(54) Title

Spiro compounds as hepatitis \mathbf{C} virus inhibitors
(51) International Patent Classification(s)

C07D 403/14 (2006.01) A61P
A61K 31/4184 (2000.01) A61P 31/14(2006.01)
A61K 31/4184 (2006.01) CO7D 401/14 (2006.01)
A61K 31/438 (2006.01) C07D 405/14 (2006.01)
A61K 31/4439 (2006.01) C07D 409/14 (2006.01)
A61K 31/4745 (2006.01) C07D 471/04 (2006.01)
(21) Application No: 2012283609
(22) Date of Filing: $\quad \mathbf{2 0 1 2 . 0 7 . 0 9}$
(87) WIPO No: WO13/007106
(30) Priority Data
(31) Number
201110195113.8
(32) Date
2011.07.09
(33) Country
(43) Publication Date:
2013.01.17
(44) Accepted Journal Date: 2016.09 .29
(71) Applicant(s)

Sunshine Lake Pharma Co., Ltd.
(72) Inventor(s)

Zhang, Jiancun;Zhang, Yingjun;Xie, Hongming;Ren, Qingyun;Luo, Huichao;Yu,
Tianzhu;Tan, Yumei
(74) Agent / Attorney

Watermark Patent and Trade Marks Attorneys, 302 Burwood Road, Hawthorn, VIC, 3122
(56) Related Art

WO 2011/079327
SCHILL, G. et al: Chemische Berichte (1971), 104(11), pages 3587-3593
（19）世界知识产权组织国际局
（43）国际公布日
2013年1月17日（17．01．2013）
｜｜｜
（10）国际公布号
WO 2013／007106 A1

A61K 31／4439（2006．01）
A61K 31／438（2006．01）
A61K 31／4184（2006．01）
A61K 31／4745（2006．01）
A61P 1／16（2006．01）
A61P 31／14（2006．01）

PCT／CN2012／000945

2012年7月9日（09．07．2012）
中文
（26）公布语言：中文
（30）优先权：
201110195113．82011年7月9日（09．07．2011）CN
（71）申请人（对除美国外的所有指定国）：广东东阳光药业有限公司（SUNSHINE lake pharma Co．， LTD．）［CN／CN］；中国广东省东莞市松山湖科技产业园区，Guangdong 523000 （CN）。
（72）发明人；及
（75）发明人，申请人（仅对美国）：张健存（ZHANG，Ji－ ancum）$[\mathrm{US} / \mathrm{CN}]$ ；中国广东省东莞市长安镇上沙振安路 368 号东阳光科技园，Guangdong 523871 （CN）。

张英俊（ZHANG，Yingjum）［CN／CN］；中国广东省东党市长安镇上沙振安路 368 号东阳光科技园， Guangdong 523871 （CN）。 谢洪明（XIE，Hongming） $[\mathrm{CN} / \mathrm{CN}]$ ；中国广东省东党市长安镇上沙振安路 368号东阳光科技园，Guangdong 523871 （CN）。任青云 （REN，Qingyun）$[C N / C N]$ ；中国广东省东莞市长安镇上沙振安路 368 号东阳光科技园，Guangdong 523871 （CN）。罗靠超（LUO，Huichao）［CN／CN］；中国广东省东莞市长安镇上沙振安路 368 号东阳光科技园， Guangdong 523871 （CN）。余天柱（YU，Tianzhu） $[C N / C N] ;$ 中国广东省东党市长安镇上沙振安路 368号东阳光科技园，Guangdong 523871 （CN）。潭玉梅 （TAN，Yumei）［CN／CN］；中国广东省东莞市长安镇上沙振安路 368 号东阳光科技园，Guangdong 523871 （CN）。
（74）代理人：中国国际贸易促进委员会专利商标事务所（CCPIT PATENT \＆TRADEMARK LAW OF－ FICE）；中国中国北京市阜成门外大街 2 号万通新世界广场 8 层，Beijing 100037 （CN）。
（81）指定国（除另有指明，要求每一种可提供的国家保护）：AE，AG，AL，AM，AO，AT，AU，AZ，BA，BB，BG， $\mathrm{BH}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}, \mathrm{BZ}, \mathrm{CA}, \mathrm{CH}, \mathrm{CL}, \mathrm{CN}, \mathrm{CO}, \mathrm{CR}, \mathrm{CU}$ ， $\mathrm{CZ}, \mathrm{DE}, \mathrm{DK}, \mathrm{DM}, \mathrm{DO}, \mathrm{DZ}, \mathrm{EC}, \mathrm{EE}, \mathrm{EG}, \mathrm{ES}, \mathrm{FI}, \mathrm{GB}, \mathrm{GD}$ ，
（54）Title：SPIRO COMPOUNDS AS HEPATITIS C VIRUS INHIBITORS
（54）发明名称：作为丙型肝炎病毒抑制剂的螺环化合物

（I）
（57）Abstract：Disclosed are spiro compounds of formula（I），or stereomers，geometric isomers，tautomers，nitrogen oxides，hy－ drates，solvates，metabolites，pharmaceutically acceptable salts or prodrugs thereof．The compounds can be used to treat hepatitis C virus（HCV）infection or hepatitis C disease．Furthermore disclosed are pharmaceutical compositions containing the compounds and the method of using the compounds or pharmaceutical compositions in the treatment of HCV infection or hepatitis C disease．
（57）摘要：一种如式（I）所示的螺环化合物或其立体异构体，几何异构体，互变异构体，氮氧化物，水合物，溶剂化物等。该化合物可以用于治疗丙型肝炎病毒（HCV）感染或者丙型肝炎疾病。以及，含有化合物的药物组合物，合使用化合物或者药物组合物治疗 HCV 感染或丙型肝炎疾病的方法。

GE，GH，GM，GT，HN，HR，HU，ID，IL，IN，IS，JP，KE， KG，KM，KN，KP，KR，KZ，LA，LC，LK，LR，LS，LT， LU，LY，MA，MD，ME，MG，MK，MN，MW，MX，MY， $\mathrm{MZ}, \mathrm{NA}, \mathrm{NG}, \mathrm{NI}, \mathrm{NO}, \mathrm{NZ}, \mathrm{OM}, \mathrm{PE}, \mathrm{PG}, \mathrm{PH}, \mathrm{PL}, \mathrm{PT}$ ， QA，RO，RS，RU，RW，SC，SD，SE，SG，SK，SL，SM，ST， SV，SY，TH，TJ，TM，TN，TR，TT，TZ，UA，UG，US，UZ， VC，VN，ZA，ZM，ZW。
（84）指定国（除另有指明，要求每一种可提供的地区保护）：ARIPO（BW，GH，GM，KE，LR，LS，MW，MZ， NA，RW，SD，SL，SZ，TZ，UG，ZM，ZW），欧亚（AM，

AZ，BY，KG，KZ，RU，TJ，TM），欧洲（AL，AT，BE，BG， $\mathrm{CH}, \mathrm{CY}, \mathrm{CZ}, \mathrm{DE}, \mathrm{DK}, \mathrm{EE}, \mathrm{ES}, \mathrm{FI}, \mathrm{FR}, \mathrm{GB}, \mathrm{GR}, \mathrm{HR}, \mathrm{HU}$ ， IE，IS，IT，LT，LU，LV，MC，MK，MT，NL，NO，PL，PT， RO，RS，SE，SI，SK，SM，TR），OAPI（BF，BJ，CF，CG， CI，CM，GA，GN，GQ，GW，ML，MR，NE，SN，TD， TG）

本国际公布：

－包括国际检索报告（条约第 21 条（3））。

Spiro compounds As Hepatitis C Virus Inhibitors

FIELD OF TIE INVENTION

[0001] The present invention is in the field of medicine. The invention relates to spiro compounds for treating Hepatitis C virus (HCV) infection, compositions comprising such compounds, the use and the methods thereof. In particular, the invention relates to use of heterocyclic compounds as NS5A protein inhibitors. More specifically, the invention relates to compounds which can inhibit the function of the NS5A protein encoded by Hepatitis C virus (HCV), pharmaceutical compositions comprising such compounds, and methods for inhibiting the function of the NSSA protein by the compounds and pharmaceutical compositions disclosed herein.

BACKGROUND OF THE INVENTION

[0002] HCV is a major human pathogen, infecting an estimated 170 million persons worldwide - roughly five times the number infected by human immunodeficiency virus type 1. A substantial fraction of these HCV infected individuals develop serious progressive liver disease, including cirhosis and hepatocellular carcinoma. Chronic HCV infection is thus a major worldwide cause of liver-related premature montality.
[0003] Presently, the most effective HCV therapy employs a combination of alpha-interferon and ribavirin, leading to sustained efficacy in 40% of patients. Recent clinical results demonstrate that pegylated alpha-interferon is superior to unmodified alpha-interferon as monotherapy. However, even with experimental therapeutic regimens involving combinations of pegylated alpha-interferon and ribavirin, a substantial fraction of patients do not have a sustained reduction in viral load. The treatment has side effects in many patients, so they do not durably respond to treatment. Thus, new and effective methods of treating HCV infection are urgently needed.
[0004] HCV is a positive-stranded RNA virus. Based on a comparison of the deduced amino acid sequence and the extensive similanty in the 5 'untranslated region, HCV has been classified as a separate genus in the Flaviviridae family. All members of the Flaviviridae family have enveloped virions that contain a positive stranded RNA
genome encoding all known virus-specific proteins via translation of a single, uninterrupted, open reading frame (ORF).
[0005] Considerable heterogeneity is found within nucleotide and encoded amino acid sequence throughout the HCV genome. At least seven major genotypes have been characterized, and more than 50 subtypes have been described. In HCV infected cells, viral RNA is translated into a polyprotein that is cleaved into ten individual proteins. At the amino terminus are structural proteins, follows E1 and E2. Additionally, there are six non-structural proteins, NS2, NS3, NS4A, NS4B, NS5A and NS5B, which play a function role in the HCV lifecycle (see, for example, Lindenbach et al., Nomre, 2005, 436, 933-938.).
[0006] The major genotypes of HCV differ in their distribution wotldwide, and the clinical significance of the genetic heterogeneity of HCV remains elusive despite numerous studies of the possible effect of genotypes on pathogenesis and therapy.
[0007] The single strand HCV RNA genome is approximately 9500 nucleotides in length and has a single open reading frame (ORF) encoding a single large polyprotein of about 3000 amino acids. In infected cells, this polyprotein is cleaved at multiple sites by cellular and viral proteases to produce the structural and non-structural (NS) proteins. In the case of HCV, the generation of mature non-structural proteins (NS2, NS3, NS4A, NS4B, NS5A and NS5B) is effected by two viral proteases. The first one is believed to be a metalloprotease and cleaves at the NS2-NS3 junction; the second one is a serine protease within the N-terminal region of NS3 (also referred herein as NS3 protease) and mediates all the subsequent cleavages downstream of NS3, both in cis, at the NS3-NS4A cleavage site, and in trans, for the remaining NS4A-NS4B, NS4B-NS5A, NS5A-NS5B sites. The NS4A protein appears to serve multiple functions, acting as a cofactor for the NS3 protease and possibly assisting in the membrane localization of NS3 and other viral replicase components. The complex formation of the NS3 protein with NS4A seems necessary to the processing events, enhancing the proteolytic efficiency at all of the sites. The NS3 protein also exhibits nucleoside
triphosphatase and RNA helicase activities. NS5B (also referred to herein as HCV polymerase) is a RNA-dependent RNA polymerase that is involved in the replication of HCV.
[0008] Compounds useful for treating HCV-infected patients are desired which selectively inhibit HCV viral replication. In particular, compounds which are effective to inhibit the function of the NS5A protein are desired. The HCV NS5A protein is described, for example, in Tan et al, Virology, 2001, 284, 1-12; and in Park et al., J. Biol. Chem, 2003, 278, 30711-30718.

SUMMARY OF THE INVENTION

[0009] Provided herein are novel spiro ring compounds and methods of their use to treat HCV infection. Specifically, it has been found that the spiro ring compounds disclosed herein, and pharmaceutical compositions thereof, are effective as inhibitors of HCV infection, especially the non-structural 5A (NS5A) protein of HCV.
[0010] In one aspect, provided herein are compounds having formula (1) as shown below:

or a stereoisomer, a geometric isomer, a tautomer, an N-oxide, a hydrate, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof, wherein:
each of A and A is independently a bond, alkylene, alkenylene, cycloalkylene, heterocycloalkylene, $\quad-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{n}}-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{p}}{ }^{-}, \quad-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{n}}-\mathrm{N}^{2}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{p}}$, $-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{n}}-\mathrm{S}(=\mathrm{O})_{\mathrm{r}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{p}^{-}}, \quad \quad-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{n}} \mathrm{C}(=\mathrm{O})-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{p}}-$ $-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\mathrm{C}(=\mathrm{O})-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)^{-},-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{n}} \mathrm{C}(=\mathrm{O})-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{p^{-}}$,
$-\left(C R^{8} R^{82}\right)_{n}-N\left(R^{5}\right)-S(=O)_{r}-N\left(R^{5}\right)-\left(C R^{8} R^{89}\right)_{p}$, or $-\left(C R^{8} R^{83}\right)_{n}-N\left(R^{5}\right)-C(=O)-O-\left(C R^{8} R^{83}\right)_{p^{-}}$, or each of A and A' is independently one of the following groups:

wherein X^{1} is $\mathrm{O}, \mathrm{S}, \mathrm{NR}^{6}$ or $\mathrm{CR}^{7} \mathrm{R}^{7 \text { a }}$;
each Y^{1} and X^{2} is independently N or CR^{7};
X^{2} is $\mathrm{NR}^{5}, \mathrm{O}$ or S ;

Z is $\left.-\left(\mathrm{CH}_{2}\right)_{a}, \quad-\mathrm{CH}=\mathrm{CH}-,-\mathrm{N}=\mathrm{CH}-, \quad\left(\mathrm{CH}_{2}\right)_{a}-\mathrm{NR}^{5}\right)^{-}-\left(\mathrm{CH}_{2}\right)^{-}$, or $-\left(\mathrm{CH}_{2}\right)_{a}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)^{-}$, wherein each a and b is independently $0,1,2$ or 3 ;
each c is independently 1 or 2 ;
dis 1 or 2 ;
each n is independently $0,1,2$ or 3 ;
each p is independently $0,1,2$ or 3 ;
each r is independently 0,1 or 2 ;
e is $1,2,3$ or 4 ;
fis $0,1,2,3$ or $4 ;$
each Q_{1} and Q_{2} is independently $\mathrm{NR}^{6}, \mathrm{O}, \mathrm{S}, \mathrm{C}(=\mathrm{O})$ or $\mathrm{CR}^{7} \mathrm{R}^{7 \mathrm{a}}$, with the proviso that when Q_{1} is $\mathrm{NR}^{6}, \mathrm{O}, \mathrm{S}$ or $\mathrm{C}(=\mathrm{O})$, e is 1 ;

W is carbocyclyl or heterocyclyl,
each of X and X ' is independently N or CR^{7};
each of Y and Y ' is independently H, alkyl, heteroalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, a group derived from a naturally occurring or commercially available α-amino acid or an optically isomer thereof, or each of Y and Y ' is independently $-\left[U-\left(C^{9} R^{9 a}\right) t-N\left(R^{10}\right)-\left(C R^{9} R^{9 a}\right)\right]_{k}-U-\left(C R^{9} R^{9 a}\right) t-N\left(R^{11}\right)-\left(C R^{9} R^{9 a}\right)_{t}-R^{12}, \quad-U-\left(C R^{9} R^{9 a}\right)_{t} R^{12} \quad$ or $-\left[\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right) \mathrm{A}-\mathrm{N}\left(\mathrm{R}^{19}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)\right]_{\mathrm{k}}-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)-\mathrm{O}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right) \mathrm{R}^{12}$;
each U is independently $-\mathrm{C}(=\mathrm{O})$-, $-\mathrm{C}(=\mathrm{S})-,-\mathrm{S}(=\mathrm{O})-$ or $-\mathrm{S}(=\mathrm{O})_{2}$;
each t is independently $0,1,2,3$ or 4 ;
each k is independently 0,1 or 2 ;
each of R^{1}, R^{2}, R^{3} and R^{4} is independently H, alkyl, heteroalkyl, aralkyl, cycloalkyl, heterocyclyl, heteroaryl or aryl; or R^{2} and R^{2}, together with $\mathrm{X}-\mathrm{CH}$, form a $3-8$ membered heterocycle or carbocycle, C_{5-12} fused bicycle, C_{5-12} fused heterobicycle, C_{5-12} spiro bicycle or C_{5-12} spiro heterobicycle; or R^{3} and R^{4}, together with $\mathrm{X}^{\prime}-\mathrm{CH}$, form a $3-8$ membered heterocycle or
carbocycle, C_{5-12} fused bicycle, C_{5-12} fused heterobicycle, C_{5-12} spiro bicycle or C_{5-12} spiro heterobicycle;
each R^{5} is independenty H , hydroxy, alkyl, heteroalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, alkoxy, alkyl-OC(=O)-, alkyl-C(=O)-, carbamoyl, alkyl-OS $(=\mathrm{O})_{r}$-, alkyl-S $(=\mathrm{O})_{\mathrm{r}} \mathrm{O}-$, alkyl- $\mathrm{S}(=\mathrm{O})_{\mathrm{r}}$ - or aminosulfonyl;
each $\mathrm{R}^{5 \mathrm{a}}$ is independently H , oxo $(=\mathrm{O})$, hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, $\mathrm{R}^{7 \mathrm{a}} \mathrm{R}^{7} \mathrm{~N}$-, $-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 a},-\mathrm{OC}(=O) \mathrm{NR}^{7} \mathrm{R}^{7 a},-\mathrm{OC}(=O) \mathrm{OR}^{7},-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=O) \mathrm{NR}^{7} \mathrm{R}^{7 a},-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{7 a}$, $-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O})-\mathrm{R}^{7 \mathrm{a}}, \quad \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{~N}} \mathrm{~N}-\mathrm{S}(=\mathrm{O})_{2}-, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2}, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{7 a}\right), \quad \mathrm{R}^{7 a} \mathrm{R}^{7} \mathrm{~N}$-alkyl,
 $\mathrm{R}^{7} \mathrm{R}^{7} \mathrm{~N}-\mathrm{C}(=\mathrm{O})$-alkoxy, aryl, heteroaryl, alkoxy, alkylamino, alkyl, haloalkyl, alkenyl, alkynyl, heterocyclyl, cycloalkyl, mercapto, nitro, aralkyl, arylamino, heteroarylamino, arylalkylamino, heteroarylalkylamino, heteroaryloxy, heteroarylalkyl, arylalkoxy, heteroarylalkoxy, heterocyclyloxy, heterocyclylalkoxy, heterocyclylamino, heterocyclylalkylamino or aryloxy;
R^{6} is independently $\mathrm{H}, \mathrm{R}^{7} \mathrm{R}^{7} \mathrm{NC}(=0)$-, $\mathrm{R}^{7} \mathrm{OC}(=0)-, \quad \mathrm{R}^{7} \mathrm{C}(=0)-, \quad \mathrm{R}^{7} \mathrm{R}^{7} \mathrm{NS}(=0)$-, $\mathrm{R}^{7} \mathrm{OS}(=\mathrm{O})-, \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})-, \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{NS}(=\mathrm{O})_{2^{-}}, \mathrm{R}^{7} \mathrm{OS}(=\mathrm{O})_{2^{-}}, \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2^{-}}$, aliphatic, haloaliphatic, hydroxyaliphatic, aminoaliphatic, alkoxyaliphatic, alkylaminoaliphatic, alkylthioaliphatic, arylaliphatic, heteroarylaliphatic, heterocyclylaliphatic, cycloalkylaliphatic, aryloxyaliphatic, heterocyclyloxyaliphatic, cycloalkyloxyaliphatic, arylaminoaliphatic, heterocyclylaminoaliphatic, cycloalkylaminoaliphatic, aryl, heteroary, heterocyclyl or carbocyclyl;
$\mathrm{R}^{6 \mathrm{a}}$ is independently H , oxo, hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, oxo $(=\mathrm{O}), \mathrm{R}^{7 \mathrm{a}} \mathrm{R}^{7} \mathrm{~N}$-, $-\mathrm{C}=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 a},-\mathrm{OC}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 a}$,
$-\mathrm{OC}(=\mathrm{O}) \mathrm{OR} \mathrm{R}^{7},-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 a},-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{7 a},-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O})-\mathrm{R}^{7 \mathrm{a}}, \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{N}-\mathrm{S}(=\mathrm{O})_{2}$, $R^{7} S(=O)_{2}, \quad R^{7} S(=O)_{2} N^{2}\left(R^{7 a}\right)-\quad R^{7} \mathrm{R}^{7} \mathrm{~N}$-alkyl, $\quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})$-alkyl, $\quad \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{N}-\mathrm{C}(=\mathrm{O})$-alkyl, $\mathrm{R}^{7 / \mathrm{R}}{ }^{7} \mathrm{~N}$-alkoxy, $\mathrm{R}^{7} \mathrm{~S}(=0)$-alkoxy, $\mathrm{R}^{7} \mathrm{R}^{7 \mathrm{~N}} \mathrm{~N}-\mathrm{C}(=0)$-alkoxy, aryl, heteroaryl, alkoxy, alkylamino, alkyl, haloalkyl, alkenyl, alkynyl, heterocyclyl, cycloalkyl, mercapto, nitro, aralkyl, arylamino, heteroarylamino, arylakylamino, heteroarylalkylamino, heteroaryloxy, heteroarylalkyl, arylalkoxy, heteroarylalkoxy, heterocyclyloxy, heterocyclylalkoxy, heterocyclylamino, heterocyclylalkylamino, or aryloxy,
each R^{7} and $\mathrm{R}^{7 \text { a }}$ is independently $\mathrm{H}, \mathrm{F}, \mathrm{Cl}$, aliphatic, heteroalkyl, haloaliphatic, hydroxyaliphatic, aminoaliphatic, alkoxyaliphatic, alkylaminoaliphatic, alkylthioaliphatic, arylaliphatic, heterocyclylaliphatic, cycloalkylaliphatic, aryloxyaliphatic, heterocyclyloxyaliphatic, cycloalkyloxyaliphatic, arylaminoaliphatic, heterocyclylaminoaliphatic, cycloalkylaminoaliphatic, aryl, heteroaryl, heterocyclyl or carbocyclyl; with the proviso that where R^{7} and $\mathrm{R}^{7 / 3}$ are bonded to the same nitrogen atom, R^{7} and R^{72}, together with the nitrogen atom, form a substituted or unsubstituted 3-8 membered ring including spiro bicycle and fused bicycle;
each R^{8} and $\mathrm{R}^{8 \mathrm{a}}$ is independently H , hydroxy, cyano, nitro, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, alkyl, heteroalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, alkoxy, alkyl-OC $(=0)$-, alkyl- $\mathrm{C}(=\mathrm{O})$-, carbamoyl, alkyl-OS $(=O)_{r}$, alkyl-S $(=O)_{r} \mathrm{O}$, alkyl- $\mathrm{S}(=\mathrm{O})_{r}$, or aminosulfonyl;
each $\mathrm{R}^{9}, \mathrm{R}^{\text {sa }}, \mathrm{R}^{10}$ and R^{11} is independently H , alkyl, heteroalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, haloalkyl, hydroxyalkyl, heteroarylalkyl, heterocyclylalkyl, or cycloalkylalkyl;

[^0]$-\mathrm{OC}(=\mathrm{O}) \mathrm{OR}^{13}, \quad-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{133}, \quad-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{133}, \quad-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O})-\mathrm{R}^{13 a}$, $\mathrm{R}^{13} \mathrm{R}^{130} \mathrm{~N}-\mathrm{S}(=\mathrm{O})_{2^{-}}, \quad \mathrm{R}^{13} \mathrm{~S}(=\mathrm{O})_{2}, \quad \mathrm{R}^{13} \mathrm{~S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{13 \mathrm{a}}\right)$-, $\quad \mathrm{R}^{13} \mathrm{OS}(=\mathrm{O})_{2^{-}}, \quad$ alkyl, heteroalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl or aralkyl;
or R^{11} and R^{12}, together with the nitrogen atom they are attached to, form a $4-7$ membered ring;
each R^{13} and $\mathrm{R}^{13 a}$ is independently H , alkyl, heteroalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, or aralkyl;
wherein each of the following groups $-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{n}}-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{82}\right)_{p^{-}}$, $-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{p}, \quad-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{n}}-\mathrm{S}(=\mathrm{O})_{\mathrm{r}} \mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{p}$, $-\left(C R^{8} R^{83}\right)_{n}-C(=O)-N\left(R^{5}\right)-\left(C R^{8} R^{8 a}\right)_{p^{-}}, \quad-\left(C^{8} R^{8 a}\right)_{n^{-}}-N\left(R^{5}\right)-C(=O)-N\left(R^{5}\right)-\left(C R^{8} R^{8 a}\right)_{p^{-}}$, $-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{da}}\right)_{\mathrm{n}} \mathrm{C}(=\mathrm{O})-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{da}}\right)_{p^{-}}, \quad \quad-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{n}} \mathrm{N}\left(\mathrm{R}^{5}\right)-\mathrm{S}(=\mathrm{O})_{\mathrm{r}} \mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{p}}$, $-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\mathrm{C}(=\mathrm{O})-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{p}}$,
 $-\left[U-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{10}\right)-\left(C R^{9} R^{99}\right)\right]_{k}-U-\left(\mathrm{CR}^{9} \mathrm{R}^{9 a}\right)_{t}-\mathrm{O}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{t}-\mathrm{R}^{12}, \mathrm{NR}^{6}, \mathrm{CR}^{7} \mathrm{R}^{7 a}, \mathrm{CR}^{7},-\left(\mathrm{CH}_{2}\right)_{\mathrm{a}}-$ $-\mathrm{CH}=\mathrm{CH}-, \quad-\mathrm{N}=\mathrm{CH}-, \quad-\left(\mathrm{CH}_{2}\right)_{\mathrm{a}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CH}_{2}\right)_{b}-, \quad-\left(\mathrm{CH}_{2}\right)_{\mathrm{a}}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{b}, \quad \mathrm{R}^{13 \mathrm{a}} \mathrm{R}^{13} \mathrm{~N}-, \quad-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}$, $-\mathrm{C}(=\mathrm{S}) \mathrm{R}^{13}, \quad-\mathrm{C}(=\mathrm{O})-\mathrm{O}-\mathrm{R}^{13}, \quad-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}, \quad-\mathrm{OC}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}, \quad-\mathrm{OC}(=\mathrm{O}) \mathrm{OR}^{13}$, $-N\left(R^{13}\right) C(=O) \mathrm{NR}^{13} \mathrm{R}^{13 a}, \quad-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{13 a}, \quad-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O})-\mathrm{R}^{13 a}, \quad \mathrm{R}^{13} \mathrm{R}^{13 \mathrm{a}} \mathrm{N}-\mathrm{S}(=\mathrm{O})_{2}$, $\mathrm{R}^{13} \mathrm{~S}(=\mathrm{O})_{2}, \quad \mathrm{R}^{13} \mathrm{~S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{13 \mathrm{a}}\right)-, \mathrm{R}^{13} \mathrm{OS}(=\mathrm{O})_{2}-, \mathrm{R}^{7 \mathrm{a}} \mathrm{R}^{7} \mathrm{~N}-, \quad \mathrm{C}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 \mathrm{a}}, \quad-\mathrm{OC}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 \mathrm{a}}$, $-\mathrm{OC}(=\mathrm{O}) \mathrm{OR}^{7},-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 \mathrm{a}},-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{7 \mathrm{a}},-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O})-\mathrm{R}^{7 \mathrm{a}}, \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{~N}} \mathrm{~N}-\mathrm{S}(=\mathrm{O})_{2}-$ $\mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2}$,
$\mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{7 \mathrm{a}}\right)$-, alkyl-OC(=O)-, alkyl-C(=O)-, alkyl-OS(=O)r, alkyl-S(=O),O-,
 $\mathrm{R}^{7} \mathrm{R}^{7} \mathrm{NS}(=\mathrm{O})_{2}, \mathrm{R}^{7} \mathrm{OS}(=O)_{2}, \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2}, \mathrm{R}^{7} \mathrm{R}^{7} \mathrm{~N}$-alkyl, $\mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})$-alkyl, $\mathrm{R}^{7} \mathrm{R}^{7} \mathrm{~N} \cdot \mathrm{C}(=\mathrm{O})$-alkyl, $\mathrm{R}^{7} \mathrm{R}^{7} \mathrm{~N}$-alkoxy, $\mathrm{R}^{7} \mathrm{~S}(=O)$-alkoxy, $\mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{N}-\mathrm{C}(=\mathrm{O})$-alkylamino, alkyl, heteroalkyl, carbocyclyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, α-amino acid, C_{5-12} fused bicycle, $\mathrm{C}_{5 \cdot 12}$ fused heterobicycle, C_{5-12} spiro bicycle, C_{5-12} spiro heterobicycle, alkoxy, aliphatic, haloaliphatic, hydroxyaliphatic, aminoaliphatic, alkoxyaliphatic, alkylaminoaliphatic, alkylthioaliphatic, arylaliphatic, heteroarylaliphatic, heterocyclylaliphatic, cycloalkylaliphatic, aryloxyaliphatic, heterocyclyloxyaliphatic, cycloalkyloxyaliphatic, arylaminoaliphatic, heterocyclylaminoaliphatic, cycloalkylaminoaliphatic, carbocyclyl, heteroalkyl, alkyl, haloalkyl, alkenyl, alkynyl, arylamino, heteroarylamino, arylalkylanino, heteroarylalkylamino, heteroaryloxy, heteroarylalkyl, arylalkoxy, heteroarylalkoxy, heterocyclyloxy, heterocyclylalkoxy, heterocyclylamino, heterocyclylalkylamino and aryloxy is optionally substituted or unsubstituted.
[0011] In some embodiments, W is $\mathrm{C}_{3.5}$ carbocyclyl or C_{2-10} heterocyclyl.
[0012] In some embodiments, the structural unit of

has one of the following structures:

wherein each X^{3} and X^{4} is independently $\mathrm{O}, \mathrm{S}, \mathrm{NR}^{6}$, or $\mathrm{CR}^{7} \mathrm{R}^{7 \mathrm{a}}$;
each e is 1, 2, 3 or 4;
fis $0,1,2,3$ or 4 ;
each Q_{1} and Q_{2} is independently $N^{6}, O, S, C(O)$, or $C R^{7} R^{7 a}$, with the proviso that when Q_{1} is $\mathrm{NR}^{6}, \mathrm{O}, \mathrm{S}$ or $\mathrm{C}(=\mathrm{O})$, e is 1 ;
each $\mathrm{R}^{5 \mathrm{a}}$ is independently H, oxo (O), hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$,
cyano, C_{1-6} alkylacyl, C_{1-6} alkylacyloxy, C_{1-6} alkoxyacyl, C_{1-6} alkylsulfonyl, C_{1-6} alkoxysulfonyl, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyloxy, C_{1-6} alkylsulfinyloxy, C_{1-6} alkoxy, C_{1-6} alkyl, C_{6-10} aryl, $-\mathrm{CF}_{3},-\mathrm{OCF}_{3}$, mercapto, nitro, C_{1-6} alkylamino, C_{3-10} cycloalkyl or C_{6-10} aryloxy.
[0013] In some embodiments, the structural unit of
 has one of the following structures:

wherein $\mathrm{R}^{5 a}$ is H , oxo (O), hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, C_{1-6} alkylacyl, C_{1-6} alkylacyloxy, C_{1-6} alkoxyacyl, C_{1-6} alkylsulfonyl, C_{1-6} alkoxysulfonyl, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyloxy, C_{1-6} alkylsulfinyloxy, C_{166} alkoxy, C_{166} alkyl, $\mathrm{C}_{6 \cdot 10}$ aryl, $-\mathrm{CF}_{3},-\mathrm{OCF}_{3}$, mercapto, nitro, or C_{1-6} alkylamino;
R^{6} is independently $\mathrm{H}, \mathrm{C}_{166}$ aliphatic, C_{16} haloaliphatic, C_{166} hydroxyaliphatic, C_{1-6} aminoaliphatic, C_{1-6} alkoxy- $\mathrm{C}_{1.6}$-aliphatic, $\mathrm{C}_{1.6}$ alkylamino- $\mathrm{C}_{1.6}$-aliphatic, C_{1-6} alkylthio- C_{1-6}-aliphatic, C_{6-10} aryl- C_{1-6}-aliphatic, C_{1-9} heteroaryl- C_{1-6}-aliphatic, C_{2-10} heterocyclyl- C_{1-6}-aliphatic or $\mathrm{C}_{3.8}$ cycloalkyl- C_{1-6}-aliphatic.
[0014] In some embodiments, each of A and A ' is independently a bond, C_{1-6} alkylene, C_{2-6} alkenylene, C_{3-8} cycloalkylene, C_{2-10} heterocycloalkylene, $-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{n}}-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{p}$, $-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{p}, \quad \quad-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{n^{2}} \mathrm{~S}(=\mathrm{O})_{R}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{p}^{-}$, $-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{n}}-\mathrm{C}(=\mathrm{O})-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{q}}{ }^{-}$,
$-\left(\mathrm{CR}^{8} \mathrm{R}^{87}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\mathrm{C}(=\mathrm{O})-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{89}\right)_{p^{-}}$,
$-\left(\mathrm{CR}^{8} \mathrm{R}^{83}\right)_{\mathrm{n}}-\mathrm{C}(=\mathrm{O})-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)^{-}$,
$-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{5}\right) \mathrm{S}(=\mathrm{O})_{\mathrm{r}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{p}}$, $-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{n^{2}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\mathrm{C}(\mathrm{O})-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{p}}$, or each of A and A ' is independently one of the following groups:

 , or

wherein R^{5} is independently H , hydroxy, C_{1-6} alkyl, C_{1-6} heteroalkyl, C_{3-8}
cycloalkyl, C_{2-10} heterocyclyl, C_{6-10} aryl, C_{1-9} heteroaryl, C_{6-10} aryl- C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-6} alkyl-OC($=\mathrm{O}$),, C_{1-6} alkyl- $\mathrm{C}(=\mathrm{O})$-, carbamoyl, C_{1-5} alkyl-OS $(=\mathrm{O})_{1-}, \mathrm{C}_{1-6}$ alkyl-S $(=\mathrm{O}) \mathrm{O}_{1} \mathrm{O}$, C_{1-6} alkyl-S $(=\mathrm{O})$ - or aminosulfonyl;
$\mathrm{R}^{6 \mathrm{a}}$ is H , oxo, hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, oxo $(\mathrm{O}), \mathrm{R}^{7 \mathrm{a}} \mathrm{R}^{7} \mathrm{~N}-, \mathrm{C}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 \mathrm{a}}$, $-O C(=O) \mathrm{NR}^{7} \mathrm{R}^{7 a},-\mathrm{OC}(=O) \mathrm{OR}^{7},-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 a},-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{OR}{ }^{7 a},-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O})-\mathrm{R}^{7 \mathrm{a}}$, $\mathrm{R}^{7} \mathrm{R}^{7 \mathrm{~N}} \mathrm{~N}-\mathrm{S}(=\mathrm{O})_{2^{-}}, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2^{-}}, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{7 \pi}\right)$, $\quad \mathrm{R}^{7 \mathrm{R}} \mathrm{R}^{7} \mathrm{~N}-\mathrm{C}_{1-6}$ alkyl, $\mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})-\mathrm{C}_{16}$ alkyl, $\mathrm{R}^{7} \mathrm{R}^{7} \mathrm{~N}-\mathrm{C}(=\mathrm{O})-\mathrm{C}_{1-6}$ alkyl, $\mathrm{R}^{7} \mathrm{R}^{7} \mathrm{~N}-\mathrm{C}_{1-6}$ alkoxy, $\mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})-\mathrm{C}_{1-6}$ alkoxy, $\mathrm{R}^{7} \mathrm{R}^{7 \mathrm{~N}} \mathrm{~N}-\mathrm{C}(=\mathrm{O})-\mathrm{C}_{1-6}$ alkoxy, C_{6-10} aryl, C_{1-9} heteroaryl, C_{1-6} alkoxy, C_{1-6} alkylamino, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{2-10} heterocyclyl, C_{3-8} cycloalkyl, mercapto, nitro, C_{6-10} aryl- C_{1-6} alkyl, C_{6-10} arylamino, C_{1-9} heteroarylamino, or C_{6-10} aryloxy;
each R^{7} and $\mathrm{R}^{7 a}$ is independently $\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{C}_{1.6}$ aliphatic, C_{1-6} heteroalkyl, C_{1-6} haloaliphatic, hydroxy C_{1-6} aliphatic, amino C_{1-5} aliphatic, C_{1-6} alkoxy- C_{1-6} aliphatic, C_{1-6} alkylamino- C_{1-6}-aliphatic, C_{1-6} alkylthio- C_{1-6}-aliphatic, C_{5-10} aryl- C_{1-6} aliphatic, C_{1-9} heterocyclyl- C_{1-6} aliphatic, C_{3-8} cycloalkyl $\mathrm{C}_{1.6}$ aliphatic, $\mathrm{C}_{6 \cdot 10}$ aryloxy- $\mathrm{C}_{1.6}$-aliphatic, $\mathrm{C}_{2 \cdot 10}$ heterocyclyloxy- C_{1-6}-aliphatic, $\quad \mathrm{C}_{3-8} \quad$ cycloalkyloxy- C_{1-6}-aliphatic, $\quad \mathrm{C}_{6-10}$ arylamino- C_{1-5}-aliphatic, $\quad \mathrm{C}_{2-10} \quad$ heterocyclylamino- C_{1-5}-aliphatic, $\quad \mathrm{C}_{3-8}$ cycloalkylamino- $\mathrm{C}_{\mathrm{i}-6}$ aliphatic, C_{6-10} aryl, $\mathrm{C}_{\mathrm{i}-9}$ heteroaryl, C_{2-10} heterocyclyl or C_{3-8} carbocycly, with the proviso that where R^{7} and $R^{7 a}$ are bonded to the same nitrogen atom, R^{7} and $R^{7 a}$, together with the nitrogen atom, form a substituted or unsubstituted $3-8$ membered ring including C_{5-12} spiro bicycle and C_{5-12} fused bicycle;
each R^{8} and R^{83} is independently H , hydroxy, cyano, nitro, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{C}_{1-6}$ alkyl, C_{1-6} heteroalkyl, C_{3-10} cycloalkyl, C_{2-10} heterocyclyl, C_{6-10} aryl,
C_{1-9} heteroaryl, C_{6-10} aryl- C_{1-6}-alkyl, C_{1-6} alkoxy, C_{1-6} alkyl-OC $(=\mathrm{O})$-, C_{1-6} alkyl- $\mathrm{C}(=\mathrm{O})$-, carbamoyl, C_{1-6} alkyl-OS $(=\mathrm{O})_{\mathrm{r}}^{-}, \mathrm{C}_{1-6}$ alkyl- $\mathrm{S}(-\mathrm{O})_{\mathrm{i}} \mathrm{O}-\mathrm{C}_{1-6}$ alkyl-S $(-\mathrm{O})_{\mathrm{r}}$-, or aminosulfonyl.
[0015] In some embodiments, each of A and A ' is independently a bond, CH_{2}, $-\left(\mathrm{CH}_{2}\right)_{2}-,-\mathrm{CH}=\mathrm{CH}-,-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-,-\mathrm{N}\left(\mathrm{R}^{6}\right)-, \mathrm{C}(=\mathrm{O})-,-\mathrm{C}(=\mathrm{S})-,-\mathrm{C}(=\mathrm{O})-\mathrm{O}-,-\mathrm{C}(=\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{6}\right)$, $-\mathrm{OC}(=\mathrm{O}) \mathrm{N}^{6}\left(\mathrm{R}^{6}\right), \quad-\mathrm{OC}(=\mathrm{O}) \mathrm{O}, \quad-\mathrm{N}\left(\mathrm{R}^{6}\right) \mathrm{C}(=\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{6}\right)-, \quad-\left(\mathrm{R}^{6}\right) \mathrm{N}-\mathrm{S}(=\mathrm{O})_{2^{2}}, \quad-\mathrm{S}(=\mathrm{O})_{2^{-}}, \quad-\mathrm{OS}(=\mathrm{O})_{2}$, $-\left(\mathrm{R}^{6}\right) \mathrm{N}-\mathrm{S}(=\mathrm{O})-,-\mathrm{S}(=\mathrm{O})-,-\mathrm{OS}(=\mathrm{O})$-, or each of A and A^{\prime} is independently one of the following groups:

wherein X^{1} is O or S ;
R^{6} is independently $\mathrm{H}, \mathrm{C}_{1-6}$ aliphatic, C_{1-6} haloaliphatic, C_{1-6} bydroxyaliphatic, C_{1-6} aminoaliphatic, $\quad \mathrm{C}_{1-6}$ alkoxy- $\mathrm{C}_{1.6}$-aliphatic, $\mathrm{C}_{1.6}$ alkylamino- $\mathrm{C}_{1.6}$-aliphatic, $\mathrm{C}_{1.6}$ alkylthio- C_{1-6}-aliphatic, C_{6-10} aryl- C_{1-6}-aliphatic, C_{1-9} heteroaryl- C_{1-6}-aliphatic, C_{2-10} heterocyclyl- C_{1-6}-aliphatic or C_{3-8} cycloalkyl- C_{1-6}-aliphatic;
$\mathrm{R}^{6 \mathrm{a}}$ is H, oxo $(=\mathrm{O})$, hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, oxo, $\mathrm{R}^{72} \mathrm{R}^{7} \mathrm{~N}$, C_{16} alkoxy, C_{1-6} alkylamino, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, mercapto or nitro.
each of R^{7} and $\mathrm{R}^{7 a}$ is independently $\mathrm{A}, \mathrm{F}, \mathrm{Cl}, \mathrm{C}_{1-6}$ aliphatic, $\mathrm{C}_{1.6}$ heteroalkyl, $\mathrm{C}_{1.6}$ haloaliphatic, hydroxy $\mathrm{C}_{1.6}$ aliphatic, amino $\mathrm{C}_{1.6}$ aliphatic, $\mathrm{C}_{1.6}$ alkoxy- $\mathrm{C}_{1.6}$ aliphatic, C_{166} alkylamino- C_{1-6}-aliphatic or C_{1-6} alkylthio- C_{1-6}-aliphatic.
[0016] In some embodiments, each of $\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}$ and R^{4} is independently $\mathrm{H}, \mathrm{C}_{1-s}$ alkyl, C_{1-8} heteroalkyl, $\mathrm{C}_{6 \cdot 10}$ aryl- C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-10} heterocyclyl, C_{1-9} heteroaryl or C_{6-10} aryl; or R^{1} and R^{2}, together with $\mathrm{X}-\mathrm{CH}$, form a $3-8$ membered heterocycle or carbocycle, C_{5-12} fused bicycle, C_{5-12} fused heterobicycle, C_{5-12} spiro bicycle or C_{5-12} spiro heterobicycle; or R^{3} and R^{4}, together with $\mathrm{X}^{\prime}-\mathrm{CH}$, form a $3-8$ membered heterocycle or carbocycle, C_{5-12} fused bicycle, C_{5-12} fused heterobicycle, C_{5-12} spiro bicycle or C_{5-12} spiro heterobicycle. with $\mathrm{X}^{\prime}-\mathrm{CH}$, form a 3-8 membered heterocycle, C_{5-12} fused bicycle, C_{5-12} fused heterobicycle, C_{5-12} spiro bicycle or C_{5-12} spiro heterobicycle.
[0018] In other embodiments, R^{1}, R^{2} and $X-C H$ together form a heterocycle or fused ring or spiro ning system having one of the following structures:

or

wherein R^{15} is $\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, hydroxy, $\mathrm{C}_{1.3}$ alkyl, C_{1-3} haloalkyl, C_{1-3} alkoxy, $\mathrm{C}_{1.3}$ alkylamino, C_{1-3} alkylthio, C_{6-10} arylamino, C_{6-10} aryloxy, $\mathrm{C}_{\mathrm{k}} .9$ heteroaryl, $\mathrm{C}_{1.9}$ heteroaryloxy, $\mathrm{C}_{1.9}$ heteroaryl- $\mathrm{C}_{1.3}-$ alkyl, or C_{2-10} heterocyclyl;
each n_{1} and n_{2} is independently $1,2,3$ or 4 .
[0019] In other embodiments, $\mathrm{R}^{3}, \mathrm{R}^{4}$ and $\mathrm{X}-\mathrm{CH}$ together form a heterocycle or fused ring or spiro ring system having one of the following structures:

wherein R^{15} is $\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, hydroxy, C_{1-3} alkyl, C_{1-3} haloalkyl, C_{1-3} alkoxy, C_{1-3} alkylamino, C_{1-3} alkylthio, C_{6-10} arylamino, C_{6-10} aryloxy, C_{1-9} heteroaryl, C_{1-9} heteroaryloxy, C_{1-9} heteroaryl- $\mathrm{C}_{1-3}-\mathrm{alkyl}$, or C_{2-10} heterocyclyl;
each n_{1} and n_{2} is independently $1,2,3$ or 4 .

In some embodiments, the compound having formula (I) of the present invention is the compound having formula (I)

(II),
wherein the structural unit of

has one of the following structures:

or

wherein each Q_{1} and Q_{2} is independently $\mathrm{NR}^{6}, \mathrm{O}, \mathrm{S}, \mathrm{C}(=\mathrm{O})$ or CH_{2};
each X^{3} and X^{4} is independently $\mathrm{O}, \mathrm{S}, \mathrm{NR}^{6}$ or $\mathrm{CR}^{7} \mathrm{R}^{7 a}$;
each of A and A is independently a bond, C_{1-6} alkylene, C_{2-6} alkenylene, C_{3-8} cycloalkylene, $\quad \mathrm{C}_{2-10} \quad$ heterocycloalkylene, $\quad-\left(\mathrm{CR}^{8} R^{8 a}\right)_{n}-\mathrm{O}-\left(\mathrm{CR}^{8} R^{8 a}\right)_{p^{-}}$, $-\left(C^{8} R^{8 a}\right)_{n}-N\left(R^{5}\right)-\left(C^{8} R^{8 a}\right)_{p}{ }^{-}$, $-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{u}}-\mathrm{S}(=\mathrm{O})_{\mathrm{r}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{84}\right)_{\mathrm{p}}$, $-\left(C R^{8} R^{8 a}\right)_{n}-C(=O)-N\left(R^{5}\right)-\left(C R^{8} R^{8 a}\right)_{p}$, $-\left(C R^{8} R^{8 a}\right)_{n}-N\left(R^{5}\right)-C(=O)-N\left(R^{5}\right)-\left(C R^{8} R^{8 a}\right)^{-2}$, $-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{n}} \mathrm{C}(=\mathrm{O})-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{p}^{-}}$, $-\left(C R^{8} R^{8 a}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\mathrm{S}(=0)_{\mathrm{r}} \mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{p}^{-}}$, $-\left(\mathrm{CR}^{8} \mathrm{R}^{87}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\mathrm{C}(=\mathrm{O})-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \pi}\right)_{p}$, or each of A and A^{\prime} is independently one of the following groups:

 or

R^{5} is independently H , hydroxy, C_{1-6} alkyl, C_{1-6} heteroalkyl, C_{3-10} cycloalkyl, C_{2-10} heterocyclyl, C_{6-10} aryl, C_{1-9} heteroaryl, C_{6-10} aryl- C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-6} alkyl- $\mathrm{OC}(=\mathrm{O})$, C_{1-6} alkyl- $\mathrm{C}(=\mathrm{O})$-, carbamoyl, C_{1-6} alkyl- $\mathrm{OS}(=\mathrm{O})_{\mathrm{r}}$, $\mathrm{C}_{\mathrm{i}-6}$ alkyl- $\mathrm{S}(=0)_{\mathrm{r}} \mathrm{O}$-, alkyl- $\mathrm{S}(=\mathrm{O})_{\mathrm{r}}$ or aminosulfonyl;
each $\mathrm{R}^{5 a}$ is independently H , oxo $(=\mathrm{O})$, hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, C_{16} alkylacyl, C_{1-6} alkylacyloxy, C_{1-6} alkoxyacyl, C_{1-6} alkylsulfonyl, C_{1-6} alkoxysulfonyl, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyloxy, C_{1-6} alkylsulfinyloxy, C_{1-6} alkoxy, C_{1-6} alkyl, C_{6-10} aryl, $-\mathrm{CF}_{3}, \mathrm{OCF}_{3}$, mercapto, nitro, C_{1-6} alkylamino, C_{3-10} cycloalkyl or C_{6-10} aryloxy;
R^{6} is independently $\mathrm{H}, \mathrm{R}^{7} \mathrm{R}^{72} \mathrm{NC}(=\mathrm{O})$-, $\quad \mathrm{R}^{7} \mathrm{OC}(=\mathrm{O})$-, $\quad \mathrm{R}^{7} \mathrm{C}(=\mathrm{O})$-, $\quad \mathrm{R}^{7} \mathrm{R}^{73} \mathrm{NS}(=\mathrm{O})$-, $\mathrm{R}^{7} \mathrm{OS}(=\mathrm{O})-, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})-, \quad \mathrm{R}^{7} \mathrm{R}^{7} \mathrm{NS}(=\mathrm{O})_{2}-, \quad \mathrm{R}^{7} \mathrm{OS}(=0)_{2}-, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2}-, \quad \mathrm{C}_{1-6}$ aliphatic, $\quad \mathrm{C}_{166}$ alkoxy- C_{1-6}-aliphatic, C_{1-6} alkylamino- C_{1-6}-aliphatic, C_{6-10} aryl- C_{1-6}-aliphatic, C_{1-9} heteroaryl- C_{1-6} aliphatic, C_{2-10} heterocyclyl- C_{1-6} aliphatic, $\mathrm{C}_{3: 0}$ cycloalkyl- C_{1-6} aliphatic, C_{6-10} aryl, C_{1-9} heteroaryl, C_{2-10} heterocyclyl or C_{3-10} carbocyclyl;
each $\mathrm{R}^{6 a}$ is independently H , oxo ($=0$), hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, C_{1-6} alkylacyl, C_{1-6} alkylacyloxy, C_{1-6} alkoxyacyl, C_{1-6} alkylsulfonyl, C_{1-6} alkoxysulfonyl, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyloxy, C_{1-6} alkylsulfinyloxy, C_{1-5} alkoxy, C_{1-6} alkyl, $\mathrm{C}_{6 \cdot 10}$ aryl, $-\mathrm{CF}_{3},-\mathrm{OCF}_{3}$, mercapto, nitro, C_{1-6} alkylamino, C_{3-10} cycloalkyl or C_{5-10} aryloxy,
each R^{7} and $R^{7 / 3}$ is independently H, C_{1-6} aliphatic, C_{1-6} heteroalkyl, C_{1-6} alkoxy- $\mathrm{C}_{1-6 \text {-aliphatic, }} \mathrm{C}_{1-6}$ alkylamino- C_{1-6}-aliphatic, C_{6-10} aryl- C_{1-6}-aliphatic, C_{2-10} heterocyclyl- $\mathrm{C}_{1.6}$-aliphatic, C_{3-10} cycloalkyl- C_{1-6} aliphatic, $\mathrm{C}_{6 \cdot 10}$ aryl, $\mathrm{C}_{1.9}$ heteroaryl, $\mathrm{C}_{2 \cdot 10}$ heterocyclyl or C_{3-10} carbocyclyl; with the proviso that where R^{7} and $\mathrm{R}^{7 a}$ are bonded to the same nitrogen atom, R^{7} and $R^{7 a}$, together with the nitrogen atom, form a substituted or unsubstituted 3-8 membered ring including spiro bicycle and fused bicycle;
each R^{8} and $\mathrm{R}^{8 \mathrm{ia}}$ is independently H , hydroxy, cyano, nitro, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{C}_{1-6}$ alkyl, C_{1-6} heteroalkyl, C_{3-10} cycloalkyl, C_{2-10} heterocyclyl, C_{6-10} aryl, C_{1-10} heteroaryl, C_{6-10} aryl-C C_{1-5} alkyl, $\mathrm{C}_{1.6}$ alkoxy, $\mathrm{C}_{1.6}$ alkyl-OC($\left.=\mathrm{O}\right)$-, $\mathrm{C}_{1.6}$ alkyl-C $(=\mathrm{O})$-, carbamoyl, $\mathrm{C}_{1.6}$ alkyl-OS $(=O)_{r}^{-}, \mathrm{C}_{166}$ alkyl-S $(=\mathrm{O})_{\mathrm{R}} \mathrm{O}-, \mathrm{C}_{166}$ alkyl-S $(=\mathrm{O})_{r}$-, or aminosulfonyl;
each n is independently $0,1,2$ or 3 ;
each p is independently $0,1,2$ or 3 ;
each k is independently 0,1 or 2 ;
each r is independently 0,1 or 2 and
each of Y_{4} and Y_{4} ' is independently a bond, $\mathrm{O}, \mathrm{S},-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}},-\mathrm{CH}=\mathrm{CH}-,-\mathrm{S}(=\mathrm{O})_{1}-,-\mathrm{CH}_{2} \mathrm{O}$-, $-\mathrm{CH}_{2} \mathrm{~S}-,-\mathrm{CH}_{2} \mathrm{~S}(=\mathrm{O})_{\mathrm{r}}$ - or $-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{6}\right)$ -
[0021] In some embodiments, the compound having formula (I) of the present invention is the compound having formula (II):

wherein the structural unit of
 has one of the following structures:

wherein Q_{2} is $\mathrm{O}, \mathrm{S}, \mathrm{C}(=\mathrm{O})$ or CH_{2};
each X^{3} and X^{4} is independently $\mathrm{O}, \mathrm{S}, \mathrm{NR}^{6}$, or $\mathrm{CR}^{7} \mathrm{R}^{7 \mathrm{a}}$,
e is $1,2,3$ or $4 ;$
fis $0,1,2,3$ or $4 ;$
each of A and A^{\prime} is independently a bond, C_{1-6} alkylene, C_{2-6} alkenylene, C_{3-8} cycloalkylene, $\quad \mathrm{C}_{2-10} \quad$ heterocycloalkylene, $\quad\left(\mathrm{CR}^{8} \mathrm{R}^{8}\right)_{n}-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{88}\right)^{-}$,
 $-\left(C R^{8} R^{83}\right)_{n}-C(=0)-N\left(R^{5}\right)-\left(C R^{8} R^{8 a}\right)_{p^{-}}, \quad-\left(C^{8} R^{8 a}\right)_{n}-N\left(R^{5}\right)-C(=O)-N\left(R^{5}\right)-\left(C R^{8} R^{8 a}\right)_{p^{-}}$, $-\left(C R^{8} R^{8 a}\right)_{n}-C(=O)-O-\left(C R^{8} R^{8 a}\right)_{p^{-}}, \quad-\left(C R^{8} R^{8 a}\right)_{n^{2}}-N\left(R^{5}\right)-S(=O)_{R}-N\left(R^{5}\right)-\left(C R^{8} R^{88}\right)_{p}$, $-\left(C R^{8} R^{8 a}\right)_{n}-N\left(R^{5}\right)-C(=O)-O-\left(C R^{8} R^{8 a}\right)_{p}$, or each of A and A^{\prime} is independently one of the following groups:

.

R^{5} is independently H , hydroxy, C_{1-6} alkyl, C_{1-6} heteroalkyl, $\mathrm{C}_{3 \cdot 10}$ cycloalkyl, $\mathrm{C}_{2 \cdot 10}$ heterocyclyl, C_{6-10} aryl, C_{1-9} heteroaryl, C_{6-10} aryl- C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-6} alkyl- $\mathrm{OC}(=\mathrm{O})$-, C_{1-6} alkyl- $\mathrm{C}(=\mathrm{O})$-, carbamoyl, C_{1-6} alkyl- $\mathrm{OS}(=\mathrm{O})_{\mathrm{r}^{-}}, \mathrm{C}_{1-6}$ alkyl- $\mathrm{S}(=0)_{\mathrm{r}} \mathrm{O}$-, alkyl- $\mathrm{S}(=\mathrm{O})_{\mathrm{r}}$ or aminosulfonyl;
each $\mathrm{R}^{5 a}$ is independently H , oxo ($=\mathrm{O}$), hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, C_{1-6} alkylacyl, C_{1-6} alkylacyloxy, C_{1-6} alkoxyacyl, C_{1-6} alkylsulfonyl, C_{1-6} alkoxysulfonyl, C_{1-6} alkylsulfinyl, C_{16} alkylsulfonyloxy, C_{166} alkylsulfinyloxy, C_{1-6} alkoxy, C_{166} alkyl, C_{6410} aryl, $-\mathrm{CF}_{3},-\mathrm{OCF}_{3}$, mercapto, nitro, C_{1-6} alkylamino, C_{3-10} cycloalkyl or C_{6-10} aryloxy;
R^{6} is independently $\mathrm{H}, \mathrm{R}^{7} \mathrm{R}^{72} \mathrm{NC}(=\mathrm{O})$-, $\mathrm{R}^{7} \mathrm{OC}(=\mathrm{O})$-, $\mathrm{R}^{7} \mathrm{C}(=\mathrm{O})$-, $\mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{NS}(=\mathrm{O})$,,
 alkoxy- C_{1-6}-aliphatic, C_{1-6} alkylamino- C_{1-6}-aliphatic, C_{6-10} ary $-\mathrm{C}_{1-6}$-aliphatic, C_{1-9} heteroaryl-
C_{1-6} aliphatic, C_{2-10} heterocyclyl- C_{1-6} aliphatic, C_{3-10} cycloalkyl- C_{1-6} aliphatic, C_{1-6} aryl, C_{1-9} heteroary, C_{2-10} heterocyclyl or C_{3-10} carbocyclyl;
each $\mathrm{R}^{6 a}$ is independently H , oxo ($=\mathrm{O}$), hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, C_{1-6} alkylacyl, C_{1-6} alkylacyloxy, C_{1-6} alkoxyacy, C_{1-6} alkylsulfonyl, C_{1-6} alkoxysulfonyl, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyloxy, C_{1-6} alkylsulfinyloxy, C_{1-6} alkoxy, C_{1-6} alkyl, C_{6-10} aryl, ${ }^{-} \mathrm{CF}_{3},-\mathrm{OCF}_{3}$, mercapto, nitro, $\mathrm{C}_{1.6}$ alkylamino, $\mathrm{C}_{3.10}$ cycloalkyl or C_{6-10} aryloxy;
each R^{7} and $\mathrm{R}^{7 a}$ is independently $\mathrm{H}, \mathrm{C}_{1-6}$ aliphatic, C_{1-6} heteroalkyl, C_{1-6} alkoxy- C_{1-6} aliphatic, C_{1-6} alkylamino- C_{1-6}-aliphatic, $\quad \mathrm{C}_{1-6}$ aryl- $\mathrm{C}_{1-6 \text {-aliphatic, }} \mathrm{C}_{2-10}$ heterocyclyl- C_{1-6}-aliphatic, C_{3-10} cycloalkyl- C_{1-6}-ahphatic, C_{6-10} aryl, C_{1-9} heteroaryl, C_{2-10} heterocyclyl or $\mathrm{C}_{3.10}$ carbocyclyl, with the proviso that where R^{7} and $\mathrm{R}^{7 \mathrm{a}}$ are bonded to the same nitrogen atom, R^{7} and $R^{7 a}$, together with the nitrogen atom, form a substituted or unsubstituted 3-8 membered ring including spiro bicycle and fused bicycle;
each R^{8} and $\mathrm{R}^{8 a}$ is independently H , hydroxy, cyano, nitro, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{C}_{1-6}$ alkyl, C_{1-6} heteroalkyl, C_{3-10} cycloalkyl, C_{2-10} heterocyclyl, C_{6-10} aryl, C_{1-10} heteroaryl, C_{6-10} aryl- C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-6} alkyl-OC($=0$)-, C_{1-6} alkyl-C $(=\mathrm{O})$-, carbamoyl, C_{1-6} alkyl-OS $(=\mathrm{O})_{\mathrm{r}}^{-}, \mathrm{C}_{1-6}$ alkyl-S $(=\mathrm{O}) \mathrm{O}-\mathrm{C}_{1-6}$ alkyl-S $(=\mathrm{O})_{\mathrm{r}}$ - or aminosulfonyl;
each n is independently $0,1,2$ or 3 ;
each p is independently $0,1,2$ or 3 ;
each k is independently 0,1 or 2 ;
each r is independently 0,1 or 2 , and
each of Y_{4} and Y_{4} ' is independently a bond, $\mathrm{O}, \mathrm{S},-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}-, \mathrm{CH}=\mathrm{CH}-, \mathrm{S}(-\mathrm{O})_{r}-,-\mathrm{CH}_{2} \mathrm{O}$-, $-\mathrm{CH}_{2} \mathrm{~S}-,-\mathrm{CH}_{2} \mathrm{~S}(=\mathrm{O})_{\mathrm{r}}$-, or $-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{6}\right)$-. is the compound having formula (IV)

wherein each of $A, A^{\prime}, Y, Y^{\prime}, Q_{2}$ and $R^{5 a}$ is as defined in formula ().
[0023] In other embodiments, the compound having formula () of the present invention is the compound having formula (V):

wherein each of $\mathrm{A}, \mathrm{A}^{\prime}, \mathrm{Y}, \mathrm{Y}^{\prime}, \mathrm{R}^{5 a}$ and f is as defined in formula (B ; and
each of Q_{2} and Q_{3} is independently $\mathrm{O}, \mathrm{S}, \mathrm{C}(=\mathrm{O}), \mathrm{NR}^{6}$, or CH_{2}.
[0024] In other embodiments, the compound having formula (I) of the present invention is the compound having formula (VI):

(VI),
wherein each of $A, A^{\prime}, Y, Y^{\prime}, Q_{2}, R^{5 a}$ and f is as denned in formula (I); and e is
[0025] In some embodiments, each of Y and Y ' is independenty a group derived from an α-amino acid.
[0026] In other embodiments, the naturally occurring or commercially avalable α-amino acid is isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophane, valine, alanine, asparagine, aspartic acid, ghtamic acid, glutamine, proline, serine, p-tyrosine, arginine, histidine, cysteine, glycine, sarcosine, N, N-dimethylglycine, homoserine, norvaline, norleucine, ornithine, homocysteine, homophenylalanine, phenylglycine, o-tyrosine, m-tyrosine or hydroxyproline.
[0027] In other embodiments, the α-amino acid is in the D configuration.
[0028] In other embodiments, each of Y and Y is independently
 $-\left[\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{t}-\mathrm{N}\left(\mathrm{R}^{10}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right) \mathrm{t}_{\mathrm{k}}-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right) \mathrm{t}-\mathrm{O}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{t} \mathrm{R}^{12}\right.$.
[0029] In other embodiments, each of X and X ' is independently $-\left[\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{~g}}\right)_{\mathrm{t}}-\mathrm{N}\left(\mathrm{R}^{10}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)\right]_{\mathrm{k}}-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{h}}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 a}\right)_{4}-\mathrm{R}^{12}$.
[0030] In other embodiments, each of Y and Y is independently $-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right) \mathrm{e}-\mathrm{N}\left(\mathrm{R}^{10}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 a}\right)_{t} \mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{t}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{t}-\mathrm{R}^{12}$.
[0031] In other embodiments, each of X and Y ' is independently $-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{t}} \mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{94}\right)_{t}-\mathrm{R}^{12}$.
[0032] In other embodiments, each of Y and Y is independently $-\left[C(=O)-\left(C R^{9} R^{9 a}\right)-N\left(R^{10}\right)\left(C^{9} R^{9 a}\right)\right]_{k}-U-\left(C R^{9} R^{93}\right) t-N\left(R^{11}\right)-\left(C^{9} R^{99}\right)_{t} R^{12}$.
[0033] In other embodiments, each of Y and X is independently $-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 a}\right)_{t}-\mathrm{N}^{\left(R^{10}\right)}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 a}\right)_{t} \mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{t}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{93}\right)_{t}-\mathrm{R}^{12}$.
[0034] In other embodiments, each of Y and Y ' is independently
$-\left[\mathrm{C}(=O)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)-\mathrm{N}\left(\mathrm{R}^{19}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)\right]-\mathrm{C}(=O)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{t}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right), \mathrm{R}^{12}$.
[0035] In other embodiments, each of Y and Y^{\prime} is independently

[0036] In other embodiments, each of Y and Y^{\prime} is independently $-\mathrm{C}(=O)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)-\mathrm{N}\left(\mathrm{R}^{19}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)-\mathrm{R}^{12}$.
[0037] In other embodiments, each of Y and Y^{\prime} is independently $-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{94}\right)_{\mathrm{n}}-\mathrm{C}(=0)-\mathrm{R}^{13}$.
[0038] In other embodiments, each of Y and Y^{\prime} is independently $-\mathrm{C}(=O)-\left(\mathrm{CR}^{9} \mathrm{R}^{92}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\mathrm{C}(=O)-\mathrm{R}^{13}$.
[0039] In other embodiments, each of Y and Y^{\prime} is independently $-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{m}}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{m}}-\mathrm{C}(=\mathrm{O})-\mathrm{O}-\mathrm{R}^{13}$.
[0040] In other embodiments, each of Y and Y^{\prime} is independently $-\mathrm{C}(=O)-\left(\mathrm{CR}^{9} \mathrm{R}^{92}\right)_{\mathrm{R}}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\mathrm{C}(=O)-\mathrm{O}-\mathrm{R}^{13}$.
[0041] In other embodiments, each of Y and Y^{\prime} is independently $-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{93}\right) \mathrm{r}^{12}$.
[0042] In other embodiments, each of Y and Y^{\prime} is independently $\left.-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)\right)^{-}-\mathrm{R}^{12}$.
[0043] In other embodiments, each of Y and Y is independently

[0044] In other embodiments, each of Y and Y^{\prime} is independently $-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{\mathrm{e}}-\mathrm{N}\left(\mathrm{R}^{10}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{\mathrm{e}} \mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{\mathrm{e}} \mathrm{O}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)^{-}-\mathrm{R}^{12}$.
[0045] In other embodiments, each of Y and Y^{\prime} is independently $-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{r}-\mathrm{N}\left(\mathrm{R}^{10}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{r}-\mathrm{O}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{e} \cdot \mathrm{R}^{12}$.
[0046] In other embodiments, each of Y and Y^{\prime} is independently $-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{\mathrm{e}}-\mathrm{O}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)^{2}-\mathrm{R}^{\mathrm{i}}$.
[0047] In other embodiments, each of Y and Y^{\prime} is independently $-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{-} \mathrm{O}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{c} \cdot \mathrm{R}^{12}$.
[0048] In other embodiments, each of Y and Y ' is independently
$-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{92}\right)_{\mathrm{n}}-\mathrm{NR}^{11}-\mathrm{R}^{12}$, wherein R^{11} and R^{12}, together with the nitrogen atom they are attached to, form a $4-7$ membered ring
[0049] In other embodiments, each $\mathrm{R}^{9}, \mathrm{R}^{9 \mathrm{a}}, \mathrm{R}^{10}$ and R^{11} is independently $\mathrm{H}, \mathrm{C}_{1-6}$ alkyl, C_{1-6} heteroalkyl, C_{3-10} cycloalkyl, $\mathrm{C}_{2 \cdot 10}$ heterocyclyl, $\mathrm{C}_{6 \cdot 10}$ aryl, C_{1-9} heteroaryl, C_{6-10} aryl-C $\mathrm{C}_{1-6-a l k y l,} \mathrm{C}_{1-6}$ haloalkyl, C_{1-6} hydroxyalkyl, C_{6-10} aryl- C_{1-6} alkyl, C_{1-9} heteroaryl- C_{1-6}-alkyl, C_{2-10} heterocyclyl- C_{1-6}-alkyl, or C_{3-8} cycloalkyl- C_{1-6}-alkyl;
R^{12} is independently $\mathrm{R}^{133} \mathrm{R}^{13} \mathrm{~N}-, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{13},-\mathrm{C}(-\mathrm{S}) \mathrm{R}^{13},-\mathrm{C}(=\mathrm{O})-\mathrm{O}-\mathrm{R}^{13},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}$, $-\mathrm{OC}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 a}, \quad-\mathrm{OC}(=\mathrm{O}) \mathrm{OR}^{13}, \quad-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}, \quad-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{13 \mathrm{a}}$, $-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O})-\mathrm{R}^{13 \mathrm{a}}, \mathrm{R}^{13} \mathrm{R}^{132} \mathrm{~N}-\mathrm{S}(=\mathrm{O})_{2^{-}}, \mathrm{R}^{13} \mathrm{~S}(=\mathrm{O})_{2^{-}}, \mathrm{R}^{13} \mathrm{~S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{13 \mathrm{a}}\right)-, \mathrm{R}^{13} \mathrm{OS}(=\mathrm{O})_{2}-, \mathrm{C}_{1-6}$ alkyl, C_{166} heteroalkyl, $\mathrm{C}_{3.10}$ cycloalkyl, $\mathrm{C}_{2 \cdot 10}$ heterocyclyl, C_{6-10} aryl, C_{1-9} heteroaryl, or C_{6-10} aryl- C_{1-6}-alkyl;
or R^{11} and R^{12}, together with the nitrogen atom they are attached to, form a $4-7$ membered ring;
each R^{13} and $\mathrm{R}^{13 \mathrm{a}}$ is independently $\mathrm{H}, \mathrm{C}_{1-6}$ alkyl, C_{1-6} heteroalkyl, C_{3-10} cycloalkyl, C_{2-10} heterocyclyl, C_{6-10} aryl, $\mathrm{C}_{1.9}$ heteroaryl, or C_{6-10} aryl- C_{1-6} alkyl.
[0050] In other embodiments, each $R^{9}, R^{9 a}, R^{10}$ and R^{11} is independently H, methyl, ethyl, isopropyl, cyclohexyl, isobutyl or pheny1;
R^{12} is independently $-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13},-\mathrm{C}(=\mathrm{O})-\mathrm{O}-\mathrm{R}^{13},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 a}$, methyl, ethyl, propyl, phenyl, cyclohexyl, morpholinyl or piperidinyl;
or R^{11} and R^{12}, together with the nitrogen atom they are attached to, form a 4-7 membered ring;
each R^{13} and $\mathrm{R}^{13 a}$ is independently H , methyl, ethyl, propyl, phenyl, cyclohexyl, morpholinyl or piperidinyl. is the compound having formula (VI):

(VII),
wherein each of R^{14} and $\mathrm{R}^{14 a}$ is independently $\mathrm{H}, \mathrm{C}_{1-6}$ alkyl, C_{1-6} haloalkyl, C_{1-6} hydroxyalkyl, C_{1-6} heteroalkyl, C_{6-10} aryl, C_{1-9} heteroaryl, C_{2-10} heterocyclyl, C_{3-8} cycloalkyl, C_{6-10} aryl- $\mathrm{C}_{1-6 \text { alkyl, }} \mathrm{C}_{1-9}$ heteroaryl- C_{1-6} alkyl, C_{2-10} heterocyclyl- C_{1-6} alkyl, or C_{3-8} cycloalkyl-C $\mathrm{C}_{1-6}-\mathrm{alkyl}$.
[0052] In other embodiments, the compound having formula (I) of the present invention is the compound having formula (VII):

(VII),
wherein each of R^{14} and $\mathrm{R}^{14 \mathrm{a}}$ is independently $\mathrm{H}, \mathrm{C}_{1} \cdot 3$ hydroxyalkyl, methyl, ethyl, isopropy], isobutyl, tert-butyl, allyl, propargyl, trifuoroethyl, phenyl, pyranyl, morpholinyl, $-\mathrm{NR}^{7} \mathrm{R}^{7 a}$, benzyl, piperazinyl, cyclopentyl, cyclopropyl, cyclohexyl, or $\mathrm{C}_{\mathrm{i}-9}$ heteroaryl.
[0053] In some embodiments, the compound having formula (I) of the present invention is the compound having formula (IX):

wherein each of R^{14} and $\mathrm{R}^{14 a}$ is independently $\mathrm{H}, \mathrm{C}_{1-6}$ alkyl, C_{1-6} haloalkyl, C_{1-6} hydroxyalkyl, $\mathrm{C}_{1.6}$ heteroalkyl, $\mathrm{C}_{6.10}$ aryl, C_{1-9} heteroaryl, $\mathrm{C}_{2.10}$ heterocyclyl, $\mathrm{C}_{3.8}$ cycloalkyl, C_{6-10} aryl- C_{1-6}-alkyl, C_{1-9} heteroaryl- C_{1-6} alkyl, C_{2-10} heterocyclyl- C_{1-6} alkyl or C_{3-8} cycloalkyl-C $\mathrm{C}_{\text {- } 6}$ alkyl;

each n_{2} is independently $1,2,3$ or 4 .

[0054] In some embodiments, the compound having formula (I) of the present invention is the compound having formula (X):

(X),
wherein each of R^{14} and $R^{1 \text { ta }}$ is independently H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} hydroxyalkyl, C_{1-6} heteroalkyl, C_{6-10} aryl, C_{1-9} heteroaryl, C_{2-10} heterocyclyl, C_{3-8} cycloalkyl, C_{6-10} aryl- C_{1-6}-alkyl, C_{1-9} beteroaryl- C_{1-6}-alkyl, C_{2-10} beterocyclyl- C_{1-6}-alkyl or C_{3-3} cycloalkyl-C $\mathrm{C}_{\text {L-G }}$-alkyl;
each n_{1} is independently $1,2,3$ or 4 .
[0055] In some embodiments, the compound having formula (I) of the present invention is the compound having formula (XI):

wherein $\mathrm{R}^{5 \mathrm{a}}$ is H , methyl, ethyl, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or F ,
Q_{1} is $\mathrm{CH}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{O}, \mathrm{S}$, or NH ;
Q_{2} is $\mathrm{CH}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{CF}_{2}, \mathrm{O}$, or S ;
each of \mathbb{R}^{14} and $\mathrm{R}^{14 a}$ is independently methyl, ethyl, phenyl, cyclohexyl, 1-methylpropyl, isopropyl or tert-butyl;
each of R^{16} and $R^{16 a}$ is independently hydroxy, methoxy, ethoxy,
phenoxy, $\sqrt[3]{ }$ or tert-butoxy;

each of A and A' is independently

Or

wherein $\mathrm{R}^{1}, \mathrm{R}^{2}$ and $\mathrm{N}-\mathrm{CH}$ together form a heterocycle or fused ring or spiro ring system having one of the following structures:

wherein $\mathrm{R}^{3}, \mathrm{R}^{4}$ and $\mathrm{N}-\mathrm{CH}$ together form a heterocycle or fused ring or spiro ring system having one of the following structures:

[0056]
In other embodiments, the compound having formula (I) of the present invention is the compound having formula (XII):

(XII)
wherein i is 1,2 , or 3;
$R^{\text {ja }}$ is H or methyl;
each of Q_{1} and Q_{2} is independently $\mathrm{CH}_{2}, \mathrm{CF}_{2}, \mathrm{O}$ or $\mathrm{C}(=\mathrm{O})$;
each of R^{14} and $R^{14 a}$ is independently methyl, ethyl, isobutyl, cyclohexyl, phenyl or isopropyl;
each of R^{15} and $\mathrm{R}^{15 \mathrm{a}}$ is independently $\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, methyl, ethyl, isopropyl or tert-butyl; each of R^{17} and $R^{17 a}$ is independently methyl, phenyl or ethyl; and each of A and A is independently

Or

[0057] In one aspect, provided herein are pharmaceutical compositions comprising the compound disclosed herein; and a phamaceutically acceptable carrier, excipient, diluent, adjuvant, vehicle or a combination thereof.
[0058] In certain embodiments, the pharmaceutical composition disclosed herein further comprises an anti- HCV agent.
[0059] In other embodiments, the anti-HCV agent is interferon, ribavirin, IL-2, IL-6, IL-

12, a compound that enhances the development of a type 1 helper T cell response, interfering RNA, anti-sense RNA, imiquimod, an inosine5'-monophosphate dehydrogenase inhibitor, amantadine, rimantadine, boceprevir, telaprevir, daclatasvir or a combination thereof.
[0060] In other embodiments, the interferon is interferon α-2b, pegylated interferon α, interferon $\alpha-2 a$, pegylated interferon $\alpha-2 a$, consensus interferon- α or interferon γ.
[0061] In other embodiments, the phamaceutical composition disclosed herein, further comprises at least one additional compound which is effective to inhibit the function of a target to treat HCV infection, wherein the target is selected from HCV metalloproteinase, HCV serine proteinase, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein and MMPDH.
[0062] In another aspect, the compounds disclosed herein, are effective in inhibiting the function of a target to treat HCV infection, wherein the target is selected from HCV metalloproteinase, HCV serine proteinase, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein and MPDH.
[0063] In another aspect, the pharmaceutical composition comprising the compound disclosed herein, further comprises at least one HCV inhibitor, wherein the HCV inhibitor inhibits HCV viral protein, HCV replication or a combination thereof, and wherein the HCV viral protein or HCV replication is selected from helicase, proteinase, polymerase, metalloproteinase, serine proteinase, non-structural protein NS4A, non-structural protein NS5A, non-structural protein NS4B, HCV entry, HCV assembly, HCV egress, internal ribosome entry site (RES) and inosine-5'-monophosphate dehydrogenase (MPDH).
[0064] In another aspect, provided herein is a compound or a pharmaceutical composition for use in inhibiting HCV viral protein, HCV replication or a combination thereof, and wherein the HCV viral protein or HCV replication is selected from helicase, proteinase,
polymerase, metalloproteinase, serine proteinase, non-structural protein NS4A, non-structural protein NS5A, non-structural protein NS4B, HCV entry, HCV assembly, HCV egress, internal ribosome entry site (IRES) and inosine-5'-monophosphate dehydrogenase (IMPDH).
[0065] In another aspect, provided herein is use of the compound or the pharmaceutical composition disclosed herein in the manufacture of a medicament for preventing, managing, treating or lessening the severity of a HCV disorder in a patient.
[0066] In another aspect, provided herein is a method of the compound or the pharmaceutical composition disclosed herein for preventing, managing, treating or lessening the severity of HCV infection and a HCV disorder in a patient, which comprises administering a therapeutically effective amount of the (a) compound or pharmaceutical composition disclosed herein to the patient.
[0067] In another aspect, provided herein include methods of preparing, methods of separating, and methods of purifying compounds of formula (I).
[0068] The foregoing merely summarizes certain aspects disclosed herein and is not intended to be limiting in nature. These aspects and other aspects and embodiments are described more fully below.

