(43) International Publication Date 14 June 2018 (14.06.2018)

||
(10) International Publication Number WO 2018/107100 Al

(51) International Patent Classification:	
C07D 401/14 (2006.01)	A61K 31/455 (2006.01)
C07D 401/04 (2006.01)	A61P 11/00 (2006.01)
C07D 231/20 (2006.01)	

(21) International Application Number:

PCT/US20 17/065425
(22) International Filing Date:

08 December 2017 (08.12.2017)
(25) Filing Language:

English
(26) Publication Langiuage:

English
(30) Priority Data:

62/432,537 09 December 2016 (09.12.2016) US
(71) Applicant: VERTEX PHARMACEUTICALS INCOR $ᄀ$ PORATED [US/US]; 50 Northern Avenue, Boston, MA 02210 (US).
(72) Inventors: ABELA, Alexander, Russell; 50 Northern Avenue, Boston, MA 02210 (US). ALCACIO, Timothy; 50 Northern Avenue, Boston, MA 02210 (US). ANDERSON, Corey; 50 Northern Avenue, Boston, MA 02210 (US). ANGELL, Paul, Timothy; 50 Northern Avenue, Boston, MA 02210 (US). BAEK, Minson; 50 Norther Anenue, Boston, MA 02210 (US). CLEMENS, Jeremy, J.; 50 Northern Avenue, Boston, MA 02210 (US). CLEVE LAND, Thomas; 50 Northern Avenue, Boston, MA 02210 (US). FERRIS, Lori, Ann; 50 Northern Avenue, Boston, MA 02210 (US). GROOTENHUIS, Peter Diederik, Jan; 50 Northern Avenue, Boston, MA 02210 (US). GROSS, Raymond, Stanley; 50 Northern Avenue, Boston, MA 02210 (US). GULEVICH, Anton; 50 Northern Avenue, Boston, MA 02210 (US). HADIDA RUAH, Sara, Sabina; 50 Northern Avenue, Boston, MA 02210 (US). HSIA, Clara, Kuang-Ju; 50 Northern Avenue, Boston, MA 02210 (US). HUGHES, Robert, M.; 50 Northern Avenue, Boston, MA 02210 (US). JOSHI, Pramod, Virupax; 13023 Old West Avenue, San Diego, CA 92129 (US). KANG, Ping; 50 Northern Avenue, Boston, MA 02210
(US). KESHAVARZ-SHOKRI, Ali; 50 Northern Avenue, Boston, MA 02210 (US). KHATUYA, Haripada; 50 Northern Avenue, Boston, MA 02210 (US). KRENITSKY, Paul, John; 50 Northern Avenue, Boston, MA 02210 (US). MCCARTNEY, Jason; 50 Northern Avenue, Boston, MA 02210 (US). MILLER, Mark, Thomas; 50 Northern Avenue, Boston, MA 02210 (US). PARASELLI, Prasuna; 50 Northern Avenue, Boston, MA 02210 (US). PIERRE, Fabrice Jean, Denis; 50 Northern Avenue, Boston, MA 02210 (US). SHI, Yi; 50 Northern Avenue, Boston, MA 02210 (US). SHRESTHA, Muna; 50 Northern Avenue, Boston, MA 02210 (US). SIESEL, David, Andrew; 50 Northern Avenue, Boston, MA 02210 (US). STAVROPOULOS, Kathy; 50 Northern Avenue, Boston, MA 02210 (US). TERMIN, Andreas, P.; 50 Northern Avenue, Boston, MA 02210 (US). UY, Johnny; 50 Northern Avenue, Boston, MA 02210 (US). VAN GOOR, Fredrick, F.; 50 Northern Avenue, Boston, MA 02210 (US). YOUNG, Tomothy, John; 50 Northern Avenue, Boston, MA 02210 (US). ZHOU, Jinglan; 50 Northern Avenue, Boston, MA 02210 (US).
(74) Agent: MACALPINE, Jill, K.et al; Finnegan, Henderson, Farabow, Garrett \& Dunner, LLP, 901 New York Avenue, NW, Washington, DC 20001 (US).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, $\mathrm{AO}, \mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BH}, \mathrm{BN}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}, \mathrm{BZ}$, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,

(57) Abstract: Compounds of Formula (I) pharmaceutically acceptable salts thereof, deuterated derivatives of any of the foregoing, and metabolites of any of the foregoing are disclosed. Pharmaceutical compositions comprising the same, methods of treating cystic fibrosis using the same, and methods for making the same are also disclosed. Also disclosed are solid state forms of Compound 1 and salts and solvates thereof.

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))

Modulator of Cystic Fibrosis Transmembrane Conductance Regulator, Pharmaceutical Compositions, Methods of Treatment, and Process for Making the Modulator

[0001] Disclosed herein is a modulator of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), pharmaceutical compositions containing the modulator, methods of treatment of cystic fibrosis, and a process for making the modulator.
[0002] Cystic fibrosis (CF) is a recessive genetic disease that affects approximately 70,000 children and adults worldwide. Despite progress in the treatment of CF, there is no cure.
[0003] In patients with CF, mutations in CFTR endogenously expressed in respiratory epithelia lead to reduced apical anion secretion causing an imbalance in ion and fluid transport. The resulting decrease in anion transport contributes to enhanced mucus accumulation in the lung and accompanying microbial infections that ultimately cause death in CF patients. In addition to respiratory disease, CF patients typically suffer from gastrointestinal problems and pancreatic insufficiency that, if left untreated, result in death. In addition, the majority of males with cystic fibrosis are infertile, and fertility is reduced among females with cystic fibrosis.
[0004] Sequence analysis of the CFTR gene has revealed a variety of disease causing mutations (Cutting, G. R.et al. (1990) Nature 346:366-369; Dean, M. et al. (1990) Cell 61:863:870; and Kerem, B-S. et al. (1989) Science 245:1073-1080; Kerem, B-S et al. (1990) Proc. Natl. Acad. Sci. USA 87:8447-8451). To date, greater than 2000 mutations in the CF gene have been identified; currently, the CFTR2 database contains information on only 322 of these identified mutations, with sufficient evidence to define 281 mutations as disease causing. The most prevalent disease-causing mutation is a deletion of phenylalanine at position 508 of the CFTR amino acid sequence, and is commonly referred to as the F508del mutation. This mutation occurs in approximately 70% of the cases of cystic fibrosis and is associated with severe disease.
[0005] The deletion of residue 508 in CFTR prevents the nascent protein from folding correctly. This results in the inability of the mutant protein to exit the endoplasmic reticulum (ER) and traffic to the plasma membrane. As a result, the number of CFTR channels for anion transport present in the membrane is far less than
observed in cells expressing wild-type CFTR, i.e., CFTR having no mutations. In addition to impaired trafficking, the mutation results in defective channel gating. Together, the reduced number of channels in the membrane and the defective gating lead to reduced anion and fluid transport across epithelia. (Quinton, P. M. (1990), FASEB J. 4: 2709-2727). The channels that are defective because of the F508del mutation are still functional, albeit less functional than wild-type CFTR channels. (Dalemans et al. (1991), Nature Lond. 354: 526-528; Pasyk and Foskett (1995), J. Cell. Biochem. 270: 12347-50). In addition to F508del, other disease causing mutations in CFTR that result in defective trafficking, synthesis, and/or channel gating could be upor down-regulated to alter anion secretion and modify disease progression and/or severity.
[0006] CFTR is a cAMP/ATP-mediated anion channel that is expressed in a variety of cell types, including absorptive and secretory epithelia cells, where it regulates anion flux across the membrane, as well as the activity of other ion channels and proteins. In epithelial cells, normal functioning of CFTR is critical for the maintenance of electrolyte transport throughout the body, including respiratory and digestive tissue. CFTR is composed of approximately 1480 amino acids that encode a protein which is made up of a tandem repeat of transmembrane domains, each containing six transmembrane helices and a nucleotide binding domain. The two transmembrane domains are linked by a large, polar, regulatory (R)-domain with multiple phosphorylation sites that regulate channel activity and cellular trafficking.
[0007] Chloride transport takes place by the coordinated activity of ENaC and CFTR present on the apical membrane and the $\mathrm{Na}^{+}-\mathrm{K}^{+}$-ATPase pump and CI- channels expressed on the basolateral surface of the cell. Secondary active transport of chloride from the luminal side leads to the accumulation of intracellular chloride, which can then passively leave the cell via CI^{-}channels, resulting in a vectorial transport. Arrangement of $\mathrm{Na}^{+} / 2 \mathrm{C} 17 \mathrm{~K}^{+}$co-transporter, $\mathrm{Na}^{+}-\mathrm{K}^{+}$-ATPase pump and the basolateral membrane K^{+} channels on the basolateral surface and CFTR on the luminal side coordinate the secretion of chloride via CFTR on the luminal side. Because water is probably never actively transported itself, its flow across epithelia depends on tiny transepithelial osmotic gradients generated by the bulk flow of sodium and chloride.
[0008] Accordingly, there is a need for novel treatments of CFTR mediated diseases.
[0009] Disclosed herein are novel compounds, including compounds of Formulae (I)-(VI) and pharmaceutically acceptable salts thereof. For example, compounds of Formula (I) can be depicted as:

(I),
a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing,
wherein:

- one of Y^{1} and Y^{2} is N and the other is CH ;
- X is chosen from O, NH, and $\mathrm{N}(\mathrm{Ci}-\mathrm{C} 4$ alkyl) groups;
$-R^{1}$ is- $\left(C\left(R^{2}\right)_{2}\right)_{k}-\mathbf{0}-\left(\mathbf{C}\left(\mathbf{R}^{2}\right)_{2}\right)_{m} R^{7}$,
- each \mathbf{R}^{2} is independently chosen from hydrogen; halogens; cyano; hydroxy; $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkoxy groups; and $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and C3-5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups, halogenated $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups, and halogens;
- each $\mathbf{R}^{\mathbf{3}}$ is independently chosen from $\mathrm{C}_{1-\mathrm{C} 4}$ alkyl groups optionally substituted with one or more hydroxy groups, or optionally two geminal $\mathbf{R}^{\mathbf{3}}$, together with the carbon atom to which they are attached, form a C3-4 cycloalkyl;
- each $\mathbf{R}^{\mathbf{4}}$ is independently chosen from halogens;
- $\mathbf{R}^{\mathbf{5}}$ is chosen from hydrogen and C1-C4 alkyl groups;
- each $\mathbf{R}^{\mathbf{6}}$ is independently chosen from halogens, cyano, hydroxy,
hydroxymethyl, $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkoxy groups, $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups, and halogenated $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups;
- $\mathbf{R}^{\mathbf{7}}$ is chosen from hydrogen; halogens; cyano; C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy; and C3-C10 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

```
-k is 0 or 1 ;
- r is 0 or 1 ;
-m is \(0,1,2\), or 3 ;
- p is 0,1 , or 2 ; and
- q is \(\mathrm{o}, 1,2,3,4,5,6,7\), or 8 .
```

[0010] Also disclosed herein are pharmaceutical compositions comprising at least one of the novel compounds disclosed herein and/or at least one pharmaceutically acceptable salt thereof, which compositions may further include at least one additional active pharmaceutical ingredient and/or at least one carrier. Also disclosed are methods of treating the CFTR-mediated disease cystic fibrosis comprising administering at least one of the novel compounds disclosed herein and/or at least one pharmaceutically acceptable salt thereof, optionally as part of a pharmaceutical composition comprising at least one additional component, to a subject in need thereof.
[0011] Also disclosed are methods of treating the CFTR-mediated disease cystic fibrosis comprising administering at least one of the novel compounds disclosed herein and/or at least one pharmaceutically acceptable salt thereof, (i?)-1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)-N-(l-(2,3-dihydroxypropyl)-6-fluoro-2-(l-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl)cyclopropanecarboxamide (Compound II), andN-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3carboxamide (Compound III), optionally as part of at least one pharmaceutical composition comprising at least one additional component, to a patient in need thereof. [0012] Also disclosed herein is Compound 1:

[0013] N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]-2-[(4^-2,2,4-†jimethylpyrrolidin-l-yl]pyridine-3-carboxamide.
[0014] Also disclosed herein are pharmaceutical compositions of Compound 1, and forms thereof, which may include at least one additional active pharmaceutical ingredient and at least one carrier, and methods of treating the CFTR-mediated disease cystic fibrosis, comprising administering Compound 1 to a subject in need thereof. A process of making Compound 1 is also disclosed.

[0015] Brief Description of the Drawings

[0016] FIG. 1 shows the structures of non-limiting examples of novel compounds disclosed herein.
[0017] FIG. 2 is an XRPD of Form A of Compound 1.
[0018] FIG. 3 is an experimental XRPD of Form A of Compound 1 (top) compared to a calculated XRD (bottom), which is calculated from the single crystal data.
[0019] FIG. 4 is an overlay of the experimental and calculated XRPD of Form A of Compound 1 from FIG. 3 .
[0020] FIG. 5 is an XRPD of a spray dried dispersion (SDD) of $50 \mathrm{wt} \%$ Compound 1 with HPMCAS-HG.
[0021] FIG. 6 is a MDSC spectrum of a SDD of $50 \mathrm{wt} \%$ Compound 1 with HPMCAS-HG.
[0022] FIG. 7 is a representative list of CFTR mutations.
[0023] FIG. 8 is a solid state Carbon-13 NMR spectrum of Form A of Compound 1, with MAS spinning at 12.5 kHz , referenced against adamantane 29.5 ppm , at 275 K . The spectrum was taken on a Bruker 400MHz WB SSNMR; BH085908; asset V019431 (console), V01 5741 (magnet).
[0024] FIG. 9 is a solid state Fluorine- 19 NMR spectrum of Form A of Compound 1, with MAS spinning at 12.5 kHz , referenced against adamantane 29.5 ppm , at 275 K . The spectrum was taken on a Bruker 400MHz WB SSNMR; BH085908; asset V019431 (console), V01 5741 (magnet).
[0025] FIG. 10 shows a ball and stick plot of crystalline Form A of Compound 1.
[0026] FIG. 11 shows a TGA plot of crystalline Form A of Compound 1.
[0027] FIG. 12 shows a a dynamic vapor sorption (DVS) plot of crystalline Form
A of Compound 1.
[0030] FIG. 13 shows an X-ray powder diffractogram of crystalline Form M of Compound 1.
[0031] FIG. 14 shows an X-ray powder diffractogram of crystalline Form E of Compound 1.
[0032] FIG. 15 shows an X-ray powder diffractogram of crystalline Form X of a potassium salt of Compound 1 .
[0033] FIG. 16 shows an X-ray powder diffractogram of crystalline Form Y of a sodium salt of Compound 1.
[0034] FIG. 17 shows an X-ray powder diffractogram of crystalline Form P2 of Compound 1.

Definitions

[0037] As used herein, the term "alkyl" refers to a saturated, branched or unbranched aliphatic hydrocarbon containing carbon atoms (such as, for example, 1, 2, $3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19$, or 20 carbon atoms). Alkyl groups may be substituted or unsubstituted.
[0038] The term "alkoxy" as used herein refers to an alkyl or cycloalkyl covalently bonded to an oxygen atom. Alkoxy groups may be substituted or unsubstituted.
[0039] As used herein, "cycloalkyl" refers to a cyclic, bicyclic, tricyclic, or polycyclic non-aromatic hydrocarbon groups having 3 to 12 carbons (such as, for example 3-10 carbons). "Cycloalkyl" groups encompass monocyclic, bicyclic, tricyclic, bridged, fused, and spiro rings, including mono spiro and dispiro rings. Non-limiting examples of cycloalkyl groups are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl,
adamantyl, norbornyl, and dispiro[2.0.2.1]heptane. Cycloalkyl groups may be substituted or unsubstituted.
[0040] "Substituted," whether preceded by the term "optionally" or not, indicates that at least one hydrogen of the "substituted" group is replaced by a substituent. Unless otherwise indicated, an "optionally substituted" group may have a suitable substituent at each substitutable position of the group, and when more than one position in any given structure may be substituted with more than one substituent chosen from a specified group, the substituent may be either the same or different at each position.
[0041] As used herein, "deuterated derivative(s)" means the same chemical structure, but with one or more hydrogen atoms replaced by a deuterium atom.
[0042] As used herein, "CFTR" means cystic fibrosis transmembrane conductance regulator.
[0043] As used herein, "mutations" can refer to mutations in the CFTR gene or the CFTR protein. A "CFTR gene mutation" refers to a mutation in the CFTR gene, and a "CFTR protein mutation" refers to a mutation in the CFTR protein. A genetic defect or mutation, or a change in the nucleotides in a gene in general results in a mutation in the CFTR protein translated from that gene, or a frame shift(s).
[0044] The term "F508del" refers to a mutant CFTR protein which is lacking the amino acid phenylalanine at position 508.
[0045] As used herein, a patient who is "homozygous" for a particular gene mutation has the same mutation on each allele.
[0046] As used herein, a patient who is "heterozygous" for a particular gene mutation has this mutation on one allele, and a different mutation on the other allele.
[0047] As used herein, the term "modulator" refers to a compound that increases the activity of a biological compound such as a protein. For example, a CFTR modulator is a compound that increases the activity of CFTR. The increase in activity resulting from a CFTR modulator includes but is not limited to compounds that correct, potentiate, stabilize and/or amplify CFTR.
[0048] As used herein, the term "CFTR corrector" refers to a compound that facilitates the processing and trafficking of CFTR to increase the amount of CFTR at the
cell surface. Compounds of Formulae (I), (II), (III), (IV), (V), and (VI), and Compound II, and their pharmaceutically acceptable salts thereof disclosed herein are CFTR correctors.
[0049] As used herein, the term "CFTR potentiator" refers to a compound that increases the channel activity of CFTR protein located at the cell surface, resulting in enhanced ion transport. Compound III disclosed herein is a CFTR potentiator.
[0050] As used herein, the term "active pharmaceutical ingredient" ("API") refers to a biologically active compound.
[0051] As used herein, the term "pharmaceutically acceptable salt" refers to a salt form of a compound of this disclosure wherein the salt is nontoxic. Pharmaceutically acceptable salts of the compounds of this disclosure include those derived from suitable inorganic and organic acids and bases. Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge, etal. describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1-19.
[0052] As used herein, the term "amorphous" refers to a solid material having no long range order in the position of its molecules. Amorphous solids are generally supercooled liquids in which the molecules are arranged in a random manner so that there is no well-defined arrangement, e.g., molecular packing, and no long range order. Amorphous solids are generally isotropic, i.e. exhibit similar properties in all directions and do not have definite melting points. For example, an amorphous material is a solid material having no sharp characteristic crystalline peak(s) in its X-ray power diffraction (XRPD) pattern (i.e., is not crystalline as determined by XRPD). Instead, one or several broad peaks (e.g., halos) appear in its XRPD pattern. Broad peaks are characteristic of an amorphous solid. See, US 2004/0006237 for a comparison of XRPDs of an amorphous material and crystalline material.
[0053] As used herein, the term "substantially amorphous" refers to a solid material having little or no long range order in the position of its molecules. For example, substantially amorphous materials have less than 15% crystallinity (e.g., less than 10% crystallinity or less than 5% crystallinity). It is also noted that the term 'substantially amorphous' includes the descriptor, 'amorphous', which refers to materials having no (0\%) crystallinity.
[0054] As used herein, the term "dispersion" refers to a disperse system in which one substance, the dispersed phase, is distributed, in discrete units, throughout a second substance (the continuous phase or vehicle). The size of the dispersed phase can vary considerably (e.g. colloidal particles of nanometer dimension, to multiple microns in size). In general, the dispersed phases can be solids, liquids, or gases. In the case of a solid dispersion, the dispersed and continuous phases are both solids. In pharmaceutical applications, a solid dispersion can include a crystalline drug (dispersed phase) in an amorphous polymer (continuous phase); or alternatively, an amorphous drug (dispersed phase) in an amorphous polymer (continuous phase). In some embodiments, a solid dispersion includes the polymer constituting the dispersed phase, and the drug constitute the continuous phase. Or, a solid dispersion includes the drug constituting the dispersed phase, and the polymer constituting the continuous phase.
[0055] The terms "patient" and "subject" are used interchangeably and refer to an animal including humans.
[0056] The terms "effective dose" and "effective amount" are used interchangeably herein and refer to that amount of a compound that produces the desired effect for which it is administered (e.g., improvement in CF or a symptom of CF, or lessening the severity of CF or a symptom of CF). The exact amount of an effective dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (see, e.g., Lloyd (1999) The Art, Science and Technology of Pharmaceutical Compounding).
[0057] As used herein, the terms "treatment," "treating," and the like generally mean the improvement of CF or its symptoms or lessening the severity of CF or its symptoms in a subject. "Treatment," as used herein, includes, but is not limited to, the following: increased growth of the subject, increased weight gain, reduction of mucus in the lungs, improved pancreatic and/or liver function, reduction of chest infections, and/or reductions in coughing or shortness of breath. Improvements in or lessening the severity of any of these symptoms can be readily assessed according to standard methods and techniques known in the art.
[0058] As used herein, the term "in combination with," when referring to two or more compounds, agents, or additional active pharmaceutical ingredients, means the
administration of two or more compounds, agents, or active pharmaceutical ingredients to the patient prior to, concurrent with, or subsequent to each other.
[0059] The terms "about" and "approximately", when used in connection with doses, amounts, or weight percent of ingredients of a composition or a dosage form, include the value of a specified dose, amount, or weight percent or a range of the dose, amount, or weight percent that is recognized by one of ordinary skill in the art to provide a pharmacological effect equivalent to that obtained from the specified dose, amount, or weight percent.
[0060] Each of compounds of Formulae (I), (II), (III), (IV), (V), and (VI), and Compounds II, III, IV, and pharmaceutically acceptable salts thereof, and their deuterated derivatives described herein independently can be administered once daily, twice daily, or three times daily. In some embodiments, at least one compound chosen from Compounds of Formulae (I), (II), (III), (IV), (V), and (VI), and pharmaceutically acceptable salts thereof, and their deuterated derivatives is administered once daily. In some embodiments, at least one compound chosen from Compounds of Formulae (I), (II), (III), (IV), (V), and (VI), and pharmaceutically acceptable salts thereof, and their deuterated derivatives are administered twice daily. In some embodiments, at least one compound chosen from Compound II and pharmaceutically acceptable salts thereof is administered once daily. In some embodiments, at least one compound chosen from Compound II and pharmaceutically acceptable salts thereof is administered twice daily. In some embodiments, at least one compound chosen from Compound III and pharmaceutically acceptable salts thereof is administered once daily. In some embodiments, at least one compound chosen from Compound III and pharmaceutically acceptable salts thereof is administered twice daily. In some embodiments, at least one compound chosen from Compound IV and pharmaceutically acceptable salts thereof is administered once daily. In some embodiments, at least one compound chosen from Compound IV and pharmaceutically acceptable salts thereof is administered twice daily. In some embodiments, a deuterated derivative of Compound II, III, and/or IV or a pharmaceutically acceptable salt thereof is employed in any one of these embodiments.
[0061] In some embodiments, 10 mg to $1,500 \mathrm{mg}$ of a compound disclosed herein, a pharmaceutically acceptable salt thereof, or a deuterated derivative of such compound or salt are administered daily.
[0062] One of ordinary skill in the art would recognize that, when an amount of "a compound or a pharmaceutically acceptable salt thereof is disclosed, the amount of the pharmaceutically acceptable salt form of the compound is the amount equivalent to the concentration of the free base of the compound. It is noted that the disclosed amounts of the compounds or their pharmaceutically acceptable salts thereof herein are based upon their free base form. For example, " 10 mg of at least one compound chosen from compounds of Formula (I) and pharmaceutically acceptable salts thereof includes 10 mg of a compound of Formula (I) and a concentration of a pharmaceutically acceptable salt of compounds of Formula (I) equivalent to 10 mg of compounds of Formula (I).
[0063] As stated above, disclosed herein are compounds of Formula (I):

(I),
pharmaceutically acceptable salts thereof, and deuterated derivatives of any of the foregoing,
wherein:

- one of Y^{1} and Y^{2} is N and the other is CH ;
- X is chosen from O, NH, and $\mathrm{N}(\mathrm{Ci}-\mathrm{C} 4$ alkyl) groups;
- \mathbf{R}^{1} is- $\left(\mathbf{C}\left(\mathbf{R}^{2}\right)_{2}\right)_{k}-\mathbf{0}-\left(\mathbf{C}\left(\mathbf{R}^{2}\right)_{2}\right)_{m} R^{7}$,
- each $\mathbf{R}^{\mathbf{2}}$ is independently chosen from hydrogen, halogens, cyano, hydroxyl, C1-C2 alkoxyl groups, and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxyl, and C3-5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- each $\mathbf{R}^{\mathbf{3}}$ is independently chosen from C1-C4 alkyl groups optionally substituted with one or more hydroxyl groups, or optionally two geminal $\mathbf{R}^{\mathbf{3}}$, together with the carbon atom to which they are attached, form a C3-4 cycloalkyl;
- each R^{4} is independently chosen from halogens;
- R^{5} is chosen from hydrogen and C1-C4 alkyl groups;
- each R^{6} is independently chosen from halogens, cyano, hydroxyl, hydroxymethyl, C1-C2 alkoxyl groups, C1-C2 alkyl groups, and halogenated C1-C2 alkyl groups;
$-\mathrm{R}^{7}$ is chosen from hydrogen, halogens, cyano, C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxyl, and $\mathrm{C} 3-\mathrm{Cl}_{0}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

```
-k is 0 or 1;
-r is 0 or 1;
-m}\mathrm{ is 0, 1, 2, or 3;
- p is 0, 1, or 2; and
-q is o, 1, 2, 3,4,5,6,7, or 8.
```

[0064] Also disclosed herein are compounds of Formula (II):

(II),
pharmaceutically acceptable salts thereof, and deuterated derivatives of any of the foregoing,
wherein:

> - X is chosen from O, NH, and $\mathrm{N}(\mathrm{Ci}-\mathrm{C} 4$ alkyl) groups;
> $-\mathrm{R}^{\mathbf{1}}$ is- $\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{\mathrm{k}^{-}}-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{\mathrm{m}} \mathrm{R}^{7}$

- each \mathbf{R}^{2} is independently chosen from hydrogen, halogens, cyano, hydroxyl, C1-C2 alkoxyl groups, and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxyl, and c 3-5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- each $\mathbf{R}^{\mathbf{3}}$ is independently chosen from C1-C4 alkyl groups optionally substituted with one or more hydroxyl groups, or optionally two geminal $\mathbf{R}^{\mathbf{3}}$, together with the carbon atom to which they are attached, form a C3-4 cycloalkyl;
- each \mathbf{R}^{4} is independently chosen from halogens;
- $\mathbf{R}^{\mathbf{5}}$ is chosen from hydrogen and C1-C4 alkyl groups;
- each \mathbf{R}^{6} is independently chosen from halogens, cyano, hydroxyl, hydroxymethyl, C1-C2 alkoxyl groups, C1-C2 alkyl groups, and halogenated C1-C2 alkyl groups;
- \mathbf{R}^{7} is chosen from hydrogen halogens, cyano, C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy, and C3-C10 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

```
- k is 0 or 1;
-r is 0 or 1;
-m is 0, 1, 2, or 3;
- p is 0,1, or 2; and
- q is o, 1, 2, 3,4,5,6,7, or 8.
```

Encompassed within the scope of Formulae (I) and (II) are compounds comprising an

C4 alkyl), i.e., wherein X is chosen fromNH and $\mathbf{N}(\mathbf{C i}-\mathbf{C 4}$ alkyl) groupsand pharmaceutically acceptable salts thereof, and deuterated derivatives of any of the
foregoing. In some embodiments, a compound having any one of the structural formulae shown in FIG. 1 but one of the $(\mathbf{S}=\mathbf{0})$ group of the sulfonamide group in each formula is replaced with NH or NR', or a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing is encompassed, either as an isomeric mixture or enantioenriched (e.g., $>90 \%$ ee, $>95 \%$ ee, or $>98 \%$ ee) isomers.
[0065] Also disclosed herein are compounds of Formula (III):
 (III),
pharmaceutically acceptable salts thereof, and deuterated derivatives of any of the foregoing,
wherein:
$-\mathbf{R}^{\mathbf{1}}$ is- $\left(\mathbf{C}\left(\mathbf{R}^{\mathbf{2}}\right)_{2}\right)_{\mathrm{k}} \mathbf{- 0}-\left(\mathbf{C}\left(\mathbf{R}^{\mathbf{2}}\right)_{2}\right)_{\mathrm{m}} \mathbf{R}^{\mathbf{7}}$,

- each $\mathbf{R}^{\mathbf{2}}$ is independently chosen from hydrogen; halogens; cyano; hydroxy; C1-C2 alkoxy groups; and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and C3-5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- each $\mathbf{R}^{\mathbf{3}}$ is independently chosen from C1-C4 alkyl groups optionally substituted with one or more hydroxy groups, or optionally two geminal $\mathbf{R}^{\mathbf{3}}$, together with the carbon atom to which they are attached, form a C3-4 cycloalkyl;
- each $\mathbf{R}^{\mathbf{4}}$ is independently chosen from halogens;
- $\mathbf{R}^{\mathbf{5}}$ is chosen from hydrogen and C1-C4 alkyl groups;
- each $\mathbf{R}^{\mathbf{6}}$ is independently chosen from halogens, cyano, hydroxy, hydroxymethyl, C1-C2 alkoxy groups, C1-C2 alkyl groups, and halogenated C1-C2 alkyl groups;
- \mathbf{R}^{7} is chosen from hydrogen, halogens, cyano, C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy, and $\mathrm{C} 3-\mathrm{C1}_{0}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- k is 0 or 1 ;
-r is 0 or 1 ;
-m is $0,1,2$, or 3 ;
- p is 0,1 , or 2 ; and
- q is $\mathrm{o}, 1,2,3,4,5,6,7$, or 8 .
[0066] In some embodiments, in compounds of Formulae (I), (II), and (III), pharmaceutically acceptable salts thereof, and/or deuterated derivatives of any of the foregoing:
- each $\mathbf{R}^{\mathbf{2}}$ is independently chosen from hydrogen and C1-C2 alkyl groups;
- $\mathbf{R}^{\mathbf{5}}$ is chosen from hydrogen and C1-C2 alkyl groups; and
- each $\mathbf{R}^{\mathbf{6}}$ is independently chosen from C1-C2 alkyl groups.
[0067] In some embodiments, in compounds of Formulae (I), (II), and (III), pharmaceutically acceptable salts thereof, and/or deuterated derivatives of any of the foregoing:

$$
-\mathbf{R}^{\mathbf{1}} \text { is - } \mathbf{0}-\left(\mathrm{CH}_{2}\right)\left(\mathrm{C}\left(\mathbf{R}^{2}\right)_{2}\right)\left(\mathrm{m}^{-\mathrm{i}}\right) \mathbf{R}^{\mathbf{7}},
$$

- \mathbf{R}^{7} is independently chosen from C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxyl, and C3C 1_{0} cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens, and
- each $\mathbf{R}^{\mathbf{2}}$ is independently chosen from C1-C2 alkyl groups, OH, C1-C2 alkoxyl groups, and halogens;
- $\mathbf{R}^{\mathbf{4}}$ is H ; and
- q is $0,1,2,3$, or 4 .
[0068] In some embodiments, in compounds of Formulae (I), (II), and (III), pharmaceutically acceptable salts thereof, and/or deuterated derivatives of any of the foregoing, r is 0 .
[0069] Also disclosed herein are compounds of Formula (IV):

(V), or

pharmaceutically acceptable salts of any of the foregoing, and deuterated derivatives of any of the foregoing,
wherein:
$-\mathrm{R}^{1}$ is $\left.-0-\left(\mathrm{CH}_{2}\right)\left(\mathrm{C}_{\left(\mathrm{R}^{2}\right)}^{2}\right)\right)_{(\mathrm{m}-\mathrm{i}} \mathrm{i}^{\mathrm{R}} \mathrm{R}^{7}$,
- each R^{2} is independently chosen from C1-C2 alkyl groups, $\mathrm{OH}, \mathrm{C} 1-\mathrm{C} 2$ alkoxy groups, and halogens;
$-\mathrm{R}^{7}$ is chosen from C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, and $\mathrm{C}_{3}-\mathrm{Cl}_{0}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens
$-\mathrm{R}^{5}$ is chosen from hydrogen and C1-C2 alkyl groups;
- each R^{6} is independently chosen from C1-C2 alkyl groups; and
- p is 0,1 , or 2 .
[0070] In some embodiments, p is 0 or 1 . In some embodiments, p is 0 .
[0071] In some embodiments, in compounds of Formulae (I), (II), (III), (IV), (V), and (VI), and pharmaceutically acceptable salts thereof, each R^{2} is independently chosen from $\mathrm{CH}_{3}, \mathrm{OH}, \mathrm{F}$, and OCH_{3}. In some embodiments, p is 0 or 1 . In some embodiments, p is 0 .
[0072] In some embodiments, in compounds of Formulae (I), (II), (III), (IV), (V), and (VI), and pharmaceutically acceptable salts thereof, p is $1 ; R^{5}$ is methyl; and R^{6} is methyl.
[0073] In some embodiments, in compounds of Formulae (I), (II), (III), (IV), (V), and (VI), and pharmaceutically acceptable salts thereof, R^{7} is a cyclopropyl group. In some embodiments, R^{7} is a cyclopropyl group substituted with a halogenated Ci alkyl group. In some embodiments, R^{7} is a cyclopropyl group substituted with one or more halogens. In some embodiments, R^{7} is a cyclopropyl group substituted with one or more Ci alkyl groups. In some embodiments, R^{7} is a cyclopropyl group substituted with one or more halogens and one or more Ci alkyl groups. In some embodiments, R^{7} is a CF_{3} group. In some embodiments, R^{7} is chosen from C_{4} cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens. In some embodiments, R^{7} is chosen from c 5 cycloalkyl groups optionally substituted with one or
more substituents each independently chosen from C1-C2 alkyl groups, halogenated $\mathbf{C i}$ $\mathbf{C} 2$ alkyl groups, and halogens. In some embodiments, c5cycloalkyl groups are bicyclic. [0074] In some embodiments, R^{7} is chosen from C7 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens. In some embodiments, C7 cycloalkyl groups are bicyclic. In some embodiments, C7cycloalkyl groups are tricyclic.
[0075] Also disclosed herein are compounds having a formula chosen from any one of the formulae depicted in FIG. 1 and pharmaceutically acceptable salts thereof.
[0076] Also disclosed herein is a compound having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
[0077] Also disclosed herein is a compound having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
[0078] Also disclosed herein is a compound having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
[0079] Also disclosed herein is a compound having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
[0080] Also disclosed herein is a compound having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
[0081] Also disclosed herein is a compound having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
[0082] Also disclosed herein is a compound having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
[0083] Also disclosed herein is a compound having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
[0084] Also disclosed herein is a compound having the following formula:

, or

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
[0085] Also disclosed herein is a compound having any one of the following
formulae:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
[0086] Also disclosed herein is a compound having any one of the following formulae:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
[0087] Suitable pharmaceutically acceptable salts are, for example, those disclosed in S. M. Berge, et al. J. Pharmaceutical Sciences, 1977, 66, 1-19. For example, Table 1 of that article provides the following pharmaceutically acceptable salts:

Table 1:

Acetate	Iodide	Benzathine
Benzenesulfonate	Isethionate	Chloroprocaine
Benzoate	Lactate	Choline
Bicarbonate	Lactobionate	Diethanolamine
Bitartrate	Malate	Ethylenediamine
Bromide	Maleate	Meglumine
Calcium edetate	Mandelate	Procaine
Camsylate	Mesylate	Aluminum
Carbonate	Methylbromide	Calcium
Chloride	Methylnitrate	Lithium
Citrate	Methylsulfate	Magnesium
Dihydrochloride	Mucate	Potassium
Edetate	Napsylate	Sodium
Edisylate	Nitrate	Zinc
Estolate	Pamoate (Embonate)	
Esylate	Pantothenate	
Fumarate	Phosphate/diphosphate	
Gluceptate	Polygalacturonate	
Gluconate	Salicylate	
Glutamate	Stearate	
Glycollylarsanilate	Subacetate	
Hexylresorcinate	Succinate	
Hydrabamine	Sulfate	
Hydrobromide	Tannate	
Hydrochloride	Tartrate	
Hydroxynaphthoate	Teociate	
	Triethiodide	

[0088] Non-limiting examples of pharmaceutically acceptable salts derived from appropriate acids include: salts formed with inorganic acids, such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, or perchloric acid; salts formed with organic acids, such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid; and salts formed by using other methods used in the art, such as ion exchange. Non-limiting examples of pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate,
pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, ptoluenesulfonate, undecanoate, and valerate salts. Pharmaceutically acceptable salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium, and $\mathbf{N}^{+}(\mathbf{C i}-4$ alkyl $) 4$ salts. This disclosure also envisions the quaternization of any basic nitrogen-containing groups of the compounds disclosed herein. Suitable non-limiting examples of alkali and alkaline earth metal salts include sodium, lithium, potassium, calcium, and magnesium. Further non-limiting examples of pharmaceutically acceptable salts include ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, lower alkyl sulfonate and aryl sulfonate. Other suitable, non-limiting examples of pharmaceutically acceptable salts include besylate and glucosamine salts.
[0089] In some embodiments, at least one compound chosen from the novel compounds disclosed herein, pharmaceutically acceptable salts thereof, and deuterated derivatives of the foregoing is administered in combination with at least one compound chosen from Compound II, pharmaceutically acceptable salts thereof, and deuterated derivatives of the foregoing. In some embodiments, at least one compound chosen from the novel compounds disclosed herein, pharmaceutically acceptable salts thereof, and deuterated derivatives of the foregoing is administered in combination with at least one compound chosen from Compound III and pharmaceutically acceptable salts thereof. In some embodiments, at least one compound chosen from the novel compounds disclosed herein, pharmaceutically acceptable salts thereof, and deuterated derivatives of the foregoing is administered in combination with at least one compound chosen from Compound IV and pharmaceutically acceptable salts thereof. In some embodiments, at least one compound chosen from the novel compounds disclosed herein, pharmaceutically acceptable salts, and deuterated derivatives of the foregoing thereof is administered in combination with Compounds II or a pharmaceutically acceptable salt or deuterated derivative thereof and at least one compound chosen from Compound III, pharmaceutically acceptable salts thereof, and deuterated derivatives of any of the foregoing. In some embodiments, at least one compound chosen from the novel compounds disclosed herein, pharmaceutically acceptable salts, and deuterated derivatives of any of the foregoing thereof is administered in combination with at least one compound chosen from Compound III, pharmaceutically acceptable salts thereof, and deuterated derivatives of any of the foregoing and at least one compound chosen
from Compound IV, pharmaceutically acceptable salts thereof, and deuterated derivatives of any of the foregoing.
[0090] In some embodiments, at least one novel compound (and/or at least one pharmaceutically acceptable salt thereof and/or at least one deuterated derivative of such compound or salt) can be administered in combination with at least one additional active pharmaceutical ingredient. In some embodiments, at least one additional active pharmaceutical ingredient is chosen from:
(a) Compound II:

acceptable salts thereof.
A chemical name for Compound II is (i?)-1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)-N-(l-(2,3-dihydroxypropyl)-6-fluoro-2-(l-hydroxy-2-methylpropan-2-yl)-lH-indol-5yl)cyclopropanecarboxamide;
(b) Compound III:
 and pharmaceutically acceptable salts thereof.

A chemical name for Compound III is N-(54iydroxy-2,4-di-fer/-butyl-phenyl)-4-oxo-1H-quinoline-3-carboxamide; and
(c) Compound IV:

and pharmaceutically acceptable salts thereof.
[0091] A chemical name for Compound IV is 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxarnido)-3-methylpyridin-2yl)benzoic acid.In some embodiments, Compound 1 and/or a pharmaceutically acceptable salt thereof can be administered in combination with Compound II and/or a pharmaceutically acceptable salt thereof. In some embodiments, Compound 1 and/or a pharmaceutically acceptable salt thereof can be administered in combination with Compound III and/or a pharmaceutically acceptable salt thereof. In some embodiments, Compound 1 and/or a pharmaceutically acceptable salt thereof can be administered in combination with Compound IV and/or a pharmaceutically acceptable salt thereof. In some embodiments Compound 1 and/or a pharmaceutically acceptable salt thereof can be administered in combination with Compounds II and/or a pharmaceutically acceptable salt thereof and Compound III and/or a pharmaceutically acceptable salt thereof. In some embodiments Compound 1 and/or a pharmaceutically acceptable salt thereof can be administered in combination with Compounds II and/or a pharmaceutically acceptable salt thereof and Compound IV and/or a pharmaceutically acceptable salt thereof.
[0092] In one aspect, the disclosure features a pharmaceutical composition comprising Compound 1 and/or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
[0093] In one aspect, the disclosure features a pharmaceutical composition comprising Compound 1 and/or a pharmaceutically acceptable salt thereof, Compound II and/or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
[0094] In one aspect, the disclosure features a pharmaceutical composition comprising Compound 1 and/or a pharmaceutically acceptable salt thereof, Compound

III and/or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
[0095] In one aspect, the disclosure features a pharmaceutical composition comprising Compound 1 and/or a pharmaceutically acceptable salt thereof, Compound II and/or a pharmaceutically acceptable salt thereof, Compound III and/or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
[0096] Any of the novel compounds disclosed herein, such as for example, compounds of Formula (I), (II), (III), (IV), (V), or (VI), and their pharmaceutically acceptable salts thereof, and deuterated derivatives of such compounds and salts can be comprised in a single pharmaceutical composition or separate pharmaceutical compositions in combination with other additional active pharmaceutical ingredient(s) (e.g., Compound II, III, or IV, or its pharmaceutically acceptable salt thereof, or a deuterated derivative of such Compound or salt). Such pharmaceutical compositions can be administered once daily or multiple times daily, such as twice daily. In some embodiments, the disclosure features a pharmaceutical composition comprising at least one compound chosen from any of the compounds disclosed herein and pharmaceutically acceptable salts thereof, and at least one pharmaceutically acceptable carrier.
[0097] In some embodiments, the disclosure features a pharmaceutical composition comprising at least one compound chosen from the novel compounds disclosed herein and pharmaceutically acceptable salts thereof, at least one compound chosen from Compound II and pharmaceutically acceptable salts thereof, and at least one pharmaceutically acceptable carrier.
[0098] In some embodiments, the disclosure features a pharmaceutical composition comprising at least one compound chosen from the novel compounds disclosed herein and pharmaceutically acceptable salts thereof, at least one compound chosen from Compound III and pharmaceutically acceptable salts thereof, and at least one pharmaceutically acceptable carrier.
[0099] In some embodiments, the disclosure features a pharmaceutical composition comprising at least one compound chosen from the novel compounds disclosed herein and pharmaceutically acceptable salts thereof, at least one compound chosen from

Compound II and pharmaceutically acceptable salts thereof, at least one compound chosen from Compound III and pharmaceutically acceptable salts thereof, and at least one pharmaceutically acceptable carrier.
[00100] In some embodiments, the disclosure features a pharmaceutical composition comprising at least one compound chosen from the novel compounds disclosed herein and pharmaceutically acceptable salts thereof, at least one compound chosen from Compound III and pharmaceutically acceptable salts thereof, at least one compound chosen from Compound IV and pharmaceutically acceptable salts thereof, and at least one pharmaceutically acceptable carrier.
[00101] In some embodiments, pharmaceutical compositions disclosed herein comprise at least one additional active pharmaceutical ingredient. In some embodiments, the at least one additional active pharmaceutical ingredient is a CFTR modulator. In some embodiments, the at least one additional active pharmaceutical ingredient is a CFTR corrector. In some embodiments, the at least one additional active pharmaceutical ingredient is a CFTR potentiator. In some embodiments, the pharmaceutical composition comprises (i) a compound of Formulae (I), (II), (III), (IV), (V), or (VI), or a pharmaceutically acceptable salt thereof, or a deuterated derivative of such compound or salt; and (ii) at least two additional active pharmaceutical ingredients, one of which is a CFTR corrector and one of which is a CFTR potentiator.
[00102] In some embodiments, at least one additional active pharmaceutical ingredient is selected from mucolytic agents, bronchodialators, antibiotics, anti-infective agents, and anti-inflammatory agents.
[00103] A pharmaceutical composition may further comprise at least one pharmaceutically acceptable carrier. In some embodiments, the at least one pharmaceutically acceptable carrier is chosen from pharmaceutically acceptable vehicles and pharmaceutically acceptable adjuvants. In some embodiments, the at least one pharmaceutically acceptable is chosen from pharmaceutically acceptable fillers, disintegrants, surfactants, binders, lubricants.
[00104] It will also be appreciated that a pharmaceutical composition of this disclosure, including a pharmaceutical composition comprising combinations described previously, can be employed in combination therapies; that is, the compositions can be
administered concurrently with, prior to, or subsequent to, at least one additional active pharmaceutical ingredient or medical procedures.
[00105] Pharmaceutical compositions comprising these combinations are useful for treating cystic fibrosis.
[00106] As described above, pharmaceutical compositions disclosed herein may optionally further comprise at least one pharmaceutically acceptable carrier. The at least one pharmaceutically acceptable carrier may be chosen from adjuvants and vehicles. The at least one pharmaceutically acceptable carrier, as used herein, includes any and all solvents, diluents, other liquid vehicles, dispersion aids, suspension aids, surface active agents, isotonic agents, thickening agents, emulsifying agents, preservatives, solid binders, and lubricants, as suited to the particular dosage form desired. Remington: The Science and Practice of Pharmacy, 21st edition, 2005, ed. D.B. Troy, Lippincott Williams \& Wilkins, Philadelphia, and Encyclopedia of Pharmaceutical Technology, eds. J. Swarbrick and J. C. Boylan, 1988-1 999, Marcel Dekker, New York discloses various carriers used in formulating pharmaceutical compositions and known techniques for the preparation thereof. Except insofar as any conventional carrier is incompatible with the compounds of this disclosure, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutical composition, its use is contemplated to be within the scope of this disclosure. Non-limiting examples of suitable pharmaceutically acceptable carriers include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins (such as human serum albumin), buffer substances (such as phosphates, glycine, sorbic acid, and potassium sorbate), partial glyceride mixtures of saturated vegetable fatty acids, water, salts, and electrolytes (such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, and zinc salts), colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, polyacrylates, waxes, polyethylene-poly oxypropylene-block polymers, wool fat, sugars (such as lactose, glucose and sucrose), starches (such as corn starch and potato starch), cellulose and its derivatives (such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate), powdered tragacanth, malt, gelatin, talc, excipients (such as cocoa butter and suppository waxes), oils (such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, com oil and soybean oil), glycols (such as propylene glycol and polyethylene
glycol), esters (such as ethyl oleate and ethyl laurate), agar, buffering agents (such as magnesium hydroxide and aluminum hydroxide), alginic acid, pyrogen-free water, isotonic saline, Ringer's solution, ethyl alcohol, phosphate buffer solutions, non-toxic compatible lubricants (such as sodium lauryl sulfate and magnesium stearate), coloring agents, releasing agents, coating agents, sweetening agents, flavoring agents, perfuming agents, preservatives, and antioxidants.
[00107] In some embodiments, the methods of the disclosure employ administering to a patient in need thereof at least one compound chosen from any of the compounds disclosed herein and pharmaceutically acceptable salts thereof, and at least one compound chosen from Compound II, Compound III, Compound IV, and pharmaceutically acceptable salts of any of the foregoing.
[00108] Any suitable pharmaceutical compositions known in the art can be used for the novel compounds disclosed herein, Compound II, Compound III, Compound IV, and pharmaceutically acceptable salts thereof. Some exemplary pharmaceutical compositions for Compound 1 and its pharmaceutically acceptable salts are described in the Examples. Some exemplary pharmaceutical compositions for Compound II and its pharmaceutically acceptable salts can be found in WO 201 1/1 19984 and WO 2014/015841, all of which are incorporated herein by reference. Some exemplary pharmaceutical compositions for Compound III and its pharmaceutically acceptable salts can be found in WO 2007/134279, WO 2010/019239, WO 2011/019413, WO 2012/027731, and WO 2013/130669, all of which are incorporated herein by reference. Some exemplary pharmaceutical compositions for Compound IV and its pharmaceutically acceptable salts can be found in WO 2010/037066, WO 2011/127241, WO 2013/1 12804, and WO 2014/071 122, all of which are incorporated herein by reference.
[00109] In some embodiments, a pharmaceutical composition comprising at least one compound chosen from the novel compounds disclosed herein and pharmaceutically acceptable salts thereof is administered with a pharmaceutical composition comprising Compound II and Compound III. Pharmaceutical compositions comprising Compound II and Compound III are disclosed in PCT Publication No. WO 2015/160787, incorporated herein by reference. An exemplary embodiment is shown in the following Table 2:
[00110] Table 2. Exemplary Tablet Comprising 100 mg of Compound II and 150 mg of Compound III.

	Ingredient	Amount per tablet (mg)
Intra-granular	Compound II SDD (spray dried dispersion) (80 wt \% Compound II, 20 wt \% HPMC)	125
	Compound III SDD (80 wt \% Compound III, $19.5 \mathrm{w} \% \mathrm{HPMCAS}-\mathrm{HG} ;$ $0.5 \mathrm{wt} \%$ sodium lauryl sulfate)	187.5
	Microcrystalline cellulose	
	Croscarmellose Sodium	131.4
Extra-granular	Total	29.6
	Microcrystalline cellulose	$\mathbf{4 7 3 . 5}$
	Magnesium Stearate	112.5
Total uncoated Tablet	Total	5.9
Film coat		$\mathbf{1 1 8 . 4}$
Total coated Tablet	Opadry	$\mathbf{5 9 1 . 9}$
		17.7

[00111] In some embodiments, a pharmaceutical composition comprising at least one compound chosen from the novel compounds disclosed herein and pharmaceutical salts thereof is administered with a pharmaceutical composition comprising Compound III. Pharmaceutical compositions comprising Compound III are disclosed in PCT Publication No. WO 2010/019239, incorporated herein by reference. An exemplary embodiment is shown in the following Table 3:
[00112] Table 3: Ingredients for Exemplary Tablet of Compound III.

Tablet Formulation	Percent Dose \%Wt./Wt.	Dose (mg)	Batch (\mathbf{g})
Compound III SDD			
(80 wt \% Compound III, 19.5 wt\% HPMCAS-HG; $0.5 \mathrm{wt} \%$ sodium lauryl sulfate)	34.09%	187.5	23.86

Microcrystalline cellulose	30.51%	167.8	21.36
Lactose	30.40%	167.2	21.28
Sodium croscarmellose	3.000%	16.50	2.100
SLS	0.500%	2.750	0.3500
Colloidal silicon dioxide	0.500%	2.750	0.3500
Magnesium stearate	1.000%	5.500	0.7000
Total	$\mathbf{1 0 0 \%}$	$\mathbf{5 5 0}$	$\mathbf{7 0}$

[00113] Additional pharmaceutical compositions comprising Compound III are disclosed in PCT Publication No. WO 2013/130669, incorporated herein by reference. Exemplary mini-tablets ($\sim 2 \mathrm{~mm}$ diameter, $\sim 2 \mathrm{~mm}$ thickness, each mini-tablet weighing about 6.9 mg) was formulated to have approximately 50 mg of Compound III per 26 mini-tablets and approximately 75 mg of Compound III per 39 mini-tablets using the amounts of ingredients recited in Table 4, below.
[00114] Table 4: Ingredients for mini-tablets for $\mathbf{5 0} \mathbf{~ m g}$ and 75 mg potency

Tablet Formulation	Percent Dose \%Wt./Wt.	Dose (mg) 50 mg potency	Dose (mg) 75 mg potency	Batch (\mathbf{g})
Compound III SDD	35	62.5	93.8	1753.4
$(80 \quad \text { wt } \%$				
Compound III, 19.5				
wt\% HPMCAS-				
$\mathrm{HG} ; \quad 0.5 \quad \text { wt } \%$				
sodium lauryl				
sulfate)				
Mannitol	13.5	24.1	36.2	675.2
Lactose	41	73.2	109.8	2050.2
Sucralose	2.0	3.6	5.4	100.06
Croscarmellose sodium	6.0	10.7	16.1	300.1
Colloidal silicon dioxide	1.0	1.8	2.7	50.0
Magnesium stearate	1.5	2.7	4.0	74.19
Total	100	178.6	268	5003.15

[00115] In some embodiments, the pharmaceutical compositions are a tablet. In some embodiments, the tablets are suitable for oral administration.
[00116] The compounds, pharmaceutically acceptable salts thereof, and deuterated analogs of any of the foregoing, and pharmaceutical compositions, of this disclosure, either in monotherapies or in combo-therapies are useful for treating cystic fibrosis.
[00117] In some embodiments, disclosed herein are methods of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of a compound, pharmaceutically acceptable salt thereof, or a deuterated analog of any of the foregoing; or a pharmaceutical composition, of this disclosure to a patient, such as a human, wherein said patient has cystic fibrosis. In some embodiments, the patient has F508del/minimal function (MF) genotypes, F508del/F508del genotypes, F508del/gating genotypes, or F508del/residual function (RF) genotypes.
[00118] Patients with an F508del/minimal function genotype are defined as patients that are heterozygous F508del-CFTR with a second CFTR allele containing a mutation that is predicted to result in a CFTR protein with minimal function and that is not expected to respond to Compound II, Compound III, or the combination of Compound II and Compound III. These CFTR mutations were defined using 3 major sources:

- biological plausibility for the mutation to respond (i.e., mutation class)
- evidence of clinical severity on a population basis (per CFTR2 patient registry; accessed on 15 February 2016)
o average sweat chloride $>86 \mathrm{mmol} / \mathrm{L}$, and
o prevalence of pancreatic insufficiency (PI) $>50 \%$
- in vitro testing
o mutations resulting in baseline chloride transport < 10% of wild-type CFTR were considered minimal function
o mutations resulting in chloride transport $<10 \%$ of wild-type CFTR following the addition of Compound II and/or Compound III were considered nonresponsive.
[00119] Patients with an F508del/residual function genotype are defined as patients that are heterozygous F508del-CFTR with a second CFTR allele that contains a mutation that results in reduced protein quantity or function at the cell surface which can produce partial CFTR activity. CFTR gene mutations known to result in a residual function phenotype include in some embodiments, a CFTR residual function mutation selected from $2789+5 \mathrm{G}^{\wedge} \mathrm{A}, 3849+1 \mathrm{OkbC}{ }^{\wedge} \mathrm{T}$, $3272-26 \mathrm{~A}^{\wedge} \mathrm{G}, 711+3 \mathrm{~A}^{\wedge} \mathrm{G}, \mathrm{E} 56 \mathrm{~K}$, P67L, R74W, D110E, D110H, R117C, L206W, R347H, R352Q, A455E, D579G, E831X, S945L, S977F, F1052V, R1070W, F1074L, D1152H, D1270N, E193K, and K1060T. In some embodiments, the CFTR residual function mutation is selected from R117H, S1235R, I1027T, R668C, G576A, M470V, L997F, R75Q, R1070Q, R31C,

D614G, G1069R, R1162L, E56K, A1067T, E193K, or K1060T. In some embodiments, the CFTR residual function mutation is selected from R1 17H, S1235R, I1027T, R668C, G576A, M470V, L997F, R75Q, R1070Q, R31C, D614G, G1069R, R1162L, E56K, or A1067T.
[00120] Patients with an F508del/gating mutation genotype are defined as patients that are heterozygous F508del-CFTR with a second CFTR allele that contains a mutation associated with a gating defect and clinically demonstrated to be responsive to Compound III. Examples of such mutations include: G178R, S549N, S549R, G551D, G551S, G1244E, S 125 IN, S1255P, and G1349D.
[00121] In some embodiments, the methods of treating, lessening the severity of, or symptomatically treating cystic fibrosis disclosed herein are each independently produces an increase in chloride transport above the baseline chloride transport of the patient.
[00122] In some embodiments, in the methods of treating, lessening the severity of, or symptomatically treating cystic fibrosis disclosed herein, the patient is heterozygous for F508del, and the other CFTR mutation is any CF-causing mutation. In some embodiments, the paitent is heterozygous for F508del, and the other CFTR mutation is any CF-causing mutation, and is expected to be and/or is responsive to any of the novel compounds disclosed herein, such as Compound 1, Compound II, Compound III and/or Compound IV genotypes based on in vitro and/or clinical data. In some embodiments, the paitent is heterozygous for F508del, and the other CFTR mutation is any CF-causing mutation, and is expected to be and/or is responsive to any combinations of (i) the novel compounds disclosed herein, such as Compound 1, and (ii) Compound II, and/or Compound III and/or Compound IV genotypes based on in vitro and/or clinical data.

In some embodiments, in the methods of treating, lessening the severity of, or symptomatically treating cystic fibrosis disclosed herein, the patient possesses a CFTR mutation selected from any of the mutations listed in Table 5.

Table 5. CFTR Mutations

$-\frac{078 \text { delT }}{444 \text { delA }}$
$-297-1 \mathrm{G}-7 \mathrm{~A}$
1078 delT

11234 V
1154 insTC
1119 delA
1161 delC

-1138 insG
-1213 delT
$1248+1 \mathrm{G}->\mathrm{A}$
$1249-1 \mathrm{G}->\mathrm{A}$

124del23bp
1259insA
1288insTA
1341+1G->A
1342-2A->C
1461ins4
1471delA
1497delGG
1507del
1525-1G->A
1525-2A->G
1548delG
1577deITA
1609del CA
1677deITA
1716G/A
1717-1G->A
1717-8G->A
1782delA
1811+1G->C
$1811+1.6 \mathrm{kbA}->\mathrm{G}$
$1811+1 \mathrm{G}->\mathrm{C}$
1812-1G->A
1898+1G->A
1812-1G->A
1824delA
182delT
185+1G->T
$1898+1 \mathrm{G}->\mathrm{T}$
1898+1G->A
1898+1G->C
1898+3A->G
1898+5G->T
1924del7
1949del84
2043delG
2055del9->A
$\begin{aligned} & \text { 2105- } \\ & \text { 2117dell3insAGAAA } \end{aligned}$
2118dell4
2143delT
2183AA->G ${ }^{\text {a }}$
2183delAA->G
2184delA

2184insA
2307insA
2347delG
2556insAT
2585delT
2594delGT
2622+IG->A
2659delC
2711delT
271delT
2721delll
2732insA
2789+2insA
2789+5G->A
2790-IG->C
2790-IG->C
2869insG
2896insAG
2942insT
2957delT
296+IG->A
2991del32
3007delG
3028delA
3040G->C
306insA
306insA
1138insG
3120G->A
$3120+1 G->A$
3121-1G->A
3121-2A->G
$\begin{aligned} & \text { 3121-977_3499+248 } \\ & \text { del2515 } \end{aligned}$
3132delTG
3141del9
3171delC
3195del6
3199del6
3272-26A->G
3500-2A->G
3600+2insT
365-366insT
3659delC

3667ins4
3737delA
3791delC
3821deIT
3849+10kbC->T
3849+IOkbC->T
3850-IG->A
3850-3T->G
3850-IG->A
3876delA
3878delG
3905InsT
394delTT
4005+IG->A
4005+2T->C
4005+IG->A
4005+IG->A
4010del4
4015delA
4016insT
4021dupT
4040delA
405+IG->A
405+3A->C
405+IG->A
406-IG->A
406-IG->A
4209TGTT->A
4209TGTT->AA
4279insA
4326delTC
4374+IG->T
4374+IG->T
4382delA
4428insGA
442delA
457TAT->G
541delC
574delA
5 T
621+1G->T
621+3A->G
663delT

663delT
675del4
$711+1 \mathrm{G}->$ T
$711+1 \mathrm{G}->$ T
$711+3 \mathrm{~A}->\mathrm{G}$
$711+5 \mathrm{G}->\mathrm{A}$
$712-1 \mathrm{G}->$ T
7 T
852del22
935 delA
991del5
A1006E
A120T
A234D
A349V
A455E
A460
A613T
A46D
A46Db
A559T
A559Tb
A561E
C276X
C524R
C524X
CFTRdel2,3
CFTRdele22-23
D110E
D110H
D1152H
D1270N
D192G
D443Y
D513G
D579G
D614G
D836Y
D924N
D979V
E1104X
E116K
E1371X
E193K

E193X
E403D
E474K
E56K
E585X
E588V
E60K
E60X
E822K
E822X
E831X
E92K
E92X
F1016S
F1052V
F1074L
F1099L
F191V
F311del
F311L
F508C
F508del
F575Y
G1061R
G1069R
G1244E
G1249R
G126D
G1349D
G149R
G178R
G194R
G194V
G27R
G27X
G314E
G330X
G458V
G463V
G480C
G542X
G550X
G551D
G551S

G576A
G622D
G628R
G628R(G->A)
G673X
G85E
G91R
G970D
G970R
G970R
H1054D
H1085P
H1085R
H1375P
H139R
H199R
H199Y
H609R
H939R
I336K
I1005R
I1027T
11234V
I1269N
I1366N
I148T
1175V
I3336K
I502T
I506S
I506T
I507del
I507del
I601F
I618T
I807M
I980K
IVS14b+5G->A
K710X
K710X
K710X
L102R
L1065P
L1077P

L1077Pb
L1254X
L1324P
L1335P
L138ins
L1480P
L15P
L165S
L206W
L218X
L227R
L320V
L346P
L453S
L467P
L467Pb
L558S
L571S
L732X
L927P
L967S
L997F
M 1101K
M 1101R
M 152V
M IT
M 1V
M265R
M470V
M952I
M952T
N1303K
P205S
P574H
P5L
P67L
P750L
P99L
Q1100P
Q1291H
Q1291 R
Q1313X
Q1382X
Q1411X

Q1412X
Q220X
Q237E
Q237H
Q290X
Q359K/T360K
Q39X
Q414
Q414X
Q452P
Q493X
Q525X
Q552X
Q685X
Q890X
Q890X
Q98R
Q98X
R1066C
R1066H
R1066M
R1070Q
R1070W
R1102X
R1158X
R1162L
R1162X
R117C
R117G
R117H
R117L
R117P
R1283M
R1283S
R170H
R258G
R31C
R31L
R334L
R334Q
R334W
R347H
R347L
R347P

R352Q
R352W
R516G
R553Q
R553X
R560K
R560S
R560T
R668C
R709X
R74W
R751L
R75Q
R75X
R764X
R785X
R792G
R792X
R851X
R933G
S1118F
S1159 F
S1159 P
S1196X
S1235R
S1251N
S1255 P
S1255X
S13F
S341P
S434X
S466X
S489X
S492F
S4X
S549N
S549R
S549R(A->C)
S549R(T->G)
S589N
S737F
S912L
S912X
S945L

S977F	W1089X	Y1092X
T1036N	W1098C	Y109N
T1053I	W1098R	Y122X
- T1246I	W1098X	Y161D
T338I	W1204X	Y161S
T604I	W1282R	Y563D
V1153E	W1282X	Y563N
V1240G	W361R	Y569C
V1293G	W401X	Y569D
V201M	W496X	Y569Db
V232D	W57G	Y849X
V456A	W57R	Y913C
V456F	W57X	Y913X
V520F	W846X	
V562I	Y1014C	
V754M	Y1032C	

a Also known as $2183 \mathrm{delAA} \rightarrow \mathbf{G}$.
[00123] In some embodiments, in the methods of treating, lessening the severity of, or symptomatically treating cystic fibrosis disclosed herein, the patient possesses a CFTR mutation selected from G178R, G55 1S, G970R, G1244E, S 1255P, G1349D, S549N, S549R, S 125 IN, E 193K, F 1052V, G 1069R, R 117C, D 110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S 1235R, S945L, R 1070W, F 1074L, D 110E, D1270N, D $1152 \mathrm{H}, ~ 1717-1 \mathrm{G}->\mathrm{A}, ~ 621+1 \mathrm{G}->\mathrm{T}, ~ 3120+1 \mathrm{G}->\mathrm{A}, ~ 1898+1 \mathrm{G}->\mathrm{A}, ~ 711+1 \mathrm{G}->\mathrm{T}$, $2622+1$ G->A, $405+1 G->A, \quad 406-1$ G->A, $4005+l G->A, \quad 1812-1 \mathrm{G}->A, 1525-1 \mathrm{G}->\mathrm{A}$, $712-1 \mathrm{G}->\mathrm{T}, ~ 1248+1 \mathrm{G}->\mathrm{A}, ~ 1341+1 \mathrm{G}->\mathrm{A}, ~ 3121-1 \mathrm{G}->\mathrm{A}, ~ 4374+1 \mathrm{G}->\mathrm{T}, \quad 3850-1 \mathrm{G}->\mathrm{A}$, $2789+5 \mathrm{G}->\mathrm{A}, ~ 3849+10 \mathrm{kbC}->\mathrm{T}, ~ 3272-26 \mathrm{~A}->\mathrm{G}, ~ 711+5 \mathrm{G}->\mathrm{A}, ~ 3120 \mathrm{G}->\mathrm{A}, ~ 1811+1.6 \mathrm{kbA}-$ >G, $711+3 \mathrm{~A}->\mathrm{G}, ~ 1898+3 \mathrm{~A}->\mathrm{G}, ~ 1717-8 \mathrm{G}->\mathrm{A}, ~ 1342-2 \mathrm{~A}->\mathrm{C}, ~ 405+3 \mathrm{~A}->\mathrm{C}, ~ 1716 \mathrm{G} / \mathrm{A}$, $1811+1$ G->C, 1898+5G->T, 3850-3T->G, IVS 14b+5G->A, 1898+1 G->T, 4005+2T>C, 621+3A->G, 1949del84, 3141 del9, $3195 d e l 6,3199$ del6, 3905InsT, 4209TGTT->A, A 1006E, A120T, A234D, A349V, A613T, C524R, D 192G, D443Y, D5 13G, D836Y, D924N, D979V, E116K, E403D, E474K, E588V, E60K, E822K, F 10 16S, F1099L, F 191V, F311del, F311L, F508C, F575Y, G1061R, G1249R, G126D, G149R, G194R, G 194V, G27R, G314E, G458V, G463V, G480C, G622D, G628R, G628R(G->A), G91R, G970D, H1054D, H1085P, H 1085R, H 1375P, H 139R, H199R, H609R, H939R, I1005R, I1234V, I1269N, I1366N, I175V, I502T, I506S, I506T, I601F, I61 8T, I807M, I980K, L102R, L1324P, L 1335P, L138ins, L1480P, L15P, L165S, L320V, L346P,

L453S, L571S, L967S, M1101R, M152V, MIT, M1V, M265R, M952I, M952T, P574H, P5L, P750L, P99L, Q1100P, Q1291H, Q1291R, Q237E, Q237H, Q452P, Q98R, R1066C, R1066H, R117G, R117L, R117P, R1283M, R1283S, R170H, R258G, R31L, R334L, R334Q, R347L, R352W, R516G, R553Q, R751L, R792G, R933G, S1118F, S1159F, S1159P, S13F, S549R(A->C), S549R(T->G), S589N, S737F, S912L, T1036N, T1053I, T1246I, T604I, V1153E, V1240G, V1293G, V201M, V232D, V456A, V456F, V562I, W1098C, W1098R, W1282R, W361R, W57G, W57R, Y1014C, Y1032C, Y109N, Y161D, Y161S, Y563D, Y563N, Y569C, and Y913C.
[00124] In some embodiments, the patient has at least one combination mutation chosen from: G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V, G1069R, R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N, D $1152 \mathrm{H}, 1717-1 \mathrm{G}->\mathrm{A}, 621+1 \mathrm{G}->\mathrm{T}, 3120+1 \mathrm{G}->\mathrm{A}, 1898+1 \mathrm{G}->\mathrm{A}, 711+1 \mathrm{G}->\mathrm{T}$, $2622+1 \mathrm{G}->\mathrm{A}, 405+\mathrm{lG}->\mathrm{A}, 406-1 \mathrm{G}->\mathrm{A}, 4005+1 \mathrm{G}->\mathrm{A}, 1812-1 \mathrm{G}->\mathrm{A}, 1525-1 \mathrm{G}->\mathrm{A}$, $712-1 \mathrm{G}->\mathrm{T}, 1248+1 \mathrm{G}->\mathrm{A}, 1341+1 \mathrm{G}->\mathrm{A}, 3121-1 \mathrm{G}->\mathrm{A}, 4374+1 \mathrm{G}->\mathrm{T}, 3850-1 \mathrm{G}->\mathrm{A}$, $2789+5 \mathrm{G}->\mathrm{A}, 3849+1$ OkbC->T, 3272-26A->G, 711+5G->A, 3120G->A, 1811+1.6kbA>G, $711+3 \mathrm{~A}->\mathrm{G}, 1898+3 \mathrm{~A}->\mathrm{G}, 1717-8 \mathrm{G}->\mathrm{A}, 1342-2 \mathrm{~A}->\mathrm{C}, 405+3 \mathrm{~A}->\mathrm{C}, 1716 \mathrm{G} / \mathrm{A}$, 1811+1G->C, 1898+5G->T, 3850-3T->G, IVS14b+5G->A, 1898+1G->T, 4005+2T$>C$, and $621+3 \mathrm{~A}->\mathrm{G}$.
[00125] In some embodiments, the patient has at least one combination mutation chosen from: 1949del84, 3141del9, 3195del6, 3199del6, 3905InsT, 4209TGTT->A, A1006E, A120T, A234D, A349V, A613T, C524R, D192G, D443Y, D513G, D836Y, D924N, D979V, E116K, E403D, E474K, E588V, E60K, E822K, F1016S, F1099L, F191V, F311del, F311L, F508C, F575Y, G1061R, G1249R, G126D, G149R, G194R, G194V, G27R, G314E, G458V, G463V, G480C, G622D, G628R, G628R(G->A), G91R, G970D, H1054D, H1085P, H1085R, H1375P, H139R, H199R, H609R, H939R, I1005R, I1234V, I1269N, I1366N, I175V, I502T, I506S, I506T, I601F, I618T, I807M, I980K, L102R, L1324P, L1335P, L138ins, L1480P, L15P, L165S, L320V, L346P, L453S, L571S, L967S, M1101R, M152V, MIT, M1V, M265R, M952I, M952T, P574H, P5L, P750L, P99L, Q1100P, Q1291H, Q1291R, Q237E, Q237H, Q452P, Q98R, R1066C, R1066H, R117G, R117L, R117P, R1283M, R1283S, R170H, R258G, R31L, R334L, R334Q, R347L, R352W, R516G, R553Q, R751L, R792G, R933G,

S1118F, S1159F, S1159P, S13F, S549R(A->C), S549R(T->G), S589N, S737F, S912L, T1036N, T1053I, T1246I, T604I, V1153E, V1240G, V1293G, V201M, V232D, V456A, V456F, V562I, W1098C, W1098R, W1282R, W361R, W57G, W57R, Y1014C, Y1032C, Y109N, Y161D, Y161S, Y563D, Y563N, Y569C, and Y913C.
[00126] In some embodiments, in the methods of treating, lessening the severity of, or symptomatically treating cystic fibrosis disclosed herein, the patient possesses a CFTR mutation G551D. In some embodiments, the patient is homozygous for the G551D mutation. In some embodiments, the patient is heterozygous for the G551D mutation. In some embodiments, the patient is heterozygous for the G551D mutation, having the G551D mutation on one allele and any other CF-causing mutation on the other allele. In some embodiments, the patient is heterozygous for the G551D genetic mutation on one allele and the other CF-causing mutation on the other allele is any one of F508del, G542X, N1303K, W1282X, R117H, R553X, 1717-1G->A, 621+1G->T, 2789+5G->A, $3849+10 \mathrm{kbC}->$ T, R1162X, G85E, $3120+1 \mathrm{G}->\mathrm{A}, \Delta \mathrm{I} 507,1898+1 \mathrm{G}->\mathrm{A}, 3659 \mathrm{delC}$, R347P, R560T, R334W, A455E, 2184delA, or 711+1G->T. In some embodiments, the patient is heterozygous for the G551D mutation, and the other CFTR mutation is F508del. In some embodiments, the patient is heterozygous for the G551D mutation, and the other CFTR mutation is R1 17 H .
[00127] In some embodiments, in the methods of treating, lessening the severity of, or symptomatically treating cystic fibrosis disclosed herein, the patient possesses a CFTR mutation F508del. In some embodiments, the patient is homozygous for the F508del mutation. In some embodiments, the patient is heterozygous for the F508del mutation wherein the patient has the F508del mutation on one allele and any CF-causing mutation on the other allele. In some embodiments, the patient is heterozygous for F508del, and the other CFTR mutation is any CF-causing mutation, including, but not limited to G551D, G542X, N1303K, W1282X, R117H, R553X, 1717-1G->A, 621+1G$>$ T, $2789+5 \mathrm{G}->\mathrm{A}, 3849+10 \mathrm{kbC}->\mathrm{T}, \mathrm{R} 1162 \mathrm{X}, \mathrm{G} 85 \mathrm{E}, 3120+1 \mathrm{G}->\mathrm{A}, \Delta \mathrm{I} 507,1898+1 \mathrm{G}-$ >A, 3659delC, R347P, R560T, R334W, A455E, 2184delA, or 711+1G->T. In some embodiments, the patient is heterozygous for F508del, and the other CFTR mutation is G551D. In some embodiments, the patient is heterozygous for F508del, and the other CFTR mutation is R1 17 H .
[00128] In some embodiments, the patient has at least one combination mutation chosen from:
(i) $\mathrm{D} 443 \mathrm{Y} ; \mathrm{G} 576 \mathrm{~A} ; \mathrm{R} 668 \mathrm{C}$,
(ii) $\mathrm{F} 508 \mathrm{C} ; \mathrm{S} 1251 \mathrm{~N}$,
(iii) G576A; R668C,
(iv) G970R; M470V,
(v) R74W;D1270N,
(vi) R74W;V201M, and
(vii) R74W;V201M;D1270N.
[00129] In some embodiments, in the methods of treating, lessening the severity of, or symptomatically treating cystic fibrosis disclosed herein, the patient possesses a CFTR mutation selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V and G1069R. In some embodiments, the patient possesses a CFTR mutation selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R and S 125 IN. In some embodiments, the patient possesses a CFTR mutation selected from E193K, F1052V and G1069R. In some embodiments, the method produces an increase in chloride transport relative to baseline chloride transport of the patient of the patient.
[00130] In some embodiments, in the methods of treating, lessening the severity of, or symptomatically treating cystic fibrosis disclosed herein, the patient possesses a CFTR mutation selected from R1 17C, D1 10H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D1 10E, D1270N and D1152H.
[00131] In some embodiments, the patient possesses a CFTR mutation selected from $1717-1 \mathrm{G}->\mathrm{A}, 621+1 \mathrm{G}->\mathrm{T}, 3120+1 \mathrm{G}->\mathrm{A}, 1898+1 \mathrm{G}->\mathrm{A}, 711+1 \mathrm{G}->\mathrm{T}, ~ 2622+\mathrm{lG}->\mathrm{A}$, $405+\mathrm{lG}->\mathrm{A}, ~ 406-1 \mathrm{G}->\mathrm{A}, ~ 4005+\mathrm{lG}->\mathrm{A}, ~ 1812-1 \mathrm{G}->\mathrm{A}, ~ 1525-1 \mathrm{G}->\mathrm{A}, ~ 712-1 \mathrm{G}->\mathrm{T}$, $1248+1 \mathrm{G}->\mathrm{A}, ~ 1341+1 \mathrm{G}->\mathrm{A}, ~ 3121-1 \mathrm{G}->\mathrm{A}, ~ 4374+\mathrm{lG}->\mathrm{T}, ~ 3850-\mathrm{lG}->\mathrm{A}, ~ 2789+5 \mathrm{G}->\mathrm{A}$, $3849+10 \mathrm{kbC}->$ T, 3272-26A->G, 711+5G->A, 3120G->A, 1811+1.6kbA->G, 711+3A$>\mathrm{G}, 1898+3 \mathrm{~A}->\mathrm{G}, 1717-8 \mathrm{G}->\mathrm{A}, 1342-2 \mathrm{~A}->\mathrm{C}, 405+3 \mathrm{~A}->\mathrm{C}, 1716 \mathrm{G} / \mathrm{A}, 1811+1 \mathrm{G}->\mathrm{C}$, $1898+5 \mathrm{G}->$ T, $3850-3 \mathrm{~T}->\mathrm{G}, \mathrm{IVS} 14 \mathrm{~b}+5 \mathrm{G}->\mathrm{A}, 1898+1 \mathrm{G}->\mathrm{T}, 4005+2 \mathrm{~T}->\mathrm{C}$ and $621+3 \mathrm{~A}-$ $>$ G. In some embodiments, the patient possesses a CFTR mutation selected from $1717-$ 1G->A, 1811+1.6kbA->G, 2789+5G->A, 3272-26A->G and 3849+10kbC->T. In some embodiments, the patient possesses a CFTR mutation selected from $2789+5 \mathrm{G}->\mathrm{A}$ and 3272-26A->G.
[00132] In some embodiments, in the methods of treating, lessening the severity of, or symptomatically treating cystic fibrosis disclosed herein, the patient possesses a CFTR mutation selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S 125 IN, E193K, F1052V, G1069R, R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N, D $1152 \mathrm{H}, 1717-1 \mathrm{G}->\mathrm{A}, 621+1 \mathrm{G}->\mathrm{T}, 3120+1 \mathrm{G}->\mathrm{A}, ~ 1898+1 \mathrm{G}->\mathrm{A}, 711+1 \mathrm{G}->\mathrm{T}$, $2622+$ lG->A, $405+1 G->A, ~ 406-l G->A, ~ 4005+l G->A, ~ 1812-1 G->A, ~ 1525-1 G->A$, $712-1 \mathrm{G}->\mathrm{T}, ~ 1248+1 \mathrm{G}->\mathrm{A}, ~ 1341+1 \mathrm{G}->\mathrm{A}, ~ 3121-1 \mathrm{G}->\mathrm{A}, ~ 4374+1 \mathrm{G}->\mathrm{T}, ~ 3850-1 \mathrm{G}->\mathrm{A}$, $2789+5 \mathrm{G}->\mathrm{A}, 3849+10 \mathrm{kbC->}$ T, 3272-26A->G, 711+5G->A, 3120G->A, 1811+1.6kbA$>\mathrm{G}, 711+3 \mathrm{~A}->\mathrm{G}, 1898+3 \mathrm{~A}->\mathrm{G}, 1717-8 \mathrm{G}->\mathrm{A}, 1342-2 \mathrm{~A}->\mathrm{C}, 405+3 \mathrm{~A}->\mathrm{C}, 1716 \mathrm{G} / \mathrm{A}$, $1811+1 \mathrm{G}->\mathrm{C}, 1898+5 \mathrm{G}->\mathrm{T}, 3850-3 \mathrm{~T}->\mathrm{G}, \mathrm{IVS} 14 \mathrm{~b}+5 \mathrm{G}->\mathrm{A}, 1898+1 \mathrm{G}->\mathrm{T}, 4005+2 \mathrm{~T}->\mathrm{C}$ and $621+3$ A->G, and CFTR mutations selected from F508del, R117H, and G551D.
[00133] In some embodiments, in the methods of treating, lessening the severity of, or symptomatically treating cystic fibrosis disclosed herein, the patient possesses a CFTR mutation selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V, G1069R, R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N, D $1152 \mathrm{H}, 1717-1 \mathrm{G}->\mathrm{A}, 621+1 \mathrm{G}->\mathrm{T}, 3120+1 \mathrm{G}->\mathrm{A}, 1898+1 \mathrm{G}->\mathrm{A}, 711+1 \mathrm{G}->\mathrm{T}$, $2622+$ lG->A, $405+$ lG->A, $406-1 G->A, ~ 4005+1 G->A, ~ 1812-1 G->A, ~ 1525-1 G->A$, $712-1 \mathrm{G}->\mathrm{T}, ~ 1248+1 \mathrm{G}->\mathrm{A}, ~ 1341+1 \mathrm{G}->\mathrm{A}, ~ 3121-1 \mathrm{G}->\mathrm{A}, ~ 4374+\mathrm{lG}->\mathrm{T}, ~ 3850-1 \mathrm{G}->\mathrm{A}$, $2789+5 \mathrm{G}->\mathrm{A}, 3849+10 \mathrm{kbC}->\mathrm{T}, 3272-26 \mathrm{~A}->\mathrm{G}, 711+5 \mathrm{G}->\mathrm{A}, 3120 \mathrm{G}->\mathrm{A}, 1811+1.6 \mathrm{kbA}-$ $>\mathrm{G}, 711+3 \mathrm{~A}->\mathrm{G}, 1898+3 \mathrm{~A}->\mathrm{G}, 1717-8 \mathrm{G}->\mathrm{A}, 1342-2 \mathrm{~A}->\mathrm{C}, 405+3 \mathrm{~A}->\mathrm{C}, ~ 1716 \mathrm{G} / \mathrm{A}$, $1811+1 \mathrm{G}->\mathrm{C}, 1898+5 \mathrm{G}->\mathrm{T}, 3850-3 \mathrm{~T}->\mathrm{G}, \mathrm{IVS} 14 \mathrm{~b}+5 \mathrm{G}->\mathrm{A}, 1898+1 \mathrm{G}->\mathrm{T}, 4005+2 \mathrm{~T}-$ $>\mathrm{C}, 621+3 \mathrm{~A}->\mathrm{G}$, and a CFTR mutation selected from F508del, R1 17H, and G551D; and a CFTR mutations selected from F508del, R1 17H, and G551D.
[00134] In some embodiments, the patient possesses a CFTR mutation selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V and G1069R, and a CFTR mutation selected from F508del, R117H, and G551D. In some embodiments, the patient possesses a CFTR mutation selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R and S1251N, and a CFTR mutation selected from F508del, R1 17H, and G551D. In some embodiments, the patient possesses a CFTR mutation selected from E193K, F1052V and G1069R, and a CFTR mutation selected from F508del, R1 17H, and G551D.
[00135] In some embodiments, the patient possesses a CFTR mutation selected from R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N and D1152H, and a CFTR mutation selected from F508del, R117H, and G551D.
[00136] In some embodiments, the patient possesses a CFTR mutation selected from $1717-1 \mathrm{G}->\mathrm{A}, 621+1 \mathrm{G}->\mathrm{T}, 3120+1 \mathrm{G}->\mathrm{A}, ~ 1898+1 \mathrm{G}->\mathrm{A}, ~ 711+1 \mathrm{G}->\mathrm{T}, 2622+\mathrm{lG}->\mathrm{A}$, $405+l \mathrm{G}->\mathrm{A}, ~ 406-\mathrm{lG}->\mathrm{A}, ~ 4005+\mathrm{lG}->\mathrm{A}, ~ 1812-1 \mathrm{G}->\mathrm{A}, ~ 1525-1 \mathrm{G}->\mathrm{A}, ~ 712-1 \mathrm{G}->\mathrm{T}$, $1248+1 \mathrm{G}->\mathrm{A}, ~ 1341+1 \mathrm{G}->\mathrm{A}, ~ 3121-1 \mathrm{G}->\mathrm{A}, ~ 4374+1 \mathrm{G}->\mathrm{T}, ~ 3850-1 \mathrm{G}->\mathrm{A}, ~ 2789+5 \mathrm{G}->\mathrm{A}$, $3849+10 \mathrm{kbC}->\mathrm{T}, 3272-26 \mathrm{~A}->\mathrm{G}, 711+5 \mathrm{G}->\mathrm{A}, 3120 \mathrm{G}->\mathrm{A}, 1811+1.6 \mathrm{kbA}->\mathrm{G}, 711+3 \mathrm{~A}-$ $>\mathrm{G}, 1898+3 \mathrm{~A}->\mathrm{G}, 1717-8 \mathrm{G}->\mathrm{A}, 1342-2 \mathrm{~A}->\mathrm{C}, 405+3 \mathrm{~A}->\mathrm{C}, 1716 \mathrm{G} / \mathrm{A}, 1811+1 \mathrm{G}->\mathrm{C}$, $1898+5 \mathrm{G}->\mathrm{T}, 3850-3 \mathrm{~T}->\mathrm{G}, \mathrm{IVS} 14 \mathrm{~b}+5 \mathrm{G}->\mathrm{A}, 1898+1 \mathrm{G}->\mathrm{T}, 4005+2 \mathrm{~T}->\mathrm{C}$ and $621+3 \mathrm{~A}-$ $>G$, and a CFTR mutation selected from F508del, R1 17H, and G551D. In some embodiments, the patient possesses a CFTR mutation selected from 1717-1G->A, $1811+1.6 \mathrm{kbA}->\mathrm{G}, 2789+5 \mathrm{G}->\mathrm{A}, 3272-26 \mathrm{~A}->\mathrm{G}$ and $3849+1$ OkbC->T, and a CFTR mutation selected from F508del, R117H, and G551D. In some embodiments, the patient possesses a CFTR mutation selected from $2789+5 \mathrm{G}->\mathrm{A}$ and $3272-26 \mathrm{~A}->\mathrm{G}$, and a CFTR mutation selected from F508del, Rl 17H.
[00137] In some embodiments, the patient is heterozygous having a CF-causing mutation on one allele and a CF-causing mutation on the other allele. In some embodiments, the patient is heterozygous for F508del, and the other CFTR-causing mutation is any CF-causing mutation, including, but not limited to F508del on one CFTR allele and a CFTR mutation on the second CFTR allele that is associated with minimal CFTR function, residual CFTR function, or a defect in CFTR channel gating activity. In some embodiments, the CF-causing mutation is selected from Table 5. In some embodiments, the CF-causing mutation is selected from Table 6 . In some embodiments, the CF-causing mutation is selected from Table 7. .
[00138] In some embodiments, the patient is heterozygous having a CFTR mutation on one CFTR allele selected from the mutations listed in the table from FIG. 7 and a CFTR mutation on the other CFTR allele is selected from the CFTR mutations listed in Table 6:

Table 6: CFTR Mutations

Q39X
W57X
E60X
R75X
E92X
Q98X
Y122X
L218X
Q220X
C276X
Q290X
G330X
W401X
Q414X
S434X
S466X
S489X
Q493X
W496X
Q525X
G542X
Q552X
R553X
E585X
G673X
R709X
K710X
L732X
R764X
R785X
R792X
E822X
W846X
R851X
Q890X
S912X
W1089X
Y1092X
E1104X
R1158X
R1162X
S1196X
W1204X
S1255X
W1282X
Q1313X
$621+1 G \rightarrow T$

$711+1 \mathrm{G} \rightarrow \mathrm{T}$
$711+5 \mathrm{G} \rightarrow \mathrm{A}$
$712-1 \mathrm{G} \rightarrow \mathrm{T}$
$405+\mathrm{lG} \rightarrow \mathrm{A}$
$405+3 \mathrm{~A} \rightarrow \mathrm{C}$
$406-1 \mathrm{G} \rightarrow \mathrm{A}$
$621+1 \mathrm{G} \rightarrow \mathrm{T}$
$1248+1 \mathrm{G} \rightarrow \mathrm{A}$
$1341+1 \mathrm{G} \rightarrow \mathrm{A}$
$1717-1 \mathrm{G} \rightarrow \mathrm{A}$
$1811+1.6 \mathrm{kbA} \rightarrow \mathrm{G}$
$1811+1 \mathrm{G} \rightarrow \mathrm{C}$
$1812-1 \mathrm{G} \rightarrow \mathrm{A}$
$1898+1 \mathrm{G} \rightarrow \mathrm{A}$
$2622+1 \mathrm{G} \rightarrow \mathrm{A}$
$3120+1 \mathrm{G} \rightarrow \mathrm{A}$
$3120 \mathrm{G} \rightarrow \mathrm{A}$
385Q-1G \rightarrow A
$4005+1 \mathrm{G} \rightarrow \mathrm{A}$
$4374+\mathrm{lG} \rightarrow \mathrm{T}$
663delT
$2183 \mathrm{AA} \rightarrow \mathrm{G}$
CFTRdel2,3
3659delC
394delTT
2184insA
3905insT
2184delA
-1078delT
1154insTC
2183delAA \rightarrow G
2143delT
1677delTA
3876delA
2307insA
4382delA
4016insT
2347 delG
3007delG
574 delA
2711delT
3791 delC
CFTRdele 22-23
457TAT \rightarrow G
2043delG
2869insG
3600+2insT

3737delA
4040 delA
541delC
A46D
T338I
R347P
L927P
G85E
S341P
L467P
I507del
V520F
A559T
R560T
R560S
A561E
Y569D
L1065P
R1066C
R1066M
L1077P
H1085R
M1101K
N1303K
$3849+10 \mathrm{kbC} \rightarrow$ T
$3272-26 \mathrm{~A} \rightarrow \mathrm{G}$
$711+3 \mathrm{~A} \rightarrow \mathrm{G}$
E56K
P67L
R74W
D110E
D110H
R117C
L206W
R347H
R3520
A455E
D579G
E831X
S945L
S977F
F1052V
R1070W
F1074L
D1152H
D1270N
G178R

S549N
S549R
G551D
G551S
G1244E
S1251N
S1255P
G1349D

Table 7: CFTR Mutations

Criteria	Mutation				
Truncation mutations - \%PI >50\% and/or $\mathrm{SwCl}^{-}>86 \mathrm{mmol} / \mathrm{L}$ - no full-length protein	S4X C	C276X	G542X	R792X	E1104X
	G27X	Q290X	G550X	E822X	R1158X
	Q39X	G330X	Q552X	W846X	R1162X
	W57X W	W401X	R553X	Y849X	S1196X
	E60X	Q414X	E585X	R851X	W1204X
	R75X S	S434X	G673X	Q890X	L1254X
	E92X	S466X	Q685X	S912X	S1255X
	Q98X	S489X	R709X	Y913X	W1282X
	Y122X	Q493X	K710X	W1089X	Q1313X
	E193X	W496X	L732X	Y1092X	E1371X
	L218X	C524X	R764X	W1098X	Q1382X
	Q220X	Q525X	R785X	R1102X	Q141 1X
Splice mutations - \%PI $>50 \%$ and/or $\mathrm{SwCl}^{-}>86 \mathrm{mmol} / \mathrm{L}$ - no or little mature mRNA	$185+1 \mathrm{G} \rightarrow \mathrm{T} 7$	$711+5 \mathrm{G} \rightarrow \mathrm{A}$	1717-8G- \rightarrow A	$2622+1 \mathrm{G} \rightarrow \mathrm{A}$	$3121-1 \mathrm{G} \rightarrow \mathrm{A}$
	296+lG \rightarrow A 7	$712-1 \mathrm{G} \rightarrow \mathrm{T}$	1717-1G- \rightarrow A	2790-1G \rightarrow C	$3500-2 \mathrm{~A} \rightarrow \mathrm{G}$
	$405+1 \mathrm{G} \rightarrow \mathrm{A}$	$1248+1 \mathrm{G} \rightarrow \mathrm{A}$	1811+1G- С	$3040 \mathrm{G} \rightarrow \mathrm{C}$	$3600+2 \mathrm{insT}$
	$405+3 \mathrm{~A} \rightarrow \mathrm{C}$	$1249-1 \mathrm{G} \rightarrow \mathrm{A}$	$1811+1.6 \mathrm{kbA}-\rightarrow_{\mathrm{G}}$	(G970R)	3850-1G \rightarrow A
	$406-1 \mathrm{G} \rightarrow \mathrm{A}$	$1341+1 \mathrm{G} \rightarrow \mathrm{A}$	1812-1G- »A	$3120 \mathrm{G} \rightarrow \mathrm{A}$	$4005+1 \mathrm{G} \rightarrow \mathrm{A}$
	$621+1 \mathrm{G} \rightarrow \mathrm{T}$	$1525-2 \mathrm{~A} \rightarrow \mathrm{G}$	$1898+1 \mathrm{G}-\rightarrow \mathrm{A}$	$3120+1 \mathrm{G} \rightarrow \mathrm{A}$	$4374+1 \mathrm{G} \rightarrow \mathrm{T}$
	$711+1 \mathrm{G} \rightarrow \mathrm{T}$	$1525-1 \mathrm{G} \rightarrow \mathrm{A}$	$1898+1 \mathrm{G}-\rightarrow \mathrm{C}$	$3121-2 \mathrm{~A} \rightarrow \mathrm{G}$	
Small (<3 nucleotide) insertion/deletion (ins/del) frameshift mutations - $\% \mathrm{PI}>50 \%$ and/or $\mathrm{SwCl}{ }^{-}>86 \mathrm{mmol} / \mathrm{L}$ - garbled and/or truncated protein	182delT	1119 delA	1782 delA	2732insA	3876delA
	306insA	1138insG	1824delA	2869insG	3878delG
	365-366insT	1154insTC	2043delG	2896insAG	3905insT
	394delTT	1161 delC	2143 delT	2942 insT	4016insT
	442delA	1213delT	2183AA- G $^{\text {a }}$	2957 delT	4021dupT
	444delA	1259 insA	2184 delA	3007 delG	4040delA
	457TAT \rightarrow G	1288insTA	2184insA	3028delA	4279insA
	541delC	1471 delA	2307insA	3171delC	4326delTC
	574delA	1497delGG	2347 delG	3659 delC	
	663 delT	1548delG	2585 delT	3737 del A	
	935 delA	1609 del CA	2594delGT	3791 delC	
	1078delT	1677delTA	271 1delT	382 1delT	
Non-small (>3	CFTRdele2,3 1461ins4			2991del32	
nucleotide)	CFTRdele22,23 192		del7	3667ins4	
insertion/deletion	124del23bp		$2055 \mathrm{del} 9 \rightarrow \mathrm{~A}$	4010del4	
(ins/del) frameshift mutations	852del22		$\begin{aligned} & \text { 2105- } \\ & \text { 2117dell3insAGAAA } \end{aligned}$	$4209 \mathrm{TGTT}-$->AA	
- \%PI $>50 \%$ and/or $\mathrm{SwCl}{ }^{-}>86 \mathrm{mmol} / \mathrm{L}$ - garbled and/or truncated protein	991del5		$\text { 2721dell } 1$		

[00139] Table 7 above includes certain exemplary CFTR minimal function mutations, which are detectable by an FDA-cleared genotyping assay, but does not include an exhaustive list.
[00140] In some embodiments, the patient is: with F508del/MF (F/MF) genotypes (heterozygous for F508del and an MF mutation not expected to respond to CFTR modulators, such as Compound III); with F508dellF508del (F/F) genotype (homozygous for F508del); and/or with $F 50 \not{ }^{\xi} 4 / e / /$ gating (F / G) genotypes (heterozygous for F508del and a gating mutation known to be CFTR modulator-responsive (e.g., Compound Ill-responsive). In some embodiments, the patient with F508del/MF (F/MF) genotypes has a MF mutation that is not expected to respond to Compound II, Compound III, and both of Compound II and Compound III. In some embodiments, the patient with $F 508 \mathrm{del} / \mathrm{MF}$ (F/MF) genotypes has any one of the MF mutations in Table 7.
[00141] In some embodiments, the patient is heterozygous for F508del, and the other CFTR genetic mutation is any CF-causing mutation, including truncation mutations, splice mutations, small (<3 nucleotide) insertion or deletion (ins/del) frameshift mutations; non-small (>3 nucleotide) insertion or deletion (ins/del) frameshift mutations; and Class II, III, IV mutations not responsive to Compound III alone or in combination with Compound II or Compound IV.
[00142] In some embodiments, the patient is heterozygous for F508del, and the other CFTR genetic mutation is a truncation mutation. In some specific embodiments, the truncation mutation is a truncation mutation listed in Table 7.
[00143] In some embodiments, the patient is heterozygous for F508del, and the other CFTR genetic mutation is a splice mutation. In some specific embodiments, the splice mutation is a splice mutation listed in Table 7.
[00144] In some embodiments, the patient is heterozygous for F508del, and the other CFTR genetic mutation is a small (<3 nucleotide) insertion or deletion (ins/del) frameshift mutation. In some specific embodiments, the small (<3 nucleotide) insertion or deletion (ins/del) frameshift mutation is a small (<3 nucleotide) insertion or deletion (ins/del) frameshift mutation listed in Table 7.
[00145] In some embodiments, the patient is heterozygous for F508del, and the other CFTR genetic mutation is any CF-causing mutation expected to be and/or is responsive to, based on in vitro and/or clinical data, any combination of (i) a novel compound chosen from those disclosed herein (e.g., compounds of Formula (I), (II), (III), (IV), (V), or (VI), and pharmaceutically acceptable salts thereof, and their deuterated derivatives), and (ii) Compound II, and/or Compound III, and/or Compound IV.
[00146] In some embodiments, the patient is heterozygous for F508del, and the other CFTR genetic mutation is any CF-causing mutation expected to be and/or is responsive, based on in vitro and/or clinical data, to the triple combination of a novel compound chosen from those disclosed herein (e.g., compounds of Formula (I), (II), (III), (IV), (V), or (VI), and pharmaceutically acceptable salts thereof, and their deuterated derivatives), and Compound II, and Compound III.
[00147] In some embodiments, the patient is heterozygous for F508del, and the other CFTR genetic mutation is a non-small (>3 nucleotide) insertion or deletion (ins/del) frameshift mutation. In some specific embodiments, the non-small (>3 nucleotide) insertion or deletion (ins/del) frameshift mutation is a non-small (>3 nucleotide) insertion or deletion (ins/del) frameshift mutation listed in Table 6.
[00148] In some embodiments, the patient is heterozygous for F508del, and the other CFTR genetic mutation is a Class II, III, IV mutations not responsive to Compound III alone or in combination with Compound II or Compound IV. In some embodiments, the Class II, III, IV mutations not responsive to Compound III alone or in combination
with Compound II or Compound IV is a Class II, III, IV mutations not responsive to Compound III alone or in combination with Compound II or Compound IV listed in Table 7.
[00149] In some embodiments, the patient is heterozygous for F508del, and the other CFTR genetic mutation is any mutation listed in Table 7.
[00150] In some embodiments, the patient is heterozygous for F508del, and the other CFTR genetic mutation is any mutation, but other than F508del, listed in Table 5, 6, 7, and FIG. 7.
[00151] In some embodiments, the patient is heterozygous for F508del, and the other CFTR genetic mutation is any mutation listed in Table 5. In some embodiments, the patient is heterozygous for F508del, and the other CFTR genetic mutation is any mutation listed in Table 6. In some embodiments, the patient is heterozygous for F508del, and the other CFTR genetic mutation is any mutation listed in Table 7. In some embodiments, the patient is heterozygous for F508del, and the other CFTR genetic mutation is any mutation listed in FIG. 7.
[00152] In some embodiments, the patient is homozygous for F508del.
[00153] In some embodiments, the patient is heterozygous having one CF-causing mutation on one CFTR allele selected from the mutations listed in the table from FIG. 7 and another CF-causing mutation on the other CFTR allele is selected from the CFTR mutations listed in Table 7.
[00154] In some embodiments, the composition disclosed herein is useful for treating, lessening the severity of, or symptomatically treating cystic fibrosis in patients who exhibit residual CFTR activity in the apical membrane of respiratory and nonrespiratory epithelia. The presence of residual CFTR activity at the epithelial surface can be readily detected using methods known in the art, e.g., standard electrophysiological, biochemical, or histochemical techniques. Such methods identify CFTR activity using in vivo or ex vivo electrophysiological techniques, measurement of sweat or salivary CI^{-}concentrations, or ex vivo biochemical or histochemical techniques to monitor cell surface density. Using such methods, residual CFTR activity can be readily detected for patients that are heterozygous or homozygous for a variety of different mutations, including patients heterozygous for the most common mutation, F508del, as well as other mutations such as the G551D mutation, or the R1 17H
mutation. In some embodiments, compositions disclosed herein are useful for treating, lessening the severity of, or symptomatically treating cystic fibrosis in patients who exhibit little to no residual CFTR activity. In some embodiments, compositions disclosed herein are useful for treating, lessening the severity of, or symptomatically treating cystic fibrosis in patients who exhibit little to no residual CFTR activity in the apical membrane of respiratory epithelia.
[00155] In some embodiments, the compositions disclosed herein are useful for treating or lessening the severity of cystic fibrosis in patients who exhibit residual CFTR activity using pharmacological methods. Such methods increase the amount of CFTR present at the cell surface, thereby inducing a hitherto absent CFTR activity in a patient or augmenting the existing level of residual CFTR activity in a patient.
[00156] In some embodiments, the compositions disclosed herein are useful for treating or lessening the severity of cystic fibrosis in patients with certain genotypes exhibiting residual CFTR activity.
[00157] In some embodiments, compositions disclosed herein are useful for treating, lessening the severity of, or symptomatically treating cystic fibrosis in patients within certain clinical phenotypes, e.g., a mild to moderate clinical phenotype that typically correlates with the amount of residual CFTR activity in the apical membrane of epithelia. Such phenotypes include patients exhibiting pancreatic sufficiency.
[00158] In some embodiments, the compositions disclosed herein are useful for treating, lessening the severity of, or symptomatically treating patients diagnosed with pancreatic sufficiency, idiopathic pancreatitis and congenital bilateral absence of the vas deferens, or mild lung disease wherein the patient exhibits residual CFTR activity.
[00159] In some embodiments, this disclosure relates to a method of augmenting or inducing anion channel activity in vitro or in vivo, comprising contacting the channel with a composition disclosed herein. In some embodiments, the anion channel is a chloride channel or a bicarbonate channel. In some embodiments, the anion channel is a chloride channel.
[00160] The exact amount of a pharmaceutical composition required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular agent, its mode of administration, and the like.

