fractions, 30 whereas GFP transcript expression was present only in GFP^{+ve} hFibs, and absent in GFP^{-ve} hFibs (Fig 25g). To ensure GFP^{-ve} hFibs containing

integrated C3+EOS vector were not silenced, these hFibs with Oct4 expressing lentivirus were transduced. Upon ectopic expression of Oct4, GFP⁻ ^{ve} cells could be induced to express GFP (Fig 25h), demonstrating the integrated proviral vector was functional in these cells.

5 **[00162]** Collectively, these results indicate that human fibroblasts cultured *in vitro* are heterogeneous by revealing a unique subset that permits expression of the Oct4 reporter EOS vector independent of ontogenic source or anatomical location from which hFibs were derived.

Rare subset of hFibs possesses molecular features of pluripotent cells

- 10 [00163] Aside from pluripotent stem cells (PSCs), Oct4 expression has also been reported in multiple somatic tissues including dermis, multipotent stem cells, and cancer cells (Li et al.; Jiang et al. 2002; Goolsby et al. 2003; Dyce et al. 2004; Johnson et al. 2005; Moriscot et al. 2005; Zhang et al. 2005; D'Ippolito et al. 2006; Dyce et al. 2006; Izadpanah et al. 2006; Nayernia et al.
- 15 2006; Ren et al. 2006; Yu et al. 2006; Izadpanah et al. 2008), while the surrogacy and function of Oct4 in non-PSCs remains elusive (Lengner et al. 2007; Lengner et al. 2008). Given that activation of the C3+EOS vector is based on the presence of Oct4, the expression of Oct4 was carefully examined in total hFibs and GFP^{+ve} vs. GFP^{-ve} hFib subsets. Several Oct4
- 20 isoforms and pseudogenes have sequence similarity (Atlasi et al. 2008), making interpretation of transcript detection complex and potentially leading to false positives. As such, Oct4 transcripts were identified in hFibs using multiple primer sets recently characterized (Atlasi et al. 2008) that faithfully recognize: 1. Oct4; 2. Oct4B1 embryonic-specific Oct4 isoforms; and 3. Oct4B
- 25 cytoplasmic variants (Fig 26a). GFP^{+ve} hFibs were enriched for expression of Oct4 and its isoform B1, but lacked expression of cytoplasmic isoform Oct4B similar to that of hESC controls (Fig 26b,c), whereas total and GFP^{-ve} hFibs did not express any form of Oct transcript (Fig 26b,c). The mesodermal gene Brachyury used as a control for lineage-specific gene expression was not
- 30 differentially expressed (Fig 26c). The possibility that GFP^{+ve} hFibs expressed other genes associated with Oct4 and pluripotency was next examined. In

PCT/CA2010/001708

- 60 -

addition to Oct4 (Fig 26b,c), quantitative gene expression analysis demonstrated expression of Nanog and Sox2 in GFP^{+ve} hFibs (Fig 26d), albeit at lower levels compared to hESCs (Fig 25e). Whole genome expression profiles from total hFibs vs. GFP^{+ve} and GFP^{-ve} hFibs were compared to 5 hESC, iPSC lines using 3' oligonucleotide arrays and evaluated for expression of genes specific to human and mouse ESCs vs. genes associated with heterogeneous fibroblast cultures (Takahashi et al. 2007; Yu et al. 2007). GFP^{-ve} hFibs strongly clustered with multiple sources of heterogeneous human dermal fibroblasts, whereas GFP^{+ve} hFibs did not cluster with total hFibs from which they were derived, but instead with pluirpotent hESC and iPSC lines (Fig 26f).

[00164] As transcript expression is not a determinant of protein, protein expression of Oct4 was examined using Oct4-specific antibodies. Oct4 intracellular localization was examined using immunofluorescent staining analysis. In GFP^{+ve} hFibs, Oct4 co-localized with DAPI stained nuclei similar to that observed in hESCs that served as a positive control (Fig 26g), and 293

cells transduced with Oct4 transgene (Fig 33a). Oct4 staining was not detected in untransduced 293 cells that served as a negative control, while rare Oct4 positive cells were seen in total hFib cultures, consistent with the 20 frequency of GFP^{+ve} cells detected by the EOS vector (0.5-4%) (Fig 33a).

- 20 frequency of GFP^{+ve} cells detected by the EOS vector (0.5-4%) (Fig 33a). Using western analysis, in addition to Oct4, protein levels of both Nanog and Sox2 were differentially expressed in GFP^{+ve} hFibs (Fig 26h,i), where hESCs and Oct4-transduced and untransduced 293 cells served as positive and negative controls (Fig 26h). Based on these analyses, these subsets of hFibs
- 25 were termed as Nanog, Oct4, and Sox2 expressing hFibs, or NOS^{+exp} hFibs, vs. majority of hFibs that were GFP^{-ve} hFibs, and as such termed NOS^{-exp} hFibs.

[00165] To better understand the molecular nature of rare NOS^{+exp} hFibs, chromatin precipitation (ChIP) was performed using specific antibodies
 30 against Oct4, Nanog, Sox2, and Brachyury proteins in hESCs, total hFibs, NOS^{+exp} and NOS^{-exp} hFib subsets for binding to CR4 enhancer motifs within

- 61 -

the EOS vector. Occupancy of these pluripotent factors to CR4 motif was highly enriched in NOS^{+exp} hFibs, whereas negative control Brachyury was not bound (Fig 26j). Comparison of active (H3K4Me3) and repressive (H3K27Me3) histone modification marks at the endogenous promotor loci
revealed that NOS^{+exp} hFibs possessed active marks for Oct4, Nanog, and Sox2 similar to that of hESC positive controls, whereas total unselected hFibs and NOS^{-exp} loci were repressed (Fig 26k). As demethylation of Oct4 loci associated with gene activation is extensively studied in PSCs (Simonsson and Gurdon 2004), MeDIP ChiP assays were performed. Reduced
methylation of Oct4 promoter was similarly detected in hESCs and NOS^{+exp} hFibs, in contrast to 293 cells and NOS^{+exp} hFibs.

[00166] The role of Oct4 and other pluripotent-associated factors in somatic compartment has been met with skepticism due to inappropriate controls for transcript and protein expression detection, and absence of any functional evidence for the role of these cells or factors expressed (Lengner et al. 2007). The present results have extended characterization of such cells beyond simple PCR transcript detection of a single gene such as Oct4, and has analyzed chromatin, protein, subcellular localization, and global gene

- 20 expression cluster analysis for Oct4, Nanog, and Sox2, together with positive (hESCs) and negative controls (293 cells) for each factor. Collectively, these data provide the foundation for the existence of NOS^{+exp} hFibs that represent a unique and rare subset within human fibroblasts that shares common molecular features with human PSCs. The ability to isolate these subsets of NOS^{+exp} hFibs and the existence of NOS^{+exp} hFibs that shares common molecular features with human PSCs. The ability to isolate these subsets of
- 25 NOS^{+exp} and NOS^{-exp} hFibs provides the unprecedented opportunity to perform functional analysis and define the biological significance of these shared features with PSCs.

Heterogeneous total hFibs, in contrast to purified NOS^{+exp} subsets, can be reprogrammed under feeder-free conditions

30 [00167] Since NOS^{+exp} hFibs share hallmark features of gene expression with fully reprogrammed iPSCs, their capacity for functional

- 62 -

reprogramming compared to total hFibs was examined. The majority of iPSC lines are derived using heterogeneous hFibs and use mouse embryonic fibroblast (MEF) feeder layers to support iPSC generation (Park et al. 2008). However, clinical applications of iPSCs will require xeno-free conditions and methods that allow for rapid and simple isolation and separation of human iPSCs from supportive cells such as MEFs. To specifically address this application-based limitation, human iPSCs were derived on matrigel using

feeder-free conditions as schematically illustrated in Fig 27a. Total and

- NOS^{+exp} hFibs were transduced with previously defined reprogramming 10 factors (Hotta et al. 2009), and cultures were examined by both phase contrast and live fluorescence microscopy to characterize morophological changes, identify colony formation, and identify subfraction of colonies expressing Tra1-60. Consistent with previously reported frequencies for human iPSC generation (Utikal et al. 2009; Aasen et al. 2008; Meissner et al.
- 15 2007), total hFibs exhibited approximately 0.9% colony formation efficiency (per 10,000 input cells), whereas the same number of highly purified NOS^{+exp} hFibs isolated failed to generate any colonies (Fig 27b). This result was consistently observed in 6 independent experimental replicates, indicating that from over 60,000 NOS^{+exp} hFibs (6 x 10,000) analyzed, formation of
- 20 proliferating colonies towards iPSC generation could not be derived using this purified subset.

[00168] Although colony formation is the initial requirement for iPSC generation, colony formation alone does not denote fully reprogrammed cells. As such, Tra1-60 expression colonies were quantitatively identified using recently established live staining methods (Fig 27c) that faithfully identify reprogrammed iPSCs from non-iPSC-like colonies (Chan et al. 2009) using total hFibs that generated colonies in the absence of feeders (Fig 27b). In addition, these colonies were also assessed for expression of SSEA3 and Oct4 by flow cytometry and compared to Tra1-60 acquisition. Both Tra1-60^{+ve} colonies expressed high levels of Oct4, but only Tra1-60^{+ve} colonies expressed pluripotency marker SSEA3, while Tra1-60^{-ve} colonies lacked SSEA3 expression (Fig 27d). Overall, the Tra1-60^{+ve} colonies

- 63 -

represented 50% of total number of colonies generated (Fig 27e). These two types of colonies (Tra1-60^{+ve} and Tra1-60^{-ve}) were further examined using a subset of genes strongly associated with pluripotency (*Rex1, Tbx3, TcF3,* and *Dppa4*), and indicated that only Tra1-60^{+ve} colony acquired a pluripotent gene

- 5 expression signature (Fig 27f). Finally, *in vivo* differentiation potential of Tra1-60^{+ve} colonies was tested by teratoma formation assay demonstrating that these colonies have potential to give rise to all three germ layers (Fig 27g). Using these collective criteria, starting with colony formation and subsequent Tra1-60, Oct4 and SSEA3 expression analysis, together with pluripotent gene
- 10 expression analysis and ability to form pluripotent teratomas, independent measures are provided to define iPSC generation, thereby establishing that, in contrast to purified NOS^{+exp} hFibs, total heterogeneous hFibs can be reprogrammed under feeder-free conditions.

NOS^{+exp} hFibs represent the major contributor to pluripotent

15 reprogramming

[00169] Purified NOS^{+exp} hFibs failed to generate reprogrammed colonies upon isolation from heterogeneous cultures of total hFibs (Fig 27b). Given the well established effects of the niche on the regulation of stem cell properties (Bendall et al. 2007), it was hypothesized that the reprogramming

- 20 potential of the NOS^{+exp} subpopulation may be dependent on complex microenvironmental cues that prevented iPSC emergence from highly purified NOS^{+exp} hFibs. Since NOS^{+exp} hFibs are transduced with the EOS vector, GFP and provirus integration provide a fluorescent and molecular marker of NOS^{+exp} cells that can be used to distinguish the contribution of NOS^{+exp} hFibs
- 25 upon co-culture with heterogeneous fibroblasts. NOS^{+exp} hFibs were mixed with total hFibs in a ratio of 1:9 in a competitive assay to measure reprogramming ability and contribution to iPSC generation using established criteria (Fig 27b-g).

[00170] Consistent with previous observations (Yamanaka 2009), total
 30 hFibs (10,000 input cells) exhibited an expected low frequency of colony formation, while co-cultures of NOS^{+exp} hFibs (total input of 10,000 cells

- 64 -

comprising 1,000 NOS^{+exp} hFibs together with 9,000 total hFibs=1:9 ratio) remarkably garnered a 14-fold increase in colony formation (Fig 27h). To quantitatively assess the contribution of NOS^{+exp} vs. total hFibs towards reprogramming, colonies identified for iPSC-like morphology by phase contrast were enumerated and further scrutinized by live fluorescence

- microscopy for Tra1-60 expression, and the presence or absence of GFP expression and EOS proviral integration. A representative experiment using this approach is shown in Fig 27i displaying detailed analysis on individual colonies identified. Combined results from 6 independent mixture experiments
- 10 demonstrated that 90% of the Tra1-60^{+ve} colonies were positive for GFP and EOS provirus, while the remaining 10% were contributed by total hFibs (Fig 27i). Tra1-60^{+ve} and ^{-ve} colonies derived from NOS^{+exp} and total hFibs were isolated and examined for activation of pluripotency factors and SSEA3 expression to ascertain and quantitate the number of complete reprogrammed
- 15 iPSCs. Representative analysis from EOS^{+ve} colonies that could only be derived from NOS^{+exp} hFibs (C2 and C9) that were positive (C2) and negative (C9) for Tra1-60 expression vs. EOS^{-ve} colonies (C1 1 and C12) positive (C1 1) and negative (C12) for Tra1-60 expression are shown (Fig 27j,k). Tra1-60 provided a strong surrogate marker for colonies capable of pluripotent gene
- 20 activation (Fig 27j) and SSEA3 expression (Fig 27k), independent of NOS^{+exp} or total hFib origins. Fully reprogrammed colonies derived from NOS^{+exp} hFibs were capable of teratoma formation comprising all three germ layers (Fig 27i), and possessed *in vitro* differentiation capacity towards the mesodermal (hematopoietic, Fig 35a) and ectodermal (neuronal, Fig 35b) lineages similar
- to pluripotent hESCs shown as a positive control for lineage development (Fig 35a-b). Since NOS^{+exp} hFibs were capable of reprogramming and generating iPSCs upon co-culture, reprogramming potential of remaining NOS^{-exp} hFibs derived from heterogeneous hFib cultures were similarly examined. Direct analysis for reprogramming ability demonstrated that highly purified NOS^{-exp} analysis for reprogramming ability demonstrated that highly purified NOS^{-exp} hFibs cultured in feeder-free conditions were completely devoid of colony generation (Fig 29a), and co-culture of NOS^{-exp} hFibs with total hFibs resulted

in a biologically insignificant colony frequency of <0.01 % (Fig 36a-b). This

represents a single colony per 10,000 input cells in 3 independent experiments (Fig 36b) that is likely derived from total hFibs that do contain $N_0 \ S_+^{exp} \ _{hFjbs} \ _{unmar} \ k_e \ _{b} \ y \ C3+EOS \ transduction.$

- [00171] To quantitatively determine the precise contribution of NOS^{+exp} 5 hFibs to generation of iPSCs in co-cultures with total hFibs, the overall data set from 6 independent mixture experiments was analyzed. Firstly, identification of iPSC-like colony formation enumerated by microscopy indicated an average of 12 colonies could be generated from an input of 10,000 cells comprising 9K of total hFibs and 1K of NOS^{+exp} hFibs (Fig 28a).
- 10 Despite a 9-fold greater proportion of total hFib input cells (GFP^{-ve}, EOS^{-ve}), the contribution of NOS^{+exp} hFibs (GFP^{+ve}, EOS^{+ve}) colony formation was 4fold higher, based on definitive criteria of GFP expression, and the presence of EOS proviral integration (Fig 28a). Quantitative analysis of Tra1-60 expression among EOS^{-ve} colonies (derived from 9,000 total hFibs) vs.
- EOS^{+ve} colonies (derived from 1,000 NOS^{+exp} hFibs) indicated that an equal proportion of Tra^{+ve} vs. Tra^{-ve} colonies arise from total hFibs, whereas colonies derived from NOS^{+exp} hFibs enriches for Tra1-60^{+ve} fully reprogrammed colonies (Fig 28b). On a per 10,000 cell input basis, direct comparative analysis indicates that the overall reprogramming efficiency of unselected total hFibs was 0.18 vs. an average of 7.6 arising from NOS^{+exp} hFibs (Fig 28c). Accounting for the 9-fold difference in the input cells, these
- results demonstrate a 42-fold increase in reprogramming efficiency using NOS^{+exp} hFib isolation and enrichment (n=6, Fig 28c).
- [00172] Although NOS^{+exp} hFibs are incapable of cell-autonomous reprogramming in purified cultures, these results reveal that this unique, but rare subset of hFibs is the major contributor of cells to reprogrammed iPSCs, but requires co-culture with heterogeneous hFibs. These functional studies suggest that NOS^{+exp} hFibs possess a predisposition to cellular reprogramming induction due to their unique molecular and epigenetic state
- 30 (Fig 26) that is already akin to pluripotent cells prior to induced reprogramming.

Molecular state of NOS^{+exp} hFibs can be modulated by microenvironment for pluripotent reprogramming competency

[00173] In the presence of microenvironment provided by total heterogeneous hFibs, purified NOS+exp hFibs generated iPSC colonies in cocultures containing 10% NOS^{+exp} hFibs and 90% total hFibs (Fig 28). 5 Accordingly, whether microenvironment composition could influence the reprogramming frequency of predisposed population as a product of NOS+exp hFib relative cellular densities was explored. Using a range of relative enrichment densities of NOS+exp hFibs vs. total hFibs, reprogramming 10 capacity was examined by colony formation and NOS+exp hFib contribution was distinguished by GFP expression. Increase in the densities of NOS+exp hFibs towards 50% demonstrated a plateau for reprogramming efficiency (Fig 29a). Beyond this plateau, the reprogramming capacity of NOS^{+exp} hFibs decreased as supportive total hFib proportion decreased, eventually 15 demonstrating the complete absence of colony formation once supportive total hFibs were absent (Fig 29a). Decreasing the density of NOS^{+exp} hFibs to <2.5% in the mixtures resulted in reduced colony generation (Fig 30a), reminiscent of the low frequency of iPSC generation derived from total hFibs

(Fig 27a-g) These results suggested that the reprogramming capacity of
 NOS^{+exp} hFibs is dependent on specific densities relative to microenvironment or supportive niche cells.

[00174] To better understand the molecular basis for the requirement of supportive heterogenous hFibs to NOS^{+exp} hFib reprogramming, gene expression and epigenetic status of total hFibs and purified NOS^{+exp} hFibs
25 before (*de novo* isolated) and after co-culture were evaluated. In contrast to total hFibs (Fig 29b), *de novo* prospectively isolated NOS^{+exp} hFibs demonstrated detectable expression of pluripotent factors and active marks on gene loci (Fig 29c). *De novo* isolated NOS^{+ exp} hFibs cultured multiple passages retained stable GFP expression (Fig 37). Next, chromatin state at the endogenous loci of Oct4, Nanog, and Sox2, and transcript expression for these genes in NOS^{+ exp} hFibs cultured alone, and then in the presence of hFibs or co-cultured with MEFs was compared (Fig 29d). Cultured NOS^{+ exp}

29h).

- 67 -

hFibs alone induced a bivalent state at Oct4 loci and a loss of active histone marks for Nanog and Sox2 loci (Fig 30f) that were corroborated with reduced gene expression for Oct4 and complete absence of Nanog and Sox2 transcripts (Fig 30e). These molecular changes correlated to the inability to reprogram NOS^{+exp} hFibs cultured alone in feeder-free conditions (Fig 27b). However, NOS^{+exp} hFibs subsequently co-cultured with total hFibs or with MEFs were able to re-acquire active chromatin marks on Oct4, Nanog, and Sox2 loci (Fig 30g), and gene expression upon co-culturing with total hFibs or with MEFs (Fig 30g).

- 10 **[00175]** Role of microenvironment in derivation and maintenance of pluripotent stem cells has been reported (Schnerch et al.; Bendall et al. 2007; Stewart et al. 2008), and is consistent with the inferred requirement of MEFs as iPSC derivation protocols include the use of MEF feeders (Takahashi and Yamanaka 2006; Takahashi et al. 2007; Wernig et al. 2007; Yu et al. 2007;
- 15 Aasen et al. 2008; Hanna et al. 2008; Lowry et al. 2008; Park et al. 2008; Woltjen et al. 2009). To determine whether co-culture-induced modulation of epigenetic state of NOS^{+exp} hFibs affects reprogramming competency, NOS^{+exp} hFibs and NOS^{-exp} hFibs were cultured in the presence or absence of MEFs and hFib fractions were exposed to lentivirus-expressing
- 20 reprogramming factors. A total of 10,000 NOS^{+exp} or NOS^{-exp} hFibs were transduced with reprogramming factors, and cultures were examined 3 and 6 weeks post-infection for colony formation, GFP expression, and colonies expressing Tra1-60. Consistent with the previous results (Fig 27b and Fig 36a-b), NOS^{+exp} or NOS^{-exp} hFibs did not generate colonies in the absence of
- 25 co-cultured cells at either 3-week or extended 6-week cultures (Fig 29h). Similarly iPSC generation was not detectable from the NOS^{-exp} hFibs, even upon co-culture with MEFs (Fig 29h). However, NOS^{+exp} hFibs co-cultured on MEFs produced detectable colonies at 3-weeks post transduction and continued to demonstrate complete reprogrammed iPSCs at 6-weeks of MEF
 30 co-culture (Fig 29h). Colonies generated expressed GFP and the pluripotency marker Tra1-60, indicative of complete reprogramming (Chan et al. 2009) (Fig

- 68 -

[00176] Collectively, comparative molecular analysis of *de novo* isolated NOS^{+exp} hFibs vs. absence and presence of co-cultured heterogeneous hFibs or MEFS revealed that NOS^{+exp} hFibs respond and modulate their epigenetic state and gene expression through currently unknown signaling mechanisms that are provided by microenvironmental cues. Molecular changes induced by co-culture microenvironment are restricted to NOS^{+exp} hFib subfraction, and are required to maintain predisposed state and competency for pluripotent

reprogramming.

NOS^{+exp} hFibs are molecularly exclusive from other human 10 stem/progenitor cells and possess unique cell cycle properties

- [00177] Previous studies have demonstrated isolation of multipotent stem cells from various regions of the skin including bulge region of hair follicle (Bulge Stem Cells), interfollicular epidermis (IFE stem cells), and the dermal papillae (SKPs) (Manabu Ohyama 2006; Biernaskie et al. 2009;
- 15 Jensen et al. 2009). In order to assess the potential similarity between NOS^{+exp} hFibs and previously described multipotent stem/progenitor cells isolated from skin, this unique population of hFibs was further examined based on global genome expression profiles. Hierarchical clustering of total hFibs, NOS^{+exp} hFibs, and NOS^{-exp} hFibs; compared to Bulge Stem Cells,
- 20 Keratinocytes, and SKPs (Toma et al. 2005; Manabu Ohyama 2006; Jensen et al. 2009), using fibroblast gene signature and molecular markers specific to individual skin stem/progenitors (Fig 30a) revealed that NOS^{+exp} hFibs are distinct from pre-existing skin stem/progenitors and are further distinguished by their expression of the pluripotency transcriptional network that includes
- 25 Nanog, Oct4, and Sox2 (Fig 30a). In addition to dermal-derived stem/progenitor cells, neural, hematopoietic, and keratinocyte progenitors have been shown to possess enhanced reprogramming capacities (Aasen et al. 2008; Eminli et al. 2009). As such, the global molecular phenotype of NOS^{+exp} hFibs to these lineage-specific adult stem cells was compared which
- 30 indicated that NOS^{+exp} hFibs did not cluster with these stem cell types (Fig 29b). Collectively, these analyses indicate that NOS^{+exp} hFibs are distinct from stem/progenitor cells previously associated with dermal skin derivatives or

i

tissue-specific progenitors reported to undergo enhanced reprogramming (Fig 29b).

[00178] Next, global gene expression differences between NOS^{+exp} hFibs and total hFibs were evaluated towards identification of additional features, other than those shared with human PSCs that may distinguish NOS^{+exp} hFibs from bulk total hFibs. Gene ontology analysis of the list of differentially expressed genes revealed several categories that were enriched in NOS^{+exp} hFibs vs. total heterogeneous hFib cultures. These predominantly included gene products involved in development, cell cycle, and cell division
 (Fig 30c). Of these ontologies, genes involved in cell cycle progression were most prevalently differentially expressed (17.48%, p<0.00003). Further indepth analysis of cell cycle-associated genes revealed higher expression of genes associated with replication and mitotic processing in NOS^{+exp} hFibs that

15 30d). Of these genes, a non-integral cell surface receptor CD168 [also called Hyaluronan-mediated motility receptor (HMMR)] found in the nucleus and associated with cells in the developing human embryo (Choudhary et al. 2007; Manning and Compton 2008) was co-expressed with GFP expressing NOS^{+exp} hFibs amongst heterogeneous hFibs transduced with EOS vector

were also co-expressed uniquely in hESCs and fibroblast-derived iPSCs (Fig

- 20 (Fig 30e). Consistent with unique cell cycle regulation of NOS^{+exp} hFibs, direct comparison of growth rates between NOS^{+exp} hFibs to total hFibs indicated NOS^{+exp} hFibs proliferate at a higher rate (Fig 30f), thereby functionally validating the unique proliferative properties of NOS^{+exp} hFibs.
- [00179] Taken together, these data provide further comparative characterization of these previously unidentified NOS^{+exp} hFibs predisposed for cellular reprogramming that is best defined by unprecedented expression of genes associated with pluripotency and proliferation.

Discussion

[00180] Using human dermal fibroblasts as a clinically relevant model
 30 system for understanding and enhancing pluripotent reprogramming, evidence is provided for the existence of a predisposed cell population with

- 70 -

molecular similarities to pluripotent cells and inherent cell cycle status that is conducive towards pluripotent reprogramming and without wishing to be bound by theory, a model is proposed for the role of these cells in the reprogramming process (Fig 31). These predisposed human dermal unique cell cycle properties including enhanced 5 fibroblasts possess expression of cell cycle activators (such as CCNB1/2, PCNA, MCM 2-7, and ANAPC1) and are identified and distinguished by expression of Nanog, Oct4, and Sox2, therefore termed NOS+exp hFibs (Fig 31). The unique molecular and epigenetic ground state of NOS^{+exp} hFibs are distinct from heterogeneous 10 cultures of fibroblasts or previously reported stem/progenitor populations capable of enhanced reprogramming, and are similar to human iPSCs and ESCs. The remaining hFibs (NOS^{-exp}) do not participate in reprogramming to iPSCs, despite co-culture with supportive niche, or prolonged culture periods (Fig 31). Nevertheless, the possibility that some unique conditions may allow 15 induced pluripotency, such as introduction of oncogenes or perturbation of cell cycle regulators is not excluded (Fig 31). Since both stem/progenitor and enhanced proliferation state positively influence iPSC generation, a cell type similar to NOS^{+exp} hFibs identified here that has intrinsic cell cycle properties is amenable for efficient and enhanced reprogramming. Consistent with this 20 notion, a recent study published by Smith et al (Smith et al. 2010) provides evidence that the small and fast-dividing subfraction of MEFs contributes to

evidence that the small and fast-dividing subfraction of MEFs contributes to iPSC colony formation, however, no further characterization has been done, likely due to the current inability to define and isolate these unique cell types among MEFs. Since reprogramming is thought to remove existing epigenetic

25 states or cellular "memory" of target cells required to establish a new pluripotent state, given the similar molecular phenotype and epigenetic status of NOS^{+exp} hFibs to hPSCs the extent to which reprogramming converts terminally differentiated fibroblasts vs. overcoming limiting commitment steps essential to achieve pluripotency warrants further conceptual and and experimental examination. These results support an elite stochastic model to describe reprogramming induction at the cellular level, where an elite subset

1.1.4

- 71 -

of predisposed cells is uniquely capable of responding to inductive molecular changes required to establish pluripotent state.

[00181] These results identify a predisposed cell population that exclusively contributes to reprogramming in a niche-dependent manner that 5 can be supplied by either heterogeneous hFibs or MEFs (Fig 31). As such, a previously unappreciated role of microenvironment in iPSC derivation from human dermal fibroblasts has been uncovered. Although the results indicate that the fibroblasts are not equipotent for reprogramming, it does not discount the possibility that other subfractions among heterogeneous human 10 fibroblasts could be induced to reprogram under uniquely designed conditions. This is similar to recent reports that suggest that the reprogramming of mouse B-cells might be a stochastic event by demonstrating that almost every donor cell can be reprogrammed to the pluripotent state by continuous and prolonged expression of reprogramming

- 15 factors for extended periods (Hanna et al. 2009). Interestingly, 3-5% of colonies emerged after only two weeks of reprogramming and may represent predisposed cell types similar to NOS^{+exp} hFibs identified here, while the appearance of remaining iPSC colonies emerging over the subsequent 4-5 months with continued doxycyclin induction of reprogramming factors may be
- 20 a result of the specific selective conditions utilized that include the use of drug-induced gene expression involving the oncogene c-myc. Such experiments in non-predisposed fractions of human hFibs (NOS^{-exp} cells) could provide more insights into prerequisite of oncogenic processes for pluripotent reprogramming.
- 25 **[00182]** Similar to all current reports of pluripotent reprogramming, the relevance of predisposed NOS^{+exp} hFibs pertains to *in vitro* processes of somatic cell reprogramming and the use of derived cells once reprogrammed *in vitro*. To date, no reports have indicated that cells can be reprogrammed to the pluripotent state *in vivo*. While plasticity of fibroblast cells in invertebrates
- 30 has recently been documented (Kragl et al. 2009), such plasticity is not fully explored in mammals (Sanchez Alvarado 2009), thus existence of

- 72 -

predisposed hFibs and its *in vivo* function is intriguing, but its role in normal *in vivo* physiology is merely speculative at this point, and is likely limited to *in vitro* phenomenon. Nevertheless, NOS^{+exp} hFibs can easily be derived from a variety of human tissue, and represent the most rapid and robust contributor to human iPSC generation reported to date. These properties underscore the clinical utility of NOS^{+exp} hFibs where immediate isolation and characterization of fully reprogrammed iPSCs from patients is required for rapid drug and genetic screening or cell transplantation upon differentiation induction.

Methods

5

- 10 **[00183]** Cell Culture Adult Human dermal fibroblasts were derived from breast skin (obtained passage 1; recommended expansion- 15 population doubling), neonatal dermal fibroblasts derived from foreskin (obtained passage 1; recommended expansion- 15 population doubling), and lung fibroblasts were derived from lung tissue (obtained passage 10;
- 15 recommended expansion- 24 population doubling) [Sciencell] and maintained in fibroblast medium (DMEM (Gibco) supplemented with 10% FBS (HyClone), L-glutamine (Gibco), nonessential amino acids (NEAA; Gibco). All the experiments were conducted using breast derived dermal fibroblasts unless mentioned otherwise. Human iPS cells were maintained on matrigel-
- 20 coated dishes in iPS media (F12 DMEM (Gibco) supplemented with 20% knockout serum replacement (Gibco), L-glutamine (Gibco), NEAA, beta-mercaptoethanol supplemented with 16 ng/ml bFGF (BD Biosciences). hESCs were maintained on matrigel coated dishes in MEF-condition media supplemented with 8ng/ml bFGF. Pluripotent cells were transduced with
- 25 different concentrations of EOS C3+ lentivirus on day 2 following passage. 293 cells were cultured in DMEM containing 10% fetal bovine serum, essential amino acids and L-glutamine. 293 cells were seeded in chamber slides prior to transfection. One microgram pSIN-Oct4 vector was transfected using lipofectamine 2000 reagent (Invitrogen). Experiments were performed 30 36 hr post transfection. For generation of cultured NOS^{+exp} hFibs, adult dermal fibroblast cells were transduced with EOS C3+ Oct4 lentiviral vector,

 $NQS+e^{xp}$ ce $|I_S|$ were sorted | and | cultured for at least 5 passages in fibroblasts media.

[00184] Lentivirus Production - Lentiviral pSIN-EGFP, pSIN-PGK-EGFP and pSIN-C3+EOS vectors were synthesized and described by Hotta
5 et al 2008. Lentiviral vectors (pSIN) containing cDNAs of Oct4, Nanog, Sox2, and Lin28 were obtained from Addgene. These vectors were co-transfected with virapower in 293-FT packaging cells line. Viral supernatants were harvested 48h post transfection and ultracentrifuged to concentrate the virus. To confirm the transduction efficiency of positive control pGK EGFP lentivirus
10 was transduced in fibroblasts at indicated dilution. Equal amount of each virus was used for fibroblast transduction in presence of 8 ng/ml polybrene.

[00185] Human Adult Fibroblast sorting - Fibroblast cells were transduced at passage three with C3+ EOS vector and maintained for three passages. Cells were trypsinized and live cells were identified using 7AAD
15 exclusion. Fibroblasts were sorted based on GFP expression on FACS Ariall (BD). For qRT-PCR assays and chromatin immunoprecipitation (ChIP) assays 50,000 GFP+ve (NOS+exp) and GFF ve (NOS^{-exp}) cells were sorted into the tubes containing 0.5% FBS in PBS (v/v). Cells were either collected by centrifugation for RNA extraction or cross-linked using 1% Formaldehyde for 20 ChIP studies.

[00186] Induction of Reprogramming - <u>On matriqel:</u> For generation of reprogrammed cells from total hFibs, GFP+^ve cells (referred to as 10,000 NOS^{+exp} cells) and 10,000 GFP^{-v}e cells (referred to as 10,000 NOS^{-exp} cells), cells were seeded at the density of 10,000 cells/well on matrigel coated 12 25 well plates. For mixture experiments NOS^{+exp} cultured cells were mixed in 1:9 ratio (1000 NOS^{+exp} cultured + 9000 total hFibs) or in 1:1 ratio (5000 NOS^{+exp} cultured + 5000 total hFibs). For the experiments pertaining to demonstration

of predisposition, 1000 NOS^{+exp} cells were sorted from total hFib cultures and combined with 9000 total hFibs onto matrigel-coated dishes. 24 hrs post 30 seeding, fibroblasts were transduced with lentiviruses expressing Oct4, Nanog, Sox2, and Lin28. Transduced fibroblasts were then grown in iPSC 5

- 74 -

media. Reprogrammed colonies were counted three to 6 weeks post infections. Colonies were picked manually and maintained on matrigel-coated wells. <u>On MEFs:</u> 10,000 NOS^{+exp} or NOS^{-exp} cells were seeded in 12-well dish in triplicates. 24 hrs post seeding, hFibs were transduced with lentiviruses expressing Oct4, Nanog, Sox2, and Lin28. 36 hrs post transduction, hFibs were collected by trypsinization and transferred on to plates containing irradiated MEFs. Reprogrammed colonies were counted 3 to 6 weeks post infections. Colonies were picked manually and maintained on MEFs.

- [00187] Hematopoietic and Neuronal differentiation assays Human ES cells or iPSC cells derived on matrigel were grown until 80% confluence and EBs were made as described previously (Chadwick et al. 2003). Cells were transferred to low attachment 6-well plates in differentiation medium consisting of 80% knockout DMEM (KO-DMEM) (Gibco), 20% non-heat inactivated fetal Bovine serum (FBS) (HyClone), 1% nonessential amino
- 15 acids, 1 mM L-glutamine, and 0.1 mM β-merchaptoethanol. Cultures were replaced with fresh differentiation medium or medium supplemented with 50 ng/ml BMP-4 (R&D Systems), 300ng/ml stem cell factor (SCF) (Amgen), and 300 ng/ml Flt-3 ligand (R&D Systems). EBs were maintained for 15 days, and medium was changed every 4 days. For neural precursor differentiation, EBs
- 20 were cultured in EB medium alone for 4 days. After the initial 4 days the EBs were transferred to 12-well plates coated with poly-L-lysine/fibronectin and maintained in neural proliferation medium consisting of DMEM/F12 with B27 and N2 supplements (Gibco), 10ng/ml bFGF, 10ng/ml human epidermal growth factor (hEGF), 1ng/ml human platelet derived growth factor-AA
- 25 (PDGF-AA) (R&D Systems), and 1 ng/ml human insulin-like growth factor-1 (hIGF-1) (R&D systems). Cultures were allowed to adhere to the plates and expand as a monolayer over 4 days.

[00188] RT-PCRs and PCRs - Total RNA was isolated using Norgen total RNA isolation kit. RNA was then subjected to cDNA synthesis using superscript III (Invitrogen). Quantitative PCRs were performed using Platinium SYBR Green -UDP mix (Invitrogen). Genomic DNA was isolated using ALL

PCT/CA2010/001708

IN ONE isolation kit (Norgen). For EOS provirus integration studies 150 ng genomic DNA was used for amplification of GFP in PCR reactions. PCR reactions were performed using 2X PCR Master Mix (Fermentas). Products were resolved on 1.2 % agarose gels. Primer sequences are provided in Table 7

5 Table 7.

10

[00189] Western blotting- Cell extracts were prepared in lysis buffer [50 mM Tris (pH 8.0), 150 mM NaCl, 1% (v/v) Nonidet P-40, 0.1% (w/v) SDS, 0.5% (v/v) sodium deoxycholate and Complete protease inhibitors (GE Healthcare)] from hESC, total fibroblasts, 293, 293 overexpressing Oct4, GFP^{+ve} ((NOS^{+exp}) and total hFibs. Approximately 60 µg of protein was loaded for western blotting with indicated antibodies.

[00190] Chromatin Immunoprecipitations - Chromatin IPs were performed as described previously (Rampalli et al. 2007). In brief cells were crosslinked using 1% formaldehyde and chromatin was digested in buffer 15 containing 0.1 % SDS to obtain fragments of approximately 400 bp length. Sonicated DNA was subjected to immunoprecipitation using ChIP grade antibodies (anti-trimethyl H3K4 (Abeam), anti trimethyl-H3K27 (Abeam), anti Oct4 (Cell Signaling), anti Nanog (Cell Signaling), anti Sox2 (Cell Signaling), anti BrachuryT (Abeam), anti rabbit IgG and anti mouse IgG antibodies).

- 20 Immunoprecipitated DNA was further reverse crosslinked, purified and subjected to qPCR analysis using Platinium Syber Green-UDP mix. To calculate relative enrichment, control -IP signals were subtracted from specific ones and the resulting difference was divided by signal observed from 1/50th of input material.
- 25 [00191] MeDip ChIP assay was performed as described previously. Briefly genomic DNA was extracted from 293, hESC, total hFibs and NOS^{+exp} (GFP^{+ve}) cells by overnight Proteinase K treatment, phenol-chloroform extraction, ethanol precipitation and RNase digestion. Before carrying out MeDIP, genomic DNA was sonicated to produce random fragments ranging in
- 30 size from 300 to 1,000 bp. Immunopurified DNA was subjected to qPCR analysis using Platinium Sybr Green-UDP mix. To calculate relative

enrichment, control -IP signals were subtracted from specific ones and the resulting difference was divided by signal of input material. Primers for quantitative PCR analysis are provided in Table 7.

[00192] Live Staining - For live staining sterile Tra-1-60 antibody 5 (Millipore) was preconjugated with sterile Alexa Fluor 647 goat anti-mouse IgM (Molecular Probes, Invitrogen) at room temperature. Reprogrammed colonies were washed once with iPSC medium and incubated with Tra-1-60-Alexa 647 antibodies for 30 mins at room temperature. Cultures were then washed twice to remove unbound antibody. Cells were visualized using the 10 Olympus fluorescence microscope.

[00193] Flow Cytometry - Induced pluripotent cells were treated with collagenase IV (Gibco), and then placed in cell dissociation buffer (Gibco) for 10 minutes at 37°C. Cell suspensions were stained with SSEA-3 (Developmental Studies Hybridoma Bank, mAB clone MC-631, University of

- 15 Iowa, Iowa City, IA). Cells were visualized with Alexa Fluor 647 goat anti-rat IgM (Molecular Probes, Invitrogen). Appropriate negative controls were utilized. Live cells were identified by 7-Amino Actinomycin (7AAD) exclusion and then analyzed for cell surface marker expression using the FACS Calibur (BDIS). Collected events were analyzed using FlowJo 6.4.1 Software (Tree
- Star Inc.). EBs generated from iPSC cells were disassociated with 0.4 U/ml Collagenase B (Roche Diagnostics, Laval, QC, Canada) at day 15 and analyzed for expression of hemogenic and hematopoietic markers. Hematopoietic cells (CD45+) were identified by staining single cells (2-5x 10⁵ cells/ml) with fluorochrome-conjugated monoclonal antibodies (mAb) pan-
- 25 leukocyte marker CD45-APC (Milteny Biotech, Germany). The mAb and their corresponding isotype was used at 1-2 mg/ml. Frequencies of cells possessing the hematopoietic phenotypes were determined on live cells by 7AAD (Immunotech) exclusion, using FACS Calibur, and analysis was performed using the FlowJo software (Tree Star). EBs in neural proliferation
- 30 medium were trypsinized after 4 d in culture and stained with the cell surface marker A2B5 (R&D Systems). Cells were visualized using Alexa Fluor 647

goat-anti-mouse IgM (Molecular Probes, Invitrogen). Frequencies of cells expressing A2B5 were determined on live cells by 7AAD (Immunotech) exclusion, using FACS Calibur, and analysis was performed using the FlowJo software (Tree Star).

5 [00194] Immunocytochemistry - Total fibroblasts, 293, 293 transfected with pSIN -Oct4 vector and sorted NOS+exp cells were seeded on chamber slides. hESC transduced with EOS C3+ were grown on matrigel coated 12well dishes. Cells fixed in paraformaldehyde and permeabilized in Triton X-100 prior to staining for human Oct4 (Rat anti-Human Oct3/4 monoclonal 10 antibody clone 240408) (R&D systems). Cells were then stained with secondary antibody Alexa Fluor 647 anti-Rat IgG (Molecular Probes). Chamber slides were mounted and counterstained with Vectashield Mounting Medium containing DAPI (Vector Labs). For HMMR staining adult dermal fibroblast cells were transduced with EOS C3+ lentivirus and CD168 (HMMR) 15 (ab 67003) staining was performed as described above. Cells were visualized using the Olympus 1X81 fluorescence microscope.