DETALEED DESCRIPTION OF THE INVENTION

DEEINTEIONS AND GENERAL TERMHNOLOGY

[0069] Reference will now be made in detail to certain embodiments disclosed herein, examples of which are illustrated in the accompanying structures and formulas. The invention is intended to cover all altematives, modifications, and equivalents that may be included within the scope disclosed herein as defined by the claims. One skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which could be used in the practice disclosed herein. Described herein is in no way limited to the methods and materials. In the event that one or more of the incorporated literature, patents, and similar materials differ from or contradict this application, including but not limited to defined terms, term usage, described techniques, or the like, this application controls.
[0070] As used herein, the following definitions shall be applied unless otherwise
indicated. For purposes disclosed herein, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, and the Hondbook of Chemistry and Physics, $75^{\text {th }}$ Ed. 1994. Additionally, general principles of organic chemistry are described in Sorrell et al, "Organic Chemistry", University Science Books, Sausalito: 1999, and Smith et al., "March's Advanced Organic Chemistry", John Wiley \& Sons, New York: 2007, all of which are incorporated herein by reference in their entireties.
[0071] As described herein, compounds may optionally be substituted with one or more substituents, such as those illustrated above, or as exemplified by particular classes, subclasses, and species disclosed herein. It will be appreciated that the phrase "optionally substituted" is used interchangeably with the phrase "substituted or unsubstituted". In general, the term "substituted" whether preceded by the term "optionally" or not, refers to the replacement of one or more hydrogen radicals in a given structure with the radical of a specified substituent. Unless otherwise indicated, an optionally substituted group may have a substituent at each substitutable position of the group. When more than one position in a given structure can be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at each position. Wherein the substituents described herein include, but are not limited to, hydroxy, amino, halo, cyano, aryl, heteroaryl, alkoxy, alkylamino, alkylthio, alkyl, alkenyl, alkynyl, heterocyclyl, mercapto, nitro, aryloxy, heteroaryloxy, oxo ($=0$), carboxy, hydroxy-substituted alkoxy, hydroxy-substituted alkyl- $\mathrm{C}(=\mathrm{O})$-, alkyl-C(=O)-, alkyl- $\mathrm{S}(=\mathrm{O})$-, alkyl- $\mathrm{S}(=\mathrm{O})_{2}$-, hydroxy-substituted alkyl-S $(=O)$-, hydroxy-substituted alkyl- $S(=O)_{2}$-, carboxyalkoxy, and the like.
[0072] The term "aliphatic" or "aliphatic group" refers to a straight-chain (i.e, unbranched) or branched, substituted or unsubstituted bydrocarbon chain that is completely saturated or that contains one or more units of unsaturation. Unless otherwise specified, aliphatic groups contain 1-20 carbon atoms. In some embodiments, aliphatic groups contain 1-10 carbon atoms. In other embodiments, aliphatic groups contain $1-8$ carbon atoms. In still other embodiments, aliphatic
groups contain 1-6 carbon atoms, and in yet other embodiments, aliphatic groups contain 1-4 carbon atoms. In other embodiments, aliphatic groups contain 1-3 carbon atoms. Some non-limiting examples of aliphatic groups include linear or branched, substituted or unsubstituted alkyl, alkenyl, or alkynyl groups, as methyl, ethyl, propyl, isopropyl, butyl, teri-butyl, hexyl, isobutyl, sec-butyl, vinyl, and the like.
[0073] The term "haloaliphatic" refers to an aliphatic group substituted with one or more of the same or different halogen atoms (i.e., $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I), wherein the aliphatic group is as defined herein. Some non-limiting examples include trifuoromethyl, tifluoroethyl, chloromethyl, 2-chlorovinyl, and the like.
[0074] The term "hydroxyaliphatic" refers to an aliphatic group substituted with one or more hydroxy groups, wherein the aliphatic group is as defined herein. Some non-limiting examples include hydroxyethyl, 2-hydroxypropyl, hydroxymethyl, and the like.
[0075] The term "aminoaliphatic" refers to an aliphatic group substituted with one or more amino groups, wherein the aliphatic group is as defined herein. Some non-limiting examples include aminomethyl, 2-aminoethyl, 2-amino isopropyl, and the like.
[0076] The term "alkyl" refers to a saturated linear or branched chain monovalent hydrocarbon radical of one to twenty carbon atoms, or one to ten carbon atoms, or one to eight carbon atoms, or one to six carbon atoms, or one to four carbon atoms, or one to three carbon atoms, wherein the alkyl radical may be optionally substituted independently with one or more substituents described herein. The examples of alkyl groups include, but are not limited to, methyl ($\mathrm{Me},-\mathrm{CH}_{3}$), ethyl ($\mathrm{Et},-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1-propyl (n - Pr , n-propyl, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2-propyl (i-Pr, i-propyl, $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$), 1 -butyl (n-Bu, n-butyl, $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2-methyl-propyl (i-Bu, i-butyl, $-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$), 2-buty $\left(s-\mathrm{Bu}, s\right.$-butyl, $-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2 methyl-2-propyl (t-Bu, t-butyl, $-\mathrm{C}\left(\mathrm{CH}_{3}\right)$), 1-pentyl (n-pentyl, $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2-pentyl ($-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3-pentyl

	2-methyl-2-butyl		
$\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$	3-methyl-1-buty		
($\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 3-hexyl $\left(-\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)\right.$), 2-methyl-2-pentyl $\left(-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3$-methyl-2-pentyl $\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 4-methyl-2-pentyl			
$\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 3-methyl-3-pentyl $\left.\left(\mathrm{CCH}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right)$, 2-methyl-3-pentyl $\left(-\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 2,3-dimethyl-2-butyl $\left(-\mathrm{C}_{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right)} \text {, 3,3-dimethyl-2-butyl }}\right.$			
$\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, 1-heptyl, 1-octyl, and the like. The terms "alkyl" and the prefix "alk-"			
are inclusive of both straight chain and branched saturated carbon chain. The term "alkylene",			
as used herein, represents a saturated divalent hydrocarbon group derived from a straight or			
branched chain saturated hydrocarbon by the removal of two hydrogen atoms, and is			

[0077] The term "alkenyl" refers to a linear or branched chain monovalent hydrocarbon radical of two to twelve carbon atoms, or two to eight carbon atoms, or two to six carbon atoms, or two to four carbon atoms, with at least one site of unsaturation, i.e., a carbon-carbon, sp^{2} double bond, wherein the alkenyl radical may be optionally substituted independently with one or more substituents described herein, and includes radicals having "cis" and "trans" orientations, or altematively, " E " and " Z " orientations. Some non-limiting examples include ethenyl or vinyl $\left(-\mathrm{CH}=\mathrm{CH}_{2}\right)$, allyl $\left(-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, and the like.
[0078] The term "alkynyl" refers to a linear or branched chain monovalent hydrocarbon radical of two to twelve carbon atoms, or two to eight carbon atoms, or two to six carbon atoms, or two to four carbon atoms, with at least one site of unsaturation, ie., a carbon-carbon, sp triple bond, wherein the alkynyl radical may be optionally substituted independently with one or more substituents described herein. Some non-limiting examples include ethynyl ($\mathrm{C}=\mathrm{CH}$), 2-propynyl or propargyl
$\left(-\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}\right)$, and the like.
[0079] The term "hydroxy-substituted alkyl" refers to an alkyl group substituted with one or more hydroxy groups, wherein the alkyl group is as defined herein. Some non-limiting examples include hydroxymethyl, hydroxyethyl, 1,2-dihydroxyethyl, and the like.
[0080] The term "haloalkyl" refers to an alkyl group substituted with one or more of the same or different halogen atoms (i.e., $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I), wherein the alkyl group is as defined herein. Some non-limiting examples include trifluoromethyl, trifuoroethyl, chloromethyl, fluoromethyl, and the like.
[0081] The term "hydroxyalkyl" refers to an alkyl group substituted with one or more hydroxy groups, wherein the alkyl group is as defined herein. Some non-limiting examples include hydroxyethyl, 2-hydroxypropyl, bydroxymethyl, and the like.
[0082] The tem "aminoalkyl" refers to an alkyl group substituted with one or more amino groups, wherein the alkyl group is as defined herein. Some non-limiting examples include aminomethyl, 2-aminoethyl, 2 -amino isopropyl, and the like.
[0083] The term "heteroalkyl" refers to alkyl chain inserted with one or more heteroatoms, wherein the alkyl and heteroatom are as defined herein. Unless otherwise specified, heteroalkyl groups contain 1-10 carbon atoms. In other embodiments, heteroalkyl groups contain 1-8 carbon atoms. In still other embodiments, heteroalkyl groups contain 1-6 carbon atoms, and in yet other embodiments, heteroalkyl groups contain 1-4 carbon atoms. In other embodiments, heteroalkyl groups contain 1-3 carbon atoms. Some non-limiting examples include $\quad \mathrm{CH}_{3} \mathrm{OCH}_{2}-, \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2}-, \quad \mathrm{CH}_{3} \mathrm{SCH}_{2}-, \quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}_{2}-$, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}, \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2}-, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}-$, and the like.
[0084] The term "cycloaliphatic", "cyclic aliphatic", "carbocycle", "carbocyclyl", or "cycloalkyl" refers to a monovalent or multivalent non-aromatic, saturated or partially unsaturated ring exclusive of heteroatoms, having 3 to 12 carbon atoms as a monocyclic ring or 7 to 12 carbon atoms as a
bicyclic ring. Bicyclic carbocycles having 7 to 12 atoms can be arranged, for example, as a bicyclo $[4,5],[5,5],[5,6]$ or $[6,6]$ system, and bicyclic carbocycles having 9 or 10 ring atoms can be arranged as a bicyclo $[5,6]$ or $[6,6]$ system. Some non-limiting examples of cycloaliphatic groups include cycloalkyl, cycloalkenyl, and cycloalkynyl. Further examples of cycloaliphatic groups include cyclopropyl, cyclobutyl, cyclopentyl, 1-cyclopentyl-1-enyl, 1-cyclopentyl-2-enyl, 1-cyclopentyl-3-enyl, cyclohexyl, 1-cyclohexyl--enyl, 1-cyclohexyl-2-enyl, l-cyclohexyl-3-enyl, cyclohexadienyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, and the like. The term "cycloaliphatic", "carbocycle", "carbocyclyl", or "cycloalkyl" may be substituted or unsubstituted, wherein the substituent may be, but is not limited to, hydroxy, amino, halo, cyano, aryl, heteroaryl, alkoxy, alkylamino, alkyl, alkenyl, alkynyl, heterocyclyl, mercapto, nitro, aryloxy, hydroxy-substituted alkoxy, hydroxy-substituted alkyl- $\mathrm{C}(=\mathrm{O})$-, alkyl- $\mathrm{C}(=\mathrm{O})$-, alkyl- $\mathrm{S}(=\mathrm{O})$-, alkyl- $\mathrm{S}(=\mathrm{O})_{2}$-, hydroxy-substituted alkyl- $\mathrm{S}(=\mathrm{O})$-, hydroxy-substituted alkyl- $\mathrm{S}(=\mathrm{O})_{2}$-, carboxyalkoxy, and the like.
[0085] The term "cycloalkyloxy" or "carbocyclyloxy" refers to an optionally substituted cycloalkyl or carbocyclyl radical, as defined herein, attached to an oxygen atom, wherein the oxygen atom serves as the attaching point to the rest of the molecule. Some non-limiting examples include cyclopropyloxy, cyclopentyloxy, cyclohexyloxy, hydroxy-substituted cyclopropyloxy, and the like.
[0086] The term "cycloalkylamino" refers to an amino group substituted with one or two optionally substituted cycloalkyl radicals, wherein the cycloalkyl group is as defined herein. Some non-limiting examples include cyclopropylamino, cyclopentylamino, cyclohexylamino, hydroxy-substituted cyclopropylamino, dicyclohexylamino, dicyclopropylamino, and the like.
[0087] The term "carbocyclyloxyalkoxy" refers to an alkoxy group substituted with one or more carbocyclyloxy groups, wherein the alkoxy group and carbocyclyloxy group are as defined herein. Some non-limiting examples include cyclopropyloxymethoxy, cyclopropyloxyethoxy, cyclopentyloxyethoxy, cyclohexyloxyethoxy, cyclohexenyl-
[0088] The term "cycloalkyloxyaliphatic" refers to an aliphatic group substituted with one or more optionally substituted cycloalkyloxy groups, wherein the aliphatic group and cycloalkyloxy group are as defined herein. Some non-limiting examples include cyclopropyloxymethyl, cyclopropyloxyethyl, cyclopentyloxymethyl, cyclopentyloxyethyl, cyclohexyloxyethyl, halocyclopropyloxyethyl, and the like.
[0089] The term "cycloalkylaminoaliphatic" refers to an aliphatic group substituted with one or more optionally substituted cycloalkylamino groups, wherein the aliphatic group and cycloalkylamino group are as defined herein. Some non-limiting examples include cyclopropylaminomethyl, cyclopropylaminoethyl, cyclopentylaminomethyl, cyclopentylaminoethyl, cyclohexylaminoethyl, halocyclopropylaminoethyl, and the like.
[0090] The term "cycloalkylaliphatic" refers to an aliphatic group substituted with one or more cycloalkyl groups, wherein the cycloalkyl group and aliphatic group are as defined herein. Some non-limiting examples include cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclopentyimethyl, cyclohexylethyl, and the like.
[0091] The term "cycloalkylalkoxy" ("carbocyclylalkoxy") refers to an alkoxy group substituted with one or more cycloalkyl (carbocyclyl) groups, wherein the cycloalkyl (carbocyclyl) group and alkoxy group are as defined herein. Some non-limiting examples include cyclopropylmethoxy, cyclopropylethoxy, cyclopentylethoxy, cyclohexylethoxy, cyclohexylmethoxy, cyclopropylpropoxy, and the like.
[0092] The term "heterocycle", "heterocycly", "heterocycloaliphatic", or "heterocyclic" as used interchangeably herein refers to a monocyclic, bicyclic, or tricyclic ring system in which one or more ring members are an independently selected heteroatom and that is completely saturated or that contains one or more units of unsaturation, but not aromatic having a single point of attachment to the rest of the molecule. One or more ring atoms are optionally substituted independently with one or more
substituents described herein. In some embodiments, the "heterocycle", "heterocyclyl", "heterocycloaliphatic" or "heterocyclic" group is a monocycle having 3 to 7 ring members (e.g., 1 to 6 carbon atoms and 1 to 3 heteroatoms selected from $\mathrm{N}, \mathrm{O}, \mathrm{P}$ or S , wherein the S or P is optionally substituted with one or more oxo to provide the group SO or $\mathrm{SO}_{2}, \mathrm{PO}$ or PO_{2}, with the proviso that when the ring is a 3-membered ring, there is only one heteroatom) or a bicycle having 7 to 10 ring members (e.g, 4 to 9 carbon atoms and 1 to 3 heteroatoms selected from N, O, P or S, wherein the S or P is optionally substituted with one or more oxo to provide the group SO or $\mathrm{SO}_{2}, \mathrm{PO}$ or PO_{2}).
[0093] The heterocyclyl may be a carbon radical or heteroatom radical. "Heterocyclyl" also includes radicals where heterocycle radicals are fused with a saturated, partially unsaturated ring, or heterocyclic ring. Some non-limiting examples of heterocyclic rings include pyrrolidinyl, tetrahydrofuranyl, dhydrofuranyl, tetrahydrothienyl, tetrahydropyranyl, dihydropyranyl, tetrahydrothiopyranyl, piperidyl, morpholinyl, thiomorpholinyl, thioxanyl, thiazolidinyl, oxazolidinyl, piperazinyl, homopiperazinyl, azetidinyl, oxetanyl, thietanyl, homopiperidinyl, epoxypropyl (oxiranyl), azepanyl, oxepanyl, thiepanyl, 4-methoxy-piperidin-1-yl, 1,2,3,6-tetrahydropyridine-1-yl, oxazepinyl, diazepinyl, thiazepinyl, pyrrolidin-1-yl, 2-pyrrolinyl, 3-pyrrolinyl, $2 H$-indolinyl, 2H-pyranyl, 4H-pyranyl, dioxolan-2-yl, 1,3-dioxopenyl, pyrazolinyl, dithianyl, ditholanyl, dihydrothienyl, pyrazolidinylimidazolinyl, imidazolidinyl, 1,2,3,4-tetrabydroisoquinolinyl, 1,2,6-dithiazinyl, 1,1-dioxo-2-yl, 4-hydroxy-1,4-azaphosphine-4-oxide-1-yl, 2-hydroxy-1-(piperazin-1-yl)ethanone-4-yl, triazin-1(4H)-yl)ethanone-4-yl, 5,6-dihydro-4H-1,2,4-oxadiazine-4-yl, 2 -hydroxy-1-(5,6-diludine-1(2H)-yl)ethanone-4-yl, 3 -azabicyclo[3,1,0]hexyl, 3-azabicyclo[4,1,0]heptyl, azabicyclo[2,2,2]hexy], 2 -methyl-5,6,7,8-tetrahydro-[1,2,4]triazole[1,5-c]pyrimidine-6-yl, 4,5,6,7-teterhydro-isoxazolo[4,3-c] pyridine-5-y], 3H-indoxyl-2-oxo-5-azabicyclo[2,2,1]heptane-5-yl,

2-oxo-5-azabicyclo[2,2,2]octane-5-yl, quinolizinyl and N -
pyridyl urea. Some non-limiting examples of a heterocyclic ring include 1,1-dioxo-thiomorpholinyl and heterocyclic group wherein 2 carbon atoms on the ring are substituted with oxo ($=\mathrm{O}$) moieties are pyrimidindionyl. The heterocyclic groups herein may be substituted or unsubstituted, wherein the substituent may be, but is not limited to, oxo (O), hydroxy, amino, halo, cyano, beteroaryl, alkoxy, alkylamino, alkyl, alkenyl, alkynyl, heterocyclyl, mercapto, nitro, aryloxy, hydroxy-substituted alkoxy, hydroxy-substituted alkyl-C($=\mathrm{O})$-, alkyl-C(=O)-, alkyl-S $(=\mathrm{O})$-, alkyl-S $(=\mathrm{O})_{2^{-}}$, hydroxy-substituted alkyl- $\mathrm{S}(=\mathrm{O})$-, hydroxy-substituted alkyl- $\mathrm{S}(=\mathrm{O})_{2}$-, carboxyalkoxy, and the like.
[0094] The term "heterocyclylalky]" refers to heterocyclic-substituted alkyl radical. The term "heterocyclylakoxy" refers to heterocyclic-substituted alkoxy radical wherein oxygen atom serves as the attaching point to the rest of the molecule. The term "heterocyclylalkylamino" refers to heterocyclic-substituted alkylamino radical wherein nitrogen atom serves as the attaching point to the rest of the molecule. Wherein the heterocyclyl, alkyl, alkoxy and alkylamino group are as defined herein. Some non-limiting examples include pyrrol-2-ylmethyl, morpholin-4-ylethyl, morpholin-4-ylethoxy, piperazin-4-ylethoxy, piperidin-4-ylethylamino, and the like.
[0095] The term "heterocyclylaliphatic" refers to heterocyclic-substituted aliphatic group, wherein the heterocyclic group and aliphatic group are as defined herein. Some non-limiting examples include pyrrol-2-ylmethyl, piperidin-2-ylethyl, piperazin-2-ylethyl, piperidin-2-ylmethyl, and the like.
[0096] The term "heterocyclyloxy" refers to optionally substituted heterocyclyl radical, as defined herein, connected to an oxygen atom, and the oxygen atom serves as the attaching point to the rest of the molecule. Some non-limiting examples include pyrrol-2-yloxy, pyrrol-3-yloxy, piperidin-2-yloxy, piperidin-3-yloxy, piperazin-2-yloxy, piperidin-4-yloxy, and the like.
[0097] The term "heterocyclylamino" refers to an amino group substituted with one or two heterocyclyl groups, wherein nitrogen atom serves as the attaching point to the rest of the molecule and the heterocyclyl group is as defined herein. Some non-limiting examples include pyrrol-2-ylamino, pyrrol-3-ylamino, piperidin-2-ylamino,
piperidin-3-ylamino, piperidin-4-ylamino, piperazin-2-ylamino, dipyrol-2-ylamino, and the like.
[0098] The term "heterocyclyloxyalkoxy" refers to an alkoxy group substituted with one or more heterocydyloxy groups, wherein the alkoxy group and heterocyclyloxy group are as defined herein. Some non-limiting examples include pyrrol-2-yloxymethoxy, pyrrol-3-yloxyethoxy, piperidin-2-yloxyethoxy, piperidin-3-yloxyethoxy, piperazin-2-yloxymethoxy, piperidin-4-yloxyethoxy, and the like.
[0099] The term "heterocyclyloxyaliphatic" refers to an aliphatic group substituted with one or more heterocyclyloxy groups, wherein the aliphatic group and heterocyclyloxy group are as defined herein. Some non-limiting examples include pyrrol-2-yloxymethyl, piperazin-3-yloxyethyl, piperazin-2-yloxyethyl, morpholin-2-yloxymethyl, piperidin-2-yloxyethyl, and the like.
[00100] The term "heterocyclylaminoaliphatic" refers to an aliphatic group substituted with one or more heterocyclylamino groups, wherein the aliphatic group and heterocyclylamino group are as defined herein. Some non-limiting examples include pyrrol-2-ylaminomethyl, piperazin-3-lyaminoethyl, piperazin-2-lyaminoethyl, piperidin-2-lyaminoethyl, morpholin-2-lyaminomethyl, and the like.
[00101] The term "heteroatom" refers to one or more of oxygen, sulfur, nitrogen, phosphorus, or silicon, including any oxidized form of nitrogen, sulfur, or phosphorus; the quaternized form of any basic nitrogen; or a substitutable nitrogen of a heterocyclic ring, for example, N (as in 3,4-dhydro-2H-pyrroly), NH (as in pyrrolidinyl) or NR (as in N-substituted pyrrolidinyl).
[00102] The term "halogen" or "halo" refers to $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I.
[00103] The term "unsaturated" as used herein, refers to a moicty having one or more units of unsaturation.
[00104] The term "alkoxy" refers to an alkyl group, as previously defined,
attached to the principal carbon chain through an oxygen ("alkoxy") atom. Some non-limiting examples include methoxy, ethoxy, propoxy, butoxy, and the like. And the alkoxy defined above may be substituted or unsubstituted, wherein the substituent may be, but is not limited to, hydroxy, amino, halo, cyano, alkoxy, alkyl, alkenyl, alkynyl, thiol, nitro, and the like.
[00105] The term "hydroxy-substituted alkoxy" or "hydroxyalkoxy" refers to an alkoxy group substituted with one or more hydroxy groups, wherein the alkoxy group is as defined herein. Some non-limiting examples include hydroxymethoxy, 2-hydroxyethoxy, 2-hydroxypropoxy, 2-hydroxyisopropoxy, and the like.
[00106] The term "aminoalkoxy" refers to an alkoxy group substituted with one or more amino groups, wherein the alkoxy group is as defined herein. Some non-limiting examples include aminomethoxy, 2 -aminoethoxy, 2 -aminopropoxy, 2 -aminoisopropoxy, and the like.
[00107] The term "azidoalkoxy" refers to an alkoxy group substituted with one or more azido groups, wherein the alkoxy group is as defined herein. Some non-limiting examples include 2 -azidoethoxy, 3 -azidopropoxy, 2 -azidopropoxy, and the like.
[00108] The term "alkoxyalkoxy" refers to an alkoxy group substituted with one or more alkoxy groups, wherein the alkoxy group is as defned herein. Some non-limiting examples include methoxymethoxy, methoxyethoxy, ethoxymethoxy, ethoxyethoxy, ethoxypropoxy, and the like.
[00109] The term "alkoxyaliphatic" refers to an aliphatic group substituted with one or more alkoxy groups, wherein the aliphatic group and alkoxy group are as defined herein. Some non-limiting examples include methoxymethyl, ethoxymethyl, ethoxyethyl, ethoxypropenyl, and the like.
[00110] The term "alkylaminoaliphatic" refers to an aliphatic group substituted with one or more alkylamino groups, wherein the aliphatic group and alkylamino group are as defined herein. Some non-limiting examples include dimethylaminoethyl, methylaminoethyl, diethylaminomethyl, diethylaminoethyl, and the like.
[00111] The term "alkylthioaliphatic" refers to an aliphatic group substituted with one
or more alkylthio groups, wherein the aliphatic group and alkylthio group are as defined herein. Some non-limiting examples include methylthoethyl, methylthopropyl, ethylthioethyl, methylthiopropenyl, and the hike.
[00112] The term "haloalkyl", "haloalkenyl" or "haloalkoxy" refers to an alkyl group, alkenyl group or alkoxy group substituted with one or more halogen atoms. Some non-limiting examples include trifluoromethyl, 2-chloro-ethenyl, trifuoromethoxy, and the like.
[00113] The term "aryl" used alone or as pant of a larger moiety as in "aralkyl", "arylalkoxy" or "aryloxyalkyl" refers to monocyclic, bicyclic, and tricyclic carbocyclic ring systems having a total of six to fourteen ring members, wherein at least one ring in the system is aromatic, wherein each ring in the system contains 3 to 7 ring members and that has a single point of attachment to the rest of the molecule. The term "aryl" may be used interchangeably with the term "aryl ring". Some non-limiting examples of aryl rings include phenyl, naphthyl, and anthryl. The aryl may be substituted or unsubstituted, wherein the substituents include, but are not limited to, hydroxy, amino, halo, cyano, aryl, heteroaryl, alkoxy, alkylamino, alkyl, alkenyl, alkynyl, heterocyclyl, mercapto, nitro, aryloxy, hydroxy-substituted alkoxy, hydroxy-substituted alkyl- $\mathrm{C}(=\mathrm{O})$-, alkyl- $\mathrm{C}(=\mathrm{O})$-, alkyl-S $(=\mathrm{O})$-, alkyl- $\mathrm{S}(=\mathrm{O})_{2}{ }_{2}, \quad$ hydroxy-substituted alkyl-S $(=0)$-, hydroxy-substituted alkyl- $\mathrm{S}(=\mathrm{O})_{2}-$, carboxyalkoxy, and the like.
[00114] The term "arylaliphatic" refers to an aliphatic group substituted with one or more optionally substituted aryl groups, wherein the aliphatic group and the aryl group are as defined herein. Some non-limiting examples include phenylethyl, benzyl, (p-tolyl)ethyl, styryl, and the like.
[00115] The term "aryloxy" refers to optionally substituted ary radicals, as defined
herein, attached to an oxygen atom, and the oxygen atom serves as the attaching point to the rest of the molecule, wherein the aryl group is as defined herein. Some non-limiting examples include phenyloxy, methylphenyloxy, ethylphenyloxy, and the like.
[00116] The term "arylamino" refers to an amino group substituted with one or two optionally substituted aryl groups, wherein the aryl group is as defined herein. Some non-limiting examples include phenylamino, (p-fluorophenyl)amino, diphenylamino, ditolylamino, (di-p-tolyl)amino, and the like.
[00117] The term "aryloxyalkoxy" refers to an alkoxy group substituted with one or more optionally substituted aryloxy groups, wherein the alkoxy group and the aryloxy group are as defined herein. Some non-limiting examples include phenyloxymethoxy, phenyloxyethoxy, phenyloxypropoxy, and the like.
[00118] The term "aryloxyaliphatic" refers to an aliphatic group substituted with one or more optionally substituted aryloxy groups, wherein the aryloxy group and the aliphatic group are as defined herein. Some non-limiting examples include phenyloxymethyl, phenyloxyethyl, tolyloxyethyl, phenyloxypropyl, and the hike.
[00119] The term "arylaminoaliphatic" refers to an aliphatic group substituted with one or more optionally substituted arylamino groups, wherein the arylamino group and the aliphatic group are as defined herein. Some non-limiting examples include phenylaminomethyl, phenylaminoethyl, tolylaminoethyl, phenylaminopropyl, phenylaminoallyl, and the like.
[00120] The term "arylalkoxy" refers to an alkoxy group substituted with one or more optionally substituted aryl groups, wherein the aryl group and the alkoxy group are as defined herein. Some non-limiting examples include phenylmethoxy, phenylethoxy, (p-tolyl)methoxy, phenylpropoxy, and the like.
[00121] The term "arylalkylamino" refers to an alkylamino group substituted with one or more optionally substituted aryl groups, wherein the aryl group and the alkylamino group are as defined herein. Some non-limiting examples include phenylmethylamino, phenylethylamino, phenylpropylamino,
(p-toly $)$ methylamino, and the like.
[00122] The term "heteroaryl" used alone or as part of a larger moiety as in "heteroarylalkyl" or " heteroarylalkoxy" refers to monocychic, bicyclic, and tricyclic ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic, and at least one ring in the system is inclusive of one or more heteroatoms, wherein each ring in the system contains 3 to 7 ring members and that has a single point of attachment to the rest of the molecule. The term "heteroaryl" may be used interchangeably with the term "heteroaryl ring" or "heteroaromatic compound". The heteroaryl defined herein may be substituted or unsubstituted, wherein the substituents include, but are not limited to, hydroxy, amino, halo, cyano, aryl, heteroaryl, alkoxy, alkylamino, alkyl, alkenyl, alkynyl, heterocyclyl, mercapto, nitro, aryloxy, hydroxy-substituted alkoxy, hydroxy-substituted alkyl- $\mathrm{C}(=\mathrm{O})$-, alkyl- $\mathrm{C}(=\mathrm{O})$-, alkyl- $\mathrm{S}(=\mathrm{O})$-, alkyl- $\mathrm{S}(=\mathrm{O})_{2}{ }_{2}$, hydroxy-substituted alkyl- $\mathrm{S}(=\mathrm{O})$-, hydroxy-substituted alkyl- $\mathrm{S}(=\mathrm{O})_{2^{2}}$, carboxyalkoxy, and the like.
[00123] Some non-limiting examples of suitable heteroaryl rings include the following monocycles: 2-furanyl, 3-furanyl, N-imidazolyl, 2 -imidazolyl, 4-imidazolyl, 5-imidazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 4-methylisoxazolyl-5-yl, N-pyrrolyl, 2-pyrrolyl, 3-pyrolyl, 2-pyridyl, 3 -pyridyl, 4-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, pyrimidin-5-yl, pyridazinyl (e.g., 3 -pyridazinyl), 2-thiazolyl, 4-thiazolyl, 5 -thiazolyl, tetrazolyl (e.g., 5-tetrazolyl), triazolyl (e.g., 2 -triazolyl and 5 -triazolyl), 2 -thienyl, 3 -thienyl, pyrazolyl (e.g., 2-pyrazolyl), isothiazolyl, 1,2,3-oxadiazolyl, 1,2,5-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,3-triazolyl, 1,2,3-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazol-2-yl, pyrazinyl, pyrazin-2-yl, 1,3,5-triazinyl, benzo[d]thiazol-2-yl, imidazo[1,5-a]pyridin-6-yl, and the following bicycles: benzimidazolyl, benzofuryl, benzothiophenyl, indolyl (e.g., 2 -indolyl), purinyl, quinolinyl (e.g.,

2-quinolinyl, 3 -quinolinyl, 4-quinolinyl), or isoquinolinyl (e.g., 1-isoquinolinyl, 3-isoquinolinyl, or 4-isoquinolinyl)
[00124] The term "heteroaryloxy" refers to an optionally substituted heteroaryl radical, as defined herein, attached to an oxygen atom, wherein the oxygen atom serves as the attaching point to the rest of the molecule. Some non-limiting examples include pyrid-2-yloxy, thiazol-2-yloxy, imidazol-2-yloxy, pyrimidin-2-yloxy, and the like.
[00125] The term "heteroaryloxyaliphatic" refers to an aliphatic group substituted with one or more optionally substituted heteroaryloxy groups, wherein the aliphatic group and the heteroaryloxy group are as defined herein. Some non-limiting examples include pyrid-2-yloxyethyl, thiazol-2-yloxymethy, imidazol-2-yloxyethyl, pyrimidin-2-yloxypropyl, and the like.
[00126] The term "sulfonyl", whether used alone or linked to other terms such as "alkylsulfonyl", refers to respectively divalent radicals $-\mathrm{SO}_{2}$ -
[00127] The term "alkylsulfonyl", refers to a sulfonyl radical substituted with an alkyl radical, forming an alkylsulfonyl ($-\mathrm{SO}_{2}$-alkyl, such as $-\mathrm{SO}_{2} \mathrm{CH}_{3}$).
[00128] The term "sulfamyl", "aminosulfonyl" or "sulfonamidyl" refer to a sulfonyl radical substituted with an amine radical, foming a sulfonamide $\left(-\mathrm{SO}_{2} \mathrm{NH}_{2}\right)$.
[00129] The term "carboxy" or "carboxyl", whether used alone or with other terms, such as "carboxyalkyl", refers to $-\mathrm{CO}_{2} \mathrm{H}$
[00130] The term "carbonyl", whether used alone or with other terms, such as "aminocarbony!" or "carbonyloxy", refers to $-(\mathrm{C}=\mathrm{O})$-.
[00131] The term "carboxyalkoxy" refers to an alkoxy group substituted with one or more carboxy groups, wherein the alkoxy group and the carboxy group are as defined herein. Some non-limiting examples include carboxymethoxy, carboxyethoxy, and the like.
[00132] The term "aralkyl" or "arylalkyl" refers to aryl-substituted alkyl radicals. In some embodiments, aralkyl radicals are "lower aralkyl" radicals having aryl radicals attached to alkyl radicals having one to six carbon atoms. In other embodiments, aralkyl radicals are "phenylalkylenyl" attached to alkyl portions having one to three carbon atoms.

Some non-limiting examples of such radicals include benzyl, diphenylmethyl and phenylethyl. The aryl in said aralkyl can be additionally substituted with halo, alkyl, alkoxy, haloalkyl or haloalkoxy.
[00133] The term "alkyltho" refers to radicals containing a linear or branched alkyl radical, of one to ten carbon atoms, attached to a divalent sulfur atom. In other embodiments, alkylthio radicals are lower alkylthio radicals having one to three carbon atoms. Some non-limiting examples of "alkylthio" include methyltho ($\mathrm{CH}_{3} \mathrm{~S}$-).
[00134] The term "haloalkylthio" refers to radicals containing a haloalkyl radical, of one to ten carbon atoms, attached to a divalent sulfur atom. In other embodiments, haloalkylthio radicals are lower haloalkyltho radicals having one to three carbon atoms. Some non-limiting examples of "haloalkylthio" include trifluoromethylthio.
[00135] The term "alkylamino" refers to " N-alkylamino" and " N, N-dialkylamino", wherein amino groups are independently substituted with one alkyl radical or with two alkyl radicals, respectively. In other embodiments, alkylamino radicals are lower alkylamino radicals having one or two alkyl radicals of one to six carbon atoms, attached to a nitrogen atom. In still other embodiments, alkylamino radicals are lower alkylamino radicals having one to three carbon atoms. Some non-limiting examples of suitable alkylamino radicals include mono or dialkylamino such as N-methylamino, N-ethylamino, N, N-dimethylamino, N, N-diethylamino, and the like.
[00136] The term "alkylaminohaloalkoxy" refers to a haloalkoxy group substituted with one or more alkylamino groups, wherein the haloalkoxy group and the alkylamino group are as defined herein. Some non-limiting examples include methylaminodifuoromethoxy, ethylaminotrifluoromethoxy, and the like.
[00137] The term "heteroarylamino" refers to amino groups substituted with one or two heteroaryl radicals, wherein the heteroaryl group is as defined herein. Some non-limiting examples of heteroarylamino include N-thienylamino. In other embodiments, the "heteroarylamino" radicals include substituted on the heteroaryl ring portion of the radical.
[00138] The term "heteroarylaliphatic" refers to aliphatic groups substituted with one or more heteroaryl radicals, wherein the heteroaryl group and the aliphatic group are as defined
herein. Some non-limiting examples of heteroarylaliphatic include thiophen-2-ylpropenyl, pyridin-4-ylethyl, imidazol-2-ylmethyl, furan-2-ylethyl, indol-3-ylmethyl, and the like.
[00139] The term "heteroarylalkyl" refers to alkyl groups substituted with one or more heteroaryl radicals, wherein the beteroaryl group and the alkyl group are as defined herein. Some non-limiting examples of heteroarylalkyl include imidazol-2-ylmethyl, furan-2-ylethyl, indol-3-ylmethyl, and the like.
[00140] The term "heteroarylalkylamino" refers to nitrogen-containing heteroarylalkyl radicals attached through a nitrogen atom to other radicals, wherein the heteroarylalkyl radical is as defined herein. Some non-limiting examples of heteroarylalkylamino include pyridin-2-ylmethylamino, thiazol-2-ylethylamino, imidazol-2-ylethylamino, pyrimidin-2-ylpropylamino, pyrimidin-2-ylmethylamino, and the like.
[00141] The term "aminoalkyl" refers to a linear or branched alkyl radical having one to ten carbon atoms, substituted with one or more amino radicals. In some embodiments, aminoalkyl radicals are "lower aminoalkyl" radicals having one to six carbon atoms and one or more amino radicals. Some non-limiting examples of such radicals include aminomethyl, aminoethyl, aminopropyl, aminobutyl and aminohexyl.
[00142] The term "alkylaminoalkyl" refers to alkyl radicals substituted with alkylamino radicals. In some embodiments, alkylaminoalkyl radicals are "lower alkylaminoalkyl" radicals having alkyl radicals of one to six carbon atoms. In other embodiments, alkylaminoalkyl radicals are lower alkylaminoalkyl radicals having alkyl radicals of one to three carbon atoms. Some non-limiting examples of suitable alkylaminoalkyl radicals include mono and dalkyl substituted, such as N-methylaminomethyl, N, N-dimethylaminoethyl, N, N-diethylaminomethyl, and the like.
[00143] The term "carboxyalkyl" refers to a linear or branched alkyl radical having one to ten carbon atoms substituted with one or more carboxy radicals. Some non-limiting examples of such radicals include carboxymethyl, carboxypropyl, and the like.
[00144] The term "aryloxy" refers to optionally substituted aryl radicals, as defined herein, attached to an oxygen atom, wherein the oxygen atom serves as the attaching point to the rest of the molecule. Some non-limiting examples of such radicals include phenoxy. attached through an oxygen atom to other radicals, wherein the heteroarylalkyl radical is as defined herein. Some non-limiting examples of such radicals include pyridin-2-ylmethoxy, thiazol-2-ylethoxy, imidazol-2-ylethoxy, pyrimidin-2-ylpropoxy, pyrimidin-2-ylmethoxy, and the like
[00146] The term "cycloalkylalkyl" refers to cycloalkyl-substituted alkyl radicals. Some non-limiting examples of such radicals include cyclohexylmethyl. The cycloalkyl in the radicals may be additionally substituted with halo, alkyl, alkoxy or hydroxy.
[00147] The term "fused bicyclic", "fused cyclic", "fused bicyclyl" or "fused cyclyl" refers to unsaturated or saturated fused cyclic system and bridged ring system that is not aromatic. For example, as depicted below (Formula (a1)), ring A1 and ring A2 share a bond or share an alkyl chain, wherein j is $0,1,2,3$ or 4 . Such a system may contain isolated or conjugated unsaturation, but not aromatic or heteroaromatic nings in its core structure but may have aromatic substitution thereon). Each cyclic ring in a fused bicyclyl can be either a carbocyclic or a beteroalicyclic. Some non-limiting examples of fused bicyclic ring system or bridged ring system include hexahydro-furo[3,2-b]furan, $2,3,3 a, 4,7,7 a$-hexahydro- $1 H$-indene, 7-azabicyclo[2.3.0]heptane, fused bicyclo[3.3.0]octane, fused bicyclo[3.1.0]hexane, bicyclo[2.2.1]heptane, 2 -azabicyclo[2.2.1]heptane, and $1,2,3,4,4 a, 5,8,8 a$-octahydronaphthalene. The fused bicyclyl defined herein may be substituted or unsubstituted, wherein the substituents include, but are not limited to, oxo $(=0)$, hydroxy, amino, halo, cyano, aryl, heteroaryl, alkoxy, alkylamino, alkyl, alkenyl, alkynyl, heterocyclyl, mercapto, nitro, aryloxy, hydroxy-substituted alkoxy, hydroxy-substituted alkyl- $\mathrm{C}(=\mathrm{O})$-, alkyl- $\mathrm{C}(=\mathrm{O})$-, alkyl- $\mathrm{S}(=\mathrm{O})$-, alkyl-S $(=\mathrm{O})_{2}{ }^{\circ}$, hydroxy-substituted alkyl-S $(=\mathrm{O})$-, hydroxy-substituted alkyl- $\mathrm{S}(=\mathrm{O})_{2^{2}}$, carboxyalkoxy, and the like. system and bridged ring system that is not aromatic. Such a system may contain isolated or conjugated unsaturation, but not aromatic or heteroaromatic rings in its core structure (but may have aromatic substitution thereon). And at least one ring in the system is inclusive of one or more beteroatoms, wherein each ring in the system contains 3 to 7 ring members, e.g., 1 to 6 carbon atoms and 1 to 3 heteroatoms selected from $\mathrm{N}, \mathrm{O}, \mathrm{P}$ or S , wherein the S or P is optionally substituted with one or more oxo to provide the group SO or $\mathrm{SO}_{2}, \mathrm{PO}$ or PO_{2}. Some non-limiting examples of fused heterobicyclic ring system include hexahydro-furo[3,2-b]furan, 7-azabicyclo[2.3.0]heptane, 2 -azabicyclo[2.2.1]heptane, and the like. The fused heterobicyclyl defined herein may be substituted or unsubstituted, wherein the substituents include, but are not limited to, oxo $(=0)$, hydroxy, amino, halo, cyano, aryl, heteroaryl, alkoxy, alkylamino, alkyl, alkenyl, alkynyl, heterocyclyl, mercapto, nitro, aryloxy, hydroxy-substituted alkoxy, hydroxy-substituted alkyl- $\mathrm{C}(=\mathrm{O})$-, alkyl- $\mathrm{C}(=\mathrm{O})$-, alkyl- $\mathrm{S}(=\mathrm{O})$-, alkyl- $\mathrm{S}(=\mathrm{O})_{2}-$, hydroxy-substituted alkyl-S $(=\mathrm{O})$-, hydroxy-substituted alkyl-S $(=\mathrm{O})_{2}$, , carboxyalkoxy, and the like.
[00149] The term "spirocyclyl", "spirocyclic", "spiro bicyclyl" or "spiro bicyclic" refers to a ring originating from a particular amular carbon of another ring. For example, as depicted below, ring A and ring B share a carbon atom between the two saturated ring system, which terms as a "spirocyclyl" or "spiro bicycly". Each cyclic ring in the spirocyclyl or spiro bicyclyl can be either a carbocyclic or a heteroalicyclic. Some non-limiting examples of such radicals include 2,7-diaza-spiro[4.4]non-2-yl, 7-oxo-2-azaspiro[4.5]dec-2-yl, 4-azaspiro[2.4]hept-5-yl, 4-oxaspiro[2.4]hept-5-yl, 5-azaspiro[2.4]hept-5-yl, spiro[2.4]heptyl, spiro[4.4]nonyl, 7-hydroxy-5-azaspiro[2.4]hept-5-yl, and the like. The spirocyclyl or spiro bicyclyl may be substituted or unsubstituted, wherein the substituents include, but are not limited to, oxo ($=0$), hydroxy, amino, halo, cyano, aryl, heteroaryl, alkoxy, alkylamino, alkyl, alkenyl, alkynyl, heterocyclyl, mercapto, nitro, aryloxy, hydroxy-substituted alkoxy, hydroxy-substituted alkyl-C($=\mathrm{O}$)-, alkyl-
$\mathrm{C}(=\mathrm{O})$-, alkyl- $\mathrm{S}(=\mathrm{O})$-, alkyl- $\mathrm{S}(=\mathrm{O})_{2^{-}}$, hydroxy-substituted alkyl-S $\left.=\mathrm{O}\right)$-, hydroxy-substituted alkyl- $\mathrm{S}(=\mathrm{O})_{2}$-, carboxyalkoxy, and the like.

[00150] The term "spiro bicyclylene" refers to spiro bicyclyl system having two connection points connected to the rest of the molecule, wherein the spiro bicyclyl radical is as defined herein.
[00151] The term "spiro heterobicyclyl" refers to a ring originating from a particular annular carbon of another ring. For example, as depicted above, ring A and ring B share a carbon atom between the two saturated ring system, which terms as a "spirocyclyl". And at least one ring in the system is inclusive of one or more heteroatoms, wherein each ring in the system contains 3 to 7 ring members, egg, 1 to 6 carbon atoms and 1 to 3 heteroatoms selected from $\mathrm{N}, \mathrm{O}, \mathrm{P}$ or S , wherein the S or P is optionally substituted with one or more ox o to provide the group SO or $\mathrm{SO}_{2}, \mathrm{PO}$ or PO_{2}. Some non-limiting examples of such radicals include 4 -azaspiro[2,4]hept-5-y], 4-oxaspiro[2,4]hept-5-yl, 5-azaspiro[2,4]hept-5-yl, 7-hydroxy-5-azaspiro[2,4]hept-5-yl, and the like. The spiro heterobicyclyl defined herein may be substituted or unsubstituted, wherein the substituent include, but are not limited to, ox (0), hydroxy, amino, halo, cyano, aryl, heteroaryl, alkoxy, alkylamino, alkyl, alkenyl, alkynyl, heterocyclyl, mercapto, nitro, aryloxy, hydroxy-substituted alkoxy, hydroxy-substituted alkyl- $\mathrm{C}(=\mathrm{O})$-, alkyl- $\mathrm{C}(=\mathrm{O})$-, alkyl- $\mathrm{S}(=\mathrm{O})$-, alkyl-S $(=\mathrm{O})_{2^{-}}$, hydroxy-substituted alkyl-S $(=\mathrm{O})$, hydroxy-substituted alkylS $(=\mathrm{O})_{2^{-}}$, carboxyalkoxy, and the like.
[00152] As described herein, a bond drawn from a substituent to the center of one ring within a ring system (as shown in Formula (a)) represents substitution of the substituent $R^{5 a}$ at any substitutable position on the rings (W1, W2, and W). For example, Formula (a) represents possible substitution in any of the positions on the $W 1, W 2$, and W ring.

(a)
[00153] As described herein, two attaching points either E or E ', within a ring system (as shown in Formula (b)), attach to the rest of the molecule, e.g., E and E' may be used interchangeably with each other.

[00154] As described herein, a dot line drawn together with a bond within a ring system (as shown in Formula (c)) represents either a double bond or a single bond. For example, structure in Formula (c) represents any structures selected from Formula (d).

(c)

[00155] Unless otherwise stated, structures depicted herein are also meant to include all isomeric (e.g., enantiomeric, diastereomeric, and geometric (or conformational)) forms of the structure; for example, the R and S configurations for each asymmetric center, (Z) and (E) double bond isomers, and (Z) and (E) conformational isomers. Therefore, single
stereochemical isomers as well as enantiomeric, diastereomeric, or geometric (or conformational) mixtures of the present compounds are within the scope disclosed herein.
[00156] The term "prodrug" refers to a compound that is transformed in vivo into a compound of formula (I). Such a transformation can be affected, for example, by bydrolysis in blood or enzymatic transformation of the prodrug form to the parent form in blood or tissue. Prodrugs of the compounds disclosed herein may be, for example, esters. Esters that may be utilized as prodrugs in the present invention are phenyl esters, aliphatic ($\mathrm{C}_{1}-\mathrm{C}_{24}$) esters, acyloxymethyl esters, carbonates, carbamates, and amino acid esters. For example, a compound disclosed herein that contains an OH group may be acylated at this position in its prodrug form. Other prodrug forms include phosphates, such as, for example those phosphates resulting from the phosphonation of an OH group on the parent compound. A thorough discussion of prodrugs is provided in Higuchi et al., Pro-drugs as Novel Delivery Systems, Vol. 14, A.C.S. Symposium Series; Roche, et al. ed., Bioreversible Carriers in Drug Design, American Pharmaceutical Association and Pergamon Press, 1987, Rautio et al., Prodrugs: Design and Clinical Applications, Noture Reviews Drug Discovery, 2008, 7, 255-270, and Fecker et al, Prodrugs of Phosphates and Phosphonates, J. Med. Chem., 2008, 51,2328-2345, all of which are incorporated herein by reference.
[00157] Unless otherwise stated, all tautomeric forms of the compounds disclosed herein are within the scope of the invention. Additionally, unless otherwise stated, structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms.
[00158] A "metabolite" is a product produced through metabolism in the body of a specified compound or salt thereof. Metabolites of a compound may be identified using routine techniques known in the art and their activities determined using tests such as those
described herein. Such products may result for example from the oxidation, reduction, hydrolysis, amidation, deamidation, esterification, deesterification, enzyme cleavage, and the like, of the administered compound. Accordingly, the invention includes metabolites of compounds disclosed herein, including compounds produced by a process comprising contacting a compound disclosed herein with a mammal for a period of time sufficient to yield a metabolic product thereof.
[00159] Stereochemical definitions and conventions used herein generally follow Parker et al., McGraw-Hill Dictionary of Chemical Terms (1984) McGraw-Hill Book Company, New York and Eliel et al., "Stereochemistry of Organic Compounds", John Wiley \& Sons, Inc., New York, 1994. The compounds disclosed herein may contain asymmetric or chiral centers, and therefore exist in different stereoisomeric forms. It is intended that all stereoisomeric forms of the compounds disclosed herein, including but not limited to, diastereomers, enantiomers and atropisomers, as well as mixtures thereof such as racemic mixtures, form part of the present invention. Many organic compounds exist in optically active forms, i.e, they have the ability to rotate the plane of plane-polarized light. In describing an optically active compound, the prefixes D and L, or R and S, are used to denote the absolute configuration of the molecule about its chiral center(s). The prefixes d and 1 or $(+)$ and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with (-) or 1 meaning that the compound is levorotatory. A compound prefixed with $(+)$ or d is dextrorotatory. For a given chemical structure, these stereoisomers are identical except that they are mirror images of one another. A specific stereoisomer may also be referred to as an enantiomer, and a mixture of such isomers is often called an enantiomenic mixture. A $50: 50$ mixture of enantiomers is referred to as a racemic mixture or a racemate, which may occur where there has been no stereoselection or stereospecificity in a chemical reaction or process. The term "racemic mixture" or "racemate" refers to an equimolar mixture of two enantiomeric species, devoid of optical activity.
[00160] The term "tautomer" or "tautomenic form" refers to structural isomers of different energies which are interconvertible via a low energy barrier. Some non-limiting examples of proton tautomers (also known as prototropic tautomers) include interconversions via migration of a proton, such as keto-enol reorganization of some of the bonding electrons.
[00161] A "pharmaceutically acceptable salts" refers to organic or inorganic salts of a compound disclosed herein. Pharmaceutically acceptable salts are well known in the art. For example, Berge et al, describe pharmaceutically acceptable salts in detail in J. Pharmacol Sci, 1977, 66: 1-19, which is incorporated herein by reference. Some non-limiting examples of pharmaceutically salts include salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2 -hydroxy-ethanesulfonate, lactobionate, lactate, laurate, laurylsulfate, malate, malonate, methanesulfonate, 2 -naphthalenesulfonate, nicotinate, nitrate, oleate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, picrate, pivalate, propionate, stearate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and $\mathrm{N}^{+}\left(\mathrm{C}_{1.4} \text { alkyl }\right)_{4}$ salts. This invention also envisions the quatemization of any basic nitrogen-containing groups of the compounds disclosed herein. Water or oil soluble or dispersible products may be obtained by such quaternzation. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further phamaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, C_{1-8}
sulfonate or aryl sulfonate.
[00162] A "solvate" refers to an association or complex of one or more solvent molecules and a compound disclosed herein. Some non-limiting examples of solvents that form solvates include water, isopropanol, ethanol, methanol, DMSO, ethyl acetate, acetic acid, and ethanolamine. The term "hydrate" refers to the complex where the solvent molecule is water.
[00163] The term "protecting group" or "Pg" refers to a substituent that is commonly employed to block or protect a particular functionahty while reacting with other functional groups on the compound. For example, an "amino-protecting group" is a substituent attached to an amino group that blocks or protects the amino functionality in the compound. Some non-limiting examples of suitable amino-protecting groups include acetyl, trifluoroacetyl, t-butoxycarbonyl (BOC), benzyloxycarbonyl (CBZ) and 9-fluorenylmethylenoxycarbonyl (Fmoc). Similarly, a "hydroxy-protecting group" refers to a substituent of a hydroxy group that blocks or protects the hydroxy functionality. Some non-limiting examples of suitable hydroxy-protecting groups include acetyl and silyl. A "carboxy-protecting group" refers to a substituent of the carboxy group that blocks or protects the carboxy functionality. Some non-limiting examples of common carboxy-protecting groups include $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{Ph}$, cyanoethyl, 2-(timethylsilyl)ethyl, 2-(timethylsilyl)ethoxymethyl, 2 -(p-toluenesulfonyl)ethyl, $\quad 2$-(p-nitrophenylsulfonyl)ethyl, $\quad 2$ (diphenylphosphino)-ethyl, nitroethyl, and the like. For a general description of protecting groups and their use, see Greene et al, Protective Groups in Organic Synthesis, John Wiley \& Sons, New York, 1991 and Kocienski et al, Protecting Groups, Thieme, Stutgart, 2005.

DESCRIPTION OF COMPOUNDS OF THE INVENTION

[00164] Provided herein are spiro ring compounds, and pharmaceutical formulations thereof, that are useful in inhibiting HCV infection, especially inhibiting the activity of the non-structural 5A ("NS5A") protein.
[00165] In one aspect, provided herein are compounds having formula (I) as shown below:

or a stereoisomer, a geometric isomer, a tautomer, an N-oxide, a hydrate, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof, wherein:
each of A and A ' is independently a bond, alkylene, alkenylene, cycloalkylene, heterocycloalkylene, $\quad-\left(\mathrm{CR}^{8} \mathrm{R}^{83}\right)_{\mathrm{n}}-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{p^{-}}, \quad-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{n}-N\left(R^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)^{-}$,
$-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{n}} \mathrm{S}(=\mathrm{O})_{\mathrm{r}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{83}\right)_{\mathrm{p}}$,
$-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\mathrm{C}(=\mathrm{O})-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{p}^{-}}$, $-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{n}}-\mathrm{C}(=\mathrm{O})-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{p}$, $-\left(C R^{8} R^{82}\right)_{n}-N\left(R^{5}\right)-S(=O)_{r}-N\left(R^{5}\right)-\left(C R^{8} R^{8 a}\right)_{p^{-}}$, or $-\left(C R^{8} R^{8 a}\right)_{n}-N\left(R^{5}\right)-C(=O)-O-\left(C R^{8} R^{8 a}\right)_{p^{-}}$, or each of A and A' is independently one of the following groups:

or

wherein X^{1} is $\mathrm{O}, \mathrm{S}, \mathrm{NR}^{6}$ or $\mathrm{CR}^{7} \mathrm{R}^{7 a}$;
each Y^{1} and X^{2} is independently N or CR^{7};
X^{2} is $\mathrm{NR}^{6}, \mathrm{O}$ or $\mathrm{S} ;$
Z is $-\left(\mathrm{CH}_{2}\right)_{a}, \quad-\mathrm{CH}=\mathrm{CH}-\quad-\mathrm{N}=\mathrm{CH}-\quad-\left(\mathrm{CH}_{2}\right)_{a}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CH}_{2}\right)_{b}$, or $-\left(\mathrm{CH}_{2}\right)_{a}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{b}-$, wherein each a and b is independently $0,1,2$ or 3 ;
each c is independently 1 or 2 ;
dis 1 or 2 ;
each n is independently $0,1,2$ or 3 ;
each p is independently $0,1,2$ or 3 ;
r is 0,1 or 2 ,
e is $1,2,3$ or 4 ;
fis $0,1,2,3$ or 4 ;
each Q_{1} and Q_{2} is independently $\mathrm{NR}^{6}, \mathrm{O}, \mathrm{S}, \mathrm{C}(=\mathrm{O})$ or $\mathrm{CR}^{7} \mathrm{R}^{73}$, with the proviso that when Q_{1} is $\mathrm{NR}^{6}, \mathrm{O}, \mathrm{S}$ or $\mathrm{C}(=\mathrm{O})$, e is 1 ;

W is carbocyclyl or heterocyclyl;
each of X and X ' is independently N or CR^{7};
each of Y and Y^{\prime} is independently H , alkyl, heteroalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, a group derived from a naturally occuring or commercially avalable α-amino acid or an optically isomer thereof, or each of Y and Y is independently $-\left[U-\left(\mathrm{CR}^{9} \mathrm{R}^{9 a}\right)_{t}-\mathrm{N}\left(\mathrm{R}^{10}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)\right]_{k}-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right) \mathrm{t}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{\mathrm{t}}-\mathrm{R}^{12}, \quad \mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 a}\right) \mathrm{t}^{\mathrm{R}} \mathrm{R}^{12}$ or $-\left[U-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{t}-\mathrm{N}\left(\mathrm{R}^{10}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)\right]_{\mathrm{k}}-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{t}-\mathrm{O}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{t}-\mathrm{R}^{12} ;$
each U is independently $-\mathrm{C}(=\mathrm{O})-,-\mathrm{C}(=\mathrm{S})-,-\mathrm{S}(=\mathrm{O})$ - or $-\mathrm{S}(=\mathrm{O})_{2}$;
each t is independently $0,1,2,3$ or 4 ;
each k is independently 0,1 or 2 ;
each of R^{1}, R^{2}, R^{3} and R^{4} is independently H, alkyl, heteroalkyl, aralkyl, cycloalkyl, heterocyclyl, heteroaryl or aryl; or R^{1} and R^{2}, together with $\mathrm{X}-\mathrm{CH}$, form a 3-8 membered heterocycle or carbocycle, C_{5-12} fused bicycle, C_{5-12} fused heterobicycle, C_{5-12} spiro bicycle or C_{5-12} spiro heterobicycle; or R^{3} and R^{4}, together with $\mathrm{X}^{\prime}-\mathrm{CH}$, form a $3-8$ membered heterocycle or carbocycle, C_{5-12} fused bicycle, C_{5-12} fused heterobicycle, C_{5-12} spivo bicycle or $\mathrm{C}_{5.12}$ spiro heterobicycle;
each R^{5} is independently H, hydroxy, alkyl, heteroalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, alkoxy, alkyl-OC($=0$)-, alkyl-C $(=\mathrm{O})$-, carbamoyl, alkyl-OS $(=\mathrm{O})_{\mathrm{r}}$, alkyl- $\mathrm{S}(=\mathrm{O})_{\mathrm{r}} \mathrm{O}$-, alkyl- $\mathrm{S}(=\mathrm{O})_{\mathrm{r}}$ - or aminosulfonyl;
each $\mathrm{R}^{5 a}$ is independently H , oxo ($=\mathrm{O}$), hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, $\mathrm{R}^{7 a} \mathrm{R}^{7} \mathrm{~N}-$, $\left.-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 a},-\mathrm{OC}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 a},-\mathrm{OC}(=O) \mathrm{OR}^{7},-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 a},-\mathrm{N} \mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{7 a}$, $-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O})-\mathrm{R}^{7 a}, \quad \mathrm{R}^{7} \mathrm{R}^{7} \mathrm{~N}-\mathrm{S}(=\mathrm{O})_{2}-, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2}-, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2} \mathrm{~N}^{2}\left(\mathrm{R}^{7}\right)-, \quad \mathrm{R}^{7 \mathrm{a}} \mathrm{R}^{7} \mathrm{~N}$-alkyl, $\mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})$-alkyl, $\mathrm{R}^{7} \mathrm{R}^{7} \mathrm{~N}-\mathrm{C}(=\mathrm{O})$-alkyl, $\mathrm{R}^{7 \mathrm{a}} \mathrm{R}^{7} \mathrm{~N}$-alkoxy, $\mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})$ -
alkoxy, $\mathrm{R}^{7} \mathrm{R}^{7} \mathrm{~N}-\mathrm{C}(=\mathrm{O})$-alkoxy, aryl, heteroaryl, alkoxy, alkylamino, alkyl, haloalkyl, alkenyl, alkynyl, heterocyclyl, cycloalkyl, mercapto, nitro, aralkyl, arylamino, heteroarylamino, arylalkylamino, heteroarylalkylamino, heteroaryloxy, heteroarylalkyl, arylalkoxy, heteroarylalkoxy, heterocyclyloxy, heterocyclylalkoxy, heterocyclylamino, heterocyclylalkylamino or aryloxy;
R^{6} is independently $\mathrm{H}, \mathrm{R}^{7} \mathrm{R}^{79} \mathrm{NC}(=\mathrm{O})$-, $\mathrm{R}^{7} \mathrm{OC}(=\mathrm{O})-, \quad \mathrm{R}^{7} \mathrm{C}(=\mathrm{O})$-, $\mathrm{R}^{7} \mathrm{R}^{7 / \mathrm{NS}(=\mathrm{O}) \text {-, }}$ $\mathrm{R}^{7} \mathrm{OS}(=\mathrm{O})-, \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})-, \mathrm{R}^{7} \mathrm{R}^{7} \mathrm{NS}(=\mathrm{O})_{2}-, \mathrm{R}^{7} \mathrm{OS}(=\mathrm{O})_{2}-, \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2}$, , aliphatic, haloaliphatic, hydroxyaliphatic, aminoaliphatic, alkoxyaliphatic, alkylaminoaliphatic, alkylthioaliphatic, arylaliphatic, heteroarylaliphatic, heterocyclylaliphatic, cycloalkylaliphatic, aryloxyaliphatic, heterocyclyloxyaliphatic, cycloalkyloxyaliphatic, arylaminoaliphatic, heterocyclylaminoaliphatic, cycloalkylaminoaliphatic, aryl, heteroaryl, heterocyclyl or carbocyclyl;
$\mathrm{R}^{6 \mathrm{a}}$ is H , oxo, hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, oxo $(\mathrm{O}), \mathrm{R}^{7 \mathrm{a}} \mathrm{R}^{7} \mathrm{~N}-, \mathrm{C}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 \mathrm{a}}$, $\left.-\mathrm{OC}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 \mathrm{a}},-\mathrm{OC}(=\mathrm{O}) \mathrm{OR}^{7},-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 a},-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{7 a},-\mathrm{N} \mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O})-\mathrm{R}^{7 \mathrm{a}}$, $\mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{N}-\mathrm{S}(=\mathrm{O})_{2}, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2}, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{7 \mathrm{a}}\right)-, \quad \mathrm{R}^{7 \mathrm{a}} \mathrm{R}^{7} \mathrm{~N}$-alkyl, $\quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})$-alkyl, $\mathrm{R}^{7} \mathrm{R}^{7} \mathrm{~N}-\mathrm{C}(=\mathrm{O})$-alkyl, $\quad \mathrm{R}^{7} \mathrm{R}^{7} \mathrm{~N}$-alkoxy, $\quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})$-alkoxy, $\quad \mathrm{R}^{7} \mathrm{R}^{7} \mathrm{~N}-\mathrm{C}(=\mathrm{O})$-alkoxy, aryl, heteroaryl, alkoxy, alkylamino, alkyl, haloalkyl, alkenyl, alkynyl, heterocyclyl, cycloalkyl, mercapto, nitro, aralkyl, arylamino, heteroarylamino, arylalkylamino, heteroarylalkylamino, heteroaryloxy, heteroarylalkyl, arylalkoxy, heteroarylalkoxy, heterocyclyloxy, heterocyclylalkoxy, heterocyclylamino, heterocyclylalkylamino, or aryloxy;
each R^{7} and $\mathrm{R}^{7 \text { a }}$ is independenty $\mathrm{H}, \mathrm{F}, \mathrm{Cl}$, aliphatic, heteroalkyl, haloaliphatic, hydroxyaliphatic, aminoaliphatic, alkoxyaliphatic, alkylaminoaliphatic, alkylthoaliphatic, arylaliphatic, heterocyclylaliphatic,
cycloalkylaliphatic, aryloxyaliphatic, heterocyclyloxyaliphatic, cycloalkyloxyaliphatic, arylaminoaliphatic, heterocyclylaminoaliphatic, cycloalkylaminoaliphatic, aryl, heteroaryl, heterocyclyl or carbocyclyl; with the proviso that where R^{7} and $\mathrm{R}^{7 a}$ are bonded to the same nitrogen atom, R^{7} and $R^{7 a}$, together with the nitrogen atom, form a substituted or unsubstituted 3-8 membered ring including spiro bicycle and fused bicycle;
each R^{8} and R^{Ba} is independently H , hydroxy, cyano, nitro, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, l , alkyl, heteroalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, alkoxy, alkyl-OC($=0$)-, alkyl-C $(=0)$-, carbamoyl, alkyl-OS $(=\mathrm{O})_{r}$ - alkyl-S $(=0), \mathrm{O}-$, alkyl-S $(=\mathrm{O})_{r}$-, or aminosulfonyl;
each $\mathrm{R}^{9}, \mathrm{R}^{9 \text { a }}, \mathrm{R}^{10}$ and R^{11} is independently H , alkyl, heteroalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, haloalkyl, hydroxyalkyl, heteroarylalkyl, heterocyclylalkyl, or cycloalkylalkyl;
R^{12} is independently $\mathrm{R}^{13 \mathrm{a}} \mathrm{R}^{13} \mathrm{~N}-, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}, \mathrm{C}(=\mathrm{S}) \mathrm{R}^{13},-\mathrm{C}(=\mathrm{O})-\mathrm{O}-\mathrm{R}^{13},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}$, $-\mathrm{OC}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 a}, \quad-\mathrm{OC}(=\mathrm{O}) \mathrm{OR}^{13}, \quad-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{133}, \quad-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{13 a}$, $-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O})-\mathrm{R}^{13 a}, \mathrm{R}^{13} \mathrm{R}^{13} \mathrm{~N}-\mathrm{S}(=\mathrm{O})_{2^{-}}, \mathrm{R}^{13} \mathrm{~S}(=\mathrm{O})_{2^{-}}, \mathrm{R}^{13} \mathrm{~S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{13 a}\right)$, $\mathrm{R}^{13} \mathrm{OS}(=\mathrm{O})_{2^{-}}$, alkyl, heteroalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl or aralkyl;
or R^{11} and R^{12}, together with the nitrogen atom they are attached to, form a 4-7 membered ring;
each R^{13} and $R^{13 a}$ is independently H, alkyl, heteroalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, or aralkyl;
wherein each of the following groups $-\left(\mathrm{CR}^{8} R^{8 \pi}\right)_{\mathrm{n}}-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{p}}$, $-\left(C R^{8} R^{8 a}\right)_{n}-N\left(R^{5}\right)-\left(C R^{8} R^{8 a}\right)_{p}, \quad-\left(C R^{8} R^{8 a}\right)_{n}-S(=O)_{r}-N\left(R^{5}\right)-\left(C R^{8} R^{8 a}\right)_{p}$, $-\left(C R^{8} R^{8 a}\right)_{n}-C(=O)-N\left(R^{5}\right)-\left(C R^{8} R^{8 a}\right)_{p^{-}},-\left(C R^{8} R^{8 a}\right)_{n}-N\left(R^{5}\right)-C(=O)-N\left(R^{5}\right)-\left(C R^{8} R^{8 a}\right)_{p}$,
$-\left(C R^{8} R^{8}\right)_{n-} C(=O)-O-\left(C R^{8} R^{89}\right)_{p}$, $\left.-\left(\mathrm{CR}^{8} R^{82}\right)_{n}-\mathrm{N}\left(R^{5}\right)-\mathrm{S}(=O)_{r}-\mathrm{N}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{88}\right)_{r}$, $-\left(\mathrm{CR}^{8} \mathrm{R}^{82}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{5}\right) \mathrm{C}(=\mathrm{O})-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{8}\right)_{\mathrm{F}}$,
 $\left.-\left[\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)^{2}-\mathrm{NR}^{19}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)\right]_{k}-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)-\mathrm{O}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right) \mathrm{R}^{12}, \mathrm{NR}^{6}, \mathrm{CR}^{1} \mathrm{R}^{79}, \mathrm{CR}^{7},\left(\mathrm{CH}_{2}\right)_{\mathrm{a}}$, $-\mathrm{CH}=\mathrm{CH}-\quad-\mathrm{N}=\mathrm{CH}-\quad-\left(\mathrm{CH}_{2}\right)_{\mathrm{a}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CH}_{2}\right)_{b}-\quad-\left(\mathrm{CH}_{2}\right)_{a}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{b}, \quad \mathrm{R}^{13 a} \mathrm{R}^{13} \mathrm{~N}-,-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}$, $-\mathrm{C}(=\mathrm{S}) \mathrm{R}^{13}, \quad \mathrm{C}(=\mathrm{O})-\mathrm{O}-\mathrm{R}^{13}, \quad-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{133}, \quad-\mathrm{OC}(=O) \mathrm{NR}^{13} \mathrm{R}^{13 a}, \quad-\mathrm{OC}(=\mathrm{O}) \mathrm{OR}^{13}$, $-N\left(R^{13}\right) C(=O) N^{13} R^{13 \mathrm{a}}, \quad-N\left(R^{13}\right) \mathrm{C}(=O) \mathrm{OR}^{13 \mathrm{a}}, \quad-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O})-\mathrm{R}^{133}, \quad \mathrm{R}^{13} \mathrm{R}^{13 \mathrm{~N}} \mathrm{~N}-\mathrm{S}(=\mathrm{O})_{2}-$ $\mathrm{R}^{13} \mathrm{~S}(=O)_{2^{2}}-\mathrm{R}^{13} \mathrm{~S}(=O)_{2} \mathrm{~N}\left(\mathrm{R}^{13 \mathrm{a}}\right)-, \mathrm{R}^{13} \mathrm{OS}(=O)_{2^{-}}, \mathrm{R}^{7 \mathrm{a}} \mathrm{R}^{7} \mathrm{~N}-,-\mathrm{C}(=O) \mathrm{NR}^{7} \mathrm{R}^{7 \mathrm{a}},-\mathrm{OC}(=O) \mathrm{NR}^{7} \mathrm{R}^{7 \mathrm{a}}$,
 $\mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2}-\mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{7}\right)^{2}$-, alkyl-OC $(=\mathrm{O})$-, alkyl-C $(=\mathrm{O})$-, alkyl- $\mathrm{OS}(=\mathrm{O})_{2}$, alkyl- $\mathrm{S}(=\mathrm{O})_{4} \mathrm{O}$-,

 $R^{7 a} \mathrm{R}^{7} \mathrm{~N}$-alkoxy, $\mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})$-alkoxy, $\mathrm{R}^{7} \mathrm{R}^{7} \mathrm{~N}-\mathrm{C}(=\mathrm{O})$-alkylamino, alkyl, heteroalkyl, carbocyclyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, α-amino acid, C_{5-12} fused bicycle, C_{5-12} fused heterobicycle, C_{5-12} spiro bicycle, C_{5-12} spiro heterobicycle, alkoxy, aliphatic, haloaliphatic, hydroxyaliphatic, aminoaliphatic, alkoxyaliphatic, alkylaminoaliphatic, alkylthioaliphatic, arylaliphatic, heteroarylaliphatic, heterocyclylaliphatic, cycloalkylaliphatic, aryloxyaliphatic, heterocyclyloxyaliphatic, cycloalkyloxyaliphatic, arylaminoaliphatic, heterocyclylamino
aliphatic, cycloalkylaminoaliphatic, carbocyclyl, heteroalkyl, alkyl, haloalkyl, alkenyl, alkynyl, arylamino, heteroarylamino, arylalkylamino, heteroarylalkylamino, heteroaryloxy, heteroarylalkyl, arylalkoxy, heteroarylalkoxy, heterocyclyloxy, heterocyclylalkoxy, heterocyclylamino, heterocyclylalkylamino and aryloxy is optionally substituted or unsubstituted.
[00166] In some embodiments, W is $\mathrm{C}_{3.8}$ carbocyclyl or C_{210} heterocyclyl.
[00167] In some embodiments, the structural unit of
 has one of the following structures:

wherein each X^{3} and X^{4} is independently $\mathrm{O}, \mathrm{S}, \mathrm{NR}^{6}$, or $\mathrm{CR}^{7} \mathrm{R}^{7 a}$;
each e is $1,2,3$ or 4 ,
fis $0,1,2,3$ or 4 ,
each Q_{1} and Q_{2} is independently $\mathrm{NR}^{6}, \mathrm{O}, \mathrm{S}, \mathrm{C}(=\mathrm{O})$, or $\mathrm{CR}^{7} \mathrm{R}^{7 a}$, with the proviso that when Q_{1} is $\mathrm{NR}^{6}, \mathrm{O}, \mathrm{S}$ or $\mathrm{C}(=\mathrm{O})$, e is 1 ;
each $\mathrm{R}^{5 a}$ is independently H , oxo $(=\mathrm{O})$, hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, $\mathrm{C}_{\mathrm{l}} 6$ alkylacyl, C_{1-6} alkylacyloxy, C_{1-6} alkoxyacyl, C_{1-6} alkylsulfonyl, C_{1-6} alkoxysulfonyl, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyloxy, C_{1-6} alkylsulfinyloxy, C_{1-6} alkoxy, C_{1-6} alkyl, C_{6-10} aryl, $-\mathrm{CF}_{3}$, OCF $_{3}$, mercapto, nitro, $\mathrm{C}_{\mathrm{i}-6}$ alkylamino, C_{3-10} cycloalkyl or C_{6-10} aryloxy.
[00168] In some embodiments, the structural unit of
 has one of the following structures:

, or

wherein R^{52} is H , oxo $(=\mathrm{O})$, hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, C_{1-6} alkylacyl, C_{1-6} alkylacyloxy, \mathbb{C}_{1-6} alkoxyacyl, C_{1-6} alkylsulfonyl, C_{1-6} alkoxysulfonyl, C_{1-6} alkylsulfnyl, C_{1-6} alkylsulfonyloxy,
C_{1-6} alkylsulfinyloxy, C_{1-6} alkoxy, C_{1-6} alkyl, $\mathrm{C}_{6 \cdot 10}$ aryl, - $\mathrm{CF}_{3},-$ OCF $_{3}$, mercapto, nitro, or C_{1-6} alkylamino;
R^{6} is independently $\mathrm{H}, \mathrm{C}_{1-6}$ aliphatic, C_{1-6} haloaliphatic, C_{1-6} hydroxyaliphatic, C_{1-6} aminoaliphatic, $\quad \mathrm{C}_{1-6}$ alkoxy- C_{166} aliphatic, C_{1-6} alkylamino- C_{1-6}-aliphatic, C_{16} alkylthio- C_{1-6}-aliphatic, C_{6-10} aryl- C_{1-6}-aliphatic, C_{1-9} heteroaryl- C_{1-6}-aliphatic, C_{2-10} heterocyclyl- $\mathrm{C}_{1.6}$-aliphatic or $\mathrm{C}_{3.8}$ cycloalkyl- $\mathrm{C}_{1.6}$ aliphatic.
[00169] In some embodiments, each of A and A ' is independently a bond, C_{1-6} alkylene, C_{2-6} alkenylene, C_{3-8} cycloalkylenc, $\mathrm{C}_{2-\mathrm{k} 0}$ heterocycloalkylene, $\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{n}}-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{p}}$, $\left.-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{p}, \quad-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{n}}-\mathrm{S}(=\mathrm{O})_{\mathrm{r}^{-N}}-\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{p}$, $-\left(\mathrm{CR}^{8} \mathrm{R}^{82}\right)_{\mathrm{n}} \mathrm{C}(=\mathrm{O})-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{p^{-}}, \quad \quad-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\mathrm{C}(=\mathrm{O})-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{p^{-}}$, $-\left(C^{8} R^{83}\right)_{n}-C(=O)-O-\left(C R^{8} R^{8 a}\right)^{-}$, $-\left(C R^{8} R^{8 i}\right)_{\mathrm{R}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\mathrm{S}(=\mathrm{O})_{\mathrm{r}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{i}}\right)_{\mathrm{p}}$, $-\left(C R^{8} R^{8 a}\right)_{n}-N\left(R^{5}\right)-C(=O)-O-\left(C R^{8} R^{8 x}\right)^{-}$, or each of A and A^{\prime} is independently one of the following groups:

or

wherein R^{5} is independently H , hydroxy, C_{1-6} alkyl, C_{1-6} heteroalkyl, C_{3-8} cycloalkyl, C_{2-10} heterocyclyl, C_{6-10} aryl, C_{1-9} heteroaryl, C_{6-10} aryl- C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-6} alkyl-OC($=\mathrm{O}$)-, C_{1-6} alkyl- $\mathrm{C}(=\mathrm{O})$-, carbamoyl, C_{1-6} alkyl- $\mathrm{OS}(=\mathrm{O})_{r^{-}}, \mathrm{C}_{1-6}$ alkyl- $\mathrm{S}(=\mathrm{O})_{R} \mathrm{O}-\mathrm{C}_{1-6}$ alkyl- $\mathrm{S}(=\mathrm{O})_{\mathrm{r}}$ - or aminosulfonyl;
$\mathrm{R}^{6 \mathrm{a}}$ is H , oxo, hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, oxo $(=\mathrm{O}), \mathrm{R}^{7 \mathrm{R}} \mathrm{R}^{7} \mathrm{~N}-, \mathrm{C}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 \mathrm{a}}$, $\left.-O C(=O) N^{7} R^{7 a},-O C(=O) O R^{7},-N\left(R^{7}\right) C(=O) N R^{7} R^{7 a},-N\left(R^{7}\right) C(=O) O R^{7 a},-N R^{7}\right) C(=O)-R^{7 a}$, $\mathrm{R}^{7} \mathrm{R}^{7 \mathrm{~N}} \mathrm{~N}-\mathrm{S}(=\mathrm{O})_{2}-, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2}-, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{7 \mathrm{a}}\right)$-, $\quad \mathrm{R}^{7} \mathrm{R}^{7} \mathrm{~N}-\mathrm{C}_{1.6}$ alkyl, $\mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})-\mathrm{C}_{166}$ alkyl, $\mathrm{R}^{7} \mathrm{R}^{7} \mathrm{~N}-\mathrm{C}(=\mathrm{O})-\mathrm{C}_{1-6}$ alkyl, $\mathrm{R}^{7 / \mathrm{R}^{7} \mathrm{~N}-\mathrm{C}_{1-6} \text { alkoxy, } \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})-\mathrm{C}_{\mathrm{L}-6} \text { alkoxy, } \mathrm{R}^{7} \mathrm{R}^{79} \mathrm{~N}-\mathrm{C}(=\mathrm{O})-\mathrm{C}_{1-6}, ~}$ alkoxy, C_{6-10} aryl, C_{1-9} heteroaryl, C_{1-6} alkoxy, C_{1-6} alkylamino, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{2-10} heterocyclyl, C_{3-8} cycloalkyl, mercapto, nitro, C_{6-10} aryl- C_{1-6} alkyl, C_{6-10} arylamino, $\mathrm{C}_{1.9}$ heteroarylamino, or C_{6-10} aryloxy;
each R^{7} and $\mathrm{R}^{7 \mathrm{a}}$ is independently $\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{C}_{1-6}$ aliphatic, C_{1-6} heteroalkyl,
C_{1-6} haloaliphatic, hydroxy C_{1-6} aliphatic, amino C_{1-6} aliphatic, C_{1-6} alkoxy- C_{1-6}-aliphatic, C_{16} alkylamino- C_{1-6} aliphatic, C_{1-6} alkylthio- C_{1-6} aliphatic, C_{6-10} aryl- C_{1-6} aliphatic, C_{1-9} heterocyclyl- C_{1-6} aliphatic, C_{3-8} cycloalkyl- C_{1-6} aliphatic, C_{6-10} aryloxy- C_{1-6} aliphatic, C_{2-10} heterocyclyloxy- C_{1-6}-aliphatic, $\quad \mathrm{C}_{3-8} \quad$ cycloalkyloxy- C_{1-6}-aliphatic, $\quad \mathrm{C}_{6-10}, ~$ arylamino- C_{16-6}-aliphatic, $\quad \mathrm{C}_{2-10} \quad$ heterocyclylamino- C_{1-6}-aliphatic, $\quad \mathrm{C}_{3-3}$ cycloalkylamino- C_{1-6} aliphatic, C_{6-10} aryl, C_{1-9} heteroaryl, C_{2-10} heterocyclyl or C_{3-8} carbocyclyl; with the proviso that where R^{7} and $R^{7 a}$ are bonded to the same nitrogen atom, R^{7} and $R^{7 a}$, together with the nitrogen atom, form a substituted or unsubstituted $3-8$ membered ring including C_{5-12} spiro bicycle and C_{5-12} fused bicycle;
each R^{8} and $\mathrm{R}^{8 \mathrm{a}}$ is independently H , hydroxy, cyano, nitro, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{C}_{1-6}$ alkyl, C_{1-6} heteroalkyl, C_{3-10} cycloalkyl, C_{2-10} heterocyclyl, C_{6-10} ary], C_{1-9} heteroaryl, C_{6-10} aryl- $\mathrm{C}_{1.6}$ alkyl, C_{1-6} alkoxy, $\mathrm{C}_{1.6}$ alkyl- $\mathrm{OC}(=\mathrm{O})$-, C_{166} alkyl- $\mathrm{C}(=\mathrm{O})$-, carbamoyl, C_{1-6} alkyl-OS $(=O)_{r^{-}}, \mathrm{C}_{1-6}$ alkyl-S $(=\mathrm{O}), \mathrm{O}, \mathrm{C}_{1-6}$ alkyl- $\mathrm{S}(=\mathrm{O})_{r}$, or ammosulfonyl.
[00170] In some embodiments, each of A and A^{\prime} is independently a bond, $-\mathrm{CH}_{2}$-, $-\left(\mathrm{CH}_{2}\right)_{2}-, \mathrm{CH}=\mathrm{CH}-,-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-,-\mathrm{N}\left(\mathrm{R}^{6}\right)-, \mathrm{C}(=\mathrm{O})-,-\mathrm{C}(=\mathrm{S})-,-\mathrm{C}(=\mathrm{O})-\mathrm{O}-,-\mathrm{C}(=\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{6}\right)-$ $-\mathrm{OC}(=\mathrm{O}) \mathrm{N}^{\left(\mathrm{R}^{6}\right)}$-, $\quad \mathrm{OC}(=\mathrm{O}) \mathrm{O}-,-\mathrm{N}\left(\mathrm{R}^{6}\right) \mathrm{C}(=\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{6}\right)$, $-\left(\mathrm{R}^{6}\right) \mathrm{N}-\mathrm{S}(=\mathrm{O})_{2}, \quad-\mathrm{S}(=\mathrm{O})_{2}, \quad-\mathrm{OS}(=\mathrm{O})_{2}$, $-\left(\mathrm{R}^{6}\right) \mathrm{N}-\mathrm{S}(=\mathrm{O})-,-\mathrm{S}(=\mathrm{O})-,-\mathrm{OS}(=\mathrm{O})$-, or each of A and A^{\prime} is independently one of the following groups:

wherem X^{1} is O or S ;
R^{6} is independently $\mathrm{H}, \mathrm{C}_{\mathrm{l}-6}$ aliphatic, C_{1-6} haloaliphatic, C_{1-6} hydroxyaliphatic, C_{1-6} aminoaliphatic, $\quad \mathrm{C}_{1-6}$ alkoxy- C_{1-6}-aliphatic, C_{1-6} alkylamino- C_{1-6} aliphatic, C_{1-6} alkylthio- C_{1-6} aliphatic, $\mathrm{C}_{6 \cdot 10}$ aryl- C_{1-6} aliphatic, C_{1-9} heteroaryl- C_{1-6} aliphatic, $\mathrm{C}_{2 \cdot 10}$ heterocyclyl- C_{1-6}-aliphatic or C_{3-8} cycloalkyl- C_{1-6}-aliphatic;
$\mathrm{R}^{6 a}$ is H, oxo ($=\mathrm{O}$), hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, oxo, $\mathrm{R}^{7 a} \mathrm{R}^{7} \mathrm{~N}-, \mathrm{C}_{16}$ alkoxy, C_{16} alkylamino, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, mercapto or nitro.
each of R^{7} and $\mathrm{R}^{7 a}$ is independently $\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{C}_{1-6}$ aliphatic, C_{1-6} heteroalkyl, C_{166} haloaliphatic, hydroxy C_{1-6} aliphatic, amino C_{1-6} aliphatic, C_{1-6} alkoxy- C_{1-6} aliphatic, C_{1-6} alkylamino- $\mathrm{C}_{1-6 \text { aliphatic or }} \mathrm{C}_{1-6}$ alkyltho- C_{1-6}-aliphatic.
[00171] In some embodiments, each of $\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}$ and R^{4} is independently $\mathrm{H}, \mathrm{C}_{1-8}$ alkyl, C_{1-8} heteroalkyl, C_{6-10} aryl- C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-10} heterocyclyl, C_{1-9} heteroaryl or C_{6-10} aryls; or R^{1} and R^{2}, together with $\mathrm{X}-\mathrm{CH}$, form a $3-8$ membered heterocycle or carbocycle, $C_{5.12}$ fused bicycle, C_{5-12} fused heterobicycle, C_{5-12} spiro bicycle or $C_{5.12}$ spiro heterobicycle; or R^{3} and R^{4}, together with X '-CH, form a $3-8$ membered heterocycle or carbocycle, C_{5-12} fused bicycle, C_{5-12} fused heterobicycle, C_{5-12} spiro bicycle or C_{5-12} spiro heterobicycle.
[00172] In other embodiments, R^{1} and R^{2}, together with $\mathrm{X}-\mathrm{CH}$, or R^{3} and R^{4}, together with $\mathrm{X}^{\prime}-\mathrm{CH}$, form a $3-8$ membered heterocycle, C_{5-12} fused bicycle, C_{5-12} fused heterobicycle, C_{5-12} spiro bicycle or C_{5-12} spiro heterobicycle.
[00173] In other embodiments, $\mathrm{R}^{1}, \mathrm{R}^{2}$ and X-CH together form a heterocycle or fused ring or spiro ring system having one of the following structures:

or

wherein R^{15} is $\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, hydroxy, C_{1-3} alkyl, $\mathrm{C}_{1.3}$ haloalkyl, C_{1-3} alkoxy, C_{1-3} alkylamino, C_{1-3} alkylthio, C_{6-10} arylamino, C_{6-10} aryloxy, C_{1-9} heteroaryl, C_{1-9} heteroaryloxy, C_{1-9} heteroaryl- C_{1-3}-alkyl, or C_{2-10} heterocyclyl;
each n_{1} and n_{2} is independently $1,2,3$ or 4 .
[00174] In other embodiments, $\mathrm{R}^{3}, \mathrm{R}^{4}$ and X '-CH together form a heterocycle or fused ring or spiro ring system having one of the following structures:

wherein R^{15} is $\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, 1$, cyano, hydroxy, $\mathrm{C}_{1.3}$ alkyl, $\mathrm{C}_{1.3}$ haloalkyl, $\mathrm{C}_{1.3}$ alkoxy, $\mathrm{C}_{1.3}$ alkylamino, C_{1-3} alkylthio, C_{6-10} arylamino, C_{6-10} aryloxy, C_{1-9} heteroaryl, $\mathrm{C}_{1.9}$ beteroaryloxy, C_{1-9} heteroaryl- C_{1-3}-alkyl, or C_{2-10} heterocyclyl;
each n_{1} and n_{2} is independently $1,2,3$ or 4 .
[00175] In some embodiments, the compound having formula (I) of the present invention is the compound having formula (II):

wherein the structural unit of

has one of the following structures:

or

wherein each Q_{1} and Q_{2} is independently $\mathrm{NR}^{6}, \mathrm{O}, \mathrm{S}, \mathrm{C}(=\mathrm{O})$ or CH_{2};
each X^{3} and X^{4} is independently $\mathrm{O}, \mathrm{S}, \mathrm{NR}^{6}$ or $\mathrm{CR}^{7} \mathrm{R}^{7 a}$,
each of A and A is independently a bond, C_{1-6} alkylene, C_{2-6} alkenylene, C_{3-8} cycloalkylene, $\quad C_{2-10} \quad$ heterocycloalkylene, $\quad\left(\mathrm{CR}^{8} R^{8 a}\right)_{n}-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{p^{-}}$, $-\left(C R^{8} R^{8 a}\right)_{n}-N\left(R^{5}\right)-\left(C R^{8} R^{8 a}\right)_{p^{2}}$, $-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{~g}}\right)_{\mathrm{m}}-\mathrm{S}(=\mathrm{O})_{\mathrm{r}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{~d}}\right)_{\mathrm{p}}$, $-\left(C R^{8} R^{8 a}\right)_{n^{-}} C(=O)-N\left(R^{5}\right)-\left(C R^{8} R^{8 a}\right)_{p^{-}}, \quad-\left(C^{8} R^{8 a}\right)_{n}-N\left(R^{5}\right)-C(=O)-N\left(R^{5}\right)-\left(C R^{8} R^{8 a}\right)_{p^{-}}$, $-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{n}} \mathrm{C}(=\mathrm{O})-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{p^{-}}, \quad-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{n}} \mathrm{N}\left(\mathrm{R}^{5}\right)-\mathrm{S}(=\mathrm{O})_{\mathrm{r}} \mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{p}}$, $-\left(C R^{8} R^{83}\right)_{n}-N\left(R^{5}\right)-C(=O)-O-\left(C R^{8} R^{83}\right)_{p}$, or each of A and A is independently one of the following groups:

R^{5} is independently H , hydroxy, C_{1-6} alkyl, C_{1-6} heteroalkyl, C_{3-10} cycloalkyl, C_{2-10} heterocyclyl, C_{6-10} aryl, C_{1-9} heteroaryl, C_{6-10} aryl- $\mathrm{C}_{1-6}-\mathrm{alkyl}, \mathrm{C}_{1-6}$ alkoxy, C_{1-6} alkyl-OC($=0$), C_{1-6} alkyl- $\mathrm{C}(=\mathrm{O})$-, carbamoyl, C_{1-6} alkyl- $\mathrm{OS}(=\mathrm{O})_{\mathrm{r}}$, C_{1-6} alkyl- $\mathrm{S}(-\mathrm{O})_{\mathrm{r}} \mathrm{O}$-, alkyl- $\mathrm{S}(=\mathrm{O})_{\mathrm{r}}$ or aminosulfonyl;
each $\mathrm{R}^{5 a}$ is independently H , oxo $(=\mathrm{O})$, hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, $\mathrm{C}_{\mathrm{l} \sigma}$ alkylacyl, C_{1-6} alkylacyloxy, C_{1-6} alkoxyacyl, C_{1-6} alkylsulfonyl, C_{1-6} alkoxysulfonyl, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyloxy, C_{1-6} alkylsulfinyloxy, C_{1-6} alkoxy, C_{1-6} alkyl, C_{6-10} aryl,
$-\mathrm{CF}_{3},-\mathrm{OCF}_{3}$, mercapto, nitro, C_{1-6} alkylamino, C_{3-10} cycloalkyl or C_{6-10} aryloxy;
R^{6} is independently $\mathrm{H}, \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{NC}(=\mathrm{O})$-, $\quad \mathrm{R}^{7} \mathrm{OC}(=\mathrm{O})$-, $\quad \mathrm{R}^{7} \mathrm{C}(=\mathrm{O})$-, $\quad \mathrm{R}^{7} \mathrm{R}^{7 / \mathrm{NS}}(=\mathrm{O})$-, $\mathrm{R}^{7} \mathrm{OS}(=\mathrm{O})-, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})-, \quad \mathrm{R}^{7} \mathrm{R}^{72} \mathrm{NS}(=\mathrm{O})_{2}-, \quad \mathrm{R}^{7} \mathrm{OS}(=\mathrm{O})_{2}, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2}, \quad \mathrm{C}_{1-6}$ aliphatic, C_{1-6} alkoxy- C_{1-6} aliphatic, C_{1-6} alkylamino- C_{1-6} aliphatic, C_{6-10} aryl- C_{1-6} aliphatic, C_{1-9} heteroaryl- C_{1-6}-aliphatic, C_{2-10} heterocyclyl- C_{1-6}-aliphatic, C_{3-10} cycloalkyl- C_{1-6}-aliphatic, C_{6-10} aryl, $\mathrm{C}_{1.9}$ heteroaryl, C_{2-10} heterocyclyl or C_{3-10} carbocyclyl;
each $\mathrm{R}^{6 a}$ is independently H , oxo ($=\mathrm{O}$), hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, C_{1-6} alkylacyl, C_{1-6} alkylacyloxy, C_{1-6} alkoxyacyl, C_{1-6} alkylsulfonyl, C_{1-6} alkoxysulfonyl, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyloxy, C_{1-6} alkylsulfinyloxy, C_{1-6} alkoxy, C_{1-6} alkyl, C_{6-10} aryl, $-\mathrm{CF}_{3},-\mathrm{OCF}_{3}$, mercapto, nitro, $\mathrm{C}_{1.6}$ alkylamino, $\mathrm{C}_{3.10}$ cycloalkyl or C_{6-10} aryloxy;
each R^{7} and $R^{7 a}$ is independently H, C_{1-6} aliphatic, C_{1-6} heteroalkyl, C_{1-6} alkoxy- C_{1-6}-aliphatic, C_{1-6} alkylamino- C_{1-6} aliphatic, C_{6-10} aryl- C_{1-6}-aliphatic, C_{2-10} heterocyclyl- C_{1-6}-aliphatic, C_{3-10} cycloalkyl- C_{1-6}-aliphatic, C_{6-10} aryl, $\mathrm{C}_{1 \cdot 9}$ heteroaryl, $\mathrm{C}_{2 \cdot 10}$ heterocyclyl or C_{3-10} carbocyclyl; with the proviso that where R^{7} and $R^{7 a}$ are bonded to the same nitrogen atom, R^{7} and $R^{7 a}$, together with the nitrogen atom, form a substituted or unsubstituted 3-8 membered ring including spiro bicycle and fused bicycle;
each R^{8} and $R^{8 a}$ is independently H, hydroxy, cyano, nitro, $F, C l, B r, I, C_{1-6}$ alkyl, C_{1-6} heteroalkyl, C_{3-10} cycloalkyl, C_{2-10} heterocyclyl, C_{6-10} aryl, C_{1-10} heteroaryl, C_{6-10} aryl- C_{1-6}-alkyl, C_{1-6} alkoxy, C_{1-6} alkyl- $\mathrm{OC}(=\mathrm{O})$-, C_{1-6} alkyl- $\mathrm{C}(=\mathrm{O})$-, carbamoyl, C_{1-6} alkyl-OS $(=\mathrm{O})_{\mathrm{r}}, \mathrm{C}_{1-6}$ alkyl-S $(=\mathrm{O})_{\mathrm{R}} \mathrm{O}-, \mathrm{C}_{1-6}$ alkyl- $\mathrm{S}(=\mathrm{O})_{\mathrm{r}}$, or aminosulfonyl;
each n is independently $0,1,2$ or 3 ;
each p is independently $0,1,2$ or 3 ;
each k is independently 0,1 or 2 ;
each r is independently 0,1 or 2 ; and
each of Y_{4} and Y_{4} ' is independently a bond, $\mathrm{O}, \mathrm{S},-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}-,-\mathrm{CH}=\mathrm{CH}-,-\mathrm{S}(=\mathrm{O})_{r},-\mathrm{CH}_{2} \mathrm{O}$-, $-\mathrm{CH}_{2} \mathrm{~S}-,-\mathrm{CH}_{2} \mathrm{~S}(=\mathrm{O})_{\mathrm{r}}$ - or $-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{6}\right)$ -
[00176] In some embodiments, the compound having formula (I) of the present invention is the compound having formula (II):

wherein the structural unit of
 has one of the following structures:

or

wherein Q_{2} is $\mathrm{O}, \mathrm{S}, \mathrm{C}(=\mathrm{O})$ or CH_{2};
each X^{3} and X^{4} is independently $\mathrm{O}, \mathrm{S}, \mathrm{NR}^{6}$, or $\mathrm{CR}^{7} \mathrm{R}^{7 \text { a }}$;
e is $1,2,3$ or 4 ;
f is $0,1,2,3$ or 4 ;
each of A and A is independently a bond, C_{1-6} alkylene, C_{2-6} alkenylene, C_{3-8} cycloalkylene, $\quad \mathrm{C}_{2-10} \quad$ heterocycloalkylene, $\quad-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{n}-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{p}$, $-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CR}^{8} \mathrm{R}^{8 a}\right)_{\mathrm{p}^{-}}$, $-\left(C^{8} R^{8 d}\right)_{n}-C(=O)-N\left(R^{5}\right)-\left(C R^{8} R^{8 a}\right)_{p^{-}}$, $-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{n}} \mathrm{C}(=\mathrm{O})-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{8 \mathrm{a}}\right)_{\mathrm{p}}$, $-\left(C R^{8} R^{8 a}\right)_{n}-S(=O)_{r}-N\left(R^{5}\right)-\left(C R^{8} R^{8 a}\right)_{p}$, $-\left(\mathrm{CR}^{8} \mathrm{R}^{83}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\mathrm{C}(=\mathrm{O})-\mathrm{O}-\left(\mathrm{CR}^{8} \mathrm{R}^{83}\right)_{\mathrm{p}}$-, or each of A and A^{\prime} is independently one of the following groups:

R^{5} is independently H , hydroxy, C_{1-6} alkyl, C_{1-6} heteroalkyl, C_{3-10} cycloalkyl, C_{2-10} heterocyclyl, C_{6-10} aryl, C_{1-9} heteroaryl, C_{6-10} aryl- C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-6} alkyl-OC($=\mathrm{O}$)-C_{1-6} alkyl- $\mathrm{C}(=\mathrm{O})$-, carbamoyl, C_{1-6} alkyl-OS $(=\mathrm{O})_{r}^{-}, \mathrm{C}_{1-6}$ alkyl- $\mathrm{S}(=\mathrm{O})_{\mathrm{r}} \mathrm{O}$-, alkyl-S $(=\mathrm{O})_{\mathrm{r}}$ or aminosulfonyl;
each $\mathrm{R}^{5 a}$ is independently H , oxo ($=\mathrm{O}$), hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, C_{16} alkylacyl, C_{1-6} alkylacyloxy, C_{1-6} alkoxyacyl, C_{1-6} alkylsulfonyl, $\mathrm{C}_{1.6}$ alkoxysulfonyl, C_{1-6} alkylsulfinyl, $\mathrm{C}_{1.6}$ alkylsulfonyloxy,
$\mathrm{C}_{1.6}$ alkylsulfinyloxy, $\mathrm{C}_{1.6}$ alkoxy, $\mathrm{C}_{1.6}$ alkyl, $\mathrm{C}_{6.10}$ aryl, $-\mathrm{CF}_{3},-\mathrm{OCF}_{3}$, mercapto, nitro, $\mathrm{C}_{1.6}$ alkylamino, C_{3-10} cycloalkyl or C_{6-10} aryloxy;
R^{6} is independently $\mathrm{H}, \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{NC}(=\mathrm{O})$-, $\mathrm{R}^{7} \mathrm{OC}(=\mathrm{O})-, \mathrm{R}^{7} \mathrm{C}(=\mathrm{O})$-, $\mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{NS}(=\mathrm{O})$-, $\mathrm{R}^{\top} \mathrm{OS}(=\mathrm{O})-, \quad \mathrm{R}^{\top} \mathrm{S}(=\mathrm{O})-, \quad \mathrm{R}^{\top} \mathrm{R}^{\top} \mathrm{NS}(=O)_{2}$, $\quad \mathrm{R}^{\top} \mathrm{OS}(=\mathrm{O})_{2}-, \quad \mathrm{R}^{\top} \mathrm{S}(=\mathrm{O})_{2}-, \quad \mathrm{C}_{1-6}$ aliphatic, C_{1-6} alkoxy- $\mathrm{C}_{1.6}$-aliphatic, C_{1-6} alkylamino- $\mathrm{C}_{1.6-}$-aliphatic, C_{6-19} aryl- $\mathrm{C}_{1-6-2 l i p h a t i c, ~} \mathrm{C}_{1-9}$ heteroaryl- $\mathrm{C}_{1.6}$-aliphatic, $\mathrm{C}_{2 \cdot 10}$ heterocyclyl- C_{1-6}-aliphatic, C_{3-10} cycloalkyl- $\mathrm{C}_{1.6}$-aliphatic, C_{1-6} aryl, $\mathrm{C}_{1.9}$ heteroaryl, C_{2-10} heterocyclyl or $\mathrm{C}_{3.10}$ carbocyclyl;
each $\mathrm{R}^{6 a}$ is independently H , axo $(=0)$, hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, $\mathrm{C}_{\mathrm{i}-6}$ alkylacyl, C_{1-6} alkylacyloxy, C_{1-6} alkoxyacyl, C_{1-6} alkylsulfonyl, C_{1-6} alkoxysulfonyl, C_{1-6} alkylsulfinyl, $\mathrm{C}_{1.6}$ alkyisulfonyloxy, $\mathrm{C}_{1.6}$ alkylsulfinyloxy, $\mathrm{C}_{1.6}$ alkoxy, $\mathrm{C}_{1.6}$ alkyl, $\mathrm{C}_{6.10}$ aryl, $-\mathrm{CF}_{3}$, - OCF $_{3}$, mercapto, nitro, $\mathrm{C}_{\mathrm{k}-6}$ alkylamino, $\mathrm{C}_{3 \text { - }-10}$ cycloalkyl or C_{6-10} aryloxy;
each R^{7} and $R^{7 a}$ is independently H, C_{1-6} aliphatic, C_{1-6} heteroalkyl, $C_{1.6}$ alkoxy- $\mathrm{C}_{1.6}$-aliphatic, C_{1-6} alkylamino- $\mathrm{C}_{1.6-\text { aliphatic, }} \mathrm{C}_{1 \cdot 6}$ aryl- $\mathrm{C}_{1.6}$-aliphatic, $\mathrm{C}_{2 \cdot 10}$ heterocyclyl- C_{1-6}-aliphatic, C_{3-10} cycloalkyl- C_{1-6} aliphatic, C_{6-10} aryl, C_{1-9} heteroaryl, C_{2-10} heterocyclyl or C_{3-10} carbocyclyl; with the proviso that where R^{7} and $\mathrm{R}^{7 a}$ are bonded to the same nitrogen atom, R^{7} and R^{73}, together with the nitrogen atom, form a substituted or unsubstituted 3-8 membered ring including spiro bicycle and fused bicycle;
each R^{8} and R^{83} is independently H , hydroxy, cyano, nitro, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{C}_{1-6}$ alkyl, C_{1-6} heteroalkyl, $\mathrm{C}_{3 \cdot 10}$ cycloalkyl, $\mathrm{C}_{2 \cdot 10}$ heterocyclyl, C_{6-10} aryl, $\mathrm{C}_{1 \cdot 10}$ heteroaryl, $\mathrm{C}_{6 \cdot 10}$ aryl- C_{1-6}-alkyl, C_{1-6} alkoxy, C_{1-6} alkyl-OC($=0$)-, C_{1-6} alkyl- $\mathrm{C}(=\mathrm{O})$-, carbamoyl, C_{1-6} alkyl-OS $(=O)_{r}, \mathrm{C}_{1-6}$ alkyl-S $\left.=0\right)_{r} \mathrm{O}-\mathrm{C}_{1-6}$ alkyl- $\mathrm{S}(=\mathrm{O})_{\mathrm{r}}$, or aminosulfonyl;
each n is independently $0,1,2$ or 3 ;
each p is independently $0,1,2$ or 3 ;
each k is independently 0,1 or 2 ;
each r is independently 0,1 or 2 , and
each of Y_{4} and Y_{4} ' is independently a bond, $\mathrm{O}, \mathrm{S},-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}-,-\mathrm{CH}=\mathrm{CH}-, \mathrm{S}(=\mathrm{O})_{r}-,-\mathrm{CH}_{2} \mathrm{O}$-, $-\mathrm{CH}_{2} \mathrm{~S}-,-\mathrm{CH}_{2} \mathrm{~S}(=\mathrm{O})_{\mathrm{r}}$ - or $-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{6}\right)$ -
[00177] In other embodiments, the compound having formula () of the present invention is the compound having formula (IV):

wherein each of $A, A^{\prime}, Y, Y^{\prime}, Q_{2}$ and $R^{5 a}$ is as defined in formula (I).
[00178] In other embodiments, the compound having formula () of the present invention is the compound having formula (V):

wherein each of $A, A^{\prime}, Y, Y, R^{5 a}$ and f is as defined in formula (B), and
each of Q_{2} and Q_{3} is independently $\mathrm{O}, \mathrm{S}, \mathrm{C}(=\mathrm{O}), \mathrm{NR}^{6}$, or CH_{2}.
[00179] In other embodiments, the compound has formula (VI):

wherein each of A, A^{\prime}, Y, Y, $Q_{2}, R^{5 a}$ and f is as defined in formula (I); and e is $1,2,3$ or 4 .
[00180] In some embodiments, each of Y and Y ' is independently a group derived from an α-amino acid.
[00181] In other embodiments, the naturally occurring or commercially available α-amino acid is isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophane, valine, alanine, asparagine, aspartic acid, glutamic acid, glutamine, proline, serine, p-tyrosine, arginine, histidine, cysteine, glycine, sarcosine, N, N-dimethylglycine, homoserine, norvaline, norleucine, ormithine, homocysteine, homophenylalanine, phenylglycine, o-tyrosine, m-tyrosine or hydroxyproline.
[00182] In other embodiments, the a-amino acid is in the D configuration.
[00183] In other embodiments, each of Y and Y is independently
 $-\left[U-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)^{-} \mathrm{N}\left(\mathrm{R}^{10}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)\right]_{\mathrm{k}}-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)-\mathrm{O}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{t} \mathrm{R}^{12}$
[00184] In other embodiments, each of Y and Y is independently $-\left[\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 a}\right)_{k}-\mathrm{N}\left(\mathrm{R}^{10}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)\right]_{k}-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{k}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right) r^{12}$.
[00185] In other embodiments, each of Y and Y ' is independently
$-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)-\mathrm{N}\left(\mathrm{R}^{10}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 a}\right)-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{t}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{t} \mathrm{R}^{12}$.
[00186] In other embodiments, each of Y and Y^{\prime} is independently $-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{e}}-\mathrm{N}\left(\mathrm{R}^{14}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{L}} \cdot \mathrm{R}^{12}$
[00187] In other embodiments, each of Y and Y is independently

[00188] In other embodiments, each of Y and Y is independently $-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 a}\right)_{r}-\mathrm{N}\left(\mathrm{R}^{10}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{92}\right)_{-} \mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{H}} \mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{R} \mathrm{R}^{12}$.
[00189] In other embodiments, each of Y and Y , is independently

[00190] In other embodiments, each of Y and Y is independently $-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)-\mathrm{N}\left(\mathrm{R}^{19}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right) \mathrm{r} \mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)-\mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)-\mathrm{R}^{12}$.
[00191] In other embodiments, each of Y and Y is independently $-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{t}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right) \mathrm{t}^{12}$.
[00192] In other embodiments, each of Y and Y is independently $-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 a}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{n}}-\mathrm{C}(=\mathrm{O})-\mathrm{R}^{13}$.
[00193] In other embodiments, each of Y and Y is independently $-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{92}\right)_{\mathrm{R}}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\mathrm{C}(=\mathrm{O})-\mathrm{R}^{13}$.
[00194] In other embodiments, each of Y and Y is independently $-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{R}}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{n}}-\mathrm{C}(=\mathrm{O})-\mathrm{O}-\mathrm{R}^{13}$.
[00195] In other embodiments, each of Y and Y is independently $-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{m}}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\mathrm{C}(=0)-\mathrm{O}-\mathrm{R}^{13}$.
[00196] In other embodiments, each of Y and Y^{\prime} is independently $-U-\left(\mathrm{CR}^{9} \mathrm{R}^{92}\right) \mathrm{r}^{12}$.
[00197] In other embodiments, each of Y and Y is independently $-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{92}\right)_{\mathrm{t}}-\mathrm{R}^{12}$.
[00198] In other embodiments, each of Y and Y is independently - 88 -
$-\left[\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)-\mathrm{N}\left(\mathrm{R}^{10}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)\right]_{k}-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)-\mathrm{O}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right) r^{-\mathrm{R}^{12} .}$
[00199] In other embodiments, each of Y and Y^{\prime} is independently $-\mathrm{U}\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{t}-\mathrm{N}\left(\mathrm{R}^{10}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{\mathrm{t}} \mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)-\mathrm{O}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)_{t} \mathrm{R}^{12}$.
[00200] In other embodiments, each of Y and Y is independently $-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{t} \mathrm{~N}\left(\mathrm{R}^{10}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{r} \mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{-} \mathrm{O}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{t} \mathrm{R}^{12}$.
[00201] In other embodiments, each of Y and Y is independently $-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{e}} \mathrm{O}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right) \cdot \mathrm{R}^{12}$.
[00202] In other embodiments, each of X and Y , is independently $-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)-\mathrm{O}-\left(\mathrm{CR}^{9} \mathrm{R}^{99}\right)-\mathrm{R}^{12}$.
[00203] In other embodiments, each of Y and Y is independently $-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9}\right)_{\mathrm{n}}-\mathrm{NR}^{11}-\mathrm{R}^{12}$, wherein R^{11} and R^{12}, together with the nitrogen atom they are attached to, form a $4-7$ membered ring
[00204] In other embodiments, each $R^{9}, R^{9 a}, R^{10}$ and R^{11} is independently $H, C_{1.6}$ alkyl, C_{1-6} heteroalkyl, C_{3-10} cycloalkyl, C_{2-10} heterocyclyl, C_{6-10} aryl, C_{1-9} heteroaryl, C_{6-10} aryl- C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} hydroxyalkyl, C_{6-10} aryl- C_{1-6}-alkyl, C_{1-9} heteroaryl- C_{1-6} alkyl, C_{2-10} beterocyclyl- C_{1-6} alkyl, or $\mathrm{C}_{3.8}$ cycloalkyl- C_{1-6} alkyl;
R^{12} is independently $\mathrm{R}^{13 \mathrm{a}} \mathrm{R}^{13} \mathrm{~N}-, \mathrm{C}(=\mathrm{O}) \mathrm{R}^{13},-\mathrm{C}(-\mathrm{S}) \mathrm{R}^{13},-\mathrm{C}(=\mathrm{O})-\mathrm{O}-\mathrm{R}^{13},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}$, $-\mathrm{OC}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}, \quad-\mathrm{OC}(=\mathrm{O}) \mathrm{OR}^{13}, \quad-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=O) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}, \quad-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{13 \mathrm{a}}$, $-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O})-\mathrm{R}^{13 \mathrm{a}}, \mathrm{R}^{13} \mathrm{R}^{132} \mathrm{~N}-\mathrm{S}(=\mathrm{O})_{2^{-}}, \mathrm{R}^{13} \mathrm{~S}(=\mathrm{O})_{2}-, \mathrm{R}^{13} \mathrm{~S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{13 \mathrm{a}}\right)-, \mathrm{R}^{13} \mathrm{OS}(=\mathrm{O})_{2^{-}}, \mathrm{C}_{1-6}$ alkyl, C_{166} heteroalkyl, $\mathrm{C}_{3.10}$ cycloalkyl, $\mathrm{C}_{2 \cdot 10}$ heterocyclyl, $\mathrm{C}_{6 \cdot 10}$ aryl, $\mathrm{C}_{1.5}$ heteroaryl, or $\mathrm{C}_{6 \cdot 10}$ aryl-C C_{1-6}-alkyl;
or R^{11} and R^{12}, together with the nitrogen atom they are attached to, form a $4-7$ membered ring;
each R^{13} and $\mathrm{R}^{13 a}$ is independently $\mathrm{H}, \mathrm{C}_{1-6}$ alkyl, C_{1-6} heteroalkyl, C_{3-10} cycloalkyl,
C_{2-10} heterocyclyl, C_{6-10} aryl, C_{1-9} heteroaryl, or C_{6-10} aryl- C_{1-6}-alkyl.
[00205] In other embodiments, each $\mathrm{R}^{9}, \mathrm{R}^{9 \mathrm{a}}, \mathrm{R}^{10}$ and R^{11} is independently H , methyl, ethyl, isopropyl, cyclohexyl, isobutyl or phenyl;
R^{12} is independently $-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13},-\mathrm{C}(=\mathrm{O})-\mathrm{O}-\mathrm{R}^{13},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{133}$, methyl, ethyl, propyl, phenyl, cyclohexyl, morpholinyl or piperidinyl;
or R^{11} and R^{12}, together with the nitrogen atom they are attached to, form a $4-7$ membered ring;
each R^{13} and $R^{13 a}$ is independently H, methyl, ethyl, propyl, phenyl, cyclohexyl, morpholinyl or piperidinyl.
[00206] In other embodiments, the compound having formula (1) of the present invention is the compound having formula (VII):

(VI),
wherein each of R^{14} and $\mathrm{R}^{14 \mathrm{a}}$ is independently $\mathrm{H}, \mathrm{C}_{1-6}$ alkyl, C_{1-6} haloalkyl, C_{1-6} hydroxyalkyl, C_{1-6} heteroalkyl, C_{6-10} aryl, C_{1-9} heteroaryl, C_{2-10} heterocyclyl, C_{3-8} cycloalkyl, C_{6-10} aryl- C_{1-6} alkyl, C_{1-9} heteroaryl- C_{1-6} alkyl, C_{2-10} heterocyclyl- C_{1-6} alkyl, or C_{3-8} cycloalkyl-C C_{1-6} alkyl.
[00207] In other embodiments, the compound having formula (I) of the present invention is the compound having formula (VII):

(VII),
wherein each of R^{14} and $R^{14 a}$ is independently H, C_{1-3} hydroxyalkyl, methyl, ethyl, isopropyl, isobutyl, tert-butyl, allyl, propargyl, trifluoroethyl, phenyl, pyranyl, morpholinyl, $-\mathrm{NR}^{7} \mathrm{R}^{7 a}$, benzyl, piperazinyl, cyclopentyl, cyclopropyl, cyclohexyl, or $\mathrm{C}_{1.9}$ heteroaryl.
[00208] In other embodiments, the compound having formula () of the present invention is the compound having formula (VII'):

(VII'),
wherein each of R^{14} and $\mathrm{R}^{14 \mathrm{a}}$ is independently $\mathrm{H}, \mathrm{C}_{1.3}$ hydroxyalkyl, methyl, ethyl,
isopropyl, isobutyl, tert-butyl, allyl, propargyl, trifluoroethyl, phenyl, pyranyl, morpholinyl, $-\mathrm{NR}^{7} \mathrm{R}^{7 \mathrm{a}}$, benzyl, piperazinyl, cyclopentyl, cyclopropyl, cyclohexyl, or $\mathrm{C}_{\mathrm{i}-9}$ heteroaryl
[00209] In some embodiments, the compound having formula (I) of the present invention is the compound having formula (X'):

(IX'),
wherein each of R^{14} and $\mathrm{R}^{14 \mathrm{a}}$ is independently $\mathrm{H}, \mathrm{C}_{1-6}$ alkyl, C_{1-6} haloalkyl, C_{1-5} hydroxyalkyl, C_{1-6} heteroalkyl, C_{6-10} aryl, C_{1-9} heteroaryl, C_{2-10} heterocyclyl, C_{3-8} cycloalkyl, C_{6-10} aryl- C_{1-6}-alkyl, C_{1-9} heteroaryl- C_{1-6}-alkyl, C_{2-10} heterocyclyl- C_{1-6} alkyl or C_{3-8} cycloalkyl- $\mathrm{C}_{\mathrm{i}-\mathrm{b}}$ alkyl;
each n_{2} is independently $1,2,3$ or 4 .
[00210] In some embodiments, the compound having formula (I) of the present invention is the compound having formula (IX):

wherein each of R^{14} and $\mathrm{R}^{14 a}$ is independently $\mathrm{H}, \mathrm{C}_{1-6}$ alkyl, C_{1-6} haloalkyl, C_{1-6} hydroxyalkyl, C_{166} heteroalkyl, $\mathrm{C}_{6 \cdot 10}$ aryl, C_{1-9} heteroaryl, $\mathrm{C}_{2 \cdot 10}$ heterocyclyl, C_{3-8} cycloalkyl, C_{6-10} aryl- C_{1-6}-alkyl, C_{1-9} heteroaryl- C_{1-6}-alkyl, C_{2-10} heterocyclyl- C_{1-6} alkyl or C_{3-8} cycloalkyl-C $\mathrm{C}_{\text {- }- \text { alkyl; }}$
each n_{2} is independently $1,2,3$ or 4 .
[00211] In some embodiments, the compound having formula (I) of the present invention is the compound having formula (X^{\prime}):

$\left(X^{\prime}\right)$,
wherein each of R^{14} and $\mathrm{R}^{14 a}$ is independently $\mathrm{H}, \mathrm{C}_{1-6}$ alkyl, C_{1-6} haloalkyl, C_{1-6} hydroxyalkyl, C_{1-6} heteroalkyl, C_{6-10} aryl, C_{1-9} heteroaryl, C_{2-10} heterocyclyl,
C_{3-8} cycloalkyl, C_{6-10} aryl- C_{1-6}-alkyl, C_{1-9} heteroaryl- C_{1-6} alkyl, C_{2-10} heterocyclyl- C_{1-6}-alkyl or C_{3-8} cycloalkyl-C C_{1-6} alkyl;
each n_{1} is independently $1,2,3$ or 4 .
[00212] In some embodiments, the compound having formula (1) of the present invention is the compound having formula (X):

wherein each of R^{14} and $\mathrm{R}^{14 a}$ is independently $\mathrm{H}, \mathrm{C}_{1-6}$ alkyl, C_{1-6} haloalkyl, C_{1-6} hydroxyalkyl, C_{1-6} heteroalkyl, $\mathrm{C}_{6.10}$ aryl, $\mathrm{C}_{1.9}$ heteroaryl, $\mathrm{C}_{2.10}$ heterocyclyl, $\mathrm{C}_{3.8}$ cycloalkyl, C_{6-10} aryl- C_{1-6}-alkyl, C_{1-9} heteroaryl- C_{1-6} alkyl, C_{2-10} heterocyclyl- C_{1-6}-alkyl or C_{3-3} cycloalkyl-C $\mathrm{C}_{\text {-6 }}$-alkyl;
each n_{1} is independently $1,2,3$ or 4 .
[00213] In some embodiments, the compound having formula (I) of the present invention is the compound having formula (XI):

wherein $\mathrm{R}^{5 a}$ is H , methyl, ethyl, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I ;
Q_{1} is $\mathrm{CH}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{O}, \mathrm{S}$, or NH ;
Q_{2} is $\mathrm{CH}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{CF}_{2}, \mathrm{O}$, or S ;
each of R^{14} and $\mathrm{R}^{14 a}$ is independently methyl, ethyl, phenyl, cyclohexyl, 1-methylpropyl, isopropyl or tert-butyl;
each of R^{16} and $R^{16 a}$ is independently hydroxy, methoxy, ethoxy, phenoxy,
 lert-butoxy;
wherein the structural unit of

has one of the following structures:

each of A and A^{\prime} is independently

wherein $\mathrm{R}^{1}, \mathrm{R}^{2}$ and $\mathrm{N}-\mathrm{CH}$ together form a heterocycle or fused ring or spiro ring system having one of the following structures:

wherein R^{3}, R^{4} and N -CH together form a heterocycle or fused ring or spiro ring system having one of the following structures:

[00214] In other embodiments, the compound having formula (I) of the present invention is the compound having formula (XI):

(XII),
wherein i is 1,2 , or 3 ;
$\mathrm{R}^{\text {ja }}$ is H or methyl;
each of Q_{1} and Q_{2} is independently $\mathrm{CH}_{2}, \mathrm{CF}_{2}, \mathrm{O}$ or $\mathrm{C}(=\mathrm{O})$;
each of R^{14} and $R^{14 a}$ is independently methyl, ethyl, isobutyl, cyclohexyl, phenyl or isopropyl;
each of R^{15} and $\mathrm{R}^{15 \mathrm{a}}$ is independently $\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, methyl, ethyl, isopropyl or tert-butyl; each of R^{17} and $\mathrm{R}^{17 \mathrm{a}}$ is independently methyl, phenyl or ethyl, and
each of A and A ' is independenty

[00215] In some embodiments, non-limiting examples of compounds disclosed herein, or a stereoisomer, a geometric isomer, a tautomer, an N-oxide, a hydrate, a solvate, or a pharmaceutically acceptable salt thereof, are shown in the following:

(3),

(9),

(16),

(17),

(19),

(28),

-102 -

7

[00216] Provided herein includes the use of a compound disclosed herein, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment either acutely or chronically of HCV infection in a patient, including those described herein. Provided herein is use of the compound in the manufacture of an anti- HCV medicament. Provided berein is the use of the compound disclosed herein, in the manufacture of a medicament to attenuate, prevent, manage or treat HCV -mediated disease, especially HCV's NS5A protein. Also provided herein is a pharmaceutical composition comprising a therapeutically effective amount of a compound of formula (I) in association with at least one phamaceutically acceptable carrier, adjuvant or diluent.
[00217] Unless otherwise stated, all stereoisomers, geometric isomers, tautomers, nitrogen oxides, hydrates, solvates, metabolites, salts, and pharmaceutically acceptable prodrugs of the compounds disclosed herein are within the scope of the invention.
[00218] In certain embodiments, the salt is a pharmaceutically acceptable salt. The phrase "pharmaceutically acceptable" refers to that the substance or composition must be compatible chemically and/or toxicologically, with the other ingredients comprising a Formulation, and/or the mammal being treated therewith.
[00219] The compounds disclosed herein also include salts of such compounds which are not necessarily pharmaceutically acceptable salts, and which may be useful as intermediates for preparing and/or purifying compounds of formula (I) and/or for separating enantiomers of compounds of formula (I).
[00220] If the compound disclosed herein is a base, the desired salt may be prepared by any suitable method available in the art, for example, treatment of the free base with an inorganic acid, such as hydrochlonic acid, hydrobromic acid, sulfuric acid, nittic acid, phosphoric acid, and the like. Or with an organic acid, such as acetic acid, maleic acid, succinic acid, mandelic acid, fumaric acid, malonic acid, pyruvic acid, oxalic acid, glycolic acid, salicylic acid; a pyranosidyl acid, such as glucuronic acid or galacturonic acid; an alpha hydroxy acid, such as citric acid or tartaric acid, an amino acid, such as aspartic acid or glutamic acid, an aromatic acid,
such as benzoic acid or cinnamic acid, a sulfonic acid, such as p-toluenesulfonic acid or ethanesulfonic acid, and the like.
[00221] If the compound disclosed herein is an acid, the desired salt may be prepared by any suitable method, for example, treatment of the free acid with an inorganic or organic base, such as an amine (primary, secondary or tertiary), an alkali metal hydroxide or alkaline earth metal hydroxide, and the like. Some non-limiting examples of suitable salts include organic salts derived from amino acids, such as glycine and arginine, ammonia, primary, secondary, and tertiary amines, and cyclic amines, such as piperidine, morpholine and piperazine, and inorganic salts derived from sodium, calcium, potassium, magnesium, manganese, iron, copper, zinc, aluminum, lithium, and the like.

COMPOSITION, FORMULATIONS AND ADMINISTRATION OF COMPOUNDS OF THE INVENTION

[00222] When it is possible that, for use in therapy, therapeutically effective amounts of a compound of formula (I), as well as pharmaceutically acceptable salts thereof, may be administered as the raw chemical, it is possible to present the active ingredient as a pharmaceutical compositions, which include therapeutically effective amounts of compounds of formula (I) or pharmaceutically acceptable salts thereof, and one or more pharmaceutically acceptable carriers, diluents, or excipients. The term "therapentically effective amount" refers to the total amount of each active component that is sufficient to show a meaningful patient benefit (e.g., a reduction in viral load). When applied to individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially, or simultaneously. The compounds of formula (I) and pharmaceutically acceptable salts thereof, are as described above. The camer(s), diluents(s), or excipient(s) must be acceptable in the sense of being compatible with the other ingredients of the formulation and not deleterious to recipient thereof. In accordance with another aspect of the present disclosure there is also provided a process for the preparation of a pharmaceutical formulation including admixing a compound of formula (I), or a pharmaceutically acceptable salt thereof, with one or more pharmaceutically acceptable carriers, diluents, or excipients. The term "pharmaceutically acceptable" refers to those compounds, materials, composition, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of patients without
excessive toxicity, irritation, allergic response, or other problem or complication commensurate with a reasonable benefit/risk ratio, and are effective for their intended use.
[00223] Pharmaceutical formulations may be presented in unit dose forms containing a predetermined amount of active ingredient per unit dose. Dosage levels of between about 0.01 and about 250 milligram per kilogram (" $\mathrm{mg} / \mathrm{kg}$ ") body weight per day, preferably between about 0.05 and about $100 \mathrm{mg} / \mathrm{kg}$ body weight per day of the compounds of the present disclosure are typical in a monotherapy for the prevention and treatment of HCV mediated disease. Typically, the pharmaceutical compositions of this disclosure will be administered from about 1 to about 5 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy. The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending on the condition being treated, the severity of the condition, the time of administration, the route of administration, the rate of excretion of the compound employed, the duration of treatment, and the age, gender, weight, and condition of the patient. Preferred unit dosage formulations are those containing a daily dose or sub-dose, as herein above recited, or an appropriate fraction thereof, of an active ingredient. Treatment may be initiated with small dosages substantially less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached. In general, the compound is most desirably administered at a concentration level that will generally afford antivirally effective results without causing any harmful or deleterious side effects.
[00224] When the compositions of this disclosure comprise a combination of a compound of the present disclosure and one or more additional therapeutic or prophylactic agent, both the compound and the additional agent are usually present at dosage levels of between about 10 to 150%, and more preferably between about 10 to 80% of the dosage normally administered in a monotherapy regimen. Pharmaceutical formulations may be adapted for administration by any appropriate route, for example by the oral (including buccal or sublingual), rectal, nasal, topical (including buccal, sublingual, or transdermal), vaginal, or parenteral (including subcutaneous, intracutaneous, intramuscular, intra-articular, intrasynovial, intrasternal, intrathecal, intralesional, intravenous, or intradermal injections or infusions) route. Such formulations may be prepared by any method known in the art of pharmacy, for example by bringing into association the active ingredient with the carrier(s) or excipient(s). Oral administration or administration by injection is preferred. as discrete units such as capsules or tablets; powders or granules; solution or suspensions in aqueous or non-aqueous liquids; edible foams or whips; or oil-in-water liquid emulsions or water-in-oil emulsions.
[00226] For instance, for oral administration in the form of a tablet or capsule, the active drug component can be combined with an oral, non-toxic pharmaceutically acceptable inent carrier such as ethanol, glycerol, water, and the like. Powders are prepared by comminuting the compound to a suitable fine size and mixing with a similarly comminuted pharmaceutical carrier such as an edible carbohydrate, for example, starch or mannitol. Flavoring, preservative, dispersing, and coloring agent can also be present.
[00227] Capsules are made by preparing a powder mixture, as described above, and filling formed gelatin sheaths. Glidants and lubricants such as colloidal silica, talc, magnesium stearate, calcium stearate, or solid polyethylene glycol can be added to the powder mixture before the filling operation. A disintegrating or solubilizing agent such as agar-agar, calcium carbonate, or sodium carbonate can also be added to improve the availability of the medicament when the capsule is ingested.
[00228] Moreover, when desired or necessary, suitable binders, lubricants, disintegrating agents, and coloring agents can also be incorporated into the mixture. Suitable binders include starch, gelatin, natural sugars such as glucose, β-lactose, com sweetener, natural gum and synthetic resin, such as Arabic gum, tragacanth or sodium alginate, carboxymethylcellulose, polyethylene glycol, and the like. Lubricants used in these dosage forms include sodium oleate, sodium chloride, and the like. Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum, and the like. Tablets are fomulated, for example, by preparing a powder mixture, granulating or slugging, adding a lubricant and disintegrant, and pressing into tablets. A powder mixture is prepared by mixing the compound, suitable comminuted, with a diluent or base as described above, and optionally, with a binder such as carboxymethylcellulose, an alginate, gelatin, or polyvinyl pyrrolidone, a solution retardant such as paraffin, a resorption accelerator such as a quaternary salt and/or and absorption agent such as bentonite, kaolin, or dicalcium phosphate. The powder mixture can be granulated by wetting with a binder such as syrup, starch paste, acadiamucilage, or solution of cellulosic
or polymeric materials and forcing through a screen. As an alternative to granulation, the powder mixture can be run through the tablet machine and the result is imperfectly formed slugs broken into granules. The gramules can be lubricated to prevent sticking to the tablet forming dies by means of the addition of stearic acid, a stearate salt, talc, or mineral oll. The lubricated mixture is then compressed into tablets. The compounds of the present disclosure can also be combined with a free flowing inert carier and compressed into tablets directly without going through the granulating or slugging steps. A clear or opaque protective coating consisting of a sealing coat of shellac, a coating of sugar or polymeric material, and a polish coating of wax can be provided. Dyestuffs can be added to these coatings to distinguish different unit dosages.
[00229] Oral fluids such as solution, syrups, and elixirs can be prepared in dosage unit form so that a given quantity contains a predetermined amount of the compound. Syrups can be prepared by dissolving the compound in a suitably flavored aqueous solution, while clixirs are prepared through the use of a non-toxic vehicle. Solubilizers and emulsifiers such as ethoxylated isostearyl alcohols and polyoxyethylene sorbitol ethers, preservatives, flavor additives such as peppermint oil or natural sweeteners, or saccharin or other artificial sweeteners, and the like can also be added.
[00230] Where appropnate, dosage unit formulations for oral administration can be microencapsulated. The formulation can also be prepared to prolong or sustain the release as for example by coating of embedding particulate material in polymers, wax, or the like.
[00231] The compounds of formula (I), and pharmaceutically acceptable salts thereof, can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine, or phosphatidylcholines.
[00232] The compounds of formula (I) and pharmaceutically acceptable salts thereof may also be delivered by the use of monoclonal antibodies as individual carrier to which the compound molecules are coupled. The compounds may also be coupled with soluble polymers as targetable drug carriers. Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamidephenol, polyhydroxyethylaspartamidephenol,
or polyethyleneoxidepolylysine substituted with palmitoyl residues. Furthermore, the compounds may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, poly(e-caprolactone), polyhydroxy butynic acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates, and cross-linked or amphipathic block copolymers of hydrogels

USES OF THE COMPOUNDS AND COMPOSITIONS OF THE INVENTION

[00233] According to another aspect, the invention features pharmaceutical compositions that include a compound of formula (I), a compound listed herein, and a phamaceutically acceptable camier, adjuvant, or vehicle.
[00234] The amount of the compound in the compositions disclosed herein is effective to detectably inhibit the function of a target to treat HCV infection, wherein the target is selected from HCV metalloproteinase, HCV serine protemase, HCV polymerase, HCV helicase, non-structural protein NS4B, HCV entry, HCV assembly, HCV egress, non-structural protein NS5A and inosine5'-monophosphate dehydrogenase (MPDH).
[00235] Also provided herein is a method, which comprises the compound or the pharmaceutical composition disclosed herein, further comprising administering to the patient additional anti-HCV agents (combination therapy), wherein the anti-HCV agent is interferon, ribavinin, $\Pi-2, \Pi-6, \Pi-12$, a compound that enhances the development of a type 1 helper T cell response, interfering RNA, anti-sense RNA, imiquimod, an inosine-5'-monophosphate dehydrogenase inbibitor, amantadine, rimantadine, boceprevir, telaprevir, daclatasvir, or a combination thereof and wherein the interferon is interferon $\alpha-2 b$, pegylated interferon a, interferon $\alpha-2 a$, pegylated interferon $\alpha-2 a$, consensus interferon $-\alpha$, or interferon γ.
[00236] The treatment method that includes administering a compound or composition disclosed herein can further include administering to the patient an additional anti-HCV agent, wherein the additional anti-HCV drug is administered together with a compound or composition disclosed herein as a single dosage form or separately from the compound or composition as part of a multiple dosage form. The additional anti-HCV agent may be administered at the same time as a compound disclosed herein or at a different time. In the latter case, administration may be staggered by, for example, 6 hours, 12 hours, 1
day, 2 days, 3 days, 1 week, 2 weeks, 3 weeks, 1 month, or 2 months.
[00237] In certain embodiments disclosed herein, an "effective amount" or "effective dose" of the compound or pharmaceutically acceptable composition is that amount effective for treating or lessening the severity of one or more of the aforementioned disorders. The compounds and compositions, according to the method disclosed herein, may be administered using any amount and any route of administration effective for treating or lessening the severity of the disorder or disease. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the infection, the particular agent, its mode of administration, and the like. A compound or composition can also be administered with one or more other therapeutic agents, as discussed above.

SPECEIC APPLICATION METHOBS

GENERAL SYNTHETRC PROCEDURES

[00238] Generally, the compounds disclosed herein may be prepared by methods described herein, wherein the substituents are as defined for formula (I) above, except where further noted. The following non-limiting schemes and examples are presented to further exemplify the invention.
[00239] Persons skilled in the art will recognize that the chemical reactions described may be readily adapted to prepare a number of other compounds disclosed herein, and altemative methods for preparing the compounds disclosed herein are deemed to be within the scope disclosed herein. For example, the synthesis of non-exemplified compounds according to the invention may be successfully performed by modifications apparent to those skilled in the art, eg, by appropriately protecting interfering groups, by utilizing other suitable reagents known in the art other than those described, andor by making routine modifications of reaction conditions. Altematively, other reactions disclosed herein or known in the art will be recognized as having applicability for preparing other compounds disclosed herein.
[00240] In the examples described below, unless otherwise indicated all temperatures are set forth in degrees Celsius. Reagents were purchased from commercial suppliers such as Aldrich Chemical Company, Inc., Arco Chemical Company and Alfa Chemical Company,
and were used without further purification unless otherwise indicated. Common solvents were purchased from commercial suppliers such as Shantou XiLong Chemical Factory, Guangdong Guanghua Reagent Chemical Factory Co. Ltd., Guangzhou Reagent Chemical Factory, Tianjin YuYu Fine Chemical Ltd, Qingdao Tenglong Reagent Chemical Ltd., and Qingdao Ocean Chemical Factory.
[00241] Anhydrous THF, dioxane, toluene, and ether were obtained by refluxing the solvent with sodium. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and CHCl_{3} were obtained by refluxing the solvent with CaH_{2}. EtOAc, PE, hexane, DMAC and DMF were treated with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ prior to use.
[00242] The reactions set forth below were done generally under a positive pressure of nitrogen or argon or with a drying tube (unless otherwise stated) in anhydrous solvents, and the reaction flasks were typically fitted with rubber septa for the introduction of substrates and reagents via syringe. Glassware was oven dried and/or heat dried.
[00243] Column chromatography was conducted using a silica gel column. Silica gel (300-400 mesh) was purchased from Qingdao Ocean Chemical Factory. ${ }^{1} \mathrm{H}$ NMR spectra were obtained as CDCl_{3}, d_{6}-DMSO, $\mathrm{CD}_{3} \mathrm{OD}$ or d_{6}-acetone solutions (reported in ppm), using TMS (0 ppm) or chloroform (7.25 ppm) as the reference standard. When peak multiplicities are reported, the following abbreviations are used: s (singlet), d (doublet), t (triplet), m (multiplet), br (broadened), dd (doublet of doublets), dt (doublet of triplets). Coupling constants, when given, are reported in Hertz (Hz).
[00244] Low-resolution mass spectral (MS) data were determined on an Agilent 6320 Series LC-MS spectroneter equipped with G1312A binary pumps and a G1316A TCC (Temperature Control of Column, maintained at $30^{\circ} \mathrm{C}$). A G1329A autosampler and G1315B DAD detector were used in the analysis. An ESI source was used on the LC-MS spectrometer.
[00245] Low-resolution mass spectral (MS) data were determined on an Agilent 6120 Series LC-MS spectrometer equipped with G1311A Quatemary pump and a G1316A TCC (Temperature Control of Column, maintained at $30^{\circ} \mathrm{C}$). A G1329A autosampler and a G1315D DAD detector were used in the analysis. An ESI source was used on the LC-MS spectrometer. column ($2.1 \times 30 \mathrm{~mm}, 5$ micron). Injection volume was decided by the sample concentration. The flow rate is $0.6 \mathrm{~mL} / \mathrm{min}$. The HPLC peaks were recorded by UV-Vis wavelength at 210 nm and 254 nm . The mobile phase was 0.1% formic acid in $\mathrm{CH}_{3} \mathrm{CN}$ (phase A) and 0.1% formic acid in ultrapure water (phase B). The gradient condition is shown in Table 1:
[00247] Table I

Time (min)	$\mathrm{A}\left(\mathrm{CH}_{3} \mathrm{CN}, 0.1 \% \mathrm{HCOOH}\right)$	$\mathrm{B}\left(\mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}\right)$
$0-3$	$5-100$	$95-0$
$3-6$	100	0
$6-6.1$	$100-5$	0.95
$6.1-8$	5	95

[00248] Purities of compounds were also assessed by Aglent 1100 Series high performance liquid chromatography (HPLC) with UV detection at 210 nm and 254 nm (Zorbax $\mathrm{SB}-\mathrm{Cl} 8,2.1 \times 30 \mathrm{~mm}, 4$ micron, 10 minutes, $0.6 \mathrm{~mL} / \mathrm{min}$ flow rate, 5 to $95 \%(0.1 \%$ formic acid in $\mathrm{CH}_{3} \mathrm{CN}$) in (0.1% formic acid in $\mathrm{H}_{2} \mathrm{O}$)). Column was operated at $40^{\circ} \mathrm{C}$.
[00249] The following abbreviations are used throughout the specification:
HOAc acetic acid
$\mathrm{MeCN}, \mathrm{CH}_{3} \mathrm{CN}$ acetonitrile
NH_{3} ammonia
$\mathrm{NH}_{4} \mathrm{Cl}$ ammonium chloride
BBr_{3} boron tribromide
BSA bovine serum albumin
Br_{2} bromine
BOC, Boc tert-butyloxycarbonyl
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ cesium carbonate
CHCl_{3} chloroform
CDCl_{3} chloroform deuterated
Cu copper
Cul copper () iodide
$\mathrm{Et}_{2} \mathrm{O}$ diethyl ether
DMF dimethylformamide
DMAP 4-dimethylaminopyridine
DMSO dimethylsulfoxide
EDC, EDCl 1-(3-dimethylaminopropyl)-3-ethylcarbodimide hydrochloride
Dppa diphenylphosphoryl azide
EtOAc ethyl acetate
EA ethyl acetate
HBr hydrobromic acid
HCl hydrochloric acid
HOAt, HOAT 1-hydroxy-7-azabenzotriazole
HOBT l-hydroxybenzotriazole hydrate
H_{2} hydrogen
$\mathrm{H}_{2} \mathrm{O}_{2}$ hydrogen peroxide
Fe iron
LDA lithium disopropylamide
MCPBA meta-chloroperbenzoic acid
MgSO_{4} magnesium sulfate
$\mathrm{MeOH}, \mathrm{CH}_{3} \mathrm{OH}$ methanol
Mel methyl iodide
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{DCM}$ methylene chlonde
NMP $\quad N$-methylpyrrolidinone
mL, m
N_{2} nitrogen
Pd / C palladium on carbon
PE petroleum ether $\left(60-90^{\circ} \mathrm{C}\right)$
PBS phosphate buffered saline
POCl_{3} phosphorous oxychloride
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad$ palladium tetrakis triphenylphosphine
$\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \quad$,l-bis(diphenylphosphino)ferrocene palladium chloride
$\mathrm{K}_{2} \mathrm{CO}_{3} \quad$ potassium carbonate
KOH potassium bydroxide
RT, T room temperature
Rt retention time
NaHCO_{3} sodium bicarbonate
NaBH_{4} sodium borohydride
$\mathrm{NaBH}_{3} \mathrm{CN}$ sodium cyanoborohydride
NaOtBu sodium tert-butoxide
NaOH sodium hydroxide
NaClO_{2} sodium chlorite
NaCl sodium chloride
$\mathrm{NaH}_{2} \mathrm{PO}_{4} \quad$ sodium dihydric phosphate
NaH sodium hydride
NaI sodium iodide
$\mathrm{Na}_{2} \mathrm{SO}_{4} \quad$ sodium sulfate
TBTU O-benzotriazol-1-yl- $N, N, N^{\prime}, N^{\prime}$-tetramethyluronium tetrafluoroborate
THF tetrahydrofuran
$\mathrm{Et}_{3} \mathrm{~N}$, TEA triethylamine
TFA trifluoroacetic acid
$\mathrm{P}(\mathrm{t}-\mathrm{bu})_{3} \quad \operatorname{tri}(t e r t-$ butyl)phosphine
NBS N-bromosuccinimide
TBAI tetrabutylammonium iodide
$\mathrm{H}_{2} \mathrm{O}$ water
TEAF formic acid triethylamine complex 5:2
PPA polyphosphoric acid
$\mathrm{Tr}_{2} \mathrm{O}$ Trifuoromethanesulfonic anhydride
HCI.EA a solution of HCl in ethyl acetate
DIPEA N, N-disopropylethylamine
DME 1,2-dimethoxyethane
HATU 2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium
hexafluorophosphate
NIS N-jodosuccinimide
TFAA trifluoroaceticanhydride
SEMCl $\quad 2$ (Trimethylsilyl)ethoxymethyl chlonide
Dess-Martin (1,1,1-triacetoxy)-1,1-dihydro-1,2-benziodoxol-3(1H)-one
TsOH p-toluenesulfonic acid
TMSA Trimethyl silyl acetylene
Meldrum's acid 2,2-Dimethyl-1,3-dioxane-4,6-dione
BAST bis(2-methoxyethyl)aminosulphur trifluoride (DEOXO-FLUOR ${ }^{\mathbb{B}}$ Reagent)
SbCl_{3} antimony trichloride
SmCl_{3} samarium chloride
LiHMOS lithum hexamethyldisilazide
TMSCl trimethyl chlorosilane

PhNTf $_{2} \quad N, N$-bis(trifluoromethylsulfonyl)aniline
TBDMSOTf trifluoromethanesulfonic acid tert-butyldimethylsilyl ester
$\mathrm{Et}_{2} \mathrm{NSF}_{3}$ diethylaminosulfur trifluoride

MTBE methyl tert-butyl ether
$\operatorname{LiN}\left(\mathrm{SiMe}_{3}\right)_{2} \quad$ lithium $b i s($ trimethylsilyl)amide
$\mathrm{PPh}_{3} \mathrm{MeBr} \quad$ Methyltriphenylphosphonium bromide

Lawesson's Reagent 2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4-disulfide

MTBE methyl tert-butyl ether
[00250] Scheme 1

[00251] Compound 1 can be prepared by a general synthetic procedure illustrated in Scheme 1, wherein each of R^{53} and W is as defined herein, and X^{5} is a leaving group such as $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I . Ketone compound 1 b can react with catechol derivative 1 a in the presence of an acid to afford compound 1
[00252] Scheme 2

7

Compound 8 can be prepared by a general synthetic procedure illustrated in Scheme 2, wherein each of A_{1}, A_{2} and A_{3} is independently N or $C R^{7}$, each of $R^{5 a}, R^{7}, R^{14}$ and X_{5} is as defined herein, and Pg is an amino-protecting group, such as Boc, Fmoc or CBZ . Condensation of aromatic diamine with protected proline can give a mixture of compound 2 and compound 3 . Then compound 2 and compound 3 can be cyclized at elevated temperature in acetic acid system to give compound 4. Compound a can further react with bis(pinacolato)diboron in the presence of a Pd catalyst to afford compound 5 . Coupling reaction of compound 5 with compound 1 in the presence of a Pd catalyst can give compound 6. The protecting group Pg in compound 6 can be removed to provide compound 7, which in turn can be condensed with amino acid to give compound $\$$.

3
10

12

14

15

16
[00255] Compound 16 can be prepared by a general synthetic procedure illustrated in Scheme 3, wherein W4 is cycloalkyl or heterocyclyl, each of $R^{5 a}, R^{14}, R^{14 a}$ and X_{5} is as defined herein, and Pg is an amino-protecting group, such as Boc, Fmoc or CBZ. Compound 9 can react with NBS to give compound 10 . Compound 10 can further react with protected proline to afford compound 11. Cyclization of compound 11 with ammonium acetate under heating conditions can give compound 12 . Then compound 12 can react with bis(pinacolato)diboron in the presence of a Pd catalyst to afford compound 13 . Coupling reaction of compound 13 with compound 1 in the presence of a Pd catalyst
can give compound 14. The protecting group Pg in compound 14 can be removed to provide compound 15, which in turn can be condensed with amino acid to give compound 16 .
[00256] Scheme 4

[00257] Compound 25 can be prepared by a general synthetic procedure illustrated in Scheme 4 , wherein each of $\mathrm{R}^{52}, \mathrm{R}^{6 a}, \mathrm{X}_{5}, \mathrm{Y}^{1}, \mathrm{~W}$ and Pg is as defined herein. Condensation of catechol derivative 10 with ketone 16 in the presence of an acid can give compound 17. Then compound 17 can be converted to compound 18 by hydrolysis under basic condition. Compound 18 can be converted to compound 19 by diazotization and bromination. Compound 19 can react with protected proline to afford compound 20 . Cyclization of compound 20 with ammonium acetate under heating conditions can give compound 21 . Coupling reaction of compound 21 with compound 22 in the presence of a Pd catalyst can give compound 23 . The protecting group Pg in compound 23 can be removed to provide compound 24, which
in turn can be condensed with amino acid to give compound 25 .
[00258] Scheme 5

33
[00259] Compound 33 can be prepared by a general synthetic procedure illustrated in Scheme 5 , wherein each of $A_{1}, A_{2}, A_{3}, R^{5 a}$ and R^{14} is as defined herein. Benzaldehyde can react with Meldrum's acid in the presence of TEAF to afford compound 26. Compound 26 can be converted to compound 27 in PPA under heating conditions by cyclization, and compound 27 can further be converted to compound 28 in alkali conditions by cyclization. The methyl in compound 28 can be removed to give compound 29. Compound 29 can react with trifuoromethanesulfonic anhydride in alkali conditions to afford compound 30 . Coupling reaction of compound 30 with compound 5 in the presence of a Pd catalyst can give compound 31. The protecting group Pg in compound 31 can be removed to provide compound 32 , which in turn can be
condensed with amino acid to give compound 33 .
[00260] Scheme 6

36
[00261] Compound 36 can be prepared by a general synthetic procedure illustrated in Scheme 6, wherein each of $R^{5 a}, R^{6 a}, Y^{1}, W, R^{14}$ and Pg is as defined herein. Coupling reaction of compound 30 with compound 22 in the presence of a Pd catalyst can give compound 34 . The protecting group Pg in compound 34 can be removed to provide compound 35 , which in turn can be condensed with amino acid to give compound 36.
[00262] Scheme 7

[00263] Compound 40 can be prepared by a general synthetic procedure illustrated in Scheme 7, wherein each of $\mathrm{R}^{52}, W, \mathrm{R}^{14}$ and Pg is as defined herein. Coupling reaction of compound $\mathbf{3 0}$ with compound $\mathbf{3 7}$ in the presence of a Pd catalyst can give compound $\mathbf{3 8}$. The protecting group Pg in compound 38 can be removed to provide compound 39 , which in turn can be condensed with amino acid to give compound 40.
[00264] Scheme 8

47
45
46

48

50
51

52

Compound 52 can be prepared by a general synthetic procedure illustrated in Scheme 8 , wherein each of $R^{5 a}, R^{6 a}, R^{14}, Y^{1}, W$ and $P g$ is as defined herein. Compound 41 can be converted to compound 42 in alkali conditions by cyclization. Reduction of compound 42 with a reducing agent in alkali conditions
can give compound 43 . Compound 43 can be converted to compound 44 by Friedel-Crafts acylation reaction. The methyl in compound 44 can be removed to afford compound 45 . Compound 45 can react with trifluoromethanesulfonic anhydride in alkali conditions to afford compound 46 . Coupling reaction of compound 46 with compound 22 in the presence of a Pd catalyst can give compound 47 . Bromination of compound 47 with Br_{2} can give compound 48. Compound 48 can react with protected proline in alkali conditions to give compound 49. Cyclization of compound 49 with ammonium acetate under heating conditions can give compound 50. The protecting group Pg in compound 50 can be removed to provide compound 51 , which in turn can be condensed with amino acid to give compound 52 .
[00266] Scheme 9

55
57

58

[00267] Compound 60 can be prepared by a general synthetic procedure illustrated in Scheme 9, wherein each of A_{1},
$A_{2}, A_{3}, R^{5 a}, \operatorname{Pg}$ and R^{14} is as defined herein. Compound 27 can react with isoamyl nitrite to give compound 53 . Compound 53 can be converted to compound 54 by reduction and acidification. The methyl in compound 54 can be removed to give compound 55 . Compound 55 can react with ketone to provide compound 56 by acid catalysis. Compound 56 can react with trifuoromethanesulfonic anbydride in alkali conditions to give compound 57. Coupling reaction of compound 57 with compound 5 in the presence of a Pd catalyst can give compound 58 . The protecting group Pg in compound 58 can be removed to provide compound 59, which in turn can be condensed with amino acid to give compound 60.
[00268] Examples
[00269] Example 1

[00270] Synthetic routes

Step 1) the preparation of compound 1-1
[00271] To methanoic acid (3.7 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(5.4 \mathrm{~mL})$ dropwise slowly in an ice bath. At the end of the addition, 2,5-dimethoxybenzaldehyde ($2.0 \mathrm{~g}, 12 \mathrm{mmol}$) and Meldrum's acid $(1.73 \mathrm{~g}, 12 \mathrm{mmol})$ were added to the mixture in turn. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 5 hours and ice water (20 mL) was added. The mixture was adjusted to pH 1 with HCl aqueous solution (2 N)
and extracted with EtOAc ($25 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purfied by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=3 / 1$) to give the title compound as a white solid ($2.1 \mathrm{~g}, 83 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 211.1[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.70-6.78(\mathrm{~m}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.

Step 2) the preparation of compound 1-2
[00272] A mixture of compound $1-1(4.68 \mathrm{~g}, 22.3 \mathrm{mmol})$ and $\operatorname{PPA}(50.87 \mathrm{~g}, 24.8 \mathrm{~mL})$ in a 100 mL of round-bottomed flask was stirred at $80^{\circ} \mathrm{C}$ for 4 hours. Then the mixture was poured into ice water (250 mL) and extracted with EtOAc ($100 \mathrm{~mL} \times 5$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\operatorname{PE} / E t O A c(v / v)=3 / 1)$ to give the title compound as a pale yellow solid ($3 \mathrm{~g}, 70 \%$, HPLC: 92.5%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 193.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}$, $3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.97-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.68(\mathrm{~m}, 2 \mathrm{H})$.

Step 3) the preparation of compound 1-3
[00273] To a suspension of potassium tert-butanolate ($912.3 \mathrm{mg}, 8 \mathrm{mmol}$) in toluene (10 mL) was added dropwise a solution of compound $1-2(680 \mathrm{mg}, 3.5 \mathrm{mmol}$) and 1,4-dibromobutane ($0.46 \mathrm{~mL}, 3.8 \mathrm{mmol}$) in toluene (20 mL) in an ice bath. The reaction mixture was refluxed for 2.5 hours, cooled to rt and quenched with ice water. The toluene was removed under reduced pressure, and the resulting mixture was extracted with EtOAc ($25 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\operatorname{PE} / E t O A c(v / v)=3 / 1)$ to give the title compound $1-3$ as a pale yellow
solid ($784.1 \mathrm{mg}, 90 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 247.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}$, $3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 2 \mathrm{H}), 2.00-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.77(\mathrm{~m}, 2 \mathrm{H})$, 1.55-1.60(m, 2H).

Step 4) the preparation of compound 1-4
[00274] To a solution of compound $1-3(1.67 \mathrm{~g}, 6.8 \mathrm{mmol})$ in $\mathrm{DCM}(20 \mathrm{~mL})$ was added dropwise boron tribromide ($9 \mathrm{~mL}, 22.5 \mathrm{mmol}, 2.5 \mathrm{~mol} / \mathrm{L}$ in DCM) in an ice bath. The reaction mixture was stirred for 1 hour, quenched with ice water and extracted with $\mathrm{DCM}\left(25 \mathrm{~mL} \times 3\right.$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=3 / 1)$ to give the title compound $1-4$ as a white solid ($1.36 \mathrm{~g}, 92 \%$, HPLC: 97.9%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 219.1[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 88.64(\mathrm{~s}, 3 \mathrm{H}), 6.95(\mathrm{~d}, j=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 2 \mathrm{H}), 1.93-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.68(\mathrm{~m}$, $2 \mathrm{H})$.

Step 5) the preparation of compound 1-5-1
[00275] To a solution of $\mathrm{Et}_{3} \mathrm{~N}(2.3 \mathrm{~mL})$ and compound $1-4(445 \mathrm{mg}, 2 \mathrm{mmol})$ in DCM (25 mL) was added dropwise trifluoroacetic anhydride ($1.7 \mathrm{~mL}, 12 \mathrm{mmol}$) in an ice bath. The resulting mixture was stirred for 1 hour, quenched with ice water (25 mL) and extracted with DCM ($25 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=20 / 1$) to give the title compound $1-5-1$ as yellow oil ($916.9 \mathrm{mg}, 93.0 \%$, HPLC: 95.5%). The compound was characterized by the
following spectroscopic data:
MS-ESI: $m / z 483.1[\mathrm{M}+\mathrm{H}]$], and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.57(\mathrm{~d}, j=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, j=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~s}$, $2 \mathrm{H}), 2.05-3.00(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.70(\mathrm{~m}, 2 \mathrm{H})$.

Step 6) the preparation of compound 1-5-2
[00276] A mixture of 4'-bromoacetophenone ($25 \mathrm{~g}, 125.6 \mathrm{mmol}$), NBS (24.5 g , $138.2 \mathrm{mmol})$ and PTSA $(3.4 \mathrm{~g}, 20.9 \mathrm{mmol})$ in a 100 mL of round-botomed flask was heated to $100^{\circ} \mathrm{C}$ under N_{2} and stirred at $100^{\circ} \mathrm{C}$ for 2 hours. After the reaction was completed, the reaction mixture was cooled to rt and diluted with DCM. The mixture was quenched with water and extracted with DCM ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\operatorname{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=6 / 1)$ to give compound $\mathrm{A}-1$ as a white solid $(25.0 \mathrm{~g}, 72 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 276.8[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.93(\mathrm{~d}, 1 \mathrm{H}), 7.78(\mathrm{~d}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H})$.
[00277] To a solution of compound A-1 ($30 \mathrm{~g}, 107.9 \mathrm{mmol}$) and Boc-L-proline (25.6 $\mathrm{g}, 118.7 \mathrm{mmol}$) in MeCN (250 mL) was added DIPEA ($21.4 \mathrm{~mL}, 129.5 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$. At the end of the addition, the mixture was stirred at rt and the reaction was monitored by TLC. After the reaction was complete, the mixture was quenched with water and extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vocuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=4 / 1)$ to give compound $A-2$ as colonless oil ($40 \mathrm{~g}, 91 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 412.7[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.78-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 5.53-5.15(\mathrm{~m}, 2 \mathrm{H})$, 4.49-4.39(m, 1H), 3.59-3.54(m, 1H), 3.48-3.38(m, 1H), 2.31-2.21 (m, 2H), 2.12-2.01 $(\mathrm{m}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~d}, 9 \mathrm{H})$.
[00278] A solution of compound $\mathrm{A}-2(15 \mathrm{~g}, 36.4 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{OAc}(42 \mathrm{~g}, 711$ mmol) in xylene (150 mL) was stirred at $130^{\circ} \mathrm{C}$ overnight in a 350 mL of sealed tube until the reaction was completed. The mixture was cooled to rt , quenched with water and extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=2 / 1)$ to give compound $\mathrm{A}-3$ as a white solid $(11.4 \mathrm{~g}, 80 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: m/z $392.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.78-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.20(\mathrm{~m}, 1 \mathrm{H})$, $5.53-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.49-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.21$ $(\mathrm{m}, 2 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~d}, 9 \mathrm{H})$.
[00279] To a solution of compound A-3 ($1.00 \mathrm{~g}, 2.55 \mathrm{mmol}$), compound $\mathrm{A}-4(1.35 \mathrm{~g}$, 5.33 mmol) and $\mathrm{KOAc}(0.640 \mathrm{~g}, 6.53 \mathrm{mmol})$ in dioxane (20 mL) under N_{2} was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.147 \mathrm{~g}, 0.128 \mathrm{mmol})$, and the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 14 hours under N_{2}. The reaction was monitored by TLC. After the reaction was completed, the mixture was evaporated in vacuo, and to the residue was added water (20 mL). The aqueous phase was extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\operatorname{PE} / E t O A c(v / v)=2 / 1)$ to give the title compound $1-5-2$ as a pale yellow solid $(0.978 \mathrm{~g}, 87 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 440.39[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 811.03,10.55(\mathrm{~s}, \mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{~m}, 1 \mathrm{H}), 7.26$ $(\mathrm{m}, 1 \mathrm{H}), 4.97(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 2 \mathrm{H}), 3.06,2.91(2 \mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H})$, $1.49(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~s}, 12 \mathrm{H})$.

Step 7) the preparation of compound 1-6
[00280] To a mixture of compound $1-5-2$ ($161.54 \mathrm{mg}, 0.37 \mathrm{mmol}$), anhydrous
potassium carbonate ($105.8 \mathrm{mg}, 0.76 \mathrm{mmol}$) and $P d\left(\mathrm{PPh}_{3}\right)_{4}(17.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ in a 50 mL of two-necked flask under N_{2} was added a solution of compound $1-5-1$ (73.9 mg , 0.15 mmol) in DME (4 mL) via syringe followed by distilled water (1 mL). The mixture was stirred at $90^{\circ} \mathrm{C}$ under N_{2} for 2 hours. DME was removed in vacuo and distilled water (15 mL) was added, and the mixture was extracted with DCM ($15 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc/MeOH (v/v) $=$ 60/1) to give the title compound as a yellow solid ($99.1 \mathrm{mg}, 80 \%$, HPLC: 89%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 405.2[\mathrm{M}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.45-7.90(\mathrm{~m}, 12 \mathrm{H}), 4.99(\mathrm{br}, 2 \mathrm{H}), 3.42(\mathrm{br}, 4 \mathrm{H}), 3.10(\mathrm{~s}$, $2 \mathrm{H}), 2.16-2.17(\mathrm{br}, 4 \mathrm{H}), 1.99-2.04(\mathrm{br}, 4 \mathrm{H}), 1.86(\mathrm{br}, 2 \mathrm{H}), 1.67(\mathrm{br}, 4 \mathrm{H}), 1.56-1.62(\mathrm{br}$, $2 \mathrm{H}), 1.51(\mathrm{~s}, 18 \mathrm{H})$.

Step 8) the preparation of compound 1-7-1
[00281] To a solution of compound 1-6 ($50 \mathrm{mg}, 0.06 \mathrm{mmol}$) in $\mathrm{DCM}(4 \mathrm{~mL})$ was added a solution of HCl in EtOAc ($2 \mathrm{~mL}, 4 \mathrm{M}$). The mixture was stirred at rt for 12 hours and filtered. The filter cake was washed with EtOAc (50 mL) to give the title compound as a yellow solid ($42.4 \mathrm{mg}, 91 \%$, HPLC; 90%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 305.2[\mathrm{M}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 88.06-8.07(\mathrm{br}, 2 \mathrm{H}), 7.99(\mathrm{~d}, j=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, j=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.16-5.22(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.62(\mathrm{~m}, 4 \mathrm{H}), 3.18(\mathrm{~s}, 2 \mathrm{H}), 2.70-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~m}, 2 \mathrm{H})$, $2.40(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.68(\mathrm{~m}, 2 \mathrm{H})$.

Step 9) the preparation of compound 1-7-2
[00282] To a solution of L-valine ($24.9 \mathrm{~g}, 0.213 \mathrm{~mol}$) in THF (645 mL) was added a solution of $\mathrm{NaHCO}_{3}(53.7 \mathrm{~g}, 0.640 \mathrm{~mol})$ in water $(645 \mathrm{~mL})$. At the end of the addition, to the mixture was added methyl chloroformate $(22.2 \mathrm{~g}, 0.235 \mathrm{~mol})$ dropwise. The resulting mixture was stirred at rt overnight, adjusted to pH 3 with HCl aqueous solution (1 N), and extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in wacuo to give the title compound 1-7-2 as a white solid ($33 \mathrm{~g}, 90 \%$). The compound was characterized by the following spectroscopic data

MS-ESI: $m / z 176[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}^{6}\right) ; \delta 0.93(\mathrm{~d}, j=7,00 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, j=7.00 \mathrm{~Hz}, 3 \mathrm{H})$, $2.23(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{brs}, 1 \mathrm{H}), 8.50(\mathrm{brs}, 1 \mathrm{H})$.

Step 10) the preparation of compound 1-8
[00283] To a mixture of compound $1-7-1(42.7 \mathrm{mg}, 0.056 \mathrm{mmol})$, compound 1-7.2 $(29.8 \mathrm{mg}, 0.17 \mathrm{mmol})$ and $\operatorname{EDCl}(43.4 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{DCM}(7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added DIPEA (0.1 mL) slowly. The resulting mixture was stirred at rt for 12 hours and water (20 mL) was added. The mixture was extracted with DCM ($25 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc/MeOH (v/v) $=$ $60 / 1$) to give the title compound as a yellow solid ($36.8 \mathrm{mg}, 70.5 \%$, HPLC: 95.5%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 462.3[\mathrm{M}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.88-7.9(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.60(\mathrm{br}, 2 \mathrm{H}), 7.46-7.50(\mathrm{~m}, 6 \mathrm{H})$, $7.35-7.37(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{br}, 2 \mathrm{H}), 5.35(\mathrm{br}, 2 \mathrm{H}), 4.33(\mathrm{br}, 2 \mathrm{H}), 3.84(\mathrm{br}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H})$, 3.64 (br, 2H), 3.08 ($\mathrm{s}, 2 \mathrm{H}), 2.31-2.43$ (br, 2H), 2.15-2.25 (m, 2H), 2.08-2.14 (m, 2H), $1.90-2.05(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.90(\mathrm{br}, 2 \mathrm{H}), 1.65-1.75(\mathrm{~m}, 2 \mathrm{H}), 0.80-0.92(\mathrm{~m}, 12 \mathrm{H})$.

[00285]
Synthetic routes

Step 1) the preparation of compound 2-1
[00286] To a mixture of compound $1-5(964 \mathrm{mg}, 2 \mathrm{mmol})$, tetrabutylammonium iodide (2214 mg, 6 mmol), cuprous iodide ($114 \mathrm{mg}, 0.6 \mathrm{mmol}$) and bis(triphenylphosphine)palladium (II) chloride ($140 \mathrm{mg}, 0.2 \mathrm{mmol}$) in a 50 mL of two-necked flask under N_{2} was added amydrous THF (8 mL) followed by $\mathrm{Et}_{3} \mathrm{~N}(8 \mathrm{~mL})$ with stiming. After the mixture was stimed for 10 minutes at $\mathrm{nt}, \mathrm{TMSA}(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$ was added to the mixture, and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 hours. The mixture was concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=50 / 1)$ to give the title compound as a yellow solid ($643 \mathrm{mg}, 85 \%$, HPLC: 88%). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}$, $2 \mathrm{H}), 2.03-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.63(\mathrm{~m}, 2 \mathrm{H}), 0.31$ $(\mathrm{d}, J=3.5 \mathrm{~Hz}, 9 \mathrm{H}), 0.28(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 9 \mathrm{H})$.

Step 2) the preparation of compound 2-2-1
[00287] To a solution of compound $2-1(756 \mathrm{mg}, 2 \mathrm{mmol})$ in the mixture of MeOH (4 mL) and THF (4 mL) was added potassium carbonate ($1104 \mathrm{mg}, 8 \mathrm{mmol}$) with stirring. The resulting mixture was stirred at rt for 5 hours and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/EtOAc (v/v) $=20 / 1$) to give the title compound as a brown solid ($374.4 \mathrm{mg}, 80 \%$, HPLC: 69%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 235.1[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 87.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ $(\mathrm{s}, 1 \mathrm{H}), 3.44(\mathrm{~s}, \mathrm{H}), 3.05(\mathrm{~s}, 2 \mathrm{H}), 2.01-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.82(\mathrm{~m}$, $2 \mathrm{H}), 1.62-1.64(\mathrm{~m}, 2 \mathrm{H})$.

Step 3) the preparation of compound 2-2-2
[00288] To a suspension of L-proline ($15.0 \mathrm{~g}, 130 \mathrm{mmol}$) in THF (150 mL) in a 500 mL of dry round-bottomed flask at $0^{\circ} \mathrm{C}$ was added NaOH aqueous solution ($156.4 \mathrm{~mL}, 1 \mathrm{M}$) with stiming. When the mixture was clear, $\mathrm{Boc}_{2} \mathrm{O}(31.3 \mathrm{~g}, 143.6 \mathrm{mmol})$ was added dropwise to the mixture. After the end of the addition, the reaction mixture was stired at rt overnight. After the reaction was completed, THF was removed under reduced pressure. The mixture was adjusted to pH 2 with diluted hydrochloric acid and extracted with EOAc ($100 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford compound $\mathrm{B}-2$ as a white solid ($27.7 \mathrm{~g}, 98.7 \%$).
[00289] To a solution of compound B-2 (15.0 g, 130 mmol$)$ in THF (100 mL) in a 500 mL of dry three-necked flask at $0^{\circ} \mathrm{C}$ was added dropwise a solution of borane in THF (100
$\mathrm{mL}, 1 \mathrm{M}$) under N_{2} with stiming. After the end of the addition, the reaction mixture was stirred for 3 hours. After the reaction was completed, the reaction mixture was quenched with methanol and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{v})=3 / 2$) to give compound B-3 as colorless oil (7.0 g, 75.2%. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 83.87-3.99$ (br, 1 H$), 3.51-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.48(\mathrm{~m}, 1 \mathrm{H})$, $3.25-3.34(\mathrm{~m}, 1 \mathrm{H}), 1.92-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.
[00290] To a solution of compound $8-3(7.0 \mathrm{~g}, 34.8 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(250 \mathrm{~mL})$ in a 500 mL of dry round-bottomed flask at $0^{\circ} \mathrm{C}$ was added Dess-Martin periodinane $(20.7 \mathrm{~g}$, 48.8 mmol) in portions with stiming. After the end of the addition, the reaction mixure was stirred at it for 2 hours. After the reaction was completed, water (250 mL) was added and the resulting mixture was filtered. The layers were separated. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=3 / 2$) to give compound $\mathrm{B}-4$ as colorless oil $(3.5 \mathrm{~g}, 50.7 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 59.46(\mathrm{~d}, y=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.51$ $(\mathrm{m}, 2 \mathrm{H}), 1.84-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.
[00291] To a solution of compound $B-4(3.5 \mathrm{~g}, 17.6 \mathrm{mmol})$ and ammonia (13 mL) in methanol (30 mL) in a 100 mL of dry round-bottomed flask at $0^{\circ} \mathrm{C}$ was added glyoxal (8 mL , 40%) dropwise with stirring. After the end of the addition, the reaction mixture was stirred at rt overnight and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=3 / 2)$ to give compound B-5 as a white solid (2.0 g , 47.6%. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 238.2[\mathrm{M}+\mathrm{H}]^{+}$; and
$\left.{ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{CDCl})^{2}\right): \delta 6.96(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=7.68,2.40 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{t}, J$ $=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.
[00292] To a solution of compound $\mathrm{B}-5(2.0 \mathrm{~g}, 8.4 \mathrm{mmol})$ in DCM $(60 \mathrm{~mL})$ in a 100 mL of dry round-bottomed flask at $0^{\circ} \mathrm{C}$ was added N-iodosuccinimide ($3.8 \mathrm{~g}, 16.8 \mathrm{mmol}$) in portions with stirring. After the end of the addition, the reaction mixture was stirred for 1.5 hours, and then the mixture was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purfifed by silica gel column chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{v})=3 / 2$) to give compound $\mathrm{B}-6$ as a white solid $(2.6 \mathrm{~g}, 63.1 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 490.0[\mathrm{M}+\mathrm{H}]^{+}, m / z 487.4[\mathrm{M}-2 \mathrm{H}]^{2} ;$ and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.89(\mathrm{dd}, J=7.64,2.52 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{t}, 2 \mathrm{H}), 2.02-2.14$ $(\mathrm{m}, 2 \mathrm{H}), 1.85-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$.
[00293] To a suspension of compound B-6 ($1.6 \mathrm{~g}, 3.27 \mathrm{mmol})$ in the mixture of ethanol and water $((\mathrm{v} / \mathrm{v})=3 / 7,50 \mathrm{~mL})$ in a 100 mL of dry round-bottomed flask was added sodium sulfite ($3.7 \mathrm{~g}, 29 \mathrm{mmol}$), the resulting mixture was refluxed for 17 hours. Ethanol was removed under reduced pressure and water (20 mL) was added to the mixture. The mixture was extracted with EtOAc ($30 \mathrm{~mL} \mathrm{x} \mathrm{3)}$. anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=3 / 2)$ to give the title compound $2-2-2$ as a white solid ($1.0 \mathrm{~g}, 84 \%$). The compound was characterized by the following spectroscopic data

MS-ESI: $m / z 364.1[\mathrm{M}+\mathrm{H}], m / z 362.1[\mathrm{M}-\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.04(\mathrm{~d}, J=1.84 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=7.72,2.56 \mathrm{~Hz}$, $1 \mathrm{H}), 3.36(\mathrm{t}, 2 \mathrm{H}), 2.03-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$.

Step 4) the preparation of compound 2-3

[00294] To a mixture of compound 2-2-1 ($140.4 \mathrm{mg}, 0.6 \mathrm{mmol}$), compound 2-2-2 (479.2 $\mathrm{mg}, 13 \mathrm{mmol}$), cuprous iodide ($2.28 \mathrm{mg}, 0.012 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(69.24 \mathrm{mg}, 0.06 \mathrm{mmol})$ in a 50 mL of two-necked flask under N_{2} was added anhydrous DMF (5 mL) followed by $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~mL})$. The resulting mixture was stired at t for 20 hours and concentrated in vacuo.

The residue was purified by silica gel column chromatography $(\operatorname{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=2 / 3)$ to give the title compound $2-3$ as a yellow solid ($300 \mathrm{mg}, 71.0 \%$, HPLC: 100%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 706.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 87.64(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.28$ $(\mathrm{m}, 1 \mathrm{H}), 4.93-4.94(\mathrm{br}, 2 \mathrm{H}), 3.11(\mathrm{~s}, 2 \mathrm{H}), 2.14(\mathrm{br}, 4 \mathrm{H}), 1.94-2.01(\mathrm{br}, 8 \mathrm{H}), 1.81(\mathrm{br}, 4 \mathrm{H})$, 1.62-1.64 (br, 4H), $1.50(\mathrm{~s}, 18 \mathrm{H})$.

Step 5) the preparation of compound 2-4

[00295] To a solution of compound $2-3$ ($148 \mathrm{mg}, 0.2 \mathrm{mmol}$) in THF (3 ml) was added a solution of HCl in $\mathrm{EtOAc}(4 \mathrm{~mL}, 4 \mathrm{M}$). The resulting mixture was stired at rt for 4 hours and filtered. The filter cake was washed with EtOAc (50 mL) to give the title compound as a yellow solid ($107 \mathrm{mg}, 82.3 \%, \mathrm{HPLC}: 74 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: m/z $505.3[\mathrm{M}+\mathrm{H}]^{+}$.

Step 6) the preparation of compound 2-5
[00296] To a solution of compound 2-4 (42.7 $\mathrm{mg}, 0.065 \mathrm{mmol}$), compound 1-7-2 (29.8 $\mathrm{mg}, 0.17 \mathrm{mmol})$ and $\operatorname{EDCI}(43.4 \mathrm{mg}, 0.22 \mathrm{mmol})$ in DCM (7 mL) in an ice bath was added DIPEA $(0.1 \mathrm{~mL})$ dropwise. The resulting mixture was stirred at rt for 12 hours. Water (20 mL) was added to the mixture and the mixture was extracted with DCM ($25 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{EtOAc} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=60 / 1$) to give the title compound $2-5$ as a yellow solid ($30 \mathrm{mg}, 56.3 \%$, MPLC: 91.3%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 819.7[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.69-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{~d}, j=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.54$ $(\mathrm{m}, 1 \mathrm{H}), 7.45(\mathrm{br}, 1 \mathrm{H}), 7.36(\mathrm{br}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.28-4.33(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{~s}$, (br, 4H), 1.67-1.93 (m, 8H), 1.25-1.32(m, 12H).
[00297] Example 3

[00298] Synthetic routes

Step 1) the preparation of compound 3-1
[00299] To a suspension of potassium tert-butanolate ($1288 \mathrm{mg}, 11.5 \mathrm{mmol}$) in toluene (10 mL) in an ice bath was added dropwise a solution of compound $1-2(960 \mathrm{mg}, 5 \mathrm{mmol}$) and 1,5-dibromo-3-methylpentane ($0.84 \mathrm{~mL}, 5.5 \mathrm{mmol}$) in toluene (25 mL). After the end of
the addition, the reaction mixture was refluxed for 2.5 hours and quenched with ice water. The toluene was removed in vacuo, and the mixture was extracted with EtOAc ($25 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc (v/v)=3/1) to give the title compound 3-1 as a light red solid ($1096 \mathrm{mg}, 80 \%$, HPLC: 100%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 275.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H}), 1.70-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.40(\mathrm{~m}, 2 \mathrm{H})$, $1.26-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 2) the preparation of compound 3-2

[00300] To a solution of compound 3-1 ($548 \mathrm{mg}, 2 \mathrm{mmol}$) in DCM (10 mL) in an ice bath was added boron tribromide ($5 \mathrm{~mL}, 1.2 \mathrm{~mol} / \mathrm{L}$ in DCM, 6 mmol) dropwise and the mixture was stirred for 1 hour. The reaction mixture was quenched with ice water and extracted with DCM ($15 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc (v/v) $=4 / 1$) to give the title compound $3-2$ as a white solid ($478 \mathrm{mg}, 97 \%$, HPLC: 94%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 247.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 89.13(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 2 \mathrm{H}), 1.65-1.69(\mathrm{br}, 2 \mathrm{H}), 1.53-1.58(\mathrm{br}, 2 \mathrm{H}), 1.33-1.39(\mathrm{br}$, $2 \mathrm{H}), 1.23-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.06-1.13(\mathrm{br}, 2 \mathrm{H}), 0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 3) the preparation of compound 3-3-1
[00301] To a solution of $\mathrm{Et}_{3} \mathrm{~N}(2.2 \mathrm{~mL})$ and compound $3-2(492 \mathrm{mg}, 2 \mathrm{mmol})$ in DCM $(20 \mathrm{~mL})$ in an ice bath was added trifluoroacetic anhydride $(0.7 \mathrm{~mL}, 5 \mathrm{mmol})$ dropwise and
the mixture was stirred for 1 hour. The reaction mixture was quenched with ice water (25 mL) and extracted with DCM ($20 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=8 / 1$) to give the title compound $3-3-1$ as yellow on ($612 \mathrm{mg}, 60 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 511.0[\mathrm{M}+\mathrm{H}]^{+}$; and
$\left.{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.3\right](\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}$, $2 \mathrm{H}), 1.75-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.03-1.13(\mathrm{~m}, 2 \mathrm{H}), 0.98$ $(d, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 4) the preparation of compound 3-3-2
[00302] To a solution of compound $\mathrm{C}-2(20 \mathrm{~g}, 93 \mathrm{mmol})$, compound $\mathrm{C}-1(19.1 \mathrm{~g}, 102$ mmol) and HATU ($38.9 \mathrm{~g}, 102 \mathrm{mmol}$) in THF (500 mL) in an ice bath was added DIPEA ($20.5 \mathrm{~mL}, 118 \mathrm{mmol}$). The mixture was stired in the ice bath for 0.5 hour and at rt for 3 hours. The resulting mixture was quenched with water. THF was removed in vacuo. The resulting mixture was extracted with EtOAc ($150 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was used for the next step without further purification. A solution of the above residue in glacial acetic acid (100 mL) was stirred at $40^{\circ} \mathrm{C}$ overnight, basified with NaHCO_{3} and extracted with EtOAc $(150 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=2 / 1)$ to give compound $\mathrm{C}-3(27.6 \mathrm{~g}, 81 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H})$, $5.11-5.09(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.91$ $(\mathrm{m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$.
[00303] To a mixture of compound $C-3(3.0 \mathrm{~g}, 8.2 \mathrm{mmol})$, bis(pinacolato)diboron $(4.29 \mathrm{~g}, 16.9 \mathrm{mmol}), \operatorname{Pd}(\mathrm{dppt}) \mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}(653 \mathrm{mg}, 0.8 \mathrm{mmol})$ and $\mathrm{KOAc}(2.09 \mathrm{~g}, 21.3$
mmol) in a 50 mL of two-necked flask under N_{2} was added DMF (30 mL) via syringe. The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ ovemight, cooled to rt naturally, and water (60 mL) was added. The mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\operatorname{PE} / E t O A c(v / v)=1 / 2$) to give compound 3-3-2 as a beige solid (2.1 g). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.69(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 1 \mathrm{H})$, $5.12-5.10(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.95-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.91$ $(\mathrm{m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~s}, 12 \mathrm{H})$.

Step 5) the preparation of compound 3-4
[00304] To a mixture of compound $3-3-2(619.5 \mathrm{mg}, 1.5 \mathrm{mmol}$), anhydrous potassium carbonate $(414 \mathrm{mg}, 3 \mathrm{mmol})$ and $P d\left(P \mathrm{Ph}_{3}\right)_{4}(69.24 \mathrm{mg}, 0.06 \mathrm{mmol})$ in a 50 mL of two-necked flask under N_{2} was added a solution of compound $3-3-1$ ($306 \mathrm{mg}, 0.6 \mathrm{mmol}$) in DME (5 mL) via syringe followed by distilled water (1.5 mL). The resulting mixture was stired at $90^{\circ} \mathrm{C}$ for 2 hours. DME was removed in vacuo and distilled water (15 mL) was added to the mixture. The mixture was extracted with DCM ($15 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in wacuo. The residue was purfied by silica gel column chromatography (PE/EtOAc (v/v) $=1 / 1$) to give compound $3-4$ as a yellow solid ($400 \mathrm{mg}, 83.3 \%$, HPLC: 98%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 785.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.85(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.40(\mathrm{~m}, 3 \mathrm{H}), 5.15-5.16(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{br}, 4 \mathrm{H}), 3.05(\mathrm{~s}, 2 \mathrm{H})$, $2.20-2.24(\mathrm{br}, 4 \mathrm{H}), 1.67-1.69(\mathrm{br}, 6 \mathrm{H}), 1.40-1.43(\mathrm{br}, 7 \mathrm{H}), 1.26(\mathrm{~s}, 18 \mathrm{H}), 1.00(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H})$.

Step 6) the preparation of compound 3-5
[00305] To a solution of compound $3-4(235.5 \mathrm{mg}, 0.3 \mathrm{mmol}$) in DCM (5 mL) was added a solution of HCl in EtOAc $(5 \mathrm{~mL}, 4 \mathrm{M})$ at rt . The mixture was stirred at rt for 4 hours and fitered. The filter cake was washed with EOAAc (60 mL) to give the title compound 3-5 as a yellow solid ($152 \mathrm{mg}, 66 \%, \mathrm{HPLC}: 100 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 585.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 87.67(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.39 .7 .47(\mathrm{~m}$, $4 \mathrm{H}), 7.35(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.23(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.59(\mathrm{~m}, 4 \mathrm{H}), 3.00(\mathrm{~s}, 2 \mathrm{H})$, $2.20-2.45(\mathrm{~m}, 8 \mathrm{H}), 1.40-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.24-1.27(\mathrm{br}, 3 \mathrm{H}), 0.82-0.85(\mathrm{br}, 2 \mathrm{H}), 0.70(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 3 \mathrm{H})$

Step 7) the preparation of compound 3-6
[00306] To a solution of compound 3.5 ($150 \mathrm{mg}, 0.2 \mathrm{mmol}$), compound 1.7 .2 (110.25 $\mathrm{mg}, 0.6 \mathrm{mmol})$ and $\mathrm{EDCl}(201.28 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ in an ice bath was added DIPEA (0.4 mL) dropwise and the mixture was stirred at rt for 12 hours. Water (20 mL) was added to the mixture and the mixture was extracted with $\mathrm{DCM}(25 \mathrm{~mL} \times 3)$. The combined organic phases was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacho. The residue was purified by silica gel column chromatography ($\mathrm{EtOAc} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=60 / 1$) to give the title compound 3-6 as a pale yellow solid ($166 \mathrm{mg}, 92 \%$, HPLC: 91.7%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 899.7[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 87.78-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}$, $1 \mathrm{H}), 7.38(\mathrm{~s}, 4 \mathrm{H}), 5.48-5.50(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.74(\mathrm{~m}, 10 \mathrm{H}), 3.02$ $(\mathrm{s}, 2 \mathrm{H}), 2.04-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.81(\mathrm{~m}, 6 \mathrm{H}), 1.44-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.03-1.05(\mathrm{~m}, 5 \mathrm{H})$, $0.87-0.95(\mathrm{~m}, 15 \mathrm{H})$.