The compounds of this disclosure may be formulated in dosage unit form for ease of administration and uniformity of dosage. The expression "dosage unit form" as used herein refers to a physically discrete unit of agent appropriate for the patient to be treated. It will be understood, however, that the total daily usage of the compounds and compositions of this disclosure will be decided by the attending physician within the scope of sound medical judgment. The specific effective dose level for any particular patient or organism will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed, and like factors well known in the medical arts. The term "patient", as used herein, means an animal, such as a mammal, and even further such as a human.
[00161] In some embodiments, the disclosure also is directed to methods of treatment using isotope-labelled compounds of the afore-mentioned compounds, which have the same structures as disclosed herein except that one or more atoms therein have been replaced by an atom or atoms having an atomic mass or mass number which differs from the atomic mass or mass number of the atom which usually occurs naturally (isotope labelled). Examples of isotopes which are commercially available and suitable for the disclosure include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine and chlorine, for example ${ }^{2} \mathrm{H},{ }^{3} \mathrm{H},{ }^{1} \mathrm{C},{ }^{4} \mathrm{C},{ }^{15} \mathrm{~N}, 1^{8} \mathbf{0}, 1^{7} \mathbf{0},{ }^{3} \mathrm{P},{ }^{32} \mathrm{P},{ }^{35} \mathrm{~S},{ }^{1} \mathrm{~F}$ and ${ }^{36} \mathrm{C} 1$, respectively.
[00162] The isotope-labelled compounds and salts can be used in a number of beneficial ways. They can be suitable for medicaments and/or various types of assays, such as substrate tissue distribution assays. For example, tritium $\left({ }^{3} \mathrm{H}\right)$ - and/or carbon-14 $\left({ }^{4} \mathrm{C}\right)$-labelled compounds are particularly useful for various types of assays, such as substrate tissue distribution assays, due to relatively simple preparation and excellent detectability. For example, deuterium $\left({ }^{2} \mathrm{H}\right)$-labelled ones are therapeutically useful with potential therapeutic advantages over the non- ${ }^{2} \mathrm{H}$-labelled compounds. In general, deuterium $\left({ }^{2} \mathrm{H}\right)$-labelled compounds and salts can have higher metabolic stability as compared to those that are not isotope-labelled owing to the kinetic isotope effect described below. Higher metabolic stability translates directly into an increased in vivo
half-life or lower dosages, which could be desired. The isotope-labelled compounds and salts can usually be prepared by carrying out the procedures disclosed in the synthesis schemes and the related description, in the example part and in the preparation part in the present text, replacing a non-isotope-labelled reactant by a readily available isotope-labelled reactant.
[00163] In some embodiments, the isotope-labelled compounds and salts are deuterium $\left({ }^{2} \mathrm{H}\right)$-labelled ones. In some specific embodiments, the isotope-labelled compounds and salts are deuterium $\left({ }^{2} \mathrm{H}\right)$-labelled, wherein one or more hydrogen atoms therein have been replaced by deuterium. In chemical structures, deuterium is represented as ${ }^{2}{ }^{2} \mathrm{H}$ " or "D."
[00164] The deuterium $\left({ }^{2} \mathrm{H}\right)$-labelled compounds and salts can manipulate the oxidative metabolism of the compound by way of the primary kinetic isotope effect. The primary kinetic isotope effect is a change of the rate for a chemical reaction that results from exchange of isotopic nuclei, which in turn is caused by the change in ground state energies necessary for covalent bond formation after this isotopic exchange. Exchange of a heavier isotope usually results in a lowering of the ground state energy for a chemical bond and thus causes a reduction in the rate-limiting bond breakage. If the bond breakage occurs in or in the vicinity of a saddle-point region along the coordinate of a multi-product reaction, the product distribution ratios can be altered substantially. For explanation: if deuterium is bonded to a carbon atom at a nonexchangeable position, rate differences of $\mathrm{k}_{\mathrm{M} / \mathrm{k}_{\mathrm{D}}}=2-7$ are typical. For a further discussion, see S. L. Harbeson and R. D. Tung, Deuterium In Drug Discovery and Development, Ann. Rep. Med. Chem. 201 1, 46, 403-417; and T.G. Gant "Using deuterium in drug discovery: leaving the label in the drug" J. Med. Chem. 2014, 57, 3595-361 1, relevant portions of which are independently incorporated herein by reference.
[00165] The concentration of the isotope(s) (e.g., deuterium) incorporated into the isotope-labelled compounds and salt of the disclosure may be defined by the isotopic enrichment factor. The term "isotopic enrichment factor" as used herein means the ratio between the isotopic abundance and the natural abundance of a specified isotope. In some embodiments, if a substituent in a compound of the disclosure is denoted deuterium, such compound has an isotopic enrichment factor for each designated deuterium atom of at least 3500 (52.5% deuterium incorporation at each designated
deuterium atom), at least 4000 (60% deuterium incorporation), at least $4500(67.5 \%$ deuterium incorporation), at least 5000 (75% deuterium incorporation), at least 5500 (82.5% deuterium incorporation), at least 6000 (90% deuterium incorporation), at least 6333.3 (95% deuterium incorporation), at least 6466.7 (97% deuterium incorporation), at least 6600 (99% deuterium incorporation), or at least 6633.3 (99.5% deuterium incorporation).
[00166] When discovering and developing therapeutic agents, the person skilled in the art attempts to optimize pharmacokinetic parameters while retaining desirable in vitro properties. It may be reasonable to assume that many compounds with poor pharmacokinetic profiles are susceptible to oxidative metabolism.
[00167] One of ordinary skill in the art would understand that deuteration of one or more metabolically labile positions on a compound or active metabolite may lead to improvement of one or more superior DMPK properties while maintaining biological activity as compared to the corresponding hydrogen analogs. The superior DMPK property or properties may have an impact on the exposure, half-life, clearance, metabolism, and/or even food requirements for optimal absorption of the drug product. Deuteration may also change the metabolism at other non-deuterated positions of the deuterated compound.
[00168] In some embodiments, the disclosure includes deuterated derivatives of the novel compounds disclosed herein and of their pharmaceutically acceptable salts. Nonlimiting examples of deuterated compounds are disclosed in FIG. 1.
[00169] In some embodiments, Compound IIГ as used herein includes the deuterated compound disclosed in U.S. Patent No. 8,865,902 (which is incorporated herein by reference), and CTP-656.
[00170] In some embodiments, Compound IIГ is:

[00171] Exemplary embodiments of the disclosure include: The novel compounds disclosed herein (e.g., compounds of Formulae (I) - (VI), pharmaceutically acceptable salts thereof, and deuterated derivatives of any of the foregoing, including the compounds in FIG. 1 and those specifically depicted herein) can be prepared by suitable methods known in the art. For example, they can be prepared in accordance with procedures described in WO 2016/057572 and by the exemplary syntheses described below in the Examples. For example, deuterated derivatives of the novel compounds of Formulae (I) - (VI) and pharmaceutically acceptable salts thereof can be prepared in a similar manner as those for compounds of Formulae (I) - (VI) and pharmaceutically acceptable salts thereof by employing intermediates and/or reagents where one or more hydrogen atoms are replaced with deuterium. For example, see T.G Gant "Using deuterium in drug discovery: leaving the label in the drug," J. Med. Chem. 2014, 57, 3595-361 1, the relevant portions of which are incorporated herein by reference.
[00172] In some embodiments, compounds of Formulae (X), (III), (IV), (V), and (VI) and pharmaceutically acceptable salts thereof, and deuterated derivatives of any of the foregoing are prepared as depicted in Schemes 1-2, wherein the variables therein are each and independently are as those for Formula (I), (II), (III), (IV), (V), or (VI) above, and wherein each R^{a} is independently chosen from C1-C4 alkyl groups; and each X^{a} is independently chosen from F or CI. Suitable condition(s) known in the art can be employed for each step depicted in the schemes. In some embodiments, each X^{a} for Formulae (B), (C), (D), (F), (B-1), (C-1), (D-1), and (F-1) in Schemes 2-4 is independently CI. In some embodiments, each X^{a} for Formulae (D), (L), (O), and (P) in Scheme 6 is independently F. In some embodiments, r in Formulae (X), (B), (C), (D), and (F) is independently 0 .
[00173] In some embodiments, as shown in Scheme 1, the methods comprise reacting a compound of Formula (F) or a salt thereof with a compound of Formula (G) or a salt thereof to generate a compound of Formula (X), a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.

Scheme 1

[00174] In some embodiments, in said Formulae (F), (G) and (X):

- one of Y^{1} and Y^{2} is N and the other is CH ;
$-\mathrm{R}^{1}$ is $-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{\mathrm{k}}-0-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{\mathrm{m}} \mathrm{R}^{7}$,
- each R^{2} is independently chosen from hydrogen; halogens; cyano; hydroxy; C1-C2 alkoxy groups; and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and C3-5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- each R^{3} is independently chosen from C1-C4 alkyl groups optionally substituted with one or more hydroxy groups, or optionally two geminal $\mathrm{R}^{\mathbf{3}}$, together with the carbon atom to which they are attached, form a C3-4 cycloalkyl;
- each R^{4} is independently chosen from halogens;
- R^{5} is chosen from hydrogen and C1-C4 alkyl groups;
- each R^{6} is chosen from halogens, cyano, hydroxy, hydroxymethyl, C1-C2 alkoxy groups, C1-C2 alkyl groups, and halogenated C1-C2 alkyl groups;
- R^{7} is chosen from hydrogen, halogens, cyano, C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy, and C_{3} - Cl_{0} cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- X^{a} is F or Cl ;
-k is 0 or 1 ;
-r is 0 or 1 ;
-m is $0,1,2$, or 3 ;
- p is 0,1 , or 2 ; and
- q is $\mathrm{o}, 1,2,3,4,5,6,7$, or 8 .
[00175] In some embodiments, r in Formula (X) is 0 .
[00176] Any suitable conditions, such as those for a nucleophilic reaction of amine, known in the art can be used. In some embodiments, the reaction depicted in Scheme 1 is performed in the presence of a base, such as a metal carbonate (e.g., $\mathrm{Na}_{2} \mathrm{CO}_{3}$ or $\mathrm{K}_{2} \mathrm{CO}_{3}$).
[00177] In some embodiments, compounds of Formula (X), pharmaceutically acceptable salts thereof, or deuterated derivatives of any of the foregoing, wherein Y^{2} is N and Y^{1} is CH in each of Formulae (F), (G) and (X), are prepared by the methods in Scheme 1.In some embodiments, a salt of a compound of Formula (G) is employed. In some embodiments, an $\mathrm{HC1}$ salt of a compound of Formula (G) is employed.
[00178] A compound of Formula (F) or a salt thereof and a compound of Formula (G) or a salt thereof can be prepared by any suitable method known in the art, for example, those in WO 2016/57572 and those in the exemplary syntheses described below in the Examples.
[00179] In some embodiments, as shown in Scheme 2, a compound of Formula (F), a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing is prepared by a method that comprises reacting a compound of Formula (D) or a salt thereof with a compound of Formula (E) or a salt thereof. In some embodiments, compounds of Formula (D), salts thereof, or deuterated derivatives of any of the foregoing are prepared by a method that comprises reacting a compound of Formula (A) or a salt thereof with a compound of Formula (B) or a salt thereof to generate a compound of Formula (C) or a salt thereof; and hydrolyzing the $-\mathrm{C}(\mathbf{0}) \mathrm{OR}^{\mathrm{a}}$ of compound of Formula (C) to generate a compound of Formula (D) or a salt thereof. Any suitable conditions known in the art can be used for steps (a), (b), and (c) of Scheme 2 below, such as those for a coupling reaction between carboxylic acid and sulfonamide or those for an acylation of sulfonamide for step (a), those for hydrolysis of ester for step (b), and those for a nucleophilic reaction of amine for step (c).
[00180] In some embodiments, step (a) of Scheme 2 below is performed in the presence of a base. In some specific embodiments, step (a) is performed in the presence of a non-nucleophilic base. In some embodiments, in step (a), the reaction of a
compound of Formula (D) or a salt thereof with a compound of Formula (E) or a salt thereof comprises reacting a compound of Formula (D) or a salt thereof with a coupling reagent, such as carbonyl diimidazole (CDI), and subsequently with a compound of Formula (E) or a salt thereof in the presence of a base, such as a non-nucleophilic base. In some embodiments, a compound of Formula (D) or a salt thereof is reacted with CDI prior to the reaction with a compound of Formula (E) or a salt thereof, and then subsequently with a compound of Formula (E) or a salt thereof in the presence of a base, such as DBU (1,8-diazabicyclo(5.4.0)undec-7-ene).
[00181] In some embodiments, step (b) of Scheme 2 below is performed in the presence of a base. In some embodiments, step (b) is performed in the presence of an aqueous base, such as aqueous hydroxide. In some embodiments, step (b) is performed in the presence of an aqueous metal hydroxide, such as aqueous NaOH . In some embodiments, step (b) of Scheme 2 below is performed in the presence of an acid. In some embodiments, step (b) is performed in the presence of an aqueous acid, such as an aqueous $\mathrm{HC1}$.
[00182] In some embodiments, step (c) of Scheme 2 below is performed in the presence of a base. In some embodiments, step (c) is performed in the presence of a metal carbonate (e.g., $\mathrm{Na} 2 \mathrm{CO}_{3}$ or $\mathrm{K}_{2} \mathrm{CO}_{3}$).

Scheme 2

(b)

[00183] In some embodiments, disclosed herein is a method of preparing a compound of the following formula (Compound 1):

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing. The method comprises reacting a compound of Formula (F-1) or a salt thereof with a compound of Formula (G-1) or a salt thereof, wherein X^{a} is F or CI, as shown in Scheme 3:

Scheme 3

[00184] Any suitable conditions, such as those for a nucleophilic reaction of amine, known in the art can be used. In some embodiments, the reaction depicted in Scheme 3 is performed in the presence of a base, such as a metal carbonate (e.g., $\mathrm{Na}_{2} \mathrm{CO}_{3}$ or $\mathrm{K}_{2} \mathrm{CO}_{3}$).
[00185] In some embodiments, a salt of compound of Formula (G-l) is employed. In some embodiments, a HCl salt of a compound of Formula (G-1) is employed.
[00186] A compound of Formula (F-1) or a salt thereof and a compound of Formula (G-1) or a salt thereof can be prepared by any suitable method known in the art, for example, those in WO 2016/57572 and those in the exemplary syntheses described below in the Examples.
[00187] In some embodiments, as shown in Scheme 4, a compound of Formula (F-1) or a salt thereof, or a deuterated derivative of any of the foregoing is prepared by a method that comprises reacting a compound of Formula (D-1) or a salt thereof with a compound of Formula (E-1) or a salt thereof. In some embodiments, compounds of Formula (D-1) or salts thereof, or their deuterated derivatives are prepared by a method that comprises reacting a compound of Formula (A-1) or a salt thereof with a compound of Formula (B-1) or a salt thereof to generate a compound of formula (C-1) or a salt thereof; and hydrolyzing the $-\mathrm{C}(0) \mathrm{OR}{ }^{\mathrm{a}}$ of compound of Formula ($\mathrm{C}-1$) or salt thereof to generate a compound of formula (D-1) or a salt thereof. Any suitable conditions known in the art can be used for steps (a-1), (b-1), and (c-1) of Scheme 4 below, such as those for a coupling reaction between carboxylic acid and sulfonamide or those for an acylation of sulfonamide for step (a-1), those for hydrolysis of ester for step (b-l), and those for a nucleophilic reaction of amine for step (c-1).
[00188] In some embodiments, step (a-1) of Scheme 4 below is performed in the presence of a base. In some embodiments, step (a-1) of Scheme 4 below is performed
in the presence of a non-nucleophilic base. In some embodiments, in step (a-1), the reaction of a compound of Formula (D-1) or a salt thereof with a compound of Formula (E-1) or a salt thereof comprises reacting a compound of Formula (D-1) or a salt thereof with a coupling reagent, such as carbonyl diimidazole (CDI), and subsequently with a compound of Formula (E-1) or a salt thereof in the presence of a base, such as a nonnucleophilic base. In some embodiments, (i) a compound of Formula (D-1) or a salt thereof is reacted with CDI prior to the reaction with a compound of Formula (E-1) or a salt thereof, and then subsequently (ii) the reaction product of step (i) is reacted with a compound of Formula (E-1) or a salt thereof in the presence of a base, such as DBU (1,8-Diazabicyclo(5.4.0)undec-7-ene).
[00189] In some embodiments, step (b-1) of Scheme 4 below is performed in the presence of a base. In some embodiments, step (b-1) is performed in the presence of an aqueous base, such as aqueous hydroxide. In some embodiments, step (b-1) is performed in the presence of an aqueous metal hydroxide, such as aqueous NaOH . In some embodiments, step (b-1) of Scheme 4 below is performed in the presence of an acid. In some embodiments, step (b-1) is performed in the presence of an aqueous acid, such as an aqueous HC .
[00190] In some embodiments, step (c-1) of Scheme 4 below is performed in the presence of a base. In some embodiments, step (c-1) is performed in the presence of a metal carbonate (e.g., $\mathbf{N a}_{2} \mathbf{C 0}_{3}$ or $\mathrm{K}_{2} \mathrm{CO}_{3}$).

Scheme 4

(C-1)

[00191] In Scheme 4, $\mathrm{R}^{\text {a }}$ is chosen from C1-C4 alkyl groups; and each X^{a} is independently F or $\mathbf{C I}$.
[00192] In some embodiments, methods of preparing a compound of Formulae (I) and (II), wherein \mathbf{X} is NH or $\mathbf{N (C i - C 4 ~ a l k y l) ~ o r ~ a ~ p h a r m a c e u t i c a l l y ~ a c c e p t a b l e ~ s a l t ~ t h e r e o f , ~ o r ~}$ a deuterated derivative of any of the foregoing, comprise reacting a compound of Formula (L) or a salt thereof with NR_{3} where $\mathrm{R} *$ is H or C1-C4 alkyl, as depicted in Schemes 5 and 6:

Scheme 5

(I: where X is NR^{*})
Scheme 6

[00193] Any suitable conditions known in the art can be used for the sulfoxamination reaction, for example, for those for electrophilic additions by amines. In some embodiments, the sulfoxamination reaction is performed in the presence of a chlorinating or oxidizing agent, such as N-chlorosuccinimide (NCS).
[00194] In some embodiments, a compound of Formula (L) or a salt thereof is
prepared by a method comprising oxidizing the sulfur unit of the
 a compound of Formula (M) or salt thereof as shown in Scheme 7 below:

[00195] Any suitable conditions known in the art can be used for the oxidation reaction. In some embodiments, the oxidation is performed in the presence of a peroxycarboxylic acid, such as meta-Chloroperoxybenzoic acid (m-CPBA).
[00196] In some embodiments, a compound of Formula (M) or a salt thereof is prepared by a method comprising reacting a compound of Formula (O) with a compound of Formula (G) or a salt thereof. Any suitable conditions known in the art can be used.
[00197] In some embodiments, a compound of Formula (O) or a salt thereof is prepared by a method comprising reacting a compound of Formula (P) or salt thereof
with a phenyl disulfide of Formula (Q):
 embodiments, a compound of Formula (P) or a salt thereof is prepared by amidating the $-\mathrm{C}(0) \mathrm{OH}$ group of a compound of Formula (D) or salt thereof. Any suitable conditions known in the art can be used.
[00198] Additional embodiments include:

1. A compound of Formula I:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing,
wherein:

- one of Y^{1} and Y^{2} is N and the other is CH ;
- X is chosen from O, NH, and $\mathrm{N}(\mathrm{Ci}-\mathrm{C} 4$ alkyl) groups;
- \mathbf{R}^{1} is- $\left(\mathbf{C}\left(\mathbf{R}^{2}\right)_{2}\right)_{k}-\mathbf{0}-\left(\mathbf{C}\left(\mathbf{R}^{2}\right)_{2}\right)_{m} \mathbf{R}^{7}$,
- each $\mathbf{R}^{\mathbf{2}}$ is independently chosen from hydrogen; halogens; cyano; hydroxy;
$\mathrm{C}_{1}-\mathrm{C}_{2}$ alkoxy groups; and $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and C3-5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups, halogenated $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups, and halogens;
- each $\mathbf{R}^{\mathbf{3}}$ is independently chosen from $\mathrm{C}_{1-\mathrm{C} 4}$ alkyl groups optionally substituted with one or more hydroxy groups, or optionally two geminal $\mathbf{R}^{\mathbf{3}}$, together with the carbon atom to which they are attached, form a C3-4 cycloalkyl;
- each $\mathbf{R}^{\mathbf{4}}$ is independently chosen from halogens;
- $\mathbf{R}^{\mathbf{5}}$ is chosen from hydrogen and $\mathrm{C}_{1-\mathrm{C} 4}$ alkyl groups;
- each $\mathbf{R}^{\mathbf{6}}$ is independently chosen from halogens, cyano, hydroxy,
hydroxymethyl, $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkoxy groups, $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups, and halogenated $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups;
- \mathbf{R}^{7} is chosen from hydrogen; halogens; cyano; $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy; and с $3-\mathrm{C}_{10}$ cycloalkyl groups optionally substituted with one or more
substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
-k is 0 or 1 ;
-r is 0 or 1 ;
- m is $0,1,2$, or 3 ;
- p is 0,1 , or 2 ; and
- q is $\mathrm{o}, 1,2,3,4,5,6,7$, or 8 .

2. A compound of Formula II:

(II),
a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing,
wherein:

- \mathbf{X} is chosen from \mathbf{O}, NH, and $\mathrm{N}(\mathrm{Ci}-\mathrm{C} 4$ alkyl) groups;
$-R^{1}$ is- $\left(C\left(R^{2}\right)_{2}\right)_{k}-0-\left(C\left(R^{2}\right)_{2}\right)_{m} R^{7}$,
- each R^{2} is independently chosen from hydrogen; halogens; cyano; hydroxy; C1-C2 alkoxy groups; and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and C3-5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- each R^{3} is independently chosen from C1-C4 alkyl groups optionally substituted with one or more hydroxy groups, or optionally two geminal $\mathrm{R}^{\mathbf{3}}$, together with the carbon atom to which they are attached, form a C3-4 cycloalkyl;
- each $\mathbf{R}^{\mathbf{4}}$ is independently chosen from halogens;
- $\mathbf{R}^{\mathbf{5}}$ is chosen from hydrogen and C1-C4 alkyl groups;
- each \mathbf{R}^{6} is independently chosen from halogens, cyano, hydroxy, hydroxymethyl, C1-C2 alkoxy groups, C1-C2 alkyl groups, and halogenated C1-C2 alkyl groups;
- \mathbf{R}^{7} is chosen from hydrogen; halogens; cyano; C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy; and $\mathrm{C} 3-\mathrm{C1}_{0}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

```
-k is 0 or 1;
-r is 0 or 1;
-m is 0, 1, 2, or 3;
- p is 0, 1, or 2; and
-q is o, 1, 2, 3,4,5,6,7, or 8.
```

3. A compound of Formula III:

(III),
a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing,
wherein:

$$
\left.-\mathbf{R}^{1} \text { is }-\left(\mathbf{C}\left(\mathbf{R}^{2}\right)_{2}\right)_{k}-0-\left(\mathbf{C}^{\left(R^{2}\right.}\right)_{2}\right)_{m} \mathbf{R}^{7}
$$

- each R^{2} is independently chosen from hydrogen; halogens; cyano; hydroxy; C1-C2 alkoxy groups; and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and C3-5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- each R^{3} is independently chosen from C1-C4 alkyl groups optionally substituted with one or more hydroxy groups, or optionally two geminal $\mathrm{R}^{\mathbf{3}}$, together with the carbon atom to which they are attached, form a C3-4 cycloalkyl;
- each R^{4} is independently chosen from halogens;
$-\mathrm{R}^{5}$ is chosen from hydrogen and $\mathrm{C} 1-\mathrm{C} 4$ alkyl groups;
- each R^{6} is independently chosen from halogens, cyano, hydroxy, hydroxymethyl, C1-C2 alkoxy groups, C1-C2 alkyl groups, and halogenated C1-C2 alkyl groups;
$-\mathrm{R}^{7}$ is chosen from hydrogen, halogens, cyano, C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy, and $\mathrm{C} 3-\mathrm{C1}_{0}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

```
- k is 0 or 1;
-r is 0 or 1;
-m}\mathrm{ is 0, 1, 2, or 3;
- p is 0, 1, or 2; and
-q is o, 1, 2, 3, 4, 5,6, 7, or 8.
```

4. A compound according to any of embodiments 1-3, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein:

- each R^{2} is independently chosen from hydrogen and C1-C2 alkyl groups;
- R^{5} is chosen from hydrogen and C1-C2 alkyl groups; and
- each R^{6} is independently chosen from C1-C2 alkyl groups.

5. A compound according to any of embodiments 1-3, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein:

- $\mathrm{R}^{\mathbf{1}}$ is - $\mathbf{0}-\left(\mathrm{CH}_{2}\right)\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{(m-} \mathrm{i}^{1} \mathrm{R}^{7}$,
$-\mathrm{R}^{7}$ is independently chosen from C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and c3C 1_{0} cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens, and
- each R^{2} is independently chosen from C1-C2 alkyl groups, OH, C1-C2 alkoxy groups, and halogens;

$$
\begin{aligned}
& -\mathrm{r} \text { is } 0 \text {; and } \\
& -\mathrm{q} \text { is } 0,1,2,3 \text {, or } 4
\end{aligned}
$$

6. A compound according to embodiment 4 having Formula IV or V:

(IV) or
 (V),
a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing,
wherein:
$-R^{\mathbf{1}}$ is $\mathbf{- 0}-\left(\mathbf{C H}_{\mathbf{2}}\right)\left(\mathbf{C}\left(\mathbf{R}^{\mathbf{2}}\right)_{\mathbf{2}}\right)_{(\mathrm{m} .} \mathbf{i}^{\mathbf{i}} \mathbf{R}^{\mathbf{7}}$,

- each R^{2} is independently chosen from $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups, $\mathrm{OH}, \mathrm{C}_{1}-\mathrm{C}_{2}$ alkoxy groups, and halogens;
$-\mathrm{R}^{7}$ is chosen from C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups, halogenated $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups, and halogens
$-\mathrm{R}^{5}$ is chosen from hydrogen and $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups;
- each R^{6} is independently chosen from $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups; and - p is 0,1 , or 2 .

7. A compound according to embodiment 6 , a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein p is 0 or 1 .
8. A compound according to embodiment 6, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein p is 1 .
9. A compound according to any one of embodiments $1-8$, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein each R^{2} is independently chosen from $\mathrm{CH}_{3}, \mathrm{OH}, \mathrm{F}$, and OCH_{3}.
10. A compound according to embodiment 9, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein p is 0 or 1 .
11. A compound according to embodiment 10 , a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein:

- p is 1 ;
- R^{5} is methyl; and
$-R^{6}$ is methyl.

12. A compound according to embodiment 6 , a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{7} is a cyclopropyl group.
13. A compound according to embodiment 6 , a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{7} is a cyclopropyl group substituted with a halogenated Ci alkyl group.
14. A compound according to embodiment 13, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{7} is a cyclopropyl group substituted with a CF_{3} group.
15. A compound according to embodiment 6 , a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{7} is a cyclopropyl group substituted with one or more halogens.
16. A compound according to embodiment 6, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{7} is a cyclopropyl group substituted with one or more Ci alkyl groups.
17. A compound according to embodiment 6, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{7} is a cyclopropyl group substituted with one or more halogens and one or more Ci alkyl groups.
18. A compound according to embodiment 6 , a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{7} is a CF_{3} group.
19. A compound according to embodiment 6 , a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{7} is chosen from C_{4} cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens.
20. A compound according to embodiment 6 , a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{7} is chosen from C 5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens.
21. A compound according to embodiment 18, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein said C_{5} cycloalkyl groups are bicyclic.
22. A compound according to embodiment 6 , a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{7} is chosen from $\mathbf{C 7}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens.
23. A compound according to embodiment 20, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein said C7cycloalkyl groups are bicyclic.
24. A compound according to embodiment 20, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein said C7cycloalkyl groups are tricyclic.
25. A compound having a formula chosen from any one of the formulae depicted in FIG. 1, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
26. A compound according to embodiment 1 having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing
27. A compound according to embodiment 1 having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
28. A compound according to embodiment 1 having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
29. A compound according to embodiment 1 having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
30. A compound according to embodiment 1 having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
31. A compound according to embodiment 1 having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
32. A compound according to embodiment 1 having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
33. A compound according to embodiment 1 having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
34. A compound according to embodiment 1 having any one of the following formulae:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
35. A compound according to embodiment 1 having any one of the following formulae:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
36. A compound according to embodiment 1 having any one of the following formulae:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
37. A pharmaceutical composition comprising at least one compound chosen from compounds of any one of embodiments 1-34, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, and optionally one or more of:
(a) Compound II:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing;
(b) Compound III:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing; and
(c) a pharmaceutically acceptable carrier.
38. A method of treating cystic fibrosis comprising administering to a patient in need thereof acompound of any one of embodiments 1-34, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing; or a pharmaceutical composition according to embodiment 35 .
39. A method of preparing a compound of Formula (X):

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, comprising reacting a compound of Formula (F) or a salt thereof with a compound of Formula (G) or a salt thereof to generate said compound of Formula (X) or a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing:

wherein in each of said formulae:

- one of Y^{1} and Y^{2} is N and the other is CH ;
$-\mathrm{R}^{\mathbf{1}}$ is $-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{\mathrm{k}}-0-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{\mathrm{m}} \mathrm{R}^{7}$,
- each R^{2} is independently chosen from hydrogen; halogens; cyano; hydroxy; C1-C2 alkoxy groups; and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and C3-5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- each R^{3} is independently chosen from C1-C4 alkyl groups optionally substituted with one or more hydroxy groups, or optionally two geminal R^{3}, together with the carbon atom to which they are attached, form a C3-4 cycloalkyl;
- each R^{4} is independently chosen from halogens;
$-\mathrm{R}^{5}$ is chosen from hydrogen and C1-C4 alkyl groups;
- each R^{6} is chosen from halogens, cyano, hydroxy, hydroxymethyl, C1-C2 alkoxy groups, C1-C2 alkyl groups, and halogenated C1-C2 alkyl groups;
$-\mathrm{R}^{7}$ is chosen from hydrogen, halogens, cyano, C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy, and $\mathrm{C} 3-\mathrm{Cl}_{0}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- X^{a} is F or CI ;
-k is 0 or 1 ;
-r is 0 or 1 ;
- m is $0,1,2$, or 3 ;
- p is 0,1 , or 2 ; and
- q is $0,1,2,3,4,5,6,7$, or 8 .

38. The method of embodiment 37 , wherein Y^{2} is N ; and each Y^{1} is CH .
39. The method of embodiment 37 or 38 , wherein said reacting a compound of Formula (F) or a salt thereof with a compound of Formula (G) or a salt thereof is performed in the presence of a base.
40. The method of any one of embodiments 37-39, wherein a salt of compound of Formula (G) is employed.
41. The method of embodiment 40, wherein said salt of compound of Formula (G) is a HC1 salt of a compound of Formula (G).
42. A method of preparing a compound of Formula (F) or a salt thereof:

or a deuterated derivative of any of the foregoing, comprising reacting a compound of Formula (D) or salt thereof with a compound of Formula (E) or a salt thereof to generate a compound of Formula (F) or a salt thereof:

wherein in each of said formulae:

- one of Y^{1} and Y^{2} is N and the other is CH ;
$-\mathbf{R}^{\mathbf{1}}$ is $-\left(\mathbf{C}\left(\mathbf{R}^{2}\right)_{2}\right)_{k} \mathbf{0}-\left(\mathbf{C}\left(\mathbf{R}^{2}\right)_{2}\right)_{\mathrm{m}^{2}} \mathbf{R}^{\mathbf{7}}$,
- each \mathbf{R}^{2} is independently chosen from hydrogen; halogens; cyano; hydroxy;

C1-C2 alkoxy groups; and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and c $3-5$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

- each $\mathbf{R}^{\mathbf{4}}$ is independently chosen from halogens;
- each \mathbf{R}^{5} is independently chosen from hydrogen and C1-C4 alkyl groups;
- each R^{6} is chosen from halogens, cyano, hydroxy, hydroxymethyl, C1-C2 alkoxy groups, C1-C2 alkyl groups, and halogenated C1-C2 alkyl groups;
$-R^{7}$ is chosen from hydrogen, halogens, cyano, C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy, and $\mathrm{C} 3-\mathrm{C1}_{0}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

$$
\begin{aligned}
& -\mathrm{X}^{\mathrm{a}} \text { is } \mathrm{F} \text { or } \mathrm{CI} ; \\
& -\mathrm{k} \text { is } 0 \text { or } 1 \text {; } \\
& -\mathrm{r} \text { is } 0 \text { or } 1 \text {; } \\
& -\mathrm{m} \text { is } 0,1,2 \text {, or } 3 \text {; and } \\
& -\mathrm{p} \text { is } 0,1 \text {, or } 2 \text {. }
\end{aligned}
$$

43. The method of embodiment 42 , wherein Y^{2} is N ; and Y^{1} is CH .
44. The method of embodiment 42 or 43 , wherein said reacting a compound of Formula (D) or a salt thereof with a compound of Formula (E) or salt thereof is performed in the presence of a base.
45. The method of embodiment 42 or 43 , wherein said reacting a compound of Formula (D) or salt thereof with a compound of Formula (E) or salt thereof comprises reacting a compound of Formula (D) with a coupling reagent and subsequently with a compound of Formula (E) in the presence of a base.
46. A method of preparing a compound of the following formula:

(Compound 1)
or a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, comprising reacting a compound of Formula (F-1) or a salt thereof, wherein X^{a} is F or CI, with a compound of Formula (G-1) or a salt thereof to generate said
compound or a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing:

wherein X^{a} in Formula ($\mathrm{F}-1$) is F or CI.
47. The method of embodiment 46, wherein said reacting a compound of Formula (F-1) or a salt thereof with a compound of Formula (G-1) or a salt thereof is performed in the presence of a base.
48. The method of embodiment 46 or 47 , wherein a salt of compound of Formula (G-1) is employed.
49. The method of embodiment 48, wherein said salt of compound of Formula (G-1) is a HCl salt of a compound of Formula (G-1).
50. A method of preparing a compound of Formula (F-1) or a salt thereof:

or a deuterated derivative of any of the foregoing, comprising reacting a compound of Formula (D-1) and a compound of Formula (E-1) to generate a compound of Formula (F-1) or a salt thereof:

wherein in each said formulae, X^{a} is F or $C I$.
51. The method of embodiment 50, wherein said reacting a compound of Formula (D-1) or a salt thereof with a compound of Formula (E-1) or a salt thereof is performed in the presence of a base.
52. The method of embodiment 50, wherein said reacting a compound of Formula (D-1) or a salt thereof with a compound of Formula (E-1) or a salt thereof comprises reacting a compound of Formula (D-1) with a coupling reagent and subsequently with a compound of Formula (E-1) in the presence of a base.
53. A method of preparing a compound of Formula (D) or a salt thereof:

or a deuterated derivative of any of the foregoing, comprising:
(i) reacting a compound of Formula (A) or a salt thereof with a compound of Formula (B) or a salt thereof to generate a compound of Formula (C) or a salt thereof:

(ii) hydrolyzing the $-\mathrm{C}(0) \mathrm{OR}{ }^{\text {a }}$ group of a compound of Formula (C) to generate a compound of Formula (D) or a salt thereof,
wherein in each said formulae:

- one of Y^{1} and Y^{2} is N and the other is CH ;
$-\mathrm{R}^{1}$ is $-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{\mathrm{k}}-0-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{\mathrm{m}} \mathrm{R}^{7}$,
- each \mathbf{R}^{2} is independently chosen from hydrogen; halogens; cyano; hydroxy; C1-C2 alkoxy groups; and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and C3-5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- each \mathbf{R}^{4} is independently chosen from halogens;
$-\mathbf{R}^{7}$ is chosen from hydrogen, halogens, cyano, C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy, and $\mathrm{C} 3-\mathrm{C1}_{0}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

$$
\begin{aligned}
& -\mathrm{X}^{\mathrm{a}} \text { is } \mathrm{F} \text { or } \mathrm{CI} ; \\
& -\mathrm{k} \text { is } 0 \text { or } 1 ; \\
& -\mathrm{r} \text { is } 0 \text { or } 1 \text {; and } \\
& -\mathrm{m} \text { is } 0,1,2 \text {, or } 3 .
\end{aligned}
$$

54. The method of embodiment 53 , wherein Y^{2} is N ; and Y^{1} is CH .
55. The method of embodiment 53 or 54 , wherein the hydrolysis of the $-\mathrm{C}(0) \mathrm{OR}$ a group is performed in the presence of a base or acid.
56. The method of any one of embodiments 53-55, wherein said reacting a compound of Formula (A) or a salt thereof with a compound of Formula (B) or salt thereof is performed in the presence of a base.
57. The method of any one of embodiments 53-56, wherein R^{a} is ethyl or i-butyl.
58. A method of preparing a compound of Formula (D-1) or a salt thereof:

or a deuterated derivative of any of the foregoing, comprising:
(i) reacting a compound of Formula (A-1) or a salt thereof and a compound of Formula (B-1) or a salt thereof to generate a compound of Formula (C-1) or a salt thereof:

(ii) hydrolyzing the $-\mathrm{C}(0) \mathrm{OR}$ a group of a compound of Formula (C-1) or a salt thereof to generate a compound of Formula (D-1) or a salt thereof, wherein in each said formulae, each R^{a} is independently chosen from C1-C4 alkyl; and each X^{a} is independently F or CI.
59. The method of embodiment 58 , wherein the hydrolysis of the $-\mathrm{C}(0) \mathrm{OR}$ a group is performed in the presence of a base or acid.
60. The method of 58 or 59 , wherein said reacting a compound of Formula (A-1) or a salt thereof and a compound of Formula (B-1) or a salt thereof is performed in the presence of a base.
61. The method of any one of embodiments 58-60, wherein R^{a} is ethyl or i-butyl.
62. A compound of Formula (F) or a salt thereof:

or a deuterated derivative of any of the foregoing, wherein in each of said formulae:
$-\mathrm{R}^{\mathbf{1}}$ is $-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{\mathrm{k}^{-}}-0-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{\mathrm{m}} \mathrm{R}^{7}$,

- each R^{2} is independently chosen from hydrogen; halogens; cyano; hydroxy;

C1-C2 alkoxy groups; and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and c3-5 cycloalkyl
groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

- each \mathbf{R}^{4} is independently chosen from halogens;
- $\mathbf{R}^{\mathbf{5}}$ is chosen from hydrogen and C1-C4 alkyl groups;
- each \mathbf{R}^{6} is chosen from halogens, cyano, hydroxy, hydroxymethyl, C1-C2 alkoxy groups, C1-C2 alkyl groups, and halogenated C1-C2 alkyl groups;
$-\mathbf{R}^{7}$ is chosen from hydrogen, halogens, cyano, C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy, and $\mathrm{C} 3-\mathrm{C1}_{0}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

$$
\begin{aligned}
& -\mathrm{X}^{\mathrm{a}} \text { is } \mathrm{F} \text { or } \mathrm{CI} \\
& \text { - } \mathrm{k} \text { is } 0 \text { or } 1 \text {; } \\
& \text { - } \mathrm{r} \text { is } 0 \text { or } 1 \text {; } \\
& \text { - } \mathrm{m} \text { is } 0,1,2 \text {, or } 3 \text {; and } \\
& \text { - } \mathrm{p} \text { is } 0,1 \text {, or } 2 \text {. }
\end{aligned}
$$

63. A compound according to embodiment 62, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein Y^{2} is N ; and each Y^{1} is CH .
64. A compound of Formula (F-1) or a salt thereof:

or a deuterated derivative of any of the foregoing, wherein X^{a} is F or CI.
65.A compound of Formula (C) or (D), or a salt thereof:

or a deuterated derivative of any of the foregoing, wherein in each said formulae:

- one of Y^{1} and Y^{2} is independently N and the other is independently CH ;
$-\mathrm{R}^{\mathbf{1}}$ is $-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{k}-0-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{\mathrm{m}} \mathrm{R}^{7}$,
- each R^{2} is independently chosen from hydrogen; halogens; cyano; hydroxy;

C1-C2 alkoxy groups; and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and c3-5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

- each R^{4} is independently chosen from halogens;
- R^{7} is chosen from hydrogen, halogens, cyano, C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy, and C_{3} - $\mathrm{C1}_{0}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

$$
\begin{aligned}
& -\mathrm{R}^{\mathrm{a}} \text { is } \mathrm{C} 1-\mathrm{C} 4 \text { alkyl; } \\
& -\mathrm{X}^{\mathrm{a}} \text { is } \mathrm{F} \text { or } \mathrm{CI} ; \\
& -\mathrm{k} \text { is } 0 \text { or } 1 ; \\
& -\mathrm{r} \text { is } 0 \text { or } 1 ; \text { and } \\
& -\mathrm{m} \text { is } 0,1,2 \text {, or } 3 \text {. }
\end{aligned}
$$

66. A compound according to embodiment 65 , a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein each Y^{2} is independently N ; and each Y^{1} is independently CH .
67. A compound according to embodiment 65 , a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{a} is ethyl or /-butyl.
68. A compound of Formula (C-1) or (D-1), or a salt thereof:

or a deuterated derivative of any of the foregoing, wherein $\mathbf{R}^{\text {a }}$ is C1-C4 alkyl; and each X^{a} is independently F or CI.
69. A compound according to embodiment 68, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein $\mathbf{R a}^{\mathbf{a}}$ is ethyl or /-butyl.
70. A compound of Formula (A-1), (C-1) or (D-1), or a salt thereof:

or a deuterated derivative of any of the foregoing, wherein $\mathbf{R}^{\mathbf{a}}$ is C1-C4 alkyl; and each X^{a} is independently F or CI.
71. Use of at least one compound chosen from compounds of any one of embodiments $\mathbf{1 - 3 4}$, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, and optionally one or more of:
(a) Compound II:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing; and
(b) Compound III:

,a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, for treating cystic fibrosis.
72. Crystalline Form A of Compound 1:

73.
74. Crystalline Form A according to embodiment 72 in substantially pure form.
75. Crystalline Form A according to embodiment 72, characterized by an X-ray powder diffractogram having a signal at at least three two-theta values chosen from 6.6 $\pm 0.2,7.6 \pm 0.2,9.6 \pm 0.2,12.4 \pm 0.2,13.1 \pm 0.2,15.2 \pm 0.2,16.4 \pm 0.2,18.2 \pm 0.2$, and 18.6 ± 0.2.
76. Crystalline Form A according to embodiment 72, characterized by an X-ray powder diffractograph having a signal at at least three two-theta values chosen from 6.6 $\pm 0.2,9.6 \pm 0.2,13.1 \pm 0.2,15.2 \pm 0.2,18.2 \pm 0.2$, and 18.6 ± 0.2.
77. Crystalline Form A according to embodiment 72, characterized by an X-ray powder diffractograph having a signal at three two-theta values of $6.6 \pm 0.2,13.1 \pm 0.2$, 18.2 ± 0.2.
78. Crystalline Form A according to embodiment 72, characterized by an X-ray powder diffractograph having a signal at six two-theta values of $6.6 \pm 0.2,9.6 \pm 0.2$, $13.1 \pm 0.2,15.2 \pm 0.2,18.2 \pm 0.2$, and 18.6 ± 0.2.
79. Crystalline Form A of embodiment 72, characterized by an X-ray powder diffractogram substantially similar to that in FIG. 2.
80. Crystalline Form A of Compound $\mathbf{1}$ prepared by a process comprising desolvating at least one crystalline form of Compound $\mathbf{1}$ chosen from Crystalline Form M, Crystalline Form E, Crystalline Form PI, Crystalline Form P2, and Crystalline Form AA2.
81. Crystalline Form A of Compound $\mathbf{1}$ prepared by a process comprising desolvating at least one solvate chosen from methanol solvates, ethanol solvates, acetic acid solvates, toluene solvates, sulfolane solvates, 1-propanol solvates, 2-propanol solvates, propionic acid solvates, methyl tert-butyl ether solvates, and isobutyric acid solvates of Compound 1 (such as, for example, methanol solvates, ethanol solvates, acetic acid solvates, toluene solvates, sulfolane solvates, propionic acid solvates, methyl tert-butyl ether solvates, and isobutyric acid solvates of Compound 1, further such as, for example, methanol solvates, ethanol solvates, acetic acid solvates, toluene solvates, and sulfolane solvates of Compound 1, and further such as, for example, methanol solvates and ethanol solvates of Compound 1) followed by subjecting the resulting desolvate to vacuum drying at room temperature for 12 to 100 hours.
82. At least one solvate of Compound $\mathbf{1}$:

chosen from methanol solvates, ethanol solvates, 1-propanol solvates, 2-propanol solvates, acetic acid solvates, toluene solvates, sulfolane solvates, propionic acid
solvates, methyl tert-butyl ether solvates, isobutyric acid solvates, anisole solvates,methylbutyl ketone solvates, and xylene solvates of Compound 1.
83. Crystalline Form M of Compound $\mathbf{1}$:

84.
85. Crystalline Form M according to embodiment 83 in substantially pure form.
86. Crystalline Form M according to embodiment 83, characterized by an X-ray powder diffractogram having a signal at at least three two-theta values chosen from 7.0 $\pm 0.2,11.6 \pm 0.2,13.1 \pm 0.2,13.7 \pm 0.2,15.2 \pm 0.2,15.9 \pm 0.2,16.4 \pm 0.2,17.8 \pm 0.2$, and 19.3 ± 0.2.
87. Crystalline Form M according to embodiment 83, characterized by an X-ray powder diffractograph having a signal at at least three two-theta values chosen from $11.6 \pm 0.2,13.1 \pm 0.2,13.7 \pm 0.2,15.2 \pm 0.2,17.8 \pm 0.2$, and 19.3 ± 0.2.
88. Crystalline Form M according to embodiment 83, characterized by an X-ray powder diffractograph having a signal at three two-theta values of $11.6 \pm 0.2,17.8 \pm$ 0.2 , and 13.1 ± 0.2.
89. Crystalline Form M according to embodiment 83, characterized by an X-ray powder diffractograph having a signal at six two-theta values of $11.6 \pm 0.2,13.1 \pm 0.2$, $13.7 \pm 0.2,15.2 \pm 0.2,17.8 \pm 0.2$, and 19.3 ± 0.2.
90. Crystalline Form M of embodiment 83, characterized by an X-ray powder diffractogram substantially similar to that in FIG. 13.
91. Crystalline Form E of Compound 1:

92.
93. Crystalline Form E according to embodiment 90 in substantially pure form.
94. Crystalline Form E according to embodiment 90 , characterized by an X-ray powder diffractogram having a signal at at least three two-theta values chosen from 7.0 $\pm 0.2,11.2 \pm 0.2,12.8 \pm 0.2,13.2 \pm 0.2,14.1 \pm 0.2,15.1 \pm 0.2,16.1 \pm 0.2,17.8 \pm 0.2$, and 18.9 ± 0.2.
95. Crystalline Form E according to embodiment 90, characterized by an X-ray powder diffractograph having a signal at at least three two-theta values chosen from $11.2 \pm 0.2,12.8 \pm 0.2,13.2 \pm 0.2,15.1 \pm 0.2,16.1 \pm 0.2$, and 17.8 ± 0.2.
96. Crystalline Form E according to embodiment 90, characterized by an X-ray powder diffractograph having a signal at three two-theta values of $12.8 \pm 0.2,16.1 \pm$ 0.2 , and 17.8 ± 0.2.
97. Crystalline Form E according to embodiment 90, characterized by an X-ray powder diffractograph having a signal at six two-theta values of $11.2 \pm 0.2,12.8 \pm 0.2$, $13.2 \pm 0.2,15.1 \pm 0.2,16.1 \pm 0.2$, and 17.8 ± 0.2.
98. Crystalline Form E of embodiment 90, characterized by an X-ray powder diffractogram substantially similar to that in FIG. 14.
99. A method of preparing crystalline Form A of Compound 1:

1, comprising stirring a
solution or suspension of Compound $\mathbf{1}$ in a solvent system at a temperature in a range from $50^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
98. A method of preparing crystalline Form A of Compound 1:

$\mathbf{1}$, comprising desolvating a
solvate of Compound $\mathbf{1}$ chosen from methanol solvates, ethanol solvates, 1-propanol solvates, 2-propanol solvates, acetic acid solvates, toluene solvates, sulfolane solvates, propionic acid solvates, methyl tert-butyl ether solvates, isobutyric acid solvates, anisole solvates,methylbutyl ketone solvates, and xylene solvates of Compound 1.
99. A crystalline Form X of a potassium salt of Compound 1:

1.
100. Crystalline Form X according to embodiment 99 in substantially pure form.
101. Crystalline Form X according to embodiment 99 , characterized by an X-ray powder diffractogram having a signal at at least three two-theta values chosen from 4.9 $\pm 0.2,5.9 \pm 0.2,8.1 \pm 0.2,8.5 \pm 0.2,10.3 \pm 0.2,13.0 \pm 0.2,13.9 \pm 0.2,14.6 \pm 0.2$, and 17.0 ± 0.2.
102. Crystalline Form X according to embodiment 99 , characterized by an X-ray powder diffractograph having a signal at at least three two-theta values chosen from 4.9 $\pm 0.2,5.9 \pm 0.2,8.1 \pm 0.2,13.0 \pm 0.2,13.9 \pm 0.2$, and 17.0 ± 0.2.
103. Crystalline Form X according to embodiment 99 , characterized by an X-ray powder diffractograph having a signal at three two-theta values of $4.9 \pm 0.2,5.9 \pm 0.2$, and 13.0 ± 0.2.
104. Crystalline Form X according to embodiment 99, characterized by an X-ray powder diffractograph having a signal at six two-theta values of $4.9 \pm 0.2,5.9 \pm 0.2,8.1$ $\pm 0.2,13.0 \pm 0.2,13.9 \pm 0.2$, and 17.0 ± 0.2.
105. Crystalline Form X of embodiment 99 , characterized by an X-ray powder diffractogram substantially similar to that in FIG. 15.
106. A crystalline Form Y of a sodium salt of Compound 1:

1.
107. Crystalline Form Y according to embodiment 106 in substantially pure form.
108. Crystalline Form Y according to embodiment 106, characterized by an X-ray powder diffractogram having a signal at at least three two-theta values chosen from 3.5

$$
\begin{aligned}
& \pm 0.2,7.0 \pm 0.2,11.7 \pm 0.2,12.8 \pm 0.2,13.2 \pm 0.2,14.2 \pm 0.2,15.4 \pm 0.2,16.6 \pm 0.2 \text {, and } \\
& 18.0 \pm 0.2
\end{aligned}
$$

109. Crystalline Form Y according to embodiment 106, characterized by an X-ray powder diffractograph having a signal at at least three two-theta values chosen from 3.5 $\pm 0.2,7.0 \pm 0.2,11.7 \pm 0.2,13.2 \pm 0.2,14.2 \pm 0.2$, and 18.0 ± 0.2
110. Crystalline Form Y according to embodiment 106, characterized by an X-ray powder diffractograph having a signal at three two-theta values of $7.0 \pm 0.2,11.7 \pm 0.2$, and 13.2 ± 0.2.
111. Crystalline Form Y according to embodiment 106, characterized by an X-ray powder diffractograph having a signal at six two-theta values of $3.5 \pm 0.2,7.0 \pm 0.2$, $11.7 \pm 0.2,13.2 \pm 0.2,14.2 \pm 0.2$, and 18.0 ± 0.2.
112. Crystalline Form Y of embodiment 106, characterized by an X-ray powder diffractogram substantially similar to that in FIG. 16.
113. A solid dispersion comprising Compound $\mathbf{1}$ and a polymer.
114. The solid dispersion of embodiment 113, comprising $50 \mathrm{wt} \%$ of Compound $\mathbf{1}$ and $50 \mathrm{wt} \%$ of a polymer by the total weight of the solid dispersion or $80 \mathrm{wt} \%$ of Compound 1 and $20 \mathrm{wt} \%$ of a polymer by the total weight of the solid dispersion.
115. The solid dispersion of embodiment 113 or 114 , wherein the polymer is a hypromellose acetate succinate, hydroxypropyl cellulose, hydroxypropyl methylcellulose, or polyvinylpyrrolidone.
116. A pharmaceutical formulation comprising at least one crystalline form according to any one of embodiments 72-96 and 99-112, and a pharmaceutically acceptable carrier.
117. A method of treating cystic fibrosis comprising administering to a patient in need thereof at least one crystalline form according to any one of embodiments 72-96, and 199-112.
118. A method of treating cystic fibrosis comprising administering to a patient in need thereof a solid dispersion according to any one of embodiments $113-115$.

119. Crystalline Form P2 of Compound 1:

1.
120. Crystalline Form P2 according to claim 119 in substantially pure form.
121. Crystalline Form P2 according to claim 119, characterized by an X-ray powder diffractogram having a signal at at least three two-theta values chosen from 10.2 ± 0.2, $10.9 \pm 0.2,12.6 \pm 0.2,12.9 \pm 0.2,15.0 \pm 0.2,15.9 \pm 0.2,16.2 \pm 0.2,16.5 \pm 0.2$, and 17.6 ± 0.2.
122. Crystalline Form P2 according to claim 119, characterized by an X-ray powder diffractograph having a signal at at least three two-theta values chosen from 10.9 ± 0.2, $12.6 \pm 0.2,12.9 \pm 0.2,15.0 \pm 0.2,16.5 \pm 0.2$, and 17.6 ± 0.2.
123. Crystalline Form P2 according to claim 119, characterized by an X-ray powder diffractograph having a signal at three two-theta values of $10.9 \pm 0.2,12.6 \pm 0.2$, and 17.6 ± 0.2.
124. Crystalline Form P2 according to claim 119, characterized by an X-ray powder diffractograph having a signal at six two-theta values of $10.9 \pm 0.2,12.6 \pm 0.2,12.9 \pm$ $0.2,15.0 \pm 0.2,16.5 \pm 0.2$, and 17.6 ± 0.2.
125. Crystalline Form P2 of claim 119, characterized by an X-ray powder diffractogram substantially similar to that in FIG. 17.

Other embodiments include:
A. Compound 1 of the formula

B. A pharmaceutically acceptable salt of Compound 1 of the formula

C. A pharmaceutical composition comprising:
(i) Compound 1 of the formula

and
(ii) a pharmaceutically acceptable carrier.
D. The pharmaceutical composition of embodiment C further comprising Compound II:

E. The pharmaceutical composition of embodiment C further comprising a pharmaceutically acceptable salt of Compound II:

F. The pharmaceutical composition of embodiment C further comprising Compound III:

G. The pharmaceutical composition of embodiment C further comprising a pharmaceutically acceptable salt of Compound III:

H. The pharmaceutical composition of embodiment D further comprising Compound III:

I. The pharmaceutical composition of embodiment D further comprising a pharmaceutically acceptable salt of Compound III:

J. The pharmaceutical composition of embodiment E further comprising Compound III:

K. The pharmaceutical composition of embodiment E further comprising a pharmaceutically acceptable salt of Compound III:

L. A pharmaceutical composition comprising:
(A) a pharmaceutically acceptable salt of Compound 1 of the formula
 and
(B) a pharmaceutically acceptable carrier.
M. The pharmaceutical composition of embodiment L further comprising Compound II:

N . The pharmaceutical composition of embodiment L further comprising a pharmaceutically acceptable salt of Compound II:

O. The pharmaceutical composition of embodiment L further comprising Compound III:

P. The pharmaceutical composition of embodiment L further comprising a pharmaceutically acceptable salt of Compound III:

Q. The pharmaceutical composition of embodiment M further comprising Compound III:

R. The pharmaceutical composition of embodiment M further comprising a pharmaceutically acceptable salt of Compound III:

S. The pharmaceutical composition of embodiment M further comprising Compound III:

T. The pharmaceutical composition of embodiment M further comprising a pharmaceutically acceptable salt of Compound III:

U. A method of treating cystic fibrosis comprising administering to a patient in need thereof Compound 1 of the formula

V. A method of treating cystic fibrosis comprising administering to a patient in need thereof a pharmaceutically acceptable salt of Compound 1 of the formula

W. A method of treating cystic fibrosis comprising administering to a patient in need thereof a pharmaceutical composition comprising:
(A) Compound 1 of the formula

(B) a pharmaceutically acceptable carrier.
X. A method of treating cystic fibrosis comprising administering to a patient in need thereof a pharmaceutical composition comprising:
a pharmaceutically acceptable salt of Compound 1 of the formula

a pharmaceutically acceptable carrier.

[00199] General Experimental Procedures

[00200] The definitions of certain abbreviations for the Examples below are summarized below:

Boc anhydride $\left.(\mathrm{Boc})_{2} 0\right)$: di-tert-butyl dicarbonate
CDI: carbonyl diimidazole
DABCO: 1,4-diazabicyclo[2.2.2]octane
DBU: 1,8-diazabicyclo(5.4.0)undec-7-ene
DCM: dichloromethane
DIAD: diisopropyl azodicarboxylate
DIEA (DIPEA; N, N-diisopropylethylamine)

DMA: N, N-Dimethylacetamide
DMF: N, N-dimethylformamide
DMSO: dimethyl sulfoxide
$\mathrm{Et}_{2} \mathrm{O}$: diethyl ether
EtOH: ethanol
HATU: 1-[Bis(dimethylamino)methylene]-lH-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate

IPA: isoproanol
MeOH: methanol
NMP : N-methyl-2-pyrrolidone
MTBE: methyl tot-butyl ether
TBS-C1: to/-Butyldimethylsilyl chloride
TFA: trifluoroacetic acid
THF: tetrahydrofuran)
$p-\mathrm{TsOH}: />$ Toluenesulfonic Acid
TPPO-DIAD complex: a complex of triphenylphosphine oxide with diisopropyl azodicarboxylate
[00201] Reagents and starting materials were obtained by commercial sources unless otherwise stated and were used without purification. Proton and carbon NMR spectra were acquired on either of a Bruker Biospin DRX 400 MHz FTNMR spectrometer operating at a ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonant frequency of 400 and 100 MHz respectively, or on a 300 MHz NMR spectrometer. One dimensional proton and carbon spectra were acquired using a broadband observe (BBFO) probe with 20 Hz sample rotation at 0.1834 and $0.9083 \mathrm{~Hz} / \mathrm{Pt}$ digital resolution respectively. All proton and carbon spectra were acquired with temperature control at $30^{\circ} \mathrm{C}$ using standard, previously published pulse sequences and routine processing parameters. Final purity of compounds was determined by reversed phase UPLC using an Acquity UPLC BEH C ${ }_{18}$ column (50 χ $2.1 \mathrm{~mm}, 1.7 \mu \mathrm{\tau} \mathrm{c}$ particle) made by Waters ($\mathrm{pn}: 186002350$), and a dual gradient run from 1-99\% mobile phase B over 3.0 minutes. Mobile phase $A=\mathrm{H}_{2} \mathrm{O}(0.05 \%$ $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$. Mobile phase $\mathrm{B}=\mathrm{CH}_{3} \mathrm{CN}\left(0.035 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$. Flow rate $=1.2 \mathrm{~mL} / \mathrm{min}$, injection volume $=1.5 \mu \mathrm{~L}$, and column temperature $=60{ }^{\circ} \mathrm{C}$. Final purity was calculated by averaging the area under the curve (AUC) of two UV traces ($220 \mathrm{~nm}, 254$
$n m$). Low-resolution mass spectra were reported as $[\mathrm{M}+\mathrm{H}]^{+}$species obtained using a single quadrupole mass spectrometer equipped with an electrospray ionization (ESI) source capable of achieving a mass accuracy of 0.1 Da and a minimum resolution of 1000 (no units on resolution) across the detection range. Optical purity of methyl (2S)-2,4-dimethyl-4-nitro-pentanoate was determined using chiral gas chromatography (GC) analysis on an Agilent 7890A/MSD 5975C instrument, using a Restek Rt-PDEXcst ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mathrm{um} _\mathrm{df}$) column, with a $2.0 \mathrm{~mL} / \mathrm{min}$ flow rate ($3 / 4$ carrier gas), at an injection temperature of $220^{\circ} \mathrm{C}$ and an oven temperature of $120^{\circ} \mathrm{C}, 15$ minutes.

[00202] Powder X-ray Diffraction

[00203] The powder x-ray diffraction measurements were performed using
PANalytical's X-pert Pro diffractometer at room temperature with copper radiation $(1.54060 \mathbf{A})$. The incident beam optic was comprised of a variable divergence slit to ensure a constant illuminated length on the sample and on the diffracted beam side; a fast linear solid state detector was used with an active length of 2.12 degrees 2 theta measured in a scanning mode. The powder sample was packed on the indented area of a zero background silicon holder and spinning was performed to achieve better statistics. A symmetrical scan was measured from 4-40 degrees 2 theta with a step size of 0.017 degrees and a scan step time of 15.5 s.
[00204] Figure 2 shows the XRPD spectrum of Form A of Compound 1. The single crystal structure of Form A has been elucidated. The crystal structure confirms the absolute configuration of the molecule, and the calculated XRPD patterns show good agreement with the experimental patterns. Form A of Compound 1 forms as an orthorhombic unit cell of $\mathrm{P} 21_{1} 2_{1}, \mathrm{a}=15.74 \mathrm{~b}=22.86 \mathrm{c}=26.59$ (angstroms), $\alpha=\beta=\gamma=90$, $\mathrm{Z}=12 \mathrm{~V}=9575$ Flack $=0.08$. One of ordinary skill in the art would recognize that there may be variation in these crystal parameters depending, for example, on the temperature, pressure, or instrument to instrument variability.
[00205] Figure 3 shows an experimental XRPD of Form A of Compound 1 (top) compared to a calculated XRD (bottom), which is calculated from the single crystal data. Figure 3 shows an overlay of the experimental and calculated XRPD of Form A of Compound 1 from Figure 3.
[00206] Figure 5 shows the XRPD spectrum of amorphous Compound 1 prepared by spray dried dispersion (SDD) of $50 \mathrm{wt} \%$ Compound 1 in HPMCAS-HG.

[00207] Modulated Differential Scanning Calorimetry (MDSC)

[00208] MDSC was used to determine the glass transition temperature of the amorphous material. MDSC was performed using TA Discovery DSC differential scanning calorimeter (TA Instruments, New Castle, DE). The instrument was calibrated with indium. Samples of approximately $1-3 \mathrm{mg}$ were weighed into hermetic pans that were crimped using lids with one hole. The MDSC sample was scanned from $-20^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ at a heating rate of $2^{\circ} \mathrm{C} / \mathrm{min}$ with $+/-1^{\circ} \mathrm{C}$ of modulation within 1 minute. Data was collected and analyzed by TA Instruments Trios Software (TA Instruments, New Castle, DE).
[00209] Figure 6 shows a MDSC spectrum of a spray dried dispersion (SDD) of 50 $\mathrm{wt} \%$ Compound 1 in HPMCAS-HG, and shows that the SDD has a midpoint temperature of about $106^{\circ} \mathrm{C}$.

[00210] Single-Crystal Analysis

[00211] X-ray diffraction data were acquired at 100 K or 298 K on a Bruker diffractometer equipped with Mo K_{α} radiation $(\lambda=0.71073 \mathrm{~A})$ or Cu_{α} radiation $(\boldsymbol{\lambda}=$ 1.5478) and an CCD detector. The structure was solved and refined using SHELX program (Sheldrick, G.M., Acta Cryst, (2008) A64, 112-122).
[00212] Thermogravimetric Analysis (TGA)
[00213] TGA was used to investigate the presence of residual solvents in the lots characterized, and identify the temperature at which decomposition of the sample occurs. TGA data were collected on a TA Discovery Thermogravimetric Analyzer or equivalent instrumentation. A sample with weight of approximately $1-5 \mathrm{mg}$ was scanned from $25^{\circ} \mathrm{C}$ to $350{ }^{\circ} \mathrm{C}$ at a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. Data were collected and analyzed by Trios software (TA Instruments, New Castle, DE) or collected by Thermal Advantage Q SeriesTM software and analyzed by Universal Analysis software (TA Instruments, New Castle, DE).
[00214] Differential Scanning Calorimetry (DSC)
[00215] DSC data were acquired using a TA Instruments Q2000 or equi valent instrumentation. A sample with a weight between I and 10 mg was weighed into an aluminum pan. This pan was placed in the sample position in the calorimeter cell. An empty pan was placed in the reference position. The calorimeter cell was closed and a flow of nitrogen was passed through the ceil. The heating program was set to heat the sample at a heating rate of $10^{\circ} \mathrm{C} . / \mathrm{mm}$ to a temperature of $200-350^{\circ} \mathrm{C}$. When the run was completed, the data were analyzed using the DSC analysis program in the system software. The observed endo- and exotherms were integrated between baseline temperature points that were above and below the temperature range over which the endotherm was observed. The data reported were the onset of decomposition temperature, peak temperature and enthalpy.

[00216] Synthetic Examples

[00217] Synthesis of Compound II: (R)-l-(2,2-Difluorobenzo[d][1,3]dioxol-5-yl)-N-(l-(2,3-dihydroxypropyl)-6-fluoro-2-(l-hydroxy-2-methylpropan-2-yl)-lH-indol-5-yl)cyclopropanecarboxamide

[00218] Step 1: (R)-Benzyl 2-(l-((2,2-dimethyl-1,3-dioxolan-4-yl)methyl)-6-
fluoro-5-nitro-lH-indol-2-yl)-2-methylpropanoate and ((S)-2,2-Dimethyl-1,3-
dioxolan-4-yl)methyl 2-(l-(((R)-2,2-dimethyl-l,3-dioxolan-4-yl)methyl)-6-fluoro-5-nitro-lH-indol-2-yl)-2-methylpropanoate
[00219] Cesium carbonate ($8.23 \mathrm{~g}, 25.3 \mathrm{mmol}$) was added to a mixture of benzyl 2-(6-fluoro-5-nitro-lH-indol-2-yl)-2-methylpropanoate $\quad(3.0 \mathrm{~g}, 8.4 \mathrm{mmol})$ and (S)-(2,2-dimethyl-1,3-dioxolan-4-yl)methyl 4-methylbenzenesulfonate (7.23 g, 25.3 mmol) in DMF (N,N-dimethylformamide) (17 mL). The reaction was stirred at $80^{\circ} \mathrm{C}$ for 46 hours
under a nitrogen atmosphere. The mixture was then partitioned between ethyl acetate and water. The aqueous layer was extracted with ethyl acetate. The combined ethyl acetate layers were washed with brine, dried over MgSG_{4}, filtered and concentrated. The crude product, a viscous brown oil which contains both of the products shown above, was taken directly to the next step without further purification. (R)-Benzyl 2-(l-((2,2-dimethyl-1,3-dioxolan-4-yl)methyl)-6-fluoro-5-nitro-lH-indol-2-yl)-2methylpropanoate, ESI-MS m/z calc. 470.2, found $471.5(\mathrm{M}+\mathrm{l})^{+}$. Retention time 2.20 minutes. ((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)methyl 2-(l-(((R)-2,2-dimethy 1-1,3-dioxolan-4-yl)methyl)-6-fluoro-5-nitro-lH-indol-2-yl)-2-methylpropanoate, ESI-MS m / z calc. 494.5 , found $495.7(\mathrm{M}+1)^{+}$. Retention time 2.01 minutes.

[00220] Step 2: (R)-2-(l-((2,2-dimethyl-1,3-dioxolan-4-yl)methyl)-6-fluoro-5-nitro-1H-indol-2-yl)-2-methylpropan- l-ol

[00221] The crude reaction mixture obtained in step (A) was dissolved in THF (tetrahydrofuran) $(42 \mathrm{~mL})$ and cooled in an ice-water bath. $\mathrm{LiAlH}_{4}(16.8 \mathrm{~mL}$ of 1 M solution, 16.8 mmol) was added drop-wise. After the addition was complete, the mixture was stirred for an additional 5 minutes. The reaction was quenched by adding water $(1 \mathrm{~mL}), 15 \% \mathrm{NaOH}$ solution $(1 \mathrm{~mL})$ and then water $(3 \mathrm{~mL})$. The mixture was filtered over Celite, and the solids were washed with THF and ethyl acetate. The filtrate was concentrated and purified by column chromatography (30-60\% ethyl acetatehexanes) to obtain (R)-2-(1-((2,2-dimethyl-1,3-dioxolan-4-yl)methyl)-6-fluoro-5-nitro-1H-indol-2-yl)-2-methylpropan-l-ol as a brown oil ($2.68 \mathrm{~g}, 87 \%$ over 2 steps). ESI-MS m / z calc. 366.4 , found $367.3(\mathrm{M}+1)+$. Retention time 1.68 minutes. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 8.34$ (d, J = 7.6 Hz, 1H), 7.65 (d, J = $13.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.57(\mathrm{~s}, 1 \mathrm{H})$, $4.94(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.14(\mathrm{~m}, 1 \mathrm{H})$, 3.76-3.74(m, 1H), 3.63-3.53(m, 2H), $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.38-1.36(\mathrm{~m}, 6 \mathrm{H})$ and $1.19(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm}$. (DMSO is dimethylsulfoxide).
[00222] Step 3: (R)-2-(5-amino-l-((2,2-dimethyl-l,3-dioxolan-4-yl)methyl)-6-fluoro-lH-indol-2-yl)-2-methylpropan- l-ol
[00223] (R)-2-(l-((2,2-dimethyl-1,3-dioxolan-4-yl)methyl)-6-fluoro-5-nitro-lH-indol-2-yl)-2-methylpropan-l-ol ($2.5 \mathrm{~g}, 6.82 \mathrm{mmol}$) was dissolved in ethanol (70 mL) and the reaction was flushed with N_{2}. Then Pd-C (250 mg , $5 \% \mathrm{wt}$) was added. The reaction was flushed with nitrogen again and then stirred under $3 / 4$ (atm). After 2.5 hours only partial
conversion to the product was observed by LCMS. The reaction was filtered through Celite and concentrated. The residue was re-subjected to the conditions above. After 2 hours LCMS indicated complete conversion to product. The reaction mixture was filtered through Celite. The filtrate was concentrated to yield the product ($1.82 \mathrm{~g}, 79 \%$). ESI-MS m/z calc. 336.2, found $337.5(\mathrm{M}+\mathrm{l})^{+}$. Retention time 0.86 minutes. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 7.17(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}$, $1 \mathrm{H}), 4.79-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 4.37-4.31(\mathrm{~m}, 3 \mathrm{H}), 4.06(\mathrm{dd}, \mathrm{J}=6.1,8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.70-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.52(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 6 \mathrm{H})$ and $1.21(\mathrm{~s}, 3 \mathrm{H})$ ppm.
[00224] Step 4: (R)-l-(2,2-difluorobenzo[d] [1,3]dioxol-5-yl)-N-(l-((2,2-dimethyl-1,3-dioxolan-4-yl)methyl)-6-fluoro-2-(l-hydroxy-2-methylpropan-2-yl)-lH-indol-5yl)cyclopropanecarboxamide
[00225] DMF (3 drops) was added to a stirring mixture of 1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxylic acid (1.87 g, 7.7 mmol) and thionyl chloride ($1.30 \mathrm{~mL}, 17.9 \mathrm{mmol}$). After 1 hour a clear solution had formed. The solution was concentrated under vacuum and then toluene (3 mL) was added and the mixture was concentrated again. The toluene step was repeated once more and the residue was placed on high vacuum for 10 minutes. The acid chloride was then dissolved in dichloromethane $(10 \mathrm{~mL})$ and added to a mixture of (R)-2-(5-amino-1-((2,2-dimethy 1-1,3-dioxolan-4-y l)methy 1)-6-fluoro- 1H-indol-2-y 1)-2-methy Ipropan- 1-ol $(1.8 \mathrm{~g}, 5.4 \mathrm{mmol})$ and triethylamine $(2.24 \mathrm{~mL}, 16.1 \mathrm{mmol})$ in dichloromethane $(45 \mathrm{~mL})$. The reaction was stirred at room temperature for 1 hour. The reaction was washed with IN HC 1 solution, saturated NaHCCb solution and brine, dried over MgSC^{\wedge} and concentrated to yield the product ($3 \mathrm{~g}, 100 \%$). ESI-MS m / z calc. 560.6 , found 561.7 $(\mathrm{M}+1)^{+}$. Retention time 2.05 minutes. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d 6$) $\delta 8.31(\mathrm{~s}, 1 \mathrm{H})$, $7.53(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 4.51-4.48(\mathrm{~m}, 1 \mathrm{H})$, 4.39-4.34 (m,2H), $4.08(\mathrm{dd}, \mathrm{J}=6.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.51$ $(\mathrm{m}, 2 \mathrm{H}), 1.48-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.33(\mathrm{~m}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H})$ and $1.14-$ 1.12 (m, 2H) ppm.
[00226] Step 5: (R)-l-(2,2-difluorobenzo[d] [1,3]dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(l-hydroxy-2-methylpropan-2-yl)-lH-indol-5yl)cyclopropanecarboxamide
[00227] (R)-1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)-N-(1-((2,2-dimethyl-1,3-dioxolan-4-yl)methyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-lH-indol-5yl)cyclopropanecarboxamide $(3.0 \mathrm{~g}, 5.4 \mathrm{mmol})$ was dissolved in methanol $(52 \mathrm{~mL})$. Water (5.2 mL) was added followed by p -TsOH.H ${ }_{2} 0$ (p-toluenesulfonic acid hydrate) ($204 \mathrm{mg}, 1.1 \mathrm{mmol}$). The reaction was heated at $80^{\circ} \mathrm{C}$ for 45 minutes. The solution was concentrated and then partitioned between ethyl acetate and saturated NaHCO_{3} solution. The ethyl acetate layer was dried over $\mathrm{MgSC}>4$ and concentrated. The residue was purified by column chromatography (50-100 \% ethyl acetate - hexanes) to yield the product. ($1.3 \mathrm{~g}, 47 \%$, ee $>98 \%$ by SFC). ESI-MS m / z calc. 520.5 , found $521.7(\mathrm{M}+1)^{+}$. Retention time 1.69 minutes. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d 6$) $\delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}$, $1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.90(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}, \mathrm{J}=2.6,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$ $(\mathrm{dd}, \mathrm{J}=8.7,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.33(\mathrm{~m}, 2 \mathrm{H}), 1.48-$ $1.45(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$ and $1.14-1.11(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
[00228] Synthesis of Compound III: N-(2,4-di-feri-butyl-5-hydroxyphenyl)-4-oxo-

1,4-dihydroquinoline-3-carboxamide

[00229] Part A : Synthesis of 4-oxo-1,4-dihydroquinoline-3-carboxylic acid

[00230] Step 1: 2-Phenylaminomethylene-malonic acid diethyl ester
[00231] A mixture of aniline ($25.6 \mathrm{~g}, 0.275 \mathrm{~mol}$) and diethyl 2-
(ethoxymethylene)malonate $(62.4 \mathrm{~g}, 0.288 \mathrm{~mol})$ was heated at $140-150{ }^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to room temperature and dried under reduced pressure to afford 2-phenylaminomethylene-malonic acid diethyl ester as a solid, which was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR (DMSO-i³/4) $\delta 11.00(\mathrm{~d}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=$ $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.17-4.33(\mathrm{~m}, 4 \mathrm{H}), 1.18-1.40(\mathrm{~m}$, $6 \mathrm{H})$.
[00232] Step 2: 4-Hydroxyquinoline-3-carboxylic acid ethyl ester
[00233] A I L three-necked flask fitted with a mechanical stirrer was charged with 2-phenylaminomethylene-malonic acid diethyl ester ($26.3 \mathrm{~g}, 0.100 \mathrm{~mol}$), polyphosphoric acid (270 g) and phosphoryl chloride (750 g). The mixture was heated to $70^{\circ} \mathrm{C}$ and stirred for 4 h . The mixture was cooled to room temperature and filtered. The residue was treated with aqueous $\mathrm{Na} 2 \mathrm{CO}_{3}$ solution, filtered, washed with water and dried. 4-Hydroxyquinoline-3-carboxylic acid ethyl ester was obtained as a pale brown solid $(15.2 \mathrm{~g}, 70 \%)$. The crude product was used in next step without further purification.
[00234] Step 3: 4-Oxo-l,4-dihydroquinoline-3-carboxylic acid
[00235] 4-Hydroxyquinoline-3-carboxylic acid ethyl ester ($15 \mathrm{~g}, 69 \mathrm{mmol}$) was suspended in sodium hydroxide solution ($2 \mathrm{~N}, 150 \mathrm{~mL}$) and stirred for 2 h at reflux. After cooling, the mixture was filtered, and the filtrate was acidified to pH 4 with 2 N HCl . The resulting precipitate was collected via filtration, washed with water and dried under vacuum to give 4-oxo-1,4-dihydroquinoline-3-carboxylic acid as a pale white solid ($10.5 \mathrm{~g}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO-i $\left.{ }^{3} / 4\right) \delta 15.34(\mathrm{~s}, 1 \mathrm{H}), 13.42(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{~s}, 1 \mathrm{H})$, $8.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~m}, 1 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H})$.
[00236] Part B : Synthesis of N-(2,4-di-teri-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide

[00237] Step 1: Carbonic acid 2,4-di-feri-butyl-phenyl ester methyl ester
[00238] Methyl chloroformate ($58 \mathrm{~mL}, 750 \mathrm{mmol}$) was added dropwise to a solution of 2,4-di-fert-butyl-phenol ($103.2 \mathrm{~g}, 500 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(139 \mathrm{~mL}, 1000 \mathrm{mmol})$ and DMAP ($3.05 \mathrm{~g}, 25 \mathrm{mmol}$) in dichloromethane $(400 \mathrm{~mL})$ cooled in an ice-water bath to 0 ${ }^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature while stirring overnight, then filtered through silica gel (approx. 1L) using 10\% ethyl acetate - hexanes ($\sim 4 \mathrm{~L}$) as the eluent. The combined filtrates were concentrated to yield carbonic acid 2,4-di-fert-butyl-phenyl ester methyl ester as a yellow oil (132 g, quant.). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 7.35(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, \mathrm{IH}), 7.29(\mathrm{dd}, \mathrm{J}=8.5,2.4 \mathrm{~Hz}, \mathrm{IH}), 7.06(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, IH), $3.85(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H})$.
[00239] Step 2: Carbonic acid 2,4-di-feri-butyl-5-nitro-phenyl ester methyl ester and Carbonic acid 2,4-di-feri-butyl-6-nitro-phenyl ester methyl ester
[00240] To a stirring mixture of carbonic acid 2,4-di-fert-butyl-phenyl ester methyl ester ($4.76 \mathrm{~g}, 180 \mathrm{mmol}$) in cone. sulfuric acid (2 mL), cooled in an ice-water bath, was added a cooled mixture of sulfuric acid $(2 \mathrm{~mL})$ and nitric acid $(2 \mathrm{~mL})$. The addition was done slowly so that the reaction temperature did not exceed $50^{\circ} \mathrm{C}$. The reaction was allowed to stir for 2 h while warming to room temperature. The reaction mixture was then added to ice-water and extracted into diethyl ether. The ether layer was dried ($\mathrm{MgSC}>4$), concentrated and purified by column chromatography ($0-10 \%$ ethyl acetate - hexanes) to yield a mixture of carbonic acid 2,4-di-fert-butyl-5-nitro-phenyl ester methyl ester and carbonic acid 2,4-di-fert-butyl-6-nitro-phenyl ester methyl ester as a pale yellow solid (4.28 g), which was used directly in the next step.
[00241] Step 3: 2,4-Di-fert-butyl-5-nitro-phenol and 2,4-Di-fert-butyl-6-nitrophenol
[00242] The mixture of carbonic acid 2,4-di-fert-butyl-5-nitro-phenyl ester methyl ester and carbonic acid 2,4-di-fert-butyl-6-nitro-phenyl ester methyl ester (4.2 g, 14.0 mmol) was dissolved in $\mathrm{MeOH}(65 \mathrm{~mL})$ before $\mathrm{KOH}(2.0 \mathrm{~g}, 36 \mathrm{mmol})$ was added. The mixture was stirred at room temperature for 2 h . The reaction mixture was then made acidic ($\mathrm{pH} 2-3$) by adding cone. HC 1 and partitioned between water and diethyl ether. The ether layer was dried $\left(\mathrm{MgSC}^{\wedge}\right)$, concentrated and purified by column chromatography (0-5 \% ethyl acetate - hexanes) to provide 2,4-di-fert-butyl-5-nitrophenol ($1.31 \mathrm{~g}, 29 \%$ over 2 steps) and 2,4-di-fert-butyl-6-nitro-phenol. 2,4-Di-tert-butyl-5-nitro-phenol: 3/4NMR (400 MHz, DMSO- d_{6}) $\delta 10.14$ (s, IH, OH), 7.34 (s, IH),
$6.83(\mathrm{~s}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) .2,4-$ Di-tert-butyl-6-nitro-phenol: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDC1}_{3}\right) 511.48(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}$, $9 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H})$.