[00195] Teratoma Assay - The McMaster University Animal Care Council approved all procedures and protocols. Induced pluripotent stem cell cultures were treated with collagenase IV for 5-10 min followed by collection

- 20 and washing 2X with saline and resuspended in saline. 500,000 cells per sample were injected intratesticularly into male NOD-SCID mice. Mice were killed 10-12 weeks after initial injection. Teratomas were extracted, embedded in paraffin and sectioned in 5 μm intervals followed by deparaffinization in xylene and processing through a graded series of alcohol concentrations.
- 25 Samples were stained with hematoxylin and eosin or Oct4 followed by dehydration and xylene treatment. Slides were mounted using Permount and imaged by scanning slides using Aperio Scan Scope and images were captured using Image Scope v9.0.19.1516. software. Tissue typing was performed based on stringent histological and morphological criteria specific 30 for each germ layer subtype. Mesoderm lineages, such as bone were identified using presence of osteocytes and bone spicules; cartilage was

5

- 78 -

identified by the presence chondrocytes and specific staining of the extra cellular matrix. Endoderm lineages, such as intestinal lumens were identified by the presence of goblet cells in the lumen epithelium. Ectoderm lineages, such as skin were identified based on distinguishing cell layer morphologies (i.e. stratified); brain or neural tube was identified based on specific histological criteria. The presence of the germ layers and tissue typing was confirmed by McMaster Pathology.

[00196] 3-D reconstitution/Z-stacking - Adult dermal fibroblasts transduced with EOS vector were seeded in chamber slides. Cells were washed with PBS and fixed with 4% paraformaldehyde/PBS for 10 minutes, followed by permeabilization in Triton X-100. Slides were mounted and counterstained using VECTASHIELD HardSet Mounting Medium with DAPI (Vector Labs). Cells were visualized using the Olympus 1X81 microscope and z-stacks (30 sections per field) were captured with a Photometrix Cool Snap 15 HQ2 camera using In Vivo version 3.1.2 (Photometrix) software. Z-sections/image stacks were pseudo-coloured and 3-D mapped using ImageJ software.

[00197] Microarray Analysis - Total RNA was isolated from adult dermal fibroblasts (total), NOS + exp (GFP + ve) , NOS - exp (GFP - ve) cells, iPS 20 NOS+ve and hESC using total RNA purification kit (Norgen) according to the manufacturer's instructions. RNA amplification, GeneChip 3' oligonucleotide microarray hybridization and processing was performed by the OGIC, Ottawa Health Research Institute, Ottawa, Ontario according to the manufacturer's protocols (Affymetrix). For each sample, 200 ng of single-stranded DNA was 25 labeled and hybridized to the Affymetrix HG-U1 33 Plus 2.0 chips. Expression signals were scanned on an Affymetrix GeneChip Scanner and data extraction was performed using Affymetrix AGCC software. Data normalization and analysis was performed using Dchip software (Li and Wong 2001 PNAS). Hierarchical clustering using Pearson correlation coefficients 30 was performed on the normalized data. Differentially upregulated genes were

analyzed using D-ChIP. Gene Ontology (GO) analysis was performed using FATIGO (http://babelomics.bioinfo.cipf.es).

EXAMPLE 3: Direct Neural Conversion from Human Dermal Fibroblasts Results and discussion

- 5 [00198] Oct-4 (POU5F1) together with neuronal cytokines (bFGF, EGF) was used to promote neuronal conversion from human dermal fibroblasts. While, Vierbuchen and colleagues (Vierbuchen et al., 2010) have shown mouse fibroblast conversion to single neuronal cell-type, namely neurons, the present example demonstrates the conversion of human fibroblasts to
 10 oligodendrocytes, astrocytes and neurons while bypassing a pluripotent state (Fig 38). Human dermal fibroblasts transduced with POL) domain binding
- protein Oct-4 were plated for standard neural, oligodendrocyte and astrocyte differentiation assays used in the filed using human laminin coated dishes and cultured in neural/oligodendrocyte or astrocyte differentiation medium 15 supplemented with bFGF, EGF and BMP-4 (Fig 38a). Unlike
- untransduced/control fibroblasts, human dermal fibroblasts transduced with Oct-4 gave rise to all three neural lineages (neurons, astrocytes and oligodendrocyte), as demonstrated by acquisition of neural lineage specific morphologies (Fig 38b). The Oct-4 transduced fibroblasts were further
- 20 analyzed for expression of neural lineage specific marker expression, such as astrocyte specific marker GFAP (Glial fibrillary acidic protein), oligodendrocyte specific marker Olig-4 (oligodendrocyte transcription factor 4) and neuron specific marker (TUBB3) beta-Tubulin III. Human dermal fibroblasts transduced with Oct-4 expressed GFAP, TUBB3 and Olig-4, as demonstrated by immunofluorescence imaging (Fig 38c, e, g) and FACS analysis (Fig 38d,
 - f, h, i) indicative of astrocyte, neuron and oligodendrocyte emergence.

[00199] To demonstrate that the neurons are able to give rise to mature and functional dopaminergic neurons, the human dermal fibroblasts were further differentiated as described by Roy and colleagues (2006). The human 30 dermal fibroblasts transduced with Oct-4 gave rise to dopaminergic neurons as indicated by co-expression of TUBB3 and Tyrosine Hydroxylase (markers) 5

10

- 80 -

of dopaminergic neurons) (Fig 39). Collectively, these results indicate that human dermal fibroblasts ectopically expressing Oct-4 in conjunction with neural linage inductive conditions are able to give rise to astrocyte, neuron and oligodendrocyte, as well as functional and mature neurons with dopaminergic phenotypes.

[00200] Further gene expression comparisions between untransduced and Oct4 transduced fibroblasts at day 4 after treatment evidenced a significant increase in the expression of certain genes associated with neural development such as BMI1, POU3F2, and NEFL between 1.6 and 1.8 fold (p<0.009; Figure 40). These data support the activation of neural differentiation programs in progenitors derived from dermal fibroblasts transduced with Oct-4.

Methods

[00201] Neural Precursor Differentiation - Adapted from (Pollard et al., 2009; Reubinoff et al., 2001; Roy et al., 2006). Adult dermal and fetal dermal fibroblasts were cultured in F12-DMEM media supplemented with 20% FBS, IGF1 and bFGF. Fibroblasts were transduced with Oct-4 lentivirus and cultured in the media described above. Further neuronal differentiation was carried out in neural precursor medium consisting of DMEM/F12 with B27 and N2 supplements (Gibco), 20ng/ml bFGF and 20ng/ml human epidermal growth factor (hEGF), (R&D systems) (Carpenter et al., 2001). Cells were allowed to adhere to the plates and expand as a monolayer over 14 days. Medium was replaced every 3 days, and cells were passed on day 7 by dissociation into a single cell suspension using Accutase (Sigma) for 5

25 minutes.

30

[00202] Dopaminergic progenitor induction: For dopaminergic progenitor differentiation cultures were prepared as previously described (Roy et al., 2006), Briefly, neural precursor cultures were dissociated in Accutase for 5 minutes, and then transferred to new laminin-coated plates (BD Biosciences) in midbrain neuron media consisting of DMEM/F12 supplemented with N2 (Gibco), bFGF (10ng/ml), the N-terminal active fragment of human SHH (200 ng/ml), and FGF8 (100 ng/ml; R&D). Medium was replaced every 3 days. After 7 days, dopaminergic neuron differentiation was induced by withdrawing SHH and the FGFs, and replacing with DMEM/F12 media supplemented with N2, GDNF (20 ng/ml), BDNF (20 ng/ml) and 0.5% FBS. Cultures were maintained for 14 days in these conditions and then fixed for staining (ie. Tyrosine Hydroxylase, β III Tubulin for dopaminergic

neurons).

5

[00203] While the present disclosure has been described with reference to what are presently considered to be the preferred examples, it is to be 10 understood that the disclosure is not limited to the disclosed examples. To the contrary, the disclosure is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

[00204] All publications, patents and patent applications are herein 15 incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.

TABLES

TABLE 1:

Samples	Biological Replicates (n)	Mesoderm (layer/biological replicate)	Ectoderm (layer/biological replicate)	Endoderm (layer/biological replicate)
Fibs	3	0/3	0/3	0/3
Fibs ^{Oct-4}	3	0/3	0/3	0/3
hiPSC	8	8/8	8/8	8/8

5 **TABLE 2**:

Genes	Promoter/	Oct Binding	Oct-1/Oct-2/	References
1	Enhancer	Sequence	Oct-4Binding	
			Reported	
Runx1	Promoter	ATGCAAAN	Oct-2/Oct-1	(Sridharan et al 2009, Cell)
				(Ghozi et al, 1996, PNAS)
SCL	Enhancer	NTGCAANN	Oct-2/Oct-1	(Boyer et al 2005, Cell)
PU.1	Promoter	ATGCAAAN	Oct-2/Oct-1	(Kistler et al 1995, Oncogene)
GATA1	5'side	ATGCANNN	Oct-1/Oct-4	(Sridharan et al 2009, Cell)
CD45	Promoter	TTTGCAT	Oct-1/Oct-4	(Kwon et al, 2006, BBRC)
			predicted	(Boyer et al 2005, Cell)
Oct-2	5'side	None	ND	(Boyer et al 2005, Cell)
MixL1	5'side	None	ND	None
Oct-4	5'side	ATGCATNN	Oct-4	(Boyer et al 2005, Cell)
Nanog	Promoter	TTTGCAT	Oct-4	(Boyer et al 2005, Cell)
				(Rodda et al ,2005 JBC)
Tbx3	Promoter	NTGCAAAT	Oct-4	(Boyer et al 2005, Cell)
c-Myc	5'side	ATGCAAAT	Oct-4	(Sridharan et al 2009, Cell)
Myf5	Promoter	NTGCAAAT	Oct-2	(Robertson et al 2006, Nucleic
				Acid Res.)
Nkx2.5	Promoter	ATGCANAN	Oct-2	(Robertson et al 2006, Nucleic
				Acid Res.)
Gadd45a	Promoter	TTTGCAT	Oct-2/Oct-1	(Kang et al 2009, Trends
				Biochem Sci.)
Pol2ra	Promoter	NTGCANAT	Oct-2/Oct-1	(Kang et al 2009, Trends
				Biochem Sci.)

- 83 -

Table 3. Global gene expression profile of hFibs vs. Oct-4 transduced hFibs at Day 4Fold

		Fold	
GENES	Accession	cha nge	p-value
ILIA: interleukin 1, alpha	NM000575	25.87	0.001934644
BIRC3 : baculoviral IAP repeat-containing 3	NM_001 165	21.8	0.010578005
HIST1H3E: histone cluster 1, H3e	NM_003532	19.5	0.013600383
TNFAIP3: tumor necrosis factor, alpha-induced protein 3 BHLHB3 : basic helix-loop-helix domain containing, class B,	NM_006290	18.76	0.012982616
3	NM_030762	18.02	0.005532449
ZNF670 : zinc finger protein 670	NM_033213	17.48	0.008794967
HDAC9: histone deacetylase 9	NM_ 178423	15.41	0.000236429
RRAD: Ras-related associated with diabetes	NM_001 128850	15. 18	0.013434877
Clorf51 : chromosome 1 open reading frame 51	BC027999	13.56	0.000739754
TUFT1 : tuftelin 1	NM_020127	13.4	0.018978702
CYP1A1: cytochrome P450, family 1, subfamily A, polypeptide 1	NM_000499	13.04	0.031 138 196
HIST2H4A: histone cluster 2, H4a	NM_003548	12.84	0.008543485
HIST2H4A: histone cluster 2, H4a	NM_003548	12.84	0.008543485
AXUD1 : AXIN 1 up-regulated 1 IFIT2 : interferon-induced protein with tetratricopeptide	NM_033027	12. 13	0.025799785
repeats 2 EGR2: early growth response 2 (Krox-20 homolog,	NM_001547	11.69	0.019285607
Drosophila)	NM_000399	11.49	0.010572069
DDIT3 : DNA-damage-inducible transcript 3	NM_004083	11.16	0.04497724
ATF3 : activating transcription factor 3	NM_001040619	11.12	0.02030641
ZNF844 : zinc finger protein 844	BC125186	10.89	0.024129158
NUAK1 : NUAK family, SNFI-like kinase, 1	NM_014840	10.64	0.034088258
ICAM1: intercellular adhesion molecule 1	NM_ 000201	10.39	0.003127828
HLF: hepatic leukemia factor	Nм_002126	10. 13	0.009535536
POU5F1 : POU class 5 homeobox 1	NM_002701	10	0.008557916
SLC25A25 : solute carrier family 25	NM052901	9.84	0.0021 1957
KLF10: Kruppel-like factor 10	NM005655	9.62	0.006678425
RYBP: RING 1 and YY1 binding protein	NM_012234	9.4	0.018976746
IRF1 : interferon regulatory factor 1	NM_ 002198	9.23	0.026074286
GADD45B: growth arrest and DNA-damage-inducible, beta	NM_015675	9.03	0.021232 19
POU5F1 : POU class 5 homeobox 1	NM_002701	8.99	0.008153649
POU5F1 POU class 5 homeobox 1 CCRN4L: CCR4 carbon catabolite repression 4-1 ike (S.	NM_002701	8.99	0.008153649
cerevisiae)	NM_0121 18	8.85	0.043078237
ZNF763 : zinc finger protein 763	NM_001012753	8.85	0.037261964
CD83 : CD83 molecule	NM_004233	8.44	0.017160482
ARL5B : ADP-ribosylation factor-like 5B	NM_178815	8.41	0.014951415
HIST4H4 : histone cluster 4, H4	NM_175054	8.22	0.009968564
ZNF699: zinc finger protein 699	NM.198535	8.2	0.002752974
BDKRB1 : bradykinin receptor BI	NM000710	8.16	0.000257582
HIST1H3H : histone cluster 1, H3h	NM_003536	8.05	0.044438878
FILIP1L: filamin A interacting protein 1-1 ike	NM_182909	7.99	0.01 1930597
C7orf53 : chromosome 7 open reading frame 53	BC031976	7.89	0.028087424
ZNF140: zinc finger protein 140 GADD45A: growth arrest and DNA-damage-inducible,	NM_003440	7.84	0.031209015
alpha	NM_001924	7.79	0.025929534
LIF: leukemia inhibitory factor (cholinergic differentiation	NM_002309	7.75	0.037199994

factor)			
HOXB9: homeobox B9	NM_024017	7.67	0.03720824
NR1D1: nuclear receptor subfamily 1, group D, member 1	NM_021724	7.64	0.025254369
RIT1: Ras-like without CAAX 1		7.61	0.035367727
HIST1H4H: histone cluster 1, H4h	NM003543	7.53	0.00172024
EFCAB7: EF-hand calcium binding domain 7	NM_032437	7.52	0.039529612
ZNF596 : zinc finger protein 596	NM_001042416	7.48	0.041548238
NFKBIA	 NM_020529	7.44	0.027269255
DKFZp686024166: hypothetical protein DKFZp686024166	BC136797	7.39	0.013762938
ZNF441 : zinc finger protein 441	NM_ 152355	7.31	0.033410843
EGR1: early growth response 1	NM_ 001964	7.3	0.002499 187
PPP1R15A: protein phosphatase 1, regulatory subunit 15A	NM_ 014330	7.28	0.031859 194
LOC253724: hypothetical LOC253724	BC064342	7.17	0.04832593
GNPDA1: glucosamine-6-phosphate deaminase 1	NM_005471	7.16	0.027064994
HSPC159 : galectin-related protein	NM_014181	7.14	0.028997946
PMAIP1 : phorbol-1 2-myristate- 13-acetate-induced protein		7.00	0.00000554
	NM_021 127	7.02	0.020362551
SETDB2: SET domain, bifurcated 2	NM_031915	7.01	0.00928835
ZBTB2: zinc finger and BTB domain containing 2 FOSB: FBJ murine osteosarcoma viral oncogene homolog	NM_020861	6.92	0.012078835
B	NM006732	6.85	0.005383006
PLD6 : phospholipase D family, member 6	BC031263	6.81	0.021517786
DLX2: distal-less homeobox 2	NM004405	6.73	0.036189927
HEY1 : hairy/enhancer-of-split related with YRPW motif 1	NM012258	6.69	0.016580802
HIST2H2BE : histone cluster 2, H2be	NM. 003528	6.68	0.038129201
HHLA3: HERV-H LTR-associating 3	NM_001036645	6.68	0.01 1341273
ZNF331 : zinc finger protein 331	NM018555	6.59	0.001392362
SYT14: synaptotagmin XIV	NM_153262	6.56	0.045681 189
CLCN6: chloride channel 6	NM001286	6.53	0.008634214
TNFSF4: tumor necrosis factor (ligand) superfamily, member 4	NM_003326	6.46	0.040253375
PMEPA1: prostate transmembrane protein, androgen			
induced 1 BAMBI: BMP and activin membrane-bound inhibitor	NM_J320182	6.38	0.002028046
BAMBI: BMP and activin membrane-bound inhibitor homolog	NM_012342	6.38	0.03450241 1
ZC3H12C: zinc finger CCCH-type containing 12C	NM_033390	6.24	0.019105365
ADNP2: ADNP homeobox 2	NM_014913	6.23	0.014858499
DRAM : damage-regulated autophagy modulator	NM_018370	6.17	0.028646 178
CHRM4 : cholinergic receptor, muscarinic 4	NM_000741	6.15	0.010244254
GCNT4: glucosaminyl (N-acetyl) transferase 4, core 2	NM_016591	6.14	0.018575818
GDF15: growth differentiation factor 15	NM_004864	6.14	0.027566627
HSD17B14: hydroxysteroid (17-beta) dehydrogenase 14	NM_016246	6.12	0.028923662
MAFF: v-maf musculoaponeurotic fibrosarcoma oncogene F	NM 010000	6.07	0.01.1002208
F POU5F1P1 : POU class 5 homeobox 1 pseudogene 1	NM_012323 NR002304	6.05	0.01 1992298 0.007397716
BCOR: BCL6 co-repressor		6	0.030250342
RBM24 : RNA binding motif protein 24	NM_001 123385	6	0.008244762
MAFG: v-maf musculoaponeurotic fibrosarcoma oncogene	NM153020	0	0.008244782
G	NM_002359	5.98	0.035148933
SCG2: secretogranin II (chromogranin C)	NMJD03469	5.98	0.037412393
IL8: interleukin 8	NMJ300584	5.96	0.02865206
CPEB4: cytoplasmic polyadenylation element binding protein 4	NM_030627	5.93	0.016746602
KCNH1: potassium voltage-gated channel, subfamily H		0.00	0.010140002
member 1	NM172362	5.93	0.01547663

SCYL1BP1 : SCYI-like 1 binding protein 1	NM_152281	5.88	0.012966029
ZNF317: zinc finger protein 317	NM 020933	5.84	0.022725415
IFA: TRAF-interacting protein with forkhead-associated		E 04	0.033569825
Jomain	NM_052864	5.84 5.74	
ZNF79: zinc finger protein 79	NM_007135	5.74	0.007742455
C3orf34: chromosome 3 open reading frame 34	NM_032898	5.73	0.026236354
ZNF155 : zinc finger protein 155	NM_003445	5.73	0.005506844
HIST1H2BK: histone cluster 1, H2bk	NM_080593	5.71	0.015294734
ZNF14: zinc finger protein 14	NM_021030	5.7	0.03687599
CCL2: chemokine (C-C motif) ligand 2	NM_002982	5.7	0.008538229
P53INP1: tumor protein p53 inducible nuclear protein 1	NM_033285	5.69	0.006633605
C8orf46: chromosome 8 open reading frame 46	BC028400	5.68	0.026344262
/DR: vitamin D (1,25- dihydroxyvitamin D3) receptor	NM. ₀₀₁₀₁₇₅₃₅	5.67	0.013902566
ZNF461 : zinc finger protein 461	NM_ 153257	5.65	0.025400068
HES1 : hairy and enhancer of split 1, (Drosophila)	NM_005524	5.64	0.038166108
CDKNIA: cyclin-dependent kinase inhibitor 1A (p21, Cipl)	NM078467	5.62	0.028474475
HIST3H2A: histone cluster 3, H2a	NM_033445	5.59	0.008403 117
XNIP: thioredoxin interacting protein	NM006472	5.56	0.010732 189
RAB9A: RAB9A, member RAS oncogene family	NM_004251	5.55	0.02698267
CNC1: potassium voltage-gated channel 1	L00621	5.52	0.005713574
C21orf91 : chromosome 21 open reading frame 91 KCTD11: potassium channel tetramerisation domain	NM_001 100420	5.49	0.005266017
containing 11	NM_001002914	5.45	0.036695369
ZNF436: zinc finger protein 436	NM_001077 195	5.44	0.025014862
(LF11: Kruppel-like factor 11	N.M003597	5.42	0.020441303
ZNF790: zinc finger protein 790	NM_206894	5.4	0.006140836
PERI : period homolog 1 (Drosophila)	NM_002616	5.37	0.008493001
ZHX2: zinc fingers and homeoboxes 2	NM_014943	5.36	0.023595819
SPATA18: spermatogenesis associated 18 homolog (rat)	NM 145263	5.32	0.033684731
NR4A3: nuclear receptor subfamily 4, group A, member 3 CYP1B1: cytochrome P450, family 1, subfamily B,	NM_173198	5.31	0.026475332
polypeptide 1	NM_ 000104	5.29	0.01942686
ISC22D3: TSC22 domain family, member 3	NM_198057	5.29	0.012500308
ZBTB1 : zinc finger and BTB domain containing 1	NM_001 123329	5.29	0.024341909
ZNF442: zinc finger protein 442	NM_030824	5.27	0.004701685
CDKN2AIP: CDKN2A interacting protein TNFRSF9: tumor necrosis factor receptor superfamily,	NM_ 017632	5.26	0.002961744
member 9	NM_001561	5.26	0.012292344
RASL1 1B: RAS-like, family 11, member B	NM_023940	5.25	0.045697479
KIAA1370 : KIAA1370	NM_019600	5.2	0.030797805
LYPLAL1: lysophospholipase-like 1	NM_138794	5.2	0.01 1640207
STX3: syntaxin 3 CPEB2: cytoplasmic polyadenylation element binding	NM_004177	5.13	0.041739703
protein 2	NM_182485	5.09	0.006967805
FAM83G: family with sequence similarity 83, member G	NM_001039999	5.09	0.014589212
PLK2: polo-like kinase 2 (Drosophila)	NM_006622	5.08	0.006770249
HSPA4L: heat shock 70kDa protein 4-like	NM_014278	5.02	0.010568433
	NINA AFOCEF	4.98	0.026304 196
HS3ST2: heparan sulfate (glucosamine) 3-0-	NM_ 152655		
HS3ST2 : heparan sulfate (glucosamine) 3-0- sulfotransferase 2 MAFG : v-maf musculoaponeurotic fibrosarcoma oncogene	NM_ 006043	4.98	0.04000135
ZNF585A: zinc finger protein 585A HS3ST2: heparan sulfate (glucosamine) 3-0- sulfotransferase 2 MAFG: v-maf musculoaponeurotic fibrosarcoma oncogene G TNF: tumor necrosis factor (TNF superfamily, member 2)		4.98 4.95 4.95	0.04000135 0.025633084 0.012786232

TNF: tumor necrosis factor (TNF superfamily, member 2)	NM_000594	4.95	0.012786232
ZNF433: zinc finger protein 433	NM_00108041 1	4.91	0.008982418
HBEGF: heparin-binding EGF-like growth factor	NM_001945	4.88	0.008424841
ZNF354A: zinc finger protein 354A	NM_005649	4.87	0.023629804
ZNF425: zinc finger protein 425	NM_001001661	4.86	0.024180798
JUNB: jun B proto-oncogene	NM_002229	4.86	0.021099531
HIVEP1	NM_0021 14	4.83	0.004781069
GEM: GTP binding protein overexpressed in skeletal		4.00	0.040040700
muscle	NM_005261	4.83	0.016619793
SOD2: superoxide dismutase 2, mitochondrial	NM_001024465	4.82	0.004130069
EGR3: early growth response 3	NM_004430	4.81	0.01 1683548
ZNF44: zinc finger protein 44	NM_016264	4.78	0.028861556
TLE4: transducin-like enhancer of split 4	NM_007005	4.77	0.033194396
FU27255: hypothetical LOC40 1281	AK130765	4.76	0.04371683
ZNF383: zinc finger protein 383	NM152604	4.75	0.046317321
IFIT3: interferon-induced protein with tetratricopeptide repeats 3	NM _001031683	4.75	0.019581 114
NFKBIE	NM004556	4.74	0.029597747
SMCR8: Smith-Magenis syndrome chromosome region,			
candidate 8	NM_144775	4.72	0.0131 1253
PLA2G4C: phospholipase A2, group IVC	NM_003706	4.7	0.002438767
EDA2R: ectodysplasin A2 receptor	NM021783	4.69	0.008321597
TGFB2: transforming growth factor, beta 2	NM_003238	4.68	0.040921831
RASSF9: Ras association (RalGDS/AF-6) domain family member 9	NM _005447	4.63	0.00865133
	NM001128922	4.62	0.012902013
LRRC32: leucine rich repeat containing 32	NM_000909	4.61	0.029391 154
NPY1R: neuropeptide Y receptor YI		4.6	0.005204195
IL6: interleukin 6 (interferon, beta 2)	NM_000600		0.021271781
TNFRSF10B: tumor necrosis factor receptor 10b	NM003842	4.59	
FICD : FIC domain containing	NM_007076	4.57	0.005031673
SC5DL: sterol-C5-desaturase-like	NM_006918	4.57	0.023382 119
RGS5: regulator of G-protein signaling 5	NM_003617	4.57	0.003674002
AEN : apoptosis enhancing nuclease	NM_022767	4.56	0.009974851
ZNF627: zinc finger protein 627	NM_145295	4.54	0.010467624
MARCH3: membrane-associated ring finger (C3HC4) 3	NM_178450	4.53	0.023826056
BEST3 : bestrophin 3 KCTD1 1: potassium channel tetramerisation domain	NM_032735	4.47	0.010248807
containing 11	NM_001002914	4.45	0.036728406
LOC729127 : hypothetical protein LOC729127	AK092418	4.44	0.036166 195
DKK2: dickkopf homolog 2 (Xenopus laevis)	NM_014421	4.43	0.036152444
ZNF222: zinc finger protein 222	NM_013360	4.43	0.023199269
FRS2: fibroblast growth factor receptor substrate 2	NM_006654	4.4	0.009574668
ZNF214: zinc finger protein 214	NM_013249	4.39	0.005325 101
CDC14A: CDC14 cell division cycle 14 homolog A (S.			0.00400000
	NM_003672	4.38	0.024062032
USP38: ubiquitin specific peptidase 38 PPP1R3B: protein phosphatase 1, regulatory (inhibitor)	NM_032557	4.37	0.026290174
subunit 3B	NM_024607	4.35	0.023942719
OSGINI: oxidative stress induced growth inhibitor 1	NM_013370	4.35	0.005808394
ZNF542 : zinc finger protein 542	NR_003 127	4.32	0.003693601
NUAK2: NUAK family, SNFI-like kinase, 2	NM_030952	4.32	0.004657622
LOC440350: similar to nuclear pore complex interacting			
protein	NM_001018 122	4.3 1	0.036134208
ZIMF10: zinc finger protein 10	NM_015394	4.3 1	0.037020672

i.

C16orf87: chromosome 16 open reading frame 87	BC056676	4.3	0.004525228
GPR85: G protein-coupled receptor 85	NM_018970	4.3	0.00901 1067
ZBTB25: zinc finger and BTB domain containing 25	NM_006977	4.3	0.0321 10574
Clorfl62: chromosome 1 open reading frame 162	BC017973	4.29	0.02127661
TDH: L-threonine dehydrogenase	NR_001578	4.29	0.030003012
FNDC7: fibronectin type III domain containing 7	NM173532	4.26	0.014980274
OSG1N2: oxidative stress induced growth inhibitor family member 2 PLEKHF2: pleckstrin homology domain containing, family	NM_004337	4.26	0.040290355
F2	NM_024613	4.26	0.019367416
BTG2: BTG family, member 2	NM_006763	4.26	0.000755183
LY96: lymphocyte antigen 96	NM_015364	4.26	0.045357606
C3: complement component 3	NM000064	4.23	0.010904555
SERTAD2: SERTA domain containing 2	NM_014755	4.23	0.011727345
DPY19L2P2: dpy-19-like 2 pseudogene 2 (C. elegans) FLVCR2: feline leukemia virus subgroup C cellular receptor	NR. 003561	4.23	0.031876595
2	NM017791	4.21	0.044393143
SQSTM1 : sequestosome 1	NM. 003900	4.2	0.013064954
ATXN7L1: ataxin 7-like 1	NM_020725	4.19	0.01 1799405
ICAM4: intercellular adhesion molecule 4 DYRK3: dual-specificity tyrosine-phosphorylation regulated	Ν Μ_ 022377	4.18	0.029920502
kinase 3	NM001004023	4.18	0.002489408
C12orf5 : chromosome 12 open reading frame 5	NM_020375	4.17	0.020099505
NFE2L2: nuclear factor (erythroid-derived 2)-like 2	NM006164	4.15	0.013322293
HIVEP2	NM. 006734	4.14	0.01 1002788
RNF144B: ring finger 144B	NM. 182757	4.12	0.047696251
RELB: v-rel reticuloendotheliosis viral oncogene homolog B	NM_ 006509	4.12	0.024916205
DNAJC6: DnaJ (Hsp40) homolog, subfamily C, member 6	NM. 014787	4.12	0.010416437
BBS10: Bardet-Biedl syndrome 10	NM. 024685	4.1 1	0.024438054
TIPARP: TCDD-inducible poly(ADP-ribose) polymerase	NM. 015508	4.11	0.015065 546
ZFP1 12: zinc finger protein 112 homolog (mouse)	NM_001083335	4.11	0.024494 17
TMEM88: transmembrane protein 88	NM 20341 1	4.1	0.021458994
ZNF671 : zinc finger protein 671	 NM. 024833	4.1	0.012782651
EN03 : enolase 3 (beta, muscle)	NM001976	4.1	0.0448664
RAD9B: RAD9 homolog B (S. cerevisiae)	NM 152442	4.09	0.00224161
IER2: immediate early response 2	NM004907	4.09	0.027072343
C5orf41 : chromosome 5 open reading frame 41	NM 153607	4.08	0.019814333
MAMDC2: MAM domain containing 2	NM 153267	4.08	0.034539195
AVIL: advillin	NM 006576	4.08	0.00885929
CLK4 : CDC-like kinase 4	NM.020666	4.06	0.041643886
THAP1: THAP domain containing, apoptosis associated protein 1	NM 018105	4.05	0.0213 16751
IL11: interleukin 11	NM.000641	4.04	0.028630107
RND3 : Rho family GTPase 3	NM.005168	4.01	0.015595845
FOXN2: forkhead box N2	NM 002158	4.01	0.03001 1565
CCNL1: cyclin LI	NM 020307	4.01	0.017383657
MAP2K1IP1	NM.021970	4	0.036777936
RNF146: ring finger protein 146	NM 030963	4	0.036079701
PCF11: PCF11, cleavage and polyadenylation factor subunit, homolog	NM 015885	3.99	0.007519478
TIGD2 : tigger transposable element derived 2	NM 145715	3.99	0.018863445
RAB30: RAB30, member RAS oncogene family	NM 014488	3.97	0.044990829
ZNF566: zinc finger protein 566	NM 032838	3.96	0.001066628
		0.00	0.001000020

- 88 -

	SCAND3 : SCAN domain containing 3	NM_052923	3.95	0.008246658
	ZNF462: zinc finger protein 462	NM_021224	3.95	0.02200571 1
	STX11 : syntaxin 11	NM_003764	3.93	0.030873581
	GBAP: glucosidase, beta; acid, pseudogene	NR_002188	3.93	0.00106888
	C10orf26: chromosome 10 open reading frame 26	NM_017787	3.93	0.030090004
•	DDB2: damage-specific DNA binding protein 2, 48kDa	NM_000107	3.91	0.024058092
	ALKBHI : alkB, alkylation repair homolog 1 (E. coli)	NM 006020	3.91	0.022505275
	ARRDC4: arrestin domain containing 4	NM 183376	3.9	0.002706984
	ZBTB6: zinc finger and BTB domain containing 6	NM_006626	3.9	0.013105076
	ATXN7L1: ataxin 7-like 1	 NM_020725	3.89	0.038026386
	RASSF2: Ras association (RalGDS/AF-6) domain family member 2	NM_014737	3.89	0.018647804
	ZNF563 : zinc finger protein 563	NM _145276	3.89	0.046559742
	C4orfl8: chromosome 4 open reading frame 18	NM_001 128424	3.88	0.012934484
	TET3: tet oncogene family member 3	NM144993	3.87	0.015687232
	MGC42105 : hypothetical protein MGC42105	BC036422	3.87	0.045569556
	BLOC1S2: biogenesis of lysosomal organelles complex- 1, subunit 2	NM .001001 342	3.86	0.005921207
	PELI1 : pellino homolog 1 (Drosophila)	NM_020651	3.85	0.030042055
	ZNF160 : zinc finger protein 160	NM 001 102603	3.85	0.028974443
	ZSWIM6 : zinc finger, SWIM-type containing 6	 ENST00000252744	3.84	0.010331935
	C3orf59: chromosome 3 open reading frame 59	BC036194	3.83	0.013149717
	HIST1H2AI : histone cluster 1, H2ai	NM 003509	3.82	0.026727634
	BCL6: B-cell CLL/lymphoma 6	 NM_ 001706	3.81	0.013140439
	ZNF669: zinc finger protein 669	NM_ 024804	3.81	0.003810158
	C20orfl II: chromosome 20 open reading frame 111	NM_ 016470	3.81	0.000917602
	THAP6: THAP domain containing 6	NM_ 144721	3.8	0.012056405
	THNSL1 : threonine synthase-like 1 (S. cerevisiae)	NM 024838	3.79	0.039689189
	ZNF175: zinc finger protein 175	 NM_007147	3.78	0.014604301
	NFKB2	NM_002502	3.77	0.0001512
	ZNF772: zinc finger protein 772 BHLHB2: basic helix-loop-helix domain containing, class B,	NM_001024596	3.77	0.038266 151
	2	NM_ 003670	3.77	0.024753871
	C6orf58 : chromosome 6 open reading frame 58	AK303850	3.77	0.046923923
	ZNF211 : zinc finger protein 211	NM006385	3.75	0.024268097
	C2orf67: chromosome 2 open reading frame 67	MM, 152519	3.73	0.009819026
	ERRFI1 : ERBB receptor feedback inhibitor 1	NM018948	3.73	0.007138312
	HIST1H2AC: histone cluster 1, H2ac	NM_003512	3.73	0.025902603
	TMEM55B: transmembrane protein 55B	NM_001 100814	3.72	0.028182 102
	ZNF438: zinc finger protein 438 UAP1L1: UDP-N-acteylglucosamine pyrophosphorylase 1-	NM_ 182755	3.7	0.020090563
	like 1	NM. 207309	3.7	0.009016598
	ZNF506 : zinc finger protein 506	NM_001099269	3.7	0.019918406
	MAML2: mastermind-like 2 (Drosophila)	NM_032427	3.66	0.00401 1896
	IKZF3 : IKAROS family zinc finger 3 (Aiolos)	NM_012481	3.65	0.049454019
	C3AR1: complement component 3a receptor 1	U62027	3.65	0.027935 192
	SLC9A8: solute carrier family 9, member 8	NM_015266	3.64	0.035070 108
	DCUN 1D3: DCN1, defective in cullin neddylation 1	NM_ 173475	3.63	0.020185386
	TNFRSF10C	NM_003841	3.63	0.022792614
	EAF1 : ELL associated factor 1	NM_033083	3.62	0.041518282
	TGFB3: transforming growth factor, beta 3 PLEKH02: pleckstrin homology domain containing, family	NM_003239	3.61	0.042467987
	02	NMJD25201	3.61	0.00613281

THAP2: THAP domain containing, apoptosis associated			
protein 2	NM_031435	3.59	0.041850864
CHMP2B: chromatin modifying protein 2B	NM_014043	3.58	0.019964868
IFRD1 : interferon-related developmental regulator 1	NM_001550	3.57	0.005756425
ACYP2: acylphosphatase 2, muscle type	NM_138448	3.57	0.044815679
GAD1 : glutamate decarboxylase 1 (brain, 67kDa)	NM_000817	3.57	0.018872615
ASH 1L: ashl (absent, small, or homeotic)-like		2 56	0.024275028
(Drosophila)	NM_018489	3.56	0.016285018
ZNF616: zinc finger protein 616	NM_178523	3.55 3.55	0.01 1709365
LUZP1: leucine zipper protein 1	NM_033631	3.55	0.020202803
NFKBIZ	NM_031419 NM_006074	3.55	0.020202803
TRIM22 : tripartite motif-containing 22	—	3.55	0.015002939
ZNF267 : zinc finger protein 267	NM_003414		0.019518872
EXPH5 : exophilin 5	NM_015065	3.54	
ZNF226 : zinc finger protein 226	NM_001032372	3.54	0.040615764
LOC400657 : hypothetical LOC400657	BC036588	3.53	0.005361606
SLC7A8: solute carrier family 7, member 8	NM_012244	3.52	0.044718749
THUMPD2: THUMP domain containing 2	NM_025264	3.52	0.020267 196
TLR4: toll-like receptor 4	NM_138554	3.51	0.003298925
C3orf38 : chromosome 3 open reading frame 38	BC024188	3.51	0.035632083
FU317 15: hypothetical protein FU31715	BC022164	3.5	0.00661263
RNF6: ring finger protein (C3H2C3 type) 6	NM_005977	3.5	0.014090742
ZSCAN12: zinc finger and SCAN domain containing 12	BC041661	3.49	0.001409015
MFAP4: microfibrillar-associated protein 4	NM_002404	3.49	0.029486476
CLEC2B: C-type lectin domain family 2, member B PPM1D: protein phosphatase I D magnesium-dependent	NM_005127	3.49	0.016272762
delta isoform	NMJD03620	3.48	0.02416687
IL1B: interleukin 1, beta	NM_000576	3.48	0.049947548
ZNF284: zinc finger protein 284	I\IM_001037813	3.48	0.019269189
ZNF557 : zinc finger protein 557	NM_024341	3.47	0.041288469
ZFP3: zinc finger protein 3 homolog (mouse)	NM_153018	3.47	0.008143 118
URG4: up-regulated gene 4	NM_017920	3.45	0.004558363
AVPI1: arginine vasopressin-induced 1	I\IM_021732	3.45	0.0091021
DUSP14: dual specificity phosphatase 14	NM_007026	3.44	0.030281982
FSTL3: follistatin-like 3 (secreted glycoprotein)	NM_005860	3.44	0.021558861
FNIP1 : folliculin interacting protein 1	NM_133372	3.44	0.012239205
ZNF416: zinc finger protein 416	NM_017879	3.44	0.026871 15
LOC492311: similar to bovine IgA regulatory protein	[\IM_001007 189	3.44	0.019195652
RND1 : Rho family GTPase 1	NM_014470	3.44	0.010032455
ZC3H6: zinc finger CCCH-type containing 6	NM_198581	3.43	0.007049425
TNFAIP6: tumor necrosis factor, alpha-induced protein 6	NM_0071 15	3.43	0.037415638
ZNF721 : zinc finger protein 721	NM_133474	3.43	0.01459881 1
SLC16A6: solute carrier family 16, member 6	NMJD04694	3.43	0.036215977
ZNF223 : zinc finger protein 223	NM_013361	3.43	0.01 1281453
ZIMF701 : zinc finger protein 701	NMJ318260	3.43	0.041557926
IL32 : interleukin 32	NM_001012631	3.43	0.043847422
HIST2H2BF: histone cluster 2, H2bf	NM_001024599	3.42	0.009584 114
DBP: D site of albumin promoter (albumin D-box) binding protein	NM_001352	3.42	6.58E-05
TGIF2: TGFB-induced factor homeobox 2	NM_021809	3.41	0.007219969
ZNF597 : zinc finger protein 597		3.41	0.016631685
PAN2: PAN2 polyA specific ribonuclease subunit homolog	NM_014871	3.39	0.006176653
1		2.00	