[00308]
Synthetic routes

Step 1) the preparation of compound 4-1
[00309] To a mixture of compound $3-1(959 \mathrm{mg}, 3.5 \mathrm{mmol}$) and triethylsilane (3.3 mL , 21 mmol) in an ice bath was added trifluoroacetic acid (6 mL) dropwise. The resulting mixture was stimed at rt for 8 hours, adjusted to pH 7 with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ saturated solution and extracted with DCM ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=3 / 1)$ to give the title compound 4-1 as colorless oil ($835.5 \mathrm{mg}, 92 \%$, HPLC; 64%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 261.2[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.60(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.76(\mathrm{~s}, 2 \mathrm{H}), 2.70$ $(\mathrm{s}, 2 \mathrm{H}), 1.66-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.10-1.20(\mathrm{~m}, 2 \mathrm{H})$, $0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 2) the preparation of compound 4-2
[00310] To a solution of compound $4-1(806 \mathrm{mg}, 3.1 \mathrm{mmol})$ in DCM (20 mL) in an ice bath was added boron tribromide ($6 \mathrm{~mL}, 1.6 \mathrm{~mol} / \mathrm{L}$ in DCM) dropwise. The resulting mixture was stirred for 1 hour, quenched with ice water $(10 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(20 \mathrm{~mL} \mathrm{x} 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\operatorname{PE} / E t O A c(v / v)=4 / 1)$ to give the title compound $4-2$ as colonless liquid ($700 \mathrm{mg}, 97 \%$, HPLC: 65%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 233.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 88.31(\mathrm{~s}, 2 \mathrm{H}), 6.35(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 2 \mathrm{H})$, $1.54-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.16-1.19(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 3) the preparation of compound 4-3
[00311] To a solution of compound $4-2(696 \mathrm{mg}, 3 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(3.3 \mathrm{~mL})$ in DCM $(25 \mathrm{~mL})$ in an ice bath was added trifluoroacetic anhydride ($1.25 \mathrm{~mL}, 9 \mathrm{mmol}$) dropwise. The resulting mixture was stirred for 1 hour, quenched with ice water (25 mL) and extracted with $\mathrm{DCM}\left(25 \mathrm{~mL} \times 3\right.$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{EE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{V})=6 / 1)$ to give the title compound $4-3$ as pale yellow oil (1041.6 mg , $70 \%, \operatorname{HPLC}: 96 \%$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.13(\mathrm{~s}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 2 \mathrm{H}), 1.57-1.64(\mathrm{~m}$, $5 \mathrm{H}), 1.37-1.45(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 4) the preparation of compound 4-4
[00312] To a mixture of compound 3-3-2 ($1032.5 \mathrm{mg}, 2.5 \mathrm{mmol}$), anhydrous potassium carbonate $(690 \mathrm{mg}, 5 \mathrm{mmol})$ and $P d\left(\mathrm{PPh}_{3}\right)_{4}(115.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ in a 50 mL
of two-necked flask under N_{2} was added a solution of compound $4-3(496 \mathrm{mg}, 1 \mathrm{mmol}$) in DME (9 mL) via syringe followed by distilled water (3 mL), and the resulting mixture was stirred at $90^{\circ} \mathrm{C}$ for 2 hours. DME was removed in vacuo and distilled water (20 mL) was added to the mixture. The mixture was extracted with DCM ($20 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 1$) to give the title compound $4-4$ as a pale yellow solid ($504 \mathrm{mg}, 65 \%$, HPLC: 100%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 771.6[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.52-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.43(\mathrm{~m}, 3 \mathrm{H}), 5.20(\mathrm{br}, 2 \mathrm{H})$, $3.47-3.49(\mathrm{br}, 4 \mathrm{H}), 2.90(\mathrm{~s}, 4 \mathrm{H}), 2.00-2.25(\mathrm{~m}, 9 \mathrm{H}), 1.51(\mathrm{~s}, 18 \mathrm{H}), 1.24-1.28(\mathrm{~m}, 8 \mathrm{H})$, $0.80(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 5) the preparation of compound 4-5
[00313] To a solution of compound $44(500 \mathrm{mg}, 0.65 \mathrm{mmol}) \mathrm{in} \mathrm{DCM}(8 \mathrm{~mL})$ was added a solution of HCl in EtOAc ($10 \mathrm{~mL}, 4 \mathrm{M}$). The mixture was stired at rt for 4 hours and filtered. The filter cake was washed with EtOAc (60 mL) to give the title compound $4-5$ as a yellow solid ($368 \mathrm{mg}, 78 \%$, HPLC: 100%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 571.5[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.64-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{br}, 2 \mathrm{H}), 7.11 \cdot 7.16(\mathrm{~m}, 3 \mathrm{H})$, $6.75-6.92(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{br}, 2 \mathrm{H}), 3.47-3.48(\mathrm{br}, 4 \mathrm{H}), 2.42-2.53$ (br, 5 H$), 2.01-2.09(\mathrm{~m}$, $7 \mathrm{H}), 1.09-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{br}, 2 \mathrm{H}), 0.68(\mathrm{br}, 3 \mathrm{H}), 0.45(\mathrm{br}, 2 \mathrm{H}), 0.19(\mathrm{br}, 3 \mathrm{H})$.

Step 6) the preparation of compound 4-6
[00314] To a solution of compound $4.5(358.5 \mathrm{mg}, 0.5 \mathrm{mmol})$, compound 1-7.2 (262.5 $\mathrm{mg}, 1.5 \mathrm{mmol})$ and $\mathrm{EDCI}(479.25 \mathrm{mg}, 2.5 \mathrm{mmol})$ in $\mathrm{DCM}(15 \mathrm{~mL})$ in an ice bath was added

DIPEA (0.8 mL) dropwise and the mixture was stirred at rt overnight. Water (25 mL) was added to the mixture and the mixture was extracted with $\mathrm{DCM}(30 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc/MeOH (v/v) $=50 / 1$) to give the title compound $4-6$ as a pale yellow solid ($430 \mathrm{mg}, 97 \%$, HPLC: 95.9%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 885.8[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 10.50-10.57(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.48(\mathrm{~m}$, $6 \mathrm{H}), 5.44-5.45(\mathrm{br}, 4 \mathrm{H}), 4.35(\mathrm{br}, 2 \mathrm{H}), 3.86-3.88(\mathrm{br}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 3.63-3.66(\mathrm{br}$, $2 \mathrm{H}), 2.92-2.96(\mathrm{br}, 4 \mathrm{H}), 2.37-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{br}, 4 \mathrm{H}), 1.97-1.98(\mathrm{br}, 4 \mathrm{H}), 1.63(\mathrm{br}$, $4 \mathrm{H}), 1.05-1.09(\mathrm{~m}, 3 \mathrm{H}), 0.88-0.89(\mathrm{~m}, 15 \mathrm{H})$
[00315] Example 5

[00316] Synthetic routes

Step 1) the preparation of compound 5-1
[00317] To a mixture of potassium tert-butanolate ($1.17 \mathrm{~g}, 10.41 \mathrm{mmol}$) in toluene
$(5 \mathrm{~mL})$ in an ice bath was added dropwise a solution of compound $1-2(0.80 \mathrm{~g}, 4.16$ mmol) and $1,5-\mathrm{dibromopentane}(0.62 \mathrm{~mL}, 4.58 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$. The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 2.5 hours, cooled to rt and water (20 mL) was added. The toluene was removed under reduced pressure. To the residue was added water (30 mL) and the resulting mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacno. The residue was purified by silica gel column chromatography (PE/EtOAc (v/v) $=4 / 1)$ to give the title compound as a pale yellow solid $(0.63 \mathrm{~g}, 58 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 261.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 66.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 2 \mathrm{H}), 1.82-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.51-1.26(\mathrm{~m}, 5 \mathrm{H})$.

Step 2) the preparation of compound 5-2
[00318] To a solution of compound $5-1(0.63 \mathrm{~g}, 2.42 \mathrm{mmol}$) in anhydrous DCM (20 mL) was added dropwise boron tribromide ($0.92 \mathrm{~mL}, 9.68 \mathrm{mmol}$) via syringe in an ice bath. After the reaction mixture was stirred for 20 minutes, the ice bath was removed. The mixture was stirred at rt for 1.5 hours and quenched with ice water (10 mL) in an ice bath. DCM was removed in vacuo and to the residue was added water (20 mL). The resulting mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=6 / 1)$ to give the title compound as a white solid $(0.52 \mathrm{~g}, 92 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 230.9[\mathrm{M}-\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.61(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 2 \mathrm{H}), 1.88-1.56(\mathrm{~m}, 5 \mathrm{H}), 1.50-1.34(\mathrm{~m}, 5 \mathrm{H})$.

Step 3) the preparation of compound 5-3
[00319] To a solution of compound $5-2(0.50 \mathrm{~g}, 2.15 \mathrm{mmol})$ in anhydrous DCM (20 mL) in an ice bath under N_{2} was added dropwise $\mathrm{Tf}_{2} \mathrm{O}(0.9 \mathrm{~mL}, 6.5 \mathrm{mmol})$ followed by pyridine (4 mL). After the reaction mixture was stired for 20 minutes, the ice bath was removed. The mixture was stired at rt for 2 hours and quenched with ice water (10 mL) in an ice bath. DCM was removed in vacuo and to the residue was added water (20 mL). The resulting mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=15 / 1)$ to give the title compound as pale yellow oil ($0.95 \mathrm{~g}, 89 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 497.0[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~s}$, $2 \mathrm{H}), 1.90-1.69(\mathrm{~m}, 5 \mathrm{H}), 1.51-1.37(\mathrm{~m}, 5 \mathrm{H})$.

Step 4) the preparation of compound 5-4
[00320] To a suspension of compound $3-3-2(0.916 \mathrm{~g}, 2.2 \mathrm{mmol}$), anhydrous potassium carbonate $(0.7 \mathrm{~g}, 5 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.12 \mathrm{~g}, 0.1 \mathrm{mmol})$ in a 25 mL of two-necked flask under N_{2} was added a solution of compound $5-3(0.5 \mathrm{~g}, 1 \mathrm{mmol})$ in DME (8 mL) via syringe followed by distilled water (2 mL). The mixture was stired at $90^{\circ} \mathrm{C}$ overnight under N_{2}. After the reaction mixture was cooled to rt , water (40 mL) was added, and the mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc (v/v) $=4 / 1)$ to give the title compound as a white solid $(0.58 \mathrm{~g}, 75 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 768.5[\mathrm{M}-\mathrm{H}]^{\circ}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.94-10.58(\mathrm{~m}, 2 \mathrm{H}), 7.93-7.29(\mathrm{~m}, 8 \mathrm{H}), 5.22-5.10(\mathrm{~m}$, $2 \mathrm{H}), 3.57 .3 .38(\mathrm{br}, 4 \mathrm{H}), 3.11-2.95(\mathrm{~m}, 4 \mathrm{H}), 2.34-2.12(\mathrm{br}, 4 \mathrm{H}), 2.11-1.92(\mathrm{~m}, 4 \mathrm{H})$, $1.87-1.27(\mathrm{~m}, 30 \mathrm{H})$.

Step 5) the preparation of compound 5-5

[00321] To a solution of compound $5-4(0.53 \mathrm{~g}, 0.68 \mathrm{mmol})$ in DCM (3 mL) was added a solution of HCl in $\mathrm{EtOAc}(10 \mathrm{~mL}, 4 \mathrm{M})$ in an ice bath. The resulting mixture was stired at ft for 2.5 hours and white solid precipitated out. The solvent was removed under reduced pressure. The residue was washed with EtOAc (5 mL) assisted by sonicating in an ultrasonic cleaner, then kept still and the supernatant was discarded. The washing was repeated two more times and the residue was then concentrated in vacuo to give compound $5-5$ as a white solid ($0.46 \mathrm{~g}, 97 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI. $m / z 568.7[\mathrm{M}-\mathrm{H}]$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 87.82(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J=$ $8.6,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, j=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, j=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=$ $8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.20(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.50(\mathrm{~m}, 4 \mathrm{H}), 3.02(\mathrm{~s}$, $2 \mathrm{H}), 2.77-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.13(\mathrm{~m}, 6 \mathrm{H}), 1.62-1.10(\mathrm{~m}, 10 \mathrm{H})$.

Step 6) the preparation of compound 5-6
[00322] To a mixture of compound $5-5(0.25 \mathrm{~g}, 0.36 \mathrm{mmol})$, compound $1-7-2(0.19 \mathrm{~g}$, $1.07 \mathrm{mmol})$ and $\operatorname{EDCI}(0.27 \mathrm{~g}, 1.43 \mathrm{mmol})$ in DCM (4 mL) in an ice bath was added DIPEA ($0.75 \mathrm{~mL}, 4.29 \mathrm{mmol}$) slowly under N_{2}. At the end of the addition, the resulting mixture was stirred at it overnight and DCM was removed under reduced pressure. To the residue was added water (40 mL) and the mixture was extracted with EtOAc (30 mL x 3). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=60 / 1$) to give the title compound as a white solid $(0.26 \mathrm{~g}, 81 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 882.4[\mathrm{M}-\mathrm{H}]$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.90-10.55(\mathrm{~m}, 2 \mathrm{H}), 7.94-7.18(\mathrm{~m}, 8 \mathrm{H}), 5.88-5.56(\mathrm{~m}$, $2 \mathrm{H}), 5.54-5.33(\mathrm{~m}, 2 \mathrm{H}), 4.46-4.30(\mathrm{br}, 2 \mathrm{H}), 3.98-3.63(\mathrm{~m}, 10 \mathrm{H}), 3.16-2.93(\mathrm{~m}, 4 \mathrm{H})$,
[00323] Example 6

[00324] Synthetic routes

Step 1) the preparation of compound 6-1
[00325] To a mixture of compound $5-1(1 \mathrm{~g}, 3.8 \mathrm{mmol})$ and triethylsilane ($3.7 \mathrm{~mL}, 23$ mmol) in an ice bath was added dropwise trifluoroacetic acid (8 mL) via syringe under N_{2}. After the resulting mixture was stirred for 10 minutes, the ice bath was removed. The mixture was stired at rt for 7 hours and quenched with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ saturated solution in an ice bath until there was no more gas evolution. Water (40 mL) was added, and the mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in wacuo. The residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=5 / 1)$ to give the title compound $6-1$ as pale yellow oil $(0.81 \mathrm{~g}, 87 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 86.61(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 2.74(\mathrm{~s}, 4 \mathrm{H}), 1.58-1.40(\mathrm{~m}$, 10H).

Step 2) the preparation of compound 6-2
[00326] To a solution of compound $6-1(0.78 \mathrm{~g}, 3.17 \mathrm{mmol})$ in anhydrous DCM (20 mL) in an ice bath was added dropwise boron tribromide ($1.20 \mathrm{~mL}, 12.67 \mathrm{mmol}$) via syringe under N3. After the resulting mixture was stirred for 20 minutes, the ice bath was removed. The resulting mixture was stired at it for 2 hours and quenched with ice water in an ice bath. DCM was removed under reduced pressure and to the residue was added water (40 mL). The mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacno. The residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=5 / 1)$ to give compound $6-2$ as pale yellow oil $(0.7 \mathrm{~g}, 100 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / 2219.2[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.49(\mathrm{~s}, 2 \mathrm{H}), 5.07-4.53(\mathrm{br}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 4 \mathrm{H}), 1.59-1.37$ (m, 10H).

Step 3) the preparation of compound 6-3
[00327] To a solution of compound $6-2(0.69 \mathrm{~g}, 3.16 \mathrm{mmol})$ in anhydrous DCM (20 mL) under N_{2} in an ice bath was added $\mathrm{Tf}_{2} \mathrm{O}(3.19 \mathrm{~mL}, 19.97 \mathrm{mmol})$ via syringe followed by pyridine ($2.03 \mathrm{~mL}, 25.29 \mathrm{mmol}$). After the resulting mixture was stirred for 20 minutes, the ice bath was removed. The resulting mixture was stired at rt for 5 hours and quenched with ice water in an ice bath. DCM was removed under reduced pressure and to the residue was added water (40 mL). The mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{DCM}(\mathrm{v} / \mathrm{v})=$ $6 / 1$) to give compound $6-3$ as colonless oil ($1.11 \mathrm{~g}, 73 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.13(\mathrm{~s}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 4 \mathrm{H}), 1.59-1.41(\mathrm{~m}, 10 \mathrm{H})$.

Step 4) the preparation of compound 6-4
[00328] To a mixture of compound $6-3(0.50 \mathrm{~g}, 1.04 \mathrm{mmol})$, compound $3-3-2(1.03 \mathrm{~g}$, $2.49 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.12 \mathrm{~g}, 0.10 \mathrm{mmol})$ and potassium carbonate $(0.43 \mathrm{~g}, 3.14 \mathrm{mmol})$ in a 25 mL of two-necked flask under N_{2} was added DME (8 mL) via syringe followed by pure water (2 mL). The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ overnight. After the mixture was cooled to rt , water (40 mL) was added. The mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\mathrm{BCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=60 / 1)$ to give compound 64 as a white solid $(0.73 \mathrm{~g}, 93 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 757.6[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.10-10.32(\mathrm{br}, 2 \mathrm{H}), 8.03-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 2 \mathrm{H}), 5.22-5.11(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.39(\mathrm{~m}, 4 \mathrm{H}), 3.18-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~s}$, 4H), 2.32-2.15 (m, 4H), 2.10-1.99(m,2H), 1.60-1.30(m, 28H).

Step 5) the preparation of compound 6-5
[00329] To a solution of compound $6-4(0.71 \mathrm{~g}, 0.94 \mathrm{mmol})$ in DCM (5 mL) was added a solution of HCl in $\mathrm{EtOAc}(10 \mathrm{~mL}, 4 \mathrm{M})$ in an ice bath. At the end of the addition, the mixture was stirred at it for 3.5 hours and white solid precipitated out. The solvent was removed under reduced pressure. The residue was washed with EtOAc (5 mL) assisted by sonicating in an ultrasonic cleaner, then kept still and the supematant was discarded. The washing was reapted two more times and the residue was then concentrated in vacuo to get compound $6-5$ as a white solid $(0.53 \mathrm{~g}, 80 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: mz $554.8[\mathrm{M}-\mathrm{H}]$, and
$\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(400} \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 87.73(\mathrm{~s}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{br}, 2 \mathrm{H}), 7.24(\mathrm{~s}$, $2 \mathrm{H}), 5.16(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.60-3.49(\mathrm{~m}, 4 \mathrm{H}), 2.68(\mathrm{~s}, 4 \mathrm{H}), 2.67-2.50(\mathrm{~m}, 2 \mathrm{H})$, $2.45-2.17(\mathrm{~m}, 6 \mathrm{H}), 1.30-0.82(\mathrm{~m}, 10 \mathrm{H})$,
[00330] To a suspension of compound $6-5(0.40 \mathrm{~g}, 0.57 \mathrm{mmol})$, compound $1-7.2(0.30 \mathrm{~g}$, $1.71 \mathrm{mmol})$ and $\mathrm{EDCHCl}(0.44 \mathrm{~g}, 2.28 \mathrm{mmol})$ in DCM (4 mL) under N_{2} in an ice bath was added DIPEA ($1.19 \mathrm{~mL}, 6.83 \mathrm{mmol}$) dropwise via syringe. At the end of the addition, the mixture was stired at it overnight. DCM was removed under reduced pressure. Water (20 mL) was added to the mixture and the mixture was extracted with DCM ($30 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\mathrm{BCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=40 / 1)$ to give compound $6-6$ as a white solid $(0.43 \mathrm{~g}, 86 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 869.4[\mathrm{M}-\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 810.72-10.53(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, j$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.72-5.36(\mathrm{~m}, 4 \mathrm{H}), 4.44-4.34(\mathrm{~m}, 2 \mathrm{H})$, 3.98-3.66(m,10H), 3.20-3.07(m,2H), 3.02-2.87(m, 4H), 2.50-2.37(m, 2H), 2.35-2.14 $(\mathrm{m}, 4 \mathrm{H}), 2.10-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.32(\mathrm{~m}, 12 \mathrm{H}), 0.98-0.80(\mathrm{~m}, 12 \mathrm{H})$.
[00331] Example 7

[00332] Synthetic routes

Step 1) the preparation of compound 7-2
[00333] A mixture of compound $7-1(5.0 \mathrm{~g}, 33.7 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(23.4 \mathrm{~g}, 168.5 \mathrm{mmol})$ and iodomethane in acetone (50 mL) in a sealed tube was stirred at $60^{\circ} \mathrm{C}$ for 5 hours. After the mixture was cooled to rt , the solvent was removed in vacuo, and to the residue were added water $(150 \mathrm{~mL})$ and EtOAc $(150 \mathrm{~mL})$. When the mixture was mixed well, the mixture was filtered through a Celite pad. After the layers were partitioned, the aqueous phase was extracted with EtOAc ($150 \mathrm{~mL} \times 2$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{y})=4 / 1)$ to give the title compound 7-2 as a yellow solid ($2.5 \mathrm{~g}, 45 \%$).

Step 2) the preparation of compound 7-3
[00334] To a suspension of $t-\mathrm{BuOK}(3.7 \mathrm{~g}, 32.6 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ under N_{2} in an ice bath was added dropwise a solution of compound 7-2 (2.3 $\mathrm{g}, 14.2 \mathrm{mmol})$ and 1,4 -dibromobutane $(3.6 \mathrm{~g}, 15.6 \mathrm{mmol})$ in toluene $(30 \mathrm{~mL})$. At the end of the addition, the ice bath was removed and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 3.5 hours. After the reaction was completed, the mixture was cooled to rt and water (20 mL) was added. The toluene was removed in vacuo, and to the residue was added water (40 mL). The resulting mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=8 / 1)$ to give compound $7-3$ as pale yellow oil $(2.3 \mathrm{~g}, 72 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 231.2[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{dd}, J=6.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}$, $3 \mathrm{H}), 2.93(\mathrm{~s}, 2 \mathrm{H}), 1.83-1.64(\mathrm{~m}, 6 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 4 \mathrm{H})$.

Step 3) the preparation of compound 7.4
[00335] To a solution of compound $7-3(0.50 \mathrm{~g}, 2.3 \mathrm{mmol})$ in toluene (10 mL) under N_{2} was added Lawesson's reagent $(0.47 \mathrm{~g}, 1.16 \mathrm{mmol})$. The mixture was refluxed for 18 hours and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\mathrm{BE} /$ EtOAc $(\mathrm{v} / \mathrm{v})=5 / 1)$ to give compound $7-4$ as purple liquid $(0.48 \mathrm{~g}, 89 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / 2233.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~s}, 2 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 2 \mathrm{H})$, $1.92-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 2 \mathrm{H})$.

Step 4) the preparation of compound 7-5
[00336] To a solution of compound $7-4(0.50 \mathrm{~g}, 2.15 \mathrm{mmol})$ in DCM (20 mL) under N_{2}
in an ice bath were added $\mathrm{SbCl}_{3}(0.05 \mathrm{~g}, 0.22 \mathrm{mmol})$ and $\mathrm{BAST}(0.60 \mathrm{~mL}, 3.23 \mathrm{mmol})$. At the end of the addition, the ice bath was removed, and the mixture was stirred at n for 18 hours. The reaction mixture was quenched with NaHCO_{3} saturated solution in an ice bath and extracted with $\mathrm{DCM}(50 \mathrm{~mL} \times 3)$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=6 / 1$) to give compound $7-5$ as colorless liquid $(0.38 \mathrm{~g}, 74 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 239.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.29(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~s}, 2 \mathrm{H}), 2.12-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.68(\mathrm{~m}, 4 \mathrm{H})$, 1.55-1.42 (m, 2H).

Step 5) the preparation of compound 7-6
[00337] To a solution of compound $7-5(1.00 \mathrm{~g}, 4.20 \mathrm{mmol})$ and NIS ($1.03 \mathrm{~g}, 4.62 \mathrm{mmol}$) in acetonitrile (20 mL) in an ice bath was added TFA $(0.2 \mathrm{~mL})$ dropwise. Then the mixture was stirred at rt ovemight, neutralized with NaHCO_{3} saturated solution and extracted with EtOAc (20 mL x 3). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=6 / 1$) to give the title compound 7-6 as reddish brown oil $(0.63 \mathrm{~g}, 40 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 365.0[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 2.83(\mathrm{~s}, 2 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 2 \mathrm{H})$.

Step 6) the preparation of compound 7.7
[00338] To a solution of compound $7.6(3.2 \mathrm{~g}, 8.8 \mathrm{mmol})$ in anhydrous DCM (50 mL) at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{BBr}_{3}(2.5 \mathrm{~mL}, 26.4 \mathrm{mmol})$ via syringe under N_{2}. The mixture was stirred at
$-78^{\circ} \mathrm{C}$ for 10 minutes and at rt overnight. The resulting mixture was quenched with ice water in an ice bath. DCM was removed in vacuo and to the residue was added water (80 ml). The resulting mixture was extracted with EtOAc ($60 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purfied by silica gel column chromatography (PE/EtOAc $(v / v)=4 / 1)$ to give the title compound 7.7 as a yellow solid ($1.3 \mathrm{~g}, 42 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 351.0[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.65(\mathrm{~d}, j=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, j=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}$, $1 \mathrm{H}), 2.83(\mathrm{~s}, 2 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 2 \mathrm{H})$.

Step 7) the preparation of compound 7-8
[00339] To a solution of compound $7.7(2.7 \mathrm{~g}, 7.7 \mathrm{mmol})$ in anhydrous DCM (50 mL) in an ice bath was added pyridine ($3.1 \mathrm{~mL}, 38.6 \mathrm{mmol}$) via syringe followed by $\mathrm{TR}_{2} \mathrm{O}(3.9 \mathrm{~mL}$, 23.1 mmol) under N_{2}. After the mixture was stirred for 20 minutes, the ice bath was removed and the mixture was stirred at it for 3 hours. The reaction mixture was quenched with ice water in an ice bath. Water (50 mL) was added to the mixture and the mixture was extracted with DCM ($60 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=8 / 1$) to give the title compound $7-8$ as pale yellow oil $(3.1 \mathrm{~g}, 83 \%)$, The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 483.0[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.73(\mathrm{~d}, j=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, j=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~s}$, $2 \mathrm{H}), 2.16-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 2 \mathrm{H})$.

Step 8) the preparation of compound 7-9
[00340] To a solution of compound A-3 ($10.0 \mathrm{~g}, 25.5 \mathrm{mmol}$) in EtOAc (50.0 mL) was added a solution of HCl in EtOAc $(20.0 \mathrm{~mL}, 4 \mathrm{M})$. The mixture was stirred at rt overnight and filtered. The filter cake was washed with EtoAc to give compound D-1 as a pale yellow solid $(8.0 \mathrm{~g})$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.76-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.20(\mathrm{~m}, 1 \mathrm{H})$, $5.50-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.49-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.39(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.21$ $(\mathrm{m}, 2 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 1 \mathrm{H})$.
[00341] To a solution of compound D-1 (7.03 $\mathrm{g}, 19.26 \mathrm{mmol})$, compound 1-7-2 (5.06 g, $28.88 \mathrm{mmol})$ and $\operatorname{EDCl}(5.56 \mathrm{~g}, 28.88 \mathrm{mmol})$ in DCM (100.0 mL) in an ice bath was added DIPEA $(21.0 \mathrm{~mL})$ dropwise. At the end of the addition, the mixture was stirred at rt ovemight. Water (100 mL) was added to the mixture and the mixture was extracted with $\mathrm{DCM}(150 \mathrm{~mL}$ x 3). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{v})=1 / 2$) to give compound D-2 as a solid (7.6 g). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 1 \mathrm{H})$, $5.67-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.22(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.5-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $3.71-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 1 \mathrm{H}), 2.34-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.21-1.95(\mathrm{~m}, 5 \mathrm{H}), 1.04-1.02(\mathrm{~m}$, 1H), 0.88-0.86(d, 6H).
[00342] To a mixture of compound D-2 $5 \mathrm{~g}, 11.13 \mathrm{mmol})$, bis(pinacolato)diboron $(4.3 \mathrm{~g}, 16.7 \mathrm{mmol}), \mathrm{Pd}(d \mathrm{ppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.91 \mathrm{~g}, 1.11 \mathrm{mmol})$ and $\mathrm{KOAc}(3.3 \mathrm{~g}, 33.4$ mmol) under N_{2} was added DMF (30.0 mL) via syringe. The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ overnight, cooled to rt , and water (80 mL) was added. The mixture was extracted with EtOAc ($40 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 2$) to give the title compound $7-9$ as a beige solid (4 g). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 1 \mathrm{H})$, $5.67-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.22(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.5-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $3.71-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 1 \mathrm{H}), 2.34-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.21-1.95(\mathrm{~m}, 5 \mathrm{H}), 1.32-1.45(\mathrm{~m}$, $12 \mathrm{H}), 1.04-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.88-0.86(\mathrm{~d}, 6 \mathrm{H})$.

Step 9) the preparation of compound 7-10

[00343] To a mixture of compound $7.8(3.1 \mathrm{~g}, 6.4 \mathrm{mmol})$, compound $7.9(3.3 \mathrm{~g}, 6.7$ mmol), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(231 \mathrm{mg}, 0.2 \mathrm{mmol})$ and potassium carbonate $(2.2 \mathrm{~g}, 16.0 \mathrm{mmol})$ under N_{2} was added DME (50 mL) via syringe followed by pure water (10 mL). The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ overnight. DME was removed in vacuo and to the residue was added water (50.0 mL). The resulting mixture was extracted with EtOAc ($50.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\operatorname{PE} / E T O A c(v / v)=1 / 1)$ to give the title compound $7-10$ as a beige solid $(3.44 \mathrm{~g}, 74 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 724.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.84-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 1 \mathrm{H})$, $7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.28(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.31$ $(\mathrm{m}, 1 \mathrm{H}), 3.76-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~s}$, $2 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.79(\mathrm{~m}, 8 \mathrm{H})$, $0.89 .0 .87(\mathrm{~m}, 6 \mathrm{H})$.

Step 10) the preparation of compound 7-11

[00344] To a mixture of compound $7-10(8.0 \mathrm{~g}, 11.1 \mathrm{mmol})$, bis(pinacolato)diboron $(4.3 \mathrm{~g}, 16.7 \mathrm{mmol}), \mathrm{Pd}(d p p f) \mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{~g}, 1.1 \mathrm{mmol})$ and $\mathrm{KOAc}(3.3 \mathrm{~g}, 33.4 \mathrm{mmol})$ under N_{2} was added DMF (20.0 mL) via syringe. The resulting mixture was stirred at $100^{\circ} \mathrm{C}$ overnight, cooled to rt , and water (80 mL) was added. The mixture was extracted with EtOAc ($40 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 1$) to give the title compound 7-11 as a beige solid ($2.6 \mathrm{~g}, 33 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 703.4[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CDCl}): 87.80-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 1 \mathrm{H})$, $7.44-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.37(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.28(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.31$ $(\mathrm{m}, 1 \mathrm{H}), 3.74-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~s}$, $2 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.29(\mathrm{~m}, 8 \mathrm{H}), 1.24$ $(\mathrm{s}, 12 \mathrm{H}), 0.89-0.87(\mathrm{~m}, 6 \mathrm{H})$.

Step 11) the preparation of compound 7-12
[00345] To a solution of compound $2-2-2(2.9 \mathrm{~g}, 7.9 \mathrm{mmol})$ in EtOAc $(10 \mathrm{~mL})$ was added a solution of HCl in EtOAc $(10 \mathrm{~mL}, 4 \mathrm{M})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at it overnight and concentrated in vacuo. The residue was washed with EtOAc twice to give compound E-1 as a white solid ($2.4 \mathrm{~g}, 100 \%$).
[00346] To a solution of compound E-1 $2.4 \mathrm{~g}, 7.9 \mathrm{mmol})$, compound 1-7-2 $(2.2 \mathrm{~g}, 12.7$ mmol) and HATU ($5.4 \mathrm{~g}, 14.3 \mathrm{mmol}$) in DMF (48 mL) was added DPEE ($10.3 \mathrm{~g}, 13.9 \mathrm{~mL}$, 79.8 mmol) at $0^{\circ} \mathrm{C}$. The mixture was stimed at t overnight. Water and EtOAc were added to the mixture. After the layers were partitioned, the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\operatorname{PE} / E t O A c(v / v)=3 / 1)$ to give the title compound $7-12(1.3 \mathrm{~g}, 35 \%)$.

Step 12) the preparation of compound 7-13
[00347] To a mixture of compound $7-11(2.6 \mathrm{~g}, 3.7 \mathrm{mmol})$, compound $7-12(1.7 \mathrm{~g}, 4.1$ mmol), $P d\left(\mathrm{PPh}_{3}\right)_{4}(0.231 \mathrm{~g}, 0.2 \mathrm{mmol})$ and potassium carbonate $(1.3 \mathrm{~g}, 9.3 \mathrm{mmol})$ under N_{2} was added DME (50 mL) via syringe followed by pure water $(10 \mathrm{~mL})$. The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ ovemight. DME was removed in vacuo, and to the residue was added water (50 mL). The resulting mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc) to give the title compound $7-13$ as a beige solid ($1.2 \mathrm{~g}, 37 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 869.5[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.80-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.51(\mathrm{~m}, \mathrm{H})$, $7.44-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 5.66-5.50(\mathrm{~m}, 2 \mathrm{H}), 5.30-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.37-4.28$ $(\mathrm{m}, 2 \mathrm{H}), 3.90-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.57(\mathrm{~m}, 8 \mathrm{H}), 3.01-2.77(\mathrm{~m}, 6 \mathrm{H}), 2.43-1.87(\mathrm{~m}, 8 \mathrm{H})$,

Step 1) the preparation of compound 8-1
[00350] To a mixture of compound $1-3(2.0 \mathrm{~g}, 8.1 \mathrm{mmol})$ and triethylsilane ($7.0 \mathrm{~mL}, 44$ mmol) was added dropwise trifluoroacetic acid (20.0 mL) in an ice bath. The resulting mixture was stirred for 24 hours, quenched with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ saturated solution, and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=15 / 1$) to give compound $8-1$ as colorless oil ($1.64 \mathrm{~g}, 87.2 \%$, HPLC: 97.9%). The compound was characterized by the following spectroscopic data

MS-ESI: $m / z 232.1[\mathrm{M}+\mathrm{H}]$; and

[^1]Step 2) the preparation of compound 8-2
[00351] To a solution of compound $8-1(2.5 \mathrm{~g}, 10.78 \mathrm{mmol})$ in anhydrous DCM (30.0 mL) in an ice bath was added dropwise boron tribromide (2.9 mL). The resulting mixture was stirred for 1 hour, quenched with ice water and extracted with DCM ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=6 / 1$) to give the title compound $8-2$ as a white solid ($2.0 \mathrm{~g}, 91 \%$, HPLC: 97.9%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 205.1[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 86.52(\mathrm{~s}, 2 \mathrm{H}), 4.3(\mathrm{~s}, 1 \mathrm{H}), 2.7791(\mathrm{~s}, 4 \mathrm{H}), 1.73-1.71(\mathrm{~m}$, $8 \mathrm{H})$.

Step 3) the preparation of compound 8-3
[00352] To a solution of compound $8-2(2.0 \mathrm{~g}, 9.8 \mathrm{mmol})$ and pyridine (5.0 mL) in anhydrous DCM (60 mL) was added trifluoroacetic anhydride ($5.4 \mathrm{~mL}, 39.2 \mathrm{mmol}$) dropwise in an ice bath. The resulting mixture was stired for 1 hour, quenched with ice water (50 mL) and extracted with DCM ($25 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE) to give the title compound $8-3$ as coloness oil (4.11 g , 89.6%, HPLC: 95.5%). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.25(\mathrm{~s}, 2 \mathrm{H}), 2.997(\mathrm{~s}, 4 \mathrm{H}), 1.73-1.76(\mathrm{~m}, 8 \mathrm{H})$.

Step 4) the preparation of compound 8-4
[00353] To a mixture of compound $8-3(964 \mathrm{mg}, 2 \mathrm{mmol})$, tetrabutylammonium iodide ($2214 \mathrm{mg}, 6 \mathrm{mmol}$), CuI ($114 \mathrm{mg}, 0.6 \mathrm{mmol}$) and bis(triphenylphosphine)palladium(II) chloride ($140 \mathrm{mg}, 0.2 \mathrm{mmol}$) in a 50 mL of two-necked flask was added anhydrous THF (8
$\mathrm{mL})$ under N_{2} via syringe followed by $\mathrm{Et}_{3} \mathrm{~N}(8 \mathrm{~mL})$. After the mixture was stimed for 10 minutes, TMSA ($1.4 \mathrm{~mL}, 10 \mathrm{mmol}$) was added and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 hours. The mixture was concentrated in vacuo and the residue was purfied by silica gel column chromatography (PE) to give the title compound $8-4$ as yellow hquid (643 mg , 88.3%, HPLC: 88%). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.1974(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 4 \mathrm{H}), 1.7541-1.7584(\mathrm{~m}, 8 \mathrm{H})$, $0.2882(\mathrm{~s}, 18 \mathrm{H})$.

Step 5) the preparation of compound 8-5
[00354] To a mixture of compound $8-4(0.610 \mathrm{~g}, 1.67 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.156 \mathrm{~g}, 8.3$ mmol) in a 50 mL of two-necked flask were added $\mathrm{CH}_{3} \mathrm{OH}(8.0 \mathrm{~mL})$ and THF (8.0 mL) under N_{2} via syringe. The mixture was stirred at it for 5 hours and filtered through a Celite pad. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE) to give the title compound 8-5 as yellow liquid (0.324 g , 87.8%, HPLC: 95%). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.2556(\mathrm{~s}, 2 \mathrm{H}), 3.2616(\mathrm{~s}, 2 \mathrm{H}), 2.9508(\mathrm{~s}, 4 \mathrm{H}), 1.71-1.74$ $(\mathrm{m}, 4 \mathrm{H}), 1.61-1.64(\mathrm{~m}, 4 \mathrm{H})$.

Step 6) the preparation of compound 8-6
[00355] To a mixture of compound $2-7-2(472 \mathrm{mg}, 1.3 \mathrm{mmol}), \mathrm{CuI}(22.4 \mathrm{mg}, 0.12 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(69.19 \mathrm{mg}, 0.06 \mathrm{mmol})$ in a 50 mL of two-necked flask were added anhydrous DMF (1.0 mL) and $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~mL})$ under N_{2} via syringe, then a solution of compound $8-5$ ($130 \mathrm{mg}, 0.6 \mathrm{mmol}$) in DMF (3.5 mL) was added dropwise to the mixture via syringe. The resulting mixture was stirred at it for 20 hours, and filtered through a Celite pad. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE) to give the title compound $8-6$ as a yellow solid ($280 \mathrm{mg}, 68.6 \%$, HPLC: 89%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 692.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right): 810.65$ (br, 2 H), $7.22-7.25$ (m, 4H), 4.92 (br, 2H), 3.38 (br,
$4 \mathrm{H}), 3.00(\mathrm{~s}, 4 \mathrm{H}), 2.13(\mathrm{br}, 4 \mathrm{H}), 1.94(\mathrm{br}, 4 \mathrm{H}), 1.63(\mathrm{~s}, 4 \mathrm{H}), 1.57(\mathrm{~s}, 4 \mathrm{H}), 1.48(\mathrm{~s}, 18 \mathrm{H})$.
Step 7) the preparation of compound 8-7
[00356] To a solution of compound $8-6(280 \mathrm{mg}, 0.4 \mathrm{mmol})$ in THF (3 mL) was added a solution of HCl in EtOAc ($12 \mathrm{~mL}, 4 \mathrm{M}$) in an ice bath. At the end of the addition, the mixture was stired at it for 4 hours and filtered. The filter cake was washed with EtOAc (30 mL) to give the title compound $8-7$ as a yellow solid ($160 \mathrm{mg}, 62 \%, \mathrm{HPLC} .90 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 505.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 88.01-8.07$ (br, 2 H$), 7.37$ (s, 2 H), 5.08 (br, 2H), 3.55 (br, $2 \mathrm{H}), 3.05(\mathrm{~s}, 4 \mathrm{H}), 2.66(\mathrm{br}, 2 \mathrm{H}), 2.46(\mathrm{br}, 2 \mathrm{H}), 2.35(\mathrm{br}, 2 \mathrm{H}), 2.22(\mathrm{br}, 2 \mathrm{H}), 1.77-1.82(\mathrm{~m}$, $4 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 4 \mathrm{H})$.

Step 8) the preparation of compound 8-8
[00357] To a suspension of compound $8-7(160 \mathrm{mg}, 0.25 \mathrm{mmol})$, compound 1-7-2 (132.1 $\mathrm{mg}, 0.75 \mathrm{mmol}$) and EDCl ($240.8 \mathrm{mg}, 1.2 \mathrm{mmol}$) in DCM (5.0 mL) in an ice bath was added DIPEA $(1.0 \mathrm{~mL})$ dropwise. At the end of the addition, the mixture was stired at rt for 12 hours. Water (20 mL) was added to the mixture and the mixture was extracted with DCM (50 $m L \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (BCM/MeOH $(v / v)=200 / 1)$ to give the title compound $8-8$ as a pale yellow solid ($160 \mathrm{mg}, 79.5 \%$, HPLC: 99.8%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 805.3[\mathrm{M}+\mathrm{H}]]^{+}$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 7,20-7.21$ (m, 4H), 5.0-5.1 (br, 2H), 4.8 (br, 2H), $4.18-4.20(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{br}, 2 \mathrm{H}), 3.82(\mathrm{br}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 6 \mathrm{H}), 2.98(\mathrm{~s}, 2 \mathrm{H})$, $2.26-2.28(\mathrm{br}, 2 \mathrm{H}), 2.17-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.05(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.78$ (br, 4H), 1.65-1.67(br, 4H), 0.80-0.92(m, 12H).

[00359]
Synthetic routes

$9-8-2$

Step 1) the preparation of compound 9-2
[00360] A mixture of compound $9-1(4.68 \mathrm{~g}, 13.18 \mathrm{mmol})$ and PPA (50.87 g) was stirred at $80^{\circ} \mathrm{C}$ for 4 hours and poured into ice water (250 ml). The mixture was extracted with EtOAc ($100 \mathrm{~mL} \times 5$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\mathrm{BE} / E t O A c(\mathrm{v} / \mathrm{v})=1 / 1)$ to give the title compound $9-2$ as a pale yellow solid (3 g). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 338.2[\mathrm{M}+\mathrm{H}]]^{-}$, and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.5(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.3(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-3.00$ $(\mathrm{m}, 2 \mathrm{H}), 2.65-2.68(\mathrm{~m}, 2 \mathrm{H})$.

Step 2) the preparation of compound 9-3
[00361] To a suspension of $t-\mathrm{BuOK}(338.28 \mathrm{mg}, 3.015 \mathrm{mmol})$ in toluene (10 mL) under N_{2} in an ice bath was added dropwise a solution of compound $9-2(680 \mathrm{mg}, 2.01 \mathrm{mmol})$ and

1,4-dibromobutane ($478 \mathrm{mg}, 2,21 \mathrm{mmol}$) in toluene $(20 \mathrm{~mL})$. At the end of the addition, the mixture was stirred at $110^{\circ} \mathrm{C}$ for 2.5 hours. After the reaction was completed, the mixture was cooled to t and quenched with ice water. The toluene was removed in vacuo, and the resulting mixture was extracted with EtOAc ($25 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dred over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 1$) to give the title compound 9.3 as a pale yellow solid (784.1 mg). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 392.2[\mathrm{M}+\mathrm{H}]$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.65(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}$, $2 \mathrm{H}), 2.00-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.60(\mathrm{~m}, 2 \mathrm{H})$.

Step 3) the preparation of compound 9-4
[00362] To a mixture of compound $9-3(2.0 \mathrm{~g}, 5.12 \mathrm{mmol})$ and triethylsilane ($7.0 \mathrm{~mL}, 44$ mmol) in an ice bath was added dropwise tifluoroacetic acid (20 mL). The resulting mixture was stirred for 4 hours, quenched with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ saturated solution, and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=10 / 1)$ to give the title compound $9-4$ as a white solid $(1.64 \mathrm{~g})$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 378.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.605(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.803$ ($\mathrm{s}, 4 \mathrm{H}$) , $1.56-1.71(\mathrm{~m}, 8 \mathrm{H})$.

Step 4) the preparation of compound 9-5
[00363] To a mixture of compound $9.4(1.0 \mathrm{~g}, 2.65$ mmol), 1,4-dioxa-8-azaspiro[4.5]decane $(0.4178 \mathrm{~g}, 2.92 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(1.54 \mathrm{~g}, 7.95 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc}) 2(0.060 \mathrm{~g}, 0.265 \mathrm{mmol})$ in a 50 mL of two-necked flask was added toluene (25 mL) via syringe under N_{2}. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 10 hours and filtered through a Celite pad. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 1$) to give the title compound $9-5$ as yellow liquid (1.05 g). The compound was characterized by the following spectroscopic
data:
MS-ESI: $m / z 393.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, j=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}$, $4 \mathrm{H}), 3.65(\mathrm{~m}, 4 \mathrm{H}), 2.803(\mathrm{~s}, 4 \mathrm{H}), 1.65(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.71(\mathrm{~m}, 8 \mathrm{H})$

Step 5) the preparation of compound 9.6
[00364] To a mixture of compound $9-5(2.0 \mathrm{~g}, 5.1 \mathrm{mmol})$ and $\mathrm{SmCl}_{3}(0.131 \mathrm{~g}, 0.51$ mmol) was added THF (20 mL) under N_{2} via syringe. After the mixture was stirred at it for 15 minutes, $\operatorname{TMSCl}(0.610 \mathrm{~g}, 5.61 \mathrm{mmol})$ was added slowly, The resulting mixture was stirred at it for further 10 hours and filtered through a Celite pad. The filtrate was concentrated in vacuo to give the crude product (a) (1.5 g), which was used for the next step without further purification.
[00365] To a solution of the above product (a) in THF was added LiHMDS (6.5 mL , $6.46 \mathrm{mmol}, 1 \mathrm{M}$ in THE) at $-78^{\circ} \mathrm{C}$. After the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 0.5 hour, PhNTf $2\left(2.77 \mathrm{~g}, 7.76 \mathrm{mmol}\right.$) was added dropwise. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 0.5 hour and at rt for another 10 hours. The mixture was quenched with water and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the product (b) (1.0 g), which was used for the next step without further purification.
[00366] To a mixture of the above product (b) ($1.0 \mathrm{~g}, 2 \mathrm{mmol}$), bis(pinacolato)diboron $(1.27 \mathrm{~g}, 5 \mathrm{mmol}), \mathrm{Pd}(d p p f) \mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.16 \mathrm{~g}, 0.2 \mathrm{mmol})$ and $\mathrm{KOAc}(0.78 \mathrm{~g}, 8 \mathrm{mmol})$ in a 50 mL of two-necked flask was added DMF (20.0 mL) under N_{2} via syringe. The mixture was stired at $90{ }^{\circ} \mathrm{C}$ ovemight, cooled to it and water (80 mL) was added. The resulting mixture was extracted with EtOAc ($40 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{v})=1 / 2)$ to give the title compound $9-6$ as a beige solid (0.96 g). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 508.3[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(d, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.48-3.45(\mathrm{~m}, 4 \mathrm{H}), 2.803(\mathrm{~s}, 4 \mathrm{H}), 1.66-1.71(\mathrm{~m}, 13 \mathrm{H}), 1.38(\mathrm{~s}, 24 \mathrm{H})$.

Step 6) the preparation of compound 9-7
[00367] To a mixture of compound $9-6(3 \mathrm{~g}, 5.91 \mathrm{mmol})$, compound $2-7-2(4.94 \mathrm{~g}, 13.6$ mmol $), \operatorname{Pd}\left(\mathrm{PH}_{3}\right)_{4}(0.342 \mathrm{~g}, 0.296 \mathrm{mmol})$ and potassium carbonate $(2.47 \mathrm{~g}, 17.73 \mathrm{mmol})$ in a 100 mL of two-necked flask under N_{2} was added DME (60.0 mL) via syringe followed by pure water $(12.0 \mathrm{~mL})$. The resulting mixture was stired at $90^{\circ} \mathrm{C}$ overnight, cooled to Ht and concentrated in vacuo. To the residue was added water (100.0 mL). The mixture was extracted with EtOAc ($100.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (DCM/MeOH (v/v)=200/1) to give the title compound 9-7 as a beige solid (3.9 g). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 726.93[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.97$ (brs, 1 H$), 10.49$ (brs, 1 H$), 7.79-7.80(\mathrm{~m}, 2 \mathrm{H})$, $7.24(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 4.69-4.89(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.42(\mathrm{~m}, 4 \mathrm{H}), 2.95-3.20(\mathrm{~m}, 9 \mathrm{H})$, $1.95-2.35(\mathrm{~m}, 10 \mathrm{H}), 1.80-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.54(\mathrm{~m}, 8 \mathrm{H}), 1.51(\mathrm{~s}, 18 \mathrm{H})$.

Step 7) the preparation of compound 9-8-1
[00368] To a solution of compound $9-7(500 \mathrm{mg}, 0.689 \mathrm{mmol})$ in THF (10 mL) was added a solution of HCl in EtOAc ($12 \mathrm{~mL}, 4 \mathrm{M}$) in an ice bath. At the end of the addition, the mixture was stirred at rt overnight and fltered. The filter cake was washed with EtOAc to give the title compound $9.8-1$ as a solid (360 mg). The compound was characterized by the following spectroscopic data:

MS-ESI: $w / z 526.7[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.31(\mathrm{brs}, 2 \mathrm{H}), 7.69-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}$, $1 \mathrm{H}), 4.68-4.69(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~m}, 4 \mathrm{H}), 2.85-3.07(\mathrm{~m}, 9 \mathrm{H}), 1.85-2.01(\mathrm{~m}, 10 \mathrm{H}), 1.75-1.79$ $(\mathrm{m}, 2 \mathrm{H}), 1.55-1.65(\mathrm{~m}, 8 \mathrm{H}), 1.5-1.48(\mathrm{~m}, 2 \mathrm{H})$.

Step 8) the preparation of compound 9-8-2
[00369] To a solution of L-valine ($2.49 \mathrm{~g}, 21.3 \mathrm{mmol}$) in THF (64.5 mL) was added a solution of $\mathrm{NaHCO}_{3}(5.37 \mathrm{~g}, 64 \mathrm{mmol})$ in water $(64.5 \mathrm{~mL})$ followed by 4 -morpholinecarbonyl chloride ($2.8 \mathrm{~mL}, 23.5 \mathrm{mmol}$). The resulting mixture was stirred at it overnight, adjusted to pH 3 with HCl aqueous solution (1 M) and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give compound $9.8-2$ as a white solid ($2.9 \mathrm{~g}, 60 \%$).

Step 9) the preparation of compound $9-9$
[00370] To a suspension of compound $9-8-1(350 \mathrm{mg}, 0.6654 \mathrm{mmol}$), compound $9-8-2$ ($246 \mathrm{mg}, 0.998 \mathrm{mmol}$) and $\mathrm{EDCL}(192 \mathrm{mg}, 0.998 \mathrm{mmol})$ in $\mathrm{DCM}(10.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added DIPEA (0.8 mL) dropwise. After all solid had dissolved, the mixture was stirred at at for 10 hours. To the mixture was added a small amount of water and the mixture was extracted with DCM (20 mL x 3). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=50 / 1$) to give the title compound $9-9$ as a pale yellow solid (150 mg). The compound was chatacterized by the following spectroscopic data:

MS-ESI: miz $492.3[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.74(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 10.34(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.79-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.44-5.47(\mathrm{~m}, 2 \mathrm{H}), 5.27-5.28$ $(\mathrm{m}, 2 \mathrm{H}), 4.55-4.67(\mathrm{~m}, 8 \mathrm{H}), 4.31-4.34(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H})$, 3.63-3.69(m, 2H), 2.75-3.08(m, 13H), 2.35-2.37(m, 2H), 2.20-2.21 (m, 2H), 2.09-2.12 $(\mathrm{m}, 2 \mathrm{H}), 1.95-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~m}, 4 \mathrm{H}), 1.03-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}$, $12 H)$.
[00371] Example 10

[00372] Synthetic routes

Step 1) the preparation of compound 10-1
[00373] To a mixture of compound $7.3(9.76 \mathrm{~g}, 45 \mathrm{mmol})$ and triethylsilane (28.8 mL , 180 mmol) in an ice bath was added dropwise trifluoroacetic acid (20 mL). The mixture was stired at $40^{\circ} \mathrm{C}$ overnight, neutralized with NaHCO_{3} saturated solution and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\operatorname{PE} / E t O A c(v / v)=10 / 1)$ to give the title compound $10-1$ as colorless oil $(7.1 \mathrm{~g}, 78 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 203.14[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.10-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.65-6.67(\mathrm{~m}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 2 \mathrm{H}), 1.57 \mathrm{-1.72(m,8H)}$.

Step 2) the preparation of compound $10-2$
[00374] To a solution of compound $10-1(14.1 \mathrm{~g}, 69.8 \mathrm{mmol})$ and NIS (17.2 $\mathrm{g}, 76.8$ mmol) in acetonitrile (200 mL) was added TFA ($1.55 \mathrm{~mL}, 20.9 \mathrm{mmol}$) slowly in an ice bath. The mixture was stired at nt overnght, neutralized with NaHCO_{3} saturated solution and extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=20 / 1$) to give the title compound $10-2$ as colorless oil ($19.2 \mathrm{~g}, 84 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 329.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.45(\mathrm{~d}, 1 \mathrm{H}), 6.43(\mathrm{~d}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 2 \mathrm{H})$, $2.81(\mathrm{~s}, 2 \mathrm{H}), 1.73-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 4 \mathrm{H})$.

Step 3) the preparation of compound $10-3$
[00375] To a solution of compound $10-2(19.6 \mathrm{~g}, 59.7 \mathrm{mmol})$ in anhydrous DCM (15 mL) at $-78^{\circ} \mathrm{C}$ was added dropwise boron tribromide ($74.7 \mathrm{~g}, 298.8 \mathrm{mmol}$). At the end of the addition, the mixture was stirred at rt for 6 hours, quenched with ice water and extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=3 / 1)$ to give the title compound $10-3$ as a gray solid $(17 \mathrm{~g}, 92 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: miz $315.2[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.36(\mathrm{~d}, 1 \mathrm{H}), 6.41(\mathrm{~d}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 2 \mathrm{H})$, $2.82(\mathrm{~s}, 2 \mathrm{H}), 1.73-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.63(\mathrm{~m}, 4 \mathrm{H})$.

Step 4) the preparation of compound 10-4-1
[00376] To a mixture of compound $10-3(6.5 \mathrm{~g}, 20.7 \mathrm{mmol})$, bis(pinacolato)diboron $(7.4 \mathrm{~g}, 28.9 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.84 \mathrm{~g}, 1.03 \mathrm{mmol})$ and $\mathrm{KOAc}(6.1 \mathrm{~g}, 62.1$ mmol) under N_{2} was added DMF (80.0 mL) via syringe. The resulting mixture was
stirred at $90^{\circ} \mathrm{C}$ overnight, cooled to rt , and water (80 mL) was added. The mixture was extracted with EtOAc ($100.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\operatorname{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 1)$ to give the title compound 10-4-1 (8 g). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.49(\mathrm{~d}, 1 \mathrm{H}), 6.60(\mathrm{~d}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 2 \mathrm{H})$, $1.70-1.60(\mathrm{~m}, 8 \mathrm{H}), 1.34-1.36(\mathrm{~m}, 12 \mathrm{H})$.

Step 5) the preparation of compound $10-5$
[00377] To a mixture of compound $10-4-1(1.5 \mathrm{~g}, 4.77 \mathrm{mmol})$, compound $10-4-2(2.24 \mathrm{~g}$, $4.54 \mathrm{mmol}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.2625 \mathrm{~g}, 0.227 \mathrm{mmol})$ and potassium carbonate $(1.577 \mathrm{~g}, 1.134$ mmol) in a 25 mL of two-necked flask under N_{2} was added DME (10.0 mL) via syringe followed by pure water (2.5 mL). The mixture was stirred at $90^{\circ} \mathrm{C}$ overnight. After the mixture was cooled to rt , the solvent was removed in vacuo, and to the residue was added water (30.0 mL). The resulting mixture was extracted with EtOAc ($30.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $($ PE/EtOAc $(v / v)=8 / 1)$ to give the title compound $10-5$ as a red brown solid $(1.114 \mathrm{~g}$, 41.38%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 636.3[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.19-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.01-7.05(\mathrm{br}, 1 \mathrm{H}), 6.96-6.99(\mathrm{br}, 1 \mathrm{H})$, $6.09(\mathrm{br}, 1 \mathrm{H}), 5.79-5.82(\mathrm{~d}, J=10.48 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-5.36(\mathrm{br}, 1 \mathrm{H}), 5.10-5.17(\mathrm{t}, J=11$ $\mathrm{Hz}, 1 \mathrm{H}), 4.982(\mathrm{br}, 1 \mathrm{H}), 4.909(\mathrm{br}, 1 \mathrm{H}), 2.20-2.21$ (br, 2H), 1.95 (br, 4H), 1.698 (br, $12 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.24-1.25(\mathrm{br}, 2 \mathrm{H}), 0.0017(\mathrm{~s}, 9 \mathrm{H})$.

Step 6) the preparation of compound 10-6
[00378] To a solution of compound $10-5(1.106 \mathrm{~g}, 0.174 \mathrm{mmol})$ and pyridine $(0.7 \mathrm{ml}$, 0.869 mmol) in anhydrous DCM (5 mL) under N_{2} in an ice bath was added trifluoroacetic anhydride ($0.88 \mathrm{~mL}, 6.3 \mathrm{mmol}$). After the resulting mixture was stirred for 1 hour, the - 174 -
reaction mixture was quenched with ice water (15 mL) and extracted with $\mathrm{DCM}(25 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=5 / 1)$ to give the title compound $10-6$ as a pale yellow solid ($0.593 \mathrm{~g}, 42 \%$, HPLC: 95.5%). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.39-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.229(\mathrm{br}, 1 \mathrm{H}), 7.09-7.10(\mathrm{br}, 1 \mathrm{H})$, $6.44-6.55(\mathrm{br}, 1 \mathrm{H}), 5.83-5.85(\mathrm{~d}, J=9.36 \mathrm{~Hz}, 1 \mathrm{H}), 5.35-5.38(\mathrm{br}, 1 \mathrm{H}), 5.13-5.14(\mathrm{br}, 1 \mathrm{H})$, 4.96-4.99 (br, 1 H$), 4.90-4.91(\mathrm{br}, 1 \mathrm{H}), 3.10-3.11(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 2 \mathrm{H})$, $2.18-2.27$ (br, 2 H), 1.91-1.93 (br, 2H), 1.70-1.72 (br, 4H), 1.63-1.64 (br, 8H), 1.39 (s, 9H), 0.0017 ($\mathrm{s}, 9 \mathrm{H})$.

Step 7) the preparation of compound $10-7$
[00379] To a mixture of compound $10-6(530 \mathrm{mg}, 0.69 \mathrm{mmol})$, compound 3-3-2 (270.76 $\mathrm{mg}, 0.655 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(39.85 \mathrm{mg}, 0.0345 \mathrm{mmol})$ and potassium carbonate (287.77 mg , 2.07 mmol) in a 25 mL of two-necked flask under N_{2} was added DME (10 mL) via syringe followed by pure water (2.5 mL). The mixture was stirred at $90^{\circ} \mathrm{C}$ overnight. After the mixture was cooled to it , the solvent was removed in vacuo, and to the residue was added water (30.0 mL). The resulting mixture was extracted with EtOAc ($30.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=1 / 1)$ to give the title compound $10-7$ as a pale ycllow solid (360 mg , 58%. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 453.3[\mathrm{M}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.84(\mathrm{br}, 1 \mathrm{H}), 7.76-7.78(\mathrm{~d}, j=8.12 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.48$ (br, 2H), 7.34-7.35 (br, 1H), 7.15 (br, 2H), 7.098 (s, 1H), 5.85-5.875 (br, 2H), 5.36 (br, $1 \mathrm{H}), 5.14-5.16(\mathrm{br}, 2 \mathrm{H}), 5.002(\mathrm{br}, 1 \mathrm{H}), 3.64(\mathrm{br}, 1 \mathrm{H}), 3.52-3.56(\mathrm{br}, 2 \mathrm{H}), 3.4258$ (br, $2 \mathrm{H}), 3.16(\mathrm{~s}, 2 \mathrm{H}), 3.09(\mathrm{br}, 1 \mathrm{H}), 2.97-3.00(\mathrm{br}, 2 \mathrm{H}), 2.19-2.22(\mathrm{~m}, 4 \mathrm{H}), 2.03-2.04(\mathrm{br}$, $2 \mathrm{H}), 1.75$ (br, 4H), 1.59-1.63 (br, 9H), 1.518 (br, 9H), 1.417 ($\mathrm{s}, 6 \mathrm{H}), 0.0107$ (s, 9H).

Step 8) the preparation of compound $10-8$

[00380] To a solution of compound $10-7(360 \mathrm{mg}, 0.4 \mathrm{mmol})$ in EtOAc $(3.0 \mathrm{~mL})$ was added a solution of HCl in EtOAc ($15 \mathrm{~mL}, 4 \mathrm{M}$). The mixture was stired at tt overnight and filtered. The filter cake was washed with EtOAc (30 mL) to give the title compound $10-8$ as a beige solid ($280 \mathrm{mg}, 97 \%$, HPLC: 90%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 589.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.72-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.48(\mathrm{br}, 1 \mathrm{H})$, $7.34-7.35(\mathrm{br}, 1 \mathrm{H}), 7.15(\mathrm{br}, 2 \mathrm{H}), 7.098(\mathrm{~s}, 1 \mathrm{H}), 5.85-5.875$ (br, 2H), 5.046 (br, 1H), 4.87 (br, 2 H$), 3.37-3.38(\mathrm{br}, 4 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 2 \mathrm{H}), 2.32-2.35(\mathrm{~m}, 4 \mathrm{H}), 2.14-2.17$ (br, $2 \mathrm{H}), 1.90-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.60(\mathrm{br}, 8 \mathrm{H})$.

Step 9) the preparation of compound $10-9$
[00381] To a solution of compound $10-8(212 \mathrm{mg}, 0.294 \mathrm{mmol})$, compound $1.7-2$ (155 $\mathrm{mg}, 0.883 \mathrm{mmol})$ and $\mathrm{EDCl}(198 \mathrm{mg}, 1.029 \mathrm{mmol})$ in DCM $(10.0 \mathrm{~mL})$ in an ice bath was added DPEA $(0.5 \mathrm{~mL}, 2.353 \mathrm{mmol})$ dropwise. The mixture was stirred at rt ovemight. Water (20 mL) was added to the mixture and the mixture was extracted with DCM $(50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=100 / 1$) to give the title compound $10-9$ as a solid ($77.5 \mathrm{mg}, 29.96 \%$, HPLC: 90.38%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 445.3[\mathrm{M}+2 \mathrm{H}]^{2+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.68-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.52(\mathrm{br}, 2 \mathrm{H})$, $7.37-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.25-5.35(\mathrm{br}, 2 \mathrm{H}), 5.10-5.18(\mathrm{br}, 1 \mathrm{H}), 4.22-4.27$ $(\mathrm{m}, 2 \mathrm{H}), 4.18-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.92(\mathrm{br}, 4 \mathrm{H}), 3.64(\mathrm{~s}, 6 \mathrm{H}), 3.07-3.09(\mathrm{br}, 2 \mathrm{H})$, $2.84-2.85(\mathrm{br}, 2 \mathrm{H}), 2.00-2.06(\mathrm{br}, 6 \mathrm{H}), 1.43-1.66(\mathrm{~m}, 8 \mathrm{H}), 1.28-1.33(\mathrm{br}, 2 \mathrm{H}), 0.88-0.92$ (m, 12H).

Synthetic routes

Step 1) the preparation of compound 11-1
[00384] To a solution of compound $10-3(5 \mathrm{~g}, 15.92 \mathrm{mmol})$ in anhydrous DCM (50 mL) under N_{2} in an ice bath was added slowly $\mathrm{T}_{2} \mathrm{O}(8.0 \mathrm{~mL}, 47.77 \mathrm{mmol})$ via syringe followed by pyridine ($6.5 \mathrm{~mL}, 79.62 \mathrm{mmol}$). The resulting mixture was stirred in the ice bath for 20
minutes and stirred at r for another 3 hours, then quenched with ice water in an ice bath. Water (50 mL) was added to the mixture and the mixture was extracted with DCM ($60 \mathrm{~mL} x$ 3). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=10 / 1)$ to give the title compound $11-1$ as pale yellow oil $(5.98 \mathrm{~g})$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.57(\mathrm{~d}, 1 \mathrm{H}), 6.79(\mathrm{~d}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 2 \mathrm{H})$, 1.75-1.72 (m, 4H), 1.65-1.63(m, 4H).

Step 2) the preparation of compound 11-3
[00385] To a mixture of compound $11-1(4.56 \mathrm{~g}, 10.21 \mathrm{mmol})$, compound $7.9(4.22 \mathrm{~g}$, $8.5 \mathrm{mmol}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.983 \mathrm{~g}, 0.85 \mathrm{mmol})$ and potassium carbonate $(4.27 \mathrm{~g}, 25.5 \mathrm{mmol})$ in a 100 mL of two-necked flask under N_{2} was added BME (50.0 mL) via syringe followed by pure water (10.0 mL). The mixture was stirred at $90^{\circ} \mathrm{C}$ overnight. After the mixture was cooled to rt , the solvent was removed in vacuo, and to the residue was added water (50.0 mL). The resulting mixture was extracted with EtOAc (30.0 mL x 3). The combined organic phases were washed with brine, dred over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 2$) to give the title compound $11-3$ as a beige solid ($3.45 \mathrm{~g}, 58 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 690.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.84-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.69 .7 .66(\mathrm{~m}, 2 \mathrm{H}), 7.57 .7 .55(\mathrm{~m}, 1 \mathrm{H})$, $7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.27(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.30$ $(\mathrm{m}, 1 \mathrm{H}), 3.75-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{~s}$, $2 \mathrm{H}), 2.95(\mathrm{~s}, 2 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.78$ $(\mathrm{m}, 8 \mathrm{H}), 0.88-0.86(\mathrm{~m}, 6 \mathrm{H})$.

Step 3) the preparation of compound 11-4
[00386] To a mixture of Boc-L-proline (29.0 g, 134.7 mmol) and HATU (53.93 g, - 178 -
141.46 mmol) in THF (300 mL) was added DTPEA ($28.2 \mathrm{~mL}, 161.6 \mathrm{mmol}$) under N_{2} in an ice bath. At the end of the addition, the ice bath was removed, and the mixture was stirred at rt for 0.5 hour. Then the reaction mixture was cooled down in an ice bath, and a solution of 4 -bromo-1,2-benzenediamine ($27.71 \mathrm{~g}, 148.2 \mathrm{mmol}$) in THF (140 mL) was added dropwise. The mixture was stirred at re for 2.0 hours. To the mixture was added water (20 mL), and most of the THF was removed in vacuo. To the residue was added water (200 mL), and the resulting mixture was extracted with EtOAc ($250 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give compound F-1 as brown oil (60.1 g).
[00387] A mixture of compound $F-1(60.1 \mathrm{~g}, 156.5 \mathrm{mmol})$ in glacial acetic acid (140 mL) was heated at $40^{\circ} \mathrm{C}$ overnight, cooled to ft and concentrated in vacuo. The residue was neutralized with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ saturated solution, and water (200 mL) was added. The mixture was extracted with EtOAc ($250 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 1$) to give compound F-2 as a brown solid (40 g). The compound was characterized by the following spectroscopic data:

MS-ESI: m/z $267.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H})$, $5.11-5.09(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.91$ $(\mathrm{m}, \mathrm{HH}), 1.49(\mathrm{~s}, 9 \mathrm{H})$.
[00388] To a solution of compound F-2 ($366 \mathrm{mg}, 1.0 \mathrm{mmol}$) in EtOAc (3.0 mL) was added a solution of HCl in EtOAc ($15 \mathrm{~mL}, 4 \mathrm{M}$). The mixture was stirred at rt overnight and filtered. The filter cake was washed with EtOAc (30 mL) to give compound F-3 as a beige solid (280 mg). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 313.2[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 88.01(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.76(\mathrm{~m}, 2 \mathrm{H}), 5.25-5.27(\mathrm{~m}, 1 \mathrm{H})$, $3.30-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.10$ (m, 1H).
[00389] To a solution of isoleucine ($1.0 \mathrm{~g}, 7.62 \mathrm{mmol}$) in THF (10 mL) was added a solution of $\mathrm{NaOH}(1.0 \mathrm{~g}, 25.2 \mathrm{mmol})$ in water (5 mL) followed by methyl chloroformate ($1.18 \mathrm{~mL}, 15.25 \mathrm{mmol}$) dropwise. The mixture was stired at tovernight, adjusted to pH 3 with hydrochloric acid (1 N) and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give compound F-4 as a white solid ($1.4 \mathrm{~g}, 7.4 \mathrm{mmol}, 97 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.27-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.72(\mathrm{~m}, 3 \mathrm{H})$, $1.82-1.94(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.94(\mathrm{brs}, 1 \mathrm{H})$.
[00390] To a suspension of compound F-3 ($771 \mathrm{mg}, 2.274 \mathrm{mmol}$), compound F-4 $(644.77 \mathrm{mg}, 3.412 \mathrm{mmol})$ and $\mathrm{EDCl}(654 \mathrm{mg}, 3.412 \mathrm{mmol})$ in $\mathrm{DCM}(15.0 \mathrm{~mL})$ in an ice bath was added DIPEA $(0.7 \mathrm{~mL}, 13.646 \mathrm{mmol})$ dropwise. The mixture was stirred at it overnight. Water (20 mL) was added to the mixture and the mixture was extracted with $\mathrm{DCM}(50 \mathrm{~mL} \mathrm{x}$ 3). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=$ 1/2) to give the title compound F-5 as a solid (421 mg). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 438.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.57-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.33(\mathrm{~m}, 1 \mathrm{H})$, $5.33-5.40(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.34(\mathrm{t}, J=8.72 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $3.66-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.04-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.80-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.16$ (m, 2H), 1.70 (br, 1H), 1.24-1.28(m,2H), 0.88-0.84 (m, 6H).
[00391] To a solution of compound F-5 (420 $\mathrm{mg}, 0.961 \mathrm{mmol}$), bis(pinacolato)diboron $(366 \mathrm{mg}, 1.44 \mathrm{mmol}), \mathrm{Pd}(d p p f) \mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}(79 \mathrm{mg}, 0.0961 \mathrm{mmol})$
and KOAc ($283 \mathrm{mg}, 2.88 \mathrm{mmol}$) under N_{2} was added DMF (6 mL). The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ ovemight, cooled to rt , and water (50 mL) was added. The mixture was extracted with EtOAc ($30.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 2$) to give the title compound 11-4 as a beige solid (280 mg). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 485.3[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.88(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.67(\mathrm{~m}, 1 \mathrm{H})$, $5.33-5.40(\mathrm{br}, 2 \mathrm{H}), 4.30-4.34(\mathrm{t}, J=8.72 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, 3.64-3.62 (m, 1H), 3.07-3.09 (m, 1H), 2.21-2.22(m, 1H), 2.20-2.13 (m, 2H), 1.50-1.53 $(\mathrm{m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 12 \mathrm{H}), 1.27-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.84(\mathrm{~m}, 6 \mathrm{H})$.

Step 4) the preparation of compound 11-5
[00392] To a mixture of compound $11-3(328.5 \mathrm{mg}, 0.477 \mathrm{mmol})$, compound 11-4 (254 $\mathrm{mg}, 0.5244 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(55 \mathrm{mg}, 0.0477 \mathrm{mmol})$ and potassium carbonate (200 mg, 1.431 mmol) in a 25 mL of two-necked flask under N_{2} was added DME (5.0 mL) via syringe followed by pure water (1.0 mL). The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ overnight. After the mixture was cooled to nt , the solvent was removed under reduced pressure, and to the residue was added water (50.0 mL). The mixture was extracted with EtOAc (30.0 mL x 3). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=100 / 2)$ to give the title compound $11-5$ as a beige solid (200 mg , 40%, HPLC: 96.65%. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 449.3[\mathrm{M}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.78-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.65-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.50(\mathrm{~m}, 1 \mathrm{H})$, 7.38-7.43 (m,5H), 5.44-5.46(m,2H), 5.37-5.42(m, 1H), 5.23-5.31 (br, 1H), 4.33-4.37 $(\mathrm{m}, 2 \mathrm{H}), 3.81-3.93(\mathrm{~m}, 3 \mathrm{H}), 3.82-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{br}, 6 \mathrm{H}), 3.63-3.65(\mathrm{~m}, 2 \mathrm{H})$, $3.12-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{br}, 4 \mathrm{H}), 2.32-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.28(\mathrm{~m}, 3 \mathrm{H}), 2.09 .2 .14(\mathrm{~m}$,
$1 \mathrm{H}), 1.90-1.94(\mathrm{~m}, \mathrm{H}), 1.71-1.80(\mathrm{br}, 3 \mathrm{H}), 1.51-1.64(\mathrm{br}, 6 \mathrm{H}), 1.24-1.27(\mathrm{br}, 2 \mathrm{H})$, $0.81-0.89(\mathrm{~m}, 12 \mathrm{H})$
[00393] Example 12

[00394] Synthetic routes

Step 1) the preparation of compound 12-1
[00395] A mixture of 3 -phenylpropionic acid ($4.68 \mathrm{~g}, 31.16 \mathrm{mmol}$) and PPA (50.87 g) in a 100 mL of round-bottomed flask was stirred at $80^{\circ} \mathrm{C}$ for 4 hours, and ice water (250 mL) was added. The mixture was extracted with EtOAc (100 mL x 5). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=3 / 1$) to give the
title compound $G-1$ as a pale yellow solid (3 g). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 133.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.82(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H})$, 3.97-3.94(m, 2H), 2.85-2.86(m, 2H).
[00396] To a suspension of t-BuOK ($3.81 \mathrm{~g}, 34.1 \mathrm{mmol}$) in toluene (40 mL) in an ice bath was added dropwise a solution of compound $\mathrm{G}-1(3.0 \mathrm{~g}, 22.73 \mathrm{mmol})$ and 1,4 dibromobutane $(5.4 \mathrm{~g}, 25.0 \mathrm{mmol})$ in toluene $(40 \mathrm{~mL})$. At the end of the addition, the mixture was stirred at $110^{\circ} \mathrm{C}$ for 2.5 hours. After the mixture was cooled to rt , poured into ice water (50 mL) and extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacho. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{DCM}(\mathrm{v} / \mathrm{v})=3 / 1$) to give the title compound $\mathrm{G}-2$ as yellow slurry $(2.9 \mathrm{~g})$. The compound was characterized by the following spectroscopic data:

MS-ESI: m/z $187.3\left[\mathrm{M}+\mathrm{H}^{+}\right.$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.71-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.34 .7 .32(\mathrm{~m}, 2 \mathrm{H})$, $2.89(\mathrm{~s}, 2 \mathrm{H}), 1.93-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.76-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.62(\mathrm{~m}, 2 \mathrm{H})$.
[00397] To a mixture of compound G-2 (2.9 g, 15.57 mmol$)$ and triethylsilane (7.4 mL) in an ice bath was added dropwise trifluoroacetic acid (20 mL). The mixture was stirred at 40 ${ }^{\circ} \mathrm{C}$ for 24 hours, neutralized with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ saturated solution, and extracted with DCM (100 $m \mathrm{x} 4$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in wacuo. The residue was purified by silica gel column chromatography (PE/DCM (v/v) $=15 / 1$) to give the title compound 12-1 as colorless oil (2.5 g). The compound was characterized by the following spectroscopic data:

MS-ESI: $n / z 173.3[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.13(\mathrm{~s}, 4 \mathrm{H}), 2.85(\mathrm{~s}, 4 \mathrm{H}), 1.51-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.45$ (m, 4H).

Step 2) the preparation of compound 12-2
[00398] To a suspension of anhydrous aluminium chloride ($2.15 \mathrm{~g}, 16.2 \mathrm{mmol}$) in carbon disulfide (40 mL) was added dropwise acetyl chloride ($1.4 \mathrm{~mL}, 19.7 \mathrm{mmol}$) to afford a pale yellow solution. Then to the above mixture was added a solution of cyclohexene ($1 \mathrm{~mL}, 10 \mathrm{mmol}$) in carbon disulfide (20 mL) dropwise. At the end of the addition, the resulting mixture was stirred at rt for 2 hours. The solvent was removed in vacuo, and to the residue was added compound $12-1(2.58 \mathrm{~g}, 15 \mathrm{mmol})$. The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 4 hours, quenched with a small amount of ice water and extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\operatorname{PE} / \mathrm{DCM}(\mathrm{v} / \mathrm{v})=10 / 1)$ to give the title compound $12-2$ as colonless oll $(1.5 \mathrm{~g})$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 297.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 57.02-7.05(\mathrm{~m}, 3 \mathrm{H}), 2.95(\mathrm{~s}, 4 \mathrm{H}), 2.75-2.77(\mathrm{~m}, 1 \mathrm{H})$, $2.31-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.59(\mathrm{~m}, 8 \mathrm{H}), 1.35-1.46(\mathrm{~m}, 8 \mathrm{H})$.

Step 3) the preparation of compound 12-3
[00399] To a suspension of anhydrous aluminium chloride ($2.12 \mathrm{~g}, 15.9 \mathrm{mmol}$) in 1,2 -dichloroethane (40 mL) was added acetyl chloride $(1.2 \mathrm{~mL}, 16.8 \mathrm{mmol})$ dropwise to afford a pale yellow solution. Then to the above mixture was added a solution of compound 12-2 $(3.8 \mathrm{~g}, 13 \mathrm{mmol})$ in 1,2-dichlorothane (20 mL) dropwise. At the end of the addition, the resulting mixture was stirred at it for 2 hours, quenched with a small amount of ice water and extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacno. The residue was purified by silica gel column chromatography ($\operatorname{PE/EtOAc}(v / v)=15 / 1)$ to give the title compound $12-3$ as a white solid $(1.63 \mathrm{~g})$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 339.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.69(\mathrm{~d}, J=8.56 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.96 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$
$(\mathrm{s}, 4 \mathrm{H}), 2.75-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.59(\mathrm{~m}$, $8 \mathrm{H}), 1.35-1.46(\mathrm{~m}, 8 \mathrm{H})$.

Step 4) the preparation of compound 12-4
[00400] To a solution of compound $12.3(1.6 \mathrm{~g}, 4.73 \mathrm{mmol})$ in anhydrous DCM (30 mL) was added DIPEA (2.5 mL) in an ice bath followed by TBDMSOTf ($3.5 \mathrm{~mL}, 11.5$ mmol). At the end of the addition, the mixture was stirred at nt for 2 hours, and a small amount of water was added. The resulting mixture was extracted with DCM ($40 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in THF (20 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. To the solution was added NBS ($1.56 \mathrm{~g}, 8.76 \mathrm{mmol}$) and the mixture was stired for 4 hours at $0^{\circ} \mathrm{C}$. The solvent was removed in vacuo, a small amount of water was added to the mixture and the mixture was extracted with EtOAc ($50 \mathrm{~mL} x 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=10 / 1$) to give the title compound $12-4$ as white slury $(1.6 \mathrm{~g})$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 497.3[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.65(\mathrm{~d}, J=8.66 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=9.05 \mathrm{~Hz}, 1 \mathrm{H}), 5.35$ $(\mathrm{s}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 4 \mathrm{H}), 2.65-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.59(\mathrm{~m}$, 8H), 1.35-1.46(m, 8H).

Step 5) the preparation of compound $12-5$
[00401] To a solution of compound $12-4(1.08 \mathrm{~g}, 2.18 \mathrm{mmol})$ in anhydrous acetonitrile (22 mL) in an ice bath was added DPPEA (1.1 mL) followed by Boc-L-proline ($1.08 \mathrm{~g}, 5.014 \mathrm{mmol}$). The mixture was stirred at it for 2 hour and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=2 / 3)$ to give the title compound $12-5$ as pale yellow slury (1.6 g). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.20-5.59(\mathrm{~m}, 4 \mathrm{H}), 4.49-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.49$ $(\mathrm{m}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H}), 2.62-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.05-2.20(\mathrm{~m}$, $4 \mathrm{H}), 1.80-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.54(\mathrm{~m}, 10 \mathrm{H}), 1.46-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{~s}$, 9H).

Step 6) the preparation of compound 12-6
[00402] A mixture of compound $12.5(1.4 \mathrm{~g}, 1.83 \mathrm{mmol})$ and ammonium acetate $(2.82 \mathrm{~g}, 36.6 \mathrm{mmol})$ in xylene (20 mL) in a sealed tube was stirred at $140^{\circ} \mathrm{C}$ for 5 hours. After the mixture was cooled to rt, a small amount of water was added, and the resulting mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=50 / 1$) to give the title compound $12-6$ as a pale yellow solid $(0.95 \mathrm{~g})$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 725.9[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 810.97$ (brs, 1 H$), 10.49$ (brs, 1 H$), 7.63(\mathrm{~d}, j=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.41-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 1 \mathrm{H}), 2.95-3.13$ $(\mathrm{m}, 4 \mathrm{H}), 2.97(\mathrm{~s}, 2 \mathrm{H}), 2.75-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.20(\mathrm{~m}, 4 \mathrm{H})$, $1.95-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.80-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.59(\mathrm{~m}, 8 \mathrm{H}), 1.50-1.54(\mathrm{~m}, 8 \mathrm{H}), 1.51(\mathrm{~s}$, 18H).

Step 7) the preparation of compound 12-7
[00403] To a solution of compound $12-6(950 \mathrm{mg})$ in THF (30 mL) was added a solution of HCl in $\mathrm{EtOAc}(22 \mathrm{~mL}, 4 \mathrm{M}$). The mixture was stirred at rt for 10 hours and pale yellow solid precipitated. The mixture was fltered, and the filter cake was washed with EtOAc (50 mL) to get the title compound $12-7$ as a pale yellow solid (730 mg). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.21$ (brs, 2 H$), 9.72(\mathrm{brs}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.39(\mathrm{~d}, J=8.0 \mathrm{mz}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{~m}, 4 \mathrm{H}), 3.07(\mathrm{~s}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 2 \mathrm{H}), 2.75(\mathrm{~m}$, $1 \mathrm{H}), 2.50-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.21(\mathrm{~m}, 2 \mathrm{H})$, $1.99-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.60(\mathrm{~m}, 8 \mathrm{H}), 1.55-1.65(\mathrm{~m}, 8 \mathrm{H})$.

Step 8) the preparation of compound 12-8

[00404] To a mixture of compound $12-7(400 \mathrm{mg}, 0.6 \mathrm{mmol})$, compound $1-7-2$ (341 mg , $1.56 \mathrm{mmol})$ and $\mathrm{EDCl}(300.56 \mathrm{mg}, 1.56 \mathrm{mmol})$ in DCM (30 mL) at $0^{\circ} \mathrm{C}$ was added DIPEA ($1.09 \mathrm{~mL}, 6.264 \mathrm{mmol}$) dropwise. The mixture was stirred at nt for 10 hours. Then a small amount of water was added, and the resulting mixture was extracted with $\mathrm{DCM}(50 \mathrm{~mL} \mathrm{x} 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=50 / 1$) to give the title compound $12-8$ as a pale yellow solid (350 mg , HPLC: 98%). The compound was characterized by the following spectroscopic data

MS-ESI: m/z $924.3\left[\mathrm{M}+\mathrm{H}^{+}\right.$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.74(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 10.34(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.12(\mathrm{~m}, 2 \mathrm{H}), 5.44-5.47(\mathrm{~m}, 2 \mathrm{H}), 5.27-5.28(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.34$ $(\mathrm{m}, 2 \mathrm{H}), 3.82-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 3.63-3.69(\mathrm{~m}, 2 \mathrm{H}), 2.94-3.03(\mathrm{~m}, 6 \mathrm{H})$, $2.75-2.77(\mathrm{~m}, \mathrm{H}), 2.35-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.12$ $(\mathrm{m}, 2 \mathrm{H}), 1.95-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.66(\mathrm{~m}, 14 \mathrm{H}), 1.38(\mathrm{~m}, 12 \mathrm{H}), 1.36-1.46(\mathrm{~m}, 8 \mathrm{H}), 1.25$ $(\mathrm{m}, 4 \mathrm{H}), 1.03-1.05(\mathrm{~m}, 2 \mathrm{H})$.

[00406] Synthetic routes

Step 1) the preparation of compound 13-1
[00407] To a solution of compound $\mathrm{H}-1(1.5 \mathrm{~g}, 6.22 \mathrm{mmol})$ in EtOAc (10.0 mL) was added a solution of HCl in EtOAc $(20 \mathrm{~mL}, 4 \mathrm{M})$. The mixture was stired at rt overnight and filtered. The filter cake was washed with EtOAc (80 mL) to give compound $\mathrm{H}-2$ as a white solid (1.3 g , HPLC: 90%). The compound was characterized by the following spectroscopic data

MS-ESI: $m / z 142.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.02(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.20(\mathrm{~m}$, $2 \mathrm{H}), 0.95(\mathrm{~m}, 1 \mathrm{H}), 0.53(\mathrm{~m}, 1 \mathrm{H}), 0.21(\mathrm{~m}, 1 \mathrm{H})$.
[00408] To a solution of compound $\mathrm{H}-2(1.007 \mathrm{~g}, 5.67 \mathrm{mmol})$, compound $1-7-2(1.70 \mathrm{~g}$,
$9.682 \mathrm{mmol})$ and $\operatorname{EDC}(1.856 \mathrm{~g}, 9.682 \mathrm{mmol})$ in DCM (40.0 mL) was added dropwise DIPEA ($6.75 \mathrm{~mL}, 38.73 \mathrm{mmol}$) in an ice bath. After the mixture was stired at n overnight, water (20 mL) was added and the mixture was extracted with DCM ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacno. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=4 / 1$) to give compound $\mathrm{H}-3$ as a solid (1.17 g). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 300.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 85.46(\mathrm{~m}, 1 \mathrm{H}), 4.78-4.82(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 6 \mathrm{H}), 2.56(\mathrm{~m}$, $1 \mathrm{H}), 2.19-2.23(\mathrm{~m}, 2 \mathrm{H}), 0.91-0.95(\mathrm{~m}, 7 \mathrm{H}), 0.52(\mathrm{~m}, 1 \mathrm{H}), 0.23(\mathrm{~m}, 1 \mathrm{H})$.
[00409] A suspension of compound $\mathrm{H}-3(1.165 \mathrm{~g}, 3.9 \mathrm{mmol})$ and $\mathrm{LiOHH}_{2} \mathrm{O}(0.470 \mathrm{~g}$, $11.2 \mathrm{mmol})$ in mixed solvents of $\mathrm{MeOH}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was stirred at rt overnight. MeOH was removed in vacuo, and water (10 mL) was added to the mixture. The aqueous layer was washed with EtOAc (50 mL), adjusted to pH 3, and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the title compound $13-1$ as a white solid $(1.14 \mathrm{~g})$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 285.3[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.36(\mathrm{~m}, 1 \mathrm{H}), 4.75-4.80(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~m}$, $1 \mathrm{H}), 2.17-2.21(\mathrm{~m}, 2 \mathrm{H}), 0.89-0.92(\mathrm{~m}, 7 \mathrm{H}), 0.51(\mathrm{~m}, 1 \mathrm{H}), 0.21(\mathrm{~m}, 1 \mathrm{H})$.