[00243] Step 4: 5-Amino-2,4-di-fert-butyl-phenol

[00244] To a refluxing solution of 2,4-di-fert-butyl-5-nitro-phenol (1.86 g, 7.40 mmol) and ammonium formate (1.86 g) in ethanol (75 mL) was added $\mathrm{Pd}-5 \% \mathrm{wt}$. on activated carbon (900 mg). The reaction mixture was stirred at reflux for 2 h , cooled to room temperature and filtered through Celite. The Celite was washed with methanol and the combined filtrates were concentrated to yield 5-amino-2,4-di-fert-butyl-phenol as a grey solid (1.66 g , quant.). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.64$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), 6.84 (s, $1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 4.39\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 1.27(\mathrm{~m}, 18 \mathrm{H})$; HPLC ret. time $2.72 \mathrm{~min}, 10-99 \%$ $\mathrm{CH}_{3} \mathrm{CN}, 5 \mathrm{~min}$ run; ESI-MS $222.4 \mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$.
[00245] Step 5: N-(5-hydroxy-2,4-di-teri-butyl-phenyl)-4-oxo-lH-quinoline-3carboxamide

[00246] To a suspension of 4-oxo-1,4-dihydroquinolin-3-carboxylic acid ($35.5 \mathrm{~g}, 188$ mmol) and HBTU ($85.7 \mathrm{~g}, 226 \mathrm{mmol}$) in DMF (280 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(63.0 \mathrm{~mL}, 451$ $\mathrm{mmol})$ at ambient temperature. The mixture became homogeneous and was allowed to stir for 10 min before 5-amino-2,4-di-fer /-butyl-phenol ($50.0 \mathrm{~g}, 226 \mathrm{mmol}$) was added in small portions. The mixture was allowed to stir overnight at ambient temperature. The mixture became heterogeneous over the course of the reaction. After all of the acid was consumed (LC-MS analysis, MH+ 190, 1.71 min), the solvent was removed in vacuo. EtOH (ethyl alcohol) was added to the orange solid material to produce a slurry. The mixture was stirred on a rotovap (bath temperature $65^{\circ} \mathrm{C}$) for 15 min without placing the system under vacuum. The mixture was filtered and the captured solid was

SSyynntthheessiiss ooff CCoommppoouunndd IIVV:: 33-((66--(II--((22,,22--ddiifffluuoorroobbeennzzoo[[dd]][[II,,33]]ddiiooxxooll--55--yyll))

 ccyycclloopprrooppaanneeccaarrbbooxxaammiiddoo))--33--mmeetthhyyllppyyririddiinn--22--yyli))bbeennzzooiicc aacciidd[[0000224488]] CCoommppoouunndd IIVV mmaayy bbee pprreeppaarreedd bbyy ccoouupplliinngg aann aacciidd cchhllooririddee mmooiieettyy wwiitthh aann aammiinnee mmooiieettyy aaccccoorrddiinngg too SScchheemmeess IIVV--AA thhhrroouugghh IIVV--DD.

SScchheemmee IIVV--AA.. SSyynnthheessiiss ooff thhee aacciidd cchhllooririddee mmooiieettyy..

1. NaCN
2. $\mathrm{H}_{2} \mathrm{O}$

[00249] Scheme IV-A depicts the preparation of 1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarbonyl chloride, which is used in Scheme IV-C to make the amide linkage of Compound IV.
[00250] The starting material, 2,2-difluorobenzo[d][1,3]dioxole-5-carboxylic acid, is commercially available from Saltigo (an affiliate of the Lanxess Corporation).

Reduction of the carboxylc acid moiety in 2,2-difluorobenzo[d][1,3]dioxole-5carboxylic acid to the primary alcohol, followed by conversion to the corresponding chloride using thionyl chloride (SOCI2), provides 5-(chloromethyl)-2,2difluorobenzo[d][1,3]dioxole, which is subsequently converted to 2-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)acetonitrile using sodium cyanide. Treatment of 2-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)acetonitrile with base and l-bromo-2chloroethane provides 1-(2,2-difluorobenzo[d][1,3]dioxol-5-
yl)cyclopropanecarbonitrile. The nitrile moiety in 1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarbonitrile is converted to a carboxylic acid using base to give 1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxylic acid, which is converted to the desired acid chloride using thionyl chloride.

Scheme IV-B. Alternative synthesis of the acid chloride moiety.

3 NHCl , DMSO, $75{ }^{\circ} \mathrm{C}$

1. NaOH
2. HCl

[00251] Scheme IV-B depicts an alternative synthesis of the requisite acid chloride. 5 -bromomethyl-2,2-difluoro-1,3-benzodioxole is coupled with ethyl cyanoacetate in the presence of a palladium catalyst to form the corresponding alpha cyano ethyl ester. Saponification of the ester moiety to the carboxylic acid gives the cyanoethyl Compound IV. Alkylation of the cyanoethyl compound with 1-bromo-2-chloro ethane in the presence of base gives the cyanocyclopropyl compound. Treatment of the cyanocyclopropyl compound with base gives the carboxylate salt, which is converted to the carboxylic acid by treatment with acid. Conversion of the carboxylic acid to the acid chloride is then accomplished using a chlorinating agent such as thionyl chloride or the like.

Scheme IV-C. Synthesis of the amine moiety.

urea-hydrogen peroxide phthalic anhydride EtOAc, water

1. $\mathrm{Ms}_{2} \mathrm{O}, \mathrm{py}, \mathrm{MeCN}$
2. ethanolamine

[00252] Scheme IV-C depicts the preparation of the requisite tert-butyl 3-(6-amino-3-methylpyridin-2-yl)benzoate, which is coupled with 1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarbonyl chloride in Scheme IV-C to give Compound IV. Palladiumcatalyzed coupling of 2-bromo-3-methylpyridine with 3-(tertbutoxycarbonyl)phenylboronic acid gives tert-butyl 3-(3-methylpyridin-2-yl)benzoate, which is subsequently converted to the desired compound.

Scheme IV-D. Formation of an acid salt of 3-(6-(1-(2,2-
difluorobenzo [d] [1,3] dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2yl)benzoic acid.

[00253] Scheme IV-D depicts the coupling of 1-(2,2-difluorobenzo[d][1,3]dioxol-5yl)cyclopropanecarbonyl chloride with tert-butyl 3-(6-amino-3-methylpyridin-2-
yl)benzoate using triethyl amine and 4-dimethylaminopyridine to initially provide the tert-butyl ester of Compound IV.

[00254] Syntheses of Compounds

[00255] Synthesis of Compound 1

[00256] Part A : Synthesis of (4S)-2,2,4-trimethylpyrrolidine hydrochloride

[00257] Step 1: methyl-2,4-dimethyl-4-nitro-pentanoate

[00258] Tetrahydrofuran (THF, 4.5 L) was added to a 20 L glass reactor and stirred under N_{2} at room temperature. 2-Nitropropane ($1.5 \mathrm{~kg}, 16.83 \mathrm{~mol}$) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) ($1.282 \mathrm{~kg}, 8.42 \mathrm{~mol})$ were then charged to the reactor, and the jacket temperature was increased to $50^{\circ} \mathrm{C}$. Once the reactor contents were close to $50^{\circ} \mathrm{C}$, methyl methacrylate ($1.854 \mathrm{~kg}, 18.52 \mathrm{~mol}$) was added slowly over 100 minutes. The reaction temperature was maintained at or close to $50^{\circ} \mathrm{C}$ for 21 hours. The reaction mixture was concentrated in vacuo then transferred back to the reactor and diluted with methyl tert-butyl ether (MTBE) (14 L). $2 \mathrm{M} \mathrm{HC1}$ (7.5 L) was added, and this mixture was stirred for 5 minutes then allowed to settle. Two clear layers were visible - a lower yellow aqueous phase and an upper green organic phase. The aqueous layer was removed, and the organic layer was stirred again with $2 \mathrm{M} \mathrm{HC1}$ (3 L). After separation, the HC 1 washes were recombined and stirred with MTBE (3 L) for 5 minutes. The aqueous layer was removed, and all of the organic layers were combined in the reactor and stirred with water (3 L) for 5 minutes. After separation, the organic layers were concentrated in vacuo to afford a cloudy green oil. Crude product was treated with MgSC^{\wedge} and filtered to afford methyl-2,4-dimethyl-4-nitro-pentanoate as a clear green oil ($3.16 \mathrm{~kg}, 99 \%$ yield).
[00259] ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-cO $\delta 3.68$ (s, 3H), 2.56-2.35 (m, 2H), 2.11 - $2.00(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
[00260] Step 2: Synthesis of methyl (2S)-2,4-dimethyl-4-nitro-pentanoate

[00261] A reactor was charged with purified water ($2090 \mathrm{~L} ; 10 \mathrm{vol}$) and then potassium phosphate monobasic ($27 \mathrm{~kg}, 198.4$ moles; $13 \mathrm{~g} / \mathrm{L}$ for water charge). The pH of the reactor contents was adjusted to $\mathrm{pH} 6.5(\pm 0.2)$ with $20 \%(\mathrm{w} / \mathrm{v})$ potassium carbonate solution. The reactor was charged with racemic methyl-2,4-dimethyl-4-nitropentanoate (209 kg ; 1104.6 moles), and Palatase 20000 L lipase ($13 \mathrm{~L}, 15.8 \mathrm{~kg}$; 0.06 vol).
[00262] The reaction mixture was adjusted to $32 \pm 2{ }^{\circ} \mathrm{C}$ and stirred for $15-21$ hours, and pH 6.5 was maintained using a pH stat with the automatic addition of 20% potassium carbonate solution. When the racemic starting material was converted to $>98 \%$ ee of the S-enantiomer, as determined by chiral GC, external heating was switched off. The reactor was then charged with MTBE ($35 \mathrm{~L} ; 5 \mathrm{vol}$), and the aqueous layer was extracted with MTBE (3 times, 400-1000L). The combined organic extracts were washed with aqueous $\mathrm{Na}_{2} \mathrm{CC}_{3}(4$ times, $522 \mathrm{~L}, 18 \% \mathrm{w} / \mathrm{w} 2.5$ vol), water (523 L ; 2.5 vol), and 10% aqueous NaCl ($314 \mathrm{~L}, 1.5 \mathrm{vol}$). The organic layer was concentrated in vacuo to afford methyl ($2<$ S)-2,4-dimethyl-4-nitro-pentanoate as a mobile yellow oil (>98\% ee, $94.4 \mathrm{~kg} ; 45 \%$ yield).
[00263] Step 3: Synthesis of (J.S)-3,5,5-trimethylpyrrolidin-2-one

[00264] A 20 L reactor was purged with N_{2}. The vessel was charged sequentially with DI water-rinsed, damp Raney® ${ }^{\circledR} \mathrm{Ni}(2800$ grade, 250 g), methyl (2S)-2,4-dimethyl-4-nitro-pentanoate $(1741 \mathrm{~g}, 9.2 \mathrm{~mol})$, and ethanol ($13.9 \mathrm{~L}, 8 \mathrm{vol}$). The reaction was stirred
at 900 rpm , and the reactor was flushed with H_{2} and maintained at -2.5 bar. The reaction mixture was then warmed to $60{ }^{\circ} \mathrm{C}$ for 5 hours. The reaction mixture was cooled and filtered to remove Raney nickel, and the solid cake was rinsed with ethanol ($3.5 \mathrm{~L}, 2 \mathrm{vol}$). The ethanolic solution of the product was combined with a second equal sized batch and concentrated in vacuo to reduce to a minimum volume of ethanol (-1.5 volumes). Heptane (2.5 L) was added, and the suspension was concentrated again to -1.5 volumes. This was repeated 3 times; the resulting suspension was cooled to $0-5{ }^{\circ} \mathrm{C}$, filtered under suction, and washed with heptane (2.5 L). The product was dried under vacuum for 20 minutes then transferred to drying trays and dried in a vacuum oven at 40 ${ }^{\circ} \mathrm{C}$ overnight to afford (35)-3,5,5-trimethylpyrrolidin-2-one as a white crystalline solid (2.042 kg, $16.1 \mathrm{~mol}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-i/) $\delta 6.39$ (s, 1H), 2.62 (ddq, J = 9.9, 8.6, $7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.17(\mathrm{dd}, \mathrm{J}=12.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{dd}, \mathrm{J}=12.5,9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

[00265] Step 4: Synthesis of (4S)-2,2,4-trimethylpyrrolidine hydrochloride

ii) HCl

[00266] A glass lined 120 L reactor was charged with lithium aluminum hydride pellets $(2.5 \mathrm{~kg}, 66 \mathrm{~mol})$ and dry THF $(60 \mathrm{~L})$ and warmed to $30^{\circ} \mathrm{C}$. The resulting suspension was charged with $\mathrm{f} 3 / 4$)-3,5,5-trimethylpyrrolidin-2-one ($7.0 \mathrm{~kg}, 54 \mathrm{~mol}$) in THF (25 L) over 2 hours while maintaining the reaction temperature at 30 to $40{ }^{\circ} \mathrm{C}$. After complete addition, the reaction temperature was increased to $60-63{ }^{\circ} \mathrm{C}$ and maintained overnight. The reaction mixture was cooled to $22^{\circ} \mathrm{C}$, then cautiously quenched with the addition of ethyl acetate (EtOAc) (1.0 L, 10 moles), followed by a mixture of THF (3.4 L) and water ($2.5 \mathrm{~kg}, 2.0 \mathrm{eq}$), and then a mixture of water (1.75 kg) with 50 \% aqueous sodium hydroxide $(750 \mathrm{~g}, 2$ equiv water with 1.4 equiv sodium hydroxide relative to aluminum), followed by 7.5 L water. After the addition was complete, the reaction mixture was cooled to room temperature, and the solid was removed by filtration and washed with THF ($3 \times 25 \mathrm{~L}$). The filtrate and washings were combined and treated with 5.0 L (58 moles) of aqueous $37 \% \mathrm{HCl}$ (1.05 equiv.) while maintaining the temperature below $30^{\circ} \mathrm{C}$. The resultant solution was concentrated by
vacuum distillation to a slurry. Isopropanol (8 L) was added and the solution was concentrated to near dryness by vacuum distillation. Isopropanol (4 L) was added, and the product was slurried by warming to about $50^{\circ} \mathrm{C}$. MTBE (6 L) was added, and the slurry was cooled to $2-5{ }^{\circ} \mathrm{C}$. The product was collected by filtration and rinsed with 12 L MTBE and dried in a vacuum oven ($55^{\circ} \mathrm{C} / 300$ torr/ N_{2} bleed) to afford (4S)-2,2,4trimethylpyrrolidine $\cdot \mathrm{HCl}$ as a white, crystalline solid ($6.21 \mathrm{~kg}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 9.34$ (br d, 2H), 3.33 (dd, $J=11.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.75 (dd, $J=$ $11.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{dd}, J=12.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, $1.38(\mathrm{dd}, J=12.8,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
[00267] Part B: Preparation of ${ }^{\wedge}$-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (Compound 1)

[00268] Preparation of starting materials:
[00269] 3,3,3-Trifluoro-2,2-dimethyl-propan- l-ol

[00270] A 1 L 3 neck round bottom flask was fitted with a mechanical stirrer, a cooling bath, an addition funnel, and a J-Kem temperature probe. The vessel was charged with lithium aluminum hydride (LAH) pellets ($6.3 \mathrm{~g}, 0.1665 \mathrm{~mol}$) under a nitrogen atmosphere. The vessel was then charged with tetrahydrofuran (200 mL) under a nitrogen atmosphere. The mixture was allowed to stir at room temperature for 0.5 hours to allow the pellets to dissolve. The cooling bath was then charged with crushed
ice in water and the reaction temperature was lowered to $0^{\circ} \mathrm{C}$. The addition funnel was charged with a solution of 3,3,3-trifluoro-2,2-dimethyl-propanoic acid ($20 \mathrm{~g}, 0.1281$ $\mathrm{mol})$ in tetrahydrofuran $(60 \mathrm{~mL})$ and the clear pale yellow solution was added drop wise over 1 hour. After the addition was complete the mixture was allowed to slowly warm to room temperature and stirring was continued for 24 hours. The suspension was cooled to $0^{\circ} \mathrm{C}$ with a crushed ice-water in the cooling bath and then quenched by the very slow and drop wise addition of water (6.3 ml), followed by sodium hydroxide solution (15 weight $\% ; 6.3 \mathrm{~mL}$) and then finally with water (18.9 mL). The reaction temperature of the resulting white suspension was recorded at $5^{\circ} \mathrm{C}$. The suspension was stirred at $\sim 5^{\circ} \mathrm{C}$ for 30 minutes and then filtered through a 20 mm layer of Celite. The filter cake was washed with tetrahydrofuran ($2 \times 100 \mathrm{~mL}$). The filtrate was dried over sodium sulfate (150 g) and then filtered. The filtrate was concentrated under reduced pressure to provide a clear colorless oil (15 g) containing a mixture of the product 3,3,3-trifluoro-2,2-dimethyl-propan-l-ol in THF (73% weight of product $\sim 10.95 \mathrm{~g}$, and 27 wt.\% THF as determined by $1 \mathrm{H}-\mathrm{NMR}$). The distillate from the rotary evaporation was distilled at atmospheric pressure using a 30 cm Vigreux column to provide 8.75 g of a residue containing 60% weight of THF and 40% weight of product (-3.5 g). The estimated total amount of product is 14.45 g (79% yield). 1H NMR (400 MHz , DMSOd6) $\delta 4.99(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, \mathrm{J}=5.8,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 6 \mathrm{H})$.
[00271] tert-Butyl 3-oxo-2,3-dihydro-IH-pyrazole-I-carboxylate

[00272] A 50L Syrris controlled reactor was started and jacket set to $20^{\circ} \mathrm{C}$, stirring at 150 rpm , reflux condenser $\left(10^{\circ} \mathrm{C}\right)$ and nitrogen purge. $\mathrm{MeOH}(2.860 \mathrm{~L})$ and methyl (E)-3-methoxyprop-2-enoate ($2.643 \mathrm{~kg}, 22.76 \mathrm{~mol}$) were added and the reactor was capped. The reaction was heated to an internal temperature of $40^{\circ} \mathrm{C}$ and the system was set to hold jacket temp at $40^{\circ} \mathrm{C}$. Hydrazine hydrate (1300 g of $55 \% \mathrm{w} / \mathrm{w}, 22.31 \mathrm{~mol}$) was added portion wise via addition funnel over 30 min . The reaction was heated to 60 ${ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was cooled to $20^{\circ} \mathrm{C}$ and triethyamine ($2.483 \mathrm{~kg}, 3.420$ $\mathrm{L}, 24.54 \mathrm{~mol}$) was added portion wise (exothermic), maintaining reaction temp $<30^{\circ} \mathrm{C}$.

A solution of Boc anhydride (di-tert-butyl dicarbonate) (4.967 kg, 5.228 L, 22.76 mol) in $\mathrm{MeOH}(2.860 \mathrm{~L})$ was added portion wise maintaining temperature $<45{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 16 h . The reaction solution was partially concentrated to remove MeOH , resulting in a clear light amber oil. The resulting oil was transferred to the 50 L reactor, stirred and added water $(7.150 \mathrm{~L})$ and heptane $(7.150 \mathrm{~L})$. The additions caused a small amount of the product to precipitate. The aqueous layer was drained into a clean container and the interface and heptane layer were filtered to separate the solid (product). The aqueous layer was transferred back to the reactor, and the collected solid was placed back into the reactor and mixed with the aqueous layer. A dropping funnel was added to the reactor and loaded with acetic acid $(1.474 \mathrm{~kg}, 1.396 \mathrm{~L}$, 24.54 mol), then began dropwise addition of acid. The jacket was set to $0^{\circ} \mathrm{C}$ to absorb the quench exotherm. After addition ($\mathrm{pH}=5$), the reaction mixture was stirred for 1 h . The solid was collected by filtration and washed with water (7.150 L), and washed a second time with water (3.575 L) and pulled dry. The crystalline solid was scooped out of the filter into a 20L rotovap bulb and heptane (7.150 L) was added. The mixture was slurried at $45^{\circ} \mathrm{C}$ for 30 mins, and then distilled off 1-2 volumes of solvent. The slurry in the rotovap flask was filtered and the solids washed with heptane (3.575 L) and pulled dry. The solid was further dried in vacuo ($50{ }^{\circ} \mathrm{C}, 15 \mathrm{mbar}$) to give tert-butyl 5-oxo-lH-pyrazole-2-carboxylate ($2921 \mathrm{~g}, 71 \%$) as coarse, crystalline solid. $3 / 4 \mathrm{NMR}$ (400 MHz , DMSO-d6) $\delta 10.95(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}$, 9H).
[00273] Step A : tert-Butyl 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazole-lcarboxylate

[00274] A mixture of 3,3,3-trifluoro-2,2-dimethyl-propan-l-ol (10 g, 70.36 mmol) and tert-butyl 3-hydroxypyrazole-l-carboxylate ($12.96 \mathrm{~g}, 70.36 \mathrm{mmol}$) in toluene (130 mL) was treated with triphenyl phosphine ($20.30 \mathrm{~g}, 77.40 \mathrm{mmol}$) followed by isopropyl N -isopropoxycarbonyliminocarbamate $(14.99 \mathrm{~mL}, 77.40 \mathrm{mmol})$ and the mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 16 hours. The yellow solution was concentrated under reduced
pressure, diluted with heptane $(1 \mathrm{OOmL})$ and the precipitated triphenylphosphine oxide was removed by filtration and washed with heptane/toluene $4: 1$ (lOOmL). The yellow filtrate was evaporated and the residue purified by silica gel chromatography with a linear gradient of ethyl acetate in hexane $(0-40 \%$) to give tert-butyl 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazole-1-carboxylate $(12.3 \mathrm{~g}, 57 \%)$ as an off white solid. ESIMS m/z calc. 308. 13477, found $309.0(\mathrm{M}+\mathrm{l}){ }^{+}$; Retention time: 1.84 minutes. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 8.10(d, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H})$, $1.55(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H})$.
[00275] Step B: 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)-IH-pyrazole

[00276] tert-Butyl 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazole-1-carboxylate $(13.5 \mathrm{~g}, 43.79 \mathrm{mmol})$ was treated with 4 M hydrogen chloride in dioxane (54.75 mL , 219.0 mmol) and the mixture was stirred at $45^{\circ} \mathrm{C}$ for 1 hour. The reaction mixture was evaporated to dryness and the residue was extracted with 1 M aqueous NaOH (100 ml) and methyl tert-butyl ether $(100 \mathrm{ml})$, washed with brine $(50 \mathrm{ml})$ and extracted with methyl tert-butyl ether (50 ml). The combined organic phases were dried, filtered and evaporated to give 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)-1H-pyrazole (9.0 g, 96\%) as an off white waxy solid. ESI-MS m / z calc. 208.08235, found $209.0(\mathrm{M}+1)^{+}$; Retention time: 1.22 minutes. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 11.91$ (s, 1H), 7.52 (d, $\mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H})$.
[00277] Step C:tert-Butyi 2,6-dichloropyridine-3-carboxylate

1) $(\mathrm{Boc})_{2} \mathrm{O}$
2) HCl

[00278] A solution of 2,6-dichloropyridine-3-carboxylic acid ($10 \mathrm{~g}, 52.08 \mathrm{mmol}$) in THF (210 mL) was treated successively with di-tert-buty 1 dicarbonate ($17 \mathrm{~g}, 77.89$ $\mathrm{mmol})$ and 4-(dimethylamino)pyridine ($3.2 \mathrm{~g}, 26.19 \mathrm{mmol}$) and left to stir overnight at
room temperature. At this point, $\mathrm{HC} 1 \mathrm{IN}(400 \mathrm{~mL})$ was added and the mixture was stirred vigorously for about 10 minutes. The product was extracted with ethyl acetate $(2 \times 300 \mathrm{~mL})$ and the combined organics layers were washed with water (300 mL) and brine (150 mL) and dried over sodium sulfate and concentrated under reduced pressure to give 12.94 g (96% yield) of tert-butyl 2,6-dichloropyridine-3-carboxylate as a colorless oil. ESI-MS m/z calc. 247.01668, found $248.1(\mathrm{M}+1){ }^{+}$; Retention time: 2.27 minutes. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDC1}_{3}$) ppm $1.60(\mathrm{~s}, 9 \mathrm{H}), 7.30(\mathrm{~d}, \boldsymbol{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}$, $\boldsymbol{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$.
[00279] Step D : tert-Butyl 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol- 1-yl] pyridine-3-carboxylate

[00280] To a solution of tert-butyl 2,6-dichloropyridine-3-carboxylate (10.4 g, 41.9 mmol) and 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)-lH-pyrazole $\quad(9.0 \mathrm{~g}, 41.93 \mathrm{mmol})$ in DMF (110 mL) were added potassium carbonate ($7.53 \mathrm{~g}, 54.5 \mathrm{mmol}$) and $1,4-$ diazabicyclo[2.2.2]octane ($706 \mathrm{mg}, 6.29 \mathrm{mmol}$) and he mixture was stirred at room temperature for 16 hours. The cream suspension was cooled in a cold water bath and cold water (130 mL) was slowly added. The thick suspension was stirred at room temperature for 1 hour, filtered and washed with plenty of water to give tert-butyl 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylate $(17.6 \mathrm{~g}, 99 \%)$ as an off white solid. ESI-MS m / z calc. 419.12234 , found $420.0(\mathrm{M}+1)^{+}$; Retention time: 2.36 minutes. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $\delta 8.44(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.31(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}$, $2 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~s}, 6 \mathrm{H})$.
[00281] Step E : 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-I-yl]pyridine-3-carboxylic acid

[00282] tert-butyl 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylate ($17.6 \mathrm{~g}, 40.25 \mathrm{mmol}$) was suspended in isopropanol (85 niL) treated with hydrochloric acid (34 mL of $6 \mathrm{M}, 201 \mathrm{mmol}$) and heated to reflux for 3 hours (went almost complete into solution at reflux and started to precipitate again). The suspension was diluted with water (51 mL) at reflux and left to cool to room temperature under stirring for 2.5 h . The solid was collected by filtration, washed with isopropanol/water $1: 1(50 \mathrm{~mL})$, plenty of water and dried in a drying cabinet under vacuum at $45-50{ }^{\circ} \mathrm{C}$ with a nitrogen bleed overnight to give 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylic acid (13.7 g, 91\%) as an off white solid. ESI-MS m/z calc. 363.05975, found $364.0(\mathrm{M}+1){ }^{+}$; Retention time: 1.79 minutes. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $\delta 13.61$ (s, 1H), 8.44 (d, J = 2.9 $\mathrm{Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.28 (s, 2H), 1.24 (s, 6H).
[00283] Step F: 2-Chloro-^-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]pyridine-3-carboxamide

[00284] 2-Chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]pyridine-3carboxylic acid ($100 \mathrm{mg}, 0.2667 \mathrm{mmol}$) and CDI ($512 \mathrm{mg}, 3.158 \mathrm{mmol}$) were combined in THF $(582.0 \mu \mathrm{~L})$ and the mixture was stirred at room temperature. Meanwhile, 1,3-dimethylpyrazole-4-sulfonyl chloride ($62 \mathrm{mg}, 0.3185 \mathrm{mmol}$) was combined with ammonia (in methanol) in a separate vial, instantly forming a white solid. After stirring for an additional 20 min , the volatiles were removed by evaporation, and 1 mL of dichloromethane was added to the solid residue, and was also evaporated. DBU (100 $\mu \mathrm{L}, 0.6687 \mathrm{mmol}$) was then added and the mixture stirred at $60^{\circ} \mathrm{C}$ for 5 minutes, followed by addition of THF (1 mL) which was subsequently evaporated. The contents of the vial containing the CDI activated carboxylic acid in THF were then added to the vial containing the newly formed sulfonamide and DBU , and the reaction mixture was stirred for 4 hours at room temperature. The reaction mixture was diluted with 10 mL of ethyl acetate, and washed with 10 mL solution of citric acid (1 M). The aqueous layer was extracted with ethyl acetate (2 x 10 mL) and the combined organics were washed with brine, dried over sodium sulfate, and concentrated to give the product as white solid ($137 \mathrm{mg}, 99 \%$) that was used in the next step without further purification. ESI-MS m / z calc. 520.09076 , found $521.1(\mathrm{M}+\mathrm{l})^{+}$; Retention time: 0.68 minutes.
[00285] Step G: ^-(l,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3carboxamide

[00286] 2-Chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]pyridine-3-carboxamide (137 mg, 0.2630 mmol), (4S)-2,2,4-trimethylpyrrolidine (Hydrochloride salt) ($118 \mathrm{mg}, 0.7884 \mathrm{mmol}$), and potassium carbonate ($219 \mathrm{mg}, 1.585 \mathrm{mmol}$) were combined in DMSO $(685.0 \mu \mathrm{~L})$ and the mixture was heated at $130{ }^{\circ} \mathrm{C}$ for 16 hours. The reaction was cooled to room temperature, and 1 mL of water was added. After stirring for 15 minutes, the contents of the vial were
allowed to settle, and the liquid portion was removed via pipet and the remaining solids were dissolved with 20 mL of ethyl acetate and were washed with 1 M citric acid (15 $\mathrm{mL})$. The layers were separated and the aqueous layer was extracted two additional times with 15 mL of ethyl acetate. The organics were combined, washed with brine, dried over sodium sulfate and concentrated. The resulting solid was further purified by silica gel chromatography eluting with a gradient of methanol in dichloromethane (0$10 \%$) to give N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1 -yl]-2-[(4^-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide ($72 \mathrm{mg}, 41 \%$) as a white solid. ESI-MS m/z calc. 597.2345, found $598.3(\mathrm{M}+1){ }^{+}$; Retention time: 2.1 minutes. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 12.36(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H})$, $8.22(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{t}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{dd}, J=12.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=11.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.55$ $(\mathrm{d}, J=11.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.42(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H}), 0.81(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.
[00287] Alternative Steps F and G:
[00288] Alternative Step F: 2-chloro-^-((1,3-dimethyl-l H-pyrazol-4-yl)sulfonyl)-

6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-l H -pyrazol-l-yl)nicotinamide
 [00289]

[00290]

[00291] To a suspension of 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1 -yl]pyridine-3-carboxylic acid ($20.0 \mathrm{~g}, 53.89 \mathrm{mmol}$) in THF (78.40 mL) was added solid carbonyldiimidazole (approximately $10.49 \mathrm{~g}, 64.67 \mathrm{mmol}$) portion wise and the resulting solution was stirred at room temperature (slight exotherm from $18-21{ }^{\circ} \mathrm{C}$ was observed). After 1 h , solid 1,3-dimethylpyrazole-4-sulfonamide (approximately $11.33 \mathrm{~g}, 64.67 \mathrm{mmol}$) was added, followed by DBU (approximately $9.845 \mathrm{~g}, 9.671 \mathrm{~mL}, 64.67 \mathrm{mmol}$) in two equal portions over 1 min (exotherm from 19 to $35^{\circ} \mathrm{C}$). The reaction mixture was stirred at room temperature for 16 h . The reaction mixture was diluted with ethyl acetate (118 mL) and then HCl (approximately 107.8 mL of $2 \mathrm{M}, 215.6 \mathrm{mmol})$. The phases were separated and the aqueous phase was extracted
with ethyl aceate $(78 \mathrm{~mL})$. The combined organics were washed with water (39.2 mL), then brine $(40 \mathrm{~mL})$, dried over sodium sulfate and concentrated. The resulting foam was crystallized from a $1: 1$ isopropanol:heptane mixture $(80 \mathrm{~mL})$ to afford 2-chloro - N-(($1,3-$ dimethyl-1 H-pyrazol-4-yl)sulfonyl)-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1 $\quad H$ -pyrazol-l-yl)nicotinamide $(26.1 \mathrm{~g}, 93 \%)$ as a white solid. ESI-MS m / z calc. 520.0 , found $520.9(\mathrm{M}+1)^{+}$, Retention time: 1.83 minutes.
[00292] Alternative Step G: N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-I-yl]pyridine-3-carboxamide
[00293]

[00294] 2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]pyridine-3-carboxamide ($20.0 \mathrm{~g}, 38.39 \mathrm{mmol}$), (45)-2,2,4-trimethylpyrrolidine (Hydrochloride salt) (approximately $14.36 \mathrm{~g}, 95.98 \mathrm{mmol}$), and K2C03 (approximately $26.54 \mathrm{~g}, 192.0 \mathrm{mmol}$) were combined in DMSO (80.00 mL) and 1,2-diethoxy ethane (20.00 mL) in a $500-\mathrm{mL}$ flask with reflux condenser. The reaction mixture was heated at $120^{\circ} \mathrm{C}$ for 16 h then cooled to room temperature. The reaction was diluted with DCM (200.0 mL) and HCI (approximately 172.8 mL of 2 M , 345.5 mmol); aqueous $\mathrm{pH} \sim 1$. The phases were separated, and the aqueous phase was extracted with DCM (100.0 mL). The organic phases were combined, washed with water $(100.0 \mathrm{~mL})(3 \mathrm{x})$, and dried (Na2S04) to afford an amber solution. The solution was filtered through a DCM-packed silica gel bed ($80 \mathrm{~g} ; 4 \mathrm{~g} / \mathrm{g}$) and washed with 20% EtOAc/DCM ($5 \times 200 \mathrm{~mL}$). The combined filtrate/washes were concentrated to afford 22.2 g of an off-white powder. The powder was slurried in MTBE (140 mL) for 30 min . The solid was collected by filtration (paper/sintered-glass) to afford 24 g after airdrying. The solid was transferred to a drying dish and vacuum-dried ($40{ }^{\circ} \mathrm{C} / 200$ torr/N2 bleed) overnight to afford $20.70 \mathrm{~g}(90 \%)$ of a white powder. ESI-MS m/z calc. 597.2345, found $598.0(\mathrm{M}+1)+$; Retention time: 2.18 minutes.
[00295] ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 13.85(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.23(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.24(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{dd}, \mathrm{J}=10.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, \mathrm{J}=10.3,7.8 \mathrm{~Hz}$, 1 H), $2.67-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{dd}, \mathrm{J}=12.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dd}, \mathrm{J}=$ $12.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~d}, 3 \mathrm{H})$.
[00296] Alternative Synthesis of 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)-IHpyrazole

Step 1: Preparation of 3,3,3-trifluoro-2,2-dimethylpropan-l-ol

A reactor was loaded with toluene (300 mL) and 3,3,3-trifluoro-2,2-dimethylpropanoic acid ($30 \mathrm{~g}, 192.2 \mathrm{mmol}$), capped, purged under nitrogen. The reaction was set to control the internal temperature to $40^{\circ} \mathrm{C}$. A solution of Vitride (65% in toluene. approximately 119.6 g of $65 \% \mathrm{w} / \mathrm{w}, 115.4 \mathrm{~mL}$ of $65 \% \mathrm{w} / \mathrm{w}, 384.4 \mathrm{mmol}$) was set up for addition via syringe, and addition was begun at $40^{\circ} \mathrm{C}$, with the target addition temperature between 40 and $50^{\circ} \mathrm{C}$. The reaction was stirred at $40^{\circ} \mathrm{C}$ for 90 min . The reaction was cooled to $10{ }^{\circ} \mathrm{C}$ then the remaining Vitride was quenched with slow addition of water (6 mL). A solution of 15% aq $\mathrm{NaOH}(30 \mathrm{~mL})$ was added in portions, and solids precipitated half way through the base addition. Water $(60.00 \mathrm{~mL})$ was added. The mixture was warmed to $30^{\circ} \mathrm{C}$ and held for at least 15 mins. The mixture was then cooled to $20^{\circ} \mathrm{C}$. The
aqueous layer was removed. The organic layer was washed with water ($60 \mathrm{~mL} x 3$), and then washed with brine $(60 \mathrm{~mL})$. The washed organic layer was dried under $\mathrm{Na} 2 \mathrm{SC}>4$, followed with MgSG_{4}. The mix was filtered through Celite, and the cake washed with toluene $(60.00 \mathrm{~mL})$ and pulled dry. The product 3,3,3-trifluoro-2,2-dimethyl-propan-1ol ($22.5 \mathrm{~g}, 82 \%$) was obtained as clear colorless solution.

Step 2 : Preparation of 1-(tert-butyl) 4-ethyl 3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-lH-pyrazole-1,4-dicarboxylate

A reactor was charged with 3,3,3-trifluoro-2,2-dimethylpropan-l-ol (17.48 g, 123.0 mmol) solution in toluene $(250 \mathrm{~g})$, 1-(tert-butyl) 4-ethyl 3-hydroxy-lH-pyrazole-1,4dicarboxylate $(30.0 \mathrm{~g}, 117.1 \mathrm{mmol})$, and $\mathrm{PPh}_{3}(35.33 \mathrm{~g}, 134.7 \mathrm{mmol})$. The reaction was heated to $40^{\circ} \mathrm{C}$. DIAD ($26.09 \mathrm{~mL}, 134.7 \mathrm{mmol}$) was weighed and placed into a syringe and added over 10 minutes while maintaining an internal temperature ranging between 40 and $50{ }^{\circ} \mathrm{C}$. The reaction was then heated to $100^{\circ} \mathrm{C}$ over 30 minutes. After holding at $100{ }^{\circ} \mathrm{C}$ for 30 minutes, the reaction was complete, and the mixture was cooled to $70{ }^{\circ} \mathrm{C}$ over 15 minutes. Heptane (180.0 mL) was added, and the jacket was cooled to $15{ }^{\circ} \mathrm{C}$ over 1 hour. (TPPO began crystallizing at $-35{ }^{\circ} \mathrm{C}$). The mixture stirring at $15{ }^{\circ} \mathrm{C}$ was filtered (fast), the cake was washed with a pre-mixed solution of toluene (60 mL) and heptane (60 mL) and then pulled dry. The clear solution was concentrated to a waxy solid ($45{ }^{\circ} \mathrm{C}$, vacuum, rotovap). Crude 1-(tert-butyl) 4-ethyl 3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-lH-pyrazole-1,4-dicarboxylate (53.49 g) was obtained as a waxy solid, (-120% of theoretical mass recovered).

Step 3: Preparation of 3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-lH-pyrazole-4carboxylic acid

A solution of 1-(tert-butyl) 4-ethyl 3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazole-1,4-dicarboxylate ($50.0 \mathrm{~g}, 131 \mathrm{mmol}$) in 2-methyltetrahydrofuran (500 mL) was prepared in a reactor and stirred at $40^{\circ} \mathrm{C}$. Portions of KOt-Bu (80.85 g, 720.5 $\mathrm{mmol})$ were then added over 30 minutes. Addition was exothermic. After 2053.49 g UPLC-MS showed complete removal of the Boc group, so water ($3.53 \mathrm{~g}, 3.53 \mathrm{~mL}, 196$ mmol) was added drop-wise addition via syringe over 20 min to keep the reaction temperature between $40-50{ }^{\circ} \mathrm{C}$. The mixture was then stirred for 17 hours to complete the reaction. The mixture was then cooled to $20^{\circ} \mathrm{C}$ and water (400 mL) was added. The stirring was stopped and the layers were separated. The desired product in the aqueous layer was returned to the reactor and the organic layer was discarded. The aqueous layer was washed with 2-Me-THF (200 mL). Isopropanol (50 mL) was added followed by dropwise addition of aqueous $\mathrm{HC} 1(131 \mathrm{~mL}$ of $6.0 \mathrm{M}, 786.0 \mathrm{mmol}$) to adjust the pH to <3 while maintaining the temperature below $30^{\circ} \mathrm{C}$. The resulting solid was then isolated by filtration and the filter cake washer with water $(100 \mathrm{~mL})$ then pulled dry until a sticky cake was obtained. The solids were then dried under vacuum at $55^{\circ} \mathrm{C}$ to afford 3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazole-4-carboxylic acid (23.25 g) as an off-white fine solid.

[00297] Step 4: Preparation of 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)-IH-

 pyrazole3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-lH-pyrazole-4-carboxylic acid (1.0 equiv) was added to a reactor followed by DMF ($6.0 \mathrm{vol}, 2.6 \mathrm{wt}$ equiv). The mixture was stirred at 18-22 ${ }^{\circ} \mathrm{C}$. DBU (0.2 equiv.) was charged to the reaction mixture at a rate of approximately $45 \mathrm{~mL} / \mathrm{min}$. The reaction temperature was then raised to $98-102{ }^{\circ} \mathrm{C}$ over 45 minutes. The reaction mixture was stirred at $98-102^{\circ} \mathrm{C}$ for no less than 10 h . The reaction mixture was then cooled to $-2^{\circ} \mathrm{C}$ to $2^{\circ} \mathrm{C}$ over approximately 1 hour and was used without isolation to make ethyl 2-chloro-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-lH-pyrazol-l-yl)nicotinate.
[00298] Alternate procedure for the preparation of 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]pyridine-3-carboxylic acid

[00299]
Step 1. Ethyl 2-chloro-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-

lH-pyrazol- l-yl)nicotinate

[00300] A solution of ethyl 2,6-dichloronicotinate ($256 \mathrm{~g}, 1.16 \mathrm{~mol}$) and 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)-lH-pyrazole ($242 \mathrm{~g}, 1.16 \mathrm{~mol}$) in DMF (1.53 L) was treated with potassium carbonate $(209 \mathrm{~g}, 1.51 \mathrm{~mol})$ and $\mathrm{DABCO}(19.6 \mathrm{~g}, 174 \mathrm{mmol})$. The resultant suspension was stirred allowed to exotherm from 14 to $25^{\circ} \mathrm{C}$ and then maintained at $20-25^{\circ} \mathrm{C}$ with external cooling for 3 days. The suspension was cooled to below $10{ }^{\circ} \mathrm{C}$ when water $(2.0 \mathrm{~L})$ was added in a thin stream while maintaining the temperature below $25^{\circ} \mathrm{C}$. After the addition was complete, the suspension was stirred for an additional 1 h . The solid was collected by filtration (sintered-glass/polypad) and the filter-cake was washed with water ($2 \times 500-\mathrm{mL}$) and dried with suction for 2 h to afford water-damp ethyl 2-chloro-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazol-l-yl)nicotinate ($512 \mathrm{~g} ; 113 \%$ yield) as white powder which was used without further steps in the subsequent reaction.
[00301] Step 2. 2-chloro-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-lh-pyrazol-l-yl)nicotinic acid

[00302] The water-damp ethyl 2-chloro-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-lH-pyrazol-l-yl)nicotinate (455 g, 1.16 mol ; assumed 100% yield from previous step) in $\mathrm{EtOH}(1.14 \mathrm{~L})$ and THF (455 mL) was stirred at ambient temperature $\left(17{ }^{\circ} \mathrm{C}\right)$ when $1 \mathrm{MNaOH}(1.16 \mathrm{~L}, 1.16 \mathrm{~mol})$ was added. The reaction mixture exothermed to $30^{\circ} \mathrm{C}$ and was further warmed at $40^{\circ} \mathrm{C}$ for 2 h . The solution was quenched with $1 \mathrm{M} \mathrm{HC1}(1.39 \mathrm{~L}, 1.39 \mathrm{~mol})$ which resulted in an immediate precipitation which became thicker as the acid was added. The creamy suspension was allowed to cool to room temperature and was stirred overnight. The solid was collected by filtration (sintered-glass/poly pad). The filter-cake was washed with water ($2 \times 500-$ mL). The filter-cake was dried by suction for 1 h but remained wet. The damp solid was transferred to a $10-\mathrm{L}$ Buchi flask for further drying ($50{ }^{\circ} \mathrm{C} / 20$ torr), but was not effective. Further effort to dry by chasing with i-PrOH was also ineffective. Successful drying was accomplished after the damp solid was backfilled with i-PrOAc (3 L), the suspension was heated at $60^{\circ} \mathrm{C}$ (homogenization), and re-concentrated to dryness (50 ${ }^{\circ} \mathrm{C} / 20$ torr) to afford dry 2-chloro-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-lh-pyrazol-l-yl)nicotinic acid (408 g ; 97\% yield for two steps) as a fine, white powder. The product was further dried in a vacuum oven ($50^{\circ} \mathrm{C} / 10$ torr/ N 2 bleed) for 2 h but marginal weight loss was observed. 1H NMR (400 MHz , DMSO-d6) $\delta 13.64$ (s, 1H), $8.49-8.36(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 1.24$ (s, 6H). 19F NMR (376 MHz , DMSO-d6) $\delta-75.2$. KF analysis: 0.04% water.

2. Preparation fiform Ag Compound 1

[00303] The crystalline Form A of Compound 1 was obtained as a result of the following synthesis. Combined 2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]pyridine-3-carboxarnide(108 g, 207.3 mmol), (4S)-2,2,4-trimethylpyrrolidine (Hydrochloride salt) ($77.55 \mathrm{~g}, 518.2$ mmol), was combined with $\mathrm{K}_{2} \mathrm{CO}_{3}(143.2 \mathrm{~g}, 1.036 \mathrm{~mol})$ in DMSO (432.0 mL) and 1,2-
diethoxy ethane $(108.0 \mathrm{~mL})$ in a 1-L RB flask with a reflux condenser. The resulting suspension was heated at $120^{\circ} \mathrm{C}$ and was stirred at temperature overnight. Then the reaction was diluted with $\mathrm{DCM}(1.080 \mathrm{~L})$ and $\mathrm{HC} 1(933.0 \mathrm{~mL}$ of $2 \mathrm{M}, 1.866 \mathrm{~mol})$ was slowly added. The liquid phases were separated, and the aqueous phase was extracted with DCM (540.0 mL).The organic phases were combined, washed with water (540.0 $\mathrm{mL})(3 \mathrm{x})$, then dried with $(\mathrm{Na} 2 \mathrm{SC}>4)$ to afford an amber solution. Silica gel (25 g) was added and then the drying agent/silica gel was filtered off. The filter-bed was washed with DCM (3 x 50-mL). The organic phases were combined and concentrated ($40{ }^{\circ} \mathrm{C} / 40$ torr) to afford crude \boldsymbol{N}-(l, 3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3, 3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3carboxamide ($198.6 \mathrm{~g}, 160 \%$ theory) as an off-white solid. The solid was diluted with MTBE (750 mL), warmed at $60^{\circ} \mathrm{C}$ (external temperature), and mixed to a homogenous suspension. The suspension was cooled to $30{ }^{\circ} \mathrm{C}$ with stirring and the solid was collected by filtration, air-dried, and vacuum-dried to afford Compound 1 (111.1 g; 90 \%) as a fine, white powder.
[00304] The crystalline Form A of Compound 1 was also obtained through the following procedure. A suspension of Compound $1(150.0 \mathrm{~g}, 228.1 \mathrm{mmol})$ in iPrOH $(480 \mathrm{~mL})$ and water $(120 \mathrm{~mL})$ was heated at $82{ }^{\circ} \mathrm{C}$ to obtain a solution. The solution was cooled with a J-Kem controller at a cooling rate of $10^{\circ} \mathrm{C} / \mathrm{h}$. Once the temperature reached $74{ }^{\circ} \mathrm{C}$, the solution was seeded with a sample of Compound 1 in crystalline Form A. Crystallization occurred immediately. The suspension was cooled to $20^{\circ} \mathrm{C}$. The solid was collected by filtration, washed with i-PrOH ($2 \times 75 \mathrm{~mL}$), air-dried with suction, and vacuum-dried $\left(55{ }^{\circ} \mathrm{C} / 300\right.$ torr/ N_{2} bleed) to afford Compound 1 , Form A $(103.3 \mathrm{~g})$ as a white powder.. The sample was cooled to $\sim 5^{\circ} \mathrm{C}$, let stir for 1 h , and then the solid was collected by filtration (sintered glass/paper). the filter-cake was washed with i-PrOH (75 mL) (2 x), air-dried with suction, air-dried in a drying dish (120.6 g mostly dried), vacuum-dried ($55^{\circ} \mathrm{C} / 300$ torr/ N 2 bleed) for 4 h , and then RT overnight. Overnight drying afforded $118.3 \mathrm{~g}(87 \%$ yield) of a white powder.
[00305] Preparation of crystalline Form M of Compound 1 (methanol solvate of Compound 1)
[00306] Compound 1 (free acid neutral form) (800 mg) was added to 9.2 g methanol and a clear solution formed. An additional 701.2 mg of Compound 1 was added, and a suspension formed. The temperature was raised to $45^{\circ} \mathrm{C}$, at which point a clear solution formed. The solution was slowly cooled, and solids precipitated.
[00307] The XRPD data of crystalline Form M of Compound 1 are summarized below. X-ray powder diffractogram of crystalline Form M of Compound 1 is shown in FIG. 13.

Table. XRPD data for crystalline Form M of Compound 1

Pos. [2Th.]	D spacings
6.99	12.64
11.61	7.60
13.08	6.76
13.66	6.48
15.24	5.81
15.91	5.56
16.44	5.39
17.82	4.97
19.25	4.61

[00308] Preparation of crystalline Form E \boldsymbol{g} Compound 1 (ethanol solvate \boldsymbol{g}

Compound 1)

[00309] Compound 1 (free acid neutral form) (800 mg) was added to 9.2 g ethanol and heated to $80^{\circ} \mathrm{C}$. A clear solution formed. The solution was slowly cooled, and solids precipitated.
[00310] The XRPD data of crystalline Form E of Compound 1 are summarized below. X-ray powder diffractogram of crystalline Form E of Compound 1 is shown in FIG. 14.

Table. XRPD data for crystalline Form E of Compound 1

Pos. [2Th.] $]$	D spacings
7.03	12.56
11.16	7.92

12.79	6.91
13.21	6.70
15.08	5.87
16.12	5.49
14.08	6.28
17.79	4.98
18.92	4.69

[00311] Preparation of crystalline Form P2 gf Compound 1 (isopropanol solvate gf

 Compound 1)[00312] A $200 \mathrm{mg} / \mathrm{niL}$ solution of Compound 1 in 2-propanol was heated to $75^{\circ} \mathrm{C}$, and all solids dissolved. The solution was cooled to $50^{\circ} \mathrm{C}$, and precipitation occured. The mixture was kept at $50^{\circ} \mathrm{C}$ for several hours, then cooled to room temperature and aged for several hours.
[00313] The XRPD data of crystalline Form P2 of Compound 1 are summarized below. X-ray powder diffractogram of crystalline Form P2 of Compound 1 is shown in FIG. 17.

Table. XRPD data for crystalline Form P2 of Compound 1

Pos. [2 2Th.]	D spacings
10.15	8.71
10.86	8.14
12.55	7.05
12.88	6.87
15.01	5.90
15.87	5.58
16.22	5.46
16.52	5.36
17.63	5.03

[00314] Preparation gf Various Solvates of Compound 1

[00315] Various solvates of Compound 1 were prepared by stirring amorphous Compound 1 in the relevatent dry solvent as shown in the following Table 8 for three weeks at room temperature for sulfolane, propionic acid, MTBE, isobutyric acid, anisole, methylbutyl ketone, acetic acid and xylene solvates, or at $40^{\circ} \mathrm{C}$ for toluene
solvates. Solid forms observed after vacumm drying the resulting solvates in vacuum at room temperature are also summarized in the table. As used herein, "Crystalline Form PA" refers to the crystalline form of Compound 1 prepared from propionic acid as discussed herein, "Crystalline Form AN" refers to the crystalline form of Compound 1 prepared from anisole as discussed herein,, "Crystalline Form MK" refers to the crystalline form of Compound 1 prepared from methylbutyl ketone as discussed herein, and "Crystalline Form AAl " refers to a crystalline form of Compound 1 prepared from acetic acid as discussed herein.

Table 8:

Solvent	Concentation mgmil)	Formater desolvation
Toluene	74	Form A
Sulfolane	249	Form A
Propionic acid	420	Form A
MTBE	123	Form A
Isobutyric acid	213	Form A
Anisole	194	Not Determined
Methylbutyl ketone	465	Not Determined
Acetic acid	267	Form A
Xylene	126	Largely Amorphous

[00316] Synthesis of iV-(1,3-dimethylpyrazol-4-yl)sulfonyl-6- [3-[2-[1(trifluoromethyl)cyclopropyl] ethoxy] pyrazol-1-yl]-2- [(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (Compound 15)

[00317] Synthesis of starting materials:
[00318] Synthesis of tert-butyl 2,6-dichloropyridine-3-carboxylate

A solution of 2,6-dichloropyridine-3-carboxylic acid ($10 \mathrm{~g}, 52.08 \mathrm{mmol}$) in THF (210 mL) was treated successively with di-tert-butyl dicarbonate ($17 \mathrm{~g}, 77.89 \mathrm{mmol}$) and 4(dimethylamino)pyridine ($3.2 \mathrm{~g}, 26.19 \mathrm{mmol}$) and stirred overnight at room temperature. At this point, HCI IN (400 mL) was added, and the mixture was stirred vigorously for about 10 minutes. The product was extracted with ethyl acetate (2×300 mL), and the combined organic layers were washed with water (300 mL) and brine (150 mL) and dried over sodium sulfate and concentrated under reduced pressure to give 12.94 g (96% yield) of tert-butyl 2,6-dichloropyridine-3-carboxylate as a colorless oil. ESI-MS $\boldsymbol{m} / \boldsymbol{z}$ calc. 247.02 , found $248.1(\mathrm{M}+1)^{+}$; Retention time: 2.27 minutes. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCI}_{3}$) ppm $1.60(\mathrm{~s}, 9 \mathrm{H}), 7.30(\mathrm{~d}, \boldsymbol{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, \boldsymbol{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$.
[00319] Synthesis of tert-buty \backslash 3-oxo-2,3-dihydro-I \boldsymbol{H}-pyrazole-l-carboxylate

A 50 L reactor was started, and the jacket was set to $20^{\circ} \mathrm{C}$, with stirring at 150 rpm , reflux condenser $\left(10^{\circ} \mathrm{C}\right)$ and nitrogen purge. $\mathrm{MeOH}(2.860 \mathrm{~L})$ and methyl (E)-3-methoxyprop-2-enoate ($2.643 \mathrm{~kg}, 22.76 \mathrm{~mol}$) were added, and the reactor was capped. The reaction was heated to an internal temperature of $40^{\circ} \mathrm{C}$, and the system was set to hold jacket temperature at $40^{\circ} \mathrm{C}$. Hydrazine hydrate (1300 g of $55 \% \mathrm{w} / \mathrm{w}, 22.31 \mathrm{~mol}$) was added portion wise via addition funnel over 30 min . The reaction was heated to 60 ${ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was cooled to $20^{\circ} \mathrm{C}$ and triethyamine $(2.483 \mathrm{~kg}, 3.420$ $\mathrm{L}, 24.54 \mathrm{~mol}$) was added portion-wise, maintaining reaction temperature $<30^{\circ} \mathrm{C}$. A solution of Boc anhydride (di-tert-butyl dicarbonate) ($4.967 \mathrm{~kg}, 5.228 \mathrm{~L}, 22.76 \mathrm{~mol}$) in $\mathrm{MeOH}(2.860 \mathrm{~L})$ was added portion-wise maintaining temperature $<45{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 16 h . The reaction solution was partially concentrated to remove MeOH , resulting in a clear, light amber oil. The resulting oil was transferred to the 50 L reactor, stirred and water $(7.150 \mathrm{~L})$ and heptane $(7.150 \mathrm{~L})$ were added. The additions caused a small amount of the product to precipitate. The aqueous layer was drained into a clean container, and the interface and heptane layer were filtered to separate the solid (product). The aqueous layer was transferred back to the reactor, and the collected solid was placed back into the reactor and mixed with the aqueous layer. A dropping funnel was added to the reactor and loaded with acetic acid ($1.474 \mathrm{~kg}, 1.396 \mathrm{~L}$, $24.54 \mathrm{~mol})$ and added dropwise. The jacket was set to $0{ }^{\circ} \mathrm{C}$ to absorb the quench exotherm. After the addition was complete $(\mathrm{pH}=5)$, the reaction mixture was stirred for 1 h . The solid was collected by filtration and washed with water (7.150 L), and washed a second time with water (3.575 L). The crystalline solid was transferred into a 20 L rotovap bulb, and heptane (7.150 L) was added. The mixture was slurried at $45^{\circ} \mathrm{C}$ for 30 mins, and 1-2 volumes of solvent were distilled off. The slurry in the rotovap flask was filtered, and the solids were washed with heptane (3.575 L). The solid was further dried in vacuo ($50{ }^{\circ} \mathrm{C}$, 15 mbar) to give tert-butyl 5 -oxo-l H -pyrazole-2-carboxylate (2921 g, 71\%) as a coarse, crystalline solid. ${ }^{1}$ H NMR (400 MHz , DMSO-d6) $\delta 10.95$ (s, $1 \mathrm{H}), 7.98(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H})$.

Synthesis of 1,3-dimethyl-I \boldsymbol{H}-pyrazole-4-sulfonamide

Ammonium hydroxide (approximately 186.5 mL of $28 \% \mathrm{w} / \mathrm{v}, 1.490 \mathrm{~mol}$) was cooled at $0-5{ }^{\circ} \mathrm{C}$ in a jacketed reaction vessel. A solution of 1,3 -dimethylpyrazole-4-sulfonyl chloride ($29.0 \mathrm{~g}, 149.0 \mathrm{mmol}$) in $\mathrm{DCM}(116.0 \mathrm{~mL})$ was added while maintaining the reaction temperature between 0 to $5{ }^{\circ} \mathrm{C}$. The two phases were separated, and the organic phase was washed with water $(100 \mathrm{~mL})$. The aqueous phases were combined and concentrated to remove most of the residual ammonia. The aqueous phase was extracted twice with ethyl acetate (200 mL and 100 mL). The organic phases were combined, dried over sodium sulfate and concentrated to afford 14.1 g of a white solid. The aqueous phase was acidified with citric acid (approximately $28.63 \mathrm{~g}, 17.20 \mathrm{~mL}, 149.0$ mmol) ($\mathrm{pH} \sim 2$). The acidic aqueous was extracted twice with ethyl acetate (200 mL and 100 mL). The combined organic phases were dried over sodium sulfate, and concentrated to afford another 7.8 g of a white solid. The solids were combined and recrystallized from hot $\left(78{ }^{\circ} \mathrm{C}\right)$ ethyl acetate $(50 \mathrm{~mL})$ to afford 16.1 g of 1,3-dimethyl-1H-pyrazole-4-sulfonamide as a white, crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, ~ D M S O\right) ~ \delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.77$ ($\left.\mathrm{s}, 3 \mathrm{H}\right)$.

Synthesis of 2-[l-(trifluoromethyl)cyclopropyl]ethanol

To a solution of lithium aluminum hydride ($293 \mathrm{mg}, 7.732 \mathrm{mmol}$) in THF (10.00 mL) in an ice-bath, 2-[1-(trifluoromethyl)cyclopropyl]acetic acid (1.002 g, 5.948 mmol) in THF $(3.0 \mathrm{~mL})$ was added dropwise over a period of 30 minutes keeping the reaction temperature below $20^{\circ} \mathrm{C}$. The mixture was allowed to gradually warm to ambient temperature and was stirred for 18 h . The mixture was cooled with an ice-bath and sequentially quenched with water ($294 \mathrm{mg}, 295 \mu \mathrm{~L}, 16.36 \mathrm{mmol}$), $\mathrm{NaOH}(297 \mu \mathrm{~L}$ of 6 $\mathrm{M}, 1.784 \mathrm{mmol})$, and then water $(884.0 \mu \mathrm{~L}, 49.07 \mathrm{mmol})$ to afford a granular solid in the mixture. The solid was filtered off using Celite, and the precipitate was washed with ether. The filtrate was further dried with $\operatorname{MgSC}>4$ and filtered and concentrated in vacuo
to afford the product with residual THF and ether. The mixture was taken directly into the next step without further purification.

Step 1: tert-Butyi 3-[2-[l-(trifluoromethyl)cyclopropyl]ethoxy]pyrazole-lcarboxylate

tert-Butyl 5-oxo-1 \boldsymbol{H}-pyrazole-2-carboxylate ($1.043 \mathrm{~g}, 5.660 \mathrm{mmol}$), 2-[1(trifluoromethyl)cyclopropyl]ethanol ($916 \mathrm{mg}, 5.943 \mathrm{mmol}$), and triphenyl phosphine $(1.637 \mathrm{~g}, 6.243 \mathrm{mmol})$ were combined in THF $(10.48 \mathrm{~mL})$, and the reaction was cooled in an ice-bath. Diisopropyl azodicarboxylate ($1.288 \mathrm{~g}, 1.254 \mathrm{~mL}, 6.368 \mathrm{mmol}$) was added dropwise to the reaction mixture, and the reaction was allowed to warm to room temperature for 16 hours. The mixture was evaporated, and the resulting material was partitioned between ethyl acetate (30 mL) and 1 N sodium hydroxide (30 mL). The organic layer was separated, washed with brine (30 mL), dried over sodium sulfate, and concentrated. The crude material was purified by silica gel chromatography eluting with a gradient of ethyl acetate in hexanes (0-30\%) to give tert-butyl 3-[2-[1-(trifluoromethyl)cyclopropyl]ethoxy]pyrazole-l-carboxylate (1.03 g, 57\%). ESI-MS m/z calc. 320.13 , found $321.1(\mathrm{M}+1)^{+}$; Retention time: 0.72 minutes.

Step 2: 3-[2-[l-(Trifluoromethyl)cyclopropyl]ethoxy]-I H-pyrazole

teri-Butyl-3-[2-[1-(trifluoromethyl)cyclopropyl]ethoxy]pyrazole-1-carboxylate (1.03 g, $3.216 \mathrm{mmol})$ was dissolved in dichloromethane $(10.30 \mathrm{~mL})$ with trifluoroacetic acid $(2.478 \mathrm{~mL}, 32.16 \mathrm{mmol})$, and the reaction was stirred at room temperature for 2 hours. The reaction was evaporated, and the resulting oil was partitioned between ethyl acetate (10 mL) and a saturated sodium bicarbonate solution. The organic layer was separated, washed with brine, dried over sodium sulfate, and evaporated to give 3-[2-[1-
(trifluoromethyl)cyclopropyl]ethoxy]-1 H-pyrazole ($612 \mathrm{mg}, 86 \%$). ESI-MS m / z calc. 220.08 , found $221.0(\mathrm{M}+1){ }^{+}$; Retention time: 0.5 minutes. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSOd6) $\delta 11.86(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.01(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.96-0.88(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.81(\mathrm{~m}, 2 \mathrm{H})$.

Step 3: tert-Butyi 2-chloro-6-[3-[2-[1-(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-

1-yl] pyridine-3-carboxylate

tert-Butyl 2,6-dichloropyridine-3-carboxylate ($687 \mathrm{mg}, 2.770 \mathrm{mmol}$), 3-[2-[1-(trifluoromethyl)cyclopropyl]ethoxy]-1 H-pyrazole ($610 \mathrm{mg}, 2.770 \mathrm{mmol}$), and freshly ground potassium carbonate ($459 \mathrm{mg}, 3.324 \mathrm{mmol}$) were combined in anhydrous DMSO (13.75 mL). 1,4-diazabicyclo[2.2.2]octane (DABCO (1,4diazabicyclo[2.2.2]octane), $62 \mathrm{mg}, 0.5540 \mathrm{mmol}$) was added, and the mixture was stirred at room temperature under nitrogen for 16 hours. The reaction mixture was diluted with water $(20 \mathrm{~mL})$ and stirred for 15 minutes. The resulting solid was collected and washed with water. The solid was dissolved in dichloromethane and dried over magnesium sulfate. The mixture was filtered and concentrated to give tert-butyl 2-chloro-6-[3-[2-[l-(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-1 -yl]pyridine-3carboxylate ($1.01 \mathrm{~g}, 84 \%$). ESI-MS m / z calc. 431.12 , found $432.1(\mathrm{M}+\mathrm{l})$ +; Retention time: 0.88 minutes.

Step 4: 2-Chloro-6- [3-[2-[l-(trifluoromethyl)cyclopropyl] ethoxy] pyrazol- 1-yl]pyridine-3-carboxylic acid

tert-Butyl 2-chloro-6- [3-[2-[1-(trifluoromethy l)cy clopropy 11 ethoxy]pyrazol-1-
yl]pyridine-3-carboxylate $(1.01 \mathrm{~g}, 2.339 \mathrm{mmol})$ and trifluoroacetic acid $(1.8 \mathrm{~mL}, 23.39$
$\mathrm{mmol})$ were combined in dichloromethane $(10 \mathrm{~mL})$ and heated at $40^{\circ} \mathrm{C}$ for 3 h . The reaction was concentrated. Hexanes were added, and the mixture was concentrated again to give 2-chloro-6-[3-[2-[1-(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-1-yl]pyridine-3-carboxylic acid ($873 \mathrm{mg}, 99 \%$) ESI-MS m / z calc. 375.06 , found 376.1 $(\mathrm{M}+1)^{+}$; Retention time: 0.69 minutes.

Step 5: 2-Chloro-^-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[2-[1-(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-l-yl]pyridine-3-carboxamide

2-Chloro-6-[3-[2-[1-(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-l-yl]pyridine-3carboxylic acid ($6 \mathrm{~g}, 15.97 \mathrm{mmol}$) in THF $(60.00 \mathrm{~mL})$ was treated with CDI (approximately $3.107 \mathrm{~g}, 19.16 \mathrm{mmol}$), and the cloudy solution was stirred at room temperature for 1 h . Then 1,3-dimethylpyrazole-4-sulfonamide (approximately 3.110 g , 17.57 mmol), followed by DBU (approximately $2.917 \mathrm{~g}, 2.865 \mathrm{~mL}, 19.16 \mathrm{mmol}$) was added, and the reaction was stirred at room temperatur for 12 hours. The mixture was treated with cold citric acid (approximately 83.84 mL of $1 \mathrm{M}, 83.84 \mathrm{mmol}$) to give an emulsion. Most of the THF was removed under reduced pressure and extracted with ethyl acetate (100 ml), washed with 0.5 M citric acid (80 ml) and brine (80 ml) and the aqueous phases were back extracted once with ethyl acetate (80 ml). The combined organic phases were dried, filtered and evaporated. The crude was purified by chromatography over silica gel with a linear gradient of dichloromethane to 2% methanol. Product fractions were evaporated to give 2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[2-[1-(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-l-yl]pyridine-3carboxamide ($4.64 \mathrm{~g}, 53 \%$). ESI-MS m/z calc. 532.09076, found $533.0(\mathrm{M}+\mathrm{l})+$; Retention time: 1.83 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 12.73(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~d}, \mathrm{~J}=$ 8.3 Hz, 1H), $7.69(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.01-0.82(\mathrm{~m}, 4 \mathrm{H})$.

Step 6: ^-(1,3-Dimethylpyrazol-4-yl)sulfonyl-6-[3-[2-[1(trifluoromethyl)cyclopropyl] ethoxy] pyrazol-l-yl]-2- [(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide

2-Chloro- N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[2-[1-
(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-1 -yl]pyridine-3-carboxamide ($5.9 \mathrm{~g}, 10.74$ mmol) was dissolved in NMP (28.62 mL) and 1,2-diethoxy ethane (5.723 mL), treated with potassium carbonate (approximately $7.422 \mathrm{~g}, 53.70 \mathrm{mmol}$) and (45)-2,2,4trimethylpyrrolidine (Hydrochloride salt) (approximately $3.537 \mathrm{~g}, 23.63 \mathrm{mmol}$), cycled 3 times with vacuum / nitrogen and heated to $130^{\circ} \mathrm{C}$ (oil bath at $135^{\circ} \mathrm{C}$) under stirring and nitrogen for 20 hours. The reaction suspension was cooled, diluted with water (34.34 mL) and carefully added to a strongly stirred solution of acetic acid (approximately $9.674 \mathrm{~g}, 9.161 \mathrm{~mL}, 161.1 \mathrm{mmol}$) in water (137.4 mL). The suspension was stirred at room temprature for one hour, filtered and washed with plenty of water. The still water wet crude was dissolved in warm ethanol (-100 ml , brown cloudy solution), cleared with charcoal over Celite (only slightly lighter) and the hot clear solution was treated with water $(-25 \mathrm{ml})$ till cloudy. The hot cloudy solution was left to cool to room temperature under stirring for 2 hours to give a thick suspension. The solid was collected by filtration, washed with cold ethanol/water 1:1 and plenty of water. The solid was dried under vacuum in a drying cabinet at $45^{\circ} \mathrm{C}$ with a nitrogen bleed over the weekend to give N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[2-[1-
(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-1 -yl]-2-[(45)-2,2,4-trimethylpyrrolidin-1 -yl]pyridine-3-carboxamide ($4.27 \mathrm{~g}, 65 \%$). ESI-MS m/z calc. 609.2345, found 610.0 $(\mathrm{M}+1)+$; Retention time: 3.07 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 12.35(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.74(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, \mathrm{J}=$
$7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, \mathrm{J}=10.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$
$(\mathrm{s}, 3 \mathrm{H}), 2.18(\mathrm{dp}, \mathrm{J}=17.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{dd}, \mathrm{J}=11.9,5.6$
$\mathrm{Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.42(\mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.99-0.86(\mathrm{~m}, 4 \mathrm{H}), 0.82$ $(\mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of iV-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-[2-[1-
(trifluoromethyl)cyclopropyl] ethoxy] pyrazol- l-yl]-2-[(4S)-2,2,4-
trimethylpyrrolidin-l-yl]pyridine-3-carboxamide
Step 1: 1,5-dimethylpyrazole-4-sulfonamide (Compound 14)

1,5-Dimethylpyrazole-4-sulfonyl chloride ($9 \mathrm{~g}, 46.24 \mathrm{mmol}$) was suspended in cold ammonium hydroxide (54 mL of $30 \% \mathrm{w} / \mathrm{w}$), and THF (27.00 mL) was added as a cosolvent, and the cloudy emulsion was stirred at room temperature for 2 hours. The mixture was concentrated under reduced pressure (remove THF and ammonia) to give a nice suspension. The solid was collected by filtration, washed with ice water and dried to give 1,5-dimethylpyrazole-4-sulfonamide (7.35 g, 90\%) as an off white solid. ESIMS m/z calc. 175.04155, found $176.0(\mathrm{M}+\mathrm{l})+$; Retention time: 2.8 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 7.58$ (s, 1H), 7.18 (s, 2H), 3.75 (s, 3H), 2.41 (s, 3H).
Step 2: 2-Chloro-^-(l,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-[2-[1-
(trifluoromethyl)cyclopropyl] ethoxy]pyrazol-1-yl] pyridine-3-carboxamide

2-Chloro-6-[3-[2-[l-(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-1-yl]pyridine-3carboxylic acid ($6 \mathrm{~g}, 15.97 \mathrm{mmol}$) in THF (60.00 mL) was treated with CDI (approximately $3.107 \mathrm{~g}, 19.16 \mathrm{mmol}$), and the cloudy solution was stirred at room temperature for 1 hour. Then 1,5-dimethylpyrazole-4-sulfonamide (approximately 3.110 $\mathrm{g}, 17.57 \mathrm{mmol}$), followed by DBU (approximately $2.917 \mathrm{~g}, 2.865 \mathrm{~mL}, 19.16 \mathrm{mmol}$) was added, and the formed thick suspension was stirred at room temperatur for 4 hours. The suspension was treated with cold citric acid (approximately 83.84 mL of $1 \mathrm{M}, 83.84$ mmol), and most of the THF was removed under reduced pressure, and the solid collected by filtration, washed with plenty of water and sucked dry. The crude (8 g) was
crystallized from ethanol (150 ml for solution at reflux) to give 2-chloro $-N-(1,5-$ dimethylpyrazol-4-yl)sulfonyl-6-[3-[2-[1-(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-1-yl]pyridine-3-carboxamide $(6.9 \mathrm{~g}, 80 \%)$ as an off white solid. ESI-MS m/z calc. 532.09076, found $533.0(\mathrm{M}+1)+$; Retention time: 0.53 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 12.73(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.02-0.84(\mathrm{~m}, 4 \mathrm{H})$.

Step 3 : ^-(1,5-Dimethylpyrazol-4-yl)sulfonyl-6-[3-[2-[1-
(trifluoromethyl)cyclopropyl] ethoxy] pyrazol-l-yl]-2- [(4S)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide

2-Chloro - N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-[2-[1-
(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-1-yl]pyridine-3-carboxamide (137 mg, 0.2571 mmol), (45)-2,2,4-trimethylpyrrolidine (Hydrochloride salt) ($115 \mathrm{mg}, 0.7684$ mmol), and potassium carbonate ($214 \mathrm{mg}, 1.548 \mathrm{mmol}$) were combined in DMSO $(685.0 \mu \mathrm{~L})$ and heated at $130{ }^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to room temperature, and 1 mL of water was added. After 15 minutes stirring, the contents of the vial were allowed to settle, and the liquid portion was removed by pipet, and the remaining solids were dissolved with 20 mL ethyl acetate, then washed with 15 mL 1 M citric acid. The aqueous and organic layers were separated, and the aqueous layer was extracted two additional times with 15 mL ethyl acetate. The organics were combined, washed with brine, dried over sodium sulfate and concentrated. The resulting solid was further purified by silica gel chromotograpy eluting with $0-10 \%$ methanol in dichloromethane to give a white solid, N-(l, 5-dimethylpyrazol-4-yl)sulfonyl-6-[3-[2-[1-(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-1-yl]-2-[(45)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide ($93 \mathrm{mg}, 59 \%$). ESI-MS m/z calc. 609.2345 , found 610.3 $(\mathrm{M}+\mathrm{l})+$; Retention time: 2.09 minutes.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 12.31(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H})$, $7.73(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{dd}, \mathrm{J}=10.3,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.17(\mathrm{dq}, \mathrm{J}=11.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H})$, $1.57(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{t}, \mathrm{J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{td}, \mathrm{J}=5.0,4.5,3.2 \mathrm{~Hz}, 2 \mathrm{H})$, $0.93-0.85(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of 6-[3-[2-[l-(trifluoromethyl)cyclopropyl]ethoxy] pyrazol-1-yl]-iV-(1,3,5-trimethylpyrazol-4-yl)sulfonyl-2- [(4S)-2,2,4-trimethylpyrrolidin- 1-yl]pyridine-3carboxamide (Compound 18)

Step 1: 2-Chloro-6- [3-[2-[l-(trifluoromethyl)cyclopropyl] ethoxy] pyrazol-1-yl]-N-(1,3,5-trimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide

2-Chloro-6-[3-[2-[1 -(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-1-yl]pyridine-3carboxylic acid ($100 \mathrm{mg}, 0.2661 \mathrm{mmol}$) and CDI (approximately $51.38 \mathrm{mg}, 0.3169$ $\mathrm{mmol})$ were combined in THF $(600.0 \mu \mathrm{~L})$ and stirred at room temperature for 2 hours. Meanwhile, 1,3,5-trimethylpyrazole-4-sulfonyl chloride (approximately 55.53 mg , 0.2661 mmol) was combined with ammonia (approximately $250.0 \mu \mathrm{~L}$ of $7 \mathrm{M}, 1.750$ mmol) (in methanol) in a seperate vial, instantly forming a white solid. After stirring for an additonal 20 min , the volatiles were removed by evaporation, and 1 mL of dichloromethane was added to the solid residue, and also evaporated. DBU (approximately $54.41 \mathrm{mg}, 53.45 \mu \mathrm{~L}, 0.3574 \mathrm{mmol}$) was added and stirred at $60^{\circ} \mathrm{C}$ for 5 minutes, (to facilitate the removal of ammonia from any residual ammonium chlroride) followed by 1 mL THF, which was subsequently evaporated. The contents of the vial containing the CDI activated carboxylic acid in THF were then added to the vial containing the newly formed sulfonamide and DBU, and the reaction mixture was stirred for 4 h at room temperature. The reaction mixture was diluted with 10 mL ethyl acetate, and washed with 10 mL 1 M citric acid. The aqueous layer was extracted with ethyl acetate ($2 \times 10 \mathrm{~mL}$), and the combined organics were washed with brine, dried
over sodium sulfate, and concentrated to give a white solid. This material was used in the next step without further purification. 2-Chloro-6-[3-[2-[1 -
(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-l-yl J-N -(1,3,5-trimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide ($139 \mathrm{mg}, 96 \%$). ESI-MS m/z calc. 546. 1064, found 547. $1(\mathrm{M}+1)+$; Retention time: 0.7 minutes.

Step 2: 6-[3-[2-[l-(Trifluoromethyl)cyclopropyl]ethoxy]pyrazol-l-yl]-A^-(1,3,5-trimethylpyrazol-4-yl)sulfonyl-2- [(4S)-2,2,4-trimethylpyrrolidin- 1-yl]pyridine-3carboxamide

2-Chloro-6-[3-[2-[1 -(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-1-yl]-N -(1,3,5-trimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide ($139 \mathrm{mg}, 0.2541 \mathrm{mmol}$), (45)-2,2,4-trimethylpyrrolidine (Hydrochloride salt) ($114 \mathrm{mg}, 0.7617 \mathrm{mmol}$), and potassium carbonate ($211 \mathrm{mg}, 1.527 \mathrm{mmol}$) were combined in DMSO $(508.2 \mu \mathrm{~L})$ and heated at $130{ }^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to room temperature, and 1 mL of water was added. After 15 minutes stirring, the contents of the vial were allowed to settle, the liquid portion was removed by pipet, and the remaining solids were dissolved with 20 mL ethyl acetate, then washed with 15 mL 1 M citric acid. The aqueous and organic layers were separated, and the aqueous layer was extracted two additional times with 15 mL ethyl acetate. The organics were combined, washed with brine, dried over sodium sulfate and concentrated. The resulting solid was further purified by silica gel chromotograpy eluting with $0-10 \%$ methanol in dichloromethane to give a white solid, 6-[3-[2-[1-(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-1 -yl]-N -(1,3,5-trimethylpyrazol-4-yl)sulfonyl-2-[(45)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3carboxamide ($80 \mathrm{mg}, 50 \%$) ESI-MS m/z calc. 623.2502 , found $624.3(\mathrm{M}+\mathrm{l})+$;

Retention time: 2.16 minutes.
Synthesis of N - [1-methyl-3-(trifluoromethyl)pyrazol-4-yl] sulfonyl-6- [3-[2-[1(trifluoromethyl)cyclopropyl] ethoxy] pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (Compound 55)

Step 1: l-Methyl-3-(trifluoromethyl)pyrazole-4-sulfonamide

l-Methyl-3-(trifluoromethyl)pyrazole-4-sulfonyl chloride ($250 \mathrm{mg}, 1.006 \mathrm{mmol}$) was dissolved in THF (2 mL), and ammonia in methanol ($750 \mu \mathrm{~L}$ of $7 \mathrm{M}, 5.2 \mathrm{mmol}$) was added. The reaction was stirred at room temperature for 3 h . The reaction mixture was evaporated to dryness, and the residue was suspended in ethyl acetate and heated for 20 \min at $65^{\circ} \mathrm{C}$. The mixture was filtered hot (to remove ammonium chloride formed in the reaction), and the solids were discarded. The mother liquor was evaporated to give l-methyl-3-(trifluoromethyl)pyrazole-4-sulfonamide ($186 \mathrm{mg}, 81 \%$) ESI-MS m/z calc. 229.01328 , found $230.0(\mathrm{M}+\mathrm{l})+$; Retention time: 0.28 minutes.

Step 2: 2-Chloro-iV-[l-methyl-3-(trifluoromethyl)pyrazol-4-yl] sulfonyl-6- [3-[2-[1-(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-l-yl]pyridine-3-carboxamide

2-Chloro-6-[3-[2-[1 -(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-l-yl]pyridine-3carboxylic acid ($51 \mathrm{mg}, 0.14 \mathrm{mmol}$) and CDI ($37 \mathrm{mg}, 0.23 \mathrm{mmol}$) were combined in THF (1 mL) and stirred for 1 h at room temperature. 1-Methyl-3-
(trifluoromethyl)pyrazole-4-sulfonamide ($34 \mathrm{mg}, 0.15 \mathrm{mmol}$) and DBU ($64 \mu \mathrm{~L}, 0.4280$ mmol) were added, and the reaction was stirred for an additional 16 h . The reaction mixture was partitioned between ethyl acetate and a 1 M citric acid solution. The organics were separated, washed with brine, dried over sodium sulfate, and evaporated. The crude material was used directly in the next step. 2-Chloro- N-[1-methyl-3-(trifluoromethyl)pyrazol-4-yl]sulfonyl-6-[3-[2-[1-(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-l -yl]pyridine-3-carboxamide (82 mg , 100%) ESI-MS m/z calc. 586.0625 , found $587.2(\mathrm{M}+\mathrm{l})+$; Retention time: 0.73 minutes

Step 3: N - [l-Methyl-3-(trifluoromethyl)pyrazol-4-yl] sulfonyl-6- [3-[2-[1(trifluoromethyl)cyclopropyl] ethoxy] pyrazol-1-yl]-2- [(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide

2-Chloro - N-[1 -methyl-3-(trifluoromethyl)pyrazol-4-yl]sulfonyl-6-[3-[2-[1-(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-l -yl]pyridine-3-carboxamide ($82 \mathrm{mg}, 0.14$ mmol), (45)-2,2,4-trimethylpyrrolidine (Hydrochloride salt) ($64 \mathrm{mg}, 0.43 \mathrm{mmol}$), and potassium carbonate ($100 \mathrm{mg}, 0.724 \mathrm{mmol}$) were combined in DMSO (1 mL) and heated at $130{ }^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was diluted with water (3 mL) resulting in a gum. The water was decanted and discarded. The residue was partitioned between ethyl acetate and a 1 M citric acid solution. The organics were separated, washed with brine, dried over sodium sulfate, and evaporated. The crude material was purified by silica gel chromatography eluting with $0-10 \%$ methanol in dichloromethane to give N -[1-methyl-3-(trifluoromethyl)pyrazol-4-yl]sulfonyl-6-[3-[2-[1 -(trifluoromethyl)cyclopropyl]ethoxy]pyrazol-1 -yl]-2-[(45)-2,2,4-trimethylpyrrolidin-l -yl]pyridine-3-carboxamide ($29.6 \mathrm{mg}, 32 \%$). ESI-MS m/z calc. 663.20624, found 664.4 $(\mathrm{M}+\mathrm{l})+$; Retention time: 2.16 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.87(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=3.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ - $2.12(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{dd}, J=12.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H})$, $1.54(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.99-0.92(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 2 \mathrm{H})$, $0.80(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of A^{\wedge}-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-
 (trifluoromethyl)cyclobutyl] methoxy] pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (Compound 19)

Synthesis of (l-trifluoromethyl-cyclobutyl)-methanol

1-Trifluoromethyl-cyclobutanecarboxylic acid ($5.0 \mathrm{~g}, 30 \mathrm{mmol}$) was dissolved in diethyl ether (60 mL) and cooled to $0^{\circ} \mathrm{C}$. Lithium aluminum hydride ($38.66 \mathrm{~mL}, 1 \mathrm{M}$ in diethyl ether) was added dropwise, and the solution was allowed to warm to room temperature overnight. The reaction solution was cooled to $0^{\circ} \mathrm{C}$ with stirring, and sodium sulfate decahydrate was added, which resulted in gradual evolution of gas. Portionwise addition was continued until no more bubbling was observed at room temperature. The reaction solution was then filtered over a bed of Celite, washing with diethyl ether. The filtrate was concentrated under reduced pressure to give 5.44 g of a mixture containing the desired product and some diethyl ether residue (36% by NMR integration). This afforded 1-trifluoromethyl-cyclobutyl-methanol ($3.46 \mathrm{~g}, 78 \%$) as a
colorless oil. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDC} 13$) $\delta(\mathrm{ppm}): 3.82(\mathrm{~s}, 2 \mathrm{H}), 2.39-2.14(\mathrm{~m}, 2 \mathrm{H})$, 2.10-1.85 (m, 4H).