- 90 -

FLRT2: fibronectin leucine rich transmembrane protein 2	NM_013231	3.38	0.020458934
BAZ2B: bromodomain adjacent to zinc finger domain, 2B	NM_013450	3.38	0.018290813
FLCN : folliculin	NM144997	3.38	0.008266513
SLC30A1: solute carrier family 30 (zinc transporter), member 1	NM_021 194	3.37	0.015710802
CSF1: colony stimulating factor 1 (macrophage)	NM000757	3.37	0.021787205
PRDM2: PR domain containing 2, with ZNF domain	NM_012231	3.37	0.041976521
REPIN1 : replication initiator 1	NM_013400	3.36	0.033000065
ENC1 : ectodermal-neural cortex (with BTB-like domain)	NM. 003633	3.36	0.015099205
RPS27L ribosomal protein S27-like	NM_015920	3.36	0.013107 109
IMFKBIB	NM002503	3.35	0.013479872
MAP1LC3B2: microtubule-associated protein 1 light chain 3 beta 2	NM_001085481	3.35	0.00383861 1
MXD1: MAX dimerization protein 1	NM_002357	3.34	0.00553368
CAMKK1: calcium/calmodulin-dependent protein kinase		0.00	0.000050700
kinase 1A	NM_032294	3.33	0.022850782
FU42627: hypothetical LOC645644	ENST00000382337	3.32	0.04630049
ZNF292: zinc finger protein 292 PFKFB4: 6-phosphofructo-2-kinase/fructose-2,6-	NM. 015021	3.31	0.030126048
biphosphatase 4	NM 004567	3.31	0.029334584
RRAGD: Ras-related GTP binding D	 NM_021244	3.31	0.04135844
ZNF654 : zinc finger protein 654	NM 018293	3.3	0.000395798
C2orf60: chromosome 2 open reading frame 60	NR_004862	3.3	0.00861 1094
CAP2: CAP, adenylate cyclase-associated protein, 2	•		
(yeast)	NM_006366	3.29	0.000904472
UVRAG: UV radiation resistance associated gene	NM_003369	3.26	0.010565 147
ZNF136 : zinc finger protein 136	NM003437	3.26	0.035578432
WDR63: WD repeat domain 63	NM_ 145172	3.25	0.015959866
ZNF329: zinc finger protein 329	NM_ 024620	3.25	0.035125919
CABLES1: Cdk5 and Abl enzyme substrate 1	NM. 138375	3.24	0.012237888
ZFP37: zinc finger protein 37 homolog (mouse)	NM_ 003408	3.24	0.025496593
GLIS2: GLIS family zinc finger 2	NM032575	3.23	0.00664897
Clorfl03 : chromosome 1 open reading frame 103 CBLL1 : Cas-Br-Mecotropic retroviral transforming	NM_018372	3.22	0.004213356
sequence-like 1	NM_024814	3.22	0.01 1303935
RNASE7: ribonuclease, RNase A family, 7	NM_032572	3.22	0.015976655
C13orf3 1: chromosome 13 open reading frame 31	NM _. 153218	3.22	0.041718086
NSUN6: NOLI/NOP2/Sun domain family, member 6	NM. 182543	3.21	0.016203766
EPC1 : enhancer of polycomb homolog 1 (Drosophila)	NM_025209	3.21	0.015101279
RNF185: ring finger protein 185	NM_152267	3.21	0.015893453
KCNRG: potassium channel regulator	NM_173605	3.21	0.024829485
FAM179B: family with sequence similarity 179, member B	NM_015091	3.2	0.001910819
HRH1: histamine receptor HI	NM. 001098213	3.2	0.014195297
ZNF630 : zinc finger protein 630	NM_001037735	3.2	0.026240946
TOPORS: topoisomerase I binding, arginine/serine-rich	NM _. 005802	3.19	0.004180 115
ZNF23 : zinc finger protein 23 (KOX 16)	NM.14591 1	3.19	0.002448662
MOSPDI : motile sperm domain containing 1	NM_019556	3.19	0.020052342
AMY2B : amylase, alpha 2B (pancreatic) HMGCL: 3-hydroxymethyl-3-methylglutaryl-Coenzyme A	NM _. 020978	3.19	0.048103763
lyase	NM000191	3.18	0.042673921
FIGN : fidgetin	NM_018086	3.18	0.01851 1553
TRAF1 : TNF receptor-associated factor 1	NM.005658	3.18	0.048973251
ANKRA2: ankyrin repeat, family A (RFXANK-like), 2	NM_ 023039	3.18	0.004596453
CCDC126 : coiled-coil domain containing 126	NM_ 138771	3.17	0.042950357

- 91 -

ZNF304: zinc finger protein 304	NM_020657	3.16	0.029694616
DUSP3: dual specificity phosphatase 3	NM004090	3.16	0.01052187
FU32065: hypothetical protein FU32065	BC073870	3.16	0.014638913
GABARAPL2: GABA(A) receptor-associated protein-like 2 LOC441734: similar to hypothetical protein	NM007285	3.15	0.02820069
DKFZp434I1020	XM_001715597	3.15	0.01559399
C15orf51 : chromosome 15 open reading frame 51	AK125787	3.15	0.01559399
KBTBD8: kelch repeat and BTB (POZ) domain containing 8	NM_032505	3.15	0.032068177
H1F0: HI histone family, member 0	NM_005318	3.15	0.02224121 1
CRYM: crystallin, mu	NM_001888	3.15	0.016699474
C6orfl45: chromosome 6 open reading frame 145	NM183373	3.15	0.01871981
ZNF408: zinc finger protein 408 BHLHB9: basic helix-loop-helix domain containing, class B,	NM_024741	3.15	0.003167884
9	NM_030639	3.14	0.028051035
ZNF555 : zinc finger protein 555	NM. 152791	3.14	0.014099323
YTHDF3: YTH domain family, member 3 SH3BGRL2: SH3 domain binding glutamic acid-rich protein	NM152758	3.14	0.023192339
	NM_031469	3.14	0.033107675
DNAH12L: dynein, axonemal, heavy chain 12-like	NM. 198564	3.14	0.037105609
CTSS: cathepsin S	NM_004079	3.13	0.006028636
JMJD1C: jumonji domain containing 1C	NM. 004241	3.11	0.042616374
PIWIL4 : piwi-like 4 (Drosophila)	NM_152431	3.11	0.03192624
SLC4A5: solute carrier family 4, sodium bicarbonate cotransporter 5	NM_133478	3.11	0.004520 157
Clorfl63 : chromosome 1 open reading frame 163	BC015313	3.1	0.017034213
MFAP3L: microfibrillar-associated protein 3-like	NM_021647	3.1	0.010916007
TMEM 159: transmembrane protein 159	NM_020422	3.1	0.043872 113
GABARAPL1 : GABA(A) receptor-associated protein like 1	NM_031412	3.1	0.041833295
ZNF776: zinc finger protein 776	NM. 173632	3.1	0.003902668
HIST1H2BG : histone cluster 1, H2bg	NM_003518	3.08	0.000239016
FGF1 : fibroblast growth factor 1 (acidic)	NM. 000800	3.08	0.005135439
BDNF: brain-derived neurotrophic factor	NM170732	3.07	0.024437494
LACTB2: lactamase, beta 2	NM016027	3.07	0.01 1861 108
LCP1 : lymphocyte cytosolic protein 1 (L-plastin) MAFG : v-maf musculoaponeurotic fibrosarcoma oncogene	NM_ 002298	3.06	0.044037562
G	NM_03271 1	3.06	0.0231 14742
ZNF440 : zinc finger protein 440 SLC31A2 : solute carrier family 31 (copper transporters), member 2	NM_152357	3.06	0.010892152 0.037146585
	NM_001860	3.05 3.05	
CREB5: cAMP responsive element binding protein 5	NM_182898		0.012201 181
PDRG1: p53 and DNA damage regulated 1	NM_006404	3.05	0.032943493
ERF: Ets2 repressor factor	NM_006494	3.05	0.004730393
C5orf51 : chromosome 5 open reading frame 51	NM_175921	3.04	0.013194106
ZNF137: zinc finger protein 137	NR_02331 1	3.04	0.000792801
RRAGC: Ras-related GTP binding C STAT2: signal transducer and activator of transcription 2, 113kDa	NM022157 NM005419	3.03 3.03	0.024892917 0.028210059
ZNF644 : zinc finger protein 644	NM_201269	3.02	0.000924768
CAPS2: calcyphosine 2	NM_032606	3.02	0.044140399
ZNF546: zinc finger protein 546	NM_032000 NM_178544	3.02	0.044140399 0.026749932
	·		
TMEM69: transmembrane protein 69 HCCS: holocytochrome c synthase (cytochrome c heme- lyase)	NM_016486 NM_005333	3.02 3.01	0.021783875 0.019281 137
WBP2: WW domain binding protein 2	NM_012478	3.01	0.046388537
	<u>_</u> 012 1 70	5.01	0.0-0000001

- 92 -

PIM3: nim-3 oncogene	NM001001852	3.01	0.033321055
PIM3: pim-3 oncogene	NM_001965	3.01	0.01238301 1
EGR4: early growth response 4 PFKFB2: 6-phosphofructo-2-kinase/fructose-2,6-	NNI_001905	5.01	0.01200001 1
biphosphatase 2	NM. 006212	3.01	0.025738676
ZNF235 : zinc finger protein 235	NM. 004234	3.01	0.015058937
ZNF658: zinc finger protein 658 LOC440348: similar to nuclear pore complex interacting	NM_033160	3	0.001825251
protein	NM_001018059	3	0.023855828
SOX4: SRY (sex determining region Y)-box 4	NM003107	3	0.033282073
LIIMS1 : lines homolog 1 (Drosophila)	NM_018148	3	0.014275826
TRIM13: tripartite motif-containing 13		3	0.002170186
IDI1 : isopentenyl-diphosphate delta isomerase 1	NM 004508	3	0.021553025
ZNF658: zinc finger protein 658	NM_ 033160	2.99	0.002099728
CHIC2 : cysteine-rich hydrophobic domain 2	 NM_012110	2.99	0.036687396
MST3H2BB: histone cluster 3, H2bb	NM_ 175055	2.99	0.006331 769
CCR4: chemokine (C-C motif) receptor 4	NM_005508	2.99	0.004204277
ANKRD10 : ankyrin repeat domain 10	NM_017664	2.98	0.022670758
ZNF132 : zinc finger protein 132	NM_003433	2.98	0.039673318
PPIF: peptidylprolyl isomerase F (cyclophilin F)	NM_ 005729	2.98	0.033443052
HEL308: DNA helicase HEL308	NM_133636	2.98	0.041633691
PAG1: phosphoprotein associated glycosphingolipid			
microdomains 1	NM_018440	2.97	0.0061 18738
LRRC37B : leucine rich repeat containing 37B	NM_052888	2.97	0.014791612
TSC22D2 : TSC22 domain family, member 2	NM_014779	2.96	0.025805661
MITD1: MIT domain containing 1	NM138798	2.96	0.02073231
KCNAB1 : potassium voltage-gated channel, beta member	NM_ 003471	2.95	0.020186746
	NM021047	2.95	0.022609189
ZNF253 : zinc finger protein 253 AOC2: amine oxidase, copper containing 2 (retina-	NM_021047	2.90	0.022003103
specific)	NM009590	2.94	0.029979527
ZNF503 : zinc finger protein 503	NM_032772	2.94	0.010841563
LHX4: LIM homeobox 4	NM033343	2.94	0.019586398
ZNF26: zinc finger protein 26	NM_019591	2.93	0.01221 1671
ZNF502 : zinc finger protein 502	NM_033210	2.93	0.037008738
CHMP1B: chromatin modifying protein I B	NM020412	2.92	0.026047526
RUNX1 : runt-related transcription factor 1	NM_001001890	2.91	0.033938878
H2AFJ: H2A histone family, member J	NM_177925	2.91	0.022343 125
ATP6V1G1 : ATPase, H+ transporting, VI subunit GI	NM_004888	2.9	0.019366028
GZF1: GDNF-inducible zinc finger protein 1	NM_022482	2.9	0.017043271
CCDC122: coiled-coil domain containing 122	NM_144974	2.89	0.014344725
FAM53C: family with sequence similarity 53, member C	AF251040	2.88	0.013075061
HSD17B7: hydroxysteroid (17-beta) dehydrogenase 7	NM_016371	2.88	0.010531032
KLF7 : Kruppel-like factor 7 (ubiquitous)	NM_ 003709	2.88	0.021964801
C9orf85: chromosome 9 open reading frame 85	NM_ 182505	2.88	0.00686446
ABHD4: abhydrolase domain containing 4	NM_022060	2.87	0.026745454
ZNF330: zinc finger protein 330	NM_ 014487	2.87	0.046210196
KIAA0415 : KIAA0415	NM_014855	2.87	0.00640548
GCA: grancalcin, EF-hand calcium binding protein SGIP1 : SH3-domain GRB2-like (endophilin) interacting	NM_012198	2.87	0.0486402
protein 1	NM 032291	2.87	0.022835814
TMEM144 : transmembrane protein 144	NM 018342	2.87	0.045265032
FBXW7: F-box and WD repeat domain containing 7	NM 033632	2.87	0.004759001
RAB7L1 : RAB7, member RAS oncogene family-like 1	NM 003929	2.86	0.04614135 1
	•		

- 93 -

C2orf76 : chromosome 2 open reading frame 76	BC126397	2.86	0.004536406
ASPN : asporin	NM017680	2.86	0.019873462
ATP13A3: ATPase type 13A3	NM_024524	2.85	0.007598924
HRASLS3 : HRAS-like suppressor 3 CHCHD7 : coiled-coil-helix-coiled-coil-helix domain	NM_007069	2.85	0.043777915
containing 7	NM_00101 1667	2.85	0.023108464
NUFIP2	NM_020772	2.84	0.010392776
C6orfl99: chromosome 6 open reading frame 199	NM_ 145025	2.84	0.026233691
HEXIM1 : hexamethylene bis-acetamide inducible 1	NM006460	2.84	0.038002092
GCH 1: GTP cyclohydrolase 1	NM000161	2.84	0.042076474
FAM21C: family with sequence similarity 21, member C	BC006456	2.83	0.01912708
ANKRDI : ankyrin repeat domain 1 (cardiac muscle)	NM_014391	2.82	0.03634721 1
NOG : noggin	NM_005450	2.82	0.038775993
ZNF564 : zinc finger protein 564	NM 144976	2.82	0.020106 104
USP50: ubiquitin specific peptidase 50	NM_203494	2.82	0.028093525
C17orf91 : chromosome 17 open reading frame 91	NM_032895	2.82	0.021603548
KLF15: Kruppel-like factor 15	NM_014079	2.82	0.025628131
RNF169: ring finger protein 169	NM_001098638	2.81	0.033029936
PER3: period homolog 3 (Drosophila)	NM _016831	2.81	0.006609059
ZNF658 : zinc finger protein 658	 NM_033160	2.8	0.01 1159824
ZNF717: zinc finger protein 717	NM_001 128223	2.8	0.049503262
ZBTB4: zinc finger and BTB domain containing 4	NM_ 020899	2.8	0.00983032
HEATR2: HEAT repeat containing 2	NM 017802	2.8	0.037293252
ZNF24: zinc finger protein 24	NM_006965	2.8	0.01 1006306
ZNF828: zinc finger protein 828	NM_032436	2.8	0.003323432
IKZF5 : IKAROS family zinc finger 5 (Pegasus)	NM_022466	2.79	0.032055423
ZNF91 : zinc finger protein 91	NM_003430	2.79	0.045198612
MRAS: muscle RAS oncogene homolog	NM012219	2.78	0.045059597
NAP1L3: nucleosome assembly protein 1-like 3	NM_004538	2.78	0.041693897
C7orf38 : chromosome 7 open reading frame 38	NM_ 1451 11	2.78	0.0391 1549
YODI : YODI OTU deubiquinating enzyme 1 homolog (S. cerevisiae)	NM_018566	2.77	0.019176899
MGC21874: transcriptional adaptor 2 (ADA2 homolog,	NNA 450000	0.77	0.005000470
yeast)-beta	NM_152293	2.77	0.025006478
LBA1 : lupus brain antigen 1	NM_014831	2.77	0.007283661
KLHL28: kelch-like 28 (Drosophila)	NM_017658	2.77	0.031353233
ZNF256 : zinc finger protein 256	NM 005773	2.77	0.04807829
ACTA2: actin, alpha 2, smooth muscle, aorta	NM_001613	2.76	0.024924217
TMEM217: transmembrane protein 217	ENST00000336655	2.76	0.010262657
LOC554203 : hypothetical LOC554203	BC029480	2.76	0.026347446
CYLD: cylindromatosis (turban tumor syndrome)	NM_015247	2.76	0.018718919
BRF2	NM_018310	2.75	0.046389996
C2orf58: chromosome 2 open reading frame 58	BC03 1410	2.75	0.029184398
LGALS8: lectin, galactoside-binding, soluble, 8	NM_ 006499	2.75	0.014605358
ZMAT3: zinc finger, matrin type 3	NM_022470	2.74	0.012078936
ZBTB43 : zinc finger and BTB domain containing 43	NM_014007	2.74	0.004556569
DACTI : dapper, antagonist of beta-catenin, homolog 1	NM_016651	2.74	0.03256625
ZNF16: zinc finger protein 16	NM.001029976	2.74	0.001098076
ZNF548 : zinc finger protein 548 PLEKHM1 : pieckstrin homology domain containing, family M 1	NM_152909 NM_014798	2.73 2.73	0.025890232 0.034581207
PLEKHA7: pieckstrin homology domain containing, family A7	NM_014798	2.73	0.006939973

- 94 -

SNAPCI : small nuclear RNA activating complex,			
polypeptide 1	NM_003082	2.73	0.004723659
ZNF791 : zinc finger protein 791 ABCA5 : ATP-binding cassette, sub-family A (ABC1),	NM_153358	2.72	0.02484794
member 5	NM018672	2.72	0.049190357
ZNF264: zinc finger protein 264	NM_003417	2.72	0.006854892
SERPINB8: serpin peptidase inhibitor, clade B, member 8	NM_002640	2.72	0.002638449
SNX16: sorting nexin 16	NM022133	2.72	0.017835039
SLFN 12: schlafen family member 12	NM_018042	2.72	0.008484 158
ZNF510: zinc finger protein 510	NM_014930	2.72	0.005467203
NKAPL: NFKB activating protein-like	NM_001007531	2.72	0.049874 159
BEX1: brain expressed, X-linked 1	NM_018476	2.72	0.01 1962857
CXCL1 : chemokine (C-X-C motif) ligand 1	NM_00151 1	2.71	0.036675901
FAM21B: family with sequence similarity 21, member B	NM018232	2.71	0.018369561
JAG 1: jagged 1 (Alagille syndrome)	NM000214	2.71	0.018840282
TPP1 : tripeptidyl peptidase I	NM000391	2.71	0.002388 114
ZBTB20: zinc finger and BTB domain containing 20	NM. 015642	2.71	0.007968807
CLN5 : ceroid-lipofuscinosis, neuronal 5	NM_006493	2.71	0.015628021
CNOT6L: CCR4-NOT transcription complex, subunit 6-like	uc003hkt. I	2.7	0.023687729
FAM21A: family with sequence similarity 21, member A	NM001005751	2.7	0.017431301
ZNF827: zinc finger protein 827	NM .178835	2.7	0.049900335
ZNF532 : zinc finger protein 532	NM_018181	2.7	0.007489661
MAFK: v-maf musculoaponeurotic fibrosarcoma oncogene homolog K	NM_002360	2.7	0.002017768
PHLDA3: pleckstrin homology-like domain, family A, member 3	NM_012396	2.7	0.024222899
MAFB: v-maf musculoaponeurotic fibrosarcoma oncogene homolog B	Ν ^M _005461	2.7	0.015500473
FAM21C: family with sequence similarity 21, member C	NM_ 015262	2.69	0.019375457
ZNF350: zinc finger protein 350	NM_021632	2.69	0.008588347
SLC19A2: solute carrier family 19 (thiamine transporter),			
member 2	NM_ 006996	2.69	0.043004634
TMEM199: transmembrane protein 199	NM_ 152464	2.68	0.014440283
CPEB1: cytoplasmic polyadenylation element binding protein 1	NM030594	2.68	0.02172188
PRICKLE2: prickle homolog 2 (Drosophila)	NM_ 198859	2.68	0.037670 176
ATP6V0A1: ATPase, H+ transporting, lysosomal V0			
subunit al	NM_005177	2.68	0.03252331 1
RRM2B: ribonucleotide reductase M2 B (TP53 inducible)	NM_015713	2.68	0.046469533
CHD2: chromodomain helicase DNA binding protein 2	NM_001271	2.67	0.007327301
CLN8 : ceroid-lipofuscinosis, neuronal 8	NM_0 18941	2.67	0.035461042
NEDD4L	NM_015277	2.67	0.028872166
ZNF337: zinc finger protein 337	NM015655	2.67	0.003300715
CD24 : CD24 molecule	NM_013230	2.67	0.020529003
PGF: placental growth factor	NM_002632	2.66	0.005902837
ARID5A: AT rich interactive domain 5A (MRFI-like)	NM_212481	2.66	0.017133097
ZNF567 : zinc finger protein 567	NM_152603	2.66	0.020423909
NRIP1 : nuclear receptor interacting protein 1	NM003489	2.65	0.004930566
CYFIP2: cytoplasmic FMR1 interacting protein 2	NM_001037332	2.65	0.008498776
TXNL4B: thioredoxin-like 4B	NM_017853	2.65	0.002878021
ZNF625: zinc finger protein 625	NM_145233	2.65	0.005918898
REV3L: REV3-like, catalytic subunit of DNA polymerase	NM 002040	2.04	0.004540004
zeta (yeast)	NM_002912	2.64	0.004548281
ZNF75A: zinc finger protein 75a	NM_153028	2.64	0.01291228
BCDIN3D: BCDIN3 domain containing	NM_181708	2.64	0.006288708

- 95 -

SNORD74: small nucleolar RNA, C/D box 74	NR_002579	2.63	0.033620987
MRC1 : mannose receptor, C type 1	NM002438	2.63	0.039469245
MRC1: mannose receptor, C type 1	NM002438	2.63	0.039469245
TCEAL1 : transcription elongation factor A (SII)-like 1	NM_004780	2.63	0.049397508
ATXN7L1: ataxin 7-like 1	NM_020725	2.63	0.000802799
FRMPD4: FERM and PDZ domain containing 4	NM_014728	2.62	0.017275209
NEK10: NIMA (never in mitosis gene a)- related kinase 10	NM_001031741	2.62	0.029767874
SERINC4: serine incorporator 4	NM_001033517	2.62	0.018049001
LYRM1: LYR motif containing 1	NM_001 128301	2.62	0.027769738
BBS12: Bardet-Biedl syndrome 12	NM152618	2.62	0.008328017
ZNF682: zinc finger protein 682	NM_033196	2.62	0.026858035
ZNF134: zinc finger protein 134	NM_003435	2.62	0.01 1255455
PLEKHM1: pleckstrin homology domain containing, family	NNA 04 4700	0.61	0.000040061
M 1	NM_014798	2.61	0.002848361
ZNF778: zinc finger protein 778	AK295122	2.61	0.024163823
PARP6: poly (ADP-ribose) polymerase family, member 6	NM_020214	2.61	0.007097 119
Clorf71 : chromosome 1 open reading frame 71	BC036200	2.61	0.019765437
CTGLF1: centaurin, gamma-like family, member 1	NM. 133446	2.61	0.001608268
NKIRAS1: NFKB inhibitor interacting Ras-like 1	NM_ 020345	2.61	0.00450932
LIN52: lin-52 homolog (C. elegans)	NM001024674	2.61	0.036814203
ZNF570 : zinc finger protein 570	NM_ 144694	2.61	0.03229297
RUSC2: RUN and SH3 domain containing 2	NM_014806	2.6	0.03546014
SOCS2 : suppressor of cytokine signaling 2	NM_ 003877	2.6	0.033684386
SECTM1 : secreted and transmembrane 1	NM_, 003004	2.6	0.023641895
ZNF700 : zinc finger protein 700	NM_ 144566	2.6	0.012243042
SPRY1: sprouty homolog 1, antagonist of FGF signaling (Drosophila)	NM .005841	2.59	0.041400742
SOX30: SRY (sex determining region Y)-box 30	 NM178424	2.59	0.037951891
IPMK: inositol polyphosphate multikinase	мм_ 152230	2.59	0.019722475
CFLAR: CASP8 and FADD-like apoptosis regulator	 NM003879	2.59	0.026917209
ZNF521 : zinc finger protein 521	NM_015461	2.58	0.007436907
AKAP5: A kinase (PRKA) anchor protein 5	NM004857	2.58	0.044644534
ZNF782: zinc finger protein 782		2.58	0.012649402
PGBD4: piggyBac transposable element derived 4	 NM_152595	2.57	0.017883939
ZNF606: zinc finger protein 606	NM_025027	2.57	0.026449335
ZIK1 : zinc finger protein interacting with K protein 1 homolog	NM_001010879	2.57	0.02004631 1
CYP2U 1: cytochrome P450, family 2, subfamily U, polypeptide 1	NM_183075	2.57	0.038943828
ZFP82 : zinc finger protein 82 homolog (mouse)	NM_133466	2.57	0.004413068
RAPH1: Ras association and pleckstrin homology domains			
1	NM_213589	2.57	0.041700053
SERTAD1: SERTA domain containing 1	NM_013376	2.57	0.004734306
ZFAND3: zinc finger, ANI-type domain 3	NM_021943	2.56	0.015371302
IL23A: interleukin 23, alpha subunit pl9	NM_016584	2.56	0.005208438
HSPBAPI: HSPB (heat shock 27kDa) associated protein 1	NM_024610	2.56	0.036345288
GPR175 : G protein-coupled receptor 175	NM_016372	2.56	0.03 1915764
SULF2: sulfatase 2	NMJD18837	2.56	0.01434201
LRP12: low density lipoprotein-related protein 12	NM_013437	2.55	0.043058142
CCNT1 : cyclin TI	NM_001240	2.55	0.015958873
SH2D5 : SH2 domain containing 5	NM_001 103 161	2.55	0.04569523
ZRSR1: zinc finger, RNA-binding motif and serine/arginine rich 1	BC10481 1	2.55	0.037279 199

EPM2AIP1 : EPM2A (laforin) interacting protein 1	NM_014805	2,55	0.031524174
ZNF3970S : zinc finger protein 397 opposite strand	NM_001 112734	2.55	0.024817293
ZNF154: zinc finger protein 154	NM_001085384	2.54	0.012185399
RNF1 14: ring finger protein 114	NM_018683	2.54	0.043374183
IHPK1 : inositol hexaphosphate kinase 1	NM153273	2.54	0.022995342
HOXC8: homeobox C8	NM_022658	2.54	0.047486075
TNFRSF14: tumor necrosis factor receptor superfamily, member 14	NM_ 003820	2.54	0.032832484
ZNF84: zinc finger protein 84	NM_003428	2.54	0.004189893
YAF2: YY1 associated factor 2	NM_005748	2.54	0.036728538
CAMSAP1L1: calmodulin regulated spectrin-assoc protein		2.53	0.006181221
1-like 1	NM_203459 NM_001001481	2.53	0.019177154
UBE2W: ubiquitin-conjugating enzyme E2W (putative) MAP3K14: mitogen-activated protein kinase kinase kinase			
14	NM_003954	2.52	0.009347849
JUN : jun oncogene STARD10: StAR-related lipid transfer (START) domain	NM_002228	2.52	0.025787819
containing 10	NM_006645	2.52	0.016934 182
ZNF295: zinc finger protein 295	NM_001098402	2.52	0.035475391
UTP23: UTP23, small subunit processome component, homolog	NM_032334	2.52	0.023322 121
HSPA2: heat shock 70kDa protein 2	NM_021979	2.52	0.006220521
VPS18: vacuolar protein sorting 18 homolog (S.			
cerevisiae)	NM_020857	2.51	0.01913541
C18orfl : chromosome 18 open reading frame 1	NM_181481	2.51	0.048450596
LOC100129391	XR_039731	2.51	0.045691432
TBC1D3F: TBC1 domain family, member 3F	NM_001 123391	2.5	0.002900422
ZFP36L2: zinc finger protein 36, C3H type-like 2	NM006887	2.5	0.000712886
FAMI I IA: family with sequence similarity 111, member A	NM_022074	2.5	0.031234434
ZNF468 : zinc finger protein 468	NM_199132	2.5	0.018361656
TULP4: tubby like protein 4	NM_020245	2.5	0.02789447
ZNF225 : zinc finger protein 225	NM_013362	2.5	0.024727473
ANAPC13: anaphase promoting complex subunit 13	NM_JH5391	2.49	0.036719 162
SNORD60: small nucleolar RNA, C/D box 60	NR_002736	2.49	0.03197453
CCDC121 : coiled-coil domain containing 121	NM_024584	2.49	0.004406989
TANC1	NM_033394	2.48	0.02900901
PPP3CC: protein phosphatase 3, catalytic subunit, gamma isoform	NM_005605	2.48	0.01663471
RGS2: regulator of G-protein signaling 2, 24kDa	 NM_002923	2.48	0.037062472
KIAA0241 : KIAA0241	 BC027724	2.48	0.002515659
MR1: major histocompatibility complex, class I-related	NM_001531	2.48	0.029696928
AADACLI : arylacetamide deacetylase-like 1	 NM_020792	2.48	0.041042532
BACH 1	NM_00101 1545	2.48	0.004227532
PPP1R10: protein phosphatase 1, regulatory (inhibitor) subunit 10	NM_002714	2.48	0.035152814
PPP1R10: protein phosphatase 1, regulatory (inhibitor)			
subunit 10 PPP1R10: protein phosphatase 1, regulatory (inhibitor)	NM_002714	2.48	0.035152814
subunit 10	NM_002714	2.48	0.035152814
ClOorfl I : chromosome 10 open reading frame 11 PRKAB1 : protein kinase, AMP-activated, beta 1 non-	NM_032024	2.48	0.003430419
catalytic subunit	NM_006253	2.47	0.034879309
ZSCAN21 : zinc finger and SCAN domain containing 21	NM_145914	2.47	0.005947306
IMFIL3: nuclear factor, interleukin 3 regulated	NM_005384	2.47	0.044021278
LOC134466 : hypothetical protein LOC134466	BC1 17490	2.47	0.027151542
DHRS2: dehydrogenase/reductase (SDR family) member 2	NM_182908	2.46	0.016509992

ZBTB38: zinc finger and BTB domain containing 38	NM001080412	2.46	0.013776215
SPHK1: sphingosine kinase 1	NM_ 182965	2.46	0.027427305
TAF7: TAF7 RNA polymerase II OSTM1: osteopetrosis associated transmembrane protein	NM_005642	2.46	0.023230123
1	NM_014028	2.46	0.033109621
RBM18: RNA binding motif protein 18 JMJD3: jumonji domain containing 3, histone lysine	NM_0331 17	2.45	0.008237294
demethylase	NM_001080424	2.45	0.024600464
REST: REI-silencing transcription factor	NM_005612	2.45	0.00552277
RP4-692D3. 1: hypothetical protein LOC728621	NM_001080850	2.45	0.02107732
ZNF124: zinc finger protein 124	NM_003431	2.45	0.043244159
GRIA3: glutamate receptor, ionotrophic, AMPA 3	NM_007325	2.45	0.028388 193
FAM117A: family with sequence similarity 117, member A	NM_030802	2.45	0.010742758
XG: Xg blood group	NM_ 175569	2.44	0.01 1411205
YTHDF1: YTH domain family, member 1	NM_017798	2.44	0.020105 104
CTGLF1: centaurin, gamma-like family, member 1 TIMM8B: translocase of inner mitochondrial membrane 8	NM_133446	2.44	0.004400434
homolog B	NM. 012459	2.44	0.007086815
BTLA: B and T lymphocyte associated	NM181780	2.43	0.019285607
IER5: immediate early response 5 CBX4: chromobox homolog 4 (Pc class homolog,	NM016545	2.43	0.018710829
Drosophila)	NM003655	2.43	0.043713256
C14orf4 : chromosome 14 open reading frame 4	NM024496	2.43	0.015055592
Clorfl56 : chromosome 1 open reading frame 156	NM_033418	2.43	0.003402752
ZNF182: zinc finger protein 182	NM_006962	2.41	0.026539813
MRFAP1L1: Morf4 family associated protein 1-like 1	NM_ 152301	2.41	0.010913873
ZNF562 : zinc finger protein 562	NM_017656	2.41	0.015210224
SIAH1 : seven in absentia homolog 1 (Drosophila)	NM_001006610	2.41	0.047668015
SAMD4A: sterile alpha motif domain containing 4A LYSMD3: LysM, putative peptidoglycan-binding, domain	NM_ 015589	2.41	0.043929127
containing 3	NM_ 198273	2.4	0.013244322
RAB32: RAB32, member RAS oncogene family	NM_006834	2.4	0.042963641
ADHFE1: alcohol dehydrogenase, iron containing, 1	NM_ 144650	2.4	0.007977862
ZFX : zinc finger protein, X-linked	NM_003410	2.39	0.035056766
DKFZp547E087: hypothetical gene LOC283846	BC061522	2.39	0.000146979
FBX028: F-box protein 28	NM_015176	2.39	0.006737537
DKFZp547E087 : hypothetical gene LOC283846	BC061522	2.39	0.005521916
ZFHX4: zinc finger homeobox 4 SAT2: spermidine/spermine NI-acetyltransferase family	NM_024721	2.39	0.035823484
member 2	NM_133491	2.39	0.045021804
ZEB2: zinc finger E-box binding homeobox 2	NM_004101	2.39	0.042396204
F2RL2: coagulation factor II (thrombin) receptor-like 2	NM_004101	2.39	0.033316614
GABARAPL3: GABA(A) receptors associated protein like 3	AF180519	2.39 2.38	0.031729422
DKFZp547E087: hypothetical gene LOC283846 NFKB1	BC061522		0.002440052
	NM_003998	2.38	0.03972863
MOCS3: molybdenum cofactor synthesis 3	NM_014484	2.38	0.013561043
ZNF641 : zinc finger protein 641 RCHY1 : ring finger and CHY zinc finger domain containing 1	NM_ 152320 NM_015436	2.38 2.38	0.038163805 0.008242317
DKFZp547E087: hypothetical gene LOC283846	BC061522	2.38	
			0.000838747
PEA15: phosphoprotein enriched in astrocytes 15	NM_003768	2.37	0.030845268
PLCXD2 ZNE502 : zinc finger, protein, 502	NM_153268	2.37	0.013924 114
ZNF592 : zinc finger protein 592	NM_014630	2.37	0.005080807
HECW2: HECT, C2 and WW domain containing E3 ubiquitin	NM020760	2.37	0.029247963

ligase 2			
VAMP2: vesicle-associated membrane protein 2			
(synaptobrevin 2)	NM014232	2.37	0.03492121 1
C1GALT1	NM_020156	2.37	0.028333801
C17orf48: chromosome 17 open reading frame 48	NM_020233	2.37	0.02702369
GTPBP5: GTP binding protein 5 (putative)	NM_015666	2.36	0.001790962
CTGLF1 : centaurin, gamma-like family, member 1	NM_133446	2.36	0.043433614
SLC28A3: solute carrier family 28, member 3	NM022127	2.36	0.019740539
ARMCX5 : armadillo repeat containing, X-linked 5	NM_022838	2.36	0.025899942
SGK269: NKF3 kinase family member	NM_024776	2.36	0.008093 168
LUM: lumican	NM_002345	2.36	0.019014071
LOC729603 : calcium binding protein P22 pseudogene	NR_003288	2.36	0.044173561
C15orf51 : chromosome 15 open reading frame 51	NR003260	2.36	0.003680433
CTGLF1 : centaurin, gamma-like family, member 1	NM_133446	2.35	0.031666883
SNORD75 : small nucleolar RNA, C/D box 75	NR_003941	2.35	0.012471427
SCML1 : sex comb on midleg-like 1 (Drosophila)	NM_001037540	2.35	0.01599555
TYWIB: tRNA-yW synthesizing protein 1 homolog B	BC068520	2.35	0.026615484
MGC9913 : hypothetical protein MGC9913	BC008651	2.35	0.004951854
SLC22A4: solute carrier family 22, member 4	NM_003059	2.35	0.021487551
TBC1D3H : TBC1 domain family, member 3H	NM_001 123390	2.34	0.018398902
HKR1 : GLI-Kruppel family member HKR1	- NM_181786	2.34	0.001351 111
GCC1: GRIP and coiled-coil domain containing 1	NM JD24523	2.34	0.043089449
LMCD1: LIM and cysteine-rich domains 1	NM_014583	2.34	0.017154824
DNAL4: dynein, axonemal, light chain 4	NM_005740	2.34	0.036540012
ASXL1: additional sex combs like 1 (Drosophila)	NM_015338	2.34	0.021137736
RBM4: RNA binding motif protein 4	NM_002896	2.34	0.00685358
ZFP2: zinc finger protein 2 homolog (mouse)	NM_030613	2.34	0.027334262
TOM1 : target of mybl (chicken)	NM_005488	2.33	0.010051619
STBD1 : starch binding domain 1	NM_003943	2.33	0.0273 185
GTF2H1: general transcription factor IIH, polypeptide 1,	.=		
62kDa	NM_0053 16	2.32	0.016760443
STX6: syntaxin 6	NM_005819	2.32	0.004825 179
HOXA7: homeobox A7	NM006896	2.32	0.040591 193
ZNF536 : zinc finger protein 536	NM_014717	2.32	0.014519843
FU45055: 60S ribosomal pseudogene	NR_003572	2.32	0.02278277
GPATCH8: G patch domain containing 8	NM_001002909	2.31	0.049195 173
FAM122A: family with sequence similarity 122A	NM. 138333	2.3 1	0.014751406
TMEM38B: transmembrane protein 38B	NM_0181 12	2.31	0.033460216
ORAOV1: oral cancer overexpressed 1	NM_15345 1	2.31	0.003921467
ETV3: ets variant gene 3	NM_005240	2.31	0.01 1561 176
C5orf32 : chromosome 5 open reading frame 32	NM_032412	2.3 1	0.01562417
TET2: tet oncogene family member 2	NM_017628	2.31	0.016009216
ZNF623 : zinc finger protein 623	NM_014789	2.3	0.002635741
ZNF841 : zinc finger protein 841	ENST00000389534	2.3	0.031050605
LOC390345 : similar to ribosomal protein L10 MTHFR: 5,10-methylenetetrahydrofolate reductase	XR_038919	2.3	0.042624979
(NADPH)	NM_005957	2.3	0.027666267
FAM107B: family with sequence similarity 107, member B	BC072452	2.3	0.035505938
TOB1 : transducer of ERBB2, 1	NM_005749	2.3	0.000638521
TBC1 D3H : TBC1 domain family, member 3H	NM_001 123390	2.29	0.019105827
TNFRSF10D	NM_003840	2.29	0.032854214
TBPL1 : TBP-like 1	NM_004865	2.29	0.02543063

- 99 -

SLC3A2: solute carrier family 3, member 2	NM_001012661	2.29	0.035914016
C2orf44: chromosome 2 open reading frame 44	BC035698	2.29	0.001060836
EFNB2: ephrin-B2	NM_004093	2.29	0.037832677
ZNF620: zinc finger protein 620	NM_175888	2.29	0.019178544
CTNS : cystinosis, nephropathic	NM_004937	2.28	0.041 128076
PEX12: peroxisomal biogenesis factor 12	NM_000286	2.28	0.029545005
UTP3: UTP3, small subunit (SSU) processome component,	NM 020269	2.28	0.008952567
homolog	NM_020368	2.28	0.000597071
ZNF480: zinc finger protein 480	NM144684		
NSAP11: nervous system abundant protein 11	AY176665	2.28	0.047460746
PRRX2: paired related homeobox 2	NM_016307	2.28	0.009883097
NCK1: NCK adaptor protein 1	NM_006153	2.28	0.003976377
SNORD13: small nucleolar RNA, C/D box 13	NR_003041	2.28	0.00715273
SLC7A2: solute carrier family 7, member 2	NM003046	2.28	0.036939634
ZNF221 : zinc finger protein 221	NM013359	2.28	0.01463236
JUB: jub, ajuba homolog (Xenopus laevis)	NM_032876	2.28	0.012182893
DNAJB2: DnaJ (Hsp40) homolog, subfamily B, member 2	NM_006736	2.27	0.001863914
CTGLF1 : centaurin, gamma-like family, member 1	NM. 133446	2.27	0.034047944
CD163L1 : CD163 molecule-like 1	NM_174941	2.27	0.034502847
SELPLG : selectin P ligand	NM_003006	2.27	0.015033026
IL10RA: interleukin 10 receptor, alpha	NM001558	2.27	0.018951415
CTTNBP2NL: CTTNBP2 N-terminal like	NM018704	2.27	0.000446979
LST1 : leukocyte specific transcript 1	NM007161	2.27	0.045494412
LST1 : leukocyte specific transcript 1	NM007161	2.27	0.045494412
LST1 : leukocyte specific transcript 1	NM_007161	2.27	0.045494412
TBC1 D3B: TBC1 domain family, member 3B	NM_001001417	2.26	0.026085055
PIK3CD: phosphoinositide-3-kinase, catalytic, delta polypeptide	NM_005026	2.26	0.030888266
ZNF420: zinc finger protein 420	NM144689	2.26	0.020865305
NEU 1: sialidase 1 (lysosomal sialidase)	NM000434	2.26	0.04598836
NEU 1: sialidase 1 (lysosomal sialidase)	NM000434	2.26	0.04598836
CCDC51 : coiled-coil domain containing 51		2.20	0.024648852
MAD2L1BP: MAD2L1 binding protein	NM_024661	2.26	0.008340 159
NDFIP2: Nedd4 family interacting protein 2	NM_ 014628 NM019080	2.20	0.049184707
ITGB7: integrin, beta 7	NM000889	2.20	0.023533 165
ZNF419: zinc finger protein 419	NM. 001098491	2.26	0.025633549
ARL8B : ADP-ribosylation factor-like 8B TBC1 D3G : TBC1 domain family, member 3G	NM_018184	2.26	0.010645741 0.02210521 1
	NM_001040282	2.25 2.25	
TBC1D3G : TBC1 domain family, member 3G	NM_001040282		0.020994337
TBC1D3G : TBC1 domain family, member 3G	NM_001040282	2.25	0.021690 129
TBC1D3B : TBC1 domain family, member 3B	NM_001001417	2.25	0.025275374
RIOK3 : RIO kinase 3 (yeast)	NM_003831	2.25	0.000909778
NEK6: NIMA (never in mitosis gene a)-related kinase 6	NM_014397	2.25	0.04721321 1
OVGPI : oviductal glycoprotein 1, 120kDa	NM_002557	2.25	0.04979751 1
TRAPPC6B: trafficking protein particle complex 6B	NM001079537	2.25	0.022724473
LIG4: ligase IV, DNA, ATP-dependent	NM_002312	2.25	0.03833795
RBM7: RNA binding motif protein 7	NM_016090	2.25	0.0173952
MGAM : maltase-glucoamylase (alpha-glucosidase)	NM_004668	2.24	0.049693307
CTGLF1 : centaurin, gamma-like family, member 1	NM_ 133446	2.24	0.024637266
CTGLF1 : centaurin, gamma-like family, member 1	NM_133446	2.24	0.045669873
CTGLFI: centaurin, gamma-like family, member 1	NM _. 133446	2.24	0.045669873