Step 2) the preparation of compound 13-2
[00410] To a mixture of compound $13-1(2.5 \mathrm{~g}, 8.824 \mathrm{mmol})$ and HATU (2.6 g , $9.265 \mathrm{mmol})$ in THF (30 mL) in an ice bath was added DIPEA ($1.85 \mathrm{~mL}, 10.589 \mathrm{mmol}$) under N_{2}. At the end of the addition, the ice bath was removed. The mixture was stirred at rt for 0.5 hour, then cooled in an ice bath and a solution of 4-bromo-1,2-benzenediamine ($1.815 \mathrm{~g}, 9.7 \mathrm{mmol}$) in THF (30 mL) was added dropwise. The resulting mixture was stired at rt for 2.0 hours and water (20 mL) was added. Most
of the THF was removed in vacuo, and to the residue was added water (200 mL). The mixture was extracted with EtOAc ($250 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\operatorname{PE/EtOAc}(\mathrm{v} / \mathrm{v})=3 / 1$) to give the title compound 13-2 as brown oil (2.5 g).

Step 3) the preparation of compound 13-3
[00411] A solution of compound 13-2 (2.5 g. 5.5 mmol) in glacial acetic acid (40 mL) was stirred at $40^{\circ} \mathrm{C}$ overnight. After the mixture was cooled to n , the mixture was concentrated in vacuo and quenched with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ saturated solution until there was no more CO_{2} gas evolution. Water (100 mL) was added to the mixture and the mixture was extracted with EtOAc ($150 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purfied by silica gel column chromatography (PE/EtOAc $(v / v)=1 / 1)$ to give the title compound $13-3$ as a brown solid $(1.05 \mathrm{~g})$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 436.0[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.656(\mathrm{~s}, 1 \mathrm{H}), 7.403-7.425(\mathrm{~d}, J=8.48 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28-7.31(\mathrm{dd}, 1 \mathrm{H}), 5.59-5.63(\mathrm{dd}, 1 \mathrm{H}), 4.42-4.44(\mathrm{~d}, J=7.52 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.12(\mathrm{~m}$, $1 \mathrm{H}), 3.666(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 2 \mathrm{H}), 2.70-2.74(\mathrm{br}, 1 \mathrm{H}), 2.46-2.50(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 1 \mathrm{H})$, 1.87-1.91 (br, 1 H$), 0.95-1.01(\mathrm{~m}, 2 \mathrm{H}), 0.87-0.89(\mathrm{br}, 6 \mathrm{H})$.

Step 4) the preparation of compound 13-4
[00412] To a mixture of compound $13-3(1.05 \mathrm{~g}, 2.41 \mathrm{mmol})$, bis(pinacolato)diboron $(0.919 \mathrm{~g}, 3.618 \mathrm{mmol}), \mathrm{Pd}(d p p f) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.197 \mathrm{~g}, 0.241 \mathrm{mmol})$ and $\mathrm{KOAc}(0.710 \mathrm{~g}$, 7.236 mmol) under N_{2} was added DMF (15 mL) via syringe. The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ overnight, cooled to rt , and water (60 mL) was added. The mixture was extracted with EtOAc ($30.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified
by silica gel column chromatography $(\operatorname{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 2)$ to give the title compound 13.4 as a beige solid $(0.542 \mathrm{~g}, 46.72 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 483.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 810.50-10.54(\mathrm{br}, 1 \mathrm{H}), 7.72-7.74(\mathrm{~d}, j=8.12 \mathrm{~Hz}, 1 \mathrm{H})$, $7.66-7.68(\mathrm{~d}, J=8.08 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.35(\mathrm{~d}, J=7.64 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.73(\mathrm{~d}, J=10.32$ $\mathrm{Hz}, 1 \mathrm{H}), 5.61-5.63(\mathrm{br}, 1 \mathrm{H}), 4.55-4.59(\mathrm{t}, J=7.12 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}$, $3 \mathrm{H}), 3.37-3.40(\mathrm{~d}, J=13.08 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.58(\mathrm{br}, 1 \mathrm{H}), 2.049(\mathrm{~s}, 1 \mathrm{H}), 1.347(\mathrm{~s}, 12 \mathrm{H})$, $1.24-1.26(\mathrm{br}, 2 \mathrm{H}), 0.81-0.83(\mathrm{br}, 6 \mathrm{H})$.

Step 5) the preparation of compound 13-5
[00413] To a mixture of compound 11-3 (260 mg, 0.3769 mmol), compound 13-4 (200 $\mathrm{mg}, 0.4146 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(44 \mathrm{mg}, 0.03769 \mathrm{mmol})$ and potassium carbonate (158 mg , 1.132 mmol) in a 25 mL of two-necked flask under N_{2} was added DME (5.0 mL) via syringe followed by pure water $(1.0 \mathrm{~mL})$. The resulting mixture was stired at $90^{\circ} \mathrm{C}$ ovemight, then cooled to rt and concentrated in vacuo. To the residue was added water (50.0 mL). The mixture was extracted with EtOAc ($30.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=100 / 2$) to give the title compound $13-5$ as a beige solid ($190 \mathrm{mg}, 56.4 \%$, HPLC: 97.39%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 448.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.69-7.86(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.54(\mathrm{~m}, 8 \mathrm{H}), 5.72-5.75(\mathrm{~d}, J=$ $12.12 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.42(\mathrm{~m}, 3 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.30(\mathrm{br}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H})$, $3.49-3.549(\mathrm{~m}, 2 \mathrm{H}), 3.00-3.03$ (br, 5 H$), 2.51-2.60$ (br, 1 H), 2.32-2.41 (br, 1 H$), 2.17-2.20$ $(\mathrm{br}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 1 \mathrm{H}), 1.91-1.96(\mathrm{br}, 2 \mathrm{H}), 1.58-1.66(\mathrm{br}, 9 \mathrm{H}), 1.24-1.27(\mathrm{~m}$, $2 \mathrm{H}), 1.05-1.11(\mathrm{br}, 1 \mathrm{H}), 0.81-0.85(\mathrm{~m}, 12 \mathrm{H})$.

[00415] Synthetic routes

Step 1) the preparation of compound 14-1
[00416] To a suspension of anhydrous aluminium chloride ($2.12 \mathrm{~g}, 15.9 \mathrm{mmol}$) in 1,2 -dichloroethane (40 mL) was added acetyl chloride (1.2 mL) dropwise to afford a pale yellow solution. Then to the above mixture was added a solution of compound $10-1$ $(1.59 \mathrm{~g}, 7.8 \mathrm{mmol})$ in 1,2 -dichloroethane (20 mL) dropwise. At the end of the addition, the resulting mixture was stirred at it for 2 hours, quenched with a small amount of ice water and extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography ($\operatorname{PE/EtOAc}(\mathrm{v} / \mathrm{v})=15 / 1)$ to give the title
compound $14-1$ as a white solid ($1.63 \mathrm{~g}, 85 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 245.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 2 \mathrm{H}), 1.70-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.62(\mathrm{~m}, 4 \mathrm{H})$.

Step 2) the preparation of compound 14-2
[00417] To a solution of compound 14-1 (0.97 g. 3.97 mmol) in anhydrous DCM (40 mL) at $-40^{\circ} \mathrm{C}$ was added dropwise a solution of boron tribromide ($6.0 \mathrm{~g}, 24 \mathrm{mmol}$) in DCM (20 mL) to get a reddish brown mixture. At the end of the addition, the reaction mixture was stirred at it for 24 hours, quenched with a small amount of ice water, and extracted with DCM ($30 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=4 / 1)$ to give the title compound $14-2$ as a white solid $(0.82 \mathrm{~g}, 90 \%$, HPLC: 98%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 231.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.64(\mathrm{~d}, j=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, j=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}$, $1 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.64(\mathrm{~m}, 4 \mathrm{H})$.

Step 3) the preparation of compound 14-3
[00418] To a solution of compound $14-2(0.80 \mathrm{~g}, 3.48 \mathrm{mmol})$ in anhydrous DCM (30 mL) was added pyridine (1.4 mL) dropwise at $0^{\circ} \mathrm{C}$ to get a pale yellow mixture, and to the above mixture was added trifluoromethanesulfonic anhydride ($1.76 \mathrm{~mL}, 10 \mathrm{mmol}$) slowly. The mixture was stirred at rt for 2 hours, then a small amount of water was added, and the resulting mixture was extracted DCM ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{DCM}(\mathrm{v} / \mathrm{v})=4 / 1$) to give the title compound $14-3$ as pale yellow slurry ($1.25 \mathrm{~g}, 100 \%$, HPLC: 95%). The compound was
characterized by the following spectroscopic data:

MS-ESI: $m / z 363.6[\mathrm{M}+\mathrm{H}]$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}$, $2 \mathrm{H}), 2.92(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.74(\mathrm{~m}, 8 \mathrm{H})$.

Step 4) the preparation of compound 14.4
[00419] To a mixture of 4-bromoacetophenone (2.0 g, 10 mmol), bis(pinacolato)diboron $(3.81 \mathrm{~g}, 15 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.41 \mathrm{~g}, 0.5 \mathrm{mmol})$ and anhydrous $\mathrm{KOAc}(2.94 \mathrm{~g}, 30 \mathrm{mmol})$ under N_{2} was added DMF (50 mL) via syringe. The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ for 4 hours and cooled to rt . Water (100 mL) was added, and the mixture was extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic phases were washed with water followed by brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/DCM $(v / v)=4 / 1)$ to give the title compound $14-4$ as a white solid ($2.35 \mathrm{~g}, 95 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 247.1[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.87-7.93(\mathrm{~m}, 4 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 12 \mathrm{H})$.

Step 5) the preparation of compound 14-5
[00420] To a mixture of compound $14-4(506 \mathrm{mg}, 2 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(140 \mathrm{mg}, 0.12$ mmol) and potassium carbonate ($600 \mathrm{mg}, 4.3 \mathrm{mmol}$) under N_{2} was added a solution of compound $14-3(620 \mathrm{mg}, 1.7 \mathrm{mmol})$ in DME (15 mL) followed by pure water (5 mL). The resulting mixture was refluxed at $90^{\circ} \mathrm{C}$ for 5 hours. After the mixture was cooled to nt , a small amount of water was added. The mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EROAc (v/v) $=10 / 1$) to give the title compound $14-5$ as a white solid ($450 \mathrm{mg}, 80 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 88.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}$, $3 \mathrm{H}), 1.60-1.62(\mathrm{~m}, 8 \mathrm{H})$

Step 6) the preparation of compound 14-6
[00421] To a solution of compound $14-5(675 \mathrm{mg}, 2 \mathrm{mmol})$ in anhydrous DCM (20 $\mathrm{mL})$ was added DIPEA $(1.32 \mathrm{~mL})$ in an ice bath followed by TBDMSOTf $(1.4 \mathrm{~mL}, 6$ mmol). At the end of the addition, the mixture was stirred at it for 2 hours, and a small amount of water was added. The resulting mixture was extracted with DCM ($20 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in THF (20 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. To the solution was added NBS ($723 \mathrm{mg}, 4 \mathrm{mmol}$) and the mixture was stirred for 4 hours at $0^{\circ} \mathrm{C}$. The solvent was removed in vacuo, a small amount of water was added to the mixture and the mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=8 / 1$) to give the title compound $14-6$ as white slurry ($0.87 \mathrm{~g}, 88 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 491.23[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 88.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 4 \mathrm{H}), 3.27(\mathrm{~s}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 2 \mathrm{H})$, $1.57-1.65(\mathrm{~m}, 8 \mathrm{H})$.

Step 7) the preparation of compound 14-7
[00422] To a solution of compound $14-6(1.08 \mathrm{~g}, 2.2 \mathrm{mmol})$ in anhydrous acetonitrile $(22 \mathrm{~mL})$ in an ice bath was added DIPEA (1.1 mL) followed by Boc-L-proline (1.04 g , 4.8 mmol). The mixture was stirred at rt for 2 hours and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=2 / 3$) to
give the title compound $14-7$ as pale yellow slurry ($1.4 \mathrm{~g}, 84 \%$, HPLC: 99%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 759.9[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.79-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.56$ $(\mathrm{m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, j=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.59(\mathrm{~m}, 4 \mathrm{H}), 4.49-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.15(\mathrm{~m}$, $1 \mathrm{H}), 3.58-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H}), 2.32-2.34(\mathrm{~m}, 4 \mathrm{H})$, $2.05-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.80-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.54(\mathrm{~m}, 8 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$.

Step 8) the preparation of compound 14-8

[00423] A mixture of compound $14-7(1.4 \mathrm{~g}, 1.8 \mathrm{mmol})$ and ammonium acetate (2.2 $\mathrm{g}, 28 \mathrm{mmol}$) in xylene (20 mL) in a sealed tube was refluxed at $140^{\circ} \mathrm{C}$ for 5 hours. After the mixture was cooled to rt, a small amount of water was added, and the mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=50 /$)) to give the title compound $14-8$ as a pale yellow solid $(0.73 \mathrm{~g}, 55 \%$, HPLC. 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 719.93[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.97$ (brs, 1 H$), 10.49($ brs, $1 \mathrm{H}), 7.79-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.45$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 4.99 .5 .00(\mathrm{~m}$, $2 \mathrm{H}), 3.41-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.95-3.20(\mathrm{~m}, 4 \mathrm{H}), 3.05(\mathrm{~s}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 2 \mathrm{H}), 2.10-2.20(\mathrm{~m}, 4 \mathrm{H})$, $1.95-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.80-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.54(\mathrm{~m}, 8 \mathrm{H}), 1.51(\mathrm{~s}, 18 \mathrm{H})$.

Step 9) the preparation of compound 14-9
[00424] To a solution of compound $14-8(205 \mathrm{mg}, 0.28 \mathrm{mmol}$) in THF (3 mL) was added a solution of HCl in EtOAc ($11 \mathrm{~mL}, 4 \mathrm{M}$). The mixture was stirred at ft for 10 hours and filtered. The filter cake was washed with EtOAc to get the title compound $14-9$ as a pale yellow solid ($0.186 \mathrm{~g}, 100 \%$, HPLC: 100%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 519.7[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 810.21$ (brs, 2 H$), 9.72$ (brs, 2 H$), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.98(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{~m}, 4 \mathrm{H}), 3.07(\mathrm{~s}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 2 \mathrm{H}), 2.50-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.45(\mathrm{~m}$, $2 \mathrm{H}), 2.19-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.99-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.65(\mathrm{~m}, 8 \mathrm{H})$.

Step 10) the preparation of compound 14-10
[00425] To a suspension of compound $14-9$ ($147 \mathrm{mg}, 0.22 \mathrm{mmol}$), compound 1-7-2 (150 $\mathrm{mg}, 0.86 \mathrm{mmol})$ and $\operatorname{EDCI}(220 \mathrm{mg}, 1.1 \mathrm{mmol})$ in DCM (3 mL) in an ice bath was added DIPEA $(0.5 \mathrm{~mL})$ dropwise. At the end of the addition, the mixture was stimed at it for 10 hours. A small amount of water was added to the mixture and the mixture was extracted with DCM ($10 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (DCM/MeOH $(\mathrm{v} / \mathrm{v})=50 / 1)$ to give the title compound $14-10$ as a pale yellow solid (50 $\mathrm{mg}, 25 \%$, HPLC: 99%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 834.03[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.74(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 10.34(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.80-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.12(\mathrm{~m}, 1 \mathrm{H}), 5.44-5.47$ $(\mathrm{m}, 2 \mathrm{H}), 5.27-5.28(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.34(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H})$, $3.63-3.69(\mathrm{~m}, 2 \mathrm{H}), 2.94-3.03(\mathrm{~m}, 6 \mathrm{H}), 2.35-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.12$ $(\mathrm{m}, 2 \mathrm{H}), 1.95-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~m}, 4 \mathrm{H}), 1.03-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}$, 12H)

Step 1) the preparation of compound 15-2
[00428] To a solution of (2R)-4-hydroxypyrrolidine-2-carboxylic acid (compound 15-1) ($10.0 \mathrm{~g}, 76.2 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(100 \mathrm{~mL})$ under N_{2} at $0^{\circ} \mathrm{C}$ was added $\mathrm{SOCl}_{2}(11 \mathrm{~mL})$ dropwise. At the end of the addition, the mixture was refluxed at $70{ }^{\circ} \mathrm{C}$ for 3 hours and concentrated in vacuo to give the crude product as pale yellow on (13.78 g), which was used for the next step directly.
[00429] To a suspension of the above crude product and DMAP ($2.0 \mathrm{~g}, 16.4 \mathrm{mmol}$) in $\mathrm{DCM}(110 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(13 \mathrm{~mL}, 91.7 \mathrm{mmol})$ dropwise followed by a solution of $\mathrm{Boc}_{2} \mathrm{O}(20.0 \mathrm{~g}, 91.7 \mathrm{mmol})$ in DCM $(50 \mathrm{~mL})$. The mixture was stirred at rt overnight. A small amount of water was added to the mixture. The mixture was adjusted to $\mathrm{pH} 2-3$ with diluted hydrochloric acid (10%) and extracted with $\mathrm{DCM}(100 \mathrm{~mL} \times 3)$.

The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\operatorname{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=2 / 1)$ to give a crude product as pale yellow slurry (15.7 g).
[00430] To a mixture of oxalyl chloride (9.0 mL), DCM (100 mL) and DMSO (9.5 mL) was added a solution of the above crude product in $\mathrm{DCM}(120 \mathrm{~mL})$ dropwise at -78 ${ }^{\circ} \mathrm{C}$. After the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 hours, $\mathrm{Et}_{3} \mathrm{~N}(28 \mathrm{ml}$) was added dropwise, and the mixture was allowed to warm to rt . Water (60 mL) was added to the mixture, and the mixture was extracted with DCM (150 mL x 3). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacno. The residue was purified by silica gel column chromatography $(\operatorname{PE} / E t O A c(v / v)=1 / 1)$ to give the title compound $15-2$ as colonless slurry ($11 \mathrm{~g}, 59 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 84.83-4.70(\mathrm{dd}, J=10 \mathrm{~Hz}, 10 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.88(\mathrm{~d}, J=8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.98-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.55(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.47(\mathrm{~s}, 9 \mathrm{H})$.

Step 2) the preparation of compound 15-3
[00431] To a solution of compound $15-2(0.5 \mathrm{~g}, 2 \mathrm{mmol})$ in DCM (10 mL) at $-78{ }^{\circ} \mathrm{C}$ was added dropwise $\mathrm{Et}_{2} \mathrm{NSF}_{3}(0.82 \mathrm{~mL}, 6 \mathrm{mmol})$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 hours and at rt for another 12 hours. A small amount of water was added to the mixture, and the resulting mixture was extracted with $\mathrm{DCM}(30 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\operatorname{PE} / E t O A c(v / v)=9 / 1)$ to give the title compound $15-3(0.42 \mathrm{~g}, 79 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 266.25[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 84.43-4.47$ and $4.55-4.53(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.83(\mathrm{~m}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 2.66-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.47(\mathrm{~d}, y=20 \mathrm{~Hz}, 9 \mathrm{H})$.

Step 3) the preparation of compound $15-4$
[00432] A mixture of compound $15-3(3 \mathrm{~g}, 11.3 \mathrm{mmol})$ and a solution of HCl in EtOAc $(15 \mathrm{~mL}, 4 \mathrm{M})$ was stirred at rt for 4 hours and concentrated in vacuo to give the title compound $15-4$ as a white solid $(2.27 \mathrm{~g}, 100 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: m / z 166.14 $[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 84.70-4.69(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $2.91-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.81(\mathrm{~m}, 1 \mathrm{H})$.

Step 4) the preparation of compound 15-5
[00433] To a solution of compound $15-4(1.2 \mathrm{~g}, 5.9 \mathrm{mmol})$, compound $1-7.2(1.2 \mathrm{~g}, 6.8$ mmol) and EDCI ($1.73 \mathrm{~g}, 9.1 \mathrm{mmol}$) in anhydrous DCM (20 mL) was added DIPEA (3.5 mL) dropwise at $0{ }^{\circ} \mathrm{C}$ under N_{2}. At the end of the addition, the mixture was stired at it for 8 hours. A small amount of water was added to the mixture and the mixture was extracted with DCM $(10 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{v})=1 / 1$) to give the title compound $15-5$ as colorless slurry ($1.28 \mathrm{~g}, 67 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 323.32[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.34-5.36(\mathrm{~d}, j=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-4.81(\mathrm{~m}, 1 \mathrm{H})$, $4.22-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.94-4.03(\mathrm{~m}, \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$, $2.67-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.06-1.05(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $0.97-0.98(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Step 5) the preparation of compound 15-6
[00434] To a solution of compound $15-5(1.0 \mathrm{~g}, 3.1 \mathrm{mmol})$ in THF (12 mL) was added Lithium hydroxide ($0.65 \mathrm{~g}, 4 \mathrm{~mL}$) aqueous solution at $0^{\circ} \mathrm{C}$. The mixture was stirred at $30^{\circ} \mathrm{C}$ for 5 fours. THF was removed in vacuo. The mixture was extracted with

MTBE ($50 \mathrm{~mL} \times 3$) and the organic layer was discarded. The aqueous layer was adjusted to pH 2 with diluted hydrochloric acid (10%) and extracted with DCM ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the title compound $15-6$ as colorless slurry ($0.86 \mathrm{~g}, 90 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 309.28[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.71-5.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.82(\mathrm{~m}, 1 \mathrm{H})$, $4.28-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.94-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.84(\mathrm{~m}$, $1 \mathrm{H}), 2.55-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.01-1.03(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.94-0.96(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz},(\mathrm{H})$.

Step 6) the preparation of compound 15-7
[00435] To a solution of compound $14-6(0.49 \mathrm{~g}, 1 \mathrm{mmol})$ in anhydrous acetonitrile $(10 \mathrm{~mL})$ was added DIPEA $(0.7 \mathrm{~mL})$ in an ice bath followed by compound $15-6(0.72 \mathrm{~g}$, 2.3 mmol). The mixture was stirred at it for 2 hours and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 2$) to give the title compound $15-7$ as a white solid ($0.3 \mathrm{~g}, 30 \%$, HPLC: 99%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 946[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.64(\mathrm{~m}, 2 \mathrm{H}), 5.19 .5 .34(\mathrm{~m}, 4 \mathrm{H}), 4.91(\mathrm{q}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.00-4.30(\mathrm{~m}, 6 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 3.23-3.24(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.77-2.85(\mathrm{~m}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 1 \mathrm{H}), 1.55-1.75(\mathrm{~m}, 8 \mathrm{H}), 1.24-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, J=4.0$ $\mathrm{Hz}, 6 \mathrm{H}), 0.95(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 6 \mathrm{H})$.

Step 7) the preparation of compound 15-8
[00436] A mixture of compound $15.7(0.28 \mathrm{~g}, 0.29 \mathrm{mmol})$ and ammonium acetate $(0.35 \mathrm{~g}, 4.5 \mathrm{mmol})$ in xylene $(5 \mathrm{~mL})$ in a sealed tube was refluxed at $140^{\circ} \mathrm{C}$ for 5 hours.

A small amount of water was added to the mixture and the mixture was extracted with EtOAc (20 mL x 3). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purifed by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 5$) to give the title compound $15-8$ as a pale yellow solid (65 mg , $25 \%, \operatorname{HPLC}: 96 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 906[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.30$ (brs, 1 H$), 10.63$ (brs, 1 H$), 7.80-7.82$ (m, 2 H), $7.45-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 5.40-5.49(\mathrm{~m}, 4 \mathrm{H}), 4.30-4.34(\mathrm{~m}$, $2 \mathrm{H}), 4.22(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 2.82-3.07(\mathrm{~m}, 6 \mathrm{H}), 1.92-2.04(\mathrm{~m}$, 4H), 1.65-1.91(m, 8H), $1.26(\mathrm{~s}, 6 \mathrm{H}), 0.84(\mathrm{~s}, 12 \mathrm{H})$.
[00437] Example 16

[00438] Synthetic routes

Step 1) the preparation of compound 16-1
[00439] To a solution of L-phenylglycine ($10.0 \mathrm{~g}, 66.1 \mathrm{mmol}$) in THF (10 mL) was
added a solution of $\mathrm{NaOH}(10.6 \mathrm{~g}, 265 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$ followed by methyl chloroformate ($10.2 \mathrm{~mL}, 133 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$. The mixture was stired at it overnight, adjusted to pH 3 with hydrochloric acid (1 M) and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the title compound $16-1$ as a white solid $(12.6 \mathrm{~g}, 91 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}^{6}$) $: \delta 12.84$ (brs, 1 H$), 7.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.29$ $(\mathrm{m}, 5 \mathrm{H}), 5.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H})$.

Step 2) the preparation of compound 16-2
[00440] To a suspension of compound 14-9 (345 mg, 0.52 mmol), compound 16-1 (327 $\mathrm{mg}, 1.56 \mathrm{mmol})$ and $\operatorname{EDCl}(401 \mathrm{mg}, 2 \mathrm{mmol})$ in $\mathrm{DCM}(8 \mathrm{~mL})$ in an ice bath was added DIPEA (1.0 mL) dropwise. At the end of the addition, the mixture was stirred at it for 10 hours. A small amount of water was added to the mixture and the mixture was extracted with DCM (10 mL $\times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(B E / E t O A c(v / v)=1 / 10)$ to give the title compound $16-2$ as a white solid $(170 \mathrm{mg}, 40 \%$, HPLC: 98%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 902.03[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.73-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.39-7.41(\mathrm{~m}, 7 \mathrm{H})$, $7.14-7.26(\mathrm{~m}, 1 \mathrm{H}), 5.99-6.05(\mathrm{~m}, 2 \mathrm{H}), 5.40-5.43(\mathrm{~m}, 2 \mathrm{H}), 5.30-5.32(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.75$ $(\mathrm{m}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.20-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 4 \mathrm{H})$, $2.05-2.32(\mathrm{~m}, 8 \mathrm{H}), 1.62-1.67(\mathrm{~m}, 8 \mathrm{H})$.
[00441] Example 17

-203 -

Step 1) the preparation of compound 17-1
[00443] To a solution of compound $14-2(0.7 \mathrm{~g}, 3 \mathrm{mmol})$ in acetone (20 mL) was added potassium carbonate ($0.85 \mathrm{~g}, 6 \mathrm{mmol}$) dropwise followed by benzyl bromide (0.75 $\mathrm{mL}, 6.3 \mathrm{mmol}$). At the end of the addition, the mixture was stired at $60^{\circ} \mathrm{C}$ for 3 hours and filtered. The filtrate was concentrated in vacno. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=20 / 1$) to give the title compound $17-1$ as a white solid ($0.85 \mathrm{~g}, 90 \%$, HPLC: 98%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 321.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.44(\mathrm{~m}, 5 \mathrm{H}), 6.75(\mathrm{~d}, J=$
$8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 2.82(\mathrm{~s}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.73(\mathrm{~m}, 4 \mathrm{H})$, $1.60-1.62(\mathrm{~m}, 4 \mathrm{H})$

Step 2) the preparation of compound 17-2
[00444] To a solution of compound $17-1(850 \mathrm{mg}, 2.6 \mathrm{mmol})$ in anhydrous DCM (20 $\mathrm{mL})$ was added DIPEA $(0.86 \mathrm{~mL})$ in an ice bath followed by TBDMSOTf $(0.92 \mathrm{~mL}, 4$ mmol). At the end of the addition, the mixture was stirred at it for 2 hours. Then a small amount of water was added, and the resulting mixture was extracted with DCM (20 mL x 3). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in THF (20 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. To the solution was added NBS ($470 \mathrm{mg}, 2.6 \mathrm{mmol}$) and the mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 4 hours. The solvent was removed in vacuo, a small amount of water was added to the mixture and the mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacno. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=20 / 1$) to give the title compound $17-2$ as a white solid ($1.0 \mathrm{~g}, 88 \%$, HPLC. 94%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 400.32[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.44(\mathrm{~m}, 5 \mathrm{H}), 6.77(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 2 \mathrm{H}), 1.70-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.62(\mathrm{~m}$, 4H).

Step 3) the preparation of compound 17-3
[00445] To a solution of compound $17-2(1.0 \mathrm{~g}, 2.5 \mathrm{mmol})$ in anhydrous acetonitrile $(15 \mathrm{~mL})$ was added DIPEA $(0.82 \mathrm{~mL})$ in an ice bath followed by Boc-L-proline $(0.64 \mathrm{~g}$, 3 mmol). The mixture was stirred at r for 1 hour and concentrated in vacno. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=5 / 1)$ to give the title compound $17-3$ as a pale yellow solid ($1.1 \mathrm{~g}, 82 \%$, HPLC: 99%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 534.66[\mathrm{M}+\mathrm{H}]$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.43(\mathrm{~m}, 5 \mathrm{H}), 6.76(\mathrm{~d}, J=$
$8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.52(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 4.38-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.58(\mathrm{~m}, 1 \mathrm{H})$, $3.41-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 2.82(\mathrm{~s}, 2 \mathrm{H}), 2.28-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.03-2.05(\mathrm{~m}, 1 \mathrm{H})$, $1.89-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 4 \mathrm{H}), 1.61(\mathrm{~s}, 4 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$.

Step 4) the preparation of compound 17-4
[00446] A mixture of compound $17-3(1.1 \mathrm{~g}, 2 \mathrm{mmol})$ and ammonium acetate (2.4 g , 31 mmol) in xylene (150 mL) in a sealed tube was stirred at $140^{\circ} \mathrm{C}$ for 4 hours. After the mixture was cooled to rt , a small amount of water was added to the mixture and the mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc (v/v) $=3 / 2$) to give the title compound 17-4 as a pale yellow solid ($0.64 \mathrm{~g}, 60 \%, \operatorname{HPLC}: 95 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 514.67[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.78-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.34 .7 .40(\mathrm{~m}, 5 \mathrm{H})$, 7.21-7.20 (m, 1H), 5.53-5.15 (m, 2H), 4.45-4.60($\mathrm{s}, 2 \mathrm{H}), 4.49-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.54$ $(\mathrm{m}, 1 \mathrm{H}), 3.48-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.01(\mathrm{~m}, \mathrm{H}), 1.98-1.85(\mathrm{~m}, 1 \mathrm{H})$, 1.45 (d, 9H).

Step 5) the preparation of compound 17-5
[00447] To a solution of compound $17-4(0.64 \mathrm{~g}, 1.2 \mathrm{mmol})$ in anhydrous DMF (10 $\mathrm{mL})$ was added sodium hydride ($0.25 \mathrm{~g}, 6 \mathrm{mmol}, 60 \%$ dispersed in oil) at $0^{\circ} \mathrm{C}$. After the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes, $\mathrm{SEMCl}(0.45 \mathrm{~mL}, 2.5 \mathrm{mmol})$ was added. The mixture was stirred at rt for 2 hours, quenched with a small amount of ice water and extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\operatorname{PE/EtOAc}(\mathrm{v} / \mathrm{v})=6 / 1$) to give the title compound $17-5$ as a white solid ($0.4 \mathrm{~g}, 50 \%, \mathrm{HPLC}: 97 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.44(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H})$, $6.79(\mathrm{~s}, 1 \mathrm{H}), 5.39$ and $5.84(2 \mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.92-5.02$ $(\mathrm{m}, 1 \mathrm{H}), 3.47-3.70(\mathrm{~m}, 4 \mathrm{H}), 3.0(\mathrm{~s}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 2 \mathrm{H}), 1.63-2.29(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.72(\mathrm{~m}$, $8 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 0.91-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H})$.

Step 6) the preparation of compound 17-6
[00448] A suspension of compound $17-5(0.4 \mathrm{~g}, 0.62 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(0.1 \mathrm{~g})$ in a mixture of EtOAc (4 mL) and methanol (10 mL) was stirred under H_{2} (nomal pressure) at rt for 5 hours. The mixture was filtered and the filtrate was concentrated in vacuo to give the title compound 17-6 as a white solid ($360 \mathrm{mg}, 100 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 554.81[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CDCl}): 87.64(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.66(\mathrm{~m}, 1 \mathrm{H}), 5.84$ and $5.40(2 \mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-5.05(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.56$ $(\mathrm{m}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 2 \mathrm{H}), 2.79-2.80(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.35(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.71(\mathrm{~m}, 8 \mathrm{H})$, $1.28-1.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.87-0.89(\mathrm{~m}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H})$.

Step 7) the preparation of compound 17-7
[00449] To a solution of compound $17.6(0.5 \mathrm{~g}, 0.9 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(10 \mathrm{~mL})$ in an ice bath was added pyridine $(0.4 \mathrm{~mL})$ followed by $\mathrm{T}_{2} \mathrm{O}(0.5 \mathrm{~mL}, 3 \mathrm{mmol})$. The mixture was stirred at rt for 2 hours, quenched with a small amount of water and extracted with DCM ($20 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacho. The residue was purified by silica gel column chromatography (PE/

EtOAc $(\mathrm{v} / \mathrm{v})=8 / 1)$ to give the title compound $17-7$ as pale yellow oil $(0.48 \mathrm{~g}, 77.8 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}$, $1 \mathrm{H}), 5.84$ and $5.40(2 \mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-5.05(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.80(\mathrm{~m}$, $2 \mathrm{H}), 3.54-3.56(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 2 \mathrm{H}), 2.79-2.80(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.35(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.71$ $(\mathrm{m}, 8 \mathrm{H}), 1.28-1.30(\mathrm{~d}, j=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.87-0.89(\mathrm{~m}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H})$,

Step 8) the preparation of compound 17-8
[00450] A mixture of compound $[-1(6.0 \mathrm{~g}, 29 \mathrm{mmol})$, NBS $(5.76 \mathrm{~g}, 32 \mathrm{mmol})$ and p-toluenesulfonic acid ($1.0 \mathrm{~g}, 5.2 \mathrm{mmol}$) was stirred at $100^{\circ} \mathrm{C}$ for 0.5 hour. It was then cooled to rt followed by adding DCM and water. The mixture was extracted with DCM ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purfied by silica gel column chromatography ($\mathrm{PE} / \mathrm{DCM}(\mathrm{v} / \mathrm{v})=8 / 1)$ to give the title compound $\mathrm{I}-2$ as yellow slurry $(5.64 \mathrm{~g}, 70 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: m/z $284.97[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~s}$, $2 \mathrm{H})$.
[00451] To a solution of compound $1-2(5.64 \mathrm{~g}, 19.8 \mathrm{mmol})$ and N-Boc-L-proline $(4.7 \mathrm{~g}, 21.8 \mathrm{mmol})$ in anhydrous acetonitrile $(100 \mathrm{~mL})$ was added DIPEA $(3.62 \mathrm{~mL})$. The mixture was stirred at rt for 3 hours, and water (50 mL) was added. The resulting mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=3 / 1$) to give the title compound $1-3$ as a yellow solid ($5.8 \mathrm{~g}, 70 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.49(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.02-5.23(\mathrm{~m}, 2 \mathrm{H}), 4.37-4.48(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.60(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.92-2.11$ $(\mathrm{m}, 2 \mathrm{H}), 144(\mathrm{~s}, 9 \mathrm{H})$.
[00452] A mixture of compound $\mathrm{l}-3(8.0 \mathrm{~g}, 19 \mathrm{mmol})$ and ammonium acetate $(22.2 \mathrm{~g}$, 288 mmol) in xylene (100 mL) in a sealed tube was stirred at $140^{\circ} \mathrm{C}$ for 5 hours. The mixture was cooled to rt and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=4 / 1$) to give the title compound $1-4$ as a yellow solid ($7.0 \mathrm{~g}, 92 \%$, HPLC: 99%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 398.32[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 810.51(\mathrm{br}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H}), 4.90-4.91(\mathrm{~m}$, $1 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.
[00453] To a mixture of compound $\{-4$ ($1.0 \mathrm{~g}, 2.5 \mathrm{mmol}$, bis(pinacolato)diboron $(0.96 \mathrm{~g}, 3.8 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.11 \mathrm{~g}, 0.13 \mathrm{mmol})$ and anhydrous $\mathrm{KOAc}(0.74$ $\mathrm{g}, 7.5 \mathrm{mmol}$) under N_{2} was added DMF (12 mL) via syringe. The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ for 4 hours, cooled to nt , and water (50 mL) was added. The mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were washed with water followed by brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=3 / 1)$ to give the title compound $17-8$ as a white solid $(0.89 \mathrm{~g}, 80 \%, \mathrm{HPLC}: 96 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 810.51(\mathrm{br}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H})$, $4.93-4.94(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H}), 1.94-2.12(\mathrm{~m}, 4 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~s}$, $12 \mathrm{H}), 1.24(\mathrm{~m}, 8 \mathrm{H})$.

Step 9) the preparation of compound 17.9
[00454] To a mixture of compound $17-8(470 \mathrm{mg}, 1 \mathrm{mmol}), \mathrm{Pd}(\mathrm{PPh})_{4}(80 \mathrm{mg}, 0.07$ mmol) and potassium carbonate ($250 \mathrm{mg}, 1.8 \mathrm{mmol}$) under N_{2} was added a solution of compound $17-7$ ($480 \mathrm{mg}, 0.7 \mathrm{mmol}$) in 1,2 -dimethoxyethane (6 mL) followed by pure water $(1.5 \mathrm{~mL})$. The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ for 3 hours. After the mixture was cooled to rt a small amount of water was added. The mixture was extracted with EtOAc (20 mL x 3). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=2 / 1)$ to give the title compound $17-9$ as a pale yellow solid ($350 \mathrm{mg}, 60 \%, \mathrm{HPLC}: 95 \%$). The compound was characterized by the following spectroscopic data

MS-ESI: $m / z 856.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 5.41$ and $5.86(2 \mathrm{~m}, 1 \mathrm{H}), 5.21-5.23(\mathrm{~m}, 1 \mathrm{H}), 4.95-5.04$ $(\mathrm{m}, 2 \mathrm{H}), 3.41-3.73(\mathrm{~m}, 6 \mathrm{H}), 3.12(\mathrm{~s}, 2 \mathrm{H}), 3.0(\mathrm{~s}, 2 \mathrm{H}), 1.95-2.31(\mathrm{~m}, 8 \mathrm{H}), 1.64-1.71(\mathrm{~m}$, $8 \mathrm{H}), 1.41-1.50(\mathrm{~m}, 18 \mathrm{H}), 0.89-0.90(\mathrm{~m}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H})$

Step 10) the preparation of compound 17-10
[00455] To a solution of compound $17-9(350 \mathrm{mg}, 0.4 \mathrm{mmol})$ in EtOAc (2 mL) was added a solution of HCl in EtOAc ($10 \mathrm{~mL}, 4 \mathrm{M}$). The mixture was stirred at rt overnight and filtered. The fitter cake was washed with EtoAc to give the title compound 17-10 as a pale yellow solid ($290 \mathrm{mg}, 100 \%$, HPLC: 100%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 671.72[\mathrm{M}+\mathrm{H}]^{+}$; and
$\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(400} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.87(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.43$ $(\mathrm{d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.27(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.76(\mathrm{~m}, 4 \mathrm{H}), 3.18$ $(\mathrm{s}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 2 \mathrm{H}), 2.29-2.85(\mathrm{~m}, 8 \mathrm{H}), 1.68-1.73(\mathrm{~m}, 8 \mathrm{H})$.
[00456] To a suspension of compound 17-10 (260 mg, 0.39 mmol), compound 1-7-2 (200 mg, 1.1 mmol) and EDC $(300 \mathrm{mg}, 1.6 \mathrm{mmol})$ in $\mathrm{DCM}(8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added DIPEA (0.64 mL) dropwise. At the end of the addition, the mixture was stirred at it for 10 hours. A small amount of water was added to the mixture and the mixture was extracted with DOM ($10 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{v})=1 / 10)$ to give the title compound 17-11 as a pale yellow solid ($198 \mathrm{mg}, 60.5 \%$, HPLC: 96%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 839.06[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.49(\mathrm{brs}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.08(\mathrm{~m}, 5 \mathrm{H})$, $6.60-6.62(\mathrm{~m}, 2 \mathrm{H}), 5.15-5.25(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.84-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.74$ $(\mathrm{s}, 6 \mathrm{H}), 3.67-3.80(\mathrm{~m}, 2 \mathrm{H}), 2.95-3.15(\mathrm{~m}, 6 \mathrm{H}), 2.34-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.97-2.22(\mathrm{~m}, 8 \mathrm{H})$, $1.59-1.70(\mathrm{~m}, 8 \mathrm{H}), 0.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 12 \mathrm{H})$.
[00457] Example 18

[00458] Synthetic routes

Step 1) the preparation of compound 18-2
[00459] To a solution of compound $18-1(10.0 \mathrm{~g}, 77.5 \mathrm{mmol})$ in ethanol (150 mL) was added $\mathrm{SOCl}_{2}(9.22 \mathrm{~g}, 77.5 \mathrm{mmol})$ dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 0.5 hour and at ft for another 3 hours. The reaction was monitored by TLC and the mixture was concentrated in vacuo after the process stopped. The residue was purified by silica gel column chromatography (EtOAc/MeOH (v/v) $=15 / 1$) to give the title compound $18-2$ as oil $(8.5 \mathrm{~g}, 70 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.04(\mathrm{br}, 1 \mathrm{H}), 4.10-4.22(\mathrm{~m}, 3 \mathrm{H}), 2.22-2.48(\mathrm{~m}, 3 \mathrm{H})$, $2.07-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{t}, j=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 2) the preparation of compound 18-3
[00460] To a solution of compound $18-2(25.2 \mathrm{~g}, 0.176 \mathrm{~mol})$ and DMAP (2.20 g , $0.018 \mathrm{~mol})$ in $\mathrm{CH}_{3} \mathrm{CN}(150 \mathrm{~mL})$ was added $\mathrm{Boc}_{2} \mathrm{O}(40.0 \mathrm{~g}, 0.178 \mathrm{~mol})$ in two portions. The mixture was stired at tt for 18 hours. The reaction was monitored by TLC and the mixture was concentrated in vacuo after the process stopped. To the residue were added NaHSO_{4} aqueous solution ($1 \mathrm{M}, 75 \mathrm{~mL}$) and EtOAc (200 mL). After the layers were partitioned, the aqueous phase was extracted with EtOAc ($250 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine (300 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacho. The residue was purified by silica gel column chromatography (PE/ EtOAc $(\mathrm{v} / \mathrm{v})=1 / 1)$ to give the title compound 18-3(23.2 g, 88\%). The compound was
characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 84.58(\mathrm{dd}, J=9.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~m}$, $1 \mathrm{H}), 2.48(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 3) the preparation of compound 18-4
[00461] To a solution of compound $18-3(20 \mathrm{~g}, 77.8 \mathrm{mmol})$ in THF (200 mL) was added $\operatorname{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}\left(80 \mathrm{~mL}, 1.0 \mathrm{M}\right.$ in THF) at $-78^{\circ} \mathrm{C}$ dropwise. The mixture was stimed for 45 minutes, and iodomethane (12 mL) was added in one portion. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 hours and at it overnight. The reaction mixture was quenched with acetic acid (2 eq) and water (30 mL), extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacno. The residue was purified by silica gel column chromatography (PE/EtOAc (v/v) = $2 / 1$) to give the title compound $18-4$ as oil ($6.0 \mathrm{~g}, 28 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 64.46(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H})$, $1.48(\mathrm{~s}, 9 \mathrm{H}), 1.23-1.29(\mathrm{~m}, 6 \mathrm{H})$.

Step 4) the preparation of compound 18-5
[00462] To a solution of compound $18-4(0.2 \mathrm{~g}, 0.74 \mathrm{mmol})$ in THF (10 mL) was added $\mathrm{BH}_{3} \mathrm{Me}_{2} \mathrm{~S}\left(1 \mathrm{~mL}, 2 \mathrm{M}\right.$ in THF, 2 mmol) at $40^{\circ} \mathrm{C}$. The mixture was stirred for 10 hours and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=10 / 1$) to give the title compound 18-5 as oil (100 $\mathrm{mg}, 52 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 280.1[\mathrm{M}+23]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.24-4.13(\mathrm{~m}, 3 \mathrm{H}), 3.75-3.62(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{t}, J=10.16$ $\mathrm{Hz}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~m}, 3 \mathrm{H}), 1.03(\mathrm{~m}$, $3 \mathrm{H})$.

Step 5) the preparation of compound 18-6 a solution of HCl in EtOAc ($5 \mathrm{~mL}, 4 \mathrm{M}$) in an ice bath. At the end of the addition, the mixture was stimed at it ovemight and concentrated in vacuo to afford the title compound 18-6 as colonless oil (150 mg), which was used for next step directly.

Step 6) the preparation of compound 18-7

[00464] To a mixture of compound $18-6(1.0 \mathrm{~g}, 5.2 \mathrm{mmol})$, compound $1-7-2(1.5 \mathrm{~g}, 8.6$ mmol) and EDCL ($1.95 \mathrm{~g}, 10 \mathrm{mmol}$) in an ice bath under N_{2} was added DCM (5 mL) via syringe followed by DIPEA ($5.2 \mathrm{~mL}, 32 \mathrm{mmol}$). At the end of the addition, the mixture was stirred at rt overnight. Water (15 mL) and DCM (15 mL) were added to the mixture and the mixture was extracted with DCM ($15 \mathrm{~mL} \times 2$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\operatorname{PE/EtOAc}(\mathrm{v} / \mathrm{v})=1 / 1)$ to give the title compound $18-7(0.98 \mathrm{~g}, 60 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 315.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 85.44(\mathrm{~d}, J=9.04 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~m}, 3 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H})$, $4.18(\mathrm{dd}, J=3 \mathrm{~Hz}, 7 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H})$, $2.04(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~m}, 3 \mathrm{H}), 1.02(\mathrm{~m}, 3 \mathrm{H}), 0.94(\mathrm{~m}, 3 \mathrm{H})$.

Step 7) the preparation of compound 18-8
[00465] To a solution of compound $18-7(1.45 \mathrm{~g}, 4.6 \mathrm{mmol})$ in THF (10 mL) was added LiOH (2.1 g) followed by water $(8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at nt overnight and THF was removed in vacho. The mixture was extracted with EtOAc (50 $\mathrm{mL} \times 3$) and the organic layer was discarded. The aqueous layer was adjusted to pH 2 with diluted hydrochloric acid (10%) and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the title compound $18-8$ as colorless slurry ($1.18 \mathrm{~g}, 90 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 85.32(\mathrm{~d}, J=8.74 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{~m}, 3 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H})$, $4.00(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~m}, 3 \mathrm{H}), 1.01$ (m, 3H), 0.92 (m, 3H).

Step 8) the preparation of compound 18-9
[00466] The title compound 18-9 (HPLC: 95\%) was prepared by an analogous procedure to that described for compound 14-6 (Example 14). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 505.1[\mathrm{M}+3 \mathrm{H}]^{3+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3): \delta 8.09(\mathrm{dd}, J=6.7,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57(\mathrm{dd}, J=6.7,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 4 \mathrm{H}), 3.19(\mathrm{~s}, 2 \mathrm{H}), 2.80$ $(\mathrm{s}, 2 \mathrm{H}), 1.58-1.36(\mathrm{~m}, 10 \mathrm{H})$.

Step 9) the preparation of compound 18-10
[00467] To a solution of compound $18-9(0.25 \mathrm{~g}, 0.5 \mathrm{mmol})$ in acetonitrile (10 mL) was added DIPEA ($0.35 \mathrm{~mL}, 2.0 \mathrm{mmol}$). The mixture was stirred for 5 minutes, and compound $18-8(0.34 \mathrm{~g}, 1.2 \mathrm{mmol})$ was added. The resulting mixture was stirred at to for 3 hours and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=3 / 1)$ to give the title compound $18-10$ as a pale yellow solid $(0.26 \mathrm{~g}, 56 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 915.4[\mathrm{M}+\mathrm{H}]$, and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.03-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=$ $8.2,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62-5.51(\mathrm{~m}, 2 \mathrm{H}), 5.39(\mathrm{~d}, J=9.16 \mathrm{~Hz}, 2 \mathrm{H})$, $5.30-5.16(\mathrm{~m}, 2 \mathrm{H}), 4.62-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.05-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}$, $6 \mathrm{H}), 3.15(\mathrm{~s}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 2 \mathrm{H}), 2.63-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 2 \mathrm{H})$, $1.92-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 10 \mathrm{H}), 1.17(\mathrm{~d}, J=6.24 \mathrm{~Hz}, 6 \mathrm{H}), 1.03(\mathrm{~d}, J=6.68 \mathrm{~Hz}$, $6 \mathrm{H}), 0.93(\mathrm{~d}, J=6.72 \mathrm{~Hz}, 6 \mathrm{H})$.
[00468] A mixture of compound $18-10(250 \mathrm{mg}, 0.27 \mathrm{mmol})$ and ammonium acetate $(210 \mathrm{mg}, 2.7 \mathrm{mmol})$ in xylene $(10 \mathrm{~mL})$ in a sealed tube was stired at $140^{\circ} \mathrm{C}$ for 4 hours, cooled to rt and concentrated in vacuo. To the residue was added water (10 mL) and the mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc) to give the title compound 18-11 as a pale yellow solid $(0.12 \mathrm{~g}, 51 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI. $m / z 876.5[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.82-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H})$, $7.11(\mathrm{~s}, 1 \mathrm{H}), 5.70-5.59(\mathrm{~m}, 2 \mathrm{H}), 5.32-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.29(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.80(\mathrm{~m}$, $2 \mathrm{H}), 3.78-3.60(\mathrm{~m}, 8 \mathrm{H}), 3.04-2.80(\mathrm{~m}, 6 \mathrm{H}), 2.46-1.90(\mathrm{~m}, 8 \mathrm{H}), 1.52-1.35(\mathrm{~m}, 12 \mathrm{H})$, 0.93-0.78(m,18H).
[00469] Example 19

[00470] Synthetic routes

Step 1) the preparation of compound 19-1
[00471] To a mixture of hexane (100 mL) and $N, N, N, N N^{\prime}$ tetramethylethylenediamine (40 mL) was added 1,2 -dimethoxybenzene ($40.0 \mathrm{~g}, 0.29$ mol) followed by n-BuLi ($200 \mathrm{~mL}, 0.32 \mathrm{~mol}, 1.6 \mathrm{M}$ in hexane) dropwise at rt . The mixture was stirred at th for 28 hours and cooled to $-78{ }^{\circ} \mathrm{C}$, then $\mathrm{ClSiMe}_{3}(45 \mathrm{~mL})$ was added dropwise. The reaction mixture was heated to rt over a period of 5 hours, quenched with water and extracted with hexane. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/DCM $(\mathrm{v} / \mathrm{v})=10 / 1$) to give the title compound $19-1$ as colorless oil $(51.5 \mathrm{~g}, 85 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.28(\mathrm{~s}, 9 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 6.93-6.97(\mathrm{~m}, 2 \mathrm{H}), 7.02-7.06$ ($\mathrm{m}, 1 \mathrm{H}$).

Step 2) the preparation of compound 19-2
[00472] To a solution of compound $19-1(69.0 \mathrm{~g}, 0.33 \mathrm{~mol})$ in $N, N, N^{\prime}, N^{\prime}$ tetramethylethylenediamine $(60 \mathrm{~mL})$ was added $n-\mathrm{BuLi}(250 \mathrm{~mL}, 0.40 \mathrm{~mol}, 1.6 \mathrm{M}$ in hexane) dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at it for 25 hours and cooled to $-78^{\circ} \mathrm{C}$,
then CISiMe3 (60 mL) was added dropwise. The reaction mixture was heated to rt over a period of 5 hours, quenched with water and extracted with hexane ($100 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/DCM $(\mathrm{v} / \mathrm{v})=10 / 1)$ to give the title compound $19-2$ as colorless oil ($82.5 \mathrm{~g}, 89 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 80.29(\mathrm{~s}, 18 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 7.11(\mathrm{~s}, 2 \mathrm{H})$.
Step 3) the preparation of compound 19-3
[00473] To a solution of compound $19-2(19.2 \mathrm{~g}, 68.1 \mathrm{mmol})$ in DCM (100 mL) at 0 ${ }^{\circ} \mathrm{C}$ was added a solution of $1 \mathrm{Cl}(23.1 \mathrm{~g}, 0.14 \mathrm{~mol})$ in $\mathrm{DCM}(100 \mathrm{~mL})$ dropwise. The mixture was stirred at it for 30 minutes and quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/DCM (v/v) $=10 / 1$) to give the title compound $19-3$ as a pale yellow solid ($21.5 \mathrm{~g}, 81 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 83.87(\mathrm{~s}, 6 \mathrm{H}), 7.24(\mathrm{~s}, 2 \mathrm{H})$.
Step 4) the preparation of compound 19-4
[00474] To a solution of compound $19-3(1.80 \mathrm{~g}, 4.62 \mathrm{mmol})$ in DCM (20 mL) at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{BBr}_{3}(2 \mathrm{~mL}, 21,2 \mathrm{mmol})$. The mixture was stirred at it overnight and poured into ice water. The resulting mixture was extracted with DCM ($30 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacno. The residue was purified by silica gel column chromatography (DCM) to give the title compound $19-4$ as a white solid $(1.50 \mathrm{~g}, 90 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 85.66(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 2 \mathrm{H})$.
Step 5) the preparation of compound 19-5
[00475] A mixture of compound 19-4 (400 mg, 1 mmol), cyclopentanone ($280 \mathrm{mg}, 3$ mmol) and p-toluenesulfonic acid ($19 \mathrm{mg}, 0.1 \mathrm{mmol}$) in hexane (50 mL) in a 100 mL of
round-bottomed flask equipped with Dean-Stark trap was refluxed for 5 hours, poured into water and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/DCM $(\mathrm{v} / \mathrm{v})=1 / 1)$ to give the title compound $19-5$ as a beige white solid ($200 \mathrm{mg}, 46 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.84(\mathrm{~s}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 4 \mathrm{H}), 1.87(\mathrm{~m}, 4 \mathrm{H})$.

Step 6) the preparation of compound 19-6
[00476] To a mixture of compound $19-5(170 \mathrm{mg}, 0.41 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(46 \mathrm{mg}, 0.041$ mmol) and anhydrous potassium carbonate ($286 \mathrm{mg}, 2 \mathrm{mmol}$) under N_{2} was added a solution of compound $3-3-2(423 \mathrm{mg}, 0.99 \mathrm{mmol})$ in DME $(8 \mathrm{~mL})$ via syringe followed by distilled water (2 mL). The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ for 2 hours and DME was removed in vacuo. To the residue was added distilled water $(15 \mathrm{~mL})$ and the mixture was extracted with $\mathrm{DCM}(15 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=20 / 1)$ to give the title compound $19-6$ as a yellow solid (200 mg , 65%. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.36 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ $(\mathrm{m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.36 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{~d}, J=5.90 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~m}, 4 \mathrm{H})$, $2.21(\mathrm{~m}, 8 \mathrm{H}), 2.03(\mathrm{~m}, 4 \mathrm{H}), 1.88(\mathrm{~m}, 4 \mathrm{H}), 1.55(\mathrm{~s}, 18 \mathrm{H})$.

Step 7) the preparation of compound 19-7
[00477] To a solution of compound $19-6(200 \mathrm{mg}, 0.27 \mathrm{mmol})$ in EtOAc (4 mL) was added a solution of HCl in EtOAc ($5 \mathrm{~mL}, 4 \mathrm{M}$). The mixture was stirred at rt overnight and filtered. The filter cake was washed with EtOAc (30 mL) to give the title compound $19-7$ as a yellow solid ($180 \mathrm{mg}, 96 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 547.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 7.95(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~m}, 2 \mathrm{H})$, $3.54(\mathrm{~m}, 4 \mathrm{H}), 2.59(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 4 \mathrm{H}), 2.26(\mathrm{~m}, 6 \mathrm{H}), 1.81(\mathrm{~m}, 4 \mathrm{H})$.

Step 8) the preparation of compound 19-8
[00478] To a suspension of compound 19.7 ($220 \mathrm{mg}, 0.32 \mathrm{mmol}$), compound $1.7-2$ (167 $\mathrm{mg}, 0.95 \mathrm{mmol})$ and $\mathrm{EDCI}(300 \mathrm{mg}, 1.6 \mathrm{mmol})$ in $\operatorname{DCM}(10.0 \mathrm{~mL})$ in an ice bath was added DIPEA (0.7 mL$)$ dropwise. At the end of the addition, the mixture was stirred at it overnight. Water (20 mL) was added to the mixture and the mixture was extracted with $\mathrm{DCM}(25 \mathrm{mk}$ x 3). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc) to give the title compound $19-8$ as a white solid ($120 \mathrm{mg}, 43 \%$, HPLC: 95.5%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 861.6[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.52(\mathrm{~m}, 2 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 2 \mathrm{H}), 7.63$ (brs, 2 H$)$, $7.40(\mathrm{~d}, J=8.36 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 2 \mathrm{H}), 5.45(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~m}, 2 \mathrm{H}), 3.12$ $(\mathrm{m}, 2 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.10(\mathrm{~m}, 12 \mathrm{H}), 1.86(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{~m}, 12 \mathrm{H})$,
[00479] Example 20

[00480] Synthetic routes

Step 1) the preparation of compound 20-1
[00481] To a solution of compound $14-6(0.20 \mathrm{~g}, 0.4 \mathrm{mmol})$ in anhydrous acetonitrile $(10 \mathrm{~mL})$ in an ice bath was added DIPEA $(0.5 \mathrm{~mL})$ followed by compound $18-8(0.30 \mathrm{~g}$, 1 mmol). The mixture was stirred at rt for 3 hours and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 3$) to give the title compound $20-1$ as yellow slurry $(0.21 \mathrm{~g}, 58 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 901.4[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.03-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=$ $8.2,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62-5.51(\mathrm{~m}, 2 \mathrm{H}), 5.39(\mathrm{~d}, J=9.16 \mathrm{~Hz}, 2 \mathrm{H})$, $5.30-5.16(\mathrm{~m}, 2 \mathrm{H}), 4.62-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.05-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}$, $6 \mathrm{H}), 3.15(\mathrm{~s}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 2 \mathrm{H}), 2.63-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 2 \mathrm{H})$, $1.92-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 8 \mathrm{H}), 1.17(\mathrm{~d}, J=6.24 \mathrm{~Hz}, 6 \mathrm{H}), 1.03(\mathrm{~d}, J=6.68 \mathrm{~Hz}$, $6 \mathrm{H}), 0.93(\mathrm{~d}, J=6.72 \mathrm{~Hz}, 6 \mathrm{H})$

Step 2) the preparation of compound 20-2
[00482] A suspension of compound $20-1(0.18 \mathrm{~g}, 0.2 \mathrm{mmol})$ and ammonium acetate $(0.31 \mathrm{~g}, 4 \mathrm{mmol})$ in xylene $(5 \mathrm{~mL})$ in a sealed tube under N_{2} was stirred at $130^{\circ} \mathrm{C}$ for 3 hours, cooled to rt and diluted with EtOAc (15 mL). The organic layer was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was
purified by silica gel column chromatography (EtOAc) to give the title compound 20-2 as a white solid ($60 \mathrm{mg}, 35 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 861.5[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.00(\mathrm{bs}, 1 \mathrm{H}), 10.63(\mathrm{bs}, 1 \mathrm{H}), 7.90-7.69(\mathrm{~m}, 2 \mathrm{H})$, $7.48-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 2 \mathrm{H}), 5.43(\mathrm{~d}, J=8.08 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J$ $=8.08 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{t}, J=7.16 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 3.13-2.93(\mathrm{~m}, 6 \mathrm{H})$, $2.76-2.34(\mathrm{~m}, 6 \mathrm{H}), 1.93-1.55(\mathrm{~m}, 8 \mathrm{H}), 1.320 .79(\mathrm{~m}, 18 \mathrm{H})$.
[00483] Example 21

[00484] Synthetic routes

Step 1) the preparation of compound 21-1
[00485] The title compound 21-1 was prepared by an analogous procedure to that described for compound 3-3-2 (Example 3). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 544.3[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.22(\mathrm{~s}, 0.5 \mathrm{H}), 7.86-7.87(\mathrm{~m}, 0.5 \mathrm{H}), 7.37-7.39(\mathrm{~m}, 2 \mathrm{H})$, $5.89-5.94(\mathrm{~m}, 0.5 \mathrm{H}), 5.53-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.48(\mathrm{~m}, 0.5 \mathrm{H}), 5.05-5.16(\mathrm{~m}, 1 \mathrm{H})$, $3.61-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.61(\mathrm{~m}, 2 \mathrm{H}), 1.89 .2 .49(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H})$, $0.87-0.88(\mathrm{~m}, 2 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H})$.

Step 2) the preparation of compound 21-2
[00486] To a solution of compound 11-1 (353 mg, 0.79 mmol), compound $21-1$ (390 mg , 0.72 mmol) and potassium carbonate ($300 \mathrm{mg}, 2.12 \mathrm{mmol}$) in mixed solvents of DME (4 mL) and water (1 mL) was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(83 \mathrm{mg}, 0.07 \mathrm{mmol})$ under N_{2}. The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ for 4 hours. The mixture was quenched with water and extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=2 / 1)$ to give the title compound $21-2(0.424$ $\mathrm{g}, 80 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.27(\mathrm{~m}, 2 \mathrm{H})$, $7.11-7.13(\mathrm{~m}, 1 \mathrm{H}), 5.91-5.94(\mathrm{~m}, 0.5 \mathrm{H}), 5.59-5.70(\mathrm{~m}, 0.5 \mathrm{H}), 5.48-5.50(\mathrm{~m}, 1 \mathrm{H})$, $5.10-5.19(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 2 \mathrm{H})$, $1.98-2.43(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.72(\mathrm{~m}, 8 \mathrm{H}), 1.16-1.23(\mathrm{~m}, 9 \mathrm{H}), 0.87-0.88(\mathrm{~m}, 2 \mathrm{H}), 0.04(\mathrm{~s}$,
$9 \mathrm{H})$.

Step 3) the preparation of compound 21-3
[00487] A mixture of compound $21-2(670 \mathrm{mg}, 0.91 \mathrm{mmol})$, bis(pinacolato)diboron $(463 \mathrm{mg}, 1.82 \mathrm{mmol}), \operatorname{Pd}(d p p f) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(71 \mathrm{mg}, 0.09 \mathrm{mmol})$ and $\mathrm{KOAc}(268 \mathrm{mg}$, 2.73 mmol) in DMF (10 mL) was stitred at $90^{\circ} \mathrm{C}$ for 3 hours under N_{2}, cooled to rt and quenched with water. The mixture was extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{v})=2 / 1)$ to give the title compound $21-3(559 \mathrm{mg}, 86 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 714.4[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.26(\mathrm{~m}, 2 \mathrm{H})$, $7.11-7.13(\mathrm{~m}, 1 \mathrm{H}), 5.85-5.86(\mathrm{~m}, 0.5 \mathrm{H}), 5.51-5.55(\mathrm{~m}, 0.5 \mathrm{H}), 5.48-5.50(\mathrm{~m}, 1 \mathrm{H})$, $5.10-5.19(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 2 \mathrm{H})$, $1.98-2.43(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.72(\mathrm{~m}, 8 \mathrm{H}), 1.36-1.50(\mathrm{~m}, 12 \mathrm{H}), 1.16-1.23(\mathrm{~m}, 9 \mathrm{H}), 0.87-0.88$ $(\mathrm{m}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H})$.

Step 4) the preparation of compound 21-4
[00488] A mixture of compound J-1 ($25 \mathrm{~g}, 125.6 \mathrm{mmol}$), NBS ($24.5 \mathrm{~g}, 138.2 \mathrm{mmol}$) and p-TSA $(3.4 \mathrm{~g}, 20.9 \mathrm{mmol})$ was stirred at $100^{\circ} \mathrm{C}$ under N_{2} for 2 hours. The mixture was then cooled to $1 t$ and dissolved in DCM. The resulting mixture was quenched with water and extracted with DCM ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{v})=5 / 1)$ to give the title compound $\mathrm{J}-2(25 \mathrm{~g}$, 71%). The compound was characterized by the following spectroscopic data:

MS-ESI: miz $279.9[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.95(\mathrm{~d}, j=1.12 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.68$ $(\mathrm{m}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H})$.
[00489] To a solution of compound $\sqrt{ }-2(5 \mathrm{~g}, 17.9 \mathrm{mmol})$ and compound $5-3(5.4 \mathrm{~g}$, 19.7 mmol) in MeCN (100 mL) at $0^{\circ} \mathrm{C}$ was added DTPEA ($3.3 \mathrm{~mL}, 19.7 \mathrm{mmol}$) dropwise The mixture was stired at It and the reaction was monitored by TLC. After the reaction was completed, the mixture was poured into ice water and extracted with EtOAc (100 $m \mathrm{x} 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{v})=3 / 1)$ to give the title compound $\mathrm{J}-4(8.0 \mathrm{~g}, 96 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 470.1[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.88(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=3.88 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, j=4.16$ $\mathrm{Hz}, 1 \mathrm{H}), 5.59 .5 .61(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=8.32 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{t}$, $J=5.72 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=7.52 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.66$ $(\mathrm{s}, 3 \mathrm{H}), 2.34-2.15(\mathrm{~m}, 4 \mathrm{H}), 1.01(\mathrm{t}, 3 \mathrm{H}), 0.93-0.94(\mathrm{~m}, 3 \mathrm{H}), 0.85-0.88(\mathrm{~m}, 1 \mathrm{H})$.
[00490] A solution of compound $\}-4(2.0 \mathrm{~g}, 4.25 \mathrm{mmol})$ and ammonium acetate (4.9 $\mathrm{g}, 83 \mathrm{mmol}$) in xylene (50 mL) in a sealed tube was stirred at $130^{\circ} \mathrm{C}$ overmight. Then the mixture was cooled to rt , quenched with water and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\operatorname{PE} / \operatorname{EtOAc}(\mathrm{v} / \mathrm{v})=2 / 1)$ to give the title compound $21-4(1.39 \mathrm{~g}, 73 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: miz $450.1[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 88.70(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=6.92 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.28$ $\mathrm{Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.24(\mathrm{~m}, \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.85(\mathrm{~m}, 1 \mathrm{H})$, $3.67(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.63(\mathrm{~m}, 3 \mathrm{H}), 3.03-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.31-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.03-1.04(\mathrm{~m}$, $1 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H})$

Step 5) the preparation of compound 21-5
[00491] To a solution of compound 21-3 ($435 \mathrm{mg}, 0.61 \mathrm{mmol}$), compound $21-4$ (274 mg , 0.6 mmol) and potassium carbonate ($254 \mathrm{mg}, 1.83 \mathrm{mmol}$) in mixed solvents of DME (5 mL) and water (1 mL) was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(70 \mathrm{mg}, 0.05 \mathrm{mmol})$ under N_{2}. The mixture was stirred at $90^{\circ} \mathrm{C}$ for 4 hours, cooled to it and quenched with water. The mixture was extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{v})=1 / 1$) to give the title compound 21-5 (528 $\mathrm{mg}, 92 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 957.5[\mathrm{M}+\mathrm{H}]$, and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 89.10-9.13(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.74(\mathrm{~m}, 1 \mathrm{H})$, $7.60-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.45(\mathrm{~m}, 3 \mathrm{H}), 5.99-5.96(\mathrm{~d}, 0.5 \mathrm{H}), 5.75-5.77$ $(\mathrm{m}, 1 \mathrm{H}), 5.56-5.58(\mathrm{~m}, 0.5 \mathrm{H}), 5.29-5.31(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.25(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.39(\mathrm{~m}, 1 \mathrm{H})$, $4.12-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 2 \mathrm{H}), 3.01$ $(\mathrm{s}, 2 \mathrm{H}), 2.12-2.46(\mathrm{~m}, 4 \mathrm{H}), 1.86-2.07(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.63(\mathrm{~m}, 8 \mathrm{H}), 1.31-1.32(\mathrm{~m}, 1 \mathrm{H})$, $1.29(\mathrm{~s}, 9 \mathrm{H}), 1.05-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.95(\mathrm{~m}, 12 \mathrm{H}), 1.51-1.72(\mathrm{~m}, 8 \mathrm{H}), 1.36-1.50(\mathrm{~m}$, $12 \mathrm{H}), 1.16-1.23(\mathrm{~m}, 9 \mathrm{H}), 0.87-0.88(\mathrm{~m}, 2 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H})$.

Step 6) the preparation of compound 21-6
[00492] A solution of compound $21-5(75 \mathrm{mg}, 0.08 \mathrm{mmol})$ in a solution of HCl in EtOAc $(5 \mathrm{~mL}, 4 \mathrm{M})$ was stirred at tt overnight and concentrated in vacuo. The residue was washed with EtOAc to give the title compound $21-6$ as a pale yellow solid ($65 \mathrm{mg}, 99 \%$), which was used for the next step without further purification. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 727.4[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 89.09-9.11(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.78(\mathrm{~m}, 1 \mathrm{H})$, $7.58-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.46(\mathrm{~m}, 3 \mathrm{H}), 5.29-5.31(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.25$ $(\mathrm{m}, 1 \mathrm{H}), 4.34-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~s}$,
$2 \mathrm{H}), 3.06(\mathrm{~s}, 2 \mathrm{H}), 2.10-2.46(\mathrm{~m}, 4 \mathrm{H}), 1.83-2.06(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.64(\mathrm{~m}, 8 \mathrm{H}), 1.31-1.32$ $(\mathrm{m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.05-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.95(\mathrm{~m}, 12 \mathrm{H}), 1.51-1.72(\mathrm{~m}, 8 \mathrm{H})$, $1.36-1.50(\mathrm{~m}, 12 \mathrm{H})$.

Step 7) the preparation of compound 21-7
[00493] To a solution of compound 21-6 ($56.3 \mathrm{mg}, 0.067 \mathrm{mmol}$), compound $21-7(21 \mathrm{mg}$, $0.116 \mathrm{mmol})$ and $\operatorname{EDCI}(30 \mathrm{mg}, 0.154 \mathrm{mmol})$ in $\mathrm{BCM}(1 \mathrm{~mL})$ in an ice bath was added DIPEA ($0.09 \mathrm{~mL}, 0.539 \mathrm{mmol}$) dropwise. At the end of the addition, the mixture was stirred at it ovemight, quenched with NaHCO_{3} saturated solution and extracted with EtOAc $(10 \mathrm{~mL}$ x 3). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc) to give the title compound $21-8$ ($30 \mathrm{mg}, 51 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 884.5[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.03-9.08(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.52(\mathrm{~m}, 3 \mathrm{H})$, $7.51-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.45(\mathrm{~m}, 3 \mathrm{H}), 5.71-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.45(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.37$ $(\mathrm{m}, 2 \mathrm{H}), 3.87-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H})$, $2.98(\mathrm{~s}, 2 \mathrm{H}), 2.00-2.41(\mathrm{~m}, 10 \mathrm{H}), 1.54-1.65(\mathrm{~m}, 8 \mathrm{H}), 0.85-0.91(\mathrm{~m}, 12 \mathrm{H})$.
[00494] Example 22

$8-3$

$3-3-2$

$22-2$

22-1

EDCI,DCM, DIPEA

Step 1) the preparation of compound 22-1
[00496] A solution of compound 8-3 ($528 \mathrm{mg}, 1.13 \mathrm{mmol}$), compound 3-3-2 (1.12 g. $2.71 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(57 \mathrm{mg}, 0.05 \mathrm{mmol})$ and potassium carbonate ($778 \mathrm{mg}, 5.64 \mathrm{mmol}$) in mixed solvents DME $(5 \mathrm{~mL})$ and water (5 mL) under N_{2} was stirred at $90^{\circ} \mathrm{C}$ overnight. Water (10 mL) was then added and the mixture was extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over amhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{v})=1 / 2)$ to give the title compound $22-1(430 \mathrm{mg}, 51 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 743.4[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.491-1.696(\mathrm{~m}, 26 \mathrm{H}), 1.982-2.093(\mathrm{~m}, 4 \mathrm{H}), 2.226-2.242$ $(\mathrm{m}, 4 \mathrm{H}), 3.046(\mathrm{~s}, 4 \mathrm{H}), 3.315-3.510(\mathrm{~m}, 4 \mathrm{H}), 5.175-5.189(\mathrm{~m}, 2 \mathrm{H}), 7.283(\mathrm{~s}, 2 \mathrm{H})$, 7.344-7.487 (m, 6H).

Step 2) the preparation of compound 22-2
[00497] To a solution of HCl in EtOAc (10 mL , 4M) was added compound $22-1$
($430 \mathrm{mg}, 0.58 \mathrm{mmol}$). The mixture was concentrated in vactuo to give the title compound $22-2$ as a pale yellow solid ($320 \mathrm{mg}, 80 \%$), which was used for the next step without further purification. The compound was characterized by the following spectroscopic data:

MS-ESI: $n / z 543.3[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 81.139-1.230(\mathrm{~m}, 8 \mathrm{H}), 1.987-2.354(\mathrm{~m}, 6 \mathrm{H}), 2.591-2.605$ $(\mathrm{m}, 2 \mathrm{H}), 2.743-2.782(\mathrm{~m}, 4 \mathrm{H}), 3.511-3.568(\mathrm{~m}, 4 \mathrm{H}), 5.139-5.236(\mathrm{~m}, 2 \mathrm{H}), 7.141(\mathrm{~s}, 2 \mathrm{H})$, $7.412(\mathrm{~s}, 2 \mathrm{H}), 7.611-7.718(\mathrm{~m}, 4 \mathrm{H})$.

Step 3) the preparation of compound 22-3
[00498] To a solution of compound 22-2 (150 mg, 0.22 mmol), compound 3-3-2 (115 mg, 0.66 mmol) in DCM (25 mL) was added EDC ($169 \mathrm{mg}, 0.88 \mathrm{mmol}$) followed by DIPEA $(0.38 \mathrm{~mL})$ under N_{2}. At the end of the addition, the mixture was stirred at rt overnight, quenched with NaHCO_{3} solution and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (DCM/MeOH (v/v) $=40 / 1$) to give the title compound $22-3$ ($80 \mathrm{mg}, 43 \%$, HPLC: 95.7%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 625.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.844-0.919(\mathrm{~m}, 12 \mathrm{H}), 1.253-2.283(\mathrm{~m}, 8 \mathrm{H}), 1.975-2.406$ $(\mathrm{m}, 8 \mathrm{H}), 3.027-3.121(\mathrm{~m}, 4 \mathrm{H}), 3.715(\mathrm{~s}, 6 \mathrm{H}), 3.659-3.777(\mathrm{~m}, 4 \mathrm{H}), 5.438-5.464(\mathrm{~m}, 2 \mathrm{H})$, $7.285-7.298(\mathrm{~m}, 2 \mathrm{H}), 7.355-7.375(\mathrm{~m}, 3 \mathrm{H}), 7.460-7.480(\mathrm{~m}, 1 \mathrm{H}), 7.773-7.781(\mathrm{~m}, 1 \mathrm{H})$, $7.831-7.885(\mathrm{~m}, 1 \mathrm{H})$.
[00499] Example 23

[00500] Synthetic routes

Step 1) the preparation of compound 23-1
[00501] The title compound 23-1 was prepared by an analogous procedure to that described for compound 11-4 (Example 11). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 470.3[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.87-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 2 \mathrm{H}), 5.47-5.42(\mathrm{~m}, 2 \mathrm{H})$, $4.34-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.98(\mathrm{~m}$, $1 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 12 \mathrm{H}), 0.88-0.84$ (m, 6H).

Step 2) the preparation of compound 23-2
[00502] To a mixture of compound $11-3(2.407 \mathrm{~g}, 3.5 \mathrm{mmol})$, compound $23-1(1.84 \mathrm{~g}$, $3.9 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(404 \mathrm{mg}, 0.35 \mathrm{mmol})$ and potassium carbonate $(1.23 \mathrm{~g}, 8.8 \mathrm{mmol})$ under N_{2} was added DME (20.0 mL) via syringe followed by pure water (4.0 mL). The mixture was stired at $90^{\circ} \mathrm{C}$ overnight, cooled to rt and concentrated in wacho. To the residue was added water (50.0 mL) and the mixture was extracted with EtOAc ($50.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dred over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=50 / 1)$ to give the title compound $23-2$ as a beige solid (1.19 g , HPLC: 97.39%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 884.1[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.70-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.48(\mathrm{~m}, 2 \mathrm{H})$, $7.28-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.26-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.19(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.26$
$(\mathrm{m}, 2 \mathrm{H}), 3.94-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 6 \mathrm{H}), 2.97(\mathrm{~s}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 2 \mathrm{H})$, $2.04-2.34(\mathrm{~m}, 10 \mathrm{H}), 1.53-1.59(\mathrm{~m}, 8 \mathrm{H}), 0.86-0.93(\mathrm{~m}, 12 \mathrm{H})$.
[00503] Example 24

[00504]
Synthetic routes

Step 1) the preparation of compound 24-1
[00505] The title compound 24 -1 was prepared by an analogous procedure to that described for compound 17-7 (Example 17). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.82-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H})$,
$7.11-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.45-6.47(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.88(\mathrm{~m}, 0.5 \mathrm{H}), 5.40-5.42(\mathrm{~m}, 0.5 \mathrm{H})$, $5.18-5.21(\mathrm{~m}, 1 \mathrm{H}), 4.93-5.01(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.55(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{~s}$, $2 \mathrm{H}), 2.95(\mathrm{~s}, 2 \mathrm{H}), 1.82-2.23(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.69(\mathrm{~m}, 8 \mathrm{H}), 1.1-1.28(\mathrm{~m}, 9 \mathrm{H}), 0.89-0.93(\mathrm{~m}$, $2 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H})$.

Step 2) the preparation of compound 24-2
[00506] To a solution of compound 2-7-2 (500 mg, 1.38 mmol$), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(98 \mathrm{mg}$, 0.14 mmol) and CuL ($78 \mathrm{mg}, 0.41 \mathrm{mmol}$) in DMF (15 mL) under N_{2} was added Et N (2 mL) dropwise. The mixture was stirred at it for 10 minutes, and TMSA ($0.98 \mathrm{~mL}, 6.89$ mmol) was added dropwise. The resulting mixture was stirred at rt for another 10 minutes and at $70^{\circ} \mathrm{C}$ overnight, then filtered through a Celite pad. The filtate was diluted with water and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc $(v / v)=3 / 1)$ to give compound $K-1$ $(290 \mathrm{mg}, 63 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 334.2[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.15(\mathrm{~s}, 1 \mathrm{H}), 4.86-4.88(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.91$ $(\mathrm{m}, 1 \mathrm{H}), 2.28-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H})$.
[00507] A solution of compound $\mathrm{K}-1(290 \mathrm{mg}, 0.87 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(601 \mathrm{mg}, 4.35$ mmol) in mixed solvents of MeOH (2 mL) and THF (2 mL) was stirred at it for 6 hours and concentrated in vacuo. To the residue was added water (10 mL), and the mixture was extracted with EtOAc ($5 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc $(\mathrm{v} / \mathrm{v})=2 / 1$) to give the title compound $24-2$ $(208 \mathrm{mg}, 91 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 262.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.18(\mathrm{~s}, 1 \mathrm{H}), 4.87-4.89(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.04$ $(\mathrm{s}, 1 \mathrm{H}), 2.11-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.
[00508] To a mixture of compound $24-1$ ($300 \mathrm{mg}, 0.39 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(66 \mathrm{mg}$, 0.094 mmol), Cul ($33 \mathrm{mg}, 0.172 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(226 \mathrm{mg}, 0.86 \mathrm{mmol}$) in an 25 mL of round-bottomed flask under N_{2} was added DMF (10 mL) via syringe followed by $\mathrm{Et}_{3} \mathrm{~N}$ $(5 \mathrm{~mL})$. The mixture was stirred at rt for 10 minutes and heated to $90^{\circ} \mathrm{C}$. Then to the mixture was added a solution of compound $24-2(113 \mathrm{mg}, 0.43 \mathrm{mmol})$ in DMF (3 mL) using a syringe pump over a period of more than 1 hour. The mixture was stirred at 90 ${ }^{\circ} \mathrm{C}$ for another 30 minutes, and the reaction was monitored by TLC. The resulting mixture was filtered through a Celite pad. The filtrate was diluted with water and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc $(v / v)=1 / 2)$ to give the title compound $24-3$ ($200 \mathrm{mg}, 58.7 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 874.5[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.99(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=4.12 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.41(\mathrm{~m}$, $2 \mathrm{H}), 7.18-7.17(\mathrm{~m}, 3 \mathrm{H}), 5.85-5.87(\mathrm{~m}, 0.5 \mathrm{H}), 5.39-5.42(\mathrm{~m}, 0.5 \mathrm{H}), 5.19(\mathrm{~d}, J=5.44 \mathrm{~Hz}$, $1 \mathrm{H}), 4.93-5.01(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.73(\mathrm{~m}, 4 \mathrm{H}), 3.35-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 2 \mathrm{H})$, $1.82-2.38(\mathrm{~m}, 8 \mathrm{H}), 1.58-1.69(\mathrm{~m}, 8 \mathrm{H}), 1.1-1.28(\mathrm{~m}, 18 \mathrm{H}), 0.89-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.01(\mathrm{~s}$, 9H).

Step 4) the preparation of compound 24-4
[00509] A solution of compound $24-3(200 \mathrm{mg}, 0.23 \mathrm{mmol})$ in a solution of HCl in EtOAc ($8 \mathrm{~mL}, 4 \mathrm{M}$) was stirred at rt ovemight and concentrated in vacuo. The residue was washed with EtOAc (10 mL) to give the title compound $24-4$ as a white solid (158 mg , 100%. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 544.3[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 87.71-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H})$, $4.93-5.01(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 4 \mathrm{H}), 2.81-2.98(\mathrm{~m}, 4 \mathrm{H}), 2.01-2.70(\mathrm{~m}, 8 \mathrm{H}), 1.48-1.61$
($\mathrm{m}, 8 \mathrm{H}$).

Step 5) the preparation of compound 24-5
[00510] To a solution of compound $24.4(202 \mathrm{mg}, 0.3 \mathrm{mmol})$, compound $1-7.2(158 \mathrm{mg}$, $0.907 \mathrm{mmol})$ and $\mathrm{EDCL}(201 \mathrm{mg}, 1.05 \mathrm{mmol})$ in DCM (30.0 mL) in an ice bath was added DIPEA $(0.42 \mathrm{~mL})$ dropwise under N_{2}. At the end of the addition, the mixture was stirred at nt overnight, quenched with NaHCO_{3} saturated solution, and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=60 / 1$) to give the title compound 24-5 as a white solid ($100 \mathrm{mg}, \mathrm{HPLC}: 93.3 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 857.5[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 7.72-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.33(\mathrm{~m}, 1 \mathrm{H})$, $7.14 .7 .22(\mathrm{~m}, 3 \mathrm{H}), 5.71-5.76(\mathrm{~m}, 2 \mathrm{H}), 5.21-5.23(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}$, $6 \mathrm{H}), 3.65-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~s}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 2 \mathrm{H}), 2.31-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.21(\mathrm{~m}, 2 \mathrm{H})$, $2.06-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.97-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.67(\mathrm{~m}, 10 \mathrm{H}), 0.83-0.96(\mathrm{~m}, 12 \mathrm{H})$.
[00511] Example 25

[00512] Synthetic routes

[00513] Compounds disclosed herein can be prepared by an analogous procedure to that described in Example 11.
[00514] Compound 25-1 was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.56-7.57(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.79(\mathrm{~m}, 1 \mathrm{H}), 3.01 \cdot 3.07(\mathrm{~m}, 2 \mathrm{H})$, $2.48-2.64(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.29(\mathrm{~m}, 2 \mathrm{H})$.
[00515] Compound 25-2 was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.84-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 1 \mathrm{H})$, $7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.27(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.30$ $(\mathrm{m}, 1 \mathrm{H}), 3.75-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.01(\mathrm{~m}, 1 \mathrm{H})$, $3.01-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.94$ $(\mathrm{m}, 1 \mathrm{H}), 1.50-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.86(\mathrm{~m}, 6 \mathrm{H})$.
[00516] Compound 25-3 was characterized by the following spectroscopic data:
MS-ESI: $m / z 471.2[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.87-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 2 \mathrm{H}), 5.47-5.42(\mathrm{~m}, 2 \mathrm{H})$, $4.34-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.84(\mathrm{~m}, \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.64 \mathrm{-3.62}(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.98(\mathrm{~m}$, $1 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 12 \mathrm{H}), 0.88-0.84$ (m, 6H).
[00517] Compound 25-4 (HPLC: 95.6\%) was characterized by the following spectroscopic data

MS-ESI: $m / z 855.4[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.70-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.48(\mathrm{~m}, 2 \mathrm{H})$,
$7.28-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.26-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.19(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.26$ $(\mathrm{m}, 2 \mathrm{H}), 3.94-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 6 \mathrm{H}), 3.01-3.08(\mathrm{~m}, 2 \mathrm{H})$, $2.45-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.34(\mathrm{~m}, 10 \mathrm{H}), 1.51-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.86-0.93$ (m, 12H).
[00518] Example 26

[00519] Synthetic routes

Step 1) the preparation of compound 26-1
[00520] To a solution of L-proline ($10 \mathrm{~g}, 86.9 \mathrm{mmol}$) in $\mathrm{MeOH}(100 \mathrm{~mL})$ was added $\mathrm{SOCl}_{2}(12.6 \mathrm{~mL}, 174 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 1.5 hours and concentrated in vacuo to afford the title compound $26-1$ as a white solid $(14.3 \mathrm{~g}, 100 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 130.2[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 84.45(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H})$, $2.12(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H})$.

Step 2) the preparation of compound 26-3
[00521] To a mixture of compound $26-1(1 \mathrm{~g}, 6 \mathrm{mmol})$, compound $26-2(1.5 \mathrm{~g}, 10 \mathrm{mmol})$ and $\operatorname{EDCl}(2.2 \mathrm{~g}, 11.5 \mathrm{mmol})$ in $\mathrm{DCM}(50.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added DIPEA $(2.55 \mathrm{~mL}, 15.5$ mmol) dropwise under N_{2}. At the end of the addition, the mixture was stirred at it ovemight, washed with water ($30 \mathrm{~mL} \times 2$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc (v/v) $=$ $3 / 1)$ to give the title compound $26-3$ as water white viscous liquid ($0.98 \mathrm{~g}, 63 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 259.12[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.40(\mathrm{~d}, J=8.96 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H})$, $3.81(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.07$ (m, 1H), $2.04(\mathrm{~m}, 3 \mathrm{H})$.