Step 1: 3-(l-Trifluoromethyl-cyclobutylmethoxy)-pyrazole-l-carboxylic acid tertbutyl ester

1-Trifluoromethyl-cyclobutyl-methanol ($1.50 \mathrm{~g}, 9.73 \mathrm{mmol}$) and 3-oxo-2,3-dihydro-pyrazole-1-carboxylic acid tert-butyl ester ($1.63 \mathrm{~g}, 8.85 \mathrm{mmol}$) were dissolved in anhydrous tetrahydrofuran (32 mL). The solution was degassed by sonication and flushed with nitrogen gas. Triphenylphosphine ($2.55 \mathrm{~g}, 9.73 \mathrm{mmol}$) was added, and diisopropyl azodicarboxylate ($1.92 \mathrm{~mL}, 9.73 \mathrm{mmol}$) was then added dropwise. Upon completion of addition, the reaction was heated to $50^{\circ} \mathrm{C}$ for 16 hours. After cooling to room temperature, the reaction was diluted with ethyl acetate $(100 \mathrm{~mL})$ and washed with 1 M sodium hydroxide solution ($2 \times 100 \mathrm{~mL}$), then brine (125 mL). The organics were dried over sodium sulfate, filtered, and concentrated under reduced pressure. The crude yellow oil was purified by flash chromatography using a $0-10 \%$ ethyl acetate in hexanes gradient method to afford 3-(1-trifluoromethyl-cyclobutylmethoxy)-pyrazole-1carboxylic acid tert-butyl ester ($2.48 \mathrm{~g}, 87 \%$) as an off-white solid. ESI-MS m/z calc. 320.31, found $321.1(\mathrm{M}+1){ }^{+}$. Retention time: 3.74 minutes

Step 2: 3-(l-Trifluoromethyl-cyclobutylmethoxy)-l H-pyrazole hydrochloride salt

3-(l-Trifluoromethyl-cyclobutylmethoxy)-pyrazole-l-carboxylic acid tert-butyl ester ($2.48 \mathrm{~g}, 7.74 \mathrm{mmol}$) was dissolved in 4 M hydrogen chloride in dioxane (77 mL). The solution was stirred overnight at room temperature, followed by removal of the volatiles under reduced pressure to afford the hydrochloride salt of 3-(1-trifluoromethyl-cyclobutylmethoxy)-1 H-pyrazole ($1.95 \mathrm{~g}, 98 \%$) as a white powder. ESI-MS m/z calc. 220.20 , found $221.2(\mathrm{M}+1)^{+}$. Retention time: 2.67 minutes.

Step 3: 2-Chloro-6-[3-(l-trifluoromethyl-cyclobutylmethoxy)-pyrazole-l-yl]nicotinic acid tert-butyl ester

3-(l-Trifluoromethyl-cyclobutylmethoxy)-1 $\quad H$-pyrazole hydrochloride salt ($1.95 \mathrm{~g}, 7.61$ $\mathrm{mmol})$ and 2,6-dichloro-nicotinic acid tert-butyl ester $(1.89 \mathrm{~g}, 7.62 \mathrm{mmol})$ were dissolved in dimethylformamide (15 mL), and potassium carbonate ($4.21 \mathrm{~g}, 30.5 \mathrm{mmol}$) was added followed by 1,4 -diazabicyclo[2.2.2]octane $(0.43 \mathrm{~g}, 3.8 \mathrm{mmol})$. The reaction was stirred at room temperature overnight, then water $(150 \mathrm{~mL})$ was added and the aqueous layer was extracted with 4:1 ethyl acetate :hexanes (100 mL). The organic phase was washed with brine (70 mL), dried over sodium sulfate, and concentrated under reduced pressure. The crude oil was purified by silica gel chromatography using a 0 10% ethyl acetate in hexanes gradient method to afford 2-chloro-6-[3-(1-trifluoromethyl-cyclobutylmethoxy)-pyrazole-l-yl] -nicotinic acid tert-butyl ester (1.94 $\mathrm{g}, 66 \%$) as a white solid. ESI-MS m/z calc. 431.85 , found $432.2(\mathrm{M}+1)^{+}$. Retention time: 4.61 minutes.

Step 4: 2-Chloro-6-[3-(l-trifluoromethyl-cyclobutylmethoxy)-pyrazole-l-yl]nicotinic acid

2-Chloro-6-[3-(1-trifluoromethyl-cyclobutylmethoxy)-pyrazole-l-yl]-nicotinic acid tertbutyl ester ($1.9 \mathrm{~g}, 4.40 \mathrm{mmol}$) was dissolved in dichloromethane (20 mL), and trifluoroacetic acid (5.0 mL) was added. The reaction solution was stirred at room temperature overnight, after which the volatiles were removed under reduced pressure to afford 2-chloro-6-[3-(1-trifluoromethyl-cyclobutylmethoxy)-pyrazole-1-yl]-nicotinic
acid ($1.61 \mathrm{~g}, 97 \%$) as a white solid. ESI-MS m/z calc. 375.74 , found $376.2(\mathrm{M}+1)+$. Retention time: 3.57 minutes.

Step 5: 2-Chloro-^-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-(trifluoromethyl)cyclobutyl]methoxy]pyrazol-1-yl]pyridine-3-carboxamide

2-Chloro-6-[3-[[l-(trifluoromethyl)cyclobutyl]methoxy]pyrazol-1 -yl]pyridine-3carboxylic acid ($100 \mathrm{mg}, 0.2661 \mathrm{mmol}$) and CDI ($51 \mathrm{mg}, 0.3145 \mathrm{mmol}$) were combined in THF ($600.0 \mu \mathrm{~L}$) and stirred at room temperature for 2 hours in a vial (vial 1). Meanwhile, 1,3-dimethylpyrazole-4-sulfonyl chloride ($62 \mathrm{mg}, 0.3185 \mathrm{mmol}$) was combined with ammonia (approximately $250.0 \mu \mathrm{~L}$ of $7 \mathrm{M}, 1.750 \mathrm{mmol}$) (in methanol) in a separate vial (vial 2). After stirring for an additonal 20 min , the volatiles were removed from vial 2 by evaporation, and 1 mL of dichloromethane was added to the solid residue, and was also evaporated. DBU ($60 \mu \mathrm{~L}, 0.4012 \mathrm{mmol}$) was then added to vial 2 and stirred at $60^{\circ} \mathrm{C}$ for 5 minutes (to facilitate the removal of ammonia from any residual ammonium chloride). Upon cooling to room temperature, 1 mL THF was added and then evaporated under reduced pressure. The contents of vial 1 were then added to vial 2 by syringe, and the reaction mixture was stirred for 4 h at room temperature. The reaction mixture was diluted with 10 mL ethyl acetate and washed with 10 mL 1 M citric acid. The aqueous layer was extracted $2 \times 10 \mathrm{~mL}$ ethyl acetate, and the combined organics were washed with brine, dried over sodium sulfate, and concentrated to give a a white solid. This material was used in the next step without further purification. 2-
chloro-N -(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-
(trifluoromethyl)cyclobutyl]methoxy]pyrazol-l-yllpyridine-3-carboxarnide (132 mg, 93\%) ESI-MS m/z calc. 532.09076, found $533.1(\mathrm{M}+\mathrm{l})+$; Retention time: 0.7 minutes.
Step 6: N-(1,3-Dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-
(trifluoromethyl)cyclobutyl] methoxy] pyrazol- 1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide

2-Chloro - N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1 -(trifluoromethyl)cyclobufyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide (132 mg, 0.2477 mmol), (45)-2,2,4-trimethylpyrrolidine (hydrochloride salt) ($111 \mathrm{mg}, 0.7417$ mmol), and potassium carbonate ($206 \mathrm{mg}, 1.491 \mathrm{mmol}$) were combined in DMSO (500 $\mu \mathrm{L}$) and heated at $130^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to room temperature, and 1 mL of water was added. After 15 minutes stirring the liquid portion was removed by pipet, and the remaining solids were dissolved with 20 mL ethyl acetate then washed with 15 mL 1 M citric acid. The aqueous and organic layers were separated, and the aqueous layer was extracted two additional times with 15 mL ethyl acetate. The organics were combined, washed with brine, dried over sodium sulfate, and concentrated. The resulting solid was further purified by silica gel chromatography eluting with $0-10 \%$ methanol in dichloromethane to give a white solid, $N-(1,3-$ dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-(trifluoromethyl)cyclobutyl]methoxy]pyrazol-1 yl]-2-[(45)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide $\quad(93 \mathrm{mg}, 62 \%)$ ESIMS m/z calc. 609.2345, found $610.3(\mathrm{M}+\mathrm{l})+$; Retention time: 2.14 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 12.36(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, \mathrm{J}=10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$, $2.31-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.07(\mathrm{~m}, 4 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{dt}, \mathrm{J}=11.8,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.55(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.42(\mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of A^-(1,3-Dimethylpyrazol-4-yl)sulfonyl-6-[3-[[l-
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]-2-[(4.S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (Compound 10)

Step A: (l-(Trifluoromethyl)cyclopropyl)methanol

Lithium aluminum hydride (approximately $78.45 \mathrm{~g}, 2.067 \mathrm{~mol}$) (pellets) were added to the flask, THF $(2.450 \mathrm{~L})$ was added to the addition funnel, and the system was cycled 3 times with vacuum/ nitrogen. The solvent was quickly added to the LAH pellets, stirred at room temperature for 0.5 h (pellets start to fall apart to give a grey suspension), and cooled in an ice bath. A solution of l-(trifluoromethyl)cyclopropanecarboxylic acid ($245 \mathrm{~g}, 1.590 \mathrm{~mol}$) in THF (735.0 mL) was slowly added via an addition funnel over $0.5-1 \mathrm{~h}$, keeping the internal temperature below $30^{\circ} \mathrm{C}$. The grey suspension was stirred in the melting ice bath for 14 hours. The grey suspension was quenched under ice cooling by slow addition of water (approximately $75.92 \mathrm{~g}, 75.92 \mathrm{~mL}, 4.214 \mathrm{~mol}$), followed by NaOH (approximately 76.32 mL of $6 \mathrm{M}, 457.9 \mathrm{mmol}$) and water (approximately $75.92 \mathrm{~g}, 75.92 \mathrm{~mL}, 4.214 \mathrm{~mol}$). The grey suspension was stirred at -50 ${ }^{\circ} \mathrm{C}$ till the solid became colorless $(-0.5 \mathrm{~h})$, treated with magnesium sulfate (20 g), filtered over Celite, and the aluminium salts were washed with three portions of hot THF. The filtrate was dried again over magnesium sulfate, filtered, and concentrated by evaporation at $55^{\circ} \mathrm{C}$ and 450 mbar to give [1-(trifluoromethyl)cyclopropyl]methanol as a $62 \mathrm{wt} \%$ solution (NMR) in THF ($327 \mathrm{~g}, 91 \%$).

1H NMR (400 MHz, DMSO-d6) $\delta 4.94(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (d, J = 6.0 Hz, 2H), 0.91-0.74 (m, 4H)

Step 1: tert-Butyl 3-[[l-(trifluoromethyl)cyclopropyl]methoxy]pyrazole-lcarboxylate

A 5000 mL 3 -neck round bottom flask was fitted with a mechanical stirrer, a heating mantle, a J-Kem temperature probe/controller, an addition funnel, a water cooled reflux condenser, and a nitrogen inlet/outlet. The vessel was charged under a nitrogen atmosphere with tert-butyl 5-oxo-1 H -pyrazole-2-carboxylate ($70 \mathrm{~g}, 0.3800 \mathrm{~mol}$) and tetrahydrofuran ($840 \mathrm{~mL}, 12 \mathrm{~mL} / \mathrm{g}$) which provided a clear pale yellow solution. Stirring was commenced, and the pot temperature was recorded at $19^{\circ} \mathrm{C}$. The vessel was then charged with [1-(trifluoromethyl)cyclopropyl]methanol ($58.56 \mathrm{~g}, 0.4180 \mathrm{~mol}$) added neat in one portion followed by triphenylphosphine ($109.6 \mathrm{~g}, 0.4180 \mathrm{~mol}$) added as a solid in one portion. The resulting clear pale yellow solution was then treated with diisopropyl azodicarboxylate (clear reddish-orange liquid) ($82.3 \mathrm{~mL}, 0.4180 \mathrm{~mol}$) added neat dropwise over 1 hour which resulted in a gradual exotherm to $40^{\circ} \mathrm{C}$ and a clear light amber solution. The reaction mixture was then heated to a pot temperature of 50 ${ }^{\circ} \mathrm{C}$, and the condition was maintained for 2 hours, when analysis by LC/MS indicated complete consumption of the starting material. The clear amber reaction mixture was concentrated under reduced pressure, and the resulting clear dark amber oil was suspended in toluene (560 mL) and stirred at room temperature for 1 hour, during which time a solid (triphenylphosphine oxide MW $=278.28$) precipitated. The thick slurry was filtered through a glass frit Buchner funnel, and the filter cake was displacement washed with toluene (150 mL) and then pulled for 30 minutes. The clear amber filtrate was concentrated under reduced pressure to provide a clear amber oil. The material was purified by silica gel column flash chromatography (solid load on Celite 1.5 kg RediSep column) eluting with a gradient of 100% hexane to $20 \% \mathrm{EtOAc}$ in hexane collecting 450 mL fractions. The product elutes around 5% EtOAc in hexane. The desired
fractions were combined and concentrated under reduced pressure to provide a clear pale yellow oil as the desired product tert-butyl 3-[[1-
(trifluoromethyl)cyclopropyl]methoxy]pyrazole-1-carboxylate ($81 \mathrm{~g}, 0.264 \mathrm{~mol}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6\right) ~ \delta 8.10(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{~s}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{dp}, \mathrm{J}=4.9,1.3 \mathrm{~Hz}, 4 \mathrm{H})$. ESI-MS m/z calc. 306.11914, found $259.0(\mathrm{M}-48)+$; Retention time: 1.76 minutes

Step 2: 3-[[l-(Trifluoromethyl)cyclopropyl]methoxy]-I H-pyrazole

A 5000 mL 3-neck round bottom flask was fitted with a mechanical stirrer, a heating mantle, a J-Kem temperature probe, a water cooled reflux condenser, an addition funnel, and a nitrogen inlet/outlet. The vessel was charged under a nitrogen atmosphere with tert-butyl 3-[[l-(trifluoromethyl)cyclopropyl]methoxy]pyrazole-l-carboxylate (80 g, $0.2612 \mathrm{~mol})$, dichloromethane ($320 \mathrm{~mL}, 4 \mathrm{~mL} / \mathrm{g}$) and methyl alcohol ($320 \mathrm{~mL}, 4 \mathrm{~mL} / \mathrm{g}$) which provided a clear pale yellow solution. Stirring was commenced, and the pot temperature was recorded at $19{ }^{\circ} \mathrm{C}$. The addition funnel was charged with 4 M HCI in 1,4-dioxane ($195.9 \mathrm{~mL}, 0.7836 \mathrm{~mol}$) which was subsequently added dropwise over 1 hour which resulted in a gradual exotherm to $30^{\circ} \mathrm{C}$. The resulting clear pale yellow solution was heated to a pot temperature of $45^{\circ} \mathrm{C}$, and the condition was maintained for 1 hour, when analysis by LC/MS indicated reaction completion. The reaction mixture was allowed to cool to room temperature and then concentrated under reduced pressure. The remaining residue was dissolved in tert-butyl methyl ether (640 mL) and then transferred to a separatory funnel and partitioned with 2 M sodium hydroxide solution ($391.8 \mathrm{~mL}, 0.7836 \mathrm{~mol}$). The organic layer was removed, and the residual aqueous was extracted with tert-butyl methyl ether ($2 \times 200 \mathrm{~mL}$). The combined organic was washed with saturated sodium chloride solution $(500 \mathrm{~mL})$, dried over sodium sulfate (300 g), and then filtered through a glass frit Buchner funnel. The clear pale yellow filtrate was concentrated under reduced pressure to provide a clear light yellow oil which solidified upon standing to provide a white solid ($49.5 \mathrm{~g}, 0.240 \mathrm{~mol}, 92 \%$) as the desired product 3-[[l-(trifluoromethyl)cyclopropyl]methoxy]-1 $\quad H$-pyrazole. ${ }^{1} \mathrm{H}$ NMR (400 MHz ,

DMSO-d6) $\delta 11.90(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~s}$, 2H), 1.09-0.97 (m, 4H). ESI-MS m/z calc. 206.0667, found $207.0(\mathrm{M}+\mathrm{l})+$; Retention time: 1.07 minutes.

Step 3: tert-Butyi 2-chloro-6-[3-[[l-(trifluoromethyl)cyclopropyl]meth-oxy]pyrazol-1-yl] pyridine-3-carboxylate

A 5000 mL 3-neck round bottom flask was fitted with a mechanical stirrer, a cooling bath used as secondary containment, a J-Kem temperature probe, a water cooled reflux condenser, an addition funnel, and a nitrogen inlet/outlet. The vessel was charged under a nitrogen atmosphere with 3-[[l-(trifluoromethyl)cyclopropyl]methoxy]-1 \boldsymbol{H}-pyrazole $(45 \mathrm{~g}, 0.2183 \mathrm{~mol})$ and $N^{\wedge} \mathrm{V}$-dimethylformamide ($540 \mathrm{ml}, 12 \mathrm{~mL} / \mathrm{g}$) which provided a clear pale yellow solution. Stirring was commenced, and the pot temperature was recorded at $17{ }^{\circ} \mathrm{C}$. The vessel was then charged with tert-butyl 2,6-dichloropyridine-3carboxylate $(54.16 \mathrm{~g}, 0.2183 \mathrm{~mol})$ added as a solid in one portion. The resulting clear pale yellow solution was then treated with potassium carbonate ($39.22 \mathrm{~g}, 0.2838 \mathrm{~mol}$) added as a solid in one portion followed by 1,4-diazabicyclo[2.2.2]octane $(3.67 \mathrm{~g}$, 0.03274 mol) added as a solid in one portion. The resulting pale yellow suspension was allowed to stir at room temperature for 24 hours. The reaction mixture was cooled to 10 ${ }^{\circ} \mathrm{C}$ with a crushed ice/water cooling bath. The addition funnel was charged with water $(540 \mathrm{~mL})$ added dropwise over 45 minutes which resulted in a thick suspension and an exotherm to $15{ }^{\circ} \mathrm{C}$. The resulting suspension was continued to stir at $15^{\circ} \mathrm{C}$ for 30 minutes and then filtered through a glass frit Buchner funnel. The filter cake was displacement washed with water ($2 \times 500 \mathrm{ml}$) and then pulled in the Buchner for 2 hours. The material was then allowed to air dry overnight to provide ($73 \mathrm{~g}, 0.175 \mathrm{~mol}$, 80%) of a white granular solid as tert-butyl 2-chloro-6-[3-[[1-
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxylate. ESI-MS m / z calc. 361.0441 , found $361.9(\mathrm{M}+1)+$; Retention time: 2.27 minutes.

Step 4: 2-Chloro-6- [3-[[l-(trifluoromethyl)cyclopropyl]methoxy] pyrazol-1-yl]pyridine-3-carboxylic acid

A 1000 mL 3-neck round bottom flask was fitted with a mechanical stirrer, a heating mantle, a J-Kem temperature probe/controller, an addition funnel, a water cooled reflux condenser, and a nitrogen inlet/outlet. The vessel was charged under a nitrogen atmosphere with tert-butyl 2-chloro-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxylate (70 g, 0.1675 mol) and 2-propanol (350 mL) which provided an off-white suspension. Stirring was commenced, and the pot temperature was recorded at $19^{\circ} \mathrm{C}$. The addition funnel was charged with aqueous $6 \mathrm{M} \mathrm{HCl}(139.6 \mathrm{~mL}, 0.8375 \mathrm{~mol})$ which was added dropwise over 10 minutes which resulted in an exotherm to $30^{\circ} \mathrm{C}$. The resulting suspension was then heated to reflux (pot temperature $-82^{\circ} \mathrm{C}$). Upon heating the suspension turns to a clear pale yellow solution (pot temperature $-75{ }^{\circ} \mathrm{C}$ at this point). After stirring at reflux for -30 minutes a solid began to precipitate. The suspension was continued to stir at reflux for an additional 30 minutes at which point water $(210 \mathrm{~mL})$ was added dropwise over 15 minutes. The heat was then removed, and the suspension was continued to stir and allowed to slowly cool to room temperature. The material was collected by vacuum filtration in a glass frit Buchner funnel and the filter cake was displacement washed with 1:1 water/2-propanol $(100 \mathrm{~mL})$ followed by water $(2 \times 100 \mathrm{~mL})$ and then pulled in the Buchner for 30 minutes. The material was further dried in a vacuum oven at $45{ }^{\circ} \mathrm{C}$ for 24 hours to provide 2-chloro-6-[3-[[l-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1-yl]pyridine-3-carboxylic acid ($56 \mathrm{~g}, 0.155 \mathrm{~mol}, 92 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\left.d_{6}\right) \delta 13.64(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 1.16-1.07(\mathrm{~m}, 4 \mathrm{H})$. ESI-MS m/z calc. 361.0441 , found $361.9(\mathrm{M}+\mathrm{l})+$; Retention time: 3.23 minutes

Step 5: 2-Chloro-^-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide

To a solution of 2-chloro-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1 yl]pyridine-3-carboxylic acid ($1.05 \mathrm{~g}, 2.903 \mathrm{mmol}$) in THF (20.0 mL) was added carbonyl diimidazole ($670.8 \mathrm{mg}, 4.137 \mathrm{mmol}$). The solution was stirred at room temperature for 1 hour. Then, 1,3-dimethylpyrazole-4-sulfonamide ($580.5 \mathrm{mg}, 3.313$ mmol) and DBU ($670.0 \mu \mathrm{~L}, 4.480 \mathrm{mmol}$) were added. The mixture was stirred at room temperature for 3 hours. The reaction mixture was quenched with saturated ammonium chloride solution and extracted with ethyl acetate. The combined extracts were washed with brine, dried over sodium sulfate, and evaporated to afford 2-chloro -N -(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide ($1.4 \mathrm{~g}, 93 \%$) as sticky white solid, which was used as-is in the next reaction. ESI-MS m/z calc. 518.075 1, found 519.4 (M+l)+; Retention time: 0.66 minutes.

Step 6:^-(1,3-Dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1-yl]-2-[(4.S)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide

2-Chloro- N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1 -(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1 -yl]pyridine-3-carboxarnide (190 mg , 0.3662 mmol) was dissolved in DMSO (1 mL), and (45)-2,2,4-trimethylpyrrolidine (approximately $124.4 \mathrm{mg}, 1.099 \mathrm{mmol}$) was added followed by finely ground potassium carbonate (approximately $303.6 \mathrm{mg}, 2.197 \mathrm{mmol}$). The reaction mixture was allowed to stir at $130{ }^{\circ} \mathrm{C}$ overnight. The reaction mixture was diluted with EtOAc (50 mL) and washed with aqueous 1 M citric acid $(1 \times 50 \mathrm{~mL})$ and brine $(1 \times 50 \mathrm{~mL})$. The organic layer was dried over sodium sulfate, filtered, and concentrated under reduced pressure. The product was isolated by silica gel column chromatography: 12 gram silica gel
column, $0-5 \% \mathrm{MeOH} / \mathrm{DCM}$ gradient. N-(1,3-Dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1(trifluoromethy l)cy clopropy ${ }_{1]}$ methoxy] py razol- 1-y ${ }_{1]}-2$ - [(45)-2,2,4-trimethy lpyrrolidin-1-yl]pyridine-3-carboxamide was obtained ($49.5 \mathrm{mg}, 0.08310 \mathrm{mmol}, 22.70 \%$). ESI-MS m / z calc. 595.2189 , found $596.5(\mathrm{M}+1)+$; Retention time: 2.06 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 12.32(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.73 (d, J = 8.2 Hz, 1H), $6.91(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.30$ $(\mathrm{m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$, 2.18 (dq, J = 12.0, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, \mathrm{J}=11.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}$, $3 \mathrm{H}), 1.42(\mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.12-1.05(\mathrm{~m}, 4 \mathrm{H}), 0.82(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of two enantiomers of 2-(4-teri-butyl-2,2-dimethyl-pyrrolidin-l-yl)-A^-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide

Step 1: 3,3-Dimethylbutanenitrile

Sodium cyanide ($9.20 \mathrm{~g}, 187.7 \mathrm{mmol}$) was added to a solution of l-bromo-2,2dimethylpropane ($15.74 \mathrm{~g}, 104.2 \mathrm{mmol}$) in DMSO (100 mL), and the reaction mixture was stirred at $90^{\circ} \mathrm{C}$ overnight. Once cooled to room temperature the reaction mixture was poured into water (900 mL) and extracted using diethyl ether (3 x 300 mL). The
organic layers were combined, washed with $3 \mathrm{~N} \mathrm{HC1}(300 \mathrm{~mL})$, water (300 mL), and brine (300 mL), dried over magnesium sulfate, filtered, and concentrated under reduced pressure to afford 3,3-dimethylbutanenitrile (11.78 g containing 50% of diethyl ether, 58% yield) as a clear liquid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDC13}$) ppm 1.09 (s, 9 H), 2.22 (s, 2 H).

Step 2: 2-feri-Butyl-4-methyl-pent-4-enenitrile

ft -Butyllithium (27.2 mL of $2.5 \mathrm{M}, 68.00 \mathrm{mmol}$) was added to a solution of diisopropylamine ($8.7 \mathrm{~mL}, 62.07 \mathrm{mmol}$) in dry THF (100 mL) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at this temperature for 15 minutes, warmed at $0^{\circ} \mathrm{C}$ for 15 minutes, then cooled back to $-78{ }^{\circ} \mathrm{C}$. After that, 3,3 -dimethylbutanenitrile ($6.0 \mathrm{~g}, 61.75 \mathrm{mmol}$) was added, and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 hour. 3-Chloro-2-methyl-prop-l-ene ($12.1 \mathrm{~mL}, 123.6 \mathrm{mmol}$) was added, and the reaction mixture was slowly warmed to room temperature and stirred at room temperature overnight. The reaction mixture was diluted with DCM (200 mL) and washed with water ($3 \times 100 \mathrm{~mL}$). Organic layer was dried over magnesium sulfate and concentrated under reduced pressure to afford 2-teri-butyl-4-methyl-pent-4-enenitrile ($10.69 \mathrm{~g}, 87 \%$ purity (13% of THF), 99% yield) as yellow oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDC} 13$) ppm $1.08(\mathrm{~s}, 9 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.46$ (dd, J=11.3, $4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.91 (d, J=9.4 Hz, 2H).

Step 3: 2-teri-Butyl-4-methyl-pent-4-en-l-amine

Lithium aluminium hydride ($9.33 \mathrm{~g}, 245.8 \mathrm{mmol}$) was suspended in dry diethyl ether $(250 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C} .2$-teri-Butyl-4-methyl-pent-4-enenitrile $\quad(9.30 \mathrm{~g}, 61.49 \mathrm{mmol})$ was added, and the reaction mixture was stirred at room temperature overnight under
nitrogen. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with water $(10 \mathrm{~mL}), 2$ $\mathrm{N} \mathrm{NaOH}(10 \mathrm{~mL})$, and water $(30 \mathrm{~mL})$. The mixture was stirred at room temperature for 30 minutes, then magnesium sulfate was added, and stirring was continued for 30 more minutes. The reaction was filtered over Celite, washed with diethyl ether, and concentrated under reduced pressure to afford 2-teri-butyl-4-methyl-pent-4-en-l -amine $(10.70 \mathrm{~g}$, contains $29 \% \mathrm{~mol}$ of solvent, 79% yield) as yellowish liquid.
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDC13) ppm 0.91 (s, 9H), 1.22-1.45 (m, 3H), 1.76 (s, 3H), 1.87$1.98(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, \mathrm{J}=13.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, \mathrm{J}=13.1$, $3.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.73-4.82 (m, 2H).

Step 4: 4-feri-Butyl-2,2-dimethyl-pyrrolidine

$\operatorname{Bis}(1,5-c y c l o o c t a d i e n e)$ rhodium(I) tetrafluoroborate ($262 \mathrm{mg}, 0.64 \mathrm{mmol}$) and DavePhos ($305 \mathrm{mg}, 0.77 \mathrm{mmol}$) were added to a solution of 2-fer/-butyl-4-methyl-pent-4-en-l-amine $(2.00 \mathrm{~g}, 12.88 \mathrm{mmol})$ in dioxane $(12 \mathrm{~mL})$ in a sealed tube, and the reaction mixture was bubbled with nitrogen for 5 minutes. The tube was sealed and heated at 120 ${ }^{\circ} \mathrm{C}$ for 48 hours. Once cooled to room temperature, $4 \mathrm{M} \mathrm{HC1}$ in dioxane (6.0 mL) was added, and the reaction mixture was concentrated under reduced pressure. The residue was diluted with $1 \mathrm{NHC1}(20 \mathrm{~mL})$ and washed using diethyl ether ($3 \times 20 \mathrm{~mL}$). The aqueous layer was basified to $\mathrm{pH} 8-9$ with 2 N NaOH , and the resulting solution was extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$). Organic layers were combined, dried over sodium sulfate, and concentrated under reduced pressure to afford 4-fer/-butyl-2,2-dimethyl-pyrrolidine ($1.18 \mathrm{~g}, 59 \%$ yield) as brown liquid.
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDC13) ppm 0.85 (s, 9H), 1.14 (s, 3H), 1.19 (s, 3H), 1.24-1.32 (m, 1 H), $1.50-1.63(\mathrm{~m}, 2 \mathrm{H}), 2.00-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}, \mathrm{J}=11.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$ (dd, $\mathrm{J}=11.4,8.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Step 5: 2-(4-teri-Butyl-2,2-dimethyl-pyrrolidin-l-yl)-A^-(1,3-dimethylpyrazol-4-yl)sulfonyl-6- [3-[[l-(trifluoromethyl)cyclopropyl]methoxy] pyrazol-1-yl]pyridine-3carboxamide (Compound 40)

To a solution of 2-chloro - N-(l ,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide (300.6 mg , 0.5793 mmol) and 4-ter^-butyl-2,2-dimethyl-pyrrolidine ($272.8 \mathrm{mg}, 1.757 \mathrm{mmol}$) in anhydrous DMSO (6.012 mL) was added cesium fluoride ($441.2 \mathrm{mg}, 2.904 \mathrm{mmol}$). The reaction mixture was stirred at $130{ }^{\circ} \mathrm{C}$ for 16 h in an oil bath. The reaction mixture was filtered and purified by a reverse phase HPLC-MS utilizing a gradient of 50-99\% acetonitrile in 5 mM HC1 to afford racemic 2-(4-ter^butyl-2,2-dimethyl-pyrrolidin-l-yl)-N-(1 ,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1 -
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1-yl]pyridine-3-carboxamide (78 mg, 20%) as a white solid. ESI-MS m/z calc. 637.2658, found 638.6 (M+1)+; Retention time: 2.32 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.37-8.31(\mathrm{~m}, 1 \mathrm{H}), 8.24(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07$ $(\mathrm{s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.35(\mathrm{dt}, \mathrm{J}=19.1,9.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.37(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 2 \mathrm{H})$, $1.36(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.20-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.99-0.94(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H})$.

Step 6: Two enantiomers of 2-(4-teri-butyl-2,2-dimethyl-pyrrolidin-l-yl)-A^-(l,3-dimethylpyrazol-4-yl)sulfonyl-6- [3-[[1-
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide

Racemic 2-(4-teri-butyl-2,2-dimethyl-pyrrolidin-1 -yl)-N -(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1 -(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1 -yl]pyridine-3carboxamide ($78 \mathrm{mg}, 0.122 \mathrm{mmol}$) was purified by chiral SFC using a ChiralPak AD-3 column ($250 \times 10 \mathrm{~mm}, 5 \mu \tau \tau$), eluting with 15% methanol, $85 \% \mathbf{C O 2}$, at a pressure of 100 bar, and flow rate of $10 \mathrm{~mL} / \mathrm{min}$.

Peak 1: Pure enantiomer 1 of 2-(4-teri-butyl-2,2-dimethyl-pyrrolidin-1 -yl)-N -(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3 -carboxamide ($24.9 \mathrm{mg}, 7 \%$) with 100% purity and 98% ee (Compound 53). ESI-MS m/z calc. 637.2658 , found $638.6(\mathrm{M}+\mathrm{l})+$; Retention time: 1.19 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 13.68(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, \mathrm{~J}$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}$, $2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{t}, \mathrm{J}=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{t}, \mathrm{J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-$ $1.84(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.17-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.98-0.90(\mathrm{~m}, 2 \mathrm{H}), 0.96$ ($\mathrm{s}, 9 \mathrm{H}$).

Peak 2: Pure enantiomer 2 of 2-(4-teri-butyl-2,2-dimethyl-pyrrolidin-1 -yl)-N -(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol1 -yl]pyridine-3 -carboxamide (25.0 mg) with 100% purity and 98% ee (Compound 54). ESI-MS m/z calc. 637.2658, found $638.6(\mathrm{M}+1)+$; Retention time: 1.18 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 13.69(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, \mathrm{~J}$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}$, $2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.27(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.87(\mathrm{~m}$, $2 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.18-1.13(\mathrm{~m}, 2 \mathrm{H}), 0.99-0.94(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H})$.

Synthesis of two enantiomers of \mathbf{N}-(1,3-dimethylpyrazol-4-yl)sulfonyl-2-(4-

 isopropyl-2,2-dimethyl-pyrrolid in-l-yl)-6- [3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide

Step 1: 2-Isopropyl-3-oxo-butyric acid ethyl ester

To potassium tert-butoxide ($61.7 \mathrm{~g}, 550 \mathrm{mmol}$) in tetrahydrofuran (1 L) in an ice bath was added dropwise ethyl acetoacetate ($64 \mathrm{~mL}, 500 \mathrm{mmol}$). To this solution was added 2-iodopropane ($55 \mathrm{~mL}, 750 \mathrm{mmol}$). After heating overnight at $70^{\circ} \mathrm{C}$, the reaction was cooled, and 2-iodopropane ($18 \mathrm{~mL}, 250 \mathrm{mmol}$) was added, and the reaction was heated an additional 24 hours at $70^{\circ} \mathrm{C}$. Water (250 mL) and saturated aqueous sodium bicarbonate (250 mL) were added to the reaction, and it was extracted with diethyl ether ($3 \times 250 \mathrm{~mL}$). The crude was concentrated under vacuum and purified by silica gel column chromatography using $0-7 \%$ hexanes -ethyl acetate to give 2 -isopropyl-3-oxobutyric acid ethyl ester $(55.11 \mathrm{~g}, 64 \%)$ as a yellow oil. ESI-MS m/z calc. 172.2, found 173.0 (MI). Retention time: 2.99 minutes.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDC13}$) (ppm): 0.87-1.07 (m, 6 H) $1.27(\mathrm{t}, \mathrm{J}=7.14 \mathrm{~Hz}, 3 \mathrm{H}) 2.23$ ($\mathrm{s}, 3 \mathrm{H}$) $2.32-2.52$ (m, 1 H) 3.18 (d, J=9.45 Hz, 1 H) 4.19 (q, J=7.07 Hz, 2 H).

Step 2: 3-Methyl-2-methylene-butyric acid ethyl ester

A solution of 2-isopropyl-3-oxo-butyric acid ethyl ester ($53.77 \mathrm{~g}, 312.2 \mathrm{mmol}$) in tetrahydrofuran $(1.07 \mathrm{~L})$ was cooled to $-78{ }^{\circ} \mathrm{C} .1 .0 \mathrm{M}$ Lithium bis(trimethylsilyl)amide solution in tetrahydrofuran ($343.0 \mathrm{~mL}, 343.0 \mathrm{mmol}$) was added dropwise, and the dry ice bath was removed for 30 minutes. The reaction was recooled to $-78^{\circ} \mathrm{C}$, and paraformaldehyde ($43 \mathrm{~g}, 1.4 \mathrm{~mol}$) was added in one portion. After 30 minutes the dry ice bath was removed and allowed to warm to room temperature overnight. The reaction was then filtered through Celite. The filtrate was concentrated in vacuum, and the crude material was purified by distillation, collecting fraction boils $72-75^{\circ} \mathrm{C}$ at 67 torr to give 3-methyl-2-methylene-butyric acid ethyl ester (19.63 g, 40\%) as a clear oil.
${ }^{1} \mathrm{H}$ NMR (250MHz, CDC13) (ppm): $1.09(\mathrm{~d}, \mathrm{~J}=6.92 \mathrm{~Hz}, 6 \mathrm{H}) 1.31(\mathrm{t}, \mathrm{J}=7.14 \mathrm{~Hz}, 3 \mathrm{H})$ 2.75-2.90 (m, 1H) $4.22(\mathrm{~d}, \mathrm{~J}=7.14 \mathrm{~Hz}, 2 \mathrm{H}) 5.51(\mathrm{~d}, \mathrm{~J}=1.21 \mathrm{~Hz}, 1 \mathrm{H}) 6.12(\mathrm{~s}, 1 \mathrm{H})$.

Step 3: 2-Isopropyl-4-methyl-4-nitro-pentanoic acid ethyl ester

3-Methyl-2-methylene-butyric acid ethyl ester ($15.6 \mathrm{~g}, 109.7 \mathrm{mmol}$) and 2-nitropropane ($2.2 \mathrm{~mL}, 24.2 \mathrm{mmol}$) were added to acetonitrile (250 mL). 1,8-

Diazabicyclo[5.4.0]undec-7-ene ($3.6 \mathrm{~mL}, 24.2 \mathrm{mmol}$) was added dropwise, and the reaction mixture was stirred for 16 hours at room temperature. The acetonitrile was removed under vacuum, and 1 M hydrochloric acid $(200 \mathrm{~mL})$ was added to the residue. The product was extracted with diethyl ether ($3 \times 150 \mathrm{~mL}$) and concentrated. The crude residue was purified by silica gel column chromatography using $0-15 \%$ hexanes diethyl ether to give 2-isopropyl-4-methyl-4-nitro-pentanoic acid ethyl ester (13.4 g, 53%) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDC13}$) (ppm): 0.83-0.97(m, 6 H) 1.18-1.35 (m, 3 H) 1.54 (d, $\mathrm{J}=17.03 \mathrm{~Hz}, 6 \mathrm{H}) 1.86(\mathrm{~d}, \mathrm{~J}=13.21,1 \mathrm{H}) 2.06-2.22(\mathrm{~m}, 2 \mathrm{H}) 2.25-2.45(\mathrm{~m}, 1 \mathrm{H}) 4.07-$ 4.21 (m, 2 H).

Step 4: 3-Isopropyl-5,5-dimethyl-pyrrolidin-2-one

To a solution of 2-isopropyl-4-methyl-4-nitro-pentanoic acid ethyl ester (14.6 g, 63.2 mmol) in ethanol (100 mL) was added Raney nickel ($\sim 2 \mathrm{~g}, 34.0 \mathrm{mmol}$), and the reaction was heated under hydrogen atmosphere at $60^{\circ} \mathrm{C}$ and 120 PSI for 24 hours. Further Raney nickel ($\sim 1 \mathrm{~g}, 17.0 \mathrm{mmol}$) was then added, and the reaction was heated at $60^{\circ} \mathrm{C}$ and 120 PSI overnight for 24 hours. The reaction was filtered through Celite, and the mother liquor was concentrated to give a mixture of 4-amino-2-isopropyl-4-methylpentanoic acid and 3-isopropyl-5,5-dimethyl-pyrrolidin-2-one. The mixture was dissolved in toluene (125 mL) and heated at $110^{\circ} \mathrm{C}$ for 16 hours. The solvent was removed, and the residue was purified by silica gel column chromatography using 0 10% dichloromethane - methanol to give 3-isopropyl-5,5-dimethyl-pyrrolidin-2-one ($6.18 \mathrm{~g}, 63 \%$) as atan solid. ESI-MS m/z calc. 155.0, found 155.3 [M+1]. Retention time: 2.14 minutes.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDC13}$) (ppm): 0.87 (d, J=6.81 Hz, 3 H) 0.97 (d, J=6.92 Hz, 3 H) 1.27 (d, J=10.66 Hz, 6H) $1.64-1.76(\mathrm{~m}, 1 \mathrm{H}) 1.84-1.96(\mathrm{~m}, 1 \mathrm{H}) 2.13-2.30(\mathrm{~m}, 1 \mathrm{H})$ 2.57 (ddd, J=10.57, $8.98,4.61 \mathrm{~Hz}, 1 \mathrm{H}) 5.59$ (br. s., 1 H).

Step 5: 4-Isopropyl-2,2-dimethyl-pyrrolidine-I-carboxylic acid tert-butyl ester

To a suspension of lithium aluminum hydride ($1.00 \mathrm{~g}, 26.28 \mathrm{mmol}$) in tetrahydrofuran $(15 \mathrm{~mL})$ at room temperature was added dropwise a solution of (3-isopropyl-5,5-dimethyl-pyrrolidin-2-one ($1.02 \mathrm{~g}, 6.57 \mathrm{mmol}$) in tetrahydrofuran (7 mL), and the reaction was heated at $60^{\circ} \mathrm{C}$ for 3 days. The reaction was then cooled in an ice bath, and 2-methyltetrahydrofuran (20 mL) was added followed by aqueous Rochelle's salt (50 mL). The reaction was then extracted with 2-methyltetrahydrofuran ($4 \times 50 \mathrm{~mL}$), dried over sodium sulfate, and concentrated to afford crude 4-isopropyl-2,2-dimethylpyrrolidine. The crude material was dissolved in dichloromethane (26 mL) and treated
with di-tert-butyl dicarbonate ($1.72 \mathrm{~g}, 7.88 \mathrm{mmol}$) and N, N-diisopropylethylamine (1.4 $\mathrm{mL}, 7.88 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and allowed to warm over 48 hours. The reaction was then poured into 5% aqueous sodium bicarbonate $(40 \mathrm{~mL})$ and extracted with dichloromethane ($2 \times 50 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and purified by silica gel column chromatography using $0-30 \%$ hexanes -diethyl ether to give 4-isopropyl-2,2-dimethyl-pyrrolidine-1-carboxylic acid tert-butyl ester (1.23 g, 76%) as a yellow oil. ESI-MS m/z calc. 241 . 0 , found $242.0[\mathrm{M}+1]$. Retention time: 4.01 minutes.

Step 6: 4-Isopropyl-2,2-dimethyl-pyrrolidine hydrochloride

To 4-isopropyl-2,2-dimethyl-pyrrolidine-1 -carboxylic acid tert-butyl ester ($1.23 \mathrm{~g}, 5.1$ mmol) was added dichloromethane (15 mL) followed by 4 M hydrochloric acid in 1,4dioxane ($5 \mathrm{~mL}, 20.0 \mathrm{mmol}$). The reaction was stirred overnight at room temperature and concentrated down. The residue was sonicated with hexanes (30 mL) and filtered to give 4-isopropyl-2,2-dimethyl-pyrrolidine hydrochloride ($669 \mathrm{mg}, 74 \%$) as a white crystalline solid. ESI-MS m/z calc. 141.0 , found 140.6 [M+1]. Retention time: 1.53 minutes.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDC13}$) (ppm): 0.87 (dd, J=6.43, $3.46 \mathrm{~Hz}, 6 \mathrm{H}$) 1.30 ($\mathrm{s}, 3 \mathrm{H}$) 1.40 ($\mathrm{s}, 3 \mathrm{H}$) $1.42-1.59(\mathrm{~m}, 2 \mathrm{H}) 1.91$ (dd, J=12.69, $7.53 \mathrm{~Hz}, 1 \mathrm{H}) 1.99-2.21(\mathrm{~m}, 1 \mathrm{H}) 2.88$ $(\mathrm{t}, \mathrm{J}=9.72 \mathrm{~Hz}, 1 \mathrm{H})$.

Step 7: N-(1,3-dimethylpyrazol-4-yl)sulfonyl-2-(4-isopropyl-2,2-dimethyl-pyrrolidin-l-yl)-6- [3-[[l-(trifluoromethyl)cyclopropyl] methoxy]pyrazol-1-yl]pyridine-3-carboxamide (Compound 41)

To a solution of 2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide (300 mg , 0.5781 mmol) and 4-isopropyl-2,2-dimethyl-pyrrolidine ($250.0 \mathrm{mg}, 1.770 \mathrm{mmol}$) in anhydrous DMSO (5.0 mL) was added cesium fluoride ($450.0 \mathrm{mg}, 2.962 \mathrm{mmol}$). The reaction mixture was stirred at $130{ }^{\circ} \mathrm{C}$ for 16 h in an oil bath. The reaction mixture was poured on crushed ice. The resultant brown solid was collected by filtration and dried. The crude material was purified by silica gel column chromatography using 10-100 \% EtOAc-hexanes to afford racernic N -(1 ,3-dimethylpyrazol-4-yl)sulfonyl-2-(4-isopropyl-2,2-dimethyl-pyrrolidin-l-yl)-6-[3-[[1 -(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1-yl]pyridine-3-carboxamide ($90 \mathrm{mg}, 25 \%$) as white amorphous solid. ESI-MS m/z calc. 623.2502, found $624.5(\mathrm{M}+1)+$; Retention time: 2.25 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.32(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.06(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}$, $3 \mathrm{H}), 3.46(\mathrm{dd}, \mathrm{J}=10.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, \mathrm{J}=10.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.16$ $(\mathrm{d}, \mathrm{J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{dd}, \mathrm{J}=12.0,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dt}, \mathrm{J}=$ $9.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.20-1.11(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $3 H), 0.96-0.94(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 8: Two enantiomers of \mathbf{N}-(1,3-dimethylpyrazol-4-yl)sulfonyl-2-(4-isopropyl-
2,2-dimethyl-pyrrolidin-l-yl)-6- [3- [[1-
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide

Racemic N-(1,3-dimethylpyrazol-4-yl)sulfonyl-2-(4-isopropyl-2,2-dimethyl-pyrrolidin-l-yl)-6-[3-[[l-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1-yl]pyridine-3carboxamide ($90 \mathrm{mg}, 0.144 \mathrm{mmol}$) was purified by chiral SFC using a ChiralPak AD-3 column ($250 \times 10 \mathrm{~mm}, 5 \mu \mathrm{\eta})$, eluting with 15% methanol, $85 \% \mathbf{C O 2}$, at a pressure of 100 bar, and flow rate of $10 \mathrm{~mL} / \mathrm{min}$.

Peak 1: Pure enantiomer 1 of N-(1,3-dimethylpyrazol-4-yl)sulfonyl-2-(4-isopropyl-2,2-dimethyl-pyrrolidin-l-yl)-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1-yl]pyridine-3 -carboxamide (33.8 mg , 19\%); (>98\% ee) (Compound 46). ESI-MS m/z calc. 623.2502 , found $624.5(\mathrm{M}+1)+$; Retention time: 2.25 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 13.91(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, \mathrm{~J}$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, \mathrm{~J}$ $=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{dd}, \mathrm{J}=10.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}$, $3 \mathrm{H}), 2.16(\mathrm{dt}, \mathrm{J}=17.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{dd}, \mathrm{J}=12.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dd}, \mathrm{J}=12.0$, $10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.19-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.98$ $(\mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.94(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.

Peak 2 : Pure enantiomer 2 N-(1,3-dimethylpyrazol-4-yl)sulfonyl-2-(4-isopropyl-2,2-dimethyl-pyrrolidin-l-yl)-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1-yl]pyridine-3 -carboxamide (34.2 mg , 19\%); (>98\% ee) (Compound 47). ESI-MS m/z calc. 623.2502 , found $624.5(\mathrm{M}+1)+$; Retention time: 2.25 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 13.75(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, \mathrm{~J}$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~m}$, 2H), 3.84 (s, 3H), 3.40 (dd, J = 10.3, 8.3 Hz, 1H), 3.24 (dd, J = 10.4, 8.0 Hz, 1H), 2.45 (s, 3H), 2.18-2.01 (m, 2H), $1.75(\mathrm{dd}, \mathrm{J}=11.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{dp}, \mathrm{J}=9.1,6.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.18-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.92$ $(\mathrm{m}, 2 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of N-(1,3-dimethylpyrazol-4-yl)sulfonyl-2-(7-methyl-5-

azaspiro [3.4] octan-5-yl)-6-[3-[[l-(trifluoromethyl)cyclopropyl]methoxy] pyrazol-1-yl]pyridine-3-carboxamide (Compound 43)

To a solution of 2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide (50.0 mg, 0.09636 mmol) and 7-methyl-5-azaspiro[3.4]octane (hydrochloride salt) (50.0 mg , 0.3093 mmol) in anhydrous DMSO (1.000 mL) was added cesium fluoride (75.0 mg , $0.4937 \mathrm{mmol})$. The reaction mixture was stirred at $130^{\circ} \mathrm{C}$ for 16 h in an oil bath. The reaction mixture was filtered and purified using a reverse phase HPLC- MS method with a dual gradient run from $50-99 \%$ acetonitrile in 5 mM HCI to afford N -(1,3-dimethylpyrazol-4-yl)sulfonyl-2-(7-methyl-5-azaspiro[3.4]octan-5-yl)-6-[3-[[l-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1-yl]pyridine-3-carboxarnide $\quad(8.6 \mathrm{mg}$, $15 \%)$. ESI-MS m/z calc. 607.2189 , found $608.5(\mathrm{M}+1)+$; Retention time: 2.18 minutes. ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.45(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.06(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}$, $3 H), 3.63-3.54(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{dd}, \mathrm{J}=10.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{q}, \mathrm{J}=6.5,5.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{t}, \mathrm{J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.91$ $(\mathrm{dd}, \mathrm{J}=10.1,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}$, $3 H), 1.19-1.12(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.90(\mathrm{~m}, 2 \mathrm{H})$.

Synthesis of N-(1,3-dimethylpyrazol-4-yl)sulfonyl-2-(6-methyl-4-

 azaspiro[2.4] heptan-4-yl)-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy] pyrazol-l-yl]pyridine-3-carboxamide (Compound 44)

To a solution of 2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide (50.0 mg , 0.09636 mmol) and 6-methyl-4-azaspiro[2.4]heptane (hydrochloride salt) (45.0 mg , 0.3048 mmol) in anhydrous DMSO (1 mL) was added cesium fluoride ($75.0 \mathrm{mg}, 0.4937$ mmol). The reaction mixture was stirred at $130^{\circ} \mathrm{C}$ overnight in an oil bath. The reaction mixture was filtered and purified using a reverse phase HPLC- MS method with a dual gradient run from $50-99 \%$ acetonitrile in 5 mM HCI to afford N -(l,3-dimethylpyrazol-4-yl)sulfonyl-2-(6-methyl-4-azaspiro[2.4]heptan-4-yl)-6-[3-[[1-
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide (42.8 mg, 75%). ESI-MS m/z calc. 593.2032, found $594.6(\mathrm{M}+\mathrm{l})+$; Retention time: 2.17 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.40(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.06(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}$, 3 H), $3.64(\mathrm{dd}, \mathrm{J}=10.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, \mathrm{J}=10.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.59(\mathrm{~m}$, $1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{dd}, \mathrm{J}=12.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dd}, \mathrm{J}=12.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.22$ $(\mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{tt}, \mathrm{J}=5.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.72-0.54(\mathrm{~m}$, 4H).

Synthesis of N-(1,3-dimethylpyrazol-4-yl)sulfonyl-2-(4-ethyl-2,2-dimethyl-pyrrolidin-l-yl)-6- [3-[[1-(trifluoromethyl)cyclopropyl] methoxy] pyrazol-1-yl]pyridine-3-carboxamide (Compound 49)

Step 1: Methyl 2-ethyl-4-methyl-4-nitro-pentanoate

2-Nitropropane ($1.20 \mathrm{~mL}, 13.36 \mathrm{mmol}$) was dissolved in dioxane (10.0 mL). An aqueous solution of benzyl(trimethyl)ammonium hydroxide ($110.0 \mu \mathrm{~L}$ of $40 \% \mathrm{w} / \mathrm{v}$, 0.2631 mmol) was added. The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ during the dropwise addition of methyl 2-methylenebutanoate $(2.5 \mathrm{~g}, 21.90 \mathrm{mmol})$ over 20 minutes. The reaction mixture was then allowed to stir at $100{ }^{\circ} \mathrm{C}$ for 4.5 hours. The reaction was quenched with the addition of aqueous $\mathrm{HCl}(50.0 \mathrm{~mL}$ of $1 \mathrm{M}, 50.00 \mathrm{mmol})$. The mixture was diluted with diethyl ether $(75 \mathrm{~mL})$ and washed with water $(3 \times 75 \mathrm{~mL})$ and brine (1^{χ} 75 mL). The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure to give a yellow liquid. The crude product was purified by silica gel column chromatography using a gradient of 5% to 25% EtOAc-hexanes to afford methyl 2-ethyl-4-methyl-4-nitro-pentanoate $(1.6 \mathrm{~g}, 34 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{tdd}, \mathrm{J}=$ $9.8,6.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dd}, \mathrm{J}=14.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H})$, $1.53(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 2: 3-Ethyl-5,5-dimethyl-pyrrolidin-2-one

A solution of methyl 2-ethyl-4-methyl-4-nitro-pentanoate ($1.56 \mathrm{~g}, 7.676 \mathrm{mmol}$) and dichloronickel hexahydrate ($366.4 \mathrm{mg}, 1.541 \mathrm{mmol}$) in $1: 4$ water (5 mL) and MeOH $(20.0 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. To this solution, sodium borohydride ($730.8 \mathrm{mg}, 19.32$ mmol) was added slowly portions wise. After the addition was completed, the reaction mixture was allowed to warm up to room temperature and stir at room temperature for 2 h . The reaction mixture was cooled again, and a solution of aqueous potassium carbonate ($1 \mathrm{M}, 25 \mathrm{~mL}$) was added. The color changed from black to gray to green. The mixture was allowed to age for 3 h , then Celite was added. The solid was removed by filtration through a Celite-packed filter pad and washed with MeOH ($3 \times 100 \mathrm{~mL}$). The combined filtrate and washings were concentrated to remove most of the MeOH . Solid sodium chloride was added to the aqueous concentrate and extracted with diethyl ether. The combined organic extracts were washed with brine, dried over magnesium sulfate, and concentrated. The resultant residue was purified by silica gel column chromatography using 10% EtOAc-hexanes to 100% EtOAc to afford 3-ethyl-5,5-dimethyl-pyrrolidin-2-one ($608 \mathrm{mg}, 14 \%$) as colorless oil with about 59% purity. ESIMS m/z calc. 141.11537 , found $142.2(\mathrm{M}+1)+$; Retention time: 0.38 minutes

Step 3: 4-Ethyl-2,2-dimethyl-pyrrolidine

To a solution of 3-ethyl-5,5-dimethyl-pyrrolidin-2-one ($302.6 \mathrm{mg}, 2.143 \mathrm{mmol}$) in dry THF (3 mL) was added a lithium aluminum hydride (3.5 mL of $2 \mathrm{M}, 7.000 \mathrm{mmol}$) solution at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere slowly dropwise. The mixture was allowed to warm up to ambient temperature and stirred for 1 h , then heated at $60^{\circ} \mathrm{C}$ for 14 h . The mixture was cooled in an ice-bath and sequentially quenched with water $(150.0 \mu \mathrm{~L}$, 8.326 mmol) (slowly), followed by $\mathrm{NaOH}(150.0 \mu \mathrm{~L}$ of $6 \mathrm{M}, 0.9000 \mathrm{mmol}$), then water ($500 \mu \mathrm{~L}, 27.75 \mathrm{mmol}$) affording a granular solid in the mixture. The solid was filtered off using Celite, and the precipitate was washed with ether. The filtrate was futher dried with magnesium sulfate, filtered, and conentrated without vaccum on rota-vap to afford

4-ethyl-2,2-dimethyl-pyrrolidine ($130.9 \mathrm{mg}, 24 \%$) . The mixture was taken directly into the next step (E33068-152).

Step 4 : N-(1,3-Dimethylpyrazol-4-yl)sulfonyl-2-(4-ethyl-2,2-dimethyl-pyrrolidin-I-yl)-6- [3-[[l-(trifluoromethyl)cyclopropyl]methoxy] pyrazol-1-yl] pyridine-3carboxamide

To a solution of 2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1(trifluoromethy l)cy clopropy ${ }_{1]}$ methoxy]pyrazol- 1-y ${ }_{1]}$ py ridine-3 -carboxamide (175.4 mg , 0.3380 mmol) and 4-ethyl-2,2-dimethyl-pyrrolidine ($130.9 \mathrm{mg}, 1.029 \mathrm{mmol}$) in anhydrous DMSO (2 mL) was added cesium fluoride ($267.2 \mathrm{mg}, 1.759 \mathrm{mmol}$). The reaction mixture was stirred at $130^{\circ} \mathrm{C}$ for 16 h in an oil bath. The reaction mixture was filtered and purified using a reverse phase HPLC- MS method with a dual gradient run from $50-99 \%$ acetonitrile in $5 \mathrm{mM} \mathrm{HC1}$ to afford N -(1,3-dimethylpyrazol-4-yl)sulfonyl-2-(4-ethyl-2,2-dimethyl-pyrrolidin-1-yl)-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide (4.5 mg , $2 \%)$ ESI-MS m/z calc. 609.2345 , found $610.59(\mathrm{M}+\mathrm{l})+$; Retention time: 2.17 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.35(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.06(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}$, $3 \mathrm{H}), 3.56-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, \mathrm{J}=10.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{dt}, \mathrm{J}=16.9$, $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dd}, \mathrm{J}=12.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{dd}, \mathrm{J}=12.4,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{p}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.18-1.13(\mathrm{~m}, 2 \mathrm{H}), 0.99-0.94(\mathrm{~m}, 5 \mathrm{H})$.

Synthesis of N-(l,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-
(trifluoromethyl)cyclopropyl] methoxy] pyrazol-1-yl]-2-(2,2,4-trimethylpyrrolidin-l-yl)pyridine-3-carboxamide (Compound 42)

To a solution of 2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide (50.0 mg , 0.09636 mmol) and 2,2,5-trimethylpyrrolidine ($35.0 \mathrm{mg}, 0.3092 \mathrm{mmol}$) in anhydrous DMSO (1.000 mL) was added cesium fluoride ($75.0 \mathrm{mg}, 0.4937 \mathrm{mmol}$). The reaction mixture was stirred at $130^{\circ} \mathrm{C}$ for 16 h in an oil bath. The reaction mixture was filtered and purified using a reverse phase HPLC- MS method with a dual gradient run from 50$99 \%$ acetonitrile in 5 mM HCl to afford N -(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1 -(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l -yl]-2-(2,2,4-trimethylpyrrolidin-l -yl)pyridine-3-carboxamide ($5.8 \mathrm{mg}, 10 \%$). ESI-MS m/z calc. 595.2189 , found 596.6 $(\mathrm{M}+\mathrm{l})+$; Retention time: 1.91 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.57(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $8.07(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 4.26-4.18$ $(\mathrm{m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.94$ $(\mathrm{m}, 1 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-1.14(\mathrm{~m}, 2 \mathrm{H})$, $1.10(\mathrm{~s}, 3 \mathrm{H}), 0.99-0.93(\mathrm{~m}, 2 \mathrm{H})$.

Synthesis of A^{\wedge}-(l,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[l-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]-2-[(4.S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (Compound 9)

Step 1: 2-Chloro-^-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-

 (trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide

2-Chloro-6- [3-[[1-(trifluoromethy l)cy clopropy 1$]$ methoxy]py razol- 1-y 1] pyridine-3carboxylic acid ($200 \mathrm{mg}, 0.5529 \mathrm{mmol}$) was dissolved in THF (2 mL), and CDI (approximately $107.6 \mathrm{mg}, 0.6635 \mathrm{mmol}$) was added. After stirring at room temperature for 1.5 hours, 1,5 -dimethylpyrazole-4-sulfonamide (approximately $125.9 \mathrm{mg}, 0.7188$ mmol) was added followed by DBU (approximately $101.0 \mathrm{mg}, 99.21 \mu \mathrm{~L}, 0.6635$ $\mathrm{mmol})$. The reaction mixture was allowed to stir overnight at room temperature. The reaction mixture was diluted with EtOAc (50 mL) and washed with aqueous 1 M citric acid ($1 \times 50 \mathrm{~mL}$) and brine ($1 \times 50 \mathrm{~mL}$). The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure to give 2 -chloro -N -(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[l-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]py ridine-3-carboxamide (332 mg) ESI-MS m / z calc. 518.08 , found $519.0(\mathrm{M}+\mathrm{l}){ }^{+}$; Retention time: 0.65 minutes.

Step 2 : ^-(1,5-Dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-I-yl]-2-[(4.S)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide

2-Chloro- N -(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide (286.8 mg , $0.5528 \mathrm{mmol})$ was dissolved in DMSO (2 mL). (45)-2,2,4-Trimethylpyrrolidine (hydrochloride salt) (approximately $248.1 \mathrm{mg}, 1.658 \mathrm{mmol}$) was added followed by finely ground potassium carbonate (approximately $458.4 \mathrm{mg}, 3.317 \mathrm{mmol}$). The reaction mixture was allowed to stir at $130^{\circ} \mathrm{C}$ overnight. After cooling to room temperature, EtOAc (50 mL) was added. The mixture was washed with 1 N HCI ($1 \times 50 \mathrm{~mL}$) and brine ($1 \times 50 \mathrm{~mL}$). The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure to give N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1-yl]-2-[(45)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (72.7 mg) ESI-MS m/z calc. 595.22, found $596.4(\mathrm{M}+1){ }^{+}$; Retention time: 2.07 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 12.28(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H})$, $7.73(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.31$ (m, 2H), $3.78(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{t}, \mathrm{J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{dd}, \mathrm{J}=10.2,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.25-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{dd}, \mathrm{J}=11.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H})$, $1.44(\mathrm{t}, \mathrm{J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{dt}, \mathrm{J}=6.7,2.0 \mathrm{~Hz}, 4 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Syntheis of N-(lH-pyrazol-4-ylsulfonyl)-6-[3-[[1-

(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (Compound 5)

Step 1: 2-Chloro-N-(lH-pyrazol-4-ylsulfonyl)-6-[3-[[1-

(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide

2-Chloro-6- [3-[[1-(trifluoromethy l)cy clopropy $\left.{ }_{1}\right]$ methoxy]py razol-1-y 1] pyridine-3 carboxylic acid ($200 \mathrm{mg}, 0.5529 \mathrm{mmol}$) and CDI (approximately $107.6 \mathrm{mg}, 0.6635$ mmol) were combined in THF (1.200 mL) and stirred at room temperature for 2 hours. 1H-Pyrazole-4-sulfonamide (approximately $105.8 \mathrm{mg}, 0.7188 \mathrm{mmol}$) was added followed by DBU (approximately $101.0 \mathrm{mg}, 99.21 \mu \mathrm{~L}, 0.6635 \mathrm{mmol}$), and the reaction was stirred for an additional 16 h at room temperature. The reaction mixture was further washed with 1 M citric acid and water, and extracted with $3 \times 20 \mathrm{~mL}$ ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate, concentrated, then purified by silica gel chromatography using a gradient of $0-10 \%$ methanol in dichloromethane to give a white solid. 2-chloro-N-(lH-pyrazol-4-ylsulfonyl)-6-[3-[[1(trifiuoromethy l)cy clopropy ${ }_{1]}$ methoxy]py razol- 1-y ${ }_{1]}$ py ridine-3 -carboxamide (190 mg , 70%) ESI-MS m/z calc. 490.0438, found $491.1(\mathrm{M}+1)+$; Retention time: 0.61 minutes.

Step 2: N-(lH-Pyrazol-4-ylsulfonyl)-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol---yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide

2-Chloro-N-(1 H-pyrazol-4-y lsulfonyl)-6- [3-[[1-
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yllpyridine-3-carboxamide (115 mg , 0.2343 mmol), (4S)-2,2,4-trimethylpyrrolidine (hydrochloride salt) ($105 \mathrm{mg}, 0.7016$ mmol), and potassium carbonate ($194 \mathrm{mg}, 1.404 \mathrm{mmol}$) were combined in DMSO $(575.0 \mu \mathrm{~L})$ and heated at $130^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to room temperature, and diluted with 15 mL water, 15 mL 1 M citric acid, and 30 mL ethyl acetate. The aqueous and organic layers were separated, and the aqueous layer was extracted two additional times with 30 mL ethyl acetate. The organics were combined, washed with brine, dried over sodium sulfate and concentrated. The resulting solid was purified by silica gel chromatography eluting with a gradient of $0-10 \%$ methanol in dichloromethane to give a white solid: N -(1H-pyrazol-4-ylsulfonyl)-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide ($100 \mathrm{mg}, 75 \%$) ESI-MS m/z calc. 567.18756 , found 568.2 $(\mathrm{M}+1)+$; Retention time: 1.84 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 13.71(\mathrm{~s}, 1 \mathrm{H}), 12.30(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, \mathrm{~J}=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.26(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15$ (dd, J = 12.5, 6.6 Hz, 1H), $1.88(\mathrm{dt}, \mathrm{J}=11.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}, \mathrm{~J}=17.6 \mathrm{~Hz}, 6 \mathrm{H})$, $1.42(\mathrm{t}, \mathrm{J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.14-1.05(\mathrm{~m}, 4 \mathrm{H}), 0.79(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of N-(l-methylpyrazol-4-yl)sulfonyl-6-[3-[[1-

(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]-2-[(4S)-2,2,4-
trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (Compound 6)

Step 1: 2-Chloro-N-(I-methylpyrazol-4-yl)sulfonyl-6-[3-[[1-

 (trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide

2-Chloro-6- [3-[[1-(trifluoromethy l)cy clopropy 1$]$ methoxy]py razol-1-y y py ridine-3carboxylic acid ($200 \mathrm{mg}, 0.5529 \mathrm{mmol}$) and CDI (approximately $107.6 \mathrm{mg}, 0.6635$ $\mathrm{mmol})$ were combined in THF $(1.200 \mathrm{~mL})$ and stirred at room temperature for 2 hours. 1-Methylpyrazole-4-sulfonamide (approximately $115.9 \mathrm{mg}, 0.7188 \mathrm{mmol}$) was added followed by DBU (approximately $101.0 \mathrm{mg}, 99.21 \mu \mathrm{~L}, 0.6635 \mathrm{mmol}$), and the reaction was stirred for an additional 16 h at room temperature. The reaction mixture was diluted with 1 M citric acid and water, and extracted $3 \times 20 \mathrm{~mL}$ ethyl acetate. The combined organics were washed with brine, then dried over sodium sulfate, concentrated, and purified by silica gel chromatography eluting with a $0-10 \%$ methanol/dichloromethane gradient to give a white solid. 2-chloro-N-(l-methylpyrazol-4-yl)sulfonyl-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxarnide (227 mg , 81\%) ESI-MS m/z calc. 504.05945, found 505.1 ($\mathrm{M}+\mathrm{l}$)+; Retention time: 0.64 minutes.

Step 2: N-(l-Methylpyrazol-4-yl)sulfonyl-6-[3-[[1-

(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide

2-Chloro-N-(l-methylpyrazol-4-yl)sulfonyl-6-[3-[[1-
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1-yl]pyridine-3-carboxarnide (115 mg , 0.2278 mmol), (4S)-2,2,4-trimethylpyrrolidine (hydrochloride salt) ($102 \mathrm{mg}, 0.6815$ mmol), and potassium carbonate ($189 \mathrm{mg}, 1.368 \mathrm{mmol}$) were combined in DMSO $(575.0 \mu \mathrm{~L})$ and heated at $130^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to room temperature
and diluted with 15 mL water, 15 mL 1 M citric acid, and 30 mL ethyl acetate. The aqueous and organic layers were separated, and the aqueous layer was extracted two additional times with 30 mL ethyl acetate. The organics were combined, washed with brine, dried over sodium sulfate and concentrated. The resulting solid was further purified by silica gel chromatography eluting with a gradient of $0-10 \%$ methanol in dichloromethane to give N -(l-methylpyrazol-4-yl)sulfonyl-6-[3-[[1-
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide ($88 \mathrm{mg}, 66 \%$) ESI-MS m/z calc. 581.2032, found 582.3 $(\mathrm{M}+\mathrm{l})+$; Retention time: 1.95 minutes.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 12.35(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.88(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.43-4.31 (m, 2H), 3.90(s, 3H), 2.64 (t, J = 10.4 Hz, 1H), 2.48-2.40(m, 1H), 2.17 (dp, J = 18.4, 6.3 Hz, 1H), $1.88(\mathrm{dd}, \mathrm{J}=11.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}, \mathrm{~J}=17.0 \mathrm{~Hz}, 6 \mathrm{H})$, $1.44(\mathrm{t}, \mathrm{J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.14-1.04(\mathrm{~m}, 4 \mathrm{H}), 0.80(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of N-(1-ethylpyrazol-4-yl)sulfonyl-6- [3-[[1-

(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (Compound 7)

Step 1: 2-Chloro-N-(l-ethylpyrazol-4-yl)sulfonyl-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide

2-Chloro-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1-yl]pyridine-3carboxylic acid ($200 \mathrm{mg}, 0.5529 \mathrm{mmol}$) and CDI (approximately $107.6 \mathrm{mg}, 0.6635$ mmol) were combined in THF (1.200 mL) and stirred at room temperature for 2 hours. 1-Ethylpyrazole-4-sulfonamide (approximately $125.9 \mathrm{mg}, 0.7188 \mathrm{mmol}$) was added followed by DBU (approximately $101.0 \mathrm{mg}, 99.21 \mu \mathrm{~L}, 0.6635 \mathrm{mmol}$), and the reaction was stirred for an additional 6 h at room temperature. A I M citric acid solution (1 mL) was added and the reaction was stirred for 20 min . The reaction mixture was diluted
with 1 M citric acid and water, and extracted $3 \times 20 \mathrm{~mL}$ ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate, concentrated, then purified by silica gel chromatography using a gradient of $0-10 \%$ methanol in dichloromethane to give a white solid. 2-chloro-N-(1-ethylpyrazol-4-yl)sulfonyl-6-[3-[[1-
(trifiuoromethy 1)cy clopropy ${ }_{1]}$ methoxy]py razol- 1-y ${ }_{1]}$ py ridine-3 -carboxamide (250 mg , 87%) ESI-MS m/z calc. 518.0751, found $519.0(\mathrm{M}+\mathrm{l})+$; Retention time: 0.67 minutes.

Step 2: N-(l-Ethylpyrazol-4-yl)sulfonyl-6-[3-[[1-
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide

2-Chloro-N-(l-ethylpyrazol-4-yl)sulfonyl-6-[3-[[1-
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxarnide (115 mg, 0.2216 mmol), (4S)-2,2,4-trimethylpyrrolidine (hydrochloride salt) ($100 \mathrm{mg}, 0.6682$ mmol), and potassium carbonate ($184 \mathrm{mg}, 1.331 \mathrm{mmol}$) were combined in DMSO (570 $\mu \mathrm{L}$) and heated at $130{ }^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to room temperature, and diluted with 15 mL water, 15 mL 1 M citric acid, and 30 mL ethyl acetate. The aqueous and organic layers were separated, and the aqueous layer was extracted two additional times with 30 mL ethyl acetate. The organics were combined, washed with brine, dried over sodium sulfate and concentrated. The resulting material was purified by silica gel chromatography eluting with $0-10 \%$ methanol in dichloromethane to give a white solid. N-(l-ethylpyrazol-4-yl)sulfonyl-6-[3-[[1-
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-
l-yl]py ridine-3 -carboxamide ($110 \mathrm{mg}, 83 \%$) ESI-MS m/z calc. 595.2189, found 596.2 $(\mathrm{M}+\mathrm{l})+$; Retention time: 2.03 minutes.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 12.34(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=2.8$
$\mathrm{Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.15(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.31(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{qd}, \mathrm{J}=7.3,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, \mathrm{J}=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 1 \mathrm{H}), 2.17(\mathrm{dp}, \mathrm{J}=18.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~d}$,
$\mathrm{J}=17.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.45(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{dt}, \mathrm{J}=5.2$, $1.6 \mathrm{~Hz}, 4 \mathrm{H}), 0.80(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of N-(l-tert-butylpyrazol-4-yl)sulfonyl-6- [3-[[1-
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (Compound 8)

Step 1: N-(l-tert-Butylpyrazol-4-yl)sulfonyl-2-chloro-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide

2-Chloro-6- [3-[[1-(trifluoromethy 1)cy clopropy ${ }_{1]}$ methoxy]py razol-1-y ${ }_{1]}$ py ridine-3 carboxylic acid ($200 \mathrm{mg}, 0.5529 \mathrm{mmol}$) and CDI (approximately $107.6 \mathrm{mg}, 0.6635$ mmol) were combined in THF (1.200 mL) and stirred at room temperature for 2 hours. 1-tert-Butylpyrazole-4-sulfonamide (approximately $146.1 \mathrm{mg}, 0.7188 \mathrm{mmol}$) was added followed by DBU (approximately $101.0 \mathrm{mg}, 99.21 \mu \mathrm{~L}, 0.6635 \mathrm{mmol}$), and the reaction was stirred for an additional 6 h at room temperature. A I M citric acid solution (1 mL) was added, and the reaction was stirred for 20 min . The reaction was diluted with 1 M citric acid and water, and extracted 3x 20 mL ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate, concentrated, and purified by silica gel chromatography using a gradient of $0-10 \%$ methanol in dichloromethane to give a white solid. N-(l-tert-butylpyrazol-4-yl)sulfonyl-2-chloro-6-[3-[[1 -
(trifiuoromethy l)cy clopropy ${ }_{11}$ methoxy]py razol- 1-y ${ }_{1]}$ py ridine-3 -carboxamide (190 mg , 63\%) ESI-MS m/z calc. 546. 1064, found $547.1(\mathrm{M}+\mathrm{l})+$; Retention time: 0.73 minutes.

Step 2: N-(l-tert-Butylpyrazol-4-yl)sulfonyl-6-[3-[[1-
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide

N-(l-tert-Butylpyrazol-4-yl)sulfonyl-2-chloro-6-[3-[[1-
(trifluoromethy l)cy clopropy ${ }_{1]}$ methoxy]py razol- 1-y ${ }_{1]}$ py ridine-3 -carboxamide (125 mg , 0.2285 mmol), (4S)-2,2,4-trimethylpyrrolidine (hydrochloride salt) ($103 \mathrm{mg}, 0.6882$ mmol), and potassium carbonate ($190 \mathrm{mg}, 1.375 \mathrm{mmol}$) were combined in DMSO (600 $\mu \mathrm{L}$) and heated at $130{ }^{\circ} \mathrm{C}$ for 16 h .The reaction was cooled to room temperature, and diluted with 15 mL water, 15 mL 1 M citric acid, and 30 mL ethyl acetate. The aqueous and organic layers were seperated, and the aqueous layer was extracted two aditional times with 30 mL ethyl acetate. The organics were combined, washed with brine, dried over sodium sulfate and concentrated. The resulting solid was further purified by silica gel chromotograpy eluting with $0-10 \%$ methanol in dichloromethane to give a white solid. N-(1-tert-buty lpy razol-4-y l)sulfony 1-6-[3-[[1-
(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-1-yl]py ridine-3 -carboxamide ($122 \mathrm{mg}, 86 \%$) ESI-MS m/z calc. 623.2502 , found 624.3 $(\mathrm{M}+\mathrm{l})+$; Retention time: 2.19 minutes.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 12.33(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.95(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.45-4.27 (m, 2H), 2.73 (t, J = $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, \mathrm{J}=9.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dt}, \mathrm{J}$ $=11.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{dd}, \mathrm{J}=11.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 15 \mathrm{H}), 1.45(\mathrm{t}, \mathrm{J}=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.13-1.06(\mathrm{~m}, 4 \mathrm{H}), 0.83(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of 6-[3-[[l-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]-N-(1,3,5-

 trimethylpyrazol-4-yl)sulfonyl-2- [(4S)-2,2,4-trimethylpyrrolidin- 1-yl] pyridine-3carboxamide (Compound 16)Step 1: 2-Chloro-6- [3-[[l-(trifluoromethyl)cyclopropyl] methoxy] pyrazol-l-yl]-N-(1,3,5-trimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide

2-Chloro-6- [3-[[1-(trifluoromethy l)cy clopropy ${ }_{1]}$ methoxy]py razol-1-y 1] pyridine-3carboxylic acid ($100 \mathrm{mg}, 0.2682 \mathrm{mmol}$) and CDI ($52 \mathrm{mg}, 0.3207 \mathrm{mmol}$) were combined in THF $(582.0 \mu \mathrm{~L})$ and stirred at room temperature for 2 hours in a vial (vial 1).

Meanwhile, 1,3,5-trimethylpyrazole-4-sulfonyl chloride ($56 \mathrm{mg}, 0.2684 \mathrm{mmol}$) was combined with ammonia ($250 \mu \mathrm{~L}$ of $7 \mathrm{M}, 1.750 \mathrm{mmol}$) (in methanol) in a separate vial (vial 2). After stirring for an additonal 20 min , the volatiles were removed from vial 2 by evaporation, and 1 mL of dichloromethane was added to the solid residue, and was also evaporated. DBU ($54 \mu \mathrm{~L}, 0.3611 \mathrm{mmol})$ was then added to vial 2 and stirred at 60 ${ }^{\circ} \mathrm{C}$ for 5 minutes (to facilitate the removal of ammonia from any residual ammonium chloride). Upon cooling to room temperature, 1 mL THF was added and then evaporated under reduced pressure. The contents of vial 1 were then added to vial 2 by syringe, and the reaction mixture was stirred for 4 h at room temperature. The reaction mixture was diluted with 10 mL ethyl acetate, and washed with 10 mL 1 M citric acid. The aqueous layer was extracted $2 \times 10 \mathrm{~mL}$ ethyl acetate, and the combined organics were washed with brine, dried over sodium sulfate, and concentrated to give a white solid. This material was used in the next step without further purification. 2-chloro-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1-yl]-N-(1,3,5-trimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide ($140 \mathrm{mg}, 98 \%$) ESI-MS m/z calc. 532.09076, found $533.1(\mathrm{M}+\mathrm{l})+$; Retention time: 0.67 minutes.

Step 2: 6-[3-[[l-(Ttrifluoromethyl)cyclopropyl]methoxy]pyrazol-l-yl]-N-(1,3,5-trimethylpyrazol-4-yl)sulfonyl-2- [(4S)-2,2,4-trimethylpyrrolidin- 1-yl] pyridine-3carboxamide

2-Chloro-6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1 -yl]-N-(1, 3,5-trimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide ($140 \mathrm{mg}, 0.2627 \mathrm{mmol}$), (4S)-2,2,4-trimethylpyrrolidine (hydrochloride salt) ($118 \mathrm{mg}, 0.7884 \mathrm{mmol}$), and potassium carbonate ($219 \mathrm{mg}, 1.585 \mathrm{mmol}$) were combined in DMSO ($700.0 \mu \mathrm{~L}$) and heated at $130^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to room temperature, and 1 mL of water was added. After 15 minutes stirring, the contents of the vial were allowed to settle, the liquid portion was removed by pipet, and the remaining solids were dissolved with 20 mL ethyl acetate, then washed with 15 mL 1 M citric acid. The aqueous and organic layers were separated, and the aqueous layer was extracted two additional times with 15 mL ethyl acetate. The organics were combined, washed with brine, dried over sodium sulfate, and concentrated. The resulting solid was further purified by silica gel chromatography eluting with $0-10 \%$ methanol in dichloromethane to give a white solid. 6-[3-[[1-(trifluoromethyl)cyclopropyl]methoxy]pyrazol-1 -yl]-N-(1,3,5-trimethylpyrazol-4-yl)sulfonyl-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3carboxamide ($77 \mathrm{mg}, 48 \%$) ESI-MS m/z calc. 609.2345, found 610.3 (M+l)+; Retention time: 2.07 minutes.

Synthesis of N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6- [3-[(2,2,3,3-tetramethylcyclopropyl)methoxy]pyrazol-I-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-I-yl]pyridine-3-carboxamide (Compound 21)

[^0]

To a degassed solution of triphenyl phosphine (approximately $51.28 \mathrm{~g}, 195.5 \mathrm{mmol}$) in toluene (360.0 mL) under nitrogen gas at $0^{\circ} \mathrm{C}$ was added DIAD (diisopropylazodicarboxylate) (approximately $39.53 \mathrm{~g}, 37.86 \mathrm{~mL}, 195.5 \mathrm{mmol}$) dropwise. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min affording a white slurry. To the mixture was added a solution of (2,2,3,3-tetramethylcyclopropyl)methanol (approximately 29.84 g of $70 \% \mathrm{w} / \mathrm{w}, 162.9 \mathrm{mmol}$) and tert-butyl 3-hydroxy pyrazole-1carboxylate ($30 \mathrm{~g}, 162.9 \mathrm{mmol}$) in toluene $(600.0 \mathrm{~mL})$ dropwise at $\sim 5^{\circ} \mathrm{C}$ over 2 hours. The mixture was allowed to warm to ambient temperature and stirred for 18 hours. The mixture was heated to $75^{\circ} \mathrm{C}$ for a total of 6 hours and then allowed to cool to ambient temperature. The slurry was diluted with heptane (900.0 mL) and stirred at ambient temperature for 3 hours. The slurry was filtered over Celite, and the precipitate washed 3X with 100 mL of heptane. The filtrate was concentrated in vacuo affording a thick yellow oil. The crude product chromatographed on a 750 gram silica gel column loading with dichloromethane and eluting with a $0-20 \% \mathrm{EtOAc} / \mathrm{hexanes}$ gradient. Collected fractions containing product were concentrated in vacuo affording an off-white solid. tert-butyl 3-[(2,2,3,3-tetramethylcyclopropyl)methoxy]pyrazole-1-carboxylate (30.1 g, 63%) was obtained. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.82$ (d, J = $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.88 $(\mathrm{d}, \mathrm{J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 6 \mathrm{H})$, $0.70(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$. ESI-MS m/z calc. 294.19434, found $295.0(\mathrm{M}+\mathrm{l})+$; Retention time: 2.19 minutes

Step 2: 3-[(2,2,3,3-Tetramethylcyclopropyl)methoxy]-lH-pyrazole

To a solution of tert-butyl 3-[(2,2,3,3-tetramethylcyclopropyl)methoxy]pyrazole-1carboxylate ($127 \mathrm{~g}, 431.4 \mathrm{mmol}$) in THF (317.5 mL) and ethyl alcohol (635.0 mL) was
slowly added sodium hydroxide (approximately 431.4 mL of $2 \mathrm{M}, 862.8 \mathrm{mmol}$) and stirred at room temperature overnight. Most of the solvent was removed under reduced pressure. The aqueous residue was diluted with water $(400 \mathrm{~mL})$ and extracted with methyl t-butyl ether $(762.0 \mathrm{~mL}$). The organic phase was washed twice with brine (2 x 300 mL), and the aqueous phases were back extracted once with methyl t-butyl ether $(250 \mathrm{~mL})$. The combined organic phases were dried, filtered and evaporated to give 3-[(2,2,3,3-tetramethylcyclopropyl)methoxy]-lH-pyrazole (75 g, 89\%) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 11.78$ ($\mathrm{s}, 1 \mathrm{H}$), 7.48 (t, J = $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.65 ($\mathrm{s}, 1 \mathrm{H}$), 4.05 $(\mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 6 \mathrm{H}), 1.00(\mathrm{~s}, 6 \mathrm{H}), 0.67(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H})$. ESI-MS m/z calc. 194.1419, found $195.0(\mathrm{M}+1)+$; Retention time: 1.43 minutes.

Step 3: Ethyl 2-chloro-6-[3-[(2,2,3,3-tetramethylcyclopropyl)methoxy]pyrazol-lyl] pyridine-3-carboxylate

To ethyl 2,6-dichloropyridine-3-carboxylate (16.8 g, 76.35 mmol) and 3-[(2,2,3,3-tetramethylcyclopropyl)methoxy]-1H-pyrazole (approximately $14.83 \mathrm{~g}, 76.35 \mathrm{mmol}$) in DMF (201.6 mL) was added potassium carbonate (approximately $13.72 \mathrm{~g}, 99.26 \mathrm{mmol}$) followed by DABCO (approximately $1.284 \mathrm{~g}, 11.45 \mathrm{mmol}$). The slurry was stirred at ambient temperature for 16 hours. The cream fine suspension was slowly diluted with water (201.6 mL), and the resulting thick slurry was stirred at ambient temperature for 30 minutes with an overhead stirrer. The precipitate was collected using a medium frit and washed 3 times with 25 mL of water. The solid was air dried for 30 minutes, and then dried in vacuo using an EtOAc azeotrope. Ethyl 2-chloro-6-[3-[(2,2,3,3-tetramethylcyclopropyl)methoxy]pyrazol-l-yl]pyridine-3-carboxylate (28.8 g, 100\%) was obtained as an off-white solid. ESI-MS m/z calc. 377.1506, found 378.37 (M+1)+; Retention time: 2.47 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 8.43(\mathrm{dd}, \mathrm{J}=2.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{dd}, \mathrm{J}=8.5,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, \mathrm{J}=8.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, \mathrm{J}=2.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{td}, \mathrm{J}=7.5$, $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{td}, \mathrm{J}=7.1,0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 6 \mathrm{H}), 1.05$ $(\mathrm{s}, 6 \mathrm{H}), 0.75(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$.

Step 4: 2-Chloro-6- [3-[(2,2,3,3-tetramethylcyclopropyl)methoxy] pyrazol-1-yl]pyridine-3-carboxylic acid

Ethyl 2-chloro-6-[3-[(2,2,3,3-tetramethylcyclopropyl)methoxy]pyrazol-1-yl]pyridine-3carboxylate ($146 \mathrm{~g}, 386.4 \mathrm{mmol}$) in THF (730.0 mL) and EtOH (292.0 mL) was treated with NaOH (approximately 772.8 mL of $1 \mathrm{M}, 772.8 \mathrm{mmol}$), and the solution was stirred at room temperature for 5 hours. Most of the solvent was removed under reduced pressure, and the solution was acidified by addition of citric acid (approximately 148.5 $\mathrm{g}, 89.19 \mathrm{~mL}, 772.8 \mathrm{mmol}$) under ice cooling. The formed thick suspension ($\mathrm{pH} 2-3$) was stirred in the ice bath for 1 hour, filtered, washed with plenty of water and dried in a drying cabinet under vacuum at $45^{\circ} \mathrm{C}$ with a nitrogen bleed for two days to give 2-chloro-6-[3-[(2,2,3,3-tetramethylcyclopropyl)methoxy]pyrazol-1 -yl]pyridine-3carboxylic acid ($128.2 \mathrm{~g}, 90 \%$) as an off white solid. ESI-MS m/z calc. 349. 11932, found $350.0(\mathrm{M}+\mathrm{l})+$; Retention time: 2.11 minutes. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) δ $13.64(\mathrm{~s}, 1 \mathrm{H}), 8.69-8.22(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.28(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=24.9 \mathrm{~Hz}, 12 \mathrm{H}), 0.75(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$.

Step 5: 2-Chloro-N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-[(2,2,3,3-tetramethylcyclopropyl)methoxy]pyrazol-l-yl]pyridine-3-carboxamide

2-Chloro-6-[3-[(2,2,3,3-tetramethylcyclopropyl)methoxy]pyrazol-1-yl]pyridine-3carboxylic acid ($4 \mathrm{~g}, 11.43 \mathrm{mmol})$ in THF $(40.00 \mathrm{~mL})$ was treated with CDI (approximately $2.225 \mathrm{~g}, 13.72 \mathrm{mmol}$), and the cloudy solution was stirred at room temperature for 1 hour. Then 1,5-dimethylpyrazole-4-sulfonamide (approximately 2.225 $\mathrm{g}, 12.57 \mathrm{mmol}$), followed by DBU (approximately $2.089 \mathrm{~g}, 2.052 \mathrm{~mL}, 13.72 \mathrm{mmol}$) was
added, and the formed thick suspension was stirred at room temperature for 4.5 hours. The suspension was treated with cold citric acid (approximately 60.01 mL of $1 \mathrm{M}, 60.01$ mmol) ($\mathrm{pH} \sim 2$) to give an emulsion, which started to precipitate some solid. Most of the THF was removed under reduced pressure, and the solid collected by filtration, washed with plenty of water, and dried. The crude solid was absorbed on silica gel and purified by chromatography over silica gel $(220 \mathrm{~g})$ with a linear gradient of dichloromethane to 10% methanol in dichloromethane. Product fractions were evaporated and dried to give 2-chloro-N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-[(2,2,3,3-tetramethylcyclopropyl)methoxy]pyrazol-l-yl]pyridine-3-carboxamide (5 g, 86\%). ESIMS m/z calc. 506. 1503, found $507.0(\mathrm{M}+1)+$; Retention time: 2.9 minutes.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6\right) \delta 8.39(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.84(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 6 \mathrm{H}), 0.74(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$.