- 100 -

SLC37A2: solute carrier family 37, member 2	NM198277	2.24	0.01 1116625
RLF: rearranged L-myc fusion	NM012421	2.24	0.006274162
SETD4: SET domain containing 4	NM_017438	2.24	0.00606507
OTUD1: OTU domain containing 1	ENST00000376495	2.24	0.039753725
CCRK: cell cycle related kinase	NM_ 178432	2.24	0.023654088
ADNP: activity-dependent neuroprotector homeobox	NM_015339	2.24	0.007766557
PPTC7: PTC7 protein phosphatase homolog (S. cerevisiae)	NM_139283	2.24	0.020090711
PDZK1IP1: PDZK1 interacting protein 1	Nm_005764	2.24	0.049444656
HEXA: hexosaminidase A (alpha polypeptide)	NM000520	2.23	0.043347876
HDX: highly divergent homeobox	N _M 144657	2.23	0.035404 144
BPTF: bromodomain PHD finger transcription factor	NM004459	2.23	0.003086 138
KIAA1324: KIAA1324	NM020775	2.23	0.004572609
C18orf25 : chromosome 18 open reading frame 25	NM_145055	2.23	0.047968856
LOC340274 : similar to argininosuccinate synthase	XR_038613	2.23	0.005252661
ZBTB38: zinc finger and BTB domain containing 38	NM_001080412	2.22	0.014947978
ATXN7L1: ataxin 7-like 1	NM., 020725	2.22	0.047619805
C21orf7: chromosome 21 open reading frame 7	N _{M_} 020152	2.22	0.017864402
ZNF501 : zinc finger protein 501	Nм145044	2.22	0.048426676
NR1D2: nuclear receptor subfamily 1, group D, member 2	N _M _005126	2.22	0.011555262
TRIM69: tripartite motif-containing 69	NM_182985	2.22	0.03831991 1
C7orf60 : chromosome 7 open reading frame 60	NM_152556	2.22	0.02513105
SLC25A30: solute carrier family 25, member 30	NM_001010875	2.22	0.010174334
ZNF28: zinc finger protein 28	NM_006969	2.22	0.014935025
FAM134B: family with sequence similarity 134, member B	NM_001034850	2.22	0.039897781
KRCC1 : lysine-rich coiled-coil 1	NM016618	2.22	0.003277617
ZNF92: zinc finger protein 92	NM_152626	2.22	0.017665 102
SMAD1 : SMAD family member 1	NM005900	2.22	0.028548345
C20orf69: chromosome 20 open reading frame 69	BC1.18988	2.22	0.03057601 1
C20orf69 : chromosome 20 open reading frame 69	BC1 18988	2.22	0.03057601 1
ZNF181 : zinc finger protein 181	NM001029997	2.22	0.010848955
PSTPIP2: proline-serine-threonine phosphatase interacting	001100		
protein 2	NM024430	2.21	0.0302101 17
CTGLF4: centaurin, gamma-like family, member 4	NM_001077685	2.21	0.016193644
SLC41A2: solute carrier family 41, member 2	NM032148	2.21	0.046639512
ALS2: amyotrophic lateral sclerosis 2 (juvenile)	NM020919	2.21	0.012239445
COX19: COX19 cytochrome c oxidase assembly homolog MX1: myxovirus resistance 1, interferon-inducible protein	NM_001031617	2.21	0.023602673
p78	NM_002462	2.21	0.038327571
ZSWIM3: zinc finger, SWIM-type containing 3	NM_080752	2.21	0.024883066
ZNF224: zinc finger protein 224	NM_013398	2.21	0.045075848
MEDIO: mediator complex subunit 10	NM. 032286	2.21	0.03087391
C2orf63 : chromosome 2 open reading frame 63 OR6B2: olfactory receptor, family 6, subfamily B, member	BC029502	2.21	0.03 1644455
	NM_001005853	2.21	0.028090634
DPF2: D4, zinc and double PHD fingers family 2	NM_006268	2.2	0.039801091
PER2: period homolog 2 (Drosophila)	NM_022817	2.2	0.017620276
JMJD2C: jumonji domain containing 2C	NM_015061	2.2	0.035196174
SMAD7 : SMAD family member 7	NM_005904	2.2	0.014465278
RSRC2: arginine/serine-rich coiled-coil 2	NM_198261	2.2	0.020724974
ARID5B : AT rich interactive domain 5B (MRFI-like)	NM_032199	2.2	0.022529909
FAS: Fas (TNF receptor superfamily, member 6)	NM_000043	2.2	0.03997575
HS1BP3: HCLS1 binding protein 3	NM_022460	2.2	0.000291817

- 101 -

BMP2: bone morphogenetic protein 2	NM_001200	2.2	0.014071022
ZNF192: zinc finger protein 192	NM_006298	2.2	0.016789869
ZNF121 : zinc finger protein 121	NM_001008727	2.2	0.02359942
ZNF239: zinc finger protein 239	NM_001099282	2.2	0.034555339
ZMYM5: zinc finger, MYM-type 5	NM_001039650	2.2	0.040914708
MAP1LC3B: microtubule-associated protein 1 light chain 3 beta	NM_022818	2.2	0.016732214
TBC1 D3C: TBC1 domain family, member 3C	NM_001001418	2.19	0.04067972
MCLI : myeloid cell leukemia sequence 1 (BCL2-related)	NM_021960	2.19	0.032247408
MAP3K7IP3	NM_ 152787	2.19	0.007328014
MGA: MAX gene associated	NM_001080541	2.19	0.028145 166
MUL1: mitochondrial ubiquitin ligase activator of NFKB 1	NM_024544	2.19	0.004891 512
SNORD13: small nucleolar RNA, C/D box 13	NR_003041	2.19	0.048733597
TMEM 128: transmembrane protein 128	NM_ 032927	2.19	0.032434558
C14orfl29 : chromosome 14 open reading frame 129	NM_016472	2.19	0.039150478
CCDC144A: coiled-coil domain containing 144A STARD4: StAR-related lipid transfer (START) domain	ENST00000360524	2.19	0.029937793
containing 4	NM_139164	2.18	0.021618636
CD72: CD72 molecule	NM_001782	2.18	0.023664087
HOXD10: homeobox D10	NM_002148	2.18	0.026435972
ARMCX1: armadillo repeat containing, X-linked 1	NM016608	2.18	0.000866529
RRAGB: Ras-related GTP binding B	NM_016656	2.18	0.013958936
ADO: 2-aminoethanethiol (cysteamine) dioxygenase	NM_032804	2.18	0.021697317
ZNF585B: zinc finger protein 585B	NM_ 152279	2.18	0.036987573
ZNF619: zinc finger protein 619 IFIT5 : interferon-induced protein with tetratricopeptide	NM173656	2.18	0.010762508
repeats 5	NM_ 012420	2.18	0.007245 129
NOTUM: notum pectinacetylesterase homolog (Drosophila)	NM_ 178493	2.18	0.004649605
CTGLF3: centaurin, gamma-like family, member 3	NM_001077665	2.17	0.018892256
ZNF251 : zinc finger protein 251	NM138367	2.17	0.028050344
LPCAT2: lysophosphatidylcholine acyltransferase 2	NM017839	2.17	0.028812728
PARP8: poly (ADP-ribose) polymerase family, member 8	NM024615	2.17	0.044362 176
PHYH : phytanoyl-CoA 2-hydroxylase	NM. 006214	2.17	0.025207 118
ZNF354B : zinc finger protein 354B ZIC5 : Zic family member 5 (odd-paired homolog,	NM058230	2.17	0.024703702
Drosophila)	NM_033132	2.17	0.039267855
ZNF233 : zinc finger protein 233	NM181756	2.17	0.003416201
ATP6V1C1: ATPase, H+ transporting, VI subunit CI ORAI3: ORAI calcium release-activated calcium modulator 3	NM_001695	2.16 2.16	0.003044379
CDC42EP1 : CDC42 effector protein (Rho GTPase binding)	NM_152288 NM152243	2.10	0.033747645
GATA1: GATA binding protein 1	NM_002049	2.16	0.016845318
NAP1L5: nucleosome assembly protein 1-1 ike 5	NM_153757	2.15	0.031790582
ATP6V1G2: ATPase, H+ transporting, VI subunit G2	NM_130463	2.15	0.03127474
ATP6V1G2: ATPase, H+ transporting VI subunit G2	NM_130463	2.15	0.03127474
GOSRI : golgi SNAP receptor complex member 1	NM_004871	2.15	0.005559571
SNF1LK: SNF1-like kinase	NM_173354	2.15	0.019366348
ASTE1 : asteroid homolog 1 (Drosophila)	NM_014065		
ANKRD46: ankyrin repeat domain 46	NM_198401	2.15 2.15	0.043087988 0.03379939
CCDC148 : coiled-coil domain containing 148	NM_138803	2.15	0.041727796
COQIOB: coenzyme Q10 homolog B (S. cerevisiae)		2.15	
TANK: TRAF family member-associated NFKB activator	NM_025147 NM_004180	2.15	0.046223599 0.00508654 1
TARKA TRAFTICALITY METHOEF associated INFILD activator	11WI_00+100	2.10	0.000000004 1

ē

 $\overline{\psi}$

- 102 -

CDKN2B: cyclin-dependent kinase inhibitor 2B	NM_078487	2.15	0.008524239
CCL5: chemokine (C-C motif) ligand 5	NM_002985	2.15	0.04756298
LRRC37A3: leucine rich repeat containing 37, member A3	NM_199340	2.14	0.024261 194
ZNF813: zinc finger protein 813	NM. 001004301	2.14	0.023677455
NNMT: nicotinamide N-methyltransferase	NM_006169	2.14	0.000120561
TMEM41B: transmembrane protein 41B	NM_015012	2.14	0.020786008
LOC730167: similar to protein tyrosine phosphatase 4al	XM_001 134097	2.14	0.002386482
DNHD1L: dynein heavy chain domain 1-like	BX647806	2.13	0.03556971 1
SLC13A3 : solute carrier family 13, member 3	NM_022829	2.13	0.013962044
SDC4: syndecan 4	Nm. 002999	2.13	0.045813427
MAP3K7IP2	NM_015093	2.13	0.026103685
FU14154: hypothetical protein FU 14 154	NM_001083601	2.13	0.033533374
GYG1 : glycogenin 1	NM004130	2.13	0.023828816
ZNF238 : zinc finger protein 238	NM_205768	2.13	0.005256296
IFI27: interferon, alpha-inducible protein 27	NM_005532	2.13	0.014975 16
FEM1A: fem- 1 homolog a (C. elegans) GDAP1 : ganglioside-induced differentiation-associated	NM_018708	2.13	0.003906337
protein 1	NM_018972	2.13	0.013787569
HIST1H4E: histone cluster 1, H4e	NM003545	2.13	0.025603216
KIAA1409: KIAA1409	NM_020818	2.12	0.018757701
KIAA0247: KIAA0247	BC064697	2.12	0.001 185912
ZNF518A: zinc finger protein 518A	NM014803	2.12	0.027629382
TSPYL5 : TSPY-like 5	NM033512	2.12	0.037264815
CDOI : cysteine dioxygenase, type I	NM_ 001801	2.12	0.017153519
WDR21B: WD repeat domain 21B	NM_ 001029955	2.12	0.039107031
INTS2: integrator complex subunit 2	NM_020748	2.12	0.036658921
TUTI : terminal uridylyl transferase 1, U6 snRNA-specific	NM_022830	2.12	0.014963223
BTN2A2: butyrophilin, subfamily 2, member A2	NM_006995	2.12	0.005036616
CAB39L: calcium binding protein 39-like	NM_030925	2.12	0.01 1095613
CCNT2: cyclin T2	NM_ 058241	2.12	0.038540901
UBQLN2: ubiquilin 2	NM 013444	2.11	0.009233484
ZNF574: zinc finger protein 574	NM_ 022752	2.11	0.000888 1
ME1: malic enzyme 1, NADP(+)-dependent, cytosolic	NM.002395	2.11	0.041806037
PHF21A: PHD finger protein 21A	NM_ 001 101802	2.11	0.013287312
HSPB7: heat shock 27kDa protein family, member 7	NM 014424	2.11	0.004007825
DGKI : diacylglycerol kinase, iota	NM 004717	2.11	0.022471 174
SLC26A4: solute carrier family 26, member 4	NM_000441	2.11	0.018006048
CI lorfl : chromosome 11 open reading frame 1	NM_022761	2.11	0.016972505
CLTB: clathrin, light chain (Lcb)	NM 007097	2.1	0.017606998
SNX30: sorting nexin family member 30	NM_001012994	2.1	0.009028901
RASAL2: RAS protein activator like 2	NM_170692	2.1	0.032913922
ZNF528: zinc finger protein 528	NM_ 032423	2.1	0.01514421 1
SETD2: SET domain containing 2	NM_ 014159	2.1	0.003015
KIAA1737: KIAA1737	NM.033426	2.1	0.046843473
CCDC147: coiled-coil domain containing 147	NM_001008723	2.1	0.027452863
C13orf26 : chromosome 13 open reading frame 26	BC030277	2.1	0.012053578
LYST: lysosomal trafficking regulator	NM_000081	2.1	0.001932627
SYNGAP1: synaptic Ras GTPase activating protein 1			0.0005.000-
homolog (rat)	NM_006772	2.09	0.038516095
SMURF1 : SMAD specific E3 ubiquitin protein ligase 1	NM_020429	2.09	0.01583433
SNAI2: snail homolog 2 (Drosophila)	NM. 003068	2.09	0.031992728

ı,

- 103 -

LPXN : leupaxin	NM_00481 1	2.09	0.012244082
C14orf43: chromosome 14 open reading frame 43	NM_194278	2.09	0.025129764
FHL3: four and a half LIM domains 3	NM_004468	2.09	0.004003009
KIAA1826: KIAA1826	NM_032424	2.09	0.017918025
RAG1AP1: recombination activating gene 1 activating	NM_ 018845	2.09	0.033113001
protein 1	AK057372	2.09	0.017284005
FU32810: hypothetical protein FU32810 NUPR1: nuclear protein 1	NM_001042483	2.09	0.02839574
MIS12: MIS12, MIND kinetochore complex component,		2.00	0.02000014
homolog	NM_024039	2.09	0.012018086
GBA: glucosidase, beta; acid (includes glucosylceramidase)	NM. 000157	2.09	0.021341 145
ZNF286A: zinc finger protein 286A	NM_020652	2.09	0.033090461
KIAA1622: KIAA1622	NM 058237	2.09	0.034493561
LGALS3 : lectin, galactoside-binding, soluble, 3	NR_003225	2.09	0.043341 144
PFKFB3 : 6-phosphofructo-2-kinase/fructose-2,6-			
biphosphatase 3	NM_004566	2.08	0.005983533
CREBBP: CREB binding protein	NM_004380	2.08	0.023457708
TBC1D3H: TBC1 domain family, member 3H	NM_001 123390	2.08	0.044038074
ABL2: v-abl Abelson murine leukemia viral oncogene homolog 2	NM_ 007314	2.08	0.017354752
FSIP1 : fibrous sheath interacting protein 1	NM152597	2.08	0.046622678
JHDM1D: jumonji C domain containing histone			
demethylase 1 D	NM_030647	2.08	0.019417968
MBD5: methyl-CpG binding domain protein 5	NM018328	2.08	0.019912489
C17orf95: chromosome 17 open reading frame 95	NM_001080510	2.08	0.036838072
H3F3B: H3 histone, family 3B (H3.3B)	NM. 005324	2.08	0.017194 172
REEP1: receptor accessory protein 1	NM_022912	2.08	0.045471019
ZNF227 : zinc finger protein 227	NM_ 182490	2.08	0.012551021
ASB14: ankyrin repeat and SOCS box-containing 14	ENST00000295941	2.08	0.008490 195
C2orf59: chromosome 2 open reading frame 59 PLEKHM2: pleckstrin homology domain containing, family	BC010491	2.07	0.048784335
M 2	NM_015164	2.07	0.0375 16 178
SDSL: serine dehydratase-like	NM_138432	2.07	0.021 177937
TAF9: TAF9 RNA polymerase II	NM003187	2.07	0.026345397
PIM 1: pim-1 oncogene	NM002648	2.07	0.017505238
PATL2: protein associated with topoisomerase II homolog	DC000004	0.07	0.01000000
2 C10orfl04 : chromosome 10 open reading from 104	BC036924	2.07	0.019639638
C10orfl04 : chromosome 10 open reading frame 104	NM_173473	2.07	0.012142364
UCN2: urocortin 2 MEF2D: myocyte enhancer factor 2D	NM_033199	2.07 2.07	0.01472791 0.032650793
LCORL: ligand dependent nuclear receptor corepressor-like	NM_005920	2.07	0.010692901
SLC38A4 : solute carrier family 38, member 4	NM_153686 NM 018018	2.07	0.013012561
ANAPC10: anaphase promoting complex subunit 10	NM_014885	2.07	0.039092323
PTPRR: protein tyrosine phosphatase, receptor type, R	NM_002849	2.07	0.010793823
ZC3H 11A: zinc finger CCCH-type containing 11A	BC046137	2.06	0.044450532
BAX: BCL2-associated X protein	NM_138764	2.06	0.025908071
TNFRSF12A: tumor necrosis factor receptor superfamily 12A		2.06	0.029216252
MAMLD1 : mastermind-like domain containing 1	NM_016639	2.06	0.038720553
-	NM_005491		
USP18: ubiquitin specific peptidase 18 LSM1: LSM1 homolog, U6 small nuclear RNA associated	AF176642	2.06 2.06	0.012737812 0.039256077
	NM_014462		
ELF1: E74-like factor 1 (ets domain transcription factor) ZNF415: zinc finger protein 415	NM172373	2.06 2.06	0.002736754 0.03 1553695
	NM_018355	2.00	0.00 1000090
ZNF81: zinc finger protein 81	NM_007137	2.06	0.006271227

. . . .

- 104 -

	ARHGAP23: Rho GTPase activating protein 23	ENST00000300901	2.06	0.011222879
	UFM1 : ubiquitin-fold modifier 1	NM016617	2.06	0.010530218
	IHPK2: inositol hexaphosphate kinase 2	NM_016291	2.06	0.029266685
	MRRF: mitochondrial ribosome recycling factor	NM138777	2.06	0.023139286
	ARHGAP5: Rho GTPase activating protein 5	NM001030055	2.06	0.02570968
	RPP38: ribonuclease P/MRP 38kDa subunit	NM183005	2.06	0.021854645
	ZNF737: zinc finger protein 737	XR_042310	2.06	0.028392291
	ATAD2B: ATPase family, AAA domain containing 2B	NM017552	2.05	0.014574295
	SLFN5: schlafen family member 5	NM144975	2.05	0.006684029
	ZFP106: zinc finger protein 106 homolog (mouse)	NM_022473	2.05	0.01549153
	CLCN7: chloride channel 7	NM_001287	2.05	0.00787186
	USP36: ubiquitin specific peptidase 36	NM_025090	2.05	0.0120978
	TAF13: TAF13 RNA polymerase II	NM_ 005645	2.05	0.01541 1463
	MCC: mutated in colorectal cancers	NM_001085377	2.05	0.010015918
	SLC36A1 : solute carrier family 36, member 1 ITPRIP: inositol 1,4,5-triphosphate receptor interacting	NM_078483	2.05	0.037843932
	protein	NM_033397	2.05	0.009383002
	TAF9: TAF9 RNA polymerase II	NM_ 003187	2.05	0.028770 138
	STYXLI : serine/threonine/tyrosine interacting-like 1	NM_016086	2.05	0.020194897
	NKX3-1 : NK3 homeobox 1	NM_006167	2.05	2.42E-05
	WDR78: WD repeat domain 78	NM_024763	2.05	0.009053537
	LOC440093 : histone H3-like	NM_ 001013699	2.05	0.023051881
	C21orf34 : chromosome 21 open reading frame 34	NM_001005732	2.05	0.007370088
	MTUSI : mitochondrial tumor suppressor 1	NM_001001924	2.05	0.013708432
	PELO: pelota homolog (Drosophila)	NM_0 15946	2.04	0.00777595
	IKZF2: IKAROS family zinc finger 2 (Helios)	NM_016260	2.04	0.044649477
	ZNF268: zinc finger protein 268 CSTF2T: cleavage stimulation factor, 3' pre-RIMA, subunit	NM_003415	2.04	0.035073367
	2	NM_015235	2.04	0.032105 107
	LOC349196 : hypothetical LOC349196	BC093747	2.04	0.001722355
	CLIP4: CAP-GLY domain containing linker protein family 4	NM_024692	2.04	0.031769127
	NHLRC1 : NHL repeat containing 1	NM_ 198586	2.04	0.034828 117
	ZNF764 : zinc finger protein 764	NM_033410	2.04	0.030932324
	Clorfl29: chromosome 1 open reading frame 129	NM. 025063	2.04	0.02969779
	WTAP: Wilms tumor 1 associated protein	NM_ 152857	2.03	0.027683281
	C2CD3: C2 calcium-dependent domain containing 3	NM_ 015531	2.03	0.013489428
-	HLA-B: major histocompatibility complex, class I, B	NM_ 005514	2.03	0.041877044
	HMG20A: high-mobility group 20A	NM_ 018200	2.03	0.031 159656
	OPN3: opsin 3	NM. 014322	2.03	0.013455
	ZNF711: zinc finger protein 711	NM_ 021998	2.03	0.012443614
	NOX4: NADPH oxidase 4	NM_01693 1	2.03	0.043475629
	ZNF184: zinc finger protein 184	NM_ 007 149	2.03	0.003981 512
	IFI6: interferon, alpha-inducible protein 6	NM_ 002038	2.03	0.0038703
	DAZAP2: DAZ associated protein 2	NM_ 014764	2.02	0.000783543
	LOC100132426: similar to hCG1742442	ENST00000377415	2.02	0.022409773
	PPM2C: protein phosphatase 2C	NM_ 018444	2.02	0.041825476
	NPIP: nuclear pore complex interacting protein	AK294177	2.02	0.008576323
	TRAF3 : TNF receptor-associated factor 3	NM_ 145725	2.02	0.024933609
	KIAA1975 : KIAA1975 protein similar to MRIP2 CDC42EP3 : CDC42 effector protein (Rho GTPase binding)	NM_ 133447	2.02	0.00543 1778
	3	NM_006449	2.02	0.018466992
	LOC349196: hypothetical LOC349196	BC093747	2.02	0.004045 14

- 105 -

LOC349196: hypothetical LOC349196	BC093747	2.02	0.00404514
LOC349196: hypothetical LOC349196	BC093747	2.02	0.004045 14
LOC349196: hypothetical LOC349196	AK090418	2.02	0.00404514
AMOTL2: angiomotin like 2	NM_016201	2.02	0.007030751
CELSR3: cadherin, EGF LAG seven-pass G-type receptor 3	NM_001407	2.02	0.044323431
TLR1: toll-like receptor 1	NM_003263	2.02	0.019328967
GNA13: guanine nucleotide binding protein (G protein),		2.02	0.000000650
alpha 13	NM_006572		0.000922653
ANKRD12: ankyrin repeat domain 12	NM_015208	2.02	0.017191634
C19orf54: chromosome 19 open reading frame 54	NM_198476	2.02	0.001 180486
SYTL2: synaptotagmin-like 2 TERF2IP: telomeric repeat binding factor 2, interacting	NM_206927	2.02	0.017931379
protein	NM_018975	2.02	0.01 1559857
CCDC93 : coiled-coil domain containing 93	NM_019044	2.01	0.043888648
NPIP: nuclear pore complex interacting protein	AK294177	2.01	0.018744462
MST131 : MSTP131	AF176921	2.01	0.030853785
KPNA5: karyopherin alpha 5 (importin alpha 6)	NM_002269	2.01	0.017091 137
ACTC1 : actin, alpha, cardiac muscle 1	NM_005159	2.01	0.034275937
CLCN4: chloride channel 4	NM_001830	2.01	0.023253416
SOCS4: suppressor of cytokine signaling 4	NM_199421	2.01	0.024790224
PDPK1 : 3-phosphoinositide dependent protein kinase-1	AK293900	2.01	0.029054845
FU33996: hypothetical protein FU33996	AK091315	2.01	0.015558373
RNF1 13A: ring finger protein 113A	NM_006978	2.01	0.041655818
SCG5 : secretogranin V (7B2 protein)	NM_003020	2.01	0.031769366
FU46481 : FLJ46481 protein	 BX648674	2.01	0.033589672
LRRC37A2: leucine rich repeat containing 37, member A2	NM_001006607	2	0.009852389
NPIP: nuclear pore complex interacting protein	AK294177	2	0.018766553
FNIP2: folliculin interacting protein 2	NM_020840	2	0.007031707
WARS2: tryptophanyl tRNA synthetase 2, mitochondrial	NM_201263	2	0.0065903 14
RARA: retinoic acid receptor, alpha	NM_000964	2	0.044455247
CYB5D1 : cytochrome b5 domain containing 1	NM_144607	2	0.019193343
LOC349196 : hypothetical LOC349196	BC093747	2	0.002961001
LOC349196 : hypothetical LOC349196	BC093747	2	0.002961001
LOC349196 : hypothetical LOC349196	BC093747	2	0.002961001
LOC349196: hypothetical LOC349196	BC093747	2	0.002961001
LOC349196: hypothetical LOC349196	BC093747	2	0.002961001
LOC349196 : hypothetical LOC349196	BC093747	2	0.018057046
LOC349196 : hypothetical LOC349196	BC093747	2	0.018057046
GPRASP2: G protein-coupled receptor associated sorting		-	0.010001010
protein 2	IMM_001004051	2	0.038898801
ASAH2B: N-acylsphingosine amidohydrolase 2B	NM_001079516	2	0.028160 166
LOC100132346: similar to chaperonin 10	ENST00000406997	-2	0.036218222
LIG3: ligase III, DNA, ATP-dependent	NM_013975	-2	0.019468221
TSGA14 : testis specific, 14	NM_018718	-2	0.023783473
HK2: hexokinase 2	NM_000189	-2	0.018617371
IFNE1 : interferon epsilon 1	NM_176891	-2	0.023047364
GTF2H2: general transcription factor IIH, polypeptide 2, 44kDa	NM_001515	-2	0.00501888
GTF2H2: general transcription factor IIH, polypeptide 2,		-2	0.00001000
44kDa	NM_001515	-2	0.00501888
IARS2: isoleucyl-tRNA synthetase 2, mitochondrial	NM_018060	-2	0.048624055
GTF2H2: general transcription factor IIH, polypeptide 2, 44kDa	NM 0015 15	-2	0.016680024
דדועם	NM_0015 15	-2	0.016689034

PARP4: poly (ADP-ribose) polymerase family, member 4	NM_006437	-2	0.016709063
TSEN2: tRNA splicing endonuclease 2 homolog (S. cerevisiae)	NM025265	-2	0.021904432
STAU1: staufen, RNA binding protein, homolog 1 (Drosophila)	NM_017453	-2	0.012233514
PTGIS : prostaglandin 12 (prostacyclin) synthase	NM_000961	-2	0.009340794
GLMN: glomulin, FKBP associated protein	NM_053274	-2.01	0.000904803
L3MBTL2: I(3)mbt-like 2 (Drosophila)	NM_031488	-2.01	0.046291942
CI lorf41 : chromosome 11 open reading frame 41	NM_012194	-2.01	0.024004377
TM9SF2: transmembrane 9 superfamily member 2	NM_004800	-2.01	0.03461 1134
CDC5L: CDC5 cell division cycle 5-like (S. pombe)	NM. 001253	-2.01	0.047044599
TMEM43: transmembrane protein 43 GTF2H2: general transcription factor IIH, polypeptide 2,	NM_024334	-2.01	0.015609961
44kDa	NM_001515	-2.02	0.0164367
ZMYND8 : zinc finger, MYN D-type containing 8	NM_183047	-2.02	0.042595975
STYX: serine/threonine/tyrosine interacting protein	NM_145251	-2.02	0.003486382
PREP: prolyl endopeptidase	NM_002726	-2.02	0.003735308
KIF5B: kinesin family member 5B	NM_004521	-2.02	0.008786634
HNRNPAI : heterogeneous nuclear ribonucleoprotein AI	NM_002136	-2.02	0.044102459
MPHOSPH 10: M-phase phosphoprotein 10	NM_005791	-2.03	0.001073063
GPC4: glypican 4	NM_001448	-2.03	0.017908818
BLMH : bleomycin hydrolase	NM000386	-2.03	0.034451555
CUL1 : cullin 1	NM_ 003592	-2.03	0.015788274
ZDHHC16 : zinc finger, DHHC-type containing 16 EFTU D2: elongation factor Tu GTP binding domain	NM198046	-2.03	0.021864571
containing 2	NM_004247	-2.03	0.005457825
ANKRD27: ankyrin repeat domain 27 (VPS9 domain)	NM_032139	-2.03	0.046814 11
S100PBP: S100P binding protein TOMM70A: translocase of outer mitochondrial membrane 70 A	NM_022753	-2.04 -2.04	0.038967603 0.042457828
	NM_014820		
CACYBP: calcyclin binding protein	AF057356	-2.04	0.015398044
C5orf33 : chromosome 5 open reading frame 33	NM00108541 1	-2.04	0.015915 104
OSMR: oncostatin M receptor	NM_003999	-2.04	0.029770274
KIAA1731 : KIAA1731	NM_033395	-2.04	0.023303606
FNTB : farnesyltransferase, CAAX box, beta IKBKAP	NM002028 NM003640	-2.04	0.012277081 0.018367629
		-2.04	
NFIA: nuclear factor I/A	NM_005595	-2.04	0.027015538
RBL2 : retinoblastoma-like 2 (pl30) PMPCA: peptidase (mitochondrial processing) alpha	NM_00561 1	-2.05	0.008097525
TOP2B: topoisomerase (DNA) II beta 180kDa	NM_01068	-2.05	0.023 194741 0.025176793
	NM_019045	-2.05	
PDE7B : phosphodiesterase 7B CCDC150: coiled-coil domain containing 150	NM_018945 NM_001080539	-2.05 -2.05	0.016073599 0.032422147
RBM27 : RNA binding motif protein 27	NM_018989	-2.05	0.015492 116
ZW10 : ZW10, kinetochore associated, homolog	NM_010303	2.00	0.013432 110
(Drosophila)	NM_004724	-2.05	0.034641085
KIAA0368: KIAA0368	NM_001080398	-2.05	0.038416772
MSH6: mutS homolog 6 (E. coli)	NM_ 000179	-2.06	0.004560972
TMEM165 : transmembrane protein 165	NM. 018475	-2.06	0.0109816
LMNA: lamin A/C	NM_ 170707	-2.06	0.012229609
PRRC1 : proline-rich coiled-coil 1	NM. 130809	-2.06	0.014723547
TIMP3: TIMP metallopeptidase inhibitor 3	NM. 000362	-2.06	0.014243521
CALM3 : calmodulin 3 (phosphorylase kinase, delta)	NM_005184	-2.06	0.017798429
SLC6A6: solute carrier family 6, member 6	NM_ 003043	-2.06	0.029416714

.

ANG : angiogenin, ribonuclease, RNase A family, 5 DDX3X: DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-	NM_001 145	-2.07	0.031659956
linked	NM_001356	-2.07	0.018648257
IPOI I : importin 11	NM_016338	-2.07	0.046726189
NT5DC2: 5'-nucleotidase domain containing 2	NM_022908	-2.07	0.015906693
ERLIN1: ER lipid raft associated 1	NM. 001 100626	-2.07	0.032025552
ACTN 1: actinin, alpha 1	NM_001102	-2.07	0.015796693
MED17: mediator complex subunit 17	NM_004268	-2.08	0.035601634
DNAJC3: DnaJ (Hsp40) homolog, subfamily C, member 3	NM 006260	-2.08	0.040071418
FUBP1: far upstream element (FUSE) binding protein 1	NM_003902	-2.08	0.029194926
NIF3L1: NIF3 NGGI interacting factor 3-like 1 (S. pombe)	NM_021824	-2.08	0.01 1290041
DHX32: DEAH (Asp-Glu-Ala-His) box polypeptide 32	NM_018180	-2.08	0.0051035
C12orf30: chromosome 12 open reading frame 30	NM_024953	-2.08	0.01 1766507
PIK3R4: phosphoinositide-3-kinase, regulatory subunit 4	NM_014602	-2.08	0.033192538
SHMT1 : serine hydroxymethyltransferase 1 (soluble)	NM_004169	-2.08	0.039180734
KDELC2: KDEL (Lys-Asp-Glu-Leu) containing 2	NM_153705	-2.08	0.026607427
GEMIN4: gem (nuclear organelle) associated protein 4	NM_015721	-2.08	0.044060858
ANAPC1: anaphase promoting complex subunit 1	NM022662	-2.09	0.00878527
AHSA1: AHA1, activator of heat shock protein ATPase			
homolog 1	NM_0121 11	-2.09	0.048624495
LTVI : LTVI homolog (S. cerevisiae)	NM032860	-2.09	0.035839743
RPN 1: ribophorin I	NM_002950	-2.09	0.010225 198
DNM1L: dynamin 1-like	NM_012062	-2.09	0.021264183
QSER1: glutamine and serine rich 1	NM_001076786	-2.09	0.010855414
ACOT9: acyl-CoA thioesterase 9	NM_001037 171	-2.09	0.004075826
ALG9: asparagine-linked glycosylation 9 homolog	NM_024740	-2. 1	0.032419674
RNASEH2A: ribonuclease H2, subunit A	NM006397	-2. 1	0.013461634
BLID: BH3-like motif containing, cell death inducer	NM_001001786	-2. 1	0.022670321
EVI5: ecotropic viral integration site 5	NM_005665	-2.1	0.029659916
NPAT: nuclear protein, ataxia-telangiectasia locus	NM_002519	-2. 1	0.012722 141
KIAA1715 : KIAA1715	NM_030650	-2. 1	0.025609372
FAM122B: family with sequence similarity 122B	NM_145284	-2. 1	0.009864435
THAP4: THAP domain containing 4	NM. 015963	-2. 1	0.028339466
THAP4: THAP domain containing 4	NM_015963	-2. 1	0.028339466
DLAT: dihydrolipoamide S-acetyltransferase	NM_00193 1	-2. 1	0.000593 124
FBXOII : F-box protein 11	NM_025133	-2.11	0.004285891
SDF2L1 : stromal cell-derived factor 2-like 1	NM_022044	-2.11	0.004808531
CTGF: connective tissue growth factor	NM_001901	-2. 11	0.037445948
FBX03: F-box protein 3	NM 033406	-2.11	0.014945591
AGPAT5: I-acylglycerol-3-phosphate O-acyltransferase 5	NM 018361	-2. 11	0.044938729
RNASEN : ribonuclease type III, nuclear	NM_013235	-2. 11	0.030892885
2ADH2 : zinc binding alcohol dehydrogenase domain	NNA 475007	0.44	0.000040007
containing 2	NM_175907	-2. 11	0.039848207
TUBGCP3: tubulin, gamma complex associated protein 3	NM_006322	-2.12	0.003364525
RELN: reelin	NM_005045	-2. 12	0.0184584
FBL: fibrillarin	NM_001436	-2. 12	0.016591792
PTPRJ: protein tyrosine phosphatase, receptor type, J	NM_002843	-2. 12	0.036435217
TNP03 : transports 3	NM_012470	-2. 12	0.015631 275
PHIP: pleckstrin homology domain interacting protein	NM_017934	-2. 12	0.049366459
HLTF: helicase-like transcription factor	NM_003071	-2. 12	0.034694377
STX2: syntaxin 2	NM 194356	-2. 12	0.024273297
XP04 : exportin 4	NM_022459	-2. 13	0.04488 1898

CLPX: ClpX caseinolytic peptidase X homolog (E. coli)	NM_006660	-2. 13	0.0186105
MBTPSI: membrane-bound transcription factor peptidase, site 1	NM_003791	-2. 13	0.045645561
HNRPA1L-2: heterogeneous nuclear ribonucleoprotein AI		-2. 13	0.048491581
ABCF2: ATP-binding cassette, sub-family F (GCN20), member 2	NM007189	-2. 14	0.008323273
SNX9: sorting nexin 9	NM_016224	-2. 14	0.02029193
POLR1E: polymerase (RNA) I polypeptide E, 53kDa	NM_022490	-2. 14	0.041025013
IP08 : importin 8	NM_006390	-2. 14	0.037105295
POLE: polymerase (DNA directed), epsilon	NM006231	-2. 14	0.037359493
GLUL: glutamate-ammonia ligase (glutamine synthetase)	AY513283	-2. 15	0.032958771
FHODI : formin homology 2 domain containing 1	NM 013241	-2. 15	0.040570594
LAPTM4B: lysosomal protein transmembrane 4 beta	NM_018407	-2. 15	0.030389 137
MCM10: minichromosome maintenance complex	_		
component 10	NM_182751	-2.15	0.044316968
IL1RL1 : interleukin 1 receptor-like 1	NM_016232	-2.15	0.03462345
NPAL3: NIPA-like domain containing 3	NM. 020448	-2.15	0.036362629
ITGA3: integrin, alpha 3	NM_002204	-2. 15	0.014046025
JMJD2A: jumonji domain containing 2A	NM_014663	-2. 15	0.024979543
QARS : glutaminyl-tRNA synthetase DDX1 1: DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide	NM005051	-2. 15	0.026387003
11	NM_ 030653	-2. 15	0.01752887
GEMIN5 : gem (nuclear organelle) associated protein 5	NM .015465	-2. 15	0.029127837
ARSK: arylsulfatase family, member K	NM198150	-2. 16	0.04639001
ANTXR2: anthrax toxin receptor 2	NM 058172	-2. 16	0.025925245
EPS15: epidermal growth factor receptor pathway		0.40	0.045057077
substrate 15	NM_001981	-2.16	0.045957677
NAT10: N-acetyltransferase 10	NM_024662	-2. 16	0.00756751
AHCTF1: AT hook containing transcription factor 1	NM_ 015446	-2. 16	0.009160004
HHIP: hedgehog interacting protein	NM_022475	-2. 17	0.004000885
SLC35C1 : solute carrier family 35, member Cl	NM_015000	-2. 17	0.03775651 1
ENDODI : endonuclease domain containing 1	NM. 015036	-2. 17	0.036021 1
Clorf217 : chromosome 1 open reading frame 217	BC000988	-2. 17 -2. 17	0.019285607
POLDI : polymerase (DNA directed), delta 1	NM_002691	-2. 17 -2. 17	0.035966763 0.004926732
C16orf88 : chromosome 16 open reading frame 88 COBRAI : cofactor of BRCA1	BC1 17562		0.004928732
ANP32A: acidic nuclear phosphoprotein 32 family, member	NM_ 015456	-2. 17	0.001775002
A	ENST00000267918	-2. 18	0.031801866
SNORD4A: small nucleolar RNA, C/D box 4A	NR_000010	-2. 18	0.012684585
ORC6L: origin recognition complex, subunit 6 like (yeast)	NM_014321	-2. 18	0.042147413
PCYOXI: prenylcysteine oxidase 1	NM_016297	-2. 18	0.024513574
DNMT1 : DNA (cytosine-5-)-methyltransferase 1	NM_001379	-2. 18	0.035942748
HIST1H2BI : histone cluster 1, H2bi	NM_003525	-2. 19	0.026472498
TNFRSF1A: tumor necrosis factor receptor, member 1A	NM_001065	-2. 19	0.00120709
DUS1L: dihydrouridine synthase 1-like (S. cerevisiae)	NM_022156	-2. 19	0.003838316
PCDH 18: protocadherin 18	NM_019035	-2. 19	0.014273704
CCDC111: coiled-coil domain containing 111	NM_152683	-2. 19	0.033015758
HIATL1 : hippocampus abundant transcript-like 1	NM_032558	-2. 19	0.001849756
MLH 1: mutL homolog 1, colon cancer, nonpolyposis type 2	NM_000249	-2. 19	0.004129459
TFPI: tissue factor pathway inhibitor ENTPD6: ectonucleoside triphosphate diphosphohydrolase	NM_006287	-2.2	0.021208595
6	NMJ301247	-2.2	0.01 1633209
EIF5B: eukaryotic translation initiation factor 5B	NM_015904	-2.2	0.010190315
HERC4: hect domain and RLD 4	NM_022079	-2.2	0.015934335
	-		

- 109 -

		0.0	0.040050000
RANBPI: RAN binding protein 1 BUB3: BUB3 budding uninhibited by benzimidazoles 3	NM_002882	-2.2	0.040652233
homolog	NM_004725	-2.21	0.024421592
MTA2: metastasis associated 1 family, member 2	NM_004739	-2.21	0.009248302
LETM1 : leucine zipper-EF-hand containing transmembrane	NNA 012219	0.04	0.048765841
protein 1	NM_012318	-2.21 -2.21	-0.034644992
FAM73A: family with sequence similarity 73, member A	BX537792	-2.21	0.047452077
EPHB1: EPH receptor BI	NM_004441		0.0311 14213
AADAC: arylacetamide deacetylase (esterase)	NM_001127258	-2.22 -2.22	0.040575959
PHTF2: putative homeodomain transcription factor 2 ROCK2: Rho-associated, coiled-coil containing protein	NM_001 127358	-2.22	0.040373939
kinase 2	NM_004850	-2.22	0.031094733
IMPDH2: IMP (inosine monophosphate) dehydrogenase 2	NM_000884	-2.22	0.006382837
COL15A1 : collagen, type XV, alpha 1	NM_001855	-2.22	0.012250082
C19orf2: chromosome 19 open reading frame 2	NM_003796	-2.22	0.015069324
SYNCRIP: synaptotagmin cytoplasmic RNA interacting protein	NM_006372	-2.23	0.048845531
HSPD1 : heat shock 60kDa protein 1 (chaperonin)	NM 002156	-2.23	0.042221588
PRKAR2A: protein kinase, cAMP-dependent regulatory II,	NM_002100	2.20	0.042221000
alpha	NM_004157	-2.23	0.005848695
CTPS: CTP synthase	NM001905	-2.23	0.034593254
MTR: 5-methyltetrahydrofolate-homocysteine methyltransferase	NM_ 000254	-2.23	0.039474405
UBE2Q2: ubiquitin-conjugating enzyme E2Q family			
member 2	NM173469	-2.24	0.049485882
IGF2BP3: insulin-like growth factor 2 mRNA binding protein 3	NM_ 006547	-2.24	0.037683742
DIRAS3: DIRAS family, GTP-binding RAS-like 3	NM_004675	-2.24	0.004124908
VLDLR: very low density lipoprotein receptor		-2.24	0.0201 1197
FOXMI : forkhead box MI	NM_ 202002	-2.25	0.001919008
GNB4: guanine nucleotide binding protein, beta	 -		
polypeptide 4 ITGBL1 : integrin, beta-like 1 (with EGF-like repeat	NM_ 021629	-2.25	0.005083936
ITGBL1: integrin, beta-like 1 (with EGF-like repeat domains)	NM_ 004791	-2.25	0.0461 18361
BAP1 : BRCA1 associated protein-1	NM 004656	-2.25	5.21E-05
NFYA: nuclear transcription factor Y, alpha	NM002505	-2.25	0.042939802
NONO: non-POU domain containing, octamer-binding	NM_ 007363	-2.26	0.035472693
NMT2: N-myristoyltransferase 2	NM_004808	-2.26	0.042214394
NCBP1 : nuclear cap binding protein subunit 1, 80kDa	NM_002486	-2.26	0.017686678
THOC3 : THO complex 3	NM_ 032361	-2.26	0.036302901
TRAIP: TRAF interacting protein	NM 005879	-2.26	0.036956667
LOC388796 : hypothetical LOC388796	NR_015366	-2.27	0.040432333
CDK5RAP2: CDK5 regulatory subunit associated protein 2	NM_018249	-2.27	0.002350224
C5orfl3 : chromosome 5 open reading frame 13	NM_004772	-2.27	0.039757237
EDEM3: ER degradation enhancer, mannosidase alpha-like 3	NM 025101	2.27	0.020075 199
DDX11: DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide	NM_025191	-2.27	0.030075 188
11	NM.030653	-2.27	0.018080477
TMEM209 : transmembrane protein 209	NM_032842	-2.27	0.001701594
C14orf94 : chromosome 14 open reading frame 94	BC001916	-2.27	0.021331063
MLKL: mixed lineage kinase domain-like	NM_152649	-2.27	0.009417127
THOC4: THO complex 4	NM.J305782	-2.27	0.022963702
DMC1 : DMC1 dosage suppressor of mckl homolog	NM007068	-2.28	0.009252845
KIAA1333: KIAA1333	NM_017769	-2.28	0.049378957
MRPL16: mitochondrial ribosomal protein L16	NM_017840	-2.28	0.025020015
WWP1: WW domain containing E3 ubiquitin protein ligase	NM 007012	2 20	0 010255622
•	NM_007013	-2.28	0.010255632