Step 3) the preparation of compound 26-4
[00522] To a solution of compound $26-3(0.98 \mathrm{~g}, 3.8 \mathrm{mmol})$ in mixed solvents (THF/water $(\mathrm{v} / \mathrm{v})=3 / 2,25 \mathrm{~mL})$ was added $\mathrm{LiOHH}_{2} \mathrm{O}(0.46 \mathrm{~g}, 11 \mathrm{mmol})$. The mixture was stired at rt for 12 hours, adjusted to pH $2-3$ and extracted with EtOAc $(30 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the title compound $26-4$ as water white viscous liquid ($0.93 \mathrm{~g}, 100 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: m/z $245.11[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.40(d, J=8.96 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H})$, $3.81(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 2.04$ (m, 3H).

Step 4) the preparation of compound 26-5
[00523] To a mixture of compound $26-4(0.93 \mathrm{~g}, 3.8 \mathrm{mmol})$ and compound 14.6 $(0.49 \mathrm{~g}, 1 \mathrm{mmol})$ in acetonitrile $(20 \mathrm{~mL})$ was added DIPEA $(5.1 \mathrm{~mL}, 31 \mathrm{mmol})$ dropwise at low temperature under N_{2}. The mixture was stired at rt for 2 hours and concentrated
in vacuo. To the residue was added water (10 mL), and the mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc $(\mathrm{v} / \mathrm{v})=1 / 3$) to give the title compound $26-5$ as a pale yellow solid (1.2 g , 38%. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 817.12[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 5.59-5.16(\mathrm{~m}, 4 \mathrm{H}), 5.54(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{~m}$, $2 \mathrm{H}), 5.53(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~m}, 4 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 2 \mathrm{H})$, $2.38(\mathrm{~m}, 4 \mathrm{H}), 2.35(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~m}, 6 \mathrm{H}), 1.26(\mathrm{t}, 3 \mathrm{H})$.

Step 5) the preparation of compound 26-6
[00524] A mixture of compound $26-5(0.3 \mathrm{~g}, 0.37 \mathrm{mmol})$ and ammonium acetate $(1.2 \mathrm{~g}, 15.5 \mathrm{mmol})$ in xylene $(10 \mathrm{~mL})$ in a sealed tube was stired at $140^{\circ} \mathrm{C}$ for 5 hours, cooled to rt , and water (10 mL) was added. The mixture was extracted with EtOAc (30 $\mathrm{mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc $(\mathrm{v} / \mathrm{v})=1 / 5)$ to give the title compound $26-6$ as a pale yellow solid $(0.24 \mathrm{~g}, 65 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: m/z $777.4[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, 1 \mathrm{H}, J=8.12 \mathrm{~Hz}), 7.53$ $(d, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{~m}, 2 \mathrm{H}), 5.53(\mathrm{~m}, 2 \mathrm{H})$, $3.71(\mathrm{~m}, 4 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 4 \mathrm{H}), 2.35$ $(\mathrm{m}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~m}, 6 \mathrm{H}), 1.26(\mathrm{t}, 3 \mathrm{H})$.

Step 1) the preparation of compound 27-2
[00527] To a mixture of compound $26-1(1 \mathrm{~g}, 6 \mathrm{mmol})$, compound $27-1(1.3 \mathrm{~g}, 6 \mathrm{mmol})$ and EDCI ($2.2 \mathrm{~g}, 11.5 \mathrm{mmol}$) in DCM (50.0 mL) was added DIPEA ($2.5 \mathrm{~mL}, 15.5 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$ under N_{2}. At the end of the addition, the mixture was stirred at it overnight, washed with water ($30 \mathrm{~mL} \times 2$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc (v/v) $=$ $2 / 1$) to give the title compound $27-2$ as water white viscous liquid ($0.95 \mathrm{~g}, 48 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: m/z $328.2[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 85.40(\mathrm{~d}, J=8.96 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H})$, $3.81(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.07$ $(\mathrm{m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 4 \mathrm{H}), 1.87(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H})$

Step 2) the preparation of compound 27-3
[00528] To a solution of compound $27.2(0.95 \mathrm{~g}, 2.9 \mathrm{mmol})$ in mixed solvents (THF/water $(\mathrm{v} / \mathrm{v})=3 / 2,25 \mathrm{~mL})$ was added $\mathrm{LiOH} \mathrm{H}_{2} \mathrm{O}(0.45 \mathrm{~g}, 11 \mathrm{mmol})$. The mixture was stired at rt for 12 hours, adjusted to $\mathrm{pH} 2-3$ and extracted with EtOAc $(30 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the title compound $27-3$ as water white viscous liquid ($0.87 \mathrm{~g}, 96 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 313.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.40(\mathrm{~d}, J=8.96 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H})$, $3.81(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 2.04$ $(\mathrm{m}, \mathrm{H}), 1.98(\mathrm{~m}, 4 \mathrm{H}), 1.87(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H})$.

Step 3) the preparation of compound 27-4
[00529] To a mixture of compound $27.3(0.87 \mathrm{~g}, 2.79 \mathrm{mmol})$ and compound 14.6 $(0.44 \mathrm{~g}, 0.9 \mathrm{mmol})$ in acetonitrile (20 mL) was added DIPEA ($5.2 \mathrm{~mL}, 31 \mathrm{mmol}$) dropwise at low temperature under N_{2}. The mixture was stirred at rt for 2 hours and concentrated in vacuo. To the residue was added water (10 mL), and the mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc $(v / v)=1 / 2)$ to give the title compound 27-4 as a pale yellow solid $(0.79 \mathrm{~g}, 29.7 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 953.5[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 5.59 .5 .16(\mathrm{~m}, 4 \mathrm{H}), 5.54(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{~m}$, $2 \mathrm{H}), 5.53(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~m}, 4 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 2 \mathrm{H})$, $2.38(\mathrm{~m}, 4 \mathrm{H}), 2.35(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 4 \mathrm{H}), 1.87(\mathrm{~m}, 4 \mathrm{H})$, $1.56(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{t}, 3 \mathrm{H})$.
[00530] A mixture of compound $27-4(0.3 \mathrm{~g}, 0.31 \mathrm{mmol})$ and ammonium acetate $(1.2 \mathrm{~g}, 15.6 \mathrm{mmol})$ in xylene (10 mL) in a sealed tube was stirred at $140^{\circ} \mathrm{C}$ for 5 bours, cooled to rt , and water (10 mL) was added. The mixture was extracted with EtOAc (30 $m L x 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purfied by silica gel column chromatography (hexane/EtOAc $(\mathrm{v} / \mathrm{v})=1 / 8)$ to give the title compound $27-5$ as a pale yellow solid $(0.22 \mathrm{~g}, 77.7 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 913.4[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{~m}, 2 \mathrm{H}), 5.53(\mathrm{~m}, 2 \mathrm{H})$, $3.71(\mathrm{~m}, 4 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 4 \mathrm{H}), 2.35$ $(\mathrm{m}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~m}, \mathrm{H}), 1.98(\mathrm{~m}, 4 \mathrm{H}), 1.87(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}$, $4 \mathrm{H}), 1.37(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{t}, 3 \mathrm{H})$.
[00531] Example 28

[00532] Synthetic routes

Step 1) the preparation of compound 28-1
[00533] To a solution of compound M-1 ($2 \mathrm{~g}, 7.2 \mathrm{mmol}$) and M-2 ($1.5 \mathrm{~g}, 6.55 \mathrm{mmol}$) in MeCN (50 mL) was added DIPEA (1.3 mL) at $0^{\circ} \mathrm{C}$. At the end of the addition, the mixture was stirred at it and the reaction was monitored by TLC. After the reaction was completed, the mixture was quenched with ice water (10 mL) and extracted with EtOAc $(100 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc $(\mathrm{v} / \mathrm{v})=4 / 1$) to give compound $\mathrm{M}-3(2.55 \mathrm{~g}, 94 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}, \mathrm{CDCl}): 87.78(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~m}, 2 \mathrm{H}), 5.54 .5 .15(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{~m}$, $1 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~m}, 9 \mathrm{H})$, $1.24(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~m}, 3 \mathrm{H})$.
[00534] A mixture of compound M-3 (2.55 g. 6.2 mmol) and ammonium acetate (4.6 $\mathrm{g}, 59.7 \mathrm{mmol}$) in xylene (100 mL) in a sealed tube was stirred at $130^{\circ} \mathrm{C}$ for 5 hours cooled to rt and washed with water. The organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc $(v / v)=4 / 1)$ to give compound M-4 (1.63g, 64.7\%). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 67.78(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H})$, $3.03(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~m}, 9 \mathrm{H}), 1.24(\mathrm{~m}, 1 \mathrm{H})$, $1.09(\mathrm{~m}, 3 \mathrm{H})$.
[00535] To a mixture of compound M-4 (1.63 g, 4 mmol), bis(pinacolato)diboron $(1.12 \mathrm{~g}, 4.4 \mathrm{mmol}), \mathrm{Pd}(d \mathrm{ppf}) \mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}(71 \mathrm{mg}, 0.09 \mathrm{mmol})$ and $\mathrm{KOAc}(0.98 \mathrm{~g}, 10$ mmol) was added DME (20 mL) under N_{2} via syringe. The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ for 5 hours in an oil bath and concentrated in vacuo. To the residue was added a small amount of water, and the mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc (v/v) = $2 / 1$) to give the title compound $28-1$ as a pale yellow solid ($1.77 \mathrm{~g}, 97.6 \%$). The compound was characterized by the following spectroscopic data
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.78(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H})$, $3.03(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~m}, \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~m}, 9 \mathrm{H}), 1.24(\mathrm{~m}, 1 \mathrm{H})$, $1.09(\mathrm{~m}, 3 \mathrm{H})$.

Step 2) the preparation of compound 28-2
[00536] To a mixture of compound $\mathrm{N}-2(2 \mathrm{~g}, 8.7 \mathrm{mmol})$ and $\operatorname{HATU}(3.5 \mathrm{~g}, 9.2 \mathrm{mmol})$ in THF (30 mL) was added DIPEA (6 mL) at $0^{\circ} \mathrm{C}$ under N_{2}. The mixture was stirred at it for 0.5 hour, and compound $\mathrm{N}-1(1.8 \mathrm{~g}, 9.6 \mathrm{mmol})$ was added. The mixture was stirred at rt for another 2 hours and quenched with water (10 mL). THF was removed in vacuo, and the aqueous layer was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine and concentrated in vacuo. To the above residue was
added acetic acid (35 mL) and the mixture was stired at $40^{\circ} \mathrm{C}$ overnight. The mixture was then neutralized with NaHCO_{3} saturated solution and extracted with EtOAc (50 mL x 3). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc $(v / v)=4 / 1)$ to give compound $N-3$ as a reddish brown solid $(2.4 \mathrm{~g}, 72 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H})$, $5.11-5.09(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.91$ $(\mathrm{m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{~d}, 3 \mathrm{H})$.
[00537] To a mixture of compound N-3 (2.4 g, 6.3 mmol), bis(pinacolato)diboron $(1.8 \mathrm{~g}, 7 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{~g}, 0.12 \mathrm{mmol})$ and $\mathrm{KOAc}(1.6 \mathrm{~g}, 16 \mathrm{mmol})$ was added DME (30 mL) under N_{2} via syringe. The mixture was stirred at $90^{\circ} \mathrm{C}$ in an oil bath for 3 hours and concentrated in vacto. To the residue was added water (5 mL), and the mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc $(v / v)=4 / 1)$ to give compound $\mathrm{N}-4(2.1 \mathrm{~g}, 78 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H})$, $5.11-5.09(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.91$ $(\mathrm{m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{~d}, 3 \mathrm{H})$.
[00538] To a mixture of compound $11-1(54 \mathrm{mg}, 0.12 \mathrm{mmol})$, compound $\mathrm{N}-4(50 \mathrm{mg}$, $0.11 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12.7 \mathrm{mg}, 0.01 \mathrm{mmol})$ and potassium carbonate ($46 \mathrm{mg}, 0.33 \mathrm{mmol}$) was added DME (5 mL) under N_{2} via syringe followed by pure water (1 mL). The mixture was stirred at $90^{\circ} \mathrm{C}$ overnight and concentrated in vacuo. To the residue was added water (3 mL) and the mixture was extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacwo. The residue was purified by silica gel column chromatography (hexane/EtOAc $(\mathrm{v} / \mathrm{v})=2 / 1$) to give the title
compound $28-2$ as a yellow solid ($32 \mathrm{mg}, 46.9 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.82(\mathrm{~s}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 2 \mathrm{H}), 7.39(\mathrm{~d}, j=8.24 \mathrm{~Hz}, 2 \mathrm{H}), 7.1 \mathrm{l}$ $(\mathrm{d}, J=8.24 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{~m}, \mathrm{H}), 3.78(\mathrm{~m}, \mathrm{H}), 3.44(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 4 \mathrm{H})$, $1.82(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 17 \mathrm{H}), 0.96(\mathrm{~d}, 3 \mathrm{H})$.

Step 3) the preparation of compound 28-3
[00539] To a solution of compound $28-2(0.46 \mathrm{~g}, 0.74 \mathrm{mmol})$, compound $28-1(0.32 \mathrm{~g}$, 0.7 mmol) and potassium carbonate $(0.3 \mathrm{~g}, 2.1 \mathrm{mmol})$ in mixed solvents of DME (10 mL) and water (1 mL) was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.04 \mathrm{~g}, 0.03 \mathrm{mmol})$ under N_{2}. The mixture was stirred at $90^{\circ} \mathrm{C}$ for 4 hours, cooled to rt and quenched with water $(5 \mathrm{~mL})$. The mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacho. The residue was purified by silica gel column chromatography (hexane/EtOAc $(\mathrm{v} / \mathrm{v})=1 / 4)$ to give the title compound 28-3 as a claybank solid ($480 \mathrm{mg}, 85 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 813(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~m}, 2 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.65$ $(\mathrm{s}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H}), 5.0(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 2 \mathrm{H}), 3.44 .3 .12(\mathrm{~m}$, $4 \mathrm{H}), 2.83(\mathrm{~m}, 4 \mathrm{H}), 1.97-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~m}, 10 \mathrm{H}), 1.50(\mathrm{~m}, 8 \mathrm{H}), 1.38(\mathrm{~m}, 18 \mathrm{H}), 0.96$ (m, 6H).

Step 4) the preparation of compound 28-4
[00540] A solution of compound $28-3(480 \mathrm{mg}, 0.6 \mathrm{mmol})$ in a solution of HCl in EtOAc $(10 \mathrm{~mL}, 4 \mathrm{M})$ was stired at rt overnight and concentrated in vacuo. The residue was washed with EtOAc to give the title compound $28-4$ as a white solid ($260 \mathrm{mg}, 58 \%$), which was used for the next step without further purification. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 813(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~m}, 2 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.65$ $(\mathrm{s}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H}), 5.0(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.12(\mathrm{~m}$, $4 \mathrm{H}), 2.83(\mathrm{~m}, 4 \mathrm{H}), 1.97-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~m}, 10 \mathrm{H}), 1.50(\mathrm{~m}, 8 \mathrm{H}), 0.96(\mathrm{~m}, 6 \mathrm{H})$.

Step 5) the preparation of compound 28-5
[00541] To a solution of compound $28-4$ ($260 \mathrm{mg}, 0.35 \mathrm{mmol}$), compound 1-7-2 (176 $\mathrm{mg}, 1 \mathrm{mmol})$ and $\operatorname{EDCI}(210 \mathrm{mg}, 1.1 \mathrm{mmol})$ in DCM (10.0 mL) was added DIPEA $(0.7 \mathrm{~mL})$ dropwise at $0^{\circ} \mathrm{C}$. At the end of the addition, the mixture was stired at t overnight, quenched with NaHCO_{3} saturated solution and extracted with EtOAc (50 mL $\times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc) to give the title compound $28-5$ as a white solid $(280 \mathrm{mg}, 87.8 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 813(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~m}, 2 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.65$ $(\mathrm{s}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H}), 5.40(\mathrm{~d}, 2 \mathrm{H}), 5.0(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 2 \mathrm{H})$, $4.47(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{~m}, 4 \mathrm{H}), 4.09(\mathrm{~m}, 6 \mathrm{H}), 3.61(\mathrm{~d}, 2 \mathrm{H}), 3.34(\mathrm{~d}, 2 \mathrm{H})$, $3.44-3.12(\mathrm{~m}, 4 \mathrm{H}), 2.83(\mathrm{~m}, 4 \mathrm{H}), 1.97-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~m}, 10 \mathrm{H}), 1.50(\mathrm{~m}, 8 \mathrm{H}), 0.96$ (m, 6H).
[00542] Example 29

[00543] Synthetic routes

Step 1) the preparation of compound 29-1
[00544] The title compound $29-1$ was prepared by an analogous procedure to that described for compound 18-8 (Example 18). The compound was chatacterized by the following spectroscopic data:

MS-ESI: $m / z 291[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right): \delta 5.38(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H})$, $3.85(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 3 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~m}, 3 \mathrm{H}), 0.94(\mathrm{~m}, 3 \mathrm{H})$.

Step 2) the preparation of compound 29-2
[00545] To a solution of compound 29-1 (0.2 g, 1.0 mmol) and compound 14-6 $(0.233 \mathrm{~g}, 0.47 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added DIPEA ($\left.0.2 \mathrm{~mL}, 1.2 \mathrm{mmol}\right)$. The mixture was stired at it overnight and concentrated in vacuo. To the residue was added water (10 mL), and the mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacno. The residue was purified by silica gel column chromatography (EtOAc) to give the title compound $29.2(0.29 \mathrm{~g}, 67.9 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: m / z 909.1 $[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right): \delta 7.96(\mathrm{~d}, J=8.24 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ $(\mathrm{d}, J=8.28 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 5.62-5.21(\mathrm{~m}, 4 \mathrm{H}), 5.44(\mathrm{~m}, 2 \mathrm{H}), 4.84$ $(\mathrm{m}, 2 \mathrm{H}), 4.33(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}$,
$2 \mathrm{H}), 2.85(\mathrm{~m}, 4 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 3 \mathrm{H}), 1.56(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~m}, 9 \mathrm{H}), 1.02(\mathrm{~m}$, 6H)

Step 3) the preparation of compound 29-3
[00546] A mixture of compound $29.2(0.29 \mathrm{~g}, 0.32 \mathrm{mmol})$ and ammonium acetate $(0.25 \mathrm{~g}, 3.2 \mathrm{mmol})$ in xylene (15 mL) in a sealed tube was stirred at $130^{\circ} \mathrm{C}$ overnight. The mixture was diluted with EtOAc (50 mL) and washed with water ($10 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacno. The residue was purified by silica gel column chromatography (hexane/EtOAc (v/v) $=1 / 10$) to give the title compound $29-3$ as an offwhite solid ($0.155 \mathrm{~g}, 56.0 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 870[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right): 87.96(\mathrm{~d}, J=8.24 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ $(\mathrm{d}, J=8.28 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~m}, 2 \mathrm{H})$, $4.31(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 2.85(\mathrm{~m}, 4 \mathrm{H}), 2.55$ $(\mathrm{m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 3 \mathrm{H}), 1.56(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~m}, 9 \mathrm{H}), 1.02(\mathrm{~m}, 6 \mathrm{H})$.
[00547] Example 30

[00548] Synthetic routes

Step 1) the preparation of compound 30-1
[00549] The title compound $30-1$ was prepared by an analogous procedure to that described for compound 18-8 (Example 18). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right): \delta 5.41(\mathrm{~d}, J=8.96 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H})$, $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~d}, J=9.64 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=9.63 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 3 \mathrm{H}), 1.76(\mathrm{~m}$, $1 \mathrm{H}), 1.27(\mathrm{~m}, 4 \mathrm{H}), 1.03(\mathrm{~m}, 6 \mathrm{H}), 0.93(\mathrm{~m}, 3 \mathrm{H})$.

Step 2) the preparation of compound 30-2
[00550] To a solution of compound $30-1$ ($1.14 \mathrm{~g}, 3.8 \mathrm{mmol}$) and compound $14-6$ $(0.88 \mathrm{~g}, 1.8 \mathrm{mmol})$ in $\mathrm{MeCN}(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added DIPEA ($1.58 \mathrm{~mL}, 9.6 \mathrm{mmol}$). The mixture was stirred at it overnight and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc (v/v) $=1 / 5$) to give the title compound $29-2(0.83 \mathrm{~g}, 49.8 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 930.5[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right): 87.96(\mathrm{~d}, J=8.24 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ $(\mathrm{d}, J=8.28 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 5.62-5.21(\mathrm{~m}, 4 \mathrm{H}), 5.44(\mathrm{~m}, 2 \mathrm{H}), 4.84$ $(\mathrm{m}, 2 \mathrm{H}), 4.33(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}$, $2 \mathrm{H}), 2.85(\mathrm{~m}, 4 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 3 \mathrm{H}), 1.56(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~m}, 9 \mathrm{H}), 1.08(\mathrm{~m}$, $12 \mathrm{H}), 1.02(\mathrm{~m}, 6 \mathrm{H})$.

Step 3) the preparation of compound 30-3
[00551] A mixture of compound $30-2(0.83 \mathrm{~g}, 0.89 \mathrm{mmol})$ and ammonium acetate $(2.3 \mathrm{~g}, 29.8 \mathrm{mmol})$ in xylene $(15 \mathrm{~mL})$ in a sealed tube was stirred at $130^{\circ} \mathrm{C}$ for 4 hours. After the mixture was cooled to rt , water $(10 \mathrm{~mL})$ was added to the mixture and the mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=40 / 1$) to give the title compound $30-3$ as a white solid $(0.52 \mathrm{~g}, 65.5 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 890.5[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right): \delta 7.96(\mathrm{~d}, j=8.24 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ $(\mathrm{d}, J=8.28 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~m}, 2 \mathrm{H})$, $4.31(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 2.85(\mathrm{~m}, 4 \mathrm{H}), 2.55$ $(\mathrm{m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 3 \mathrm{H}), 1.56(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~m}, 9 \mathrm{H}), 1.08(\mathrm{~m}, 12 \mathrm{H}), 1.02(\mathrm{~m}, 6 \mathrm{H})$.

[00553] Synthetic routes

$31-6 \quad 31-7$

Step 1) the preparation of compound 31-1
[00554] To a solution of compound 1-2 (2.48 g, 12.90 mmol) in anhydrous MeOH (10 mL) was added concentrated hydrochloric acid (2 mL) under N_{2}. Then to the mixture was added isoamyl nitrite (6 mL) at $60-62^{\circ} \mathrm{C}$. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 3 hours, cooled to it and filtered. The solid recrystallized from ethanol to afford the title compound 31-1 as a yellow solid ($2.6 \mathrm{~g}, 91.2 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}^{6}\right): \delta 3.53(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~d}, 6 \mathrm{H}), 6.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 12.45(\mathrm{~s}, 1 \mathrm{H})$.

Step 2) the preparation of compound 31-2
[00555] A suspension of compound $31-1(1.18 \mathrm{~g}, 5.3 \mathrm{mmol}), \mathrm{NaOH}(25 \mathrm{~mL}, 10 \%$ in water) and $\mathrm{Pd} / \mathrm{C}(0.3 \mathrm{~g}, 10 \%)$ in ethanol $(15 \mathrm{~mL})$ was stirred at it for 4.5 hours under H_{2} (50 Pa), filtered through a Celite pad and the Celite pad was washed with ethanol. The
filtrate was concentrated in vacuo. To the residue were added concentrated hydrochloric acid (20 mL) and water (10 mL). The resulting mixture was refluxed for 0.5 hour and extracted with $\mathrm{DCM}(70 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford the title compound $31-2(0.81 \mathrm{~g}, 79.2 \%)$. The compound was characterized by the following spectroscopic data
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 83.46(\mathrm{~s}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 6.73(\mathrm{~s}, 2 \mathrm{H})$.

Step 3) the preparation of compound 31-3
[00556] To a solution of compound 31-2 ($1.0 \mathrm{~g}, 5.2 \mathrm{mmol}$) in anhydrous DCM (20 mL) at $-78^{\circ} \mathrm{C}$ was added dropwise boron tribromide ($1.6 \mathrm{~mL}, 16.6 \mathrm{mmol}$) under N_{2}. The mixture was stirred at rt for 3 hours, and quenched with ice water (5 mL) in an ice bath. Then water (20 mL) was added to the mixture and the mixture was extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purifed by silica gel column chromatography (hexanc/EtOAc $(\mathrm{v} / \mathrm{v})=6 / 1$) to give the title compound $31-3$ as a white solid $(0.77 \mathrm{~g}$, 90.2%. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 83.43 ($\left.\mathrm{s}, 4 \mathrm{H}\right), 6.70(\mathrm{~s}, 2 \mathrm{H})$.

Step 4) the preparation of compound 31-4
[00557] To a solution of compound $31-3(0.5 \mathrm{~g}, 3.04 \mathrm{mmol})$ in DCM (20 mL) was added $\mathrm{Tf}_{2} \mathrm{O}(1.2 \mathrm{~mL}, 7.1 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under N_{2} via syringe followed by $\mathrm{Et}_{3} \mathrm{~N}(2.4 \mathrm{~mL}, 17.7 \mathrm{mmol})$. The mixture was stirred at tt ovemight, poured into ice water (20 mL) and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc $(v / v)=20 / 1)$ to give the title compound 31-4 as colorless oil ($0.9 \mathrm{~g}, 69.2 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 83.51(\mathrm{~s}, 4 \mathrm{H}), 7.05(\mathrm{~s}, 2 \mathrm{H})$.
Step 5) the preparation of compound 31-5
[00558] A solution of compound $31-4(0.43 \mathrm{~g}, 1 \mathrm{mmol})$, ethylene glycol ($0.186 \mathrm{~g}, 3$
mmol) and $p-\operatorname{TSA}(0.019 \mathrm{~g}, 0.1 \mathrm{mmol})$ in toluene $(50 \mathrm{~mL})$ in a flask equipped with Dean-Stark trap was refluxed for 5 hours, poured into water and extracted with EtOAc $(50 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc $(v / v)=10 / 1)$ to give the title compound $31-5(0.17 \mathrm{~g}, 36 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 83.38(\mathrm{~s}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 4 \mathrm{H}), 7.03(\mathrm{~s}, 2 \mathrm{H})$.

Step 6) the preparation of compound 31-6
[00559] To a mixture of compound $31-5(0.19 \mathrm{~g}, 0.41 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(46 \mathrm{mg}, 0.040$ mmol) and potassium carbonate $(0.29 \mathrm{~g}, 2.1 \mathrm{mmol})$ under N_{2} was added a solution of compound $3-3-2(423 \mathrm{mg}, 1.02 \mathrm{mmol})$ in DME (8 mL) followed by pure water (2 mL). The mixture was stirred at $90^{\circ} \mathrm{C}$ for 2 hours and DME was removed in vacuo. To the residue was added water (15 mL) and the mixture was extracted with DCM ($15 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=20 / 1$) to give the title compound $31-6$ as a pale yellow solid ($0.17 \mathrm{~g}, 55.5 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 747.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}, \mathrm{CDCl}): \delta 1.491-1.696(\mathrm{~m}, 26 \mathrm{H}), 1.982-2.093(\mathrm{~m}, 2 \mathrm{H}), 3.046(\mathrm{~s}$, $4 \mathrm{H}), 3.315-3.510(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{~m}, 4 \mathrm{H}), 5.175-5.189(\mathrm{~m}, 2 \mathrm{H}), 7.283(\mathrm{~s}, 2 \mathrm{H})$, 7.344-7.487 (m, 6H).

Step 7) the preparation of compound 31-7
[00560] To a solution of compound $31-6(0.3 \mathrm{~g}, 0.4 \mathrm{mmol})$ in EtOAc (5 mL) was added a solution of HCl in EtOAc ($5 \mathrm{~mL}, 4 \mathrm{M}$). At the end of the addition, the mixture was stirred at rt overnight and filtered. The filter cake was washed with EtOAc to give the title compound $31-7$ as a pale yellow solid ($0.22 \mathrm{~g}, 79.1 \%$), which was used for the next step directly.

Step 8) the preparation of compound 31.8
[00561] To a solution of compound $31-7(0.22 \mathrm{~g}, 0.32 \mathrm{mmol}$), compound 1-7-2 (167 mg, $0.95 \mathrm{mmol})$ and $\mathrm{EDCl}(300 \mathrm{mg}, 1.6 \mathrm{mmol}$) in DCM (10.0 mL) was added DIPEA $(0.7 \mathrm{~mL}$, 4.23 mmol) dropwise in an ice bath. At the end of the addition, the mixture was stirred at nt overnight. Water (20 mL) was then added to the mixture and the mixture was extracted with DCM ($25 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc) to give the title compound $31-8$ as a white solid ($0.11 \mathrm{~g}, 40.2 \%, \mathrm{HPLC}: 96 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 861.6[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.52(\mathrm{~m}, 2 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 2 \mathrm{H}), 7.63$ (brs, 2 H$)$, $7.40(\mathrm{~d}, J=8.36 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 2 \mathrm{H}), 5.45(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~m}, 4 \mathrm{H}), 3.17$ $(\mathrm{m}, 4 \mathrm{H}), 2.28-2.10(\mathrm{~m}, 10 \mathrm{H}), 1.86(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{~m}, 12 \mathrm{H})$.
[00562] Example 32

[00563] Synthetic routes

Step 1) the preparation of compound 32-1
[00564] A mixture of compound $0-1(12.10 \mathrm{~g}, 115.1 \mathrm{mmol})$, benzyl bromide (13.70 $\mathrm{mL}, 115.3 \mathrm{mmol})$ and potassium carbonate $(31.81 \mathrm{~g}, 230.2 \mathrm{mmol})$ in acetone (120 mL) was refluxed for 18 hours, cooled to $n t$ and filtered. The filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}$ $(\mathrm{v} / \mathrm{v})=20 / 1$) to give compound $0-2$ as pale yellow liquid ($16.39 \mathrm{~g}, 72.9 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.36-7.23(\mathrm{~m}, 5 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=5.3 \mathrm{~Hz}, 4 \mathrm{H})$, $2.72(\mathrm{t}, J=5.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.48(\mathrm{brs}, 2 \mathrm{H})$.
[00565] To a solution of compound $0-2(14.60 \mathrm{~g}, 74.77 \mathrm{mmol})$ in toluene (140 mL) was added phosphorus tribromide ($21.1 \mathrm{~mL}, 224.5 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$ under N_{2}. At the end of the addition, the mixture was refluxed for 6 hours, cooled to rt, quenched with ice water (400 mL) and filtered. The filtrate was washed with NaOH solution and
extracted with DCM ($100 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc $(v / v)=10 / 1)$ to give the title compound $32-1$ as colorless oil ($13.30 \mathrm{~g}, 54.6 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87,36-7.25(\mathrm{~m}, 5 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.34(\mathrm{t}, j=7.3 \mathrm{~Hz}, 4 \mathrm{H})$, $2.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H})$.

Step 2) the preparation of compound 32-2
[00566] To a solution of compound 1-2 ($2.56 \mathrm{~g}, 14.34 \mathrm{mmol}$) and compound $32-1$ $(6.905 \mathrm{~g}, 21.51 \mathrm{mmol})$ in DMF (15 mL) under N_{2} was added $\mathrm{NaH}(1.434 \mathrm{~g}, 35.85 \mathrm{mmol}$, 60% dispersed in Mineral oil). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 18 hours, cooled to rt , and quenched with water (20 mL). The mixture was extracted with EtOAc (150 mL x 3). The combined organic phases were washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc $(\mathrm{v} / \mathrm{v})=8 / 1)$ to give the title compound $32-2(0.752 \mathrm{~g}, 14.9 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 352.1[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.63-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.22(\mathrm{~m}, 6 \mathrm{H}), 3.82(\mathrm{~d}, 6 \mathrm{H}), 3.56$ $(\mathrm{s}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 2 \mathrm{H}), 2.98-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H})$.

Step 3) the preparation of compound 32-3
[00567] To a solution of compound $32-2(1.5 \mathrm{~g}, 4.3 \mathrm{mmol})$ in acetic acid (40 mL) was added hydrobromic acid ($9.6 \mathrm{~mL}, 85 \mathrm{mmol}$). The mixture was refluxed for 12 hours, quenched with NaHCO_{3} saturated solution and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc $(v / v)=4 / 1)$ to give the title compound $32-3$ as a white solid ($0.55 \mathrm{~g}, 39.9 \%$). The compound was characterized by the following spectroscopic
data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.53-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.02(\mathrm{~m}, 6 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 3.01$ $(\mathrm{s}, 2 \mathrm{H}), 2.95-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~d}, J=11.8 \mathrm{Ez}, 2 \mathrm{H})$.

Step 4) the preparation of compound 32-4
[00568] To a solution of compound $32-3(0.5 \mathrm{~g}, 1.5 \mathrm{mmol}$) in anhydrous DCM (20 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{Tf}_{2} \mathrm{O}(1.2 \mathrm{~mL}, 7.1 \mathrm{mmol})$ under N_{2} followed by $\mathrm{Et}_{3} \mathrm{~N}(2.4 \mathrm{~mL}, 17.27 \mathrm{mmol})$. The mixture was stired at rt overnight, quenched with ice water (10 mL) and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated $i n$ vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc $(\mathrm{v} / \mathrm{v})=10 / 1$) to give the title compound $32-4$ $(0.66 \mathrm{~g}, 72.7 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 88.03-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.52(\mathrm{~m}, 6 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.08$ $(\mathrm{s}, 2 \mathrm{H}), 2.99-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.39(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H})$.

Step 5) the preparation of compound 32-5
[00569] To a mixture of compound $32-4(0.50 \mathrm{~g}, 0.85 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(46 \mathrm{mg}, 0.0398$ mmol) and potassium carbonate ($286 \mathrm{mg}, 2.07 \mathrm{mmol}$) under N_{2} was added a solution of compound 3-3-2 ($0.85 \mathrm{~g}, 2.06 \mathrm{mmol}$) in DME (8 mL) followed by distilled water (2 mL). The mixture was stirred at $90^{\circ} \mathrm{C}$ for 3 hours and DME was removed in vacuo. To the residue was added water (15 mL). The mixture was extracted with DCM ($20 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purifed by silica gel column chromatography (hexane/EtOAc $(\mathrm{v} / \mathrm{v})=1 / 3)$ to give the title compound $32-5$ as a yellow solid $(0.51 \mathrm{~g}, 69.5 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.23-7.73(\mathrm{~m}, 13 \mathrm{H}), 5.17(\mathrm{br}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 3.43$ (br, $2 \mathrm{H}), 3.06(\mathrm{br}, 2 \mathrm{H}), 2.22-2.24(\mathrm{~m}, 8 \mathrm{H}), 1.95-2.06(\mathrm{~m}, 4 \mathrm{H}), 1.82(\mathrm{br}, 4 \mathrm{H}), 1.64(\mathrm{br}, 4 \mathrm{H})$, $1.52(\mathrm{~s}, 18 \mathrm{H})$.
[00570] To a solution of compound $32-5(500 \mathrm{mg}, 0.58 \mathrm{mmol})$ in EtOAc (4 mL) was added a solution of HCl in EtOAc ($5 \mathrm{~mL}, 4 \mathrm{M}$). The mixture was stirred at rt overnight and filtered. The filter cake was washed with EtOAc (20 mL) to give the title compound 32-6 as a yellow solid ($350 \mathrm{mg}, 74.7 \%$), which was used for the next step directly.

Step 7) the preparation of compound 32-7
[00571] To a solution of compound $32-6(350 \mathrm{mg}, 0.43 \mathrm{mmol}$), compound 1-7-2 (167 $\mathrm{mg}, 0.95 \mathrm{mmol})$ and $\mathrm{EDCI}(300 \mathrm{mg}, 1.6 \mathrm{mmol})$ in $\mathrm{DCM}(10.0 \mathrm{~mL})$ in an ice bath was added DIPEA ($0.9 \mathrm{~mL}, 5.44 \mathrm{mmol}$) dropwise. The mixture was stirred at rt overnight. Water (10 mL) was added to the mixture and the mixture was extracted with DCM (30 mL x 3). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacno. The residue was purified by silica gel column chromatography (EtOAc) to give the title compound $32-7$ as a white solid ($102 \mathrm{mg}, 24.1 \%$, HPLC: 93%). The compound was characterized by the following spectroscopic data:

MS-ESI: m/z $977.3\left[\mathrm{M}+\mathrm{H}^{+}\right.$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.69(\mathrm{br}, 2 \mathrm{H}), 7.21-7.74(\mathrm{~m}, 13 \mathrm{H}), 5.45-5.50(\mathrm{~m}, 4 \mathrm{H})$, $4.36(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 3.60-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 3.10(\mathrm{~s}$, $2 \mathrm{H}), 1.85-2.45(\mathrm{~m}, 14 \mathrm{H}), 1.57-1.75(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{br}, 12 \mathrm{H})$.
[00572] Example 33

[00573] Synthetic routes

$33-8$

Step 1) the preparation of compound 33-2
[00574] To a mixture of $\mathrm{Li}(1 \mathrm{mg}, 0.1 \mathrm{mmol})$ in anhydrous THF (10 mL) was added compound $33-1(1 \mathrm{~g}, 4 \mathrm{mmol})$. The mixture was cooled to $0^{\circ} \mathrm{C}$, and $\left(\mathrm{p}-\mathrm{t}-\mathrm{BuC}_{6} \mathrm{H}_{4}\right)_{2}(11$ $\mathrm{mg}, 0.04 \mathrm{mmol}$) was added. The resulting mixture was stirred at rt ovemight and quenched with ice water. THF was removed in vacuo, and the mixture was extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the residue, which was used for the next step without further purification.
[00575] To a solution of the above residue in toluene (10 mL) was added $\mathrm{H}_{3} \mathrm{PO}_{4}$ ($784 \mathrm{mg}, 8 \mathrm{mmol}$). The mixture was refluxed for 8 hours, quenched with NaHCO_{3}
saturated solution (20 mL) and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=20 / 1)$ to give the title compound $33-2(280 \mathrm{mg}, 29.9 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI. $m / z 235.1[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.38-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.22 .7 .23(\mathrm{~m}, 1 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 1.41-1.72(\mathrm{~m}, 10 \mathrm{H})$.

Step 2) the preparation of compound 33-3
[00576] To a solution of compound $33-2(2.0 \mathrm{~g}, 8.5 \mathrm{mmol})$ and NIS $2.1 \mathrm{~g}, 9.35$ mmol) in acetonitrile (50 mL) in an ice bath was added TFA (30 mL) dropwise. The mixture was stirred at rt overnight, neutralized with NaHCO_{3} saturated solution and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=10 / 1)$ to give the title compound 33-3 as pale yellow oil $(2.4 \mathrm{~g}, 78.1 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 361.0[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.35-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.28 .7 .29(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.53$ $(\mathrm{s}, 2 \mathrm{H}), 1.39-1.65(\mathrm{~m}, 10 \mathrm{H})$.

Step 3) the preparation of compound 33-4
[00577] To a solution of compound $33-3(1.5 \mathrm{~g}, 4.2 \mathrm{mmol})$ in DCM (15 mL) was added $\mathrm{BBr}_{3}(4 \mathrm{~g}, 16 \mathrm{mmol})$ dropwise at $-78{ }^{\circ} \mathrm{C}$. At the end of the addition, the mixture was stired at t for 6 hours, quenched with ice water (20 mL) and extracted with EtOAc $(10 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=5 / 1)$ to give the title compound 334 as a white solid $(1.3 \mathrm{~g}, 90.2 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 347.0[\mathrm{M}+\mathrm{H}]$, and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.36-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.29(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H})$, $1.40-1.64(\mathrm{~m}, 10 \mathrm{H})$.

Step 4) the preparation of compound 33-5
[00578] To a solution of compound $33-4(5.0 \mathrm{~g}, 14.4 \mathrm{mmol})$ in anhydrous DCM (50 mL) under N_{2} in an ice bath was added $\mathrm{Tf}_{2} \mathrm{O}(3.6 \mathrm{~mL}, 21.6 \mathrm{mmol})$ via syringe followed by pyridine ($2.4 \mathrm{~mL}, 28.8 \mathrm{mmol}$). The mixture was stirred in the ice bath for 20 minutes and at rt for another 3 hours. The resulting mixture was quenched with ice water in an ice bath. Water (50 mL) was added to the mixture and the mixture was extracted with DCM $(60 \mathrm{~mL} \times 3)$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in wacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{v})=10 / 1$) to give the title compound $33-5$ as colorless oil $(6.2 \mathrm{~g}, 89.8 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 478.9[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.37-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.30(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H})$, 1.39-1.65(m, 10H).

Step 5) the preparation of compound 33-6
[00579] The title compound 33-6 was prepared by an analogous procedure to that described for compound 7-9 (Example 7). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 559.3[\mathrm{M}+\mathrm{H}]$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.39(\mathrm{~m}, 5 \mathrm{H})$, $7.22 .7 .20(\mathrm{~m}, 1 \mathrm{H}), 5.67 .5 .65(\mathrm{~m}, 1 \mathrm{H}), 5.24 .5 .22(\mathrm{~m}, 1 \mathrm{H}), 4.34 .4 .30(\mathrm{~m}, 1 \mathrm{H}), 3.5-3.81$ $(\mathrm{m}, 1 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 1 \mathrm{H}), 2.34-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.21-1.95(\mathrm{~m}, 5 \mathrm{H})$, $1.32-1.45(\mathrm{~m}, 12 \mathrm{H}), 1.04-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.88-0.86(\mathrm{~d}, 6 \mathrm{H})$.

Step 6) the preparation of compound 33-7
[00580] To a mixture of compound $33-5(3.81 \mathrm{~g}, 7.98 \mathrm{mmol})$, compound $33-6(3.71 \mathrm{~g}$, $6.65 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(768 \mathrm{mg}, 0.66 \mathrm{mmol})$ and potassium carbonate $(2.77 \mathrm{~g}, 20.1 \mathrm{mmol})$ in
a 100 mL of two-necked flask under N_{2} was added DME (50.0 mL) via syringe followed by pure water (10.0 mL). The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ overnight. After the mixture was cooled to rt and concentrated in vacuo, to the residue was added water $(50.0 \mathrm{~mL})$. The mixture was extracted with EtOAc $(50.0 \mathrm{~mL} \times 3)$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=50 / \mathrm{I})$ to give the title compound $33-7$ as a beige solid $(4.1 \mathrm{~g}, 82.3 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: miz $751.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.84-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 1 \mathrm{H})$, $7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 6 \mathrm{H}), 5.41-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.27$ $(\mathrm{m}, 1 \mathrm{H}), 4.34 .4 .30(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.01(\mathrm{~m}, 1 \mathrm{H})$, $2.95(\mathrm{~s}, 2 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.52(\mathrm{~m}$, $10 \mathrm{H}), 0.88-0.86(\mathrm{~m}, 6 \mathrm{H})$.

Step 7) the preparation of compound 33-8
[00581] The title compound 33-8 was prepared by an analogous procedure to that described for compound 11-4 (Example 11). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 690.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.84-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.69 .7 .66(\mathrm{~m}, 2 \mathrm{H}), 7.57 .7 .55(\mathrm{~m}, 1 \mathrm{H})$, $7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.27(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.30$ $(\mathrm{m}, 1 \mathrm{H}), 3.75-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{~s}$, $2 \mathrm{H}), 2.95(\mathrm{~s}, 2 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.78$ $(\mathrm{m}, 8 \mathrm{H}), 0.88-0.86(\mathrm{~m}, 6 \mathrm{H})$.

Step 8) the preparation of compound 33-9
[00582] To a mixture of compound $33-7(2.74 \mathrm{~g}, 3.65 \mathrm{mmol})$, compound $33-8(1.84 \mathrm{~g}$,
$3.46 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(404 \mathrm{mg}, 0.35 \mathrm{mmol})$ and potassium carbonate $(1.23 \mathrm{~g}, 0.89 \mathrm{mmol})$ in a 100 mL of two-necked flask under N_{2} was added DME (20.0 mL) via syringe followed by pure water $(4.0 \mathrm{~mL})$. The mixture was stirred at $90^{\circ} \mathrm{C}$ overnight, cooled to rt and concentrated in vacuo. To the residue was added water (50.0 mL). The mixture was extracted with EtOAc ($50.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=50 / 1$) to give the title compound $33-9$ as a pale yellow solid ($1.21 \mathrm{~g}, 34.2 \%$, HPLC: 95.4%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 1039.5[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.70-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.48(\mathrm{~m}, 2 \mathrm{H})$, $7.45-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.26-5.29$ $(\mathrm{m}, 1 \mathrm{H}), 5.16-5.19(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.26(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.93(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 2 \mathrm{H}), 2.94(\mathrm{~s}$, $2 \mathrm{H}), 2.04-2.34(\mathrm{~m}, 10 \mathrm{H}), 1.53-1.59(\mathrm{~m}, 10 \mathrm{H}), 0.86-0.93(\mathrm{~m}, 12 \mathrm{H})$.
[00583] Example 34

[00584] Synthetic routes

$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{DME}_{2} \mathrm{O}$

Step 1) the preparation of compound 34-3
[00585] To a solution of compound $34-2(530 \mathrm{mg}, 4.14 \mathrm{mmol})$ in THF (20 mL) was added LiHMDS ($5.8 \mathrm{~mL}, 1 \mathrm{M}$) dropwise at $-25^{\circ} \mathrm{C}$. The mixture was stirred at $-25^{\circ} \mathrm{C}$ for 1 hour, and a solution of compound $34-1(1.08 \mathrm{~g}, 5.38 \mathrm{mmol})$ in THF was added slowly. The resulting mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and stirred for another 2 hours. The reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ saturated solution (10 mL) and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=10 / 1$) to give the title compound 34-3 (510 $\mathrm{mg}, 49.7 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 249.1[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.14-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.02-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.85(\mathrm{~m}, 2 \mathrm{H})$, $4.07-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.07(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.88(\mathrm{~m}$, $2 \mathrm{H}), 1.19(\mathrm{t}, J=7.12 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 2) the preparation of compound 34-4
[00586] To a solution of compound $34-3(0.51 \mathrm{~g}, 2.05 \mathrm{mmol})$ in mixed solvents of THF (8 mL) , MeOH (4 mL) and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added LiOH ($215 \mathrm{mg}, 5.12 \mathrm{mmol}$).

The mixture was stirred at $50^{\circ} \mathrm{C}$ overnight and concentrated in vacuo. To the residue was added water (10 mL) and the mixture was extracted with EtOAc (50 mL). The aqueous layer was adjusted to pH 3 and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the crude product, which was used for next step without further purification.
[00587] To a solution of the above crude product in anhydrous DCM (20 mL) was added aluminium chloride ($549 \mathrm{mg}, 4.12 \mathrm{mmol}$) followed by oxalyl chloride (260 mg , 2.05 mmol) dropwise at $0{ }^{\circ} \mathrm{C}$. The mixture stirred at $0^{\circ} \mathrm{C}$ for 4 hours, quenched with hydrochloric acid (1 M) and extracted with DCM ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc (v/v)=15/1) to give the title compound 344 as pale yellow oil ($125 \mathrm{mg}, 30.1 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 203.1[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.35-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.03-7.05(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.23$ $(\mathrm{s}, 2 \mathrm{H}), 2.51-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.16(\mathrm{~m}, 4 \mathrm{H})$.

Step 3) the preparation of compound 34-5
[00588] To a mixture of compound $34-4(0.82 \mathrm{~g}, 4.05 \mathrm{mmol})$ and triethylsilane (1.86 g , 16.0 mmol) in an ice bath was added trifluoroacetic acid (10 mL) dropwise. The mixture was stired at $40^{\circ} \mathrm{C}$ overnight, neutralized with NaHCO_{3} saturated solution and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography $(\operatorname{PE} / E t O A c(v / v)=20 / 1)$ to give the title compound $34-5$ as colorless oil $(0.60 \mathrm{~g}, 78.7 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: m / z 189.1 $[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.36-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.06(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.24$ $(\mathrm{s}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 2.51-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.05-2.14(\mathrm{~m}, 4 \mathrm{H})$.

Step 4) the preparation of compound 34-6
[00589] To a solution of compound $34-5(0.85 \mathrm{~g}, 4.5 \mathrm{mmol})$ and NIS ($1.1 \mathrm{~g}, 5.9$ mmol) in acetonitrile (20 mL) was added TFA (10 mL) dropwise in an ice bath. The mixture was stirred at t overnight, neutralized with NaHCO_{3} saturated solution and extracted with EtOAc (20 mL x 3). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\operatorname{PE/EtOAc}(\mathrm{v} / \mathrm{v})=20 / 1$) to give the title compound 34-6 as colorless oil ($1.2 \mathrm{~g}, 84.6 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 315.2[M+H]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.34 .7 .36(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 3.21(\mathrm{~s}$, $2 \mathrm{H}), 2.51-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.16(\mathrm{~m}, 4 \mathrm{H})$.

Step 5) the preparation of compound 34-7
[00590] To a solution of compound $34-6(1.1 \mathrm{~g}, 3.5 \mathrm{mmol})$ in DCM (15 mL) at $-78^{\circ} \mathrm{C}$ was added boron tribromide ($3.5 \mathrm{~g}, 14 \mathrm{mmol}$) dropwise. The mixture was stirred at it for 6 hours, and added dropwise to ice water (20 mL). The mixture was extracted with EtOAc (20 $m \mathrm{~L} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc (v/v) $=5 / 1)$ to give the title compound $34-7$ as a gray solid $(0.95 \mathrm{~g}, 90.4 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 301.0[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.35-7.37(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 2.50-2.53$ (m, 2H), 2.05-2.15 (m, 4H).

Step 6) the preparation of compound 34-8
[00591] To a solution of compound $34.7(2.5 \mathrm{~g}, 8.3 \mathrm{mmol})$ in anhydrous DCM (30 mL) under N_{2} in an ice bath was added $\mathrm{Tf}_{2} \mathrm{O}(2.7 \mathrm{~mL}, 16.4 \mathrm{mmol})$ slowly via syringe followed by
pyridine ($1.3 \mathrm{~mL}, 16.4 \mathrm{mmol}$). After the resulting mixture was stirred for 20 minutes, the ice bath was removed. The resulting mixture was stirred at rt for 3 hours, and quenched with ice water $(10 \mathrm{~mL})$ in an ice bath. Then water $(10 \mathrm{~mL})$ was added to the mixture and the mixture was extracted with DCM ($20 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacno. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=10 / 1$) to give the title compound $34-8$ as colorless oil $(3.2 \mathrm{~g}, 88.9 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 432.9[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.34-7.36(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 2.51-2.53$ (m, 2H), 2.04-2.14 (m, 4H).

Step 7) the preparation of compound 34-9
[00592] To a mixture of compound $34-8(3.44 \mathrm{~g}, 7.98 \mathrm{mmol})$, compound $11-2(3.3 \mathrm{~g}$, $6.65 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(768 \mathrm{mg}, 0.79 \mathrm{mmol})$ and potassium carbonate $(2.77 \mathrm{~g}, 19.9 \mathrm{mmol})$ in a 100 mL of two-necked flask under N_{2} was added DME (50.0 mL) wia syringe followed by pure water (10.0 mL). The mixture was stired at $90{ }^{\circ} \mathrm{C}$ overnight, cooled to rt and concentrated in vacuo. To the residue was added water (50.0 mL), and the mixture was extracted with EtOAc ($50.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=70 / 1$) to give the title compound $34-9$ as a pale yellow solid $(3.5 \mathrm{~g}, 78.0 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 675.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.84-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.57 .7 .55(\mathrm{~m}, 1 \mathrm{H})$, $7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.27(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.30$ $(\mathrm{m}, 1 \mathrm{H}), 3.75-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 2 \mathrm{H})$, $3.20-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.01(\mathrm{~m}, 6 \mathrm{H}), 1.96-1.94$ $(\mathrm{m}, 1 \mathrm{H}), 0.88-0.86(\mathrm{~m}, 6 \mathrm{H})$.
[00593] To a mixture of compound $34-9(2.407 \mathrm{~g}, 3.5 \mathrm{mmol})$, compound $25-3(1.84 \mathrm{~g}$, $3.9 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(404 \mathrm{mg}, 0.35 \mathrm{mmol})$ and potassium carbonate $(1.23 \mathrm{~g}, 8.8 \mathrm{mmol})$ in a 100 mL of two-necked flask under N_{2} was added DME (20.0 mL) via syringe followed by pure water $(4.0 \mathrm{~mL})$. The mixture was stired at $90^{\circ} \mathrm{C}$ overnight, cooled to rt and concentrated in vacuo. To the residue was added water (50.0 mL), and the mixture was extracted with EtOAc ($50.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=50 / 1$) to give the title compound $34-10$ as a beige solid ($1.19 \mathrm{~g}, 39.1 \%$, HPLC: 97.39%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 869.4[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.71-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.48(\mathrm{~m}, 2 \mathrm{H})$, $7.29-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.27(\mathrm{~m}, 2 \mathrm{H}), 5.26-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.18(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.25$ $(\mathrm{m}, 2 \mathrm{H}), 3.95-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 6 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 3.20(\mathrm{~S}, 2 \mathrm{H})$, $2.14-2.34(\mathrm{~m}, 10 \mathrm{H}), 2.13-2.01(\mathrm{~m}, 6 \mathrm{H}), 0.86-0.93(\mathrm{~m}, 12 \mathrm{H})$.
[00594] Example 35

[00595] Synthetic routes

[00596] Compounds disclosed herein can be prepared by an analogous procedure to that described in Example 1.
[00597] Compound 35-1 was characterized by the following spectroscopic data:
MS-ESI: m/z $379.3[\mathrm{M}+2 \mathrm{H}]^{2+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.34-7.73(\mathrm{~m}, 8 \mathrm{H}), 5.17(\mathrm{br}, 2 \mathrm{H}), 3.43(\mathrm{br}, 2 \mathrm{H}), 3.06(\mathrm{br}, 2 \mathrm{H})$, $2.22-2.24(\mathrm{~m}, 4 \mathrm{H}), 1.95-2.06(\mathrm{~m}, 8 \mathrm{H}), 1.82(\mathrm{br}, 4 \mathrm{H}), 1.64(\mathrm{br}, 4 \mathrm{H}), 1.52(\mathrm{~s}, 18 \mathrm{H})$.
[00598] Compound 35-2 was characterized by the following spectroscopic data:
MS-ESI: $m / z 557.4[\mathrm{M}-4 \mathrm{HCl}+\mathrm{H}]^{+1}$, and
$\mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.98-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.90-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.83(\mathrm{~m}, 2 \mathrm{H})$, $7.73-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.56(\mathrm{~m}, 1 \mathrm{H}), 5.34-5.40(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.18(\mathrm{~s}, 2 \mathrm{H})$, $2.80-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.95(\mathrm{~m}$, $8 \mathrm{H})$.
[00599] Compound $35-3$ was characterized by the following spectroscopic data:
MS-ESI: $m z 436.3[\mathrm{M}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 810.69(\mathrm{br}, 2 \mathrm{H}), 7.41-7.74(\mathrm{~m}, 8 \mathrm{H}), 5.45-5.50(\mathrm{~m}, 4 \mathrm{H}), 4.36(\mathrm{~m}$, $2 \mathrm{H}), 3.82-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 3.60-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H}), 1.85-2.45(\mathrm{~m}, 10 \mathrm{H})$, $1.57-1.75(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{br}, 12 \mathrm{H})$.

[00601] Synthetic routes

Step 1) the preparation of compound 36-1
[00602] The title compound $36-1$ was prepared by an analogous procedure to that described for compound 17-7 (Example 17). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 776.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.80(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{br}, 1 \mathrm{H})$, $5.35(\mathrm{br}, 1 \mathrm{H}), 5.15(\mathrm{br}, 1 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 2 \mathrm{H}), 2.12-2.25(\mathrm{br}, 2 \mathrm{H}), 1.72-1.96(\mathrm{~m}, 6 \mathrm{H})$, $1.57-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{br}, 4 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 0.89-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H})$.

Step 2) the preparation of compound 36-2
[00603] To a mixture of anhydrous potassium carbonate $(37.5 \mathrm{mg}, 0.271 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6.3 \mathrm{mg}, 0.00545 \mathrm{mmol})$ in a 25 mL of two-necked flask under N_{2} was added a solution of compound $36-1(84.3 \mathrm{mg}, 0.1086 \mathrm{mmol})$ and compound $3-3-2(53.9 \mathrm{mg}$, 0.1304 mmol) in DME (4 mL) followed by distilled water (1 mL). After the mixture was
stirred at $90^{\circ} \mathrm{C}$ for 1 hour, DME was removed in vacuo and distilled water (15 mL) was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=1 / 2)$ to give the title compound $36-2$ as a yellow solid $(87.4 \mathrm{mg}, 88.1 \%, \mathrm{HPLC}$: 95.0%. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 457.3[\mathrm{M}+2 \mathrm{H}]^{2+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.81(\mathrm{br}, 1 \mathrm{H}), 7.88(\mathrm{br}, 1 \mathrm{H}), 7.84(\mathrm{br}, 2 \mathrm{H}), 7.63(\mathrm{br}, 1 \mathrm{H})$, $7.50-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{br}, 1 \mathrm{H}), 7.34(\mathrm{br}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{br}, 1 \mathrm{H}), 5.43(\mathrm{br}, 1 \mathrm{H})$, $5.19(\mathrm{br}, 2 \mathrm{H}), 3.54(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 2 \mathrm{H}), 2.21-2.25(\mathrm{~m}, 4 \mathrm{H}), 1.93-2.05(\mathrm{~m}, 4 \mathrm{H}), 1.85(\mathrm{br}$, $2 \mathrm{H}), 1.53(\mathrm{br}, 6 \mathrm{H}), 1.43(\mathrm{br}, 4 \mathrm{H}), 1.26(\mathrm{~s}, 18 \mathrm{H}), 0.88-0.92(\mathrm{~m}, 2 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H})$.

Step 3) the preparation of compound 36-3
[00604] To a solution of compound $36-2(55.6 \mathrm{mg}, 0.0609 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added a solution of HCl in $\operatorname{EtOAc}(4 \mathrm{M}, 3.5 \mathrm{~mL})$. The reaction mixture was stirred at rt for 12 hours and filtered. The fiter cake was washed with EtOAc (10 mL) to give the title compound $36-3$ as a yellow solid ($42.1 \mathrm{mg}, 94.9 \%$, HPLC: 100%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 583.4[\mathrm{M}-4 \mathrm{HCl}+\mathrm{H}]]^{+}$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 88.11(\mathrm{~s}, 1 \mathrm{H}), 7.89 .7 .93(\mathrm{~m}, 4 \mathrm{H}), 7.79(\mathrm{br}, 1 \mathrm{H}), 7.72$ (br, $1 \mathrm{H}), 7.66(\mathrm{br}, 2 \mathrm{H}), 7.50(\mathrm{br}, 1 \mathrm{H}), 5.22-5.28(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.66(\mathrm{~m}, 4 \mathrm{H}), 3.16(\mathrm{~s}, 2 \mathrm{H})$, $2.74-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.97$ $(\mathrm{m}, 2 \mathrm{H}), 1.85(\mathrm{br}, 2 \mathrm{H}), 1.74-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.69(\mathrm{~m}, 2 \mathrm{H})$.

Step 4) the preparation of compound 36-4
[00605] To a solution of compound $36-3(0.0401 \mathrm{~g}, 0.055 \mathrm{mmol})$, compound 1-7-2
$(0.029 \mathrm{~g}, 0.1655 \mathrm{mmol})$ and $\mathrm{EDCL}(0.0423 \mathrm{~g}, 0.221 \mathrm{mmol})$ in $\mathrm{DCM}(8 \mathrm{~mL})$ was added dropwise DIPEA ($0.1 \mathrm{~mL}, 0.605 \mathrm{mmol}$) in an ice bath. After the mixture was stirred at t overnight, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. Then the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (EtOAc/MeOH $(\mathrm{v} / \mathrm{v})=60 / 1$) to give the title compound $36-4$ as a yellow solid $(0.0462 \mathrm{~g}, 93.6 \%$, HPLC: $98.1 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 449.3[\mathrm{M}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 810.83$ (br, 1 H$), 10.45(\mathrm{br}, 1 \mathrm{H}), 7.82-7.84(\mathrm{~m}, 2 \mathrm{H})$, $7.49-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.33-7.35(\mathrm{~m}, 3 \mathrm{H}), 5.45-5.46(\mathrm{~m}, 2 \mathrm{H}), 5.25-5.35(\mathrm{~m}, 2 \mathrm{H}), 4.92-5.07$ $(\mathrm{m}, 2 \mathrm{H}), 4.34-4.36(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~s}, 2 \mathrm{H})$, $1.91-2.40(\mathrm{~m}, 10 \mathrm{H}), 1.65-1.78(\mathrm{~m}, 8 \mathrm{H}), 0.88-0.90(\mathrm{~m}, 12 \mathrm{H})$.
[00606] Example 37

[00607] Synthetic routes

$37 \cdot 4$

DME/H2O,50 ${ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$
 HCIEA
DCN

Step 1) the preparation of compound 37-1
[00608] A solution of compound 36-1 (0.0739 g, 0.0952 mmol), bis(pinacolato)diboron ($0.0726 \mathrm{~g}, 0.286 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.0078 \mathrm{~g}, 0.00955$ mmol) and $\operatorname{KOAc}(0.0374 \mathrm{~g}, 0.381 \mathrm{mmol})$ in anhydrous DMF (10 mL) under N_{2} was stirred at $100^{\circ} \mathrm{C}$ for 0.5 hour. After DMF was removed, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/EtOAc (v/v) $=3 / 1$) to give the title compound $37-1$ as a yellow solid ($0.06 \mathrm{~g}, 83.6 \%$, HPLC: 85.0%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 754.4[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~m}, 2 \mathrm{H})$, $7.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{br}, 1 \mathrm{H}), 5.35(\mathrm{br}, 1 \mathrm{H}), 5.21$ (br, 1 H$), 3.53(\mathrm{~m}$, $2 \mathrm{H}), 3.26(\mathrm{~s}, 2 \mathrm{H}), 2.19-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.65(\mathrm{~m}$, $2 \mathrm{H}), 1.43(\mathrm{~m}, 4 \mathrm{H}), 1.39(\mathrm{~s}, 12 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 0.87-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H})$.

Step 2) the preparation of compound 37-2
[00609] To a mixture of anhydrous potassium carbonate ($0.055 \mathrm{~g}, 0.398 \mathrm{mmol}$) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.0092 \mathrm{~g}, 0.00796 \mathrm{mmol})$ in a 25 mL of two-ports flask under N_{2} was added a solution of compound $37-1(0.12 \mathrm{~g}, 0.159 \mathrm{mmol})$ and compound $2-7-2(0.1157 \mathrm{~g}, 0.318$ mmol) in DME (12 mL) followed by distilled water (3 mL). After the mixture was stired at $90^{\circ} \mathrm{C}$ under N_{2} for 2 hours, DME was removed in vacuo and distilled water (25 mL) was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vocuo and the residue was purified by silica gel column chromatography ($\mathrm{BE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 2)$ to give the title compound $37-2$ as a yellow solid (0.0847 g , $61.6 \%, \mathrm{HPLC}: 90.0 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 432.3[\mathrm{M}+2 \mathrm{H}]^{2+}$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 88.21(\mathrm{br}, 1 \mathrm{H}), 7.81(\mathrm{br}, 2 \mathrm{H}), 7.69-7.74(\mathrm{~m}, 1 \mathrm{H})$, $7.52-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{br}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~m}, 1 \mathrm{H}), 5.34-5.41(\mathrm{~m}$, 1H), $5.21(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{~s}, 2 \mathrm{H}), 2.17-2.19(\mathrm{~m}, 4 \mathrm{H}), 2.00-2.06(\mathrm{~m}$, $4 \mathrm{H}), 1.88(\mathrm{~m}, 4 \mathrm{H}), 1.80(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~s}, 18 \mathrm{H}), 0.88(\mathrm{~m}, 2 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H})$.

Step 3) the preparation of compound 37-3
[00610] To a solution of compound $37-2(84.7 \mathrm{mg}, 0.0981 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added a solution of HCl in $\mathrm{EtOAc}(4 \mathrm{M}, 5 \mathrm{~mL})$. The reaction mixture was stirred at it for 12 hours and filtered. The filter cake was washed with EtOAc to give the title compound $37-3$ as a yellow solid ($63 \mathrm{mg}, 949 \%$, HPLC: 100%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 267.2[\mathrm{M}-4 \mathrm{HCl}+2 \mathrm{H}]^{2+}$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 88.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~m}, 2 \mathrm{H})$, $7.88(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14 .5 .23(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.65(\mathrm{~m}$, $4 \mathrm{H}), 3.00(\mathrm{~s}, 2 \mathrm{H}), 2.67-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.29$
$(\mathrm{m}, 2 \mathrm{H}), 1.93-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.73(\mathrm{~m}, 2 \mathrm{H})$.

Step 4) the preparation of compound 37-4
[00611] To a solution of compound $37-3(0.075 \mathrm{~g}, 0.111 \mathrm{mmol})$, compound $1-7-2$ $(0.0583 \mathrm{~g}, 0.333 \mathrm{mmol})$ and $\mathrm{EDCL}(0.0851 \mathrm{~g}, 0.444 \mathrm{mmol})$ in $\mathrm{DCM}(5 \mathrm{~mL})$ was added dropwise DIPEA ($0.2 \mathrm{~mL}, 1.21 \mathrm{mmol}$) slowly. After the mixture was stirred at rt for 12 hours, water (20 mL) was added. Then the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (EtOAc/MeOH $(v / v)=60 / 1$) to give the title compound 37-4 as a yellow solid ($0.086 \mathrm{~g}, 91.8 \%$, HPLC: 96.1%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 424.3[\mathrm{M}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 810.78$ (br, 1 H$), 10.51$ (br, 1 H$), 8.25$ (br, 1 H$), 7.81$ (br, $1 \mathrm{H}), 7.51-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 5.42-5.48$ $(\mathrm{m}, 2 \mathrm{H}), 5.24-5.34(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.34(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H})$, $3.62-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 2 \mathrm{H}), 1.90-2.35(\mathrm{~m}, 10 \mathrm{H}), 1.67-1.79(\mathrm{~m}, 8 \mathrm{H}), 0.98(\mathrm{~m}, 12 \mathrm{H})$.
[00612] Example 38

[00613] Synthetic routes

[00614] Compounds disclosed herein can be prepared by an analogous procedure to that described in Example 1.
[00615] Compound 38-1 was characterized by the following spectroscopic data:

MS-ESE: $m z 528.7[\mathrm{M}+2 \mathrm{H}]^{2+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.48(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{~s}$, $2 \mathrm{H}), 7.18(\mathrm{~s}, 2 \mathrm{H}), 5.40-5.43(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{br}, 2 \mathrm{H}), 4.93-5.02(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.73(\mathrm{~m}, 4 \mathrm{H})$, $3.52-3.56(\mathrm{~m}, 4 \mathrm{H}), 2.99(\mathrm{~s}, 4 \mathrm{H}), 189-2.24(\mathrm{~m}, 8 \mathrm{H}), 1.61-1.62(\mathrm{~m}, 8 \mathrm{H}), 1.25(\mathrm{~s}, 18 \mathrm{H})$, $0.88-0.94(\mathrm{~m}, 4 \mathrm{H}), 0.07(\mathrm{~s}, 18 \mathrm{H})$.
[00616] Compound 38-2 was characterized by the following spectroscopic data:

MS-ESE: $m / z 595.6[\mathrm{M}-4 \mathrm{HCl}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 88.08(\mathrm{~s}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $4 \mathrm{H}), 7.36(\mathrm{~s}, 2 \mathrm{H}), 5.21-5.24(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.63(\mathrm{~m}, 4 \mathrm{H}), 3.01(\mathrm{~s}, 4 \mathrm{H}), 2.72-2.75(\mathrm{~m}, 2 \mathrm{H})$, $2.59-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.65(\mathrm{~m}, 8 \mathrm{H})$.
[00617] Compound $38-3$ was characterized by the following spectroscopic data:

MS-ESE: $m / z 455.3[\mathrm{M}+2 \mathrm{H}]^{2+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 810.50(\mathrm{br}, 2 \mathrm{H}), 7.75(\mathrm{br}, 4 \mathrm{H}), 7.49(\mathrm{br}, 4 \mathrm{H}), 7.30(\mathrm{~s}, 2 \mathrm{H}), 7.17$ $(\mathrm{s}, 2 \mathrm{H}), 5.46(\mathrm{br}, 2 \mathrm{H}), 5.26-5.29(\mathrm{~m}, 2 \mathrm{H}), 4.32-4.34(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H})$, $3.67-3.70(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 4 \mathrm{H}), 2.38-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.18(\mathrm{~m}, 6 \mathrm{H})$,

[00619] Synthetic routes

Step 1) the preparation of compound 39-1
[00620] To a mixture of 4,4,5,5-tetramethyl-2-(4-nitropheny)-1,3,2-dioxaborolane $(0.38 \mathrm{~g}, 1.526 \mathrm{mmol})$, anhydrous potassium carbonate $(0.4786 \mathrm{~g}, 3.463 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.0801 \mathrm{~g}, 0.0693 \mathrm{mmol})$ in a 50 mL of two-necked flask under N_{2} was added a solution of compound $8-3(0.3246 \mathrm{~g}, 0.693 \mathrm{mmol})$ in DME $(8 \mathrm{~mL})$ followed by
distiled water (2 mL). The mixture was stirred at $90^{\circ} \mathrm{C}$ under N_{2} for 2 hours and DME was removed in vacuo. To the residue was added distilled water (15 mL), and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/EtOAc (v/v) $=50 / 1$) to give the title compound $39-1$ as a yellow solid ($0.273 \mathrm{~g}, 95.1 \%$, HPLC: 95\%). The compound was characterized by the following spectroscopic data:

MS-EST: $m / z 415.1[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 88.31-8.33(\mathrm{~m}, 4 \mathrm{H}), 7.62-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{~s}, 2 \mathrm{H}), 2.97(\mathrm{~s}$, 4H), $1.56(\mathrm{~s}, 8 \mathrm{H})$.

Step 2) the preparation of compound 39-2
[00621] To a solution of compound $39-1(0.27 \mathrm{~g}, 0.651 \mathrm{mmol})$ in mixed solvents of $\mathrm{DCM}(10 \mathrm{~mL})$ and $\mathrm{MeOH}(15 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(0.2 \mathrm{~g})$. The mixture was stimed at tt for 4 hours under H_{2}, and then Pd / C was filtered off. The filtrate was concentrated in vacuo to give the title compound $39-2$ as a white solid ($0.221 \mathrm{~g}, 95.7 \%$, HPLC: 100%). The compound was characterized by the following spectroscopic data

MS-ESI: $m / z 355.3[\mathrm{M}+\mathrm{H}]$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.27-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~s}, 2 \mathrm{H}), 6.74-6.76(\mathrm{~m}, 4 \mathrm{H}), 3.65$ (br, 4H), $2.97(\mathrm{~s}, 4 \mathrm{H}), 1.57(\mathrm{~s}, 8 \mathrm{H})$

Step 3) the preparation of compound 39-3
[00622] To a solution of compound $39-2(0.12 \mathrm{~g}, 0.339 \mathrm{mmol})$, Boc-L-proline $(0.2186 \mathrm{~g}$, $1.016 \mathrm{mmol})$ and $\operatorname{EDCl}(0.2599 \mathrm{~g}, 1.356 \mathrm{mmol})$ in DCM (10 mL) was added dropwise DIPEA ($0.336 \mathrm{~mL}, 2.033 \mathrm{mmol}$) slowly. After the mixture was stirred at it for 12 hours, water (20 mL) was added. Then the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column
chromatography $(\operatorname{PE} / E t O A c(v / v)=1 / 1)$ to give the title compound $39-3$ as a white solid $(0.2058 \mathrm{~g}, 81.2 \%$, HPLC: $95.0 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: m/z 649.3 [M-99] ; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 89.54(\mathrm{br}, 2 \mathrm{H}), 7.57-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.24$ $(\mathrm{s}, 2 \mathrm{H}), 4.49(\mathrm{br}, 2 \mathrm{H}), 3.44(\mathrm{br}, 4 \mathrm{H}), 2.95(\mathrm{~s}, 4 \mathrm{H}), 1.95(\mathrm{br}, 4 \mathrm{H}), 1.59(\mathrm{br}, 12 \mathrm{H}), 1.51(\mathrm{~s}$, 18H)

Step 4) the preparation of compound 39-4
[00623] To a solution of compound $39-3(0.095 \mathrm{~g}, 0.1268 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added a solution of HCl in $\mathrm{EtOAc}(4 \mathrm{M}, 5 \mathrm{ml})$. The reaction mixture was stired at rt for 12 hours and filtered. The filter cake was washed with EtoAc to give the title compound $39-4$ as a white solid $(0.0684 \mathrm{~g}, 86.8 \%$, HPLC: 96.8%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 275.3[\mathrm{M}-2 \mathrm{HCl}+2 \mathrm{H}]^{2+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.68-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H})$, $4.42-4.46(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 4 \mathrm{H}), 2.54-2.60(\mathrm{~m}$, $2 \mathrm{H}), 2.12-2.17(\mathrm{~m}, 6 \mathrm{H}), 1.62-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.57(\mathrm{~m}, 4 \mathrm{H})$.

Step 5) the preparation of compound 39-5
[00624] To a solution of compound $39-4(0.1124 \mathrm{~g}, 0.181 \mathrm{mmol}$), compound 1-7-2 $(0.0952 \mathrm{~g}, 0.543 \mathrm{mmol})$ and $\mathrm{EDCl}(0.139 \mathrm{~g}, 0.725 \mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ was added dropwise DIPEA ($0.3 \mathrm{~mL}, 1.815 \mathrm{mmol}$) slowly in an ice bath. After the mixture was stirred at rt for 12 hours, water (20 mL) was added. Then the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 $m \mathrm{x}$ 3). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (EtOAc/MeOH $(\mathrm{v} / \mathrm{v})=60 /$) to give the title compound 39.5 as a white solid ($0.1496 \mathrm{~g}, 95.8 \%$, HPLC: 93.2%). The compound was characterized by the
following spectroscopic data:

MS-ESI: $m / z 863.3[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 89.41(\mathrm{~s}, 2 \mathrm{H}), 7.50-7.52(\mathrm{br}, 4 \mathrm{H}), 7.33-7.36$ (br, 4 H$), 7.14$ $(\mathrm{s}, 2 \mathrm{H}), 5.41-5.43(\mathrm{~m}, 2 \mathrm{H}), 4.81-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.35-4.39(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}$, $6 \mathrm{H}), 3.64-3.67(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 4 \mathrm{H}), 2.54-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.09(\mathrm{~m}$, $2 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{br}, 4 \mathrm{H}), 1.26(\mathrm{~m}, 4 \mathrm{H}), 0.97-1.02(\mathrm{~m}, 12 \mathrm{H})$.
[00625] Example 40

[00626] Synthetic routes

Step 1) the preparation of compound 40-1
[00627] To a mixture of 1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2 $-y l) p h e n y l)$ ethanone $(0.9937 \mathrm{~g}, 4.04 \mathrm{mmol})$, anhydrous potassium carbonate (1.267 g ,
$9.17 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.212 \mathrm{~g}, 0.183 \mathrm{mmol})$ in a 50 mL of two-necked flask under N_{2} was added a solution of compound $8-3(0.8593 \mathrm{~g}, 1.835 \mathrm{mmol})$ in DME (16 mL) followed by distilled water (4 mL). The mixture was stirred at $90^{\circ} \mathrm{C}$ under N_{2} for 2 hours. DME was removed in vacuo and distilled water (15 mL) was added, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=5 / 1)$ to give the title compound $40-1$ as a white solid ($0.68 \mathrm{~g}, 90.8 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 409.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 88.05(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{~s}$, $2 \mathrm{H}), 2.98(\mathrm{~s}, 4 \mathrm{H}), 2.66(\mathrm{~s}, 6 \mathrm{H}), 1.56-1.64(\mathrm{~m}, 8 \mathrm{H})$.

Step 2) the preparation of compound 40-2
[00628] To a solution of compound $40-1(0.39 \mathrm{~g}, 0.955 \mathrm{mmol})$ and DIPEA $(0.563 \mathrm{~mL}$, $3.822 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added TBOMSOTf $(0.7571 \mathrm{~g}, 2.864 \mathrm{mmol})$ in an ice bath. After the mixture was stirred for 1 hour, water (20 mL) was added. Then the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtate was concentrated in vacuo to give the title compound $40-2$ as a yellow solid. The crude product was used for the next step without further purification.

Step 3) the preparation of compound 40-3
[00629] To a solution of compound $40-2(0.609 \mathrm{~g}, 0.956 \mathrm{mmol})$ in THF (10 mL) was added dropwise a solution of NBS $(0.3404 \mathrm{~g}, 1.912 \mathrm{mmol})$ in THF (10 mL) slowly in the ice bath. After the mixture was stirred for 1 hour, water (20 mL) was added. Then the mixture was extracted with EtOAc ($25 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/EtOAc (v/v) $=10 / 1$) to give the title compound $40-3$ as a white solid ($0.52 \mathrm{~g}, 96.1 \%$, HPLC: 95%. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.08(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.34(\mathrm{~s}$, $2 \mathrm{H}), 4.50(\mathrm{~s}, 4 \mathrm{H}), 2.98(\mathrm{~s}, 4 \mathrm{H}), 1.58-1.62(\mathrm{~m}, 8 \mathrm{H})$.

Step 4) the preparation of compound 40-4
[00630] To a solution of compound $40.3(0.3072 \mathrm{~g}, 0.542 \mathrm{mmol})$ and ($2 R, 4 S$)-1-(tert-butoxycarbonyl)-4-methylpyrolidine-2-carboxylic acid $(0.3118 \mathrm{~g}, 1.36 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}$ was added dropwise DIPEA $(0.1759 \mathrm{~g}, 1.361 \mathrm{mmol})$ slowly in an ice bath. The mixture was stirred at it for 12 hours and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=3 / 1)$ to give the title compound $40-4$ as a white solid $(0.4089 \mathrm{~g}, 87.4 \%, \mathrm{HPLC}: 100 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 763.8[\mathrm{M}-99]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.98-8.01(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{~s}, 2 \mathrm{H})$, $5.24-5.66(\mathrm{~m}, 4 \mathrm{H}), 4.37-4.46(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.01-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~s}$, $4 \mathrm{H}), 2.54-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.63(\mathrm{~m}, 8 \mathrm{H}), 1.47$, $1.44(\mathrm{~s}, 18 \mathrm{H}), 1.11-1.13(\mathrm{~m}, 6 \mathrm{H})$.

Step 5) the preparation of compound $40-5$
[00631] To a solution of compound $40-4(0.102 \mathrm{~g}, 0.102 \mathrm{mmol})$ in xylene (15 mL) was added $\mathrm{NH}_{4} \mathrm{OAc}(0.6934 \mathrm{~g}, 9.0 \mathrm{mmol})$. The mixture was heated at $140{ }^{\circ} \mathrm{C}$ for 12 hours in a sealed tube and concentrated in vacuo. To the residue was added $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(\mathrm{v} / \mathrm{y})=\right.$ $60 / 1$) to give the title compound 41-5 as a yellow solid ($0.2577 \mathrm{~g}, 69.5 \%$, HPLC: 99.5%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 412.3[\mathrm{M}+2 \mathrm{H}]^{2+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 810.48(\mathrm{br}, 2 \mathrm{H}), 7.78(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{~s}$,
$2 \mathrm{H}), 7.28(\mathrm{~s}, 2 \mathrm{H}), 4.97-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 4 \mathrm{H}), 2.88-2.91(\mathrm{~m}, 2 \mathrm{H})$, $2.61-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.32(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.62(\mathrm{~m}, 8 \mathrm{H}), 1.50,1.46$ $(\mathrm{s}, 18 \mathrm{H}), 1.13(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H})$.

Step 6) the preparation of compound 40-6
[00632] To a solution of compound $40-5(0.081 \mathrm{~g}, 0.0984 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added a solution of HCl in $\mathrm{EtOAc}(4 \mathrm{M}, 2 \mathrm{~mL})$. The reaction mixture was stirred at It for 12 hours and filtered. The filter cake was washed with EtOAc to give the title compound $40-6$ as a yellow solid ($0.0704 \mathrm{~g}, 93.1 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 312.3[\mathrm{M}-4 \mathrm{HCl}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 8.12(\mathrm{~s}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.68(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 4 \mathrm{H}), 7.36(\mathrm{~s}, 2 \mathrm{H}), 5.27-5.31(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~s}$, $4 \mathrm{H}), 2.75-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.65(\mathrm{~m}, 8 \mathrm{H})$, 1.12-1.19 (m, 6H).

Step 7) the preparation of compound 40-7
[00633] To a solution of compound $40-6(0.1561 \mathrm{~g}, 0.203 \mathrm{mmol})$, compound 1-7-2 $(0.1071 \mathrm{~g}, 0.611 \mathrm{mmol})$ and $\mathrm{EDCI}(0.1563 \mathrm{~g}, 0.815 \mathrm{mmol}) \mathrm{in} \mathrm{DCM}(7 \mathrm{~mL})$ was added dropwise DIPEA ($0.4 \mathrm{~mL}, 2.4 \mathrm{mmol}$) slowly in an ice bath. After the mixture was stired at It for 12 hours, water (20 mL) was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 $m L x 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(\mathrm{v} / \mathrm{y})=60 / 1\right)$ to give the title compound $40-7$ as a yellow solid $(0.1253 \mathrm{~g}, 65.8 \%$, HPLC: 90.1%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 469.3[\mathrm{M}+2 \mathrm{H}]^{2+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 810.60(\mathrm{br}, 2 \mathrm{H}), 7.70-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.52(\mathrm{~m}, 4 \mathrm{H})$,
$7.32(\mathrm{~s}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 2 \mathrm{H}), 5.46(\mathrm{br}, 2 \mathrm{H}), 5.21-5.36(\mathrm{~m}, 4 \mathrm{H}), 3.88-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}$, $6 \mathrm{H}), 3.12-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 4 \mathrm{H}), 2.65-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.29$ $(\mathrm{m}, 2 \mathrm{H}), 1.55-1.66(\mathrm{~m}, 8 \mathrm{H}), 1.11-1.18(\mathrm{~m}, 6 \mathrm{H}), 0.85-0.98(\mathrm{~m}, 12 \mathrm{H})$.

[00635] Synthetic routes

Step 1) the preparation of compound 41-1
[00636] $\mathrm{PPh}_{3} \mathrm{MeBr}(5.05 \mathrm{~g}, 14.2 \mathrm{mmol})$ in a round-bottomed flask was cooled to $-20{ }^{\circ} \mathrm{C}$, then to which was added potassium tert-butanolate ($14.9 \mathrm{~mL}, 1.0 \mathrm{M}$ in $\mathrm{THF}, 14.9 \mathrm{mmol}$). The
mixture was stimed at $-5^{\circ} \mathrm{C}$ for 30 minutes. To the mixture was added compound $8-1(1.72 \mathrm{~g}$, 7.07 mmol). The mixture was stirred at tt until the reaction was completed as monitored by TLC. The mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with EtOAc ($100 \mathrm{~mL} x$ 3). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\operatorname{PE/EtOAc}(\mathrm{v} / \mathrm{v})=5 / 1$) to give the title compound 41-1 as pale yellow oil $(1.07 \mathrm{~g}, 62.9 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 242.12[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \operatorname{DMSO}-\mathrm{d}^{6}\right): 85.01(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.95(2 \mathrm{~s}, 2 \mathrm{H}), 3.64(2 \mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{q}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.50(\mathrm{~m}, 1 \mathrm{H}), 1.38(2 \mathrm{~s}, 9 \mathrm{H})$.

Step 2) the preparation of compound 41-2
[00637] To a solution of diethylzinc ($2.297 \mathrm{~g}, 18.60 \mathrm{mmol}$) in toluene (30 mL) was added chloroiodomethane $(6.569 \mathrm{~g}, 37.24 \mathrm{mmol})$ slowly in an ice bath. After the mixture was stirred for 45 minutes, a solution of compound $41-1(1.5 \mathrm{~g}, 6.22 \mathrm{mmol})$ in toluene $(15 \mathrm{~mL})$ was added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for another 18 hours, then quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ saturated solution (20 mL) and extracted with EtOAc ($25 \mathrm{~mL} \times 4$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ for 1 hour and filtered. The filtrate was concentrated in vacho and the residue was purified by silica gel column chromatography (PE/EtOAc (v/v) $==10 / 1$) to give the title compound $41-2$ as white liquid $(0.58 \mathrm{~g}, 36.5 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 156.2[\mathrm{M}-99]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.33-4.47(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.37(\mathrm{~m}, 2 \mathrm{H})$, $2.17-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.44,1.40(\mathrm{~s}, \mathrm{~s}, 9 \mathrm{H}), 0.50-0.62(\mathrm{~m}, 4 \mathrm{H})$.

Step 3) the preparation of compound 41-3
[00638] To a solution of compound $41-2(0.69 \mathrm{~g}, 2.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added a solution of HCl in EtOAc ($4 \mathrm{M}, 10 \mathrm{~mL}$). The reaction mixture was stirred at it
for 12 hours and concentrated in vacuo to give the title compound $41-3$ as colorless on $(0.5 \mathrm{~g}, 96.5 \%, \mathrm{HPLC}: 100 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESE: $m / z 156.2[\mathrm{M}-\mathrm{HCl}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 84.62-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.45(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.60-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.16-1.19(\mathrm{~m}$, 1H), 0.87-0.88(m, H$), 0.79-0.81(\mathrm{~m}, 1 \mathrm{H})$.

Step 4) the preparation of compound 41-4
[00639] To a solution of compound $41-3(0.53 \mathrm{~g}, 2.77 \mathrm{mmol})$, compound 1-7-2 $(0.729 \mathrm{~g}, 4.16 \mathrm{mmol})$ and $\mathrm{EDCl}(1.063 \mathrm{~g}, 5.55 \mathrm{mmol})$ in $\mathrm{DCM}(20 \mathrm{~mL})$ was added dropwise DIPEA ($2.4 \mathrm{~mL}, 14.52 \mathrm{mmol}$) slowly in an ice bath. After the mixture was stirred at it for 12 hours, water (20 mL) was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=1 / 1)$ to give the title compound $41-4$ as white liquid $(0.6067 \mathrm{~g}, 70.2 \%, \mathrm{HPLC}: 100 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 313.2[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 85.42-5.44(\mathrm{br}, 1 \mathrm{H}), 4.68-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.29(\mathrm{~m}, 1 \mathrm{H})$, $3.73(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.20(\mathrm{~m}, 1 \mathrm{H})$, $2.01-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.95(\mathrm{~m}, 1 \mathrm{H}), 0.93-1.05(\mathrm{~m}, 6 \mathrm{H}), 0.61-0.66(\mathrm{~m}, 4 \mathrm{H})$.