Step 6: N-(l,5-Dimethylpyrazol-4-yl)sulfonyl-6-[3-[(2,2,3,3-

 tetramethylcyclopropyl)methoxy]pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-lyl] pyridine-3-carboxamide

2-Chloro-N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-[(2,2,3,3-
tetramethylcyclopropyl)methoxy]pyrazol-l-yl]pyridine-3-carboxamide (4.9 g, 9.665 $\mathrm{mmol})$ in NMP (24.50 mL) and 1,2-diethoxy ethane $(4.900 \mathrm{~mL})$ was treated with potassium carbonate (approximately $6.678 \mathrm{~g}, 48.32 \mathrm{mmol}$) followed by careful addition of (4S)-2,2,4-trimethylpyrrolidine (hydrochloride salt) (approximately $3.182 \mathrm{~g}, 21.26$ $\mathrm{mmol})$. The suspension was cycled 3 times vacuum/nitrogen and heated at $130^{\circ} \mathrm{C}$ (oilbath) under nitrogen for 16 hours. Then another portion of (4S)-2,2,4trimethylpyrrolidine (hydrochloride salt) ($1 \mathrm{~g}, 6.682 \mathrm{mmol}$) was added, and the suspension was heated at $130{ }^{\circ} \mathrm{C}$ (oilbath) under nitrogen for another 3 hours. The warm suspension was slowly added to a vigorously stirred solution of acetic acid (approximately $8.708 \mathrm{~g}, 8.246 \mathrm{~mL}, 145.0 \mathrm{mmol}$) in water (147.0 mL) (off gasing,
foaming), stirred at room temperature for lh , filtered and washed with plenty of water. The solid was dissolved in dichloromethane, dried over magnesium sulfate, filtered and evaporated. The crude product was purified by chromatography over silica gel (220 g , solid load) with a linear gradient of DCM to 5% methanol in dichloromethane. Product fractions were evaporated to give 4.9 g of a yellow foam. The compound was dissolved in DMSO (12 ml) and methanol (12 mL) and water (8 mL) was added slowly resulting in crystallization. Heated again and diluted with more methanol $(-30 \mathrm{ml})$ and the thick hot suspension was left stirring at room temperature for 1 h . The solid was collected by filtration, washed with cold methanol/water $4: 1$, plenty of cold water and dried under vacuum in a drying cabinet at $45^{\circ} \mathrm{C}$ with a nitrogen bleed over the weekend to give N -(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-[(2,2,3,3-
tetramethylcyclopropyl)methoxy]pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-1 yl]pyridine-3-carboxamide ($3.12 \mathrm{~g}, 55 \%$) as an off white solid. ESI-MS m/z calc. 583.29407 , found $584.0(\mathrm{M}+\mathrm{l})+$; Retention time: 3.39 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 12.32(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H})$, $7.73(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 4 \mathrm{H}), 2.40(\mathrm{dd}, \mathrm{J}=10.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{tt}, \mathrm{J}=12.4$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, \mathrm{J}=11.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.43(\mathrm{t}, \mathrm{J}=12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 6 \mathrm{H}), 0.80(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$.

Synthesis of N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6- [3-[(2,2,3,3-tetramethylcyclopropyl)methoxy]pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (Compound 20)

Step 1: 2-Chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[(2,2,3,3-tetramethylcyclopropyl)methoxy|pyrazol-1-yl]pyridine-3-carboxamide

2-Chloro-6-[3-[(2,2,3,3-tetramethylcyclopropyl)methoxy]pyrazol-1-yl]pyridine-3carboxylic acid ($100 \mathrm{mg}, 0.2773 \mathrm{mmol}$) and CDI ($54 \mathrm{mg}, 0.3330 \mathrm{mmol}$) were combined
in THF ($500 \mu \mathrm{~L}$) and stirred at room temperature for 2 hours in a vial (vial 1).
Meanwhile, 1,3-dimethylpyrazole-4-sulfonyl chloride ($64 \mathrm{mg}, 0.3288 \mathrm{mmol}$) was combined with ammonia ($260 \mu \mathrm{~L}$ of $7 \mathrm{M}, 1.820 \mathrm{mmol}$) (in methanol) in a separate vial (vial 2). After stirring for an additional 20 min , the volatiles were removed from vial 2 by evaporation, and 1 mL of dichloromethane was added to the solid residue, and was also evaporated. DBU ($100 \mu \mathrm{~L}, 0.6687 \mathrm{mmol}$) was then added to vial 2 and stirred at 60 ${ }^{\circ} \mathrm{C}$ for 5 minutes (to facilitate the removal of ammonia from any residual ammonium chloride). Upon cooling to room temperature, 1 mL THF was added and then evaporated under reduced pressure. The contents of vial 1 were then added to vial 2 by syringe, and the reaction mixture was stirred for 4 h at room temperature. The reaction mixture was diluted with 10 mL ethyl acetate, and washed with 10 mL 1 M citric acid. The aqueous layer was extracted $2 \times 10 \mathrm{~mL}$ ethyl acetate, and the combined organics were washed with brine, dried over sodium sulfate, and concentrated to give a a white solid. This material was used in the next step without further purification. 2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[(2,2,3,3-
tetramethylcyclopropyl)methoxy]pyrazol-l-yl]pyridine-3-carboxarnide (133 mg, 95\%) ESI-MS m/z calc. 506.1503 , found $507.2(\mathrm{M}+\mathrm{l})+$; Retention time: 0.75 minutes.

Step 2 : N-(1,3-Dimethylpyrazol-4-yl)sulfonyl-6- [3-[(2,2,3,3-tetramethylcyclopropyl)methoxy]pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide

2-Chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[(2,2,3,3-
tetramethylcyclopropyl)methoxy]pyrazol-1-yl]pyridine-3-carboxarnide ($131 \mathrm{mg}, 0.2584$ mmol), (4S)-2,2,4-trimethylpyrrolidine (hydrochloride salt) (approximately 116.0 mg , 0.7752 mmol), and potassium carbonate (approximately $214.8 \mathrm{mg}, 1.554 \mathrm{mmol}$) were combined in DMSO $(444.6 \mu \mathrm{~L})$ and heated at $130^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to room temperature, and 1 mL of water was added. After 15 minutes stirring, the contents of the vial were allowed to settle, the liquid portion was removed by pipet, and
the remaining solids were dissolved with 20 mL ethyl acetate, then washed with 15 mL 1 M citric acid. The aqueous and organic layers were separated, and the aqueous layer was extracted two additional times with 15 mL ethyl acetate. The organics were combined, washed with brine, dried over sodium sulfate and concentrated. The resulting solid was purified by silica gel chromatography eluting with $0-10 \%$ methanol in dichloromethane to give a white solid. The resulting material was further purified by a second round of silica gel chromatography with a gradient of $0-100 \%$ ethyl acetate in dichloromethane, to give a white solid. N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[(2,2,3,3-tetramethylcyclopropyl)methoxy]pyrazol-1 -yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (31 mg, 21%) ESI-MS m/z calc. 583.29407, found $584.4(\mathrm{M}+1)+$; Retention time: 2.29 minutes.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, ~ D M S O\right) ~ \delta 12.35(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{q}, \mathrm{J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}$, $3 \mathrm{H}), 2.19(\mathrm{dt}, \mathrm{J}=11.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, \mathrm{J}=11.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}, \mathrm{~J}=11.0$ $\mathrm{Hz}, 6 \mathrm{H}), 1.42(\mathrm{t}, \mathrm{J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=6.2$ $\mathrm{Hz}, 3 \mathrm{H}), 0.73(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H})$.

Synthesis of A^{\wedge}-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[2-
(trifluoromethyl)cyclopropoxy]pyrazol-l-yl]-2-[(4.S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (mixture of cis isomers) (Compound 34)

Step 1: tert-Butyl 3-(2-bromoethoxy)-l H-pyrazole-I-carboxylate

To the solution of 2-bromoethanol $(1.69 \mathrm{~g}, 13.53 \mathrm{mmol})$, tert-butyl -2,3-dihydro-3-oxopyrazole-l-carboxylate $(2.08 \mathrm{~g}, 11.28 \mathrm{mmol})$ and triphenylphosphine $(3.55 \mathrm{~g}, 13.53$ mmol) in anhydrous tetrahydrofuran (45 mL) at $0^{\circ} \mathrm{C}$, diisopropyl azodicarboxylate $(2.74 \mathrm{~g}, 13.53 \mathrm{mmol})$ was added dropwise. After the addition was complete, the reaction solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 hour, then warmed up to room temperature and stirred for additional 2 hours. Ether (400 mL) was added. The organic solution was washed with saturated sodium carbonate aqueous solution (80 mL), brine (50 mL), then dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue obtained was purified by silica gel chromatography using hexanes- ethyl acetate
gradient method (0 to 15% ethyl acetate) to afford tert-butyl 3-(2-bromoethoxy)-1 H -pyrazole-1-carboxylate ($2.56 \mathrm{~g}, 78 \%$) as white solid.
$3 / 4 \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta(\mathrm{ppm}): 7.85(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.63(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H})$. ESI-MS m / z calc. 292.0 found $292.9(\mathrm{M}+l)^{+}$. Retention time: 4.91 minutes.

Step 2 : tert-Butyl 3-(vinyloxy)-l H-pyrazole-l-carboxylate

To the solution of tert-butyl 3-(2-bromoethoxy)-lH-pyrazole-1-carboxylate (2.52 g, $8.66 \mathrm{mmol})$ in anhydrous tetrahydrofuran (90 mL) was added potassium tert-butoxide $(1.46 \mathrm{~g}, 13.0 \mathrm{mmol})$. The resulting solution was stirred for 2 hours, then di-tert-butyl dicarbonate $(5.67 \mathrm{~g}, 26.0 \mathrm{mmol})$ was added, and the reaction was stirred for another 1 hour. Diethyl ether (400 mL) was added. Organic layers were washed with water (50 mL), brine ($2 \times 50 \mathrm{~mL}$), dried over dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue obtained was purified by silica gel chromatography using hexanes-ethyl acetate gradient method (0 to 10% ethyl acetate) to afford tert-butyl 3-(vinyloxy)-1 H-pyrazole-1-carboxylate ($1.10 \mathrm{~g}, 60 \%$) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \boldsymbol{\delta}(\mathrm{ppm}): 7.89(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=6,13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.95(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dd}, J=1.8,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=1.8,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H})$. ESI-MS m / z calc. 210.1 found $211.0(M+\backslash)^{+}$. Retention time: 4.74 minutes.

Step 3: tert-Butyl 3-((cis)-2-(trifluoromethyl)cyclopropoxy)-IH-pyrazole-1carboxylate and tert-butyl 3-((trans)-2-(trifluoromethyl)cyclopropoxy)-1H-pyrazole-l-carboxylate

tert-Butyl 3-(vinyloxy)-1 H-pyrazole-l-carboxylate ($1.10 \mathrm{~g}, 5.23 \mathrm{mmol}$) in pear-shape flask (100 mL) was added water $(20 \mathrm{~mL})$ and bubbled with argon for 5 minutes, then sodium acetate ($85.8 \mathrm{mg}, 1.05 \mathrm{mmol}$) was added followed by 2,2,2-trifluoroethylamine hydrochloride $(3.57 \mathrm{~g}, 26.17 \mathrm{mmol})$ and concentrated sulfuric acid $(51.3 \mathrm{mg}, 0.523$
mmol). The solution was bubbled with argon for another 5 minutes before bis[rhodium(a,a,a',a'-tetramethyl-l,3-benzenedipropionic acid)] ($397 \mathrm{mg}, 0.523 \mathrm{mmol}$) was added. The reaction solution was kept under argon with balloon while aqueous solution of sodium nitrite $(2.17 \mathrm{~g}, 31.4 \mathrm{mmol})$ in water $(12.8 \mathrm{~mL})$ was added by syringe pump within 10 hours. After the addition was complete, the resulting solution was stirred for an additional 6 hours. Diethyl ether $(300 \mathrm{~mL})$ was added and the organic layer was separated. Then organic layer was washed with brine $(30 \mathrm{~mL})$, dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue obtained was purified by silica gel chromatography using hexanes - dichloromethane gradient method (0 to 100% dichloromethane). The residue obtained was subjected to silica gel chromatography again (hexanes and ethyl acetate, 0 to 10% ethyl acetate gradient) to afford the cis and trans isomers.
tert-butyl 3-((trans)-2-(trifluoromethyl)cyclopropoxy)-lH-pyrazole-l-carboxylate:
$\mathrm{mg}, 24 \%)$. ESI-MS m / z calc. 292.1 found $293.1(\mathrm{M}+1)^{+}$.Retention time: 5.22 minutes.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta(\mathrm{ppm}): 7.84(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.49(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H}), 1.56-1.25(\mathrm{~m}, 2 \mathrm{H})$. tert-butyl 3-(1,2-cis-2-
tert-butyl 3-((cis)-2-(trifluoromethyl)cyclopropoxy)-1H-pyrazole-1-carboxylate: $\mathrm{mg}, 21 \%)$. ESI-MS m/z calc. 292.1 found $293.1(\mathrm{M}+1)^{+}$. Retention time: 5.48 minutes.
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta(\mathrm{ppm}): 7.90(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.49(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H})$.

Step 4: 3-((cis)-2-(Trifluoromethyl)cyclopropoxy)-lH-pyrazole

 TFA

Trifluoroacetic acid ($2.76 \mathrm{~g}, 24.3 \mathrm{mmol}$) was added to the solution of tert-butyl 3-((cis)-2-(trifluoromethyl)cyclopropoxy)-lH-pyrazole-l-carboxylate (708 mg, 2.43 mmol) in anhydrous dichloromethane (24 mL). The resulting solution was stirred at room temperature for 16 hours. 1,2-Dichloroethane (10 mL) was added to the reaction solution. All the solvents were removed under reduced pressure. The residue obtained
was disolved in ethyl ether (150 mL), washed with satuated sodium bicarbonate aqueous solution $(30 \mathrm{~mL})$. The organic solution was dried over magnesium sulfate, filtered and concentrated under the reduced pressure to afford crude 3-((cis)-2-(trifluoromethyl)cyclopropoxy)-1H-pyrazole ($461 \mathrm{mg}, 99 \%$) as yellow-brown oil. The crude product was used directly in next step without any further purification. ESI-MS m / z calc. 192.1 found $193.0(\mathrm{M}+1)^{+}$. Retention time: 3.26 minutes.

Step 5 : tert-Butyl 2-chloro-6-(3-((cis)-2-(trifluoromethyl)cyclopropoxy)-IH-pyrazol-1-yl)nicotinate

To the solution of crude 3-((cis)-2-(trifluoromethyl)cyclopropoxy)-1H-pyrazole $\mathrm{mg}, 2.43 \mathrm{mmol}$) in dimethylformamide (8 mL) was added tert-butyl 2,6-dichloropyridine-3-carboxylate $(659 \mathrm{mg}, 2.67 \mathrm{mmol})$, potassium carbonate $(669 \mathrm{mg}$, 4.85 mmol) and 1,4-diazabicyclo [2.2.2]octane ($55 \mathrm{mg}, 0.49 \mathrm{mmol}$). The reaction was stirred at room temperature for 48 hours. The reaction solution was diluted with ether $(200 \mathrm{~mL})$, washed with water $(4 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic layer was dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue obtained was purified by silica gel chromatography using hexanes -
dichloromethane gradient method (0 to 100% dichloromethane) to afford tert-butyl 2-chloro-6-(3-((cis)-2-(trifluoromethyl)cyclopropoxy)-lH-pyrazol-1 -yl)nicotinate (73 1 $\mathrm{mg}, 68 \%)$ as a white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta(\mathrm{ppm}): 8.39(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~m}$, $1 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H}), 1.45-1.26(\mathrm{~m}, 2 \mathrm{H})$. ESI-MS m/z calc. 403.1 found 404.1 $(\mathrm{M}+l)^{+}$. Retention time: 7.29 minutes.

Step 6: 2-Chloro-6-(3-((cis)-2-(trifluoromethyl)cyclopropoxy)-lH-pyrazol-lyl)nicotinic acid

Trifluoroacetic acid ($2.03 \mathrm{~g}, 17.8 \mathrm{mmol}$) was added to the solution of tert-butyl 2-chloro-6-(3-((cis)-2-(trifluoromethyl)cyclopropoxy)-lH-pyrazol-l-yl)nicotinate $\mathrm{mg}, 1.78 \mathrm{mmol}$) in anhydrous dichloromethane (18 mL). The resulting solution was stirred at room temperature for 16 hours. 1,2-Dichloroethane (10 mL) was added to the reaction solution. All the solvents were removed under the reduced pressure. The crude solid obtained was added 10% ethyl ether in hexanes (25 mL) and sonicated for 30 minutes, filtered, washed with 10% ethyl ether in hexanes (10 ml), hexances (10 mL) and dried under high vacumn to afford 2-chloro-6-(3-((cis)-2-(trifluoromethyl)cyclopropoxy)-lH-pyrazol-l-yl)nicotinic $\quad \operatorname{acid}(517 \mathrm{mg}, 84 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$) $\delta(\mathrm{ppm}): 13.6(\mathrm{bs}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ $(\mathrm{m}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS m/z calc. 347.0 found 347.9 $(\mathrm{M}+1)^{+}$. Retention time: 5.20 minutes.
Step 7: 2-Chloro-N-((l,3-dimethyl-lH-pyrazol-4-yl)sulfonyl)-6-(3-((cis)-2-
(trifluoromethyl)cyclopropoxy)-1H-pyrazol-1-yl)nicotinamide

2-Chloro-6-(3-((cis)-2-(trifluoromethyl)cyclopropoxy)-lH-pyrazol-1-yl)nicotinic acid $(125 \mathrm{mg}, 0.3595 \mathrm{mmol})$ was dissolved in THF (1 mL). Di(imidazol-1-yl)methanone (approximately $69.95 \mathrm{mg}, 0.4314 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir at room temperature for 1 hour. 1,3-Dimethylpyrazole-4-sulfonamide (approximately $75.59 \mathrm{mg}, 0.4314 \mathrm{mmol}$) was added followed by DBU (approximately $65.67 \mathrm{mg}, 64.51 \mu \mathrm{~L}, 0.4314 \mathrm{mmol})$. The final reaction mixture was allowed to stir overnight at room temperature. Volatiles were removed by evaporation. It was taken up in EtOAc (50 mL) and washed with aqueous 1 M citric acid solution $(2 \times 50 \mathrm{~mL})$ and brine ($1 \times 50 \mathrm{~mL}$). The organic layer was dried over sodium sulfate, filtered, and concentrated under reduced pressure to give 2 -chloro-N-((1,3-dimethyl-1H-pyrazol-4-yl)sulfonyl)-6-(3-((cis)-2-(trifluoromethyl)cyclopropoxy)-lH-pyrazol-l-yl)nicotinamide (210 mg). ESI-MS m/z calc. 504.05945, found $505.0(\mathrm{M}+1)+$; Retention time: 0.61 minutes.

Step 8: ^-(l,3-Dimethylpyrazol-4-yl)sulfonyl-6-[3-[2-
(trifluoromethyl)cyclopropoxy]pyrazol-I-yl]-2-[(4.S)-2,2,4-trimethylpyrrolidin-I-
yl]pyridine-3-carboxamide (mixture of cis isomers)

2-Chloro-N-((1,3-dimethyl-1H-pyrazol-4-yl)sulfonyl)-6-(3-((cis)-2-
(trifluoromethyl)cyclopropoxy)-lH-pyrazol-l-yl)nicotinamide ($181.5 \mathrm{mg}, 0.3595$ mmol) was dissolved in DMSO (1 mL). (45)-2,2,4 -trimethylpyrrolidine (hydrochloride salt) (approximately $161.3 \mathrm{mg}, 1.078 \mathrm{mmol}$) was added followed by potassium carbonate (approximately $298.1 \mathrm{mg}, 2.157 \mathrm{mmol}$). The reaction mixture was allowed to stir at $130{ }^{\circ} \mathrm{C}$ overnight. After cooling to room temperature, the reaction mixture was diluted with EtOAc (50 mL) and washed with aqueous citric acid ($1 \mathrm{M}, 2 \times 50 \mathrm{~mL}$) and
brine ($1^{\chi} 50 \mathrm{~mL}$). The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. The product was isolated by silica gel column chromatography on a 12 gram silica gel column eluting with a $0-10 \% \mathrm{EtOAc} / \mathrm{hexane}$ gradient to give N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[2-
(trifluoromethyl)cy clopropoxyjpyrazol- 1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin- 1-yl]pyridine-3-carboxamide (mixture of cis isomers) (128.4 mg) ESI-MS m/z calc. 581.2032, found $582.3(\mathrm{M}+1)+$; Retention time: 1.93 minutes.

Synthesis of A^-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[2-
(trifluoromethyl)cyclopropoxy]pyrazol-l-yl]-2-[(4.S)-2,2,4-trimethylpyrrolidin-l-
yl]pyridine-3-carboxamide (mixture of trans isomers) (Compound 35)

Step 1: 3-((trans)-2-(Trifluoromethyl)cyclopropoxy)-lH-pyrazole

Trifluoroacetic acid ($3.15 \mathrm{~g}, 27.64 \mathrm{mmol}$) was added to the solution of tert-butyl 3-((trans)-2-(trifluoromethyl)cyclopropoxy)-lH-pyrazole-l-carboxylate (807 mg, 2.76 $\mathrm{mmol})$ in anhydrous dichloromethane $(28 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 16 hours. 1,2-Dichloroethane (15 mL) was added to the reaction solution. All the solvents were removed under the reduced pressure. The residue obtained was disolved in ethyl ether (200 mL), washed with satuated sodium bicarbonate aqueous solution (30 mL). The organic solution was dried over magnesium sulfate, filtered and concentrated under reduced pressure to afford crude 3-((trans)-2-(trifluoromethyl)cyclopropoxy)-lH-pyrazole ($525 \mathrm{mg}, 99 \%$) as yellow-brown oil. The crude product was used directly in next step without any further purification. ESI-MS m / z calc. 192.1 found $193.0(\mathrm{M}+1)^{+}$. Retention time: 2.97 minutes.

Step 2 : tert-Butyl 2-chloro-6-(3-((trans)-2-(trifluoromethyl)cyclopropoxy)-lH-pyrazol-l-yl)nicotinate

To the solution of crude 3-((trans)-2-(trifluoromethyl)cyclopropoxy)-1H-pyrazole
stirred at room temperature for 48 hours. The reaction solution was diluted with ether $(250 \mathrm{~mL})$, washed with water $(4 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic layer was dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue obtained was purified by silica gel chromatography using hexanes -
dichloromethane gradient method (0 to 100% dichloromethane) to afford tert-butyl 2-chloro-6-(3-((trans)-2-(trifluoromethyl)cyclopropoxy)-1H-pyrazol-l-yl)nicotinate $\mathrm{mg}, 21 \%$) as a colorless oil. ESI-MS m / z calc. 403.1 found $404.1(\mathrm{M}+1)^{+}$. Retention time: 6.92 minutes. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta(\mathrm{ppm}): 8.38(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~m}, 1 \mathrm{H})$, $1.77(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~m}, 1 \mathrm{H})$.

Step 3: 2-Chloro-6-(3-((trans)-2-(trifluoromethyl)cyclopropoxy)-lH-pyrazol-1-
yl)nicotinic acid

Trifluoroacetic acid $(2.39 \mathrm{~g}, 21.0 \mathrm{mmol})$ was added to the solution of tert-butyl 2-chloro-6-(3-((trans)-2-(trifluoromethyl)cyclopropoxy)-lH-pyrazol-l-yl)nicotinate $\mathrm{mg}, 2.10 \mathrm{mmol}$) in anhydrous dichloromethane (21 mL). The resulting solution was stirred at room temperature for 20 hours. 1,2-Dichloroethane (15 mL) was added to the reaction mixture. All the solvents were removed under reduced pressure. Crude solid obtained was added 10% ethyl ether in hexanes (30 mL) and sonicated for 30 minutes, filtered, washed with 10% ethyl ether in hexanes (10 mL), hexances (10 mL) and dried under high vacumn to afford 2-chloro-6-(3-((trans)-2-(trifluoromethyl)cyclopropoxy)-1H-pyrazol-1-yl)nicotinic acid ($600 \mathrm{mg}, 82 \%$) as a white solid. ESI-MS m / z calc. 347.0 found $347.9(\mathrm{M}+1)^{+}$. Retention time: 4.91 minutes. $3 / 4 \mathrm{NMR} \quad(500 \mathrm{MHz}, \mathrm{DMSO}) \delta$ (ppm): $8.46(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.30$ $(\mathrm{d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~m}, 1 \mathrm{H})$.

Step 4: 2-Chloro-N-((1,3-dimethyl-IH-pyrazol-4-yl)sulfonyl)-6-(3-((trans)-2-(trifluoromethyl)cyclopropoxy)-IH-pyrazol-I-yl)nicotinamide

2-Cchloro-6-(3-((trans)-2-(trifluoromethyl)cyclopropoxy)-lH-pyrazol-1-yl)nicotinic acid ($125 \mathrm{mg}, 0.3595 \mathrm{mmol}$) was dissolved in THF (1 mL). Di(imidazol-1yl)methanone (approximately $69.95 \mathrm{mg}, 0.4314 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir at room temperature for 1 hour. 1,3-Dimethylpyrazole-4sulfonamide (approximately $75.59 \mathrm{mg}, 0.4314 \mathrm{mmol}$) was added followed by DBU (approximately $65.67 \mathrm{mg}, 64.51 \mu \mathrm{~L}, 0.4314 \mathrm{mmol}$). The final reaction mixture was allowed to stir overnight at room temperature. Volatiles were removed by evaporation. It was taken up in EtOAc (50 mL) and washed with aqueous 1 M citric acid solution ($2 \times$ 50 mL) and brine ($1^{\chi} 50 \mathrm{~mL}$). The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure to give 2-chloro-N-((1,3-dimethyl-1H-pyrazol-4-yl)sulfonyl)-6-(3-((trans)-2-(trifluoromethyl)cyclopropoxy)-1H-pyrazol-1yl)nicotinamide (203 mg). ESI-MS m/z calc. 504.05945 , found $505.0(\mathrm{M}+\mathrm{l})+$; Retention time: 0.59 minutes.

Step 5: ^-(l,3-Dimethylpyrazol-4-yl)sulfonyl-6-[3-[2-
(trifluoromethyl)cyclopropoxy]pyrazol-l-yl]-2-[(4.S)-2,2,4-trimethylpyrrolidin-I-yl]pyridine-3-carboxamide (mixture of trans isomers)

2-Chloro-N-((1,3-dimethyl-lH-pyrazol-4-yl)sulfonyl)-6-(3-((trans)-2-(trifluoromethyl)cyclopropoxy)-lH-pyrazol-l-yl)nicotinamide ($181.5 \mathrm{mg}, 0.3595$ mmol) was dissolved in DMSO (1 mL). (45)-2,2,4-trimethylpyrrolidine (hydrochloride salt) (approximately $161.3 \mathrm{mg}, 1.078 \mathrm{mmol}$) was added followed by potassium carbonate (approximately $298.1 \mathrm{mg}, 2.157 \mathrm{mmol}$). The reaction mixture was allowed to stir at $130{ }^{\circ} \mathrm{C}$ overnight. After cooling to room temperature, the reaction mixture was diluted with EtOAc (50 mL) and washed with aqueous citric acid ($1 \mathrm{M}, 2 \times 50 \mathrm{~mL}$) and brine ($1 \chi 50 \mathrm{~mL}$). The organic layer was dried over sodium sulfate, filtered, and concentrated under reduced pressure. The product was isolated by silica gel column chromatography on a 12 gram silica gel column eluting with a $0-10 \% \mathrm{EtOAc} /$ hexane gradient to give N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[2(trifluoromethyl)cy clopropoxyjpyrazol- 1-yl]-2-[(45)-2,2,4-trimethylpyrrolidin- 1-yl]pyridine-3-carboxamide (mixture of trans isomers) (114.9 mg). ESI-MS m/z calc. 581.2032, found $582.4(\mathrm{M}+1)+$; Retention time: 1.86 minutes.

Synthesis of (S)-N-((1,5-dimethyl-IH-pyrazol-4-yl)sulfonyl)-6-(3-(((1-(trifluoromethyl)cyclopropyl)methoxy)methyl)-lH-pyrazol-I-yl)-2-(2,2,4-trimethylpyrrolidin-l-yl)nicotinamide (Compound 25)

Step 1: 3-(tert-Butoxymethyl)-IH-pyrazole

tert-Butylpropargyl alcohol ($2.5 \mathrm{~g}, 22.2 \mathrm{mmol}$) was mixed with trimethylsilyl
diazomethane (2.0 M in hexane, $11.1 \mathrm{~mL}, 22.2 \mathrm{mmol}$) and stirred in a sealed tube at 115
${ }^{\circ} \mathrm{C}$ for 18 hours. The mixture was cooled to $40^{\circ} \mathrm{C}$ and quenched with methanol (5 mL) and concentrated. Column chromatography (silica; heptanes/EtOAc $2: 1$ to $1: 1$) afforded 3-(tert-butoxymethyl)-1H-pyrazole as colorless oil (1.5 g, 44\%). ${ }^{1} \mathrm{H}$ NMR (CDC13, 300 $\mathrm{MHz}): \delta 1.26(\mathrm{~s}, 9 \mathrm{H}) ; 4.53(\mathrm{~s}, 2 \mathrm{H}) ; 6.22(\mathrm{~s}, 1 \mathrm{H}) ; 7.48(\mathrm{~s}, 1 \mathrm{H})$.

Step 2: tert-Butyl 6-[3-(tert-butoxymethyl)pyrazol-l-yl]-2-chloro-pyridine-3carboxylate

A 100 mL round bottom flask was charged under nitrogen with 3-(tert-butoxymethyl)-1H-pyrazole ($1.241 \mathrm{~g}, 8.047 \mathrm{mmol}$), tert-butyl 2,6-dichloropyridine-3-carboxylate (2.0 $\mathrm{g}, 8.061 \mathrm{mmol}$), potassium carbonate $(1.448 \mathrm{~g}, 10.48 \mathrm{mmol})$ (freshly ground in a mortar) and anhydrous DMF (12.41 mL). DABCO ($163 \mathrm{mg}, 1.453 \mathrm{mmol}$) was added, and the mixture was stirred at room temperature under nitrogen for 16 hours. The reaction mixture was diluted with ethyl acetate $(50 \mathrm{~mL})$ and water and brine (50 mL), and the two phases were separated. The aqueous phase was further extracted with ethyl acetate (2 x 30 mL). The combined extracts were washed with brine, dried over sodium sulfate, and the solvent removed under reduced pressure. The material was subjected to flash chromatography on silica gel using a gradient of ethyl acetate (0 to 10%) in hexanes. The pure fractions were combined and the solvents removed under reduced pressure to provide tert-butyl 6-[3-(tert-butoxymethyl)pyrazol-1-yl]-2-chloro-pyridine-3-carboxylate $(1.956 \mathrm{~g}, 66 \%)$ as a colorless oil, which solidified to a white solid overnight on high vac. ESI-MS m/z calc. 365.1506, found $366.2(\mathrm{M}+1)^{+}$; Retention time: 0.82 minutes.

Step 3: 2-Chloro-6-[3-(hydroxymethyl)pyrazol-1-yl]pyridine-3-carboxylic acid

tert-Butyl 6-[3-(tert-butoxymethyl)pyrazol-1-yl]-2-chloro-pyridine-3-carboxylate $\mathrm{mg}, 1.471 \mathrm{mmol}$) was dissolved in HCI in dioxane (8.0 mL of $4 \mathrm{M}, 32.00 \mathrm{mmol}$) and heated at $60{ }^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture was then cooled to room temperature and concentrated to dryness, giving a white powder. 2-chloro-6-[3-(hydroxymethyl)pyrazol-l-yl]pyridine-3-carboxylic acid ($370 \mathrm{mg}, 99 \%$) ESI-MS m/z calc. 253.02542 , found $254.1(\mathrm{M}+1)^{+}$; Retention time: 0.33 minutes

Step 4: 2-Chloro-6-(3-(((1-(trifluoromethyl)cyclopropyl)methoxy)methyl)-IH-pyrazol-l-yl)nicotinic acid

[l-(Trifluoromethyl)cyclopropyl]methyl 4-methylbenzenesulfonate ($1.3 \mathrm{~g}, 4.417 \mathrm{mmol}$), and 2-chloro-6-[3-(hydroxymethyl)pyrazol-1-yl]pyridine-3-carboxylic acid (370 mg , $1.459 \mathrm{mmol})$, were combined in anhydrous DMSO (9.250 mL). tert-Butoxypotassium ($660 \mathrm{mg}, 5.882 \mathrm{mmol}$) was added, and the reaction mixture was stirred at room temperature. After 30 minutes the reaction mixture was poured into 1 M citric acid (15 mL) and extracted $3 \times 15 \mathrm{~mL}$ ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and concentrated. The resulting material was purified by chromatography on silica gel using a $0-10 \%$ methanol in dichloromethane gradient. The fractions containing product were collected and concentrated to give a white solid. 2-chloro-6-(3-(((1-(trifluoromethyl)cyclopropyl)methoxy)methyl)-lH-pyrazol-lyl)nicotinic acid ($292 \mathrm{mg}, 53 \%$) ESI-MS m/z calc. 375.05975, found 376.1 (M+1) ${ }^{+}$; Retention time: 0.62 minutes.

Step 5: 2-Chloro-N-((1,5-dimethyl-lH-pyrazol-4-yl)sulfonyl)-6-(3-(((1-(trifluoromethyl)cyclopropyl)methoxy)methyl)-1H-pyrazol-1-yl)nicotinamide

2-Chloro-6-(3-(((l-(trifluoromethyl)cyclopropyl)methoxy)methyl)-lH-pyrazol-lyl)nicotinic acid ($50 \mathrm{mg}, 0.1331 \mathrm{mmol}$) and CDI ($26 \mathrm{mg}, 0.1603 \mathrm{mmol}$) were combined in THF ($300.0 \mu \mathrm{~L}$) and stirred at room temperature for 2 hours in a vial (vial 1).
Meanwhile, 1,5 -dimethylpyrazole-4-sulfonyl chloride ($31 \mathrm{mg}, 0.1593 \mathrm{mmol}$) was combined with ammonia ($125 \mu \mathrm{~L}$ of $7 \mathrm{M}, 0.8750 \mathrm{mmol}$) in a separate vial (vial 2). After stirring for an additional 20 min , the volatiles were removed from vial 2 by evaporation, and 1 mL of dichloromethane was added to the solid residue, and was also evaporated. DBU ($60 \mu \mathrm{~L}, 0.4012 \mathrm{mmol}$) was then added to vial 2 and stirred at $60^{\circ} \mathrm{C}$ for 5 minutes
(to facilitate the removal of ammonia from any residual ammonium chloride). Upon cooling to room temperature, 1 mL THF was added and then evaporated under reduced pressure. The contents of vial 1 were then added to vial 2 by syringe, and the reaction mixture was stirred for 4 h at room temperature. The reaction mixture was diluted with 10 mL ethyl acetate, and washed with 10 mL 1 M citric acid. The aqueous layer was extracted $2 \times 10 \mathrm{~mL}$ ethyl acetate, and the combined organics were washed with brine, dried over sodium sulfate, and concentrated to give a a white solid. This material was used in the next step without further purification. 2-chloro-N-((l,5-dimethyl-lH-pyrazol-4-yl)sulfonyl)-6-(3-(((l-(trifluoromethyl)cyclopropyl)methoxy)methyl)-lH-pyrazol-l-yl)nicotinamide ($65 \mathrm{mg}, 50 \%$) ESI-MS m/z calc. 532.09076, found 533.2 $(\mathrm{M}+\mathrm{l})+$; Retention time: 1.34 minutes.

Step 6: (S)-N-((1,5-Dimethyl-lH-pyrazol-4-yl)sulfonyl)-6-(3-(()-
(trifluoromethyl)cyclopropyl)methoxy)methyl)-lH-pyrazol-l-yl)-2-(2,2,4-trimethylpyrrolidin-l-yl)nicotinamide

$\mathrm{K}_{2} \mathrm{CO}_{3}$

2-Chloro-N-((1,5-dimethyl-1H-pyrazol-4-yl)sulfonyl)-6-(3-(((1-
(trifluoromethyl)cyclopropyl)methoxy)methyl)-lH-pyrazol-l-yl)nicotinamide (67 mg, 0.1257 mmol), (4S)-2,2,4-trimethylpyrrolidine (hydrochloride salt) ($94 \mathrm{mg}, 0.6281$ mmol), and potassium carbonate ($174 \mathrm{mg}, 1.259 \mathrm{mmol}$) were combined in DMSO $(335.0 \mu \mathrm{~L})$ and heated at $130{ }^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to room temperature, and 1 mL of water was added. After 15 minutes stirring, the contents of the vial were allowed to settle, the liquid portion was removed by pipet, and the remaining solids were dissolved with 20 mL ethyl acetate, then washed with 15 mL 1 M citric acid. The aqueous and organic layers were separated, and the aqueous layer was extracted two additional times with 15 mL ethyl acetate. The organics were combined, washed with brine, dried over sodium sulfate and concentrated. The resulting solid was further purified by silica gel chromatography eluting with $0-10 \%$ methanol in dichloromethane to give a white solid. (S)-N-((1,5-dimethyl-1H-pyrazol-4-yl)sulfonyl)-6-(3-(((1-(trifluoromethyl)cyclopropyl)methoxy)methyl)-lH-pyrazol-l-yl)-2-(2,2,4-
trimethylpyrrolidin-l-yl)nicotinamide (17 mg, 22\%). ESI-MS m/z calc. 609.2345, found $610.3(\mathrm{M}+1)+$; Retention time: 1.96 minutes.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 12.36(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.71(\mathrm{~m}$, $2 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.59$ ($\mathrm{s}, 2 \mathrm{H}$), $2.58(\mathrm{t}, \mathrm{J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dt}, \mathrm{J}=$ $12.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.45(\mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.00-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{tq}, \mathrm{J}=4.4,3.1,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[(IS,2S,4R)-norbornan-2-

yl] oxypyrazol- 1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin- 1-yl] pyridine-3-carboxamide (Compound 51)

Step 1: tert-Butyl 3-(((lS,2S,4R)-bicyclo[2.2.1]heptan-2-yl)oxy)-IH-pyrazole-Icarboxylate

tert-Butyl 3-hydroxypyrazole-1-carboxylate $(1.632 \mathrm{~g}, 8.860 \mathrm{mmol})$, (+)-endo-2norborneol ($1 \mathrm{~g}, 8.915 \mathrm{mmol}$), and triphenyl phosphine ($2.57 \mathrm{~g}, 9.798 \mathrm{mmol}$) were combined in THF (21.98 mL), and the reaction was cooled in an ice bath. To the mixture was added DIAD ($2 \mathrm{~mL}, 10.16 \mathrm{mmol}$) dropwise, and the reaction was allowed to warm to room temperature and stir for 16 h . The mixture was evaporated, and the resulting material was partitioned between ethyl acetate (30 mL) and 1 N sodium hydroxide (30 mL). The organics were separated, washed with brine (30 mL), dried over sodium sulfate and evaporated. The crude material was purified by silica gel chromatography eluting with $0-30 \%$ ethyl acetate in hexanes to give tert-butyl $3-$ (((1S,2S,4R)-bicyclo[2.2.1]heptan-2-yl)oxy)-1H-pyrazole-1-carboxylate ($2.08 \mathrm{~g}, 84 \%$) ESI-MS m/z calc. 278.16306, found $279.3(\mathrm{M}+\mathrm{l})+$; Retention time: 0.72 minutes. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 8.05$ (d, J = $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.07 (d, J = $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.47 (d, J = 6.8 Hz, 1H), 2.43-2.36 (m, 1H), 2.32-2.22 (m, 1H), $1.75(\mathrm{td}, \mathrm{J}=6.7,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.53-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{ddt}, \mathrm{J}=14.8,7.8,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.18-1.07$ (m, 3H).

Step 2: 3-[(IS,2S,4R)-Norbornan-2-yl]oxy-IH-pyrazole

tert-Butyl 3-[(1S,2S,4R)-norbornan-2-yl]oxypyrazole-l-carboxylate (2.08 g, 7.473 $\mathrm{mmol})$ was dissolved in dichloromethane $(20.80 \mathrm{~mL})$ with trifluoroacetic acid $(5.8 \mathrm{~mL}$, 75.28 mmol), and the reaction was stirred at room temperature for 1 h . The reaction was evaporated under reduced pressure, and the resulting oil was partitioned between ethyl
acetate $(50 \mathrm{~mL})$ and a saturated sodium bicarbonate solution $(30 \mathrm{~mL})$. The organics were separated, washed with brine, dried over sodium sulfate and concentrated under vacuum to give an oil, 3-[(1S,2S,4R)-norbornan-2-yl]oxy-lH-pyrazole (1.29 g, 97\%) ESI-MS m/z calc. 178.11061, found $179.2(\mathrm{M}+\mathrm{l})+$; Retention time: 0.45 minutes.

Step 3: tert-Butyl 2-chloro-6-[3-[(1S,2S,4R)-norbornan-2-yl]oxypyrazol-l-yl]pyridine-3-carboxylate

A 100 mL round bottom flask was charged under nitrogen with tert-butyl 2,6-dichloropyridine-3-carboxylate (1.796 g, 7.239 mmol), 3-[(1S,2S,4R)-norbornan-2-yl]oxy-lH-pyrazole $(1.29 \mathrm{~g}, 7.238 \mathrm{mmol})$, and potassium carbonate $(1.310 \mathrm{~g}, 9.479$ mmol) (freshly ground in a mortar) and anhydrous DMF (12 mL). DABCO (146 mg, 1.302 mmol) was added, and the mixture was stirred at room temperature under nitrogen for 8 hours. The reaction mixture was diluted with ethyl acetate $(50 \mathrm{~mL})$, water and brine (50 mL), and the two phases were separated. The aqueous phase was further extracted with ethyl acetate (2 x 50 mL). The combined extracts were dried over sodium sulfate and the solvent removed under reduced pressure. The material was subjected to flash chromatography on silica gel using a gradient of ethyl acetate (0 to 20\%) in hexanes. The pure fractions were combined and the solvents removed under reduced pressure to provide tert-butyl 2-chloro-6-[3-[(1S,2S,4R)-norbornan-2-yl]oxypyrazol-1-yl]pyridine-3-carboxylate ($1.814 \mathrm{~g}, 64 \%$) ESI-MS m/z calc. 389.1506, found 390.3 $(\mathrm{M}+\mathrm{l})+$; Retention time: 0.92 minutes.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, ~ D M S O\right) ~ \delta 8.40(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ $(\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.78(\mathrm{~m}$, $1 \mathrm{H}), 2.45(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{t}, \mathrm{J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}), 1.55-1.39(\mathrm{~m}, 4 \mathrm{H})$, 1.22-1.08 (m, 3H).

Step 4: 2-Chloro-6- [3-[(lS,2S,4R)-norbornan-2-yl] oxypyrazol- 1-yl]pyridine-3carboxylic acid

tert-Butyl 2-chloro-6-[3-[(1 S,2S,4R)-norbornan-2-yl]oxypyrazol-1-yl]pyridine-3carboxylate ($1.814 \mathrm{~g}, 4.653 \mathrm{mmol}$) and TFA ($5 \mathrm{niL}, 64.90 \mathrm{mmol}$) were combined in dichloromethane (18.14 mL) and heated at $40^{\circ} \mathrm{C}$ for 2 h . The reaction was evaporated. Hexanes were added and the mixture evaporated again to give a white solid which was used in the next step without further purification. 2-chloro-6-[3-[(1 S,2S,4R)-norbornan-2-yl]oxypyrazol-1 -yl]pyridine-3-carboxylic acid (1.47 g, 79\%) ESI-MS m/z calc. 333.088, found $334.2(\mathrm{M}+1)^{+}$; Retention time: 0.71 minutes.

Step 5: 2-Chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[(IS,2S,4R)-norbornan-2-yl] oxypyrazol- 1-yl] pyridine-3-carboxamide

2-Chloro-6-[3-[(1 S,2S,4R)-norboman-2-yl]oxypyrazol-l-yl]pyridine-3-carboxylic acid ($100 \mathrm{mg}, 0.2487 \mathrm{mmol}$) and CDI (approximately $52.42 \mathrm{mg}, 0.3233 \mathrm{mmol}$) were combined in THF (approximately $415.4 \mu \mathrm{~L}$) and stirred for 2 hours at room temperature. 1,3-Dimethylpyrazole-4-sulfonamide ($58 \mathrm{mg}, 0.3310 \mathrm{mmol}$) and DBU (approximately $48.35 \mu \mathrm{~L}, 0.3233 \mathrm{mmol}$) were then added, and the reaction was stirred an additional 2 hours at room temperature. The reaction mixture was then poured into 20 mL 1 M citric acid and extracted with $3 \times 20 \mathrm{~mL}$ ethyl acetate. The combined organics were washed with water, then brine, dried over sodium sulfate, and concentrated to give crude (substantial impurities but used in the next step without further purification) 2-chloro-N-(l ,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[(1 S,2S,4R)-
norbornan-2-yl]oxypyrazol-1-yl]pyridine-3-carboxamide ESI-MS m/z calc. 490. 12, found $491.3(\mathrm{M}+1)+$; Retention time: 0.75 minutes.

Step 6: N-(1,3-Dimethylpyrazol-4-yl)sulfonyl-6-[3-[(IS,2S,4R)-norbornan-2-yl]oxypyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide

Crude 2-chloro-N-(l,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[(1 S,2S,4R)-norbornan-2-yl]oxypyrazol-1-yl]pyridine-3-carboxamide ($125 \mathrm{mg}, 0.2546 \mathrm{mmol}$), (4S)-2,2,4trimethylpyrrolidine (hydrochloride salt) (approximately $114.3 \mathrm{mg}, 0.7638 \mathrm{mmol}$), and potassium carbonate (approximately $211.2 \mathrm{mg}, 1.528 \mathrm{mmol}$) were combined in DMSO (approximately 0.4243 mL) in a screwcap vial and heated to $130^{\circ} \mathrm{C}$ for 16 hours. The reaction mixture was then cooled to room temperature, and 3 mL of water was added, resulting in the formation of a precipitate. After 30 minutes, the liquid portion was removed by syringe and discarded, and the remaining solids were dissolved in 15 mL ethyl acetate. The organics were washed with 15 mL 1 M citric acid, and the aqueous layer was extracted an additional time with 15 mL ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and concentrated. The crude material was purified by column chromatography on silica gel using a gradient of $0-10 \%$ methanol in dichloromethane. The pure fractions were combined and concentrated to give N-(1 ,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[(ll, $\mathrm{S}, 2 \mathrm{~S}, 4 \mathrm{R}$)-norboman-2-yl]oxypyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyiTolidin-l -yl]pyridine-3-carboxamide (37 $\mathrm{mg}, 25 \%$) ESI-MS m/z calc. 567.26, found 568.3 (M+1)+; Retention time: 2.23 minutes.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 12.35(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}=$ 6.7 Hz, 1H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, \mathrm{J}=13.7,6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{tt}, \mathrm{J}=12.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.78(\mathrm{~m}$, $2 H), 1.59-1.38(\mathrm{~m}, 11 \mathrm{H}), 1.20-1.11(\mathrm{~m}, 3 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[(1S,4R)-norbornan-2yl]methoxy] pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin- 1-yl] pyridine-3carboxamide (Compound 50)

Step 1: tert-Butyl 3-[[(1S,4R)-norbornan-2-yl]methoxy]pyrazole-1-carboxylate

tert-Butyl 3-hydroxypyrazole-l-carboxylate ($1.327 \mathrm{~g}, 7.204 \mathrm{mmol}$), [(1 S,4R)-norbornan-2-yl]methanol ($1 \mathrm{~g}, 7.924 \mathrm{mmol}$) (mixture of endo and exo), and triphenyl phosphine ($2.09 \mathrm{~g}, 7.968 \mathrm{mmol}$) were combined in THF $(17.87 \mathrm{~mL})$, and the reaction was cooled in an ice bath. To the mixture was added DIAD ($1.627 \mathrm{~mL}, 8.263 \mathrm{mmol}$) dropwise and the reaction was allowed to warm to room temperature and stirred for 72 h. The mixture was evaporated, and the resulting material was partitioned between ethyl acetate (50 mL) and $1 \mathbf{N}$ sodium hydroxide (50 mL). The organics were separated, washed with brine, dried over sodium sulfate and evaporated. The crude material was purified by silica gel chromatography eluting with $0-30 \%$ ethyl acetate in hexanes to give tert-butyl 3-[[(1 S,4R)-norboman-2-yl]methoxy]pyrazole-1 -carboxylate (1.698 g,

81\%) ESI-MS m/z calc. 292.17868, found $293.3(\mathrm{M}+1)^{+}$; Retention time: 0.77 minutes. (2 diastereomers - mix of endo and exo substituted norbornane)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.06(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, \mathrm{J}=2.9,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.23-3.81 (m, 2H), 2.29-2.15 (m, 2H), $1.69(\mathrm{dq}, \mathrm{J}=12.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~d}, \mathrm{~J}=1.4$ $\mathrm{Hz}, 9 \mathrm{H}), 1.51-1.03(\mathrm{~m}, 7 \mathrm{H}), 0.75(\mathrm{dd}, \mathrm{J}=5.0,2.4 \mathrm{~Hz}, 1 \mathrm{H})$.

Step 2: 3-[[(IS,4R)-Norbornan-2-yl]methoxy]-IH-pyrazole

tert-Butyl 3-[[(1S,4R)-norbornan-2-yl]methoxy]pyrazole-l-carboxylate (1.698 g, 5.808 $\mathrm{mmol})$ was dissolved in dichloromethane (16.98 mL) with trifluoroacetic acid (approximately $6.622 \mathrm{~g}, 4.474 \mathrm{~mL}, 58.08 \mathrm{mmol}$), and the reaction was stirred at room temperature for 2 h . The reaction was evaporated, and the resulting oil was partitioned between ethyl acetate (50 mL) and a saturated sodium bicarbonate solution (30 mL). The organics were separated, washed with brine, dried over sodium sulfate and concentrated under vacuum to give an oil, 3-[[(1S,4R)-norbornan-2-yl]methoxy]-1Hpyrazole ($1.11 \mathrm{~g}, 99 \%$) ESI-MS m/z calc. 192.12627, found 193.2 ($\mathrm{M}+\mathrm{l})^{+}$; Retention time: 0.52 minutes.

Step 3: tert-Butyl 2-chloro-6-[3-[[(IS,4R)-norbornan-2-yl]methoxy]pyrazol-1-yl]pyridine-3-carboxylate

A round bottom flask was charged under nitrogen with 3-[[(1S,4R)-norbornan-2-yl]methoxy]-lH-pyrazole $(1.11 \mathrm{~g}, 5.774 \mathrm{mmol})$ (mix of two diastereomers), tert-butyl 2,6-dichloropyridine-3-carboxylate $(1.433 \mathrm{~g}, 5.776 \mathrm{mmol})$, potassium carbonate $(1.05 \mathrm{~g}$, 7.597 mmol) (freshly ground in a mortar) and anhydrous DMF (10 mL). DABCO (117 $\mathrm{mg}, 1.043 \mathrm{mmol}$) was added, and the mixture was stirred at room temperature under nitrogen for 16 hours. The reaction mixture was diluted with ethyl acetate (50 mL) and
water (50 mL), and the two phases were separated. The aqueous phase was further extracted with ethyl acetate $(2 \times 30 \mathrm{~mL})$. The combined extracts were washed with brine, dried over sodium sulfate and the solvent removed under reduced pressure. The material was subjected to flash chromatography on silica gel using a gradient of ethyl acetate (0 to 20%) in hexanes. The pure fractions were combined and the solvents removed under reduced pressure to provide tert-butyl 2-chloro-6-[3-[[(1S,4R)-norbornan-2-yl]methoxy]pyrazol-1-yl]pyridine-3-carboxylate (1.88 g, 81\%) ESI-MS m / z calc. 403.16626 , found $404.3(\mathrm{M}+\mathrm{l})^{+}$; Retention time: 0.94 minutes

Step 4: 2-Chloro-6- [3-[[(IS,4R)-norbornan-2-yl] methoxy] pyrazol- 1-yl] pyridine-3carboxylic acid

tert-Butyl 2-chloro-6-[3-[[(1S,4R)-norboman-2-yl]methoxy]pyrazol-l-yl]pyridine-3carboxylate ($1.88 \mathrm{~g}, 4.655 \mathrm{mmol}$) and TFA ($5 \mathrm{~mL}, 64.90 \mathrm{mmol}$) were combined in dichloromethane $(18.80 \mathrm{~mL})$ and heated at $40^{\circ} \mathrm{C}$ for 2 h . The reaction was evaporated. Hexanes were added and the mixture evaporated again to give a white solid 2-chloro-6-[3-[[(1S,4R)-norboman-2-yl]methoxy]pyrazol-l-yl]pyridine-3-carboxylic acid (1.58 g, 98\%) ESI-MS m/z calc. 347.10367, found $348.2(\mathrm{M}+\mathrm{l})^{+}$; Retention time: 0.75 minutes.

Step 5: 2-Chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[(IS,4R)-norbornan-2yl] methoxy] pyrazol-1-yl] pyridine-3-carb oxamide

2-Chloro-6-[3-[[(1S,4R)-norboman-2-yl]methoxy]pyrazol-l-yl]pyridine-3-carboxylic acid ($100 \mathrm{mg}, 0.2875 \mathrm{mmol}$) and CDI ($60.59 \mathrm{mg}, 0.3737 \mathrm{mmol}$) were stirred in THF
$(0.5 \mathrm{~mL})$ at room temperature for 2 hours. 1,3-Dimethylpyrazole-4-sulfonamide (56 mg , 0.3196 mmol) was then added, followed by DBU ($55.88 \mu \mathrm{~L}, 0.3737 \mathrm{mmol}$), and the reaction was stirred an additional 4 hours at room temperature. The reaction mixture was then diluted with 25 mL ethyl acetate and poured into 25 mL 1 M citric acid, and the layers were separated. The aqueous layer was extracted with an additional 25 mL ethyl acetate, and the combined organics were washed with water then brine, dried over sodium sulfate, and concentrated. The product was used in the next step without further purification, 2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[(1S,4R)-norbornan-2-yl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide ($138 \mathrm{mg}, 95 \%$) (mixture of exo and endo norbornane stereoisomers) ESI-MS m/z calc. 504.13, found 505.3 (M+1)+; Retention time: 0.78 minutes.

Step 6: N-(1,3-Dimethylpyrazol-4-yl)sulfonyl-6-[3-[[(IS,4R)-norbornan-2-

 yl]methoxy] pyrazol- 1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin- 1-yl] pyridine-3carboxamide

2-Chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[[(1S,4R)-norbornan-2-
yl]methoxy]pyrazol-l-yl]pyridine-3-carboxamide ($138 \mathrm{mg}, 0.2733 \mathrm{mmol}$), (4S)-2,2,4trimethylpyrrolidine (hydrochloride salt) ($122.7 \mathrm{mg}, 0.8199 \mathrm{mmol}$), and potassium carbonate ($226.7 \mathrm{mg}, 1.640 \mathrm{mmol}$) were combined in DMSO (0.4555 mL) in a screwcap vial and heated to $130^{\circ} \mathrm{C}$ for 16 hours. The reaction mixture was then cooled to room temperature, and 3 mL of water was added, resulting in the formation of a precipitate. After 30 minutes, the liquid portion was removed by syringe and discarded, and the remaining solids were dissolved in 15 mL ethyl acetate and washed with 15 mL 1 M citric acid. The aqueous layer was extracted an additional time with 15 mL ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and concentrated. The crude material was purified by column chromatography on silica gel using a gradient of $0-10 \%$ methanol in dichloromethane. The pure fractions were
combined and concentrated to give N -(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3[[(1 S,4R)-norbornan-2-yl]methoxy]pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-1 yl]pyridine-3-carboxamide ($101 \mathrm{mg}, 63 \%$) (mixture of exo and endo norbornane stereoisomers) ESI-MS m/z calc. 581.28 , found $582.4(\mathrm{M}+\mathrm{l})+$; Retention time: 2.32 minutes.

Synthesis of 6-[3-(2,2-dicyclopropylethoxy)pyrazol-l-yl]-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (Compound 32)

Step 1: tert-Butyi 3-(2, 2-dicyclopropylethoxy) pyrazole-l-carboxylate

A solution of 2,2-dicyclopropylethanol ($500 \mathrm{mg}, 3.962 \mathrm{mmol}$), tert-butyl 3-hydroxypyrazole-1 -carboxylate ($730 \mathrm{mg}, 3.963 \mathrm{mmol}$), and triphenylphosphane (1.1 g , 4.194 mmol) in dry THF (20.0 mL) was cooled in an ice bath, and DIAD ($800.0 \mu \mathrm{~L}$, 4.063 mmol) was slowly added under nitrogen atmosphere. The reaction was allowed to slowly warm to room temperature and was stirred for 16 h . The reaction mixture was
diluted with ethyl acetate, washed with saturated aqueous sodium bicarbonate, brine, dried over sodium sulfate, and concentrated. The residue was purified by silica gel chromatography with 100% hexanes to 50% ethyl acetate in hexanes to afford tert-butyl 3-(2, 2-dicyclopropylethoxy)pyrazole-1 -carboxylate ($783 \mathrm{mg}, 68 \%$) as colorless oil. ESI-MS m/z calc. 292. 17868, found $293.3(\mathrm{M}+1)^{+}$; Retention time: 1.98 minutes. ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.62(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.67(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~d}, \mathrm{~J}=$ $5.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 0.58(\mathrm{qt}, \mathrm{J}=8.2,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.36(\mathrm{tt}, \mathrm{J}=8.9,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 0.32-0.12 (m, 4H) 0.10-0.08(m, 4H).

Step 2: 3-(2, 2-Dicyclopropylethoxy)-IH-pyrazole:

A solution of tert-butyl 3-(2, 2-dicyclopropylethoxy) pyrazole-1-carboxylate (750 mg , $2.565 \mathrm{mmol})$ and trifiuoroacetic acid ($1.0 \mathrm{~mL}, 12.98 \mathrm{mmol}$) in dichloromethane (4 mL) was stirred for 2.5 hours. The volatiles were removed under reduced pressure, and the residue was basified with saturated aqueous sodium bicarbonate and extracted with ethyl acetate. The combined extracts were dried over sodium sulfate and evaporated to give 3-(2,2-dicyclopropylethoxy)-lH-pyrazole as colorless oil which was used as it is without further purification for next reaction. ESI-MS m/z calc. 192. 12627, found 193.3 $(\mathrm{M}+\mathrm{l})^{+}$; Retention time: 1.32 minutes.

Step 3: tert-Butyi 2-chloro-6-[3-(2, 2-dicyclopropylethoxy) pyrazol-l-yl] pyridine-3-carboxylate

A mixture of 3-(2,2-dicyclopropylethoxy)-lH-pyrazole $(493.0 \mathrm{mg}, 2.564 \mathrm{mmol})$, tertbutyl 2,6-dichloropyridine-3-carboxylate $(682.0 \mathrm{mg}, 2.749 \mathrm{mmol})$, potassium carbonate ($430.0 \mathrm{mg}, 3.111 \mathrm{mmol}$), and 1,4-diazabicyclo[2.2.2]octane ($60 \mathrm{mg}, 0.5349 \mathrm{mmol}$) in DMSO (20.0 mL) was stirred at room temperature for 15 hours . The reaction was diluted with water and extracted with ethyl acetate. The combined extracts were washed
with brine and dried over sodium sulfate and evaporated. The residue was purified by silica gel column chromatography with 100% hexanes to 20% ethyl acetate in hexanes to afford tert-butyl 2-chloro-6-[3-(2,2-dicyclopropylethoxy)pyrazol-1 -yl]pyridine-3carboxylate ($680 \mathrm{mg}, 66 \%$) as colorless oil. ESI-MS m/z calc. 403. 16626, found 404.4 $(\mathrm{M}+\mathrm{l})^{+}$; Retention time: 2.49 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.35(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H})$, $0.92-0.75(\mathrm{~m}, 2 \mathrm{H}), 0.70-0.56(\mathrm{~m}, 1 \mathrm{H}), 0.54-0.36(\mathrm{~m}, 4 \mathrm{H}), 0.32-0.13(\mathrm{~m}, 4 \mathrm{H})$.

Step 4: 2-Chloro-6-[3-(2, 2-dicyclopropylethoxy) pyrazol-l-yl] pyridine-3carboxylic acid

A solution of teri-butyl2-chloro-6-[3-(2,2-dicyclopropylethoxy)pyrazol-l-yl]pyridine-3carboxylate ($675 \mathrm{mg}, 1.671 \mathrm{mmol}$) in trifluoroacetic acid ($1.5 \mathrm{~mL}, 19.47 \mathrm{mmol}$) and dichloromethane (4.5 mL) was stirred for 4 hours at room temperature. The solvent was evaporated, and twice the residue was taken up in THF and concentrated under vacuum to afford 2-chloro-6-[3-(2, 2-dicyclopropylethoxy) pyrazol-l-yl] pyridine-3-carboxylic $\operatorname{acid}(580 \mathrm{mg}, 100 \%)$. ESI-MS m/z calc. 347. 10367, found $348.3(\mathrm{M}+\mathrm{l}){ }^{+}$; Retention time: 1.95 minutes.

Step 5: 2-Chloro-6-[3-(2,2-dicyclopropylethoxy)pyrazol-l-yl]-N-(l,3-dimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide

A solution of 2-chloro-6-[3-(2,2-dicyclopropylethoxy)pyrazol-1-yl]pyridine-3carboxylic acid ($100 \mathrm{mg}, 0.2875 \mathrm{mmol}$) and carbonyl diimidazole ($60 \mathrm{mg}, 0.3700$ mmol) in THF (2 mL) was stirred for 45 minutes. Then 1,3-dimethylpyrazole-4sulfonamide ($60.0 \mathrm{mg}, 0.3424 \mathrm{mmol}$) and 2,3,4,6,7,8,9,10-octahydropyrimido[1,2ajazepine ($60 \mu \mathrm{~L}, 0.4012 \mathrm{mmol}$) were added, and the reaction mixture was stirred for additional 2 hr at room temperature. The reaction mixture was quenched with saturated ammonium chloride solution and extracted with ethyl acetate. The combined extracts were washed with brine, dried over sodium sulfate and evaporated to afford 2-chloro-6-[3-(2,2-dicyclopropylethoxy)pyrazol-1-yl]-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide which was used as is for the next reaction. ESI-MS m/z calc. 504.13464, found $505.5(\mathrm{M}+1)+$; Retention time: 0.73 minutes.

Step 6: 6-[3-(2,2-Dicyclopropylethoxy)pyrazol-l-yl]-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide

A mixture of 2-chloro-6-[3-(2,2-dicyclopropylethoxy)pyrazol-1-yl]-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide ($140.0 \mathrm{mg}, 0.2772 \mathrm{mmol}$), (4S)-2,2,4-trimethylpyrrolidine (hydrochloride salt) $(125.0 \mathrm{mg}, 0.8352 \mathrm{mmol})$, and potassium carbonate ($230.0 \mathrm{mg}, 1.664 \mathrm{mmol}$) in DMSO (2.0 mL) was stirred at $130^{\circ} \mathrm{C}$ for 15 hours. The reaction mixture was filtered and purified using a reverse phase HPLC-MS method with a dual gradient run from $50-99 \%$ acetonitrile in 5 mM HCI to afford 6-[3-(2,2-dicyclopropylethoxy)pyrazol-l-yl]-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxarnide ($50.1 \mathrm{mg}, 31 \%$). ESI-MS m/z calc. 581.27844 , found $582.5(\mathrm{M}+1)+$; Retention time: 2.2 minutes. ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.32(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.07(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{dd}, \mathrm{J}=10.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, \mathrm{J}=10.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dt}, \mathrm{J}$ $=15.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{dd}, \mathrm{J}=12.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dd}, \mathrm{J}=12.4,9.5$
$\mathrm{Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.76(\mathrm{~m}, 2 \mathrm{H}), 0.67-$ $0.57(\mathrm{~m}, 1 \mathrm{H}), 0.53-0.38(\mathrm{~m}, 4 \mathrm{H}), 0.31-0.11(\mathrm{~m}, 4 \mathrm{H})$.

6-[3-(2,2-dicyclopropylethoxy)pyrazol-l-yl]-N-(1,5-dimethylpyrazol-4-yl)sulfonyl-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (Compound 33)

Step 1: 2-Chloro-6-[3-(2,2-dicyclopropylethoxy)pyrazol-I-yl]-N-(1,5-dimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide

A solution of 2-chloro-6-[3-(2,2-dicyclopropylethoxy)pyrazol-1-yl]pyridine-3carboxylic acid ($50 \mathrm{mg}, 0.1438 \mathrm{mmol}$) and carbonyl diimidazole ($30 \mathrm{mg}, 0.1850 \mathrm{mmol}$) in THF (2 mL) was stirred for 45 minutes. Then, 1,5 -dimethylpyrazole-4-sulfonamide ($30 \mathrm{mg}, 0.1712 \mathrm{mmol}$) and 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine ($30 \mu \mathrm{~L}$, 0.2006 mmol) were added, and the reaction mixture was stirred for an additional 2 hr at room temperature. The reaction mixture was quenched with saturated ammonium chloride solution and extracted with ethyl acetate. The combined extracts were washed with brine, dried over sodium sulfate and evaporated to give 2 -chloro-6-[3-(2,2-dicyclopropylethoxy)pyrazol-l-yl]-N-(1,5-dimethylpyrazol-4-yl)sulfonyl-pyridine-3carboxamide which was used as is for the next reaction. ESI-MS m/z calc. 504. 13464, found $505.5(\mathrm{M}+1)+$; Retention time: 0.74 minutes.

Step 2: 6-[3-(2,2-Dicyclopropylethoxy)pyrazol-l-yl]-N-(1,5-dimethylpyrazol-4-yl)sulfonyl-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide

A mixture of 2-chloro-6-[3-(2,2-dicyclopropylethoxy)pyrazol-1-yl]-N-(1,5-dimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide $\quad(72.0 \mathrm{mg}, 0.1426 \mathrm{mmol}$), (4S)-2,2,4-trimethylpyrrolidine (hydrochloride salt) $(72.0 \mathrm{mg}, 0.4811 \mathrm{mmol})$, and potassium carbonate ($120.0 \mathrm{mg}, 0.8683 \mathrm{mmol}$) in DMSO ($2.0 \mu \mathrm{I}$) was stirred at $130{ }^{\circ} \mathrm{C}$ for 15 hours. The reaction mixture was filtered and purified using a reverse phase HPLC-MS method with a dual gradient run from $50-99 \%$ acetonitrile in 5 mM HCI to afford 6-[3-(2,2-dicyclopropylethoxy)pyrazol-l-yl]-N-(1,5-dimethylpyrazol-4-yl)sulfonyl-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxarnide (33.6 mg, 41\%). ESI-MS m/z calc. 581.27844 , found $582.5(\mathrm{M}+1)+$; Retention time: 2.2 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.32(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.07(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{dd}, \mathrm{J}=10.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, \mathrm{J}=10.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dt}, \mathrm{J}$ $=15.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{dd}, \mathrm{J}=12.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dd}, \mathrm{J}=12.4,9.5$ Hz, 1H), $1.36(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.76(\mathrm{~m}, 2 \mathrm{H}), 0.67-$ $0.57(\mathrm{~m}, 1 \mathrm{H}), 0.53-0.38(\mathrm{~m}, 4 \mathrm{H}), 0.31-0.11(\mathrm{~m}, 4 \mathrm{H})$.

Synthesis of 6-[3-(3,3-dicyclopropylpropoxy)pyrazol-l-yl]-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide
(Compound 38)

3, 3-Dicyclopropylpropan-1-ol

To a solution of 3, 3-dicyclopropylpropanoic acid ($200 \mathrm{mg}, 1.297 \mathrm{mmol}$) in dry THF $(2.000 \mathrm{~mL})$ was added lithium aluminum hydride $(845.0 \mu \mathrm{~L}$ of $2 \mathrm{M}, 1.690 \mathrm{mmol})$ in an ice/water bath under nitrogen atmosphere slowly drop wise. The mixture was allowed to gradually warm to room temperature and stirred for 16 hours. The flask was again cooled in an ice-bath and sequentially quenched with water ($70.0 \mu \mathrm{~L}, 3.886 \mathrm{mmol}$) (slowly), followed by $\mathrm{NaOH}(70.0 \mu \mathrm{i}$, of $6 \mathrm{M}, 0.4200 \mathrm{mmol}$), then water ($200 \mu \mathrm{~L}, 11.10$ mmol) affording a white granular solid in the mixture. To this mixture anhydrous magnesium sulfate was added and stirred for 10 minutes. The resultant white heterogeneous mixture was filtered through Celite, and the precipitate was washed with ether. The filtrate was concentrated to afford 3, 3-dicyclopropylpropan-1-ol (140 mg, $77 \%)$. ESI-MS m/z calc. 140.12012 , found $141.2(\mathrm{M}+1)^{+}$; Retention time: 0.5 minutes.

Step 1: tert-Butyi 3-(3, 3-dicyclopropylpropoxy) pyrazole-I-carboxylate

A solution of 3, 3-dicyclopropylpropan-1 -ol ($140.0 \mathrm{mg}, 0.9984 \mathrm{mmol}$), tert-butyl 3-hydroxypyrazole-1 -carboxylate ($185.0 \mathrm{mg}, 1.004 \mathrm{mmol}$), and triphenylphosphane (278 $\mathrm{mg}, 1.060 \mathrm{mmol})$ in dry THF (7.0 mL) was cooled in an ice bath, and DIAD ($200.0 \mu \mathrm{~L}$, 1.016 mmol) was slowly added under a nitrogen atmosphere. The reaction was allowed to slowly warm to room temperature and was stirred for 16 hours. The reaction mixture was diluted with ethyl acetate, washed with saturated aqueous sodium bicarbonate solution, brine, dried over sodium sulfate, and evaporated under vacuum. The residue was purified by silica gel chromatography using 100% hexanes to 50% ethyl acetate in hexanes to afford tert-butyl 3-(3,3-dicyclopropylpropoxy)pyrazole-1-carboxylate (255 $\mathrm{mg}, 83 \%$) as colorless oil. ESI-MS m/z calc. 306. 19434, found $307.4(\mathrm{M}+\mathrm{l})^{+}$;

Retention time: 0.81 minutes.
Step 2: 3-(3, 3-Dicyclopropylpropoxy)-lH-pyrazole

A solution of tert-butyl 3-(3, 3-dicyclopropylpropoxy) pyrazole-1-carboxylate (255 mg , $0.8322 \mathrm{mmol})$ and trifluoroacetic acid $(325.0 \mu \mathrm{~L}, 4.218 \mathrm{mmol})$ in dichloromethane (1 mL) was stirred for 2.5 hours. The volatiles were removed under vacuum to afford 3-(3, 3-dicyclopropylpropoxy)-1H-pyrazole (trifiuoroacetate salt) as colorless oil which was used as it is without further purification for next reaction. ESI-MS m/z calc. 206. 1419, found $207.2(\mathrm{M}+1)^{+}$; Retention time: 0.59 minutes.

Step 3: tert-Butyi 2-chloro-6-[3-(3, 3-dicyclopropylpropoxy) pyrazol-l-yl] pyridine-3-carboxylate

A mixture of tert-butyl 2,6-dichloropyridine-3-carboxylate ($220.0 \mathrm{mg}, 0.8867 \mathrm{mmol}$), 3-(3,3-dicyclopropylpropoxy)-1H-pyrazole $(266.0 \mathrm{mg}, 0.8305 \mathrm{mmol})$, potassium carbonate $(230 \mathrm{mg}, 1.664 \mathrm{mmol})$ and 1,4-diazabicyclo[2.2.2]octane $(20 \mathrm{mg}, 0.1783$ $\mathrm{mmol})$ in DMSO $(10 \mathrm{~mL})$ was stirred at room temperature for 15 hours. The reaction was diluted with water and extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over sodium sulfate and evaporated. The residue was purified by silica gel column chromatography using 100% hexanes to 20% ethyl acetate in hexanes to afford tert-butyl 2-chloro-6-[3-(3,3-dicyclopropylpropoxy)pyrazol-1-yl]pyridine-3-carboxylate ($245 \mathrm{mg}, 71 \%$) as colorless oil. ESI-MS m/z calc. 417.18192, found $418.4(\mathrm{M}+1)^{+}$; Retention time: 1.28 minutes.

Step 4: 2-Chloro-6-[3-(3, 3-dicyclopropylpropoxy) pyrazol-l-yl] pyridine-3carboxylic acid

A solution of tert-butyl 2-chloro-6-[3-(3, 3-dicyclopropylpropoxy) pyrazol-1yl] pyridine-3-carboxy late $(245.0 \mathrm{mg}, 0.5862 \mathrm{mmol})$ in trifluoroacetic acid $(500.0 \mu \mathrm{~L}$, $6.490 \mathrm{mmol})$ and dichloromethane $(1.5 \mathrm{~mL})$ was stirred for 4 hours at room temperature. The solvent was evaporated, and twice the residue was taken up in THF and concentrated under vacuum to afford 2-chloro-6-[3-(3,3-dicyclopropylpropoxy)pyrazol-l-yl]pyridine-3-carboxylic acid (204 mg, 96\%) as white solid which was used as it is for the next reaction. ESI-MS m/z calc. 361.1 1932, found $362.3(\mathrm{M}+1)^{+}$; Retention time: 0.8 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol-d4) $\delta 8.47-8.32(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03$ $(\mathrm{d}, \mathrm{J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.75-0.64(\mathrm{~m}$, $2 H), 0.50-0.39(\mathrm{~m}, 4 \mathrm{H}), 0.35-0.26(\mathrm{~m}, 1 \mathrm{H}), 0.26-0.19(\mathrm{~m}, 2 \mathrm{H}), 0.15-0.06(\mathrm{~m}, 2 \mathrm{H})$.

Step 5: 2-Chloro-6-[3-(3,3-dicyclopropylpropoxy)pyrazol-l-yl]-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide

A solution of 2-chloro-6-[3-(3,3-dicyclopropylpropoxy)pyrazol-1-yl]pyridine-3carboxylic acid ($50 \mathrm{mg}, 0.1382 \mathrm{mmol}$) and carbonyl diimidazole ($30.0 \mathrm{mg}, 0.1850$ mmol) in THF (1.000 mL) was stirred for 45 minutes. Then 1,3-dimethylpyrazole-4sulfonamide ($30.0 \mathrm{mg}, 0.1712 \mathrm{mmol}$) and $2,3,4,6,7,8,9,10$-octahydropyrimido[1,2ajazepine ($30.0 \mu \mathrm{~L}, 0.2006 \mathrm{mmol}$) were added, and the reaction mixture was stirred for additional 2 hr at room temperature. The reaction mixture was quenched with saturated ammonium chloride solution and extracted with ethyl acetate. The combined extracts were washed with brine, dried over sodium sulfate and evaporated to afford 2-chloro-6-[3-(3,3-dicyclopropylpropoxy)pyrazol-1 -yl]-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide ($70 \mathrm{mg}, 98 \%$) which was used as is for the next reaction. ESIMS m/z calc. 518.1503 , found $519.5(\mathrm{M}+\mathrm{l})+$; Retention time: 0.78 minutes.

Step 6: 6-[3-(3,3-Dicyclopropylpropoxy)pyrazol-l-yl]-N-(l,3-dimethylpyrazol-4-yl)sulfonyl-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide

A mixture of 2-chloro-6-[3-(3,3-dicyclopropylpropoxy)pyrazol-1-yl]-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide ($70.0 \mathrm{mg}, 0.1349 \mathrm{mmol}$), (4S)-2,2,4-trimethylpyrrolidine (hydrochloride salt) $(70.08 \mathrm{mg}, 0.4683 \mathrm{mmol})$, and potassium carbonate ($112.0 \mathrm{mg}, 0.8104 \mathrm{mmol}$) in DMSO (1 mL) was stirred at $130{ }^{\circ} \mathrm{C}$ for 15 hours. The reaction mixture was filtered and purified using a reverse phase HPLC- MS method with a dual gradient run from $50-99 \%$ acetonitrile in $5 \mathrm{mM} \mathrm{HC1}$ to afford 6-[3-
(3,3-dicyclopropylpropoxy)pyrazol-l-yl]-N-(l,3-dimethylpyrazol-4-yl)sulfonyl-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide $\quad(34.7 \mathrm{mg}, 43 \%)$. ESI-MS m/z calc. 595.29407, found $596.6(\mathrm{M}+1)+$; Retention time: 2.42 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.34(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.07(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{dd}, \mathrm{J}=10.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, \mathrm{J}=10.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{q}, \mathrm{J}=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{dd}, \mathrm{J}=12.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.71$ $(\mathrm{dd}, \mathrm{J}=12.4,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.73-$ $0.60(\mathrm{~m}, 2 \mathrm{H}), 0.48-0.38(\mathrm{~m}, 4 \mathrm{H}), 0.39-0.27(\mathrm{~m}, 1 \mathrm{H}), 0.23-0.16(\mathrm{~m}, 2 \mathrm{H}), 0.16-0.07$ ($\mathrm{m}, 2 \mathrm{H}$).

Synthesis of 6-[3-(Cyclopropoxy)pyrazol-l-yl]-A^-(l-methylpyrazol-4-yl)sulfonyl-2-[(4S)-2,2,4-tir methylpyrrolidin-l-yl]pyi dine-3-carboxamide (Compound 22)

Step 1: tert-Butyl 3-cyclopropoxy-l \boldsymbol{H}-pyrazole-l-carboxylate

To a solution of cyclopropanol ($30.8 \mathrm{mg}, 0.531 \mathrm{mmol}$), tert-butyl 2,3-dihydro-3-oxopyrazole-1-carboxylate $(97.7 \mathrm{mg}, 0.531 \mathrm{mmol})$ and triphenylphosphine $(139.3 \mathrm{mg}$, 0.531 mmol) in anhydrous toluene (2 mL) was added di-tert-butyl azodicarboxylate ($122.2 \mathrm{mg}, 0.531 \mathrm{mmol}$). The solution was purged with argon for 1 minute, and stirred at ambient temperature for 30 minutes. Then the reaction solution was heated at $110{ }^{\circ} \mathrm{C}$ for additional 5 hours before it was cooled to ambient temperature. The solution was
diluted with ether (50 mL), washed with NaOH aqueous solution, brine, dried over sodium sulfate, filtered and concentrated under the reduced pressure. Residue obtained was purified by silica gel chromatography (hexane and ethyl acetate, 0 to 10% ethyl acetate gradient) to afford tert-butyl 3-cyclopropoxy-l H-pyrazole-l-carboxylate (52 $\mathrm{mg}, 46 \%$) as a white solid. ESI-MS m/z calc. 224.116, found $225.0(\mathrm{M}+1)^{+}$; Retention time: 4.38 minutes. $3 / 4 \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta(\mathrm{ppm}) 7.86(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ $(\mathrm{d}, \mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.15(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H}), 0.85-0.72(\mathrm{~m}, 4 \mathrm{H})$.

Step 2: 3-Cyclopropoxy-l \boldsymbol{H}-pyrazole

To a solution of tert-butyl 3-cyclopropoxy-1 H-pyrazole-l-carboxylate (131 mg, 0.584 mmol) in dichloromethane (6 mL) was added TFA ($667 \mathrm{mg}, 0.38 \mathrm{~mL}, 5.84 \mathrm{mmol}$). The resulting solution was stirred at ambient temperature for 3 hours. All solvents were removed under the reduced pressure. The residue obtained was dissolved in ether (100 mL), washed with saturated sodium bicarbonate aqueous solution, dried over magnesium sulfate, filtered and concentrated under the reduced pressure to afford 3-cyclopropoxy-l H-pyrazole as a pale yellow oil. Crude product obtained was directly used in next step.

Step 3: tert-Butyi 2-chloro-6-(3-cyclopropoxy-l H-pyrazole-I-yl)pyridine-3carboxylate

Crude 3-cyclopropoxy-l H-pyrazole ($73 \mathrm{mg}, 0.584 \mathrm{mmol}$), tert-butyl 2,6-dichloro
 DABCO (13 mg, 0.117 mmol) were dissolved in anhydrous DMF (1.5 mL). The reaction solution was stirred at ambient temperature for 16 hours. The reaction solution
was diluted with ether $(100 \mathrm{~mL})$, washed with water $(3 \times 25 \mathrm{~mL})$ and brine $(25 \mathrm{~mL})$. Organic layers were separated, dried over magnesium sulfate, filtered and concentrated under the reduced pressure. Residue obtained was purified by silica gel chromatography (hexane and dichloromethane, 0 to 100% dichloromethane gradient) to afford tert-butyl 2-chloro-6-(3-cyclopropoxy-1 H -pyrazole-1 -yl)pyridine-3-carboxylate ($153 \mathrm{mg}, 78 \%$) as a sticky oil. ESI-MS m/z calc. 335 . 104, found $336.1(\mathrm{M}+\mathrm{l})^{+}$; Retention time: 6.84 minutes.

Step 4: 2-Chloro-6-(3-cyclopropoxy-l H-pyrazole-l-yl)pyridine-3-carboxylic acid

To a solution of tert-butyl 2-chloro-6-(3-cyclopropoxy-1 H-pyrazole-1-yl)pyridine-3carboxylate ($153 \mathrm{mg}, 0.456 \mathrm{mmol}$) in dichloromethane $(2.2 \mathrm{~mL})$ was added TFA (519 $\mathrm{mg}, 0.35 \mathrm{~mL}, 4.56 \mathrm{mmol}$). The resulting solution was stirred at ambient temperature for 48 hours. Then 1,2-dichloroethane (2 mL) was added, and all solvents were removed under the reduced pressure. The white solid obtained was suspended in the mixture of hexane and ether (10 mL , hexane/ether, 19/1), sonicated, filtered, washed with hexane $(10 \mathrm{~mL})$ and dried to afford 2-chloro-6-(3-cyclopropoxy-1 H-pyrazole-1-yl)pyridine-3carboxylic acid ($122 \mathrm{mg}, 97 \%$) as a white solid. ESI-MS m/z calc. 279.041, found $279.9(\mathrm{M}+1)^{+}$; Retention time: 4.43 minutes.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) $\delta(\mathrm{ppm}) 13.6(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}$, $\mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.13(\mathrm{~m}, 1 \mathrm{H})$, 0.79-0.71 (m, 4H).

Step 5: 2-Chloro-6-[3-(cyclopropoxy)pyrazol-I-yl]-A/-(1-methylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide

2-Chloro-6-[3-(cyclopropoxy)pyrazol-1 -yl]pyridine-3-carboxylic acid ($25 \mathrm{mg}, 0.08939$ mmol) in DMF (0.5 mL), 1-methylpyrazole-4-sulfonamide ($24 \mathrm{mg}, 0.1489 \mathrm{mmol}$),

HATU ($70 \mathrm{mg}, 0.1841 \mathrm{mmol}$), and DIEA ($32 \mu \mathrm{~L}, 0.1837 \mathrm{mmol}$) were combined and stirred at room temperature for 16 hours. The reaction mixture was filtered and purified on reverse phase HPLC (Waters, $\mathrm{HCl}, 25-75 \% \mathrm{ACN}^{2} \mathrm{H}_{2} \mathbf{0}$) to give 2-chloro-6-[3-(cyclopropoxy)pyrazol-1-yl]-N-(l-methylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide (25 mg). Used directly in next step.

Step 6: 6-[3-(Cyclopropoxy)pyrazol-l-yl]-A^-(l-methylpyrazol-4-yl)sulfonyl-2-[(4.S)-

2,2,4-trimethylpy rrolidin-1-yl] pyridine-3-carboxamide

A mixture of 2-chloro-6-[3-(cyclopropoxy)pyrazol-l-yl]-N-(l-methylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide (25 mg), (45)-2,2,4-trimethylpyrrolidine (hydrochloride salt) ($20 \mathrm{mg}, 0.1336 \mathrm{mmol}$), cesium fluoride ($30 \mathrm{mg}, 0.1975 \mathrm{mmol}$), potassium carbonate ($60 \mathrm{mg}, 0.4341 \mathrm{mmol}$) in DMSO (0.5 mL) was stirred at $140{ }^{\circ} \mathrm{C}$ for 16 hours. The reaction was filtered and purified on reverse phase HPLC (Waters, $\mathrm{HCl}, 25-75 \% \mathrm{ACN}-\mathrm{H}_{2} \mathbf{0}$) to give 6-[3-(cyclopropoxy)pyrazol-1-yl]-N-(l-methylpyrazol-4-yl)sulfonyl-2-[(4^-2,2,4-trimethylpyiTolidin-l-yl]pyridine-3-carboxamide $\quad(8.3 \mathrm{mg}$, 18%). ESI-MS m/z calc. 499.20016, found $500.0(\mathrm{M}+\mathrm{l})+$; Retention time: 1.69 minutes. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 12.39(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.89(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.10(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 1 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 1 \mathrm{H})$, $1.55(\mathrm{~d}, \mathrm{~J}=17.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.44(\mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.80(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~s}$, 4H).

Synthesis of N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-(spiro[2.2]pentan-2-ylmethoxy)pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3carboxamide (Compound 26)

Step 1: spiro[2.2]Pent-1-yl-methanol

To a suspension of lithium aluminum hydride ($888 \mathrm{mg}, 23.4 \mathrm{mmol}$) in tetrahydrofuran $(30 \mathrm{~mL})$ was added spiro[2.2]pentane-1-carboxylic acid $(1.75 \mathrm{~g}, 15.6 \mathrm{mmol})$ in tetrahydrofuran (5 mL) dropwise over 5 minutes. The reaction was heated to $50{ }^{\circ} \mathrm{C}$ for 16 hours. The reaction was diluted with diethyl ether (20 mL) and quenched with solid sodium sulfate decahydrate. The mixture was diluted with diethyl ether (100 mL), filtered through celite pad and concentrated to give spiro [2.2]pent- 1-yl-methanol (793 $\mathrm{mg}, 52 \%$) as an oil. ESI-MS m/z calc. 98.15 found $98.8(\mathrm{M}+1)^{+}$. Retention time: 2.54 minutes.
${ }^{1} \mathrm{H}$ NMR (25OMHz, CDC13) ppm 0.58-0.89 (m, 4 H) 0.91-1.09 (m, 1 H) 1.20-1.37 (m, 1 H) $1.43(\mathrm{~m}, 1 \mathrm{H}) 3.60(\mathrm{dd}, \mathrm{J}=11.98,6.37 \mathrm{~Hz}, 2 \mathrm{H})$

Step 2: 3-(spiro[2.2]Pent-l-ylmethoxy)-pyrazole-l-carboxylic acid tert-butyl ester

To a solution of crude spiro[2.2]pent-l-yl-methanol (966 mg, 9.8 mmol$)$ in tetrahydrofuran $(40 \mathrm{~mL})$ was added triphenyl phosphine $(2.58 \mathrm{~g}, 9.8 \mathrm{mmol})$, 3-hydroxy-pyrazole-1-carboxylic acid tert-butyl ester $(1.64 \mathrm{~g}, 8.9 \mathrm{mmol})$. The reaction mixture was cooled in an ice bath followed by the addition of diisopropyl azodicarboxylate (1.9 mL , $9.8 \mathrm{mmol})$. The ice bath was removed and the reaction was stirred for 2 hours. The solvent was removed in vacuum and the crude mixture was purified by silica gel column chromatography using $10-20 \%$ hexanes-diethyl ether to give 3 -(spiro[2.2]pent-1-ylmethoxy)-pyrazole-l-carboxylic acid tert-butyl ester (1.20 g, 44\%) as a clear oil. ESIMS m/z calc. 264.33 found $265.1(\mathrm{M}+1)+$. Retention time: 3.36 minutes

Step 3: 3-(spiro[2.2]Pent-l-ylmethoxy)-lH-pyrazole

To 3-(spiro[2.2]pent-1-ylmethoxy)-pyrazole-1-carboxylic acid tert-butyl ester (1.2 g, $4.54 \mathrm{mmol})$ was added dichloromethane $(30 \mathrm{~mL})$ and trifluoroacetic acid ($3.4 \mathrm{~mL}, 45$ $\mathrm{mmol})$. The reaction mixture was stirred for 2 hours at room temperature and concentrated to dryness in vacuum. The residue was azeotroped twice with 1,2dichloroethane (15 mL) to give crude 3-(spiro[2.2]pent-l-ylmethoxy)-lH-pyrazole $\mathrm{g}, 51 \%$) as ayellow oil. ESI-MS m/z calc. 164.09 found 164.6 (M+1)+ . Retention time: 2.11 minutes

Step 4: 2-Chloro-6-[3-(spiro [2.2] pent-1-ylmethoxy) pyrazol-l-yl] -nicotinic acid methyl ester

To crude 3-(spiro[2.2]pent-l-ylmethoxy)-lH-pyrazole $\quad(1.87 \mathrm{~g}$, assumed 4.54 mmol$)$ was added methyl 2,6-dichloronicotinate ($935 \mathrm{mg}, 4.54 \mathrm{mmol}$), 1,4diazabicyclo[2.2.2]octane ($102 \mathrm{mg}, 0.91 \mathrm{mmol}$), dimethylformamide (8 mL) and potassium carbonate $(1.9 \mathrm{~g}, 13.6 \mathrm{mmol})$. The reaction was stirred for 48 hours at room temperature, diluted with diethyl ether $(75 \mathrm{~mL})$ and washed with water containing a small amount of brine ($3 \times 50 \mathrm{~mL}$) and brine $(50 \mathrm{~mL})$. This organic layer was dried over
sodium sulfate and concentrated in vacuum. The crude reaction mixture was purified by silica gel column chromatography using $0-15 \%$ hexanes:di ethyl ether to afford 2-chloro-6-[3-(spiro[2.2]pent-l-ylmethoxy) pyrazol-1 -yl]-nicotinic acid methyl ester (1.02 g, 67%) as an off-white solid. ESI-MS m/z calc. 333.09 found $333.9(\mathrm{M}+1)+$. Retention time: 3.85 minutes.