- 110 -

JARID2: jumonji, AT rich interactive domain 2	NM_004973	-2.28	0.010619606
AOF2: amine oxidase (flavin containing) domain 2	NM015013	-2.28	0.017536098
LOC644037 : hypothetical LOC644037	XR_038280	-2.29	0.010568809
RPL22L1 : ribosomal protein L22-like 1	NM_001099645	-2.29	0.033350508
DNAJC9: DnaJ (Hsp40) homolog, subfamily C, member 9	NM_015190	-2.29	0.042661 128
SH3BP5L: SH3-binding domain protein 5-like	NM_030645	-2.29	0.010879669
FAR2: fatty acyl CoA reductase 2	NM_018099	-2.29	0.00143799
CAMKK2: calcium/calmodulin-dependent protein kinase kinase 2	NM006549	-2.29	0.01618779
ADAM10: ADAM metallopeptidase domain 10	NM_001 110	-2.29	0.017696884
TUBGCP4: tubulin, gamma complex associated protein 4	NM_014444	-2.29	0.018548192
GOLGA5: golgi autoantigen, golgin subfamily a, 5	NM_0051 13	-2.3	0.044082838
EZH2: enhancer of zeste homolog 2 (Drosophila)	NM_004456	-2.3	0.016344 185
SFXN1 : sideroflexin 1	NM_022754	-2.3	0.00261 1512
TTC14: tetratricopeptide repeat domain 14	NM. 133462	-2.31	0.01 1708715
SMURF2: SMAD specific E3 ubiquitin protein ligase 2	NM022739	-2.31	0.017948626
GALNT5	NM014568	-2.31	0.039047442
GEN 1: Gen homolog 1, endonuclease (Drosophila)	NM_ 182625	-2.31	0.003620547
FU42986: FLJ42986 protein	AK124976	-2.32	0.035510422
THOC3 : THO complex 3	NM032361	-2.33	0.034985013
CCDC138: coiled-coil domain containing 138	NM_144978	-2.33	0.036824721
RAD54B: RAD54 homolog B (S. cerevisiae)	NM_ 012415	-2.34	0.022132969
SNORA29: small nucleolar RNA, H/ACA box 29	NR_002965	-2.34	0.030735 179
NUP133 : nucleoporin 133kDa	NM 018230	-2.34	0.017026 111
CDCA7L: cell division cycle associated 7-like	NM 018719	-2.34	0.036533968
CANT1: calcium activated nucleotidase 1	NM_ 138793	-2.34	0.014074243
CDCA4: cell division cycle associated 4	NM_ 017955	-2.34	0.008500612
NDST2: N-deacetylase/N-sulfotransferase 2	NM_ 003635	-2.34	0.02650435
NCALD: neurocalcin delta	NM001040624	-2.35	0.009881279
PRPF4: PRP4 pre-mRNA processing factor 4 homolog (yeast)	NM004697	-2.35	0.004418442
ATP1A1: ATPase, Na+/K+ transporting, alpha 1			
polypeptide	NM_000701	-2.35	0.02108401 1
EXOSC2: exosome component 2 ABCE1: ATP-binding cassette, sub-family E (OABP),	NM_ 014285	-2.35	0.024743238
member 1	NM_002940	-2.36	0.046038604
PLAUR: plasminogen activator, urokinase receptor	NM_ 002659	-2.36	0.030171864
SAAL1 : serum amyloid A-like 1	NM_138421	-2.36	0.0131 11288
DOCK5: dedicator of cytokinesis 5	NM_024940	-2.36	0.019750731
LAMC1 : laminin, gamma 1 (formerly LAMB2)	NM_002293	-2.36	0.044570562
FANCL: Fanconi anemia, complementation group L	NM_001 114636	-2.37	0.041089105
PNPT1 : polyribonucleotide nucleotidyltransferase 1 GNL3 : guanine nucleotide binding protein-like 3 (nucleolar)	NM_033109 NM_206825	-2.37 -2.37	0.038017589 0.001394734
ATP8B1: ATPase, class I, type 8B, member 1	NM_005603	-2.37	0.03613839
ZYG 11B: zyg-11 homolog B (C. elegans)	•	-2.37	
	NM_024646		0.020663228
SRGAP2: SLIT-ROBO Rho GTPase activating protein 2	NM_015326	-2.38	0.01054526
SEL1L: sel-1 suppressor of lin-12-like (C. elegans)	NM_005065	-2.38	0.021931 558
LNPEP: leucyl/cystinyl aminopeptidase ST3GAL4: ST3 beta-galactoside alpha-2,3-sialyltransferase	NM_005575	-2.38	0.031938248
4	NMJD06278	-2.39	0.017248347
ELAC2: elaC homolog 2 (E. coli)	NM_018127	-2.39	0.041509605
THEX1: three prime histone mRNA exonuclease 1	NM_153332	-2.39	0.024488604

- 111 -

H2AFZ: H2A histone family, member Z	NM_002106	-2.4	0.016825 189
CPSF3: cleavage and polyadenylation specific factor 3, 73kDa	NM_016207	-2.4	0.013200285
HDAC2: histone deacetylase 2	NM_001527	-2.4	0.018367564
EPHB4: EPH receptor B4	NM004444	-2.4	0.022324044
VDAC3: voltage-dependent anion channel 3	NM_005662	-2.4	0.031428461
ANKRD32: ankyrin repeat domain 32	NM_032290	-2.4	0.037922695
GNL3L: guanine nucleotide binding protein-like 3 (nucleolar)-like	NM019067	-2.4	0.00705139
THOC5: THO complex 5	NM_001002878	-2.4	0.01569689
FUT11: fucosyltransferase 11 (alpha (1,3) fucosy transferase)	NM173540	-2.41	0.025341384
WDR3: WD repeat domain 3	NM. 006784	-2.41	0.005074073
GINS3 : GINS complex subunit 3 (Psf3 homolog)	NM_001 126 129	-2.41	0.013529977
ATXN10: ataxin 10	NM_013236	-2.41	0.039439865
NNT: nicotinamide nucleotide transhydrogenase	NM_012343	-2.41	0.01 1197067
LMNB2: lamin B2	NM_032737	-2.41	0.01 1722263
LYCAT: lysocardiolipin acyltransferase	NM_182551	-2.42	0.047366545
PPT1 : palmitoyl-protein thioesterase 1	NM_0003 10	-2.42	0.010469507
PAQR5: progestin and adipoQ receptor family member V	NM_001 104554	-2.42	0.021249814
FAM102B: family with sequence similarity 102, member B	NM_001010883	-2.42	0.028835551
CCBE1: collagen and calcium binding EGF domains 1	NM_133459	-2.43	0.020809 114
CTPS2: CTP synthase II	NM_ 175859	-2.44	0.034632073
HISPPD1: histidine acid phosphatase domain containing 1 GPD2: glycerol-3-phosphate dehydrogenase 2	NM015216	-2.44	0.039062259
(mitochondrial)	NM_001083 112	-2.44	0.029946883
TMEM106C: transmembrane protein 106C	NM_024056	-2.45	0.034569478
DARS2: aspartyl-tRNA synthetase 2, mitochondrial	NM_018122	-2.45	0.0195 19476
MTHFD2: methylenetetrahydrofolate dehydrogenase 2	NM_001040409	-2.45	0.010898018
EIF3A: eukaryotic translation initiation factor 3, subunit A	NM_003750	-2.45	0.009415013
SMC3: structural maintenance of chromosomes 3	NM_005445	-2.46	0.035234638
IP07: importin 7	NM006391	-2.46	0.024941799
PCNT: pericentrin	NM_ 006031	-2.46	0.026897398
TMPO: thymopoietin	NM.001032283	-2.48	0.022817704
ALG10: asparagine-linked glycosylation 10 homolog	NM_032834	-2.48	0.049012 163
ETFDH : electron-transferring-flavoprotein dehydrogenase	NM_004453	-2.48	0.047358705
UACA	NM_018003	-2.48	0.002944423
DCBLD1: discoidin, CUB and LCCL domain containing 1	NM_173674	-2.48	0.013 168993
SEPHSI: selenophosphate synthetase 1 MCM6: minichromosome maintenance complex component	NM_012247	-2.49	0.016706056
6 MYBLI : v-myb myeloblastosis viral oncogene homolog-like	NM_005915	-2.49	0.026368997
1 MGAT5	NM_001080416	-2.49	0.03370506
	NM_ 002410	-2.49	0.00484168
HEATR1: HEAT repeat containing 1	NM_ 018072	-2.49	0.004877 193
METTL7A: methyltransferase like 7A	NM_ 014033	-2.5	0.03676441
TNFRSF11B: tumor necrosis factor receptor l i b	NM_002546	-2.5	0.01 1057014
DGCR8: DiGeorge syndrome critical region gene 8	NM022720	-2.5	0.036448662
SLC1A5: solute carrier family 1, member 5	NM_005628	-2.5 1	0.001 13861 1
CYR61: cysteine-rich, angiogenic inducer, 61	NM_ 001554	-2.51	0.009672213
VANGLI : vang-like 1 (van gogh, Drosophila)	NM_ 138959	-2.52	0.005394434
WIPI2 : WD repeat domain, phosphoinositide interacting 2	NM_ 015610	-2. 52	0.004035807
SNORD4B: small nucleolar RNA, C/D box 4B	NR000009	-2.53	0.036524 188

PCT/CA2010/001708

- 112 -

C18orf55: chromosome 18 open reading frame 55	NM_014177	-2.54	0.042433254
RBM25: RNA binding motif protein 25	NM_021239	-2.54	0.012195552
SLC1A1: solute carrier family 1, member 1	NM_004170	-2.54	0.004826767
PTTG2: pituitary tumor-transforming 2	NM_006607	-2.55	0.020964869
SLC27A4: solute carrier family 27, member 4 TSR1: TSR1, 20S rRNA accumulation, homolog (S.	NM_005094	-2.55	0.034498614
cerevisiae)	NM_018128	-2.55	0.01 1069433
TMED5	NM. 016040	-2.56	0.045843853
CHMP7: CHMP family, member 7 MCM2: minichromosome maintenance complex component	NM_ 152272	-2.56	0.002316219
2 EIF4A3: eukaryotic translation initiation factor 4A, isoform	NM_004526	-2.56	0.006446562
3	NM_014740	-2.57	0.013072361
C8orf32 : chromosome 8 open reading frame 32	AK293492	-2.57	0.049451366
NAP1L4: nucleosome assembly protein 1-like 4 RASA1: RAS p21 protein activator (GTPase activating	NM_005969	-2.58	0.010391331
protein) 1	NM_002890	-2.58	0.003256153
SNORD5: small nucleolar RNA, C/D box 5 WNT5B: wingless-type MMTV integration site family, member 5B	NR_003033 NM_032642	-2.58 -2.59	0.000127707 0.033391622
			0.041421889
GOLIM4: golgi integral membrane protein 4	NM_014498	-2.59	
AHCTF1: AT hook containing transcription factor 1	NM_015446	-2.6	0.028305483
ANKRD36B: ankyrin repeat domain 36B	NM_025190	-2.6	0.034345414
ALG8 : asparagine-linked glycosylation 8 homolog	NM_024079	-2.61	0.02257391 1
HOOK3: hook homolog 3 (Drosophila)	NM032410	-2.61	0.004299545
STC1 : stanniocalcin 1	NM_003155	-2.62	0.010415901
RCC2: regulator of chromosome condensation 2	NM018715	-2.62	0.009369894
TMEM109: transmembrane protein 109	NM_024092	-2.62	0.021866 144
FAM72A: family with sequence similarity 72, member A DDX11: DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11	BC035696	-2.62 -2.62	0.034275693
TGFBR2: transforming growth factor, beta receptor II (70/80kDa)	NM030653 NM001024847	-2.62	0.002884002
ANKRD36B: ankyrin repeat domain 36B	NM025190	-2.63	0.019487213
RPA1: replication protein Al, 70kDa	NM_002945	-2.63	0.001526936
GLCE: glucuronic acid epimerase	NM.015554	-2.64	0.005829522
HMGB2: high-mobility group box 2	NM_002129	-2.65	0.033636663
SNORD31: small nucleolar RNA, C/D box 31		-2.65	0.003606872
EMP1 : epithelial membrane protein 1	NR_002560	-2.65	0.004674523
	NM_001423	-2.65	
RPN2: ribophorin 11 FAM72A: family with sequence similarity 72, member A	мм_ 00295 1 ВС035696		0.005493394 0.031854626
PKMYT1: protein kinase, membrane associated tyrosine/threonine 1	NM_182687	-2.65 -2.66	0.031834626
TMEM107: transmembrane protein 107	NM .032354	-2.66	0.032349044
XYLT2: xylosyltransferase II	NM_022167	-2.66	0.004197 111
FAM72A: family with sequence similarity 72, member A	BC035696	-2.66	0.032449273
ZC3H13 : zinc finger CCCH-type containing 13	NM.015070	-2.67	0.018784976
WDHDI : WD repeat and HMG-box DNA binding protein 1	NM_007086	-2.67	0.006933 173
SNORD73A: small nucleolar RNA, C/D box 73A	NR_ 000007	-2.67	0.013874 151
CSE1L: CSE1 chromosome segregation 1-like (yeast)	NM_001316	-2.67	0.045684008
	•		
PRPS2: phosphoribosyl pyrophosphate synthetase 2 PPP2R3A: protein phosphatase 2, regulatory subunit B", alpha	NM_001039091 NM_002718	-2.67 -2.68	0.03642873 1 0.031629077
INTS10: integrator complex subunit 10	NM 018142	-2.68	
			0.02143268
NUP88 : nucleoporin 88kDa	NM_002532	-2.68	0.020178953

- 113 -

SLC9A6: solute carrier family 9, member 6	NM_001042537	-2.68	0.01 1618361
_PHN2: latrophilin 2	NM_012302	-2.68	0.009407681
NUP160: nucleoporin 160kDa	NM015231	-2.68	0.02194371 1
CLCC1 : chloride channel CLIC-like 1	NM_001048210	-2.69	0.037650633
RFC2: replication factor C (activator 1) 2, 40kDa	NM_ 181471	-2.69	0.044445519
FANCG: Fanconi anemia, complementation group G	NM_004629	-2.69	0.010584349
KIF22: kinesin family member 22	NM_007317	-2.7	0.041646898
METTL3: methyltransferase like 3	NM_019852	-2.7	0.034520321
MTC3: transmembrane and tetratricopeptide repeat containing 3	 NM_181783	-2.71	0.01 10321 14
EFEMP1: EGF-containing fibulin-!ike extracellular matrix protein 1	NM_004105	-2.71	0.00709532
ARHGAP19: Rho GTPase activating protein 19	NM_032900	-2.71	0.003717048
GTF3C2: general transcription factor IIIC, polypeptide 2, beta	NM001521	-2.71	0.031512828
ANP32B: acidic nuclear phosphoprotein 32 family, member		0.70	0.040074007
В	NM_006401	-2.72	0.042974297
KIF22: kinesin family member 22	NM_007317	-2.73	0.04274961
OIP5: Opa interacting protein 5	NM. 007280	-2.73	0.021276651
GOLM1 : golgi membrane protein 1	NM. 016548	-2.73	0.036043596
POLD3: polymerase (DNA-directed), delta 3, accessory subunit PDS5B: PDS5, regulator of cohesion maintenance,	NM. 006591	-2.75	0.020758429
homolog B	NM. 015032	-2.76	0.022177142
GCS1 : glucosidase I	NM. 006302	-2.76	0.04388769
SESTD1 : SEC14 and spectrin domains 1	NM178123	-2.76	0.002883818
SMC6: structural maintenance of chromosomes 6 TGB3: integrin, beta 3 (platelet glycoprotein Ilia, antigen	NM. 024624	-2.77	0.022699959
CD61) LRIG3: leucine-rich repeats and immunoglobulin-like	NM000212	-2.77	0.0103791 12
domains 3	NM153377	-2.78	0.010753728
AGPAT6: I-acylglycerol-3-phosphate O-acyltransferase 6	NM_178819	-2.78	0.034066427
STIL: SCL/TAL1 interrupting locus LOC91431 : prematurely terminated mRNA decay factor -	NM_001048166	-2.79	0.017897191
	NM001099776	-2.79	
SERPINHI : serpin peptidase inhibitor, clade H, member 1 MMP3 : matrix metallopeptidase 3 (stromelysin 1, progelatinase)	NM_001235 NM_002422	-2.8 -2.8	0.000647946
TMEM19 : transmembrane protein 19		-2.81	0.004530772
	NM018279		
		_'7.81	
	NM_001875	-2.81	0.041870042
SNORD1 13-3 : small nucleolar RNA, C/D box 113-3	NR. 003231	-2.82	0.0245421 15
SNORD113-3 : small nucleolar RNA, C/D box 113-3 ATAD5: ATPase family, AAA domain containing 5 CASP2 : caspase 2, apoptosis-related cysteine peptidase	•		
SNORD113-3 : small nucleolar RNA, C/D box 113-3 ATAD5 : ATPase family, AAA domain containing 5	NR. 003231 NM_024857 NM_032982	-2.82 -2.82	0.0245421 15 0.038184837
SNORD1 13-3 : small nucleolar RNA, C/D box 113-3 ATAD5: ATPase family, AAA domain containing 5 CASP2 : caspase 2, apoptosis-related cysteine peptidase POLR2B : polymerase (RNA) II (DNA directed) polypeptide B	NR. 003231 NM_024857 NM_032982 NM000938	-2.82 -2.82 -2.82	0.0245421 15 0.038184837 0.003308632
SNORD1 13-3 : small nucleolar RNA, C/D box 113-3 ATAD5: ATPase family, AAA domain containing 5 CASP2: caspase 2, apoptosis-related cysteine peptidase POLR2B : polymerase (RNA) II (DNA directed) polypeptide B ADPGK: ADP-dependent glucokinase	NR. 003231 NM_024857 NM_032982 NM_000938 NR. 023318	-2.82 -2.82 -2.82 -2.82	0.0245421 15 0.038184837 0.003308632 0.007282975 0.007670222
SNORD1 13-3 : small nucleolar RNA, C/D box 113-3 ATAD5: ATPase family, AAA domain containing 5 CASP2 : caspase 2, apoptosis-related cysteine peptidase POLR2B : polymerase (RNA) II (DNA directed) polypeptide B ADPGK: ADP-dependent glucokinase BZW2 : basic leucine zipper and W2 domains 2	NR. 003231 NM_024857 NM_032982 NM_000938 NR. 023318 NM_014038	-2.82 -2.82 -2.82 -2.82 -2.82 -2.83	0.0245421 15 0.038184837 0.003308632 0.007282975
SNORD1 13-3 : small nucleolar RNA, C/D box 113-3 ATAD5: ATPase family, AAA domain containing 5 CASP2: caspase 2, apoptosis-related cysteine peptidase POLR2B : polymerase (RNA) II (DNA directed) polypeptide B ADPGK: ADP-dependent glucokinase BZW2 : basic leucine zipper and W2 domains 2 SNORA6 : small nucleolar RNA, H/ACA box 6	NR. 003231 NM_024857 NM_032982 NM000938 NR. 023318 NM_014038 NR002325	-2.82 -2.82 -2.82 -2.82 -2.83 -2.83 -2.83	0.0245421 15 0.038184837 0.003308632 0.007282975 0.007670222 0.003829986 0.029880813
SNORD1 13-3 : small nucleolar RNA, C/D box 113-3 ATAD5: ATPase family, AAA domain containing 5 CASP2: caspase 2, apoptosis-related cysteine peptidase POLR2B : polymerase (RNA) II (DNA directed) polypeptide B ADPGK: ADP-dependent glucokinase BZW2: basic leucine zipper and W2 domains 2 SNORA6 : small nucleolar RNA, H/ACA box 6 NIN : ninein (GSK3B interacting protein) KCTD3 : potassium channel tetramerisation domain containing 3	NR. 003231 NM_024857 NM_032982 NM_000938 NR. 023318 NM_014038	-2.82 -2.82 -2.82 -2.82 -2.83 -2.83	0.0245421 15 0.038184837 0.003308632 0.007282975 0.007670222 0.003829986
SNORD1 13-3 : small nucleolar RNA, C/D box 113-3 ATAD5: ATPase family, AAA domain containing 5 CASP2: caspase 2, apoptosis-related cysteine peptidase POLR2B : polymerase (RNA) II (DNA directed) polypeptide B ADPGK: ADP-dependent glucokinase BZW2 : basic leucine zipper and W2 domains 2 SNORA6 : small nucleolar RNA, H/ACA box 6 NIN : ninein (GSK3B interacting protein) KCTD3 : potassium channel tetramerisation domain containing 3 MASTL: microtubule associated serine/threonine kinase- like	NR. 003231 NM_024857 NM_032982 NM_000938 NR. 023318 NM_014038 NR_002325 NM_020921	-2.82 -2.82 -2.82 -2.82 -2.83 -2.83 -2.83 -2.83	0.0245421 15 0.038184837 0.003308632 0.007282975 0.007670222 0.003829986 0.029880813 0.031076246
ATAD5: ATPase family, AAA domain containing 5 CASP2: caspase 2, apoptosis-related cysteine peptidase POLR2B: polymerase (RNA) II (DNA directed) polypeptide B ADPGK: ADP-dependent glucokinase BZW2: basic leucine zipper and W2 domains 2 SNORA6: small nucleolar RNA, H/ACA box 6 NIN: ninein (GSK3B interacting protein) KCTD3: potassium channel tetramerisation domain containing 3 MASTL: microtubule associated serine/threonine kinase- like PLOD2: procollagen-lysine, 2-oxoglutarate 5-dioxygenase	NR. 003231 NM_024857 NM_032982 NM_000938 NR. 023318 NM_014038 NR_002325 NM_020921 NM_016121 NM_032844	-2.82 -2.82 -2.82 -2.83 -2.83 -2.83 -2.83 -2.83 -2.84 -2.84	0.0245421 15 0.038184837 0.003308632 0.007282975 0.007670222 0.003829986 0.029880813 0.031076246 0.007423643 0.012062567
SNORD1 13-3 : small nucleolar RNA, C/D box 113-3 ATAD5: ATPase family, AAA domain containing 5 CASP2: caspase 2, apoptosis-related cysteine peptidase POLR2B : polymerase (RNA) II (DNA directed) polypeptide B ADPGK: ADP-dependent glucokinase BZW2 : basic leucine zipper and W2 domains 2 SNORA6 : small nucleolar RNA, H/ACA box 6 NIN : ninein (GSK3B interacting protein) KCTD3 : potassium channel tetramerisation domain containing 3 MASTL: microtubule associated serine/threonine kinase- like	NR. 003231 NM_024857 NM_032982 NM000938 NR. 023318 NM_014038 NR002325 NM_020921 NM_016121	-2.82 -2.82 -2.82 -2.82 -2.83 -2.83 -2.83 -2.83 -2.83 -2.83	0.0245421 15 0.038184837 0.003308632 0.007282975 0.007670222 0.003829986 0.029880813 0.031076246 0.007423643

-

- 114 -

PSMC3IP: PSMC3 interacting protein	NM_013290	-2.85	0.019857157
CENPM: centromere protein M ARPC1A: actin related protein 2/3 complex, subunit 1A,	NM_024053	-2.87	0.033724716
41kDa	NM_006409	-2.88	0.017661245
TROAP: trophinin associated protein (tastin)	N M_ 005480	-2.88	0.023631499
DDX23: DEAD (Asp-Glu-Ala-Asp) box polypeptide 23	NM_004818	-2.88	0.018106207
AKR1C3: aldo-keto reductase family 1, member C3 HMGCR: 3-hydroxy-3-methylglutaryl-Coenzyme A	NM_003739	-2.89	0.030394002
reductase ASF1B: ASF1 anti-silencing function 1 homolog B (S.	NM_000859	-2.89	0.000592772
cerevisiae)	NM_018154	-2.9	0.007033297
PSRC1 : proline/serine-rich coiled-coil 1	NM_001032290	-2.9	0.026355548
ZDHHC6: zinc finger, DHHC-type containing 6	NM022494	-2.91	0.01581 1143
LOXL2: lysyl oxidase-like 2	NM. 002318	-2.93	0.0271 12446
DPYSL2: dihydropyrimidinase-like 2	NM001386	-2.93	0.019036817
TM4SF1 : transmembrane 4 L six family member 1 SPTLC2 : serine palmitoyltransferase, long chain base	NM014220	-2.94	0.023381095
subunit 2	NM004863	-2.94	0.028783412
MMP14: matrix metallopeptidase 14 (membrane-inserted)	NM_,004995	-2.94	0.014386738
DKK1: dickkopf homolog 1 (Xenopus laevis) EME1: essential meiotic endonuclease 1 homolog 1 (S.	NM012242	-2.95	0.010889917
pombe)	NM_152463	-2.95	0.010943083
NUP155: nucleoporin 155kDa	NM153485	-2.95	0.015556838
WDR40A: WD repeat domain 40A ABCD3: ATP-binding cassette, sub-family D (ALD),	NM015397	-2.95	0.002259207
member 3	NM.002858	-2.96	0.028991333
ITGA4: integrin, alpha 4	NM000885	-2.96	0.013530217
CENPQ: centromere protein Q	NM018132	-2.97	0.047657259
APAF1: apoptotic peptidase activating factor 1 RALGPS2: Ral GEF with PH domain and SH3 binding motif	NM.181861	-2.97	0.020291 148
2	NM.152663	-2.98	0.013 121392
WDR4: WD repeat domain 4	NM_018669	-2.98	0.001857422
PECI: peroxisomal D3,D2-enoyl-CoA isomerase LEPRE1: leucine proline-enriched proteoglycan (leprecan)	NM_206836	-3 -3.01	0.018600236 0.028784846
·	NM_022356		
C5orf34 : chromosome 5 open reading frame 34 FUT8: fucosyltransferase 8 (alpha (1,6) fucosyltransferase)	BC036867 NM_178155	-3.01 -3.01	0.031497 145
MCM5: minichromosome maintenance complex component	NM 006739	-3.01	0.035929024
POLR3B: polymerase (RNA) III (DNA directed) polypeptide			
В	NM_018082	-3.01	0.01 1381478
PRG4: proteoglycan 4	NM_005807	-3.02	0.00601482
CCDC77: coiled-coil domain containing 77	NM_032358	-3.03	0.010421873
DDX46: DEAD (Asp-Glu-Ala-Asp) box polypeptide 46	NM_014829	-3.05	0.02604896
FAM20B: family with sequence similarity 20, member B	BC051794	-3.05	0.001425466
COL6A3: collagen, type VI, alpha 3	NM_004369	-3.05	0.038940075
MAD2L1 : MAD2 mitotic arrest deficient-like 1 (yeast)	NM_002358	-3.06	0.033827837
SLC38A1 : solute carrier family 38, member 1	NMJD30674	-3.06	0.012108029
CTR9: Ctr9,Pafl/RNA polymerase II complex component	NMJD14633	-3.06	0.022722617
FAM72A: family with sequence similarity 72, member A	ENST00000369175	-3.07	0.04321 1118
CUL3 : cullin 3	NM_003590	-3.07	0.01 1866288
SMARCC1 MCM4: minichromosome maintenance complex component	NM_003074	-3.07	0.030291 171
4	NM_005914	-3.07	0.004834585
CCNF: cyclin F	NM_001761	-3.08	0.0051 14967

PCT/CA2010/001708

- 115 -

MTHFDI : methylenetetrahydrofolate dehydrogenase 1	NM. 005956	-3.08	0.010131973
DDIT4: DNA-damage-inducible transcript 4	NM. 019058	-3.08	0.010098044
TTF2: transcription termination factor, RNA polymerase II	NM_003594	-3.08	0.011153371
GINS1 : GINS complex subunit 1 (Psfl homolog)	NM. <u>021067</u>	-3. 1	0.012394736
TFDP1: transcription factor Dp-1	NM_0071 11	-3. 1	0.007269234
MTAP: methylthioadenosine phosphorylase	NM_002451	-3. 1	0.012325728
MIRN21: microRNA 21	AY699265	-3. 1	0.027479521
SNORD58A: small nucleolar RNA, C/D box 58A	NR_002571	-3. 11	0.035633007
NRP1 : neuropilin 1	NM_003873	-3. 12	0.00337744
PTTG1: pituitary tumor-transforming 1	NM_004219	-3. 14	0.02831 1698
ORCIL: origin recognition complex, subunit 1-like (yeast)	NM_004153	-3. 14	0.028983 138
NAE1: NEDD8 activating enzyme El subunit 1	NM001018159	-3. 14	0.038143006
SNORD96A: small nucleolar RNA, C/D box 96A	NR_002592	-3. 14	0.019451938
SPCS3: signal peptidase complex subunit 3 homolog	NM_021928	-3. 15	0.027304589
CKAP5: cytoskeleton associated protein 5	NM001008938	-3. 15	0.02351903
CSGLCA-T: chondroitin sulfate glucuronyltransferase ZAK: sterile alpha motif and leucine zipper containing	NM019015	-3. 16	0.017197 107
kinase AZK	NM133646	-3. 17	0.046435057
APOBEC3B	NM004900	-3.2	0.021754743
AP1M1: adaptor-related protein complex 1, mu 1 subunit	NM_ 032493	-3.2	0.001424072
TIMELESS : timeless homolog (Drosophila)	NM003920	-3.21	0.007193004
PDCD4: programmed cell death 4	NM145341	-3.21	0.041665 158
MAN1A1: mannosidase, alpha, class 1A, member 1	NM_ 005907	-3.21	0.019748675
SASS6: spindle assembly 6 homolog (C. elegans)	NM_194292	-3.22	0.01989618
NUP205: nucleoporin 205kDa	NM_ 015135	-3.22	0.005899841
ANKRD36B: ankyrin repeat domain 36B	NM_025190	-3.23	0.047475718
RAD18: RAD18 homolog (S. cerevisiae) POPI: processing of precursor 1, ribonuclease P/MRP	NM_ 020165	-3.23	0.001502957
subunit	NM_ 015029	-3.23	0.01 1734917
TYMS: thymidylate synthetase	NM. 001071	-3.23	0.037215325
SNORA13: small nucleolar RNA, H/ACA box 13	NR_002922	-3.24	0.017825976
FANCM: Fanconi anemia, complementation group M	NM_ 020937	-3.24	0.024199282
DHFR: dihydrofolate reductase	NM_000791	-3.24	0.025344887
RTTN: rotatin SUV39H1: suppressor of variegation 3-9 homolog 1	NM_173630	-3.25	0.021737969
(Drosophila)	NM_003173	-3.26	0.017552758
DHFR: dihydrofolate reductase	NM.000791	-3.26	0.010689388
VCP: valosin-containing protein	NM_007126	-3.26	0.01 1120284
AKR1C4: aldo-keto reductase family 1, member C4	NM_ 001818	-3.27	0.013531545
HAT1: histone acetyltransferase 1 STARD7: StAR-related lipid transfer (START) domain containing 7	NM_003642	-3.27	0.025041969
0	NM_020151	-3.28	0.001948089
EMP2: epithelial membrane protein 2	NM_001274	-3.28	0.006424876
CHEK1 : CHK1 checkpoint homolog (S. pombe)	NM_001274	-3.29	0.01 1451232
CNPY4 : canopy 4 homolog (zebrafish)	NM_ 152755	-3.3	0.01031 1962
RAD21 : RAD21 homolog (S. pombe)	NM_006265	-3.32	0.037218 105
CTSL3: cathepsin L family member 3 MYBL2: v-myb myeloblastosis viral oncogene homolog - like 2	NM_001023564	-3.34	0.044901 181
WDR51A: WD repeat domain 51A	NM_002466	-3.35	0.002400315
GLT8D1: glycosyltransferase 8 domain containing 1	NM_001010083	-3.35	0.015784564
APPL1	NM_012006	-3.38	0.036372
ATL3: atlastin 3	NM_012096	-3.38	0.013223775
AILS. audsull S	NM_015459	-3.38	0.046230649

- 116 -

BICD2: bicaudal D homolog 2 (Drosophila)	NM_001003800	-3.38	0.016766277
THBD: thrombomodulin	NM_000361	-3.4	0.005386297
C15orf42: chromosome 15 open reading frame 42	NM_152259	-3.4	0.044035721
NCAPD3: non-SMC condensin II complex, subunit D3	NM_015261	-3.4	0.000839888
NUP107: nucleoporin 107kDa	NM_,020401	-3.41	0.027814664
NEDD1	NM_152905	-3.41	0.022874072
XRCC2: X-ray repair complementing defective repair cells 2	NM_005431	-3.42	0.004409417
HTATSF1: HIV-1 Tat specific factor 1	NM_014500	-3.42	0.019185925
CDC6 : cell division cycle 6 homolog (S. cerevisiae)	NM_001254	-3.42	0.008710068
GSTCD: glutathione S-transferase, C-terminal domain		0	0.0001.0000
containing	NM_001031720	-3.43	0.025170077
STMN1: stathmin 1/oncoprotein 18	NM_203401	-3.43	0.021312021
CCDC99: coiled-coil domain containing 99	NM_017785	-3.43	0.037055021
LSM2: LSM2 homolog, U6 small nuclear RNA associated	NM_021 177	-3.45	0.023713986
LSM2: LSM2 homolog, U6 small nuclear RNA associated	NM_021 177	-3.45	0.023713986
LSM2: LSM2 homolog, U6 small nuclear RNA associated NASP: nuclear autoantigenic sperm protein (histone-	NM_021 177	-3.45	0.023713986
binding)	NM_ 172164	-3.46	0.021212208
C6orfl73 : chromosome 6 open reading frame 173	NM_001012507	-3.46	0.013358256
HYOU1: hypoxia up-regulated 1	NM_006389	-3.47	0.041399999
GNE: glucosamine (UDP-N-acetyl)-2-epimerase	NM_005476	-3.48	0.0007743
tAKR: aldo-keto reductase, truncated	AB037902	-3.49	0.015434682
MYC: v-myc myelocytomatosis viral oncogene homolog (avian)	NM_ 002467	-3.49	0.004252963
CDK2 : cyclin-dependent kinase 2	NM_ 001798	-3.49	0.02613663
SUPT16H: suppressor of Ty 16 homolog (S. cerevisiae)	NM_007192	-3.5	0.01 1036257
LBR: lamin B receptor	NM_ 002296	-3.51	0.004957337
MRE11A: MRE11 meiotic recombination 11 homolog A	NM005591	-3.52	0.008653988
RFC5: replication factor C (activator 1) 5, 36.5kDa	 Nм_007370	-3.52	0.02187458
POLA1: polymerase (DNA directed), alpha 1, catalytic subunit	NM_ 016937	-3.52	0.003953822
NY-SAR-48: sarcoma antigen NY-SAR-48	NM 033417	-3.54	0.044014998
KATNAL1: katanin p60 subunit A-like 1	NM 001014380	-3.54	0.009783 192
RFWD3: ring finger and WD repeat domain 3	NM 018124	-3.55	0.01 1324 117
CEP78: centrosomal protein 78kDa	NM 001098802	-3.57	0.0016975
MSN : moesin	NM_002444	-3.57	0.009076967
CENPN : centromere protein N	NM_001 100624	-3.58	0.03351 16
DCLRE1B: DNA cross-link repair I B (PS02 homolog, S.			
cerevisiae)	NM_022836	-3.59	0.010521683
WHSC1 : Wolf-Hirschhorn syndrome candidate 1	NM_133330	-3.6	0.002776674
RGMB: RGM domain family, member B	NM_001012761	-3.61	0.037945236
BIRC5 : baculoviral IAP repeat-containing 5	NM_001 168	-3.62	0.01082439
DNASE1L3: deoxyribonuclease I-like 3 LGR4: leucine-rich repeat-containing G protein-coupled	NM_004944	-3.65	0.001 182208
receptor 4	NM_018490	-3.65	0.007489299
C6orfl67: chromosome 6 open reading frame 167	NM_198468	-3.65	0.014707124
PENK: proenkephalin	NM_00621 1	-3.66	0.036826868
FBN1 : fibrillin 1	NM_000138	-3.66	0.040182037
CDCA5: cell division cycle associated 5	NM_080668	-3.67	0.006490483
IL13RA2 : interleukin 13 receptor, alpha 2	NM_000640	-3.68	0.033161 163
SGK1 : serum/glucocorticoid regulated kinase 1	NM_005627	-3.69	0.015425347
CENPJ: centromere protein J	NM_018451	-3.7	0.042173402
TPR: translocated promoter region (to activated MET	NM_003292	-3.7	0.027668604

PCT/CA2010/001708

oncogene)

	AKR1C1 : aldo-keto reductase family 1, member CI	NM_001353	-3.71	0.02354857
	RBBP8: retinoblastoma binding protein 8	NM_002894	-3.73	0.027806512
	CEP97: centrosomal protein 97kDa	NM 024548	-3.73	0.011707226
	ZC3HAV1 : zinc finger CCCH-type, antiviral 1	NM 0201 19	-3.74	0.043626293
• •	CDCA7: cell division cycle associated 7	NM_031942	-3.75	0.016859814
	KIF2A: kinesin heavy chain member 2A ITGB3BP: integrin beta 3 binding protein (beta3-	NM 004520	-3.75	0.013671485
	endonexin)	NM_014288	-3.75	0.014900666
	FAM29A: family with sequence similarity 29, member A	NM 017645	-3.76	0.006894399
	EROIL: EROI-like (S. cerevisiae)	NM .014584	-3.77	0.004412076
	ATL3 : atlastin 3	, AK090822	-3.77	0.026740981
	GLB1 : galactosidase, beta 1	NM_000404	-3.77	0.037346081
	HNRNPR: heterogeneous nuclear ribonucleoprotein R UBASH3B: ubiquitin associated and SH3 domain	NM_001 102398	-3.78	0.021443364
	containing, B	NM032873	-3.79	0.01938896
	HIST2H2AB: histone cluster 2, H2ab KCTD20 : potassium channel tetramerisation domain	NM175065	-3.8	0.015412 178
	containing 20	NM173562	-3.81	0.009173 158
	GINS4: GINS complex subunit 4 (Sld5 homolog)	NM_032336	-3.81	0.009179253
	RRM1 : ribonucleotide reductase MI	NM_001033	-3.82	0.010380875
	KPNB1 : karyopherin (importin) beta 1	NM_002265	-3.82	0.031057362
	DIAPH3 : diaphanous homolog 3 (Drosophila)	NM_001042517	-3.82	0.005890863
	DTL: denticleless homolog (Drosophila)	NM_ 016448	-3.83	0.017101 198
	IMCSTN : nicastrin	NM_ 015331	-3.84	0.000433316
	DOCK10: dedicator of cytokinesis 10 ANP32E : acidic nuclear phosphoprotein 32 family, member	NM_ 014689	-3.85	0.008213513
		NM_030920	-3.86	0.032209315
	CKAP2L: cytoskeleton associated protein 2-like	NM_152515	-3.87	0.02341 1908
	BRCA2: breast cancer 2, early onset	NM_000059	-3.87	0.002128925
	CDC25B: cell division cycle 25 homolog B (S. pombe)	NM_021873	-3.9	0.00307721 1
	DDIT4L: DNA-damage-inducible transcript 4-like	NM_ 145244	-3.94	0.019049984
	OLFML2B : olfactomedin-like 2B	NM_015441	-3.94	0.003377518
	CD9: CD9 molecule	NM_001769	-3.95	0.008545553
	CKS1B: CDC28 protein kinase regulatory subunit I B	NM_001826	-3.95	0.006037425
	CCDC80 : coiled-coil domain containing 80	NM_ 19951 1	-3.95	0.006609893
	CKS1B: CDC28 protein kinase regulatory subunit I B	NM_001826	-3.96	0.005028013
	DKC1 : dyskeratosis congenita 1, dyskerin	NM_001363	-3.99	0.027694764
	MMP1 : matrix metallopeptidase 1 (interstitial collagenase)	NM_002421	-4	0.014418235
	FAM54A: family with sequence similarity 54, member A	NM_001099286	-4.03	0.006364463
	FAM29A: family with sequence similarity 29, member A	NM_017645	-4.05	0.014763219
	VRK1 : vaccinia related kinase 1	NM_003384	-4.05	0.022044795
	TDP1 : tyrosyl-DNA phosphodiesterase 1	NM_018319	-4.05	0.025305827
	HERPUD1	NM_014685	-4.07	0.013120239
	CDC25C: cell division cycle 25 homolog C (S. pombe)	NM_001790	-4.08	0.024886353
	WEE1 : WEE1 homolog (S. pombe) MCM7 : minichromosome maintenance complex component	NM_003390	-4.09	0.014041834
	7	NM_005916	-4. 13	0.024734886
	C18orf54 : chromosome 18 open reading frame 54	NM_173529	-4. 16	0.036455934
	IQGAP3 : IQ motif containing GTPase activating protein 3	NM_ 178229	-4. 18	0.000379041
	KRT34 : keratin 34	NM_021013	-4. 18	0.014644898
	CHAF1B: chromatin assembly factor 1, subunit B (p60)	NM_005441	-4. 19	0.005348677
	ZWILCH : Zwilch, kinetochore associated, homolog	NR_ 003105	-4. 19	0.00336525