Step 5) the preparation of compound 41-5
[00640] To a solution of compound $41-4(0.2 \mathrm{~g}, 0.64 \mathrm{mmol})$ in THF (10 mL) was added dropwise a solution of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.1346 \mathrm{~g}, 3.2 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ slowly in an ice bath. The mixture was stirred at $40^{\circ} \mathrm{C}$ for 12 hours and concentrated in vacuo. To the residue was added $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was extracted with EtOAc ($25 \mathrm{~mL} \times 3$).

The aqueous phase was adjusted to pH 1 with $\mathrm{HCl}(10 \%)$ and extracted with EtOAc (25 $\mathrm{mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo to give the title compound $41-5$ as a white solid $(0.1581 \mathrm{~g}, 82.8 \%$, HPLC: $95 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 299.2[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.06(\mathrm{br}, 1 \mathrm{H}), 5.76(\mathrm{br}, 1 \mathrm{H}), 4.69-4.73(\mathrm{~m}, 1 \mathrm{H})$, $4.18-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.18-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.93-2.07(\mathrm{~m}, 2 \mathrm{H}), 0.94-1.00(\mathrm{~m}, 6 \mathrm{H}), 0.64-0.68(\mathrm{~m}, 4 \mathrm{H})$.

Step 6) the preparation of compound 41.6
[00641] To a solution of compound $41-5(0.1136 \mathrm{~g}, 0.38 \mathrm{mmol})$ and compound $40-3$ $(0.1027 \mathrm{~g}, 0.181 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added dropwise DIPEA ($0.083 \mathrm{~mL}, 0.504$ mmol) slowly in an ice bath. The mixture was stimed at it for 12 hours and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=$ $1 / 2$) to give the title compound 41-6 as a yellow solid ($0.1089 \mathrm{~g}, 60.0 \%$, HPLC: 94.6%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 1001.4[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MMz}, \mathrm{CDCl}_{3}\right): 87.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.32(\mathrm{~s}$, $2 \mathrm{H}), 5.68(\mathrm{~m}, 2 \mathrm{H}), 5.41(\mathrm{br}, 2 \mathrm{H}), 5.24(\mathrm{~m}, 2 \mathrm{H}), 4.86-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.27(\mathrm{~m}, 2 \mathrm{H})$, $3.77(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 3.58(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 4 \mathrm{H}), 2.27-2.32$ $(\mathrm{m}, 4 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.64(\mathrm{~m}, 8 \mathrm{H}), 0.84-1.05(\mathrm{~m}, 20 \mathrm{H})$.

Step 7) the preparation of compound 41-7
[00642] To a solution of compound 41-6(0.102 $\mathrm{g}, 0.102 \mathrm{mmol})$ in xylene (10 mL) was added $\mathrm{NH}_{4} \mathrm{OAc}(0.1569 \mathrm{~g}, 2.04 \mathrm{mmol})$. The mixture was heated at $140^{\circ} \mathrm{C}$ for 12 hours in a sealed tube and concentrated in vacuo. The residue was purfied by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=60 / 1\right)$ to give the title compound $41-7$
as a white solid ($0.04 \mathrm{~g}, 40.8 \%$, HPLC: 96.2%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 481.3[\mathrm{M}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.81(\mathrm{br}, 1 \mathrm{H}), 10.45(\mathrm{br}, 1 \mathrm{H}), 7.72-7.74(\mathrm{~m}, 5 \mathrm{H})$, $7.50-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{~s}, 2 \mathrm{H}), 5.37-5.51(\mathrm{~m}, 4 \mathrm{H}), 4.23-4.26(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.82(\mathrm{~m}$, $2 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 3.50-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 4 \mathrm{H}), 2.24-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.05-2.07(\mathrm{~m}, 2 \mathrm{H})$, $2.05-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.69(\mathrm{~m}, 8 \mathrm{H}), 0.90-1.10(\mathrm{~m}, 20 \mathrm{H})$.
[00643] Example 42

[00644] Synthetic routes

Step 1) the preparation of compound $42-1$ added dropwise thionyl chloride ($5.5 \mathrm{~mL}, 75.8 \mathrm{mmol}$) slowly in an ice bath. The mixture was stired at $0^{\circ} \mathrm{C}$ for 1 hour and at i for another 2 hours. To the resulting mixture was added solid $\mathrm{NaHCO}_{3}, \mathrm{MeOH}$ was removed and water (30 mL) was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ for 1 hour and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (EtOAc) to give the title compound $42-1$ as colorless liquid ($7.5 \mathrm{~g}, 67.6 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 144.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.38(\mathrm{br}, 1 \mathrm{H}), 4.16-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.39$ $(\mathrm{m}, 3 \mathrm{H}), 2.07-2.14(\mathrm{~m}, 1 \mathrm{H})$.

Step 2) the preparation of compound 42-2
[00646] To a solution of compound $42-1(6.45 \mathrm{~g}, 45.06 \mathrm{mmol})$ in $\mathrm{MeCN}(30 \mathrm{~mL})$ was added DMAP ($0.5503 \mathrm{~g}, 4.5 \mathrm{mmol}$) and di-tert-butyl dicarbonate ($10.816 \mathrm{~g}, 49.56$ mmol) slowly in turn in an ice bath. The mixture was stired at $0^{\circ} \mathrm{C}$ for 30 minutes and at rt for another 18 hours and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=1 / 1)$ to give the title compound $42-2$ as colorless hquid ($5.0 \mathrm{~g}, 45.6 \%, \mathrm{HPLC}: 95 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 144.2\left[\right.$ M-99] ${ }^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.57-4.60(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.65(\mathrm{~m}, 1 \mathrm{H})$, $2.42-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.

Step 3) the preparation of compound 42-3
[00647] To a solution of compound $42-2(3.74 \mathrm{~g}, 15.4 \mathrm{mmol})$ in toluene (50 mL) was added lithium triethylborohydride $(1.793 \mathrm{~g}, 16.9 \mathrm{mmol})$ slowly at $-78^{\circ} \mathrm{C}$. After stirring
for 70 minutes at $-78{ }^{\circ} \mathrm{C}$, to the mixture was added DIPEA ($3.2 \mathrm{~mL}, 19.4 \mathrm{mmol}$), DMAP $(0.1877 \mathrm{~g}, 1.54 \mathrm{mmol})$ and TFAA $(3 \mathrm{~mL}, 40.4 \mathrm{mmol})$ in turn. The mixture was stirred at It for another 2 hours and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\operatorname{PE} / \operatorname{EtOAc}(\mathrm{v} / \mathrm{v})=10 / 1$) to give the title compound $42-3$ as yellow liquid ($2.26 \mathrm{~g}, 64.8 \%$, HPLC: 97%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 128.2\left[\right.$ M-99] ${ }^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 86.52-6.65(\mathrm{br}, 1 \mathrm{H}), 4.91-4.96(\mathrm{br}, 1 \mathrm{H}), 4.57-4.68(\mathrm{~m}, 1 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.00-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.71(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.49(\mathrm{br}, 9 \mathrm{H})$.

Step 4) the preparation of compound 42-4
[00648] To a solution of diethylzinc $(0.4871 \mathrm{~g}, 3.94 \mathrm{mmol})$ in toluene (6 mL) was added chloroiodomethane ($1.394 \mathrm{~g}, 7.9 \mathrm{mmol}$) slowly in an ice bath. After the mixture was stirred for 45 minutes, a solution of compound $42-3(0.3 \mathrm{~g}, 1.32 \mathrm{mmol}$) in toluene (4 mL) was added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for another 18 hours, quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ saturated solution (15 mL) and extracted with EtOAc ($25 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography $(\operatorname{PE} / E t O A c(v / v)=10 / 1)$ to give the title compound $42-4$ as yellow liquid $(0.19 \mathrm{~g}, 59.7 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: m / z 142.2 [M-99] ${ }^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.51-4.64(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.56(\mathrm{~m}, 1 \mathrm{H})$, $2.54-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.50,1.41(\mathrm{~s}, 9 \mathrm{H}), 0.65-0.75(\mathrm{~m}, 3 \mathrm{H})$.

Step 5) the preparation of compound 42.5
[00649] To a solution of compound $42-4(1.02 \mathrm{~g}, 4.23 \mathrm{mmol})$ in THF (20 mL) was added dropwise a solution of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.8888 \mathrm{~g}, 21.2 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ slowly in an ice bath. The mixture was stired at $40^{\circ} \mathrm{C}$ for 12 hours and concentrated in vacuo. To the residue was added $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}$). The mixture was extracted with EtOAc (25 mL x 3). The aqueous phase was adjusted to pH 1 with $\mathrm{HCl}(10 \%)$ and extracted with EtOAc
($25 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo to give the title compound $42-5$ as a white solid ($0.8371 \mathrm{~g}, 87.0 \%, \mathrm{HPLC}: 95 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 226.2[\mathrm{M}-\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 84.46-4.53(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.70(\mathrm{~m}$, $1 \mathrm{H}), 2.01-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.48,1.41(\mathrm{~s}, 9 \mathrm{H}), 0.80-0.89(\mathrm{~m}, 1 \mathrm{H})$, $0.660 .73(\mathrm{~m}, 1 \mathrm{H})$.

Step 6) the preparation of compound 42-6
[00650] To a solution of compound $14-6(0.344 \mathrm{~g}, 0.7 \mathrm{mmol})$ and compound $42-5(0.4 \mathrm{~g}$, 1.76 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was added dropwise DIPEA $(0.3 \mathrm{~mL}, 1.76 \mathrm{mmol})$ slowly in an ice bath. The mixture was stirred at rt for 12 hours and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=2 / 1$) to give the title compound $42-6$ as a white solid $(0.44 \mathrm{~g}, 80.1 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 683.9\left[\right.$ M-99] ${ }^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.97-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.56$ $(\mathrm{m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, \mathrm{H}), 5.10-5.64(\mathrm{~m}, 4 \mathrm{H}), 4.74-4.81(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.59(\mathrm{~m}$, $1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H}), 2.62-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.49(\mathrm{~m}, 2 \mathrm{H})$, $1.59-1.69(\mathrm{~m}, 8 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.01-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.83-0.88(\mathrm{~m}, 2 \mathrm{H})$, $0.71-0.78(\mathrm{~m}, 2 \mathrm{H})$.

Step 7) the preparation of compound 42-7
[00651] To a solution of compound $42-6(0.42 \mathrm{~g}, 0.536 \mathrm{mmol})$ in xylene (10 mL) was added $\mathrm{NH}_{4} \mathrm{OAc}(0.826 \mathrm{~g}, 10.72 \mathrm{mmol})$. The mixture was heated at $140^{\circ} \mathrm{C}$ for 12 hours in a sealed tube. The mixture was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=2 / 1$) to give the title compound
$42-7$ as a yellow solid ($0.2 \mathrm{~g}, 50.2 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 372.3[\mathrm{M}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.81$ (br, 1 H$), 10.36(\mathrm{br}, 1 \mathrm{H}), 7.44-7.79(\mathrm{~m}, 6 \mathrm{H})$, $7.13-7.23(\mathrm{~m}, 2 \mathrm{H}), 5.30(\mathrm{br}, 2 \mathrm{H}), 3.55(\mathrm{br}, 2 \mathrm{H}), 3.26(\mathrm{br}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 2 \mathrm{H})$, $2.49(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.69(\mathrm{~m}, 8 \mathrm{H}), 1.55(\mathrm{br}, 18 \mathrm{H}), 0.85-0.89(\mathrm{~m}, 2 \mathrm{H}), 0.76(\mathrm{~m}, 2 \mathrm{H}), 0.64$ (m, 2H).

Step 8) the preparation of compound 42-8
[00652] To a solution of compound $42-7(0.07 \mathrm{~g}, 0.094 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added a solution of HCl in EtOAc $(4 \mathrm{M}, 2 \mathrm{~mL})$. The reaction mixture was stirred at rt for 12 hours and filtered. The filter cake was washed with EtOAc (10 mL) to give the title compound $42-8$ as a yellow solid ($0.059 \mathrm{~g}, 90.8 \%$, HPLC: 94.5%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 272.2[\mathrm{M}-4 \mathrm{HCl}+2 \mathrm{H}]^{2+}$; and
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.11$ (br, 1 H$), 7.86-7.94(\mathrm{~m}, 3 \mathrm{H}), 7.65 .7 .66(\mathrm{~m}, 3 \mathrm{H})$, $7.42-7.44(\mathrm{br}, 1 \mathrm{H}), 5.73(\mathrm{br}, 2 \mathrm{H}), 3.61(\mathrm{br}, 2 \mathrm{H}), 3.02-3.11(\mathrm{br}, 4 \mathrm{H}), 2.69-2.71(\mathrm{~m}, 2 \mathrm{H})$, $2.19(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.68(\mathrm{~m}, 8 \mathrm{H}), 1.29-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.22(\mathrm{~m}, 2 \mathrm{H})$.

Step 9) the preparation of compound 42-9
[00653] To a solution of compound $42-8(0.15 \mathrm{~g}, 0.22 \mathrm{mmol})$, compound 1-7-2 $(0.1149 \mathrm{~g}, 0.66 \mathrm{mmol})$ and $\mathrm{EDC}(0.1667 \mathrm{~g}, 0.875 \mathrm{mmol})$ in $\mathrm{DCM}(15 \mathrm{~mL})$ was added dropwise DIPEA $(0.4 \mathrm{~mL}, 2.4 \mathrm{mmol})$ slowly in an ice bath. Then the mixture was stired at it for 12 hours. To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacno and the residue was purified by silica gel column chromatography (EtOAc) to give the title compound $42-9$ as a yellow solid ($0.0844 \mathrm{~g}, 45.2 \%$, HPLC: 97.7%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 429.3[\mathrm{M}+2 \mathrm{H}]^{2+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 810.70(\mathrm{br}, 1 \mathrm{H}), 10.35(\mathrm{br}, 1 \mathrm{H}), 7.81(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.73$ $(\mathrm{m}, 1 \mathrm{H}), 7.52-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{br}, 1 \mathrm{H}), 5.52-5.58(\mathrm{~m}$, $4 \mathrm{H}), 4.56-4.58(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 3.25(\mathrm{br}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 2 \mathrm{H}), 2.52-2.54$ $(\mathrm{m}, 2 \mathrm{H}), 1.89-2.11(\mathrm{~m}, 6 \mathrm{H}), 1.58-1.62(\mathrm{~m}, 6 \mathrm{H}), 0.85-0.94(\mathrm{~m}, 18 \mathrm{H})$.
[00654] Example 43

[00655] Synthetic routes

Step 1) the preparation of compound 43
[00656] To a solution of compound $42-8(0.1648 \mathrm{~g}, 0.244 \mathrm{mmol})$, chloroacetyl-L-isoleucine ($0.1393 \mathrm{~g}, 0.736 \mathrm{mmol})$ and $\mathrm{EDCI}(0.1882 \mathrm{~g}, 0.982 \mathrm{mmol})$ in DCM (15 mL) was added dropwise DIPEA ($0.5 \mathrm{~mL}, 3.03 \mathrm{mmol}$) slowly in an ice bath. Then the mixture was stirred at it for 12 hours. To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (EtOAc) to give the title compound 43 as a yellow solid ($0.09 \mathrm{~g}, 41.4 \%$, HPLC: 98.8%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 443.3[\mathrm{M}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.69$ (br, 1 H$), 10.32(\mathrm{br}, 1 \mathrm{H}), 7.81-7.83(\mathrm{br}, 2 \mathrm{H})$, $7.70-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{br}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.07-7.11(\mathrm{br}, 1 \mathrm{H})$,

[00658] Synthetic routes

Step 1) the preparation of compound 44-1
[00659] To a solution of R-1-phenylethylamine ($1.3 \mathrm{~mL}, 10.1 \mathrm{mmol}$) in toluene (15 mL) was added anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}(3.48 \mathrm{~g}, 24.5 \mathrm{mmol})$ at rt . Then to the mixture was added ethyl glyoxalate ($1 \mathrm{~mL}, 10.1 \mathrm{mmol}$) slowly. The mixture was stired at it for 1 hour and filtered. The filtrate was concentrated in vacuo to give the title compound 44-1 as yellow liquid ($1.9 \mathrm{~g}, 91.8 \%, \mathrm{HPLC}: 95 \%$), which was used for the next step without further purification.

Step 2) the preparation of compound 44-2
[00660] To a solution of compound $44-1(2.0 \mathrm{~g}, 9.7 \mathrm{mmol})$ in DMF (15 mL) was added TFA ($0.75 \mathrm{~mL}, 10.1 \mathrm{mmol}$) at rt . After 2 minutes, to the mixture were added freshly distilled cyclopenta- 1,3 -diene $(1.29 \mathrm{~g}, 19.5 \mathrm{mmol})$ and two drops of water. The mixture was stirred for another 12 hours and concentrated in vacuo. To the residue was added NaHCO_{3} solution $(10 \%, 20 \mathrm{~mL})$. The mixture was adjusted to pH 8 with solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with PE $(25 \mathrm{~mL} \times 3)$. The combined organic phases were dred over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/ETOAc $(v / v)=10 / 1)$ to give the title compound 44-2 as pale yellow liquid ($2.38 \mathrm{~g}, 90.0 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.17-7.35(\mathrm{~m}, 5 \mathrm{H}), 6.42(\mathrm{br}, 1 \mathrm{H}), 6.26-6.28$ (br, 1 H$)$, $4.30-4.34(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.02-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{br}, 1 \mathrm{H}), 2.20(\mathrm{br}, 1 \mathrm{H})$, $2.13(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 3) the preparation of compound 44-3
[00661] To a solution of compound 44-2 (2.0 g, 7.37 mmol) in EtOH (60 mL) was added $\mathrm{Pd} / \mathrm{C}(0.7 \mathrm{~g})$. The mixture was stirred under $\mathrm{H}_{2}(20 \mathrm{~atm})$ at rf for 12 hours and filtered. The filtrate was concentrated in vacuo to give the title compound 44-3 as yellow hquid $(1.2 \mathrm{~g}, 96.2 \%, \mathrm{HPLC}: 100 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 170.2[\mathrm{M}+\mathrm{H}]$, and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 84.15-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{br}, 1 \mathrm{H}), 3.33(\mathrm{br}, 1 \mathrm{H}), 2.63(\mathrm{br}$, $1 \mathrm{H}), 2.32(\mathrm{br}, 1 \mathrm{H}), 1.60-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 4) the preparation of compound 44-4
[00662] To a solution of compound $44-3(0.68 \mathrm{~g}, 4.02 \mathrm{mmol})$, compound 1-7-2 $(1.057 \mathrm{~g}, 6.03 \mathrm{mmol})$ and $\operatorname{EDCI}(1.543 \mathrm{~g}, 8.05 \mathrm{mmol})$ in DCM $(25 \mathrm{~mL})$ was added dropwise DIPEA ($2.1 \mathrm{~mL}, 12.7 \mathrm{mmol}$) slowly in an ice bath. Then the mixture was
stirred at rt for 12 hours. To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{PE} / E t \mathrm{OAc}(\mathrm{v} / \mathrm{v})=2 / 1$) to give the title compound $44-4$ as a white solid $(0.74 \mathrm{~g}, 56.4 \%$, HPLC: $95 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 327.2[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 85.44(\mathrm{br}, 1 \mathrm{H}), 4.40(\mathrm{br}, 1 \mathrm{H}), 4.30-4.33(\mathrm{~m}, 1 \mathrm{H})$, 4.14.4.19 (m, 2H), $4.02(\mathrm{br}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{br}, 1 \mathrm{H}), 2.04(\mathrm{br}, 1 \mathrm{H}), 1.88-1.91(\mathrm{~m}$, $2 \mathrm{H}), 1.74-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 5) the preparation of compound 44-5
[00663] To a solution of compound $44-4(0.74 \mathrm{~g}, 2.27 \mathrm{mmol})$ in THF (25 mL) was added dropwise a solution of lithum hydroxide $(0.4767 \mathrm{~g}, 11.35 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ slowly in an ice bath. The mixture was stirred at $40^{\circ} \mathrm{C}$ for 12 hours and concentrated in vacuo. To the residue was added $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was extracted with EtOAc ($25 \mathrm{~mL} \times 3$). The aqueous phase was adjusted to pH 1 with $\mathrm{HCl}(10 \%)$ and extracted with EtOAc ($25 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacno to give the title compound $44-5$ as a white solid $(0.55 \mathrm{~g}, 81.3 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 299.2[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CD}, \mathrm{OD}): \delta 4.52(\mathrm{br}, 1 \mathrm{H}), 4.20(\mathrm{~d}, j=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{br}, 1 \mathrm{H})$, $3.63(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{br}, 1 \mathrm{H}), 1.98-2.01(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.54(\mathrm{~m}, 2 \mathrm{H})$, $1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 6) the preparation of compound $44-6$ $(0.55 \mathrm{~g}, 1.84 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ was added dropwise DIPEA ($0.305 \mathrm{~mL}, 1.84$ mmol) slowly in anice bath. The mixture was stirred at it for 12 hours and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc (v/v) $=1 / 2$) to give the title compound $44-6$ as a white solid ($0.48 \mathrm{~g}, 70.6 \%$, HPLC: 92.3%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 463.3[\mathrm{M}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.54 .5 .63(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{br}, 2 \mathrm{H}), 5.14-5.26(\mathrm{~m}$, $2 \mathrm{H}), 4.43(\mathrm{br}, 2 \mathrm{H}), 4.32-4.36(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 3.23-3.24(\mathrm{~m}$, $2 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 2 \mathrm{H}), 2.18-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.51-2.07(\mathrm{~m}, 20 \mathrm{H}), 0.95-1.06(\mathrm{~m}$, $12 \mathrm{H})$

Step 7) the preparation of compound 44-7
[00665] To a solution of compound $44-6(0.26 \mathrm{~g}, 0.28 \mathrm{mmol})$ in xylene (15 mL) was added $\mathrm{NH}_{4} \mathrm{OAc}(0.4328 \mathrm{~g}, 5.6 \mathrm{mmol})$. The mixture was heated at $140^{\circ} \mathrm{C}$ for 12 hours in a sealed tube. The mixture was concentrated in vacuo and the residue was purified by silica gel column chromatography (EtOAc) to give the title compound $44-7$ as a white solid $(0.124 \mathrm{~g}, 49.8 \%$, HPLC: 99.2%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 443.4[\mathrm{M}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.85$ (br, 1 H$), 10.44(\mathrm{br}, 1 \mathrm{H}), 7.71-7.79(\mathrm{~m}, 2 \mathrm{H})$, $7.42-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{br}, 2 \mathrm{H}), 4.73(\mathrm{br}, 2 \mathrm{H})$, $4.36-4.40(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 3.47-3.54(\mathrm{~m}, 2 \mathrm{H}), 2.91-3.08(\mathrm{~m}, 4 \mathrm{H}), 2.24-2.33(\mathrm{~m}$, $2 \mathrm{H}), 1.89-2.05(\mathrm{~m}, 12 \mathrm{H}), 1.59-1.65(\mathrm{~m}, 8 \mathrm{H}), 0.85-0.97(\mathrm{~m}, 12 \mathrm{H})$.

[00667] Synthetic routes

Step 1) the preparation of compound 45-1
[00668] To a solution of L-pipecolinic acid ($10 \mathrm{~g}, 77.4 \mathrm{mmol}$) in MeOH (50 mL) was added dropwise thionyl chloride ($8.5 \mathrm{~mL}, 117.2 \mathrm{mmol}$) slowly in an ice bath. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour, then stirred at $70^{\circ} \mathrm{C}$ for another 1 hour and concentrated in vacuo to give the title compound $45-1$ as a white solid ($11.0 \mathrm{~g}, 79.1 \%$, HPLC: 65%). The compound was characterized by the following spectroscopic data:

MS-ESI: m / z 144. $[\mathrm{M}-\mathrm{HCl}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.02(\mathrm{br}, 1 \mathrm{H}), 4.00(\mathrm{br}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{br}, 1 \mathrm{H})$, $3.15(\mathrm{br}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{br}, 1 \mathrm{H})$.

Step 2) the preparation of compound 45-2
[00669] To a solution of compound $45-1(1.0 \mathrm{~g}, 5.57 \mathrm{mmol})$, compound 1-7-2 (1.468 $\mathrm{g}, 8.38 \mathrm{mmol}$) and $\operatorname{EDCl}(2.142 \mathrm{~g}, 11.17 \mathrm{mmol})$ in DCM (40 mL) was added dropwise DIPEA ($5 \mathrm{~mL}, 30.25 \mathrm{mmol}$) slowly in an ice bath. Then the mixture was stirred at it for 12 hours. To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$. The mixture was extracted
with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($35 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\operatorname{PE/EtOAc}(v / v)=2 / 1)$ to give the title compound $45-2$ as coloness liquid ($1.5 \mathrm{~g}, 89.8 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: m/z $301.2[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.62(\mathrm{br}, 1 \mathrm{H}), 5.43(\mathrm{br}, 1 \mathrm{H}), 4.61 .4 .65(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~m}$, $1 \mathrm{H}), 3.18-3.33(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.30(\mathrm{br}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.68$ $(\mathrm{m}, 1 \mathrm{H}), 1.46-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.37(\mathrm{~m}, 1 \mathrm{H}), 0.96-1.03(\mathrm{~m}, 3 \mathrm{H}), 0.87-0.91(\mathrm{~m}, 3 \mathrm{H})$.

Step 3) the preparation of compound 45-3
[00670] To a solution of compound $45-2(1.41 \mathrm{~g}, 4.7 \mathrm{mmol})$ in THF (40 mL) was added dropwise a solution of lithium hydroxide $(0.987 \mathrm{~g}, 23.5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ slowly in an ice bath. The mixture was stired at $40^{\circ} \mathrm{C}$ for 12 hours and concentrated in vacuo. To the residue was added $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was extracted with EtOAc ($25 \mathrm{~mL} \times 3$). The aqueous phase was adjusted to pH 1 with $\mathrm{HCl}(10 \%)$ and extracted with EtOAc ($35 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo to give the title compound $45-3$ as a white solid $(1.22 \mathrm{~g}, 90.8 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-EST: $m / z 285.1[\mathrm{M}-\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.15$ (br, 1 H$), 5.97(\mathrm{~d}, j=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{br}, 1 \mathrm{H})$, $4.62-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{br}, 1 \mathrm{H})$, $2.03-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.41-1.56(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.87$ $(d, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 4) the preparation of compound 45-4
[00671] To a solution of compound $14-6(0.3685 \mathrm{~g}, 0.75 \mathrm{mmol})$ and compound $45-3$
$(0.54 \mathrm{~g}, 1.89 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ was added dropwise DIPEA $(0.4 \mathrm{~mL}, 2.4 \mathrm{mmol})$ slowly in an ice bath. The mixture was stired at it for 12 hours and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 2)$ to give the title compound $45-4$ as a white solid $(0.42 \mathrm{~g}, 61.7 \%$, HPLC: 100%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 901.5[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{br}, 4 \mathrm{H}), 5.42(\mathrm{br}, 2 \mathrm{H}), 5.35(\mathrm{br}, 2 \mathrm{H})$, $4.65-4.69(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 3.47-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 2.86$ $(\mathrm{s}, 2 \mathrm{H}), 2.45(\mathrm{br}, 2 \mathrm{H}), 1.54-1.81(\mathrm{~m}, 20 \mathrm{H}), 0.99-1.01(\mathrm{~m}, 6 \mathrm{H}), 0.84-0.87(\mathrm{~m}, 6 \mathrm{H})$.

Step 5) the preparation of compound $45-5$
[00672] To a solution of compound $45-4(0.42 \mathrm{~g}, 0.466 \mathrm{mmol})$ in xylene (15 mL) was added $\mathrm{NH}_{4} \mathrm{OAc}(0.7178 \mathrm{~g}, 9.3 \mathrm{mmol})$. The mixture was heated at $140{ }^{\circ} \mathrm{C}$ for 12 hours in a sealed tube. The mixture was concentrated in vacuo and the residue was purified by silica gel column chromatography (EtOAc) to give the title compound 45-5 as a yellow solid $(0.2618 \mathrm{~g}, 65.2 \%$, HPLC: $96.5 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 431.3[\mathrm{M}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 811.78(\mathrm{br}, 1 \mathrm{H}), 11.39(\mathrm{br}, 1 \mathrm{H}), 7.70-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.43$ $(\mathrm{m}, 2 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 3 \mathrm{H}), 5.82-5.85(\mathrm{br}, 2 \mathrm{H}), 5.53(\mathrm{br}, 2 \mathrm{H}), 5.34(\mathrm{br}, 2 \mathrm{H}), 4.60$ (br, 2H), 4.41-4.43(m,2H), $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 2 \mathrm{H}), 2.82$ (br, 2 H$), 2.42-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.02-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.81(\mathrm{~m}, 14 \mathrm{H})$, $1.10-1.11(\mathrm{~m}, 6 \mathrm{H}), 0.87-0.88(\mathrm{~m}, 6 \mathrm{H})$.

[00674] Synthetic routes

Step 1) the preparation of compound 46-1
[00675] The title compound $46-1$ was prepared by an analogous procedure to that described for compound 45-2 (Example 45). The compound was characterized by the following spectroscopic data:

MS-ESS: m/z 257.1 [M-H]; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.82(\mathrm{br}, 1 \mathrm{H}), 6.14(\mathrm{br}, 1 \mathrm{H}), 5.40(\mathrm{br}, 1 \mathrm{H}), 4.74-4.82(\mathrm{~m}, 1 \mathrm{H})$, $3.87(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.41-1.54(\mathrm{~m}, 2 \mathrm{H})$, $1.33(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$

Step 2) the preparation of compound 46-2
[00676] To a solution of compound $10-5-2(0.5372 \mathrm{~g}, 1.01 \mathrm{mmol})$ and compound $46-1(0.71 \mathrm{~g}, 2.75 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(25 \mathrm{~mL})$ was added DIPEA ($0.5 \mathrm{~mL}, 3.02 \mathrm{mmol}$) slowly in an ice bath. The mixture was stired at rt for 12 hours and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc (v/v)
$=1 / 2)$ to give the title compound $46-2$ as a white solid ($0.33 \mathrm{~g}, 35.6 \%$, HPLC: 100%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 845.4[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{br}, 2 \mathrm{H}), 5.54(\mathrm{br}, 2 \mathrm{H}), 5.43(\mathrm{~s}, 2 \mathrm{H}), 5.34$ (br, 2 H$), 4.75-4.78(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 3.47-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~s}$, $2 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H}), 2.44-2.47(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.80(\mathrm{~m}, 18 \mathrm{H}), 1.33-1.35(\mathrm{~m}, 6 \mathrm{H})$.

Step 3) the preparation of compound 46-3

[00677] To a solution of compound $46-2(0.33 \mathrm{~g}, 0.39 \mathrm{mmol})$ in xylene (15 mL) was added $\mathrm{NH}_{4} \mathrm{OAc}(0.6014 \mathrm{~g}, 7.8 \mathrm{mmol})$. The mixture was heated at $140^{\circ} \mathrm{C}$ for 12 hours in a sealed tube. The mixture was concentrated in vacuo and the residue was purified by silica gel column chromatography (EtOAc) to give the title compound $46-3$ as a yellow solid $(0.2429 \mathrm{~g}, 77.3 \%$, HPLC: $93.0 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 403.4[\mathrm{M}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 811.76 (br, 1 H), 11.38 (br, 1 H), 7.83 (br, 2 H), 7.45 (br, $2 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.25(\mathrm{~m}, 3 \mathrm{H}), 5.99(\mathrm{br}, 2 \mathrm{H}), 5.83(\mathrm{br}, 2 \mathrm{H}), 5.61(\mathrm{br}, 2 \mathrm{H})$, $4.69-4.73(\mathrm{~m}, 2 \mathrm{H}), 4.54-4.57(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 3.07(\mathrm{~s}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 2 \mathrm{H}), 2.41-2.50$ $(\mathrm{m}, 2 \mathrm{H}), 2.02-2.07(\mathrm{~m}, 4 \mathrm{H}), 1.79-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.67(\mathrm{~m}, 10 \mathrm{H}), 1.26-1.30(\mathrm{~m}, 6 \mathrm{H})$.

[00679] Synthetic routes

Step 1) the preparation of compound 47-1
[00680] To a solution of (S)-3-(tert-butoxycarbonyl)thiazolidine-2-carboxylic acid $(0.419 \mathrm{~g}, 1.8 \mathrm{mmol})$ and compound $14-6(0.5 \mathrm{~g}, 1.02 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ was added DIPEA ($0.4 \mathrm{~mL}, 2.4 \mathrm{mmol}$) slowly in an ice bath. The mixture was stirred at it for 12 hours and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=2 / 1)$ to give the title compound $47-1$ as a white solid $(0.49 \mathrm{~g}, 60.4 \%$, HPLC: $97.1 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.49(\mathrm{~m}, 6 \mathrm{H}), 3.82-3.93(\mathrm{~m}, 4 \mathrm{H})$, $3.31-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 2 \mathrm{H}), 3.05(\mathrm{br}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 2 \mathrm{H}), 1.54-1.69(\mathrm{~m}, 8 \mathrm{H}), 1.49(\mathrm{~s}$, $18 \mathrm{H})$

Step 2) the preparation of compound 47-2
[00681] To a solution of compound $47.1(0.49 \mathrm{~g}, 0.62 \mathrm{mmol})$ in xylene (25 mL) was added $\mathrm{NH}_{4} \mathrm{OAc}(0.95 \mathrm{~g}, 12.3 \mathrm{mmol})$. The mixture was heated at $140^{\circ} \mathrm{C}$ for 6 hours in a sealed tube. The mixture was concentrated in vacuo and the residue was purified by silica gel column chromatography (EtOAc) to give the title compound 47-2 as a red solid ($0.3 \mathrm{~g}, 64.4 \%, \mathrm{HPLC}: 95 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.74(\mathrm{br}, 1 \mathrm{H}), 11.35(\mathrm{br}, 1 \mathrm{H}), 7.30-7.62(\mathrm{~m}, 4 \mathrm{H})$, $7.12-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.22(\mathrm{br}, 2 \mathrm{H}), 3.87-3.88(\mathrm{~m}, 4 \mathrm{H}), 3.32(\mathrm{~m}, 2 \mathrm{H}), 2.93-3.13(\mathrm{~m}, 6 \mathrm{H})$, $1.59-1.64(\mathrm{~m}, 8 \mathrm{H}), 1.47(\mathrm{~s}, 18 \mathrm{H})$

Step 3) the preparation of compound 47-3
[00682] To a solution of compound $47-2(0.3 \mathrm{~g}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added a solution of HCl in EtOAc $(4 \mathrm{M}, 5 \mathrm{~mL})$. The reaction mixture was stirred at rt for 12 hours and filtered. The filter cake was washed with EtOAc (15 mL) to give the title compound $47-3$ as a red solid ($0.25 \mathrm{~g}, 89.8 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / 2278.0[\mathrm{M}-4 \mathrm{HCl}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 87.86-7.91(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.57(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{br}, 2 \mathrm{H}), 3.84(\mathrm{br}, 2 \mathrm{H}), 3.42(\mathrm{br}, 2 \mathrm{H}), 3.14-3.23$ $(\mathrm{m}, 4 \mathrm{H}), 3.08(\mathrm{~s}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 1.64-1.69(\mathrm{~m}, 8 \mathrm{H})$.

Step 4) the preparation of compound 47.4
[00683] To a solution of compound $47-3(0.15 \mathrm{~g}, 0.214 \mathrm{mmol})$, compound 1-7-2 $(0.113 \mathrm{~g}, 0.64 \mathrm{mmol})$ and $\operatorname{EDC}(0.165 \mathrm{~g}, 0.86 \mathrm{mmol})$ in DCM $(15 \mathrm{~mL})$ was added dropwise DIPEA ($0.4 \mathrm{~mL}, 2.4 \mathrm{mmol}$) slowly in an ice bath. Then the mixture was stirred at it for 12 hours. To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (EtOAc) to give the title compound $47-4$ as a red solid ($0.0934 \mathrm{~g}, 50.2 \%, \mathrm{HPLC}: 95.3 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 435.2[\mathrm{M}+2 \mathrm{H}]^{2+}$; and

[^2] - 304 -
$7.11-7.25(\mathrm{~m}, 4 \mathrm{H}), 6.25(\mathrm{br}, 2 \mathrm{H}), 5.81(\mathrm{br}, 2 \mathrm{H}), 5.56(\mathrm{br}, 2 \mathrm{H}), 3.85-3.87(\mathrm{~m}, 4 \mathrm{H}), 3.76(\mathrm{~s}$, $6 \mathrm{H}), 3.28(\mathrm{br}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 2 \mathrm{H}), 3.05-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 2 \mathrm{H}), 2.68-2.73(\mathrm{~m}, 2 \mathrm{H})$, $1.57-1.62(\mathrm{~m}, 8 \mathrm{H}), 1.09-1.12(\mathrm{~m}, 6 \mathrm{H}), 0.87-0.89(\mathrm{~m}, 6 \mathrm{H})$.
[00684] Example 48

[00685] Synthetic routes

Step 1) the preparation of compound 48-1
[00686] To a suspension of aluminium chlonde (2.12 g, 16.0 mmol) in 1,2-dichloroethane (40 mL) was added bromoacetyl chloride ($1.2 \mathrm{~mL}, 14.4 \mathrm{mmol}$). To the mixture was added a solution of compound $10-1(1.29 \mathrm{~g}, 6.37 \mathrm{mmol})$ in 1,2-dichloroethane (20 mL) slowly. The mixture was stirred for 2 hours at rt , then
quenched with ice water (5 mL) and extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/ETOAc $(\mathrm{v} / \mathrm{v})=15 / 1)$ to give the title compound $48-1$ as a white solid $(1.75 \mathrm{~g}, 85.0 \%$, HPLC : 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 324.1[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.73(\mathrm{~d}, j=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, j=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 2 \mathrm{H}), 1.70-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.62(\mathrm{~m}, 4 \mathrm{H})$.

Step 2) the preparation of compound 48-2
[00687] A solution of compound $48-1(0.97 \mathrm{~g}, 3.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was cooled to $-40^{\circ} \mathrm{C}$. And to the solution was added a solution of boron tribromide (6.0 g , $23.95 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ slowly at $-40^{\circ} \mathrm{C}$. Then the mixture was stirred at t for 24 hours, quenched with ice water (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was puriffed by silica gel column chromatography (PE/EtOAc $(v / v)=4 / 1)$ to give the title compound 48-2 as a white solid $(0.84 \mathrm{~g}, 90.3 \%$, HPLC: 98%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 310.1[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}$, $1 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 2 \mathrm{H}), 1.71-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.64(\mathrm{~m}, 4 \mathrm{H})$.

Step 3) the preparation of compound 48-3
[00688] To a solution of compound $48-2(0.80 \mathrm{~g}, 2.59 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added pyridine ($1.4 \mathrm{~mL}, 17.4 \mathrm{mmol}$) and tifluoromethanesulfonic anhydride (1.76 $\mathrm{mL}, 10.46 \mathrm{mmol}$) slowly at $0^{\circ} \mathrm{C}$. Then the mixture was stirred at rt for 2 hours, quenched with a small amount of water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times 3)$. The combined
organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\operatorname{BE} / \mathrm{DCM}(\mathrm{v} / \mathrm{v})=4 / 1$) to give the title compound $48-3$ as pale yellow slurry (1.14 g , 99.8%, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 442.1[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}$, $2 \mathrm{H}), 2.92(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 2 \mathrm{H}), 1.61-1.74(\mathrm{~m}, 8 \mathrm{H})$.

Step 4) the preparation of compound 48-4
[00689] To a solution of compound $48-3(1.08 \mathrm{~g}, 2.45 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ (22 mL) were added DIPEA ($1.1 \mathrm{~mL}, 6.66 \mathrm{mmol}$) and Boc-L-proline ($1.04 \mathrm{~g}, 4.83 \mathrm{mmol}$) in an ice bath. The reaction mixture was stirred at it for 2 hours and concentrated in vacuo. The residue was purfied by silica gel column chromatography (PE/EtOAc (v/v) $=2 / 3$) to give the title compound $48-4$ as pale yellow slurry ($1.4 \mathrm{~g}, 99.3 \%, \mathrm{HPLC}: 99 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 576.2[\mathrm{M}+\mathrm{H}]^{-}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}$, $2 \mathrm{H}), 4.49-4.51(\mathrm{~m}, \mathrm{H}), 4.10-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H})$, $2.05-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.80-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.54(\mathrm{~m}, 8 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$.

Step 5) the preparation of compound 48-5
[00690] To a solution of compound $48.4(1.4 \mathrm{~g}, 2.43 \mathrm{mmol})$ in xylene (20 mL) was added $\mathrm{NH}_{4} \mathrm{OAc}(2.2 \mathrm{~g}, 28.54 \mathrm{mmol})$. The mixture was refluxed at $140^{\circ} \mathrm{C}$ for 5 hours in a sealed tube. To the mixture was added $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$. The mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purfied by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=50 / 1)$ to give the title compound $48-5$
as a pale yellow solid $(0.73 \mathrm{~g}, 54.1 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 556.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.49(\mathrm{brs}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 4.99-5.00(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 2 \mathrm{H})$, $1.95-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.80-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.54(\mathrm{~m}, 8 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$.

Step 6) the preparation of compound 48-6
[00691] A mixture of compound 3-3-2 (3.30 g. 7.98 mmol), 1-bromo-4-iodobenzene $(1.88 \mathrm{~g}, 6.65 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.768 \mathrm{~g}, 0.66 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.77 \mathrm{~g}, 2.00 \mathrm{mmol})$ in mixed solvents of DME (50.0 mL) and $\mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{~mL})$ was stirred at $90^{\circ} \mathrm{C}$ under N_{2} overnight and then cooled down naturally. To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}$ (50.0 mL). The mixture was extracted with EtOAc ($50.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (DCM/MeOH $(v / v)=50 / 1)$ to give the title compound as a beige solid $(2.62 \mathrm{~g}, 89.1 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 444.1[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 88.22(\mathrm{~s}, 0.5 \mathrm{H}), 7.86-7.87(\mathrm{~m}, 0.5 \mathrm{H}), 7.61-7.66(\mathrm{~m}, 2 \mathrm{H})$, $7.51-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.39(\mathrm{~m}, 2 \mathrm{H}), 5.05-5.16(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.61(\mathrm{~m}, 2 \mathrm{H}), 1.86-2.46$ ($\mathrm{m}, 4 \mathrm{H}$) , $1.27(\mathrm{~s}, 9 \mathrm{H})$.
[00692] A solution of the beige compound (4.53 g, 10.2 mmol), bis(pinacolato)diboron $(3.88 \mathrm{~g}, 15.3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.833 \mathrm{~g}, 1.02 \mathrm{mmol})$ and KOAc ($3.0 \mathrm{~g}, 30.6 \mathrm{mmol}$) in DMF (40 mL) was stirred at $90^{\circ} \mathrm{C}$ under N_{2} for 3 hours. The mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=3 / 1$) to give the title compound $48-6$ as a
white solid $(4.67 \mathrm{~g}, 93.2 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 490.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.23(\mathrm{~s}, 0.5 \mathrm{H}), 7.87 .7 .88(\mathrm{~m}, 0.5 \mathrm{H}), 7.60-7.65(\mathrm{~m}, 2 \mathrm{H})$, $7.51-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.38(\mathrm{~m}, 2 \mathrm{H}), 5.04-5.12(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.61(\mathrm{~m}, 2 \mathrm{H}), 1.84-2.41$ $(\mathrm{m}, 4 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H})$.

Step 7) the preparation of compound 48-7
[00693] A mixture of compound $48-5(2.21 \mathrm{~g}, 3.98 \mathrm{mmol})$, compound $48-6(1.63 \mathrm{~g}$, $3.33 \mathrm{mmol}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.384 \mathrm{~g}, 0.33 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 9.98 \mathrm{mmol})$ in mixed solvents of DME (50.0 mL) and $\mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{~mL})$ was stirred at $90^{\circ} \mathrm{C}$ under N_{2} overnight, then cooled down naturally and concentrated in vacuo. To the residue was added $\mathrm{H}_{2} \mathrm{O}$ (50.0 mL). The mixture was extracted with EtoAc ($50.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (DCM/MeOH $(v / v)=50 / 1)$ to give the title compound $48-7$ as a beige solid $(2.26 \mathrm{~g}, 88.3 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.74-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.54(\mathrm{~m}, 2 \mathrm{H})$, 7.33-7.35(m,2H), 7.28-7.29(m,2H), 5.35-5.37(m, 1H), 5.20-5.21(m, 1H), 3.96-4.08 $(\mathrm{m}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 2 \mathrm{H}), 3.01(\mathrm{~s}, 2 \mathrm{H}), 2.05-2.24(\mathrm{~m}, 8 \mathrm{H}), 1.55-1.59(\mathrm{~m}, 8 \mathrm{H}), 1.27(\mathrm{~s}, 18 \mathrm{H})$.

Step 8) the preparation of compound 48-8
[00694] To a solution of compound $48-7(10.0 \mathrm{~g}, 13.0 \mathrm{mmol})$ in EtOAc (50.0 mL) was added a solution of HCl in $\mathrm{EtOAc}(4 \mathrm{M}, 60.0 \mathrm{~mL})$. The reaction mixture was stirred at rt overnight and filtered. The filter cake was washed with EtOAc (50 mL) to give the title compound $48-8$ as a pale yellow solid $(8.0 \mathrm{~g}, 86.1 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.72-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.52(\mathrm{~m}, 2 \mathrm{H})$, $7.33-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.29(\mathrm{~m}, 2 \mathrm{H}), 5.31-5.32(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.23(\mathrm{~m}, 1 \mathrm{H}), 3.96-4.08$ $(\mathrm{m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H}), 3.11(\mathrm{~s}, 2 \mathrm{H}), 2.06-2.25(\mathrm{~m}, 8 \mathrm{H}), 1.56-1.59(\mathrm{~m}, 8 \mathrm{H})$.

Step 9) the preparation of compound 48-9
[00695] A suspension of compound $48-8(0.151 \mathrm{~g}, 0.21 \mathrm{mmol}), \mathrm{EDCI}(0.22 \mathrm{~g}, 1.15$ mmol) and compound 1-7-2 (0.15 g, 0.86 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. To the mixture was added dropwise DIPEA ($0.5 \mathrm{~mL}, 3.02 \mathrm{mmol}$) slowly. The mixture was stirred at it for 10 hours. To the mixture was added $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (DCM/MeOH (v/v) $=40 / 1$) to give the title compound $48-9$ as a pale yellow solid ($0.05 \mathrm{~g}, 26.8 \%$, HPLC: 95.3%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 884.1[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.71-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.52(\mathrm{~m}, 2 \mathrm{H})$, $7.31-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.29(\mathrm{~m}, 2 \mathrm{H}), 5.35-5.37(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.21(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.25$ $(\mathrm{m}, 2 \mathrm{H}), 3.96-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 6 \mathrm{H}), 3.31(\mathrm{~s}, 2 \mathrm{H}), 3.01(\mathrm{~s}, 2 \mathrm{H})$, $2.05-2.24(\mathrm{~m}, 10 \mathrm{H}), 1.55-1.59(\mathrm{~m}, 8 \mathrm{H}), 0.84-0.91(\mathrm{~m}, 12 \mathrm{H})$.
[00696] Example 49

[00697]
Synthetic routes

Step 1) the preparation of compound 49-1

The title compound $49-1$ was prepared by an analogous procedure to that described for compound 14-6 (Example 14). The compound was characterized by the following spectroscopic data:

MS-ESE: $m / z 555.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 88.57(\mathrm{~s}, 1 \mathrm{H}), 8.11-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.98(\mathrm{~d}, j=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93$ $(\mathrm{s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60$ $(\mathrm{s}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H}), 1.58-1.30(\mathrm{~m}, 10 \mathrm{H})$

Step 2) the preparation of compound 49-2
[00699] To a solution of compound $49-1(4.4 \mathrm{~g}, 7.9 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})$ were added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and DIPEA $(4.1 \mathrm{~mL}, 24.8 \mathrm{mmol})$. The mixture was stirred for 5 minutes and to which was added Boc-L-proline ($3.8 \mathrm{~g}, 17.6 \mathrm{mmol}$). The mixture was stirred at at overnight and concentrated in vacuo. To the residue was added $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$. The mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were
washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{BE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=2 / 1$) to give the title compound $49-2$ as a pale yellow solid (4.4 g , 67.7%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 846.1[\mathrm{M}+\mathrm{Na}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 88.46(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-7.93(\mathrm{~m}, 3 \mathrm{H}), 7.90(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.76-5.45(\mathrm{~m}, 2 \mathrm{H}), 5.45-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.55-4.39(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.38$ $(\mathrm{m}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 2 \mathrm{H}), 2.42-2.25(\mathrm{~m}, 4 \mathrm{H}), 2.17-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.30(\mathrm{~m}$, $28 \mathrm{H})$.

Step 3) the preparation of compound $49-3$
[00700] To a solution of compound $49-2(1.01 \mathrm{~g}, 1.22 \mathrm{mmol})$ in xylene (12 mL) was added $\mathrm{NH}_{4} \mathrm{OAc}(1.51 \mathrm{~g}, 19.60 \mathrm{mmol})$. The mixture was heated at $140^{\circ} \mathrm{C}$ overnight in a sealed tube, then cooled down naturally and concentrated in vacuo. To the residue was added $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{BCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=30 / 1$) to give the title compound $49-3$ as a yellowish-brown solid $(0.59 \mathrm{~g}, 61.7 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 785.1[\mathrm{M}+\mathrm{H}]^{+}$; and
$\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(400} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.13(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 10.59(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.98-7.78(\mathrm{~m}, 4 \mathrm{H})$, $7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 3.62-3.35(\mathrm{~m}$, $4 \mathrm{H}), 3.14-2.87(\mathrm{~m}, 6 \mathrm{H}), 2.30-2.12(\mathrm{~m}, 4 \mathrm{H}), 2.12-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.32(\mathrm{~m}, 28 \mathrm{H})$.

Step 4) the preparation of compound 49-4
[0070]] To a solution of compound $49-3(0.56 \mathrm{~g}, 0.72 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added a solution of HCl in $\mathrm{EtOAc}(4 \mathrm{M}, 13 \mathrm{~mL})$ in an ice bath. The mixture was stired at rt overnight, and pale yellow solid precipitated out. The reaction was monitored by LC-MS until a trace amount of the desired compound was detected. The mixture was then kept stil, and the supernatant was discarded. The residue was washed with EtOAc (5 mL) assisted by sonicating in an ultrasonic cleaner, then kept still and the supernatant was discarded. The washing was repeated four more times and the residue was then concentrated in vacno to give compound $49-4$ as a pale yellow solid ($0.51 \mathrm{~g}, 97.1 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 583.3[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{\mathrm{I}} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 88.30-7.00(\mathrm{~m}, 8 \mathrm{H}), 5.25-4.55(\mathrm{~m}, 4 \mathrm{H}), 3.67-3.33(\mathrm{~m}, 4 \mathrm{H})$, $2.80-1.95(\mathrm{~m}, 14 \mathrm{H}), 1.30-0.50(\mathrm{~m}, 10 \mathrm{H})$.

Step 5) the preparation of compound 49.5
[00702] To a mixture of compound $49-4(0.20 \mathrm{~g}, 0.27 \mathrm{mmol})$, compound $1-7.2(0.15 \mathrm{~g}$, $0.86 \mathrm{mmol}), \mathrm{EDCI}(0.23 \mathrm{~g}, 1.20 \mathrm{mmol})$ and $\mathrm{HOBT}(0.12 \mathrm{~g}, 0.89 \mathrm{mmol})$ was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) via syringe followed by DIPEA ($0.62 \mathrm{~mL}, 3.75 \mathrm{mmol}$) under N_{2} in an ice bath. The reaction mixture was stimed at rt ovemight. To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~mL}\right.$). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL} \times 2)$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated $i n v a c u o$ and the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 10$) to give the title compound $49-5$ as white powder $(0.10 \mathrm{~g}, 40.7 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 449.4[\mathrm{M}+2 \mathrm{H}]^{2+}$; and
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.13(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 10.59(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.95-7.70(\mathrm{~m}, 4 \mathrm{H})$, $7.55(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.38-5.20(\mathrm{~m}$, $2 \mathrm{H}), 4.40-4.30(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.60(\mathrm{~m}, 10 \mathrm{H}), 2.48-1.90(\mathrm{~m}, 8 \mathrm{H}), 1.90-1.60(\mathrm{~m}, 6 \mathrm{H})$, $1.58-1.35(\mathrm{~m}, 10 \mathrm{H}), 0.98-0.75(\mathrm{~m}, 12 \mathrm{H})$
[00703] Example 50

[00704] Synthetic routes

Step 1) the preparation of compound 50-1
[00705] To a solution of compound $18-9(0.94 \mathrm{~g}, 1.86 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ was added DIPEA ($0.97 \mathrm{~mL}, 5.59 \mathrm{mmol}$). After the mixture was stirred for 5 minutes, Boc-L-proline ($0.88 \mathrm{~g}, 4.10 \mathrm{mmol}$) was added. The mixture was stirred at rt for 3 hours and concentrated in vacuo. The residue was purifed by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=3 / 1)$ to give the title compound $50-1$ as pale yellow dope ($1.01 \mathrm{~g}, 70.2 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 772.4[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 88.03-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=$ $8.2,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65-5.15(\mathrm{~m}, 4 \mathrm{H}), 4.52-4.39(\mathrm{~m}, 2 \mathrm{H})$, $3.65-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 2 \mathrm{H}), 2.41-2.20(\mathrm{~m}, 4 \mathrm{H})$, $2.18-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.38(\mathrm{~m}, 28 \mathrm{H})$.

Step 2) the preparation of compound $50-2$
[00706] To a solution of compound $50-1(1.01 \mathrm{~g}, 1.31 \mathrm{mmol})$ in xylene (12 mL) was added $\mathrm{NH}_{4} \mathrm{OAc}(1.51 \mathrm{~g}, 19.60 \mathrm{mmol})$. The mixture was heated at $140^{\circ} \mathrm{C}$ in a sealed tube, then cooled down naturally and concentrated in vacuo. To the residue was added $\mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$. The mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel colomn chromatography ($\mathrm{BCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=30 / 1$) to give the title compound $50-2$ as a yellowish-brown solid $(0.59 \mathrm{~g}, 61.5 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 733.4[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.78-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 2 \mathrm{H})$, $7.20-7.13(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{br}, 2 \mathrm{H}), 3.63-3.36(\mathrm{~m}, 4 \mathrm{H}), 3.02-2.85(\mathrm{~m}, 4 \mathrm{H}), 2.42-1.90(\mathrm{~m}$, $8 \mathrm{H}), 1.62-1.30(\mathrm{~m}, 28 \mathrm{H})$.

Step 3) the preparation of compound 50-3
[00707] To a solution of compound $50-2(0.56 \mathrm{~g}, 0.76 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added a solution of HCl in $\mathrm{EtOAc}(4 \mathrm{M}, 13 \mathrm{~mL})$. The mixture was stirred at rt overnight and pale yellow solid precipitated out. The reaction was monitored by LC-MS until a trace amount of the desired compound was detected. The mixture was then kept still, and the supernatant was discarded. The residue was washed with EtOAc (5 mL) assisted by sonicating in an ultrasonic cleaner, then kept still and the supernatant was discarded. The washing was repeated four more times and the residue was then concentrated in vacuo to give the title compound $50-3$ as a pale yellow solid ($0.51 \mathrm{~g}, 98.8 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 533.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.81-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.10(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.48(\mathrm{~m}, 4 \mathrm{H}), 2.88(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 4 \mathrm{H}), 2.72-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.10(\mathrm{~m}, 2 \mathrm{H})$, 1.45-1.35(m, 10H).

Step 4) the preparation of compound 50-4
[00708] To a mixture of compound $50-3(0.20 \mathrm{~g}, 0.29 \mathrm{mmol})$, compound $1-7-2(0.15 \mathrm{~g}$, $0.88 \mathrm{mmol}), \mathrm{EDCl}(0.23 \mathrm{~g}, 1.18 \mathrm{mmol})$ and $\mathrm{HOBT}(0.12 \mathrm{~g}, 0.88 \mathrm{mmol})$ was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$ via syringe followed by DIPEA $(0.62 \mathrm{~mL}, 3.54 \mathrm{mmol})$ under N_{2} in an ice bath. The reaction mixture was stirred at rt ovemight. To the resulting mixture were added $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL} \times 2)$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{v})=1 / 10)$ to give the title compound $50-4$ as white powder ($0.10 \mathrm{~g}, 40.5 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 845.5[\mathrm{M}-\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.82-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H})$, $7.11(\mathrm{~s}, 1 \mathrm{H}), 5.70-5.59(\mathrm{~m}, 2 \mathrm{H}), 5.32-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.29(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.80(\mathrm{~m}$, $2 \mathrm{H}), 3.78-3.60(\mathrm{~m}, 8 \mathrm{H}), 3.04-2.80(\mathrm{~m}, 6 \mathrm{H}), 2.46-1.90(\mathrm{~m}, 8 \mathrm{H}), 1.52-1.35(\mathrm{~m}, 12 \mathrm{H})$, 0.93-0.78(m, 12H).
[00709] Example 51

[00710] Synthetic routes

DIPEA
1-3

Step 1) the preparation of compound 51-1 $\mathrm{mL})$ in an ice bath were added DIPEA ($0.82 \mathrm{~mL}, 5.0 \mathrm{mmol}$) and compound $3-3(0.64 \mathrm{~g}$,
2.4 mmol) in turn. The mixture was stirred at it for 1 hour and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EtOAc (v/v) $=5 / 1$) to give the title compound $51-1$ as a pale yellow solid ($1.1 \mathrm{~g}, 77.5 \%, \mathrm{HPLC}: 99 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 534.66[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.43(\mathrm{~m}, 5 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.09-5.52(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.34(\mathrm{~m}$, 1H), 3.79-3.83(m, 1 H$), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 2 \mathrm{H}), 1.93-2.35(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.71$ $(\mathrm{m}, 8 \mathrm{H}), 1.02-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H})$.

Step 2) the preparation of compound 51-2
[00712] To a solution of compound $51-1(3.74 \mathrm{~g}, 6.3 \mathrm{mmol})$ in xylene (25 mL) was added ammonium acetate $(4.9 \mathrm{~g}, 63.3 \mathrm{mmol})$. The reaction mixture was refluxed at 140 ${ }^{\circ} \mathrm{C}$ for 5 hours in a sealed tube and cooled to rt . To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$. The mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=1 / 4)$ to give the title compound $51-2$ as a pale yellow solid $(2,5 \mathrm{~g}, 69.4 \%$, HPLC. 96%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 571.72[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.60(\mathrm{brs}, 1 \mathrm{H}), 10.63(\mathrm{brs}, 1 \mathrm{H}), 7.31-7.44(\mathrm{~m}, 6 \mathrm{H}), 6.99$ $(\mathrm{s}, 1 \mathrm{H}), 6.76(\mathrm{~d}, j=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, j=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{q}, j=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ $(\mathrm{s}, 2 \mathrm{H}), 4.30-4.34(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.64(\mathrm{~m}, 1 \mathrm{H})$, $2.95-3.01(\mathrm{~m}, 3 \mathrm{H}), 2.87(\mathrm{~s}, 2 \mathrm{H}), 1.93-2.35(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.71(\mathrm{~m}, 8 \mathrm{H}), 1.02-1.07(\mathrm{~m}$, 1H), $0.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H})$.

Step 3) the preparation of compound 51-3
[00713] To a solution of compound $51-2(1.5 \mathrm{~g}, 2.6 \mathrm{mmol})$ in DMF (15 mL) was added $\mathrm{NaCl}(0.42 \mathrm{~g}, 10.5 \mathrm{mmol})$ in an ice bath. The reaction mixture was stired at $0^{\circ} \mathrm{C}$ for 30 minutes. To the mixture was added $\mathrm{SEMCl}(0.94 \mathrm{~mL}, 5.3 \mathrm{mmol})$. The mixture
was stirred at nt for 2 hours, quenched with ice water (10 mL) and extracted with EtOAc $(30 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{v})=5 / 1$) to give the title compound $51-3$ as coloness slurry ($1.26 \mathrm{~g}, 58.3 \%, \mathrm{HPLC}: 95 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 832.24[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.44(\mathrm{~m}, 5 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H})$, $6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-5.18(\mathrm{~m}, 5 \mathrm{H}), 4.59-4.67(\mathrm{~m}, 2 \mathrm{H})$, $3.92-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.57(\mathrm{~m}, 4 \mathrm{H}), 2.90-3.04(\mathrm{q}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.02$ $(\mathrm{s}, 2 \mathrm{H}), 1.56-1.77(\mathrm{~m}, 8 \mathrm{H}), 0.02(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 18 \mathrm{H})$.

Step 4) the preparation of compound $51-4$
[00714] To a solution of compound $51-3(1.25 \mathrm{~g}, 1.5 \mathrm{mmol})$ in EtOAc (5 mL) were added $\mathrm{CH}_{3} \mathrm{OH}(15 \mathrm{~mL})$ and $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(0.4 \mathrm{~g})$ in turn. The reaction mixture was stirred at it for 5 hours under $\mathrm{H}_{2}(1 \mathrm{~atm})$ and filtered. The filtrate was concentrated in vacuo to give the title compound $51-4$ as a white solid ($1.03 \mathrm{~g}, 92.8 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 742[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-5.17(\mathrm{~m}, 3 \mathrm{H}), 4.59-4.66(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.95(\mathrm{~m}, 2 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 2.87-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{~s}, 2 \mathrm{H}), 2.50-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.19(\mathrm{~m}, 3 \mathrm{H})$, $1.96-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.70(\mathrm{~m}, 8 \mathrm{H}), 0.87-0.95(\mathrm{~m}, 6 \mathrm{H}), 0.79-0.80(\mathrm{~m}, 2 \mathrm{H}), 0.02(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 18 \mathrm{H})$.

Step 5) the preparation of compound 51-5
[00715] To a solution of compound $51-4(1.0 \mathrm{~g}, 1.3 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 $\mathrm{mL})$ was added dropwise pyridine $(0.7 \mathrm{~mL}, 8.7 \mathrm{mmol})$ slowly at $0^{\circ} \mathrm{C}$. Then to the pale
yellow mixture was added dropwise $\mathrm{Tf}_{2} \mathrm{O}(0.9 \mathrm{~mL}, 5.3 \mathrm{mmol})$ slowly at $0^{\circ} \mathrm{C}$. The mixture was stirred at r for 2 hours. To the resulting mixture was added a little water, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/EtOAc (v/v) $=$ $4 / 1)$ to give the title compound $51-5$ as colonless and transparent slurry ($0.48 \mathrm{~g}, 42.3 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}$, $1 \mathrm{H}), 5.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.11(\mathrm{~m}, 1 \mathrm{H}), 5.00-5.03(\mathrm{~m}$, $1 \mathrm{H}), 4.59-4.65(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.57(\mathrm{~m}, 4 \mathrm{H}), 2.93-3.02$ $(\mathrm{m}, 4 \mathrm{H}), 2.53-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.28(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.71(\mathrm{~m}, 8 \mathrm{H}), 0.79-0.94(\mathrm{~m}, 8 \mathrm{H})$, $0.02(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 18 \mathrm{H})$.

Step 6) the preparation of compound 51-6
[00716] To a mixture of compound $\mathrm{Q}-1(2 \mathrm{~g}, 15.3 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(25 \mathrm{~mL})$ was added thionyl chloride ($3.4 \mathrm{~mL}, 46.9 \mathrm{mmol}$) slowly at $0^{\circ} \mathrm{C}$. The reaction mixture was refluxed at $80^{\circ} \mathrm{C}$ for 3.5 hours and concentrated in vacuo to give compound $\mathrm{Q}-2$ as a white solid ($2.76 \mathrm{~g}, 99.5 \%$). The crude product was used for the next step without further purification. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right): 83.68(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 1 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H})$, $3.02(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H})$.
[00717] To a solution of benzyl chloroformate ($3.7 \mathrm{~mL}, 26.3$ mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(10.6 \mathrm{~g}$, 76.7 mmol) in mixed solvents of THF (20 mL) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added compound $\mathrm{Q}-2$ $(3.1 \mathrm{~g}, 17.1 \mathrm{mmol})$ in one portion while the mixture was stirred vigorously. At the end of the addition, the mixture was stirred at rt overnight, adjusted to pH 3 with diluted hydrochlonic acid and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=4 / 1$) to give
compound $\mathrm{Q}-3$ as pale yellow oil $(3 \mathrm{~g}, 62.8 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right): 87.47(\mathrm{~d}, J=8.24 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, y=8.24 \mathrm{~Hz}, 2 \mathrm{H}), 7.24$ $(\mathrm{m}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{t}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H})$, $3.32(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H})$.
[00718] To a solution of compound $Q-3(1.0 \mathrm{~g}, 3.6 \mathrm{mmol})$ in $\mathrm{DCM}(20 \mathrm{~mL})$ was added Dess-Martin $(3.0 \mathrm{~g}, 7.1 \mathrm{mmol})$ slowly in an ice bath. The reaction mixture was stirred at it for 1 hour and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EA}(\mathrm{v} / \mathrm{v})=5 / 1$) to give compound $\mathrm{Q}-4$ as yellow oil $(0.79 \mathrm{~g}, 79.5 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right): \delta 7.47(\mathrm{~d}, J=8.24 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.24 \mathrm{~Hz}, 2 \mathrm{H}), 7.24$ $(\mathrm{m}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{t}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}$, $1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H})$.
[00719] To a solution of compound $\mathrm{Q}-4(1.0 \mathrm{~g}, 3.6 \mathrm{mmol})$ in toluene (20 mL) in a flask equipped with Dean-Stock trap were added ethylene glycol ($0.8 \mathrm{~mL}, 15.7 \mathrm{mmol}$) and $\mathrm{TsOH}(0.14 \mathrm{~g}, 0.8 \mathrm{mmol})$ in turn. The reaction mixture was refluxed overnight. After the reaction was complete, the mixture was diluted with EtOAc (10 mL), and washed with saturated NaHCO_{3} aqueous solution $(10 \mathrm{~mL})$ and brine (15 mL) separately. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacho and the residue was purified by silica gel column chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{v})=6 / 1)$ to give compound $\mathrm{Q}-5$ as colorless and sticky liquid (0.54 g , 46.7%). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right): 87.47(\mathrm{~d}, 2 \mathrm{H}, J=8.24 \mathrm{~Hz}), 7.38(\mathrm{~d}, 2 \mathrm{H}, J=8.24 \mathrm{~Hz}), 7.24$ $(\mathrm{m}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{t}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~m}$, $1 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H})$.
[00720] To a solution of compound $\mathrm{Q}-5(0.59 \mathrm{~g}, 1.8 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(150 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(0.5 \mathrm{~g})$. The reaction mixture was stired at rt under H_{2} overnight and filtered. The filtrate was concentrated in vacuo to give compound $\mathrm{Q}-6(0.34 \mathrm{~g}, 98.9 \%)$. The crude product was used for the next step without further purification. The compound was characterized by the following spectroscopic data
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right): 84.18(\mathrm{t}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, $3.38(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H})$.
[00721] To a solution of compound Q-6 ($3.48 \mathrm{~g}, 18.6 \mathrm{mmol}$) in DCM (50 mL) in an ice bath were added compound Q-7 ($3.26 \mathrm{~g}, 18.6 \mathrm{mmol}$), DIPEA ($12.3 \mathrm{~mL}, 74.4 \mathrm{mmol}$) and $\operatorname{EDCl}(7.1 \mathrm{~g}, 37.0 \mathrm{mmol})$ in turn. The reaction mixture was stirred at rt overnight, washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=3 / 1$) to give compound $\mathrm{Q}-8$ as pale yellow oil $(2.5 \mathrm{~g}, 39.1 \%)$. The compound was characterized by the following spectroscopic data
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right): 89.80(\mathrm{~s}, \mathrm{H}), 4.54(\mathrm{~d}, 1 \mathrm{H}, J=7.25 \mathrm{~Hz}), 4.28(\mathrm{~m}, 1 \mathrm{H})$, $4.06(\mathrm{~m}, 4 \mathrm{H}), 3.76(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 0.87$ $(\mathrm{m}, 3 \mathrm{H}), 0.81(\mathrm{~m}, 3 \mathrm{H})$.
[00722] To a solution of compound $\mathrm{Q}-8(0.9 \mathrm{~g}, 2.6 \mathrm{mmol})$ in mixed solvents of THF $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added $\mathrm{LiOH}(0.12 \mathrm{~g}, 5.0 \mathrm{mmol})$. The reaction mixture was stired at rt ovemight, then adjusted to pH 2 with diluted hydrochloric acid and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo to give compound Q-9 as a white solid $(0.85 \mathrm{~g}, 99.0 \%)$. The crude product was used for the next step without further purification. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right): 89.80(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~d}, 1 \mathrm{H}, J=7.25 \mathrm{~Hz}), 4.28(\mathrm{~m}, 1 \mathrm{H})$, $4.06(\mathrm{~m}, 4 \mathrm{H}), 3.76(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~m}, 3 \mathrm{H}), 0.81$ (m, 3H).
[00723] To a solution of compound $\mathrm{Q}-9(1.78 \mathrm{~g}, 5.4 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})$ was
added compound Q-10 ($1.65 \mathrm{~g}, 5.9 \mathrm{mmol}$). Then to the mixture was added DIPEA (1.1 $\mathrm{mL}, 6.7 \mathrm{mmol}$) slowly at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at ot overnight and concentrated in wacuo. The residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=3 / 1)$ to give compound $\mathrm{Q}-11$ as a pale yellow solid $(2.76 \mathrm{~g}, 97.3 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right) ; 89.30(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, 2 \mathrm{H}, J=8.27 \mathrm{~Hz}), 7.71(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.25 \mathrm{~Hz}), 5.34-5.72(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~d}, 1 \mathrm{H}), 4.29(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~m}, 2 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{~m}, 3 \mathrm{H})$.
[00724] A suspension of compound $\mathrm{Q}-11(3.0 \mathrm{~g}, 5.7 \mathrm{mmol})$ and ammonium acetate $(4.4 \mathrm{~g}, 57.1 \mathrm{mmol})$ in $x y l e n e(20 \mathrm{~mL})$ was heated at $130^{\circ} \mathrm{C}$ overnight in a sealed tabe. The resulting mixture was diluted with EtOAc (40 mL), washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=3 / 1)$ to give compound $\mathrm{Q}-12$ as a claybank solid $(2.6 \mathrm{~g}, 89.9 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right): 89.30(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, 2 \mathrm{H}, J=8.27 \mathrm{~Hz}), 7.71(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.25 \mathrm{~Hz}), 4.52(\mathrm{~d}, 1 \mathrm{H}), 4.29(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~m}$, $1 \mathrm{H}), 2.65(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{~m}, 3 \mathrm{H})$.
[00725] A mixture of compound $\mathrm{Q}-12(4.0 \mathrm{~g}, 7.9 \mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.64$ $\mathrm{g}, 0.8 \mathrm{mmol}$, anhydrous potassium acetate ($1.94 \mathrm{~g}, 19.8 \mathrm{mmol}$) and bis(pinacolato)diboron ($3.11 \mathrm{~g}, 12.2 \mathrm{mmol}$) in DMF (50 mL) was stirred at $90^{\circ} \mathrm{C}$ for 4 hours under N_{2} and cooled to rt . To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The mixture was extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic phases were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacho and the residue was purified by silica gel column chromatography $(\operatorname{PE} / \mathrm{DCM}(\mathrm{v} / \mathrm{V})=4 / 1)$ to give the title compound $51-6$ as a white solid $(4.15 \mathrm{~g}, 94.7 \%$,

HPLC: 95%). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right): 89.30(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, 2 \mathrm{H}, J=8.27 \mathrm{~Hz}), 7.71(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.25 \mathrm{~Hz}), 4.52(\mathrm{~d}, 1 \mathrm{H}), 4.29(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~m}$, $1 \mathrm{H}), 2.65(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 12 \mathrm{H}), 0.91(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{~m}, 3 \mathrm{H})$

Step 7) the preparation of compound 51-7
[00726] To a mixture of compound $51-5(0.47 \mathrm{~g}, 0.54 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.037 \mathrm{~g}, 0.03$ mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.22 \mathrm{~g}, 1.6 \mathrm{mmol})$ under N_{2} were added a solution of compound $51-6$ $(0.53 \mathrm{~g}, 0.96 \mathrm{mmol})$ in 1,2-dimethoxyethane $(6 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ via syringe. The reaction mixture was refluxed at $90^{\circ} \mathrm{C}$ for 3 hours and cooled to rt . To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The mixture was extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography $\left(\mathrm{PE} / \mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{v} / \mathrm{v})=2 / 1\right)$ to give the title compound $51-7$ as a pale yellow solid ($0.18 \mathrm{~g}, 28.9 \%$, HPLC: 95%). The compound was characterized by the following spectroscopic data:

MS-EST: $m / z 1022.33[\mathrm{M}+\mathrm{H}]$, and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.77-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{~s}, 2 \mathrm{H}), 5.87(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.14(\mathrm{t}, J=4.0 \mathrm{~Hz}, \mathrm{H}), 5.03(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.11-4.13(\mathrm{~m}, 1 \mathrm{H})$, $3.96-4.07(\mathrm{~m}, 7 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.59(\mathrm{~m}, 6 \mathrm{H}), 2.93-3.06(\mathrm{~m}, 4 \mathrm{H})$, $2.58-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.17(\mathrm{~m}, 6 \mathrm{H}), 1.53-1.64(\mathrm{~m}, 8 \mathrm{H}), 0.78-0.95(\mathrm{~m}$, $12 \mathrm{H}), 0.02(\mathrm{~d}, j=2.0 \mathrm{~Hz}, 18 \mathrm{H})$.

Step 8) the preparation of compound 51-8
[00727] To a solution of compound $51-7(0.13 \mathrm{~g}, 0.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added trifluoroacetic acid (4 mL). The reaction mixture was stirred at rt for 24 hours, then concentrated in vacuo, adjusted to $\mathrm{pH} 7-8$ with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution and extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic phases were dried over -324-
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 10$) to give the title compound $51-8$ as a pale yellow solid ($0.07 \mathrm{~g}, 69.6 \%$ HPLC: 95.25%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 892.2[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 87.63 (brs, 1 H$), 7.33-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.15(\mathrm{~m}, 4 \mathrm{H})$, $6.97-7.00(\mathrm{~m}, 1 \mathrm{H}), 5.47-5.50(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{~m}, 1 \mathrm{H}), 5.28-5.30(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.47(\mathrm{~m}, 2 \mathrm{H})$, $4.04-4.08(\mathrm{~m}, 4 \mathrm{H}), 3.84-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 2.91-2.97(\mathrm{~m}, 6 \mathrm{H}), 2.05-2.32(\mathrm{~m}, 8 \mathrm{H})$, $1.61-1.65(\mathrm{~m}, 8 \mathrm{H}), 0.90-0.93(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 12 \mathrm{H})$.
[00728] Example 52

[00729] Synthetic routes

[00730] A solution of compound $24-1(0.5 \mathrm{~g}, 0.66 \mathrm{mmol}$), bis(pinacolato)diboron (0.233 $\mathrm{g}, 0.92 \mathrm{mmol}), \mathrm{Pd}(d \mathrm{ppf}) \mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.054 \mathrm{~g}, 0.07 \mathrm{mmol})$ and $\mathrm{KOAc}(0.193 \mathrm{~g}, 1.97 \mathrm{mmol})$ in DMF (10 mL) was strred at $90^{\circ} \mathrm{C}$ for 4 hours under N_{2}. Insoluble solid was filtered off through a Celite pad. The filtrate was diluted with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic phases were dried over anbydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 1)$ to give compound $52-1(0.4 \mathrm{~g}$, 81.9%. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 740.5[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.82-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.42(\mathrm{~m}, 2 \mathrm{H})$, $7.28-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.14(\mathrm{~m}, 1 \mathrm{H}), 5.87-5.88(\mathrm{~m}, 0.5 \mathrm{H}), 5.44-5.45$ $(\mathrm{m}, 0.5 \mathrm{H}), 5.23-5.24(\mathrm{~m}, 1 \mathrm{H}), 5.00-5.01(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.59(\mathrm{~m}, 2 \mathrm{H})$, $3.02(\mathrm{~s}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 2 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 8 \mathrm{H}), 1.36-1.44(\mathrm{~m}, 9 \mathrm{H})$, $1.26-1.28(\mathrm{~m}, 12 \mathrm{H}), 0.88-0.89(\mathrm{~m}, 2 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H})$.

Step 2) the preparation of compound 52-2
[00731] To a solution of compound $\mathrm{S}-1(10.0 \mathrm{~g}, 53.2 \mathrm{mmol})$, compound $\mathrm{S}-2(11.5 \mathrm{~g}, 53.4$ mmol) and HATU ($40.46 \mathrm{~g}, 106.4 \mathrm{mmol}$) in THF (150 mL) was added DIPEA ($10.0 \mathrm{~mL}, 60.5$ mol) in an ice bath. The mixture was stired for 0.5 hour in the ice bath and at n for another 3 bours. The mixture was quenched with water (30 mL), concentrated in vacuo and extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo to give crude product, which was used for the next step without further purification.
[00732] A solution of the crude product in acetic acid glacial (100 mL) was stirred at $120^{\circ} \mathrm{C}$ for 16 hours, then basified with solid NaHCO_{3} and extracted with EtOAc (80 mL x 3). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column
chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{v})=1 / 3)$ to give compound $\mathrm{S}-3(3.6 \mathrm{~g}, 21.89 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 310.0[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 88.37-8.38(\mathrm{~m}, 1 \mathrm{H}), 8.10-8.12(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.41(\mathrm{~m}, 1 \mathrm{H})$, 3.53-3.65(m, 2H), 2.12-2.26(m, 7H).
[00733] A mixture of compound $\mathrm{S}-3(6.4 \mathrm{~g}, 20.7 \mathrm{mmol})$ in concentrated hydrochloric acid (25 mL) was stirred at $100^{\circ} \mathrm{C}$ for 15 hours and concentrated in vacuo to give crude product, which was used for the next step without further purification. To a solution of the crude product in mixed solvents of THF (60 mL) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added NaHCO_{3} ($19.8 \mathrm{~g}, 235.7 \mathrm{mmol}$). After the mixture was stirred for 10 minutes, $\mathrm{Boc}_{2} \mathrm{O}(5.4 \mathrm{~mL}, 23.5$ mmol) was added dropwise. The mixture was stirred overnight, then concentrated in vacuo and extracted with EtOAc ($60 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 2$) to give compound $52-2(6.0 \mathrm{~g}, 78.9 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 368.1[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 88.43-8.52(\mathrm{~m}, 1 \mathrm{H}), 8.08-8.12(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.14(\mathrm{~m}, 1 \mathrm{H})$, $3.46-3.48(\mathrm{~m}, 2 \mathrm{H}), 2.00-2.25(\mathrm{~m}, 4 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$.

Step 3) the preparation of compound 52-3
[00734] A suspension of compound $52-1(0.03 \mathrm{~g}, 0.04 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.0047 \mathrm{~g}$, $0.004 \mathrm{mmol})$, compound $52-2(0.016 \mathrm{~g}, 0.044 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.017 \mathrm{~g}, 0.12 \mathrm{mmol})$ in mixed solvents of DME (1 mL) and $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ was stirred at $90^{\circ} \mathrm{C}$ for 5 hours. Insoluble solid was filtered off through a Celite pad. The filtrate is diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\operatorname{PE/EtOAc}(\mathrm{v} / \mathrm{v})=1 / 4$) to give compound $52-3(0.032 \mathrm{~g}, 89.2 \%)$. The compound was characterized by the following

MS-ESI: $m / z 900.5[\mathrm{M}+\mathrm{H}]$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.85-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.57(\mathrm{~m}, 4 \mathrm{H})$, $5.87 .5 .88(\mathrm{~m}, 0.5 \mathrm{H}), 5.43-5.44(\mathrm{~m}, 0.5 \mathrm{H}), 5.23(\mathrm{~m}, 2 \mathrm{H}), 5.00-5.01(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.76$ $(\mathrm{m}, 2 \mathrm{H}), 3.51-3.59(\mathrm{~m}, 4 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 2 \mathrm{H}), 2.42-1.98(\mathrm{~m}, 8 \mathrm{H}), 1.71-1.62(\mathrm{~m}$, $8 \mathrm{H}), 1.36-1.44(\mathrm{~m}, 18 \mathrm{H}), 0.88-0.89(\mathrm{~m}, 2 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H})$.

Step 4) the preparation of compound 52-4
[00735] To a solution of compound $52-3(0.21 \mathrm{~g}, 0.23 \mathrm{mmol})$ in EtOAc (5 mL) was added a solution of HCl in $\operatorname{EtOAc}(6 \mathrm{M}, 20 \mathrm{~mL})$ at rt . The mixture was stirred for 4 hours and concentrated in vacuo. The residue was washed with EtOAc (30 mL) to give compound $52-4$ as a white solid $(0.163 \mathrm{~g}, 98.9 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 570.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, 2 \mathrm{H}), 7.66-7.52(\mathrm{~m}, 6 \mathrm{H}), 5.38-5.44$ $(\mathrm{m}, 2 \mathrm{H}), 3.68-3.59(\mathrm{~m}, 4 \mathrm{H}), 3.08(\mathrm{~s}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 2 \mathrm{H}), 2.89-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.41-2.20(\mathrm{~m}$, $4 \mathrm{H}), 1.61-1.58(\mathrm{~m}, 8 \mathrm{H}), 1.36-1.44(\mathrm{~m}, 18 \mathrm{H}), 0.88-0.89(\mathrm{~m}, 2 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H})$

Step 5) the preparation of compound $52-5$
[00736] To a suspension of compound $52-4(0.206 \mathrm{~g}, 0.29 \mathrm{mmol})$, compound 1-7-2 ($10.15 \mathrm{~g}, 0.86 \mathrm{mmol}$) and $\operatorname{EDCL}(0.192 \mathrm{~g}, 1.0 \mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ was added DIPEA $(0.50 \mathrm{~mL})$ slowly in an ice bath. The mixture was stirred at rt ovemight, quenched with saturated NaHCO_{3} aqueous solution (10 mL) and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (EtOAc) to give the title compound $52-5$ as a white solid $(0.08 \mathrm{~g}$, 31.2%, HPLC: 94.9%). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.72$ $(\mathrm{m}, 1 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 2 \mathrm{H}), 5.67-5.69(\mathrm{~m}, 1 \mathrm{H})$, $5.51-5.22(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.07-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}$, $6 \mathrm{H}), 3.00(\mathrm{~s}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 2 \mathrm{H}), 1.91-2.42(\mathrm{~m}, 8 \mathrm{H}), 1.61-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.58(\mathrm{~m}, 8 \mathrm{H})$, $1.23-1.29(\mathrm{~m}, 12 \mathrm{H})$.
[00737] Example 53

[00738] Synthetic routes

Compounds disclosed herein can be prepared by an analogous procedure to that described in Example 8.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.1518(\mathrm{~s}, 2 \mathrm{H}), 2.8309(\mathrm{~s}, 4 \mathrm{H}), 1.5131-1.5572(\mathrm{~m}, 10 \mathrm{H})$, 0.2519 ($\mathrm{s}, 18 \mathrm{H}$).
[00741] Compound 53-2 was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta 7.2118(\mathrm{~s}, 2 \mathrm{H}), 3.2739(\mathrm{~s}, 2 \mathrm{H}), 2.8739(\mathrm{~s}, 4 \mathrm{H}), 1.254-1.4643$ (m, 10H).
[00742] Compound $53-3$ was characterized by the following spectroscopic data:
MS-ESI: $m / z 705.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right): \delta 10.62-10.67(\mathrm{br}, 2 \mathrm{H}), 7.22-7.25(\mathrm{~m}, 4 \mathrm{H}), 4.92(\mathrm{br}, 2 \mathrm{H}), 3.379$ (br, 4 H$), 2.94(\mathrm{~s}, 4 \mathrm{H}), 2.123$ (br, 4 H$), 1.896$ (br, 4H), 1.24-1.49(m, 28H).
[00743] Compound 53-4 was characterized by the following spectroscopic data:
MS-ESI: $m / z 505.3[\mathrm{M}+\mathrm{H}]^{+}$; and
$\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 88.02-8.08(\mathrm{br}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{br}, 2 \mathrm{H}), 3.57(\mathrm{br}, 4 \mathrm{H})$, $3.06(\mathrm{~s}, 4 \mathrm{H}), 2.66(\mathrm{br}, 2 \mathrm{H}), 2.46(\mathrm{br}, 2 \mathrm{H}), 2.35(\mathrm{br}, 2 \mathrm{H}), 2.22(\mathrm{br}, 2 \mathrm{H}), 1.254-1.4643(\mathrm{~m}, 10 \mathrm{H})$.
[00744] Compound $53-5$ was characterized by the following spectroscopic data:
MS-ESE: $m / z 820.3[\mathrm{MH}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): 87.19-7.23$ ($\mathrm{m}, 4 \mathrm{H}$), $5.07-5.09$ (br, 2 H$), 4.57$ (br, 2 H), $4.18-4.20(\mathrm{~d}, 2 \mathrm{H}, J=7.36 \mathrm{~Hz}), 3.94-3.96(\mathrm{br}, 2 \mathrm{H}), 3.80-3.83(\mathrm{br}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 6 \mathrm{H}), 2.90-2.91$ (br, 4 H$), 2.26-2.28(\mathrm{br}, 4 \mathrm{H}), 2.16-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.99-2.05(\mathrm{~m}, 6 \mathrm{H}), 1.27-1.32(\mathrm{~m}, 10 \mathrm{H})$, $0.87-0.91(\mathrm{~m}, 12 \mathrm{H})$.
[00745] Example 54

[00746] Synthetic routes

Step 1) the preparation of compound 54-1
[00747] A mixture of 2-bromo-1-(4-bromophenyl)ethanone ($1.62 \mathrm{~g}, 5.829 \mathrm{mmol}$), compound $13-1(1.5 \mathrm{~g}, 5.550 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(40.0 \mathrm{~mL})$ was cooled down in an ice bath under N_{2}. To the mixture was added DIPEA ($1.1 \mathrm{~mL}, 6.656 \mathrm{mmol}$) slowly. At the end of the addition, the ice bath was removed and the mixture was stirred at rt for 4.0 hours. To the mixture was added $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL}$) and the mixture was concentrated in vacuo. To the residue was added $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The mixture was extracted with EtOAc ($100 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dred over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 2$) to give the title compound $54-1$ as a pale yellow solid ($1.94 \mathrm{~g}, 72.6 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 482.1[\mathrm{M}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.73(\mathrm{~d}, j=8.52 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, j=8.56 \mathrm{~Hz}, 2 \mathrm{H}), 5.48$ $(\mathrm{d}, J=16.44 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=16.56 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=$ $11.68 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.59(\mathrm{t}, J=6.36 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{br}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.73(\mathrm{~m}$, $1 \mathrm{H}), 2.45-2.50(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 1 \mathrm{H}), 1.77-1.84(\mathrm{~m}, 1 \mathrm{H})$, $1.24-1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.07-1.08$ (br, 1 H$), 1.03-1.05(\mathrm{~d}, J=6.76 \mathrm{~Hz}, 3 \mathrm{H})$,
$0.92-0.93(\mathrm{~d}, J=6.76 \mathrm{~Hz}, 3 \mathrm{H})$.