Step 5: 2-Chloro-6-[3-(spiro [2.2] pent-1-ylmethoxy)- pyrazol-l-yl] -nicotinic acid

To 2-Chloro-6-[3-(spiro[2.2]pent-1-ylmethoxy) pyrazol-l-yl] -nicotinic acid methyl ester ($990 \mathrm{mg}, 2.97 \mathrm{mmol}$) was added water $(6 \mathrm{~mL})$, methanol $(6 \mathrm{~mL})$ and tetrahydrofuran (6 mL) followed by lithium hydroxide ($285 \mathrm{mg}, 11.88 \mathrm{mmol}$). The reaction was stirred for 1 hour and 1 M hydrochloric acid (12 mL) was added. Formed white solid was filtered off, washed with water and hexanes to give 2-chloro-6-[3-(spiro[2.2]pent-l-ylmethoxy)-pyrazol-l-yl]-nicotinic acid (927 mg, 98\%) as a white solid. ESI-MS m/z calc. 319.07 found $320.0(\mathrm{M}+\mathrm{l})+$. Retention time: 3.25 minutes
${ }^{1} H$ NMR ($250 \mathrm{MHz}, \mathrm{CDC13}$) ppm : 0.76-0.88 (m, 5 H), 1.11-1.13 (m, 1H), 1.60-1.75 (m, 1H), 4.22 (dd, J=7.0, 3.3, Hz, 2H) $6.00(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 8.38 (d, J=2.5 Hz, 1H), 8.43 (d, J=8.5 Hz, 1H).

Step 6: 2-chloro-N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-(spiro[2.2]pentan-2-ylmethoxy)pyrazol- 1-yl] pyridine-3-carboxamide

2-chloro-6-[3-(spiro[2.2]pentan-2-ylmethoxy)pyrazol-l-yl]pyridine-3-carboxylic acid (approximately $50 \mathrm{mg}, 0.16 \mathrm{mmol}$) and carbonyl diimidazole (approximately 38 mg , 0.23 mmol) were combined in THF (1.5 mL) and stirred for 1 h . At this point, 1,5-
dimethylpyrazole-4-sulfonamide (approximately $28 \mathrm{mg}, 0.16 \mathrm{mmol}$) was added followed by DBU (approximately $70 \mu \mathrm{~L}, 0.47 \mathrm{mmol}$) and the reaction was stirred for an additional 3 h at room temperature. The reaction was diluted with ethyl acetate and washed with a 1 M citric acid solution, followed by brine. The organics were separated, dried over sodium sulfate, and evaporated. The crude material was used without further purification. 2-chloro-N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-(spiro[2.2]pentan-2-ylmethoxy)pyrazol-l-yl]pyridine-3-carboxamide ($75 \mathrm{mg}, 98 \%$) ESI-MS m / z calc. 476.10336, found $477.2(\mathrm{M}+1)^{+}$; Retention time: 0.67 minutes.

Step 7: N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6- [3-(spiro [2.2] pentan-2-ylmethoxy)pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3carboxamide

2-chloro-N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-(spiro[2.2]pentan-2-ylmethoxy)pyrazol-l-yl]pyridine-3-carboxamide ($75 \mathrm{mg}, 0.16 \mathrm{mmol}$), (45)-2,2,4trimethylpyrrolidine (Hydrochloride salt) (approximately $70.63 \mathrm{mg}, 0.4719 \mathrm{mmol}$), and potassium carbonate (approximately $108.7 \mathrm{mg}, 0.7865 \mathrm{mmol}$) were combined in DMSO $(1 \mathrm{~mL})$ and heated at $130{ }^{\circ} \mathrm{C}$ for 16 h . The reaction was diluted with water (3 mL) and stirred for 20 min . A solid formed and the aqueous liquid was decanted. The solid was dissolved in ethyl acetate and washed with a 1 M citric acid solution, then brine. The organics were dried over sodium sulfate and evaporated. The crude material was purified by silica gel chromatography eluting with $0-10 \%$ methanol in dichloromethane to giveN-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-(spiro[2.2]pentan-2-
ylmethoxy)pyrazol-l-yl]-2-[(4S)-2,2,44rimethylpyrrolidin-l-yl]pyridine-3-carboxamide ($35 \mathrm{mg}, 40.19 \%$). ESI-MS m/z calc. 553.24713 , found $554.3(\mathrm{M}+\mathrm{l})^{+}$; Retention time: 2.07 minutes.

Synthesis of A^-(1,5-Dimethylpyrazol-4-yl)sulfonyl-6-[3-[(3-fluoro-l-

bicyclo [1.1.1]pentanyl)methoxy] pyrazol- 1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-I-yl]pyridine-3-carboxamide (Compound 27)

Step 1: tert-Butyl 3-[(3-fluoro-I-bicyclo[1.1.I]pentanyl)methoxy]pyrazole-Icarboxylate

A solution of (3-fluoro-l-bicyclo[1.1.1]pentanyl)methanol $\quad(0.27 \mathrm{~g}, 2.3 \mathrm{mmol})$, tert-butyl 3-hydroxypyrazole-l-carboxylate $(0.46 \mathrm{~g}, 2.5 \mathrm{mmol})$, and triphenyl phosphine (0.67 g , 2.6 mmol) in THF (12 mL) was cooled in an ice bath, and isopropyl N isopropoxycarbonyliminocarbamate ($0.50 \mathrm{~mL}, 2.6 \mathrm{mmol}$) was slowly added. The reaction was allowed to slowly warm to room temperature and was stirred for three days. It was diluted with ethyl acetate, washed with saturated aqueous sodium bicarbonate, dried over sodium sulfate, and evaporated under vacuum. The residue was purified by silica gel chromatography with $0-40 \%$ ethyl acetate in hexanes to give tertbutyl 3-[(3-fluoro-l-bicyclo[1.1.1]pentanyl)methoxy]pyrazole-l-carboxylate $\quad(0.43 \mathrm{~g}$, $66 \%)$ ESI-MS m / z calc. 282.13797, found $283.3(\mathrm{M}+1)^{+}$; Retention time: 0.65 minutes.

Step 2: 3-[(3-Fluoro-l-bicyclo[1.II]pentanyl)methoxy]-IH-pyrazole

A solution of tert-butyl 3-[(3-fluoro-l-bicyclo[1.1.1]pentanyl)methoxy]pyrazole-1carboxylate $(0.43 \mathrm{~g}, 1.523 \mathrm{mmol})$ and trifluoroacetic $\operatorname{acid}(587 \mu \mathrm{~L}, 7.62 \mathrm{mmol})$ in dichloromethane (4 mL) was stirred for 5 hours. The volatiles were removed under vacuum, and the residue was basified with saturated aqueous sodium bicarbonate and extracted with ethyl acetate. The combined extracts were dried over sodium sulfate and evaporated to give 3-[(3-fluoro-l-bicyclo[l.1.1]pentanyl)methoxy]-lH-pyrazole (0.28 g, 100%) ESI-MS m/z calc. 182.08554, found $183.1(\mathrm{M}+1)^{+}$; Retention time: 0.39 minutes.

Step 3: tert-Butyl 2-chloro-6-[3-[(3-fluoro-lbicyclo [1.1.1] pentanyl)methoxy] py razol-1-yl] pyridine-3-carb oxylate

A mixture of 3-[(3-fluoro-l-bicyclo[1.1.1]pentanyl)methoxy]-lH-pyrazole $\quad(0.28 \mathrm{~g}, 1.5$ mmol), tert-butyl 2,6-dichloropyridine-3-carboxylate ($0.38 \mathrm{~g}, 1.5 \mathrm{mmol}$), potassium carbonate ($0.26 \mathrm{~g}, 1.9 \mathrm{mmol}$), and 1,4-diazabicyclo[2.2.2]octane ($34 \mathrm{mg}, 0.30 \mathrm{mmol}$) in DMSO (7.5 mL) was stirred at room temperature for 16 h . The reaction was diluted with water and extracted with ethyl acetate. The combined extracts were washed with brine and water, dried over sodium sulfate, and evaporated. The residue was purified by silica gel chromatography with $0-5 \%$ methanol in dichloromethane to give tert-butyl 2-chloro-6-[3-[(3-fluoro-l-bicyclo[1.1.1]pentanyl)methoxy]pyrazol-l-yl]pyridine-3carboxylate ($0.50 \mathrm{~g}, 85 \%$) ESI-MS m / z calc. 393.12555 , found $394.2(\mathrm{M}+\mathrm{l})^{+}$;

Retention time: 0.86 minutes.

Step 4: 2-Chloro-6-[3-[(3-fluoro-l-bicyclo[l.l.I]pentanyl)methoxy]pyrazol-I-

yl]pyridine-3-carboxylic acid

A solution of tert-butyl 2-chloro-6-[3-[(3-fluoro-1-
bicyclo[1.1.1]pentanyl)methoxy]pyrazol-l-yl]pyridine-3-carboxylate $\quad(0.50 \mathrm{~g}, 1.270$
$\mathrm{mmol})$ and trifluoroacetic acid ($978 \mu \mathrm{~L}, 12.7 \mathrm{mmol}$) in dichloromethane (6 mL) was stirred for 15 hours. The solvent was evaporated, and the residue was taken up in acetonitrile. The solvent was evaporated to give 2-chloro-6-[3-[(3-fluoro-1-bicyclo[1.1.1]pentanyl)methoxy]pyrazol-1-yl]pyridine-3-carboxylic acid ($0.43 \mathrm{~g}, 100 \%$) ESI-MS m/z calc. 337.06296, found $338.1(\mathrm{M}+\mathrm{l}){ }^{+}$; Retention time: 0.63 minutes
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.43(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 2.13(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 6 \mathrm{H})$.

Step 5: 2-Chloro-A^-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-[(3-fluoro-I-bicyclo[1.1.1]pentanyl)methoxylpyrazol-1-yl]pyridine-3-carboxamide

A solution of 2-chloro-6-[3-[(3-fluoro-1-bicyclo[1.1.1]pentanyl)methoxy]pyrazol-1-yl]pyridine-3-carboxylic acid ($0.10 \mathrm{~g}, 0.30 \mathrm{mmol}$) and carbonyl diimidazole (approximately $58 \mathrm{mg}, 0.36 \mathrm{mmol}$) in THF $(1.5 \mathrm{~mL})$ was stirred for 30 minutes, and 1,5-dimethylpyrazole-4-sulfonamide (approximately $68 \mathrm{mg}, 0.39 \mathrm{mmol}$) and 2,3,4,6,7, 8,9, 10-octahydropyrimido[1,2-a]azepine (approximately $55 \mathrm{mg}, 54 \mu \mathrm{~L}, 0.36$ mmol) were added. After 16 hours the reaction was diluted with 1 M aqueous citric acid and extracted with ethyl acetate. The combined extracts were washed with brine, dried over sodium sulfate and evaporated to give 2-chloro - N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-[(3-fluoro-1-bicyclo[1.1.1]pentanyl)methoxy]pyrazol-1-yl]pyridine-3carboxamide $(0.18 \mathrm{~g})$. The material was taken on to the next step as-is.

Step 6: A^-(1,5-Dimethylpyrazol-4-yl)sulfonyl-6-[3-[(3-fluoro-l-
bicyclo [1.1.1]pentanyl)methoxy] pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-I-yl]pyridine-3-carboxamide

A mixture of crude 2-chloro - N -(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-[(3-fluoro-1-bicyclo[1.1.1]pentanyl)methoxy]pyrazol-1-yl]pyridine-3-carboxamide $\quad(0.15 \mathrm{~g}, 0.3031$ mmol), (45)-2,2,4-trimethylpyrrolidine (hydrochloride salt) (approximately 136.1 mg , 0.9093 mmol), and potassium carbonate (approximately $251.4 \mathrm{mg}, 1.819 \mathrm{mmol}$) in DMSO (1.515 mL) was stirred at $130{ }^{\circ} \mathrm{C}$ for 15 hours. The reaction was filtered and purified by reverse-phase HPLC-MS ($30 \%-99 \%$ acetonitrile / water $(5 \mathrm{mM} \mathrm{HCl})$) to give N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-[(3-fluoro-1-
bicy clo [1.1.1Jpentany l)methoxy Jpyrazol- 1-y 1]-2-[(45)-2,2,4-trimethy lpyrrolidin- 1-yl]pyridine-3-carboxamide ($51 \mathrm{mg}, 29 \%$) as a colorless solid. ESI-MS m/z calc. 571.23773, found $572.4(\mathrm{M}+1)+$; Retention time: 2.01 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 8.20(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.72$ (d, J = 8.2
$\mathrm{Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, 2.60-2.54(m, 1H), 2.53(s, 3H), 2.46-2.37(m, 1H), 2.25-2.12(m, 1H), $2.08(\mathrm{~d}, \mathrm{~J}=$ $2.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.87(\mathrm{dd}, \mathrm{J}=11.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.43(\mathrm{t}, \mathrm{J}=12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 0.80(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of (S)-N-((1,3-Dimethyl-l \boldsymbol{H}-pyrazol-4-yl)sulfonyl)-6-(3-

(dispiro[2.0.2.1]heptan-7-ylmethoxy)- lH-pyrazol-l-yl)-2-(2,2,4-
trimethylpyrrolidin-l-yl)nicotinamide (Compound 28)

Step 1: tert-butyi 3-(dispiro [2.0.2.1]heptan-7-ylmethoxy)-lH-pyrazole-lcarboxylate

A solution of dispiro[2.0.2.1]heptan-7-yl methanol (1.36 g, 11.0 mmol) (Meijere, et al, Eur. J. Org. Chem. 2002, 485-492), tert-butyl 3-hydroxypyrazole-1-carboxylate (2.3 g, $12 \mathrm{mmol})$, and triphenyl phosphine $(3.2 \mathrm{~g}, 12 \mathrm{mmol})$ in THF $(28 \mathrm{~mL})$ was cooled in an ice bath, and diisopropyl azodicarboxylate (DIAD) ($2.4 \mathrm{~mL}, 12 \mathrm{mmol}$) was slowly dded. The cooling bath was removed, and the reaction was stirred for 15 hours. The reaction was diluted with ethyl acetate, washed with saturated aqueous sodium bicarbonate, dried over sodium sulfate, and evaporated under vacuum. The residue was purified by silica gel chromatography eluting with $0-20 \%$ ethyl acetate in hexanes to give tert-butyl 3-(dispiro[2.0.2.1]heptan-7-ylmethoxy)-lH-pyrazole-l-carboxylate ($1.57 \mathrm{~g}, 49 \%$ yield) as a colorless oil. ESI-MS m/z calc. 290.16306, found $291.3(\mathrm{M}+1)^{+}$; Retention time: 0.76 minutes.

Step 2: 3-(Dispiro[2.0.2.1]heptan-7-ylmethoxy)-1H-pyrazole

A solution of tert-butyl 3-(dispiro[2.0.2.1]heptan-7-yl methoxy)-l H-pyrazole-1carboxylate $(1.57 \mathrm{~g}, 5.41 \mathrm{mmol})$ and trifluoroacetic acid ($2.2 \mathrm{~mL}, 29 \mathrm{mmol}$) in dichloromethane (20 mL) was stirred for three hours. The volatiles were removed under vacuum, and the residue was basified with saturated aqueous sodium bicarbonate and extracted with ethyl acetate. The combined extracts were dried over sodium sulfate and evaporated to give 3-(dispiro[2.0.2.1]heptan-7-ylmethoxy)-1 H-pyrazole ($0.94 \mathrm{~g}, 91 \%$ yield) as pale yellow oil. ESI-MS m/z calc. 190.11061, found 191.1 (M+l)+; Retention time: 0.52 minutes

Step 3: Ethyl 2-chloro-6-(3-(dispiro[2.0.2.1]heptan-7-ylmethoxy)-l H-pyrazol-lyl)nicotinate

A mixture of 3-(dispiro[2.0.2.1]heptan-7-ylmethoxy)-1 H-pyrazole ($0.94 \mathrm{~g}, 4.9 \mathrm{mmol}$), ethyl 2,6-dichloropyridine-3-carboxylate ($1.15 \mathrm{~g}, 5.23 \mathrm{mmol}$), potassium carbonate $(0.83 \mathrm{~g}, 6.0 \mathrm{mmol})$, and 1,4-diazabicyclo[2.2.2]octane $(0.12 \mathrm{~g}, 1.1 \mathrm{mmol})$ in DMSO (16 mL) was stirred for 24 hours. The reaction was diluted with water and extracted with ethyl acetate. The combined extracts were washed with brine and water, dried over sodium sulfate, and evaporated under vacuum. The residue was purified by silica gel column chromatography eluting with $0-20 \%$ ethyl acetate in hexanes to give ethyl 2-chloro-6-(3-(dispiro[2.0.2.1]heptan-7-ylmethoxy)-l H-pyrazol-l-yl)nicotinate (1.39 g , 75% yield) as a colorless solid. ESI-MS m/z calc. 373.11932 , found $374.2(\mathrm{M}+\mathrm{l})+$; Retention time: 0.87 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.36(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.72 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-0.89(\mathrm{~m}, 4 \mathrm{H}), 0.75-$ 0.65 (m, 2H), 0.65-0.53 (m, 2H)

Step 4: 2-Chloro-6-[3-(dispiro[2.0.2.1]heptan-7-ylmethoxy)pyrazol-l-yl]pyridine-3carboxylic acid

A solution of ethyl 2-chloro-6-(3-(dispiro[2.0.2.1]heptan-7-ylmethoxy)-1 H-pyrazol-1$\mathrm{yl})$ nicotinate $(1.39 \mathrm{~g}, 3.72 \mathrm{mmol})$ and sodium hydroxide $(7.5 \mathrm{~mL}$ of 1 M solution, 7.5 $\mathrm{mmol})$ in THF (6 mL) and ethanol (3 mL) was stirred for 90 minutes. The volatiles were removed under vacuum, and water was added. The reaction was cooled in an ice bath, and hydrochloric acid (7.5 mL of 1 M solution, 7.5 mmol) was slowly added. The reaction was diluted with water and extracted with ethyl acetate. The combined extracts were washed with brine, dried over sodium sulfate, and evaporated to give 2-chloro-6-[3-(dispiro[2.0.2.1]heptan-7-ylmethoxy)pyrazol-l-yl]pyridine-3-carboxylic acid (1.16 g, 82% yield) as a colorless solid. ESI-MS m/z calc. 345.088 , found $346.1(\mathrm{M}+\mathrm{l})+$;

Retention time: 0.73 minutes. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.41$ (d, J = 2.9 Hz , $1 \mathrm{H}), 8.38(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}$,
$\mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.97-0.79(\mathrm{~m}, 4 \mathrm{H}), 0.76-0.66(\mathrm{~m}, 2 \mathrm{H}), 0.65-$ 0.56 (m, 2H)

Step 5: 2-Chloro-^-((1,3-dimethyl-l H-pyrazol-4-yl)sulfonyl)-6-(3-(dispiro[2.0.2.1]heptan-7-ylmethoxy)-1H-pyrazol-1-yl)nicotinamide

To 2-chloro-6-(3-(dispiro[2.0.2.1]heptan-7-ylmethoxy)-1 H-pyrazol-l-yl)nicotinic acid $(19.0 \mathrm{~g}, 54.95 \mathrm{mmol})$ in THF (250 mL) was slowly added CDI ($11.1 \mathrm{~g}, 68.5 \mathrm{mmol}$). The mixture was stirred at ambient temperature for two hours. Added additional CDI (1.0 g, 6.167 mmol) and stirred for one hour. To the activated ester was added 1,3-dimethylpyrazole-4-sulfonamide $(12.0 \mathrm{~g}, 68.5 \mathrm{mmol})$ portionwise followed by DBU $(12.3 \mathrm{~mL}, 82.2 \mathrm{mmol})$, and the mixture was stirred at ambient temperature for one hour. To the reaction mixture was slowly added citric acid ($61 \mathrm{~g}, 320 \mathrm{mmol}$) in water (500 $\mathrm{mL})$. The mixture was diluted with $\operatorname{EtOAc}(1.0 \mathrm{~L})$, and the aqueous phase was further acidified to $\sim \mathrm{pH} 1$ with 1 M hydrochloric acid. The organic phase was separated, washed with 300 mL of brine, dried over magnesium sulfate, filtered over Celite, and concentrated in vacuo. The product was crystalized using 80 mLEtOH and warming. To the solution was added 50 mL of water to the cloud point. The solution was warmed until homogenous and allowed to stand at ambient temperature for 16 hours, affording an off-white solid. To the mixture was added 200 mL of 50% aqueous EtOH , and the slurry was filtered. The solid was washed twice with 200 mL of 50% aqueous EtOH , air dried for three hours, then dried in vacuo at $45^{\circ} \mathrm{C}$ for 24 hours, affording an off-white solid, 2-chloro - N -((1,3-dimethyl-1 $\quad H$-pyrazol-4-yl)sulfonyl)-6-(3-
(dispiro[2.0.2.1]heptan-7-ylmethoxy)-l H-pyrazol-l-yl)nicotinamide ($25.49 \mathrm{~g}, 92 \%$). ESI-MS m/z calc. 502.119 , found $503.0(\mathrm{M}+1)+$; Retention time: 1.95 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 12.73(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, 8.08 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, \mathrm{~J}=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.95-0.84(\mathrm{~m}, 4 \mathrm{H})$, 0.76-0.65 (m, 2H), 0.65-0.54 (m, 2H).

Step 6: (S)-iv-((M-Dimethyl-l \boldsymbol{H}-pyrazol-4-yl)sulfonyl)-6-(3(dispiro [2.0.2.1]heptan-7-ylmethoxy)- $1 \boldsymbol{H}$-pyrazol-l-yl)-2-(2,2,4-trimethylpyrrolidin-l-yl)nicotinamide

To a solution of 2-chloro - N -((1,3-dimethyl-1 H-pyrazol-4-yl)sulfonyl)-6-(3-(dispiro[2O.2.1]heptan-7-ylmethoxy)-1 $\quad H$-pyrazol-1-yl)nicotinamide $\quad(2.0 \mathrm{~g}, 3.976$ mmol) and (45)-2,2,4-trimethylpyrrolidine (hydrochloride salt) ($2.0 \mathrm{~g}, 13 \mathrm{mmol}$) in NMP (10 mL) was added potassium carbonate ($2.9 \mathrm{~g}, 21 \mathrm{mmol}$). The slurry was heated at $130^{\circ} \mathrm{C}$ for 20 hours. The reaction was cooled to ambient temperature and added slowly to a rapidly stirred solution of $\mathrm{HCI}(7 \mathrm{~mL}$ of $6 \mathrm{M}, 42.00 \mathrm{mmol}$) in ice water (100 mL) affording an off-white slurry. The precipitate was collected and washed three times with 10 mL of water. The solid was air dried for one hour. The solid was dissolved in 50 mL of EtOAc, and the water was removed. The solvent was removed in vacuo, the oil dissolved in acetonitrile, and the crude product was chromatographed on a 415 g ISCO reverse-phase column eluting with $5-100 \%$ acetonitrile/water. Product fractions were collected and concentrated in vacuo affording an off-white foam, (5)-N-((1,3-Dimethyl-1H-pyrazol-4-yl)sulfonyl)-6-(3-(dispiro[2.0.2.1]heptan-7-ylmethoxy)-1 H-pyrazol-l-yl)-2-(2,2,4-trimethylpyrrolidin-l-yl)nicotinamide ($1.8 \mathrm{~g}, 75 \%$). ESI-MS m/z calc. 579.26276 , found $580.1(\mathrm{M}+\mathrm{l})+$; Retention time: 3.26 minutes.
${ }^{1}$ H NMR (400 MHz , DMSO-d6) $\delta 12.35$ ($\mathrm{s}, 1 \mathrm{H}$), 8.37 ($\mathrm{s}, 1 \mathrm{H}$), 8.18 (d, J = $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.73(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}$, $3 \mathrm{H}), 2.18(\mathrm{dq}, \mathrm{J}=11.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.42$ $(\mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.94-0.84(\mathrm{~m}, 4 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.75-0.66(\mathrm{~m}, 2 \mathrm{H})$, $0.63-0.56(\mathrm{~m}, 2 \mathrm{H})$.

Synthesis of (^)-^-((3-methyl-I H-pyrazol-4-yl)sulfonyl)-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)- IH -pyrazol- l-yl)-2-(2,2,4-trimethylpyrrolidin- l-yl)nicotinamide (Compound 31)

Step 1: 2-chloro-^-[(3-methyl-I \boldsymbol{H}-pyrazol-4-yl)sulfonyl]-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]pyridine-3-carboxamide

2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1 -yl]pyridine-3-carboxylic acid ($75 \mathrm{mg}, 0.2000 \mathrm{mmol}$) and carbonyl diimidazole (approximately $42.16 \mathrm{mg}, 0.2600$ mmol) were combined in THF (1.5 mL) and stirred for 2 h . At this point, 5 -methyl-1 H -pyrazole-4-sulfonamide (approximately $32.24 \mathrm{mg}, 0.2000 \mathrm{mmol}$) was added followed by DBU (approximately $101.4 \mathrm{mg}, 99.61 \mu \mathrm{~L}, 0.6658 \mathrm{mmol}$) and the reaction was stirred for an additional 2 h at room temperature. The reaction was diluted with ethyl acetate and washed with a 1 M citric acid solution, followed by brine. The organics were separated, dried over sodium sulfate, and evaporated. The crude material was purified by silica gel chromatography eluting with $0-10 \%$ methanol in dichloromethane to give 2-chloro - N-[(3-methyl-1 H -pyrazol-4-yl)sulfonyl]-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1 -yl]pyridine-3-carboxamide ($70 \mathrm{mg}, 69 \%$) ESI-MS m / z calc. 506.07507, found $507.1(\mathrm{M}+1)^{+}$; Retention time: 0.67 minutes.

Step 2: (.S)-^-((3-methyl-l H-pyrazol-4-yl)sulfonyl)-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1 H-pyrazol-1-yl)-2-(2,2,4-trimethylpyrrolidin- l-yl)nicotinamide

2-chloro - N-[(3-methyl-1 H-pyrazol-4-yl)sulfonyl]-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1 -yl]pyridine-3-carboxamide ($70 \mathrm{mg}, 0.1381 \mathrm{mmol}$), (45)-2,2,4trimethylpyrrolidine (Hydrochloride salt) (approximately $62.00 \mathrm{mg}, 0.4143 \mathrm{mmol}$), and potassium carbonate (approximately $95.43 \mathrm{mg}, 0.6905 \mathrm{mmol}$) were combined in DMSO $(1 \mathrm{~mL})$ and heated at $130^{\circ} \mathrm{C}$ for 16 h . The reaction was partitioned between ethyl acetate and a 1 M citric acid solution. The organics were separated, washed with brine,
dried over sodium sulfate and evaporated. The crude material was purified by silica gel chromatography eluting with $0-10 \%$ methanol in dichloromethane to give N-[(3-methyllH -pyrazol-4-yl)sulfonyl]-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]-2-[(45)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide (18 mg, 23\%). ESI-MS m / z calc. 583.2189 , found $584.3(\mathrm{M}+1)^{+}$; Retention time: 2.07 minutes .

Synthesis of (^)-^-((1,3-dimethyl-l H-pyrazol-4-yl)sulfonyl)-2-(2,2-dimethyl-4-(methyl-i/3)pyrrolidin-l-yl-3,3-i/2)-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-L \boldsymbol{H} -pyrazol-l-yl)nicotinamide (Compound 29)

Step 1: Methyl-d34-methyl-2-(methyl-i/3)-4-nitropentanoate-3,3-i/2

A $500-\mathrm{mL}$, three-neck round bottom flask equipped with a magnetic stir bar, a nitrogen line and a J-Kem thermocouple with heating mantle was charged with 2-nitropropane ($34.3 \mathrm{~g}, 385 \mathrm{mmol}$), c3/4-methyl methacrylate $(50.0 \mathrm{~g}, 460 \mathrm{mmol}$), and was stirred at ambient temperature when 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, $1.47 \mathrm{~g}, 9.62$ mmol) was added in one portion. The reaction solution exothermed from 20 to $-40{ }^{\circ} \mathrm{C}$ and was allowed to stir without heating or cooling for 16 h . The reaction was only partially completed (HPLC) so the solution was warmed at $80^{\circ} \mathrm{C}$ for 4 h . The reaction mixture is diluted with MTBE (170 mL), washed with $1 \mathrm{M} \mathrm{HCI}(15 \mathrm{~mL})$, dried over
magnesium sulfate, filtered and concentrated ($29^{\prime \prime} \mathrm{Hg}$ at $60^{\circ} \mathrm{C}$) to remove solvent and any residual starting materials to afford product as light yellow oil ($75 \mathrm{~g}, 99 \%$). It was used to the next step without further purification by distillation.

Step 2 : Methyl- \boldsymbol{d}_{3} (,S)-4-methyl-2-(methyl-</3)-4-nitropentanoate-3,3-</2

A 5-L, three-neck round bottom flask equipped an overhead mechanical stirrer, a nitrogen line and a J-Kem thermocouple with heating mantle was charged with methyl${ }^{\text {c3/4 }} 4$-methyl-2-(methyl-i 3)-4-nitropentanoate-3,3-i2 (75 g, 380 mmol) and 2000 mL of pH 7.5 Na-phosphate buffer @ 0.8 M . To this was added lipase from Rhizomucor miehei (sigma L4277, palatase from Novozymes) (0.5 vol) and stirred at $30{ }^{\circ} \mathrm{C}$ for 25 h . Chiral HPLC (ADH $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{\eta}, 1.0 \mathrm{~mL} / \mathrm{min}$, 98% Heptane $12 \% \mathrm{IPA}$) shows 99.8/0.2 ratio of enantiomers. The reaction mixture was extracted twice with MTBE (1 Leach time). The organic included any emulsion formed during the extractions. The combined organics were washed two times with an aqueous solution of sodium bicarbonate (5 vol), brine (5 vol), dried over sodium sulfate and concentrated under vacuum to afford the desired product methyl-^ (5)-4-methyl-2-(methyl-<i ${ }_{3}$)-4-nitropentanoate-3,3-i 2 as pale yellow oil ($32.5 \mathrm{~g}, 43 \%$ yield).

Step 3: (.S)-5,5-Dimethyl-3-(methyl-i/3)pyrrolidin-2-one-4,4-i/2

A high-pressure vessel (Parr shaker bottle, 500 mL) was purged with and maintained under N_{2}. The vessel was charged sequentially with deionized water rinsed (3 times) damp Raney®2800 Ni (6.1 g), methyl-<3/4 (5)-4-methyl-2-(methyl-<i3)-4-nitropentanoate-$3,3-£ 3 / 4(32.5 \mathrm{~g}, 165 \mathrm{mmol})$, and ethanol (290 mL). The vessel was sealed and evacuated/backfilled with N_{2} (3 times). With no stirring, the vessel was then evacuated and backfilled with $\mathrm{H}_{2}(30 \mathrm{psi})$. The Parr bottle was shaken while heating the contents to $60^{\circ} \mathrm{C}$, and the H_{2} pressure was maintained at 30 psi for 8 hours. The vessel was
evacuated/backfilled with N_{2} (3 times) and the contents were removed by vacuum filtration (Celite pad; N_{2} blanket). The flask/filter-pad was washed with ethanol (3 $\times 50$ $\mathrm{mL})$. After the final wash, the solvent-wet filter-cake was transferred to another receiver and covered with water for disposal. Note: At no time should the catalyst be fully dried (keep damp throughout the filtration process). The filtrate and washes were combined and concentrated ($40{ }^{\circ} \mathrm{C} / 40$ torr) to afford (5)-5,5-dimethyl-3-(methyl-<i3)pyrrolidin-2-one-4,4-<3/4 as white solid ($20 \mathrm{~g}, 92 \%$).

Step 4: (4S)-3,3-Dideuterio-2,2-dimethyl-4-(trideuteriomethyl)pyrrolidine

Hydrochloride

A 1-L, three-neck round bottom flask equipped an overhead mechanical stirrer, a nitrogen line and a J -Kem thermocouple was charged with lithium aluminum hydride pellets ($7.6 \mathrm{~g}, 202 \mathrm{mmol}$) in THF ($80 \mathrm{~mL}, 4 \mathrm{vol}$) warmed from $20-36^{\circ} \mathrm{C}$ (heat of mixing). A solution of (5)-5,5-dimethyl-3-(methyl-<i3)pyrrolidin-2-one-4,4-ii2 (20. g, 150 mmol) in THF ($120 \mathrm{~mL}, 6 \mathrm{vol}$) was added to the suspension over 30 minutes while allowing the reaction temperature to rise to $-60{ }^{\circ} \mathrm{C}$. The reaction temperature was increased to near reflux $\left(-68{ }^{\circ} \mathrm{C}\right)$ and maintained there for 16 h . The reaction mixture was cooled to below $40^{\circ} \mathrm{C}$ and diluted with $200 \mathrm{~mL}(10 \mathrm{vol})$ of MTBE. The mixture was quenched slowly with drop-wise addition of a saturated aqueous solution of sodium sulfate (1 vol) over 2 h . Note: Vigorous degassing $\left(\mathrm{H}_{2}\right)$ was observed, the mixture becomes thick then thins, and the dark gray mixture turns white. After the addition was completed, the reaction mixture was cooled to room temperature. The solid was removed by filtration (Celite pad) and washed with ethyl acetate (4 vol). With external cooling and N_{2} blanket, the filtrate and washings were combined and treated with drop-wise addition of anhydrous $4 \mathrm{M} \mathrm{HC1}$ in dioxane ($38 \mathrm{~mL}, 152 \mathrm{mmol}$) while maintaining the temperature below $20^{\circ} \mathrm{C}$. After the addition was completed (20 minutes), the resultant suspension was concentrated under vacuum at $45^{\circ} \mathrm{C}$. The suspension was backfilled with heptanes $(4 \mathrm{vol})$ twice during concentration. The suspension was cooled to below $30^{\circ} \mathrm{C}$ when the solid was collected by filtration under a
N_{2} blanket. The solid was dried under N_{2} suction and further dried under high vacuum at $45^{\circ} \mathrm{C}$ to afford (4S)-3,3-dideuterio-2,2-dimethyl-4-(trideuteriomethyl)pyrrolidine hydrochloride ($17.5 \mathrm{~g}, 75 \%$). The product is quite hygroscopic so it was manipulated under nitrogen.

Step 5 : (,S)-^-((1,3-dimethyl-l H -pyrazol-4-yl)sulfonyl)-2-(2,2-dimethyl-4-(methyl-i/3)pyrrolidin-l-yl-3,3-i/2)-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-l H -pyrazol-

l-yl)nicotinamide

2-chloro-N -((1,3-dimethyl-1 H-pyrazol-4-yl)sulfonyl)-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1 H-pyrazol-1-yl)nicotinamide ($2 \mathrm{~g}, 3.839 \mathrm{mmol}$) was dissolved in DMSO (10 mL) and 1,2-diethoxy ethane (2.000 mL). Potassium carbonate (approximately $2.654 \mathrm{~g}, 19.20 \mathrm{mmol}$) and (45)-3,3-dideuterio-2,2-dimethyl-4(trideuteriomethyl)pyrrolidine (Hydrochloride salt) (approximately $1.485 \mathrm{~g}, 9.598$ $\mathrm{mmol})$ were added and the resulting slurry was heated at $130^{\circ} \mathrm{C}$ for 28 h . The reation mixture was cooled and poured into rapidly stirred ice water $(60.00 \mathrm{~mL})$ and acetic acid (approximately $3.458 \mathrm{~g}, 3.275 \mathrm{~mL}, 57.58 \mathrm{mmol}$). After stirring for 20 min the solids were filtered off and washed with water. The resulting solid was dissolved in ethyl acetate and washed with water, then brine. The organics were dried over sodium sulfate and concentrated. The resulting material was heated in heptanes and the resulting solid was collected and dried to give $(S)-N-((1,3-d i m e t h y l-1 H$-pyrazol-4-yl)sulfonyl)-2-(2,2-dimethyl-4-(methyl-i 3)pyrrolidin-1-yl-3,3-d 2)-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1 H-pyrazol-1-yl)nicotinamide ($0.8 \mathrm{~g}, 35 \%$). ESI-MS m / z calc. 602.27, found $603.1(\mathrm{M}+1)^{+}$; Retention time: 1.82 minutes.

Synthesis of iV-(1,5-dimethylpyrazol-4-yl)sulfonyl-6- [3-(3,3,3-trifluoro-2,2-

 dimethyl-propoxy)pyrazol-I-yl]-2-[(4.S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3carboxamide (Compound 13)Step 1: 2-chloro-A^-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxamide

2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylic acid ($100 \mathrm{mg}, 0.2749 \mathrm{mmol}$) and carbonyldiimidazole ($53 \mathrm{mg}, 0.3269 \mathrm{mmol}$) were combined in THF ($600.0 \mu \mathrm{~L}$) and stirred at room temperature for 2 hours. 1,5-dimethylpyrazole-4-sulfonamide ($53 \mathrm{mg}, 0.3025 \mathrm{mmol}$) was added followed by DBU ($55 \mu \mathrm{~L}, 0.3678 \mathrm{mmol}$) and the reaction was stirred for an additional 16 h at room temperature. The reaction mixture was diluted with 10 mL of 1 M citric acid, and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organics were washed with brine, dried over sodium sulfate, and concentrated to give a white solid, which was used in the next step without further purification. 2-chloro - N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]pyridine-3carboxamide ($140 \mathrm{mg}, 98 \%$) ESI-MS m/z calc. 520.09076, found 521.1 (M+l)+; Retention time: 0.68 minutes.

Step 2: A^{\wedge}-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]-2-[(4.S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3carboxamide

2-chloro-N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1 -yl]pyridine-3-carboxamide ($140 \mathrm{mg}, 0.2688 \mathrm{mmol}$), (45)-2,2,4trimethylpyrrolidine (Hydrochloride salt) ($120 \mathrm{mg}, 0.8018 \mathrm{mmol}$), and potassium carbonate ($224 \mathrm{mg}, 1.621 \mathrm{mmol}$) were combined in DMSO $(700.0 \mu \mathrm{~L}$) and heated at $130^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to room temperature, and 1 mL of water was added. After 15 minutes stirring, the contents of the vial were allowed to settle, and the liquid portion was removed by pipet. The remaining solids were dissolved with 20 mL of ethyl acetate, then washed with 15 mL of 1 M citric acid. The aqueous and organic layers were separated, and the aqueous layer was extracted two additional times with 15 mL ethyl acetate. The organics were combined, washed with brine, dried over sodium sulfate and concentrated. The resulting solid was further purified by silica gel chromatography eluting with $0-10 \%$ methanol in dichloromethane to give a white solid. N-(1,5 -dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1 -yl]-2-[(4^-2,2,4-trimethylpyrrolidin-1 -yl]pyridine-3-carboxamide ($96 \mathrm{mg}, 60 \%$) ESI-MS m/z calc. 597.2345 , found $598.3(\mathrm{M}+\mathrm{l})+$; Retention time: 2.1 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 12.32(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H})$, $7.73(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{dd}, \mathrm{J}=10.3,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.17(\mathrm{dq}, \mathrm{J}=12.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, \mathrm{J}=11.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}$, $3 \mathrm{H}), 1.43(\mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H}), 0.80(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of N-(1,3-dimethylpyrazol-4-yl)sulfonyl-2- [4-(hydroxymethyl)-2,2-dimethyl-pyrrolidin-l-yl]-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-I-yl]pyridine-3-carboxamide (Compound 30)

Step 1: 2-Hydroxymethyl-4-methyl-4-nitro-pentanoic acid methyl ester

1,8-Diazabicyclo[5.4.0]undec-7-ene ($3.6 \mathrm{~mL}, 24 \mathrm{mmol}$) was added to 2-nitropropane ($26.5 \mathrm{~mL}, 292 \mathrm{mmol}$). This mixture was heated to $65^{\circ} \mathrm{C}$ and the heat was turned off and methyl 2-(hydroxymethyl)acrylate ($25 \mathrm{~mL}, 243 \mathrm{mmol}$) was added dropwise. The heat was then turned back on at $80^{\circ} \mathrm{C}$. After heating for 1 h the heat was turned off and the reaction was stirred at room temperature overnight before heating at $80^{\circ} \mathrm{C}$ for another 2 h . The reaction was diluted with ethyl acetate (250 mL) and washed with 1 M hydrogen chloride ($2 \times 125 \mathrm{~mL}$), aqueous bicarbonate $(125 \mathrm{~mL}$) and brine $(125 \mathrm{~mL})$. The reaction product mixture was chromatographed on a 330 g column of silica gel in $0-60 \%$ hexanes:ether eluting at $55-60 \%$ to give 2-hydroxymethyl-4-methyl-4-nitro-pentanoic acid methyl ester $(29.68 \mathrm{~g}, 60 \%)$ as a light green oil. ESI-MS m/z calc. 205.21, found 206. $1(\mathrm{M}+1)^{+}$. Retention time: 1.67 minutes.

Step 2: 3-Hydroxymethyl-5,5-dimethyl-pyrrolidin-2-one

2-hydroxymethyl-4-methyl-4-nitro-pentanoic acid methyl ester ($4.45 \mathrm{~g}, 21.7 \mathrm{mmol}$) was added to absolute ethanol (60 mL) followed by Raney Nickel ($1.7 \mathrm{~g},-15 \% \mathrm{wt}$). The reaction was heated at $60^{\circ} \mathrm{C}$ under 2 bar of H_{2} overnight. More Raney Nickel ($1 . \mathrm{Og}$, $-50 \% \mathrm{wt}$) was added and the reaction heated at $60^{\circ} \mathrm{C}$ under 5 bar H_{2} for 3.5 h . At this point, more 2-hydroxymethyl-4-methyl-4-nitro-pentanoic acid methyl ester (3.95g, 19.3 mmol) was added and the reaction heated for 72 h refilling H_{2} to maintain 5 bar. The reaction was filtered through celite and washed with methanol. The crude reaction was chromatographed on silica gel and eluted with $0-10 \%$ dichloromethane:methanol at 10%, resulting 3-hydroxymethyl-5,5-dimethyl-pyrrolidin-2-one $\quad(3.69 \mathrm{~g}, 63 \%)$ as a white solid. $3 / 4 \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta \mathrm{ppm} 1.31(\mathrm{~d}, \mathrm{~J}=9.01 \mathrm{~Hz}, 6 \mathrm{H}) 1.72(\mathrm{dd}, \mathrm{J}=12.52$, $10.33 \mathrm{~Hz}, 1 \mathrm{H}) 2.04(\mathrm{dd}, \mathrm{J}=12.58,8.84 \mathrm{~Hz}, 1 \mathrm{H}) 2.73-2.91(\mathrm{~m}, 1 \mathrm{H}) 3.31(\mathrm{~d}, \mathrm{~J}=4.72 \mathrm{~Hz}$, 1 H) 3.64-3.95 (m, 2 H) 5.93 (br. s., 1 H)

Step 3: (5,5-Dimethyl-pyrrolidin-3-yl)-methanol

Lithium aluminum hydride $(3.90 \mathrm{~g}, 103.00 \mathrm{mmol})$ was suspended in tetrahydrofuran (60 $\mathrm{mL})$. 3-hydroxymethyl-5,5-dimethyl-pyrrolidin-2-one $\quad(3.69 \mathrm{~g}, 25.77 \mathrm{mmol})$ in tetrahydrofuran (30 mL) was then added dropwise and the reaction was heated at $65^{\circ} \mathrm{C}$ for 40 h . The reaction was diluted with 2-methyl-tetrahydrofuran (125 mL) and then cooled in an ice bath before saturated aqueous Rochelle Salt (200 mL) was added dropwise. The organic layer was extracted with 2-methyl-tetrahydrofuran ($2 \times 200 \mathrm{~mL}$) and dried over sodium sulfate to give crude (5,5-dimethyl-pyrrolidin-3-yl)-methanol ($3.47 \mathrm{~g}, 104 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCI}_{3} \delta \mathrm{ppm} 1.06-1.24$ (m, 6 H) 1.29 (dd, $\mathrm{J}=12.58,7.20 \mathrm{~Hz}, 2 \mathrm{H}) 1.43(\mathrm{~s}, 1 \mathrm{H}) 1.68-1.89(\mathrm{bs}, 1 \mathrm{H}) 2.31-2.52(\mathrm{~m}, 1 \mathrm{H}) 2.83(\mathrm{dd}$, $\mathrm{J}=11.10,5.49 \mathrm{~Hz}, 1 \mathrm{H}) 3.05-3.26(\mathrm{~m}, 1 \mathrm{H}) 3.48-3.71(\mathrm{~m}, 1 \mathrm{H})$

Step 4: 4-(tert-Butyl-dimethyl-silanyloxymethyl)-2,2-dimethyl-pyrrolidine

To (5,5-dimethyl-pyrrolidin-3-yl)-methanol (3.08g, 23.8 mmol), tert-butyldimethylsilyl chloride $(4.3 \mathrm{lg}, 28.6 \mathrm{mmol})$ in acetonitrile $(24 \mathrm{~mL})$ was added $1,8-$

Diazabicyclo[5.4.0]undec-7-ene $(5.3 \mathrm{~mL}, 35.7 \mathrm{mmol})$. The reaction was stirred for 3.5 h. The reaction was diluted with chloroform $(250 \mathrm{~mL})$ and washed with water $(125 \mathrm{~mL})$ and brine $(125 \mathrm{~mL})$ then dried over sodium sulfate. The crude was chromatographed on silica gel and eluted with dichloromethane/methanol, eluting at 15-35\% methanol to give 4-(tert-butyl-dimethyl-silanyloxymethyl)-2,2-dimethyl-pyrrolidine $\quad(3.88 \mathrm{~g}, 67 \%)$ as a yellow oil after two columns. ESI-MS m/z calc. 243.47, found $244.2(\mathrm{M}+1){ }^{+}$Retention time: 2.52 minutes. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDC1}_{3}$) $\delta \mathrm{ppm}-0.05-0.11(\mathrm{~m}, 6 \mathrm{H}) 0.89(\mathrm{~s}, 9$ H) $1.19(\mathrm{~d}, \mathrm{~J}=18.02 \mathrm{~Hz}, 6 \mathrm{H}) 1.25-1.32(\mathrm{~m}, 1 \mathrm{H}) 1.74(\mathrm{dd}, \mathrm{J}=12.63,8.79 \mathrm{~Hz}, 1 \mathrm{H}) 1.92$ (br. s., 1 H) 2.32-2.50 (m, 1 H) 2.81 (dd, J=1 1.54, 6.37 Hz, 1 H) 3.11 (dd, J=1 1.48, $7.97 \mathrm{~Hz}, 1 \mathrm{H}) 3.45-3.61(\mathrm{~m}, 2 \mathrm{H})$.

Step 5. 2-[4-[[tert-butyl(dimethyl)silyl] oxymethyl] -2,2-dimethyl-pyrrolidin- 1-yl]-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl] pyridine-3-carboxamide

2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1 -yl]pyridine-3-carboxamide ($30 \mathrm{mg}, 0.05759 \mathrm{mmol}$), tert-butyl-[(5,5-
dimethylpyrrolidin-3-yl)methoxy]-dimethyl-silane (approximately $42.07 \mathrm{mg}, 0.1728$ mmol), and $\mathrm{K} 2 \mathrm{CO}_{3}$ (approximately $39.80 \mathrm{mg}, 0.2880 \mathrm{mmol}$) were combined in DMSO $(600.0 \mu \mathrm{~L})$ and heated at $130^{\circ} \mathrm{C}$ for 16 h . The reaction was partitioned between a 1 M citric acid solution and ethyl acetate and the organics were separated. The organics were washed with brine, dried over sodium sulfate and evaporated. The crude material was purified by silica gel chromatography eluting with $0-10 \%$ methanol in dichloromethane to give 2-[4-[[tert-butyl(dimethyl)silyl]oxymethyl]-2,2-dimethyl-pyrrolidin-1 -yl]-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yi]pyridine-3-carboxamide (19 mg, 45\%). ESI-MS m/z calc. 727.3 159, found 728.4 $(\mathrm{M}+\mathrm{l})+$; Retention time: 0.94 minutes.

Step 6. N-(1,3-dimethylpyrazol-4-yl)sulfonyl-2- [4-(hydroxymethyl)-2,2-dimethyl-pyrrolidin- 1-yl]-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol- 1-yl] pyridine-3-carboxamide

2-[4-[[tert-butyl(dimethyl)silyl]oxymethyl]-2,2-dimethyl-pyrrolidin-1-yl]-N-(l ,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxamide (19 mg)was dissolved in THF (1 mL) and cooled in an ice bath. TBAF (approximately $288.0 \mu \mathrm{~L}$ of $1 \mathrm{M}, 0.2880 \mathrm{mmol}$) was added and the reaction was allowed to warm to room temperature. The reaction mixture was stirred for 1 h and then partitioned between ethyl acetate and 1 M citric acid solution. The organics were washed with brine, dried over sodium sulfate and evaporated. The crude material was purified by silica gel chromatography eluting with $0-10 \%$ methanol in dichloromethane to give N -(1,3-dimethylpyrazol-4-yl)sulfonyl-2-[4-(hydroxymethyl)-2,2-dimethyl-pyrrolidin-1 -yl]-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1 -yl]pyridine-3carboxamide ($8.7 \mathrm{mg}, 54 \%$). ESI-MS m/z calc. 613.22943 , found $614.3(\mathrm{M}+\mathrm{l})+$; Retention time: 1.81 minutes.

Synthesis of N-[3-(hydroxymethyl)-1-methyl-pyrazol-4-yl]sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-I-yl]pyridine-3-carboxamide (Compound 39)

Step 1: methyl 4-(3-methoxy-3-oxo-propyl)sulfonyl-l-methyl-pyrazole-3carboxylate

methyl 4-bromo-l-methyl-pyrazole-3-carboxylate ($508 \mathrm{mg}, 2.319 \mathrm{mmol}$), (3-methoxy-3-oxo-propyl)sulfinyloxysodium ($810 \mathrm{mg}, 4.651 \mathrm{mmol}$), and copper(l+) (Iodide Ion (1)) $(1.31 \mathrm{~g}, 6.878 \mathrm{mmol})$ were combined in degassed DMSO $(3.048 \mathrm{~mL})$. Nitrogen was bubbled through the reaction for another 5 min and then it was sealed and heated to 80 ${ }^{\circ} \mathrm{C}$. The reaction was heated for 48 h then cooled to room temperature. The reaction was diluted with ethyl acetate $(25 \mathrm{~mL})$ and $\mathrm{NH}_{4} \mathrm{C} 1(10 \mathrm{~mL})$. A thick precipitate formed which was filtered and discarded. The layers were separated and the organics were washed with a saturated $\mathrm{NH}_{4} \mathrm{C} 1(30 \mathrm{~mL})$ solution, a satd NaHCO_{3} solution $(30 \mathrm{~mL})$, and brine (30 mL). The organics were dried over sodium sulfate and evaporated. The crude material was purified by silica gel chromatography eluting with $0-100 \%$ ethyl acetate in hexanes to give methyl 4-(3-methoxy-3-oxo-propyl)sulfonyl-1-methyl-pyrazole-3carboxylate ($297 \mathrm{mg}, 44 \%$) ESI-MS m/z calc. 290.05725, found 291.1 (M+1)+;

Retention time: 0.32 minutes.

Step 2: methyl 1-methyl-4-sulfamoyl-pyrazole-3-carboxylate

Step 1:
methyl 4-(3-methoxy-3-oxo-propyl)sulfonyl-1-methyl-pyrazole-3-carboxylate (297 mg, 1.023 mmol) was dissolved in THF (4 mL) and $25 \% \mathrm{NaOMe}$ in methanol ($220 \mu \mathrm{~L}$ of 25 $\% \mathrm{w} / \mathrm{v}, 1.018 \mathrm{mmol}$) was added. The reaction was stirred for 5 min and evaporated.

Hexane was added and the mixture evaporated again.
Step 2:
The product from step 1 was dissolved in dichloromethane (4 mL) and N -
chlorosuccinimide ($138 \mathrm{mg}, 1.033 \mathrm{mmol}$) was added. The reaction was stirred for 30 min. The reaction mixture was added slowly to an ice bath cooled solution of ammonia in methanol (1.5 mL of $7 \mathrm{M}, 10.50 \mathrm{mmol}$) and it was stirred for another 30 min . The reaction mixture was partitioned between ethyl acetate and water. The organics were separated, washed with brine, dried over sodium sulfate and evaporated. The crude product was used in the next step without further pur fication. methyl l-methyl-4-sulfamoyl-pyrazole-3-carboxylate ($110 \mathrm{mg}, 49 \%$) ESI-MS m/z calc. 219.03137, found $220.1(\mathrm{M}+1)+$; Retention time: 0.2 minutes.

Step 3 : methyl 4-[[2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]pyridine-3-carbonyl]sulfamoyl]-l-methyl-pyrazole-3-carboxylate

2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]pyridine-3-carboxylic acid (approximately $186.2 \mathrm{mg}, 0.5018 \mathrm{mmol}$) and carbonyl diimidazole (approximately
$81.37 \mathrm{mg}, 0.5018 \mathrm{mmol}$) were combined in THF (2 mL) and stirred at room temperature for 3 h . To the reaction mixture was added methyl 1-methyl-4-sulfamoyl-pyrazole-3carboxylate ($110 \mathrm{mg}, 0.5018 \mathrm{mmol}$) and DBU (approximately $76.39 \mathrm{mg}, 75.04 \mu \mathrm{~L}$, 0.5018 mmol) and the reaction was stirred an additional 16 h . The reaction mixture was partitioned between ethyl acetate and a 1 M citric acid solution. The organics were separated, washed with brine, dried over sodium sulfate and evaporated. The crude product was taken on to the next step without further purification. methyl 4-[[2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]pyridine-3-carbonyl]sulfamoyl]-l-methyl-pyrazole-3-carboxylate (178 mg, 63\%) ESI-MS m/z calc. 564.08057 , found $565.1(\mathrm{M}+1)+$; Retention time: 0.67 minutes.

Step 4. N-[3-(hydroxymethyl)-l-methyl-pyrazol-4-yl] sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-Iyl] pyridine-3-carboxamide

Step 1:
methyl 4-[[2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carbonyl]sulfamoyl]-1-methyl-pyrazole-3-carboxylate ($145 \mathrm{mg}, 0.2567 \mathrm{mmol}$) was dissolved in lithium borohydride (2.0 M in THF) (approximately 1.283 mL of 2 M , 2.567 mmol) and stirred for 4 h . The reaction mixture was quenched with methanol, then partitioned between ethyl acetate and a 1 M citric acid solution. The organics were separated, washed with brine, dried over sodium sulfate and evaporated.

Step 2:

Resulting alcohol from step 1 was dissolved in NMP (0.5 mL) with (4S)-2,2,4trimethylpyrrolidine (Hydrochloride salt) (approximately $76.84 \mathrm{mg}, 0.5134 \mathrm{mmol}$) and potassium carbonate (approximately $106.4 \mathrm{mg}, 0.7701 \mathrm{mmol}$) and the reaction was heated at $130{ }^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was partitioned between ethyl acetate and a 1 M citric acid solution. The organics were separated, washed with brine, dried
over sodium sulfate and evaporated. The crude reaction mixture was purified by silica gel chromatography eluting with $0-10 \%$ methanol in dichloromethane. The product contained NMP so the product was further purified by LC/MS utilizing a gradient of 10$99 \%$ acetonitrile in 5 mM aq HC . The desired fraction was extracted with ethyl acetate. The organics were separated, washed with brine, dried over sodium sulfate and evaporated to give N-[3-(hydroxymethyl)-1-methyl-pyrazol-4-yl]sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethy 1-propoxy)py razol-1-y 1]-2-[(4S)-2,2,4-trimethy lpyrrolidin- 1-yl]pyridine-3-carboxamide ($8 \mathrm{mg}, 5 \%$) ESI-MS m/z calc. 613.22943, found 614.5 $(\mathrm{M}+\mathrm{l})+$; Retention time: 1.96 minutes.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) $\delta 12.25(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.78(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H})$, $4.60(\mathrm{q}, \mathrm{J}=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}$, $1 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{t}, \mathrm{J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}$, $6 \mathrm{H}), 0.83(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of (7,S)-7,9,9-trimethyl-2-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-l \boldsymbol{H} -pyrazol-l-yl)-6a,7,8,9-tetrahydro-5 \boldsymbol{H}-pyrido[2,3-i/]pyrrolo[2,l-Z>][1,3]oxazin-5-one (Compound 57)

Step 1: 6-[3-(3,3,3-Trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]-2-[(4,S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxylic acid

2-Chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]pyridine-3-carboxylic acid $(200 \mathrm{mg}, 0.5389 \mathrm{mmol}$) and cesium fluoride (approximately $81.86 \mathrm{mg}, 0.5389$ mmol) were combined in DMSO (2 mL). (4<S)-2,2,4-trimethylpyrrolidine (hydrochloride salt) (approximately $242.0 \mathrm{mg}, 1.617 \mathrm{mmol}$) was added followed by finely ground potassium carbonate (approximately $223.5 \mathrm{mg}, 1.617 \mathrm{mmol}$). The reaction mixture was capped and allowed to stir overnight at $150{ }^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\operatorname{EtOAc}(50 \mathrm{~mL})$ and washed with aqueous citric acid ($1 \mathrm{M}, 2 \times 50 \mathrm{~mL}$) and brine ($1^{\chi} 50$ mL). The organic layer was dried over sodium sulfate, filtered and concentrated under
reduced pressure. The product was isolated by silica gel column chromatography eluting with a $0-5 \% \mathrm{MeOH} / \mathrm{DCM}$ gradient over 40 minutes on a 12 gram silica gel column. Pure fractions were combined and concentrated to provide 6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1 -yl]-2-[(45)-2,2,4-trimethylpyrrolidin-1 -yl]pyridine-3carboxylic acid ($154 \mathrm{mg}, 65 \%$) as a white foaming solid. ESI-MS m/z calc. 440.20352, found $441.6(\mathrm{M}+1)+$; Retention time: 1.87 minutes.

Step 2 : (7S)-7,9,9-trimethyl-2-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-I H-pyrazol-

 l-yl)-6a,7,8,9-tetrahydro-5 H-pyrido[2,3-i/]pyrrolo[2,1-Z>][1,3]oxazin-5-one

6-[3-(3,3,3-Trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]-2-[(45)-2,2,4-
trimethylpyrrolidin-1 -yl]pyridine-3-carboxylic acid ($50 \mathrm{mg}, 0.1135 \mathrm{mmol}$), water (20 $\mu \mathrm{L}, 1.110 \mathrm{mmol})$, sodium acetate $(19 \mathrm{mg}, 0.2316 \mathrm{mmol})$ and $\left[\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right]_{2}(\mathrm{dtbpy})\right] \mathrm{PF}_{6}(5 \mathrm{mg}, 0.004457 \mathrm{mmol})$ were dissolved in DMA $(872 \mathrm{~mL})$. The reaction mixture was placed under a 23 W compact fluorescent light source for five hours. The light source emitted enough heat to warm the reaction mixture to $-40{ }^{\circ} \mathrm{C}$. The crude mixture was purified by silica gel chromatography eluting with $0-100 \%$ EtOAc/hexane gradient to give (75)-7,9,9-trimethyl-2-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1 H-pyrazol-1-yl)-6a,7,8,9-tetrahydro-5 H-pyrido[2,3-cf|pyrrolo[2,1 $b_{1}[1,3]$ oxazin-5-one ($24.6 \mathrm{mg}, 50 \%$). ESI-MS m/z calc. 438.18787 , found 439.6 $(\mathrm{M}+\mathrm{l})+$; Retention time: 2.27 minutes.

Synthesis of iV-(1,3-Dimethylpyrazol-4-yl)sulfonyl-6- [3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol- 1-yl]-2-[(4i?)-2,2,4-trimethylpyrrolidin- 1-yl]pyridine-3carboxamide (Compound 37)

To a mixture of 2-chloro - N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]pyridine-3-carboxamide ($2 \mathrm{~g}, 3.839 \mathrm{mmol}$) and (4i?)-2,2,4-trimethylpyrrolidine (hydrochloride salt) (approximately $1.322 \mathrm{~g}, 8.830$ $\mathrm{mmol})$ in N-methylpyrrolidinone $(10.00 \mathrm{~mL})$ and 1,2-diethoxy ethane $(2.000 \mathrm{~mL})$ was added potassium carbonate (approximately $2.654 \mathrm{~g}, 19.20 \mathrm{mmol}$). The slurry was heated at $130{ }^{\circ} \mathrm{C}$ for 40 hours. The reaction suspension was cooled to ambient temperature and added slowly to a rapidly stirred solution of HC 1 (approximately 8.958 mL of 6 M , $53.75 \mathrm{mmol})$ in ice water (100.0 mL) affording an off-white slurry. The precipitate was collected and washed three times with 10 mL of water. The solid was air dried for one hour. The crude solid was dissolved in hot isopropyl alcohol $(30.00 \mathrm{~mL})$ and allowed to stand for two hours. The solid was collected, and the off-white solid was washed three times with 2 mL of cold isopropyl alcohol. The solid was air dried for one hour and then dried in vacuo at $45^{\circ} \mathrm{C}$ for 18 hours to give N-(l,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]-2-[(4i?)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide ($1.4 \mathrm{~g}, 61 \%$). ESI-MS m/z calc. 597.2345, found 598.1 $(\mathrm{M}+1)+$; Retention time: 3.1 minutes.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6\right) ~ \delta 12.36(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.75 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.93 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (s, 2H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{dt}, \mathrm{J}$ $=12.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, \mathrm{J}=11.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{t}, \mathrm{J}$ $=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of 6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]-N-(1,3,5-trimethylpyrazol-4-yl)sulfonyl-2- [(4S)-2,2,4-trimethylpyrrolidin- 1-yl] pyridine-3carboxamide (Compound 17)

Step 1: 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]-N-(1,3,5-trimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide

2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylic acid ($100 \mathrm{mg}, 0.2749 \mathrm{mmol}$) and CDI ($53 \mathrm{mg}, 0.3269 \mathrm{mmol}$) were combined in THF ($600.0 \mu \mathrm{~L}$) and stirred at room temperature for 2 hours in a vial (vial 1). Meanwhile, 1,3,5-trimethylpyrazole-4-sulfonyl chloride ($69 \mathrm{mg}, 0.3307 \mathrm{mmol}$)was combined with ammonia ($250 \mu \mathrm{~L}$ of $7 \mathrm{M}, 1.750 \mathrm{mmol}$) (in methanol)in a seperate vial (vial 2). After stirring for an additonal 20 min , the volatiles were removed from vial 2 by evaporation, and 1 mL of dichloromethane was added to the solid residue, and was also evaporated. DBU ($60 \mu \mathrm{~L}, 0.4012 \mathrm{mmol}$)was then added to vial 2 and stirred at $60^{\circ} \mathrm{C}$ for 5 minutes (to facilitate the removal of ammonia from any residual ammonium chloride). Upon cooling to room temperature, 1 mL THF was added and then evaporated under reduced pressure. The contents of vial 1 were then added to vial 2 by syringe, and the reaction mixture was stirred for 4 h at room temperature. The reaction mixture was diluted with 10 mL ethyl acetate, and washed with 10 mL 1 M citric acid. The aqueous layer was extracted $2 \times 10 \mathrm{~mL}$ ethyl acetate, and the combined organics were washed with brine, dried over sodium sulfate, and concentrated to give a a white solid. This material was used in the next step without further purification. 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]-N-(1,3,5-trimethylpyrazol-4-yl)sulfonyl-pyridine-3carboxamide ($142 \mathrm{mg}, 97 \%$) ESI-MS m/z calc. 534. 1064, found 535.1 (M+l)+; Retention time: 0.7 minutes.

Step 2: 6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]-N-(1,3,5-trimethylpyrazol-4-yl)sulfonyl-2-[(4S)-2,2,4-trimethylpyrrolidin- 1-yl] pyridine-3carboxamide

2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]-N-(1,3,5-trimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide (142 mg, 0.2655 mmol), (4S)-2,2,4-trimethylpyrrolidine (hydrochloride salt) ($119 \mathrm{mg}, 0.7951 \mathrm{mmol}$), and potassium carbonate ($221 \mathrm{mg}, 1.599 \mathrm{mmol}$) were combined in DMSO $(531.0 \mu \mathrm{~L})$ and heated at $130{ }^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to room temperature, and 1 mL of water was added. After 15 minutes stirring, the contents of the vial were allowed to settle, the liquid portion was removed by pipet and the remaining solids were dissolved with 20 mL ethyl acetate then washed with 15 mL 1 M citric acid. The aqueous and organic layers were separated, and the aqueous layer was extracted two additional times with 15 mL ethyl acetate. The organics were combined, washed with brine, dried over sodium sulfate and concentrated. The resulting solid was further purified by silica gel chromotograpy eluting with $0-10 \%$ methanol in dichloromethane to give a white solid. 6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]-N-(1,3,5-trimethylpyrazol-4-yl)sulfonyl-2-[(4S)-2,2,4-trimethylpyrrolidin-1 -yl]pyridine-3-carboxamide (84 mg , $52 \%)$ ESI-MS m/z calc. 611.2502 , found $612.2(\mathrm{M}+\mathrm{l})+$; Retention time: 2.16 minutes.
(S)-2-(2,2-dimethyl-4-(methyl-d3)pyrrolidin-l-yl-3,3-d2)-N-((3-methyl-lH-pyrazol-4-yl)sulfonyl)-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazol-l-

yl)nicotinamide (Compound 3)

2-Chloro - N-[(3-methyl-1 H-pyrazol-4-yl)sulfonyl]-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]pyridine-3-carboxamide $(5.34 \mathrm{~g}, 10.5 \mathrm{mmol})$, potassium carbonate $(7.27 \mathrm{~g}, 52.6 \mathrm{mmol})$ and (45)-3,3-dideuterio-2,2-dimethyl-4(trideuteriomethyl)pyrrolidine (Hydrochloride salt) ($4.88 \mathrm{~g}, 31.6 \mathrm{mmol}$) were combined in DMSO (45 mL) and heated at $130^{\circ} \mathrm{C}$ for 16 h . The reaction was portioned between ethyl acetate (30 vol) and a 1 M citric acid solution ($\mathrm{pH} 4-5$). The organics were separated, and washed with brine, dried over sodium sulfate and evaporated. The crude material was purified by silica gel chromatography eluting with $0-40 \%$ ethyl acetate in heptane followed by trituration with MTBE/dichloromethane (2: 1). The solid obtained
was transferred to a 100 mL round bottom flask and dried for 4 days at room temperature to give (S)-2-(2,2-dimethyl-4-(methyl-d3)pyrrolidin-1-yl-3,3-d2)-N-((3-methyl-lH-pyrazol-4-yl)sulfonyl)-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-lH-pyrazol-1-yl)nicotinamide ($2.6 \mathrm{~g}, 42 \%$). ESI-MS m / z calc. 588.66 , found 589.2 (M+1) +; Retention time: 20.2 minutes (35 min run).

Synthesis of N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-
trifluoropropoxy)pyrazol- 1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl] pyridine-3carboxamide (Compound 11)

Step 1: tert-butyl 3-(3,3,3-trifluoropropoxy)pyrazole-I-carboxylate

tert-butyl 3-hydroxypyrazole-l-carboxylate $(2.03 \mathrm{~g}, 11.02 \mathrm{mmol}), 3,3,3$-trifiuoropropan-1-ol (approximately $1.320 \mathrm{~g}, 11.57 \mathrm{mmol}$), and triphenyl phosphine (approximately $3.189 \mathrm{~g}, 2.817 \mathrm{~mL}, 12.16 \mathrm{mmol}$) were combined in THF (20.40 mL) and the reaction was cooled in an ice bath. To the mixture was added DIAD (approximately 2.507 g , $2.441 \mathrm{~mL}, 12.40 \mathrm{mmol}$) dropwise and the reaction was allowed to warm to room temperature for 16 h . The mixture was evaporated and the resulting material was
partitioned between ethyl acetate (50 mL) and IN sodium hydroxide $(50 \mathrm{~mL})$. The organics were separated, washed with brine $(30 \mathrm{~mL})$, dried over sodium sulfate and evaporated. The crude material was purified by silica gel chromatography eluting with $0-30 \%$ ethyl acetate in hexanes to give tert-butyl 3-(3,3,3-trifluoropropoxy)pyrazole-1carboxylate ($2.0 \mathrm{~g}, 65 \%$) ESI-MS m/z calc. 280.1035, found 281.1 (M+l)+; Retention time: 0.62 minutes.

Step 2: 3-(3,3,3-trifluoropropoxy)-1H-pyrazole

tert-butyl 3-(3,3,3-trifluoropropoxy)pyrazole-l-carboxylate ($2.0 \mathrm{~g}, 7.137 \mathrm{mmol}$) and TFA (approximately $8.138 \mathrm{~g}, 5.499 \mathrm{~mL}, 71.37 \mathrm{mmol}$) were dissolved in dichloromethane $(20.00 \mathrm{~mL})$ and stirred for 2 h and then evaporated to a solid. The solid was partitioned between ethyl acetate and a saturated sodium bicarbonate solution. The organics were seperated, washed with brine, and dried over sodium sulfate. The organics were dried to give 3-(3,3,3-trifluoropropoxy)-lH-pyrazole (1.24 g, 96\%) ESIMS m/z calc. 180.05104 , found $180.9(\mathrm{M}+1)+$; Retention time: 0.37 minutes.

Step 3: tert-butyl 2-chloro-6-[3-(3,3,3-trifluoropropoxy)pyrazol-1-yl]pyridine-3carboxylate

tert-butyl 2,6-dichloropyridine-3-carboxylate (approximately $1.433 \mathrm{~g}, 5.774 \mathrm{mmol}$), 3-(3,3,3-trifluoropropoxy)-1H-pyrazole $(1.04 \mathrm{~g}, 5.774 \mathrm{mmol})$, and potassium carbonate (approximately $957.6 \mathrm{mg}, 6.929 \mathrm{mmol}$) (freshly ground) were combined in anhydrous DMSO (28.66 mL). 1,4-diazabicyclo[2.2.2]octane (approximately $129.6 \mathrm{mg}, 1.155$ mmol) was added and the mixture was stirred at room temperature under nitrogen for 16 hours. The reaction mixture was diluted with water $(20 \mathrm{~mL})$ and stirred for 15 min . The
resulting solid was collected and washed with water. The solid was dissolved in dichloromethane and the small amount of aqueous layer removed. The organics were dried over sodium sulfate and evaporated to give tert-butyl 2-chloro-6-[3-(3,3,3-trifluoropropoxy)pyrazol-1 -yl]pyridine-3-carboxylate ($1.81 \mathrm{~g}, 80 \%$) ESI-MS m/z calc. 391.09106 , found $392.2(\mathrm{M}+1)+$; Retention time: 0.84 minutes.

Step 4: 2-Chloro-6- [3-[(IR,2S,4S)-norbornan-2-yl] oxypyrazol-1-yl]pyridine-3carboxylic acid

tert-butyl 2-chloro-6-[3-(3,3,3-trifluoropropoxy)pyrazol-1 -yl]pyridine-3-carboxylate $(1.81 \mathrm{~g}, 4.620 \mathrm{mmol})$ and TFA $(3.6 \mathrm{~mL}, 47 \mathrm{mmol})$ were combined in methylene chloride (18 mL) and heated at $40^{\circ} \mathrm{C}$ for 3 h . The reaction was evaporated to dryness and the resulting solid was re-evaporated from hexanes. The solid was further dried to give 2-chloro-6-[3-(3,3,3-trifluoropropoxy)pyrazol-1 -yl]pyridine-3-carboxylic acid ($1.55 \mathrm{~g}, 100 \%$) ESI-MS m/z calc. 335.02844 , found $336.0(\mathrm{M}+\mathrm{l})+$; Retention time: 0.61 minutes.

Step 5: 2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoropropoxy)pyrazol-1-yl]pyridine-3-carboxamide

Step 1: sulfonamide formation
1,3-dimethylpyrazole-4-sulfonyl chloride (approximately $97.42 \mathrm{mg}, 0.5005 \mathrm{mmol}$) was dissolved in ammonia in methanol (approximately $298.0 \mu \mathrm{~L}$ of $7 \mathrm{M}, 2.086 \mathrm{mmol}$) and stirred at room temperature for 30 min . The mixture was evaporated to dryness and reevaporated from dichloromethane. The solids were dissolved in THF (1 mL) and DBU
(approximately $211.6 \mathrm{mg}, 207.9 \mu \mathrm{~L}, 1.390 \mathrm{mmol}$) was added. The mixture was stirred at $70^{\circ} \mathrm{C}$ for 30 min to liberate any remaining ammonia from the reaction.

Step 2:
2-chloro-6-[3-(3,3,3-trifluoropropoxy)pyrazol-1 -yl]pyridine-3-carboxylic acid (140 mg, 0.4171 mmol) and carbonyl diimidazole (approximately $85.36 \mathrm{mg}, 0.5264 \mathrm{mmol}$) were combined in THF (1.250 mL) and stirred for 2 h . At this point, the mixture was added to the sulfonamide mixture from step 1 . DBU (approximately $211.6 \mathrm{mg}, 207.9 \mu \mathrm{~L}, 1.390$ mmol) was added and the reaction was stirred for an additional 30 min at room temperature. The reaction was diluted with ethyl acetate and washed with a 1 M citric acid solution, followed by brine. The organics were separated, dried over sodium sulfate, and evaporated to give 2-chloro-N-(1 ,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoropropoxy)pyrazol-l-yl]pyridine-3-carboxamide (196 mg, 95\%) ESI-MS m / z calc. 492.05945 , found $493.1(\mathrm{M}+\mathrm{l})+$; Retention time: 0.61 minutes.

Step 6: N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6- [3-(3,3,3-trifluoropropoxy)pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide

2-chloro-N-methylsulfonyl-6-[3-(3,3,3-trifluoropropoxy)pyrazol-1-yl]pyridine-3carboxamide (approximately $100 \mathrm{mg}, 0.2 \mathrm{mmol}$), (45)-2,2,4-trimethylpyrrolidine (Hydrochloride salt) (approximately $91 \mathrm{mg}, 0.60 \mathrm{mmol}$), and potassium carbonate (approximately $141 \mathrm{mg}, 1.0 \mathrm{mmol}$) were combined in DMSO $(500.0 \mu \mathrm{~L})$ and heated at $130{ }^{\circ} \mathrm{C}$ for 16 h . The reaction was diluted with water (3 mL) and stirred for 20 min . A solid formed and the aqueous liquid was decanted. The solid was dissolved in ethyl acetate and washed with a 1 M citric acid solution, then brine. The organics were dried over sodium sulfate and evaporated. The crude material was purified by silica gel chromatography eluting with $0-10 \%$ methanol in dichloromethane to give N -(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoropropoxy)pyrazol-1 -yl]-2-[(4S)-2,2,4-
trimethylpyrrolidin-l-yl]pyridine-3-carboxamide ($29 \mathrm{mg}, 25 \%$) ESI-MS m/z calc. 569.20 , found $570.3(\mathrm{M}+1)+$; Retention time: 1.89 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 12.36(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.74(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, \mathrm{J}=$ $5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{qt}, \mathrm{J}=11.5,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.59-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.46-$ $2.37(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{dd}, \mathrm{J}=11.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}$, $\mathrm{J}=11.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.42(\mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoropropoxy)pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3carboxamide (Compound 12)

Step 1: 2-chloro-N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoropropoxy)pyrazol-1-yl]pyridine-3-carboxamide

2-chloro-6-[3-(3,3,3-trifluoropropoxy)pyrazol-l-yl]pyridine-3-carboxylic acid (151 mg, 0.4499 mmol) and carbonyl diimidazole (approximately $92.07 \mathrm{mg}, 0.5678 \mathrm{mmol}$) were combined in THF (1.348 mL) and stirred for 2 h . At this point, 1,5-dimethylpyrazole-4sulfonamide (approximately $78.83 \mathrm{mg}, 0.4499 \mathrm{mmol}$) was added followed by DBU (approximately $228.4 \mathrm{mg}, 224.4 \mu \mathrm{~L}, 1.500 \mathrm{mmol}$) and the reaction was stirred for an additional 30 min at room temperature. The reaction was diluted with ethyl acetate and washed with a 1 M citric acid solution, followed by brine. The organics were separated, dried over sodium sulfate, and evaporated to give 2-chloro-N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoropropoxy)pyrazol-1-yl]pyridine-3-carboxarnide 97\%) ESI-MS m/z calc. 492.05945, found 493.1 ($\mathrm{M}+\mathrm{l}$)+; Retention time: 0.61 minutes.

Step 2: N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6- [3-(3,3,3-trifluoropropoxy)pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide

2-chloro-N-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoropropoxy)pyrazol-1-yl]pyridine-3-carboxamide (approximately $100 \mathrm{mg}, 0.2 \mathrm{mmol}$), (4S)-2,2,4trimethylpyrrolidine (Hydrochloride salt) (approximately $91 \mathrm{mg}, 0.60 \mathrm{mmol}$), and potassium carbonate (approximately $141 \mathrm{mg}, 1.0 \mathrm{mmol}$) were combined in DMSO $(500.0 \mu \mathrm{~L})$ and heated at $130{ }^{\circ} \mathrm{C}$ for 16 h . The reaction was diluted with water (3 mL) and stirred for 20 min . A solid formed and the aqueous liquid was decanted. The solid was dissolved in ethyl acetate and washed with a 1 M citric acid solution, then brine. The organics were dried over sodium sulfate and evaporated. The crude material was purified by silica gel chromatography eluting with $0-10 \%$ methanol in dichloromethane to giveN-(1,5-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoropropoxy)pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide ($51 \mathrm{mg}, 44 \%$) ESIMS m/z calc. 569.20, found 570.3 (M+1)+; Retention time: 1.89 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 12.36(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.74(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, \mathrm{J}=$ $5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{qt}, \mathrm{J}=11.5,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.59-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.46-$ $2.37(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{dd}, \mathrm{J}=11.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}$, $\mathrm{J}=11.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.42(\mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of 6-[3-(Dicyclopropylmethoxy)pyrazol-l-yl]-A^-(1,3-dimethylpyrazol-4-yl)sulfonyl-2-[(4S)-2,2,4-trimethylpyirolidin- 1-yl]pyridine-3-carboxamide (Compound 48)

Step 1: tert-butyl 3-(dicyclopropylmethoxy)pyrazole-l-carboxylate

dicyclopropylmethanol (approximately $468.9 \mathrm{mg}, 4.180 \mathrm{mmol}$), tert-butyl 3-
hydroxypyrazole-1 -carboxylate ($700 \mathrm{mg}, 3.800 \mathrm{mmol}$), and PPh3 (approximately 1.296 $\mathrm{g}, 4.940 \mathrm{mmol})$ were dissolved in THF (19.00 mL), and cooled to $0^{\circ} \mathrm{C}$ in an ice bath. DIAD (approximately $998.9 \mathrm{mg}, 956.8 \mu \mathrm{~L}, 4.940 \mathrm{mmol}$) was added dropwise by syringe, and the reaction mixture was allowed to slowly warm to room temperature over the course of an hour, and then stirred 16 hours at room temperature, and 2 hours at 60 ${ }^{\circ} \mathrm{C}$. Solvent was removed under reduced pressure. The remaining oil was then dissolved in 60 mL ethyl acetate, and washed with 50 mL IN NaOH . The aqueous layer was further extracted with ethyl acetate $(2 x 40 \mathrm{~mL})$, and the combined orgaincs were washed with brine, dried over sodium sulfate and concentrated. The crude
material was then purified by silica gel chromatography, employing a $0-40 \%$ gradient of ethyl acetate in hexanes. The fractions containing the desired product were combined and concentrated to give tert-butyl 3-(dicyclopropylmethoxy)pyrazole-1-carboxylate ($483 \mathrm{mg}, 46 \%$). ESI-MS m/z calc. 278.16306, found 279.3 (M+1)+; Retention time: 2.11 minutes.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMF}$) $\delta 8.02(\mathrm{dd}, \mathrm{J}=3.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, \mathrm{J}=3.1,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{td}, \mathrm{J}=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.23-1.04(\mathrm{~m}, 2 \mathrm{H}), 0.59-$ 0.27 ($\mathrm{m}, 8 \mathrm{H}$).

Step 2: 3-(dicyclopropylmethoxy)-IH-pyrazole

To tert-butyl 3-(dicyclopropylmethoxy)pyrazole-l-carboxylate ($470 \mathrm{mg}, 1.689 \mathrm{mmol}$) in 1,2-dimethoxy ethane (5.875 mL) was added sodium carbonate ($537 \mathrm{mg}, 5.067 \mathrm{mmol}$) in water (2.5 mL), and the reaction mixture was heated to $90^{\circ} \mathrm{C}$ for 16 hours in a screwcap vial. The reaction mixture was cooled to room temperature and diluted with water (50 mL) and ethyl acetate (50 mL). The organics were seperated, and the aqueous layer was extracted $2 \times 25 \mathrm{~mL}$ ethyl acetate. The combined organics were washed with brine, and dried over sodium sulfate, then concentrated to give a colorless oil, which was used in the next step without further purification. 3-(dicyclopropylmethoxy)-lH-pyrazole (230 $\mathrm{mg}, 76 \%$) ESI-MS m/z calc. 178.11061, found $179.1(\mathrm{M}+\mathrm{l})+$; Retention time: 1.32 minutes.

Step 3: ethyl 2-chloro-6-[3-(dicyclopropylmethoxy)pyrazol-l-yl]pyridine-3carboxylate

A round bottom flask was charged under nitrogen with 3-(dicyclopropylmethoxy)-lHpyrazole ($226 \mathrm{mg}, 1.268 \mathrm{mmol}$) , ethyl 2,6-dichloropyridine-3-carboxylate (280 mg , $1.272 \mathrm{mmol}), \mathrm{K} 2 \mathrm{CO}_{3}(264 \mathrm{mg}, 1.910 \mathrm{mmol})$ (freshly ground in a mortar) and anhydrous DMF (2.100 mL). DABCO ($26 \mathrm{mg}, 0.2318 \mathrm{mmol}$) was added and the mixture was stirred at room temperature under nitrogen for 16 hours . The reaction mixture was diluted with ethyl acetate $(50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$ and the two phases were separated. The aqueous phase was further extracted with ethyl acetate ($2 \times 30 \mathrm{~mL}$), and the combined extracts were washed with brine and dried over sodium sulfate, after which the solvent was removed under reduced pressure. The material was subjected to flash chromatography on silica gel using a gradient of $0-30 \%$ ethyl acetate in hexanes. The pure fractions were combined and the solvents removed under reduced pressure to provide a white solid; ethyl 2-chloro-6-[3-(dicyclopropylmethoxy)pyrazol-1-yl]pyridine-3-carboxylate ($210 \mathrm{mg}, 46 \%$). ESI-MS m/z calc. 361.11932, found 362.3 $(\mathrm{M}+\mathrm{l})+$; Retention time: 0.82 minutes.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.48-8.31(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, \mathrm{~J}=$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 1.27-1.14 (m, 2H), 0.60-0.35 (m, 8H).

Step 4: 2-chloro-6-[3-(dicyclopropylmethoxy)pyrazol-l-yl]pyridine-3-carboxylic acid

To a solution of ethyl 2-chloro-6-[3-(dicyclopropylmethoxy)pyrazol-1-yl]pyridine-3carboxylate ($5 \mathrm{~g}, 13.82 \mathrm{mmol}$) in THF (35.00 mL) and $\mathrm{MeOH}(15.00 \mathrm{~mL})$ was added NaOH (approximately 13.82 mL of $2 \mathrm{M}, 27.64 \mathrm{mmol}$). The mixture was stirred at ambient temperature for 45 min . The mixture was acidified with the slow addition of HCl (approximately 27.64 mL of $1 \mathrm{M}, 27.64 \mathrm{mmol}$) and the mixture was extracted with EtOAc (125 mL). The aqueous phase was separated and the organic phase was washed with 75 mL of brine, dried over $\mathrm{MgSO4}$, filtered and concentrated in vacuo. The product was an off-white solid used without further purification. 2-chloro-6-[3-(dicyclopropylmethoxy)pyrazol-l-yl]pyridine-3-carboxylic acid (4.5 g, 98\%). ESI-MS m / z calc. 333.088 , found $334.0(\mathrm{M}+1)+$; Retention time: 1.81 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 13.60(\mathrm{~s}, 1 \mathrm{H}), 8.41-8.34(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.59-$ 0.38 (m, 8H).

Step 5: 2-Chloro-6-[3-(dicyclopropylmethoxy)pyrazol-l-yl]-iV-(1,3-dimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide

To 2-chloro-6-[3-(dicyclopropylmethoxy)pyrazol-l-yl]pyridine-3-carboxylic acid (4.5 $\mathrm{g}, 13.48 \mathrm{mmol}$) in THF (45 mL) was slowly added CDI ($2.4 \mathrm{~g}, 15 \mathrm{mmol}$). The mixture was stirred at ambient temperature for one hour. To the activated ester was added 1,3-dimethylpyrazole-4-sulfonamide $(2.6 \mathrm{~g}, 14.84 \mathrm{mmol})$ portionwise followed by DBU $(2.4 \mathrm{~mL}, 16 \mathrm{mmol})$, and the mixture was stirred at ambient temperature for one hour. To the reaction mixture was slowly added citric acid ($10.4 \mathrm{~g}, 54.1 \mathrm{mmol}$) in water (90 mL). The mixture was extracted with EtOAc $(120 \mathrm{~mL})$, and the organic phase washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The crude product was chromatographed on a 120 g ISCO silica gel column eluting with $0-100 \%$ EtOAc/hexanes affording 2-chloro-6-[3-(dicyclopropylmethoxy)pyrazol-1-yl]-N-(1,3-
dimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide (5.3 g, 80\%). ESI-MS m/z calc. 490.119, found $491.1(\mathrm{M}+1)+$; Retention time: 2.57 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 12.71$ ($\mathrm{s}, 1 \mathrm{H}$), $8.52-8.25(\mathrm{~m}, 2 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=8.4$
$\mathrm{Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.26-1.14(\mathrm{~m}, 2 \mathrm{H}), 0.55-0.40(\mathrm{~m}, 8 \mathrm{H})$.