(Drosophila)

RFC4: replication factor C (activator 1) 4, 37kDa	NM002916	-4. 19	0.030961838
WEE1: WEE1 homolog (S. pombe)	BX641032	-4.22	0.017225413
POLA2: polymerase (DNA directed), alpha 2 (70kD subunit) CYP24A1 : cytochrome P450, family 24, subfamily A,	N M002689	-4.22	0.013154919
polypeptide 1	NM_000782	-4.25	0.044168548
CENPO: centromere protein 0	NM_024322	-4.27	0.029013956
SLC7A11 : solute carrier family 7	NM_014331	-4.29	0.009705328
SPATA5 : spermatogenesis associated 5	NM_ 145207	-4.29	0.015984863
ARHGAP1 1B: Rho GTPase activating protein 11B	NM_001039841	-4.31	0.01 1747473
GTSE1: G-2 and S-phase expressed 1	NM_016426	-4.31	0.018713948
MCM3: minichromosome maintenance complex component 3	NM_002388	-4.33	0.012084875
MSH2: mutS homolog 2, colon cancer, nonpolyposis type	NIM 000251	-4.33	0.035783705
	NM_000251		0.000695252
WEE1: WEE1 homolog (S. pombe)	BX641032	-4.35	
C4orf21 : chromosome 4 open reading frame 21	BC044799	-4.36	0.02594976 0.01830473
FST: follistatin	NM_006350	-4.36	0.014343063
MALL: mal, T-cell differentiation protein-like	NM_005434	-4.39 -4.39	0.022773614
MLF1IP: MLF1 interacting protein	NM_024629		
MATN2 : matrilin 2 RECK: reversion-inducing-cysteine-rich protein with kazal	NM_002380	-4.4	0.009218294
motifs	NM_021 111	-4.4	0.003371515
SKP2: S-phase kinase-associated protein 2 (p45)	NM_005983	-4.41	0.000189837
REEP4: receptor accessory protein 4	NM_ 025232	-4.41	0.024102962
NID2: nidogen 2 (osteonidogen)	NM_ 007361	-4.41	0.00924571 1
ECT2: epithelial cell transforming sequence 2 oncogene	NM018098	-4.44	0.001371 533
HIST1H3B: histone cluster 1, H3b	NM_003537	-4.47	0.030339315
CDCA8 : cell division cycle associated 8	NM_018101	-4.47	0.028564289
NUP93 : nucleoporin 93kDa	NM_014669	-4.49	0.019348299
AURKB: aurora kinase B	NM.004217	-4.49	0.009148851
TEK: TEK tyrosine kinase, endothelial	NM_ 000459	-4.49	0.018780434
HSPA8: heat shock 70kDa protein 8	NM006597	-4.5	0.001621436
ISLR: immunoglobulin superfamily containing leucine-rich		4 50	0 007171007
repeat	NM005545	-4.52	0.027171337
CDC45L: CDC45 cell division cycle 45-like (S. cerevisiae) BRIP1 : BRCA1 interacting protein C-terminal helicase 1	NM_003504 NM_ 032043	-4.56 -4.57	0.007308546
		-4.59	0.00620721
SLC38A2 : solute carrier family 38, member 2 C15orf23 : chromosome 15 open reading frame 23	NM_033286	-4.6	0.01221 1419
UBE2C: ubiquitin-conjugating enzyme E2C	NM_033286	-4.0 -4.6	0.02023828
SHCBP1 : SHC SH2-domain binding protein 1	NM_181802 NMJD24745	-4.63	0.02023020
	NM 022782	-4.64	0.008536058
MPHOSPH9: M-phase phosphoprotein 9 CTSL1 : cathepsin LI	NM_001912	-4.65	0.004992522
MAT2A: methionine adenosyltransferase II, alpha	NM 00591 1	-4.69	0.003823851
GALNTL2 : UDP-N-acetyl-alpha-D-galactosamine	••	-4.73	0.002123087
HSPA5 : heat shock 70kDa protein 5	NM_0541_10 NM_005347	-4.75	0.027477696
ALG6: asparagine-linked glycosylation 6 homolog		-4.75	0.027477090
TNC: tenascin C	NM_013339	-4.77	
	NM_002160		0.01 1428 1
KNTC1 : kinetochore associated 1	NM_014708	-4.78	0.001458855
POLQ: polymerase (DNA directed), theta ADAMTS1 : ADAM metallopeptidase with thrombospondin	NM_199420	-4.79	0.026999 179
type 1	NM_006988	-4.81	0.000284897
FANCI : Fanconi anemia, complementation group I	NM_001113378	-4.83	0.022756296

- 119 -

PDIA5: protein disulfide isomerase family A, member 5	NM_006810	-4.84	0.031 177224
TCF19: transcription factor 19 (SCI)	NM_007109	-4.85	0.001920593
PARP1: poly (ADP-ribose) polymerase 1	NM_001618	-4.86	0.007724835
ANPEP: alanyl (membrane) aminopeptidase	NM_001 150	-4.89	0.017761228
CENPK: centromere protein K	NM_022145	-4.9	0.046603065
TCF19: transcription factor 19 (SCI)	NM_007109	-4.91	0.003070795
TCF19: transcription factor 19 (SCI)	NM_007109	-4.91	0.003070795
NEIL3: nei endonuclease VHI-like 3 (E. coli)	NM_018248	-4.92	0.001075466
ITGA5 : integrin, alpha 5 (fibronectin receptor, alpha			
polypeptide)	NM_002205	-5	0.021315582
KDELC1 : KDEL (Lys-Asp-Glu-Leu) containing 1	NM_024089	-5.01	0.047199012
FIBIN : fin bud initiation factor	NM203371	-5.01	0.046653 181
ZWINT: ZW10 interactor	NM_032997	-5.04	0.027696874
HIST1H1A: histone cluster 1, Hla	NM_005325	-5.09	0.01356251
ATAD2: ATPase family, AAA domain containing 2	NM014109	-5. 1	0.046938961
TOPBP1: topoisomerase (DNA) II binding protein 1	NM_007027	-5. 13	0.038866 152
TMEM48: transmembrane protein 48	NM_018087	-5. 17	0.013425569
NUP85 : nucleoporin 85kDa	NM024844	-5. 18	0.022730382
IMT5E: 5'-nucleotidase, ecto (CD73)	NM002526	-5. 18	0.005165995
ERCC6L: excision repair cross-complementing repair deficiency	NM 017660	-5.25	0.0371 1635 1
	NM_017669	-5.3	0.024744242
KIF15 : kinesin family member 15	NM_020242	-5.36	0.019406028
SEMA7A: semaphorin 7A, GPI membrane anchor	NM_003612		0.040588398
SMC1A: structural maintenance of chromosomes 1A BUBIB: budding uninhibited by benzimidazoles 1 homolog	NM006306	-5.39	0.040386396
beta	NM_00121 1	-5.43	0.030577263
PODXL: podocalyxin-like	NM.001018 111	-5.44	0.046572766
RACGAP1: Rac GTPase activating protein 1	NM_013277	-5.46	0.01 1950377
CDC7 : cell division cycle 7 homolog (S. cerevisiae)	NM_ 003503	-5.49	0.023548326
SNORD45C: small nucleolar RNA, C/D box 45C	NR_003042	-5.51	0.020984632
AMD1: adenosylmethionine decarboxylase 1	NM_001634	-5.58	0.017403212
RAD51AP1 : RAD51 associated protein 1	NM_006479	-5.6	0.03298607
KIF18A: kinesin family member 18A	NM_031217	-5.63	0.048229213
PDGFRA: platelet-derived growth factor receptor alpha	NM006206	-5.63	0.014896088
CKAP2: cytoskeleton associated protein 2	NM_018204	-5.63	0.020068434
FANCD2: Fanconi anemia, complementation group D2	NM.033084	-5.64	0.016641728
RBL1 : retinoblastoma-like 1 (pl07)	NM 002895	-5.66	0.024252907
DEPDC1B: DEP domain containing I B	NM_018369	-5.67	0.022605243
MCM8: minichromosome maintenance complex component		- 00	0 000017110
8	NMJ)32485	-5.68	0.002917449
KIF2C: kinesin family member 2C	NM_006845	-5.7	0.010394746
UBE2T: ubiquitin-conjugating enzyme E2T (putative)	NM014176	-5.73	0.029596772
BRCA1: breast cancer 1, early onset	NM_007296	-5.73	0.01 1735761
CDCA3: cell division cycle associated 3	NM_031299	-5.75	0.028377908
PLAT: plasminogen activator, tissue	NM_000930	-5.81	0.017135561
SMC2: structural maintenance of chromosomes 2	NMJD01042551	-5.84	0.021246504
KIAA1524 : KIAA1524	NM_020890	-5.88	0.014262 199
NCAPD2: non-SMC condensin I complex, subunit D2 GPSM2: G-protein signaling modulator 2 (AGS3-like, C.	NM_014865	-5.94	0.009204334
elegans)	NM_013296	-6.05	0.00253489
CLSPN : claspin homolog (Xenopus laevis)	NM_0221 11	-6.06	0.03807435
C13orf3 : chromosome 13 open reading frame 3	NM_145061	-6. 11	0.031873242
RFC3: replication factor C (activator 1) 3, 38kDa	NM_002915	-6. 12	0.019632107

- 120 -

C18orf24: chromosome 18 open reading frame 24 TACC3: transforming, acidic coiled-coil containing protein	NM_001039535	-6. 19	0.039810882
3	NM. 006342	-6. 19	0.017952851
C14orfl45 : chromosome 14 open reading frame 145	NM152446	-6.22	0.007797356
NEK2: NIMA (never in mitosis gene a)-related kinase 2	NM. 002497	-6.33	0.002681 177
NUSAP1: nucleolar and spindle associated protein 1	NM_016359	-6.33	0.049437931
HIST1H2BM : histone cluster 1, H2bm	NM003521	-6.4	0.029910293
HIST1H1E: histone cluster 1, Hie	NM_005321	-6.41	0.004360528
PRIM1 : primase, DNA, polypeptide 1 (49kDa)	NM_000946	-6.42	0.002907531
AURKA: aurora kinase A	NM_ 198433	-6.49	0.033564734
HJURP: Holliday junction recognition protein	NM_018410	-6.66	0.000926767
CEP55: centrosomal protein 55kDa	NM_018131	-6.68	0.032269904
DBX2: developing brain homeobox 2	ENST00000332700	-6.84	0.047533804
KIF4B: kinesin family member 4B	NM_001099293	-6.85	0.02993245
CDC20: cell division cycle 20 homolog (S. cerevisiae)	NM_001255	-6.89	0.021541425
HELLS : helicase, lymphoid-specific	NM_018063	-6.91	0.028245951
KIFC1 : kinesin family member CI	NM_002263	-6.98	0.033788145
NCAPH: non-SMC condensin I complex, subunit H	Nм015341	-7.09	0.025734154
TRIP13: thyroid hormone receptor interactor 13	NM_004237	-7. 1	0.002615203
RAD51: RAD51 homolog (RecA homolog, E. coli) (S.			
cerevisiae)	NM_002875	-7. 11	0.023887 145
KIF11: kinesin family member 11	NM_004523	-7. 15	0.031473957
PLK4: polo-like kinase 4 (Drosophila)	Nм014264	-7. 15	0.046052773
KIFCI : kinesin family member CI	NM. 002263	-7.2	0.033701678
SPAG5: sperm associated antigen 5	NM_006461	-7.32	0.021 107196
RNU5F: RNA, U5F small nuclear	M77840	-7.33	0.032317221
ARSI: arylsulfatase family, member I	NM_001012301	-7.39	0.02437027
PRC1 : protein regulator of cytokinesis 1	NM003981	-7.48	0.007423876
RRM2: ribonucleotide reductase M2 polypeptide	Nм_001034	-7.58	0.000735057
CCNA2: cyclin A2	NM001237	-7.72	0.020045463
KIF20B : kinesin family member 20B	NM_016195	-7.73	0.042973972
CENPE: centromere protein E, 312kDa	NM. 001813	-7.74	0.045689356
CDCA2: cell division cycle associated 2	NM. 152562	-7.78	0.002339029
HIST1H 1B: histone cluster 1, HI b	NM_005322	-7.82	0.012392 15
KIAA0101 : KIAA0101	NM. 014736	-7.95	0.004181814
KIF14 : kinesin family member 14	NM. 014875	-8.25	0.008367918
NCAPG2: non-SMC condensin II complex, subunit G2	NM. 017760	-8.36	0.018978836
ITGA2: integrin, alpha 2 (CD49B)	NM_ 002203	-8.43	0.013749967
PRR11: proline rich 11	NM. 018304	-8.47	0.000728434
KPNA2: karyopherin alpha 2 (RAG cohort 1, importin alpha	NM 002266	0 07	0.006498917
1) KPNA2: karyopherin alpha 2 (RAG cohort 1, importin alpha	NM_ 002266	-8.87	0.000490917
1)	NM. 002266	-9.02	0.006274906
NCAPG : non-SMC condensin I complex, subunit G	NM_ 022346	-9.23	0.008471 132
CDC2: cell division cycle 2, GI to S and G2 to M	NM001786	-9.27	0.047076 112
NDC80: NDC80 homolog, kinetochore complex component	NM_ 006101	-9.28	0.038380426
EXOI : exonuclease 1	NM_ 130398	-9.52	0.003215089
LMNB1: lamin Bl	NM.005573	-9.53	0.006541627
KIF23 : kinesin family member 23	NM_138555	-9.57	0.013547 107
CASC5: cancer susceptibility candidate 5	NM_170589	-9.8	0.002491 149
CCNB2: cyclin B2	 NMJD04701	-9.81	0.034290952
KIF4A : kinesin family member 4A	NM 012310	-9.84	0.001 147293
			-

•

- 121 -

MKI67: antigen identified by monoclonal antibody Ki-67	NM_002417	-10. 19	0.042290746
CCNB1: cyclin BI	NM031966	-10.41	0.028335597
PLK1 : polo-like kinase 1 (Drosophila)	NM005030	-10.41	0.006026 171
ANLN: anillin, actin binding protein	NM018685	-10.45	0.034437444
CENPF: centromere protein F, 350/400ka (mitosin) SPC25: SPC25, NDC80 kinetochore complex component,	NM016343	-10.56	0.025783454
homolog TPX2: TPX2, microtubule-associated, homolog (Xenopus	NM020675	-10.82	0.030561631
laevis) BUB1: BUB1 budding uninhibited by benzimidazoles 1	NM0121 12	-10.83	0.012391814
homolog	Nм004336	-10.87	0.03037767
HAS2: hyaluronan synthase 2	NM005328	- 10.87	0.009635315
CENPI: centromere protein I	NM006733	- 11.31	0.032980885
KIF20A: kinesin family member 20A	NM005733	-11.45	0.027098763
ITGA6: integrin, alpha 6	NM000210	- 11.81	0.002398 135
TOP2A: topoisomerase (DNA) II alpha 170kDa	<i>N</i> M001067	- 11.92	0.01 1612551
PBK: PDZ binding kinase	NM018492	-12.25	0.045913 184
MELK: maternal embryonic leucine zipper kinase ASPM: asp (abnormal spindle) homolog, microcephaly	NM014791	-12.29	0.024684383
associated	NM018136	-12.88	0.014799875
TTK: TTK protein kinase DLGAP5: discs, large (Drosophila) homolog-associated	NM003318	-13.74	0.037648261
protein 5	NM014750	-14.61	0.003552502
ARHGAP11A: Rho GTPase activating protein 11A NUF2: NUF2, NDC80 kinetochore complex component,	NM_014783	-14.9	0.024697435
homolog	NM_145697	-15. 1	0.042183072

- 122 -

TABLE 4

		Total Cell Number		
Trials	Sample	Phase I	Phase II* (CD45+)	Phase III ** (CD45+CD34+)
	1	10000	21002	15750
1	2	10000	36410	27307.5
	3	10000	43103	25861
Ave		10000	33505	22972.83
	1	10000	18200	191 10
2	2	10000	24007	18005
	3	10000	38000	27968
Ave		10000	26735.66	21694.33
	1	10000	15490	14870
3	2	10000	32654	24490
	3	10000	31800	23404
Ave		10000	26648	20921 .33

* Calculation of value: (Total cell number X frequency of CD45+ cells)

** Calculation of value: (Total cell number X frequency of CD34+CD45+ cells)

5 Calculation of dermal patch size required to achieve full hematopoietic reconstitution:

- A 60 kg individual will need 1.5 x 10⁸ CD34+ve cells
- Skin puncture of 6 mm in diameter has 1.0x10⁷ cells

- Per 10,000 Fibs initially plated there are ~ 21,000 CD34+CD45+ cells

10 - Therefore, number of Fibs needed to get 1.5×10^8 CD34+ve cells

$= (10,000 \times 1.5 \times 10^8)/(21,000)$

= 7.14 X10⁷ Fibs

- Thus, 7.1 skin punctures are needed equaling to 42.84 mm (7.14 x 6 mm) diameter skin patch.

TABLE 5

Gene		Sequence (SEQ ID NO:)
Oct-4	Forward Reverse	CTGAAGCAGAAGAGGATCAC (SEQ ID NO:5) GACCACATCCTTCTCGAGCC (SEQ ID NO:6)
Nanog	Forward Reverse	CGAAGAATAGCAATGGTGTGACG(SEQ ID NO:7) TTCCAAAGCAGCCTCCAAGTC(SEQ ID NO:8)
Sox-2	Forward Reverse	AACG TTTTGCCTTAAACAAGACCAC(SEQ ID NO:9) CGAGATAAACATGGCAATCAAATG(SEQ ID NO: 10)
C/EBPa	Forward Reverse	CTAGAGATCTGGCTGTGGGG(SEQ ID NO:1 1) TCATAACTCCGGTCCCTCTG(SEQ ID NO: 12)
Runxl	Forward Reverse	CCGAGAACCTCGAAGACATC(SEQ ID NO: 13) GTCTGACCCTCATGGCTGT(SEQ ID NO: 14)
SCL	Forward Reverse	CATGGTGCAGCAGCTGAGTCCT(SEQ ID NO: 15) CCATCTCATAGGGGGAAGGT(SEQ ID NO:16)
Beta- hemoglobin	Forward Reverse	AAGTCTGCCGTTACTGCCC(SEQ ID NO: 17) CATGAGCCTTCACCTTAGGGT(SEQ ID NO: 18)
Zeta- hemoglobin	Forward Reverse	GGGGGAAGTAGGTCTTGGTC(SEQ ID NO: 19) CATCATTGTGTCCATGTGGG(SEQ ID NO:20)
Epsilon- hemoglobin	Forward Reverse	ATGGTGCA TTTTTACTGCTGAGG(SEQ ID NO:21) GGGAGACGACAGG TTTTCCAAA(SEQ ID NO:22)
Brachyury	Forward Reverse	ATGAGCCTCGAATCCACATAGT(SEQ ID NO:23) TCCTCGTTCTGATAAGCAGTCA(SEQ ID NO:24)
PU.1	Forward Reverse	ACGGATCTATACCAACGCCA(SEQ ID NO:25) GGGGTGGAAGTCCCAGTAAT(SEQ ID NO:26)
GATA1	Forward Reverse	GGGATCACACTGAGCTTGC(SEQ ID NO:27) ACCCCTGATTCTGGTGTGG(SEQ ID NO:28)
GATA2	Forward Reverse	GGGCTAGGGAACAGATCGACG(SEQ ID NO:29) GCAGCAGTCAGGTGCGGAGG(SEQ ID NO:30)
GAPDH	Forward Reverse	GAAATCCCATCACCAATCTTCCAGG(SEQ ID NO:31) GCAATTGAGCCCCAGCCTTCTC(SEQ ID NO:32)
GUS-B	Forward Reverse	CAGTCATGAAATCGGCAAAA(SEQ ID NO:33) AAACGATTGCAGGGTTTCAC(SEQ ID NO:34)

TABLE 6

Gene Oct-4 Promoter	Forward Reverse	Sequencg TTAGAAGGCAGATAGAGCCACTGACC(SEQ ID NO:35) TGCCTGTCTGTGAGGGATGATGTTISEQ ID NO:36)
Nanog Promoter	Forward Reverse	AGCTCTATCCCCCAGCACTCG(SEQ ID NO:37) GAGAAAGCGAGAGCTCCTCGCfSEQ ID NO:38)
TBX3 Promoter	Forward Reverse	AACGTTTGCCTTAAACAAGACCACiSEQ ID NO:39) CGAGATAAACATGGCAATCAAATGfSEQ ID NO:40)
c-Myc Promoter	Forward Reverse	AATGCCTTTGGGTGAGGGACiSEQ ID NO:41) TCCGTGCCTTTTTTTGGGG(SEQ ID NO:42)
Runxl Promoter	Forward Reverse	GCGTGGCTGCTTTCAACTTTCCTTiSEQ ID NO:43) TGGGTCGGTTTCTGTAATGGGTGTISEQ ID NO:44)
SCL Enhancer	Forward Reverse	AACACGCCGGGAATGGATGGATISEQ ID NO:45) GCGGCTTTGGTGGACATATAGGAAISEQ ID NO:46)
GATA1 Promoter	Forward Reverse	AGAGGCCAAAGACAGAAGTGGAGAfSEQ ID NO:47) AGAGCCACAGGCTACATCAATCCAfSEQ ID NO:48)
MixL1 Promoter	Forward Reverse	AAACTGCGCCGTATCCTCTGCTAACSEQ ID NO:49) TCTTCTG CAAGCCTCCCTAACACA(SEQ ID NO:50)
Oct-2 Promoter	Forward Reverse	AATAGCAGGAGCAGCAACAGAAGGISEQ ID NO:51) TTAAAGGAGCCGCGCATTTGACAGfSEQ ID NO:52)
CD45 Promoter	Forward Reverse	ATCTAGCTCAAGGGTATCGTACAAA(SEQ ID NO:53) CACACTTTGTGCAAATGGAAATAACCCfSEQ ID NO:54)
PU.1 Promoter	Forward Reverse	CAGAGACTTCCTGTATGTAGCGCAISEQ ID NO:55) AGGGCCAGCACAAGTTCCTGATTTISEQ ID NO:56)
Myf5 Promoter	Forward Reverse	AGTTGGACTGCCTTGGTCACTTISEQ ID NO:57) ACAAACCTCCGCCTTTCCTCTACA(SEQ ID NO:58)
Pol2ra Promoter	Forward Reverse	ATTACAGGCCAGGAGATGCCCAfSEQ ID NO:59) CCCGGGGAAGGGCGGTTGfSEQ ID NO:60)
Gadd45a Promoter	Forward Reverse	ATTAGAAGAGAGGAGGCCACAGGA(SEQ ID NO:61) TTATCCTGCCAACCCTCAGCCAAfSEQ ID NO:62)
Nkx2.5 Promoter	Forward Reverse	GACGCATTTGGAAGGGTCTCCTTTiSEQ ID NO:63) TCCTTCTCTCTCCCATGCTGGTTKSEQ ID NO:64)

Table 7

RT-PCR Primers	ChIP Primers
Oct3/4	Oct4 Trimer from EOS Vector
S: CTGAAGCAGAAGAGGATCAC (SEQ ID	S: ACGATTCGCAGTTAATCCTGGCCT
NO:5)	(SEQ ID NO:73)
A: GACCACATCCTTCTCGAGCC (SEQ ID	À: ATAGTÁTGGGCAAGCAGGGAGCTA
NO:6)	(SEQ ID NO:74)
NANOG	Oct3/4
S: CGAAGAATAGCAATGGTGTGACG	S: TTAGAAGGCAGATAGAGCCACTGACC
(SEQ ID NO:7)	(SEQ ID NO:35)
A: TTCCAAAGCAGCCTCCAAGTC (SEQ ID	A: TGCCTGTCTGTGAGGGATGATGTT
NO:8)	(SEQ ID NO:36)
Sox2	Nanog
S: AACGTTTGCCTTAAACAAGACCAC	S: GACTGAGCTGGTTGCCTCAT (SEQ ID
(SEQ ID NO:9)	NO:75)
A: CGAGATAAACATGGCAATCAAATG	A: GGCAGCTTTAAGACTTTTCTGG (SEQ
(SEQ ID NO:10)	ID NO:76)
	Sox2
Tbx3	S: GGATAACATTGTACTGGGAAGGGACA
S: TCCATGAGGGTGTTTGATGA (SEQ ID	(SEQ ID NO:77)
NO:65)	A:
A: CGCTGGGACATAAATCTTTGA (SEQ ID	CAAAGTTTCTTTTATTCGTATGTGTGAGC
NO:66)	(SEQ ID NO:78)
Dppa4	Brachury
S: ACCTCAGAAGAAGATACCAATCC	S: AGGCGCGAGAACAGCACTACTA (SEQ
(SEQ ID NO:67)	ID NO:79)
À: AAGGCACÁCAGGCGCTTA (SEQ ID	A: ATGTTTGCACCTCCATCAAAGCGG
NO:68)	(SEQ ID NO:80)
hRex1	
S: GCGTACGCAAATTAAAGTCCAGA	
(SEQ ID NO:69)	
À: CAGCATĆCTAAACAGCTCGCAGAAT	
(SEQ ID NO:70)	
Brachyury	
S: ATGAGCCTCGAATCCACATAGT (SEQ	
ID NO:23)	
A: TCCTCGTTCTGATAAGCAGTCA (SEQ	
ID NO:24)	
GAPDH	
S: TGCACCACCAACTGCTTAGC (SEQ ID	
NO:71)	
A: GGCATGGACTGTGGTCATGAG (SEQ	
ID NO:72)	

References:

20

30

40

- Aasen, T., A. Raya, et al. (2008). "Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes." <u>Nat_Biotechnol</u> 26(11): 1276-84.
- 5 Amariglio, N., Hirshberg, A., Scheithauer, B.W., Cohen, Y., Loewenthal, R., Trakhtenbrot, L, Paz, N., Koren-Michowitz, M., Waldman, D., Leider-Trejo, L, *et al.* (2009). Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med *6*, e1000029.
- 10 Aoi, T., K. Yae, et al. (2008). "Generation of pluripotent stem cells from adult mouse liver and stomach cells." Science **321** (5889): 699-702.
 - Atlasi, Y., S. J. Mowla, et al. (2008). "OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells." <u>Stem Cells</u> **26**(12): 3068-74.
- 15 Bendall, S. C, M. H. Stewart, et al. (2007). "IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro." <u>Nature</u> **448**(7157): 1015-21.
 - Bender, J.G., To, L.B., Williams, S., and Schwartzberg, L.S. (1992). Defining a therapeutic dose of peripheral blood stem cells. J Hematother *1*, 329-341.
 - Biernaskie, J., M. Paris, et al. (2009). "SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells." <u>Cell Stem</u> <u>Cell</u> 5(6): 610-23.
- Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P.,
 Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., *et al.* (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell *122*, 947-956.

Brambrink, T., R. Foreman, et al. (2008). "Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells." Cell Stem Cell **2**(2): 151-9.

- Brunner, C, Marinkovic, D., Klein, J., Samardzic, T., Nitschke, L, and Wirth, T. (2003). B cell-specific transgenic expression of Bcl2 rescues early B lymphopoiesis but not B cell responses in BOB.1/OBF.1-deficient mice. J Exp Med *197*, 1205-121 1.
- 35 Carey, B. W., S. Markoulaki, et al. (2009). "Reprogramming of murine and human somatic cells using a single polycistronic vector." <u>Proc Natl</u> <u>Acad Sci U S A</u> **106**(**1**): 157-62.

Carpenter, M.K., Inokuma, M.S., Denham, J., Mujtaba, T., Chiu, CP., and Rao, M.S. (2001). Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol *172*, 383-397.

- Cerdan, C, Rouleau, A., and Bhatia, M. (2004). VEGF-A165 augments erythropoietic development from human embryonic stem cells. Blood 103, 2504-2512.
- Chadwick, K., L. Wang, et al. (2003). "Cytokines and BMP-4 promote
 hematopoietic differentiation of human embryonic stem cells." <u>Blood</u> 102(3): 906-1 5.

- Chan, E.M., Ratanasirintrawoot, S., Park, I.H., Manos, P.D., Loh, Y.H., Huo, H., Miller, J.D., Hartung, O., Rho, J., Ince, T.A., *et al.* (2009). Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat Biotechnol 27, 1033-1037.
- 5 Chang, K.H., Nelson, A.M., Cao, H., Wang, L, Nakamoto, B., Ware, C.B., and Papayannopoulou, T. (2006). Definitive-like erythroid cells derived from human embryonic stem cells coexpress high levels of embryonic and fetal globins with little or no adult globin. Blood *108*, 1515-1523.

Choudhary, M., X. Zhang, et al. (2007). "Putative role of hyaluronan and its

- related genes, HAS2 and RHAMM, in human early preimplantation embryogenesis and embryonic stem cell characterization." <u>Stem Cells</u> **25**(12): 3045-57.
 - Debili, N., Coulombel, L , Croisille, L , Katz, A., Guichard, J., Breton-Gorius, J., and Vainchenker, W. (1996). Characterization of a bipotent erythro-
- 15 megakaryocytic progenitor in human bone marrow. Blood *88*, 1284-1296.
 - D'Ippolito, G., S. Diabira, et al. (2006). "Low oxygen tension inhibits osteogenic differentiation and enhances sternness of human MIAMI cells." Bone **39**(3): 513-22.
- 20 Dyce, P. W., L. Wen, et al. (2006). "In vitro germline potential of stem cells derived from fetal porcine skin." Nat Cell Biol 8(4): 384-90.
 - Dyce, P. W., H. Zhu, et al. (2004). "Stem cells with multilineage potential derived from porcine skin." Biochem Biophys Res Commun **316 (3)**: 651-8.
- 25 Eminli, S., A. Foudi, et al. (2009). "Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells." Nat Genet **41**(9): 968-76.
 - Eminli, S., J. Utikal, et al. (2008). "Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression." Stem Cells **26**(1**0**): 2467-74.
 - Emslie, D., D'Costa, K., Hasbold, J., Metcalf, D., Takatsu, K., Hodgkin, P.O., and Corcoran, L.M. (2008). Oct2 enhances antibody-secreting cell differentiation through regulation of IL-5 receptor alpha chain expression on activated B cells. J Exp Med 205, 409-421.
- 35 Feng, R., Desbordes, S.C., Xie, H., Tillo, E.S., Pixley, F., Stanley, E.R., and Graf, T. (2008). PU.1 and C/EBPalpha/beta convert fibroblasts into macrophage-like cells. Proc Natl Acad Sci U S A 105, 6057-6062.
 - Feng, B., J. Jiang, et al. (2009). "Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb." <u>Nat Cell Biol</u> **11**(2): 197-203.
 - Feugier, P., Bensoussan, D., Girard, F., Alia, F., Schuhmacher, A., Latger-Cannard, V., Hulin, C, Witz, F., Witz, B., Carret, A.S., *et al.* (2003).
 Hematologic recovery after autologous PBPC transplantation: importance of the number of postthaw CD34+ cells. Transfusion *43*, 878-884.
 - Fried, W. (2009). Erythropoietin and erythropoiesis. Exp Hematol 37, 1007-1015.

10

30

40

Friedman, A.D. (2007). Transcriptional control of granulocyte and monocyte development. Oncogene 26, 6816-6828.

Gabbianelli, M., Pelosi, E., Montesoro, E., Valtieri, M., Luchetti, L., Samoggia, P., Vitelli, L., Barberi, T., Testa, U., Lyman, S., *et al.* (1995). Multi-level

- effects of flt3 ligand on human hematopoiesis: expansion of putative stem cells and proliferation of granulomonocytic progenitors/monocytic precursors. Blood *86*, 1661-1670.
- Ghozi, M.C., Bernstein, Y., Negreanu, V., Levanon, D., and Groner, Y. (1996). Expression of the human acute myeloid leukemia gene AML1 is
- regulated by two promoter regions. Proc Natl Acad Sci U S A 93, 1935-1940.

Gonzalez, F., M. Barragan Monasterio, et al. (2009). "Generation of mouseinduced pluripotent stem cells by transient expression of a single nonviral polycistronic vector." <u>Proc Natl Acad Sci U S A</u> **106** (22): 8918-22.

- Goolsby, J., M. C. Marty, et al. (2003). "Hematopoietic progenitors express neural genes." <u>Proc Natl Acad Sci U S A</u> **100**(25): 14926-31.
- Guo, G., J. Yang, et al. (2009). "Klf4 reverts developmentally programmed restriction of ground state pluripotency." Development **136(7)**: 1063-9.
- 20 Hanna, J., S. Markoulaki, et al. (2008). "Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency." <u>Cell</u> 133(2): 250-64.
 - Hanna, J., K. Saha, et al. (2009). "Direct cell reprogramming is a stochastic process amenable to acceleration." <u>Nature</u> **462** (7273): 595-601 .
- 25 Hanna, J., M. Wernig, et al. (2007). "Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin." <u>Science</u> 318 (5858): 1920-3.
 - Hassan, H.T., and Zander, A. (1996). Stem cell factor as a survival and growth factor in human normal and malignant hematopoiesis. Acta Haematol *95*, 257-262.
 - Heng, J. C , B. Feng, et al. "The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells." <u>Cell</u> <u>Stem Cell 6(2)</u>: 167-74.
- Hope, K.J., Jin, L., and Dick, J.E. (2004). Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5, 738-743.
 - Hotta, A., A. Y. Cheung, et al. (2009). "Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency." <u>Nat Methods</u> **6**(5): 370-6.
- Huangfu, D., K. Osafune, et al. (2008). "Induction of pluripotent stem cells
 from primary human fibroblasts with only Oct4 and Sox2." <u>Nat</u> Biotechnol 26(11): 1269-75.
 - Ichikawa, M., Asai, T., Chiba, S., Kurokawa, M., and Ogawa, S. (2004). Runx1/AML-1 ranks as a master regulator of adult hematopoiesis. Cell Cycle 3, 722-724.
- 45 Ieda, M., Fu, J.D., Delgado-Olgiun, P., Vedantham, V., Hayashi, Y., Bruneau, B.G., and Srivastava, D. (2010). Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors. Cell *142*, 375-386.

5

10

15

- Izadpanah, R., D. Kaushal, et al. (2008). "Long-term in vitro expansion alters the biology of adult mesenchymal stem cells." Cancer Res 68(11): 4229-38.
- Izadpanah, R., C. Trygg, et al. (2006). "Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue." J Cell Biochem 99(5): 1285-97.
- Jaenisch, R., and Young, R. (2008). Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567-582.
- Jensen, K. B., C. A. Collins, et al. (2009). "Lrigl expression defines a distinct
- multipotent stem cell population in mammalian epidermis." Cell Stem Cell 4(5): 427-39.
- Jiang, Y., B. N. Jahagirdar, et al. (2002). "Pluripotency of mesenchymal stem cells derived from adult marrow." Nature 418 (6893): 41-9.

Johnson, J., J. Bagley, et al. (2005). "Oocyte generation in adult mammalian

- ovaries by putative germ cells in bone marrow and peripheral blood." Cell **122(2)**: 303-15.
- Kaji, K., K. Norrby, et al. (2009). "Virus-free induction of pluripotency and subsequent excision of reprogramming factors." Nature 458 (7239): 771-5.
- 20 Kanawaty, A., and Henderson, J. (2009). Genomic analysis of induced pluripotent stem (iPS) cells: routes to reprogramming. Bioessays 31, 134-138.
 - Kang, J., Shakya, A., and Tantin, D. (2009). Stem cells, stress, metabolism and cancer: a drama in two Octs. Trends Biochem Sci 34, 491-499.
- 25 Kawamura, T., J. Suzuki, et al. (2009). "Linking the p53 tumour suppressor pathway to somatic cell reprogramming." Nature.
 - Kim, J., J. Chu, et al. (2008). "An extended transcriptional network for pluripotency of embryonic stem cells." Cell 132(6): 1049-61.
 - Kim, J.B., Greber, B., Arauzo-Bravo, M.J., Meyer, J., Park, K.I., Zaehres, H.,
 - and Scholer, H.R. (2009). Direct reprogramming of human neural stem cells by OCT4. Nature 461, 649-643.
 - Kim, J. B., V. Sebastiano, et al. (2009). "Oct4-induced pluripotency in adult neural stem cells." <u>Cell</u> **136**(**3**): 411-9.
- Kistler, B., Pfisterer, P., and Wirth, T. (1995). Lymphoid- and myeloid-specific activity of the PU.1 promoter is determined by the combinatorial action 35 of octamer and ets transcription factors. Oncogene 11, 1095-1 106.
- Klimchenko, O., Mori, M., Distefano, A., Langlois, T., Larbret, F., Lecluse, Y., Feraud, O., Vainchenker, W., Norol, F., and Debili, N. (2009). A common bipotent progenitor generates the erythroid and 40 megakaryocyte lineages in embryonic stem cell-derived primitive hematopoiesis. Blood 114, 1506-1517.
 - Koschmieder, S., Rosenbauer, F., Steidl, U., Owens, B.M., and Tenen, D.G. (2005). Role of transcription factors C/EBPalpha and PU.1 in normal hematopoiesis and leukemia. Int J Hematol 81, 368-377.
- 45 Kragl, M., D. Knapp, et al. (2009). "Cells keep a memory of their tissue origin during axolotl limb regeneration." Nature 460 (7251): 60-5.

10

5

15

- 130 -

Kwon, U.K., Yen, P.H., Collins, T., and Wells, R.A. (2006). Differential lineage-specific regulation of murine CD45 transcription by Oct-1 and PU.1. Biochem Biophys Res Commun *344*, 146-154.

Lebofsky, R., and Walter, J.C. (2007). New Myc-anisms for DNA replication and tumorigenesis? Cancer Cell *12*, 102-103.

- Lengerke, C , and Daley, G.Q. (2010). Autologous blood cell therapies from pluripotent stem cells. Blood Rev 24, 27-37.
- Lengner, C. J., F. D. Camargo, et al. (2007). "Oct4 expression is not required for mouse somatic stem cell self-renewal." <u>Cell Stem Cell</u> 1(4): 403-15. Lengner, C. J., G. G. Welstead, et al. (2008). "The pluripotency regulator
- 10 Lengner, C. J., G. G. Welstead, et al. (2008). "The pluripotency regulator Oct4: a role in somatic stem cells?" <u>Cell Cycle</u> **7**(6): 725-8.
 - Li, H., M. Collado, et al. (2009). "The Ink4/Arf locus is a barrier for iPS cell reprogramming." <u>Nature</u>.
 - Li, L., M. Fukunaga-Kalabis, et al. "Human dermal stem cells differentiate into functional epidermal melanocytes." J Cell Sci **123** (Pt 6): 853-60.
 - Li, C. & Wong, W.H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. *Proc Natl Acad Sci U S A BB*, 31-36 (2001).
- Lin, T., Ambasudhan, R., Yuan, X., Li, W., Hilcove, S., Abujarour, R., Lin, X., 20 Hahm, H.S., Hao, E., Hayek, A., *et al.* (2009). A chemical platform for improved induction of human iPSCs. Nat Methods *6*, 805-808.
 - Loh, Y. H., Q. Wu, et al. (2006). "The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells." <u>Nat Genet</u> **38**(4): 431-40.
- 25 Lowry, W. E., L. Richter, et al. (2008). "Generation of human induced pluripotent stem cells from dermal fibroblasts." <u>Proc Natl Acad Sci U S</u> A **105**(8): 2883-8.
 - Lyman, S.D., James, L., Vanden Bos, T., de Vries, P., Brasel, K., Gliniak, B., Hollingsworth, L.T., Picha, K.S., McKenna, H.J., Splett, R.R., et al.
- 30 (1993). Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 75, 1157-1 167.
 - Lyssiotis, C. A., R. K. Foreman, et al. (2009). "Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4." Proc Natl Acad Sci U S A **106** (22): 8912-7.
- Manabu Ohyama, A. T., Christine L. Tock, Michael F. Radonovich, Cynthia A. Pise-Masison, Steven B. Hopping, John N. Brady, Mark C. Udey and Jonathan C. Vogel (2006). "Characterization and isolation of stem cell-enriched human hair follicle bulge cells." <u>The Journal of Clinical</u>
 Investigation 116(1): 249-260.
 - Manning, A. L. and D. A. Compton (2008). "Structural and regulatory roles of nonmotor spindle proteins." Curr Qpin Cell Biol **20**(**1**): 101-6.
- Markoulaki, S., J. Hanna, et al. (2009). "Transgenic mice with defined combinations of drug-inducible reprogramming factors." <u>Nat Biotechnol</u>
 45 27(2): 169-71.

5

15

Meissner, A., M. Wernig, et al. (2007). "Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells." Nat Biotechnol 25(10): 1177-81.

Mikkelsen, T.S., Hanna, J., Zhang, X., Ku, M., Wernig, M., Schorderet, P.,

Bernstein, B.E., Jaenisch, R., Lander, E.S., and Meissner, A. (2008). 5 Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49-55.