Step 2) the preparation of compound 54-2
[00748] To a solution of compound $54-1(1.94 \mathrm{~g}, 4.030 \mathrm{mmol})$ in xylene (40.0 mL) was added $\mathrm{NH}_{4} \mathrm{OAc}(6.226 \mathrm{~g}, 80.77 \mathrm{mmol})$. The mixture was refluxed at $135{ }^{\circ} \mathrm{C}$ overnight, cooled down naturally and concentrated in vacuo. To the residue was added $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$. The mixture was extracted with EtOAc ($50 \mathrm{~m} \mathrm{x} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{V})=1 / 2$) to give the title compound $54-2$ as a yellow solid ($1.58 \mathrm{~g}, 85.0 \%$). The compound was characterized by the following spectroscopic data:

MS-ESE: $m z 462.1[\mathrm{M}+\mathrm{H}]^{+}$, and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.35(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.64(\mathrm{~d}, j=8.52 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.454(\mathrm{~d}, J$ $=1.84 \mathrm{~Hz}, 2 \mathrm{H}), 7.157(\mathrm{~s}, 1 \mathrm{H}), 5.46-5.54(\mathrm{br}, 2 \mathrm{H}), 4.53-4.57(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.54$ (m, 1H), 2.04-2.09(m, 2H), 1.85-1.89 (br, 1H), 1.24-1.28(t, J=7.08 Hz, 2H), 1.02-1.04 (br, 1H), 0.81-0.85(m, 6H).

Step 3) the preparation of compound 54-3
[00749] To a mixture of compound $54-2(1.545 \mathrm{~g}, 3.349 \mathrm{mmol})$, bis(pinacolato)diboron $(1.225 \mathrm{~g}, 4.8246 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.263 \mathrm{~g}, 0.3216 \mathrm{mmol})$ and $\mathrm{KOAc}(0.947 \mathrm{~g}$, 9.65 mmol) was added DMF (20.0 mL) via syringe under N_{2}. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ overnight and cooled down naturally. To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}$ $(80.0 \mathrm{~mL})$. The mixture was extracted with EtOAc ($40.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/EtOAc $(v / v)=1 / 2)$ to give the title compound $54-3$ as a beige solid
$(1.34 \mathrm{~g}, 78.68 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESE: $m / z 511.3[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.31(\mathrm{~s}, 1 \mathrm{H}), 7.74-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.49-5.59(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.58(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.10(\mathrm{~m}$, $2 \mathrm{H}), 1.89-1.91$ (br, 1 H$), 1.35(\mathrm{~s}, 12 \mathrm{H}), 1.24-1.27(\mathrm{t}, J=7.08 \mathrm{~Hz}, 2 \mathrm{H}), 1.02-1.04$ (br, 1H), $0.81-0.85(\mathrm{~m}, 6 \mathrm{H})$.

Step 4) the preparation of compound 54-4
[00750] To a mixture of compound $1-11(0.772 \mathrm{~g}, 1.73 \mathrm{mmol})$, compound $54-3(0.8 \mathrm{~g}$, $1.5735 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.182 \mathrm{~g}, 0.15749 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.656 \mathrm{~g}, 4.7464 \mathrm{mmol})$ under N_{2} were added DME (15.0 mL) and $\mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{~mL})$ via syringe. The mixture was stirred at $90^{\circ} \mathrm{C}$ overnight, cooled down naturally and concentrated in vacuo. To the residue was added $\mathrm{H}_{2} \mathrm{O}(50.0 \mathrm{~mL}$). The mixture was extracted with EtOAc ($30.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{V})=1 / 2$) to give the title compound $54-4$ as a beige solid ($0.6288 \mathrm{mg}, 57.03 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 701.7[\mathrm{M}+\mathrm{H}]$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.82-7.84(\mathrm{~d}, J=8.16 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.69(\mathrm{~m}, 3 \mathrm{H})$, $7.53-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.40(\mathrm{~m}, 2 \mathrm{H}), 5.48-5.56(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.57$ $(\mathrm{m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.95-2.99(\mathrm{~d}, J=14.12 \mathrm{~Hz}, 2 \mathrm{H}), 2.50-2.51(\mathrm{br}, 1 \mathrm{H}), 1.85-1.95$ (br, $1 \mathrm{H}), 1.64-1.68(\mathrm{br}, 5 \mathrm{H}), 1.256(\mathrm{~s}, 3 \mathrm{H}), 0.81-0.88(\mathrm{br}, 7 \mathrm{H})$.

Step 5) the preparation of compound 54-5
[00751] To a mixture of compound $54.4(0.1981 \mathrm{~g}, 0.2827 \mathrm{mmol})$, compound $13-4$ $(0.15 \mathrm{~g}, 0.311 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.033 \mathrm{~g}, 0.0285 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.118 \mathrm{~g}, 0.854$ mmol) under N_{2} were added $\mathrm{DME}(5.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ via syringe. The mixture
was stirred at $90^{\circ} \mathrm{C}$ overnight, cooled down naturally and concentrated in vacuo. To the residue was added $\mathrm{H}_{2} \mathrm{O}(50.0 \mathrm{~mL})$. The mixture was extracted with EtOAc ($30.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=50 / 1$) to give the title compound $54-5$ as a beige solid ($166.5 \mathrm{mg}, 64.9 \%$, HPLC: 97.07%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 454.2[\mathrm{M}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.77-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.33(\mathrm{~m}, 3 \mathrm{H})$, $5.72-5.75(\mathrm{~d}, J=10.88 \mathrm{~Hz}, 1 \mathrm{H}), 5.54-5.56(\mathrm{br}, 1 \mathrm{H}), 5.44-5.66(\mathrm{br}, 2 \mathrm{H}), 4.56-4.61(\mathrm{~m}$, $2 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 3.36-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.01-3.03(\mathrm{~m}, 4 \mathrm{H}), 2.54-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.10$ $(\mathrm{m}, 4 \mathrm{H}), 1.91-1.94(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.20(\mathrm{br}, 2 \mathrm{H}), 1.25-1.33(\mathrm{br}, 10 \mathrm{H}), 1.05-1.15(\mathrm{br}, 5 \mathrm{H})$, $0.81-0.85(\mathrm{~m}, 12 \mathrm{H})$.
[00752] Example 55

[00753] Synthetic routes

Step 1) the preparation of compound 55-1
[00754] A mixture of 2-bromo-1-(4-bromophenyl)ethanone ($0.308 \mathrm{~g}, 1.1081 \mathrm{mmol}$), compound $44-5(0.3 \mathrm{~g}, 1.0055 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(30.0 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ in an ice bath under N_{2}. To the mixture was added DIPEA ($0.21 \mathrm{~mL}, 1.2081 \mathrm{mmol}$) slowly. At the end of the addition, the ice bath was removed. The reaction mixture was stirred at it for 4.0 hours and to the mixture was added $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The mixture was concentrated in vacuo. To the residue was added $\mathrm{H}_{2} \mathrm{O}$ (20 mL). The mixture was extracted with EtOAc $(50 \mathrm{~mL} \times 3)$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 2$) to give the title compound $55-1$ as a pale yellow solid $(0.3326 \mathrm{~g}, 66.7 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 496.3[\mathrm{M}+2 \mathrm{H}]^{2+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.75(\mathrm{~d}, J=8.52 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.56 \mathrm{~Hz}, 2 \mathrm{H}), 5.45$ $(\mathrm{d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=16.56 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.59(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~m}$, $1 \mathrm{H}), 2.65-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 1 \mathrm{H}), 1.77-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.49$ $(\mathrm{m}, 1 \mathrm{H}), 1.24-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.07-1.08(\mathrm{br}, 1 \mathrm{H}), 1.03-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.91-0.89(\mathrm{~m}, 6 \mathrm{H})$.

Step 2) the preparation of compound 55-2

[00755] To a solution of compound $55-1(0.3326 \mathrm{~g}, 0.6714 \mathrm{mmol})$ in xylene (15.0 $\mathrm{mL})$ was added $\mathrm{NH}_{4} \mathrm{OAc}(1.035 \mathrm{~g}, 13.43 \mathrm{mmol})$. The mixture was refluxed at $135^{\circ} \mathrm{C}$ ovemight, cooled down naturally and concentrated in vacuo. To the residue was added $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/EtOAc (v/v) $=1 / 2$) to give the title compound $55-2$ as a yellow solid $(0.188 \mathrm{~g}, 58.94 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 476.3[\mathrm{M}+\mathrm{H}]$; and
$\left.{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CDCl})\right): 810.35(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.64(\mathrm{~d}, J=8.52 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.454$ $(\mathrm{d}, J=1.84 \mathrm{~Hz}, 2 \mathrm{H}), 7.157(\mathrm{~s}, 1 \mathrm{H}), 5.46-5.54(\mathrm{br}, 2 \mathrm{H}), 4.53-4.57(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $3.58(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.54(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.47(\mathrm{~m}, 2 \mathrm{H})$, 0.81-0.85 (m, 6H).

Step 3) the preparation of compound 55-3
[00756] To a mixture of compound $55-2(0.1881$ g, 0.3957 mmol), bis(pinacolato)diboron ($150.75 \mathrm{mg}, 0.596 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.033 \mathrm{~g}, 0.04041$ mmol) and KOAc $(0.11645 \mathrm{~g}, 1.187 \mathrm{mmol})$ was added DMF $(10.0 \mathrm{~mL})$ via syringe under N_{2}. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ ovemight and cooled down naturally. To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}(50.0 \mathrm{~mL})$. The mixture was extracted with EtOAc (40.0 $\mathrm{mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified
by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 2$) to give the title compound $55-3$ as a beige solid $(0.2 \mathrm{~g}, 96.75 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 523.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.48(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.43(\mathrm{~d}, j=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.39-5.49(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.58(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H})$, $2.47-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}$, $12 \mathrm{H}), 0.81-0.85(\mathrm{~m}, 6 \mathrm{H})$.

Step 4) the preparation of compound 55-4
[00757] To a mixture of compound $1(0.09396 \mathrm{~g}, 0.2105 \mathrm{mmol})$, compound $55-3$ (0.1 $\mathrm{g}, 0.1914 \mathrm{mmol}), \mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)_{4}(22.1 \mathrm{mg}, 0.01914 \mathrm{mmol}) \text { and } \mathrm{K}_{2} \mathrm{CO}_{3}(79.82 \mathrm{mg}, 0.574}$ mmol) were added DME $(5.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ via syringe under N_{2}. The mixture was stirred at $90^{\circ} \mathrm{C}$ overnight, cooled down naturally and concentrated in vacuo. To the residue was added $\mathrm{H}_{2} \mathrm{O}(15.0 \mathrm{~mL})$. The mixture was extracted with EtOAc $(30.0 \mathrm{~mL} \times 3)$. The combined organic phases were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography $(\operatorname{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 2)$ to give the title compound $55-4$ as a beige solid ($0,109 \mathrm{~g}, 79.7 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 701.7[\mathrm{M}+\mathrm{H}]$; and
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.84-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 1 \mathrm{H})$, $7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.27(\mathrm{~m}, 1 \mathrm{H}), 4.59-4.57$ $(\mathrm{m}, 1 \mathrm{H}), 4.34-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.62(\mathrm{~m}, 1 \mathrm{H})$, $3.20-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 2 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.13$ $(\mathrm{m}, 2 \mathrm{H}), 1.96-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 4 \mathrm{H}), 0.88-0.86(\mathrm{~m}, 6 \mathrm{H})$.

Step 5) the preparation of compound 55-5
[00758] A mixture of compound $44.5(0.583 \mathrm{~g}, 1.9542 \mathrm{mmol})$, HATU ($0.782 \mathrm{~g}, 2.0566$ mmol) in THF (20 mL) was cooled down in an ice bath under N_{2}. To the mixture was added DIPEA ($0.41 \mathrm{~mL}, 2.481 \mathrm{mmol}$) slowly. At the end of the addition, the ice bath was removed. The reaction mixture was stirred at it for 0.5 hour and cooled down in an ice bath. To the mixture was added a solution of 4 -bromo-1,2-benzenediamine ($0.4024 \mathrm{~g}, 2,152 \mathrm{mmol}$) in THF (10 mL) slowly. The mixture was stirred at rt for 2.0 hours. To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and the mixture was concentrated in vacuo. To the residue was added $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtate was concentrated in vacuo and the residue was purified by silica gel column chromatography $(\operatorname{PE} / E t O A c(v / v)=4 / 1)$ to give compound $M-1$ as brown oil $(1.34 \mathrm{~g})$.
[00759] A solution of compound M-1 (1.34 g) in acetic acid glacial (40 mL) was stirred at $40^{\circ} \mathrm{C}$ overnight and then cooled down in an ice bath. The mixture was quenched with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ saturated solution (20 mL) until there was no more gas evolution. To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The mixture was extracted with EtOAc ($150 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 1$) to give compound M-2 as a brown solid ($0.5983 \mathrm{~g}, 68.06 \%$). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 450.3[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.59-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 2 \mathrm{H}), 5.41-5.38(\mathrm{~m}, 2 \mathrm{H})$, $4.35-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.62(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.65(\mathrm{~m}$, $1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.84(\mathrm{~m}, 6 \mathrm{H})$.
[00760] To a mixture of compound M-2 $(0.147 \mathrm{~g}, 0.327 \mathrm{mmol})$, bis(pinacolato)diboron
$(0.125 \mathrm{~g}, 0.4922 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.027 \mathrm{~g}, 0.0327 \mathrm{mmol})$ and $\mathrm{KOAc}(0.097 \mathrm{~g}$, 0.9884 mmol) was added DMF (5.0 mL) via syringe under N_{2}. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ overnight and cooled down naturally. To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}$ $(20.0 \mathrm{~mL})$. The mixture was extracted with EtOAc ($30.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{v})=1 / 2)$ to give compound $55-5$ as a beige solid $(0.09 \mathrm{~g}$, 55.5%. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 497.3[\mathrm{M}+\mathrm{H}]^{+}$; and
$\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(400} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.85-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.68(\mathrm{~m}, 2 \mathrm{H}), 5.45-5.41(\mathrm{~m}, 2 \mathrm{H})$, $4.56-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.62(\mathrm{~m}$, $1 \mathrm{H}), 3.04-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 1 \mathrm{H})$, $1.46-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 12 \mathrm{H}), 0.88-0.84(\mathrm{~m}, 6 \mathrm{H})$.
6) the preparation of compound 55-6
[00761] To a mixture of compound $55-4(0.05 \mathrm{~g}, 0.06995 \mathrm{mmol})$, compound $55-5$ $(0.039 \mathrm{~g}, 0.0786 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.008 \mathrm{~g}, 0.007 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.03 \mathrm{~g}, 0.21$ mmol) were added DME $(5.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ via syringe under N_{2}. The mixture was stirred at $90^{\circ} \mathrm{C}$ overnight, cooled down naturally and concentrated in vacuo. To the residue was added $\mathrm{H}_{2} \mathrm{O}(25.0 \mathrm{~mL})$. The mixture was extracted with EtOAc ($30.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})=50 / 1$) to give the title compound 55-6 as a beige solid $(0,0265 \mathrm{~g}, 40.5 \%$, HPLC: $93.88 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 468.2[\mathrm{M}+2 \mathrm{H}]^{2+}$, and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.69-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 2 \mathrm{H})$, $7.28-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.26-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.19(\mathrm{~m}, 1 \mathrm{H}), 4.56-4.59$
$(\mathrm{m}, 2 \mathrm{H}), 4.21-4.26(\mathrm{~m}, 2 \mathrm{H}), 3.94-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 6 \mathrm{H}), 2.97(\mathrm{~s}$, $2 \mathrm{H}), 2.94(\mathrm{~s}, 2 \mathrm{H}), 2.04-2.34(\mathrm{~m}, 6 \mathrm{H}), 1.76-1.87(\mathrm{~m}, 8 \mathrm{H}), 1.53-1.59(\mathrm{~m}, 8 \mathrm{H}), 1.46-1.49$ $(\mathrm{m}, 2 \mathrm{H}), 0.86-0.93(\mathrm{~m}, 12 \mathrm{H})$.

[00763] Synthetic routes

Step 1) the preparation of compound 56-1
[00764] A suspension of 3-iodoaniline ($0.92 \mathrm{~g}, 4.2 \mathrm{mmol}$), $\mathrm{EDCl}(1.2 \mathrm{~g}, 6.3 \mathrm{mmol})$ and Boc-L-proline ($1.08 \mathrm{~g}, 5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. To the suspension was added DIPEA $(3.0 \mathrm{~mL})$ slowly. Then the mixture was stirred at nt for 10 hours. To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated $i n$ vacuo and the residue was purified by silica gel column chromatography (hexane/DCM $(v / v)=1 / 1)$ to give the title compound $56-1(1.7 \mathrm{~g}, 97.3 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 439.0[\mathrm{M}+\mathrm{Na}]$; and
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 89.62(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~m}, 1 \mathrm{H})$, $4.44(\mathrm{brs}, 1 \mathrm{H}), 3.36(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$.

Step 2) the preparation of compound 56-2
[00765] To a mixture of compound $56-1(0.8 \mathrm{~g}, 1.9 \mathrm{mmol})$, compound $10-4-1(0.5 \mathrm{~g}$, $1.6 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.18 \mathrm{~g}, 0.16 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.1 \mathrm{~g}, 8.0 \mathrm{mmol})$ were added DME (20 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ via syringe under N_{2}. The mixture was refluxed at $90^{\circ} \mathrm{C}$ for 3 hours, and cooled to rt . To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography $(\operatorname{PE} / \operatorname{EtOAc}(\mathrm{v} / \mathrm{v})=4 / 1)$ to give the title compound $56-2(0.62 \mathrm{~g}, 81.3 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.48(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.44 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ $(\mathrm{m}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H})$, $4.44(\mathrm{brs}, 1 \mathrm{H}), 3.42(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 2 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.66(\mathrm{~m}$, $10 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$.

Step 3) the preparation of compound 56-3
[00766] A solution of compound $56-2(0.80 \mathrm{~g}, 1.7 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL) was cooled to $0^{\circ} \mathrm{C}$. To the solution were added dropwise pyridine (1.4 mL) and trifluoromethanesulfonic anhydride (1.76 mL) in turn. The reaction mixture was stired at it for 2 hours. To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times 3)$. The combined organic phases were dried over
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography to give the title compound $56-3$ as colorless oil $(0.87 \mathrm{~g}, 84.1 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.16 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.44 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.36 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, j=8.3 \mathrm{~Hz}$, H) , $4.48(\mathrm{brs}, 1 \mathrm{H}), 3.46(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 2 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.66(\mathrm{~m}$, $10 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H})$.

Step 4) the preparation of compound 56-4
[00767] To a mixture of compound $56-3(0.87 \mathrm{~g}, 1.4 \mathrm{mmol})$, compound $1-5-2(0.66 \mathrm{~g}$, $1.5 \mathrm{mmol}), \mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)_{4}(0.18 \mathrm{~g}, 0.16 \mathrm{mmol}) \text { and } \mathrm{K}_{2} \mathrm{CO}_{3}(1.1 \mathrm{~g}, 8.0 \mathrm{mmol}) \text { were added } .0}$ DME (20 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ via syringe under N_{2}. The mixture was refluxed at $90{ }^{\circ} \mathrm{C}$ for 3 hours, and cooled to rt . To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography $(\operatorname{PE} / E t O A c(v / v)=1 / 2)$ to give the title compound $56-4$ as a pale yellow solid $(0.78 \mathrm{~g}, 70.7 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.48(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.17(\mathrm{~m}, 11 \mathrm{H}), 4.99(\mathrm{~m}, 1 \mathrm{H}), 4.49$ (brs, $1 \mathrm{H}), 3.42(\mathrm{~m}, 4 \mathrm{H}), 2.98(\mathrm{~s}, 4 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.66(\mathrm{~m}, 10 \mathrm{H}), 1.51(\mathrm{~s}$, 18H)

Step 5) the preparation of compound 56-5
[00768] To a solution of compound $56-4(0.7 \mathrm{~g}, 0.9 \mathrm{mmol})$ in EtOAc (10 mL) was added a solution of HCl in EtOAc $(4 \mathrm{M}, 11 \mathrm{~mL})$. The mixture was stirred at rt overnight and filtered. The filter cake was washed with EtOAc $(30 \mathrm{~mL})$ to give the title compound $56-5$ as a pale yellow solid $(0.55 \mathrm{~g}, 84.6 \%)$. The product was used for the next step without further purification.
[00769] A suspension of compound $56-5(0.2 \mathrm{~g}, 0.28 \mathrm{mmol})$, EDCI (0.22 g, 1.15 mmol) and compound $1-7-2(0.15 \mathrm{~g}, 0.86 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. To the suspension was added DIPEA (0.5 mL) slowly to get a pale yellow transparent solution. Then the solution was stirred at it for 10 hours. To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography to give the title compound $56-6$ as a pale yellow solid $(0.09 \mathrm{~g}, 36.4 \%$, HPLC: 95.3%). The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 887.4[\mathrm{M}+\mathrm{H}]^{+}$; and
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 89.62(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.17(\mathrm{~m}, 10 \mathrm{H}), 5.41(\mathrm{~m}$, $2 \mathrm{H}), 4.99(\mathrm{~m}, 1 \mathrm{H}), 4.49$ (brs, 1 H$), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~m}, 4 \mathrm{H}), 2.98(\mathrm{~s}, 4 \mathrm{H})$, $2.63(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.66(\mathrm{~m}, 10 \mathrm{H}), 0.89(\mathrm{~m}, 12 \mathrm{H})$.
[00770] Example 57

[00771] Synthetic routes

EDCI,DPEA

Step 1) the preparation of compound 57-3
[00772] To a solution of compound $57-1(10 \mathrm{~g}, 41.1 \mathrm{mmol})$ in THF (50 mL) was added $\mathrm{NaNH}\left(\mathrm{SiMe}_{3}\right)_{2}(45.2 \mathrm{~mL}, 45.2 \mathrm{mmol}, 1 \mathrm{M}$ in THF $)$ dropwise at $-78^{\circ} \mathrm{C}$ under N_{2}. After the mixture was stirred for 20 minutes, compound $57-2(15.4 \mathrm{~g}, 43.1 \mathrm{mmol})$ was added. The reaction mixture stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 hours, then quenched with $\mathrm{NaHCO}_{3}(50 \mathrm{~mL}$) saturated solution and extracted with EtoAc ($100 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (PE/EtOAc $(\mathrm{v} / \mathrm{v})=4 / 1)$ to give compound 57.3 as colorless oil $(14.8 \mathrm{~g}, 95.9 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.72(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.42(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 1.42-1.47(\mathrm{~m}, 9 \mathrm{H})$.

Step 2) the preparation of compound 57-5
[00773] To a mixture of compound $57-3(5.0 \mathrm{~g}, 13.3 \mathrm{mmol})$, compound $57-4(1.0 \mathrm{~g}$, $16.7 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.465 \mathrm{~g}, 0.402 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution ($2 \mathrm{M}, 15 \mathrm{~mL}$) was added DME (50 mL) via syringe under N_{2}. The reaction mixture was stired at $90^{\circ} \mathrm{C}$ for

3 hours, cooled down naturally and concentrated in vacuo. To the residue was added water $(15 \mathrm{~mL})$, and the mixture was extracted with EtOAc ($30.0 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}(\mathrm{v} / \mathrm{v})=3 / 1)$ to give the title compound $57-5$ as colorless of $(2.25 \mathrm{~g}, 70.1 \%)$. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}, \mathrm{CDCl}): 55.36(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H}), 4.04-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~m}$, $3 \mathrm{H}), 1.79(\mathrm{~m}, 3 \mathrm{H}), 1.42-1.47(\mathrm{~m}, 9 \mathrm{H})$.

Step 3) the preparation of compound 57-6
[00774] To a mixture of compound $57-5(3.76 \mathrm{~g}, 15.6 \mathrm{mmol})$ and LiOH ($1.3 \mathrm{~g}, 54.3$ mmol) were added THF (15 mL) and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The mixture was stirred at it ovemight, then concentrated in vacuo and to the residue was added $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aqueous phase was washed with EtOAc (20 mL), adjusted to pH 3 and extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo to give the title compound 57.6 as colorless oil $(3.5 \mathrm{~g}, 98.7 \%)$. The compound was characterized by the following spectroscopic data:

MS-ESI: $m / z 226[\mathrm{M}-\mathrm{H}]^{\circ}$
Step 4) the preparation of compound 57-7
[00775] To a solution of compound $14-6(1.08 \mathrm{~g}, 2.2 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(22$ $\mathrm{mL})$ were added DIPEA $(1.1 \mathrm{~mL})$ and compound $57.6(1.04 \mathrm{~g}, 4.6 \mathrm{mmol})$ in turn in an ice bath. The reaction mixture was stirred at ft for 1 hour, and concentrated in vacuo. The residue was purfied by silica gel column chromatography (PE/EtOAc (v/v) $=1 / 2$) to give the title compound 57.7 as pale yellow slurry ($1.4 \mathrm{~g}, 81.3 \%$). The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.79-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.56$ $(\mathrm{m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.59(\mathrm{~m}, 8 \mathrm{H}), 3.58-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.49(\mathrm{~m}$, $2 \mathrm{H}), 2.91(\mathrm{~s}, 2 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H}), 1.95-1.98(\mathrm{~m}, 6 \mathrm{H}), 1.50-1.54(\mathrm{~m}, 8 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.47$ ($\mathrm{s}, 9 \mathrm{H}$).

Step 5) the preparation of compound 57-8
[00776] To a solution of compound $57-7(1.4 \mathrm{~g}, 1.8 \mathrm{mmol})$ in xylene (20 mL) was added ammonium acetate $(2.2 \mathrm{~g}, 28.5 \mathrm{mmol})$. The mixture was heated at $140^{\circ} \mathrm{C}$ for 5 hours in a sealed tube, and cooled to rt . To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}$ (50 mL). The mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography $(\operatorname{PE} / \operatorname{EtOAc}(\mathrm{v} / \mathrm{v})=1 / 4)$ to give the title compound $57-8$ as a pale yellow solid ($0.73 \mathrm{~g}, 54.6 \%$). The compound was characterized by the following spectroscopic data:
$\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(400} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.97(\mathrm{brs}, 1 \mathrm{H}), 10.49(\mathrm{brs}, 1 \mathrm{H}), 7.79-7.80(\mathrm{~m}, 2 \mathrm{H})$, $7.30-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 5.33-5.56(\mathrm{~m}$, $4 \mathrm{H}), 3.41-3.48(\mathrm{~m}, 4 \mathrm{H}), 2.95-3.20(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.98(\mathrm{~m}, 6 \mathrm{H}), 1.50-1.54(\mathrm{~m}, 8 \mathrm{H}), 1.51$ (s, 18H).

Step 6) the preparation of compound 57-9
[00777] To a solution of compound $57-8(0.37 \mathrm{~g}, 0.5 \mathrm{mmol})$ in EtOAc (5 mL) was added a solution of HCl in EtOAc ($4 \mathrm{M}, 11 \mathrm{~mL}$). Pale yellow solid precipitated out. The mixture was stirred at rt overnight and filtered. The filter cake was washed with EtOAc $(20 \mathrm{~mL})$ to give the title compound $57-9$ as pale yellow solid $(0.34 \mathrm{~g}, 98.7 \%)$.

Step 7) the preparation of compound 57-10
[00778] A suspension of compound $57-9(0.147 \mathrm{~g}, 0.21 \mathrm{mmol}), \mathrm{EDCI}(0.22 \mathrm{~g}, 1.14$ mmol) and compound $1-7-2(0.15 \mathrm{~g}, 0.86 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. To the suspension was added DIPEA (0.5 mL) slowly to get a pale yellow transparent solution. Then the solution was stimed at rt for 10 hours. To the resulting mixture was added $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (EtOAc) to give the title compound $57-10$ as a pale yellow solid (0.05 g , 27.8%, HPLC: 99%. The compound was characterized by the following spectroscopic data:
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.54-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~m}, 1 \mathrm{H}), 7.14$ $(\mathrm{m}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 1 \mathrm{H}), 5.33-5.56(\mathrm{~m}, 4 \mathrm{H}), 4.52(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H})$, $3.41-3.48(\mathrm{~m}, 4 \mathrm{H}), 2.95-3.20(\mathrm{~m}, 4 \mathrm{H}), 2.65(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.98(\mathrm{~m}, 6 \mathrm{H}), 1.50-1.54(\mathrm{~m}$, $8 \mathrm{H}), 0.83-0.97(\mathrm{~m}, 12 \mathrm{H})$.

BIOLOGICALACTIVITY

[00779] An HCV Replicon assay was utlized in the present disclosure, and was prepared, developed and validated as described in Science, 1999, 285 (5424), 110-3 and J. Virol., 2003, 77 (5), 3007-19.
[00780] HCV GT1a, GT1b and GT2a replicon cells were used to test the currently described compound series as well as wild-type cells HCV 1 b and resistant cells Y93H, L31F, P32L and 3302V. GTla, GT1b and GT2a are HCV Replicon System which is transfected HCV 1a, $1 \mathrm{~b}, 2 \mathrm{a}$ genotype respectively. The system containing G 418 resistance gene NEO and Luciferase Reporter Gene can be used to detemine the level of HCV replication, and evaluate the effects of the compounds inhibiting HCV replication, by using a real-time quantitative polymerase chain reaction (qPCR) method to detect NEO, and chemiluminescence method to test Luciferase Reporter Gene.
[00781] Operating procedure:
[00782] 1. Testing EC_{50} of the compounds by luciferase assay
[00783] The GTla cells and GT1b cells were seeded into 96 -well plates (8,000 cells in $125 \mu /$ well) respectively; each compound was diluted to desired concentration using 5 -fold serial dilutions protocol, 10 dose in duplicate, and added to wells with $P O D^{\mathrm{TM}} 810$ Plate Assembler. The final concentration of DMSO was 0.5%; the plates were incubated in a CO_{2} incubator for 72 hours; after that, 40μ of Luciferase assay substrate (Promega Bright-Gio) was added to each well, and detected by a chemiluminescence detection system (Topcount Microplate Scintillation and Luminescence Counter) 5 minutes later, data analysis.
[00784] 2. Testing EC_{50} of the compounds by detecting antibiotic G418 resistance gene NEO gene $125 \mu /$ / well) respectively, each compound was diluted to desired concentration using 5 -fold serial dilutions protocol, 10 dose in duplicate, and added to wells with $\mathrm{POD}^{\mathrm{TM}} 810$ Plate Assembler, the final concentration of DMSO was 0.5%; the cells were incubated in a CO_{2} incubator for 72 hours; quantitative PCR .
[00786] - Sample preparation: the supematant was removed, $100 \mu \mathrm{l}$ of FCW buffer solution was added to each well, washed carefully and discarded the solution; 50μ of lysate FCP was added to each well, the cells was lysed as PCR template and PCR template was diluted with DEPC water as sample template.
[00787] - Quantitative PCR: preparation of reaction mixture according to PCR system; the reaction mixture was dispensed into a 384 -well PCR reaction plate (specially for quantitative); and a standard template which was diluted in proportion was distributed into the plate; and the sample template was distributed into the plate; then the 384 -well plate was sealed with closure plate membrane; the qualitative PCR machine was operated by procedures; data analysis.
[00788] 3. Data processing: EC_{50} values of compounds were analyzed by GRAPHPAD PRISM ${ }^{\text {® }}$ software.
[00789] The compounds of the present disclosure can be effective against the HCV H genotype according to the experiment data. EC_{50} ranges of compounds having different groups against HCV 1 b are $1-999 \mathrm{pM}$ and $1-99 \mathrm{nM}$. The compounds of the present disclosure can inhibit multiple genotypes of HCV (such as HCV la or HCV 2 a). Table 2 shows the EC_{50} values of representative compounds of the present disclosure against the HCV 1 a and HCV Ib genotypes. In one embodiment compounds of the present disclosure are active against the 1a, $1 \mathrm{~b}, 2 \mathrm{a}, 2 \mathrm{~b}, 3 \mathrm{a}, 3 \mathrm{~b}, 4 \mathrm{a}$, and 5 a genotypes. EC50 ranges against HCV 1 a and HCV 1 b are as follows: $\mathrm{A}=0.001-0.100 \mathrm{nM} ; \mathrm{B}=0.101-1.000 \mathrm{nM} ; \mathrm{C}=1.001-10.000 \mathrm{nM}$; and $\mathrm{D}>10$ nM .
[00790] The experimental results of wild-type and resistance cells and the simulation results of molecular modeling and computer aided docking design show that compounds in the present disclosure play an excellent anti-HCV role, which suggest a novel anti-HCV mechanism by interfering with HCV NS5A protein.

example	range (1a)	range (1b)	example range (1a)	range $(1 \mathrm{~b})$	example	range $($ la $)$	range (1b)	
1	A	C	17	B	D	39	A	B
2	B	D	18	A	D	40	A	C
3	A	A	20	A	B	41	C	D
4	A	A	21	A	C	43	A	D
4	A	B	22	A	A	45	A	D
5	A	A						
6	A	A	23	A	A	49	A	C
8	A	C	24	A	A	50	A	C
11	A	A	29	A	A	51	A	D
14	A	D	36	A	A	54	A	B
15	A	D	37	C	C	56	A	C
16	A	D	38	B	D			

[00792] It will be evident to one skilled in the art that the present disclosure is not limited to the foregoing illustrative examples, and that it can be embodied in other specific forms without departing from the essential attributes thereof. It is therefore desired that the examples be considered in all respects as illustrative and not restrictive, reference being made to the appended claims, rather than to the foregoing examples, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
[00793] The compounds of the present disclosure may inhibit HCV by mechanisms in addition to or other than NS5A inhibition. In one embodiment the compounds of the present disclosure inhbit HCV replicon and in another embodiment the compounds of the present disclosure inhibit NS5A. The compounds of the present disclosure may inhibit multiple genotypes of HCV.

Claims

1. A compound of formula (I):

or a stereoisomer, a geometric isomer, a tautomer, an N -oxide, a hydrate, a solvate, or a pharmaceutically acceptable salt, wherein:
each of A and A' is independently one of the following groups:

, or

wherein each X^{1} is independently $\mathrm{O}, \mathrm{S}, \mathrm{NR}^{6}$ or $\mathrm{CR}^{7} \mathrm{R}^{7 \mathrm{a}}$;
each Y^{1} and Y^{2} is independently N or $C R^{7}$;
each X^{2} is independently $\mathrm{NR}^{6}, \mathrm{O}$ or S ;
Z is $-\left(\mathrm{CH}_{2}\right)_{\mathrm{a}}{ }^{-}, \quad-\mathrm{CH}=\mathrm{CH}-,-\mathrm{N}=\mathrm{CH}-,-\left(\mathrm{CH}_{2}\right)_{\mathrm{a}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CH}_{2}\right)_{\mathrm{b}}{ }^{-}$, or $-\left(\mathrm{CH}_{2}\right)_{\mathrm{a}}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{b^{-}}$, wherein each a and b is independently $0,1,2$ or 3 ;
each c is independently 1 or 2 ;
d is 1 or 2 ;
e is $1,2,3$ or 4 ;
f is $0,1,2,3$ or 4 ;
each Q_{1} and Q_{2} is independently $\mathrm{NR}^{6}, \mathrm{O}, \mathrm{S}, \mathrm{C}(=\mathrm{O})$ or $\mathrm{CR}^{7} \mathrm{R}^{7 \mathrm{a}}$, with the proviso that when Q_{1} is $\mathrm{NR}^{6}, \mathrm{O}, \mathrm{S}$ or $\mathrm{C}(=\mathrm{O})$, e is 1 ;

W is C_{3-8} carbocyclyl or C_{2-10} heterocyclyl;
each of X and X^{\prime} is independently N or CR^{7};
each of Y and Y^{\prime} is independently H, alkyl, heteroalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, a group derived from a naturally occurring or commercially available α-amino acid or an optically isomer thereof, or each of Y and Y^{\prime} is independently $-\left[U-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{10}\right)-\left(C R^{9} R^{9 a}\right)_{t}\right]_{k}-U-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{11}\right)-\left(C R^{9} R^{9 a}\right)_{t}-R^{12}$,
$-U-\left(R^{9} R^{9 a}\right)_{t}-R^{12}$ or
$-\left[U-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{10}\right)-\left(C R^{9} R^{9 a}\right)_{t}\right]_{k}-U-\left(C R^{9} R^{9 a}\right)_{t}-O-\left(C R^{9} R^{9 a}\right)_{t}-R^{12} ;$

U is independently $-\mathrm{C}(=\mathrm{O})-,-\mathrm{C}(=\mathrm{S})-,-\mathrm{S}(=\mathrm{O})-$ or $-\mathrm{S}(=\mathrm{O})_{2}-$;
each t is independently $0,1,2,3$ or 4 ;
each k is independently 0,1 or 2 ;
each of R^{1}, R^{2}, R^{3} and R^{4} is independently H, alkyl, heteroalkyl, aralkyl, cycloalkyl, heterocyclyl, heteroaryl or aryl; or R^{1} and R^{2}, together with X-CH, form a 3-8 membered heterocycle or carbocycle, C_{5-12} fused bicycle, C_{5-12} fused heterobicycle, C_{5-12} spiro bicycle or C_{5-12} spiro heterobicycle; or R^{3} and R^{4}, together with X^{\prime} - CH , form a 3-8 membered heterocycle or carbocycle, C_{5-12} fused bicycle, C_{5-12} fused heterobicycle, C_{5-12} spiro bicycle or C_{5-12} spiro heterobicycle;
R^{5} is independently H , hydroxy, alkyl, heteroalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, alkoxy, alkyl-OC(=O)-, alkyl-C(=O)-, carbamoyl, alkyl-OS(=O) $)_{r^{-}}$, alkyl-S(=O) $)_{r} \mathrm{O}-$, alkyl-S $(=\mathrm{O})_{\mathrm{r}^{-}}$or aminosulfonyl;
each $R^{5 a}$ is independently H, oxo ($=\mathrm{O}$), hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, $\mathrm{R}^{7 \mathrm{a}} \mathrm{R}^{7} \mathrm{~N}$-, $-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 \mathrm{a}},-\mathrm{OC}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 \mathrm{a}},-\mathrm{OC}(=\mathrm{O}) \mathrm{OR}^{7},-\mathrm{N}^{\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 \mathrm{a}},-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{7 \mathrm{a}}, ~}$ $-N\left(R^{7}\right) C(=O)-R^{7 a}$,
$\mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{N}-\mathrm{S}(=\mathrm{O})_{2^{-}}, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2^{-}}, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{7 \mathrm{a}}\right)-, \quad \mathrm{R}^{7 \mathrm{a}} \mathrm{R}^{7} \mathrm{~N}$-alkyl, $\quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})$-alkyl, $R^{7} R^{7 a} \mathrm{~N}$-C($=\mathrm{O}$)-alkyl, $\quad \mathrm{R}^{7 \mathrm{a}} \mathrm{R}^{7} \mathrm{~N}$-alkoxy, $\quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})$-alkoxy, $\quad \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{N}$ - $\mathrm{C}(=\mathrm{O})$-alkoxy, aryl, heteroaryl, alkoxy, alkylamino, alkyl, haloalkyl, alkenyl, alkynyl, heterocyclyl, cycloalkyl, mercapto, nitro, aralkyl, arylamino, heteroarylamino, arylalkylamino, heteroarylalkylamino, heteroaryloxy, heteroarylalkyl, arylalkoxy, heteroarylalkoxy, heterocyclyloxy, heterocyclylalkoxy, heterocyclylamino, heterocyclylalkylamino or aryloxy;
each R^{6} is independently $H, \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{NC}(=\mathrm{O})$-, $\mathrm{R}^{7} \mathrm{OC}(=\mathrm{O})$-, $\mathrm{R}^{7} \mathrm{C}(=\mathrm{O})-, \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{NS}(=\mathrm{O})$-, $\mathrm{R}^{7} \mathrm{OS}(=\mathrm{O})-, \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})-, \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{NS}(=\mathrm{O})_{2^{-}}, \mathrm{R}^{7} \mathrm{OS}(=\mathrm{O})_{2^{-}}, \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2^{-}}$, aliphatic, haloaliphatic, hydroxyaliphatic, aminoaliphatic, alkoxyaliphatic, alkylaminoaliphatic, alkylthioaliphatic, arylaliphatic, heteroarylaliphatic, heterocyclylaliphatic, cycloalkylaliphatic, aryloxyaliphatic, heterocyclyloxyaliphatic, cycloalkyloxyaliphatic, arylaminoaliphatic, heterocyclylaminoaliphatic, cycloalkylaminoaliphatic, aryl, heteroaryl, heterocyclyl or
carbocyclyl;
each $R^{6 a}$ is independently H, oxo, hydroxy, amino, $F, C l, B r, I$, cyano, $R^{7 a} R^{7} N$-,
 $-N\left(R^{7}\right) C(=O)-R^{7 a}, \quad R^{7} R^{7 a} N-S(=O)_{2}-, \quad R^{7} S(=O)_{2}-, \quad R^{7} S(=O)_{2} N\left(R^{7 a}\right)-, \quad R^{7 a} \mathrm{R}^{7} N$-alkyl, $\mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})$-alkyl, $\quad \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{N}-\mathrm{C}(=\mathrm{O})$-alkyl, $\quad \mathrm{R}^{7 \mathrm{a}} \mathrm{R}^{7} \mathrm{~N}$-alkoxy, $\quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})$-alkoxy, $\mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{N}-\mathrm{C}(=\mathrm{O})$-alkoxy, aryl, heteroaryl, alkoxy, alkylamino, alkyl, haloalkyl, alkenyl, alkynyl, heterocyclyl, cycloalkyl, mercapto, nitro, aralkyl, arylamino, heteroarylamino, arylalkylamino, heteroarylalkylamino, heteroaryloxy, heteroarylalkyl, arylalkoxy, heteroarylalkoxy, heterocyclyloxy, heterocyclylalkoxy, heterocyclylamino, heterocyclylalkylamino, or aryloxy;
each R^{7} and $R^{7 a}$ is independently $H, F, C l$, aliphatic, heteroalkyl, haloaliphatic, hydroxyaliphatic, aminoaliphatic, alkoxyaliphatic, alkylaminoaliphatic, alkylthioaliphatic, arylaliphatic, heterocyclylaliphatic, cycloalkylaliphatic, aryloxyaliphatic, heterocyclyloxyaliphatic, cycloalkyloxyaliphatic, arylaminoaliphatic, heterocyclylaminoaliphatic, cycloalkylaminoaliphatic, aryl, heteroaryl, heterocyclyl or carbocyclyl; with the proviso that where R^{7} and $\mathrm{R}^{7 \mathrm{a}}$ are bonded to the same nitrogen atom, R^{7} and $R^{7 a}$, together with the nitrogen atom, form a substituted or unsubstituted 3-8 membered ring;
each $R^{9}, R^{9 a}, R^{10}$ and R^{11} is independently H, alkyl, heteroalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, haloalkyl, hydroxyalkyl, heteroarylalkyl, heterocyclylalkyl, or cycloalkylalkyl;
each $\quad R^{12} \quad$ is independently $\quad R^{133} R^{13} N-, \quad-C(=O) R^{13}, \quad-C(=S) R^{13}, \quad-C(=O)-O-R^{13}$, $-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}, \quad-\mathrm{OC}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}, \quad-\mathrm{OC}(=\mathrm{O}) \mathrm{OR}^{13}, \quad-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}$, $-N\left(R^{13}\right) \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{13 \mathrm{a}},-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O})-\mathrm{R}^{13 \mathrm{a}}, \mathrm{R}^{13} \mathrm{R}^{13 \mathrm{a}} \mathrm{N}-\mathrm{S}(=\mathrm{O})_{2}-, \mathrm{R}^{13} \mathrm{~S}(=\mathrm{O})_{2}-, \mathrm{R}^{13} \mathrm{~S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{13 \mathrm{a}}\right)-$, $\mathrm{R}^{13} \mathrm{OS}(=\mathrm{O})_{2^{-}}$, alkyl, heteroalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl or aralkyl;
or R^{11} and R^{12}, together with the nitrogen atom they are attached to, form a 4-7
membered ring; and
each R^{13} and $R^{13 a}$ is independently H, alkyl, heteroalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, or aralkyl;
wherein each of the following groups
$-\left[U-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{10}\right)-\left(C R^{9} R^{9 a}\right)_{t}\right]_{k}-U-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{11}\right)-\left(C R^{9} R^{9 a}\right)_{t}-R^{12}$,
$-U-\left(R^{9} R^{9 a}\right)_{t}-R^{12},-\left[U-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{10}\right)-\left(C R^{9} R^{9 a}\right)_{t}\right]_{k}-U-\left(C R^{9} R^{9 a}\right)_{t}-O-\left(C R^{9} R^{9 a}\right)_{t}-R^{12}$,
$\mathrm{NR}^{6}, \mathrm{CR}^{7} \mathrm{R}^{7 \mathrm{a}}, \mathrm{CR}^{7}$, $-\left(\mathrm{CH}_{2}\right)_{a^{-}},-\mathrm{CH}=\mathrm{CH}-,-\mathrm{N}=\mathrm{CH}-,-\left(\mathrm{CH}_{2}\right)_{\mathrm{a}}-\mathrm{N}\left(\mathrm{R}^{5}\right)-\left(\mathrm{CH}_{2}\right)_{b^{-}},-\left(\mathrm{CH}_{2}\right)_{a^{2}}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{b^{-}}$, $\mathrm{R}^{13 \mathrm{a}} \mathrm{R}^{13} \mathrm{~N}-, \quad-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}, \quad-\mathrm{C}(=\mathrm{S}) \mathrm{R}^{13}, \quad-\mathrm{C}(=\mathrm{O})-\mathrm{O}-\mathrm{R}^{13}, \quad-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}, \quad-\mathrm{OC}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}$, $-\mathrm{OC}(=\mathrm{O}) \mathrm{OR}^{13}, \quad-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}, \quad-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{13 \mathrm{a}}, \quad-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O})-\mathrm{R}^{13 \mathrm{a}}$, $\mathrm{R}^{13} \mathrm{R}^{13 \mathrm{a}} \mathrm{N}-\mathrm{S}(=\mathrm{O})_{2^{-}}, \mathrm{R}^{13} \mathrm{~S}(=\mathrm{O})_{2^{-}}, \mathrm{R}^{13} \mathrm{~S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{13 \mathrm{a}}\right)_{-}, \mathrm{R}^{13} \mathrm{OS}(=\mathrm{O})_{2^{-}}, \mathrm{R}^{7 \mathrm{a}} \mathrm{R}^{7} \mathrm{~N}-,-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 \mathrm{a}}$, $-\mathrm{OC}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 \mathrm{a}},-\mathrm{OC}(=\mathrm{O}) \mathrm{OR}^{7},-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{NR}^{7} \mathrm{R}^{7 \mathrm{a}},-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{7 \mathrm{a}},-\mathrm{N}\left(\mathrm{R}^{7}\right) \mathrm{C}(=\mathrm{O})-\mathrm{R}^{7 \mathrm{a}}$, $\mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{N}-\mathrm{S}(=\mathrm{O})_{2^{-}}, \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2^{-}}, \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{7 \mathrm{a}}\right)-$, alkyl-OC(=O) -, alkyl-C $(=\mathrm{O})-$, alkyl-OS $(=\mathrm{O})_{\mathrm{r}^{-}}$, alkyl-S $(=\mathrm{O})_{\mathrm{r}} \mathrm{O}-, \quad$ alkyl- $\mathrm{S}(=\mathrm{O})_{\mathrm{r}}-\quad \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{NC}(=\mathrm{O})-, \quad \mathrm{R}^{7} \mathrm{OC}(=\mathrm{O})-, \quad \mathrm{R}^{7} \mathrm{C}(=\mathrm{O})-, \quad \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{NS}(=\mathrm{O})-$, $\mathrm{R}^{7} \mathrm{OS}(=\mathrm{O})-, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})-, \quad \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{NS}(=\mathrm{O})_{2^{-}}, \quad \mathrm{R}^{7} \mathrm{OS}(=\mathrm{O})_{2^{-}}, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2^{-}}, \quad \mathrm{R}^{7 \mathrm{a}} \mathrm{R}^{7} \mathrm{~N}$-alkyl, $R^{7} S(=O)$-alkyl, $\quad R^{7} R^{7 a} N-C(=O)$-alkyl, $\quad R^{7 a} R^{7} N$-alkoxy, $\quad R^{7} S(=O)$-alkoxy, $\mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{N}-\mathrm{C}(=\mathrm{O})$-alkylamino, alkyl, heteroalkyl, carbocyclyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, α-amino acid, C_{5-12} fused bicycle, C_{5-12} fused heterobicycle, C_{5-12} spiro bicycle or C_{5-12} spiro heterobicycle, alkoxy, aliphatic, haloaliphatic, hydroxyaliphatic, aminoaliphatic, alkoxyaliphatic, alkylaminoaliphatic, alkylthioaliphatic, arylaliphatic, heteroarylaliphatic, heterocyclylaliphatic, cycloalkylaliphatic, aryloxyaliphatic, heterocyclyloxyaliphatic, cycloalkyloxyaliphatic, arylaminoaliphatic, heterocyclylaminoaliphatic, cycloalkylaminoaliphatic, haloalkyl, alkenyl, alkynyl, arylamino, heteroarylamino, arylalkylamino, heteroarylalkylamino, heteroaryloxy, heteroarylalkyl, arylalkoxy, heteroarylalkoxy, heterocyclyloxy, heterocyclylalkoxy, heterocyclylamino, heterocyclylalkylamino and aryloxy is optionally substituted or unsubstituted.
2. The compound according to claim 1 , wherein the structural unit of
04 Aug 2016

wherein each X^{3} and X^{4} is independently O, S, R^{6}, or $C R^{7} R^{7 a}$;
each e is $1,2,3$ or 4 ;
f is $0,1,2,3$ or 4 ;
each Q_{1} and Q_{2} is independently $\mathrm{NR}^{6}, \mathrm{O}, \mathrm{S}, \mathrm{C}(=\mathrm{O})$, or $\mathrm{CR}^{7} \mathrm{R}^{7 \mathrm{a}}$, with the proviso that when Q_{1} is $\mathrm{NR}^{6}, \mathrm{O}, \mathrm{S}$ or $\mathrm{C}(=\mathrm{O})$, e is 1 ; and
each $\mathrm{R}^{5 \mathrm{a}}$ is independently H , oxo $(=\mathrm{O})$, hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, C_{1-6} alkylacyl, C_{1-6} alkylacyloxy, C_{1-6} alkoxyacyl, C_{1-6} alkylsulfonyl, C_{1-6} alkoxysulfonyl, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyloxy, C_{1-6} alkylsulfinyloxy, C_{1-6} alkoxy, C_{1-6} alkyl, C_{6-10} aryl, $-\mathrm{CF}_{3},-\mathrm{OCF}_{3}$, mercapto, nitro, C_{1-6} alkylamino, C_{3-10} cycloalkyl or C_{6-10} aryloxy.
3. The compound according to claim 1, wherein
the structural unit of

has one of the following structures:

,

wherein each $\mathrm{R}^{5 \mathrm{a}}$ is independently H , oxo $(=\mathrm{O})$, hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, I , cyano, C_{1-6} alkylacyl, C_{1-6} alkylacyloxy, C_{1-6} alkoxyacyl, C_{1-6} alkylsulfonyl, C_{1-6} alkoxysulfonyl, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyloxy, C_{1-6} alkylsulfinyloxy, C_{1-6} alkoxy, C_{1-6} alkyl, C_{6-10} aryl, $-\mathrm{CF}_{3},-\mathrm{OCF}_{3}$, mercapto, nitro, or C_{1-6} alkylamino; and
each R^{6} is independently H, C_{1-6} aliphatic, C_{1-6} haloaliphatic, C_{1-6} hydroxyaliphatic, C_{1-6} aminoaliphatic, $\quad \mathrm{C}_{1-6} \quad$ alkoxy- C_{1-6}-aliphatic, $\quad \mathrm{C}_{1-6} \quad$ alkylamino- C_{1-6}-aliphatic, C_{1-6} alkylthio- C_{1-6}-aliphatic, C_{6-10} aryl- C_{1-6}-aliphatic, C_{1-9} heteroaryl- C_{1-6}-aliphatic, C_{2-10} heterocyclyl- C_{1-6}-aliphatic or C_{3-8} cycloalkyl- C_{1-6}-aliphatic.
4. The compound according to claim 1 , wherein each of A and A^{\prime} is independently one of the following groups:

 or

wherein each R^{5} is independently H, hydroxy, C_{1-6} alkyl, C_{1-6} heteroalkyl, C_{3-8} cycloalkyl, C_{2-10} heterocyclyl, C_{6-10} aryl, C_{1-9} heteroaryl, C_{6-10} aryl- C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-6} alkyl- $\mathrm{OC}(=\mathrm{O})-, \mathrm{C}_{1-6}$ alkyl-C(=O)-, carbamoyl, C_{1-6} alkyl-OS $(=\mathrm{O})_{r^{-}}, \mathrm{C}_{1-6}$ alkyl- $\mathrm{S}(=\mathrm{O})_{\mathrm{r}} \mathrm{O}-$, C_{1-6} alkyl-S $(=\mathrm{O})_{\mathrm{r}}$ - or aminosulfonyl;
each $R^{6 a}$ is independently H, oxo, hydroxy, amino, $F, C l, B r, I$, cyano, $R^{7 a} R^{7} N$-,
 $-N\left(R^{7}\right) C(=O)-R^{7 a}, \quad R^{7} R^{7 a} N-S(=O)_{2}-\quad \quad R^{7} S(=O)_{2}-\quad \quad R^{7} S(=O)_{2} N\left(R^{7 a}\right)-, \quad R^{7 a} R^{7} N-C_{1-6} \quad$ alkyl, $\mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})-\mathrm{C}_{1-6}$ alkyl, $\mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{N}-\mathrm{C}(=\mathrm{O})-\mathrm{C}_{1-6}$ alkyl, $\mathrm{R}^{7 \mathrm{a}} \mathrm{R}^{7} \mathrm{~N}-\mathrm{C}_{1-6}$ alkoxy, $\mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})-\mathrm{C}_{1-6}$ alkoxy, $\mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{N}-\mathrm{C}(=\mathrm{O})-\mathrm{C}_{1-6}$ alkoxy, C_{6-10} aryl, C_{1-9} heteroaryl, C_{1-6} alkoxy, C_{1-6} alkylamino, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{2-10} heterocyclyl, C_{3-8} cycloalkyl, mercapto, nitro, C_{6-10} aryl- C_{1-6}-alkyl, C_{6-10} arylamino, C_{1-9} heteroarylamino, or C_{6-10} aryloxy;
each R^{7} and $R^{7 a}$ is independently $H, F, C l, C_{1-6}$ aliphatic, C_{1-6} heteroalkyl, C_{1-6} haloaliphatic, hydroxy C_{1-6} aliphatic, amino C_{1-6} aliphatic, C_{1-6} alkoxy- C_{1-6}-aliphatic, C_{1-6}
alkylamino- C_{1-6}-aliphatic, C_{1-6} alkylthio- C_{1-6}-aliphatic, C_{6-10} aryl- C_{1-6}-aliphatic, C_{1-9} heterocyclyl- C_{1-6}-aliphatic, C_{3-8} cycloalkyl- C_{1-6}-aliphatic, C_{6-10} aryloxy- C_{1-6}-aliphatic, C_{2-10} heterocyclyloxy- C_{1-6}-aliphatic, $\quad \mathrm{C}_{3-8} \quad$ cycloalkyloxy- C_{1-6}-aliphatic, $\quad \mathrm{C}_{6-10}$ arylamino- C_{1-6}-aliphatic, $\quad \mathrm{C}_{2-10} \quad$ heterocyclylamino- C_{1-6}-aliphatic, $\quad \mathrm{C}_{3-8}$ cycloalkylamino- C_{1-6}-aliphatic, C_{6-10} aryl, C_{1-9} heteroaryl, C_{2-10} heterocyclyl or C_{3-8} carbocyclyl; with the proviso that where R^{7} and $\mathrm{R}^{7 \mathrm{a}}$ are bonded to the same nitrogen atom, R^{7} and $\mathrm{R}^{7 \mathrm{a}}$, together with the nitrogen atom, form a substituted or unsubstituted 3-8 membered ring.
5. The compound according to claim 1 , wherein each of A and A^{\prime} is independently one of the following groups:

wherein X^{1} is O or S ;
each R^{6} is independently H, C_{1-6} aliphatic, C_{1-6} haloaliphatic, C_{1-6} hydroxyaliphatic, C_{1-6} aminoaliphatic, $\quad \mathrm{C}_{1-6} \quad$ alkoxy- C_{1-6}-aliphatic, $\quad \mathrm{C}_{1-6}$ alkylamino- C_{1-6}-aliphatic, $\quad \mathrm{C}_{1-6}$ alkylthio- C_{1-6}-aliphatic, C_{6-10} aryl- C_{1-6}-aliphatic, C_{1-9} heteroaryl- C_{1-6}-aliphatic, C_{2-10}

each $R^{6 a}$ is independently H, hydroxy, amino, $F, C l, B r, I$, cyano, oxo, $R^{7 a} R^{7} N-, C_{1-6}$ alkoxy, C_{1-6} alkylamino, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, mercapto or nitro; and
each of R^{7} and $\mathrm{R}^{7 a}$ is independently $\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{C}_{1-6}$ aliphatic, C_{1-6} heteroalkyl, C_{1-6} haloaliphatic, hydroxy C_{1-6} aliphatic, amino C_{1-6} aliphatic, C_{1-6} alkoxy- C_{1-6}-aliphatic, C_{1-6} alkylamino- C_{1-6}-aliphatic or C_{1-6} alkylthio- C_{1-6}-aliphatic.
6. The compound according to claim 1 , wherein each of R^{1}, R^{2}, R^{3} and R^{4} is independently $\mathrm{H}, \mathrm{C}_{1-8}$ alkyl, C_{1-8} heteroalkyl, C_{6-10} aryl- C_{1-6}-alkyl, C_{3-10} cycloalkyl, C_{2-10} heterocyclyl, C_{1-9} heteroaryl or C_{6-10} aryl, or R^{1} and R^{2}, together with X-CH, form a 3-8 membered heterocycle or carbocycle, C_{5-12} fused bicycle, C_{5-12} fused heterobicycle, C_{5-12} spiro bicycle or C_{5-12} spiro heterobicycle; or R^{3} and R^{4}, together with X^{\prime} - CH , form a 3-8 membered heterocycle or carbocycle, C_{5-12} fused bicycle, C_{5-12} fused heterobicycle, C_{5-12} spiro bicycle or C_{5-12} spiro heterobicycle.
7. The compound according to claim 6 , wherein $\mathrm{R}^{1}, \mathrm{R}^{2}$ and X-CH together form one of the following monovalent groups:

26 Aug 2016

wherein $\mathrm{R}^{3}, \mathrm{R}^{4}$ and X^{\prime} - CH together form one of the following monovalent groups:

wherein each R^{15} is independently $\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, hydroxy, C_{1-3} alkyl, C_{1-3} haloalkyl, C_{1-3} alkoxy, C_{1-3} alkylamino, C_{1-3} alkylthio, C_{6-10} arylamino, C_{6-10} aryloxy, C_{1-9} heteroaryl, C_{1-9} heteroaryloxy, C_{1-9} heteroaryl- C_{1-3}-alkyl, or C_{2-10} heterocyclyl; and
each n_{1} and n_{2} is independently $1,2,3$ or 4 .
8. The compound according to claim 1 having the structure of formula (II):
26 Aug 2016

wherein the structural unit of

has one of the following structures:

04 Aug 2016

or

wherein each Q_{1} and Q_{2} is independently $\mathrm{NR}^{6}, \mathrm{O}, \mathrm{S}, \mathrm{C}(=\mathrm{O})$ or CH_{2};
each X^{3} and X^{4} is independently $O, S, N R^{6}$, or $C R^{7} R^{7 a}$;
each of A and A' is independently one of the following groups:

04 Aug 2016

each R^{5} is independently H , hydroxy, C_{1-6} alkyl, C_{1-6} heteroalkyl, C_{3-10} cycloalkyl, C_{2-10} heterocyclyl, C_{6-10} aryl, C_{1-9} heteroaryl, C_{6-10} aryl- C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-6} alkyl-OC(=O)-, C_{1-6} alkyl-C(=O)-, carbamoyl, C_{1-6} alkyl- $\mathrm{OS}(=\mathrm{O})_{\mathrm{r}}{ }^{-}, \mathrm{C}_{1-6}$ alkyl- $\mathrm{S}(=\mathrm{O})_{\mathrm{r}} \mathrm{O}-$, alkyl-S(=O) $)_{\mathrm{r}}$ or aminosulfonyl;
each $\mathrm{R}^{5 a}$ is independently H , oxo $(=\mathrm{O})$, hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, C_{1-6} alkylacyl, C_{1-6} alkylacyloxy, C_{1-6} alkoxyacyl, C_{1-6} alkylsulfonyl, C_{1-6} alkoxysulfonyl, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyloxy, C_{1-6} alkylsulfinyloxy, C_{1-6} alkoxy, C_{1-6} alkyl, C_{6-10} aryl, $-\mathrm{CF}_{3},-\mathrm{OCF}_{3}$, mercapto, nitro, C_{1-6} alkylamino, C_{3-10} cycloalkyl or C_{6-10} aryloxy;
each R^{6} is independently $H, \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{NC}(=\mathrm{O})$-, $\mathrm{R}^{7} \mathrm{OC}(=\mathrm{O})-, \mathrm{R}^{7} \mathrm{C}(=\mathrm{O})-, \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{NS}(=\mathrm{O})$-, $\mathrm{R}^{7} \mathrm{OS}(=\mathrm{O})-, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})-, \quad \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{NS}(=\mathrm{O})_{2^{-}}, \quad \mathrm{R}^{7} \mathrm{OS}(=\mathrm{O})_{2^{-}}, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2^{-}}, \quad \mathrm{C}_{1-6}$ aliphatic, C_{1-6} alkoxy- C_{1-6}-aliphatic, $\quad \mathrm{C}_{1-6}$ alkylamino- C_{1-6}-aliphatic, $\quad \mathrm{C}_{6-10}$ aryl- C_{1-6}-aliphatic, C_{1-9} heteroaryl- C_{1-6}-aliphatic, C_{2-10} heterocyclyl- C_{1-6}-aliphatic, C_{3-10} cycloalkyl- C_{1-6}-aliphatic, C_{6-10} aryl, C_{1-9} heteroaryl, C_{2-10} heterocyclyl or C_{3-10} carbocyclyl;
each $\mathrm{R}^{6 a}$ is independently H , oxo $(=\mathrm{O})$, hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, C_{1-6} alkylacyl, C_{1-6} alkylacyloxy, C_{1-6} alkoxyacyl, C_{1-6} alkylsulfonyl, C_{1-6} alkoxysulfonyl, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyloxy, C_{1-6} alkylsulfinyloxy, C_{1-6} alkoxy, C_{1-6} alkyl, C_{6-10} aryl,
$-\mathrm{CF}_{3},-\mathrm{OCF}_{3}$, mercapto, nitro, C_{1-6} alkylamino, C_{3-10} cycloalkyl or C_{6-10} aryloxy;
each R^{7} and $R^{7 a}$ is independently H, C_{1-6} aliphatic, C_{1-6} heteroalkyl, C_{1-6} alkoxy- C_{1-6}-aliphatic, $\quad \mathrm{C}_{1-6}$ alkylamino- C_{1-6}-aliphatic, C_{6-10} aryl- C_{1-6}-aliphatic, C_{2-10} heterocyclyl- C_{1-6}-aliphatic, C_{3-10} cycloalkyl- C_{1-6}-aliphatic, C_{6-10} aryl, C_{1-9} heteroaryl, C_{2-10} heterocyclyl or $\mathrm{C}_{3 \text {-10 }}$ carbocyclyl; with the proviso that where R^{7} and $\mathrm{R}^{7 \mathrm{a}}$ are bonded to the same nitrogen atom, R^{7} and $\mathrm{R}^{7 \mathrm{a}}$, together with the nitrogen atom, form a substituted or unsubstituted 3-8 membered ring;
each of Y_{4} and $\mathrm{Y}_{4}{ }^{\prime}$ is independently a bond, $\mathrm{O}, \mathrm{S},-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}^{-}},-\mathrm{CH}=\mathrm{CH}-,-\mathrm{S}(=\mathrm{O})_{\mathrm{r}^{-}},-\mathrm{CH}_{2} \mathrm{O}-$, $-\mathrm{CH}_{2} \mathrm{~S}-,-\mathrm{CH}_{2} \mathrm{~S}(=\mathrm{O})_{\mathrm{r}^{-}}$, or $-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{6}\right)$-;
each n is independently $0,1,2$ or 3 ;
and
each r is independently 0,1 or 2 .
9. The compound according to claim 1 having the structure of formula (III):

04 Aug 2016
wherein the structural unit of

has one of the following structures:

wherein each Q_{2} is independently $\mathrm{O}, \mathrm{S}, \mathrm{C}(=\mathrm{O})$ or CH_{2};
each X^{3} and X^{4} is independently $O, S, N R^{6}$, or $C R^{7} R^{7 a}$;
each e is independently $1,2,3$ or 4 ;
f is $0,1,2,3$ or 4 ;
each of A and A^{\prime} is independently one of the following groups:

each R^{5} is independently H, hydroxy, C_{1-6} alkyl, C_{1-6} heteroalkyl, C_{3-10} cycloalkyl, C_{2-10} heterocyclyl, C_{6-10} aryl, C_{1-9} heteroaryl, C_{6-10} aryl- C_{1-6}-alkyl, C_{1-6} alkoxy, C_{1-6} alkyl- $\mathrm{OC}(=\mathrm{O})$-, C_{1-6} alkyl- $\mathrm{C}(=\mathrm{O})-$, carbamoyl, C_{1-6} alkyl- $\mathrm{OS}(=\mathrm{O})_{\mathrm{r}^{-}}, \mathrm{C}_{1-6}$ alkyl- $\mathrm{S}(=\mathrm{O})_{\mathrm{r}} \mathrm{O}-$, alkyl- $\mathrm{S}(=\mathrm{O})_{\mathrm{r}^{-}}$or aminosulfonyl;
each $\mathrm{R}^{5 \mathrm{a}}$ is independently H , oxo (=O), hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, I , cyano, C_{1-6} alkylacyl, C_{1-6} alkylacyloxy, C_{1-6} alkoxyacyl, C_{1-6} alkylsulfonyl, C_{1-6} alkoxysulfonyl, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyloxy, C_{1-6} alkylsulfinyloxy, C_{1-6} alkoxy, C_{1-6} alkyl, C_{6-10} aryl, $-\mathrm{CF}_{3},-\mathrm{OCF}_{3}$, mercapto, nitro, C_{1-6} alkylamino, C_{3-10} cycloalkyl or C_{6-10} aryloxy;
each R^{6} is independently $\mathrm{H}, \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{NC}(=\mathrm{O})$-, $\mathrm{R}^{7} \mathrm{OC}(=\mathrm{O})$-, $\mathrm{R}^{7} \mathrm{C}(=\mathrm{O})-, \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{NS}(=\mathrm{O})$-, $\mathrm{R}^{7} \mathrm{OS}(=\mathrm{O})-, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})-, \quad \mathrm{R}^{7} \mathrm{R}^{7 \mathrm{a}} \mathrm{NS}(=\mathrm{O})_{2^{-}}, \quad \mathrm{R}^{7} \mathrm{OS}(=\mathrm{O})_{2^{-}}, \quad \mathrm{R}^{7} \mathrm{~S}(=\mathrm{O})_{2^{-}}, \quad \mathrm{C}_{1-6}$ aliphatic, $\quad \mathrm{C}_{1-6}$ alkoxy- C_{1-6}-aliphatic, C_{1-6} alkylamino- C_{1-6}-aliphatic, C_{6-10} aryl- C_{1-6}-aliphatic, C_{1-9} heteroaryl- C_{1-6}-aliphatic, C_{2-10} heterocyclyl- C_{1-6}-aliphatic, C_{3-10} cycloalkyl- C_{1-6}-aliphatic, C_{6-10} aryl, C_{1-9} heteroaryl, C_{2-10} heterocyclyl or C_{3-10} carbocyclyl;
each $\mathrm{R}^{6 \mathrm{a}}$ is independently H , oxo $(=\mathrm{O})$, hydroxy, amino, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, cyano, C_{1-6} alkylacyl, C_{1-6} alkylacyloxy, C_{1-6} alkoxyacyl, C_{1-6} alkylsulfonyl, C_{1-6} alkoxysulfonyl, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyloxy, C_{1-6} alkylsulfinyloxy, C_{1-6} alkoxy, C_{1-6} alkyl, C_{6-10} aryl, $-\mathrm{CF}_{3},-\mathrm{OCF}_{3}$, mercapto, nitro, C_{1-6} alkylamino, C_{3-10} cycloalkyl or C_{6-10} aryloxy;
each R^{7} and $R^{7 a}$ is independently H, C_{1-6} aliphatic, C_{1-6} heteroalkyl, C_{1-6} alkoxy-C C_{1-6}-aliphatic, C_{1-6} alkylamino- C_{1-6}-aliphatic, C_{6-10} aryl- C_{1-6}-aliphatic, C_{2-10} heterocyclyl- C_{1-6}-aliphatic, C_{3-10} cycloalkyl- C_{1-6}-aliphatic, C_{6-10} aryl, C_{1-9} heteroaryl, C_{2-10} heterocyclyl or C_{3-10} carbocyclyl; with the proviso that where R^{7} and $\mathrm{R}^{7 a}$ are bonded to the same nitrogen atom, R^{7} and $\mathrm{R}^{7 \mathrm{a}}$, together with the nitrogen atom, form a substituted or unsubstituted 3-8 membered ring;
each of Y_{4} and $\mathrm{Y}_{4}{ }^{\prime}$ is independently a bond, $\mathrm{O}, \mathrm{S},-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}^{-}},-\mathrm{CH}=\mathrm{CH}-,-\mathrm{S}(=\mathrm{O})_{\mathrm{r}^{-}},-\mathrm{CH}_{2} \mathrm{O}-$, $-\mathrm{CH}_{2} \mathrm{~S}-,-\mathrm{CH}_{2} \mathrm{~S}(=\mathrm{O})_{\mathrm{r}}$-, or $-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{6}\right)$-;
each n is independently $0,1,2$ or 3 ;
and
each r is independently 0,1 or 2 .
10. The compound according to claim 9 having formula (IV), formula (V), or

(IV),

(V), or

(VI),
wherein each of Q_{2} and Q_{3} is independently $\mathrm{O}, \mathrm{S}, \mathrm{C}(=\mathrm{O}), \mathrm{NR}^{6}$, or CH_{2}; and e is $1,2,3$ or 4 .
11. The compound according to claim 1 , wherein the α-amino acid is isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophane, valine, alanine, asparagine, aspartic acid, glutamic acid, glutamine, proline, serine, p-tyrosine, arginine, histidine, cysteine, glycine, sarcosine, N,N-dimethylglycine, homoserine, norvaline, norleucine, ornithine, homocysteine, homophenylalanine, phenylglycine, o-tyrosine, m-tyrosine or hydroxyproline.
12. The compound according to any one of claims 1 to 10 , wherein each of Y and Y^{\prime} is independently $\quad-\left[U-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{10}\right)-\left(C R^{9} R^{9 a}\right)_{t}\right]_{k}-U-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{11}\right)-\left(C R^{9} R^{9 a}\right)_{t}-R^{12}$; $-U-\left(R^{9} R^{9_{a}}\right)_{t}-R^{12} ;-\left[U-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{10}\right)-\left(C R^{9} R^{9_{a}}\right)_{t}\right]_{k}-U-\left(C R^{9} R^{9_{a}}\right)_{t}-O-\left(C R^{9} R^{9_{a}}\right)_{t}-R^{12} ;$

$$
\begin{aligned}
& -\left[U-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{10}\right)-\left(C R^{9} R^{9 a}\right)_{t}\right]_{k}-U-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{11}\right)-\left(C R^{9} R^{9 a}\right)_{t}-R^{12} ; \\
& -U-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{10}\right)-\left(C R^{9} R^{9 a}\right)_{t}-U-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{11}\right)-\left(C R^{9} R^{9 a}\right)_{t}-R^{12} ; \\
& -U-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{11}\right)-\left(C R^{9} R^{9 a}\right)_{t}-R^{12} \\
& -\left[C(=O)-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{10}\right)-\left(C R^{9} R^{9 a}\right)_{t}\right]_{k}-U-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{11}\right)-\left(C R^{9} R^{9 a}\right)_{t}-R^{12} ;
\end{aligned}
$$

$$
\begin{aligned}
& -\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{t}-\mathrm{N}\left(\mathrm{R}^{10}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{am}}\right)_{t}-\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{t}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{t}-\mathrm{R}^{12} ; \\
& -\left[C(=O)-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{10}\right)-\left(C R^{9} R^{9 a}\right)_{t}\right]_{k}-C(=O)-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{11}\right)-\left(C R^{9} R^{9 a}\right)_{t}-R^{12} ; \\
& -\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{t}-\mathrm{N}\left(\mathrm{R}^{10}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{t}-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{t}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{t}-\mathrm{R}^{12} ; \\
& -\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{t}}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{t}}-\mathrm{R}^{12} ; \\
& -\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{n}}-\mathrm{C}(=\mathrm{O})-\mathrm{R}^{13} ; \\
& -\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\mathrm{C}(=\mathrm{O})-\mathrm{R}^{13} ; \\
& -\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{n}}-\mathrm{C}(=\mathrm{O})-\mathrm{O}-\mathrm{R}^{13} ; \\
& -\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{n}}-\mathrm{N}\left(\mathrm{R}^{11}\right)-\mathrm{C}(=\mathrm{O})-\mathrm{O}-\mathrm{R}^{13} ; \\
& -U-\left(R^{9} R^{9 a}\right)_{t}-R^{12} ; \\
& -\mathrm{C}(=\mathrm{O})-\left(\mathrm{R}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{t}}-\mathrm{R}^{12} \text {; } \\
& -\left[U-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{10}\right)-\left(C R^{9} R^{9 a}\right)_{t}\right]_{k}-U-\left(C R^{9} R^{9 a}\right)_{t}-O-\left(C R^{9} R^{9 a}\right)_{t}-R^{12} ; \\
& -U-\left(C R^{9} R^{9 a}\right)_{t}-N\left(R^{10}\right)-\left(C R^{9} R^{9 a}\right)_{t}-U-\left(C R^{9} R^{9 a}\right)_{t}-O-\left(C R^{9} R^{9 a}\right)_{t}-R^{12} ; \\
& -\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{t}}-\mathrm{N}\left(\mathrm{R}^{10}\right)-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{t}}-\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{t}}-\mathrm{O}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{t}}-\mathrm{R}^{12} ; \\
& -\mathrm{U}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{t}}-\mathrm{O}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{t}}-\mathrm{R}^{12} ; \\
& -\mathrm{C}(=\mathrm{O})-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{t}}-\mathrm{O}-\left(\mathrm{CR}^{9} \mathrm{R}^{9 \mathrm{a}}\right)_{\mathrm{t}}-\mathrm{R}^{12} \text {; or }
\end{aligned}
$$

$-C(=O)-\left(C R^{9} R^{9 a}\right)_{n}-N R^{11}-R^{12}$, wherein R^{11} and R^{12}, together with the nitrogen atom they are attached to, form a 4-7 membered ring.
13. The compound according to claim 12 , wherein each $R^{9}, R^{9 a}, R^{10}$ and R^{11} is independently $\mathrm{H}, \mathrm{C}_{1-6}$ alkyl, C_{1-6} heteroalkyl, C_{3-10} cycloalkyl, C_{2-10} heterocyclyl, C_{6-10} aryl, C_{1-9} heteroaryl, C_{6-10} aryl- C_{1-6}-alkyl, C_{1-6} haloalkyl, C_{1-6} hydroxyalkyl, C_{1-9} heteroaryl- C_{1-6}-alkyl, C_{2-10} heterocyclyl- C_{1-6}-alkyl, or C_{3-8} cycloalkyl- C_{1-6}-alkyl;
each R^{12} is independently $\mathrm{R}^{13 \mathrm{a}} \mathrm{R}^{13} \mathrm{~N}-,-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13},-\mathrm{C}(=\mathrm{S}) \mathrm{R}^{13},-\mathrm{C}(=\mathrm{O})-\mathrm{O}-\mathrm{R}^{13},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}$, $-\mathrm{OC}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}, \quad-\mathrm{OC}(=\mathrm{O}) \mathrm{OR}^{13}, \quad-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}, \quad-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O}) \mathrm{OR}^{13 \mathrm{a}}$, $-\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{C}(=\mathrm{O})-\mathrm{R}^{13 \mathrm{a}}, \mathrm{R}^{13} \mathrm{R}^{13 \mathrm{a}} \mathrm{N}-\mathrm{S}(=\mathrm{O})_{2^{-}}, \mathrm{R}^{13} \mathrm{~S}(=\mathrm{O})_{2^{-}}, \mathrm{R}^{13} \mathrm{~S}(=\mathrm{O})_{2} \mathrm{~N}\left(\mathrm{R}^{13 \mathrm{a}}\right)-, \mathrm{R}^{13} \mathrm{OS}(=\mathrm{O})_{2}-, \mathrm{C}_{1-6}$ alkyl, C_{1-6} heteroalkyl, C_{3-10} cycloalkyl, C_{2-10} heterocyclyl, C_{6-10} aryl, C_{1-9} heteroaryl, or C_{6-10} aryl-C ${ }_{1-6}$-alkyl;
or R^{11} and R^{12}, together with the nitrogen atom they are attached to, form a 4-7 membered ring; and
each R^{13} and $\mathrm{R}^{13 \mathrm{a}}$ is independently $\mathrm{H}, \mathrm{C}_{1-6}$ alkyl, C_{1-6} heteroalkyl, C_{3-10} cycloalkyl, C_{2-10} heterocyclyl, C_{6-10} aryl, C_{1-9} heteroaryl, or C_{6-10} aryl- C_{1-6}-alkyl.
14. The compound according to claim 13 , wherein each $\mathrm{R}^{9}, \mathrm{R}^{9 \mathrm{a}}, \mathrm{R}^{10}$ and R^{11} is independently H , methyl, ethyl, isopropyl, cyclohexyl, isobutyl or phenyl;
each R^{12} is independently $-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}$, $-\mathrm{C}(=\mathrm{O})-\mathrm{O}-\mathrm{R}^{13}$, $-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}$, methyl, ethyl, propyl, phenyl, cyclohexyl, morpholinyl or piperidinyl;
or R^{11} and R^{12}, together with the nitrogen atom they are attached to, form a 4-7 membered ring; and
each R^{13} and $R^{13 a}$ is independently H, methyl, ethyl, propyl, phenyl, cyclohexyl, morpholinyl or piperidinyl.
15. The compound according to claim 8 having formula (VII):

(VII),
wherein each of R^{14} and $\mathrm{R}^{14 \mathrm{a}}$ is independently $\mathrm{H}, \mathrm{C}_{1-6}$ alkyl, C_{1-6} haloalkyl, C_{1-6} hydroxyalkyl, C_{1-6} heteroalkyl, C_{6-10} aryl, C_{1-9} heteroaryl, C_{2-10} heterocyclyl, C_{3-8} cycloalkyl, C_{6-10} aryl- C_{1-6}-alkyl, C_{1-9} heteroaryl- C_{1-6}-alkyl, C_{2-10} heterocyclyl- C_{1-6}-alkyl, or C_{3-8} cycloalkyl-C C_{1-6}-alkyl.
16. The compound according to claim 15 having formula (VIII):

wherein each of R^{14} and $\mathrm{R}^{14 a}$ is independently $\mathrm{H}, \mathrm{C}_{1-3}$ hydroxyalkyl, methyl, ethyl, isopropyl, isobutyl, tert-butyl, allyl, propargyl, trifluoroethyl, phenyl, pyranyl, morpholinyl, $-\mathrm{NR}^{7} \mathrm{R}^{7 \mathrm{a}}$, benzyl, piperazinyl, cyclopentyl, cyclopropyl, cyclohexyl, or C_{1-9} heteroaryl.
17. The compound according to claim 1 having formula (IX) or formula (X):

(IX), or

(X),
wherein each of R^{14} and $R^{14 a}$ is independently H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} hydroxyalkyl, C_{1-6} heteroalkyl, C_{6-10} aryl, C_{1-9} heteroaryl, C_{2-10} heterocyclyl, C_{3-8} cycloalkyl, C_{6-10} aryl- C_{1-6} alkyl, C_{1-9} heteroaryl- C_{1-6}-alkyl, C_{2-10} heterocyclyl- C_{1-6}-alkyl or C_{3-8} cycloalkyl-C ${ }_{1-6}$-alkyl; and
each n_{1} and n_{2} is independently $1,2,3$ or 4 .
18. The compound according to claim 1 having formula (XI):

(XI),
wherein $\mathrm{R}^{5 \mathrm{a}}$ is H , methyl, ethyl, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I ;
Q_{1} is $\mathrm{CH}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{O}, \mathrm{S}$, or NH ;
Q_{2} is $\mathrm{CH}_{2}, \mathrm{C}(=\mathrm{O}), \mathrm{CF}_{2}, \mathrm{O}$, or S ;
04 Aug 2016
each of R^{14} and $\mathrm{R}^{14 \mathrm{a}}$ is independently methyl, ethyl, phenyl, cyclohexyl, 1-methylpropyl, isopropyl or tert-butyl;
each of R^{16} and $\mathrm{R}^{16 \mathrm{a}}$ is independently hydroxy, methoxy, ethoxy, phenoxy,
 or tert-butoxy;
wherein the structural unit of
 has one of the following structures:

, wherein Bn is benzyl;
each of A and A^{\prime} is independently

04 Aug 2016

wherein $\mathrm{R}^{1}, \mathrm{R}^{2}$ and N -CH together form one of the following divalent groups:

wherein $\mathrm{R}^{3}, \mathrm{R}^{4}$ and N -CH together form one of the following divalent groups:

19. The compound according to claim 18 having formula (XII):

wherein i is 1,2 , or 3 ;
$\mathrm{R}^{5 \mathrm{a}}$ is H or methyl;
each of Q_{1} and Q_{2} is independently $\mathrm{CH}_{2}, \mathrm{CF}_{2}, \mathrm{O}$ or $\mathrm{C}(=\mathrm{O})$;
each of R^{14} and $\mathrm{R}^{14 \mathrm{a}}$ is independently methyl, ethyl, isobutyl, cyclohexyl, phenyl or isopropyl;
each of R^{15} and $\mathrm{R}^{15 \mathrm{a}}$ is independently $\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, methyl, ethyl, isopropyl or tert-butyl; each of R^{17} and $\mathrm{R}^{17 \text { a }}$ is independently methyl, phenyl or ethyl; and each of A and A^{\prime} is independently

or

20. The compound of claim 1 having one of the following structures:

(2),

(3),

[^3]$2012283609 \quad 04$ Aug 2016

04 Aug 2016
2012283609

2012283609 04 Aug 2016

(29),

$910 Z$ ภn $\vee \downarrow 0$

(35),
(3)

or a stereoisomer, a geometric isomer, a tautomer, an N -oxide, a hydrate, a solvate, or a pharmaceutically acceptable salt thereof.
21. A pharmaceutical composition comprising the compound according to any one of
claims 1 to 20 and a pharmaceutically acceptable carrier, excipient, diluent, adjuvant, vehicle or a combination thereof.
22. The pharmaceutical composition according to claim 21 further comprising an additional anti-HCV agent, wherein the anti-HCV agent is interferon, ribavirin, IL-2, IL-6, IL-12, a compound that enhances the development of a type 1 helper T cell response, interfering RNA, anti-sense RNA, imiquimod, an inosine-5'-monophosphate dehydrogenase inhibitor, amantadine, rimantadine, boceprevir, telaprevir, daclatasvir, or a combination thereof, wherein the interferon is interferon $\alpha-2 b$, pegylated interferon α, interferon $\alpha-2 \mathrm{a}$, pegylated interferon $\alpha-2 \mathrm{a}$, consensus interferon- α, or interferon γ.
23. The pharmaceutical composition according to any one of claims 21 to 22 further comprising at least one additional compound which is effective to inhibit at least one target, wherein the target is selected from HCV metalloproteinase, HCV serine proteinase, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, and IMPDH.
24. The compound according to any one of claims 1 to 20 or the pharmaceutical composition according to any one of claims 21 to 22 for use in inhibiting at least one target, wherein the target is selected from HCV metalloproteinase, HCV serine proteinase, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, and IMPDH.
25. Use of the compound according to any one of claims 1 to 20 or the pharmaceutical composition according to any one of claims 21 to 22 in the manufacture of a medicament for preventing, managing, treating or lessening the severity of HCV infection or a HCV disorder in a patient.

[^0]: R^{12} is independently $\mathrm{R}^{133} \mathrm{R}^{13} \mathrm{~N}-,-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13},-\mathrm{C}(=\mathrm{S}) \mathrm{R}^{13}, \mathrm{C}(=\mathrm{O})-\mathrm{O}-\mathrm{R}^{13},-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 \mathrm{a}}$, $-\mathrm{OC}(=\mathrm{O}) \mathrm{NR}^{13} \mathrm{R}^{13 a}$,

[^1]: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 86.605(\mathrm{~s}, 2 \mathrm{H}), 3.778(\mathrm{~s}, 6 \mathrm{H}), 2.803(\mathrm{~s}, 4 \mathrm{H}), 1.70-1.71(\mathrm{~m}$,

[^2]: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.73(\mathrm{br}, 1 \mathrm{H}), 11.35(\mathrm{br}, 1 \mathrm{H}), 7.31-7.71(\mathrm{~m}, 4 \mathrm{H})$,

[^3]: 04 Aug 2016

 2012283609