Step 6: 6-[3-(Dicyclopropylmethoxy)pyrazol-l-yl]-A^-(l,3-dimethylpyrazol-4-yl)sulfonyl-2-[(4.S)-2,2,4-trimethylpyrrolidin- 1-yl]pyridine-3-carboxamide

To a solution of 2-chloro-6-[3-(dicyclopropylmethoxy)pyrazol-1-yl]-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide (5.2 g, 10.59 mmol) and (45)-2,2,4-trimethylpyrrolidine (hydrochloride salt) ($3.65 \mathrm{~g}, 24.39 \mathrm{mmol}$) inNMP (25 mL) and 1,2-diethoxy ethane (5 mL) was added potassium carbonate ($7.32 \mathrm{~g}, 53.0 \mathrm{mmol}$). The slurry was heated at $130{ }^{\circ} \mathrm{C}$ for 20 hours. The reaction suspension was cooled to ambient temperature and added slowly to a rapidly stirred solution of $\mathrm{HC1}(18 \mathrm{~mL}$ of 6 $\mathrm{M}, 108 \mathrm{mmol})$ in ice water (150 mL) affording an off-white slurry. The precipitate was collected and washed three times with 10 mL of water. The solid was air dried for one hour. The solid was dissolved in 150 mL of EtOAc and washed with 100 mL of 1 M HC 1 and 100 mL of brine. The organic phase was dried over magnesium sulfate, filtered, and concentrated in vacuo affording an off-white solid. The solid was dissolved in 20 mL of acetonitrile and chromatographed on a 415 g ISCO reverse-phase column eluting with $5-100 \%$ acetonitrile/water. Product fractions were collected and concentrated in vacuo. The product was re-chromatographed on an 80 g ISCO silica gel column eluting with $0-100 \% \mathrm{EtOAc} /$ hexanes. Pure fractions were collected and concentrated in vacuo affording an off-white solid. The solid was dried under vacuum at $45^{\circ} \mathrm{C}$ for four hours to give 6-[3-(dicyclopropylmethoxy)pyrazol-1-yl]-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-2-[(45)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-
carboxamide ($4.1 \mathrm{~g}, 68 \%$). ESI-MS m/z calc. 567.26276 , found $567.0(\mathrm{M}+\mathrm{l})+$;
Retention time: 3.06 minutes.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 12.34(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{t}, \mathrm{J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}$, $3 \mathrm{H}), 2.18(\mathrm{dq}, \mathrm{J}=11.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, \mathrm{J}=11.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~d}, \mathrm{~J}=10.8$ $\mathrm{Hz}, 6 \mathrm{H}), 1.41(\mathrm{t}, \mathrm{J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{dtd}, \mathrm{J}=12.9,8.0,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=6.2$ $\mathrm{Hz}, 3 \mathrm{H}), 0.56-0.38(\mathrm{~m}, 8 \mathrm{H})$.

Synthesis of 6-[3-(3-Bicyclo [1.1.1]pentanylmethoxy)pyrazol-l-yl] -iV-(1,5-dimethylpyrazol-4-yl)sulfonyl-2- [(4S)-2,2,4-trimethylpyirolid in-1-yl] pyridine-3carboxamide (Compound 23)

Step 1: tert-Butyi 3-(3-bicyclo[l.1.I]pentanylmethoxy)pyrazole-I-carboxylatee

A solution of 3-bicyclo[1.1.1]pentanylmethanol $\quad(0.23 \mathrm{~g}, 2.3 \mathrm{mmol})$, tert-butyl 3-hydroxypyrazole-1-carboxylate $(0.42 \mathrm{~g}, 2.3 \mathrm{mmol})$, and triphenyl phosphine $(0.66 \mathrm{~g}, 2.5$
mmol) in THF (12 mL) was cooled in an ice bath, and isopropyl N isopropoxycarbonyliminocarbamate $(0.49 \mathrm{~mL}, 2.5 \mathrm{mmol})$ was slowly added. The reaction was allowed to slowly warm to room temperature and was stirred for three days. It was diluted with ethyl acetate, washed with saturated aqueous sodium bicarbonate, dried over sodium sulfate, and evaporated under vacuum. The residue was purified by silica gel chromatography with $0-40 \%$ ethyl acetate in hexanes to give totbutyl 3-(3-bicyclo[l.1.1]pentanylmethoxy)pyrazole-l-carboxylate as a colorless oil ($0.40 \mathrm{~g}, 66 \%$) ESI-MS m/z calc. 264.15 , found 265.2 ($\mathrm{M}+\mathrm{l}$)+; Retention time: 0.79 minutes.

Step 2: 3-(\{Bicyclo[l.l.I]pentan-l-yl\}methoxy)-l $\quad \boldsymbol{H}$-pyrazole

A solution of tot-butyl 3-(3-bicyclo[1.1.1]pentanylmethoxy)pyrazole-1-carboxylate $(0.40 \mathrm{~g}, 1.513 \mathrm{mmol})$ and trifluoroacetic acid $(583 \mu \mathrm{~L}, 7.57 \mathrm{mmol})$ in dichloromethane (3 mL) was stirred for four hours. The volatiles were removed under vacuum, and the residue was basified with saturated aqueous sodium bicarbonate and extracted with ethyl acetate. The combined extracts were dried over sodium sulfate and evaporated to give 3-(\{bicyclo[1.1.1]pentan-l-yl\}methoxy)-1 \boldsymbol{H}-pyrazole as a colorless oil (0.23 g , $93 \%)$ ESI-MS m/z calc. 164.09 , found $165.1(\mathrm{M}+\mathrm{l})+$; Retention time: 0.45 minutes.

Step 3: tert-Butyi 6-[3-(3-bicyclo[1.1.I]pentanylmethoxy)pyrazol-l-yl]-2-chloro-pyridine-3-carboxylate

A mixture of 3-(3-bicyclo[1.1.1]pentanylmethoxy)-1 \boldsymbol{H}-pyrazole ($0.23 \mathrm{~g}, 1.4 \mathrm{mmol}$), tot-butyl 2,6-dichloropyridine-3-carboxylate ($0.35 \mathrm{~g}, 1.4 \mathrm{mmol}$), potassium carbonate
($0.23 \mathrm{~g}, 1.7 \mathrm{mmol}$), and 1,4-diazabicyclo[2.2.2]octane ($32 \mathrm{mg}, 0.29 \mathrm{mmol}$) in DMSO (7 mL) was stirred at room temperature for 16 hours. The reaction was diluted with water and extracted with ethyl acetate. The combined extracts were washed with brine and water, dried over sodium sulfate, and evaporated. The residue was purified by silica gel chromatography with $0-5 \%$ methanol in dichloromethane to give tert-butyl 6-[3-(3bicyclo[l. 1.1]pentanylmethoxy)pyrazol-l-yl]-2-chloro-pyridine-3-carboxylate (0.45 g , 85\%) ESI-MS m/z calc. 375.13, found $376.2(\mathrm{M}+\mathrm{l})+$; Retention time: 0.93 minutes.

Step 4: 6-[3-(3-Bicyclo[1.1.1]pentanylmethoxy)pyrazol-I-yl]-2-chloro-pyridine-3carboxylic acid

A solution of tert-butyl 6-[3-(3-bicyclo[1.1.1]pentanylmethoxy)pyrazol-1-yl]-2-chloro-pyridine-3-carboxylate $(0.45 \mathrm{~g}, 1.2 \mathrm{mmol})$ and trifiuoroacetic acid ($0.95 \mathrm{~mL}, 12 \mathrm{mmol}$) in dichloromethane (6 mL) was stirred for four hours. The solvent was evaporated, and the residue was taken up in acetonitrile. The solvent was evaporated to give 6-[3-(3-bicyclo[1.1.1]pentanylmethoxy)pyrazol-l-yl]-2-chloro-pyridine-3-carboxylic acid as a colorless solid ($0.38 \mathrm{~g}, 100 \%$) ESI-MS m/z calc. 319.07, found $320.1(\mathrm{M}+\mathrm{l})+$; Retention time: 0.69 minutes ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.50-8.34(\mathrm{~m}, 2 \mathrm{H})$, 7.72 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 1 \mathrm{H}), 1.81(\mathrm{~s}$, 6 H).

Step 5: 6-[3-(3-Bicyclo[l.1.I]pentanylmethoxy)pyrazol-l-yl]-2-chloro-A^-(1,5-dimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide

A solution of 6-[3-(3-bicyclo[1.1.1]pentanylmethoxy)pyrazol-1-yl]-2-chloro-pyridine-3carboxylic acid $(0.12 \mathrm{~g}, 0.3753 \mathrm{mmol}$) and carbonyl diimidazole (approximately 73 mg , 0.45 mmol) in THF (1.9 mL) was stirred for 30 minutes, and 1,5-dimethylpyrazole-4sulfonamide (approximately $85 \mathrm{mg}, 0.49 \mathrm{mmol}$) and diazabicyclo[5.4.0]undec-7-ene (approximately $68 \mathrm{mg}, 67 \mu \mathrm{~L}, 0.45 \mathrm{mmol}$) were added. After 16 hours the reaction was diluted with 1 M aqueous citric acid and extracted with ethyl acetate. The combined extracts were washed with brine, dried over sodium sulfate and evaporated to give crude 6-[3-(3-bicyclo[1.1.1]pentanylmethoxy)pyrazol-1-yl]-2-chloro $-N$-(l,5-dimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide which was used in the next step as-is $(0.19 \mathrm{~g}$, 106%) ESI-MS m/z calc. 476.10, found $477.2(\mathrm{M}+1)+$; Retention time: 0.68 minutes.

Step 6: 6-[3-(3-Bicyclo[1.1.I]pentanylmethoxy)pyrazol-1-yl]-A^-(1,5-dimethylpyrazol-4-yl)sulfonyl-2- [(4S)-2,2,4-trimethylpyirolidin- 1-yl] pyridine-3carboxamide

A mixture of 6-[3-(3-bicyclo[1.1.1]pentanylmethoxy)pyrazol-1-yl]-2-chloro $-N-(1,5-$ dimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide (approximately $0.18 \mathrm{~g}, 0.38$ mmol), (45)-2,2,4-trimethylpyrrolidine (hydrochloride salt) (approximately $160 \mathrm{mg}, 1.1$ mmol), and potassium carbonate (approximately $320 \mathrm{mg}, 2.3 \mathrm{mmol}$) in DMSO (1.9 mL) was stirred at $130{ }^{\circ} \mathrm{C}$ for 16 hours. The reaction was filtered and purified by reversephase HPLC-MS ($30 \%-99 \%$ acetonitrile / water (5 mM HC 1)) to give 6-[3-(3bicyclo[1 .1.1]pentanylmethoxy)pyrazol-1 -yl]-N-(l ,5-dimethylpyrazol-4-yl)sulfonyl-2-[(45)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (90 mg, 42\%) ESI-MS m/z calc. 553.25 , found $554.5(\mathrm{M}+1)+$; Retention time: 2.11 minutes. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.19(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.52(\mathrm{~m}, 5 \mathrm{H})$, $2.40(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{dd}, \mathrm{J}=11.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}$, $6 \mathrm{H}), 1.55(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.43(\mathrm{t}, \mathrm{J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.80(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$

Synthesis of \mathbf{A}^{\wedge}-(l,3-Dimethylpyrazol-4-yl)sulfonyl-6-[3-(2-dispiro[2.0.2.1]heptan -7-ylethoxy)pyrazol- 1-yl]-2-[(4S)-2,2,4-trimethylpyirolid in-1-yl] pyridine-3carboxamide (Compound 56)

Step 1: 1-cyclopropylcyclopropanol

To a solution of methyl cyclopropanecarboxylate ($75 \mathrm{~g}, 749.1 \mathrm{mmol}$) in ether (450 mL) was added titanium(IV) isopropoxide ($55.3 \mathrm{~mL}, 187.4 \mathrm{mmol}$). To the mixture was slowly added ethyl magnesium bromide (1.6 L of $1 \mathrm{M}, 1.60 \mathrm{~mol}$) over 2 hr . The addition is exothermic and contolled with monitoring the addition rate and using a cooling bath. The reaction temperature was kept between $21-26^{\circ} \mathrm{C}$ during addition. The mixture was stirred an additional 2 hr at ambient temperature. After 2 hours, the mixture
was chilled to $-5^{\circ} \mathrm{C}$ using an acetone/dry ice bath and slowly quenched with sulfuric acid (970 g of $10 \% \mathrm{w} / \mathrm{w}, 990 \mathrm{mmol}$). The reaction mixture was cooled in a dry ice/acetone bath to keep the reaction vessel below $0{ }^{\circ} \mathrm{C}$ during the quench. As quench progresses, a grey/purple solid forms. Following complete addition of aqueous sulfuric acid, the solid never went into solution. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hr . The precipitate was filtered through celite using a medium frit and the precipitate washed with diethyl ether $(900 \mathrm{~mL})$. The filtrate was transferred to a seperatory funnel and the organic phase was washed with brine (1 L), saturated sodium bicarbonate (1L), and brine (1L). The organic phase was dried over magnesium sulfate, filtered over celite, and the solvent was evaporated in vacuo at 100 torr and the water bath set at $20^{\circ} \mathrm{C}$. The crude product was stored at $-23{ }^{\circ} \mathrm{C}$ overnight and used without further purification. 1cyclopropylcyclopropanol ($61 \mathrm{~g}, 83 \%$) was found to contain -50% solvent (THF and $\mathrm{iPrOH})$ and used as is in the next step.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 1.32(\mathrm{tt}, \mathrm{J}=8.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $0.71-0.61(\mathrm{~m}, 2 \mathrm{H})$, $0.51-0.43(\mathrm{~m}, 2 \mathrm{H}), 0.43-0.33(\mathrm{~m}, 2 \mathrm{H}), 0.23-0.14(\mathrm{~m}, 2 \mathrm{H})$.

Step 2: 1-bromo-l-cyclopropyl-cyclopropane

A solution of triphenylphosphine ($56.1 \mathrm{~g}, 213.9 \mathrm{mmol}$) in DCM (200 mL) was cooled to $-10{ }^{\circ} \mathrm{C}$. A solution of bromine ($11.0 \mathrm{~mL}, 214 \mathrm{mmol}$) in DCM (40 mL) was added and the reaction was stirred at $-10^{\circ} \mathrm{C}$ for an additional 15 minutes. The reaction was then cooled to $-30^{\circ} \mathrm{C}$ and pyridine ($3.3 \mathrm{~mL}, 41 \mathrm{mmol}$) was added. A solution of $1-$ cyclopropylcyclopropanol ($20.0 \mathrm{~g}, 204 \mathrm{mmol}$), pyridine ($17.3 \mathrm{~mL}, 214 \mathrm{mmol}$), and DCM (100 mL) was added dropwise while maintaining the temperature between $-15^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$. After 30 minutes, the addition was complete and the reaction was allowed to gradually warm to rt. ${ }^{1} \mathrm{H}$ NMR analysis showed some product. The reaction was allowed to stir at $40^{\circ} \mathrm{C}$ overnight. GCMS analysis showed 89% product. The reaction was cooled to rt and then quenched with water $(100 \mathrm{~mL})$. The reaction was stirred for 10 minutes and then the phases were separated. The organic phase succesively washed with

1 M HC1 (102 mL), sat. sodium bicarbonate (50 mL), dried over sodium sulfate, and concentrated ($30^{\circ} \mathrm{C} /$ house vacuum -300 torr) to remove most of the DCM. The crude reaction mixture was flash distilled $\left(40^{\circ} \mathrm{C} / 20\right.$ torr $)$ to provide the product (approximately 50 g). The solid residue (PI13PO and product) was re-heated and distilled ($50-60^{\circ} \mathrm{C} / 20$ torr) to afford 60.4 g . After combining all of the above and rinsing with DCM, concentration afforded $21.5 \mathrm{~g}\left(65 \%\right.$ yield) of a turbid, colorless liquid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 5.30(\mathrm{~s}, 1 \mathrm{H}), 1.61(\mathrm{tt}, \mathrm{J}=8.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.07-1.02(\mathrm{~m}$, $2 H), 0.78-0.66(\mathrm{~m}, 2 \mathrm{H}), 0.67-0.51(\mathrm{~m}, 2 \mathrm{H}), 0.35-0.21(\mathrm{~m}, 2 \mathrm{H})$.

Step 3: cyclopropylidenecyclopropane

A solution of potassium tert-butoxide ($16.7 \mathrm{~g}, 148.8 \mathrm{mmol}$) in DMSO (100 mL) was stirred at RT in a 3-neck 250-mL RB flask. 1-bromo-l-cyclopropyl-cyclopropane (20.0 $\mathrm{g}, 124.2 \mathrm{mmol}$) was added dropwise and the reaction immediately turned dark and then brown. The reaction was mildly exothermic (maintained temperature between $18^{\circ} \mathrm{C}$ to $22^{\circ} \mathrm{C}$ using an ice-water bath). After 10 minutes, the addition was completed. The icewater bath was removed and the reaction was allowed to stir at RT. After 90 minutes, ${ }^{1} \mathrm{H}$ NMR analysis showed that the reaction was nearly complete. The reaction mixture was vacuum distilled using a bulb-to-bulb distillation. The distillation took place from $60^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ between 40 and 100 torr. The distillate slowly collected in the receiver to afford $18.2 \mathrm{~g}(-95 \%$ for olefin/t-BuOH combined;) of a colorless liquid which was analyzed by ${ }^{1} \mathrm{H}$ NMR to contain (7.28 grams of olefin) along with t-BuOH.

The distillate was further washed with water (5 x 10 mL). DCM (10 mL) was added and the reaction phases were separated with each washing. The organic layers were dried over magnesium sulfate, filtered, and evaporated to afford 17.30 g (containing 7.30 g product; 73%) as a colorless liquid (solution). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) δ $1.19(\mathrm{~s}, 8 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR confirms the presence of DCM and a small amount of tertbutanol.

Step 4: ethyl dispiro[2.0.2.1]heptane -7-carboxylate

To a solution of cyclopropylidenecyclopropane ($49.5 \mathrm{~g}, 617.8 \mathrm{mmol}$) in DCM (110 mL) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere was added rhodium(II) acetate ($4.2 \mathrm{~g}, 9.503 \mathrm{mmol}$). To the mixture at $0^{\circ} \mathrm{C}$ was added ethyl 2-diazoacetate ($106.8 \mathrm{~mL}, 1.016 \mathrm{~mol}$) using a syringe pump set at an addition rate of $0.02 \mathrm{~mL} / \mathrm{min}(1.2 \mathrm{~mL} / \mathrm{hr})$. The addition was continuous for 89 hr . The crude reaction mixture was filtered through a plug of silica, washing 3 X with 150 mL of DCM. The volatile materials were removed in vacuo affording a dark yellow oil, containing 20% DCM, diethyl (E)-but-2-enedioate and diethyl (Z)-but-2-enedioate as by-products. Ethyl dispiro[2.0.2.1]heptane-7-carboxylate ($100 \mathrm{~g}, 97 \%$), 3/4NMR (400 MHz , chloroform-d) $\delta 4.13(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.23$ (s, $1 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-0.93(\mathrm{~m}, 4 \mathrm{H}), 0.90-0.82(\mathrm{~m}, 2 \mathrm{H}), 0.77(\mathrm{ddd}, \mathrm{J}=$ $8.2,5.0,3.5 \mathrm{~Hz}, 2 \mathrm{H})$.

Step 5: dispiro[2.0.2.1]heptan-7-yl\}methanol

To a slurry of $\mathrm{L}^{2} \mathrm{AIH}_{4}(7.8 \mathrm{~g}, 200.2 \mathrm{mmol})$ in diethyl ether (300 mL) chilled with an icebath was slowly added ethyl dispiro[2.0.2.1]heptane-7-carboxylate (10.77 g, 64.79 mmol). The mixture was allowed to warm to a gentle reflux during the addition and continued to stir at ambient temperature for 1 hr . By ${ }^{1} \mathrm{H} N \mathrm{NR}$, the reaction was complete. The reaction was chilled with an ice-bath and slowly quenched with the addition of water $(8.0 \mathrm{~mL}, 440 \mathrm{mmol})$, followed by sodium hydroxide $(8.0 \mathrm{~mL}$ of 2 M , $16 \mathrm{mmol})$ and then water ($24.0 \mathrm{~mL}, 1.33 \mathrm{~mol}$). The light yellow slurry was filtered over celite and washed 3 X with 150 mL of MTBE. The filtrate was concentrated in vacuo affording 8.87 g of a clear oil. \{dispiro[2.0.2.1]heptan-7-yl\}methanol ($8.87 \mathrm{~g}, 110 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 3.71$ (dd, J = 6.7, $5.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.76-1.65 (m, $1 \mathrm{H}), 1.46(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{q}, \mathrm{J}=1.9 \mathrm{~Hz}, 4 \mathrm{H}), 0.72-0.61(\mathrm{~m}, 2 \mathrm{H}), 0.60-0.50$ (m, 2H).

Step 6: 7-(bromomethyl)dispiro[2.0.2.1]heptane

A 1000 mL 3 neck RB flask was fitted with a mechanical stirrer, a cooling bath, an addition funnel, a J-Kem temperature probe and a nitrogen inlet/outlet. The vessel was charged under a nitrogen atmosphere with triphenylphosphine ($102.7 \mathrm{~mL}, 443.2 \mathrm{mmol}$) and dichloromethane (1 L) which provided a clear colorless solution. Stirring was commenced and the cooling bath was charged with acetone. Dry ice was added in portions until a pot temperature of $-15{ }^{\circ} \mathrm{C}$ was obtained. The addition funnel was charged with a solution of bromine ($22.82 \mathrm{~mL}, 443.0 \mathrm{mmol}$) in dichloromethane (220 $\mathrm{mL}, 10 \mathrm{~mL} / \mathrm{g}$) which was subsequently added dropwise over 1 hour. Dry ice was added in portions during the addition to maintain the pot temperature at $-15{ }^{\circ} \mathrm{C}$. After the addition was completed, the pale yellow suspension was continued to stir at $-15{ }^{\circ} \mathrm{C}$ for 15 minutes at which point the suspension was cooled to $-30^{\circ} \mathrm{C}$. The addition funnel was charged with a solution of dispiro[2.0.2.1]heptan-7-ylmethanol (50 g, 402.6 mmol), pyridine ($35.82 \mathrm{~mL}, 442.9 \mathrm{mmol}$) and dichloromethane ($250 \mathrm{~mL}, 5 \mathrm{~mL} / \mathrm{g}$). The clear pale yellow solution was then added dropwise over 1.5 hours maintaining the pot temperature at $-30^{\circ} \mathrm{C}$. The resulting clear light yellow reaction mixture was allowed to gradually warm to a pot temperature of $-5^{\circ} \mathrm{C}$ and then continue to stir at $-5^{\circ} \mathrm{C}$ for 1 hour. An aliquot was removed, diluted with hexane which resulted in the formation of a precipitate. The suspension was filtered through a plug of celite. The clear filtrate was concentrated under reduced pressure (water bath temperature at $20^{\circ} \mathrm{C}$) to provide a clear yellow oil. Analysis by ${ }^{1} \mathrm{H}$ NMR indicated no remaining starting material. Reaction completion was determined by disappearance of starting material doublet at 3.71 ppm and appearance of product doublet at 3.49 ppm . The reaction mixture was poured into hexane (2000 mL) which resulted in the formation of a precipitate. The suspension was stirred at room temperature for 30 minutes and then filtered through a glass frit Buchner
funnel with a 20 mm layer of Celite. The clear filtrate was concentrated under reduced pressure (water bath temperature at $20^{\circ} \mathrm{C}$) to provide a yellow oil with some precipitates present. The oil was diluted with hexane, allowed to stand at room temperature for 15 minutes and then filtered through a glass frit Buchner funnel with a 20 mm layer of celite. The clear filtrate was concentrated under reduced pressure (water bath temperature at $20^{\circ} \mathrm{C}$) to provide 7-(bromomethyl)dispiro[2.0.24.13]heptane (70 g, 93\%) ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 3.49(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.90(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.06-0.84(\mathrm{~m}, 4 \mathrm{H}), 0.71(\mathrm{ddd}, \mathrm{J}=9.1,5.1,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.54(\mathrm{dddd}, \mathrm{J}=8.6,4.8,3.8$, $1.0 \mathrm{~Hz}, 2 \mathrm{H})$. as a clear yellow oil ($70 \mathrm{~g}, 0.374 \mathrm{~mol}, 93 \%$ yield).

Step 7: 2-dispiro[2.0.2.1]heptan-7-ylacetonitrile

A 1000 mL 3 neck RB flask was fitted with a mechanical stirrer, a cooling bath used as secondary containment, a J-Kem temperature probe and a nitrogen inlet/outlet. The vessel was charged under a nitrogen atmosphere with 7-
(bromomethyl)dispiro[2.0.2.1]heptane ($35 \mathrm{~g}, 187.1 \mathrm{mmol}$) and dimethyl sulfoxide (245 mL) which provided a clear amber solution. Stirring was commenced and the pot temperature was recorded at $19^{\circ} \mathrm{C}$. The vessel was then charged with sodium cyanide $(11.46 \mathrm{~g}, 233.8 \mathrm{mmol})$ added as a solid in one portion which resulted in a dark solution and a gradual exotherm to $49^{\circ} \mathrm{C}$ over 15 minutes. After a few minutes the pot temperature began to decrease and the mixture was continued to stir at room temperature overnight (about 15 hours). The dark reaction mixture was quenched with ice cold saturated sodium carbonate solution $(500 \mathrm{~mL})$ and then transferred to a separatory funnel and partitioned with diethyl ether (500 mL). The organic was removed and the residual aqueous was extracted with diethyl ether ($2 \times 250 \mathrm{~mL}$). The combined organic was washed with water (500 mL), dried over sodium sulfate (200 g) and then filtered through a glass frit Buchner funnel. The clear amber filtrate was concentrated under reduced pressure (water bath temperature $20^{\circ} \mathrm{C}$) to provide 2-
dispiro[2.0.2.1]heptan-7-ylacetonitrile ($21 \mathrm{~g}, 84 \%$) $3 / 4 \mathrm{NMR} \quad(400 \mathrm{MHz}$, Chloroform-d)
$\delta 2.42(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.02-0.88(\mathrm{~m}, 4 \mathrm{H}), 0.79-0.70(\mathrm{~m}$, $2 \mathrm{H}), 0.66-0.55(\mathrm{~m}, 2 \mathrm{H})$ as a clear dark amber oil ($21 \mathrm{~g}, 0.158 \mathrm{~mol}, 84 \%$ yield).

Step 8: 2-dispiro[2.0.2.1]heptan-7-ylacetic acid

A 5000 mL 3 neck RB flask was fitted with a mechanical stirrer, a heating mantle, a JKem temperature probe/contr oiler, a water cooled reflux condenser and a nitrogen inlet/outlet. The vessel was subsequently charged under anitrogen atmosphere with 2-dispiro[2.0.2.1]heptan-7-ylacetonitrile (105 $\mathrm{g}, 788.3 \mathrm{mmol})$ and ethyl alcohol $(1.05 \mathrm{~L})$ which provided a clear amber solution.

Stirring was commenced and the pot temperature was recorded at $19^{\circ} \mathrm{C}$. The vessel was then charged with sodium hydroxide (525.5 mL of $6 \mathrm{M}, 3.153 \mathrm{~mol}$) added in one portion. The resulting clear amber solution was heated to a pot temperature of $70^{\circ} \mathrm{C}$ and the condition was maintained for 24 hours. After cooling to room temperature, the reaction mixture was concentrated to remove the ethyl alcohol. The residual aqueous was diluted with water (500 ml) and then transferred to a separatory funnel and partitioned with diethyl ether (250 mL). The organic was removed and the residual aqueous was extracted with diethyl ether $(250 \mathrm{~mL})$. The aqueous was removed and the pH was adjusted to $\mathrm{pH} \sim 1$ with 6 Molar HC 1 solution. The resulting aqueous solution was transferred to a separatory funnel and partitioned with diethyl ether (500 ml). The organic was removed and the residual aqueous was extracted with diethyl ether (2×250 $\mathrm{mL})$. The combined organic was dried over sodium sulfate (250 g) and then filtered through a glass frit Buchner funnel. The clear filtrate was concentrated under reduced pressure to provide the desired product 2-dispiro[2.0.2.1]heptan-7-ylacetic acid (103 g, $86 \%){ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 2.44(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{~d}, \mathrm{~J}=13.8$ $\mathrm{Hz}, 1 \mathrm{H}), 0.91(\mathrm{ddd}, \mathrm{J}=9.0,5.2,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.81(\mathrm{ddd}, \mathrm{J}=8.9,5.2,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.68$ $(\mathrm{ddd}, \mathrm{J}=8.9,5.2,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.50(\mathrm{dddd}, \mathrm{J}=8.9,5.0,3.9,0.9 \mathrm{~Hz}, 2 \mathrm{H}) .(103 \mathrm{~g}, 0.676$ mol, 86% yield) of a clear amber oil which solidified upon standing.

Step 9: 2-dispiro[2.0.2.1]heptan-7-ylethanol

A 1000 mL 3 neck RB flask was fitted with a mechanical stirrer, a cooling bath, an addition funnel, a J-Kem temperature probe, and a nitrogen inlet/outlet. The vessel was charged under a nitrogen atmosphere with lithium aluminum hydride $(6.483 \mathrm{~g}, 170.8$ $\mathrm{mmol})$. The vessel was then charged under a nitrogen atmosphere with tetrahydrofuran $(200 \mathrm{~mL})$. Stirring was commenced and the pot temperature was recorded at $20^{\circ} \mathrm{C}$. The mixture was allowed to stir at room temperature for 0.5 hour to allow the pellets to dissolve. The pot temperature of the resulting grey suspension was recorded at $24^{\circ} \mathrm{C}$. The cooling bath was then charged with crushed ice/water and the pot temperature was lowered to $0^{\circ} \mathrm{C}$. The addition funnel was charged with a solution of 2-dispiro[2.0.2.1]heptan-7-ylacetic acid ($20 \mathrm{~g}, 131.4 \mathrm{mmol}$) in tetrahydrofuran ($60 \mathrm{~mL}, 3$ mL / g) and the clear pale amber solution was added dropwise over 1 hour. After the completed addition, the pot temperature of the resulting greyish-brown suspension was recorded at $5^{\circ} \mathrm{C}$. The mixture was allowed to slowly warm to room temperature and continue to stir at RT for 24 hours. The suspension was cooled to $0^{\circ} \mathrm{C}$ with a crushed ice/water cooling bath and then quenched by the very slow dropwise addition of water (6.483 mL) , followed by $15 \mathrm{wt} \%$ sodium hydroxide solution $(6.483 \mathrm{~mL}$) and then finally with water $(19.45 \mathrm{~mL})$. The pot temperature of the resulting white suspension was recorded at $5^{\circ} \mathrm{C}$. The suspension was continued to stir at $\sim 5^{\circ} \mathrm{C}$ for 30 minutes and then filtered through a glass frit Buchner funnel with a 20 mm layer of celite. The filter cake was displacement washed with tetrahydrofuran ($2 \times 150 \mathrm{ml}$) and then dried under reduced pressure for 15 minutes. The filtrate was dried over sodium sulfate (250 g) and then filtered through a glass frit Buchner funnel. The filtrate was concentrated under reduced pressure to provide 2-dispiro[2.0.2.1]heptan-7-ylethanol (16.7 g, 92\%) 1H NMR (400 MHz, Chloroform-d) $\delta 3.63$ (t, J = $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $1.68(\mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), $1.39(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.90-0.73(\mathrm{~m}, 4 \mathrm{H}), 0.65(\mathrm{ddd}, \mathrm{J}=8.0,4.8,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.57-$ $0.43(\mathrm{~m}, 2 \mathrm{H})$ as a clear pale amber oil. The proton NMR indicates $5 \mathrm{wt} \%$ of residual tetrahydrofuran (0.95) $17.6 \mathrm{~g}=16.7 \mathrm{~g}(92 \%$ yield $)$

Step 10: tert-butyl 3-(2-dispiro[2.0.2.1]heptan-7-ylethoxy)pyrazole-I-carboxylate

A 5000 mL 3 neck RB flask was fitted with a mechanical stirrer, a heating mantle, a JKem temperature probe/contr oiler, an addition funnel, a water cooled reflux condenser and a nitrogen inlet/outlet. The vessel was charged under a nitrogen atmosphere with tert-butyl 5-oxo-lH-pyrazole-2-carboxylate ($100 \mathrm{~g}, 542.9 \mathrm{mmol}$) and tetrahydrofuran $(1,200 \mathrm{~mL})$ which provided a clear pale yellow solution. Stirring was commenced and the pot temeperature was recorded at $19^{\circ} \mathrm{C}$. The vessel was then charged with 2-dispiro[2.0.2.1]heptan-7-ylethanol ($82.54 \mathrm{~g}, 597.2 \mathrm{mmol}$) added neat in one portion followed by triphenylphosphine $(156.6 \mathrm{~g}, 597.1 \mathrm{mmol})$ added as a solid in one portion. The resulting clear pale yellow solution was then treated with diisopropyl azodicarboxylate ($120.8 \mathrm{~g}, 597.4 \mathrm{mmol}$) (clear reddish-orange liquid) added neat dropwise over 60 minutes which resulted in a gradual exotherm to $40^{\circ} \mathrm{C}$ and a clear light amber solution. The reaction mixture was then heated to a pot temperature of $50^{\circ} \mathrm{C}$ and the condition was maintained for 2 hours when analysis by LC/MS indicated complete consumption of the starting material. The clear amber reaction mixture was concentrated under reduced pressure and the resulting clear dark amber oil was suspended in toluene (800 mL) and stirred at room temperature for 1 hour during which time a solid (triphenylphosphine oxide) precipitated. The thick slurry was filtered through a glass frit Buchner funnel and the filter cake was displacement washed with toluene ($2 \times 500 \mathrm{~mL}$) with vacuum pulled for an additional 30 minutes. The off-white solid filter cake was consistent by LC/MS for triphenylphosphine oxide. The clear amber filtrate was concentrated under reduced pressure to provide a clear pale amber oil (175 g). The material was purified by silica gel plug flash chromatography eluting with a gradient of 100% hexane to 20% ethyl acetate in hexane collecting 50 ml fractions. The product elutes around 5% ethyl acetate in hexane. The desired fractions were combined and concentrated under reduced pressure to provide tert-butyl 3-(2-dispiro[2.0.2.1]heptan-7-ylethoxy)pyrazole-1-carboxylate ($124 \mathrm{~g}, 75 \%$) ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 8.06(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, \mathrm{J}=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 1.77(\mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.88-0.77(\mathrm{~m}$,

4H), 0.67-0.60 (m, 2H), 0.52-0.45 (m, 2H). ESI-MS m/z calc. 304.17868, found $305.0(\mathrm{M}+\mathrm{l})+$; Retention time: 2.18 minutes as a clear pale yellow oil ($124 \mathrm{~g}, 0.407$ mol, 75% yield) which solidified upon standing.

Step 11: 3-(2-dispiro [2.0.2.1]heptan-7-ylethoxy)-IH-pyrazole

A 5000 mL 3 neck RB flask was fitted with a mechanical stirrer, a heating mantle, a JKem temperature probe/controller, a water cooled reflux condenser, an addition funnel, and a nitrogen inlet/outlet. The vessel was charged under a nitrogen atmosphere with tert-butyl 3-(2-dispiro[2.0.2.1]heptan-7-ylethoxy)pyrazole-l-carboxylate (123 g, 404.1 mmol), dichloromethane (492 mL) and methyl alcohol (492 mL) which provided a clear pale yellow solution. Stirring was commenced and the pot temperature was recorded at $19^{\circ} \mathrm{C}$. The addition funnel was charged with hydrogen chloride in $1,4-$ dioxane (303 mL of $4 \mathrm{M}, 1.212 \mathrm{~mol}$), which was subsequently added dropwise over 2 hours which resulted in a gradual exotherm to $30^{\circ} \mathrm{C}$. The resulting clear pale yellow solution was heated to a pot temperature of $45^{\circ} \mathrm{C}$ and the condition was maintained for 1 hour when analysis by LC/MS indicated reaction completion. The reaction mixture was allowed to cool to room temperature and then concentrated under reduced pressure. The remaining white solid residue was dissolved in methyl tert-butyl ether (984 mL) and then transferred to a separatory funnel and partitioned with ice cold sodium hydroxide (606 mL of $2 \mathrm{M}, 1.212 \mathrm{~mol}$). The organic was removed and the residual aqueous was extracted with tert-butyl methyl ether ($2 \times 250 \mathrm{~mL}$). The combined organic was washed with saturated sodium chloride solution ($2 \times 100 \mathrm{~mL}$), dried over sodium sulfate (150 g) and then filtered through a glass frit Buchner funnnel. The clear pale yellow filtrate was concentrated under reduced pressure to provide 3-(2-dispiro[2.0.2.1]heptan-7-ylethoxy)${ }^{1}$ H-pyrazole ($77 \mathrm{~g}, 93 \%$) ESI-MS m/z calc. 204.12627, found 205.1 (M+l)+; Retention time: 1.53 minutes as a clear light yellow oil ($77 \mathrm{~g}, 0.377 \mathrm{~mol}, 93 \%$ yield).

Step 12: ethyl 2-chloro-6-[3-(2-dispiro[2.0.2.1]heptan-7-ylethoxy)pyrazol--1-
yl]pyridine-3-carboxylate

A 5000 mL 3 neck RB flask was fitted with a mechanical stirrer, a cooling bath used as secondary containment, a J-Kem temperature probe, a water cooled reflux condenser, an addition funnel, and a nitrogen inlet/outlet. The vessel was charged under a nitrogen atmosphere with 3-(2-dispiro[2.0.2. 1]heptan-7-ylethoxy)-lH-pyrazole (64.98 g, 318.1 mmol) and N, N-dimethyl formamide (840 mL) which provided a clear pale yellow solution. Stirring was commenced and the pot temperature was recorded at $17^{\circ} \mathrm{C}$. The vessel was then charged with ethyl 2,6-dichloropyridine-3-carboxylate (70 g, 318.1 $\mathrm{mmol})$ added as a solid in one portion. The resulting clear pale yellow solution was then treated with potassium carbonate $(57.15 \mathrm{~g}, 413.5 \mathrm{mmol})$ added as a solid in one portion followed by 1,4-diazabicyclo[2.2.2]octane ($5.353 \mathrm{~g}, 47.72 \mathrm{mmol}$) added as a solid in one portion. The resulting pale yellow suspension was allowed to stir at RT for 24 hours.

After 24 hours, a 5000 mL 3 neck RB flask was fitted with a mechanical stirrer, a cooling bath used as secondary containment, a J-Kem temperature probe and an addition funnel. The vessel was charged with ice cold water $(2.800 \mathrm{~L})$ and stirring was commenced. The pot temperature was recorded at $5^{\circ} \mathrm{C}$. The addition funnel was charged with the reaction mixture, which was subsequently added over 1 hour residing in the formation of a precipitate and an exotherm to $15^{\circ} \mathrm{C}$. The resulting suspension was continued to stir at $15^{\circ} \mathrm{C}$ for 30 minutes and then filtered through a glass frit Buchner funnel. The filter cake was displacement washed with water ($3 \times 500 \mathrm{~mL}$) and then dried under reduced pressure in the Buchner funnel for 2 hours. The material was then dried under vacuum overnight to provide (137 g) of an off-white soild as the crude product. The material was purified by silica gel $(15: 1)$ plug flash chromatography in a glass frit Buchner funnel eluting with a gradient of 100% hexane to 10% ethyl acetate in hexane collecting 1000 mL fractions. The desired fractions were combined and concentrated under reduced pressure to provide ethyl 2-chloro-6-[3-(2-dispiro[2.0.2.1]heptan-7-ylethoxy)pyrazol-1 -yl]pyridine-3-carboxylate (121 g, 98\%)

ESI-MS m/z calc. 387.13498 , found $388.1(\mathrm{M}+1)+$; Retention time: 3.57 minutes as a white solid.

Step 13: 2-chloro-6-[3-(2-dispiro[2.0.2.1]heptan -7-ylethoxy)pyrazol-l-yl]pyridine-3-carboxylic acid

A 5000 mL 3 neck RB flask was fitted with a mechanical stirrer, a heating mantle, a JKem temperature probe/contr oiler, an addition funnel, a water cooled reflux condenser, and a nitrogen inlet/outlet. The vessel was charged under a nitrogen atmosphere with ethyl 2-chloro-6-[3-(2-dispiro[2.0.2.1]heptan-7-ylethoxy)pyrazol-1-yl]pyridine-3carboxylate ($155 \mathrm{~g}, 399.6 \mathrm{mmol}$), tetrahydrofuran ($1,240 \mathrm{~mL}$) and methyl alcohol (1,240 mL) which provided a clear pale amber solution. Stirring was commenced and the pot temperature was recorded at $19^{\circ} \mathrm{C}$. The addition funnel was charged with sodium hydroxide (399.6 mL of $2 \mathrm{M}, 799.2 \mathrm{mmol}$) which was subsequently added over 15 minutes which resulted in a gradual exotherm to $27^{\circ} \mathrm{C}$. The clear light amber reaction mixture was heated to a pot temperature of $40^{\circ} \mathrm{C}$ for 30 minutes. Analysis by LC/MS indicated complete consumption of the starting material. The reaction mixture was concentrated under reduced pressure to remove most of the organic solvent. The remaining aqueous suspension was further diluted with water $(1000 \mathrm{~mL})$. The pH was then adjusted to $\mathrm{pH} \sim 1$ with ice cold 2 MHC 1 solution. The resulting very thick slurry was vacuum filtered through a glass frit Buchner funnel. The filter cake was displacement washed with water ($2 \times 250 \mathrm{~mL}$) and then dried under reduced pressure for 45 minutes. The material was dissolved in dichloromethane (1000 mL) and transferred to a separatory funnel and partitioned with saturated sodium chloride solution (250 mL). The organic was removed and dried over sodium sulfate (250 g) and then filtered through a glass frit Buchner funnel. The clear filtrate was concentrated under reduced pressure to provide 2-chloro-6-[3-(2-dispiro[2.0.2.1]heptan-7-
ylethoxy)pyrazol-l-yl]pyridine-3-carboxylic acid ($143 \mathrm{~g}, 97 \%$) ESI-MS m/z calc. 359.10367, found $360.1(\mathrm{M}+1)+$; Retention time: 2.97 minutes of a white solid. HPLC analysis indicated 97.12 area\%

Actual yield: $0.9712(143)=138.9 \mathrm{~g}(96 \%$ yield $)$

Recrystallization of 2-chloro-6-[3-(2-dispiro[2.0.2. 1]heptan-7-ylethoxy)pyrazol-1-yl]pyridine-3-carboxylic acid

2-chloro-6-[3-(2-dispiro[2.0.2.1]heptan-7-ylethoxy)pyrazol-l-yl]pyridine-3-carboxylic acid ($143 \mathrm{~g}, 397.4 \mathrm{mmol}$) was dissolved in dichloromethane (1000 mL) which provided a clear pale yellow solution. The solution was vacuum filtered through a Buchner funnel with Whatman paper to remove any solid impurities. The clear dichloromethane solution was concentrated under reduced pressure to provide a white solid. The solid was then concentrated under reduced pressure from toluene (1000 mL). The resulting solid was again concentrated under reduced pressure from toluene (1000 mL) which provided a white solid. A 5000 mL 3 neck RB flask was fitted with a mechanical stirrer, a heating mantle, a J-Kem temperature probe/controller, an addition funnel, a water cooled reflux condenser and a nitrogen inlet/outlet. The vessel was charged under a nitrogen atmosphere with 2-chloro-6-[3-(2-dispiro[2.0.2. 1]heptan-7-ylethoxy)pyrazol-1-yl]pyridine-3-carboxylic acid ($143 \mathrm{~g}, 0.3974 \mathrm{~mol}$) and toluene (1430 mL) ($10 \mathrm{~mL} / \mathrm{g}$) which provided a white suspension. Stirring was commenced (slow rotation) and the pot temperature was heated to $\left(110^{\circ} \mathrm{C}\right)$ reflux which provided a slightly cloudy pale yellow solution. The solution was maintained at reflux for 15 minutes and then allowed to cool very slowly to room temperature. The cooling process from $110^{\circ} \mathrm{C}$ to room temperature was done over a 6 hour time period. A solid began to form when the pot temperature was recorded at $90^{\circ} \mathrm{C}$. The material was collected by vacuum filtration in a Buchner funnel with Whatman paper. The filter cake was displacement washed with toluene (125 mL) and then pulled in the Buchner funnel for 1 hour to provide 2-chloro-6-[3-(2-dispiro[2.0.2.1]heptan-7-ylethoxy)pyrazol-1-yl]pyridine-3-carboxylic acid (113 g, 79\%) 1H NMR (400 MHz , DMSO-d6) $\delta 13.59$ ($\mathrm{s}, 1 \mathrm{H}$), $8.56-8.33(\mathrm{~m}, 2 \mathrm{H}), 7.71$ (d, J = 8.4 $\mathrm{Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.47$ $(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.95-0.75(\mathrm{~m}, 4 \mathrm{H}), 0.72-0.58(\mathrm{~m}, 2 \mathrm{H}), 0.60-0.44(\mathrm{~m}, 2 \mathrm{H})$. ESI-

MS m/z calc. 359.10367 , found $360.1(\mathrm{M}+1)+$; Retention time: 2.98 minutes (113 g , $0.314 \mathrm{~mol}, 79 \%$ recovery) of a white solid. HPLC analysis indicated 99.45 area\%.

Step 14: 2-Chloro-^-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(2-dispiro[2.0.2.1]heptan-7-ylethoxy)pyrazol-l-yl]pyridine-3-carboxamide

2-Chloro-6-[3-(2-dispiro[2.0.2.1]heptan-7-ylethoxy)pyrazol-1-yl]pyridine-3-carboxylic acid ($20 \mathrm{mg}, 0.05559 \mathrm{mmol}$) and carbonyl diimidazole $(13.52 \mathrm{mg}, 0.08338 \mathrm{mmol})$ were combined in THF $(260 \mu \mathrm{~L})$ and stirred at room temperature for one hour. 1,3-Dimethylpyrazole-4-sulfonamide ($97.4 \mathrm{mg}, 0.5559 \mathrm{mmol}$) was added followed by DBU ($42.34 \mathrm{mg}, 0.2781 \mathrm{mmol}$), and the reaction was stirred for an additional three hours. The reaction mixture was diluted with 1 M citric acid and extracted twice with ethyl acetate. The combined organics were washed with water and brine, dried over sodium sulfate, and concentrated to give 2-chloro - N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(2-dispiro[2.0.2.1]heptan-7-ylethoxy)pyrazol-l-yl]pyridine-3-carboxamide $\quad(28.74 \mathrm{mg}$, 100\%) ESI-MS m/z calc. 516.13464, found $517.0(\mathrm{M}+\mathrm{l})+$; Retention time: 0.77 minutes as a white solid, which was used in the next step without further purification.

Step 15: ^-(1,3-Dimethylpyrazol-4-yl)sulfonyl-6-[3-(2-dispiro[2.0.2.1]heptan-7-
ylethoxy)pyrazol- 1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin- 1-yl] pyridine-3carboxamide

2-Chloro - N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(2-dispiro[2.0.2.1]heptan-7-
ylethoxy)pyrazol-l-yl]pyridine-3-carboxamide $\quad(28.74 \mathrm{mg}, 0.05559 \mathrm{mmol}),(4<\mathrm{S})-2,2,4-$ trimethylpyrrolidine (hydrochloride salt) $(81.79 \mathrm{mg}, 0.5465 \mathrm{mmol})$, three angstrom molecular sieves (1 bead), and potassium carbonate $(150.1 \mathrm{mg}, 1.086 \mathrm{mmol}$) were
combined in DMSO $(492.6 \mu \mathrm{~L})$ and heated at $165^{\circ} \mathrm{C}$ for 16 hours. The crude reaction mixture was cooled to room temperature, filtered and then was purified directly by reverse-phase preparative chromatography utilizing a CI 8 column and method HPLC 50-99 (acetonitrile -(water $+5 \mathrm{mmol} \mathrm{HCl})$) over 15 minutes to afford white solid of N -(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(2-dispiro[2.0.2.1]heptan-7-ylethoxy)pyrazol-l-yl]-2-[(45)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (13 mg, 39\%) ESIMS m / z calc. 593.27844 , found $594.2(\mathrm{M}+1)^{+}$; Retention time: 2.38 minutes.

Synthesis of 6-[3-[(2,2-Difluoro-l-methyl-cyclopropyl)methoxy]pyrazol-l-yl]-A^-(1,5-dimethylpyrazol-4-yl)sulfonyl-2-[(4.S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (Compound 24)

Step 1: tert-Butyi 3-[(2,2-difluoro-l-methyl-cyclopropyl)methoxy]pyrazole-lcarboxylate

tert-Butyl 3-hydroxypyrazole-1-carboxylate $\quad(1.00 \mathrm{~g}, 5.429 \mathrm{mmol})$, (2,2-difiuoro-l-methyl-cyclopropyl)methanol (approximately $729.3 \mathrm{mg}, 5.972 \mathrm{mmol}$), and triphenylphosphine (approximately $1.994 \mathrm{~g}, 1.761 \mathrm{~mL}, 7.601 \mathrm{mmol}$) were combined and dissolved in THF (10 mL). The resulting solution was cooled to $0^{\circ} \mathrm{C}$, and DIAD (approximately $1.537 \mathrm{~g}, 1.472 \mathrm{~mL}, 7.601 \mathrm{mmol}$) was added dropwise. The reaction mixture was allowed to slowly warm to room temperature and was stirred overnight.

Volatiles were evaporated under reduced pressure. The remaining residue was dissolved in ethyl acetate $(50 \mathrm{~mL})$ and washed with saturated aqueous sodium bicarbonate $(2 \times 50$ $\mathrm{mL})$ and brine $(2 \times 50 \mathrm{~mL})$. The organic layer was dried over sodium sulfate, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography eluting with a $0-25 \% \mathrm{EtOAc} / \mathrm{hexane}$ gradient on a 80 gram silica gel column. tert-Butyl 3-[(2,2-difluoro-l-methyl-cyclopropyl)methoxy]pyrazole-1-carboxylate ($1.27 \mathrm{~g}, 75 \%$) was obtained as a clear colorless oil. ESI-MS m/z calc. 288.12854, found $289.2(\mathrm{M}+1)+$; Retention time: 1.75 minutes.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6\right) ~ \delta 8.10(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.32(\mathrm{dt}, \mathrm{J}=10.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{dt}, \mathrm{J}=11.4,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.55(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{dt}, \mathrm{J}=10.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 2: 3-[(2,2-Difluoro-1-methyl-cy clopropyl)methoxy]-1H-pyrazole

tert-Butyl 3-[(2,2-difluoro-l-methyl-cyclopropyl)methoxy]pyrazole-1-carboxylate $\mathrm{g}, 4.405 \mathrm{mmol}$) was dissolved in 1,2-dimethoxy ethane (15.88 mL). A solution of sodium carbonate (approximately $750.7 \mathrm{mg}, 7.083 \mathrm{mmol}$) in water (4.762 mL) was added. The reaction vial was sealed and heated overnight at $90^{\circ} \mathrm{C}$ and then $100^{\circ} \mathrm{C}$ for one day. The reaction mixture was cooled to room temperature and diluted with water (50 mL) and ethyl acetate (50 mL). The organic layer was isolated, and the aqueous layer was extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$. The combined organics were washed with brine, dried over sodium sulfate, and concentrated. The product was purified by silica gel column chromatography eluting with a $0-100 \% \mathrm{EtOAc} / \mathrm{hexane}$ gradient on an 80 gram silica gel column. 3-[(2,2-Difluoro-1-methyl-cyclopropyl)methoxy]-1Hpyrazole ($490 \mathrm{mg}, 59 \%$) was obtained as a clear slightly yellow oil. ESI-MS m/z calc. 188.07613, found $189.0(\mathrm{M}+1)+$; Retention time: 1.01 minutes.

Step 3: Ethyl 2-chloro-6-[3-[(2,2-difluoro-l-methyl-cyclopropyl)methoxy]pyrazol-

1-yl] pyridine-3-carboxylate

3-[(2,2-Difluoro-1-methyl-cyclopropyl)methoxy]-1 $\quad H$-pyrazole ($490 \mathrm{mg}, 2.604 \mathrm{mmol}$) was dissolved in DMF (5 mL). Ethyl 2,6-dichloropyridine-3-carboxylate (approximately $573.0 \mathrm{mg}, 2.604 \mathrm{mmol}$) was added followed by 1,4-diazabicyclo[2.2.2]octane (approximately $58.42 \mathrm{mg}, 0.5208 \mathrm{mmol}$) and finely ground potassium carbonate (approximately $539.8 \mathrm{mg}, 3.906 \mathrm{mmol}$). The reaction mixture was allowed to stir overnight at room temperature. The reaction mixture was diluted with water (50 mL) and extracted with EtOAc $(2 \times 50 \mathrm{~mL})$. The combined organic layers were then washed with brine $(1 \times 75 \mathrm{~mL})$, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The crude product was isolated by silica gel column chromatography eluting with a $0-20 \% \mathrm{EtOAc} / \mathrm{hexane}$ gradient on a 40 gram silica gel column. Ethyl 2-chloro-6-[3-[(2,2-difluoro-l-methyl-cyclopropyl)methoxy]pyrazol-l-yl]pyridine-3carboxylate ($797 \mathrm{mg}, 82 \%$) was obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSOd6) $\delta 8.46(\mathrm{dd}, \mathrm{J}=2.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{dd}, \mathrm{J}=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, \mathrm{J}=8.5,0.9$ Hz, 1H), 6.27 (dd, J = 2.9, 0.9 Hz, 1H), 4.44-4.37 (m, 1H), 4.37-4.31 (m, 2H), 4.17 $(\mathrm{d}, \mathrm{J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{q}, \mathrm{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{q}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.30(\mathrm{~m}$, $6 H)$. ESI-MS m/z calc. 371.08484 , found $372.0(\mathrm{M}+1)+$; Retention time: 2.09 minutes.

Step 4: 2-Chloro-6-[3-[(2,2-difluoro-l-methyl-cyclopropyl)methoxy]pyrazol-I-

 yl]pyridine-3-carboxylic acid

A solution of sodium hydroxide (approximately $428.8 \mathrm{mg}, 10.72 \mathrm{mmol}$) in water (3.985 mL) was added to a solution of ethyl 2-chloro-6-[3-[(2,2-difluoro-1-methyl-cyclopropyl)methoxy]pyrazol-l-yl]pyridine-3-carboxylate ($797 \mathrm{mg}, 2.144 \mathrm{mmol}$) in isopropanol (3.985 mL) stirring at $90^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir at 85 ${ }^{\circ} \mathrm{C}$ for 30 minutes. After cooling to room temperature, the reaction mixture was diluted with EtOAc (50 mL) and extracted with aqueous $\mathrm{NaOH}(1 \mathrm{~N}, 2 \times 50 \mathrm{~mL})$. The aqueous
layers were combined, cooled to $0^{\circ} \mathrm{C}$, and acidified to pH 1 with the addition of 6 N HC1. Solids were collected by filtration. The solids obtained from the aqueous layer were dissolved in EtOAc and added to the organic layer. It was then dried over sodium sulfate, filtered and concentrated under reduced pressure. 2-chloro-6-[3-[(2,2-difluoro-1-methyl-cyclopropyl)methoxy]pyrazol-1 -yl]pyridine-3-carboxylic acid (950 mg , 129%) was obtained as a white solid. ${ }^{1 \mathrm{H}} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta 8.34$ (d, J $=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, \mathrm{J}=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.37(\mathrm{dt}, \mathrm{J}=10.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{dd}, \mathrm{J}=10.4,7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.40(\mathrm{q}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 3 \mathrm{H})$. ESI-MS m/z calc. 343.05353, found $344.2(\mathrm{M}+1)+$; Retention time: 0.63 minutes.

Step 5: 2-Chloro-6-[3-[(2,2-difluoro-l-methyl-cyclopropyl)methoxy]pyrazol-l-yl]A $^{\wedge}$-(l,5-dimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide

Carbonyl diimidazole (approximately $28.31 \mathrm{mg}, 0.1746 \mathrm{mmol}$) was added to a solution of 2-chloro-6-[3-[(2,2-difluoro-l-methyl-cyclopropyl)methoxy]pyrazol-1 -yl]pyridine-3carboxylic acid ($50 \mathrm{mg}, 0.1455 \mathrm{mmol}$) in THF (2 mL). The solution was allowed to stir at room temperature for 1 hour. 1,5-dimethylpyrazole-4-sulfonamide (approximately $33.15 \mathrm{mg}, 0.1891 \mathrm{mmol}$) was added followed by DBU (approximately $26.58 \mathrm{mg}, 26.11$ $\mu \mathrm{L}, 0.1746 \mathrm{mmol})$. The final reaction mixture was then allowed to stir overnight at room temperature. Volatiles were removed by evaporation. The remaining residue was diluted with ethyl acetate (2 mL) and washed with aqueous citric acid ($1 \mathrm{M}, 2 \times 2 \mathrm{~mL}$) and brine $(1 \times 2 \mathrm{~mL})$. The organic layer was dried over sodium sulfate, filtered, and concentrated under reduced pressure. The product was used in the next step without further purification.2-Chloro-6-[3-[(2,2-difluoro-l -methyl-cyclopropyl)methoxy]pyrazol-1 -yl $]-N$-(1,5-dimethylpyrazol-4-yl)sulfonyl-pyridine-3carboxamide ($61 \mathrm{mg}, 83.70 \%$) was obtained. ESI-MS m/z calc. 500.0845 , found 501.0 $(\mathrm{M}+\mathrm{l})+$; Retention time: 1.67 minutes.

Step 6: 6-[3-[(2,2-Difluoro-I-methyl-cyclopropyl)methoxy]pyrazol-l-yl]-A^-(1,5-dimethylpyrazol-4-yl)sulfonyl-2- [(4S)-2,2,4-trimethylpyirolidin- 1-yl] pyridine-3carboxamide

2-Chloro-6-[3-[(2,2-difluoro-l-methyl-cyclopropyl)methoxy]pyrazol-l-yl]-N-(l,5-dimethylpyrazol-4-yl)sulfonyl-pyridine-3-carboxamide ($61 \mathrm{mg}, 0.1218 \mathrm{mmol}$) was dissolved in DMSO (2 mL). (45)-2,2,4-trimethylpyrrolidine (hydrochloride salt) (approximately $54.69 \mathrm{mg}, 0.3654 \mathrm{mmol}$) was added followed by finely ground potassium carbonate (approximately $101.0 \mathrm{mg}, 0.7308 \mathrm{mmol}$). The reaction vial was sealed and allowed to stir overnight at $130^{\circ} \mathrm{C}$. The reaction mixture was diluted with ethyl acetate (50 mL) and washed with aqueous citric acid ($1 \mathrm{~N}, 2 \times 50 \mathrm{~mL}$) and brine $(1 \times 50 \mathrm{~mL})$. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. The product was isolate by silica gel column chromatography eluting with a $0-5 \% \mathrm{MeOH} / \mathrm{DCM}$ gradient on a 24 gram silica gel column to give 6-[3-[(2,2-difluoro-l-methyl-cyclopropyl)methoxy]pyrazol-l-yl]-N-(l,5-dimethylpyrazol-4-yl)sulfonyl-2-[(45)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (20.3 mg , 28.85\%) ESI-MS m/z calc. 577.2283, found 578.5 (M+1)+; Retention time: 1.99 minutes.

Synthesis of N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6- [3-[3,3,3-trifluoro-2-
(hydroxymethyl)-2-methyl-propoxy] pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxamide (Compound 45)

Step 1: Dimethyl 2-(trifluoromethyl)propanedioate

2-[difluoro(methoxy)methyl]-1,1,1,3,3,3-hexafluoro-propane $\quad(4.64 \mathrm{~g}, 19.99 \mathrm{mmol})$ was dissolved in anhydrous DMF (4 mL) and cooled in an ice bath. Triethylamine (5.6 mL , $40.18 \mathrm{mmol})$ was added dropwise by syringe, followed by dropwise addition of methanol ($4 \mathrm{~mL}, 98.75 \mathrm{mmol}$) and continued stirring at $0{ }^{\circ} \mathrm{C}$ for 90 minutes. The reaction mixture was poured into a separatory funnel with 70 mL water, and the resulting organic layer was separated. The aqueous layer was further extracted 2 x 40 mL diethyl ether, and the organics were combined, washed with brine, dried over sodium sulfate and concentrated. Sulfuric acid ($0.5 \mathrm{~mL}, 9.380 \mathrm{mmol}$) was then added to the resulting oil, and the reaction was stirred at room temperature for 16 hours. The reaction mixture was then poured into 40 mL chilled water and extracted $3 \times 20 \mathrm{~mL}$ diethyl ether. The combined organics were washed with brine, dried over sodium
sulfate, and concentrated. The crude material was then purified by silica chromatography using a gradient of $0-90 \%$ ethyl acetate in hexanes to give a colorless oil, with some solvent remaining, but used in the next step without additional pur fication. dimethyl 2-(trifluoromethyl)propanedioate ($1.79 \mathrm{~g}, 45 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 5.39(\mathrm{q}, \mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H})$.
Step 2: Dimethyl 2-methyl-2-(trif uoromethyl)propanedioate

Dimethyl 2-(trifluoromethyl)propanedioate ($1.79 \mathrm{~g}, 8.945 \mathrm{mmol}$) and iodomethane (640 $\mu \mathrm{L}, 10.28 \mathrm{mmol}$) were combined in diglyme (18 mL), and cesium fluoride ($4.1 \mathrm{~g}, 26.99$ $\mathrm{mmol})$ was added in one portion. The reaction mixture was then stirred for 16 hours at room temperature. After this time the reaction mixture was diluted with 100 mL water and 100 mL diethyl ether, and the organics were separated. The aqueous layer was extracted with an additional 50 mL diethyl ether and the organics were combined and washed with 50 mL water, then with brine, and dried over sodium sulfate. After filtering, the reaction mixture was concentrated to give 6 g of a crude oil. The crude material was subjected to column chromatography on silica using a gradient of $0-100 \%$ ethyl acetate in hexanes. The fractions were combined and concentrated. The resulting oil was then diluted with 250 mL diethyl ether and washed 10 x 50 mL water and 1×50 mL brine to remove diglyme that remained after chromatography. The organics were concentrated and dried over sodium sulfate to give a slightly yellow oil (some residual solvents remaining). The material was used in the next step without additional puí fication. dimethyl 2-methyl-2-(trifluoromethyl)propanedioate ($880 \mathrm{mg}, 46 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 3.79(\mathrm{~s}, 6 \mathrm{H}), 1.65(\mathrm{q}, \mathrm{J}=0.8 \mathrm{~Hz}, 3 \mathrm{H})$.
Step 3: 2-methyl-2-(trifluoromethyl)propane-I,3-diol

Dimethyl 2-methyl-2-(trifluoromethyl)propanedioate ($880 \mathrm{mg}, 4.109 \mathrm{mmol}$), dissolved in anhydrous THF (8.218 mL), was added dropwise to a solution of lithium aluminum hydride (8 mL of $2 \mathrm{M}, 16.00 \mathrm{mmol}$) (in THF) at $0^{\circ} \mathrm{C}$. After 20 minutes, the reaction mixture was allowed to warm to room temperature, and stirred for an additional 5 hours.

The reaction mixture was then cooled again to $0^{\circ} \mathrm{C}$, and carefully quenched with 2 mL water, and 2 mL 1 M NaOH . After stirring for 20 minutes at room temperature, the reaction mixture was diluted with diethyl ether, filtered through celite, then dried thoroughly over sodium sulfate and concentrated. This crude material was then purified by silica gel chromatography using a gradient of $0-100 \%$ ethyl acetate in hexanes, giving a colorless solid. 2-methyl-2-(trifluoromethyl)propane-l,3-diol (280 mg, 43\%). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, ~ D M S O\right) ~ \delta 4.87(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.54-3.43(\mathrm{~m}, 4 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=$ $0.7 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 4 : tert-butyl 3-[3,3,3-trifluoro-2-(hydroxymethyl)-2-methyl-propoxy]pyrazole-1-carboxylate

2-Methyl-2-(trifluoromethyl)propane-1,3-diol ($278 \mathrm{mg}, 1.758 \mathrm{mmol}$), tert-butyl 3-hydroxypyrazole-l-carboxylate $(324 \mathrm{mg}, 1.759 \mathrm{mmol})$, and PPli_{3} ($507 \mathrm{mg}, 1.933 \mathrm{mmol}$) were dissolved in THF (11.72 mL), and cooled to $0^{\circ} \mathrm{C}$ in an ice bath. DIAD ($358 \mu \mathrm{~L}$, 1.848 mmol) was added dropwise by syringe, and the reaction mixture was allowed to slowly warm to room temperature and was stirred for 16 h . UPLC/LCMS showed very low conversion to the desired product, and the reaction temperature was increased to 60 ${ }^{\circ} \mathrm{C}$. Conversion to product increased, then stalled after 7 hours. The reaction was removed from heat, and solvent was removed under reduced pressure. The remaining oil was then dissolved in 60 mL ethyl acetate, and washed with 50 mL IN NaOH . The aqueous layer was further extracted $2 \times 40 \mathrm{~mL}$ ethyl acetate, and the combined organics were washed with brine, dried over sodium sulfate and concentrated. The crude material was then purified by silica gel chromatography, employing a $0-100 \%$ gradient of ethyl acetate in hexanes. The pure fractions were combined and concentrated to give tert-butyl 3-[3,3,3-trifluoro-2-(hydroxymethyl)-2-methyl-propoxy]pyrazole-1carboxylate (115 mg , 20\%) ESI-MS m/z calc. 324.1297, found $325.3(\mathrm{M}+\mathrm{l})+$; Retention time: 0.58 minutes. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.11(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.14(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.19(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{dd}, \mathrm{J}=11.2$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, \mathrm{J}=11.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H})$.

Step 5: tert-butyl 3-[2-[[tert-butyl(diphenyl)silyl]oxymethyl]-3,3,3-trifluoro-2-methyl-propoxy]pyrazole-l-carboxylate

tert-Butyl 3-[3,3,3-trifluoro-2-(hydroxymethyl)-2-methyl-propoxy]pyrazole-lcarboxylate ($113 \mathrm{mg}, 0.3484 \mathrm{mmol}$) and imidazole ($47 \mathrm{mg}, 0.6904 \mathrm{mmol}$) were dissolved in DMF $(696.8 \mu \mathrm{~L})$ and cooled in an ice bath. tert-Butyl-chloro-diphenylsilane ($110 \mu \mathrm{~L}, 0.4230 \mathrm{mmol}$)was then added in a single portion, and after 15 minutes the ice bath was removed and the reaction mixture was allowed to stir 16 hours at room temperature. 2 mL saturated aqueous ammonium chloride was added and the reaction was stirred for 10 minutes, then further diluted with diethyl ether (50 mL) and additional saturated ammonium chloride $(10 \mathrm{~mL})$ and water $(30 \mathrm{~mL})$. The layers were separated, and the aqueous portion was extracted two additional times with ether, then the combined organics were washed with brine, dried over sodium sulfate, and concentrated. The resulting oil was purified by silica gel chromatography using a 0 20% gradient of ethyl acetate in hexanes, to give a colorless oil, (unidentified impurity present but used in the next step without additional purification) tert-butyl 3-[2-[[tert-butyl(diphenyl)silyl]oxymethyl]-3,3,3-trifluoro-2-methyl-propoxy]pyrazole-1carboxylate ($195 \mathrm{mg}, 99 \%$). ESI-MS m/z calc. 562.2475 , found 563.4 (M+1)+; Retention time: 0.97 minutes

Step 6: tert-butyl-diphenyl-[3,3,3-trifluoro-2-methyl-2-(lH-pyrazol-3yloxymethyl)propoxy]silane

tert-Butyl 3-[2-[[tert-butyl(diphenyl)silyl]oxymethyl]-3,3,3-trifluoro-2-methyl-propoxy]pyrazole-1-carboxylate ($195 \mathrm{mg}, 0.3465 \mathrm{mmol}$) was dissolved in DCM (4.062 $\mathrm{mL})$ with TFA $(350 \mu \mathrm{~L}, 4.543 \mathrm{mmol})$ and the reaction was stirred at room temperature for 60 minutes. Hexanes (1 mL) were added, and the reaction was evaporated. The resulting oil was partitioned between ethyl acetate $(10 \mathrm{~mL})$ and a saturated sodium
bicarbonate solution $(10 \mathrm{~mL})$. The organics were separated, and the aqueous layer was extracted an additional 2×1 OmL ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and evaporated to give a colorless oil (with an unidentified impurity present, but used in the next step without further purification) tert-butyl-diphenyl-[3,3,3-trifluoro-2-methyl-2-(lH-pyrazol-3-yloxymethyl)propoxy]silane ($159 \mathrm{mg}, 99 \%$) ESI-MS m/z calc. 462.19504 , found 463.4 ($\mathrm{M}+\mathrm{l}$)+; Retention time: 0.86 minutes.

Step 7: tert-Butyl 6-[3-[2-[[tert-butyl(diphenyl)silyl]oxymethyl]-3,3,3-trifluoro-2-methyl-propoxy 1 pyrazol-1-yl]-2-chloro-pyridine-3-carboxylate

A nitrogen-purged vial was charged with tert-butyl-diphenyl-[3,3,3-trifluoro-2-methyl-2-(1H-pyrazol-3-yloxymethyl)propoxy]silane $\quad(159 \mathrm{mg}, 0.3437 \mathrm{mmol})$, tert-butyl 2,6-dichloropyridine-3-carboxylate $(110 \mathrm{mg}, 0.4434 \mathrm{mmol}), \mathrm{K} 2 \mathrm{CO}_{3}(76 \mathrm{mg}, 0.5499 \mathrm{mmol})$ (freshly ground in a mortar) and anhydrous DMF ($572.8 \mu \mathrm{~L}$). DABCO ($7 \mathrm{mg}, 0.06240$ mmol) was added and the mixture was stirred at room temperature under nitrogen for 16 hours. The reaction mixture was diluted with ethyl acetate $(50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$ and the two phases were separated. The aqueous phase was further extracted with ethyl acetate ($2 \times 30 \mathrm{~mL}$). The combined extracts were washed with brine and dried over sodium sulfate, and the solvent was removed under reduced pressure. The material was subjected to flash chromatography on silica gel using a gradient of ethyl acetate (0-5\%) in hexanes. The pure fractions were combined and the solvents removed under reduced pressure to provide tert-butyl 6-[3-[2-[[tert-butyl(diphenyl)silyl]oxymethyl]-3,3,3-trifluoro-2-methyl-propoxy]pyrazol-1-yl]-2-chloro-pyridine-3-carboxylate (170 mg, 73\%) ESI-MS m/z calc. 673.23505, found $674.5(\mathrm{M}+\mathrm{l})+$; Retention time: 0.87 minutes. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.46(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ $(\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dt}, \mathrm{J}=8.1,1.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 6 \mathrm{H}), 6.25(\mathrm{~d}, \mathrm{~J}=2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.76 (d, J = $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H})$.

Step 8: 6-[3-[2-[[tert-butyl(diphenyl)silyl] oxymethyl]-3,3,3-trifluoro-2-methylpropoxy ${ }^{\text {pyrazol-1-yl]-2-chloro-pyridine-3-carboxylic acid }}$

tert-butyl 6-[3-[2-[[tert-butyl(diphenyl)silyl]oxymethyl]-3,3,3-trifluoro-2-methyl-propoxy]pyrazol-1 -yl]-2-chloro-pyridine-3-carboxylate ($170 \mathrm{mg}, 0.2521 \mathrm{mmol}$) and TFA ($450 \mu \mathrm{~L}, 5.841 \mathrm{mmol}$) were combined in dichloromethane (1.703 mL) and and stirred at room temperature for 4 hours. The reaction was evaporated. Hexanes were added and the mixture evaporated again to give a white solid 6 -[3-[2-[[tert-butyl(diphenyl)silyl]oxymethyl]-3,3,3-trifluoro-2-methyl-propoxy]pyrazol-1 -yl]-2-chloro-pyridine-3-carboxylic acid ($117 \mathrm{mg}, 75 \%$) ESI-MS m / z calc. 617 . 1724, found $618.5(\mathrm{M}+1)^{+}$; Retention time: 0.63 minutes.
Step 9: 6- [3-[2-[[tert-butyl(diphenyl)silyl] oxymethyl]-3,3,3-trifluoro-2-methyl-propoxy]pyrazol-l-yl]-2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-pyridine-3carboxamide

6-[3-[2-[[tert-butyl(diphenyl)silyl]oxymethyl]-3,3,3-trifluoro-2-methyl-propoxy]pyrazol-1 -yl]-2-chloro-pyridine-3-carboxylic acid ($40 \mathrm{mg}, 0.06471 \mathrm{mmol}$)and CDI ($14 \mathrm{mg}, 0.08634 \mathrm{mmol}$) were combined in THF ($200 \mu \mathrm{~L}$) and stirred at room temperature for 2 hours. 1,3-dimethylpyrazole-4-sulfonamide ($14 \mathrm{mg}, 0.07990 \mathrm{mmol}$) was added followed by $\operatorname{DBU}(13 \mu \mathrm{~L}, 0.08693 \mathrm{mmol})$ and the reaction was stirred for an additional 2 h at room temperature. The reaction mixture was diluted with 10 mL 1 M citric acid, and extracted $3 \times 10 \mathrm{~mL}$ ethyl acetate. The combined organics were washed with water, brine, dried over sodium sulfate, and concentrated to give a white solid, which was used in the next step without further purification (some starting material
remaining). 6-[3-[2-[[tert-butyl(diphenyl)silyl]oxymethyl]-3,3,3-trifluoro-2-methyl-propoxy]pyrazol-1-yl]-2-chloro-N-(l,3-dimethylpyrazol-4-yl)sulfonyl-pyridine-3carboxamide (48 mg, 96\%) ESI-MS m/z calc. 774.2034 , found $775.5(\mathrm{M}+1){ }^{+}$; Retention time: 0.6 minutes

Step 10: N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[3,3,3-trifluoro-2-
(hydroxymethyl)-2-methyl-propoxy]pyrazol-l-yl]-2-[(4S)-2,2,4-
trimethylpyrrolidin-l-yl]pyridine-3-carboxamide

6-[3-[2-[[tert-Butyl(diphenyl)silyl]oxymethyl]-3,3,3-trifluoro-2-methyl-propoxy]pyrazol-l-yl]-2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-pyridine-3carboxamide ($48 \mathrm{mg}, 0.06191 \mathrm{mmol}$), (4S)-2,2,4-trimethylpyrrolidine (hydrochloride salt) ($56 \mathrm{mg}, 0.3742 \mathrm{mmol}$), and potassium carbonate $(103 \mathrm{mg}, 0.7453 \mathrm{mmol})$ were combined in DMSO $(154.8 \mu \mathrm{~L})$ and heated at $130{ }^{\circ} \mathrm{C}$ for 9 hours. The reaction was cooled to room temperature and diluted with 15 mL 1 M citric acid and 20 mL ethyl acetate. The aqueous and organic layers were separated, and the aqueous layer was extracted two additional times with 15 mL ethyl acetate. The organics were combined, washed with brine, dried over sodium sulfate and concentrated. The reaction mixture was the purified by chromatography on silica gel (eluting with $0-10 \%$ methanol in DCM), and a portion of the product that had desilylated under the reaction conditions was isolated. This material was further purified by prep HPLC (1-99ACN) HCI modifier, to give, after extraction with ethyl acetate and concentration under reduced pressure, N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-[3,3,3-trifluoro-2-
(hydroxymethyl)-2-methyl-propoxy]pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide ($8 \mathrm{mg}, 21 \%$) ESI-MS m/z calc. 613.22943, found 614.4 $(\mathrm{M}+\mathrm{l})+$; Retention time: 1.81 minutes. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 12.36(\mathrm{~s}, 1 \mathrm{H})$, $8.37(\mathrm{~s}, 1 \mathrm{H}), 2.71-2.62(\mathrm{~m}, 1 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ $(\mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.18(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.25(\mathrm{~m}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{dd}, \mathrm{J}=11.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, \mathrm{J}=11.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}$,
$1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, \mathrm{J}=12.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}, \mathrm{~J}=$ $11.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.43(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.

\mathbf{N}-((1,3-dimethyl-lH-pyrazol-4-yl)sulfonyl)-2-((S)-2,2-dimethyl-4-(methyl-d3)pyrrolidin-l-yl-3,3-d2)-6-(3-(3,3,3-trifluoro-2-(hydroxymethyl)-2-methylpropoxy)-lH-pyrazol-l-yl)nicotinamide (Compound 4)

6-[3-[2-[[tert-Butyl(diphenyl)silyl]oxymethyl]-3,3,3-trifluoro-2-methyl-propoxy]pyrazol-1-yl]-2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-pyridine-3carboxamide ($900 \mathrm{mg}, 1.16 \mathrm{mmol}$), (45)-3,3-dideuterio-2,2-dimethyl-4(trideuteriomethyl)pyrrolidine (Hydrochloride salt) (1.8 g, 12 mmol), and potassium carbonate ($3.2 \mathrm{~g}, 23 \mathrm{mmol}$) were combined in DMSO (3 mL) and dimethoxy ethane (0.5 mL) and heated at $130{ }^{\circ} \mathrm{C}$ for 2 days. The reaction was cooled to room temperature and diluted with $20 \mathrm{~mL} \mathrm{1M}$ citric acid and 40 mL ethyl acetate. The aqueous and organic layers were separated, and the aqueous layer was extracted two additional times with 50 mL ethyl acetate. The organics were combined, washed with brine, dried over sodium sulfate and concentrated. The reaction mixture was the purified by chromatography on silica gel to give the free alcohol N -((1,3-dimethyl-1H-pyrazol-4-yl)sulfonyl)-2-((S)-2,2-dimethyl-4-(methyl-d3)pyrrolidin-1-yl-3,3-d2)-6-(3-(3,3,3-trifluoro-2-(hydroxymethyl)-2-methylpropoxy)-lH-pyrazol-1-yl)nicotinamide $\quad(0.7 \mathrm{~g}, 98 \%)$ ESIMS m/z calc. 618.26 , found $619.7(\mathrm{M}+\mathrm{l})^{+}$; Retention time: 5.06 minutes (17 minute run).

Synthesis of N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6- [3-(norbornan-7-
 ylmethoxy)pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3carboxamide (Compound 52)

Steps 1-3: tert-Butyl 3-(7-bicyclo [2.2.1]hept-2-enylmethoxy)pyrazole-l-carboxylate

Step 1: bicyclo[2.2.1]hept-2-ene-7-carbaldehyde
7-bromobicyclo[2.2.1]hept-2-ene ($400 \mathrm{mg}, 2.311 \mathrm{mmol}$) and magnesium ($67 \mathrm{mg}, 2.757$ mmol) (surface scratched) were combined in a vial in anhydrous diethyl ether (4 mL), and heated to $40^{\circ} \mathrm{C}$ for 2 hours, at which time the magnesium was mostly, but not completely consumed. The reaction mixture was then cooled to $0^{\circ} \mathrm{C}$, and DMF (220 $\mu \mathrm{L}, 2.841 \mathrm{mmol}$) was added dropwise, resulting in the formation of a solid white precipitate. The reaction mixture was returned to $40^{\circ} \mathrm{C}$ for an additional 2 hours, then cooled to room temperature and quenched with 3 mL 0.1 M HCl . After diluting with 25 mL water and 25 mL diethyl ether the layers were seperated, and the aqueous layer was
extracted with an additional $3 \times 20 \mathrm{~mL}$ diethyl ether. The combined organics were washed with brine and dried over sodium sulfate, then partially concentrated to a volume under 1 mL , then used in the next step without isolation.

Step 2: 7-bicyclo[2.2.1]hept-2-enylmethanol
The mixture from the previous step was dilluted with methanol (3 mL) and cooled to 0 ${ }^{\circ} \mathrm{C}$ in an ice bath. Sodium Borohydride ($262 \mathrm{mg}, 6.925 \mathrm{mmol}$) was added, and the reaction mixture was stirred for 2 hours, during which time the ice mostly melted. The reaction mixture was quenched with 3 mL saturated ammonium chloride, then diluted with 20 mL water and 20 mL ethyl acetate. The organics were seperated, and the aqueous layer was extracted an additional $4 \times 20 \mathrm{~mL}$ ethyl acetate. The combined organics were washed with brine and dried over sodium sulfate, then concentrated to an oil. The resulting crude mixture was used in the next step without further purification.

Step 3:

The crude material from step 2 was combined with $\mathrm{PPh}_{3}(606 \mathrm{mg}, 2.310 \mathrm{mmol})$, and tert-butyl 3-hydroxypyrazole-l-carboxylate ($426 \mathrm{mg}, 2.313 \mathrm{mmol}$) in THF (6 mL), then cooled to $0^{\circ} \mathrm{C}$, at which point DIAD ($448 \mu \mathrm{~L}, 2.313 \mathrm{mmol}$) was added dropwise. After 30 minutes the reaction mixture was allowed to warm to room temperature and stirred for 1 hour. The reaction temperature was then increased to $50^{\circ} \mathrm{C}$ for 1 hour, but appeared to rapidly become messier and was returned to room temperature for an additional 16 hours. The reaction mixture was then diluted with 100 mL ethyl acetate, and washed with 50 mL aqueous 1 M NaOH , and the aqueous layer was extracted with an additional 50 mL ethyl acetate. The combined organics were then washed with brine, dried over sodium sulfate and concentrated. The resulting material was purified by flash chromatography on silica gel to give tert-butyl 3-(7-bicyclo[2.2.1]hept-2-enylmethoxy)pyrazole-l-carboxylate ($20 \mathrm{mg}, 2 \%$) ESI-MS m/z calc. 290.16306, found 291.3 (M+1)+; Retention time: 0.74 minutes with a significant impurity unidentified.

Step 4: tert-butyl 3-(norbornan-7-ylmethoxy)pyrazole-1-carboxylate

tert-butyl 3-(7-bicyclo[2.2.1]hept-2-enylmethoxy)pyrazole-1-carboxylate (20 mg , 0.04959 mmol) was combined with 10% palladium on carbon ($20 \mathrm{mg}, 0.01879 \mathrm{mmol}$)
in ethanol $(500 \mu \mathrm{~L})$ and hydrogen gas was bubbled through the reaction mixture from a balloon for 15 minutes, and the reaction was stirred for a further 6 hours with the hydrogen balloon in place above the solvent level. The reaction mixture was then filtered and concentrated to give tert-butyl 3-(norbornan-7-ylmethoxy)pyrazole-1carboxylate ($17 \mathrm{mg}, 84 \%$) ESI-MS m/z calc. 292.17868, found 293.3 (M+l)+; Retention time: 0.83 minutes.

Step 5: 3-(norbornan-7-ylmethoxy)-lH-pyrazole

tert-butyl 3-(norboman-7-ylmethoxy)pyrazole-l-carboxylate ($17 \mathrm{mg}, 0.0412 \mathrm{mmol}$) was dissolved in dichloromethane (1 mL) with TFA (approximately $84.81 \mathrm{mg}, 57.30 \mu \mathrm{~L}$, 0.7438 mmol), and was stirred fo 1 hour at room temperature. The reaction mixture was then concentrated under reduced pressure. Hexanes were added and the reaction mixture was reconcentrated to give 3-(norbornan-7-ylmethoxy)-lH-pyrazole (11 mg , 83\%) ESI-MS m/z calc. 192.12627, found $193.1(\mathrm{M}+\mathrm{l})+$; Retention time: 0.56 minutes

Step 6: tert-butyl 2-chloro-6-[3-(norbornan-7-ylmethoxy)pyrazol-l-yl]pyridine-3carboxylate

A reaction vial was charged under nitrogen with tert-butyl 2,6-dichloropyridine-3carboxylate ($14 \mathrm{mg}, 0.05643 \mathrm{mmol}$), 3-(norboman-7-ylmethoxy)-lH-pyrazole (11 mg , 0.04119 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{mg}, 0.07236 \mathrm{mmol})$ (freshly ground in a mortar) and anhydrous DMF $(200 \mu \mathrm{~L})$. DABCO ($1 \mathrm{mg}, 0.008915 \mathrm{mmol}$) was added and the mixture was stirred at room temperature under nitrogen for 8 hours. The reaction mixture was diluted with ethyl acetate $(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$ and the two phases were separated. The aqueous phase was further extracted with ethyl acetate (2 x 10 mL). The combined extracts were washed with brine, dried over sodium sulfate, and the solvent
removed under reduced pressure. The material was subjected to flash chromatography on silica gel using a gradient of ethyl acetate (0 to 20%) in hexanes. The pure fractions were combined and the solvent removed under reduced pressure to provide tert-butyl 2-chloro-6-[3-(norboman-7-ylmethoxy)pyrazol-1-yl]pyridine-3-carboxylate (9 mg, 39\%) ESI-MS m/z calc. 403.16626 , found $404.3(\mathrm{M}+1)+$; Retention time: 0.95 minutes.

Step 7: 2-Chloro-6- [3-(norbornan -7-ylmethoxy)pyrazol-l-yl] pyridine-3-carboxylic acid

tert-butyl 2-chloro-6-[3-(norboman-7-ylmethoxy)pyrazol-l-yl]pyridine-3-carboxylate (9 $\mathrm{mg}, 0.02228 \mathrm{mmol}$) and TFA ($30 \mu \mathrm{~L}, 0.3894 \mathrm{mmol}$) were combined in dichloromethane $(90.00 \mu \mathrm{~L})$ and heated at $40^{\circ} \mathrm{C}$ for 2 h . Solvent was evaporated under reduced pressure, then hexanes were added and the mixture wasevaporated again to give a white solid 2-chloro-6-[3-(norboman-7-ylmethoxy)pyrazol-l-yl]pyridine-3-carboxylic acid (7 mg, 90\%) ESI-MS m/z calc. 347.10367, found $348.2(\mathrm{M}+1)+$; Retention time: 0.76 minutes.

Step 8: 2-Chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(norbornan -7-ylmethoxy)pyrazol- 1-yl]pyridine-3-carboxamide

2-Chloro-6-[3-(norboman-7-ylmethoxy)pyrazol-1-yl]pyridine-3-carboxylic acid (7 mg, 0.02013 mmol) and CDI ($5 \mathrm{mg}, 0.03084 \mathrm{mmol}$) were combined in THF ($100 \mu \mathrm{~L}$) and stirred at room temperature for 2 hours. 1,3-dimethylpyrazole-4-sulfonamide (54.233 $\mathrm{mg}, 0.3095 \mathrm{mmol})$ was added followed by $\mathrm{DBU}(8 \mu \mathrm{~L}, 0.05350 \mathrm{mmol})$ and the reaction was stirred for an additional 16 h at room temperature. The reaction mixture was diluted with 10 mL 1 M citric acid, and extracted 3 x 10 mL ethyl acetate. The combined
organics were washed with water, brine, dried over sodium sulfate, and concentrated to give a white solid, which was used in the next step without further purification. 2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(norboman-7-ylmethoxy)pyrazol-1-yi]pyridine-3-carboxamide ($10 \mathrm{mg}, 98 \%$) ESI-MS m/z calc. 504.13464 , found 505.3 $(\mathrm{M}+\mathrm{l})+$; Retention time: 0.74 minutes.

Step 9 : N-(1,3-Dimethylpyrazol-4-yl)sulfonyl-6-[3-(norbornan-7-

ylmethoxy)pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3carboxamide

2-Chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(norbornan-7-ylmethoxy)pyrazol-l-yl]pyridine-3-carboxamide (10 mg, 0.01980 mmol), (4S)-2,2,4-trimethylpyrrolidine (Hydrochloride salt) ($15 \mathrm{mg}, 0.1002 \mathrm{mmol}$), and potassium carbonate ($27 \mathrm{mg}, 0.1954$ $\mathrm{mmol})$ were combined in DMSO $(150 \mu \mathrm{~L})$ and heated at $130^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to room temperature and diluted with 15 mL ethyl acetate and 15 mL 1 M citric acid. The aqueous and organic layers were separated, and the aqueous layer was extracted two additional times with 15 mL ethyl acetate. The organics were combined, washed with brine, dried over sodium sulfate and concentrated. The resulting crude was purified by prep HPLC (1-99ACN) with HC1 modifier, 30 minute run. The fractions containing product were concentrated and dried under vacuum to give N -(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(norbornan-7-ylmethoxy)pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-carboxarnide ($2 \mathrm{mg}, 17 \%$) ESI-MS m/z calc. 581.27844 , found $582.5(\mathrm{M}+1)+$; Retention time: 2.32 minutes.

Synthesis of (7S)-6-((1,3-dimethyl-IH-pyrazol-4-yl)sulfonyl)-7,9,9-trimethyl-2-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-IH-pyrazol-l-yl)-6a,7,8,9tetrahydropyrido [3,2-e] pyrrolo [1,2-a] pyrimidin-5(6H)-one (Compound 36)

N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-l-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-l-yl]pyridine-3-
carboxamide ($50.5 \mathrm{mg}, 0.08450 \mathrm{mmol}$), $\mathrm{NaOAc}(13.86 \mathrm{mg}, 0.1690 \mathrm{mmol}$), water (15.22 $\mathrm{mg}, 15.22 \mu \mathrm{~L}, 0.8450 \mathrm{mmol}$), and $[\operatorname{Ir}\{\mathrm{dF}(\mathrm{CF} 3)$ ppy $\} 2(\mathrm{dtbpy})]$ PF6 ($94.80 \mathrm{mg}, 0.08450$ mmol) were combined in DMA ($880.7 \mu \mathrm{~L}$) and the reaction mixture was placed next to a 23 WCFL light source for 1.5 h . The reaction was injected directly onto a silica gel column without any workup. The crude mixture was purified by silica gel chromatography eluting with $0-100 \%$ ethyl acetate in hexanes. The product was contaminated with DMA so the product was re-purified by silica gel chromatography eluting with $0-100 \%$ ethyl acetate in hexanes to give C26H32F3N704S ($10.4 \mathrm{mg}, 21 \%$) ESI-MS m/z calc. 595.2189, found $596.4(\mathrm{M}+1)+$; Retention time: 2.4 minutes.
[00309] Preparations of Spray Dried Dispersions (SDDs) of Compound 1
[00310] A spray dried dispersion of Compound 1 was prepared using Buchi Mini Spray Dryer B290. HPMCAS-HG (6.0 grams) was dissolved in 200 mL of MeOH (methanol)/DCM (dichloromethane) (1/3), and Compound 1 (15.0 grams) was added and stirred for 30 minutes forming a clear solution. The resulting solution was spray dried under the following conditions resulting in a $50 \mathrm{wt} \%$ Compound $1 / 50 \mathrm{wt} \%$

HPMCAS- HG spray dried dispersion (Yield: 70\%, Solid load: 13\%).