Moriscot, C, F. de Fraipont, et al. (2005). "Human bone marrow mesenchymal stem cells can express insulin and key transcription

10 factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro." Stem Cells **23**(4): 594-603.

Nakagawa, M., M. Koyanagi, et al. (2008). "Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts." Nat Biotechnol **26(1)**: 101-6.

- Nayernia, K., J. H. Lee, et al. (2006). "Derivation of male germ cells from bone marrow stem cells." Lab Invest 86(7): 654-63.
- Ng, E.S., Azzola, L., Sourris, K., Robb, L., Stanley, E.G., and Elefanty, A.G. (2005). The primitive streak gene MixI1 is required for efficient
- 20 haematopoiesis and BMP4-induced ventral mesoderm patterning in differentiating ES cells. Development 132, 873-884.
 - Okita, K., T. Ichisaka, et al. (2007). "Generation of germline-competent induced pluripotent stem cells." Nature 448 (71 51): 313-7.
- Okita, K., M. Nakagawa, et al. (2008). "Generation of mouse induced 25 pluripotent stem cells without viral vectors." Science 322 (5903): 949-53.

Okumura-Nakanishi, S., M. Saito, H Niwa, F. Ishikawa (2005). "Oct-3/4 and Sox2 regulate Oct3/4 gene in embryonic stem cells". Journal of Biological Chemistry 280 (7):5307-17.

30 Orkin, S.H., and Zon, L.I. (2002). Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat Immunol 3, 323-328.

Oshima, A., et al. Cloning, sequencing, and expression of cDNA for human beta-glucuronidase. Proc Natl Acad Sci USA 84, 685-689 (1987).

Pardo, M., Lang, B., Yu, L., Prosser, H., Bradley, A., Babu, M.M., and Choudhary, J. (2010). An expanded Oct4 interaction network:

- 35 implications for stem cell biology, development, and disease. Cell Stem Cell 6, 382-395.
 - Park, I. H., N. Arora, et al. (2008). "Disease-specific induced pluripotent stem cells." <u>Cell</u> **134(5**): 877-86.
- 40 Park, I. H., P. H. Lerou, et al. (2008). "Generation of human-induced pluripotent stem cells." Nat Protoc 3(7): 1180-6.
 - Park, I. H., R. Zhao, et al. (2008). "Reprogramming of human somatic cells to pluripotency with defined factors." Nature 451 (7175): 141-6.

Perlingeiro, R.C., Kyba, M., and Daley, G.Q. (2001). Clonal analysis of 45 differentiating embryonic stem cells reveals a hematopoietic progenitor with primitive erythroid and adult lymphoid-myeloid potential. Development 128, 4597-4604.

- Pfisterer, P., Konig, H., Hess, J., Lipowsky, G., Haendler, B., Schleuning, W.D., and Wirth, T. (1996). CRISP-3, a protein with homology to plant defense proteins, is expressed in mouse B cells under the control of Oct2. Mol Cell Biol *16*, 6160-6168.
- 5 Pollard, S.M., Yoshikawa, K., Clarke, I.D., Danovi, D., Strieker, S., Russell, R., Bayani, J., Head, R., Lee, M., Bernstein, M., et a/. (2009). Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell *4*, 568-580.
- 10 Rampalli, S., Li, L, Mak, E., Ge, K., Brand, M., Tapscott, S.J., and Dilworth, F.J. (2007). p38 MAPK signaling regulates recruitment of Ash2Lcontaining methyltransferase complexes to specific genes during differentiation. Nat Struct Mol Biol 14, 1150-1156.
- Ren, H., Y. Cao, et al. (2006). "Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions." <u>Biochem Biophys Res</u> Commun 347(1): 12-21.
 - Reubinoff, B.E., Itsykson, P., Turetsky, T., Pera, M.F., Reinhartz, E., Itzik, A., and Ben-Hur, T. (2001). Neural progenitors from human embryonic stem cells. Nat Biotechnol *19*, 1134-1140.
- 20 Robertson, G., *et al.* cisRED: a database system for genome-scale computational discovery of regulatory elements. *Nucleic Acids Res* **34**, D68-73 (2006).
 - Rodda, D.J., Chew, J.L, Lim, L.H., Loh, Y.H., Wang, B., Ng, H.H., and Robson, P. (2005). Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem *280*, 24731-24737.
 - Roy, N.S., Cleren, C, Singh, S.K., Yang, L, Beal, M.F., and Goldman, S.A. (2006). Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12, 1259-1268.
- 30 Sanchez Alvarado, A. (2009). "Developmental biology: A cellular view of regeneration." Nature **460(7251**)(July 2): 39-40.
 - Schnerch, A., C. Cerdan, et al. "Distinguishing between mouse and human pluripotent stem cell regulation: the best laid plans of mice and men." Stem Cells **28**(3): 419-30.
- 35 Shi, Y., C. Desponts, et al. (2008). "Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds." Cell Stem Cell 3(5): 568-74.
 - Shivdasani, R.A., Mayer, E.L., and Orkin, S.H. (1995). Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature *373*, 432-434.
 - Silverstein, S.C., Steinman, R.M., and Cohn, Z.A. (1977). Endocytosis. Annu Rev Biochem 46, 669-722.
- Simonsson, S. and J. Gurdon (2004). "DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei." <u>Nat Cell Biol</u> 45 **6**(10): 984-90.

- Smith, Z. D., J. Nachman, et al. (2010) "Dynamic single-cell imaging of direct reprogramming reveals an early specifying event." Nat Biotechnol **28**(5): 521-6.
- Soldner, F., D. Hockemeyer, et al. (2009). "Parkinson's disease patientderived induced pluripotent stem cells free of viral reprogramming factors." Cell **136**(**5**): 964-77.
 - Sridharan, R., Tchieu, J., Mason, M.J., Yachechko, R., Kuoy, E., Horvath, S., Zhou, Q., and Plath, K. (2009). Role of the murine reprogramming factors in the induction of pluripotency. Cell 136, 364-377.
- Stadtfeld, M., M. Nagaya, et al. (2008). "Induced pluripotent stem cells 10 generated without viral integration." Science 322 (5903): 945-9.
 - Stewart, M. H., S. C. Bendall, et al. (2008). "Deconstructing human embryonic stem cell cultures: niche regulation of self-renewal and pluripotency." J Mol Med 86(8): 875-86.
- 15 Strodtbeck, D., Bornhauser, M., Hanel, M., Lerche, L., Schaich, M., Illmer, T., Thiede, C, Geissler, G., Herbst, R., Ehninger, G., et al. (2005). Graft clonogenicity and intensity of pre-treatment: factors affecting outcome of autologous peripheral hematopoietic cell transplantation in patients with acute myeloid leukemia in first remission. Bone Marrow Transplant
- 20

40

5

- 36. 1083-1088.
- H., N. Panetta, et al. (2009). "Feeder-free derivation of induced Sun, pluripotent stem cells from adult human adipose stem cells." PNAS **106** (37): 15720-15725.

Takahashi, K., K. Okita, et al. (2007). "Induction of pluripotent stem cells from fibroblast cultures." Nat Protoc 2(12): 3081-9.

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872.

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells

- 30 from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.
 - Terunuma, A., J. W. Cross, et al. (2008). "Behavior of human foreskin keratinocytes expressing a hair follicle stem cell marker CD200." J Invest Dermatol 128(5): 1332-4.
- Toma, J. G., I. A. McKenzie, et al. (2005). "Isolation and characterization of 35 multipotent skin-derived precursors from human skin." Stem Cells 23(6): 727-37.
 - Tsai, F.Y., Keller, G., Kuo, F.C., Weiss, M., Chen, J., Rosenblatt, M., Alt, F.W., and Orkin, S.H. (1994). An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371, 221-226.
 - Utikal, J., N. Maherali, et al. (2009). "Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells." J Cell Sci.
- Utikal, J., J. M. Polo, et al. (2009). "Immortalization eliminates a roadblock 45 during cellular reprogramming into iPS cells." Nature.

15

- Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Sudhof, T.C., and Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature.
- Vijayaragavan, K., Szabo, E., Bosse, M., Ramos-Mejia, V., Moon, R.T., and Bhatia, M. (2009). Noncanonical Wnt signaling orchestrates early developmental events toward hematopoietic cell fate from human embryonic stem cells. Cell Stem Cell *4*, 248-262.
- Wang, L, Menendez, P., Shojaei, F., Li, L, Mazurier, F., Dick, J.E., Cerdan, C, Levac, K., and Bhatia, M. (2005). Generation of hematopoietic
- 10 repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J Exp Med *201,* 1603-1614.
 - Werbowetski-Ogilvie, T.E., Bosse, M., Stewart, M., Schnerch, A., Ramos-Mejia, V., Rouleau, A., Wynder, T., Smith, M.J., Dingwall, S., Carter, T., *et al.* (2009). Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 27, 91-97.
 - Wernig, M., A. Meissner, et al. (2007). "In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state." <u>Nature **448**</u> (71 51): 318-24.
 - Wojchowski, D.M., Menon, M.P., Sathyanarayana, P., Fang, J., Karur, V., Houde, E., Kapelle, W., and Bogachev, O. (2006). Erythropoietin-
- 20 dependent erythropoiesis: New insights and questions. Blood Cells Mol Dis *36*, 232-238.
 - Woltjen, K., I. P. Michael, et al. (2009). "piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells." <u>Nature</u> **458** (7239): 766-70.
- 25 Yamanaka, S. (2009). "Elite and stochastic models for induced pluripotent stem cell generation." <u>Nature</u> **460** (7251): 49-52.
 - Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., *et al.* (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920.
 - Yu, H., D. Fang, et al. (2006). "Isolation of a novel population of multipotent adult stem cells from human hair follicles." <u>Am J Pathol</u> **168**(**6**): 1879-88.
- Yusa, K., R. Rad, et al. (2009). "Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon." <u>Nat</u> <u>Methods</u> 6(5): 363-9.
 - Zhang, S., Z. Jia, et al. (2005). "Purified human bone marrow multipotent mesenchymal stem cells regenerate infarcted myocardium in experimental rats." <u>Cell Transplant</u> **14**(10): 787-98.
- 40 Zhao, X. Y., W. Li, et al. (2009). "iPS cells produce viable mice through tetraploid complementation." <u>Nature</u>.
 - Zhou, H., S. Wu, et al. (2009). "Generation of induced pluripotent stem cells using recombinant proteins." <u>Cell Stem Cell 4(5)</u>: 381-4.
- Zhou, Q., J. Brown, et al. (2008). "In vivo reprogramming of adult pancreatic exocrine cells to beta-cells." Nature **455** (721 3): 627-32.

- 135 -

Claims:

1. A method of generating progenitor cells from fibroblasts comprising:

a) providing fibroblasts that express or are treated with a POU domain containing gene or protein; and

5

b) culturing the cells of step (a) under conditions that allow production of progenitor cells without traversing the pluripotent state.

2. The method of claim 1, wherein fibroblasts that express a POU domain containing gene or protein in step (a) are produced by lentiviral transduction.

The method of claim 1, wherein fibroblasts treated with a POU domain
 containing gene or protein comprises providing an exogenous POU domain containing gene or protein.

4. The method of any one of claims 1 to 3, wherein the POU domain containing gene or protein is an Oct gene or protein.

5. The method of claim 4, wherein the Oct gene or protein is Oct-1, -2, -4 or -15

6. The method of claim 5, wherein the Oct gene or protein is Oct-4.

7. The method of any one of claims 1 to 6, wherein the conditions that allow production of progenitor cells comprise a colony forming assay for a culture period of up to 25 days.

20 8. The method of any one of claims 1-7, further comprising culturing the cells produced in step (b) in differentiation medium under conditions that allow production of differentiated cells.

9. The method of claim 8, wherein the differentiation medium comprises hematopoietic medium comprising at least one hematopoietic cytokine.

25 10. The method of claim 9, wherein the at least one hematopoietic cytokine is Flt3 ligand and/or SCF. 11. The method of claim 10, wherein the differentiated hematopoietic cells are of the myeloblast lineage.

12. The method of claim 11, wherein the myeloblast lineage cells are monocytes or granulocytes.

5 13.The method of claim 10 or 11, wherein the at least one hematopoietic cytokine is EPO.

14. The method of claim 13, wherein the differentiated hematopoietic cells are of the erythroid or megakaryocytic lineage.

15.The method of claim 8, wherein the differentiation medium comprises
neural medium comprising fibroblast growth factor, epidermal growth factor, insulin growth factor II, bone morphogenetic factor 4, bFGF, the N-terminal active fragment of human SHH, FGF8, GDNF, BDNF and/or fetal bovine serum.

16.The method of claim 15, wherein the differentiated neural cells are 15 neurons or glial cells.

17. The method of claim 16, wherein the neurons are dopaminergic neurons.

18. The method of claim 16, wherein the glial cells are astrocytes or oligodendrocytes.

19. The method of any one of claims 1 to 18, wherein the fibroblasts are20 dermal fibroblasts.

20. Isolated progenitor or differentiated cells generated by the method of any one of claims 1-19.

21.A use of the cells according to claim 20 for engraftment or cell replacement in a subject in need thereof.

22. The use of claim 21 for autologous or non-autologous transplantation in a subject in need thereof.

23. The use of claim 21 or 22, wherein the subject is a human.

24. A use of the hematopoietic cells according to claim 20 as a source of5 blood, cellular and acellular blood components, blood products or hematopoietic stem cells.

25. A method of screening progenitor or cells derived therefrom comprising

- a) preparing a culture of progenitor or differentiated cells by the method of any one of claims 1 to 19;
- 10
- b) treating the cells with a test agent or agents; and
 - c) subjecting the cells to analysis.

26. A method of isolating a subpopulation of fibroblasts with increased reprogramming potential comprising

- a) providing fibroblasts that express an Oct-4-reporter; and
- 15

20

b) isolating cells positive for the reporter.

27. The method of claim 26, wherein the fibroblasts that express the Oct-4reporter are produced by lentiviral transduction.

28. The method of claim 26 or 27, wherein the reporter gene comprises a fluorescent protein and the cells are isolated in step (b) by detection of the protein under fluorescence.

29. The method of claim 26 or 27, wherein the reporter gene encodes a gene conferring antibiotic resistance and the cells are isolated by survival in the presence of antibiotic.

30. The method of any one of claims 26 to 29, wherein the fibroblasts are dermal fibroblasts.

31.A method of generating reprogrammed fibroblast-derived induced pluripotent stem cells comprising

a) providing (i) a population of fibroblasts with increased expression Oct-4 and (ii) a mixed population or OCT-4 negative population of fibroblasts;

b) treating the fibroblasts of a) with Oct-4, Sox-2, Nanog and Lin-28;

c) culturing the fibroblasts of b) under conditions that allow production of iPS cells.

10 32. The method of claim 31, wherein the fibroblasts of b) are treated by introducing Oct-4, Sox-2, Nanog and Lin-28 genes via lentiviral transduction.

33. The method of claim 31 or 32, further comprising analyzing and selecting cells that express TRA-1-60 and/or SSEA-3 and or any other pluripotency marker.

15 34. The method of any one of claims 31 to 33, wherein the population of fibroblasts with increased expression of Oct-4 in a)i) are produced by the method of any one of claims 26-30.

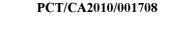
35. The method of any one of claims 31 to 34, wherein the ratio of cells in a)i) to a)ii) is 50:50.

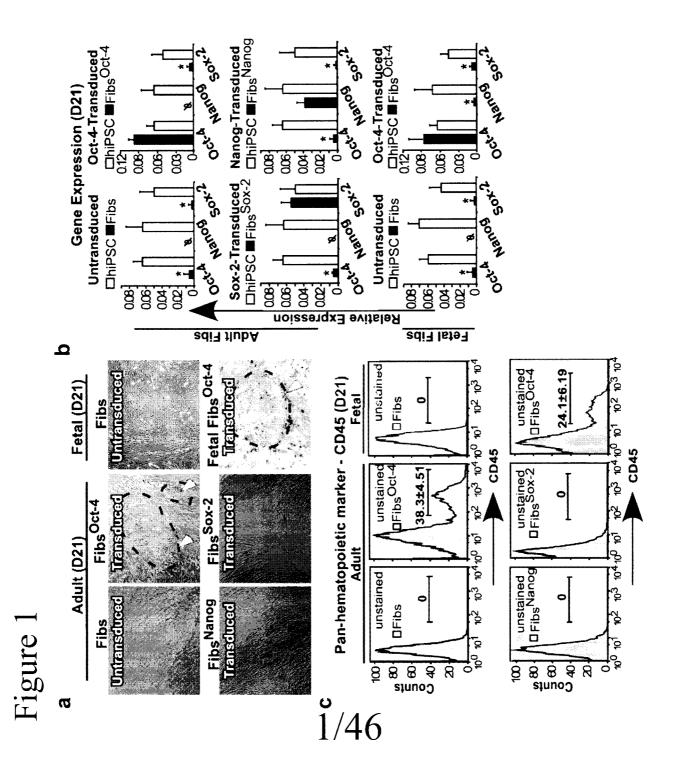
20 36. The method of any one of claims 31 to 34, wherein the ratio of cells in a)i) to a)ii) is 10:90.

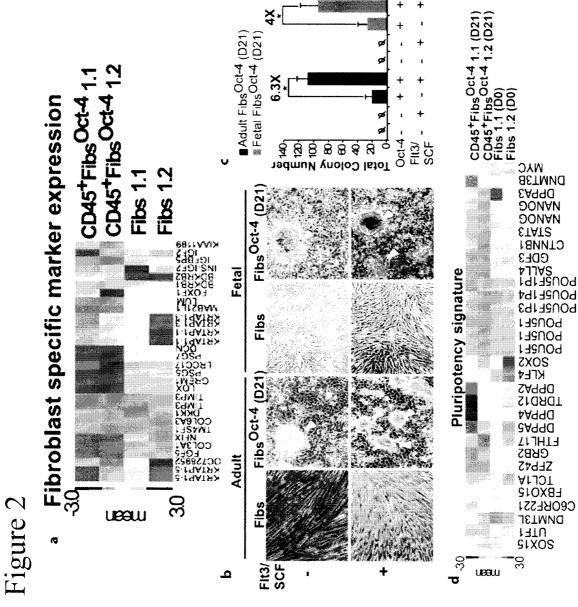
37. The method of any one of claims 31 to 36 wherein the fibroblasts are dermal fibroblasts.

38. Isolated induced pluripotent stem cells generated by the method of anyone of claims 31 to 37 or cells differentiated therefrom.

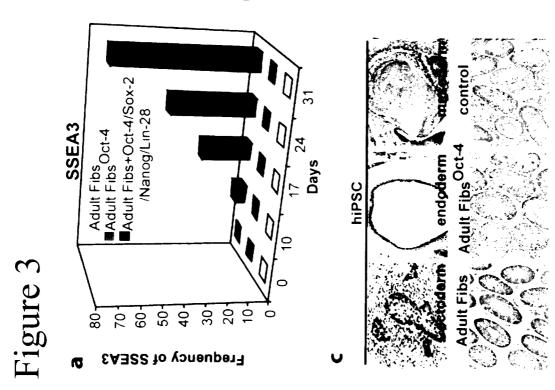
39. A use of the cells according to claim 38 for engraftment in a subject in need thereof.

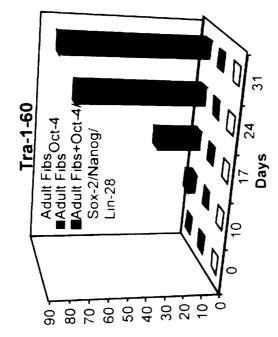

40. The use of claim 39 for autologous or non-autologous transplantation in a subject in need thereof.

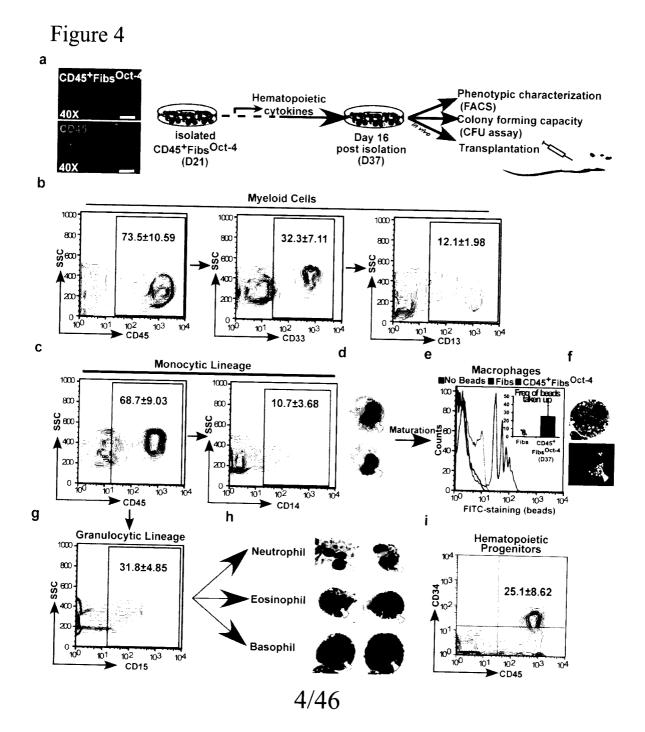

41. The use of claim 39 or 40, wherein the subject is a human.

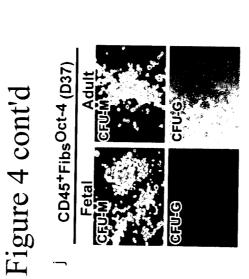

42. A use of the cells according to claim 38 as a source of induced pluripotent5 stem cells or cells differentiated therefrom.

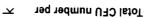
43. A method of screening induced pluripotent stem cells or cells differentiated therefrom comprising

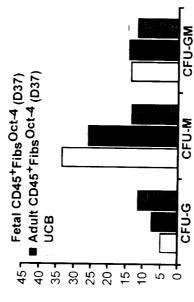

- a) preparing a culture of induced pluripotent stem cells by the method of any one of claims 31 to 37 or cells differentiated therefrom;
- b) treating the cells with a test agent or agents; and
- c) subjecting the treated cells to analysis.

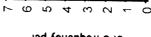


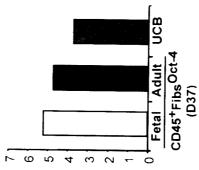


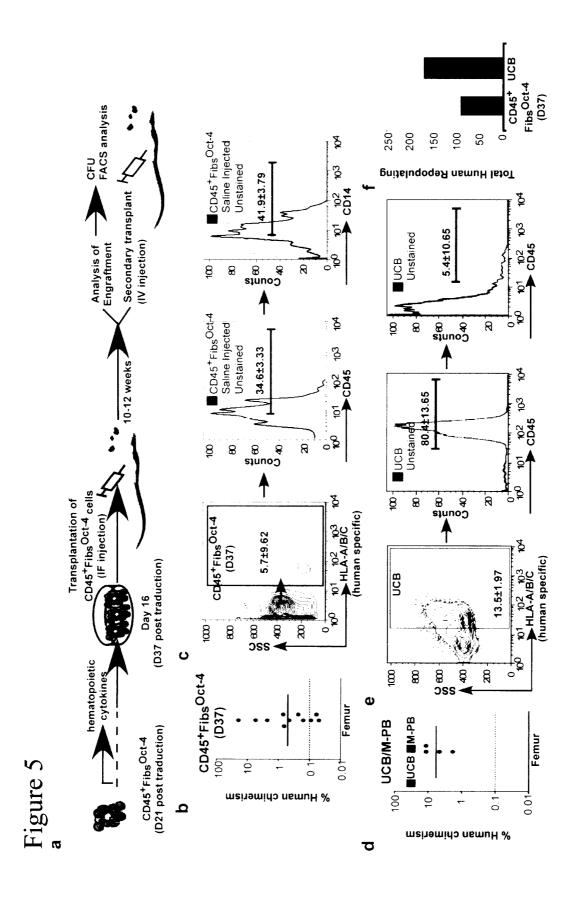


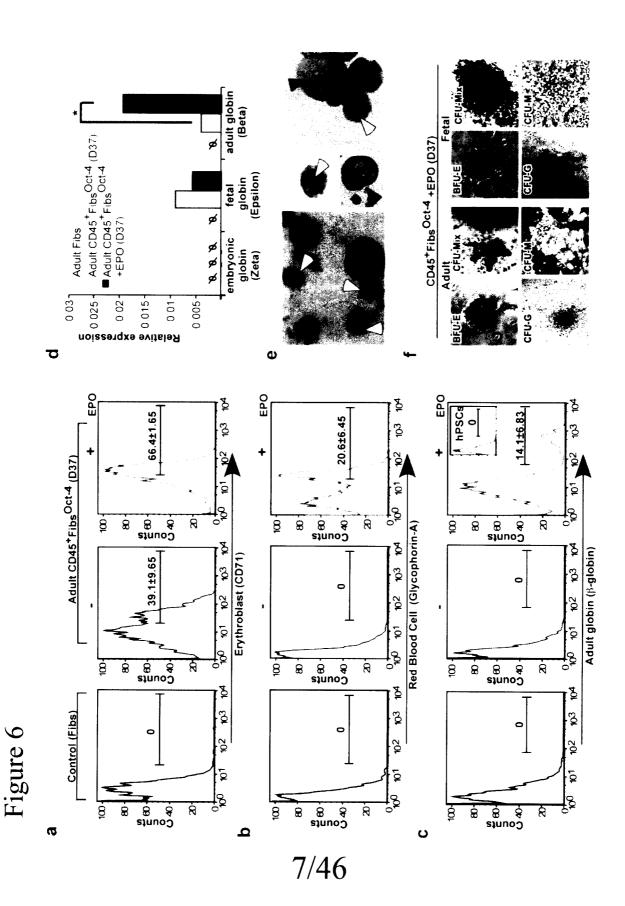



Frequency of Tra-1-60 **T**









CFU frequency per

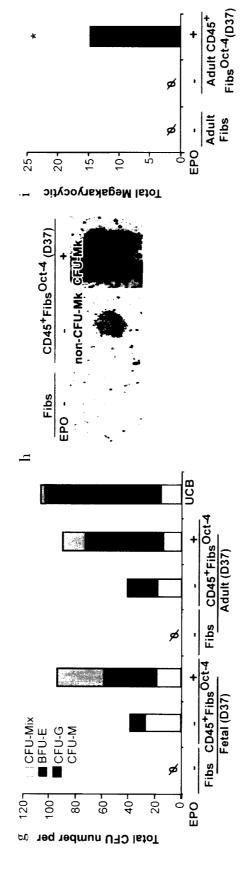
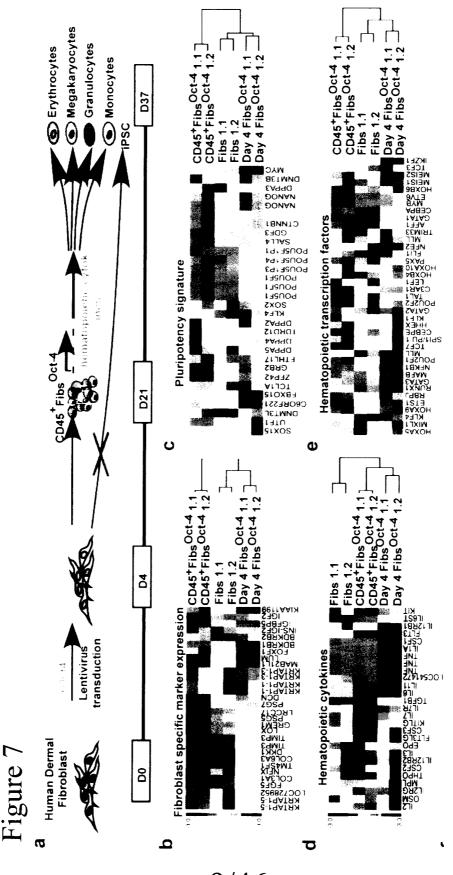
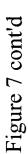
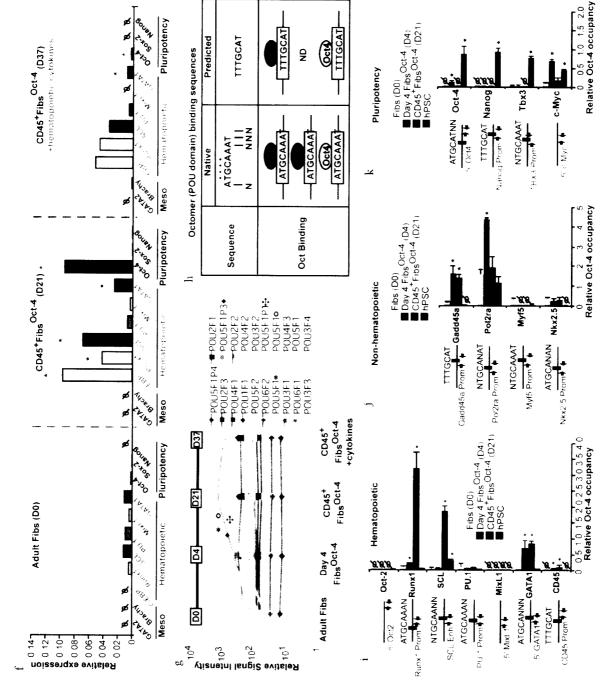
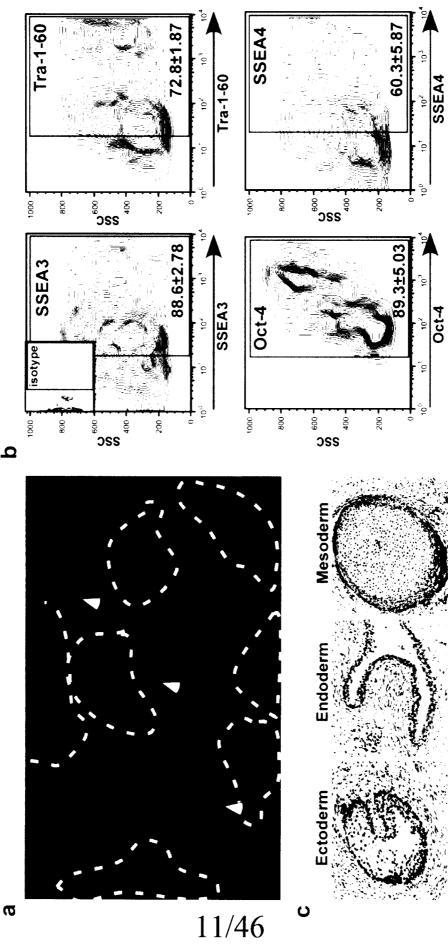
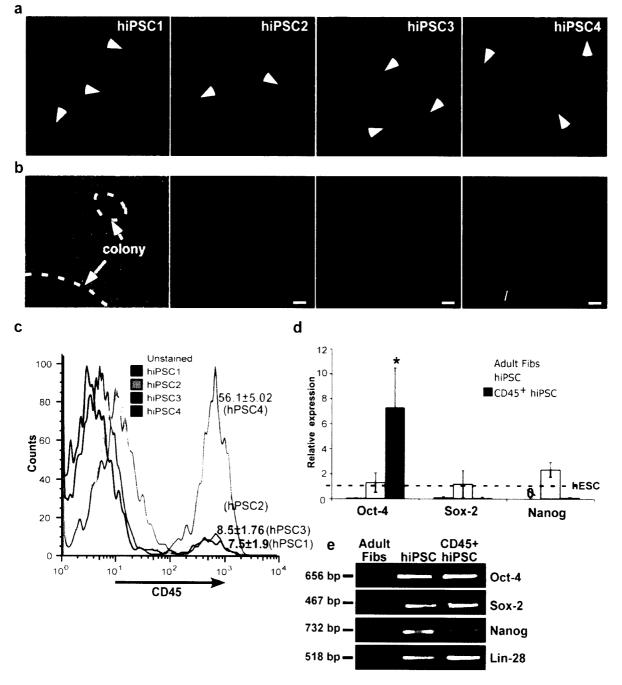
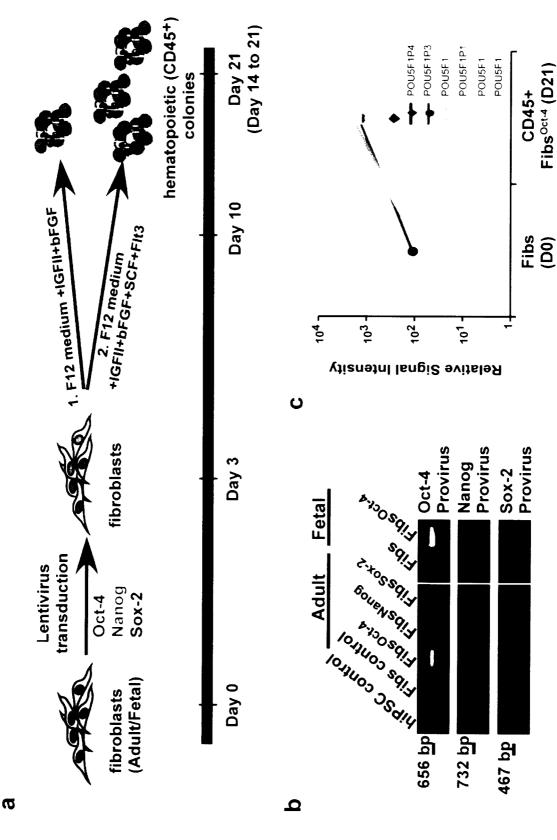
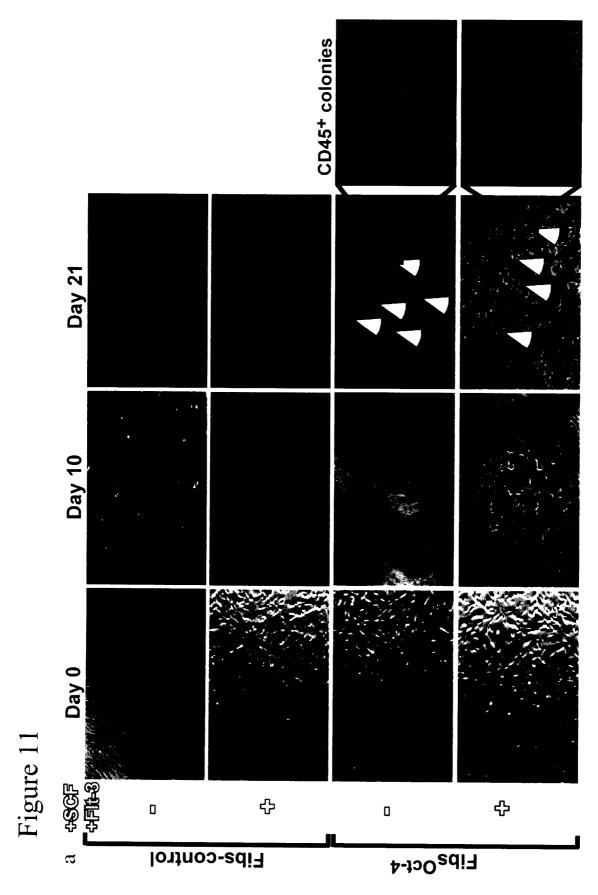
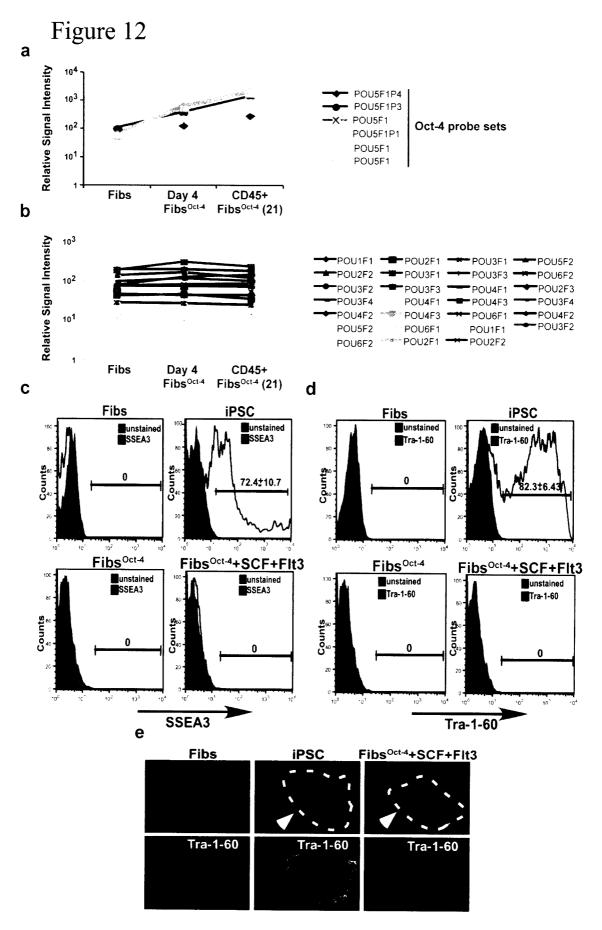