	Conditions
Inlet Temperature $\left({ }^{\circ} \mathrm{C}\right)$	80
Outlet Temperature $\left({ }^{\circ} \mathrm{C}\right)$	39
Nitrogen Pressure (PSI)	95
Aspirator (\%)	100
Pump (\%)	25
Rotameter (mm)	60

Filter Pressure (mBar)	-50
Condenser Temperature $\left({ }^{\circ} \mathrm{C}\right)$	-10

[00311] Additional SDDs of Compound 1 were prepared as follows: 400mg of Compound 1 was added to lOOmg of one of the following polymers: HPMC El5, HPC, HPMCAS-HF, and PVP VA64. Each of the four resulting mixtures was dissolved in 40 mL of t -butanol by stirring overnight and the solutions were then flash frozen in an acetone/dry ice bath. Frozen samples were lyophilized (O.Olmbar vacuum, -55C collector) over 72 hours. The lyophized samples were determined to be amorphous by XRPD.

[00312] Assays for Detecting and Measuring F508del-CFTR modulator

 Properties of Compounds
Membrane potential optical methods for assaying properties of F508del-CFTR modulators

[00313] The assay utilizes fluorescent voltage sensing dyes to measure changes in membrane potential using a fluorescent plate reader (e.g., FLIPR III, Molecular Devices, Inc.) as a readout for increase in functional F508del in NIH 3T3 cells. The driving force for the response is the creation of a chloride ion gradient in conjunction with channel activation and concurrent with compound treatment by a single liquid addition step after the cells have previously been loaded with a voltage sensing dye.

Al. Identification of F508del-CFTR modulators

To identify modulators of F508del, a fluorescence based HTS assay format was developed. This HTS assay utilizes fluorescent voltage sensing dyes to measure changes in membrane potential on the FLIPR III as a measurement for increase in gating (conductance) of F508del NIH 3T3 cells. The driving force for the response is the creation of a chloride ion gradient in conjunction with channel activation and concurrent with compound treatment by a single liquid addition step after the cells have previously been loaded with a voltage sensing dye. Data for Compounds 1-65 that were obtained using the assay described here are summarized in Table 9 below. For
example, using this method, Compound 1 had an $\mathrm{EC} 5{ }_{0}$ of less than $3 \mu \mathrm{M}$ and a $\%$ Efficacy of $\geq 100 \%$ relative to Compound II.

Solutions

[00314] Bath Solution \# 1: (in mM) $\mathrm{NaCl} 160, \mathrm{KC1} 4.5, \mathrm{CaCl}_{2} 2, \mathrm{MgCl}_{2}$ 1, HEPES 10, pH 7.4 with NaOH , Glucose 10.
[00315] Chloride-free bath solution: Chloride salts in Bath Solution \# 1 (above) are substituted with gluconate salts.

Cell Culture

[00316] NIH3T3 mouse fibroblasts stably expressing F508del were used for optical measurements of membrane potential. The cells were maintained at $37^{\circ} \mathrm{C}$ in $5 \% \mathbf{C O 2}$ and 90% humidity in Dulbecco's modified Eagle's medium supplemented with 2 mM glutamine, 10% fetal bovine serum, 1 X NEAA, β-ME, 1 X pen/strep, and 25 mM HEPES in $175 \mathrm{~cm}^{2}$ culture flasks. For all optical assays, the cells were seeded at 12,000 cells/well in 384-well matrigel-coated plates and cultured for $18-24 \mathrm{hrs}$ at $37{ }^{\circ} \mathrm{C}$ for the potentiator assay. For the correction assay, the cells were cultured at $37{ }^{\circ} \mathrm{C}$ with and without compounds for 18-24 hours.
[00317] Electrophysiological Assays for assaying F508del modulation properties of compounds.

Ussing Chamber Assay
[00318] Ussing chamber experiments were performed on polarized airway epithelial cells expressing F508del to further characterize the F508del modulators identified in the optical assays . Non-CF and CF airway epithelia were isolated from bronchial tissue, cultured as previously described (Galietta, L.J.V., Lantero, S., Gazzolo, A., Sacco, O., Romano, L., Rossi, G.A, \& Zegarra-Moran, O. (1998) In Vitro Cell. Dev. Biol. 34, 478-481), and plated onto Costar ${ }^{\circledR}$ Snapwell ${ }^{\text {TM }}$ filters that were precoated with NIH3T3-conditioned media. After four days the apical media was removed and the cells were grown at an air liquid interface for >14 days prior to use. This resulted in a monolayer of fully differentiated columnar cells that were ciliated, features that are characteristic of airway epithelia. Non-CF HBE were isolated from non-smokers that did not have any known lung disease. CF-HBE were isolated from patients
homozygous for F508del or compound heterozygous for F508del with an different disease causing mutation on the other allele.
[00319] HBE grown on Costar® Snapwell ${ }^{\text {TM }}$ cell culture inserts were mounted in an Ussing chamber (Physiologic Instruments, Inc., San Diego, CA), and the transepithelial resistance and short-circuit current in the presence of a basolateral to apical CI^{-}gradient (Isc) were measured using a voltage-clamp system (Department of Bioengineering, University of Iowa, IA). Briefly, HBE were examined under voltage-clamp recording conditions $\left(\mathrm{V}_{\mathrm{h}_{0}} \mathbf{i}_{\mathrm{d}}=0 \mathrm{mV}\right)$ at $37^{\circ} \mathrm{C}$. The basolateral solution contained (in mM$) 145$ $\mathrm{NaCl}, 0.83 \mathrm{~K}_{2} \mathrm{HPO}{ }_{4}, 3.3 \mathrm{KH}_{2} \mathrm{P0} 4,1.2 \mathrm{MgCl}_{2}, 1.2 \mathrm{CaCl}_{2}, 10$ Glucose, 10 HEPES (pH adjusted to 7.35 with NaOH) and the apical solution contained (in mM) 145

NaGluconate, $1.2 \mathrm{MgCl}_{2}, 1.2 \mathrm{CaCl}_{2}, 10$ glucose, 10 HEPES (pH adjusted to 7.35 with $\mathrm{NaOH})$.

A2. Identification of F508del-CFTR modulators

[00320] Typical protocol utilized a basolateral to apical membrane CI^{-}concentration gradient. To set up this gradient, normal ringers was used on the basolateral membrane, whereas apical NaCl was replaced by equimolar sodium gluconate (titrated to pH 7.4 with NaOH) to give a large CI^{-}concentration gradient across the epithelium.

Modulators were added either to the basolateral side 18-24 prior to assay or to the apical side during the assay. Forskolin $(10 \mu \mathrm{M})$ was added to the apical side during the assay to stimulate CFTR -mediated CI^{-}transport.

Patch-clamp Recordings

[00321] Total CI^{-}current in F508del-NIH3T3 cells was monitored using the perforated-patch recording configuration as previously described (Rae, J., Cooper, K., Gates, P., \& Watsky, M. (1991) J. Neurosci. Methods 37, 15-26). Voltage-clamp recordings were performed at $22{ }^{\circ} \mathrm{C}$ using an Axopatch 200B patch-clamp amplifier (Axon Instruments Inc., Foster City, CA). The pipette solution contained (in mM) 150 N-methyl-D-glucamine (NMDG)-Cl, $2 \mathrm{MgCl}_{2}, 2 \mathrm{CaCl}_{2}, 10$ EGTA, 10 HEPES , and 240 $\mu \mathrm{g} / \mathrm{mL}$ amphotericin- B (pH adjusted to 7.35 with HC 1). The extracellular medium contained (in mM) 150 NMDG-C1, $2 \mathrm{MgCl}_{2}, 2 \mathrm{CaCl}_{2}, 10$ HEPES (pH adjusted to 7.35 with HC 1). Pulse generation, data acquisition, and analysis were performed using a PC
equipped with a Digidata 1320 A/D interface in conjunction with Clampex 8 (Axon Instruments Inc.). To activate F508del, $10 \mu \mathrm{M}$ forskolin and $20 \mu \mathrm{M}$ genistein were added to the bath and the current-voltage relation was monitored every 30 sec .

A3. Identification of F508del-CFTR modulators

The ability of F508del-CFTR modulators to increase the macroscopic F508del CI^{-} current (1F508dei) in NIH3T3 cells stably expressing F508del was also investigated using perforated-patch-recording techniques. Modulators identified from the optical assays evoked a dose-dependent increase in $\mathrm{IA}_{\mathrm{F}} 508$ with similar potency and efficacy observed in the optical assays.

Cell Culture

[00322] NIH3T3 mouse fibroblasts stably expressing F508del are used for whole-cell recordings. The cells are maintained at $37^{\circ} \mathrm{C}$ in 5\% $\mathbf{C O 2}$ and 90% humidity in Dulbecco's modified Eagle's medium supplemented with 2 mM glutamine, 10% fetal bovine serum, 1 X NEAA, β-ME, 1 X pen/strep, and 25 mM HEPES in $175 \mathrm{~cm}^{2}$ culture flasks. For whole-cell recordings, 2,500-5,000 cells were seeded on poly-L-lysinecoated glass coverslips and cultured for $18-24 \mathrm{hrs}$ in the presence or absence of modulators $37{ }^{\circ} \mathrm{C}$.

Single-channel recordings

[00323] Gating activity of F508del-CFTR expressed in NIH3T3 cells following modulator treatment was observed using excised inside-out membrane patch recordings as previously described (Dalemans, W., Barbry, P., Champigny, G., Jallat, S., Dott, K., Dreyer, D., Crystal, R.G., Pavirani, A., Lecocq, J-P., Lazdunski, M. (1991) Nature 354, 526-528) using an Axopatch 200B patch-clamp amplifier (Axon Instruments Inc.). The pipette contained (in mM): $150 \mathrm{NMDG}, 150$ aspartic acid, $5 \mathrm{CaCl}_{2}, 2 \mathrm{MgCl}_{2}$, and 10 HEPES (pH adjusted to 7.35 with Tris base). The bath contained (in mM): 150 NMDG-C1, $2 \mathrm{MgCl}_{2}, 5$ EGTA, 10 TES, and 14 Tris base (pH adjusted to 7.35 with $\mathrm{HC} 1)$. After excision, both wt- and F508del were activated by adding 1 mM Mg -ATP, 75 nM of the catalytic subunit of cAMP-dependent protein kinase (PKA; Promega Corp. Madison, WI), and 10 mM NaF to inhibit protein phosphatases, which prevented current rundown. The pipette potential was maintained at 80 mV . Channel activity was analyzed from membrane patches containing ≤ 2 active channels. The maximum
number of simultaneous openings determined the number of active channels during the course of an experiment. To determine the single-channel current amplitude, the data recorded from 120 sec of F508del activity was filtered "off-line" at 100 Hz and then used to construct all-point amplitude histograms that were fitted with multigaussian functions using Bio-Patch Analysis software (Bio-Logic Comp. France). The total microscopic current and open probability $\left(\mathrm{P}_{0}\right)$ were determined from 120 sec of channel activity. The P_{0} was determined using the Bio-Patch software or from the relationship $\mathrm{P}_{0}=\mathrm{I} / \mathrm{i}(\mathrm{N})$, where $\mathrm{I}=$ mean current, $\mathrm{i}=$ single-channel current amplitude, and $\mathrm{N}=$ number of active channels in patch.

Cell Culture

[00324] NIH3T3 mouse fibroblasts stably expressing F508del are used for excisedmembrane patch-clamp recordings. The cells are maintained at $37^{\circ} \mathrm{C}$ in 5% CO2 and 90 \% humidity in Dulbecco's modified Eagle's medium supplemented with 2 mM glutamine, 10% fetal bovine serum, 1 X NEAA, β-ME, 1 X pen/strep, and 25 mM HEPES in $175 \mathrm{~cm}^{2}$ culture flasks. For single channel recordings, 2,500-5,000 cells were seeded on poly-L-ly sine-coated glass coverslips and cultured for $18-24$ hrs in the presence or absence of modulators at $37^{\circ} \mathrm{C}$.
[00325] B. Chromatographic determination of Human Serum Albumin (HSA) Assay
[00326] Chromatographic determination of Human Serum Albumin (HSA) values was performed on a UPLC-MS system using a ChiralPak® HSA column (p / n : 58469AST) from Sigma Aldrich. Mobile phase A consisted of 50 mM ammonium acetate buffer in water adjusted to $\mathrm{pH}=7.4$, and mobile phase B was 2-propanol. The column compartment was kept at constant temperature of $30^{\circ} \mathrm{C}$. Determination of retention time on the HSA column was performed by injecting 3 mL of 0.5 mM of compound (in DMSO) using a linear gradient from $0 \%-30 \%$ B in 2.5 minutes, followed by a hold at $30 \% \mathrm{~B}$ for 2 minutes, and the final equilibration step from 30% 0% B in 1.5 minutes, for a total run time of 6 minutes. Flow rate was kept constant throughout the gradient and set to $1.8 \mathrm{~mL} / \mathrm{min}$. Compound retention time on the HSA column was converted to \%HSA values according to a previously published protocol (Valko, et. al, 2003) correlating column retention times to standard plasma protein
binding (PPB) values obtained from dialysis experiments. HSA data for certain compounds are summarized below in Table 9 below.
[00327] Valko, K., Nunhuck, S., Bevan, C , Abraham, M. H., Reynolds, D. P. Fast Gradient HPLC Method to Determine Compounds Binding to Human Serum Albumin. Relationships with OctanolAVater and Immobilized Artificial Membrane Lipophilicity. J. ofPharm. Sci. 2003, 92, 2236-2248.

[00328] C. Experimental Protocol for Rat IV and PO PK studies

[00329] The tested compound was administered to male Sprague-Dawley rats as a single nominal intravenous dose of $3.0 \mathrm{mg} / \mathrm{kg}$ as a solution in 10% NMP, 10% solutol, $15 \% \mathrm{EtOH}, 35 \%$ PEG400 and 30% D5W. The tested compound was also administered to male Sprague-Dawley rats at single nominal oral dose of $3 \mathrm{mg} / \mathrm{kg}$ as a solution in 5\% NMP, 30\% PEG400, 10\% TPGS, 5\% PVP-K30 at $5 \mathrm{~mL} / \mathrm{kg}$ dose volume. Analyses of plasma and dose preparations were performed using LC/MS/MS.
[00330] Plasma concentration-time profiles of the tested compound in SpragueDawley rats at scheduled (nominal) sampling times were analyzed by noncompartmental pharmacokinetic methods using PK function within Watson LIMS software, Version 7.4.2 (Thermo Scientific Inc, Waltham, MA). AUC values were calculated using the linear trapezoidal rule.

[00331] D. Experimental Protocol for PXR assay

[00332] The propensity for PXR mediated CYP3A4 induction is assessed using the DPX-2 cell line in vitro. This cell line, which has been licensed from Puracyp Inc. was derived from HepG2 cells and has been stably transfected with genes encoding human PXR as well as a modified luciferase reporter linked to the CYP3A4 promoter region and related distal and proximal enhancers.
[00333] The assay is run in 384 well format and each test article is administered in 11 doses ranging from 0.1 to $60 \mu \mathrm{M}$. On day 1, DPX-2 cells which have previously been expanded in-house and cryopreserved are thawed and seeded in tissue culture plates. The following day, media is changed and cells are cultured in media containing test article, vehicle control or the positive control compound, the clinically validated CYP3A4 inducer rifampicin. Cells are cultured in the presence of test article for 48 hours and then cell viability is assessed using fluorescence based assay (Cell TiterFluor, Promega) with an EnVision Plate Reader (PerkinElmer). Subsequently, CYP3A4
transactivation, which is proportional to luciferase activity, is measured by reading luminescense using the Promega One-Glo reagent system using the same plate reader.
[00334] Data processing within the Genedata software package allows reporting of max fold induction compared to vehicle control, an $E C 5{ }_{0}$ value for CYP3A4 inducers and an 11 point-dose response curve. Wells with cell viability less than 70% are not used for the analysis and plates where the rifampicin positive control response falls outside of the expected range, either in potency or max fold induction, are not reported.

[00335] E. CFTR Data of Compounds

[00336] The compounds of formula (I) are useful as modulators of CFTR activity. The Table 9 below illustrates the EC50 of the compounds of Table 9 using procedures described above (assay described above in Al). Table 9 below also summarizes CFTR activity (CFTR dF508 EC50), PXR Max induction, Rat IV clearance, Rat PO AUC, and Rat PO data for certain compounds described above.
[00337] Table 9. CFTR Activity and HAS Data

$\begin{aligned} & \text { Comp } \\ & \text {. No. } \end{aligned}$	Molecule	CFTRdF50 8 Cor 3 T3 FLIPR 384 8 MP 3T3 770 EC50 (uM)	CYP3A4 Inductio human PXR internal $\underset{\text { Activity }}{ }$ \qquad	MDCK-Wild Type- Permeability 96 wellt $+0.1 \%$ BS A Papp compound $\left(\begin{array}{c}\text { A-B) } \\ \text { (100-6 } \\ \text { cm } / \mathrm{s})\end{array}\right.$	Hepatocyte clearance-Rat Rat hepatocytes CL pct_unchange d (\%)	$\begin{gathered} \text { RAT } \\ \text { PLASMA - } \\ \text { RAW IV- } \\ \text { bolus } \\ \text { CL_drg } \\ (\mathrm{mL} / \mathrm{min} / \mathbf{k} \\ \mathrm{g}) \\ \hline \end{gathered}$	$\begin{gathered} \text { RAT } \\ \text { PLASM } \\ \text { A- } \\ \text { RAW } \\ \text { PO } \\ \text { \%F } \mathbf{F}^{2} \mathbf{d r g} \\ (\%) \end{gathered}$	$\begin{gathered} \text { RAT } \\ \text { PLASMA } \\ \text { - RAW } \\ \text { PO } \\ \text { AUCCO- } \\ \text { inf) } \mathbf{d r} \\ (\mathbf{n g}=\mathbf{d r} / \mathbf{m L} \\ \vdots \end{gathered}$
1		0.07	2	4.5	66	1.6	83	23.5
2								
3								
4	$\underbrace{0, p}_{8}$							

$\begin{gathered} \text { Comp } \\ \text {. No. } \end{gathered}$	Molecule	$\begin{gathered} \text { CFTRdF50 } \\ \text { 8 Cor 3T3 } \\ \text { FLLPR 384 } \\ \text { CFTRdF50 } \\ \text { 8 MP 3T3 } \\ \text { 770 EC50 } \\ \text { (} \mathbf{I M} \mathbf{4}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CYP3A4 } \\ \text { Inductio } \\ \text { n- PXR } \\ \text { human } \\ \text { PXR } \\ \text { internal } \\ \text { Max \% } \\ \text { Activity } \\ \text { (\%) } \\ \hline \end{gathered}$	MDCK-Wild Type- Permeability 96 wellt+0.1\%BS A Papp compound $\left(\begin{array}{c}\text { A-B) } \\ \text { cm } \\ \text { cm } / \mathrm{s})\end{array}\right.$	Hepatocyte clearance-Rat Rat hepatocytes CL \qquad d (\%)		$\begin{gathered} \text { RAT } \\ \text { PLASM } \\ \text { A- } \\ \text { RAW } \\ \text { PO } \\ \text { \%F_drg } \\ \text { \%) } \end{gathered}$	
5		1.3	0	0.3	33			
6		0.3	9	2.1	53			
7		0.65	4	3.1				
8		0.4	10	3.2	62			
9		0.42	7	6.1	30	1.7	99	23.4
10		0.22	4	7.1				
11		0.41	18					

$\begin{gathered} \text { Comp } \\ \text {. No. } \end{gathered}$	Molecule	$\begin{gathered} \text { CFTRdF50 } \\ \text { 8 Cor 3T3 } \\ \text { FLLPR 384 } \\ \text { CFTRdF50 } \\ \text { 8 MP 3T3 } \\ \text { 770 EC50 } \\ \text { (} \mathbf{I M} \mathbf{4}) \\ \hline \end{gathered}$	CYP3A4 Inductio human PXR internal Max \% \qquad	MDCK-Wild Type- Permeability 96 wellt+0.1\%BS A Papp compound $\left(\begin{array}{c}\text { A-B) } \\ \text { cm/s) } \\ \text { cm }\end{array}\right.$	Hepatocyte clearance-Rat Rat hepatocytes CL pct_unchange d(\%)	$\begin{gathered} \text { RAT } \\ \text { PLASMA- } \\ \text { RAW VN- } \\ \text { bolus } \\ \text { CL drg } \\ (\mathrm{mL} / \mathrm{min} / \mathrm{k} \\ \mathrm{g}) \end{gathered}$	$\begin{gathered} \text { RAT } \\ \text { PLASM } \\ \text { A- } \\ \text { RAW } \\ \text { PO } \\ \text { \%F_drg } \\ \text { \%) } \end{gathered}$	
12		0.86	33.5					
13		0.13	4	11.7	117	3	65	13.4
14		0.28	2	2.8	50	3.9	61	10.5
15		0.13	3	2.7	97	2.5	66	16.3
16		0.4	13	3.9	10			
17		0.17	3	3.8	19			
18		0.17	5	8	0			
19		0.09	1	8.8				

$\begin{gathered} \text { Comp } \\ \text {. No. } \end{gathered}$	Molecule	$\begin{aligned} & \text { CFTRdF50 } \\ & \text { 8 Cor 3T3 } \\ & \text { FLIPR 384 } \\ & \text { CFTRdF50 } \\ & \text { 8 MP 3T3 } \\ & \text { 770 EC50 } \\ & \text { (uM) } \\ & \hline \end{aligned}$	CYP3A4 Inductio human PXR internal Max $\%$ Activity \qquad		Hepatocyte clearance-Rat Rat hepatocytes CL pet_unchange d(\%)	\qquad	$\begin{gathered} \text { RAT } \\ \text { PLASM } \\ \text { A- } \\ \text { RAW } \\ \text { PO } \\ \text { \%F }{ }^{2} \text { drg } \\ \% \%) \\ \hline \end{gathered}$	
20		0.17	4	1.4	13	4.9	21	,
21		0.52	1	3	0	6.7	47	3.9
22		2.1						
23		0.54	4					
24		0.71	6					
25		0.44	6	1.3				
26		1	6	2.3				
27		1.4						
28		0.09	4	2.2	41	1.8	80	7.1

$\begin{gathered} \text { Comp } \\ \text {. No. } \end{gathered}$	Molecule	\qquad	$\begin{gathered} \hline \text { CYP3A4 } \\ \text { Inductio } \\ \text { n- PXR } \\ \text { human } \\ \text { PXR } \\ \text { internal } \\ \text { Max \% } \\ \text { Activity } \\ \text { (\%) } \\ \hline \end{gathered}$	MDCK-Wild Type- Permeability 96 wellt+0.1\%BS A Papp compound $\left(\begin{array}{c}\text { A-B) } \\ \text { cm/s) } \\ \text { cm }\end{array}\right.$	$\begin{gathered} \text { Hepatocyte } \\ \text { clearance-Rat } \\ \text { Rat } \\ \text { hepatocytes } \\ \text { CL } \\ \text { pet_unchange } \\ \text { d (\%) } \\ \hline \end{gathered}$		$\begin{gathered} \text { RAT } \\ \text { PLASM } \\ \text { A- } \\ \text { RAW } \\ \text { PO } \\ \% \mathbf{F}_{\mathbf{c} \text { drg }} \\ (\%) \end{gathered}$	$\begin{gathered} \text { RAT } \\ \text { PLASMA } \\ \text { - RAW } \\ \text { PO } \\ \text { AUC(0- } \\ \text { inf) }{ }^{\text {drg }} \\ \text { (ug*h/mL } \\ \end{gathered}$
29	<	0.11						
30		0.95	4	0.6	39			
31		0.41	1	1.1	30			
32		0.2	5	3.8				
33		0.37	5					
34		0.61	6	7.5	39			
35		1.4	21	5.5	54			
36								

$\begin{gathered} \text { Comp } \\ \text { Cono. } \\ \hline \end{gathered}$	Molecule	\qquad	$\begin{array}{c\|} \hline \text { CYP3AA } \\ \text { Inductio } \\ \text { n-PXR } \\ \text { human } \\ \text { PXR } \\ \text { internal } \\ \text { Max } \% \\ \text { Activity } \\ (\%) \\ \hline \end{array}$	MDCK-Wild Type- Permeability 96 well $+0.1 \% \mathrm{BS}$ A Papp compound $\left(\begin{array}{c}\text { A-B) } \\ \text { cm } \\ \text { cm } / \mathrm{s})\end{array}\right.$	$\begin{gathered} \text { Hepatocyte } \\ \text { clearance-Rat } \\ \text { Rat } \\ \text { hepatocytes } \\ \text { CL } \\ \text { pet_unchange } \\ \text { d (\%) } \\ \hline \end{gathered}$		$\begin{gathered} \text { RAT } \\ \text { PLASM } \\ \text { A- } \\ \text { RAW } \\ \text { PO } \\ \text { \%F_drg } \\ \text { (\%) } \end{gathered}$	$\begin{gathered} \text { RAT } \\ \text { PLASMA } \\ \text { - RAW } \\ \text { PO } \\ \text { AUC(0- } \\ \text { inf) }{ }^{\text {drg }} \\ \text { (ug*h/mL } \\ \hline \end{gathered}$
37		0.29	7	5.1				
38		0.11	2	1	56			
39		0.46	1		39			
40		0.08	13					
41		0.12	4					
42		0.61	16					
43	x_{∞}^{r}	0.22	4					
44		0.39						

$\begin{gathered} \text { Comp } \\ \text {. No. } \end{gathered}$	Molecule	$\begin{aligned} & \text { CFTRdF50 } \\ & \text { 8 Cor 3T3 } \\ & \text { FLIPR } 384 \\ & \text { CFTRdF50 } \\ & \text { 8 MP } 3 \text { 3 } 3 \\ & \text { 770 EC50 } \\ & \text { (uM) } \\ & \hline \end{aligned}$	CYP3A4 Inductio n-PXR human PXR internal Max \% Activity (\%)	MDCK-Wild Type- Permeability 96 well $+0.1 \%$.1\%BS APap compound (cam) \mathbf{A} (10E-6 cm/s)	Hepatocyte clearance-Rat Rat hepatocytes CL pct_unchange d (\%)	$\begin{gathered} \text { RAT } \\ \text { PLASMA - } \\ \text { RAW IV- } \\ \text { bolus } \\ \text { CL_drg } \\ (\mathrm{mL} / \mathrm{min} / \mathrm{k} \\ \mathrm{g}) \\ \hline \end{gathered}$	$\begin{gathered} \text { RAT } \\ \text { PLASM } \\ \text { A- } \\ \text { RAW } \\ \text { PO } \\ \text { \%F-drg } \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \text { RAT } \\ \text { PLASMA } \\ \text { - RAW } \\ \text { PO } \\ \text { AUC(0- } \\ \text { inf)drg } \\ \text { (ugentimL } \\ \hline \end{gathered}$
45		0.56	9	1.2	49			
46		0.39						
47		0.06						
48		1	8	4.6				
49		0.19						
50		0.08	4	1.3	20			
51		0.15	6	2.9	29			
52		0.17	2	2	18			
53		0.39	7					

$\begin{gathered} \text { Comp } \\ \text {. No. } \end{gathered}$	Molecule	$\begin{gathered} \text { CFTRdF50 } \\ \text { 8 Cor 3T3 } \\ \text { FLIPR 384 } \\ \text { CFTRdF50 } \\ \text { 8 MP 3T3 } \\ \text { 770 EC50 } \\ \text { (uM) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CYP3A4 } \\ \text { Inductio } \\ \text { n-PXR } \\ \text { human } \\ \text { PXR } \\ \text { internal } \\ \text { Max \% } \\ \text { Activity } \\ \text { (\%) } \\ \hline \end{gathered}$	MDCK-Wild Type- Permeability 96 well $+1.1 \% \mathrm{BS}$ A Papp compound (A-B) (10E-6 cm/s)	Hepatocyte clearance-Rat Rat hepatocytes CL pct_unhange d (\%)	RAT PLASMA - RAW IV- bolus CL_drg $\left(\begin{array}{c}\mathrm{dL} / \mathrm{min} / \mathrm{k} \\ \mathrm{g})\end{array}\right.$	$\begin{gathered} \text { RAT } \\ \text { PLASM } \\ \text { A- } \\ \text { RAW } \\ \text { PO } \\ \text { \%- } \mathbf{F} \mathbf{d r g} \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \text { RAT } \\ \text { PLASMA } \\ \text { - RAW } \\ \text { PO } \\ \text { AUC(0- } \\ \text { inf) } \mathbf{d r g} \\ (\mathbf{u g}=\mathbf{d r} / \mathrm{mL} \\ \vdots \end{gathered}$
54		0.05	5	1.1	30			
55		0.1	9					
56			11					
57		30	13		35			
A		0.06	2	2.6	13	17.8	28	2.7
B		0.26	3	0.4	13			
C		0.12	9	1.5	6	29.2		
D		0.21	10		19			

[00338] F. Metabolites
[00339] It has been determined that Compound 1 is metabolized both in vitro and in vivo, mostly by oxidative metabolism. Compounds $30,31,36,39,45$, and 57 are metabolites of Compound 1.

[00340] Example G: Chloride Transport Experiments

[0035] In one Ussing Chamber experiment with F508del/F508del-HBE cells, Compound 1 enhanced chloride transport. The effect of Compound 1 on chloride transport was additive to the effect of Compound II. In addition, F508del-CFTR delivered to the cell surface by either Compound 1 alone or in combination with Compound II was potentiated by Compound III. The triple combination of Compound 1 / Compound II / Compound III provided a superior increase in chloride transport compared to the 3 dual regimens under most conditions tested.
[0036] Example G2: F508del-CFTR Processing and Trafficking In Vitro Experiments
[0037] The combination of Compound 1 and Compound II resulted in more than additive improvement in CFTR processing and trafficking compared to either CFTR corrector alone, suggesting that the two CFTR correctors act through different mechanisms of action, which act synergistically to increase the amount of F508del-CFTR delivered to the cell surface.
[0038] In addition, the more than additive effect of the combination of Compound 1 and Compound II on the processing and trafficking of CFTR suggests that the two CFTR correctors act through different mechanisms to result in the delivery of more CFTR protein to the cell surface compared to either CFTR corrector alone.

[00341] Other Embodiments

The foregoing discussion discloses and describes merely exemplary embodiments of this disclosure. One skilled in the art will readily recognize from such discussion and from the accompanying drawings and claims, that various changes, modifications and variations can be made therein without departing from the spirit and scope of this disclosure as defined in the following claims.

CLAIMS

1. A compound of Formula I:

(I),
a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing,
wherein:

- one of Y^{1} and Y^{2} is N and the other is CH ;
- X is chosen from O, NH, and $\mathrm{N}(\mathrm{Ci}-\mathrm{C} 4$ alkyl) groups;
$-\mathbf{R}^{1}$ is- $\left(\mathbf{C}\left(\mathbf{R}^{2}\right)_{2}\right)_{k}-\mathbf{0}-\left(\mathbf{C}\left(\mathbf{R}^{2}\right)_{2}\right)_{m} \mathbf{R}^{7}$,
- each $\mathbf{R}^{\mathbf{2}}$ is independently chosen from hydrogen; halogens; cyano; hydroxy; C1-C2 alkoxy groups; and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and C_{3-5} cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- each $\mathbf{R}^{\mathbf{3}}$ is independently chosen from C1-C4 alkyl groups optionally substituted with one or more hydroxy groups, or optionally two geminal \mathbf{R}^{3}, together with the carbon atom to which they are attached, form a C_{3-4} cycloalkyl;
- each $\mathbf{R}^{\mathbf{4}}$ is independently chosen from halogens;
- $\mathbf{R}^{\mathbf{5}}$ is chosen from hydrogen and C1-C4 alkyl groups;
- each $\mathbf{R}^{\mathbf{6}}$ is independently chosen from halogens, cyano, hydroxy,
hydroxymethyl, C1-C2 alkoxy groups, C1-C2 alkyl groups, and halogenated C1-C2 alkyl groups;
- $\mathbf{R}^{\mathbf{7}}$ is chosen from hydrogen; halogens; cyano; C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and
hydroxy; and $\mathrm{C} 3-\mathrm{Cl}_{0}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- k is 0 or 1 ;
- r is 0 or 1 ;
-m is $0,1,2$, or 3 ;
- p is 0,1 , or 2 ; and
- q is $\mathrm{o}, 1,2,3,4,5,6,7$, or 8 .

2. A compound of Formula II:

(II),
a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing,
wherein:

- \mathbf{X} is chosen from \mathbf{O}, NH, and $\mathrm{N}(\mathrm{Ci}-\mathrm{C} 4$ alkyl) groups;
$-R^{1}$ is- $\left(C\left(R^{2}\right)_{2}\right)_{k}-0-\left(C\left(R^{2}\right)_{2}\right)_{m} R^{7}$,
- each R^{2} is independently chosen from hydrogen; halogens; cyano; hydroxy; C1-C2 alkoxy groups; and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and C3-5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- each $\mathbf{R}^{\mathbf{3}}$ is independently chosen from C1-C4 alkyl groups optionally substituted with one or more hydroxy groups, or optionally two geminal \mathbf{R}^{3}, together with the carbon atom to which they are attached, form a C3-4 cycloalkyl;
- each $\mathbf{R}^{\mathbf{4}}$ is independently chosen from halogens;
- $\mathbf{R}^{\mathbf{5}}$ is chosen from hydrogen and C1-C4 alkyl groups;
- each \mathbf{R}^{6} is independently chosen from halogens, cyano, hydroxy,
hydroxymethyl, C1-C2 alkoxy groups, C1-C2 alkyl groups, and halogenated C1-C2 alkyl groups;
- \mathbf{R}^{7} is chosen from hydrogen; halogens; cyano; C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy; and $\mathrm{C} 3-\mathrm{Cl}_{0}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
-k is 0 or 1 ;
- r is 0 or 1 ;
- m is $0,1,2$, or 3 ;
- p is 0,1 , or 2 ; and
- q is $\mathrm{O}, 1,2,3,4,5,6,7$, or 8 .

3. A compound of Formula III:

(III),
a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing,
wherein:

- $\mathbf{R}^{\mathbf{1}}$ is- $\left(\mathbf{C}\left(\mathbf{R}^{\mathbf{2}}\right)_{\mathbf{2}}\right)_{\mathrm{k}} \mathbf{- 0}-\left(\mathbf{C}\left(\mathbf{R}^{\mathbf{2}}\right)_{\mathbf{2}}\right)_{\mathrm{m}} \mathbf{R}^{\mathbf{7}}$,
- each $\mathbf{R}^{\mathbf{2}}$ is independently chosen from hydrogen; halogens; cyano; hydroxy; C1-C2 alkoxy groups; and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and C3-5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- each $\mathbf{R}^{\mathbf{3}}$ is independently chosen from C1-C4 alkyl groups optionally substituted with one or more hydroxy groups, or optionally two geminal $\mathbf{R}^{\mathbf{3}}$, together with the carbon atom to which they are attached, form a C3-4 cycloalkyl;
- each $\mathbf{R}^{\mathbf{4}}$ is independently chosen from halogens;
- $\mathbf{R}^{\mathbf{5}}$ is chosen from hydrogen and C1-C4 alkyl groups;
- each $\mathbf{R}^{\mathbf{6}}$ is independently chosen from halogens, cyano, hydroxy,
hydroxymethyl, C1-C2 alkoxy groups, C1-C2 alkyl groups, and halogenated C1-C2 alkyl groups;
- \mathbf{R}^{7} is chosen from hydrogen, halogens, cyano, C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy, and $\mathrm{C} 3-\mathrm{C1}_{0}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

```
- k is 0 or 1;
-r is 0 or 1;
-m is 0, 1, 2, or 3;
- p is 0, 1, or 2; and
-q is o, 1, 2, 3,4,5,6,7, or 8.
```

4. A compound according to any of claims 1-3, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein:

- each $\mathbf{R}^{\mathbf{2}}$ is independently chosen from hydrogen and C1-C2 alkyl groups;
- R^{5} is chosen from hydrogen and C1-C2 alkyl groups; and
- each R^{6} is independently chosen from C1-C2 alkyl groups.

5. A compound according to any of claims 1-3, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein:

$$
-\mathrm{R}^{\mathbf{1}} \text { is }-\mathbf{0}-\left(\mathrm{CH}_{2}\right)\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)\left(\mathrm{m}^{-\mathrm{i}}\right) \mathrm{R}^{7},
$$

- R^{7} is independently chosen from C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and C3C 1_{0} cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens, and
- each R^{2} is independently chosen from C1-C2 alkyl groups, $\mathrm{OH}, \mathrm{C} 1-\mathrm{C} 2$ alkoxy groups, and halogens;
-r is 0 ; and
- q is $0,1,2,3$, or 4 .

6. A compound according to claim 4 having Formula IV or V:

(IV) or
 (V),
a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing,
wherein:
$-R^{1}$ is $-\mathbf{0}-\left(\mathbf{C H}_{2}\right)\left(\mathbf{C}\left(\mathbf{R}^{2}\right)_{2}\right)_{(\mathrm{m}-} \mathbf{i} \mathbf{R}^{\mathbf{7}}$,

- each R^{2} is independently chosen from $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups, $\mathrm{OH}, \mathrm{C}_{1}-\mathrm{C}_{2}$ alkoxy groups, and halogens;
$-\mathrm{R}^{7}$ is chosen from $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, and с $3-\mathrm{C}_{10}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens
- R^{5} is chosen from hydrogen and $C_{1}-C_{2}$ alkyl groups;
- each R^{6} is independently chosen from $\mathrm{C}_{1}-\mathrm{C}_{2}$ alkyl groups; and
-p is 0,1 , or 2 .

7. A compound according to claim 6, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein p is 0 or 1 .
8. A compound according to claim 6, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein p is 1 .
9. A compound according to any one of claims 1-8, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein each R^{2} is independently chosen from $\mathrm{CH}_{3}, \mathrm{OH}, \mathrm{F}$, and OCH_{3}.
10. A compound according to claim 9, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein p is 0 or 1 .
11. A compound according to claim 10, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein:

- p is 1 ;
$-\mathrm{R}^{5}$ is methyl; and
$-\mathrm{R}^{6}$ is methyl.

A compound according to claim 6 , a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{7} is a cyclopropyl group.
13. A compound according to claim 6, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{7} is a cyclopropyl group substituted with a halogenated Ci alkyl group.
14. A compound according to claim 13, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{7} is a cyclopropyl group substituted with a CF_{3} group.
15. A compound according to claim 6, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{7} is a cyclopropyl group substituted with one or more halogens and/or one or more Ci alkyl groups.
16. A compound according to claim 6, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{7} is a CF_{3} group.
17. A compound according to claim 6, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{7} is chosen from C_{4} cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens.
18. A compound according to claim 6, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{7} is chosen from C 5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens.
19. A compound according to claim 18, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein said C_{5} cycloalkyl groups are bicyclic.
20. A compound according to claim 6, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{7} is chosen from C 7 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens.
21. A compound according to claim 20, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein said ${ }_{\mathrm{C}}^{7}$ cycloalkyl groups are bicyclic.
22. A compound according to claim 20, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein said ${ }_{\mathrm{C}} 7$ cycloalkyl groups are tricyclic.
23. A compound having a formula chosen from any one of the formulae depicted in FIG. 1, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
24. A compound according to claim 1 having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing
25. A compound according to claim 1 having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
26. A compound according to claim 1 having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
27. A compound according to claim 1 having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
28. A compound according to claim 1 having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
29. A compound according to claim 1 having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
30. A compound according to claim 1 having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
31. A compound according to claim 1 having the following formula:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
32. A compound according to claim 1 having any one of the following formulae:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
33. A compound according to claim 1 having any one of the following formulae:

or

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
34. A compound according to claim 1 having any one of the following formulae:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing.
35. A pharmaceutical composition comprising at least one compound chosen from compounds of any one of claims 1-34, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, and optionally one or more of:
(a) Compound II:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing;
(b) Compound III:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing; and
(c) a pharmaceutically acceptable carrier.
36. A method of treating cystic fibrosis comprising administering to a patient in need thereof acompound of any one of claims 1-34, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing; or a pharmaceutical composition according to claim 35.
37. A method of preparing a compound of Formula (X):

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, comprising reacting a compound of Formula (F) or a salt thereof with a compound of Formula (G) or a salt thereof to generate said compound of Formula (X) or a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing:

wherein in each of said formulae:

- one of Y^{1} and Y^{2} is N and the other is CH ;
$-\mathrm{R}^{\mathbf{1}}$ is $-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{\mathrm{k}}-0-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{\mathrm{m}} \mathrm{R}^{7}$,
- each R^{2} is independently chosen from hydrogen; halogens; cyano; hydroxy; C1-C2 alkoxy groups; and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and C3-5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- each R^{3} is independently chosen from C1-C4 alkyl groups optionally substituted with one or more hydroxy groups, or optionally two geminal R^{3}, together with the carbon atom to which they are attached, form a C3-4 cycloalkyl;
- each R^{4} is independently chosen from halogens;
$-\mathrm{R}^{5}$ is chosen from hydrogen and C1-C4 alkyl groups;
- each R^{6} is chosen from halogens, cyano, hydroxy, hydroxymethyl, C1-C2 alkoxy groups, C1-C2 alkyl groups, and halogenated C1-C2 alkyl groups;
$-\mathrm{R}^{7}$ is chosen from hydrogen, halogens, cyano, C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy, and $\mathrm{C} 3-\mathrm{Cl}_{0}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- X^{a} is F or CI ;
-k is 0 or 1 ;
-r is 0 or 1 ;
- m is $0,1,2$, or 3 ;
- p is 0,1 , or 2 ; and
- q is $0,1,2,3,4,5,6,7$, or 8 .

38. The method of claim 37 , wherein Y^{2} is N ; and each Y^{1} is CH .
39. The method of claim 37 or 38 , wherein said reacting a compound of Formula (F) or a salt thereof with a compound of Formula (G) or a salt thereof is performed in the presence of a base.
40. The method of any one of claims 37-39, wherein a salt of compound of Formula (G) is employed.
41. The method of claim 40, wherein said salt of compound of Formula (G) is a HC1 salt of a compound of Formula (G).
42. A method of preparing a compound of Formula (F) or a salt thereof:

or a deuterated derivative of any of the foregoing, comprising reacting a compound of Formula (D) or salt thereof with a compound of Formula (E) or a salt thereof to generate a compound of Formula (F) or a salt thereof:

wherein in each of said formulae:

- one of Y^{1} and Y^{2} is N and the other is CH ;
$-R^{\mathbf{1}}$ is $-\left(C\left(R^{2}\right)_{2}\right)_{k}-0-\left(C\left(R^{2}\right)_{2}\right)_{m} R^{7}$,
- each R^{2} is independently chosen from hydrogen; halogens; cyano; hydroxy;

C1-C2 alkoxy groups; and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and C3-5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

- each R^{4} is independently chosen from halogens;
- each R^{5} is independently chosen from hydrogen and C1-C4 alkyl groups;
- each R^{6} is chosen from halogens, cyano, hydroxy, hydroxymethyl, C1-C2 alkoxy groups, C1-C2 alkyl groups, and halogenated C1-C2 alkyl groups;
$-R^{7}$ is chosen from hydrogen, halogens, cyano, C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy, and $\mathrm{C} 3-\mathrm{C1}_{0}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

$$
\begin{aligned}
& -\mathrm{X}^{\mathrm{a}} \text { is } \mathrm{F} \text { or } \mathrm{CI} ; \\
& -\mathrm{k} \text { is } 0 \text { or } 1 \text {; } \\
& -\mathrm{r} \text { is } 0 \text { or } 1 \text {; } \\
& -\mathrm{m} \text { is } 0,1,2 \text {, or } 3 \text {; and } \\
& -\mathrm{p} \text { is } 0,1 \text {, or } 2 \text {. }
\end{aligned}
$$

43. The method of claim 42, wherein Y^{2} is N ; and Y^{1} is CH .
44. The method of claim 42 or 43 , wherein said reacting a compound of Formula (D) or a salt thereof with a compound of Formula (E) or salt thereof is performed in the presence of a base.
45. The method of claim 42 or 43 , wherein said reacting a compound of Formula (D) or salt thereof with a compound of Formula (E) or salt thereof comprises reacting a compound of Formula (D) with a coupling reagent and subsequently with a compound of Formula (E) in the presence of a base.
46. A method of preparing a compound of the following formula:

(Compound 1)
or a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, comprising reacting a compound of Formula (F-1) or a salt thereof, wherein X^{a} is F or CI, with a compound of Formula (G-1) or a salt thereof to generate said
compound or a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing:

wherein X^{a} in Formula ($\mathrm{F}-1$) is F or CI.
47. The method of claim 46, wherein said reacting a compound of Formula (F-1) or a salt thereof with a compound of Formula (G-1) or a salt thereof is performed in the presence of a base.
48. The method of claim 46 or 47, wherein a salt of compound of Formula (G-1) is employed.
49. The method of claim 48, wherein said salt of compound of Formula (G-1) is a HC1 salt of a compound of Formula (G-1).
50. A method of preparing a compound of Formula (F-1) or a salt thereof:

or a deuterated derivative of any of the foregoing, comprising reacting a compound of Formula (D-1) and a compound of Formula (E-1) to generate a compound of Formula (F-1) or a salt thereof:

wherein in each said formulae, X^{a} is F or $C I$.
51. The method of claim 50, wherein said reacting a compound of Formula (D-1) or a salt thereof with a compound of Formula (E-1) or a salt thereof is performed in the presence of a base.
52. The method of claim 50, wherein said reacting a compound of Formula (D-1) or a salt thereof with a compound of Formula (E-1) or a salt thereof comprises reacting a compound of Formula (D-1) with a coupling reagent and subsequently with a compound of Formula (E-1) in the presence of a base.
53. A method of preparing a compound of Formula (D) or a salt thereof:

or a deuterated derivative of any of the foregoing, comprising:
(iii) reacting a compound of Formula (A) or a salt thereof with a compound of Formula (B) or a salt thereof to generate a compound of Formula (C) or a salt thereof:

(iv) hydrolyzing the $-\mathrm{C}(0) \mathrm{OR}$ a group of a compound of Formula (C) to generate a compound of Formula (D) or a salt thereof,
wherein in each said formulae:

- one of Y^{1} and Y^{2} is N and the other is CH ;
$-\mathrm{R}^{\mathbf{1}}$ is $-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{\mathrm{k}}-0-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{m} \mathrm{R}^{7}$,
- each \mathbf{R}^{2} is independently chosen from hydrogen; halogens; cyano; hydroxy; C1-C2 alkoxy groups; and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and C3-5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- each \mathbf{R}^{4} is independently chosen from halogens;
$-\mathbf{R}^{7}$ is chosen from hydrogen, halogens, cyano, C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy, and $\mathrm{C} 3-\mathrm{C1}_{0}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

$$
\begin{aligned}
& -\mathrm{X}^{\mathrm{a}} \text { is } \mathrm{F} \text { or } \mathrm{CI} ; \\
& -\mathrm{k} \text { is } 0 \text { or } 1 ; \\
& -\mathrm{r} \text { is } 0 \text { or } 1 \text {; and } \\
& -\mathrm{m} \text { is } 0,1,2 \text {, or } 3 .
\end{aligned}
$$

54. The method of claim 53, wherein Y^{2} is N ; and Y^{1} is CH .
55. The method of claim 53 or 54 , wherein the hydrolysis of the $-\mathrm{C}(0) \mathrm{OR}$ a group is performed in the presence of a base or acid.
56. The method of any one of claims 53-55, wherein said reacting a compound of Formula (A) or a salt thereof with a compound of Formula (B) or salt thereof is performed in the presence of a base.
57. The method of any one of claims 53-56, wherein R^{a} is ethyl or /-butyl.
58. A method of preparing a compound of Formula (D-1) or a salt thereof:

or a deuterated derivative of any of the foregoing, comprising:
(iii) reacting a compound of Formula (A-1) or a salt thereof and a compound of Formula (B-1) or a salt thereof to generate a compound of Formula (C-1) or a salt thereof:

(iv) hydrolyzing the $-\mathrm{C}(0) \mathrm{OR}$ a group of a compound of Formula (C-1) or a salt thereof to generate a compound of Formula (D-1) or a salt thereof, wherein in each said formulae, each R^{a} is independently chosen from C1-C4 alkyl; and each X^{a} is independently F or CI .
59. The method of claim 58 , wherein the hydrolysis of the $-\mathrm{C}(0) \mathrm{OR}$ a group is performed in the presence of a base or acid.
60. The method of 58 or 59 , wherein said reacting a compound of Formula (A-1) or a salt thereof and a compound of Formula (B-1) or a salt thereof is performed in the presence of a base.
61. The method of any one of claims 58-60, wherein R^{a} is ethyl or /-butyl.
62. A compound of Formula (F) or a salt thereof:

or a deuterated derivative of any of the foregoing, wherein in each of said formulae:

- $\mathrm{R}^{\mathbf{1}}$ is $-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{\mathrm{k}}-0-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{\mathrm{m}} \mathrm{R}^{7}$,
- each R^{2} is independently chosen from hydrogen; halogens; cyano; hydroxy;

C1-C2 alkoxy groups; and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and c3-5 cycloalkyl
groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

- each \mathbf{R}^{4} is independently chosen from halogens;
- $\mathbf{R}^{\mathbf{5}}$ is chosen from hydrogen and C1-C4 alkyl groups;
- each \mathbf{R}^{6} is chosen from halogens, cyano, hydroxy, hydroxymethyl, C1-C2 alkoxy groups, C1-C2 alkyl groups, and halogenated C1-C2 alkyl groups;
$-\mathbf{R}^{7}$ is chosen from hydrogen, halogens, cyano, C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy, and $\mathrm{C} 3-\mathrm{C1}_{0}$ cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

$$
\begin{aligned}
& -\mathrm{X}^{\mathrm{a}} \text { is } \mathrm{F} \text { or } \mathrm{CI} \\
& -\mathrm{k} \text { is } 0 \text { or } 1 \text {; } \\
& \text { - } \mathrm{r} \text { is } 0 \text { or } 1 \text {; } \\
& \text { - } \mathrm{m} \text { is } 0,1,2 \text {, or } 3 \text {; and } \\
& \text { - } \mathrm{p} \text { is } 0,1 \text {, or } 2 \text {. }
\end{aligned}
$$

63. A compound according to claim 62, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein Y^{2} is N ; and each Y^{1} is CH .
64. A compound of Formula (F-l) or a salt thereof:

or a deuterated derivative of any of the foregoing, wherein X^{a} is F or CI.
65.A compound of Formula (C) or (D), or a salt thereof:

or
(D)
or a deuterated derivative of any of the foregoing, wherein in each said formulae:

- one of Y^{1} and Y^{2} is independently N and the other is independently CH ;
$-\mathrm{R}^{1}$ is $-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{\mathrm{k}}-0-\left(\mathrm{C}\left(\mathrm{R}^{2}\right)_{2}\right)_{\mathrm{m}} \mathrm{R}^{\mathrm{T}}$,
- each R^{2} is independently chosen from hydrogen; halogens; cyano; hydroxy; C1-C2 alkoxy groups; and C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens, hydroxy, and C3-5 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;
- each R^{4} is independently chosen from halogens;
- R^{7} is chosen from hydrogen, halogens, cyano, C1-C2 alkyl groups optionally substituted with one or more substituents each independently chosen from halogens and hydroxy, and C3-C10 cycloalkyl groups optionally substituted with one or more substituents each independently chosen from C1-C2 alkyl groups, halogenated C1-C2 alkyl groups, and halogens;

$$
\begin{aligned}
& -\mathrm{R}^{\mathrm{a}} \text { is } \mathrm{C} 1-\mathrm{C} 4 \text { alkyl; } \\
& -\mathrm{X}^{\mathrm{a}} \text { is } \mathrm{F} \text { or } \mathrm{CI} ; \\
& -\mathrm{k} \text { is } 0 \text { or } 1 ; \\
& -\mathrm{r} \text { is } 0 \text { or } 1 ; \text { and } \\
& -\mathrm{m} \text { is } 0,1,2 \text {, or } 3 .
\end{aligned}
$$

66. A compound according to claim 65, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein each Y^{2} is independently N ; and each Y^{1} is independently CH .
67. A compound according to claim 65 , a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{a} is ethyl or /-butyl.
68. A compound of Formula (C-l) or (D-1), or a salt thereof:

(C-1)

(D-1)
or a deuterated derivative of any of the foregoing, wherein R^{a} is C1-C4 alkyl; and each X^{a} is independently F or CI .
69. A compound according to claim 68, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, wherein R^{a} is ethyl or /-butyl.
70. A compound of Formula (A-1), (C-1) or (D-1), or a salt thereof:

or a deuterated derivative of any of the foregoing, wherein R^{a} is C1-C4 alkyl; and each X^{a} is independently F or CI .
71. Use of at least one compound chosen from compounds of any one of claims 134, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, and optionally one or more of:
(a) Compound II:

a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing; and
(b) Compound III:

, a pharmaceutically acceptable salt thereof, or a deuterated derivative of any of the foregoing, for treating cystic fibrosis.
72. Crystalline Form A of Compound 1:

73.
74. Crystalline Form A according to claim 72 in substantially pure form.
75. Crystalline Form A according to claim 72, characterized by an X-ray powder diffractogram having a signal at at least three two-theta values chosen from 6.6 ± 0.2, $7.6 \pm 0.2,9.6 \pm 0.2,12.4 \pm 0.2,13.1 \pm 0.2,15.2 \pm 0.2,16.4 \pm 0.2,18.2 \pm 0.2$, and $18.6 \pm$ 0.2.
76. Crystalline Form A according to claim 72, characterized by an X-ray powder diffractograph having a signal at at least three two-theta values chosen from 6.6 ± 0.2, $9.6 \pm 0.2,13.1 \pm 0.2,15.2 \pm 0.2,18.2 \pm 0.2$, and 18.6 ± 0.2.
77. Crystalline Form A according to claim 72, characterized by an X-ray powder diffractograph having a signal at three two-theta values of $6.6 \pm 0.2,13.1 \pm 0.2,18.2 \pm$ 0.2.
78. Crystalline Form A according to claim 72, characterized by an X-ray powder diffractograph having a signal at six two-theta values of $6.6 \pm 0.2,9.6 \pm 0.2,13.1 \pm 0.2$, $15.2 \pm 0.2,18.2 \pm 0.2$, and 18.6 ± 0.2.
79. Crystalline Form A of claim 72, characterized by an X-ray powder diffractogram substantially similar to that in FIG. 2 .
80. Crystalline Form A of Compound $\mathbf{1}$ prepared by a process comprising desolvating at least one crystalline form of Compound $\mathbf{1}$ chosen from Crystalline Form

M, Crystalline Form E, Crystalline Form PI, Crystalline Form P2, and Crystalline Form AA2.
80. Crystalline Form A of Compound $\mathbf{1}$ prepared by a process comprising desolvating at least one solvate chosen from methanol solvates, ethanol solvates, acetic acid solvates, toluene solvates, sulfolane solvates, 1-propanol solvates, 2-propanol solvates, propionic acid solvates, methyl tert-butyl ether solvates, and isobutyric acid solvates of Compound $\mathbf{1}$ followed by subjecting the resulting desolvate to vacuum drying at room temperature for 12 to 100 hours.
81. At least one solvate of Compound 1:

chosen from methanol solvates, ethanol solvates, 1-propanol solvates, 2-propanol solvates, acetic acid solvates, toluene solvates, sulfolane solvates, propionic acid solvates, methyl tert-butyl ether solvates, isobutyric acid solvates, anisole solvates, methylbutyl ketone solvates, and xylene solvates of Compound 1.
82. The at least one solvate of Compound $\mathbf{1}$ according to claim 81, chosen from methanol solvates, ethanol solvates, 1-propanol solvates, and 2-propanol solvates of Compound 1.
83. Crystalline Form M of Compound 1:

84. Crystalline Form M according to claim 83 in substantially pure form.
85. Crystalline Form M according to claim 83, characterized by an X-ray powder diffractogram having a signal at at least three two-theta values chosen from 7.0 ± 0.2, $11.6 \pm 0.2,13.1 \pm 0.2,13.7 \pm 0.2,15.2 \pm 0.2,15.9 \pm 0.2,16.4 \pm 0.2,17.8 \pm 0.2$, and 19.3 ± 0.2.
86. Crystalline Form M according to claim 83, characterized by an X-ray powder diffractograph having a signal at at least three two-theta values chosen from 11.6 ± 0.2, $13.1 \pm 0.2,13.7 \pm 0.2,15.2 \pm 0.2,17.8 \pm 0.2$, and 19.3 ± 0.2.
87. Crystalline Form M according to claim 83, characterized by an X-ray powder diffractograph having a signal at three two-theta values of $11.6 \pm 0.2,17.8 \pm 0.2$, and 13.1 ± 0.2.
88. Crystalline Form M according to claim 83, characterized by an X-ray powder diffractograph having a signal at six two-theta values of $11.6 \pm 0.2,13.1 \pm 0.2,13.7 \pm$ $0.2,15.2 \pm 0.2,17.8 \pm 0.2$, and 19.3 ± 0.2.
89. Crystalline Form M of claim 83, characterized by an X-ray powder diffractogram substantially similar to that in FIG. 13.
90. Crystalline Form E of Compound 1:

1.
91. Crystalline Form E according to claim 90 in substantially pure form.
92. Crystalline Form E according to claim 90 , characterized by an X-ray powder diffractogram having a signal at at least three two-theta values chosen from 7.0 ± 0.2, $11.2 \pm 0.2,12.8 \pm 0.2,13.2 \pm 0.2,14.1 \pm 0.2,15.1 \pm 0.2,16.1 \pm 0.2,17.8 \pm 0.2$, and 18.9 ± 0.2.
93. Crystalline Form E according to claim 90, characterized by an X-ray powder diffractograph having a signal at at least three two-theta values chosen from 11.2 ± 0.2, $12.8 \pm 0.2,13.2 \pm 0.2,15.1 \pm 0.2,16.1 \pm 0.2$, and 17.8 ± 0.2.
94. Crystalline Form E according to claim 90, characterized by an X-ray powder diffractograph having a signal at three two-theta values of $12.8 \pm 0.2,16.1 \pm 0.2$, and 17.8 ± 0.2.
95. Crystalline Form E according to claim 90, characterized by an X-ray powder diffractograph having a signal at six two-theta values of $11.2 \pm 0.2,12.8 \pm 0.2,13.2 \pm$ $0.2,15.1 \pm 0.2,16.1 \pm 0.2$, and 17.8 ± 0.2.
96. Crystalline Form E of claim 90, characterized by an X-ray powder diffractogram substantially similar to that in FIG. 14.
97. A method of preparing crystalline Form A of Compound 1:

1, comprising stirring a
solution or suspension of Compound $\mathbf{1}$ in a solvent system at a temperature in a range from $50^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
98. A method of preparing crystalline Form A of Compound 1:

$\mathbf{1}$, comprising desolvating a
solvate of Compound $\mathbf{1}$ chosen from methanol solvates, ethanol solvates, 1-propanol solvates, 2-propanol solvates, acetic acid solvates, toluene solvates, sulfolane solvates, propionic acid solvates, methyl tert-butyl ether solvates, isobutyric acid solvates, anisole solvates,methylbutyl ketone solvates, and xylene solvates of Compound 1.
99. A crystalline Form X of a potassium salt of Compound $\mathbf{1}$:

1.
100. Crystalline Form X according to claim 99 in substantially pure form.
101. Crystalline Form X according to claim 99, characterized by an X-ray powder diffractogram having a signal at at least three two-theta values chosen from 4.9 ± 0.2, $5.9 \pm 0.2,8.1 \pm 0.2,8.5 \pm 0.2,10.3 \pm 0.2,13.0 \pm 0.2,13.9 \pm 0.2,14.6 \pm 0.2$, and $17.0 \pm$ 0.2.
102. Crystalline Form X according to claim 99, characterized by an X-ray powder diffractograph having a signal at at least three two-theta values chosen from 4.9 ± 0.2, $5.9 \pm 0.2,8.1 \pm 0.2,13.0 \pm 0.2,13.9 \pm 0.2$, and 17.0 ± 0.2.
103. Crystalline Form X according to claim 99, characterized by an X-ray powder diffractograph having a signal at three two-theta values of $4.9 \pm 0.2,5.9 \pm 0.2$, and 13.0 ± 0.2.
104. Crystalline Form X according to claim 99, characterized by an X-ray powder diffractograph having a signal at six two-theta values of $4.9 \pm 0.2,5.9 \pm 0.2,8.1 \pm 0.2$, $13.0 \pm 0.2,13.9 \pm 0.2$, and 17.0 ± 0.2.
105. Crystalline Form X of claim 99, characterized by an X-ray powder diffractogram substantially similar to that in FIG. 15.
106. A crystalline Form Y of a sodium salt of Compound 1:

1.
107. Crystalline Form Y according to claim 106 in substantially pure form.
108. Crystalline Form Y according to claim 106, characterized by an X-ray powder diffractogram having a signal at at least three two-theta values chosen from 3.5 ± 0.2,
$7.0 \pm 0.2,11.7 \pm 0.2,12.8 \pm 0.2,13.2 \pm 0.2,14.2 \pm 0.2,15.4 \pm 0.2,16.6 \pm 0.2$, and 18.0 ± 0.2.
109. Crystalline Form Y according to claim 106, characterized by an X-ray powder diffractograph having a signal at at least three two-theta values chosen from 3.5 ± 0.2, $7.0 \pm 0.2,11.7 \pm 0.2,13.2 \pm 0.2,14.2 \pm 0.2$, and 18.0 ± 0.2.
110. Crystalline Form Y according to claim 106, characterized by an X-ray powder diffractograph having a signal at three two-theta values of $7.0 \pm 0.2,11.7 \pm 0.2$, and 13.2 ± 0.2.
111. Crystalline Form Y according to claim 106, characterized by an X-ray powder diffractograph having a signal at six two-theta values of $3.5 \pm 0.2,7.0 \pm 0.2,11.7 \pm 0.2$, $13.2 \pm 0.2,14.2 \pm 0.2$, and 18.0 ± 0.2.
112. Crystalline Form Y of claim 106, characterized by an X-ray powder diffractogram substantially similar to that in FIG. 16.
113. A solid dispersion comprising Compound $\mathbf{1}$ and a polymer.
114. The solid dispersion of claim 113, comprising $50 \mathrm{wt} \%$ of Compound $\mathbf{1}$ and 50 $\mathrm{wt} \%$ of a polymer by the total weight of the solid dispersion or $80 \mathrm{wt} \%$ of Compound $\mathbf{1}$ and $20 \mathrm{wt} \%$ of a polymer by the total weight of the solid dispersion.
115. The solid dispersion of claim 113 or 114 , wherein the polymer is a hypromellose acetate succinate, hydroxypropyl cellulose, hydroxypropyl methylcellulose, or Polyvinylpyrrolidone.
116. A pharmaceutical formulation comprising at least one crystalline form according to any one of claims 72-96 and 99-112, and a pharmaceutically acceptable carrier.
117. A method of treating cystic fibrosis comprising administering to a patient in need thereof at least one crystalline form according to any one of claims 72-96, and 99 112.
118. A method of treating cystic fibrosis comprising administering to a patient in need thereof a solid dispersion according to any one of claims 113-115.
119. Crystalline Form P2 of Compound 1:

1.
120. Crystalline Form P2 according to claim 119 in substantially pure form.
121. Crystalline Form P2 according to claim 119, characterized by an X-ray powder diffractogram having a signal at at least three two-theta values chosen from 10.2 ± 0.2, $10.9 \pm 0.2,12.6 \pm 0.2,12.9 \pm 0.2,15.0 \pm 0.2,15.9 \pm 0.2,16.2 \pm 0.2,16.5 \pm 0.2$, and 17.6 ± 0.2.
122. Crystalline Form P2 according to claim 119, characterized by an X-ray powder diffractograph having a signal at at least three two-theta values chosen from 10.9 ± 0.2, $12.6 \pm 0.2,12.9 \pm 0.2,15.0 \pm 0.2,16.5 \pm 0.2$, and 17.6 ± 0.2.
123. Crystalline Form P2 according to claim 119, characterized by an X-ray powder diffractograph having a signal at three two-theta values of $10.9 \pm 0.2,12.6 \pm 0.2$, and 17.6 ± 0.2.
124. Crystalline Form P2 according to claim 119, characterized by an X-ray powder diffractograph having a signal at six two-theta values of $10.9 \pm 0.2,12.6 \pm 0.2,12.9 \pm$ $0.2,15.0 \pm 0.2,16.5 \pm 0.2$, and 17.6 ± 0.2.
125. Crystalline Form P2 of claim 119, characterized by an X-ray powder diffractogram substantially similar to that in FIG. 17.
Compound 1
FIG. 1
Compound 10
FIG. 1
Compound 19

FIG. 1
Compound 28

FIG. 1
Compound 37
FIG. 1
Compound 46
FIG. 1

FIG. 1

Counts
FIG. 3

10/29
$\frac{4}{5}$
$\frac{8}{3}$

FIG. 5
SUBSTITUTE SHEET (RULE 26)

FIG. 6

Mutation cDNA Name	Mutation Protein Name	Mutation Legacy Name
$\mathrm{cl} \mathrm{A}>\mathrm{G}$	p.? (unknown)	M1V
$\begin{aligned} & c 54 \\ & 594.273+10250 \mathrm{de} \\ & 121 \mathrm{~kb} \text {. } \end{aligned}$	pSerl8Argfs 116	CF IRdele2,3
c. $91 \mathrm{C}>$ T	p.Arg31Cys	R31C
c. 115 C T	p Gin39X	O39X
c. $137 \mathrm{C}>\mathrm{A}$	p.Ala46Asp	A460
c. $165-1 \mathrm{G}$ - A	No protein name	297-1G-A
c. $166 \mathrm{G}>\mathrm{A}$	p.Glu56Lys	E56K
c $174175 \mathrm{ins} A$	p Arg591 ysfs X10	306insA
c. $178 \mathrm{G}>\mathrm{T}$	p.Glu60X	E60X
c $200 \mathrm{C} \geqslant \mathrm{T}$	p Pro67leu	P671.
c. $220 \mathrm{C}>\mathrm{T}$	p.Arg74Trp	R74W
c $223 \mathrm{C} \geqslant \mathrm{T}$	p Arg75x	R75 X
c. $224 \mathrm{G}>\mathrm{A}$	p.Arg75Gln	R75Q
c. 254 G A	p Gly 85 Gly	G85E
c.262_263delTT	p.Leu881lefsX22	394delTT
c. $273+1 \mathrm{G}$ - A	No protein name	405 IG- ${ }^{\text {a }}$
c. 274-1G>A	No protein name	406-1G->A
c: 274 Cr A	p Glu921ys	E92K
c. $274 \mathrm{G}>\mathrm{T}$	p.Glu92X	E92X
c. 292 Cl T	p Gln98X	Q98X
c.313delA	p.llel05SerfsX2	444delA
c 325 327dell ATins G	p Tyrno9Glyfs ${ }^{\text {a }}$	457TAT-PG
c. $328 \mathrm{G}>\mathrm{C}$	p.Asp110His	D110H
c. $349 \mathrm{C}>\mathrm{T}$	p Argl17Cys	R117C
c. $350 \mathrm{G}>\mathrm{A}$	p.Arg117His	R117H
c 366 T A	p Tyrl22x	Y122X
c. 442 delA	p.11el48LeufsX5	574delA
c. 443 T ¢	pllel 48 Thr	1148 T
c. $489+1 \mathrm{G}>\mathrm{T}$	No protein name	$621+1 \mathrm{G}->\mathrm{T}$
c. 531 delt	p $11 \mathrm{l} / 77 \mathrm{Metfs} \mathrm{X} 12$	663 delT
c. $532 \mathrm{G}>\mathrm{A}$	p.Gly178Glu	G178R

FIG. 7
SUBSTITUTE SHEET (RULE 26)

14/29

Mutation cDNA Name	Mutation Protein Name	Mutation Legacy Name
c 543 S46del TAGT	pleul 83 PhefsXS	675 del 4
c. $579+1 \mathrm{G}>\mathrm{T}$	No protein name	$711+1 \mathrm{G}->\mathrm{T}$
c. $579+3 \mathrm{~A}$ - G	No protein name	$711-3 \mathrm{~A}-\mathrm{G}$
c. $579+5 \mathrm{G}>\mathrm{A}$	No protein name	$711+5 \mathrm{G}->\mathrm{A}$
c. $580-1 \mathrm{G}$ T	No protein name	$712-1 \mathrm{G}-\mathrm{T}$
C.59SOT	p.Hisl99Tyr	H199Y
C. 61.3 CM	p Pro205Ser	P20ss
c. $617 \mathrm{~T}>\mathrm{G}$	p.Leu20GTrp	L206W
C. 6580 T	p Glin220x	Q220X
c. $580 \mathrm{~T}>\mathrm{G}$	p.Leu227Arg	L227R
c. 720.741 del AGGG AGAATGATGATGAA GTAC	p Gly 241 Glufs 13	852 del 22
c. $828 \mathrm{C}>\mathrm{A}$	p.Cys276X	C276X
c 948delt	p Phe3loleufsxI	1078delT
c. $988 \mathrm{G}>\mathrm{T}$	p.Gly330X	G330X
c. $1000 \mathrm{c}>\mathrm{T}$	p Arg334Trp	R334W
c. $1007 \mathrm{~T}>\mathrm{A}$	p.1le336Lys	I336K
c. $1013 \mathrm{C}>\mathrm{T}$	p Thr338Ele	T3381
c. $1021 \mathrm{~T}>\mathrm{C}$	p.Ser341Pro	S341P
c. 1022.1023 insTC	$\begin{aligned} & \text { p Phe342Hisfsx2 } \\ & 8 \end{aligned}$	1154 insTC
c. $1040 \mathrm{G}>\mathrm{A}$	p.Arg347His	R347H
c. 1040 G ¢ C	p Arg347Pro	R347P
c. $1055 \mathrm{G}>\mathrm{A}$	p.Arg352Gln	R352Q
$\text { c } 11075 \mathrm{C} \text { A. }$	$\begin{aligned} & \text { p [Gln3591 ys. Thir } \\ & \text { 360Lysl. } \end{aligned}$	Q350K/T360K
c. 1081 delT	p.Trp361GlyfsX8	1213delT
c. $1116+1 \mathrm{G}$ A	No protein name	$1248+1 \mathrm{G} \rightarrow \mathrm{A}$
c.1127_1128insA	p.Gln378AlafsX4	1259insA
c. 1153.1154 insat	p Asn386llefs X3	1288 insta
$\begin{aligned} & \text { c. } 1202 \mathrm{G}>\mathrm{A} \\ & \text { c. } 1203 \mathrm{G}>\mathrm{A} \end{aligned}$	p.Trp401X	W401X
c. $1209+1 \mathrm{G}$ -	No protern name	$1341+1 \mathrm{G}-\mathrm{A}$
c.1210-12[5]	No protein name	5 T

15/29

Mutation cDNA Name	Mutation Protein Name	Mutation Legacy Name
c 1210-12(71	No protein name	71
c. $1240 \mathrm{C}>\mathrm{T}$	p.Gln414X	Q414X
$\text { c } 1329 \text { li330insaga }$	plle444Argfsx3	1461 ins 4
c.1340delA	p.Lys 447 ArgfsX2	1471delA
c. $1364 \mathrm{C}>\mathrm{A}$	p. Ala455Glu	A455E
c. 1393-1G>A	No protein name	1525-1G->A
$\begin{aligned} & \text { c. } 1397 \mathrm{C}>\mathrm{A} \\ & \text { c. } 1397 \mathrm{C}>\mathrm{C} \end{aligned}$	p Ser466X	S466X
c. $1400 \mathrm{~T}>\mathrm{C}$	p.Leu467Pro	L467P
c. 1408 A - G	p Met470Val	M470V
c. 1418 delG	p.Gly473GlufsX54	1548delG
c. 1466 C A	p Ser489X	S489X
c. $1475 \mathrm{C}>\mathrm{T}$	p.Ser 492Phe	S492F
c. 1477 C T	$p \mathrm{Cln} 493 \mathrm{X}$	Q493 X
c. 15191521 delATC	p. Me507del	1507 del
c.1521_1523delCTT	p.Phe508del	F508del
c. 15451546 delTA	p Tyrslsx	1677 delTa
c. $1558 \mathrm{G}>\mathrm{T}$	p.Val520Phe	V520F
c. 1573 C T	p. Gln 525 X	0525x
c. $1585-8 \mathrm{G}$ - A	No protein name	1717.8G-A
c. 1585-1G>A	No protein name	1717-1G->A
c 1624G ${ }^{\text {c }}$	p Gly 542 X	G542X
$\begin{aligned} & \text { c. } 1645 \mathrm{~A}>\mathrm{C} \\ & \text { c. } 1 \mathrm{G} 47 \mathrm{~T}>\mathrm{G} \end{aligned}$	p.Ser549Arg	S549R
c. 1646 G \$ A	p Ser549Asn	S549N
c. 1650 del A	p.Gly 551 ValfsX8	1782delA
c. 1651 C PA	p Gly 5 I ISer	G551S
c. $1652 \mathrm{G}>\mathrm{A}$	p.Gly 551 Asp	G551D
c. 1654 C T	p GIn552X	Q552X
c. $1657 \mathrm{C}>\mathrm{T}$	p.Arg553X	R553X
c. 16731 C	pleusssSer	1.558S
c. $1675 \mathrm{G}>\mathrm{A}$	p.Ala559Thr	A559T

16/29

Mutation cDNA Name	Mutation Protein Name	Mutation Legacy Name
c. 1679 G - A	p Arg 5601ys	R560K
c. $1679 \mathrm{G}>\mathrm{C}$	p.Arg560Thr	R560T
c $1679+1 \mathrm{C}+\mathrm{C}$	No protein name	$1811+1 \mathrm{G}-\mathrm{C}$
c. $1679+1.6 \mathrm{kbA}>\mathrm{G}$	No protein name	$\begin{aligned} & 1811+1.6 \mathrm{kbA}- \\ & >\mathrm{G} \end{aligned}$
c. $1680-1 \mathrm{G}$ A	No protein name	1812-1G-A
c. $1682 \mathrm{C}>\mathrm{A}$	p.Ala561Glu	A561E
c. 1692 del A	p Asp $565 \mathrm{MelfsX7}$	1824 del A
c. $1705 \mathrm{~T}>\mathrm{G}$	p.Tyr569Asp	Y569D
c. $1727 \mathrm{G}>\mathrm{C}$	p Gly 576Ala	G576A
c. $1736 \mathrm{~A}>\mathrm{G}$	p.Asp579Gly	D579G
c. $1753 \mathrm{C}>\mathrm{T}$	p Gluss 5 X	E585 X
c. $1766+1 \mathrm{G}>\mathrm{A}$	No protein name	1898+1G->A
c. $1766+1 \mathrm{G}>\mathrm{C}$	No protein name	1898 $1 \mathrm{lG}-\mathrm{C}$
c. $1766+3 \mathrm{~A}>\mathrm{G}$	No protein name	1898+3A->G
c. 1841 A G	p. Asp614Gly	D614G
c.1923_1931del9ins	pSer641ArgfsX5	2055del9->A
$\begin{aligned} & \text { c } 1973 \text { 1985dellim } \\ & \text { sAGAAA. } \end{aligned}$	p Arg658 Lysfs ${ }^{\text {L4 }}$	$\begin{aligned} & 2105 \\ & 2117 \mathrm{dell} 3 \mathrm{insA} \\ & \text { GAAA. } \end{aligned}$
$\begin{aligned} & \text { c. 1986_1989delAAC } \\ & \text { T } \end{aligned}$	p.Thr663ArgfsX8	2118del4
c 2002 C T	p Arg668Cys	R668C
c.2012delT	p.Leu671X	2143 delT
$\begin{aligned} & \text { c. } 2051 \text { 2052delAA1 } \\ & \text { nsG } \end{aligned}$	pLys684SerfsX38	2183AA-G+
$\begin{gathered} \text { c } 205 \\ \text { nsC } \end{gathered}$	p Lys684Serfs 338	2183delA 1 - G \#
c.2052_2053insA	p.Gln685Th rfsX4	2184insA
c. 2052 del A	p Lys684AsnfsX38	2184 del A
c. 21250 T	p. $\operatorname{Arg} 709 \mathrm{X}$	R709X
c 2128 A - T	plys710x	K710x
c. 2175_2176insA	p.Glu726ArgfsX4	2307insA
c. 2195 T - G	pleu732X	1.732x
c. 2215 delG	p.Va!739TyrfsX16	2347delG

17/29

Mutation cDNA Name	Mutation Protein Name	Mutation Legacy Name
c. 2260 G - A	p Val754Met	V754M
c. $2290 \mathrm{C}>\mathrm{T}$	p. $\operatorname{Arg} 764 \mathrm{X}$	R764X
c. 2353 C T	pArg785 X	R785 X
c. $2374 \mathrm{C}>\mathrm{T}$	p. $\operatorname{Arg} 792 \mathrm{X}$	R792X
c 2424.2425 insAT	p Ser80911efs XI3	2556 insAT
c. 2453 delT	p.Leu818TrpfsX3	2585 delT
c. 2462 2463 delGT	p Ser821 Argfs X4	No legacy name
c. $2464 \mathrm{G}>\mathrm{T}$	p.Glu822X	E822X
c. $2490+1 \mathrm{G}$ ¢	No protein name	2622+1G-A
c. $2491 \mathrm{G}>\mathrm{T}$	p.Glu831X	E831X
$\begin{aligned} & c 2537 \mathrm{G} \upharpoonright \mathrm{~A} \\ & \mathrm{c} 2538 \mathrm{G}>\mathrm{A} \end{aligned}$	P Tpp846X	W846x
c. 25470 A	p.Tyr849X	Y849X
c. 2551 C T T	p ArgSSIX	R851X
c. 2583 delT	p.Phe861LeufsX3	2711delT
$\begin{aligned} & \text { c } 2657+2.2657+3 i n \\ & s A \end{aligned}$	No proteln name	2789+2insA
c. $2657+5 \mathrm{G}>\mathrm{A}$	No protein name	$2789+5 \mathrm{G}->\mathrm{A}$
c. $2658-1 \mathrm{C} \geqslant \mathrm{C}$	No protein name	2790-1 $\mathrm{C}-\mathrm{C}$
c. $2668 \mathrm{C}>\mathrm{T}$	p.Gln890X	Q890X
c. 2735 C A	p Ser912X	S912X
c. 2737_2738insG		2869insG
c 27391 A	p Tyr913 X	Y913 X
c. 27642765 insAG	p.Val922GlufsX2	2896insAG
c. 2780 T C	pleu927Pro	1.927 P
c. $2834 \mathrm{C}>\mathrm{T}$	p.Ser945Leu	S945L
c. 2875 delG	p Ala959HIsfs X9	3007delG
c. $2908 \mathrm{G}>\mathrm{C}$	p.Gly970Arg	G970R
c. 2930 C T	p Ser977Phe	S977F
c. $2988 \mathrm{G}>\mathrm{A}$	No protein name	$3120 \mathrm{G}->\mathrm{A}$
c. $2988+1 \mathrm{G}>\mathrm{A}$	No protein name	$3120+1 \mathrm{G}->\mathrm{A}$
$\begin{aligned} & \text { c. } 2989- \\ & 977 _3367+248 \mathrm{del} \end{aligned}$	No protein name	$\begin{aligned} & \hline 3121- \\ & 977 _3499+248 \\ & \text { del2515 } \end{aligned}$
c 2989.1 G A	No protein name	3121-16-A

18/29

Mutation cDNA Name	Mutation Protein Name	Mutation Legacy Name
c. $2991 \mathrm{G}>\mathrm{C}$	p.Leu997Phe	L997F
c 30023003 delTG	p Vallool AspfsX4	3132 delTG
c. $3080 \mathrm{~T}>\mathrm{C}$	p.1lel027Thr	I1027T
c. $3140-26 \mathrm{~A}$ G	No protein name	3272-26A- G
c. $3154 \mathrm{~T}>\mathrm{G}$	p.Phel052Val	F1052V
c. $31600>\mathrm{G}$	p Hislos4Asp	H1054D
c. $3181 \mathrm{G}>\mathrm{C}$	p.Glyl061Arg	G1061R
c. 3194 T - C	pl Leul065Pro	11065 P
c. $3196 \mathrm{C}>\mathrm{T}$	p.Argl066Cys	R1066C
c $3197 \mathrm{G} \geqslant \mathrm{A}$	p Argl066His	R1066H
c. $3205 \mathrm{G}>\mathrm{A}$	p.Glyl069Arg	G1069R
c. $3208 \mathrm{C} \geqslant \mathrm{T}$	p Argl070Tm	R1070W
c. $3209 \mathrm{G}>\mathrm{A}$	p.Argl070Gln	R1070Q
c. 3222 T A	p Phel074Leu	F1074.
c. $3230 \mathrm{~T}>\mathrm{C}$	p.Leul077Pro	L1077P
c. $3266 \mathrm{G}>\mathrm{A}$	p Trpl089X	W 1089X
c. $3276 \mathrm{C}>\mathrm{A}$ c. $3276 \mathrm{C}>\mathrm{G}$$\quad$ or	p.Tyr1092X	Y1092X
c. 3302T A	p Metliollys	M1101K
c. $3310 \mathrm{G}>\mathrm{T}$	p.Glull04X	E1104X
c. $3454 \mathrm{G} \geqslant \mathrm{C}$	p Aspll 52 H is	D1152H
c. $3472 \mathrm{C}>\mathrm{T}$	p.Argl158X	R1158X
c. 3484 C T	p. Argll62 X	R 1162 X
c. $3485 \mathrm{G}>\mathrm{T}$	p. Argl162Leu	R1162L
c. 3528 delC	$\text { plysll} \frac{177 S e r f s x}{}$	3659delC
$\begin{aligned} & \text { c.3535_3536insTCA } \\ & \text { A } \end{aligned}$	${ }_{7}^{\mathrm{p} . \text { ThrllI791lefsX1 }}$	3667ins4
c. 3587 C ¢ G	p Serrl96X	Sl196X
c. 3605 del A	$\underset{9}{\text { p.Aspl202AlafsX }}$	3737delA
c 3611 G A c. $3612 \mathrm{G}>\mathrm{A}:$ or	p Trpl204X	W I204X
c.3659delC	p.Thrl220LysfsX8	3791delC

19/29

Mutation cDNA Name	Mutation Protein Name	Mutation Legacy Name
c 3691 delt	p Serl23 1 Profs X 4	3821 dell
c. $3700 \mathrm{~A}>\mathrm{G}$	p.1lel234Val	11234 V
c $3705 \mathrm{~T}>\mathrm{G}$	p Serl235Arg	S1235R
c. $3717+12191 \mathrm{C}>\mathrm{T}$	No protein name	$\begin{aligned} & 3849+\text { IOkbC- } \\ & >\mathrm{T} \end{aligned}$
c $371 \mathrm{~S} 1 \mathrm{C}>\mathrm{A}$	No protein name	3850-1G-A
c. $3731 \mathrm{G}>\mathrm{A}$	p.Glyl244Glu	G1244E
c 3744 delA	p 1.y 1250 Argfs P 9	3876 dela
c. $3752 \mathrm{G}>\mathrm{A}$	p. Ser1251Asn	S1251N
c. 37631 C	p Ser 1255Pro	S 1255 P
c. 37640 A	p.Ser1255X	S1255X
c. 3773.3774 msT	pleul258Phefsx	3905insT
c. $3808 \mathrm{G}>\mathrm{A}$	p.Aspl270Asn	D1270N
c 3346 G P A	p Trpl2s2x	W1282X
c. $3873+1 \mathrm{G}>\mathrm{A}$	No protein name	4005+1G->A
c.3883delA	$\begin{aligned} & \text { p llel } 295 \text { PhefsX3 } \\ & 3 \end{aligned}$	4015 dela
c. 3884_3885insT	$\begin{aligned} & \text { p. Serl297PhefsX } \\ & 5 \end{aligned}$	4016insT
c $3909 \mathrm{C} \times \mathrm{G}$	p. Asnl3031ys	N1303K
c. $3937 \mathrm{C}>\mathrm{T}$	p.Gln1313X	Q1313X
$\begin{aligned} & \text { c } 3964 \\ & 78 \text { 4242+577del } \end{aligned}$	Null	CFI TRdele22,23
c. $4046 \mathrm{G}>\mathrm{A}$	p.Glyl349Asp	G1349D
$\begin{aligned} & \text { c. } 4077 \text { 4080deltct } \\ & \text { TinsAA } \end{aligned}$	No protern name	42097 T TT-AA
c. $4111 \mathrm{G}>\mathrm{T}$	p. Glul371X	E1371X
c 41964197 del TC	pCysi400x	4326 del TC
c. $4234 \mathrm{C}>\mathrm{T}$	p.Gln1412X	Q1412X
c $4242+1 \mathrm{G}>\mathrm{T}$	No protein name	4374 16-T
c. 4251 del A	p.Glul418ArgfsX 14	4382delA
c.4296.4297insGA	$\begin{aligned} & p \text { Serl435Glyfsxt } \\ & 4 \end{aligned}$	4428 insGA

FIG. 8

FIG. 9
SUBSTITUTE SHEET (RULE 26)

FIG. 10

FIG. 11
SUBSTITUTE SHEET (RULE 26)

FIG. 12
SUBSTITUTE SHEET (RULE 26)

Counts

FIG. 13

Counts

FIG. 14
SUBSTITUTE SHEET (RULE 26)

Counts

FIG. 15
SUBSTITUTE SHEET (RULE 26)

Counts

FIG. 16
SUBSTITUTE SHEET (RULE 26)

Counts

FIG. 17
SUBSTITUTE SHEET (RULE 26)

A. CLASSIFICATION OF SUBJECT MATTER				
INV. C07D401/14	C07D401/Q4	C07D231/20	A61K31/455	A61P11/00
ADD.				

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
C07D
C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPO-Internal, CHEM ABS Data, WPI Data		
C. DOCUMENTS CONSIDERED TO BERELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2016/057572 Al (MILLER MARK THOMAS [US] ET AL) 14 April 2016 (2016-04-14) cited in the application preparations 79, 80, 108, 109; pages 538-547; claims 1-7, 16, 21, 25, 56, 143-185; compounds $I, 1 b, 484,1114,1407$, 1532, 1709, ...	1-125

Further documents are listed in the continuation of Box C.
See patent family annex.

* Special categories of cited documents :
" A " document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) orwhich is cited to establish the publication date of another citation or other special reason (as specified)
" O " document referring to an oral disclosure, use, exhibition or other means
" P " document published prior to the international filing date but later than the priority date claimed
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
" Y " document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
" $\&$ " document member of the same patent family
Date of mailing of the international search report
$27 / 02 / 2018$

Authorized officer

```
Ladenburger, Claude
```

Date of the actual completion of the international search	Date of mailing of the international search report
14 February 2018	$27 / 02 / 2018$
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk, Tel. $(+311-70)$ 340-2040, Fax: $(+31-70)$ 340-3016	Authorized officer

Form PCT/ISA/210 (second sheet) (April 2005)

NTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/US2017/065425

Patent document cited in search report		$\begin{aligned} & \text { Publication } \\ & \text { date } \end{aligned}$		Patent family member(s)		Publication date
wo 2016057572	AI	14-04-2016	AU	2015328174	Al	27-04-2017
			CA	2963792	Al	14-04-2016
			CL	2017000824	Al	19-01-2018
			CN	107690281	A	13-02-2018
			EP	3203840	Al	16-08-2017
			JP	2017530167	A	12-10-2017
			KR	20170064549	A	09-06-2017
			SG	11201702817S	A	30-05-2017
			US	2016095858		07-04-2016
			W0	2016057572	AI	14-04-2016

[^0]: Step 1: tert-Butyl 3-[(2,2,3,3-tetramethylcyclopropyl)methoxy]pyrazole-Icarboxylate