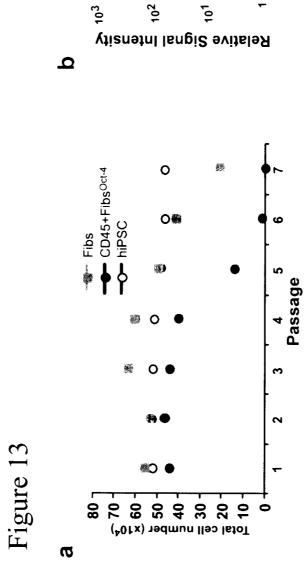
Figure 6 cont'd

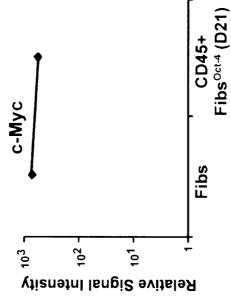


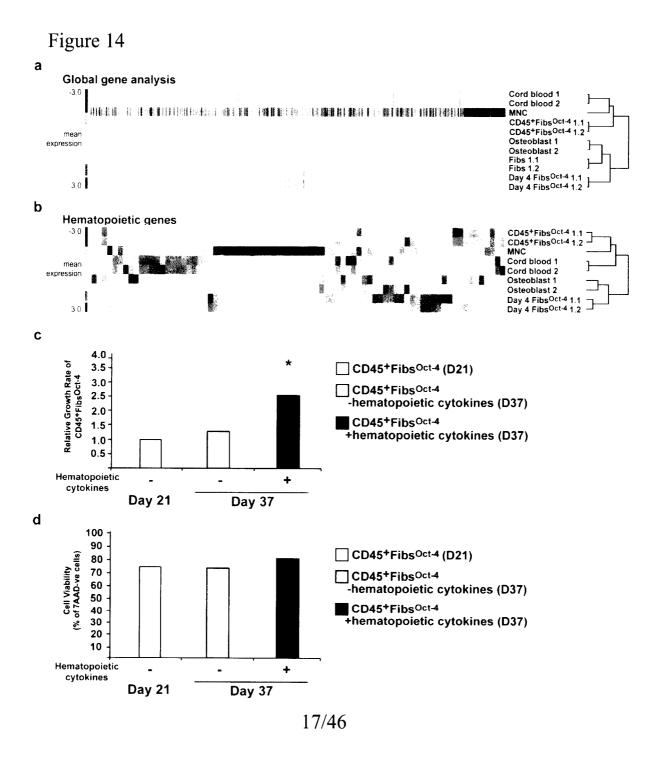


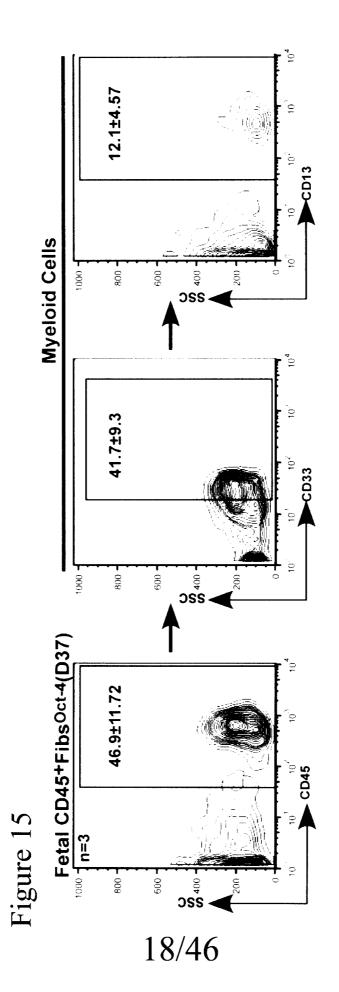


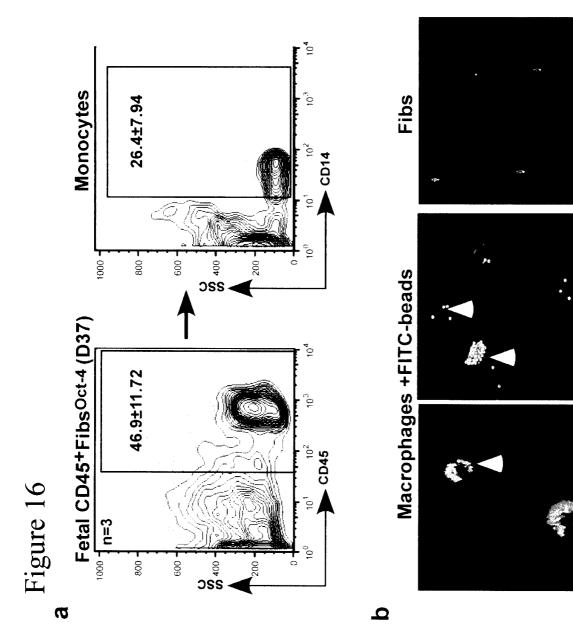


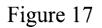


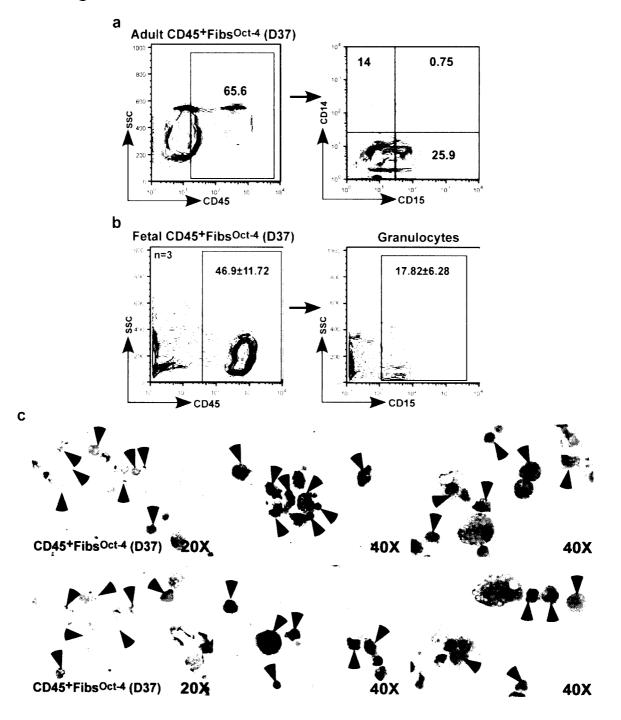


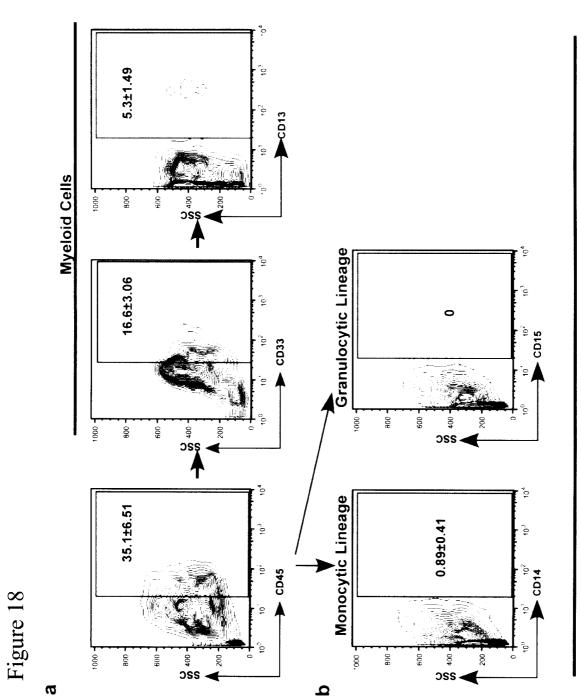


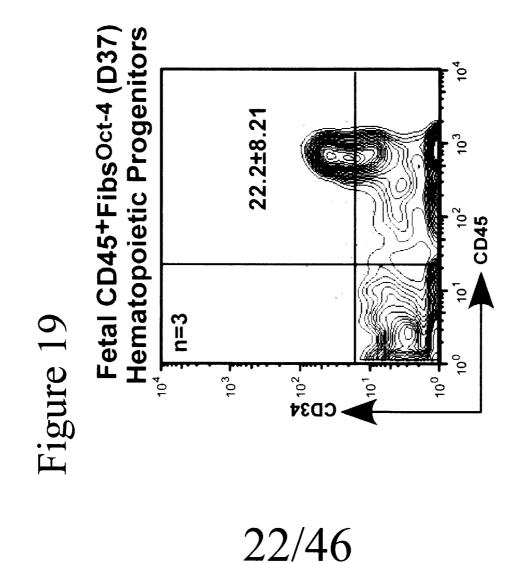


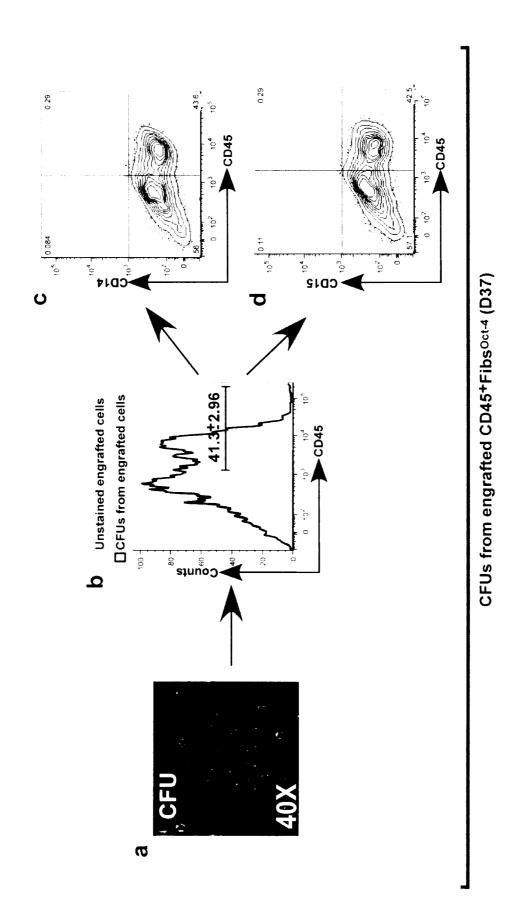




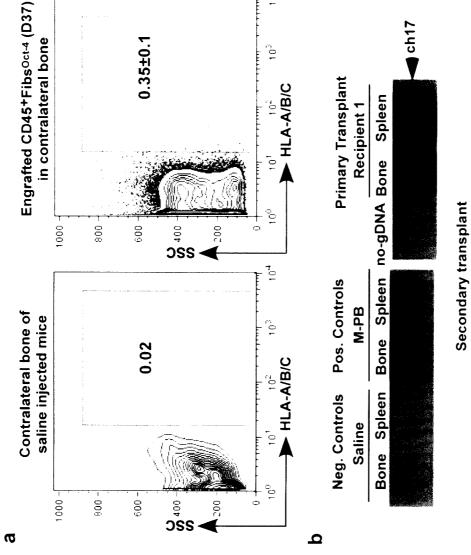


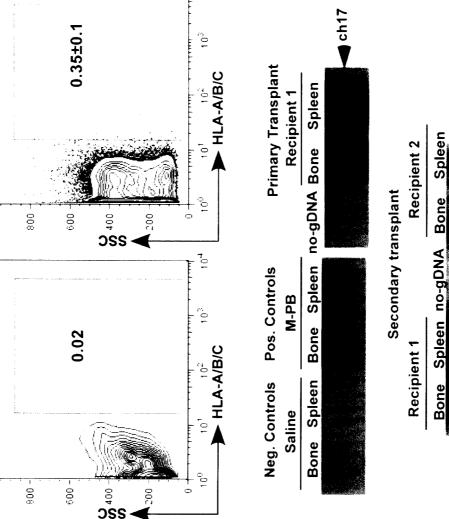






CD45⁺Fibs^{Oct-4} - hematopoietic cytokines (D37)

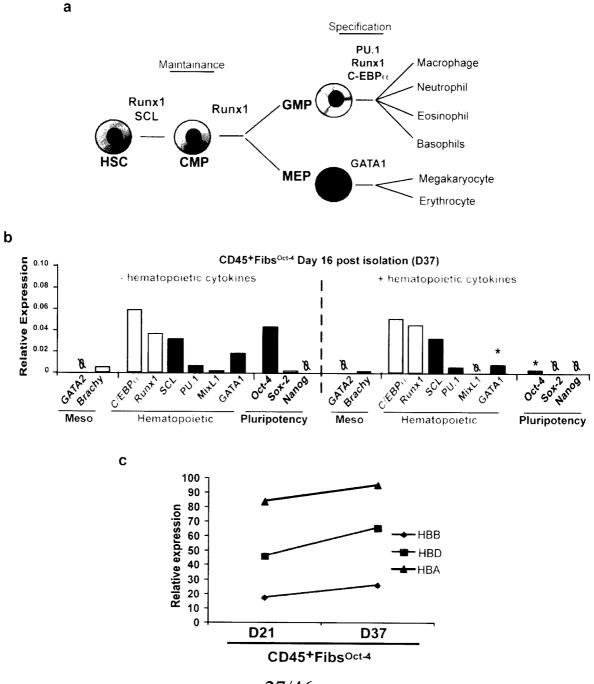


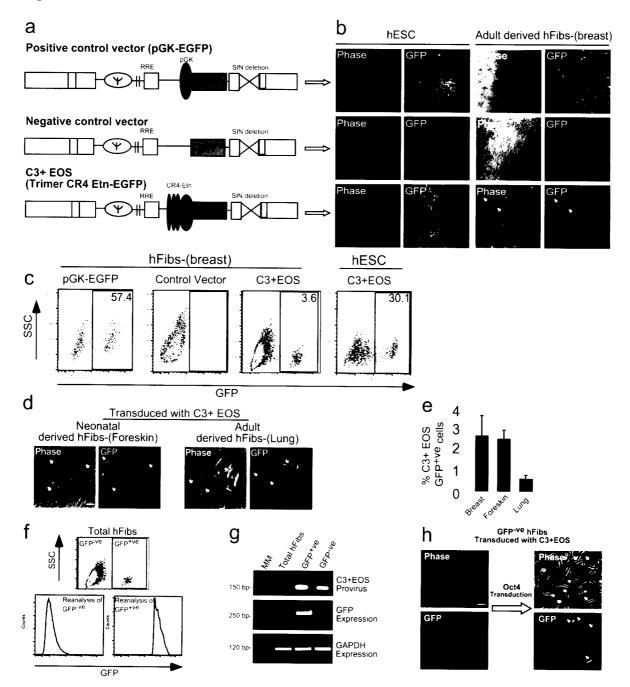

PCT/CA2010/001708

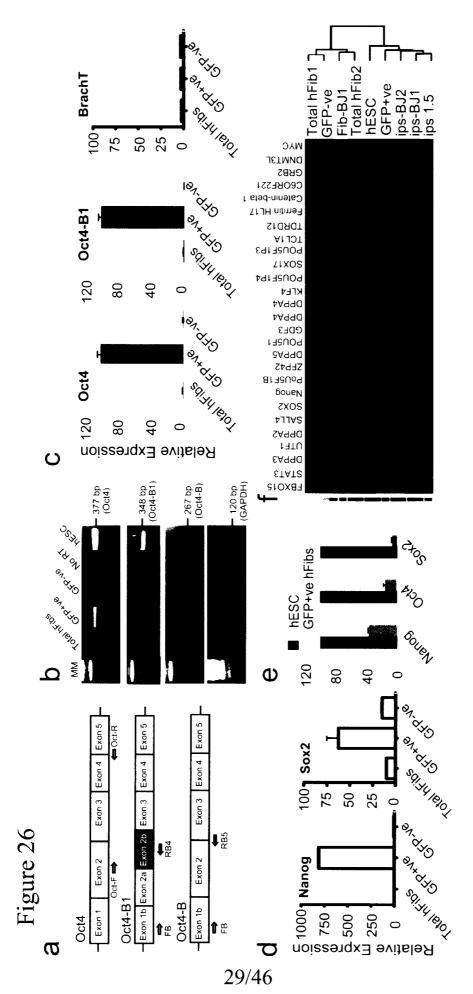
23/46

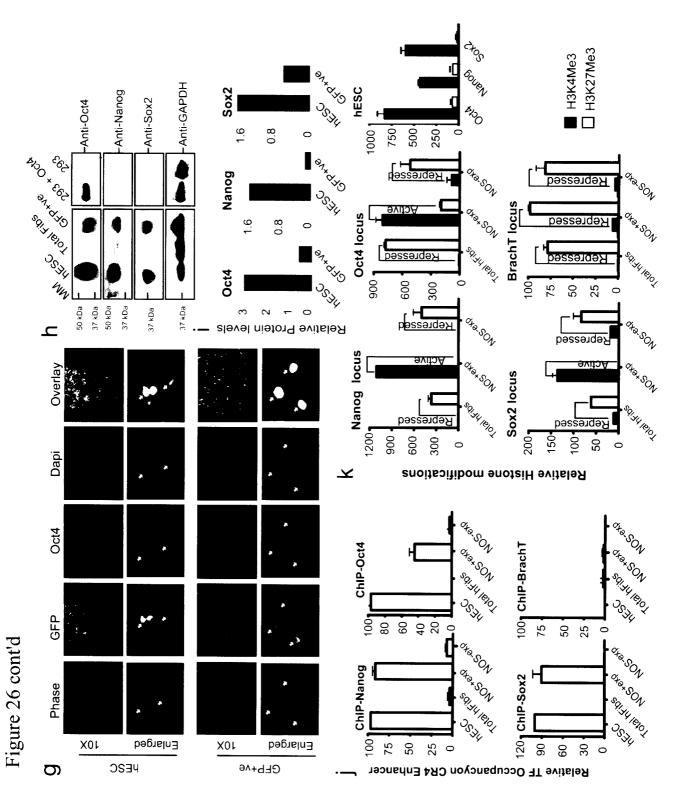


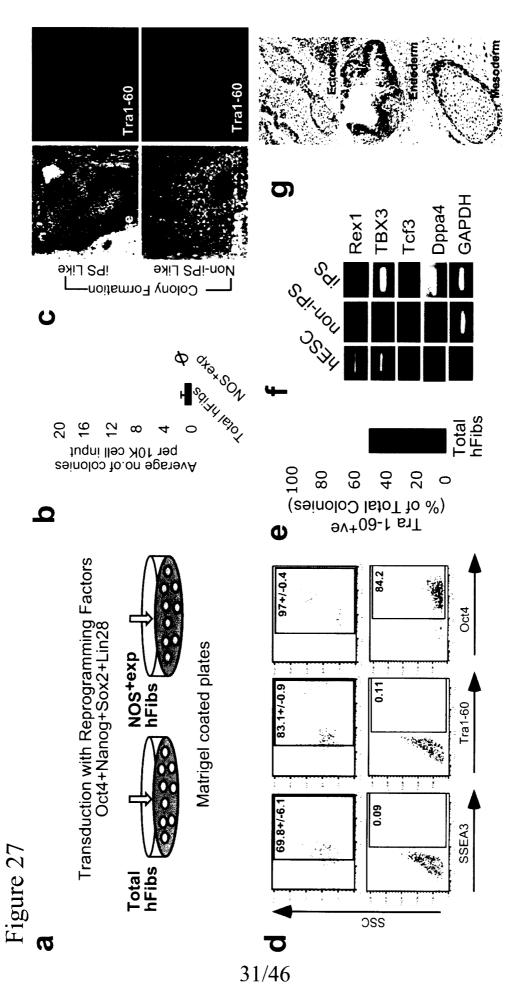
+0+

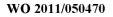

24/46

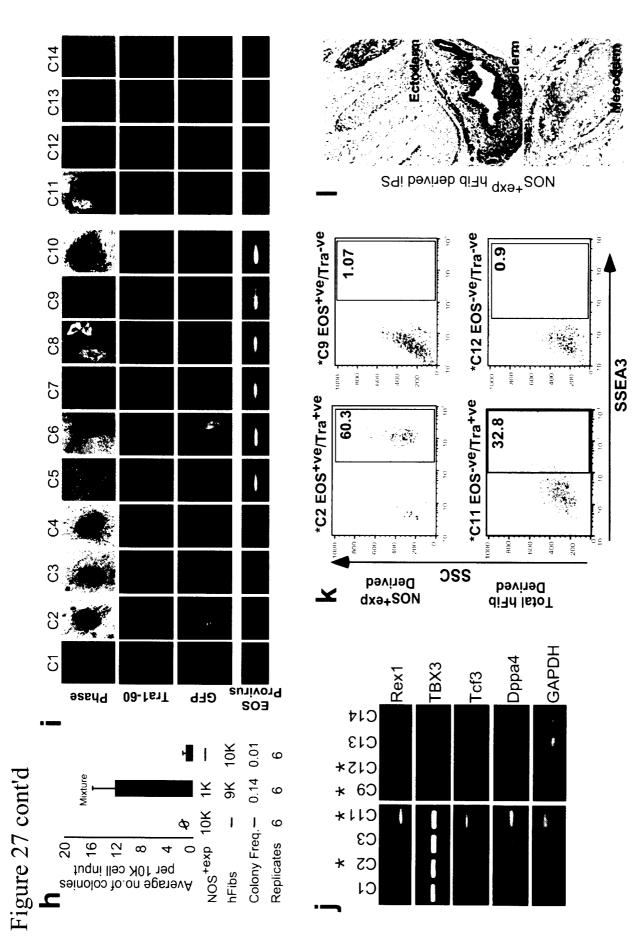

ch17

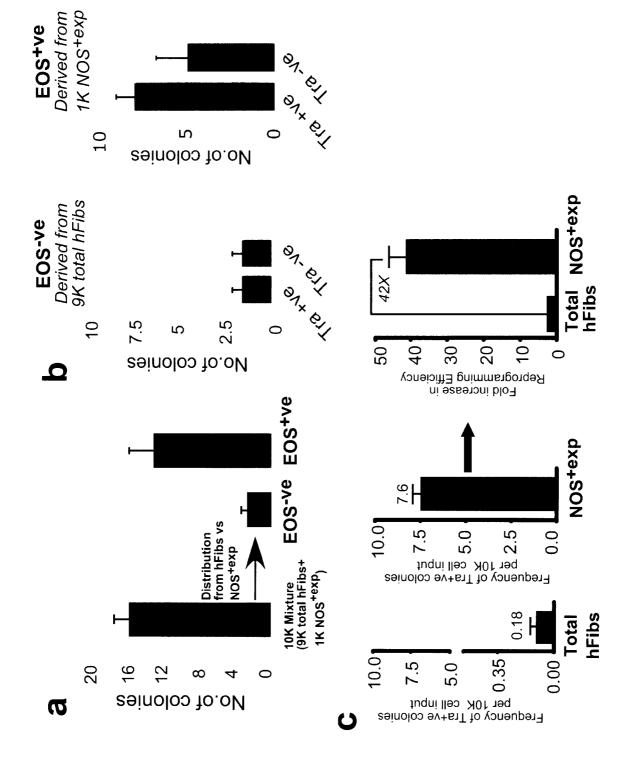


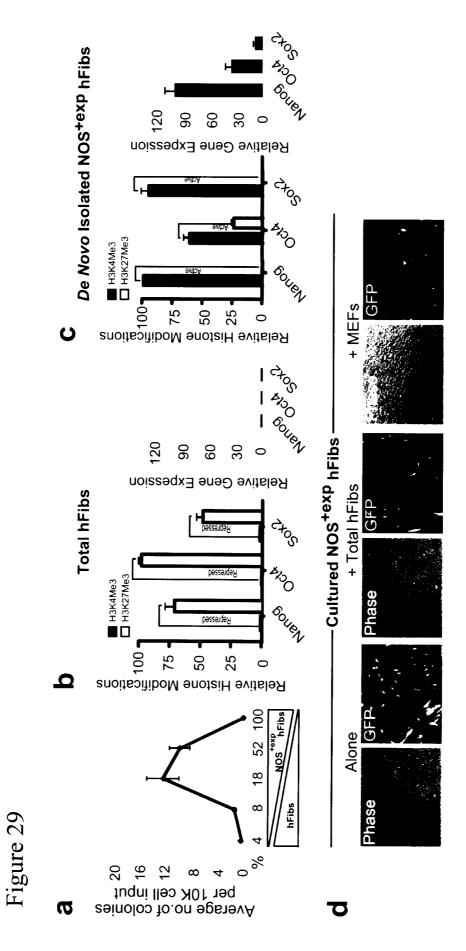

		HOXA5 RBPJ GATA3 HOXA9 PAX5 C3AR1 HOXA10 KLF4
	ω	AF1 AL1 AL1 AF1 MLL SP1 AF1 MEIS1 AF1 NZF1
bs (D0)	4 Fold change	MXL1
Fatigo analysis (Molecular function) Day 4 Fibs ^{0ct-4} (D4) vs. Fibs (D0)	3 Fold	← Pouzei ← MixL1 ← TRIM33 ← HHEX ← MLL ← ELI1 ← ELI1 ← EL14
y 4 Fibs ^{oct4}	2	CD45+ Fibs ^{ot1}
	Fibs (D0)	Day 4 Fibs ^{oct}
		(D0)
establishment of cellular localization nucleobase, nucleoside, nucleotide and nucleic acid transport regulation of cell cycle DNA damage response, signal transduction cytoskeleton organization and biogenesis DNA metabolic process RNA metabolic process regulation of cellular metabolic process cell cycle phase transcription	cytokinesis cytokinesis cellular localization establishment of RNA localization meiotic cell cycle response to DNA damage stimulus cell cycle process mitotic cell cycle regulation of metabolic process	ר אפואניעפ Signal Intensity ב
ient of cellul: ucleotide an regulatio oonse. signal ganization ar RNA meta RNA meta cellular meta cellular meta	cellul hment of RN t biogenesis me e to DNA dai cell mit mit	-WAFB -WAFB -WINX1 GATA1 CD45+ Fibs ^{ort4} (D21)
establishm nucleoside. n damage rest oskeleton or egulation of	establis tein complex respons regui	Herst and the second s
DNA Cyt	bonucleopro	
-		Relative Signal Intensity

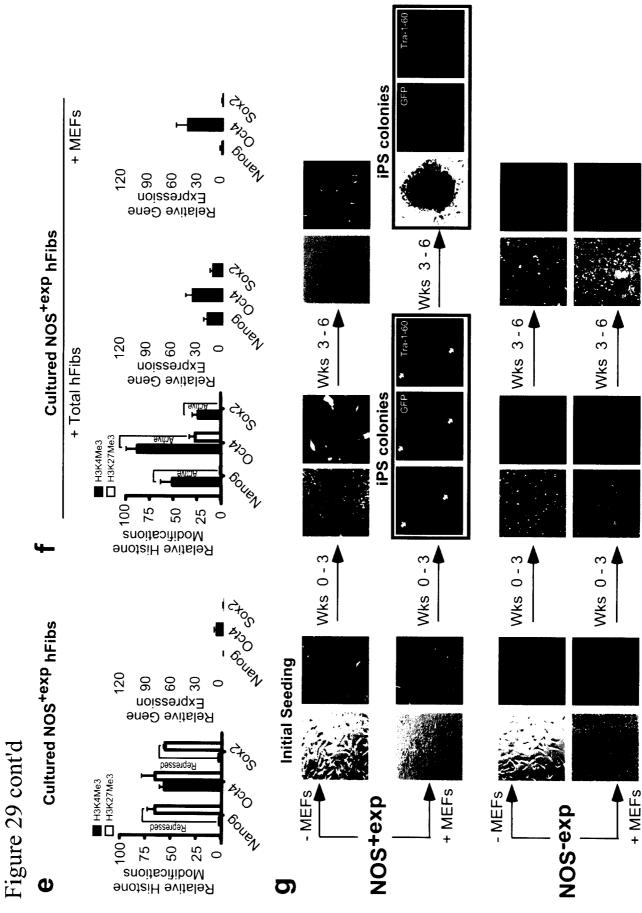


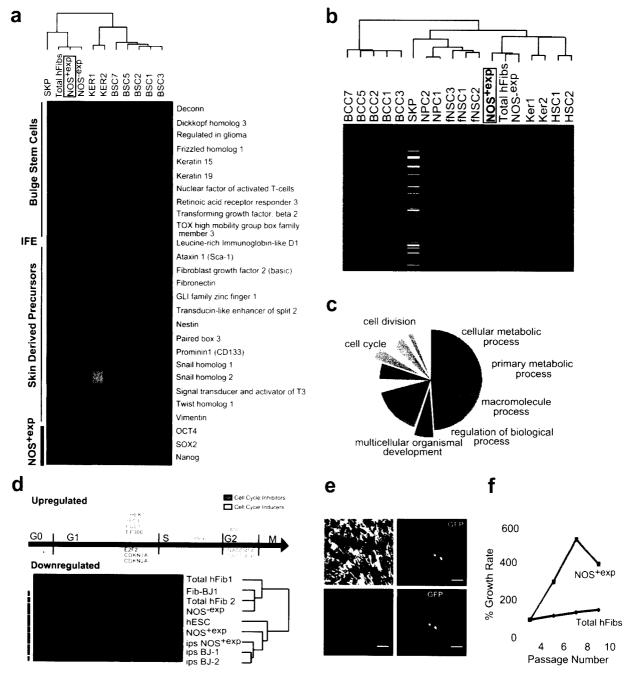




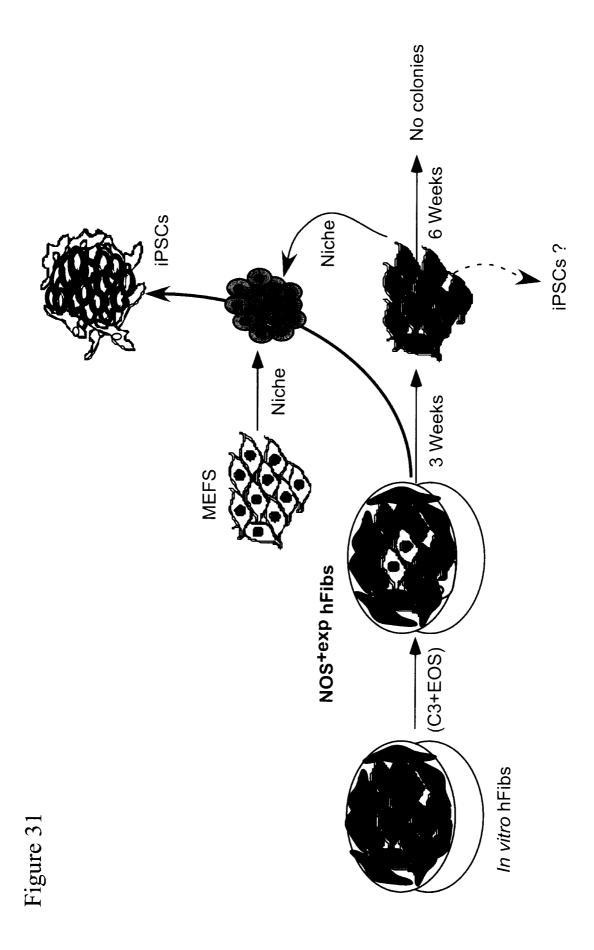
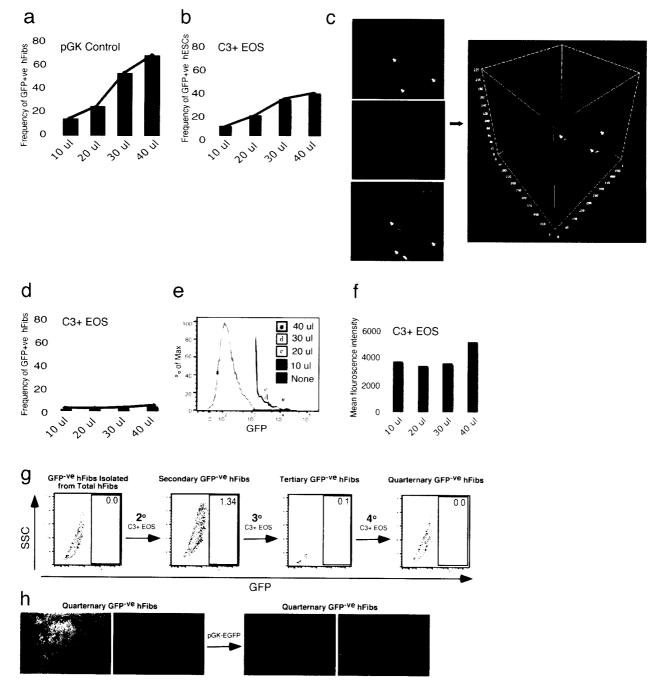
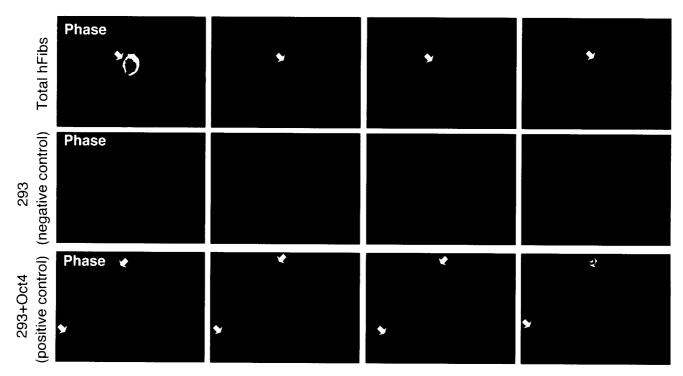


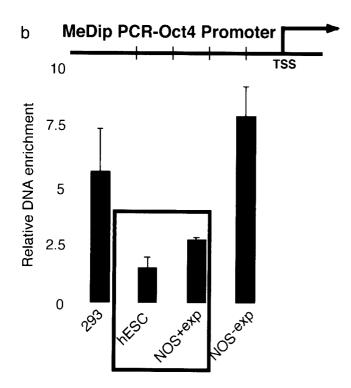


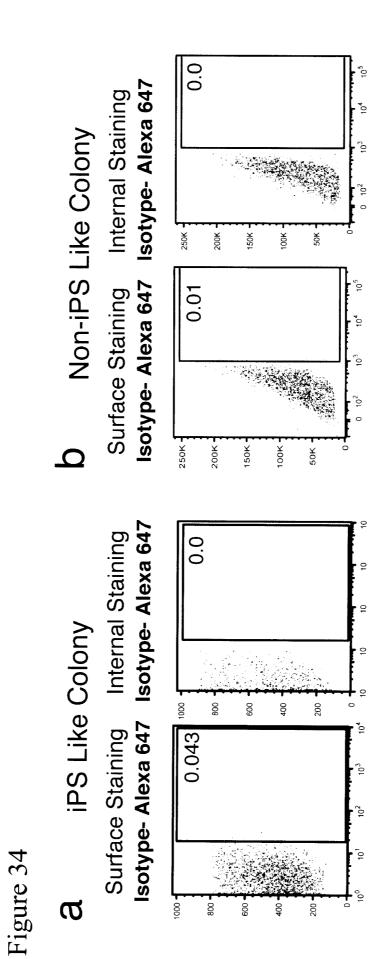


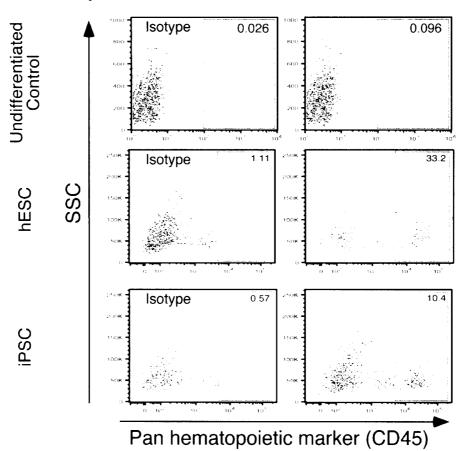


34/46

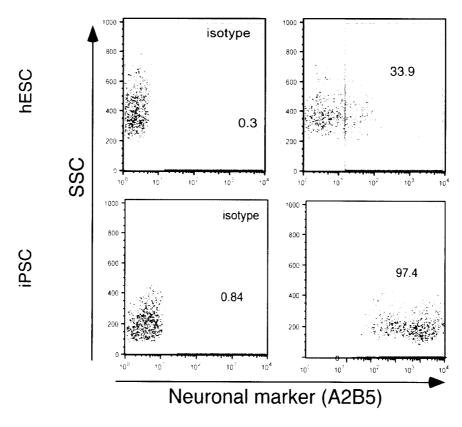




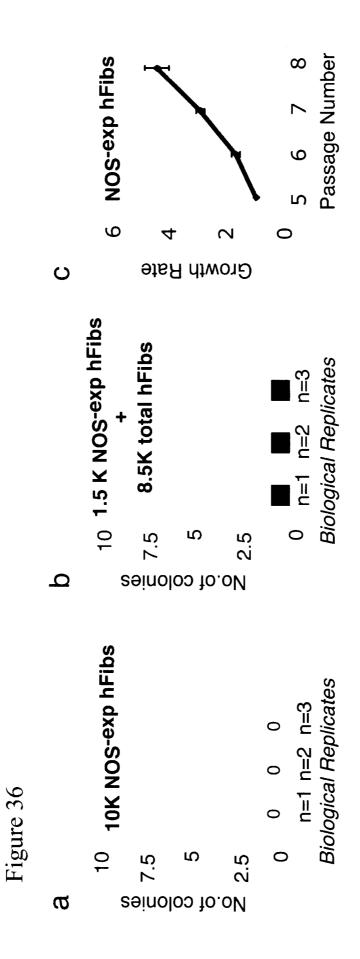

Figure 32



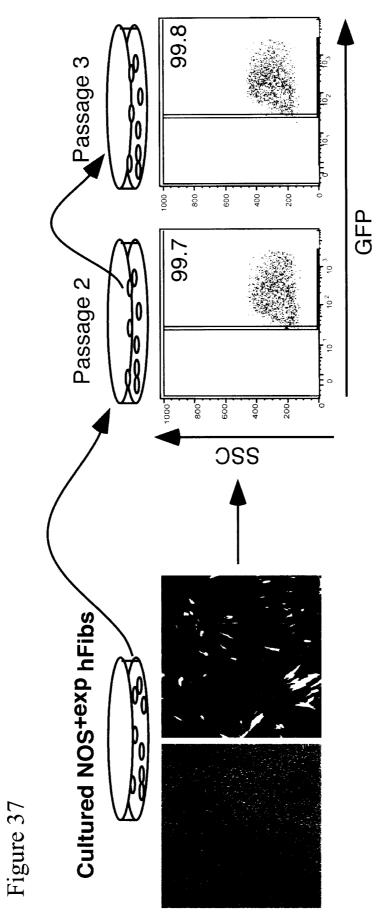


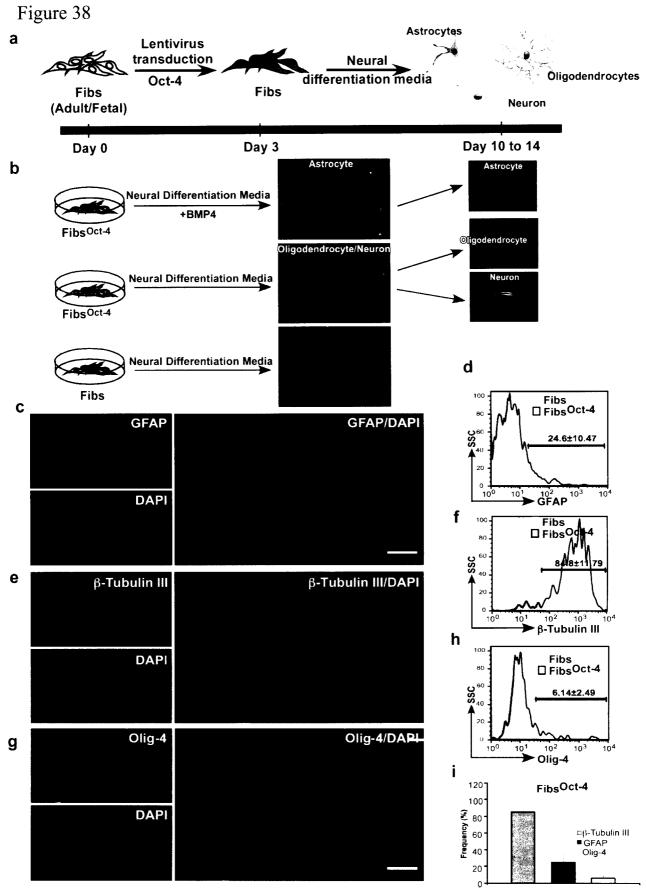
а

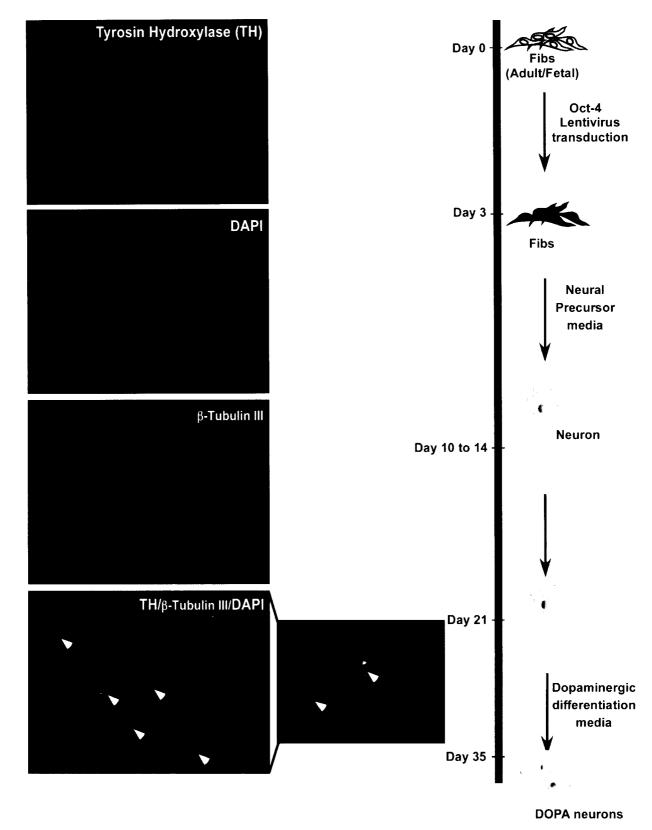


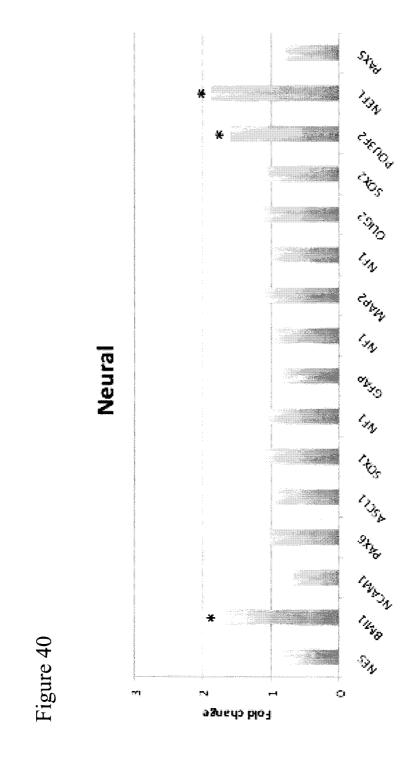


a Hematopoietic EB differentiation


b Neural EB differentiation




41/46



Г

IF <i>C12Q 1/68</i>	LASSIFICATION OF SUBJECT MATTER PC: <i>C12N 5/071</i> (2010.01) , <i>A61K 35/12</i> (2006.01) , <i>B</i> (2006.01) , <i>C12N 15/867</i> (2006.01) o International Patent Classification (IPC) or to both nation		, C12Q 1/02 (2006.01) ,
B. FIELDS	SEARCHED		
C12N 5/07	ocumentation searched (classification system followed by a 71 (2010.01) , A61K 35/12 (2006.01) , C12N 15/00 867 (2006.01)	-	(2006.01) , <i>C12Q 1/68</i> (2006.01) ,
Documentati	ion searched other than minimum documentation to the ext	tent that such documents a	are included in the fields searched
Canadian Pa	latabase(s) consulted during the international search (name atent Database, TotalPatent, Scopus, NCBI PubMed databa otent; progenitor cells; differentiation; fibroblast; hematopo	se, Esp@cenet, Google Pa	atents. Key Words: POU domain; OCT
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category'*	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
Х	TAKA HA SHI, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 30 November 2007 (30-1 1-2007); Volume 131 (5), pages 861-872. ISSN: 0092-8674. Whole document.		1-43
А		RNIG, M. et al. <i>In vitro</i> reprogramming of fibroblasts into a pluripotent ES- like state. Nature. 19 July 2007 (19-07-2007); Volume 448 (7151), pages 324. ISSN: 0028-0836.	
А		EL, M. et al. Advances in reprogramming somatic cells to induced potent stem cells. Stem Cell Reviews. September 2010 (09-2010); Volume , pages 367-380. ISSN: 1550-8943.	
P, A	WO 2007/064090 A1 (KANG, K-S.) 7 June 2007 (07-06-2	07/064090 A1 (KANG, K-S.) 7 June 2007 (07-06-2007).	
[] Further	documents are listed in the continuation of Box C.	[X] See patent family	y annex.
* Special categories of cited documents : "A" document defining the general state of the art which is not considered to be of exclusional exclusions.		'T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention	
to be of particular relevance E " earlier application or patent but published on or after the international filing date		⁵ X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone	
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art	
"P" docum	nent referring to an oral disclosure, use, exhibition or other means nent published prior to the international filing date but later than iority date claimed	"&" document member of the	
Date of the actual completion of the international search		Date of mailing of the international search report	
10 February 2011 (10-02-2011)		4 March 201 1 (04-03-201 1)	
Canadian In Place du Po 50 Victoria	nailing address of the ISA/CA ntellectual Property Office rtage I, CI 14 - 1st Floor, Box PCT Street Quebec K1A 0C9	Authorized officer Adnan Ali, Ph.D. (8	19) 934-7930
	o.: 001-819-953-2476 SA/210 (second sheet) (July 2009)		Page 3 of

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

Box No. I Nucleotide and/or amino acid sequence(s) (Continuation of item l.c of the first sheet) 1. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search was carried out on the basis of a sequence listing filed or furnished:

- a. (means)
 - [X] on paper
 - [X] in electronic form
- b. (time)
 - [X] in the international application as filed
 - [X] together with the international application in electronic form
 - [] subsequently to this Authority for the purposes of search
- 2. [] In addition, in the case that more than one version or copy of a sequence listing has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that in the application as filed or does not go beyond the application as filed, as appropriate, were furnished.
- 3. Additional comments :

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No. PCT/CA20 10/00 1708

Patent Document	Publication	Patent Family	Publication
Cited in Search Report	Date	Member(s)	Date
WO 2007/064090 A 1	07 June 2007 (07-06-2007)	CN101331225A EP1954803A1 EP1954803A4 JP2009517079T KR100697326B1 US2009305413A1	24 December 2008 (24-12-2008) 13 August 2008 (13-08-2008) 25 March 2009 (25-03-2009) 30 April 2009 (30-04-2009) 20 March 2007 (20-03-2007) 10 December 2009 (10-12-2009)